1 /* 2 * kernel/cpuset.c 3 * 4 * Processor and Memory placement constraints for sets of tasks. 5 * 6 * Copyright (C) 2003 BULL SA. 7 * Copyright (C) 2004-2007 Silicon Graphics, Inc. 8 * Copyright (C) 2006 Google, Inc 9 * 10 * Portions derived from Patrick Mochel's sysfs code. 11 * sysfs is Copyright (c) 2001-3 Patrick Mochel 12 * 13 * 2003-10-10 Written by Simon Derr. 14 * 2003-10-22 Updates by Stephen Hemminger. 15 * 2004 May-July Rework by Paul Jackson. 16 * 2006 Rework by Paul Menage to use generic cgroups 17 * 2008 Rework of the scheduler domains and CPU hotplug handling 18 * by Max Krasnyansky 19 * 20 * This file is subject to the terms and conditions of the GNU General Public 21 * License. See the file COPYING in the main directory of the Linux 22 * distribution for more details. 23 */ 24 25 #include <linux/cpu.h> 26 #include <linux/cpumask.h> 27 #include <linux/cpuset.h> 28 #include <linux/err.h> 29 #include <linux/errno.h> 30 #include <linux/file.h> 31 #include <linux/fs.h> 32 #include <linux/init.h> 33 #include <linux/interrupt.h> 34 #include <linux/kernel.h> 35 #include <linux/kmod.h> 36 #include <linux/kthread.h> 37 #include <linux/list.h> 38 #include <linux/mempolicy.h> 39 #include <linux/mm.h> 40 #include <linux/memory.h> 41 #include <linux/export.h> 42 #include <linux/mount.h> 43 #include <linux/fs_context.h> 44 #include <linux/namei.h> 45 #include <linux/pagemap.h> 46 #include <linux/proc_fs.h> 47 #include <linux/rcupdate.h> 48 #include <linux/sched.h> 49 #include <linux/sched/deadline.h> 50 #include <linux/sched/mm.h> 51 #include <linux/sched/task.h> 52 #include <linux/seq_file.h> 53 #include <linux/security.h> 54 #include <linux/slab.h> 55 #include <linux/spinlock.h> 56 #include <linux/stat.h> 57 #include <linux/string.h> 58 #include <linux/time.h> 59 #include <linux/time64.h> 60 #include <linux/backing-dev.h> 61 #include <linux/sort.h> 62 #include <linux/oom.h> 63 #include <linux/sched/isolation.h> 64 #include <linux/uaccess.h> 65 #include <linux/atomic.h> 66 #include <linux/mutex.h> 67 #include <linux/cgroup.h> 68 #include <linux/wait.h> 69 70 DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key); 71 DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key); 72 73 /* 74 * There could be abnormal cpuset configurations for cpu or memory 75 * node binding, add this key to provide a quick low-cost judgment 76 * of the situation. 77 */ 78 DEFINE_STATIC_KEY_FALSE(cpusets_insane_config_key); 79 80 /* See "Frequency meter" comments, below. */ 81 82 struct fmeter { 83 int cnt; /* unprocessed events count */ 84 int val; /* most recent output value */ 85 time64_t time; /* clock (secs) when val computed */ 86 spinlock_t lock; /* guards read or write of above */ 87 }; 88 89 /* 90 * Invalid partition error code 91 */ 92 enum prs_errcode { 93 PERR_NONE = 0, 94 PERR_INVCPUS, 95 PERR_INVPARENT, 96 PERR_NOTPART, 97 PERR_NOTEXCL, 98 PERR_NOCPUS, 99 PERR_HOTPLUG, 100 PERR_CPUSEMPTY, 101 }; 102 103 static const char * const perr_strings[] = { 104 [PERR_INVCPUS] = "Invalid cpu list in cpuset.cpus", 105 [PERR_INVPARENT] = "Parent is an invalid partition root", 106 [PERR_NOTPART] = "Parent is not a partition root", 107 [PERR_NOTEXCL] = "Cpu list in cpuset.cpus not exclusive", 108 [PERR_NOCPUS] = "Parent unable to distribute cpu downstream", 109 [PERR_HOTPLUG] = "No cpu available due to hotplug", 110 [PERR_CPUSEMPTY] = "cpuset.cpus is empty", 111 }; 112 113 struct cpuset { 114 struct cgroup_subsys_state css; 115 116 unsigned long flags; /* "unsigned long" so bitops work */ 117 118 /* 119 * On default hierarchy: 120 * 121 * The user-configured masks can only be changed by writing to 122 * cpuset.cpus and cpuset.mems, and won't be limited by the 123 * parent masks. 124 * 125 * The effective masks is the real masks that apply to the tasks 126 * in the cpuset. They may be changed if the configured masks are 127 * changed or hotplug happens. 128 * 129 * effective_mask == configured_mask & parent's effective_mask, 130 * and if it ends up empty, it will inherit the parent's mask. 131 * 132 * 133 * On legacy hierarchy: 134 * 135 * The user-configured masks are always the same with effective masks. 136 */ 137 138 /* user-configured CPUs and Memory Nodes allow to tasks */ 139 cpumask_var_t cpus_allowed; 140 nodemask_t mems_allowed; 141 142 /* effective CPUs and Memory Nodes allow to tasks */ 143 cpumask_var_t effective_cpus; 144 nodemask_t effective_mems; 145 146 /* 147 * CPUs allocated to child sub-partitions (default hierarchy only) 148 * - CPUs granted by the parent = effective_cpus U subparts_cpus 149 * - effective_cpus and subparts_cpus are mutually exclusive. 150 * 151 * effective_cpus contains only onlined CPUs, but subparts_cpus 152 * may have offlined ones. 153 */ 154 cpumask_var_t subparts_cpus; 155 156 /* 157 * This is old Memory Nodes tasks took on. 158 * 159 * - top_cpuset.old_mems_allowed is initialized to mems_allowed. 160 * - A new cpuset's old_mems_allowed is initialized when some 161 * task is moved into it. 162 * - old_mems_allowed is used in cpuset_migrate_mm() when we change 163 * cpuset.mems_allowed and have tasks' nodemask updated, and 164 * then old_mems_allowed is updated to mems_allowed. 165 */ 166 nodemask_t old_mems_allowed; 167 168 struct fmeter fmeter; /* memory_pressure filter */ 169 170 /* 171 * Tasks are being attached to this cpuset. Used to prevent 172 * zeroing cpus/mems_allowed between ->can_attach() and ->attach(). 173 */ 174 int attach_in_progress; 175 176 /* partition number for rebuild_sched_domains() */ 177 int pn; 178 179 /* for custom sched domain */ 180 int relax_domain_level; 181 182 /* number of CPUs in subparts_cpus */ 183 int nr_subparts_cpus; 184 185 /* partition root state */ 186 int partition_root_state; 187 188 /* 189 * Default hierarchy only: 190 * use_parent_ecpus - set if using parent's effective_cpus 191 * child_ecpus_count - # of children with use_parent_ecpus set 192 */ 193 int use_parent_ecpus; 194 int child_ecpus_count; 195 196 /* Invalid partition error code, not lock protected */ 197 enum prs_errcode prs_err; 198 199 /* Handle for cpuset.cpus.partition */ 200 struct cgroup_file partition_file; 201 }; 202 203 /* 204 * Partition root states: 205 * 206 * 0 - member (not a partition root) 207 * 1 - partition root 208 * 2 - partition root without load balancing (isolated) 209 * -1 - invalid partition root 210 * -2 - invalid isolated partition root 211 */ 212 #define PRS_MEMBER 0 213 #define PRS_ROOT 1 214 #define PRS_ISOLATED 2 215 #define PRS_INVALID_ROOT -1 216 #define PRS_INVALID_ISOLATED -2 217 218 static inline bool is_prs_invalid(int prs_state) 219 { 220 return prs_state < 0; 221 } 222 223 /* 224 * Temporary cpumasks for working with partitions that are passed among 225 * functions to avoid memory allocation in inner functions. 226 */ 227 struct tmpmasks { 228 cpumask_var_t addmask, delmask; /* For partition root */ 229 cpumask_var_t new_cpus; /* For update_cpumasks_hier() */ 230 }; 231 232 static inline struct cpuset *css_cs(struct cgroup_subsys_state *css) 233 { 234 return css ? container_of(css, struct cpuset, css) : NULL; 235 } 236 237 /* Retrieve the cpuset for a task */ 238 static inline struct cpuset *task_cs(struct task_struct *task) 239 { 240 return css_cs(task_css(task, cpuset_cgrp_id)); 241 } 242 243 static inline struct cpuset *parent_cs(struct cpuset *cs) 244 { 245 return css_cs(cs->css.parent); 246 } 247 248 /* bits in struct cpuset flags field */ 249 typedef enum { 250 CS_ONLINE, 251 CS_CPU_EXCLUSIVE, 252 CS_MEM_EXCLUSIVE, 253 CS_MEM_HARDWALL, 254 CS_MEMORY_MIGRATE, 255 CS_SCHED_LOAD_BALANCE, 256 CS_SPREAD_PAGE, 257 CS_SPREAD_SLAB, 258 } cpuset_flagbits_t; 259 260 /* convenient tests for these bits */ 261 static inline bool is_cpuset_online(struct cpuset *cs) 262 { 263 return test_bit(CS_ONLINE, &cs->flags) && !css_is_dying(&cs->css); 264 } 265 266 static inline int is_cpu_exclusive(const struct cpuset *cs) 267 { 268 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags); 269 } 270 271 static inline int is_mem_exclusive(const struct cpuset *cs) 272 { 273 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags); 274 } 275 276 static inline int is_mem_hardwall(const struct cpuset *cs) 277 { 278 return test_bit(CS_MEM_HARDWALL, &cs->flags); 279 } 280 281 static inline int is_sched_load_balance(const struct cpuset *cs) 282 { 283 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); 284 } 285 286 static inline int is_memory_migrate(const struct cpuset *cs) 287 { 288 return test_bit(CS_MEMORY_MIGRATE, &cs->flags); 289 } 290 291 static inline int is_spread_page(const struct cpuset *cs) 292 { 293 return test_bit(CS_SPREAD_PAGE, &cs->flags); 294 } 295 296 static inline int is_spread_slab(const struct cpuset *cs) 297 { 298 return test_bit(CS_SPREAD_SLAB, &cs->flags); 299 } 300 301 static inline int is_partition_valid(const struct cpuset *cs) 302 { 303 return cs->partition_root_state > 0; 304 } 305 306 static inline int is_partition_invalid(const struct cpuset *cs) 307 { 308 return cs->partition_root_state < 0; 309 } 310 311 /* 312 * Callers should hold callback_lock to modify partition_root_state. 313 */ 314 static inline void make_partition_invalid(struct cpuset *cs) 315 { 316 if (is_partition_valid(cs)) 317 cs->partition_root_state = -cs->partition_root_state; 318 } 319 320 /* 321 * Send notification event of whenever partition_root_state changes. 322 */ 323 static inline void notify_partition_change(struct cpuset *cs, int old_prs) 324 { 325 if (old_prs == cs->partition_root_state) 326 return; 327 cgroup_file_notify(&cs->partition_file); 328 329 /* Reset prs_err if not invalid */ 330 if (is_partition_valid(cs)) 331 WRITE_ONCE(cs->prs_err, PERR_NONE); 332 } 333 334 static struct cpuset top_cpuset = { 335 .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) | 336 (1 << CS_MEM_EXCLUSIVE)), 337 .partition_root_state = PRS_ROOT, 338 }; 339 340 /** 341 * cpuset_for_each_child - traverse online children of a cpuset 342 * @child_cs: loop cursor pointing to the current child 343 * @pos_css: used for iteration 344 * @parent_cs: target cpuset to walk children of 345 * 346 * Walk @child_cs through the online children of @parent_cs. Must be used 347 * with RCU read locked. 348 */ 349 #define cpuset_for_each_child(child_cs, pos_css, parent_cs) \ 350 css_for_each_child((pos_css), &(parent_cs)->css) \ 351 if (is_cpuset_online(((child_cs) = css_cs((pos_css))))) 352 353 /** 354 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants 355 * @des_cs: loop cursor pointing to the current descendant 356 * @pos_css: used for iteration 357 * @root_cs: target cpuset to walk ancestor of 358 * 359 * Walk @des_cs through the online descendants of @root_cs. Must be used 360 * with RCU read locked. The caller may modify @pos_css by calling 361 * css_rightmost_descendant() to skip subtree. @root_cs is included in the 362 * iteration and the first node to be visited. 363 */ 364 #define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs) \ 365 css_for_each_descendant_pre((pos_css), &(root_cs)->css) \ 366 if (is_cpuset_online(((des_cs) = css_cs((pos_css))))) 367 368 /* 369 * There are two global locks guarding cpuset structures - cpuset_rwsem and 370 * callback_lock. We also require taking task_lock() when dereferencing a 371 * task's cpuset pointer. See "The task_lock() exception", at the end of this 372 * comment. The cpuset code uses only cpuset_rwsem write lock. Other 373 * kernel subsystems can use cpuset_read_lock()/cpuset_read_unlock() to 374 * prevent change to cpuset structures. 375 * 376 * A task must hold both locks to modify cpusets. If a task holds 377 * cpuset_rwsem, it blocks others wanting that rwsem, ensuring that it 378 * is the only task able to also acquire callback_lock and be able to 379 * modify cpusets. It can perform various checks on the cpuset structure 380 * first, knowing nothing will change. It can also allocate memory while 381 * just holding cpuset_rwsem. While it is performing these checks, various 382 * callback routines can briefly acquire callback_lock to query cpusets. 383 * Once it is ready to make the changes, it takes callback_lock, blocking 384 * everyone else. 385 * 386 * Calls to the kernel memory allocator can not be made while holding 387 * callback_lock, as that would risk double tripping on callback_lock 388 * from one of the callbacks into the cpuset code from within 389 * __alloc_pages(). 390 * 391 * If a task is only holding callback_lock, then it has read-only 392 * access to cpusets. 393 * 394 * Now, the task_struct fields mems_allowed and mempolicy may be changed 395 * by other task, we use alloc_lock in the task_struct fields to protect 396 * them. 397 * 398 * The cpuset_common_file_read() handlers only hold callback_lock across 399 * small pieces of code, such as when reading out possibly multi-word 400 * cpumasks and nodemasks. 401 * 402 * Accessing a task's cpuset should be done in accordance with the 403 * guidelines for accessing subsystem state in kernel/cgroup.c 404 */ 405 406 DEFINE_STATIC_PERCPU_RWSEM(cpuset_rwsem); 407 408 void cpuset_read_lock(void) 409 { 410 percpu_down_read(&cpuset_rwsem); 411 } 412 413 void cpuset_read_unlock(void) 414 { 415 percpu_up_read(&cpuset_rwsem); 416 } 417 418 static DEFINE_SPINLOCK(callback_lock); 419 420 static struct workqueue_struct *cpuset_migrate_mm_wq; 421 422 /* 423 * CPU / memory hotplug is handled asynchronously. 424 */ 425 static void cpuset_hotplug_workfn(struct work_struct *work); 426 static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn); 427 428 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq); 429 430 static inline void check_insane_mems_config(nodemask_t *nodes) 431 { 432 if (!cpusets_insane_config() && 433 movable_only_nodes(nodes)) { 434 static_branch_enable(&cpusets_insane_config_key); 435 pr_info("Unsupported (movable nodes only) cpuset configuration detected (nmask=%*pbl)!\n" 436 "Cpuset allocations might fail even with a lot of memory available.\n", 437 nodemask_pr_args(nodes)); 438 } 439 } 440 441 /* 442 * Cgroup v2 behavior is used on the "cpus" and "mems" control files when 443 * on default hierarchy or when the cpuset_v2_mode flag is set by mounting 444 * the v1 cpuset cgroup filesystem with the "cpuset_v2_mode" mount option. 445 * With v2 behavior, "cpus" and "mems" are always what the users have 446 * requested and won't be changed by hotplug events. Only the effective 447 * cpus or mems will be affected. 448 */ 449 static inline bool is_in_v2_mode(void) 450 { 451 return cgroup_subsys_on_dfl(cpuset_cgrp_subsys) || 452 (cpuset_cgrp_subsys.root->flags & CGRP_ROOT_CPUSET_V2_MODE); 453 } 454 455 /** 456 * partition_is_populated - check if partition has tasks 457 * @cs: partition root to be checked 458 * @excluded_child: a child cpuset to be excluded in task checking 459 * Return: true if there are tasks, false otherwise 460 * 461 * It is assumed that @cs is a valid partition root. @excluded_child should 462 * be non-NULL when this cpuset is going to become a partition itself. 