1 /* 2 * kernel/cpuset.c 3 * 4 * Processor and Memory placement constraints for sets of tasks. 5 * 6 * Copyright (C) 2003 BULL SA. 7 * Copyright (C) 2004-2007 Silicon Graphics, Inc. 8 * Copyright (C) 2006 Google, Inc 9 * 10 * Portions derived from Patrick Mochel's sysfs code. 11 * sysfs is Copyright (c) 2001-3 Patrick Mochel 12 * 13 * 2003-10-10 Written by Simon Derr. 14 * 2003-10-22 Updates by Stephen Hemminger. 15 * 2004 May-July Rework by Paul Jackson. 16 * 2006 Rework by Paul Menage to use generic cgroups 17 * 2008 Rework of the scheduler domains and CPU hotplug handling 18 * by Max Krasnyansky 19 * 20 * This file is subject to the terms and conditions of the GNU General Public 21 * License. See the file COPYING in the main directory of the Linux 22 * distribution for more details. 23 */ 24 25 #include <linux/cpu.h> 26 #include <linux/cpumask.h> 27 #include <linux/cpuset.h> 28 #include <linux/err.h> 29 #include <linux/errno.h> 30 #include <linux/file.h> 31 #include <linux/fs.h> 32 #include <linux/init.h> 33 #include <linux/interrupt.h> 34 #include <linux/kernel.h> 35 #include <linux/kmod.h> 36 #include <linux/list.h> 37 #include <linux/mempolicy.h> 38 #include <linux/mm.h> 39 #include <linux/memory.h> 40 #include <linux/export.h> 41 #include <linux/mount.h> 42 #include <linux/namei.h> 43 #include <linux/pagemap.h> 44 #include <linux/proc_fs.h> 45 #include <linux/rcupdate.h> 46 #include <linux/sched.h> 47 #include <linux/sched/mm.h> 48 #include <linux/sched/task.h> 49 #include <linux/seq_file.h> 50 #include <linux/security.h> 51 #include <linux/slab.h> 52 #include <linux/spinlock.h> 53 #include <linux/stat.h> 54 #include <linux/string.h> 55 #include <linux/time.h> 56 #include <linux/time64.h> 57 #include <linux/backing-dev.h> 58 #include <linux/sort.h> 59 60 #include <linux/uaccess.h> 61 #include <linux/atomic.h> 62 #include <linux/mutex.h> 63 #include <linux/cgroup.h> 64 #include <linux/wait.h> 65 66 DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key); 67 68 /* See "Frequency meter" comments, below. */ 69 70 struct fmeter { 71 int cnt; /* unprocessed events count */ 72 int val; /* most recent output value */ 73 time64_t time; /* clock (secs) when val computed */ 74 spinlock_t lock; /* guards read or write of above */ 75 }; 76 77 struct cpuset { 78 struct cgroup_subsys_state css; 79 80 unsigned long flags; /* "unsigned long" so bitops work */ 81 82 /* 83 * On default hierarchy: 84 * 85 * The user-configured masks can only be changed by writing to 86 * cpuset.cpus and cpuset.mems, and won't be limited by the 87 * parent masks. 88 * 89 * The effective masks is the real masks that apply to the tasks 90 * in the cpuset. They may be changed if the configured masks are 91 * changed or hotplug happens. 92 * 93 * effective_mask == configured_mask & parent's effective_mask, 94 * and if it ends up empty, it will inherit the parent's mask. 95 * 96 * 97 * On legacy hierachy: 98 * 99 * The user-configured masks are always the same with effective masks. 100 */ 101 102 /* user-configured CPUs and Memory Nodes allow to tasks */ 103 cpumask_var_t cpus_allowed; 104 nodemask_t mems_allowed; 105 106 /* effective CPUs and Memory Nodes allow to tasks */ 107 cpumask_var_t effective_cpus; 108 nodemask_t effective_mems; 109 110 /* 111 * This is old Memory Nodes tasks took on. 112 * 113 * - top_cpuset.old_mems_allowed is initialized to mems_allowed. 114 * - A new cpuset's old_mems_allowed is initialized when some 115 * task is moved into it. 116 * - old_mems_allowed is used in cpuset_migrate_mm() when we change 117 * cpuset.mems_allowed and have tasks' nodemask updated, and 118 * then old_mems_allowed is updated to mems_allowed. 119 */ 120 nodemask_t old_mems_allowed; 121 122 struct fmeter fmeter; /* memory_pressure filter */ 123 124 /* 125 * Tasks are being attached to this cpuset. Used to prevent 126 * zeroing cpus/mems_allowed between ->can_attach() and ->attach(). 127 */ 128 int attach_in_progress; 129 130 /* partition number for rebuild_sched_domains() */ 131 int pn; 132 133 /* for custom sched domain */ 134 int relax_domain_level; 135 }; 136 137 static inline struct cpuset *css_cs(struct cgroup_subsys_state *css) 138 { 139 return css ? container_of(css, struct cpuset, css) : NULL; 140 } 141 142 /* Retrieve the cpuset for a task */ 143 static inline struct cpuset *task_cs(struct task_struct *task) 144 { 145 return css_cs(task_css(task, cpuset_cgrp_id)); 146 } 147 148 static inline struct cpuset *parent_cs(struct cpuset *cs) 149 { 150 return css_cs(cs->css.parent); 151 } 152 153 #ifdef CONFIG_NUMA 154 static inline bool task_has_mempolicy(struct task_struct *task) 155 { 156 return task->mempolicy; 157 } 158 #else 159 static inline bool task_has_mempolicy(struct task_struct *task) 160 { 161 return false; 162 } 163 #endif 164 165 166 /* bits in struct cpuset flags field */ 167 typedef enum { 168 CS_ONLINE, 169 CS_CPU_EXCLUSIVE, 170 CS_MEM_EXCLUSIVE, 171 CS_MEM_HARDWALL, 172 CS_MEMORY_MIGRATE, 173 CS_SCHED_LOAD_BALANCE, 174 CS_SPREAD_PAGE, 175 CS_SPREAD_SLAB, 176 } cpuset_flagbits_t; 177 178 /* convenient tests for these bits */ 179 static inline bool is_cpuset_online(struct cpuset *cs) 180 { 181 return test_bit(CS_ONLINE, &cs->flags) && !css_is_dying(&cs->css); 182 } 183 184 static inline int is_cpu_exclusive(const struct cpuset *cs) 185 { 186 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags); 187 } 188 189 static inline int is_mem_exclusive(const struct cpuset *cs) 190 { 191 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags); 192 } 193 194 static inline int is_mem_hardwall(const struct cpuset *cs) 195 { 196 return test_bit(CS_MEM_HARDWALL, &cs->flags); 197 } 198 199 static inline int is_sched_load_balance(const struct cpuset *cs) 200 { 201 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); 202 } 203 204 static inline int is_memory_migrate(const struct cpuset *cs) 205 { 206 return test_bit(CS_MEMORY_MIGRATE, &cs->flags); 207 } 208 209 static inline int is_spread_page(const struct cpuset *cs) 210 { 211 return test_bit(CS_SPREAD_PAGE, &cs->flags); 212 } 213 214 static inline int is_spread_slab(const struct cpuset *cs) 215 { 216 return test_bit(CS_SPREAD_SLAB, &cs->flags); 217 } 218 219 static struct cpuset top_cpuset = { 220 .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) | 221 (1 << CS_MEM_EXCLUSIVE)), 222 }; 223 224 /** 225 * cpuset_for_each_child - traverse online children of a cpuset 226 * @child_cs: loop cursor pointing to the current child 227 * @pos_css: used for iteration 228 * @parent_cs: target cpuset to walk children of 229 * 230 * Walk @child_cs through the online children of @parent_cs. Must be used 231 * with RCU read locked. 232 */ 233 #define cpuset_for_each_child(child_cs, pos_css, parent_cs) \ 234 css_for_each_child((pos_css), &(parent_cs)->css) \ 235 if (is_cpuset_online(((child_cs) = css_cs((pos_css))))) 236 237 /** 238 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants 239 * @des_cs: loop cursor pointing to the current descendant 240 * @pos_css: used for iteration 241 * @root_cs: target cpuset to walk ancestor of 242 * 243 * Walk @des_cs through the online descendants of @root_cs. Must be used 244 * with RCU read locked. The caller may modify @pos_css by calling 245 * css_rightmost_descendant() to skip subtree. @root_cs is included in the 246 * iteration and the first node to be visited. 247 */ 248 #define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs) \ 249 css_for_each_descendant_pre((pos_css), &(root_cs)->css) \ 250 if (is_cpuset_online(((des_cs) = css_cs((pos_css))))) 251 252 /* 253 * There are two global locks guarding cpuset structures - cpuset_mutex and 254 * callback_lock. We also require taking task_lock() when dereferencing a 255 * task's cpuset pointer. See "The task_lock() exception", at the end of this 256 * comment. 257 * 258 * A task must hold both locks to modify cpusets. If a task holds 259 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it 260 * is the only task able to also acquire callback_lock and be able to 261 * modify cpusets. It can perform various checks on the cpuset structure 262 * first, knowing nothing will change. It can also allocate memory while 263 * just holding cpuset_mutex. While it is performing these checks, various 264 * callback routines can briefly acquire callback_lock to query cpusets. 265 * Once it is ready to make the changes, it takes callback_lock, blocking 266 * everyone else. 267 * 268 * Calls to the kernel memory allocator can not be made while holding 269 * callback_lock, as that would risk double tripping on callback_lock 270 * from one of the callbacks into the cpuset code from within 271 * __alloc_pages(). 272 * 273 * If a task is only holding callback_lock, then it has read-only 274 * access to cpusets. 275 * 276 * Now, the task_struct fields mems_allowed and mempolicy may be changed 277 * by other task, we use alloc_lock in the task_struct fields to protect 278 * them. 279 * 280 * The cpuset_common_file_read() handlers only hold callback_lock across 281 * small pieces of code, such as when reading out possibly multi-word 282 * cpumasks and nodemasks. 283 * 284 * Accessing a task's cpuset should be done in accordance with the 285 * guidelines for accessing subsystem state in kernel/cgroup.c 286 */ 287 288 static DEFINE_MUTEX(cpuset_mutex); 289 static DEFINE_SPINLOCK(callback_lock); 290 291 static struct workqueue_struct *cpuset_migrate_mm_wq; 292 293 /* 294 * CPU / memory hotplug is handled asynchronously. 295 */ 296 static void cpuset_hotplug_workfn(struct work_struct *work); 297 static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn); 298 299 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq); 300 301 /* 302 * This is ugly, but preserves the userspace API for existing cpuset 303 * users. If someone tries to mount the "cpuset" filesystem, we 304 * silently switch it to mount "cgroup" instead 305 */ 306 static struct dentry *cpuset_mount(struct file_system_type *fs_type, 307 int flags, const char *unused_dev_name, void *data) 308 { 309 struct file_system_type *cgroup_fs = get_fs_type("cgroup"); 310 struct dentry *ret = ERR_PTR(-ENODEV); 311 if (cgroup_fs) { 312 char mountopts[] = 313 "cpuset,noprefix," 314 "release_agent=/sbin/cpuset_release_agent"; 315 ret = cgroup_fs->mount(cgroup_fs, flags, 316 unused_dev_name, mountopts); 317 put_filesystem(cgroup_fs); 318 } 319 return ret; 320 } 321 322 static struct file_system_type cpuset_fs_type = { 323 .name = "cpuset", 324 .mount = cpuset_mount, 325 }; 326 327 /* 328 * Return in pmask the portion of a cpusets's cpus_allowed that 329 * are online. If none are online, walk up the cpuset hierarchy 330 * until we find one that does have some online cpus. 331 * 332 * One way or another, we guarantee to return some non-empty subset 333 * of cpu_online_mask. 334 * 335 * Call with callback_lock or cpuset_mutex held. 336 */ 337 static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask) 338 { 339 while (!cpumask_intersects(cs->effective_cpus, cpu_online_mask)) { 340 cs = parent_cs(cs); 341 if (unlikely(!cs)) { 342 /* 343 * The top cpuset doesn't have any online cpu as a 344 * consequence of a race between cpuset_hotplug_work 345 * and cpu hotplug notifier. But we know the top 346 * cpuset's effective_cpus is on its way to to be 347 * identical to cpu_online_mask. 348 */ 349 cpumask_copy(pmask, cpu_online_mask); 350 return; 351 } 352 } 353 cpumask_and(pmask, cs->effective_cpus, cpu_online_mask); 354 } 355 356 /* 357 * Return in *pmask the portion of a cpusets's mems_allowed that 358 * are online, with memory. If none are online with memory, walk 359 * up the cpuset hierarchy until we find one that does have some 360 * online mems. The top cpuset always has some mems online. 