1 /* 2 * kernel/cpuset.c 3 * 4 * Processor and Memory placement constraints for sets of tasks. 5 * 6 * Copyright (C) 2003 BULL SA. 7 * Copyright (C) 2004-2007 Silicon Graphics, Inc. 8 * Copyright (C) 2006 Google, Inc 9 * 10 * Portions derived from Patrick Mochel's sysfs code. 11 * sysfs is Copyright (c) 2001-3 Patrick Mochel 12 * 13 * 2003-10-10 Written by Simon Derr. 14 * 2003-10-22 Updates by Stephen Hemminger. 15 * 2004 May-July Rework by Paul Jackson. 16 * 2006 Rework by Paul Menage to use generic cgroups 17 * 2008 Rework of the scheduler domains and CPU hotplug handling 18 * by Max Krasnyansky 19 * 20 * This file is subject to the terms and conditions of the GNU General Public 21 * License. See the file COPYING in the main directory of the Linux 22 * distribution for more details. 23 */ 24 #include "cgroup-internal.h" 25 26 #include <linux/cpu.h> 27 #include <linux/cpumask.h> 28 #include <linux/cpuset.h> 29 #include <linux/init.h> 30 #include <linux/interrupt.h> 31 #include <linux/kernel.h> 32 #include <linux/mempolicy.h> 33 #include <linux/mm.h> 34 #include <linux/memory.h> 35 #include <linux/export.h> 36 #include <linux/rcupdate.h> 37 #include <linux/sched.h> 38 #include <linux/sched/deadline.h> 39 #include <linux/sched/mm.h> 40 #include <linux/sched/task.h> 41 #include <linux/security.h> 42 #include <linux/spinlock.h> 43 #include <linux/oom.h> 44 #include <linux/sched/isolation.h> 45 #include <linux/cgroup.h> 46 #include <linux/wait.h> 47 48 DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key); 49 DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key); 50 51 /* 52 * There could be abnormal cpuset configurations for cpu or memory 53 * node binding, add this key to provide a quick low-cost judgment 54 * of the situation. 55 */ 56 DEFINE_STATIC_KEY_FALSE(cpusets_insane_config_key); 57 58 /* See "Frequency meter" comments, below. */ 59 60 struct fmeter { 61 int cnt; /* unprocessed events count */ 62 int val; /* most recent output value */ 63 time64_t time; /* clock (secs) when val computed */ 64 spinlock_t lock; /* guards read or write of above */ 65 }; 66 67 /* 68 * Invalid partition error code 69 */ 70 enum prs_errcode { 71 PERR_NONE = 0, 72 PERR_INVCPUS, 73 PERR_INVPARENT, 74 PERR_NOTPART, 75 PERR_NOTEXCL, 76 PERR_NOCPUS, 77 PERR_HOTPLUG, 78 PERR_CPUSEMPTY, 79 }; 80 81 static const char * const perr_strings[] = { 82 [PERR_INVCPUS] = "Invalid cpu list in cpuset.cpus", 83 [PERR_INVPARENT] = "Parent is an invalid partition root", 84 [PERR_NOTPART] = "Parent is not a partition root", 85 [PERR_NOTEXCL] = "Cpu list in cpuset.cpus not exclusive", 86 [PERR_NOCPUS] = "Parent unable to distribute cpu downstream", 87 [PERR_HOTPLUG] = "No cpu available due to hotplug", 88 [PERR_CPUSEMPTY] = "cpuset.cpus is empty", 89 }; 90 91 struct cpuset { 92 struct cgroup_subsys_state css; 93 94 unsigned long flags; /* "unsigned long" so bitops work */ 95 96 /* 97 * On default hierarchy: 98 * 99 * The user-configured masks can only be changed by writing to 100 * cpuset.cpus and cpuset.mems, and won't be limited by the 101 * parent masks. 102 * 103 * The effective masks is the real masks that apply to the tasks 104 * in the cpuset. They may be changed if the configured masks are 105 * changed or hotplug happens. 106 * 107 * effective_mask == configured_mask & parent's effective_mask, 108 * and if it ends up empty, it will inherit the parent's mask. 109 * 110 * 111 * On legacy hierarchy: 112 * 113 * The user-configured masks are always the same with effective masks. 114 */ 115 116 /* user-configured CPUs and Memory Nodes allow to tasks */ 117 cpumask_var_t cpus_allowed; 118 nodemask_t mems_allowed; 119 120 /* effective CPUs and Memory Nodes allow to tasks */ 121 cpumask_var_t effective_cpus; 122 nodemask_t effective_mems; 123 124 /* 125 * CPUs allocated to child sub-partitions (default hierarchy only) 126 * - CPUs granted by the parent = effective_cpus U subparts_cpus 127 * - effective_cpus and subparts_cpus are mutually exclusive. 128 * 129 * effective_cpus contains only onlined CPUs, but subparts_cpus 130 * may have offlined ones. 131 */ 132 cpumask_var_t subparts_cpus; 133 134 /* 135 * This is old Memory Nodes tasks took on. 136 * 137 * - top_cpuset.old_mems_allowed is initialized to mems_allowed. 138 * - A new cpuset's old_mems_allowed is initialized when some 139 * task is moved into it. 140 * - old_mems_allowed is used in cpuset_migrate_mm() when we change 141 * cpuset.mems_allowed and have tasks' nodemask updated, and 142 * then old_mems_allowed is updated to mems_allowed. 143 */ 144 nodemask_t old_mems_allowed; 145 146 struct fmeter fmeter; /* memory_pressure filter */ 147 148 /* 149 * Tasks are being attached to this cpuset. Used to prevent 150 * zeroing cpus/mems_allowed between ->can_attach() and ->attach(). 151 */ 152 int attach_in_progress; 153 154 /* partition number for rebuild_sched_domains() */ 155 int pn; 156 157 /* for custom sched domain */ 158 int relax_domain_level; 159 160 /* number of CPUs in subparts_cpus */ 161 int nr_subparts_cpus; 162 163 /* partition root state */ 164 int partition_root_state; 165 166 /* 167 * Default hierarchy only: 168 * use_parent_ecpus - set if using parent's effective_cpus 169 * child_ecpus_count - # of children with use_parent_ecpus set 170 */ 171 int use_parent_ecpus; 172 int child_ecpus_count; 173 174 /* 175 * number of SCHED_DEADLINE tasks attached to this cpuset, so that we 176 * know when to rebuild associated root domain bandwidth information. 177 */ 178 int nr_deadline_tasks; 179 int nr_migrate_dl_tasks; 180 u64 sum_migrate_dl_bw; 181 182 /* Invalid partition error code, not lock protected */ 183 enum prs_errcode prs_err; 184 185 /* Handle for cpuset.cpus.partition */ 186 struct cgroup_file partition_file; 187 }; 188 189 /* 190 * Partition root states: 191 * 192 * 0 - member (not a partition root) 193 * 1 - partition root 194 * 2 - partition root without load balancing (isolated) 195 * -1 - invalid partition root 196 * -2 - invalid isolated partition root 197 */ 198 #define PRS_MEMBER 0 199 #define PRS_ROOT 1 200 #define PRS_ISOLATED 2 201 #define PRS_INVALID_ROOT -1 202 #define PRS_INVALID_ISOLATED -2 203 204 static inline bool is_prs_invalid(int prs_state) 205 { 206 return prs_state < 0; 207 } 208 209 /* 210 * Temporary cpumasks for working with partitions that are passed among 211 * functions to avoid memory allocation in inner functions. 212 */ 213 struct tmpmasks { 214 cpumask_var_t addmask, delmask; /* For partition root */ 215 cpumask_var_t new_cpus; /* For update_cpumasks_hier() */ 216 }; 217 218 static inline struct cpuset *css_cs(struct cgroup_subsys_state *css) 219 { 220 return css ? container_of(css, struct cpuset, css) : NULL; 221 } 222 223 /* Retrieve the cpuset for a task */ 224 static inline struct cpuset *task_cs(struct task_struct *task) 225 { 226 return css_cs(task_css(task, cpuset_cgrp_id)); 227 } 228 229 static inline struct cpuset *parent_cs(struct cpuset *cs) 230 { 231 return css_cs(cs->css.parent); 232 } 233 234 void inc_dl_tasks_cs(struct task_struct *p) 235 { 236 struct cpuset *cs = task_cs(p); 237 238 cs->nr_deadline_tasks++; 239 } 240 241 void dec_dl_tasks_cs(struct task_struct *p) 242 { 243 struct cpuset *cs = task_cs(p); 244 245 cs->nr_deadline_tasks--; 246 } 247 248 /* bits in struct cpuset flags field */ 249 typedef enum { 250 CS_ONLINE, 251 CS_CPU_EXCLUSIVE, 252 CS_MEM_EXCLUSIVE, 253 CS_MEM_HARDWALL, 254 CS_MEMORY_MIGRATE, 255 CS_SCHED_LOAD_BALANCE, 256 CS_SPREAD_PAGE, 257 CS_SPREAD_SLAB, 258 } cpuset_flagbits_t; 259 260 /* convenient tests for these bits */ 261 static inline bool is_cpuset_online(struct cpuset *cs) 262 { 263 return test_bit(CS_ONLINE, &cs->flags) && !css_is_dying(&cs->css); 264 } 265 266 static inline int is_cpu_exclusive(const struct cpuset *cs) 267 { 268 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags); 269 } 270 271 static inline int is_mem_exclusive(const struct cpuset *cs) 272 { 273 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags); 274 } 275 276 static inline int is_mem_hardwall(const struct cpuset *cs) 277 { 278 return test_bit(CS_MEM_HARDWALL, &cs->flags); 279 } 280 281 static inline int is_sched_load_balance(const struct cpuset *cs) 282 { 283 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); 284 } 285 286 static inline int is_memory_migrate(const struct cpuset *cs) 287 { 288 return test_bit(CS_MEMORY_MIGRATE, &cs->flags); 289 } 290 291 static inline int is_spread_page(const struct cpuset *cs) 292 { 293 return test_bit(CS_SPREAD_PAGE, &cs->flags); 294 } 295 296 static inline int is_spread_slab(const struct cpuset *cs) 297 { 298 return test_bit(CS_SPREAD_SLAB, &cs->flags); 299 } 300 301 static inline int is_partition_valid(const struct cpuset *cs) 302 { 303 return cs->partition_root_state > 0; 304 } 305 306 static inline int is_partition_invalid(const struct cpuset *cs) 307 { 308 return cs->partition_root_state < 0; 309 } 310 311 /* 312 * Callers should hold callback_lock to modify partition_root_state. 313 */ 314 static inline void make_partition_invalid(struct cpuset *cs) 315 { 316 if (is_partition_valid(cs)) 317 cs->partition_root_state = -cs->partition_root_state; 318 } 319 320 /* 321 * Send notification event of whenever partition_root_state changes. 322 */ 323 static inline void notify_partition_change(struct cpuset *cs, int old_prs) 324 { 325 if (old_prs == cs->partition_root_state) 326 return; 327 cgroup_file_notify(&cs->partition_file); 328 329 /* Reset prs_err if not invalid */ 330 if (is_partition_valid(cs)) 331 WRITE_ONCE(cs->prs_err, PERR_NONE); 332 } 333 334 static struct cpuset top_cpuset = { 335 .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) | 336 (1 << CS_MEM_EXCLUSIVE)), 337 .partition_root_state = PRS_ROOT, 338 }; 339 340 /** 341 * cpuset_for_each_child - traverse online children of a cpuset 342 * @child_cs: loop cursor pointing to the current child 343 * @pos_css: used for iteration 344 * @parent_cs: target cpuset to walk children of 345 * 346 * Walk @child_cs through the online children of @parent_cs. Must be used 347 * with RCU read locked. 348 */ 349 #define cpuset_for_each_child(child_cs, pos_css, parent_cs) \ 350 css_for_each_child((pos_css), &(parent_cs)->css) \ 351 if (is_cpuset_online(((child_cs) = css_cs((pos_css))))) 352 353 /** 354 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants 355 * @des_cs: loop cursor pointing to the current descendant 356 * @pos_css: used for iteration 357 * @root_cs: target cpuset to walk ancestor of 358 * 359 * Walk @des_cs through the online descendants of @root_cs. Must be used 360 * with RCU read locked. The caller may modify @pos_css by calling 361 * css_rightmost_descendant() to skip subtree. @root_cs is included in the 362 * iteration and the first node to be visited. 363 */ 364 #define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs) \ 365 css_for_each_descendant_pre((pos_css), &(root_cs)->css) \ 366 if (is_cpuset_online(((des_cs) = css_cs((pos_css))))) 367 368 /* 369 * There are two global locks guarding cpuset structures - cpuset_mutex and 370 * callback_lock. We also require taking task_lock() when dereferencing a 371 * task's cpuset pointer. See "The task_lock() exception", at the end of this 372 * comment. The cpuset code uses only cpuset_mutex. Other kernel subsystems 373 * can use cpuset_lock()/cpuset_unlock() to prevent change to cpuset 374 * structures. Note that cpuset_mutex needs to be a mutex as it is used in 375 * paths that rely on priority inheritance (e.g. scheduler - on RT) for 376 * correctness. 377 * 378 * A task must hold both locks to modify cpusets. If a task holds 379 * cpuset_mutex, it blocks others, ensuring that it is the only task able to 380 * also acquire callback_lock and be able to modify cpusets. It can perform 381 * various checks on the cpuset structure first, knowing nothing will change. 382 * It can also allocate memory while just holding cpuset_mutex. While it is 383 * performing these checks, various callback routines can briefly acquire 384 * callback_lock to query cpusets. Once it is ready to make the changes, it 385 * takes callback_lock, blocking everyone else. 386 * 387 * Calls to the kernel memory allocator can not be made while holding 388 * callback_lock, as that would risk double tripping on callback_lock 389 * from one of the callbacks into the cpuset code from within 390 * __alloc_pages(). 391 * 392 * If a task is only holding callback_lock, then it has read-only 393 * access to cpusets. 394 * 395 * Now, the task_struct fields mems_allowed and mempolicy may be changed 396 * by other task, we use alloc_lock in the task_struct fields to protect 397 * them. 398 * 399 * The cpuset_common_file_read() handlers only hold callback_lock across 400 * small pieces of code, such as when reading out possibly multi-word 401 * cpumasks and nodemasks. 402 * 403 * Accessing a task's cpuset should be done in accordance with the 404 * guidelines for accessing subsystem state in kernel/cgroup.c 405 */ 406 407 static DEFINE_MUTEX(cpuset_mutex); 408 409 void cpuset_lock(void) 410 { 411 mutex_lock(&cpuset_mutex); 412 } 413 414 void cpuset_unlock(void) 415 { 416 mutex_unlock(&cpuset_mutex); 417 } 418 419 static DEFINE_SPINLOCK(callback_lock); 420 421 static struct workqueue_struct *cpuset_migrate_mm_wq; 422 423 /* 424 * CPU / memory hotplug is handled asynchronously. 425 */ 426 static void cpuset_hotplug_workfn(struct work_struct *work); 427 static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn); 428 429 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq); 430 431 static inline void check_insane_mems_config(nodemask_t *nodes) 432 { 433 if (!cpusets_insane_config() && 434 movable_only_nodes(nodes)) { 435 static_branch_enable(&cpusets_insane_config_key); 436 pr_info("Unsupported (movable nodes only) cpuset configuration detected (nmask=%*pbl)!\n" 437 "Cpuset allocations might fail even with a lot of memory available.\n", 438 nodemask_pr_args(nodes)); 439 } 440 } 441 442 /* 443 * Cgroup v2 behavior is used on the "cpus" and "mems" control files when 444 * on default hierarchy or when the cpuset_v2_mode flag is set by mounting 445 * the v1 cpuset cgroup filesystem with the "cpuset_v2_mode" mount option. 446 * With v2 behavior, "cpus" and "mems" are always what the users have 447 * requested and won't be changed by hotplug events. Only the effective 448 * cpus or mems will be affected. 449 */ 450 static inline bool is_in_v2_mode(void) 451 { 452 return cgroup_subsys_on_dfl(cpuset_cgrp_subsys) || 453 (cpuset_cgrp_subsys.root->flags & CGRP_ROOT_CPUSET_V2_MODE); 454 } 455 456 /** 457 * partition_is_populated - check if partition has tasks 458 * @cs: partition root to be checked 459 * @excluded_child: a child cpuset to be excluded in task checking 460 * Return: true if there are tasks, false otherwise 461 * 462 * It is assumed that @cs is a valid partition root. @excluded_child should 463 * be non-NULL when this cpuset is going to become a partition itself. 464 */ 465 static inline bool partition_is_populated(struct cpuset *cs, 466 struct cpuset *excluded_child) 467 { 468 struct cgroup_subsys_state *css; 469 struct cpuset *child; 470 471 if (cs->css.cgroup->nr_populated_csets) 472 return true; 473 if (!excluded_child && !cs->nr_subparts_cpus) 474 return cgroup_is_populated(cs->css.cgroup); 475 476 rcu_read_lock(); 477 cpuset_for_each_child(child, css, cs) { 478 if (child == excluded_child) 479 continue; 480 if (is_partition_valid(child)) 481 continue; 482 if (cgroup_is_populated(child->css.cgroup)) { 483 rcu_read_unlock(); 484 return true; 485 } 486 } 487 rcu_read_unlock(); 488 return false; 489 } 490 491 /* 492 * Return in pmask the portion of a task's cpusets's cpus_allowed that 493 * are online and are capable of running the task. If none are found, 494 * walk up the cpuset hierarchy until we find one that does have some 495 * appropriate cpus. 496 * 497 * One way or another, we guarantee to return some non-empty subset 498 * of cpu_online_mask. 499 * 500 * Call with callback_lock or cpuset_mutex held. 501 */ 502 static void guarantee_online_cpus(struct task_struct *tsk, 503 struct cpumask *pmask) 504 { 505 const struct cpumask *possible_mask = task_cpu_possible_mask(tsk); 506 struct cpuset *cs; 507 508 if (WARN_ON(!cpumask_and(pmask, possible_mask, cpu_online_mask))) 509 cpumask_copy(pmask, cpu_online_mask); 510 511 rcu_read_lock(); 512 cs = task_cs(tsk); 513 514 while (!cpumask_intersects(cs->effective_cpus, pmask)) { 515 cs = parent_cs(cs); 516 if (unlikely(!cs)) { 517 /* 518 * The top cpuset doesn't have any online cpu as a 519 * consequence of a race between cpuset_hotplug_work 520 * and cpu hotplug notifier. But we know the top 521 * cpuset's effective_cpus is on its way to be 522 * identical to cpu_online_mask. 523 */ 524 goto out_unlock; 525 } 526 } 527 cpumask_and(pmask, pmask, cs->effective_cpus); 528 529 out_unlock: 530 rcu_read_unlock(); 531 } 532 533 /* 534 * Return in *pmask the portion of a cpusets's mems_allowed that 535 * are online, with memory. If none are online with memory, walk 536 * up the cpuset hierarchy until we find one that does have some 537 * online mems. The top cpuset always has some mems online. 