xref: /openbmc/linux/kernel/cgroup/cpuset.c (revision 31368ce8)
1 /*
2  *  kernel/cpuset.c
3  *
4  *  Processor and Memory placement constraints for sets of tasks.
5  *
6  *  Copyright (C) 2003 BULL SA.
7  *  Copyright (C) 2004-2007 Silicon Graphics, Inc.
8  *  Copyright (C) 2006 Google, Inc
9  *
10  *  Portions derived from Patrick Mochel's sysfs code.
11  *  sysfs is Copyright (c) 2001-3 Patrick Mochel
12  *
13  *  2003-10-10 Written by Simon Derr.
14  *  2003-10-22 Updates by Stephen Hemminger.
15  *  2004 May-July Rework by Paul Jackson.
16  *  2006 Rework by Paul Menage to use generic cgroups
17  *  2008 Rework of the scheduler domains and CPU hotplug handling
18  *       by Max Krasnyansky
19  *
20  *  This file is subject to the terms and conditions of the GNU General Public
21  *  License.  See the file COPYING in the main directory of the Linux
22  *  distribution for more details.
23  */
24 
25 #include <linux/cpu.h>
26 #include <linux/cpumask.h>
27 #include <linux/cpuset.h>
28 #include <linux/err.h>
29 #include <linux/errno.h>
30 #include <linux/file.h>
31 #include <linux/fs.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/kernel.h>
35 #include <linux/kmod.h>
36 #include <linux/list.h>
37 #include <linux/mempolicy.h>
38 #include <linux/mm.h>
39 #include <linux/memory.h>
40 #include <linux/export.h>
41 #include <linux/mount.h>
42 #include <linux/namei.h>
43 #include <linux/pagemap.h>
44 #include <linux/proc_fs.h>
45 #include <linux/rcupdate.h>
46 #include <linux/sched.h>
47 #include <linux/sched/mm.h>
48 #include <linux/sched/task.h>
49 #include <linux/seq_file.h>
50 #include <linux/security.h>
51 #include <linux/slab.h>
52 #include <linux/spinlock.h>
53 #include <linux/stat.h>
54 #include <linux/string.h>
55 #include <linux/time.h>
56 #include <linux/time64.h>
57 #include <linux/backing-dev.h>
58 #include <linux/sort.h>
59 
60 #include <linux/uaccess.h>
61 #include <linux/atomic.h>
62 #include <linux/mutex.h>
63 #include <linux/cgroup.h>
64 #include <linux/wait.h>
65 
66 DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key);
67 
68 /* See "Frequency meter" comments, below. */
69 
70 struct fmeter {
71 	int cnt;		/* unprocessed events count */
72 	int val;		/* most recent output value */
73 	time64_t time;		/* clock (secs) when val computed */
74 	spinlock_t lock;	/* guards read or write of above */
75 };
76 
77 struct cpuset {
78 	struct cgroup_subsys_state css;
79 
80 	unsigned long flags;		/* "unsigned long" so bitops work */
81 
82 	/*
83 	 * On default hierarchy:
84 	 *
85 	 * The user-configured masks can only be changed by writing to
86 	 * cpuset.cpus and cpuset.mems, and won't be limited by the
87 	 * parent masks.
88 	 *
89 	 * The effective masks is the real masks that apply to the tasks
90 	 * in the cpuset. They may be changed if the configured masks are
91 	 * changed or hotplug happens.
92 	 *
93 	 * effective_mask == configured_mask & parent's effective_mask,
94 	 * and if it ends up empty, it will inherit the parent's mask.
95 	 *
96 	 *
97 	 * On legacy hierachy:
98 	 *
99 	 * The user-configured masks are always the same with effective masks.
100 	 */
101 
102 	/* user-configured CPUs and Memory Nodes allow to tasks */
103 	cpumask_var_t cpus_allowed;
104 	nodemask_t mems_allowed;
105 
106 	/* effective CPUs and Memory Nodes allow to tasks */
107 	cpumask_var_t effective_cpus;
108 	nodemask_t effective_mems;
109 
110 	/*
111 	 * This is old Memory Nodes tasks took on.
112 	 *
113 	 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
114 	 * - A new cpuset's old_mems_allowed is initialized when some
115 	 *   task is moved into it.
116 	 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
117 	 *   cpuset.mems_allowed and have tasks' nodemask updated, and
118 	 *   then old_mems_allowed is updated to mems_allowed.
119 	 */
120 	nodemask_t old_mems_allowed;
121 
122 	struct fmeter fmeter;		/* memory_pressure filter */
123 
124 	/*
125 	 * Tasks are being attached to this cpuset.  Used to prevent
126 	 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
127 	 */
128 	int attach_in_progress;
129 
130 	/* partition number for rebuild_sched_domains() */
131 	int pn;
132 
133 	/* for custom sched domain */
134 	int relax_domain_level;
135 };
136 
137 static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
138 {
139 	return css ? container_of(css, struct cpuset, css) : NULL;
140 }
141 
142 /* Retrieve the cpuset for a task */
143 static inline struct cpuset *task_cs(struct task_struct *task)
144 {
145 	return css_cs(task_css(task, cpuset_cgrp_id));
146 }
147 
148 static inline struct cpuset *parent_cs(struct cpuset *cs)
149 {
150 	return css_cs(cs->css.parent);
151 }
152 
153 #ifdef CONFIG_NUMA
154 static inline bool task_has_mempolicy(struct task_struct *task)
155 {
156 	return task->mempolicy;
157 }
158 #else
159 static inline bool task_has_mempolicy(struct task_struct *task)
160 {
161 	return false;
162 }
163 #endif
164 
165 
166 /* bits in struct cpuset flags field */
167 typedef enum {
168 	CS_ONLINE,
169 	CS_CPU_EXCLUSIVE,
170 	CS_MEM_EXCLUSIVE,
171 	CS_MEM_HARDWALL,
172 	CS_MEMORY_MIGRATE,
173 	CS_SCHED_LOAD_BALANCE,
174 	CS_SPREAD_PAGE,
175 	CS_SPREAD_SLAB,
176 } cpuset_flagbits_t;
177 
178 /* convenient tests for these bits */
179 static inline bool is_cpuset_online(struct cpuset *cs)
180 {
181 	return test_bit(CS_ONLINE, &cs->flags) && !css_is_dying(&cs->css);
182 }
183 
184 static inline int is_cpu_exclusive(const struct cpuset *cs)
185 {
186 	return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
187 }
188 
189 static inline int is_mem_exclusive(const struct cpuset *cs)
190 {
191 	return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
192 }
193 
194 static inline int is_mem_hardwall(const struct cpuset *cs)
195 {
196 	return test_bit(CS_MEM_HARDWALL, &cs->flags);
197 }
198 
199 static inline int is_sched_load_balance(const struct cpuset *cs)
200 {
201 	return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
202 }
203 
204 static inline int is_memory_migrate(const struct cpuset *cs)
205 {
206 	return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
207 }
208 
209 static inline int is_spread_page(const struct cpuset *cs)
210 {
211 	return test_bit(CS_SPREAD_PAGE, &cs->flags);
212 }
213 
214 static inline int is_spread_slab(const struct cpuset *cs)
215 {
216 	return test_bit(CS_SPREAD_SLAB, &cs->flags);
217 }
218 
219 static struct cpuset top_cpuset = {
220 	.flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
221 		  (1 << CS_MEM_EXCLUSIVE)),
222 };
223 
224 /**
225  * cpuset_for_each_child - traverse online children of a cpuset
226  * @child_cs: loop cursor pointing to the current child
227  * @pos_css: used for iteration
228  * @parent_cs: target cpuset to walk children of
229  *
230  * Walk @child_cs through the online children of @parent_cs.  Must be used
231  * with RCU read locked.
232  */
233 #define cpuset_for_each_child(child_cs, pos_css, parent_cs)		\
234 	css_for_each_child((pos_css), &(parent_cs)->css)		\
235 		if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
236 
237 /**
238  * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
239  * @des_cs: loop cursor pointing to the current descendant
240  * @pos_css: used for iteration
241  * @root_cs: target cpuset to walk ancestor of
242  *
243  * Walk @des_cs through the online descendants of @root_cs.  Must be used
244  * with RCU read locked.  The caller may modify @pos_css by calling
245  * css_rightmost_descendant() to skip subtree.  @root_cs is included in the
246  * iteration and the first node to be visited.
247  */
248 #define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs)	\
249 	css_for_each_descendant_pre((pos_css), &(root_cs)->css)		\
250 		if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
251 
252 /*
253  * There are two global locks guarding cpuset structures - cpuset_mutex and
254  * callback_lock. We also require taking task_lock() when dereferencing a
255  * task's cpuset pointer. See "The task_lock() exception", at the end of this
256  * comment.
257  *
258  * A task must hold both locks to modify cpusets.  If a task holds
259  * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
260  * is the only task able to also acquire callback_lock and be able to
261  * modify cpusets.  It can perform various checks on the cpuset structure
262  * first, knowing nothing will change.  It can also allocate memory while
263  * just holding cpuset_mutex.  While it is performing these checks, various
264  * callback routines can briefly acquire callback_lock to query cpusets.
265  * Once it is ready to make the changes, it takes callback_lock, blocking
266  * everyone else.
267  *
268  * Calls to the kernel memory allocator can not be made while holding
269  * callback_lock, as that would risk double tripping on callback_lock
270  * from one of the callbacks into the cpuset code from within
271  * __alloc_pages().
272  *
273  * If a task is only holding callback_lock, then it has read-only
274  * access to cpusets.
275  *
276  * Now, the task_struct fields mems_allowed and mempolicy may be changed
277  * by other task, we use alloc_lock in the task_struct fields to protect
278  * them.
279  *
280  * The cpuset_common_file_read() handlers only hold callback_lock across
281  * small pieces of code, such as when reading out possibly multi-word
282  * cpumasks and nodemasks.
283  *
284  * Accessing a task's cpuset should be done in accordance with the
285  * guidelines for accessing subsystem state in kernel/cgroup.c
286  */
287 
288 static DEFINE_MUTEX(cpuset_mutex);
289 static DEFINE_SPINLOCK(callback_lock);
290 
291 static struct workqueue_struct *cpuset_migrate_mm_wq;
292 
293 /*
294  * CPU / memory hotplug is handled asynchronously.
295  */
296 static void cpuset_hotplug_workfn(struct work_struct *work);
297 static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
298 
299 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
300 
301 /*
302  * This is ugly, but preserves the userspace API for existing cpuset
303  * users. If someone tries to mount the "cpuset" filesystem, we
304  * silently switch it to mount "cgroup" instead
305  */
306 static struct dentry *cpuset_mount(struct file_system_type *fs_type,
307 			 int flags, const char *unused_dev_name, void *data)
308 {
309 	struct file_system_type *cgroup_fs = get_fs_type("cgroup");
310 	struct dentry *ret = ERR_PTR(-ENODEV);
311 	if (cgroup_fs) {
312 		char mountopts[] =
313 			"cpuset,noprefix,"
314 			"release_agent=/sbin/cpuset_release_agent";
315 		ret = cgroup_fs->mount(cgroup_fs, flags,
316 					   unused_dev_name, mountopts);
317 		put_filesystem(cgroup_fs);
318 	}
319 	return ret;
320 }
321 
322 static struct file_system_type cpuset_fs_type = {
323 	.name = "cpuset",
324 	.mount = cpuset_mount,
325 };
326 
327 /*
328  * Return in pmask the portion of a cpusets's cpus_allowed that
329  * are online.  If none are online, walk up the cpuset hierarchy
330  * until we find one that does have some online cpus.
331  *
332  * One way or another, we guarantee to return some non-empty subset
333  * of cpu_online_mask.
334  *
335  * Call with callback_lock or cpuset_mutex held.
336  */
337 static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)
338 {
339 	while (!cpumask_intersects(cs->effective_cpus, cpu_online_mask)) {
340 		cs = parent_cs(cs);
341 		if (unlikely(!cs)) {
342 			/*
343 			 * The top cpuset doesn't have any online cpu as a
344 			 * consequence of a race between cpuset_hotplug_work
345 			 * and cpu hotplug notifier.  But we know the top
346 			 * cpuset's effective_cpus is on its way to to be
347 			 * identical to cpu_online_mask.