361 * 362 * One way or another, we guarantee to return some non-empty subset 363 * of node_states[N_MEMORY]. 364 * 365 * Call with callback_lock or cpuset_mutex held. 366 */ 367 static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask) 368 { 369 while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY])) 370 cs = parent_cs(cs); 371 nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]); 372 } 373 374 /* 375 * update task's spread flag if cpuset's page/slab spread flag is set 376 * 377 * Call with callback_lock or cpuset_mutex held. 378 */ 379 static void cpuset_update_task_spread_flag(struct cpuset *cs, 380 struct task_struct *tsk) 381 { 382 if (is_spread_page(cs)) 383 task_set_spread_page(tsk); 384 else 385 task_clear_spread_page(tsk); 386 387 if (is_spread_slab(cs)) 388 task_set_spread_slab(tsk); 389 else 390 task_clear_spread_slab(tsk); 391 } 392 393 /* 394 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q? 395 * 396 * One cpuset is a subset of another if all its allowed CPUs and 397 * Memory Nodes are a subset of the other, and its exclusive flags 398 * are only set if the other's are set. Call holding cpuset_mutex. 399 */ 400 401 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q) 402 { 403 return cpumask_subset(p->cpus_allowed, q->cpus_allowed) && 404 nodes_subset(p->mems_allowed, q->mems_allowed) && 405 is_cpu_exclusive(p) <= is_cpu_exclusive(q) && 406 is_mem_exclusive(p) <= is_mem_exclusive(q); 407 } 408 409 /** 410 * alloc_trial_cpuset - allocate a trial cpuset 411 * @cs: the cpuset that the trial cpuset duplicates 412 */ 413 static struct cpuset *alloc_trial_cpuset(struct cpuset *cs) 414 { 415 struct cpuset *trial; 416 417 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL); 418 if (!trial) 419 return NULL; 420 421 if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL)) 422 goto free_cs; 423 if (!alloc_cpumask_var(&trial->effective_cpus, GFP_KERNEL)) 424 goto free_cpus; 425 426 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed); 427 cpumask_copy(trial->effective_cpus, cs->effective_cpus); 428 return trial; 429 430 free_cpus: 431 free_cpumask_var(trial->cpus_allowed); 432 free_cs: 433 kfree(trial); 434 return NULL; 435 } 436 437 /** 438 * free_trial_cpuset - free the trial cpuset 439 * @trial: the trial cpuset to be freed 440 */ 441 static void free_trial_cpuset(struct cpuset *trial) 442 { 443 free_cpumask_var(trial->effective_cpus); 444 free_cpumask_var(trial->cpus_allowed); 445 kfree(trial); 446 } 447 448 /* 449 * validate_change() - Used to validate that any proposed cpuset change 450 * follows the structural rules for cpusets. 451 * 452 * If we replaced the flag and mask values of the current cpuset 453 * (cur) with those values in the trial cpuset (trial), would 454 * our various subset and exclusive rules still be valid? Presumes 455 * cpuset_mutex held. 456 * 457 * 'cur' is the address of an actual, in-use cpuset. Operations 458 * such as list traversal that depend on the actual address of the 459 * cpuset in the list must use cur below, not trial. 460 * 461 * 'trial' is the address of bulk structure copy of cur, with 462 * perhaps one or more of the fields cpus_allowed, mems_allowed, 463 * or flags changed to new, trial values. 464 * 465 * Return 0 if valid, -errno if not. 466 */ 467 468 static int validate_change(struct cpuset *cur, struct cpuset *trial) 469 { 470 struct cgroup_subsys_state *css; 471 struct cpuset *c, *par; 472 int ret; 473 474 rcu_read_lock(); 475 476 /* Each of our child cpusets must be a subset of us */ 477 ret = -EBUSY; 478 cpuset_for_each_child(c, css, cur) 479 if (!is_cpuset_subset(c, trial)) 480 goto out; 481 482 /* Remaining checks don't apply to root cpuset */ 483 ret = 0; 484 if (cur == &top_cpuset) 485 goto out; 486 487 par = parent_cs(cur); 488 489 /* On legacy hiearchy, we must be a subset of our parent cpuset. */ 490 ret = -EACCES; 491 if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) && 492 !is_cpuset_subset(trial, par)) 493 goto out; 494 495 /* 496 * If either I or some sibling (!= me) is exclusive, we can't 497 * overlap 498 */ 499 ret = -EINVAL; 500 cpuset_for_each_child(c, css, par) { 501 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) && 502 c != cur && 503 cpumask_intersects(trial->cpus_allowed, c->cpus_allowed)) 504 goto out; 505 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) && 506 c != cur && 507 nodes_intersects(trial->mems_allowed, c->mems_allowed)) 508 goto out; 509 } 510 511 /* 512 * Cpusets with tasks - existing or newly being attached - can't 513 * be changed to have empty cpus_allowed or mems_allowed. 514 */ 515 ret = -ENOSPC; 516 if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) { 517 if (!cpumask_empty(cur->cpus_allowed) && 518 cpumask_empty(trial->cpus_allowed)) 519 goto out; 520 if (!nodes_empty(cur->mems_allowed) && 521 nodes_empty(trial->mems_allowed)) 522 goto out; 523 } 524 525 /* 526 * We can't shrink if we won't have enough room for SCHED_DEADLINE 527 * tasks. 528 */ 529 ret = -EBUSY; 530 if (is_cpu_exclusive(cur) && 531 !cpuset_cpumask_can_shrink(cur->cpus_allowed, 532 trial->cpus_allowed)) 533 goto out; 534 535 ret = 0; 536 out: 537 rcu_read_unlock(); 538 return ret; 539 } 540 541 #ifdef CONFIG_SMP 542 /* 543 * Helper routine for generate_sched_domains(). 544 * Do cpusets a, b have overlapping effective cpus_allowed masks? 545 */ 546 static int cpusets_overlap(struct cpuset *a, struct cpuset *b) 547 { 548 return cpumask_intersects(a->effective_cpus, b->effective_cpus); 549 } 550 551 static void 552 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c) 553 { 554 if (dattr->relax_domain_level < c->relax_domain_level) 555 dattr->relax_domain_level = c->relax_domain_level; 556 return; 557 } 558 559 static void update_domain_attr_tree(struct sched_domain_attr *dattr, 560 struct cpuset *root_cs) 561 { 562 struct cpuset *cp; 563 struct cgroup_subsys_state *pos_css; 564 565 rcu_read_lock(); 566 cpuset_for_each_descendant_pre(cp, pos_css, root_cs) { 567 /* skip the whole subtree if @cp doesn't have any CPU */ 568 if (cpumask_empty(cp->cpus_allowed)) { 569 pos_css = css_rightmost_descendant(pos_css); 570 continue; 571 } 572 573 if (is_sched_load_balance(cp)) 574 update_domain_attr(dattr, cp); 575 } 576 rcu_read_unlock(); 577 } 578 579 /* 580 * generate_sched_domains() 581 * 582 * This function builds a partial partition of the systems CPUs 583 * A 'partial partition' is a set of non-overlapping subsets whose 584 * union is a subset of that set. 585 * The output of this function needs to be passed to kernel/sched/core.c 586 * partition_sched_domains() routine, which will rebuild the scheduler's 587 * load balancing domains (sched domains) as specified by that partial 588 * partition. 589 * 590 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt 591 * for a background explanation of this. 592 * 593 * Does not return errors, on the theory that the callers of this 594 * routine would rather not worry about failures to rebuild sched 595 * domains when operating in the severe memory shortage situations 596 * that could cause allocation failures below. 597 * 598 * Must be called with cpuset_mutex held. 599 * 600 * The three key local variables below are: 601 * q - a linked-list queue of cpuset pointers, used to implement a 602 * top-down scan of all cpusets. This scan loads a pointer 603 * to each cpuset marked is_sched_load_balance into the 604 * array 'csa'. For our purposes, rebuilding the schedulers 605 * sched domains, we can ignore !is_sched_load_balance cpusets. 606 * csa - (for CpuSet Array) Array of pointers to all the cpusets 607 * that need to be load balanced, for convenient iterative 608 * access by the subsequent code that finds the best partition, 609 * i.e the set of domains (subsets) of CPUs such that the 610 * cpus_allowed of every cpuset marked is_sched_load_balance 611 * is a subset of one of these domains, while there are as 612 * many such domains as possible, each as small as possible. 613 * doms - Conversion of 'csa' to an array of cpumasks, for passing to 614 * the kernel/sched/core.c routine partition_sched_domains() in a 615 * convenient format, that can be easily compared to the prior 616 * value to determine what partition elements (sched domains) 617 * were changed (added or removed.) 618 * 619 * Finding the best partition (set of domains): 620 * The triple nested loops below over i, j, k scan over the 621 * load balanced cpusets (using the array of cpuset pointers in 622 * csa[]) looking for pairs of cpusets that have overlapping 623 * cpus_allowed, but which don't have the same 'pn' partition 624 * number and gives them in the same partition number. It keeps 625 * looping on the 'restart' label until it can no longer find 626 * any such pairs. 627 * 628 * The union of the cpus_allowed masks from the set of 629 * all cpusets having the same 'pn' value then form the one 630 * element of the partition (one sched domain) to be passed to 631 * partition_sched_domains(). 