463 */ 464 static inline bool partition_is_populated(struct cpuset *cs, 465 struct cpuset *excluded_child) 466 { 467 struct cgroup_subsys_state *css; 468 struct cpuset *child; 469 470 if (cs->css.cgroup->nr_populated_csets) 471 return true; 472 if (!excluded_child && !cs->nr_subparts_cpus) 473 return cgroup_is_populated(cs->css.cgroup); 474 475 rcu_read_lock(); 476 cpuset_for_each_child(child, css, cs) { 477 if (child == excluded_child) 478 continue; 479 if (is_partition_valid(child)) 480 continue; 481 if (cgroup_is_populated(child->css.cgroup)) { 482 rcu_read_unlock(); 483 return true; 484 } 485 } 486 rcu_read_unlock(); 487 return false; 488 } 489 490 /* 491 * Return in pmask the portion of a task's cpusets's cpus_allowed that 492 * are online and are capable of running the task. If none are found, 493 * walk up the cpuset hierarchy until we find one that does have some 494 * appropriate cpus. 495 * 496 * One way or another, we guarantee to return some non-empty subset 497 * of cpu_online_mask. 498 * 499 * Call with callback_lock or cpuset_rwsem held. 500 */ 501 static void guarantee_online_cpus(struct task_struct *tsk, 502 struct cpumask *pmask) 503 { 504 const struct cpumask *possible_mask = task_cpu_possible_mask(tsk); 505 struct cpuset *cs; 506 507 if (WARN_ON(!cpumask_and(pmask, possible_mask, cpu_online_mask))) 508 cpumask_copy(pmask, cpu_online_mask); 509 510 rcu_read_lock(); 511 cs = task_cs(tsk); 512 513 while (!cpumask_intersects(cs->effective_cpus, pmask)) { 514 cs = parent_cs(cs); 515 if (unlikely(!cs)) { 516 /* 517 * The top cpuset doesn't have any online cpu as a 518 * consequence of a race between cpuset_hotplug_work 519 * and cpu hotplug notifier. But we know the top 520 * cpuset's effective_cpus is on its way to be 521 * identical to cpu_online_mask. 522 */ 523 goto out_unlock; 524 } 525 } 526 cpumask_and(pmask, pmask, cs->effective_cpus); 527 528 out_unlock: 529 rcu_read_unlock(); 530 } 531 532 /* 533 * Return in *pmask the portion of a cpusets's mems_allowed that 534 * are online, with memory. If none are online with memory, walk 535 * up the cpuset hierarchy until we find one that does have some 536 * online mems. The top cpuset always has some mems online. 537 * 538 * One way or another, we guarantee to return some non-empty subset 539 * of node_states[N_MEMORY]. 540 * 541 * Call with callback_lock or cpuset_rwsem held. 542 */ 543 static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask) 544 { 545 while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY])) 546 cs = parent_cs(cs); 547 nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]); 548 } 549 550 /* 551 * update task's spread flag if cpuset's page/slab spread flag is set 552 * 553 * Call with callback_lock or cpuset_rwsem held. The check can be skipped 554 * if on default hierarchy. 555 */ 556 static void cpuset_update_task_spread_flags(struct cpuset *cs, 557 struct task_struct *tsk) 558 { 559 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) 560 return; 561 562 if (is_spread_page(cs)) 563 task_set_spread_page(tsk); 564 else 565 task_clear_spread_page(tsk); 566 567 if (is_spread_slab(cs)) 568 task_set_spread_slab(tsk); 569 else 570 task_clear_spread_slab(tsk); 571 } 572 573 /* 574 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q? 575 * 576 * One cpuset is a subset of another if all its allowed CPUs and 577 * Memory Nodes are a subset of the other, and its exclusive flags 578 * are only set if the other's are set. Call holding cpuset_rwsem. 579 */ 580 581 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q) 582 { 583 return cpumask_subset(p->cpus_allowed, q->cpus_allowed) && 584 nodes_subset(p->mems_allowed, q->mems_allowed) && 585 is_cpu_exclusive(p) <= is_cpu_exclusive(q) && 586 is_mem_exclusive(p) <= is_mem_exclusive(q); 587 } 588 589 /** 590 * alloc_cpumasks - allocate three cpumasks for cpuset 591 * @cs: the cpuset that have cpumasks to be allocated. 592 * @tmp: the tmpmasks structure pointer 593 * Return: 0 if successful, -ENOMEM otherwise. 594 * 595 * Only one of the two input arguments should be non-NULL. 596 */ 597 static inline int alloc_cpumasks(struct cpuset *cs, struct tmpmasks *tmp) 598 { 599 cpumask_var_t *pmask1, *pmask2, *pmask3; 600 601 if (cs) { 602 pmask1 = &cs->cpus_allowed; 603 pmask2 = &cs->effective_cpus; 604 pmask3 = &cs->subparts_cpus; 605 } else { 606 pmask1 = &tmp->new_cpus; 607 pmask2 = &tmp->addmask; 608 pmask3 = &tmp->delmask; 609 } 610 611 if (!zalloc_cpumask_var(pmask1, GFP_KERNEL)) 612 return -ENOMEM; 613 614 if (!zalloc_cpumask_var(pmask2, GFP_KERNEL)) 615 goto free_one; 616 617 if (!zalloc_cpumask_var(pmask3, GFP_KERNEL)) 618 goto free_two; 619 620 return 0; 621 622 free_two: 623 free_cpumask_var(*pmask2); 624 free_one: 625 free_cpumask_var(*pmask1); 626 return -ENOMEM; 627 } 628 629 /** 630 * free_cpumasks - free cpumasks in a tmpmasks structure 631 * @cs: the cpuset that have cpumasks to be free. 632 * @tmp: the tmpmasks structure pointer 633 */ 634 static inline void free_cpumasks(struct cpuset *cs, struct tmpmasks *tmp) 635 { 636 if (cs) { 637 free_cpumask_var(cs->cpus_allowed); 638 free_cpumask_var(cs->effective_cpus); 639 free_cpumask_var(cs->subparts_cpus); 640 } 641 if (tmp) { 642 free_cpumask_var(tmp->new_cpus); 643 free_cpumask_var(tmp->addmask); 644 free_cpumask_var(tmp->delmask); 645 } 646 } 647 648 /** 649 * alloc_trial_cpuset - allocate a trial cpuset 650 * @cs: the cpuset that the trial cpuset duplicates 651 */ 652 static struct cpuset *alloc_trial_cpuset(struct cpuset *cs) 653 { 654 struct cpuset *trial; 655 656 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL); 657 if (!trial) 658 return NULL; 659 660 if (alloc_cpumasks(trial, NULL)) { 661 kfree(trial); 662 return NULL; 663 } 664 665 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed); 666 cpumask_copy(trial->effective_cpus, cs->effective_cpus); 667 return trial; 668 } 669 670 /** 671 * free_cpuset - free the cpuset 672 * @cs: the cpuset to be freed 673 */ 674 static inline void free_cpuset(struct cpuset *cs) 675 { 676 free_cpumasks(cs, NULL); 677 kfree(cs); 678 } 679 680 /* 681 * validate_change_legacy() - Validate conditions specific to legacy (v1) 682 * behavior. 683 */ 684 static int validate_change_legacy(struct cpuset *cur, struct cpuset *trial) 685 { 686 struct cgroup_subsys_state *css; 687 struct cpuset *c, *par; 688 int ret; 689 690 WARN_ON_ONCE(!rcu_read_lock_held()); 691 692 /* Each of our child cpusets must be a subset of us */ 693 ret = -EBUSY; 694 cpuset_for_each_child(c, css, cur) 695 if (!is_cpuset_subset(c, trial)) 696 goto out; 697 698 /* On legacy hierarchy, we must be a subset of our parent cpuset. */ 699 ret = -EACCES; 700 par = parent_cs(cur); 701 if (par && !is_cpuset_subset(trial, par)) 702 goto out; 703 704 ret = 0; 705 out: 706 return ret; 707 } 708 709 /* 710 * validate_change() - Used to validate that any proposed cpuset change 711 * follows the structural rules for cpusets. 712 * 713 * If we replaced the flag and mask values of the current cpuset 714 * (cur) with those values in the trial cpuset (trial), would 715 * our various subset and exclusive rules still be valid? Presumes 716 * cpuset_rwsem held. 717 * 718 * 'cur' is the address of an actual, in-use cpuset. Operations 719 * such as list traversal that depend on the actual address of the 720 * cpuset in the list must use cur below, not trial. 721 * 722 * 'trial' is the address of bulk structure copy of cur, with 723 * perhaps one or more of the fields cpus_allowed, mems_allowed, 724 * or flags changed to new, trial values. 725 * 726 * Return 0 if valid, -errno if not. 727 */ 728 729 static int validate_change(struct cpuset *cur, struct cpuset *trial) 730 { 731 struct cgroup_subsys_state *css; 732 struct cpuset *c, *par; 733 int ret = 0; 734 735 rcu_read_lock(); 736 737 if (!is_in_v2_mode()) 738 ret = validate_change_legacy(cur, trial); 739 if (ret) 740 goto out; 741 742 /* Remaining checks don't apply to root cpuset */ 743 if (cur == &top_cpuset) 744 goto out; 745 746 par = parent_cs(cur); 747 748 /* 749 * Cpusets with tasks - existing or newly being attached - can't 750 * be changed to have empty cpus_allowed or mems_allowed. 751 */ 752 ret = -ENOSPC; 753 if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) { 754 if (!cpumask_empty(cur->cpus_allowed) && 755 cpumask_empty(trial->cpus_allowed)) 756 goto out; 757 if (!nodes_empty(cur->mems_allowed) && 758 nodes_empty(trial->mems_allowed)) 759 goto out; 760 } 761 762 /* 763 * We can't shrink if we won't have enough room for SCHED_DEADLINE 764 * tasks. 765 */ 766 ret = -EBUSY; 767 if (is_cpu_exclusive(cur) && 768 !cpuset_cpumask_can_shrink(cur->cpus_allowed, 769 trial->cpus_allowed)) 770 goto out; 771 772 /* 773 * If either I or some sibling (!= me) is exclusive, we can't 774 * overlap 775 */ 776 ret = -EINVAL; 777 cpuset_for_each_child(c, css, par) { 778 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) && 779 c != cur && 780 cpumask_intersects(trial->cpus_allowed, c->cpus_allowed)) 781 goto out; 782 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) && 783 c != cur && 784 nodes_intersects(trial->mems_allowed, c->mems_allowed)) 785 goto out; 786 } 787 788 ret = 0; 789 out: 790 rcu_read_unlock(); 791 return ret; 792 } 793 794 #ifdef CONFIG_SMP 795 /* 796 * Helper routine for generate_sched_domains(). 797 * Do cpusets a, b have overlapping effective cpus_allowed masks? 798 */ 799 static int cpusets_overlap(struct cpuset *a, struct cpuset *b) 800 { 801 return cpumask_intersects(a->effective_cpus, b->effective_cpus); 802 } 803 804 static void 805 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c) 806 { 807 if (dattr->relax_domain_level < c->relax_domain_level) 808 dattr->relax_domain_level = c->relax_domain_level; 809 return; 810 } 811 812 static void update_domain_attr_tree(struct sched_domain_attr *dattr, 813 struct cpuset *root_cs) 814 { 815 struct cpuset *cp; 816 struct cgroup_subsys_state *pos_css; 817 818 rcu_read_lock(); 819 cpuset_for_each_descendant_pre(cp, pos_css, root_cs) { 820 /* skip the whole subtree if @cp doesn't have any CPU */ 821 if (cpumask_empty(cp->cpus_allowed)) { 822 pos_css = css_rightmost_descendant(pos_css); 823 continue; 824 } 825 826 if (is_sched_load_balance(cp)) 827 update_domain_attr(dattr, cp); 828 } 829 rcu_read_unlock(); 830 } 831 832 /* Must be called with cpuset_rwsem held. */ 833 static inline int nr_cpusets(void) 834 { 835 /* jump label reference count + the top-level cpuset */ 836 return static_key_count(&cpusets_enabled_key.key) + 1; 837 } 838 839 /* 840 * generate_sched_domains() 841 * 842 * This function builds a partial partition of the systems CPUs 843 * A 'partial partition' is a set of non-overlapping subsets whose 844 * union is a subset of that set. 845 * The output of this function needs to be passed to kernel/sched/core.c 846 * partition_sched_domains() routine, which will rebuild the scheduler's 847 * load balancing domains (sched domains) as specified by that partial 848 * partition. 849 * 850 * See "What is sched_load_balance" in Documentation/admin-guide/cgroup-v1/cpusets.rst 851 * for a background explanation of this. 852 * 853 * Does not return errors, on the theory that the callers of this 854 * routine would rather not worry about failures to rebuild sched 855 * domains when operating in the severe memory shortage situations 856 * that could cause allocation failures below. 857 * 858 * Must be called with cpuset_rwsem held. 859 * 860 * The three key local variables below are: 861 * cp - cpuset pointer, used (together with pos_css) to perform a 862 * top-down scan of all cpusets. For our purposes, rebuilding 863 * the schedulers sched domains, we can ignore !is_sched_load_ 864 * balance cpusets. 865 * csa - (for CpuSet Array) Array of pointers to all the cpusets 866 * that need to be load balanced, for convenient iterative 867 * access by the subsequent code that finds the best partition, 868 * i.e the set of domains (subsets) of CPUs such that the 869 * cpus_allowed of every cpuset marked is_sched_load_balance 870 * is a subset of one of these domains, while there are as 871 * many such domains as possible, each as small as possible. 872 * doms - Conversion of 'csa' to an array of cpumasks, for passing to 873 * the kernel/sched/core.c routine partition_sched_domains() in a 874 * convenient format, that can be easily compared to the prior 875 * value to determine what partition elements (sched domains) 876 * were changed (added or removed.) 877 * 878 * Finding the best partition (set of domains): 879 * The triple nested loops below over i, j, k scan over the 880 * load balanced cpusets (using the array of cpuset pointers in 881 * csa[]) looking for pairs of cpusets that have overlapping 882 * cpus_allowed, but which don't have the same 'pn' partition 883 * number and gives them in the same partition number. It keeps 884 * looping on the 'restart' label until it can no longer find 885 * any such pairs. 886 * 887 * The union of the cpus_allowed masks from the set of 888 * all cpusets having the same 'pn' value then form the one 889 * element of the partition (one sched domain) to be passed to 890 * partition_sched_domains(). 891 */ 892 static int generate_sched_domains(cpumask_var_t **domains, 893 struct sched_domain_attr **attributes) 894 { 895 struct cpuset *cp; /* top-down scan of cpusets */ 896 struct cpuset **csa; /* array of all cpuset ptrs */ 897 int csn; /* how many cpuset ptrs in csa so far */ 898 int i, j, k; /* indices for partition finding loops */ 899 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */ 900 struct sched_domain_attr *dattr; /* attributes for custom domains */ 901 int ndoms = 0; /* number of sched domains in result */ 902 int nslot; /* next empty doms[] struct cpumask slot */ 903 struct cgroup_subsys_state *pos_css; 904 bool root_load_balance = is_sched_load_balance(&top_cpuset); 905 906 doms = NULL; 907 dattr = NULL; 908 csa = NULL; 909 910 /* Special case for the 99% of systems with one, full, sched domain */ 911 if (root_load_balance && !top_cpuset.nr_subparts_cpus) { 912 ndoms = 1; 913 doms = alloc_sched_domains(ndoms); 914 if (!doms) 915 goto done; 916 917 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL); 918 if (dattr) { 919 *dattr = SD_ATTR_INIT; 920 update_domain_attr_tree(dattr, &top_cpuset); 921 } 922 cpumask_and(doms[0], top_cpuset.effective_cpus, 923 housekeeping_cpumask(HK_TYPE_DOMAIN)); 924 925 goto done; 926 } 927 928 csa = kmalloc_array(nr_cpusets(), sizeof(cp), GFP_KERNEL); 929 if (!csa) 930 goto done; 931 csn = 0; 932 933 rcu_read_lock(); 934 if (root_load_balance) 935 csa[csn++] = &top_cpuset; 936 cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) { 937 if (cp == &top_cpuset) 938 continue; 939 /* 940 * Continue traversing beyond @cp iff @cp has some CPUs and 941 * isn't load balancing. The former is obvious. The 942 * latter: All child cpusets contain a subset of the 943 * parent's cpus, so just skip them, and then we call 944 * update_domain_attr_tree() to calc relax_domain_level of 945 * the corresponding sched domain. 946 * 947 * If root is load-balancing, we can skip @cp if it 948 * is a subset of the root's effective_cpus. 949 */ 950 if (!cpumask_empty(cp->cpus_allowed) && 951 !(is_sched_load_balance(cp) && 952 cpumask_intersects(cp->cpus_allowed, 953 housekeeping_cpumask(HK_TYPE_DOMAIN)))) 954 continue; 955 956 if (root_load_balance && 957 cpumask_subset(cp->cpus_allowed, top_cpuset.effective_cpus)) 958 continue; 959 960 if (is_sched_load_balance(cp) && 961 !cpumask_empty(cp->effective_cpus)) 962 csa[csn++] = cp; 963 964 /* skip @cp's subtree if not a partition root */ 965 if (!is_partition_valid(cp)) 966 pos_css = css_rightmost_descendant(pos_css); 967 } 968 rcu_read_unlock(); 969 970 for (i = 0; i < csn; i++) 971 csa[i]->pn = i; 972 ndoms = csn; 973 974 restart: 975 /* Find the best partition (set of sched domains) */ 976 for (i = 0; i < csn; i++) { 977 struct cpuset *a = csa[i]; 978 int apn = a->pn; 979 980 for (j = 0; j < csn; j++) { 981 struct cpuset *b = csa[j]; 982 int bpn = b->pn; 983 984 if (apn != bpn && cpusets_overlap(a, b)) { 985 for (k = 0; k < csn; k++) { 986 struct cpuset *c = csa[k]; 987 988 if (c->pn == bpn) 989 c->pn = apn; 990 } 991 ndoms--; /* one less element */ 992 goto restart; 993 } 994 } 995 } 996 997 /* 998 * Now we know how many domains to create. 999 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks. 1000 */ 1001 doms = alloc_sched_domains(ndoms); 1002 if (!doms) 1003 goto done; 1004 1005 /* 1006 * The rest of the code, including the scheduler, can deal with 1007 * dattr==NULL case. No need to abort if alloc fails. 