xref: /openbmc/linux/kernel/cgroup/cpuset.c (revision 174cd4b1)
1 /*
2  *  kernel/cpuset.c
3  *
4  *  Processor and Memory placement constraints for sets of tasks.
5  *
6  *  Copyright (C) 2003 BULL SA.
7  *  Copyright (C) 2004-2007 Silicon Graphics, Inc.
8  *  Copyright (C) 2006 Google, Inc
9  *
10  *  Portions derived from Patrick Mochel's sysfs code.
11  *  sysfs is Copyright (c) 2001-3 Patrick Mochel
12  *
13  *  2003-10-10 Written by Simon Derr.
14  *  2003-10-22 Updates by Stephen Hemminger.
15  *  2004 May-July Rework by Paul Jackson.
16  *  2006 Rework by Paul Menage to use generic cgroups
17  *  2008 Rework of the scheduler domains and CPU hotplug handling
18  *       by Max Krasnyansky
19  *
20  *  This file is subject to the terms and conditions of the GNU General Public
21  *  License.  See the file COPYING in the main directory of the Linux
22  *  distribution for more details.
23  */
24 
25 #include <linux/cpu.h>
26 #include <linux/cpumask.h>
27 #include <linux/cpuset.h>
28 #include <linux/err.h>
29 #include <linux/errno.h>
30 #include <linux/file.h>
31 #include <linux/fs.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/kernel.h>
35 #include <linux/kmod.h>
36 #include <linux/list.h>
37 #include <linux/mempolicy.h>
38 #include <linux/mm.h>
39 #include <linux/memory.h>
40 #include <linux/export.h>
41 #include <linux/mount.h>
42 #include <linux/namei.h>
43 #include <linux/pagemap.h>
44 #include <linux/proc_fs.h>
45 #include <linux/rcupdate.h>
46 #include <linux/sched.h>
47 #include <linux/sched/mm.h>
48 #include <linux/seq_file.h>
49 #include <linux/security.h>
50 #include <linux/slab.h>
51 #include <linux/spinlock.h>
52 #include <linux/stat.h>
53 #include <linux/string.h>
54 #include <linux/time.h>
55 #include <linux/time64.h>
56 #include <linux/backing-dev.h>
57 #include <linux/sort.h>
58 
59 #include <linux/uaccess.h>
60 #include <linux/atomic.h>
61 #include <linux/mutex.h>
62 #include <linux/cgroup.h>
63 #include <linux/wait.h>
64 
65 DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key);
66 
67 /* See "Frequency meter" comments, below. */
68 
69 struct fmeter {
70 	int cnt;		/* unprocessed events count */
71 	int val;		/* most recent output value */
72 	time64_t time;		/* clock (secs) when val computed */
73 	spinlock_t lock;	/* guards read or write of above */
74 };
75 
76 struct cpuset {
77 	struct cgroup_subsys_state css;
78 
79 	unsigned long flags;		/* "unsigned long" so bitops work */
80 
81 	/*
82 	 * On default hierarchy:
83 	 *
84 	 * The user-configured masks can only be changed by writing to
85 	 * cpuset.cpus and cpuset.mems, and won't be limited by the
86 	 * parent masks.
87 	 *
88 	 * The effective masks is the real masks that apply to the tasks
89 	 * in the cpuset. They may be changed if the configured masks are
90 	 * changed or hotplug happens.
91 	 *
92 	 * effective_mask == configured_mask & parent's effective_mask,
93 	 * and if it ends up empty, it will inherit the parent's mask.
94 	 *
95 	 *
96 	 * On legacy hierachy:
97 	 *
98 	 * The user-configured masks are always the same with effective masks.
99 	 */
100 
101 	/* user-configured CPUs and Memory Nodes allow to tasks */
102 	cpumask_var_t cpus_allowed;
103 	nodemask_t mems_allowed;
104 
105 	/* effective CPUs and Memory Nodes allow to tasks */
106 	cpumask_var_t effective_cpus;
107 	nodemask_t effective_mems;
108 
109 	/*
110 	 * This is old Memory Nodes tasks took on.
111 	 *
112 	 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
113 	 * - A new cpuset's old_mems_allowed is initialized when some
114 	 *   task is moved into it.
115 	 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
116 	 *   cpuset.mems_allowed and have tasks' nodemask updated, and
117 	 *   then old_mems_allowed is updated to mems_allowed.
118 	 */
119 	nodemask_t old_mems_allowed;
120 
121 	struct fmeter fmeter;		/* memory_pressure filter */
122 
123 	/*
124 	 * Tasks are being attached to this cpuset.  Used to prevent
125 	 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
126 	 */
127 	int attach_in_progress;
128 
129 	/* partition number for rebuild_sched_domains() */
130 	int pn;
131 
132 	/* for custom sched domain */
133 	int relax_domain_level;
134 };
135 
136 static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
137 {
138 	return css ? container_of(css, struct cpuset, css) : NULL;
139 }
140 
141 /* Retrieve the cpuset for a task */
142 static inline struct cpuset *task_cs(struct task_struct *task)
143 {
144 	return css_cs(task_css(task, cpuset_cgrp_id));
145 }
146 
147 static inline struct cpuset *parent_cs(struct cpuset *cs)
148 {
149 	return css_cs(cs->css.parent);
150 }
151 
152 #ifdef CONFIG_NUMA
153 static inline bool task_has_mempolicy(struct task_struct *task)
154 {
155 	return task->mempolicy;
156 }
157 #else
158 static inline bool task_has_mempolicy(struct task_struct *task)
159 {
160 	return false;
161 }
162 #endif
163 
164 
165 /* bits in struct cpuset flags field */
166 typedef enum {
167 	CS_ONLINE,
168 	CS_CPU_EXCLUSIVE,
169 	CS_MEM_EXCLUSIVE,
170 	CS_MEM_HARDWALL,
171 	CS_MEMORY_MIGRATE,
172 	CS_SCHED_LOAD_BALANCE,
173 	CS_SPREAD_PAGE,
174 	CS_SPREAD_SLAB,
175 } cpuset_flagbits_t;
176 
177 /* convenient tests for these bits */
178 static inline bool is_cpuset_online(const struct cpuset *cs)
179 {
180 	return test_bit(CS_ONLINE, &cs->flags);
181 }
182 
183 static inline int is_cpu_exclusive(const struct cpuset *cs)
184 {
185 	return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
186 }
187 
188 static inline int is_mem_exclusive(const struct cpuset *cs)
189 {
190 	return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
191 }
192 
193 static inline int is_mem_hardwall(const struct cpuset *cs)
194 {
195 	return test_bit(CS_MEM_HARDWALL, &cs->flags);
196 }
197 
198 static inline int is_sched_load_balance(const struct cpuset *cs)
199 {
200 	return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
201 }
202 
203 static inline int is_memory_migrate(const struct cpuset *cs)
204 {
205 	return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
206 }
207 
208 static inline int is_spread_page(const struct cpuset *cs)
209 {
210 	return test_bit(CS_SPREAD_PAGE, &cs->flags);
211 }
212 
213 static inline int is_spread_slab(const struct cpuset *cs)
214 {
215 	return test_bit(CS_SPREAD_SLAB, &cs->flags);
216 }
217 
218 static struct cpuset top_cpuset = {
219 	.flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
220 		  (1 << CS_MEM_EXCLUSIVE)),
221 };
222 
223 /**
224  * cpuset_for_each_child - traverse online children of a cpuset
225  * @child_cs: loop cursor pointing to the current child
226  * @pos_css: used for iteration
227  * @parent_cs: target cpuset to walk children of
228  *
229  * Walk @child_cs through the online children of @parent_cs.  Must be used
230  * with RCU read locked.
231  */
232 #define cpuset_for_each_child(child_cs, pos_css, parent_cs)		\
233 	css_for_each_child((pos_css), &(parent_cs)->css)		\
234 		if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
235 
236 /**
237  * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
238  * @des_cs: loop cursor pointing to the current descendant
239  * @pos_css: used for iteration
240  * @root_cs: target cpuset to walk ancestor of
241  *
242  * Walk @des_cs through the online descendants of @root_cs.  Must be used
243  * with RCU read locked.  The caller may modify @pos_css by calling
244  * css_rightmost_descendant() to skip subtree.  @root_cs is included in the
245  * iteration and the first node to be visited.
246  */
247 #define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs)	\
248 	css_for_each_descendant_pre((pos_css), &(root_cs)->css)		\
249 		if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
250 
251 /*
252  * There are two global locks guarding cpuset structures - cpuset_mutex and
253  * callback_lock. We also require taking task_lock() when dereferencing a
254  * task's cpuset pointer. See "The task_lock() exception", at the end of this
255  * comment.
256  *
257  * A task must hold both locks to modify cpusets.  If a task holds
258  * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
259  * is the only task able to also acquire callback_lock and be able to
260  * modify cpusets.  It can perform various checks on the cpuset structure
261  * first, knowing nothing will change.  It can also allocate memory while
262  * just holding cpuset_mutex.  While it is performing these checks, various
263  * callback routines can briefly acquire callback_lock to query cpusets.
264  * Once it is ready to make the changes, it takes callback_lock, blocking
265  * everyone else.
266  *
267  * Calls to the kernel memory allocator can not be made while holding
268  * callback_lock, as that would risk double tripping on callback_lock
269  * from one of the callbacks into the cpuset code from within
270  * __alloc_pages().
271  *
272  * If a task is only holding callback_lock, then it has read-only
273  * access to cpusets.
274  *
275  * Now, the task_struct fields mems_allowed and mempolicy may be changed
276  * by other task, we use alloc_lock in the task_struct fields to protect
277  * them.
278  *
279  * The cpuset_common_file_read() handlers only hold callback_lock across
280  * small pieces of code, such as when reading out possibly multi-word
281  * cpumasks and nodemasks.
282  *
283  * Accessing a task's cpuset should be done in accordance with the
284  * guidelines for accessing subsystem state in kernel/cgroup.c
285  */
286 
287 static DEFINE_MUTEX(cpuset_mutex);
288 static DEFINE_SPINLOCK(callback_lock);
289 
290 static struct workqueue_struct *cpuset_migrate_mm_wq;
291 
292 /*
293  * CPU / memory hotplug is handled asynchronously.
294  */
295 static void cpuset_hotplug_workfn(struct work_struct *work);
296 static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
297 
298 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
299 
300 /*
301  * This is ugly, but preserves the userspace API for existing cpuset
302  * users. If someone tries to mount the "cpuset" filesystem, we
303  * silently switch it to mount "cgroup" instead
304  */
305 static struct dentry *cpuset_mount(struct file_system_type *fs_type,
306 			 int flags, const char *unused_dev_name, void *data)
307 {
308 	struct file_system_type *cgroup_fs = get_fs_type("cgroup");
309 	struct dentry *ret = ERR_PTR(-ENODEV);
310 	if (cgroup_fs) {
311 		char mountopts[] =
312 			"cpuset,noprefix,"
313 			"release_agent=/sbin/cpuset_release_agent";
314 		ret = cgroup_fs->mount(cgroup_fs, flags,
315 					   unused_dev_name, mountopts);
316 		put_filesystem(cgroup_fs);
317 	}
318 	return ret;
319 }
320 
321 static struct file_system_type cpuset_fs_type = {
322 	.name = "cpuset",
323 	.mount = cpuset_mount,
324 };
325 
326 /*
327  * Return in pmask the portion of a cpusets's cpus_allowed that
328  * are online.  If none are online, walk up the cpuset hierarchy
329  * until we find one that does have some online cpus.
330  *
331  * One way or another, we guarantee to return some non-empty subset
332  * of cpu_online_mask.
333  *
334  * Call with callback_lock or cpuset_mutex held.
335  */
336 static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)
337 {
338 	while (!cpumask_intersects(cs->effective_cpus, cpu_online_mask)) {
339 		cs = parent_cs(cs);
340 		if (unlikely(!cs)) {
341 			/*
342 			 * The top cpuset doesn't have any online cpu as a
343 			 * consequence of a race between cpuset_hotplug_work
344 			 * and cpu hotplug notifier.  But we know the top
345 			 * cpuset's effective_cpus is on its way to to be
346 			 * identical to cpu_online_mask.
