xref: /openbmc/linux/kernel/cgroup/cpuset.c (revision 248ed9e227e6cf59acb1aaf3aa30d530a0232c1a)
1 /*
2  *  kernel/cpuset.c
3  *
4  *  Processor and Memory placement constraints for sets of tasks.
5  *
6  *  Copyright (C) 2003 BULL SA.
7  *  Copyright (C) 2004-2007 Silicon Graphics, Inc.
8  *  Copyright (C) 2006 Google, Inc
9  *
10  *  Portions derived from Patrick Mochel's sysfs code.
11  *  sysfs is Copyright (c) 2001-3 Patrick Mochel
12  *
13  *  2003-10-10 Written by Simon Derr.
14  *  2003-10-22 Updates by Stephen Hemminger.
15  *  2004 May-July Rework by Paul Jackson.
16  *  2006 Rework by Paul Menage to use generic cgroups
17  *  2008 Rework of the scheduler domains and CPU hotplug handling
18  *       by Max Krasnyansky
19  *
20  *  This file is subject to the terms and conditions of the GNU General Public
21  *  License.  See the file COPYING in the main directory of the Linux
22  *  distribution for more details.
23  */
24 
25 #include <linux/cpu.h>
26 #include <linux/cpumask.h>
27 #include <linux/cpuset.h>
28 #include <linux/err.h>
29 #include <linux/errno.h>
30 #include <linux/file.h>
31 #include <linux/fs.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/kernel.h>
35 #include <linux/kmod.h>
36 #include <linux/kthread.h>
37 #include <linux/list.h>
38 #include <linux/mempolicy.h>
39 #include <linux/mm.h>
40 #include <linux/memory.h>
41 #include <linux/export.h>
42 #include <linux/mount.h>
43 #include <linux/fs_context.h>
44 #include <linux/namei.h>
45 #include <linux/pagemap.h>
46 #include <linux/proc_fs.h>
47 #include <linux/rcupdate.h>
48 #include <linux/sched.h>
49 #include <linux/sched/deadline.h>
50 #include <linux/sched/mm.h>
51 #include <linux/sched/task.h>
52 #include <linux/seq_file.h>
53 #include <linux/security.h>
54 #include <linux/slab.h>
55 #include <linux/spinlock.h>
56 #include <linux/stat.h>
57 #include <linux/string.h>
58 #include <linux/time.h>
59 #include <linux/time64.h>
60 #include <linux/backing-dev.h>
61 #include <linux/sort.h>
62 #include <linux/oom.h>
63 #include <linux/sched/isolation.h>
64 #include <linux/uaccess.h>
65 #include <linux/atomic.h>
66 #include <linux/mutex.h>
67 #include <linux/cgroup.h>
68 #include <linux/wait.h>
69 
70 DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key);
71 DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key);
72 
73 /*
74  * There could be abnormal cpuset configurations for cpu or memory
75  * node binding, add this key to provide a quick low-cost judgment
76  * of the situation.
77  */
78 DEFINE_STATIC_KEY_FALSE(cpusets_insane_config_key);
79 
80 /* See "Frequency meter" comments, below. */
81 
82 struct fmeter {
83 	int cnt;		/* unprocessed events count */
84 	int val;		/* most recent output value */
85 	time64_t time;		/* clock (secs) when val computed */
86 	spinlock_t lock;	/* guards read or write of above */
87 };
88 
89 /*
90  * Invalid partition error code
91  */
92 enum prs_errcode {
93 	PERR_NONE = 0,
94 	PERR_INVCPUS,
95 	PERR_INVPARENT,
96 	PERR_NOTPART,
97 	PERR_NOTEXCL,
98 	PERR_NOCPUS,
99 	PERR_HOTPLUG,
100 	PERR_CPUSEMPTY,
101 };
102 
103 static const char * const perr_strings[] = {
104 	[PERR_INVCPUS]   = "Invalid cpu list in cpuset.cpus",
105 	[PERR_INVPARENT] = "Parent is an invalid partition root",
106 	[PERR_NOTPART]   = "Parent is not a partition root",
107 	[PERR_NOTEXCL]   = "Cpu list in cpuset.cpus not exclusive",
108 	[PERR_NOCPUS]    = "Parent unable to distribute cpu downstream",
109 	[PERR_HOTPLUG]   = "No cpu available due to hotplug",
110 	[PERR_CPUSEMPTY] = "cpuset.cpus is empty",
111 };
112 
113 struct cpuset {
114 	struct cgroup_subsys_state css;
115 
116 	unsigned long flags;		/* "unsigned long" so bitops work */
117 
118 	/*
119 	 * On default hierarchy:
120 	 *
121 	 * The user-configured masks can only be changed by writing to
122 	 * cpuset.cpus and cpuset.mems, and won't be limited by the
123 	 * parent masks.
124 	 *
125 	 * The effective masks is the real masks that apply to the tasks
126 	 * in the cpuset. They may be changed if the configured masks are
127 	 * changed or hotplug happens.
128 	 *
129 	 * effective_mask == configured_mask & parent's effective_mask,
130 	 * and if it ends up empty, it will inherit the parent's mask.
131 	 *
132 	 *
133 	 * On legacy hierarchy:
134 	 *
135 	 * The user-configured masks are always the same with effective masks.
136 	 */
137 
138 	/* user-configured CPUs and Memory Nodes allow to tasks */
139 	cpumask_var_t cpus_allowed;
140 	nodemask_t mems_allowed;
141 
142 	/* effective CPUs and Memory Nodes allow to tasks */
143 	cpumask_var_t effective_cpus;
144 	nodemask_t effective_mems;
145 
146 	/*
147 	 * CPUs allocated to child sub-partitions (default hierarchy only)
148 	 * - CPUs granted by the parent = effective_cpus U subparts_cpus
149 	 * - effective_cpus and subparts_cpus are mutually exclusive.
150 	 *
151 	 * effective_cpus contains only onlined CPUs, but subparts_cpus
152 	 * may have offlined ones.
153 	 */
154 	cpumask_var_t subparts_cpus;
155 
156 	/*
157 	 * This is old Memory Nodes tasks took on.
158 	 *
159 	 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
160 	 * - A new cpuset's old_mems_allowed is initialized when some
161 	 *   task is moved into it.
162 	 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
163 	 *   cpuset.mems_allowed and have tasks' nodemask updated, and
164 	 *   then old_mems_allowed is updated to mems_allowed.
165 	 */
166 	nodemask_t old_mems_allowed;
167 
168 	struct fmeter fmeter;		/* memory_pressure filter */
169 
170 	/*
171 	 * Tasks are being attached to this cpuset.  Used to prevent
172 	 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
173 	 */
174 	int attach_in_progress;
175 
176 	/* partition number for rebuild_sched_domains() */
177 	int pn;
178 
179 	/* for custom sched domain */
180 	int relax_domain_level;
181 
182 	/* number of CPUs in subparts_cpus */
183 	int nr_subparts_cpus;
184 
185 	/* partition root state */
186 	int partition_root_state;
187 
188 	/*
189 	 * Default hierarchy only:
190 	 * use_parent_ecpus - set if using parent's effective_cpus
191 	 * child_ecpus_count - # of children with use_parent_ecpus set
192 	 */
193 	int use_parent_ecpus;
194 	int child_ecpus_count;
195 
196 	/* Invalid partition error code, not lock protected */
197 	enum prs_errcode prs_err;
198 
199 	/* Handle for cpuset.cpus.partition */
200 	struct cgroup_file partition_file;
201 };
202 
203 /*
204  * Partition root states:
205  *
206  *   0 - member (not a partition root)
207  *   1 - partition root
208  *   2 - partition root without load balancing (isolated)
209  *  -1 - invalid partition root
210  *  -2 - invalid isolated partition root
211  */
212 #define PRS_MEMBER		0
213 #define PRS_ROOT		1
214 #define PRS_ISOLATED		2
215 #define PRS_INVALID_ROOT	-1
216 #define PRS_INVALID_ISOLATED	-2
217 
218 static inline bool is_prs_invalid(int prs_state)
219 {
220 	return prs_state < 0;
221 }
222 
223 /*
224  * Temporary cpumasks for working with partitions that are passed among
225  * functions to avoid memory allocation in inner functions.
226  */
227 struct tmpmasks {
228 	cpumask_var_t addmask, delmask;	/* For partition root */
229 	cpumask_var_t new_cpus;		/* For update_cpumasks_hier() */
230 };
231 
232 static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
233 {
234 	return css ? container_of(css, struct cpuset, css) : NULL;
235 }
236 
237 /* Retrieve the cpuset for a task */
238 static inline struct cpuset *task_cs(struct task_struct *task)
239 {
240 	return css_cs(task_css(task, cpuset_cgrp_id));
241 }
242 
243 static inline struct cpuset *parent_cs(struct cpuset *cs)
244 {
245 	return css_cs(cs->css.parent);
246 }
247 
248 /* bits in struct cpuset flags field */
249 typedef enum {
250 	CS_ONLINE,
251 	CS_CPU_EXCLUSIVE,
252 	CS_MEM_EXCLUSIVE,
253 	CS_MEM_HARDWALL,
254 	CS_MEMORY_MIGRATE,
255 	CS_SCHED_LOAD_BALANCE,
256 	CS_SPREAD_PAGE,
257 	CS_SPREAD_SLAB,
258 } cpuset_flagbits_t;
259 
260 /* convenient tests for these bits */
261 static inline bool is_cpuset_online(struct cpuset *cs)
262 {
263 	return test_bit(CS_ONLINE, &cs->flags) && !css_is_dying(&cs->css);
264 }
265 
266 static inline int is_cpu_exclusive(const struct cpuset *cs)
267 {
268 	return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
269 }
270 
271 static inline int is_mem_exclusive(const struct cpuset *cs)
272 {
273 	return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
274 }
275 
276 static inline int is_mem_hardwall(const struct cpuset *cs)
277 {
278 	return test_bit(CS_MEM_HARDWALL, &cs->flags);
279 }
280 
281 static inline int is_sched_load_balance(const struct cpuset *cs)
282 {
283 	return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
284 }
285 
286 static inline int is_memory_migrate(const struct cpuset *cs)
287 {
288 	return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
289 }
290 
291 static inline int is_spread_page(const struct cpuset *cs)
292 {
293 	return test_bit(CS_SPREAD_PAGE, &cs->flags);
294 }
295 
296 static inline int is_spread_slab(const struct cpuset *cs)
297 {
298 	return test_bit(CS_SPREAD_SLAB, &cs->flags);
299 }
300 
301 static inline int is_partition_valid(const struct cpuset *cs)
302 {
303 	return cs->partition_root_state > 0;
304 }
305 
306 static inline int is_partition_invalid(const struct cpuset *cs)
307 {
308 	return cs->partition_root_state < 0;
309 }
310 
311 /*
312  * Callers should hold callback_lock to modify partition_root_state.
313  */
314 static inline void make_partition_invalid(struct cpuset *cs)
315 {
316 	if (is_partition_valid(cs))
317 		cs->partition_root_state = -cs->partition_root_state;
318 }
319 
320 /*
321  * Send notification event of whenever partition_root_state changes.
322  */
323 static inline void notify_partition_change(struct cpuset *cs, int old_prs)
324 {
325 	if (old_prs == cs->partition_root_state)
326 		return;
327 	cgroup_file_notify(&cs->partition_file);
328 
329 	/* Reset prs_err if not invalid */
330 	if (is_partition_valid(cs))
331 		WRITE_ONCE(cs->prs_err, PERR_NONE);
332 }
333 
334 static struct cpuset top_cpuset = {
335 	.flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
336 		  (1 << CS_MEM_EXCLUSIVE)),
337 	.partition_root_state = PRS_ROOT,
338 };
339 
340 /**
341  * cpuset_for_each_child - traverse online children of a cpuset
342  * @child_cs: loop cursor pointing to the current child
343  * @pos_css: used for iteration
344  * @parent_cs: target cpuset to walk children of
345  *
346  * Walk @child_cs through the online children of @parent_cs.  Must be used
347  * with RCU read locked.
348  */
349 #define cpuset_for_each_child(child_cs, pos_css, parent_cs)		\
350 	css_for_each_child((pos_css), &(parent_cs)->css)		\
351 		if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
352 
353 /**
354  * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
355  * @des_cs: loop cursor pointing to the current descendant
356  * @pos_css: used for iteration
357  * @root_cs: target cpuset to walk ancestor of
358  *
359  * Walk @des_cs through the online descendants of @root_cs.  Must be used
360  * with RCU read locked.  The caller may modify @pos_css by calling
361  * css_rightmost_descendant() to skip subtree.  @root_cs is included in the
362  * iteration and the first node to be visited.
363  */
364 #define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs)	\
365 	css_for_each_descendant_pre((pos_css), &(root_cs)->css)		\
366 		if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
367 
368 /*
369  * There are two global locks guarding cpuset structures - cpuset_rwsem and
370  * callback_lock. We also require taking task_lock() when dereferencing a
371  * task's cpuset pointer. See "The task_lock() exception", at the end of this
372  * comment.  The cpuset code uses only cpuset_rwsem write lock.  Other
373  * kernel subsystems can use cpuset_read_lock()/cpuset_read_unlock() to
374  * prevent change to cpuset structures.
375  *
376  * A task must hold both locks to modify cpusets.  If a task holds
377  * cpuset_rwsem, it blocks others wanting that rwsem, ensuring that it
378  * is the only task able to also acquire callback_lock and be able to
379  * modify cpusets.  It can perform various checks on the cpuset structure
380  * first, knowing nothing will change.  It can also allocate memory while
381  * just holding cpuset_rwsem.  While it is performing these checks, various
382  * callback routines can briefly acquire callback_lock to query cpusets.
383  * Once it is ready to make the changes, it takes callback_lock, blocking
384  * everyone else.
385  *
386  * Calls to the kernel memory allocator can not be made while holding
387  * callback_lock, as that would risk double tripping on callback_lock
388  * from one of the callbacks into the cpuset code from within
389  * __alloc_pages().
390  *
391  * If a task is only holding callback_lock, then it has read-only
392  * access to cpusets.
393  *
394  * Now, the task_struct fields mems_allowed and mempolicy may be changed
395  * by other task, we use alloc_lock in the task_struct fields to protect
396  * them.
397  *
398  * The cpuset_common_file_read() handlers only hold callback_lock across
399  * small pieces of code, such as when reading out possibly multi-word
400  * cpumasks and nodemasks.
401  *
402  * Accessing a task's cpuset should be done in accordance with the
403  * guidelines for accessing subsystem state in kernel/cgroup.c
404  */
405 
406 DEFINE_STATIC_PERCPU_RWSEM(cpuset_rwsem);
407 
408 void cpuset_read_lock(void)
409 {
410 	percpu_down_read(&cpuset_rwsem);
411 }
412 
413 void cpuset_read_unlock(void)
414 {
415 	percpu_up_read(&cpuset_rwsem);
416 }
417 
418 static DEFINE_SPINLOCK(callback_lock);
419 
420 static struct workqueue_struct *cpuset_migrate_mm_wq;
421 
422 /*
423  * CPU / memory hotplug is handled asynchronously.
424  */
425 static void cpuset_hotplug_workfn(struct work_struct *work);
426 static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
427 
428 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
429 
430 static inline void check_insane_mems_config(nodemask_t *nodes)
431 {
432 	if (!cpusets_insane_config() &&
433 		movable_only_nodes(nodes)) {
434 		static_branch_enable(&cpusets_insane_config_key);
435 		pr_info("Unsupported (movable nodes only) cpuset configuration detected (nmask=%*pbl)!\n"
436 			"Cpuset allocations might fail even with a lot of memory available.\n",
437 			nodemask_pr_args(nodes));
438 	}
439 }
440 
441 /*
442  * Cgroup v2 behavior is used on the "cpus" and "mems" control files when
443  * on default hierarchy or when the cpuset_v2_mode flag is set by mounting
444  * the v1 cpuset cgroup filesystem with the "cpuset_v2_mode" mount option.
445  * With v2 behavior, "cpus" and "mems" are always what the users have
446  * requested and won't be changed by hotplug events. Only the effective
447  * cpus or mems will be affected.
448  */
449 static inline bool is_in_v2_mode(void)
450 {
451 	return cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
452 	      (cpuset_cgrp_subsys.root->flags & CGRP_ROOT_CPUSET_V2_MODE);
453 }
454 
455 /**
456  * partition_is_populated - check if partition has tasks
457  * @cs: partition root to be checked
458  * @excluded_child: a child cpuset to be excluded in task checking
459  * Return: true if there are tasks, false otherwise
460  *
461  * It is assumed that @cs is a valid partition root. @excluded_child should
462  * be non-NULL when this cpuset is going to become a partition itself.
463  */
464 static inline bool partition_is_populated(struct cpuset *cs,
465 					  struct cpuset *excluded_child)
466 {
467 	struct cgroup_subsys_state *css;
468 	struct cpuset *child;
469 
470 	if (cs->css.cgroup->nr_populated_csets)
471 		return true;
472 	if (!excluded_child && !cs->nr_subparts_cpus)
473 		return cgroup_is_populated(cs->css.cgroup);
474 
475 	rcu_read_lock();
476 	cpuset_for_each_child(child, css, cs) {
477 		if (child == excluded_child)
478 			continue;
479 		if (is_partition_valid(child))
480 			continue;
481 		if (cgroup_is_populated(child->css.cgroup)) {
482 			rcu_read_unlock();
483 			return true;
484 		}
485 	}
486 	rcu_read_unlock();
487 	return false;
488 }
489 
490 /*
491  * Return in pmask the portion of a task's cpusets's cpus_allowed that
492  * are online and are capable of running the task.  If none are found,
493  * walk up the cpuset hierarchy until we find one that does have some
494  * appropriate cpus.
495  *
496  * One way or another, we guarantee to return some non-empty subset
497  * of cpu_online_mask.
498  *
499  * Call with callback_lock or cpuset_rwsem held.
500  */
501 static void guarantee_online_cpus(struct task_struct *tsk,
502 				  struct cpumask *pmask)
503 {
504 	const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
505 	struct cpuset *cs;
506 
507 	if (WARN_ON(!cpumask_and(pmask, possible_mask, cpu_online_mask)))
508 		cpumask_copy(pmask, cpu_online_mask);
509 
510 	rcu_read_lock();
511 	cs = task_cs(tsk);
512 
513 	while (!cpumask_intersects(cs->effective_cpus, pmask)) {
514 		cs = parent_cs(cs);
515 		if (unlikely(!cs)) {
516 			/*
517 			 * The top cpuset doesn't have any online cpu as a
518 			 * consequence of a race between cpuset_hotplug_work
519 			 * and cpu hotplug notifier.  But we know the top
520 			 * cpuset's effective_cpus is on its way to be
521 			 * identical to cpu_online_mask.
