xref: /openbmc/linux/kernel/cgroup/cpuset.c (revision 15e3ae36)
1 /*
2  *  kernel/cpuset.c
3  *
4  *  Processor and Memory placement constraints for sets of tasks.
5  *
6  *  Copyright (C) 2003 BULL SA.
7  *  Copyright (C) 2004-2007 Silicon Graphics, Inc.
8  *  Copyright (C) 2006 Google, Inc
9  *
10  *  Portions derived from Patrick Mochel's sysfs code.
11  *  sysfs is Copyright (c) 2001-3 Patrick Mochel
12  *
13  *  2003-10-10 Written by Simon Derr.
14  *  2003-10-22 Updates by Stephen Hemminger.
15  *  2004 May-July Rework by Paul Jackson.
16  *  2006 Rework by Paul Menage to use generic cgroups
17  *  2008 Rework of the scheduler domains and CPU hotplug handling
18  *       by Max Krasnyansky
19  *
20  *  This file is subject to the terms and conditions of the GNU General Public
21  *  License.  See the file COPYING in the main directory of the Linux
22  *  distribution for more details.
23  */
24 
25 #include <linux/cpu.h>
26 #include <linux/cpumask.h>
27 #include <linux/cpuset.h>
28 #include <linux/err.h>
29 #include <linux/errno.h>
30 #include <linux/file.h>
31 #include <linux/fs.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/kernel.h>
35 #include <linux/kmod.h>
36 #include <linux/list.h>
37 #include <linux/mempolicy.h>
38 #include <linux/mm.h>
39 #include <linux/memory.h>
40 #include <linux/export.h>
41 #include <linux/mount.h>
42 #include <linux/fs_context.h>
43 #include <linux/namei.h>
44 #include <linux/pagemap.h>
45 #include <linux/proc_fs.h>
46 #include <linux/rcupdate.h>
47 #include <linux/sched.h>
48 #include <linux/sched/deadline.h>
49 #include <linux/sched/mm.h>
50 #include <linux/sched/task.h>
51 #include <linux/seq_file.h>
52 #include <linux/security.h>
53 #include <linux/slab.h>
54 #include <linux/spinlock.h>
55 #include <linux/stat.h>
56 #include <linux/string.h>
57 #include <linux/time.h>
58 #include <linux/time64.h>
59 #include <linux/backing-dev.h>
60 #include <linux/sort.h>
61 #include <linux/oom.h>
62 #include <linux/sched/isolation.h>
63 #include <linux/uaccess.h>
64 #include <linux/atomic.h>
65 #include <linux/mutex.h>
66 #include <linux/cgroup.h>
67 #include <linux/wait.h>
68 
69 DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key);
70 DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key);
71 
72 /* See "Frequency meter" comments, below. */
73 
74 struct fmeter {
75 	int cnt;		/* unprocessed events count */
76 	int val;		/* most recent output value */
77 	time64_t time;		/* clock (secs) when val computed */
78 	spinlock_t lock;	/* guards read or write of above */
79 };
80 
81 struct cpuset {
82 	struct cgroup_subsys_state css;
83 
84 	unsigned long flags;		/* "unsigned long" so bitops work */
85 
86 	/*
87 	 * On default hierarchy:
88 	 *
89 	 * The user-configured masks can only be changed by writing to
90 	 * cpuset.cpus and cpuset.mems, and won't be limited by the
91 	 * parent masks.
92 	 *
93 	 * The effective masks is the real masks that apply to the tasks
94 	 * in the cpuset. They may be changed if the configured masks are
95 	 * changed or hotplug happens.
96 	 *
97 	 * effective_mask == configured_mask & parent's effective_mask,
98 	 * and if it ends up empty, it will inherit the parent's mask.
99 	 *
100 	 *
101 	 * On legacy hierachy:
102 	 *
103 	 * The user-configured masks are always the same with effective masks.
104 	 */
105 
106 	/* user-configured CPUs and Memory Nodes allow to tasks */
107 	cpumask_var_t cpus_allowed;
108 	nodemask_t mems_allowed;
109 
110 	/* effective CPUs and Memory Nodes allow to tasks */
111 	cpumask_var_t effective_cpus;
112 	nodemask_t effective_mems;
113 
114 	/*
115 	 * CPUs allocated to child sub-partitions (default hierarchy only)
116 	 * - CPUs granted by the parent = effective_cpus U subparts_cpus
117 	 * - effective_cpus and subparts_cpus are mutually exclusive.
118 	 *
119 	 * effective_cpus contains only onlined CPUs, but subparts_cpus
120 	 * may have offlined ones.
121 	 */
122 	cpumask_var_t subparts_cpus;
123 
124 	/*
125 	 * This is old Memory Nodes tasks took on.
126 	 *
127 	 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
128 	 * - A new cpuset's old_mems_allowed is initialized when some
129 	 *   task is moved into it.
130 	 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
131 	 *   cpuset.mems_allowed and have tasks' nodemask updated, and
132 	 *   then old_mems_allowed is updated to mems_allowed.
133 	 */
134 	nodemask_t old_mems_allowed;
135 
136 	struct fmeter fmeter;		/* memory_pressure filter */
137 
138 	/*
139 	 * Tasks are being attached to this cpuset.  Used to prevent
140 	 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
141 	 */
142 	int attach_in_progress;
143 
144 	/* partition number for rebuild_sched_domains() */
145 	int pn;
146 
147 	/* for custom sched domain */
148 	int relax_domain_level;
149 
150 	/* number of CPUs in subparts_cpus */
151 	int nr_subparts_cpus;
152 
153 	/* partition root state */
154 	int partition_root_state;
155 
156 	/*
157 	 * Default hierarchy only:
158 	 * use_parent_ecpus - set if using parent's effective_cpus
159 	 * child_ecpus_count - # of children with use_parent_ecpus set
160 	 */
161 	int use_parent_ecpus;
162 	int child_ecpus_count;
163 };
164 
165 /*
166  * Partition root states:
167  *
168  *   0 - not a partition root
169  *
170  *   1 - partition root
171  *
172  *  -1 - invalid partition root
173  *       None of the cpus in cpus_allowed can be put into the parent's
174  *       subparts_cpus. In this case, the cpuset is not a real partition
175  *       root anymore.  However, the CPU_EXCLUSIVE bit will still be set
176  *       and the cpuset can be restored back to a partition root if the
177  *       parent cpuset can give more CPUs back to this child cpuset.
178  */
179 #define PRS_DISABLED		0
180 #define PRS_ENABLED		1
181 #define PRS_ERROR		-1
182 
183 /*
184  * Temporary cpumasks for working with partitions that are passed among
185  * functions to avoid memory allocation in inner functions.
186  */
187 struct tmpmasks {
188 	cpumask_var_t addmask, delmask;	/* For partition root */
189 	cpumask_var_t new_cpus;		/* For update_cpumasks_hier() */
190 };
191 
192 static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
193 {
194 	return css ? container_of(css, struct cpuset, css) : NULL;
195 }
196 
197 /* Retrieve the cpuset for a task */
198 static inline struct cpuset *task_cs(struct task_struct *task)
199 {
200 	return css_cs(task_css(task, cpuset_cgrp_id));
201 }
202 
203 static inline struct cpuset *parent_cs(struct cpuset *cs)
204 {
205 	return css_cs(cs->css.parent);
206 }
207 
208 /* bits in struct cpuset flags field */
209 typedef enum {
210 	CS_ONLINE,
211 	CS_CPU_EXCLUSIVE,
212 	CS_MEM_EXCLUSIVE,
213 	CS_MEM_HARDWALL,
214 	CS_MEMORY_MIGRATE,
215 	CS_SCHED_LOAD_BALANCE,
216 	CS_SPREAD_PAGE,
217 	CS_SPREAD_SLAB,
218 } cpuset_flagbits_t;
219 
220 /* convenient tests for these bits */
221 static inline bool is_cpuset_online(struct cpuset *cs)
222 {
223 	return test_bit(CS_ONLINE, &cs->flags) && !css_is_dying(&cs->css);
224 }
225 
226 static inline int is_cpu_exclusive(const struct cpuset *cs)
227 {
228 	return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
229 }
230 
231 static inline int is_mem_exclusive(const struct cpuset *cs)
232 {
233 	return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
234 }
235 
236 static inline int is_mem_hardwall(const struct cpuset *cs)
237 {
238 	return test_bit(CS_MEM_HARDWALL, &cs->flags);
239 }
240 
241 static inline int is_sched_load_balance(const struct cpuset *cs)
242 {
243 	return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
244 }
245 
246 static inline int is_memory_migrate(const struct cpuset *cs)
247 {
248 	return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
249 }
250 
251 static inline int is_spread_page(const struct cpuset *cs)
252 {
253 	return test_bit(CS_SPREAD_PAGE, &cs->flags);
254 }
255 
256 static inline int is_spread_slab(const struct cpuset *cs)
257 {
258 	return test_bit(CS_SPREAD_SLAB, &cs->flags);
259 }
260 
261 static inline int is_partition_root(const struct cpuset *cs)
262 {
263 	return cs->partition_root_state > 0;
264 }
265 
266 static struct cpuset top_cpuset = {
267 	.flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
268 		  (1 << CS_MEM_EXCLUSIVE)),
269 	.partition_root_state = PRS_ENABLED,
270 };
271 
272 /**
273  * cpuset_for_each_child - traverse online children of a cpuset
274  * @child_cs: loop cursor pointing to the current child
275  * @pos_css: used for iteration
276  * @parent_cs: target cpuset to walk children of
277  *
278  * Walk @child_cs through the online children of @parent_cs.  Must be used
279  * with RCU read locked.
280  */
281 #define cpuset_for_each_child(child_cs, pos_css, parent_cs)		\
282 	css_for_each_child((pos_css), &(parent_cs)->css)		\
283 		if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
284 
285 /**
286  * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
287  * @des_cs: loop cursor pointing to the current descendant
288  * @pos_css: used for iteration
289  * @root_cs: target cpuset to walk ancestor of
290  *
291  * Walk @des_cs through the online descendants of @root_cs.  Must be used
292  * with RCU read locked.  The caller may modify @pos_css by calling
293  * css_rightmost_descendant() to skip subtree.  @root_cs is included in the
294  * iteration and the first node to be visited.
295  */
296 #define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs)	\
297 	css_for_each_descendant_pre((pos_css), &(root_cs)->css)		\
298 		if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
299 
300 /*
301  * There are two global locks guarding cpuset structures - cpuset_mutex and
302  * callback_lock. We also require taking task_lock() when dereferencing a
303  * task's cpuset pointer. See "The task_lock() exception", at the end of this
304  * comment.
305  *
306  * A task must hold both locks to modify cpusets.  If a task holds
307  * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
308  * is the only task able to also acquire callback_lock and be able to
309  * modify cpusets.  It can perform various checks on the cpuset structure
310  * first, knowing nothing will change.  It can also allocate memory while
311  * just holding cpuset_mutex.  While it is performing these checks, various
312  * callback routines can briefly acquire callback_lock to query cpusets.
313  * Once it is ready to make the changes, it takes callback_lock, blocking
314  * everyone else.
315  *
316  * Calls to the kernel memory allocator can not be made while holding
317  * callback_lock, as that would risk double tripping on callback_lock
318  * from one of the callbacks into the cpuset code from within
319  * __alloc_pages().
320  *
321  * If a task is only holding callback_lock, then it has read-only
322  * access to cpusets.
323  *
324  * Now, the task_struct fields mems_allowed and mempolicy may be changed
325  * by other task, we use alloc_lock in the task_struct fields to protect
326  * them.
327  *
328  * The cpuset_common_file_read() handlers only hold callback_lock across
329  * small pieces of code, such as when reading out possibly multi-word
330  * cpumasks and nodemasks.
331  *
332  * Accessing a task's cpuset should be done in accordance with the
333  * guidelines for accessing subsystem state in kernel/cgroup.c
334  */
335 
336 DEFINE_STATIC_PERCPU_RWSEM(cpuset_rwsem);
337 
338 void cpuset_read_lock(void)
339 {
340 	percpu_down_read(&cpuset_rwsem);
341 }
342 
343 void cpuset_read_unlock(void)
344 {
345 	percpu_up_read(&cpuset_rwsem);
346 }
347 
348 static DEFINE_SPINLOCK(callback_lock);
349 
350 static struct workqueue_struct *cpuset_migrate_mm_wq;
351 
352 /*
353  * CPU / memory hotplug is handled asynchronously.
354  */
355 static void cpuset_hotplug_workfn(struct work_struct *work);
356 static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
357 
358 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
359 
360 /*
361  * Cgroup v2 behavior is used on the "cpus" and "mems" control files when
362  * on default hierarchy or when the cpuset_v2_mode flag is set by mounting
363  * the v1 cpuset cgroup filesystem with the "cpuset_v2_mode" mount option.
364  * With v2 behavior, "cpus" and "mems" are always what the users have
365  * requested and won't be changed by hotplug events. Only the effective
366  * cpus or mems will be affected.
367  */
368 static inline bool is_in_v2_mode(void)
369 {
370 	return cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
371 	      (cpuset_cgrp_subsys.root->flags & CGRP_ROOT_CPUSET_V2_MODE);
372 }
373 
374 /*
375  * Return in pmask the portion of a cpusets's cpus_allowed that
376  * are online.  If none are online, walk up the cpuset hierarchy
377  * until we find one that does have some online cpus.
378  *
379  * One way or another, we guarantee to return some non-empty subset
380  * of cpu_online_mask.
381  *
382  * Call with callback_lock or cpuset_mutex held.
383  */
384 static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)
385 {
386 	while (!cpumask_intersects(cs->effective_cpus, cpu_online_mask)) {
387 		cs = parent_cs(cs);
388 		if (unlikely(!cs)) {
389 			/*
390 			 * The top cpuset doesn't have any online cpu as a
391 			 * consequence of a race between cpuset_hotplug_work
392 			 * and cpu hotplug notifier.  But we know the top
393 			 * cpuset's effective_cpus is on its way to to be
394 			 * identical to cpu_online_mask.
395 			 */
396 			cpumask_copy(pmask, cpu_online_mask);
397 			return;
398 		}
399 	}
400 	cpumask_and(pmask, cs->effective_cpus, cpu_online_mask);
401 }
402 
403 /*
404  * Return in *pmask the portion of a cpusets's mems_allowed that
405  * are online, with memory.  If none are online with memory, walk
406  * up the cpuset hierarchy until we find one that does have some
407  * online mems.  The top cpuset always has some mems online.
408  *
409  * One way or another, we guarantee to return some non-empty subset
410  * of node_states[N_MEMORY].
411  *
412  * Call with callback_lock or cpuset_mutex held.
413  */
414 static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
415 {
416 	while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
417 		cs = parent_cs(cs);
418 	nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
419 }
420 
421 /*
422  * update task's spread flag if cpuset's page/slab spread flag is set
423  *
424  * Call with callback_lock or cpuset_mutex held.
425  */
426 static void cpuset_update_task_spread_flag(struct cpuset *cs,
427 					struct task_struct *tsk)
428 {
429 	if (is_spread_page(cs))
430 		task_set_spread_page(tsk);
431 	else
432 		task_clear_spread_page(tsk);
433 
434 	if (is_spread_slab(cs))
435 		task_set_spread_slab(tsk);
436 	else
437 		task_clear_spread_slab(tsk);
438 }
439 
440 /*
441  * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
442  *
443  * One cpuset is a subset of another if all its allowed CPUs and
444  * Memory Nodes are a subset of the other, and its exclusive flags
445  * are only set if the other's are set.  Call holding cpuset_mutex.
446  */
447 
448 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
449 {
450 	return	cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
451 		nodes_subset(p->mems_allowed, q->mems_allowed) &&
452 		is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
453 		is_mem_exclusive(p) <= is_mem_exclusive(q);
454 }
455 
456 /**
457  * alloc_cpumasks - allocate three cpumasks for cpuset
458  * @cs:  the cpuset that have cpumasks to be allocated.
459  * @tmp: the tmpmasks structure pointer
460  * Return: 0 if successful, -ENOMEM otherwise.
461  *
462  * Only one of the two input arguments should be non-NULL.
