1 /* 2 * kernel/cpuset.c 3 * 4 * Processor and Memory placement constraints for sets of tasks. 5 * 6 * Copyright (C) 2003 BULL SA. 7 * Copyright (C) 2004-2007 Silicon Graphics, Inc. 8 * Copyright (C) 2006 Google, Inc 9 * 10 * Portions derived from Patrick Mochel's sysfs code. 11 * sysfs is Copyright (c) 2001-3 Patrick Mochel 12 * 13 * 2003-10-10 Written by Simon Derr. 14 * 2003-10-22 Updates by Stephen Hemminger. 15 * 2004 May-July Rework by Paul Jackson. 16 * 2006 Rework by Paul Menage to use generic cgroups 17 * 2008 Rework of the scheduler domains and CPU hotplug handling 18 * by Max Krasnyansky 19 * 20 * This file is subject to the terms and conditions of the GNU General Public 21 * License. See the file COPYING in the main directory of the Linux 22 * distribution for more details. 23 */ 24 25 #include <linux/cpu.h> 26 #include <linux/cpumask.h> 27 #include <linux/cpuset.h> 28 #include <linux/err.h> 29 #include <linux/errno.h> 30 #include <linux/file.h> 31 #include <linux/fs.h> 32 #include <linux/init.h> 33 #include <linux/interrupt.h> 34 #include <linux/kernel.h> 35 #include <linux/kmod.h> 36 #include <linux/list.h> 37 #include <linux/mempolicy.h> 38 #include <linux/mm.h> 39 #include <linux/memory.h> 40 #include <linux/export.h> 41 #include <linux/mount.h> 42 #include <linux/fs_context.h> 43 #include <linux/namei.h> 44 #include <linux/pagemap.h> 45 #include <linux/proc_fs.h> 46 #include <linux/rcupdate.h> 47 #include <linux/sched.h> 48 #include <linux/sched/deadline.h> 49 #include <linux/sched/mm.h> 50 #include <linux/sched/task.h> 51 #include <linux/seq_file.h> 52 #include <linux/security.h> 53 #include <linux/slab.h> 54 #include <linux/spinlock.h> 55 #include <linux/stat.h> 56 #include <linux/string.h> 57 #include <linux/time.h> 58 #include <linux/time64.h> 59 #include <linux/backing-dev.h> 60 #include <linux/sort.h> 61 #include <linux/oom.h> 62 #include <linux/sched/isolation.h> 63 #include <linux/uaccess.h> 64 #include <linux/atomic.h> 65 #include <linux/mutex.h> 66 #include <linux/cgroup.h> 67 #include <linux/wait.h> 68 69 DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key); 70 DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key); 71 72 /* See "Frequency meter" comments, below. */ 73 74 struct fmeter { 75 int cnt; /* unprocessed events count */ 76 int val; /* most recent output value */ 77 time64_t time; /* clock (secs) when val computed */ 78 spinlock_t lock; /* guards read or write of above */ 79 }; 80 81 struct cpuset { 82 struct cgroup_subsys_state css; 83 84 unsigned long flags; /* "unsigned long" so bitops work */ 85 86 /* 87 * On default hierarchy: 88 * 89 * The user-configured masks can only be changed by writing to 90 * cpuset.cpus and cpuset.mems, and won't be limited by the 91 * parent masks. 92 * 93 * The effective masks is the real masks that apply to the tasks 94 * in the cpuset. They may be changed if the configured masks are 95 * changed or hotplug happens. 96 * 97 * effective_mask == configured_mask & parent's effective_mask, 98 * and if it ends up empty, it will inherit the parent's mask. 99 * 100 * 101 * On legacy hierachy: 102 * 103 * The user-configured masks are always the same with effective masks. 104 */ 105 106 /* user-configured CPUs and Memory Nodes allow to tasks */ 107 cpumask_var_t cpus_allowed; 108 nodemask_t mems_allowed; 109 110 /* effective CPUs and Memory Nodes allow to tasks */ 111 cpumask_var_t effective_cpus; 112 nodemask_t effective_mems; 113 114 /* 115 * CPUs allocated to child sub-partitions (default hierarchy only) 116 * - CPUs granted by the parent = effective_cpus U subparts_cpus 117 * - effective_cpus and subparts_cpus are mutually exclusive. 118 * 119 * effective_cpus contains only onlined CPUs, but subparts_cpus 120 * may have offlined ones. 121 */ 122 cpumask_var_t subparts_cpus; 123 124 /* 125 * This is old Memory Nodes tasks took on. 126 * 127 * - top_cpuset.old_mems_allowed is initialized to mems_allowed. 128 * - A new cpuset's old_mems_allowed is initialized when some 129 * task is moved into it. 130 * - old_mems_allowed is used in cpuset_migrate_mm() when we change 131 * cpuset.mems_allowed and have tasks' nodemask updated, and 132 * then old_mems_allowed is updated to mems_allowed. 133 */ 134 nodemask_t old_mems_allowed; 135 136 struct fmeter fmeter; /* memory_pressure filter */ 137 138 /* 139 * Tasks are being attached to this cpuset. Used to prevent 140 * zeroing cpus/mems_allowed between ->can_attach() and ->attach(). 141 */ 142 int attach_in_progress; 143 144 /* partition number for rebuild_sched_domains() */ 145 int pn; 146 147 /* for custom sched domain */ 148 int relax_domain_level; 149 150 /* number of CPUs in subparts_cpus */ 151 int nr_subparts_cpus; 152 153 /* partition root state */ 154 int partition_root_state; 155 156 /* 157 * Default hierarchy only: 158 * use_parent_ecpus - set if using parent's effective_cpus 159 * child_ecpus_count - # of children with use_parent_ecpus set 160 */ 161 int use_parent_ecpus; 162 int child_ecpus_count; 163 }; 164 165 /* 166 * Partition root states: 167 * 168 * 0 - not a partition root 169 * 170 * 1 - partition root 171 * 172 * -1 - invalid partition root 173 * None of the cpus in cpus_allowed can be put into the parent's 174 * subparts_cpus. In this case, the cpuset is not a real partition 175 * root anymore. However, the CPU_EXCLUSIVE bit will still be set 176 * and the cpuset can be restored back to a partition root if the 177 * parent cpuset can give more CPUs back to this child cpuset. 178 */ 179 #define PRS_DISABLED 0 180 #define PRS_ENABLED 1 181 #define PRS_ERROR -1 182 183 /* 184 * Temporary cpumasks for working with partitions that are passed among 185 * functions to avoid memory allocation in inner functions. 186 */ 187 struct tmpmasks { 188 cpumask_var_t addmask, delmask; /* For partition root */ 189 cpumask_var_t new_cpus; /* For update_cpumasks_hier() */ 190 }; 191 192 static inline struct cpuset *css_cs(struct cgroup_subsys_state *css) 193 { 194 return css ? container_of(css, struct cpuset, css) : NULL; 195 } 196 197 /* Retrieve the cpuset for a task */ 198 static inline struct cpuset *task_cs(struct task_struct *task) 199 { 200 return css_cs(task_css(task, cpuset_cgrp_id)); 201 } 202 203 static inline struct cpuset *parent_cs(struct cpuset *cs) 204 { 205 return css_cs(cs->css.parent); 206 } 207 208 /* bits in struct cpuset flags field */ 209 typedef enum { 210 CS_ONLINE, 211 CS_CPU_EXCLUSIVE, 212 CS_MEM_EXCLUSIVE, 213 CS_MEM_HARDWALL, 214 CS_MEMORY_MIGRATE, 215 CS_SCHED_LOAD_BALANCE, 216 CS_SPREAD_PAGE, 217 CS_SPREAD_SLAB, 218 } cpuset_flagbits_t; 219 220 /* convenient tests for these bits */ 221 static inline bool is_cpuset_online(struct cpuset *cs) 222 { 223 return test_bit(CS_ONLINE, &cs->flags) && !css_is_dying(&cs->css); 224 } 225 226 static inline int is_cpu_exclusive(const struct cpuset *cs) 227 { 228 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags); 229 } 230 231 static inline int is_mem_exclusive(const struct cpuset *cs) 232 { 233 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags); 234 } 235 236 static inline int is_mem_hardwall(const struct cpuset *cs) 237 { 238 return test_bit(CS_MEM_HARDWALL, &cs->flags); 239 } 240 241 static inline int is_sched_load_balance(const struct cpuset *cs) 242 { 243 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); 244 } 245 246 static inline int is_memory_migrate(const struct cpuset *cs) 247 { 248 return test_bit(CS_MEMORY_MIGRATE, &cs->flags); 249 } 250 251 static inline int is_spread_page(const struct cpuset *cs) 252 { 253 return test_bit(CS_SPREAD_PAGE, &cs->flags); 254 } 255 256 static inline int is_spread_slab(const struct cpuset *cs) 257 { 258 return test_bit(CS_SPREAD_SLAB, &cs->flags); 259 } 260 261 static inline int is_partition_root(const struct cpuset *cs) 262 { 263 return cs->partition_root_state > 0; 264 } 265 266 static struct cpuset top_cpuset = { 267 .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) | 268 (1 << CS_MEM_EXCLUSIVE)), 269 .partition_root_state = PRS_ENABLED, 270 }; 271 272 /** 273 * cpuset_for_each_child - traverse online children of a cpuset 274 * @child_cs: loop cursor pointing to the current child 275 * @pos_css: used for iteration 276 * @parent_cs: target cpuset to walk children of 277 * 278 * Walk @child_cs through the online children of @parent_cs. Must be used 279 * with RCU read locked. 280 */ 281 #define cpuset_for_each_child(child_cs, pos_css, parent_cs) \ 282 css_for_each_child((pos_css), &(parent_cs)->css) \ 283 if (is_cpuset_online(((child_cs) = css_cs((pos_css))))) 284 285 /** 286 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants 287 * @des_cs: loop cursor pointing to the current descendant 288 * @pos_css: used for iteration 289 * @root_cs: target cpuset to walk ancestor of 290 * 291 * Walk @des_cs through the online descendants of @root_cs. Must be used 292 * with RCU read locked. The caller may modify @pos_css by calling 293 * css_rightmost_descendant() to skip subtree. @root_cs is included in the 294 * iteration and the first node to be visited. 295 */ 296 #define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs) \ 297 css_for_each_descendant_pre((pos_css), &(root_cs)->css) \ 298 if (is_cpuset_online(((des_cs) = css_cs((pos_css))))) 299 300 /* 301 * There are two global locks guarding cpuset structures - cpuset_mutex and 302 * callback_lock. We also require taking task_lock() when dereferencing a 303 * task's cpuset pointer. See "The task_lock() exception", at the end of this 304 * comment. 305 * 306 * A task must hold both locks to modify cpusets. If a task holds 307 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it 308 * is the only task able to also acquire callback_lock and be able to 309 * modify cpusets. It can perform various checks on the cpuset structure 310 * first, knowing nothing will change. It can also allocate memory while 311 * just holding cpuset_mutex. While it is performing these checks, various 312 * callback routines can briefly acquire callback_lock to query cpusets. 313 * Once it is ready to make the changes, it takes callback_lock, blocking 314 * everyone else. 315 * 316 * Calls to the kernel memory allocator can not be made while holding 317 * callback_lock, as that would risk double tripping on callback_lock 318 * from one of the callbacks into the cpuset code from within 319 * __alloc_pages(). 320 * 321 * If a task is only holding callback_lock, then it has read-only 322 * access to cpusets. 323 * 324 * Now, the task_struct fields mems_allowed and mempolicy may be changed 325 * by other task, we use alloc_lock in the task_struct fields to protect 326 * them. 327 * 328 * The cpuset_common_file_read() handlers only hold callback_lock across 329 * small pieces of code, such as when reading out possibly multi-word 330 * cpumasks and nodemasks. 331 * 332 * Accessing a task's cpuset should be done in accordance with the 333 * guidelines for accessing subsystem state in kernel/cgroup.c 334 */ 335 336 DEFINE_STATIC_PERCPU_RWSEM(cpuset_rwsem); 337 338 void cpuset_read_lock(void) 339 { 340 percpu_down_read(&cpuset_rwsem); 341 } 342 343 void cpuset_read_unlock(void) 344 { 345 percpu_up_read(&cpuset_rwsem); 346 } 347 348 static DEFINE_SPINLOCK(callback_lock); 349 350 static struct workqueue_struct *cpuset_migrate_mm_wq; 351 352 /* 353 * CPU / memory hotplug is handled asynchronously. 354 */ 355 static void cpuset_hotplug_workfn(struct work_struct *work); 356 static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn); 357 358 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq); 359 360 /* 361 * Cgroup v2 behavior is used when on default hierarchy or the 362 * cgroup_v2_mode flag is set. 363 */ 364 static inline bool is_in_v2_mode(void) 365 { 366 return cgroup_subsys_on_dfl(cpuset_cgrp_subsys) || 367 (cpuset_cgrp_subsys.root->flags & CGRP_ROOT_CPUSET_V2_MODE); 368 } 369 370 /* 371 * Return in pmask the portion of a cpusets's cpus_allowed that 372 * are online. If none are online, walk up the cpuset hierarchy 373 * until we find one that does have some online cpus. 374 * 375 * One way or another, we guarantee to return some non-empty subset 376 * of cpu_online_mask. 377 * 378 * Call with callback_lock or cpuset_mutex held. 379 */ 380 static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask) 381 { 382 while (!cpumask_intersects(cs->effective_cpus, cpu_online_mask)) { 383 cs = parent_cs(cs); 384 if (unlikely(!cs)) { 385 /* 386 * The top cpuset doesn't have any online cpu as a 387 * consequence of a race between cpuset_hotplug_work 388 * and cpu hotplug notifier. But we know the top 389 * cpuset's effective_cpus is on its way to to be 390 * identical to cpu_online_mask. 391 */ 392 cpumask_copy(pmask, cpu_online_mask); 393 return; 394 } 395 } 396 cpumask_and(pmask, cs->effective_cpus, cpu_online_mask); 397 } 398 399 /* 400 * Return in *pmask the portion of a cpusets's mems_allowed that 401 * are online, with memory. If none are online with memory, walk 402 * up the cpuset hierarchy until we find one that does have some 403 * online mems. The top cpuset always has some mems online. 404 * 405 * One way or another, we guarantee to return some non-empty subset 406 * of node_states[N_MEMORY]. 407 * 408 * Call with callback_lock or cpuset_mutex held. 409 */ 410 static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask) 411 { 412 while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY])) 413 cs = parent_cs(cs); 414 nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]); 415 } 416 417 /* 418 * update task's spread flag if cpuset's page/slab spread flag is set 419 * 420 * Call with callback_lock or cpuset_mutex held. 421 */ 422 static void cpuset_update_task_spread_flag(struct cpuset *cs, 423 struct task_struct *tsk) 424 { 425 if (is_spread_page(cs)) 426 task_set_spread_page(tsk); 427 else 428 task_clear_spread_page(tsk); 429 430 if (is_spread_slab(cs)) 431 task_set_spread_slab(tsk); 432 else 433 task_clear_spread_slab(tsk); 434 } 435 436 /* 437 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q? 438 * 439 * One cpuset is a subset of another if all its allowed CPUs and 440 * Memory Nodes are a subset of the other, and its exclusive flags 441 * are only set if the other's are set. Call holding cpuset_mutex. 