632 */ 633 static int generate_sched_domains(cpumask_var_t **domains, 634 struct sched_domain_attr **attributes) 635 { 636 struct cpuset *cp; /* scans q */ 637 struct cpuset **csa; /* array of all cpuset ptrs */ 638 int csn; /* how many cpuset ptrs in csa so far */ 639 int i, j, k; /* indices for partition finding loops */ 640 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */ 641 cpumask_var_t non_isolated_cpus; /* load balanced CPUs */ 642 struct sched_domain_attr *dattr; /* attributes for custom domains */ 643 int ndoms = 0; /* number of sched domains in result */ 644 int nslot; /* next empty doms[] struct cpumask slot */ 645 struct cgroup_subsys_state *pos_css; 646 647 doms = NULL; 648 dattr = NULL; 649 csa = NULL; 650 651 if (!alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL)) 652 goto done; 653 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map); 654 655 /* Special case for the 99% of systems with one, full, sched domain */ 656 if (is_sched_load_balance(&top_cpuset)) { 657 ndoms = 1; 658 doms = alloc_sched_domains(ndoms); 659 if (!doms) 660 goto done; 661 662 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL); 663 if (dattr) { 664 *dattr = SD_ATTR_INIT; 665 update_domain_attr_tree(dattr, &top_cpuset); 666 } 667 cpumask_and(doms[0], top_cpuset.effective_cpus, 668 non_isolated_cpus); 669 670 goto done; 671 } 672 673 csa = kmalloc(nr_cpusets() * sizeof(cp), GFP_KERNEL); 674 if (!csa) 675 goto done; 676 csn = 0; 677 678 rcu_read_lock(); 679 cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) { 680 if (cp == &top_cpuset) 681 continue; 682 /* 683 * Continue traversing beyond @cp iff @cp has some CPUs and 684 * isn't load balancing. The former is obvious. The 685 * latter: All child cpusets contain a subset of the 686 * parent's cpus, so just skip them, and then we call 687 * update_domain_attr_tree() to calc relax_domain_level of 688 * the corresponding sched domain. 689 */ 690 if (!cpumask_empty(cp->cpus_allowed) && 691 !(is_sched_load_balance(cp) && 692 cpumask_intersects(cp->cpus_allowed, non_isolated_cpus))) 693 continue; 694 695 if (is_sched_load_balance(cp)) 696 csa[csn++] = cp; 697 698 /* skip @cp's subtree */ 699 pos_css = css_rightmost_descendant(pos_css); 700 } 701 rcu_read_unlock(); 702 703 for (i = 0; i < csn; i++) 704 csa[i]->pn = i; 705 ndoms = csn; 706 707 restart: 708 /* Find the best partition (set of sched domains) */ 709 for (i = 0; i < csn; i++) { 710 struct cpuset *a = csa[i]; 711 int apn = a->pn; 712 713 for (j = 0; j < csn; j++) { 714 struct cpuset *b = csa[j]; 715 int bpn = b->pn; 716 717 if (apn != bpn && cpusets_overlap(a, b)) { 718 for (k = 0; k < csn; k++) { 719 struct cpuset *c = csa[k]; 720 721 if (c->pn == bpn) 722 c->pn = apn; 723 } 724 ndoms--; /* one less element */ 725 goto restart; 726 } 727 } 728 } 729 730 /* 731 * Now we know how many domains to create. 732 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks. 733 */ 734 doms = alloc_sched_domains(ndoms); 735 if (!doms) 736 goto done; 737 738 /* 739 * The rest of the code, including the scheduler, can deal with 740 * dattr==NULL case. No need to abort if alloc fails. 741 */ 742 dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL); 743 744 for (nslot = 0, i = 0; i < csn; i++) { 745 struct cpuset *a = csa[i]; 746 struct cpumask *dp; 747 int apn = a->pn; 748 749 if (apn < 0) { 750 /* Skip completed partitions */ 751 continue; 752 } 753 754 dp = doms[nslot]; 755 756 if (nslot == ndoms) { 757 static int warnings = 10; 758 if (warnings) { 759 pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n", 760 nslot, ndoms, csn, i, apn); 761 warnings--; 762 } 763 continue; 764 } 765 766 cpumask_clear(dp); 767 if (dattr) 768 *(dattr + nslot) = SD_ATTR_INIT; 769 for (j = i; j < csn; j++) { 770 struct cpuset *b = csa[j]; 771 772 if (apn == b->pn) { 773 cpumask_or(dp, dp, b->effective_cpus); 774 cpumask_and(dp, dp, non_isolated_cpus); 775 if (dattr) 776 update_domain_attr_tree(dattr + nslot, b); 777 778 /* Done with this partition */ 779 b->pn = -1; 780 } 781 } 782 nslot++; 783 } 784 BUG_ON(nslot != ndoms); 785 786 done: 787 free_cpumask_var(non_isolated_cpus); 788 kfree(csa); 789 790 /* 791 * Fallback to the default domain if kmalloc() failed. 792 * See comments in partition_sched_domains(). 793 */ 794 if (doms == NULL) 795 ndoms = 1; 796 797 *domains = doms; 798 *attributes = dattr; 799 return ndoms; 800 } 801 802 /* 803 * Rebuild scheduler domains. 804 * 805 * If the flag 'sched_load_balance' of any cpuset with non-empty 806 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset 807 * which has that flag enabled, or if any cpuset with a non-empty 808 * 'cpus' is removed, then call this routine to rebuild the 809 * scheduler's dynamic sched domains. 810 * 811 * Call with cpuset_mutex held. Takes get_online_cpus(). 812 */ 813 static void rebuild_sched_domains_locked(void) 814 { 815 struct sched_domain_attr *attr; 816 cpumask_var_t *doms; 817 int ndoms; 818 819 lockdep_assert_held(&cpuset_mutex); 820 get_online_cpus(); 821 822 /* 823 * We have raced with CPU hotplug. Don't do anything to avoid 824 * passing doms with offlined cpu to partition_sched_domains(). 825 * Anyways, hotplug work item will rebuild sched domains. 826 */ 827 if (!cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask)) 828 goto out; 829 830 /* Generate domain masks and attrs */ 831 ndoms = generate_sched_domains(&doms, &attr); 832 833 /* Have scheduler rebuild the domains */ 834 partition_sched_domains(ndoms, doms, attr); 835 out: 836 put_online_cpus(); 837 } 838 #else /* !CONFIG_SMP */ 839 static void rebuild_sched_domains_locked(void) 840 { 841 } 842 #endif /* CONFIG_SMP */ 843 844 void rebuild_sched_domains(void) 845 { 846 mutex_lock(&cpuset_mutex); 847 rebuild_sched_domains_locked(); 848 mutex_unlock(&cpuset_mutex); 849 } 850 851 /** 852 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset. 853 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed 854 * 855 * Iterate through each task of @cs updating its cpus_allowed to the 856 * effective cpuset's. As this function is called with cpuset_mutex held, 857 * cpuset membership stays stable. 858 */ 859 static void update_tasks_cpumask(struct cpuset *cs) 860 { 861 struct css_task_iter it; 862 struct task_struct *task; 863 864 css_task_iter_start(&cs->css, &it); 865 while ((task = css_task_iter_next(&it))) 866 set_cpus_allowed_ptr(task, cs->effective_cpus); 867 css_task_iter_end(&it); 868 } 869 870 /* 871 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree 872 * @cs: the cpuset to consider 873 * @new_cpus: temp variable for calculating new effective_cpus 874 * 875 * When congifured cpumask is changed, the effective cpumasks of this cpuset 876 * and all its descendants need to be updated. 877 * 878 * On legacy hierachy, effective_cpus will be the same with cpu_allowed. 879 * 880 * Called with cpuset_mutex held 881 */ 882 static void update_cpumasks_hier(struct cpuset *cs, struct cpumask *new_cpus) 883 { 884 struct cpuset *cp; 885 struct cgroup_subsys_state *pos_css; 886 bool need_rebuild_sched_domains = false; 887 888 rcu_read_lock(); 889 cpuset_for_each_descendant_pre(cp, pos_css, cs) { 890 struct cpuset *parent = parent_cs(cp); 891 892 cpumask_and(new_cpus, cp->cpus_allowed, parent->effective_cpus); 893 894 /* 895 * If it becomes empty, inherit the effective mask of the 896 * parent, which is guaranteed to have some CPUs. 897 */ 898 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) && 899 cpumask_empty(new_cpus)) 900 cpumask_copy(new_cpus, parent->effective_cpus); 901 902 /* Skip the whole subtree if the cpumask remains the same. */ 903 if (cpumask_equal(new_cpus, cp->effective_cpus)) { 904 pos_css = css_rightmost_descendant(pos_css); 905 continue; 906 } 907 908 if (!css_tryget_online(&cp->css)) 909 continue; 910 rcu_read_unlock(); 911 912 spin_lock_irq(&callback_lock); 913 cpumask_copy(cp->effective_cpus, new_cpus); 914 spin_unlock_irq(&callback_lock); 915 916 WARN_ON(!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) && 917 !cpumask_equal(cp->cpus_allowed, cp->effective_cpus)); 918 919 update_tasks_cpumask(cp); 920 921 /* 922 * If the effective cpumask of any non-empty cpuset is changed, 923 * we need to rebuild sched domains. 924 */ 925 if (!cpumask_empty(cp->cpus_allowed) && 926 is_sched_load_balance(cp)) 927 need_rebuild_sched_domains = true; 928 929 rcu_read_lock(); 930 css_put(&cp->css); 931 } 932 rcu_read_unlock(); 933 934 if (need_rebuild_sched_domains) 935 rebuild_sched_domains_locked(); 936 } 937 938 /** 939 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it 940 * @cs: the cpuset to consider 941 * @trialcs: trial cpuset 942 * @buf: buffer of cpu numbers written to this cpuset 943 */ 944 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs, 945 const char *buf) 946 { 947 int retval; 948 949 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */ 950 if (cs == &top_cpuset) 951 return -EACCES; 952 953 /* 954 * An empty cpus_allowed is ok only if the cpuset has no tasks. 955 * Since cpulist_parse() fails on an empty mask, we special case 956 * that parsing. The validate_change() call ensures that cpusets 957 * with tasks have cpus. 958 */ 959 if (!*buf) { 960 cpumask_clear(trialcs->cpus_allowed); 961 } else { 962 retval = cpulist_parse(buf, trialcs->cpus_allowed); 963 if (retval < 0) 964 return retval; 965 966 if (!cpumask_subset(trialcs->cpus_allowed, 967 top_cpuset.cpus_allowed)) 968 return -EINVAL; 969 } 970 971 /* Nothing to do if the cpus didn't change */ 972 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed)) 973 return 0; 974 975 retval = validate_change(cs, trialcs); 976 if (retval < 0) 977 return retval; 978 979 spin_lock_irq(&callback_lock); 980 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed); 981 spin_unlock_irq(&callback_lock); 982 983 /* use trialcs->cpus_allowed as a temp variable */ 984 update_cpumasks_hier(cs, trialcs->cpus_allowed); 985 return 0; 986 } 987 988 /* 989 * Migrate memory region from one set of nodes to another. This is 990 * performed asynchronously as it can be called from process migration path 991 * holding locks involved in process management. All mm migrations are 992 * performed in the queued order and can be waited for by flushing 993 * cpuset_migrate_mm_wq. 994 */ 995 996 struct cpuset_migrate_mm_work { 997 struct work_struct work; 998 struct mm_struct *mm; 999 nodemask_t from; 1000 nodemask_t to; 1001 }; 1002 1003 static void cpuset_migrate_mm_workfn(struct work_struct *work) 1004 { 1005 struct cpuset_migrate_mm_work *mwork = 1006 container_of(work, struct cpuset_migrate_mm_work, work); 1007 1008 /* on a wq worker, no need to worry about %current's mems_allowed */ 1009 do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL); 1010 mmput(mwork->mm); 1011 kfree(mwork); 1012 } 1013 1014 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from, 1015 const nodemask_t *to) 1016 { 1017 struct cpuset_migrate_mm_work *mwork; 1018 1019 mwork = kzalloc(sizeof(*mwork), GFP_KERNEL); 1020 if (mwork) { 1021 mwork->mm = mm; 1022 mwork->from = *from; 1023 mwork->to = *to; 1024 INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn); 1025 queue_work(cpuset_migrate_mm_wq, &mwork->work); 1026 } else { 1027 mmput(mm); 1028 } 1029 } 1030 1031 static void cpuset_post_attach(void) 1032 { 1033 flush_workqueue(cpuset_migrate_mm_wq); 1034 } 1035 1036 /* 1037 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy 1038 * @tsk: the task to change 1039 * @newmems: new nodes that the task will be set 1040 * 1041 * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed 1042 * and rebind an eventual tasks' mempolicy. If the task is allocating in 1043 * parallel, it might temporarily see an empty intersection, which results in 1044 * a seqlock check and retry before OOM or allocation failure. 