348 			 */
349 			cpumask_copy(pmask, cpu_online_mask);
350 			return;
351 		}
352 	}
353 	cpumask_and(pmask, cs->effective_cpus, cpu_online_mask);
354 }
355 
356 /*
357  * Return in *pmask the portion of a cpusets's mems_allowed that
358  * are online, with memory.  If none are online with memory, walk
359  * up the cpuset hierarchy until we find one that does have some
360  * online mems.  The top cpuset always has some mems online.
361  *
362  * One way or another, we guarantee to return some non-empty subset
363  * of node_states[N_MEMORY].
364  *
365  * Call with callback_lock or cpuset_mutex held.
366  */
367 static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
368 {
369 	while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
370 		cs = parent_cs(cs);
371 	nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
372 }
373 
374 /*
375  * update task's spread flag if cpuset's page/slab spread flag is set
376  *
377  * Call with callback_lock or cpuset_mutex held.
378  */
379 static void cpuset_update_task_spread_flag(struct cpuset *cs,
380 					struct task_struct *tsk)
381 {
382 	if (is_spread_page(cs))
383 		task_set_spread_page(tsk);
384 	else
385 		task_clear_spread_page(tsk);
386 
387 	if (is_spread_slab(cs))
388 		task_set_spread_slab(tsk);
389 	else
390 		task_clear_spread_slab(tsk);
391 }
392 
393 /*
394  * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
395  *
396  * One cpuset is a subset of another if all its allowed CPUs and
397  * Memory Nodes are a subset of the other, and its exclusive flags
398  * are only set if the other's are set.  Call holding cpuset_mutex.
399  */
400 
401 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
402 {
403 	return	cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
404 		nodes_subset(p->mems_allowed, q->mems_allowed) &&
405 		is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
406 		is_mem_exclusive(p) <= is_mem_exclusive(q);
407 }
408 
409 /**
410  * alloc_trial_cpuset - allocate a trial cpuset
411  * @cs: the cpuset that the trial cpuset duplicates
412  */
413 static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
414 {
415 	struct cpuset *trial;
416 
417 	trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
418 	if (!trial)
419 		return NULL;
420 
421 	if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL))
422 		goto free_cs;
423 	if (!alloc_cpumask_var(&trial->effective_cpus, GFP_KERNEL))
424 		goto free_cpus;
425 
426 	cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
427 	cpumask_copy(trial->effective_cpus, cs->effective_cpus);
428 	return trial;
429 
430 free_cpus:
431 	free_cpumask_var(trial->cpus_allowed);
432 free_cs:
433 	kfree(trial);
434 	return NULL;
435 }
436 
437 /**
438  * free_trial_cpuset - free the trial cpuset
439  * @trial: the trial cpuset to be freed
440  */
441 static void free_trial_cpuset(struct cpuset *trial)
442 {
443 	free_cpumask_var(trial->effective_cpus);
444 	free_cpumask_var(trial->cpus_allowed);
445 	kfree(trial);
446 }
447 
448 /*
449  * validate_change() - Used to validate that any proposed cpuset change
450  *		       follows the structural rules for cpusets.
451  *
452  * If we replaced the flag and mask values of the current cpuset
453  * (cur) with those values in the trial cpuset (trial), would
454  * our various subset and exclusive rules still be valid?  Presumes
455  * cpuset_mutex held.
456  *
457  * 'cur' is the address of an actual, in-use cpuset.  Operations
458  * such as list traversal that depend on the actual address of the
459  * cpuset in the list must use cur below, not trial.
460  *
461  * 'trial' is the address of bulk structure copy of cur, with
462  * perhaps one or more of the fields cpus_allowed, mems_allowed,
463  * or flags changed to new, trial values.
464  *
465  * Return 0 if valid, -errno if not.
466  */
467 
468 static int validate_change(struct cpuset *cur, struct cpuset *trial)
469 {
470 	struct cgroup_subsys_state *css;
471 	struct cpuset *c, *par;
472 	int ret;
473 
474 	rcu_read_lock();
475 
476 	/* Each of our child cpusets must be a subset of us */
477 	ret = -EBUSY;
478 	cpuset_for_each_child(c, css, cur)
479 		if (!is_cpuset_subset(c, trial))
480 			goto out;
481 
482 	/* Remaining checks don't apply to root cpuset */
483 	ret = 0;
484 	if (cur == &top_cpuset)
485 		goto out;
486 
487 	par = parent_cs(cur);
488 
489 	/* On legacy hiearchy, we must be a subset of our parent cpuset. */
490 	ret = -EACCES;
491 	if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
492 	    !is_cpuset_subset(trial, par))
493 		goto out;
494 
495 	/*
496 	 * If either I or some sibling (!= me) is exclusive, we can't
497 	 * overlap
498 	 */
499 	ret = -EINVAL;
500 	cpuset_for_each_child(c, css, par) {
501 		if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
502 		    c != cur &&
503 		    cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
504 			goto out;
505 		if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
506 		    c != cur &&
507 		    nodes_intersects(trial->mems_allowed, c->mems_allowed))
508 			goto out;
509 	}
510 
511 	/*
512 	 * Cpusets with tasks - existing or newly being attached - can't
513 	 * be changed to have empty cpus_allowed or mems_allowed.
514 	 */
515 	ret = -ENOSPC;
516 	if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) {
517 		if (!cpumask_empty(cur->cpus_allowed) &&
518 		    cpumask_empty(trial->cpus_allowed))
519 			goto out;
520 		if (!nodes_empty(cur->mems_allowed) &&
521 		    nodes_empty(trial->mems_allowed))
522 			goto out;
523 	}
524 
525 	/*
526 	 * We can't shrink if we won't have enough room for SCHED_DEADLINE
527 	 * tasks.
528 	 */
529 	ret = -EBUSY;
530 	if (is_cpu_exclusive(cur) &&
531 	    !cpuset_cpumask_can_shrink(cur->cpus_allowed,
532 				       trial->cpus_allowed))
533 		goto out;
534 
535 	ret = 0;
536 out:
537 	rcu_read_unlock();
538 	return ret;
539 }
540 
541 #ifdef CONFIG_SMP
542 /*
543  * Helper routine for generate_sched_domains().
544  * Do cpusets a, b have overlapping effective cpus_allowed masks?
545  */
546 static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
547 {
548 	return cpumask_intersects(a->effective_cpus, b->effective_cpus);
549 }
550 
551 static void
552 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
553 {
554 	if (dattr->relax_domain_level < c->relax_domain_level)
555 		dattr->relax_domain_level = c->relax_domain_level;
556 	return;
557 }
558 
559 static void update_domain_attr_tree(struct sched_domain_attr *dattr,
560 				    struct cpuset *root_cs)
561 {
562 	struct cpuset *cp;
563 	struct cgroup_subsys_state *pos_css;
564 
565 	rcu_read_lock();
566 	cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
567 		/* skip the whole subtree if @cp doesn't have any CPU */
568 		if (cpumask_empty(cp->cpus_allowed)) {
569 			pos_css = css_rightmost_descendant(pos_css);
570 			continue;
571 		}
572 
573 		if (is_sched_load_balance(cp))
574 			update_domain_attr(dattr, cp);
575 	}
576 	rcu_read_unlock();
577 }
578 
579 /*
580  * generate_sched_domains()
581  *
582  * This function builds a partial partition of the systems CPUs
583  * A 'partial partition' is a set of non-overlapping subsets whose
584  * union is a subset of that set.
585  * The output of this function needs to be passed to kernel/sched/core.c
586  * partition_sched_domains() routine, which will rebuild the scheduler's
587  * load balancing domains (sched domains) as specified by that partial
588  * partition.
589  *
590  * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
591  * for a background explanation of this.
592  *
593  * Does not return errors, on the theory that the callers of this
594  * routine would rather not worry about failures to rebuild sched
595  * domains when operating in the severe memory shortage situations
596  * that could cause allocation failures below.
597  *
598  * Must be called with cpuset_mutex held.
599  *
600  * The three key local variables below are:
601  *    q  - a linked-list queue of cpuset pointers, used to implement a
602  *	   top-down scan of all cpusets.  This scan loads a pointer
603  *	   to each cpuset marked is_sched_load_balance into the
604  *	   array 'csa'.  For our purposes, rebuilding the schedulers
605  *	   sched domains, we can ignore !is_sched_load_balance cpusets.
606  *  csa  - (for CpuSet Array) Array of pointers to all the cpusets
607  *	   that need to be load balanced, for convenient iterative
608  *	   access by the subsequent code that finds the best partition,
609  *	   i.e the set of domains (subsets) of CPUs such that the
610  *	   cpus_allowed of every cpuset marked is_sched_load_balance
611  *	   is a subset of one of these domains, while there are as
612  *	   many such domains as possible, each as small as possible.
613  * doms  - Conversion of 'csa' to an array of cpumasks, for passing to
614  *	   the kernel/sched/core.c routine partition_sched_domains() in a
615  *	   convenient format, that can be easily compared to the prior
616  *	   value to determine what partition elements (sched domains)
617  *	   were changed (added or removed.)
618  *
619  * Finding the best partition (set of domains):
620  *	The triple nested loops below over i, j, k scan over the
621  *	load balanced cpusets (using the array of cpuset pointers in
622  *	csa[]) looking for pairs of cpusets that have overlapping
623  *	cpus_allowed, but which don't have the same 'pn' partition
624  *	number and gives them in the same partition number.  It keeps
625  *	looping on the 'restart' label until it can no longer find
626  *	any such pairs.
627  *
628  *	The union of the cpus_allowed masks from the set of
629  *	all cpusets having the same 'pn' value then form the one
630  *	element of the partition (one sched domain) to be passed to
631  *	partition_sched_domains().
632  */
633 static int generate_sched_domains(cpumask_var_t **domains,
634 			struct sched_domain_attr **attributes)
635 {
636 	struct cpuset *cp;	/* scans q */
637 	struct cpuset **csa;	/* array of all cpuset ptrs */
638 	int csn;		/* how many cpuset ptrs in csa so far */
639 	int i, j, k;		/* indices for partition finding loops */
640 	cpumask_var_t *doms;	/* resulting partition; i.e. sched domains */
641 	cpumask_var_t non_isolated_cpus;  /* load balanced CPUs */
642 	struct sched_domain_attr *dattr;  /* attributes for custom domains */
643 	int ndoms = 0;		/* number of sched domains in result */
644 	int nslot;		/* next empty doms[] struct cpumask slot */
645 	struct cgroup_subsys_state *pos_css;
646 
647 	doms = NULL;
648 	dattr = NULL;
649 	csa = NULL;
650 
651 	if (!alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL))
652 		goto done;
653 	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
654 
655 	/* Special case for the 99% of systems with one, full, sched domain */
656 	if (is_sched_load_balance(&top_cpuset)) {
657 		ndoms = 1;
658 		doms = alloc_sched_domains(ndoms);
659 		if (!doms)
660 			goto done;
661 
662 		dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
663 		if (dattr) {
664 			*dattr = SD_ATTR_INIT;
665 			update_domain_attr_tree(dattr, &top_cpuset);
666 		}
667 		cpumask_and(doms[0], top_cpuset.effective_cpus,
668 				     non_isolated_cpus);
669 
670 		goto done;
671 	}
672 
673 	csa = kmalloc(nr_cpusets() * sizeof(cp), GFP_KERNEL);
674 	if (!csa)
675 		goto done;
676 	csn = 0;
677 
678 	rcu_read_lock();
679 	cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
680 		if (cp == &top_cpuset)
681 			continue;
682 		/*
683 		 * Continue traversing beyond @cp iff @cp has some CPUs and
684 		 * isn't load balancing.  The former is obvious.  The
685 		 * latter: All child cpusets contain a subset of the
686 		 * parent's cpus, so just skip them, and then we call
687 		 * update_domain_attr_tree() to calc relax_domain_level of
688 		 * the corresponding sched domain.