463  */
464 static inline int alloc_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
465 {
466 	cpumask_var_t *pmask1, *pmask2, *pmask3;
467 
468 	if (cs) {
469 		pmask1 = &cs->cpus_allowed;
470 		pmask2 = &cs->effective_cpus;
471 		pmask3 = &cs->subparts_cpus;
472 	} else {
473 		pmask1 = &tmp->new_cpus;
474 		pmask2 = &tmp->addmask;
475 		pmask3 = &tmp->delmask;
476 	}
477 
478 	if (!zalloc_cpumask_var(pmask1, GFP_KERNEL))
479 		return -ENOMEM;
480 
481 	if (!zalloc_cpumask_var(pmask2, GFP_KERNEL))
482 		goto free_one;
483 
484 	if (!zalloc_cpumask_var(pmask3, GFP_KERNEL))
485 		goto free_two;
486 
487 	return 0;
488 
489 free_two:
490 	free_cpumask_var(*pmask2);
491 free_one:
492 	free_cpumask_var(*pmask1);
493 	return -ENOMEM;
494 }
495 
496 /**
497  * free_cpumasks - free cpumasks in a tmpmasks structure
498  * @cs:  the cpuset that have cpumasks to be free.
499  * @tmp: the tmpmasks structure pointer
500  */
501 static inline void free_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
502 {
503 	if (cs) {
504 		free_cpumask_var(cs->cpus_allowed);
505 		free_cpumask_var(cs->effective_cpus);
506 		free_cpumask_var(cs->subparts_cpus);
507 	}
508 	if (tmp) {
509 		free_cpumask_var(tmp->new_cpus);
510 		free_cpumask_var(tmp->addmask);
511 		free_cpumask_var(tmp->delmask);
512 	}
513 }
514 
515 /**
516  * alloc_trial_cpuset - allocate a trial cpuset
517  * @cs: the cpuset that the trial cpuset duplicates
518  */
519 static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
520 {
521 	struct cpuset *trial;
522 
523 	trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
524 	if (!trial)
525 		return NULL;
526 
527 	if (alloc_cpumasks(trial, NULL)) {
528 		kfree(trial);
529 		return NULL;
530 	}
531 
532 	cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
533 	cpumask_copy(trial->effective_cpus, cs->effective_cpus);
534 	return trial;
535 }
536 
537 /**
538  * free_cpuset - free the cpuset
539  * @cs: the cpuset to be freed
540  */
541 static inline void free_cpuset(struct cpuset *cs)
542 {
543 	free_cpumasks(cs, NULL);
544 	kfree(cs);
545 }
546 
547 /*
548  * validate_change() - Used to validate that any proposed cpuset change
549  *		       follows the structural rules for cpusets.
550  *
551  * If we replaced the flag and mask values of the current cpuset
552  * (cur) with those values in the trial cpuset (trial), would
553  * our various subset and exclusive rules still be valid?  Presumes
554  * cpuset_mutex held.
555  *
556  * 'cur' is the address of an actual, in-use cpuset.  Operations
557  * such as list traversal that depend on the actual address of the
558  * cpuset in the list must use cur below, not trial.
559  *
560  * 'trial' is the address of bulk structure copy of cur, with
561  * perhaps one or more of the fields cpus_allowed, mems_allowed,
562  * or flags changed to new, trial values.
563  *
564  * Return 0 if valid, -errno if not.
565  */
566 
567 static int validate_change(struct cpuset *cur, struct cpuset *trial)
568 {
569 	struct cgroup_subsys_state *css;
570 	struct cpuset *c, *par;
571 	int ret;
572 
573 	rcu_read_lock();
574 
575 	/* Each of our child cpusets must be a subset of us */
576 	ret = -EBUSY;
577 	cpuset_for_each_child(c, css, cur)
578 		if (!is_cpuset_subset(c, trial))
579 			goto out;
580 
581 	/* Remaining checks don't apply to root cpuset */
582 	ret = 0;
583 	if (cur == &top_cpuset)
584 		goto out;
585 
586 	par = parent_cs(cur);
587 
588 	/* On legacy hiearchy, we must be a subset of our parent cpuset. */
589 	ret = -EACCES;
590 	if (!is_in_v2_mode() && !is_cpuset_subset(trial, par))
591 		goto out;
592 
593 	/*
594 	 * If either I or some sibling (!= me) is exclusive, we can't
595 	 * overlap
596 	 */
597 	ret = -EINVAL;
598 	cpuset_for_each_child(c, css, par) {
599 		if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
600 		    c != cur &&
601 		    cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
602 			goto out;
603 		if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
604 		    c != cur &&
605 		    nodes_intersects(trial->mems_allowed, c->mems_allowed))
606 			goto out;
607 	}
608 
609 	/*
610 	 * Cpusets with tasks - existing or newly being attached - can't
611 	 * be changed to have empty cpus_allowed or mems_allowed.
612 	 */
613 	ret = -ENOSPC;
614 	if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) {
615 		if (!cpumask_empty(cur->cpus_allowed) &&
616 		    cpumask_empty(trial->cpus_allowed))
617 			goto out;
618 		if (!nodes_empty(cur->mems_allowed) &&
619 		    nodes_empty(trial->mems_allowed))
620 			goto out;
621 	}
622 
623 	/*
624 	 * We can't shrink if we won't have enough room for SCHED_DEADLINE
625 	 * tasks.
626 	 */
627 	ret = -EBUSY;
628 	if (is_cpu_exclusive(cur) &&
629 	    !cpuset_cpumask_can_shrink(cur->cpus_allowed,
630 				       trial->cpus_allowed))
631 		goto out;
632 
633 	ret = 0;
634 out:
635 	rcu_read_unlock();
636 	return ret;
637 }
638 
639 #ifdef CONFIG_SMP
640 /*
641  * Helper routine for generate_sched_domains().
642  * Do cpusets a, b have overlapping effective cpus_allowed masks?
643  */
644 static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
645 {
646 	return cpumask_intersects(a->effective_cpus, b->effective_cpus);
647 }
648 
649 static void
650 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
651 {
652 	if (dattr->relax_domain_level < c->relax_domain_level)
653 		dattr->relax_domain_level = c->relax_domain_level;
654 	return;
655 }
656 
657 static void update_domain_attr_tree(struct sched_domain_attr *dattr,
658 				    struct cpuset *root_cs)
659 {
660 	struct cpuset *cp;
661 	struct cgroup_subsys_state *pos_css;
662 
663 	rcu_read_lock();
664 	cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
665 		/* skip the whole subtree if @cp doesn't have any CPU */
666 		if (cpumask_empty(cp->cpus_allowed)) {
667 			pos_css = css_rightmost_descendant(pos_css);
668 			continue;
669 		}
670 
671 		if (is_sched_load_balance(cp))
672 			update_domain_attr(dattr, cp);
673 	}
674 	rcu_read_unlock();
675 }
676 
677 /* Must be called with cpuset_mutex held.  */
678 static inline int nr_cpusets(void)
679 {
680 	/* jump label reference count + the top-level cpuset */
681 	return static_key_count(&cpusets_enabled_key.key) + 1;
682 }
683 
684 /*
685  * generate_sched_domains()
686  *
687  * This function builds a partial partition of the systems CPUs
688  * A 'partial partition' is a set of non-overlapping subsets whose
689  * union is a subset of that set.
690  * The output of this function needs to be passed to kernel/sched/core.c
691  * partition_sched_domains() routine, which will rebuild the scheduler's
692  * load balancing domains (sched domains) as specified by that partial
693  * partition.
694  *
695  * See "What is sched_load_balance" in Documentation/admin-guide/cgroup-v1/cpusets.rst
696  * for a background explanation of this.
697  *
698  * Does not return errors, on the theory that the callers of this
699  * routine would rather not worry about failures to rebuild sched
700  * domains when operating in the severe memory shortage situations
701  * that could cause allocation failures below.
702  *
703  * Must be called with cpuset_mutex held.
704  *
705  * The three key local variables below are:
706  *    cp - cpuset pointer, used (together with pos_css) to perform a
707  *	   top-down scan of all cpusets. For our purposes, rebuilding
708  *	   the schedulers sched domains, we can ignore !is_sched_load_
709  *	   balance cpusets.
710  *  csa  - (for CpuSet Array) Array of pointers to all the cpusets
711  *	   that need to be load balanced, for convenient iterative
712  *	   access by the subsequent code that finds the best partition,
713  *	   i.e the set of domains (subsets) of CPUs such that the
714  *	   cpus_allowed of every cpuset marked is_sched_load_balance
715  *	   is a subset of one of these domains, while there are as
716  *	   many such domains as possible, each as small as possible.
717  * doms  - Conversion of 'csa' to an array of cpumasks, for passing to
718  *	   the kernel/sched/core.c routine partition_sched_domains() in a
719  *	   convenient format, that can be easily compared to the prior
720  *	   value to determine what partition elements (sched domains)
721  *	   were changed (added or removed.)
722  *
723  * Finding the best partition (set of domains):
724  *	The triple nested loops below over i, j, k scan over the
725  *	load balanced cpusets (using the array of cpuset pointers in
726  *	csa[]) looking for pairs of cpusets that have overlapping
727  *	cpus_allowed, but which don't have the same 'pn' partition
728  *	number and gives them in the same partition number.  It keeps
729  *	looping on the 'restart' label until it can no longer find
730  *	any such pairs.
731  *
732  *	The union of the cpus_allowed masks from the set of
733  *	all cpusets having the same 'pn' value then form the one
734  *	element of the partition (one sched domain) to be passed to
735  *	partition_sched_domains().
736  */
737 static int generate_sched_domains(cpumask_var_t **domains,
738 			struct sched_domain_attr **attributes)
739 {
740 	struct cpuset *cp;	/* top-down scan of cpusets */
741 	struct cpuset **csa;	/* array of all cpuset ptrs */
742 	int csn;		/* how many cpuset ptrs in csa so far */
743 	int i, j, k;		/* indices for partition finding loops */
744 	cpumask_var_t *doms;	/* resulting partition; i.e. sched domains */
745 	struct sched_domain_attr *dattr;  /* attributes for custom domains */
746 	int ndoms = 0;		/* number of sched domains in result */
747 	int nslot;		/* next empty doms[] struct cpumask slot */
748 	struct cgroup_subsys_state *pos_css;
749 	bool root_load_balance = is_sched_load_balance(&top_cpuset);
750 
751 	doms = NULL;
752 	dattr = NULL;
753 	csa = NULL;
754 
755 	/* Special case for the 99% of systems with one, full, sched domain */
756 	if (root_load_balance && !top_cpuset.nr_subparts_cpus) {
757 		ndoms = 1;
758 		doms = alloc_sched_domains(ndoms);
759 		if (!doms)
760 			goto done;
761 
762 		dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
763 		if (dattr) {
764 			*dattr = SD_ATTR_INIT;
765 			update_domain_attr_tree(dattr, &top_cpuset);
766 		}
767 		cpumask_and(doms[0], top_cpuset.effective_cpus,
768 			    housekeeping_cpumask(HK_FLAG_DOMAIN));
769 
770 		goto done;
771 	}
772 
773 	csa = kmalloc_array(nr_cpusets(), sizeof(cp), GFP_KERNEL);
774 	if (!csa)
775 		goto done;
776 	csn = 0;
777 
778 	rcu_read_lock();
779 	if (root_load_balance)
780 		csa[csn++] = &top_cpuset;
781 	cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
782 		if (cp == &top_cpuset)
783 			continue;
784 		/*
785 		 * Continue traversing beyond @cp iff @cp has some CPUs and
786 		 * isn't load balancing.  The former is obvious.  The
787 		 * latter: All child cpusets contain a subset of the
788 		 * parent's cpus, so just skip them, and then we call
789 		 * update_domain_attr_tree() to calc relax_domain_level of
790 		 * the corresponding sched domain.
791 		 *
792 		 * If root is load-balancing, we can skip @cp if it
793 		 * is a subset of the root's effective_cpus.
794 		 */
795 		if (!cpumask_empty(cp->cpus_allowed) &&
796 		    !(is_sched_load_balance(cp) &&
797 		      cpumask_intersects(cp->cpus_allowed,
798 					 housekeeping_cpumask(HK_FLAG_DOMAIN))))
799 			continue;
800 
801 		if (root_load_balance &&
802 		    cpumask_subset(cp->cpus_allowed, top_cpuset.effective_cpus))
803 			continue;
804 
805 		if (is_sched_load_balance(cp) &&
806 		    !cpumask_empty(cp->effective_cpus))
807 			csa[csn++] = cp;
808 
809 		/* skip @cp's subtree if not a partition root */
810 		if (!is_partition_root(cp))
811 			pos_css = css_rightmost_descendant(pos_css);
812 	}
813 	rcu_read_unlock();
814 
815 	for (i = 0; i < csn; i++)
816 		csa[i]->pn = i;
817 	ndoms = csn;
818 
819 restart:
820 	/* Find the best partition (set of sched domains) */
821 	for (i = 0; i < csn; i++) {
822 		struct cpuset *a = csa[i];
823 		int apn = a->pn;
824 
825 		for (j = 0; j < csn; j++) {
826 			struct cpuset *b = csa[j];
827 			int bpn = b->pn;
828 
829 			if (apn != bpn && cpusets_overlap(a, b)) {
830 				for (k = 0; k < csn; k++) {
831 					struct cpuset *c = csa[k];
832 
833 					if (c->pn == bpn)
834 						c->pn = apn;
835 				}
836 				ndoms--;	/* one less element */
837 				goto restart;
838 			}
839 		}
840 	}
841 
842 	/*
843 	 * Now we know how many domains to create.
844 	 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
845 	 */
846 	doms = alloc_sched_domains(ndoms);
847 	if (!doms)
848 		goto done;
849 
850 	/*
851 	 * The rest of the code, including the scheduler, can deal with
852 	 * dattr==NULL case. No need to abort if alloc fails.
853 	 */
854 	dattr = kmalloc_array(ndoms, sizeof(struct sched_domain_attr),
855 			      GFP_KERNEL);
856 
857 	for (nslot = 0, i = 0; i < csn; i++) {
858 		struct cpuset *a = csa[i];
859 		struct cpumask *dp;
860 		int apn = a->pn;
861 
862 		if (apn < 0) {
863 			/* Skip completed partitions */
864 			continue;
865 		}
866 
867 		dp = doms[nslot];
868 
869 		if (nslot == ndoms) {
870 			static int warnings = 10;
871 			if (warnings) {
872 				pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
873 					nslot, ndoms, csn, i, apn);
874 				warnings--;
875 			}
876 			continue;
877 		}
878 
879 		cpumask_clear(dp);
880 		if (dattr)
881 			*(dattr + nslot) = SD_ATTR_INIT;
882 		for (j = i; j < csn; j++) {
883 			struct cpuset *b = csa[j];
884 
885 			if (apn == b->pn) {
886 				cpumask_or(dp, dp, b->effective_cpus);
887 				cpumask_and(dp, dp, housekeeping_cpumask(HK_FLAG_DOMAIN));
888 				if (dattr)
889 					update_domain_attr_tree(dattr + nslot, b);
890 
891 				/* Done with this partition */
892 				b->pn = -1;
893 			}
894 		}
895 		nslot++;
896 	}
897 	BUG_ON(nslot != ndoms);
898 
899 done:
900 	kfree(csa);
901 
902 	/*
903 	 * Fallback to the default domain if kmalloc() failed.
904 	 * See comments in partition_sched_domains().
905 	 */
906 	if (doms == NULL)
907 		ndoms = 1;
908 
909 	*domains    = doms;
910 	*attributes = dattr;
911 	return ndoms;
912 }
913 
914 static void update_tasks_root_domain(struct cpuset *cs)
915 {
916 	struct css_task_iter it;
917 	struct task_struct *task;
918 
919 	css_task_iter_start(&cs->css, 0, &it);
920 
921 	while ((task = css_task_iter_next(&it)))
922 		dl_add_task_root_domain(task);
923 
924 	css_task_iter_end(&it);
925 }
926 
927 static void rebuild_root_domains(void)
928 {
929 	struct cpuset *cs = NULL;
930 	struct cgroup_subsys_state *pos_css;
931 
932 	percpu_rwsem_assert_held(&cpuset_rwsem);
933 	lockdep_assert_cpus_held();
934 	lockdep_assert_held(&sched_domains_mutex);
935 
936 	rcu_read_lock();
937 
938 	/*
939 	 * Clear default root domain DL accounting, it will be computed again
940 	 * if a task belongs to it.
941 	 */
942 	dl_clear_root_domain(&def_root_domain);
943 
944 	cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
945 
946 		if (cpumask_empty(cs->effective_cpus)) {
947 			pos_css = css_rightmost_descendant(pos_css);
948 			continue;
949 		}
950 
951 		css_get(&cs->css);
952 
953 		rcu_read_unlock();
954 
955 		update_tasks_root_domain(cs);
956 
957 		rcu_read_lock();
958 		css_put(&cs->css);
959 	}
960 	rcu_read_unlock();
961 }
962 
963 static void
964 partition_and_rebuild_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
965 				    struct sched_domain_attr *dattr_new)
966 {
967 	mutex_lock(&sched_domains_mutex);
968 	partition_sched_domains_locked(ndoms_new, doms_new, dattr_new);
969 	rebuild_root_domains();
970 	mutex_unlock(&sched_domains_mutex);
971 }
972 
973 /*
974  * Rebuild scheduler domains.
