1 /* 2 * kernel/cpuset.c 3 * 4 * Processor and Memory placement constraints for sets of tasks. 5 * 6 * Copyright (C) 2003 BULL SA. 7 * Copyright (C) 2004-2007 Silicon Graphics, Inc. 8 * Copyright (C) 2006 Google, Inc 9 * 10 * Portions derived from Patrick Mochel's sysfs code. 11 * sysfs is Copyright (c) 2001-3 Patrick Mochel 12 * 13 * 2003-10-10 Written by Simon Derr. 14 * 2003-10-22 Updates by Stephen Hemminger. 15 * 2004 May-July Rework by Paul Jackson. 16 * 2006 Rework by Paul Menage to use generic cgroups 17 * 2008 Rework of the scheduler domains and CPU hotplug handling 18 * by Max Krasnyansky 19 * 20 * This file is subject to the terms and conditions of the GNU General Public 21 * License. See the file COPYING in the main directory of the Linux 22 * distribution for more details. 23 */ 24 25 #include <linux/cpu.h> 26 #include <linux/cpumask.h> 27 #include <linux/cpuset.h> 28 #include <linux/err.h> 29 #include <linux/errno.h> 30 #include <linux/file.h> 31 #include <linux/fs.h> 32 #include <linux/init.h> 33 #include <linux/interrupt.h> 34 #include <linux/kernel.h> 35 #include <linux/kmod.h> 36 #include <linux/list.h> 37 #include <linux/mempolicy.h> 38 #include <linux/mm.h> 39 #include <linux/memory.h> 40 #include <linux/export.h> 41 #include <linux/mount.h> 42 #include <linux/fs_context.h> 43 #include <linux/namei.h> 44 #include <linux/pagemap.h> 45 #include <linux/proc_fs.h> 46 #include <linux/rcupdate.h> 47 #include <linux/sched.h> 48 #include <linux/sched/deadline.h> 49 #include <linux/sched/mm.h> 50 #include <linux/sched/task.h> 51 #include <linux/seq_file.h> 52 #include <linux/security.h> 53 #include <linux/slab.h> 54 #include <linux/spinlock.h> 55 #include <linux/stat.h> 56 #include <linux/string.h> 57 #include <linux/time.h> 58 #include <linux/time64.h> 59 #include <linux/backing-dev.h> 60 #include <linux/sort.h> 61 #include <linux/oom.h> 62 #include <linux/sched/isolation.h> 63 #include <linux/uaccess.h> 64 #include <linux/atomic.h> 65 #include <linux/mutex.h> 66 #include <linux/cgroup.h> 67 #include <linux/wait.h> 68 69 DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key); 70 DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key); 71 72 /* 73 * There could be abnormal cpuset configurations for cpu or memory 74 * node binding, add this key to provide a quick low-cost judgement 75 * of the situation. 76 */ 77 DEFINE_STATIC_KEY_FALSE(cpusets_insane_config_key); 78 79 /* See "Frequency meter" comments, below. */ 80 81 struct fmeter { 82 int cnt; /* unprocessed events count */ 83 int val; /* most recent output value */ 84 time64_t time; /* clock (secs) when val computed */ 85 spinlock_t lock; /* guards read or write of above */ 86 }; 87 88 struct cpuset { 89 struct cgroup_subsys_state css; 90 91 unsigned long flags; /* "unsigned long" so bitops work */ 92 93 /* 94 * On default hierarchy: 95 * 96 * The user-configured masks can only be changed by writing to 97 * cpuset.cpus and cpuset.mems, and won't be limited by the 98 * parent masks. 99 * 100 * The effective masks is the real masks that apply to the tasks 101 * in the cpuset. They may be changed if the configured masks are 102 * changed or hotplug happens. 103 * 104 * effective_mask == configured_mask & parent's effective_mask, 105 * and if it ends up empty, it will inherit the parent's mask. 106 * 107 * 108 * On legacy hierarchy: 109 * 110 * The user-configured masks are always the same with effective masks. 111 */ 112 113 /* user-configured CPUs and Memory Nodes allow to tasks */ 114 cpumask_var_t cpus_allowed; 115 nodemask_t mems_allowed; 116 117 /* effective CPUs and Memory Nodes allow to tasks */ 118 cpumask_var_t effective_cpus; 119 nodemask_t effective_mems; 120 121 /* 122 * CPUs allocated to child sub-partitions (default hierarchy only) 123 * - CPUs granted by the parent = effective_cpus U subparts_cpus 124 * - effective_cpus and subparts_cpus are mutually exclusive. 125 * 126 * effective_cpus contains only onlined CPUs, but subparts_cpus 127 * may have offlined ones. 128 */ 129 cpumask_var_t subparts_cpus; 130 131 /* 132 * This is old Memory Nodes tasks took on. 133 * 134 * - top_cpuset.old_mems_allowed is initialized to mems_allowed. 135 * - A new cpuset's old_mems_allowed is initialized when some 136 * task is moved into it. 137 * - old_mems_allowed is used in cpuset_migrate_mm() when we change 138 * cpuset.mems_allowed and have tasks' nodemask updated, and 139 * then old_mems_allowed is updated to mems_allowed. 140 */ 141 nodemask_t old_mems_allowed; 142 143 struct fmeter fmeter; /* memory_pressure filter */ 144 145 /* 146 * Tasks are being attached to this cpuset. Used to prevent 147 * zeroing cpus/mems_allowed between ->can_attach() and ->attach(). 148 */ 149 int attach_in_progress; 150 151 /* partition number for rebuild_sched_domains() */ 152 int pn; 153 154 /* for custom sched domain */ 155 int relax_domain_level; 156 157 /* number of CPUs in subparts_cpus */ 158 int nr_subparts_cpus; 159 160 /* partition root state */ 161 int partition_root_state; 162 163 /* 164 * Default hierarchy only: 165 * use_parent_ecpus - set if using parent's effective_cpus 166 * child_ecpus_count - # of children with use_parent_ecpus set 167 */ 168 int use_parent_ecpus; 169 int child_ecpus_count; 170 171 /* Handle for cpuset.cpus.partition */ 172 struct cgroup_file partition_file; 173 }; 174 175 /* 176 * Partition root states: 177 * 178 * 0 - not a partition root 179 * 180 * 1 - partition root 181 * 182 * -1 - invalid partition root 183 * None of the cpus in cpus_allowed can be put into the parent's 184 * subparts_cpus. In this case, the cpuset is not a real partition 185 * root anymore. However, the CPU_EXCLUSIVE bit will still be set 186 * and the cpuset can be restored back to a partition root if the 187 * parent cpuset can give more CPUs back to this child cpuset. 188 */ 189 #define PRS_DISABLED 0 190 #define PRS_ENABLED 1 191 #define PRS_ERROR -1 192 193 /* 194 * Temporary cpumasks for working with partitions that are passed among 195 * functions to avoid memory allocation in inner functions. 196 */ 197 struct tmpmasks { 198 cpumask_var_t addmask, delmask; /* For partition root */ 199 cpumask_var_t new_cpus; /* For update_cpumasks_hier() */ 200 }; 201 202 static inline struct cpuset *css_cs(struct cgroup_subsys_state *css) 203 { 204 return css ? container_of(css, struct cpuset, css) : NULL; 205 } 206 207 /* Retrieve the cpuset for a task */ 208 static inline struct cpuset *task_cs(struct task_struct *task) 209 { 210 return css_cs(task_css(task, cpuset_cgrp_id)); 211 } 212 213 static inline struct cpuset *parent_cs(struct cpuset *cs) 214 { 215 return css_cs(cs->css.parent); 216 } 217 218 /* bits in struct cpuset flags field */ 219 typedef enum { 220 CS_ONLINE, 221 CS_CPU_EXCLUSIVE, 222 CS_MEM_EXCLUSIVE, 223 CS_MEM_HARDWALL, 224 CS_MEMORY_MIGRATE, 225 CS_SCHED_LOAD_BALANCE, 226 CS_SPREAD_PAGE, 227 CS_SPREAD_SLAB, 228 } cpuset_flagbits_t; 229 230 /* convenient tests for these bits */ 231 static inline bool is_cpuset_online(struct cpuset *cs) 232 { 233 return test_bit(CS_ONLINE, &cs->flags) && !css_is_dying(&cs->css); 234 } 235 236 static inline int is_cpu_exclusive(const struct cpuset *cs) 237 { 238 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags); 239 } 240 241 static inline int is_mem_exclusive(const struct cpuset *cs) 242 { 243 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags); 244 } 245 246 static inline int is_mem_hardwall(const struct cpuset *cs) 247 { 248 return test_bit(CS_MEM_HARDWALL, &cs->flags); 249 } 250 251 static inline int is_sched_load_balance(const struct cpuset *cs) 252 { 253 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); 254 } 255 256 static inline int is_memory_migrate(const struct cpuset *cs) 257 { 258 return test_bit(CS_MEMORY_MIGRATE, &cs->flags); 259 } 260 261 static inline int is_spread_page(const struct cpuset *cs) 262 { 263 return test_bit(CS_SPREAD_PAGE, &cs->flags); 264 } 265 266 static inline int is_spread_slab(const struct cpuset *cs) 267 { 268 return test_bit(CS_SPREAD_SLAB, &cs->flags); 269 } 270 271 static inline int is_partition_root(const struct cpuset *cs) 272 { 273 return cs->partition_root_state > 0; 274 } 275 276 /* 277 * Send notification event of whenever partition_root_state changes. 278 */ 279 static inline void notify_partition_change(struct cpuset *cs, 280 int old_prs, int new_prs) 281 { 282 if (old_prs != new_prs) 283 cgroup_file_notify(&cs->partition_file); 284 } 285 286 static struct cpuset top_cpuset = { 287 .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) | 288 (1 << CS_MEM_EXCLUSIVE)), 289 .partition_root_state = PRS_ENABLED, 290 }; 291 292 /** 293 * cpuset_for_each_child - traverse online children of a cpuset 294 * @child_cs: loop cursor pointing to the current child 295 * @pos_css: used for iteration 296 * @parent_cs: target cpuset to walk children of 297 * 298 * Walk @child_cs through the online children of @parent_cs. Must be used 299 * with RCU read locked. 300 */ 301 #define cpuset_for_each_child(child_cs, pos_css, parent_cs) \ 302 css_for_each_child((pos_css), &(parent_cs)->css) \ 303 if (is_cpuset_online(((child_cs) = css_cs((pos_css))))) 304 305 /** 306 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants 307 * @des_cs: loop cursor pointing to the current descendant 308 * @pos_css: used for iteration 309 * @root_cs: target cpuset to walk ancestor of 310 * 311 * Walk @des_cs through the online descendants of @root_cs. Must be used 312 * with RCU read locked. The caller may modify @pos_css by calling 313 * css_rightmost_descendant() to skip subtree. @root_cs is included in the 314 * iteration and the first node to be visited. 315 */ 316 #define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs) \ 317 css_for_each_descendant_pre((pos_css), &(root_cs)->css) \ 318 if (is_cpuset_online(((des_cs) = css_cs((pos_css))))) 319 320 /* 321 * There are two global locks guarding cpuset structures - cpuset_rwsem and 322 * callback_lock. We also require taking task_lock() when dereferencing a 323 * task's cpuset pointer. See "The task_lock() exception", at the end of this 324 * comment. The cpuset code uses only cpuset_rwsem write lock. Other 325 * kernel subsystems can use cpuset_read_lock()/cpuset_read_unlock() to 326 * prevent change to cpuset structures. 327 * 328 * A task must hold both locks to modify cpusets. If a task holds 329 * cpuset_rwsem, it blocks others wanting that rwsem, ensuring that it 330 * is the only task able to also acquire callback_lock and be able to 331 * modify cpusets. It can perform various checks on the cpuset structure 332 * first, knowing nothing will change. It can also allocate memory while 333 * just holding cpuset_rwsem. While it is performing these checks, various 334 * callback routines can briefly acquire callback_lock to query cpusets. 335 * Once it is ready to make the changes, it takes callback_lock, blocking 336 * everyone else. 337 * 338 * Calls to the kernel memory allocator can not be made while holding 339 * callback_lock, as that would risk double tripping on callback_lock 340 * from one of the callbacks into the cpuset code from within 341 * __alloc_pages(). 342 * 343 * If a task is only holding callback_lock, then it has read-only 344 * access to cpusets. 345 * 346 * Now, the task_struct fields mems_allowed and mempolicy may be changed 347 * by other task, we use alloc_lock in the task_struct fields to protect 348 * them. 349 * 350 * The cpuset_common_file_read() handlers only hold callback_lock across 351 * small pieces of code, such as when reading out possibly multi-word 352 * cpumasks and nodemasks. 353 * 354 * Accessing a task's cpuset should be done in accordance with the 355 * guidelines for accessing subsystem state in kernel/cgroup.c 356 */ 357 358 DEFINE_STATIC_PERCPU_RWSEM(cpuset_rwsem); 359 360 void cpuset_read_lock(void) 361 { 362 percpu_down_read(&cpuset_rwsem); 363 } 364 365 void cpuset_read_unlock(void) 366 { 367 percpu_up_read(&cpuset_rwsem); 368 } 369 370 static DEFINE_SPINLOCK(callback_lock); 371 372 static struct workqueue_struct *cpuset_migrate_mm_wq; 373 374 /* 375 * CPU / memory hotplug is handled asynchronously. 376 */ 377 static void cpuset_hotplug_workfn(struct work_struct *work); 378 static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn); 379 380 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq); 381 382 static inline void check_insane_mems_config(nodemask_t *nodes) 383 { 384 if (!cpusets_insane_config() && 385 movable_only_nodes(nodes)) { 386 static_branch_enable(&cpusets_insane_config_key); 387 pr_info("Unsupported (movable nodes only) cpuset configuration detected (nmask=%*pbl)!\n" 388 "Cpuset allocations might fail even with a lot of memory available.\n", 389 nodemask_pr_args(nodes)); 390 } 391 } 392 393 /* 394 * Cgroup v2 behavior is used on the "cpus" and "mems" control files when 395 * on default hierarchy or when the cpuset_v2_mode flag is set by mounting 396 * the v1 cpuset cgroup filesystem with the "cpuset_v2_mode" mount option. 397 * With v2 behavior, "cpus" and "mems" are always what the users have 398 * requested and won't be changed by hotplug events. Only the effective 399 * cpus or mems will be affected. 400 */ 401 static inline bool is_in_v2_mode(void) 402 { 403 return cgroup_subsys_on_dfl(cpuset_cgrp_subsys) || 404 (cpuset_cgrp_subsys.root->flags & CGRP_ROOT_CPUSET_V2_MODE); 405 } 406 407 /* 408 * Return in pmask the portion of a task's cpusets's cpus_allowed that 409 * are online and are capable of running the task. If none are found, 410 * walk up the cpuset hierarchy until we find one that does have some 411 * appropriate cpus. 412 * 413 * One way or another, we guarantee to return some non-empty subset 414 * of cpu_online_mask. 415 * 416 * Call with callback_lock or cpuset_rwsem held. 417 */ 418 static void guarantee_online_cpus(struct task_struct *tsk, 419 struct cpumask *pmask) 420 { 421 const struct cpumask *possible_mask = task_cpu_possible_mask(tsk); 422 struct cpuset *cs; 423 424 if (WARN_ON(!cpumask_and(pmask, possible_mask, cpu_online_mask))) 425 cpumask_copy(pmask, cpu_online_mask); 426 427 rcu_read_lock(); 428 cs = task_cs(tsk); 429 430 while (!cpumask_intersects(cs->effective_cpus, pmask)) { 431 cs = parent_cs(cs); 432 if (unlikely(!cs)) { 433 /* 434 * The top cpuset doesn't have any online cpu as a 435 * consequence of a race between cpuset_hotplug_work 436 * and cpu hotplug notifier. But we know the top 437 * cpuset's effective_cpus is on its way to be 438 * identical to cpu_online_mask. 439 */ 440 goto out_unlock; 441 } 442 } 443 cpumask_and(pmask, pmask, cs->effective_cpus); 444 445 out_unlock: 446 rcu_read_unlock(); 447 } 448 449 /* 450 * Return in *pmask the portion of a cpusets's mems_allowed that 451 * are online, with memory. If none are online with memory, walk 452 * up the cpuset hierarchy until we find one that does have some 453 * online mems. The top cpuset always has some mems online. 