xref: /openbmc/linux/kernel/cgroup/cpuset.c (revision 4a32e1cd)
1 /*
2  *  kernel/cpuset.c
3  *
4  *  Processor and Memory placement constraints for sets of tasks.
5  *
6  *  Copyright (C) 2003 BULL SA.
7  *  Copyright (C) 2004-2007 Silicon Graphics, Inc.
8  *  Copyright (C) 2006 Google, Inc
9  *
10  *  Portions derived from Patrick Mochel's sysfs code.
11  *  sysfs is Copyright (c) 2001-3 Patrick Mochel
12  *
13  *  2003-10-10 Written by Simon Derr.
14  *  2003-10-22 Updates by Stephen Hemminger.
15  *  2004 May-July Rework by Paul Jackson.
16  *  2006 Rework by Paul Menage to use generic cgroups
17  *  2008 Rework of the scheduler domains and CPU hotplug handling
18  *       by Max Krasnyansky
19  *
20  *  This file is subject to the terms and conditions of the GNU General Public
21  *  License.  See the file COPYING in the main directory of the Linux
22  *  distribution for more details.
23  */
24 
25 #include <linux/cpu.h>
26 #include <linux/cpumask.h>
27 #include <linux/cpuset.h>
28 #include <linux/err.h>
29 #include <linux/errno.h>
30 #include <linux/file.h>
31 #include <linux/fs.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/kernel.h>
35 #include <linux/kmod.h>
36 #include <linux/list.h>
37 #include <linux/mempolicy.h>
38 #include <linux/mm.h>
39 #include <linux/memory.h>
40 #include <linux/export.h>
41 #include <linux/mount.h>
42 #include <linux/fs_context.h>
43 #include <linux/namei.h>
44 #include <linux/pagemap.h>
45 #include <linux/proc_fs.h>
46 #include <linux/rcupdate.h>
47 #include <linux/sched.h>
48 #include <linux/sched/deadline.h>
49 #include <linux/sched/mm.h>
50 #include <linux/sched/task.h>
51 #include <linux/seq_file.h>
52 #include <linux/security.h>
53 #include <linux/slab.h>
54 #include <linux/spinlock.h>
55 #include <linux/stat.h>
56 #include <linux/string.h>
57 #include <linux/time.h>
58 #include <linux/time64.h>
59 #include <linux/backing-dev.h>
60 #include <linux/sort.h>
61 #include <linux/oom.h>
62 #include <linux/sched/isolation.h>
63 #include <linux/uaccess.h>
64 #include <linux/atomic.h>
65 #include <linux/mutex.h>
66 #include <linux/cgroup.h>
67 #include <linux/wait.h>
68 
69 DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key);
70 DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key);
71 
72 /* See "Frequency meter" comments, below. */
73 
74 struct fmeter {
75 	int cnt;		/* unprocessed events count */
76 	int val;		/* most recent output value */
77 	time64_t time;		/* clock (secs) when val computed */
78 	spinlock_t lock;	/* guards read or write of above */
79 };
80 
81 struct cpuset {
82 	struct cgroup_subsys_state css;
83 
84 	unsigned long flags;		/* "unsigned long" so bitops work */
85 
86 	/*
87 	 * On default hierarchy:
88 	 *
89 	 * The user-configured masks can only be changed by writing to
90 	 * cpuset.cpus and cpuset.mems, and won't be limited by the
91 	 * parent masks.
92 	 *
93 	 * The effective masks is the real masks that apply to the tasks
94 	 * in the cpuset. They may be changed if the configured masks are
95 	 * changed or hotplug happens.
96 	 *
97 	 * effective_mask == configured_mask & parent's effective_mask,
98 	 * and if it ends up empty, it will inherit the parent's mask.
99 	 *
100 	 *
101 	 * On legacy hierarchy:
102 	 *
103 	 * The user-configured masks are always the same with effective masks.
104 	 */
105 
106 	/* user-configured CPUs and Memory Nodes allow to tasks */
107 	cpumask_var_t cpus_allowed;
108 	nodemask_t mems_allowed;
109 
110 	/* effective CPUs and Memory Nodes allow to tasks */
111 	cpumask_var_t effective_cpus;
112 	nodemask_t effective_mems;
113 
114 	/*
115 	 * CPUs allocated to child sub-partitions (default hierarchy only)
116 	 * - CPUs granted by the parent = effective_cpus U subparts_cpus
117 	 * - effective_cpus and subparts_cpus are mutually exclusive.
118 	 *
119 	 * effective_cpus contains only onlined CPUs, but subparts_cpus
120 	 * may have offlined ones.
121 	 */
122 	cpumask_var_t subparts_cpus;
123 
124 	/*
125 	 * This is old Memory Nodes tasks took on.
126 	 *
127 	 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
128 	 * - A new cpuset's old_mems_allowed is initialized when some
129 	 *   task is moved into it.
130 	 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
131 	 *   cpuset.mems_allowed and have tasks' nodemask updated, and
132 	 *   then old_mems_allowed is updated to mems_allowed.
133 	 */
134 	nodemask_t old_mems_allowed;
135 
136 	struct fmeter fmeter;		/* memory_pressure filter */
137 
138 	/*
139 	 * Tasks are being attached to this cpuset.  Used to prevent
140 	 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
141 	 */
142 	int attach_in_progress;
143 
144 	/* partition number for rebuild_sched_domains() */
145 	int pn;
146 
147 	/* for custom sched domain */
148 	int relax_domain_level;
149 
150 	/* number of CPUs in subparts_cpus */
151 	int nr_subparts_cpus;
152 
153 	/* partition root state */
154 	int partition_root_state;
155 
156 	/*
157 	 * Default hierarchy only:
158 	 * use_parent_ecpus - set if using parent's effective_cpus
159 	 * child_ecpus_count - # of children with use_parent_ecpus set
160 	 */
161 	int use_parent_ecpus;
162 	int child_ecpus_count;
163 
164 	/* Handle for cpuset.cpus.partition */
165 	struct cgroup_file partition_file;
166 };
167 
168 /*
169  * Partition root states:
170  *
171  *   0 - not a partition root
172  *
173  *   1 - partition root
174  *
175  *  -1 - invalid partition root
176  *       None of the cpus in cpus_allowed can be put into the parent's
177  *       subparts_cpus. In this case, the cpuset is not a real partition
178  *       root anymore.  However, the CPU_EXCLUSIVE bit will still be set
179  *       and the cpuset can be restored back to a partition root if the
180  *       parent cpuset can give more CPUs back to this child cpuset.
181  */
182 #define PRS_DISABLED		0
183 #define PRS_ENABLED		1
184 #define PRS_ERROR		-1
185 
186 /*
187  * Temporary cpumasks for working with partitions that are passed among
188  * functions to avoid memory allocation in inner functions.
189  */
190 struct tmpmasks {
191 	cpumask_var_t addmask, delmask;	/* For partition root */
192 	cpumask_var_t new_cpus;		/* For update_cpumasks_hier() */
193 };
194 
195 static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
196 {
197 	return css ? container_of(css, struct cpuset, css) : NULL;
198 }
199 
200 /* Retrieve the cpuset for a task */
201 static inline struct cpuset *task_cs(struct task_struct *task)
202 {
203 	return css_cs(task_css(task, cpuset_cgrp_id));
204 }
205 
206 static inline struct cpuset *parent_cs(struct cpuset *cs)
207 {
208 	return css_cs(cs->css.parent);
209 }
210 
211 /* bits in struct cpuset flags field */
212 typedef enum {
213 	CS_ONLINE,
214 	CS_CPU_EXCLUSIVE,
215 	CS_MEM_EXCLUSIVE,
216 	CS_MEM_HARDWALL,
217 	CS_MEMORY_MIGRATE,
218 	CS_SCHED_LOAD_BALANCE,
219 	CS_SPREAD_PAGE,
220 	CS_SPREAD_SLAB,
221 } cpuset_flagbits_t;
222 
223 /* convenient tests for these bits */
224 static inline bool is_cpuset_online(struct cpuset *cs)
225 {
226 	return test_bit(CS_ONLINE, &cs->flags) && !css_is_dying(&cs->css);
227 }
228 
229 static inline int is_cpu_exclusive(const struct cpuset *cs)
230 {
231 	return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
232 }
233 
234 static inline int is_mem_exclusive(const struct cpuset *cs)
235 {
236 	return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
237 }
238 
239 static inline int is_mem_hardwall(const struct cpuset *cs)
240 {
241 	return test_bit(CS_MEM_HARDWALL, &cs->flags);
242 }
243 
244 static inline int is_sched_load_balance(const struct cpuset *cs)
245 {
246 	return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
247 }
248 
249 static inline int is_memory_migrate(const struct cpuset *cs)
250 {
251 	return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
252 }
253 
254 static inline int is_spread_page(const struct cpuset *cs)
255 {
256 	return test_bit(CS_SPREAD_PAGE, &cs->flags);
257 }
258 
259 static inline int is_spread_slab(const struct cpuset *cs)
260 {
261 	return test_bit(CS_SPREAD_SLAB, &cs->flags);
262 }
263 
264 static inline int is_partition_root(const struct cpuset *cs)
265 {
266 	return cs->partition_root_state > 0;
267 }
268 
269 /*
270  * Send notification event of whenever partition_root_state changes.
271  */
272 static inline void notify_partition_change(struct cpuset *cs,
273 					   int old_prs, int new_prs)
274 {
275 	if (old_prs != new_prs)
276 		cgroup_file_notify(&cs->partition_file);
277 }
278 
279 static struct cpuset top_cpuset = {
280 	.flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
281 		  (1 << CS_MEM_EXCLUSIVE)),
282 	.partition_root_state = PRS_ENABLED,
283 };
284 
285 /**
286  * cpuset_for_each_child - traverse online children of a cpuset
287  * @child_cs: loop cursor pointing to the current child
288  * @pos_css: used for iteration
289  * @parent_cs: target cpuset to walk children of
290  *
291  * Walk @child_cs through the online children of @parent_cs.  Must be used
292  * with RCU read locked.
293  */
294 #define cpuset_for_each_child(child_cs, pos_css, parent_cs)		\
295 	css_for_each_child((pos_css), &(parent_cs)->css)		\
296 		if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
297 
298 /**
299  * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
300  * @des_cs: loop cursor pointing to the current descendant
301  * @pos_css: used for iteration
302  * @root_cs: target cpuset to walk ancestor of
303  *
304  * Walk @des_cs through the online descendants of @root_cs.  Must be used
305  * with RCU read locked.  The caller may modify @pos_css by calling
306  * css_rightmost_descendant() to skip subtree.  @root_cs is included in the
307  * iteration and the first node to be visited.
308  */
309 #define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs)	\
310 	css_for_each_descendant_pre((pos_css), &(root_cs)->css)		\
311 		if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
312 
313 /*
314  * There are two global locks guarding cpuset structures - cpuset_rwsem and
315  * callback_lock. We also require taking task_lock() when dereferencing a
316  * task's cpuset pointer. See "The task_lock() exception", at the end of this
317  * comment.  The cpuset code uses only cpuset_rwsem write lock.  Other
318  * kernel subsystems can use cpuset_read_lock()/cpuset_read_unlock() to
319  * prevent change to cpuset structures.
320  *
321  * A task must hold both locks to modify cpusets.  If a task holds
322  * cpuset_rwsem, it blocks others wanting that rwsem, ensuring that it
323  * is the only task able to also acquire callback_lock and be able to
324  * modify cpusets.  It can perform various checks on the cpuset structure
325  * first, knowing nothing will change.  It can also allocate memory while
326  * just holding cpuset_rwsem.  While it is performing these checks, various
327  * callback routines can briefly acquire callback_lock to query cpusets.
328  * Once it is ready to make the changes, it takes callback_lock, blocking
329  * everyone else.
330  *
331  * Calls to the kernel memory allocator can not be made while holding
332  * callback_lock, as that would risk double tripping on callback_lock
333  * from one of the callbacks into the cpuset code from within
334  * __alloc_pages().
335  *
336  * If a task is only holding callback_lock, then it has read-only
337  * access to cpusets.
338  *
339  * Now, the task_struct fields mems_allowed and mempolicy may be changed
340  * by other task, we use alloc_lock in the task_struct fields to protect
341  * them.
342  *
343  * The cpuset_common_file_read() handlers only hold callback_lock across
344  * small pieces of code, such as when reading out possibly multi-word
345  * cpumasks and nodemasks.
346  *
347  * Accessing a task's cpuset should be done in accordance with the
348  * guidelines for accessing subsystem state in kernel/cgroup.c
349  */
350 
351 DEFINE_STATIC_PERCPU_RWSEM(cpuset_rwsem);
352 
353 void cpuset_read_lock(void)
354 {
355 	percpu_down_read(&cpuset_rwsem);
356 }
357 
358 void cpuset_read_unlock(void)
359 {
360 	percpu_up_read(&cpuset_rwsem);
361 }
362 
363 static DEFINE_SPINLOCK(callback_lock);
364 
365 static struct workqueue_struct *cpuset_migrate_mm_wq;
366 
367 /*
368  * CPU / memory hotplug is handled asynchronously.
369  */
370 static void cpuset_hotplug_workfn(struct work_struct *work);
371 static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
372 
373 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
374 
375 /*
376  * Cgroup v2 behavior is used on the "cpus" and "mems" control files when
377  * on default hierarchy or when the cpuset_v2_mode flag is set by mounting
378  * the v1 cpuset cgroup filesystem with the "cpuset_v2_mode" mount option.
379  * With v2 behavior, "cpus" and "mems" are always what the users have
380  * requested and won't be changed by hotplug events. Only the effective
381  * cpus or mems will be affected.
382  */
383 static inline bool is_in_v2_mode(void)
384 {
385 	return cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
386 	      (cpuset_cgrp_subsys.root->flags & CGRP_ROOT_CPUSET_V2_MODE);
387 }
388 
389 /*
390  * Return in pmask the portion of a task's cpusets's cpus_allowed that
391  * are online and are capable of running the task.  If none are found,
392  * walk up the cpuset hierarchy until we find one that does have some
393  * appropriate cpus.
394  *
395  * One way or another, we guarantee to return some non-empty subset
396  * of cpu_online_mask.
397  *
398  * Call with callback_lock or cpuset_rwsem held.
399  */
400 static void guarantee_online_cpus(struct task_struct *tsk,
401 				  struct cpumask *pmask)
402 {
403 	const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
404 	struct cpuset *cs;
405 
406 	if (WARN_ON(!cpumask_and(pmask, possible_mask, cpu_online_mask)))
407 		cpumask_copy(pmask, cpu_online_mask);
408 
409 	rcu_read_lock();
410 	cs = task_cs(tsk);
411 
412 	while (!cpumask_intersects(cs->effective_cpus, pmask)) {
413 		cs = parent_cs(cs);
414 		if (unlikely(!cs)) {
415 			/*
416 			 * The top cpuset doesn't have any online cpu as a
417 			 * consequence of a race between cpuset_hotplug_work
418 			 * and cpu hotplug notifier.  But we know the top
419 			 * cpuset's effective_cpus is on its way to be
420 			 * identical to cpu_online_mask.
421 			 */
422 			goto out_unlock;
423 		}
424 	}
425 	cpumask_and(pmask, pmask, cs->effective_cpus);
426 
427 out_unlock:
428 	rcu_read_unlock();
429 }
430 
431 /*
432  * Return in *pmask the portion of a cpusets's mems_allowed that
433  * are online, with memory.  If none are online with memory, walk
434  * up the cpuset hierarchy until we find one that does have some
435  * online mems.  The top cpuset always has some mems online.
436  *
437  * One way or another, we guarantee to return some non-empty subset
438  * of node_states[N_MEMORY].
439  *
440  * Call with callback_lock or cpuset_rwsem held.
441  */
442 static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
443 {
444 	while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
445 		cs = parent_cs(cs);
446 	nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
447 }
448 
449 /*
450  * update task's spread flag if cpuset's page/slab spread flag is set
451  *
452  * Call with callback_lock or cpuset_rwsem held.
453  */
454 static void cpuset_update_task_spread_flag(struct cpuset *cs,
455 					struct task_struct *tsk)
456 {
457 	if (is_spread_page(cs))
458 		task_set_spread_page(tsk);
459 	else
460 		task_clear_spread_page(tsk);
461 
462 	if (is_spread_slab(cs))
463 		task_set_spread_slab(tsk);
464 	else
465 		task_clear_spread_slab(tsk);
466 }
467 
468 /*
469  * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
470  *
471  * One cpuset is a subset of another if all its allowed CPUs and
472  * Memory Nodes are a subset of the other, and its exclusive flags
473  * are only set if the other's are set.  Call holding cpuset_rwsem.
474  */
475 
476 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
477 {
478 	return	cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
479 		nodes_subset(p->mems_allowed, q->mems_allowed) &&
480 		is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
481 		is_mem_exclusive(p) <= is_mem_exclusive(q);
482 }
483 
484 /**
485  * alloc_cpumasks - allocate three cpumasks for cpuset
486  * @cs:  the cpuset that have cpumasks to be allocated.
