1 /* 2 * Generic process-grouping system. 3 * 4 * Based originally on the cpuset system, extracted by Paul Menage 5 * Copyright (C) 2006 Google, Inc 6 * 7 * Notifications support 8 * Copyright (C) 2009 Nokia Corporation 9 * Author: Kirill A. Shutemov 10 * 11 * Copyright notices from the original cpuset code: 12 * -------------------------------------------------- 13 * Copyright (C) 2003 BULL SA. 14 * Copyright (C) 2004-2006 Silicon Graphics, Inc. 15 * 16 * Portions derived from Patrick Mochel's sysfs code. 17 * sysfs is Copyright (c) 2001-3 Patrick Mochel 18 * 19 * 2003-10-10 Written by Simon Derr. 20 * 2003-10-22 Updates by Stephen Hemminger. 21 * 2004 May-July Rework by Paul Jackson. 22 * --------------------------------------------------- 23 * 24 * This file is subject to the terms and conditions of the GNU General Public 25 * License. See the file COPYING in the main directory of the Linux 26 * distribution for more details. 27 */ 28 29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 30 31 #include "cgroup-internal.h" 32 33 #include <linux/cred.h> 34 #include <linux/errno.h> 35 #include <linux/init_task.h> 36 #include <linux/kernel.h> 37 #include <linux/magic.h> 38 #include <linux/mutex.h> 39 #include <linux/mount.h> 40 #include <linux/pagemap.h> 41 #include <linux/proc_fs.h> 42 #include <linux/rcupdate.h> 43 #include <linux/sched.h> 44 #include <linux/sched/task.h> 45 #include <linux/slab.h> 46 #include <linux/spinlock.h> 47 #include <linux/percpu-rwsem.h> 48 #include <linux/string.h> 49 #include <linux/hashtable.h> 50 #include <linux/idr.h> 51 #include <linux/kthread.h> 52 #include <linux/atomic.h> 53 #include <linux/cpuset.h> 54 #include <linux/proc_ns.h> 55 #include <linux/nsproxy.h> 56 #include <linux/file.h> 57 #include <linux/fs_parser.h> 58 #include <linux/sched/cputime.h> 59 #include <linux/psi.h> 60 #include <net/sock.h> 61 62 #define CREATE_TRACE_POINTS 63 #include <trace/events/cgroup.h> 64 65 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \ 66 MAX_CFTYPE_NAME + 2) 67 /* let's not notify more than 100 times per second */ 68 #define CGROUP_FILE_NOTIFY_MIN_INTV DIV_ROUND_UP(HZ, 100) 69 70 /* 71 * cgroup_mutex is the master lock. Any modification to cgroup or its 72 * hierarchy must be performed while holding it. 73 * 74 * css_set_lock protects task->cgroups pointer, the list of css_set 75 * objects, and the chain of tasks off each css_set. 76 * 77 * These locks are exported if CONFIG_PROVE_RCU so that accessors in 78 * cgroup.h can use them for lockdep annotations. 79 */ 80 DEFINE_MUTEX(cgroup_mutex); 81 DEFINE_SPINLOCK(css_set_lock); 82 83 #ifdef CONFIG_PROVE_RCU 84 EXPORT_SYMBOL_GPL(cgroup_mutex); 85 EXPORT_SYMBOL_GPL(css_set_lock); 86 #endif 87 88 DEFINE_SPINLOCK(trace_cgroup_path_lock); 89 char trace_cgroup_path[TRACE_CGROUP_PATH_LEN]; 90 bool cgroup_debug __read_mostly; 91 92 /* 93 * Protects cgroup_idr and css_idr so that IDs can be released without 94 * grabbing cgroup_mutex. 95 */ 96 static DEFINE_SPINLOCK(cgroup_idr_lock); 97 98 /* 99 * Protects cgroup_file->kn for !self csses. It synchronizes notifications 100 * against file removal/re-creation across css hiding. 101 */ 102 static DEFINE_SPINLOCK(cgroup_file_kn_lock); 103 104 struct percpu_rw_semaphore cgroup_threadgroup_rwsem; 105 106 #define cgroup_assert_mutex_or_rcu_locked() \ 107 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \ 108 !lockdep_is_held(&cgroup_mutex), \ 109 "cgroup_mutex or RCU read lock required"); 110 111 /* 112 * cgroup destruction makes heavy use of work items and there can be a lot 113 * of concurrent destructions. Use a separate workqueue so that cgroup 114 * destruction work items don't end up filling up max_active of system_wq 115 * which may lead to deadlock. 116 */ 117 static struct workqueue_struct *cgroup_destroy_wq; 118 119 /* generate an array of cgroup subsystem pointers */ 120 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys, 121 struct cgroup_subsys *cgroup_subsys[] = { 122 #include <linux/cgroup_subsys.h> 123 }; 124 #undef SUBSYS 125 126 /* array of cgroup subsystem names */ 127 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x, 128 static const char *cgroup_subsys_name[] = { 129 #include <linux/cgroup_subsys.h> 130 }; 131 #undef SUBSYS 132 133 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */ 134 #define SUBSYS(_x) \ 135 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \ 136 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \ 137 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \ 138 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key); 139 #include <linux/cgroup_subsys.h> 140 #undef SUBSYS 141 142 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key, 143 static struct static_key_true *cgroup_subsys_enabled_key[] = { 144 #include <linux/cgroup_subsys.h> 145 }; 146 #undef SUBSYS 147 148 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key, 149 static struct static_key_true *cgroup_subsys_on_dfl_key[] = { 150 #include <linux/cgroup_subsys.h> 151 }; 152 #undef SUBSYS 153 154 static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu); 155 156 /* 157 * The default hierarchy, reserved for the subsystems that are otherwise 158 * unattached - it never has more than a single cgroup, and all tasks are 159 * part of that cgroup. 160 */ 161 struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu }; 162 EXPORT_SYMBOL_GPL(cgrp_dfl_root); 163 164 /* 165 * The default hierarchy always exists but is hidden until mounted for the 166 * first time. This is for backward compatibility. 167 */ 168 static bool cgrp_dfl_visible; 169 170 /* some controllers are not supported in the default hierarchy */ 171 static u16 cgrp_dfl_inhibit_ss_mask; 172 173 /* some controllers are implicitly enabled on the default hierarchy */ 174 static u16 cgrp_dfl_implicit_ss_mask; 175 176 /* some controllers can be threaded on the default hierarchy */ 177 static u16 cgrp_dfl_threaded_ss_mask; 178 179 /* The list of hierarchy roots */ 180 LIST_HEAD(cgroup_roots); 181 static int cgroup_root_count; 182 183 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */ 184 static DEFINE_IDR(cgroup_hierarchy_idr); 185 186 /* 187 * Assign a monotonically increasing serial number to csses. It guarantees 188 * cgroups with bigger numbers are newer than those with smaller numbers. 189 * Also, as csses are always appended to the parent's ->children list, it 190 * guarantees that sibling csses are always sorted in the ascending serial 191 * number order on the list. Protected by cgroup_mutex. 192 */ 193 static u64 css_serial_nr_next = 1; 194 195 /* 196 * These bitmasks identify subsystems with specific features to avoid 197 * having to do iterative checks repeatedly. 198 */ 199 static u16 have_fork_callback __read_mostly; 200 static u16 have_exit_callback __read_mostly; 201 static u16 have_release_callback __read_mostly; 202 static u16 have_canfork_callback __read_mostly; 203 204 /* cgroup namespace for init task */ 205 struct cgroup_namespace init_cgroup_ns = { 206 .count = REFCOUNT_INIT(2), 207 .user_ns = &init_user_ns, 208 .ns.ops = &cgroupns_operations, 209 .ns.inum = PROC_CGROUP_INIT_INO, 210 .root_cset = &init_css_set, 211 }; 212 213 static struct file_system_type cgroup2_fs_type; 214 static struct cftype cgroup_base_files[]; 215 216 static int cgroup_apply_control(struct cgroup *cgrp); 217 static void cgroup_finalize_control(struct cgroup *cgrp, int ret); 218 static void css_task_iter_advance(struct css_task_iter *it); 219 static int cgroup_destroy_locked(struct cgroup *cgrp); 220 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp, 221 struct cgroup_subsys *ss); 222 static void css_release(struct percpu_ref *ref); 223 static void kill_css(struct cgroup_subsys_state *css); 224 static int cgroup_addrm_files(struct cgroup_subsys_state *css, 225 struct cgroup *cgrp, struct cftype cfts[], 226 bool is_add); 227 228 /** 229 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID 230 * @ssid: subsys ID of interest 231 * 232 * cgroup_subsys_enabled() can only be used with literal subsys names which 233 * is fine for individual subsystems but unsuitable for cgroup core. This 234 * is slower static_key_enabled() based test indexed by @ssid. 235 */ 236 bool cgroup_ssid_enabled(int ssid) 237 { 238 if (CGROUP_SUBSYS_COUNT == 0) 239 return false; 240 241 return static_key_enabled(cgroup_subsys_enabled_key[ssid]); 242 } 243 244 /** 245 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy 246 * @cgrp: the cgroup of interest 247 * 248 * The default hierarchy is the v2 interface of cgroup and this function 249 * can be used to test whether a cgroup is on the default hierarchy for 250 * cases where a subsystem should behave differnetly depending on the 251 * interface version. 252 * 253 * The set of behaviors which change on the default hierarchy are still 254 * being determined and the mount option is prefixed with __DEVEL__. 255 * 256 * List of changed behaviors: 257 * 258 * - Mount options "noprefix", "xattr", "clone_children", "release_agent" 259 * and "name" are disallowed. 260 * 261 * - When mounting an existing superblock, mount options should match. 262 * 263 * - Remount is disallowed. 264 * 265 * - rename(2) is disallowed. 266 * 267 * - "tasks" is removed. Everything should be at process granularity. Use 268 * "cgroup.procs" instead. 269 * 270 * - "cgroup.procs" is not sorted. pids will be unique unless they got 271 * recycled inbetween reads. 272 * 273 * - "release_agent" and "notify_on_release" are removed. Replacement 274 * notification mechanism will be implemented. 275 * 276 * - "cgroup.clone_children" is removed. 277 * 278 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup 279 * and its descendants contain no task; otherwise, 1. The file also 280 * generates kernfs notification which can be monitored through poll and 281 * [di]notify when the value of the file changes. 282 * 283 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and 284 * take masks of ancestors with non-empty cpus/mems, instead of being 285 * moved to an ancestor. 286 * 287 * - cpuset: a task can be moved into an empty cpuset, and again it takes 288 * masks of ancestors. 289 * 290 * - memcg: use_hierarchy is on by default and the cgroup file for the flag 291 * is not created. 292 * 293 * - blkcg: blk-throttle becomes properly hierarchical. 294 * 295 * - debug: disallowed on the default hierarchy. 296 */ 297 bool cgroup_on_dfl(const struct cgroup *cgrp) 298 { 299 return cgrp->root == &cgrp_dfl_root; 300 } 301 302 /* IDR wrappers which synchronize using cgroup_idr_lock */ 303 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end, 304 gfp_t gfp_mask) 305 { 306 int ret; 307 308 idr_preload(gfp_mask); 309 spin_lock_bh(&cgroup_idr_lock); 310 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM); 311 spin_unlock_bh(&cgroup_idr_lock); 312 idr_preload_end(); 313 return ret; 314 } 315 316 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id) 317 { 318 void *ret; 319 320 spin_lock_bh(&cgroup_idr_lock); 321 ret = idr_replace(idr, ptr, id); 322 spin_unlock_bh(&cgroup_idr_lock); 323 return ret; 324 } 325 326 static void cgroup_idr_remove(struct idr *idr, int id) 327 { 328 spin_lock_bh(&cgroup_idr_lock); 329 idr_remove(idr, id); 330 spin_unlock_bh(&cgroup_idr_lock); 331 } 332 333 static bool cgroup_has_tasks(struct cgroup *cgrp) 334 { 335 return cgrp->nr_populated_csets; 336 } 337 338 bool cgroup_is_threaded(struct cgroup *cgrp) 339 { 340 return cgrp->dom_cgrp != cgrp; 341 } 342 343 /* can @cgrp host both domain and threaded children? */ 344 static bool cgroup_is_mixable(struct cgroup *cgrp) 345 { 346 /* 347 * Root isn't under domain level resource control exempting it from 348 * the no-internal-process constraint, so it can serve as a thread 349 * root and a parent of resource domains at the same time. 350 */ 351 return !cgroup_parent(cgrp); 352 } 353 354 /* can @cgrp become a thread root? should always be true for a thread root */ 355 static bool cgroup_can_be_thread_root(struct cgroup *cgrp) 356 { 357 /* mixables don't care */ 358 if (cgroup_is_mixable(cgrp)) 359 return true; 360 361 /* domain roots can't be nested under threaded */ 362 if (cgroup_is_threaded(cgrp)) 363 return false; 364 365 /* can only have either domain or threaded children */ 366 if (cgrp->nr_populated_domain_children) 367 return false; 368 369 /* and no domain controllers can be enabled */ 370 if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask) 371 return false; 372 373 return true; 374 } 375 376 /* is @cgrp root of a threaded subtree? */ 377 bool cgroup_is_thread_root(struct cgroup *cgrp) 378 { 379 /* thread root should be a domain */ 380 if (cgroup_is_threaded(cgrp)) 381 return false; 382 383 /* a domain w/ threaded children is a thread root */ 384 if (cgrp->nr_threaded_children) 385 return true; 386 387 /* 388 * A domain which has tasks and explicit threaded controllers 389 * enabled is a thread root. 390 */ 391 if (cgroup_has_tasks(cgrp) && 392 (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask)) 393 return true; 394 395 return false; 396 } 397 398 /* a domain which isn't connected to the root w/o brekage can't be used */ 399 static bool cgroup_is_valid_domain(struct cgroup *cgrp) 400 { 401 /* the cgroup itself can be a thread root */ 402 if (cgroup_is_threaded(cgrp)) 403 return false; 404 405 /* but the ancestors can't be unless mixable */ 406 while ((cgrp = cgroup_parent(cgrp))) { 407 if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp)) 408 return false; 409 if (cgroup_is_threaded(cgrp)) 410 return false; 411 } 412 413 return true; 414 } 415 416 /* subsystems visibly enabled on a cgroup */ 417 static u16 cgroup_control(struct cgroup *cgrp) 418 { 419 struct cgroup *parent = cgroup_parent(cgrp); 420 u16 root_ss_mask = cgrp->root->subsys_mask; 421 422 if (parent) { 423 u16 ss_mask = parent->subtree_control; 424 425 /* threaded cgroups can only have threaded controllers */ 426 if (cgroup_is_threaded(cgrp)) 427 ss_mask &= cgrp_dfl_threaded_ss_mask; 428 return ss_mask; 429 } 430 431 if (cgroup_on_dfl(cgrp)) 432 root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask | 433 cgrp_dfl_implicit_ss_mask); 434 return root_ss_mask; 435 } 436 437 /* subsystems enabled on a cgroup */ 438 static u16 cgroup_ss_mask(struct cgroup *cgrp) 439 { 440 struct cgroup *parent = cgroup_parent(cgrp); 441 442 if (parent) { 443 u16 ss_mask = parent->subtree_ss_mask; 444 445 /* threaded cgroups can only have threaded controllers */ 446 if (cgroup_is_threaded(cgrp)) 447 ss_mask &= cgrp_dfl_threaded_ss_mask; 448 return ss_mask; 449 } 450 451 return cgrp->root->subsys_mask; 452 } 453 454 /** 455 * cgroup_css - obtain a cgroup's css for the specified subsystem 456 * @cgrp: the cgroup of interest 457 * @ss: the subsystem of interest (%NULL returns @cgrp->self) 458 * 459 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This 460 * function must be called either under cgroup_mutex or rcu_read_lock() and 461 * the caller is responsible for pinning the returned css if it wants to 462 * keep accessing it outside the said locks. This function may return 463 * %NULL if @cgrp doesn't have @subsys_id enabled. 464 */ 465 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp, 466 struct cgroup_subsys *ss) 467 { 468 if (ss) 469 return rcu_dereference_check(cgrp->subsys[ss->id], 470 lockdep_is_held(&cgroup_mutex)); 471 else 472 return &cgrp->self; 473 } 474 475 /** 476 * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem 477 * @cgrp: the cgroup of interest 478 * @ss: the subsystem of interest 479 * 480 * Find and get @cgrp's css assocaited with @ss. If the css doesn't exist 481 * or is offline, %NULL is returned. 482 */ 483 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp, 484 struct cgroup_subsys *ss) 485 { 486 struct cgroup_subsys_state *css; 487 488 rcu_read_lock(); 489 css = cgroup_css(cgrp, ss); 490 if (!css || !css_tryget_online(css)) 491 css = NULL; 492 rcu_read_unlock(); 493 494 return css; 495 } 496 497 /** 498 * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss 499 * @cgrp: the cgroup of interest 500 * @ss: the subsystem of interest (%NULL returns @cgrp->self) 501 * 502 * Similar to cgroup_css() but returns the effective css, which is defined 503 * as the matching css of the nearest ancestor including self which has @ss 504 * enabled. If @ss is associated with the hierarchy @cgrp is on, this 505 * function is guaranteed to return non-NULL css. 506 */ 507 static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp, 508 struct cgroup_subsys *ss) 509 { 510 lockdep_assert_held(&cgroup_mutex); 511 512 if (!ss) 513 return &cgrp->self; 514 515 /* 516 * This function is used while updating css associations and thus 517 * can't test the csses directly. Test ss_mask. 518 */ 519 while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) { 520 cgrp = cgroup_parent(cgrp); 521 if (!cgrp) 522 return NULL; 523 } 524 525 return cgroup_css(cgrp, ss); 526 } 527 528 /** 529 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem 530 * @cgrp: the cgroup of interest 531 * @ss: the subsystem of interest 532 * 533 * Find and get the effective css of @cgrp for @ss. The effective css is 534 * defined as the matching css of the nearest ancestor including self which 535 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on, 536 * the root css is returned, so this function always returns a valid css. 537 * 538 * The returned css is not guaranteed to be online, and therefore it is the 539 * callers responsiblity to tryget a reference for it. 540 */ 541 struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp, 542 struct cgroup_subsys *ss) 543 { 544 struct cgroup_subsys_state *css; 545 546 do { 547 css = cgroup_css(cgrp, ss); 548 549 if (css) 550 return css; 551 cgrp = cgroup_parent(cgrp); 552 } while (cgrp); 553 554 return init_css_set.subsys[ss->id]; 555 } 556 557 /** 558 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem 559 * @cgrp: the cgroup of interest 560 * @ss: the subsystem of interest 561 * 562 * Find and get the effective css of @cgrp for @ss. The effective css is 563 * defined as the matching css of the nearest ancestor including self which 564 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on, 565 * the root css is returned, so this function always returns a valid css. 566 * The returned css must be put using css_put(). 