442 */ 443 444 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q) 445 { 446 return cpumask_subset(p->cpus_allowed, q->cpus_allowed) && 447 nodes_subset(p->mems_allowed, q->mems_allowed) && 448 is_cpu_exclusive(p) <= is_cpu_exclusive(q) && 449 is_mem_exclusive(p) <= is_mem_exclusive(q); 450 } 451 452 /** 453 * alloc_cpumasks - allocate three cpumasks for cpuset 454 * @cs: the cpuset that have cpumasks to be allocated. 455 * @tmp: the tmpmasks structure pointer 456 * Return: 0 if successful, -ENOMEM otherwise. 457 * 458 * Only one of the two input arguments should be non-NULL. 459 */ 460 static inline int alloc_cpumasks(struct cpuset *cs, struct tmpmasks *tmp) 461 { 462 cpumask_var_t *pmask1, *pmask2, *pmask3; 463 464 if (cs) { 465 pmask1 = &cs->cpus_allowed; 466 pmask2 = &cs->effective_cpus; 467 pmask3 = &cs->subparts_cpus; 468 } else { 469 pmask1 = &tmp->new_cpus; 470 pmask2 = &tmp->addmask; 471 pmask3 = &tmp->delmask; 472 } 473 474 if (!zalloc_cpumask_var(pmask1, GFP_KERNEL)) 475 return -ENOMEM; 476 477 if (!zalloc_cpumask_var(pmask2, GFP_KERNEL)) 478 goto free_one; 479 480 if (!zalloc_cpumask_var(pmask3, GFP_KERNEL)) 481 goto free_two; 482 483 return 0; 484 485 free_two: 486 free_cpumask_var(*pmask2); 487 free_one: 488 free_cpumask_var(*pmask1); 489 return -ENOMEM; 490 } 491 492 /** 493 * free_cpumasks - free cpumasks in a tmpmasks structure 494 * @cs: the cpuset that have cpumasks to be free. 495 * @tmp: the tmpmasks structure pointer 496 */ 497 static inline void free_cpumasks(struct cpuset *cs, struct tmpmasks *tmp) 498 { 499 if (cs) { 500 free_cpumask_var(cs->cpus_allowed); 501 free_cpumask_var(cs->effective_cpus); 502 free_cpumask_var(cs->subparts_cpus); 503 } 504 if (tmp) { 505 free_cpumask_var(tmp->new_cpus); 506 free_cpumask_var(tmp->addmask); 507 free_cpumask_var(tmp->delmask); 508 } 509 } 510 511 /** 512 * alloc_trial_cpuset - allocate a trial cpuset 513 * @cs: the cpuset that the trial cpuset duplicates 514 */ 515 static struct cpuset *alloc_trial_cpuset(struct cpuset *cs) 516 { 517 struct cpuset *trial; 518 519 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL); 520 if (!trial) 521 return NULL; 522 523 if (alloc_cpumasks(trial, NULL)) { 524 kfree(trial); 525 return NULL; 526 } 527 528 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed); 529 cpumask_copy(trial->effective_cpus, cs->effective_cpus); 530 return trial; 531 } 532 533 /** 534 * free_cpuset - free the cpuset 535 * @cs: the cpuset to be freed 536 */ 537 static inline void free_cpuset(struct cpuset *cs) 538 { 539 free_cpumasks(cs, NULL); 540 kfree(cs); 541 } 542 543 /* 544 * validate_change() - Used to validate that any proposed cpuset change 545 * follows the structural rules for cpusets. 546 * 547 * If we replaced the flag and mask values of the current cpuset 548 * (cur) with those values in the trial cpuset (trial), would 549 * our various subset and exclusive rules still be valid? Presumes 550 * cpuset_mutex held. 551 * 552 * 'cur' is the address of an actual, in-use cpuset. Operations 553 * such as list traversal that depend on the actual address of the 554 * cpuset in the list must use cur below, not trial. 555 * 556 * 'trial' is the address of bulk structure copy of cur, with 557 * perhaps one or more of the fields cpus_allowed, mems_allowed, 558 * or flags changed to new, trial values. 559 * 560 * Return 0 if valid, -errno if not. 561 */ 562 563 static int validate_change(struct cpuset *cur, struct cpuset *trial) 564 { 565 struct cgroup_subsys_state *css; 566 struct cpuset *c, *par; 567 int ret; 568 569 rcu_read_lock(); 570 571 /* Each of our child cpusets must be a subset of us */ 572 ret = -EBUSY; 573 cpuset_for_each_child(c, css, cur) 574 if (!is_cpuset_subset(c, trial)) 575 goto out; 576 577 /* Remaining checks don't apply to root cpuset */ 578 ret = 0; 579 if (cur == &top_cpuset) 580 goto out; 581 582 par = parent_cs(cur); 583 584 /* On legacy hiearchy, we must be a subset of our parent cpuset. */ 585 ret = -EACCES; 586 if (!is_in_v2_mode() && !is_cpuset_subset(trial, par)) 587 goto out; 588 589 /* 590 * If either I or some sibling (!= me) is exclusive, we can't 591 * overlap 592 */ 593 ret = -EINVAL; 594 cpuset_for_each_child(c, css, par) { 595 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) && 596 c != cur && 597 cpumask_intersects(trial->cpus_allowed, c->cpus_allowed)) 598 goto out; 599 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) && 600 c != cur && 601 nodes_intersects(trial->mems_allowed, c->mems_allowed)) 602 goto out; 603 } 604 605 /* 606 * Cpusets with tasks - existing or newly being attached - can't 607 * be changed to have empty cpus_allowed or mems_allowed. 608 */ 609 ret = -ENOSPC; 610 if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) { 611 if (!cpumask_empty(cur->cpus_allowed) && 612 cpumask_empty(trial->cpus_allowed)) 613 goto out; 614 if (!nodes_empty(cur->mems_allowed) && 615 nodes_empty(trial->mems_allowed)) 616 goto out; 617 } 618 619 /* 620 * We can't shrink if we won't have enough room for SCHED_DEADLINE 621 * tasks. 622 */ 623 ret = -EBUSY; 624 if (is_cpu_exclusive(cur) && 625 !cpuset_cpumask_can_shrink(cur->cpus_allowed, 626 trial->cpus_allowed)) 627 goto out; 628 629 ret = 0; 630 out: 631 rcu_read_unlock(); 632 return ret; 633 } 634 635 #ifdef CONFIG_SMP 636 /* 637 * Helper routine for generate_sched_domains(). 638 * Do cpusets a, b have overlapping effective cpus_allowed masks? 639 */ 640 static int cpusets_overlap(struct cpuset *a, struct cpuset *b) 641 { 642 return cpumask_intersects(a->effective_cpus, b->effective_cpus); 643 } 644 645 static void 646 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c) 647 { 648 if (dattr->relax_domain_level < c->relax_domain_level) 649 dattr->relax_domain_level = c->relax_domain_level; 650 return; 651 } 652 653 static void update_domain_attr_tree(struct sched_domain_attr *dattr, 654 struct cpuset *root_cs) 655 { 656 struct cpuset *cp; 657 struct cgroup_subsys_state *pos_css; 658 659 rcu_read_lock(); 660 cpuset_for_each_descendant_pre(cp, pos_css, root_cs) { 661 /* skip the whole subtree if @cp doesn't have any CPU */ 662 if (cpumask_empty(cp->cpus_allowed)) { 663 pos_css = css_rightmost_descendant(pos_css); 664 continue; 665 } 666 667 if (is_sched_load_balance(cp)) 668 update_domain_attr(dattr, cp); 669 } 670 rcu_read_unlock(); 671 } 672 673 /* Must be called with cpuset_mutex held. */ 674 static inline int nr_cpusets(void) 675 { 676 /* jump label reference count + the top-level cpuset */ 677 return static_key_count(&cpusets_enabled_key.key) + 1; 678 } 679 680 /* 681 * generate_sched_domains() 682 * 683 * This function builds a partial partition of the systems CPUs 684 * A 'partial partition' is a set of non-overlapping subsets whose 685 * union is a subset of that set. 686 * The output of this function needs to be passed to kernel/sched/core.c 687 * partition_sched_domains() routine, which will rebuild the scheduler's 688 * load balancing domains (sched domains) as specified by that partial 689 * partition. 690 * 691 * See "What is sched_load_balance" in Documentation/admin-guide/cgroup-v1/cpusets.rst 692 * for a background explanation of this. 693 * 694 * Does not return errors, on the theory that the callers of this 695 * routine would rather not worry about failures to rebuild sched 696 * domains when operating in the severe memory shortage situations 697 * that could cause allocation failures below. 698 * 699 * Must be called with cpuset_mutex held. 700 * 701 * The three key local variables below are: 702 * cp - cpuset pointer, used (together with pos_css) to perform a 703 * top-down scan of all cpusets. For our purposes, rebuilding 704 * the schedulers sched domains, we can ignore !is_sched_load_ 705 * balance cpusets. 706 * csa - (for CpuSet Array) Array of pointers to all the cpusets 707 * that need to be load balanced, for convenient iterative 708 * access by the subsequent code that finds the best partition, 709 * i.e the set of domains (subsets) of CPUs such that the 710 * cpus_allowed of every cpuset marked is_sched_load_balance 711 * is a subset of one of these domains, while there are as 712 * many such domains as possible, each as small as possible. 713 * doms - Conversion of 'csa' to an array of cpumasks, for passing to 714 * the kernel/sched/core.c routine partition_sched_domains() in a 715 * convenient format, that can be easily compared to the prior 716 * value to determine what partition elements (sched domains) 717 * were changed (added or removed.) 718 * 719 * Finding the best partition (set of domains): 720 * The triple nested loops below over i, j, k scan over the 721 * load balanced cpusets (using the array of cpuset pointers in 722 * csa[]) looking for pairs of cpusets that have overlapping 723 * cpus_allowed, but which don't have the same 'pn' partition 724 * number and gives them in the same partition number. It keeps 725 * looping on the 'restart' label until it can no longer find 726 * any such pairs. 727 * 728 * The union of the cpus_allowed masks from the set of 729 * all cpusets having the same 'pn' value then form the one 730 * element of the partition (one sched domain) to be passed to 731 * partition_sched_domains(). 732 */ 733 static int generate_sched_domains(cpumask_var_t **domains, 734 struct sched_domain_attr **attributes) 735 { 736 struct cpuset *cp; /* top-down scan of cpusets */ 737 struct cpuset **csa; /* array of all cpuset ptrs */ 738 int csn; /* how many cpuset ptrs in csa so far */ 739 int i, j, k; /* indices for partition finding loops */ 740 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */ 741 struct sched_domain_attr *dattr; /* attributes for custom domains */ 742 int ndoms = 0; /* number of sched domains in result */ 743 int nslot; /* next empty doms[] struct cpumask slot */ 744 struct cgroup_subsys_state *pos_css; 745 bool root_load_balance = is_sched_load_balance(&top_cpuset); 746 747 doms = NULL; 748 dattr = NULL; 749 csa = NULL; 750 751 /* Special case for the 99% of systems with one, full, sched domain */ 752 if (root_load_balance && !top_cpuset.nr_subparts_cpus) { 753 ndoms = 1; 754 doms = alloc_sched_domains(ndoms); 755 if (!doms) 756 goto done; 757 758 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL); 759 if (dattr) { 760 *dattr = SD_ATTR_INIT; 761 update_domain_attr_tree(dattr, &top_cpuset); 762 } 763 cpumask_and(doms[0], top_cpuset.effective_cpus, 764 housekeeping_cpumask(HK_FLAG_DOMAIN)); 765 766 goto done; 767 } 768 769 csa = kmalloc_array(nr_cpusets(), sizeof(cp), GFP_KERNEL); 770 if (!csa) 771 goto done; 772 csn = 0; 773 774 rcu_read_lock(); 775 if (root_load_balance) 776 csa[csn++] = &top_cpuset; 777 cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) { 778 if (cp == &top_cpuset) 779 continue; 780 /* 781 * Continue traversing beyond @cp iff @cp has some CPUs and 782 * isn't load balancing. The former is obvious. The 783 * latter: All child cpusets contain a subset of the 784 * parent's cpus, so just skip them, and then we call 785 * update_domain_attr_tree() to calc relax_domain_level of 786 * the corresponding sched domain. 787 * 788 * If root is load-balancing, we can skip @cp if it 789 * is a subset of the root's effective_cpus. 790 */ 791 if (!cpumask_empty(cp->cpus_allowed) && 792 !(is_sched_load_balance(cp) && 793 cpumask_intersects(cp->cpus_allowed, 794 housekeeping_cpumask(HK_FLAG_DOMAIN)))) 795 continue; 796 797 if (root_load_balance && 798 cpumask_subset(cp->cpus_allowed, top_cpuset.effective_cpus)) 799 continue; 800 801 if (is_sched_load_balance(cp)) 802 csa[csn++] = cp; 803 804 /* skip @cp's subtree if not a partition root */ 805 if (!is_partition_root(cp)) 806 pos_css = css_rightmost_descendant(pos_css); 807 } 808 rcu_read_unlock(); 809 810 for (i = 0; i < csn; i++) 811 csa[i]->pn = i; 812 ndoms = csn; 813 814 restart: 815 /* Find the best partition (set of sched domains) */ 816 for (i = 0; i < csn; i++) { 817 struct cpuset *a = csa[i]; 818 int apn = a->pn; 819 820 for (j = 0; j < csn; j++) { 821 struct cpuset *b = csa[j]; 822 int bpn = b->pn; 823 824 if (apn != bpn && cpusets_overlap(a, b)) { 825 for (k = 0; k < csn; k++) { 826 struct cpuset *c = csa[k]; 827 828 if (c->pn == bpn) 829 c->pn = apn; 830 } 831 ndoms--; /* one less element */ 832 goto restart; 833 } 834 } 835 } 836 837 /* 838 * Now we know how many domains to create. 839 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks. 840 */ 841 doms = alloc_sched_domains(ndoms); 842 if (!doms) 843 goto done; 844 845 /* 846 * The rest of the code, including the scheduler, can deal with 847 * dattr==NULL case. No need to abort if alloc fails. 848 */ 849 dattr = kmalloc_array(ndoms, sizeof(struct sched_domain_attr), 850 GFP_KERNEL); 851 852 for (nslot = 0, i = 0; i < csn; i++) { 853 struct cpuset *a = csa[i]; 854 struct cpumask *dp; 855 int apn = a->pn; 856 857 if (apn < 0) { 858 /* Skip completed partitions */ 859 continue; 860 } 861 862 dp = doms[nslot]; 863 864 if (nslot == ndoms) { 865 static int warnings = 10; 866 if (warnings) { 867 pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n", 868 nslot, ndoms, csn, i, apn); 869 warnings--; 870 } 871 continue; 872 } 873 874 cpumask_clear(dp); 875 if (dattr) 876 *(dattr + nslot) = SD_ATTR_INIT; 877 for (j = i; j < csn; j++) { 878 struct cpuset *b = csa[j]; 879 880 if (apn == b->pn) { 881 cpumask_or(dp, dp, b->effective_cpus); 882 cpumask_and(dp, dp, housekeeping_cpumask(HK_FLAG_DOMAIN)); 883 if (dattr) 884 update_domain_attr_tree(dattr + nslot, b); 885 886 /* Done with this partition */ 887 b->pn = -1; 888 } 889 } 890 nslot++; 891 } 892 BUG_ON(nslot != ndoms); 893 894 done: 895 kfree(csa); 896 897 /* 898 * Fallback to the default domain if kmalloc() failed. 899 * See comments in partition_sched_domains(). 