975  *
976  * If the flag 'sched_load_balance' of any cpuset with non-empty
977  * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
978  * which has that flag enabled, or if any cpuset with a non-empty
979  * 'cpus' is removed, then call this routine to rebuild the
980  * scheduler's dynamic sched domains.
981  *
982  * Call with cpuset_mutex held.  Takes get_online_cpus().
983  */
984 static void rebuild_sched_domains_locked(void)
985 {
986 	struct sched_domain_attr *attr;
987 	cpumask_var_t *doms;
988 	int ndoms;
989 
990 	lockdep_assert_cpus_held();
991 	percpu_rwsem_assert_held(&cpuset_rwsem);
992 
993 	/*
994 	 * We have raced with CPU hotplug. Don't do anything to avoid
995 	 * passing doms with offlined cpu to partition_sched_domains().
996 	 * Anyways, hotplug work item will rebuild sched domains.
997 	 */
998 	if (!top_cpuset.nr_subparts_cpus &&
999 	    !cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
1000 		return;
1001 
1002 	if (top_cpuset.nr_subparts_cpus &&
1003 	   !cpumask_subset(top_cpuset.effective_cpus, cpu_active_mask))
1004 		return;
1005 
1006 	/* Generate domain masks and attrs */
1007 	ndoms = generate_sched_domains(&doms, &attr);
1008 
1009 	/* Have scheduler rebuild the domains */
1010 	partition_and_rebuild_sched_domains(ndoms, doms, attr);
1011 }
1012 #else /* !CONFIG_SMP */
1013 static void rebuild_sched_domains_locked(void)
1014 {
1015 }
1016 #endif /* CONFIG_SMP */
1017 
1018 void rebuild_sched_domains(void)
1019 {
1020 	get_online_cpus();
1021 	percpu_down_write(&cpuset_rwsem);
1022 	rebuild_sched_domains_locked();
1023 	percpu_up_write(&cpuset_rwsem);
1024 	put_online_cpus();
1025 }
1026 
1027 /**
1028  * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
1029  * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
1030  *
1031  * Iterate through each task of @cs updating its cpus_allowed to the
1032  * effective cpuset's.  As this function is called with cpuset_mutex held,
1033  * cpuset membership stays stable.
1034  */
1035 static void update_tasks_cpumask(struct cpuset *cs)
1036 {
1037 	struct css_task_iter it;
1038 	struct task_struct *task;
1039 
1040 	css_task_iter_start(&cs->css, 0, &it);
1041 	while ((task = css_task_iter_next(&it)))
1042 		set_cpus_allowed_ptr(task, cs->effective_cpus);
1043 	css_task_iter_end(&it);
1044 }
1045 
1046 /**
1047  * compute_effective_cpumask - Compute the effective cpumask of the cpuset
1048  * @new_cpus: the temp variable for the new effective_cpus mask
1049  * @cs: the cpuset the need to recompute the new effective_cpus mask
1050  * @parent: the parent cpuset
1051  *
1052  * If the parent has subpartition CPUs, include them in the list of
1053  * allowable CPUs in computing the new effective_cpus mask. Since offlined
1054  * CPUs are not removed from subparts_cpus, we have to use cpu_active_mask
1055  * to mask those out.
1056  */
1057 static void compute_effective_cpumask(struct cpumask *new_cpus,
1058 				      struct cpuset *cs, struct cpuset *parent)
1059 {
1060 	if (parent->nr_subparts_cpus) {
1061 		cpumask_or(new_cpus, parent->effective_cpus,
1062 			   parent->subparts_cpus);
1063 		cpumask_and(new_cpus, new_cpus, cs->cpus_allowed);
1064 		cpumask_and(new_cpus, new_cpus, cpu_active_mask);
1065 	} else {
1066 		cpumask_and(new_cpus, cs->cpus_allowed, parent->effective_cpus);
1067 	}
1068 }
1069 
1070 /*
1071  * Commands for update_parent_subparts_cpumask
1072  */
1073 enum subparts_cmd {
1074 	partcmd_enable,		/* Enable partition root	 */
1075 	partcmd_disable,	/* Disable partition root	 */
1076 	partcmd_update,		/* Update parent's subparts_cpus */
1077 };
1078 
1079 /**
1080  * update_parent_subparts_cpumask - update subparts_cpus mask of parent cpuset
1081  * @cpuset:  The cpuset that requests change in partition root state
1082  * @cmd:     Partition root state change command
1083  * @newmask: Optional new cpumask for partcmd_update
1084  * @tmp:     Temporary addmask and delmask
1085  * Return:   0, 1 or an error code
1086  *
1087  * For partcmd_enable, the cpuset is being transformed from a non-partition
1088  * root to a partition root. The cpus_allowed mask of the given cpuset will
1089  * be put into parent's subparts_cpus and taken away from parent's
1090  * effective_cpus. The function will return 0 if all the CPUs listed in
1091  * cpus_allowed can be granted or an error code will be returned.
1092  *
1093  * For partcmd_disable, the cpuset is being transofrmed from a partition
1094  * root back to a non-partition root. any CPUs in cpus_allowed that are in
1095  * parent's subparts_cpus will be taken away from that cpumask and put back
1096  * into parent's effective_cpus. 0 should always be returned.
1097  *
1098  * For partcmd_update, if the optional newmask is specified, the cpu
1099  * list is to be changed from cpus_allowed to newmask. Otherwise,
1100  * cpus_allowed is assumed to remain the same. The cpuset should either
1101  * be a partition root or an invalid partition root. The partition root
1102  * state may change if newmask is NULL and none of the requested CPUs can
1103  * be granted by the parent. The function will return 1 if changes to
1104  * parent's subparts_cpus and effective_cpus happen or 0 otherwise.
1105  * Error code should only be returned when newmask is non-NULL.
1106  *
1107  * The partcmd_enable and partcmd_disable commands are used by
1108  * update_prstate(). The partcmd_update command is used by
1109  * update_cpumasks_hier() with newmask NULL and update_cpumask() with
1110  * newmask set.
1111  *
1112  * The checking is more strict when enabling partition root than the
1113  * other two commands.
1114  *
1115  * Because of the implicit cpu exclusive nature of a partition root,
1116  * cpumask changes that violates the cpu exclusivity rule will not be
1117  * permitted when checked by validate_change(). The validate_change()
1118  * function will also prevent any changes to the cpu list if it is not
1119  * a superset of children's cpu lists.
1120  */
1121 static int update_parent_subparts_cpumask(struct cpuset *cpuset, int cmd,
1122 					  struct cpumask *newmask,
1123 					  struct tmpmasks *tmp)
1124 {
1125 	struct cpuset *parent = parent_cs(cpuset);
1126 	int adding;	/* Moving cpus from effective_cpus to subparts_cpus */
1127 	int deleting;	/* Moving cpus from subparts_cpus to effective_cpus */
1128 	bool part_error = false;	/* Partition error? */
1129 
1130 	percpu_rwsem_assert_held(&cpuset_rwsem);
1131 
1132 	/*
1133 	 * The parent must be a partition root.
1134 	 * The new cpumask, if present, or the current cpus_allowed must
1135 	 * not be empty.
1136 	 */
1137 	if (!is_partition_root(parent) ||
1138 	   (newmask && cpumask_empty(newmask)) ||
1139 	   (!newmask && cpumask_empty(cpuset->cpus_allowed)))
1140 		return -EINVAL;
1141 
1142 	/*
1143 	 * Enabling/disabling partition root is not allowed if there are
1144 	 * online children.
1145 	 */
1146 	if ((cmd != partcmd_update) && css_has_online_children(&cpuset->css))
1147 		return -EBUSY;
1148 
1149 	/*
1150 	 * Enabling partition root is not allowed if not all the CPUs
1151 	 * can be granted from parent's effective_cpus or at least one
1152 	 * CPU will be left after that.
1153 	 */
1154 	if ((cmd == partcmd_enable) &&
1155 	   (!cpumask_subset(cpuset->cpus_allowed, parent->effective_cpus) ||
1156 	     cpumask_equal(cpuset->cpus_allowed, parent->effective_cpus)))
1157 		return -EINVAL;
1158 
1159 	/*
1160 	 * A cpumask update cannot make parent's effective_cpus become empty.
1161 	 */
1162 	adding = deleting = false;
1163 	if (cmd == partcmd_enable) {
1164 		cpumask_copy(tmp->addmask, cpuset->cpus_allowed);
1165 		adding = true;
1166 	} else if (cmd == partcmd_disable) {
1167 		deleting = cpumask_and(tmp->delmask, cpuset->cpus_allowed,
1168 				       parent->subparts_cpus);
1169 	} else if (newmask) {
1170 		/*
1171 		 * partcmd_update with newmask:
1172 		 *
1173 		 * delmask = cpus_allowed & ~newmask & parent->subparts_cpus
1174 		 * addmask = newmask & parent->effective_cpus
1175 		 *		     & ~parent->subparts_cpus
1176 		 */
1177 		cpumask_andnot(tmp->delmask, cpuset->cpus_allowed, newmask);
1178 		deleting = cpumask_and(tmp->delmask, tmp->delmask,
1179 				       parent->subparts_cpus);
1180 
1181 		cpumask_and(tmp->addmask, newmask, parent->effective_cpus);
1182 		adding = cpumask_andnot(tmp->addmask, tmp->addmask,
1183 					parent->subparts_cpus);
1184 		/*
1185 		 * Return error if the new effective_cpus could become empty.
1186 		 */
1187 		if (adding &&
1188 		    cpumask_equal(parent->effective_cpus, tmp->addmask)) {
1189 			if (!deleting)
1190 				return -EINVAL;
1191 			/*
1192 			 * As some of the CPUs in subparts_cpus might have
1193 			 * been offlined, we need to compute the real delmask
1194 			 * to confirm that.
1195 			 */
1196 			if (!cpumask_and(tmp->addmask, tmp->delmask,
1197 					 cpu_active_mask))
1198 				return -EINVAL;
1199 			cpumask_copy(tmp->addmask, parent->effective_cpus);
1200 		}
1201 	} else {
1202 		/*
1203 		 * partcmd_update w/o newmask:
1204 		 *
1205 		 * addmask = cpus_allowed & parent->effectiveb_cpus
1206 		 *
1207 		 * Note that parent's subparts_cpus may have been
1208 		 * pre-shrunk in case there is a change in the cpu list.
1209 		 * So no deletion is needed.
1210 		 */
1211 		adding = cpumask_and(tmp->addmask, cpuset->cpus_allowed,
1212 				     parent->effective_cpus);
1213 		part_error = cpumask_equal(tmp->addmask,
1214 					   parent->effective_cpus);
1215 	}
1216 
1217 	if (cmd == partcmd_update) {
1218 		int prev_prs = cpuset->partition_root_state;
1219 
1220 		/*
1221 		 * Check for possible transition between PRS_ENABLED
1222 		 * and PRS_ERROR.
1223 		 */
1224 		switch (cpuset->partition_root_state) {
1225 		case PRS_ENABLED:
1226 			if (part_error)
1227 				cpuset->partition_root_state = PRS_ERROR;
1228 			break;
1229 		case PRS_ERROR:
1230 			if (!part_error)
1231 				cpuset->partition_root_state = PRS_ENABLED;
1232 			break;
1233 		}
1234 		/*
1235 		 * Set part_error if previously in invalid state.
1236 		 */
1237 		part_error = (prev_prs == PRS_ERROR);
1238 	}
1239 
1240 	if (!part_error && (cpuset->partition_root_state == PRS_ERROR))
1241 		return 0;	/* Nothing need to be done */
1242 
1243 	if (cpuset->partition_root_state == PRS_ERROR) {
1244 		/*
1245 		 * Remove all its cpus from parent's subparts_cpus.
1246 		 */
1247 		adding = false;
1248 		deleting = cpumask_and(tmp->delmask, cpuset->cpus_allowed,
1249 				       parent->subparts_cpus);
1250 	}
1251 
1252 	if (!adding && !deleting)
1253 		return 0;
1254 
1255 	/*
1256 	 * Change the parent's subparts_cpus.
1257 	 * Newly added CPUs will be removed from effective_cpus and
1258 	 * newly deleted ones will be added back to effective_cpus.
1259 	 */
1260 	spin_lock_irq(&callback_lock);
1261 	if (adding) {
1262 		cpumask_or(parent->subparts_cpus,
1263 			   parent->subparts_cpus, tmp->addmask);
1264 		cpumask_andnot(parent->effective_cpus,
1265 			       parent->effective_cpus, tmp->addmask);
1266 	}
1267 	if (deleting) {
1268 		cpumask_andnot(parent->subparts_cpus,
1269 			       parent->subparts_cpus, tmp->delmask);
1270 		/*
1271 		 * Some of the CPUs in subparts_cpus might have been offlined.
1272 		 */
1273 		cpumask_and(tmp->delmask, tmp->delmask, cpu_active_mask);
1274 		cpumask_or(parent->effective_cpus,
1275 			   parent->effective_cpus, tmp->delmask);
1276 	}
1277 
1278 	parent->nr_subparts_cpus = cpumask_weight(parent->subparts_cpus);
1279 	spin_unlock_irq(&callback_lock);
1280 
1281 	return cmd == partcmd_update;
1282 }
1283 
1284 /*
1285  * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
1286  * @cs:  the cpuset to consider
1287  * @tmp: temp variables for calculating effective_cpus & partition setup
1288  *
1289  * When congifured cpumask is changed, the effective cpumasks of this cpuset
1290  * and all its descendants need to be updated.
1291  *
1292  * On legacy hierachy, effective_cpus will be the same with cpu_allowed.
1293  *
1294  * Called with cpuset_mutex held
1295  */
1296 static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp)
1297 {
1298 	struct cpuset *cp;
1299 	struct cgroup_subsys_state *pos_css;
1300 	bool need_rebuild_sched_domains = false;
1301 
1302 	rcu_read_lock();
1303 	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1304 		struct cpuset *parent = parent_cs(cp);
1305 
1306 		compute_effective_cpumask(tmp->new_cpus, cp, parent);
1307 
1308 		/*
1309 		 * If it becomes empty, inherit the effective mask of the
1310 		 * parent, which is guaranteed to have some CPUs.
1311 		 */
1312 		if (is_in_v2_mode() && cpumask_empty(tmp->new_cpus)) {
1313 			cpumask_copy(tmp->new_cpus, parent->effective_cpus);
1314 			if (!cp->use_parent_ecpus) {
1315 				cp->use_parent_ecpus = true;
1316 				parent->child_ecpus_count++;
1317 			}
1318 		} else if (cp->use_parent_ecpus) {
1319 			cp->use_parent_ecpus = false;
1320 			WARN_ON_ONCE(!parent->child_ecpus_count);
1321 			parent->child_ecpus_count--;
1322 		}
1323 
1324 		/*
1325 		 * Skip the whole subtree if the cpumask remains the same
1326 		 * and has no partition root state.
1327 		 */
1328 		if (!cp->partition_root_state &&
1329 		    cpumask_equal(tmp->new_cpus, cp->effective_cpus)) {
1330 			pos_css = css_rightmost_descendant(pos_css);
1331 			continue;
1332 		}
1333 
1334 		/*
1335 		 * update_parent_subparts_cpumask() should have been called
1336 		 * for cs already in update_cpumask(). We should also call
1337 		 * update_tasks_cpumask() again for tasks in the parent
1338 		 * cpuset if the parent's subparts_cpus changes.
1339 		 */
1340 		if ((cp != cs) && cp->partition_root_state) {
1341 			switch (parent->partition_root_state) {
1342 			case PRS_DISABLED:
1343 				/*
1344 				 * If parent is not a partition root or an
1345 				 * invalid partition root, clear the state
1346 				 * state and the CS_CPU_EXCLUSIVE flag.
1347 				 */
1348 				WARN_ON_ONCE(cp->partition_root_state
1349 					     != PRS_ERROR);
1350 				cp->partition_root_state = 0;
1351 
1352 				/*
1353 				 * clear_bit() is an atomic operation and
1354 				 * readers aren't interested in the state
1355 				 * of CS_CPU_EXCLUSIVE anyway. So we can
1356 				 * just update the flag without holding
1357 				 * the callback_lock.