1008 */ 1009 dattr = kmalloc_array(ndoms, sizeof(struct sched_domain_attr), 1010 GFP_KERNEL); 1011 1012 for (nslot = 0, i = 0; i < csn; i++) { 1013 struct cpuset *a = csa[i]; 1014 struct cpumask *dp; 1015 int apn = a->pn; 1016 1017 if (apn < 0) { 1018 /* Skip completed partitions */ 1019 continue; 1020 } 1021 1022 dp = doms[nslot]; 1023 1024 if (nslot == ndoms) { 1025 static int warnings = 10; 1026 if (warnings) { 1027 pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n", 1028 nslot, ndoms, csn, i, apn); 1029 warnings--; 1030 } 1031 continue; 1032 } 1033 1034 cpumask_clear(dp); 1035 if (dattr) 1036 *(dattr + nslot) = SD_ATTR_INIT; 1037 for (j = i; j < csn; j++) { 1038 struct cpuset *b = csa[j]; 1039 1040 if (apn == b->pn) { 1041 cpumask_or(dp, dp, b->effective_cpus); 1042 cpumask_and(dp, dp, housekeeping_cpumask(HK_TYPE_DOMAIN)); 1043 if (dattr) 1044 update_domain_attr_tree(dattr + nslot, b); 1045 1046 /* Done with this partition */ 1047 b->pn = -1; 1048 } 1049 } 1050 nslot++; 1051 } 1052 BUG_ON(nslot != ndoms); 1053 1054 done: 1055 kfree(csa); 1056 1057 /* 1058 * Fallback to the default domain if kmalloc() failed. 1059 * See comments in partition_sched_domains(). 1060 */ 1061 if (doms == NULL) 1062 ndoms = 1; 1063 1064 *domains = doms; 1065 *attributes = dattr; 1066 return ndoms; 1067 } 1068 1069 static void update_tasks_root_domain(struct cpuset *cs) 1070 { 1071 struct css_task_iter it; 1072 struct task_struct *task; 1073 1074 css_task_iter_start(&cs->css, 0, &it); 1075 1076 while ((task = css_task_iter_next(&it))) 1077 dl_add_task_root_domain(task); 1078 1079 css_task_iter_end(&it); 1080 } 1081 1082 static void rebuild_root_domains(void) 1083 { 1084 struct cpuset *cs = NULL; 1085 struct cgroup_subsys_state *pos_css; 1086 1087 percpu_rwsem_assert_held(&cpuset_rwsem); 1088 lockdep_assert_cpus_held(); 1089 lockdep_assert_held(&sched_domains_mutex); 1090 1091 rcu_read_lock(); 1092 1093 /* 1094 * Clear default root domain DL accounting, it will be computed again 1095 * if a task belongs to it. 1096 */ 1097 dl_clear_root_domain(&def_root_domain); 1098 1099 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) { 1100 1101 if (cpumask_empty(cs->effective_cpus)) { 1102 pos_css = css_rightmost_descendant(pos_css); 1103 continue; 1104 } 1105 1106 css_get(&cs->css); 1107 1108 rcu_read_unlock(); 1109 1110 update_tasks_root_domain(cs); 1111 1112 rcu_read_lock(); 1113 css_put(&cs->css); 1114 } 1115 rcu_read_unlock(); 1116 } 1117 1118 static void 1119 partition_and_rebuild_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 1120 struct sched_domain_attr *dattr_new) 1121 { 1122 mutex_lock(&sched_domains_mutex); 1123 partition_sched_domains_locked(ndoms_new, doms_new, dattr_new); 1124 rebuild_root_domains(); 1125 mutex_unlock(&sched_domains_mutex); 1126 } 1127 1128 /* 1129 * Rebuild scheduler domains. 1130 * 1131 * If the flag 'sched_load_balance' of any cpuset with non-empty 1132 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset 1133 * which has that flag enabled, or if any cpuset with a non-empty 1134 * 'cpus' is removed, then call this routine to rebuild the 1135 * scheduler's dynamic sched domains. 1136 * 1137 * Call with cpuset_rwsem held. Takes cpus_read_lock(). 1138 */ 1139 static void rebuild_sched_domains_locked(void) 1140 { 1141 struct cgroup_subsys_state *pos_css; 1142 struct sched_domain_attr *attr; 1143 cpumask_var_t *doms; 1144 struct cpuset *cs; 1145 int ndoms; 1146 1147 lockdep_assert_cpus_held(); 1148 percpu_rwsem_assert_held(&cpuset_rwsem); 1149 1150 /* 1151 * If we have raced with CPU hotplug, return early to avoid 1152 * passing doms with offlined cpu to partition_sched_domains(). 1153 * Anyways, cpuset_hotplug_workfn() will rebuild sched domains. 1154 * 1155 * With no CPUs in any subpartitions, top_cpuset's effective CPUs 1156 * should be the same as the active CPUs, so checking only top_cpuset 1157 * is enough to detect racing CPU offlines. 1158 */ 1159 if (!top_cpuset.nr_subparts_cpus && 1160 !cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask)) 1161 return; 1162 1163 /* 1164 * With subpartition CPUs, however, the effective CPUs of a partition 1165 * root should be only a subset of the active CPUs. Since a CPU in any 1166 * partition root could be offlined, all must be checked. 1167 */ 1168 if (top_cpuset.nr_subparts_cpus) { 1169 rcu_read_lock(); 1170 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) { 1171 if (!is_partition_valid(cs)) { 1172 pos_css = css_rightmost_descendant(pos_css); 1173 continue; 1174 } 1175 if (!cpumask_subset(cs->effective_cpus, 1176 cpu_active_mask)) { 1177 rcu_read_unlock(); 1178 return; 1179 } 1180 } 1181 rcu_read_unlock(); 1182 } 1183 1184 /* Generate domain masks and attrs */ 1185 ndoms = generate_sched_domains(&doms, &attr); 1186 1187 /* Have scheduler rebuild the domains */ 1188 partition_and_rebuild_sched_domains(ndoms, doms, attr); 1189 } 1190 #else /* !CONFIG_SMP */ 1191 static void rebuild_sched_domains_locked(void) 1192 { 1193 } 1194 #endif /* CONFIG_SMP */ 1195 1196 void rebuild_sched_domains(void) 1197 { 1198 cpus_read_lock(); 1199 percpu_down_write(&cpuset_rwsem); 1200 rebuild_sched_domains_locked(); 1201 percpu_up_write(&cpuset_rwsem); 1202 cpus_read_unlock(); 1203 } 1204 1205 /** 1206 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset. 1207 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed 1208 * @new_cpus: the temp variable for the new effective_cpus mask 1209 * 1210 * Iterate through each task of @cs updating its cpus_allowed to the 1211 * effective cpuset's. As this function is called with cpuset_rwsem held, 1212 * cpuset membership stays stable. 1213 */ 1214 static void update_tasks_cpumask(struct cpuset *cs, struct cpumask *new_cpus) 1215 { 1216 struct css_task_iter it; 1217 struct task_struct *task; 1218 bool top_cs = cs == &top_cpuset; 1219 1220 css_task_iter_start(&cs->css, 0, &it); 1221 while ((task = css_task_iter_next(&it))) { 1222 /* 1223 * Percpu kthreads in top_cpuset are ignored 1224 */ 1225 if (top_cs && (task->flags & PF_KTHREAD) && 1226 kthread_is_per_cpu(task)) 1227 continue; 1228 1229 cpumask_and(new_cpus, cs->effective_cpus, 1230 task_cpu_possible_mask(task)); 1231 set_cpus_allowed_ptr(task, new_cpus); 1232 } 1233 css_task_iter_end(&it); 1234 } 1235 1236 /** 1237 * compute_effective_cpumask - Compute the effective cpumask of the cpuset 1238 * @new_cpus: the temp variable for the new effective_cpus mask 1239 * @cs: the cpuset the need to recompute the new effective_cpus mask 1240 * @parent: the parent cpuset 1241 * 1242 * If the parent has subpartition CPUs, include them in the list of 1243 * allowable CPUs in computing the new effective_cpus mask. Since offlined 1244 * CPUs are not removed from subparts_cpus, we have to use cpu_active_mask 1245 * to mask those out. 1246 */ 1247 static void compute_effective_cpumask(struct cpumask *new_cpus, 1248 struct cpuset *cs, struct cpuset *parent) 1249 { 1250 if (parent->nr_subparts_cpus) { 1251 cpumask_or(new_cpus, parent->effective_cpus, 1252 parent->subparts_cpus); 1253 cpumask_and(new_cpus, new_cpus, cs->cpus_allowed); 1254 cpumask_and(new_cpus, new_cpus, cpu_active_mask); 1255 } else { 1256 cpumask_and(new_cpus, cs->cpus_allowed, parent->effective_cpus); 1257 } 1258 } 1259 1260 /* 1261 * Commands for update_parent_subparts_cpumask 1262 */ 1263 enum subparts_cmd { 1264 partcmd_enable, /* Enable partition root */ 1265 partcmd_disable, /* Disable partition root */ 1266 partcmd_update, /* Update parent's subparts_cpus */ 1267 partcmd_invalidate, /* Make partition invalid */ 1268 }; 1269 1270 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, 1271 int turning_on); 1272 /** 1273 * update_parent_subparts_cpumask - update subparts_cpus mask of parent cpuset 1274 * @cs: The cpuset that requests change in partition root state 1275 * @cmd: Partition root state change command 1276 * @newmask: Optional new cpumask for partcmd_update 1277 * @tmp: Temporary addmask and delmask 1278 * Return: 0 or a partition root state error code 1279 * 1280 * For partcmd_enable, the cpuset is being transformed from a non-partition 1281 * root to a partition root. The cpus_allowed mask of the given cpuset will 1282 * be put into parent's subparts_cpus and taken away from parent's 1283 * effective_cpus. The function will return 0 if all the CPUs listed in 1284 * cpus_allowed can be granted or an error code will be returned. 1285 * 1286 * For partcmd_disable, the cpuset is being transformed from a partition 1287 * root back to a non-partition root. Any CPUs in cpus_allowed that are in 1288 * parent's subparts_cpus will be taken away from that cpumask and put back 1289 * into parent's effective_cpus. 0 will always be returned. 1290 * 1291 * For partcmd_update, if the optional newmask is specified, the cpu list is 1292 * to be changed from cpus_allowed to newmask. Otherwise, cpus_allowed is 1293 * assumed to remain the same. The cpuset should either be a valid or invalid 1294 * partition root. The partition root state may change from valid to invalid 1295 * or vice versa. An error code will only be returned if transitioning from 1296 * invalid to valid violates the exclusivity rule. 1297 * 1298 * For partcmd_invalidate, the current partition will be made invalid. 1299 * 1300 * The partcmd_enable and partcmd_disable commands are used by 1301 * update_prstate(). An error code may be returned and the caller will check 1302 * for error. 1303 * 1304 * The partcmd_update command is used by update_cpumasks_hier() with newmask 1305 * NULL and update_cpumask() with newmask set. The partcmd_invalidate is used 1306 * by update_cpumask() with NULL newmask. In both cases, the callers won't 1307 * check for error and so partition_root_state and prs_error will be updated 1308 * directly. 1309 */ 1310 static int update_parent_subparts_cpumask(struct cpuset *cs, int cmd, 1311 struct cpumask *newmask, 1312 struct tmpmasks *tmp) 1313 { 1314 struct cpuset *parent = parent_cs(cs); 1315 int adding; /* Moving cpus from effective_cpus to subparts_cpus */ 1316 int deleting; /* Moving cpus from subparts_cpus to effective_cpus */ 1317 int old_prs, new_prs; 1318 int part_error = PERR_NONE; /* Partition error? */ 1319 1320 percpu_rwsem_assert_held(&cpuset_rwsem); 1321 1322 /* 1323 * The parent must be a partition root. 1324 * The new cpumask, if present, or the current cpus_allowed must 1325 * not be empty. 1326 */ 1327 if (!is_partition_valid(parent)) { 1328 return is_partition_invalid(parent) 1329 ? PERR_INVPARENT : PERR_NOTPART; 1330 } 1331 if ((newmask && cpumask_empty(newmask)) || 1332 (!newmask && cpumask_empty(cs->cpus_allowed))) 1333 return PERR_CPUSEMPTY; 1334 1335 /* 1336 * new_prs will only be changed for the partcmd_update and 1337 * partcmd_invalidate commands. 1338 */ 1339 adding = deleting = false; 1340 old_prs = new_prs = cs->partition_root_state; 1341 if (cmd == partcmd_enable) { 1342 /* 1343 * Enabling partition root is not allowed if cpus_allowed 1344 * doesn't overlap parent's cpus_allowed. 1345 */ 1346 if (!cpumask_intersects(cs->cpus_allowed, parent->cpus_allowed)) 1347 return PERR_INVCPUS; 1348 1349 /* 1350 * A parent can be left with no CPU as long as there is no 1351 * task directly associated with the parent partition. 1352 */ 1353 if (cpumask_subset(parent->effective_cpus, cs->cpus_allowed) && 1354 partition_is_populated(parent, cs)) 1355 return PERR_NOCPUS; 1356 1357 cpumask_copy(tmp->addmask, cs->cpus_allowed); 1358 adding = true; 1359 } else if (cmd == partcmd_disable) { 1360 /* 1361 * Need to remove cpus from parent's subparts_cpus for valid 1362 * partition root. 1363 */ 1364 deleting = !is_prs_invalid(old_prs) && 1365 cpumask_and(tmp->delmask, cs->cpus_allowed, 1366 parent->subparts_cpus); 1367 } else if (cmd == partcmd_invalidate) { 1368 if (is_prs_invalid(old_prs)) 1369 return 0; 1370 1371 /* 1372 * Make the current partition invalid. It is assumed that 1373 * invalidation is caused by violating cpu exclusivity rule. 1374 */ 1375 deleting = cpumask_and(tmp->delmask, cs->cpus_allowed, 1376 parent->subparts_cpus); 1377 if (old_prs > 0) { 1378 new_prs = -old_prs; 1379 part_error = PERR_NOTEXCL; 1380 } 1381 } else if (newmask) { 1382 /* 1383 * partcmd_update with newmask: 1384 * 1385 * Compute add/delete mask to/from subparts_cpus 1386 * 1387 * delmask = cpus_allowed & ~newmask & parent->subparts_cpus 1388 * addmask = newmask & parent->cpus_allowed 1389 * & ~parent->subparts_cpus 1390 */ 1391 cpumask_andnot(tmp->delmask, cs->cpus_allowed, newmask); 1392 deleting = cpumask_and(tmp->delmask, tmp->delmask, 1393 parent->subparts_cpus); 1394 1395 cpumask_and(tmp->addmask, newmask, parent->cpus_allowed); 1396 adding = cpumask_andnot(tmp->addmask, tmp->addmask, 1397 parent->subparts_cpus); 1398 /* 1399 * Make partition invalid if parent's effective_cpus could 1400 * become empty and there are tasks in the parent. 1401 */ 1402 if (adding && 1403 cpumask_subset(parent->effective_cpus, tmp->addmask) && 1404 !cpumask_intersects(tmp->delmask, cpu_active_mask) && 1405 partition_is_populated(parent, cs)) { 1406 part_error = PERR_NOCPUS; 1407 adding = false; 1408 deleting = cpumask_and(tmp->delmask, cs->cpus_allowed, 1409 parent->subparts_cpus); 1410 } 1411 } else { 1412 /* 1413 * partcmd_update w/o newmask: 1414 * 1415 * delmask = cpus_allowed & parent->subparts_cpus 1416 * addmask = cpus_allowed & parent->cpus_allowed 1417 * & ~parent->subparts_cpus 1418 * 1419 * This gets invoked either due to a hotplug event or from 1420 * update_cpumasks_hier(). This can cause the state of a 1421 * partition root to transition from valid to invalid or vice 1422 * versa. So we still need to compute the addmask and delmask. 1423 1424 * A partition error happens when: 1425 * 1) Cpuset is valid partition, but parent does not distribute 1426 * out any CPUs. 1427 * 2) Parent has tasks and all its effective CPUs will have 1428 * to be distributed out. 1429 */ 1430 cpumask_and(tmp->addmask, cs->cpus_allowed, 1431 parent->cpus_allowed); 1432 adding = cpumask_andnot(tmp->addmask, tmp->addmask, 1433 parent->subparts_cpus); 1434 1435 if ((is_partition_valid(cs) && !parent->nr_subparts_cpus) || 1436 (adding && 1437 cpumask_subset(parent->effective_cpus, tmp->addmask) && 1438 partition_is_populated(parent, cs))) { 1439 part_error = PERR_NOCPUS; 1440 adding = false; 1441 } 1442 1443 if (part_error && is_partition_valid(cs) && 1444 parent->nr_subparts_cpus) 1445 deleting = cpumask_and(tmp->delmask, cs->cpus_allowed, 1446 parent->subparts_cpus); 1447 } 1448 if (part_error) 1449 WRITE_ONCE(cs->prs_err, part_error); 1450 1451 if (cmd == partcmd_update) { 1452 /* 1453 * Check for possible transition between valid and invalid 1454 * partition root. 1455 */ 1456 switch (cs->partition_root_state) { 1457 case PRS_ROOT: 1458 case PRS_ISOLATED: 1459 if (part_error) 1460 new_prs = -old_prs; 1461 break; 1462 case PRS_INVALID_ROOT: 1463 case PRS_INVALID_ISOLATED: 1464 if (!part_error) 1465 new_prs = -old_prs; 1466 break; 1467 } 1468 } 1469 1470 if (!adding && !deleting && (new_prs == old_prs)) 1471 return 0; 1472 1473 /* 1474 * Transitioning between invalid to valid or vice versa may require 1475 * changing CS_CPU_EXCLUSIVE and CS_SCHED_LOAD_BALANCE. 1476 */ 1477 if (old_prs != new_prs) { 1478 if (is_prs_invalid(old_prs) && !is_cpu_exclusive(cs) && 1479 (update_flag(CS_CPU_EXCLUSIVE, cs, 1) < 0)) 1480 return PERR_NOTEXCL; 1481 if (is_prs_invalid(new_prs) && is_cpu_exclusive(cs)) 1482 update_flag(CS_CPU_EXCLUSIVE, cs, 0); 1483 } 1484 1485 /* 1486 * Change the parent's subparts_cpus. 1487 * Newly added CPUs will be removed from effective_cpus and 1488 * newly deleted ones will be added back to effective_cpus. 1489 */ 1490 spin_lock_irq(&callback_lock); 1491 if (adding) { 1492 cpumask_or(parent->subparts_cpus, 1493 parent->subparts_cpus, tmp->addmask); 1494 cpumask_andnot(parent->effective_cpus, 1495 parent->effective_cpus, tmp->addmask); 1496 } 1497 if (deleting) { 1498 cpumask_andnot(parent->subparts_cpus, 1499 parent->subparts_cpus, tmp->delmask); 1500 /* 1501 * Some of the CPUs in subparts_cpus might have been offlined. 1502 */ 1503 cpumask_and(tmp->delmask, tmp->delmask, cpu_active_mask); 1504 cpumask_or(parent->effective_cpus, 1505 parent->effective_cpus, tmp->delmask); 1506 } 1507 1508 parent->nr_subparts_cpus = cpumask_weight(parent->subparts_cpus); 1509 1510 if (old_prs != new_prs) 1511 cs->partition_root_state = new_prs; 1512 1513 spin_unlock_irq(&callback_lock); 1514 1515 if (adding || deleting) 1516 update_tasks_cpumask(parent, tmp->new_cpus); 1517 1518 /* 1519 * Set or clear CS_SCHED_LOAD_BALANCE when partcmd_update, if necessary. 