538 * 539 * One way or another, we guarantee to return some non-empty subset 540 * of node_states[N_MEMORY]. 541 * 542 * Call with callback_lock or cpuset_mutex held. 543 */ 544 static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask) 545 { 546 while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY])) 547 cs = parent_cs(cs); 548 nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]); 549 } 550 551 /* 552 * update task's spread flag if cpuset's page/slab spread flag is set 553 * 554 * Call with callback_lock or cpuset_mutex held. The check can be skipped 555 * if on default hierarchy. 556 */ 557 static void cpuset_update_task_spread_flags(struct cpuset *cs, 558 struct task_struct *tsk) 559 { 560 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) 561 return; 562 563 if (is_spread_page(cs)) 564 task_set_spread_page(tsk); 565 else 566 task_clear_spread_page(tsk); 567 568 if (is_spread_slab(cs)) 569 task_set_spread_slab(tsk); 570 else 571 task_clear_spread_slab(tsk); 572 } 573 574 /* 575 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q? 576 * 577 * One cpuset is a subset of another if all its allowed CPUs and 578 * Memory Nodes are a subset of the other, and its exclusive flags 579 * are only set if the other's are set. Call holding cpuset_mutex. 580 */ 581 582 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q) 583 { 584 return cpumask_subset(p->cpus_allowed, q->cpus_allowed) && 585 nodes_subset(p->mems_allowed, q->mems_allowed) && 586 is_cpu_exclusive(p) <= is_cpu_exclusive(q) && 587 is_mem_exclusive(p) <= is_mem_exclusive(q); 588 } 589 590 /** 591 * alloc_cpumasks - allocate three cpumasks for cpuset 592 * @cs: the cpuset that have cpumasks to be allocated. 593 * @tmp: the tmpmasks structure pointer 594 * Return: 0 if successful, -ENOMEM otherwise. 595 * 596 * Only one of the two input arguments should be non-NULL. 597 */ 598 static inline int alloc_cpumasks(struct cpuset *cs, struct tmpmasks *tmp) 599 { 600 cpumask_var_t *pmask1, *pmask2, *pmask3; 601 602 if (cs) { 603 pmask1 = &cs->cpus_allowed; 604 pmask2 = &cs->effective_cpus; 605 pmask3 = &cs->subparts_cpus; 606 } else { 607 pmask1 = &tmp->new_cpus; 608 pmask2 = &tmp->addmask; 609 pmask3 = &tmp->delmask; 610 } 611 612 if (!zalloc_cpumask_var(pmask1, GFP_KERNEL)) 613 return -ENOMEM; 614 615 if (!zalloc_cpumask_var(pmask2, GFP_KERNEL)) 616 goto free_one; 617 618 if (!zalloc_cpumask_var(pmask3, GFP_KERNEL)) 619 goto free_two; 620 621 return 0; 622 623 free_two: 624 free_cpumask_var(*pmask2); 625 free_one: 626 free_cpumask_var(*pmask1); 627 return -ENOMEM; 628 } 629 630 /** 631 * free_cpumasks - free cpumasks in a tmpmasks structure 632 * @cs: the cpuset that have cpumasks to be free. 633 * @tmp: the tmpmasks structure pointer 634 */ 635 static inline void free_cpumasks(struct cpuset *cs, struct tmpmasks *tmp) 636 { 637 if (cs) { 638 free_cpumask_var(cs->cpus_allowed); 639 free_cpumask_var(cs->effective_cpus); 640 free_cpumask_var(cs->subparts_cpus); 641 } 642 if (tmp) { 643 free_cpumask_var(tmp->new_cpus); 644 free_cpumask_var(tmp->addmask); 645 free_cpumask_var(tmp->delmask); 646 } 647 } 648 649 /** 650 * alloc_trial_cpuset - allocate a trial cpuset 651 * @cs: the cpuset that the trial cpuset duplicates 652 */ 653 static struct cpuset *alloc_trial_cpuset(struct cpuset *cs) 654 { 655 struct cpuset *trial; 656 657 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL); 658 if (!trial) 659 return NULL; 660 661 if (alloc_cpumasks(trial, NULL)) { 662 kfree(trial); 663 return NULL; 664 } 665 666 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed); 667 cpumask_copy(trial->effective_cpus, cs->effective_cpus); 668 return trial; 669 } 670 671 /** 672 * free_cpuset - free the cpuset 673 * @cs: the cpuset to be freed 674 */ 675 static inline void free_cpuset(struct cpuset *cs) 676 { 677 free_cpumasks(cs, NULL); 678 kfree(cs); 679 } 680 681 /* 682 * validate_change_legacy() - Validate conditions specific to legacy (v1) 683 * behavior. 684 */ 685 static int validate_change_legacy(struct cpuset *cur, struct cpuset *trial) 686 { 687 struct cgroup_subsys_state *css; 688 struct cpuset *c, *par; 689 int ret; 690 691 WARN_ON_ONCE(!rcu_read_lock_held()); 692 693 /* Each of our child cpusets must be a subset of us */ 694 ret = -EBUSY; 695 cpuset_for_each_child(c, css, cur) 696 if (!is_cpuset_subset(c, trial)) 697 goto out; 698 699 /* On legacy hierarchy, we must be a subset of our parent cpuset. */ 700 ret = -EACCES; 701 par = parent_cs(cur); 702 if (par && !is_cpuset_subset(trial, par)) 703 goto out; 704 705 ret = 0; 706 out: 707 return ret; 708 } 709 710 /* 711 * validate_change() - Used to validate that any proposed cpuset change 712 * follows the structural rules for cpusets. 713 * 714 * If we replaced the flag and mask values of the current cpuset 715 * (cur) with those values in the trial cpuset (trial), would 716 * our various subset and exclusive rules still be valid? Presumes 717 * cpuset_mutex held. 718 * 719 * 'cur' is the address of an actual, in-use cpuset. Operations 720 * such as list traversal that depend on the actual address of the 721 * cpuset in the list must use cur below, not trial. 722 * 723 * 'trial' is the address of bulk structure copy of cur, with 724 * perhaps one or more of the fields cpus_allowed, mems_allowed, 725 * or flags changed to new, trial values. 726 * 727 * Return 0 if valid, -errno if not. 728 */ 729 730 static int validate_change(struct cpuset *cur, struct cpuset *trial) 731 { 732 struct cgroup_subsys_state *css; 733 struct cpuset *c, *par; 734 int ret = 0; 735 736 rcu_read_lock(); 737 738 if (!is_in_v2_mode()) 739 ret = validate_change_legacy(cur, trial); 740 if (ret) 741 goto out; 742 743 /* Remaining checks don't apply to root cpuset */ 744 if (cur == &top_cpuset) 745 goto out; 746 747 par = parent_cs(cur); 748 749 /* 750 * Cpusets with tasks - existing or newly being attached - can't 751 * be changed to have empty cpus_allowed or mems_allowed. 752 */ 753 ret = -ENOSPC; 754 if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) { 755 if (!cpumask_empty(cur->cpus_allowed) && 756 cpumask_empty(trial->cpus_allowed)) 757 goto out; 758 if (!nodes_empty(cur->mems_allowed) && 759 nodes_empty(trial->mems_allowed)) 760 goto out; 761 } 762 763 /* 764 * We can't shrink if we won't have enough room for SCHED_DEADLINE 765 * tasks. 766 */ 767 ret = -EBUSY; 768 if (is_cpu_exclusive(cur) && 769 !cpuset_cpumask_can_shrink(cur->cpus_allowed, 770 trial->cpus_allowed)) 771 goto out; 772 773 /* 774 * If either I or some sibling (!= me) is exclusive, we can't 775 * overlap 776 */ 777 ret = -EINVAL; 778 cpuset_for_each_child(c, css, par) { 779 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) && 780 c != cur && 781 cpumask_intersects(trial->cpus_allowed, c->cpus_allowed)) 782 goto out; 783 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) && 784 c != cur && 785 nodes_intersects(trial->mems_allowed, c->mems_allowed)) 786 goto out; 787 } 788 789 ret = 0; 790 out: 791 rcu_read_unlock(); 792 return ret; 793 } 794 795 #ifdef CONFIG_SMP 796 /* 797 * Helper routine for generate_sched_domains(). 798 * Do cpusets a, b have overlapping effective cpus_allowed masks? 799 */ 800 static int cpusets_overlap(struct cpuset *a, struct cpuset *b) 801 { 802 return cpumask_intersects(a->effective_cpus, b->effective_cpus); 803 } 804 805 static void 806 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c) 807 { 808 if (dattr->relax_domain_level < c->relax_domain_level) 809 dattr->relax_domain_level = c->relax_domain_level; 810 return; 811 } 812 813 static void update_domain_attr_tree(struct sched_domain_attr *dattr, 814 struct cpuset *root_cs) 815 { 816 struct cpuset *cp; 817 struct cgroup_subsys_state *pos_css; 818 819 rcu_read_lock(); 820 cpuset_for_each_descendant_pre(cp, pos_css, root_cs) { 821 /* skip the whole subtree if @cp doesn't have any CPU */ 822 if (cpumask_empty(cp->cpus_allowed)) { 823 pos_css = css_rightmost_descendant(pos_css); 824 continue; 825 } 826 827 if (is_sched_load_balance(cp)) 828 update_domain_attr(dattr, cp); 829 } 830 rcu_read_unlock(); 831 } 832 833 /* Must be called with cpuset_mutex held. */ 834 static inline int nr_cpusets(void) 835 { 836 /* jump label reference count + the top-level cpuset */ 837 return static_key_count(&cpusets_enabled_key.key) + 1; 838 } 839 840 /* 841 * generate_sched_domains() 842 * 843 * This function builds a partial partition of the systems CPUs 844 * A 'partial partition' is a set of non-overlapping subsets whose 845 * union is a subset of that set. 846 * The output of this function needs to be passed to kernel/sched/core.c 847 * partition_sched_domains() routine, which will rebuild the scheduler's 848 * load balancing domains (sched domains) as specified by that partial 849 * partition. 850 * 851 * See "What is sched_load_balance" in Documentation/admin-guide/cgroup-v1/cpusets.rst 852 * for a background explanation of this. 853 * 854 * Does not return errors, on the theory that the callers of this 855 * routine would rather not worry about failures to rebuild sched 856 * domains when operating in the severe memory shortage situations 857 * that could cause allocation failures below. 858 * 859 * Must be called with cpuset_mutex held. 860 * 861 * The three key local variables below are: 862 * cp - cpuset pointer, used (together with pos_css) to perform a 863 * top-down scan of all cpusets. For our purposes, rebuilding 864 * the schedulers sched domains, we can ignore !is_sched_load_ 865 * balance cpusets. 866 * csa - (for CpuSet Array) Array of pointers to all the cpusets 867 * that need to be load balanced, for convenient iterative 868 * access by the subsequent code that finds the best partition, 869 * i.e the set of domains (subsets) of CPUs such that the 870 * cpus_allowed of every cpuset marked is_sched_load_balance 871 * is a subset of one of these domains, while there are as 872 * many such domains as possible, each as small as possible. 873 * doms - Conversion of 'csa' to an array of cpumasks, for passing to 874 * the kernel/sched/core.c routine partition_sched_domains() in a 875 * convenient format, that can be easily compared to the prior 876 * value to determine what partition elements (sched domains) 877 * were changed (added or removed.) 878 * 879 * Finding the best partition (set of domains): 880 * The triple nested loops below over i, j, k scan over the 881 * load balanced cpusets (using the array of cpuset pointers in 882 * csa[]) looking for pairs of cpusets that have overlapping 883 * cpus_allowed, but which don't have the same 'pn' partition 884 * number and gives them in the same partition number. It keeps 885 * looping on the 'restart' label until it can no longer find 886 * any such pairs. 887 * 888 * The union of the cpus_allowed masks from the set of 889 * all cpusets having the same 'pn' value then form the one 890 * element of the partition (one sched domain) to be passed to 891 * partition_sched_domains(). 892 */ 893 static int generate_sched_domains(cpumask_var_t **domains, 894 struct sched_domain_attr **attributes) 895 { 896 struct cpuset *cp; /* top-down scan of cpusets */ 897 struct cpuset **csa; /* array of all cpuset ptrs */ 898 int csn; /* how many cpuset ptrs in csa so far */ 899 int i, j, k; /* indices for partition finding loops */ 900 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */ 901 struct sched_domain_attr *dattr; /* attributes for custom domains */ 902 int ndoms = 0; /* number of sched domains in result */ 903 int nslot; /* next empty doms[] struct cpumask slot */ 904 struct cgroup_subsys_state *pos_css; 905 bool root_load_balance = is_sched_load_balance(&top_cpuset); 906 907 doms = NULL; 908 dattr = NULL; 909 csa = NULL; 910 911 /* Special case for the 99% of systems with one, full, sched domain */ 912 if (root_load_balance && !top_cpuset.nr_subparts_cpus) { 913 ndoms = 1; 914 doms = alloc_sched_domains(ndoms); 915 if (!doms) 916 goto done; 917 918 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL); 919 if (dattr) { 920 *dattr = SD_ATTR_INIT; 921 update_domain_attr_tree(dattr, &top_cpuset); 922 } 923 cpumask_and(doms[0], top_cpuset.effective_cpus, 924 housekeeping_cpumask(HK_TYPE_DOMAIN)); 925 926 goto done; 927 } 928 929 csa = kmalloc_array(nr_cpusets(), sizeof(cp), GFP_KERNEL); 930 if (!csa) 931 goto done; 932 csn = 0; 933 934 rcu_read_lock(); 935 if (root_load_balance) 936 csa[csn++] = &top_cpuset; 937 cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) { 938 if (cp == &top_cpuset) 939 continue; 940 /* 941 * Continue traversing beyond @cp iff @cp has some CPUs and 942 * isn't load balancing. The former is obvious. The 943 * latter: All child cpusets contain a subset of the 944 * parent's cpus, so just skip them, and then we call 945 * update_domain_attr_tree() to calc relax_domain_level of 946 * the corresponding sched domain. 947 * 948 * If root is load-balancing, we can skip @cp if it 949 * is a subset of the root's effective_cpus. 950 */ 951 if (!cpumask_empty(cp->cpus_allowed) && 952 !(is_sched_load_balance(cp) && 953 cpumask_intersects(cp->cpus_allowed, 954 housekeeping_cpumask(HK_TYPE_DOMAIN)))) 955 continue; 956 957 if (root_load_balance && 958 cpumask_subset(cp->cpus_allowed, top_cpuset.effective_cpus)) 959 continue; 960 961 if (is_sched_load_balance(cp) && 962 !cpumask_empty(cp->effective_cpus)) 963 csa[csn++] = cp; 964 965 /* skip @cp's subtree if not a partition root */ 966 if (!is_partition_valid(cp)) 967 pos_css = css_rightmost_descendant(pos_css); 968 } 969 rcu_read_unlock(); 970 971 for (i = 0; i < csn; i++) 972 csa[i]->pn = i; 973 ndoms = csn; 974 975 restart: 976 /* Find the best partition (set of sched domains) */ 977 for (i = 0; i < csn; i++) { 978 struct cpuset *a = csa[i]; 979 int apn = a->pn; 980 981 for (j = 0; j < csn; j++) { 982 struct cpuset *b = csa[j]; 983 int bpn = b->pn; 984 985 if (apn != bpn && cpusets_overlap(a, b)) { 986 for (k = 0; k < csn; k++) { 987 struct cpuset *c = csa[k]; 988 989 if (c->pn == bpn) 990 c->pn = apn; 991 } 992 ndoms--; /* one less element */ 993 goto restart; 994 } 995 } 996 } 997 998 /* 999 * Now we know how many domains to create. 1000 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks. 1001 */ 1002 doms = alloc_sched_domains(ndoms); 1003 if (!doms) 1004 goto done; 1005 1006 /* 1007 * The rest of the code, including the scheduler, can deal with 1008 * dattr==NULL case. No need to abort if alloc fails. 1009 */ 1010 dattr = kmalloc_array(ndoms, sizeof(struct sched_domain_attr), 1011 GFP_KERNEL); 1012 1013 for (nslot = 0, i = 0; i < csn; i++) { 1014 struct cpuset *a = csa[i]; 1015 struct cpumask *dp; 1016 int apn = a->pn; 1017 1018 if (apn < 0) { 1019 /* Skip completed partitions */ 1020 continue; 1021 } 1022 1023 dp = doms[nslot]; 1024 1025 if (nslot == ndoms) { 1026 static int warnings = 10; 1027 if (warnings) { 1028 pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n", 1029 nslot, ndoms, csn, i, apn); 1030 warnings--; 1031 } 1032 continue; 1033 } 1034 1035 cpumask_clear(dp); 1036 if (dattr) 1037 *(dattr + nslot) = SD_ATTR_INIT; 1038 for (j = i; j < csn; j++) { 1039 struct cpuset *b = csa[j]; 1040 1041 if (apn == b->pn) { 1042 cpumask_or(dp, dp, b->effective_cpus); 1043 cpumask_and(dp, dp, housekeeping_cpumask(HK_TYPE_DOMAIN)); 1044 if (dattr) 1045 update_domain_attr_tree(dattr + nslot, b); 1046 1047 /* Done with this partition */ 1048 b->pn = -1; 1049 } 1050 } 1051 nslot++; 1052 } 1053 BUG_ON(nslot != ndoms); 1054 1055 done: 1056 kfree(csa); 1057 1058 /* 1059 * Fallback to the default domain if kmalloc() failed. 1060 * See comments in partition_sched_domains(). 1061 */ 1062 if (doms == NULL) 1063 ndoms = 1; 1064 1065 *domains = doms; 1066 *attributes = dattr; 1067 return ndoms; 1068 } 1069 1070 static void dl_update_tasks_root_domain(struct cpuset *cs) 1071 { 1072 struct css_task_iter it; 1073 struct task_struct *task; 1074 1075 if (cs->nr_deadline_tasks == 0) 1076 return; 1077 1078 css_task_iter_start(&cs->css, 0, &it); 1079 1080 while ((task = css_task_iter_next(&it))) 1081 dl_add_task_root_domain(task); 1082 1083 css_task_iter_end(&it); 1084 } 1085 1086 static void dl_rebuild_rd_accounting(void) 1087 { 1088 struct cpuset *cs = NULL; 1089 struct cgroup_subsys_state *pos_css; 1090 1091 lockdep_assert_held(&cpuset_mutex); 1092 lockdep_assert_cpus_held(); 1093 lockdep_assert_held(&sched_domains_mutex); 1094 1095 rcu_read_lock(); 1096 1097 /* 1098 * Clear default root domain DL accounting, it will be computed again 1099 * if a task belongs to it. 1100 */ 1101 dl_clear_root_domain(&def_root_domain); 1102 1103 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) { 1104 1105 if (cpumask_empty(cs->effective_cpus)) { 1106 pos_css = css_rightmost_descendant(pos_css); 1107 continue; 1108 } 1109 1110 css_get(&cs->css); 1111 1112 rcu_read_unlock(); 1113 1114 dl_update_tasks_root_domain(cs); 1115 1116 rcu_read_lock(); 1117 css_put(&cs->css); 1118 } 1119 rcu_read_unlock(); 1120 } 1121 1122 static void 1123 partition_and_rebuild_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 1124 struct sched_domain_attr *dattr_new) 1125 { 1126 mutex_lock(&sched_domains_mutex); 1127 partition_sched_domains_locked(ndoms_new, doms_new, dattr_new); 1128 dl_rebuild_rd_accounting(); 1129 mutex_unlock(&sched_domains_mutex); 1130 } 1131 1132 /* 1133 * Rebuild scheduler domains. 