454 * 455 * One way or another, we guarantee to return some non-empty subset 456 * of node_states[N_MEMORY]. 457 * 458 * Call with callback_lock or cpuset_rwsem held. 459 */ 460 static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask) 461 { 462 while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY])) 463 cs = parent_cs(cs); 464 nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]); 465 } 466 467 /* 468 * update task's spread flag if cpuset's page/slab spread flag is set 469 * 470 * Call with callback_lock or cpuset_rwsem held. 471 */ 472 static void cpuset_update_task_spread_flag(struct cpuset *cs, 473 struct task_struct *tsk) 474 { 475 if (is_spread_page(cs)) 476 task_set_spread_page(tsk); 477 else 478 task_clear_spread_page(tsk); 479 480 if (is_spread_slab(cs)) 481 task_set_spread_slab(tsk); 482 else 483 task_clear_spread_slab(tsk); 484 } 485 486 /* 487 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q? 488 * 489 * One cpuset is a subset of another if all its allowed CPUs and 490 * Memory Nodes are a subset of the other, and its exclusive flags 491 * are only set if the other's are set. Call holding cpuset_rwsem. 492 */ 493 494 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q) 495 { 496 return cpumask_subset(p->cpus_allowed, q->cpus_allowed) && 497 nodes_subset(p->mems_allowed, q->mems_allowed) && 498 is_cpu_exclusive(p) <= is_cpu_exclusive(q) && 499 is_mem_exclusive(p) <= is_mem_exclusive(q); 500 } 501 502 /** 503 * alloc_cpumasks - allocate three cpumasks for cpuset 504 * @cs: the cpuset that have cpumasks to be allocated. 505 * @tmp: the tmpmasks structure pointer 506 * Return: 0 if successful, -ENOMEM otherwise. 507 * 508 * Only one of the two input arguments should be non-NULL. 509 */ 510 static inline int alloc_cpumasks(struct cpuset *cs, struct tmpmasks *tmp) 511 { 512 cpumask_var_t *pmask1, *pmask2, *pmask3; 513 514 if (cs) { 515 pmask1 = &cs->cpus_allowed; 516 pmask2 = &cs->effective_cpus; 517 pmask3 = &cs->subparts_cpus; 518 } else { 519 pmask1 = &tmp->new_cpus; 520 pmask2 = &tmp->addmask; 521 pmask3 = &tmp->delmask; 522 } 523 524 if (!zalloc_cpumask_var(pmask1, GFP_KERNEL)) 525 return -ENOMEM; 526 527 if (!zalloc_cpumask_var(pmask2, GFP_KERNEL)) 528 goto free_one; 529 530 if (!zalloc_cpumask_var(pmask3, GFP_KERNEL)) 531 goto free_two; 532 533 return 0; 534 535 free_two: 536 free_cpumask_var(*pmask2); 537 free_one: 538 free_cpumask_var(*pmask1); 539 return -ENOMEM; 540 } 541 542 /** 543 * free_cpumasks - free cpumasks in a tmpmasks structure 544 * @cs: the cpuset that have cpumasks to be free. 545 * @tmp: the tmpmasks structure pointer 546 */ 547 static inline void free_cpumasks(struct cpuset *cs, struct tmpmasks *tmp) 548 { 549 if (cs) { 550 free_cpumask_var(cs->cpus_allowed); 551 free_cpumask_var(cs->effective_cpus); 552 free_cpumask_var(cs->subparts_cpus); 553 } 554 if (tmp) { 555 free_cpumask_var(tmp->new_cpus); 556 free_cpumask_var(tmp->addmask); 557 free_cpumask_var(tmp->delmask); 558 } 559 } 560 561 /** 562 * alloc_trial_cpuset - allocate a trial cpuset 563 * @cs: the cpuset that the trial cpuset duplicates 564 */ 565 static struct cpuset *alloc_trial_cpuset(struct cpuset *cs) 566 { 567 struct cpuset *trial; 568 569 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL); 570 if (!trial) 571 return NULL; 572 573 if (alloc_cpumasks(trial, NULL)) { 574 kfree(trial); 575 return NULL; 576 } 577 578 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed); 579 cpumask_copy(trial->effective_cpus, cs->effective_cpus); 580 return trial; 581 } 582 583 /** 584 * free_cpuset - free the cpuset 585 * @cs: the cpuset to be freed 586 */ 587 static inline void free_cpuset(struct cpuset *cs) 588 { 589 free_cpumasks(cs, NULL); 590 kfree(cs); 591 } 592 593 /* 594 * validate_change_legacy() - Validate conditions specific to legacy (v1) 595 * behavior. 596 */ 597 static int validate_change_legacy(struct cpuset *cur, struct cpuset *trial) 598 { 599 struct cgroup_subsys_state *css; 600 struct cpuset *c, *par; 601 int ret; 602 603 WARN_ON_ONCE(!rcu_read_lock_held()); 604 605 /* Each of our child cpusets must be a subset of us */ 606 ret = -EBUSY; 607 cpuset_for_each_child(c, css, cur) 608 if (!is_cpuset_subset(c, trial)) 609 goto out; 610 611 /* On legacy hierarchy, we must be a subset of our parent cpuset. */ 612 ret = -EACCES; 613 par = parent_cs(cur); 614 if (par && !is_cpuset_subset(trial, par)) 615 goto out; 616 617 ret = 0; 618 out: 619 return ret; 620 } 621 622 /* 623 * validate_change() - Used to validate that any proposed cpuset change 624 * follows the structural rules for cpusets. 625 * 626 * If we replaced the flag and mask values of the current cpuset 627 * (cur) with those values in the trial cpuset (trial), would 628 * our various subset and exclusive rules still be valid? Presumes 629 * cpuset_rwsem held. 630 * 631 * 'cur' is the address of an actual, in-use cpuset. Operations 632 * such as list traversal that depend on the actual address of the 633 * cpuset in the list must use cur below, not trial. 634 * 635 * 'trial' is the address of bulk structure copy of cur, with 636 * perhaps one or more of the fields cpus_allowed, mems_allowed, 637 * or flags changed to new, trial values. 638 * 639 * Return 0 if valid, -errno if not. 640 */ 641 642 static int validate_change(struct cpuset *cur, struct cpuset *trial) 643 { 644 struct cgroup_subsys_state *css; 645 struct cpuset *c, *par; 646 int ret = 0; 647 648 rcu_read_lock(); 649 650 if (!is_in_v2_mode()) 651 ret = validate_change_legacy(cur, trial); 652 if (ret) 653 goto out; 654 655 /* Remaining checks don't apply to root cpuset */ 656 if (cur == &top_cpuset) 657 goto out; 658 659 par = parent_cs(cur); 660 661 /* 662 * If either I or some sibling (!= me) is exclusive, we can't 663 * overlap 664 */ 665 ret = -EINVAL; 666 cpuset_for_each_child(c, css, par) { 667 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) && 668 c != cur && 669 cpumask_intersects(trial->cpus_allowed, c->cpus_allowed)) 670 goto out; 671 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) && 672 c != cur && 673 nodes_intersects(trial->mems_allowed, c->mems_allowed)) 674 goto out; 675 } 676 677 /* 678 * Cpusets with tasks - existing or newly being attached - can't 679 * be changed to have empty cpus_allowed or mems_allowed. 680 */ 681 ret = -ENOSPC; 682 if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) { 683 if (!cpumask_empty(cur->cpus_allowed) && 684 cpumask_empty(trial->cpus_allowed)) 685 goto out; 686 if (!nodes_empty(cur->mems_allowed) && 687 nodes_empty(trial->mems_allowed)) 688 goto out; 689 } 690 691 /* 692 * We can't shrink if we won't have enough room for SCHED_DEADLINE 693 * tasks. 694 */ 695 ret = -EBUSY; 696 if (is_cpu_exclusive(cur) && 697 !cpuset_cpumask_can_shrink(cur->cpus_allowed, 698 trial->cpus_allowed)) 699 goto out; 700 701 ret = 0; 702 out: 703 rcu_read_unlock(); 704 return ret; 705 } 706 707 #ifdef CONFIG_SMP 708 /* 709 * Helper routine for generate_sched_domains(). 710 * Do cpusets a, b have overlapping effective cpus_allowed masks? 711 */ 712 static int cpusets_overlap(struct cpuset *a, struct cpuset *b) 713 { 714 return cpumask_intersects(a->effective_cpus, b->effective_cpus); 715 } 716 717 static void 718 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c) 719 { 720 if (dattr->relax_domain_level < c->relax_domain_level) 721 dattr->relax_domain_level = c->relax_domain_level; 722 return; 723 } 724 725 static void update_domain_attr_tree(struct sched_domain_attr *dattr, 726 struct cpuset *root_cs) 727 { 728 struct cpuset *cp; 729 struct cgroup_subsys_state *pos_css; 730 731 rcu_read_lock(); 732 cpuset_for_each_descendant_pre(cp, pos_css, root_cs) { 733 /* skip the whole subtree if @cp doesn't have any CPU */ 734 if (cpumask_empty(cp->cpus_allowed)) { 735 pos_css = css_rightmost_descendant(pos_css); 736 continue; 737 } 738 739 if (is_sched_load_balance(cp)) 740 update_domain_attr(dattr, cp); 741 } 742 rcu_read_unlock(); 743 } 744 745 /* Must be called with cpuset_rwsem held. */ 746 static inline int nr_cpusets(void) 747 { 748 /* jump label reference count + the top-level cpuset */ 749 return static_key_count(&cpusets_enabled_key.key) + 1; 750 } 751 752 /* 753 * generate_sched_domains() 754 * 755 * This function builds a partial partition of the systems CPUs 756 * A 'partial partition' is a set of non-overlapping subsets whose 757 * union is a subset of that set. 758 * The output of this function needs to be passed to kernel/sched/core.c 759 * partition_sched_domains() routine, which will rebuild the scheduler's 760 * load balancing domains (sched domains) as specified by that partial 761 * partition. 762 * 763 * See "What is sched_load_balance" in Documentation/admin-guide/cgroup-v1/cpusets.rst 764 * for a background explanation of this. 765 * 766 * Does not return errors, on the theory that the callers of this 767 * routine would rather not worry about failures to rebuild sched 768 * domains when operating in the severe memory shortage situations 769 * that could cause allocation failures below. 770 * 771 * Must be called with cpuset_rwsem held. 772 * 773 * The three key local variables below are: 774 * cp - cpuset pointer, used (together with pos_css) to perform a 775 * top-down scan of all cpusets. For our purposes, rebuilding 776 * the schedulers sched domains, we can ignore !is_sched_load_ 777 * balance cpusets. 778 * csa - (for CpuSet Array) Array of pointers to all the cpusets 779 * that need to be load balanced, for convenient iterative 780 * access by the subsequent code that finds the best partition, 781 * i.e the set of domains (subsets) of CPUs such that the 782 * cpus_allowed of every cpuset marked is_sched_load_balance 783 * is a subset of one of these domains, while there are as 784 * many such domains as possible, each as small as possible. 785 * doms - Conversion of 'csa' to an array of cpumasks, for passing to 786 * the kernel/sched/core.c routine partition_sched_domains() in a 787 * convenient format, that can be easily compared to the prior 788 * value to determine what partition elements (sched domains) 789 * were changed (added or removed.) 790 * 791 * Finding the best partition (set of domains): 792 * The triple nested loops below over i, j, k scan over the 793 * load balanced cpusets (using the array of cpuset pointers in 794 * csa[]) looking for pairs of cpusets that have overlapping 795 * cpus_allowed, but which don't have the same 'pn' partition 796 * number and gives them in the same partition number. It keeps 797 * looping on the 'restart' label until it can no longer find 798 * any such pairs. 799 * 800 * The union of the cpus_allowed masks from the set of 801 * all cpusets having the same 'pn' value then form the one 802 * element of the partition (one sched domain) to be passed to 803 * partition_sched_domains(). 804 */ 805 static int generate_sched_domains(cpumask_var_t **domains, 806 struct sched_domain_attr **attributes) 807 { 808 struct cpuset *cp; /* top-down scan of cpusets */ 809 struct cpuset **csa; /* array of all cpuset ptrs */ 810 int csn; /* how many cpuset ptrs in csa so far */ 811 int i, j, k; /* indices for partition finding loops */ 812 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */ 813 struct sched_domain_attr *dattr; /* attributes for custom domains */ 814 int ndoms = 0; /* number of sched domains in result */ 815 int nslot; /* next empty doms[] struct cpumask slot */ 816 struct cgroup_subsys_state *pos_css; 817 bool root_load_balance = is_sched_load_balance(&top_cpuset); 818 819 doms = NULL; 820 dattr = NULL; 821 csa = NULL; 822 823 /* Special case for the 99% of systems with one, full, sched domain */ 824 if (root_load_balance && !top_cpuset.nr_subparts_cpus) { 825 ndoms = 1; 826 doms = alloc_sched_domains(ndoms); 827 if (!doms) 828 goto done; 829 830 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL); 831 if (dattr) { 832 *dattr = SD_ATTR_INIT; 833 update_domain_attr_tree(dattr, &top_cpuset); 834 } 835 cpumask_and(doms[0], top_cpuset.effective_cpus, 836 housekeeping_cpumask(HK_FLAG_DOMAIN)); 837 838 goto done; 839 } 840 841 csa = kmalloc_array(nr_cpusets(), sizeof(cp), GFP_KERNEL); 842 if (!csa) 843 goto done; 844 csn = 0; 845 846 rcu_read_lock(); 847 if (root_load_balance) 848 csa[csn++] = &top_cpuset; 849 cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) { 850 if (cp == &top_cpuset) 851 continue; 852 /* 853 * Continue traversing beyond @cp iff @cp has some CPUs and 854 * isn't load balancing. The former is obvious. The 855 * latter: All child cpusets contain a subset of the 856 * parent's cpus, so just skip them, and then we call 857 * update_domain_attr_tree() to calc relax_domain_level of 858 * the corresponding sched domain. 859 * 860 * If root is load-balancing, we can skip @cp if it 861 * is a subset of the root's effective_cpus. 862 */ 863 if (!cpumask_empty(cp->cpus_allowed) && 864 !(is_sched_load_balance(cp) && 865 cpumask_intersects(cp->cpus_allowed, 866 housekeeping_cpumask(HK_FLAG_DOMAIN)))) 867 continue; 868 869 if (root_load_balance && 870 cpumask_subset(cp->cpus_allowed, top_cpuset.effective_cpus)) 871 continue; 872 873 if (is_sched_load_balance(cp) && 874 !cpumask_empty(cp->effective_cpus)) 875 csa[csn++] = cp; 876 877 /* skip @cp's subtree if not a partition root */ 878 if (!is_partition_root(cp)) 879 pos_css = css_rightmost_descendant(pos_css); 880 } 881 rcu_read_unlock(); 882 883 for (i = 0; i < csn; i++) 884 csa[i]->pn = i; 885 ndoms = csn; 886 887 restart: 888 /* Find the best partition (set of sched domains) */ 889 for (i = 0; i < csn; i++) { 890 struct cpuset *a = csa[i]; 891 int apn = a->pn; 892 893 for (j = 0; j < csn; j++) { 894 struct cpuset *b = csa[j]; 895 int bpn = b->pn; 896 897 if (apn != bpn && cpusets_overlap(a, b)) { 898 for (k = 0; k < csn; k++) { 899 struct cpuset *c = csa[k]; 900 901 if (c->pn == bpn) 902 c->pn = apn; 903 } 904 ndoms--; /* one less element */ 905 goto restart; 906 } 907 } 908 } 909 910 /* 911 * Now we know how many domains to create. 912 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks. 913 */ 914 doms = alloc_sched_domains(ndoms); 915 if (!doms) 916 goto done; 917 918 /* 919 * The rest of the code, including the scheduler, can deal with 920 * dattr==NULL case. No need to abort if alloc fails. 