1045 */ 1046 static void cpuset_change_task_nodemask(struct task_struct *tsk, 1047 nodemask_t *newmems) 1048 { 1049 task_lock(tsk); 1050 1051 local_irq_disable(); 1052 write_seqcount_begin(&tsk->mems_allowed_seq); 1053 1054 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems); 1055 mpol_rebind_task(tsk, newmems); 1056 tsk->mems_allowed = *newmems; 1057 1058 write_seqcount_end(&tsk->mems_allowed_seq); 1059 local_irq_enable(); 1060 1061 task_unlock(tsk); 1062 } 1063 1064 static void *cpuset_being_rebound; 1065 1066 /** 1067 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset. 1068 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed 1069 * 1070 * Iterate through each task of @cs updating its mems_allowed to the 1071 * effective cpuset's. As this function is called with cpuset_mutex held, 1072 * cpuset membership stays stable. 1073 */ 1074 static void update_tasks_nodemask(struct cpuset *cs) 1075 { 1076 static nodemask_t newmems; /* protected by cpuset_mutex */ 1077 struct css_task_iter it; 1078 struct task_struct *task; 1079 1080 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */ 1081 1082 guarantee_online_mems(cs, &newmems); 1083 1084 /* 1085 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't 1086 * take while holding tasklist_lock. Forks can happen - the 1087 * mpol_dup() cpuset_being_rebound check will catch such forks, 1088 * and rebind their vma mempolicies too. Because we still hold 1089 * the global cpuset_mutex, we know that no other rebind effort 1090 * will be contending for the global variable cpuset_being_rebound. 1091 * It's ok if we rebind the same mm twice; mpol_rebind_mm() 1092 * is idempotent. Also migrate pages in each mm to new nodes. 1093 */ 1094 css_task_iter_start(&cs->css, &it); 1095 while ((task = css_task_iter_next(&it))) { 1096 struct mm_struct *mm; 1097 bool migrate; 1098 1099 cpuset_change_task_nodemask(task, &newmems); 1100 1101 mm = get_task_mm(task); 1102 if (!mm) 1103 continue; 1104 1105 migrate = is_memory_migrate(cs); 1106 1107 mpol_rebind_mm(mm, &cs->mems_allowed); 1108 if (migrate) 1109 cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems); 1110 else 1111 mmput(mm); 1112 } 1113 css_task_iter_end(&it); 1114 1115 /* 1116 * All the tasks' nodemasks have been updated, update 1117 * cs->old_mems_allowed. 1118 */ 1119 cs->old_mems_allowed = newmems; 1120 1121 /* We're done rebinding vmas to this cpuset's new mems_allowed. */ 1122 cpuset_being_rebound = NULL; 1123 } 1124 1125 /* 1126 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree 1127 * @cs: the cpuset to consider 1128 * @new_mems: a temp variable for calculating new effective_mems 1129 * 1130 * When configured nodemask is changed, the effective nodemasks of this cpuset 1131 * and all its descendants need to be updated. 1132 * 1133 * On legacy hiearchy, effective_mems will be the same with mems_allowed. 1134 * 1135 * Called with cpuset_mutex held 1136 */ 1137 static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems) 1138 { 1139 struct cpuset *cp; 1140 struct cgroup_subsys_state *pos_css; 1141 1142 rcu_read_lock(); 1143 cpuset_for_each_descendant_pre(cp, pos_css, cs) { 1144 struct cpuset *parent = parent_cs(cp); 1145 1146 nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems); 1147 1148 /* 1149 * If it becomes empty, inherit the effective mask of the 1150 * parent, which is guaranteed to have some MEMs. 1151 */ 1152 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) && 1153 nodes_empty(*new_mems)) 1154 *new_mems = parent->effective_mems; 1155 1156 /* Skip the whole subtree if the nodemask remains the same. */ 1157 if (nodes_equal(*new_mems, cp->effective_mems)) { 1158 pos_css = css_rightmost_descendant(pos_css); 1159 continue; 1160 } 1161 1162 if (!css_tryget_online(&cp->css)) 1163 continue; 1164 rcu_read_unlock(); 1165 1166 spin_lock_irq(&callback_lock); 1167 cp->effective_mems = *new_mems; 1168 spin_unlock_irq(&callback_lock); 1169 1170 WARN_ON(!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) && 1171 !nodes_equal(cp->mems_allowed, cp->effective_mems)); 1172 1173 update_tasks_nodemask(cp); 1174 1175 rcu_read_lock(); 1176 css_put(&cp->css); 1177 } 1178 rcu_read_unlock(); 1179 } 1180 1181 /* 1182 * Handle user request to change the 'mems' memory placement 1183 * of a cpuset. Needs to validate the request, update the 1184 * cpusets mems_allowed, and for each task in the cpuset, 1185 * update mems_allowed and rebind task's mempolicy and any vma 1186 * mempolicies and if the cpuset is marked 'memory_migrate', 1187 * migrate the tasks pages to the new memory. 1188 * 1189 * Call with cpuset_mutex held. May take callback_lock during call. 1190 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs, 1191 * lock each such tasks mm->mmap_sem, scan its vma's and rebind 1192 * their mempolicies to the cpusets new mems_allowed. 1193 */ 1194 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs, 1195 const char *buf) 1196 { 1197 int retval; 1198 1199 /* 1200 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY]; 1201 * it's read-only 1202 */ 1203 if (cs == &top_cpuset) { 1204 retval = -EACCES; 1205 goto done; 1206 } 1207 1208 /* 1209 * An empty mems_allowed is ok iff there are no tasks in the cpuset. 1210 * Since nodelist_parse() fails on an empty mask, we special case 1211 * that parsing. The validate_change() call ensures that cpusets 1212 * with tasks have memory. 1213 */ 1214 if (!*buf) { 1215 nodes_clear(trialcs->mems_allowed); 1216 } else { 1217 retval = nodelist_parse(buf, trialcs->mems_allowed); 1218 if (retval < 0) 1219 goto done; 1220 1221 if (!nodes_subset(trialcs->mems_allowed, 1222 top_cpuset.mems_allowed)) { 1223 retval = -EINVAL; 1224 goto done; 1225 } 1226 } 1227 1228 if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) { 1229 retval = 0; /* Too easy - nothing to do */ 1230 goto done; 1231 } 1232 retval = validate_change(cs, trialcs); 1233 if (retval < 0) 1234 goto done; 1235 1236 spin_lock_irq(&callback_lock); 1237 cs->mems_allowed = trialcs->mems_allowed; 1238 spin_unlock_irq(&callback_lock); 1239 1240 /* use trialcs->mems_allowed as a temp variable */ 1241 update_nodemasks_hier(cs, &trialcs->mems_allowed); 1242 done: 1243 return retval; 1244 } 1245 1246 int current_cpuset_is_being_rebound(void) 1247 { 1248 int ret; 1249 1250 rcu_read_lock(); 1251 ret = task_cs(current) == cpuset_being_rebound; 1252 rcu_read_unlock(); 1253 1254 return ret; 1255 } 1256 1257 static int update_relax_domain_level(struct cpuset *cs, s64 val) 1258 { 1259 #ifdef CONFIG_SMP 1260 if (val < -1 || val >= sched_domain_level_max) 1261 return -EINVAL; 1262 #endif 1263 1264 if (val != cs->relax_domain_level) { 1265 cs->relax_domain_level = val; 1266 if (!cpumask_empty(cs->cpus_allowed) && 1267 is_sched_load_balance(cs)) 1268 rebuild_sched_domains_locked(); 1269 } 1270 1271 return 0; 1272 } 1273 1274 /** 1275 * update_tasks_flags - update the spread flags of tasks in the cpuset. 1276 * @cs: the cpuset in which each task's spread flags needs to be changed 1277 * 1278 * Iterate through each task of @cs updating its spread flags. As this 1279 * function is called with cpuset_mutex held, cpuset membership stays 1280 * stable. 1281 */ 1282 static void update_tasks_flags(struct cpuset *cs) 1283 { 1284 struct css_task_iter it; 1285 struct task_struct *task; 1286 1287 css_task_iter_start(&cs->css, &it); 1288 while ((task = css_task_iter_next(&it))) 1289 cpuset_update_task_spread_flag(cs, task); 1290 css_task_iter_end(&it); 1291 } 1292 1293 /* 1294 * update_flag - read a 0 or a 1 in a file and update associated flag 1295 * bit: the bit to update (see cpuset_flagbits_t) 1296 * cs: the cpuset to update 1297 * turning_on: whether the flag is being set or cleared 1298 * 1299 * Call with cpuset_mutex held. 1300 */ 1301 1302 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, 1303 int turning_on) 1304 { 1305 struct cpuset *trialcs; 1306 int balance_flag_changed; 1307 int spread_flag_changed; 1308 int err; 1309 1310 trialcs = alloc_trial_cpuset(cs); 1311 if (!trialcs) 1312 return -ENOMEM; 1313 1314 if (turning_on) 1315 set_bit(bit, &trialcs->flags); 1316 else 1317 clear_bit(bit, &trialcs->flags); 1318 1319 err = validate_change(cs, trialcs); 1320 if (err < 0) 1321 goto out; 1322 1323 balance_flag_changed = (is_sched_load_balance(cs) != 1324 is_sched_load_balance(trialcs)); 1325 1326 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs)) 1327 || (is_spread_page(cs) != is_spread_page(trialcs))); 1328 1329 spin_lock_irq(&callback_lock); 1330 cs->flags = trialcs->flags; 1331 spin_unlock_irq(&callback_lock); 1332 1333 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed) 1334 rebuild_sched_domains_locked(); 1335 1336 if (spread_flag_changed) 1337 update_tasks_flags(cs); 1338 out: 1339 free_trial_cpuset(trialcs); 1340 return err; 1341 } 1342 1343 /* 1344 * Frequency meter - How fast is some event occurring? 1345 * 1346 * These routines manage a digitally filtered, constant time based, 1347 * event frequency meter. There are four routines: 1348 * fmeter_init() - initialize a frequency meter. 1349 * fmeter_markevent() - called each time the event happens. 1350 * fmeter_getrate() - returns the recent rate of such events. 1351 * fmeter_update() - internal routine used to update fmeter. 1352 * 1353 * A common data structure is passed to each of these routines, 1354 * which is used to keep track of the state required to manage the 1355 * frequency meter and its digital filter. 1356 * 1357 * The filter works on the number of events marked per unit time. 1358 * The filter is single-pole low-pass recursive (IIR). The time unit 1359 * is 1 second. Arithmetic is done using 32-bit integers scaled to 1360 * simulate 3 decimal digits of precision (multiplied by 1000). 1361 * 1362 * With an FM_COEF of 933, and a time base of 1 second, the filter 1363 * has a half-life of 10 seconds, meaning that if the events quit 1364 * happening, then the rate returned from the fmeter_getrate() 1365 * will be cut in half each 10 seconds, until it converges to zero. 1366 * 1367 * It is not worth doing a real infinitely recursive filter. If more 1368 * than FM_MAXTICKS ticks have elapsed since the last filter event, 1369 * just compute FM_MAXTICKS ticks worth, by which point the level 1370 * will be stable. 1371 * 1372 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid 1373 * arithmetic overflow in the fmeter_update() routine. 