347 			 */
348 			cpumask_copy(pmask, cpu_online_mask);
349 			return;
350 		}
351 	}
352 	cpumask_and(pmask, cs->effective_cpus, cpu_online_mask);
353 }
354 
355 /*
356  * Return in *pmask the portion of a cpusets's mems_allowed that
357  * are online, with memory.  If none are online with memory, walk
358  * up the cpuset hierarchy until we find one that does have some
359  * online mems.  The top cpuset always has some mems online.
360  *
361  * One way or another, we guarantee to return some non-empty subset
362  * of node_states[N_MEMORY].
363  *
364  * Call with callback_lock or cpuset_mutex held.
365  */
366 static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
367 {
368 	while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
369 		cs = parent_cs(cs);
370 	nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
371 }
372 
373 /*
374  * update task's spread flag if cpuset's page/slab spread flag is set
375  *
376  * Call with callback_lock or cpuset_mutex held.
377  */
378 static void cpuset_update_task_spread_flag(struct cpuset *cs,
379 					struct task_struct *tsk)
380 {
381 	if (is_spread_page(cs))
382 		task_set_spread_page(tsk);
383 	else
384 		task_clear_spread_page(tsk);
385 
386 	if (is_spread_slab(cs))
387 		task_set_spread_slab(tsk);
388 	else
389 		task_clear_spread_slab(tsk);
390 }
391 
392 /*
393  * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
394  *
395  * One cpuset is a subset of another if all its allowed CPUs and
396  * Memory Nodes are a subset of the other, and its exclusive flags
397  * are only set if the other's are set.  Call holding cpuset_mutex.
398  */
399 
400 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
401 {
402 	return	cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
403 		nodes_subset(p->mems_allowed, q->mems_allowed) &&
404 		is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
405 		is_mem_exclusive(p) <= is_mem_exclusive(q);
406 }
407 
408 /**
409  * alloc_trial_cpuset - allocate a trial cpuset
410  * @cs: the cpuset that the trial cpuset duplicates
411  */
412 static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
413 {
414 	struct cpuset *trial;
415 
416 	trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
417 	if (!trial)
418 		return NULL;
419 
420 	if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL))
421 		goto free_cs;
422 	if (!alloc_cpumask_var(&trial->effective_cpus, GFP_KERNEL))
423 		goto free_cpus;
424 
425 	cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
426 	cpumask_copy(trial->effective_cpus, cs->effective_cpus);
427 	return trial;
428 
429 free_cpus:
430 	free_cpumask_var(trial->cpus_allowed);
431 free_cs:
432 	kfree(trial);
433 	return NULL;
434 }
435 
436 /**
437  * free_trial_cpuset - free the trial cpuset
438  * @trial: the trial cpuset to be freed
439  */
440 static void free_trial_cpuset(struct cpuset *trial)
441 {
442 	free_cpumask_var(trial->effective_cpus);
443 	free_cpumask_var(trial->cpus_allowed);
444 	kfree(trial);
445 }
446 
447 /*
448  * validate_change() - Used to validate that any proposed cpuset change
449  *		       follows the structural rules for cpusets.
450  *
451  * If we replaced the flag and mask values of the current cpuset
452  * (cur) with those values in the trial cpuset (trial), would
453  * our various subset and exclusive rules still be valid?  Presumes
454  * cpuset_mutex held.
455  *
456  * 'cur' is the address of an actual, in-use cpuset.  Operations
457  * such as list traversal that depend on the actual address of the
458  * cpuset in the list must use cur below, not trial.
459  *
460  * 'trial' is the address of bulk structure copy of cur, with
461  * perhaps one or more of the fields cpus_allowed, mems_allowed,
462  * or flags changed to new, trial values.
463  *
464  * Return 0 if valid, -errno if not.
465  */
466 
467 static int validate_change(struct cpuset *cur, struct cpuset *trial)
468 {
469 	struct cgroup_subsys_state *css;
470 	struct cpuset *c, *par;
471 	int ret;
472 
473 	rcu_read_lock();
474 
475 	/* Each of our child cpusets must be a subset of us */
476 	ret = -EBUSY;
477 	cpuset_for_each_child(c, css, cur)
478 		if (!is_cpuset_subset(c, trial))
479 			goto out;
480 
481 	/* Remaining checks don't apply to root cpuset */
482 	ret = 0;
483 	if (cur == &top_cpuset)
484 		goto out;
485 
486 	par = parent_cs(cur);
487 
488 	/* On legacy hiearchy, we must be a subset of our parent cpuset. */
489 	ret = -EACCES;
490 	if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
491 	    !is_cpuset_subset(trial, par))
492 		goto out;
493 
494 	/*
495 	 * If either I or some sibling (!= me) is exclusive, we can't
496 	 * overlap
497 	 */
498 	ret = -EINVAL;
499 	cpuset_for_each_child(c, css, par) {
500 		if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
501 		    c != cur &&
502 		    cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
503 			goto out;
504 		if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
505 		    c != cur &&
506 		    nodes_intersects(trial->mems_allowed, c->mems_allowed))
507 			goto out;
508 	}
509 
510 	/*
511 	 * Cpusets with tasks - existing or newly being attached - can't
512 	 * be changed to have empty cpus_allowed or mems_allowed.
513 	 */
514 	ret = -ENOSPC;
515 	if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) {
516 		if (!cpumask_empty(cur->cpus_allowed) &&
517 		    cpumask_empty(trial->cpus_allowed))
518 			goto out;
519 		if (!nodes_empty(cur->mems_allowed) &&
520 		    nodes_empty(trial->mems_allowed))
521 			goto out;
522 	}
523 
524 	/*
525 	 * We can't shrink if we won't have enough room for SCHED_DEADLINE
526 	 * tasks.
527 	 */
528 	ret = -EBUSY;
529 	if (is_cpu_exclusive(cur) &&
530 	    !cpuset_cpumask_can_shrink(cur->cpus_allowed,
531 				       trial->cpus_allowed))
532 		goto out;
533 
534 	ret = 0;
535 out:
536 	rcu_read_unlock();
537 	return ret;
538 }
539 
540 #ifdef CONFIG_SMP
541 /*
542  * Helper routine for generate_sched_domains().
543  * Do cpusets a, b have overlapping effective cpus_allowed masks?
544  */
545 static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
546 {
547 	return cpumask_intersects(a->effective_cpus, b->effective_cpus);
548 }
549 
550 static void
551 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
552 {
553 	if (dattr->relax_domain_level < c->relax_domain_level)
554 		dattr->relax_domain_level = c->relax_domain_level;
555 	return;
556 }
557 
558 static void update_domain_attr_tree(struct sched_domain_attr *dattr,
559 				    struct cpuset *root_cs)
560 {
561 	struct cpuset *cp;
562 	struct cgroup_subsys_state *pos_css;
563 
564 	rcu_read_lock();
565 	cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
566 		/* skip the whole subtree if @cp doesn't have any CPU */
567 		if (cpumask_empty(cp->cpus_allowed)) {
568 			pos_css = css_rightmost_descendant(pos_css);
569 			continue;
570 		}
571 
572 		if (is_sched_load_balance(cp))
573 			update_domain_attr(dattr, cp);
574 	}
575 	rcu_read_unlock();
576 }
577 
578 /*
579  * generate_sched_domains()
580  *
581  * This function builds a partial partition of the systems CPUs
582  * A 'partial partition' is a set of non-overlapping subsets whose
583  * union is a subset of that set.
584  * The output of this function needs to be passed to kernel/sched/core.c
585  * partition_sched_domains() routine, which will rebuild the scheduler's
586  * load balancing domains (sched domains) as specified by that partial
587  * partition.
588  *
589  * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
590  * for a background explanation of this.
591  *
592  * Does not return errors, on the theory that the callers of this
593  * routine would rather not worry about failures to rebuild sched
594  * domains when operating in the severe memory shortage situations
595  * that could cause allocation failures below.
596  *
597  * Must be called with cpuset_mutex held.
598  *
599  * The three key local variables below are:
600  *    q  - a linked-list queue of cpuset pointers, used to implement a
601  *	   top-down scan of all cpusets.  This scan loads a pointer
602  *	   to each cpuset marked is_sched_load_balance into the
603  *	   array 'csa'.  For our purposes, rebuilding the schedulers
604  *	   sched domains, we can ignore !is_sched_load_balance cpusets.
605  *  csa  - (for CpuSet Array) Array of pointers to all the cpusets
606  *	   that need to be load balanced, for convenient iterative
607  *	   access by the subsequent code that finds the best partition,
608  *	   i.e the set of domains (subsets) of CPUs such that the
609  *	   cpus_allowed of every cpuset marked is_sched_load_balance
610  *	   is a subset of one of these domains, while there are as
611  *	   many such domains as possible, each as small as possible.
612  * doms  - Conversion of 'csa' to an array of cpumasks, for passing to
613  *	   the kernel/sched/core.c routine partition_sched_domains() in a
614  *	   convenient format, that can be easily compared to the prior
615  *	   value to determine what partition elements (sched domains)
616  *	   were changed (added or removed.)
617  *
618  * Finding the best partition (set of domains):
619  *	The triple nested loops below over i, j, k scan over the
620  *	load balanced cpusets (using the array of cpuset pointers in
621  *	csa[]) looking for pairs of cpusets that have overlapping
622  *	cpus_allowed, but which don't have the same 'pn' partition
623  *	number and gives them in the same partition number.  It keeps
624  *	looping on the 'restart' label until it can no longer find
625  *	any such pairs.
626  *
627  *	The union of the cpus_allowed masks from the set of
628  *	all cpusets having the same 'pn' value then form the one
629  *	element of the partition (one sched domain) to be passed to
630  *	partition_sched_domains().
631  */
632 static int generate_sched_domains(cpumask_var_t **domains,
633 			struct sched_domain_attr **attributes)
634 {
635 	struct cpuset *cp;	/* scans q */
636 	struct cpuset **csa;	/* array of all cpuset ptrs */
637 	int csn;		/* how many cpuset ptrs in csa so far */
638 	int i, j, k;		/* indices for partition finding loops */
639 	cpumask_var_t *doms;	/* resulting partition; i.e. sched domains */
640 	cpumask_var_t non_isolated_cpus;  /* load balanced CPUs */
641 	struct sched_domain_attr *dattr;  /* attributes for custom domains */
642 	int ndoms = 0;		/* number of sched domains in result */
643 	int nslot;		/* next empty doms[] struct cpumask slot */
644 	struct cgroup_subsys_state *pos_css;
645 
646 	doms = NULL;
647 	dattr = NULL;
648 	csa = NULL;
649 
650 	if (!alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL))
651 		goto done;
652 	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
653 
654 	/* Special case for the 99% of systems with one, full, sched domain */
655 	if (is_sched_load_balance(&top_cpuset)) {
656 		ndoms = 1;
657 		doms = alloc_sched_domains(ndoms);
658 		if (!doms)
659 			goto done;
660 
661 		dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
662 		if (dattr) {
663 			*dattr = SD_ATTR_INIT;
664 			update_domain_attr_tree(dattr, &top_cpuset);
665 		}
666 		cpumask_and(doms[0], top_cpuset.effective_cpus,
667 				     non_isolated_cpus);
668 
669 		goto done;
670 	}
671 
672 	csa = kmalloc(nr_cpusets() * sizeof(cp), GFP_KERNEL);
673 	if (!csa)
674 		goto done;
675 	csn = 0;
676 
677 	rcu_read_lock();
678 	cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
679 		if (cp == &top_cpuset)
680 			continue;
681 		/*
682 		 * Continue traversing beyond @cp iff @cp has some CPUs and
683 		 * isn't load balancing.  The former is obvious.  The
684 		 * latter: All child cpusets contain a subset of the
685 		 * parent's cpus, so just skip them, and then we call
686 		 * update_domain_attr_tree() to calc relax_domain_level of
687 		 * the corresponding sched domain.