689 		 */
690 		if (!cpumask_empty(cp->cpus_allowed) &&
691 		    !(is_sched_load_balance(cp) &&
692 		      cpumask_intersects(cp->cpus_allowed, non_isolated_cpus)))
693 			continue;
694 
695 		if (is_sched_load_balance(cp))
696 			csa[csn++] = cp;
697 
698 		/* skip @cp's subtree */
699 		pos_css = css_rightmost_descendant(pos_css);
700 	}
701 	rcu_read_unlock();
702 
703 	for (i = 0; i < csn; i++)
704 		csa[i]->pn = i;
705 	ndoms = csn;
706 
707 restart:
708 	/* Find the best partition (set of sched domains) */
709 	for (i = 0; i < csn; i++) {
710 		struct cpuset *a = csa[i];
711 		int apn = a->pn;
712 
713 		for (j = 0; j < csn; j++) {
714 			struct cpuset *b = csa[j];
715 			int bpn = b->pn;
716 
717 			if (apn != bpn && cpusets_overlap(a, b)) {
718 				for (k = 0; k < csn; k++) {
719 					struct cpuset *c = csa[k];
720 
721 					if (c->pn == bpn)
722 						c->pn = apn;
723 				}
724 				ndoms--;	/* one less element */
725 				goto restart;
726 			}
727 		}
728 	}
729 
730 	/*
731 	 * Now we know how many domains to create.
732 	 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
733 	 */
734 	doms = alloc_sched_domains(ndoms);
735 	if (!doms)
736 		goto done;
737 
738 	/*
739 	 * The rest of the code, including the scheduler, can deal with
740 	 * dattr==NULL case. No need to abort if alloc fails.
741 	 */
742 	dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
743 
744 	for (nslot = 0, i = 0; i < csn; i++) {
745 		struct cpuset *a = csa[i];
746 		struct cpumask *dp;
747 		int apn = a->pn;
748 
749 		if (apn < 0) {
750 			/* Skip completed partitions */
751 			continue;
752 		}
753 
754 		dp = doms[nslot];
755 
756 		if (nslot == ndoms) {
757 			static int warnings = 10;
758 			if (warnings) {
759 				pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
760 					nslot, ndoms, csn, i, apn);
761 				warnings--;
762 			}
763 			continue;
764 		}
765 
766 		cpumask_clear(dp);
767 		if (dattr)
768 			*(dattr + nslot) = SD_ATTR_INIT;
769 		for (j = i; j < csn; j++) {
770 			struct cpuset *b = csa[j];
771 
772 			if (apn == b->pn) {
773 				cpumask_or(dp, dp, b->effective_cpus);
774 				cpumask_and(dp, dp, non_isolated_cpus);
775 				if (dattr)
776 					update_domain_attr_tree(dattr + nslot, b);
777 
778 				/* Done with this partition */
779 				b->pn = -1;
780 			}
781 		}
782 		nslot++;
783 	}
784 	BUG_ON(nslot != ndoms);
785 
786 done:
787 	free_cpumask_var(non_isolated_cpus);
788 	kfree(csa);
789 
790 	/*
791 	 * Fallback to the default domain if kmalloc() failed.
792 	 * See comments in partition_sched_domains().
793 	 */
794 	if (doms == NULL)
795 		ndoms = 1;
796 
797 	*domains    = doms;
798 	*attributes = dattr;
799 	return ndoms;
800 }
801 
802 /*
803  * Rebuild scheduler domains.
804  *
805  * If the flag 'sched_load_balance' of any cpuset with non-empty
806  * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
807  * which has that flag enabled, or if any cpuset with a non-empty
808  * 'cpus' is removed, then call this routine to rebuild the
809  * scheduler's dynamic sched domains.
810  *
811  * Call with cpuset_mutex held.  Takes get_online_cpus().
812  */
813 static void rebuild_sched_domains_locked(void)
814 {
815 	struct sched_domain_attr *attr;
816 	cpumask_var_t *doms;
817 	int ndoms;
818 
819 	lockdep_assert_held(&cpuset_mutex);
820 	get_online_cpus();
821 
822 	/*
823 	 * We have raced with CPU hotplug. Don't do anything to avoid
824 	 * passing doms with offlined cpu to partition_sched_domains().
825 	 * Anyways, hotplug work item will rebuild sched domains.
826 	 */
827 	if (!cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
828 		goto out;
829 
830 	/* Generate domain masks and attrs */
831 	ndoms = generate_sched_domains(&doms, &attr);
832 
833 	/* Have scheduler rebuild the domains */
834 	partition_sched_domains(ndoms, doms, attr);
835 out:
836 	put_online_cpus();
837 }
838 #else /* !CONFIG_SMP */
839 static void rebuild_sched_domains_locked(void)
840 {
841 }
842 #endif /* CONFIG_SMP */
843 
844 void rebuild_sched_domains(void)
845 {
846 	mutex_lock(&cpuset_mutex);
847 	rebuild_sched_domains_locked();
848 	mutex_unlock(&cpuset_mutex);
849 }
850 
851 /**
852  * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
853  * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
854  *
855  * Iterate through each task of @cs updating its cpus_allowed to the
856  * effective cpuset's.  As this function is called with cpuset_mutex held,
857  * cpuset membership stays stable.
858  */
859 static void update_tasks_cpumask(struct cpuset *cs)
860 {
861 	struct css_task_iter it;
862 	struct task_struct *task;
863 
864 	css_task_iter_start(&cs->css, &it);
865 	while ((task = css_task_iter_next(&it)))
866 		set_cpus_allowed_ptr(task, cs->effective_cpus);
867 	css_task_iter_end(&it);
868 }
869 
870 /*
871  * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
872  * @cs: the cpuset to consider
873  * @new_cpus: temp variable for calculating new effective_cpus
874  *
875  * When congifured cpumask is changed, the effective cpumasks of this cpuset
876  * and all its descendants need to be updated.
877  *
878  * On legacy hierachy, effective_cpus will be the same with cpu_allowed.
879  *
880  * Called with cpuset_mutex held
881  */
882 static void update_cpumasks_hier(struct cpuset *cs, struct cpumask *new_cpus)
883 {
884 	struct cpuset *cp;
885 	struct cgroup_subsys_state *pos_css;
886 	bool need_rebuild_sched_domains = false;
887 
888 	rcu_read_lock();
889 	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
890 		struct cpuset *parent = parent_cs(cp);
891 
892 		cpumask_and(new_cpus, cp->cpus_allowed, parent->effective_cpus);
893 
894 		/*
895 		 * If it becomes empty, inherit the effective mask of the
896 		 * parent, which is guaranteed to have some CPUs.
897 		 */
898 		if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
899 		    cpumask_empty(new_cpus))
900 			cpumask_copy(new_cpus, parent->effective_cpus);
901 
902 		/* Skip the whole subtree if the cpumask remains the same. */
903 		if (cpumask_equal(new_cpus, cp->effective_cpus)) {
904 			pos_css = css_rightmost_descendant(pos_css);
905 			continue;
906 		}
907 
908 		if (!css_tryget_online(&cp->css))
909 			continue;
910 		rcu_read_unlock();
911 
912 		spin_lock_irq(&callback_lock);
913 		cpumask_copy(cp->effective_cpus, new_cpus);
914 		spin_unlock_irq(&callback_lock);
915 
916 		WARN_ON(!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
917 			!cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
918 
919 		update_tasks_cpumask(cp);
920 
921 		/*
922 		 * If the effective cpumask of any non-empty cpuset is changed,
923 		 * we need to rebuild sched domains.
924 		 */
925 		if (!cpumask_empty(cp->cpus_allowed) &&
926 		    is_sched_load_balance(cp))
927 			need_rebuild_sched_domains = true;
928 
929 		rcu_read_lock();
930 		css_put(&cp->css);
931 	}
932 	rcu_read_unlock();
933 
934 	if (need_rebuild_sched_domains)
935 		rebuild_sched_domains_locked();
936 }
937 
938 /**
939  * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
940  * @cs: the cpuset to consider
941  * @trialcs: trial cpuset
942  * @buf: buffer of cpu numbers written to this cpuset
943  */
944 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
945 			  const char *buf)
946 {
947 	int retval;
948 
949 	/* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
950 	if (cs == &top_cpuset)
951 		return -EACCES;
952 
953 	/*
954 	 * An empty cpus_allowed is ok only if the cpuset has no tasks.
955 	 * Since cpulist_parse() fails on an empty mask, we special case
956 	 * that parsing.  The validate_change() call ensures that cpusets
957 	 * with tasks have cpus.
958 	 */
959 	if (!*buf) {
960 		cpumask_clear(trialcs->cpus_allowed);
961 	} else {
962 		retval = cpulist_parse(buf, trialcs->cpus_allowed);
963 		if (retval < 0)
964 			return retval;
965 
966 		if (!cpumask_subset(trialcs->cpus_allowed,
967 				    top_cpuset.cpus_allowed))
968 			return -EINVAL;
969 	}
970 
971 	/* Nothing to do if the cpus didn't change */
972 	if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
973 		return 0;
974 
975 	retval = validate_change(cs, trialcs);
976 	if (retval < 0)
977 		return retval;
978 
979 	spin_lock_irq(&callback_lock);
980 	cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
981 	spin_unlock_irq(&callback_lock);
982 
983 	/* use trialcs->cpus_allowed as a temp variable */
984 	update_cpumasks_hier(cs, trialcs->cpus_allowed);
985 	return 0;
986 }
987 
988 /*
989  * Migrate memory region from one set of nodes to another.  This is
990  * performed asynchronously as it can be called from process migration path
991  * holding locks involved in process management.  All mm migrations are
992  * performed in the queued order and can be waited for by flushing
993  * cpuset_migrate_mm_wq.
994  */
995 
996 struct cpuset_migrate_mm_work {
997 	struct work_struct	work;
998 	struct mm_struct	*mm;
999 	nodemask_t		from;
1000 	nodemask_t		to;
1001 };
1002 
1003 static void cpuset_migrate_mm_workfn(struct work_struct *work)
1004 {
1005 	struct cpuset_migrate_mm_work *mwork =
1006 		container_of(work, struct cpuset_migrate_mm_work, work);
1007 
1008 	/* on a wq worker, no need to worry about %current's mems_allowed */
1009 	do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL);
1010 	mmput(mwork->mm);
1011 	kfree(mwork);
1012 }
1013 
1014 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
1015 							const nodemask_t *to)
1016 {
1017 	struct cpuset_migrate_mm_work *mwork;
1018 
1019 	mwork = kzalloc(sizeof(*mwork), GFP_KERNEL);
1020 	if (mwork) {
1021 		mwork->mm = mm;
1022 		mwork->from = *from;
1023 		mwork->to = *to;
1024 		INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn);
1025 		queue_work(cpuset_migrate_mm_wq, &mwork->work);
1026 	} else {
1027 		mmput(mm);
1028 	}
1029 }
1030 
1031 static void cpuset_post_attach(void)
1032 {
1033 	flush_workqueue(cpuset_migrate_mm_wq);
1034 }
1035 
1036 /*
1037  * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
1038  * @tsk: the task to change
1039  * @newmems: new nodes that the task will be set
1040  *
1041  * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed
1042  * and rebind an eventual tasks' mempolicy. If the task is allocating in
1043  * parallel, it might temporarily see an empty intersection, which results in
1044  * a seqlock check and retry before OOM or allocation failure.
1045  */
1046 static void cpuset_change_task_nodemask(struct task_struct *tsk,
1047 					nodemask_t *newmems)
1048 {
1049 	task_lock(tsk);
1050 
1051 	local_irq_disable();
1052 	write_seqcount_begin(&tsk->mems_allowed_seq);
1053 
1054 	nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
1055 	mpol_rebind_task(tsk, newmems);
1056 	tsk->mems_allowed = *newmems;
1057 
1058 	write_seqcount_end(&tsk->mems_allowed_seq);
1059 	local_irq_enable();
1060 
1061 	task_unlock(tsk);
1062 }
1063 
1064 static void *cpuset_being_rebound;
1065 
1066 /**
1067  * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1068  * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1069  *
1070  * Iterate through each task of @cs updating its mems_allowed to the
1071  * effective cpuset's.  As this function is called with cpuset_mutex held,
1072  * cpuset membership stays stable.