1374 * 1375 * Given the simple 32 bit integer arithmetic used, this meter works 1376 * best for reporting rates between one per millisecond (msec) and 1377 * one per 32 (approx) seconds. At constant rates faster than one 1378 * per msec it maxes out at values just under 1,000,000. At constant 1379 * rates between one per msec, and one per second it will stabilize 1380 * to a value N*1000, where N is the rate of events per second. 1381 * At constant rates between one per second and one per 32 seconds, 1382 * it will be choppy, moving up on the seconds that have an event, 1383 * and then decaying until the next event. At rates slower than 1384 * about one in 32 seconds, it decays all the way back to zero between 1385 * each event. 1386 */ 1387 1388 #define FM_COEF 933 /* coefficient for half-life of 10 secs */ 1389 #define FM_MAXTICKS ((u32)99) /* useless computing more ticks than this */ 1390 #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */ 1391 #define FM_SCALE 1000 /* faux fixed point scale */ 1392 1393 /* Initialize a frequency meter */ 1394 static void fmeter_init(struct fmeter *fmp) 1395 { 1396 fmp->cnt = 0; 1397 fmp->val = 0; 1398 fmp->time = 0; 1399 spin_lock_init(&fmp->lock); 1400 } 1401 1402 /* Internal meter update - process cnt events and update value */ 1403 static void fmeter_update(struct fmeter *fmp) 1404 { 1405 time64_t now; 1406 u32 ticks; 1407 1408 now = ktime_get_seconds(); 1409 ticks = now - fmp->time; 1410 1411 if (ticks == 0) 1412 return; 1413 1414 ticks = min(FM_MAXTICKS, ticks); 1415 while (ticks-- > 0) 1416 fmp->val = (FM_COEF * fmp->val) / FM_SCALE; 1417 fmp->time = now; 1418 1419 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE; 1420 fmp->cnt = 0; 1421 } 1422 1423 /* Process any previous ticks, then bump cnt by one (times scale). */ 1424 static void fmeter_markevent(struct fmeter *fmp) 1425 { 1426 spin_lock(&fmp->lock); 1427 fmeter_update(fmp); 1428 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE); 1429 spin_unlock(&fmp->lock); 1430 } 1431 1432 /* Process any previous ticks, then return current value. */ 1433 static int fmeter_getrate(struct fmeter *fmp) 1434 { 1435 int val; 1436 1437 spin_lock(&fmp->lock); 1438 fmeter_update(fmp); 1439 val = fmp->val; 1440 spin_unlock(&fmp->lock); 1441 return val; 1442 } 1443 1444 static struct cpuset *cpuset_attach_old_cs; 1445 1446 /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */ 1447 static int cpuset_can_attach(struct cgroup_taskset *tset) 1448 { 1449 struct cgroup_subsys_state *css; 1450 struct cpuset *cs; 1451 struct task_struct *task; 1452 int ret; 1453 1454 /* used later by cpuset_attach() */ 1455 cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css)); 1456 cs = css_cs(css); 1457 1458 mutex_lock(&cpuset_mutex); 1459 1460 /* allow moving tasks into an empty cpuset if on default hierarchy */ 1461 ret = -ENOSPC; 1462 if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) && 1463 (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))) 1464 goto out_unlock; 1465 1466 cgroup_taskset_for_each(task, css, tset) { 1467 ret = task_can_attach(task, cs->cpus_allowed); 1468 if (ret) 1469 goto out_unlock; 1470 ret = security_task_setscheduler(task); 1471 if (ret) 1472 goto out_unlock; 1473 } 1474 1475 /* 1476 * Mark attach is in progress. This makes validate_change() fail 1477 * changes which zero cpus/mems_allowed. 1478 */ 1479 cs->attach_in_progress++; 1480 ret = 0; 1481 out_unlock: 1482 mutex_unlock(&cpuset_mutex); 1483 return ret; 1484 } 1485 1486 static void cpuset_cancel_attach(struct cgroup_taskset *tset) 1487 { 1488 struct cgroup_subsys_state *css; 1489 struct cpuset *cs; 1490 1491 cgroup_taskset_first(tset, &css); 1492 cs = css_cs(css); 1493 1494 mutex_lock(&cpuset_mutex); 1495 css_cs(css)->attach_in_progress--; 1496 mutex_unlock(&cpuset_mutex); 1497 } 1498 1499 /* 1500 * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach() 1501 * but we can't allocate it dynamically there. Define it global and 1502 * allocate from cpuset_init(). 1503 */ 1504 static cpumask_var_t cpus_attach; 1505 1506 static void cpuset_attach(struct cgroup_taskset *tset) 1507 { 1508 /* static buf protected by cpuset_mutex */ 1509 static nodemask_t cpuset_attach_nodemask_to; 1510 struct task_struct *task; 1511 struct task_struct *leader; 1512 struct cgroup_subsys_state *css; 1513 struct cpuset *cs; 1514 struct cpuset *oldcs = cpuset_attach_old_cs; 1515 1516 cgroup_taskset_first(tset, &css); 1517 cs = css_cs(css); 1518 1519 mutex_lock(&cpuset_mutex); 1520 1521 /* prepare for attach */ 1522 if (cs == &top_cpuset) 1523 cpumask_copy(cpus_attach, cpu_possible_mask); 1524 else 1525 guarantee_online_cpus(cs, cpus_attach); 1526 1527 guarantee_online_mems(cs, &cpuset_attach_nodemask_to); 1528 1529 cgroup_taskset_for_each(task, css, tset) { 1530 /* 1531 * can_attach beforehand should guarantee that this doesn't 1532 * fail. TODO: have a better way to handle failure here 1533 */ 1534 WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach)); 1535 1536 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to); 1537 cpuset_update_task_spread_flag(cs, task); 1538 } 1539 1540 /* 1541 * Change mm for all threadgroup leaders. This is expensive and may 1542 * sleep and should be moved outside migration path proper. 1543 */ 1544 cpuset_attach_nodemask_to = cs->effective_mems; 1545 cgroup_taskset_for_each_leader(leader, css, tset) { 1546 struct mm_struct *mm = get_task_mm(leader); 1547 1548 if (mm) { 1549 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to); 1550 1551 /* 1552 * old_mems_allowed is the same with mems_allowed 1553 * here, except if this task is being moved 1554 * automatically due to hotplug. In that case 1555 * @mems_allowed has been updated and is empty, so 1556 * @old_mems_allowed is the right nodesets that we 1557 * migrate mm from. 1558 */ 1559 if (is_memory_migrate(cs)) 1560 cpuset_migrate_mm(mm, &oldcs->old_mems_allowed, 1561 &cpuset_attach_nodemask_to); 1562 else 1563 mmput(mm); 1564 } 1565 } 1566 1567 cs->old_mems_allowed = cpuset_attach_nodemask_to; 1568 1569 cs->attach_in_progress--; 1570 if (!cs->attach_in_progress) 1571 wake_up(&cpuset_attach_wq); 1572 1573 mutex_unlock(&cpuset_mutex); 1574 } 1575 1576 /* The various types of files and directories in a cpuset file system */ 1577 1578 typedef enum { 1579 FILE_MEMORY_MIGRATE, 1580 FILE_CPULIST, 1581 FILE_MEMLIST, 1582 FILE_EFFECTIVE_CPULIST, 1583 FILE_EFFECTIVE_MEMLIST, 1584 FILE_CPU_EXCLUSIVE, 1585 FILE_MEM_EXCLUSIVE, 1586 FILE_MEM_HARDWALL, 1587 FILE_SCHED_LOAD_BALANCE, 1588 FILE_SCHED_RELAX_DOMAIN_LEVEL, 1589 FILE_MEMORY_PRESSURE_ENABLED, 1590 FILE_MEMORY_PRESSURE, 1591 FILE_SPREAD_PAGE, 1592 FILE_SPREAD_SLAB, 1593 } cpuset_filetype_t; 1594 1595 static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft, 1596 u64 val) 1597 { 1598 struct cpuset *cs = css_cs(css); 1599 cpuset_filetype_t type = cft->private; 1600 int retval = 0; 1601 1602 mutex_lock(&cpuset_mutex); 1603 if (!is_cpuset_online(cs)) { 1604 retval = -ENODEV; 1605 goto out_unlock; 1606 } 1607 1608 switch (type) { 1609 case FILE_CPU_EXCLUSIVE: 1610 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val); 1611 break; 1612 case FILE_MEM_EXCLUSIVE: 1613 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val); 1614 break; 1615 case FILE_MEM_HARDWALL: 1616 retval = update_flag(CS_MEM_HARDWALL, cs, val); 1617 break; 1618 case FILE_SCHED_LOAD_BALANCE: 1619 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val); 1620 break; 1621 case FILE_MEMORY_MIGRATE: 1622 retval = update_flag(CS_MEMORY_MIGRATE, cs, val); 1623 break; 1624 case FILE_MEMORY_PRESSURE_ENABLED: 1625 cpuset_memory_pressure_enabled = !!val; 1626 break; 1627 case FILE_SPREAD_PAGE: 1628 retval = update_flag(CS_SPREAD_PAGE, cs, val); 1629 break; 1630 case FILE_SPREAD_SLAB: 1631 retval = update_flag(CS_SPREAD_SLAB, cs, val); 1632 break; 1633 default: 1634 retval = -EINVAL; 1635 break; 1636 } 1637 out_unlock: 1638 mutex_unlock(&cpuset_mutex); 1639 return retval; 1640 } 1641 1642 static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft, 1643 s64 val) 1644 { 1645 struct cpuset *cs = css_cs(css); 1646 cpuset_filetype_t type = cft->private; 1647 int retval = -ENODEV; 1648 1649 mutex_lock(&cpuset_mutex); 1650 if (!is_cpuset_online(cs)) 1651 goto out_unlock; 1652 1653 switch (type) { 1654 case FILE_SCHED_RELAX_DOMAIN_LEVEL: 1655 retval = update_relax_domain_level(cs, val); 1656 break; 1657 default: 1658 retval = -EINVAL; 1659 break; 1660 } 1661 out_unlock: 1662 mutex_unlock(&cpuset_mutex); 1663 return retval; 1664 } 1665 1666 /* 1667 * Common handling for a write to a "cpus" or "mems" file. 1668 */ 1669 static ssize_t cpuset_write_resmask(struct kernfs_open_file *of, 1670 char *buf, size_t nbytes, loff_t off) 1671 { 1672 struct cpuset *cs = css_cs(of_css(of)); 1673 struct cpuset *trialcs; 1674 int retval = -ENODEV; 1675 1676 buf = strstrip(buf); 1677 1678 /* 1679 * CPU or memory hotunplug may leave @cs w/o any execution 1680 * resources, in which case the hotplug code asynchronously updates 1681 * configuration and transfers all tasks to the nearest ancestor 1682 * which can execute. 1683 * 1684 * As writes to "cpus" or "mems" may restore @cs's execution 1685 * resources, wait for the previously scheduled operations before 1686 * proceeding, so that we don't end up keep removing tasks added 1687 * after execution capability is restored. 1688 * 1689 * cpuset_hotplug_work calls back into cgroup core via 1690 * cgroup_transfer_tasks() and waiting for it from a cgroupfs 1691 * operation like this one can lead to a deadlock through kernfs 1692 * active_ref protection. Let's break the protection. Losing the 1693 * protection is okay as we check whether @cs is online after 1694 * grabbing cpuset_mutex anyway. This only happens on the legacy 1695 * hierarchies. 1696 */ 1697 css_get(&cs->css); 1698 kernfs_break_active_protection(of->kn); 1699 flush_work(&cpuset_hotplug_work); 1700 1701 mutex_lock(&cpuset_mutex); 1702 if (!is_cpuset_online(cs)) 1703 goto out_unlock; 1704 1705 trialcs = alloc_trial_cpuset(cs); 1706 if (!trialcs) { 1707 retval = -ENOMEM; 1708 goto out_unlock; 1709 } 1710 1711 switch (of_cft(of)->private) { 1712 case FILE_CPULIST: 1713 retval = update_cpumask(cs, trialcs, buf); 1714 break; 1715 case FILE_MEMLIST: 1716 retval = update_nodemask(cs, trialcs, buf); 1717 break; 1718 default: 1719 retval = -EINVAL; 1720 break; 1721 } 1722 1723 free_trial_cpuset(trialcs); 1724 out_unlock: 1725 mutex_unlock(&cpuset_mutex); 1726 kernfs_unbreak_active_protection(of->kn); 1727 css_put(&cs->css); 1728 flush_workqueue(cpuset_migrate_mm_wq); 1729 return retval ?: nbytes; 1730 } 1731 1732 /* 1733 * These ascii lists should be read in a single call, by using a user 1734 * buffer large enough to hold the entire map. If read in smaller 1735 * chunks, there is no guarantee of atomicity. Since the display format 1736 * used, list of ranges of sequential numbers, is variable length, 1737 * and since these maps can change value dynamically, one could read 1738 * gibberish by doing partial reads while a list was changing. 