688 		 */
689 		if (!cpumask_empty(cp->cpus_allowed) &&
690 		    !(is_sched_load_balance(cp) &&
691 		      cpumask_intersects(cp->cpus_allowed, non_isolated_cpus)))
692 			continue;
693 
694 		if (is_sched_load_balance(cp))
695 			csa[csn++] = cp;
696 
697 		/* skip @cp's subtree */
698 		pos_css = css_rightmost_descendant(pos_css);
699 	}
700 	rcu_read_unlock();
701 
702 	for (i = 0; i < csn; i++)
703 		csa[i]->pn = i;
704 	ndoms = csn;
705 
706 restart:
707 	/* Find the best partition (set of sched domains) */
708 	for (i = 0; i < csn; i++) {
709 		struct cpuset *a = csa[i];
710 		int apn = a->pn;
711 
712 		for (j = 0; j < csn; j++) {
713 			struct cpuset *b = csa[j];
714 			int bpn = b->pn;
715 
716 			if (apn != bpn && cpusets_overlap(a, b)) {
717 				for (k = 0; k < csn; k++) {
718 					struct cpuset *c = csa[k];
719 
720 					if (c->pn == bpn)
721 						c->pn = apn;
722 				}
723 				ndoms--;	/* one less element */
724 				goto restart;
725 			}
726 		}
727 	}
728 
729 	/*
730 	 * Now we know how many domains to create.
731 	 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
732 	 */
733 	doms = alloc_sched_domains(ndoms);
734 	if (!doms)
735 		goto done;
736 
737 	/*
738 	 * The rest of the code, including the scheduler, can deal with
739 	 * dattr==NULL case. No need to abort if alloc fails.
740 	 */
741 	dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
742 
743 	for (nslot = 0, i = 0; i < csn; i++) {
744 		struct cpuset *a = csa[i];
745 		struct cpumask *dp;
746 		int apn = a->pn;
747 
748 		if (apn < 0) {
749 			/* Skip completed partitions */
750 			continue;
751 		}
752 
753 		dp = doms[nslot];
754 
755 		if (nslot == ndoms) {
756 			static int warnings = 10;
757 			if (warnings) {
758 				pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
759 					nslot, ndoms, csn, i, apn);
760 				warnings--;
761 			}
762 			continue;
763 		}
764 
765 		cpumask_clear(dp);
766 		if (dattr)
767 			*(dattr + nslot) = SD_ATTR_INIT;
768 		for (j = i; j < csn; j++) {
769 			struct cpuset *b = csa[j];
770 
771 			if (apn == b->pn) {
772 				cpumask_or(dp, dp, b->effective_cpus);
773 				cpumask_and(dp, dp, non_isolated_cpus);
774 				if (dattr)
775 					update_domain_attr_tree(dattr + nslot, b);
776 
777 				/* Done with this partition */
778 				b->pn = -1;
779 			}
780 		}
781 		nslot++;
782 	}
783 	BUG_ON(nslot != ndoms);
784 
785 done:
786 	free_cpumask_var(non_isolated_cpus);
787 	kfree(csa);
788 
789 	/*
790 	 * Fallback to the default domain if kmalloc() failed.
791 	 * See comments in partition_sched_domains().
792 	 */
793 	if (doms == NULL)
794 		ndoms = 1;
795 
796 	*domains    = doms;
797 	*attributes = dattr;
798 	return ndoms;
799 }
800 
801 /*
802  * Rebuild scheduler domains.
803  *
804  * If the flag 'sched_load_balance' of any cpuset with non-empty
805  * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
806  * which has that flag enabled, or if any cpuset with a non-empty
807  * 'cpus' is removed, then call this routine to rebuild the
808  * scheduler's dynamic sched domains.
809  *
810  * Call with cpuset_mutex held.  Takes get_online_cpus().
811  */
812 static void rebuild_sched_domains_locked(void)
813 {
814 	struct sched_domain_attr *attr;
815 	cpumask_var_t *doms;
816 	int ndoms;
817 
818 	lockdep_assert_held(&cpuset_mutex);
819 	get_online_cpus();
820 
821 	/*
822 	 * We have raced with CPU hotplug. Don't do anything to avoid
823 	 * passing doms with offlined cpu to partition_sched_domains().
824 	 * Anyways, hotplug work item will rebuild sched domains.
825 	 */
826 	if (!cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
827 		goto out;
828 
829 	/* Generate domain masks and attrs */
830 	ndoms = generate_sched_domains(&doms, &attr);
831 
832 	/* Have scheduler rebuild the domains */
833 	partition_sched_domains(ndoms, doms, attr);
834 out:
835 	put_online_cpus();
836 }
837 #else /* !CONFIG_SMP */
838 static void rebuild_sched_domains_locked(void)
839 {
840 }
841 #endif /* CONFIG_SMP */
842 
843 void rebuild_sched_domains(void)
844 {
845 	mutex_lock(&cpuset_mutex);
846 	rebuild_sched_domains_locked();
847 	mutex_unlock(&cpuset_mutex);
848 }
849 
850 /**
851  * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
852  * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
853  *
854  * Iterate through each task of @cs updating its cpus_allowed to the
855  * effective cpuset's.  As this function is called with cpuset_mutex held,
856  * cpuset membership stays stable.
857  */
858 static void update_tasks_cpumask(struct cpuset *cs)
859 {
860 	struct css_task_iter it;
861 	struct task_struct *task;
862 
863 	css_task_iter_start(&cs->css, &it);
864 	while ((task = css_task_iter_next(&it)))
865 		set_cpus_allowed_ptr(task, cs->effective_cpus);
866 	css_task_iter_end(&it);
867 }
868 
869 /*
870  * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
871  * @cs: the cpuset to consider
872  * @new_cpus: temp variable for calculating new effective_cpus
873  *
874  * When congifured cpumask is changed, the effective cpumasks of this cpuset
875  * and all its descendants need to be updated.
876  *
877  * On legacy hierachy, effective_cpus will be the same with cpu_allowed.
878  *
879  * Called with cpuset_mutex held
880  */
881 static void update_cpumasks_hier(struct cpuset *cs, struct cpumask *new_cpus)
882 {
883 	struct cpuset *cp;
884 	struct cgroup_subsys_state *pos_css;
885 	bool need_rebuild_sched_domains = false;
886 
887 	rcu_read_lock();
888 	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
889 		struct cpuset *parent = parent_cs(cp);
890 
891 		cpumask_and(new_cpus, cp->cpus_allowed, parent->effective_cpus);
892 
893 		/*
894 		 * If it becomes empty, inherit the effective mask of the
895 		 * parent, which is guaranteed to have some CPUs.
896 		 */
897 		if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
898 		    cpumask_empty(new_cpus))
899 			cpumask_copy(new_cpus, parent->effective_cpus);
900 
901 		/* Skip the whole subtree if the cpumask remains the same. */
902 		if (cpumask_equal(new_cpus, cp->effective_cpus)) {
903 			pos_css = css_rightmost_descendant(pos_css);
904 			continue;
905 		}
906 
907 		if (!css_tryget_online(&cp->css))
908 			continue;
909 		rcu_read_unlock();
910 
911 		spin_lock_irq(&callback_lock);
912 		cpumask_copy(cp->effective_cpus, new_cpus);
913 		spin_unlock_irq(&callback_lock);
914 
915 		WARN_ON(!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
916 			!cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
917 
918 		update_tasks_cpumask(cp);
919 
920 		/*
921 		 * If the effective cpumask of any non-empty cpuset is changed,
922 		 * we need to rebuild sched domains.
923 		 */
924 		if (!cpumask_empty(cp->cpus_allowed) &&
925 		    is_sched_load_balance(cp))
926 			need_rebuild_sched_domains = true;
927 
928 		rcu_read_lock();
929 		css_put(&cp->css);
930 	}
931 	rcu_read_unlock();
932 
933 	if (need_rebuild_sched_domains)
934 		rebuild_sched_domains_locked();
935 }
936 
937 /**
938  * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
939  * @cs: the cpuset to consider
940  * @trialcs: trial cpuset
941  * @buf: buffer of cpu numbers written to this cpuset
942  */
943 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
944 			  const char *buf)
945 {
946 	int retval;
947 
948 	/* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
949 	if (cs == &top_cpuset)
950 		return -EACCES;
951 
952 	/*
953 	 * An empty cpus_allowed is ok only if the cpuset has no tasks.
954 	 * Since cpulist_parse() fails on an empty mask, we special case
955 	 * that parsing.  The validate_change() call ensures that cpusets
956 	 * with tasks have cpus.
957 	 */
958 	if (!*buf) {
959 		cpumask_clear(trialcs->cpus_allowed);
960 	} else {
961 		retval = cpulist_parse(buf, trialcs->cpus_allowed);
962 		if (retval < 0)
963 			return retval;
964 
965 		if (!cpumask_subset(trialcs->cpus_allowed,
966 				    top_cpuset.cpus_allowed))
967 			return -EINVAL;
968 	}
969 
970 	/* Nothing to do if the cpus didn't change */
971 	if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
972 		return 0;
973 
974 	retval = validate_change(cs, trialcs);
975 	if (retval < 0)
976 		return retval;
977 
978 	spin_lock_irq(&callback_lock);
979 	cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
980 	spin_unlock_irq(&callback_lock);
981 
982 	/* use trialcs->cpus_allowed as a temp variable */
983 	update_cpumasks_hier(cs, trialcs->cpus_allowed);
984 	return 0;
985 }
986 
987 /*
988  * Migrate memory region from one set of nodes to another.  This is
989  * performed asynchronously as it can be called from process migration path
990  * holding locks involved in process management.  All mm migrations are
991  * performed in the queued order and can be waited for by flushing
992  * cpuset_migrate_mm_wq.
993  */
994 
995 struct cpuset_migrate_mm_work {
996 	struct work_struct	work;
997 	struct mm_struct	*mm;
998 	nodemask_t		from;
999 	nodemask_t		to;
1000 };
1001 
1002 static void cpuset_migrate_mm_workfn(struct work_struct *work)
1003 {
1004 	struct cpuset_migrate_mm_work *mwork =
1005 		container_of(work, struct cpuset_migrate_mm_work, work);
1006 
1007 	/* on a wq worker, no need to worry about %current's mems_allowed */
1008 	do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL);
1009 	mmput(mwork->mm);
1010 	kfree(mwork);
1011 }
1012 
1013 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
1014 							const nodemask_t *to)
1015 {
1016 	struct cpuset_migrate_mm_work *mwork;
1017 
1018 	mwork = kzalloc(sizeof(*mwork), GFP_KERNEL);
1019 	if (mwork) {
1020 		mwork->mm = mm;
1021 		mwork->from = *from;
1022 		mwork->to = *to;
1023 		INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn);
1024 		queue_work(cpuset_migrate_mm_wq, &mwork->work);
1025 	} else {
1026 		mmput(mm);
1027 	}
1028 }
1029 
1030 static void cpuset_post_attach(void)
1031 {
1032 	flush_workqueue(cpuset_migrate_mm_wq);
1033 }
1034 
1035 /*
1036  * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
1037  * @tsk: the task to change
1038  * @newmems: new nodes that the task will be set
1039  *
1040  * In order to avoid seeing no nodes if the old and new nodes are disjoint,
1041  * we structure updates as setting all new allowed nodes, then clearing newly
1042  * disallowed ones.
1043  */
1044 static void cpuset_change_task_nodemask(struct task_struct *tsk,
1045 					nodemask_t *newmems)
1046 {
1047 	bool need_loop;
1048 
1049 	task_lock(tsk);
1050 	/*
1051 	 * Determine if a loop is necessary if another thread is doing
1052 	 * read_mems_allowed_begin().  If at least one node remains unchanged and
1053 	 * tsk does not have a mempolicy, then an empty nodemask will not be
1054 	 * possible when mems_allowed is larger than a word.
1055 	 */
1056 	need_loop = task_has_mempolicy(tsk) ||
1057 			!nodes_intersects(*newmems, tsk->mems_allowed);
1058 
1059 	if (need_loop) {
1060 		local_irq_disable();
1061 		write_seqcount_begin(&tsk->mems_allowed_seq);
1062 	}
1063 
1064 	nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
1065 	mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);
1066 
1067 	mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
1068 	tsk->mems_allowed = *newmems;
1069 
1070 	if (need_loop) {
1071 		write_seqcount_end(&tsk->mems_allowed_seq);
1072 		local_irq_enable();
1073 	}
1074 
1075 	task_unlock(tsk);
1076 }
1077 
1078 static void *cpuset_being_rebound;
1079 
1080 /**
1081  * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1082  * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1083  *
1084  * Iterate through each task of @cs updating its mems_allowed to the
1085  * effective cpuset's.  As this function is called with cpuset_mutex held,
1086  * cpuset membership stays stable.