1520 * rebuild_sched_domains_locked() may be called. 1521 */ 1522 if (old_prs != new_prs) { 1523 if (old_prs == PRS_ISOLATED) 1524 update_flag(CS_SCHED_LOAD_BALANCE, cs, 1); 1525 else if (new_prs == PRS_ISOLATED) 1526 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0); 1527 } 1528 notify_partition_change(cs, old_prs); 1529 return 0; 1530 } 1531 1532 /* 1533 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree 1534 * @cs: the cpuset to consider 1535 * @tmp: temp variables for calculating effective_cpus & partition setup 1536 * @force: don't skip any descendant cpusets if set 1537 * 1538 * When configured cpumask is changed, the effective cpumasks of this cpuset 1539 * and all its descendants need to be updated. 1540 * 1541 * On legacy hierarchy, effective_cpus will be the same with cpu_allowed. 1542 * 1543 * Called with cpuset_rwsem held 1544 */ 1545 static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp, 1546 bool force) 1547 { 1548 struct cpuset *cp; 1549 struct cgroup_subsys_state *pos_css; 1550 bool need_rebuild_sched_domains = false; 1551 int old_prs, new_prs; 1552 1553 rcu_read_lock(); 1554 cpuset_for_each_descendant_pre(cp, pos_css, cs) { 1555 struct cpuset *parent = parent_cs(cp); 1556 bool update_parent = false; 1557 1558 compute_effective_cpumask(tmp->new_cpus, cp, parent); 1559 1560 /* 1561 * If it becomes empty, inherit the effective mask of the 1562 * parent, which is guaranteed to have some CPUs unless 1563 * it is a partition root that has explicitly distributed 1564 * out all its CPUs. 1565 */ 1566 if (is_in_v2_mode() && cpumask_empty(tmp->new_cpus)) { 1567 if (is_partition_valid(cp) && 1568 cpumask_equal(cp->cpus_allowed, cp->subparts_cpus)) 1569 goto update_parent_subparts; 1570 1571 cpumask_copy(tmp->new_cpus, parent->effective_cpus); 1572 if (!cp->use_parent_ecpus) { 1573 cp->use_parent_ecpus = true; 1574 parent->child_ecpus_count++; 1575 } 1576 } else if (cp->use_parent_ecpus) { 1577 cp->use_parent_ecpus = false; 1578 WARN_ON_ONCE(!parent->child_ecpus_count); 1579 parent->child_ecpus_count--; 1580 } 1581 1582 /* 1583 * Skip the whole subtree if the cpumask remains the same 1584 * and has no partition root state and force flag not set. 1585 */ 1586 if (!cp->partition_root_state && !force && 1587 cpumask_equal(tmp->new_cpus, cp->effective_cpus)) { 1588 pos_css = css_rightmost_descendant(pos_css); 1589 continue; 1590 } 1591 1592 update_parent_subparts: 1593 /* 1594 * update_parent_subparts_cpumask() should have been called 1595 * for cs already in update_cpumask(). We should also call 1596 * update_tasks_cpumask() again for tasks in the parent 1597 * cpuset if the parent's subparts_cpus changes. 1598 */ 1599 old_prs = new_prs = cp->partition_root_state; 1600 if ((cp != cs) && old_prs) { 1601 switch (parent->partition_root_state) { 1602 case PRS_ROOT: 1603 case PRS_ISOLATED: 1604 update_parent = true; 1605 break; 1606 1607 default: 1608 /* 1609 * When parent is not a partition root or is 1610 * invalid, child partition roots become 1611 * invalid too. 1612 */ 1613 if (is_partition_valid(cp)) 1614 new_prs = -cp->partition_root_state; 1615 WRITE_ONCE(cp->prs_err, 1616 is_partition_invalid(parent) 1617 ? PERR_INVPARENT : PERR_NOTPART); 1618 break; 1619 } 1620 } 1621 1622 if (!css_tryget_online(&cp->css)) 1623 continue; 1624 rcu_read_unlock(); 1625 1626 if (update_parent) { 1627 update_parent_subparts_cpumask(cp, partcmd_update, NULL, 1628 tmp); 1629 /* 1630 * The cpuset partition_root_state may become 1631 * invalid. Capture it. 1632 */ 1633 new_prs = cp->partition_root_state; 1634 } 1635 1636 spin_lock_irq(&callback_lock); 1637 1638 if (cp->nr_subparts_cpus && !is_partition_valid(cp)) { 1639 /* 1640 * Put all active subparts_cpus back to effective_cpus. 1641 */ 1642 cpumask_or(tmp->new_cpus, tmp->new_cpus, 1643 cp->subparts_cpus); 1644 cpumask_and(tmp->new_cpus, tmp->new_cpus, 1645 cpu_active_mask); 1646 cp->nr_subparts_cpus = 0; 1647 cpumask_clear(cp->subparts_cpus); 1648 } 1649 1650 cpumask_copy(cp->effective_cpus, tmp->new_cpus); 1651 if (cp->nr_subparts_cpus) { 1652 /* 1653 * Make sure that effective_cpus & subparts_cpus 1654 * are mutually exclusive. 1655 */ 1656 cpumask_andnot(cp->effective_cpus, cp->effective_cpus, 1657 cp->subparts_cpus); 1658 } 1659 1660 cp->partition_root_state = new_prs; 1661 spin_unlock_irq(&callback_lock); 1662 1663 notify_partition_change(cp, old_prs); 1664 1665 WARN_ON(!is_in_v2_mode() && 1666 !cpumask_equal(cp->cpus_allowed, cp->effective_cpus)); 1667 1668 update_tasks_cpumask(cp, tmp->new_cpus); 1669 1670 /* 1671 * On legacy hierarchy, if the effective cpumask of any non- 1672 * empty cpuset is changed, we need to rebuild sched domains. 1673 * On default hierarchy, the cpuset needs to be a partition 1674 * root as well. 1675 */ 1676 if (!cpumask_empty(cp->cpus_allowed) && 1677 is_sched_load_balance(cp) && 1678 (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) || 1679 is_partition_valid(cp))) 1680 need_rebuild_sched_domains = true; 1681 1682 rcu_read_lock(); 1683 css_put(&cp->css); 1684 } 1685 rcu_read_unlock(); 1686 1687 if (need_rebuild_sched_domains) 1688 rebuild_sched_domains_locked(); 1689 } 1690 1691 /** 1692 * update_sibling_cpumasks - Update siblings cpumasks 1693 * @parent: Parent cpuset 1694 * @cs: Current cpuset 1695 * @tmp: Temp variables 1696 */ 1697 static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs, 1698 struct tmpmasks *tmp) 1699 { 1700 struct cpuset *sibling; 1701 struct cgroup_subsys_state *pos_css; 1702 1703 percpu_rwsem_assert_held(&cpuset_rwsem); 1704 1705 /* 1706 * Check all its siblings and call update_cpumasks_hier() 1707 * if their use_parent_ecpus flag is set in order for them 1708 * to use the right effective_cpus value. 1709 * 1710 * The update_cpumasks_hier() function may sleep. So we have to 1711 * release the RCU read lock before calling it. 1712 */ 1713 rcu_read_lock(); 1714 cpuset_for_each_child(sibling, pos_css, parent) { 1715 if (sibling == cs) 1716 continue; 1717 if (!sibling->use_parent_ecpus) 1718 continue; 1719 if (!css_tryget_online(&sibling->css)) 1720 continue; 1721 1722 rcu_read_unlock(); 1723 update_cpumasks_hier(sibling, tmp, false); 1724 rcu_read_lock(); 1725 css_put(&sibling->css); 1726 } 1727 rcu_read_unlock(); 1728 } 1729 1730 /** 1731 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it 1732 * @cs: the cpuset to consider 1733 * @trialcs: trial cpuset 1734 * @buf: buffer of cpu numbers written to this cpuset 1735 */ 1736 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs, 1737 const char *buf) 1738 { 1739 int retval; 1740 struct tmpmasks tmp; 1741 bool invalidate = false; 1742 1743 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */ 1744 if (cs == &top_cpuset) 1745 return -EACCES; 1746 1747 /* 1748 * An empty cpus_allowed is ok only if the cpuset has no tasks. 1749 * Since cpulist_parse() fails on an empty mask, we special case 1750 * that parsing. The validate_change() call ensures that cpusets 1751 * with tasks have cpus. 1752 */ 1753 if (!*buf) { 1754 cpumask_clear(trialcs->cpus_allowed); 1755 } else { 1756 retval = cpulist_parse(buf, trialcs->cpus_allowed); 1757 if (retval < 0) 1758 return retval; 1759 1760 if (!cpumask_subset(trialcs->cpus_allowed, 1761 top_cpuset.cpus_allowed)) 1762 return -EINVAL; 1763 } 1764 1765 /* Nothing to do if the cpus didn't change */ 1766 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed)) 1767 return 0; 1768 1769 #ifdef CONFIG_CPUMASK_OFFSTACK 1770 /* 1771 * Use the cpumasks in trialcs for tmpmasks when they are pointers 1772 * to allocated cpumasks. 1773 */ 1774 tmp.addmask = trialcs->subparts_cpus; 1775 tmp.delmask = trialcs->effective_cpus; 1776 tmp.new_cpus = trialcs->cpus_allowed; 1777 #endif 1778 1779 retval = validate_change(cs, trialcs); 1780 1781 if ((retval == -EINVAL) && cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) { 1782 struct cpuset *cp, *parent; 1783 struct cgroup_subsys_state *css; 1784 1785 /* 1786 * The -EINVAL error code indicates that partition sibling 1787 * CPU exclusivity rule has been violated. We still allow 1788 * the cpumask change to proceed while invalidating the 1789 * partition. However, any conflicting sibling partitions 1790 * have to be marked as invalid too. 1791 */ 1792 invalidate = true; 1793 rcu_read_lock(); 1794 parent = parent_cs(cs); 1795 cpuset_for_each_child(cp, css, parent) 1796 if (is_partition_valid(cp) && 1797 cpumask_intersects(trialcs->cpus_allowed, cp->cpus_allowed)) { 1798 rcu_read_unlock(); 1799 update_parent_subparts_cpumask(cp, partcmd_invalidate, NULL, &tmp); 1800 rcu_read_lock(); 1801 } 1802 rcu_read_unlock(); 1803 retval = 0; 1804 } 1805 if (retval < 0) 1806 return retval; 1807 1808 if (cs->partition_root_state) { 1809 if (invalidate) 1810 update_parent_subparts_cpumask(cs, partcmd_invalidate, 1811 NULL, &tmp); 1812 else 1813 update_parent_subparts_cpumask(cs, partcmd_update, 1814 trialcs->cpus_allowed, &tmp); 1815 } 1816 1817 compute_effective_cpumask(trialcs->effective_cpus, trialcs, 1818 parent_cs(cs)); 1819 spin_lock_irq(&callback_lock); 1820 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed); 1821 1822 /* 1823 * Make sure that subparts_cpus, if not empty, is a subset of 1824 * cpus_allowed. Clear subparts_cpus if partition not valid or 1825 * empty effective cpus with tasks. 1826 */ 1827 if (cs->nr_subparts_cpus) { 1828 if (!is_partition_valid(cs) || 1829 (cpumask_subset(trialcs->effective_cpus, cs->subparts_cpus) && 1830 partition_is_populated(cs, NULL))) { 1831 cs->nr_subparts_cpus = 0; 1832 cpumask_clear(cs->subparts_cpus); 1833 } else { 1834 cpumask_and(cs->subparts_cpus, cs->subparts_cpus, 1835 cs->cpus_allowed); 1836 cs->nr_subparts_cpus = cpumask_weight(cs->subparts_cpus); 1837 } 1838 } 1839 spin_unlock_irq(&callback_lock); 1840 1841 /* effective_cpus will be updated here */ 1842 update_cpumasks_hier(cs, &tmp, false); 1843 1844 if (cs->partition_root_state) { 1845 struct cpuset *parent = parent_cs(cs); 1846 1847 /* 1848 * For partition root, update the cpumasks of sibling 1849 * cpusets if they use parent's effective_cpus. 1850 */ 1851 if (parent->child_ecpus_count) 1852 update_sibling_cpumasks(parent, cs, &tmp); 1853 } 1854 return 0; 1855 } 1856 1857 /* 1858 * Migrate memory region from one set of nodes to another. This is 1859 * performed asynchronously as it can be called from process migration path 1860 * holding locks involved in process management. All mm migrations are 1861 * performed in the queued order and can be waited for by flushing 1862 * cpuset_migrate_mm_wq. 1863 */ 1864 1865 struct cpuset_migrate_mm_work { 1866 struct work_struct work; 1867 struct mm_struct *mm; 1868 nodemask_t from; 1869 nodemask_t to; 1870 }; 1871 1872 static void cpuset_migrate_mm_workfn(struct work_struct *work) 1873 { 1874 struct cpuset_migrate_mm_work *mwork = 1875 container_of(work, struct cpuset_migrate_mm_work, work); 1876 1877 /* on a wq worker, no need to worry about %current's mems_allowed */ 1878 do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL); 1879 mmput(mwork->mm); 1880 kfree(mwork); 1881 } 1882 1883 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from, 1884 const nodemask_t *to) 1885 { 1886 struct cpuset_migrate_mm_work *mwork; 1887 1888 if (nodes_equal(*from, *to)) { 1889 mmput(mm); 1890 return; 1891 } 1892 1893 mwork = kzalloc(sizeof(*mwork), GFP_KERNEL); 1894 if (mwork) { 1895 mwork->mm = mm; 1896 mwork->from = *from; 1897 mwork->to = *to; 1898 INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn); 1899 queue_work(cpuset_migrate_mm_wq, &mwork->work); 1900 } else { 1901 mmput(mm); 1902 } 1903 } 1904 1905 static void cpuset_post_attach(void) 1906 { 1907 flush_workqueue(cpuset_migrate_mm_wq); 1908 } 1909 1910 /* 1911 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy 1912 * @tsk: the task to change 1913 * @newmems: new nodes that the task will be set 1914 * 1915 * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed 1916 * and rebind an eventual tasks' mempolicy. If the task is allocating in 1917 * parallel, it might temporarily see an empty intersection, which results in 1918 * a seqlock check and retry before OOM or allocation failure. 1919 */ 1920 static void cpuset_change_task_nodemask(struct task_struct *tsk, 1921 nodemask_t *newmems) 1922 { 1923 task_lock(tsk); 1924 1925 local_irq_disable(); 1926 write_seqcount_begin(&tsk->mems_allowed_seq); 1927 1928 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems); 1929 mpol_rebind_task(tsk, newmems); 1930 tsk->mems_allowed = *newmems; 1931 1932 write_seqcount_end(&tsk->mems_allowed_seq); 1933 local_irq_enable(); 1934 1935 task_unlock(tsk); 1936 } 1937 1938 static void *cpuset_being_rebound; 1939 1940 /** 1941 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset. 1942 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed 1943 * 1944 * Iterate through each task of @cs updating its mems_allowed to the 1945 * effective cpuset's. As this function is called with cpuset_rwsem held, 1946 * cpuset membership stays stable. 1947 */ 1948 static void update_tasks_nodemask(struct cpuset *cs) 1949 { 1950 static nodemask_t newmems; /* protected by cpuset_rwsem */ 1951 struct css_task_iter it; 1952 struct task_struct *task; 1953 1954 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */ 1955 1956 guarantee_online_mems(cs, &newmems); 1957 1958 /* 1959 * The mpol_rebind_mm() call takes mmap_lock, which we couldn't 1960 * take while holding tasklist_lock. Forks can happen - the 1961 * mpol_dup() cpuset_being_rebound check will catch such forks, 1962 * and rebind their vma mempolicies too. Because we still hold 1963 * the global cpuset_rwsem, we know that no other rebind effort 1964 * will be contending for the global variable cpuset_being_rebound. 1965 * It's ok if we rebind the same mm twice; mpol_rebind_mm() 1966 * is idempotent. Also migrate pages in each mm to new nodes. 1967 */ 1968 css_task_iter_start(&cs->css, 0, &it); 1969 while ((task = css_task_iter_next(&it))) { 1970 struct mm_struct *mm; 1971 bool migrate; 1972 1973 cpuset_change_task_nodemask(task, &newmems); 1974 1975 mm = get_task_mm(task); 1976 if (!mm) 1977 continue; 1978 1979 migrate = is_memory_migrate(cs); 1980 1981 mpol_rebind_mm(mm, &cs->mems_allowed); 1982 if (migrate) 1983 cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems); 1984 else 1985 mmput(mm); 1986 } 1987 css_task_iter_end(&it); 1988 1989 /* 1990 * All the tasks' nodemasks have been updated, update 1991 * cs->old_mems_allowed. 1992 */ 1993 cs->old_mems_allowed = newmems; 1994 1995 /* We're done rebinding vmas to this cpuset's new mems_allowed. */ 1996 cpuset_being_rebound = NULL; 1997 } 1998 1999 /* 2000 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree 2001 * @cs: the cpuset to consider 2002 * @new_mems: a temp variable for calculating new effective_mems 2003 * 2004 * When configured nodemask is changed, the effective nodemasks of this cpuset 2005 * and all its descendants need to be updated. 2006 * 2007 * On legacy hierarchy, effective_mems will be the same with mems_allowed. 2008 * 2009 * Called with cpuset_rwsem held 2010 */ 2011 static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems) 2012 { 2013 struct cpuset *cp; 2014 struct cgroup_subsys_state *pos_css; 2015 2016 rcu_read_lock(); 2017 cpuset_for_each_descendant_pre(cp, pos_css, cs) { 2018 struct cpuset *parent = parent_cs(cp); 2019 2020 nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems); 2021 2022 /* 2023 * If it becomes empty, inherit the effective mask of the 2024 * parent, which is guaranteed to have some MEMs. 2025 */ 2026 if (is_in_v2_mode() && nodes_empty(*new_mems)) 2027 *new_mems = parent->effective_mems; 2028 2029 /* Skip the whole subtree if the nodemask remains the same. */ 2030 if (nodes_equal(*new_mems, cp->effective_mems)) { 2031 pos_css = css_rightmost_descendant(pos_css); 2032 continue; 2033 } 2034 2035 if (!css_tryget_online(&cp->css)) 2036 continue; 2037 rcu_read_unlock(); 2038 2039 spin_lock_irq(&callback_lock); 2040 cp->effective_mems = *new_mems; 2041 spin_unlock_irq(&callback_lock); 2042 2043 WARN_ON(!is_in_v2_mode() && 2044 !nodes_equal(cp->mems_allowed, cp->effective_mems)); 2045 2046 update_tasks_nodemask(cp); 2047 2048 rcu_read_lock(); 2049 css_put(&cp->css); 2050 } 2051 rcu_read_unlock(); 2052 } 2053 2054 /* 2055 * Handle user request to change the 'mems' memory placement 2056 * of a cpuset. Needs to validate the request, update the 2057 * cpusets mems_allowed, and for each task in the cpuset, 2058 * update mems_allowed and rebind task's mempolicy and any vma 2059 * mempolicies and if the cpuset is marked 'memory_migrate', 2060 * migrate the tasks pages to the new memory. 