1134 * 1135 * If the flag 'sched_load_balance' of any cpuset with non-empty 1136 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset 1137 * which has that flag enabled, or if any cpuset with a non-empty 1138 * 'cpus' is removed, then call this routine to rebuild the 1139 * scheduler's dynamic sched domains. 1140 * 1141 * Call with cpuset_mutex held. Takes cpus_read_lock(). 1142 */ 1143 static void rebuild_sched_domains_locked(void) 1144 { 1145 struct cgroup_subsys_state *pos_css; 1146 struct sched_domain_attr *attr; 1147 cpumask_var_t *doms; 1148 struct cpuset *cs; 1149 int ndoms; 1150 1151 lockdep_assert_cpus_held(); 1152 lockdep_assert_held(&cpuset_mutex); 1153 1154 /* 1155 * If we have raced with CPU hotplug, return early to avoid 1156 * passing doms with offlined cpu to partition_sched_domains(). 1157 * Anyways, cpuset_hotplug_workfn() will rebuild sched domains. 1158 * 1159 * With no CPUs in any subpartitions, top_cpuset's effective CPUs 1160 * should be the same as the active CPUs, so checking only top_cpuset 1161 * is enough to detect racing CPU offlines. 1162 */ 1163 if (!top_cpuset.nr_subparts_cpus && 1164 !cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask)) 1165 return; 1166 1167 /* 1168 * With subpartition CPUs, however, the effective CPUs of a partition 1169 * root should be only a subset of the active CPUs. Since a CPU in any 1170 * partition root could be offlined, all must be checked. 1171 */ 1172 if (top_cpuset.nr_subparts_cpus) { 1173 rcu_read_lock(); 1174 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) { 1175 if (!is_partition_valid(cs)) { 1176 pos_css = css_rightmost_descendant(pos_css); 1177 continue; 1178 } 1179 if (!cpumask_subset(cs->effective_cpus, 1180 cpu_active_mask)) { 1181 rcu_read_unlock(); 1182 return; 1183 } 1184 } 1185 rcu_read_unlock(); 1186 } 1187 1188 /* Generate domain masks and attrs */ 1189 ndoms = generate_sched_domains(&doms, &attr); 1190 1191 /* Have scheduler rebuild the domains */ 1192 partition_and_rebuild_sched_domains(ndoms, doms, attr); 1193 } 1194 #else /* !CONFIG_SMP */ 1195 static void rebuild_sched_domains_locked(void) 1196 { 1197 } 1198 #endif /* CONFIG_SMP */ 1199 1200 void rebuild_sched_domains(void) 1201 { 1202 cpus_read_lock(); 1203 mutex_lock(&cpuset_mutex); 1204 rebuild_sched_domains_locked(); 1205 mutex_unlock(&cpuset_mutex); 1206 cpus_read_unlock(); 1207 } 1208 1209 /** 1210 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset. 1211 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed 1212 * @new_cpus: the temp variable for the new effective_cpus mask 1213 * 1214 * Iterate through each task of @cs updating its cpus_allowed to the 1215 * effective cpuset's. As this function is called with cpuset_mutex held, 1216 * cpuset membership stays stable. For top_cpuset, task_cpu_possible_mask() 1217 * is used instead of effective_cpus to make sure all offline CPUs are also 1218 * included as hotplug code won't update cpumasks for tasks in top_cpuset. 1219 */ 1220 static void update_tasks_cpumask(struct cpuset *cs, struct cpumask *new_cpus) 1221 { 1222 struct css_task_iter it; 1223 struct task_struct *task; 1224 bool top_cs = cs == &top_cpuset; 1225 1226 css_task_iter_start(&cs->css, 0, &it); 1227 while ((task = css_task_iter_next(&it))) { 1228 const struct cpumask *possible_mask = task_cpu_possible_mask(task); 1229 1230 if (top_cs) { 1231 /* 1232 * Percpu kthreads in top_cpuset are ignored 1233 */ 1234 if (kthread_is_per_cpu(task)) 1235 continue; 1236 cpumask_andnot(new_cpus, possible_mask, cs->subparts_cpus); 1237 } else { 1238 cpumask_and(new_cpus, possible_mask, cs->effective_cpus); 1239 } 1240 set_cpus_allowed_ptr(task, new_cpus); 1241 } 1242 css_task_iter_end(&it); 1243 } 1244 1245 /** 1246 * compute_effective_cpumask - Compute the effective cpumask of the cpuset 1247 * @new_cpus: the temp variable for the new effective_cpus mask 1248 * @cs: the cpuset the need to recompute the new effective_cpus mask 1249 * @parent: the parent cpuset 1250 * 1251 * If the parent has subpartition CPUs, include them in the list of 1252 * allowable CPUs in computing the new effective_cpus mask. Since offlined 1253 * CPUs are not removed from subparts_cpus, we have to use cpu_active_mask 1254 * to mask those out. 1255 */ 1256 static void compute_effective_cpumask(struct cpumask *new_cpus, 1257 struct cpuset *cs, struct cpuset *parent) 1258 { 1259 if (parent->nr_subparts_cpus && is_partition_valid(cs)) { 1260 cpumask_or(new_cpus, parent->effective_cpus, 1261 parent->subparts_cpus); 1262 cpumask_and(new_cpus, new_cpus, cs->cpus_allowed); 1263 cpumask_and(new_cpus, new_cpus, cpu_active_mask); 1264 } else { 1265 cpumask_and(new_cpus, cs->cpus_allowed, parent->effective_cpus); 1266 } 1267 } 1268 1269 /* 1270 * Commands for update_parent_subparts_cpumask 1271 */ 1272 enum subparts_cmd { 1273 partcmd_enable, /* Enable partition root */ 1274 partcmd_disable, /* Disable partition root */ 1275 partcmd_update, /* Update parent's subparts_cpus */ 1276 partcmd_invalidate, /* Make partition invalid */ 1277 }; 1278 1279 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, 1280 int turning_on); 1281 static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs, 1282 struct tmpmasks *tmp); 1283 1284 /* 1285 * Update partition exclusive flag 1286 * 1287 * Return: 0 if successful, an error code otherwise 1288 */ 1289 static int update_partition_exclusive(struct cpuset *cs, int new_prs) 1290 { 1291 bool exclusive = (new_prs > 0); 1292 1293 if (exclusive && !is_cpu_exclusive(cs)) { 1294 if (update_flag(CS_CPU_EXCLUSIVE, cs, 1)) 1295 return PERR_NOTEXCL; 1296 } else if (!exclusive && is_cpu_exclusive(cs)) { 1297 /* Turning off CS_CPU_EXCLUSIVE will not return error */ 1298 update_flag(CS_CPU_EXCLUSIVE, cs, 0); 1299 } 1300 return 0; 1301 } 1302 1303 /* 1304 * Update partition load balance flag and/or rebuild sched domain 1305 * 1306 * Changing load balance flag will automatically call 1307 * rebuild_sched_domains_locked(). 1308 * This function is for cgroup v2 only. 1309 */ 1310 static void update_partition_sd_lb(struct cpuset *cs, int old_prs) 1311 { 1312 int new_prs = cs->partition_root_state; 1313 bool rebuild_domains = (new_prs > 0) || (old_prs > 0); 1314 bool new_lb; 1315 1316 /* 1317 * If cs is not a valid partition root, the load balance state 1318 * will follow its parent. 1319 */ 1320 if (new_prs > 0) { 1321 new_lb = (new_prs != PRS_ISOLATED); 1322 } else { 1323 new_lb = is_sched_load_balance(parent_cs(cs)); 1324 } 1325 if (new_lb != !!is_sched_load_balance(cs)) { 1326 rebuild_domains = true; 1327 if (new_lb) 1328 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); 1329 else 1330 clear_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); 1331 } 1332 1333 if (rebuild_domains) 1334 rebuild_sched_domains_locked(); 1335 } 1336 1337 /** 1338 * update_parent_subparts_cpumask - update subparts_cpus mask of parent cpuset 1339 * @cs: The cpuset that requests change in partition root state 1340 * @cmd: Partition root state change command 1341 * @newmask: Optional new cpumask for partcmd_update 1342 * @tmp: Temporary addmask and delmask 1343 * Return: 0 or a partition root state error code 1344 * 1345 * For partcmd_enable, the cpuset is being transformed from a non-partition 1346 * root to a partition root. The cpus_allowed mask of the given cpuset will 1347 * be put into parent's subparts_cpus and taken away from parent's 1348 * effective_cpus. The function will return 0 if all the CPUs listed in 1349 * cpus_allowed can be granted or an error code will be returned. 1350 * 1351 * For partcmd_disable, the cpuset is being transformed from a partition 1352 * root back to a non-partition root. Any CPUs in cpus_allowed that are in 1353 * parent's subparts_cpus will be taken away from that cpumask and put back 1354 * into parent's effective_cpus. 0 will always be returned. 1355 * 1356 * For partcmd_update, if the optional newmask is specified, the cpu list is 1357 * to be changed from cpus_allowed to newmask. Otherwise, cpus_allowed is 1358 * assumed to remain the same. The cpuset should either be a valid or invalid 1359 * partition root. The partition root state may change from valid to invalid 1360 * or vice versa. An error code will only be returned if transitioning from 1361 * invalid to valid violates the exclusivity rule. 1362 * 1363 * For partcmd_invalidate, the current partition will be made invalid. 1364 * 1365 * The partcmd_enable and partcmd_disable commands are used by 1366 * update_prstate(). An error code may be returned and the caller will check 1367 * for error. 1368 * 1369 * The partcmd_update command is used by update_cpumasks_hier() with newmask 1370 * NULL and update_cpumask() with newmask set. The partcmd_invalidate is used 1371 * by update_cpumask() with NULL newmask. In both cases, the callers won't 1372 * check for error and so partition_root_state and prs_error will be updated 1373 * directly. 1374 */ 1375 static int update_parent_subparts_cpumask(struct cpuset *cs, int cmd, 1376 struct cpumask *newmask, 1377 struct tmpmasks *tmp) 1378 { 1379 struct cpuset *parent = parent_cs(cs); 1380 int adding; /* Moving cpus from effective_cpus to subparts_cpus */ 1381 int deleting; /* Moving cpus from subparts_cpus to effective_cpus */ 1382 int old_prs, new_prs; 1383 int part_error = PERR_NONE; /* Partition error? */ 1384 1385 lockdep_assert_held(&cpuset_mutex); 1386 1387 /* 1388 * The parent must be a partition root. 1389 * The new cpumask, if present, or the current cpus_allowed must 1390 * not be empty. 1391 */ 1392 if (!is_partition_valid(parent)) { 1393 return is_partition_invalid(parent) 1394 ? PERR_INVPARENT : PERR_NOTPART; 1395 } 1396 if (!newmask && cpumask_empty(cs->cpus_allowed)) 1397 return PERR_CPUSEMPTY; 1398 1399 /* 1400 * new_prs will only be changed for the partcmd_update and 1401 * partcmd_invalidate commands. 1402 */ 1403 adding = deleting = false; 1404 old_prs = new_prs = cs->partition_root_state; 1405 if (cmd == partcmd_enable) { 1406 /* 1407 * Enabling partition root is not allowed if cpus_allowed 1408 * doesn't overlap parent's cpus_allowed. 1409 */ 1410 if (!cpumask_intersects(cs->cpus_allowed, parent->cpus_allowed)) 1411 return PERR_INVCPUS; 1412 1413 /* 1414 * A parent can be left with no CPU as long as there is no 1415 * task directly associated with the parent partition. 1416 */ 1417 if (cpumask_subset(parent->effective_cpus, cs->cpus_allowed) && 1418 partition_is_populated(parent, cs)) 1419 return PERR_NOCPUS; 1420 1421 cpumask_copy(tmp->addmask, cs->cpus_allowed); 1422 adding = true; 1423 } else if (cmd == partcmd_disable) { 1424 /* 1425 * Need to remove cpus from parent's subparts_cpus for valid 1426 * partition root. 1427 */ 1428 deleting = !is_prs_invalid(old_prs) && 1429 cpumask_and(tmp->delmask, cs->cpus_allowed, 1430 parent->subparts_cpus); 1431 } else if (cmd == partcmd_invalidate) { 1432 if (is_prs_invalid(old_prs)) 1433 return 0; 1434 1435 /* 1436 * Make the current partition invalid. It is assumed that 1437 * invalidation is caused by violating cpu exclusivity rule. 1438 */ 1439 deleting = cpumask_and(tmp->delmask, cs->cpus_allowed, 1440 parent->subparts_cpus); 1441 if (old_prs > 0) { 1442 new_prs = -old_prs; 1443 part_error = PERR_NOTEXCL; 1444 } 1445 } else if (newmask) { 1446 /* 1447 * partcmd_update with newmask: 1448 * 1449 * Compute add/delete mask to/from subparts_cpus 1450 * 1451 * delmask = cpus_allowed & ~newmask & parent->subparts_cpus 1452 * addmask = newmask & parent->cpus_allowed 1453 * & ~parent->subparts_cpus 1454 */ 1455 cpumask_andnot(tmp->delmask, cs->cpus_allowed, newmask); 1456 deleting = cpumask_and(tmp->delmask, tmp->delmask, 1457 parent->subparts_cpus); 1458 1459 cpumask_and(tmp->addmask, newmask, parent->cpus_allowed); 1460 adding = cpumask_andnot(tmp->addmask, tmp->addmask, 1461 parent->subparts_cpus); 1462 /* 1463 * Empty cpumask is not allowed 1464 */ 1465 if (cpumask_empty(newmask)) { 1466 part_error = PERR_CPUSEMPTY; 1467 /* 1468 * Make partition invalid if parent's effective_cpus could 1469 * become empty and there are tasks in the parent. 1470 */ 1471 } else if (adding && 1472 cpumask_subset(parent->effective_cpus, tmp->addmask) && 1473 !cpumask_intersects(tmp->delmask, cpu_active_mask) && 1474 partition_is_populated(parent, cs)) { 1475 part_error = PERR_NOCPUS; 1476 adding = false; 1477 deleting = cpumask_and(tmp->delmask, cs->cpus_allowed, 1478 parent->subparts_cpus); 1479 } 1480 } else { 1481 /* 1482 * partcmd_update w/o newmask: 1483 * 1484 * delmask = cpus_allowed & parent->subparts_cpus 1485 * addmask = cpus_allowed & parent->cpus_allowed 1486 * & ~parent->subparts_cpus 1487 * 1488 * This gets invoked either due to a hotplug event or from 1489 * update_cpumasks_hier(). This can cause the state of a 1490 * partition root to transition from valid to invalid or vice 1491 * versa. So we still need to compute the addmask and delmask. 1492 1493 * A partition error happens when: 1494 * 1) Cpuset is valid partition, but parent does not distribute 1495 * out any CPUs. 1496 * 2) Parent has tasks and all its effective CPUs will have 1497 * to be distributed out. 1498 */ 1499 cpumask_and(tmp->addmask, cs->cpus_allowed, 1500 parent->cpus_allowed); 1501 adding = cpumask_andnot(tmp->addmask, tmp->addmask, 1502 parent->subparts_cpus); 1503 1504 if ((is_partition_valid(cs) && !parent->nr_subparts_cpus) || 1505 (adding && 1506 cpumask_subset(parent->effective_cpus, tmp->addmask) && 1507 partition_is_populated(parent, cs))) { 1508 part_error = PERR_NOCPUS; 1509 adding = false; 1510 } 1511 1512 if (part_error && is_partition_valid(cs) && 1513 parent->nr_subparts_cpus) 1514 deleting = cpumask_and(tmp->delmask, cs->cpus_allowed, 1515 parent->subparts_cpus); 1516 } 1517 if (part_error) 1518 WRITE_ONCE(cs->prs_err, part_error); 1519 1520 if (cmd == partcmd_update) { 1521 /* 1522 * Check for possible transition between valid and invalid 1523 * partition root. 1524 */ 1525 switch (cs->partition_root_state) { 1526 case PRS_ROOT: 1527 case PRS_ISOLATED: 1528 if (part_error) 1529 new_prs = -old_prs; 1530 break; 1531 case PRS_INVALID_ROOT: 1532 case PRS_INVALID_ISOLATED: 1533 if (!part_error) 1534 new_prs = -old_prs; 1535 break; 1536 } 1537 } 1538 1539 if (!adding && !deleting && (new_prs == old_prs)) 1540 return 0; 1541 1542 /* 1543 * Transitioning between invalid to valid or vice versa may require 1544 * changing CS_CPU_EXCLUSIVE. 1545 */ 1546 if (old_prs != new_prs) { 1547 int err = update_partition_exclusive(cs, new_prs); 1548 1549 if (err) 1550 return err; 1551 } 1552 1553 /* 1554 * Change the parent's subparts_cpus. 1555 * Newly added CPUs will be removed from effective_cpus and 1556 * newly deleted ones will be added back to effective_cpus. 1557 */ 1558 spin_lock_irq(&callback_lock); 1559 if (adding) { 1560 cpumask_or(parent->subparts_cpus, 1561 parent->subparts_cpus, tmp->addmask); 1562 cpumask_andnot(parent->effective_cpus, 1563 parent->effective_cpus, tmp->addmask); 1564 } 1565 if (deleting) { 1566 cpumask_andnot(parent->subparts_cpus, 1567 parent->subparts_cpus, tmp->delmask); 1568 /* 1569 * Some of the CPUs in subparts_cpus might have been offlined. 1570 */ 1571 cpumask_and(tmp->delmask, tmp->delmask, cpu_active_mask); 1572 cpumask_or(parent->effective_cpus, 1573 parent->effective_cpus, tmp->delmask); 1574 } 1575 1576 parent->nr_subparts_cpus = cpumask_weight(parent->subparts_cpus); 1577 1578 if (old_prs != new_prs) 1579 cs->partition_root_state = new_prs; 1580 1581 spin_unlock_irq(&callback_lock); 1582 1583 if (adding || deleting) { 1584 update_tasks_cpumask(parent, tmp->addmask); 1585 if (parent->child_ecpus_count) 1586 update_sibling_cpumasks(parent, cs, tmp); 1587 } 1588 1589 /* 1590 * For partcmd_update without newmask, it is being called from 1591 * cpuset_hotplug_workfn() where cpus_read_lock() wasn't taken. 1592 * Update the load balance flag and scheduling domain if 1593 * cpus_read_trylock() is successful. 