1358 				 */
1359 				clear_bit(CS_CPU_EXCLUSIVE, &cp->flags);
1360 				break;
1361 
1362 			case PRS_ENABLED:
1363 				if (update_parent_subparts_cpumask(cp, partcmd_update, NULL, tmp))
1364 					update_tasks_cpumask(parent);
1365 				break;
1366 
1367 			case PRS_ERROR:
1368 				/*
1369 				 * When parent is invalid, it has to be too.
1370 				 */
1371 				cp->partition_root_state = PRS_ERROR;
1372 				if (cp->nr_subparts_cpus) {
1373 					cp->nr_subparts_cpus = 0;
1374 					cpumask_clear(cp->subparts_cpus);
1375 				}
1376 				break;
1377 			}
1378 		}
1379 
1380 		if (!css_tryget_online(&cp->css))
1381 			continue;
1382 		rcu_read_unlock();
1383 
1384 		spin_lock_irq(&callback_lock);
1385 
1386 		cpumask_copy(cp->effective_cpus, tmp->new_cpus);
1387 		if (cp->nr_subparts_cpus &&
1388 		   (cp->partition_root_state != PRS_ENABLED)) {
1389 			cp->nr_subparts_cpus = 0;
1390 			cpumask_clear(cp->subparts_cpus);
1391 		} else if (cp->nr_subparts_cpus) {
1392 			/*
1393 			 * Make sure that effective_cpus & subparts_cpus
1394 			 * are mutually exclusive.
1395 			 *
1396 			 * In the unlikely event that effective_cpus
1397 			 * becomes empty. we clear cp->nr_subparts_cpus and
1398 			 * let its child partition roots to compete for
1399 			 * CPUs again.
1400 			 */
1401 			cpumask_andnot(cp->effective_cpus, cp->effective_cpus,
1402 				       cp->subparts_cpus);
1403 			if (cpumask_empty(cp->effective_cpus)) {
1404 				cpumask_copy(cp->effective_cpus, tmp->new_cpus);
1405 				cpumask_clear(cp->subparts_cpus);
1406 				cp->nr_subparts_cpus = 0;
1407 			} else if (!cpumask_subset(cp->subparts_cpus,
1408 						   tmp->new_cpus)) {
1409 				cpumask_andnot(cp->subparts_cpus,
1410 					cp->subparts_cpus, tmp->new_cpus);
1411 				cp->nr_subparts_cpus
1412 					= cpumask_weight(cp->subparts_cpus);
1413 			}
1414 		}
1415 		spin_unlock_irq(&callback_lock);
1416 
1417 		WARN_ON(!is_in_v2_mode() &&
1418 			!cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
1419 
1420 		update_tasks_cpumask(cp);
1421 
1422 		/*
1423 		 * On legacy hierarchy, if the effective cpumask of any non-
1424 		 * empty cpuset is changed, we need to rebuild sched domains.
1425 		 * On default hierarchy, the cpuset needs to be a partition
1426 		 * root as well.
1427 		 */
1428 		if (!cpumask_empty(cp->cpus_allowed) &&
1429 		    is_sched_load_balance(cp) &&
1430 		   (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
1431 		    is_partition_root(cp)))
1432 			need_rebuild_sched_domains = true;
1433 
1434 		rcu_read_lock();
1435 		css_put(&cp->css);
1436 	}
1437 	rcu_read_unlock();
1438 
1439 	if (need_rebuild_sched_domains)
1440 		rebuild_sched_domains_locked();
1441 }
1442 
1443 /**
1444  * update_sibling_cpumasks - Update siblings cpumasks
1445  * @parent:  Parent cpuset
1446  * @cs:      Current cpuset
1447  * @tmp:     Temp variables
1448  */
1449 static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs,
1450 				    struct tmpmasks *tmp)
1451 {
1452 	struct cpuset *sibling;
1453 	struct cgroup_subsys_state *pos_css;
1454 
1455 	/*
1456 	 * Check all its siblings and call update_cpumasks_hier()
1457 	 * if their use_parent_ecpus flag is set in order for them
1458 	 * to use the right effective_cpus value.
1459 	 */
1460 	rcu_read_lock();
1461 	cpuset_for_each_child(sibling, pos_css, parent) {
1462 		if (sibling == cs)
1463 			continue;
1464 		if (!sibling->use_parent_ecpus)
1465 			continue;
1466 
1467 		update_cpumasks_hier(sibling, tmp);
1468 	}
1469 	rcu_read_unlock();
1470 }
1471 
1472 /**
1473  * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
1474  * @cs: the cpuset to consider
1475  * @trialcs: trial cpuset
1476  * @buf: buffer of cpu numbers written to this cpuset
1477  */
1478 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
1479 			  const char *buf)
1480 {
1481 	int retval;
1482 	struct tmpmasks tmp;
1483 
1484 	/* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
1485 	if (cs == &top_cpuset)
1486 		return -EACCES;
1487 
1488 	/*
1489 	 * An empty cpus_allowed is ok only if the cpuset has no tasks.
1490 	 * Since cpulist_parse() fails on an empty mask, we special case
1491 	 * that parsing.  The validate_change() call ensures that cpusets
1492 	 * with tasks have cpus.
1493 	 */
1494 	if (!*buf) {
1495 		cpumask_clear(trialcs->cpus_allowed);
1496 	} else {
1497 		retval = cpulist_parse(buf, trialcs->cpus_allowed);
1498 		if (retval < 0)
1499 			return retval;
1500 
1501 		if (!cpumask_subset(trialcs->cpus_allowed,
1502 				    top_cpuset.cpus_allowed))
1503 			return -EINVAL;
1504 	}
1505 
1506 	/* Nothing to do if the cpus didn't change */
1507 	if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
1508 		return 0;
1509 
1510 	retval = validate_change(cs, trialcs);
1511 	if (retval < 0)
1512 		return retval;
1513 
1514 #ifdef CONFIG_CPUMASK_OFFSTACK
1515 	/*
1516 	 * Use the cpumasks in trialcs for tmpmasks when they are pointers
1517 	 * to allocated cpumasks.
1518 	 */
1519 	tmp.addmask  = trialcs->subparts_cpus;
1520 	tmp.delmask  = trialcs->effective_cpus;
1521 	tmp.new_cpus = trialcs->cpus_allowed;
1522 #endif
1523 
1524 	if (cs->partition_root_state) {
1525 		/* Cpumask of a partition root cannot be empty */
1526 		if (cpumask_empty(trialcs->cpus_allowed))
1527 			return -EINVAL;
1528 		if (update_parent_subparts_cpumask(cs, partcmd_update,
1529 					trialcs->cpus_allowed, &tmp) < 0)
1530 			return -EINVAL;
1531 	}
1532 
1533 	spin_lock_irq(&callback_lock);
1534 	cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
1535 
1536 	/*
1537 	 * Make sure that subparts_cpus is a subset of cpus_allowed.
1538 	 */
1539 	if (cs->nr_subparts_cpus) {
1540 		cpumask_andnot(cs->subparts_cpus, cs->subparts_cpus,
1541 			       cs->cpus_allowed);
1542 		cs->nr_subparts_cpus = cpumask_weight(cs->subparts_cpus);
1543 	}
1544 	spin_unlock_irq(&callback_lock);
1545 
1546 	update_cpumasks_hier(cs, &tmp);
1547 
1548 	if (cs->partition_root_state) {
1549 		struct cpuset *parent = parent_cs(cs);
1550 
1551 		/*
1552 		 * For partition root, update the cpumasks of sibling
1553 		 * cpusets if they use parent's effective_cpus.
1554 		 */
1555 		if (parent->child_ecpus_count)
1556 			update_sibling_cpumasks(parent, cs, &tmp);
1557 	}
1558 	return 0;
1559 }
1560 
1561 /*
1562  * Migrate memory region from one set of nodes to another.  This is
1563  * performed asynchronously as it can be called from process migration path
1564  * holding locks involved in process management.  All mm migrations are
1565  * performed in the queued order and can be waited for by flushing
1566  * cpuset_migrate_mm_wq.
1567  */
1568 
1569 struct cpuset_migrate_mm_work {
1570 	struct work_struct	work;
1571 	struct mm_struct	*mm;
1572 	nodemask_t		from;
1573 	nodemask_t		to;
1574 };
1575 
1576 static void cpuset_migrate_mm_workfn(struct work_struct *work)
1577 {
1578 	struct cpuset_migrate_mm_work *mwork =
1579 		container_of(work, struct cpuset_migrate_mm_work, work);
1580 
1581 	/* on a wq worker, no need to worry about %current's mems_allowed */
1582 	do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL);
1583 	mmput(mwork->mm);
1584 	kfree(mwork);
1585 }
1586 
1587 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
1588 							const nodemask_t *to)
1589 {
1590 	struct cpuset_migrate_mm_work *mwork;
1591 
1592 	mwork = kzalloc(sizeof(*mwork), GFP_KERNEL);
1593 	if (mwork) {
1594 		mwork->mm = mm;
1595 		mwork->from = *from;
1596 		mwork->to = *to;
1597 		INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn);
1598 		queue_work(cpuset_migrate_mm_wq, &mwork->work);
1599 	} else {
1600 		mmput(mm);
1601 	}
1602 }
1603 
1604 static void cpuset_post_attach(void)
1605 {
1606 	flush_workqueue(cpuset_migrate_mm_wq);
1607 }
1608 
1609 /*
1610  * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
1611  * @tsk: the task to change
1612  * @newmems: new nodes that the task will be set
1613  *
1614  * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed
1615  * and rebind an eventual tasks' mempolicy. If the task is allocating in
1616  * parallel, it might temporarily see an empty intersection, which results in
1617  * a seqlock check and retry before OOM or allocation failure.
1618  */
1619 static void cpuset_change_task_nodemask(struct task_struct *tsk,
1620 					nodemask_t *newmems)
1621 {
1622 	task_lock(tsk);
1623 
1624 	local_irq_disable();
1625 	write_seqcount_begin(&tsk->mems_allowed_seq);
1626 
1627 	nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
1628 	mpol_rebind_task(tsk, newmems);
1629 	tsk->mems_allowed = *newmems;
1630 
1631 	write_seqcount_end(&tsk->mems_allowed_seq);
1632 	local_irq_enable();
1633 
1634 	task_unlock(tsk);
1635 }
1636 
1637 static void *cpuset_being_rebound;
1638 
1639 /**
1640  * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1641  * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1642  *
1643  * Iterate through each task of @cs updating its mems_allowed to the
1644  * effective cpuset's.  As this function is called with cpuset_mutex held,
1645  * cpuset membership stays stable.
1646  */
1647 static void update_tasks_nodemask(struct cpuset *cs)
1648 {
1649 	static nodemask_t newmems;	/* protected by cpuset_mutex */
1650 	struct css_task_iter it;
1651 	struct task_struct *task;
1652 
1653 	cpuset_being_rebound = cs;		/* causes mpol_dup() rebind */
1654 
1655 	guarantee_online_mems(cs, &newmems);
1656 
1657 	/*
1658 	 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1659 	 * take while holding tasklist_lock.  Forks can happen - the
1660 	 * mpol_dup() cpuset_being_rebound check will catch such forks,
1661 	 * and rebind their vma mempolicies too.  Because we still hold
1662 	 * the global cpuset_mutex, we know that no other rebind effort
1663 	 * will be contending for the global variable cpuset_being_rebound.
1664 	 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1665 	 * is idempotent.  Also migrate pages in each mm to new nodes.
1666 	 */
1667 	css_task_iter_start(&cs->css, 0, &it);
1668 	while ((task = css_task_iter_next(&it))) {
1669 		struct mm_struct *mm;
1670 		bool migrate;
1671 
1672 		cpuset_change_task_nodemask(task, &newmems);
1673 
1674 		mm = get_task_mm(task);
1675 		if (!mm)
1676 			continue;
1677 
1678 		migrate = is_memory_migrate(cs);
1679 
1680 		mpol_rebind_mm(mm, &cs->mems_allowed);
1681 		if (migrate)
1682 			cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
1683 		else
1684 			mmput(mm);
1685 	}
1686 	css_task_iter_end(&it);
1687 
1688 	/*
1689 	 * All the tasks' nodemasks have been updated, update
1690 	 * cs->old_mems_allowed.
1691 	 */
1692 	cs->old_mems_allowed = newmems;
1693 
1694 	/* We're done rebinding vmas to this cpuset's new mems_allowed. */
1695 	cpuset_being_rebound = NULL;
1696 }
1697 
1698 /*
1699  * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
1700  * @cs: the cpuset to consider
1701  * @new_mems: a temp variable for calculating new effective_mems
1702  *
1703  * When configured nodemask is changed, the effective nodemasks of this cpuset
1704  * and all its descendants need to be updated.
1705  *
1706  * On legacy hiearchy, effective_mems will be the same with mems_allowed.
1707  *
1708  * Called with cpuset_mutex held
1709  */
1710 static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
1711 {
1712 	struct cpuset *cp;
1713 	struct cgroup_subsys_state *pos_css;
1714 
1715 	rcu_read_lock();
1716 	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1717 		struct cpuset *parent = parent_cs(cp);
1718 
1719 		nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);
1720 
1721 		/*
1722 		 * If it becomes empty, inherit the effective mask of the
1723 		 * parent, which is guaranteed to have some MEMs.
1724 		 */
1725 		if (is_in_v2_mode() && nodes_empty(*new_mems))
1726 			*new_mems = parent->effective_mems;
1727 
1728 		/* Skip the whole subtree if the nodemask remains the same. */
1729 		if (nodes_equal(*new_mems, cp->effective_mems)) {
1730 			pos_css = css_rightmost_descendant(pos_css);
1731 			continue;
1732 		}
1733 
1734 		if (!css_tryget_online(&cp->css))
1735 			continue;
1736 		rcu_read_unlock();
1737 
1738 		spin_lock_irq(&callback_lock);
1739 		cp->effective_mems = *new_mems;
1740 		spin_unlock_irq(&callback_lock);
1741 
1742 		WARN_ON(!is_in_v2_mode() &&
1743 			!nodes_equal(cp->mems_allowed, cp->effective_mems));
1744 
1745 		update_tasks_nodemask(cp);
1746 
1747 		rcu_read_lock();
1748 		css_put(&cp->css);
1749 	}
1750 	rcu_read_unlock();
1751 }
1752 
1753 /*
1754  * Handle user request to change the 'mems' memory placement
1755  * of a cpuset.  Needs to validate the request, update the
1756  * cpusets mems_allowed, and for each task in the cpuset,
1757  * update mems_allowed and rebind task's mempolicy and any vma
1758  * mempolicies and if the cpuset is marked 'memory_migrate',
1759  * migrate the tasks pages to the new memory.
1760  *
1761  * Call with cpuset_mutex held. May take callback_lock during call.
1762  * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1763  * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1764  * their mempolicies to the cpusets new mems_allowed.
1765  */
1766 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1767 			   const char *buf)
1768 {
1769 	int retval;
1770 
1771 	/*
1772 	 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
1773 	 * it's read-only
1774 	 */
1775 	if (cs == &top_cpuset) {
1776 		retval = -EACCES;
1777 		goto done;
1778 	}
1779 
1780 	/*
1781 	 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1782 	 * Since nodelist_parse() fails on an empty mask, we special case
1783 	 * that parsing.  The validate_change() call ensures that cpusets
1784 	 * with tasks have memory.
1785 	 */
1786 	if (!*buf) {
1787 		nodes_clear(trialcs->mems_allowed);
1788 	} else {
1789 		retval = nodelist_parse(buf, trialcs->mems_allowed);
1790 		if (retval < 0)
1791 			goto done;
1792 
1793 		if (!nodes_subset(trialcs->mems_allowed,
1794 				  top_cpuset.mems_allowed)) {
1795 			retval = -EINVAL;
1796 			goto done;
1797 		}
1798 	}
1799 
1800 	if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
1801 		retval = 0;		/* Too easy - nothing to do */
1802 		goto done;
1803 	}
1804 	retval = validate_change(cs, trialcs);
1805 	if (retval < 0)
1806 		goto done;
1807 
1808 	spin_lock_irq(&callback_lock);
1809 	cs->mems_allowed = trialcs->mems_allowed;
1810 	spin_unlock_irq(&callback_lock);
1811 
1812 	/* use trialcs->mems_allowed as a temp variable */
1813 	update_nodemasks_hier(cs, &trialcs->mems_allowed);
1814 done:
1815 	return retval;
1816 }
1817 
1818 bool current_cpuset_is_being_rebound(void)
1819 {
1820 	bool ret;
1821 
1822 	rcu_read_lock();
1823 	ret = task_cs(current) == cpuset_being_rebound;
1824 	rcu_read_unlock();
1825 
1826 	return ret;
1827 }
1828 
1829 static int update_relax_domain_level(struct cpuset *cs, s64 val)
1830 {
1831 #ifdef CONFIG_SMP
1832 	if (val < -1 || val >= sched_domain_level_max)
1833 		return -EINVAL;
1834 #endif
1835 
1836 	if (val != cs->relax_domain_level) {
1837 		cs->relax_domain_level = val;
1838 		if (!cpumask_empty(cs->cpus_allowed) &&
1839 		    is_sched_load_balance(cs))
1840 			rebuild_sched_domains_locked();
1841 	}
1842 
1843 	return 0;
1844 }
1845 
1846 /**
1847  * update_tasks_flags - update the spread flags of tasks in the cpuset.