522 			 */
523 			goto out_unlock;
524 		}
525 	}
526 	cpumask_and(pmask, pmask, cs->effective_cpus);
527 
528 out_unlock:
529 	rcu_read_unlock();
530 }
531 
532 /*
533  * Return in *pmask the portion of a cpusets's mems_allowed that
534  * are online, with memory.  If none are online with memory, walk
535  * up the cpuset hierarchy until we find one that does have some
536  * online mems.  The top cpuset always has some mems online.
537  *
538  * One way or another, we guarantee to return some non-empty subset
539  * of node_states[N_MEMORY].
540  *
541  * Call with callback_lock or cpuset_rwsem held.
542  */
543 static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
544 {
545 	while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
546 		cs = parent_cs(cs);
547 	nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
548 }
549 
550 /*
551  * update task's spread flag if cpuset's page/slab spread flag is set
552  *
553  * Call with callback_lock or cpuset_rwsem held. The check can be skipped
554  * if on default hierarchy.
555  */
556 static void cpuset_update_task_spread_flags(struct cpuset *cs,
557 					struct task_struct *tsk)
558 {
559 	if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys))
560 		return;
561 
562 	if (is_spread_page(cs))
563 		task_set_spread_page(tsk);
564 	else
565 		task_clear_spread_page(tsk);
566 
567 	if (is_spread_slab(cs))
568 		task_set_spread_slab(tsk);
569 	else
570 		task_clear_spread_slab(tsk);
571 }
572 
573 /*
574  * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
575  *
576  * One cpuset is a subset of another if all its allowed CPUs and
577  * Memory Nodes are a subset of the other, and its exclusive flags
578  * are only set if the other's are set.  Call holding cpuset_rwsem.
579  */
580 
581 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
582 {
583 	return	cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
584 		nodes_subset(p->mems_allowed, q->mems_allowed) &&
585 		is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
586 		is_mem_exclusive(p) <= is_mem_exclusive(q);
587 }
588 
589 /**
590  * alloc_cpumasks - allocate three cpumasks for cpuset
591  * @cs:  the cpuset that have cpumasks to be allocated.
592  * @tmp: the tmpmasks structure pointer
593  * Return: 0 if successful, -ENOMEM otherwise.
594  *
595  * Only one of the two input arguments should be non-NULL.
596  */
597 static inline int alloc_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
598 {
599 	cpumask_var_t *pmask1, *pmask2, *pmask3;
600 
601 	if (cs) {
602 		pmask1 = &cs->cpus_allowed;
603 		pmask2 = &cs->effective_cpus;
604 		pmask3 = &cs->subparts_cpus;
605 	} else {
606 		pmask1 = &tmp->new_cpus;
607 		pmask2 = &tmp->addmask;
608 		pmask3 = &tmp->delmask;
609 	}
610 
611 	if (!zalloc_cpumask_var(pmask1, GFP_KERNEL))
612 		return -ENOMEM;
613 
614 	if (!zalloc_cpumask_var(pmask2, GFP_KERNEL))
615 		goto free_one;
616 
617 	if (!zalloc_cpumask_var(pmask3, GFP_KERNEL))
618 		goto free_two;
619 
620 	return 0;
621 
622 free_two:
623 	free_cpumask_var(*pmask2);
624 free_one:
625 	free_cpumask_var(*pmask1);
626 	return -ENOMEM;
627 }
628 
629 /**
630  * free_cpumasks - free cpumasks in a tmpmasks structure
631  * @cs:  the cpuset that have cpumasks to be free.
632  * @tmp: the tmpmasks structure pointer
633  */
634 static inline void free_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
635 {
636 	if (cs) {
637 		free_cpumask_var(cs->cpus_allowed);
638 		free_cpumask_var(cs->effective_cpus);
639 		free_cpumask_var(cs->subparts_cpus);
640 	}
641 	if (tmp) {
642 		free_cpumask_var(tmp->new_cpus);
643 		free_cpumask_var(tmp->addmask);
644 		free_cpumask_var(tmp->delmask);
645 	}
646 }
647 
648 /**
649  * alloc_trial_cpuset - allocate a trial cpuset
650  * @cs: the cpuset that the trial cpuset duplicates
651  */
652 static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
653 {
654 	struct cpuset *trial;
655 
656 	trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
657 	if (!trial)
658 		return NULL;
659 
660 	if (alloc_cpumasks(trial, NULL)) {
661 		kfree(trial);
662 		return NULL;
663 	}
664 
665 	cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
666 	cpumask_copy(trial->effective_cpus, cs->effective_cpus);
667 	return trial;
668 }
669 
670 /**
671  * free_cpuset - free the cpuset
672  * @cs: the cpuset to be freed
673  */
674 static inline void free_cpuset(struct cpuset *cs)
675 {
676 	free_cpumasks(cs, NULL);
677 	kfree(cs);
678 }
679 
680 /*
681  * validate_change_legacy() - Validate conditions specific to legacy (v1)
682  *                            behavior.
683  */
684 static int validate_change_legacy(struct cpuset *cur, struct cpuset *trial)
685 {
686 	struct cgroup_subsys_state *css;
687 	struct cpuset *c, *par;
688 	int ret;
689 
690 	WARN_ON_ONCE(!rcu_read_lock_held());
691 
692 	/* Each of our child cpusets must be a subset of us */
693 	ret = -EBUSY;
694 	cpuset_for_each_child(c, css, cur)
695 		if (!is_cpuset_subset(c, trial))
696 			goto out;
697 
698 	/* On legacy hierarchy, we must be a subset of our parent cpuset. */
699 	ret = -EACCES;
700 	par = parent_cs(cur);
701 	if (par && !is_cpuset_subset(trial, par))
702 		goto out;
703 
704 	ret = 0;
705 out:
706 	return ret;
707 }
708 
709 /*
710  * validate_change() - Used to validate that any proposed cpuset change
711  *		       follows the structural rules for cpusets.
712  *
713  * If we replaced the flag and mask values of the current cpuset
714  * (cur) with those values in the trial cpuset (trial), would
715  * our various subset and exclusive rules still be valid?  Presumes
716  * cpuset_rwsem held.
717  *
718  * 'cur' is the address of an actual, in-use cpuset.  Operations
719  * such as list traversal that depend on the actual address of the
720  * cpuset in the list must use cur below, not trial.
721  *
722  * 'trial' is the address of bulk structure copy of cur, with
723  * perhaps one or more of the fields cpus_allowed, mems_allowed,
724  * or flags changed to new, trial values.
725  *
726  * Return 0 if valid, -errno if not.
727  */
728 
729 static int validate_change(struct cpuset *cur, struct cpuset *trial)
730 {
731 	struct cgroup_subsys_state *css;
732 	struct cpuset *c, *par;
733 	int ret = 0;
734 
735 	rcu_read_lock();
736 
737 	if (!is_in_v2_mode())
738 		ret = validate_change_legacy(cur, trial);
739 	if (ret)
740 		goto out;
741 
742 	/* Remaining checks don't apply to root cpuset */
743 	if (cur == &top_cpuset)
744 		goto out;
745 
746 	par = parent_cs(cur);
747 
748 	/*
749 	 * Cpusets with tasks - existing or newly being attached - can't
750 	 * be changed to have empty cpus_allowed or mems_allowed.
751 	 */
752 	ret = -ENOSPC;
753 	if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) {
754 		if (!cpumask_empty(cur->cpus_allowed) &&
755 		    cpumask_empty(trial->cpus_allowed))
756 			goto out;
757 		if (!nodes_empty(cur->mems_allowed) &&
758 		    nodes_empty(trial->mems_allowed))
759 			goto out;
760 	}
761 
762 	/*
763 	 * We can't shrink if we won't have enough room for SCHED_DEADLINE
764 	 * tasks.
765 	 */
766 	ret = -EBUSY;
767 	if (is_cpu_exclusive(cur) &&
768 	    !cpuset_cpumask_can_shrink(cur->cpus_allowed,
769 				       trial->cpus_allowed))
770 		goto out;
771 
772 	/*
773 	 * If either I or some sibling (!= me) is exclusive, we can't
774 	 * overlap
775 	 */
776 	ret = -EINVAL;
777 	cpuset_for_each_child(c, css, par) {
778 		if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
779 		    c != cur &&
780 		    cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
781 			goto out;
782 		if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
783 		    c != cur &&
784 		    nodes_intersects(trial->mems_allowed, c->mems_allowed))
785 			goto out;
786 	}
787 
788 	ret = 0;
789 out:
790 	rcu_read_unlock();
791 	return ret;
792 }
793 
794 #ifdef CONFIG_SMP
795 /*
796  * Helper routine for generate_sched_domains().
797  * Do cpusets a, b have overlapping effective cpus_allowed masks?
798  */
799 static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
800 {
801 	return cpumask_intersects(a->effective_cpus, b->effective_cpus);
802 }
803 
804 static void
805 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
806 {
807 	if (dattr->relax_domain_level < c->relax_domain_level)
808 		dattr->relax_domain_level = c->relax_domain_level;
809 	return;
810 }
811 
812 static void update_domain_attr_tree(struct sched_domain_attr *dattr,
813 				    struct cpuset *root_cs)
814 {
815 	struct cpuset *cp;
816 	struct cgroup_subsys_state *pos_css;
817 
818 	rcu_read_lock();
819 	cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
820 		/* skip the whole subtree if @cp doesn't have any CPU */
821 		if (cpumask_empty(cp->cpus_allowed)) {
822 			pos_css = css_rightmost_descendant(pos_css);
823 			continue;
824 		}
825 
826 		if (is_sched_load_balance(cp))
827 			update_domain_attr(dattr, cp);
828 	}
829 	rcu_read_unlock();
830 }
831 
832 /* Must be called with cpuset_rwsem held.  */
833 static inline int nr_cpusets(void)
834 {
835 	/* jump label reference count + the top-level cpuset */
836 	return static_key_count(&cpusets_enabled_key.key) + 1;
837 }
838 
839 /*
840  * generate_sched_domains()
841  *
842  * This function builds a partial partition of the systems CPUs
843  * A 'partial partition' is a set of non-overlapping subsets whose
844  * union is a subset of that set.
845  * The output of this function needs to be passed to kernel/sched/core.c
846  * partition_sched_domains() routine, which will rebuild the scheduler's
847  * load balancing domains (sched domains) as specified by that partial
848  * partition.
849  *
850  * See "What is sched_load_balance" in Documentation/admin-guide/cgroup-v1/cpusets.rst
851  * for a background explanation of this.
852  *
853  * Does not return errors, on the theory that the callers of this
854  * routine would rather not worry about failures to rebuild sched
855  * domains when operating in the severe memory shortage situations
856  * that could cause allocation failures below.
857  *
858  * Must be called with cpuset_rwsem held.
859  *
860  * The three key local variables below are:
861  *    cp - cpuset pointer, used (together with pos_css) to perform a
862  *	   top-down scan of all cpusets. For our purposes, rebuilding
863  *	   the schedulers sched domains, we can ignore !is_sched_load_
864  *	   balance cpusets.
865  *  csa  - (for CpuSet Array) Array of pointers to all the cpusets
866  *	   that need to be load balanced, for convenient iterative
867  *	   access by the subsequent code that finds the best partition,
868  *	   i.e the set of domains (subsets) of CPUs such that the
869  *	   cpus_allowed of every cpuset marked is_sched_load_balance
870  *	   is a subset of one of these domains, while there are as
871  *	   many such domains as possible, each as small as possible.
872  * doms  - Conversion of 'csa' to an array of cpumasks, for passing to
873  *	   the kernel/sched/core.c routine partition_sched_domains() in a
874  *	   convenient format, that can be easily compared to the prior
875  *	   value to determine what partition elements (sched domains)
876  *	   were changed (added or removed.)
877  *
878  * Finding the best partition (set of domains):
879  *	The triple nested loops below over i, j, k scan over the
880  *	load balanced cpusets (using the array of cpuset pointers in
881  *	csa[]) looking for pairs of cpusets that have overlapping
882  *	cpus_allowed, but which don't have the same 'pn' partition
883  *	number and gives them in the same partition number.  It keeps
884  *	looping on the 'restart' label until it can no longer find
885  *	any such pairs.
886  *
887  *	The union of the cpus_allowed masks from the set of
888  *	all cpusets having the same 'pn' value then form the one
889  *	element of the partition (one sched domain) to be passed to
890  *	partition_sched_domains().
891  */
892 static int generate_sched_domains(cpumask_var_t **domains,
893 			struct sched_domain_attr **attributes)
894 {
895 	struct cpuset *cp;	/* top-down scan of cpusets */
896 	struct cpuset **csa;	/* array of all cpuset ptrs */
897 	int csn;		/* how many cpuset ptrs in csa so far */
898 	int i, j, k;		/* indices for partition finding loops */
899 	cpumask_var_t *doms;	/* resulting partition; i.e. sched domains */
900 	struct sched_domain_attr *dattr;  /* attributes for custom domains */
901 	int ndoms = 0;		/* number of sched domains in result */
902 	int nslot;		/* next empty doms[] struct cpumask slot */
903 	struct cgroup_subsys_state *pos_css;
904 	bool root_load_balance = is_sched_load_balance(&top_cpuset);
905 
906 	doms = NULL;
907 	dattr = NULL;
908 	csa = NULL;
909 
910 	/* Special case for the 99% of systems with one, full, sched domain */
911 	if (root_load_balance && !top_cpuset.nr_subparts_cpus) {
912 		ndoms = 1;
913 		doms = alloc_sched_domains(ndoms);
914 		if (!doms)
915 			goto done;
916 
917 		dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
918 		if (dattr) {
919 			*dattr = SD_ATTR_INIT;
920 			update_domain_attr_tree(dattr, &top_cpuset);
921 		}
922 		cpumask_and(doms[0], top_cpuset.effective_cpus,
923 			    housekeeping_cpumask(HK_TYPE_DOMAIN));
924 
925 		goto done;
926 	}
927 
928 	csa = kmalloc_array(nr_cpusets(), sizeof(cp), GFP_KERNEL);
929 	if (!csa)
930 		goto done;
931 	csn = 0;
932 
933 	rcu_read_lock();
934 	if (root_load_balance)
935 		csa[csn++] = &top_cpuset;
936 	cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
937 		if (cp == &top_cpuset)
938 			continue;
939 		/*
940 		 * Continue traversing beyond @cp iff @cp has some CPUs and
941 		 * isn't load balancing.  The former is obvious.  The
942 		 * latter: All child cpusets contain a subset of the
943 		 * parent's cpus, so just skip them, and then we call
944 		 * update_domain_attr_tree() to calc relax_domain_level of
945 		 * the corresponding sched domain.
946 		 *
947 		 * If root is load-balancing, we can skip @cp if it
948 		 * is a subset of the root's effective_cpus.
949 		 */
950 		if (!cpumask_empty(cp->cpus_allowed) &&
951 		    !(is_sched_load_balance(cp) &&
952 		      cpumask_intersects(cp->cpus_allowed,
953 					 housekeeping_cpumask(HK_TYPE_DOMAIN))))
954 			continue;
955 
956 		if (root_load_balance &&
957 		    cpumask_subset(cp->cpus_allowed, top_cpuset.effective_cpus))
958 			continue;
959 
960 		if (is_sched_load_balance(cp) &&
961 		    !cpumask_empty(cp->effective_cpus))
962 			csa[csn++] = cp;
963 
964 		/* skip @cp's subtree if not a partition root */
965 		if (!is_partition_valid(cp))
966 			pos_css = css_rightmost_descendant(pos_css);
967 	}
968 	rcu_read_unlock();
969 
970 	for (i = 0; i < csn; i++)
971 		csa[i]->pn = i;
972 	ndoms = csn;
973 
974 restart:
975 	/* Find the best partition (set of sched domains) */
976 	for (i = 0; i < csn; i++) {
977 		struct cpuset *a = csa[i];
978 		int apn = a->pn;
979 
980 		for (j = 0; j < csn; j++) {
981 			struct cpuset *b = csa[j];
982 			int bpn = b->pn;
983 
984 			if (apn != bpn && cpusets_overlap(a, b)) {
985 				for (k = 0; k < csn; k++) {
986 					struct cpuset *c = csa[k];
987 
988 					if (c->pn == bpn)
989 						c->pn = apn;
990 				}
991 				ndoms--;	/* one less element */
992 				goto restart;
993 			}
994 		}
995 	}
996 
997 	/*
998 	 * Now we know how many domains to create.
999 	 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
1000 	 */
1001 	doms = alloc_sched_domains(ndoms);
1002 	if (!doms)
1003 		goto done;
1004 
1005 	/*
1006 	 * The rest of the code, including the scheduler, can deal with
1007 	 * dattr==NULL case. No need to abort if alloc fails.
1008 	 */
1009 	dattr = kmalloc_array(ndoms, sizeof(struct sched_domain_attr),
1010 			      GFP_KERNEL);
1011 
1012 	for (nslot = 0, i = 0; i < csn; i++) {
1013 		struct cpuset *a = csa[i];
1014 		struct cpumask *dp;
1015 		int apn = a->pn;
1016 
1017 		if (apn < 0) {
1018 			/* Skip completed partitions */
1019 			continue;
1020 		}
1021 
1022 		dp = doms[nslot];
1023 
1024 		if (nslot == ndoms) {
1025 			static int warnings = 10;
1026 			if (warnings) {
1027 				pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
1028 					nslot, ndoms, csn, i, apn);
1029 				warnings--;
1030 			}
1031 			continue;
1032 		}
1033 
1034 		cpumask_clear(dp);
1035 		if (dattr)
1036 			*(dattr + nslot) = SD_ATTR_INIT;
1037 		for (j = i; j < csn; j++) {
1038 			struct cpuset *b = csa[j];
1039 
1040 			if (apn == b->pn) {
1041 				cpumask_or(dp, dp, b->effective_cpus);
1042 				cpumask_and(dp, dp, housekeeping_cpumask(HK_TYPE_DOMAIN));
1043 				if (dattr)
1044 					update_domain_attr_tree(dattr + nslot, b);
1045 
1046 				/* Done with this partition */
1047 				b->pn = -1;
1048 			}
1049 		}
1050 		nslot++;
1051 	}
1052 	BUG_ON(nslot != ndoms);
1053 
1054 done:
1055 	kfree(csa);
1056 
1057 	/*
1058 	 * Fallback to the default domain if kmalloc() failed.
1059 	 * See comments in partition_sched_domains().
1060 	 */
1061 	if (doms == NULL)
1062 		ndoms = 1;
1063 
1064 	*domains    = doms;
1065 	*attributes = dattr;
1066 	return ndoms;
1067 }
1068 
1069 static void update_tasks_root_domain(struct cpuset *cs)
1070 {
1071 	struct css_task_iter it;
1072 	struct task_struct *task;
1073 
1074 	css_task_iter_start(&cs->css, 0, &it);
1075 
1076 	while ((task = css_task_iter_next(&it)))
1077 		dl_add_task_root_domain(task);
1078 
1079 	css_task_iter_end(&it);
1080 }
1081 
1082 static void rebuild_root_domains(void)
1083 {
1084 	struct cpuset *cs = NULL;
1085 	struct cgroup_subsys_state *pos_css;
1086 
1087 	percpu_rwsem_assert_held(&cpuset_rwsem);
1088 	lockdep_assert_cpus_held();
1089 	lockdep_assert_held(&sched_domains_mutex);
1090 
1091 	rcu_read_lock();
1092 
1093 	/*
1094 	 * Clear default root domain DL accounting, it will be computed again
1095 	 * if a task belongs to it.