1594 */ 1595 if ((cmd == partcmd_update) && !newmask && cpus_read_trylock()) { 1596 update_partition_sd_lb(cs, old_prs); 1597 cpus_read_unlock(); 1598 } 1599 1600 notify_partition_change(cs, old_prs); 1601 return 0; 1602 } 1603 1604 /* 1605 * update_cpumasks_hier() flags 1606 */ 1607 #define HIER_CHECKALL 0x01 /* Check all cpusets with no skipping */ 1608 #define HIER_NO_SD_REBUILD 0x02 /* Don't rebuild sched domains */ 1609 1610 /* 1611 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree 1612 * @cs: the cpuset to consider 1613 * @tmp: temp variables for calculating effective_cpus & partition setup 1614 * @force: don't skip any descendant cpusets if set 1615 * 1616 * When configured cpumask is changed, the effective cpumasks of this cpuset 1617 * and all its descendants need to be updated. 1618 * 1619 * On legacy hierarchy, effective_cpus will be the same with cpu_allowed. 1620 * 1621 * Called with cpuset_mutex held 1622 */ 1623 static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp, 1624 int flags) 1625 { 1626 struct cpuset *cp; 1627 struct cgroup_subsys_state *pos_css; 1628 bool need_rebuild_sched_domains = false; 1629 int old_prs, new_prs; 1630 1631 rcu_read_lock(); 1632 cpuset_for_each_descendant_pre(cp, pos_css, cs) { 1633 struct cpuset *parent = parent_cs(cp); 1634 bool update_parent = false; 1635 1636 compute_effective_cpumask(tmp->new_cpus, cp, parent); 1637 1638 /* 1639 * If it becomes empty, inherit the effective mask of the 1640 * parent, which is guaranteed to have some CPUs unless 1641 * it is a partition root that has explicitly distributed 1642 * out all its CPUs. 1643 */ 1644 if (is_in_v2_mode() && cpumask_empty(tmp->new_cpus)) { 1645 if (is_partition_valid(cp) && 1646 cpumask_equal(cp->cpus_allowed, cp->subparts_cpus)) 1647 goto update_parent_subparts; 1648 1649 cpumask_copy(tmp->new_cpus, parent->effective_cpus); 1650 if (!cp->use_parent_ecpus) { 1651 cp->use_parent_ecpus = true; 1652 parent->child_ecpus_count++; 1653 } 1654 } else if (cp->use_parent_ecpus) { 1655 cp->use_parent_ecpus = false; 1656 WARN_ON_ONCE(!parent->child_ecpus_count); 1657 parent->child_ecpus_count--; 1658 } 1659 1660 /* 1661 * Skip the whole subtree if 1662 * 1) the cpumask remains the same, 1663 * 2) has no partition root state, 1664 * 3) HIER_CHECKALL flag not set, and 1665 * 4) for v2 load balance state same as its parent. 1666 */ 1667 if (!cp->partition_root_state && !(flags & HIER_CHECKALL) && 1668 cpumask_equal(tmp->new_cpus, cp->effective_cpus) && 1669 (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) || 1670 (is_sched_load_balance(parent) == is_sched_load_balance(cp)))) { 1671 pos_css = css_rightmost_descendant(pos_css); 1672 continue; 1673 } 1674 1675 update_parent_subparts: 1676 /* 1677 * update_parent_subparts_cpumask() should have been called 1678 * for cs already in update_cpumask(). We should also call 1679 * update_tasks_cpumask() again for tasks in the parent 1680 * cpuset if the parent's subparts_cpus changes. 1681 */ 1682 old_prs = new_prs = cp->partition_root_state; 1683 if ((cp != cs) && old_prs) { 1684 switch (parent->partition_root_state) { 1685 case PRS_ROOT: 1686 case PRS_ISOLATED: 1687 update_parent = true; 1688 break; 1689 1690 default: 1691 /* 1692 * When parent is not a partition root or is 1693 * invalid, child partition roots become 1694 * invalid too. 1695 */ 1696 if (is_partition_valid(cp)) 1697 new_prs = -cp->partition_root_state; 1698 WRITE_ONCE(cp->prs_err, 1699 is_partition_invalid(parent) 1700 ? PERR_INVPARENT : PERR_NOTPART); 1701 break; 1702 } 1703 } 1704 1705 if (!css_tryget_online(&cp->css)) 1706 continue; 1707 rcu_read_unlock(); 1708 1709 if (update_parent) { 1710 update_parent_subparts_cpumask(cp, partcmd_update, NULL, 1711 tmp); 1712 /* 1713 * The cpuset partition_root_state may become 1714 * invalid. Capture it. 1715 */ 1716 new_prs = cp->partition_root_state; 1717 } 1718 1719 spin_lock_irq(&callback_lock); 1720 1721 if (cp->nr_subparts_cpus && !is_partition_valid(cp)) { 1722 /* 1723 * Put all active subparts_cpus back to effective_cpus. 1724 */ 1725 cpumask_or(tmp->new_cpus, tmp->new_cpus, 1726 cp->subparts_cpus); 1727 cpumask_and(tmp->new_cpus, tmp->new_cpus, 1728 cpu_active_mask); 1729 cp->nr_subparts_cpus = 0; 1730 cpumask_clear(cp->subparts_cpus); 1731 } 1732 1733 cpumask_copy(cp->effective_cpus, tmp->new_cpus); 1734 if (cp->nr_subparts_cpus) { 1735 /* 1736 * Make sure that effective_cpus & subparts_cpus 1737 * are mutually exclusive. 1738 */ 1739 cpumask_andnot(cp->effective_cpus, cp->effective_cpus, 1740 cp->subparts_cpus); 1741 } 1742 1743 cp->partition_root_state = new_prs; 1744 spin_unlock_irq(&callback_lock); 1745 1746 notify_partition_change(cp, old_prs); 1747 1748 WARN_ON(!is_in_v2_mode() && 1749 !cpumask_equal(cp->cpus_allowed, cp->effective_cpus)); 1750 1751 update_tasks_cpumask(cp, tmp->new_cpus); 1752 1753 /* 1754 * On default hierarchy, inherit the CS_SCHED_LOAD_BALANCE 1755 * from parent if current cpuset isn't a valid partition root 1756 * and their load balance states differ. 1757 */ 1758 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) && 1759 !is_partition_valid(cp) && 1760 (is_sched_load_balance(parent) != is_sched_load_balance(cp))) { 1761 if (is_sched_load_balance(parent)) 1762 set_bit(CS_SCHED_LOAD_BALANCE, &cp->flags); 1763 else 1764 clear_bit(CS_SCHED_LOAD_BALANCE, &cp->flags); 1765 } 1766 1767 /* 1768 * On legacy hierarchy, if the effective cpumask of any non- 1769 * empty cpuset is changed, we need to rebuild sched domains. 1770 * On default hierarchy, the cpuset needs to be a partition 1771 * root as well. 1772 */ 1773 if (!cpumask_empty(cp->cpus_allowed) && 1774 is_sched_load_balance(cp) && 1775 (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) || 1776 is_partition_valid(cp))) 1777 need_rebuild_sched_domains = true; 1778 1779 rcu_read_lock(); 1780 css_put(&cp->css); 1781 } 1782 rcu_read_unlock(); 1783 1784 if (need_rebuild_sched_domains && !(flags & HIER_NO_SD_REBUILD)) 1785 rebuild_sched_domains_locked(); 1786 } 1787 1788 /** 1789 * update_sibling_cpumasks - Update siblings cpumasks 1790 * @parent: Parent cpuset 1791 * @cs: Current cpuset 1792 * @tmp: Temp variables 1793 */ 1794 static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs, 1795 struct tmpmasks *tmp) 1796 { 1797 struct cpuset *sibling; 1798 struct cgroup_subsys_state *pos_css; 1799 1800 lockdep_assert_held(&cpuset_mutex); 1801 1802 /* 1803 * Check all its siblings and call update_cpumasks_hier() 1804 * if their use_parent_ecpus flag is set in order for them 1805 * to use the right effective_cpus value. 1806 * 1807 * The update_cpumasks_hier() function may sleep. So we have to 1808 * release the RCU read lock before calling it. HIER_NO_SD_REBUILD 1809 * flag is used to suppress rebuild of sched domains as the callers 1810 * will take care of that. 1811 */ 1812 rcu_read_lock(); 1813 cpuset_for_each_child(sibling, pos_css, parent) { 1814 if (sibling == cs) 1815 continue; 1816 if (!sibling->use_parent_ecpus) 1817 continue; 1818 if (!css_tryget_online(&sibling->css)) 1819 continue; 1820 1821 rcu_read_unlock(); 1822 update_cpumasks_hier(sibling, tmp, HIER_NO_SD_REBUILD); 1823 rcu_read_lock(); 1824 css_put(&sibling->css); 1825 } 1826 rcu_read_unlock(); 1827 } 1828 1829 /** 1830 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it 1831 * @cs: the cpuset to consider 1832 * @trialcs: trial cpuset 1833 * @buf: buffer of cpu numbers written to this cpuset 1834 */ 1835 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs, 1836 const char *buf) 1837 { 1838 int retval; 1839 struct tmpmasks tmp; 1840 bool invalidate = false; 1841 int old_prs = cs->partition_root_state; 1842 1843 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */ 1844 if (cs == &top_cpuset) 1845 return -EACCES; 1846 1847 /* 1848 * An empty cpus_allowed is ok only if the cpuset has no tasks. 1849 * Since cpulist_parse() fails on an empty mask, we special case 1850 * that parsing. The validate_change() call ensures that cpusets 1851 * with tasks have cpus. 1852 */ 1853 if (!*buf) { 1854 cpumask_clear(trialcs->cpus_allowed); 1855 } else { 1856 retval = cpulist_parse(buf, trialcs->cpus_allowed); 1857 if (retval < 0) 1858 return retval; 1859 1860 if (!cpumask_subset(trialcs->cpus_allowed, 1861 top_cpuset.cpus_allowed)) 1862 return -EINVAL; 1863 } 1864 1865 /* Nothing to do if the cpus didn't change */ 1866 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed)) 1867 return 0; 1868 1869 if (alloc_cpumasks(NULL, &tmp)) 1870 return -ENOMEM; 1871 1872 retval = validate_change(cs, trialcs); 1873 1874 if ((retval == -EINVAL) && cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) { 1875 struct cpuset *cp, *parent; 1876 struct cgroup_subsys_state *css; 1877 1878 /* 1879 * The -EINVAL error code indicates that partition sibling 1880 * CPU exclusivity rule has been violated. We still allow 1881 * the cpumask change to proceed while invalidating the 1882 * partition. However, any conflicting sibling partitions 1883 * have to be marked as invalid too. 1884 */ 1885 invalidate = true; 1886 rcu_read_lock(); 1887 parent = parent_cs(cs); 1888 cpuset_for_each_child(cp, css, parent) 1889 if (is_partition_valid(cp) && 1890 cpumask_intersects(trialcs->cpus_allowed, cp->cpus_allowed)) { 1891 rcu_read_unlock(); 1892 update_parent_subparts_cpumask(cp, partcmd_invalidate, NULL, &tmp); 1893 rcu_read_lock(); 1894 } 1895 rcu_read_unlock(); 1896 retval = 0; 1897 } 1898 if (retval < 0) 1899 goto out_free; 1900 1901 if (cs->partition_root_state) { 1902 if (invalidate) 1903 update_parent_subparts_cpumask(cs, partcmd_invalidate, 1904 NULL, &tmp); 1905 else 1906 update_parent_subparts_cpumask(cs, partcmd_update, 1907 trialcs->cpus_allowed, &tmp); 1908 } 1909 1910 compute_effective_cpumask(trialcs->effective_cpus, trialcs, 1911 parent_cs(cs)); 1912 spin_lock_irq(&callback_lock); 1913 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed); 1914 1915 /* 1916 * Make sure that subparts_cpus, if not empty, is a subset of 1917 * cpus_allowed. Clear subparts_cpus if partition not valid or 1918 * empty effective cpus with tasks. 1919 */ 1920 if (cs->nr_subparts_cpus) { 1921 if (!is_partition_valid(cs) || 1922 (cpumask_subset(trialcs->effective_cpus, cs->subparts_cpus) && 1923 partition_is_populated(cs, NULL))) { 1924 cs->nr_subparts_cpus = 0; 1925 cpumask_clear(cs->subparts_cpus); 1926 } else { 1927 cpumask_and(cs->subparts_cpus, cs->subparts_cpus, 1928 cs->cpus_allowed); 1929 cs->nr_subparts_cpus = cpumask_weight(cs->subparts_cpus); 1930 } 1931 } 1932 spin_unlock_irq(&callback_lock); 1933 1934 /* effective_cpus will be updated here */ 1935 update_cpumasks_hier(cs, &tmp, 0); 1936 1937 if (cs->partition_root_state) { 1938 struct cpuset *parent = parent_cs(cs); 1939 1940 /* 1941 * For partition root, update the cpumasks of sibling 1942 * cpusets if they use parent's effective_cpus. 1943 */ 1944 if (parent->child_ecpus_count) 1945 update_sibling_cpumasks(parent, cs, &tmp); 1946 1947 /* Update CS_SCHED_LOAD_BALANCE and/or sched_domains */ 1948 update_partition_sd_lb(cs, old_prs); 1949 } 1950 out_free: 1951 free_cpumasks(NULL, &tmp); 1952 return retval; 1953 } 1954 1955 /* 1956 * Migrate memory region from one set of nodes to another. This is 1957 * performed asynchronously as it can be called from process migration path 1958 * holding locks involved in process management. All mm migrations are 1959 * performed in the queued order and can be waited for by flushing 1960 * cpuset_migrate_mm_wq. 1961 */ 1962 1963 struct cpuset_migrate_mm_work { 1964 struct work_struct work; 1965 struct mm_struct *mm; 1966 nodemask_t from; 1967 nodemask_t to; 1968 }; 1969 1970 static void cpuset_migrate_mm_workfn(struct work_struct *work) 1971 { 1972 struct cpuset_migrate_mm_work *mwork = 1973 container_of(work, struct cpuset_migrate_mm_work, work); 1974 1975 /* on a wq worker, no need to worry about %current's mems_allowed */ 1976 do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL); 1977 mmput(mwork->mm); 1978 kfree(mwork); 1979 } 1980 1981 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from, 1982 const nodemask_t *to) 1983 { 1984 struct cpuset_migrate_mm_work *mwork; 1985 1986 if (nodes_equal(*from, *to)) { 1987 mmput(mm); 1988 return; 1989 } 1990 1991 mwork = kzalloc(sizeof(*mwork), GFP_KERNEL); 1992 if (mwork) { 1993 mwork->mm = mm; 1994 mwork->from = *from; 1995 mwork->to = *to; 1996 INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn); 1997 queue_work(cpuset_migrate_mm_wq, &mwork->work); 1998 } else { 1999 mmput(mm); 2000 } 2001 } 2002 2003 static void cpuset_post_attach(void) 2004 { 2005 flush_workqueue(cpuset_migrate_mm_wq); 2006 } 2007 2008 /* 2009 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy 2010 * @tsk: the task to change 2011 * @newmems: new nodes that the task will be set 2012 * 2013 * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed 2014 * and rebind an eventual tasks' mempolicy. If the task is allocating in 2015 * parallel, it might temporarily see an empty intersection, which results in 2016 * a seqlock check and retry before OOM or allocation failure. 2017 */ 2018 static void cpuset_change_task_nodemask(struct task_struct *tsk, 2019 nodemask_t *newmems) 2020 { 2021 task_lock(tsk); 2022 2023 local_irq_disable(); 2024 write_seqcount_begin(&tsk->mems_allowed_seq); 2025 2026 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems); 2027 mpol_rebind_task(tsk, newmems); 2028 tsk->mems_allowed = *newmems; 2029 2030 write_seqcount_end(&tsk->mems_allowed_seq); 2031 local_irq_enable(); 2032 2033 task_unlock(tsk); 2034 } 2035 2036 static void *cpuset_being_rebound; 2037 2038 /** 2039 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset. 2040 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed 2041 * 2042 * Iterate through each task of @cs updating its mems_allowed to the 2043 * effective cpuset's. As this function is called with cpuset_mutex held, 2044 * cpuset membership stays stable. 2045 */ 2046 static void update_tasks_nodemask(struct cpuset *cs) 2047 { 2048 static nodemask_t newmems; /* protected by cpuset_mutex */ 2049 struct css_task_iter it; 2050 struct task_struct *task; 2051 2052 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */ 2053 2054 guarantee_online_mems(cs, &newmems); 2055 2056 /* 2057 * The mpol_rebind_mm() call takes mmap_lock, which we couldn't 2058 * take while holding tasklist_lock. Forks can happen - the 2059 * mpol_dup() cpuset_being_rebound check will catch such forks, 2060 * and rebind their vma mempolicies too. Because we still hold 2061 * the global cpuset_mutex, we know that no other rebind effort 2062 * will be contending for the global variable cpuset_being_rebound. 2063 * It's ok if we rebind the same mm twice; mpol_rebind_mm() 2064 * is idempotent. Also migrate pages in each mm to new nodes. 2065 */ 2066 css_task_iter_start(&cs->css, 0, &it); 2067 while ((task = css_task_iter_next(&it))) { 2068 struct mm_struct *mm; 2069 bool migrate; 2070 2071 cpuset_change_task_nodemask(task, &newmems); 2072 2073 mm = get_task_mm(task); 2074 if (!mm) 2075 continue; 2076 2077 migrate = is_memory_migrate(cs); 2078 2079 mpol_rebind_mm(mm, &cs->mems_allowed); 2080 if (migrate) 2081 cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems); 2082 else 2083 mmput(mm); 2084 } 2085 css_task_iter_end(&it); 2086 2087 /* 2088 * All the tasks' nodemasks have been updated, update 2089 * cs->old_mems_allowed. 2090 */ 2091 cs->old_mems_allowed = newmems; 2092 2093 /* We're done rebinding vmas to this cpuset's new mems_allowed. */ 2094 cpuset_being_rebound = NULL; 2095 } 2096 2097 /* 2098 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree 2099 * @cs: the cpuset to consider 2100 * @new_mems: a temp variable for calculating new effective_mems 2101 * 2102 * When configured nodemask is changed, the effective nodemasks of this cpuset 2103 * and all its descendants need to be updated. 2104 * 2105 * On legacy hierarchy, effective_mems will be the same with mems_allowed. 2106 * 2107 * Called with cpuset_mutex held 2108 */ 2109 static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems) 2110 { 2111 struct cpuset *cp; 2112 struct cgroup_subsys_state *pos_css; 2113 2114 rcu_read_lock(); 2115 cpuset_for_each_descendant_pre(cp, pos_css, cs) { 2116 struct cpuset *parent = parent_cs(cp); 2117 2118 nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems); 2119 2120 /* 2121 * If it becomes empty, inherit the effective mask of the 2122 * parent, which is guaranteed to have some MEMs. 2123 */ 2124 if (is_in_v2_mode() && nodes_empty(*new_mems)) 2125 *new_mems = parent->effective_mems; 2126 2127 /* Skip the whole subtree if the nodemask remains the same. */ 2128 if (nodes_equal(*new_mems, cp->effective_mems)) { 2129 pos_css = css_rightmost_descendant(pos_css); 2130 continue; 2131 } 2132 2133 if (!css_tryget_online(&cp->css)) 2134 continue; 2135 rcu_read_unlock(); 2136 2137 spin_lock_irq(&callback_lock); 2138 cp->effective_mems = *new_mems; 2139 spin_unlock_irq(&callback_lock); 2140 2141 WARN_ON(!is_in_v2_mode() && 2142 !nodes_equal(cp->mems_allowed, cp->effective_mems)); 2143 2144 update_tasks_nodemask(cp); 2145 2146 rcu_read_lock(); 2147 css_put(&cp->css); 2148 } 2149 rcu_read_unlock(); 2150 } 2151 2152 /* 2153 * Handle user request to change the 'mems' memory placement 2154 * of a cpuset. Needs to validate the request, update the 2155 * cpusets mems_allowed, and for each task in the cpuset, 2156 * update mems_allowed and rebind task's mempolicy and any vma 2157 * mempolicies and if the cpuset is marked 'memory_migrate', 2158 * migrate the tasks pages to the new memory. 