921 */ 922 dattr = kmalloc_array(ndoms, sizeof(struct sched_domain_attr), 923 GFP_KERNEL); 924 925 for (nslot = 0, i = 0; i < csn; i++) { 926 struct cpuset *a = csa[i]; 927 struct cpumask *dp; 928 int apn = a->pn; 929 930 if (apn < 0) { 931 /* Skip completed partitions */ 932 continue; 933 } 934 935 dp = doms[nslot]; 936 937 if (nslot == ndoms) { 938 static int warnings = 10; 939 if (warnings) { 940 pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n", 941 nslot, ndoms, csn, i, apn); 942 warnings--; 943 } 944 continue; 945 } 946 947 cpumask_clear(dp); 948 if (dattr) 949 *(dattr + nslot) = SD_ATTR_INIT; 950 for (j = i; j < csn; j++) { 951 struct cpuset *b = csa[j]; 952 953 if (apn == b->pn) { 954 cpumask_or(dp, dp, b->effective_cpus); 955 cpumask_and(dp, dp, housekeeping_cpumask(HK_FLAG_DOMAIN)); 956 if (dattr) 957 update_domain_attr_tree(dattr + nslot, b); 958 959 /* Done with this partition */ 960 b->pn = -1; 961 } 962 } 963 nslot++; 964 } 965 BUG_ON(nslot != ndoms); 966 967 done: 968 kfree(csa); 969 970 /* 971 * Fallback to the default domain if kmalloc() failed. 972 * See comments in partition_sched_domains(). 973 */ 974 if (doms == NULL) 975 ndoms = 1; 976 977 *domains = doms; 978 *attributes = dattr; 979 return ndoms; 980 } 981 982 static void update_tasks_root_domain(struct cpuset *cs) 983 { 984 struct css_task_iter it; 985 struct task_struct *task; 986 987 css_task_iter_start(&cs->css, 0, &it); 988 989 while ((task = css_task_iter_next(&it))) 990 dl_add_task_root_domain(task); 991 992 css_task_iter_end(&it); 993 } 994 995 static void rebuild_root_domains(void) 996 { 997 struct cpuset *cs = NULL; 998 struct cgroup_subsys_state *pos_css; 999 1000 percpu_rwsem_assert_held(&cpuset_rwsem); 1001 lockdep_assert_cpus_held(); 1002 lockdep_assert_held(&sched_domains_mutex); 1003 1004 rcu_read_lock(); 1005 1006 /* 1007 * Clear default root domain DL accounting, it will be computed again 1008 * if a task belongs to it. 1009 */ 1010 dl_clear_root_domain(&def_root_domain); 1011 1012 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) { 1013 1014 if (cpumask_empty(cs->effective_cpus)) { 1015 pos_css = css_rightmost_descendant(pos_css); 1016 continue; 1017 } 1018 1019 css_get(&cs->css); 1020 1021 rcu_read_unlock(); 1022 1023 update_tasks_root_domain(cs); 1024 1025 rcu_read_lock(); 1026 css_put(&cs->css); 1027 } 1028 rcu_read_unlock(); 1029 } 1030 1031 static void 1032 partition_and_rebuild_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 1033 struct sched_domain_attr *dattr_new) 1034 { 1035 mutex_lock(&sched_domains_mutex); 1036 partition_sched_domains_locked(ndoms_new, doms_new, dattr_new); 1037 rebuild_root_domains(); 1038 mutex_unlock(&sched_domains_mutex); 1039 } 1040 1041 /* 1042 * Rebuild scheduler domains. 1043 * 1044 * If the flag 'sched_load_balance' of any cpuset with non-empty 1045 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset 1046 * which has that flag enabled, or if any cpuset with a non-empty 1047 * 'cpus' is removed, then call this routine to rebuild the 1048 * scheduler's dynamic sched domains. 1049 * 1050 * Call with cpuset_rwsem held. Takes cpus_read_lock(). 1051 */ 1052 static void rebuild_sched_domains_locked(void) 1053 { 1054 struct cgroup_subsys_state *pos_css; 1055 struct sched_domain_attr *attr; 1056 cpumask_var_t *doms; 1057 struct cpuset *cs; 1058 int ndoms; 1059 1060 lockdep_assert_cpus_held(); 1061 percpu_rwsem_assert_held(&cpuset_rwsem); 1062 1063 /* 1064 * If we have raced with CPU hotplug, return early to avoid 1065 * passing doms with offlined cpu to partition_sched_domains(). 1066 * Anyways, cpuset_hotplug_workfn() will rebuild sched domains. 1067 * 1068 * With no CPUs in any subpartitions, top_cpuset's effective CPUs 1069 * should be the same as the active CPUs, so checking only top_cpuset 1070 * is enough to detect racing CPU offlines. 1071 */ 1072 if (!top_cpuset.nr_subparts_cpus && 1073 !cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask)) 1074 return; 1075 1076 /* 1077 * With subpartition CPUs, however, the effective CPUs of a partition 1078 * root should be only a subset of the active CPUs. Since a CPU in any 1079 * partition root could be offlined, all must be checked. 1080 */ 1081 if (top_cpuset.nr_subparts_cpus) { 1082 rcu_read_lock(); 1083 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) { 1084 if (!is_partition_root(cs)) { 1085 pos_css = css_rightmost_descendant(pos_css); 1086 continue; 1087 } 1088 if (!cpumask_subset(cs->effective_cpus, 1089 cpu_active_mask)) { 1090 rcu_read_unlock(); 1091 return; 1092 } 1093 } 1094 rcu_read_unlock(); 1095 } 1096 1097 /* Generate domain masks and attrs */ 1098 ndoms = generate_sched_domains(&doms, &attr); 1099 1100 /* Have scheduler rebuild the domains */ 1101 partition_and_rebuild_sched_domains(ndoms, doms, attr); 1102 } 1103 #else /* !CONFIG_SMP */ 1104 static void rebuild_sched_domains_locked(void) 1105 { 1106 } 1107 #endif /* CONFIG_SMP */ 1108 1109 void rebuild_sched_domains(void) 1110 { 1111 cpus_read_lock(); 1112 percpu_down_write(&cpuset_rwsem); 1113 rebuild_sched_domains_locked(); 1114 percpu_up_write(&cpuset_rwsem); 1115 cpus_read_unlock(); 1116 } 1117 1118 /** 1119 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset. 1120 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed 1121 * 1122 * Iterate through each task of @cs updating its cpus_allowed to the 1123 * effective cpuset's. As this function is called with cpuset_rwsem held, 1124 * cpuset membership stays stable. 1125 */ 1126 static void update_tasks_cpumask(struct cpuset *cs) 1127 { 1128 struct css_task_iter it; 1129 struct task_struct *task; 1130 1131 css_task_iter_start(&cs->css, 0, &it); 1132 while ((task = css_task_iter_next(&it))) 1133 set_cpus_allowed_ptr(task, cs->effective_cpus); 1134 css_task_iter_end(&it); 1135 } 1136 1137 /** 1138 * compute_effective_cpumask - Compute the effective cpumask of the cpuset 1139 * @new_cpus: the temp variable for the new effective_cpus mask 1140 * @cs: the cpuset the need to recompute the new effective_cpus mask 1141 * @parent: the parent cpuset 1142 * 1143 * If the parent has subpartition CPUs, include them in the list of 1144 * allowable CPUs in computing the new effective_cpus mask. Since offlined 1145 * CPUs are not removed from subparts_cpus, we have to use cpu_active_mask 1146 * to mask those out. 1147 */ 1148 static void compute_effective_cpumask(struct cpumask *new_cpus, 1149 struct cpuset *cs, struct cpuset *parent) 1150 { 1151 if (parent->nr_subparts_cpus) { 1152 cpumask_or(new_cpus, parent->effective_cpus, 1153 parent->subparts_cpus); 1154 cpumask_and(new_cpus, new_cpus, cs->cpus_allowed); 1155 cpumask_and(new_cpus, new_cpus, cpu_active_mask); 1156 } else { 1157 cpumask_and(new_cpus, cs->cpus_allowed, parent->effective_cpus); 1158 } 1159 } 1160 1161 /* 1162 * Commands for update_parent_subparts_cpumask 1163 */ 1164 enum subparts_cmd { 1165 partcmd_enable, /* Enable partition root */ 1166 partcmd_disable, /* Disable partition root */ 1167 partcmd_update, /* Update parent's subparts_cpus */ 1168 }; 1169 1170 /** 1171 * update_parent_subparts_cpumask - update subparts_cpus mask of parent cpuset 1172 * @cpuset: The cpuset that requests change in partition root state 1173 * @cmd: Partition root state change command 1174 * @newmask: Optional new cpumask for partcmd_update 1175 * @tmp: Temporary addmask and delmask 1176 * Return: 0, 1 or an error code 1177 * 1178 * For partcmd_enable, the cpuset is being transformed from a non-partition 1179 * root to a partition root. The cpus_allowed mask of the given cpuset will 1180 * be put into parent's subparts_cpus and taken away from parent's 1181 * effective_cpus. The function will return 0 if all the CPUs listed in 1182 * cpus_allowed can be granted or an error code will be returned. 1183 * 1184 * For partcmd_disable, the cpuset is being transofrmed from a partition 1185 * root back to a non-partition root. Any CPUs in cpus_allowed that are in 1186 * parent's subparts_cpus will be taken away from that cpumask and put back 1187 * into parent's effective_cpus. 0 should always be returned. 1188 * 1189 * For partcmd_update, if the optional newmask is specified, the cpu 1190 * list is to be changed from cpus_allowed to newmask. Otherwise, 1191 * cpus_allowed is assumed to remain the same. The cpuset should either 1192 * be a partition root or an invalid partition root. The partition root 1193 * state may change if newmask is NULL and none of the requested CPUs can 1194 * be granted by the parent. The function will return 1 if changes to 1195 * parent's subparts_cpus and effective_cpus happen or 0 otherwise. 1196 * Error code should only be returned when newmask is non-NULL. 1197 * 1198 * The partcmd_enable and partcmd_disable commands are used by 1199 * update_prstate(). The partcmd_update command is used by 1200 * update_cpumasks_hier() with newmask NULL and update_cpumask() with 1201 * newmask set. 1202 * 1203 * The checking is more strict when enabling partition root than the 1204 * other two commands. 1205 * 1206 * Because of the implicit cpu exclusive nature of a partition root, 1207 * cpumask changes that violates the cpu exclusivity rule will not be 1208 * permitted when checked by validate_change(). 1209 */ 1210 static int update_parent_subparts_cpumask(struct cpuset *cpuset, int cmd, 1211 struct cpumask *newmask, 1212 struct tmpmasks *tmp) 1213 { 1214 struct cpuset *parent = parent_cs(cpuset); 1215 int adding; /* Moving cpus from effective_cpus to subparts_cpus */ 1216 int deleting; /* Moving cpus from subparts_cpus to effective_cpus */ 1217 int old_prs, new_prs; 1218 bool part_error = false; /* Partition error? */ 1219 1220 percpu_rwsem_assert_held(&cpuset_rwsem); 1221 1222 /* 1223 * The parent must be a partition root. 1224 * The new cpumask, if present, or the current cpus_allowed must 1225 * not be empty. 1226 */ 1227 if (!is_partition_root(parent) || 1228 (newmask && cpumask_empty(newmask)) || 1229 (!newmask && cpumask_empty(cpuset->cpus_allowed))) 1230 return -EINVAL; 1231 1232 /* 1233 * Enabling/disabling partition root is not allowed if there are 1234 * online children. 1235 */ 1236 if ((cmd != partcmd_update) && css_has_online_children(&cpuset->css)) 1237 return -EBUSY; 1238 1239 /* 1240 * Enabling partition root is not allowed if not all the CPUs 1241 * can be granted from parent's effective_cpus or at least one 1242 * CPU will be left after that. 1243 */ 1244 if ((cmd == partcmd_enable) && 1245 (!cpumask_subset(cpuset->cpus_allowed, parent->effective_cpus) || 1246 cpumask_equal(cpuset->cpus_allowed, parent->effective_cpus))) 1247 return -EINVAL; 1248 1249 /* 1250 * A cpumask update cannot make parent's effective_cpus become empty. 1251 */ 1252 adding = deleting = false; 1253 old_prs = new_prs = cpuset->partition_root_state; 1254 if (cmd == partcmd_enable) { 1255 cpumask_copy(tmp->addmask, cpuset->cpus_allowed); 1256 adding = true; 1257 } else if (cmd == partcmd_disable) { 1258 deleting = cpumask_and(tmp->delmask, cpuset->cpus_allowed, 1259 parent->subparts_cpus); 1260 } else if (newmask) { 1261 /* 1262 * partcmd_update with newmask: 1263 * 1264 * delmask = cpus_allowed & ~newmask & parent->subparts_cpus 1265 * addmask = newmask & parent->effective_cpus 1266 * & ~parent->subparts_cpus 1267 */ 1268 cpumask_andnot(tmp->delmask, cpuset->cpus_allowed, newmask); 1269 deleting = cpumask_and(tmp->delmask, tmp->delmask, 1270 parent->subparts_cpus); 1271 1272 cpumask_and(tmp->addmask, newmask, parent->effective_cpus); 1273 adding = cpumask_andnot(tmp->addmask, tmp->addmask, 1274 parent->subparts_cpus); 1275 /* 1276 * Return error if the new effective_cpus could become empty. 1277 */ 1278 if (adding && 1279 cpumask_equal(parent->effective_cpus, tmp->addmask)) { 1280 if (!deleting) 1281 return -EINVAL; 1282 /* 1283 * As some of the CPUs in subparts_cpus might have 1284 * been offlined, we need to compute the real delmask 1285 * to confirm that. 1286 */ 1287 if (!cpumask_and(tmp->addmask, tmp->delmask, 1288 cpu_active_mask)) 1289 return -EINVAL; 1290 cpumask_copy(tmp->addmask, parent->effective_cpus); 1291 } 1292 } else { 1293 /* 1294 * partcmd_update w/o newmask: 1295 * 1296 * addmask = cpus_allowed & parent->effective_cpus 1297 * 1298 * Note that parent's subparts_cpus may have been 1299 * pre-shrunk in case there is a change in the cpu list. 1300 * So no deletion is needed. 1301 */ 1302 adding = cpumask_and(tmp->addmask, cpuset->cpus_allowed, 1303 parent->effective_cpus); 1304 part_error = cpumask_equal(tmp->addmask, 1305 parent->effective_cpus); 1306 } 1307 1308 if (cmd == partcmd_update) { 1309 int prev_prs = cpuset->partition_root_state; 1310 1311 /* 1312 * Check for possible transition between PRS_ENABLED 1313 * and PRS_ERROR. 1314 */ 1315 switch (cpuset->partition_root_state) { 1316 case PRS_ENABLED: 1317 if (part_error) 1318 new_prs = PRS_ERROR; 1319 break; 1320 case PRS_ERROR: 1321 if (!part_error) 1322 new_prs = PRS_ENABLED; 1323 break; 1324 } 1325 /* 1326 * Set part_error if previously in invalid state. 1327 */ 1328 part_error = (prev_prs == PRS_ERROR); 1329 } 1330 1331 if (!part_error && (new_prs == PRS_ERROR)) 1332 return 0; /* Nothing need to be done */ 1333 1334 if (new_prs == PRS_ERROR) { 1335 /* 1336 * Remove all its cpus from parent's subparts_cpus. 1337 */ 1338 adding = false; 1339 deleting = cpumask_and(tmp->delmask, cpuset->cpus_allowed, 1340 parent->subparts_cpus); 1341 } 1342 1343 if (!adding && !deleting && (new_prs == old_prs)) 1344 return 0; 1345 1346 /* 1347 * Change the parent's subparts_cpus. 1348 * Newly added CPUs will be removed from effective_cpus and 1349 * newly deleted ones will be added back to effective_cpus. 1350 */ 1351 spin_lock_irq(&callback_lock); 1352 if (adding) { 1353 cpumask_or(parent->subparts_cpus, 1354 parent->subparts_cpus, tmp->addmask); 1355 cpumask_andnot(parent->effective_cpus, 1356 parent->effective_cpus, tmp->addmask); 1357 } 1358 if (deleting) { 1359 cpumask_andnot(parent->subparts_cpus, 1360 parent->subparts_cpus, tmp->delmask); 1361 /* 1362 * Some of the CPUs in subparts_cpus might have been offlined. 1363 */ 1364 cpumask_and(tmp->delmask, tmp->delmask, cpu_active_mask); 1365 cpumask_or(parent->effective_cpus, 1366 parent->effective_cpus, tmp->delmask); 1367 } 1368 1369 parent->nr_subparts_cpus = cpumask_weight(parent->subparts_cpus); 1370 1371 if (old_prs != new_prs) 1372 cpuset->partition_root_state = new_prs; 1373 1374 spin_unlock_irq(&callback_lock); 1375 notify_partition_change(cpuset, old_prs, new_prs); 1376 1377 return cmd == partcmd_update; 1378 } 1379 1380 /* 1381 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree 1382 * @cs: the cpuset to consider 1383 * @tmp: temp variables for calculating effective_cpus & partition setup 1384 * 1385 * When configured cpumask is changed, the effective cpumasks of this cpuset 1386 * and all its descendants need to be updated. 1387 * 1388 * On legacy hierarchy, effective_cpus will be the same with cpu_allowed. 