1087  */
1088 static void update_tasks_nodemask(struct cpuset *cs)
1089 {
1090 	static nodemask_t newmems;	/* protected by cpuset_mutex */
1091 	struct css_task_iter it;
1092 	struct task_struct *task;
1093 
1094 	cpuset_being_rebound = cs;		/* causes mpol_dup() rebind */
1095 
1096 	guarantee_online_mems(cs, &newmems);
1097 
1098 	/*
1099 	 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1100 	 * take while holding tasklist_lock.  Forks can happen - the
1101 	 * mpol_dup() cpuset_being_rebound check will catch such forks,
1102 	 * and rebind their vma mempolicies too.  Because we still hold
1103 	 * the global cpuset_mutex, we know that no other rebind effort
1104 	 * will be contending for the global variable cpuset_being_rebound.
1105 	 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1106 	 * is idempotent.  Also migrate pages in each mm to new nodes.
1107 	 */
1108 	css_task_iter_start(&cs->css, &it);
1109 	while ((task = css_task_iter_next(&it))) {
1110 		struct mm_struct *mm;
1111 		bool migrate;
1112 
1113 		cpuset_change_task_nodemask(task, &newmems);
1114 
1115 		mm = get_task_mm(task);
1116 		if (!mm)
1117 			continue;
1118 
1119 		migrate = is_memory_migrate(cs);
1120 
1121 		mpol_rebind_mm(mm, &cs->mems_allowed);
1122 		if (migrate)
1123 			cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
1124 		else
1125 			mmput(mm);
1126 	}
1127 	css_task_iter_end(&it);
1128 
1129 	/*
1130 	 * All the tasks' nodemasks have been updated, update
1131 	 * cs->old_mems_allowed.
1132 	 */
1133 	cs->old_mems_allowed = newmems;
1134 
1135 	/* We're done rebinding vmas to this cpuset's new mems_allowed. */
1136 	cpuset_being_rebound = NULL;
1137 }
1138 
1139 /*
1140  * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
1141  * @cs: the cpuset to consider
1142  * @new_mems: a temp variable for calculating new effective_mems
1143  *
1144  * When configured nodemask is changed, the effective nodemasks of this cpuset
1145  * and all its descendants need to be updated.
1146  *
1147  * On legacy hiearchy, effective_mems will be the same with mems_allowed.
1148  *
1149  * Called with cpuset_mutex held
1150  */
1151 static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
1152 {
1153 	struct cpuset *cp;
1154 	struct cgroup_subsys_state *pos_css;
1155 
1156 	rcu_read_lock();
1157 	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1158 		struct cpuset *parent = parent_cs(cp);
1159 
1160 		nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);
1161 
1162 		/*
1163 		 * If it becomes empty, inherit the effective mask of the
1164 		 * parent, which is guaranteed to have some MEMs.
1165 		 */
1166 		if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
1167 		    nodes_empty(*new_mems))
1168 			*new_mems = parent->effective_mems;
1169 
1170 		/* Skip the whole subtree if the nodemask remains the same. */
1171 		if (nodes_equal(*new_mems, cp->effective_mems)) {
1172 			pos_css = css_rightmost_descendant(pos_css);
1173 			continue;
1174 		}
1175 
1176 		if (!css_tryget_online(&cp->css))
1177 			continue;
1178 		rcu_read_unlock();
1179 
1180 		spin_lock_irq(&callback_lock);
1181 		cp->effective_mems = *new_mems;
1182 		spin_unlock_irq(&callback_lock);
1183 
1184 		WARN_ON(!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
1185 			!nodes_equal(cp->mems_allowed, cp->effective_mems));
1186 
1187 		update_tasks_nodemask(cp);
1188 
1189 		rcu_read_lock();
1190 		css_put(&cp->css);
1191 	}
1192 	rcu_read_unlock();
1193 }
1194 
1195 /*
1196  * Handle user request to change the 'mems' memory placement
1197  * of a cpuset.  Needs to validate the request, update the
1198  * cpusets mems_allowed, and for each task in the cpuset,
1199  * update mems_allowed and rebind task's mempolicy and any vma
1200  * mempolicies and if the cpuset is marked 'memory_migrate',
1201  * migrate the tasks pages to the new memory.
1202  *
1203  * Call with cpuset_mutex held. May take callback_lock during call.
1204  * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1205  * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1206  * their mempolicies to the cpusets new mems_allowed.
1207  */
1208 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1209 			   const char *buf)
1210 {
1211 	int retval;
1212 
1213 	/*
1214 	 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
1215 	 * it's read-only
1216 	 */
1217 	if (cs == &top_cpuset) {
1218 		retval = -EACCES;
1219 		goto done;
1220 	}
1221 
1222 	/*
1223 	 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1224 	 * Since nodelist_parse() fails on an empty mask, we special case
1225 	 * that parsing.  The validate_change() call ensures that cpusets
1226 	 * with tasks have memory.
1227 	 */
1228 	if (!*buf) {
1229 		nodes_clear(trialcs->mems_allowed);
1230 	} else {
1231 		retval = nodelist_parse(buf, trialcs->mems_allowed);
1232 		if (retval < 0)
1233 			goto done;
1234 
1235 		if (!nodes_subset(trialcs->mems_allowed,
1236 				  top_cpuset.mems_allowed)) {
1237 			retval = -EINVAL;
1238 			goto done;
1239 		}
1240 	}
1241 
1242 	if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
1243 		retval = 0;		/* Too easy - nothing to do */
1244 		goto done;
1245 	}
1246 	retval = validate_change(cs, trialcs);
1247 	if (retval < 0)
1248 		goto done;
1249 
1250 	spin_lock_irq(&callback_lock);
1251 	cs->mems_allowed = trialcs->mems_allowed;
1252 	spin_unlock_irq(&callback_lock);
1253 
1254 	/* use trialcs->mems_allowed as a temp variable */
1255 	update_nodemasks_hier(cs, &trialcs->mems_allowed);
1256 done:
1257 	return retval;
1258 }
1259 
1260 int current_cpuset_is_being_rebound(void)
1261 {
1262 	int ret;
1263 
1264 	rcu_read_lock();
1265 	ret = task_cs(current) == cpuset_being_rebound;
1266 	rcu_read_unlock();
1267 
1268 	return ret;
1269 }
1270 
1271 static int update_relax_domain_level(struct cpuset *cs, s64 val)
1272 {
1273 #ifdef CONFIG_SMP
1274 	if (val < -1 || val >= sched_domain_level_max)
1275 		return -EINVAL;
1276 #endif
1277 
1278 	if (val != cs->relax_domain_level) {
1279 		cs->relax_domain_level = val;
1280 		if (!cpumask_empty(cs->cpus_allowed) &&
1281 		    is_sched_load_balance(cs))
1282 			rebuild_sched_domains_locked();
1283 	}
1284 
1285 	return 0;
1286 }
1287 
1288 /**
1289  * update_tasks_flags - update the spread flags of tasks in the cpuset.
1290  * @cs: the cpuset in which each task's spread flags needs to be changed
1291  *
1292  * Iterate through each task of @cs updating its spread flags.  As this
1293  * function is called with cpuset_mutex held, cpuset membership stays
1294  * stable.
1295  */
1296 static void update_tasks_flags(struct cpuset *cs)
1297 {
1298 	struct css_task_iter it;
1299 	struct task_struct *task;
1300 
1301 	css_task_iter_start(&cs->css, &it);
1302 	while ((task = css_task_iter_next(&it)))
1303 		cpuset_update_task_spread_flag(cs, task);
1304 	css_task_iter_end(&it);
1305 }
1306 
1307 /*
1308  * update_flag - read a 0 or a 1 in a file and update associated flag
1309  * bit:		the bit to update (see cpuset_flagbits_t)
1310  * cs:		the cpuset to update
1311  * turning_on: 	whether the flag is being set or cleared
1312  *
1313  * Call with cpuset_mutex held.
1314  */
1315 
1316 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1317 		       int turning_on)
1318 {
1319 	struct cpuset *trialcs;
1320 	int balance_flag_changed;
1321 	int spread_flag_changed;
1322 	int err;
1323 
1324 	trialcs = alloc_trial_cpuset(cs);
1325 	if (!trialcs)
1326 		return -ENOMEM;
1327 
1328 	if (turning_on)
1329 		set_bit(bit, &trialcs->flags);
1330 	else
1331 		clear_bit(bit, &trialcs->flags);
1332 
1333 	err = validate_change(cs, trialcs);
1334 	if (err < 0)
1335 		goto out;
1336 
1337 	balance_flag_changed = (is_sched_load_balance(cs) !=
1338 				is_sched_load_balance(trialcs));
1339 
1340 	spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1341 			|| (is_spread_page(cs) != is_spread_page(trialcs)));
1342 
1343 	spin_lock_irq(&callback_lock);
1344 	cs->flags = trialcs->flags;
1345 	spin_unlock_irq(&callback_lock);
1346 
1347 	if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1348 		rebuild_sched_domains_locked();
1349 
1350 	if (spread_flag_changed)
1351 		update_tasks_flags(cs);
1352 out:
1353 	free_trial_cpuset(trialcs);
1354 	return err;
1355 }
1356 
1357 /*
1358  * Frequency meter - How fast is some event occurring?
1359  *
1360  * These routines manage a digitally filtered, constant time based,
1361  * event frequency meter.  There are four routines:
1362  *   fmeter_init() - initialize a frequency meter.
1363  *   fmeter_markevent() - called each time the event happens.
1364  *   fmeter_getrate() - returns the recent rate of such events.
1365  *   fmeter_update() - internal routine used to update fmeter.
1366  *
1367  * A common data structure is passed to each of these routines,
1368  * which is used to keep track of the state required to manage the
1369  * frequency meter and its digital filter.
1370  *
1371  * The filter works on the number of events marked per unit time.
1372  * The filter is single-pole low-pass recursive (IIR).  The time unit
1373  * is 1 second.  Arithmetic is done using 32-bit integers scaled to
1374  * simulate 3 decimal digits of precision (multiplied by 1000).
1375  *
1376  * With an FM_COEF of 933, and a time base of 1 second, the filter
1377  * has a half-life of 10 seconds, meaning that if the events quit
1378  * happening, then the rate returned from the fmeter_getrate()
1379  * will be cut in half each 10 seconds, until it converges to zero.
1380  *
1381  * It is not worth doing a real infinitely recursive filter.  If more
1382  * than FM_MAXTICKS ticks have elapsed since the last filter event,
1383  * just compute FM_MAXTICKS ticks worth, by which point the level
1384  * will be stable.
1385  *
1386  * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1387  * arithmetic overflow in the fmeter_update() routine.
1388  *
1389  * Given the simple 32 bit integer arithmetic used, this meter works
1390  * best for reporting rates between one per millisecond (msec) and
1391  * one per 32 (approx) seconds.  At constant rates faster than one
1392  * per msec it maxes out at values just under 1,000,000.  At constant
1393  * rates between one per msec, and one per second it will stabilize
1394  * to a value N*1000, where N is the rate of events per second.
1395  * At constant rates between one per second and one per 32 seconds,
1396  * it will be choppy, moving up on the seconds that have an event,
1397  * and then decaying until the next event.  At rates slower than
1398  * about one in 32 seconds, it decays all the way back to zero between
1399  * each event.