567 */ 568 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp, 569 struct cgroup_subsys *ss) 570 { 571 struct cgroup_subsys_state *css; 572 573 rcu_read_lock(); 574 575 do { 576 css = cgroup_css(cgrp, ss); 577 578 if (css && css_tryget_online(css)) 579 goto out_unlock; 580 cgrp = cgroup_parent(cgrp); 581 } while (cgrp); 582 583 css = init_css_set.subsys[ss->id]; 584 css_get(css); 585 out_unlock: 586 rcu_read_unlock(); 587 return css; 588 } 589 590 static void cgroup_get_live(struct cgroup *cgrp) 591 { 592 WARN_ON_ONCE(cgroup_is_dead(cgrp)); 593 css_get(&cgrp->self); 594 } 595 596 /** 597 * __cgroup_task_count - count the number of tasks in a cgroup. The caller 598 * is responsible for taking the css_set_lock. 599 * @cgrp: the cgroup in question 600 */ 601 int __cgroup_task_count(const struct cgroup *cgrp) 602 { 603 int count = 0; 604 struct cgrp_cset_link *link; 605 606 lockdep_assert_held(&css_set_lock); 607 608 list_for_each_entry(link, &cgrp->cset_links, cset_link) 609 count += link->cset->nr_tasks; 610 611 return count; 612 } 613 614 /** 615 * cgroup_task_count - count the number of tasks in a cgroup. 616 * @cgrp: the cgroup in question 617 */ 618 int cgroup_task_count(const struct cgroup *cgrp) 619 { 620 int count; 621 622 spin_lock_irq(&css_set_lock); 623 count = __cgroup_task_count(cgrp); 624 spin_unlock_irq(&css_set_lock); 625 626 return count; 627 } 628 629 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of) 630 { 631 struct cgroup *cgrp = of->kn->parent->priv; 632 struct cftype *cft = of_cft(of); 633 634 /* 635 * This is open and unprotected implementation of cgroup_css(). 636 * seq_css() is only called from a kernfs file operation which has 637 * an active reference on the file. Because all the subsystem 638 * files are drained before a css is disassociated with a cgroup, 639 * the matching css from the cgroup's subsys table is guaranteed to 640 * be and stay valid until the enclosing operation is complete. 641 */ 642 if (cft->ss) 643 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]); 644 else 645 return &cgrp->self; 646 } 647 EXPORT_SYMBOL_GPL(of_css); 648 649 /** 650 * for_each_css - iterate all css's of a cgroup 651 * @css: the iteration cursor 652 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end 653 * @cgrp: the target cgroup to iterate css's of 654 * 655 * Should be called under cgroup_[tree_]mutex. 656 */ 657 #define for_each_css(css, ssid, cgrp) \ 658 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \ 659 if (!((css) = rcu_dereference_check( \ 660 (cgrp)->subsys[(ssid)], \ 661 lockdep_is_held(&cgroup_mutex)))) { } \ 662 else 663 664 /** 665 * for_each_e_css - iterate all effective css's of a cgroup 666 * @css: the iteration cursor 667 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end 668 * @cgrp: the target cgroup to iterate css's of 669 * 670 * Should be called under cgroup_[tree_]mutex. 671 */ 672 #define for_each_e_css(css, ssid, cgrp) \ 673 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \ 674 if (!((css) = cgroup_e_css_by_mask(cgrp, \ 675 cgroup_subsys[(ssid)]))) \ 676 ; \ 677 else 678 679 /** 680 * do_each_subsys_mask - filter for_each_subsys with a bitmask 681 * @ss: the iteration cursor 682 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end 683 * @ss_mask: the bitmask 684 * 685 * The block will only run for cases where the ssid-th bit (1 << ssid) of 686 * @ss_mask is set. 687 */ 688 #define do_each_subsys_mask(ss, ssid, ss_mask) do { \ 689 unsigned long __ss_mask = (ss_mask); \ 690 if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */ \ 691 (ssid) = 0; \ 692 break; \ 693 } \ 694 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \ 695 (ss) = cgroup_subsys[ssid]; \ 696 { 697 698 #define while_each_subsys_mask() \ 699 } \ 700 } \ 701 } while (false) 702 703 /* iterate over child cgrps, lock should be held throughout iteration */ 704 #define cgroup_for_each_live_child(child, cgrp) \ 705 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \ 706 if (({ lockdep_assert_held(&cgroup_mutex); \ 707 cgroup_is_dead(child); })) \ 708 ; \ 709 else 710 711 /* walk live descendants in preorder */ 712 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \ 713 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \ 714 if (({ lockdep_assert_held(&cgroup_mutex); \ 715 (dsct) = (d_css)->cgroup; \ 716 cgroup_is_dead(dsct); })) \ 717 ; \ 718 else 719 720 /* walk live descendants in postorder */ 721 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \ 722 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \ 723 if (({ lockdep_assert_held(&cgroup_mutex); \ 724 (dsct) = (d_css)->cgroup; \ 725 cgroup_is_dead(dsct); })) \ 726 ; \ 727 else 728 729 /* 730 * The default css_set - used by init and its children prior to any 731 * hierarchies being mounted. It contains a pointer to the root state 732 * for each subsystem. Also used to anchor the list of css_sets. Not 733 * reference-counted, to improve performance when child cgroups 734 * haven't been created. 735 */ 736 struct css_set init_css_set = { 737 .refcount = REFCOUNT_INIT(1), 738 .dom_cset = &init_css_set, 739 .tasks = LIST_HEAD_INIT(init_css_set.tasks), 740 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks), 741 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters), 742 .threaded_csets = LIST_HEAD_INIT(init_css_set.threaded_csets), 743 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links), 744 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node), 745 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node), 746 747 /* 748 * The following field is re-initialized when this cset gets linked 749 * in cgroup_init(). However, let's initialize the field 750 * statically too so that the default cgroup can be accessed safely 751 * early during boot. 752 */ 753 .dfl_cgrp = &cgrp_dfl_root.cgrp, 754 }; 755 756 static int css_set_count = 1; /* 1 for init_css_set */ 757 758 static bool css_set_threaded(struct css_set *cset) 759 { 760 return cset->dom_cset != cset; 761 } 762 763 /** 764 * css_set_populated - does a css_set contain any tasks? 765 * @cset: target css_set 766 * 767 * css_set_populated() should be the same as !!cset->nr_tasks at steady 768 * state. However, css_set_populated() can be called while a task is being 769 * added to or removed from the linked list before the nr_tasks is 770 * properly updated. Hence, we can't just look at ->nr_tasks here. 771 */ 772 static bool css_set_populated(struct css_set *cset) 773 { 774 lockdep_assert_held(&css_set_lock); 775 776 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks); 777 } 778 779 /** 780 * cgroup_update_populated - update the populated count of a cgroup 781 * @cgrp: the target cgroup 782 * @populated: inc or dec populated count 783 * 784 * One of the css_sets associated with @cgrp is either getting its first 785 * task or losing the last. Update @cgrp->nr_populated_* accordingly. The 786 * count is propagated towards root so that a given cgroup's 787 * nr_populated_children is zero iff none of its descendants contain any 788 * tasks. 789 * 790 * @cgrp's interface file "cgroup.populated" is zero if both 791 * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and 792 * 1 otherwise. When the sum changes from or to zero, userland is notified 793 * that the content of the interface file has changed. This can be used to 794 * detect when @cgrp and its descendants become populated or empty. 795 */ 796 static void cgroup_update_populated(struct cgroup *cgrp, bool populated) 797 { 798 struct cgroup *child = NULL; 799 int adj = populated ? 1 : -1; 800 801 lockdep_assert_held(&css_set_lock); 802 803 do { 804 bool was_populated = cgroup_is_populated(cgrp); 805 806 if (!child) { 807 cgrp->nr_populated_csets += adj; 808 } else { 809 if (cgroup_is_threaded(child)) 810 cgrp->nr_populated_threaded_children += adj; 811 else 812 cgrp->nr_populated_domain_children += adj; 813 } 814 815 if (was_populated == cgroup_is_populated(cgrp)) 816 break; 817 818 cgroup1_check_for_release(cgrp); 819 TRACE_CGROUP_PATH(notify_populated, cgrp, 820 cgroup_is_populated(cgrp)); 821 cgroup_file_notify(&cgrp->events_file); 822 823 child = cgrp; 824 cgrp = cgroup_parent(cgrp); 825 } while (cgrp); 826 } 827 828 /** 829 * css_set_update_populated - update populated state of a css_set 830 * @cset: target css_set 831 * @populated: whether @cset is populated or depopulated 832 * 833 * @cset is either getting the first task or losing the last. Update the 834 * populated counters of all associated cgroups accordingly. 835 */ 836 static void css_set_update_populated(struct css_set *cset, bool populated) 837 { 838 struct cgrp_cset_link *link; 839 840 lockdep_assert_held(&css_set_lock); 841 842 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) 843 cgroup_update_populated(link->cgrp, populated); 844 } 845 846 /** 847 * css_set_move_task - move a task from one css_set to another 848 * @task: task being moved 849 * @from_cset: css_set @task currently belongs to (may be NULL) 850 * @to_cset: new css_set @task is being moved to (may be NULL) 851 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks 852 * 853 * Move @task from @from_cset to @to_cset. If @task didn't belong to any 854 * css_set, @from_cset can be NULL. If @task is being disassociated 855 * instead of moved, @to_cset can be NULL. 856 * 857 * This function automatically handles populated counter updates and 858 * css_task_iter adjustments but the caller is responsible for managing 859 * @from_cset and @to_cset's reference counts. 860 */ 861 static void css_set_move_task(struct task_struct *task, 862 struct css_set *from_cset, struct css_set *to_cset, 863 bool use_mg_tasks) 864 { 865 lockdep_assert_held(&css_set_lock); 866 867 if (to_cset && !css_set_populated(to_cset)) 868 css_set_update_populated(to_cset, true); 869 870 if (from_cset) { 871 struct css_task_iter *it, *pos; 872 873 WARN_ON_ONCE(list_empty(&task->cg_list)); 874 875 /* 876 * @task is leaving, advance task iterators which are 877 * pointing to it so that they can resume at the next 878 * position. Advancing an iterator might remove it from 879 * the list, use safe walk. See css_task_iter_advance*() 880 * for details. 881 */ 882 list_for_each_entry_safe(it, pos, &from_cset->task_iters, 883 iters_node) 884 if (it->task_pos == &task->cg_list) 885 css_task_iter_advance(it); 886 887 list_del_init(&task->cg_list); 888 if (!css_set_populated(from_cset)) 889 css_set_update_populated(from_cset, false); 890 } else { 891 WARN_ON_ONCE(!list_empty(&task->cg_list)); 892 } 893 894 if (to_cset) { 895 /* 896 * We are synchronized through cgroup_threadgroup_rwsem 897 * against PF_EXITING setting such that we can't race 898 * against cgroup_exit() changing the css_set to 899 * init_css_set and dropping the old one. 900 */ 901 WARN_ON_ONCE(task->flags & PF_EXITING); 902 903 cgroup_move_task(task, to_cset); 904 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks : 905 &to_cset->tasks); 906 } 907 } 908 909 /* 910 * hash table for cgroup groups. This improves the performance to find 911 * an existing css_set. This hash doesn't (currently) take into 912 * account cgroups in empty hierarchies. 913 */ 914 #define CSS_SET_HASH_BITS 7 915 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS); 916 917 static unsigned long css_set_hash(struct cgroup_subsys_state *css[]) 918 { 919 unsigned long key = 0UL; 920 struct cgroup_subsys *ss; 921 int i; 922 923 for_each_subsys(ss, i) 924 key += (unsigned long)css[i]; 925 key = (key >> 16) ^ key; 926 927 return key; 928 } 929 930 void put_css_set_locked(struct css_set *cset) 931 { 932 struct cgrp_cset_link *link, *tmp_link; 933 struct cgroup_subsys *ss; 934 int ssid; 935 936 lockdep_assert_held(&css_set_lock); 937 938 if (!refcount_dec_and_test(&cset->refcount)) 939 return; 940 941 WARN_ON_ONCE(!list_empty(&cset->threaded_csets)); 942 943 /* This css_set is dead. unlink it and release cgroup and css refs */ 944 for_each_subsys(ss, ssid) { 945 list_del(&cset->e_cset_node[ssid]); 946 css_put(cset->subsys[ssid]); 947 } 948 hash_del(&cset->hlist); 949 css_set_count--; 950 951 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) { 952 list_del(&link->cset_link); 953 list_del(&link->cgrp_link); 954 if (cgroup_parent(link->cgrp)) 955 cgroup_put(link->cgrp); 956 kfree(link); 957 } 958 959 if (css_set_threaded(cset)) { 960 list_del(&cset->threaded_csets_node); 961 put_css_set_locked(cset->dom_cset); 962 } 963 964 kfree_rcu(cset, rcu_head); 965 } 966 967 /** 968 * compare_css_sets - helper function for find_existing_css_set(). 969 * @cset: candidate css_set being tested 970 * @old_cset: existing css_set for a task 971 * @new_cgrp: cgroup that's being entered by the task 972 * @template: desired set of css pointers in css_set (pre-calculated) 973 * 974 * Returns true if "cset" matches "old_cset" except for the hierarchy 975 * which "new_cgrp" belongs to, for which it should match "new_cgrp". 976 */ 977 static bool compare_css_sets(struct css_set *cset, 978 struct css_set *old_cset, 979 struct cgroup *new_cgrp, 980 struct cgroup_subsys_state *template[]) 981 { 982 struct cgroup *new_dfl_cgrp; 983 struct list_head *l1, *l2; 984 985 /* 986 * On the default hierarchy, there can be csets which are 987 * associated with the same set of cgroups but different csses. 988 * Let's first ensure that csses match. 989 */ 990 if (memcmp(template, cset->subsys, sizeof(cset->subsys))) 991 return false; 992 993 994 /* @cset's domain should match the default cgroup's */ 995 if (cgroup_on_dfl(new_cgrp)) 996 new_dfl_cgrp = new_cgrp; 997 else 998 new_dfl_cgrp = old_cset->dfl_cgrp; 999 1000 if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp) 1001 return false; 1002 1003 /* 1004 * Compare cgroup pointers in order to distinguish between 1005 * different cgroups in hierarchies. As different cgroups may 1006 * share the same effective css, this comparison is always 1007 * necessary. 1008 */ 1009 l1 = &cset->cgrp_links; 1010 l2 = &old_cset->cgrp_links; 1011 while (1) { 1012 struct cgrp_cset_link *link1, *link2; 1013 struct cgroup *cgrp1, *cgrp2; 1014 1015 l1 = l1->next; 1016 l2 = l2->next; 1017 /* See if we reached the end - both lists are equal length. */ 1018 if (l1 == &cset->cgrp_links) { 1019 BUG_ON(l2 != &old_cset->cgrp_links); 1020 break; 1021 } else { 1022 BUG_ON(l2 == &old_cset->cgrp_links); 1023 } 1024 /* Locate the cgroups associated with these links. */ 1025 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link); 1026 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link); 1027 cgrp1 = link1->cgrp; 1028 cgrp2 = link2->cgrp; 1029 /* Hierarchies should be linked in the same order. */ 1030 BUG_ON(cgrp1->root != cgrp2->root); 1031 1032 /* 1033 * If this hierarchy is the hierarchy of the cgroup 1034 * that's changing, then we need to check that this 1035 * css_set points to the new cgroup; if it's any other 1036 * hierarchy, then this css_set should point to the 1037 * same cgroup as the old css_set. 1038 */ 1039 if (cgrp1->root == new_cgrp->root) { 1040 if (cgrp1 != new_cgrp) 1041 return false; 1042 } else { 1043 if (cgrp1 != cgrp2) 1044 return false; 1045 } 1046 } 1047 return true; 1048 } 1049 1050 /** 1051 * find_existing_css_set - init css array and find the matching css_set 1052 * @old_cset: the css_set that we're using before the cgroup transition 1053 * @cgrp: the cgroup that we're moving into 1054 * @template: out param for the new set of csses, should be clear on entry 1055 */ 1056 static struct css_set *find_existing_css_set(struct css_set *old_cset, 1057 struct cgroup *cgrp, 1058 struct cgroup_subsys_state *template[]) 1059 { 1060 struct cgroup_root *root = cgrp->root; 1061 struct cgroup_subsys *ss; 1062 struct css_set *cset; 1063 unsigned long key; 1064 int i; 1065 1066 /* 1067 * Build the set of subsystem state objects that we want to see in the 1068 * new css_set. while subsystems can change globally, the entries here 1069 * won't change, so no need for locking. 1070 */ 1071 for_each_subsys(ss, i) { 1072 if (root->subsys_mask & (1UL << i)) { 1073 /* 1074 * @ss is in this hierarchy, so we want the 1075 * effective css from @cgrp. 1076 */ 1077 template[i] = cgroup_e_css_by_mask(cgrp, ss); 1078 } else { 1079 /* 1080 * @ss is not in this hierarchy, so we don't want 1081 * to change the css. 1082 */ 1083 template[i] = old_cset->subsys[i]; 1084 } 1085 } 1086 1087 key = css_set_hash(template); 1088 hash_for_each_possible(css_set_table, cset, hlist, key) { 1089 if (!compare_css_sets(cset, old_cset, cgrp, template)) 1090 continue; 1091 1092 /* This css_set matches what we need */ 1093 return cset; 1094 } 1095 1096 /* No existing cgroup group matched */ 1097 return NULL; 1098 } 1099 1100 static void free_cgrp_cset_links(struct list_head *links_to_free) 1101 { 1102 struct cgrp_cset_link *link, *tmp_link; 1103 1104 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) { 1105 list_del(&link->cset_link); 1106 kfree(link); 1107 } 1108 } 1109 1110 /** 1111 * allocate_cgrp_cset_links - allocate cgrp_cset_links 1112 * @count: the number of links to allocate 1113 * @tmp_links: list_head the allocated links are put on 1114 * 1115 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links 1116 * through ->cset_link. Returns 0 on success or -errno. 