2159 * 2160 * Call with cpuset_mutex held. May take callback_lock during call. 2161 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs, 2162 * lock each such tasks mm->mmap_lock, scan its vma's and rebind 2163 * their mempolicies to the cpusets new mems_allowed. 2164 */ 2165 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs, 2166 const char *buf) 2167 { 2168 int retval; 2169 2170 /* 2171 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY]; 2172 * it's read-only 2173 */ 2174 if (cs == &top_cpuset) { 2175 retval = -EACCES; 2176 goto done; 2177 } 2178 2179 /* 2180 * An empty mems_allowed is ok iff there are no tasks in the cpuset. 2181 * Since nodelist_parse() fails on an empty mask, we special case 2182 * that parsing. The validate_change() call ensures that cpusets 2183 * with tasks have memory. 2184 */ 2185 if (!*buf) { 2186 nodes_clear(trialcs->mems_allowed); 2187 } else { 2188 retval = nodelist_parse(buf, trialcs->mems_allowed); 2189 if (retval < 0) 2190 goto done; 2191 2192 if (!nodes_subset(trialcs->mems_allowed, 2193 top_cpuset.mems_allowed)) { 2194 retval = -EINVAL; 2195 goto done; 2196 } 2197 } 2198 2199 if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) { 2200 retval = 0; /* Too easy - nothing to do */ 2201 goto done; 2202 } 2203 retval = validate_change(cs, trialcs); 2204 if (retval < 0) 2205 goto done; 2206 2207 check_insane_mems_config(&trialcs->mems_allowed); 2208 2209 spin_lock_irq(&callback_lock); 2210 cs->mems_allowed = trialcs->mems_allowed; 2211 spin_unlock_irq(&callback_lock); 2212 2213 /* use trialcs->mems_allowed as a temp variable */ 2214 update_nodemasks_hier(cs, &trialcs->mems_allowed); 2215 done: 2216 return retval; 2217 } 2218 2219 bool current_cpuset_is_being_rebound(void) 2220 { 2221 bool ret; 2222 2223 rcu_read_lock(); 2224 ret = task_cs(current) == cpuset_being_rebound; 2225 rcu_read_unlock(); 2226 2227 return ret; 2228 } 2229 2230 static int update_relax_domain_level(struct cpuset *cs, s64 val) 2231 { 2232 #ifdef CONFIG_SMP 2233 if (val < -1 || val > sched_domain_level_max + 1) 2234 return -EINVAL; 2235 #endif 2236 2237 if (val != cs->relax_domain_level) { 2238 cs->relax_domain_level = val; 2239 if (!cpumask_empty(cs->cpus_allowed) && 2240 is_sched_load_balance(cs)) 2241 rebuild_sched_domains_locked(); 2242 } 2243 2244 return 0; 2245 } 2246 2247 /** 2248 * update_tasks_flags - update the spread flags of tasks in the cpuset. 2249 * @cs: the cpuset in which each task's spread flags needs to be changed 2250 * 2251 * Iterate through each task of @cs updating its spread flags. As this 2252 * function is called with cpuset_mutex held, cpuset membership stays 2253 * stable. 2254 */ 2255 static void update_tasks_flags(struct cpuset *cs) 2256 { 2257 struct css_task_iter it; 2258 struct task_struct *task; 2259 2260 css_task_iter_start(&cs->css, 0, &it); 2261 while ((task = css_task_iter_next(&it))) 2262 cpuset_update_task_spread_flags(cs, task); 2263 css_task_iter_end(&it); 2264 } 2265 2266 /* 2267 * update_flag - read a 0 or a 1 in a file and update associated flag 2268 * bit: the bit to update (see cpuset_flagbits_t) 2269 * cs: the cpuset to update 2270 * turning_on: whether the flag is being set or cleared 2271 * 2272 * Call with cpuset_mutex held. 2273 */ 2274 2275 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, 2276 int turning_on) 2277 { 2278 struct cpuset *trialcs; 2279 int balance_flag_changed; 2280 int spread_flag_changed; 2281 int err; 2282 2283 trialcs = alloc_trial_cpuset(cs); 2284 if (!trialcs) 2285 return -ENOMEM; 2286 2287 if (turning_on) 2288 set_bit(bit, &trialcs->flags); 2289 else 2290 clear_bit(bit, &trialcs->flags); 2291 2292 err = validate_change(cs, trialcs); 2293 if (err < 0) 2294 goto out; 2295 2296 balance_flag_changed = (is_sched_load_balance(cs) != 2297 is_sched_load_balance(trialcs)); 2298 2299 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs)) 2300 || (is_spread_page(cs) != is_spread_page(trialcs))); 2301 2302 spin_lock_irq(&callback_lock); 2303 cs->flags = trialcs->flags; 2304 spin_unlock_irq(&callback_lock); 2305 2306 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed) 2307 rebuild_sched_domains_locked(); 2308 2309 if (spread_flag_changed) 2310 update_tasks_flags(cs); 2311 out: 2312 free_cpuset(trialcs); 2313 return err; 2314 } 2315 2316 /** 2317 * update_prstate - update partition_root_state 2318 * @cs: the cpuset to update 2319 * @new_prs: new partition root state 2320 * Return: 0 if successful, != 0 if error 2321 * 2322 * Call with cpuset_mutex held. 2323 */ 2324 static int update_prstate(struct cpuset *cs, int new_prs) 2325 { 2326 int err = PERR_NONE, old_prs = cs->partition_root_state; 2327 struct cpuset *parent = parent_cs(cs); 2328 struct tmpmasks tmpmask; 2329 2330 if (old_prs == new_prs) 2331 return 0; 2332 2333 /* 2334 * For a previously invalid partition root, leave it at being 2335 * invalid if new_prs is not "member". 2336 */ 2337 if (new_prs && is_prs_invalid(old_prs)) { 2338 cs->partition_root_state = -new_prs; 2339 return 0; 2340 } 2341 2342 if (alloc_cpumasks(NULL, &tmpmask)) 2343 return -ENOMEM; 2344 2345 err = update_partition_exclusive(cs, new_prs); 2346 if (err) 2347 goto out; 2348 2349 if (!old_prs) { 2350 /* 2351 * cpus_allowed cannot be empty. 2352 */ 2353 if (cpumask_empty(cs->cpus_allowed)) { 2354 err = PERR_CPUSEMPTY; 2355 goto out; 2356 } 2357 2358 err = update_parent_subparts_cpumask(cs, partcmd_enable, 2359 NULL, &tmpmask); 2360 } else if (old_prs && new_prs) { 2361 /* 2362 * A change in load balance state only, no change in cpumasks. 2363 */ 2364 ; 2365 } else { 2366 /* 2367 * Switching back to member is always allowed even if it 2368 * disables child partitions. 2369 */ 2370 update_parent_subparts_cpumask(cs, partcmd_disable, NULL, 2371 &tmpmask); 2372 2373 /* 2374 * If there are child partitions, they will all become invalid. 2375 */ 2376 if (unlikely(cs->nr_subparts_cpus)) { 2377 spin_lock_irq(&callback_lock); 2378 cs->nr_subparts_cpus = 0; 2379 cpumask_clear(cs->subparts_cpus); 2380 compute_effective_cpumask(cs->effective_cpus, cs, parent); 2381 spin_unlock_irq(&callback_lock); 2382 } 2383 } 2384 out: 2385 /* 2386 * Make partition invalid & disable CS_CPU_EXCLUSIVE if an error 2387 * happens. 2388 */ 2389 if (err) { 2390 new_prs = -new_prs; 2391 update_partition_exclusive(cs, new_prs); 2392 } 2393 2394 spin_lock_irq(&callback_lock); 2395 cs->partition_root_state = new_prs; 2396 WRITE_ONCE(cs->prs_err, err); 2397 spin_unlock_irq(&callback_lock); 2398 2399 /* 2400 * Update child cpusets, if present. 2401 * Force update if switching back to member. 2402 */ 2403 if (!list_empty(&cs->css.children)) 2404 update_cpumasks_hier(cs, &tmpmask, !new_prs ? HIER_CHECKALL : 0); 2405 2406 /* Update sched domains and load balance flag */ 2407 update_partition_sd_lb(cs, old_prs); 2408 2409 notify_partition_change(cs, old_prs); 2410 free_cpumasks(NULL, &tmpmask); 2411 return 0; 2412 } 2413 2414 /* 2415 * Frequency meter - How fast is some event occurring? 2416 * 2417 * These routines manage a digitally filtered, constant time based, 2418 * event frequency meter. There are four routines: 2419 * fmeter_init() - initialize a frequency meter. 2420 * fmeter_markevent() - called each time the event happens. 2421 * fmeter_getrate() - returns the recent rate of such events. 2422 * fmeter_update() - internal routine used to update fmeter. 2423 * 2424 * A common data structure is passed to each of these routines, 2425 * which is used to keep track of the state required to manage the 2426 * frequency meter and its digital filter. 2427 * 2428 * The filter works on the number of events marked per unit time. 2429 * The filter is single-pole low-pass recursive (IIR). The time unit 2430 * is 1 second. Arithmetic is done using 32-bit integers scaled to 2431 * simulate 3 decimal digits of precision (multiplied by 1000). 2432 * 2433 * With an FM_COEF of 933, and a time base of 1 second, the filter 2434 * has a half-life of 10 seconds, meaning that if the events quit 2435 * happening, then the rate returned from the fmeter_getrate() 2436 * will be cut in half each 10 seconds, until it converges to zero. 2437 * 2438 * It is not worth doing a real infinitely recursive filter. If more 2439 * than FM_MAXTICKS ticks have elapsed since the last filter event, 2440 * just compute FM_MAXTICKS ticks worth, by which point the level 2441 * will be stable. 2442 * 2443 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid 2444 * arithmetic overflow in the fmeter_update() routine. 2445 * 2446 * Given the simple 32 bit integer arithmetic used, this meter works 2447 * best for reporting rates between one per millisecond (msec) and 2448 * one per 32 (approx) seconds. At constant rates faster than one 2449 * per msec it maxes out at values just under 1,000,000. At constant 2450 * rates between one per msec, and one per second it will stabilize 2451 * to a value N*1000, where N is the rate of events per second. 2452 * At constant rates between one per second and one per 32 seconds, 2453 * it will be choppy, moving up on the seconds that have an event, 2454 * and then decaying until the next event. At rates slower than 2455 * about one in 32 seconds, it decays all the way back to zero between 2456 * each event. 2457 */ 2458 2459 #define FM_COEF 933 /* coefficient for half-life of 10 secs */ 2460 #define FM_MAXTICKS ((u32)99) /* useless computing more ticks than this */ 2461 #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */ 2462 #define FM_SCALE 1000 /* faux fixed point scale */ 2463 2464 /* Initialize a frequency meter */ 2465 static void fmeter_init(struct fmeter *fmp) 2466 { 2467 fmp->cnt = 0; 2468 fmp->val = 0; 2469 fmp->time = 0; 2470 spin_lock_init(&fmp->lock); 2471 } 2472 2473 /* Internal meter update - process cnt events and update value */ 2474 static void fmeter_update(struct fmeter *fmp) 2475 { 2476 time64_t now; 2477 u32 ticks; 2478 2479 now = ktime_get_seconds(); 2480 ticks = now - fmp->time; 2481 2482 if (ticks == 0) 2483 return; 2484 2485 ticks = min(FM_MAXTICKS, ticks); 2486 while (ticks-- > 0) 2487 fmp->val = (FM_COEF * fmp->val) / FM_SCALE; 2488 fmp->time = now; 2489 2490 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE; 2491 fmp->cnt = 0; 2492 } 2493 2494 /* Process any previous ticks, then bump cnt by one (times scale). */ 2495 static void fmeter_markevent(struct fmeter *fmp) 2496 { 2497 spin_lock(&fmp->lock); 2498 fmeter_update(fmp); 2499 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE); 2500 spin_unlock(&fmp->lock); 2501 } 2502 2503 /* Process any previous ticks, then return current value. */ 2504 static int fmeter_getrate(struct fmeter *fmp) 2505 { 2506 int val; 2507 2508 spin_lock(&fmp->lock); 2509 fmeter_update(fmp); 2510 val = fmp->val; 2511 spin_unlock(&fmp->lock); 2512 return val; 2513 } 2514 2515 static struct cpuset *cpuset_attach_old_cs; 2516 2517 /* 2518 * Check to see if a cpuset can accept a new task 2519 * For v1, cpus_allowed and mems_allowed can't be empty. 2520 * For v2, effective_cpus can't be empty. 2521 * Note that in v1, effective_cpus = cpus_allowed. 2522 */ 2523 static int cpuset_can_attach_check(struct cpuset *cs) 2524 { 2525 if (cpumask_empty(cs->effective_cpus) || 2526 (!is_in_v2_mode() && nodes_empty(cs->mems_allowed))) 2527 return -ENOSPC; 2528 return 0; 2529 } 2530 2531 static void reset_migrate_dl_data(struct cpuset *cs) 2532 { 2533 cs->nr_migrate_dl_tasks = 0; 2534 cs->sum_migrate_dl_bw = 0; 2535 } 2536 2537 /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */ 2538 static int cpuset_can_attach(struct cgroup_taskset *tset) 2539 { 2540 struct cgroup_subsys_state *css; 2541 struct cpuset *cs, *oldcs; 2542 struct task_struct *task; 2543 bool cpus_updated, mems_updated; 2544 int ret; 2545 2546 /* used later by cpuset_attach() */ 2547 cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css)); 2548 oldcs = cpuset_attach_old_cs; 2549 cs = css_cs(css); 2550 2551 mutex_lock(&cpuset_mutex); 2552 2553 /* Check to see if task is allowed in the cpuset */ 2554 ret = cpuset_can_attach_check(cs); 2555 if (ret) 2556 goto out_unlock; 2557 2558 cpus_updated = !cpumask_equal(cs->effective_cpus, oldcs->effective_cpus); 2559 mems_updated = !nodes_equal(cs->effective_mems, oldcs->effective_mems); 2560 2561 cgroup_taskset_for_each(task, css, tset) { 2562 ret = task_can_attach(task); 2563 if (ret) 2564 goto out_unlock; 2565 2566 /* 2567 * Skip rights over task check in v2 when nothing changes, 2568 * migration permission derives from hierarchy ownership in 2569 * cgroup_procs_write_permission()). 2570 */ 2571 if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) || 2572 (cpus_updated || mems_updated)) { 2573 ret = security_task_setscheduler(task); 2574 if (ret) 2575 goto out_unlock; 2576 } 2577 2578 if (dl_task(task)) { 2579 cs->nr_migrate_dl_tasks++; 2580 cs->sum_migrate_dl_bw += task->dl.dl_bw; 2581 } 2582 } 2583 2584 if (!cs->nr_migrate_dl_tasks) 2585 goto out_success; 2586 2587 if (!cpumask_intersects(oldcs->effective_cpus, cs->effective_cpus)) { 2588 int cpu = cpumask_any_and(cpu_active_mask, cs->effective_cpus); 2589 2590 if (unlikely(cpu >= nr_cpu_ids)) { 2591 reset_migrate_dl_data(cs); 2592 ret = -EINVAL; 2593 goto out_unlock; 2594 } 2595 2596 ret = dl_bw_alloc(cpu, cs->sum_migrate_dl_bw); 2597 if (ret) { 2598 reset_migrate_dl_data(cs); 2599 goto out_unlock; 2600 } 2601 } 2602 2603 out_success: 2604 /* 2605 * Mark attach is in progress. This makes validate_change() fail 2606 * changes which zero cpus/mems_allowed. 2607 */ 2608 cs->attach_in_progress++; 2609 out_unlock: 2610 mutex_unlock(&cpuset_mutex); 2611 return ret; 2612 } 2613 2614 static void cpuset_cancel_attach(struct cgroup_taskset *tset) 2615 { 2616 struct cgroup_subsys_state *css; 2617 struct cpuset *cs; 2618 2619 cgroup_taskset_first(tset, &css); 2620 cs = css_cs(css); 2621 2622 mutex_lock(&cpuset_mutex); 2623 cs->attach_in_progress--; 2624 if (!cs->attach_in_progress) 2625 wake_up(&cpuset_attach_wq); 2626 2627 if (cs->nr_migrate_dl_tasks) { 2628 int cpu = cpumask_any(cs->effective_cpus); 2629 2630 dl_bw_free(cpu, cs->sum_migrate_dl_bw); 2631 reset_migrate_dl_data(cs); 2632 } 2633 2634 mutex_unlock(&cpuset_mutex); 2635 } 2636 2637 /* 2638 * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach_task() 2639 * but we can't allocate it dynamically there. Define it global and 2640 * allocate from cpuset_init(). 2641 */ 2642 static cpumask_var_t cpus_attach; 2643 static nodemask_t cpuset_attach_nodemask_to; 2644 2645 static void cpuset_attach_task(struct cpuset *cs, struct task_struct *task) 2646 { 2647 lockdep_assert_held(&cpuset_mutex); 2648 2649 if (cs != &top_cpuset) 2650 guarantee_online_cpus(task, cpus_attach); 2651 else 2652 cpumask_andnot(cpus_attach, task_cpu_possible_mask(task), 2653 cs->subparts_cpus); 2654 /* 2655 * can_attach beforehand should guarantee that this doesn't 2656 * fail. TODO: have a better way to handle failure here 2657 */ 2658 WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach)); 2659 2660 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to); 2661 cpuset_update_task_spread_flags(cs, task); 2662 } 2663 2664 static void cpuset_attach(struct cgroup_taskset *tset) 2665 { 2666 struct task_struct *task; 2667 struct task_struct *leader; 2668 struct cgroup_subsys_state *css; 2669 struct cpuset *cs; 2670 struct cpuset *oldcs = cpuset_attach_old_cs; 2671 bool cpus_updated, mems_updated; 2672 2673 cgroup_taskset_first(tset, &css); 2674 cs = css_cs(css); 2675 2676 lockdep_assert_cpus_held(); /* see cgroup_attach_lock() */ 2677 mutex_lock(&cpuset_mutex); 2678 cpus_updated = !cpumask_equal(cs->effective_cpus, 2679 oldcs->effective_cpus); 2680 mems_updated = !nodes_equal(cs->effective_mems, oldcs->effective_mems); 2681 2682 /* 2683 * In the default hierarchy, enabling cpuset in the child cgroups 2684 * will trigger a number of cpuset_attach() calls with no change 2685 * in effective cpus and mems. In that case, we can optimize out 2686 * by skipping the task iteration and update. 