1400  */
1401 
1402 #define FM_COEF 933		/* coefficient for half-life of 10 secs */
1403 #define FM_MAXTICKS ((u32)99)   /* useless computing more ticks than this */
1404 #define FM_MAXCNT 1000000	/* limit cnt to avoid overflow */
1405 #define FM_SCALE 1000		/* faux fixed point scale */
1406 
1407 /* Initialize a frequency meter */
1408 static void fmeter_init(struct fmeter *fmp)
1409 {
1410 	fmp->cnt = 0;
1411 	fmp->val = 0;
1412 	fmp->time = 0;
1413 	spin_lock_init(&fmp->lock);
1414 }
1415 
1416 /* Internal meter update - process cnt events and update value */
1417 static void fmeter_update(struct fmeter *fmp)
1418 {
1419 	time64_t now;
1420 	u32 ticks;
1421 
1422 	now = ktime_get_seconds();
1423 	ticks = now - fmp->time;
1424 
1425 	if (ticks == 0)
1426 		return;
1427 
1428 	ticks = min(FM_MAXTICKS, ticks);
1429 	while (ticks-- > 0)
1430 		fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1431 	fmp->time = now;
1432 
1433 	fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1434 	fmp->cnt = 0;
1435 }
1436 
1437 /* Process any previous ticks, then bump cnt by one (times scale). */
1438 static void fmeter_markevent(struct fmeter *fmp)
1439 {
1440 	spin_lock(&fmp->lock);
1441 	fmeter_update(fmp);
1442 	fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1443 	spin_unlock(&fmp->lock);
1444 }
1445 
1446 /* Process any previous ticks, then return current value. */
1447 static int fmeter_getrate(struct fmeter *fmp)
1448 {
1449 	int val;
1450 
1451 	spin_lock(&fmp->lock);
1452 	fmeter_update(fmp);
1453 	val = fmp->val;
1454 	spin_unlock(&fmp->lock);
1455 	return val;
1456 }
1457 
1458 static struct cpuset *cpuset_attach_old_cs;
1459 
1460 /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
1461 static int cpuset_can_attach(struct cgroup_taskset *tset)
1462 {
1463 	struct cgroup_subsys_state *css;
1464 	struct cpuset *cs;
1465 	struct task_struct *task;
1466 	int ret;
1467 
1468 	/* used later by cpuset_attach() */
1469 	cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css));
1470 	cs = css_cs(css);
1471 
1472 	mutex_lock(&cpuset_mutex);
1473 
1474 	/* allow moving tasks into an empty cpuset if on default hierarchy */
1475 	ret = -ENOSPC;
1476 	if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
1477 	    (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
1478 		goto out_unlock;
1479 
1480 	cgroup_taskset_for_each(task, css, tset) {
1481 		ret = task_can_attach(task, cs->cpus_allowed);
1482 		if (ret)
1483 			goto out_unlock;
1484 		ret = security_task_setscheduler(task);
1485 		if (ret)
1486 			goto out_unlock;
1487 	}
1488 
1489 	/*
1490 	 * Mark attach is in progress.  This makes validate_change() fail
1491 	 * changes which zero cpus/mems_allowed.
1492 	 */
1493 	cs->attach_in_progress++;
1494 	ret = 0;
1495 out_unlock:
1496 	mutex_unlock(&cpuset_mutex);
1497 	return ret;
1498 }
1499 
1500 static void cpuset_cancel_attach(struct cgroup_taskset *tset)
1501 {
1502 	struct cgroup_subsys_state *css;
1503 	struct cpuset *cs;
1504 
1505 	cgroup_taskset_first(tset, &css);
1506 	cs = css_cs(css);
1507 
1508 	mutex_lock(&cpuset_mutex);
1509 	css_cs(css)->attach_in_progress--;
1510 	mutex_unlock(&cpuset_mutex);
1511 }
1512 
1513 /*
1514  * Protected by cpuset_mutex.  cpus_attach is used only by cpuset_attach()
1515  * but we can't allocate it dynamically there.  Define it global and
1516  * allocate from cpuset_init().
1517  */
1518 static cpumask_var_t cpus_attach;
1519 
1520 static void cpuset_attach(struct cgroup_taskset *tset)
1521 {
1522 	/* static buf protected by cpuset_mutex */
1523 	static nodemask_t cpuset_attach_nodemask_to;
1524 	struct task_struct *task;
1525 	struct task_struct *leader;
1526 	struct cgroup_subsys_state *css;
1527 	struct cpuset *cs;
1528 	struct cpuset *oldcs = cpuset_attach_old_cs;
1529 
1530 	cgroup_taskset_first(tset, &css);
1531 	cs = css_cs(css);
1532 
1533 	mutex_lock(&cpuset_mutex);
1534 
1535 	/* prepare for attach */
1536 	if (cs == &top_cpuset)
1537 		cpumask_copy(cpus_attach, cpu_possible_mask);
1538 	else
1539 		guarantee_online_cpus(cs, cpus_attach);
1540 
1541 	guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
1542 
1543 	cgroup_taskset_for_each(task, css, tset) {
1544 		/*
1545 		 * can_attach beforehand should guarantee that this doesn't
1546 		 * fail.  TODO: have a better way to handle failure here
1547 		 */
1548 		WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
1549 
1550 		cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
1551 		cpuset_update_task_spread_flag(cs, task);
1552 	}
1553 
1554 	/*
1555 	 * Change mm for all threadgroup leaders. This is expensive and may
1556 	 * sleep and should be moved outside migration path proper.
1557 	 */
1558 	cpuset_attach_nodemask_to = cs->effective_mems;
1559 	cgroup_taskset_for_each_leader(leader, css, tset) {
1560 		struct mm_struct *mm = get_task_mm(leader);
1561 
1562 		if (mm) {
1563 			mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
1564 
1565 			/*
1566 			 * old_mems_allowed is the same with mems_allowed
1567 			 * here, except if this task is being moved
1568 			 * automatically due to hotplug.  In that case
1569 			 * @mems_allowed has been updated and is empty, so
1570 			 * @old_mems_allowed is the right nodesets that we
1571 			 * migrate mm from.
1572 			 */
1573 			if (is_memory_migrate(cs))
1574 				cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
1575 						  &cpuset_attach_nodemask_to);
1576 			else
1577 				mmput(mm);
1578 		}
1579 	}
1580 
1581 	cs->old_mems_allowed = cpuset_attach_nodemask_to;
1582 
1583 	cs->attach_in_progress--;
1584 	if (!cs->attach_in_progress)
1585 		wake_up(&cpuset_attach_wq);
1586 
1587 	mutex_unlock(&cpuset_mutex);
1588 }
1589 
1590 /* The various types of files and directories in a cpuset file system */
1591 
1592 typedef enum {
1593 	FILE_MEMORY_MIGRATE,
1594 	FILE_CPULIST,
1595 	FILE_MEMLIST,
1596 	FILE_EFFECTIVE_CPULIST,
1597 	FILE_EFFECTIVE_MEMLIST,
1598 	FILE_CPU_EXCLUSIVE,
1599 	FILE_MEM_EXCLUSIVE,
1600 	FILE_MEM_HARDWALL,
1601 	FILE_SCHED_LOAD_BALANCE,
1602 	FILE_SCHED_RELAX_DOMAIN_LEVEL,
1603 	FILE_MEMORY_PRESSURE_ENABLED,
1604 	FILE_MEMORY_PRESSURE,
1605 	FILE_SPREAD_PAGE,
1606 	FILE_SPREAD_SLAB,
1607 } cpuset_filetype_t;
1608 
1609 static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
1610 			    u64 val)
1611 {
1612 	struct cpuset *cs = css_cs(css);
1613 	cpuset_filetype_t type = cft->private;
1614 	int retval = 0;
1615 
1616 	mutex_lock(&cpuset_mutex);
1617 	if (!is_cpuset_online(cs)) {
1618 		retval = -ENODEV;
1619 		goto out_unlock;
1620 	}
1621 
1622 	switch (type) {
1623 	case FILE_CPU_EXCLUSIVE:
1624 		retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
1625 		break;
1626 	case FILE_MEM_EXCLUSIVE:
1627 		retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
1628 		break;
1629 	case FILE_MEM_HARDWALL:
1630 		retval = update_flag(CS_MEM_HARDWALL, cs, val);
1631 		break;
1632 	case FILE_SCHED_LOAD_BALANCE:
1633 		retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1634 		break;
1635 	case FILE_MEMORY_MIGRATE:
1636 		retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
1637 		break;
1638 	case FILE_MEMORY_PRESSURE_ENABLED:
1639 		cpuset_memory_pressure_enabled = !!val;
1640 		break;
1641 	case FILE_SPREAD_PAGE:
1642 		retval = update_flag(CS_SPREAD_PAGE, cs, val);
1643 		break;
1644 	case FILE_SPREAD_SLAB:
1645 		retval = update_flag(CS_SPREAD_SLAB, cs, val);
1646 		break;
1647 	default:
1648 		retval = -EINVAL;
1649 		break;
1650 	}
1651 out_unlock:
1652 	mutex_unlock(&cpuset_mutex);
1653 	return retval;
1654 }
1655 
1656 static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
1657 			    s64 val)
1658 {
1659 	struct cpuset *cs = css_cs(css);
1660 	cpuset_filetype_t type = cft->private;
1661 	int retval = -ENODEV;
1662 
1663 	mutex_lock(&cpuset_mutex);
1664 	if (!is_cpuset_online(cs))
1665 		goto out_unlock;
1666 
1667 	switch (type) {
1668 	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1669 		retval = update_relax_domain_level(cs, val);
1670 		break;
1671 	default:
1672 		retval = -EINVAL;
1673 		break;
1674 	}
1675 out_unlock:
1676 	mutex_unlock(&cpuset_mutex);
1677 	return retval;
1678 }
1679 
1680 /*
1681  * Common handling for a write to a "cpus" or "mems" file.
1682  */
1683 static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
1684 				    char *buf, size_t nbytes, loff_t off)
1685 {
1686 	struct cpuset *cs = css_cs(of_css(of));
1687 	struct cpuset *trialcs;
1688 	int retval = -ENODEV;
1689 
1690 	buf = strstrip(buf);
1691 
1692 	/*
1693 	 * CPU or memory hotunplug may leave @cs w/o any execution
1694 	 * resources, in which case the hotplug code asynchronously updates
1695 	 * configuration and transfers all tasks to the nearest ancestor
1696 	 * which can execute.
1697 	 *
1698 	 * As writes to "cpus" or "mems" may restore @cs's execution
1699 	 * resources, wait for the previously scheduled operations before
1700 	 * proceeding, so that we don't end up keep removing tasks added
1701 	 * after execution capability is restored.
1702 	 *
1703 	 * cpuset_hotplug_work calls back into cgroup core via
1704 	 * cgroup_transfer_tasks() and waiting for it from a cgroupfs
1705 	 * operation like this one can lead to a deadlock through kernfs
1706 	 * active_ref protection.  Let's break the protection.  Losing the
1707 	 * protection is okay as we check whether @cs is online after
1708 	 * grabbing cpuset_mutex anyway.  This only happens on the legacy
1709 	 * hierarchies.
1710 	 */
1711 	css_get(&cs->css);
1712 	kernfs_break_active_protection(of->kn);
1713 	flush_work(&cpuset_hotplug_work);
1714 
1715 	mutex_lock(&cpuset_mutex);
1716 	if (!is_cpuset_online(cs))
1717 		goto out_unlock;
1718 
1719 	trialcs = alloc_trial_cpuset(cs);
1720 	if (!trialcs) {
1721 		retval = -ENOMEM;
1722 		goto out_unlock;
1723 	}
1724 
1725 	switch (of_cft(of)->private) {
1726 	case FILE_CPULIST:
1727 		retval = update_cpumask(cs, trialcs, buf);
1728 		break;
1729 	case FILE_MEMLIST:
1730 		retval = update_nodemask(cs, trialcs, buf);
1731 		break;
1732 	default:
1733 		retval = -EINVAL;
1734 		break;
1735 	}
1736 
1737 	free_trial_cpuset(trialcs);
1738 out_unlock:
1739 	mutex_unlock(&cpuset_mutex);
1740 	kernfs_unbreak_active_protection(of->kn);
1741 	css_put(&cs->css);
1742 	flush_workqueue(cpuset_migrate_mm_wq);
1743 	return retval ?: nbytes;
1744 }
1745 
1746 /*
1747  * These ascii lists should be read in a single call, by using a user
1748  * buffer large enough to hold the entire map.  If read in smaller
1749  * chunks, there is no guarantee of atomicity.  Since the display format
1750  * used, list of ranges of sequential numbers, is variable length,
1751  * and since these maps can change value dynamically, one could read
1752  * gibberish by doing partial reads while a list was changing.