1117 */ 1118 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links) 1119 { 1120 struct cgrp_cset_link *link; 1121 int i; 1122 1123 INIT_LIST_HEAD(tmp_links); 1124 1125 for (i = 0; i < count; i++) { 1126 link = kzalloc(sizeof(*link), GFP_KERNEL); 1127 if (!link) { 1128 free_cgrp_cset_links(tmp_links); 1129 return -ENOMEM; 1130 } 1131 list_add(&link->cset_link, tmp_links); 1132 } 1133 return 0; 1134 } 1135 1136 /** 1137 * link_css_set - a helper function to link a css_set to a cgroup 1138 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links() 1139 * @cset: the css_set to be linked 1140 * @cgrp: the destination cgroup 1141 */ 1142 static void link_css_set(struct list_head *tmp_links, struct css_set *cset, 1143 struct cgroup *cgrp) 1144 { 1145 struct cgrp_cset_link *link; 1146 1147 BUG_ON(list_empty(tmp_links)); 1148 1149 if (cgroup_on_dfl(cgrp)) 1150 cset->dfl_cgrp = cgrp; 1151 1152 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link); 1153 link->cset = cset; 1154 link->cgrp = cgrp; 1155 1156 /* 1157 * Always add links to the tail of the lists so that the lists are 1158 * in choronological order. 1159 */ 1160 list_move_tail(&link->cset_link, &cgrp->cset_links); 1161 list_add_tail(&link->cgrp_link, &cset->cgrp_links); 1162 1163 if (cgroup_parent(cgrp)) 1164 cgroup_get_live(cgrp); 1165 } 1166 1167 /** 1168 * find_css_set - return a new css_set with one cgroup updated 1169 * @old_cset: the baseline css_set 1170 * @cgrp: the cgroup to be updated 1171 * 1172 * Return a new css_set that's equivalent to @old_cset, but with @cgrp 1173 * substituted into the appropriate hierarchy. 1174 */ 1175 static struct css_set *find_css_set(struct css_set *old_cset, 1176 struct cgroup *cgrp) 1177 { 1178 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { }; 1179 struct css_set *cset; 1180 struct list_head tmp_links; 1181 struct cgrp_cset_link *link; 1182 struct cgroup_subsys *ss; 1183 unsigned long key; 1184 int ssid; 1185 1186 lockdep_assert_held(&cgroup_mutex); 1187 1188 /* First see if we already have a cgroup group that matches 1189 * the desired set */ 1190 spin_lock_irq(&css_set_lock); 1191 cset = find_existing_css_set(old_cset, cgrp, template); 1192 if (cset) 1193 get_css_set(cset); 1194 spin_unlock_irq(&css_set_lock); 1195 1196 if (cset) 1197 return cset; 1198 1199 cset = kzalloc(sizeof(*cset), GFP_KERNEL); 1200 if (!cset) 1201 return NULL; 1202 1203 /* Allocate all the cgrp_cset_link objects that we'll need */ 1204 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) { 1205 kfree(cset); 1206 return NULL; 1207 } 1208 1209 refcount_set(&cset->refcount, 1); 1210 cset->dom_cset = cset; 1211 INIT_LIST_HEAD(&cset->tasks); 1212 INIT_LIST_HEAD(&cset->mg_tasks); 1213 INIT_LIST_HEAD(&cset->task_iters); 1214 INIT_LIST_HEAD(&cset->threaded_csets); 1215 INIT_HLIST_NODE(&cset->hlist); 1216 INIT_LIST_HEAD(&cset->cgrp_links); 1217 INIT_LIST_HEAD(&cset->mg_preload_node); 1218 INIT_LIST_HEAD(&cset->mg_node); 1219 1220 /* Copy the set of subsystem state objects generated in 1221 * find_existing_css_set() */ 1222 memcpy(cset->subsys, template, sizeof(cset->subsys)); 1223 1224 spin_lock_irq(&css_set_lock); 1225 /* Add reference counts and links from the new css_set. */ 1226 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) { 1227 struct cgroup *c = link->cgrp; 1228 1229 if (c->root == cgrp->root) 1230 c = cgrp; 1231 link_css_set(&tmp_links, cset, c); 1232 } 1233 1234 BUG_ON(!list_empty(&tmp_links)); 1235 1236 css_set_count++; 1237 1238 /* Add @cset to the hash table */ 1239 key = css_set_hash(cset->subsys); 1240 hash_add(css_set_table, &cset->hlist, key); 1241 1242 for_each_subsys(ss, ssid) { 1243 struct cgroup_subsys_state *css = cset->subsys[ssid]; 1244 1245 list_add_tail(&cset->e_cset_node[ssid], 1246 &css->cgroup->e_csets[ssid]); 1247 css_get(css); 1248 } 1249 1250 spin_unlock_irq(&css_set_lock); 1251 1252 /* 1253 * If @cset should be threaded, look up the matching dom_cset and 1254 * link them up. We first fully initialize @cset then look for the 1255 * dom_cset. It's simpler this way and safe as @cset is guaranteed 1256 * to stay empty until we return. 1257 */ 1258 if (cgroup_is_threaded(cset->dfl_cgrp)) { 1259 struct css_set *dcset; 1260 1261 dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp); 1262 if (!dcset) { 1263 put_css_set(cset); 1264 return NULL; 1265 } 1266 1267 spin_lock_irq(&css_set_lock); 1268 cset->dom_cset = dcset; 1269 list_add_tail(&cset->threaded_csets_node, 1270 &dcset->threaded_csets); 1271 spin_unlock_irq(&css_set_lock); 1272 } 1273 1274 return cset; 1275 } 1276 1277 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root) 1278 { 1279 struct cgroup *root_cgrp = kf_root->kn->priv; 1280 1281 return root_cgrp->root; 1282 } 1283 1284 static int cgroup_init_root_id(struct cgroup_root *root) 1285 { 1286 int id; 1287 1288 lockdep_assert_held(&cgroup_mutex); 1289 1290 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL); 1291 if (id < 0) 1292 return id; 1293 1294 root->hierarchy_id = id; 1295 return 0; 1296 } 1297 1298 static void cgroup_exit_root_id(struct cgroup_root *root) 1299 { 1300 lockdep_assert_held(&cgroup_mutex); 1301 1302 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id); 1303 } 1304 1305 void cgroup_free_root(struct cgroup_root *root) 1306 { 1307 if (root) { 1308 idr_destroy(&root->cgroup_idr); 1309 kfree(root); 1310 } 1311 } 1312 1313 static void cgroup_destroy_root(struct cgroup_root *root) 1314 { 1315 struct cgroup *cgrp = &root->cgrp; 1316 struct cgrp_cset_link *link, *tmp_link; 1317 1318 trace_cgroup_destroy_root(root); 1319 1320 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp); 1321 1322 BUG_ON(atomic_read(&root->nr_cgrps)); 1323 BUG_ON(!list_empty(&cgrp->self.children)); 1324 1325 /* Rebind all subsystems back to the default hierarchy */ 1326 WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask)); 1327 1328 /* 1329 * Release all the links from cset_links to this hierarchy's 1330 * root cgroup 1331 */ 1332 spin_lock_irq(&css_set_lock); 1333 1334 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) { 1335 list_del(&link->cset_link); 1336 list_del(&link->cgrp_link); 1337 kfree(link); 1338 } 1339 1340 spin_unlock_irq(&css_set_lock); 1341 1342 if (!list_empty(&root->root_list)) { 1343 list_del(&root->root_list); 1344 cgroup_root_count--; 1345 } 1346 1347 cgroup_exit_root_id(root); 1348 1349 mutex_unlock(&cgroup_mutex); 1350 1351 kernfs_destroy_root(root->kf_root); 1352 cgroup_free_root(root); 1353 } 1354 1355 /* 1356 * look up cgroup associated with current task's cgroup namespace on the 1357 * specified hierarchy 1358 */ 1359 static struct cgroup * 1360 current_cgns_cgroup_from_root(struct cgroup_root *root) 1361 { 1362 struct cgroup *res = NULL; 1363 struct css_set *cset; 1364 1365 lockdep_assert_held(&css_set_lock); 1366 1367 rcu_read_lock(); 1368 1369 cset = current->nsproxy->cgroup_ns->root_cset; 1370 if (cset == &init_css_set) { 1371 res = &root->cgrp; 1372 } else { 1373 struct cgrp_cset_link *link; 1374 1375 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) { 1376 struct cgroup *c = link->cgrp; 1377 1378 if (c->root == root) { 1379 res = c; 1380 break; 1381 } 1382 } 1383 } 1384 rcu_read_unlock(); 1385 1386 BUG_ON(!res); 1387 return res; 1388 } 1389 1390 /* look up cgroup associated with given css_set on the specified hierarchy */ 1391 static struct cgroup *cset_cgroup_from_root(struct css_set *cset, 1392 struct cgroup_root *root) 1393 { 1394 struct cgroup *res = NULL; 1395 1396 lockdep_assert_held(&cgroup_mutex); 1397 lockdep_assert_held(&css_set_lock); 1398 1399 if (cset == &init_css_set) { 1400 res = &root->cgrp; 1401 } else if (root == &cgrp_dfl_root) { 1402 res = cset->dfl_cgrp; 1403 } else { 1404 struct cgrp_cset_link *link; 1405 1406 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) { 1407 struct cgroup *c = link->cgrp; 1408 1409 if (c->root == root) { 1410 res = c; 1411 break; 1412 } 1413 } 1414 } 1415 1416 BUG_ON(!res); 1417 return res; 1418 } 1419 1420 /* 1421 * Return the cgroup for "task" from the given hierarchy. Must be 1422 * called with cgroup_mutex and css_set_lock held. 1423 */ 1424 struct cgroup *task_cgroup_from_root(struct task_struct *task, 1425 struct cgroup_root *root) 1426 { 1427 /* 1428 * No need to lock the task - since we hold cgroup_mutex the 1429 * task can't change groups, so the only thing that can happen 1430 * is that it exits and its css is set back to init_css_set. 1431 */ 1432 return cset_cgroup_from_root(task_css_set(task), root); 1433 } 1434 1435 /* 1436 * A task must hold cgroup_mutex to modify cgroups. 1437 * 1438 * Any task can increment and decrement the count field without lock. 1439 * So in general, code holding cgroup_mutex can't rely on the count 1440 * field not changing. However, if the count goes to zero, then only 1441 * cgroup_attach_task() can increment it again. Because a count of zero 1442 * means that no tasks are currently attached, therefore there is no 1443 * way a task attached to that cgroup can fork (the other way to 1444 * increment the count). So code holding cgroup_mutex can safely 1445 * assume that if the count is zero, it will stay zero. Similarly, if 1446 * a task holds cgroup_mutex on a cgroup with zero count, it 1447 * knows that the cgroup won't be removed, as cgroup_rmdir() 1448 * needs that mutex. 1449 * 1450 * A cgroup can only be deleted if both its 'count' of using tasks 1451 * is zero, and its list of 'children' cgroups is empty. Since all 1452 * tasks in the system use _some_ cgroup, and since there is always at 1453 * least one task in the system (init, pid == 1), therefore, root cgroup 1454 * always has either children cgroups and/or using tasks. So we don't 1455 * need a special hack to ensure that root cgroup cannot be deleted. 1456 * 1457 * P.S. One more locking exception. RCU is used to guard the 1458 * update of a tasks cgroup pointer by cgroup_attach_task() 1459 */ 1460 1461 static struct kernfs_syscall_ops cgroup_kf_syscall_ops; 1462 1463 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft, 1464 char *buf) 1465 { 1466 struct cgroup_subsys *ss = cft->ss; 1467 1468 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) && 1469 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) { 1470 const char *dbg = (cft->flags & CFTYPE_DEBUG) ? ".__DEBUG__." : ""; 1471 1472 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s%s.%s", 1473 dbg, cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name, 1474 cft->name); 1475 } else { 1476 strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX); 1477 } 1478 return buf; 1479 } 1480 1481 /** 1482 * cgroup_file_mode - deduce file mode of a control file 1483 * @cft: the control file in question 1484 * 1485 * S_IRUGO for read, S_IWUSR for write. 1486 */ 1487 static umode_t cgroup_file_mode(const struct cftype *cft) 1488 { 1489 umode_t mode = 0; 1490 1491 if (cft->read_u64 || cft->read_s64 || cft->seq_show) 1492 mode |= S_IRUGO; 1493 1494 if (cft->write_u64 || cft->write_s64 || cft->write) { 1495 if (cft->flags & CFTYPE_WORLD_WRITABLE) 1496 mode |= S_IWUGO; 1497 else 1498 mode |= S_IWUSR; 1499 } 1500 1501 return mode; 1502 } 1503 1504 /** 1505 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask 1506 * @subtree_control: the new subtree_control mask to consider 1507 * @this_ss_mask: available subsystems 1508 * 1509 * On the default hierarchy, a subsystem may request other subsystems to be 1510 * enabled together through its ->depends_on mask. In such cases, more 1511 * subsystems than specified in "cgroup.subtree_control" may be enabled. 1512 * 1513 * This function calculates which subsystems need to be enabled if 1514 * @subtree_control is to be applied while restricted to @this_ss_mask. 1515 */ 1516 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask) 1517 { 1518 u16 cur_ss_mask = subtree_control; 1519 struct cgroup_subsys *ss; 1520 int ssid; 1521 1522 lockdep_assert_held(&cgroup_mutex); 1523 1524 cur_ss_mask |= cgrp_dfl_implicit_ss_mask; 1525 1526 while (true) { 1527 u16 new_ss_mask = cur_ss_mask; 1528 1529 do_each_subsys_mask(ss, ssid, cur_ss_mask) { 1530 new_ss_mask |= ss->depends_on; 1531 } while_each_subsys_mask(); 1532 1533 /* 1534 * Mask out subsystems which aren't available. This can 1535 * happen only if some depended-upon subsystems were bound 1536 * to non-default hierarchies. 1537 */ 1538 new_ss_mask &= this_ss_mask; 1539 1540 if (new_ss_mask == cur_ss_mask) 1541 break; 1542 cur_ss_mask = new_ss_mask; 1543 } 1544 1545 return cur_ss_mask; 1546 } 1547 1548 /** 1549 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods 1550 * @kn: the kernfs_node being serviced 1551 * 1552 * This helper undoes cgroup_kn_lock_live() and should be invoked before 1553 * the method finishes if locking succeeded. Note that once this function 1554 * returns the cgroup returned by cgroup_kn_lock_live() may become 1555 * inaccessible any time. If the caller intends to continue to access the 1556 * cgroup, it should pin it before invoking this function. 1557 */ 1558 void cgroup_kn_unlock(struct kernfs_node *kn) 1559 { 1560 struct cgroup *cgrp; 1561 1562 if (kernfs_type(kn) == KERNFS_DIR) 1563 cgrp = kn->priv; 1564 else 1565 cgrp = kn->parent->priv; 1566 1567 mutex_unlock(&cgroup_mutex); 1568 1569 kernfs_unbreak_active_protection(kn); 1570 cgroup_put(cgrp); 1571 } 1572 1573 /** 1574 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods 1575 * @kn: the kernfs_node being serviced 1576 * @drain_offline: perform offline draining on the cgroup 1577 * 1578 * This helper is to be used by a cgroup kernfs method currently servicing 1579 * @kn. It breaks the active protection, performs cgroup locking and 1580 * verifies that the associated cgroup is alive. Returns the cgroup if 1581 * alive; otherwise, %NULL. A successful return should be undone by a 1582 * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the 1583 * cgroup is drained of offlining csses before return. 1584 * 1585 * Any cgroup kernfs method implementation which requires locking the 1586 * associated cgroup should use this helper. It avoids nesting cgroup 1587 * locking under kernfs active protection and allows all kernfs operations 1588 * including self-removal. 1589 */ 1590 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline) 1591 { 1592 struct cgroup *cgrp; 1593 1594 if (kernfs_type(kn) == KERNFS_DIR) 1595 cgrp = kn->priv; 1596 else 1597 cgrp = kn->parent->priv; 1598 1599 /* 1600 * We're gonna grab cgroup_mutex which nests outside kernfs 1601 * active_ref. cgroup liveliness check alone provides enough 1602 * protection against removal. Ensure @cgrp stays accessible and 1603 * break the active_ref protection. 1604 */ 1605 if (!cgroup_tryget(cgrp)) 1606 return NULL; 1607 kernfs_break_active_protection(kn); 1608 1609 if (drain_offline) 1610 cgroup_lock_and_drain_offline(cgrp); 1611 else 1612 mutex_lock(&cgroup_mutex); 1613 1614 if (!cgroup_is_dead(cgrp)) 1615 return cgrp; 1616 1617 cgroup_kn_unlock(kn); 1618 return NULL; 1619 } 1620 1621 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft) 1622 { 1623 char name[CGROUP_FILE_NAME_MAX]; 1624 1625 lockdep_assert_held(&cgroup_mutex); 1626 1627 if (cft->file_offset) { 1628 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss); 1629 struct cgroup_file *cfile = (void *)css + cft->file_offset; 1630 1631 spin_lock_irq(&cgroup_file_kn_lock); 1632 cfile->kn = NULL; 1633 spin_unlock_irq(&cgroup_file_kn_lock); 1634 1635 del_timer_sync(&cfile->notify_timer); 1636 } 1637 1638 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name)); 1639 } 1640 1641 /** 1642 * css_clear_dir - remove subsys files in a cgroup directory 1643 * @css: taget css 1644 */ 1645 static void css_clear_dir(struct cgroup_subsys_state *css) 1646 { 1647 struct cgroup *cgrp = css->cgroup; 1648 struct cftype *cfts; 1649 1650 if (!(css->flags & CSS_VISIBLE)) 1651 return; 1652 1653 css->flags &= ~CSS_VISIBLE; 1654 1655 if (!css->ss) { 1656 if (cgroup_on_dfl(cgrp)) 1657 cfts = cgroup_base_files; 1658 else 1659 cfts = cgroup1_base_files; 1660 1661 cgroup_addrm_files(css, cgrp, cfts, false); 1662 } else { 1663 list_for_each_entry(cfts, &css->ss->cfts, node) 1664 cgroup_addrm_files(css, cgrp, cfts, false); 1665 } 1666 } 1667 1668 /** 1669 * css_populate_dir - create subsys files in a cgroup directory 1670 * @css: target css 1671 * 1672 * On failure, no file is added. 1673 */ 1674 static int css_populate_dir(struct cgroup_subsys_state *css) 1675 { 1676 struct cgroup *cgrp = css->cgroup; 1677 struct cftype *cfts, *failed_cfts; 1678 int ret; 1679 1680 if ((css->flags & CSS_VISIBLE) || !cgrp->kn) 1681 return 0; 1682 1683 if (!css->ss) { 1684 if (cgroup_on_dfl(cgrp)) 1685 cfts = cgroup_base_files; 1686 else 1687 cfts = cgroup1_base_files; 1688 1689 ret = cgroup_addrm_files(&cgrp->self, cgrp, cfts, true); 1690 if (ret < 0) 1691 return ret; 1692 } else { 1693 list_for_each_entry(cfts, &css->ss->cfts, node) { 1694 ret = cgroup_addrm_files(css, cgrp, cfts, true); 1695 if (ret < 0) { 1696 failed_cfts = cfts; 1697 goto err; 1698 } 1699 } 1700 } 1701 1702 css->flags |= CSS_VISIBLE; 1703 1704 return 0; 1705 err: 1706 list_for_each_entry(cfts, &css->ss->cfts, node) { 1707 if (cfts == failed_cfts) 1708 break; 1709 cgroup_addrm_files(css, cgrp, cfts, false); 1710 } 1711 return ret; 1712 } 1713 1714 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask) 1715 { 1716 struct cgroup *dcgrp = &dst_root->cgrp; 1717 struct cgroup_subsys *ss; 1718 int ssid, i, ret; 1719 1720 lockdep_assert_held(&cgroup_mutex); 1721 1722 do_each_subsys_mask(ss, ssid, ss_mask) { 1723 /* 1724 * If @ss has non-root csses attached to it, can't move. 1725 * If @ss is an implicit controller, it is exempt from this 1726 * rule and can be stolen. 