1073  */
1074 static void update_tasks_nodemask(struct cpuset *cs)
1075 {
1076 	static nodemask_t newmems;	/* protected by cpuset_mutex */
1077 	struct css_task_iter it;
1078 	struct task_struct *task;
1079 
1080 	cpuset_being_rebound = cs;		/* causes mpol_dup() rebind */
1081 
1082 	guarantee_online_mems(cs, &newmems);
1083 
1084 	/*
1085 	 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1086 	 * take while holding tasklist_lock.  Forks can happen - the
1087 	 * mpol_dup() cpuset_being_rebound check will catch such forks,
1088 	 * and rebind their vma mempolicies too.  Because we still hold
1089 	 * the global cpuset_mutex, we know that no other rebind effort
1090 	 * will be contending for the global variable cpuset_being_rebound.
1091 	 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1092 	 * is idempotent.  Also migrate pages in each mm to new nodes.
1093 	 */
1094 	css_task_iter_start(&cs->css, &it);
1095 	while ((task = css_task_iter_next(&it))) {
1096 		struct mm_struct *mm;
1097 		bool migrate;
1098 
1099 		cpuset_change_task_nodemask(task, &newmems);
1100 
1101 		mm = get_task_mm(task);
1102 		if (!mm)
1103 			continue;
1104 
1105 		migrate = is_memory_migrate(cs);
1106 
1107 		mpol_rebind_mm(mm, &cs->mems_allowed);
1108 		if (migrate)
1109 			cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
1110 		else
1111 			mmput(mm);
1112 	}
1113 	css_task_iter_end(&it);
1114 
1115 	/*
1116 	 * All the tasks' nodemasks have been updated, update
1117 	 * cs->old_mems_allowed.
1118 	 */
1119 	cs->old_mems_allowed = newmems;
1120 
1121 	/* We're done rebinding vmas to this cpuset's new mems_allowed. */
1122 	cpuset_being_rebound = NULL;
1123 }
1124 
1125 /*
1126  * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
1127  * @cs: the cpuset to consider
1128  * @new_mems: a temp variable for calculating new effective_mems
1129  *
1130  * When configured nodemask is changed, the effective nodemasks of this cpuset
1131  * and all its descendants need to be updated.
1132  *
1133  * On legacy hiearchy, effective_mems will be the same with mems_allowed.
1134  *
1135  * Called with cpuset_mutex held
1136  */
1137 static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
1138 {
1139 	struct cpuset *cp;
1140 	struct cgroup_subsys_state *pos_css;
1141 
1142 	rcu_read_lock();
1143 	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1144 		struct cpuset *parent = parent_cs(cp);
1145 
1146 		nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);
1147 
1148 		/*
1149 		 * If it becomes empty, inherit the effective mask of the
1150 		 * parent, which is guaranteed to have some MEMs.
1151 		 */
1152 		if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
1153 		    nodes_empty(*new_mems))
1154 			*new_mems = parent->effective_mems;
1155 
1156 		/* Skip the whole subtree if the nodemask remains the same. */
1157 		if (nodes_equal(*new_mems, cp->effective_mems)) {
1158 			pos_css = css_rightmost_descendant(pos_css);
1159 			continue;
1160 		}
1161 
1162 		if (!css_tryget_online(&cp->css))
1163 			continue;
1164 		rcu_read_unlock();
1165 
1166 		spin_lock_irq(&callback_lock);
1167 		cp->effective_mems = *new_mems;
1168 		spin_unlock_irq(&callback_lock);
1169 
1170 		WARN_ON(!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
1171 			!nodes_equal(cp->mems_allowed, cp->effective_mems));
1172 
1173 		update_tasks_nodemask(cp);
1174 
1175 		rcu_read_lock();
1176 		css_put(&cp->css);
1177 	}
1178 	rcu_read_unlock();
1179 }
1180 
1181 /*
1182  * Handle user request to change the 'mems' memory placement
1183  * of a cpuset.  Needs to validate the request, update the
1184  * cpusets mems_allowed, and for each task in the cpuset,
1185  * update mems_allowed and rebind task's mempolicy and any vma
1186  * mempolicies and if the cpuset is marked 'memory_migrate',
1187  * migrate the tasks pages to the new memory.
1188  *
1189  * Call with cpuset_mutex held. May take callback_lock during call.
1190  * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1191  * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1192  * their mempolicies to the cpusets new mems_allowed.
1193  */
1194 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1195 			   const char *buf)
1196 {
1197 	int retval;
1198 
1199 	/*
1200 	 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
1201 	 * it's read-only
1202 	 */
1203 	if (cs == &top_cpuset) {
1204 		retval = -EACCES;
1205 		goto done;
1206 	}
1207 
1208 	/*
1209 	 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1210 	 * Since nodelist_parse() fails on an empty mask, we special case
1211 	 * that parsing.  The validate_change() call ensures that cpusets
1212 	 * with tasks have memory.
1213 	 */
1214 	if (!*buf) {
1215 		nodes_clear(trialcs->mems_allowed);
1216 	} else {
1217 		retval = nodelist_parse(buf, trialcs->mems_allowed);
1218 		if (retval < 0)
1219 			goto done;
1220 
1221 		if (!nodes_subset(trialcs->mems_allowed,
1222 				  top_cpuset.mems_allowed)) {
1223 			retval = -EINVAL;
1224 			goto done;
1225 		}
1226 	}
1227 
1228 	if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
1229 		retval = 0;		/* Too easy - nothing to do */
1230 		goto done;
1231 	}
1232 	retval = validate_change(cs, trialcs);
1233 	if (retval < 0)
1234 		goto done;
1235 
1236 	spin_lock_irq(&callback_lock);
1237 	cs->mems_allowed = trialcs->mems_allowed;
1238 	spin_unlock_irq(&callback_lock);
1239 
1240 	/* use trialcs->mems_allowed as a temp variable */
1241 	update_nodemasks_hier(cs, &trialcs->mems_allowed);
1242 done:
1243 	return retval;
1244 }
1245 
1246 int current_cpuset_is_being_rebound(void)
1247 {
1248 	int ret;
1249 
1250 	rcu_read_lock();
1251 	ret = task_cs(current) == cpuset_being_rebound;
1252 	rcu_read_unlock();
1253 
1254 	return ret;
1255 }
1256 
1257 static int update_relax_domain_level(struct cpuset *cs, s64 val)
1258 {
1259 #ifdef CONFIG_SMP
1260 	if (val < -1 || val >= sched_domain_level_max)
1261 		return -EINVAL;
1262 #endif
1263 
1264 	if (val != cs->relax_domain_level) {
1265 		cs->relax_domain_level = val;
1266 		if (!cpumask_empty(cs->cpus_allowed) &&
1267 		    is_sched_load_balance(cs))
1268 			rebuild_sched_domains_locked();
1269 	}
1270 
1271 	return 0;
1272 }
1273 
1274 /**
1275  * update_tasks_flags - update the spread flags of tasks in the cpuset.
1276  * @cs: the cpuset in which each task's spread flags needs to be changed
1277  *
1278  * Iterate through each task of @cs updating its spread flags.  As this
1279  * function is called with cpuset_mutex held, cpuset membership stays
1280  * stable.
1281  */
1282 static void update_tasks_flags(struct cpuset *cs)
1283 {
1284 	struct css_task_iter it;
1285 	struct task_struct *task;
1286 
1287 	css_task_iter_start(&cs->css, &it);
1288 	while ((task = css_task_iter_next(&it)))
1289 		cpuset_update_task_spread_flag(cs, task);
1290 	css_task_iter_end(&it);
1291 }
1292 
1293 /*
1294  * update_flag - read a 0 or a 1 in a file and update associated flag
1295  * bit:		the bit to update (see cpuset_flagbits_t)
1296  * cs:		the cpuset to update
1297  * turning_on: 	whether the flag is being set or cleared
1298  *
1299  * Call with cpuset_mutex held.
1300  */
1301 
1302 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1303 		       int turning_on)
1304 {
1305 	struct cpuset *trialcs;
1306 	int balance_flag_changed;
1307 	int spread_flag_changed;
1308 	int err;
1309 
1310 	trialcs = alloc_trial_cpuset(cs);
1311 	if (!trialcs)
1312 		return -ENOMEM;
1313 
1314 	if (turning_on)
1315 		set_bit(bit, &trialcs->flags);
1316 	else
1317 		clear_bit(bit, &trialcs->flags);
1318 
1319 	err = validate_change(cs, trialcs);
1320 	if (err < 0)
1321 		goto out;
1322 
1323 	balance_flag_changed = (is_sched_load_balance(cs) !=
1324 				is_sched_load_balance(trialcs));
1325 
1326 	spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1327 			|| (is_spread_page(cs) != is_spread_page(trialcs)));
1328 
1329 	spin_lock_irq(&callback_lock);
1330 	cs->flags = trialcs->flags;
1331 	spin_unlock_irq(&callback_lock);
1332 
1333 	if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1334 		rebuild_sched_domains_locked();
1335 
1336 	if (spread_flag_changed)
1337 		update_tasks_flags(cs);
1338 out:
1339 	free_trial_cpuset(trialcs);
1340 	return err;
1341 }
1342 
1343 /*
1344  * Frequency meter - How fast is some event occurring?
1345  *
1346  * These routines manage a digitally filtered, constant time based,
1347  * event frequency meter.  There are four routines:
1348  *   fmeter_init() - initialize a frequency meter.
1349  *   fmeter_markevent() - called each time the event happens.
1350  *   fmeter_getrate() - returns the recent rate of such events.
1351  *   fmeter_update() - internal routine used to update fmeter.
1352  *
1353  * A common data structure is passed to each of these routines,
1354  * which is used to keep track of the state required to manage the
1355  * frequency meter and its digital filter.
1356  *
1357  * The filter works on the number of events marked per unit time.
1358  * The filter is single-pole low-pass recursive (IIR).  The time unit
1359  * is 1 second.  Arithmetic is done using 32-bit integers scaled to
1360  * simulate 3 decimal digits of precision (multiplied by 1000).
1361  *
1362  * With an FM_COEF of 933, and a time base of 1 second, the filter
1363  * has a half-life of 10 seconds, meaning that if the events quit
1364  * happening, then the rate returned from the fmeter_getrate()
1365  * will be cut in half each 10 seconds, until it converges to zero.
1366  *
1367  * It is not worth doing a real infinitely recursive filter.  If more
1368  * than FM_MAXTICKS ticks have elapsed since the last filter event,
1369  * just compute FM_MAXTICKS ticks worth, by which point the level
1370  * will be stable.
1371  *
1372  * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1373  * arithmetic overflow in the fmeter_update() routine.
1374  *
1375  * Given the simple 32 bit integer arithmetic used, this meter works
1376  * best for reporting rates between one per millisecond (msec) and
1377  * one per 32 (approx) seconds.  At constant rates faster than one
1378  * per msec it maxes out at values just under 1,000,000.  At constant
1379  * rates between one per msec, and one per second it will stabilize
1380  * to a value N*1000, where N is the rate of events per second.
1381  * At constant rates between one per second and one per 32 seconds,
1382  * it will be choppy, moving up on the seconds that have an event,
1383  * and then decaying until the next event.  At rates slower than
1384  * about one in 32 seconds, it decays all the way back to zero between
1385  * each event.
