1 /* 2 * kernel/cpuset.c 3 * 4 * Processor and Memory placement constraints for sets of tasks. 5 * 6 * Copyright (C) 2003 BULL SA. 7 * Copyright (C) 2004-2007 Silicon Graphics, Inc. 8 * Copyright (C) 2006 Google, Inc 9 * 10 * Portions derived from Patrick Mochel's sysfs code. 11 * sysfs is Copyright (c) 2001-3 Patrick Mochel 12 * 13 * 2003-10-10 Written by Simon Derr. 14 * 2003-10-22 Updates by Stephen Hemminger. 15 * 2004 May-July Rework by Paul Jackson. 16 * 2006 Rework by Paul Menage to use generic cgroups 17 * 2008 Rework of the scheduler domains and CPU hotplug handling 18 * by Max Krasnyansky 19 * 20 * This file is subject to the terms and conditions of the GNU General Public 21 * License. See the file COPYING in the main directory of the Linux 22 * distribution for more details. 23 */ 24 25 #include <linux/cpu.h> 26 #include <linux/cpumask.h> 27 #include <linux/cpuset.h> 28 #include <linux/err.h> 29 #include <linux/errno.h> 30 #include <linux/file.h> 31 #include <linux/fs.h> 32 #include <linux/init.h> 33 #include <linux/interrupt.h> 34 #include <linux/kernel.h> 35 #include <linux/kmod.h> 36 #include <linux/list.h> 37 #include <linux/mempolicy.h> 38 #include <linux/mm.h> 39 #include <linux/memory.h> 40 #include <linux/export.h> 41 #include <linux/mount.h> 42 #include <linux/fs_context.h> 43 #include <linux/namei.h> 44 #include <linux/pagemap.h> 45 #include <linux/proc_fs.h> 46 #include <linux/rcupdate.h> 47 #include <linux/sched.h> 48 #include <linux/sched/deadline.h> 49 #include <linux/sched/mm.h> 50 #include <linux/sched/task.h> 51 #include <linux/seq_file.h> 52 #include <linux/security.h> 53 #include <linux/slab.h> 54 #include <linux/spinlock.h> 55 #include <linux/stat.h> 56 #include <linux/string.h> 57 #include <linux/time.h> 58 #include <linux/time64.h> 59 #include <linux/backing-dev.h> 60 #include <linux/sort.h> 61 #include <linux/oom.h> 62 #include <linux/sched/isolation.h> 63 #include <linux/uaccess.h> 64 #include <linux/atomic.h> 65 #include <linux/mutex.h> 66 #include <linux/cgroup.h> 67 #include <linux/wait.h> 68 69 DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key); 70 DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key); 71 72 /* See "Frequency meter" comments, below. */ 73 74 struct fmeter { 75 int cnt; /* unprocessed events count */ 76 int val; /* most recent output value */ 77 time64_t time; /* clock (secs) when val computed */ 78 spinlock_t lock; /* guards read or write of above */ 79 }; 80 81 struct cpuset { 82 struct cgroup_subsys_state css; 83 84 unsigned long flags; /* "unsigned long" so bitops work */ 85 86 /* 87 * On default hierarchy: 88 * 89 * The user-configured masks can only be changed by writing to 90 * cpuset.cpus and cpuset.mems, and won't be limited by the 91 * parent masks. 92 * 93 * The effective masks is the real masks that apply to the tasks 94 * in the cpuset. They may be changed if the configured masks are 95 * changed or hotplug happens. 96 * 97 * effective_mask == configured_mask & parent's effective_mask, 98 * and if it ends up empty, it will inherit the parent's mask. 99 * 100 * 101 * On legacy hierarchy: 102 * 103 * The user-configured masks are always the same with effective masks. 104 */ 105 106 /* user-configured CPUs and Memory Nodes allow to tasks */ 107 cpumask_var_t cpus_allowed; 108 nodemask_t mems_allowed; 109 110 /* effective CPUs and Memory Nodes allow to tasks */ 111 cpumask_var_t effective_cpus; 112 nodemask_t effective_mems; 113 114 /* 115 * CPUs allocated to child sub-partitions (default hierarchy only) 116 * - CPUs granted by the parent = effective_cpus U subparts_cpus 117 * - effective_cpus and subparts_cpus are mutually exclusive. 118 * 119 * effective_cpus contains only onlined CPUs, but subparts_cpus 120 * may have offlined ones. 121 */ 122 cpumask_var_t subparts_cpus; 123 124 /* 125 * This is old Memory Nodes tasks took on. 126 * 127 * - top_cpuset.old_mems_allowed is initialized to mems_allowed. 128 * - A new cpuset's old_mems_allowed is initialized when some 129 * task is moved into it. 130 * - old_mems_allowed is used in cpuset_migrate_mm() when we change 131 * cpuset.mems_allowed and have tasks' nodemask updated, and 132 * then old_mems_allowed is updated to mems_allowed. 133 */ 134 nodemask_t old_mems_allowed; 135 136 struct fmeter fmeter; /* memory_pressure filter */ 137 138 /* 139 * Tasks are being attached to this cpuset. Used to prevent 140 * zeroing cpus/mems_allowed between ->can_attach() and ->attach(). 141 */ 142 int attach_in_progress; 143 144 /* partition number for rebuild_sched_domains() */ 145 int pn; 146 147 /* for custom sched domain */ 148 int relax_domain_level; 149 150 /* number of CPUs in subparts_cpus */ 151 int nr_subparts_cpus; 152 153 /* partition root state */ 154 int partition_root_state; 155 156 /* 157 * Default hierarchy only: 158 * use_parent_ecpus - set if using parent's effective_cpus 159 * child_ecpus_count - # of children with use_parent_ecpus set 160 */ 161 int use_parent_ecpus; 162 int child_ecpus_count; 163 164 /* Handle for cpuset.cpus.partition */ 165 struct cgroup_file partition_file; 166 }; 167 168 /* 169 * Partition root states: 170 * 171 * 0 - not a partition root 172 * 173 * 1 - partition root 174 * 175 * -1 - invalid partition root 176 * None of the cpus in cpus_allowed can be put into the parent's 177 * subparts_cpus. In this case, the cpuset is not a real partition 178 * root anymore. However, the CPU_EXCLUSIVE bit will still be set 179 * and the cpuset can be restored back to a partition root if the 180 * parent cpuset can give more CPUs back to this child cpuset. 181 */ 182 #define PRS_DISABLED 0 183 #define PRS_ENABLED 1 184 #define PRS_ERROR -1 185 186 /* 187 * Temporary cpumasks for working with partitions that are passed among 188 * functions to avoid memory allocation in inner functions. 189 */ 190 struct tmpmasks { 191 cpumask_var_t addmask, delmask; /* For partition root */ 192 cpumask_var_t new_cpus; /* For update_cpumasks_hier() */ 193 }; 194 195 static inline struct cpuset *css_cs(struct cgroup_subsys_state *css) 196 { 197 return css ? container_of(css, struct cpuset, css) : NULL; 198 } 199 200 /* Retrieve the cpuset for a task */ 201 static inline struct cpuset *task_cs(struct task_struct *task) 202 { 203 return css_cs(task_css(task, cpuset_cgrp_id)); 204 } 205 206 static inline struct cpuset *parent_cs(struct cpuset *cs) 207 { 208 return css_cs(cs->css.parent); 209 } 210 211 /* bits in struct cpuset flags field */ 212 typedef enum { 213 CS_ONLINE, 214 CS_CPU_EXCLUSIVE, 215 CS_MEM_EXCLUSIVE, 216 CS_MEM_HARDWALL, 217 CS_MEMORY_MIGRATE, 218 CS_SCHED_LOAD_BALANCE, 219 CS_SPREAD_PAGE, 220 CS_SPREAD_SLAB, 221 } cpuset_flagbits_t; 222 223 /* convenient tests for these bits */ 224 static inline bool is_cpuset_online(struct cpuset *cs) 225 { 226 return test_bit(CS_ONLINE, &cs->flags) && !css_is_dying(&cs->css); 227 } 228 229 static inline int is_cpu_exclusive(const struct cpuset *cs) 230 { 231 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags); 232 } 233 234 static inline int is_mem_exclusive(const struct cpuset *cs) 235 { 236 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags); 237 } 238 239 static inline int is_mem_hardwall(const struct cpuset *cs) 240 { 241 return test_bit(CS_MEM_HARDWALL, &cs->flags); 242 } 243 244 static inline int is_sched_load_balance(const struct cpuset *cs) 245 { 246 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); 247 } 248 249 static inline int is_memory_migrate(const struct cpuset *cs) 250 { 251 return test_bit(CS_MEMORY_MIGRATE, &cs->flags); 252 } 253 254 static inline int is_spread_page(const struct cpuset *cs) 255 { 256 return test_bit(CS_SPREAD_PAGE, &cs->flags); 257 } 258 259 static inline int is_spread_slab(const struct cpuset *cs) 260 { 261 return test_bit(CS_SPREAD_SLAB, &cs->flags); 262 } 263 264 static inline int is_partition_root(const struct cpuset *cs) 265 { 266 return cs->partition_root_state > 0; 267 } 268 269 /* 270 * Send notification event of whenever partition_root_state changes. 271 */ 272 static inline void notify_partition_change(struct cpuset *cs, 273 int old_prs, int new_prs) 274 { 275 if (old_prs != new_prs) 276 cgroup_file_notify(&cs->partition_file); 277 } 278 279 static struct cpuset top_cpuset = { 280 .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) | 281 (1 << CS_MEM_EXCLUSIVE)), 282 .partition_root_state = PRS_ENABLED, 283 }; 284 285 /** 286 * cpuset_for_each_child - traverse online children of a cpuset 287 * @child_cs: loop cursor pointing to the current child 288 * @pos_css: used for iteration 289 * @parent_cs: target cpuset to walk children of 290 * 291 * Walk @child_cs through the online children of @parent_cs. Must be used 292 * with RCU read locked. 293 */ 294 #define cpuset_for_each_child(child_cs, pos_css, parent_cs) \ 295 css_for_each_child((pos_css), &(parent_cs)->css) \ 296 if (is_cpuset_online(((child_cs) = css_cs((pos_css))))) 297 298 /** 299 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants 300 * @des_cs: loop cursor pointing to the current descendant 301 * @pos_css: used for iteration 302 * @root_cs: target cpuset to walk ancestor of 303 * 304 * Walk @des_cs through the online descendants of @root_cs. Must be used 305 * with RCU read locked. The caller may modify @pos_css by calling 306 * css_rightmost_descendant() to skip subtree. @root_cs is included in the 307 * iteration and the first node to be visited. 308 */ 309 #define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs) \ 310 css_for_each_descendant_pre((pos_css), &(root_cs)->css) \ 311 if (is_cpuset_online(((des_cs) = css_cs((pos_css))))) 312 313 /* 314 * There are two global locks guarding cpuset structures - cpuset_rwsem and 315 * callback_lock. We also require taking task_lock() when dereferencing a 316 * task's cpuset pointer. See "The task_lock() exception", at the end of this 317 * comment. The cpuset code uses only cpuset_rwsem write lock. Other 318 * kernel subsystems can use cpuset_read_lock()/cpuset_read_unlock() to 319 * prevent change to cpuset structures. 320 * 321 * A task must hold both locks to modify cpusets. If a task holds 322 * cpuset_rwsem, it blocks others wanting that rwsem, ensuring that it 323 * is the only task able to also acquire callback_lock and be able to 324 * modify cpusets. It can perform various checks on the cpuset structure 325 * first, knowing nothing will change. It can also allocate memory while 326 * just holding cpuset_rwsem. While it is performing these checks, various 327 * callback routines can briefly acquire callback_lock to query cpusets. 328 * Once it is ready to make the changes, it takes callback_lock, blocking 329 * everyone else. 330 * 331 * Calls to the kernel memory allocator can not be made while holding 332 * callback_lock, as that would risk double tripping on callback_lock 333 * from one of the callbacks into the cpuset code from within 334 * __alloc_pages(). 335 * 336 * If a task is only holding callback_lock, then it has read-only 337 * access to cpusets. 338 * 339 * Now, the task_struct fields mems_allowed and mempolicy may be changed 340 * by other task, we use alloc_lock in the task_struct fields to protect 341 * them. 342 * 343 * The cpuset_common_file_read() handlers only hold callback_lock across 344 * small pieces of code, such as when reading out possibly multi-word 345 * cpumasks and nodemasks. 346 * 347 * Accessing a task's cpuset should be done in accordance with the 348 * guidelines for accessing subsystem state in kernel/cgroup.c 349 */ 350 351 DEFINE_STATIC_PERCPU_RWSEM(cpuset_rwsem); 352 353 void cpuset_read_lock(void) 354 { 355 percpu_down_read(&cpuset_rwsem); 356 } 357 358 void cpuset_read_unlock(void) 359 { 360 percpu_up_read(&cpuset_rwsem); 361 } 362 363 static DEFINE_SPINLOCK(callback_lock); 364 365 static struct workqueue_struct *cpuset_migrate_mm_wq; 366 367 /* 368 * CPU / memory hotplug is handled asynchronously. 369 */ 370 static void cpuset_hotplug_workfn(struct work_struct *work); 371 static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn); 372 373 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq); 374 375 /* 376 * Cgroup v2 behavior is used on the "cpus" and "mems" control files when 377 * on default hierarchy or when the cpuset_v2_mode flag is set by mounting 378 * the v1 cpuset cgroup filesystem with the "cpuset_v2_mode" mount option. 379 * With v2 behavior, "cpus" and "mems" are always what the users have 380 * requested and won't be changed by hotplug events. Only the effective 381 * cpus or mems will be affected. 382 */ 383 static inline bool is_in_v2_mode(void) 384 { 385 return cgroup_subsys_on_dfl(cpuset_cgrp_subsys) || 386 (cpuset_cgrp_subsys.root->flags & CGRP_ROOT_CPUSET_V2_MODE); 387 } 388 389 /* 390 * Return in pmask the portion of a task's cpusets's cpus_allowed that 391 * are online and are capable of running the task. If none are found, 392 * walk up the cpuset hierarchy until we find one that does have some 393 * appropriate cpus. 394 * 395 * One way or another, we guarantee to return some non-empty subset 396 * of cpu_online_mask. 397 * 398 * Call with callback_lock or cpuset_rwsem held. 399 */ 400 static void guarantee_online_cpus(struct task_struct *tsk, 401 struct cpumask *pmask) 402 { 403 const struct cpumask *possible_mask = task_cpu_possible_mask(tsk); 404 struct cpuset *cs; 405 406 if (WARN_ON(!cpumask_and(pmask, possible_mask, cpu_online_mask))) 407 cpumask_copy(pmask, cpu_online_mask); 408 409 rcu_read_lock(); 410 cs = task_cs(tsk); 411 412 while (!cpumask_intersects(cs->effective_cpus, pmask)) { 413 cs = parent_cs(cs); 414 if (unlikely(!cs)) { 415 /* 416 * The top cpuset doesn't have any online cpu as a 417 * consequence of a race between cpuset_hotplug_work 418 * and cpu hotplug notifier. But we know the top 419 * cpuset's effective_cpus is on its way to be 420 * identical to cpu_online_mask. 421 */ 422 goto out_unlock; 423 } 424 } 425 cpumask_and(pmask, pmask, cs->effective_cpus); 426 427 out_unlock: 428 rcu_read_unlock(); 429 } 430 431 /* 432 * Return in *pmask the portion of a cpusets's mems_allowed that 433 * are online, with memory. If none are online with memory, walk 434 * up the cpuset hierarchy until we find one that does have some 435 * online mems. The top cpuset always has some mems online. 436 * 437 * One way or another, we guarantee to return some non-empty subset 438 * of node_states[N_MEMORY]. 