1096 	 */
1097 	dl_clear_root_domain(&def_root_domain);
1098 
1099 	cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
1100 
1101 		if (cpumask_empty(cs->effective_cpus)) {
1102 			pos_css = css_rightmost_descendant(pos_css);
1103 			continue;
1104 		}
1105 
1106 		css_get(&cs->css);
1107 
1108 		rcu_read_unlock();
1109 
1110 		update_tasks_root_domain(cs);
1111 
1112 		rcu_read_lock();
1113 		css_put(&cs->css);
1114 	}
1115 	rcu_read_unlock();
1116 }
1117 
1118 static void
1119 partition_and_rebuild_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1120 				    struct sched_domain_attr *dattr_new)
1121 {
1122 	mutex_lock(&sched_domains_mutex);
1123 	partition_sched_domains_locked(ndoms_new, doms_new, dattr_new);
1124 	rebuild_root_domains();
1125 	mutex_unlock(&sched_domains_mutex);
1126 }
1127 
1128 /*
1129  * Rebuild scheduler domains.
1130  *
1131  * If the flag 'sched_load_balance' of any cpuset with non-empty
1132  * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
1133  * which has that flag enabled, or if any cpuset with a non-empty
1134  * 'cpus' is removed, then call this routine to rebuild the
1135  * scheduler's dynamic sched domains.
1136  *
1137  * Call with cpuset_rwsem held.  Takes cpus_read_lock().
1138  */
1139 static void rebuild_sched_domains_locked(void)
1140 {
1141 	struct cgroup_subsys_state *pos_css;
1142 	struct sched_domain_attr *attr;
1143 	cpumask_var_t *doms;
1144 	struct cpuset *cs;
1145 	int ndoms;
1146 
1147 	lockdep_assert_cpus_held();
1148 	percpu_rwsem_assert_held(&cpuset_rwsem);
1149 
1150 	/*
1151 	 * If we have raced with CPU hotplug, return early to avoid
1152 	 * passing doms with offlined cpu to partition_sched_domains().
1153 	 * Anyways, cpuset_hotplug_workfn() will rebuild sched domains.
1154 	 *
1155 	 * With no CPUs in any subpartitions, top_cpuset's effective CPUs
1156 	 * should be the same as the active CPUs, so checking only top_cpuset
1157 	 * is enough to detect racing CPU offlines.
1158 	 */
1159 	if (!top_cpuset.nr_subparts_cpus &&
1160 	    !cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
1161 		return;
1162 
1163 	/*
1164 	 * With subpartition CPUs, however, the effective CPUs of a partition
1165 	 * root should be only a subset of the active CPUs.  Since a CPU in any
1166 	 * partition root could be offlined, all must be checked.
1167 	 */
1168 	if (top_cpuset.nr_subparts_cpus) {
1169 		rcu_read_lock();
1170 		cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
1171 			if (!is_partition_valid(cs)) {
1172 				pos_css = css_rightmost_descendant(pos_css);
1173 				continue;
1174 			}
1175 			if (!cpumask_subset(cs->effective_cpus,
1176 					    cpu_active_mask)) {
1177 				rcu_read_unlock();
1178 				return;
1179 			}
1180 		}
1181 		rcu_read_unlock();
1182 	}
1183 
1184 	/* Generate domain masks and attrs */
1185 	ndoms = generate_sched_domains(&doms, &attr);
1186 
1187 	/* Have scheduler rebuild the domains */
1188 	partition_and_rebuild_sched_domains(ndoms, doms, attr);
1189 }
1190 #else /* !CONFIG_SMP */
1191 static void rebuild_sched_domains_locked(void)
1192 {
1193 }
1194 #endif /* CONFIG_SMP */
1195 
1196 void rebuild_sched_domains(void)
1197 {
1198 	cpus_read_lock();
1199 	percpu_down_write(&cpuset_rwsem);
1200 	rebuild_sched_domains_locked();
1201 	percpu_up_write(&cpuset_rwsem);
1202 	cpus_read_unlock();
1203 }
1204 
1205 /**
1206  * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
1207  * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
1208  * @new_cpus: the temp variable for the new effective_cpus mask
1209  *
1210  * Iterate through each task of @cs updating its cpus_allowed to the
1211  * effective cpuset's.  As this function is called with cpuset_rwsem held,
1212  * cpuset membership stays stable.
1213  */
1214 static void update_tasks_cpumask(struct cpuset *cs, struct cpumask *new_cpus)
1215 {
1216 	struct css_task_iter it;
1217 	struct task_struct *task;
1218 	bool top_cs = cs == &top_cpuset;
1219 
1220 	css_task_iter_start(&cs->css, 0, &it);
1221 	while ((task = css_task_iter_next(&it))) {
1222 		/*
1223 		 * Percpu kthreads in top_cpuset are ignored
1224 		 */
1225 		if (top_cs && (task->flags & PF_KTHREAD) &&
1226 		    kthread_is_per_cpu(task))
1227 			continue;
1228 
1229 		cpumask_and(new_cpus, cs->effective_cpus,
1230 			    task_cpu_possible_mask(task));
1231 		set_cpus_allowed_ptr(task, new_cpus);
1232 	}
1233 	css_task_iter_end(&it);
1234 }
1235 
1236 /**
1237  * compute_effective_cpumask - Compute the effective cpumask of the cpuset
1238  * @new_cpus: the temp variable for the new effective_cpus mask
1239  * @cs: the cpuset the need to recompute the new effective_cpus mask
1240  * @parent: the parent cpuset
1241  *
1242  * If the parent has subpartition CPUs, include them in the list of
1243  * allowable CPUs in computing the new effective_cpus mask. Since offlined
1244  * CPUs are not removed from subparts_cpus, we have to use cpu_active_mask
1245  * to mask those out.
1246  */
1247 static void compute_effective_cpumask(struct cpumask *new_cpus,
1248 				      struct cpuset *cs, struct cpuset *parent)
1249 {
1250 	if (parent->nr_subparts_cpus) {
1251 		cpumask_or(new_cpus, parent->effective_cpus,
1252 			   parent->subparts_cpus);
1253 		cpumask_and(new_cpus, new_cpus, cs->cpus_allowed);
1254 		cpumask_and(new_cpus, new_cpus, cpu_active_mask);
1255 	} else {
1256 		cpumask_and(new_cpus, cs->cpus_allowed, parent->effective_cpus);
1257 	}
1258 }
1259 
1260 /*
1261  * Commands for update_parent_subparts_cpumask
1262  */
1263 enum subparts_cmd {
1264 	partcmd_enable,		/* Enable partition root	 */
1265 	partcmd_disable,	/* Disable partition root	 */
1266 	partcmd_update,		/* Update parent's subparts_cpus */
1267 	partcmd_invalidate,	/* Make partition invalid	 */
1268 };
1269 
1270 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1271 		       int turning_on);
1272 /**
1273  * update_parent_subparts_cpumask - update subparts_cpus mask of parent cpuset
1274  * @cs:      The cpuset that requests change in partition root state
1275  * @cmd:     Partition root state change command
1276  * @newmask: Optional new cpumask for partcmd_update
1277  * @tmp:     Temporary addmask and delmask
1278  * Return:   0 or a partition root state error code
1279  *
1280  * For partcmd_enable, the cpuset is being transformed from a non-partition
1281  * root to a partition root. The cpus_allowed mask of the given cpuset will
1282  * be put into parent's subparts_cpus and taken away from parent's
1283  * effective_cpus. The function will return 0 if all the CPUs listed in
1284  * cpus_allowed can be granted or an error code will be returned.
1285  *
1286  * For partcmd_disable, the cpuset is being transformed from a partition
1287  * root back to a non-partition root. Any CPUs in cpus_allowed that are in
1288  * parent's subparts_cpus will be taken away from that cpumask and put back
1289  * into parent's effective_cpus. 0 will always be returned.
1290  *
1291  * For partcmd_update, if the optional newmask is specified, the cpu list is
1292  * to be changed from cpus_allowed to newmask. Otherwise, cpus_allowed is
1293  * assumed to remain the same. The cpuset should either be a valid or invalid
1294  * partition root. The partition root state may change from valid to invalid
1295  * or vice versa. An error code will only be returned if transitioning from
1296  * invalid to valid violates the exclusivity rule.
1297  *
1298  * For partcmd_invalidate, the current partition will be made invalid.
1299  *
1300  * The partcmd_enable and partcmd_disable commands are used by
1301  * update_prstate(). An error code may be returned and the caller will check
1302  * for error.
1303  *
1304  * The partcmd_update command is used by update_cpumasks_hier() with newmask
1305  * NULL and update_cpumask() with newmask set. The partcmd_invalidate is used
1306  * by update_cpumask() with NULL newmask. In both cases, the callers won't
1307  * check for error and so partition_root_state and prs_error will be updated
1308  * directly.
1309  */
1310 static int update_parent_subparts_cpumask(struct cpuset *cs, int cmd,
1311 					  struct cpumask *newmask,
1312 					  struct tmpmasks *tmp)
1313 {
1314 	struct cpuset *parent = parent_cs(cs);
1315 	int adding;	/* Moving cpus from effective_cpus to subparts_cpus */
1316 	int deleting;	/* Moving cpus from subparts_cpus to effective_cpus */
1317 	int old_prs, new_prs;
1318 	int part_error = PERR_NONE;	/* Partition error? */
1319 
1320 	percpu_rwsem_assert_held(&cpuset_rwsem);
1321 
1322 	/*
1323 	 * The parent must be a partition root.
1324 	 * The new cpumask, if present, or the current cpus_allowed must
1325 	 * not be empty.
1326 	 */
1327 	if (!is_partition_valid(parent)) {
1328 		return is_partition_invalid(parent)
1329 		       ? PERR_INVPARENT : PERR_NOTPART;
1330 	}
1331 	if ((newmask && cpumask_empty(newmask)) ||
1332 	   (!newmask && cpumask_empty(cs->cpus_allowed)))
1333 		return PERR_CPUSEMPTY;
1334 
1335 	/*
1336 	 * new_prs will only be changed for the partcmd_update and
1337 	 * partcmd_invalidate commands.
1338 	 */
1339 	adding = deleting = false;
1340 	old_prs = new_prs = cs->partition_root_state;
1341 	if (cmd == partcmd_enable) {
1342 		/*
1343 		 * Enabling partition root is not allowed if cpus_allowed
1344 		 * doesn't overlap parent's cpus_allowed.
1345 		 */
1346 		if (!cpumask_intersects(cs->cpus_allowed, parent->cpus_allowed))
1347 			return PERR_INVCPUS;
1348 
1349 		/*
1350 		 * A parent can be left with no CPU as long as there is no
1351 		 * task directly associated with the parent partition.
1352 		 */
1353 		if (cpumask_subset(parent->effective_cpus, cs->cpus_allowed) &&
1354 		    partition_is_populated(parent, cs))
1355 			return PERR_NOCPUS;
1356 
1357 		cpumask_copy(tmp->addmask, cs->cpus_allowed);
1358 		adding = true;
1359 	} else if (cmd == partcmd_disable) {
1360 		/*
1361 		 * Need to remove cpus from parent's subparts_cpus for valid
1362 		 * partition root.
1363 		 */
1364 		deleting = !is_prs_invalid(old_prs) &&
1365 			   cpumask_and(tmp->delmask, cs->cpus_allowed,
1366 				       parent->subparts_cpus);
1367 	} else if (cmd == partcmd_invalidate) {
1368 		if (is_prs_invalid(old_prs))
1369 			return 0;
1370 
1371 		/*
1372 		 * Make the current partition invalid. It is assumed that
1373 		 * invalidation is caused by violating cpu exclusivity rule.
1374 		 */
1375 		deleting = cpumask_and(tmp->delmask, cs->cpus_allowed,
1376 				       parent->subparts_cpus);
1377 		if (old_prs > 0) {
1378 			new_prs = -old_prs;
1379 			part_error = PERR_NOTEXCL;
1380 		}
1381 	} else if (newmask) {
1382 		/*
1383 		 * partcmd_update with newmask:
1384 		 *
1385 		 * Compute add/delete mask to/from subparts_cpus
1386 		 *
1387 		 * delmask = cpus_allowed & ~newmask & parent->subparts_cpus
1388 		 * addmask = newmask & parent->cpus_allowed
1389 		 *		     & ~parent->subparts_cpus
1390 		 */
1391 		cpumask_andnot(tmp->delmask, cs->cpus_allowed, newmask);
1392 		deleting = cpumask_and(tmp->delmask, tmp->delmask,
1393 				       parent->subparts_cpus);
1394 
1395 		cpumask_and(tmp->addmask, newmask, parent->cpus_allowed);
1396 		adding = cpumask_andnot(tmp->addmask, tmp->addmask,
1397 					parent->subparts_cpus);
1398 		/*
1399 		 * Make partition invalid if parent's effective_cpus could
1400 		 * become empty and there are tasks in the parent.
1401 		 */
1402 		if (adding &&
1403 		    cpumask_subset(parent->effective_cpus, tmp->addmask) &&
1404 		    !cpumask_intersects(tmp->delmask, cpu_active_mask) &&
1405 		    partition_is_populated(parent, cs)) {
1406 			part_error = PERR_NOCPUS;
1407 			adding = false;
1408 			deleting = cpumask_and(tmp->delmask, cs->cpus_allowed,
1409 					       parent->subparts_cpus);
1410 		}
1411 	} else {
1412 		/*
1413 		 * partcmd_update w/o newmask:
1414 		 *
1415 		 * delmask = cpus_allowed & parent->subparts_cpus
1416 		 * addmask = cpus_allowed & parent->cpus_allowed
1417 		 *			  & ~parent->subparts_cpus
1418 		 *
1419 		 * This gets invoked either due to a hotplug event or from
1420 		 * update_cpumasks_hier(). This can cause the state of a
1421 		 * partition root to transition from valid to invalid or vice
1422 		 * versa. So we still need to compute the addmask and delmask.
1423 
1424 		 * A partition error happens when:
1425 		 * 1) Cpuset is valid partition, but parent does not distribute
1426 		 *    out any CPUs.
1427 		 * 2) Parent has tasks and all its effective CPUs will have
1428 		 *    to be distributed out.
1429 		 */
1430 		cpumask_and(tmp->addmask, cs->cpus_allowed,
1431 					  parent->cpus_allowed);
1432 		adding = cpumask_andnot(tmp->addmask, tmp->addmask,
1433 					parent->subparts_cpus);
1434 
1435 		if ((is_partition_valid(cs) && !parent->nr_subparts_cpus) ||
1436 		    (adding &&
1437 		     cpumask_subset(parent->effective_cpus, tmp->addmask) &&
1438 		     partition_is_populated(parent, cs))) {
1439 			part_error = PERR_NOCPUS;
1440 			adding = false;
1441 		}
1442 
1443 		if (part_error && is_partition_valid(cs) &&
1444 		    parent->nr_subparts_cpus)
1445 			deleting = cpumask_and(tmp->delmask, cs->cpus_allowed,
1446 					       parent->subparts_cpus);
1447 	}
1448 	if (part_error)
1449 		WRITE_ONCE(cs->prs_err, part_error);
1450 
1451 	if (cmd == partcmd_update) {
1452 		/*
1453 		 * Check for possible transition between valid and invalid
1454 		 * partition root.
1455 		 */
1456 		switch (cs->partition_root_state) {
1457 		case PRS_ROOT:
1458 		case PRS_ISOLATED:
1459 			if (part_error)
1460 				new_prs = -old_prs;
1461 			break;
1462 		case PRS_INVALID_ROOT:
1463 		case PRS_INVALID_ISOLATED:
1464 			if (!part_error)
1465 				new_prs = -old_prs;
1466 			break;
1467 		}
1468 	}
1469 
1470 	if (!adding && !deleting && (new_prs == old_prs))
1471 		return 0;
1472 
1473 	/*
1474 	 * Transitioning between invalid to valid or vice versa may require
1475 	 * changing CS_CPU_EXCLUSIVE and CS_SCHED_LOAD_BALANCE.
1476 	 */
1477 	if (old_prs != new_prs) {
1478 		if (is_prs_invalid(old_prs) && !is_cpu_exclusive(cs) &&
1479 		    (update_flag(CS_CPU_EXCLUSIVE, cs, 1) < 0))
1480 			return PERR_NOTEXCL;
1481 		if (is_prs_invalid(new_prs) && is_cpu_exclusive(cs))
1482 			update_flag(CS_CPU_EXCLUSIVE, cs, 0);
1483 	}
1484 
1485 	/*
1486 	 * Change the parent's subparts_cpus.
1487 	 * Newly added CPUs will be removed from effective_cpus and
1488 	 * newly deleted ones will be added back to effective_cpus.
1489 	 */
1490 	spin_lock_irq(&callback_lock);
1491 	if (adding) {
1492 		cpumask_or(parent->subparts_cpus,
1493 			   parent->subparts_cpus, tmp->addmask);
1494 		cpumask_andnot(parent->effective_cpus,
1495 			       parent->effective_cpus, tmp->addmask);
1496 	}
1497 	if (deleting) {
1498 		cpumask_andnot(parent->subparts_cpus,
1499 			       parent->subparts_cpus, tmp->delmask);
1500 		/*
1501 		 * Some of the CPUs in subparts_cpus might have been offlined.
1502 		 */
1503 		cpumask_and(tmp->delmask, tmp->delmask, cpu_active_mask);
1504 		cpumask_or(parent->effective_cpus,
1505 			   parent->effective_cpus, tmp->delmask);
1506 	}
1507 
1508 	parent->nr_subparts_cpus = cpumask_weight(parent->subparts_cpus);
1509 
1510 	if (old_prs != new_prs)
1511 		cs->partition_root_state = new_prs;
1512 
1513 	spin_unlock_irq(&callback_lock);
1514 
1515 	if (adding || deleting)
1516 		update_tasks_cpumask(parent, tmp->new_cpus);
1517 
1518 	/*
1519 	 * Set or clear CS_SCHED_LOAD_BALANCE when partcmd_update, if necessary.
1520 	 * rebuild_sched_domains_locked() may be called.
1521 	 */
1522 	if (old_prs != new_prs) {
1523 		if (old_prs == PRS_ISOLATED)
1524 			update_flag(CS_SCHED_LOAD_BALANCE, cs, 1);
1525 		else if (new_prs == PRS_ISOLATED)
1526 			update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
1527 	}
1528 	notify_partition_change(cs, old_prs);
1529 	return 0;
1530 }
1531 
1532 /*
1533  * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
1534  * @cs:  the cpuset to consider
1535  * @tmp: temp variables for calculating effective_cpus & partition setup
1536  * @force: don't skip any descendant cpusets if set
1537  *
1538  * When configured cpumask is changed, the effective cpumasks of this cpuset
1539  * and all its descendants need to be updated.