1753  */
1754 static int cpuset_common_seq_show(struct seq_file *sf, void *v)
1755 {
1756 	struct cpuset *cs = css_cs(seq_css(sf));
1757 	cpuset_filetype_t type = seq_cft(sf)->private;
1758 	int ret = 0;
1759 
1760 	spin_lock_irq(&callback_lock);
1761 
1762 	switch (type) {
1763 	case FILE_CPULIST:
1764 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed));
1765 		break;
1766 	case FILE_MEMLIST:
1767 		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
1768 		break;
1769 	case FILE_EFFECTIVE_CPULIST:
1770 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
1771 		break;
1772 	case FILE_EFFECTIVE_MEMLIST:
1773 		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
1774 		break;
1775 	default:
1776 		ret = -EINVAL;
1777 	}
1778 
1779 	spin_unlock_irq(&callback_lock);
1780 	return ret;
1781 }
1782 
1783 static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
1784 {
1785 	struct cpuset *cs = css_cs(css);
1786 	cpuset_filetype_t type = cft->private;
1787 	switch (type) {
1788 	case FILE_CPU_EXCLUSIVE:
1789 		return is_cpu_exclusive(cs);
1790 	case FILE_MEM_EXCLUSIVE:
1791 		return is_mem_exclusive(cs);
1792 	case FILE_MEM_HARDWALL:
1793 		return is_mem_hardwall(cs);
1794 	case FILE_SCHED_LOAD_BALANCE:
1795 		return is_sched_load_balance(cs);
1796 	case FILE_MEMORY_MIGRATE:
1797 		return is_memory_migrate(cs);
1798 	case FILE_MEMORY_PRESSURE_ENABLED:
1799 		return cpuset_memory_pressure_enabled;
1800 	case FILE_MEMORY_PRESSURE:
1801 		return fmeter_getrate(&cs->fmeter);
1802 	case FILE_SPREAD_PAGE:
1803 		return is_spread_page(cs);
1804 	case FILE_SPREAD_SLAB:
1805 		return is_spread_slab(cs);
1806 	default:
1807 		BUG();
1808 	}
1809 
1810 	/* Unreachable but makes gcc happy */
1811 	return 0;
1812 }
1813 
1814 static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
1815 {
1816 	struct cpuset *cs = css_cs(css);
1817 	cpuset_filetype_t type = cft->private;
1818 	switch (type) {
1819 	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1820 		return cs->relax_domain_level;
1821 	default:
1822 		BUG();
1823 	}
1824 
1825 	/* Unrechable but makes gcc happy */
1826 	return 0;
1827 }
1828 
1829 
1830 /*
1831  * for the common functions, 'private' gives the type of file
1832  */
1833 
1834 static struct cftype files[] = {
1835 	{
1836 		.name = "cpus",
1837 		.seq_show = cpuset_common_seq_show,
1838 		.write = cpuset_write_resmask,
1839 		.max_write_len = (100U + 6 * NR_CPUS),
1840 		.private = FILE_CPULIST,
1841 	},
1842 
1843 	{
1844 		.name = "mems",
1845 		.seq_show = cpuset_common_seq_show,
1846 		.write = cpuset_write_resmask,
1847 		.max_write_len = (100U + 6 * MAX_NUMNODES),
1848 		.private = FILE_MEMLIST,
1849 	},
1850 
1851 	{
1852 		.name = "effective_cpus",
1853 		.seq_show = cpuset_common_seq_show,
1854 		.private = FILE_EFFECTIVE_CPULIST,
1855 	},
1856 
1857 	{
1858 		.name = "effective_mems",
1859 		.seq_show = cpuset_common_seq_show,
1860 		.private = FILE_EFFECTIVE_MEMLIST,
1861 	},
1862 
1863 	{
1864 		.name = "cpu_exclusive",
1865 		.read_u64 = cpuset_read_u64,
1866 		.write_u64 = cpuset_write_u64,
1867 		.private = FILE_CPU_EXCLUSIVE,
1868 	},
1869 
1870 	{
1871 		.name = "mem_exclusive",
1872 		.read_u64 = cpuset_read_u64,
1873 		.write_u64 = cpuset_write_u64,
1874 		.private = FILE_MEM_EXCLUSIVE,
1875 	},
1876 
1877 	{
1878 		.name = "mem_hardwall",
1879 		.read_u64 = cpuset_read_u64,
1880 		.write_u64 = cpuset_write_u64,
1881 		.private = FILE_MEM_HARDWALL,
1882 	},
1883 
1884 	{
1885 		.name = "sched_load_balance",
1886 		.read_u64 = cpuset_read_u64,
1887 		.write_u64 = cpuset_write_u64,
1888 		.private = FILE_SCHED_LOAD_BALANCE,
1889 	},
1890 
1891 	{
1892 		.name = "sched_relax_domain_level",
1893 		.read_s64 = cpuset_read_s64,
1894 		.write_s64 = cpuset_write_s64,
1895 		.private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
1896 	},
1897 
1898 	{
1899 		.name = "memory_migrate",
1900 		.read_u64 = cpuset_read_u64,
1901 		.write_u64 = cpuset_write_u64,
1902 		.private = FILE_MEMORY_MIGRATE,
1903 	},
1904 
1905 	{
1906 		.name = "memory_pressure",
1907 		.read_u64 = cpuset_read_u64,
1908 	},
1909 
1910 	{
1911 		.name = "memory_spread_page",
1912 		.read_u64 = cpuset_read_u64,
1913 		.write_u64 = cpuset_write_u64,
1914 		.private = FILE_SPREAD_PAGE,
1915 	},
1916 
1917 	{
1918 		.name = "memory_spread_slab",
1919 		.read_u64 = cpuset_read_u64,
1920 		.write_u64 = cpuset_write_u64,
1921 		.private = FILE_SPREAD_SLAB,
1922 	},
1923 
1924 	{
1925 		.name = "memory_pressure_enabled",
1926 		.flags = CFTYPE_ONLY_ON_ROOT,
1927 		.read_u64 = cpuset_read_u64,
1928 		.write_u64 = cpuset_write_u64,
1929 		.private = FILE_MEMORY_PRESSURE_ENABLED,
1930 	},
1931 
1932 	{ }	/* terminate */
1933 };
1934 
1935 /*
1936  *	cpuset_css_alloc - allocate a cpuset css
1937  *	cgrp:	control group that the new cpuset will be part of
1938  */
1939 
1940 static struct cgroup_subsys_state *
1941 cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
1942 {
1943 	struct cpuset *cs;
1944 
1945 	if (!parent_css)
1946 		return &top_cpuset.css;
1947 
1948 	cs = kzalloc(sizeof(*cs), GFP_KERNEL);
1949 	if (!cs)
1950 		return ERR_PTR(-ENOMEM);
1951 	if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL))
1952 		goto free_cs;
1953 	if (!alloc_cpumask_var(&cs->effective_cpus, GFP_KERNEL))
1954 		goto free_cpus;
1955 
1956 	set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1957 	cpumask_clear(cs->cpus_allowed);
1958 	nodes_clear(cs->mems_allowed);
1959 	cpumask_clear(cs->effective_cpus);
1960 	nodes_clear(cs->effective_mems);
1961 	fmeter_init(&cs->fmeter);
1962 	cs->relax_domain_level = -1;
1963 
1964 	return &cs->css;
1965 
1966 free_cpus:
1967 	free_cpumask_var(cs->cpus_allowed);
1968 free_cs:
1969 	kfree(cs);
1970 	return ERR_PTR(-ENOMEM);
1971 }
1972 
1973 static int cpuset_css_online(struct cgroup_subsys_state *css)
1974 {
1975 	struct cpuset *cs = css_cs(css);
1976 	struct cpuset *parent = parent_cs(cs);
1977 	struct cpuset *tmp_cs;
1978 	struct cgroup_subsys_state *pos_css;
1979 
1980 	if (!parent)
1981 		return 0;
1982 
1983 	mutex_lock(&cpuset_mutex);
1984 
1985 	set_bit(CS_ONLINE, &cs->flags);
1986 	if (is_spread_page(parent))
1987 		set_bit(CS_SPREAD_PAGE, &cs->flags);
1988 	if (is_spread_slab(parent))
1989 		set_bit(CS_SPREAD_SLAB, &cs->flags);
1990 
1991 	cpuset_inc();
1992 
1993 	spin_lock_irq(&callback_lock);
1994 	if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) {
1995 		cpumask_copy(cs->effective_cpus, parent->effective_cpus);
1996 		cs->effective_mems = parent->effective_mems;
1997 	}
1998 	spin_unlock_irq(&callback_lock);
1999 
2000 	if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
2001 		goto out_unlock;
2002 
2003 	/*
2004 	 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
2005 	 * set.  This flag handling is implemented in cgroup core for
2006 	 * histrical reasons - the flag may be specified during mount.
2007 	 *
2008 	 * Currently, if any sibling cpusets have exclusive cpus or mem, we
2009 	 * refuse to clone the configuration - thereby refusing the task to
2010 	 * be entered, and as a result refusing the sys_unshare() or
2011 	 * clone() which initiated it.  If this becomes a problem for some
2012 	 * users who wish to allow that scenario, then this could be
2013 	 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
2014 	 * (and likewise for mems) to the new cgroup.
2015 	 */
2016 	rcu_read_lock();
2017 	cpuset_for_each_child(tmp_cs, pos_css, parent) {
2018 		if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
2019 			rcu_read_unlock();
2020 			goto out_unlock;
2021 		}
2022 	}
2023 	rcu_read_unlock();
2024 
2025 	spin_lock_irq(&callback_lock);
2026 	cs->mems_allowed = parent->mems_allowed;
2027 	cs->effective_mems = parent->mems_allowed;
2028 	cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
2029 	cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
2030 	spin_unlock_irq(&callback_lock);
2031 out_unlock:
2032 	mutex_unlock(&cpuset_mutex);
2033 	return 0;
2034 }
2035 
2036 /*
2037  * If the cpuset being removed has its flag 'sched_load_balance'
2038  * enabled, then simulate turning sched_load_balance off, which
2039  * will call rebuild_sched_domains_locked().
2040  */
2041 
2042 static void cpuset_css_offline(struct cgroup_subsys_state *css)
2043 {
2044 	struct cpuset *cs = css_cs(css);
2045 
2046 	mutex_lock(&cpuset_mutex);
2047 
2048 	if (is_sched_load_balance(cs))
2049 		update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
2050 
2051 	cpuset_dec();
2052 	clear_bit(CS_ONLINE, &cs->flags);
2053 
2054 	mutex_unlock(&cpuset_mutex);
2055 }
2056 
2057 static void cpuset_css_free(struct cgroup_subsys_state *css)
2058 {
2059 	struct cpuset *cs = css_cs(css);
2060 
2061 	free_cpumask_var(cs->effective_cpus);
2062 	free_cpumask_var(cs->cpus_allowed);
2063 	kfree(cs);
2064 }
2065 
2066 static void cpuset_bind(struct cgroup_subsys_state *root_css)
2067 {
2068 	mutex_lock(&cpuset_mutex);
2069 	spin_lock_irq(&callback_lock);
2070 
2071 	if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) {
2072 		cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
2073 		top_cpuset.mems_allowed = node_possible_map;
2074 	} else {
2075 		cpumask_copy(top_cpuset.cpus_allowed,
2076 			     top_cpuset.effective_cpus);
2077 		top_cpuset.mems_allowed = top_cpuset.effective_mems;
2078 	}
2079 
2080 	spin_unlock_irq(&callback_lock);
2081 	mutex_unlock(&cpuset_mutex);
2082 }
2083 
2084 /*
2085  * Make sure the new task conform to the current state of its parent,
2086  * which could have been changed by cpuset just after it inherits the
2087  * state from the parent and before it sits on the cgroup's task list.