2061 * 2062 * Call with cpuset_rwsem held. May take callback_lock during call. 2063 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs, 2064 * lock each such tasks mm->mmap_lock, scan its vma's and rebind 2065 * their mempolicies to the cpusets new mems_allowed. 2066 */ 2067 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs, 2068 const char *buf) 2069 { 2070 int retval; 2071 2072 /* 2073 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY]; 2074 * it's read-only 2075 */ 2076 if (cs == &top_cpuset) { 2077 retval = -EACCES; 2078 goto done; 2079 } 2080 2081 /* 2082 * An empty mems_allowed is ok iff there are no tasks in the cpuset. 2083 * Since nodelist_parse() fails on an empty mask, we special case 2084 * that parsing. The validate_change() call ensures that cpusets 2085 * with tasks have memory. 2086 */ 2087 if (!*buf) { 2088 nodes_clear(trialcs->mems_allowed); 2089 } else { 2090 retval = nodelist_parse(buf, trialcs->mems_allowed); 2091 if (retval < 0) 2092 goto done; 2093 2094 if (!nodes_subset(trialcs->mems_allowed, 2095 top_cpuset.mems_allowed)) { 2096 retval = -EINVAL; 2097 goto done; 2098 } 2099 } 2100 2101 if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) { 2102 retval = 0; /* Too easy - nothing to do */ 2103 goto done; 2104 } 2105 retval = validate_change(cs, trialcs); 2106 if (retval < 0) 2107 goto done; 2108 2109 check_insane_mems_config(&trialcs->mems_allowed); 2110 2111 spin_lock_irq(&callback_lock); 2112 cs->mems_allowed = trialcs->mems_allowed; 2113 spin_unlock_irq(&callback_lock); 2114 2115 /* use trialcs->mems_allowed as a temp variable */ 2116 update_nodemasks_hier(cs, &trialcs->mems_allowed); 2117 done: 2118 return retval; 2119 } 2120 2121 bool current_cpuset_is_being_rebound(void) 2122 { 2123 bool ret; 2124 2125 rcu_read_lock(); 2126 ret = task_cs(current) == cpuset_being_rebound; 2127 rcu_read_unlock(); 2128 2129 return ret; 2130 } 2131 2132 static int update_relax_domain_level(struct cpuset *cs, s64 val) 2133 { 2134 #ifdef CONFIG_SMP 2135 if (val < -1 || val >= sched_domain_level_max) 2136 return -EINVAL; 2137 #endif 2138 2139 if (val != cs->relax_domain_level) { 2140 cs->relax_domain_level = val; 2141 if (!cpumask_empty(cs->cpus_allowed) && 2142 is_sched_load_balance(cs)) 2143 rebuild_sched_domains_locked(); 2144 } 2145 2146 return 0; 2147 } 2148 2149 /** 2150 * update_tasks_flags - update the spread flags of tasks in the cpuset. 2151 * @cs: the cpuset in which each task's spread flags needs to be changed 2152 * 2153 * Iterate through each task of @cs updating its spread flags. As this 2154 * function is called with cpuset_rwsem held, cpuset membership stays 2155 * stable. 2156 */ 2157 static void update_tasks_flags(struct cpuset *cs) 2158 { 2159 struct css_task_iter it; 2160 struct task_struct *task; 2161 2162 css_task_iter_start(&cs->css, 0, &it); 2163 while ((task = css_task_iter_next(&it))) 2164 cpuset_update_task_spread_flags(cs, task); 2165 css_task_iter_end(&it); 2166 } 2167 2168 /* 2169 * update_flag - read a 0 or a 1 in a file and update associated flag 2170 * bit: the bit to update (see cpuset_flagbits_t) 2171 * cs: the cpuset to update 2172 * turning_on: whether the flag is being set or cleared 2173 * 2174 * Call with cpuset_rwsem held. 2175 */ 2176 2177 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, 2178 int turning_on) 2179 { 2180 struct cpuset *trialcs; 2181 int balance_flag_changed; 2182 int spread_flag_changed; 2183 int err; 2184 2185 trialcs = alloc_trial_cpuset(cs); 2186 if (!trialcs) 2187 return -ENOMEM; 2188 2189 if (turning_on) 2190 set_bit(bit, &trialcs->flags); 2191 else 2192 clear_bit(bit, &trialcs->flags); 2193 2194 err = validate_change(cs, trialcs); 2195 if (err < 0) 2196 goto out; 2197 2198 balance_flag_changed = (is_sched_load_balance(cs) != 2199 is_sched_load_balance(trialcs)); 2200 2201 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs)) 2202 || (is_spread_page(cs) != is_spread_page(trialcs))); 2203 2204 spin_lock_irq(&callback_lock); 2205 cs->flags = trialcs->flags; 2206 spin_unlock_irq(&callback_lock); 2207 2208 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed) 2209 rebuild_sched_domains_locked(); 2210 2211 if (spread_flag_changed) 2212 update_tasks_flags(cs); 2213 out: 2214 free_cpuset(trialcs); 2215 return err; 2216 } 2217 2218 /** 2219 * update_prstate - update partition_root_state 2220 * @cs: the cpuset to update 2221 * @new_prs: new partition root state 2222 * Return: 0 if successful, != 0 if error 2223 * 2224 * Call with cpuset_rwsem held. 2225 */ 2226 static int update_prstate(struct cpuset *cs, int new_prs) 2227 { 2228 int err = PERR_NONE, old_prs = cs->partition_root_state; 2229 bool sched_domain_rebuilt = false; 2230 struct cpuset *parent = parent_cs(cs); 2231 struct tmpmasks tmpmask; 2232 2233 if (old_prs == new_prs) 2234 return 0; 2235 2236 /* 2237 * For a previously invalid partition root, leave it at being 2238 * invalid if new_prs is not "member". 2239 */ 2240 if (new_prs && is_prs_invalid(old_prs)) { 2241 cs->partition_root_state = -new_prs; 2242 return 0; 2243 } 2244 2245 if (alloc_cpumasks(NULL, &tmpmask)) 2246 return -ENOMEM; 2247 2248 if (!old_prs) { 2249 /* 2250 * Turning on partition root requires setting the 2251 * CS_CPU_EXCLUSIVE bit implicitly as well and cpus_allowed 2252 * cannot be empty. 2253 */ 2254 if (cpumask_empty(cs->cpus_allowed)) { 2255 err = PERR_CPUSEMPTY; 2256 goto out; 2257 } 2258 2259 err = update_flag(CS_CPU_EXCLUSIVE, cs, 1); 2260 if (err) { 2261 err = PERR_NOTEXCL; 2262 goto out; 2263 } 2264 2265 err = update_parent_subparts_cpumask(cs, partcmd_enable, 2266 NULL, &tmpmask); 2267 if (err) { 2268 update_flag(CS_CPU_EXCLUSIVE, cs, 0); 2269 goto out; 2270 } 2271 2272 if (new_prs == PRS_ISOLATED) { 2273 /* 2274 * Disable the load balance flag should not return an 2275 * error unless the system is running out of memory. 2276 */ 2277 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0); 2278 sched_domain_rebuilt = true; 2279 } 2280 } else if (old_prs && new_prs) { 2281 /* 2282 * A change in load balance state only, no change in cpumasks. 2283 */ 2284 update_flag(CS_SCHED_LOAD_BALANCE, cs, (new_prs != PRS_ISOLATED)); 2285 sched_domain_rebuilt = true; 2286 goto out; /* Sched domain is rebuilt in update_flag() */ 2287 } else { 2288 /* 2289 * Switching back to member is always allowed even if it 2290 * disables child partitions. 2291 */ 2292 update_parent_subparts_cpumask(cs, partcmd_disable, NULL, 2293 &tmpmask); 2294 2295 /* 2296 * If there are child partitions, they will all become invalid. 2297 */ 2298 if (unlikely(cs->nr_subparts_cpus)) { 2299 spin_lock_irq(&callback_lock); 2300 cs->nr_subparts_cpus = 0; 2301 cpumask_clear(cs->subparts_cpus); 2302 compute_effective_cpumask(cs->effective_cpus, cs, parent); 2303 spin_unlock_irq(&callback_lock); 2304 } 2305 2306 /* Turning off CS_CPU_EXCLUSIVE will not return error */ 2307 update_flag(CS_CPU_EXCLUSIVE, cs, 0); 2308 2309 if (!is_sched_load_balance(cs)) { 2310 /* Make sure load balance is on */ 2311 update_flag(CS_SCHED_LOAD_BALANCE, cs, 1); 2312 sched_domain_rebuilt = true; 2313 } 2314 } 2315 2316 update_tasks_cpumask(parent, tmpmask.new_cpus); 2317 2318 if (parent->child_ecpus_count) 2319 update_sibling_cpumasks(parent, cs, &tmpmask); 2320 2321 if (!sched_domain_rebuilt) 2322 rebuild_sched_domains_locked(); 2323 out: 2324 /* 2325 * Make partition invalid if an error happen 2326 */ 2327 if (err) 2328 new_prs = -new_prs; 2329 spin_lock_irq(&callback_lock); 2330 cs->partition_root_state = new_prs; 2331 WRITE_ONCE(cs->prs_err, err); 2332 spin_unlock_irq(&callback_lock); 2333 /* 2334 * Update child cpusets, if present. 2335 * Force update if switching back to member. 2336 */ 2337 if (!list_empty(&cs->css.children)) 2338 update_cpumasks_hier(cs, &tmpmask, !new_prs); 2339 2340 notify_partition_change(cs, old_prs); 2341 free_cpumasks(NULL, &tmpmask); 2342 return 0; 2343 } 2344 2345 /* 2346 * Frequency meter - How fast is some event occurring? 2347 * 2348 * These routines manage a digitally filtered, constant time based, 2349 * event frequency meter. There are four routines: 2350 * fmeter_init() - initialize a frequency meter. 2351 * fmeter_markevent() - called each time the event happens. 2352 * fmeter_getrate() - returns the recent rate of such events. 2353 * fmeter_update() - internal routine used to update fmeter. 2354 * 2355 * A common data structure is passed to each of these routines, 2356 * which is used to keep track of the state required to manage the 2357 * frequency meter and its digital filter. 2358 * 2359 * The filter works on the number of events marked per unit time. 2360 * The filter is single-pole low-pass recursive (IIR). The time unit 2361 * is 1 second. Arithmetic is done using 32-bit integers scaled to 2362 * simulate 3 decimal digits of precision (multiplied by 1000). 2363 * 2364 * With an FM_COEF of 933, and a time base of 1 second, the filter 2365 * has a half-life of 10 seconds, meaning that if the events quit 2366 * happening, then the rate returned from the fmeter_getrate() 2367 * will be cut in half each 10 seconds, until it converges to zero. 2368 * 2369 * It is not worth doing a real infinitely recursive filter. If more 2370 * than FM_MAXTICKS ticks have elapsed since the last filter event, 2371 * just compute FM_MAXTICKS ticks worth, by which point the level 2372 * will be stable. 2373 * 2374 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid 2375 * arithmetic overflow in the fmeter_update() routine. 2376 * 2377 * Given the simple 32 bit integer arithmetic used, this meter works 2378 * best for reporting rates between one per millisecond (msec) and 2379 * one per 32 (approx) seconds. At constant rates faster than one 2380 * per msec it maxes out at values just under 1,000,000. At constant 2381 * rates between one per msec, and one per second it will stabilize 2382 * to a value N*1000, where N is the rate of events per second. 2383 * At constant rates between one per second and one per 32 seconds, 2384 * it will be choppy, moving up on the seconds that have an event, 2385 * and then decaying until the next event. At rates slower than 2386 * about one in 32 seconds, it decays all the way back to zero between 2387 * each event. 2388 */ 2389 2390 #define FM_COEF 933 /* coefficient for half-life of 10 secs */ 2391 #define FM_MAXTICKS ((u32)99) /* useless computing more ticks than this */ 2392 #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */ 2393 #define FM_SCALE 1000 /* faux fixed point scale */ 2394 2395 /* Initialize a frequency meter */ 2396 static void fmeter_init(struct fmeter *fmp) 2397 { 2398 fmp->cnt = 0; 2399 fmp->val = 0; 2400 fmp->time = 0; 2401 spin_lock_init(&fmp->lock); 2402 } 2403 2404 /* Internal meter update - process cnt events and update value */ 2405 static void fmeter_update(struct fmeter *fmp) 2406 { 2407 time64_t now; 2408 u32 ticks; 2409 2410 now = ktime_get_seconds(); 2411 ticks = now - fmp->time; 2412 2413 if (ticks == 0) 2414 return; 2415 2416 ticks = min(FM_MAXTICKS, ticks); 2417 while (ticks-- > 0) 2418 fmp->val = (FM_COEF * fmp->val) / FM_SCALE; 2419 fmp->time = now; 2420 2421 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE; 2422 fmp->cnt = 0; 2423 } 2424 2425 /* Process any previous ticks, then bump cnt by one (times scale). */ 2426 static void fmeter_markevent(struct fmeter *fmp) 2427 { 2428 spin_lock(&fmp->lock); 2429 fmeter_update(fmp); 2430 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE); 2431 spin_unlock(&fmp->lock); 2432 } 2433 2434 /* Process any previous ticks, then return current value. */ 2435 static int fmeter_getrate(struct fmeter *fmp) 2436 { 2437 int val; 2438 2439 spin_lock(&fmp->lock); 2440 fmeter_update(fmp); 2441 val = fmp->val; 2442 spin_unlock(&fmp->lock); 2443 return val; 2444 } 2445 2446 static struct cpuset *cpuset_attach_old_cs; 2447 2448 /* Called by cgroups to determine if a cpuset is usable; cpuset_rwsem held */ 2449 static int cpuset_can_attach(struct cgroup_taskset *tset) 2450 { 2451 struct cgroup_subsys_state *css; 2452 struct cpuset *cs; 2453 struct task_struct *task; 2454 int ret; 2455 2456 /* used later by cpuset_attach() */ 2457 cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css)); 2458 cs = css_cs(css); 2459 2460 percpu_down_write(&cpuset_rwsem); 2461 2462 /* allow moving tasks into an empty cpuset if on default hierarchy */ 2463 ret = -ENOSPC; 2464 if (!is_in_v2_mode() && 2465 (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))) 2466 goto out_unlock; 2467 2468 /* 2469 * Task cannot be moved to a cpuset with empty effective cpus. 2470 */ 2471 if (cpumask_empty(cs->effective_cpus)) 2472 goto out_unlock; 2473 2474 cgroup_taskset_for_each(task, css, tset) { 2475 ret = task_can_attach(task, cs->effective_cpus); 2476 if (ret) 2477 goto out_unlock; 2478 ret = security_task_setscheduler(task); 2479 if (ret) 2480 goto out_unlock; 2481 } 2482 2483 /* 2484 * Mark attach is in progress. This makes validate_change() fail 2485 * changes which zero cpus/mems_allowed. 2486 */ 2487 cs->attach_in_progress++; 2488 ret = 0; 2489 out_unlock: 2490 percpu_up_write(&cpuset_rwsem); 2491 return ret; 2492 } 2493 2494 static void cpuset_cancel_attach(struct cgroup_taskset *tset) 2495 { 2496 struct cgroup_subsys_state *css; 2497 2498 cgroup_taskset_first(tset, &css); 2499 2500 percpu_down_write(&cpuset_rwsem); 2501 css_cs(css)->attach_in_progress--; 2502 percpu_up_write(&cpuset_rwsem); 2503 } 2504 2505 /* 2506 * Protected by cpuset_rwsem. cpus_attach is used only by cpuset_attach() 2507 * but we can't allocate it dynamically there. Define it global and 2508 * allocate from cpuset_init(). 2509 */ 2510 static cpumask_var_t cpus_attach; 2511 2512 static void cpuset_attach(struct cgroup_taskset *tset) 2513 { 2514 /* static buf protected by cpuset_rwsem */ 2515 static nodemask_t cpuset_attach_nodemask_to; 2516 struct task_struct *task; 2517 struct task_struct *leader; 2518 struct cgroup_subsys_state *css; 2519 struct cpuset *cs; 2520 struct cpuset *oldcs = cpuset_attach_old_cs; 2521 bool cpus_updated, mems_updated; 2522 2523 cgroup_taskset_first(tset, &css); 2524 cs = css_cs(css); 2525 2526 lockdep_assert_cpus_held(); /* see cgroup_attach_lock() */ 2527 percpu_down_write(&cpuset_rwsem); 2528 cpus_updated = !cpumask_equal(cs->effective_cpus, 2529 oldcs->effective_cpus); 2530 mems_updated = !nodes_equal(cs->effective_mems, oldcs->effective_mems); 2531 2532 /* 2533 * In the default hierarchy, enabling cpuset in the child cgroups 2534 * will trigger a number of cpuset_attach() calls with no change 2535 * in effective cpus and mems. In that case, we can optimize out 2536 * by skipping the task iteration and update. 