439 * 440 * Call with callback_lock or cpuset_rwsem held. 441 */ 442 static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask) 443 { 444 while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY])) 445 cs = parent_cs(cs); 446 nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]); 447 } 448 449 /* 450 * update task's spread flag if cpuset's page/slab spread flag is set 451 * 452 * Call with callback_lock or cpuset_rwsem held. 453 */ 454 static void cpuset_update_task_spread_flag(struct cpuset *cs, 455 struct task_struct *tsk) 456 { 457 if (is_spread_page(cs)) 458 task_set_spread_page(tsk); 459 else 460 task_clear_spread_page(tsk); 461 462 if (is_spread_slab(cs)) 463 task_set_spread_slab(tsk); 464 else 465 task_clear_spread_slab(tsk); 466 } 467 468 /* 469 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q? 470 * 471 * One cpuset is a subset of another if all its allowed CPUs and 472 * Memory Nodes are a subset of the other, and its exclusive flags 473 * are only set if the other's are set. Call holding cpuset_rwsem. 474 */ 475 476 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q) 477 { 478 return cpumask_subset(p->cpus_allowed, q->cpus_allowed) && 479 nodes_subset(p->mems_allowed, q->mems_allowed) && 480 is_cpu_exclusive(p) <= is_cpu_exclusive(q) && 481 is_mem_exclusive(p) <= is_mem_exclusive(q); 482 } 483 484 /** 485 * alloc_cpumasks - allocate three cpumasks for cpuset 486 * @cs: the cpuset that have cpumasks to be allocated. 487 * @tmp: the tmpmasks structure pointer 488 * Return: 0 if successful, -ENOMEM otherwise. 489 * 490 * Only one of the two input arguments should be non-NULL. 491 */ 492 static inline int alloc_cpumasks(struct cpuset *cs, struct tmpmasks *tmp) 493 { 494 cpumask_var_t *pmask1, *pmask2, *pmask3; 495 496 if (cs) { 497 pmask1 = &cs->cpus_allowed; 498 pmask2 = &cs->effective_cpus; 499 pmask3 = &cs->subparts_cpus; 500 } else { 501 pmask1 = &tmp->new_cpus; 502 pmask2 = &tmp->addmask; 503 pmask3 = &tmp->delmask; 504 } 505 506 if (!zalloc_cpumask_var(pmask1, GFP_KERNEL)) 507 return -ENOMEM; 508 509 if (!zalloc_cpumask_var(pmask2, GFP_KERNEL)) 510 goto free_one; 511 512 if (!zalloc_cpumask_var(pmask3, GFP_KERNEL)) 513 goto free_two; 514 515 return 0; 516 517 free_two: 518 free_cpumask_var(*pmask2); 519 free_one: 520 free_cpumask_var(*pmask1); 521 return -ENOMEM; 522 } 523 524 /** 525 * free_cpumasks - free cpumasks in a tmpmasks structure 526 * @cs: the cpuset that have cpumasks to be free. 527 * @tmp: the tmpmasks structure pointer 528 */ 529 static inline void free_cpumasks(struct cpuset *cs, struct tmpmasks *tmp) 530 { 531 if (cs) { 532 free_cpumask_var(cs->cpus_allowed); 533 free_cpumask_var(cs->effective_cpus); 534 free_cpumask_var(cs->subparts_cpus); 535 } 536 if (tmp) { 537 free_cpumask_var(tmp->new_cpus); 538 free_cpumask_var(tmp->addmask); 539 free_cpumask_var(tmp->delmask); 540 } 541 } 542 543 /** 544 * alloc_trial_cpuset - allocate a trial cpuset 545 * @cs: the cpuset that the trial cpuset duplicates 546 */ 547 static struct cpuset *alloc_trial_cpuset(struct cpuset *cs) 548 { 549 struct cpuset *trial; 550 551 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL); 552 if (!trial) 553 return NULL; 554 555 if (alloc_cpumasks(trial, NULL)) { 556 kfree(trial); 557 return NULL; 558 } 559 560 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed); 561 cpumask_copy(trial->effective_cpus, cs->effective_cpus); 562 return trial; 563 } 564 565 /** 566 * free_cpuset - free the cpuset 567 * @cs: the cpuset to be freed 568 */ 569 static inline void free_cpuset(struct cpuset *cs) 570 { 571 free_cpumasks(cs, NULL); 572 kfree(cs); 573 } 574 575 /* 576 * validate_change() - Used to validate that any proposed cpuset change 577 * follows the structural rules for cpusets. 578 * 579 * If we replaced the flag and mask values of the current cpuset 580 * (cur) with those values in the trial cpuset (trial), would 581 * our various subset and exclusive rules still be valid? Presumes 582 * cpuset_rwsem held. 583 * 584 * 'cur' is the address of an actual, in-use cpuset. Operations 585 * such as list traversal that depend on the actual address of the 586 * cpuset in the list must use cur below, not trial. 587 * 588 * 'trial' is the address of bulk structure copy of cur, with 589 * perhaps one or more of the fields cpus_allowed, mems_allowed, 590 * or flags changed to new, trial values. 591 * 592 * Return 0 if valid, -errno if not. 593 */ 594 595 static int validate_change(struct cpuset *cur, struct cpuset *trial) 596 { 597 struct cgroup_subsys_state *css; 598 struct cpuset *c, *par; 599 int ret; 600 601 rcu_read_lock(); 602 603 /* Each of our child cpusets must be a subset of us */ 604 ret = -EBUSY; 605 cpuset_for_each_child(c, css, cur) 606 if (!is_cpuset_subset(c, trial)) 607 goto out; 608 609 /* Remaining checks don't apply to root cpuset */ 610 ret = 0; 611 if (cur == &top_cpuset) 612 goto out; 613 614 par = parent_cs(cur); 615 616 /* On legacy hierarchy, we must be a subset of our parent cpuset. */ 617 ret = -EACCES; 618 if (!is_in_v2_mode() && !is_cpuset_subset(trial, par)) 619 goto out; 620 621 /* 622 * If either I or some sibling (!= me) is exclusive, we can't 623 * overlap 624 */ 625 ret = -EINVAL; 626 cpuset_for_each_child(c, css, par) { 627 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) && 628 c != cur && 629 cpumask_intersects(trial->cpus_allowed, c->cpus_allowed)) 630 goto out; 631 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) && 632 c != cur && 633 nodes_intersects(trial->mems_allowed, c->mems_allowed)) 634 goto out; 635 } 636 637 /* 638 * Cpusets with tasks - existing or newly being attached - can't 639 * be changed to have empty cpus_allowed or mems_allowed. 640 */ 641 ret = -ENOSPC; 642 if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) { 643 if (!cpumask_empty(cur->cpus_allowed) && 644 cpumask_empty(trial->cpus_allowed)) 645 goto out; 646 if (!nodes_empty(cur->mems_allowed) && 647 nodes_empty(trial->mems_allowed)) 648 goto out; 649 } 650 651 /* 652 * We can't shrink if we won't have enough room for SCHED_DEADLINE 653 * tasks. 654 */ 655 ret = -EBUSY; 656 if (is_cpu_exclusive(cur) && 657 !cpuset_cpumask_can_shrink(cur->cpus_allowed, 658 trial->cpus_allowed)) 659 goto out; 660 661 ret = 0; 662 out: 663 rcu_read_unlock(); 664 return ret; 665 } 666 667 #ifdef CONFIG_SMP 668 /* 669 * Helper routine for generate_sched_domains(). 670 * Do cpusets a, b have overlapping effective cpus_allowed masks? 671 */ 672 static int cpusets_overlap(struct cpuset *a, struct cpuset *b) 673 { 674 return cpumask_intersects(a->effective_cpus, b->effective_cpus); 675 } 676 677 static void 678 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c) 679 { 680 if (dattr->relax_domain_level < c->relax_domain_level) 681 dattr->relax_domain_level = c->relax_domain_level; 682 return; 683 } 684 685 static void update_domain_attr_tree(struct sched_domain_attr *dattr, 686 struct cpuset *root_cs) 687 { 688 struct cpuset *cp; 689 struct cgroup_subsys_state *pos_css; 690 691 rcu_read_lock(); 692 cpuset_for_each_descendant_pre(cp, pos_css, root_cs) { 693 /* skip the whole subtree if @cp doesn't have any CPU */ 694 if (cpumask_empty(cp->cpus_allowed)) { 695 pos_css = css_rightmost_descendant(pos_css); 696 continue; 697 } 698 699 if (is_sched_load_balance(cp)) 700 update_domain_attr(dattr, cp); 701 } 702 rcu_read_unlock(); 703 } 704 705 /* Must be called with cpuset_rwsem held. */ 706 static inline int nr_cpusets(void) 707 { 708 /* jump label reference count + the top-level cpuset */ 709 return static_key_count(&cpusets_enabled_key.key) + 1; 710 } 711 712 /* 713 * generate_sched_domains() 714 * 715 * This function builds a partial partition of the systems CPUs 716 * A 'partial partition' is a set of non-overlapping subsets whose 717 * union is a subset of that set. 718 * The output of this function needs to be passed to kernel/sched/core.c 719 * partition_sched_domains() routine, which will rebuild the scheduler's 720 * load balancing domains (sched domains) as specified by that partial 721 * partition. 722 * 723 * See "What is sched_load_balance" in Documentation/admin-guide/cgroup-v1/cpusets.rst 724 * for a background explanation of this. 725 * 726 * Does not return errors, on the theory that the callers of this 727 * routine would rather not worry about failures to rebuild sched 728 * domains when operating in the severe memory shortage situations 729 * that could cause allocation failures below. 730 * 731 * Must be called with cpuset_rwsem held. 732 * 733 * The three key local variables below are: 734 * cp - cpuset pointer, used (together with pos_css) to perform a 735 * top-down scan of all cpusets. For our purposes, rebuilding 736 * the schedulers sched domains, we can ignore !is_sched_load_ 737 * balance cpusets. 738 * csa - (for CpuSet Array) Array of pointers to all the cpusets 739 * that need to be load balanced, for convenient iterative 740 * access by the subsequent code that finds the best partition, 741 * i.e the set of domains (subsets) of CPUs such that the 742 * cpus_allowed of every cpuset marked is_sched_load_balance 743 * is a subset of one of these domains, while there are as 744 * many such domains as possible, each as small as possible. 745 * doms - Conversion of 'csa' to an array of cpumasks, for passing to 746 * the kernel/sched/core.c routine partition_sched_domains() in a 747 * convenient format, that can be easily compared to the prior 748 * value to determine what partition elements (sched domains) 749 * were changed (added or removed.) 750 * 751 * Finding the best partition (set of domains): 752 * The triple nested loops below over i, j, k scan over the 753 * load balanced cpusets (using the array of cpuset pointers in 754 * csa[]) looking for pairs of cpusets that have overlapping 755 * cpus_allowed, but which don't have the same 'pn' partition 756 * number and gives them in the same partition number. It keeps 757 * looping on the 'restart' label until it can no longer find 758 * any such pairs. 759 * 760 * The union of the cpus_allowed masks from the set of 761 * all cpusets having the same 'pn' value then form the one 762 * element of the partition (one sched domain) to be passed to 763 * partition_sched_domains(). 764 */ 765 static int generate_sched_domains(cpumask_var_t **domains, 766 struct sched_domain_attr **attributes) 767 { 768 struct cpuset *cp; /* top-down scan of cpusets */ 769 struct cpuset **csa; /* array of all cpuset ptrs */ 770 int csn; /* how many cpuset ptrs in csa so far */ 771 int i, j, k; /* indices for partition finding loops */ 772 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */ 773 struct sched_domain_attr *dattr; /* attributes for custom domains */ 774 int ndoms = 0; /* number of sched domains in result */ 775 int nslot; /* next empty doms[] struct cpumask slot */ 776 struct cgroup_subsys_state *pos_css; 777 bool root_load_balance = is_sched_load_balance(&top_cpuset); 778 779 doms = NULL; 780 dattr = NULL; 781 csa = NULL; 782 783 /* Special case for the 99% of systems with one, full, sched domain */ 784 if (root_load_balance && !top_cpuset.nr_subparts_cpus) { 785 ndoms = 1; 786 doms = alloc_sched_domains(ndoms); 787 if (!doms) 788 goto done; 789 790 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL); 791 if (dattr) { 792 *dattr = SD_ATTR_INIT; 793 update_domain_attr_tree(dattr, &top_cpuset); 794 } 795 cpumask_and(doms[0], top_cpuset.effective_cpus, 796 housekeeping_cpumask(HK_FLAG_DOMAIN)); 797 798 goto done; 799 } 800 801 csa = kmalloc_array(nr_cpusets(), sizeof(cp), GFP_KERNEL); 802 if (!csa) 803 goto done; 804 csn = 0; 805 806 rcu_read_lock(); 807 if (root_load_balance) 808 csa[csn++] = &top_cpuset; 809 cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) { 810 if (cp == &top_cpuset) 811 continue; 812 /* 813 * Continue traversing beyond @cp iff @cp has some CPUs and 814 * isn't load balancing. The former is obvious. The 815 * latter: All child cpusets contain a subset of the 816 * parent's cpus, so just skip them, and then we call 817 * update_domain_attr_tree() to calc relax_domain_level of 818 * the corresponding sched domain. 819 * 820 * If root is load-balancing, we can skip @cp if it 821 * is a subset of the root's effective_cpus. 822 */ 823 if (!cpumask_empty(cp->cpus_allowed) && 824 !(is_sched_load_balance(cp) && 825 cpumask_intersects(cp->cpus_allowed, 826 housekeeping_cpumask(HK_FLAG_DOMAIN)))) 827 continue; 828 829 if (root_load_balance && 830 cpumask_subset(cp->cpus_allowed, top_cpuset.effective_cpus)) 831 continue; 832 833 if (is_sched_load_balance(cp) && 834 !cpumask_empty(cp->effective_cpus)) 835 csa[csn++] = cp; 836 837 /* skip @cp's subtree if not a partition root */ 838 if (!is_partition_root(cp)) 839 pos_css = css_rightmost_descendant(pos_css); 840 } 841 rcu_read_unlock(); 842 843 for (i = 0; i < csn; i++) 844 csa[i]->pn = i; 845 ndoms = csn; 846 847 restart: 848 /* Find the best partition (set of sched domains) */ 849 for (i = 0; i < csn; i++) { 850 struct cpuset *a = csa[i]; 851 int apn = a->pn; 852 853 for (j = 0; j < csn; j++) { 854 struct cpuset *b = csa[j]; 855 int bpn = b->pn; 856 857 if (apn != bpn && cpusets_overlap(a, b)) { 858 for (k = 0; k < csn; k++) { 859 struct cpuset *c = csa[k]; 860 861 if (c->pn == bpn) 862 c->pn = apn; 863 } 864 ndoms--; /* one less element */ 865 goto restart; 866 } 867 } 868 } 869 870 /* 871 * Now we know how many domains to create. 872 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks. 873 */ 874 doms = alloc_sched_domains(ndoms); 875 if (!doms) 876 goto done; 877 878 /* 879 * The rest of the code, including the scheduler, can deal with 880 * dattr==NULL case. No need to abort if alloc fails. 881 */ 882 dattr = kmalloc_array(ndoms, sizeof(struct sched_domain_attr), 883 GFP_KERNEL); 884 885 for (nslot = 0, i = 0; i < csn; i++) { 886 struct cpuset *a = csa[i]; 887 struct cpumask *dp; 888 int apn = a->pn; 889 890 if (apn < 0) { 891 /* Skip completed partitions */ 892 continue; 893 } 894 895 dp = doms[nslot]; 896 897 if (nslot == ndoms) { 898 static int warnings = 10; 899 if (warnings) { 900 pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n", 901 nslot, ndoms, csn, i, apn); 902 warnings--; 903 } 904 continue; 905 } 906 907 cpumask_clear(dp); 908 if (dattr) 909 *(dattr + nslot) = SD_ATTR_INIT; 910 for (j = i; j < csn; j++) { 911 struct cpuset *b = csa[j]; 912 913 if (apn == b->pn) { 914 cpumask_or(dp, dp, b->effective_cpus); 915 cpumask_and(dp, dp, housekeeping_cpumask(HK_FLAG_DOMAIN)); 916 if (dattr) 917 update_domain_attr_tree(dattr + nslot, b); 918 919 /* Done with this partition */ 920 b->pn = -1; 921 } 922 } 923 nslot++; 924 } 925 BUG_ON(nslot != ndoms); 926 927 done: 928 kfree(csa); 929 930 /* 931 * Fallback to the default domain if kmalloc() failed. 