1540  *
1541  * On legacy hierarchy, effective_cpus will be the same with cpu_allowed.
1542  *
1543  * Called with cpuset_rwsem held
1544  */
1545 static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp,
1546 				 bool force)
1547 {
1548 	struct cpuset *cp;
1549 	struct cgroup_subsys_state *pos_css;
1550 	bool need_rebuild_sched_domains = false;
1551 	int old_prs, new_prs;
1552 
1553 	rcu_read_lock();
1554 	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1555 		struct cpuset *parent = parent_cs(cp);
1556 		bool update_parent = false;
1557 
1558 		compute_effective_cpumask(tmp->new_cpus, cp, parent);
1559 
1560 		/*
1561 		 * If it becomes empty, inherit the effective mask of the
1562 		 * parent, which is guaranteed to have some CPUs unless
1563 		 * it is a partition root that has explicitly distributed
1564 		 * out all its CPUs.
1565 		 */
1566 		if (is_in_v2_mode() && cpumask_empty(tmp->new_cpus)) {
1567 			if (is_partition_valid(cp) &&
1568 			    cpumask_equal(cp->cpus_allowed, cp->subparts_cpus))
1569 				goto update_parent_subparts;
1570 
1571 			cpumask_copy(tmp->new_cpus, parent->effective_cpus);
1572 			if (!cp->use_parent_ecpus) {
1573 				cp->use_parent_ecpus = true;
1574 				parent->child_ecpus_count++;
1575 			}
1576 		} else if (cp->use_parent_ecpus) {
1577 			cp->use_parent_ecpus = false;
1578 			WARN_ON_ONCE(!parent->child_ecpus_count);
1579 			parent->child_ecpus_count--;
1580 		}
1581 
1582 		/*
1583 		 * Skip the whole subtree if the cpumask remains the same
1584 		 * and has no partition root state and force flag not set.
1585 		 */
1586 		if (!cp->partition_root_state && !force &&
1587 		    cpumask_equal(tmp->new_cpus, cp->effective_cpus)) {
1588 			pos_css = css_rightmost_descendant(pos_css);
1589 			continue;
1590 		}
1591 
1592 update_parent_subparts:
1593 		/*
1594 		 * update_parent_subparts_cpumask() should have been called
1595 		 * for cs already in update_cpumask(). We should also call
1596 		 * update_tasks_cpumask() again for tasks in the parent
1597 		 * cpuset if the parent's subparts_cpus changes.
1598 		 */
1599 		old_prs = new_prs = cp->partition_root_state;
1600 		if ((cp != cs) && old_prs) {
1601 			switch (parent->partition_root_state) {
1602 			case PRS_ROOT:
1603 			case PRS_ISOLATED:
1604 				update_parent = true;
1605 				break;
1606 
1607 			default:
1608 				/*
1609 				 * When parent is not a partition root or is
1610 				 * invalid, child partition roots become
1611 				 * invalid too.
1612 				 */
1613 				if (is_partition_valid(cp))
1614 					new_prs = -cp->partition_root_state;
1615 				WRITE_ONCE(cp->prs_err,
1616 					   is_partition_invalid(parent)
1617 					   ? PERR_INVPARENT : PERR_NOTPART);
1618 				break;
1619 			}
1620 		}
1621 
1622 		if (!css_tryget_online(&cp->css))
1623 			continue;
1624 		rcu_read_unlock();
1625 
1626 		if (update_parent) {
1627 			update_parent_subparts_cpumask(cp, partcmd_update, NULL,
1628 						       tmp);
1629 			/*
1630 			 * The cpuset partition_root_state may become
1631 			 * invalid. Capture it.
1632 			 */
1633 			new_prs = cp->partition_root_state;
1634 		}
1635 
1636 		spin_lock_irq(&callback_lock);
1637 
1638 		if (cp->nr_subparts_cpus && !is_partition_valid(cp)) {
1639 			/*
1640 			 * Put all active subparts_cpus back to effective_cpus.
1641 			 */
1642 			cpumask_or(tmp->new_cpus, tmp->new_cpus,
1643 				   cp->subparts_cpus);
1644 			cpumask_and(tmp->new_cpus, tmp->new_cpus,
1645 				   cpu_active_mask);
1646 			cp->nr_subparts_cpus = 0;
1647 			cpumask_clear(cp->subparts_cpus);
1648 		}
1649 
1650 		cpumask_copy(cp->effective_cpus, tmp->new_cpus);
1651 		if (cp->nr_subparts_cpus) {
1652 			/*
1653 			 * Make sure that effective_cpus & subparts_cpus
1654 			 * are mutually exclusive.
1655 			 */
1656 			cpumask_andnot(cp->effective_cpus, cp->effective_cpus,
1657 				       cp->subparts_cpus);
1658 		}
1659 
1660 		cp->partition_root_state = new_prs;
1661 		spin_unlock_irq(&callback_lock);
1662 
1663 		notify_partition_change(cp, old_prs);
1664 
1665 		WARN_ON(!is_in_v2_mode() &&
1666 			!cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
1667 
1668 		update_tasks_cpumask(cp, tmp->new_cpus);
1669 
1670 		/*
1671 		 * On legacy hierarchy, if the effective cpumask of any non-
1672 		 * empty cpuset is changed, we need to rebuild sched domains.
1673 		 * On default hierarchy, the cpuset needs to be a partition
1674 		 * root as well.
1675 		 */
1676 		if (!cpumask_empty(cp->cpus_allowed) &&
1677 		    is_sched_load_balance(cp) &&
1678 		   (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
1679 		    is_partition_valid(cp)))
1680 			need_rebuild_sched_domains = true;
1681 
1682 		rcu_read_lock();
1683 		css_put(&cp->css);
1684 	}
1685 	rcu_read_unlock();
1686 
1687 	if (need_rebuild_sched_domains)
1688 		rebuild_sched_domains_locked();
1689 }
1690 
1691 /**
1692  * update_sibling_cpumasks - Update siblings cpumasks
1693  * @parent:  Parent cpuset
1694  * @cs:      Current cpuset
1695  * @tmp:     Temp variables
1696  */
1697 static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs,
1698 				    struct tmpmasks *tmp)
1699 {
1700 	struct cpuset *sibling;
1701 	struct cgroup_subsys_state *pos_css;
1702 
1703 	percpu_rwsem_assert_held(&cpuset_rwsem);
1704 
1705 	/*
1706 	 * Check all its siblings and call update_cpumasks_hier()
1707 	 * if their use_parent_ecpus flag is set in order for them
1708 	 * to use the right effective_cpus value.
1709 	 *
1710 	 * The update_cpumasks_hier() function may sleep. So we have to
1711 	 * release the RCU read lock before calling it.
1712 	 */
1713 	rcu_read_lock();
1714 	cpuset_for_each_child(sibling, pos_css, parent) {
1715 		if (sibling == cs)
1716 			continue;
1717 		if (!sibling->use_parent_ecpus)
1718 			continue;
1719 		if (!css_tryget_online(&sibling->css))
1720 			continue;
1721 
1722 		rcu_read_unlock();
1723 		update_cpumasks_hier(sibling, tmp, false);
1724 		rcu_read_lock();
1725 		css_put(&sibling->css);
1726 	}
1727 	rcu_read_unlock();
1728 }
1729 
1730 /**
1731  * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
1732  * @cs: the cpuset to consider
1733  * @trialcs: trial cpuset
1734  * @buf: buffer of cpu numbers written to this cpuset
1735  */
1736 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
1737 			  const char *buf)
1738 {
1739 	int retval;
1740 	struct tmpmasks tmp;
1741 	bool invalidate = false;
1742 
1743 	/* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
1744 	if (cs == &top_cpuset)
1745 		return -EACCES;
1746 
1747 	/*
1748 	 * An empty cpus_allowed is ok only if the cpuset has no tasks.
1749 	 * Since cpulist_parse() fails on an empty mask, we special case
1750 	 * that parsing.  The validate_change() call ensures that cpusets
1751 	 * with tasks have cpus.
1752 	 */
1753 	if (!*buf) {
1754 		cpumask_clear(trialcs->cpus_allowed);
1755 	} else {
1756 		retval = cpulist_parse(buf, trialcs->cpus_allowed);
1757 		if (retval < 0)
1758 			return retval;
1759 
1760 		if (!cpumask_subset(trialcs->cpus_allowed,
1761 				    top_cpuset.cpus_allowed))
1762 			return -EINVAL;
1763 	}
1764 
1765 	/* Nothing to do if the cpus didn't change */
1766 	if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
1767 		return 0;
1768 
1769 #ifdef CONFIG_CPUMASK_OFFSTACK
1770 	/*
1771 	 * Use the cpumasks in trialcs for tmpmasks when they are pointers
1772 	 * to allocated cpumasks.
1773 	 */
1774 	tmp.addmask  = trialcs->subparts_cpus;
1775 	tmp.delmask  = trialcs->effective_cpus;
1776 	tmp.new_cpus = trialcs->cpus_allowed;
1777 #endif
1778 
1779 	retval = validate_change(cs, trialcs);
1780 
1781 	if ((retval == -EINVAL) && cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) {
1782 		struct cpuset *cp, *parent;
1783 		struct cgroup_subsys_state *css;
1784 
1785 		/*
1786 		 * The -EINVAL error code indicates that partition sibling
1787 		 * CPU exclusivity rule has been violated. We still allow
1788 		 * the cpumask change to proceed while invalidating the
1789 		 * partition. However, any conflicting sibling partitions
1790 		 * have to be marked as invalid too.
1791 		 */
1792 		invalidate = true;
1793 		rcu_read_lock();
1794 		parent = parent_cs(cs);
1795 		cpuset_for_each_child(cp, css, parent)
1796 			if (is_partition_valid(cp) &&
1797 			    cpumask_intersects(trialcs->cpus_allowed, cp->cpus_allowed)) {
1798 				rcu_read_unlock();
1799 				update_parent_subparts_cpumask(cp, partcmd_invalidate, NULL, &tmp);
1800 				rcu_read_lock();
1801 			}
1802 		rcu_read_unlock();
1803 		retval = 0;
1804 	}
1805 	if (retval < 0)
1806 		return retval;
1807 
1808 	if (cs->partition_root_state) {
1809 		if (invalidate)
1810 			update_parent_subparts_cpumask(cs, partcmd_invalidate,
1811 						       NULL, &tmp);
1812 		else
1813 			update_parent_subparts_cpumask(cs, partcmd_update,
1814 						trialcs->cpus_allowed, &tmp);
1815 	}
1816 
1817 	compute_effective_cpumask(trialcs->effective_cpus, trialcs,
1818 				  parent_cs(cs));
1819 	spin_lock_irq(&callback_lock);
1820 	cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
1821 
1822 	/*
1823 	 * Make sure that subparts_cpus, if not empty, is a subset of
1824 	 * cpus_allowed. Clear subparts_cpus if partition not valid or
1825 	 * empty effective cpus with tasks.
1826 	 */
1827 	if (cs->nr_subparts_cpus) {
1828 		if (!is_partition_valid(cs) ||
1829 		   (cpumask_subset(trialcs->effective_cpus, cs->subparts_cpus) &&
1830 		    partition_is_populated(cs, NULL))) {
1831 			cs->nr_subparts_cpus = 0;
1832 			cpumask_clear(cs->subparts_cpus);
1833 		} else {
1834 			cpumask_and(cs->subparts_cpus, cs->subparts_cpus,
1835 				    cs->cpus_allowed);
1836 			cs->nr_subparts_cpus = cpumask_weight(cs->subparts_cpus);
1837 		}
1838 	}
1839 	spin_unlock_irq(&callback_lock);
1840 
1841 	/* effective_cpus will be updated here */
1842 	update_cpumasks_hier(cs, &tmp, false);
1843 
1844 	if (cs->partition_root_state) {
1845 		struct cpuset *parent = parent_cs(cs);
1846 
1847 		/*
1848 		 * For partition root, update the cpumasks of sibling
1849 		 * cpusets if they use parent's effective_cpus.
1850 		 */
1851 		if (parent->child_ecpus_count)
1852 			update_sibling_cpumasks(parent, cs, &tmp);
1853 	}
1854 	return 0;
1855 }
1856 
1857 /*
1858  * Migrate memory region from one set of nodes to another.  This is
1859  * performed asynchronously as it can be called from process migration path
1860  * holding locks involved in process management.  All mm migrations are
1861  * performed in the queued order and can be waited for by flushing
1862  * cpuset_migrate_mm_wq.
1863  */
1864 
1865 struct cpuset_migrate_mm_work {
1866 	struct work_struct	work;
1867 	struct mm_struct	*mm;
1868 	nodemask_t		from;
1869 	nodemask_t		to;
1870 };
1871 
1872 static void cpuset_migrate_mm_workfn(struct work_struct *work)
1873 {
1874 	struct cpuset_migrate_mm_work *mwork =
1875 		container_of(work, struct cpuset_migrate_mm_work, work);
1876 
1877 	/* on a wq worker, no need to worry about %current's mems_allowed */
1878 	do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL);
1879 	mmput(mwork->mm);
1880 	kfree(mwork);
1881 }
1882 
1883 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
1884 							const nodemask_t *to)
1885 {
1886 	struct cpuset_migrate_mm_work *mwork;
1887 
1888 	if (nodes_equal(*from, *to)) {
1889 		mmput(mm);
1890 		return;
1891 	}
1892 
1893 	mwork = kzalloc(sizeof(*mwork), GFP_KERNEL);
1894 	if (mwork) {
1895 		mwork->mm = mm;
1896 		mwork->from = *from;
1897 		mwork->to = *to;
1898 		INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn);
1899 		queue_work(cpuset_migrate_mm_wq, &mwork->work);
1900 	} else {
1901 		mmput(mm);
1902 	}
1903 }
1904 
1905 static void cpuset_post_attach(void)
1906 {
1907 	flush_workqueue(cpuset_migrate_mm_wq);
1908 }
1909 
1910 /*
1911  * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
1912  * @tsk: the task to change
1913  * @newmems: new nodes that the task will be set
1914  *
1915  * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed
1916  * and rebind an eventual tasks' mempolicy. If the task is allocating in
1917  * parallel, it might temporarily see an empty intersection, which results in
1918  * a seqlock check and retry before OOM or allocation failure.
1919  */
1920 static void cpuset_change_task_nodemask(struct task_struct *tsk,
1921 					nodemask_t *newmems)
1922 {
1923 	task_lock(tsk);
1924 
1925 	local_irq_disable();
1926 	write_seqcount_begin(&tsk->mems_allowed_seq);
1927 
1928 	nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
1929 	mpol_rebind_task(tsk, newmems);
1930 	tsk->mems_allowed = *newmems;
1931 
1932 	write_seqcount_end(&tsk->mems_allowed_seq);
1933 	local_irq_enable();
1934 
1935 	task_unlock(tsk);
1936 }
1937 
1938 static void *cpuset_being_rebound;
1939 
1940 /**
1941  * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1942  * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1943  *
1944  * Iterate through each task of @cs updating its mems_allowed to the
1945  * effective cpuset's.  As this function is called with cpuset_rwsem held,
1946  * cpuset membership stays stable.
1947  */
1948 static void update_tasks_nodemask(struct cpuset *cs)
1949 {
1950 	static nodemask_t newmems;	/* protected by cpuset_rwsem */
1951 	struct css_task_iter it;
1952 	struct task_struct *task;
1953 
1954 	cpuset_being_rebound = cs;		/* causes mpol_dup() rebind */
1955 
1956 	guarantee_online_mems(cs, &newmems);
1957 
1958 	/*
1959 	 * The mpol_rebind_mm() call takes mmap_lock, which we couldn't
1960 	 * take while holding tasklist_lock.  Forks can happen - the
1961 	 * mpol_dup() cpuset_being_rebound check will catch such forks,
1962 	 * and rebind their vma mempolicies too.  Because we still hold
1963 	 * the global cpuset_rwsem, we know that no other rebind effort
1964 	 * will be contending for the global variable cpuset_being_rebound.
1965 	 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1966 	 * is idempotent.  Also migrate pages in each mm to new nodes.
1967 	 */
1968 	css_task_iter_start(&cs->css, 0, &it);
1969 	while ((task = css_task_iter_next(&it))) {
1970 		struct mm_struct *mm;
1971 		bool migrate;
1972 
1973 		cpuset_change_task_nodemask(task, &newmems);
1974 
1975 		mm = get_task_mm(task);
1976 		if (!mm)
1977 			continue;
1978 
1979 		migrate = is_memory_migrate(cs);
1980 
1981 		mpol_rebind_mm(mm, &cs->mems_allowed);
1982 		if (migrate)
1983 			cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
1984 		else
1985 			mmput(mm);
1986 	}
1987 	css_task_iter_end(&it);
1988 
1989 	/*
1990 	 * All the tasks' nodemasks have been updated, update
1991 	 * cs->old_mems_allowed.
1992 	 */
1993 	cs->old_mems_allowed = newmems;
1994 
1995 	/* We're done rebinding vmas to this cpuset's new mems_allowed. */
1996 	cpuset_being_rebound = NULL;
1997 }
1998 
1999 /*
2000  * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
2001  * @cs: the cpuset to consider
2002  * @new_mems: a temp variable for calculating new effective_mems
2003  *
2004  * When configured nodemask is changed, the effective nodemasks of this cpuset
2005  * and all its descendants need to be updated.
2006  *
2007  * On legacy hierarchy, effective_mems will be the same with mems_allowed.
2008  *
2009  * Called with cpuset_rwsem held
2010  */
2011 static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
2012 {
2013 	struct cpuset *cp;
2014 	struct cgroup_subsys_state *pos_css;
2015 
2016 	rcu_read_lock();
2017 	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
2018 		struct cpuset *parent = parent_cs(cp);
2019 
2020 		nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);
2021 
2022 		/*
2023 		 * If it becomes empty, inherit the effective mask of the
2024 		 * parent, which is guaranteed to have some MEMs.
2025 		 */
2026 		if (is_in_v2_mode() && nodes_empty(*new_mems))
2027 			*new_mems = parent->effective_mems;
2028 
2029 		/* Skip the whole subtree if the nodemask remains the same. */
2030 		if (nodes_equal(*new_mems, cp->effective_mems)) {
2031 			pos_css = css_rightmost_descendant(pos_css);
2032 			continue;
2033 		}
2034 
2035 		if (!css_tryget_online(&cp->css))
2036 			continue;
2037 		rcu_read_unlock();
2038 
2039 		spin_lock_irq(&callback_lock);
2040 		cp->effective_mems = *new_mems;
2041 		spin_unlock_irq(&callback_lock);
2042 
2043 		WARN_ON(!is_in_v2_mode() &&
2044 			!nodes_equal(cp->mems_allowed, cp->effective_mems));
2045 
2046 		update_tasks_nodemask(cp);
2047 
2048 		rcu_read_lock();
2049 		css_put(&cp->css);
2050 	}
2051 	rcu_read_unlock();
2052 }
2053 
2054 /*
2055  * Handle user request to change the 'mems' memory placement
2056  * of a cpuset.  Needs to validate the request, update the
2057  * cpusets mems_allowed, and for each task in the cpuset,
2058  * update mems_allowed and rebind task's mempolicy and any vma
2059  * mempolicies and if the cpuset is marked 'memory_migrate',
2060  * migrate the tasks pages to the new memory.