2088  */
2089 static void cpuset_fork(struct task_struct *task)
2090 {
2091 	if (task_css_is_root(task, cpuset_cgrp_id))
2092 		return;
2093 
2094 	set_cpus_allowed_ptr(task, &current->cpus_allowed);
2095 	task->mems_allowed = current->mems_allowed;
2096 }
2097 
2098 struct cgroup_subsys cpuset_cgrp_subsys = {
2099 	.css_alloc	= cpuset_css_alloc,
2100 	.css_online	= cpuset_css_online,
2101 	.css_offline	= cpuset_css_offline,
2102 	.css_free	= cpuset_css_free,
2103 	.can_attach	= cpuset_can_attach,
2104 	.cancel_attach	= cpuset_cancel_attach,
2105 	.attach		= cpuset_attach,
2106 	.post_attach	= cpuset_post_attach,
2107 	.bind		= cpuset_bind,
2108 	.fork		= cpuset_fork,
2109 	.legacy_cftypes	= files,
2110 	.early_init	= true,
2111 };
2112 
2113 /**
2114  * cpuset_init - initialize cpusets at system boot
2115  *
2116  * Description: Initialize top_cpuset and the cpuset internal file system,
2117  **/
2118 
2119 int __init cpuset_init(void)
2120 {
2121 	int err = 0;
2122 
2123 	if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
2124 		BUG();
2125 	if (!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL))
2126 		BUG();
2127 
2128 	cpumask_setall(top_cpuset.cpus_allowed);
2129 	nodes_setall(top_cpuset.mems_allowed);
2130 	cpumask_setall(top_cpuset.effective_cpus);
2131 	nodes_setall(top_cpuset.effective_mems);
2132 
2133 	fmeter_init(&top_cpuset.fmeter);
2134 	set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
2135 	top_cpuset.relax_domain_level = -1;
2136 
2137 	err = register_filesystem(&cpuset_fs_type);
2138 	if (err < 0)
2139 		return err;
2140 
2141 	if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
2142 		BUG();
2143 
2144 	return 0;
2145 }
2146 
2147 /*
2148  * If CPU and/or memory hotplug handlers, below, unplug any CPUs
2149  * or memory nodes, we need to walk over the cpuset hierarchy,
2150  * removing that CPU or node from all cpusets.  If this removes the
2151  * last CPU or node from a cpuset, then move the tasks in the empty
2152  * cpuset to its next-highest non-empty parent.
2153  */
2154 static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
2155 {
2156 	struct cpuset *parent;
2157 
2158 	/*
2159 	 * Find its next-highest non-empty parent, (top cpuset
2160 	 * has online cpus, so can't be empty).
2161 	 */
2162 	parent = parent_cs(cs);
2163 	while (cpumask_empty(parent->cpus_allowed) ||
2164 			nodes_empty(parent->mems_allowed))
2165 		parent = parent_cs(parent);
2166 
2167 	if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
2168 		pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
2169 		pr_cont_cgroup_name(cs->css.cgroup);
2170 		pr_cont("\n");
2171 	}
2172 }
2173 
2174 static void
2175 hotplug_update_tasks_legacy(struct cpuset *cs,
2176 			    struct cpumask *new_cpus, nodemask_t *new_mems,
2177 			    bool cpus_updated, bool mems_updated)
2178 {
2179 	bool is_empty;
2180 
2181 	spin_lock_irq(&callback_lock);
2182 	cpumask_copy(cs->cpus_allowed, new_cpus);
2183 	cpumask_copy(cs->effective_cpus, new_cpus);
2184 	cs->mems_allowed = *new_mems;
2185 	cs->effective_mems = *new_mems;
2186 	spin_unlock_irq(&callback_lock);
2187 
2188 	/*
2189 	 * Don't call update_tasks_cpumask() if the cpuset becomes empty,
2190 	 * as the tasks will be migratecd to an ancestor.
2191 	 */
2192 	if (cpus_updated && !cpumask_empty(cs->cpus_allowed))
2193 		update_tasks_cpumask(cs);
2194 	if (mems_updated && !nodes_empty(cs->mems_allowed))
2195 		update_tasks_nodemask(cs);
2196 
2197 	is_empty = cpumask_empty(cs->cpus_allowed) ||
2198 		   nodes_empty(cs->mems_allowed);
2199 
2200 	mutex_unlock(&cpuset_mutex);
2201 
2202 	/*
2203 	 * Move tasks to the nearest ancestor with execution resources,
2204 	 * This is full cgroup operation which will also call back into
2205 	 * cpuset. Should be done outside any lock.
2206 	 */
2207 	if (is_empty)
2208 		remove_tasks_in_empty_cpuset(cs);
2209 
2210 	mutex_lock(&cpuset_mutex);
2211 }
2212 
2213 static void
2214 hotplug_update_tasks(struct cpuset *cs,
2215 		     struct cpumask *new_cpus, nodemask_t *new_mems,
2216 		     bool cpus_updated, bool mems_updated)
2217 {
2218 	if (cpumask_empty(new_cpus))
2219 		cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
2220 	if (nodes_empty(*new_mems))
2221 		*new_mems = parent_cs(cs)->effective_mems;
2222 
2223 	spin_lock_irq(&callback_lock);
2224 	cpumask_copy(cs->effective_cpus, new_cpus);
2225 	cs->effective_mems = *new_mems;
2226 	spin_unlock_irq(&callback_lock);
2227 
2228 	if (cpus_updated)
2229 		update_tasks_cpumask(cs);
2230 	if (mems_updated)
2231 		update_tasks_nodemask(cs);
2232 }
2233 
2234 /**
2235  * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
2236  * @cs: cpuset in interest
2237  *
2238  * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
2239  * offline, update @cs accordingly.  If @cs ends up with no CPU or memory,
2240  * all its tasks are moved to the nearest ancestor with both resources.
2241  */
2242 static void cpuset_hotplug_update_tasks(struct cpuset *cs)
2243 {
2244 	static cpumask_t new_cpus;
2245 	static nodemask_t new_mems;
2246 	bool cpus_updated;
2247 	bool mems_updated;
2248 retry:
2249 	wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
2250 
2251 	mutex_lock(&cpuset_mutex);
2252 
2253 	/*
2254 	 * We have raced with task attaching. We wait until attaching
2255 	 * is finished, so we won't attach a task to an empty cpuset.
2256 	 */
2257 	if (cs->attach_in_progress) {
2258 		mutex_unlock(&cpuset_mutex);
2259 		goto retry;
2260 	}
2261 
2262 	cpumask_and(&new_cpus, cs->cpus_allowed, parent_cs(cs)->effective_cpus);
2263 	nodes_and(new_mems, cs->mems_allowed, parent_cs(cs)->effective_mems);
2264 
2265 	cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
2266 	mems_updated = !nodes_equal(new_mems, cs->effective_mems);
2267 
2268 	if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys))
2269 		hotplug_update_tasks(cs, &new_cpus, &new_mems,
2270 				     cpus_updated, mems_updated);
2271 	else
2272 		hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems,
2273 					    cpus_updated, mems_updated);
2274 
2275 	mutex_unlock(&cpuset_mutex);
2276 }
2277 
2278 /**
2279  * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
2280  *
2281  * This function is called after either CPU or memory configuration has
2282  * changed and updates cpuset accordingly.  The top_cpuset is always
2283  * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
2284  * order to make cpusets transparent (of no affect) on systems that are
2285  * actively using CPU hotplug but making no active use of cpusets.
2286  *
2287  * Non-root cpusets are only affected by offlining.  If any CPUs or memory
2288  * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
2289  * all descendants.
2290  *
2291  * Note that CPU offlining during suspend is ignored.  We don't modify
2292  * cpusets across suspend/resume cycles at all.
2293  */
2294 static void cpuset_hotplug_workfn(struct work_struct *work)
2295 {
2296 	static cpumask_t new_cpus;
2297 	static nodemask_t new_mems;
2298 	bool cpus_updated, mems_updated;
2299 	bool on_dfl = cgroup_subsys_on_dfl(cpuset_cgrp_subsys);
2300 
2301 	mutex_lock(&cpuset_mutex);
2302 
2303 	/* fetch the available cpus/mems and find out which changed how */
2304 	cpumask_copy(&new_cpus, cpu_active_mask);
2305 	new_mems = node_states[N_MEMORY];
2306 
2307 	cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus);
2308 	mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
2309 
2310 	/* synchronize cpus_allowed to cpu_active_mask */
2311 	if (cpus_updated) {
2312 		spin_lock_irq(&callback_lock);
2313 		if (!on_dfl)
2314 			cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
2315 		cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
2316 		spin_unlock_irq(&callback_lock);
2317 		/* we don't mess with cpumasks of tasks in top_cpuset */
2318 	}
2319 
2320 	/* synchronize mems_allowed to N_MEMORY */
2321 	if (mems_updated) {
2322 		spin_lock_irq(&callback_lock);
2323 		if (!on_dfl)
2324 			top_cpuset.mems_allowed = new_mems;
2325 		top_cpuset.effective_mems = new_mems;
2326 		spin_unlock_irq(&callback_lock);
2327 		update_tasks_nodemask(&top_cpuset);
2328 	}
2329 
2330 	mutex_unlock(&cpuset_mutex);
2331 
2332 	/* if cpus or mems changed, we need to propagate to descendants */
2333 	if (cpus_updated || mems_updated) {
2334 		struct cpuset *cs;
2335 		struct cgroup_subsys_state *pos_css;
2336 
2337 		rcu_read_lock();
2338 		cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
2339 			if (cs == &top_cpuset || !css_tryget_online(&cs->css))
2340 				continue;
2341 			rcu_read_unlock();
2342 
2343 			cpuset_hotplug_update_tasks(cs);
2344 
2345 			rcu_read_lock();
2346 			css_put(&cs->css);
2347 		}
2348 		rcu_read_unlock();
2349 	}
2350 
2351 	/* rebuild sched domains if cpus_allowed has changed */
2352 	if (cpus_updated)
2353 		rebuild_sched_domains();
2354 }
2355 
2356 void cpuset_update_active_cpus(bool cpu_online)
2357 {
2358 	/*
2359 	 * We're inside cpu hotplug critical region which usually nests
2360 	 * inside cgroup synchronization.  Bounce actual hotplug processing
2361 	 * to a work item to avoid reverse locking order.
2362 	 *
2363 	 * We still need to do partition_sched_domains() synchronously;
2364 	 * otherwise, the scheduler will get confused and put tasks to the
2365 	 * dead CPU.  Fall back to the default single domain.
2366 	 * cpuset_hotplug_workfn() will rebuild it as necessary.
2367 	 */
2368 	partition_sched_domains(1, NULL, NULL);
2369 	schedule_work(&cpuset_hotplug_work);
2370 }
2371 
2372 /*
2373  * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
2374  * Call this routine anytime after node_states[N_MEMORY] changes.
2375  * See cpuset_update_active_cpus() for CPU hotplug handling.
2376  */
2377 static int cpuset_track_online_nodes(struct notifier_block *self,
2378 				unsigned long action, void *arg)
2379 {
2380 	schedule_work(&cpuset_hotplug_work);
2381 	return NOTIFY_OK;
2382 }
2383 
2384 static struct notifier_block cpuset_track_online_nodes_nb = {
2385 	.notifier_call = cpuset_track_online_nodes,
2386 	.priority = 10,		/* ??! */
2387 };
2388 
2389 /**
2390  * cpuset_init_smp - initialize cpus_allowed
2391  *
2392  * Description: Finish top cpuset after cpu, node maps are initialized
2393  */
2394 void __init cpuset_init_smp(void)
2395 {
2396 	cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
2397 	top_cpuset.mems_allowed = node_states[N_MEMORY];
2398 	top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
2399 
2400 	cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
2401 	top_cpuset.effective_mems = node_states[N_MEMORY];
2402 
2403 	register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
2404 
2405 	cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0);
2406 	BUG_ON(!cpuset_migrate_mm_wq);
2407 }
2408 
2409 /**
2410  * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2411  * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
2412  * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
2413  *
2414  * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
2415  * attached to the specified @tsk.  Guaranteed to return some non-empty
2416  * subset of cpu_online_mask, even if this means going outside the
2417  * tasks cpuset.