2687 */ 2688 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) && 2689 !cpus_updated && !mems_updated) { 2690 cpuset_attach_nodemask_to = cs->effective_mems; 2691 goto out; 2692 } 2693 2694 guarantee_online_mems(cs, &cpuset_attach_nodemask_to); 2695 2696 cgroup_taskset_for_each(task, css, tset) 2697 cpuset_attach_task(cs, task); 2698 2699 /* 2700 * Change mm for all threadgroup leaders. This is expensive and may 2701 * sleep and should be moved outside migration path proper. Skip it 2702 * if there is no change in effective_mems and CS_MEMORY_MIGRATE is 2703 * not set. 2704 */ 2705 cpuset_attach_nodemask_to = cs->effective_mems; 2706 if (!is_memory_migrate(cs) && !mems_updated) 2707 goto out; 2708 2709 cgroup_taskset_for_each_leader(leader, css, tset) { 2710 struct mm_struct *mm = get_task_mm(leader); 2711 2712 if (mm) { 2713 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to); 2714 2715 /* 2716 * old_mems_allowed is the same with mems_allowed 2717 * here, except if this task is being moved 2718 * automatically due to hotplug. In that case 2719 * @mems_allowed has been updated and is empty, so 2720 * @old_mems_allowed is the right nodesets that we 2721 * migrate mm from. 2722 */ 2723 if (is_memory_migrate(cs)) 2724 cpuset_migrate_mm(mm, &oldcs->old_mems_allowed, 2725 &cpuset_attach_nodemask_to); 2726 else 2727 mmput(mm); 2728 } 2729 } 2730 2731 out: 2732 cs->old_mems_allowed = cpuset_attach_nodemask_to; 2733 2734 if (cs->nr_migrate_dl_tasks) { 2735 cs->nr_deadline_tasks += cs->nr_migrate_dl_tasks; 2736 oldcs->nr_deadline_tasks -= cs->nr_migrate_dl_tasks; 2737 reset_migrate_dl_data(cs); 2738 } 2739 2740 cs->attach_in_progress--; 2741 if (!cs->attach_in_progress) 2742 wake_up(&cpuset_attach_wq); 2743 2744 mutex_unlock(&cpuset_mutex); 2745 } 2746 2747 /* The various types of files and directories in a cpuset file system */ 2748 2749 typedef enum { 2750 FILE_MEMORY_MIGRATE, 2751 FILE_CPULIST, 2752 FILE_MEMLIST, 2753 FILE_EFFECTIVE_CPULIST, 2754 FILE_EFFECTIVE_MEMLIST, 2755 FILE_SUBPARTS_CPULIST, 2756 FILE_CPU_EXCLUSIVE, 2757 FILE_MEM_EXCLUSIVE, 2758 FILE_MEM_HARDWALL, 2759 FILE_SCHED_LOAD_BALANCE, 2760 FILE_PARTITION_ROOT, 2761 FILE_SCHED_RELAX_DOMAIN_LEVEL, 2762 FILE_MEMORY_PRESSURE_ENABLED, 2763 FILE_MEMORY_PRESSURE, 2764 FILE_SPREAD_PAGE, 2765 FILE_SPREAD_SLAB, 2766 } cpuset_filetype_t; 2767 2768 static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft, 2769 u64 val) 2770 { 2771 struct cpuset *cs = css_cs(css); 2772 cpuset_filetype_t type = cft->private; 2773 int retval = 0; 2774 2775 cpus_read_lock(); 2776 mutex_lock(&cpuset_mutex); 2777 if (!is_cpuset_online(cs)) { 2778 retval = -ENODEV; 2779 goto out_unlock; 2780 } 2781 2782 switch (type) { 2783 case FILE_CPU_EXCLUSIVE: 2784 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val); 2785 break; 2786 case FILE_MEM_EXCLUSIVE: 2787 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val); 2788 break; 2789 case FILE_MEM_HARDWALL: 2790 retval = update_flag(CS_MEM_HARDWALL, cs, val); 2791 break; 2792 case FILE_SCHED_LOAD_BALANCE: 2793 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val); 2794 break; 2795 case FILE_MEMORY_MIGRATE: 2796 retval = update_flag(CS_MEMORY_MIGRATE, cs, val); 2797 break; 2798 case FILE_MEMORY_PRESSURE_ENABLED: 2799 cpuset_memory_pressure_enabled = !!val; 2800 break; 2801 case FILE_SPREAD_PAGE: 2802 retval = update_flag(CS_SPREAD_PAGE, cs, val); 2803 break; 2804 case FILE_SPREAD_SLAB: 2805 retval = update_flag(CS_SPREAD_SLAB, cs, val); 2806 break; 2807 default: 2808 retval = -EINVAL; 2809 break; 2810 } 2811 out_unlock: 2812 mutex_unlock(&cpuset_mutex); 2813 cpus_read_unlock(); 2814 return retval; 2815 } 2816 2817 static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft, 2818 s64 val) 2819 { 2820 struct cpuset *cs = css_cs(css); 2821 cpuset_filetype_t type = cft->private; 2822 int retval = -ENODEV; 2823 2824 cpus_read_lock(); 2825 mutex_lock(&cpuset_mutex); 2826 if (!is_cpuset_online(cs)) 2827 goto out_unlock; 2828 2829 switch (type) { 2830 case FILE_SCHED_RELAX_DOMAIN_LEVEL: 2831 retval = update_relax_domain_level(cs, val); 2832 break; 2833 default: 2834 retval = -EINVAL; 2835 break; 2836 } 2837 out_unlock: 2838 mutex_unlock(&cpuset_mutex); 2839 cpus_read_unlock(); 2840 return retval; 2841 } 2842 2843 /* 2844 * Common handling for a write to a "cpus" or "mems" file. 2845 */ 2846 static ssize_t cpuset_write_resmask(struct kernfs_open_file *of, 2847 char *buf, size_t nbytes, loff_t off) 2848 { 2849 struct cpuset *cs = css_cs(of_css(of)); 2850 struct cpuset *trialcs; 2851 int retval = -ENODEV; 2852 2853 buf = strstrip(buf); 2854 2855 /* 2856 * CPU or memory hotunplug may leave @cs w/o any execution 2857 * resources, in which case the hotplug code asynchronously updates 2858 * configuration and transfers all tasks to the nearest ancestor 2859 * which can execute. 2860 * 2861 * As writes to "cpus" or "mems" may restore @cs's execution 2862 * resources, wait for the previously scheduled operations before 2863 * proceeding, so that we don't end up keep removing tasks added 2864 * after execution capability is restored. 2865 * 2866 * cpuset_hotplug_work calls back into cgroup core via 2867 * cgroup_transfer_tasks() and waiting for it from a cgroupfs 2868 * operation like this one can lead to a deadlock through kernfs 2869 * active_ref protection. Let's break the protection. Losing the 2870 * protection is okay as we check whether @cs is online after 2871 * grabbing cpuset_mutex anyway. This only happens on the legacy 2872 * hierarchies. 2873 */ 2874 css_get(&cs->css); 2875 kernfs_break_active_protection(of->kn); 2876 flush_work(&cpuset_hotplug_work); 2877 2878 cpus_read_lock(); 2879 mutex_lock(&cpuset_mutex); 2880 if (!is_cpuset_online(cs)) 2881 goto out_unlock; 2882 2883 trialcs = alloc_trial_cpuset(cs); 2884 if (!trialcs) { 2885 retval = -ENOMEM; 2886 goto out_unlock; 2887 } 2888 2889 switch (of_cft(of)->private) { 2890 case FILE_CPULIST: 2891 retval = update_cpumask(cs, trialcs, buf); 2892 break; 2893 case FILE_MEMLIST: 2894 retval = update_nodemask(cs, trialcs, buf); 2895 break; 2896 default: 2897 retval = -EINVAL; 2898 break; 2899 } 2900 2901 free_cpuset(trialcs); 2902 out_unlock: 2903 mutex_unlock(&cpuset_mutex); 2904 cpus_read_unlock(); 2905 kernfs_unbreak_active_protection(of->kn); 2906 css_put(&cs->css); 2907 flush_workqueue(cpuset_migrate_mm_wq); 2908 return retval ?: nbytes; 2909 } 2910 2911 /* 2912 * These ascii lists should be read in a single call, by using a user 2913 * buffer large enough to hold the entire map. If read in smaller 2914 * chunks, there is no guarantee of atomicity. Since the display format 2915 * used, list of ranges of sequential numbers, is variable length, 2916 * and since these maps can change value dynamically, one could read 2917 * gibberish by doing partial reads while a list was changing. 2918 */ 2919 static int cpuset_common_seq_show(struct seq_file *sf, void *v) 2920 { 2921 struct cpuset *cs = css_cs(seq_css(sf)); 2922 cpuset_filetype_t type = seq_cft(sf)->private; 2923 int ret = 0; 2924 2925 spin_lock_irq(&callback_lock); 2926 2927 switch (type) { 2928 case FILE_CPULIST: 2929 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed)); 2930 break; 2931 case FILE_MEMLIST: 2932 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed)); 2933 break; 2934 case FILE_EFFECTIVE_CPULIST: 2935 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus)); 2936 break; 2937 case FILE_EFFECTIVE_MEMLIST: 2938 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems)); 2939 break; 2940 case FILE_SUBPARTS_CPULIST: 2941 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->subparts_cpus)); 2942 break; 2943 default: 2944 ret = -EINVAL; 2945 } 2946 2947 spin_unlock_irq(&callback_lock); 2948 return ret; 2949 } 2950 2951 static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft) 2952 { 2953 struct cpuset *cs = css_cs(css); 2954 cpuset_filetype_t type = cft->private; 2955 switch (type) { 2956 case FILE_CPU_EXCLUSIVE: 2957 return is_cpu_exclusive(cs); 2958 case FILE_MEM_EXCLUSIVE: 2959 return is_mem_exclusive(cs); 2960 case FILE_MEM_HARDWALL: 2961 return is_mem_hardwall(cs); 2962 case FILE_SCHED_LOAD_BALANCE: 2963 return is_sched_load_balance(cs); 2964 case FILE_MEMORY_MIGRATE: 2965 return is_memory_migrate(cs); 2966 case FILE_MEMORY_PRESSURE_ENABLED: 2967 return cpuset_memory_pressure_enabled; 2968 case FILE_MEMORY_PRESSURE: 2969 return fmeter_getrate(&cs->fmeter); 2970 case FILE_SPREAD_PAGE: 2971 return is_spread_page(cs); 2972 case FILE_SPREAD_SLAB: 2973 return is_spread_slab(cs); 2974 default: 2975 BUG(); 2976 } 2977 2978 /* Unreachable but makes gcc happy */ 2979 return 0; 2980 } 2981 2982 static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft) 2983 { 2984 struct cpuset *cs = css_cs(css); 2985 cpuset_filetype_t type = cft->private; 2986 switch (type) { 2987 case FILE_SCHED_RELAX_DOMAIN_LEVEL: 2988 return cs->relax_domain_level; 2989 default: 2990 BUG(); 2991 } 2992 2993 /* Unreachable but makes gcc happy */ 2994 return 0; 2995 } 2996 2997 static int sched_partition_show(struct seq_file *seq, void *v) 2998 { 2999 struct cpuset *cs = css_cs(seq_css(seq)); 3000 const char *err, *type = NULL; 3001 3002 switch (cs->partition_root_state) { 3003 case PRS_ROOT: 3004 seq_puts(seq, "root\n"); 3005 break; 3006 case PRS_ISOLATED: 3007 seq_puts(seq, "isolated\n"); 3008 break; 3009 case PRS_MEMBER: 3010 seq_puts(seq, "member\n"); 3011 break; 3012 case PRS_INVALID_ROOT: 3013 type = "root"; 3014 fallthrough; 3015 case PRS_INVALID_ISOLATED: 3016 if (!type) 3017 type = "isolated"; 3018 err = perr_strings[READ_ONCE(cs->prs_err)]; 3019 if (err) 3020 seq_printf(seq, "%s invalid (%s)\n", type, err); 3021 else 3022 seq_printf(seq, "%s invalid\n", type); 3023 break; 3024 } 3025 return 0; 3026 } 3027 3028 static ssize_t sched_partition_write(struct kernfs_open_file *of, char *buf, 3029 size_t nbytes, loff_t off) 3030 { 3031 struct cpuset *cs = css_cs(of_css(of)); 3032 int val; 3033 int retval = -ENODEV; 3034 3035 buf = strstrip(buf); 3036 3037 /* 3038 * Convert "root" to ENABLED, and convert "member" to DISABLED. 3039 */ 3040 if (!strcmp(buf, "root")) 3041 val = PRS_ROOT; 3042 else if (!strcmp(buf, "member")) 3043 val = PRS_MEMBER; 3044 else if (!strcmp(buf, "isolated")) 3045 val = PRS_ISOLATED; 3046 else 3047 return -EINVAL; 3048 3049 css_get(&cs->css); 3050 cpus_read_lock(); 3051 mutex_lock(&cpuset_mutex); 3052 if (!is_cpuset_online(cs)) 3053 goto out_unlock; 3054 3055 retval = update_prstate(cs, val); 3056 out_unlock: 3057 mutex_unlock(&cpuset_mutex); 3058 cpus_read_unlock(); 3059 css_put(&cs->css); 3060 return retval ?: nbytes; 3061 } 3062 3063 /* 3064 * for the common functions, 'private' gives the type of file 3065 */ 3066 3067 static struct cftype legacy_files[] = { 3068 { 3069 .name = "cpus", 3070 .seq_show = cpuset_common_seq_show, 3071 .write = cpuset_write_resmask, 3072 .max_write_len = (100U + 6 * NR_CPUS), 3073 .private = FILE_CPULIST, 3074 }, 3075 3076 { 3077 .name = "mems", 3078 .seq_show = cpuset_common_seq_show, 3079 .write = cpuset_write_resmask, 3080 .max_write_len = (100U + 6 * MAX_NUMNODES), 3081 .private = FILE_MEMLIST, 3082 }, 3083 3084 { 3085 .name = "effective_cpus", 3086 .seq_show = cpuset_common_seq_show, 3087 .private = FILE_EFFECTIVE_CPULIST, 3088 }, 3089 3090 { 3091 .name = "effective_mems", 3092 .seq_show = cpuset_common_seq_show, 3093 .private = FILE_EFFECTIVE_MEMLIST, 3094 }, 3095 3096 { 3097 .name = "cpu_exclusive", 3098 .read_u64 = cpuset_read_u64, 3099 .write_u64 = cpuset_write_u64, 3100 .private = FILE_CPU_EXCLUSIVE, 3101 }, 3102 3103 { 3104 .name = "mem_exclusive", 3105 .read_u64 = cpuset_read_u64, 3106 .write_u64 = cpuset_write_u64, 3107 .private = FILE_MEM_EXCLUSIVE, 3108 }, 3109 3110 { 3111 .name = "mem_hardwall", 3112 .read_u64 = cpuset_read_u64, 3113 .write_u64 = cpuset_write_u64, 3114 .private = FILE_MEM_HARDWALL, 3115 }, 3116 3117 { 3118 .name = "sched_load_balance", 3119 .read_u64 = cpuset_read_u64, 3120 .write_u64 = cpuset_write_u64, 3121 .private = FILE_SCHED_LOAD_BALANCE, 3122 }, 3123 3124 { 3125 .name = "sched_relax_domain_level", 3126 .read_s64 = cpuset_read_s64, 3127 .write_s64 = cpuset_write_s64, 3128 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL, 3129 }, 3130 3131 { 3132 .name = "memory_migrate", 3133 .read_u64 = cpuset_read_u64, 3134 .write_u64 = cpuset_write_u64, 3135 .private = FILE_MEMORY_MIGRATE, 3136 }, 3137 3138 { 3139 .name = "memory_pressure", 3140 .read_u64 = cpuset_read_u64, 3141 .private = FILE_MEMORY_PRESSURE, 3142 }, 3143 3144 { 3145 .name = "memory_spread_page", 3146 .read_u64 = cpuset_read_u64, 3147 .write_u64 = cpuset_write_u64, 3148 .private = FILE_SPREAD_PAGE, 3149 }, 3150 3151 { 3152 .name = "memory_spread_slab", 3153 .read_u64 = cpuset_read_u64, 3154 .write_u64 = cpuset_write_u64, 3155 .private = FILE_SPREAD_SLAB, 3156 }, 3157 3158 { 3159 .name = "memory_pressure_enabled", 3160 .flags = CFTYPE_ONLY_ON_ROOT, 3161 .read_u64 = cpuset_read_u64, 3162 .write_u64 = cpuset_write_u64, 3163 .private = FILE_MEMORY_PRESSURE_ENABLED, 3164 }, 3165 3166 { } /* terminate */ 3167 }; 3168 3169 /* 3170 * This is currently a minimal set for the default hierarchy. It can be 3171 * expanded later on by migrating more features and control files from v1. 3172 */ 3173 static struct cftype dfl_files[] = { 3174 { 3175 .name = "cpus", 3176 .seq_show = cpuset_common_seq_show, 3177 .write = cpuset_write_resmask, 3178 .max_write_len = (100U + 6 * NR_CPUS), 3179 .private = FILE_CPULIST, 3180 .flags = CFTYPE_NOT_ON_ROOT, 3181 }, 3182 3183 { 3184 .name = "mems", 3185 .seq_show = cpuset_common_seq_show, 3186 .write = cpuset_write_resmask, 3187 .max_write_len = (100U + 6 * MAX_NUMNODES), 3188 .private = FILE_MEMLIST, 3189 .flags = CFTYPE_NOT_ON_ROOT, 3190 }, 3191 3192 { 3193 .name = "cpus.effective", 3194 .seq_show = cpuset_common_seq_show, 3195 .private = FILE_EFFECTIVE_CPULIST, 3196 }, 3197 3198 { 3199 .name = "mems.effective", 3200 .seq_show = cpuset_common_seq_show, 3201 .private = FILE_EFFECTIVE_MEMLIST, 3202 }, 3203 3204 { 3205 .name = "cpus.partition", 3206 .seq_show = sched_partition_show, 3207 .write = sched_partition_write, 3208 .private = FILE_PARTITION_ROOT, 3209 .flags = CFTYPE_NOT_ON_ROOT, 3210 .file_offset = offsetof(struct cpuset, partition_file), 3211 }, 3212 3213 { 3214 .name = "cpus.subpartitions", 3215 .seq_show = cpuset_common_seq_show, 3216 .private = FILE_SUBPARTS_CPULIST, 3217 .flags = CFTYPE_DEBUG, 3218 }, 3219 3220 { } /* terminate */ 3221 }; 3222 3223 3224 /** 3225 * cpuset_css_alloc - Allocate a cpuset css 3226 * @parent_css: Parent css of the control group that the new cpuset will be 3227 * part of 3228 * Return: cpuset css on success, -ENOMEM on failure. 3229 * 3230 * Allocate and initialize a new cpuset css, for non-NULL @parent_css, return 3231 * top cpuset css otherwise. 3232 */ 3233 static struct cgroup_subsys_state * 3234 cpuset_css_alloc(struct cgroup_subsys_state *parent_css) 3235 { 3236 struct cpuset *cs; 3237 3238 if (!parent_css) 3239 return &top_cpuset.css; 3240 3241 cs = kzalloc(sizeof(*cs), GFP_KERNEL); 3242 if (!cs) 3243 return ERR_PTR(-ENOMEM); 3244 3245 if (alloc_cpumasks(cs, NULL)) { 3246 kfree(cs); 3247 return ERR_PTR(-ENOMEM); 3248 } 3249 3250 __set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); 3251 nodes_clear(cs->mems_allowed); 3252 nodes_clear(cs->effective_mems); 3253 fmeter_init(&cs->fmeter); 3254 cs->relax_domain_level = -1; 3255 3256 /* Set CS_MEMORY_MIGRATE for default hierarchy */ 3257 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) 3258 __set_bit(CS_MEMORY_MIGRATE, &cs->flags); 3259 3260 return &cs->css; 3261 } 3262 3263 static int cpuset_css_online(struct cgroup_subsys_state *css) 3264 { 3265 struct cpuset *cs = css_cs(css); 3266 struct cpuset *parent = parent_cs(cs); 3267 struct cpuset *tmp_cs; 3268 struct cgroup_subsys_state *pos_css; 3269 3270 if (!parent) 3271 return 0; 3272 3273 cpus_read_lock(); 3274 mutex_lock(&cpuset_mutex); 3275 3276 set_bit(CS_ONLINE, &cs->flags); 3277 if (is_spread_page(parent)) 3278 set_bit(CS_SPREAD_PAGE, &cs->flags); 3279 if (is_spread_slab(parent)) 3280 set_bit(CS_SPREAD_SLAB, &cs->flags); 3281 3282 cpuset_inc(); 3283 3284 spin_lock_irq(&callback_lock); 3285 if (is_in_v2_mode()) { 3286 cpumask_copy(cs->effective_cpus, parent->effective_cpus); 3287 cs->effective_mems = parent->effective_mems; 3288 cs->use_parent_ecpus = true; 3289 parent->child_ecpus_count++; 3290 } 3291 3292 /* 3293 * For v2, clear CS_SCHED_LOAD_BALANCE if parent is isolated 3294 */ 3295 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) && 3296 !is_sched_load_balance(parent)) 3297 clear_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); 3298 3299 spin_unlock_irq(&callback_lock); 3300 3301 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags)) 3302 goto out_unlock; 3303 3304 /* 3305 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is 3306 * set. This flag handling is implemented in cgroup core for 3307 * historical reasons - the flag may be specified during mount. 