900 */ 901 if (doms == NULL) 902 ndoms = 1; 903 904 *domains = doms; 905 *attributes = dattr; 906 return ndoms; 907 } 908 909 static void update_tasks_root_domain(struct cpuset *cs) 910 { 911 struct css_task_iter it; 912 struct task_struct *task; 913 914 css_task_iter_start(&cs->css, 0, &it); 915 916 while ((task = css_task_iter_next(&it))) 917 dl_add_task_root_domain(task); 918 919 css_task_iter_end(&it); 920 } 921 922 static void rebuild_root_domains(void) 923 { 924 struct cpuset *cs = NULL; 925 struct cgroup_subsys_state *pos_css; 926 927 percpu_rwsem_assert_held(&cpuset_rwsem); 928 lockdep_assert_cpus_held(); 929 lockdep_assert_held(&sched_domains_mutex); 930 931 cgroup_enable_task_cg_lists(); 932 933 rcu_read_lock(); 934 935 /* 936 * Clear default root domain DL accounting, it will be computed again 937 * if a task belongs to it. 938 */ 939 dl_clear_root_domain(&def_root_domain); 940 941 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) { 942 943 if (cpumask_empty(cs->effective_cpus)) { 944 pos_css = css_rightmost_descendant(pos_css); 945 continue; 946 } 947 948 css_get(&cs->css); 949 950 rcu_read_unlock(); 951 952 update_tasks_root_domain(cs); 953 954 rcu_read_lock(); 955 css_put(&cs->css); 956 } 957 rcu_read_unlock(); 958 } 959 960 static void 961 partition_and_rebuild_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 962 struct sched_domain_attr *dattr_new) 963 { 964 mutex_lock(&sched_domains_mutex); 965 partition_sched_domains_locked(ndoms_new, doms_new, dattr_new); 966 rebuild_root_domains(); 967 mutex_unlock(&sched_domains_mutex); 968 } 969 970 /* 971 * Rebuild scheduler domains. 972 * 973 * If the flag 'sched_load_balance' of any cpuset with non-empty 974 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset 975 * which has that flag enabled, or if any cpuset with a non-empty 976 * 'cpus' is removed, then call this routine to rebuild the 977 * scheduler's dynamic sched domains. 978 * 979 * Call with cpuset_mutex held. Takes get_online_cpus(). 980 */ 981 static void rebuild_sched_domains_locked(void) 982 { 983 struct sched_domain_attr *attr; 984 cpumask_var_t *doms; 985 int ndoms; 986 987 lockdep_assert_cpus_held(); 988 percpu_rwsem_assert_held(&cpuset_rwsem); 989 990 /* 991 * We have raced with CPU hotplug. Don't do anything to avoid 992 * passing doms with offlined cpu to partition_sched_domains(). 993 * Anyways, hotplug work item will rebuild sched domains. 994 */ 995 if (!top_cpuset.nr_subparts_cpus && 996 !cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask)) 997 return; 998 999 if (top_cpuset.nr_subparts_cpus && 1000 !cpumask_subset(top_cpuset.effective_cpus, cpu_active_mask)) 1001 return; 1002 1003 /* Generate domain masks and attrs */ 1004 ndoms = generate_sched_domains(&doms, &attr); 1005 1006 /* Have scheduler rebuild the domains */ 1007 partition_and_rebuild_sched_domains(ndoms, doms, attr); 1008 } 1009 #else /* !CONFIG_SMP */ 1010 static void rebuild_sched_domains_locked(void) 1011 { 1012 } 1013 #endif /* CONFIG_SMP */ 1014 1015 void rebuild_sched_domains(void) 1016 { 1017 get_online_cpus(); 1018 percpu_down_write(&cpuset_rwsem); 1019 rebuild_sched_domains_locked(); 1020 percpu_up_write(&cpuset_rwsem); 1021 put_online_cpus(); 1022 } 1023 1024 /** 1025 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset. 1026 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed 1027 * 1028 * Iterate through each task of @cs updating its cpus_allowed to the 1029 * effective cpuset's. As this function is called with cpuset_mutex held, 1030 * cpuset membership stays stable. 1031 */ 1032 static void update_tasks_cpumask(struct cpuset *cs) 1033 { 1034 struct css_task_iter it; 1035 struct task_struct *task; 1036 1037 css_task_iter_start(&cs->css, 0, &it); 1038 while ((task = css_task_iter_next(&it))) 1039 set_cpus_allowed_ptr(task, cs->effective_cpus); 1040 css_task_iter_end(&it); 1041 } 1042 1043 /** 1044 * compute_effective_cpumask - Compute the effective cpumask of the cpuset 1045 * @new_cpus: the temp variable for the new effective_cpus mask 1046 * @cs: the cpuset the need to recompute the new effective_cpus mask 1047 * @parent: the parent cpuset 1048 * 1049 * If the parent has subpartition CPUs, include them in the list of 1050 * allowable CPUs in computing the new effective_cpus mask. Since offlined 1051 * CPUs are not removed from subparts_cpus, we have to use cpu_active_mask 1052 * to mask those out. 1053 */ 1054 static void compute_effective_cpumask(struct cpumask *new_cpus, 1055 struct cpuset *cs, struct cpuset *parent) 1056 { 1057 if (parent->nr_subparts_cpus) { 1058 cpumask_or(new_cpus, parent->effective_cpus, 1059 parent->subparts_cpus); 1060 cpumask_and(new_cpus, new_cpus, cs->cpus_allowed); 1061 cpumask_and(new_cpus, new_cpus, cpu_active_mask); 1062 } else { 1063 cpumask_and(new_cpus, cs->cpus_allowed, parent->effective_cpus); 1064 } 1065 } 1066 1067 /* 1068 * Commands for update_parent_subparts_cpumask 1069 */ 1070 enum subparts_cmd { 1071 partcmd_enable, /* Enable partition root */ 1072 partcmd_disable, /* Disable partition root */ 1073 partcmd_update, /* Update parent's subparts_cpus */ 1074 }; 1075 1076 /** 1077 * update_parent_subparts_cpumask - update subparts_cpus mask of parent cpuset 1078 * @cpuset: The cpuset that requests change in partition root state 1079 * @cmd: Partition root state change command 1080 * @newmask: Optional new cpumask for partcmd_update 1081 * @tmp: Temporary addmask and delmask 1082 * Return: 0, 1 or an error code 1083 * 1084 * For partcmd_enable, the cpuset is being transformed from a non-partition 1085 * root to a partition root. The cpus_allowed mask of the given cpuset will 1086 * be put into parent's subparts_cpus and taken away from parent's 1087 * effective_cpus. The function will return 0 if all the CPUs listed in 1088 * cpus_allowed can be granted or an error code will be returned. 1089 * 1090 * For partcmd_disable, the cpuset is being transofrmed from a partition 1091 * root back to a non-partition root. any CPUs in cpus_allowed that are in 1092 * parent's subparts_cpus will be taken away from that cpumask and put back 1093 * into parent's effective_cpus. 0 should always be returned. 1094 * 1095 * For partcmd_update, if the optional newmask is specified, the cpu 1096 * list is to be changed from cpus_allowed to newmask. Otherwise, 1097 * cpus_allowed is assumed to remain the same. The cpuset should either 1098 * be a partition root or an invalid partition root. The partition root 1099 * state may change if newmask is NULL and none of the requested CPUs can 1100 * be granted by the parent. The function will return 1 if changes to 1101 * parent's subparts_cpus and effective_cpus happen or 0 otherwise. 1102 * Error code should only be returned when newmask is non-NULL. 1103 * 1104 * The partcmd_enable and partcmd_disable commands are used by 1105 * update_prstate(). The partcmd_update command is used by 1106 * update_cpumasks_hier() with newmask NULL and update_cpumask() with 1107 * newmask set. 1108 * 1109 * The checking is more strict when enabling partition root than the 1110 * other two commands. 1111 * 1112 * Because of the implicit cpu exclusive nature of a partition root, 1113 * cpumask changes that violates the cpu exclusivity rule will not be 1114 * permitted when checked by validate_change(). The validate_change() 1115 * function will also prevent any changes to the cpu list if it is not 1116 * a superset of children's cpu lists. 1117 */ 1118 static int update_parent_subparts_cpumask(struct cpuset *cpuset, int cmd, 1119 struct cpumask *newmask, 1120 struct tmpmasks *tmp) 1121 { 1122 struct cpuset *parent = parent_cs(cpuset); 1123 int adding; /* Moving cpus from effective_cpus to subparts_cpus */ 1124 int deleting; /* Moving cpus from subparts_cpus to effective_cpus */ 1125 bool part_error = false; /* Partition error? */ 1126 1127 percpu_rwsem_assert_held(&cpuset_rwsem); 1128 1129 /* 1130 * The parent must be a partition root. 1131 * The new cpumask, if present, or the current cpus_allowed must 1132 * not be empty. 1133 */ 1134 if (!is_partition_root(parent) || 1135 (newmask && cpumask_empty(newmask)) || 1136 (!newmask && cpumask_empty(cpuset->cpus_allowed))) 1137 return -EINVAL; 1138 1139 /* 1140 * Enabling/disabling partition root is not allowed if there are 1141 * online children. 1142 */ 1143 if ((cmd != partcmd_update) && css_has_online_children(&cpuset->css)) 1144 return -EBUSY; 1145 1146 /* 1147 * Enabling partition root is not allowed if not all the CPUs 1148 * can be granted from parent's effective_cpus or at least one 1149 * CPU will be left after that. 1150 */ 1151 if ((cmd == partcmd_enable) && 1152 (!cpumask_subset(cpuset->cpus_allowed, parent->effective_cpus) || 1153 cpumask_equal(cpuset->cpus_allowed, parent->effective_cpus))) 1154 return -EINVAL; 1155 1156 /* 1157 * A cpumask update cannot make parent's effective_cpus become empty. 1158 */ 1159 adding = deleting = false; 1160 if (cmd == partcmd_enable) { 1161 cpumask_copy(tmp->addmask, cpuset->cpus_allowed); 1162 adding = true; 1163 } else if (cmd == partcmd_disable) { 1164 deleting = cpumask_and(tmp->delmask, cpuset->cpus_allowed, 1165 parent->subparts_cpus); 1166 } else if (newmask) { 1167 /* 1168 * partcmd_update with newmask: 1169 * 1170 * delmask = cpus_allowed & ~newmask & parent->subparts_cpus 1171 * addmask = newmask & parent->effective_cpus 1172 * & ~parent->subparts_cpus 1173 */ 1174 cpumask_andnot(tmp->delmask, cpuset->cpus_allowed, newmask); 1175 deleting = cpumask_and(tmp->delmask, tmp->delmask, 1176 parent->subparts_cpus); 1177 1178 cpumask_and(tmp->addmask, newmask, parent->effective_cpus); 1179 adding = cpumask_andnot(tmp->addmask, tmp->addmask, 1180 parent->subparts_cpus); 1181 /* 1182 * Return error if the new effective_cpus could become empty. 1183 */ 1184 if (adding && 1185 cpumask_equal(parent->effective_cpus, tmp->addmask)) { 1186 if (!deleting) 1187 return -EINVAL; 1188 /* 1189 * As some of the CPUs in subparts_cpus might have 1190 * been offlined, we need to compute the real delmask 1191 * to confirm that. 1192 */ 1193 if (!cpumask_and(tmp->addmask, tmp->delmask, 1194 cpu_active_mask)) 1195 return -EINVAL; 1196 cpumask_copy(tmp->addmask, parent->effective_cpus); 1197 } 1198 } else { 1199 /* 1200 * partcmd_update w/o newmask: 1201 * 1202 * addmask = cpus_allowed & parent->effectiveb_cpus 1203 * 1204 * Note that parent's subparts_cpus may have been 1205 * pre-shrunk in case there is a change in the cpu list. 1206 * So no deletion is needed. 1207 */ 1208 adding = cpumask_and(tmp->addmask, cpuset->cpus_allowed, 1209 parent->effective_cpus); 1210 part_error = cpumask_equal(tmp->addmask, 1211 parent->effective_cpus); 1212 } 1213 1214 if (cmd == partcmd_update) { 1215 int prev_prs = cpuset->partition_root_state; 1216 1217 /* 1218 * Check for possible transition between PRS_ENABLED 1219 * and PRS_ERROR. 1220 */ 1221 switch (cpuset->partition_root_state) { 1222 case PRS_ENABLED: 1223 if (part_error) 1224 cpuset->partition_root_state = PRS_ERROR; 1225 break; 1226 case PRS_ERROR: 1227 if (!part_error) 1228 cpuset->partition_root_state = PRS_ENABLED; 1229 break; 1230 } 1231 /* 1232 * Set part_error if previously in invalid state. 1233 */ 1234 part_error = (prev_prs == PRS_ERROR); 1235 } 1236 1237 if (!part_error && (cpuset->partition_root_state == PRS_ERROR)) 1238 return 0; /* Nothing need to be done */ 1239 1240 if (cpuset->partition_root_state == PRS_ERROR) { 1241 /* 1242 * Remove all its cpus from parent's subparts_cpus. 1243 */ 1244 adding = false; 1245 deleting = cpumask_and(tmp->delmask, cpuset->cpus_allowed, 1246 parent->subparts_cpus); 1247 } 1248 1249 if (!adding && !deleting) 1250 return 0; 1251 1252 /* 1253 * Change the parent's subparts_cpus. 1254 * Newly added CPUs will be removed from effective_cpus and 1255 * newly deleted ones will be added back to effective_cpus. 1256 */ 1257 spin_lock_irq(&callback_lock); 1258 if (adding) { 1259 cpumask_or(parent->subparts_cpus, 1260 parent->subparts_cpus, tmp->addmask); 1261 cpumask_andnot(parent->effective_cpus, 1262 parent->effective_cpus, tmp->addmask); 1263 } 1264 if (deleting) { 1265 cpumask_andnot(parent->subparts_cpus, 1266 parent->subparts_cpus, tmp->delmask); 1267 /* 1268 * Some of the CPUs in subparts_cpus might have been offlined. 1269 */ 1270 cpumask_and(tmp->delmask, tmp->delmask, cpu_active_mask); 1271 cpumask_or(parent->effective_cpus, 1272 parent->effective_cpus, tmp->delmask); 1273 } 1274 1275 parent->nr_subparts_cpus = cpumask_weight(parent->subparts_cpus); 1276 spin_unlock_irq(&callback_lock); 1277 1278 return cmd == partcmd_update; 1279 } 1280 1281 /* 1282 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree 1283 * @cs: the cpuset to consider 1284 * @tmp: temp variables for calculating effective_cpus & partition setup 1285 * 1286 * When congifured cpumask is changed, the effective cpumasks of this cpuset 1287 * and all its descendants need to be updated. 1288 * 1289 * On legacy hierachy, effective_cpus will be the same with cpu_allowed. 1290 * 1291 * Called with cpuset_mutex held 1292 */ 1293 static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp) 1294 { 1295 struct cpuset *cp; 1296 struct cgroup_subsys_state *pos_css; 1297 bool need_rebuild_sched_domains = false; 1298 1299 rcu_read_lock(); 1300 cpuset_for_each_descendant_pre(cp, pos_css, cs) { 1301 struct cpuset *parent = parent_cs(cp); 1302 1303 compute_effective_cpumask(tmp->new_cpus, cp, parent); 1304 1305 /* 1306 * If it becomes empty, inherit the effective mask of the 1307 * parent, which is guaranteed to have some CPUs. 1308 */ 1309 if (is_in_v2_mode() && cpumask_empty(tmp->new_cpus)) { 1310 cpumask_copy(tmp->new_cpus, parent->effective_cpus); 1311 if (!cp->use_parent_ecpus) { 1312 cp->use_parent_ecpus = true; 1313 parent->child_ecpus_count++; 1314 } 1315 } else if (cp->use_parent_ecpus) { 1316 cp->use_parent_ecpus = false; 1317 WARN_ON_ONCE(!parent->child_ecpus_count); 1318 parent->child_ecpus_count--; 1319 } 1320 1321 /* 1322 * Skip the whole subtree if the cpumask remains the same 1323 * and has no partition root state. 1324 */ 1325 if (!cp->partition_root_state && 1326 cpumask_equal(tmp->new_cpus, cp->effective_cpus)) { 1327 pos_css = css_rightmost_descendant(pos_css); 1328 continue; 1329 } 1330 1331 /* 1332 * update_parent_subparts_cpumask() should have been called 1333 * for cs already in update_cpumask(). We should also call 1334 * update_tasks_cpumask() again for tasks in the parent 1335 * cpuset if the parent's subparts_cpus changes. 