2418  **/
2419 
2420 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
2421 {
2422 	unsigned long flags;
2423 
2424 	spin_lock_irqsave(&callback_lock, flags);
2425 	rcu_read_lock();
2426 	guarantee_online_cpus(task_cs(tsk), pmask);
2427 	rcu_read_unlock();
2428 	spin_unlock_irqrestore(&callback_lock, flags);
2429 }
2430 
2431 void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
2432 {
2433 	rcu_read_lock();
2434 	do_set_cpus_allowed(tsk, task_cs(tsk)->effective_cpus);
2435 	rcu_read_unlock();
2436 
2437 	/*
2438 	 * We own tsk->cpus_allowed, nobody can change it under us.
2439 	 *
2440 	 * But we used cs && cs->cpus_allowed lockless and thus can
2441 	 * race with cgroup_attach_task() or update_cpumask() and get
2442 	 * the wrong tsk->cpus_allowed. However, both cases imply the
2443 	 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
2444 	 * which takes task_rq_lock().
2445 	 *
2446 	 * If we are called after it dropped the lock we must see all
2447 	 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
2448 	 * set any mask even if it is not right from task_cs() pov,
2449 	 * the pending set_cpus_allowed_ptr() will fix things.
2450 	 *
2451 	 * select_fallback_rq() will fix things ups and set cpu_possible_mask
2452 	 * if required.
2453 	 */
2454 }
2455 
2456 void __init cpuset_init_current_mems_allowed(void)
2457 {
2458 	nodes_setall(current->mems_allowed);
2459 }
2460 
2461 /**
2462  * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2463  * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2464  *
2465  * Description: Returns the nodemask_t mems_allowed of the cpuset
2466  * attached to the specified @tsk.  Guaranteed to return some non-empty
2467  * subset of node_states[N_MEMORY], even if this means going outside the
2468  * tasks cpuset.
2469  **/
2470 
2471 nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
2472 {
2473 	nodemask_t mask;
2474 	unsigned long flags;
2475 
2476 	spin_lock_irqsave(&callback_lock, flags);
2477 	rcu_read_lock();
2478 	guarantee_online_mems(task_cs(tsk), &mask);
2479 	rcu_read_unlock();
2480 	spin_unlock_irqrestore(&callback_lock, flags);
2481 
2482 	return mask;
2483 }
2484 
2485 /**
2486  * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2487  * @nodemask: the nodemask to be checked
2488  *
2489  * Are any of the nodes in the nodemask allowed in current->mems_allowed?
2490  */
2491 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
2492 {
2493 	return nodes_intersects(*nodemask, current->mems_allowed);
2494 }
2495 
2496 /*
2497  * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2498  * mem_hardwall ancestor to the specified cpuset.  Call holding
2499  * callback_lock.  If no ancestor is mem_exclusive or mem_hardwall
2500  * (an unusual configuration), then returns the root cpuset.
2501  */
2502 static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
2503 {
2504 	while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
2505 		cs = parent_cs(cs);
2506 	return cs;
2507 }
2508 
2509 /**
2510  * cpuset_node_allowed - Can we allocate on a memory node?
2511  * @node: is this an allowed node?
2512  * @gfp_mask: memory allocation flags
2513  *
2514  * If we're in interrupt, yes, we can always allocate.  If @node is set in
2515  * current's mems_allowed, yes.  If it's not a __GFP_HARDWALL request and this
2516  * node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
2517  * yes.  If current has access to memory reserves due to TIF_MEMDIE, yes.
2518  * Otherwise, no.
2519  *
2520  * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
2521  * and do not allow allocations outside the current tasks cpuset
2522  * unless the task has been OOM killed as is marked TIF_MEMDIE.
2523  * GFP_KERNEL allocations are not so marked, so can escape to the
2524  * nearest enclosing hardwalled ancestor cpuset.
2525  *
2526  * Scanning up parent cpusets requires callback_lock.  The
2527  * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2528  * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2529  * current tasks mems_allowed came up empty on the first pass over
2530  * the zonelist.  So only GFP_KERNEL allocations, if all nodes in the
2531  * cpuset are short of memory, might require taking the callback_lock.
2532  *
2533  * The first call here from mm/page_alloc:get_page_from_freelist()
2534  * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2535  * so no allocation on a node outside the cpuset is allowed (unless
2536  * in interrupt, of course).
2537  *
2538  * The second pass through get_page_from_freelist() doesn't even call
2539  * here for GFP_ATOMIC calls.  For those calls, the __alloc_pages()
2540  * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2541  * in alloc_flags.  That logic and the checks below have the combined
2542  * affect that:
2543  *	in_interrupt - any node ok (current task context irrelevant)
2544  *	GFP_ATOMIC   - any node ok
2545  *	TIF_MEMDIE   - any node ok
2546  *	GFP_KERNEL   - any node in enclosing hardwalled cpuset ok
2547  *	GFP_USER     - only nodes in current tasks mems allowed ok.
2548  */
2549 bool __cpuset_node_allowed(int node, gfp_t gfp_mask)
2550 {
2551 	struct cpuset *cs;		/* current cpuset ancestors */
2552 	int allowed;			/* is allocation in zone z allowed? */
2553 	unsigned long flags;
2554 
2555 	if (in_interrupt())
2556 		return true;
2557 	if (node_isset(node, current->mems_allowed))
2558 		return true;
2559 	/*
2560 	 * Allow tasks that have access to memory reserves because they have
2561 	 * been OOM killed to get memory anywhere.
2562 	 */
2563 	if (unlikely(test_thread_flag(TIF_MEMDIE)))
2564 		return true;
2565 	if (gfp_mask & __GFP_HARDWALL)	/* If hardwall request, stop here */
2566 		return false;
2567 
2568 	if (current->flags & PF_EXITING) /* Let dying task have memory */
2569 		return true;
2570 
2571 	/* Not hardwall and node outside mems_allowed: scan up cpusets */
2572 	spin_lock_irqsave(&callback_lock, flags);
2573 
2574 	rcu_read_lock();
2575 	cs = nearest_hardwall_ancestor(task_cs(current));
2576 	allowed = node_isset(node, cs->mems_allowed);
2577 	rcu_read_unlock();
2578 
2579 	spin_unlock_irqrestore(&callback_lock, flags);
2580 	return allowed;
2581 }
2582 
2583 /**
2584  * cpuset_mem_spread_node() - On which node to begin search for a file page
2585  * cpuset_slab_spread_node() - On which node to begin search for a slab page
2586  *
2587  * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2588  * tasks in a cpuset with is_spread_page or is_spread_slab set),
2589  * and if the memory allocation used cpuset_mem_spread_node()
2590  * to determine on which node to start looking, as it will for
2591  * certain page cache or slab cache pages such as used for file
2592  * system buffers and inode caches, then instead of starting on the
2593  * local node to look for a free page, rather spread the starting
2594  * node around the tasks mems_allowed nodes.
2595  *
2596  * We don't have to worry about the returned node being offline
2597  * because "it can't happen", and even if it did, it would be ok.
2598  *
2599  * The routines calling guarantee_online_mems() are careful to
2600  * only set nodes in task->mems_allowed that are online.  So it
2601  * should not be possible for the following code to return an
2602  * offline node.  But if it did, that would be ok, as this routine
2603  * is not returning the node where the allocation must be, only
2604  * the node where the search should start.  The zonelist passed to
2605  * __alloc_pages() will include all nodes.  If the slab allocator
2606  * is passed an offline node, it will fall back to the local node.
2607  * See kmem_cache_alloc_node().
2608  */
2609 
2610 static int cpuset_spread_node(int *rotor)
2611 {
2612 	return *rotor = next_node_in(*rotor, current->mems_allowed);
2613 }
2614 
2615 int cpuset_mem_spread_node(void)
2616 {
2617 	if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
2618 		current->cpuset_mem_spread_rotor =
2619 			node_random(&current->mems_allowed);
2620 
2621 	return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
2622 }
2623 
2624 int cpuset_slab_spread_node(void)
2625 {
2626 	if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
2627 		current->cpuset_slab_spread_rotor =
2628 			node_random(&current->mems_allowed);
2629 
2630 	return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
2631 }
2632 
2633 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2634 
2635 /**
2636  * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2637  * @tsk1: pointer to task_struct of some task.
2638  * @tsk2: pointer to task_struct of some other task.
2639  *
2640  * Description: Return true if @tsk1's mems_allowed intersects the
2641  * mems_allowed of @tsk2.  Used by the OOM killer to determine if
2642  * one of the task's memory usage might impact the memory available
2643  * to the other.
2644  **/
2645 
2646 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
2647 				   const struct task_struct *tsk2)
2648 {
2649 	return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
2650 }
2651 
2652 /**
2653  * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed
2654  *
2655  * Description: Prints current's name, cpuset name, and cached copy of its
2656  * mems_allowed to the kernel log.
2657  */
2658 void cpuset_print_current_mems_allowed(void)
2659 {
2660 	struct cgroup *cgrp;
2661 
2662 	rcu_read_lock();
2663 
2664 	cgrp = task_cs(current)->css.cgroup;
2665 	pr_info("%s cpuset=", current->comm);
2666 	pr_cont_cgroup_name(cgrp);
2667 	pr_cont(" mems_allowed=%*pbl\n",
2668 		nodemask_pr_args(&current->mems_allowed));
2669 
2670 	rcu_read_unlock();
2671 }
2672 
2673 /*
2674  * Collection of memory_pressure is suppressed unless
2675  * this flag is enabled by writing "1" to the special
2676  * cpuset file 'memory_pressure_enabled' in the root cpuset.
2677  */
2678 
2679 int cpuset_memory_pressure_enabled __read_mostly;
2680 
2681 /**
2682  * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2683  *
2684  * Keep a running average of the rate of synchronous (direct)
2685  * page reclaim efforts initiated by tasks in each cpuset.
2686  *
2687  * This represents the rate at which some task in the cpuset
2688  * ran low on memory on all nodes it was allowed to use, and
2689  * had to enter the kernels page reclaim code in an effort to
2690  * create more free memory by tossing clean pages or swapping
2691  * or writing dirty pages.
2692  *
2693  * Display to user space in the per-cpuset read-only file
2694  * "memory_pressure".  Value displayed is an integer
2695  * representing the recent rate of entry into the synchronous
2696  * (direct) page reclaim by any task attached to the cpuset.
2697  **/
2698 
2699 void __cpuset_memory_pressure_bump(void)
2700 {
2701 	rcu_read_lock();
2702 	fmeter_markevent(&task_cs(current)->fmeter);
2703 	rcu_read_unlock();
2704 }
2705 
2706 #ifdef CONFIG_PROC_PID_CPUSET
2707 /*
2708  * proc_cpuset_show()
2709  *  - Print tasks cpuset path into seq_file.
2710  *  - Used for /proc/<pid>/cpuset.
2711  *  - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2712  *    doesn't really matter if tsk->cpuset changes after we read it,
2713  *    and we take cpuset_mutex, keeping cpuset_attach() from changing it
2714  *    anyway.
2715  */
2716 int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
2717 		     struct pid *pid, struct task_struct *tsk)
2718 {
2719 	char *buf;
2720 	struct cgroup_subsys_state *css;
2721 	int retval;
2722 
2723 	retval = -ENOMEM;
2724 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
2725 	if (!buf)
2726 		goto out;
2727 
2728 	css = task_get_css(tsk, cpuset_cgrp_id);
2729 	retval = cgroup_path_ns(css->cgroup, buf, PATH_MAX,
2730 				current->nsproxy->cgroup_ns);
2731 	css_put(css);
2732 	if (retval >= PATH_MAX)
2733 		retval = -ENAMETOOLONG;
2734 	if (retval < 0)
2735 		goto out_free;
2736 	seq_puts(m, buf);
2737 	seq_putc(m, '\n');
2738 	retval = 0;
2739 out_free:
2740 	kfree(buf);
2741 out:
2742 	return retval;
2743 }
2744 #endif /* CONFIG_PROC_PID_CPUSET */
2745 
2746 /* Display task mems_allowed in /proc/<pid>/status file. */
2747 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
2748 {
2749 	seq_printf(m, "Mems_allowed:\t%*pb\n",
2750 		   nodemask_pr_args(&task->mems_allowed));
2751 	seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
2752 		   nodemask_pr_args(&task->mems_allowed));
2753 }
2754