3308 * 3309 * Currently, if any sibling cpusets have exclusive cpus or mem, we 3310 * refuse to clone the configuration - thereby refusing the task to 3311 * be entered, and as a result refusing the sys_unshare() or 3312 * clone() which initiated it. If this becomes a problem for some 3313 * users who wish to allow that scenario, then this could be 3314 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive 3315 * (and likewise for mems) to the new cgroup. 3316 */ 3317 rcu_read_lock(); 3318 cpuset_for_each_child(tmp_cs, pos_css, parent) { 3319 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) { 3320 rcu_read_unlock(); 3321 goto out_unlock; 3322 } 3323 } 3324 rcu_read_unlock(); 3325 3326 spin_lock_irq(&callback_lock); 3327 cs->mems_allowed = parent->mems_allowed; 3328 cs->effective_mems = parent->mems_allowed; 3329 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed); 3330 cpumask_copy(cs->effective_cpus, parent->cpus_allowed); 3331 spin_unlock_irq(&callback_lock); 3332 out_unlock: 3333 mutex_unlock(&cpuset_mutex); 3334 cpus_read_unlock(); 3335 return 0; 3336 } 3337 3338 /* 3339 * If the cpuset being removed has its flag 'sched_load_balance' 3340 * enabled, then simulate turning sched_load_balance off, which 3341 * will call rebuild_sched_domains_locked(). That is not needed 3342 * in the default hierarchy where only changes in partition 3343 * will cause repartitioning. 3344 * 3345 * If the cpuset has the 'sched.partition' flag enabled, simulate 3346 * turning 'sched.partition" off. 3347 */ 3348 3349 static void cpuset_css_offline(struct cgroup_subsys_state *css) 3350 { 3351 struct cpuset *cs = css_cs(css); 3352 3353 cpus_read_lock(); 3354 mutex_lock(&cpuset_mutex); 3355 3356 if (is_partition_valid(cs)) 3357 update_prstate(cs, 0); 3358 3359 if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) && 3360 is_sched_load_balance(cs)) 3361 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0); 3362 3363 if (cs->use_parent_ecpus) { 3364 struct cpuset *parent = parent_cs(cs); 3365 3366 cs->use_parent_ecpus = false; 3367 parent->child_ecpus_count--; 3368 } 3369 3370 cpuset_dec(); 3371 clear_bit(CS_ONLINE, &cs->flags); 3372 3373 mutex_unlock(&cpuset_mutex); 3374 cpus_read_unlock(); 3375 } 3376 3377 static void cpuset_css_free(struct cgroup_subsys_state *css) 3378 { 3379 struct cpuset *cs = css_cs(css); 3380 3381 free_cpuset(cs); 3382 } 3383 3384 static void cpuset_bind(struct cgroup_subsys_state *root_css) 3385 { 3386 mutex_lock(&cpuset_mutex); 3387 spin_lock_irq(&callback_lock); 3388 3389 if (is_in_v2_mode()) { 3390 cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask); 3391 top_cpuset.mems_allowed = node_possible_map; 3392 } else { 3393 cpumask_copy(top_cpuset.cpus_allowed, 3394 top_cpuset.effective_cpus); 3395 top_cpuset.mems_allowed = top_cpuset.effective_mems; 3396 } 3397 3398 spin_unlock_irq(&callback_lock); 3399 mutex_unlock(&cpuset_mutex); 3400 } 3401 3402 /* 3403 * In case the child is cloned into a cpuset different from its parent, 3404 * additional checks are done to see if the move is allowed. 3405 */ 3406 static int cpuset_can_fork(struct task_struct *task, struct css_set *cset) 3407 { 3408 struct cpuset *cs = css_cs(cset->subsys[cpuset_cgrp_id]); 3409 bool same_cs; 3410 int ret; 3411 3412 rcu_read_lock(); 3413 same_cs = (cs == task_cs(current)); 3414 rcu_read_unlock(); 3415 3416 if (same_cs) 3417 return 0; 3418 3419 lockdep_assert_held(&cgroup_mutex); 3420 mutex_lock(&cpuset_mutex); 3421 3422 /* Check to see if task is allowed in the cpuset */ 3423 ret = cpuset_can_attach_check(cs); 3424 if (ret) 3425 goto out_unlock; 3426 3427 ret = task_can_attach(task); 3428 if (ret) 3429 goto out_unlock; 3430 3431 ret = security_task_setscheduler(task); 3432 if (ret) 3433 goto out_unlock; 3434 3435 /* 3436 * Mark attach is in progress. This makes validate_change() fail 3437 * changes which zero cpus/mems_allowed. 3438 */ 3439 cs->attach_in_progress++; 3440 out_unlock: 3441 mutex_unlock(&cpuset_mutex); 3442 return ret; 3443 } 3444 3445 static void cpuset_cancel_fork(struct task_struct *task, struct css_set *cset) 3446 { 3447 struct cpuset *cs = css_cs(cset->subsys[cpuset_cgrp_id]); 3448 bool same_cs; 3449 3450 rcu_read_lock(); 3451 same_cs = (cs == task_cs(current)); 3452 rcu_read_unlock(); 3453 3454 if (same_cs) 3455 return; 3456 3457 mutex_lock(&cpuset_mutex); 3458 cs->attach_in_progress--; 3459 if (!cs->attach_in_progress) 3460 wake_up(&cpuset_attach_wq); 3461 mutex_unlock(&cpuset_mutex); 3462 } 3463 3464 /* 3465 * Make sure the new task conform to the current state of its parent, 3466 * which could have been changed by cpuset just after it inherits the 3467 * state from the parent and before it sits on the cgroup's task list. 3468 */ 3469 static void cpuset_fork(struct task_struct *task) 3470 { 3471 struct cpuset *cs; 3472 bool same_cs; 3473 3474 rcu_read_lock(); 3475 cs = task_cs(task); 3476 same_cs = (cs == task_cs(current)); 3477 rcu_read_unlock(); 3478 3479 if (same_cs) { 3480 if (cs == &top_cpuset) 3481 return; 3482 3483 set_cpus_allowed_ptr(task, current->cpus_ptr); 3484 task->mems_allowed = current->mems_allowed; 3485 return; 3486 } 3487 3488 /* CLONE_INTO_CGROUP */ 3489 mutex_lock(&cpuset_mutex); 3490 guarantee_online_mems(cs, &cpuset_attach_nodemask_to); 3491 cpuset_attach_task(cs, task); 3492 3493 cs->attach_in_progress--; 3494 if (!cs->attach_in_progress) 3495 wake_up(&cpuset_attach_wq); 3496 3497 mutex_unlock(&cpuset_mutex); 3498 } 3499 3500 struct cgroup_subsys cpuset_cgrp_subsys = { 3501 .css_alloc = cpuset_css_alloc, 3502 .css_online = cpuset_css_online, 3503 .css_offline = cpuset_css_offline, 3504 .css_free = cpuset_css_free, 3505 .can_attach = cpuset_can_attach, 3506 .cancel_attach = cpuset_cancel_attach, 3507 .attach = cpuset_attach, 3508 .post_attach = cpuset_post_attach, 3509 .bind = cpuset_bind, 3510 .can_fork = cpuset_can_fork, 3511 .cancel_fork = cpuset_cancel_fork, 3512 .fork = cpuset_fork, 3513 .legacy_cftypes = legacy_files, 3514 .dfl_cftypes = dfl_files, 3515 .early_init = true, 3516 .threaded = true, 3517 }; 3518 3519 /** 3520 * cpuset_init - initialize cpusets at system boot 3521 * 3522 * Description: Initialize top_cpuset 3523 **/ 3524 3525 int __init cpuset_init(void) 3526 { 3527 BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL)); 3528 BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL)); 3529 BUG_ON(!zalloc_cpumask_var(&top_cpuset.subparts_cpus, GFP_KERNEL)); 3530 3531 cpumask_setall(top_cpuset.cpus_allowed); 3532 nodes_setall(top_cpuset.mems_allowed); 3533 cpumask_setall(top_cpuset.effective_cpus); 3534 nodes_setall(top_cpuset.effective_mems); 3535 3536 fmeter_init(&top_cpuset.fmeter); 3537 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags); 3538 top_cpuset.relax_domain_level = -1; 3539 3540 BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL)); 3541 3542 return 0; 3543 } 3544 3545 /* 3546 * If CPU and/or memory hotplug handlers, below, unplug any CPUs 3547 * or memory nodes, we need to walk over the cpuset hierarchy, 3548 * removing that CPU or node from all cpusets. If this removes the 3549 * last CPU or node from a cpuset, then move the tasks in the empty 3550 * cpuset to its next-highest non-empty parent. 3551 */ 3552 static void remove_tasks_in_empty_cpuset(struct cpuset *cs) 3553 { 3554 struct cpuset *parent; 3555 3556 /* 3557 * Find its next-highest non-empty parent, (top cpuset 3558 * has online cpus, so can't be empty). 3559 */ 3560 parent = parent_cs(cs); 3561 while (cpumask_empty(parent->cpus_allowed) || 3562 nodes_empty(parent->mems_allowed)) 3563 parent = parent_cs(parent); 3564 3565 if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) { 3566 pr_err("cpuset: failed to transfer tasks out of empty cpuset "); 3567 pr_cont_cgroup_name(cs->css.cgroup); 3568 pr_cont("\n"); 3569 } 3570 } 3571 3572 static void 3573 hotplug_update_tasks_legacy(struct cpuset *cs, 3574 struct cpumask *new_cpus, nodemask_t *new_mems, 3575 bool cpus_updated, bool mems_updated) 3576 { 3577 bool is_empty; 3578 3579 spin_lock_irq(&callback_lock); 3580 cpumask_copy(cs->cpus_allowed, new_cpus); 3581 cpumask_copy(cs->effective_cpus, new_cpus); 3582 cs->mems_allowed = *new_mems; 3583 cs->effective_mems = *new_mems; 3584 spin_unlock_irq(&callback_lock); 3585 3586 /* 3587 * Don't call update_tasks_cpumask() if the cpuset becomes empty, 3588 * as the tasks will be migrated to an ancestor. 3589 */ 3590 if (cpus_updated && !cpumask_empty(cs->cpus_allowed)) 3591 update_tasks_cpumask(cs, new_cpus); 3592 if (mems_updated && !nodes_empty(cs->mems_allowed)) 3593 update_tasks_nodemask(cs); 3594 3595 is_empty = cpumask_empty(cs->cpus_allowed) || 3596 nodes_empty(cs->mems_allowed); 3597 3598 /* 3599 * Move tasks to the nearest ancestor with execution resources, 3600 * This is full cgroup operation which will also call back into 3601 * cpuset. Should be done outside any lock. 3602 */ 3603 if (is_empty) { 3604 mutex_unlock(&cpuset_mutex); 3605 remove_tasks_in_empty_cpuset(cs); 3606 mutex_lock(&cpuset_mutex); 3607 } 3608 } 3609 3610 static void 3611 hotplug_update_tasks(struct cpuset *cs, 3612 struct cpumask *new_cpus, nodemask_t *new_mems, 3613 bool cpus_updated, bool mems_updated) 3614 { 3615 /* A partition root is allowed to have empty effective cpus */ 3616 if (cpumask_empty(new_cpus) && !is_partition_valid(cs)) 3617 cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus); 3618 if (nodes_empty(*new_mems)) 3619 *new_mems = parent_cs(cs)->effective_mems; 3620 3621 spin_lock_irq(&callback_lock); 3622 cpumask_copy(cs->effective_cpus, new_cpus); 3623 cs->effective_mems = *new_mems; 3624 spin_unlock_irq(&callback_lock); 3625 3626 if (cpus_updated) 3627 update_tasks_cpumask(cs, new_cpus); 3628 if (mems_updated) 3629 update_tasks_nodemask(cs); 3630 } 3631 3632 static bool force_rebuild; 3633 3634 void cpuset_force_rebuild(void) 3635 { 3636 force_rebuild = true; 3637 } 3638 3639 /** 3640 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug 3641 * @cs: cpuset in interest 3642 * @tmp: the tmpmasks structure pointer 3643 * 3644 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone 3645 * offline, update @cs accordingly. If @cs ends up with no CPU or memory, 3646 * all its tasks are moved to the nearest ancestor with both resources. 3647 */ 3648 static void cpuset_hotplug_update_tasks(struct cpuset *cs, struct tmpmasks *tmp) 3649 { 3650 static cpumask_t new_cpus; 3651 static nodemask_t new_mems; 3652 bool cpus_updated; 3653 bool mems_updated; 3654 struct cpuset *parent; 3655 retry: 3656 wait_event(cpuset_attach_wq, cs->attach_in_progress == 0); 3657 3658 mutex_lock(&cpuset_mutex); 3659 3660 /* 3661 * We have raced with task attaching. We wait until attaching 3662 * is finished, so we won't attach a task to an empty cpuset. 3663 */ 3664 if (cs->attach_in_progress) { 3665 mutex_unlock(&cpuset_mutex); 3666 goto retry; 3667 } 3668 3669 parent = parent_cs(cs); 3670 compute_effective_cpumask(&new_cpus, cs, parent); 3671 nodes_and(new_mems, cs->mems_allowed, parent->effective_mems); 3672 3673 if (cs->nr_subparts_cpus) 3674 /* 3675 * Make sure that CPUs allocated to child partitions 3676 * do not show up in effective_cpus. 3677 */ 3678 cpumask_andnot(&new_cpus, &new_cpus, cs->subparts_cpus); 3679 3680 if (!tmp || !cs->partition_root_state) 3681 goto update_tasks; 3682 3683 /* 3684 * In the unlikely event that a partition root has empty 3685 * effective_cpus with tasks, we will have to invalidate child 3686 * partitions, if present, by setting nr_subparts_cpus to 0 to 3687 * reclaim their cpus. 3688 */ 3689 if (cs->nr_subparts_cpus && is_partition_valid(cs) && 3690 cpumask_empty(&new_cpus) && partition_is_populated(cs, NULL)) { 3691 spin_lock_irq(&callback_lock); 3692 cs->nr_subparts_cpus = 0; 3693 cpumask_clear(cs->subparts_cpus); 3694 spin_unlock_irq(&callback_lock); 3695 compute_effective_cpumask(&new_cpus, cs, parent); 3696 } 3697 3698 /* 3699 * Force the partition to become invalid if either one of 3700 * the following conditions hold: 3701 * 1) empty effective cpus but not valid empty partition. 3702 * 2) parent is invalid or doesn't grant any cpus to child 3703 * partitions. 3704 */ 3705 if (is_partition_valid(cs) && (!parent->nr_subparts_cpus || 3706 (cpumask_empty(&new_cpus) && partition_is_populated(cs, NULL)))) { 3707 int old_prs, parent_prs; 3708 3709 update_parent_subparts_cpumask(cs, partcmd_disable, NULL, tmp); 3710 if (cs->nr_subparts_cpus) { 3711 spin_lock_irq(&callback_lock); 3712 cs->nr_subparts_cpus = 0; 3713 cpumask_clear(cs->subparts_cpus); 3714 spin_unlock_irq(&callback_lock); 3715 compute_effective_cpumask(&new_cpus, cs, parent); 3716 } 3717 3718 old_prs = cs->partition_root_state; 3719 parent_prs = parent->partition_root_state; 3720 if (is_partition_valid(cs)) { 3721 spin_lock_irq(&callback_lock); 3722 make_partition_invalid(cs); 3723 spin_unlock_irq(&callback_lock); 3724 if (is_prs_invalid(parent_prs)) 3725 WRITE_ONCE(cs->prs_err, PERR_INVPARENT); 3726 else if (!parent_prs) 3727 WRITE_ONCE(cs->prs_err, PERR_NOTPART); 3728 else 3729 WRITE_ONCE(cs->prs_err, PERR_HOTPLUG); 3730 notify_partition_change(cs, old_prs); 3731 } 3732 cpuset_force_rebuild(); 3733 } 3734 3735 /* 3736 * On the other hand, an invalid partition root may be transitioned 3737 * back to a regular one. 3738 */ 3739 else if (is_partition_valid(parent) && is_partition_invalid(cs)) { 3740 update_parent_subparts_cpumask(cs, partcmd_update, NULL, tmp); 3741 if (is_partition_valid(cs)) 3742 cpuset_force_rebuild(); 3743 } 3744 3745 update_tasks: 3746 cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus); 3747 mems_updated = !nodes_equal(new_mems, cs->effective_mems); 3748 if (!cpus_updated && !mems_updated) 3749 goto unlock; /* Hotplug doesn't affect this cpuset */ 3750 3751 if (mems_updated) 3752 check_insane_mems_config(&new_mems); 3753 3754 if (is_in_v2_mode()) 3755 hotplug_update_tasks(cs, &new_cpus, &new_mems, 3756 cpus_updated, mems_updated); 3757 else 3758 hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems, 3759 cpus_updated, mems_updated); 3760 3761 unlock: 3762 mutex_unlock(&cpuset_mutex); 3763 } 3764 3765 /** 3766 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset 3767 * @work: unused 3768 * 3769 * This function is called after either CPU or memory configuration has 3770 * changed and updates cpuset accordingly. The top_cpuset is always 3771 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in 3772 * order to make cpusets transparent (of no affect) on systems that are 3773 * actively using CPU hotplug but making no active use of cpusets. 3774 * 3775 * Non-root cpusets are only affected by offlining. If any CPUs or memory 3776 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on 3777 * all descendants. 3778 * 3779 * Note that CPU offlining during suspend is ignored. We don't modify 3780 * cpusets across suspend/resume cycles at all. 3781 */ 3782 static void cpuset_hotplug_workfn(struct work_struct *work) 3783 { 3784 static cpumask_t new_cpus; 3785 static nodemask_t new_mems; 3786 bool cpus_updated, mems_updated; 3787 bool on_dfl = is_in_v2_mode(); 3788 struct tmpmasks tmp, *ptmp = NULL; 3789 3790 if (on_dfl && !alloc_cpumasks(NULL, &tmp)) 3791 ptmp = &tmp; 3792 3793 mutex_lock(&cpuset_mutex); 3794 3795 /* fetch the available cpus/mems and find out which changed how */ 3796 cpumask_copy(&new_cpus, cpu_active_mask); 3797 new_mems = node_states[N_MEMORY]; 3798 3799 /* 3800 * If subparts_cpus is populated, it is likely that the check below 3801 * will produce a false positive on cpus_updated when the cpu list 3802 * isn't changed. It is extra work, but it is better to be safe. 3803 */ 3804 cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus); 3805 mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems); 3806 3807 /* 3808 * In the rare case that hotplug removes all the cpus in subparts_cpus, 3809 * we assumed that cpus are updated. 3810 */ 3811 if (!cpus_updated && top_cpuset.nr_subparts_cpus) 3812 cpus_updated = true; 3813 3814 /* synchronize cpus_allowed to cpu_active_mask */ 3815 if (cpus_updated) { 3816 spin_lock_irq(&callback_lock); 3817 if (!on_dfl) 3818 cpumask_copy(top_cpuset.cpus_allowed, &new_cpus); 3819 /* 3820 * Make sure that CPUs allocated to child partitions 3821 * do not show up in effective_cpus. If no CPU is left, 3822 * we clear the subparts_cpus & let the child partitions 3823 * fight for the CPUs again. 