1386  */
1387 
1388 #define FM_COEF 933		/* coefficient for half-life of 10 secs */
1389 #define FM_MAXTICKS ((u32)99)   /* useless computing more ticks than this */
1390 #define FM_MAXCNT 1000000	/* limit cnt to avoid overflow */
1391 #define FM_SCALE 1000		/* faux fixed point scale */
1392 
1393 /* Initialize a frequency meter */
1394 static void fmeter_init(struct fmeter *fmp)
1395 {
1396 	fmp->cnt = 0;
1397 	fmp->val = 0;
1398 	fmp->time = 0;
1399 	spin_lock_init(&fmp->lock);
1400 }
1401 
1402 /* Internal meter update - process cnt events and update value */
1403 static void fmeter_update(struct fmeter *fmp)
1404 {
1405 	time64_t now;
1406 	u32 ticks;
1407 
1408 	now = ktime_get_seconds();
1409 	ticks = now - fmp->time;
1410 
1411 	if (ticks == 0)
1412 		return;
1413 
1414 	ticks = min(FM_MAXTICKS, ticks);
1415 	while (ticks-- > 0)
1416 		fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1417 	fmp->time = now;
1418 
1419 	fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1420 	fmp->cnt = 0;
1421 }
1422 
1423 /* Process any previous ticks, then bump cnt by one (times scale). */
1424 static void fmeter_markevent(struct fmeter *fmp)
1425 {
1426 	spin_lock(&fmp->lock);
1427 	fmeter_update(fmp);
1428 	fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1429 	spin_unlock(&fmp->lock);
1430 }
1431 
1432 /* Process any previous ticks, then return current value. */
1433 static int fmeter_getrate(struct fmeter *fmp)
1434 {
1435 	int val;
1436 
1437 	spin_lock(&fmp->lock);
1438 	fmeter_update(fmp);
1439 	val = fmp->val;
1440 	spin_unlock(&fmp->lock);
1441 	return val;
1442 }
1443 
1444 static struct cpuset *cpuset_attach_old_cs;
1445 
1446 /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
1447 static int cpuset_can_attach(struct cgroup_taskset *tset)
1448 {
1449 	struct cgroup_subsys_state *css;
1450 	struct cpuset *cs;
1451 	struct task_struct *task;
1452 	int ret;
1453 
1454 	/* used later by cpuset_attach() */
1455 	cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css));
1456 	cs = css_cs(css);
1457 
1458 	mutex_lock(&cpuset_mutex);
1459 
1460 	/* allow moving tasks into an empty cpuset if on default hierarchy */
1461 	ret = -ENOSPC;
1462 	if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
1463 	    (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
1464 		goto out_unlock;
1465 
1466 	cgroup_taskset_for_each(task, css, tset) {
1467 		ret = task_can_attach(task, cs->cpus_allowed);
1468 		if (ret)
1469 			goto out_unlock;
1470 		ret = security_task_setscheduler(task);
1471 		if (ret)
1472 			goto out_unlock;
1473 	}
1474 
1475 	/*
1476 	 * Mark attach is in progress.  This makes validate_change() fail
1477 	 * changes which zero cpus/mems_allowed.
1478 	 */
1479 	cs->attach_in_progress++;
1480 	ret = 0;
1481 out_unlock:
1482 	mutex_unlock(&cpuset_mutex);
1483 	return ret;
1484 }
1485 
1486 static void cpuset_cancel_attach(struct cgroup_taskset *tset)
1487 {
1488 	struct cgroup_subsys_state *css;
1489 	struct cpuset *cs;
1490 
1491 	cgroup_taskset_first(tset, &css);
1492 	cs = css_cs(css);
1493 
1494 	mutex_lock(&cpuset_mutex);
1495 	css_cs(css)->attach_in_progress--;
1496 	mutex_unlock(&cpuset_mutex);
1497 }
1498 
1499 /*
1500  * Protected by cpuset_mutex.  cpus_attach is used only by cpuset_attach()
1501  * but we can't allocate it dynamically there.  Define it global and
1502  * allocate from cpuset_init().
1503  */
1504 static cpumask_var_t cpus_attach;
1505 
1506 static void cpuset_attach(struct cgroup_taskset *tset)
1507 {
1508 	/* static buf protected by cpuset_mutex */
1509 	static nodemask_t cpuset_attach_nodemask_to;
1510 	struct task_struct *task;
1511 	struct task_struct *leader;
1512 	struct cgroup_subsys_state *css;
1513 	struct cpuset *cs;
1514 	struct cpuset *oldcs = cpuset_attach_old_cs;
1515 
1516 	cgroup_taskset_first(tset, &css);
1517 	cs = css_cs(css);
1518 
1519 	mutex_lock(&cpuset_mutex);
1520 
1521 	/* prepare for attach */
1522 	if (cs == &top_cpuset)
1523 		cpumask_copy(cpus_attach, cpu_possible_mask);
1524 	else
1525 		guarantee_online_cpus(cs, cpus_attach);
1526 
1527 	guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
1528 
1529 	cgroup_taskset_for_each(task, css, tset) {
1530 		/*
1531 		 * can_attach beforehand should guarantee that this doesn't
1532 		 * fail.  TODO: have a better way to handle failure here
1533 		 */
1534 		WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
1535 
1536 		cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
1537 		cpuset_update_task_spread_flag(cs, task);
1538 	}
1539 
1540 	/*
1541 	 * Change mm for all threadgroup leaders. This is expensive and may
1542 	 * sleep and should be moved outside migration path proper.
1543 	 */
1544 	cpuset_attach_nodemask_to = cs->effective_mems;
1545 	cgroup_taskset_for_each_leader(leader, css, tset) {
1546 		struct mm_struct *mm = get_task_mm(leader);
1547 
1548 		if (mm) {
1549 			mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
1550 
1551 			/*
1552 			 * old_mems_allowed is the same with mems_allowed
1553 			 * here, except if this task is being moved
1554 			 * automatically due to hotplug.  In that case
1555 			 * @mems_allowed has been updated and is empty, so
1556 			 * @old_mems_allowed is the right nodesets that we
1557 			 * migrate mm from.
1558 			 */
1559 			if (is_memory_migrate(cs))
1560 				cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
1561 						  &cpuset_attach_nodemask_to);
1562 			else
1563 				mmput(mm);
1564 		}
1565 	}
1566 
1567 	cs->old_mems_allowed = cpuset_attach_nodemask_to;
1568 
1569 	cs->attach_in_progress--;
1570 	if (!cs->attach_in_progress)
1571 		wake_up(&cpuset_attach_wq);
1572 
1573 	mutex_unlock(&cpuset_mutex);
1574 }
1575 
1576 /* The various types of files and directories in a cpuset file system */
1577 
1578 typedef enum {
1579 	FILE_MEMORY_MIGRATE,
1580 	FILE_CPULIST,
1581 	FILE_MEMLIST,
1582 	FILE_EFFECTIVE_CPULIST,
1583 	FILE_EFFECTIVE_MEMLIST,
1584 	FILE_CPU_EXCLUSIVE,
1585 	FILE_MEM_EXCLUSIVE,
1586 	FILE_MEM_HARDWALL,
1587 	FILE_SCHED_LOAD_BALANCE,
1588 	FILE_SCHED_RELAX_DOMAIN_LEVEL,
1589 	FILE_MEMORY_PRESSURE_ENABLED,
1590 	FILE_MEMORY_PRESSURE,
1591 	FILE_SPREAD_PAGE,
1592 	FILE_SPREAD_SLAB,
1593 } cpuset_filetype_t;
1594 
1595 static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
1596 			    u64 val)
1597 {
1598 	struct cpuset *cs = css_cs(css);
1599 	cpuset_filetype_t type = cft->private;
1600 	int retval = 0;
1601 
1602 	mutex_lock(&cpuset_mutex);
1603 	if (!is_cpuset_online(cs)) {
1604 		retval = -ENODEV;
1605 		goto out_unlock;
1606 	}
1607 
1608 	switch (type) {
1609 	case FILE_CPU_EXCLUSIVE:
1610 		retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
1611 		break;
1612 	case FILE_MEM_EXCLUSIVE:
1613 		retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
1614 		break;
1615 	case FILE_MEM_HARDWALL:
1616 		retval = update_flag(CS_MEM_HARDWALL, cs, val);
1617 		break;
1618 	case FILE_SCHED_LOAD_BALANCE:
1619 		retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1620 		break;
1621 	case FILE_MEMORY_MIGRATE:
1622 		retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
1623 		break;
1624 	case FILE_MEMORY_PRESSURE_ENABLED:
1625 		cpuset_memory_pressure_enabled = !!val;
1626 		break;
1627 	case FILE_SPREAD_PAGE:
1628 		retval = update_flag(CS_SPREAD_PAGE, cs, val);
1629 		break;
1630 	case FILE_SPREAD_SLAB:
1631 		retval = update_flag(CS_SPREAD_SLAB, cs, val);
1632 		break;
1633 	default:
1634 		retval = -EINVAL;
1635 		break;
1636 	}
1637 out_unlock:
1638 	mutex_unlock(&cpuset_mutex);
1639 	return retval;
1640 }
1641 
1642 static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
1643 			    s64 val)
1644 {
1645 	struct cpuset *cs = css_cs(css);
1646 	cpuset_filetype_t type = cft->private;
1647 	int retval = -ENODEV;
1648 
1649 	mutex_lock(&cpuset_mutex);
1650 	if (!is_cpuset_online(cs))
1651 		goto out_unlock;
1652 
1653 	switch (type) {
1654 	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1655 		retval = update_relax_domain_level(cs, val);
1656 		break;
1657 	default:
1658 		retval = -EINVAL;
1659 		break;
1660 	}
1661 out_unlock:
1662 	mutex_unlock(&cpuset_mutex);
1663 	return retval;
1664 }
1665 
1666 /*
1667  * Common handling for a write to a "cpus" or "mems" file.
1668  */
1669 static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
1670 				    char *buf, size_t nbytes, loff_t off)
1671 {
1672 	struct cpuset *cs = css_cs(of_css(of));
1673 	struct cpuset *trialcs;
1674 	int retval = -ENODEV;
1675 
1676 	buf = strstrip(buf);
1677 
1678 	/*
1679 	 * CPU or memory hotunplug may leave @cs w/o any execution
1680 	 * resources, in which case the hotplug code asynchronously updates
1681 	 * configuration and transfers all tasks to the nearest ancestor
1682 	 * which can execute.
1683 	 *
1684 	 * As writes to "cpus" or "mems" may restore @cs's execution
1685 	 * resources, wait for the previously scheduled operations before
1686 	 * proceeding, so that we don't end up keep removing tasks added
1687 	 * after execution capability is restored.
1688 	 *
1689 	 * cpuset_hotplug_work calls back into cgroup core via
1690 	 * cgroup_transfer_tasks() and waiting for it from a cgroupfs
1691 	 * operation like this one can lead to a deadlock through kernfs
1692 	 * active_ref protection.  Let's break the protection.  Losing the
1693 	 * protection is okay as we check whether @cs is online after
1694 	 * grabbing cpuset_mutex anyway.  This only happens on the legacy
1695 	 * hierarchies.
1696 	 */
1697 	css_get(&cs->css);
1698 	kernfs_break_active_protection(of->kn);
1699 	flush_work(&cpuset_hotplug_work);
1700 
1701 	mutex_lock(&cpuset_mutex);
1702 	if (!is_cpuset_online(cs))
1703 		goto out_unlock;
1704 
1705 	trialcs = alloc_trial_cpuset(cs);
1706 	if (!trialcs) {
1707 		retval = -ENOMEM;
1708 		goto out_unlock;
1709 	}
1710 
1711 	switch (of_cft(of)->private) {
1712 	case FILE_CPULIST:
1713 		retval = update_cpumask(cs, trialcs, buf);
1714 		break;
1715 	case FILE_MEMLIST:
1716 		retval = update_nodemask(cs, trialcs, buf);
1717 		break;
1718 	default:
1719 		retval = -EINVAL;
1720 		break;
1721 	}
1722 
1723 	free_trial_cpuset(trialcs);
1724 out_unlock:
1725 	mutex_unlock(&cpuset_mutex);
1726 	kernfs_unbreak_active_protection(of->kn);
1727 	css_put(&cs->css);
1728 	flush_workqueue(cpuset_migrate_mm_wq);
1729 	return retval ?: nbytes;
1730 }
1731 
1732 /*
1733  * These ascii lists should be read in a single call, by using a user
1734  * buffer large enough to hold the entire map.  If read in smaller
1735  * chunks, there is no guarantee of atomicity.  Since the display format
1736  * used, list of ranges of sequential numbers, is variable length,
1737  * and since these maps can change value dynamically, one could read
1738  * gibberish by doing partial reads while a list was changing.