1727 */ 1728 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) && 1729 !ss->implicit_on_dfl) 1730 return -EBUSY; 1731 1732 /* can't move between two non-dummy roots either */ 1733 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root) 1734 return -EBUSY; 1735 } while_each_subsys_mask(); 1736 1737 do_each_subsys_mask(ss, ssid, ss_mask) { 1738 struct cgroup_root *src_root = ss->root; 1739 struct cgroup *scgrp = &src_root->cgrp; 1740 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss); 1741 struct css_set *cset; 1742 1743 WARN_ON(!css || cgroup_css(dcgrp, ss)); 1744 1745 /* disable from the source */ 1746 src_root->subsys_mask &= ~(1 << ssid); 1747 WARN_ON(cgroup_apply_control(scgrp)); 1748 cgroup_finalize_control(scgrp, 0); 1749 1750 /* rebind */ 1751 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL); 1752 rcu_assign_pointer(dcgrp->subsys[ssid], css); 1753 ss->root = dst_root; 1754 css->cgroup = dcgrp; 1755 1756 spin_lock_irq(&css_set_lock); 1757 hash_for_each(css_set_table, i, cset, hlist) 1758 list_move_tail(&cset->e_cset_node[ss->id], 1759 &dcgrp->e_csets[ss->id]); 1760 spin_unlock_irq(&css_set_lock); 1761 1762 /* default hierarchy doesn't enable controllers by default */ 1763 dst_root->subsys_mask |= 1 << ssid; 1764 if (dst_root == &cgrp_dfl_root) { 1765 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]); 1766 } else { 1767 dcgrp->subtree_control |= 1 << ssid; 1768 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]); 1769 } 1770 1771 ret = cgroup_apply_control(dcgrp); 1772 if (ret) 1773 pr_warn("partial failure to rebind %s controller (err=%d)\n", 1774 ss->name, ret); 1775 1776 if (ss->bind) 1777 ss->bind(css); 1778 } while_each_subsys_mask(); 1779 1780 kernfs_activate(dcgrp->kn); 1781 return 0; 1782 } 1783 1784 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node, 1785 struct kernfs_root *kf_root) 1786 { 1787 int len = 0; 1788 char *buf = NULL; 1789 struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root); 1790 struct cgroup *ns_cgroup; 1791 1792 buf = kmalloc(PATH_MAX, GFP_KERNEL); 1793 if (!buf) 1794 return -ENOMEM; 1795 1796 spin_lock_irq(&css_set_lock); 1797 ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot); 1798 len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX); 1799 spin_unlock_irq(&css_set_lock); 1800 1801 if (len >= PATH_MAX) 1802 len = -ERANGE; 1803 else if (len > 0) { 1804 seq_escape(sf, buf, " \t\n\\"); 1805 len = 0; 1806 } 1807 kfree(buf); 1808 return len; 1809 } 1810 1811 enum cgroup2_param { 1812 Opt_nsdelegate, 1813 nr__cgroup2_params 1814 }; 1815 1816 static const struct fs_parameter_spec cgroup2_param_specs[] = { 1817 fsparam_flag ("nsdelegate", Opt_nsdelegate), 1818 {} 1819 }; 1820 1821 static const struct fs_parameter_description cgroup2_fs_parameters = { 1822 .name = "cgroup2", 1823 .specs = cgroup2_param_specs, 1824 }; 1825 1826 static int cgroup2_parse_param(struct fs_context *fc, struct fs_parameter *param) 1827 { 1828 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 1829 struct fs_parse_result result; 1830 int opt; 1831 1832 opt = fs_parse(fc, &cgroup2_fs_parameters, param, &result); 1833 if (opt < 0) 1834 return opt; 1835 1836 switch (opt) { 1837 case Opt_nsdelegate: 1838 ctx->flags |= CGRP_ROOT_NS_DELEGATE; 1839 return 0; 1840 } 1841 return -EINVAL; 1842 } 1843 1844 static void apply_cgroup_root_flags(unsigned int root_flags) 1845 { 1846 if (current->nsproxy->cgroup_ns == &init_cgroup_ns) { 1847 if (root_flags & CGRP_ROOT_NS_DELEGATE) 1848 cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE; 1849 else 1850 cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE; 1851 } 1852 } 1853 1854 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root) 1855 { 1856 if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) 1857 seq_puts(seq, ",nsdelegate"); 1858 return 0; 1859 } 1860 1861 static int cgroup_reconfigure(struct fs_context *fc) 1862 { 1863 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 1864 1865 apply_cgroup_root_flags(ctx->flags); 1866 return 0; 1867 } 1868 1869 /* 1870 * To reduce the fork() overhead for systems that are not actually using 1871 * their cgroups capability, we don't maintain the lists running through 1872 * each css_set to its tasks until we see the list actually used - in other 1873 * words after the first mount. 1874 */ 1875 static bool use_task_css_set_links __read_mostly; 1876 1877 static void cgroup_enable_task_cg_lists(void) 1878 { 1879 struct task_struct *p, *g; 1880 1881 /* 1882 * We need tasklist_lock because RCU is not safe against 1883 * while_each_thread(). Besides, a forking task that has passed 1884 * cgroup_post_fork() without seeing use_task_css_set_links = 1 1885 * is not guaranteed to have its child immediately visible in the 1886 * tasklist if we walk through it with RCU. 1887 */ 1888 read_lock(&tasklist_lock); 1889 spin_lock_irq(&css_set_lock); 1890 1891 if (use_task_css_set_links) 1892 goto out_unlock; 1893 1894 use_task_css_set_links = true; 1895 1896 do_each_thread(g, p) { 1897 WARN_ON_ONCE(!list_empty(&p->cg_list) || 1898 task_css_set(p) != &init_css_set); 1899 1900 /* 1901 * We should check if the process is exiting, otherwise 1902 * it will race with cgroup_exit() in that the list 1903 * entry won't be deleted though the process has exited. 1904 * Do it while holding siglock so that we don't end up 1905 * racing against cgroup_exit(). 1906 * 1907 * Interrupts were already disabled while acquiring 1908 * the css_set_lock, so we do not need to disable it 1909 * again when acquiring the sighand->siglock here. 1910 */ 1911 spin_lock(&p->sighand->siglock); 1912 if (!(p->flags & PF_EXITING)) { 1913 struct css_set *cset = task_css_set(p); 1914 1915 if (!css_set_populated(cset)) 1916 css_set_update_populated(cset, true); 1917 list_add_tail(&p->cg_list, &cset->tasks); 1918 get_css_set(cset); 1919 cset->nr_tasks++; 1920 } 1921 spin_unlock(&p->sighand->siglock); 1922 } while_each_thread(g, p); 1923 out_unlock: 1924 spin_unlock_irq(&css_set_lock); 1925 read_unlock(&tasklist_lock); 1926 } 1927 1928 static void init_cgroup_housekeeping(struct cgroup *cgrp) 1929 { 1930 struct cgroup_subsys *ss; 1931 int ssid; 1932 1933 INIT_LIST_HEAD(&cgrp->self.sibling); 1934 INIT_LIST_HEAD(&cgrp->self.children); 1935 INIT_LIST_HEAD(&cgrp->cset_links); 1936 INIT_LIST_HEAD(&cgrp->pidlists); 1937 mutex_init(&cgrp->pidlist_mutex); 1938 cgrp->self.cgroup = cgrp; 1939 cgrp->self.flags |= CSS_ONLINE; 1940 cgrp->dom_cgrp = cgrp; 1941 cgrp->max_descendants = INT_MAX; 1942 cgrp->max_depth = INT_MAX; 1943 INIT_LIST_HEAD(&cgrp->rstat_css_list); 1944 prev_cputime_init(&cgrp->prev_cputime); 1945 1946 for_each_subsys(ss, ssid) 1947 INIT_LIST_HEAD(&cgrp->e_csets[ssid]); 1948 1949 init_waitqueue_head(&cgrp->offline_waitq); 1950 INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent); 1951 } 1952 1953 void init_cgroup_root(struct cgroup_fs_context *ctx) 1954 { 1955 struct cgroup_root *root = ctx->root; 1956 struct cgroup *cgrp = &root->cgrp; 1957 1958 INIT_LIST_HEAD(&root->root_list); 1959 atomic_set(&root->nr_cgrps, 1); 1960 cgrp->root = root; 1961 init_cgroup_housekeeping(cgrp); 1962 idr_init(&root->cgroup_idr); 1963 1964 root->flags = ctx->flags; 1965 if (ctx->release_agent) 1966 strscpy(root->release_agent_path, ctx->release_agent, PATH_MAX); 1967 if (ctx->name) 1968 strscpy(root->name, ctx->name, MAX_CGROUP_ROOT_NAMELEN); 1969 if (ctx->cpuset_clone_children) 1970 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags); 1971 } 1972 1973 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask) 1974 { 1975 LIST_HEAD(tmp_links); 1976 struct cgroup *root_cgrp = &root->cgrp; 1977 struct kernfs_syscall_ops *kf_sops; 1978 struct css_set *cset; 1979 int i, ret; 1980 1981 lockdep_assert_held(&cgroup_mutex); 1982 1983 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL); 1984 if (ret < 0) 1985 goto out; 1986 root_cgrp->id = ret; 1987 root_cgrp->ancestor_ids[0] = ret; 1988 1989 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 1990 0, GFP_KERNEL); 1991 if (ret) 1992 goto out; 1993 1994 /* 1995 * We're accessing css_set_count without locking css_set_lock here, 1996 * but that's OK - it can only be increased by someone holding 1997 * cgroup_lock, and that's us. Later rebinding may disable 1998 * controllers on the default hierarchy and thus create new csets, 1999 * which can't be more than the existing ones. Allocate 2x. 2000 */ 2001 ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links); 2002 if (ret) 2003 goto cancel_ref; 2004 2005 ret = cgroup_init_root_id(root); 2006 if (ret) 2007 goto cancel_ref; 2008 2009 kf_sops = root == &cgrp_dfl_root ? 2010 &cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops; 2011 2012 root->kf_root = kernfs_create_root(kf_sops, 2013 KERNFS_ROOT_CREATE_DEACTIVATED | 2014 KERNFS_ROOT_SUPPORT_EXPORTOP, 2015 root_cgrp); 2016 if (IS_ERR(root->kf_root)) { 2017 ret = PTR_ERR(root->kf_root); 2018 goto exit_root_id; 2019 } 2020 root_cgrp->kn = root->kf_root->kn; 2021 2022 ret = css_populate_dir(&root_cgrp->self); 2023 if (ret) 2024 goto destroy_root; 2025 2026 ret = rebind_subsystems(root, ss_mask); 2027 if (ret) 2028 goto destroy_root; 2029 2030 ret = cgroup_bpf_inherit(root_cgrp); 2031 WARN_ON_ONCE(ret); 2032 2033 trace_cgroup_setup_root(root); 2034 2035 /* 2036 * There must be no failure case after here, since rebinding takes 2037 * care of subsystems' refcounts, which are explicitly dropped in 2038 * the failure exit path. 2039 */ 2040 list_add(&root->root_list, &cgroup_roots); 2041 cgroup_root_count++; 2042 2043 /* 2044 * Link the root cgroup in this hierarchy into all the css_set 2045 * objects. 2046 */ 2047 spin_lock_irq(&css_set_lock); 2048 hash_for_each(css_set_table, i, cset, hlist) { 2049 link_css_set(&tmp_links, cset, root_cgrp); 2050 if (css_set_populated(cset)) 2051 cgroup_update_populated(root_cgrp, true); 2052 } 2053 spin_unlock_irq(&css_set_lock); 2054 2055 BUG_ON(!list_empty(&root_cgrp->self.children)); 2056 BUG_ON(atomic_read(&root->nr_cgrps) != 1); 2057 2058 kernfs_activate(root_cgrp->kn); 2059 ret = 0; 2060 goto out; 2061 2062 destroy_root: 2063 kernfs_destroy_root(root->kf_root); 2064 root->kf_root = NULL; 2065 exit_root_id: 2066 cgroup_exit_root_id(root); 2067 cancel_ref: 2068 percpu_ref_exit(&root_cgrp->self.refcnt); 2069 out: 2070 free_cgrp_cset_links(&tmp_links); 2071 return ret; 2072 } 2073 2074 int cgroup_do_get_tree(struct fs_context *fc) 2075 { 2076 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2077 int ret; 2078 2079 ctx->kfc.root = ctx->root->kf_root; 2080 if (fc->fs_type == &cgroup2_fs_type) 2081 ctx->kfc.magic = CGROUP2_SUPER_MAGIC; 2082 else 2083 ctx->kfc.magic = CGROUP_SUPER_MAGIC; 2084 ret = kernfs_get_tree(fc); 2085 2086 /* 2087 * In non-init cgroup namespace, instead of root cgroup's dentry, 2088 * we return the dentry corresponding to the cgroupns->root_cgrp. 2089 */ 2090 if (!ret && ctx->ns != &init_cgroup_ns) { 2091 struct dentry *nsdentry; 2092 struct super_block *sb = fc->root->d_sb; 2093 struct cgroup *cgrp; 2094 2095 mutex_lock(&cgroup_mutex); 2096 spin_lock_irq(&css_set_lock); 2097 2098 cgrp = cset_cgroup_from_root(ctx->ns->root_cset, ctx->root); 2099 2100 spin_unlock_irq(&css_set_lock); 2101 mutex_unlock(&cgroup_mutex); 2102 2103 nsdentry = kernfs_node_dentry(cgrp->kn, sb); 2104 dput(fc->root); 2105 fc->root = nsdentry; 2106 if (IS_ERR(nsdentry)) { 2107 ret = PTR_ERR(nsdentry); 2108 deactivate_locked_super(sb); 2109 } 2110 } 2111 2112 if (!ctx->kfc.new_sb_created) 2113 cgroup_put(&ctx->root->cgrp); 2114 2115 return ret; 2116 } 2117 2118 /* 2119 * Destroy a cgroup filesystem context. 2120 */ 2121 static void cgroup_fs_context_free(struct fs_context *fc) 2122 { 2123 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2124 2125 kfree(ctx->name); 2126 kfree(ctx->release_agent); 2127 put_cgroup_ns(ctx->ns); 2128 kernfs_free_fs_context(fc); 2129 kfree(ctx); 2130 } 2131 2132 static int cgroup_get_tree(struct fs_context *fc) 2133 { 2134 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2135 int ret; 2136 2137 cgrp_dfl_visible = true; 2138 cgroup_get_live(&cgrp_dfl_root.cgrp); 2139 ctx->root = &cgrp_dfl_root; 2140 2141 ret = cgroup_do_get_tree(fc); 2142 if (!ret) 2143 apply_cgroup_root_flags(ctx->flags); 2144 return ret; 2145 } 2146 2147 static const struct fs_context_operations cgroup_fs_context_ops = { 2148 .free = cgroup_fs_context_free, 2149 .parse_param = cgroup2_parse_param, 2150 .get_tree = cgroup_get_tree, 2151 .reconfigure = cgroup_reconfigure, 2152 }; 2153 2154 static const struct fs_context_operations cgroup1_fs_context_ops = { 2155 .free = cgroup_fs_context_free, 2156 .parse_param = cgroup1_parse_param, 2157 .get_tree = cgroup1_get_tree, 2158 .reconfigure = cgroup1_reconfigure, 2159 }; 2160 2161 /* 2162 * Initialise the cgroup filesystem creation/reconfiguration context. Notably, 2163 * we select the namespace we're going to use. 2164 */ 2165 static int cgroup_init_fs_context(struct fs_context *fc) 2166 { 2167 struct cgroup_fs_context *ctx; 2168 2169 ctx = kzalloc(sizeof(struct cgroup_fs_context), GFP_KERNEL); 2170 if (!ctx) 2171 return -ENOMEM; 2172 2173 /* 2174 * The first time anyone tries to mount a cgroup, enable the list 2175 * linking each css_set to its tasks and fix up all existing tasks. 2176 */ 2177 if (!use_task_css_set_links) 2178 cgroup_enable_task_cg_lists(); 2179 2180 ctx->ns = current->nsproxy->cgroup_ns; 2181 get_cgroup_ns(ctx->ns); 2182 fc->fs_private = &ctx->kfc; 2183 if (fc->fs_type == &cgroup2_fs_type) 2184 fc->ops = &cgroup_fs_context_ops; 2185 else 2186 fc->ops = &cgroup1_fs_context_ops; 2187 if (fc->user_ns) 2188 put_user_ns(fc->user_ns); 2189 fc->user_ns = get_user_ns(ctx->ns->user_ns); 2190 fc->global = true; 2191 return 0; 2192 } 2193 2194 static void cgroup_kill_sb(struct super_block *sb) 2195 { 2196 struct kernfs_root *kf_root = kernfs_root_from_sb(sb); 2197 struct cgroup_root *root = cgroup_root_from_kf(kf_root); 2198 2199 /* 2200 * If @root doesn't have any children, start killing it. 2201 * This prevents new mounts by disabling percpu_ref_tryget_live(). 2202 * cgroup_mount() may wait for @root's release. 2203 * 2204 * And don't kill the default root. 2205 */ 2206 if (list_empty(&root->cgrp.self.children) && root != &cgrp_dfl_root && 2207 !percpu_ref_is_dying(&root->cgrp.self.refcnt)) 2208 percpu_ref_kill(&root->cgrp.self.refcnt); 2209 cgroup_put(&root->cgrp); 2210 kernfs_kill_sb(sb); 2211 } 2212 2213 struct file_system_type cgroup_fs_type = { 2214 .name = "cgroup", 2215 .init_fs_context = cgroup_init_fs_context, 2216 .parameters = &cgroup1_fs_parameters, 2217 .kill_sb = cgroup_kill_sb, 2218 .fs_flags = FS_USERNS_MOUNT, 2219 }; 2220 2221 static struct file_system_type cgroup2_fs_type = { 2222 .name = "cgroup2", 2223 .init_fs_context = cgroup_init_fs_context, 2224 .parameters = &cgroup2_fs_parameters, 2225 .kill_sb = cgroup_kill_sb, 2226 .fs_flags = FS_USERNS_MOUNT, 2227 }; 2228 2229 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen, 2230 struct cgroup_namespace *ns) 2231 { 2232 struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root); 2233 2234 return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen); 2235 } 2236 2237 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen, 2238 struct cgroup_namespace *ns) 2239 { 2240 int ret; 2241 2242 mutex_lock(&cgroup_mutex); 2243 spin_lock_irq(&css_set_lock); 2244 2245 ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns); 2246 2247 spin_unlock_irq(&css_set_lock); 2248 mutex_unlock(&cgroup_mutex); 2249 2250 return ret; 2251 } 2252 EXPORT_SYMBOL_GPL(cgroup_path_ns); 2253 2254 /** 2255 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy 2256 * @task: target task 2257 * @buf: the buffer to write the path into 2258 * @buflen: the length of the buffer 2259 * 2260 * Determine @task's cgroup on the first (the one with the lowest non-zero 2261 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This 2262 * function grabs cgroup_mutex and shouldn't be used inside locks used by 2263 * cgroup controller callbacks. 2264 * 2265 * Return value is the same as kernfs_path(). 2266 */ 2267 int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen) 2268 { 2269 struct cgroup_root *root; 2270 struct cgroup *cgrp; 2271 int hierarchy_id = 1; 2272 int ret; 2273 2274 mutex_lock(&cgroup_mutex); 2275 spin_lock_irq(&css_set_lock); 2276 2277 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id); 2278 2279 if (root) { 2280 cgrp = task_cgroup_from_root(task, root); 2281 ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns); 2282 } else { 2283 /* if no hierarchy exists, everyone is in "/" */ 2284 ret = strlcpy(buf, "/", buflen); 2285 } 2286 2287 spin_unlock_irq(&css_set_lock); 2288 mutex_unlock(&cgroup_mutex); 2289 return ret; 2290 } 2291 EXPORT_SYMBOL_GPL(task_cgroup_path); 2292 2293 /** 2294 * cgroup_migrate_add_task - add a migration target task to a migration context 2295 * @task: target task 2296 * @mgctx: target migration context 2297 * 2298 * Add @task, which is a migration target, to @mgctx->tset. This function 2299 * becomes noop if @task doesn't need to be migrated. @task's css_set 2300 * should have been added as a migration source and @task->cg_list will be 2301 * moved from the css_set's tasks list to mg_tasks one. 2302 */ 2303 static void cgroup_migrate_add_task(struct task_struct *task, 2304 struct cgroup_mgctx *mgctx) 2305 { 2306 struct css_set *cset; 2307 2308 lockdep_assert_held(&css_set_lock); 2309 2310 /* @task either already exited or can't exit until the end */ 2311 if (task->flags & PF_EXITING) 2312 return; 2313 2314 /* leave @task alone if post_fork() hasn't linked it yet */ 2315 if (list_empty(&task->cg_list)) 2316 return; 2317 2318 cset = task_css_set(task); 2319 if (!cset->mg_src_cgrp) 2320 return; 2321 2322 mgctx->tset.nr_tasks++; 2323 2324 list_move_tail(&task->cg_list, &cset->mg_tasks); 2325 if (list_empty(&cset->mg_node)) 2326 list_add_tail(&cset->mg_node, 2327 &mgctx->tset.src_csets); 2328 if (list_empty(&cset->mg_dst_cset->mg_node)) 2329 list_add_tail(&cset->mg_dst_cset->mg_node, 2330 &mgctx->tset.dst_csets); 2331 } 2332 2333 /** 2334 * cgroup_taskset_first - reset taskset and return the first task 2335 * @tset: taskset of interest 2336 * @dst_cssp: output variable for the destination css 2337 * 2338 * @tset iteration is initialized and the first task is returned. 