1389 * 1390 * Called with cpuset_rwsem held 1391 */ 1392 static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp) 1393 { 1394 struct cpuset *cp; 1395 struct cgroup_subsys_state *pos_css; 1396 bool need_rebuild_sched_domains = false; 1397 int old_prs, new_prs; 1398 1399 rcu_read_lock(); 1400 cpuset_for_each_descendant_pre(cp, pos_css, cs) { 1401 struct cpuset *parent = parent_cs(cp); 1402 1403 compute_effective_cpumask(tmp->new_cpus, cp, parent); 1404 1405 /* 1406 * If it becomes empty, inherit the effective mask of the 1407 * parent, which is guaranteed to have some CPUs. 1408 */ 1409 if (is_in_v2_mode() && cpumask_empty(tmp->new_cpus)) { 1410 cpumask_copy(tmp->new_cpus, parent->effective_cpus); 1411 if (!cp->use_parent_ecpus) { 1412 cp->use_parent_ecpus = true; 1413 parent->child_ecpus_count++; 1414 } 1415 } else if (cp->use_parent_ecpus) { 1416 cp->use_parent_ecpus = false; 1417 WARN_ON_ONCE(!parent->child_ecpus_count); 1418 parent->child_ecpus_count--; 1419 } 1420 1421 /* 1422 * Skip the whole subtree if the cpumask remains the same 1423 * and has no partition root state. 1424 */ 1425 if (!cp->partition_root_state && 1426 cpumask_equal(tmp->new_cpus, cp->effective_cpus)) { 1427 pos_css = css_rightmost_descendant(pos_css); 1428 continue; 1429 } 1430 1431 /* 1432 * update_parent_subparts_cpumask() should have been called 1433 * for cs already in update_cpumask(). We should also call 1434 * update_tasks_cpumask() again for tasks in the parent 1435 * cpuset if the parent's subparts_cpus changes. 1436 */ 1437 old_prs = new_prs = cp->partition_root_state; 1438 if ((cp != cs) && old_prs) { 1439 switch (parent->partition_root_state) { 1440 case PRS_DISABLED: 1441 /* 1442 * If parent is not a partition root or an 1443 * invalid partition root, clear its state 1444 * and its CS_CPU_EXCLUSIVE flag. 1445 */ 1446 WARN_ON_ONCE(cp->partition_root_state 1447 != PRS_ERROR); 1448 new_prs = PRS_DISABLED; 1449 1450 /* 1451 * clear_bit() is an atomic operation and 1452 * readers aren't interested in the state 1453 * of CS_CPU_EXCLUSIVE anyway. So we can 1454 * just update the flag without holding 1455 * the callback_lock. 1456 */ 1457 clear_bit(CS_CPU_EXCLUSIVE, &cp->flags); 1458 break; 1459 1460 case PRS_ENABLED: 1461 if (update_parent_subparts_cpumask(cp, partcmd_update, NULL, tmp)) 1462 update_tasks_cpumask(parent); 1463 break; 1464 1465 case PRS_ERROR: 1466 /* 1467 * When parent is invalid, it has to be too. 1468 */ 1469 new_prs = PRS_ERROR; 1470 break; 1471 } 1472 } 1473 1474 if (!css_tryget_online(&cp->css)) 1475 continue; 1476 rcu_read_unlock(); 1477 1478 spin_lock_irq(&callback_lock); 1479 1480 cpumask_copy(cp->effective_cpus, tmp->new_cpus); 1481 if (cp->nr_subparts_cpus && (new_prs != PRS_ENABLED)) { 1482 cp->nr_subparts_cpus = 0; 1483 cpumask_clear(cp->subparts_cpus); 1484 } else if (cp->nr_subparts_cpus) { 1485 /* 1486 * Make sure that effective_cpus & subparts_cpus 1487 * are mutually exclusive. 1488 * 1489 * In the unlikely event that effective_cpus 1490 * becomes empty. we clear cp->nr_subparts_cpus and 1491 * let its child partition roots to compete for 1492 * CPUs again. 1493 */ 1494 cpumask_andnot(cp->effective_cpus, cp->effective_cpus, 1495 cp->subparts_cpus); 1496 if (cpumask_empty(cp->effective_cpus)) { 1497 cpumask_copy(cp->effective_cpus, tmp->new_cpus); 1498 cpumask_clear(cp->subparts_cpus); 1499 cp->nr_subparts_cpus = 0; 1500 } else if (!cpumask_subset(cp->subparts_cpus, 1501 tmp->new_cpus)) { 1502 cpumask_andnot(cp->subparts_cpus, 1503 cp->subparts_cpus, tmp->new_cpus); 1504 cp->nr_subparts_cpus 1505 = cpumask_weight(cp->subparts_cpus); 1506 } 1507 } 1508 1509 if (new_prs != old_prs) 1510 cp->partition_root_state = new_prs; 1511 1512 spin_unlock_irq(&callback_lock); 1513 notify_partition_change(cp, old_prs, new_prs); 1514 1515 WARN_ON(!is_in_v2_mode() && 1516 !cpumask_equal(cp->cpus_allowed, cp->effective_cpus)); 1517 1518 update_tasks_cpumask(cp); 1519 1520 /* 1521 * On legacy hierarchy, if the effective cpumask of any non- 1522 * empty cpuset is changed, we need to rebuild sched domains. 1523 * On default hierarchy, the cpuset needs to be a partition 1524 * root as well. 1525 */ 1526 if (!cpumask_empty(cp->cpus_allowed) && 1527 is_sched_load_balance(cp) && 1528 (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) || 1529 is_partition_root(cp))) 1530 need_rebuild_sched_domains = true; 1531 1532 rcu_read_lock(); 1533 css_put(&cp->css); 1534 } 1535 rcu_read_unlock(); 1536 1537 if (need_rebuild_sched_domains) 1538 rebuild_sched_domains_locked(); 1539 } 1540 1541 /** 1542 * update_sibling_cpumasks - Update siblings cpumasks 1543 * @parent: Parent cpuset 1544 * @cs: Current cpuset 1545 * @tmp: Temp variables 1546 */ 1547 static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs, 1548 struct tmpmasks *tmp) 1549 { 1550 struct cpuset *sibling; 1551 struct cgroup_subsys_state *pos_css; 1552 1553 percpu_rwsem_assert_held(&cpuset_rwsem); 1554 1555 /* 1556 * Check all its siblings and call update_cpumasks_hier() 1557 * if their use_parent_ecpus flag is set in order for them 1558 * to use the right effective_cpus value. 1559 * 1560 * The update_cpumasks_hier() function may sleep. So we have to 1561 * release the RCU read lock before calling it. 1562 */ 1563 rcu_read_lock(); 1564 cpuset_for_each_child(sibling, pos_css, parent) { 1565 if (sibling == cs) 1566 continue; 1567 if (!sibling->use_parent_ecpus) 1568 continue; 1569 if (!css_tryget_online(&sibling->css)) 1570 continue; 1571 1572 rcu_read_unlock(); 1573 update_cpumasks_hier(sibling, tmp); 1574 rcu_read_lock(); 1575 css_put(&sibling->css); 1576 } 1577 rcu_read_unlock(); 1578 } 1579 1580 /** 1581 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it 1582 * @cs: the cpuset to consider 1583 * @trialcs: trial cpuset 1584 * @buf: buffer of cpu numbers written to this cpuset 1585 */ 1586 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs, 1587 const char *buf) 1588 { 1589 int retval; 1590 struct tmpmasks tmp; 1591 1592 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */ 1593 if (cs == &top_cpuset) 1594 return -EACCES; 1595 1596 /* 1597 * An empty cpus_allowed is ok only if the cpuset has no tasks. 1598 * Since cpulist_parse() fails on an empty mask, we special case 1599 * that parsing. The validate_change() call ensures that cpusets 1600 * with tasks have cpus. 1601 */ 1602 if (!*buf) { 1603 cpumask_clear(trialcs->cpus_allowed); 1604 } else { 1605 retval = cpulist_parse(buf, trialcs->cpus_allowed); 1606 if (retval < 0) 1607 return retval; 1608 1609 if (!cpumask_subset(trialcs->cpus_allowed, 1610 top_cpuset.cpus_allowed)) 1611 return -EINVAL; 1612 } 1613 1614 /* Nothing to do if the cpus didn't change */ 1615 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed)) 1616 return 0; 1617 1618 retval = validate_change(cs, trialcs); 1619 if (retval < 0) 1620 return retval; 1621 1622 #ifdef CONFIG_CPUMASK_OFFSTACK 1623 /* 1624 * Use the cpumasks in trialcs for tmpmasks when they are pointers 1625 * to allocated cpumasks. 1626 */ 1627 tmp.addmask = trialcs->subparts_cpus; 1628 tmp.delmask = trialcs->effective_cpus; 1629 tmp.new_cpus = trialcs->cpus_allowed; 1630 #endif 1631 1632 if (cs->partition_root_state) { 1633 /* Cpumask of a partition root cannot be empty */ 1634 if (cpumask_empty(trialcs->cpus_allowed)) 1635 return -EINVAL; 1636 if (update_parent_subparts_cpumask(cs, partcmd_update, 1637 trialcs->cpus_allowed, &tmp) < 0) 1638 return -EINVAL; 1639 } 1640 1641 spin_lock_irq(&callback_lock); 1642 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed); 1643 1644 /* 1645 * Make sure that subparts_cpus is a subset of cpus_allowed. 1646 */ 1647 if (cs->nr_subparts_cpus) { 1648 cpumask_and(cs->subparts_cpus, cs->subparts_cpus, cs->cpus_allowed); 1649 cs->nr_subparts_cpus = cpumask_weight(cs->subparts_cpus); 1650 } 1651 spin_unlock_irq(&callback_lock); 1652 1653 update_cpumasks_hier(cs, &tmp); 1654 1655 if (cs->partition_root_state) { 1656 struct cpuset *parent = parent_cs(cs); 1657 1658 /* 1659 * For partition root, update the cpumasks of sibling 1660 * cpusets if they use parent's effective_cpus. 1661 */ 1662 if (parent->child_ecpus_count) 1663 update_sibling_cpumasks(parent, cs, &tmp); 1664 } 1665 return 0; 1666 } 1667 1668 /* 1669 * Migrate memory region from one set of nodes to another. This is 1670 * performed asynchronously as it can be called from process migration path 1671 * holding locks involved in process management. All mm migrations are 1672 * performed in the queued order and can be waited for by flushing 1673 * cpuset_migrate_mm_wq. 1674 */ 1675 1676 struct cpuset_migrate_mm_work { 1677 struct work_struct work; 1678 struct mm_struct *mm; 1679 nodemask_t from; 1680 nodemask_t to; 1681 }; 1682 1683 static void cpuset_migrate_mm_workfn(struct work_struct *work) 1684 { 1685 struct cpuset_migrate_mm_work *mwork = 1686 container_of(work, struct cpuset_migrate_mm_work, work); 1687 1688 /* on a wq worker, no need to worry about %current's mems_allowed */ 1689 do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL); 1690 mmput(mwork->mm); 1691 kfree(mwork); 1692 } 1693 1694 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from, 1695 const nodemask_t *to) 1696 { 1697 struct cpuset_migrate_mm_work *mwork; 1698 1699 if (nodes_equal(*from, *to)) { 1700 mmput(mm); 1701 return; 1702 } 1703 1704 mwork = kzalloc(sizeof(*mwork), GFP_KERNEL); 1705 if (mwork) { 1706 mwork->mm = mm; 1707 mwork->from = *from; 1708 mwork->to = *to; 1709 INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn); 1710 queue_work(cpuset_migrate_mm_wq, &mwork->work); 1711 } else { 1712 mmput(mm); 1713 } 1714 } 1715 1716 static void cpuset_post_attach(void) 1717 { 1718 flush_workqueue(cpuset_migrate_mm_wq); 1719 } 1720 1721 /* 1722 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy 1723 * @tsk: the task to change 1724 * @newmems: new nodes that the task will be set 1725 * 1726 * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed 1727 * and rebind an eventual tasks' mempolicy. If the task is allocating in 1728 * parallel, it might temporarily see an empty intersection, which results in 1729 * a seqlock check and retry before OOM or allocation failure. 1730 */ 1731 static void cpuset_change_task_nodemask(struct task_struct *tsk, 1732 nodemask_t *newmems) 1733 { 1734 task_lock(tsk); 1735 1736 local_irq_disable(); 1737 write_seqcount_begin(&tsk->mems_allowed_seq); 1738 1739 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems); 1740 mpol_rebind_task(tsk, newmems); 1741 tsk->mems_allowed = *newmems; 1742 1743 write_seqcount_end(&tsk->mems_allowed_seq); 1744 local_irq_enable(); 1745 1746 task_unlock(tsk); 1747 } 1748 1749 static void *cpuset_being_rebound; 1750 1751 /** 1752 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset. 1753 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed 1754 * 1755 * Iterate through each task of @cs updating its mems_allowed to the 1756 * effective cpuset's. As this function is called with cpuset_rwsem held, 1757 * cpuset membership stays stable. 1758 */ 1759 static void update_tasks_nodemask(struct cpuset *cs) 1760 { 1761 static nodemask_t newmems; /* protected by cpuset_rwsem */ 1762 struct css_task_iter it; 1763 struct task_struct *task; 1764 1765 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */ 1766 1767 guarantee_online_mems(cs, &newmems); 1768 1769 /* 1770 * The mpol_rebind_mm() call takes mmap_lock, which we couldn't 1771 * take while holding tasklist_lock. Forks can happen - the 1772 * mpol_dup() cpuset_being_rebound check will catch such forks, 1773 * and rebind their vma mempolicies too. Because we still hold 1774 * the global cpuset_rwsem, we know that no other rebind effort 1775 * will be contending for the global variable cpuset_being_rebound. 1776 * It's ok if we rebind the same mm twice; mpol_rebind_mm() 1777 * is idempotent. Also migrate pages in each mm to new nodes. 1778 */ 1779 css_task_iter_start(&cs->css, 0, &it); 1780 while ((task = css_task_iter_next(&it))) { 1781 struct mm_struct *mm; 1782 bool migrate; 1783 1784 cpuset_change_task_nodemask(task, &newmems); 1785 1786 mm = get_task_mm(task); 1787 if (!mm) 1788 continue; 1789 1790 migrate = is_memory_migrate(cs); 1791 1792 mpol_rebind_mm(mm, &cs->mems_allowed); 1793 if (migrate) 1794 cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems); 1795 else 1796 mmput(mm); 1797 } 1798 css_task_iter_end(&it); 1799 1800 /* 1801 * All the tasks' nodemasks have been updated, update 1802 * cs->old_mems_allowed. 1803 */ 1804 cs->old_mems_allowed = newmems; 1805 1806 /* We're done rebinding vmas to this cpuset's new mems_allowed. */ 1807 cpuset_being_rebound = NULL; 1808 } 1809 1810 /* 1811 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree 1812 * @cs: the cpuset to consider 1813 * @new_mems: a temp variable for calculating new effective_mems 1814 * 1815 * When configured nodemask is changed, the effective nodemasks of this cpuset 1816 * and all its descendants need to be updated. 1817 * 1818 * On legacy hierarchy, effective_mems will be the same with mems_allowed. 1819 * 1820 * Called with cpuset_rwsem held 1821 */ 1822 static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems) 1823 { 1824 struct cpuset *cp; 1825 struct cgroup_subsys_state *pos_css; 1826 1827 rcu_read_lock(); 1828 cpuset_for_each_descendant_pre(cp, pos_css, cs) { 1829 struct cpuset *parent = parent_cs(cp); 1830 1831 nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems); 1832 1833 /* 1834 * If it becomes empty, inherit the effective mask of the 1835 * parent, which is guaranteed to have some MEMs. 1836 */ 1837 if (is_in_v2_mode() && nodes_empty(*new_mems)) 1838 *new_mems = parent->effective_mems; 1839 1840 /* Skip the whole subtree if the nodemask remains the same. */ 1841 if (nodes_equal(*new_mems, cp->effective_mems)) { 1842 pos_css = css_rightmost_descendant(pos_css); 1843 continue; 1844 } 1845 1846 if (!css_tryget_online(&cp->css)) 1847 continue; 1848 rcu_read_unlock(); 1849 1850 spin_lock_irq(&callback_lock); 1851 cp->effective_mems = *new_mems; 1852 spin_unlock_irq(&callback_lock); 1853 1854 WARN_ON(!is_in_v2_mode() && 1855 !nodes_equal(cp->mems_allowed, cp->effective_mems)); 1856 1857 update_tasks_nodemask(cp); 1858 1859 rcu_read_lock(); 1860 css_put(&cp->css); 1861 } 1862 rcu_read_unlock(); 1863 } 1864 1865 /* 1866 * Handle user request to change the 'mems' memory placement 1867 * of a cpuset. Needs to validate the request, update the 1868 * cpusets mems_allowed, and for each task in the cpuset, 1869 * update mems_allowed and rebind task's mempolicy and any vma 1870 * mempolicies and if the cpuset is marked 'memory_migrate', 1871 * migrate the tasks pages to the new memory. 