2537 */ 2538 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) && 2539 !cpus_updated && !mems_updated) { 2540 cpuset_attach_nodemask_to = cs->effective_mems; 2541 goto out; 2542 } 2543 2544 guarantee_online_mems(cs, &cpuset_attach_nodemask_to); 2545 2546 cgroup_taskset_for_each(task, css, tset) { 2547 if (cs != &top_cpuset) 2548 guarantee_online_cpus(task, cpus_attach); 2549 else 2550 cpumask_copy(cpus_attach, task_cpu_possible_mask(task)); 2551 /* 2552 * can_attach beforehand should guarantee that this doesn't 2553 * fail. TODO: have a better way to handle failure here 2554 */ 2555 WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach)); 2556 2557 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to); 2558 cpuset_update_task_spread_flags(cs, task); 2559 } 2560 2561 /* 2562 * Change mm for all threadgroup leaders. This is expensive and may 2563 * sleep and should be moved outside migration path proper. Skip it 2564 * if there is no change in effective_mems and CS_MEMORY_MIGRATE is 2565 * not set. 2566 */ 2567 cpuset_attach_nodemask_to = cs->effective_mems; 2568 if (!is_memory_migrate(cs) && !mems_updated) 2569 goto out; 2570 2571 cgroup_taskset_for_each_leader(leader, css, tset) { 2572 struct mm_struct *mm = get_task_mm(leader); 2573 2574 if (mm) { 2575 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to); 2576 2577 /* 2578 * old_mems_allowed is the same with mems_allowed 2579 * here, except if this task is being moved 2580 * automatically due to hotplug. In that case 2581 * @mems_allowed has been updated and is empty, so 2582 * @old_mems_allowed is the right nodesets that we 2583 * migrate mm from. 2584 */ 2585 if (is_memory_migrate(cs)) 2586 cpuset_migrate_mm(mm, &oldcs->old_mems_allowed, 2587 &cpuset_attach_nodemask_to); 2588 else 2589 mmput(mm); 2590 } 2591 } 2592 2593 out: 2594 cs->old_mems_allowed = cpuset_attach_nodemask_to; 2595 2596 cs->attach_in_progress--; 2597 if (!cs->attach_in_progress) 2598 wake_up(&cpuset_attach_wq); 2599 2600 percpu_up_write(&cpuset_rwsem); 2601 } 2602 2603 /* The various types of files and directories in a cpuset file system */ 2604 2605 typedef enum { 2606 FILE_MEMORY_MIGRATE, 2607 FILE_CPULIST, 2608 FILE_MEMLIST, 2609 FILE_EFFECTIVE_CPULIST, 2610 FILE_EFFECTIVE_MEMLIST, 2611 FILE_SUBPARTS_CPULIST, 2612 FILE_CPU_EXCLUSIVE, 2613 FILE_MEM_EXCLUSIVE, 2614 FILE_MEM_HARDWALL, 2615 FILE_SCHED_LOAD_BALANCE, 2616 FILE_PARTITION_ROOT, 2617 FILE_SCHED_RELAX_DOMAIN_LEVEL, 2618 FILE_MEMORY_PRESSURE_ENABLED, 2619 FILE_MEMORY_PRESSURE, 2620 FILE_SPREAD_PAGE, 2621 FILE_SPREAD_SLAB, 2622 } cpuset_filetype_t; 2623 2624 static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft, 2625 u64 val) 2626 { 2627 struct cpuset *cs = css_cs(css); 2628 cpuset_filetype_t type = cft->private; 2629 int retval = 0; 2630 2631 cpus_read_lock(); 2632 percpu_down_write(&cpuset_rwsem); 2633 if (!is_cpuset_online(cs)) { 2634 retval = -ENODEV; 2635 goto out_unlock; 2636 } 2637 2638 switch (type) { 2639 case FILE_CPU_EXCLUSIVE: 2640 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val); 2641 break; 2642 case FILE_MEM_EXCLUSIVE: 2643 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val); 2644 break; 2645 case FILE_MEM_HARDWALL: 2646 retval = update_flag(CS_MEM_HARDWALL, cs, val); 2647 break; 2648 case FILE_SCHED_LOAD_BALANCE: 2649 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val); 2650 break; 2651 case FILE_MEMORY_MIGRATE: 2652 retval = update_flag(CS_MEMORY_MIGRATE, cs, val); 2653 break; 2654 case FILE_MEMORY_PRESSURE_ENABLED: 2655 cpuset_memory_pressure_enabled = !!val; 2656 break; 2657 case FILE_SPREAD_PAGE: 2658 retval = update_flag(CS_SPREAD_PAGE, cs, val); 2659 break; 2660 case FILE_SPREAD_SLAB: 2661 retval = update_flag(CS_SPREAD_SLAB, cs, val); 2662 break; 2663 default: 2664 retval = -EINVAL; 2665 break; 2666 } 2667 out_unlock: 2668 percpu_up_write(&cpuset_rwsem); 2669 cpus_read_unlock(); 2670 return retval; 2671 } 2672 2673 static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft, 2674 s64 val) 2675 { 2676 struct cpuset *cs = css_cs(css); 2677 cpuset_filetype_t type = cft->private; 2678 int retval = -ENODEV; 2679 2680 cpus_read_lock(); 2681 percpu_down_write(&cpuset_rwsem); 2682 if (!is_cpuset_online(cs)) 2683 goto out_unlock; 2684 2685 switch (type) { 2686 case FILE_SCHED_RELAX_DOMAIN_LEVEL: 2687 retval = update_relax_domain_level(cs, val); 2688 break; 2689 default: 2690 retval = -EINVAL; 2691 break; 2692 } 2693 out_unlock: 2694 percpu_up_write(&cpuset_rwsem); 2695 cpus_read_unlock(); 2696 return retval; 2697 } 2698 2699 /* 2700 * Common handling for a write to a "cpus" or "mems" file. 2701 */ 2702 static ssize_t cpuset_write_resmask(struct kernfs_open_file *of, 2703 char *buf, size_t nbytes, loff_t off) 2704 { 2705 struct cpuset *cs = css_cs(of_css(of)); 2706 struct cpuset *trialcs; 2707 int retval = -ENODEV; 2708 2709 buf = strstrip(buf); 2710 2711 /* 2712 * CPU or memory hotunplug may leave @cs w/o any execution 2713 * resources, in which case the hotplug code asynchronously updates 2714 * configuration and transfers all tasks to the nearest ancestor 2715 * which can execute. 2716 * 2717 * As writes to "cpus" or "mems" may restore @cs's execution 2718 * resources, wait for the previously scheduled operations before 2719 * proceeding, so that we don't end up keep removing tasks added 2720 * after execution capability is restored. 2721 * 2722 * cpuset_hotplug_work calls back into cgroup core via 2723 * cgroup_transfer_tasks() and waiting for it from a cgroupfs 2724 * operation like this one can lead to a deadlock through kernfs 2725 * active_ref protection. Let's break the protection. Losing the 2726 * protection is okay as we check whether @cs is online after 2727 * grabbing cpuset_rwsem anyway. This only happens on the legacy 2728 * hierarchies. 2729 */ 2730 css_get(&cs->css); 2731 kernfs_break_active_protection(of->kn); 2732 flush_work(&cpuset_hotplug_work); 2733 2734 cpus_read_lock(); 2735 percpu_down_write(&cpuset_rwsem); 2736 if (!is_cpuset_online(cs)) 2737 goto out_unlock; 2738 2739 trialcs = alloc_trial_cpuset(cs); 2740 if (!trialcs) { 2741 retval = -ENOMEM; 2742 goto out_unlock; 2743 } 2744 2745 switch (of_cft(of)->private) { 2746 case FILE_CPULIST: 2747 retval = update_cpumask(cs, trialcs, buf); 2748 break; 2749 case FILE_MEMLIST: 2750 retval = update_nodemask(cs, trialcs, buf); 2751 break; 2752 default: 2753 retval = -EINVAL; 2754 break; 2755 } 2756 2757 free_cpuset(trialcs); 2758 out_unlock: 2759 percpu_up_write(&cpuset_rwsem); 2760 cpus_read_unlock(); 2761 kernfs_unbreak_active_protection(of->kn); 2762 css_put(&cs->css); 2763 flush_workqueue(cpuset_migrate_mm_wq); 2764 return retval ?: nbytes; 2765 } 2766 2767 /* 2768 * These ascii lists should be read in a single call, by using a user 2769 * buffer large enough to hold the entire map. If read in smaller 2770 * chunks, there is no guarantee of atomicity. Since the display format 2771 * used, list of ranges of sequential numbers, is variable length, 2772 * and since these maps can change value dynamically, one could read 2773 * gibberish by doing partial reads while a list was changing. 2774 */ 2775 static int cpuset_common_seq_show(struct seq_file *sf, void *v) 2776 { 2777 struct cpuset *cs = css_cs(seq_css(sf)); 2778 cpuset_filetype_t type = seq_cft(sf)->private; 2779 int ret = 0; 2780 2781 spin_lock_irq(&callback_lock); 2782 2783 switch (type) { 2784 case FILE_CPULIST: 2785 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed)); 2786 break; 2787 case FILE_MEMLIST: 2788 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed)); 2789 break; 2790 case FILE_EFFECTIVE_CPULIST: 2791 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus)); 2792 break; 2793 case FILE_EFFECTIVE_MEMLIST: 2794 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems)); 2795 break; 2796 case FILE_SUBPARTS_CPULIST: 2797 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->subparts_cpus)); 2798 break; 2799 default: 2800 ret = -EINVAL; 2801 } 2802 2803 spin_unlock_irq(&callback_lock); 2804 return ret; 2805 } 2806 2807 static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft) 2808 { 2809 struct cpuset *cs = css_cs(css); 2810 cpuset_filetype_t type = cft->private; 2811 switch (type) { 2812 case FILE_CPU_EXCLUSIVE: 2813 return is_cpu_exclusive(cs); 2814 case FILE_MEM_EXCLUSIVE: 2815 return is_mem_exclusive(cs); 2816 case FILE_MEM_HARDWALL: 2817 return is_mem_hardwall(cs); 2818 case FILE_SCHED_LOAD_BALANCE: 2819 return is_sched_load_balance(cs); 2820 case FILE_MEMORY_MIGRATE: 2821 return is_memory_migrate(cs); 2822 case FILE_MEMORY_PRESSURE_ENABLED: 2823 return cpuset_memory_pressure_enabled; 2824 case FILE_MEMORY_PRESSURE: 2825 return fmeter_getrate(&cs->fmeter); 2826 case FILE_SPREAD_PAGE: 2827 return is_spread_page(cs); 2828 case FILE_SPREAD_SLAB: 2829 return is_spread_slab(cs); 2830 default: 2831 BUG(); 2832 } 2833 2834 /* Unreachable but makes gcc happy */ 2835 return 0; 2836 } 2837 2838 static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft) 2839 { 2840 struct cpuset *cs = css_cs(css); 2841 cpuset_filetype_t type = cft->private; 2842 switch (type) { 2843 case FILE_SCHED_RELAX_DOMAIN_LEVEL: 2844 return cs->relax_domain_level; 2845 default: 2846 BUG(); 2847 } 2848 2849 /* Unreachable but makes gcc happy */ 2850 return 0; 2851 } 2852 2853 static int sched_partition_show(struct seq_file *seq, void *v) 2854 { 2855 struct cpuset *cs = css_cs(seq_css(seq)); 2856 const char *err, *type = NULL; 2857 2858 switch (cs->partition_root_state) { 2859 case PRS_ROOT: 2860 seq_puts(seq, "root\n"); 2861 break; 2862 case PRS_ISOLATED: 2863 seq_puts(seq, "isolated\n"); 2864 break; 2865 case PRS_MEMBER: 2866 seq_puts(seq, "member\n"); 2867 break; 2868 case PRS_INVALID_ROOT: 2869 type = "root"; 2870 fallthrough; 2871 case PRS_INVALID_ISOLATED: 2872 if (!type) 2873 type = "isolated"; 2874 err = perr_strings[READ_ONCE(cs->prs_err)]; 2875 if (err) 2876 seq_printf(seq, "%s invalid (%s)\n", type, err); 2877 else 2878 seq_printf(seq, "%s invalid\n", type); 2879 break; 2880 } 2881 return 0; 2882 } 2883 2884 static ssize_t sched_partition_write(struct kernfs_open_file *of, char *buf, 2885 size_t nbytes, loff_t off) 2886 { 2887 struct cpuset *cs = css_cs(of_css(of)); 2888 int val; 2889 int retval = -ENODEV; 2890 2891 buf = strstrip(buf); 2892 2893 /* 2894 * Convert "root" to ENABLED, and convert "member" to DISABLED. 2895 */ 2896 if (!strcmp(buf, "root")) 2897 val = PRS_ROOT; 2898 else if (!strcmp(buf, "member")) 2899 val = PRS_MEMBER; 2900 else if (!strcmp(buf, "isolated")) 2901 val = PRS_ISOLATED; 2902 else 2903 return -EINVAL; 2904 2905 css_get(&cs->css); 2906 cpus_read_lock(); 2907 percpu_down_write(&cpuset_rwsem); 2908 if (!is_cpuset_online(cs)) 2909 goto out_unlock; 2910 2911 retval = update_prstate(cs, val); 2912 out_unlock: 2913 percpu_up_write(&cpuset_rwsem); 2914 cpus_read_unlock(); 2915 css_put(&cs->css); 2916 return retval ?: nbytes; 2917 } 2918 2919 /* 2920 * for the common functions, 'private' gives the type of file 2921 */ 2922 2923 static struct cftype legacy_files[] = { 2924 { 2925 .name = "cpus", 2926 .seq_show = cpuset_common_seq_show, 2927 .write = cpuset_write_resmask, 2928 .max_write_len = (100U + 6 * NR_CPUS), 2929 .private = FILE_CPULIST, 2930 }, 2931 2932 { 2933 .name = "mems", 2934 .seq_show = cpuset_common_seq_show, 2935 .write = cpuset_write_resmask, 2936 .max_write_len = (100U + 6 * MAX_NUMNODES), 2937 .private = FILE_MEMLIST, 2938 }, 2939 2940 { 2941 .name = "effective_cpus", 2942 .seq_show = cpuset_common_seq_show, 2943 .private = FILE_EFFECTIVE_CPULIST, 2944 }, 2945 2946 { 2947 .name = "effective_mems", 2948 .seq_show = cpuset_common_seq_show, 2949 .private = FILE_EFFECTIVE_MEMLIST, 2950 }, 2951 2952 { 2953 .name = "cpu_exclusive", 2954 .read_u64 = cpuset_read_u64, 2955 .write_u64 = cpuset_write_u64, 2956 .private = FILE_CPU_EXCLUSIVE, 2957 }, 2958 2959 { 2960 .name = "mem_exclusive", 2961 .read_u64 = cpuset_read_u64, 2962 .write_u64 = cpuset_write_u64, 2963 .private = FILE_MEM_EXCLUSIVE, 2964 }, 2965 2966 { 2967 .name = "mem_hardwall", 2968 .read_u64 = cpuset_read_u64, 2969 .write_u64 = cpuset_write_u64, 2970 .private = FILE_MEM_HARDWALL, 2971 }, 2972 2973 { 2974 .name = "sched_load_balance", 2975 .read_u64 = cpuset_read_u64, 2976 .write_u64 = cpuset_write_u64, 2977 .private = FILE_SCHED_LOAD_BALANCE, 2978 }, 2979 2980 { 2981 .name = "sched_relax_domain_level", 2982 .read_s64 = cpuset_read_s64, 2983 .write_s64 = cpuset_write_s64, 2984 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL, 2985 }, 2986 2987 { 2988 .name = "memory_migrate", 2989 .read_u64 = cpuset_read_u64, 2990 .write_u64 = cpuset_write_u64, 2991 .private = FILE_MEMORY_MIGRATE, 2992 }, 2993 2994 { 2995 .name = "memory_pressure", 2996 .read_u64 = cpuset_read_u64, 2997 .private = FILE_MEMORY_PRESSURE, 2998 }, 2999 3000 { 3001 .name = "memory_spread_page", 3002 .read_u64 = cpuset_read_u64, 3003 .write_u64 = cpuset_write_u64, 3004 .private = FILE_SPREAD_PAGE, 3005 }, 3006 3007 { 3008 .name = "memory_spread_slab", 3009 .read_u64 = cpuset_read_u64, 3010 .write_u64 = cpuset_write_u64, 3011 .private = FILE_SPREAD_SLAB, 3012 }, 3013 3014 { 3015 .name = "memory_pressure_enabled", 3016 .flags = CFTYPE_ONLY_ON_ROOT, 3017 .read_u64 = cpuset_read_u64, 3018 .write_u64 = cpuset_write_u64, 3019 .private = FILE_MEMORY_PRESSURE_ENABLED, 3020 }, 3021 3022 { } /* terminate */ 3023 }; 3024 3025 /* 3026 * This is currently a minimal set for the default hierarchy. It can be 3027 * expanded later on by migrating more features and control files from v1. 3028 */ 3029 static struct cftype dfl_files[] = { 3030 { 3031 .name = "cpus", 3032 .seq_show = cpuset_common_seq_show, 3033 .write = cpuset_write_resmask, 3034 .max_write_len = (100U + 6 * NR_CPUS), 3035 .private = FILE_CPULIST, 3036 .flags = CFTYPE_NOT_ON_ROOT, 3037 }, 3038 3039 { 3040 .name = "mems", 3041 .seq_show = cpuset_common_seq_show, 3042 .write = cpuset_write_resmask, 3043 .max_write_len = (100U + 6 * MAX_NUMNODES), 3044 .private = FILE_MEMLIST, 3045 .flags = CFTYPE_NOT_ON_ROOT, 3046 }, 3047 3048 { 3049 .name = "cpus.effective", 3050 .seq_show = cpuset_common_seq_show, 3051 .private = FILE_EFFECTIVE_CPULIST, 3052 }, 3053 3054 { 3055 .name = "mems.effective", 3056 .seq_show = cpuset_common_seq_show, 3057 .private = FILE_EFFECTIVE_MEMLIST, 3058 }, 3059 3060 { 3061 .name = "cpus.partition", 3062 .seq_show = sched_partition_show, 3063 .write = sched_partition_write, 3064 .private = FILE_PARTITION_ROOT, 3065 .flags = CFTYPE_NOT_ON_ROOT, 3066 .file_offset = offsetof(struct cpuset, partition_file), 3067 }, 3068 3069 { 3070 .name = "cpus.subpartitions", 3071 .seq_show = cpuset_common_seq_show, 3072 .private = FILE_SUBPARTS_CPULIST, 3073 .flags = CFTYPE_DEBUG, 3074 }, 3075 3076 { } /* terminate */ 3077 }; 3078 3079 3080 /** 3081 * cpuset_css_alloc - Allocate a cpuset css 3082 * @parent_css: Parent css of the control group that the new cpuset will be 3083 * part of 3084 * Return: cpuset css on success, -ENOMEM on failure. 3085 * 3086 * Allocate and initialize a new cpuset css, for non-NULL @parent_css, return 3087 * top cpuset css otherwise. 3088 */ 3089 static struct cgroup_subsys_state * 3090 cpuset_css_alloc(struct cgroup_subsys_state *parent_css) 3091 { 3092 struct cpuset *cs; 3093 3094 if (!parent_css) 3095 return &top_cpuset.css; 3096 3097 cs = kzalloc(sizeof(*cs), GFP_KERNEL); 3098 if (!cs) 3099 return ERR_PTR(-ENOMEM); 3100 3101 if (alloc_cpumasks(cs, NULL)) { 3102 kfree(cs); 3103 return ERR_PTR(-ENOMEM); 3104 } 3105 3106 __set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); 3107 nodes_clear(cs->mems_allowed); 3108 nodes_clear(cs->effective_mems); 3109 fmeter_init(&cs->fmeter); 3110 cs->relax_domain_level = -1; 3111 3112 /* Set CS_MEMORY_MIGRATE for default hierarchy */ 3113 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) 3114 __set_bit(CS_MEMORY_MIGRATE, &cs->flags); 3115 3116 return &cs->css; 3117 } 3118 3119 static int cpuset_css_online(struct cgroup_subsys_state *css) 3120 { 3121 struct cpuset *cs = css_cs(css); 3122 struct cpuset *parent = parent_cs(cs); 3123 struct cpuset *tmp_cs; 3124 struct cgroup_subsys_state *pos_css; 3125 3126 if (!parent) 3127 return 0; 3128 3129 cpus_read_lock(); 3130 percpu_down_write(&cpuset_rwsem); 3131 3132 set_bit(CS_ONLINE, &cs->flags); 3133 if (is_spread_page(parent)) 3134 set_bit(CS_SPREAD_PAGE, &cs->flags); 3135 if (is_spread_slab(parent)) 3136 set_bit(CS_SPREAD_SLAB, &cs->flags); 3137 3138 cpuset_inc(); 3139 3140 spin_lock_irq(&callback_lock); 3141 if (is_in_v2_mode()) { 3142 cpumask_copy(cs->effective_cpus, parent->effective_cpus); 3143 cs->effective_mems = parent->effective_mems; 3144 cs->use_parent_ecpus = true; 3145 parent->child_ecpus_count++; 3146 } 3147 spin_unlock_irq(&callback_lock); 3148 3149 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags)) 3150 goto out_unlock; 3151 3152 /* 3153 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is 3154 * set. This flag handling is implemented in cgroup core for 3155 * historical reasons - the flag may be specified during mount. 