2061  *
2062  * Call with cpuset_rwsem held. May take callback_lock during call.
2063  * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
2064  * lock each such tasks mm->mmap_lock, scan its vma's and rebind
2065  * their mempolicies to the cpusets new mems_allowed.
2066  */
2067 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
2068 			   const char *buf)
2069 {
2070 	int retval;
2071 
2072 	/*
2073 	 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
2074 	 * it's read-only
2075 	 */
2076 	if (cs == &top_cpuset) {
2077 		retval = -EACCES;
2078 		goto done;
2079 	}
2080 
2081 	/*
2082 	 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
2083 	 * Since nodelist_parse() fails on an empty mask, we special case
2084 	 * that parsing.  The validate_change() call ensures that cpusets
2085 	 * with tasks have memory.
2086 	 */
2087 	if (!*buf) {
2088 		nodes_clear(trialcs->mems_allowed);
2089 	} else {
2090 		retval = nodelist_parse(buf, trialcs->mems_allowed);
2091 		if (retval < 0)
2092 			goto done;
2093 
2094 		if (!nodes_subset(trialcs->mems_allowed,
2095 				  top_cpuset.mems_allowed)) {
2096 			retval = -EINVAL;
2097 			goto done;
2098 		}
2099 	}
2100 
2101 	if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
2102 		retval = 0;		/* Too easy - nothing to do */
2103 		goto done;
2104 	}
2105 	retval = validate_change(cs, trialcs);
2106 	if (retval < 0)
2107 		goto done;
2108 
2109 	check_insane_mems_config(&trialcs->mems_allowed);
2110 
2111 	spin_lock_irq(&callback_lock);
2112 	cs->mems_allowed = trialcs->mems_allowed;
2113 	spin_unlock_irq(&callback_lock);
2114 
2115 	/* use trialcs->mems_allowed as a temp variable */
2116 	update_nodemasks_hier(cs, &trialcs->mems_allowed);
2117 done:
2118 	return retval;
2119 }
2120 
2121 bool current_cpuset_is_being_rebound(void)
2122 {
2123 	bool ret;
2124 
2125 	rcu_read_lock();
2126 	ret = task_cs(current) == cpuset_being_rebound;
2127 	rcu_read_unlock();
2128 
2129 	return ret;
2130 }
2131 
2132 static int update_relax_domain_level(struct cpuset *cs, s64 val)
2133 {
2134 #ifdef CONFIG_SMP
2135 	if (val < -1 || val >= sched_domain_level_max)
2136 		return -EINVAL;
2137 #endif
2138 
2139 	if (val != cs->relax_domain_level) {
2140 		cs->relax_domain_level = val;
2141 		if (!cpumask_empty(cs->cpus_allowed) &&
2142 		    is_sched_load_balance(cs))
2143 			rebuild_sched_domains_locked();
2144 	}
2145 
2146 	return 0;
2147 }
2148 
2149 /**
2150  * update_tasks_flags - update the spread flags of tasks in the cpuset.
2151  * @cs: the cpuset in which each task's spread flags needs to be changed
2152  *
2153  * Iterate through each task of @cs updating its spread flags.  As this
2154  * function is called with cpuset_rwsem held, cpuset membership stays
2155  * stable.
2156  */
2157 static void update_tasks_flags(struct cpuset *cs)
2158 {
2159 	struct css_task_iter it;
2160 	struct task_struct *task;
2161 
2162 	css_task_iter_start(&cs->css, 0, &it);
2163 	while ((task = css_task_iter_next(&it)))
2164 		cpuset_update_task_spread_flags(cs, task);
2165 	css_task_iter_end(&it);
2166 }
2167 
2168 /*
2169  * update_flag - read a 0 or a 1 in a file and update associated flag
2170  * bit:		the bit to update (see cpuset_flagbits_t)
2171  * cs:		the cpuset to update
2172  * turning_on: 	whether the flag is being set or cleared
2173  *
2174  * Call with cpuset_rwsem held.
2175  */
2176 
2177 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
2178 		       int turning_on)
2179 {
2180 	struct cpuset *trialcs;
2181 	int balance_flag_changed;
2182 	int spread_flag_changed;
2183 	int err;
2184 
2185 	trialcs = alloc_trial_cpuset(cs);
2186 	if (!trialcs)
2187 		return -ENOMEM;
2188 
2189 	if (turning_on)
2190 		set_bit(bit, &trialcs->flags);
2191 	else
2192 		clear_bit(bit, &trialcs->flags);
2193 
2194 	err = validate_change(cs, trialcs);
2195 	if (err < 0)
2196 		goto out;
2197 
2198 	balance_flag_changed = (is_sched_load_balance(cs) !=
2199 				is_sched_load_balance(trialcs));
2200 
2201 	spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
2202 			|| (is_spread_page(cs) != is_spread_page(trialcs)));
2203 
2204 	spin_lock_irq(&callback_lock);
2205 	cs->flags = trialcs->flags;
2206 	spin_unlock_irq(&callback_lock);
2207 
2208 	if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
2209 		rebuild_sched_domains_locked();
2210 
2211 	if (spread_flag_changed)
2212 		update_tasks_flags(cs);
2213 out:
2214 	free_cpuset(trialcs);
2215 	return err;
2216 }
2217 
2218 /**
2219  * update_prstate - update partition_root_state
2220  * @cs: the cpuset to update
2221  * @new_prs: new partition root state
2222  * Return: 0 if successful, != 0 if error
2223  *
2224  * Call with cpuset_rwsem held.
2225  */
2226 static int update_prstate(struct cpuset *cs, int new_prs)
2227 {
2228 	int err = PERR_NONE, old_prs = cs->partition_root_state;
2229 	bool sched_domain_rebuilt = false;
2230 	struct cpuset *parent = parent_cs(cs);
2231 	struct tmpmasks tmpmask;
2232 
2233 	if (old_prs == new_prs)
2234 		return 0;
2235 
2236 	/*
2237 	 * For a previously invalid partition root, leave it at being
2238 	 * invalid if new_prs is not "member".
2239 	 */
2240 	if (new_prs && is_prs_invalid(old_prs)) {
2241 		cs->partition_root_state = -new_prs;
2242 		return 0;
2243 	}
2244 
2245 	if (alloc_cpumasks(NULL, &tmpmask))
2246 		return -ENOMEM;
2247 
2248 	if (!old_prs) {
2249 		/*
2250 		 * Turning on partition root requires setting the
2251 		 * CS_CPU_EXCLUSIVE bit implicitly as well and cpus_allowed
2252 		 * cannot be empty.
2253 		 */
2254 		if (cpumask_empty(cs->cpus_allowed)) {
2255 			err = PERR_CPUSEMPTY;
2256 			goto out;
2257 		}
2258 
2259 		err = update_flag(CS_CPU_EXCLUSIVE, cs, 1);
2260 		if (err) {
2261 			err = PERR_NOTEXCL;
2262 			goto out;
2263 		}
2264 
2265 		err = update_parent_subparts_cpumask(cs, partcmd_enable,
2266 						     NULL, &tmpmask);
2267 		if (err) {
2268 			update_flag(CS_CPU_EXCLUSIVE, cs, 0);
2269 			goto out;
2270 		}
2271 
2272 		if (new_prs == PRS_ISOLATED) {
2273 			/*
2274 			 * Disable the load balance flag should not return an
2275 			 * error unless the system is running out of memory.
2276 			 */
2277 			update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
2278 			sched_domain_rebuilt = true;
2279 		}
2280 	} else if (old_prs && new_prs) {
2281 		/*
2282 		 * A change in load balance state only, no change in cpumasks.
2283 		 */
2284 		update_flag(CS_SCHED_LOAD_BALANCE, cs, (new_prs != PRS_ISOLATED));
2285 		sched_domain_rebuilt = true;
2286 		goto out;	/* Sched domain is rebuilt in update_flag() */
2287 	} else {
2288 		/*
2289 		 * Switching back to member is always allowed even if it
2290 		 * disables child partitions.
2291 		 */
2292 		update_parent_subparts_cpumask(cs, partcmd_disable, NULL,
2293 					       &tmpmask);
2294 
2295 		/*
2296 		 * If there are child partitions, they will all become invalid.
2297 		 */
2298 		if (unlikely(cs->nr_subparts_cpus)) {
2299 			spin_lock_irq(&callback_lock);
2300 			cs->nr_subparts_cpus = 0;
2301 			cpumask_clear(cs->subparts_cpus);
2302 			compute_effective_cpumask(cs->effective_cpus, cs, parent);
2303 			spin_unlock_irq(&callback_lock);
2304 		}
2305 
2306 		/* Turning off CS_CPU_EXCLUSIVE will not return error */
2307 		update_flag(CS_CPU_EXCLUSIVE, cs, 0);
2308 
2309 		if (!is_sched_load_balance(cs)) {
2310 			/* Make sure load balance is on */
2311 			update_flag(CS_SCHED_LOAD_BALANCE, cs, 1);
2312 			sched_domain_rebuilt = true;
2313 		}
2314 	}
2315 
2316 	update_tasks_cpumask(parent, tmpmask.new_cpus);
2317 
2318 	if (parent->child_ecpus_count)
2319 		update_sibling_cpumasks(parent, cs, &tmpmask);
2320 
2321 	if (!sched_domain_rebuilt)
2322 		rebuild_sched_domains_locked();
2323 out:
2324 	/*
2325 	 * Make partition invalid if an error happen
2326 	 */
2327 	if (err)
2328 		new_prs = -new_prs;
2329 	spin_lock_irq(&callback_lock);
2330 	cs->partition_root_state = new_prs;
2331 	WRITE_ONCE(cs->prs_err, err);
2332 	spin_unlock_irq(&callback_lock);
2333 	/*
2334 	 * Update child cpusets, if present.
2335 	 * Force update if switching back to member.
2336 	 */
2337 	if (!list_empty(&cs->css.children))
2338 		update_cpumasks_hier(cs, &tmpmask, !new_prs);
2339 
2340 	notify_partition_change(cs, old_prs);
2341 	free_cpumasks(NULL, &tmpmask);
2342 	return 0;
2343 }
2344 
2345 /*
2346  * Frequency meter - How fast is some event occurring?
2347  *
2348  * These routines manage a digitally filtered, constant time based,
2349  * event frequency meter.  There are four routines:
2350  *   fmeter_init() - initialize a frequency meter.
2351  *   fmeter_markevent() - called each time the event happens.
2352  *   fmeter_getrate() - returns the recent rate of such events.
2353  *   fmeter_update() - internal routine used to update fmeter.
2354  *
2355  * A common data structure is passed to each of these routines,
2356  * which is used to keep track of the state required to manage the
2357  * frequency meter and its digital filter.
2358  *
2359  * The filter works on the number of events marked per unit time.
2360  * The filter is single-pole low-pass recursive (IIR).  The time unit
2361  * is 1 second.  Arithmetic is done using 32-bit integers scaled to
2362  * simulate 3 decimal digits of precision (multiplied by 1000).
2363  *
2364  * With an FM_COEF of 933, and a time base of 1 second, the filter
2365  * has a half-life of 10 seconds, meaning that if the events quit
2366  * happening, then the rate returned from the fmeter_getrate()
2367  * will be cut in half each 10 seconds, until it converges to zero.
2368  *
2369  * It is not worth doing a real infinitely recursive filter.  If more
2370  * than FM_MAXTICKS ticks have elapsed since the last filter event,
2371  * just compute FM_MAXTICKS ticks worth, by which point the level
2372  * will be stable.
2373  *
2374  * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
2375  * arithmetic overflow in the fmeter_update() routine.
2376  *
2377  * Given the simple 32 bit integer arithmetic used, this meter works
2378  * best for reporting rates between one per millisecond (msec) and
2379  * one per 32 (approx) seconds.  At constant rates faster than one
2380  * per msec it maxes out at values just under 1,000,000.  At constant
2381  * rates between one per msec, and one per second it will stabilize
2382  * to a value N*1000, where N is the rate of events per second.
2383  * At constant rates between one per second and one per 32 seconds,
2384  * it will be choppy, moving up on the seconds that have an event,
2385  * and then decaying until the next event.  At rates slower than
2386  * about one in 32 seconds, it decays all the way back to zero between
2387  * each event.
2388  */
2389 
2390 #define FM_COEF 933		/* coefficient for half-life of 10 secs */
2391 #define FM_MAXTICKS ((u32)99)   /* useless computing more ticks than this */
2392 #define FM_MAXCNT 1000000	/* limit cnt to avoid overflow */
2393 #define FM_SCALE 1000		/* faux fixed point scale */
2394 
2395 /* Initialize a frequency meter */
2396 static void fmeter_init(struct fmeter *fmp)
2397 {
2398 	fmp->cnt = 0;
2399 	fmp->val = 0;
2400 	fmp->time = 0;
2401 	spin_lock_init(&fmp->lock);
2402 }
2403 
2404 /* Internal meter update - process cnt events and update value */
2405 static void fmeter_update(struct fmeter *fmp)
2406 {
2407 	time64_t now;
2408 	u32 ticks;
2409 
2410 	now = ktime_get_seconds();
2411 	ticks = now - fmp->time;
2412 
2413 	if (ticks == 0)
2414 		return;
2415 
2416 	ticks = min(FM_MAXTICKS, ticks);
2417 	while (ticks-- > 0)
2418 		fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
2419 	fmp->time = now;
2420 
2421 	fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
2422 	fmp->cnt = 0;
2423 }
2424 
2425 /* Process any previous ticks, then bump cnt by one (times scale). */
2426 static void fmeter_markevent(struct fmeter *fmp)
2427 {
2428 	spin_lock(&fmp->lock);
2429 	fmeter_update(fmp);
2430 	fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
2431 	spin_unlock(&fmp->lock);
2432 }
2433 
2434 /* Process any previous ticks, then return current value. */
2435 static int fmeter_getrate(struct fmeter *fmp)
2436 {
2437 	int val;
2438 
2439 	spin_lock(&fmp->lock);
2440 	fmeter_update(fmp);
2441 	val = fmp->val;
2442 	spin_unlock(&fmp->lock);
2443 	return val;
2444 }
2445 
2446 static struct cpuset *cpuset_attach_old_cs;
2447 
2448 /* Called by cgroups to determine if a cpuset is usable; cpuset_rwsem held */
2449 static int cpuset_can_attach(struct cgroup_taskset *tset)
2450 {
2451 	struct cgroup_subsys_state *css;
2452 	struct cpuset *cs;
2453 	struct task_struct *task;
2454 	int ret;
2455 
2456 	/* used later by cpuset_attach() */
2457 	cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css));
2458 	cs = css_cs(css);
2459 
2460 	percpu_down_write(&cpuset_rwsem);
2461 
2462 	/* allow moving tasks into an empty cpuset if on default hierarchy */
2463 	ret = -ENOSPC;
2464 	if (!is_in_v2_mode() &&
2465 	    (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
2466 		goto out_unlock;
2467 
2468 	/*
2469 	 * Task cannot be moved to a cpuset with empty effective cpus.
2470 	 */
2471 	if (cpumask_empty(cs->effective_cpus))
2472 		goto out_unlock;
2473 
2474 	cgroup_taskset_for_each(task, css, tset) {
2475 		ret = task_can_attach(task, cs->effective_cpus);
2476 		if (ret)
2477 			goto out_unlock;
2478 		ret = security_task_setscheduler(task);
2479 		if (ret)
2480 			goto out_unlock;
2481 	}
2482 
2483 	/*
2484 	 * Mark attach is in progress.  This makes validate_change() fail
2485 	 * changes which zero cpus/mems_allowed.
2486 	 */
2487 	cs->attach_in_progress++;
2488 	ret = 0;
2489 out_unlock:
2490 	percpu_up_write(&cpuset_rwsem);
2491 	return ret;
2492 }
2493 
2494 static void cpuset_cancel_attach(struct cgroup_taskset *tset)
2495 {
2496 	struct cgroup_subsys_state *css;
2497 
2498 	cgroup_taskset_first(tset, &css);
2499 
2500 	percpu_down_write(&cpuset_rwsem);
2501 	css_cs(css)->attach_in_progress--;
2502 	percpu_up_write(&cpuset_rwsem);
2503 }
2504 
2505 /*
2506  * Protected by cpuset_rwsem.  cpus_attach is used only by cpuset_attach()
2507  * but we can't allocate it dynamically there.  Define it global and
2508  * allocate from cpuset_init().
2509  */
2510 static cpumask_var_t cpus_attach;
2511 
2512 static void cpuset_attach(struct cgroup_taskset *tset)
2513 {
2514 	/* static buf protected by cpuset_rwsem */
2515 	static nodemask_t cpuset_attach_nodemask_to;
2516 	struct task_struct *task;
2517 	struct task_struct *leader;
2518 	struct cgroup_subsys_state *css;
2519 	struct cpuset *cs;
2520 	struct cpuset *oldcs = cpuset_attach_old_cs;
2521 	bool cpus_updated, mems_updated;
2522 
2523 	cgroup_taskset_first(tset, &css);
2524 	cs = css_cs(css);
2525 
2526 	lockdep_assert_cpus_held();	/* see cgroup_attach_lock() */
2527 	percpu_down_write(&cpuset_rwsem);
2528 	cpus_updated = !cpumask_equal(cs->effective_cpus,
2529 				      oldcs->effective_cpus);
2530 	mems_updated = !nodes_equal(cs->effective_mems, oldcs->effective_mems);
2531 
2532 	/*
2533 	 * In the default hierarchy, enabling cpuset in the child cgroups
2534 	 * will trigger a number of cpuset_attach() calls with no change
2535 	 * in effective cpus and mems. In that case, we can optimize out
2536 	 * by skipping the task iteration and update.
2537 	 */
2538 	if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
2539 	    !cpus_updated && !mems_updated) {
2540 		cpuset_attach_nodemask_to = cs->effective_mems;
2541 		goto out;
2542 	}
2543 
2544 	guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
2545 
2546 	cgroup_taskset_for_each(task, css, tset) {
2547 		if (cs != &top_cpuset)
2548 			guarantee_online_cpus(task, cpus_attach);
2549 		else
2550 			cpumask_copy(cpus_attach, task_cpu_possible_mask(task));
2551 		/*
2552 		 * can_attach beforehand should guarantee that this doesn't
2553 		 * fail.  TODO: have a better way to handle failure here
2554 		 */
2555 		WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
2556 
2557 		cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
2558 		cpuset_update_task_spread_flags(cs, task);
2559 	}
2560 
2561 	/*
2562 	 * Change mm for all threadgroup leaders. This is expensive and may
2563 	 * sleep and should be moved outside migration path proper. Skip it
2564 	 * if there is no change in effective_mems and CS_MEMORY_MIGRATE is
2565 	 * not set.