1336 */ 1337 if ((cp != cs) && cp->partition_root_state) { 1338 switch (parent->partition_root_state) { 1339 case PRS_DISABLED: 1340 /* 1341 * If parent is not a partition root or an 1342 * invalid partition root, clear the state 1343 * state and the CS_CPU_EXCLUSIVE flag. 1344 */ 1345 WARN_ON_ONCE(cp->partition_root_state 1346 != PRS_ERROR); 1347 cp->partition_root_state = 0; 1348 1349 /* 1350 * clear_bit() is an atomic operation and 1351 * readers aren't interested in the state 1352 * of CS_CPU_EXCLUSIVE anyway. So we can 1353 * just update the flag without holding 1354 * the callback_lock. 1355 */ 1356 clear_bit(CS_CPU_EXCLUSIVE, &cp->flags); 1357 break; 1358 1359 case PRS_ENABLED: 1360 if (update_parent_subparts_cpumask(cp, partcmd_update, NULL, tmp)) 1361 update_tasks_cpumask(parent); 1362 break; 1363 1364 case PRS_ERROR: 1365 /* 1366 * When parent is invalid, it has to be too. 1367 */ 1368 cp->partition_root_state = PRS_ERROR; 1369 if (cp->nr_subparts_cpus) { 1370 cp->nr_subparts_cpus = 0; 1371 cpumask_clear(cp->subparts_cpus); 1372 } 1373 break; 1374 } 1375 } 1376 1377 if (!css_tryget_online(&cp->css)) 1378 continue; 1379 rcu_read_unlock(); 1380 1381 spin_lock_irq(&callback_lock); 1382 1383 cpumask_copy(cp->effective_cpus, tmp->new_cpus); 1384 if (cp->nr_subparts_cpus && 1385 (cp->partition_root_state != PRS_ENABLED)) { 1386 cp->nr_subparts_cpus = 0; 1387 cpumask_clear(cp->subparts_cpus); 1388 } else if (cp->nr_subparts_cpus) { 1389 /* 1390 * Make sure that effective_cpus & subparts_cpus 1391 * are mutually exclusive. 1392 * 1393 * In the unlikely event that effective_cpus 1394 * becomes empty. we clear cp->nr_subparts_cpus and 1395 * let its child partition roots to compete for 1396 * CPUs again. 1397 */ 1398 cpumask_andnot(cp->effective_cpus, cp->effective_cpus, 1399 cp->subparts_cpus); 1400 if (cpumask_empty(cp->effective_cpus)) { 1401 cpumask_copy(cp->effective_cpus, tmp->new_cpus); 1402 cpumask_clear(cp->subparts_cpus); 1403 cp->nr_subparts_cpus = 0; 1404 } else if (!cpumask_subset(cp->subparts_cpus, 1405 tmp->new_cpus)) { 1406 cpumask_andnot(cp->subparts_cpus, 1407 cp->subparts_cpus, tmp->new_cpus); 1408 cp->nr_subparts_cpus 1409 = cpumask_weight(cp->subparts_cpus); 1410 } 1411 } 1412 spin_unlock_irq(&callback_lock); 1413 1414 WARN_ON(!is_in_v2_mode() && 1415 !cpumask_equal(cp->cpus_allowed, cp->effective_cpus)); 1416 1417 update_tasks_cpumask(cp); 1418 1419 /* 1420 * On legacy hierarchy, if the effective cpumask of any non- 1421 * empty cpuset is changed, we need to rebuild sched domains. 1422 * On default hierarchy, the cpuset needs to be a partition 1423 * root as well. 1424 */ 1425 if (!cpumask_empty(cp->cpus_allowed) && 1426 is_sched_load_balance(cp) && 1427 (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) || 1428 is_partition_root(cp))) 1429 need_rebuild_sched_domains = true; 1430 1431 rcu_read_lock(); 1432 css_put(&cp->css); 1433 } 1434 rcu_read_unlock(); 1435 1436 if (need_rebuild_sched_domains) 1437 rebuild_sched_domains_locked(); 1438 } 1439 1440 /** 1441 * update_sibling_cpumasks - Update siblings cpumasks 1442 * @parent: Parent cpuset 1443 * @cs: Current cpuset 1444 * @tmp: Temp variables 1445 */ 1446 static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs, 1447 struct tmpmasks *tmp) 1448 { 1449 struct cpuset *sibling; 1450 struct cgroup_subsys_state *pos_css; 1451 1452 /* 1453 * Check all its siblings and call update_cpumasks_hier() 1454 * if their use_parent_ecpus flag is set in order for them 1455 * to use the right effective_cpus value. 1456 */ 1457 rcu_read_lock(); 1458 cpuset_for_each_child(sibling, pos_css, parent) { 1459 if (sibling == cs) 1460 continue; 1461 if (!sibling->use_parent_ecpus) 1462 continue; 1463 1464 update_cpumasks_hier(sibling, tmp); 1465 } 1466 rcu_read_unlock(); 1467 } 1468 1469 /** 1470 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it 1471 * @cs: the cpuset to consider 1472 * @trialcs: trial cpuset 1473 * @buf: buffer of cpu numbers written to this cpuset 1474 */ 1475 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs, 1476 const char *buf) 1477 { 1478 int retval; 1479 struct tmpmasks tmp; 1480 1481 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */ 1482 if (cs == &top_cpuset) 1483 return -EACCES; 1484 1485 /* 1486 * An empty cpus_allowed is ok only if the cpuset has no tasks. 1487 * Since cpulist_parse() fails on an empty mask, we special case 1488 * that parsing. The validate_change() call ensures that cpusets 1489 * with tasks have cpus. 1490 */ 1491 if (!*buf) { 1492 cpumask_clear(trialcs->cpus_allowed); 1493 } else { 1494 retval = cpulist_parse(buf, trialcs->cpus_allowed); 1495 if (retval < 0) 1496 return retval; 1497 1498 if (!cpumask_subset(trialcs->cpus_allowed, 1499 top_cpuset.cpus_allowed)) 1500 return -EINVAL; 1501 } 1502 1503 /* Nothing to do if the cpus didn't change */ 1504 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed)) 1505 return 0; 1506 1507 retval = validate_change(cs, trialcs); 1508 if (retval < 0) 1509 return retval; 1510 1511 #ifdef CONFIG_CPUMASK_OFFSTACK 1512 /* 1513 * Use the cpumasks in trialcs for tmpmasks when they are pointers 1514 * to allocated cpumasks. 1515 */ 1516 tmp.addmask = trialcs->subparts_cpus; 1517 tmp.delmask = trialcs->effective_cpus; 1518 tmp.new_cpus = trialcs->cpus_allowed; 1519 #endif 1520 1521 if (cs->partition_root_state) { 1522 /* Cpumask of a partition root cannot be empty */ 1523 if (cpumask_empty(trialcs->cpus_allowed)) 1524 return -EINVAL; 1525 if (update_parent_subparts_cpumask(cs, partcmd_update, 1526 trialcs->cpus_allowed, &tmp) < 0) 1527 return -EINVAL; 1528 } 1529 1530 spin_lock_irq(&callback_lock); 1531 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed); 1532 1533 /* 1534 * Make sure that subparts_cpus is a subset of cpus_allowed. 1535 */ 1536 if (cs->nr_subparts_cpus) { 1537 cpumask_andnot(cs->subparts_cpus, cs->subparts_cpus, 1538 cs->cpus_allowed); 1539 cs->nr_subparts_cpus = cpumask_weight(cs->subparts_cpus); 1540 } 1541 spin_unlock_irq(&callback_lock); 1542 1543 update_cpumasks_hier(cs, &tmp); 1544 1545 if (cs->partition_root_state) { 1546 struct cpuset *parent = parent_cs(cs); 1547 1548 /* 1549 * For partition root, update the cpumasks of sibling 1550 * cpusets if they use parent's effective_cpus. 1551 */ 1552 if (parent->child_ecpus_count) 1553 update_sibling_cpumasks(parent, cs, &tmp); 1554 } 1555 return 0; 1556 } 1557 1558 /* 1559 * Migrate memory region from one set of nodes to another. This is 1560 * performed asynchronously as it can be called from process migration path 1561 * holding locks involved in process management. All mm migrations are 1562 * performed in the queued order and can be waited for by flushing 1563 * cpuset_migrate_mm_wq. 1564 */ 1565 1566 struct cpuset_migrate_mm_work { 1567 struct work_struct work; 1568 struct mm_struct *mm; 1569 nodemask_t from; 1570 nodemask_t to; 1571 }; 1572 1573 static void cpuset_migrate_mm_workfn(struct work_struct *work) 1574 { 1575 struct cpuset_migrate_mm_work *mwork = 1576 container_of(work, struct cpuset_migrate_mm_work, work); 1577 1578 /* on a wq worker, no need to worry about %current's mems_allowed */ 1579 do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL); 1580 mmput(mwork->mm); 1581 kfree(mwork); 1582 } 1583 1584 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from, 1585 const nodemask_t *to) 1586 { 1587 struct cpuset_migrate_mm_work *mwork; 1588 1589 mwork = kzalloc(sizeof(*mwork), GFP_KERNEL); 1590 if (mwork) { 1591 mwork->mm = mm; 1592 mwork->from = *from; 1593 mwork->to = *to; 1594 INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn); 1595 queue_work(cpuset_migrate_mm_wq, &mwork->work); 1596 } else { 1597 mmput(mm); 1598 } 1599 } 1600 1601 static void cpuset_post_attach(void) 1602 { 1603 flush_workqueue(cpuset_migrate_mm_wq); 1604 } 1605 1606 /* 1607 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy 1608 * @tsk: the task to change 1609 * @newmems: new nodes that the task will be set 1610 * 1611 * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed 1612 * and rebind an eventual tasks' mempolicy. If the task is allocating in 1613 * parallel, it might temporarily see an empty intersection, which results in 1614 * a seqlock check and retry before OOM or allocation failure. 1615 */ 1616 static void cpuset_change_task_nodemask(struct task_struct *tsk, 1617 nodemask_t *newmems) 1618 { 1619 task_lock(tsk); 1620 1621 local_irq_disable(); 1622 write_seqcount_begin(&tsk->mems_allowed_seq); 1623 1624 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems); 1625 mpol_rebind_task(tsk, newmems); 1626 tsk->mems_allowed = *newmems; 1627 1628 write_seqcount_end(&tsk->mems_allowed_seq); 1629 local_irq_enable(); 1630 1631 task_unlock(tsk); 1632 } 1633 1634 static void *cpuset_being_rebound; 1635 1636 /** 1637 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset. 1638 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed 1639 * 1640 * Iterate through each task of @cs updating its mems_allowed to the 1641 * effective cpuset's. As this function is called with cpuset_mutex held, 1642 * cpuset membership stays stable. 1643 */ 1644 static void update_tasks_nodemask(struct cpuset *cs) 1645 { 1646 static nodemask_t newmems; /* protected by cpuset_mutex */ 1647 struct css_task_iter it; 1648 struct task_struct *task; 1649 1650 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */ 1651 1652 guarantee_online_mems(cs, &newmems); 1653 1654 /* 1655 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't 1656 * take while holding tasklist_lock. Forks can happen - the 1657 * mpol_dup() cpuset_being_rebound check will catch such forks, 1658 * and rebind their vma mempolicies too. Because we still hold 1659 * the global cpuset_mutex, we know that no other rebind effort 1660 * will be contending for the global variable cpuset_being_rebound. 1661 * It's ok if we rebind the same mm twice; mpol_rebind_mm() 1662 * is idempotent. Also migrate pages in each mm to new nodes. 1663 */ 1664 css_task_iter_start(&cs->css, 0, &it); 1665 while ((task = css_task_iter_next(&it))) { 1666 struct mm_struct *mm; 1667 bool migrate; 1668 1669 cpuset_change_task_nodemask(task, &newmems); 1670 1671 mm = get_task_mm(task); 1672 if (!mm) 1673 continue; 1674 1675 migrate = is_memory_migrate(cs); 1676 1677 mpol_rebind_mm(mm, &cs->mems_allowed); 1678 if (migrate) 1679 cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems); 1680 else 1681 mmput(mm); 1682 } 1683 css_task_iter_end(&it); 1684 1685 /* 1686 * All the tasks' nodemasks have been updated, update 1687 * cs->old_mems_allowed. 1688 */ 1689 cs->old_mems_allowed = newmems; 1690 1691 /* We're done rebinding vmas to this cpuset's new mems_allowed. */ 1692 cpuset_being_rebound = NULL; 1693 } 1694 1695 /* 1696 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree 1697 * @cs: the cpuset to consider 1698 * @new_mems: a temp variable for calculating new effective_mems 1699 * 1700 * When configured nodemask is changed, the effective nodemasks of this cpuset 1701 * and all its descendants need to be updated. 1702 * 1703 * On legacy hiearchy, effective_mems will be the same with mems_allowed. 1704 * 1705 * Called with cpuset_mutex held 1706 */ 1707 static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems) 1708 { 1709 struct cpuset *cp; 1710 struct cgroup_subsys_state *pos_css; 1711 1712 rcu_read_lock(); 1713 cpuset_for_each_descendant_pre(cp, pos_css, cs) { 1714 struct cpuset *parent = parent_cs(cp); 1715 1716 nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems); 1717 1718 /* 1719 * If it becomes empty, inherit the effective mask of the 1720 * parent, which is guaranteed to have some MEMs. 1721 */ 1722 if (is_in_v2_mode() && nodes_empty(*new_mems)) 1723 *new_mems = parent->effective_mems; 1724 1725 /* Skip the whole subtree if the nodemask remains the same. */ 1726 if (nodes_equal(*new_mems, cp->effective_mems)) { 1727 pos_css = css_rightmost_descendant(pos_css); 1728 continue; 1729 } 1730 1731 if (!css_tryget_online(&cp->css)) 1732 continue; 1733 rcu_read_unlock(); 1734 1735 spin_lock_irq(&callback_lock); 1736 cp->effective_mems = *new_mems; 1737 spin_unlock_irq(&callback_lock); 1738 1739 WARN_ON(!is_in_v2_mode() && 1740 !nodes_equal(cp->mems_allowed, cp->effective_mems)); 1741 1742 update_tasks_nodemask(cp); 1743 1744 rcu_read_lock(); 1745 css_put(&cp->css); 1746 } 1747 rcu_read_unlock(); 1748 } 1749 1750 /* 1751 * Handle user request to change the 'mems' memory placement 1752 * of a cpuset. Needs to validate the request, update the 1753 * cpusets mems_allowed, and for each task in the cpuset, 1754 * update mems_allowed and rebind task's mempolicy and any vma 1755 * mempolicies and if the cpuset is marked 'memory_migrate', 1756 * migrate the tasks pages to the new memory. 1757 * 1758 * Call with cpuset_mutex held. May take callback_lock during call. 1759 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs, 1760 * lock each such tasks mm->mmap_sem, scan its vma's and rebind 1761 * their mempolicies to the cpusets new mems_allowed. 1762 */ 1763 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs, 1764 const char *buf) 1765 { 1766 int retval; 1767 1768 /* 1769 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY]; 1770 * it's read-only 1771 */ 1772 if (cs == &top_cpuset) { 1773 retval = -EACCES; 1774 goto done; 1775 } 1776 1777 /* 1778 * An empty mems_allowed is ok iff there are no tasks in the cpuset. 1779 * Since nodelist_parse() fails on an empty mask, we special case 1780 * that parsing. The validate_change() call ensures that cpusets 1781 * with tasks have memory. 1782 */ 1783 if (!