1739 */ 1740 static int cpuset_common_seq_show(struct seq_file *sf, void *v) 1741 { 1742 struct cpuset *cs = css_cs(seq_css(sf)); 1743 cpuset_filetype_t type = seq_cft(sf)->private; 1744 int ret = 0; 1745 1746 spin_lock_irq(&callback_lock); 1747 1748 switch (type) { 1749 case FILE_CPULIST: 1750 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed)); 1751 break; 1752 case FILE_MEMLIST: 1753 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed)); 1754 break; 1755 case FILE_EFFECTIVE_CPULIST: 1756 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus)); 1757 break; 1758 case FILE_EFFECTIVE_MEMLIST: 1759 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems)); 1760 break; 1761 default: 1762 ret = -EINVAL; 1763 } 1764 1765 spin_unlock_irq(&callback_lock); 1766 return ret; 1767 } 1768 1769 static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft) 1770 { 1771 struct cpuset *cs = css_cs(css); 1772 cpuset_filetype_t type = cft->private; 1773 switch (type) { 1774 case FILE_CPU_EXCLUSIVE: 1775 return is_cpu_exclusive(cs); 1776 case FILE_MEM_EXCLUSIVE: 1777 return is_mem_exclusive(cs); 1778 case FILE_MEM_HARDWALL: 1779 return is_mem_hardwall(cs); 1780 case FILE_SCHED_LOAD_BALANCE: 1781 return is_sched_load_balance(cs); 1782 case FILE_MEMORY_MIGRATE: 1783 return is_memory_migrate(cs); 1784 case FILE_MEMORY_PRESSURE_ENABLED: 1785 return cpuset_memory_pressure_enabled; 1786 case FILE_MEMORY_PRESSURE: 1787 return fmeter_getrate(&cs->fmeter); 1788 case FILE_SPREAD_PAGE: 1789 return is_spread_page(cs); 1790 case FILE_SPREAD_SLAB: 1791 return is_spread_slab(cs); 1792 default: 1793 BUG(); 1794 } 1795 1796 /* Unreachable but makes gcc happy */ 1797 return 0; 1798 } 1799 1800 static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft) 1801 { 1802 struct cpuset *cs = css_cs(css); 1803 cpuset_filetype_t type = cft->private; 1804 switch (type) { 1805 case FILE_SCHED_RELAX_DOMAIN_LEVEL: 1806 return cs->relax_domain_level; 1807 default: 1808 BUG(); 1809 } 1810 1811 /* Unrechable but makes gcc happy */ 1812 return 0; 1813 } 1814 1815 1816 /* 1817 * for the common functions, 'private' gives the type of file 1818 */ 1819 1820 static struct cftype files[] = { 1821 { 1822 .name = "cpus", 1823 .seq_show = cpuset_common_seq_show, 1824 .write = cpuset_write_resmask, 1825 .max_write_len = (100U + 6 * NR_CPUS), 1826 .private = FILE_CPULIST, 1827 }, 1828 1829 { 1830 .name = "mems", 1831 .seq_show = cpuset_common_seq_show, 1832 .write = cpuset_write_resmask, 1833 .max_write_len = (100U + 6 * MAX_NUMNODES), 1834 .private = FILE_MEMLIST, 1835 }, 1836 1837 { 1838 .name = "effective_cpus", 1839 .seq_show = cpuset_common_seq_show, 1840 .private = FILE_EFFECTIVE_CPULIST, 1841 }, 1842 1843 { 1844 .name = "effective_mems", 1845 .seq_show = cpuset_common_seq_show, 1846 .private = FILE_EFFECTIVE_MEMLIST, 1847 }, 1848 1849 { 1850 .name = "cpu_exclusive", 1851 .read_u64 = cpuset_read_u64, 1852 .write_u64 = cpuset_write_u64, 1853 .private = FILE_CPU_EXCLUSIVE, 1854 }, 1855 1856 { 1857 .name = "mem_exclusive", 1858 .read_u64 = cpuset_read_u64, 1859 .write_u64 = cpuset_write_u64, 1860 .private = FILE_MEM_EXCLUSIVE, 1861 }, 1862 1863 { 1864 .name = "mem_hardwall", 1865 .read_u64 = cpuset_read_u64, 1866 .write_u64 = cpuset_write_u64, 1867 .private = FILE_MEM_HARDWALL, 1868 }, 1869 1870 { 1871 .name = "sched_load_balance", 1872 .read_u64 = cpuset_read_u64, 1873 .write_u64 = cpuset_write_u64, 1874 .private = FILE_SCHED_LOAD_BALANCE, 1875 }, 1876 1877 { 1878 .name = "sched_relax_domain_level", 1879 .read_s64 = cpuset_read_s64, 1880 .write_s64 = cpuset_write_s64, 1881 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL, 1882 }, 1883 1884 { 1885 .name = "memory_migrate", 1886 .read_u64 = cpuset_read_u64, 1887 .write_u64 = cpuset_write_u64, 1888 .private = FILE_MEMORY_MIGRATE, 1889 }, 1890 1891 { 1892 .name = "memory_pressure", 1893 .read_u64 = cpuset_read_u64, 1894 }, 1895 1896 { 1897 .name = "memory_spread_page", 1898 .read_u64 = cpuset_read_u64, 1899 .write_u64 = cpuset_write_u64, 1900 .private = FILE_SPREAD_PAGE, 1901 }, 1902 1903 { 1904 .name = "memory_spread_slab", 1905 .read_u64 = cpuset_read_u64, 1906 .write_u64 = cpuset_write_u64, 1907 .private = FILE_SPREAD_SLAB, 1908 }, 1909 1910 { 1911 .name = "memory_pressure_enabled", 1912 .flags = CFTYPE_ONLY_ON_ROOT, 1913 .read_u64 = cpuset_read_u64, 1914 .write_u64 = cpuset_write_u64, 1915 .private = FILE_MEMORY_PRESSURE_ENABLED, 1916 }, 1917 1918 { } /* terminate */ 1919 }; 1920 1921 /* 1922 * cpuset_css_alloc - allocate a cpuset css 1923 * cgrp: control group that the new cpuset will be part of 1924 */ 1925 1926 static struct cgroup_subsys_state * 1927 cpuset_css_alloc(struct cgroup_subsys_state *parent_css) 1928 { 1929 struct cpuset *cs; 1930 1931 if (!parent_css) 1932 return &top_cpuset.css; 1933 1934 cs = kzalloc(sizeof(*cs), GFP_KERNEL); 1935 if (!cs) 1936 return ERR_PTR(-ENOMEM); 1937 if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL)) 1938 goto free_cs; 1939 if (!alloc_cpumask_var(&cs->effective_cpus, GFP_KERNEL)) 1940 goto free_cpus; 1941 1942 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); 1943 cpumask_clear(cs->cpus_allowed); 1944 nodes_clear(cs->mems_allowed); 1945 cpumask_clear(cs->effective_cpus); 1946 nodes_clear(cs->effective_mems); 1947 fmeter_init(&cs->fmeter); 1948 cs->relax_domain_level = -1; 1949 1950 return &cs->css; 1951 1952 free_cpus: 1953 free_cpumask_var(cs->cpus_allowed); 1954 free_cs: 1955 kfree(cs); 1956 return ERR_PTR(-ENOMEM); 1957 } 1958 1959 static int cpuset_css_online(struct cgroup_subsys_state *css) 1960 { 1961 struct cpuset *cs = css_cs(css); 1962 struct cpuset *parent = parent_cs(cs); 1963 struct cpuset *tmp_cs; 1964 struct cgroup_subsys_state *pos_css; 1965 1966 if (!parent) 1967 return 0; 1968 1969 mutex_lock(&cpuset_mutex); 1970 1971 set_bit(CS_ONLINE, &cs->flags); 1972 if (is_spread_page(parent)) 1973 set_bit(CS_SPREAD_PAGE, &cs->flags); 1974 if (is_spread_slab(parent)) 1975 set_bit(CS_SPREAD_SLAB, &cs->flags); 1976 1977 cpuset_inc(); 1978 1979 spin_lock_irq(&callback_lock); 1980 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) { 1981 cpumask_copy(cs->effective_cpus, parent->effective_cpus); 1982 cs->effective_mems = parent->effective_mems; 1983 } 1984 spin_unlock_irq(&callback_lock); 1985 1986 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags)) 1987 goto out_unlock; 1988 1989 /* 1990 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is 1991 * set. This flag handling is implemented in cgroup core for 1992 * histrical reasons - the flag may be specified during mount. 1993 * 1994 * Currently, if any sibling cpusets have exclusive cpus or mem, we 1995 * refuse to clone the configuration - thereby refusing the task to 1996 * be entered, and as a result refusing the sys_unshare() or 1997 * clone() which initiated it. If this becomes a problem for some 1998 * users who wish to allow that scenario, then this could be 1999 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive 2000 * (and likewise for mems) to the new cgroup. 2001 */ 2002 rcu_read_lock(); 2003 cpuset_for_each_child(tmp_cs, pos_css, parent) { 2004 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) { 2005 rcu_read_unlock(); 2006 goto out_unlock; 2007 } 2008 } 2009 rcu_read_unlock(); 2010 2011 spin_lock_irq(&callback_lock); 2012 cs->mems_allowed = parent->mems_allowed; 2013 cs->effective_mems = parent->mems_allowed; 2014 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed); 2015 cpumask_copy(cs->effective_cpus, parent->cpus_allowed); 2016 spin_unlock_irq(&callback_lock); 2017 out_unlock: 2018 mutex_unlock(&cpuset_mutex); 2019 return 0; 2020 } 2021 2022 /* 2023 * If the cpuset being removed has its flag 'sched_load_balance' 2024 * enabled, then simulate turning sched_load_balance off, which 2025 * will call rebuild_sched_domains_locked(). 2026 */ 2027 2028 static void cpuset_css_offline(struct cgroup_subsys_state *css) 2029 { 2030 struct cpuset *cs = css_cs(css); 2031 2032 mutex_lock(&cpuset_mutex); 2033 2034 if (is_sched_load_balance(cs)) 2035 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0); 2036 2037 cpuset_dec(); 2038 clear_bit(CS_ONLINE, &cs->flags); 2039 2040 mutex_unlock(&cpuset_mutex); 2041 } 2042 2043 static void cpuset_css_free(struct cgroup_subsys_state *css) 2044 { 2045 struct cpuset *cs = css_cs(css); 2046 2047 free_cpumask_var(cs->effective_cpus); 2048 free_cpumask_var(cs->cpus_allowed); 2049 kfree(cs); 2050 } 2051 2052 static void cpuset_bind(struct cgroup_subsys_state *root_css) 2053 { 2054 mutex_lock(&cpuset_mutex); 2055 spin_lock_irq(&callback_lock); 2056 2057 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) { 2058 cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask); 2059 top_cpuset.mems_allowed = node_possible_map; 2060 } else { 2061 cpumask_copy(top_cpuset.cpus_allowed, 2062 top_cpuset.effective_cpus); 2063 top_cpuset.mems_allowed = top_cpuset.effective_mems; 2064 } 2065 2066 spin_unlock_irq(&callback_lock); 2067 mutex_unlock(&cpuset_mutex); 2068 } 2069 2070 /* 2071 * Make sure the new task conform to the current state of its parent, 2072 * which could have been changed by cpuset just after it inherits the 2073 * state from the parent and before it sits on the cgroup's task list. 2074 */ 2075 static void cpuset_fork(struct task_struct *task) 2076 { 2077 if (task_css_is_root(task, cpuset_cgrp_id)) 2078 return; 2079 2080 set_cpus_allowed_ptr(task, ¤t->cpus_allowed); 2081 task->mems_allowed = current->mems_allowed; 2082 } 2083 2084 struct cgroup_subsys cpuset_cgrp_subsys = { 2085 .css_alloc = cpuset_css_alloc, 2086 .css_online = cpuset_css_online, 2087 .css_offline = cpuset_css_offline, 2088 .css_free = cpuset_css_free, 2089 .can_attach = cpuset_can_attach, 2090 .cancel_attach = cpuset_cancel_attach, 2091 .attach = cpuset_attach, 2092 .post_attach = cpuset_post_attach, 2093 .bind = cpuset_bind, 2094 .fork = cpuset_fork, 2095 .legacy_cftypes = files, 2096 .early_init = true, 2097 }; 2098 2099 /** 2100 * cpuset_init - initialize cpusets at system boot 2101 * 2102 * Description: Initialize top_cpuset and the cpuset internal file system, 2103 **/ 2104 2105 int __init cpuset_init(void) 2106 { 2107 int err = 0; 2108 2109 BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL)); 2110 BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL)); 2111 2112 cpumask_setall(top_cpuset.cpus_allowed); 2113 nodes_setall(top_cpuset.mems_allowed); 2114 cpumask_setall(top_cpuset.effective_cpus); 2115 nodes_setall(top_cpuset.effective_mems); 2116 2117 fmeter_init(&top_cpuset.fmeter); 2118 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags); 2119 top_cpuset.relax_domain_level = -1; 2120 2121 err = register_filesystem(&cpuset_fs_type); 2122 if (err < 0) 2123 return err; 2124 2125 BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL)); 2126 2127 return 0; 2128 } 2129 2130 /* 2131 * If CPU and/or memory hotplug handlers, below, unplug any CPUs 2132 * or memory nodes, we need to walk over the cpuset hierarchy, 2133 * removing that CPU or node from all cpusets. If this removes the 2134 * last CPU or node from a cpuset, then move the tasks in the empty 2135 * cpuset to its next-highest non-empty parent. 