2566 	 */
2567 	cpuset_attach_nodemask_to = cs->effective_mems;
2568 	if (!is_memory_migrate(cs) && !mems_updated)
2569 		goto out;
2570 
2571 	cgroup_taskset_for_each_leader(leader, css, tset) {
2572 		struct mm_struct *mm = get_task_mm(leader);
2573 
2574 		if (mm) {
2575 			mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
2576 
2577 			/*
2578 			 * old_mems_allowed is the same with mems_allowed
2579 			 * here, except if this task is being moved
2580 			 * automatically due to hotplug.  In that case
2581 			 * @mems_allowed has been updated and is empty, so
2582 			 * @old_mems_allowed is the right nodesets that we
2583 			 * migrate mm from.
2584 			 */
2585 			if (is_memory_migrate(cs))
2586 				cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
2587 						  &cpuset_attach_nodemask_to);
2588 			else
2589 				mmput(mm);
2590 		}
2591 	}
2592 
2593 out:
2594 	cs->old_mems_allowed = cpuset_attach_nodemask_to;
2595 
2596 	cs->attach_in_progress--;
2597 	if (!cs->attach_in_progress)
2598 		wake_up(&cpuset_attach_wq);
2599 
2600 	percpu_up_write(&cpuset_rwsem);
2601 }
2602 
2603 /* The various types of files and directories in a cpuset file system */
2604 
2605 typedef enum {
2606 	FILE_MEMORY_MIGRATE,
2607 	FILE_CPULIST,
2608 	FILE_MEMLIST,
2609 	FILE_EFFECTIVE_CPULIST,
2610 	FILE_EFFECTIVE_MEMLIST,
2611 	FILE_SUBPARTS_CPULIST,
2612 	FILE_CPU_EXCLUSIVE,
2613 	FILE_MEM_EXCLUSIVE,
2614 	FILE_MEM_HARDWALL,
2615 	FILE_SCHED_LOAD_BALANCE,
2616 	FILE_PARTITION_ROOT,
2617 	FILE_SCHED_RELAX_DOMAIN_LEVEL,
2618 	FILE_MEMORY_PRESSURE_ENABLED,
2619 	FILE_MEMORY_PRESSURE,
2620 	FILE_SPREAD_PAGE,
2621 	FILE_SPREAD_SLAB,
2622 } cpuset_filetype_t;
2623 
2624 static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
2625 			    u64 val)
2626 {
2627 	struct cpuset *cs = css_cs(css);
2628 	cpuset_filetype_t type = cft->private;
2629 	int retval = 0;
2630 
2631 	cpus_read_lock();
2632 	percpu_down_write(&cpuset_rwsem);
2633 	if (!is_cpuset_online(cs)) {
2634 		retval = -ENODEV;
2635 		goto out_unlock;
2636 	}
2637 
2638 	switch (type) {
2639 	case FILE_CPU_EXCLUSIVE:
2640 		retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
2641 		break;
2642 	case FILE_MEM_EXCLUSIVE:
2643 		retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
2644 		break;
2645 	case FILE_MEM_HARDWALL:
2646 		retval = update_flag(CS_MEM_HARDWALL, cs, val);
2647 		break;
2648 	case FILE_SCHED_LOAD_BALANCE:
2649 		retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
2650 		break;
2651 	case FILE_MEMORY_MIGRATE:
2652 		retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
2653 		break;
2654 	case FILE_MEMORY_PRESSURE_ENABLED:
2655 		cpuset_memory_pressure_enabled = !!val;
2656 		break;
2657 	case FILE_SPREAD_PAGE:
2658 		retval = update_flag(CS_SPREAD_PAGE, cs, val);
2659 		break;
2660 	case FILE_SPREAD_SLAB:
2661 		retval = update_flag(CS_SPREAD_SLAB, cs, val);
2662 		break;
2663 	default:
2664 		retval = -EINVAL;
2665 		break;
2666 	}
2667 out_unlock:
2668 	percpu_up_write(&cpuset_rwsem);
2669 	cpus_read_unlock();
2670 	return retval;
2671 }
2672 
2673 static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
2674 			    s64 val)
2675 {
2676 	struct cpuset *cs = css_cs(css);
2677 	cpuset_filetype_t type = cft->private;
2678 	int retval = -ENODEV;
2679 
2680 	cpus_read_lock();
2681 	percpu_down_write(&cpuset_rwsem);
2682 	if (!is_cpuset_online(cs))
2683 		goto out_unlock;
2684 
2685 	switch (type) {
2686 	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
2687 		retval = update_relax_domain_level(cs, val);
2688 		break;
2689 	default:
2690 		retval = -EINVAL;
2691 		break;
2692 	}
2693 out_unlock:
2694 	percpu_up_write(&cpuset_rwsem);
2695 	cpus_read_unlock();
2696 	return retval;
2697 }
2698 
2699 /*
2700  * Common handling for a write to a "cpus" or "mems" file.
2701  */
2702 static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
2703 				    char *buf, size_t nbytes, loff_t off)
2704 {
2705 	struct cpuset *cs = css_cs(of_css(of));
2706 	struct cpuset *trialcs;
2707 	int retval = -ENODEV;
2708 
2709 	buf = strstrip(buf);
2710 
2711 	/*
2712 	 * CPU or memory hotunplug may leave @cs w/o any execution
2713 	 * resources, in which case the hotplug code asynchronously updates
2714 	 * configuration and transfers all tasks to the nearest ancestor
2715 	 * which can execute.
2716 	 *
2717 	 * As writes to "cpus" or "mems" may restore @cs's execution
2718 	 * resources, wait for the previously scheduled operations before
2719 	 * proceeding, so that we don't end up keep removing tasks added
2720 	 * after execution capability is restored.
2721 	 *
2722 	 * cpuset_hotplug_work calls back into cgroup core via
2723 	 * cgroup_transfer_tasks() and waiting for it from a cgroupfs
2724 	 * operation like this one can lead to a deadlock through kernfs
2725 	 * active_ref protection.  Let's break the protection.  Losing the
2726 	 * protection is okay as we check whether @cs is online after
2727 	 * grabbing cpuset_rwsem anyway.  This only happens on the legacy
2728 	 * hierarchies.
2729 	 */
2730 	css_get(&cs->css);
2731 	kernfs_break_active_protection(of->kn);
2732 	flush_work(&cpuset_hotplug_work);
2733 
2734 	cpus_read_lock();
2735 	percpu_down_write(&cpuset_rwsem);
2736 	if (!is_cpuset_online(cs))
2737 		goto out_unlock;
2738 
2739 	trialcs = alloc_trial_cpuset(cs);
2740 	if (!trialcs) {
2741 		retval = -ENOMEM;
2742 		goto out_unlock;
2743 	}
2744 
2745 	switch (of_cft(of)->private) {
2746 	case FILE_CPULIST:
2747 		retval = update_cpumask(cs, trialcs, buf);
2748 		break;
2749 	case FILE_MEMLIST:
2750 		retval = update_nodemask(cs, trialcs, buf);
2751 		break;
2752 	default:
2753 		retval = -EINVAL;
2754 		break;
2755 	}
2756 
2757 	free_cpuset(trialcs);
2758 out_unlock:
2759 	percpu_up_write(&cpuset_rwsem);
2760 	cpus_read_unlock();
2761 	kernfs_unbreak_active_protection(of->kn);
2762 	css_put(&cs->css);
2763 	flush_workqueue(cpuset_migrate_mm_wq);
2764 	return retval ?: nbytes;
2765 }
2766 
2767 /*
2768  * These ascii lists should be read in a single call, by using a user
2769  * buffer large enough to hold the entire map.  If read in smaller
2770  * chunks, there is no guarantee of atomicity.  Since the display format
2771  * used, list of ranges of sequential numbers, is variable length,
2772  * and since these maps can change value dynamically, one could read
2773  * gibberish by doing partial reads while a list was changing.
2774  */
2775 static int cpuset_common_seq_show(struct seq_file *sf, void *v)
2776 {
2777 	struct cpuset *cs = css_cs(seq_css(sf));
2778 	cpuset_filetype_t type = seq_cft(sf)->private;
2779 	int ret = 0;
2780 
2781 	spin_lock_irq(&callback_lock);
2782 
2783 	switch (type) {
2784 	case FILE_CPULIST:
2785 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed));
2786 		break;
2787 	case FILE_MEMLIST:
2788 		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
2789 		break;
2790 	case FILE_EFFECTIVE_CPULIST:
2791 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
2792 		break;
2793 	case FILE_EFFECTIVE_MEMLIST:
2794 		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
2795 		break;
2796 	case FILE_SUBPARTS_CPULIST:
2797 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->subparts_cpus));
2798 		break;
2799 	default:
2800 		ret = -EINVAL;
2801 	}
2802 
2803 	spin_unlock_irq(&callback_lock);
2804 	return ret;
2805 }
2806 
2807 static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
2808 {
2809 	struct cpuset *cs = css_cs(css);
2810 	cpuset_filetype_t type = cft->private;
2811 	switch (type) {
2812 	case FILE_CPU_EXCLUSIVE:
2813 		return is_cpu_exclusive(cs);
2814 	case FILE_MEM_EXCLUSIVE:
2815 		return is_mem_exclusive(cs);
2816 	case FILE_MEM_HARDWALL:
2817 		return is_mem_hardwall(cs);
2818 	case FILE_SCHED_LOAD_BALANCE:
2819 		return is_sched_load_balance(cs);
2820 	case FILE_MEMORY_MIGRATE:
2821 		return is_memory_migrate(cs);
2822 	case FILE_MEMORY_PRESSURE_ENABLED:
2823 		return cpuset_memory_pressure_enabled;
2824 	case FILE_MEMORY_PRESSURE:
2825 		return fmeter_getrate(&cs->fmeter);
2826 	case FILE_SPREAD_PAGE:
2827 		return is_spread_page(cs);
2828 	case FILE_SPREAD_SLAB:
2829 		return is_spread_slab(cs);
2830 	default:
2831 		BUG();
2832 	}
2833 
2834 	/* Unreachable but makes gcc happy */
2835 	return 0;
2836 }
2837 
2838 static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
2839 {
2840 	struct cpuset *cs = css_cs(css);
2841 	cpuset_filetype_t type = cft->private;
2842 	switch (type) {
2843 	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
2844 		return cs->relax_domain_level;
2845 	default:
2846 		BUG();
2847 	}
2848 
2849 	/* Unreachable but makes gcc happy */
2850 	return 0;
2851 }
2852 
2853 static int sched_partition_show(struct seq_file *seq, void *v)
2854 {
2855 	struct cpuset *cs = css_cs(seq_css(seq));
2856 	const char *err, *type = NULL;
2857 
2858 	switch (cs->partition_root_state) {
2859 	case PRS_ROOT:
2860 		seq_puts(seq, "root\n");
2861 		break;
2862 	case PRS_ISOLATED:
2863 		seq_puts(seq, "isolated\n");
2864 		break;
2865 	case PRS_MEMBER:
2866 		seq_puts(seq, "member\n");
2867 		break;
2868 	case PRS_INVALID_ROOT:
2869 		type = "root";
2870 		fallthrough;
2871 	case PRS_INVALID_ISOLATED:
2872 		if (!type)
2873 			type = "isolated";
2874 		err = perr_strings[READ_ONCE(cs->prs_err)];
2875 		if (err)
2876 			seq_printf(seq, "%s invalid (%s)\n", type, err);
2877 		else
2878 			seq_printf(seq, "%s invalid\n", type);
2879 		break;
2880 	}
2881 	return 0;
2882 }
2883 
2884 static ssize_t sched_partition_write(struct kernfs_open_file *of, char *buf,
2885 				     size_t nbytes, loff_t off)
2886 {
2887 	struct cpuset *cs = css_cs(of_css(of));
2888 	int val;
2889 	int retval = -ENODEV;
2890 
2891 	buf = strstrip(buf);
2892 
2893 	/*
2894 	 * Convert "root" to ENABLED, and convert "member" to DISABLED.
2895 	 */
2896 	if (!strcmp(buf, "root"))
2897 		val = PRS_ROOT;
2898 	else if (!strcmp(buf, "member"))
2899 		val = PRS_MEMBER;
2900 	else if (!strcmp(buf, "isolated"))
2901 		val = PRS_ISOLATED;
2902 	else
2903 		return -EINVAL;
2904 
2905 	css_get(&cs->css);
2906 	cpus_read_lock();
2907 	percpu_down_write(&cpuset_rwsem);
2908 	if (!is_cpuset_online(cs))
2909 		goto out_unlock;
2910 
2911 	retval = update_prstate(cs, val);
2912 out_unlock:
2913 	percpu_up_write(&cpuset_rwsem);
2914 	cpus_read_unlock();
2915 	css_put(&cs->css);
2916 	return retval ?: nbytes;
2917 }
2918 
2919 /*
2920  * for the common functions, 'private' gives the type of file
2921  */
2922 
2923 static struct cftype legacy_files[] = {
2924 	{
2925 		.name = "cpus",
2926 		.seq_show = cpuset_common_seq_show,
2927 		.write = cpuset_write_resmask,
2928 		.max_write_len = (100U + 6 * NR_CPUS),
2929 		.private = FILE_CPULIST,
2930 	},
2931 
2932 	{
2933 		.name = "mems",
2934 		.seq_show = cpuset_common_seq_show,
2935 		.write = cpuset_write_resmask,
2936 		.max_write_len = (100U + 6 * MAX_NUMNODES),
2937 		.private = FILE_MEMLIST,
2938 	},
2939 
2940 	{
2941 		.name = "effective_cpus",
2942 		.seq_show = cpuset_common_seq_show,
2943 		.private = FILE_EFFECTIVE_CPULIST,
2944 	},
2945 
2946 	{
2947 		.name = "effective_mems",
2948 		.seq_show = cpuset_common_seq_show,
2949 		.private = FILE_EFFECTIVE_MEMLIST,
2950 	},
2951 
2952 	{
2953 		.name = "cpu_exclusive",
2954 		.read_u64 = cpuset_read_u64,
2955 		.write_u64 = cpuset_write_u64,
2956 		.private = FILE_CPU_EXCLUSIVE,
2957 	},
2958 
2959 	{
2960 		.name = "mem_exclusive",
2961 		.read_u64 = cpuset_read_u64,
2962 		.write_u64 = cpuset_write_u64,
2963 		.private = FILE_MEM_EXCLUSIVE,
2964 	},
2965 
2966 	{
2967 		.name = "mem_hardwall",
2968 		.read_u64 = cpuset_read_u64,
2969 		.write_u64 = cpuset_write_u64,
2970 		.private = FILE_MEM_HARDWALL,
2971 	},
2972 
2973 	{
2974 		.name = "sched_load_balance",
2975 		.read_u64 = cpuset_read_u64,
2976 		.write_u64 = cpuset_write_u64,
2977 		.private = FILE_SCHED_LOAD_BALANCE,
2978 	},
2979 
2980 	{
2981 		.name = "sched_relax_domain_level",
2982 		.read_s64 = cpuset_read_s64,
2983 		.write_s64 = cpuset_write_s64,
2984 		.private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
2985 	},
2986 
2987 	{
2988 		.name = "memory_migrate",
2989 		.read_u64 = cpuset_read_u64,
2990 		.write_u64 = cpuset_write_u64,
2991 		.private = FILE_MEMORY_MIGRATE,
2992 	},
2993 
2994 	{
2995 		.name = "memory_pressure",
2996 		.read_u64 = cpuset_read_u64,
2997 		.private = FILE_MEMORY_PRESSURE,
2998 	},
2999 
3000 	{
3001 		.name = "memory_spread_page",
3002 		.read_u64 = cpuset_read_u64,
3003 		.write_u64 = cpuset_write_u64,
3004 		.private = FILE_SPREAD_PAGE,
3005 	},
3006 
3007 	{
3008 		.name = "memory_spread_slab",
3009 		.read_u64 = cpuset_read_u64,
3010 		.write_u64 = cpuset_write_u64,
3011 		.private = FILE_SPREAD_SLAB,
3012 	},
3013 
3014 	{
3015 		.name = "memory_pressure_enabled",
3016 		.flags = CFTYPE_ONLY_ON_ROOT,
3017 		.read_u64 = cpuset_read_u64,
3018 		.write_u64 = cpuset_write_u64,
3019 		.private = FILE_MEMORY_PRESSURE_ENABLED,
3020 	},
3021 
3022 	{ }	/* terminate */
3023 };
3024 
3025 /*
3026  * This is currently a minimal set for the default hierarchy. It can be
3027  * expanded later on by migrating more features and control files from v1.
3028  */
3029 static struct cftype dfl_files[] = {
3030 	{
3031 		.name = "cpus",
3032 		.seq_show = cpuset_common_seq_show,
3033 		.write = cpuset_write_resmask,
3034 		.max_write_len = (100U + 6 * NR_CPUS),
3035 		.private = FILE_CPULIST,
3036 		.flags = CFTYPE_NOT_ON_ROOT,
3037 	},
3038 
3039 	{
3040 		.name = "mems",
3041 		.seq_show = cpuset_common_seq_show,
3042 		.write = cpuset_write_resmask,
3043 		.max_write_len = (100U + 6 * MAX_NUMNODES),
3044 		.private = FILE_MEMLIST,
3045 		.flags = CFTYPE_NOT_ON_ROOT,
3046 	},
3047 
3048 	{
3049 		.name = "cpus.effective",
3050 		.seq_show = cpuset_common_seq_show,
3051 		.private = FILE_EFFECTIVE_CPULIST,
3052 	},
3053 
3054 	{
3055 		.name = "mems.effective",
3056 		.seq_show = cpuset_common_seq_show,
3057 		.private = FILE_EFFECTIVE_MEMLIST,
3058 	},
3059 
3060 	{
3061 		.name = "cpus.partition",
3062 		.seq_show = sched_partition_show,
3063 		.write = sched_partition_write,
3064 		.private = FILE_PARTITION_ROOT,
3065 		.flags = CFTYPE_NOT_ON_ROOT,
3066 		.file_offset = offsetof(struct cpuset, partition_file),
3067 	},
3068 
3069 	{
3070 		.name = "cpus.subpartitions",
3071 		.seq_show = cpuset_common_seq_show,
3072 		.private = FILE_SUBPARTS_CPULIST,
3073 		.flags = CFTYPE_DEBUG,
3074 	},
3075 
3076 	{ }	/* terminate */
3077 };
3078 
3079 
3080 /**
3081  * cpuset_css_alloc - Allocate a cpuset css
3082  * @parent_css: Parent css of the control group that the new cpuset will be
3083  *              part of
3084  * Return: cpuset css on success, -ENOMEM on failure.
3085  *
3086  * Allocate and initialize a new cpuset css, for non-NULL @parent_css, return
3087  * top cpuset css otherwise.