487  * @tmp: the tmpmasks structure pointer
488  * Return: 0 if successful, -ENOMEM otherwise.
489  *
490  * Only one of the two input arguments should be non-NULL.
491  */
492 static inline int alloc_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
493 {
494 	cpumask_var_t *pmask1, *pmask2, *pmask3;
495 
496 	if (cs) {
497 		pmask1 = &cs->cpus_allowed;
498 		pmask2 = &cs->effective_cpus;
499 		pmask3 = &cs->subparts_cpus;
500 	} else {
501 		pmask1 = &tmp->new_cpus;
502 		pmask2 = &tmp->addmask;
503 		pmask3 = &tmp->delmask;
504 	}
505 
506 	if (!zalloc_cpumask_var(pmask1, GFP_KERNEL))
507 		return -ENOMEM;
508 
509 	if (!zalloc_cpumask_var(pmask2, GFP_KERNEL))
510 		goto free_one;
511 
512 	if (!zalloc_cpumask_var(pmask3, GFP_KERNEL))
513 		goto free_two;
514 
515 	return 0;
516 
517 free_two:
518 	free_cpumask_var(*pmask2);
519 free_one:
520 	free_cpumask_var(*pmask1);
521 	return -ENOMEM;
522 }
523 
524 /**
525  * free_cpumasks - free cpumasks in a tmpmasks structure
526  * @cs:  the cpuset that have cpumasks to be free.
527  * @tmp: the tmpmasks structure pointer
528  */
529 static inline void free_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
530 {
531 	if (cs) {
532 		free_cpumask_var(cs->cpus_allowed);
533 		free_cpumask_var(cs->effective_cpus);
534 		free_cpumask_var(cs->subparts_cpus);
535 	}
536 	if (tmp) {
537 		free_cpumask_var(tmp->new_cpus);
538 		free_cpumask_var(tmp->addmask);
539 		free_cpumask_var(tmp->delmask);
540 	}
541 }
542 
543 /**
544  * alloc_trial_cpuset - allocate a trial cpuset
545  * @cs: the cpuset that the trial cpuset duplicates
546  */
547 static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
548 {
549 	struct cpuset *trial;
550 
551 	trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
552 	if (!trial)
553 		return NULL;
554 
555 	if (alloc_cpumasks(trial, NULL)) {
556 		kfree(trial);
557 		return NULL;
558 	}
559 
560 	cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
561 	cpumask_copy(trial->effective_cpus, cs->effective_cpus);
562 	return trial;
563 }
564 
565 /**
566  * free_cpuset - free the cpuset
567  * @cs: the cpuset to be freed
568  */
569 static inline void free_cpuset(struct cpuset *cs)
570 {
571 	free_cpumasks(cs, NULL);
572 	kfree(cs);
573 }
574 
575 /*
576  * validate_change() - Used to validate that any proposed cpuset change
577  *		       follows the structural rules for cpusets.
578  *
579  * If we replaced the flag and mask values of the current cpuset
580  * (cur) with those values in the trial cpuset (trial), would
581  * our various subset and exclusive rules still be valid?  Presumes
582  * cpuset_rwsem held.
583  *
584  * 'cur' is the address of an actual, in-use cpuset.  Operations
585  * such as list traversal that depend on the actual address of the
586  * cpuset in the list must use cur below, not trial.
587  *
588  * 'trial' is the address of bulk structure copy of cur, with
589  * perhaps one or more of the fields cpus_allowed, mems_allowed,
590  * or flags changed to new, trial values.
591  *
592  * Return 0 if valid, -errno if not.
593  */
594 
595 static int validate_change(struct cpuset *cur, struct cpuset *trial)
596 {
597 	struct cgroup_subsys_state *css;
598 	struct cpuset *c, *par;
599 	int ret;
600 
601 	rcu_read_lock();
602 
603 	/* Each of our child cpusets must be a subset of us */
604 	ret = -EBUSY;
605 	cpuset_for_each_child(c, css, cur)
606 		if (!is_cpuset_subset(c, trial))
607 			goto out;
608 
609 	/* Remaining checks don't apply to root cpuset */
610 	ret = 0;
611 	if (cur == &top_cpuset)
612 		goto out;
613 
614 	par = parent_cs(cur);
615 
616 	/* On legacy hierarchy, we must be a subset of our parent cpuset. */
617 	ret = -EACCES;
618 	if (!is_in_v2_mode() && !is_cpuset_subset(trial, par))
619 		goto out;
620 
621 	/*
622 	 * If either I or some sibling (!= me) is exclusive, we can't
623 	 * overlap
624 	 */
625 	ret = -EINVAL;
626 	cpuset_for_each_child(c, css, par) {
627 		if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
628 		    c != cur &&
629 		    cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
630 			goto out;
631 		if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
632 		    c != cur &&
633 		    nodes_intersects(trial->mems_allowed, c->mems_allowed))
634 			goto out;
635 	}
636 
637 	/*
638 	 * Cpusets with tasks - existing or newly being attached - can't
639 	 * be changed to have empty cpus_allowed or mems_allowed.
640 	 */
641 	ret = -ENOSPC;
642 	if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) {
643 		if (!cpumask_empty(cur->cpus_allowed) &&
644 		    cpumask_empty(trial->cpus_allowed))
645 			goto out;
646 		if (!nodes_empty(cur->mems_allowed) &&
647 		    nodes_empty(trial->mems_allowed))
648 			goto out;
649 	}
650 
651 	/*
652 	 * We can't shrink if we won't have enough room for SCHED_DEADLINE
653 	 * tasks.
654 	 */
655 	ret = -EBUSY;
656 	if (is_cpu_exclusive(cur) &&
657 	    !cpuset_cpumask_can_shrink(cur->cpus_allowed,
658 				       trial->cpus_allowed))
659 		goto out;
660 
661 	ret = 0;
662 out:
663 	rcu_read_unlock();
664 	return ret;
665 }
666 
667 #ifdef CONFIG_SMP
668 /*
669  * Helper routine for generate_sched_domains().
670  * Do cpusets a, b have overlapping effective cpus_allowed masks?
671  */
672 static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
673 {
674 	return cpumask_intersects(a->effective_cpus, b->effective_cpus);
675 }
676 
677 static void
678 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
679 {
680 	if (dattr->relax_domain_level < c->relax_domain_level)
681 		dattr->relax_domain_level = c->relax_domain_level;
682 	return;
683 }
684 
685 static void update_domain_attr_tree(struct sched_domain_attr *dattr,
686 				    struct cpuset *root_cs)
687 {
688 	struct cpuset *cp;
689 	struct cgroup_subsys_state *pos_css;
690 
691 	rcu_read_lock();
692 	cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
693 		/* skip the whole subtree if @cp doesn't have any CPU */
694 		if (cpumask_empty(cp->cpus_allowed)) {
695 			pos_css = css_rightmost_descendant(pos_css);
696 			continue;
697 		}
698 
699 		if (is_sched_load_balance(cp))
700 			update_domain_attr(dattr, cp);
701 	}
702 	rcu_read_unlock();
703 }
704 
705 /* Must be called with cpuset_rwsem held.  */
706 static inline int nr_cpusets(void)
707 {
708 	/* jump label reference count + the top-level cpuset */
709 	return static_key_count(&cpusets_enabled_key.key) + 1;
710 }
711 
712 /*
713  * generate_sched_domains()
714  *
715  * This function builds a partial partition of the systems CPUs
716  * A 'partial partition' is a set of non-overlapping subsets whose
717  * union is a subset of that set.
718  * The output of this function needs to be passed to kernel/sched/core.c
719  * partition_sched_domains() routine, which will rebuild the scheduler's
720  * load balancing domains (sched domains) as specified by that partial
721  * partition.
722  *
723  * See "What is sched_load_balance" in Documentation/admin-guide/cgroup-v1/cpusets.rst
724  * for a background explanation of this.
725  *
726  * Does not return errors, on the theory that the callers of this
727  * routine would rather not worry about failures to rebuild sched
728  * domains when operating in the severe memory shortage situations
729  * that could cause allocation failures below.
730  *
731  * Must be called with cpuset_rwsem held.
732  *
733  * The three key local variables below are:
734  *    cp - cpuset pointer, used (together with pos_css) to perform a
735  *	   top-down scan of all cpusets. For our purposes, rebuilding
736  *	   the schedulers sched domains, we can ignore !is_sched_load_
737  *	   balance cpusets.
738  *  csa  - (for CpuSet Array) Array of pointers to all the cpusets
739  *	   that need to be load balanced, for convenient iterative
740  *	   access by the subsequent code that finds the best partition,
741  *	   i.e the set of domains (subsets) of CPUs such that the
742  *	   cpus_allowed of every cpuset marked is_sched_load_balance
743  *	   is a subset of one of these domains, while there are as
744  *	   many such domains as possible, each as small as possible.
745  * doms  - Conversion of 'csa' to an array of cpumasks, for passing to
746  *	   the kernel/sched/core.c routine partition_sched_domains() in a
747  *	   convenient format, that can be easily compared to the prior
748  *	   value to determine what partition elements (sched domains)
749  *	   were changed (added or removed.)
750  *
751  * Finding the best partition (set of domains):
752  *	The triple nested loops below over i, j, k scan over the
753  *	load balanced cpusets (using the array of cpuset pointers in
754  *	csa[]) looking for pairs of cpusets that have overlapping
755  *	cpus_allowed, but which don't have the same 'pn' partition
756  *	number and gives them in the same partition number.  It keeps
757  *	looping on the 'restart' label until it can no longer find
758  *	any such pairs.
759  *
760  *	The union of the cpus_allowed masks from the set of
761  *	all cpusets having the same 'pn' value then form the one
762  *	element of the partition (one sched domain) to be passed to
763  *	partition_sched_domains().
764  */
765 static int generate_sched_domains(cpumask_var_t **domains,
766 			struct sched_domain_attr **attributes)
767 {
768 	struct cpuset *cp;	/* top-down scan of cpusets */
769 	struct cpuset **csa;	/* array of all cpuset ptrs */
770 	int csn;		/* how many cpuset ptrs in csa so far */
771 	int i, j, k;		/* indices for partition finding loops */
772 	cpumask_var_t *doms;	/* resulting partition; i.e. sched domains */
773 	struct sched_domain_attr *dattr;  /* attributes for custom domains */
774 	int ndoms = 0;		/* number of sched domains in result */
775 	int nslot;		/* next empty doms[] struct cpumask slot */
776 	struct cgroup_subsys_state *pos_css;
777 	bool root_load_balance = is_sched_load_balance(&top_cpuset);
778 
779 	doms = NULL;
780 	dattr = NULL;
781 	csa = NULL;
782 
783 	/* Special case for the 99% of systems with one, full, sched domain */
784 	if (root_load_balance && !top_cpuset.nr_subparts_cpus) {
785 		ndoms = 1;
786 		doms = alloc_sched_domains(ndoms);
787 		if (!doms)
788 			goto done;
789 
790 		dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
791 		if (dattr) {
792 			*dattr = SD_ATTR_INIT;
793 			update_domain_attr_tree(dattr, &top_cpuset);
794 		}
795 		cpumask_and(doms[0], top_cpuset.effective_cpus,
796 			    housekeeping_cpumask(HK_FLAG_DOMAIN));
797 
798 		goto done;
799 	}
800 
801 	csa = kmalloc_array(nr_cpusets(), sizeof(cp), GFP_KERNEL);
802 	if (!csa)
803 		goto done;
804 	csn = 0;
805 
806 	rcu_read_lock();
807 	if (root_load_balance)
808 		csa[csn++] = &top_cpuset;
809 	cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
810 		if (cp == &top_cpuset)
811 			continue;
812 		/*
813 		 * Continue traversing beyond @cp iff @cp has some CPUs and
814 		 * isn't load balancing.  The former is obvious.  The
815 		 * latter: All child cpusets contain a subset of the
816 		 * parent's cpus, so just skip them, and then we call
817 		 * update_domain_attr_tree() to calc relax_domain_level of
818 		 * the corresponding sched domain.
819 		 *
820 		 * If root is load-balancing, we can skip @cp if it
821 		 * is a subset of the root's effective_cpus.
822 		 */
823 		if (!cpumask_empty(cp->cpus_allowed) &&
824 		    !(is_sched_load_balance(cp) &&
825 		      cpumask_intersects(cp->cpus_allowed,
826 					 housekeeping_cpumask(HK_FLAG_DOMAIN))))
827 			continue;
828 
829 		if (root_load_balance &&
830 		    cpumask_subset(cp->cpus_allowed, top_cpuset.effective_cpus))
831 			continue;
832 
833 		if (is_sched_load_balance(cp) &&
834 		    !cpumask_empty(cp->effective_cpus))
835 			csa[csn++] = cp;
836 
837 		/* skip @cp's subtree if not a partition root */
838 		if (!is_partition_root(cp))
839 			pos_css = css_rightmost_descendant(pos_css);
840 	}
841 	rcu_read_unlock();
842 
843 	for (i = 0; i < csn; i++)
844 		csa[i]->pn = i;
845 	ndoms = csn;
846 
847 restart:
848 	/* Find the best partition (set of sched domains) */
849 	for (i = 0; i < csn; i++) {
850 		struct cpuset *a = csa[i];
851 		int apn = a->pn;
852 
853 		for (j = 0; j < csn; j++) {
854 			struct cpuset *b = csa[j];
855 			int bpn = b->pn;
856 
857 			if (apn != bpn && cpusets_overlap(a, b)) {
858 				for (k = 0; k < csn; k++) {
859 					struct cpuset *c = csa[k];
860 
861 					if (c->pn == bpn)
862 						c->pn = apn;
863 				}
864 				ndoms--;	/* one less element */
865 				goto restart;
866 			}
867 		}
868 	}
869 
870 	/*
871 	 * Now we know how many domains to create.
872 	 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
873 	 */
874 	doms = alloc_sched_domains(ndoms);
875 	if (!doms)
876 		goto done;
877 
878 	/*
879 	 * The rest of the code, including the scheduler, can deal with
880 	 * dattr==NULL case. No need to abort if alloc fails.
881 	 */
882 	dattr = kmalloc_array(ndoms, sizeof(struct sched_domain_attr),
883 			      GFP_KERNEL);
884 
885 	for (nslot = 0, i = 0; i < csn; i++) {
886 		struct cpuset *a = csa[i];
887 		struct cpumask *dp;
888 		int apn = a->pn;
889 
890 		if (apn < 0) {
891 			/* Skip completed partitions */
892 			continue;
893 		}
894 
895 		dp = doms[nslot];
896 
897 		if (nslot == ndoms) {
898 			static int warnings = 10;
899 			if (warnings) {
900 				pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
901 					nslot, ndoms, csn, i, apn);
902 				warnings--;
903 			}
904 			continue;
905 		}
906 
907 		cpumask_clear(dp);
908 		if (dattr)
909 			*(dattr + nslot) = SD_ATTR_INIT;
910 		for (j = i; j < csn; j++) {
911 			struct cpuset *b = csa[j];
912 
913 			if (apn == b->pn) {
914 				cpumask_or(dp, dp, b->effective_cpus);
915 				cpumask_and(dp, dp, housekeeping_cpumask(HK_FLAG_DOMAIN));
916 				if (dattr)
917 					update_domain_attr_tree(dattr + nslot, b);
918 
919 				/* Done with this partition */
920 				b->pn = -1;
921 			}
922 		}
923 		nslot++;
924 	}
925 	BUG_ON(nslot != ndoms);
926 
927 done:
928 	kfree(csa);
929 
930 	/*
931 	 * Fallback to the default domain if kmalloc() failed.
932 	 * See comments in partition_sched_domains().
933 	 */
934 	if (doms == NULL)
935 		ndoms = 1;
936 
937 	*domains    = doms;
938 	*attributes = dattr;
939 	return ndoms;
940 }
941 
942 static void update_tasks_root_domain(struct cpuset *cs)
943 {
944 	struct css_task_iter it;
945 	struct task_struct *task;
946 
947 	css_task_iter_start(&cs->css, 0, &it);
948 
949 	while ((task = css_task_iter_next(&it)))
950 		dl_add_task_root_domain(task);
951 
952 	css_task_iter_end(&it);
953 }
954 
955 static void rebuild_root_domains(void)
956 {
957 	struct cpuset *cs = NULL;
958 	struct cgroup_subsys_state *pos_css;
959 
960 	percpu_rwsem_assert_held(&cpuset_rwsem);
961 	lockdep_assert_cpus_held();
962 	lockdep_assert_held(&sched_domains_mutex);
963 
964 	rcu_read_lock();
965 
966 	/*
967 	 * Clear default root domain DL accounting, it will be computed again
968 	 * if a task belongs to it.