2339 */ 2340 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset, 2341 struct cgroup_subsys_state **dst_cssp) 2342 { 2343 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node); 2344 tset->cur_task = NULL; 2345 2346 return cgroup_taskset_next(tset, dst_cssp); 2347 } 2348 2349 /** 2350 * cgroup_taskset_next - iterate to the next task in taskset 2351 * @tset: taskset of interest 2352 * @dst_cssp: output variable for the destination css 2353 * 2354 * Return the next task in @tset. Iteration must have been initialized 2355 * with cgroup_taskset_first(). 2356 */ 2357 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset, 2358 struct cgroup_subsys_state **dst_cssp) 2359 { 2360 struct css_set *cset = tset->cur_cset; 2361 struct task_struct *task = tset->cur_task; 2362 2363 while (&cset->mg_node != tset->csets) { 2364 if (!task) 2365 task = list_first_entry(&cset->mg_tasks, 2366 struct task_struct, cg_list); 2367 else 2368 task = list_next_entry(task, cg_list); 2369 2370 if (&task->cg_list != &cset->mg_tasks) { 2371 tset->cur_cset = cset; 2372 tset->cur_task = task; 2373 2374 /* 2375 * This function may be called both before and 2376 * after cgroup_taskset_migrate(). The two cases 2377 * can be distinguished by looking at whether @cset 2378 * has its ->mg_dst_cset set. 2379 */ 2380 if (cset->mg_dst_cset) 2381 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid]; 2382 else 2383 *dst_cssp = cset->subsys[tset->ssid]; 2384 2385 return task; 2386 } 2387 2388 cset = list_next_entry(cset, mg_node); 2389 task = NULL; 2390 } 2391 2392 return NULL; 2393 } 2394 2395 /** 2396 * cgroup_taskset_migrate - migrate a taskset 2397 * @mgctx: migration context 2398 * 2399 * Migrate tasks in @mgctx as setup by migration preparation functions. 2400 * This function fails iff one of the ->can_attach callbacks fails and 2401 * guarantees that either all or none of the tasks in @mgctx are migrated. 2402 * @mgctx is consumed regardless of success. 2403 */ 2404 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx) 2405 { 2406 struct cgroup_taskset *tset = &mgctx->tset; 2407 struct cgroup_subsys *ss; 2408 struct task_struct *task, *tmp_task; 2409 struct css_set *cset, *tmp_cset; 2410 int ssid, failed_ssid, ret; 2411 2412 /* check that we can legitimately attach to the cgroup */ 2413 if (tset->nr_tasks) { 2414 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2415 if (ss->can_attach) { 2416 tset->ssid = ssid; 2417 ret = ss->can_attach(tset); 2418 if (ret) { 2419 failed_ssid = ssid; 2420 goto out_cancel_attach; 2421 } 2422 } 2423 } while_each_subsys_mask(); 2424 } 2425 2426 /* 2427 * Now that we're guaranteed success, proceed to move all tasks to 2428 * the new cgroup. There are no failure cases after here, so this 2429 * is the commit point. 2430 */ 2431 spin_lock_irq(&css_set_lock); 2432 list_for_each_entry(cset, &tset->src_csets, mg_node) { 2433 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) { 2434 struct css_set *from_cset = task_css_set(task); 2435 struct css_set *to_cset = cset->mg_dst_cset; 2436 2437 get_css_set(to_cset); 2438 to_cset->nr_tasks++; 2439 css_set_move_task(task, from_cset, to_cset, true); 2440 from_cset->nr_tasks--; 2441 /* 2442 * If the source or destination cgroup is frozen, 2443 * the task might require to change its state. 2444 */ 2445 cgroup_freezer_migrate_task(task, from_cset->dfl_cgrp, 2446 to_cset->dfl_cgrp); 2447 put_css_set_locked(from_cset); 2448 2449 } 2450 } 2451 spin_unlock_irq(&css_set_lock); 2452 2453 /* 2454 * Migration is committed, all target tasks are now on dst_csets. 2455 * Nothing is sensitive to fork() after this point. Notify 2456 * controllers that migration is complete. 2457 */ 2458 tset->csets = &tset->dst_csets; 2459 2460 if (tset->nr_tasks) { 2461 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2462 if (ss->attach) { 2463 tset->ssid = ssid; 2464 ss->attach(tset); 2465 } 2466 } while_each_subsys_mask(); 2467 } 2468 2469 ret = 0; 2470 goto out_release_tset; 2471 2472 out_cancel_attach: 2473 if (tset->nr_tasks) { 2474 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2475 if (ssid == failed_ssid) 2476 break; 2477 if (ss->cancel_attach) { 2478 tset->ssid = ssid; 2479 ss->cancel_attach(tset); 2480 } 2481 } while_each_subsys_mask(); 2482 } 2483 out_release_tset: 2484 spin_lock_irq(&css_set_lock); 2485 list_splice_init(&tset->dst_csets, &tset->src_csets); 2486 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) { 2487 list_splice_tail_init(&cset->mg_tasks, &cset->tasks); 2488 list_del_init(&cset->mg_node); 2489 } 2490 spin_unlock_irq(&css_set_lock); 2491 2492 /* 2493 * Re-initialize the cgroup_taskset structure in case it is reused 2494 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute() 2495 * iteration. 2496 */ 2497 tset->nr_tasks = 0; 2498 tset->csets = &tset->src_csets; 2499 return ret; 2500 } 2501 2502 /** 2503 * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination 2504 * @dst_cgrp: destination cgroup to test 2505 * 2506 * On the default hierarchy, except for the mixable, (possible) thread root 2507 * and threaded cgroups, subtree_control must be zero for migration 2508 * destination cgroups with tasks so that child cgroups don't compete 2509 * against tasks. 2510 */ 2511 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp) 2512 { 2513 /* v1 doesn't have any restriction */ 2514 if (!cgroup_on_dfl(dst_cgrp)) 2515 return 0; 2516 2517 /* verify @dst_cgrp can host resources */ 2518 if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp)) 2519 return -EOPNOTSUPP; 2520 2521 /* mixables don't care */ 2522 if (cgroup_is_mixable(dst_cgrp)) 2523 return 0; 2524 2525 /* 2526 * If @dst_cgrp is already or can become a thread root or is 2527 * threaded, it doesn't matter. 2528 */ 2529 if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp)) 2530 return 0; 2531 2532 /* apply no-internal-process constraint */ 2533 if (dst_cgrp->subtree_control) 2534 return -EBUSY; 2535 2536 return 0; 2537 } 2538 2539 /** 2540 * cgroup_migrate_finish - cleanup after attach 2541 * @mgctx: migration context 2542 * 2543 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See 2544 * those functions for details. 2545 */ 2546 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx) 2547 { 2548 LIST_HEAD(preloaded); 2549 struct css_set *cset, *tmp_cset; 2550 2551 lockdep_assert_held(&cgroup_mutex); 2552 2553 spin_lock_irq(&css_set_lock); 2554 2555 list_splice_tail_init(&mgctx->preloaded_src_csets, &preloaded); 2556 list_splice_tail_init(&mgctx->preloaded_dst_csets, &preloaded); 2557 2558 list_for_each_entry_safe(cset, tmp_cset, &preloaded, mg_preload_node) { 2559 cset->mg_src_cgrp = NULL; 2560 cset->mg_dst_cgrp = NULL; 2561 cset->mg_dst_cset = NULL; 2562 list_del_init(&cset->mg_preload_node); 2563 put_css_set_locked(cset); 2564 } 2565 2566 spin_unlock_irq(&css_set_lock); 2567 } 2568 2569 /** 2570 * cgroup_migrate_add_src - add a migration source css_set 2571 * @src_cset: the source css_set to add 2572 * @dst_cgrp: the destination cgroup 2573 * @mgctx: migration context 2574 * 2575 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin 2576 * @src_cset and add it to @mgctx->src_csets, which should later be cleaned 2577 * up by cgroup_migrate_finish(). 2578 * 2579 * This function may be called without holding cgroup_threadgroup_rwsem 2580 * even if the target is a process. Threads may be created and destroyed 2581 * but as long as cgroup_mutex is not dropped, no new css_set can be put 2582 * into play and the preloaded css_sets are guaranteed to cover all 2583 * migrations. 2584 */ 2585 void cgroup_migrate_add_src(struct css_set *src_cset, 2586 struct cgroup *dst_cgrp, 2587 struct cgroup_mgctx *mgctx) 2588 { 2589 struct cgroup *src_cgrp; 2590 2591 lockdep_assert_held(&cgroup_mutex); 2592 lockdep_assert_held(&css_set_lock); 2593 2594 /* 2595 * If ->dead, @src_set is associated with one or more dead cgroups 2596 * and doesn't contain any migratable tasks. Ignore it early so 2597 * that the rest of migration path doesn't get confused by it. 2598 */ 2599 if (src_cset->dead) 2600 return; 2601 2602 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root); 2603 2604 if (!list_empty(&src_cset->mg_preload_node)) 2605 return; 2606 2607 WARN_ON(src_cset->mg_src_cgrp); 2608 WARN_ON(src_cset->mg_dst_cgrp); 2609 WARN_ON(!list_empty(&src_cset->mg_tasks)); 2610 WARN_ON(!list_empty(&src_cset->mg_node)); 2611 2612 src_cset->mg_src_cgrp = src_cgrp; 2613 src_cset->mg_dst_cgrp = dst_cgrp; 2614 get_css_set(src_cset); 2615 list_add_tail(&src_cset->mg_preload_node, &mgctx->preloaded_src_csets); 2616 } 2617 2618 /** 2619 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration 2620 * @mgctx: migration context 2621 * 2622 * Tasks are about to be moved and all the source css_sets have been 2623 * preloaded to @mgctx->preloaded_src_csets. This function looks up and 2624 * pins all destination css_sets, links each to its source, and append them 2625 * to @mgctx->preloaded_dst_csets. 2626 * 2627 * This function must be called after cgroup_migrate_add_src() has been 2628 * called on each migration source css_set. After migration is performed 2629 * using cgroup_migrate(), cgroup_migrate_finish() must be called on 2630 * @mgctx. 2631 */ 2632 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx) 2633 { 2634 struct css_set *src_cset, *tmp_cset; 2635 2636 lockdep_assert_held(&cgroup_mutex); 2637 2638 /* look up the dst cset for each src cset and link it to src */ 2639 list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets, 2640 mg_preload_node) { 2641 struct css_set *dst_cset; 2642 struct cgroup_subsys *ss; 2643 int ssid; 2644 2645 dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp); 2646 if (!dst_cset) 2647 return -ENOMEM; 2648 2649 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset); 2650 2651 /* 2652 * If src cset equals dst, it's noop. Drop the src. 2653 * cgroup_migrate() will skip the cset too. Note that we 2654 * can't handle src == dst as some nodes are used by both. 2655 */ 2656 if (src_cset == dst_cset) { 2657 src_cset->mg_src_cgrp = NULL; 2658 src_cset->mg_dst_cgrp = NULL; 2659 list_del_init(&src_cset->mg_preload_node); 2660 put_css_set(src_cset); 2661 put_css_set(dst_cset); 2662 continue; 2663 } 2664 2665 src_cset->mg_dst_cset = dst_cset; 2666 2667 if (list_empty(&dst_cset->mg_preload_node)) 2668 list_add_tail(&dst_cset->mg_preload_node, 2669 &mgctx->preloaded_dst_csets); 2670 else 2671 put_css_set(dst_cset); 2672 2673 for_each_subsys(ss, ssid) 2674 if (src_cset->subsys[ssid] != dst_cset->subsys[ssid]) 2675 mgctx->ss_mask |= 1 << ssid; 2676 } 2677 2678 return 0; 2679 } 2680 2681 /** 2682 * cgroup_migrate - migrate a process or task to a cgroup 2683 * @leader: the leader of the process or the task to migrate 2684 * @threadgroup: whether @leader points to the whole process or a single task 2685 * @mgctx: migration context 2686 * 2687 * Migrate a process or task denoted by @leader. If migrating a process, 2688 * the caller must be holding cgroup_threadgroup_rwsem. The caller is also 2689 * responsible for invoking cgroup_migrate_add_src() and 2690 * cgroup_migrate_prepare_dst() on the targets before invoking this 2691 * function and following up with cgroup_migrate_finish(). 2692 * 2693 * As long as a controller's ->can_attach() doesn't fail, this function is 2694 * guaranteed to succeed. This means that, excluding ->can_attach() 2695 * failure, when migrating multiple targets, the success or failure can be 2696 * decided for all targets by invoking group_migrate_prepare_dst() before 2697 * actually starting migrating. 2698 */ 2699 int cgroup_migrate(struct task_struct *leader, bool threadgroup, 2700 struct cgroup_mgctx *mgctx) 2701 { 2702 struct task_struct *task; 2703 2704 /* 2705 * Prevent freeing of tasks while we take a snapshot. Tasks that are 2706 * already PF_EXITING could be freed from underneath us unless we 2707 * take an rcu_read_lock. 2708 */ 2709 spin_lock_irq(&css_set_lock); 2710 rcu_read_lock(); 2711 task = leader; 2712 do { 2713 cgroup_migrate_add_task(task, mgctx); 2714 if (!threadgroup) 2715 break; 2716 } while_each_thread(leader, task); 2717 rcu_read_unlock(); 2718 spin_unlock_irq(&css_set_lock); 2719 2720 return cgroup_migrate_execute(mgctx); 2721 } 2722 2723 /** 2724 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup 2725 * @dst_cgrp: the cgroup to attach to 2726 * @leader: the task or the leader of the threadgroup to be attached 2727 * @threadgroup: attach the whole threadgroup? 2728 * 2729 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem. 2730 */ 2731 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader, 2732 bool threadgroup) 2733 { 2734 DEFINE_CGROUP_MGCTX(mgctx); 2735 struct task_struct *task; 2736 int ret; 2737 2738 ret = cgroup_migrate_vet_dst(dst_cgrp); 2739 if (ret) 2740 return ret; 2741 2742 /* look up all src csets */ 2743 spin_lock_irq(&css_set_lock); 2744 rcu_read_lock(); 2745 task = leader; 2746 do { 2747 cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx); 2748 if (!threadgroup) 2749 break; 2750 } while_each_thread(leader, task); 2751 rcu_read_unlock(); 2752 spin_unlock_irq(&css_set_lock); 2753 2754 /* prepare dst csets and commit */ 2755 ret = cgroup_migrate_prepare_dst(&mgctx); 2756 if (!ret) 2757 ret = cgroup_migrate(leader, threadgroup, &mgctx); 2758 2759 cgroup_migrate_finish(&mgctx); 2760 2761 if (!ret) 2762 TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup); 2763 2764 return ret; 2765 } 2766 2767 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup) 2768 __acquires(&cgroup_threadgroup_rwsem) 2769 { 2770 struct task_struct *tsk; 2771 pid_t pid; 2772 2773 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0) 2774 return ERR_PTR(-EINVAL); 2775 2776 percpu_down_write(&cgroup_threadgroup_rwsem); 2777 2778 rcu_read_lock(); 2779 if (pid) { 2780 tsk = find_task_by_vpid(pid); 2781 if (!tsk) { 2782 tsk = ERR_PTR(-ESRCH); 2783 goto out_unlock_threadgroup; 2784 } 2785 } else { 2786 tsk = current; 2787 } 2788 2789 if (threadgroup) 2790 tsk = tsk->group_leader; 2791 2792 /* 2793 * kthreads may acquire PF_NO_SETAFFINITY during initialization. 2794 * If userland migrates such a kthread to a non-root cgroup, it can 2795 * become trapped in a cpuset, or RT kthread may be born in a 2796 * cgroup with no rt_runtime allocated. Just say no. 2797 */ 2798 if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) { 2799 tsk = ERR_PTR(-EINVAL); 2800 goto out_unlock_threadgroup; 2801 } 2802 2803 get_task_struct(tsk); 2804 goto out_unlock_rcu; 2805 2806 out_unlock_threadgroup: 2807 percpu_up_write(&cgroup_threadgroup_rwsem); 2808 out_unlock_rcu: 2809 rcu_read_unlock(); 2810 return tsk; 2811 } 2812 2813 void cgroup_procs_write_finish(struct task_struct *task) 2814 __releases(&cgroup_threadgroup_rwsem) 2815 { 2816 struct cgroup_subsys *ss; 2817 int ssid; 2818 2819 /* release reference from cgroup_procs_write_start() */ 2820 put_task_struct(task); 2821 2822 percpu_up_write(&cgroup_threadgroup_rwsem); 2823 for_each_subsys(ss, ssid) 2824 if (ss->post_attach) 2825 ss->post_attach(); 2826 } 2827 2828 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask) 2829 { 2830 struct cgroup_subsys *ss; 2831 bool printed = false; 2832 int ssid; 2833 2834 do_each_subsys_mask(ss, ssid, ss_mask) { 2835 if (printed) 2836 seq_putc(seq, ' '); 2837 seq_printf(seq, "%s", ss->name); 2838 printed = true; 2839 } while_each_subsys_mask(); 2840 if (printed) 2841 seq_putc(seq, '\n'); 2842 } 2843 2844 /* show controllers which are enabled from the parent */ 2845 static int cgroup_controllers_show(struct seq_file *seq, void *v) 2846 { 2847 struct cgroup *cgrp = seq_css(seq)->cgroup; 2848 2849 cgroup_print_ss_mask(seq, cgroup_control(cgrp)); 2850 return 0; 2851 } 2852 2853 /* show controllers which are enabled for a given cgroup's children */ 2854 static int cgroup_subtree_control_show(struct seq_file *seq, void *v) 2855 { 2856 struct cgroup *cgrp = seq_css(seq)->cgroup; 2857 2858 cgroup_print_ss_mask(seq, cgrp->subtree_control); 2859 return 0; 2860 } 2861 2862 /** 2863 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy 2864 * @cgrp: root of the subtree to update csses for 2865 * 2866 * @cgrp's control masks have changed and its subtree's css associations 2867 * need to be updated accordingly. This function looks up all css_sets 2868 * which are attached to the subtree, creates the matching updated css_sets 2869 * and migrates the tasks to the new ones. 2870 */ 2871 static int cgroup_update_dfl_csses(struct cgroup *cgrp) 2872 { 2873 DEFINE_CGROUP_MGCTX(mgctx); 2874 struct cgroup_subsys_state *d_css; 2875 struct cgroup *dsct; 2876 struct css_set *src_cset; 2877 int ret; 2878 2879 lockdep_assert_held(&cgroup_mutex); 2880 2881 percpu_down_write(&cgroup_threadgroup_rwsem); 2882 2883 /* look up all csses currently attached to @cgrp's subtree */ 2884 spin_lock_irq(&css_set_lock); 2885 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 2886 struct cgrp_cset_link *link; 2887 2888 list_for_each_entry(link, &dsct->cset_links, cset_link) 2889 cgroup_migrate_add_src(link->cset, dsct, &mgctx); 2890 } 2891 spin_unlock_irq(&css_set_lock); 2892 2893 /* NULL dst indicates self on default hierarchy */ 2894 ret = cgroup_migrate_prepare_dst(&mgctx); 2895 if (ret) 2896 goto out_finish; 2897 2898 spin_lock_irq(&css_set_lock); 2899 list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, mg_preload_node) { 2900 struct task_struct *task, *ntask; 2901 2902 /* all tasks in src_csets need to be migrated */ 2903 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list) 2904 cgroup_migrate_add_task(task, &mgctx); 2905 } 2906 spin_unlock_irq(&css_set_lock); 2907 2908 ret = cgroup_migrate_execute(&mgctx); 2909 out_finish: 2910 cgroup_migrate_finish(&mgctx); 2911 percpu_up_write(&cgroup_threadgroup_rwsem); 2912 return ret; 2913 } 2914 2915 /** 2916 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses 2917 * @cgrp: root of the target subtree 2918 * 2919 * Because css offlining is asynchronous, userland may try to re-enable a 2920 * controller while the previous css is still around. This function grabs 2921 * cgroup_mutex and drains the previous css instances of @cgrp's subtree. 