1739  */
1740 static int cpuset_common_seq_show(struct seq_file *sf, void *v)
1741 {
1742 	struct cpuset *cs = css_cs(seq_css(sf));
1743 	cpuset_filetype_t type = seq_cft(sf)->private;
1744 	int ret = 0;
1745 
1746 	spin_lock_irq(&callback_lock);
1747 
1748 	switch (type) {
1749 	case FILE_CPULIST:
1750 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed));
1751 		break;
1752 	case FILE_MEMLIST:
1753 		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
1754 		break;
1755 	case FILE_EFFECTIVE_CPULIST:
1756 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
1757 		break;
1758 	case FILE_EFFECTIVE_MEMLIST:
1759 		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
1760 		break;
1761 	default:
1762 		ret = -EINVAL;
1763 	}
1764 
1765 	spin_unlock_irq(&callback_lock);
1766 	return ret;
1767 }
1768 
1769 static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
1770 {
1771 	struct cpuset *cs = css_cs(css);
1772 	cpuset_filetype_t type = cft->private;
1773 	switch (type) {
1774 	case FILE_CPU_EXCLUSIVE:
1775 		return is_cpu_exclusive(cs);
1776 	case FILE_MEM_EXCLUSIVE:
1777 		return is_mem_exclusive(cs);
1778 	case FILE_MEM_HARDWALL:
1779 		return is_mem_hardwall(cs);
1780 	case FILE_SCHED_LOAD_BALANCE:
1781 		return is_sched_load_balance(cs);
1782 	case FILE_MEMORY_MIGRATE:
1783 		return is_memory_migrate(cs);
1784 	case FILE_MEMORY_PRESSURE_ENABLED:
1785 		return cpuset_memory_pressure_enabled;
1786 	case FILE_MEMORY_PRESSURE:
1787 		return fmeter_getrate(&cs->fmeter);
1788 	case FILE_SPREAD_PAGE:
1789 		return is_spread_page(cs);
1790 	case FILE_SPREAD_SLAB:
1791 		return is_spread_slab(cs);
1792 	default:
1793 		BUG();
1794 	}
1795 
1796 	/* Unreachable but makes gcc happy */
1797 	return 0;
1798 }
1799 
1800 static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
1801 {
1802 	struct cpuset *cs = css_cs(css);
1803 	cpuset_filetype_t type = cft->private;
1804 	switch (type) {
1805 	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1806 		return cs->relax_domain_level;
1807 	default:
1808 		BUG();
1809 	}
1810 
1811 	/* Unrechable but makes gcc happy */
1812 	return 0;
1813 }
1814 
1815 
1816 /*
1817  * for the common functions, 'private' gives the type of file
1818  */
1819 
1820 static struct cftype files[] = {
1821 	{
1822 		.name = "cpus",
1823 		.seq_show = cpuset_common_seq_show,
1824 		.write = cpuset_write_resmask,
1825 		.max_write_len = (100U + 6 * NR_CPUS),
1826 		.private = FILE_CPULIST,
1827 	},
1828 
1829 	{
1830 		.name = "mems",
1831 		.seq_show = cpuset_common_seq_show,
1832 		.write = cpuset_write_resmask,
1833 		.max_write_len = (100U + 6 * MAX_NUMNODES),
1834 		.private = FILE_MEMLIST,
1835 	},
1836 
1837 	{
1838 		.name = "effective_cpus",
1839 		.seq_show = cpuset_common_seq_show,
1840 		.private = FILE_EFFECTIVE_CPULIST,
1841 	},
1842 
1843 	{
1844 		.name = "effective_mems",
1845 		.seq_show = cpuset_common_seq_show,
1846 		.private = FILE_EFFECTIVE_MEMLIST,
1847 	},
1848 
1849 	{
1850 		.name = "cpu_exclusive",
1851 		.read_u64 = cpuset_read_u64,
1852 		.write_u64 = cpuset_write_u64,
1853 		.private = FILE_CPU_EXCLUSIVE,
1854 	},
1855 
1856 	{
1857 		.name = "mem_exclusive",
1858 		.read_u64 = cpuset_read_u64,
1859 		.write_u64 = cpuset_write_u64,
1860 		.private = FILE_MEM_EXCLUSIVE,
1861 	},
1862 
1863 	{
1864 		.name = "mem_hardwall",
1865 		.read_u64 = cpuset_read_u64,
1866 		.write_u64 = cpuset_write_u64,
1867 		.private = FILE_MEM_HARDWALL,
1868 	},
1869 
1870 	{
1871 		.name = "sched_load_balance",
1872 		.read_u64 = cpuset_read_u64,
1873 		.write_u64 = cpuset_write_u64,
1874 		.private = FILE_SCHED_LOAD_BALANCE,
1875 	},
1876 
1877 	{
1878 		.name = "sched_relax_domain_level",
1879 		.read_s64 = cpuset_read_s64,
1880 		.write_s64 = cpuset_write_s64,
1881 		.private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
1882 	},
1883 
1884 	{
1885 		.name = "memory_migrate",
1886 		.read_u64 = cpuset_read_u64,
1887 		.write_u64 = cpuset_write_u64,
1888 		.private = FILE_MEMORY_MIGRATE,
1889 	},
1890 
1891 	{
1892 		.name = "memory_pressure",
1893 		.read_u64 = cpuset_read_u64,
1894 	},
1895 
1896 	{
1897 		.name = "memory_spread_page",
1898 		.read_u64 = cpuset_read_u64,
1899 		.write_u64 = cpuset_write_u64,
1900 		.private = FILE_SPREAD_PAGE,
1901 	},
1902 
1903 	{
1904 		.name = "memory_spread_slab",
1905 		.read_u64 = cpuset_read_u64,
1906 		.write_u64 = cpuset_write_u64,
1907 		.private = FILE_SPREAD_SLAB,
1908 	},
1909 
1910 	{
1911 		.name = "memory_pressure_enabled",
1912 		.flags = CFTYPE_ONLY_ON_ROOT,
1913 		.read_u64 = cpuset_read_u64,
1914 		.write_u64 = cpuset_write_u64,
1915 		.private = FILE_MEMORY_PRESSURE_ENABLED,
1916 	},
1917 
1918 	{ }	/* terminate */
1919 };
1920 
1921 /*
1922  *	cpuset_css_alloc - allocate a cpuset css
1923  *	cgrp:	control group that the new cpuset will be part of
1924  */
1925 
1926 static struct cgroup_subsys_state *
1927 cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
1928 {
1929 	struct cpuset *cs;
1930 
1931 	if (!parent_css)
1932 		return &top_cpuset.css;
1933 
1934 	cs = kzalloc(sizeof(*cs), GFP_KERNEL);
1935 	if (!cs)
1936 		return ERR_PTR(-ENOMEM);
1937 	if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL))
1938 		goto free_cs;
1939 	if (!alloc_cpumask_var(&cs->effective_cpus, GFP_KERNEL))
1940 		goto free_cpus;
1941 
1942 	set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1943 	cpumask_clear(cs->cpus_allowed);
1944 	nodes_clear(cs->mems_allowed);
1945 	cpumask_clear(cs->effective_cpus);
1946 	nodes_clear(cs->effective_mems);
1947 	fmeter_init(&cs->fmeter);
1948 	cs->relax_domain_level = -1;
1949 
1950 	return &cs->css;
1951 
1952 free_cpus:
1953 	free_cpumask_var(cs->cpus_allowed);
1954 free_cs:
1955 	kfree(cs);
1956 	return ERR_PTR(-ENOMEM);
1957 }
1958 
1959 static int cpuset_css_online(struct cgroup_subsys_state *css)
1960 {
1961 	struct cpuset *cs = css_cs(css);
1962 	struct cpuset *parent = parent_cs(cs);
1963 	struct cpuset *tmp_cs;
1964 	struct cgroup_subsys_state *pos_css;
1965 
1966 	if (!parent)
1967 		return 0;
1968 
1969 	mutex_lock(&cpuset_mutex);
1970 
1971 	set_bit(CS_ONLINE, &cs->flags);
1972 	if (is_spread_page(parent))
1973 		set_bit(CS_SPREAD_PAGE, &cs->flags);
1974 	if (is_spread_slab(parent))
1975 		set_bit(CS_SPREAD_SLAB, &cs->flags);
1976 
1977 	cpuset_inc();
1978 
1979 	spin_lock_irq(&callback_lock);
1980 	if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) {
1981 		cpumask_copy(cs->effective_cpus, parent->effective_cpus);
1982 		cs->effective_mems = parent->effective_mems;
1983 	}
1984 	spin_unlock_irq(&callback_lock);
1985 
1986 	if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
1987 		goto out_unlock;
1988 
1989 	/*
1990 	 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
1991 	 * set.  This flag handling is implemented in cgroup core for
1992 	 * histrical reasons - the flag may be specified during mount.
1993 	 *
1994 	 * Currently, if any sibling cpusets have exclusive cpus or mem, we
1995 	 * refuse to clone the configuration - thereby refusing the task to
1996 	 * be entered, and as a result refusing the sys_unshare() or
1997 	 * clone() which initiated it.  If this becomes a problem for some
1998 	 * users who wish to allow that scenario, then this could be
1999 	 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
2000 	 * (and likewise for mems) to the new cgroup.
2001 	 */
2002 	rcu_read_lock();
2003 	cpuset_for_each_child(tmp_cs, pos_css, parent) {
2004 		if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
2005 			rcu_read_unlock();
2006 			goto out_unlock;
2007 		}
2008 	}
2009 	rcu_read_unlock();
2010 
2011 	spin_lock_irq(&callback_lock);
2012 	cs->mems_allowed = parent->mems_allowed;
2013 	cs->effective_mems = parent->mems_allowed;
2014 	cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
2015 	cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
2016 	spin_unlock_irq(&callback_lock);
2017 out_unlock:
2018 	mutex_unlock(&cpuset_mutex);
2019 	return 0;
2020 }
2021 
2022 /*
2023  * If the cpuset being removed has its flag 'sched_load_balance'
2024  * enabled, then simulate turning sched_load_balance off, which
2025  * will call rebuild_sched_domains_locked().
2026  */
2027 
2028 static void cpuset_css_offline(struct cgroup_subsys_state *css)
2029 {
2030 	struct cpuset *cs = css_cs(css);
2031 
2032 	mutex_lock(&cpuset_mutex);
2033 
2034 	if (is_sched_load_balance(cs))
2035 		update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
2036 
2037 	cpuset_dec();
2038 	clear_bit(CS_ONLINE, &cs->flags);
2039 
2040 	mutex_unlock(&cpuset_mutex);
2041 }
2042 
2043 static void cpuset_css_free(struct cgroup_subsys_state *css)
2044 {
2045 	struct cpuset *cs = css_cs(css);
2046 
2047 	free_cpumask_var(cs->effective_cpus);
2048 	free_cpumask_var(cs->cpus_allowed);
2049 	kfree(cs);
2050 }
2051 
2052 static void cpuset_bind(struct cgroup_subsys_state *root_css)
2053 {
2054 	mutex_lock(&cpuset_mutex);
2055 	spin_lock_irq(&callback_lock);
2056 
2057 	if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) {
2058 		cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
2059 		top_cpuset.mems_allowed = node_possible_map;
2060 	} else {
2061 		cpumask_copy(top_cpuset.cpus_allowed,
2062 			     top_cpuset.effective_cpus);
2063 		top_cpuset.mems_allowed = top_cpuset.effective_mems;
2064 	}
2065 
2066 	spin_unlock_irq(&callback_lock);
2067 	mutex_unlock(&cpuset_mutex);
2068 }
2069 
2070 /*
2071  * Make sure the new task conform to the current state of its parent,
2072  * which could have been changed by cpuset just after it inherits the
2073  * state from the parent and before it sits on the cgroup's task list.