969 	 */
970 	dl_clear_root_domain(&def_root_domain);
971 
972 	cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
973 
974 		if (cpumask_empty(cs->effective_cpus)) {
975 			pos_css = css_rightmost_descendant(pos_css);
976 			continue;
977 		}
978 
979 		css_get(&cs->css);
980 
981 		rcu_read_unlock();
982 
983 		update_tasks_root_domain(cs);
984 
985 		rcu_read_lock();
986 		css_put(&cs->css);
987 	}
988 	rcu_read_unlock();
989 }
990 
991 static void
992 partition_and_rebuild_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
993 				    struct sched_domain_attr *dattr_new)
994 {
995 	mutex_lock(&sched_domains_mutex);
996 	partition_sched_domains_locked(ndoms_new, doms_new, dattr_new);
997 	rebuild_root_domains();
998 	mutex_unlock(&sched_domains_mutex);
999 }
1000 
1001 /*
1002  * Rebuild scheduler domains.
1003  *
1004  * If the flag 'sched_load_balance' of any cpuset with non-empty
1005  * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
1006  * which has that flag enabled, or if any cpuset with a non-empty
1007  * 'cpus' is removed, then call this routine to rebuild the
1008  * scheduler's dynamic sched domains.
1009  *
1010  * Call with cpuset_rwsem held.  Takes cpus_read_lock().
1011  */
1012 static void rebuild_sched_domains_locked(void)
1013 {
1014 	struct cgroup_subsys_state *pos_css;
1015 	struct sched_domain_attr *attr;
1016 	cpumask_var_t *doms;
1017 	struct cpuset *cs;
1018 	int ndoms;
1019 
1020 	lockdep_assert_cpus_held();
1021 	percpu_rwsem_assert_held(&cpuset_rwsem);
1022 
1023 	/*
1024 	 * If we have raced with CPU hotplug, return early to avoid
1025 	 * passing doms with offlined cpu to partition_sched_domains().
1026 	 * Anyways, cpuset_hotplug_workfn() will rebuild sched domains.
1027 	 *
1028 	 * With no CPUs in any subpartitions, top_cpuset's effective CPUs
1029 	 * should be the same as the active CPUs, so checking only top_cpuset
1030 	 * is enough to detect racing CPU offlines.
1031 	 */
1032 	if (!top_cpuset.nr_subparts_cpus &&
1033 	    !cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
1034 		return;
1035 
1036 	/*
1037 	 * With subpartition CPUs, however, the effective CPUs of a partition
1038 	 * root should be only a subset of the active CPUs.  Since a CPU in any
1039 	 * partition root could be offlined, all must be checked.
1040 	 */
1041 	if (top_cpuset.nr_subparts_cpus) {
1042 		rcu_read_lock();
1043 		cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
1044 			if (!is_partition_root(cs)) {
1045 				pos_css = css_rightmost_descendant(pos_css);
1046 				continue;
1047 			}
1048 			if (!cpumask_subset(cs->effective_cpus,
1049 					    cpu_active_mask)) {
1050 				rcu_read_unlock();
1051 				return;
1052 			}
1053 		}
1054 		rcu_read_unlock();
1055 	}
1056 
1057 	/* Generate domain masks and attrs */
1058 	ndoms = generate_sched_domains(&doms, &attr);
1059 
1060 	/* Have scheduler rebuild the domains */
1061 	partition_and_rebuild_sched_domains(ndoms, doms, attr);
1062 }
1063 #else /* !CONFIG_SMP */
1064 static void rebuild_sched_domains_locked(void)
1065 {
1066 }
1067 #endif /* CONFIG_SMP */
1068 
1069 void rebuild_sched_domains(void)
1070 {
1071 	cpus_read_lock();
1072 	percpu_down_write(&cpuset_rwsem);
1073 	rebuild_sched_domains_locked();
1074 	percpu_up_write(&cpuset_rwsem);
1075 	cpus_read_unlock();
1076 }
1077 
1078 /**
1079  * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
1080  * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
1081  *
1082  * Iterate through each task of @cs updating its cpus_allowed to the
1083  * effective cpuset's.  As this function is called with cpuset_rwsem held,
1084  * cpuset membership stays stable.
1085  */
1086 static void update_tasks_cpumask(struct cpuset *cs)
1087 {
1088 	struct css_task_iter it;
1089 	struct task_struct *task;
1090 
1091 	css_task_iter_start(&cs->css, 0, &it);
1092 	while ((task = css_task_iter_next(&it)))
1093 		set_cpus_allowed_ptr(task, cs->effective_cpus);
1094 	css_task_iter_end(&it);
1095 }
1096 
1097 /**
1098  * compute_effective_cpumask - Compute the effective cpumask of the cpuset
1099  * @new_cpus: the temp variable for the new effective_cpus mask
1100  * @cs: the cpuset the need to recompute the new effective_cpus mask
1101  * @parent: the parent cpuset
1102  *
1103  * If the parent has subpartition CPUs, include them in the list of
1104  * allowable CPUs in computing the new effective_cpus mask. Since offlined
1105  * CPUs are not removed from subparts_cpus, we have to use cpu_active_mask
1106  * to mask those out.
1107  */
1108 static void compute_effective_cpumask(struct cpumask *new_cpus,
1109 				      struct cpuset *cs, struct cpuset *parent)
1110 {
1111 	if (parent->nr_subparts_cpus) {
1112 		cpumask_or(new_cpus, parent->effective_cpus,
1113 			   parent->subparts_cpus);
1114 		cpumask_and(new_cpus, new_cpus, cs->cpus_allowed);
1115 		cpumask_and(new_cpus, new_cpus, cpu_active_mask);
1116 	} else {
1117 		cpumask_and(new_cpus, cs->cpus_allowed, parent->effective_cpus);
1118 	}
1119 }
1120 
1121 /*
1122  * Commands for update_parent_subparts_cpumask
1123  */
1124 enum subparts_cmd {
1125 	partcmd_enable,		/* Enable partition root	 */
1126 	partcmd_disable,	/* Disable partition root	 */
1127 	partcmd_update,		/* Update parent's subparts_cpus */
1128 };
1129 
1130 /**
1131  * update_parent_subparts_cpumask - update subparts_cpus mask of parent cpuset
1132  * @cpuset:  The cpuset that requests change in partition root state
1133  * @cmd:     Partition root state change command
1134  * @newmask: Optional new cpumask for partcmd_update
1135  * @tmp:     Temporary addmask and delmask
1136  * Return:   0, 1 or an error code
1137  *
1138  * For partcmd_enable, the cpuset is being transformed from a non-partition
1139  * root to a partition root. The cpus_allowed mask of the given cpuset will
1140  * be put into parent's subparts_cpus and taken away from parent's
1141  * effective_cpus. The function will return 0 if all the CPUs listed in
1142  * cpus_allowed can be granted or an error code will be returned.
1143  *
1144  * For partcmd_disable, the cpuset is being transofrmed from a partition
1145  * root back to a non-partition root. Any CPUs in cpus_allowed that are in
1146  * parent's subparts_cpus will be taken away from that cpumask and put back
1147  * into parent's effective_cpus. 0 should always be returned.
1148  *
1149  * For partcmd_update, if the optional newmask is specified, the cpu
1150  * list is to be changed from cpus_allowed to newmask. Otherwise,
1151  * cpus_allowed is assumed to remain the same. The cpuset should either
1152  * be a partition root or an invalid partition root. The partition root
1153  * state may change if newmask is NULL and none of the requested CPUs can
1154  * be granted by the parent. The function will return 1 if changes to
1155  * parent's subparts_cpus and effective_cpus happen or 0 otherwise.
1156  * Error code should only be returned when newmask is non-NULL.
1157  *
1158  * The partcmd_enable and partcmd_disable commands are used by
1159  * update_prstate(). The partcmd_update command is used by
1160  * update_cpumasks_hier() with newmask NULL and update_cpumask() with
1161  * newmask set.
1162  *
1163  * The checking is more strict when enabling partition root than the
1164  * other two commands.
1165  *
1166  * Because of the implicit cpu exclusive nature of a partition root,
1167  * cpumask changes that violates the cpu exclusivity rule will not be
1168  * permitted when checked by validate_change(). The validate_change()
1169  * function will also prevent any changes to the cpu list if it is not
1170  * a superset of children's cpu lists.
1171  */
1172 static int update_parent_subparts_cpumask(struct cpuset *cpuset, int cmd,
1173 					  struct cpumask *newmask,
1174 					  struct tmpmasks *tmp)
1175 {
1176 	struct cpuset *parent = parent_cs(cpuset);
1177 	int adding;	/* Moving cpus from effective_cpus to subparts_cpus */
1178 	int deleting;	/* Moving cpus from subparts_cpus to effective_cpus */
1179 	int old_prs, new_prs;
1180 	bool part_error = false;	/* Partition error? */
1181 
1182 	percpu_rwsem_assert_held(&cpuset_rwsem);
1183 
1184 	/*
1185 	 * The parent must be a partition root.
1186 	 * The new cpumask, if present, or the current cpus_allowed must
1187 	 * not be empty.
1188 	 */
1189 	if (!is_partition_root(parent) ||
1190 	   (newmask && cpumask_empty(newmask)) ||
1191 	   (!newmask && cpumask_empty(cpuset->cpus_allowed)))
1192 		return -EINVAL;
1193 
1194 	/*
1195 	 * Enabling/disabling partition root is not allowed if there are
1196 	 * online children.
1197 	 */
1198 	if ((cmd != partcmd_update) && css_has_online_children(&cpuset->css))
1199 		return -EBUSY;
1200 
1201 	/*
1202 	 * Enabling partition root is not allowed if not all the CPUs
1203 	 * can be granted from parent's effective_cpus or at least one
1204 	 * CPU will be left after that.
1205 	 */
1206 	if ((cmd == partcmd_enable) &&
1207 	   (!cpumask_subset(cpuset->cpus_allowed, parent->effective_cpus) ||
1208 	     cpumask_equal(cpuset->cpus_allowed, parent->effective_cpus)))
1209 		return -EINVAL;
1210 
1211 	/*
1212 	 * A cpumask update cannot make parent's effective_cpus become empty.
1213 	 */
1214 	adding = deleting = false;
1215 	old_prs = new_prs = cpuset->partition_root_state;
1216 	if (cmd == partcmd_enable) {
1217 		cpumask_copy(tmp->addmask, cpuset->cpus_allowed);
1218 		adding = true;
1219 	} else if (cmd == partcmd_disable) {
1220 		deleting = cpumask_and(tmp->delmask, cpuset->cpus_allowed,
1221 				       parent->subparts_cpus);
1222 	} else if (newmask) {
1223 		/*
1224 		 * partcmd_update with newmask:
1225 		 *
1226 		 * delmask = cpus_allowed & ~newmask & parent->subparts_cpus
1227 		 * addmask = newmask & parent->effective_cpus
1228 		 *		     & ~parent->subparts_cpus
1229 		 */
1230 		cpumask_andnot(tmp->delmask, cpuset->cpus_allowed, newmask);
1231 		deleting = cpumask_and(tmp->delmask, tmp->delmask,
1232 				       parent->subparts_cpus);
1233 
1234 		cpumask_and(tmp->addmask, newmask, parent->effective_cpus);
1235 		adding = cpumask_andnot(tmp->addmask, tmp->addmask,
1236 					parent->subparts_cpus);
1237 		/*
1238 		 * Return error if the new effective_cpus could become empty.
1239 		 */
1240 		if (adding &&
1241 		    cpumask_equal(parent->effective_cpus, tmp->addmask)) {
1242 			if (!deleting)
1243 				return -EINVAL;
1244 			/*
1245 			 * As some of the CPUs in subparts_cpus might have
1246 			 * been offlined, we need to compute the real delmask
1247 			 * to confirm that.
1248 			 */
1249 			if (!cpumask_and(tmp->addmask, tmp->delmask,
1250 					 cpu_active_mask))
1251 				return -EINVAL;
1252 			cpumask_copy(tmp->addmask, parent->effective_cpus);
1253 		}
1254 	} else {
1255 		/*
1256 		 * partcmd_update w/o newmask:
1257 		 *
1258 		 * addmask = cpus_allowed & parent->effective_cpus
1259 		 *
1260 		 * Note that parent's subparts_cpus may have been
1261 		 * pre-shrunk in case there is a change in the cpu list.
1262 		 * So no deletion is needed.
1263 		 */
1264 		adding = cpumask_and(tmp->addmask, cpuset->cpus_allowed,
1265 				     parent->effective_cpus);
1266 		part_error = cpumask_equal(tmp->addmask,
1267 					   parent->effective_cpus);
1268 	}
1269 
1270 	if (cmd == partcmd_update) {
1271 		int prev_prs = cpuset->partition_root_state;
1272 
1273 		/*
1274 		 * Check for possible transition between PRS_ENABLED
1275 		 * and PRS_ERROR.
1276 		 */
1277 		switch (cpuset->partition_root_state) {
1278 		case PRS_ENABLED:
1279 			if (part_error)
1280 				new_prs = PRS_ERROR;
1281 			break;
1282 		case PRS_ERROR:
1283 			if (!part_error)
1284 				new_prs = PRS_ENABLED;
1285 			break;
1286 		}
1287 		/*
1288 		 * Set part_error if previously in invalid state.
1289 		 */
1290 		part_error = (prev_prs == PRS_ERROR);
1291 	}
1292 
1293 	if (!part_error && (new_prs == PRS_ERROR))
1294 		return 0;	/* Nothing need to be done */
1295 
1296 	if (new_prs == PRS_ERROR) {
1297 		/*
1298 		 * Remove all its cpus from parent's subparts_cpus.
1299 		 */
1300 		adding = false;
1301 		deleting = cpumask_and(tmp->delmask, cpuset->cpus_allowed,
1302 				       parent->subparts_cpus);
1303 	}
1304 
1305 	if (!adding && !deleting && (new_prs == old_prs))
1306 		return 0;
1307 
1308 	/*
1309 	 * Change the parent's subparts_cpus.
1310 	 * Newly added CPUs will be removed from effective_cpus and
1311 	 * newly deleted ones will be added back to effective_cpus.
1312 	 */
1313 	spin_lock_irq(&callback_lock);
1314 	if (adding) {
1315 		cpumask_or(parent->subparts_cpus,
1316 			   parent->subparts_cpus, tmp->addmask);
1317 		cpumask_andnot(parent->effective_cpus,
1318 			       parent->effective_cpus, tmp->addmask);
1319 	}
1320 	if (deleting) {
1321 		cpumask_andnot(parent->subparts_cpus,
1322 			       parent->subparts_cpus, tmp->delmask);
1323 		/*
1324 		 * Some of the CPUs in subparts_cpus might have been offlined.
1325 		 */
1326 		cpumask_and(tmp->delmask, tmp->delmask, cpu_active_mask);
1327 		cpumask_or(parent->effective_cpus,
1328 			   parent->effective_cpus, tmp->delmask);
1329 	}
1330 
1331 	parent->nr_subparts_cpus = cpumask_weight(parent->subparts_cpus);
1332 
1333 	if (old_prs != new_prs)
1334 		cpuset->partition_root_state = new_prs;
1335 
1336 	spin_unlock_irq(&callback_lock);
1337 	notify_partition_change(cpuset, old_prs, new_prs);
1338 
1339 	return cmd == partcmd_update;
1340 }
1341 
1342 /*
1343  * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
1344  * @cs:  the cpuset to consider
1345  * @tmp: temp variables for calculating effective_cpus & partition setup
1346  *
1347  * When configured cpumask is changed, the effective cpumasks of this cpuset
1348  * and all its descendants need to be updated.
1349  *
1350  * On legacy hierarchy, effective_cpus will be the same with cpu_allowed.
1351  *
1352  * Called with cpuset_rwsem held
1353  */
1354 static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp)
1355 {
1356 	struct cpuset *cp;
1357 	struct cgroup_subsys_state *pos_css;
1358 	bool need_rebuild_sched_domains = false;
1359 	int old_prs, new_prs;
1360 
1361 	rcu_read_lock();
1362 	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1363 		struct cpuset *parent = parent_cs(cp);
1364 
1365 		compute_effective_cpumask(tmp->new_cpus, cp, parent);
1366 
1367 		/*
1368 		 * If it becomes empty, inherit the effective mask of the
1369 		 * parent, which is guaranteed to have some CPUs.
1370 		 */
1371 		if (is_in_v2_mode() && cpumask_empty(tmp->new_cpus)) {
1372 			cpumask_copy(tmp->new_cpus, parent->effective_cpus);
1373 			if (!cp->use_parent_ecpus) {
1374 				cp->use_parent_ecpus = true;
1375 				parent->child_ecpus_count++;
1376 			}
1377 		} else if (cp->use_parent_ecpus) {
1378 			cp->use_parent_ecpus = false;
1379 			WARN_ON_ONCE(!parent->child_ecpus_count);
1380 			parent->child_ecpus_count--;
1381 		}
1382 
1383 		/*
1384 		 * Skip the whole subtree if the cpumask remains the same
1385 		 * and has no partition root state.
1386 		 */
1387 		if (!cp->partition_root_state &&
1388 		    cpumask_equal(tmp->new_cpus, cp->effective_cpus)) {
1389 			pos_css = css_rightmost_descendant(pos_css);
1390 			continue;
1391 		}
1392 
1393 		/*
1394 		 * update_parent_subparts_cpumask() should have been called
1395 		 * for cs already in update_cpumask(). We should also call
1396 		 * update_tasks_cpumask() again for tasks in the parent
1397 		 * cpuset if the parent's subparts_cpus changes.