1848  * @cs: the cpuset in which each task's spread flags needs to be changed
1849  *
1850  * Iterate through each task of @cs updating its spread flags.  As this
1851  * function is called with cpuset_mutex held, cpuset membership stays
1852  * stable.
1853  */
1854 static void update_tasks_flags(struct cpuset *cs)
1855 {
1856 	struct css_task_iter it;
1857 	struct task_struct *task;
1858 
1859 	css_task_iter_start(&cs->css, 0, &it);
1860 	while ((task = css_task_iter_next(&it)))
1861 		cpuset_update_task_spread_flag(cs, task);
1862 	css_task_iter_end(&it);
1863 }
1864 
1865 /*
1866  * update_flag - read a 0 or a 1 in a file and update associated flag
1867  * bit:		the bit to update (see cpuset_flagbits_t)
1868  * cs:		the cpuset to update
1869  * turning_on: 	whether the flag is being set or cleared
1870  *
1871  * Call with cpuset_mutex held.
1872  */
1873 
1874 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1875 		       int turning_on)
1876 {
1877 	struct cpuset *trialcs;
1878 	int balance_flag_changed;
1879 	int spread_flag_changed;
1880 	int err;
1881 
1882 	trialcs = alloc_trial_cpuset(cs);
1883 	if (!trialcs)
1884 		return -ENOMEM;
1885 
1886 	if (turning_on)
1887 		set_bit(bit, &trialcs->flags);
1888 	else
1889 		clear_bit(bit, &trialcs->flags);
1890 
1891 	err = validate_change(cs, trialcs);
1892 	if (err < 0)
1893 		goto out;
1894 
1895 	balance_flag_changed = (is_sched_load_balance(cs) !=
1896 				is_sched_load_balance(trialcs));
1897 
1898 	spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1899 			|| (is_spread_page(cs) != is_spread_page(trialcs)));
1900 
1901 	spin_lock_irq(&callback_lock);
1902 	cs->flags = trialcs->flags;
1903 	spin_unlock_irq(&callback_lock);
1904 
1905 	if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1906 		rebuild_sched_domains_locked();
1907 
1908 	if (spread_flag_changed)
1909 		update_tasks_flags(cs);
1910 out:
1911 	free_cpuset(trialcs);
1912 	return err;
1913 }
1914 
1915 /*
1916  * update_prstate - update partititon_root_state
1917  * cs:	the cpuset to update
1918  * val: 0 - disabled, 1 - enabled
1919  *
1920  * Call with cpuset_mutex held.
1921  */
1922 static int update_prstate(struct cpuset *cs, int val)
1923 {
1924 	int err;
1925 	struct cpuset *parent = parent_cs(cs);
1926 	struct tmpmasks tmp;
1927 
1928 	if ((val != 0) && (val != 1))
1929 		return -EINVAL;
1930 	if (val == cs->partition_root_state)
1931 		return 0;
1932 
1933 	/*
1934 	 * Cannot force a partial or invalid partition root to a full
1935 	 * partition root.
1936 	 */
1937 	if (val && cs->partition_root_state)
1938 		return -EINVAL;
1939 
1940 	if (alloc_cpumasks(NULL, &tmp))
1941 		return -ENOMEM;
1942 
1943 	err = -EINVAL;
1944 	if (!cs->partition_root_state) {
1945 		/*
1946 		 * Turning on partition root requires setting the
1947 		 * CS_CPU_EXCLUSIVE bit implicitly as well and cpus_allowed
1948 		 * cannot be NULL.
1949 		 */
1950 		if (cpumask_empty(cs->cpus_allowed))
1951 			goto out;
1952 
1953 		err = update_flag(CS_CPU_EXCLUSIVE, cs, 1);
1954 		if (err)
1955 			goto out;
1956 
1957 		err = update_parent_subparts_cpumask(cs, partcmd_enable,
1958 						     NULL, &tmp);
1959 		if (err) {
1960 			update_flag(CS_CPU_EXCLUSIVE, cs, 0);
1961 			goto out;
1962 		}
1963 		cs->partition_root_state = PRS_ENABLED;
1964 	} else {
1965 		/*
1966 		 * Turning off partition root will clear the
1967 		 * CS_CPU_EXCLUSIVE bit.
1968 		 */
1969 		if (cs->partition_root_state == PRS_ERROR) {
1970 			cs->partition_root_state = 0;
1971 			update_flag(CS_CPU_EXCLUSIVE, cs, 0);
1972 			err = 0;
1973 			goto out;
1974 		}
1975 
1976 		err = update_parent_subparts_cpumask(cs, partcmd_disable,
1977 						     NULL, &tmp);
1978 		if (err)
1979 			goto out;
1980 
1981 		cs->partition_root_state = 0;
1982 
1983 		/* Turning off CS_CPU_EXCLUSIVE will not return error */
1984 		update_flag(CS_CPU_EXCLUSIVE, cs, 0);
1985 	}
1986 
1987 	/*
1988 	 * Update cpumask of parent's tasks except when it is the top
1989 	 * cpuset as some system daemons cannot be mapped to other CPUs.
1990 	 */
1991 	if (parent != &top_cpuset)
1992 		update_tasks_cpumask(parent);
1993 
1994 	if (parent->child_ecpus_count)
1995 		update_sibling_cpumasks(parent, cs, &tmp);
1996 
1997 	rebuild_sched_domains_locked();
1998 out:
1999 	free_cpumasks(NULL, &tmp);
2000 	return err;
2001 }
2002 
2003 /*
2004  * Frequency meter - How fast is some event occurring?
2005  *
2006  * These routines manage a digitally filtered, constant time based,
2007  * event frequency meter.  There are four routines:
2008  *   fmeter_init() - initialize a frequency meter.
2009  *   fmeter_markevent() - called each time the event happens.
2010  *   fmeter_getrate() - returns the recent rate of such events.
2011  *   fmeter_update() - internal routine used to update fmeter.
2012  *
2013  * A common data structure is passed to each of these routines,
2014  * which is used to keep track of the state required to manage the
2015  * frequency meter and its digital filter.
2016  *
2017  * The filter works on the number of events marked per unit time.
2018  * The filter is single-pole low-pass recursive (IIR).  The time unit
2019  * is 1 second.  Arithmetic is done using 32-bit integers scaled to
2020  * simulate 3 decimal digits of precision (multiplied by 1000).
2021  *
2022  * With an FM_COEF of 933, and a time base of 1 second, the filter
2023  * has a half-life of 10 seconds, meaning that if the events quit
2024  * happening, then the rate returned from the fmeter_getrate()
2025  * will be cut in half each 10 seconds, until it converges to zero.
2026  *
2027  * It is not worth doing a real infinitely recursive filter.  If more
2028  * than FM_MAXTICKS ticks have elapsed since the last filter event,
2029  * just compute FM_MAXTICKS ticks worth, by which point the level
2030  * will be stable.
2031  *
2032  * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
2033  * arithmetic overflow in the fmeter_update() routine.
2034  *
2035  * Given the simple 32 bit integer arithmetic used, this meter works
2036  * best for reporting rates between one per millisecond (msec) and
2037  * one per 32 (approx) seconds.  At constant rates faster than one
2038  * per msec it maxes out at values just under 1,000,000.  At constant
2039  * rates between one per msec, and one per second it will stabilize
2040  * to a value N*1000, where N is the rate of events per second.
2041  * At constant rates between one per second and one per 32 seconds,
2042  * it will be choppy, moving up on the seconds that have an event,
2043  * and then decaying until the next event.  At rates slower than
2044  * about one in 32 seconds, it decays all the way back to zero between
2045  * each event.
2046  */
2047 
2048 #define FM_COEF 933		/* coefficient for half-life of 10 secs */
2049 #define FM_MAXTICKS ((u32)99)   /* useless computing more ticks than this */
2050 #define FM_MAXCNT 1000000	/* limit cnt to avoid overflow */
2051 #define FM_SCALE 1000		/* faux fixed point scale */
2052 
2053 /* Initialize a frequency meter */
2054 static void fmeter_init(struct fmeter *fmp)
2055 {
2056 	fmp->cnt = 0;
2057 	fmp->val = 0;
2058 	fmp->time = 0;
2059 	spin_lock_init(&fmp->lock);
2060 }
2061 
2062 /* Internal meter update - process cnt events and update value */
2063 static void fmeter_update(struct fmeter *fmp)
2064 {
2065 	time64_t now;
2066 	u32 ticks;
2067 
2068 	now = ktime_get_seconds();
2069 	ticks = now - fmp->time;
2070 
2071 	if (ticks == 0)
2072 		return;
2073 
2074 	ticks = min(FM_MAXTICKS, ticks);
2075 	while (ticks-- > 0)
2076 		fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
2077 	fmp->time = now;
2078 
2079 	fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
2080 	fmp->cnt = 0;
2081 }
2082 
2083 /* Process any previous ticks, then bump cnt by one (times scale). */
2084 static void fmeter_markevent(struct fmeter *fmp)
2085 {
2086 	spin_lock(&fmp->lock);
2087 	fmeter_update(fmp);
2088 	fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
2089 	spin_unlock(&fmp->lock);
2090 }
2091 
2092 /* Process any previous ticks, then return current value. */
2093 static int fmeter_getrate(struct fmeter *fmp)
2094 {
2095 	int val;
2096 
2097 	spin_lock(&fmp->lock);
2098 	fmeter_update(fmp);
2099 	val = fmp->val;
2100 	spin_unlock(&fmp->lock);
2101 	return val;
2102 }
2103 
2104 static struct cpuset *cpuset_attach_old_cs;
2105 
2106 /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
2107 static int cpuset_can_attach(struct cgroup_taskset *tset)
2108 {
2109 	struct cgroup_subsys_state *css;
2110 	struct cpuset *cs;
2111 	struct task_struct *task;
2112 	int ret;
2113 
2114 	/* used later by cpuset_attach() */
2115 	cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css));
2116 	cs = css_cs(css);
2117 
2118 	percpu_down_write(&cpuset_rwsem);
2119 
2120 	/* allow moving tasks into an empty cpuset if on default hierarchy */
2121 	ret = -ENOSPC;
2122 	if (!is_in_v2_mode() &&
2123 	    (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
2124 		goto out_unlock;
2125 
2126 	cgroup_taskset_for_each(task, css, tset) {
2127 		ret = task_can_attach(task, cs->cpus_allowed);
2128 		if (ret)
2129 			goto out_unlock;
2130 		ret = security_task_setscheduler(task);
2131 		if (ret)
2132 			goto out_unlock;
2133 	}
2134 
2135 	/*
2136 	 * Mark attach is in progress.  This makes validate_change() fail
2137 	 * changes which zero cpus/mems_allowed.
2138 	 */
2139 	cs->attach_in_progress++;
2140 	ret = 0;
2141 out_unlock:
2142 	percpu_up_write(&cpuset_rwsem);
2143 	return ret;
2144 }
2145 
2146 static void cpuset_cancel_attach(struct cgroup_taskset *tset)
2147 {
2148 	struct cgroup_subsys_state *css;
2149 
2150 	cgroup_taskset_first(tset, &css);
2151 
2152 	percpu_down_write(&cpuset_rwsem);
2153 	css_cs(css)->attach_in_progress--;
2154 	percpu_up_write(&cpuset_rwsem);
2155 }
2156 
2157 /*
2158  * Protected by cpuset_mutex.  cpus_attach is used only by cpuset_attach()
2159  * but we can't allocate it dynamically there.  Define it global and
2160  * allocate from cpuset_init().
2161  */
2162 static cpumask_var_t cpus_attach;
2163 
2164 static void cpuset_attach(struct cgroup_taskset *tset)
2165 {
2166 	/* static buf protected by cpuset_mutex */
2167 	static nodemask_t cpuset_attach_nodemask_to;
2168 	struct task_struct *task;
2169 	struct task_struct *leader;
2170 	struct cgroup_subsys_state *css;
2171 	struct cpuset *cs;
2172 	struct cpuset *oldcs = cpuset_attach_old_cs;
2173 
2174 	cgroup_taskset_first(tset, &css);
2175 	cs = css_cs(css);
2176 
2177 	percpu_down_write(&cpuset_rwsem);
2178 
2179 	/* prepare for attach */
2180 	if (cs == &top_cpuset)
2181 		cpumask_copy(cpus_attach, cpu_possible_mask);
2182 	else
2183 		guarantee_online_cpus(cs, cpus_attach);
2184 
2185 	guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
2186 
2187 	cgroup_taskset_for_each(task, css, tset) {
2188 		/*
2189 		 * can_attach beforehand should guarantee that this doesn't
2190 		 * fail.  TODO: have a better way to handle failure here
2191 		 */
2192 		WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
2193 
2194 		cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
2195 		cpuset_update_task_spread_flag(cs, task);
2196 	}
2197 
2198 	/*
2199 	 * Change mm for all threadgroup leaders. This is expensive and may
2200 	 * sleep and should be moved outside migration path proper.
2201 	 */
2202 	cpuset_attach_nodemask_to = cs->effective_mems;
2203 	cgroup_taskset_for_each_leader(leader, css, tset) {
2204 		struct mm_struct *mm = get_task_mm(leader);
2205 
2206 		if (mm) {
2207 			mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
2208 
2209 			/*
2210 			 * old_mems_allowed is the same with mems_allowed
2211 			 * here, except if this task is being moved
2212 			 * automatically due to hotplug.  In that case
2213 			 * @mems_allowed has been updated and is empty, so
2214 			 * @old_mems_allowed is the right nodesets that we
2215 			 * migrate mm from.
2216 			 */
2217 			if (is_memory_migrate(cs))
2218 				cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
2219 						  &cpuset_attach_nodemask_to);
2220 			else
2221 				mmput(mm);
2222 		}
2223 	}
2224 
2225 	cs->old_mems_allowed = cpuset_attach_nodemask_to;
2226 
2227 	cs->attach_in_progress--;
2228 	if (!cs->attach_in_progress)
2229 		wake_up(&cpuset_attach_wq);
2230 
2231 	percpu_up_write(&cpuset_rwsem);
2232 }
2233 
2234 /* The various types of files and directories in a cpuset file system */
2235 
2236 typedef enum {
2237 	FILE_MEMORY_MIGRATE,
2238 	FILE_CPULIST,
2239 	FILE_MEMLIST,
2240 	FILE_EFFECTIVE_CPULIST,
2241 	FILE_EFFECTIVE_MEMLIST,
2242 	FILE_SUBPARTS_CPULIST,
2243 	FILE_CPU_EXCLUSIVE,
2244 	FILE_MEM_EXCLUSIVE,
2245 	FILE_MEM_HARDWALL,
2246 	FILE_SCHED_LOAD_BALANCE,
2247 	FILE_PARTITION_ROOT,
2248 	FILE_SCHED_RELAX_DOMAIN_LEVEL,
2249 	FILE_MEMORY_PRESSURE_ENABLED,
2250 	FILE_MEMORY_PRESSURE,
2251 	FILE_SPREAD_PAGE,
2252 	FILE_SPREAD_SLAB,
2253 } cpuset_filetype_t;
2254 
2255 static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
2256 			    u64 val)
2257 {
2258 	struct cpuset *cs = css_cs(css);
2259 	cpuset_filetype_t type = cft->private;
2260 	int retval = 0;
2261 
2262 	get_online_cpus();
2263 	percpu_down_write(&cpuset_rwsem);
2264 	if (!is_cpuset_online(cs)) {
2265 		retval = -ENODEV;
2266 		goto out_unlock;
2267 	}
2268 
2269 	switch (type) {
2270 	case FILE_CPU_EXCLUSIVE:
2271 		retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
2272 		break;
2273 	case FILE_MEM_EXCLUSIVE:
2274 		retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
2275 		break;
2276 	case FILE_MEM_HARDWALL:
2277 		retval = update_flag(CS_MEM_HARDWALL, cs, val);
2278 		break;
2279 	case FILE_SCHED_LOAD_BALANCE:
2280 		retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
2281 		break;
2282 	case FILE_MEMORY_MIGRATE:
2283 		retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
2284 		break;
2285 	case FILE_MEMORY_PRESSURE_ENABLED:
2286 		cpuset_memory_pressure_enabled = !!val;
2287 		break;
2288 	case FILE_SPREAD_PAGE:
2289 		retval = update_flag(CS_SPREAD_PAGE, cs, val);
2290 		break;
2291 	case FILE_SPREAD_SLAB:
2292 		retval = update_flag(CS_SPREAD_SLAB, cs, val);
2293 		break;
2294 	default:
2295 		retval = -EINVAL;
2296 		break;
2297 	}
2298 out_unlock:
2299 	percpu_up_write(&cpuset_rwsem);
2300 	put_online_cpus();
2301 	return retval;
2302 }
2303 
2304 static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
2305 			    s64 val)
2306 {
2307 	struct cpuset *cs = css_cs(css);
2308 	cpuset_filetype_t type = cft->private;
2309 	int retval = -ENODEV;
2310 
2311 	get_online_cpus();
2312 	percpu_down_write(&cpuset_rwsem);
2313 	if (!is_cpuset_online(cs))
2314 		goto out_unlock;
2315 
2316 	switch (type) {
2317 	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
2318 		retval = update_relax_domain_level(cs, val);
2319 		break;
2320 	default:
2321 		retval = -EINVAL;
2322 		break;
2323 	}
2324 out_unlock:
2325 	percpu_up_write(&cpuset_rwsem);
2326 	put_online_cpus();
2327 	return retval;
2328 }
2329 
2330 /*
2331  * Common handling for a write to a "cpus" or "mems" file.