3156 * 3157 * Currently, if any sibling cpusets have exclusive cpus or mem, we 3158 * refuse to clone the configuration - thereby refusing the task to 3159 * be entered, and as a result refusing the sys_unshare() or 3160 * clone() which initiated it. If this becomes a problem for some 3161 * users who wish to allow that scenario, then this could be 3162 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive 3163 * (and likewise for mems) to the new cgroup. 3164 */ 3165 rcu_read_lock(); 3166 cpuset_for_each_child(tmp_cs, pos_css, parent) { 3167 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) { 3168 rcu_read_unlock(); 3169 goto out_unlock; 3170 } 3171 } 3172 rcu_read_unlock(); 3173 3174 spin_lock_irq(&callback_lock); 3175 cs->mems_allowed = parent->mems_allowed; 3176 cs->effective_mems = parent->mems_allowed; 3177 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed); 3178 cpumask_copy(cs->effective_cpus, parent->cpus_allowed); 3179 spin_unlock_irq(&callback_lock); 3180 out_unlock: 3181 percpu_up_write(&cpuset_rwsem); 3182 cpus_read_unlock(); 3183 return 0; 3184 } 3185 3186 /* 3187 * If the cpuset being removed has its flag 'sched_load_balance' 3188 * enabled, then simulate turning sched_load_balance off, which 3189 * will call rebuild_sched_domains_locked(). That is not needed 3190 * in the default hierarchy where only changes in partition 3191 * will cause repartitioning. 3192 * 3193 * If the cpuset has the 'sched.partition' flag enabled, simulate 3194 * turning 'sched.partition" off. 3195 */ 3196 3197 static void cpuset_css_offline(struct cgroup_subsys_state *css) 3198 { 3199 struct cpuset *cs = css_cs(css); 3200 3201 cpus_read_lock(); 3202 percpu_down_write(&cpuset_rwsem); 3203 3204 if (is_partition_valid(cs)) 3205 update_prstate(cs, 0); 3206 3207 if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) && 3208 is_sched_load_balance(cs)) 3209 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0); 3210 3211 if (cs->use_parent_ecpus) { 3212 struct cpuset *parent = parent_cs(cs); 3213 3214 cs->use_parent_ecpus = false; 3215 parent->child_ecpus_count--; 3216 } 3217 3218 cpuset_dec(); 3219 clear_bit(CS_ONLINE, &cs->flags); 3220 3221 percpu_up_write(&cpuset_rwsem); 3222 cpus_read_unlock(); 3223 } 3224 3225 static void cpuset_css_free(struct cgroup_subsys_state *css) 3226 { 3227 struct cpuset *cs = css_cs(css); 3228 3229 free_cpuset(cs); 3230 } 3231 3232 static void cpuset_bind(struct cgroup_subsys_state *root_css) 3233 { 3234 percpu_down_write(&cpuset_rwsem); 3235 spin_lock_irq(&callback_lock); 3236 3237 if (is_in_v2_mode()) { 3238 cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask); 3239 top_cpuset.mems_allowed = node_possible_map; 3240 } else { 3241 cpumask_copy(top_cpuset.cpus_allowed, 3242 top_cpuset.effective_cpus); 3243 top_cpuset.mems_allowed = top_cpuset.effective_mems; 3244 } 3245 3246 spin_unlock_irq(&callback_lock); 3247 percpu_up_write(&cpuset_rwsem); 3248 } 3249 3250 /* 3251 * Make sure the new task conform to the current state of its parent, 3252 * which could have been changed by cpuset just after it inherits the 3253 * state from the parent and before it sits on the cgroup's task list. 3254 */ 3255 static void cpuset_fork(struct task_struct *task) 3256 { 3257 if (task_css_is_root(task, cpuset_cgrp_id)) 3258 return; 3259 3260 set_cpus_allowed_ptr(task, current->cpus_ptr); 3261 task->mems_allowed = current->mems_allowed; 3262 } 3263 3264 struct cgroup_subsys cpuset_cgrp_subsys = { 3265 .css_alloc = cpuset_css_alloc, 3266 .css_online = cpuset_css_online, 3267 .css_offline = cpuset_css_offline, 3268 .css_free = cpuset_css_free, 3269 .can_attach = cpuset_can_attach, 3270 .cancel_attach = cpuset_cancel_attach, 3271 .attach = cpuset_attach, 3272 .post_attach = cpuset_post_attach, 3273 .bind = cpuset_bind, 3274 .fork = cpuset_fork, 3275 .legacy_cftypes = legacy_files, 3276 .dfl_cftypes = dfl_files, 3277 .early_init = true, 3278 .threaded = true, 3279 }; 3280 3281 /** 3282 * cpuset_init - initialize cpusets at system boot 3283 * 3284 * Description: Initialize top_cpuset 3285 **/ 3286 3287 int __init cpuset_init(void) 3288 { 3289 BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL)); 3290 BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL)); 3291 BUG_ON(!zalloc_cpumask_var(&top_cpuset.subparts_cpus, GFP_KERNEL)); 3292 3293 cpumask_setall(top_cpuset.cpus_allowed); 3294 nodes_setall(top_cpuset.mems_allowed); 3295 cpumask_setall(top_cpuset.effective_cpus); 3296 nodes_setall(top_cpuset.effective_mems); 3297 3298 fmeter_init(&top_cpuset.fmeter); 3299 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags); 3300 top_cpuset.relax_domain_level = -1; 3301 3302 BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL)); 3303 3304 return 0; 3305 } 3306 3307 /* 3308 * If CPU and/or memory hotplug handlers, below, unplug any CPUs 3309 * or memory nodes, we need to walk over the cpuset hierarchy, 3310 * removing that CPU or node from all cpusets. If this removes the 3311 * last CPU or node from a cpuset, then move the tasks in the empty 3312 * cpuset to its next-highest non-empty parent. 3313 */ 3314 static void remove_tasks_in_empty_cpuset(struct cpuset *cs) 3315 { 3316 struct cpuset *parent; 3317 3318 /* 3319 * Find its next-highest non-empty parent, (top cpuset 3320 * has online cpus, so can't be empty). 3321 */ 3322 parent = parent_cs(cs); 3323 while (cpumask_empty(parent->cpus_allowed) || 3324 nodes_empty(parent->mems_allowed)) 3325 parent = parent_cs(parent); 3326 3327 if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) { 3328 pr_err("cpuset: failed to transfer tasks out of empty cpuset "); 3329 pr_cont_cgroup_name(cs->css.cgroup); 3330 pr_cont("\n"); 3331 } 3332 } 3333 3334 static void 3335 hotplug_update_tasks_legacy(struct cpuset *cs, 3336 struct cpumask *new_cpus, nodemask_t *new_mems, 3337 bool cpus_updated, bool mems_updated) 3338 { 3339 bool is_empty; 3340 3341 spin_lock_irq(&callback_lock); 3342 cpumask_copy(cs->cpus_allowed, new_cpus); 3343 cpumask_copy(cs->effective_cpus, new_cpus); 3344 cs->mems_allowed = *new_mems; 3345 cs->effective_mems = *new_mems; 3346 spin_unlock_irq(&callback_lock); 3347 3348 /* 3349 * Don't call update_tasks_cpumask() if the cpuset becomes empty, 3350 * as the tasks will be migrated to an ancestor. 3351 */ 3352 if (cpus_updated && !cpumask_empty(cs->cpus_allowed)) 3353 update_tasks_cpumask(cs, new_cpus); 3354 if (mems_updated && !nodes_empty(cs->mems_allowed)) 3355 update_tasks_nodemask(cs); 3356 3357 is_empty = cpumask_empty(cs->cpus_allowed) || 3358 nodes_empty(cs->mems_allowed); 3359 3360 percpu_up_write(&cpuset_rwsem); 3361 3362 /* 3363 * Move tasks to the nearest ancestor with execution resources, 3364 * This is full cgroup operation which will also call back into 3365 * cpuset. Should be done outside any lock. 3366 */ 3367 if (is_empty) 3368 remove_tasks_in_empty_cpuset(cs); 3369 3370 percpu_down_write(&cpuset_rwsem); 3371 } 3372 3373 static void 3374 hotplug_update_tasks(struct cpuset *cs, 3375 struct cpumask *new_cpus, nodemask_t *new_mems, 3376 bool cpus_updated, bool mems_updated) 3377 { 3378 /* A partition root is allowed to have empty effective cpus */ 3379 if (cpumask_empty(new_cpus) && !is_partition_valid(cs)) 3380 cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus); 3381 if (nodes_empty(*new_mems)) 3382 *new_mems = parent_cs(cs)->effective_mems; 3383 3384 spin_lock_irq(&callback_lock); 3385 cpumask_copy(cs->effective_cpus, new_cpus); 3386 cs->effective_mems = *new_mems; 3387 spin_unlock_irq(&callback_lock); 3388 3389 if (cpus_updated) 3390 update_tasks_cpumask(cs, new_cpus); 3391 if (mems_updated) 3392 update_tasks_nodemask(cs); 3393 } 3394 3395 static bool force_rebuild; 3396 3397 void cpuset_force_rebuild(void) 3398 { 3399 force_rebuild = true; 3400 } 3401 3402 /** 3403 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug 3404 * @cs: cpuset in interest 3405 * @tmp: the tmpmasks structure pointer 3406 * 3407 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone 3408 * offline, update @cs accordingly. If @cs ends up with no CPU or memory, 3409 * all its tasks are moved to the nearest ancestor with both resources. 3410 */ 3411 static void cpuset_hotplug_update_tasks(struct cpuset *cs, struct tmpmasks *tmp) 3412 { 3413 static cpumask_t new_cpus; 3414 static nodemask_t new_mems; 3415 bool cpus_updated; 3416 bool mems_updated; 3417 struct cpuset *parent; 3418 retry: 3419 wait_event(cpuset_attach_wq, cs->attach_in_progress == 0); 3420 3421 percpu_down_write(&cpuset_rwsem); 3422 3423 /* 3424 * We have raced with task attaching. We wait until attaching 3425 * is finished, so we won't attach a task to an empty cpuset. 3426 */ 3427 if (cs->attach_in_progress) { 3428 percpu_up_write(&cpuset_rwsem); 3429 goto retry; 3430 } 3431 3432 parent = parent_cs(cs); 3433 compute_effective_cpumask(&new_cpus, cs, parent); 3434 nodes_and(new_mems, cs->mems_allowed, parent->effective_mems); 3435 3436 if (cs->nr_subparts_cpus) 3437 /* 3438 * Make sure that CPUs allocated to child partitions 3439 * do not show up in effective_cpus. 3440 */ 3441 cpumask_andnot(&new_cpus, &new_cpus, cs->subparts_cpus); 3442 3443 if (!tmp || !cs->partition_root_state) 3444 goto update_tasks; 3445 3446 /* 3447 * In the unlikely event that a partition root has empty 3448 * effective_cpus with tasks, we will have to invalidate child 3449 * partitions, if present, by setting nr_subparts_cpus to 0 to 3450 * reclaim their cpus. 3451 */ 3452 if (cs->nr_subparts_cpus && is_partition_valid(cs) && 3453 cpumask_empty(&new_cpus) && partition_is_populated(cs, NULL)) { 3454 spin_lock_irq(&callback_lock); 3455 cs->nr_subparts_cpus = 0; 3456 cpumask_clear(cs->subparts_cpus); 3457 spin_unlock_irq(&callback_lock); 3458 compute_effective_cpumask(&new_cpus, cs, parent); 3459 } 3460 3461 /* 3462 * Force the partition to become invalid if either one of 3463 * the following conditions hold: 3464 * 1) empty effective cpus but not valid empty partition. 3465 * 2) parent is invalid or doesn't grant any cpus to child 3466 * partitions. 3467 */ 3468 if (is_partition_valid(cs) && (!parent->nr_subparts_cpus || 3469 (cpumask_empty(&new_cpus) && partition_is_populated(cs, NULL)))) { 3470 int old_prs, parent_prs; 3471 3472 update_parent_subparts_cpumask(cs, partcmd_disable, NULL, tmp); 3473 if (cs->nr_subparts_cpus) { 3474 spin_lock_irq(&callback_lock); 3475 cs->nr_subparts_cpus = 0; 3476 cpumask_clear(cs->subparts_cpus); 3477 spin_unlock_irq(&callback_lock); 3478 compute_effective_cpumask(&new_cpus, cs, parent); 3479 } 3480 3481 old_prs = cs->partition_root_state; 3482 parent_prs = parent->partition_root_state; 3483 if (is_partition_valid(cs)) { 3484 spin_lock_irq(&callback_lock); 3485 make_partition_invalid(cs); 3486 spin_unlock_irq(&callback_lock); 3487 if (is_prs_invalid(parent_prs)) 3488 WRITE_ONCE(cs->prs_err, PERR_INVPARENT); 3489 else if (!parent_prs) 3490 WRITE_ONCE(cs->prs_err, PERR_NOTPART); 3491 else 3492 WRITE_ONCE(cs->prs_err, PERR_HOTPLUG); 3493 notify_partition_change(cs, old_prs); 3494 } 3495 cpuset_force_rebuild(); 3496 } 3497 3498 /* 3499 * On the other hand, an invalid partition root may be transitioned 3500 * back to a regular one. 3501 */ 3502 else if (is_partition_valid(parent) && is_partition_invalid(cs)) { 3503 update_parent_subparts_cpumask(cs, partcmd_update, NULL, tmp); 3504 if (is_partition_valid(cs)) 3505 cpuset_force_rebuild(); 3506 } 3507 3508 update_tasks: 3509 cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus); 3510 mems_updated = !nodes_equal(new_mems, cs->effective_mems); 3511 3512 if (mems_updated) 3513 check_insane_mems_config(&new_mems); 3514 3515 if (is_in_v2_mode()) 3516 hotplug_update_tasks(cs, &new_cpus, &new_mems, 3517 cpus_updated, mems_updated); 3518 else 3519 hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems, 3520 cpus_updated, mems_updated); 3521 3522 percpu_up_write(&cpuset_rwsem); 3523 } 3524 3525 /** 3526 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset 3527 * 3528 * This function is called after either CPU or memory configuration has 3529 * changed and updates cpuset accordingly. The top_cpuset is always 3530 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in 3531 * order to make cpusets transparent (of no affect) on systems that are 3532 * actively using CPU hotplug but making no active use of cpusets. 3533 * 3534 * Non-root cpusets are only affected by offlining. If any CPUs or memory 3535 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on 3536 * all descendants. 3537 * 3538 * Note that CPU offlining during suspend is ignored. We don't modify 3539 * cpusets across suspend/resume cycles at all. 3540 */ 3541 static void cpuset_hotplug_workfn(struct work_struct *work) 3542 { 3543 static cpumask_t new_cpus; 3544 static nodemask_t new_mems; 3545 bool cpus_updated, mems_updated; 3546 bool on_dfl = is_in_v2_mode(); 3547 struct tmpmasks tmp, *ptmp = NULL; 3548 3549 if (on_dfl && !alloc_cpumasks(NULL, &tmp)) 3550 ptmp = &tmp; 3551 3552 percpu_down_write(&cpuset_rwsem); 3553 3554 /* fetch the available cpus/mems and find out which changed how */ 3555 cpumask_copy(&new_cpus, cpu_active_mask); 3556 new_mems = node_states[N_MEMORY]; 3557 3558 /* 3559 * If subparts_cpus is populated, it is likely that the check below 3560 * will produce a false positive on cpus_updated when the cpu list 3561 * isn't changed. It is extra work, but it is better to be safe. 3562 */ 3563 cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus); 3564 mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems); 3565 3566 /* 3567 * In the rare case that hotplug removes all the cpus in subparts_cpus, 3568 * we assumed that cpus are updated. 3569 */ 3570 if (!cpus_updated && top_cpuset.nr_subparts_cpus) 3571 cpus_updated = true; 3572 3573 /* synchronize cpus_allowed to cpu_active_mask */ 3574 if (cpus_updated) { 3575 spin_lock_irq(&callback_lock); 3576 if (!on_dfl) 3577 cpumask_copy(top_cpuset.cpus_allowed, &new_cpus); 3578 /* 3579 * Make sure that CPUs allocated to child partitions 3580 * do not show up in effective_cpus. If no CPU is left, 3581 * we clear the subparts_cpus & let the child partitions 3582 * fight for the CPUs again. 3583 */ 3584 if (top_cpuset.nr_subparts_cpus) { 3585 if (cpumask_subset(&new_cpus, 3586 top_cpuset.subparts_cpus)) { 3587 top_cpuset.nr_subparts_cpus = 0; 3588 cpumask_clear(top_cpuset.subparts_cpus); 3589 } else { 3590 cpumask_andnot(&new_cpus, &new_cpus, 3591 top_cpuset.subparts_cpus); 3592 } 3593 } 3594 cpumask_copy(top_cpuset.effective_cpus, &new_cpus); 3595 spin_unlock_irq(&callback_lock); 3596 /* we don't mess with cpumasks of tasks in top_cpuset */ 3597 } 3598 3599 /* synchronize mems_allowed to N_MEMORY */ 3600 if (mems_updated) { 3601 spin_lock_irq(&callback_lock); 3602 if (!on_dfl) 3603 top_cpuset.mems_allowed = new_mems; 3604 top_cpuset.effective_mems = new_mems; 3605 spin_unlock_irq(&callback_lock); 3606 update_tasks_nodemask(&top_cpuset); 3607 } 3608 3609 percpu_up_write(&cpuset_rwsem); 3610 3611 /* if cpus or mems changed, we need to propagate to descendants */ 3612 if (cpus_updated || mems_updated) { 3613 struct cpuset *cs; 3614 struct cgroup_subsys_state *pos_css; 3615 3616 rcu_read_lock(); 3617 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) { 3618 if (cs == &top_cpuset || !css_tryget_online(&cs->css)) 3619 continue; 3620 rcu_read_unlock(); 3621 3622 cpuset_hotplug_update_tasks(cs, ptmp); 3623 3624 rcu_read_lock(); 3625 css_put(&cs->css); 3626 } 3627 rcu_read_unlock(); 3628 } 3629 3630 /* rebuild sched domains if cpus_allowed has changed */ 3631 if (cpus_updated || force_rebuild) { 3632 force_rebuild = false; 3633 rebuild_sched_domains(); 3634 } 3635 3636 free_cpumasks(NULL, ptmp); 3637 } 3638 3639 void cpuset_update_active_cpus(void) 3640 { 3641 /* 3642 * We're inside cpu hotplug critical region which usually nests 3643 * inside cgroup synchronization. Bounce actual hotplug processing 3644 * to a work item to avoid reverse locking order. 