1398 		 */
1399 		old_prs = new_prs = cp->partition_root_state;
1400 		if ((cp != cs) && old_prs) {
1401 			switch (parent->partition_root_state) {
1402 			case PRS_DISABLED:
1403 				/*
1404 				 * If parent is not a partition root or an
1405 				 * invalid partition root, clear its state
1406 				 * and its CS_CPU_EXCLUSIVE flag.
1407 				 */
1408 				WARN_ON_ONCE(cp->partition_root_state
1409 					     != PRS_ERROR);
1410 				new_prs = PRS_DISABLED;
1411 
1412 				/*
1413 				 * clear_bit() is an atomic operation and
1414 				 * readers aren't interested in the state
1415 				 * of CS_CPU_EXCLUSIVE anyway. So we can
1416 				 * just update the flag without holding
1417 				 * the callback_lock.
1418 				 */
1419 				clear_bit(CS_CPU_EXCLUSIVE, &cp->flags);
1420 				break;
1421 
1422 			case PRS_ENABLED:
1423 				if (update_parent_subparts_cpumask(cp, partcmd_update, NULL, tmp))
1424 					update_tasks_cpumask(parent);
1425 				break;
1426 
1427 			case PRS_ERROR:
1428 				/*
1429 				 * When parent is invalid, it has to be too.
1430 				 */
1431 				new_prs = PRS_ERROR;
1432 				break;
1433 			}
1434 		}
1435 
1436 		if (!css_tryget_online(&cp->css))
1437 			continue;
1438 		rcu_read_unlock();
1439 
1440 		spin_lock_irq(&callback_lock);
1441 
1442 		cpumask_copy(cp->effective_cpus, tmp->new_cpus);
1443 		if (cp->nr_subparts_cpus && (new_prs != PRS_ENABLED)) {
1444 			cp->nr_subparts_cpus = 0;
1445 			cpumask_clear(cp->subparts_cpus);
1446 		} else if (cp->nr_subparts_cpus) {
1447 			/*
1448 			 * Make sure that effective_cpus & subparts_cpus
1449 			 * are mutually exclusive.
1450 			 *
1451 			 * In the unlikely event that effective_cpus
1452 			 * becomes empty. we clear cp->nr_subparts_cpus and
1453 			 * let its child partition roots to compete for
1454 			 * CPUs again.
1455 			 */
1456 			cpumask_andnot(cp->effective_cpus, cp->effective_cpus,
1457 				       cp->subparts_cpus);
1458 			if (cpumask_empty(cp->effective_cpus)) {
1459 				cpumask_copy(cp->effective_cpus, tmp->new_cpus);
1460 				cpumask_clear(cp->subparts_cpus);
1461 				cp->nr_subparts_cpus = 0;
1462 			} else if (!cpumask_subset(cp->subparts_cpus,
1463 						   tmp->new_cpus)) {
1464 				cpumask_andnot(cp->subparts_cpus,
1465 					cp->subparts_cpus, tmp->new_cpus);
1466 				cp->nr_subparts_cpus
1467 					= cpumask_weight(cp->subparts_cpus);
1468 			}
1469 		}
1470 
1471 		if (new_prs != old_prs)
1472 			cp->partition_root_state = new_prs;
1473 
1474 		spin_unlock_irq(&callback_lock);
1475 		notify_partition_change(cp, old_prs, new_prs);
1476 
1477 		WARN_ON(!is_in_v2_mode() &&
1478 			!cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
1479 
1480 		update_tasks_cpumask(cp);
1481 
1482 		/*
1483 		 * On legacy hierarchy, if the effective cpumask of any non-
1484 		 * empty cpuset is changed, we need to rebuild sched domains.
1485 		 * On default hierarchy, the cpuset needs to be a partition
1486 		 * root as well.
1487 		 */
1488 		if (!cpumask_empty(cp->cpus_allowed) &&
1489 		    is_sched_load_balance(cp) &&
1490 		   (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
1491 		    is_partition_root(cp)))
1492 			need_rebuild_sched_domains = true;
1493 
1494 		rcu_read_lock();
1495 		css_put(&cp->css);
1496 	}
1497 	rcu_read_unlock();
1498 
1499 	if (need_rebuild_sched_domains)
1500 		rebuild_sched_domains_locked();
1501 }
1502 
1503 /**
1504  * update_sibling_cpumasks - Update siblings cpumasks
1505  * @parent:  Parent cpuset
1506  * @cs:      Current cpuset
1507  * @tmp:     Temp variables
1508  */
1509 static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs,
1510 				    struct tmpmasks *tmp)
1511 {
1512 	struct cpuset *sibling;
1513 	struct cgroup_subsys_state *pos_css;
1514 
1515 	/*
1516 	 * Check all its siblings and call update_cpumasks_hier()
1517 	 * if their use_parent_ecpus flag is set in order for them
1518 	 * to use the right effective_cpus value.
1519 	 */
1520 	rcu_read_lock();
1521 	cpuset_for_each_child(sibling, pos_css, parent) {
1522 		if (sibling == cs)
1523 			continue;
1524 		if (!sibling->use_parent_ecpus)
1525 			continue;
1526 
1527 		update_cpumasks_hier(sibling, tmp);
1528 	}
1529 	rcu_read_unlock();
1530 }
1531 
1532 /**
1533  * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
1534  * @cs: the cpuset to consider
1535  * @trialcs: trial cpuset
1536  * @buf: buffer of cpu numbers written to this cpuset
1537  */
1538 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
1539 			  const char *buf)
1540 {
1541 	int retval;
1542 	struct tmpmasks tmp;
1543 
1544 	/* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
1545 	if (cs == &top_cpuset)
1546 		return -EACCES;
1547 
1548 	/*
1549 	 * An empty cpus_allowed is ok only if the cpuset has no tasks.
1550 	 * Since cpulist_parse() fails on an empty mask, we special case
1551 	 * that parsing.  The validate_change() call ensures that cpusets
1552 	 * with tasks have cpus.
1553 	 */
1554 	if (!*buf) {
1555 		cpumask_clear(trialcs->cpus_allowed);
1556 	} else {
1557 		retval = cpulist_parse(buf, trialcs->cpus_allowed);
1558 		if (retval < 0)
1559 			return retval;
1560 
1561 		if (!cpumask_subset(trialcs->cpus_allowed,
1562 				    top_cpuset.cpus_allowed))
1563 			return -EINVAL;
1564 	}
1565 
1566 	/* Nothing to do if the cpus didn't change */
1567 	if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
1568 		return 0;
1569 
1570 	retval = validate_change(cs, trialcs);
1571 	if (retval < 0)
1572 		return retval;
1573 
1574 #ifdef CONFIG_CPUMASK_OFFSTACK
1575 	/*
1576 	 * Use the cpumasks in trialcs for tmpmasks when they are pointers
1577 	 * to allocated cpumasks.
1578 	 */
1579 	tmp.addmask  = trialcs->subparts_cpus;
1580 	tmp.delmask  = trialcs->effective_cpus;
1581 	tmp.new_cpus = trialcs->cpus_allowed;
1582 #endif
1583 
1584 	if (cs->partition_root_state) {
1585 		/* Cpumask of a partition root cannot be empty */
1586 		if (cpumask_empty(trialcs->cpus_allowed))
1587 			return -EINVAL;
1588 		if (update_parent_subparts_cpumask(cs, partcmd_update,
1589 					trialcs->cpus_allowed, &tmp) < 0)
1590 			return -EINVAL;
1591 	}
1592 
1593 	spin_lock_irq(&callback_lock);
1594 	cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
1595 
1596 	/*
1597 	 * Make sure that subparts_cpus is a subset of cpus_allowed.
1598 	 */
1599 	if (cs->nr_subparts_cpus) {
1600 		cpumask_andnot(cs->subparts_cpus, cs->subparts_cpus,
1601 			       cs->cpus_allowed);
1602 		cs->nr_subparts_cpus = cpumask_weight(cs->subparts_cpus);
1603 	}
1604 	spin_unlock_irq(&callback_lock);
1605 
1606 	update_cpumasks_hier(cs, &tmp);
1607 
1608 	if (cs->partition_root_state) {
1609 		struct cpuset *parent = parent_cs(cs);
1610 
1611 		/*
1612 		 * For partition root, update the cpumasks of sibling
1613 		 * cpusets if they use parent's effective_cpus.
1614 		 */
1615 		if (parent->child_ecpus_count)
1616 			update_sibling_cpumasks(parent, cs, &tmp);
1617 	}
1618 	return 0;
1619 }
1620 
1621 /*
1622  * Migrate memory region from one set of nodes to another.  This is
1623  * performed asynchronously as it can be called from process migration path
1624  * holding locks involved in process management.  All mm migrations are
1625  * performed in the queued order and can be waited for by flushing
1626  * cpuset_migrate_mm_wq.
1627  */
1628 
1629 struct cpuset_migrate_mm_work {
1630 	struct work_struct	work;
1631 	struct mm_struct	*mm;
1632 	nodemask_t		from;
1633 	nodemask_t		to;
1634 };
1635 
1636 static void cpuset_migrate_mm_workfn(struct work_struct *work)
1637 {
1638 	struct cpuset_migrate_mm_work *mwork =
1639 		container_of(work, struct cpuset_migrate_mm_work, work);
1640 
1641 	/* on a wq worker, no need to worry about %current's mems_allowed */
1642 	do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL);
1643 	mmput(mwork->mm);
1644 	kfree(mwork);
1645 }
1646 
1647 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
1648 							const nodemask_t *to)
1649 {
1650 	struct cpuset_migrate_mm_work *mwork;
1651 
1652 	if (nodes_equal(*from, *to)) {
1653 		mmput(mm);
1654 		return;
1655 	}
1656 
1657 	mwork = kzalloc(sizeof(*mwork), GFP_KERNEL);
1658 	if (mwork) {
1659 		mwork->mm = mm;
1660 		mwork->from = *from;
1661 		mwork->to = *to;
1662 		INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn);
1663 		queue_work(cpuset_migrate_mm_wq, &mwork->work);
1664 	} else {
1665 		mmput(mm);
1666 	}
1667 }
1668 
1669 static void cpuset_post_attach(void)
1670 {
1671 	flush_workqueue(cpuset_migrate_mm_wq);
1672 }
1673 
1674 /*
1675  * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
1676  * @tsk: the task to change
1677  * @newmems: new nodes that the task will be set
1678  *
1679  * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed
1680  * and rebind an eventual tasks' mempolicy. If the task is allocating in
1681  * parallel, it might temporarily see an empty intersection, which results in
1682  * a seqlock check and retry before OOM or allocation failure.
1683  */
1684 static void cpuset_change_task_nodemask(struct task_struct *tsk,
1685 					nodemask_t *newmems)
1686 {
1687 	task_lock(tsk);
1688 
1689 	local_irq_disable();
1690 	write_seqcount_begin(&tsk->mems_allowed_seq);
1691 
1692 	nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
1693 	mpol_rebind_task(tsk, newmems);
1694 	tsk->mems_allowed = *newmems;
1695 
1696 	write_seqcount_end(&tsk->mems_allowed_seq);
1697 	local_irq_enable();
1698 
1699 	task_unlock(tsk);
1700 }
1701 
1702 static void *cpuset_being_rebound;
1703 
1704 /**
1705  * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1706  * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1707  *
1708  * Iterate through each task of @cs updating its mems_allowed to the
1709  * effective cpuset's.  As this function is called with cpuset_rwsem held,
1710  * cpuset membership stays stable.
1711  */
1712 static void update_tasks_nodemask(struct cpuset *cs)
1713 {
1714 	static nodemask_t newmems;	/* protected by cpuset_rwsem */
1715 	struct css_task_iter it;
1716 	struct task_struct *task;
1717 
1718 	cpuset_being_rebound = cs;		/* causes mpol_dup() rebind */
1719 
1720 	guarantee_online_mems(cs, &newmems);
1721 
1722 	/*
1723 	 * The mpol_rebind_mm() call takes mmap_lock, which we couldn't
1724 	 * take while holding tasklist_lock.  Forks can happen - the
1725 	 * mpol_dup() cpuset_being_rebound check will catch such forks,
1726 	 * and rebind their vma mempolicies too.  Because we still hold
1727 	 * the global cpuset_rwsem, we know that no other rebind effort
1728 	 * will be contending for the global variable cpuset_being_rebound.
1729 	 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1730 	 * is idempotent.  Also migrate pages in each mm to new nodes.
1731 	 */
1732 	css_task_iter_start(&cs->css, 0, &it);
1733 	while ((task = css_task_iter_next(&it))) {
1734 		struct mm_struct *mm;
1735 		bool migrate;
1736 
1737 		cpuset_change_task_nodemask(task, &newmems);
1738 
1739 		mm = get_task_mm(task);
1740 		if (!mm)
1741 			continue;
1742 
1743 		migrate = is_memory_migrate(cs);
1744 
1745 		mpol_rebind_mm(mm, &cs->mems_allowed);
1746 		if (migrate)
1747 			cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
1748 		else
1749 			mmput(mm);
1750 	}
1751 	css_task_iter_end(&it);
1752 
1753 	/*
1754 	 * All the tasks' nodemasks have been updated, update
1755 	 * cs->old_mems_allowed.
1756 	 */
1757 	cs->old_mems_allowed = newmems;
1758 
1759 	/* We're done rebinding vmas to this cpuset's new mems_allowed. */
1760 	cpuset_being_rebound = NULL;
1761 }
1762 
1763 /*
1764  * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
1765  * @cs: the cpuset to consider
1766  * @new_mems: a temp variable for calculating new effective_mems
1767  *
1768  * When configured nodemask is changed, the effective nodemasks of this cpuset
1769  * and all its descendants need to be updated.
1770  *
1771  * On legacy hierarchy, effective_mems will be the same with mems_allowed.
1772  *
1773  * Called with cpuset_rwsem held
1774  */
1775 static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
1776 {
1777 	struct cpuset *cp;
1778 	struct cgroup_subsys_state *pos_css;
1779 
1780 	rcu_read_lock();
1781 	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1782 		struct cpuset *parent = parent_cs(cp);
1783 
1784 		nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);
1785 
1786 		/*
1787 		 * If it becomes empty, inherit the effective mask of the
1788 		 * parent, which is guaranteed to have some MEMs.
1789 		 */
1790 		if (is_in_v2_mode() && nodes_empty(*new_mems))
1791 			*new_mems = parent->effective_mems;
1792 
1793 		/* Skip the whole subtree if the nodemask remains the same. */
1794 		if (nodes_equal(*new_mems, cp->effective_mems)) {
1795 			pos_css = css_rightmost_descendant(pos_css);
1796 			continue;
1797 		}
1798 
1799 		if (!css_tryget_online(&cp->css))
1800 			continue;
1801 		rcu_read_unlock();
1802 
1803 		spin_lock_irq(&callback_lock);
1804 		cp->effective_mems = *new_mems;
1805 		spin_unlock_irq(&callback_lock);
1806 
1807 		WARN_ON(!is_in_v2_mode() &&
1808 			!nodes_equal(cp->mems_allowed, cp->effective_mems));
1809 
1810 		update_tasks_nodemask(cp);
1811 
1812 		rcu_read_lock();
1813 		css_put(&cp->css);
1814 	}
1815 	rcu_read_unlock();
1816 }
1817 
1818 /*
1819  * Handle user request to change the 'mems' memory placement
1820  * of a cpuset.  Needs to validate the request, update the
1821  * cpusets mems_allowed, and for each task in the cpuset,
1822  * update mems_allowed and rebind task's mempolicy and any vma
1823  * mempolicies and if the cpuset is marked 'memory_migrate',
1824  * migrate the tasks pages to the new memory.
1825  *
1826  * Call with cpuset_rwsem held. May take callback_lock during call.
1827  * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1828  * lock each such tasks mm->mmap_lock, scan its vma's and rebind
1829  * their mempolicies to the cpusets new mems_allowed.
1830  */
1831 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1832 			   const char *buf)
1833 {
1834 	int retval;
1835 
1836 	/*
1837 	 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
1838 	 * it's read-only
1839 	 */
1840 	if (cs == &top_cpuset) {
1841 		retval = -EACCES;
1842 		goto done;
1843 	}
1844 
1845 	/*
1846 	 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1847 	 * Since nodelist_parse() fails on an empty mask, we special case
1848 	 * that parsing.  The validate_change() call ensures that cpusets
1849 	 * with tasks have memory.