2332  */
2333 static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
2334 				    char *buf, size_t nbytes, loff_t off)
2335 {
2336 	struct cpuset *cs = css_cs(of_css(of));
2337 	struct cpuset *trialcs;
2338 	int retval = -ENODEV;
2339 
2340 	buf = strstrip(buf);
2341 
2342 	/*
2343 	 * CPU or memory hotunplug may leave @cs w/o any execution
2344 	 * resources, in which case the hotplug code asynchronously updates
2345 	 * configuration and transfers all tasks to the nearest ancestor
2346 	 * which can execute.
2347 	 *
2348 	 * As writes to "cpus" or "mems" may restore @cs's execution
2349 	 * resources, wait for the previously scheduled operations before
2350 	 * proceeding, so that we don't end up keep removing tasks added
2351 	 * after execution capability is restored.
2352 	 *
2353 	 * cpuset_hotplug_work calls back into cgroup core via
2354 	 * cgroup_transfer_tasks() and waiting for it from a cgroupfs
2355 	 * operation like this one can lead to a deadlock through kernfs
2356 	 * active_ref protection.  Let's break the protection.  Losing the
2357 	 * protection is okay as we check whether @cs is online after
2358 	 * grabbing cpuset_mutex anyway.  This only happens on the legacy
2359 	 * hierarchies.
2360 	 */
2361 	css_get(&cs->css);
2362 	kernfs_break_active_protection(of->kn);
2363 	flush_work(&cpuset_hotplug_work);
2364 
2365 	get_online_cpus();
2366 	percpu_down_write(&cpuset_rwsem);
2367 	if (!is_cpuset_online(cs))
2368 		goto out_unlock;
2369 
2370 	trialcs = alloc_trial_cpuset(cs);
2371 	if (!trialcs) {
2372 		retval = -ENOMEM;
2373 		goto out_unlock;
2374 	}
2375 
2376 	switch (of_cft(of)->private) {
2377 	case FILE_CPULIST:
2378 		retval = update_cpumask(cs, trialcs, buf);
2379 		break;
2380 	case FILE_MEMLIST:
2381 		retval = update_nodemask(cs, trialcs, buf);
2382 		break;
2383 	default:
2384 		retval = -EINVAL;
2385 		break;
2386 	}
2387 
2388 	free_cpuset(trialcs);
2389 out_unlock:
2390 	percpu_up_write(&cpuset_rwsem);
2391 	put_online_cpus();
2392 	kernfs_unbreak_active_protection(of->kn);
2393 	css_put(&cs->css);
2394 	flush_workqueue(cpuset_migrate_mm_wq);
2395 	return retval ?: nbytes;
2396 }
2397 
2398 /*
2399  * These ascii lists should be read in a single call, by using a user
2400  * buffer large enough to hold the entire map.  If read in smaller
2401  * chunks, there is no guarantee of atomicity.  Since the display format
2402  * used, list of ranges of sequential numbers, is variable length,
2403  * and since these maps can change value dynamically, one could read
2404  * gibberish by doing partial reads while a list was changing.
2405  */
2406 static int cpuset_common_seq_show(struct seq_file *sf, void *v)
2407 {
2408 	struct cpuset *cs = css_cs(seq_css(sf));
2409 	cpuset_filetype_t type = seq_cft(sf)->private;
2410 	int ret = 0;
2411 
2412 	spin_lock_irq(&callback_lock);
2413 
2414 	switch (type) {
2415 	case FILE_CPULIST:
2416 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed));
2417 		break;
2418 	case FILE_MEMLIST:
2419 		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
2420 		break;
2421 	case FILE_EFFECTIVE_CPULIST:
2422 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
2423 		break;
2424 	case FILE_EFFECTIVE_MEMLIST:
2425 		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
2426 		break;
2427 	case FILE_SUBPARTS_CPULIST:
2428 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->subparts_cpus));
2429 		break;
2430 	default:
2431 		ret = -EINVAL;
2432 	}
2433 
2434 	spin_unlock_irq(&callback_lock);
2435 	return ret;
2436 }
2437 
2438 static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
2439 {
2440 	struct cpuset *cs = css_cs(css);
2441 	cpuset_filetype_t type = cft->private;
2442 	switch (type) {
2443 	case FILE_CPU_EXCLUSIVE:
2444 		return is_cpu_exclusive(cs);
2445 	case FILE_MEM_EXCLUSIVE:
2446 		return is_mem_exclusive(cs);
2447 	case FILE_MEM_HARDWALL:
2448 		return is_mem_hardwall(cs);
2449 	case FILE_SCHED_LOAD_BALANCE:
2450 		return is_sched_load_balance(cs);
2451 	case FILE_MEMORY_MIGRATE:
2452 		return is_memory_migrate(cs);
2453 	case FILE_MEMORY_PRESSURE_ENABLED:
2454 		return cpuset_memory_pressure_enabled;
2455 	case FILE_MEMORY_PRESSURE:
2456 		return fmeter_getrate(&cs->fmeter);
2457 	case FILE_SPREAD_PAGE:
2458 		return is_spread_page(cs);
2459 	case FILE_SPREAD_SLAB:
2460 		return is_spread_slab(cs);
2461 	default:
2462 		BUG();
2463 	}
2464 
2465 	/* Unreachable but makes gcc happy */
2466 	return 0;
2467 }
2468 
2469 static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
2470 {
2471 	struct cpuset *cs = css_cs(css);
2472 	cpuset_filetype_t type = cft->private;
2473 	switch (type) {
2474 	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
2475 		return cs->relax_domain_level;
2476 	default:
2477 		BUG();
2478 	}
2479 
2480 	/* Unrechable but makes gcc happy */
2481 	return 0;
2482 }
2483 
2484 static int sched_partition_show(struct seq_file *seq, void *v)
2485 {
2486 	struct cpuset *cs = css_cs(seq_css(seq));
2487 
2488 	switch (cs->partition_root_state) {
2489 	case PRS_ENABLED:
2490 		seq_puts(seq, "root\n");
2491 		break;
2492 	case PRS_DISABLED:
2493 		seq_puts(seq, "member\n");
2494 		break;
2495 	case PRS_ERROR:
2496 		seq_puts(seq, "root invalid\n");
2497 		break;
2498 	}
2499 	return 0;
2500 }
2501 
2502 static ssize_t sched_partition_write(struct kernfs_open_file *of, char *buf,
2503 				     size_t nbytes, loff_t off)
2504 {
2505 	struct cpuset *cs = css_cs(of_css(of));
2506 	int val;
2507 	int retval = -ENODEV;
2508 
2509 	buf = strstrip(buf);
2510 
2511 	/*
2512 	 * Convert "root" to ENABLED, and convert "member" to DISABLED.
2513 	 */
2514 	if (!strcmp(buf, "root"))
2515 		val = PRS_ENABLED;
2516 	else if (!strcmp(buf, "member"))
2517 		val = PRS_DISABLED;
2518 	else
2519 		return -EINVAL;
2520 
2521 	css_get(&cs->css);
2522 	get_online_cpus();
2523 	percpu_down_write(&cpuset_rwsem);
2524 	if (!is_cpuset_online(cs))
2525 		goto out_unlock;
2526 
2527 	retval = update_prstate(cs, val);
2528 out_unlock:
2529 	percpu_up_write(&cpuset_rwsem);
2530 	put_online_cpus();
2531 	css_put(&cs->css);
2532 	return retval ?: nbytes;
2533 }
2534 
2535 /*
2536  * for the common functions, 'private' gives the type of file
2537  */
2538 
2539 static struct cftype legacy_files[] = {
2540 	{
2541 		.name = "cpus",
2542 		.seq_show = cpuset_common_seq_show,
2543 		.write = cpuset_write_resmask,
2544 		.max_write_len = (100U + 6 * NR_CPUS),
2545 		.private = FILE_CPULIST,
2546 	},
2547 
2548 	{
2549 		.name = "mems",
2550 		.seq_show = cpuset_common_seq_show,
2551 		.write = cpuset_write_resmask,
2552 		.max_write_len = (100U + 6 * MAX_NUMNODES),
2553 		.private = FILE_MEMLIST,
2554 	},
2555 
2556 	{
2557 		.name = "effective_cpus",
2558 		.seq_show = cpuset_common_seq_show,
2559 		.private = FILE_EFFECTIVE_CPULIST,
2560 	},
2561 
2562 	{
2563 		.name = "effective_mems",
2564 		.seq_show = cpuset_common_seq_show,
2565 		.private = FILE_EFFECTIVE_MEMLIST,
2566 	},
2567 
2568 	{
2569 		.name = "cpu_exclusive",
2570 		.read_u64 = cpuset_read_u64,
2571 		.write_u64 = cpuset_write_u64,
2572 		.private = FILE_CPU_EXCLUSIVE,
2573 	},
2574 
2575 	{
2576 		.name = "mem_exclusive",
2577 		.read_u64 = cpuset_read_u64,
2578 		.write_u64 = cpuset_write_u64,
2579 		.private = FILE_MEM_EXCLUSIVE,
2580 	},
2581 
2582 	{
2583 		.name = "mem_hardwall",
2584 		.read_u64 = cpuset_read_u64,
2585 		.write_u64 = cpuset_write_u64,
2586 		.private = FILE_MEM_HARDWALL,
2587 	},
2588 
2589 	{
2590 		.name = "sched_load_balance",
2591 		.read_u64 = cpuset_read_u64,
2592 		.write_u64 = cpuset_write_u64,
2593 		.private = FILE_SCHED_LOAD_BALANCE,
2594 	},
2595 
2596 	{
2597 		.name = "sched_relax_domain_level",
2598 		.read_s64 = cpuset_read_s64,
2599 		.write_s64 = cpuset_write_s64,
2600 		.private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
2601 	},
2602 
2603 	{
2604 		.name = "memory_migrate",
2605 		.read_u64 = cpuset_read_u64,
2606 		.write_u64 = cpuset_write_u64,
2607 		.private = FILE_MEMORY_MIGRATE,
2608 	},
2609 
2610 	{
2611 		.name = "memory_pressure",
2612 		.read_u64 = cpuset_read_u64,
2613 		.private = FILE_MEMORY_PRESSURE,
2614 	},
2615 
2616 	{
2617 		.name = "memory_spread_page",
2618 		.read_u64 = cpuset_read_u64,
2619 		.write_u64 = cpuset_write_u64,
2620 		.private = FILE_SPREAD_PAGE,
2621 	},
2622 
2623 	{
2624 		.name = "memory_spread_slab",
2625 		.read_u64 = cpuset_read_u64,
2626 		.write_u64 = cpuset_write_u64,
2627 		.private = FILE_SPREAD_SLAB,
2628 	},
2629 
2630 	{
2631 		.name = "memory_pressure_enabled",
2632 		.flags = CFTYPE_ONLY_ON_ROOT,
2633 		.read_u64 = cpuset_read_u64,
2634 		.write_u64 = cpuset_write_u64,
2635 		.private = FILE_MEMORY_PRESSURE_ENABLED,
2636 	},
2637 
2638 	{ }	/* terminate */
2639 };
2640 
2641 /*
2642  * This is currently a minimal set for the default hierarchy. It can be
2643  * expanded later on by migrating more features and control files from v1.
2644  */
2645 static struct cftype dfl_files[] = {
2646 	{
2647 		.name = "cpus",
2648 		.seq_show = cpuset_common_seq_show,
2649 		.write = cpuset_write_resmask,
2650 		.max_write_len = (100U + 6 * NR_CPUS),
2651 		.private = FILE_CPULIST,
2652 		.flags = CFTYPE_NOT_ON_ROOT,
2653 	},
2654 
2655 	{
2656 		.name = "mems",
2657 		.seq_show = cpuset_common_seq_show,
2658 		.write = cpuset_write_resmask,
2659 		.max_write_len = (100U + 6 * MAX_NUMNODES),
2660 		.private = FILE_MEMLIST,
2661 		.flags = CFTYPE_NOT_ON_ROOT,
2662 	},
2663 
2664 	{
2665 		.name = "cpus.effective",
2666 		.seq_show = cpuset_common_seq_show,
2667 		.private = FILE_EFFECTIVE_CPULIST,
2668 	},
2669 
2670 	{
2671 		.name = "mems.effective",
2672 		.seq_show = cpuset_common_seq_show,
2673 		.private = FILE_EFFECTIVE_MEMLIST,
2674 	},
2675 
2676 	{
2677 		.name = "cpus.partition",
2678 		.seq_show = sched_partition_show,
2679 		.write = sched_partition_write,
2680 		.private = FILE_PARTITION_ROOT,
2681 		.flags = CFTYPE_NOT_ON_ROOT,
2682 	},
2683 
2684 	{
2685 		.name = "cpus.subpartitions",
2686 		.seq_show = cpuset_common_seq_show,
2687 		.private = FILE_SUBPARTS_CPULIST,
2688 		.flags = CFTYPE_DEBUG,
2689 	},
2690 
2691 	{ }	/* terminate */
2692 };
2693 
2694 
2695 /*
2696  *	cpuset_css_alloc - allocate a cpuset css
2697  *	cgrp:	control group that the new cpuset will be part of
2698  */
2699 
2700 static struct cgroup_subsys_state *
2701 cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
2702 {
2703 	struct cpuset *cs;
2704 
2705 	if (!parent_css)
2706 		return &top_cpuset.css;
2707 
2708 	cs = kzalloc(sizeof(*cs), GFP_KERNEL);
2709 	if (!cs)
2710 		return ERR_PTR(-ENOMEM);
2711 
2712 	if (alloc_cpumasks(cs, NULL)) {
2713 		kfree(cs);
2714 		return ERR_PTR(-ENOMEM);
2715 	}
2716 
2717 	set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
2718 	nodes_clear(cs->mems_allowed);
2719 	nodes_clear(cs->effective_mems);
2720 	fmeter_init(&cs->fmeter);
2721 	cs->relax_domain_level = -1;
2722 
2723 	return &cs->css;
2724 }
2725 
2726 static int cpuset_css_online(struct cgroup_subsys_state *css)
2727 {
2728 	struct cpuset *cs = css_cs(css);
2729 	struct cpuset *parent = parent_cs(cs);
2730 	struct cpuset *tmp_cs;
2731 	struct cgroup_subsys_state *pos_css;
2732 
2733 	if (!parent)
2734 		return 0;
2735 
2736 	get_online_cpus();
2737 	percpu_down_write(&cpuset_rwsem);
2738 
2739 	set_bit(CS_ONLINE, &cs->flags);
2740 	if (is_spread_page(parent))
2741 		set_bit(CS_SPREAD_PAGE, &cs->flags);
2742 	if (is_spread_slab(parent))
2743 		set_bit(CS_SPREAD_SLAB, &cs->flags);
2744 
2745 	cpuset_inc();
2746 
2747 	spin_lock_irq(&callback_lock);
2748 	if (is_in_v2_mode()) {
2749 		cpumask_copy(cs->effective_cpus, parent->effective_cpus);
2750 		cs->effective_mems = parent->effective_mems;
2751 		cs->use_parent_ecpus = true;
2752 		parent->child_ecpus_count++;
2753 	}
2754 	spin_unlock_irq(&callback_lock);
2755 
2756 	if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
2757 		goto out_unlock;
2758 
2759 	/*
2760 	 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
2761 	 * set.  This flag handling is implemented in cgroup core for
2762 	 * histrical reasons - the flag may be specified during mount.