3824 */ 3825 if (top_cpuset.nr_subparts_cpus) { 3826 if (cpumask_subset(&new_cpus, 3827 top_cpuset.subparts_cpus)) { 3828 top_cpuset.nr_subparts_cpus = 0; 3829 cpumask_clear(top_cpuset.subparts_cpus); 3830 } else { 3831 cpumask_andnot(&new_cpus, &new_cpus, 3832 top_cpuset.subparts_cpus); 3833 } 3834 } 3835 cpumask_copy(top_cpuset.effective_cpus, &new_cpus); 3836 spin_unlock_irq(&callback_lock); 3837 /* we don't mess with cpumasks of tasks in top_cpuset */ 3838 } 3839 3840 /* synchronize mems_allowed to N_MEMORY */ 3841 if (mems_updated) { 3842 spin_lock_irq(&callback_lock); 3843 if (!on_dfl) 3844 top_cpuset.mems_allowed = new_mems; 3845 top_cpuset.effective_mems = new_mems; 3846 spin_unlock_irq(&callback_lock); 3847 update_tasks_nodemask(&top_cpuset); 3848 } 3849 3850 mutex_unlock(&cpuset_mutex); 3851 3852 /* if cpus or mems changed, we need to propagate to descendants */ 3853 if (cpus_updated || mems_updated) { 3854 struct cpuset *cs; 3855 struct cgroup_subsys_state *pos_css; 3856 3857 rcu_read_lock(); 3858 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) { 3859 if (cs == &top_cpuset || !css_tryget_online(&cs->css)) 3860 continue; 3861 rcu_read_unlock(); 3862 3863 cpuset_hotplug_update_tasks(cs, ptmp); 3864 3865 rcu_read_lock(); 3866 css_put(&cs->css); 3867 } 3868 rcu_read_unlock(); 3869 } 3870 3871 /* rebuild sched domains if cpus_allowed has changed */ 3872 if (cpus_updated || force_rebuild) { 3873 force_rebuild = false; 3874 rebuild_sched_domains(); 3875 } 3876 3877 free_cpumasks(NULL, ptmp); 3878 } 3879 3880 void cpuset_update_active_cpus(void) 3881 { 3882 /* 3883 * We're inside cpu hotplug critical region which usually nests 3884 * inside cgroup synchronization. Bounce actual hotplug processing 3885 * to a work item to avoid reverse locking order. 3886 */ 3887 schedule_work(&cpuset_hotplug_work); 3888 } 3889 3890 void cpuset_wait_for_hotplug(void) 3891 { 3892 flush_work(&cpuset_hotplug_work); 3893 } 3894 3895 /* 3896 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY]. 3897 * Call this routine anytime after node_states[N_MEMORY] changes. 3898 * See cpuset_update_active_cpus() for CPU hotplug handling. 3899 */ 3900 static int cpuset_track_online_nodes(struct notifier_block *self, 3901 unsigned long action, void *arg) 3902 { 3903 schedule_work(&cpuset_hotplug_work); 3904 return NOTIFY_OK; 3905 } 3906 3907 /** 3908 * cpuset_init_smp - initialize cpus_allowed 3909 * 3910 * Description: Finish top cpuset after cpu, node maps are initialized 3911 */ 3912 void __init cpuset_init_smp(void) 3913 { 3914 /* 3915 * cpus_allowd/mems_allowed set to v2 values in the initial 3916 * cpuset_bind() call will be reset to v1 values in another 3917 * cpuset_bind() call when v1 cpuset is mounted. 3918 */ 3919 top_cpuset.old_mems_allowed = top_cpuset.mems_allowed; 3920 3921 cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask); 3922 top_cpuset.effective_mems = node_states[N_MEMORY]; 3923 3924 hotplug_memory_notifier(cpuset_track_online_nodes, CPUSET_CALLBACK_PRI); 3925 3926 cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0); 3927 BUG_ON(!cpuset_migrate_mm_wq); 3928 } 3929 3930 /** 3931 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset. 3932 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed. 3933 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set. 3934 * 3935 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset 3936 * attached to the specified @tsk. Guaranteed to return some non-empty 3937 * subset of cpu_online_mask, even if this means going outside the 3938 * tasks cpuset, except when the task is in the top cpuset. 3939 **/ 3940 3941 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask) 3942 { 3943 unsigned long flags; 3944 struct cpuset *cs; 3945 3946 spin_lock_irqsave(&callback_lock, flags); 3947 rcu_read_lock(); 3948 3949 cs = task_cs(tsk); 3950 if (cs != &top_cpuset) 3951 guarantee_online_cpus(tsk, pmask); 3952 /* 3953 * Tasks in the top cpuset won't get update to their cpumasks 3954 * when a hotplug online/offline event happens. So we include all 3955 * offline cpus in the allowed cpu list. 3956 */ 3957 if ((cs == &top_cpuset) || cpumask_empty(pmask)) { 3958 const struct cpumask *possible_mask = task_cpu_possible_mask(tsk); 3959 3960 /* 3961 * We first exclude cpus allocated to partitions. If there is no 3962 * allowable online cpu left, we fall back to all possible cpus. 3963 */ 3964 cpumask_andnot(pmask, possible_mask, top_cpuset.subparts_cpus); 3965 if (!cpumask_intersects(pmask, cpu_online_mask)) 3966 cpumask_copy(pmask, possible_mask); 3967 } 3968 3969 rcu_read_unlock(); 3970 spin_unlock_irqrestore(&callback_lock, flags); 3971 } 3972 3973 /** 3974 * cpuset_cpus_allowed_fallback - final fallback before complete catastrophe. 3975 * @tsk: pointer to task_struct with which the scheduler is struggling 3976 * 3977 * Description: In the case that the scheduler cannot find an allowed cpu in 3978 * tsk->cpus_allowed, we fall back to task_cs(tsk)->cpus_allowed. In legacy 3979 * mode however, this value is the same as task_cs(tsk)->effective_cpus, 3980 * which will not contain a sane cpumask during cases such as cpu hotplugging. 3981 * This is the absolute last resort for the scheduler and it is only used if 3982 * _every_ other avenue has been traveled. 3983 * 3984 * Returns true if the affinity of @tsk was changed, false otherwise. 3985 **/ 3986 3987 bool cpuset_cpus_allowed_fallback(struct task_struct *tsk) 3988 { 3989 const struct cpumask *possible_mask = task_cpu_possible_mask(tsk); 3990 const struct cpumask *cs_mask; 3991 bool changed = false; 3992 3993 rcu_read_lock(); 3994 cs_mask = task_cs(tsk)->cpus_allowed; 3995 if (is_in_v2_mode() && cpumask_subset(cs_mask, possible_mask)) { 3996 do_set_cpus_allowed(tsk, cs_mask); 3997 changed = true; 3998 } 3999 rcu_read_unlock(); 4000 4001 /* 4002 * We own tsk->cpus_allowed, nobody can change it under us. 4003 * 4004 * But we used cs && cs->cpus_allowed lockless and thus can 4005 * race with cgroup_attach_task() or update_cpumask() and get 4006 * the wrong tsk->cpus_allowed. However, both cases imply the 4007 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr() 4008 * which takes task_rq_lock(). 4009 * 4010 * If we are called after it dropped the lock we must see all 4011 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary 4012 * set any mask even if it is not right from task_cs() pov, 4013 * the pending set_cpus_allowed_ptr() will fix things. 4014 * 4015 * select_fallback_rq() will fix things ups and set cpu_possible_mask 4016 * if required. 4017 */ 4018 return changed; 4019 } 4020 4021 void __init cpuset_init_current_mems_allowed(void) 4022 { 4023 nodes_setall(current->mems_allowed); 4024 } 4025 4026 /** 4027 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset. 4028 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed. 4029 * 4030 * Description: Returns the nodemask_t mems_allowed of the cpuset 4031 * attached to the specified @tsk. Guaranteed to return some non-empty 4032 * subset of node_states[N_MEMORY], even if this means going outside the 4033 * tasks cpuset. 4034 **/ 4035 4036 nodemask_t cpuset_mems_allowed(struct task_struct *tsk) 4037 { 4038 nodemask_t mask; 4039 unsigned long flags; 4040 4041 spin_lock_irqsave(&callback_lock, flags); 4042 rcu_read_lock(); 4043 guarantee_online_mems(task_cs(tsk), &mask); 4044 rcu_read_unlock(); 4045 spin_unlock_irqrestore(&callback_lock, flags); 4046 4047 return mask; 4048 } 4049 4050 /** 4051 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. current mems_allowed 4052 * @nodemask: the nodemask to be checked 4053 * 4054 * Are any of the nodes in the nodemask allowed in current->mems_allowed? 4055 */ 4056 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask) 4057 { 4058 return nodes_intersects(*nodemask, current->mems_allowed); 4059 } 4060 4061 /* 4062 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or 4063 * mem_hardwall ancestor to the specified cpuset. Call holding 4064 * callback_lock. If no ancestor is mem_exclusive or mem_hardwall 4065 * (an unusual configuration), then returns the root cpuset. 4066 */ 4067 static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs) 4068 { 4069 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs)) 4070 cs = parent_cs(cs); 4071 return cs; 4072 } 4073 4074 /* 4075 * cpuset_node_allowed - Can we allocate on a memory node? 4076 * @node: is this an allowed node? 4077 * @gfp_mask: memory allocation flags 4078 * 4079 * If we're in interrupt, yes, we can always allocate. If @node is set in 4080 * current's mems_allowed, yes. If it's not a __GFP_HARDWALL request and this 4081 * node is set in the nearest hardwalled cpuset ancestor to current's cpuset, 4082 * yes. If current has access to memory reserves as an oom victim, yes. 4083 * Otherwise, no. 4084 * 4085 * GFP_USER allocations are marked with the __GFP_HARDWALL bit, 4086 * and do not allow allocations outside the current tasks cpuset 4087 * unless the task has been OOM killed. 4088 * GFP_KERNEL allocations are not so marked, so can escape to the 4089 * nearest enclosing hardwalled ancestor cpuset. 4090 * 4091 * Scanning up parent cpusets requires callback_lock. The 4092 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit 4093 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the 4094 * current tasks mems_allowed came up empty on the first pass over 4095 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the 4096 * cpuset are short of memory, might require taking the callback_lock. 4097 * 4098 * The first call here from mm/page_alloc:get_page_from_freelist() 4099 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets, 4100 * so no allocation on a node outside the cpuset is allowed (unless 4101 * in interrupt, of course). 4102 * 4103 * The second pass through get_page_from_freelist() doesn't even call 4104 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages() 4105 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set 4106 * in alloc_flags. That logic and the checks below have the combined 4107 * affect that: 4108 * in_interrupt - any node ok (current task context irrelevant) 4109 * GFP_ATOMIC - any node ok 4110 * tsk_is_oom_victim - any node ok 4111 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok 4112 * GFP_USER - only nodes in current tasks mems allowed ok. 4113 */ 4114 bool cpuset_node_allowed(int node, gfp_t gfp_mask) 4115 { 4116 struct cpuset *cs; /* current cpuset ancestors */ 4117 bool allowed; /* is allocation in zone z allowed? */ 4118 unsigned long flags; 4119 4120 if (in_interrupt()) 4121 return true; 4122 if (node_isset(node, current->mems_allowed)) 4123 return true; 4124 /* 4125 * Allow tasks that have access to memory reserves because they have 4126 * been OOM killed to get memory anywhere. 4127 */ 4128 if (unlikely(tsk_is_oom_victim(current))) 4129 return true; 4130 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */ 4131 return false; 4132 4133 if (current->flags & PF_EXITING) /* Let dying task have memory */ 4134 return true; 4135 4136 /* Not hardwall and node outside mems_allowed: scan up cpusets */ 4137 spin_lock_irqsave(&callback_lock, flags); 4138 4139 rcu_read_lock(); 4140 cs = nearest_hardwall_ancestor(task_cs(current)); 4141 allowed = node_isset(node, cs->mems_allowed); 4142 rcu_read_unlock(); 4143 4144 spin_unlock_irqrestore(&callback_lock, flags); 4145 return allowed; 4146 } 4147 4148 /** 4149 * cpuset_spread_node() - On which node to begin search for a page 4150 * @rotor: round robin rotor 4151 * 4152 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for 4153 * tasks in a cpuset with is_spread_page or is_spread_slab set), 4154 * and if the memory allocation used cpuset_mem_spread_node() 4155 * to determine on which node to start looking, as it will for 4156 * certain page cache or slab cache pages such as used for file 4157 * system buffers and inode caches, then instead of starting on the 4158 * local node to look for a free page, rather spread the starting 4159 * node around the tasks mems_allowed nodes. 4160 * 4161 * We don't have to worry about the returned node being offline 4162 * because "it can't happen", and even if it did, it would be ok. 4163 * 4164 * The routines calling guarantee_online_mems() are careful to 4165 * only set nodes in task->mems_allowed that are online. So it 4166 * should not be possible for the following code to return an 4167 * offline node. But if it did, that would be ok, as this routine 4168 * is not returning the node where the allocation must be, only 4169 * the node where the search should start. The zonelist passed to 4170 * __alloc_pages() will include all nodes. If the slab allocator 4171 * is passed an offline node, it will fall back to the local node. 4172 * See kmem_cache_alloc_node(). 4173 */ 4174 static int cpuset_spread_node(int *rotor) 4175 { 4176 return *rotor = next_node_in(*rotor, current->mems_allowed); 4177 } 4178 4179 /** 4180 * cpuset_mem_spread_node() - On which node to begin search for a file page 4181 */ 4182 int cpuset_mem_spread_node(void) 4183 { 4184 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE) 4185 current->cpuset_mem_spread_rotor = 4186 node_random(¤t->mems_allowed); 4187 4188 return cpuset_spread_node(¤t->cpuset_mem_spread_rotor); 4189 } 4190 4191 /** 4192 * cpuset_slab_spread_node() - On which node to begin search for a slab page 4193 */ 4194 int cpuset_slab_spread_node(void) 4195 { 4196 if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE) 4197 current->cpuset_slab_spread_rotor = 4198 node_random(¤t->mems_allowed); 4199 4200 return cpuset_spread_node(¤t->cpuset_slab_spread_rotor); 4201 } 4202 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node); 4203 4204 /** 4205 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's? 4206 * @tsk1: pointer to task_struct of some task. 4207 * @tsk2: pointer to task_struct of some other task. 4208 * 4209 * Description: Return true if @tsk1's mems_allowed intersects the 4210 * mems_allowed of @tsk2. Used by the OOM killer to determine if 4211 * one of the task's memory usage might impact the memory available 4212 * to the other. 4213 **/ 4214 4215 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1, 4216 const struct task_struct *tsk2) 4217 { 4218 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed); 4219 } 4220 4221 /** 4222 * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed 4223 * 4224 * Description: Prints current's name, cpuset name, and cached copy of its 4225 * mems_allowed to the kernel log. 4226 */ 4227 void cpuset_print_current_mems_allowed(void) 4228 { 4229 struct cgroup *cgrp; 4230 4231 rcu_read_lock(); 4232 4233 cgrp = task_cs(current)->css.cgroup; 4234 pr_cont(",cpuset="); 4235 pr_cont_cgroup_name(cgrp); 4236 pr_cont(",mems_allowed=%*pbl", 4237 nodemask_pr_args(¤t->mems_allowed)); 4238 4239 rcu_read_unlock(); 4240 } 4241 4242 /* 4243 * Collection of memory_pressure is suppressed unless 4244 * this flag is enabled by writing "1" to the special 4245 * cpuset file 'memory_pressure_enabled' in the root cpuset. 4246 */ 4247 4248 int cpuset_memory_pressure_enabled __read_mostly; 4249 4250 /* 4251 * __cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims. 4252 * 4253 * Keep a running average of the rate of synchronous (direct) 4254 * page reclaim efforts initiated by tasks in each cpuset. 4255 * 4256 * This represents the rate at which some task in the cpuset 4257 * ran low on memory on all nodes it was allowed to use, and 4258 * had to enter the kernels page reclaim code in an effort to 4259 * create more free memory by tossing clean pages or swapping 4260 * or writing dirty pages. 4261 * 4262 * Display to user space in the per-cpuset read-only file 4263 * "memory_pressure". Value displayed is an integer 4264 * representing the recent rate of entry into the synchronous 4265 * (direct) page reclaim by any task attached to the cpuset. 4266 */ 4267 4268 void __cpuset_memory_pressure_bump(void) 4269 { 4270 rcu_read_lock(); 4271 fmeter_markevent(&task_cs(current)->fmeter); 4272 rcu_read_unlock(); 4273 } 4274 4275 #ifdef CONFIG_PROC_PID_CPUSET 4276 /* 4277 * proc_cpuset_show() 4278 * - Print tasks cpuset path into seq_file. 4279 * - Used for /proc/<pid>/cpuset. 4280 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it 4281 * doesn't really matter if tsk->cpuset changes after we read it, 4282 * and we take cpuset_mutex, keeping cpuset_attach() from changing it 4283 * anyway. 4284 */ 4285 int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns, 4286 struct pid *pid, struct task_struct *tsk) 4287 { 4288 char *buf; 4289 struct cgroup_subsys_state *css; 4290 int retval; 4291 4292 retval = -ENOMEM; 4293 buf = kmalloc(PATH_MAX, GFP_KERNEL); 4294 if (!buf) 4295 goto out; 4296 4297 rcu_read_lock(); 4298 spin_lock_irq(&css_set_lock); 4299 css = task_css(tsk, cpuset_cgrp_id); 4300 retval = cgroup_path_ns_locked(css->cgroup, buf, PATH_MAX, 4301 current->nsproxy->cgroup_ns); 4302 spin_unlock_irq(&css_set_lock); 4303 rcu_read_unlock(); 4304 4305 if (retval == -E2BIG) 4306 retval = -ENAMETOOLONG; 4307 if (retval < 0) 4308 goto out_free; 4309 seq_puts(m, buf); 4310 seq_putc(m, '\n'); 4311 retval = 0; 4312 out_free: 4313 kfree(buf); 4314 out: 4315 return retval; 4316 } 4317 #endif /* CONFIG_PROC_PID_CPUSET */ 4318 4319 /* Display task mems_allowed in /proc/<pid>/status file. */ 4320 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task) 4321 { 4322 seq_printf(m, "Mems_allowed:\t%*pb\n", 4323 nodemask_pr_args(&task->mems_allowed)); 4324 seq_printf(m, "Mems_allowed_list:\t%*pbl\n", 4325 nodemask_pr_args(&task->mems_allowed)); 4326 } 4327