1850 	 */
1851 	if (!*buf) {
1852 		nodes_clear(trialcs->mems_allowed);
1853 	} else {
1854 		retval = nodelist_parse(buf, trialcs->mems_allowed);
1855 		if (retval < 0)
1856 			goto done;
1857 
1858 		if (!nodes_subset(trialcs->mems_allowed,
1859 				  top_cpuset.mems_allowed)) {
1860 			retval = -EINVAL;
1861 			goto done;
1862 		}
1863 	}
1864 
1865 	if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
1866 		retval = 0;		/* Too easy - nothing to do */
1867 		goto done;
1868 	}
1869 	retval = validate_change(cs, trialcs);
1870 	if (retval < 0)
1871 		goto done;
1872 
1873 	spin_lock_irq(&callback_lock);
1874 	cs->mems_allowed = trialcs->mems_allowed;
1875 	spin_unlock_irq(&callback_lock);
1876 
1877 	/* use trialcs->mems_allowed as a temp variable */
1878 	update_nodemasks_hier(cs, &trialcs->mems_allowed);
1879 done:
1880 	return retval;
1881 }
1882 
1883 bool current_cpuset_is_being_rebound(void)
1884 {
1885 	bool ret;
1886 
1887 	rcu_read_lock();
1888 	ret = task_cs(current) == cpuset_being_rebound;
1889 	rcu_read_unlock();
1890 
1891 	return ret;
1892 }
1893 
1894 static int update_relax_domain_level(struct cpuset *cs, s64 val)
1895 {
1896 #ifdef CONFIG_SMP
1897 	if (val < -1 || val >= sched_domain_level_max)
1898 		return -EINVAL;
1899 #endif
1900 
1901 	if (val != cs->relax_domain_level) {
1902 		cs->relax_domain_level = val;
1903 		if (!cpumask_empty(cs->cpus_allowed) &&
1904 		    is_sched_load_balance(cs))
1905 			rebuild_sched_domains_locked();
1906 	}
1907 
1908 	return 0;
1909 }
1910 
1911 /**
1912  * update_tasks_flags - update the spread flags of tasks in the cpuset.
1913  * @cs: the cpuset in which each task's spread flags needs to be changed
1914  *
1915  * Iterate through each task of @cs updating its spread flags.  As this
1916  * function is called with cpuset_rwsem held, cpuset membership stays
1917  * stable.
1918  */
1919 static void update_tasks_flags(struct cpuset *cs)
1920 {
1921 	struct css_task_iter it;
1922 	struct task_struct *task;
1923 
1924 	css_task_iter_start(&cs->css, 0, &it);
1925 	while ((task = css_task_iter_next(&it)))
1926 		cpuset_update_task_spread_flag(cs, task);
1927 	css_task_iter_end(&it);
1928 }
1929 
1930 /*
1931  * update_flag - read a 0 or a 1 in a file and update associated flag
1932  * bit:		the bit to update (see cpuset_flagbits_t)
1933  * cs:		the cpuset to update
1934  * turning_on: 	whether the flag is being set or cleared
1935  *
1936  * Call with cpuset_rwsem held.
1937  */
1938 
1939 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1940 		       int turning_on)
1941 {
1942 	struct cpuset *trialcs;
1943 	int balance_flag_changed;
1944 	int spread_flag_changed;
1945 	int err;
1946 
1947 	trialcs = alloc_trial_cpuset(cs);
1948 	if (!trialcs)
1949 		return -ENOMEM;
1950 
1951 	if (turning_on)
1952 		set_bit(bit, &trialcs->flags);
1953 	else
1954 		clear_bit(bit, &trialcs->flags);
1955 
1956 	err = validate_change(cs, trialcs);
1957 	if (err < 0)
1958 		goto out;
1959 
1960 	balance_flag_changed = (is_sched_load_balance(cs) !=
1961 				is_sched_load_balance(trialcs));
1962 
1963 	spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1964 			|| (is_spread_page(cs) != is_spread_page(trialcs)));
1965 
1966 	spin_lock_irq(&callback_lock);
1967 	cs->flags = trialcs->flags;
1968 	spin_unlock_irq(&callback_lock);
1969 
1970 	if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1971 		rebuild_sched_domains_locked();
1972 
1973 	if (spread_flag_changed)
1974 		update_tasks_flags(cs);
1975 out:
1976 	free_cpuset(trialcs);
1977 	return err;
1978 }
1979 
1980 /*
1981  * update_prstate - update partititon_root_state
1982  * cs: the cpuset to update
1983  * new_prs: new partition root state
1984  *
1985  * Call with cpuset_rwsem held.
1986  */
1987 static int update_prstate(struct cpuset *cs, int new_prs)
1988 {
1989 	int err, old_prs = cs->partition_root_state;
1990 	struct cpuset *parent = parent_cs(cs);
1991 	struct tmpmasks tmpmask;
1992 
1993 	if (old_prs == new_prs)
1994 		return 0;
1995 
1996 	/*
1997 	 * Cannot force a partial or invalid partition root to a full
1998 	 * partition root.
1999 	 */
2000 	if (new_prs && (old_prs == PRS_ERROR))
2001 		return -EINVAL;
2002 
2003 	if (alloc_cpumasks(NULL, &tmpmask))
2004 		return -ENOMEM;
2005 
2006 	err = -EINVAL;
2007 	if (!old_prs) {
2008 		/*
2009 		 * Turning on partition root requires setting the
2010 		 * CS_CPU_EXCLUSIVE bit implicitly as well and cpus_allowed
2011 		 * cannot be NULL.
2012 		 */
2013 		if (cpumask_empty(cs->cpus_allowed))
2014 			goto out;
2015 
2016 		err = update_flag(CS_CPU_EXCLUSIVE, cs, 1);
2017 		if (err)
2018 			goto out;
2019 
2020 		err = update_parent_subparts_cpumask(cs, partcmd_enable,
2021 						     NULL, &tmpmask);
2022 		if (err) {
2023 			update_flag(CS_CPU_EXCLUSIVE, cs, 0);
2024 			goto out;
2025 		}
2026 	} else {
2027 		/*
2028 		 * Turning off partition root will clear the
2029 		 * CS_CPU_EXCLUSIVE bit.
2030 		 */
2031 		if (old_prs == PRS_ERROR) {
2032 			update_flag(CS_CPU_EXCLUSIVE, cs, 0);
2033 			err = 0;
2034 			goto out;
2035 		}
2036 
2037 		err = update_parent_subparts_cpumask(cs, partcmd_disable,
2038 						     NULL, &tmpmask);
2039 		if (err)
2040 			goto out;
2041 
2042 		/* Turning off CS_CPU_EXCLUSIVE will not return error */
2043 		update_flag(CS_CPU_EXCLUSIVE, cs, 0);
2044 	}
2045 
2046 	/*
2047 	 * Update cpumask of parent's tasks except when it is the top
2048 	 * cpuset as some system daemons cannot be mapped to other CPUs.
2049 	 */
2050 	if (parent != &top_cpuset)
2051 		update_tasks_cpumask(parent);
2052 
2053 	if (parent->child_ecpus_count)
2054 		update_sibling_cpumasks(parent, cs, &tmpmask);
2055 
2056 	rebuild_sched_domains_locked();
2057 out:
2058 	if (!err) {
2059 		spin_lock_irq(&callback_lock);
2060 		cs->partition_root_state = new_prs;
2061 		spin_unlock_irq(&callback_lock);
2062 		notify_partition_change(cs, old_prs, new_prs);
2063 	}
2064 
2065 	free_cpumasks(NULL, &tmpmask);
2066 	return err;
2067 }
2068 
2069 /*
2070  * Frequency meter - How fast is some event occurring?
2071  *
2072  * These routines manage a digitally filtered, constant time based,
2073  * event frequency meter.  There are four routines:
2074  *   fmeter_init() - initialize a frequency meter.
2075  *   fmeter_markevent() - called each time the event happens.
2076  *   fmeter_getrate() - returns the recent rate of such events.
2077  *   fmeter_update() - internal routine used to update fmeter.
2078  *
2079  * A common data structure is passed to each of these routines,
2080  * which is used to keep track of the state required to manage the
2081  * frequency meter and its digital filter.
2082  *
2083  * The filter works on the number of events marked per unit time.
2084  * The filter is single-pole low-pass recursive (IIR).  The time unit
2085  * is 1 second.  Arithmetic is done using 32-bit integers scaled to
2086  * simulate 3 decimal digits of precision (multiplied by 1000).
2087  *
2088  * With an FM_COEF of 933, and a time base of 1 second, the filter
2089  * has a half-life of 10 seconds, meaning that if the events quit
2090  * happening, then the rate returned from the fmeter_getrate()
2091  * will be cut in half each 10 seconds, until it converges to zero.
2092  *
2093  * It is not worth doing a real infinitely recursive filter.  If more
2094  * than FM_MAXTICKS ticks have elapsed since the last filter event,
2095  * just compute FM_MAXTICKS ticks worth, by which point the level
2096  * will be stable.
2097  *
2098  * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
2099  * arithmetic overflow in the fmeter_update() routine.
2100  *
2101  * Given the simple 32 bit integer arithmetic used, this meter works
2102  * best for reporting rates between one per millisecond (msec) and
2103  * one per 32 (approx) seconds.  At constant rates faster than one
2104  * per msec it maxes out at values just under 1,000,000.  At constant
2105  * rates between one per msec, and one per second it will stabilize
2106  * to a value N*1000, where N is the rate of events per second.
2107  * At constant rates between one per second and one per 32 seconds,
2108  * it will be choppy, moving up on the seconds that have an event,
2109  * and then decaying until the next event.  At rates slower than
2110  * about one in 32 seconds, it decays all the way back to zero between
2111  * each event.
2112  */
2113 
2114 #define FM_COEF 933		/* coefficient for half-life of 10 secs */
2115 #define FM_MAXTICKS ((u32)99)   /* useless computing more ticks than this */
2116 #define FM_MAXCNT 1000000	/* limit cnt to avoid overflow */
2117 #define FM_SCALE 1000		/* faux fixed point scale */
2118 
2119 /* Initialize a frequency meter */
2120 static void fmeter_init(struct fmeter *fmp)
2121 {
2122 	fmp->cnt = 0;
2123 	fmp->val = 0;
2124 	fmp->time = 0;
2125 	spin_lock_init(&fmp->lock);
2126 }
2127 
2128 /* Internal meter update - process cnt events and update value */
2129 static void fmeter_update(struct fmeter *fmp)
2130 {
2131 	time64_t now;
2132 	u32 ticks;
2133 
2134 	now = ktime_get_seconds();
2135 	ticks = now - fmp->time;
2136 
2137 	if (ticks == 0)
2138 		return;
2139 
2140 	ticks = min(FM_MAXTICKS, ticks);
2141 	while (ticks-- > 0)
2142 		fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
2143 	fmp->time = now;
2144 
2145 	fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
2146 	fmp->cnt = 0;
2147 }
2148 
2149 /* Process any previous ticks, then bump cnt by one (times scale). */
2150 static void fmeter_markevent(struct fmeter *fmp)
2151 {
2152 	spin_lock(&fmp->lock);
2153 	fmeter_update(fmp);
2154 	fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
2155 	spin_unlock(&fmp->lock);
2156 }
2157 
2158 /* Process any previous ticks, then return current value. */
2159 static int fmeter_getrate(struct fmeter *fmp)
2160 {
2161 	int val;
2162 
2163 	spin_lock(&fmp->lock);
2164 	fmeter_update(fmp);
2165 	val = fmp->val;
2166 	spin_unlock(&fmp->lock);
2167 	return val;
2168 }
2169 
2170 static struct cpuset *cpuset_attach_old_cs;
2171 
2172 /* Called by cgroups to determine if a cpuset is usable; cpuset_rwsem held */
2173 static int cpuset_can_attach(struct cgroup_taskset *tset)
2174 {
2175 	struct cgroup_subsys_state *css;
2176 	struct cpuset *cs;
2177 	struct task_struct *task;
2178 	int ret;
2179 
2180 	/* used later by cpuset_attach() */
2181 	cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css));
2182 	cs = css_cs(css);
2183 
2184 	percpu_down_write(&cpuset_rwsem);
2185 
2186 	/* allow moving tasks into an empty cpuset if on default hierarchy */
2187 	ret = -ENOSPC;
2188 	if (!is_in_v2_mode() &&
2189 	    (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
2190 		goto out_unlock;
2191 
2192 	cgroup_taskset_for_each(task, css, tset) {
2193 		ret = task_can_attach(task, cs->cpus_allowed);
2194 		if (ret)
2195 			goto out_unlock;
2196 		ret = security_task_setscheduler(task);
2197 		if (ret)
2198 			goto out_unlock;
2199 	}
2200 
2201 	/*
2202 	 * Mark attach is in progress.  This makes validate_change() fail
2203 	 * changes which zero cpus/mems_allowed.
2204 	 */
2205 	cs->attach_in_progress++;
2206 	ret = 0;
2207 out_unlock:
2208 	percpu_up_write(&cpuset_rwsem);
2209 	return ret;
2210 }
2211 
2212 static void cpuset_cancel_attach(struct cgroup_taskset *tset)
2213 {
2214 	struct cgroup_subsys_state *css;
2215 
2216 	cgroup_taskset_first(tset, &css);
2217 
2218 	percpu_down_write(&cpuset_rwsem);
2219 	css_cs(css)->attach_in_progress--;
2220 	percpu_up_write(&cpuset_rwsem);
2221 }
2222 
2223 /*
2224  * Protected by cpuset_rwsem.  cpus_attach is used only by cpuset_attach()
2225  * but we can't allocate it dynamically there.  Define it global and
2226  * allocate from cpuset_init().
2227  */
2228 static cpumask_var_t cpus_attach;
2229 
2230 static void cpuset_attach(struct cgroup_taskset *tset)
2231 {
2232 	/* static buf protected by cpuset_rwsem */
2233 	static nodemask_t cpuset_attach_nodemask_to;
2234 	struct task_struct *task;
2235 	struct task_struct *leader;
2236 	struct cgroup_subsys_state *css;
2237 	struct cpuset *cs;
2238 	struct cpuset *oldcs = cpuset_attach_old_cs;
2239 
2240 	cgroup_taskset_first(tset, &css);
2241 	cs = css_cs(css);
2242 
2243 	percpu_down_write(&cpuset_rwsem);
2244 
2245 	guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
2246 
2247 	cgroup_taskset_for_each(task, css, tset) {
2248 		if (cs != &top_cpuset)
2249 			guarantee_online_cpus(task, cpus_attach);
2250 		else
2251 			cpumask_copy(cpus_attach, task_cpu_possible_mask(task));
2252 		/*
2253 		 * can_attach beforehand should guarantee that this doesn't
2254 		 * fail.  TODO: have a better way to handle failure here
2255 		 */
2256 		WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
2257 
2258 		cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
2259 		cpuset_update_task_spread_flag(cs, task);
2260 	}
2261 
2262 	/*
2263 	 * Change mm for all threadgroup leaders. This is expensive and may
2264 	 * sleep and should be moved outside migration path proper.
2265 	 */
2266 	cpuset_attach_nodemask_to = cs->effective_mems;
2267 	cgroup_taskset_for_each_leader(leader, css, tset) {
2268 		struct mm_struct *mm = get_task_mm(leader);
2269 
2270 		if (mm) {
2271 			mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
2272 
2273 			/*
2274 			 * old_mems_allowed is the same with mems_allowed
2275 			 * here, except if this task is being moved
2276 			 * automatically due to hotplug.  In that case
2277 			 * @mems_allowed has been updated and is empty, so
2278 			 * @old_mems_allowed is the right nodesets that we
2279 			 * migrate mm from.