2763 	 *
2764 	 * Currently, if any sibling cpusets have exclusive cpus or mem, we
2765 	 * refuse to clone the configuration - thereby refusing the task to
2766 	 * be entered, and as a result refusing the sys_unshare() or
2767 	 * clone() which initiated it.  If this becomes a problem for some
2768 	 * users who wish to allow that scenario, then this could be
2769 	 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
2770 	 * (and likewise for mems) to the new cgroup.
2771 	 */
2772 	rcu_read_lock();
2773 	cpuset_for_each_child(tmp_cs, pos_css, parent) {
2774 		if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
2775 			rcu_read_unlock();
2776 			goto out_unlock;
2777 		}
2778 	}
2779 	rcu_read_unlock();
2780 
2781 	spin_lock_irq(&callback_lock);
2782 	cs->mems_allowed = parent->mems_allowed;
2783 	cs->effective_mems = parent->mems_allowed;
2784 	cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
2785 	cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
2786 	spin_unlock_irq(&callback_lock);
2787 out_unlock:
2788 	percpu_up_write(&cpuset_rwsem);
2789 	put_online_cpus();
2790 	return 0;
2791 }
2792 
2793 /*
2794  * If the cpuset being removed has its flag 'sched_load_balance'
2795  * enabled, then simulate turning sched_load_balance off, which
2796  * will call rebuild_sched_domains_locked(). That is not needed
2797  * in the default hierarchy where only changes in partition
2798  * will cause repartitioning.
2799  *
2800  * If the cpuset has the 'sched.partition' flag enabled, simulate
2801  * turning 'sched.partition" off.
2802  */
2803 
2804 static void cpuset_css_offline(struct cgroup_subsys_state *css)
2805 {
2806 	struct cpuset *cs = css_cs(css);
2807 
2808 	get_online_cpus();
2809 	percpu_down_write(&cpuset_rwsem);
2810 
2811 	if (is_partition_root(cs))
2812 		update_prstate(cs, 0);
2813 
2814 	if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
2815 	    is_sched_load_balance(cs))
2816 		update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
2817 
2818 	if (cs->use_parent_ecpus) {
2819 		struct cpuset *parent = parent_cs(cs);
2820 
2821 		cs->use_parent_ecpus = false;
2822 		parent->child_ecpus_count--;
2823 	}
2824 
2825 	cpuset_dec();
2826 	clear_bit(CS_ONLINE, &cs->flags);
2827 
2828 	percpu_up_write(&cpuset_rwsem);
2829 	put_online_cpus();
2830 }
2831 
2832 static void cpuset_css_free(struct cgroup_subsys_state *css)
2833 {
2834 	struct cpuset *cs = css_cs(css);
2835 
2836 	free_cpuset(cs);
2837 }
2838 
2839 static void cpuset_bind(struct cgroup_subsys_state *root_css)
2840 {
2841 	percpu_down_write(&cpuset_rwsem);
2842 	spin_lock_irq(&callback_lock);
2843 
2844 	if (is_in_v2_mode()) {
2845 		cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
2846 		top_cpuset.mems_allowed = node_possible_map;
2847 	} else {
2848 		cpumask_copy(top_cpuset.cpus_allowed,
2849 			     top_cpuset.effective_cpus);
2850 		top_cpuset.mems_allowed = top_cpuset.effective_mems;
2851 	}
2852 
2853 	spin_unlock_irq(&callback_lock);
2854 	percpu_up_write(&cpuset_rwsem);
2855 }
2856 
2857 /*
2858  * Make sure the new task conform to the current state of its parent,
2859  * which could have been changed by cpuset just after it inherits the
2860  * state from the parent and before it sits on the cgroup's task list.
2861  */
2862 static void cpuset_fork(struct task_struct *task)
2863 {
2864 	if (task_css_is_root(task, cpuset_cgrp_id))
2865 		return;
2866 
2867 	set_cpus_allowed_ptr(task, current->cpus_ptr);
2868 	task->mems_allowed = current->mems_allowed;
2869 }
2870 
2871 struct cgroup_subsys cpuset_cgrp_subsys = {
2872 	.css_alloc	= cpuset_css_alloc,
2873 	.css_online	= cpuset_css_online,
2874 	.css_offline	= cpuset_css_offline,
2875 	.css_free	= cpuset_css_free,
2876 	.can_attach	= cpuset_can_attach,
2877 	.cancel_attach	= cpuset_cancel_attach,
2878 	.attach		= cpuset_attach,
2879 	.post_attach	= cpuset_post_attach,
2880 	.bind		= cpuset_bind,
2881 	.fork		= cpuset_fork,
2882 	.legacy_cftypes	= legacy_files,
2883 	.dfl_cftypes	= dfl_files,
2884 	.early_init	= true,
2885 	.threaded	= true,
2886 };
2887 
2888 /**
2889  * cpuset_init - initialize cpusets at system boot
2890  *
2891  * Description: Initialize top_cpuset
2892  **/
2893 
2894 int __init cpuset_init(void)
2895 {
2896 	BUG_ON(percpu_init_rwsem(&cpuset_rwsem));
2897 
2898 	BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL));
2899 	BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL));
2900 	BUG_ON(!zalloc_cpumask_var(&top_cpuset.subparts_cpus, GFP_KERNEL));
2901 
2902 	cpumask_setall(top_cpuset.cpus_allowed);
2903 	nodes_setall(top_cpuset.mems_allowed);
2904 	cpumask_setall(top_cpuset.effective_cpus);
2905 	nodes_setall(top_cpuset.effective_mems);
2906 
2907 	fmeter_init(&top_cpuset.fmeter);
2908 	set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
2909 	top_cpuset.relax_domain_level = -1;
2910 
2911 	BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL));
2912 
2913 	return 0;
2914 }
2915 
2916 /*
2917  * If CPU and/or memory hotplug handlers, below, unplug any CPUs
2918  * or memory nodes, we need to walk over the cpuset hierarchy,
2919  * removing that CPU or node from all cpusets.  If this removes the
2920  * last CPU or node from a cpuset, then move the tasks in the empty
2921  * cpuset to its next-highest non-empty parent.
2922  */
2923 static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
2924 {
2925 	struct cpuset *parent;
2926 
2927 	/*
2928 	 * Find its next-highest non-empty parent, (top cpuset
2929 	 * has online cpus, so can't be empty).
2930 	 */
2931 	parent = parent_cs(cs);
2932 	while (cpumask_empty(parent->cpus_allowed) ||
2933 			nodes_empty(parent->mems_allowed))
2934 		parent = parent_cs(parent);
2935 
2936 	if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
2937 		pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
2938 		pr_cont_cgroup_name(cs->css.cgroup);
2939 		pr_cont("\n");
2940 	}
2941 }
2942 
2943 static void
2944 hotplug_update_tasks_legacy(struct cpuset *cs,
2945 			    struct cpumask *new_cpus, nodemask_t *new_mems,
2946 			    bool cpus_updated, bool mems_updated)
2947 {
2948 	bool is_empty;
2949 
2950 	spin_lock_irq(&callback_lock);
2951 	cpumask_copy(cs->cpus_allowed, new_cpus);
2952 	cpumask_copy(cs->effective_cpus, new_cpus);
2953 	cs->mems_allowed = *new_mems;
2954 	cs->effective_mems = *new_mems;
2955 	spin_unlock_irq(&callback_lock);
2956 
2957 	/*
2958 	 * Don't call update_tasks_cpumask() if the cpuset becomes empty,
2959 	 * as the tasks will be migratecd to an ancestor.
2960 	 */
2961 	if (cpus_updated && !cpumask_empty(cs->cpus_allowed))
2962 		update_tasks_cpumask(cs);
2963 	if (mems_updated && !nodes_empty(cs->mems_allowed))
2964 		update_tasks_nodemask(cs);
2965 
2966 	is_empty = cpumask_empty(cs->cpus_allowed) ||
2967 		   nodes_empty(cs->mems_allowed);
2968 
2969 	percpu_up_write(&cpuset_rwsem);
2970 
2971 	/*
2972 	 * Move tasks to the nearest ancestor with execution resources,
2973 	 * This is full cgroup operation which will also call back into
2974 	 * cpuset. Should be done outside any lock.
2975 	 */
2976 	if (is_empty)
2977 		remove_tasks_in_empty_cpuset(cs);
2978 
2979 	percpu_down_write(&cpuset_rwsem);
2980 }
2981 
2982 static void
2983 hotplug_update_tasks(struct cpuset *cs,
2984 		     struct cpumask *new_cpus, nodemask_t *new_mems,
2985 		     bool cpus_updated, bool mems_updated)
2986 {
2987 	if (cpumask_empty(new_cpus))
2988 		cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
2989 	if (nodes_empty(*new_mems))
2990 		*new_mems = parent_cs(cs)->effective_mems;
2991 
2992 	spin_lock_irq(&callback_lock);
2993 	cpumask_copy(cs->effective_cpus, new_cpus);
2994 	cs->effective_mems = *new_mems;
2995 	spin_unlock_irq(&callback_lock);
2996 
2997 	if (cpus_updated)
2998 		update_tasks_cpumask(cs);
2999 	if (mems_updated)
3000 		update_tasks_nodemask(cs);
3001 }
3002 
3003 static bool force_rebuild;
3004 
3005 void cpuset_force_rebuild(void)
3006 {
3007 	force_rebuild = true;
3008 }
3009 
3010 /**
3011  * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
3012  * @cs: cpuset in interest
3013  * @tmp: the tmpmasks structure pointer
3014  *
3015  * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
3016  * offline, update @cs accordingly.  If @cs ends up with no CPU or memory,
3017  * all its tasks are moved to the nearest ancestor with both resources.
3018  */
3019 static void cpuset_hotplug_update_tasks(struct cpuset *cs, struct tmpmasks *tmp)
3020 {
3021 	static cpumask_t new_cpus;
3022 	static nodemask_t new_mems;
3023 	bool cpus_updated;
3024 	bool mems_updated;
3025 	struct cpuset *parent;
3026 retry:
3027 	wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
3028 
3029 	percpu_down_write(&cpuset_rwsem);
3030 
3031 	/*
3032 	 * We have raced with task attaching. We wait until attaching
3033 	 * is finished, so we won't attach a task to an empty cpuset.
3034 	 */
3035 	if (cs->attach_in_progress) {
3036 		percpu_up_write(&cpuset_rwsem);
3037 		goto retry;
3038 	}
3039 
3040 	parent =  parent_cs(cs);
3041 	compute_effective_cpumask(&new_cpus, cs, parent);
3042 	nodes_and(new_mems, cs->mems_allowed, parent->effective_mems);
3043 
3044 	if (cs->nr_subparts_cpus)
3045 		/*
3046 		 * Make sure that CPUs allocated to child partitions
3047 		 * do not show up in effective_cpus.
3048 		 */
3049 		cpumask_andnot(&new_cpus, &new_cpus, cs->subparts_cpus);
3050 
3051 	if (!tmp || !cs->partition_root_state)
3052 		goto update_tasks;
3053 
3054 	/*
3055 	 * In the unlikely event that a partition root has empty
3056 	 * effective_cpus or its parent becomes erroneous, we have to
3057 	 * transition it to the erroneous state.
3058 	 */
3059 	if (is_partition_root(cs) && (cpumask_empty(&new_cpus) ||
3060 	   (parent->partition_root_state == PRS_ERROR))) {
3061 		if (cs->nr_subparts_cpus) {
3062 			cs->nr_subparts_cpus = 0;
3063 			cpumask_clear(cs->subparts_cpus);
3064 			compute_effective_cpumask(&new_cpus, cs, parent);
3065 		}
3066 
3067 		/*
3068 		 * If the effective_cpus is empty because the child
3069 		 * partitions take away all the CPUs, we can keep
3070 		 * the current partition and let the child partitions
3071 		 * fight for available CPUs.
3072 		 */
3073 		if ((parent->partition_root_state == PRS_ERROR) ||
3074 		     cpumask_empty(&new_cpus)) {
3075 			update_parent_subparts_cpumask(cs, partcmd_disable,
3076 						       NULL, tmp);
3077 			cs->partition_root_state = PRS_ERROR;
3078 		}
3079 		cpuset_force_rebuild();
3080 	}
3081 
3082 	/*
3083 	 * On the other hand, an erroneous partition root may be transitioned
3084 	 * back to a regular one or a partition root with no CPU allocated
3085 	 * from the parent may change to erroneous.
3086 	 */
3087 	if (is_partition_root(parent) &&
3088 	   ((cs->partition_root_state == PRS_ERROR) ||
3089 	    !cpumask_intersects(&new_cpus, parent->subparts_cpus)) &&
3090 	     update_parent_subparts_cpumask(cs, partcmd_update, NULL, tmp))
3091 		cpuset_force_rebuild();
3092 
3093 update_tasks:
3094 	cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
3095 	mems_updated = !nodes_equal(new_mems, cs->effective_mems);
3096 
3097 	if (is_in_v2_mode())
3098 		hotplug_update_tasks(cs, &new_cpus, &new_mems,
3099 				     cpus_updated, mems_updated);
3100 	else
3101 		hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems,
3102 					    cpus_updated, mems_updated);
3103 
3104 	percpu_up_write(&cpuset_rwsem);
3105 }
3106 
3107 /**
3108  * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
3109  *
3110  * This function is called after either CPU or memory configuration has
3111  * changed and updates cpuset accordingly.  The top_cpuset is always
3112  * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
3113  * order to make cpusets transparent (of no affect) on systems that are
3114  * actively using CPU hotplug but making no active use of cpusets.
3115  *
3116  * Non-root cpusets are only affected by offlining.  If any CPUs or memory
3117  * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
3118  * all descendants.
3119  *
3120  * Note that CPU offlining during suspend is ignored.  We don't modify
3121  * cpusets across suspend/resume cycles at all.
3122  */
3123 static void cpuset_hotplug_workfn(struct work_struct *work)
3124 {
3125 	static cpumask_t new_cpus;
3126 	static nodemask_t new_mems;
3127 	bool cpus_updated, mems_updated;
3128 	bool on_dfl = is_in_v2_mode();
3129 	struct tmpmasks tmp, *ptmp = NULL;
3130 
3131 	if (on_dfl && !alloc_cpumasks(NULL, &tmp))
3132 		ptmp = &tmp;
3133 
3134 	percpu_down_write(&cpuset_rwsem);
3135 
3136 	/* fetch the available cpus/mems and find out which changed how */
3137 	cpumask_copy(&new_cpus, cpu_active_mask);
3138 	new_mems = node_states[N_MEMORY];
3139 
3140 	/*
3141 	 * If subparts_cpus is populated, it is likely that the check below
3142 	 * will produce a false positive on cpus_updated when the cpu list
3143 	 * isn't changed. It is extra work, but it is better to be safe.
3144 	 */
3145 	cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus);
3146 	mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
3147 
3148 	/* synchronize cpus_allowed to cpu_active_mask */
3149 	if (cpus_updated) {
3150 		spin_lock_irq(&callback_lock);
3151 		if (!on_dfl)
3152 			cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
3153 		/*
3154 		 * Make sure that CPUs allocated to child partitions
3155 		 * do not show up in effective_cpus. If no CPU is left,
3156 		 * we clear the subparts_cpus & let the child partitions
3157 		 * fight for the CPUs again.