*buf) { 1784 nodes_clear(trialcs->mems_allowed); 1785 } else { 1786 retval = nodelist_parse(buf, trialcs->mems_allowed); 1787 if (retval < 0) 1788 goto done; 1789 1790 if (!nodes_subset(trialcs->mems_allowed, 1791 top_cpuset.mems_allowed)) { 1792 retval = -EINVAL; 1793 goto done; 1794 } 1795 } 1796 1797 if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) { 1798 retval = 0; /* Too easy - nothing to do */ 1799 goto done; 1800 } 1801 retval = validate_change(cs, trialcs); 1802 if (retval < 0) 1803 goto done; 1804 1805 spin_lock_irq(&callback_lock); 1806 cs->mems_allowed = trialcs->mems_allowed; 1807 spin_unlock_irq(&callback_lock); 1808 1809 /* use trialcs->mems_allowed as a temp variable */ 1810 update_nodemasks_hier(cs, &trialcs->mems_allowed); 1811 done: 1812 return retval; 1813 } 1814 1815 bool current_cpuset_is_being_rebound(void) 1816 { 1817 bool ret; 1818 1819 rcu_read_lock(); 1820 ret = task_cs(current) == cpuset_being_rebound; 1821 rcu_read_unlock(); 1822 1823 return ret; 1824 } 1825 1826 static int update_relax_domain_level(struct cpuset *cs, s64 val) 1827 { 1828 #ifdef CONFIG_SMP 1829 if (val < -1 || val >= sched_domain_level_max) 1830 return -EINVAL; 1831 #endif 1832 1833 if (val != cs->relax_domain_level) { 1834 cs->relax_domain_level = val; 1835 if (!cpumask_empty(cs->cpus_allowed) && 1836 is_sched_load_balance(cs)) 1837 rebuild_sched_domains_locked(); 1838 } 1839 1840 return 0; 1841 } 1842 1843 /** 1844 * update_tasks_flags - update the spread flags of tasks in the cpuset. 1845 * @cs: the cpuset in which each task's spread flags needs to be changed 1846 * 1847 * Iterate through each task of @cs updating its spread flags. As this 1848 * function is called with cpuset_mutex held, cpuset membership stays 1849 * stable. 1850 */ 1851 static void update_tasks_flags(struct cpuset *cs) 1852 { 1853 struct css_task_iter it; 1854 struct task_struct *task; 1855 1856 css_task_iter_start(&cs->css, 0, &it); 1857 while ((task = css_task_iter_next(&it))) 1858 cpuset_update_task_spread_flag(cs, task); 1859 css_task_iter_end(&it); 1860 } 1861 1862 /* 1863 * update_flag - read a 0 or a 1 in a file and update associated flag 1864 * bit: the bit to update (see cpuset_flagbits_t) 1865 * cs: the cpuset to update 1866 * turning_on: whether the flag is being set or cleared 1867 * 1868 * Call with cpuset_mutex held. 1869 */ 1870 1871 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, 1872 int turning_on) 1873 { 1874 struct cpuset *trialcs; 1875 int balance_flag_changed; 1876 int spread_flag_changed; 1877 int err; 1878 1879 trialcs = alloc_trial_cpuset(cs); 1880 if (!trialcs) 1881 return -ENOMEM; 1882 1883 if (turning_on) 1884 set_bit(bit, &trialcs->flags); 1885 else 1886 clear_bit(bit, &trialcs->flags); 1887 1888 err = validate_change(cs, trialcs); 1889 if (err < 0) 1890 goto out; 1891 1892 balance_flag_changed = (is_sched_load_balance(cs) != 1893 is_sched_load_balance(trialcs)); 1894 1895 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs)) 1896 || (is_spread_page(cs) != is_spread_page(trialcs))); 1897 1898 spin_lock_irq(&callback_lock); 1899 cs->flags = trialcs->flags; 1900 spin_unlock_irq(&callback_lock); 1901 1902 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed) 1903 rebuild_sched_domains_locked(); 1904 1905 if (spread_flag_changed) 1906 update_tasks_flags(cs); 1907 out: 1908 free_cpuset(trialcs); 1909 return err; 1910 } 1911 1912 /* 1913 * update_prstate - update partititon_root_state 1914 * cs: the cpuset to update 1915 * val: 0 - disabled, 1 - enabled 1916 * 1917 * Call with cpuset_mutex held. 1918 */ 1919 static int update_prstate(struct cpuset *cs, int val) 1920 { 1921 int err; 1922 struct cpuset *parent = parent_cs(cs); 1923 struct tmpmasks tmp; 1924 1925 if ((val != 0) && (val != 1)) 1926 return -EINVAL; 1927 if (val == cs->partition_root_state) 1928 return 0; 1929 1930 /* 1931 * Cannot force a partial or invalid partition root to a full 1932 * partition root. 1933 */ 1934 if (val && cs->partition_root_state) 1935 return -EINVAL; 1936 1937 if (alloc_cpumasks(NULL, &tmp)) 1938 return -ENOMEM; 1939 1940 err = -EINVAL; 1941 if (!cs->partition_root_state) { 1942 /* 1943 * Turning on partition root requires setting the 1944 * CS_CPU_EXCLUSIVE bit implicitly as well and cpus_allowed 1945 * cannot be NULL. 1946 */ 1947 if (cpumask_empty(cs->cpus_allowed)) 1948 goto out; 1949 1950 err = update_flag(CS_CPU_EXCLUSIVE, cs, 1); 1951 if (err) 1952 goto out; 1953 1954 err = update_parent_subparts_cpumask(cs, partcmd_enable, 1955 NULL, &tmp); 1956 if (err) { 1957 update_flag(CS_CPU_EXCLUSIVE, cs, 0); 1958 goto out; 1959 } 1960 cs->partition_root_state = PRS_ENABLED; 1961 } else { 1962 /* 1963 * Turning off partition root will clear the 1964 * CS_CPU_EXCLUSIVE bit. 1965 */ 1966 if (cs->partition_root_state == PRS_ERROR) { 1967 cs->partition_root_state = 0; 1968 update_flag(CS_CPU_EXCLUSIVE, cs, 0); 1969 err = 0; 1970 goto out; 1971 } 1972 1973 err = update_parent_subparts_cpumask(cs, partcmd_disable, 1974 NULL, &tmp); 1975 if (err) 1976 goto out; 1977 1978 cs->partition_root_state = 0; 1979 1980 /* Turning off CS_CPU_EXCLUSIVE will not return error */ 1981 update_flag(CS_CPU_EXCLUSIVE, cs, 0); 1982 } 1983 1984 /* 1985 * Update cpumask of parent's tasks except when it is the top 1986 * cpuset as some system daemons cannot be mapped to other CPUs. 1987 */ 1988 if (parent != &top_cpuset) 1989 update_tasks_cpumask(parent); 1990 1991 if (parent->child_ecpus_count) 1992 update_sibling_cpumasks(parent, cs, &tmp); 1993 1994 rebuild_sched_domains_locked(); 1995 out: 1996 free_cpumasks(NULL, &tmp); 1997 return err; 1998 } 1999 2000 /* 2001 * Frequency meter - How fast is some event occurring? 2002 * 2003 * These routines manage a digitally filtered, constant time based, 2004 * event frequency meter. There are four routines: 2005 * fmeter_init() - initialize a frequency meter. 2006 * fmeter_markevent() - called each time the event happens. 2007 * fmeter_getrate() - returns the recent rate of such events. 2008 * fmeter_update() - internal routine used to update fmeter. 2009 * 2010 * A common data structure is passed to each of these routines, 2011 * which is used to keep track of the state required to manage the 2012 * frequency meter and its digital filter. 2013 * 2014 * The filter works on the number of events marked per unit time. 2015 * The filter is single-pole low-pass recursive (IIR). The time unit 2016 * is 1 second. Arithmetic is done using 32-bit integers scaled to 2017 * simulate 3 decimal digits of precision (multiplied by 1000). 2018 * 2019 * With an FM_COEF of 933, and a time base of 1 second, the filter 2020 * has a half-life of 10 seconds, meaning that if the events quit 2021 * happening, then the rate returned from the fmeter_getrate() 2022 * will be cut in half each 10 seconds, until it converges to zero. 2023 * 2024 * It is not worth doing a real infinitely recursive filter. If more 2025 * than FM_MAXTICKS ticks have elapsed since the last filter event, 2026 * just compute FM_MAXTICKS ticks worth, by which point the level 2027 * will be stable. 2028 * 2029 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid 2030 * arithmetic overflow in the fmeter_update() routine. 2031 * 2032 * Given the simple 32 bit integer arithmetic used, this meter works 2033 * best for reporting rates between one per millisecond (msec) and 2034 * one per 32 (approx) seconds. At constant rates faster than one 2035 * per msec it maxes out at values just under 1,000,000. At constant 2036 * rates between one per msec, and one per second it will stabilize 2037 * to a value N*1000, where N is the rate of events per second. 2038 * At constant rates between one per second and one per 32 seconds, 2039 * it will be choppy, moving up on the seconds that have an event, 2040 * and then decaying until the next event. At rates slower than 2041 * about one in 32 seconds, it decays all the way back to zero between 2042 * each event. 2043 */ 2044 2045 #define FM_COEF 933 /* coefficient for half-life of 10 secs */ 2046 #define FM_MAXTICKS ((u32)99) /* useless computing more ticks than this */ 2047 #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */ 2048 #define FM_SCALE 1000 /* faux fixed point scale */ 2049 2050 /* Initialize a frequency meter */ 2051 static void fmeter_init(struct fmeter *fmp) 2052 { 2053 fmp->cnt = 0; 2054 fmp->val = 0; 2055 fmp->time = 0; 2056 spin_lock_init(&fmp->lock); 2057 } 2058 2059 /* Internal meter update - process cnt events and update value */ 2060 static void fmeter_update(struct fmeter *fmp) 2061 { 2062 time64_t now; 2063 u32 ticks; 2064 2065 now = ktime_get_seconds(); 2066 ticks = now - fmp->time; 2067 2068 if (ticks == 0) 2069 return; 2070 2071 ticks = min(FM_MAXTICKS, ticks); 2072 while (ticks-- > 0) 2073 fmp->val = (FM_COEF * fmp->val) / FM_SCALE; 2074 fmp->time = now; 2075 2076 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE; 2077 fmp->cnt = 0; 2078 } 2079 2080 /* Process any previous ticks, then bump cnt by one (times scale). */ 2081 static void fmeter_markevent(struct fmeter *fmp) 2082 { 2083 spin_lock(&fmp->lock); 2084 fmeter_update(fmp); 2085 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE); 2086 spin_unlock(&fmp->lock); 2087 } 2088 2089 /* Process any previous ticks, then return current value. */ 2090 static int fmeter_getrate(struct fmeter *fmp) 2091 { 2092 int val; 2093 2094 spin_lock(&fmp->lock); 2095 fmeter_update(fmp); 2096 val = fmp->val; 2097 spin_unlock(&fmp->lock); 2098 return val; 2099 } 2100 2101 static struct cpuset *cpuset_attach_old_cs; 2102 2103 /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */ 2104 static int cpuset_can_attach(struct cgroup_taskset *tset) 2105 { 2106 struct cgroup_subsys_state *css; 2107 struct cpuset *cs; 2108 struct task_struct *task; 2109 int ret; 2110 2111 /* used later by cpuset_attach() */ 2112 cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css)); 2113 cs = css_cs(css); 2114 2115 percpu_down_write(&cpuset_rwsem); 2116 2117 /* allow moving tasks into an empty cpuset if on default hierarchy */ 2118 ret = -ENOSPC; 2119 if (!is_in_v2_mode() && 2120 (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))) 2121 goto out_unlock; 2122 2123 cgroup_taskset_for_each(task, css, tset) { 2124 ret = task_can_attach(task, cs->cpus_allowed); 2125 if (ret) 2126 goto out_unlock; 2127 ret = security_task_setscheduler(task); 2128 if (ret) 2129 goto out_unlock; 2130 } 2131 2132 /* 2133 * Mark attach is in progress. This makes validate_change() fail 2134 * changes which zero cpus/mems_allowed. 2135 */ 2136 cs->attach_in_progress++; 2137 ret = 0; 2138 out_unlock: 2139 percpu_up_write(&cpuset_rwsem); 2140 return ret; 2141 } 2142 2143 static void cpuset_cancel_attach(struct cgroup_taskset *tset) 2144 { 2145 struct cgroup_subsys_state *css; 2146 2147 cgroup_taskset_first(tset, &css); 2148 2149 percpu_down_write(&cpuset_rwsem); 2150 css_cs(css)->attach_in_progress--; 2151 percpu_up_write(&cpuset_rwsem); 2152 } 2153 2154 /* 2155 * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach() 2156 * but we can't allocate it dynamically there. Define it global and 2157 * allocate from cpuset_init(). 2158 */ 2159 static cpumask_var_t cpus_attach; 2160 2161 static void cpuset_attach(struct cgroup_taskset *tset) 2162 { 2163 /* static buf protected by cpuset_mutex */ 2164 static nodemask_t cpuset_attach_nodemask_to; 2165 struct task_struct *task; 2166 struct task_struct *leader; 2167 struct cgroup_subsys_state *css; 2168 struct cpuset *cs; 2169 struct cpuset *oldcs = cpuset_attach_old_cs; 2170 2171 cgroup_taskset_first(tset, &css); 2172 cs = css_cs(css); 2173 2174 percpu_down_write(&cpuset_rwsem); 2175 2176 /* prepare for attach */ 2177 if (cs == &top_cpuset) 2178 cpumask_copy(cpus_attach, cpu_possible_mask); 2179 else 2180 guarantee_online_cpus(cs, cpus_attach); 2181 2182 guarantee_online_mems(cs, &cpuset_attach_nodemask_to); 2183 2184 cgroup_taskset_for_each(task, css, tset) { 2185 /* 2186 * can_attach beforehand should guarantee that this doesn't 2187 * fail. TODO: have a better way to handle failure here 2188 */ 2189 WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach)); 2190 2191 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to); 2192 cpuset_update_task_spread_flag(cs, task); 2193 } 2194 2195 /* 2196 * Change mm for all threadgroup leaders. This is expensive and may 2197 * sleep and should be moved outside migration path proper. 2198 */ 2199 cpuset_attach_nodemask_to = cs->effective_mems; 2200 cgroup_taskset_for_each_leader(leader, css, tset) { 2201 struct mm_struct *mm = get_task_mm(leader); 2202 2203 if (mm) { 2204 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to); 2205 2206 /* 2207 * old_mems_allowed is the same with mems_allowed 2208 * here, except if this task is being moved 2209 * automatically due to hotplug. In that case 2210 * @mems_allowed has been updated and is empty, so 2211 * @old_mems_allowed is the right nodesets that we 2212 * migrate mm from. 2213 */ 2214 if (is_memory_migrate(cs)) 2215 cpuset_migrate_mm(mm, &oldcs->old_mems_allowed, 2216 &cpuset_attach_nodemask_to); 2217 else 2218 mmput(mm); 2219 } 2220 } 2221 2222 cs->old_mems_allowed = cpuset_attach_nodemask_to; 2223 2224 cs->attach_in_progress--; 2225 if (!cs->attach_in_progress) 2226 wake_up(&cpuset_attach_wq); 2227 2228 percpu_up_write(&cpuset_rwsem); 2229 } 2230 2231 /* The various types of files and directories in a cpuset file system */ 2232 2233 typedef enum { 2234 FILE_MEMORY_MIGRATE, 2235 FILE_CPULIST, 2236 FILE_MEMLIST, 2237 FILE_EFFECTIVE_CPULIST, 2238 FILE_EFFECTIVE_MEMLIST, 2239 FILE_SUBPARTS_CPULIST, 2240 FILE_CPU_EXCLUSIVE, 2241 FILE_MEM_EXCLUSIVE, 2242 FILE_MEM_HARDWALL, 2243 FILE_SCHED_LOAD_BALANCE, 2244 FILE_PARTITION_ROOT, 2245 FILE_SCHED_RELAX_DOMAIN_LEVEL, 2246 FILE_MEMORY_PRESSURE_ENABLED, 2247 FILE_MEMORY_PRESSURE, 2248 FILE_SPREAD_PAGE, 2249 FILE_SPREAD_SLAB, 2250 } cpuset_filetype_t; 2251 2252 static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft, 2253 u64 val) 2254 { 2255 struct cpuset *cs = css_cs(css); 2256 cpuset_filetype_t type = cft->private; 2257 int retval = 0; 2258 2259 get_online_cpus(); 2260 percpu_down_write(&cpuset_rwsem); 2261 if (!is_cpuset_online(cs)) { 2262 retval = -ENODEV; 2263 goto out_unlock; 2264 } 2265 2266 switch (type) { 2267 case FILE_CPU_EXCLUSIVE: 2268 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val); 2269 break; 2270 case FILE_MEM_EXCLUSIVE: 2271 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val); 2272 break; 2273 case FILE_MEM_HARDWALL: 2274 retval = update_flag(CS_MEM_HARDWALL, cs, val); 2275 break; 2276 case FILE_SCHED_LOAD_BALANCE: 2277 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val); 2278 break; 2279 case FILE_MEMORY_MIGRATE: 2280 retval = update_flag(CS_MEMORY_MIGRATE, cs, val); 2281 break; 2282 case FILE_MEMORY_PRESSURE_ENABLED: 2283 cpuset_memory_pressure_enabled = !!val; 2284 break; 2285 case FILE_SPREAD_PAGE: 2286 retval = update_flag(CS_SPREAD_PAGE, cs, val); 2287 break; 2288 case FILE_SPREAD_SLAB: 2289 retval = update_flag(CS_SPREAD_SLAB, cs, val); 2290 break; 2291 default: 2292 retval = -EINVAL; 2293 break; 2294 } 2295 out_unlock: 2296 percpu_up_write(&cpuset_rwsem); 2297 put_online_cpus(); 2298 return retval; 2299 } 2300 2301 static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft, 2302 s64 val) 2303 { 2304 struct cpuset *cs = css_cs(css); 2305 cpuset_filetype_t type = cft->private; 2306 int retval = -ENODEV; 2307 2308 get_online_cpus(); 2309 percpu_down_write(&cpuset_rwsem); 2310 if (!is_cpuset_online(cs)) 2311 goto out_unlock; 2312 2313 switch (type) { 2314 case FILE_SCHED_RELAX_DOMAIN_LEVEL: 2315 retval = update_relax_domain_level(cs, val); 2316 break; 2317 default: 2318 retval = -EINVAL; 2319 break; 2320 } 2321 out_unlock: 2322 percpu_up_write(&cpuset_rwsem); 2323 put_online_cpus(); 2324 return retval; 2325 } 2326 2327 /* 2328 * Common handling for a write to a "cpus" or "mems" file. 2329 */ 2330 static ssize_t cpuset_write_resmask(struct kernfs_open_file *of, 2331 char *buf, size_t nbytes, loff_t off) 2332 { 2333 struct cpuset *cs = css_cs(of_css(of)); 2334 struct cpuset *trialcs; 2335 int retval = -ENODEV; 2336 2337 buf = strstrip(buf); 2338 2339 /* 2340 * CPU or memory hotunplug may leave @cs w/o any execution 2341 * resources, in which case the hotplug code asynchronously updates 2342 * configuration and transfers all tasks to the nearest ancestor 2343 * which can execute. 