2280 			 */
2281 			if (is_memory_migrate(cs))
2282 				cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
2283 						  &cpuset_attach_nodemask_to);
2284 			else
2285 				mmput(mm);
2286 		}
2287 	}
2288 
2289 	cs->old_mems_allowed = cpuset_attach_nodemask_to;
2290 
2291 	cs->attach_in_progress--;
2292 	if (!cs->attach_in_progress)
2293 		wake_up(&cpuset_attach_wq);
2294 
2295 	percpu_up_write(&cpuset_rwsem);
2296 }
2297 
2298 /* The various types of files and directories in a cpuset file system */
2299 
2300 typedef enum {
2301 	FILE_MEMORY_MIGRATE,
2302 	FILE_CPULIST,
2303 	FILE_MEMLIST,
2304 	FILE_EFFECTIVE_CPULIST,
2305 	FILE_EFFECTIVE_MEMLIST,
2306 	FILE_SUBPARTS_CPULIST,
2307 	FILE_CPU_EXCLUSIVE,
2308 	FILE_MEM_EXCLUSIVE,
2309 	FILE_MEM_HARDWALL,
2310 	FILE_SCHED_LOAD_BALANCE,
2311 	FILE_PARTITION_ROOT,
2312 	FILE_SCHED_RELAX_DOMAIN_LEVEL,
2313 	FILE_MEMORY_PRESSURE_ENABLED,
2314 	FILE_MEMORY_PRESSURE,
2315 	FILE_SPREAD_PAGE,
2316 	FILE_SPREAD_SLAB,
2317 } cpuset_filetype_t;
2318 
2319 static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
2320 			    u64 val)
2321 {
2322 	struct cpuset *cs = css_cs(css);
2323 	cpuset_filetype_t type = cft->private;
2324 	int retval = 0;
2325 
2326 	cpus_read_lock();
2327 	percpu_down_write(&cpuset_rwsem);
2328 	if (!is_cpuset_online(cs)) {
2329 		retval = -ENODEV;
2330 		goto out_unlock;
2331 	}
2332 
2333 	switch (type) {
2334 	case FILE_CPU_EXCLUSIVE:
2335 		retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
2336 		break;
2337 	case FILE_MEM_EXCLUSIVE:
2338 		retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
2339 		break;
2340 	case FILE_MEM_HARDWALL:
2341 		retval = update_flag(CS_MEM_HARDWALL, cs, val);
2342 		break;
2343 	case FILE_SCHED_LOAD_BALANCE:
2344 		retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
2345 		break;
2346 	case FILE_MEMORY_MIGRATE:
2347 		retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
2348 		break;
2349 	case FILE_MEMORY_PRESSURE_ENABLED:
2350 		cpuset_memory_pressure_enabled = !!val;
2351 		break;
2352 	case FILE_SPREAD_PAGE:
2353 		retval = update_flag(CS_SPREAD_PAGE, cs, val);
2354 		break;
2355 	case FILE_SPREAD_SLAB:
2356 		retval = update_flag(CS_SPREAD_SLAB, cs, val);
2357 		break;
2358 	default:
2359 		retval = -EINVAL;
2360 		break;
2361 	}
2362 out_unlock:
2363 	percpu_up_write(&cpuset_rwsem);
2364 	cpus_read_unlock();
2365 	return retval;
2366 }
2367 
2368 static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
2369 			    s64 val)
2370 {
2371 	struct cpuset *cs = css_cs(css);
2372 	cpuset_filetype_t type = cft->private;
2373 	int retval = -ENODEV;
2374 
2375 	cpus_read_lock();
2376 	percpu_down_write(&cpuset_rwsem);
2377 	if (!is_cpuset_online(cs))
2378 		goto out_unlock;
2379 
2380 	switch (type) {
2381 	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
2382 		retval = update_relax_domain_level(cs, val);
2383 		break;
2384 	default:
2385 		retval = -EINVAL;
2386 		break;
2387 	}
2388 out_unlock:
2389 	percpu_up_write(&cpuset_rwsem);
2390 	cpus_read_unlock();
2391 	return retval;
2392 }
2393 
2394 /*
2395  * Common handling for a write to a "cpus" or "mems" file.
2396  */
2397 static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
2398 				    char *buf, size_t nbytes, loff_t off)
2399 {
2400 	struct cpuset *cs = css_cs(of_css(of));
2401 	struct cpuset *trialcs;
2402 	int retval = -ENODEV;
2403 
2404 	buf = strstrip(buf);
2405 
2406 	/*
2407 	 * CPU or memory hotunplug may leave @cs w/o any execution
2408 	 * resources, in which case the hotplug code asynchronously updates
2409 	 * configuration and transfers all tasks to the nearest ancestor
2410 	 * which can execute.
2411 	 *
2412 	 * As writes to "cpus" or "mems" may restore @cs's execution
2413 	 * resources, wait for the previously scheduled operations before
2414 	 * proceeding, so that we don't end up keep removing tasks added
2415 	 * after execution capability is restored.
2416 	 *
2417 	 * cpuset_hotplug_work calls back into cgroup core via
2418 	 * cgroup_transfer_tasks() and waiting for it from a cgroupfs
2419 	 * operation like this one can lead to a deadlock through kernfs
2420 	 * active_ref protection.  Let's break the protection.  Losing the
2421 	 * protection is okay as we check whether @cs is online after
2422 	 * grabbing cpuset_rwsem anyway.  This only happens on the legacy
2423 	 * hierarchies.
2424 	 */
2425 	css_get(&cs->css);
2426 	kernfs_break_active_protection(of->kn);
2427 	flush_work(&cpuset_hotplug_work);
2428 
2429 	cpus_read_lock();
2430 	percpu_down_write(&cpuset_rwsem);
2431 	if (!is_cpuset_online(cs))
2432 		goto out_unlock;
2433 
2434 	trialcs = alloc_trial_cpuset(cs);
2435 	if (!trialcs) {
2436 		retval = -ENOMEM;
2437 		goto out_unlock;
2438 	}
2439 
2440 	switch (of_cft(of)->private) {
2441 	case FILE_CPULIST:
2442 		retval = update_cpumask(cs, trialcs, buf);
2443 		break;
2444 	case FILE_MEMLIST:
2445 		retval = update_nodemask(cs, trialcs, buf);
2446 		break;
2447 	default:
2448 		retval = -EINVAL;
2449 		break;
2450 	}
2451 
2452 	free_cpuset(trialcs);
2453 out_unlock:
2454 	percpu_up_write(&cpuset_rwsem);
2455 	cpus_read_unlock();
2456 	kernfs_unbreak_active_protection(of->kn);
2457 	css_put(&cs->css);
2458 	flush_workqueue(cpuset_migrate_mm_wq);
2459 	return retval ?: nbytes;
2460 }
2461 
2462 /*
2463  * These ascii lists should be read in a single call, by using a user
2464  * buffer large enough to hold the entire map.  If read in smaller
2465  * chunks, there is no guarantee of atomicity.  Since the display format
2466  * used, list of ranges of sequential numbers, is variable length,
2467  * and since these maps can change value dynamically, one could read
2468  * gibberish by doing partial reads while a list was changing.
2469  */
2470 static int cpuset_common_seq_show(struct seq_file *sf, void *v)
2471 {
2472 	struct cpuset *cs = css_cs(seq_css(sf));
2473 	cpuset_filetype_t type = seq_cft(sf)->private;
2474 	int ret = 0;
2475 
2476 	spin_lock_irq(&callback_lock);
2477 
2478 	switch (type) {
2479 	case FILE_CPULIST:
2480 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed));
2481 		break;
2482 	case FILE_MEMLIST:
2483 		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
2484 		break;
2485 	case FILE_EFFECTIVE_CPULIST:
2486 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
2487 		break;
2488 	case FILE_EFFECTIVE_MEMLIST:
2489 		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
2490 		break;
2491 	case FILE_SUBPARTS_CPULIST:
2492 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->subparts_cpus));
2493 		break;
2494 	default:
2495 		ret = -EINVAL;
2496 	}
2497 
2498 	spin_unlock_irq(&callback_lock);
2499 	return ret;
2500 }
2501 
2502 static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
2503 {
2504 	struct cpuset *cs = css_cs(css);
2505 	cpuset_filetype_t type = cft->private;
2506 	switch (type) {
2507 	case FILE_CPU_EXCLUSIVE:
2508 		return is_cpu_exclusive(cs);
2509 	case FILE_MEM_EXCLUSIVE:
2510 		return is_mem_exclusive(cs);
2511 	case FILE_MEM_HARDWALL:
2512 		return is_mem_hardwall(cs);
2513 	case FILE_SCHED_LOAD_BALANCE:
2514 		return is_sched_load_balance(cs);
2515 	case FILE_MEMORY_MIGRATE:
2516 		return is_memory_migrate(cs);
2517 	case FILE_MEMORY_PRESSURE_ENABLED:
2518 		return cpuset_memory_pressure_enabled;
2519 	case FILE_MEMORY_PRESSURE:
2520 		return fmeter_getrate(&cs->fmeter);
2521 	case FILE_SPREAD_PAGE:
2522 		return is_spread_page(cs);
2523 	case FILE_SPREAD_SLAB:
2524 		return is_spread_slab(cs);
2525 	default:
2526 		BUG();
2527 	}
2528 
2529 	/* Unreachable but makes gcc happy */
2530 	return 0;
2531 }
2532 
2533 static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
2534 {
2535 	struct cpuset *cs = css_cs(css);
2536 	cpuset_filetype_t type = cft->private;
2537 	switch (type) {
2538 	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
2539 		return cs->relax_domain_level;
2540 	default:
2541 		BUG();
2542 	}
2543 
2544 	/* Unreachable but makes gcc happy */
2545 	return 0;
2546 }
2547 
2548 static int sched_partition_show(struct seq_file *seq, void *v)
2549 {
2550 	struct cpuset *cs = css_cs(seq_css(seq));
2551 
2552 	switch (cs->partition_root_state) {
2553 	case PRS_ENABLED:
2554 		seq_puts(seq, "root\n");
2555 		break;
2556 	case PRS_DISABLED:
2557 		seq_puts(seq, "member\n");
2558 		break;
2559 	case PRS_ERROR:
2560 		seq_puts(seq, "root invalid\n");
2561 		break;
2562 	}
2563 	return 0;
2564 }
2565 
2566 static ssize_t sched_partition_write(struct kernfs_open_file *of, char *buf,
2567 				     size_t nbytes, loff_t off)
2568 {
2569 	struct cpuset *cs = css_cs(of_css(of));
2570 	int val;
2571 	int retval = -ENODEV;
2572 
2573 	buf = strstrip(buf);
2574 
2575 	/*
2576 	 * Convert "root" to ENABLED, and convert "member" to DISABLED.
2577 	 */
2578 	if (!strcmp(buf, "root"))
2579 		val = PRS_ENABLED;
2580 	else if (!strcmp(buf, "member"))
2581 		val = PRS_DISABLED;
2582 	else
2583 		return -EINVAL;
2584 
2585 	css_get(&cs->css);
2586 	cpus_read_lock();
2587 	percpu_down_write(&cpuset_rwsem);
2588 	if (!is_cpuset_online(cs))
2589 		goto out_unlock;
2590 
2591 	retval = update_prstate(cs, val);
2592 out_unlock:
2593 	percpu_up_write(&cpuset_rwsem);
2594 	cpus_read_unlock();
2595 	css_put(&cs->css);
2596 	return retval ?: nbytes;
2597 }
2598 
2599 /*
2600  * for the common functions, 'private' gives the type of file
2601  */
2602 
2603 static struct cftype legacy_files[] = {
2604 	{
2605 		.name = "cpus",
2606 		.seq_show = cpuset_common_seq_show,
2607 		.write = cpuset_write_resmask,
2608 		.max_write_len = (100U + 6 * NR_CPUS),
2609 		.private = FILE_CPULIST,
2610 	},
2611 
2612 	{
2613 		.name = "mems",
2614 		.seq_show = cpuset_common_seq_show,
2615 		.write = cpuset_write_resmask,
2616 		.max_write_len = (100U + 6 * MAX_NUMNODES),
2617 		.private = FILE_MEMLIST,
2618 	},
2619 
2620 	{
2621 		.name = "effective_cpus",
2622 		.seq_show = cpuset_common_seq_show,
2623 		.private = FILE_EFFECTIVE_CPULIST,
2624 	},
2625 
2626 	{
2627 		.name = "effective_mems",
2628 		.seq_show = cpuset_common_seq_show,
2629 		.private = FILE_EFFECTIVE_MEMLIST,
2630 	},
2631 
2632 	{
2633 		.name = "cpu_exclusive",
2634 		.read_u64 = cpuset_read_u64,
2635 		.write_u64 = cpuset_write_u64,
2636 		.private = FILE_CPU_EXCLUSIVE,
2637 	},
2638 
2639 	{
2640 		.name = "mem_exclusive",
2641 		.read_u64 = cpuset_read_u64,
2642 		.write_u64 = cpuset_write_u64,
2643 		.private = FILE_MEM_EXCLUSIVE,
2644 	},
2645 
2646 	{
2647 		.name = "mem_hardwall",
2648 		.read_u64 = cpuset_read_u64,
2649 		.write_u64 = cpuset_write_u64,
2650 		.private = FILE_MEM_HARDWALL,
2651 	},
2652 
2653 	{
2654 		.name = "sched_load_balance",
2655 		.read_u64 = cpuset_read_u64,
2656 		.write_u64 = cpuset_write_u64,
2657 		.private = FILE_SCHED_LOAD_BALANCE,
2658 	},
2659 
2660 	{
2661 		.name = "sched_relax_domain_level",
2662 		.read_s64 = cpuset_read_s64,
2663 		.write_s64 = cpuset_write_s64,
2664 		.private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
2665 	},
2666 
2667 	{
2668 		.name = "memory_migrate",
2669 		.read_u64 = cpuset_read_u64,
2670 		.write_u64 = cpuset_write_u64,
2671 		.private = FILE_MEMORY_MIGRATE,
2672 	},
2673 
2674 	{
2675 		.name = "memory_pressure",
2676 		.read_u64 = cpuset_read_u64,
2677 		.private = FILE_MEMORY_PRESSURE,
2678 	},
2679 
2680 	{
2681 		.name = "memory_spread_page",
2682 		.read_u64 = cpuset_read_u64,
2683 		.write_u64 = cpuset_write_u64,
2684 		.private = FILE_SPREAD_PAGE,
2685 	},
2686 
2687 	{
2688 		.name = "memory_spread_slab",
2689 		.read_u64 = cpuset_read_u64,
2690 		.write_u64 = cpuset_write_u64,
2691 		.private = FILE_SPREAD_SLAB,
2692 	},
2693 
2694 	{
2695 		.name = "memory_pressure_enabled",
2696 		.flags = CFTYPE_ONLY_ON_ROOT,
2697 		.read_u64 = cpuset_read_u64,
2698 		.write_u64 = cpuset_write_u64,
2699 		.private = FILE_MEMORY_PRESSURE_ENABLED,
2700 	},
2701 
2702 	{ }	/* terminate */
2703 };
2704 
2705 /*
2706  * This is currently a minimal set for the default hierarchy. It can be
2707  * expanded later on by migrating more features and control files from v1.
2708  */
2709 static struct cftype dfl_files[] = {
2710 	{
2711 		.name = "cpus",
2712 		.seq_show = cpuset_common_seq_show,
2713 		.write = cpuset_write_resmask,
2714 		.max_write_len = (100U + 6 * NR_CPUS),
2715 		.private = FILE_CPULIST,
2716 		.flags = CFTYPE_NOT_ON_ROOT,
2717 	},
2718 
2719 	{
2720 		.name = "mems",
2721 		.seq_show = cpuset_common_seq_show,
2722 		.write = cpuset_write_resmask,
2723 		.max_write_len = (100U + 6 * MAX_NUMNODES),
2724 		.private = FILE_MEMLIST,
2725 		.flags = CFTYPE_NOT_ON_ROOT,
2726 	},
2727 
2728 	{
2729 		.name = "cpus.effective",
2730 		.seq_show = cpuset_common_seq_show,
2731 		.private = FILE_EFFECTIVE_CPULIST,
2732 	},
2733 
2734 	{
2735 		.name = "mems.effective",
2736 		.seq_show = cpuset_common_seq_show,
2737 		.private = FILE_EFFECTIVE_MEMLIST,
2738 	},
2739 
2740 	{
2741 		.name = "cpus.partition",
2742 		.seq_show = sched_partition_show,
2743 		.write = sched_partition_write,
2744 		.private = FILE_PARTITION_ROOT,
2745 		.flags = CFTYPE_NOT_ON_ROOT,
2746 		.file_offset = offsetof(struct cpuset, partition_file),
2747 	},
2748 
2749 	{
2750 		.name = "cpus.subpartitions",
2751 		.seq_show = cpuset_common_seq_show,
2752 		.private = FILE_SUBPARTS_CPULIST,
2753 		.flags = CFTYPE_DEBUG,
2754 	},
2755 
2756 	{ }	/* terminate */
2757 };
2758 
2759 
2760 /*
2761  *	cpuset_css_alloc - allocate a cpuset css
2762  *	cgrp:	control group that the new cpuset will be part of
2763  */
2764 
2765 static struct cgroup_subsys_state *
2766 cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
2767 {
2768 	struct cpuset *cs;
2769 
2770 	if (!parent_css)
2771 		return &top_cpuset.css;
2772 
2773 	cs = kzalloc(sizeof(*cs), GFP_KERNEL);
2774 	if (!cs)
2775 		return ERR_PTR(-ENOMEM);
2776 
2777 	if (alloc_cpumasks(cs, NULL)) {
2778 		kfree(cs);
2779 		return ERR_PTR(-ENOMEM);
2780 	}
2781 
2782 	__set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
2783 	nodes_clear(cs->mems_allowed);
2784 	nodes_clear(cs->effective_mems);
2785 	fmeter_init(&cs->fmeter);
2786 	cs->relax_domain_level = -1;
2787 
2788 	/* Set CS_MEMORY_MIGRATE for default hierarchy */
2789 	if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys))
2790 		__set_bit(CS_MEMORY_MIGRATE, &cs->flags);
2791 
2792 	return &cs->css;
2793 }
2794 
2795 static int cpuset_css_online(struct cgroup_subsys_state *css)
2796 {
2797 	struct cpuset *cs = css_cs(css);
2798 	struct cpuset *parent = parent_cs(cs);
2799 	struct cpuset *tmp_cs;
2800 	struct cgroup_subsys_state *pos_css;
2801 
2802 	if (!parent)
2803 		return 0;
2804 
2805 	cpus_read_lock();
2806 	percpu_down_write(&cpuset_rwsem);
2807 
2808 	set_bit(CS_ONLINE, &cs->flags);
2809 	if (is_spread_page(parent))
2810 		set_bit(CS_SPREAD_PAGE, &cs->flags);
2811 	if (is_spread_slab(parent))
2812 		set_bit(CS_SPREAD_SLAB, &cs->flags);
2813 
2814 	cpuset_inc();
2815 
2816 	spin_lock_irq(&callback_lock);
2817 	if (is_in_v2_mode()) {
2818 		cpumask_copy(cs->effective_cpus, parent->effective_cpus);
2819 		cs->effective_mems = parent->effective_mems;
2820 		cs->use_parent_ecpus = true;
2821 		parent->child_ecpus_count++;
2822 	}
2823 	spin_unlock_irq(&callback_lock);
2824 
2825 	if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
2826 		goto out_unlock;
2827 
2828 	/*
2829 	 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
2830 	 * set.  This flag handling is implemented in cgroup core for
2831 	 * histrical reasons - the flag may be specified during mount.