1872 * 1873 * Call with cpuset_rwsem held. May take callback_lock during call. 1874 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs, 1875 * lock each such tasks mm->mmap_lock, scan its vma's and rebind 1876 * their mempolicies to the cpusets new mems_allowed. 1877 */ 1878 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs, 1879 const char *buf) 1880 { 1881 int retval; 1882 1883 /* 1884 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY]; 1885 * it's read-only 1886 */ 1887 if (cs == &top_cpuset) { 1888 retval = -EACCES; 1889 goto done; 1890 } 1891 1892 /* 1893 * An empty mems_allowed is ok iff there are no tasks in the cpuset. 1894 * Since nodelist_parse() fails on an empty mask, we special case 1895 * that parsing. The validate_change() call ensures that cpusets 1896 * with tasks have memory. 1897 */ 1898 if (!*buf) { 1899 nodes_clear(trialcs->mems_allowed); 1900 } else { 1901 retval = nodelist_parse(buf, trialcs->mems_allowed); 1902 if (retval < 0) 1903 goto done; 1904 1905 if (!nodes_subset(trialcs->mems_allowed, 1906 top_cpuset.mems_allowed)) { 1907 retval = -EINVAL; 1908 goto done; 1909 } 1910 } 1911 1912 if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) { 1913 retval = 0; /* Too easy - nothing to do */ 1914 goto done; 1915 } 1916 retval = validate_change(cs, trialcs); 1917 if (retval < 0) 1918 goto done; 1919 1920 check_insane_mems_config(&trialcs->mems_allowed); 1921 1922 spin_lock_irq(&callback_lock); 1923 cs->mems_allowed = trialcs->mems_allowed; 1924 spin_unlock_irq(&callback_lock); 1925 1926 /* use trialcs->mems_allowed as a temp variable */ 1927 update_nodemasks_hier(cs, &trialcs->mems_allowed); 1928 done: 1929 return retval; 1930 } 1931 1932 bool current_cpuset_is_being_rebound(void) 1933 { 1934 bool ret; 1935 1936 rcu_read_lock(); 1937 ret = task_cs(current) == cpuset_being_rebound; 1938 rcu_read_unlock(); 1939 1940 return ret; 1941 } 1942 1943 static int update_relax_domain_level(struct cpuset *cs, s64 val) 1944 { 1945 #ifdef CONFIG_SMP 1946 if (val < -1 || val >= sched_domain_level_max) 1947 return -EINVAL; 1948 #endif 1949 1950 if (val != cs->relax_domain_level) { 1951 cs->relax_domain_level = val; 1952 if (!cpumask_empty(cs->cpus_allowed) && 1953 is_sched_load_balance(cs)) 1954 rebuild_sched_domains_locked(); 1955 } 1956 1957 return 0; 1958 } 1959 1960 /** 1961 * update_tasks_flags - update the spread flags of tasks in the cpuset. 1962 * @cs: the cpuset in which each task's spread flags needs to be changed 1963 * 1964 * Iterate through each task of @cs updating its spread flags. As this 1965 * function is called with cpuset_rwsem held, cpuset membership stays 1966 * stable. 1967 */ 1968 static void update_tasks_flags(struct cpuset *cs) 1969 { 1970 struct css_task_iter it; 1971 struct task_struct *task; 1972 1973 css_task_iter_start(&cs->css, 0, &it); 1974 while ((task = css_task_iter_next(&it))) 1975 cpuset_update_task_spread_flag(cs, task); 1976 css_task_iter_end(&it); 1977 } 1978 1979 /* 1980 * update_flag - read a 0 or a 1 in a file and update associated flag 1981 * bit: the bit to update (see cpuset_flagbits_t) 1982 * cs: the cpuset to update 1983 * turning_on: whether the flag is being set or cleared 1984 * 1985 * Call with cpuset_rwsem held. 1986 */ 1987 1988 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, 1989 int turning_on) 1990 { 1991 struct cpuset *trialcs; 1992 int balance_flag_changed; 1993 int spread_flag_changed; 1994 int err; 1995 1996 trialcs = alloc_trial_cpuset(cs); 1997 if (!trialcs) 1998 return -ENOMEM; 1999 2000 if (turning_on) 2001 set_bit(bit, &trialcs->flags); 2002 else 2003 clear_bit(bit, &trialcs->flags); 2004 2005 err = validate_change(cs, trialcs); 2006 if (err < 0) 2007 goto out; 2008 2009 balance_flag_changed = (is_sched_load_balance(cs) != 2010 is_sched_load_balance(trialcs)); 2011 2012 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs)) 2013 || (is_spread_page(cs) != is_spread_page(trialcs))); 2014 2015 spin_lock_irq(&callback_lock); 2016 cs->flags = trialcs->flags; 2017 spin_unlock_irq(&callback_lock); 2018 2019 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed) 2020 rebuild_sched_domains_locked(); 2021 2022 if (spread_flag_changed) 2023 update_tasks_flags(cs); 2024 out: 2025 free_cpuset(trialcs); 2026 return err; 2027 } 2028 2029 /* 2030 * update_prstate - update partititon_root_state 2031 * cs: the cpuset to update 2032 * new_prs: new partition root state 2033 * 2034 * Call with cpuset_rwsem held. 2035 */ 2036 static int update_prstate(struct cpuset *cs, int new_prs) 2037 { 2038 int err, old_prs = cs->partition_root_state; 2039 struct cpuset *parent = parent_cs(cs); 2040 struct tmpmasks tmpmask; 2041 2042 if (old_prs == new_prs) 2043 return 0; 2044 2045 /* 2046 * Cannot force a partial or invalid partition root to a full 2047 * partition root. 2048 */ 2049 if (new_prs && (old_prs == PRS_ERROR)) 2050 return -EINVAL; 2051 2052 if (alloc_cpumasks(NULL, &tmpmask)) 2053 return -ENOMEM; 2054 2055 err = -EINVAL; 2056 if (!old_prs) { 2057 /* 2058 * Turning on partition root requires setting the 2059 * CS_CPU_EXCLUSIVE bit implicitly as well and cpus_allowed 2060 * cannot be NULL. 2061 */ 2062 if (cpumask_empty(cs->cpus_allowed)) 2063 goto out; 2064 2065 err = update_flag(CS_CPU_EXCLUSIVE, cs, 1); 2066 if (err) 2067 goto out; 2068 2069 err = update_parent_subparts_cpumask(cs, partcmd_enable, 2070 NULL, &tmpmask); 2071 if (err) { 2072 update_flag(CS_CPU_EXCLUSIVE, cs, 0); 2073 goto out; 2074 } 2075 } else { 2076 /* 2077 * Turning off partition root will clear the 2078 * CS_CPU_EXCLUSIVE bit. 2079 */ 2080 if (old_prs == PRS_ERROR) { 2081 update_flag(CS_CPU_EXCLUSIVE, cs, 0); 2082 err = 0; 2083 goto out; 2084 } 2085 2086 err = update_parent_subparts_cpumask(cs, partcmd_disable, 2087 NULL, &tmpmask); 2088 if (err) 2089 goto out; 2090 2091 /* Turning off CS_CPU_EXCLUSIVE will not return error */ 2092 update_flag(CS_CPU_EXCLUSIVE, cs, 0); 2093 } 2094 2095 /* 2096 * Update cpumask of parent's tasks except when it is the top 2097 * cpuset as some system daemons cannot be mapped to other CPUs. 2098 */ 2099 if (parent != &top_cpuset) 2100 update_tasks_cpumask(parent); 2101 2102 if (parent->child_ecpus_count) 2103 update_sibling_cpumasks(parent, cs, &tmpmask); 2104 2105 rebuild_sched_domains_locked(); 2106 out: 2107 if (!err) { 2108 spin_lock_irq(&callback_lock); 2109 cs->partition_root_state = new_prs; 2110 spin_unlock_irq(&callback_lock); 2111 notify_partition_change(cs, old_prs, new_prs); 2112 } 2113 2114 free_cpumasks(NULL, &tmpmask); 2115 return err; 2116 } 2117 2118 /* 2119 * Frequency meter - How fast is some event occurring? 2120 * 2121 * These routines manage a digitally filtered, constant time based, 2122 * event frequency meter. There are four routines: 2123 * fmeter_init() - initialize a frequency meter. 2124 * fmeter_markevent() - called each time the event happens. 2125 * fmeter_getrate() - returns the recent rate of such events. 2126 * fmeter_update() - internal routine used to update fmeter. 2127 * 2128 * A common data structure is passed to each of these routines, 2129 * which is used to keep track of the state required to manage the 2130 * frequency meter and its digital filter. 2131 * 2132 * The filter works on the number of events marked per unit time. 2133 * The filter is single-pole low-pass recursive (IIR). The time unit 2134 * is 1 second. Arithmetic is done using 32-bit integers scaled to 2135 * simulate 3 decimal digits of precision (multiplied by 1000). 2136 * 2137 * With an FM_COEF of 933, and a time base of 1 second, the filter 2138 * has a half-life of 10 seconds, meaning that if the events quit 2139 * happening, then the rate returned from the fmeter_getrate() 2140 * will be cut in half each 10 seconds, until it converges to zero. 2141 * 2142 * It is not worth doing a real infinitely recursive filter. If more 2143 * than FM_MAXTICKS ticks have elapsed since the last filter event, 2144 * just compute FM_MAXTICKS ticks worth, by which point the level 2145 * will be stable. 2146 * 2147 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid 2148 * arithmetic overflow in the fmeter_update() routine. 2149 * 2150 * Given the simple 32 bit integer arithmetic used, this meter works 2151 * best for reporting rates between one per millisecond (msec) and 2152 * one per 32 (approx) seconds. At constant rates faster than one 2153 * per msec it maxes out at values just under 1,000,000. At constant 2154 * rates between one per msec, and one per second it will stabilize 2155 * to a value N*1000, where N is the rate of events per second. 2156 * At constant rates between one per second and one per 32 seconds, 2157 * it will be choppy, moving up on the seconds that have an event, 2158 * and then decaying until the next event. At rates slower than 2159 * about one in 32 seconds, it decays all the way back to zero between 2160 * each event. 2161 */ 2162 2163 #define FM_COEF 933 /* coefficient for half-life of 10 secs */ 2164 #define FM_MAXTICKS ((u32)99) /* useless computing more ticks than this */ 2165 #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */ 2166 #define FM_SCALE 1000 /* faux fixed point scale */ 2167 2168 /* Initialize a frequency meter */ 2169 static void fmeter_init(struct fmeter *fmp) 2170 { 2171 fmp->cnt = 0; 2172 fmp->val = 0; 2173 fmp->time = 0; 2174 spin_lock_init(&fmp->lock); 2175 } 2176 2177 /* Internal meter update - process cnt events and update value */ 2178 static void fmeter_update(struct fmeter *fmp) 2179 { 2180 time64_t now; 2181 u32 ticks; 2182 2183 now = ktime_get_seconds(); 2184 ticks = now - fmp->time; 2185 2186 if (ticks == 0) 2187 return; 2188 2189 ticks = min(FM_MAXTICKS, ticks); 2190 while (ticks-- > 0) 2191 fmp->val = (FM_COEF * fmp->val) / FM_SCALE; 2192 fmp->time = now; 2193 2194 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE; 2195 fmp->cnt = 0; 2196 } 2197 2198 /* Process any previous ticks, then bump cnt by one (times scale). */ 2199 static void fmeter_markevent(struct fmeter *fmp) 2200 { 2201 spin_lock(&fmp->lock); 2202 fmeter_update(fmp); 2203 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE); 2204 spin_unlock(&fmp->lock); 2205 } 2206 2207 /* Process any previous ticks, then return current value. */ 2208 static int fmeter_getrate(struct fmeter *fmp) 2209 { 2210 int val; 2211 2212 spin_lock(&fmp->lock); 2213 fmeter_update(fmp); 2214 val = fmp->val; 2215 spin_unlock(&fmp->lock); 2216 return val; 2217 } 2218 2219 static struct cpuset *cpuset_attach_old_cs; 2220 2221 /* Called by cgroups to determine if a cpuset is usable; cpuset_rwsem held */ 2222 static int cpuset_can_attach(struct cgroup_taskset *tset) 2223 { 2224 struct cgroup_subsys_state *css; 2225 struct cpuset *cs; 2226 struct task_struct *task; 2227 int ret; 2228 2229 /* used later by cpuset_attach() */ 2230 cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css)); 2231 cs = css_cs(css); 2232 2233 percpu_down_write(&cpuset_rwsem); 2234 2235 /* allow moving tasks into an empty cpuset if on default hierarchy */ 2236 ret = -ENOSPC; 2237 if (!is_in_v2_mode() && 2238 (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))) 2239 goto out_unlock; 2240 2241 cgroup_taskset_for_each(task, css, tset) { 2242 ret = task_can_attach(task, cs->cpus_allowed); 2243 if (ret) 2244 goto out_unlock; 2245 ret = security_task_setscheduler(task); 2246 if (ret) 2247 goto out_unlock; 2248 } 2249 2250 /* 2251 * Mark attach is in progress. This makes validate_change() fail 2252 * changes which zero cpus/mems_allowed. 2253 */ 2254 cs->attach_in_progress++; 2255 ret = 0; 2256 out_unlock: 2257 percpu_up_write(&cpuset_rwsem); 2258 return ret; 2259 } 2260 2261 static void cpuset_cancel_attach(struct cgroup_taskset *tset) 2262 { 2263 struct cgroup_subsys_state *css; 2264 2265 cgroup_taskset_first(tset, &css); 2266 2267 percpu_down_write(&cpuset_rwsem); 2268 css_cs(css)->attach_in_progress--; 2269 percpu_up_write(&cpuset_rwsem); 2270 } 2271 2272 /* 2273 * Protected by cpuset_rwsem. cpus_attach is used only by cpuset_attach() 2274 * but we can't allocate it dynamically there. Define it global and 2275 * allocate from cpuset_init(). 2276 */ 2277 static cpumask_var_t cpus_attach; 2278 2279 static void cpuset_attach(struct cgroup_taskset *tset) 2280 { 2281 /* static buf protected by cpuset_rwsem */ 2282 static nodemask_t cpuset_attach_nodemask_to; 2283 struct task_struct *task; 2284 struct task_struct *leader; 2285 struct cgroup_subsys_state *css; 2286 struct cpuset *cs; 2287 struct cpuset *oldcs = cpuset_attach_old_cs; 2288 2289 cgroup_taskset_first(tset, &css); 2290 cs = css_cs(css); 2291 2292 percpu_down_write(&cpuset_rwsem); 2293 2294 guarantee_online_mems(cs, &cpuset_attach_nodemask_to); 2295 2296 cgroup_taskset_for_each(task, css, tset) { 2297 if (cs != &top_cpuset) 2298 guarantee_online_cpus(task, cpus_attach); 2299 else 2300 cpumask_copy(cpus_attach, task_cpu_possible_mask(task)); 2301 /* 2302 * can_attach beforehand should guarantee that this doesn't 2303 * fail. TODO: have a better way to handle failure here 2304 */ 2305 WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach)); 2306 2307 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to); 2308 cpuset_update_task_spread_flag(cs, task); 2309 } 2310 2311 /* 2312 * Change mm for all threadgroup leaders. This is expensive and may 2313 * sleep and should be moved outside migration path proper. 