2922 */ 2923 void cgroup_lock_and_drain_offline(struct cgroup *cgrp) 2924 __acquires(&cgroup_mutex) 2925 { 2926 struct cgroup *dsct; 2927 struct cgroup_subsys_state *d_css; 2928 struct cgroup_subsys *ss; 2929 int ssid; 2930 2931 restart: 2932 mutex_lock(&cgroup_mutex); 2933 2934 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 2935 for_each_subsys(ss, ssid) { 2936 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 2937 DEFINE_WAIT(wait); 2938 2939 if (!css || !percpu_ref_is_dying(&css->refcnt)) 2940 continue; 2941 2942 cgroup_get_live(dsct); 2943 prepare_to_wait(&dsct->offline_waitq, &wait, 2944 TASK_UNINTERRUPTIBLE); 2945 2946 mutex_unlock(&cgroup_mutex); 2947 schedule(); 2948 finish_wait(&dsct->offline_waitq, &wait); 2949 2950 cgroup_put(dsct); 2951 goto restart; 2952 } 2953 } 2954 } 2955 2956 /** 2957 * cgroup_save_control - save control masks and dom_cgrp of a subtree 2958 * @cgrp: root of the target subtree 2959 * 2960 * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the 2961 * respective old_ prefixed fields for @cgrp's subtree including @cgrp 2962 * itself. 2963 */ 2964 static void cgroup_save_control(struct cgroup *cgrp) 2965 { 2966 struct cgroup *dsct; 2967 struct cgroup_subsys_state *d_css; 2968 2969 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 2970 dsct->old_subtree_control = dsct->subtree_control; 2971 dsct->old_subtree_ss_mask = dsct->subtree_ss_mask; 2972 dsct->old_dom_cgrp = dsct->dom_cgrp; 2973 } 2974 } 2975 2976 /** 2977 * cgroup_propagate_control - refresh control masks of a subtree 2978 * @cgrp: root of the target subtree 2979 * 2980 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches 2981 * ->subtree_control and propagate controller availability through the 2982 * subtree so that descendants don't have unavailable controllers enabled. 2983 */ 2984 static void cgroup_propagate_control(struct cgroup *cgrp) 2985 { 2986 struct cgroup *dsct; 2987 struct cgroup_subsys_state *d_css; 2988 2989 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 2990 dsct->subtree_control &= cgroup_control(dsct); 2991 dsct->subtree_ss_mask = 2992 cgroup_calc_subtree_ss_mask(dsct->subtree_control, 2993 cgroup_ss_mask(dsct)); 2994 } 2995 } 2996 2997 /** 2998 * cgroup_restore_control - restore control masks and dom_cgrp of a subtree 2999 * @cgrp: root of the target subtree 3000 * 3001 * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the 3002 * respective old_ prefixed fields for @cgrp's subtree including @cgrp 3003 * itself. 3004 */ 3005 static void cgroup_restore_control(struct cgroup *cgrp) 3006 { 3007 struct cgroup *dsct; 3008 struct cgroup_subsys_state *d_css; 3009 3010 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 3011 dsct->subtree_control = dsct->old_subtree_control; 3012 dsct->subtree_ss_mask = dsct->old_subtree_ss_mask; 3013 dsct->dom_cgrp = dsct->old_dom_cgrp; 3014 } 3015 } 3016 3017 static bool css_visible(struct cgroup_subsys_state *css) 3018 { 3019 struct cgroup_subsys *ss = css->ss; 3020 struct cgroup *cgrp = css->cgroup; 3021 3022 if (cgroup_control(cgrp) & (1 << ss->id)) 3023 return true; 3024 if (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) 3025 return false; 3026 return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl; 3027 } 3028 3029 /** 3030 * cgroup_apply_control_enable - enable or show csses according to control 3031 * @cgrp: root of the target subtree 3032 * 3033 * Walk @cgrp's subtree and create new csses or make the existing ones 3034 * visible. A css is created invisible if it's being implicitly enabled 3035 * through dependency. An invisible css is made visible when the userland 3036 * explicitly enables it. 3037 * 3038 * Returns 0 on success, -errno on failure. On failure, csses which have 3039 * been processed already aren't cleaned up. The caller is responsible for 3040 * cleaning up with cgroup_apply_control_disable(). 3041 */ 3042 static int cgroup_apply_control_enable(struct cgroup *cgrp) 3043 { 3044 struct cgroup *dsct; 3045 struct cgroup_subsys_state *d_css; 3046 struct cgroup_subsys *ss; 3047 int ssid, ret; 3048 3049 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 3050 for_each_subsys(ss, ssid) { 3051 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 3052 3053 WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt)); 3054 3055 if (!(cgroup_ss_mask(dsct) & (1 << ss->id))) 3056 continue; 3057 3058 if (!css) { 3059 css = css_create(dsct, ss); 3060 if (IS_ERR(css)) 3061 return PTR_ERR(css); 3062 } 3063 3064 if (css_visible(css)) { 3065 ret = css_populate_dir(css); 3066 if (ret) 3067 return ret; 3068 } 3069 } 3070 } 3071 3072 return 0; 3073 } 3074 3075 /** 3076 * cgroup_apply_control_disable - kill or hide csses according to control 3077 * @cgrp: root of the target subtree 3078 * 3079 * Walk @cgrp's subtree and kill and hide csses so that they match 3080 * cgroup_ss_mask() and cgroup_visible_mask(). 3081 * 3082 * A css is hidden when the userland requests it to be disabled while other 3083 * subsystems are still depending on it. The css must not actively control 3084 * resources and be in the vanilla state if it's made visible again later. 3085 * Controllers which may be depended upon should provide ->css_reset() for 3086 * this purpose. 3087 */ 3088 static void cgroup_apply_control_disable(struct cgroup *cgrp) 3089 { 3090 struct cgroup *dsct; 3091 struct cgroup_subsys_state *d_css; 3092 struct cgroup_subsys *ss; 3093 int ssid; 3094 3095 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 3096 for_each_subsys(ss, ssid) { 3097 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 3098 3099 WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt)); 3100 3101 if (!css) 3102 continue; 3103 3104 if (css->parent && 3105 !(cgroup_ss_mask(dsct) & (1 << ss->id))) { 3106 kill_css(css); 3107 } else if (!css_visible(css)) { 3108 css_clear_dir(css); 3109 if (ss->css_reset) 3110 ss->css_reset(css); 3111 } 3112 } 3113 } 3114 } 3115 3116 /** 3117 * cgroup_apply_control - apply control mask updates to the subtree 3118 * @cgrp: root of the target subtree 3119 * 3120 * subsystems can be enabled and disabled in a subtree using the following 3121 * steps. 3122 * 3123 * 1. Call cgroup_save_control() to stash the current state. 3124 * 2. Update ->subtree_control masks in the subtree as desired. 3125 * 3. Call cgroup_apply_control() to apply the changes. 3126 * 4. Optionally perform other related operations. 3127 * 5. Call cgroup_finalize_control() to finish up. 3128 * 3129 * This function implements step 3 and propagates the mask changes 3130 * throughout @cgrp's subtree, updates csses accordingly and perform 3131 * process migrations. 3132 */ 3133 static int cgroup_apply_control(struct cgroup *cgrp) 3134 { 3135 int ret; 3136 3137 cgroup_propagate_control(cgrp); 3138 3139 ret = cgroup_apply_control_enable(cgrp); 3140 if (ret) 3141 return ret; 3142 3143 /* 3144 * At this point, cgroup_e_css_by_mask() results reflect the new csses 3145 * making the following cgroup_update_dfl_csses() properly update 3146 * css associations of all tasks in the subtree. 3147 */ 3148 ret = cgroup_update_dfl_csses(cgrp); 3149 if (ret) 3150 return ret; 3151 3152 return 0; 3153 } 3154 3155 /** 3156 * cgroup_finalize_control - finalize control mask update 3157 * @cgrp: root of the target subtree 3158 * @ret: the result of the update 3159 * 3160 * Finalize control mask update. See cgroup_apply_control() for more info. 3161 */ 3162 static void cgroup_finalize_control(struct cgroup *cgrp, int ret) 3163 { 3164 if (ret) { 3165 cgroup_restore_control(cgrp); 3166 cgroup_propagate_control(cgrp); 3167 } 3168 3169 cgroup_apply_control_disable(cgrp); 3170 } 3171 3172 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable) 3173 { 3174 u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask; 3175 3176 /* if nothing is getting enabled, nothing to worry about */ 3177 if (!enable) 3178 return 0; 3179 3180 /* can @cgrp host any resources? */ 3181 if (!cgroup_is_valid_domain(cgrp->dom_cgrp)) 3182 return -EOPNOTSUPP; 3183 3184 /* mixables don't care */ 3185 if (cgroup_is_mixable(cgrp)) 3186 return 0; 3187 3188 if (domain_enable) { 3189 /* can't enable domain controllers inside a thread subtree */ 3190 if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp)) 3191 return -EOPNOTSUPP; 3192 } else { 3193 /* 3194 * Threaded controllers can handle internal competitions 3195 * and are always allowed inside a (prospective) thread 3196 * subtree. 3197 */ 3198 if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp)) 3199 return 0; 3200 } 3201 3202 /* 3203 * Controllers can't be enabled for a cgroup with tasks to avoid 3204 * child cgroups competing against tasks. 3205 */ 3206 if (cgroup_has_tasks(cgrp)) 3207 return -EBUSY; 3208 3209 return 0; 3210 } 3211 3212 /* change the enabled child controllers for a cgroup in the default hierarchy */ 3213 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of, 3214 char *buf, size_t nbytes, 3215 loff_t off) 3216 { 3217 u16 enable = 0, disable = 0; 3218 struct cgroup *cgrp, *child; 3219 struct cgroup_subsys *ss; 3220 char *tok; 3221 int ssid, ret; 3222 3223 /* 3224 * Parse input - space separated list of subsystem names prefixed 3225 * with either + or -. 3226 */ 3227 buf = strstrip(buf); 3228 while ((tok = strsep(&buf, " "))) { 3229 if (tok[0] == '\0') 3230 continue; 3231 do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) { 3232 if (!cgroup_ssid_enabled(ssid) || 3233 strcmp(tok + 1, ss->name)) 3234 continue; 3235 3236 if (*tok == '+') { 3237 enable |= 1 << ssid; 3238 disable &= ~(1 << ssid); 3239 } else if (*tok == '-') { 3240 disable |= 1 << ssid; 3241 enable &= ~(1 << ssid); 3242 } else { 3243 return -EINVAL; 3244 } 3245 break; 3246 } while_each_subsys_mask(); 3247 if (ssid == CGROUP_SUBSYS_COUNT) 3248 return -EINVAL; 3249 } 3250 3251 cgrp = cgroup_kn_lock_live(of->kn, true); 3252 if (!cgrp) 3253 return -ENODEV; 3254 3255 for_each_subsys(ss, ssid) { 3256 if (enable & (1 << ssid)) { 3257 if (cgrp->subtree_control & (1 << ssid)) { 3258 enable &= ~(1 << ssid); 3259 continue; 3260 } 3261 3262 if (!(cgroup_control(cgrp) & (1 << ssid))) { 3263 ret = -ENOENT; 3264 goto out_unlock; 3265 } 3266 } else if (disable & (1 << ssid)) { 3267 if (!(cgrp->subtree_control & (1 << ssid))) { 3268 disable &= ~(1 << ssid); 3269 continue; 3270 } 3271 3272 /* a child has it enabled? */ 3273 cgroup_for_each_live_child(child, cgrp) { 3274 if (child->subtree_control & (1 << ssid)) { 3275 ret = -EBUSY; 3276 goto out_unlock; 3277 } 3278 } 3279 } 3280 } 3281 3282 if (!enable && !disable) { 3283 ret = 0; 3284 goto out_unlock; 3285 } 3286 3287 ret = cgroup_vet_subtree_control_enable(cgrp, enable); 3288 if (ret) 3289 goto out_unlock; 3290 3291 /* save and update control masks and prepare csses */ 3292 cgroup_save_control(cgrp); 3293 3294 cgrp->subtree_control |= enable; 3295 cgrp->subtree_control &= ~disable; 3296 3297 ret = cgroup_apply_control(cgrp); 3298 cgroup_finalize_control(cgrp, ret); 3299 if (ret) 3300 goto out_unlock; 3301 3302 kernfs_activate(cgrp->kn); 3303 out_unlock: 3304 cgroup_kn_unlock(of->kn); 3305 return ret ?: nbytes; 3306 } 3307 3308 /** 3309 * cgroup_enable_threaded - make @cgrp threaded 3310 * @cgrp: the target cgroup 3311 * 3312 * Called when "threaded" is written to the cgroup.type interface file and 3313 * tries to make @cgrp threaded and join the parent's resource domain. 3314 * This function is never called on the root cgroup as cgroup.type doesn't 3315 * exist on it. 3316 */ 3317 static int cgroup_enable_threaded(struct cgroup *cgrp) 3318 { 3319 struct cgroup *parent = cgroup_parent(cgrp); 3320 struct cgroup *dom_cgrp = parent->dom_cgrp; 3321 struct cgroup *dsct; 3322 struct cgroup_subsys_state *d_css; 3323 int ret; 3324 3325 lockdep_assert_held(&cgroup_mutex); 3326 3327 /* noop if already threaded */ 3328 if (cgroup_is_threaded(cgrp)) 3329 return 0; 3330 3331 /* 3332 * If @cgroup is populated or has domain controllers enabled, it 3333 * can't be switched. While the below cgroup_can_be_thread_root() 3334 * test can catch the same conditions, that's only when @parent is 3335 * not mixable, so let's check it explicitly. 3336 */ 3337 if (cgroup_is_populated(cgrp) || 3338 cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask) 3339 return -EOPNOTSUPP; 3340 3341 /* we're joining the parent's domain, ensure its validity */ 3342 if (!cgroup_is_valid_domain(dom_cgrp) || 3343 !cgroup_can_be_thread_root(dom_cgrp)) 3344 return -EOPNOTSUPP; 3345 3346 /* 3347 * The following shouldn't cause actual migrations and should 3348 * always succeed. 3349 */ 3350 cgroup_save_control(cgrp); 3351 3352 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) 3353 if (dsct == cgrp || cgroup_is_threaded(dsct)) 3354 dsct->dom_cgrp = dom_cgrp; 3355 3356 ret = cgroup_apply_control(cgrp); 3357 if (!ret) 3358 parent->nr_threaded_children++; 3359 3360 cgroup_finalize_control(cgrp, ret); 3361 return ret; 3362 } 3363 3364 static int cgroup_type_show(struct seq_file *seq, void *v) 3365 { 3366 struct cgroup *cgrp = seq_css(seq)->cgroup; 3367 3368 if (cgroup_is_threaded(cgrp)) 3369 seq_puts(seq, "threaded\n"); 3370 else if (!cgroup_is_valid_domain(cgrp)) 3371 seq_puts(seq, "domain invalid\n"); 3372 else if (cgroup_is_thread_root(cgrp)) 3373 seq_puts(seq, "domain threaded\n"); 3374 else 3375 seq_puts(seq, "domain\n"); 3376 3377 return 0; 3378 } 3379 3380 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf, 3381 size_t nbytes, loff_t off) 3382 { 3383 struct cgroup *cgrp; 3384 int ret; 3385 3386 /* only switching to threaded mode is supported */ 3387 if (strcmp(strstrip(buf), "threaded")) 3388 return -EINVAL; 3389 3390 cgrp = cgroup_kn_lock_live(of->kn, false); 3391 if (!cgrp) 3392 return -ENOENT; 3393 3394 /* threaded can only be enabled */ 3395 ret = cgroup_enable_threaded(cgrp); 3396 3397 cgroup_kn_unlock(of->kn); 3398 return ret ?: nbytes; 3399 } 3400 3401 static int cgroup_max_descendants_show(struct seq_file *seq, void *v) 3402 { 3403 struct cgroup *cgrp = seq_css(seq)->cgroup; 3404 int descendants = READ_ONCE(cgrp->max_descendants); 3405 3406 if (descendants == INT_MAX) 3407 seq_puts(seq, "max\n"); 3408 else 3409 seq_printf(seq, "%d\n", descendants); 3410 3411 return 0; 3412 } 3413 3414 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of, 3415 char *buf, size_t nbytes, loff_t off) 3416 { 3417 struct cgroup *cgrp; 3418 int descendants; 3419 ssize_t ret; 3420 3421 buf = strstrip(buf); 3422 if (!strcmp(buf, "max")) { 3423 descendants = INT_MAX; 3424 } else { 3425 ret = kstrtoint(buf, 0, &descendants); 3426 if (ret) 3427 return ret; 3428 } 3429 3430 if (descendants < 0) 3431 return -ERANGE; 3432 3433 cgrp = cgroup_kn_lock_live(of->kn, false); 3434 if (!cgrp) 3435 return -ENOENT; 3436 3437 cgrp->max_descendants = descendants; 3438 3439 cgroup_kn_unlock(of->kn); 3440 3441 return nbytes; 3442 } 3443 3444 static int cgroup_max_depth_show(struct seq_file *seq, void *v) 3445 { 3446 struct cgroup *cgrp = seq_css(seq)->cgroup; 3447 int depth = READ_ONCE(cgrp->max_depth); 3448 3449 if (depth == INT_MAX) 3450 seq_puts(seq, "max\n"); 3451 else 3452 seq_printf(seq, "%d\n", depth); 3453 3454 return 0; 3455 } 3456 3457 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of, 3458 char *buf, size_t nbytes, loff_t off) 3459 { 3460 struct cgroup *cgrp; 3461 ssize_t ret; 3462 int depth; 3463 3464 buf = strstrip(buf); 3465 if (!strcmp(buf, "max")) { 3466 depth = INT_MAX; 3467 } else { 3468 ret = kstrtoint(buf, 0, &depth); 3469 if (ret) 3470 return ret; 3471 } 3472 3473 if (depth < 0) 3474 return -ERANGE; 3475 3476 cgrp = cgroup_kn_lock_live(of->kn, false); 3477 if (!cgrp) 3478 return -ENOENT; 3479 3480 cgrp->max_depth = depth; 3481 3482 cgroup_kn_unlock(of->kn); 3483 3484 return nbytes; 3485 } 3486 3487 static int cgroup_events_show(struct seq_file *seq, void *v) 3488 { 3489 struct cgroup *cgrp = seq_css(seq)->cgroup; 3490 3491 seq_printf(seq, "populated %d\n", cgroup_is_populated(cgrp)); 3492 seq_printf(seq, "frozen %d\n", test_bit(CGRP_FROZEN, &cgrp->flags)); 3493 3494 return 0; 3495 } 3496 3497 static int cgroup_stat_show(struct seq_file *seq, void *v) 3498 { 3499 struct cgroup *cgroup = seq_css(seq)->cgroup; 3500 3501 seq_printf(seq, "nr_descendants %d\n", 3502 cgroup->nr_descendants); 3503 seq_printf(seq, "nr_dying_descendants %d\n", 3504 cgroup->nr_dying_descendants); 3505 3506 return 0; 3507 } 3508 3509 static int __maybe_unused cgroup_extra_stat_show(struct seq_file *seq, 3510 struct cgroup *cgrp, int ssid) 3511 { 3512 struct cgroup_subsys *ss = cgroup_subsys[ssid]; 3513 struct cgroup_subsys_state *css; 3514 int ret; 3515 3516 if (!ss->css_extra_stat_show) 3517 return 0; 3518 3519 css = cgroup_tryget_css(cgrp, ss); 3520 if (!css) 3521 return 0; 3522 3523 ret = ss->css_extra_stat_show(seq, css); 