932 * See comments in partition_sched_domains(). 933 */ 934 if (doms == NULL) 935 ndoms = 1; 936 937 *domains = doms; 938 *attributes = dattr; 939 return ndoms; 940 } 941 942 static void update_tasks_root_domain(struct cpuset *cs) 943 { 944 struct css_task_iter it; 945 struct task_struct *task; 946 947 css_task_iter_start(&cs->css, 0, &it); 948 949 while ((task = css_task_iter_next(&it))) 950 dl_add_task_root_domain(task); 951 952 css_task_iter_end(&it); 953 } 954 955 static void rebuild_root_domains(void) 956 { 957 struct cpuset *cs = NULL; 958 struct cgroup_subsys_state *pos_css; 959 960 percpu_rwsem_assert_held(&cpuset_rwsem); 961 lockdep_assert_cpus_held(); 962 lockdep_assert_held(&sched_domains_mutex); 963 964 rcu_read_lock(); 965 966 /* 967 * Clear default root domain DL accounting, it will be computed again 968 * if a task belongs to it. 969 */ 970 dl_clear_root_domain(&def_root_domain); 971 972 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) { 973 974 if (cpumask_empty(cs->effective_cpus)) { 975 pos_css = css_rightmost_descendant(pos_css); 976 continue; 977 } 978 979 css_get(&cs->css); 980 981 rcu_read_unlock(); 982 983 update_tasks_root_domain(cs); 984 985 rcu_read_lock(); 986 css_put(&cs->css); 987 } 988 rcu_read_unlock(); 989 } 990 991 static void 992 partition_and_rebuild_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 993 struct sched_domain_attr *dattr_new) 994 { 995 mutex_lock(&sched_domains_mutex); 996 partition_sched_domains_locked(ndoms_new, doms_new, dattr_new); 997 rebuild_root_domains(); 998 mutex_unlock(&sched_domains_mutex); 999 } 1000 1001 /* 1002 * Rebuild scheduler domains. 1003 * 1004 * If the flag 'sched_load_balance' of any cpuset with non-empty 1005 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset 1006 * which has that flag enabled, or if any cpuset with a non-empty 1007 * 'cpus' is removed, then call this routine to rebuild the 1008 * scheduler's dynamic sched domains. 1009 * 1010 * Call with cpuset_rwsem held. Takes cpus_read_lock(). 1011 */ 1012 static void rebuild_sched_domains_locked(void) 1013 { 1014 struct cgroup_subsys_state *pos_css; 1015 struct sched_domain_attr *attr; 1016 cpumask_var_t *doms; 1017 struct cpuset *cs; 1018 int ndoms; 1019 1020 lockdep_assert_cpus_held(); 1021 percpu_rwsem_assert_held(&cpuset_rwsem); 1022 1023 /* 1024 * If we have raced with CPU hotplug, return early to avoid 1025 * passing doms with offlined cpu to partition_sched_domains(). 1026 * Anyways, cpuset_hotplug_workfn() will rebuild sched domains. 1027 * 1028 * With no CPUs in any subpartitions, top_cpuset's effective CPUs 1029 * should be the same as the active CPUs, so checking only top_cpuset 1030 * is enough to detect racing CPU offlines. 1031 */ 1032 if (!top_cpuset.nr_subparts_cpus && 1033 !cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask)) 1034 return; 1035 1036 /* 1037 * With subpartition CPUs, however, the effective CPUs of a partition 1038 * root should be only a subset of the active CPUs. Since a CPU in any 1039 * partition root could be offlined, all must be checked. 1040 */ 1041 if (top_cpuset.nr_subparts_cpus) { 1042 rcu_read_lock(); 1043 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) { 1044 if (!is_partition_root(cs)) { 1045 pos_css = css_rightmost_descendant(pos_css); 1046 continue; 1047 } 1048 if (!cpumask_subset(cs->effective_cpus, 1049 cpu_active_mask)) { 1050 rcu_read_unlock(); 1051 return; 1052 } 1053 } 1054 rcu_read_unlock(); 1055 } 1056 1057 /* Generate domain masks and attrs */ 1058 ndoms = generate_sched_domains(&doms, &attr); 1059 1060 /* Have scheduler rebuild the domains */ 1061 partition_and_rebuild_sched_domains(ndoms, doms, attr); 1062 } 1063 #else /* !CONFIG_SMP */ 1064 static void rebuild_sched_domains_locked(void) 1065 { 1066 } 1067 #endif /* CONFIG_SMP */ 1068 1069 void rebuild_sched_domains(void) 1070 { 1071 cpus_read_lock(); 1072 percpu_down_write(&cpuset_rwsem); 1073 rebuild_sched_domains_locked(); 1074 percpu_up_write(&cpuset_rwsem); 1075 cpus_read_unlock(); 1076 } 1077 1078 /** 1079 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset. 1080 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed 1081 * 1082 * Iterate through each task of @cs updating its cpus_allowed to the 1083 * effective cpuset's. As this function is called with cpuset_rwsem held, 1084 * cpuset membership stays stable. 1085 */ 1086 static void update_tasks_cpumask(struct cpuset *cs) 1087 { 1088 struct css_task_iter it; 1089 struct task_struct *task; 1090 1091 css_task_iter_start(&cs->css, 0, &it); 1092 while ((task = css_task_iter_next(&it))) 1093 set_cpus_allowed_ptr(task, cs->effective_cpus); 1094 css_task_iter_end(&it); 1095 } 1096 1097 /** 1098 * compute_effective_cpumask - Compute the effective cpumask of the cpuset 1099 * @new_cpus: the temp variable for the new effective_cpus mask 1100 * @cs: the cpuset the need to recompute the new effective_cpus mask 1101 * @parent: the parent cpuset 1102 * 1103 * If the parent has subpartition CPUs, include them in the list of 1104 * allowable CPUs in computing the new effective_cpus mask. Since offlined 1105 * CPUs are not removed from subparts_cpus, we have to use cpu_active_mask 1106 * to mask those out. 1107 */ 1108 static void compute_effective_cpumask(struct cpumask *new_cpus, 1109 struct cpuset *cs, struct cpuset *parent) 1110 { 1111 if (parent->nr_subparts_cpus) { 1112 cpumask_or(new_cpus, parent->effective_cpus, 1113 parent->subparts_cpus); 1114 cpumask_and(new_cpus, new_cpus, cs->cpus_allowed); 1115 cpumask_and(new_cpus, new_cpus, cpu_active_mask); 1116 } else { 1117 cpumask_and(new_cpus, cs->cpus_allowed, parent->effective_cpus); 1118 } 1119 } 1120 1121 /* 1122 * Commands for update_parent_subparts_cpumask 1123 */ 1124 enum subparts_cmd { 1125 partcmd_enable, /* Enable partition root */ 1126 partcmd_disable, /* Disable partition root */ 1127 partcmd_update, /* Update parent's subparts_cpus */ 1128 }; 1129 1130 /** 1131 * update_parent_subparts_cpumask - update subparts_cpus mask of parent cpuset 1132 * @cpuset: The cpuset that requests change in partition root state 1133 * @cmd: Partition root state change command 1134 * @newmask: Optional new cpumask for partcmd_update 1135 * @tmp: Temporary addmask and delmask 1136 * Return: 0, 1 or an error code 1137 * 1138 * For partcmd_enable, the cpuset is being transformed from a non-partition 1139 * root to a partition root. The cpus_allowed mask of the given cpuset will 1140 * be put into parent's subparts_cpus and taken away from parent's 1141 * effective_cpus. The function will return 0 if all the CPUs listed in 1142 * cpus_allowed can be granted or an error code will be returned. 1143 * 1144 * For partcmd_disable, the cpuset is being transofrmed from a partition 1145 * root back to a non-partition root. Any CPUs in cpus_allowed that are in 1146 * parent's subparts_cpus will be taken away from that cpumask and put back 1147 * into parent's effective_cpus. 0 should always be returned. 1148 * 1149 * For partcmd_update, if the optional newmask is specified, the cpu 1150 * list is to be changed from cpus_allowed to newmask. Otherwise, 1151 * cpus_allowed is assumed to remain the same. The cpuset should either 1152 * be a partition root or an invalid partition root. The partition root 1153 * state may change if newmask is NULL and none of the requested CPUs can 1154 * be granted by the parent. The function will return 1 if changes to 1155 * parent's subparts_cpus and effective_cpus happen or 0 otherwise. 1156 * Error code should only be returned when newmask is non-NULL. 1157 * 1158 * The partcmd_enable and partcmd_disable commands are used by 1159 * update_prstate(). The partcmd_update command is used by 1160 * update_cpumasks_hier() with newmask NULL and update_cpumask() with 1161 * newmask set. 1162 * 1163 * The checking is more strict when enabling partition root than the 1164 * other two commands. 1165 * 1166 * Because of the implicit cpu exclusive nature of a partition root, 1167 * cpumask changes that violates the cpu exclusivity rule will not be 1168 * permitted when checked by validate_change(). The validate_change() 1169 * function will also prevent any changes to the cpu list if it is not 1170 * a superset of children's cpu lists. 1171 */ 1172 static int update_parent_subparts_cpumask(struct cpuset *cpuset, int cmd, 1173 struct cpumask *newmask, 1174 struct tmpmasks *tmp) 1175 { 1176 struct cpuset *parent = parent_cs(cpuset); 1177 int adding; /* Moving cpus from effective_cpus to subparts_cpus */ 1178 int deleting; /* Moving cpus from subparts_cpus to effective_cpus */ 1179 int old_prs, new_prs; 1180 bool part_error = false; /* Partition error? */ 1181 1182 percpu_rwsem_assert_held(&cpuset_rwsem); 1183 1184 /* 1185 * The parent must be a partition root. 1186 * The new cpumask, if present, or the current cpus_allowed must 1187 * not be empty. 1188 */ 1189 if (!is_partition_root(parent) || 1190 (newmask && cpumask_empty(newmask)) || 1191 (!newmask && cpumask_empty(cpuset->cpus_allowed))) 1192 return -EINVAL; 1193 1194 /* 1195 * Enabling/disabling partition root is not allowed if there are 1196 * online children. 1197 */ 1198 if ((cmd != partcmd_update) && css_has_online_children(&cpuset->css)) 1199 return -EBUSY; 1200 1201 /* 1202 * Enabling partition root is not allowed if not all the CPUs 1203 * can be granted from parent's effective_cpus or at least one 1204 * CPU will be left after that. 1205 */ 1206 if ((cmd == partcmd_enable) && 1207 (!cpumask_subset(cpuset->cpus_allowed, parent->effective_cpus) || 1208 cpumask_equal(cpuset->cpus_allowed, parent->effective_cpus))) 1209 return -EINVAL; 1210 1211 /* 1212 * A cpumask update cannot make parent's effective_cpus become empty. 1213 */ 1214 adding = deleting = false; 1215 old_prs = new_prs = cpuset->partition_root_state; 1216 if (cmd == partcmd_enable) { 1217 cpumask_copy(tmp->addmask, cpuset->cpus_allowed); 1218 adding = true; 1219 } else if (cmd == partcmd_disable) { 1220 deleting = cpumask_and(tmp->delmask, cpuset->cpus_allowed, 1221 parent->subparts_cpus); 1222 } else if (newmask) { 1223 /* 1224 * partcmd_update with newmask: 1225 * 1226 * delmask = cpus_allowed & ~newmask & parent->subparts_cpus 1227 * addmask = newmask & parent->effective_cpus 1228 * & ~parent->subparts_cpus 1229 */ 1230 cpumask_andnot(tmp->delmask, cpuset->cpus_allowed, newmask); 1231 deleting = cpumask_and(tmp->delmask, tmp->delmask, 1232 parent->subparts_cpus); 1233 1234 cpumask_and(tmp->addmask, newmask, parent->effective_cpus); 1235 adding = cpumask_andnot(tmp->addmask, tmp->addmask, 1236 parent->subparts_cpus); 1237 /* 1238 * Return error if the new effective_cpus could become empty. 1239 */ 1240 if (adding && 1241 cpumask_equal(parent->effective_cpus, tmp->addmask)) { 1242 if (!deleting) 1243 return -EINVAL; 1244 /* 1245 * As some of the CPUs in subparts_cpus might have 1246 * been offlined, we need to compute the real delmask 1247 * to confirm that. 1248 */ 1249 if (!cpumask_and(tmp->addmask, tmp->delmask, 1250 cpu_active_mask)) 1251 return -EINVAL; 1252 cpumask_copy(tmp->addmask, parent->effective_cpus); 1253 } 1254 } else { 1255 /* 1256 * partcmd_update w/o newmask: 1257 * 1258 * addmask = cpus_allowed & parent->effective_cpus 1259 * 1260 * Note that parent's subparts_cpus may have been 1261 * pre-shrunk in case there is a change in the cpu list. 1262 * So no deletion is needed. 1263 */ 1264 adding = cpumask_and(tmp->addmask, cpuset->cpus_allowed, 1265 parent->effective_cpus); 1266 part_error = cpumask_equal(tmp->addmask, 1267 parent->effective_cpus); 1268 } 1269 1270 if (cmd == partcmd_update) { 1271 int prev_prs = cpuset->partition_root_state; 1272 1273 /* 1274 * Check for possible transition between PRS_ENABLED 1275 * and PRS_ERROR. 1276 */ 1277 switch (cpuset->partition_root_state) { 1278 case PRS_ENABLED: 1279 if (part_error) 1280 new_prs = PRS_ERROR; 1281 break; 1282 case PRS_ERROR: 1283 if (!part_error) 1284 new_prs = PRS_ENABLED; 1285 break; 1286 } 1287 /* 1288 * Set part_error if previously in invalid state. 1289 */ 1290 part_error = (prev_prs == PRS_ERROR); 1291 } 1292 1293 if (!part_error && (new_prs == PRS_ERROR)) 1294 return 0; /* Nothing need to be done */ 1295 1296 if (new_prs == PRS_ERROR) { 1297 /* 1298 * Remove all its cpus from parent's subparts_cpus. 1299 */ 1300 adding = false; 1301 deleting = cpumask_and(tmp->delmask, cpuset->cpus_allowed, 1302 parent->subparts_cpus); 1303 } 1304 1305 if (!adding && !deleting && (new_prs == old_prs)) 1306 return 0; 1307 1308 /* 1309 * Change the parent's subparts_cpus. 1310 * Newly added CPUs will be removed from effective_cpus and 1311 * newly deleted ones will be added back to effective_cpus. 1312 */ 1313 spin_lock_irq(&callback_lock); 1314 if (adding) { 1315 cpumask_or(parent->subparts_cpus, 1316 parent->subparts_cpus, tmp->addmask); 1317 cpumask_andnot(parent->effective_cpus, 1318 parent->effective_cpus, tmp->addmask); 1319 } 1320 if (deleting) { 1321 cpumask_andnot(parent->subparts_cpus, 1322 parent->subparts_cpus, tmp->delmask); 1323 /* 1324 * Some of the CPUs in subparts_cpus might have been offlined. 1325 */ 1326 cpumask_and(tmp->delmask, tmp->delmask, cpu_active_mask); 1327 cpumask_or(parent->effective_cpus, 1328 parent->effective_cpus, tmp->delmask); 1329 } 1330 1331 parent->nr_subparts_cpus = cpumask_weight(parent->subparts_cpus); 1332 1333 if (old_prs != new_prs) 1334 cpuset->partition_root_state = new_prs; 1335 1336 spin_unlock_irq(&callback_lock); 1337 notify_partition_change(cpuset, old_prs, new_prs); 1338 1339 return cmd == partcmd_update; 1340 } 1341 1342 /* 1343 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree 1344 * @cs: the cpuset to consider 1345 * @tmp: temp variables for calculating effective_cpus & partition setup 1346 * 1347 * When configured cpumask is changed, the effective cpumasks of this cpuset 1348 * and all its descendants need to be updated. 1349 * 1350 * On legacy hierarchy, effective_cpus will be the same with cpu_allowed. 