2314 */ 2315 cpuset_attach_nodemask_to = cs->effective_mems; 2316 cgroup_taskset_for_each_leader(leader, css, tset) { 2317 struct mm_struct *mm = get_task_mm(leader); 2318 2319 if (mm) { 2320 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to); 2321 2322 /* 2323 * old_mems_allowed is the same with mems_allowed 2324 * here, except if this task is being moved 2325 * automatically due to hotplug. In that case 2326 * @mems_allowed has been updated and is empty, so 2327 * @old_mems_allowed is the right nodesets that we 2328 * migrate mm from. 2329 */ 2330 if (is_memory_migrate(cs)) 2331 cpuset_migrate_mm(mm, &oldcs->old_mems_allowed, 2332 &cpuset_attach_nodemask_to); 2333 else 2334 mmput(mm); 2335 } 2336 } 2337 2338 cs->old_mems_allowed = cpuset_attach_nodemask_to; 2339 2340 cs->attach_in_progress--; 2341 if (!cs->attach_in_progress) 2342 wake_up(&cpuset_attach_wq); 2343 2344 percpu_up_write(&cpuset_rwsem); 2345 } 2346 2347 /* The various types of files and directories in a cpuset file system */ 2348 2349 typedef enum { 2350 FILE_MEMORY_MIGRATE, 2351 FILE_CPULIST, 2352 FILE_MEMLIST, 2353 FILE_EFFECTIVE_CPULIST, 2354 FILE_EFFECTIVE_MEMLIST, 2355 FILE_SUBPARTS_CPULIST, 2356 FILE_CPU_EXCLUSIVE, 2357 FILE_MEM_EXCLUSIVE, 2358 FILE_MEM_HARDWALL, 2359 FILE_SCHED_LOAD_BALANCE, 2360 FILE_PARTITION_ROOT, 2361 FILE_SCHED_RELAX_DOMAIN_LEVEL, 2362 FILE_MEMORY_PRESSURE_ENABLED, 2363 FILE_MEMORY_PRESSURE, 2364 FILE_SPREAD_PAGE, 2365 FILE_SPREAD_SLAB, 2366 } cpuset_filetype_t; 2367 2368 static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft, 2369 u64 val) 2370 { 2371 struct cpuset *cs = css_cs(css); 2372 cpuset_filetype_t type = cft->private; 2373 int retval = 0; 2374 2375 cpus_read_lock(); 2376 percpu_down_write(&cpuset_rwsem); 2377 if (!is_cpuset_online(cs)) { 2378 retval = -ENODEV; 2379 goto out_unlock; 2380 } 2381 2382 switch (type) { 2383 case FILE_CPU_EXCLUSIVE: 2384 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val); 2385 break; 2386 case FILE_MEM_EXCLUSIVE: 2387 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val); 2388 break; 2389 case FILE_MEM_HARDWALL: 2390 retval = update_flag(CS_MEM_HARDWALL, cs, val); 2391 break; 2392 case FILE_SCHED_LOAD_BALANCE: 2393 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val); 2394 break; 2395 case FILE_MEMORY_MIGRATE: 2396 retval = update_flag(CS_MEMORY_MIGRATE, cs, val); 2397 break; 2398 case FILE_MEMORY_PRESSURE_ENABLED: 2399 cpuset_memory_pressure_enabled = !!val; 2400 break; 2401 case FILE_SPREAD_PAGE: 2402 retval = update_flag(CS_SPREAD_PAGE, cs, val); 2403 break; 2404 case FILE_SPREAD_SLAB: 2405 retval = update_flag(CS_SPREAD_SLAB, cs, val); 2406 break; 2407 default: 2408 retval = -EINVAL; 2409 break; 2410 } 2411 out_unlock: 2412 percpu_up_write(&cpuset_rwsem); 2413 cpus_read_unlock(); 2414 return retval; 2415 } 2416 2417 static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft, 2418 s64 val) 2419 { 2420 struct cpuset *cs = css_cs(css); 2421 cpuset_filetype_t type = cft->private; 2422 int retval = -ENODEV; 2423 2424 cpus_read_lock(); 2425 percpu_down_write(&cpuset_rwsem); 2426 if (!is_cpuset_online(cs)) 2427 goto out_unlock; 2428 2429 switch (type) { 2430 case FILE_SCHED_RELAX_DOMAIN_LEVEL: 2431 retval = update_relax_domain_level(cs, val); 2432 break; 2433 default: 2434 retval = -EINVAL; 2435 break; 2436 } 2437 out_unlock: 2438 percpu_up_write(&cpuset_rwsem); 2439 cpus_read_unlock(); 2440 return retval; 2441 } 2442 2443 /* 2444 * Common handling for a write to a "cpus" or "mems" file. 2445 */ 2446 static ssize_t cpuset_write_resmask(struct kernfs_open_file *of, 2447 char *buf, size_t nbytes, loff_t off) 2448 { 2449 struct cpuset *cs = css_cs(of_css(of)); 2450 struct cpuset *trialcs; 2451 int retval = -ENODEV; 2452 2453 buf = strstrip(buf); 2454 2455 /* 2456 * CPU or memory hotunplug may leave @cs w/o any execution 2457 * resources, in which case the hotplug code asynchronously updates 2458 * configuration and transfers all tasks to the nearest ancestor 2459 * which can execute. 2460 * 2461 * As writes to "cpus" or "mems" may restore @cs's execution 2462 * resources, wait for the previously scheduled operations before 2463 * proceeding, so that we don't end up keep removing tasks added 2464 * after execution capability is restored. 2465 * 2466 * cpuset_hotplug_work calls back into cgroup core via 2467 * cgroup_transfer_tasks() and waiting for it from a cgroupfs 2468 * operation like this one can lead to a deadlock through kernfs 2469 * active_ref protection. Let's break the protection. Losing the 2470 * protection is okay as we check whether @cs is online after 2471 * grabbing cpuset_rwsem anyway. This only happens on the legacy 2472 * hierarchies. 2473 */ 2474 css_get(&cs->css); 2475 kernfs_break_active_protection(of->kn); 2476 flush_work(&cpuset_hotplug_work); 2477 2478 cpus_read_lock(); 2479 percpu_down_write(&cpuset_rwsem); 2480 if (!is_cpuset_online(cs)) 2481 goto out_unlock; 2482 2483 trialcs = alloc_trial_cpuset(cs); 2484 if (!trialcs) { 2485 retval = -ENOMEM; 2486 goto out_unlock; 2487 } 2488 2489 switch (of_cft(of)->private) { 2490 case FILE_CPULIST: 2491 retval = update_cpumask(cs, trialcs, buf); 2492 break; 2493 case FILE_MEMLIST: 2494 retval = update_nodemask(cs, trialcs, buf); 2495 break; 2496 default: 2497 retval = -EINVAL; 2498 break; 2499 } 2500 2501 free_cpuset(trialcs); 2502 out_unlock: 2503 percpu_up_write(&cpuset_rwsem); 2504 cpus_read_unlock(); 2505 kernfs_unbreak_active_protection(of->kn); 2506 css_put(&cs->css); 2507 flush_workqueue(cpuset_migrate_mm_wq); 2508 return retval ?: nbytes; 2509 } 2510 2511 /* 2512 * These ascii lists should be read in a single call, by using a user 2513 * buffer large enough to hold the entire map. If read in smaller 2514 * chunks, there is no guarantee of atomicity. Since the display format 2515 * used, list of ranges of sequential numbers, is variable length, 2516 * and since these maps can change value dynamically, one could read 2517 * gibberish by doing partial reads while a list was changing. 2518 */ 2519 static int cpuset_common_seq_show(struct seq_file *sf, void *v) 2520 { 2521 struct cpuset *cs = css_cs(seq_css(sf)); 2522 cpuset_filetype_t type = seq_cft(sf)->private; 2523 int ret = 0; 2524 2525 spin_lock_irq(&callback_lock); 2526 2527 switch (type) { 2528 case FILE_CPULIST: 2529 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed)); 2530 break; 2531 case FILE_MEMLIST: 2532 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed)); 2533 break; 2534 case FILE_EFFECTIVE_CPULIST: 2535 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus)); 2536 break; 2537 case FILE_EFFECTIVE_MEMLIST: 2538 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems)); 2539 break; 2540 case FILE_SUBPARTS_CPULIST: 2541 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->subparts_cpus)); 2542 break; 2543 default: 2544 ret = -EINVAL; 2545 } 2546 2547 spin_unlock_irq(&callback_lock); 2548 return ret; 2549 } 2550 2551 static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft) 2552 { 2553 struct cpuset *cs = css_cs(css); 2554 cpuset_filetype_t type = cft->private; 2555 switch (type) { 2556 case FILE_CPU_EXCLUSIVE: 2557 return is_cpu_exclusive(cs); 2558 case FILE_MEM_EXCLUSIVE: 2559 return is_mem_exclusive(cs); 2560 case FILE_MEM_HARDWALL: 2561 return is_mem_hardwall(cs); 2562 case FILE_SCHED_LOAD_BALANCE: 2563 return is_sched_load_balance(cs); 2564 case FILE_MEMORY_MIGRATE: 2565 return is_memory_migrate(cs); 2566 case FILE_MEMORY_PRESSURE_ENABLED: 2567 return cpuset_memory_pressure_enabled; 2568 case FILE_MEMORY_PRESSURE: 2569 return fmeter_getrate(&cs->fmeter); 2570 case FILE_SPREAD_PAGE: 2571 return is_spread_page(cs); 2572 case FILE_SPREAD_SLAB: 2573 return is_spread_slab(cs); 2574 default: 2575 BUG(); 2576 } 2577 2578 /* Unreachable but makes gcc happy */ 2579 return 0; 2580 } 2581 2582 static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft) 2583 { 2584 struct cpuset *cs = css_cs(css); 2585 cpuset_filetype_t type = cft->private; 2586 switch (type) { 2587 case FILE_SCHED_RELAX_DOMAIN_LEVEL: 2588 return cs->relax_domain_level; 2589 default: 2590 BUG(); 2591 } 2592 2593 /* Unreachable but makes gcc happy */ 2594 return 0; 2595 } 2596 2597 static int sched_partition_show(struct seq_file *seq, void *v) 2598 { 2599 struct cpuset *cs = css_cs(seq_css(seq)); 2600 2601 switch (cs->partition_root_state) { 2602 case PRS_ENABLED: 2603 seq_puts(seq, "root\n"); 2604 break; 2605 case PRS_DISABLED: 2606 seq_puts(seq, "member\n"); 2607 break; 2608 case PRS_ERROR: 2609 seq_puts(seq, "root invalid\n"); 2610 break; 2611 } 2612 return 0; 2613 } 2614 2615 static ssize_t sched_partition_write(struct kernfs_open_file *of, char *buf, 2616 size_t nbytes, loff_t off) 2617 { 2618 struct cpuset *cs = css_cs(of_css(of)); 2619 int val; 2620 int retval = -ENODEV; 2621 2622 buf = strstrip(buf); 2623 2624 /* 2625 * Convert "root" to ENABLED, and convert "member" to DISABLED. 2626 */ 2627 if (!strcmp(buf, "root")) 2628 val = PRS_ENABLED; 2629 else if (!strcmp(buf, "member")) 2630 val = PRS_DISABLED; 2631 else 2632 return -EINVAL; 2633 2634 css_get(&cs->css); 2635 cpus_read_lock(); 2636 percpu_down_write(&cpuset_rwsem); 2637 if (!is_cpuset_online(cs)) 2638 goto out_unlock; 2639 2640 retval = update_prstate(cs, val); 2641 out_unlock: 2642 percpu_up_write(&cpuset_rwsem); 2643 cpus_read_unlock(); 2644 css_put(&cs->css); 2645 return retval ?: nbytes; 2646 } 2647 2648 /* 2649 * for the common functions, 'private' gives the type of file 2650 */ 2651 2652 static struct cftype legacy_files[] = { 2653 { 2654 .name = "cpus", 2655 .seq_show = cpuset_common_seq_show, 2656 .write = cpuset_write_resmask, 2657 .max_write_len = (100U + 6 * NR_CPUS), 2658 .private = FILE_CPULIST, 2659 }, 2660 2661 { 2662 .name = "mems", 2663 .seq_show = cpuset_common_seq_show, 2664 .write = cpuset_write_resmask, 2665 .max_write_len = (100U + 6 * MAX_NUMNODES), 2666 .private = FILE_MEMLIST, 2667 }, 2668 2669 { 2670 .name = "effective_cpus", 2671 .seq_show = cpuset_common_seq_show, 2672 .private = FILE_EFFECTIVE_CPULIST, 2673 }, 2674 2675 { 2676 .name = "effective_mems", 2677 .seq_show = cpuset_common_seq_show, 2678 .private = FILE_EFFECTIVE_MEMLIST, 2679 }, 2680 2681 { 2682 .name = "cpu_exclusive", 2683 .read_u64 = cpuset_read_u64, 2684 .write_u64 = cpuset_write_u64, 2685 .private = FILE_CPU_EXCLUSIVE, 2686 }, 2687 2688 { 2689 .name = "mem_exclusive", 2690 .read_u64 = cpuset_read_u64, 2691 .write_u64 = cpuset_write_u64, 2692 .private = FILE_MEM_EXCLUSIVE, 2693 }, 2694 2695 { 2696 .name = "mem_hardwall", 2697 .read_u64 = cpuset_read_u64, 2698 .write_u64 = cpuset_write_u64, 2699 .private = FILE_MEM_HARDWALL, 2700 }, 2701 2702 { 2703 .name = "sched_load_balance", 2704 .read_u64 = cpuset_read_u64, 2705 .write_u64 = cpuset_write_u64, 2706 .private = FILE_SCHED_LOAD_BALANCE, 2707 }, 2708 2709 { 2710 .name = "sched_relax_domain_level", 2711 .read_s64 = cpuset_read_s64, 2712 .write_s64 = cpuset_write_s64, 2713 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL, 2714 }, 2715 2716 { 2717 .name = "memory_migrate", 2718 .read_u64 = cpuset_read_u64, 2719 .write_u64 = cpuset_write_u64, 2720 .private = FILE_MEMORY_MIGRATE, 2721 }, 2722 2723 { 2724 .name = "memory_pressure", 2725 .read_u64 = cpuset_read_u64, 2726 .private = FILE_MEMORY_PRESSURE, 2727 }, 2728 2729 { 2730 .name = "memory_spread_page", 2731 .read_u64 = cpuset_read_u64, 2732 .write_u64 = cpuset_write_u64, 2733 .private = FILE_SPREAD_PAGE, 2734 }, 2735 2736 { 2737 .name = "memory_spread_slab", 2738 .read_u64 = cpuset_read_u64, 2739 .write_u64 = cpuset_write_u64, 2740 .private = FILE_SPREAD_SLAB, 2741 }, 2742 2743 { 2744 .name = "memory_pressure_enabled", 2745 .flags = CFTYPE_ONLY_ON_ROOT, 2746 .read_u64 = cpuset_read_u64, 2747 .write_u64 = cpuset_write_u64, 2748 .private = FILE_MEMORY_PRESSURE_ENABLED, 2749 }, 2750 2751 { } /* terminate */ 2752 }; 2753 2754 /* 2755 * This is currently a minimal set for the default hierarchy. It can be 2756 * expanded later on by migrating more features and control files from v1. 2757 */ 2758 static struct cftype dfl_files[] = { 2759 { 2760 .name = "cpus", 2761 .seq_show = cpuset_common_seq_show, 2762 .write = cpuset_write_resmask, 2763 .max_write_len = (100U + 6 * NR_CPUS), 2764 .private = FILE_CPULIST, 2765 .flags = CFTYPE_NOT_ON_ROOT, 2766 }, 2767 2768 { 2769 .name = "mems", 2770 .seq_show = cpuset_common_seq_show, 2771 .write = cpuset_write_resmask, 2772 .max_write_len = (100U + 6 * MAX_NUMNODES), 2773 .private = FILE_MEMLIST, 2774 .flags = CFTYPE_NOT_ON_ROOT, 2775 }, 2776 2777 { 2778 .name = "cpus.effective", 2779 .seq_show = cpuset_common_seq_show, 2780 .private = FILE_EFFECTIVE_CPULIST, 2781 }, 2782 2783 { 2784 .name = "mems.effective", 2785 .seq_show = cpuset_common_seq_show, 2786 .private = FILE_EFFECTIVE_MEMLIST, 2787 }, 2788 2789 { 2790 .name = "cpus.partition", 2791 .seq_show = sched_partition_show, 2792 .write = sched_partition_write, 2793 .private = FILE_PARTITION_ROOT, 2794 .flags = CFTYPE_NOT_ON_ROOT, 2795 .file_offset = offsetof(struct cpuset, partition_file), 2796 }, 2797 2798 { 2799 .name = "cpus.subpartitions", 2800 .seq_show = cpuset_common_seq_show, 2801 .private = FILE_SUBPARTS_CPULIST, 2802 .flags = CFTYPE_DEBUG, 2803 }, 2804 2805 { } /* terminate */ 2806 }; 2807 2808 2809 /* 2810 * cpuset_css_alloc - allocate a cpuset css 2811 * cgrp: control group that the new cpuset will be part of 2812 */ 2813 2814 static struct cgroup_subsys_state * 2815 cpuset_css_alloc(struct cgroup_subsys_state *parent_css) 2816 { 2817 struct cpuset *cs; 2818 2819 if (!parent_css) 2820 return &top_cpuset.css; 2821 2822 cs = kzalloc(sizeof(*cs), GFP_KERNEL); 2823 if (!cs) 2824 return ERR_PTR(-ENOMEM); 2825 2826 if (alloc_cpumasks(cs, NULL)) { 2827 kfree(cs); 2828 return ERR_PTR(-ENOMEM); 2829 } 2830 2831 __set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); 2832 nodes_clear(cs->mems_allowed); 2833 nodes_clear(cs->effective_mems); 2834 fmeter_init(&cs->fmeter); 2835 cs->relax_domain_level = -1; 2836 2837 /* Set CS_MEMORY_MIGRATE for default hierarchy */ 2838 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) 2839 __set_bit(CS_MEMORY_MIGRATE, &cs->flags); 2840 2841 return &cs->css; 2842 } 2843 2844 static int cpuset_css_online(struct cgroup_subsys_state *css) 2845 { 2846 struct cpuset *cs = css_cs(css); 2847 struct cpuset *parent = parent_cs(cs); 2848 struct cpuset *tmp_cs; 2849 struct cgroup_subsys_state *pos_css; 2850 2851 if (!parent) 2852 return 0; 2853 2854 cpus_read_lock(); 2855 percpu_down_write(&cpuset_rwsem); 2856 2857 set_bit(CS_ONLINE, &cs->flags); 2858 if (is_spread_page(parent)) 2859 set_bit(CS_SPREAD_PAGE, &cs->flags); 2860 if (is_spread_slab(parent)) 2861 set_bit(CS_SPREAD_SLAB, &cs->flags); 2862 2863 cpuset_inc(); 2864 2865 spin_lock_irq(&callback_lock); 2866 if (is_in_v2_mode()) { 2867 cpumask_copy(cs->effective_cpus, parent->effective_cpus); 2868 cs->effective_mems = parent->effective_mems; 2869 cs->use_parent_ecpus = true; 2870 parent->child_ecpus_count++; 2871 } 2872 spin_unlock_irq(&callback_lock); 2873 2874 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags)) 2875 goto out_unlock; 2876 2877 /* 2878 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is 2879 * set. This flag handling is implemented in cgroup core for 2880 * histrical reasons - the flag may be specified during mount. 2881 * 2882 * Currently, if any sibling cpusets have exclusive cpus or mem, we 2883 * refuse to clone the configuration - thereby refusing the task to 2884 * be entered, and as a result refusing the sys_unshare() or 2885 * clone() which initiated it. If this becomes a problem for some 2886 * users who wish to allow that scenario, then this could be 2887 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive 2888 * (and likewise for mems) to the new cgroup. 