2074  */
2075 static void cpuset_fork(struct task_struct *task)
2076 {
2077 	if (task_css_is_root(task, cpuset_cgrp_id))
2078 		return;
2079 
2080 	set_cpus_allowed_ptr(task, &current->cpus_allowed);
2081 	task->mems_allowed = current->mems_allowed;
2082 }
2083 
2084 struct cgroup_subsys cpuset_cgrp_subsys = {
2085 	.css_alloc	= cpuset_css_alloc,
2086 	.css_online	= cpuset_css_online,
2087 	.css_offline	= cpuset_css_offline,
2088 	.css_free	= cpuset_css_free,
2089 	.can_attach	= cpuset_can_attach,
2090 	.cancel_attach	= cpuset_cancel_attach,
2091 	.attach		= cpuset_attach,
2092 	.post_attach	= cpuset_post_attach,
2093 	.bind		= cpuset_bind,
2094 	.fork		= cpuset_fork,
2095 	.legacy_cftypes	= files,
2096 	.early_init	= true,
2097 };
2098 
2099 /**
2100  * cpuset_init - initialize cpusets at system boot
2101  *
2102  * Description: Initialize top_cpuset and the cpuset internal file system,
2103  **/
2104 
2105 int __init cpuset_init(void)
2106 {
2107 	int err = 0;
2108 
2109 	BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL));
2110 	BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL));
2111 
2112 	cpumask_setall(top_cpuset.cpus_allowed);
2113 	nodes_setall(top_cpuset.mems_allowed);
2114 	cpumask_setall(top_cpuset.effective_cpus);
2115 	nodes_setall(top_cpuset.effective_mems);
2116 
2117 	fmeter_init(&top_cpuset.fmeter);
2118 	set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
2119 	top_cpuset.relax_domain_level = -1;
2120 
2121 	err = register_filesystem(&cpuset_fs_type);
2122 	if (err < 0)
2123 		return err;
2124 
2125 	BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL));
2126 
2127 	return 0;
2128 }
2129 
2130 /*
2131  * If CPU and/or memory hotplug handlers, below, unplug any CPUs
2132  * or memory nodes, we need to walk over the cpuset hierarchy,
2133  * removing that CPU or node from all cpusets.  If this removes the
2134  * last CPU or node from a cpuset, then move the tasks in the empty
2135  * cpuset to its next-highest non-empty parent.
2136  */
2137 static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
2138 {
2139 	struct cpuset *parent;
2140 
2141 	/*
2142 	 * Find its next-highest non-empty parent, (top cpuset
2143 	 * has online cpus, so can't be empty).
2144 	 */
2145 	parent = parent_cs(cs);
2146 	while (cpumask_empty(parent->cpus_allowed) ||
2147 			nodes_empty(parent->mems_allowed))
2148 		parent = parent_cs(parent);
2149 
2150 	if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
2151 		pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
2152 		pr_cont_cgroup_name(cs->css.cgroup);
2153 		pr_cont("\n");
2154 	}
2155 }
2156 
2157 static void
2158 hotplug_update_tasks_legacy(struct cpuset *cs,
2159 			    struct cpumask *new_cpus, nodemask_t *new_mems,
2160 			    bool cpus_updated, bool mems_updated)
2161 {
2162 	bool is_empty;
2163 
2164 	spin_lock_irq(&callback_lock);
2165 	cpumask_copy(cs->cpus_allowed, new_cpus);
2166 	cpumask_copy(cs->effective_cpus, new_cpus);
2167 	cs->mems_allowed = *new_mems;
2168 	cs->effective_mems = *new_mems;
2169 	spin_unlock_irq(&callback_lock);
2170 
2171 	/*
2172 	 * Don't call update_tasks_cpumask() if the cpuset becomes empty,
2173 	 * as the tasks will be migratecd to an ancestor.
2174 	 */
2175 	if (cpus_updated && !cpumask_empty(cs->cpus_allowed))
2176 		update_tasks_cpumask(cs);
2177 	if (mems_updated && !nodes_empty(cs->mems_allowed))
2178 		update_tasks_nodemask(cs);
2179 
2180 	is_empty = cpumask_empty(cs->cpus_allowed) ||
2181 		   nodes_empty(cs->mems_allowed);
2182 
2183 	mutex_unlock(&cpuset_mutex);
2184 
2185 	/*
2186 	 * Move tasks to the nearest ancestor with execution resources,
2187 	 * This is full cgroup operation which will also call back into
2188 	 * cpuset. Should be done outside any lock.
2189 	 */
2190 	if (is_empty)
2191 		remove_tasks_in_empty_cpuset(cs);
2192 
2193 	mutex_lock(&cpuset_mutex);
2194 }
2195 
2196 static void
2197 hotplug_update_tasks(struct cpuset *cs,
2198 		     struct cpumask *new_cpus, nodemask_t *new_mems,
2199 		     bool cpus_updated, bool mems_updated)
2200 {
2201 	if (cpumask_empty(new_cpus))
2202 		cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
2203 	if (nodes_empty(*new_mems))
2204 		*new_mems = parent_cs(cs)->effective_mems;
2205 
2206 	spin_lock_irq(&callback_lock);
2207 	cpumask_copy(cs->effective_cpus, new_cpus);
2208 	cs->effective_mems = *new_mems;
2209 	spin_unlock_irq(&callback_lock);
2210 
2211 	if (cpus_updated)
2212 		update_tasks_cpumask(cs);
2213 	if (mems_updated)
2214 		update_tasks_nodemask(cs);
2215 }
2216 
2217 /**
2218  * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
2219  * @cs: cpuset in interest
2220  *
2221  * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
2222  * offline, update @cs accordingly.  If @cs ends up with no CPU or memory,
2223  * all its tasks are moved to the nearest ancestor with both resources.
2224  */
2225 static void cpuset_hotplug_update_tasks(struct cpuset *cs)
2226 {
2227 	static cpumask_t new_cpus;
2228 	static nodemask_t new_mems;
2229 	bool cpus_updated;
2230 	bool mems_updated;
2231 retry:
2232 	wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
2233 
2234 	mutex_lock(&cpuset_mutex);
2235 
2236 	/*
2237 	 * We have raced with task attaching. We wait until attaching
2238 	 * is finished, so we won't attach a task to an empty cpuset.
2239 	 */
2240 	if (cs->attach_in_progress) {
2241 		mutex_unlock(&cpuset_mutex);
2242 		goto retry;
2243 	}
2244 
2245 	cpumask_and(&new_cpus, cs->cpus_allowed, parent_cs(cs)->effective_cpus);
2246 	nodes_and(new_mems, cs->mems_allowed, parent_cs(cs)->effective_mems);
2247 
2248 	cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
2249 	mems_updated = !nodes_equal(new_mems, cs->effective_mems);
2250 
2251 	if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys))
2252 		hotplug_update_tasks(cs, &new_cpus, &new_mems,
2253 				     cpus_updated, mems_updated);
2254 	else
2255 		hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems,
2256 					    cpus_updated, mems_updated);
2257 
2258 	mutex_unlock(&cpuset_mutex);
2259 }
2260 
2261 /**
2262  * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
2263  *
2264  * This function is called after either CPU or memory configuration has
2265  * changed and updates cpuset accordingly.  The top_cpuset is always
2266  * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
2267  * order to make cpusets transparent (of no affect) on systems that are
2268  * actively using CPU hotplug but making no active use of cpusets.
2269  *
2270  * Non-root cpusets are only affected by offlining.  If any CPUs or memory
2271  * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
2272  * all descendants.
2273  *
2274  * Note that CPU offlining during suspend is ignored.  We don't modify
2275  * cpusets across suspend/resume cycles at all.
2276  */
2277 static void cpuset_hotplug_workfn(struct work_struct *work)
2278 {
2279 	static cpumask_t new_cpus;
2280 	static nodemask_t new_mems;
2281 	bool cpus_updated, mems_updated;
2282 	bool on_dfl = cgroup_subsys_on_dfl(cpuset_cgrp_subsys);
2283 
2284 	mutex_lock(&cpuset_mutex);
2285 
2286 	/* fetch the available cpus/mems and find out which changed how */
2287 	cpumask_copy(&new_cpus, cpu_active_mask);
2288 	new_mems = node_states[N_MEMORY];
2289 
2290 	cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus);
2291 	mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
2292 
2293 	/* synchronize cpus_allowed to cpu_active_mask */
2294 	if (cpus_updated) {
2295 		spin_lock_irq(&callback_lock);
2296 		if (!on_dfl)
2297 			cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
2298 		cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
2299 		spin_unlock_irq(&callback_lock);
2300 		/* we don't mess with cpumasks of tasks in top_cpuset */
2301 	}
2302 
2303 	/* synchronize mems_allowed to N_MEMORY */
2304 	if (mems_updated) {
2305 		spin_lock_irq(&callback_lock);
2306 		if (!on_dfl)
2307 			top_cpuset.mems_allowed = new_mems;
2308 		top_cpuset.effective_mems = new_mems;
2309 		spin_unlock_irq(&callback_lock);
2310 		update_tasks_nodemask(&top_cpuset);
2311 	}
2312 
2313 	mutex_unlock(&cpuset_mutex);
2314 
2315 	/* if cpus or mems changed, we need to propagate to descendants */
2316 	if (cpus_updated || mems_updated) {
2317 		struct cpuset *cs;
2318 		struct cgroup_subsys_state *pos_css;
2319 
2320 		rcu_read_lock();
2321 		cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
2322 			if (cs == &top_cpuset || !css_tryget_online(&cs->css))
2323 				continue;
2324 			rcu_read_unlock();
2325 
2326 			cpuset_hotplug_update_tasks(cs);
2327 
2328 			rcu_read_lock();
2329 			css_put(&cs->css);
2330 		}
2331 		rcu_read_unlock();
2332 	}
2333 
2334 	/* rebuild sched domains if cpus_allowed has changed */
2335 	if (cpus_updated)
2336 		rebuild_sched_domains();
2337 }
2338 
2339 void cpuset_update_active_cpus(void)
2340 {
2341 	/*
2342 	 * We're inside cpu hotplug critical region which usually nests
2343 	 * inside cgroup synchronization.  Bounce actual hotplug processing
2344 	 * to a work item to avoid reverse locking order.
2345 	 *
2346 	 * We still need to do partition_sched_domains() synchronously;
2347 	 * otherwise, the scheduler will get confused and put tasks to the
2348 	 * dead CPU.  Fall back to the default single domain.
2349 	 * cpuset_hotplug_workfn() will rebuild it as necessary.
2350 	 */
2351 	partition_sched_domains(1, NULL, NULL);
2352 	schedule_work(&cpuset_hotplug_work);
2353 }
2354 
2355 /*
2356  * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
2357  * Call this routine anytime after node_states[N_MEMORY] changes.
2358  * See cpuset_update_active_cpus() for CPU hotplug handling.
2359  */
2360 static int cpuset_track_online_nodes(struct notifier_block *self,
2361 				unsigned long action, void *arg)
2362 {
2363 	schedule_work(&cpuset_hotplug_work);
2364 	return NOTIFY_OK;
2365 }
2366 
2367 static struct notifier_block cpuset_track_online_nodes_nb = {
2368 	.notifier_call = cpuset_track_online_nodes,
2369 	.priority = 10,		/* ??! */
2370 };
2371 
2372 /**
2373  * cpuset_init_smp - initialize cpus_allowed
2374  *
2375  * Description: Finish top cpuset after cpu, node maps are initialized
2376  */
2377 void __init cpuset_init_smp(void)
2378 {
2379 	cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
2380 	top_cpuset.mems_allowed = node_states[N_MEMORY];
2381 	top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
2382 
2383 	cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
2384 	top_cpuset.effective_mems = node_states[N_MEMORY];
2385 
2386 	register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
2387 
2388 	cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0);
2389 	BUG_ON(!cpuset_migrate_mm_wq);
2390 }
2391 
2392 /**
2393  * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2394  * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
2395  * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
2396  *
2397  * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
2398  * attached to the specified @tsk.  Guaranteed to return some non-empty
2399  * subset of cpu_online_mask, even if this means going outside the
2400  * tasks cpuset.