1351 * 1352 * Called with cpuset_rwsem held 1353 */ 1354 static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp) 1355 { 1356 struct cpuset *cp; 1357 struct cgroup_subsys_state *pos_css; 1358 bool need_rebuild_sched_domains = false; 1359 int old_prs, new_prs; 1360 1361 rcu_read_lock(); 1362 cpuset_for_each_descendant_pre(cp, pos_css, cs) { 1363 struct cpuset *parent = parent_cs(cp); 1364 1365 compute_effective_cpumask(tmp->new_cpus, cp, parent); 1366 1367 /* 1368 * If it becomes empty, inherit the effective mask of the 1369 * parent, which is guaranteed to have some CPUs. 1370 */ 1371 if (is_in_v2_mode() && cpumask_empty(tmp->new_cpus)) { 1372 cpumask_copy(tmp->new_cpus, parent->effective_cpus); 1373 if (!cp->use_parent_ecpus) { 1374 cp->use_parent_ecpus = true; 1375 parent->child_ecpus_count++; 1376 } 1377 } else if (cp->use_parent_ecpus) { 1378 cp->use_parent_ecpus = false; 1379 WARN_ON_ONCE(!parent->child_ecpus_count); 1380 parent->child_ecpus_count--; 1381 } 1382 1383 /* 1384 * Skip the whole subtree if the cpumask remains the same 1385 * and has no partition root state. 1386 */ 1387 if (!cp->partition_root_state && 1388 cpumask_equal(tmp->new_cpus, cp->effective_cpus)) { 1389 pos_css = css_rightmost_descendant(pos_css); 1390 continue; 1391 } 1392 1393 /* 1394 * update_parent_subparts_cpumask() should have been called 1395 * for cs already in update_cpumask(). We should also call 1396 * update_tasks_cpumask() again for tasks in the parent 1397 * cpuset if the parent's subparts_cpus changes. 1398 */ 1399 old_prs = new_prs = cp->partition_root_state; 1400 if ((cp != cs) && old_prs) { 1401 switch (parent->partition_root_state) { 1402 case PRS_DISABLED: 1403 /* 1404 * If parent is not a partition root or an 1405 * invalid partition root, clear its state 1406 * and its CS_CPU_EXCLUSIVE flag. 1407 */ 1408 WARN_ON_ONCE(cp->partition_root_state 1409 != PRS_ERROR); 1410 new_prs = PRS_DISABLED; 1411 1412 /* 1413 * clear_bit() is an atomic operation and 1414 * readers aren't interested in the state 1415 * of CS_CPU_EXCLUSIVE anyway. So we can 1416 * just update the flag without holding 1417 * the callback_lock. 1418 */ 1419 clear_bit(CS_CPU_EXCLUSIVE, &cp->flags); 1420 break; 1421 1422 case PRS_ENABLED: 1423 if (update_parent_subparts_cpumask(cp, partcmd_update, NULL, tmp)) 1424 update_tasks_cpumask(parent); 1425 break; 1426 1427 case PRS_ERROR: 1428 /* 1429 * When parent is invalid, it has to be too. 1430 */ 1431 new_prs = PRS_ERROR; 1432 break; 1433 } 1434 } 1435 1436 if (!css_tryget_online(&cp->css)) 1437 continue; 1438 rcu_read_unlock(); 1439 1440 spin_lock_irq(&callback_lock); 1441 1442 cpumask_copy(cp->effective_cpus, tmp->new_cpus); 1443 if (cp->nr_subparts_cpus && (new_prs != PRS_ENABLED)) { 1444 cp->nr_subparts_cpus = 0; 1445 cpumask_clear(cp->subparts_cpus); 1446 } else if (cp->nr_subparts_cpus) { 1447 /* 1448 * Make sure that effective_cpus & subparts_cpus 1449 * are mutually exclusive. 1450 * 1451 * In the unlikely event that effective_cpus 1452 * becomes empty. we clear cp->nr_subparts_cpus and 1453 * let its child partition roots to compete for 1454 * CPUs again. 1455 */ 1456 cpumask_andnot(cp->effective_cpus, cp->effective_cpus, 1457 cp->subparts_cpus); 1458 if (cpumask_empty(cp->effective_cpus)) { 1459 cpumask_copy(cp->effective_cpus, tmp->new_cpus); 1460 cpumask_clear(cp->subparts_cpus); 1461 cp->nr_subparts_cpus = 0; 1462 } else if (!cpumask_subset(cp->subparts_cpus, 1463 tmp->new_cpus)) { 1464 cpumask_andnot(cp->subparts_cpus, 1465 cp->subparts_cpus, tmp->new_cpus); 1466 cp->nr_subparts_cpus 1467 = cpumask_weight(cp->subparts_cpus); 1468 } 1469 } 1470 1471 if (new_prs != old_prs) 1472 cp->partition_root_state = new_prs; 1473 1474 spin_unlock_irq(&callback_lock); 1475 notify_partition_change(cp, old_prs, new_prs); 1476 1477 WARN_ON(!is_in_v2_mode() && 1478 !cpumask_equal(cp->cpus_allowed, cp->effective_cpus)); 1479 1480 update_tasks_cpumask(cp); 1481 1482 /* 1483 * On legacy hierarchy, if the effective cpumask of any non- 1484 * empty cpuset is changed, we need to rebuild sched domains. 1485 * On default hierarchy, the cpuset needs to be a partition 1486 * root as well. 1487 */ 1488 if (!cpumask_empty(cp->cpus_allowed) && 1489 is_sched_load_balance(cp) && 1490 (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) || 1491 is_partition_root(cp))) 1492 need_rebuild_sched_domains = true; 1493 1494 rcu_read_lock(); 1495 css_put(&cp->css); 1496 } 1497 rcu_read_unlock(); 1498 1499 if (need_rebuild_sched_domains) 1500 rebuild_sched_domains_locked(); 1501 } 1502 1503 /** 1504 * update_sibling_cpumasks - Update siblings cpumasks 1505 * @parent: Parent cpuset 1506 * @cs: Current cpuset 1507 * @tmp: Temp variables 1508 */ 1509 static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs, 1510 struct tmpmasks *tmp) 1511 { 1512 struct cpuset *sibling; 1513 struct cgroup_subsys_state *pos_css; 1514 1515 /* 1516 * Check all its siblings and call update_cpumasks_hier() 1517 * if their use_parent_ecpus flag is set in order for them 1518 * to use the right effective_cpus value. 1519 */ 1520 rcu_read_lock(); 1521 cpuset_for_each_child(sibling, pos_css, parent) { 1522 if (sibling == cs) 1523 continue; 1524 if (!sibling->use_parent_ecpus) 1525 continue; 1526 1527 update_cpumasks_hier(sibling, tmp); 1528 } 1529 rcu_read_unlock(); 1530 } 1531 1532 /** 1533 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it 1534 * @cs: the cpuset to consider 1535 * @trialcs: trial cpuset 1536 * @buf: buffer of cpu numbers written to this cpuset 1537 */ 1538 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs, 1539 const char *buf) 1540 { 1541 int retval; 1542 struct tmpmasks tmp; 1543 1544 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */ 1545 if (cs == &top_cpuset) 1546 return -EACCES; 1547 1548 /* 1549 * An empty cpus_allowed is ok only if the cpuset has no tasks. 1550 * Since cpulist_parse() fails on an empty mask, we special case 1551 * that parsing. The validate_change() call ensures that cpusets 1552 * with tasks have cpus. 1553 */ 1554 if (!*buf) { 1555 cpumask_clear(trialcs->cpus_allowed); 1556 } else { 1557 retval = cpulist_parse(buf, trialcs->cpus_allowed); 1558 if (retval < 0) 1559 return retval; 1560 1561 if (!cpumask_subset(trialcs->cpus_allowed, 1562 top_cpuset.cpus_allowed)) 1563 return -EINVAL; 1564 } 1565 1566 /* Nothing to do if the cpus didn't change */ 1567 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed)) 1568 return 0; 1569 1570 retval = validate_change(cs, trialcs); 1571 if (retval < 0) 1572 return retval; 1573 1574 #ifdef CONFIG_CPUMASK_OFFSTACK 1575 /* 1576 * Use the cpumasks in trialcs for tmpmasks when they are pointers 1577 * to allocated cpumasks. 1578 */ 1579 tmp.addmask = trialcs->subparts_cpus; 1580 tmp.delmask = trialcs->effective_cpus; 1581 tmp.new_cpus = trialcs->cpus_allowed; 1582 #endif 1583 1584 if (cs->partition_root_state) { 1585 /* Cpumask of a partition root cannot be empty */ 1586 if (cpumask_empty(trialcs->cpus_allowed)) 1587 return -EINVAL; 1588 if (update_parent_subparts_cpumask(cs, partcmd_update, 1589 trialcs->cpus_allowed, &tmp) < 0) 1590 return -EINVAL; 1591 } 1592 1593 spin_lock_irq(&callback_lock); 1594 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed); 1595 1596 /* 1597 * Make sure that subparts_cpus is a subset of cpus_allowed. 1598 */ 1599 if (cs->nr_subparts_cpus) { 1600 cpumask_andnot(cs->subparts_cpus, cs->subparts_cpus, 1601 cs->cpus_allowed); 1602 cs->nr_subparts_cpus = cpumask_weight(cs->subparts_cpus); 1603 } 1604 spin_unlock_irq(&callback_lock); 1605 1606 update_cpumasks_hier(cs, &tmp); 1607 1608 if (cs->partition_root_state) { 1609 struct cpuset *parent = parent_cs(cs); 1610 1611 /* 1612 * For partition root, update the cpumasks of sibling 1613 * cpusets if they use parent's effective_cpus. 1614 */ 1615 if (parent->child_ecpus_count) 1616 update_sibling_cpumasks(parent, cs, &tmp); 1617 } 1618 return 0; 1619 } 1620 1621 /* 1622 * Migrate memory region from one set of nodes to another. This is 1623 * performed asynchronously as it can be called from process migration path 1624 * holding locks involved in process management. All mm migrations are 1625 * performed in the queued order and can be waited for by flushing 1626 * cpuset_migrate_mm_wq. 1627 */ 1628 1629 struct cpuset_migrate_mm_work { 1630 struct work_struct work; 1631 struct mm_struct *mm; 1632 nodemask_t from; 1633 nodemask_t to; 1634 }; 1635 1636 static void cpuset_migrate_mm_workfn(struct work_struct *work) 1637 { 1638 struct cpuset_migrate_mm_work *mwork = 1639 container_of(work, struct cpuset_migrate_mm_work, work); 1640 1641 /* on a wq worker, no need to worry about %current's mems_allowed */ 1642 do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL); 1643 mmput(mwork->mm); 1644 kfree(mwork); 1645 } 1646 1647 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from, 1648 const nodemask_t *to) 1649 { 1650 struct cpuset_migrate_mm_work *mwork; 1651 1652 if (nodes_equal(*from, *to)) { 1653 mmput(mm); 1654 return; 1655 } 1656 1657 mwork = kzalloc(sizeof(*mwork), GFP_KERNEL); 1658 if (mwork) { 1659 mwork->mm = mm; 1660 mwork->from = *from; 1661 mwork->to = *to; 1662 INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn); 1663 queue_work(cpuset_migrate_mm_wq, &mwork->work); 1664 } else { 1665 mmput(mm); 1666 } 1667 } 1668 1669 static void cpuset_post_attach(void) 1670 { 1671 flush_workqueue(cpuset_migrate_mm_wq); 1672 } 1673 1674 /* 1675 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy 1676 * @tsk: the task to change 1677 * @newmems: new nodes that the task will be set 1678 * 1679 * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed 1680 * and rebind an eventual tasks' mempolicy. If the task is allocating in 1681 * parallel, it might temporarily see an empty intersection, which results in 1682 * a seqlock check and retry before OOM or allocation failure. 1683 */ 1684 static void cpuset_change_task_nodemask(struct task_struct *tsk, 1685 nodemask_t *newmems) 1686 { 1687 task_lock(tsk); 1688 1689 local_irq_disable(); 1690 write_seqcount_begin(&tsk->mems_allowed_seq); 1691 1692 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems); 1693 mpol_rebind_task(tsk, newmems); 1694 tsk->mems_allowed = *newmems; 1695 1696 write_seqcount_end(&tsk->mems_allowed_seq); 1697 local_irq_enable(); 1698 1699 task_unlock(tsk); 1700 } 1701 1702 static void *cpuset_being_rebound; 1703 1704 /** 1705 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset. 1706 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed 1707 * 1708 * Iterate through each task of @cs updating its mems_allowed to the 1709 * effective cpuset's. As this function is called with cpuset_rwsem held, 1710 * cpuset membership stays stable. 1711 */ 1712 static void update_tasks_nodemask(struct cpuset *cs) 1713 { 1714 static nodemask_t newmems; /* protected by cpuset_rwsem */ 1715 struct css_task_iter it; 1716 struct task_struct *task; 1717 1718 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */ 1719 1720 guarantee_online_mems(cs, &newmems); 1721 1722 /* 1723 * The mpol_rebind_mm() call takes mmap_lock, which we couldn't 1724 * take while holding tasklist_lock. Forks can happen - the 1725 * mpol_dup() cpuset_being_rebound check will catch such forks, 1726 * and rebind their vma mempolicies too. Because we still hold 1727 * the global cpuset_rwsem, we know that no other rebind effort 1728 * will be contending for the global variable cpuset_being_rebound. 1729 * It's ok if we rebind the same mm twice; mpol_rebind_mm() 1730 * is idempotent. Also migrate pages in each mm to new nodes. 1731 */ 1732 css_task_iter_start(&cs->css, 0, &it); 1733 while ((task = css_task_iter_next(&it))) { 1734 struct mm_struct *mm; 1735 bool migrate; 1736 1737 cpuset_change_task_nodemask(task, &newmems); 1738 1739 mm = get_task_mm(task); 1740 if (!mm) 1741 continue; 1742 1743 migrate = is_memory_migrate(cs); 1744 1745 mpol_rebind_mm(mm, &cs->mems_allowed); 1746 if (migrate) 1747 cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems); 1748 else 1749 mmput(mm); 1750 } 1751 css_task_iter_end(&it); 1752 1753 /* 1754 * All the tasks' nodemasks have been updated, update 1755 * cs->old_mems_allowed. 1756 */ 1757 cs->old_mems_allowed = newmems; 1758 1759 /* We're done rebinding vmas to this cpuset's new mems_allowed. */ 1760 cpuset_being_rebound = NULL; 1761 } 1762 1763 /* 1764 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree 1765 * @cs: the cpuset to consider 1766 * @new_mems: a temp variable for calculating new effective_mems 1767 * 1768 * When configured nodemask is changed, the effective nodemasks of this cpuset 1769 * and all its descendants need to be updated. 1770 * 1771 * On legacy hierarchy, effective_mems will be the same with mems_allowed. 1772 * 1773 * Called with cpuset_rwsem held 1774 */ 1775 static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems) 1776 { 1777 struct cpuset *cp; 1778 struct cgroup_subsys_state *pos_css; 1779 1780 rcu_read_lock(); 1781 cpuset_for_each_descendant_pre(cp, pos_css, cs) { 1782 struct cpuset *parent = parent_cs(cp); 1783 1784 nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems); 1785 1786 /* 1787 * If it becomes empty, inherit the effective mask of the 1788 * parent, which is guaranteed to have some MEMs. 1789 */ 1790 if (is_in_v2_mode() && nodes_empty(*new_mems)) 1791 *new_mems = parent->effective_mems; 1792 1793 /* Skip the whole subtree if the nodemask remains the same. */ 1794 if (nodes_equal(*new_mems, cp->effective_mems)) { 1795 pos_css = css_rightmost_descendant(pos_css); 1796 continue; 1797 } 1798 1799 if (!css_tryget_online(&cp->css)) 1800 continue; 1801 rcu_read_unlock(); 1802 1803 spin_lock_irq(&callback_lock); 1804 cp->effective_mems = *new_mems; 1805 spin_unlock_irq(&callback_lock); 1806 1807 WARN_ON(!is_in_v2_mode() && 1808 !nodes_equal(cp->mems_allowed, cp->effective_mems)); 1809 1810 update_tasks_nodemask(cp); 1811 1812 rcu_read_lock(); 1813 css_put(&cp->css); 1814 } 1815 rcu_read_unlock(); 1816 } 1817 1818 /* 1819 * Handle user request to change the 'mems' memory placement 1820 * of a cpuset. Needs to validate the request, update the 1821 * cpusets mems_allowed, and for each task in the cpuset, 1822 * update mems_allowed and rebind task's mempolicy and any vma 1823 * mempolicies and if the cpuset is marked 'memory_migrate', 1824 * migrate the tasks pages to the new memory. 1825 * 1826 * Call with cpuset_rwsem held. May take callback_lock during call. 1827 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs, 1828 * lock each such tasks mm->mmap_lock, scan its vma's and rebind 1829 * their mempolicies to the cpusets new mems_allowed. 1830 */ 1831 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs, 1832 const char *buf) 1833 { 1834 int retval; 1835 1836 /* 1837 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY]; 1838 * it's read-only 1839 */ 1840 if (cs == &top_cpuset) { 1841 retval = -EACCES; 1842 goto done; 1843 } 1844 1845 /* 1846 * An empty mems_allowed is ok iff there are no tasks in the cpuset. 