2889 */ 2890 rcu_read_lock(); 2891 cpuset_for_each_child(tmp_cs, pos_css, parent) { 2892 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) { 2893 rcu_read_unlock(); 2894 goto out_unlock; 2895 } 2896 } 2897 rcu_read_unlock(); 2898 2899 spin_lock_irq(&callback_lock); 2900 cs->mems_allowed = parent->mems_allowed; 2901 cs->effective_mems = parent->mems_allowed; 2902 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed); 2903 cpumask_copy(cs->effective_cpus, parent->cpus_allowed); 2904 spin_unlock_irq(&callback_lock); 2905 out_unlock: 2906 percpu_up_write(&cpuset_rwsem); 2907 cpus_read_unlock(); 2908 return 0; 2909 } 2910 2911 /* 2912 * If the cpuset being removed has its flag 'sched_load_balance' 2913 * enabled, then simulate turning sched_load_balance off, which 2914 * will call rebuild_sched_domains_locked(). That is not needed 2915 * in the default hierarchy where only changes in partition 2916 * will cause repartitioning. 2917 * 2918 * If the cpuset has the 'sched.partition' flag enabled, simulate 2919 * turning 'sched.partition" off. 2920 */ 2921 2922 static void cpuset_css_offline(struct cgroup_subsys_state *css) 2923 { 2924 struct cpuset *cs = css_cs(css); 2925 2926 cpus_read_lock(); 2927 percpu_down_write(&cpuset_rwsem); 2928 2929 if (is_partition_root(cs)) 2930 update_prstate(cs, 0); 2931 2932 if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) && 2933 is_sched_load_balance(cs)) 2934 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0); 2935 2936 if (cs->use_parent_ecpus) { 2937 struct cpuset *parent = parent_cs(cs); 2938 2939 cs->use_parent_ecpus = false; 2940 parent->child_ecpus_count--; 2941 } 2942 2943 cpuset_dec(); 2944 clear_bit(CS_ONLINE, &cs->flags); 2945 2946 percpu_up_write(&cpuset_rwsem); 2947 cpus_read_unlock(); 2948 } 2949 2950 static void cpuset_css_free(struct cgroup_subsys_state *css) 2951 { 2952 struct cpuset *cs = css_cs(css); 2953 2954 free_cpuset(cs); 2955 } 2956 2957 static void cpuset_bind(struct cgroup_subsys_state *root_css) 2958 { 2959 percpu_down_write(&cpuset_rwsem); 2960 spin_lock_irq(&callback_lock); 2961 2962 if (is_in_v2_mode()) { 2963 cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask); 2964 top_cpuset.mems_allowed = node_possible_map; 2965 } else { 2966 cpumask_copy(top_cpuset.cpus_allowed, 2967 top_cpuset.effective_cpus); 2968 top_cpuset.mems_allowed = top_cpuset.effective_mems; 2969 } 2970 2971 spin_unlock_irq(&callback_lock); 2972 percpu_up_write(&cpuset_rwsem); 2973 } 2974 2975 /* 2976 * Make sure the new task conform to the current state of its parent, 2977 * which could have been changed by cpuset just after it inherits the 2978 * state from the parent and before it sits on the cgroup's task list. 2979 */ 2980 static void cpuset_fork(struct task_struct *task) 2981 { 2982 if (task_css_is_root(task, cpuset_cgrp_id)) 2983 return; 2984 2985 set_cpus_allowed_ptr(task, current->cpus_ptr); 2986 task->mems_allowed = current->mems_allowed; 2987 } 2988 2989 struct cgroup_subsys cpuset_cgrp_subsys = { 2990 .css_alloc = cpuset_css_alloc, 2991 .css_online = cpuset_css_online, 2992 .css_offline = cpuset_css_offline, 2993 .css_free = cpuset_css_free, 2994 .can_attach = cpuset_can_attach, 2995 .cancel_attach = cpuset_cancel_attach, 2996 .attach = cpuset_attach, 2997 .post_attach = cpuset_post_attach, 2998 .bind = cpuset_bind, 2999 .fork = cpuset_fork, 3000 .legacy_cftypes = legacy_files, 3001 .dfl_cftypes = dfl_files, 3002 .early_init = true, 3003 .threaded = true, 3004 }; 3005 3006 /** 3007 * cpuset_init - initialize cpusets at system boot 3008 * 3009 * Description: Initialize top_cpuset 3010 **/ 3011 3012 int __init cpuset_init(void) 3013 { 3014 BUG_ON(percpu_init_rwsem(&cpuset_rwsem)); 3015 3016 BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL)); 3017 BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL)); 3018 BUG_ON(!zalloc_cpumask_var(&top_cpuset.subparts_cpus, GFP_KERNEL)); 3019 3020 cpumask_setall(top_cpuset.cpus_allowed); 3021 nodes_setall(top_cpuset.mems_allowed); 3022 cpumask_setall(top_cpuset.effective_cpus); 3023 nodes_setall(top_cpuset.effective_mems); 3024 3025 fmeter_init(&top_cpuset.fmeter); 3026 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags); 3027 top_cpuset.relax_domain_level = -1; 3028 3029 BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL)); 3030 3031 return 0; 3032 } 3033 3034 /* 3035 * If CPU and/or memory hotplug handlers, below, unplug any CPUs 3036 * or memory nodes, we need to walk over the cpuset hierarchy, 3037 * removing that CPU or node from all cpusets. If this removes the 3038 * last CPU or node from a cpuset, then move the tasks in the empty 3039 * cpuset to its next-highest non-empty parent. 3040 */ 3041 static void remove_tasks_in_empty_cpuset(struct cpuset *cs) 3042 { 3043 struct cpuset *parent; 3044 3045 /* 3046 * Find its next-highest non-empty parent, (top cpuset 3047 * has online cpus, so can't be empty). 3048 */ 3049 parent = parent_cs(cs); 3050 while (cpumask_empty(parent->cpus_allowed) || 3051 nodes_empty(parent->mems_allowed)) 3052 parent = parent_cs(parent); 3053 3054 if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) { 3055 pr_err("cpuset: failed to transfer tasks out of empty cpuset "); 3056 pr_cont_cgroup_name(cs->css.cgroup); 3057 pr_cont("\n"); 3058 } 3059 } 3060 3061 static void 3062 hotplug_update_tasks_legacy(struct cpuset *cs, 3063 struct cpumask *new_cpus, nodemask_t *new_mems, 3064 bool cpus_updated, bool mems_updated) 3065 { 3066 bool is_empty; 3067 3068 spin_lock_irq(&callback_lock); 3069 cpumask_copy(cs->cpus_allowed, new_cpus); 3070 cpumask_copy(cs->effective_cpus, new_cpus); 3071 cs->mems_allowed = *new_mems; 3072 cs->effective_mems = *new_mems; 3073 spin_unlock_irq(&callback_lock); 3074 3075 /* 3076 * Don't call update_tasks_cpumask() if the cpuset becomes empty, 3077 * as the tasks will be migratecd to an ancestor. 3078 */ 3079 if (cpus_updated && !cpumask_empty(cs->cpus_allowed)) 3080 update_tasks_cpumask(cs); 3081 if (mems_updated && !nodes_empty(cs->mems_allowed)) 3082 update_tasks_nodemask(cs); 3083 3084 is_empty = cpumask_empty(cs->cpus_allowed) || 3085 nodes_empty(cs->mems_allowed); 3086 3087 percpu_up_write(&cpuset_rwsem); 3088 3089 /* 3090 * Move tasks to the nearest ancestor with execution resources, 3091 * This is full cgroup operation which will also call back into 3092 * cpuset. Should be done outside any lock. 3093 */ 3094 if (is_empty) 3095 remove_tasks_in_empty_cpuset(cs); 3096 3097 percpu_down_write(&cpuset_rwsem); 3098 } 3099 3100 static void 3101 hotplug_update_tasks(struct cpuset *cs, 3102 struct cpumask *new_cpus, nodemask_t *new_mems, 3103 bool cpus_updated, bool mems_updated) 3104 { 3105 if (cpumask_empty(new_cpus)) 3106 cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus); 3107 if (nodes_empty(*new_mems)) 3108 *new_mems = parent_cs(cs)->effective_mems; 3109 3110 spin_lock_irq(&callback_lock); 3111 cpumask_copy(cs->effective_cpus, new_cpus); 3112 cs->effective_mems = *new_mems; 3113 spin_unlock_irq(&callback_lock); 3114 3115 if (cpus_updated) 3116 update_tasks_cpumask(cs); 3117 if (mems_updated) 3118 update_tasks_nodemask(cs); 3119 } 3120 3121 static bool force_rebuild; 3122 3123 void cpuset_force_rebuild(void) 3124 { 3125 force_rebuild = true; 3126 } 3127 3128 /** 3129 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug 3130 * @cs: cpuset in interest 3131 * @tmp: the tmpmasks structure pointer 3132 * 3133 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone 3134 * offline, update @cs accordingly. If @cs ends up with no CPU or memory, 3135 * all its tasks are moved to the nearest ancestor with both resources. 3136 */ 3137 static void cpuset_hotplug_update_tasks(struct cpuset *cs, struct tmpmasks *tmp) 3138 { 3139 static cpumask_t new_cpus; 3140 static nodemask_t new_mems; 3141 bool cpus_updated; 3142 bool mems_updated; 3143 struct cpuset *parent; 3144 retry: 3145 wait_event(cpuset_attach_wq, cs->attach_in_progress == 0); 3146 3147 percpu_down_write(&cpuset_rwsem); 3148 3149 /* 3150 * We have raced with task attaching. We wait until attaching 3151 * is finished, so we won't attach a task to an empty cpuset. 3152 */ 3153 if (cs->attach_in_progress) { 3154 percpu_up_write(&cpuset_rwsem); 3155 goto retry; 3156 } 3157 3158 parent = parent_cs(cs); 3159 compute_effective_cpumask(&new_cpus, cs, parent); 3160 nodes_and(new_mems, cs->mems_allowed, parent->effective_mems); 3161 3162 if (cs->nr_subparts_cpus) 3163 /* 3164 * Make sure that CPUs allocated to child partitions 3165 * do not show up in effective_cpus. 3166 */ 3167 cpumask_andnot(&new_cpus, &new_cpus, cs->subparts_cpus); 3168 3169 if (!tmp || !cs->partition_root_state) 3170 goto update_tasks; 3171 3172 /* 3173 * In the unlikely event that a partition root has empty 3174 * effective_cpus or its parent becomes erroneous, we have to 3175 * transition it to the erroneous state. 3176 */ 3177 if (is_partition_root(cs) && (cpumask_empty(&new_cpus) || 3178 (parent->partition_root_state == PRS_ERROR))) { 3179 if (cs->nr_subparts_cpus) { 3180 spin_lock_irq(&callback_lock); 3181 cs->nr_subparts_cpus = 0; 3182 cpumask_clear(cs->subparts_cpus); 3183 spin_unlock_irq(&callback_lock); 3184 compute_effective_cpumask(&new_cpus, cs, parent); 3185 } 3186 3187 /* 3188 * If the effective_cpus is empty because the child 3189 * partitions take away all the CPUs, we can keep 3190 * the current partition and let the child partitions 3191 * fight for available CPUs. 3192 */ 3193 if ((parent->partition_root_state == PRS_ERROR) || 3194 cpumask_empty(&new_cpus)) { 3195 int old_prs; 3196 3197 update_parent_subparts_cpumask(cs, partcmd_disable, 3198 NULL, tmp); 3199 old_prs = cs->partition_root_state; 3200 if (old_prs != PRS_ERROR) { 3201 spin_lock_irq(&callback_lock); 3202 cs->partition_root_state = PRS_ERROR; 3203 spin_unlock_irq(&callback_lock); 3204 notify_partition_change(cs, old_prs, PRS_ERROR); 3205 } 3206 } 3207 cpuset_force_rebuild(); 3208 } 3209 3210 /* 3211 * On the other hand, an erroneous partition root may be transitioned 3212 * back to a regular one or a partition root with no CPU allocated 3213 * from the parent may change to erroneous. 3214 */ 3215 if (is_partition_root(parent) && 3216 ((cs->partition_root_state == PRS_ERROR) || 3217 !cpumask_intersects(&new_cpus, parent->subparts_cpus)) && 3218 update_parent_subparts_cpumask(cs, partcmd_update, NULL, tmp)) 3219 cpuset_force_rebuild(); 3220 3221 update_tasks: 3222 cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus); 3223 mems_updated = !nodes_equal(new_mems, cs->effective_mems); 3224 3225 if (mems_updated) 3226 check_insane_mems_config(&new_mems); 3227 3228 if (is_in_v2_mode()) 3229 hotplug_update_tasks(cs, &new_cpus, &new_mems, 3230 cpus_updated, mems_updated); 3231 else 3232 hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems, 3233 cpus_updated, mems_updated); 3234 3235 percpu_up_write(&cpuset_rwsem); 3236 } 3237 3238 /** 3239 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset 3240 * 3241 * This function is called after either CPU or memory configuration has 3242 * changed and updates cpuset accordingly. The top_cpuset is always 3243 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in 3244 * order to make cpusets transparent (of no affect) on systems that are 3245 * actively using CPU hotplug but making no active use of cpusets. 3246 * 3247 * Non-root cpusets are only affected by offlining. If any CPUs or memory 3248 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on 3249 * all descendants. 3250 * 3251 * Note that CPU offlining during suspend is ignored. We don't modify 3252 * cpusets across suspend/resume cycles at all. 3253 */ 3254 static void cpuset_hotplug_workfn(struct work_struct *work) 3255 { 3256 static cpumask_t new_cpus; 3257 static nodemask_t new_mems; 3258 bool cpus_updated, mems_updated; 3259 bool on_dfl = is_in_v2_mode(); 3260 struct tmpmasks tmp, *ptmp = NULL; 3261 3262 if (on_dfl && !alloc_cpumasks(NULL, &tmp)) 3263 ptmp = &tmp; 3264 3265 percpu_down_write(&cpuset_rwsem); 3266 3267 /* fetch the available cpus/mems and find out which changed how */ 3268 cpumask_copy(&new_cpus, cpu_active_mask); 3269 new_mems = node_states[N_MEMORY]; 3270 3271 /* 3272 * If subparts_cpus is populated, it is likely that the check below 3273 * will produce a false positive on cpus_updated when the cpu list 3274 * isn't changed. It is extra work, but it is better to be safe. 3275 */ 3276 cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus); 3277 mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems); 3278 3279 /* 3280 * In the rare case that hotplug removes all the cpus in subparts_cpus, 3281 * we assumed that cpus are updated. 3282 */ 3283 if (!cpus_updated && top_cpuset.nr_subparts_cpus) 3284 cpus_updated = true; 3285 3286 /* synchronize cpus_allowed to cpu_active_mask */ 3287 if (cpus_updated) { 3288 spin_lock_irq(&callback_lock); 3289 if (!on_dfl) 3290 cpumask_copy(top_cpuset.cpus_allowed, &new_cpus); 3291 /* 3292 * Make sure that CPUs allocated to child partitions 3293 * do not show up in effective_cpus. If no CPU is left, 3294 * we clear the subparts_cpus & let the child partitions 3295 * fight for the CPUs again. 3296 */ 3297 if (top_cpuset.nr_subparts_cpus) { 3298 if (cpumask_subset(&new_cpus, 3299 top_cpuset.subparts_cpus)) { 3300 top_cpuset.nr_subparts_cpus = 0; 3301 cpumask_clear(top_cpuset.subparts_cpus); 3302 } else { 3303 cpumask_andnot(&new_cpus, &new_cpus, 3304 top_cpuset.subparts_cpus); 3305 } 3306 } 3307 cpumask_copy(top_cpuset.effective_cpus, &new_cpus); 3308 spin_unlock_irq(&callback_lock); 3309 /* we don't mess with cpumasks of tasks in top_cpuset */ 3310 } 3311 3312 /* synchronize mems_allowed to N_MEMORY */ 3313 if (mems_updated) { 3314 spin_lock_irq(&callback_lock); 3315 if (!on_dfl) 3316 top_cpuset.mems_allowed = new_mems; 3317 top_cpuset.effective_mems = new_mems; 3318 spin_unlock_irq(&callback_lock); 3319 update_tasks_nodemask(&top_cpuset); 3320 } 3321 3322 percpu_up_write(&cpuset_rwsem); 3323 3324 /* if cpus or mems changed, we need to propagate to descendants */ 3325 if (cpus_updated || mems_updated) { 3326 struct cpuset *cs; 3327 struct cgroup_subsys_state *pos_css; 3328 3329 rcu_read_lock(); 3330 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) { 3331 if (cs == &top_cpuset || !css_tryget_online(&cs->css)) 3332 continue; 3333 rcu_read_unlock(); 3334 3335 cpuset_hotplug_update_tasks(cs, ptmp); 3336 3337 rcu_read_lock(); 3338 css_put(&cs->css); 3339 } 3340 rcu_read_unlock(); 3341 } 3342 3343 /* rebuild sched domains if cpus_allowed has changed */ 3344 if (cpus_updated || force_rebuild) { 3345 force_rebuild = false; 3346 rebuild_sched_domains(); 3347 } 3348 3349 free_cpumasks(NULL, ptmp); 3350 } 3351 3352 void cpuset_update_active_cpus(void) 3353 { 3354 /* 3355 * We're inside cpu hotplug critical region which usually nests 3356 * inside cgroup synchronization. Bounce actual hotplug processing 3357 * to a work item to avoid reverse locking order. 