2344 * 2345 * As writes to "cpus" or "mems" may restore @cs's execution 2346 * resources, wait for the previously scheduled operations before 2347 * proceeding, so that we don't end up keep removing tasks added 2348 * after execution capability is restored. 2349 * 2350 * cpuset_hotplug_work calls back into cgroup core via 2351 * cgroup_transfer_tasks() and waiting for it from a cgroupfs 2352 * operation like this one can lead to a deadlock through kernfs 2353 * active_ref protection. Let's break the protection. Losing the 2354 * protection is okay as we check whether @cs is online after 2355 * grabbing cpuset_mutex anyway. This only happens on the legacy 2356 * hierarchies. 2357 */ 2358 css_get(&cs->css); 2359 kernfs_break_active_protection(of->kn); 2360 flush_work(&cpuset_hotplug_work); 2361 2362 get_online_cpus(); 2363 percpu_down_write(&cpuset_rwsem); 2364 if (!is_cpuset_online(cs)) 2365 goto out_unlock; 2366 2367 trialcs = alloc_trial_cpuset(cs); 2368 if (!trialcs) { 2369 retval = -ENOMEM; 2370 goto out_unlock; 2371 } 2372 2373 switch (of_cft(of)->private) { 2374 case FILE_CPULIST: 2375 retval = update_cpumask(cs, trialcs, buf); 2376 break; 2377 case FILE_MEMLIST: 2378 retval = update_nodemask(cs, trialcs, buf); 2379 break; 2380 default: 2381 retval = -EINVAL; 2382 break; 2383 } 2384 2385 free_cpuset(trialcs); 2386 out_unlock: 2387 percpu_up_write(&cpuset_rwsem); 2388 put_online_cpus(); 2389 kernfs_unbreak_active_protection(of->kn); 2390 css_put(&cs->css); 2391 flush_workqueue(cpuset_migrate_mm_wq); 2392 return retval ?: nbytes; 2393 } 2394 2395 /* 2396 * These ascii lists should be read in a single call, by using a user 2397 * buffer large enough to hold the entire map. If read in smaller 2398 * chunks, there is no guarantee of atomicity. Since the display format 2399 * used, list of ranges of sequential numbers, is variable length, 2400 * and since these maps can change value dynamically, one could read 2401 * gibberish by doing partial reads while a list was changing. 2402 */ 2403 static int cpuset_common_seq_show(struct seq_file *sf, void *v) 2404 { 2405 struct cpuset *cs = css_cs(seq_css(sf)); 2406 cpuset_filetype_t type = seq_cft(sf)->private; 2407 int ret = 0; 2408 2409 spin_lock_irq(&callback_lock); 2410 2411 switch (type) { 2412 case FILE_CPULIST: 2413 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed)); 2414 break; 2415 case FILE_MEMLIST: 2416 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed)); 2417 break; 2418 case FILE_EFFECTIVE_CPULIST: 2419 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus)); 2420 break; 2421 case FILE_EFFECTIVE_MEMLIST: 2422 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems)); 2423 break; 2424 case FILE_SUBPARTS_CPULIST: 2425 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->subparts_cpus)); 2426 break; 2427 default: 2428 ret = -EINVAL; 2429 } 2430 2431 spin_unlock_irq(&callback_lock); 2432 return ret; 2433 } 2434 2435 static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft) 2436 { 2437 struct cpuset *cs = css_cs(css); 2438 cpuset_filetype_t type = cft->private; 2439 switch (type) { 2440 case FILE_CPU_EXCLUSIVE: 2441 return is_cpu_exclusive(cs); 2442 case FILE_MEM_EXCLUSIVE: 2443 return is_mem_exclusive(cs); 2444 case FILE_MEM_HARDWALL: 2445 return is_mem_hardwall(cs); 2446 case FILE_SCHED_LOAD_BALANCE: 2447 return is_sched_load_balance(cs); 2448 case FILE_MEMORY_MIGRATE: 2449 return is_memory_migrate(cs); 2450 case FILE_MEMORY_PRESSURE_ENABLED: 2451 return cpuset_memory_pressure_enabled; 2452 case FILE_MEMORY_PRESSURE: 2453 return fmeter_getrate(&cs->fmeter); 2454 case FILE_SPREAD_PAGE: 2455 return is_spread_page(cs); 2456 case FILE_SPREAD_SLAB: 2457 return is_spread_slab(cs); 2458 default: 2459 BUG(); 2460 } 2461 2462 /* Unreachable but makes gcc happy */ 2463 return 0; 2464 } 2465 2466 static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft) 2467 { 2468 struct cpuset *cs = css_cs(css); 2469 cpuset_filetype_t type = cft->private; 2470 switch (type) { 2471 case FILE_SCHED_RELAX_DOMAIN_LEVEL: 2472 return cs->relax_domain_level; 2473 default: 2474 BUG(); 2475 } 2476 2477 /* Unrechable but makes gcc happy */ 2478 return 0; 2479 } 2480 2481 static int sched_partition_show(struct seq_file *seq, void *v) 2482 { 2483 struct cpuset *cs = css_cs(seq_css(seq)); 2484 2485 switch (cs->partition_root_state) { 2486 case PRS_ENABLED: 2487 seq_puts(seq, "root\n"); 2488 break; 2489 case PRS_DISABLED: 2490 seq_puts(seq, "member\n"); 2491 break; 2492 case PRS_ERROR: 2493 seq_puts(seq, "root invalid\n"); 2494 break; 2495 } 2496 return 0; 2497 } 2498 2499 static ssize_t sched_partition_write(struct kernfs_open_file *of, char *buf, 2500 size_t nbytes, loff_t off) 2501 { 2502 struct cpuset *cs = css_cs(of_css(of)); 2503 int val; 2504 int retval = -ENODEV; 2505 2506 buf = strstrip(buf); 2507 2508 /* 2509 * Convert "root" to ENABLED, and convert "member" to DISABLED. 2510 */ 2511 if (!strcmp(buf, "root")) 2512 val = PRS_ENABLED; 2513 else if (!strcmp(buf, "member")) 2514 val = PRS_DISABLED; 2515 else 2516 return -EINVAL; 2517 2518 css_get(&cs->css); 2519 get_online_cpus(); 2520 percpu_down_write(&cpuset_rwsem); 2521 if (!is_cpuset_online(cs)) 2522 goto out_unlock; 2523 2524 retval = update_prstate(cs, val); 2525 out_unlock: 2526 percpu_up_write(&cpuset_rwsem); 2527 put_online_cpus(); 2528 css_put(&cs->css); 2529 return retval ?: nbytes; 2530 } 2531 2532 /* 2533 * for the common functions, 'private' gives the type of file 2534 */ 2535 2536 static struct cftype legacy_files[] = { 2537 { 2538 .name = "cpus", 2539 .seq_show = cpuset_common_seq_show, 2540 .write = cpuset_write_resmask, 2541 .max_write_len = (100U + 6 * NR_CPUS), 2542 .private = FILE_CPULIST, 2543 }, 2544 2545 { 2546 .name = "mems", 2547 .seq_show = cpuset_common_seq_show, 2548 .write = cpuset_write_resmask, 2549 .max_write_len = (100U + 6 * MAX_NUMNODES), 2550 .private = FILE_MEMLIST, 2551 }, 2552 2553 { 2554 .name = "effective_cpus", 2555 .seq_show = cpuset_common_seq_show, 2556 .private = FILE_EFFECTIVE_CPULIST, 2557 }, 2558 2559 { 2560 .name = "effective_mems", 2561 .seq_show = cpuset_common_seq_show, 2562 .private = FILE_EFFECTIVE_MEMLIST, 2563 }, 2564 2565 { 2566 .name = "cpu_exclusive", 2567 .read_u64 = cpuset_read_u64, 2568 .write_u64 = cpuset_write_u64, 2569 .private = FILE_CPU_EXCLUSIVE, 2570 }, 2571 2572 { 2573 .name = "mem_exclusive", 2574 .read_u64 = cpuset_read_u64, 2575 .write_u64 = cpuset_write_u64, 2576 .private = FILE_MEM_EXCLUSIVE, 2577 }, 2578 2579 { 2580 .name = "mem_hardwall", 2581 .read_u64 = cpuset_read_u64, 2582 .write_u64 = cpuset_write_u64, 2583 .private = FILE_MEM_HARDWALL, 2584 }, 2585 2586 { 2587 .name = "sched_load_balance", 2588 .read_u64 = cpuset_read_u64, 2589 .write_u64 = cpuset_write_u64, 2590 .private = FILE_SCHED_LOAD_BALANCE, 2591 }, 2592 2593 { 2594 .name = "sched_relax_domain_level", 2595 .read_s64 = cpuset_read_s64, 2596 .write_s64 = cpuset_write_s64, 2597 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL, 2598 }, 2599 2600 { 2601 .name = "memory_migrate", 2602 .read_u64 = cpuset_read_u64, 2603 .write_u64 = cpuset_write_u64, 2604 .private = FILE_MEMORY_MIGRATE, 2605 }, 2606 2607 { 2608 .name = "memory_pressure", 2609 .read_u64 = cpuset_read_u64, 2610 .private = FILE_MEMORY_PRESSURE, 2611 }, 2612 2613 { 2614 .name = "memory_spread_page", 2615 .read_u64 = cpuset_read_u64, 2616 .write_u64 = cpuset_write_u64, 2617 .private = FILE_SPREAD_PAGE, 2618 }, 2619 2620 { 2621 .name = "memory_spread_slab", 2622 .read_u64 = cpuset_read_u64, 2623 .write_u64 = cpuset_write_u64, 2624 .private = FILE_SPREAD_SLAB, 2625 }, 2626 2627 { 2628 .name = "memory_pressure_enabled", 2629 .flags = CFTYPE_ONLY_ON_ROOT, 2630 .read_u64 = cpuset_read_u64, 2631 .write_u64 = cpuset_write_u64, 2632 .private = FILE_MEMORY_PRESSURE_ENABLED, 2633 }, 2634 2635 { } /* terminate */ 2636 }; 2637 2638 /* 2639 * This is currently a minimal set for the default hierarchy. It can be 2640 * expanded later on by migrating more features and control files from v1. 2641 */ 2642 static struct cftype dfl_files[] = { 2643 { 2644 .name = "cpus", 2645 .seq_show = cpuset_common_seq_show, 2646 .write = cpuset_write_resmask, 2647 .max_write_len = (100U + 6 * NR_CPUS), 2648 .private = FILE_CPULIST, 2649 .flags = CFTYPE_NOT_ON_ROOT, 2650 }, 2651 2652 { 2653 .name = "mems", 2654 .seq_show = cpuset_common_seq_show, 2655 .write = cpuset_write_resmask, 2656 .max_write_len = (100U + 6 * MAX_NUMNODES), 2657 .private = FILE_MEMLIST, 2658 .flags = CFTYPE_NOT_ON_ROOT, 2659 }, 2660 2661 { 2662 .name = "cpus.effective", 2663 .seq_show = cpuset_common_seq_show, 2664 .private = FILE_EFFECTIVE_CPULIST, 2665 }, 2666 2667 { 2668 .name = "mems.effective", 2669 .seq_show = cpuset_common_seq_show, 2670 .private = FILE_EFFECTIVE_MEMLIST, 2671 }, 2672 2673 { 2674 .name = "cpus.partition", 2675 .seq_show = sched_partition_show, 2676 .write = sched_partition_write, 2677 .private = FILE_PARTITION_ROOT, 2678 .flags = CFTYPE_NOT_ON_ROOT, 2679 }, 2680 2681 { 2682 .name = "cpus.subpartitions", 2683 .seq_show = cpuset_common_seq_show, 2684 .private = FILE_SUBPARTS_CPULIST, 2685 .flags = CFTYPE_DEBUG, 2686 }, 2687 2688 { } /* terminate */ 2689 }; 2690 2691 2692 /* 2693 * cpuset_css_alloc - allocate a cpuset css 2694 * cgrp: control group that the new cpuset will be part of 2695 */ 2696 2697 static struct cgroup_subsys_state * 2698 cpuset_css_alloc(struct cgroup_subsys_state *parent_css) 2699 { 2700 struct cpuset *cs; 2701 2702 if (!parent_css) 2703 return &top_cpuset.css; 2704 2705 cs = kzalloc(sizeof(*cs), GFP_KERNEL); 2706 if (!cs) 2707 return ERR_PTR(-ENOMEM); 2708 2709 if (alloc_cpumasks(cs, NULL)) { 2710 kfree(cs); 2711 return ERR_PTR(-ENOMEM); 2712 } 2713 2714 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); 2715 nodes_clear(cs->mems_allowed); 2716 nodes_clear(cs->effective_mems); 2717 fmeter_init(&cs->fmeter); 2718 cs->relax_domain_level = -1; 2719 2720 return &cs->css; 2721 } 2722 2723 static int cpuset_css_online(struct cgroup_subsys_state *css) 2724 { 2725 struct cpuset *cs = css_cs(css); 2726 struct cpuset *parent = parent_cs(cs); 2727 struct cpuset *tmp_cs; 2728 struct cgroup_subsys_state *pos_css; 2729 2730 if (!parent) 2731 return 0; 2732 2733 get_online_cpus(); 2734 percpu_down_write(&cpuset_rwsem); 2735 2736 set_bit(CS_ONLINE, &cs->flags); 2737 if (is_spread_page(parent)) 2738 set_bit(CS_SPREAD_PAGE, &cs->flags); 2739 if (is_spread_slab(parent)) 2740 set_bit(CS_SPREAD_SLAB, &cs->flags); 2741 2742 cpuset_inc(); 2743 2744 spin_lock_irq(&callback_lock); 2745 if (is_in_v2_mode()) { 2746 cpumask_copy(cs->effective_cpus, parent->effective_cpus); 2747 cs->effective_mems = parent->effective_mems; 2748 cs->use_parent_ecpus = true; 2749 parent->child_ecpus_count++; 2750 } 2751 spin_unlock_irq(&callback_lock); 2752 2753 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags)) 2754 goto out_unlock; 2755 2756 /* 2757 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is 2758 * set. This flag handling is implemented in cgroup core for 2759 * histrical reasons - the flag may be specified during mount. 2760 * 2761 * Currently, if any sibling cpusets have exclusive cpus or mem, we 2762 * refuse to clone the configuration - thereby refusing the task to 2763 * be entered, and as a result refusing the sys_unshare() or 2764 * clone() which initiated it. If this becomes a problem for some 2765 * users who wish to allow that scenario, then this could be 2766 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive 2767 * (and likewise for mems) to the new cgroup. 2768 */ 2769 rcu_read_lock(); 2770 cpuset_for_each_child(tmp_cs, pos_css, parent) { 2771 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) { 2772 rcu_read_unlock(); 2773 goto out_unlock; 2774 } 2775 } 2776 rcu_read_unlock(); 2777 2778 spin_lock_irq(&callback_lock); 2779 cs->mems_allowed = parent->mems_allowed; 2780 cs->effective_mems = parent->mems_allowed; 2781 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed); 2782 cpumask_copy(cs->effective_cpus, parent->cpus_allowed); 2783 spin_unlock_irq(&callback_lock); 2784 out_unlock: 2785 percpu_up_write(&cpuset_rwsem); 2786 put_online_cpus(); 2787 return 0; 2788 } 2789 2790 /* 2791 * If the cpuset being removed has its flag 'sched_load_balance' 2792 * enabled, then simulate turning sched_load_balance off, which 2793 * will call rebuild_sched_domains_locked(). That is not needed 2794 * in the default hierarchy where only changes in partition 2795 * will cause repartitioning. 