2136 */ 2137 static void remove_tasks_in_empty_cpuset(struct cpuset *cs) 2138 { 2139 struct cpuset *parent; 2140 2141 /* 2142 * Find its next-highest non-empty parent, (top cpuset 2143 * has online cpus, so can't be empty). 2144 */ 2145 parent = parent_cs(cs); 2146 while (cpumask_empty(parent->cpus_allowed) || 2147 nodes_empty(parent->mems_allowed)) 2148 parent = parent_cs(parent); 2149 2150 if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) { 2151 pr_err("cpuset: failed to transfer tasks out of empty cpuset "); 2152 pr_cont_cgroup_name(cs->css.cgroup); 2153 pr_cont("\n"); 2154 } 2155 } 2156 2157 static void 2158 hotplug_update_tasks_legacy(struct cpuset *cs, 2159 struct cpumask *new_cpus, nodemask_t *new_mems, 2160 bool cpus_updated, bool mems_updated) 2161 { 2162 bool is_empty; 2163 2164 spin_lock_irq(&callback_lock); 2165 cpumask_copy(cs->cpus_allowed, new_cpus); 2166 cpumask_copy(cs->effective_cpus, new_cpus); 2167 cs->mems_allowed = *new_mems; 2168 cs->effective_mems = *new_mems; 2169 spin_unlock_irq(&callback_lock); 2170 2171 /* 2172 * Don't call update_tasks_cpumask() if the cpuset becomes empty, 2173 * as the tasks will be migratecd to an ancestor. 2174 */ 2175 if (cpus_updated && !cpumask_empty(cs->cpus_allowed)) 2176 update_tasks_cpumask(cs); 2177 if (mems_updated && !nodes_empty(cs->mems_allowed)) 2178 update_tasks_nodemask(cs); 2179 2180 is_empty = cpumask_empty(cs->cpus_allowed) || 2181 nodes_empty(cs->mems_allowed); 2182 2183 mutex_unlock(&cpuset_mutex); 2184 2185 /* 2186 * Move tasks to the nearest ancestor with execution resources, 2187 * This is full cgroup operation which will also call back into 2188 * cpuset. Should be done outside any lock. 2189 */ 2190 if (is_empty) 2191 remove_tasks_in_empty_cpuset(cs); 2192 2193 mutex_lock(&cpuset_mutex); 2194 } 2195 2196 static void 2197 hotplug_update_tasks(struct cpuset *cs, 2198 struct cpumask *new_cpus, nodemask_t *new_mems, 2199 bool cpus_updated, bool mems_updated) 2200 { 2201 if (cpumask_empty(new_cpus)) 2202 cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus); 2203 if (nodes_empty(*new_mems)) 2204 *new_mems = parent_cs(cs)->effective_mems; 2205 2206 spin_lock_irq(&callback_lock); 2207 cpumask_copy(cs->effective_cpus, new_cpus); 2208 cs->effective_mems = *new_mems; 2209 spin_unlock_irq(&callback_lock); 2210 2211 if (cpus_updated) 2212 update_tasks_cpumask(cs); 2213 if (mems_updated) 2214 update_tasks_nodemask(cs); 2215 } 2216 2217 /** 2218 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug 2219 * @cs: cpuset in interest 2220 * 2221 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone 2222 * offline, update @cs accordingly. If @cs ends up with no CPU or memory, 2223 * all its tasks are moved to the nearest ancestor with both resources. 2224 */ 2225 static void cpuset_hotplug_update_tasks(struct cpuset *cs) 2226 { 2227 static cpumask_t new_cpus; 2228 static nodemask_t new_mems; 2229 bool cpus_updated; 2230 bool mems_updated; 2231 retry: 2232 wait_event(cpuset_attach_wq, cs->attach_in_progress == 0); 2233 2234 mutex_lock(&cpuset_mutex); 2235 2236 /* 2237 * We have raced with task attaching. We wait until attaching 2238 * is finished, so we won't attach a task to an empty cpuset. 2239 */ 2240 if (cs->attach_in_progress) { 2241 mutex_unlock(&cpuset_mutex); 2242 goto retry; 2243 } 2244 2245 cpumask_and(&new_cpus, cs->cpus_allowed, parent_cs(cs)->effective_cpus); 2246 nodes_and(new_mems, cs->mems_allowed, parent_cs(cs)->effective_mems); 2247 2248 cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus); 2249 mems_updated = !nodes_equal(new_mems, cs->effective_mems); 2250 2251 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) 2252 hotplug_update_tasks(cs, &new_cpus, &new_mems, 2253 cpus_updated, mems_updated); 2254 else 2255 hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems, 2256 cpus_updated, mems_updated); 2257 2258 mutex_unlock(&cpuset_mutex); 2259 } 2260 2261 /** 2262 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset 2263 * 2264 * This function is called after either CPU or memory configuration has 2265 * changed and updates cpuset accordingly. The top_cpuset is always 2266 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in 2267 * order to make cpusets transparent (of no affect) on systems that are 2268 * actively using CPU hotplug but making no active use of cpusets. 2269 * 2270 * Non-root cpusets are only affected by offlining. If any CPUs or memory 2271 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on 2272 * all descendants. 2273 * 2274 * Note that CPU offlining during suspend is ignored. We don't modify 2275 * cpusets across suspend/resume cycles at all. 2276 */ 2277 static void cpuset_hotplug_workfn(struct work_struct *work) 2278 { 2279 static cpumask_t new_cpus; 2280 static nodemask_t new_mems; 2281 bool cpus_updated, mems_updated; 2282 bool on_dfl = cgroup_subsys_on_dfl(cpuset_cgrp_subsys); 2283 2284 mutex_lock(&cpuset_mutex); 2285 2286 /* fetch the available cpus/mems and find out which changed how */ 2287 cpumask_copy(&new_cpus, cpu_active_mask); 2288 new_mems = node_states[N_MEMORY]; 2289 2290 cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus); 2291 mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems); 2292 2293 /* synchronize cpus_allowed to cpu_active_mask */ 2294 if (cpus_updated) { 2295 spin_lock_irq(&callback_lock); 2296 if (!on_dfl) 2297 cpumask_copy(top_cpuset.cpus_allowed, &new_cpus); 2298 cpumask_copy(top_cpuset.effective_cpus, &new_cpus); 2299 spin_unlock_irq(&callback_lock); 2300 /* we don't mess with cpumasks of tasks in top_cpuset */ 2301 } 2302 2303 /* synchronize mems_allowed to N_MEMORY */ 2304 if (mems_updated) { 2305 spin_lock_irq(&callback_lock); 2306 if (!on_dfl) 2307 top_cpuset.mems_allowed = new_mems; 2308 top_cpuset.effective_mems = new_mems; 2309 spin_unlock_irq(&callback_lock); 2310 update_tasks_nodemask(&top_cpuset); 2311 } 2312 2313 mutex_unlock(&cpuset_mutex); 2314 2315 /* if cpus or mems changed, we need to propagate to descendants */ 2316 if (cpus_updated || mems_updated) { 2317 struct cpuset *cs; 2318 struct cgroup_subsys_state *pos_css; 2319 2320 rcu_read_lock(); 2321 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) { 2322 if (cs == &top_cpuset || !css_tryget_online(&cs->css)) 2323 continue; 2324 rcu_read_unlock(); 2325 2326 cpuset_hotplug_update_tasks(cs); 2327 2328 rcu_read_lock(); 2329 css_put(&cs->css); 2330 } 2331 rcu_read_unlock(); 2332 } 2333 2334 /* rebuild sched domains if cpus_allowed has changed */ 2335 if (cpus_updated) 2336 rebuild_sched_domains(); 2337 } 2338 2339 void cpuset_update_active_cpus(void) 2340 { 2341 /* 2342 * We're inside cpu hotplug critical region which usually nests 2343 * inside cgroup synchronization. Bounce actual hotplug processing 2344 * to a work item to avoid reverse locking order. 2345 * 2346 * We still need to do partition_sched_domains() synchronously; 2347 * otherwise, the scheduler will get confused and put tasks to the 2348 * dead CPU. Fall back to the default single domain. 2349 * cpuset_hotplug_workfn() will rebuild it as necessary. 2350 */ 2351 partition_sched_domains(1, NULL, NULL); 2352 schedule_work(&cpuset_hotplug_work); 2353 } 2354 2355 /* 2356 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY]. 2357 * Call this routine anytime after node_states[N_MEMORY] changes. 2358 * See cpuset_update_active_cpus() for CPU hotplug handling. 2359 */ 2360 static int cpuset_track_online_nodes(struct notifier_block *self, 2361 unsigned long action, void *arg) 2362 { 2363 schedule_work(&cpuset_hotplug_work); 2364 return NOTIFY_OK; 2365 } 2366 2367 static struct notifier_block cpuset_track_online_nodes_nb = { 2368 .notifier_call = cpuset_track_online_nodes, 2369 .priority = 10, /* ??! */ 2370 }; 2371 2372 /** 2373 * cpuset_init_smp - initialize cpus_allowed 2374 * 2375 * Description: Finish top cpuset after cpu, node maps are initialized 2376 */ 2377 void __init cpuset_init_smp(void) 2378 { 2379 cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask); 2380 top_cpuset.mems_allowed = node_states[N_MEMORY]; 2381 top_cpuset.old_mems_allowed = top_cpuset.mems_allowed; 2382 2383 cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask); 2384 top_cpuset.effective_mems = node_states[N_MEMORY]; 2385 2386 register_hotmemory_notifier(&cpuset_track_online_nodes_nb); 2387 2388 cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0); 2389 BUG_ON(!cpuset_migrate_mm_wq); 2390 } 2391 2392 /** 2393 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset. 2394 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed. 2395 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set. 2396 * 2397 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset 2398 * attached to the specified @tsk. Guaranteed to return some non-empty 2399 * subset of cpu_online_mask, even if this means going outside the 2400 * tasks cpuset. 2401 **/ 2402 2403 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask) 2404 { 2405 unsigned long flags; 2406 2407 spin_lock_irqsave(&callback_lock, flags); 2408 rcu_read_lock(); 2409 guarantee_online_cpus(task_cs(tsk), pmask); 2410 rcu_read_unlock(); 2411 spin_unlock_irqrestore(&callback_lock, flags); 2412 } 2413 2414 void cpuset_cpus_allowed_fallback(struct task_struct *tsk) 2415 { 2416 rcu_read_lock(); 2417 do_set_cpus_allowed(tsk, task_cs(tsk)->effective_cpus); 2418 rcu_read_unlock(); 2419 2420 /* 2421 * We own tsk->cpus_allowed, nobody can change it under us. 2422 * 2423 * But we used cs && cs->cpus_allowed lockless and thus can 2424 * race with cgroup_attach_task() or update_cpumask() and get 2425 * the wrong tsk->cpus_allowed. However, both cases imply the 2426 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr() 2427 * which takes task_rq_lock(). 2428 * 2429 * If we are called after it dropped the lock we must see all 2430 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary 2431 * set any mask even if it is not right from task_cs() pov, 2432 * the pending set_cpus_allowed_ptr() will fix things. 2433 * 2434 * select_fallback_rq() will fix things ups and set cpu_possible_mask 2435 * if required. 