1847 * Since nodelist_parse() fails on an empty mask, we special case 1848 * that parsing. The validate_change() call ensures that cpusets 1849 * with tasks have memory. 1850 */ 1851 if (!*buf) { 1852 nodes_clear(trialcs->mems_allowed); 1853 } else { 1854 retval = nodelist_parse(buf, trialcs->mems_allowed); 1855 if (retval < 0) 1856 goto done; 1857 1858 if (!nodes_subset(trialcs->mems_allowed, 1859 top_cpuset.mems_allowed)) { 1860 retval = -EINVAL; 1861 goto done; 1862 } 1863 } 1864 1865 if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) { 1866 retval = 0; /* Too easy - nothing to do */ 1867 goto done; 1868 } 1869 retval = validate_change(cs, trialcs); 1870 if (retval < 0) 1871 goto done; 1872 1873 spin_lock_irq(&callback_lock); 1874 cs->mems_allowed = trialcs->mems_allowed; 1875 spin_unlock_irq(&callback_lock); 1876 1877 /* use trialcs->mems_allowed as a temp variable */ 1878 update_nodemasks_hier(cs, &trialcs->mems_allowed); 1879 done: 1880 return retval; 1881 } 1882 1883 bool current_cpuset_is_being_rebound(void) 1884 { 1885 bool ret; 1886 1887 rcu_read_lock(); 1888 ret = task_cs(current) == cpuset_being_rebound; 1889 rcu_read_unlock(); 1890 1891 return ret; 1892 } 1893 1894 static int update_relax_domain_level(struct cpuset *cs, s64 val) 1895 { 1896 #ifdef CONFIG_SMP 1897 if (val < -1 || val >= sched_domain_level_max) 1898 return -EINVAL; 1899 #endif 1900 1901 if (val != cs->relax_domain_level) { 1902 cs->relax_domain_level = val; 1903 if (!cpumask_empty(cs->cpus_allowed) && 1904 is_sched_load_balance(cs)) 1905 rebuild_sched_domains_locked(); 1906 } 1907 1908 return 0; 1909 } 1910 1911 /** 1912 * update_tasks_flags - update the spread flags of tasks in the cpuset. 1913 * @cs: the cpuset in which each task's spread flags needs to be changed 1914 * 1915 * Iterate through each task of @cs updating its spread flags. As this 1916 * function is called with cpuset_rwsem held, cpuset membership stays 1917 * stable. 1918 */ 1919 static void update_tasks_flags(struct cpuset *cs) 1920 { 1921 struct css_task_iter it; 1922 struct task_struct *task; 1923 1924 css_task_iter_start(&cs->css, 0, &it); 1925 while ((task = css_task_iter_next(&it))) 1926 cpuset_update_task_spread_flag(cs, task); 1927 css_task_iter_end(&it); 1928 } 1929 1930 /* 1931 * update_flag - read a 0 or a 1 in a file and update associated flag 1932 * bit: the bit to update (see cpuset_flagbits_t) 1933 * cs: the cpuset to update 1934 * turning_on: whether the flag is being set or cleared 1935 * 1936 * Call with cpuset_rwsem held. 1937 */ 1938 1939 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, 1940 int turning_on) 1941 { 1942 struct cpuset *trialcs; 1943 int balance_flag_changed; 1944 int spread_flag_changed; 1945 int err; 1946 1947 trialcs = alloc_trial_cpuset(cs); 1948 if (!trialcs) 1949 return -ENOMEM; 1950 1951 if (turning_on) 1952 set_bit(bit, &trialcs->flags); 1953 else 1954 clear_bit(bit, &trialcs->flags); 1955 1956 err = validate_change(cs, trialcs); 1957 if (err < 0) 1958 goto out; 1959 1960 balance_flag_changed = (is_sched_load_balance(cs) != 1961 is_sched_load_balance(trialcs)); 1962 1963 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs)) 1964 || (is_spread_page(cs) != is_spread_page(trialcs))); 1965 1966 spin_lock_irq(&callback_lock); 1967 cs->flags = trialcs->flags; 1968 spin_unlock_irq(&callback_lock); 1969 1970 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed) 1971 rebuild_sched_domains_locked(); 1972 1973 if (spread_flag_changed) 1974 update_tasks_flags(cs); 1975 out: 1976 free_cpuset(trialcs); 1977 return err; 1978 } 1979 1980 /* 1981 * update_prstate - update partititon_root_state 1982 * cs: the cpuset to update 1983 * new_prs: new partition root state 1984 * 1985 * Call with cpuset_rwsem held. 1986 */ 1987 static int update_prstate(struct cpuset *cs, int new_prs) 1988 { 1989 int err, old_prs = cs->partition_root_state; 1990 struct cpuset *parent = parent_cs(cs); 1991 struct tmpmasks tmpmask; 1992 1993 if (old_prs == new_prs) 1994 return 0; 1995 1996 /* 1997 * Cannot force a partial or invalid partition root to a full 1998 * partition root. 1999 */ 2000 if (new_prs && (old_prs == PRS_ERROR)) 2001 return -EINVAL; 2002 2003 if (alloc_cpumasks(NULL, &tmpmask)) 2004 return -ENOMEM; 2005 2006 err = -EINVAL; 2007 if (!old_prs) { 2008 /* 2009 * Turning on partition root requires setting the 2010 * CS_CPU_EXCLUSIVE bit implicitly as well and cpus_allowed 2011 * cannot be NULL. 2012 */ 2013 if (cpumask_empty(cs->cpus_allowed)) 2014 goto out; 2015 2016 err = update_flag(CS_CPU_EXCLUSIVE, cs, 1); 2017 if (err) 2018 goto out; 2019 2020 err = update_parent_subparts_cpumask(cs, partcmd_enable, 2021 NULL, &tmpmask); 2022 if (err) { 2023 update_flag(CS_CPU_EXCLUSIVE, cs, 0); 2024 goto out; 2025 } 2026 } else { 2027 /* 2028 * Turning off partition root will clear the 2029 * CS_CPU_EXCLUSIVE bit. 2030 */ 2031 if (old_prs == PRS_ERROR) { 2032 update_flag(CS_CPU_EXCLUSIVE, cs, 0); 2033 err = 0; 2034 goto out; 2035 } 2036 2037 err = update_parent_subparts_cpumask(cs, partcmd_disable, 2038 NULL, &tmpmask); 2039 if (err) 2040 goto out; 2041 2042 /* Turning off CS_CPU_EXCLUSIVE will not return error */ 2043 update_flag(CS_CPU_EXCLUSIVE, cs, 0); 2044 } 2045 2046 /* 2047 * Update cpumask of parent's tasks except when it is the top 2048 * cpuset as some system daemons cannot be mapped to other CPUs. 2049 */ 2050 if (parent != &top_cpuset) 2051 update_tasks_cpumask(parent); 2052 2053 if (parent->child_ecpus_count) 2054 update_sibling_cpumasks(parent, cs, &tmpmask); 2055 2056 rebuild_sched_domains_locked(); 2057 out: 2058 if (!err) { 2059 spin_lock_irq(&callback_lock); 2060 cs->partition_root_state = new_prs; 2061 spin_unlock_irq(&callback_lock); 2062 notify_partition_change(cs, old_prs, new_prs); 2063 } 2064 2065 free_cpumasks(NULL, &tmpmask); 2066 return err; 2067 } 2068 2069 /* 2070 * Frequency meter - How fast is some event occurring? 2071 * 2072 * These routines manage a digitally filtered, constant time based, 2073 * event frequency meter. There are four routines: 2074 * fmeter_init() - initialize a frequency meter. 2075 * fmeter_markevent() - called each time the event happens. 2076 * fmeter_getrate() - returns the recent rate of such events. 2077 * fmeter_update() - internal routine used to update fmeter. 2078 * 2079 * A common data structure is passed to each of these routines, 2080 * which is used to keep track of the state required to manage the 2081 * frequency meter and its digital filter. 2082 * 2083 * The filter works on the number of events marked per unit time. 2084 * The filter is single-pole low-pass recursive (IIR). The time unit 2085 * is 1 second. Arithmetic is done using 32-bit integers scaled to 2086 * simulate 3 decimal digits of precision (multiplied by 1000). 2087 * 2088 * With an FM_COEF of 933, and a time base of 1 second, the filter 2089 * has a half-life of 10 seconds, meaning that if the events quit 2090 * happening, then the rate returned from the fmeter_getrate() 2091 * will be cut in half each 10 seconds, until it converges to zero. 2092 * 2093 * It is not worth doing a real infinitely recursive filter. If more 2094 * than FM_MAXTICKS ticks have elapsed since the last filter event, 2095 * just compute FM_MAXTICKS ticks worth, by which point the level 2096 * will be stable. 2097 * 2098 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid 2099 * arithmetic overflow in the fmeter_update() routine. 2100 * 2101 * Given the simple 32 bit integer arithmetic used, this meter works 2102 * best for reporting rates between one per millisecond (msec) and 2103 * one per 32 (approx) seconds. At constant rates faster than one 2104 * per msec it maxes out at values just under 1,000,000. At constant 2105 * rates between one per msec, and one per second it will stabilize 2106 * to a value N*1000, where N is the rate of events per second. 2107 * At constant rates between one per second and one per 32 seconds, 2108 * it will be choppy, moving up on the seconds that have an event, 2109 * and then decaying until the next event. At rates slower than 2110 * about one in 32 seconds, it decays all the way back to zero between 2111 * each event. 2112 */ 2113 2114 #define FM_COEF 933 /* coefficient for half-life of 10 secs */ 2115 #define FM_MAXTICKS ((u32)99) /* useless computing more ticks than this */ 2116 #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */ 2117 #define FM_SCALE 1000 /* faux fixed point scale */ 2118 2119 /* Initialize a frequency meter */ 2120 static void fmeter_init(struct fmeter *fmp) 2121 { 2122 fmp->cnt = 0; 2123 fmp->val = 0; 2124 fmp->time = 0; 2125 spin_lock_init(&fmp->lock); 2126 } 2127 2128 /* Internal meter update - process cnt events and update value */ 2129 static void fmeter_update(struct fmeter *fmp) 2130 { 2131 time64_t now; 2132 u32 ticks; 2133 2134 now = ktime_get_seconds(); 2135 ticks = now - fmp->time; 2136 2137 if (ticks == 0) 2138 return; 2139 2140 ticks = min(FM_MAXTICKS, ticks); 2141 while (ticks-- > 0) 2142 fmp->val = (FM_COEF * fmp->val) / FM_SCALE; 2143 fmp->time = now; 2144 2145 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE; 2146 fmp->cnt = 0; 2147 } 2148 2149 /* Process any previous ticks, then bump cnt by one (times scale). */ 2150 static void fmeter_markevent(struct fmeter *fmp) 2151 { 2152 spin_lock(&fmp->lock); 2153 fmeter_update(fmp); 2154 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE); 2155 spin_unlock(&fmp->lock); 2156 } 2157 2158 /* Process any previous ticks, then return current value. */ 2159 static int fmeter_getrate(struct fmeter *fmp) 2160 { 2161 int val; 2162 2163 spin_lock(&fmp->lock); 2164 fmeter_update(fmp); 2165 val = fmp->val; 2166 spin_unlock(&fmp->lock); 2167 return val; 2168 } 2169 2170 static struct cpuset *cpuset_attach_old_cs; 2171 2172 /* Called by cgroups to determine if a cpuset is usable; cpuset_rwsem held */ 2173 static int cpuset_can_attach(struct cgroup_taskset *tset) 2174 { 2175 struct cgroup_subsys_state *css; 2176 struct cpuset *cs; 2177 struct task_struct *task; 2178 int ret; 2179 2180 /* used later by cpuset_attach() */ 2181 cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css)); 2182 cs = css_cs(css); 2183 2184 percpu_down_write(&cpuset_rwsem); 2185 2186 /* allow moving tasks into an empty cpuset if on default hierarchy */ 2187 ret = -ENOSPC; 2188 if (!is_in_v2_mode() && 2189 (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))) 2190 goto out_unlock; 2191 2192 cgroup_taskset_for_each(task, css, tset) { 2193 ret = task_can_attach(task, cs->cpus_allowed); 2194 if (ret) 2195 goto out_unlock; 2196 ret = security_task_setscheduler(task); 2197 if (ret) 2198 goto out_unlock; 2199 } 2200 2201 /* 2202 * Mark attach is in progress. This makes validate_change() fail 2203 * changes which zero cpus/mems_allowed. 2204 */ 2205 cs->attach_in_progress++; 2206 ret = 0; 2207 out_unlock: 2208 percpu_up_write(&cpuset_rwsem); 2209 return ret; 2210 } 2211 2212 static void cpuset_cancel_attach(struct cgroup_taskset *tset) 2213 { 2214 struct cgroup_subsys_state *css; 2215 2216 cgroup_taskset_first(tset, &css); 2217 2218 percpu_down_write(&cpuset_rwsem); 2219 css_cs(css)->attach_in_progress--; 2220 percpu_up_write(&cpuset_rwsem); 2221 } 2222 2223 /* 2224 * Protected by cpuset_rwsem. cpus_attach is used only by cpuset_attach() 2225 * but we can't allocate it dynamically there. Define it global and 2226 * allocate from cpuset_init(). 2227 */ 2228 static cpumask_var_t cpus_attach; 2229 2230 static void cpuset_attach(struct cgroup_taskset *tset) 2231 { 2232 /* static buf protected by cpuset_rwsem */ 2233 static nodemask_t cpuset_attach_nodemask_to; 2234 struct task_struct *task; 2235 struct task_struct *leader; 2236 struct cgroup_subsys_state *css; 2237 struct cpuset *cs; 2238 struct cpuset *oldcs = cpuset_attach_old_cs; 2239 2240 cgroup_taskset_first(tset, &css); 2241 cs = css_cs(css); 2242 2243 percpu_down_write(&cpuset_rwsem); 2244 2245 guarantee_online_mems(cs, &cpuset_attach_nodemask_to); 2246 2247 cgroup_taskset_for_each(task, css, tset) { 2248 if (cs != &top_cpuset) 2249 guarantee_online_cpus(task, cpus_attach); 2250 else 2251 cpumask_copy(cpus_attach, task_cpu_possible_mask(task)); 2252 /* 2253 * can_attach beforehand should guarantee that this doesn't 2254 * fail. TODO: have a better way to handle failure here 2255 */ 2256 WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach)); 2257 2258 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to); 2259 cpuset_update_task_spread_flag(cs, task); 2260 } 2261 2262 /* 2263 * Change mm for all threadgroup leaders. This is expensive and may 2264 * sleep and should be moved outside migration path proper. 