2796 * 2797 * If the cpuset has the 'sched.partition' flag enabled, simulate 2798 * turning 'sched.partition" off. 2799 */ 2800 2801 static void cpuset_css_offline(struct cgroup_subsys_state *css) 2802 { 2803 struct cpuset *cs = css_cs(css); 2804 2805 get_online_cpus(); 2806 percpu_down_write(&cpuset_rwsem); 2807 2808 if (is_partition_root(cs)) 2809 update_prstate(cs, 0); 2810 2811 if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) && 2812 is_sched_load_balance(cs)) 2813 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0); 2814 2815 if (cs->use_parent_ecpus) { 2816 struct cpuset *parent = parent_cs(cs); 2817 2818 cs->use_parent_ecpus = false; 2819 parent->child_ecpus_count--; 2820 } 2821 2822 cpuset_dec(); 2823 clear_bit(CS_ONLINE, &cs->flags); 2824 2825 percpu_up_write(&cpuset_rwsem); 2826 put_online_cpus(); 2827 } 2828 2829 static void cpuset_css_free(struct cgroup_subsys_state *css) 2830 { 2831 struct cpuset *cs = css_cs(css); 2832 2833 free_cpuset(cs); 2834 } 2835 2836 static void cpuset_bind(struct cgroup_subsys_state *root_css) 2837 { 2838 percpu_down_write(&cpuset_rwsem); 2839 spin_lock_irq(&callback_lock); 2840 2841 if (is_in_v2_mode()) { 2842 cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask); 2843 top_cpuset.mems_allowed = node_possible_map; 2844 } else { 2845 cpumask_copy(top_cpuset.cpus_allowed, 2846 top_cpuset.effective_cpus); 2847 top_cpuset.mems_allowed = top_cpuset.effective_mems; 2848 } 2849 2850 spin_unlock_irq(&callback_lock); 2851 percpu_up_write(&cpuset_rwsem); 2852 } 2853 2854 /* 2855 * Make sure the new task conform to the current state of its parent, 2856 * which could have been changed by cpuset just after it inherits the 2857 * state from the parent and before it sits on the cgroup's task list. 2858 */ 2859 static void cpuset_fork(struct task_struct *task) 2860 { 2861 if (task_css_is_root(task, cpuset_cgrp_id)) 2862 return; 2863 2864 set_cpus_allowed_ptr(task, current->cpus_ptr); 2865 task->mems_allowed = current->mems_allowed; 2866 } 2867 2868 struct cgroup_subsys cpuset_cgrp_subsys = { 2869 .css_alloc = cpuset_css_alloc, 2870 .css_online = cpuset_css_online, 2871 .css_offline = cpuset_css_offline, 2872 .css_free = cpuset_css_free, 2873 .can_attach = cpuset_can_attach, 2874 .cancel_attach = cpuset_cancel_attach, 2875 .attach = cpuset_attach, 2876 .post_attach = cpuset_post_attach, 2877 .bind = cpuset_bind, 2878 .fork = cpuset_fork, 2879 .legacy_cftypes = legacy_files, 2880 .dfl_cftypes = dfl_files, 2881 .early_init = true, 2882 .threaded = true, 2883 }; 2884 2885 /** 2886 * cpuset_init - initialize cpusets at system boot 2887 * 2888 * Description: Initialize top_cpuset 2889 **/ 2890 2891 int __init cpuset_init(void) 2892 { 2893 BUG_ON(percpu_init_rwsem(&cpuset_rwsem)); 2894 2895 BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL)); 2896 BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL)); 2897 BUG_ON(!zalloc_cpumask_var(&top_cpuset.subparts_cpus, GFP_KERNEL)); 2898 2899 cpumask_setall(top_cpuset.cpus_allowed); 2900 nodes_setall(top_cpuset.mems_allowed); 2901 cpumask_setall(top_cpuset.effective_cpus); 2902 nodes_setall(top_cpuset.effective_mems); 2903 2904 fmeter_init(&top_cpuset.fmeter); 2905 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags); 2906 top_cpuset.relax_domain_level = -1; 2907 2908 BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL)); 2909 2910 return 0; 2911 } 2912 2913 /* 2914 * If CPU and/or memory hotplug handlers, below, unplug any CPUs 2915 * or memory nodes, we need to walk over the cpuset hierarchy, 2916 * removing that CPU or node from all cpusets. If this removes the 2917 * last CPU or node from a cpuset, then move the tasks in the empty 2918 * cpuset to its next-highest non-empty parent. 2919 */ 2920 static void remove_tasks_in_empty_cpuset(struct cpuset *cs) 2921 { 2922 struct cpuset *parent; 2923 2924 /* 2925 * Find its next-highest non-empty parent, (top cpuset 2926 * has online cpus, so can't be empty). 2927 */ 2928 parent = parent_cs(cs); 2929 while (cpumask_empty(parent->cpus_allowed) || 2930 nodes_empty(parent->mems_allowed)) 2931 parent = parent_cs(parent); 2932 2933 if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) { 2934 pr_err("cpuset: failed to transfer tasks out of empty cpuset "); 2935 pr_cont_cgroup_name(cs->css.cgroup); 2936 pr_cont("\n"); 2937 } 2938 } 2939 2940 static void 2941 hotplug_update_tasks_legacy(struct cpuset *cs, 2942 struct cpumask *new_cpus, nodemask_t *new_mems, 2943 bool cpus_updated, bool mems_updated) 2944 { 2945 bool is_empty; 2946 2947 spin_lock_irq(&callback_lock); 2948 cpumask_copy(cs->cpus_allowed, new_cpus); 2949 cpumask_copy(cs->effective_cpus, new_cpus); 2950 cs->mems_allowed = *new_mems; 2951 cs->effective_mems = *new_mems; 2952 spin_unlock_irq(&callback_lock); 2953 2954 /* 2955 * Don't call update_tasks_cpumask() if the cpuset becomes empty, 2956 * as the tasks will be migratecd to an ancestor. 2957 */ 2958 if (cpus_updated && !cpumask_empty(cs->cpus_allowed)) 2959 update_tasks_cpumask(cs); 2960 if (mems_updated && !nodes_empty(cs->mems_allowed)) 2961 update_tasks_nodemask(cs); 2962 2963 is_empty = cpumask_empty(cs->cpus_allowed) || 2964 nodes_empty(cs->mems_allowed); 2965 2966 percpu_up_write(&cpuset_rwsem); 2967 2968 /* 2969 * Move tasks to the nearest ancestor with execution resources, 2970 * This is full cgroup operation which will also call back into 2971 * cpuset. Should be done outside any lock. 2972 */ 2973 if (is_empty) 2974 remove_tasks_in_empty_cpuset(cs); 2975 2976 percpu_down_write(&cpuset_rwsem); 2977 } 2978 2979 static void 2980 hotplug_update_tasks(struct cpuset *cs, 2981 struct cpumask *new_cpus, nodemask_t *new_mems, 2982 bool cpus_updated, bool mems_updated) 2983 { 2984 if (cpumask_empty(new_cpus)) 2985 cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus); 2986 if (nodes_empty(*new_mems)) 2987 *new_mems = parent_cs(cs)->effective_mems; 2988 2989 spin_lock_irq(&callback_lock); 2990 cpumask_copy(cs->effective_cpus, new_cpus); 2991 cs->effective_mems = *new_mems; 2992 spin_unlock_irq(&callback_lock); 2993 2994 if (cpus_updated) 2995 update_tasks_cpumask(cs); 2996 if (mems_updated) 2997 update_tasks_nodemask(cs); 2998 } 2999 3000 static bool force_rebuild; 3001 3002 void cpuset_force_rebuild(void) 3003 { 3004 force_rebuild = true; 3005 } 3006 3007 /** 3008 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug 3009 * @cs: cpuset in interest 3010 * @tmp: the tmpmasks structure pointer 3011 * 3012 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone 3013 * offline, update @cs accordingly. If @cs ends up with no CPU or memory, 3014 * all its tasks are moved to the nearest ancestor with both resources. 3015 */ 3016 static void cpuset_hotplug_update_tasks(struct cpuset *cs, struct tmpmasks *tmp) 3017 { 3018 static cpumask_t new_cpus; 3019 static nodemask_t new_mems; 3020 bool cpus_updated; 3021 bool mems_updated; 3022 struct cpuset *parent; 3023 retry: 3024 wait_event(cpuset_attach_wq, cs->attach_in_progress == 0); 3025 3026 percpu_down_write(&cpuset_rwsem); 3027 3028 /* 3029 * We have raced with task attaching. We wait until attaching 3030 * is finished, so we won't attach a task to an empty cpuset. 3031 */ 3032 if (cs->attach_in_progress) { 3033 percpu_up_write(&cpuset_rwsem); 3034 goto retry; 3035 } 3036 3037 parent = parent_cs(cs); 3038 compute_effective_cpumask(&new_cpus, cs, parent); 3039 nodes_and(new_mems, cs->mems_allowed, parent->effective_mems); 3040 3041 if (cs->nr_subparts_cpus) 3042 /* 3043 * Make sure that CPUs allocated to child partitions 3044 * do not show up in effective_cpus. 3045 */ 3046 cpumask_andnot(&new_cpus, &new_cpus, cs->subparts_cpus); 3047 3048 if (!tmp || !cs->partition_root_state) 3049 goto update_tasks; 3050 3051 /* 3052 * In the unlikely event that a partition root has empty 3053 * effective_cpus or its parent becomes erroneous, we have to 3054 * transition it to the erroneous state. 3055 */ 3056 if (is_partition_root(cs) && (cpumask_empty(&new_cpus) || 3057 (parent->partition_root_state == PRS_ERROR))) { 3058 if (cs->nr_subparts_cpus) { 3059 cs->nr_subparts_cpus = 0; 3060 cpumask_clear(cs->subparts_cpus); 3061 compute_effective_cpumask(&new_cpus, cs, parent); 3062 } 3063 3064 /* 3065 * If the effective_cpus is empty because the child 3066 * partitions take away all the CPUs, we can keep 3067 * the current partition and let the child partitions 3068 * fight for available CPUs. 3069 */ 3070 if ((parent->partition_root_state == PRS_ERROR) || 3071 cpumask_empty(&new_cpus)) { 3072 update_parent_subparts_cpumask(cs, partcmd_disable, 3073 NULL, tmp); 3074 cs->partition_root_state = PRS_ERROR; 3075 } 3076 cpuset_force_rebuild(); 3077 } 3078 3079 /* 3080 * On the other hand, an erroneous partition root may be transitioned 3081 * back to a regular one or a partition root with no CPU allocated 3082 * from the parent may change to erroneous. 3083 */ 3084 if (is_partition_root(parent) && 3085 ((cs->partition_root_state == PRS_ERROR) || 3086 !cpumask_intersects(&new_cpus, parent->subparts_cpus)) && 3087 update_parent_subparts_cpumask(cs, partcmd_update, NULL, tmp)) 3088 cpuset_force_rebuild(); 3089 3090 update_tasks: 3091 cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus); 3092 mems_updated = !nodes_equal(new_mems, cs->effective_mems); 3093 3094 if (is_in_v2_mode()) 3095 hotplug_update_tasks(cs, &new_cpus, &new_mems, 3096 cpus_updated, mems_updated); 3097 else 3098 hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems, 3099 cpus_updated, mems_updated); 3100 3101 percpu_up_write(&cpuset_rwsem); 3102 } 3103 3104 /** 3105 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset 3106 * 3107 * This function is called after either CPU or memory configuration has 3108 * changed and updates cpuset accordingly. The top_cpuset is always 3109 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in 3110 * order to make cpusets transparent (of no affect) on systems that are 3111 * actively using CPU hotplug but making no active use of cpusets. 3112 * 3113 * Non-root cpusets are only affected by offlining. If any CPUs or memory 3114 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on 3115 * all descendants. 3116 * 3117 * Note that CPU offlining during suspend is ignored. We don't modify 3118 * cpusets across suspend/resume cycles at all. 3119 */ 3120 static void cpuset_hotplug_workfn(struct work_struct *work) 3121 { 3122 static cpumask_t new_cpus; 3123 static nodemask_t new_mems; 3124 bool cpus_updated, mems_updated; 3125 bool on_dfl = is_in_v2_mode(); 3126 struct tmpmasks tmp, *ptmp = NULL; 3127 3128 if (on_dfl && !alloc_cpumasks(NULL, &tmp)) 3129 ptmp = &tmp; 3130 3131 percpu_down_write(&cpuset_rwsem); 3132 3133 /* fetch the available cpus/mems and find out which changed how */ 3134 cpumask_copy(&new_cpus, cpu_active_mask); 3135 new_mems = node_states[N_MEMORY]; 3136 3137 /* 3138 * If subparts_cpus is populated, it is likely that the check below 3139 * will produce a false positive on cpus_updated when the cpu list 3140 * isn't changed. It is extra work, but it is better to be safe. 3141 */ 3142 cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus); 3143 mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems); 3144 3145 /* synchronize cpus_allowed to cpu_active_mask */ 3146 if (cpus_updated) { 3147 spin_lock_irq(&callback_lock); 3148 if (!on_dfl) 3149 cpumask_copy(top_cpuset.cpus_allowed, &new_cpus); 3150 /* 3151 * Make sure that CPUs allocated to child partitions 3152 * do not show up in effective_cpus. If no CPU is left, 3153 * we clear the subparts_cpus & let the child partitions 3154 * fight for the CPUs again. 3155 */ 3156 if (top_cpuset.nr_subparts_cpus) { 3157 if (cpumask_subset(&new_cpus, 3158 top_cpuset.subparts_cpus)) { 3159 top_cpuset.nr_subparts_cpus = 0; 3160 cpumask_clear(top_cpuset.subparts_cpus); 3161 } else { 3162 cpumask_andnot(&new_cpus, &new_cpus, 3163 top_cpuset.subparts_cpus); 3164 } 3165 } 3166 cpumask_copy(top_cpuset.effective_cpus, &new_cpus); 3167 spin_unlock_irq(&callback_lock); 3168 /* we don't mess with cpumasks of tasks in top_cpuset */ 3169 } 3170 3171 /* synchronize mems_allowed to N_MEMORY */ 3172 if (mems_updated) { 3173 spin_lock_irq(&callback_lock); 3174 if (!on_dfl) 3175 top_cpuset.mems_allowed = new_mems; 3176 top_cpuset.effective_mems = new_mems; 3177 spin_unlock_irq(&callback_lock); 3178 update_tasks_nodemask(&top_cpuset); 3179 } 3180 3181 percpu_up_write(&cpuset_rwsem); 3182 3183 /* if cpus or mems changed, we need to propagate to descendants */ 3184 if (cpus_updated || mems_updated) { 3185 struct cpuset *cs; 3186 struct cgroup_subsys_state *pos_css; 3187 3188 rcu_read_lock(); 3189 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) { 3190 if (cs == &top_cpuset || !css_tryget_online(&cs->css)) 3191 continue; 3192 rcu_read_unlock(); 3193 3194 cpuset_hotplug_update_tasks(cs, ptmp); 3195 3196 rcu_read_lock(); 3197 css_put(&cs->css); 3198 } 3199 rcu_read_unlock(); 3200 } 3201 3202 /* rebuild sched domains if cpus_allowed has changed */ 3203 if (cpus_updated || force_rebuild) { 3204 force_rebuild = false; 3205 rebuild_sched_domains(); 3206 } 3207 3208 free_cpumasks(NULL, ptmp); 3209 } 3210 3211 void cpuset_update_active_cpus(void) 3212 { 3213 /* 3214 * We're inside cpu hotplug critical region which usually nests 3215 * inside cgroup synchronization. Bounce actual hotplug processing 3216 * to a work item to avoid reverse locking order. 3217 */ 3218 schedule_work(&cpuset_hotplug_work); 3219 } 3220 3221 void cpuset_wait_for_hotplug(void) 3222 { 3223 flush_work(&cpuset_hotplug_work); 3224 } 3225 3226 /* 3227 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY]. 3228 * Call this routine anytime after node_states[N_MEMORY] changes. 3229 * See cpuset_update_active_cpus() for CPU hotplug handling. 