2832 	 *
2833 	 * Currently, if any sibling cpusets have exclusive cpus or mem, we
2834 	 * refuse to clone the configuration - thereby refusing the task to
2835 	 * be entered, and as a result refusing the sys_unshare() or
2836 	 * clone() which initiated it.  If this becomes a problem for some
2837 	 * users who wish to allow that scenario, then this could be
2838 	 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
2839 	 * (and likewise for mems) to the new cgroup.
2840 	 */
2841 	rcu_read_lock();
2842 	cpuset_for_each_child(tmp_cs, pos_css, parent) {
2843 		if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
2844 			rcu_read_unlock();
2845 			goto out_unlock;
2846 		}
2847 	}
2848 	rcu_read_unlock();
2849 
2850 	spin_lock_irq(&callback_lock);
2851 	cs->mems_allowed = parent->mems_allowed;
2852 	cs->effective_mems = parent->mems_allowed;
2853 	cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
2854 	cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
2855 	spin_unlock_irq(&callback_lock);
2856 out_unlock:
2857 	percpu_up_write(&cpuset_rwsem);
2858 	cpus_read_unlock();
2859 	return 0;
2860 }
2861 
2862 /*
2863  * If the cpuset being removed has its flag 'sched_load_balance'
2864  * enabled, then simulate turning sched_load_balance off, which
2865  * will call rebuild_sched_domains_locked(). That is not needed
2866  * in the default hierarchy where only changes in partition
2867  * will cause repartitioning.
2868  *
2869  * If the cpuset has the 'sched.partition' flag enabled, simulate
2870  * turning 'sched.partition" off.
2871  */
2872 
2873 static void cpuset_css_offline(struct cgroup_subsys_state *css)
2874 {
2875 	struct cpuset *cs = css_cs(css);
2876 
2877 	cpus_read_lock();
2878 	percpu_down_write(&cpuset_rwsem);
2879 
2880 	if (is_partition_root(cs))
2881 		update_prstate(cs, 0);
2882 
2883 	if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
2884 	    is_sched_load_balance(cs))
2885 		update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
2886 
2887 	if (cs->use_parent_ecpus) {
2888 		struct cpuset *parent = parent_cs(cs);
2889 
2890 		cs->use_parent_ecpus = false;
2891 		parent->child_ecpus_count--;
2892 	}
2893 
2894 	cpuset_dec();
2895 	clear_bit(CS_ONLINE, &cs->flags);
2896 
2897 	percpu_up_write(&cpuset_rwsem);
2898 	cpus_read_unlock();
2899 }
2900 
2901 static void cpuset_css_free(struct cgroup_subsys_state *css)
2902 {
2903 	struct cpuset *cs = css_cs(css);
2904 
2905 	free_cpuset(cs);
2906 }
2907 
2908 static void cpuset_bind(struct cgroup_subsys_state *root_css)
2909 {
2910 	percpu_down_write(&cpuset_rwsem);
2911 	spin_lock_irq(&callback_lock);
2912 
2913 	if (is_in_v2_mode()) {
2914 		cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
2915 		top_cpuset.mems_allowed = node_possible_map;
2916 	} else {
2917 		cpumask_copy(top_cpuset.cpus_allowed,
2918 			     top_cpuset.effective_cpus);
2919 		top_cpuset.mems_allowed = top_cpuset.effective_mems;
2920 	}
2921 
2922 	spin_unlock_irq(&callback_lock);
2923 	percpu_up_write(&cpuset_rwsem);
2924 }
2925 
2926 /*
2927  * Make sure the new task conform to the current state of its parent,
2928  * which could have been changed by cpuset just after it inherits the
2929  * state from the parent and before it sits on the cgroup's task list.
2930  */
2931 static void cpuset_fork(struct task_struct *task)
2932 {
2933 	if (task_css_is_root(task, cpuset_cgrp_id))
2934 		return;
2935 
2936 	set_cpus_allowed_ptr(task, current->cpus_ptr);
2937 	task->mems_allowed = current->mems_allowed;
2938 }
2939 
2940 struct cgroup_subsys cpuset_cgrp_subsys = {
2941 	.css_alloc	= cpuset_css_alloc,
2942 	.css_online	= cpuset_css_online,
2943 	.css_offline	= cpuset_css_offline,
2944 	.css_free	= cpuset_css_free,
2945 	.can_attach	= cpuset_can_attach,
2946 	.cancel_attach	= cpuset_cancel_attach,
2947 	.attach		= cpuset_attach,
2948 	.post_attach	= cpuset_post_attach,
2949 	.bind		= cpuset_bind,
2950 	.fork		= cpuset_fork,
2951 	.legacy_cftypes	= legacy_files,
2952 	.dfl_cftypes	= dfl_files,
2953 	.early_init	= true,
2954 	.threaded	= true,
2955 };
2956 
2957 /**
2958  * cpuset_init - initialize cpusets at system boot
2959  *
2960  * Description: Initialize top_cpuset
2961  **/
2962 
2963 int __init cpuset_init(void)
2964 {
2965 	BUG_ON(percpu_init_rwsem(&cpuset_rwsem));
2966 
2967 	BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL));
2968 	BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL));
2969 	BUG_ON(!zalloc_cpumask_var(&top_cpuset.subparts_cpus, GFP_KERNEL));
2970 
2971 	cpumask_setall(top_cpuset.cpus_allowed);
2972 	nodes_setall(top_cpuset.mems_allowed);
2973 	cpumask_setall(top_cpuset.effective_cpus);
2974 	nodes_setall(top_cpuset.effective_mems);
2975 
2976 	fmeter_init(&top_cpuset.fmeter);
2977 	set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
2978 	top_cpuset.relax_domain_level = -1;
2979 
2980 	BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL));
2981 
2982 	return 0;
2983 }
2984 
2985 /*
2986  * If CPU and/or memory hotplug handlers, below, unplug any CPUs
2987  * or memory nodes, we need to walk over the cpuset hierarchy,
2988  * removing that CPU or node from all cpusets.  If this removes the
2989  * last CPU or node from a cpuset, then move the tasks in the empty
2990  * cpuset to its next-highest non-empty parent.
2991  */
2992 static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
2993 {
2994 	struct cpuset *parent;
2995 
2996 	/*
2997 	 * Find its next-highest non-empty parent, (top cpuset
2998 	 * has online cpus, so can't be empty).
2999 	 */
3000 	parent = parent_cs(cs);
3001 	while (cpumask_empty(parent->cpus_allowed) ||
3002 			nodes_empty(parent->mems_allowed))
3003 		parent = parent_cs(parent);
3004 
3005 	if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
3006 		pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
3007 		pr_cont_cgroup_name(cs->css.cgroup);
3008 		pr_cont("\n");
3009 	}
3010 }
3011 
3012 static void
3013 hotplug_update_tasks_legacy(struct cpuset *cs,
3014 			    struct cpumask *new_cpus, nodemask_t *new_mems,
3015 			    bool cpus_updated, bool mems_updated)
3016 {
3017 	bool is_empty;
3018 
3019 	spin_lock_irq(&callback_lock);
3020 	cpumask_copy(cs->cpus_allowed, new_cpus);
3021 	cpumask_copy(cs->effective_cpus, new_cpus);
3022 	cs->mems_allowed = *new_mems;
3023 	cs->effective_mems = *new_mems;
3024 	spin_unlock_irq(&callback_lock);
3025 
3026 	/*
3027 	 * Don't call update_tasks_cpumask() if the cpuset becomes empty,
3028 	 * as the tasks will be migratecd to an ancestor.
3029 	 */
3030 	if (cpus_updated && !cpumask_empty(cs->cpus_allowed))
3031 		update_tasks_cpumask(cs);
3032 	if (mems_updated && !nodes_empty(cs->mems_allowed))
3033 		update_tasks_nodemask(cs);
3034 
3035 	is_empty = cpumask_empty(cs->cpus_allowed) ||
3036 		   nodes_empty(cs->mems_allowed);
3037 
3038 	percpu_up_write(&cpuset_rwsem);
3039 
3040 	/*
3041 	 * Move tasks to the nearest ancestor with execution resources,
3042 	 * This is full cgroup operation which will also call back into
3043 	 * cpuset. Should be done outside any lock.
3044 	 */
3045 	if (is_empty)
3046 		remove_tasks_in_empty_cpuset(cs);
3047 
3048 	percpu_down_write(&cpuset_rwsem);
3049 }
3050 
3051 static void
3052 hotplug_update_tasks(struct cpuset *cs,
3053 		     struct cpumask *new_cpus, nodemask_t *new_mems,
3054 		     bool cpus_updated, bool mems_updated)
3055 {
3056 	if (cpumask_empty(new_cpus))
3057 		cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
3058 	if (nodes_empty(*new_mems))
3059 		*new_mems = parent_cs(cs)->effective_mems;
3060 
3061 	spin_lock_irq(&callback_lock);
3062 	cpumask_copy(cs->effective_cpus, new_cpus);
3063 	cs->effective_mems = *new_mems;
3064 	spin_unlock_irq(&callback_lock);
3065 
3066 	if (cpus_updated)
3067 		update_tasks_cpumask(cs);
3068 	if (mems_updated)
3069 		update_tasks_nodemask(cs);
3070 }
3071 
3072 static bool force_rebuild;
3073 
3074 void cpuset_force_rebuild(void)
3075 {
3076 	force_rebuild = true;
3077 }
3078 
3079 /**
3080  * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
3081  * @cs: cpuset in interest
3082  * @tmp: the tmpmasks structure pointer
3083  *
3084  * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
3085  * offline, update @cs accordingly.  If @cs ends up with no CPU or memory,
3086  * all its tasks are moved to the nearest ancestor with both resources.
3087  */
3088 static void cpuset_hotplug_update_tasks(struct cpuset *cs, struct tmpmasks *tmp)
3089 {
3090 	static cpumask_t new_cpus;
3091 	static nodemask_t new_mems;
3092 	bool cpus_updated;
3093 	bool mems_updated;
3094 	struct cpuset *parent;
3095 retry:
3096 	wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
3097 
3098 	percpu_down_write(&cpuset_rwsem);
3099 
3100 	/*
3101 	 * We have raced with task attaching. We wait until attaching
3102 	 * is finished, so we won't attach a task to an empty cpuset.
3103 	 */
3104 	if (cs->attach_in_progress) {
3105 		percpu_up_write(&cpuset_rwsem);
3106 		goto retry;
3107 	}
3108 
3109 	parent = parent_cs(cs);
3110 	compute_effective_cpumask(&new_cpus, cs, parent);
3111 	nodes_and(new_mems, cs->mems_allowed, parent->effective_mems);
3112 
3113 	if (cs->nr_subparts_cpus)
3114 		/*
3115 		 * Make sure that CPUs allocated to child partitions
3116 		 * do not show up in effective_cpus.
3117 		 */
3118 		cpumask_andnot(&new_cpus, &new_cpus, cs->subparts_cpus);
3119 
3120 	if (!tmp || !cs->partition_root_state)
3121 		goto update_tasks;
3122 
3123 	/*
3124 	 * In the unlikely event that a partition root has empty
3125 	 * effective_cpus or its parent becomes erroneous, we have to
3126 	 * transition it to the erroneous state.
3127 	 */
3128 	if (is_partition_root(cs) && (cpumask_empty(&new_cpus) ||
3129 	   (parent->partition_root_state == PRS_ERROR))) {
3130 		if (cs->nr_subparts_cpus) {
3131 			spin_lock_irq(&callback_lock);
3132 			cs->nr_subparts_cpus = 0;
3133 			cpumask_clear(cs->subparts_cpus);
3134 			spin_unlock_irq(&callback_lock);
3135 			compute_effective_cpumask(&new_cpus, cs, parent);
3136 		}
3137 
3138 		/*
3139 		 * If the effective_cpus is empty because the child
3140 		 * partitions take away all the CPUs, we can keep
3141 		 * the current partition and let the child partitions
3142 		 * fight for available CPUs.
3143 		 */
3144 		if ((parent->partition_root_state == PRS_ERROR) ||
3145 		     cpumask_empty(&new_cpus)) {
3146 			int old_prs;
3147 
3148 			update_parent_subparts_cpumask(cs, partcmd_disable,
3149 						       NULL, tmp);
3150 			old_prs = cs->partition_root_state;
3151 			if (old_prs != PRS_ERROR) {
3152 				spin_lock_irq(&callback_lock);
3153 				cs->partition_root_state = PRS_ERROR;
3154 				spin_unlock_irq(&callback_lock);
3155 				notify_partition_change(cs, old_prs, PRS_ERROR);
3156 			}
3157 		}
3158 		cpuset_force_rebuild();
3159 	}
3160 
3161 	/*
3162 	 * On the other hand, an erroneous partition root may be transitioned
3163 	 * back to a regular one or a partition root with no CPU allocated
3164 	 * from the parent may change to erroneous.
3165 	 */
3166 	if (is_partition_root(parent) &&
3167 	   ((cs->partition_root_state == PRS_ERROR) ||
3168 	    !cpumask_intersects(&new_cpus, parent->subparts_cpus)) &&
3169 	     update_parent_subparts_cpumask(cs, partcmd_update, NULL, tmp))
3170 		cpuset_force_rebuild();
3171 
3172 update_tasks:
3173 	cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
3174 	mems_updated = !nodes_equal(new_mems, cs->effective_mems);
3175 
3176 	if (is_in_v2_mode())
3177 		hotplug_update_tasks(cs, &new_cpus, &new_mems,
3178 				     cpus_updated, mems_updated);
3179 	else
3180 		hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems,
3181 					    cpus_updated, mems_updated);
3182 
3183 	percpu_up_write(&cpuset_rwsem);
3184 }
3185 
3186 /**
3187  * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
3188  *
3189  * This function is called after either CPU or memory configuration has
3190  * changed and updates cpuset accordingly.  The top_cpuset is always
3191  * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
3192  * order to make cpusets transparent (of no affect) on systems that are
3193  * actively using CPU hotplug but making no active use of cpusets.
3194  *
3195  * Non-root cpusets are only affected by offlining.  If any CPUs or memory
3196  * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
3197  * all descendants.
3198  *
3199  * Note that CPU offlining during suspend is ignored.  We don't modify
3200  * cpusets across suspend/resume cycles at all.
3201  */
3202 static void cpuset_hotplug_workfn(struct work_struct *work)
3203 {
3204 	static cpumask_t new_cpus;
3205 	static nodemask_t new_mems;
3206 	bool cpus_updated, mems_updated;
3207 	bool on_dfl = is_in_v2_mode();
3208 	struct tmpmasks tmp, *ptmp = NULL;
3209 
3210 	if (on_dfl && !alloc_cpumasks(NULL, &tmp))
3211 		ptmp = &tmp;
3212 
3213 	percpu_down_write(&cpuset_rwsem);
3214 
3215 	/* fetch the available cpus/mems and find out which changed how */
3216 	cpumask_copy(&new_cpus, cpu_active_mask);
3217 	new_mems = node_states[N_MEMORY];
3218 
3219 	/*
3220 	 * If subparts_cpus is populated, it is likely that the check below
3221 	 * will produce a false positive on cpus_updated when the cpu list
3222 	 * isn't changed. It is extra work, but it is better to be safe.
3223 	 */
3224 	cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus);
3225 	mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
3226 
3227 	/*
3228 	 * In the rare case that hotplug removes all the cpus in subparts_cpus,
3229 	 * we assumed that cpus are updated.
3230 	 */
3231 	if (!cpus_updated && top_cpuset.nr_subparts_cpus)
3232 		cpus_updated = true;
3233 
3234 	/* synchronize cpus_allowed to cpu_active_mask */
3235 	if (cpus_updated) {
3236 		spin_lock_irq(&callback_lock);
3237 		if (!on_dfl)
3238 			cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
3239 		/*
3240 		 * Make sure that CPUs allocated to child partitions
3241 		 * do not show up in effective_cpus. If no CPU is left,
3242 		 * we clear the subparts_cpus & let the child partitions
3243 		 * fight for the CPUs again.