2265 */ 2266 cpuset_attach_nodemask_to = cs->effective_mems; 2267 cgroup_taskset_for_each_leader(leader, css, tset) { 2268 struct mm_struct *mm = get_task_mm(leader); 2269 2270 if (mm) { 2271 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to); 2272 2273 /* 2274 * old_mems_allowed is the same with mems_allowed 2275 * here, except if this task is being moved 2276 * automatically due to hotplug. In that case 2277 * @mems_allowed has been updated and is empty, so 2278 * @old_mems_allowed is the right nodesets that we 2279 * migrate mm from. 2280 */ 2281 if (is_memory_migrate(cs)) 2282 cpuset_migrate_mm(mm, &oldcs->old_mems_allowed, 2283 &cpuset_attach_nodemask_to); 2284 else 2285 mmput(mm); 2286 } 2287 } 2288 2289 cs->old_mems_allowed = cpuset_attach_nodemask_to; 2290 2291 cs->attach_in_progress--; 2292 if (!cs->attach_in_progress) 2293 wake_up(&cpuset_attach_wq); 2294 2295 percpu_up_write(&cpuset_rwsem); 2296 } 2297 2298 /* The various types of files and directories in a cpuset file system */ 2299 2300 typedef enum { 2301 FILE_MEMORY_MIGRATE, 2302 FILE_CPULIST, 2303 FILE_MEMLIST, 2304 FILE_EFFECTIVE_CPULIST, 2305 FILE_EFFECTIVE_MEMLIST, 2306 FILE_SUBPARTS_CPULIST, 2307 FILE_CPU_EXCLUSIVE, 2308 FILE_MEM_EXCLUSIVE, 2309 FILE_MEM_HARDWALL, 2310 FILE_SCHED_LOAD_BALANCE, 2311 FILE_PARTITION_ROOT, 2312 FILE_SCHED_RELAX_DOMAIN_LEVEL, 2313 FILE_MEMORY_PRESSURE_ENABLED, 2314 FILE_MEMORY_PRESSURE, 2315 FILE_SPREAD_PAGE, 2316 FILE_SPREAD_SLAB, 2317 } cpuset_filetype_t; 2318 2319 static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft, 2320 u64 val) 2321 { 2322 struct cpuset *cs = css_cs(css); 2323 cpuset_filetype_t type = cft->private; 2324 int retval = 0; 2325 2326 cpus_read_lock(); 2327 percpu_down_write(&cpuset_rwsem); 2328 if (!is_cpuset_online(cs)) { 2329 retval = -ENODEV; 2330 goto out_unlock; 2331 } 2332 2333 switch (type) { 2334 case FILE_CPU_EXCLUSIVE: 2335 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val); 2336 break; 2337 case FILE_MEM_EXCLUSIVE: 2338 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val); 2339 break; 2340 case FILE_MEM_HARDWALL: 2341 retval = update_flag(CS_MEM_HARDWALL, cs, val); 2342 break; 2343 case FILE_SCHED_LOAD_BALANCE: 2344 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val); 2345 break; 2346 case FILE_MEMORY_MIGRATE: 2347 retval = update_flag(CS_MEMORY_MIGRATE, cs, val); 2348 break; 2349 case FILE_MEMORY_PRESSURE_ENABLED: 2350 cpuset_memory_pressure_enabled = !!val; 2351 break; 2352 case FILE_SPREAD_PAGE: 2353 retval = update_flag(CS_SPREAD_PAGE, cs, val); 2354 break; 2355 case FILE_SPREAD_SLAB: 2356 retval = update_flag(CS_SPREAD_SLAB, cs, val); 2357 break; 2358 default: 2359 retval = -EINVAL; 2360 break; 2361 } 2362 out_unlock: 2363 percpu_up_write(&cpuset_rwsem); 2364 cpus_read_unlock(); 2365 return retval; 2366 } 2367 2368 static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft, 2369 s64 val) 2370 { 2371 struct cpuset *cs = css_cs(css); 2372 cpuset_filetype_t type = cft->private; 2373 int retval = -ENODEV; 2374 2375 cpus_read_lock(); 2376 percpu_down_write(&cpuset_rwsem); 2377 if (!is_cpuset_online(cs)) 2378 goto out_unlock; 2379 2380 switch (type) { 2381 case FILE_SCHED_RELAX_DOMAIN_LEVEL: 2382 retval = update_relax_domain_level(cs, val); 2383 break; 2384 default: 2385 retval = -EINVAL; 2386 break; 2387 } 2388 out_unlock: 2389 percpu_up_write(&cpuset_rwsem); 2390 cpus_read_unlock(); 2391 return retval; 2392 } 2393 2394 /* 2395 * Common handling for a write to a "cpus" or "mems" file. 2396 */ 2397 static ssize_t cpuset_write_resmask(struct kernfs_open_file *of, 2398 char *buf, size_t nbytes, loff_t off) 2399 { 2400 struct cpuset *cs = css_cs(of_css(of)); 2401 struct cpuset *trialcs; 2402 int retval = -ENODEV; 2403 2404 buf = strstrip(buf); 2405 2406 /* 2407 * CPU or memory hotunplug may leave @cs w/o any execution 2408 * resources, in which case the hotplug code asynchronously updates 2409 * configuration and transfers all tasks to the nearest ancestor 2410 * which can execute. 2411 * 2412 * As writes to "cpus" or "mems" may restore @cs's execution 2413 * resources, wait for the previously scheduled operations before 2414 * proceeding, so that we don't end up keep removing tasks added 2415 * after execution capability is restored. 2416 * 2417 * cpuset_hotplug_work calls back into cgroup core via 2418 * cgroup_transfer_tasks() and waiting for it from a cgroupfs 2419 * operation like this one can lead to a deadlock through kernfs 2420 * active_ref protection. Let's break the protection. Losing the 2421 * protection is okay as we check whether @cs is online after 2422 * grabbing cpuset_rwsem anyway. This only happens on the legacy 2423 * hierarchies. 2424 */ 2425 css_get(&cs->css); 2426 kernfs_break_active_protection(of->kn); 2427 flush_work(&cpuset_hotplug_work); 2428 2429 cpus_read_lock(); 2430 percpu_down_write(&cpuset_rwsem); 2431 if (!is_cpuset_online(cs)) 2432 goto out_unlock; 2433 2434 trialcs = alloc_trial_cpuset(cs); 2435 if (!trialcs) { 2436 retval = -ENOMEM; 2437 goto out_unlock; 2438 } 2439 2440 switch (of_cft(of)->private) { 2441 case FILE_CPULIST: 2442 retval = update_cpumask(cs, trialcs, buf); 2443 break; 2444 case FILE_MEMLIST: 2445 retval = update_nodemask(cs, trialcs, buf); 2446 break; 2447 default: 2448 retval = -EINVAL; 2449 break; 2450 } 2451 2452 free_cpuset(trialcs); 2453 out_unlock: 2454 percpu_up_write(&cpuset_rwsem); 2455 cpus_read_unlock(); 2456 kernfs_unbreak_active_protection(of->kn); 2457 css_put(&cs->css); 2458 flush_workqueue(cpuset_migrate_mm_wq); 2459 return retval ?: nbytes; 2460 } 2461 2462 /* 2463 * These ascii lists should be read in a single call, by using a user 2464 * buffer large enough to hold the entire map. If read in smaller 2465 * chunks, there is no guarantee of atomicity. Since the display format 2466 * used, list of ranges of sequential numbers, is variable length, 2467 * and since these maps can change value dynamically, one could read 2468 * gibberish by doing partial reads while a list was changing. 2469 */ 2470 static int cpuset_common_seq_show(struct seq_file *sf, void *v) 2471 { 2472 struct cpuset *cs = css_cs(seq_css(sf)); 2473 cpuset_filetype_t type = seq_cft(sf)->private; 2474 int ret = 0; 2475 2476 spin_lock_irq(&callback_lock); 2477 2478 switch (type) { 2479 case FILE_CPULIST: 2480 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed)); 2481 break; 2482 case FILE_MEMLIST: 2483 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed)); 2484 break; 2485 case FILE_EFFECTIVE_CPULIST: 2486 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus)); 2487 break; 2488 case FILE_EFFECTIVE_MEMLIST: 2489 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems)); 2490 break; 2491 case FILE_SUBPARTS_CPULIST: 2492 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->subparts_cpus)); 2493 break; 2494 default: 2495 ret = -EINVAL; 2496 } 2497 2498 spin_unlock_irq(&callback_lock); 2499 return ret; 2500 } 2501 2502 static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft) 2503 { 2504 struct cpuset *cs = css_cs(css); 2505 cpuset_filetype_t type = cft->private; 2506 switch (type) { 2507 case FILE_CPU_EXCLUSIVE: 2508 return is_cpu_exclusive(cs); 2509 case FILE_MEM_EXCLUSIVE: 2510 return is_mem_exclusive(cs); 2511 case FILE_MEM_HARDWALL: 2512 return is_mem_hardwall(cs); 2513 case FILE_SCHED_LOAD_BALANCE: 2514 return is_sched_load_balance(cs); 2515 case FILE_MEMORY_MIGRATE: 2516 return is_memory_migrate(cs); 2517 case FILE_MEMORY_PRESSURE_ENABLED: 2518 return cpuset_memory_pressure_enabled; 2519 case FILE_MEMORY_PRESSURE: 2520 return fmeter_getrate(&cs->fmeter); 2521 case FILE_SPREAD_PAGE: 2522 return is_spread_page(cs); 2523 case FILE_SPREAD_SLAB: 2524 return is_spread_slab(cs); 2525 default: 2526 BUG(); 2527 } 2528 2529 /* Unreachable but makes gcc happy */ 2530 return 0; 2531 } 2532 2533 static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft) 2534 { 2535 struct cpuset *cs = css_cs(css); 2536 cpuset_filetype_t type = cft->private; 2537 switch (type) { 2538 case FILE_SCHED_RELAX_DOMAIN_LEVEL: 2539 return cs->relax_domain_level; 2540 default: 2541 BUG(); 2542 } 2543 2544 /* Unreachable but makes gcc happy */ 2545 return 0; 2546 } 2547 2548 static int sched_partition_show(struct seq_file *seq, void *v) 2549 { 2550 struct cpuset *cs = css_cs(seq_css(seq)); 2551 2552 switch (cs->partition_root_state) { 2553 case PRS_ENABLED: 2554 seq_puts(seq, "root\n"); 2555 break; 2556 case PRS_DISABLED: 2557 seq_puts(seq, "member\n"); 2558 break; 2559 case PRS_ERROR: 2560 seq_puts(seq, "root invalid\n"); 2561 break; 2562 } 2563 return 0; 2564 } 2565 2566 static ssize_t sched_partition_write(struct kernfs_open_file *of, char *buf, 2567 size_t nbytes, loff_t off) 2568 { 2569 struct cpuset *cs = css_cs(of_css(of)); 2570 int val; 2571 int retval = -ENODEV; 2572 2573 buf = strstrip(buf); 2574 2575 /* 2576 * Convert "root" to ENABLED, and convert "member" to DISABLED. 2577 */ 2578 if (!strcmp(buf, "root")) 2579 val = PRS_ENABLED; 2580 else if (!strcmp(buf, "member")) 2581 val = PRS_DISABLED; 2582 else 2583 return -EINVAL; 2584 2585 css_get(&cs->css); 2586 cpus_read_lock(); 2587 percpu_down_write(&cpuset_rwsem); 2588 if (!is_cpuset_online(cs)) 2589 goto out_unlock; 2590 2591 retval = update_prstate(cs, val); 2592 out_unlock: 2593 percpu_up_write(&cpuset_rwsem); 2594 cpus_read_unlock(); 2595 css_put(&cs->css); 2596 return retval ?: nbytes; 2597 } 2598 2599 /* 2600 * for the common functions, 'private' gives the type of file 2601 */ 2602 2603 static struct cftype legacy_files[] = { 2604 { 2605 .name = "cpus", 2606 .seq_show = cpuset_common_seq_show, 2607 .write = cpuset_write_resmask, 2608 .max_write_len = (100U + 6 * NR_CPUS), 2609 .private = FILE_CPULIST, 2610 }, 2611 2612 { 2613 .name = "mems", 2614 .seq_show = cpuset_common_seq_show, 2615 .write = cpuset_write_resmask, 2616 .max_write_len = (100U + 6 * MAX_NUMNODES), 2617 .private = FILE_MEMLIST, 2618 }, 2619 2620 { 2621 .name = "effective_cpus", 2622 .seq_show = cpuset_common_seq_show, 2623 .private = FILE_EFFECTIVE_CPULIST, 2624 }, 2625 2626 { 2627 .name = "effective_mems", 2628 .seq_show = cpuset_common_seq_show, 2629 .private = FILE_EFFECTIVE_MEMLIST, 2630 }, 2631 2632 { 2633 .name = "cpu_exclusive", 2634 .read_u64 = cpuset_read_u64, 2635 .write_u64 = cpuset_write_u64, 2636 .private = FILE_CPU_EXCLUSIVE, 2637 }, 2638 2639 { 2640 .name = "mem_exclusive", 2641 .read_u64 = cpuset_read_u64, 2642 .write_u64 = cpuset_write_u64, 2643 .private = FILE_MEM_EXCLUSIVE, 2644 }, 2645 2646 { 2647 .name = "mem_hardwall", 2648 .read_u64 = cpuset_read_u64, 2649 .write_u64 = cpuset_write_u64, 2650 .private = FILE_MEM_HARDWALL, 2651 }, 2652 2653 { 2654 .name = "sched_load_balance", 2655 .read_u64 = cpuset_read_u64, 2656 .write_u64 = cpuset_write_u64, 2657 .private = FILE_SCHED_LOAD_BALANCE, 2658 }, 2659 2660 { 2661 .name = "sched_relax_domain_level", 2662 .read_s64 = cpuset_read_s64, 2663 .write_s64 = cpuset_write_s64, 2664 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL, 2665 }, 2666 2667 { 2668 .name = "memory_migrate", 2669 .read_u64 = cpuset_read_u64, 2670 .write_u64 = cpuset_write_u64, 2671 .private = FILE_MEMORY_MIGRATE, 2672 }, 2673 2674 { 2675 .name = "memory_pressure", 2676 .read_u64 = cpuset_read_u64, 2677 .private = FILE_MEMORY_PRESSURE, 2678 }, 2679 2680 { 2681 .name = "memory_spread_page", 2682 .read_u64 = cpuset_read_u64, 2683 .write_u64 = cpuset_write_u64, 2684 .private = FILE_SPREAD_PAGE, 2685 }, 2686 2687 { 2688 .name = "memory_spread_slab", 2689 .read_u64 = cpuset_read_u64, 2690 .write_u64 = cpuset_write_u64, 2691 .private = FILE_SPREAD_SLAB, 2692 }, 2693 2694 { 2695 .name = "memory_pressure_enabled", 2696 .flags = CFTYPE_ONLY_ON_ROOT, 2697 .read_u64 = cpuset_read_u64, 2698 .write_u64 = cpuset_write_u64, 2699 .private = FILE_MEMORY_PRESSURE_ENABLED, 2700 }, 2701 2702 { } /* terminate */ 2703 }; 2704 2705 /* 2706 * This is currently a minimal set for the default hierarchy. It can be 2707 * expanded later on by migrating more features and control files from v1. 2708 */ 2709 static struct cftype dfl_files[] = { 2710 { 2711 .name = "cpus", 2712 .seq_show = cpuset_common_seq_show, 2713 .write = cpuset_write_resmask, 2714 .max_write_len = (100U + 6 * NR_CPUS), 2715 .private = FILE_CPULIST, 2716 .flags = CFTYPE_NOT_ON_ROOT, 2717 }, 2718 2719 { 2720 .name = "mems", 2721 .seq_show = cpuset_common_seq_show, 2722 .write = cpuset_write_resmask, 2723 .max_write_len = (100U + 6 * MAX_NUMNODES), 2724 .private = FILE_MEMLIST, 2725 .flags = CFTYPE_NOT_ON_ROOT, 2726 }, 2727 2728 { 2729 .name = "cpus.effective", 2730 .seq_show = cpuset_common_seq_show, 2731 .private = FILE_EFFECTIVE_CPULIST, 2732 }, 2733 2734 { 2735 .name = "mems.effective", 2736 .seq_show = cpuset_common_seq_show, 2737 .private = FILE_EFFECTIVE_MEMLIST, 2738 }, 2739 2740 { 2741 .name = "cpus.partition", 2742 .seq_show = sched_partition_show, 2743 .write = sched_partition_write, 2744 .private = FILE_PARTITION_ROOT, 2745 .flags = CFTYPE_NOT_ON_ROOT, 2746 .file_offset = offsetof(struct cpuset, partition_file), 2747 }, 2748 2749 { 2750 .name = "cpus.subpartitions", 2751 .seq_show = cpuset_common_seq_show, 2752 .private = FILE_SUBPARTS_CPULIST, 2753 .flags = CFTYPE_DEBUG, 2754 }, 2755 2756 { } /* terminate */ 2757 }; 2758 2759 2760 /* 2761 * cpuset_css_alloc - allocate a cpuset css 2762 * cgrp: control group that the new cpuset will be part of 2763 */ 2764 2765 static struct cgroup_subsys_state * 2766 cpuset_css_alloc(struct cgroup_subsys_state *parent_css) 2767 { 2768 struct cpuset *cs; 2769 2770 if (!parent_css) 2771 return &top_cpuset.css; 2772 2773 cs = kzalloc(sizeof(*cs), GFP_KERNEL); 2774 if (!cs) 2775 return ERR_PTR(-ENOMEM); 2776 2777 if (alloc_cpumasks(cs, NULL)) { 2778 kfree(cs); 2779 return ERR_PTR(-ENOMEM); 2780 } 2781 2782 __set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); 2783 nodes_clear(cs->mems_allowed); 2784 nodes_clear(cs->effective_mems); 2785 fmeter_init(&cs->fmeter); 2786 cs->relax_domain_level = -1; 2787 2788 /* Set CS_MEMORY_MIGRATE for default hierarchy */ 2789 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) 2790 __set_bit(CS_MEMORY_MIGRATE, &cs->flags); 2791 2792 return &cs->css; 2793 } 2794 2795 static int cpuset_css_online(struct cgroup_subsys_state *css) 2796 { 2797 struct cpuset *cs = css_cs(css); 2798 struct cpuset *parent = parent_cs(cs); 2799 struct cpuset *tmp_cs; 2800 struct cgroup_subsys_state *pos_css; 2801 2802 if (!parent) 2803 return 0; 2804 2805 cpus_read_lock(); 2806 percpu_down_write(&cpuset_rwsem); 2807 2808 set_bit(CS_ONLINE, &cs->flags); 2809 if (is_spread_page(parent)) 2810 set_bit(CS_SPREAD_PAGE, &cs->flags); 2811 if (is_spread_slab(parent)) 2812 set_bit(CS_SPREAD_SLAB, &cs->flags); 2813 2814 cpuset_inc(); 2815 2816 spin_lock_irq(&callback_lock); 2817 if (is_in_v2_mode()) { 2818 cpumask_copy(cs->effective_cpus, parent->effective_cpus); 2819 cs->effective_mems = parent->effective_mems; 2820 cs->use_parent_ecpus = true; 2821 parent->child_ecpus_count++; 2822 } 2823 spin_unlock_irq(&callback_lock); 2824 2825 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags)) 2826 goto out_unlock; 2827 2828 /* 2829 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is 2830 * set. This flag handling is implemented in cgroup core for 2831 * histrical reasons - the flag may be specified during mount. 2832 * 2833 * Currently, if any sibling cpusets have exclusive cpus or mem, we 2834 * refuse to clone the configuration - thereby refusing the task to 2835 * be entered, and as a result refusing the sys_unshare() or 2836 * clone() which initiated it. If this becomes a problem for some 2837 * users who wish to allow that scenario, then this could be 2838 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive 2839 * (and likewise for mems) to the new cgroup. 2840 */ 2841 rcu_read_lock(); 2842 cpuset_for_each_child(tmp_cs, pos_css, parent) { 2843 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) { 2844 rcu_read_unlock(); 2845 goto out_unlock; 2846 } 2847 } 2848 rcu_read_unlock(); 2849 2850 spin_lock_irq(&callback_lock); 2851 cs->mems_allowed = parent->mems_allowed; 2852 cs->effective_mems = parent->mems_allowed; 2853 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed); 2854 cpumask_copy(cs->effective_cpus, parent->cpus_allowed); 2855 spin_unlock_irq(&callback_lock); 2856 out_unlock: 2857 percpu_up_write(&cpuset_rwsem); 2858 cpus_read_unlock(); 2859 return 0; 2860 } 2861 2862 /* 2863 * If the cpuset being removed has its flag 'sched_load_balance' 2864 * enabled, then simulate turning sched_load_balance off, which 2865 * will call rebuild_sched_domains_locked(). That is not needed 2866 * in the default hierarchy where only changes in partition 2867 * will cause repartitioning. 