3158 		 */
3159 		if (top_cpuset.nr_subparts_cpus) {
3160 			if (cpumask_subset(&new_cpus,
3161 					   top_cpuset.subparts_cpus)) {
3162 				top_cpuset.nr_subparts_cpus = 0;
3163 				cpumask_clear(top_cpuset.subparts_cpus);
3164 			} else {
3165 				cpumask_andnot(&new_cpus, &new_cpus,
3166 					       top_cpuset.subparts_cpus);
3167 			}
3168 		}
3169 		cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
3170 		spin_unlock_irq(&callback_lock);
3171 		/* we don't mess with cpumasks of tasks in top_cpuset */
3172 	}
3173 
3174 	/* synchronize mems_allowed to N_MEMORY */
3175 	if (mems_updated) {
3176 		spin_lock_irq(&callback_lock);
3177 		if (!on_dfl)
3178 			top_cpuset.mems_allowed = new_mems;
3179 		top_cpuset.effective_mems = new_mems;
3180 		spin_unlock_irq(&callback_lock);
3181 		update_tasks_nodemask(&top_cpuset);
3182 	}
3183 
3184 	percpu_up_write(&cpuset_rwsem);
3185 
3186 	/* if cpus or mems changed, we need to propagate to descendants */
3187 	if (cpus_updated || mems_updated) {
3188 		struct cpuset *cs;
3189 		struct cgroup_subsys_state *pos_css;
3190 
3191 		rcu_read_lock();
3192 		cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
3193 			if (cs == &top_cpuset || !css_tryget_online(&cs->css))
3194 				continue;
3195 			rcu_read_unlock();
3196 
3197 			cpuset_hotplug_update_tasks(cs, ptmp);
3198 
3199 			rcu_read_lock();
3200 			css_put(&cs->css);
3201 		}
3202 		rcu_read_unlock();
3203 	}
3204 
3205 	/* rebuild sched domains if cpus_allowed has changed */
3206 	if (cpus_updated || force_rebuild) {
3207 		force_rebuild = false;
3208 		rebuild_sched_domains();
3209 	}
3210 
3211 	free_cpumasks(NULL, ptmp);
3212 }
3213 
3214 void cpuset_update_active_cpus(void)
3215 {
3216 	/*
3217 	 * We're inside cpu hotplug critical region which usually nests
3218 	 * inside cgroup synchronization.  Bounce actual hotplug processing
3219 	 * to a work item to avoid reverse locking order.
3220 	 */
3221 	schedule_work(&cpuset_hotplug_work);
3222 }
3223 
3224 void cpuset_wait_for_hotplug(void)
3225 {
3226 	flush_work(&cpuset_hotplug_work);
3227 }
3228 
3229 /*
3230  * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
3231  * Call this routine anytime after node_states[N_MEMORY] changes.
3232  * See cpuset_update_active_cpus() for CPU hotplug handling.
3233  */
3234 static int cpuset_track_online_nodes(struct notifier_block *self,
3235 				unsigned long action, void *arg)
3236 {
3237 	schedule_work(&cpuset_hotplug_work);
3238 	return NOTIFY_OK;
3239 }
3240 
3241 static struct notifier_block cpuset_track_online_nodes_nb = {
3242 	.notifier_call = cpuset_track_online_nodes,
3243 	.priority = 10,		/* ??! */
3244 };
3245 
3246 /**
3247  * cpuset_init_smp - initialize cpus_allowed
3248  *
3249  * Description: Finish top cpuset after cpu, node maps are initialized
3250  */
3251 void __init cpuset_init_smp(void)
3252 {
3253 	cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
3254 	top_cpuset.mems_allowed = node_states[N_MEMORY];
3255 	top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
3256 
3257 	cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
3258 	top_cpuset.effective_mems = node_states[N_MEMORY];
3259 
3260 	register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
3261 
3262 	cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0);
3263 	BUG_ON(!cpuset_migrate_mm_wq);
3264 }
3265 
3266 /**
3267  * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
3268  * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
3269  * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
3270  *
3271  * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
3272  * attached to the specified @tsk.  Guaranteed to return some non-empty
3273  * subset of cpu_online_mask, even if this means going outside the
3274  * tasks cpuset.
3275  **/
3276 
3277 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
3278 {
3279 	unsigned long flags;
3280 
3281 	spin_lock_irqsave(&callback_lock, flags);
3282 	rcu_read_lock();
3283 	guarantee_online_cpus(task_cs(tsk), pmask);
3284 	rcu_read_unlock();
3285 	spin_unlock_irqrestore(&callback_lock, flags);
3286 }
3287 
3288 /**
3289  * cpuset_cpus_allowed_fallback - final fallback before complete catastrophe.
3290  * @tsk: pointer to task_struct with which the scheduler is struggling
3291  *
3292  * Description: In the case that the scheduler cannot find an allowed cpu in
3293  * tsk->cpus_allowed, we fall back to task_cs(tsk)->cpus_allowed. In legacy
3294  * mode however, this value is the same as task_cs(tsk)->effective_cpus,
3295  * which will not contain a sane cpumask during cases such as cpu hotplugging.
3296  * This is the absolute last resort for the scheduler and it is only used if
3297  * _every_ other avenue has been traveled.
3298  **/
3299 
3300 void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
3301 {
3302 	rcu_read_lock();
3303 	do_set_cpus_allowed(tsk, is_in_v2_mode() ?
3304 		task_cs(tsk)->cpus_allowed : cpu_possible_mask);
3305 	rcu_read_unlock();
3306 
3307 	/*
3308 	 * We own tsk->cpus_allowed, nobody can change it under us.
3309 	 *
3310 	 * But we used cs && cs->cpus_allowed lockless and thus can
3311 	 * race with cgroup_attach_task() or update_cpumask() and get
3312 	 * the wrong tsk->cpus_allowed. However, both cases imply the
3313 	 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
3314 	 * which takes task_rq_lock().
3315 	 *
3316 	 * If we are called after it dropped the lock we must see all
3317 	 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
3318 	 * set any mask even if it is not right from task_cs() pov,
3319 	 * the pending set_cpus_allowed_ptr() will fix things.
3320 	 *
3321 	 * select_fallback_rq() will fix things ups and set cpu_possible_mask
3322 	 * if required.
3323 	 */
3324 }
3325 
3326 void __init cpuset_init_current_mems_allowed(void)
3327 {
3328 	nodes_setall(current->mems_allowed);
3329 }
3330 
3331 /**
3332  * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
3333  * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
3334  *
3335  * Description: Returns the nodemask_t mems_allowed of the cpuset
3336  * attached to the specified @tsk.  Guaranteed to return some non-empty
3337  * subset of node_states[N_MEMORY], even if this means going outside the
3338  * tasks cpuset.
3339  **/
3340 
3341 nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
3342 {
3343 	nodemask_t mask;
3344 	unsigned long flags;
3345 
3346 	spin_lock_irqsave(&callback_lock, flags);
3347 	rcu_read_lock();
3348 	guarantee_online_mems(task_cs(tsk), &mask);
3349 	rcu_read_unlock();
3350 	spin_unlock_irqrestore(&callback_lock, flags);
3351 
3352 	return mask;
3353 }
3354 
3355 /**
3356  * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
3357  * @nodemask: the nodemask to be checked
3358  *
3359  * Are any of the nodes in the nodemask allowed in current->mems_allowed?
3360  */
3361 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
3362 {
3363 	return nodes_intersects(*nodemask, current->mems_allowed);
3364 }
3365 
3366 /*
3367  * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
3368  * mem_hardwall ancestor to the specified cpuset.  Call holding
3369  * callback_lock.  If no ancestor is mem_exclusive or mem_hardwall
3370  * (an unusual configuration), then returns the root cpuset.
3371  */
3372 static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
3373 {
3374 	while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
3375 		cs = parent_cs(cs);
3376 	return cs;
3377 }
3378 
3379 /**
3380  * cpuset_node_allowed - Can we allocate on a memory node?
3381  * @node: is this an allowed node?
3382  * @gfp_mask: memory allocation flags
3383  *
3384  * If we're in interrupt, yes, we can always allocate.  If @node is set in
3385  * current's mems_allowed, yes.  If it's not a __GFP_HARDWALL request and this
3386  * node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
3387  * yes.  If current has access to memory reserves as an oom victim, yes.
3388  * Otherwise, no.
3389  *
3390  * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
3391  * and do not allow allocations outside the current tasks cpuset
3392  * unless the task has been OOM killed.
3393  * GFP_KERNEL allocations are not so marked, so can escape to the
3394  * nearest enclosing hardwalled ancestor cpuset.
3395  *
3396  * Scanning up parent cpusets requires callback_lock.  The
3397  * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
3398  * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
3399  * current tasks mems_allowed came up empty on the first pass over
3400  * the zonelist.  So only GFP_KERNEL allocations, if all nodes in the
3401  * cpuset are short of memory, might require taking the callback_lock.
3402  *
3403  * The first call here from mm/page_alloc:get_page_from_freelist()
3404  * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
3405  * so no allocation on a node outside the cpuset is allowed (unless
3406  * in interrupt, of course).
3407  *
3408  * The second pass through get_page_from_freelist() doesn't even call
3409  * here for GFP_ATOMIC calls.  For those calls, the __alloc_pages()
3410  * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
3411  * in alloc_flags.  That logic and the checks below have the combined
3412  * affect that:
3413  *	in_interrupt - any node ok (current task context irrelevant)
3414  *	GFP_ATOMIC   - any node ok
3415  *	tsk_is_oom_victim   - any node ok
3416  *	GFP_KERNEL   - any node in enclosing hardwalled cpuset ok
3417  *	GFP_USER     - only nodes in current tasks mems allowed ok.
3418  */
3419 bool __cpuset_node_allowed(int node, gfp_t gfp_mask)
3420 {
3421 	struct cpuset *cs;		/* current cpuset ancestors */
3422 	int allowed;			/* is allocation in zone z allowed? */
3423 	unsigned long flags;
3424 
3425 	if (in_interrupt())
3426 		return true;
3427 	if (node_isset(node, current->mems_allowed))
3428 		return true;
3429 	/*
3430 	 * Allow tasks that have access to memory reserves because they have
3431 	 * been OOM killed to get memory anywhere.
3432 	 */
3433 	if (unlikely(tsk_is_oom_victim(current)))
3434 		return true;
3435 	if (gfp_mask & __GFP_HARDWALL)	/* If hardwall request, stop here */
3436 		return false;
3437 
3438 	if (current->flags & PF_EXITING) /* Let dying task have memory */
3439 		return true;
3440 
3441 	/* Not hardwall and node outside mems_allowed: scan up cpusets */
3442 	spin_lock_irqsave(&callback_lock, flags);
3443 
3444 	rcu_read_lock();
3445 	cs = nearest_hardwall_ancestor(task_cs(current));
3446 	allowed = node_isset(node, cs->mems_allowed);
3447 	rcu_read_unlock();
3448 
3449 	spin_unlock_irqrestore(&callback_lock, flags);
3450 	return allowed;
3451 }
3452 
3453 /**
3454  * cpuset_mem_spread_node() - On which node to begin search for a file page
3455  * cpuset_slab_spread_node() - On which node to begin search for a slab page
3456  *
3457  * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
3458  * tasks in a cpuset with is_spread_page or is_spread_slab set),
3459  * and if the memory allocation used cpuset_mem_spread_node()
3460  * to determine on which node to start looking, as it will for
3461  * certain page cache or slab cache pages such as used for file
3462  * system buffers and inode caches, then instead of starting on the
3463  * local node to look for a free page, rather spread the starting
3464  * node around the tasks mems_allowed nodes.
3465  *
3466  * We don't have to worry about the returned node being offline
3467  * because "it can't happen", and even if it did, it would be ok.
3468  *
3469  * The routines calling guarantee_online_mems() are careful to
3470  * only set nodes in task->mems_allowed that are online.  So it
3471  * should not be possible for the following code to return an
3472  * offline node.  But if it did, that would be ok, as this routine
3473  * is not returning the node where the allocation must be, only
3474  * the node where the search should start.  The zonelist passed to
3475  * __alloc_pages() will include all nodes.  If the slab allocator
3476  * is passed an offline node, it will fall back to the local node.
3477  * See kmem_cache_alloc_node().
3478  */
3479 
3480 static int cpuset_spread_node(int *rotor)
3481 {
3482 	return *rotor = next_node_in(*rotor, current->mems_allowed);
3483 }
3484 
3485 int cpuset_mem_spread_node(void)
3486 {
3487 	if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
3488 		current->cpuset_mem_spread_rotor =
3489 			node_random(&current->mems_allowed);
3490 
3491 	return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
3492 }
3493 
3494 int cpuset_slab_spread_node(void)
3495 {
3496 	if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
3497 		current->cpuset_slab_spread_rotor =
3498 			node_random(&current->mems_allowed);
3499 
3500 	return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
3501 }
3502 
3503 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
3504 
3505 /**
3506  * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
3507  * @tsk1: pointer to task_struct of some task.
3508  * @tsk2: pointer to task_struct of some other task.
3509  *
3510  * Description: Return true if @tsk1's mems_allowed intersects the
3511  * mems_allowed of @tsk2.  Used by the OOM killer to determine if
3512  * one of the task's memory usage might impact the memory available
3513  * to the other.
3514  **/
3515 
3516 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
3517 				   const struct task_struct *tsk2)
3518 {
3519 	return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
3520 }
3521 
3522 /**
3523  * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed
3524  *
3525  * Description: Prints current's name, cpuset name, and cached copy of its
3526  * mems_allowed to the kernel log.
3527  */
3528 void cpuset_print_current_mems_allowed(void)
3529 {
3530 	struct cgroup *cgrp;
3531 
3532 	rcu_read_lock();
3533 
3534 	cgrp = task_cs(current)->css.cgroup;
3535 	pr_cont(",cpuset=");
3536 	pr_cont_cgroup_name(cgrp);
3537 	pr_cont(",mems_allowed=%*pbl",
3538 		nodemask_pr_args(&current->mems_allowed));
3539 
3540 	rcu_read_unlock();
3541 }
3542 
3543 /*
3544  * Collection of memory_pressure is suppressed unless
3545  * this flag is enabled by writing "1" to the special
3546  * cpuset file 'memory_pressure_enabled' in the root cpuset.
3547  */
3548 
3549 int cpuset_memory_pressure_enabled __read_mostly;
3550 
3551 /**
3552  * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
3553  *
3554  * Keep a running average of the rate of synchronous (direct)
3555  * page reclaim efforts initiated by tasks in each cpuset.
3556  *
3557  * This represents the rate at which some task in the cpuset
3558  * ran low on memory on all nodes it was allowed to use, and
3559  * had to enter the kernels page reclaim code in an effort to
3560  * create more free memory by tossing clean pages or swapping
3561  * or writing dirty pages.
3562  *
3563  * Display to user space in the per-cpuset read-only file
3564  * "memory_pressure".  Value displayed is an integer
3565  * representing the recent rate of entry into the synchronous
3566  * (direct) page reclaim by any task attached to the cpuset.
3567  **/
3568 
3569 void __cpuset_memory_pressure_bump(void)
3570 {
3571 	rcu_read_lock();
3572 	fmeter_markevent(&task_cs(current)->fmeter);
3573 	rcu_read_unlock();
3574 }
3575 
3576 #ifdef CONFIG_PROC_PID_CPUSET
3577 /*
3578  * proc_cpuset_show()
3579  *  - Print tasks cpuset path into seq_file.
3580  *  - Used for /proc/<pid>/cpuset.
3581  *  - No need to task_lock(tsk) on this tsk->cpuset reference, as it
3582  *    doesn't really matter if tsk->cpuset changes after we read it,
3583  *    and we take cpuset_mutex, keeping cpuset_attach() from changing it
3584  *    anyway.
3585  */
3586 int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
3587 		     struct pid *pid, struct task_struct *tsk)
3588 {
3589 	char *buf;
3590 	struct cgroup_subsys_state *css;
3591 	int retval;
3592 
3593 	retval = -ENOMEM;
3594 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
3595 	if (!buf)
3596 		goto out;
3597 
3598 	css = task_get_css(tsk, cpuset_cgrp_id);
3599 	retval = cgroup_path_ns(css->cgroup, buf, PATH_MAX,
3600 				current->nsproxy->cgroup_ns);
3601 	css_put(css);
3602 	if (retval >= PATH_MAX)
3603 		retval = -ENAMETOOLONG;
3604 	if (retval < 0)
3605 		goto out_free;
3606 	seq_puts(m, buf);
3607 	seq_putc(m, '\n');
3608 	retval = 0;
3609 out_free:
3610 	kfree(buf);
3611 out:
3612 	return retval;
3613 }
3614 #endif /* CONFIG_PROC_PID_CPUSET */
3615 
3616 /* Display task mems_allowed in /proc/<pid>/status file. */
3617 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
3618 {
3619 	seq_printf(m, "Mems_allowed:\t%*pb\n",
3620 		   nodemask_pr_args(&task->mems_allowed));
3621 	seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
3622 		   nodemask_pr_args(&task->mems_allowed));
3623 }
3624