3088  */
3089 static struct cgroup_subsys_state *
3090 cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
3091 {
3092 	struct cpuset *cs;
3093 
3094 	if (!parent_css)
3095 		return &top_cpuset.css;
3096 
3097 	cs = kzalloc(sizeof(*cs), GFP_KERNEL);
3098 	if (!cs)
3099 		return ERR_PTR(-ENOMEM);
3100 
3101 	if (alloc_cpumasks(cs, NULL)) {
3102 		kfree(cs);
3103 		return ERR_PTR(-ENOMEM);
3104 	}
3105 
3106 	__set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
3107 	nodes_clear(cs->mems_allowed);
3108 	nodes_clear(cs->effective_mems);
3109 	fmeter_init(&cs->fmeter);
3110 	cs->relax_domain_level = -1;
3111 
3112 	/* Set CS_MEMORY_MIGRATE for default hierarchy */
3113 	if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys))
3114 		__set_bit(CS_MEMORY_MIGRATE, &cs->flags);
3115 
3116 	return &cs->css;
3117 }
3118 
3119 static int cpuset_css_online(struct cgroup_subsys_state *css)
3120 {
3121 	struct cpuset *cs = css_cs(css);
3122 	struct cpuset *parent = parent_cs(cs);
3123 	struct cpuset *tmp_cs;
3124 	struct cgroup_subsys_state *pos_css;
3125 
3126 	if (!parent)
3127 		return 0;
3128 
3129 	cpus_read_lock();
3130 	percpu_down_write(&cpuset_rwsem);
3131 
3132 	set_bit(CS_ONLINE, &cs->flags);
3133 	if (is_spread_page(parent))
3134 		set_bit(CS_SPREAD_PAGE, &cs->flags);
3135 	if (is_spread_slab(parent))
3136 		set_bit(CS_SPREAD_SLAB, &cs->flags);
3137 
3138 	cpuset_inc();
3139 
3140 	spin_lock_irq(&callback_lock);
3141 	if (is_in_v2_mode()) {
3142 		cpumask_copy(cs->effective_cpus, parent->effective_cpus);
3143 		cs->effective_mems = parent->effective_mems;
3144 		cs->use_parent_ecpus = true;
3145 		parent->child_ecpus_count++;
3146 	}
3147 	spin_unlock_irq(&callback_lock);
3148 
3149 	if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
3150 		goto out_unlock;
3151 
3152 	/*
3153 	 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
3154 	 * set.  This flag handling is implemented in cgroup core for
3155 	 * historical reasons - the flag may be specified during mount.
3156 	 *
3157 	 * Currently, if any sibling cpusets have exclusive cpus or mem, we
3158 	 * refuse to clone the configuration - thereby refusing the task to
3159 	 * be entered, and as a result refusing the sys_unshare() or
3160 	 * clone() which initiated it.  If this becomes a problem for some
3161 	 * users who wish to allow that scenario, then this could be
3162 	 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
3163 	 * (and likewise for mems) to the new cgroup.
3164 	 */
3165 	rcu_read_lock();
3166 	cpuset_for_each_child(tmp_cs, pos_css, parent) {
3167 		if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
3168 			rcu_read_unlock();
3169 			goto out_unlock;
3170 		}
3171 	}
3172 	rcu_read_unlock();
3173 
3174 	spin_lock_irq(&callback_lock);
3175 	cs->mems_allowed = parent->mems_allowed;
3176 	cs->effective_mems = parent->mems_allowed;
3177 	cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
3178 	cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
3179 	spin_unlock_irq(&callback_lock);
3180 out_unlock:
3181 	percpu_up_write(&cpuset_rwsem);
3182 	cpus_read_unlock();
3183 	return 0;
3184 }
3185 
3186 /*
3187  * If the cpuset being removed has its flag 'sched_load_balance'
3188  * enabled, then simulate turning sched_load_balance off, which
3189  * will call rebuild_sched_domains_locked(). That is not needed
3190  * in the default hierarchy where only changes in partition
3191  * will cause repartitioning.
3192  *
3193  * If the cpuset has the 'sched.partition' flag enabled, simulate
3194  * turning 'sched.partition" off.
3195  */
3196 
3197 static void cpuset_css_offline(struct cgroup_subsys_state *css)
3198 {
3199 	struct cpuset *cs = css_cs(css);
3200 
3201 	cpus_read_lock();
3202 	percpu_down_write(&cpuset_rwsem);
3203 
3204 	if (is_partition_valid(cs))
3205 		update_prstate(cs, 0);
3206 
3207 	if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
3208 	    is_sched_load_balance(cs))
3209 		update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
3210 
3211 	if (cs->use_parent_ecpus) {
3212 		struct cpuset *parent = parent_cs(cs);
3213 
3214 		cs->use_parent_ecpus = false;
3215 		parent->child_ecpus_count--;
3216 	}
3217 
3218 	cpuset_dec();
3219 	clear_bit(CS_ONLINE, &cs->flags);
3220 
3221 	percpu_up_write(&cpuset_rwsem);
3222 	cpus_read_unlock();
3223 }
3224 
3225 static void cpuset_css_free(struct cgroup_subsys_state *css)
3226 {
3227 	struct cpuset *cs = css_cs(css);
3228 
3229 	free_cpuset(cs);
3230 }
3231 
3232 static void cpuset_bind(struct cgroup_subsys_state *root_css)
3233 {
3234 	percpu_down_write(&cpuset_rwsem);
3235 	spin_lock_irq(&callback_lock);
3236 
3237 	if (is_in_v2_mode()) {
3238 		cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
3239 		top_cpuset.mems_allowed = node_possible_map;
3240 	} else {
3241 		cpumask_copy(top_cpuset.cpus_allowed,
3242 			     top_cpuset.effective_cpus);
3243 		top_cpuset.mems_allowed = top_cpuset.effective_mems;
3244 	}
3245 
3246 	spin_unlock_irq(&callback_lock);
3247 	percpu_up_write(&cpuset_rwsem);
3248 }
3249 
3250 /*
3251  * Make sure the new task conform to the current state of its parent,
3252  * which could have been changed by cpuset just after it inherits the
3253  * state from the parent and before it sits on the cgroup's task list.
3254  */
3255 static void cpuset_fork(struct task_struct *task)
3256 {
3257 	if (task_css_is_root(task, cpuset_cgrp_id))
3258 		return;
3259 
3260 	set_cpus_allowed_ptr(task, current->cpus_ptr);
3261 	task->mems_allowed = current->mems_allowed;
3262 }
3263 
3264 struct cgroup_subsys cpuset_cgrp_subsys = {
3265 	.css_alloc	= cpuset_css_alloc,
3266 	.css_online	= cpuset_css_online,
3267 	.css_offline	= cpuset_css_offline,
3268 	.css_free	= cpuset_css_free,
3269 	.can_attach	= cpuset_can_attach,
3270 	.cancel_attach	= cpuset_cancel_attach,
3271 	.attach		= cpuset_attach,
3272 	.post_attach	= cpuset_post_attach,
3273 	.bind		= cpuset_bind,
3274 	.fork		= cpuset_fork,
3275 	.legacy_cftypes	= legacy_files,
3276 	.dfl_cftypes	= dfl_files,
3277 	.early_init	= true,
3278 	.threaded	= true,
3279 };
3280 
3281 /**
3282  * cpuset_init - initialize cpusets at system boot
3283  *
3284  * Description: Initialize top_cpuset
3285  **/
3286 
3287 int __init cpuset_init(void)
3288 {
3289 	BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL));
3290 	BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL));
3291 	BUG_ON(!zalloc_cpumask_var(&top_cpuset.subparts_cpus, GFP_KERNEL));
3292 
3293 	cpumask_setall(top_cpuset.cpus_allowed);
3294 	nodes_setall(top_cpuset.mems_allowed);
3295 	cpumask_setall(top_cpuset.effective_cpus);
3296 	nodes_setall(top_cpuset.effective_mems);
3297 
3298 	fmeter_init(&top_cpuset.fmeter);
3299 	set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
3300 	top_cpuset.relax_domain_level = -1;
3301 
3302 	BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL));
3303 
3304 	return 0;
3305 }
3306 
3307 /*
3308  * If CPU and/or memory hotplug handlers, below, unplug any CPUs
3309  * or memory nodes, we need to walk over the cpuset hierarchy,
3310  * removing that CPU or node from all cpusets.  If this removes the
3311  * last CPU or node from a cpuset, then move the tasks in the empty
3312  * cpuset to its next-highest non-empty parent.
3313  */
3314 static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
3315 {
3316 	struct cpuset *parent;
3317 
3318 	/*
3319 	 * Find its next-highest non-empty parent, (top cpuset
3320 	 * has online cpus, so can't be empty).
3321 	 */
3322 	parent = parent_cs(cs);
3323 	while (cpumask_empty(parent->cpus_allowed) ||
3324 			nodes_empty(parent->mems_allowed))
3325 		parent = parent_cs(parent);
3326 
3327 	if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
3328 		pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
3329 		pr_cont_cgroup_name(cs->css.cgroup);
3330 		pr_cont("\n");
3331 	}
3332 }
3333 
3334 static void
3335 hotplug_update_tasks_legacy(struct cpuset *cs,
3336 			    struct cpumask *new_cpus, nodemask_t *new_mems,
3337 			    bool cpus_updated, bool mems_updated)
3338 {
3339 	bool is_empty;
3340 
3341 	spin_lock_irq(&callback_lock);
3342 	cpumask_copy(cs->cpus_allowed, new_cpus);
3343 	cpumask_copy(cs->effective_cpus, new_cpus);
3344 	cs->mems_allowed = *new_mems;
3345 	cs->effective_mems = *new_mems;
3346 	spin_unlock_irq(&callback_lock);
3347 
3348 	/*
3349 	 * Don't call update_tasks_cpumask() if the cpuset becomes empty,
3350 	 * as the tasks will be migrated to an ancestor.
3351 	 */
3352 	if (cpus_updated && !cpumask_empty(cs->cpus_allowed))
3353 		update_tasks_cpumask(cs, new_cpus);
3354 	if (mems_updated && !nodes_empty(cs->mems_allowed))
3355 		update_tasks_nodemask(cs);
3356 
3357 	is_empty = cpumask_empty(cs->cpus_allowed) ||
3358 		   nodes_empty(cs->mems_allowed);
3359 
3360 	percpu_up_write(&cpuset_rwsem);
3361 
3362 	/*
3363 	 * Move tasks to the nearest ancestor with execution resources,
3364 	 * This is full cgroup operation which will also call back into
3365 	 * cpuset. Should be done outside any lock.
3366 	 */
3367 	if (is_empty)
3368 		remove_tasks_in_empty_cpuset(cs);
3369 
3370 	percpu_down_write(&cpuset_rwsem);
3371 }
3372 
3373 static void
3374 hotplug_update_tasks(struct cpuset *cs,
3375 		     struct cpumask *new_cpus, nodemask_t *new_mems,
3376 		     bool cpus_updated, bool mems_updated)
3377 {
3378 	/* A partition root is allowed to have empty effective cpus */
3379 	if (cpumask_empty(new_cpus) && !is_partition_valid(cs))
3380 		cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
3381 	if (nodes_empty(*new_mems))
3382 		*new_mems = parent_cs(cs)->effective_mems;
3383 
3384 	spin_lock_irq(&callback_lock);
3385 	cpumask_copy(cs->effective_cpus, new_cpus);
3386 	cs->effective_mems = *new_mems;
3387 	spin_unlock_irq(&callback_lock);
3388 
3389 	if (cpus_updated)
3390 		update_tasks_cpumask(cs, new_cpus);
3391 	if (mems_updated)
3392 		update_tasks_nodemask(cs);
3393 }
3394 
3395 static bool force_rebuild;
3396 
3397 void cpuset_force_rebuild(void)
3398 {
3399 	force_rebuild = true;
3400 }
3401 
3402 /**
3403  * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
3404  * @cs: cpuset in interest
3405  * @tmp: the tmpmasks structure pointer
3406  *
3407  * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
3408  * offline, update @cs accordingly.  If @cs ends up with no CPU or memory,
3409  * all its tasks are moved to the nearest ancestor with both resources.
3410  */
3411 static void cpuset_hotplug_update_tasks(struct cpuset *cs, struct tmpmasks *tmp)
3412 {
3413 	static cpumask_t new_cpus;
3414 	static nodemask_t new_mems;
3415 	bool cpus_updated;
3416 	bool mems_updated;
3417 	struct cpuset *parent;
3418 retry:
3419 	wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
3420 
3421 	percpu_down_write(&cpuset_rwsem);
3422 
3423 	/*
3424 	 * We have raced with task attaching. We wait until attaching
3425 	 * is finished, so we won't attach a task to an empty cpuset.
3426 	 */
3427 	if (cs->attach_in_progress) {
3428 		percpu_up_write(&cpuset_rwsem);
3429 		goto retry;
3430 	}
3431 
3432 	parent = parent_cs(cs);
3433 	compute_effective_cpumask(&new_cpus, cs, parent);
3434 	nodes_and(new_mems, cs->mems_allowed, parent->effective_mems);
3435 
3436 	if (cs->nr_subparts_cpus)
3437 		/*
3438 		 * Make sure that CPUs allocated to child partitions
3439 		 * do not show up in effective_cpus.
3440 		 */
3441 		cpumask_andnot(&new_cpus, &new_cpus, cs->subparts_cpus);
3442 
3443 	if (!tmp || !cs->partition_root_state)
3444 		goto update_tasks;
3445 
3446 	/*
3447 	 * In the unlikely event that a partition root has empty
3448 	 * effective_cpus with tasks, we will have to invalidate child
3449 	 * partitions, if present, by setting nr_subparts_cpus to 0 to
3450 	 * reclaim their cpus.
3451 	 */
3452 	if (cs->nr_subparts_cpus && is_partition_valid(cs) &&
3453 	    cpumask_empty(&new_cpus) && partition_is_populated(cs, NULL)) {
3454 		spin_lock_irq(&callback_lock);
3455 		cs->nr_subparts_cpus = 0;
3456 		cpumask_clear(cs->subparts_cpus);
3457 		spin_unlock_irq(&callback_lock);
3458 		compute_effective_cpumask(&new_cpus, cs, parent);
3459 	}
3460 
3461 	/*
3462 	 * Force the partition to become invalid if either one of
3463 	 * the following conditions hold:
3464 	 * 1) empty effective cpus but not valid empty partition.
3465 	 * 2) parent is invalid or doesn't grant any cpus to child
3466 	 *    partitions.
3467 	 */
3468 	if (is_partition_valid(cs) && (!parent->nr_subparts_cpus ||
3469 	   (cpumask_empty(&new_cpus) && partition_is_populated(cs, NULL)))) {
3470 		int old_prs, parent_prs;
3471 
3472 		update_parent_subparts_cpumask(cs, partcmd_disable, NULL, tmp);
3473 		if (cs->nr_subparts_cpus) {
3474 			spin_lock_irq(&callback_lock);
3475 			cs->nr_subparts_cpus = 0;
3476 			cpumask_clear(cs->subparts_cpus);
3477 			spin_unlock_irq(&callback_lock);
3478 			compute_effective_cpumask(&new_cpus, cs, parent);
3479 		}
3480 
3481 		old_prs = cs->partition_root_state;
3482 		parent_prs = parent->partition_root_state;
3483 		if (is_partition_valid(cs)) {
3484 			spin_lock_irq(&callback_lock);
3485 			make_partition_invalid(cs);
3486 			spin_unlock_irq(&callback_lock);
3487 			if (is_prs_invalid(parent_prs))
3488 				WRITE_ONCE(cs->prs_err, PERR_INVPARENT);
3489 			else if (!parent_prs)
3490 				WRITE_ONCE(cs->prs_err, PERR_NOTPART);
3491 			else
3492 				WRITE_ONCE(cs->prs_err, PERR_HOTPLUG);
3493 			notify_partition_change(cs, old_prs);
3494 		}
3495 		cpuset_force_rebuild();
3496 	}
3497 
3498 	/*
3499 	 * On the other hand, an invalid partition root may be transitioned
3500 	 * back to a regular one.
3501 	 */
3502 	else if (is_partition_valid(parent) && is_partition_invalid(cs)) {
3503 		update_parent_subparts_cpumask(cs, partcmd_update, NULL, tmp);
3504 		if (is_partition_valid(cs))
3505 			cpuset_force_rebuild();
3506 	}
3507 
3508 update_tasks:
3509 	cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
3510 	mems_updated = !nodes_equal(new_mems, cs->effective_mems);
3511 
3512 	if (mems_updated)
3513 		check_insane_mems_config(&new_mems);
3514 
3515 	if (is_in_v2_mode())
3516 		hotplug_update_tasks(cs, &new_cpus, &new_mems,
3517 				     cpus_updated, mems_updated);
3518 	else
3519 		hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems,
3520 					    cpus_updated, mems_updated);
3521 
3522 	percpu_up_write(&cpuset_rwsem);
3523 }
3524 
3525 /**
3526  * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
3527  *
3528  * This function is called after either CPU or memory configuration has
3529  * changed and updates cpuset accordingly.  The top_cpuset is always
3530  * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
3531  * order to make cpusets transparent (of no affect) on systems that are
3532  * actively using CPU hotplug but making no active use of cpusets.
3533  *
3534  * Non-root cpusets are only affected by offlining.  If any CPUs or memory
3535  * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
3536  * all descendants.
3537  *
3538  * Note that CPU offlining during suspend is ignored.  We don't modify
3539  * cpusets across suspend/resume cycles at all.
3540  */
3541 static void cpuset_hotplug_workfn(struct work_struct *work)
3542 {
3543 	static cpumask_t new_cpus;
3544 	static nodemask_t new_mems;
3545 	bool cpus_updated, mems_updated;
3546 	bool on_dfl = is_in_v2_mode();
3547 	struct tmpmasks tmp, *ptmp = NULL;
3548 
3549 	if (on_dfl && !alloc_cpumasks(NULL, &tmp))
3550 		ptmp = &tmp;
3551 
3552 	percpu_down_write(&cpuset_rwsem);
3553 
3554 	/* fetch the available cpus/mems and find out which changed how */
3555 	cpumask_copy(&new_cpus, cpu_active_mask);
3556 	new_mems = node_states[N_MEMORY];
3557 
3558 	/*
3559 	 * If subparts_cpus is populated, it is likely that the check below
3560 	 * will produce a false positive on cpus_updated when the cpu list
3561 	 * isn't changed. It is extra work, but it is better to be safe.
3562 	 */
3563 	cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus);
3564 	mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
3565 
3566 	/*
3567 	 * In the rare case that hotplug removes all the cpus in subparts_cpus,
3568 	 * we assumed that cpus are updated.