2868 * 2869 * If the cpuset has the 'sched.partition' flag enabled, simulate 2870 * turning 'sched.partition" off. 2871 */ 2872 2873 static void cpuset_css_offline(struct cgroup_subsys_state *css) 2874 { 2875 struct cpuset *cs = css_cs(css); 2876 2877 cpus_read_lock(); 2878 percpu_down_write(&cpuset_rwsem); 2879 2880 if (is_partition_root(cs)) 2881 update_prstate(cs, 0); 2882 2883 if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) && 2884 is_sched_load_balance(cs)) 2885 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0); 2886 2887 if (cs->use_parent_ecpus) { 2888 struct cpuset *parent = parent_cs(cs); 2889 2890 cs->use_parent_ecpus = false; 2891 parent->child_ecpus_count--; 2892 } 2893 2894 cpuset_dec(); 2895 clear_bit(CS_ONLINE, &cs->flags); 2896 2897 percpu_up_write(&cpuset_rwsem); 2898 cpus_read_unlock(); 2899 } 2900 2901 static void cpuset_css_free(struct cgroup_subsys_state *css) 2902 { 2903 struct cpuset *cs = css_cs(css); 2904 2905 free_cpuset(cs); 2906 } 2907 2908 static void cpuset_bind(struct cgroup_subsys_state *root_css) 2909 { 2910 percpu_down_write(&cpuset_rwsem); 2911 spin_lock_irq(&callback_lock); 2912 2913 if (is_in_v2_mode()) { 2914 cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask); 2915 top_cpuset.mems_allowed = node_possible_map; 2916 } else { 2917 cpumask_copy(top_cpuset.cpus_allowed, 2918 top_cpuset.effective_cpus); 2919 top_cpuset.mems_allowed = top_cpuset.effective_mems; 2920 } 2921 2922 spin_unlock_irq(&callback_lock); 2923 percpu_up_write(&cpuset_rwsem); 2924 } 2925 2926 /* 2927 * Make sure the new task conform to the current state of its parent, 2928 * which could have been changed by cpuset just after it inherits the 2929 * state from the parent and before it sits on the cgroup's task list. 2930 */ 2931 static void cpuset_fork(struct task_struct *task) 2932 { 2933 if (task_css_is_root(task, cpuset_cgrp_id)) 2934 return; 2935 2936 set_cpus_allowed_ptr(task, current->cpus_ptr); 2937 task->mems_allowed = current->mems_allowed; 2938 } 2939 2940 struct cgroup_subsys cpuset_cgrp_subsys = { 2941 .css_alloc = cpuset_css_alloc, 2942 .css_online = cpuset_css_online, 2943 .css_offline = cpuset_css_offline, 2944 .css_free = cpuset_css_free, 2945 .can_attach = cpuset_can_attach, 2946 .cancel_attach = cpuset_cancel_attach, 2947 .attach = cpuset_attach, 2948 .post_attach = cpuset_post_attach, 2949 .bind = cpuset_bind, 2950 .fork = cpuset_fork, 2951 .legacy_cftypes = legacy_files, 2952 .dfl_cftypes = dfl_files, 2953 .early_init = true, 2954 .threaded = true, 2955 }; 2956 2957 /** 2958 * cpuset_init - initialize cpusets at system boot 2959 * 2960 * Description: Initialize top_cpuset 2961 **/ 2962 2963 int __init cpuset_init(void) 2964 { 2965 BUG_ON(percpu_init_rwsem(&cpuset_rwsem)); 2966 2967 BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL)); 2968 BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL)); 2969 BUG_ON(!zalloc_cpumask_var(&top_cpuset.subparts_cpus, GFP_KERNEL)); 2970 2971 cpumask_setall(top_cpuset.cpus_allowed); 2972 nodes_setall(top_cpuset.mems_allowed); 2973 cpumask_setall(top_cpuset.effective_cpus); 2974 nodes_setall(top_cpuset.effective_mems); 2975 2976 fmeter_init(&top_cpuset.fmeter); 2977 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags); 2978 top_cpuset.relax_domain_level = -1; 2979 2980 BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL)); 2981 2982 return 0; 2983 } 2984 2985 /* 2986 * If CPU and/or memory hotplug handlers, below, unplug any CPUs 2987 * or memory nodes, we need to walk over the cpuset hierarchy, 2988 * removing that CPU or node from all cpusets. If this removes the 2989 * last CPU or node from a cpuset, then move the tasks in the empty 2990 * cpuset to its next-highest non-empty parent. 2991 */ 2992 static void remove_tasks_in_empty_cpuset(struct cpuset *cs) 2993 { 2994 struct cpuset *parent; 2995 2996 /* 2997 * Find its next-highest non-empty parent, (top cpuset 2998 * has online cpus, so can't be empty). 2999 */ 3000 parent = parent_cs(cs); 3001 while (cpumask_empty(parent->cpus_allowed) || 3002 nodes_empty(parent->mems_allowed)) 3003 parent = parent_cs(parent); 3004 3005 if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) { 3006 pr_err("cpuset: failed to transfer tasks out of empty cpuset "); 3007 pr_cont_cgroup_name(cs->css.cgroup); 3008 pr_cont("\n"); 3009 } 3010 } 3011 3012 static void 3013 hotplug_update_tasks_legacy(struct cpuset *cs, 3014 struct cpumask *new_cpus, nodemask_t *new_mems, 3015 bool cpus_updated, bool mems_updated) 3016 { 3017 bool is_empty; 3018 3019 spin_lock_irq(&callback_lock); 3020 cpumask_copy(cs->cpus_allowed, new_cpus); 3021 cpumask_copy(cs->effective_cpus, new_cpus); 3022 cs->mems_allowed = *new_mems; 3023 cs->effective_mems = *new_mems; 3024 spin_unlock_irq(&callback_lock); 3025 3026 /* 3027 * Don't call update_tasks_cpumask() if the cpuset becomes empty, 3028 * as the tasks will be migratecd to an ancestor. 3029 */ 3030 if (cpus_updated && !cpumask_empty(cs->cpus_allowed)) 3031 update_tasks_cpumask(cs); 3032 if (mems_updated && !nodes_empty(cs->mems_allowed)) 3033 update_tasks_nodemask(cs); 3034 3035 is_empty = cpumask_empty(cs->cpus_allowed) || 3036 nodes_empty(cs->mems_allowed); 3037 3038 percpu_up_write(&cpuset_rwsem); 3039 3040 /* 3041 * Move tasks to the nearest ancestor with execution resources, 3042 * This is full cgroup operation which will also call back into 3043 * cpuset. Should be done outside any lock. 3044 */ 3045 if (is_empty) 3046 remove_tasks_in_empty_cpuset(cs); 3047 3048 percpu_down_write(&cpuset_rwsem); 3049 } 3050 3051 static void 3052 hotplug_update_tasks(struct cpuset *cs, 3053 struct cpumask *new_cpus, nodemask_t *new_mems, 3054 bool cpus_updated, bool mems_updated) 3055 { 3056 if (cpumask_empty(new_cpus)) 3057 cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus); 3058 if (nodes_empty(*new_mems)) 3059 *new_mems = parent_cs(cs)->effective_mems; 3060 3061 spin_lock_irq(&callback_lock); 3062 cpumask_copy(cs->effective_cpus, new_cpus); 3063 cs->effective_mems = *new_mems; 3064 spin_unlock_irq(&callback_lock); 3065 3066 if (cpus_updated) 3067 update_tasks_cpumask(cs); 3068 if (mems_updated) 3069 update_tasks_nodemask(cs); 3070 } 3071 3072 static bool force_rebuild; 3073 3074 void cpuset_force_rebuild(void) 3075 { 3076 force_rebuild = true; 3077 } 3078 3079 /** 3080 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug 3081 * @cs: cpuset in interest 3082 * @tmp: the tmpmasks structure pointer 3083 * 3084 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone 3085 * offline, update @cs accordingly. If @cs ends up with no CPU or memory, 3086 * all its tasks are moved to the nearest ancestor with both resources. 3087 */ 3088 static void cpuset_hotplug_update_tasks(struct cpuset *cs, struct tmpmasks *tmp) 3089 { 3090 static cpumask_t new_cpus; 3091 static nodemask_t new_mems; 3092 bool cpus_updated; 3093 bool mems_updated; 3094 struct cpuset *parent; 3095 retry: 3096 wait_event(cpuset_attach_wq, cs->attach_in_progress == 0); 3097 3098 percpu_down_write(&cpuset_rwsem); 3099 3100 /* 3101 * We have raced with task attaching. We wait until attaching 3102 * is finished, so we won't attach a task to an empty cpuset. 3103 */ 3104 if (cs->attach_in_progress) { 3105 percpu_up_write(&cpuset_rwsem); 3106 goto retry; 3107 } 3108 3109 parent = parent_cs(cs); 3110 compute_effective_cpumask(&new_cpus, cs, parent); 3111 nodes_and(new_mems, cs->mems_allowed, parent->effective_mems); 3112 3113 if (cs->nr_subparts_cpus) 3114 /* 3115 * Make sure that CPUs allocated to child partitions 3116 * do not show up in effective_cpus. 3117 */ 3118 cpumask_andnot(&new_cpus, &new_cpus, cs->subparts_cpus); 3119 3120 if (!tmp || !cs->partition_root_state) 3121 goto update_tasks; 3122 3123 /* 3124 * In the unlikely event that a partition root has empty 3125 * effective_cpus or its parent becomes erroneous, we have to 3126 * transition it to the erroneous state. 3127 */ 3128 if (is_partition_root(cs) && (cpumask_empty(&new_cpus) || 3129 (parent->partition_root_state == PRS_ERROR))) { 3130 if (cs->nr_subparts_cpus) { 3131 spin_lock_irq(&callback_lock); 3132 cs->nr_subparts_cpus = 0; 3133 cpumask_clear(cs->subparts_cpus); 3134 spin_unlock_irq(&callback_lock); 3135 compute_effective_cpumask(&new_cpus, cs, parent); 3136 } 3137 3138 /* 3139 * If the effective_cpus is empty because the child 3140 * partitions take away all the CPUs, we can keep 3141 * the current partition and let the child partitions 3142 * fight for available CPUs. 3143 */ 3144 if ((parent->partition_root_state == PRS_ERROR) || 3145 cpumask_empty(&new_cpus)) { 3146 int old_prs; 3147 3148 update_parent_subparts_cpumask(cs, partcmd_disable, 3149 NULL, tmp); 3150 old_prs = cs->partition_root_state; 3151 if (old_prs != PRS_ERROR) { 3152 spin_lock_irq(&callback_lock); 3153 cs->partition_root_state = PRS_ERROR; 3154 spin_unlock_irq(&callback_lock); 3155 notify_partition_change(cs, old_prs, PRS_ERROR); 3156 } 3157 } 3158 cpuset_force_rebuild(); 3159 } 3160 3161 /* 3162 * On the other hand, an erroneous partition root may be transitioned 3163 * back to a regular one or a partition root with no CPU allocated 3164 * from the parent may change to erroneous. 3165 */ 3166 if (is_partition_root(parent) && 3167 ((cs->partition_root_state == PRS_ERROR) || 3168 !cpumask_intersects(&new_cpus, parent->subparts_cpus)) && 3169 update_parent_subparts_cpumask(cs, partcmd_update, NULL, tmp)) 3170 cpuset_force_rebuild(); 3171 3172 update_tasks: 3173 cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus); 3174 mems_updated = !nodes_equal(new_mems, cs->effective_mems); 3175 3176 if (is_in_v2_mode()) 3177 hotplug_update_tasks(cs, &new_cpus, &new_mems, 3178 cpus_updated, mems_updated); 3179 else 3180 hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems, 3181 cpus_updated, mems_updated); 3182 3183 percpu_up_write(&cpuset_rwsem); 3184 } 3185 3186 /** 3187 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset 3188 * 3189 * This function is called after either CPU or memory configuration has 3190 * changed and updates cpuset accordingly. The top_cpuset is always 3191 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in 3192 * order to make cpusets transparent (of no affect) on systems that are 3193 * actively using CPU hotplug but making no active use of cpusets. 3194 * 3195 * Non-root cpusets are only affected by offlining. If any CPUs or memory 3196 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on 3197 * all descendants. 3198 * 3199 * Note that CPU offlining during suspend is ignored. We don't modify 3200 * cpusets across suspend/resume cycles at all. 3201 */ 3202 static void cpuset_hotplug_workfn(struct work_struct *work) 3203 { 3204 static cpumask_t new_cpus; 3205 static nodemask_t new_mems; 3206 bool cpus_updated, mems_updated; 3207 bool on_dfl = is_in_v2_mode(); 3208 struct tmpmasks tmp, *ptmp = NULL; 3209 3210 if (on_dfl && !alloc_cpumasks(NULL, &tmp)) 3211 ptmp = &tmp; 3212 3213 percpu_down_write(&cpuset_rwsem); 3214 3215 /* fetch the available cpus/mems and find out which changed how */ 3216 cpumask_copy(&new_cpus, cpu_active_mask); 3217 new_mems = node_states[N_MEMORY]; 3218 3219 /* 3220 * If subparts_cpus is populated, it is likely that the check below 3221 * will produce a false positive on cpus_updated when the cpu list 3222 * isn't changed. It is extra work, but it is better to be safe. 3223 */ 3224 cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus); 3225 mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems); 3226 3227 /* 3228 * In the rare case that hotplug removes all the cpus in subparts_cpus, 3229 * we assumed that cpus are updated. 3230 */ 3231 if (!cpus_updated && top_cpuset.nr_subparts_cpus) 3232 cpus_updated = true; 3233 3234 /* synchronize cpus_allowed to cpu_active_mask */ 3235 if (cpus_updated) { 3236 spin_lock_irq(&callback_lock); 3237 if (!on_dfl) 3238 cpumask_copy(top_cpuset.cpus_allowed, &new_cpus); 3239 /* 3240 * Make sure that CPUs allocated to child partitions 3241 * do not show up in effective_cpus. If no CPU is left, 3242 * we clear the subparts_cpus & let the child partitions 3243 * fight for the CPUs again. 3244 */ 3245 if (top_cpuset.nr_subparts_cpus) { 3246 if (cpumask_subset(&new_cpus, 3247 top_cpuset.subparts_cpus)) { 3248 top_cpuset.nr_subparts_cpus = 0; 3249 cpumask_clear(top_cpuset.subparts_cpus); 3250 } else { 3251 cpumask_andnot(&new_cpus, &new_cpus, 3252 top_cpuset.subparts_cpus); 3253 } 3254 } 3255 cpumask_copy(top_cpuset.effective_cpus, &new_cpus); 3256 spin_unlock_irq(&callback_lock); 3257 /* we don't mess with cpumasks of tasks in top_cpuset */ 3258 } 3259 3260 /* synchronize mems_allowed to N_MEMORY */ 3261 if (mems_updated) { 3262 spin_lock_irq(&callback_lock); 3263 if (!on_dfl) 3264 top_cpuset.mems_allowed = new_mems; 3265 top_cpuset.effective_mems = new_mems; 3266 spin_unlock_irq(&callback_lock); 3267 update_tasks_nodemask(&top_cpuset); 3268 } 3269 3270 percpu_up_write(&cpuset_rwsem); 3271 3272 /* if cpus or mems changed, we need to propagate to descendants */ 3273 if (cpus_updated || mems_updated) { 3274 struct cpuset *cs; 3275 struct cgroup_subsys_state *pos_css; 3276 3277 rcu_read_lock(); 3278 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) { 3279 if (cs == &top_cpuset || !css_tryget_online(&cs->css)) 3280 continue; 3281 rcu_read_unlock(); 3282 3283 cpuset_hotplug_update_tasks(cs, ptmp); 3284 3285 rcu_read_lock(); 3286 css_put(&cs->css); 3287 } 3288 rcu_read_unlock(); 3289 } 3290 3291 /* rebuild sched domains if cpus_allowed has changed */ 3292 if (cpus_updated || force_rebuild) { 3293 force_rebuild = false; 3294 rebuild_sched_domains(); 3295 } 3296 3297 free_cpumasks(NULL, ptmp); 3298 } 3299 3300 void cpuset_update_active_cpus(void) 3301 { 3302 /* 3303 * We're inside cpu hotplug critical region which usually nests 3304 * inside cgroup synchronization. Bounce actual hotplug processing 3305 * to a work item to avoid reverse locking order. 3306 */ 3307 schedule_work(&cpuset_hotplug_work); 3308 } 3309 3310 void cpuset_wait_for_hotplug(void) 3311 { 3312 flush_work(&cpuset_hotplug_work); 3313 } 3314 3315 /* 3316 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY]. 