3524 css_put(css); 3525 return ret; 3526 } 3527 3528 static int cpu_stat_show(struct seq_file *seq, void *v) 3529 { 3530 struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup; 3531 int ret = 0; 3532 3533 cgroup_base_stat_cputime_show(seq); 3534 #ifdef CONFIG_CGROUP_SCHED 3535 ret = cgroup_extra_stat_show(seq, cgrp, cpu_cgrp_id); 3536 #endif 3537 return ret; 3538 } 3539 3540 #ifdef CONFIG_PSI 3541 static int cgroup_io_pressure_show(struct seq_file *seq, void *v) 3542 { 3543 struct cgroup *cgroup = seq_css(seq)->cgroup; 3544 struct psi_group *psi = cgroup->id == 1 ? &psi_system : &cgroup->psi; 3545 3546 return psi_show(seq, psi, PSI_IO); 3547 } 3548 static int cgroup_memory_pressure_show(struct seq_file *seq, void *v) 3549 { 3550 struct cgroup *cgroup = seq_css(seq)->cgroup; 3551 struct psi_group *psi = cgroup->id == 1 ? &psi_system : &cgroup->psi; 3552 3553 return psi_show(seq, psi, PSI_MEM); 3554 } 3555 static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v) 3556 { 3557 struct cgroup *cgroup = seq_css(seq)->cgroup; 3558 struct psi_group *psi = cgroup->id == 1 ? &psi_system : &cgroup->psi; 3559 3560 return psi_show(seq, psi, PSI_CPU); 3561 } 3562 3563 static ssize_t cgroup_pressure_write(struct kernfs_open_file *of, char *buf, 3564 size_t nbytes, enum psi_res res) 3565 { 3566 struct psi_trigger *new; 3567 struct cgroup *cgrp; 3568 3569 cgrp = cgroup_kn_lock_live(of->kn, false); 3570 if (!cgrp) 3571 return -ENODEV; 3572 3573 cgroup_get(cgrp); 3574 cgroup_kn_unlock(of->kn); 3575 3576 new = psi_trigger_create(&cgrp->psi, buf, nbytes, res); 3577 if (IS_ERR(new)) { 3578 cgroup_put(cgrp); 3579 return PTR_ERR(new); 3580 } 3581 3582 psi_trigger_replace(&of->priv, new); 3583 3584 cgroup_put(cgrp); 3585 3586 return nbytes; 3587 } 3588 3589 static ssize_t cgroup_io_pressure_write(struct kernfs_open_file *of, 3590 char *buf, size_t nbytes, 3591 loff_t off) 3592 { 3593 return cgroup_pressure_write(of, buf, nbytes, PSI_IO); 3594 } 3595 3596 static ssize_t cgroup_memory_pressure_write(struct kernfs_open_file *of, 3597 char *buf, size_t nbytes, 3598 loff_t off) 3599 { 3600 return cgroup_pressure_write(of, buf, nbytes, PSI_MEM); 3601 } 3602 3603 static ssize_t cgroup_cpu_pressure_write(struct kernfs_open_file *of, 3604 char *buf, size_t nbytes, 3605 loff_t off) 3606 { 3607 return cgroup_pressure_write(of, buf, nbytes, PSI_CPU); 3608 } 3609 3610 static __poll_t cgroup_pressure_poll(struct kernfs_open_file *of, 3611 poll_table *pt) 3612 { 3613 return psi_trigger_poll(&of->priv, of->file, pt); 3614 } 3615 3616 static void cgroup_pressure_release(struct kernfs_open_file *of) 3617 { 3618 psi_trigger_replace(&of->priv, NULL); 3619 } 3620 #endif /* CONFIG_PSI */ 3621 3622 static int cgroup_freeze_show(struct seq_file *seq, void *v) 3623 { 3624 struct cgroup *cgrp = seq_css(seq)->cgroup; 3625 3626 seq_printf(seq, "%d\n", cgrp->freezer.freeze); 3627 3628 return 0; 3629 } 3630 3631 static ssize_t cgroup_freeze_write(struct kernfs_open_file *of, 3632 char *buf, size_t nbytes, loff_t off) 3633 { 3634 struct cgroup *cgrp; 3635 ssize_t ret; 3636 int freeze; 3637 3638 ret = kstrtoint(strstrip(buf), 0, &freeze); 3639 if (ret) 3640 return ret; 3641 3642 if (freeze < 0 || freeze > 1) 3643 return -ERANGE; 3644 3645 cgrp = cgroup_kn_lock_live(of->kn, false); 3646 if (!cgrp) 3647 return -ENOENT; 3648 3649 cgroup_freeze(cgrp, freeze); 3650 3651 cgroup_kn_unlock(of->kn); 3652 3653 return nbytes; 3654 } 3655 3656 static int cgroup_file_open(struct kernfs_open_file *of) 3657 { 3658 struct cftype *cft = of->kn->priv; 3659 3660 if (cft->open) 3661 return cft->open(of); 3662 return 0; 3663 } 3664 3665 static void cgroup_file_release(struct kernfs_open_file *of) 3666 { 3667 struct cftype *cft = of->kn->priv; 3668 3669 if (cft->release) 3670 cft->release(of); 3671 } 3672 3673 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf, 3674 size_t nbytes, loff_t off) 3675 { 3676 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns; 3677 struct cgroup *cgrp = of->kn->parent->priv; 3678 struct cftype *cft = of->kn->priv; 3679 struct cgroup_subsys_state *css; 3680 int ret; 3681 3682 /* 3683 * If namespaces are delegation boundaries, disallow writes to 3684 * files in an non-init namespace root from inside the namespace 3685 * except for the files explicitly marked delegatable - 3686 * cgroup.procs and cgroup.subtree_control. 3687 */ 3688 if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) && 3689 !(cft->flags & CFTYPE_NS_DELEGATABLE) && 3690 ns != &init_cgroup_ns && ns->root_cset->dfl_cgrp == cgrp) 3691 return -EPERM; 3692 3693 if (cft->write) 3694 return cft->write(of, buf, nbytes, off); 3695 3696 /* 3697 * kernfs guarantees that a file isn't deleted with operations in 3698 * flight, which means that the matching css is and stays alive and 3699 * doesn't need to be pinned. The RCU locking is not necessary 3700 * either. It's just for the convenience of using cgroup_css(). 3701 */ 3702 rcu_read_lock(); 3703 css = cgroup_css(cgrp, cft->ss); 3704 rcu_read_unlock(); 3705 3706 if (cft->write_u64) { 3707 unsigned long long v; 3708 ret = kstrtoull(buf, 0, &v); 3709 if (!ret) 3710 ret = cft->write_u64(css, cft, v); 3711 } else if (cft->write_s64) { 3712 long long v; 3713 ret = kstrtoll(buf, 0, &v); 3714 if (!ret) 3715 ret = cft->write_s64(css, cft, v); 3716 } else { 3717 ret = -EINVAL; 3718 } 3719 3720 return ret ?: nbytes; 3721 } 3722 3723 static __poll_t cgroup_file_poll(struct kernfs_open_file *of, poll_table *pt) 3724 { 3725 struct cftype *cft = of->kn->priv; 3726 3727 if (cft->poll) 3728 return cft->poll(of, pt); 3729 3730 return kernfs_generic_poll(of, pt); 3731 } 3732 3733 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos) 3734 { 3735 return seq_cft(seq)->seq_start(seq, ppos); 3736 } 3737 3738 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos) 3739 { 3740 return seq_cft(seq)->seq_next(seq, v, ppos); 3741 } 3742 3743 static void cgroup_seqfile_stop(struct seq_file *seq, void *v) 3744 { 3745 if (seq_cft(seq)->seq_stop) 3746 seq_cft(seq)->seq_stop(seq, v); 3747 } 3748 3749 static int cgroup_seqfile_show(struct seq_file *m, void *arg) 3750 { 3751 struct cftype *cft = seq_cft(m); 3752 struct cgroup_subsys_state *css = seq_css(m); 3753 3754 if (cft->seq_show) 3755 return cft->seq_show(m, arg); 3756 3757 if (cft->read_u64) 3758 seq_printf(m, "%llu\n", cft->read_u64(css, cft)); 3759 else if (cft->read_s64) 3760 seq_printf(m, "%lld\n", cft->read_s64(css, cft)); 3761 else 3762 return -EINVAL; 3763 return 0; 3764 } 3765 3766 static struct kernfs_ops cgroup_kf_single_ops = { 3767 .atomic_write_len = PAGE_SIZE, 3768 .open = cgroup_file_open, 3769 .release = cgroup_file_release, 3770 .write = cgroup_file_write, 3771 .poll = cgroup_file_poll, 3772 .seq_show = cgroup_seqfile_show, 3773 }; 3774 3775 static struct kernfs_ops cgroup_kf_ops = { 3776 .atomic_write_len = PAGE_SIZE, 3777 .open = cgroup_file_open, 3778 .release = cgroup_file_release, 3779 .write = cgroup_file_write, 3780 .poll = cgroup_file_poll, 3781 .seq_start = cgroup_seqfile_start, 3782 .seq_next = cgroup_seqfile_next, 3783 .seq_stop = cgroup_seqfile_stop, 3784 .seq_show = cgroup_seqfile_show, 3785 }; 3786 3787 /* set uid and gid of cgroup dirs and files to that of the creator */ 3788 static int cgroup_kn_set_ugid(struct kernfs_node *kn) 3789 { 3790 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID, 3791 .ia_uid = current_fsuid(), 3792 .ia_gid = current_fsgid(), }; 3793 3794 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) && 3795 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID)) 3796 return 0; 3797 3798 return kernfs_setattr(kn, &iattr); 3799 } 3800 3801 static void cgroup_file_notify_timer(struct timer_list *timer) 3802 { 3803 cgroup_file_notify(container_of(timer, struct cgroup_file, 3804 notify_timer)); 3805 } 3806 3807 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp, 3808 struct cftype *cft) 3809 { 3810 char name[CGROUP_FILE_NAME_MAX]; 3811 struct kernfs_node *kn; 3812 struct lock_class_key *key = NULL; 3813 int ret; 3814 3815 #ifdef CONFIG_DEBUG_LOCK_ALLOC 3816 key = &cft->lockdep_key; 3817 #endif 3818 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name), 3819 cgroup_file_mode(cft), 3820 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 3821 0, cft->kf_ops, cft, 3822 NULL, key); 3823 if (IS_ERR(kn)) 3824 return PTR_ERR(kn); 3825 3826 ret = cgroup_kn_set_ugid(kn); 3827 if (ret) { 3828 kernfs_remove(kn); 3829 return ret; 3830 } 3831 3832 if (cft->file_offset) { 3833 struct cgroup_file *cfile = (void *)css + cft->file_offset; 3834 3835 timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0); 3836 3837 spin_lock_irq(&cgroup_file_kn_lock); 3838 cfile->kn = kn; 3839 spin_unlock_irq(&cgroup_file_kn_lock); 3840 } 3841 3842 return 0; 3843 } 3844 3845 /** 3846 * cgroup_addrm_files - add or remove files to a cgroup directory 3847 * @css: the target css 3848 * @cgrp: the target cgroup (usually css->cgroup) 3849 * @cfts: array of cftypes to be added 3850 * @is_add: whether to add or remove 3851 * 3852 * Depending on @is_add, add or remove files defined by @cfts on @cgrp. 3853 * For removals, this function never fails. 3854 */ 3855 static int cgroup_addrm_files(struct cgroup_subsys_state *css, 3856 struct cgroup *cgrp, struct cftype cfts[], 3857 bool is_add) 3858 { 3859 struct cftype *cft, *cft_end = NULL; 3860 int ret = 0; 3861 3862 lockdep_assert_held(&cgroup_mutex); 3863 3864 restart: 3865 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) { 3866 /* does cft->flags tell us to skip this file on @cgrp? */ 3867 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp)) 3868 continue; 3869 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp)) 3870 continue; 3871 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp)) 3872 continue; 3873 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp)) 3874 continue; 3875 if ((cft->flags & CFTYPE_DEBUG) && !cgroup_debug) 3876 continue; 3877 if (is_add) { 3878 ret = cgroup_add_file(css, cgrp, cft); 3879 if (ret) { 3880 pr_warn("%s: failed to add %s, err=%d\n", 3881 __func__, cft->name, ret); 3882 cft_end = cft; 3883 is_add = false; 3884 goto restart; 3885 } 3886 } else { 3887 cgroup_rm_file(cgrp, cft); 3888 } 3889 } 3890 return ret; 3891 } 3892 3893 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add) 3894 { 3895 struct cgroup_subsys *ss = cfts[0].ss; 3896 struct cgroup *root = &ss->root->cgrp; 3897 struct cgroup_subsys_state *css; 3898 int ret = 0; 3899 3900 lockdep_assert_held(&cgroup_mutex); 3901 3902 /* add/rm files for all cgroups created before */ 3903 css_for_each_descendant_pre(css, cgroup_css(root, ss)) { 3904 struct cgroup *cgrp = css->cgroup; 3905 3906 if (!(css->flags & CSS_VISIBLE)) 3907 continue; 3908 3909 ret = cgroup_addrm_files(css, cgrp, cfts, is_add); 3910 if (ret) 3911 break; 3912 } 3913 3914 if (is_add && !ret) 3915 kernfs_activate(root->kn); 3916 return ret; 3917 } 3918 3919 static void cgroup_exit_cftypes(struct cftype *cfts) 3920 { 3921 struct cftype *cft; 3922 3923 for (cft = cfts; cft->name[0] != '\0'; cft++) { 3924 /* free copy for custom atomic_write_len, see init_cftypes() */ 3925 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) 3926 kfree(cft->kf_ops); 3927 cft->kf_ops = NULL; 3928 cft->ss = NULL; 3929 3930 /* revert flags set by cgroup core while adding @cfts */ 3931 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL); 3932 } 3933 } 3934 3935 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 3936 { 3937 struct cftype *cft; 3938 3939 for (cft = cfts; cft->name[0] != '\0'; cft++) { 3940 struct kernfs_ops *kf_ops; 3941 3942 WARN_ON(cft->ss || cft->kf_ops); 3943 3944 if (cft->seq_start) 3945 kf_ops = &cgroup_kf_ops; 3946 else 3947 kf_ops = &cgroup_kf_single_ops; 3948 3949 /* 3950 * Ugh... if @cft wants a custom max_write_len, we need to 3951 * make a copy of kf_ops to set its atomic_write_len. 3952 */ 3953 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) { 3954 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL); 3955 if (!kf_ops) { 3956 cgroup_exit_cftypes(cfts); 3957 return -ENOMEM; 3958 } 3959 kf_ops->atomic_write_len = cft->max_write_len; 3960 } 3961 3962 cft->kf_ops = kf_ops; 3963 cft->ss = ss; 3964 } 3965 3966 return 0; 3967 } 3968 3969 static int cgroup_rm_cftypes_locked(struct cftype *cfts) 3970 { 3971 lockdep_assert_held(&cgroup_mutex); 3972 3973 if (!cfts || !cfts[0].ss) 3974 return -ENOENT; 3975 3976 list_del(&cfts->node); 3977 cgroup_apply_cftypes(cfts, false); 3978 cgroup_exit_cftypes(cfts); 3979 return 0; 3980 } 3981 3982 /** 3983 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem 3984 * @cfts: zero-length name terminated array of cftypes 3985 * 3986 * Unregister @cfts. Files described by @cfts are removed from all 3987 * existing cgroups and all future cgroups won't have them either. This 3988 * function can be called anytime whether @cfts' subsys is attached or not. 3989 * 3990 * Returns 0 on successful unregistration, -ENOENT if @cfts is not 3991 * registered. 3992 */ 3993 int cgroup_rm_cftypes(struct cftype *cfts) 3994 { 3995 int ret; 3996 3997 mutex_lock(&cgroup_mutex); 3998 ret = cgroup_rm_cftypes_locked(cfts); 3999 mutex_unlock(&cgroup_mutex); 4000 return ret; 4001 } 4002 4003 /** 4004 * cgroup_add_cftypes - add an array of cftypes to a subsystem 4005 * @ss: target cgroup subsystem 4006 * @cfts: zero-length name terminated array of cftypes 4007 * 4008 * Register @cfts to @ss. Files described by @cfts are created for all 4009 * existing cgroups to which @ss is attached and all future cgroups will 4010 * have them too. This function can be called anytime whether @ss is 4011 * attached or not. 4012 * 4013 * Returns 0 on successful registration, -errno on failure. Note that this 4014 * function currently returns 0 as long as @cfts registration is successful 4015 * even if some file creation attempts on existing cgroups fail. 4016 */ 4017 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4018 { 4019 int ret; 4020 4021 if (!cgroup_ssid_enabled(ss->id)) 4022 return 0; 4023 4024 if (!cfts || cfts[0].name[0] == '\0') 4025 return 0; 4026 4027 ret = cgroup_init_cftypes(ss, cfts); 4028 if (ret) 4029 return ret; 4030 4031 mutex_lock(&cgroup_mutex); 4032 4033 list_add_tail(&cfts->node, &ss->cfts); 4034 ret = cgroup_apply_cftypes(cfts, true); 4035 if (ret) 4036 cgroup_rm_cftypes_locked(cfts); 4037 4038 mutex_unlock(&cgroup_mutex); 4039 return ret; 4040 } 4041 4042 /** 4043 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy 4044 * @ss: target cgroup subsystem 4045 * @cfts: zero-length name terminated array of cftypes 4046 * 4047 * Similar to cgroup_add_cftypes() but the added files are only used for 4048 * the default hierarchy. 4049 */ 4050 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4051 { 4052 struct cftype *cft; 4053 4054 for (cft = cfts; cft && cft->name[0] != '\0'; cft++) 4055 cft->flags |= __CFTYPE_ONLY_ON_DFL; 4056 return cgroup_add_cftypes(ss, cfts); 4057 } 4058 4059 /** 4060 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies 4061 * @ss: target cgroup subsystem 4062 * @cfts: zero-length name terminated array of cftypes 4063 * 4064 * Similar to cgroup_add_cftypes() but the added files are only used for 4065 * the legacy hierarchies. 4066 */ 4067 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4068 { 4069 struct cftype *cft; 4070 4071 for (cft = cfts; cft && cft->name[0] != '\0'; cft++) 4072 cft->flags |= __CFTYPE_NOT_ON_DFL; 4073 return cgroup_add_cftypes(ss, cfts); 4074 } 4075 4076 /** 4077 * cgroup_file_notify - generate a file modified event for a cgroup_file 4078 * @cfile: target cgroup_file 4079 * 4080 * @cfile must have been obtained by setting cftype->file_offset. 4081 */ 4082 void cgroup_file_notify(struct cgroup_file *cfile) 4083 { 4084 unsigned long flags; 4085 4086 spin_lock_irqsave(&cgroup_file_kn_lock, flags); 4087 if (cfile->kn) { 4088 unsigned long last = cfile->notified_at; 4089 unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV; 4090 4091 if (time_in_range(jiffies, last, next)) { 4092 timer_reduce(&cfile->notify_timer, next); 4093 } else { 4094 kernfs_notify(cfile->kn); 4095 cfile->notified_at = jiffies; 4096 } 4097 } 4098 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags); 4099 } 4100 4101 /** 4102 * css_next_child - find the next child of a given css 4103 * @pos: the current position (%NULL to initiate traversal) 4104 * @parent: css whose children to walk 4105 * 4106 * This function returns the next child of @parent and should be called 4107 * under either cgroup_mutex or RCU read lock. The only requirement is 4108 * that @parent and @pos are accessible. The next sibling is guaranteed to 4109 * be returned regardless of their states. 4110 * 4111 * If a subsystem synchronizes ->css_online() and the start of iteration, a 4112 * css which finished ->css_online() is guaranteed to be visible in the 4113 * future iterations and will stay visible until the last reference is put. 4114 * A css which hasn't finished ->css_online() or already finished 4115 * ->css_offline() may show up during traversal. It's each subsystem's 4116 * responsibility to synchronize against on/offlining. 4117 */ 4118 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos, 4119 struct cgroup_subsys_state *parent) 4120 { 4121 struct cgroup_subsys_state *next; 4122 4123 cgroup_assert_mutex_or_rcu_locked(); 4124 4125 /* 4126 * @pos could already have been unlinked from the sibling list. 4127 * Once a cgroup is removed, its ->sibling.next is no longer 4128 * updated when its next sibling changes. CSS_RELEASED is set when 4129 * @pos is taken off list, at which time its next pointer is valid, 4130 * and, as releases are serialized, the one pointed to by the next 4131 * pointer is guaranteed to not have started release yet. This 4132 * implies that if we observe !CSS_RELEASED on @pos in this RCU 4133 * critical section, the one pointed to by its next pointer is 4134 * guaranteed to not have finished its RCU grace period even if we 4135 * have dropped rcu_read_lock() inbetween iterations. 