3645 */ 3646 schedule_work(&cpuset_hotplug_work); 3647 } 3648 3649 void cpuset_wait_for_hotplug(void) 3650 { 3651 flush_work(&cpuset_hotplug_work); 3652 } 3653 3654 /* 3655 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY]. 3656 * Call this routine anytime after node_states[N_MEMORY] changes. 3657 * See cpuset_update_active_cpus() for CPU hotplug handling. 3658 */ 3659 static int cpuset_track_online_nodes(struct notifier_block *self, 3660 unsigned long action, void *arg) 3661 { 3662 schedule_work(&cpuset_hotplug_work); 3663 return NOTIFY_OK; 3664 } 3665 3666 /** 3667 * cpuset_init_smp - initialize cpus_allowed 3668 * 3669 * Description: Finish top cpuset after cpu, node maps are initialized 3670 */ 3671 void __init cpuset_init_smp(void) 3672 { 3673 /* 3674 * cpus_allowd/mems_allowed set to v2 values in the initial 3675 * cpuset_bind() call will be reset to v1 values in another 3676 * cpuset_bind() call when v1 cpuset is mounted. 3677 */ 3678 top_cpuset.old_mems_allowed = top_cpuset.mems_allowed; 3679 3680 cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask); 3681 top_cpuset.effective_mems = node_states[N_MEMORY]; 3682 3683 hotplug_memory_notifier(cpuset_track_online_nodes, CPUSET_CALLBACK_PRI); 3684 3685 cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0); 3686 BUG_ON(!cpuset_migrate_mm_wq); 3687 } 3688 3689 /** 3690 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset. 3691 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed. 3692 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set. 3693 * 3694 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset 3695 * attached to the specified @tsk. Guaranteed to return some non-empty 3696 * subset of cpu_online_mask, even if this means going outside the 3697 * tasks cpuset, except when the task is in the top cpuset. 3698 **/ 3699 3700 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask) 3701 { 3702 unsigned long flags; 3703 struct cpuset *cs; 3704 3705 spin_lock_irqsave(&callback_lock, flags); 3706 rcu_read_lock(); 3707 3708 cs = task_cs(tsk); 3709 if (cs != &top_cpuset) 3710 guarantee_online_cpus(tsk, pmask); 3711 /* 3712 * Tasks in the top cpuset won't get update to their cpumasks 3713 * when a hotplug online/offline event happens. So we include all 3714 * offline cpus in the allowed cpu list. 3715 */ 3716 if ((cs == &top_cpuset) || cpumask_empty(pmask)) { 3717 const struct cpumask *possible_mask = task_cpu_possible_mask(tsk); 3718 3719 /* 3720 * We first exclude cpus allocated to partitions. If there is no 3721 * allowable online cpu left, we fall back to all possible cpus. 3722 */ 3723 cpumask_andnot(pmask, possible_mask, top_cpuset.subparts_cpus); 3724 if (!cpumask_intersects(pmask, cpu_online_mask)) 3725 cpumask_copy(pmask, possible_mask); 3726 } 3727 3728 rcu_read_unlock(); 3729 spin_unlock_irqrestore(&callback_lock, flags); 3730 } 3731 3732 /** 3733 * cpuset_cpus_allowed_fallback - final fallback before complete catastrophe. 3734 * @tsk: pointer to task_struct with which the scheduler is struggling 3735 * 3736 * Description: In the case that the scheduler cannot find an allowed cpu in 3737 * tsk->cpus_allowed, we fall back to task_cs(tsk)->cpus_allowed. In legacy 3738 * mode however, this value is the same as task_cs(tsk)->effective_cpus, 3739 * which will not contain a sane cpumask during cases such as cpu hotplugging. 3740 * This is the absolute last resort for the scheduler and it is only used if 3741 * _every_ other avenue has been traveled. 3742 * 3743 * Returns true if the affinity of @tsk was changed, false otherwise. 3744 **/ 3745 3746 bool cpuset_cpus_allowed_fallback(struct task_struct *tsk) 3747 { 3748 const struct cpumask *possible_mask = task_cpu_possible_mask(tsk); 3749 const struct cpumask *cs_mask; 3750 bool changed = false; 3751 3752 rcu_read_lock(); 3753 cs_mask = task_cs(tsk)->cpus_allowed; 3754 if (is_in_v2_mode() && cpumask_subset(cs_mask, possible_mask)) { 3755 do_set_cpus_allowed(tsk, cs_mask); 3756 changed = true; 3757 } 3758 rcu_read_unlock(); 3759 3760 /* 3761 * We own tsk->cpus_allowed, nobody can change it under us. 3762 * 3763 * But we used cs && cs->cpus_allowed lockless and thus can 3764 * race with cgroup_attach_task() or update_cpumask() and get 3765 * the wrong tsk->cpus_allowed. However, both cases imply the 3766 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr() 3767 * which takes task_rq_lock(). 3768 * 3769 * If we are called after it dropped the lock we must see all 3770 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary 3771 * set any mask even if it is not right from task_cs() pov, 3772 * the pending set_cpus_allowed_ptr() will fix things. 3773 * 3774 * select_fallback_rq() will fix things ups and set cpu_possible_mask 3775 * if required. 3776 */ 3777 return changed; 3778 } 3779 3780 void __init cpuset_init_current_mems_allowed(void) 3781 { 3782 nodes_setall(current->mems_allowed); 3783 } 3784 3785 /** 3786 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset. 3787 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed. 3788 * 3789 * Description: Returns the nodemask_t mems_allowed of the cpuset 3790 * attached to the specified @tsk. Guaranteed to return some non-empty 3791 * subset of node_states[N_MEMORY], even if this means going outside the 3792 * tasks cpuset. 3793 **/ 3794 3795 nodemask_t cpuset_mems_allowed(struct task_struct *tsk) 3796 { 3797 nodemask_t mask; 3798 unsigned long flags; 3799 3800 spin_lock_irqsave(&callback_lock, flags); 3801 rcu_read_lock(); 3802 guarantee_online_mems(task_cs(tsk), &mask); 3803 rcu_read_unlock(); 3804 spin_unlock_irqrestore(&callback_lock, flags); 3805 3806 return mask; 3807 } 3808 3809 /** 3810 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. current mems_allowed 3811 * @nodemask: the nodemask to be checked 3812 * 3813 * Are any of the nodes in the nodemask allowed in current->mems_allowed? 3814 */ 3815 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask) 3816 { 3817 return nodes_intersects(*nodemask, current->mems_allowed); 3818 } 3819 3820 /* 3821 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or 3822 * mem_hardwall ancestor to the specified cpuset. Call holding 3823 * callback_lock. If no ancestor is mem_exclusive or mem_hardwall 3824 * (an unusual configuration), then returns the root cpuset. 3825 */ 3826 static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs) 3827 { 3828 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs)) 3829 cs = parent_cs(cs); 3830 return cs; 3831 } 3832 3833 /* 3834 * __cpuset_node_allowed - Can we allocate on a memory node? 3835 * @node: is this an allowed node? 3836 * @gfp_mask: memory allocation flags 3837 * 3838 * If we're in interrupt, yes, we can always allocate. If @node is set in 3839 * current's mems_allowed, yes. If it's not a __GFP_HARDWALL request and this 3840 * node is set in the nearest hardwalled cpuset ancestor to current's cpuset, 3841 * yes. If current has access to memory reserves as an oom victim, yes. 3842 * Otherwise, no. 3843 * 3844 * GFP_USER allocations are marked with the __GFP_HARDWALL bit, 3845 * and do not allow allocations outside the current tasks cpuset 3846 * unless the task has been OOM killed. 3847 * GFP_KERNEL allocations are not so marked, so can escape to the 3848 * nearest enclosing hardwalled ancestor cpuset. 3849 * 3850 * Scanning up parent cpusets requires callback_lock. The 3851 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit 3852 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the 3853 * current tasks mems_allowed came up empty on the first pass over 3854 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the 3855 * cpuset are short of memory, might require taking the callback_lock. 3856 * 3857 * The first call here from mm/page_alloc:get_page_from_freelist() 3858 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets, 3859 * so no allocation on a node outside the cpuset is allowed (unless 3860 * in interrupt, of course). 3861 * 3862 * The second pass through get_page_from_freelist() doesn't even call 3863 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages() 3864 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set 3865 * in alloc_flags. That logic and the checks below have the combined 3866 * affect that: 3867 * in_interrupt - any node ok (current task context irrelevant) 3868 * GFP_ATOMIC - any node ok 3869 * tsk_is_oom_victim - any node ok 3870 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok 3871 * GFP_USER - only nodes in current tasks mems allowed ok. 3872 */ 3873 bool __cpuset_node_allowed(int node, gfp_t gfp_mask) 3874 { 3875 struct cpuset *cs; /* current cpuset ancestors */ 3876 bool allowed; /* is allocation in zone z allowed? */ 3877 unsigned long flags; 3878 3879 if (in_interrupt()) 3880 return true; 3881 if (node_isset(node, current->mems_allowed)) 3882 return true; 3883 /* 3884 * Allow tasks that have access to memory reserves because they have 3885 * been OOM killed to get memory anywhere. 3886 */ 3887 if (unlikely(tsk_is_oom_victim(current))) 3888 return true; 3889 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */ 3890 return false; 3891 3892 if (current->flags & PF_EXITING) /* Let dying task have memory */ 3893 return true; 3894 3895 /* Not hardwall and node outside mems_allowed: scan up cpusets */ 3896 spin_lock_irqsave(&callback_lock, flags); 3897 3898 rcu_read_lock(); 3899 cs = nearest_hardwall_ancestor(task_cs(current)); 3900 allowed = node_isset(node, cs->mems_allowed); 3901 rcu_read_unlock(); 3902 3903 spin_unlock_irqrestore(&callback_lock, flags); 3904 return allowed; 3905 } 3906 3907 /** 3908 * cpuset_spread_node() - On which node to begin search for a page 3909 * 3910 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for 3911 * tasks in a cpuset with is_spread_page or is_spread_slab set), 3912 * and if the memory allocation used cpuset_mem_spread_node() 3913 * to determine on which node to start looking, as it will for 3914 * certain page cache or slab cache pages such as used for file 3915 * system buffers and inode caches, then instead of starting on the 3916 * local node to look for a free page, rather spread the starting 3917 * node around the tasks mems_allowed nodes. 3918 * 3919 * We don't have to worry about the returned node being offline 3920 * because "it can't happen", and even if it did, it would be ok. 3921 * 3922 * The routines calling guarantee_online_mems() are careful to 3923 * only set nodes in task->mems_allowed that are online. So it 3924 * should not be possible for the following code to return an 3925 * offline node. But if it did, that would be ok, as this routine 3926 * is not returning the node where the allocation must be, only 3927 * the node where the search should start. The zonelist passed to 3928 * __alloc_pages() will include all nodes. If the slab allocator 3929 * is passed an offline node, it will fall back to the local node. 3930 * See kmem_cache_alloc_node(). 3931 */ 3932 static int cpuset_spread_node(int *rotor) 3933 { 3934 return *rotor = next_node_in(*rotor, current->mems_allowed); 3935 } 3936 3937 /** 3938 * cpuset_mem_spread_node() - On which node to begin search for a file page 3939 */ 3940 int cpuset_mem_spread_node(void) 3941 { 3942 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE) 3943 current->cpuset_mem_spread_rotor = 3944 node_random(¤t->mems_allowed); 3945 3946 return cpuset_spread_node(¤t->cpuset_mem_spread_rotor); 3947 } 3948 3949 /** 3950 * cpuset_slab_spread_node() - On which node to begin search for a slab page 3951 */ 3952 int cpuset_slab_spread_node(void) 3953 { 3954 if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE) 3955 current->cpuset_slab_spread_rotor = 3956 node_random(¤t->mems_allowed); 3957 3958 return cpuset_spread_node(¤t->cpuset_slab_spread_rotor); 3959 } 3960 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node); 3961 3962 /** 3963 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's? 3964 * @tsk1: pointer to task_struct of some task. 3965 * @tsk2: pointer to task_struct of some other task. 3966 * 3967 * Description: Return true if @tsk1's mems_allowed intersects the 3968 * mems_allowed of @tsk2. Used by the OOM killer to determine if 3969 * one of the task's memory usage might impact the memory available 3970 * to the other. 3971 **/ 3972 3973 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1, 3974 const struct task_struct *tsk2) 3975 { 3976 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed); 3977 } 3978 3979 /** 3980 * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed 3981 * 3982 * Description: Prints current's name, cpuset name, and cached copy of its 3983 * mems_allowed to the kernel log. 3984 */ 3985 void cpuset_print_current_mems_allowed(void) 3986 { 3987 struct cgroup *cgrp; 3988 3989 rcu_read_lock(); 3990 3991 cgrp = task_cs(current)->css.cgroup; 3992 pr_cont(",cpuset="); 3993 pr_cont_cgroup_name(cgrp); 3994 pr_cont(",mems_allowed=%*pbl", 3995 nodemask_pr_args(¤t->mems_allowed)); 3996 3997 rcu_read_unlock(); 3998 } 3999 4000 /* 4001 * Collection of memory_pressure is suppressed unless 4002 * this flag is enabled by writing "1" to the special 4003 * cpuset file 'memory_pressure_enabled' in the root cpuset. 4004 */ 4005 4006 int cpuset_memory_pressure_enabled __read_mostly; 4007 4008 /* 4009 * __cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims. 4010 * 4011 * Keep a running average of the rate of synchronous (direct) 4012 * page reclaim efforts initiated by tasks in each cpuset. 4013 * 4014 * This represents the rate at which some task in the cpuset 4015 * ran low on memory on all nodes it was allowed to use, and 4016 * had to enter the kernels page reclaim code in an effort to 4017 * create more free memory by tossing clean pages or swapping 4018 * or writing dirty pages. 4019 * 4020 * Display to user space in the per-cpuset read-only file 4021 * "memory_pressure". Value displayed is an integer 4022 * representing the recent rate of entry into the synchronous 4023 * (direct) page reclaim by any task attached to the cpuset. 4024 */ 4025 4026 void __cpuset_memory_pressure_bump(void) 4027 { 4028 rcu_read_lock(); 4029 fmeter_markevent(&task_cs(current)->fmeter); 4030 rcu_read_unlock(); 4031 } 4032 4033 #ifdef CONFIG_PROC_PID_CPUSET 4034 /* 4035 * proc_cpuset_show() 4036 * - Print tasks cpuset path into seq_file. 4037 * - Used for /proc/<pid>/cpuset. 4038 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it 4039 * doesn't really matter if tsk->cpuset changes after we read it, 4040 * and we take cpuset_rwsem, keeping cpuset_attach() from changing it 4041 * anyway. 4042 */ 4043 int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns, 4044 struct pid *pid, struct task_struct *tsk) 4045 { 4046 char *buf; 4047 struct cgroup_subsys_state *css; 4048 int retval; 4049 4050 retval = -ENOMEM; 4051 buf = kmalloc(PATH_MAX, GFP_KERNEL); 4052 if (!buf) 4053 goto out; 4054 4055 css = task_get_css(tsk, cpuset_cgrp_id); 4056 retval = cgroup_path_ns(css->cgroup, buf, PATH_MAX, 4057 current->nsproxy->cgroup_ns); 4058 css_put(css); 4059 if (retval >= PATH_MAX) 4060 retval = -ENAMETOOLONG; 4061 if (retval < 0) 4062 goto out_free; 4063 seq_puts(m, buf); 4064 seq_putc(m, '\n'); 4065 retval = 0; 4066 out_free: 4067 kfree(buf); 4068 out: 4069 return retval; 4070 } 4071 #endif /* CONFIG_PROC_PID_CPUSET */ 4072 4073 /* Display task mems_allowed in /proc/<pid>/status file. */ 4074 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task) 4075 { 4076 seq_printf(m, "Mems_allowed:\t%*pb\n", 4077 nodemask_pr_args(&task->mems_allowed)); 4078 seq_printf(m, "Mems_allowed_list:\t%*pbl\n", 4079 nodemask_pr_args(&task->mems_allowed)); 4080 } 4081