3244 		 */
3245 		if (top_cpuset.nr_subparts_cpus) {
3246 			if (cpumask_subset(&new_cpus,
3247 					   top_cpuset.subparts_cpus)) {
3248 				top_cpuset.nr_subparts_cpus = 0;
3249 				cpumask_clear(top_cpuset.subparts_cpus);
3250 			} else {
3251 				cpumask_andnot(&new_cpus, &new_cpus,
3252 					       top_cpuset.subparts_cpus);
3253 			}
3254 		}
3255 		cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
3256 		spin_unlock_irq(&callback_lock);
3257 		/* we don't mess with cpumasks of tasks in top_cpuset */
3258 	}
3259 
3260 	/* synchronize mems_allowed to N_MEMORY */
3261 	if (mems_updated) {
3262 		spin_lock_irq(&callback_lock);
3263 		if (!on_dfl)
3264 			top_cpuset.mems_allowed = new_mems;
3265 		top_cpuset.effective_mems = new_mems;
3266 		spin_unlock_irq(&callback_lock);
3267 		update_tasks_nodemask(&top_cpuset);
3268 	}
3269 
3270 	percpu_up_write(&cpuset_rwsem);
3271 
3272 	/* if cpus or mems changed, we need to propagate to descendants */
3273 	if (cpus_updated || mems_updated) {
3274 		struct cpuset *cs;
3275 		struct cgroup_subsys_state *pos_css;
3276 
3277 		rcu_read_lock();
3278 		cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
3279 			if (cs == &top_cpuset || !css_tryget_online(&cs->css))
3280 				continue;
3281 			rcu_read_unlock();
3282 
3283 			cpuset_hotplug_update_tasks(cs, ptmp);
3284 
3285 			rcu_read_lock();
3286 			css_put(&cs->css);
3287 		}
3288 		rcu_read_unlock();
3289 	}
3290 
3291 	/* rebuild sched domains if cpus_allowed has changed */
3292 	if (cpus_updated || force_rebuild) {
3293 		force_rebuild = false;
3294 		rebuild_sched_domains();
3295 	}
3296 
3297 	free_cpumasks(NULL, ptmp);
3298 }
3299 
3300 void cpuset_update_active_cpus(void)
3301 {
3302 	/*
3303 	 * We're inside cpu hotplug critical region which usually nests
3304 	 * inside cgroup synchronization.  Bounce actual hotplug processing
3305 	 * to a work item to avoid reverse locking order.
3306 	 */
3307 	schedule_work(&cpuset_hotplug_work);
3308 }
3309 
3310 void cpuset_wait_for_hotplug(void)
3311 {
3312 	flush_work(&cpuset_hotplug_work);
3313 }
3314 
3315 /*
3316  * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
3317  * Call this routine anytime after node_states[N_MEMORY] changes.
3318  * See cpuset_update_active_cpus() for CPU hotplug handling.
3319  */
3320 static int cpuset_track_online_nodes(struct notifier_block *self,
3321 				unsigned long action, void *arg)
3322 {
3323 	schedule_work(&cpuset_hotplug_work);
3324 	return NOTIFY_OK;
3325 }
3326 
3327 static struct notifier_block cpuset_track_online_nodes_nb = {
3328 	.notifier_call = cpuset_track_online_nodes,
3329 	.priority = 10,		/* ??! */
3330 };
3331 
3332 /**
3333  * cpuset_init_smp - initialize cpus_allowed
3334  *
3335  * Description: Finish top cpuset after cpu, node maps are initialized
3336  */
3337 void __init cpuset_init_smp(void)
3338 {
3339 	cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
3340 	top_cpuset.mems_allowed = node_states[N_MEMORY];
3341 	top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
3342 
3343 	cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
3344 	top_cpuset.effective_mems = node_states[N_MEMORY];
3345 
3346 	register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
3347 
3348 	cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0);
3349 	BUG_ON(!cpuset_migrate_mm_wq);
3350 }
3351 
3352 /**
3353  * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
3354  * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
3355  * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
3356  *
3357  * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
3358  * attached to the specified @tsk.  Guaranteed to return some non-empty
3359  * subset of cpu_online_mask, even if this means going outside the
3360  * tasks cpuset.
3361  **/
3362 
3363 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
3364 {
3365 	unsigned long flags;
3366 
3367 	spin_lock_irqsave(&callback_lock, flags);
3368 	guarantee_online_cpus(tsk, pmask);
3369 	spin_unlock_irqrestore(&callback_lock, flags);
3370 }
3371 
3372 /**
3373  * cpuset_cpus_allowed_fallback - final fallback before complete catastrophe.
3374  * @tsk: pointer to task_struct with which the scheduler is struggling
3375  *
3376  * Description: In the case that the scheduler cannot find an allowed cpu in
3377  * tsk->cpus_allowed, we fall back to task_cs(tsk)->cpus_allowed. In legacy
3378  * mode however, this value is the same as task_cs(tsk)->effective_cpus,
3379  * which will not contain a sane cpumask during cases such as cpu hotplugging.
3380  * This is the absolute last resort for the scheduler and it is only used if
3381  * _every_ other avenue has been traveled.
3382  *
3383  * Returns true if the affinity of @tsk was changed, false otherwise.
3384  **/
3385 
3386 bool cpuset_cpus_allowed_fallback(struct task_struct *tsk)
3387 {
3388 	const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
3389 	const struct cpumask *cs_mask;
3390 	bool changed = false;
3391 
3392 	rcu_read_lock();
3393 	cs_mask = task_cs(tsk)->cpus_allowed;
3394 	if (is_in_v2_mode() && cpumask_subset(cs_mask, possible_mask)) {
3395 		do_set_cpus_allowed(tsk, cs_mask);
3396 		changed = true;
3397 	}
3398 	rcu_read_unlock();
3399 
3400 	/*
3401 	 * We own tsk->cpus_allowed, nobody can change it under us.
3402 	 *
3403 	 * But we used cs && cs->cpus_allowed lockless and thus can
3404 	 * race with cgroup_attach_task() or update_cpumask() and get
3405 	 * the wrong tsk->cpus_allowed. However, both cases imply the
3406 	 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
3407 	 * which takes task_rq_lock().
3408 	 *
3409 	 * If we are called after it dropped the lock we must see all
3410 	 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
3411 	 * set any mask even if it is not right from task_cs() pov,
3412 	 * the pending set_cpus_allowed_ptr() will fix things.
3413 	 *
3414 	 * select_fallback_rq() will fix things ups and set cpu_possible_mask
3415 	 * if required.
3416 	 */
3417 	return changed;
3418 }
3419 
3420 void __init cpuset_init_current_mems_allowed(void)
3421 {
3422 	nodes_setall(current->mems_allowed);
3423 }
3424 
3425 /**
3426  * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
3427  * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
3428  *
3429  * Description: Returns the nodemask_t mems_allowed of the cpuset
3430  * attached to the specified @tsk.  Guaranteed to return some non-empty
3431  * subset of node_states[N_MEMORY], even if this means going outside the
3432  * tasks cpuset.
3433  **/
3434 
3435 nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
3436 {
3437 	nodemask_t mask;
3438 	unsigned long flags;
3439 
3440 	spin_lock_irqsave(&callback_lock, flags);
3441 	rcu_read_lock();
3442 	guarantee_online_mems(task_cs(tsk), &mask);
3443 	rcu_read_unlock();
3444 	spin_unlock_irqrestore(&callback_lock, flags);
3445 
3446 	return mask;
3447 }
3448 
3449 /**
3450  * cpuset_nodemask_valid_mems_allowed - check nodemask vs. current mems_allowed
3451  * @nodemask: the nodemask to be checked
3452  *
3453  * Are any of the nodes in the nodemask allowed in current->mems_allowed?
3454  */
3455 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
3456 {
3457 	return nodes_intersects(*nodemask, current->mems_allowed);
3458 }
3459 
3460 /*
3461  * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
3462  * mem_hardwall ancestor to the specified cpuset.  Call holding
3463  * callback_lock.  If no ancestor is mem_exclusive or mem_hardwall
3464  * (an unusual configuration), then returns the root cpuset.
3465  */
3466 static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
3467 {
3468 	while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
3469 		cs = parent_cs(cs);
3470 	return cs;
3471 }
3472 
3473 /**
3474  * cpuset_node_allowed - Can we allocate on a memory node?
3475  * @node: is this an allowed node?
3476  * @gfp_mask: memory allocation flags
3477  *
3478  * If we're in interrupt, yes, we can always allocate.  If @node is set in
3479  * current's mems_allowed, yes.  If it's not a __GFP_HARDWALL request and this
3480  * node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
3481  * yes.  If current has access to memory reserves as an oom victim, yes.
3482  * Otherwise, no.
3483  *
3484  * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
3485  * and do not allow allocations outside the current tasks cpuset
3486  * unless the task has been OOM killed.
3487  * GFP_KERNEL allocations are not so marked, so can escape to the
3488  * nearest enclosing hardwalled ancestor cpuset.
3489  *
3490  * Scanning up parent cpusets requires callback_lock.  The
3491  * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
3492  * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
3493  * current tasks mems_allowed came up empty on the first pass over
3494  * the zonelist.  So only GFP_KERNEL allocations, if all nodes in the
3495  * cpuset are short of memory, might require taking the callback_lock.
3496  *
3497  * The first call here from mm/page_alloc:get_page_from_freelist()
3498  * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
3499  * so no allocation on a node outside the cpuset is allowed (unless
3500  * in interrupt, of course).
3501  *
3502  * The second pass through get_page_from_freelist() doesn't even call
3503  * here for GFP_ATOMIC calls.  For those calls, the __alloc_pages()
3504  * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
3505  * in alloc_flags.  That logic and the checks below have the combined
3506  * affect that:
3507  *	in_interrupt - any node ok (current task context irrelevant)
3508  *	GFP_ATOMIC   - any node ok
3509  *	tsk_is_oom_victim   - any node ok
3510  *	GFP_KERNEL   - any node in enclosing hardwalled cpuset ok
3511  *	GFP_USER     - only nodes in current tasks mems allowed ok.
3512  */
3513 bool __cpuset_node_allowed(int node, gfp_t gfp_mask)
3514 {
3515 	struct cpuset *cs;		/* current cpuset ancestors */
3516 	int allowed;			/* is allocation in zone z allowed? */
3517 	unsigned long flags;
3518 
3519 	if (in_interrupt())
3520 		return true;
3521 	if (node_isset(node, current->mems_allowed))
3522 		return true;
3523 	/*
3524 	 * Allow tasks that have access to memory reserves because they have
3525 	 * been OOM killed to get memory anywhere.
3526 	 */
3527 	if (unlikely(tsk_is_oom_victim(current)))
3528 		return true;
3529 	if (gfp_mask & __GFP_HARDWALL)	/* If hardwall request, stop here */
3530 		return false;
3531 
3532 	if (current->flags & PF_EXITING) /* Let dying task have memory */
3533 		return true;
3534 
3535 	/* Not hardwall and node outside mems_allowed: scan up cpusets */
3536 	spin_lock_irqsave(&callback_lock, flags);
3537 
3538 	rcu_read_lock();
3539 	cs = nearest_hardwall_ancestor(task_cs(current));
3540 	allowed = node_isset(node, cs->mems_allowed);
3541 	rcu_read_unlock();
3542 
3543 	spin_unlock_irqrestore(&callback_lock, flags);
3544 	return allowed;
3545 }
3546 
3547 /**
3548  * cpuset_mem_spread_node() - On which node to begin search for a file page
3549  * cpuset_slab_spread_node() - On which node to begin search for a slab page
3550  *
3551  * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
3552  * tasks in a cpuset with is_spread_page or is_spread_slab set),
3553  * and if the memory allocation used cpuset_mem_spread_node()
3554  * to determine on which node to start looking, as it will for
3555  * certain page cache or slab cache pages such as used for file
3556  * system buffers and inode caches, then instead of starting on the
3557  * local node to look for a free page, rather spread the starting
3558  * node around the tasks mems_allowed nodes.
3559  *
3560  * We don't have to worry about the returned node being offline
3561  * because "it can't happen", and even if it did, it would be ok.
3562  *
3563  * The routines calling guarantee_online_mems() are careful to
3564  * only set nodes in task->mems_allowed that are online.  So it
3565  * should not be possible for the following code to return an
3566  * offline node.  But if it did, that would be ok, as this routine
3567  * is not returning the node where the allocation must be, only
3568  * the node where the search should start.  The zonelist passed to
3569  * __alloc_pages() will include all nodes.  If the slab allocator
3570  * is passed an offline node, it will fall back to the local node.
3571  * See kmem_cache_alloc_node().
3572  */
3573 
3574 static int cpuset_spread_node(int *rotor)
3575 {
3576 	return *rotor = next_node_in(*rotor, current->mems_allowed);
3577 }
3578 
3579 int cpuset_mem_spread_node(void)
3580 {
3581 	if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
3582 		current->cpuset_mem_spread_rotor =
3583 			node_random(&current->mems_allowed);
3584 
3585 	return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
3586 }
3587 
3588 int cpuset_slab_spread_node(void)
3589 {
3590 	if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
3591 		current->cpuset_slab_spread_rotor =
3592 			node_random(&current->mems_allowed);
3593 
3594 	return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
3595 }
3596 
3597 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
3598 
3599 /**
3600  * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
3601  * @tsk1: pointer to task_struct of some task.
3602  * @tsk2: pointer to task_struct of some other task.
3603  *
3604  * Description: Return true if @tsk1's mems_allowed intersects the
3605  * mems_allowed of @tsk2.  Used by the OOM killer to determine if
3606  * one of the task's memory usage might impact the memory available
3607  * to the other.
3608  **/
3609 
3610 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
3611 				   const struct task_struct *tsk2)
3612 {
3613 	return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
3614 }
3615 
3616 /**
3617  * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed
3618  *
3619  * Description: Prints current's name, cpuset name, and cached copy of its
3620  * mems_allowed to the kernel log.
3621  */
3622 void cpuset_print_current_mems_allowed(void)
3623 {
3624 	struct cgroup *cgrp;
3625 
3626 	rcu_read_lock();
3627 
3628 	cgrp = task_cs(current)->css.cgroup;
3629 	pr_cont(",cpuset=");
3630 	pr_cont_cgroup_name(cgrp);
3631 	pr_cont(",mems_allowed=%*pbl",
3632 		nodemask_pr_args(&current->mems_allowed));
3633 
3634 	rcu_read_unlock();
3635 }
3636 
3637 /*
3638  * Collection of memory_pressure is suppressed unless
3639  * this flag is enabled by writing "1" to the special
3640  * cpuset file 'memory_pressure_enabled' in the root cpuset.
3641  */
3642 
3643 int cpuset_memory_pressure_enabled __read_mostly;
3644 
3645 /**
3646  * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
3647  *
3648  * Keep a running average of the rate of synchronous (direct)
3649  * page reclaim efforts initiated by tasks in each cpuset.
3650  *
3651  * This represents the rate at which some task in the cpuset
3652  * ran low on memory on all nodes it was allowed to use, and
3653  * had to enter the kernels page reclaim code in an effort to
3654  * create more free memory by tossing clean pages or swapping
3655  * or writing dirty pages.
3656  *
3657  * Display to user space in the per-cpuset read-only file
3658  * "memory_pressure".  Value displayed is an integer
3659  * representing the recent rate of entry into the synchronous
3660  * (direct) page reclaim by any task attached to the cpuset.
3661  **/
3662 
3663 void __cpuset_memory_pressure_bump(void)
3664 {
3665 	rcu_read_lock();
3666 	fmeter_markevent(&task_cs(current)->fmeter);
3667 	rcu_read_unlock();
3668 }
3669 
3670 #ifdef CONFIG_PROC_PID_CPUSET
3671 /*
3672  * proc_cpuset_show()
3673  *  - Print tasks cpuset path into seq_file.
3674  *  - Used for /proc/<pid>/cpuset.
3675  *  - No need to task_lock(tsk) on this tsk->cpuset reference, as it
3676  *    doesn't really matter if tsk->cpuset changes after we read it,
3677  *    and we take cpuset_rwsem, keeping cpuset_attach() from changing it
3678  *    anyway.
3679  */
3680 int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
3681 		     struct pid *pid, struct task_struct *tsk)
3682 {
3683 	char *buf;
3684 	struct cgroup_subsys_state *css;
3685 	int retval;
3686 
3687 	retval = -ENOMEM;
3688 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
3689 	if (!buf)
3690 		goto out;
3691 
3692 	css = task_get_css(tsk, cpuset_cgrp_id);
3693 	retval = cgroup_path_ns(css->cgroup, buf, PATH_MAX,
3694 				current->nsproxy->cgroup_ns);
3695 	css_put(css);
3696 	if (retval >= PATH_MAX)
3697 		retval = -ENAMETOOLONG;
3698 	if (retval < 0)
3699 		goto out_free;
3700 	seq_puts(m, buf);
3701 	seq_putc(m, '\n');
3702 	retval = 0;
3703 out_free:
3704 	kfree(buf);
3705 out:
3706 	return retval;
3707 }
3708 #endif /* CONFIG_PROC_PID_CPUSET */
3709 
3710 /* Display task mems_allowed in /proc/<pid>/status file. */
3711 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
3712 {
3713 	seq_printf(m, "Mems_allowed:\t%*pb\n",
3714 		   nodemask_pr_args(&task->mems_allowed));
3715 	seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
3716 		   nodemask_pr_args(&task->mems_allowed));
3717 }
3718