2436 */ 2437 } 2438 2439 void __init cpuset_init_current_mems_allowed(void) 2440 { 2441 nodes_setall(current->mems_allowed); 2442 } 2443 2444 /** 2445 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset. 2446 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed. 2447 * 2448 * Description: Returns the nodemask_t mems_allowed of the cpuset 2449 * attached to the specified @tsk. Guaranteed to return some non-empty 2450 * subset of node_states[N_MEMORY], even if this means going outside the 2451 * tasks cpuset. 2452 **/ 2453 2454 nodemask_t cpuset_mems_allowed(struct task_struct *tsk) 2455 { 2456 nodemask_t mask; 2457 unsigned long flags; 2458 2459 spin_lock_irqsave(&callback_lock, flags); 2460 rcu_read_lock(); 2461 guarantee_online_mems(task_cs(tsk), &mask); 2462 rcu_read_unlock(); 2463 spin_unlock_irqrestore(&callback_lock, flags); 2464 2465 return mask; 2466 } 2467 2468 /** 2469 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed 2470 * @nodemask: the nodemask to be checked 2471 * 2472 * Are any of the nodes in the nodemask allowed in current->mems_allowed? 2473 */ 2474 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask) 2475 { 2476 return nodes_intersects(*nodemask, current->mems_allowed); 2477 } 2478 2479 /* 2480 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or 2481 * mem_hardwall ancestor to the specified cpuset. Call holding 2482 * callback_lock. If no ancestor is mem_exclusive or mem_hardwall 2483 * (an unusual configuration), then returns the root cpuset. 2484 */ 2485 static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs) 2486 { 2487 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs)) 2488 cs = parent_cs(cs); 2489 return cs; 2490 } 2491 2492 /** 2493 * cpuset_node_allowed - Can we allocate on a memory node? 2494 * @node: is this an allowed node? 2495 * @gfp_mask: memory allocation flags 2496 * 2497 * If we're in interrupt, yes, we can always allocate. If @node is set in 2498 * current's mems_allowed, yes. If it's not a __GFP_HARDWALL request and this 2499 * node is set in the nearest hardwalled cpuset ancestor to current's cpuset, 2500 * yes. If current has access to memory reserves due to TIF_MEMDIE, yes. 2501 * Otherwise, no. 2502 * 2503 * GFP_USER allocations are marked with the __GFP_HARDWALL bit, 2504 * and do not allow allocations outside the current tasks cpuset 2505 * unless the task has been OOM killed as is marked TIF_MEMDIE. 2506 * GFP_KERNEL allocations are not so marked, so can escape to the 2507 * nearest enclosing hardwalled ancestor cpuset. 2508 * 2509 * Scanning up parent cpusets requires callback_lock. The 2510 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit 2511 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the 2512 * current tasks mems_allowed came up empty on the first pass over 2513 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the 2514 * cpuset are short of memory, might require taking the callback_lock. 2515 * 2516 * The first call here from mm/page_alloc:get_page_from_freelist() 2517 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets, 2518 * so no allocation on a node outside the cpuset is allowed (unless 2519 * in interrupt, of course). 2520 * 2521 * The second pass through get_page_from_freelist() doesn't even call 2522 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages() 2523 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set 2524 * in alloc_flags. That logic and the checks below have the combined 2525 * affect that: 2526 * in_interrupt - any node ok (current task context irrelevant) 2527 * GFP_ATOMIC - any node ok 2528 * TIF_MEMDIE - any node ok 2529 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok 2530 * GFP_USER - only nodes in current tasks mems allowed ok. 2531 */ 2532 bool __cpuset_node_allowed(int node, gfp_t gfp_mask) 2533 { 2534 struct cpuset *cs; /* current cpuset ancestors */ 2535 int allowed; /* is allocation in zone z allowed? */ 2536 unsigned long flags; 2537 2538 if (in_interrupt()) 2539 return true; 2540 if (node_isset(node, current->mems_allowed)) 2541 return true; 2542 /* 2543 * Allow tasks that have access to memory reserves because they have 2544 * been OOM killed to get memory anywhere. 2545 */ 2546 if (unlikely(test_thread_flag(TIF_MEMDIE))) 2547 return true; 2548 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */ 2549 return false; 2550 2551 if (current->flags & PF_EXITING) /* Let dying task have memory */ 2552 return true; 2553 2554 /* Not hardwall and node outside mems_allowed: scan up cpusets */ 2555 spin_lock_irqsave(&callback_lock, flags); 2556 2557 rcu_read_lock(); 2558 cs = nearest_hardwall_ancestor(task_cs(current)); 2559 allowed = node_isset(node, cs->mems_allowed); 2560 rcu_read_unlock(); 2561 2562 spin_unlock_irqrestore(&callback_lock, flags); 2563 return allowed; 2564 } 2565 2566 /** 2567 * cpuset_mem_spread_node() - On which node to begin search for a file page 2568 * cpuset_slab_spread_node() - On which node to begin search for a slab page 2569 * 2570 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for 2571 * tasks in a cpuset with is_spread_page or is_spread_slab set), 2572 * and if the memory allocation used cpuset_mem_spread_node() 2573 * to determine on which node to start looking, as it will for 2574 * certain page cache or slab cache pages such as used for file 2575 * system buffers and inode caches, then instead of starting on the 2576 * local node to look for a free page, rather spread the starting 2577 * node around the tasks mems_allowed nodes. 2578 * 2579 * We don't have to worry about the returned node being offline 2580 * because "it can't happen", and even if it did, it would be ok. 2581 * 2582 * The routines calling guarantee_online_mems() are careful to 2583 * only set nodes in task->mems_allowed that are online. So it 2584 * should not be possible for the following code to return an 2585 * offline node. But if it did, that would be ok, as this routine 2586 * is not returning the node where the allocation must be, only 2587 * the node where the search should start. The zonelist passed to 2588 * __alloc_pages() will include all nodes. If the slab allocator 2589 * is passed an offline node, it will fall back to the local node. 2590 * See kmem_cache_alloc_node(). 2591 */ 2592 2593 static int cpuset_spread_node(int *rotor) 2594 { 2595 return *rotor = next_node_in(*rotor, current->mems_allowed); 2596 } 2597 2598 int cpuset_mem_spread_node(void) 2599 { 2600 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE) 2601 current->cpuset_mem_spread_rotor = 2602 node_random(¤t->mems_allowed); 2603 2604 return cpuset_spread_node(¤t->cpuset_mem_spread_rotor); 2605 } 2606 2607 int cpuset_slab_spread_node(void) 2608 { 2609 if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE) 2610 current->cpuset_slab_spread_rotor = 2611 node_random(¤t->mems_allowed); 2612 2613 return cpuset_spread_node(¤t->cpuset_slab_spread_rotor); 2614 } 2615 2616 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node); 2617 2618 /** 2619 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's? 2620 * @tsk1: pointer to task_struct of some task. 2621 * @tsk2: pointer to task_struct of some other task. 2622 * 2623 * Description: Return true if @tsk1's mems_allowed intersects the 2624 * mems_allowed of @tsk2. Used by the OOM killer to determine if 2625 * one of the task's memory usage might impact the memory available 2626 * to the other. 2627 **/ 2628 2629 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1, 2630 const struct task_struct *tsk2) 2631 { 2632 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed); 2633 } 2634 2635 /** 2636 * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed 2637 * 2638 * Description: Prints current's name, cpuset name, and cached copy of its 2639 * mems_allowed to the kernel log. 2640 */ 2641 void cpuset_print_current_mems_allowed(void) 2642 { 2643 struct cgroup *cgrp; 2644 2645 rcu_read_lock(); 2646 2647 cgrp = task_cs(current)->css.cgroup; 2648 pr_info("%s cpuset=", current->comm); 2649 pr_cont_cgroup_name(cgrp); 2650 pr_cont(" mems_allowed=%*pbl\n", 2651 nodemask_pr_args(¤t->mems_allowed)); 2652 2653 rcu_read_unlock(); 2654 } 2655 2656 /* 2657 * Collection of memory_pressure is suppressed unless 2658 * this flag is enabled by writing "1" to the special 2659 * cpuset file 'memory_pressure_enabled' in the root cpuset. 2660 */ 2661 2662 int cpuset_memory_pressure_enabled __read_mostly; 2663 2664 /** 2665 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims. 2666 * 2667 * Keep a running average of the rate of synchronous (direct) 2668 * page reclaim efforts initiated by tasks in each cpuset. 2669 * 2670 * This represents the rate at which some task in the cpuset 2671 * ran low on memory on all nodes it was allowed to use, and 2672 * had to enter the kernels page reclaim code in an effort to 2673 * create more free memory by tossing clean pages or swapping 2674 * or writing dirty pages. 2675 * 2676 * Display to user space in the per-cpuset read-only file 2677 * "memory_pressure". Value displayed is an integer 2678 * representing the recent rate of entry into the synchronous 2679 * (direct) page reclaim by any task attached to the cpuset. 2680 **/ 2681 2682 void __cpuset_memory_pressure_bump(void) 2683 { 2684 rcu_read_lock(); 2685 fmeter_markevent(&task_cs(current)->fmeter); 2686 rcu_read_unlock(); 2687 } 2688 2689 #ifdef CONFIG_PROC_PID_CPUSET 2690 /* 2691 * proc_cpuset_show() 2692 * - Print tasks cpuset path into seq_file. 2693 * - Used for /proc/<pid>/cpuset. 2694 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it 2695 * doesn't really matter if tsk->cpuset changes after we read it, 2696 * and we take cpuset_mutex, keeping cpuset_attach() from changing it 2697 * anyway. 2698 */ 2699 int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns, 2700 struct pid *pid, struct task_struct *tsk) 2701 { 2702 char *buf; 2703 struct cgroup_subsys_state *css; 2704 int retval; 2705 2706 retval = -ENOMEM; 2707 buf = kmalloc(PATH_MAX, GFP_KERNEL); 2708 if (!buf) 2709 goto out; 2710 2711 css = task_get_css(tsk, cpuset_cgrp_id); 2712 retval = cgroup_path_ns(css->cgroup, buf, PATH_MAX, 2713 current->nsproxy->cgroup_ns); 2714 css_put(css); 2715 if (retval >= PATH_MAX) 2716 retval = -ENAMETOOLONG; 2717 if (retval < 0) 2718 goto out_free; 2719 seq_puts(m, buf); 2720 seq_putc(m, '\n'); 2721 retval = 0; 2722 out_free: 2723 kfree(buf); 2724 out: 2725 return retval; 2726 } 2727 #endif /* CONFIG_PROC_PID_CPUSET */ 2728 2729 /* Display task mems_allowed in /proc/<pid>/status file. */ 2730 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task) 2731 { 2732 seq_printf(m, "Mems_allowed:\t%*pb\n", 2733 nodemask_pr_args(&task->mems_allowed)); 2734 seq_printf(m, "Mems_allowed_list:\t%*pbl\n", 2735 nodemask_pr_args(&task->mems_allowed)); 2736 } 2737