3569 	 */
3570 	if (!cpus_updated && top_cpuset.nr_subparts_cpus)
3571 		cpus_updated = true;
3572 
3573 	/* synchronize cpus_allowed to cpu_active_mask */
3574 	if (cpus_updated) {
3575 		spin_lock_irq(&callback_lock);
3576 		if (!on_dfl)
3577 			cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
3578 		/*
3579 		 * Make sure that CPUs allocated to child partitions
3580 		 * do not show up in effective_cpus. If no CPU is left,
3581 		 * we clear the subparts_cpus & let the child partitions
3582 		 * fight for the CPUs again.
3583 		 */
3584 		if (top_cpuset.nr_subparts_cpus) {
3585 			if (cpumask_subset(&new_cpus,
3586 					   top_cpuset.subparts_cpus)) {
3587 				top_cpuset.nr_subparts_cpus = 0;
3588 				cpumask_clear(top_cpuset.subparts_cpus);
3589 			} else {
3590 				cpumask_andnot(&new_cpus, &new_cpus,
3591 					       top_cpuset.subparts_cpus);
3592 			}
3593 		}
3594 		cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
3595 		spin_unlock_irq(&callback_lock);
3596 		/* we don't mess with cpumasks of tasks in top_cpuset */
3597 	}
3598 
3599 	/* synchronize mems_allowed to N_MEMORY */
3600 	if (mems_updated) {
3601 		spin_lock_irq(&callback_lock);
3602 		if (!on_dfl)
3603 			top_cpuset.mems_allowed = new_mems;
3604 		top_cpuset.effective_mems = new_mems;
3605 		spin_unlock_irq(&callback_lock);
3606 		update_tasks_nodemask(&top_cpuset);
3607 	}
3608 
3609 	percpu_up_write(&cpuset_rwsem);
3610 
3611 	/* if cpus or mems changed, we need to propagate to descendants */
3612 	if (cpus_updated || mems_updated) {
3613 		struct cpuset *cs;
3614 		struct cgroup_subsys_state *pos_css;
3615 
3616 		rcu_read_lock();
3617 		cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
3618 			if (cs == &top_cpuset || !css_tryget_online(&cs->css))
3619 				continue;
3620 			rcu_read_unlock();
3621 
3622 			cpuset_hotplug_update_tasks(cs, ptmp);
3623 
3624 			rcu_read_lock();
3625 			css_put(&cs->css);
3626 		}
3627 		rcu_read_unlock();
3628 	}
3629 
3630 	/* rebuild sched domains if cpus_allowed has changed */
3631 	if (cpus_updated || force_rebuild) {
3632 		force_rebuild = false;
3633 		rebuild_sched_domains();
3634 	}
3635 
3636 	free_cpumasks(NULL, ptmp);
3637 }
3638 
3639 void cpuset_update_active_cpus(void)
3640 {
3641 	/*
3642 	 * We're inside cpu hotplug critical region which usually nests
3643 	 * inside cgroup synchronization.  Bounce actual hotplug processing
3644 	 * to a work item to avoid reverse locking order.
3645 	 */
3646 	schedule_work(&cpuset_hotplug_work);
3647 }
3648 
3649 void cpuset_wait_for_hotplug(void)
3650 {
3651 	flush_work(&cpuset_hotplug_work);
3652 }
3653 
3654 /*
3655  * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
3656  * Call this routine anytime after node_states[N_MEMORY] changes.
3657  * See cpuset_update_active_cpus() for CPU hotplug handling.
3658  */
3659 static int cpuset_track_online_nodes(struct notifier_block *self,
3660 				unsigned long action, void *arg)
3661 {
3662 	schedule_work(&cpuset_hotplug_work);
3663 	return NOTIFY_OK;
3664 }
3665 
3666 /**
3667  * cpuset_init_smp - initialize cpus_allowed
3668  *
3669  * Description: Finish top cpuset after cpu, node maps are initialized
3670  */
3671 void __init cpuset_init_smp(void)
3672 {
3673 	/*
3674 	 * cpus_allowd/mems_allowed set to v2 values in the initial
3675 	 * cpuset_bind() call will be reset to v1 values in another
3676 	 * cpuset_bind() call when v1 cpuset is mounted.
3677 	 */
3678 	top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
3679 
3680 	cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
3681 	top_cpuset.effective_mems = node_states[N_MEMORY];
3682 
3683 	hotplug_memory_notifier(cpuset_track_online_nodes, CPUSET_CALLBACK_PRI);
3684 
3685 	cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0);
3686 	BUG_ON(!cpuset_migrate_mm_wq);
3687 }
3688 
3689 /**
3690  * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
3691  * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
3692  * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
3693  *
3694  * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
3695  * attached to the specified @tsk.  Guaranteed to return some non-empty
3696  * subset of cpu_online_mask, even if this means going outside the
3697  * tasks cpuset, except when the task is in the top cpuset.
3698  **/
3699 
3700 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
3701 {
3702 	unsigned long flags;
3703 	struct cpuset *cs;
3704 
3705 	spin_lock_irqsave(&callback_lock, flags);
3706 	rcu_read_lock();
3707 
3708 	cs = task_cs(tsk);
3709 	if (cs != &top_cpuset)
3710 		guarantee_online_cpus(tsk, pmask);
3711 	/*
3712 	 * Tasks in the top cpuset won't get update to their cpumasks
3713 	 * when a hotplug online/offline event happens. So we include all
3714 	 * offline cpus in the allowed cpu list.
3715 	 */
3716 	if ((cs == &top_cpuset) || cpumask_empty(pmask)) {
3717 		const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
3718 
3719 		/*
3720 		 * We first exclude cpus allocated to partitions. If there is no
3721 		 * allowable online cpu left, we fall back to all possible cpus.
3722 		 */
3723 		cpumask_andnot(pmask, possible_mask, top_cpuset.subparts_cpus);
3724 		if (!cpumask_intersects(pmask, cpu_online_mask))
3725 			cpumask_copy(pmask, possible_mask);
3726 	}
3727 
3728 	rcu_read_unlock();
3729 	spin_unlock_irqrestore(&callback_lock, flags);
3730 }
3731 
3732 /**
3733  * cpuset_cpus_allowed_fallback - final fallback before complete catastrophe.
3734  * @tsk: pointer to task_struct with which the scheduler is struggling
3735  *
3736  * Description: In the case that the scheduler cannot find an allowed cpu in
3737  * tsk->cpus_allowed, we fall back to task_cs(tsk)->cpus_allowed. In legacy
3738  * mode however, this value is the same as task_cs(tsk)->effective_cpus,
3739  * which will not contain a sane cpumask during cases such as cpu hotplugging.
3740  * This is the absolute last resort for the scheduler and it is only used if
3741  * _every_ other avenue has been traveled.
3742  *
3743  * Returns true if the affinity of @tsk was changed, false otherwise.
3744  **/
3745 
3746 bool cpuset_cpus_allowed_fallback(struct task_struct *tsk)
3747 {
3748 	const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
3749 	const struct cpumask *cs_mask;
3750 	bool changed = false;
3751 
3752 	rcu_read_lock();
3753 	cs_mask = task_cs(tsk)->cpus_allowed;
3754 	if (is_in_v2_mode() && cpumask_subset(cs_mask, possible_mask)) {
3755 		do_set_cpus_allowed(tsk, cs_mask);
3756 		changed = true;
3757 	}
3758 	rcu_read_unlock();
3759 
3760 	/*
3761 	 * We own tsk->cpus_allowed, nobody can change it under us.
3762 	 *
3763 	 * But we used cs && cs->cpus_allowed lockless and thus can
3764 	 * race with cgroup_attach_task() or update_cpumask() and get
3765 	 * the wrong tsk->cpus_allowed. However, both cases imply the
3766 	 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
3767 	 * which takes task_rq_lock().
3768 	 *
3769 	 * If we are called after it dropped the lock we must see all
3770 	 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
3771 	 * set any mask even if it is not right from task_cs() pov,
3772 	 * the pending set_cpus_allowed_ptr() will fix things.
3773 	 *
3774 	 * select_fallback_rq() will fix things ups and set cpu_possible_mask
3775 	 * if required.
3776 	 */
3777 	return changed;
3778 }
3779 
3780 void __init cpuset_init_current_mems_allowed(void)
3781 {
3782 	nodes_setall(current->mems_allowed);
3783 }
3784 
3785 /**
3786  * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
3787  * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
3788  *
3789  * Description: Returns the nodemask_t mems_allowed of the cpuset
3790  * attached to the specified @tsk.  Guaranteed to return some non-empty
3791  * subset of node_states[N_MEMORY], even if this means going outside the
3792  * tasks cpuset.
3793  **/
3794 
3795 nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
3796 {
3797 	nodemask_t mask;
3798 	unsigned long flags;
3799 
3800 	spin_lock_irqsave(&callback_lock, flags);
3801 	rcu_read_lock();
3802 	guarantee_online_mems(task_cs(tsk), &mask);
3803 	rcu_read_unlock();
3804 	spin_unlock_irqrestore(&callback_lock, flags);
3805 
3806 	return mask;
3807 }
3808 
3809 /**
3810  * cpuset_nodemask_valid_mems_allowed - check nodemask vs. current mems_allowed
3811  * @nodemask: the nodemask to be checked
3812  *
3813  * Are any of the nodes in the nodemask allowed in current->mems_allowed?
3814  */
3815 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
3816 {
3817 	return nodes_intersects(*nodemask, current->mems_allowed);
3818 }
3819 
3820 /*
3821  * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
3822  * mem_hardwall ancestor to the specified cpuset.  Call holding
3823  * callback_lock.  If no ancestor is mem_exclusive or mem_hardwall
3824  * (an unusual configuration), then returns the root cpuset.
3825  */
3826 static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
3827 {
3828 	while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
3829 		cs = parent_cs(cs);
3830 	return cs;
3831 }
3832 
3833 /*
3834  * __cpuset_node_allowed - Can we allocate on a memory node?
3835  * @node: is this an allowed node?
3836  * @gfp_mask: memory allocation flags
3837  *
3838  * If we're in interrupt, yes, we can always allocate.  If @node is set in
3839  * current's mems_allowed, yes.  If it's not a __GFP_HARDWALL request and this
3840  * node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
3841  * yes.  If current has access to memory reserves as an oom victim, yes.
3842  * Otherwise, no.
3843  *
3844  * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
3845  * and do not allow allocations outside the current tasks cpuset
3846  * unless the task has been OOM killed.
3847  * GFP_KERNEL allocations are not so marked, so can escape to the
3848  * nearest enclosing hardwalled ancestor cpuset.
3849  *
3850  * Scanning up parent cpusets requires callback_lock.  The
3851  * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
3852  * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
3853  * current tasks mems_allowed came up empty on the first pass over
3854  * the zonelist.  So only GFP_KERNEL allocations, if all nodes in the
3855  * cpuset are short of memory, might require taking the callback_lock.
3856  *
3857  * The first call here from mm/page_alloc:get_page_from_freelist()
3858  * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
3859  * so no allocation on a node outside the cpuset is allowed (unless
3860  * in interrupt, of course).
3861  *
3862  * The second pass through get_page_from_freelist() doesn't even call
3863  * here for GFP_ATOMIC calls.  For those calls, the __alloc_pages()
3864  * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
3865  * in alloc_flags.  That logic and the checks below have the combined
3866  * affect that:
3867  *	in_interrupt - any node ok (current task context irrelevant)
3868  *	GFP_ATOMIC   - any node ok
3869  *	tsk_is_oom_victim   - any node ok
3870  *	GFP_KERNEL   - any node in enclosing hardwalled cpuset ok
3871  *	GFP_USER     - only nodes in current tasks mems allowed ok.
3872  */
3873 bool __cpuset_node_allowed(int node, gfp_t gfp_mask)
3874 {
3875 	struct cpuset *cs;		/* current cpuset ancestors */
3876 	bool allowed;			/* is allocation in zone z allowed? */
3877 	unsigned long flags;
3878 
3879 	if (in_interrupt())
3880 		return true;
3881 	if (node_isset(node, current->mems_allowed))
3882 		return true;
3883 	/*
3884 	 * Allow tasks that have access to memory reserves because they have
3885 	 * been OOM killed to get memory anywhere.
3886 	 */
3887 	if (unlikely(tsk_is_oom_victim(current)))
3888 		return true;
3889 	if (gfp_mask & __GFP_HARDWALL)	/* If hardwall request, stop here */
3890 		return false;
3891 
3892 	if (current->flags & PF_EXITING) /* Let dying task have memory */
3893 		return true;
3894 
3895 	/* Not hardwall and node outside mems_allowed: scan up cpusets */
3896 	spin_lock_irqsave(&callback_lock, flags);
3897 
3898 	rcu_read_lock();
3899 	cs = nearest_hardwall_ancestor(task_cs(current));
3900 	allowed = node_isset(node, cs->mems_allowed);
3901 	rcu_read_unlock();
3902 
3903 	spin_unlock_irqrestore(&callback_lock, flags);
3904 	return allowed;
3905 }
3906 
3907 /**
3908  * cpuset_spread_node() - On which node to begin search for a page
3909  *
3910  * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
3911  * tasks in a cpuset with is_spread_page or is_spread_slab set),
3912  * and if the memory allocation used cpuset_mem_spread_node()
3913  * to determine on which node to start looking, as it will for
3914  * certain page cache or slab cache pages such as used for file
3915  * system buffers and inode caches, then instead of starting on the
3916  * local node to look for a free page, rather spread the starting
3917  * node around the tasks mems_allowed nodes.
3918  *
3919  * We don't have to worry about the returned node being offline
3920  * because "it can't happen", and even if it did, it would be ok.
3921  *
3922  * The routines calling guarantee_online_mems() are careful to
3923  * only set nodes in task->mems_allowed that are online.  So it
3924  * should not be possible for the following code to return an
3925  * offline node.  But if it did, that would be ok, as this routine
3926  * is not returning the node where the allocation must be, only
3927  * the node where the search should start.  The zonelist passed to
3928  * __alloc_pages() will include all nodes.  If the slab allocator
3929  * is passed an offline node, it will fall back to the local node.
3930  * See kmem_cache_alloc_node().
3931  */
3932 static int cpuset_spread_node(int *rotor)
3933 {
3934 	return *rotor = next_node_in(*rotor, current->mems_allowed);
3935 }
3936 
3937 /**
3938  * cpuset_mem_spread_node() - On which node to begin search for a file page
3939  */
3940 int cpuset_mem_spread_node(void)
3941 {
3942 	if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
3943 		current->cpuset_mem_spread_rotor =
3944 			node_random(&current->mems_allowed);
3945 
3946 	return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
3947 }
3948 
3949 /**
3950  * cpuset_slab_spread_node() - On which node to begin search for a slab page
3951  */
3952 int cpuset_slab_spread_node(void)
3953 {
3954 	if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
3955 		current->cpuset_slab_spread_rotor =
3956 			node_random(&current->mems_allowed);
3957 
3958 	return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
3959 }
3960 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
3961 
3962 /**
3963  * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
3964  * @tsk1: pointer to task_struct of some task.
3965  * @tsk2: pointer to task_struct of some other task.
3966  *
3967  * Description: Return true if @tsk1's mems_allowed intersects the
3968  * mems_allowed of @tsk2.  Used by the OOM killer to determine if
3969  * one of the task's memory usage might impact the memory available
3970  * to the other.
3971  **/
3972 
3973 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
3974 				   const struct task_struct *tsk2)
3975 {
3976 	return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
3977 }
3978 
3979 /**
3980  * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed
3981  *
3982  * Description: Prints current's name, cpuset name, and cached copy of its
3983  * mems_allowed to the kernel log.
3984  */
3985 void cpuset_print_current_mems_allowed(void)
3986 {
3987 	struct cgroup *cgrp;
3988 
3989 	rcu_read_lock();
3990 
3991 	cgrp = task_cs(current)->css.cgroup;
3992 	pr_cont(",cpuset=");
3993 	pr_cont_cgroup_name(cgrp);
3994 	pr_cont(",mems_allowed=%*pbl",
3995 		nodemask_pr_args(&current->mems_allowed));
3996 
3997 	rcu_read_unlock();
3998 }
3999 
4000 /*
4001  * Collection of memory_pressure is suppressed unless
4002  * this flag is enabled by writing "1" to the special
4003  * cpuset file 'memory_pressure_enabled' in the root cpuset.
4004  */
4005 
4006 int cpuset_memory_pressure_enabled __read_mostly;
4007 
4008 /*
4009  * __cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
4010  *
4011  * Keep a running average of the rate of synchronous (direct)
4012  * page reclaim efforts initiated by tasks in each cpuset.
4013  *
4014  * This represents the rate at which some task in the cpuset
4015  * ran low on memory on all nodes it was allowed to use, and
4016  * had to enter the kernels page reclaim code in an effort to
4017  * create more free memory by tossing clean pages or swapping
4018  * or writing dirty pages.
4019  *
4020  * Display to user space in the per-cpuset read-only file
4021  * "memory_pressure".  Value displayed is an integer
4022  * representing the recent rate of entry into the synchronous
4023  * (direct) page reclaim by any task attached to the cpuset.
4024  */
4025 
4026 void __cpuset_memory_pressure_bump(void)
4027 {
4028 	rcu_read_lock();
4029 	fmeter_markevent(&task_cs(current)->fmeter);
4030 	rcu_read_unlock();
4031 }
4032 
4033 #ifdef CONFIG_PROC_PID_CPUSET
4034 /*
4035  * proc_cpuset_show()
4036  *  - Print tasks cpuset path into seq_file.
4037  *  - Used for /proc/<pid>/cpuset.
4038  *  - No need to task_lock(tsk) on this tsk->cpuset reference, as it
4039  *    doesn't really matter if tsk->cpuset changes after we read it,
4040  *    and we take cpuset_rwsem, keeping cpuset_attach() from changing it
4041  *    anyway.
4042  */
4043 int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
4044 		     struct pid *pid, struct task_struct *tsk)
4045 {
4046 	char *buf;
4047 	struct cgroup_subsys_state *css;
4048 	int retval;
4049 
4050 	retval = -ENOMEM;
4051 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
4052 	if (!buf)
4053 		goto out;
4054 
4055 	css = task_get_css(tsk, cpuset_cgrp_id);
4056 	retval = cgroup_path_ns(css->cgroup, buf, PATH_MAX,
4057 				current->nsproxy->cgroup_ns);
4058 	css_put(css);
4059 	if (retval >= PATH_MAX)
4060 		retval = -ENAMETOOLONG;
4061 	if (retval < 0)
4062 		goto out_free;
4063 	seq_puts(m, buf);
4064 	seq_putc(m, '\n');
4065 	retval = 0;
4066 out_free:
4067 	kfree(buf);
4068 out:
4069 	return retval;
4070 }
4071 #endif /* CONFIG_PROC_PID_CPUSET */
4072 
4073 /* Display task mems_allowed in /proc/<pid>/status file. */
4074 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
4075 {
4076 	seq_printf(m, "Mems_allowed:\t%*pb\n",
4077 		   nodemask_pr_args(&task->mems_allowed));
4078 	seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
4079 		   nodemask_pr_args(&task->mems_allowed));
4080 }
4081