2401  **/
2402 
2403 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
2404 {
2405 	unsigned long flags;
2406 
2407 	spin_lock_irqsave(&callback_lock, flags);
2408 	rcu_read_lock();
2409 	guarantee_online_cpus(task_cs(tsk), pmask);
2410 	rcu_read_unlock();
2411 	spin_unlock_irqrestore(&callback_lock, flags);
2412 }
2413 
2414 void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
2415 {
2416 	rcu_read_lock();
2417 	do_set_cpus_allowed(tsk, task_cs(tsk)->effective_cpus);
2418 	rcu_read_unlock();
2419 
2420 	/*
2421 	 * We own tsk->cpus_allowed, nobody can change it under us.
2422 	 *
2423 	 * But we used cs && cs->cpus_allowed lockless and thus can
2424 	 * race with cgroup_attach_task() or update_cpumask() and get
2425 	 * the wrong tsk->cpus_allowed. However, both cases imply the
2426 	 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
2427 	 * which takes task_rq_lock().
2428 	 *
2429 	 * If we are called after it dropped the lock we must see all
2430 	 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
2431 	 * set any mask even if it is not right from task_cs() pov,
2432 	 * the pending set_cpus_allowed_ptr() will fix things.
2433 	 *
2434 	 * select_fallback_rq() will fix things ups and set cpu_possible_mask
2435 	 * if required.
2436 	 */
2437 }
2438 
2439 void __init cpuset_init_current_mems_allowed(void)
2440 {
2441 	nodes_setall(current->mems_allowed);
2442 }
2443 
2444 /**
2445  * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2446  * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2447  *
2448  * Description: Returns the nodemask_t mems_allowed of the cpuset
2449  * attached to the specified @tsk.  Guaranteed to return some non-empty
2450  * subset of node_states[N_MEMORY], even if this means going outside the
2451  * tasks cpuset.
2452  **/
2453 
2454 nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
2455 {
2456 	nodemask_t mask;
2457 	unsigned long flags;
2458 
2459 	spin_lock_irqsave(&callback_lock, flags);
2460 	rcu_read_lock();
2461 	guarantee_online_mems(task_cs(tsk), &mask);
2462 	rcu_read_unlock();
2463 	spin_unlock_irqrestore(&callback_lock, flags);
2464 
2465 	return mask;
2466 }
2467 
2468 /**
2469  * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2470  * @nodemask: the nodemask to be checked
2471  *
2472  * Are any of the nodes in the nodemask allowed in current->mems_allowed?
2473  */
2474 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
2475 {
2476 	return nodes_intersects(*nodemask, current->mems_allowed);
2477 }
2478 
2479 /*
2480  * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2481  * mem_hardwall ancestor to the specified cpuset.  Call holding
2482  * callback_lock.  If no ancestor is mem_exclusive or mem_hardwall
2483  * (an unusual configuration), then returns the root cpuset.
2484  */
2485 static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
2486 {
2487 	while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
2488 		cs = parent_cs(cs);
2489 	return cs;
2490 }
2491 
2492 /**
2493  * cpuset_node_allowed - Can we allocate on a memory node?
2494  * @node: is this an allowed node?
2495  * @gfp_mask: memory allocation flags
2496  *
2497  * If we're in interrupt, yes, we can always allocate.  If @node is set in
2498  * current's mems_allowed, yes.  If it's not a __GFP_HARDWALL request and this
2499  * node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
2500  * yes.  If current has access to memory reserves due to TIF_MEMDIE, yes.
2501  * Otherwise, no.
2502  *
2503  * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
2504  * and do not allow allocations outside the current tasks cpuset
2505  * unless the task has been OOM killed as is marked TIF_MEMDIE.
2506  * GFP_KERNEL allocations are not so marked, so can escape to the
2507  * nearest enclosing hardwalled ancestor cpuset.
2508  *
2509  * Scanning up parent cpusets requires callback_lock.  The
2510  * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2511  * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2512  * current tasks mems_allowed came up empty on the first pass over
2513  * the zonelist.  So only GFP_KERNEL allocations, if all nodes in the
2514  * cpuset are short of memory, might require taking the callback_lock.
2515  *
2516  * The first call here from mm/page_alloc:get_page_from_freelist()
2517  * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2518  * so no allocation on a node outside the cpuset is allowed (unless
2519  * in interrupt, of course).
2520  *
2521  * The second pass through get_page_from_freelist() doesn't even call
2522  * here for GFP_ATOMIC calls.  For those calls, the __alloc_pages()
2523  * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2524  * in alloc_flags.  That logic and the checks below have the combined
2525  * affect that:
2526  *	in_interrupt - any node ok (current task context irrelevant)
2527  *	GFP_ATOMIC   - any node ok
2528  *	TIF_MEMDIE   - any node ok
2529  *	GFP_KERNEL   - any node in enclosing hardwalled cpuset ok
2530  *	GFP_USER     - only nodes in current tasks mems allowed ok.
2531  */
2532 bool __cpuset_node_allowed(int node, gfp_t gfp_mask)
2533 {
2534 	struct cpuset *cs;		/* current cpuset ancestors */
2535 	int allowed;			/* is allocation in zone z allowed? */
2536 	unsigned long flags;
2537 
2538 	if (in_interrupt())
2539 		return true;
2540 	if (node_isset(node, current->mems_allowed))
2541 		return true;
2542 	/*
2543 	 * Allow tasks that have access to memory reserves because they have
2544 	 * been OOM killed to get memory anywhere.
2545 	 */
2546 	if (unlikely(test_thread_flag(TIF_MEMDIE)))
2547 		return true;
2548 	if (gfp_mask & __GFP_HARDWALL)	/* If hardwall request, stop here */
2549 		return false;
2550 
2551 	if (current->flags & PF_EXITING) /* Let dying task have memory */
2552 		return true;
2553 
2554 	/* Not hardwall and node outside mems_allowed: scan up cpusets */
2555 	spin_lock_irqsave(&callback_lock, flags);
2556 
2557 	rcu_read_lock();
2558 	cs = nearest_hardwall_ancestor(task_cs(current));
2559 	allowed = node_isset(node, cs->mems_allowed);
2560 	rcu_read_unlock();
2561 
2562 	spin_unlock_irqrestore(&callback_lock, flags);
2563 	return allowed;
2564 }
2565 
2566 /**
2567  * cpuset_mem_spread_node() - On which node to begin search for a file page
2568  * cpuset_slab_spread_node() - On which node to begin search for a slab page
2569  *
2570  * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2571  * tasks in a cpuset with is_spread_page or is_spread_slab set),
2572  * and if the memory allocation used cpuset_mem_spread_node()
2573  * to determine on which node to start looking, as it will for
2574  * certain page cache or slab cache pages such as used for file
2575  * system buffers and inode caches, then instead of starting on the
2576  * local node to look for a free page, rather spread the starting
2577  * node around the tasks mems_allowed nodes.
2578  *
2579  * We don't have to worry about the returned node being offline
2580  * because "it can't happen", and even if it did, it would be ok.
2581  *
2582  * The routines calling guarantee_online_mems() are careful to
2583  * only set nodes in task->mems_allowed that are online.  So it
2584  * should not be possible for the following code to return an
2585  * offline node.  But if it did, that would be ok, as this routine
2586  * is not returning the node where the allocation must be, only
2587  * the node where the search should start.  The zonelist passed to
2588  * __alloc_pages() will include all nodes.  If the slab allocator
2589  * is passed an offline node, it will fall back to the local node.
2590  * See kmem_cache_alloc_node().
2591  */
2592 
2593 static int cpuset_spread_node(int *rotor)
2594 {
2595 	return *rotor = next_node_in(*rotor, current->mems_allowed);
2596 }
2597 
2598 int cpuset_mem_spread_node(void)
2599 {
2600 	if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
2601 		current->cpuset_mem_spread_rotor =
2602 			node_random(&current->mems_allowed);
2603 
2604 	return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
2605 }
2606 
2607 int cpuset_slab_spread_node(void)
2608 {
2609 	if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
2610 		current->cpuset_slab_spread_rotor =
2611 			node_random(&current->mems_allowed);
2612 
2613 	return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
2614 }
2615 
2616 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2617 
2618 /**
2619  * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2620  * @tsk1: pointer to task_struct of some task.
2621  * @tsk2: pointer to task_struct of some other task.
2622  *
2623  * Description: Return true if @tsk1's mems_allowed intersects the
2624  * mems_allowed of @tsk2.  Used by the OOM killer to determine if
2625  * one of the task's memory usage might impact the memory available
2626  * to the other.
2627  **/
2628 
2629 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
2630 				   const struct task_struct *tsk2)
2631 {
2632 	return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
2633 }
2634 
2635 /**
2636  * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed
2637  *
2638  * Description: Prints current's name, cpuset name, and cached copy of its
2639  * mems_allowed to the kernel log.
2640  */
2641 void cpuset_print_current_mems_allowed(void)
2642 {
2643 	struct cgroup *cgrp;
2644 
2645 	rcu_read_lock();
2646 
2647 	cgrp = task_cs(current)->css.cgroup;
2648 	pr_info("%s cpuset=", current->comm);
2649 	pr_cont_cgroup_name(cgrp);
2650 	pr_cont(" mems_allowed=%*pbl\n",
2651 		nodemask_pr_args(&current->mems_allowed));
2652 
2653 	rcu_read_unlock();
2654 }
2655 
2656 /*
2657  * Collection of memory_pressure is suppressed unless
2658  * this flag is enabled by writing "1" to the special
2659  * cpuset file 'memory_pressure_enabled' in the root cpuset.
2660  */
2661 
2662 int cpuset_memory_pressure_enabled __read_mostly;
2663 
2664 /**
2665  * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2666  *
2667  * Keep a running average of the rate of synchronous (direct)
2668  * page reclaim efforts initiated by tasks in each cpuset.
2669  *
2670  * This represents the rate at which some task in the cpuset
2671  * ran low on memory on all nodes it was allowed to use, and
2672  * had to enter the kernels page reclaim code in an effort to
2673  * create more free memory by tossing clean pages or swapping
2674  * or writing dirty pages.
2675  *
2676  * Display to user space in the per-cpuset read-only file
2677  * "memory_pressure".  Value displayed is an integer
2678  * representing the recent rate of entry into the synchronous
2679  * (direct) page reclaim by any task attached to the cpuset.
2680  **/
2681 
2682 void __cpuset_memory_pressure_bump(void)
2683 {
2684 	rcu_read_lock();
2685 	fmeter_markevent(&task_cs(current)->fmeter);
2686 	rcu_read_unlock();
2687 }
2688 
2689 #ifdef CONFIG_PROC_PID_CPUSET
2690 /*
2691  * proc_cpuset_show()
2692  *  - Print tasks cpuset path into seq_file.
2693  *  - Used for /proc/<pid>/cpuset.
2694  *  - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2695  *    doesn't really matter if tsk->cpuset changes after we read it,
2696  *    and we take cpuset_mutex, keeping cpuset_attach() from changing it
2697  *    anyway.
2698  */
2699 int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
2700 		     struct pid *pid, struct task_struct *tsk)
2701 {
2702 	char *buf;
2703 	struct cgroup_subsys_state *css;
2704 	int retval;
2705 
2706 	retval = -ENOMEM;
2707 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
2708 	if (!buf)
2709 		goto out;
2710 
2711 	css = task_get_css(tsk, cpuset_cgrp_id);
2712 	retval = cgroup_path_ns(css->cgroup, buf, PATH_MAX,
2713 				current->nsproxy->cgroup_ns);
2714 	css_put(css);
2715 	if (retval >= PATH_MAX)
2716 		retval = -ENAMETOOLONG;
2717 	if (retval < 0)
2718 		goto out_free;
2719 	seq_puts(m, buf);
2720 	seq_putc(m, '\n');
2721 	retval = 0;
2722 out_free:
2723 	kfree(buf);
2724 out:
2725 	return retval;
2726 }
2727 #endif /* CONFIG_PROC_PID_CPUSET */
2728 
2729 /* Display task mems_allowed in /proc/<pid>/status file. */
2730 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
2731 {
2732 	seq_printf(m, "Mems_allowed:\t%*pb\n",
2733 		   nodemask_pr_args(&task->mems_allowed));
2734 	seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
2735 		   nodemask_pr_args(&task->mems_allowed));
2736 }
2737