3230 */ 3231 static int cpuset_track_online_nodes(struct notifier_block *self, 3232 unsigned long action, void *arg) 3233 { 3234 schedule_work(&cpuset_hotplug_work); 3235 return NOTIFY_OK; 3236 } 3237 3238 static struct notifier_block cpuset_track_online_nodes_nb = { 3239 .notifier_call = cpuset_track_online_nodes, 3240 .priority = 10, /* ??! */ 3241 }; 3242 3243 /** 3244 * cpuset_init_smp - initialize cpus_allowed 3245 * 3246 * Description: Finish top cpuset after cpu, node maps are initialized 3247 */ 3248 void __init cpuset_init_smp(void) 3249 { 3250 cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask); 3251 top_cpuset.mems_allowed = node_states[N_MEMORY]; 3252 top_cpuset.old_mems_allowed = top_cpuset.mems_allowed; 3253 3254 cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask); 3255 top_cpuset.effective_mems = node_states[N_MEMORY]; 3256 3257 register_hotmemory_notifier(&cpuset_track_online_nodes_nb); 3258 3259 cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0); 3260 BUG_ON(!cpuset_migrate_mm_wq); 3261 } 3262 3263 /** 3264 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset. 3265 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed. 3266 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set. 3267 * 3268 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset 3269 * attached to the specified @tsk. Guaranteed to return some non-empty 3270 * subset of cpu_online_mask, even if this means going outside the 3271 * tasks cpuset. 3272 **/ 3273 3274 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask) 3275 { 3276 unsigned long flags; 3277 3278 spin_lock_irqsave(&callback_lock, flags); 3279 rcu_read_lock(); 3280 guarantee_online_cpus(task_cs(tsk), pmask); 3281 rcu_read_unlock(); 3282 spin_unlock_irqrestore(&callback_lock, flags); 3283 } 3284 3285 /** 3286 * cpuset_cpus_allowed_fallback - final fallback before complete catastrophe. 3287 * @tsk: pointer to task_struct with which the scheduler is struggling 3288 * 3289 * Description: In the case that the scheduler cannot find an allowed cpu in 3290 * tsk->cpus_allowed, we fall back to task_cs(tsk)->cpus_allowed. In legacy 3291 * mode however, this value is the same as task_cs(tsk)->effective_cpus, 3292 * which will not contain a sane cpumask during cases such as cpu hotplugging. 3293 * This is the absolute last resort for the scheduler and it is only used if 3294 * _every_ other avenue has been traveled. 3295 **/ 3296 3297 void cpuset_cpus_allowed_fallback(struct task_struct *tsk) 3298 { 3299 rcu_read_lock(); 3300 do_set_cpus_allowed(tsk, is_in_v2_mode() ? 3301 task_cs(tsk)->cpus_allowed : cpu_possible_mask); 3302 rcu_read_unlock(); 3303 3304 /* 3305 * We own tsk->cpus_allowed, nobody can change it under us. 3306 * 3307 * But we used cs && cs->cpus_allowed lockless and thus can 3308 * race with cgroup_attach_task() or update_cpumask() and get 3309 * the wrong tsk->cpus_allowed. However, both cases imply the 3310 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr() 3311 * which takes task_rq_lock(). 3312 * 3313 * If we are called after it dropped the lock we must see all 3314 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary 3315 * set any mask even if it is not right from task_cs() pov, 3316 * the pending set_cpus_allowed_ptr() will fix things. 3317 * 3318 * select_fallback_rq() will fix things ups and set cpu_possible_mask 3319 * if required. 3320 */ 3321 } 3322 3323 void __init cpuset_init_current_mems_allowed(void) 3324 { 3325 nodes_setall(current->mems_allowed); 3326 } 3327 3328 /** 3329 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset. 3330 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed. 3331 * 3332 * Description: Returns the nodemask_t mems_allowed of the cpuset 3333 * attached to the specified @tsk. Guaranteed to return some non-empty 3334 * subset of node_states[N_MEMORY], even if this means going outside the 3335 * tasks cpuset. 3336 **/ 3337 3338 nodemask_t cpuset_mems_allowed(struct task_struct *tsk) 3339 { 3340 nodemask_t mask; 3341 unsigned long flags; 3342 3343 spin_lock_irqsave(&callback_lock, flags); 3344 rcu_read_lock(); 3345 guarantee_online_mems(task_cs(tsk), &mask); 3346 rcu_read_unlock(); 3347 spin_unlock_irqrestore(&callback_lock, flags); 3348 3349 return mask; 3350 } 3351 3352 /** 3353 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed 3354 * @nodemask: the nodemask to be checked 3355 * 3356 * Are any of the nodes in the nodemask allowed in current->mems_allowed? 3357 */ 3358 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask) 3359 { 3360 return nodes_intersects(*nodemask, current->mems_allowed); 3361 } 3362 3363 /* 3364 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or 3365 * mem_hardwall ancestor to the specified cpuset. Call holding 3366 * callback_lock. If no ancestor is mem_exclusive or mem_hardwall 3367 * (an unusual configuration), then returns the root cpuset. 3368 */ 3369 static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs) 3370 { 3371 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs)) 3372 cs = parent_cs(cs); 3373 return cs; 3374 } 3375 3376 /** 3377 * cpuset_node_allowed - Can we allocate on a memory node? 3378 * @node: is this an allowed node? 3379 * @gfp_mask: memory allocation flags 3380 * 3381 * If we're in interrupt, yes, we can always allocate. If @node is set in 3382 * current's mems_allowed, yes. If it's not a __GFP_HARDWALL request and this 3383 * node is set in the nearest hardwalled cpuset ancestor to current's cpuset, 3384 * yes. If current has access to memory reserves as an oom victim, yes. 3385 * Otherwise, no. 3386 * 3387 * GFP_USER allocations are marked with the __GFP_HARDWALL bit, 3388 * and do not allow allocations outside the current tasks cpuset 3389 * unless the task has been OOM killed. 3390 * GFP_KERNEL allocations are not so marked, so can escape to the 3391 * nearest enclosing hardwalled ancestor cpuset. 3392 * 3393 * Scanning up parent cpusets requires callback_lock. The 3394 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit 3395 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the 3396 * current tasks mems_allowed came up empty on the first pass over 3397 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the 3398 * cpuset are short of memory, might require taking the callback_lock. 3399 * 3400 * The first call here from mm/page_alloc:get_page_from_freelist() 3401 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets, 3402 * so no allocation on a node outside the cpuset is allowed (unless 3403 * in interrupt, of course). 3404 * 3405 * The second pass through get_page_from_freelist() doesn't even call 3406 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages() 3407 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set 3408 * in alloc_flags. That logic and the checks below have the combined 3409 * affect that: 3410 * in_interrupt - any node ok (current task context irrelevant) 3411 * GFP_ATOMIC - any node ok 3412 * tsk_is_oom_victim - any node ok 3413 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok 3414 * GFP_USER - only nodes in current tasks mems allowed ok. 3415 */ 3416 bool __cpuset_node_allowed(int node, gfp_t gfp_mask) 3417 { 3418 struct cpuset *cs; /* current cpuset ancestors */ 3419 int allowed; /* is allocation in zone z allowed? */ 3420 unsigned long flags; 3421 3422 if (in_interrupt()) 3423 return true; 3424 if (node_isset(node, current->mems_allowed)) 3425 return true; 3426 /* 3427 * Allow tasks that have access to memory reserves because they have 3428 * been OOM killed to get memory anywhere. 3429 */ 3430 if (unlikely(tsk_is_oom_victim(current))) 3431 return true; 3432 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */ 3433 return false; 3434 3435 if (current->flags & PF_EXITING) /* Let dying task have memory */ 3436 return true; 3437 3438 /* Not hardwall and node outside mems_allowed: scan up cpusets */ 3439 spin_lock_irqsave(&callback_lock, flags); 3440 3441 rcu_read_lock(); 3442 cs = nearest_hardwall_ancestor(task_cs(current)); 3443 allowed = node_isset(node, cs->mems_allowed); 3444 rcu_read_unlock(); 3445 3446 spin_unlock_irqrestore(&callback_lock, flags); 3447 return allowed; 3448 } 3449 3450 /** 3451 * cpuset_mem_spread_node() - On which node to begin search for a file page 3452 * cpuset_slab_spread_node() - On which node to begin search for a slab page 3453 * 3454 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for 3455 * tasks in a cpuset with is_spread_page or is_spread_slab set), 3456 * and if the memory allocation used cpuset_mem_spread_node() 3457 * to determine on which node to start looking, as it will for 3458 * certain page cache or slab cache pages such as used for file 3459 * system buffers and inode caches, then instead of starting on the 3460 * local node to look for a free page, rather spread the starting 3461 * node around the tasks mems_allowed nodes. 3462 * 3463 * We don't have to worry about the returned node being offline 3464 * because "it can't happen", and even if it did, it would be ok. 3465 * 3466 * The routines calling guarantee_online_mems() are careful to 3467 * only set nodes in task->mems_allowed that are online. So it 3468 * should not be possible for the following code to return an 3469 * offline node. But if it did, that would be ok, as this routine 3470 * is not returning the node where the allocation must be, only 3471 * the node where the search should start. The zonelist passed to 3472 * __alloc_pages() will include all nodes. If the slab allocator 3473 * is passed an offline node, it will fall back to the local node. 3474 * See kmem_cache_alloc_node(). 3475 */ 3476 3477 static int cpuset_spread_node(int *rotor) 3478 { 3479 return *rotor = next_node_in(*rotor, current->mems_allowed); 3480 } 3481 3482 int cpuset_mem_spread_node(void) 3483 { 3484 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE) 3485 current->cpuset_mem_spread_rotor = 3486 node_random(¤t->mems_allowed); 3487 3488 return cpuset_spread_node(¤t->cpuset_mem_spread_rotor); 3489 } 3490 3491 int cpuset_slab_spread_node(void) 3492 { 3493 if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE) 3494 current->cpuset_slab_spread_rotor = 3495 node_random(¤t->mems_allowed); 3496 3497 return cpuset_spread_node(¤t->cpuset_slab_spread_rotor); 3498 } 3499 3500 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node); 3501 3502 /** 3503 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's? 3504 * @tsk1: pointer to task_struct of some task. 3505 * @tsk2: pointer to task_struct of some other task. 3506 * 3507 * Description: Return true if @tsk1's mems_allowed intersects the 3508 * mems_allowed of @tsk2. Used by the OOM killer to determine if 3509 * one of the task's memory usage might impact the memory available 3510 * to the other. 3511 **/ 3512 3513 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1, 3514 const struct task_struct *tsk2) 3515 { 3516 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed); 3517 } 3518 3519 /** 3520 * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed 3521 * 3522 * Description: Prints current's name, cpuset name, and cached copy of its 3523 * mems_allowed to the kernel log. 3524 */ 3525 void cpuset_print_current_mems_allowed(void) 3526 { 3527 struct cgroup *cgrp; 3528 3529 rcu_read_lock(); 3530 3531 cgrp = task_cs(current)->css.cgroup; 3532 pr_cont(",cpuset="); 3533 pr_cont_cgroup_name(cgrp); 3534 pr_cont(",mems_allowed=%*pbl", 3535 nodemask_pr_args(¤t->mems_allowed)); 3536 3537 rcu_read_unlock(); 3538 } 3539 3540 /* 3541 * Collection of memory_pressure is suppressed unless 3542 * this flag is enabled by writing "1" to the special 3543 * cpuset file 'memory_pressure_enabled' in the root cpuset. 3544 */ 3545 3546 int cpuset_memory_pressure_enabled __read_mostly; 3547 3548 /** 3549 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims. 3550 * 3551 * Keep a running average of the rate of synchronous (direct) 3552 * page reclaim efforts initiated by tasks in each cpuset. 3553 * 3554 * This represents the rate at which some task in the cpuset 3555 * ran low on memory on all nodes it was allowed to use, and 3556 * had to enter the kernels page reclaim code in an effort to 3557 * create more free memory by tossing clean pages or swapping 3558 * or writing dirty pages. 3559 * 3560 * Display to user space in the per-cpuset read-only file 3561 * "memory_pressure". Value displayed is an integer 3562 * representing the recent rate of entry into the synchronous 3563 * (direct) page reclaim by any task attached to the cpuset. 3564 **/ 3565 3566 void __cpuset_memory_pressure_bump(void) 3567 { 3568 rcu_read_lock(); 3569 fmeter_markevent(&task_cs(current)->fmeter); 3570 rcu_read_unlock(); 3571 } 3572 3573 #ifdef CONFIG_PROC_PID_CPUSET 3574 /* 3575 * proc_cpuset_show() 3576 * - Print tasks cpuset path into seq_file. 3577 * - Used for /proc/<pid>/cpuset. 3578 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it 3579 * doesn't really matter if tsk->cpuset changes after we read it, 3580 * and we take cpuset_mutex, keeping cpuset_attach() from changing it 3581 * anyway. 3582 */ 3583 int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns, 3584 struct pid *pid, struct task_struct *tsk) 3585 { 3586 char *buf; 3587 struct cgroup_subsys_state *css; 3588 int retval; 3589 3590 retval = -ENOMEM; 3591 buf = kmalloc(PATH_MAX, GFP_KERNEL); 3592 if (!buf) 3593 goto out; 3594 3595 css = task_get_css(tsk, cpuset_cgrp_id); 3596 retval = cgroup_path_ns(css->cgroup, buf, PATH_MAX, 3597 current->nsproxy->cgroup_ns); 3598 css_put(css); 3599 if (retval >= PATH_MAX) 3600 retval = -ENAMETOOLONG; 3601 if (retval < 0) 3602 goto out_free; 3603 seq_puts(m, buf); 3604 seq_putc(m, '\n'); 3605 retval = 0; 3606 out_free: 3607 kfree(buf); 3608 out: 3609 return retval; 3610 } 3611 #endif /* CONFIG_PROC_PID_CPUSET */ 3612 3613 /* Display task mems_allowed in /proc/<pid>/status file. */ 3614 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task) 3615 { 3616 seq_printf(m, "Mems_allowed:\t%*pb\n", 3617 nodemask_pr_args(&task->mems_allowed)); 3618 seq_printf(m, "Mems_allowed_list:\t%*pbl\n", 3619 nodemask_pr_args(&task->mems_allowed)); 3620 } 3621