3317 * Call this routine anytime after node_states[N_MEMORY] changes. 3318 * See cpuset_update_active_cpus() for CPU hotplug handling. 3319 */ 3320 static int cpuset_track_online_nodes(struct notifier_block *self, 3321 unsigned long action, void *arg) 3322 { 3323 schedule_work(&cpuset_hotplug_work); 3324 return NOTIFY_OK; 3325 } 3326 3327 static struct notifier_block cpuset_track_online_nodes_nb = { 3328 .notifier_call = cpuset_track_online_nodes, 3329 .priority = 10, /* ??! */ 3330 }; 3331 3332 /** 3333 * cpuset_init_smp - initialize cpus_allowed 3334 * 3335 * Description: Finish top cpuset after cpu, node maps are initialized 3336 */ 3337 void __init cpuset_init_smp(void) 3338 { 3339 cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask); 3340 top_cpuset.mems_allowed = node_states[N_MEMORY]; 3341 top_cpuset.old_mems_allowed = top_cpuset.mems_allowed; 3342 3343 cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask); 3344 top_cpuset.effective_mems = node_states[N_MEMORY]; 3345 3346 register_hotmemory_notifier(&cpuset_track_online_nodes_nb); 3347 3348 cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0); 3349 BUG_ON(!cpuset_migrate_mm_wq); 3350 } 3351 3352 /** 3353 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset. 3354 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed. 3355 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set. 3356 * 3357 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset 3358 * attached to the specified @tsk. Guaranteed to return some non-empty 3359 * subset of cpu_online_mask, even if this means going outside the 3360 * tasks cpuset. 3361 **/ 3362 3363 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask) 3364 { 3365 unsigned long flags; 3366 3367 spin_lock_irqsave(&callback_lock, flags); 3368 guarantee_online_cpus(tsk, pmask); 3369 spin_unlock_irqrestore(&callback_lock, flags); 3370 } 3371 3372 /** 3373 * cpuset_cpus_allowed_fallback - final fallback before complete catastrophe. 3374 * @tsk: pointer to task_struct with which the scheduler is struggling 3375 * 3376 * Description: In the case that the scheduler cannot find an allowed cpu in 3377 * tsk->cpus_allowed, we fall back to task_cs(tsk)->cpus_allowed. In legacy 3378 * mode however, this value is the same as task_cs(tsk)->effective_cpus, 3379 * which will not contain a sane cpumask during cases such as cpu hotplugging. 3380 * This is the absolute last resort for the scheduler and it is only used if 3381 * _every_ other avenue has been traveled. 3382 * 3383 * Returns true if the affinity of @tsk was changed, false otherwise. 3384 **/ 3385 3386 bool cpuset_cpus_allowed_fallback(struct task_struct *tsk) 3387 { 3388 const struct cpumask *possible_mask = task_cpu_possible_mask(tsk); 3389 const struct cpumask *cs_mask; 3390 bool changed = false; 3391 3392 rcu_read_lock(); 3393 cs_mask = task_cs(tsk)->cpus_allowed; 3394 if (is_in_v2_mode() && cpumask_subset(cs_mask, possible_mask)) { 3395 do_set_cpus_allowed(tsk, cs_mask); 3396 changed = true; 3397 } 3398 rcu_read_unlock(); 3399 3400 /* 3401 * We own tsk->cpus_allowed, nobody can change it under us. 3402 * 3403 * But we used cs && cs->cpus_allowed lockless and thus can 3404 * race with cgroup_attach_task() or update_cpumask() and get 3405 * the wrong tsk->cpus_allowed. However, both cases imply the 3406 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr() 3407 * which takes task_rq_lock(). 3408 * 3409 * If we are called after it dropped the lock we must see all 3410 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary 3411 * set any mask even if it is not right from task_cs() pov, 3412 * the pending set_cpus_allowed_ptr() will fix things. 3413 * 3414 * select_fallback_rq() will fix things ups and set cpu_possible_mask 3415 * if required. 3416 */ 3417 return changed; 3418 } 3419 3420 void __init cpuset_init_current_mems_allowed(void) 3421 { 3422 nodes_setall(current->mems_allowed); 3423 } 3424 3425 /** 3426 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset. 3427 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed. 3428 * 3429 * Description: Returns the nodemask_t mems_allowed of the cpuset 3430 * attached to the specified @tsk. Guaranteed to return some non-empty 3431 * subset of node_states[N_MEMORY], even if this means going outside the 3432 * tasks cpuset. 3433 **/ 3434 3435 nodemask_t cpuset_mems_allowed(struct task_struct *tsk) 3436 { 3437 nodemask_t mask; 3438 unsigned long flags; 3439 3440 spin_lock_irqsave(&callback_lock, flags); 3441 rcu_read_lock(); 3442 guarantee_online_mems(task_cs(tsk), &mask); 3443 rcu_read_unlock(); 3444 spin_unlock_irqrestore(&callback_lock, flags); 3445 3446 return mask; 3447 } 3448 3449 /** 3450 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. current mems_allowed 3451 * @nodemask: the nodemask to be checked 3452 * 3453 * Are any of the nodes in the nodemask allowed in current->mems_allowed? 3454 */ 3455 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask) 3456 { 3457 return nodes_intersects(*nodemask, current->mems_allowed); 3458 } 3459 3460 /* 3461 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or 3462 * mem_hardwall ancestor to the specified cpuset. Call holding 3463 * callback_lock. If no ancestor is mem_exclusive or mem_hardwall 3464 * (an unusual configuration), then returns the root cpuset. 3465 */ 3466 static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs) 3467 { 3468 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs)) 3469 cs = parent_cs(cs); 3470 return cs; 3471 } 3472 3473 /** 3474 * cpuset_node_allowed - Can we allocate on a memory node? 3475 * @node: is this an allowed node? 3476 * @gfp_mask: memory allocation flags 3477 * 3478 * If we're in interrupt, yes, we can always allocate. If @node is set in 3479 * current's mems_allowed, yes. If it's not a __GFP_HARDWALL request and this 3480 * node is set in the nearest hardwalled cpuset ancestor to current's cpuset, 3481 * yes. If current has access to memory reserves as an oom victim, yes. 3482 * Otherwise, no. 3483 * 3484 * GFP_USER allocations are marked with the __GFP_HARDWALL bit, 3485 * and do not allow allocations outside the current tasks cpuset 3486 * unless the task has been OOM killed. 3487 * GFP_KERNEL allocations are not so marked, so can escape to the 3488 * nearest enclosing hardwalled ancestor cpuset. 3489 * 3490 * Scanning up parent cpusets requires callback_lock. The 3491 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit 3492 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the 3493 * current tasks mems_allowed came up empty on the first pass over 3494 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the 3495 * cpuset are short of memory, might require taking the callback_lock. 3496 * 3497 * The first call here from mm/page_alloc:get_page_from_freelist() 3498 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets, 3499 * so no allocation on a node outside the cpuset is allowed (unless 3500 * in interrupt, of course). 3501 * 3502 * The second pass through get_page_from_freelist() doesn't even call 3503 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages() 3504 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set 3505 * in alloc_flags. That logic and the checks below have the combined 3506 * affect that: 3507 * in_interrupt - any node ok (current task context irrelevant) 3508 * GFP_ATOMIC - any node ok 3509 * tsk_is_oom_victim - any node ok 3510 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok 3511 * GFP_USER - only nodes in current tasks mems allowed ok. 3512 */ 3513 bool __cpuset_node_allowed(int node, gfp_t gfp_mask) 3514 { 3515 struct cpuset *cs; /* current cpuset ancestors */ 3516 int allowed; /* is allocation in zone z allowed? */ 3517 unsigned long flags; 3518 3519 if (in_interrupt()) 3520 return true; 3521 if (node_isset(node, current->mems_allowed)) 3522 return true; 3523 /* 3524 * Allow tasks that have access to memory reserves because they have 3525 * been OOM killed to get memory anywhere. 3526 */ 3527 if (unlikely(tsk_is_oom_victim(current))) 3528 return true; 3529 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */ 3530 return false; 3531 3532 if (current->flags & PF_EXITING) /* Let dying task have memory */ 3533 return true; 3534 3535 /* Not hardwall and node outside mems_allowed: scan up cpusets */ 3536 spin_lock_irqsave(&callback_lock, flags); 3537 3538 rcu_read_lock(); 3539 cs = nearest_hardwall_ancestor(task_cs(current)); 3540 allowed = node_isset(node, cs->mems_allowed); 3541 rcu_read_unlock(); 3542 3543 spin_unlock_irqrestore(&callback_lock, flags); 3544 return allowed; 3545 } 3546 3547 /** 3548 * cpuset_mem_spread_node() - On which node to begin search for a file page 3549 * cpuset_slab_spread_node() - On which node to begin search for a slab page 3550 * 3551 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for 3552 * tasks in a cpuset with is_spread_page or is_spread_slab set), 3553 * and if the memory allocation used cpuset_mem_spread_node() 3554 * to determine on which node to start looking, as it will for 3555 * certain page cache or slab cache pages such as used for file 3556 * system buffers and inode caches, then instead of starting on the 3557 * local node to look for a free page, rather spread the starting 3558 * node around the tasks mems_allowed nodes. 3559 * 3560 * We don't have to worry about the returned node being offline 3561 * because "it can't happen", and even if it did, it would be ok. 3562 * 3563 * The routines calling guarantee_online_mems() are careful to 3564 * only set nodes in task->mems_allowed that are online. So it 3565 * should not be possible for the following code to return an 3566 * offline node. But if it did, that would be ok, as this routine 3567 * is not returning the node where the allocation must be, only 3568 * the node where the search should start. The zonelist passed to 3569 * __alloc_pages() will include all nodes. If the slab allocator 3570 * is passed an offline node, it will fall back to the local node. 3571 * See kmem_cache_alloc_node(). 3572 */ 3573 3574 static int cpuset_spread_node(int *rotor) 3575 { 3576 return *rotor = next_node_in(*rotor, current->mems_allowed); 3577 } 3578 3579 int cpuset_mem_spread_node(void) 3580 { 3581 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE) 3582 current->cpuset_mem_spread_rotor = 3583 node_random(¤t->mems_allowed); 3584 3585 return cpuset_spread_node(¤t->cpuset_mem_spread_rotor); 3586 } 3587 3588 int cpuset_slab_spread_node(void) 3589 { 3590 if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE) 3591 current->cpuset_slab_spread_rotor = 3592 node_random(¤t->mems_allowed); 3593 3594 return cpuset_spread_node(¤t->cpuset_slab_spread_rotor); 3595 } 3596 3597 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node); 3598 3599 /** 3600 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's? 3601 * @tsk1: pointer to task_struct of some task. 3602 * @tsk2: pointer to task_struct of some other task. 3603 * 3604 * Description: Return true if @tsk1's mems_allowed intersects the 3605 * mems_allowed of @tsk2. Used by the OOM killer to determine if 3606 * one of the task's memory usage might impact the memory available 3607 * to the other. 3608 **/ 3609 3610 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1, 3611 const struct task_struct *tsk2) 3612 { 3613 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed); 3614 } 3615 3616 /** 3617 * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed 3618 * 3619 * Description: Prints current's name, cpuset name, and cached copy of its 3620 * mems_allowed to the kernel log. 3621 */ 3622 void cpuset_print_current_mems_allowed(void) 3623 { 3624 struct cgroup *cgrp; 3625 3626 rcu_read_lock(); 3627 3628 cgrp = task_cs(current)->css.cgroup; 3629 pr_cont(",cpuset="); 3630 pr_cont_cgroup_name(cgrp); 3631 pr_cont(",mems_allowed=%*pbl", 3632 nodemask_pr_args(¤t->mems_allowed)); 3633 3634 rcu_read_unlock(); 3635 } 3636 3637 /* 3638 * Collection of memory_pressure is suppressed unless 3639 * this flag is enabled by writing "1" to the special 3640 * cpuset file 'memory_pressure_enabled' in the root cpuset. 3641 */ 3642 3643 int cpuset_memory_pressure_enabled __read_mostly; 3644 3645 /** 3646 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims. 3647 * 3648 * Keep a running average of the rate of synchronous (direct) 3649 * page reclaim efforts initiated by tasks in each cpuset. 3650 * 3651 * This represents the rate at which some task in the cpuset 3652 * ran low on memory on all nodes it was allowed to use, and 3653 * had to enter the kernels page reclaim code in an effort to 3654 * create more free memory by tossing clean pages or swapping 3655 * or writing dirty pages. 3656 * 3657 * Display to user space in the per-cpuset read-only file 3658 * "memory_pressure". Value displayed is an integer 3659 * representing the recent rate of entry into the synchronous 3660 * (direct) page reclaim by any task attached to the cpuset. 3661 **/ 3662 3663 void __cpuset_memory_pressure_bump(void) 3664 { 3665 rcu_read_lock(); 3666 fmeter_markevent(&task_cs(current)->fmeter); 3667 rcu_read_unlock(); 3668 } 3669 3670 #ifdef CONFIG_PROC_PID_CPUSET 3671 /* 3672 * proc_cpuset_show() 3673 * - Print tasks cpuset path into seq_file. 3674 * - Used for /proc/<pid>/cpuset. 3675 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it 3676 * doesn't really matter if tsk->cpuset changes after we read it, 3677 * and we take cpuset_rwsem, keeping cpuset_attach() from changing it 3678 * anyway. 3679 */ 3680 int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns, 3681 struct pid *pid, struct task_struct *tsk) 3682 { 3683 char *buf; 3684 struct cgroup_subsys_state *css; 3685 int retval; 3686 3687 retval = -ENOMEM; 3688 buf = kmalloc(PATH_MAX, GFP_KERNEL); 3689 if (!buf) 3690 goto out; 3691 3692 css = task_get_css(tsk, cpuset_cgrp_id); 3693 retval = cgroup_path_ns(css->cgroup, buf, PATH_MAX, 3694 current->nsproxy->cgroup_ns); 3695 css_put(css); 3696 if (retval >= PATH_MAX) 3697 retval = -ENAMETOOLONG; 3698 if (retval < 0) 3699 goto out_free; 3700 seq_puts(m, buf); 3701 seq_putc(m, '\n'); 3702 retval = 0; 3703 out_free: 3704 kfree(buf); 3705 out: 3706 return retval; 3707 } 3708 #endif /* CONFIG_PROC_PID_CPUSET */ 3709 3710 /* Display task mems_allowed in /proc/<pid>/status file. */ 3711 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task) 3712 { 3713 seq_printf(m, "Mems_allowed:\t%*pb\n", 3714 nodemask_pr_args(&task->mems_allowed)); 3715 seq_printf(m, "Mems_allowed_list:\t%*pbl\n", 3716 nodemask_pr_args(&task->mems_allowed)); 3717 } 3718