3358 */ 3359 schedule_work(&cpuset_hotplug_work); 3360 } 3361 3362 void cpuset_wait_for_hotplug(void) 3363 { 3364 flush_work(&cpuset_hotplug_work); 3365 } 3366 3367 /* 3368 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY]. 3369 * Call this routine anytime after node_states[N_MEMORY] changes. 3370 * See cpuset_update_active_cpus() for CPU hotplug handling. 3371 */ 3372 static int cpuset_track_online_nodes(struct notifier_block *self, 3373 unsigned long action, void *arg) 3374 { 3375 schedule_work(&cpuset_hotplug_work); 3376 return NOTIFY_OK; 3377 } 3378 3379 static struct notifier_block cpuset_track_online_nodes_nb = { 3380 .notifier_call = cpuset_track_online_nodes, 3381 .priority = 10, /* ??! */ 3382 }; 3383 3384 /** 3385 * cpuset_init_smp - initialize cpus_allowed 3386 * 3387 * Description: Finish top cpuset after cpu, node maps are initialized 3388 */ 3389 void __init cpuset_init_smp(void) 3390 { 3391 cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask); 3392 top_cpuset.mems_allowed = node_states[N_MEMORY]; 3393 top_cpuset.old_mems_allowed = top_cpuset.mems_allowed; 3394 3395 cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask); 3396 top_cpuset.effective_mems = node_states[N_MEMORY]; 3397 3398 register_hotmemory_notifier(&cpuset_track_online_nodes_nb); 3399 3400 cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0); 3401 BUG_ON(!cpuset_migrate_mm_wq); 3402 } 3403 3404 /** 3405 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset. 3406 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed. 3407 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set. 3408 * 3409 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset 3410 * attached to the specified @tsk. Guaranteed to return some non-empty 3411 * subset of cpu_online_mask, even if this means going outside the 3412 * tasks cpuset. 3413 **/ 3414 3415 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask) 3416 { 3417 unsigned long flags; 3418 3419 spin_lock_irqsave(&callback_lock, flags); 3420 guarantee_online_cpus(tsk, pmask); 3421 spin_unlock_irqrestore(&callback_lock, flags); 3422 } 3423 3424 /** 3425 * cpuset_cpus_allowed_fallback - final fallback before complete catastrophe. 3426 * @tsk: pointer to task_struct with which the scheduler is struggling 3427 * 3428 * Description: In the case that the scheduler cannot find an allowed cpu in 3429 * tsk->cpus_allowed, we fall back to task_cs(tsk)->cpus_allowed. In legacy 3430 * mode however, this value is the same as task_cs(tsk)->effective_cpus, 3431 * which will not contain a sane cpumask during cases such as cpu hotplugging. 3432 * This is the absolute last resort for the scheduler and it is only used if 3433 * _every_ other avenue has been traveled. 3434 * 3435 * Returns true if the affinity of @tsk was changed, false otherwise. 3436 **/ 3437 3438 bool cpuset_cpus_allowed_fallback(struct task_struct *tsk) 3439 { 3440 const struct cpumask *possible_mask = task_cpu_possible_mask(tsk); 3441 const struct cpumask *cs_mask; 3442 bool changed = false; 3443 3444 rcu_read_lock(); 3445 cs_mask = task_cs(tsk)->cpus_allowed; 3446 if (is_in_v2_mode() && cpumask_subset(cs_mask, possible_mask)) { 3447 do_set_cpus_allowed(tsk, cs_mask); 3448 changed = true; 3449 } 3450 rcu_read_unlock(); 3451 3452 /* 3453 * We own tsk->cpus_allowed, nobody can change it under us. 3454 * 3455 * But we used cs && cs->cpus_allowed lockless and thus can 3456 * race with cgroup_attach_task() or update_cpumask() and get 3457 * the wrong tsk->cpus_allowed. However, both cases imply the 3458 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr() 3459 * which takes task_rq_lock(). 3460 * 3461 * If we are called after it dropped the lock we must see all 3462 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary 3463 * set any mask even if it is not right from task_cs() pov, 3464 * the pending set_cpus_allowed_ptr() will fix things. 3465 * 3466 * select_fallback_rq() will fix things ups and set cpu_possible_mask 3467 * if required. 3468 */ 3469 return changed; 3470 } 3471 3472 void __init cpuset_init_current_mems_allowed(void) 3473 { 3474 nodes_setall(current->mems_allowed); 3475 } 3476 3477 /** 3478 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset. 3479 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed. 3480 * 3481 * Description: Returns the nodemask_t mems_allowed of the cpuset 3482 * attached to the specified @tsk. Guaranteed to return some non-empty 3483 * subset of node_states[N_MEMORY], even if this means going outside the 3484 * tasks cpuset. 3485 **/ 3486 3487 nodemask_t cpuset_mems_allowed(struct task_struct *tsk) 3488 { 3489 nodemask_t mask; 3490 unsigned long flags; 3491 3492 spin_lock_irqsave(&callback_lock, flags); 3493 rcu_read_lock(); 3494 guarantee_online_mems(task_cs(tsk), &mask); 3495 rcu_read_unlock(); 3496 spin_unlock_irqrestore(&callback_lock, flags); 3497 3498 return mask; 3499 } 3500 3501 /** 3502 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. current mems_allowed 3503 * @nodemask: the nodemask to be checked 3504 * 3505 * Are any of the nodes in the nodemask allowed in current->mems_allowed? 3506 */ 3507 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask) 3508 { 3509 return nodes_intersects(*nodemask, current->mems_allowed); 3510 } 3511 3512 /* 3513 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or 3514 * mem_hardwall ancestor to the specified cpuset. Call holding 3515 * callback_lock. If no ancestor is mem_exclusive or mem_hardwall 3516 * (an unusual configuration), then returns the root cpuset. 3517 */ 3518 static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs) 3519 { 3520 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs)) 3521 cs = parent_cs(cs); 3522 return cs; 3523 } 3524 3525 /** 3526 * cpuset_node_allowed - Can we allocate on a memory node? 3527 * @node: is this an allowed node? 3528 * @gfp_mask: memory allocation flags 3529 * 3530 * If we're in interrupt, yes, we can always allocate. If @node is set in 3531 * current's mems_allowed, yes. If it's not a __GFP_HARDWALL request and this 3532 * node is set in the nearest hardwalled cpuset ancestor to current's cpuset, 3533 * yes. If current has access to memory reserves as an oom victim, yes. 3534 * Otherwise, no. 3535 * 3536 * GFP_USER allocations are marked with the __GFP_HARDWALL bit, 3537 * and do not allow allocations outside the current tasks cpuset 3538 * unless the task has been OOM killed. 3539 * GFP_KERNEL allocations are not so marked, so can escape to the 3540 * nearest enclosing hardwalled ancestor cpuset. 3541 * 3542 * Scanning up parent cpusets requires callback_lock. The 3543 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit 3544 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the 3545 * current tasks mems_allowed came up empty on the first pass over 3546 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the 3547 * cpuset are short of memory, might require taking the callback_lock. 3548 * 3549 * The first call here from mm/page_alloc:get_page_from_freelist() 3550 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets, 3551 * so no allocation on a node outside the cpuset is allowed (unless 3552 * in interrupt, of course). 3553 * 3554 * The second pass through get_page_from_freelist() doesn't even call 3555 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages() 3556 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set 3557 * in alloc_flags. That logic and the checks below have the combined 3558 * affect that: 3559 * in_interrupt - any node ok (current task context irrelevant) 3560 * GFP_ATOMIC - any node ok 3561 * tsk_is_oom_victim - any node ok 3562 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok 3563 * GFP_USER - only nodes in current tasks mems allowed ok. 3564 */ 3565 bool __cpuset_node_allowed(int node, gfp_t gfp_mask) 3566 { 3567 struct cpuset *cs; /* current cpuset ancestors */ 3568 bool allowed; /* is allocation in zone z allowed? */ 3569 unsigned long flags; 3570 3571 if (in_interrupt()) 3572 return true; 3573 if (node_isset(node, current->mems_allowed)) 3574 return true; 3575 /* 3576 * Allow tasks that have access to memory reserves because they have 3577 * been OOM killed to get memory anywhere. 3578 */ 3579 if (unlikely(tsk_is_oom_victim(current))) 3580 return true; 3581 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */ 3582 return false; 3583 3584 if (current->flags & PF_EXITING) /* Let dying task have memory */ 3585 return true; 3586 3587 /* Not hardwall and node outside mems_allowed: scan up cpusets */ 3588 spin_lock_irqsave(&callback_lock, flags); 3589 3590 rcu_read_lock(); 3591 cs = nearest_hardwall_ancestor(task_cs(current)); 3592 allowed = node_isset(node, cs->mems_allowed); 3593 rcu_read_unlock(); 3594 3595 spin_unlock_irqrestore(&callback_lock, flags); 3596 return allowed; 3597 } 3598 3599 /** 3600 * cpuset_mem_spread_node() - On which node to begin search for a file page 3601 * cpuset_slab_spread_node() - On which node to begin search for a slab page 3602 * 3603 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for 3604 * tasks in a cpuset with is_spread_page or is_spread_slab set), 3605 * and if the memory allocation used cpuset_mem_spread_node() 3606 * to determine on which node to start looking, as it will for 3607 * certain page cache or slab cache pages such as used for file 3608 * system buffers and inode caches, then instead of starting on the 3609 * local node to look for a free page, rather spread the starting 3610 * node around the tasks mems_allowed nodes. 3611 * 3612 * We don't have to worry about the returned node being offline 3613 * because "it can't happen", and even if it did, it would be ok. 3614 * 3615 * The routines calling guarantee_online_mems() are careful to 3616 * only set nodes in task->mems_allowed that are online. So it 3617 * should not be possible for the following code to return an 3618 * offline node. But if it did, that would be ok, as this routine 3619 * is not returning the node where the allocation must be, only 3620 * the node where the search should start. The zonelist passed to 3621 * __alloc_pages() will include all nodes. If the slab allocator 3622 * is passed an offline node, it will fall back to the local node. 3623 * See kmem_cache_alloc_node(). 3624 */ 3625 3626 static int cpuset_spread_node(int *rotor) 3627 { 3628 return *rotor = next_node_in(*rotor, current->mems_allowed); 3629 } 3630 3631 int cpuset_mem_spread_node(void) 3632 { 3633 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE) 3634 current->cpuset_mem_spread_rotor = 3635 node_random(¤t->mems_allowed); 3636 3637 return cpuset_spread_node(¤t->cpuset_mem_spread_rotor); 3638 } 3639 3640 int cpuset_slab_spread_node(void) 3641 { 3642 if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE) 3643 current->cpuset_slab_spread_rotor = 3644 node_random(¤t->mems_allowed); 3645 3646 return cpuset_spread_node(¤t->cpuset_slab_spread_rotor); 3647 } 3648 3649 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node); 3650 3651 /** 3652 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's? 3653 * @tsk1: pointer to task_struct of some task. 3654 * @tsk2: pointer to task_struct of some other task. 3655 * 3656 * Description: Return true if @tsk1's mems_allowed intersects the 3657 * mems_allowed of @tsk2. Used by the OOM killer to determine if 3658 * one of the task's memory usage might impact the memory available 3659 * to the other. 3660 **/ 3661 3662 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1, 3663 const struct task_struct *tsk2) 3664 { 3665 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed); 3666 } 3667 3668 /** 3669 * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed 3670 * 3671 * Description: Prints current's name, cpuset name, and cached copy of its 3672 * mems_allowed to the kernel log. 3673 */ 3674 void cpuset_print_current_mems_allowed(void) 3675 { 3676 struct cgroup *cgrp; 3677 3678 rcu_read_lock(); 3679 3680 cgrp = task_cs(current)->css.cgroup; 3681 pr_cont(",cpuset="); 3682 pr_cont_cgroup_name(cgrp); 3683 pr_cont(",mems_allowed=%*pbl", 3684 nodemask_pr_args(¤t->mems_allowed)); 3685 3686 rcu_read_unlock(); 3687 } 3688 3689 /* 3690 * Collection of memory_pressure is suppressed unless 3691 * this flag is enabled by writing "1" to the special 3692 * cpuset file 'memory_pressure_enabled' in the root cpuset. 3693 */ 3694 3695 int cpuset_memory_pressure_enabled __read_mostly; 3696 3697 /** 3698 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims. 3699 * 3700 * Keep a running average of the rate of synchronous (direct) 3701 * page reclaim efforts initiated by tasks in each cpuset. 3702 * 3703 * This represents the rate at which some task in the cpuset 3704 * ran low on memory on all nodes it was allowed to use, and 3705 * had to enter the kernels page reclaim code in an effort to 3706 * create more free memory by tossing clean pages or swapping 3707 * or writing dirty pages. 3708 * 3709 * Display to user space in the per-cpuset read-only file 3710 * "memory_pressure". Value displayed is an integer 3711 * representing the recent rate of entry into the synchronous 3712 * (direct) page reclaim by any task attached to the cpuset. 3713 **/ 3714 3715 void __cpuset_memory_pressure_bump(void) 3716 { 3717 rcu_read_lock(); 3718 fmeter_markevent(&task_cs(current)->fmeter); 3719 rcu_read_unlock(); 3720 } 3721 3722 #ifdef CONFIG_PROC_PID_CPUSET 3723 /* 3724 * proc_cpuset_show() 3725 * - Print tasks cpuset path into seq_file. 3726 * - Used for /proc/<pid>/cpuset. 3727 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it 3728 * doesn't really matter if tsk->cpuset changes after we read it, 3729 * and we take cpuset_rwsem, keeping cpuset_attach() from changing it 3730 * anyway. 3731 */ 3732 int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns, 3733 struct pid *pid, struct task_struct *tsk) 3734 { 3735 char *buf; 3736 struct cgroup_subsys_state *css; 3737 int retval; 3738 3739 retval = -ENOMEM; 3740 buf = kmalloc(PATH_MAX, GFP_KERNEL); 3741 if (!buf) 3742 goto out; 3743 3744 css = task_get_css(tsk, cpuset_cgrp_id); 3745 retval = cgroup_path_ns(css->cgroup, buf, PATH_MAX, 3746 current->nsproxy->cgroup_ns); 3747 css_put(css); 3748 if (retval >= PATH_MAX) 3749 retval = -ENAMETOOLONG; 3750 if (retval < 0) 3751 goto out_free; 3752 seq_puts(m, buf); 3753 seq_putc(m, '\n'); 3754 retval = 0; 3755 out_free: 3756 kfree(buf); 3757 out: 3758 return retval; 3759 } 3760 #endif /* CONFIG_PROC_PID_CPUSET */ 3761 3762 /* Display task mems_allowed in /proc/<pid>/status file. */ 3763 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task) 3764 { 3765 seq_printf(m, "Mems_allowed:\t%*pb\n", 3766 nodemask_pr_args(&task->mems_allowed)); 3767 seq_printf(m, "Mems_allowed_list:\t%*pbl\n", 3768 nodemask_pr_args(&task->mems_allowed)); 3769 } 3770