4136 * 4137 * If @pos has CSS_RELEASED set, its next pointer can't be 4138 * dereferenced; however, as each css is given a monotonically 4139 * increasing unique serial number and always appended to the 4140 * sibling list, the next one can be found by walking the parent's 4141 * children until the first css with higher serial number than 4142 * @pos's. While this path can be slower, it happens iff iteration 4143 * races against release and the race window is very small. 4144 */ 4145 if (!pos) { 4146 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling); 4147 } else if (likely(!(pos->flags & CSS_RELEASED))) { 4148 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling); 4149 } else { 4150 list_for_each_entry_rcu(next, &parent->children, sibling) 4151 if (next->serial_nr > pos->serial_nr) 4152 break; 4153 } 4154 4155 /* 4156 * @next, if not pointing to the head, can be dereferenced and is 4157 * the next sibling. 4158 */ 4159 if (&next->sibling != &parent->children) 4160 return next; 4161 return NULL; 4162 } 4163 4164 /** 4165 * css_next_descendant_pre - find the next descendant for pre-order walk 4166 * @pos: the current position (%NULL to initiate traversal) 4167 * @root: css whose descendants to walk 4168 * 4169 * To be used by css_for_each_descendant_pre(). Find the next descendant 4170 * to visit for pre-order traversal of @root's descendants. @root is 4171 * included in the iteration and the first node to be visited. 4172 * 4173 * While this function requires cgroup_mutex or RCU read locking, it 4174 * doesn't require the whole traversal to be contained in a single critical 4175 * section. This function will return the correct next descendant as long 4176 * as both @pos and @root are accessible and @pos is a descendant of @root. 4177 * 4178 * If a subsystem synchronizes ->css_online() and the start of iteration, a 4179 * css which finished ->css_online() is guaranteed to be visible in the 4180 * future iterations and will stay visible until the last reference is put. 4181 * A css which hasn't finished ->css_online() or already finished 4182 * ->css_offline() may show up during traversal. It's each subsystem's 4183 * responsibility to synchronize against on/offlining. 4184 */ 4185 struct cgroup_subsys_state * 4186 css_next_descendant_pre(struct cgroup_subsys_state *pos, 4187 struct cgroup_subsys_state *root) 4188 { 4189 struct cgroup_subsys_state *next; 4190 4191 cgroup_assert_mutex_or_rcu_locked(); 4192 4193 /* if first iteration, visit @root */ 4194 if (!pos) 4195 return root; 4196 4197 /* visit the first child if exists */ 4198 next = css_next_child(NULL, pos); 4199 if (next) 4200 return next; 4201 4202 /* no child, visit my or the closest ancestor's next sibling */ 4203 while (pos != root) { 4204 next = css_next_child(pos, pos->parent); 4205 if (next) 4206 return next; 4207 pos = pos->parent; 4208 } 4209 4210 return NULL; 4211 } 4212 4213 /** 4214 * css_rightmost_descendant - return the rightmost descendant of a css 4215 * @pos: css of interest 4216 * 4217 * Return the rightmost descendant of @pos. If there's no descendant, @pos 4218 * is returned. This can be used during pre-order traversal to skip 4219 * subtree of @pos. 4220 * 4221 * While this function requires cgroup_mutex or RCU read locking, it 4222 * doesn't require the whole traversal to be contained in a single critical 4223 * section. This function will return the correct rightmost descendant as 4224 * long as @pos is accessible. 4225 */ 4226 struct cgroup_subsys_state * 4227 css_rightmost_descendant(struct cgroup_subsys_state *pos) 4228 { 4229 struct cgroup_subsys_state *last, *tmp; 4230 4231 cgroup_assert_mutex_or_rcu_locked(); 4232 4233 do { 4234 last = pos; 4235 /* ->prev isn't RCU safe, walk ->next till the end */ 4236 pos = NULL; 4237 css_for_each_child(tmp, last) 4238 pos = tmp; 4239 } while (pos); 4240 4241 return last; 4242 } 4243 4244 static struct cgroup_subsys_state * 4245 css_leftmost_descendant(struct cgroup_subsys_state *pos) 4246 { 4247 struct cgroup_subsys_state *last; 4248 4249 do { 4250 last = pos; 4251 pos = css_next_child(NULL, pos); 4252 } while (pos); 4253 4254 return last; 4255 } 4256 4257 /** 4258 * css_next_descendant_post - find the next descendant for post-order walk 4259 * @pos: the current position (%NULL to initiate traversal) 4260 * @root: css whose descendants to walk 4261 * 4262 * To be used by css_for_each_descendant_post(). Find the next descendant 4263 * to visit for post-order traversal of @root's descendants. @root is 4264 * included in the iteration and the last node to be visited. 4265 * 4266 * While this function requires cgroup_mutex or RCU read locking, it 4267 * doesn't require the whole traversal to be contained in a single critical 4268 * section. This function will return the correct next descendant as long 4269 * as both @pos and @cgroup are accessible and @pos is a descendant of 4270 * @cgroup. 4271 * 4272 * If a subsystem synchronizes ->css_online() and the start of iteration, a 4273 * css which finished ->css_online() is guaranteed to be visible in the 4274 * future iterations and will stay visible until the last reference is put. 4275 * A css which hasn't finished ->css_online() or already finished 4276 * ->css_offline() may show up during traversal. It's each subsystem's 4277 * responsibility to synchronize against on/offlining. 4278 */ 4279 struct cgroup_subsys_state * 4280 css_next_descendant_post(struct cgroup_subsys_state *pos, 4281 struct cgroup_subsys_state *root) 4282 { 4283 struct cgroup_subsys_state *next; 4284 4285 cgroup_assert_mutex_or_rcu_locked(); 4286 4287 /* if first iteration, visit leftmost descendant which may be @root */ 4288 if (!pos) 4289 return css_leftmost_descendant(root); 4290 4291 /* if we visited @root, we're done */ 4292 if (pos == root) 4293 return NULL; 4294 4295 /* if there's an unvisited sibling, visit its leftmost descendant */ 4296 next = css_next_child(pos, pos->parent); 4297 if (next) 4298 return css_leftmost_descendant(next); 4299 4300 /* no sibling left, visit parent */ 4301 return pos->parent; 4302 } 4303 4304 /** 4305 * css_has_online_children - does a css have online children 4306 * @css: the target css 4307 * 4308 * Returns %true if @css has any online children; otherwise, %false. This 4309 * function can be called from any context but the caller is responsible 4310 * for synchronizing against on/offlining as necessary. 4311 */ 4312 bool css_has_online_children(struct cgroup_subsys_state *css) 4313 { 4314 struct cgroup_subsys_state *child; 4315 bool ret = false; 4316 4317 rcu_read_lock(); 4318 css_for_each_child(child, css) { 4319 if (child->flags & CSS_ONLINE) { 4320 ret = true; 4321 break; 4322 } 4323 } 4324 rcu_read_unlock(); 4325 return ret; 4326 } 4327 4328 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it) 4329 { 4330 struct list_head *l; 4331 struct cgrp_cset_link *link; 4332 struct css_set *cset; 4333 4334 lockdep_assert_held(&css_set_lock); 4335 4336 /* find the next threaded cset */ 4337 if (it->tcset_pos) { 4338 l = it->tcset_pos->next; 4339 4340 if (l != it->tcset_head) { 4341 it->tcset_pos = l; 4342 return container_of(l, struct css_set, 4343 threaded_csets_node); 4344 } 4345 4346 it->tcset_pos = NULL; 4347 } 4348 4349 /* find the next cset */ 4350 l = it->cset_pos; 4351 l = l->next; 4352 if (l == it->cset_head) { 4353 it->cset_pos = NULL; 4354 return NULL; 4355 } 4356 4357 if (it->ss) { 4358 cset = container_of(l, struct css_set, e_cset_node[it->ss->id]); 4359 } else { 4360 link = list_entry(l, struct cgrp_cset_link, cset_link); 4361 cset = link->cset; 4362 } 4363 4364 it->cset_pos = l; 4365 4366 /* initialize threaded css_set walking */ 4367 if (it->flags & CSS_TASK_ITER_THREADED) { 4368 if (it->cur_dcset) 4369 put_css_set_locked(it->cur_dcset); 4370 it->cur_dcset = cset; 4371 get_css_set(cset); 4372 4373 it->tcset_head = &cset->threaded_csets; 4374 it->tcset_pos = &cset->threaded_csets; 4375 } 4376 4377 return cset; 4378 } 4379 4380 /** 4381 * css_task_iter_advance_css_set - advance a task itererator to the next css_set 4382 * @it: the iterator to advance 4383 * 4384 * Advance @it to the next css_set to walk. 4385 */ 4386 static void css_task_iter_advance_css_set(struct css_task_iter *it) 4387 { 4388 struct css_set *cset; 4389 4390 lockdep_assert_held(&css_set_lock); 4391 4392 /* Advance to the next non-empty css_set */ 4393 do { 4394 cset = css_task_iter_next_css_set(it); 4395 if (!cset) { 4396 it->task_pos = NULL; 4397 return; 4398 } 4399 } while (!css_set_populated(cset)); 4400 4401 if (!list_empty(&cset->tasks)) 4402 it->task_pos = cset->tasks.next; 4403 else 4404 it->task_pos = cset->mg_tasks.next; 4405 4406 it->tasks_head = &cset->tasks; 4407 it->mg_tasks_head = &cset->mg_tasks; 4408 4409 /* 4410 * We don't keep css_sets locked across iteration steps and thus 4411 * need to take steps to ensure that iteration can be resumed after 4412 * the lock is re-acquired. Iteration is performed at two levels - 4413 * css_sets and tasks in them. 4414 * 4415 * Once created, a css_set never leaves its cgroup lists, so a 4416 * pinned css_set is guaranteed to stay put and we can resume 4417 * iteration afterwards. 4418 * 4419 * Tasks may leave @cset across iteration steps. This is resolved 4420 * by registering each iterator with the css_set currently being 4421 * walked and making css_set_move_task() advance iterators whose 4422 * next task is leaving. 4423 */ 4424 if (it->cur_cset) { 4425 list_del(&it->iters_node); 4426 put_css_set_locked(it->cur_cset); 4427 } 4428 get_css_set(cset); 4429 it->cur_cset = cset; 4430 list_add(&it->iters_node, &cset->task_iters); 4431 } 4432 4433 static void css_task_iter_advance(struct css_task_iter *it) 4434 { 4435 struct list_head *next; 4436 4437 lockdep_assert_held(&css_set_lock); 4438 repeat: 4439 if (it->task_pos) { 4440 /* 4441 * Advance iterator to find next entry. cset->tasks is 4442 * consumed first and then ->mg_tasks. After ->mg_tasks, 4443 * we move onto the next cset. 4444 */ 4445 next = it->task_pos->next; 4446 4447 if (next == it->tasks_head) 4448 next = it->mg_tasks_head->next; 4449 4450 if (next == it->mg_tasks_head) 4451 css_task_iter_advance_css_set(it); 4452 else 4453 it->task_pos = next; 4454 } else { 4455 /* called from start, proceed to the first cset */ 4456 css_task_iter_advance_css_set(it); 4457 } 4458 4459 /* if PROCS, skip over tasks which aren't group leaders */ 4460 if ((it->flags & CSS_TASK_ITER_PROCS) && it->task_pos && 4461 !thread_group_leader(list_entry(it->task_pos, struct task_struct, 4462 cg_list))) 4463 goto repeat; 4464 } 4465 4466 /** 4467 * css_task_iter_start - initiate task iteration 4468 * @css: the css to walk tasks of 4469 * @flags: CSS_TASK_ITER_* flags 4470 * @it: the task iterator to use 4471 * 4472 * Initiate iteration through the tasks of @css. The caller can call 4473 * css_task_iter_next() to walk through the tasks until the function 4474 * returns NULL. On completion of iteration, css_task_iter_end() must be 4475 * called. 4476 */ 4477 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags, 4478 struct css_task_iter *it) 4479 { 4480 /* no one should try to iterate before mounting cgroups */ 4481 WARN_ON_ONCE(!use_task_css_set_links); 4482 4483 memset(it, 0, sizeof(*it)); 4484 4485 spin_lock_irq(&css_set_lock); 4486 4487 it->ss = css->ss; 4488 it->flags = flags; 4489 4490 if (it->ss) 4491 it->cset_pos = &css->cgroup->e_csets[css->ss->id]; 4492 else 4493 it->cset_pos = &css->cgroup->cset_links; 4494 4495 it->cset_head = it->cset_pos; 4496 4497 css_task_iter_advance(it); 4498 4499 spin_unlock_irq(&css_set_lock); 4500 } 4501 4502 /** 4503 * css_task_iter_next - return the next task for the iterator 4504 * @it: the task iterator being iterated 4505 * 4506 * The "next" function for task iteration. @it should have been 4507 * initialized via css_task_iter_start(). Returns NULL when the iteration 4508 * reaches the end. 4509 */ 4510 struct task_struct *css_task_iter_next(struct css_task_iter *it) 4511 { 4512 if (it->cur_task) { 4513 put_task_struct(it->cur_task); 4514 it->cur_task = NULL; 4515 } 4516 4517 spin_lock_irq(&css_set_lock); 4518 4519 if (it->task_pos) { 4520 it->cur_task = list_entry(it->task_pos, struct task_struct, 4521 cg_list); 4522 get_task_struct(it->cur_task); 4523 css_task_iter_advance(it); 4524 } 4525 4526 spin_unlock_irq(&css_set_lock); 4527 4528 return it->cur_task; 4529 } 4530 4531 /** 4532 * css_task_iter_end - finish task iteration 4533 * @it: the task iterator to finish 4534 * 4535 * Finish task iteration started by css_task_iter_start(). 4536 */ 4537 void css_task_iter_end(struct css_task_iter *it) 4538 { 4539 if (it->cur_cset) { 4540 spin_lock_irq(&css_set_lock); 4541 list_del(&it->iters_node); 4542 put_css_set_locked(it->cur_cset); 4543 spin_unlock_irq(&css_set_lock); 4544 } 4545 4546 if (it->cur_dcset) 4547 put_css_set(it->cur_dcset); 4548 4549 if (it->cur_task) 4550 put_task_struct(it->cur_task); 4551 } 4552 4553 static void cgroup_procs_release(struct kernfs_open_file *of) 4554 { 4555 if (of->priv) { 4556 css_task_iter_end(of->priv); 4557 kfree(of->priv); 4558 } 4559 } 4560 4561 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos) 4562 { 4563 struct kernfs_open_file *of = s->private; 4564 struct css_task_iter *it = of->priv; 4565 4566 return css_task_iter_next(it); 4567 } 4568 4569 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos, 4570 unsigned int iter_flags) 4571 { 4572 struct kernfs_open_file *of = s->private; 4573 struct cgroup *cgrp = seq_css(s)->cgroup; 4574 struct css_task_iter *it = of->priv; 4575 4576 /* 4577 * When a seq_file is seeked, it's always traversed sequentially 4578 * from position 0, so we can simply keep iterating on !0 *pos. 4579 */ 4580 if (!it) { 4581 if (WARN_ON_ONCE((*pos)++)) 4582 return ERR_PTR(-EINVAL); 4583 4584 it = kzalloc(sizeof(*it), GFP_KERNEL); 4585 if (!it) 4586 return ERR_PTR(-ENOMEM); 4587 of->priv = it; 4588 css_task_iter_start(&cgrp->self, iter_flags, it); 4589 } else if (!(*pos)++) { 4590 css_task_iter_end(it); 4591 css_task_iter_start(&cgrp->self, iter_flags, it); 4592 } 4593 4594 return cgroup_procs_next(s, NULL, NULL); 4595 } 4596 4597 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos) 4598 { 4599 struct cgroup *cgrp = seq_css(s)->cgroup; 4600 4601 /* 4602 * All processes of a threaded subtree belong to the domain cgroup 4603 * of the subtree. Only threads can be distributed across the 4604 * subtree. Reject reads on cgroup.procs in the subtree proper. 4605 * They're always empty anyway. 4606 */ 4607 if (cgroup_is_threaded(cgrp)) 4608 return ERR_PTR(-EOPNOTSUPP); 4609 4610 return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS | 4611 CSS_TASK_ITER_THREADED); 4612 } 4613 4614 static int cgroup_procs_show(struct seq_file *s, void *v) 4615 { 4616 seq_printf(s, "%d\n", task_pid_vnr(v)); 4617 return 0; 4618 } 4619 4620 static int cgroup_procs_write_permission(struct cgroup *src_cgrp, 4621 struct cgroup *dst_cgrp, 4622 struct super_block *sb) 4623 { 4624 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns; 4625 struct cgroup *com_cgrp = src_cgrp; 4626 struct inode *inode; 4627 int ret; 4628 4629 lockdep_assert_held(&cgroup_mutex); 4630 4631 /* find the common ancestor */ 4632 while (!cgroup_is_descendant(dst_cgrp, com_cgrp)) 4633 com_cgrp = cgroup_parent(com_cgrp); 4634 4635 /* %current should be authorized to migrate to the common ancestor */ 4636 inode = kernfs_get_inode(sb, com_cgrp->procs_file.kn); 4637 if (!inode) 4638 return -ENOMEM; 4639 4640 ret = inode_permission(inode, MAY_WRITE); 4641 iput(inode); 4642 if (ret) 4643 return ret; 4644 4645 /* 4646 * If namespaces are delegation boundaries, %current must be able 4647 * to see both source and destination cgroups from its namespace. 4648 */ 4649 if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) && 4650 (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) || 4651 !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp))) 4652 return -ENOENT; 4653 4654 return 0; 4655 } 4656 4657 static ssize_t cgroup_procs_write(struct kernfs_open_file *of, 4658 char *buf, size_t nbytes, loff_t off) 4659 { 4660 struct cgroup *src_cgrp, *dst_cgrp; 4661 struct task_struct *task; 4662 ssize_t ret; 4663 4664 dst_cgrp = cgroup_kn_lock_live(of->kn, false); 4665 if (!dst_cgrp) 4666 return -ENODEV; 4667 4668 task = cgroup_procs_write_start(buf, true); 4669 ret = PTR_ERR_OR_ZERO(task); 4670 if (ret) 4671 goto out_unlock; 4672 4673 /* find the source cgroup */ 4674 spin_lock_irq(&css_set_lock); 4675 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root); 4676 spin_unlock_irq(&css_set_lock); 4677 4678 ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, 4679 of->file->f_path.dentry->d_sb); 4680 if (ret) 4681 goto out_finish; 4682 4683 ret = cgroup_attach_task(dst_cgrp, task, true); 4684 4685 out_finish: 4686 cgroup_procs_write_finish(task); 4687 out_unlock: 4688 cgroup_kn_unlock(of->kn); 4689 4690 return ret ?: nbytes; 4691 } 4692 4693 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos) 4694 { 4695 return __cgroup_procs_start(s, pos, 0); 4696 } 4697 4698 static ssize_t cgroup_threads_write(struct kernfs_open_file *of, 4699 char *buf, size_t nbytes, loff_t off) 4700 { 4701 struct cgroup *src_cgrp, *dst_cgrp; 4702 struct task_struct *task; 4703 ssize_t ret; 4704 4705 buf = strstrip(buf); 4706 4707 dst_cgrp = cgroup_kn_lock_live(of->kn, false); 4708 if (!dst_cgrp) 4709 return -ENODEV; 4710 4711 task = cgroup_procs_write_start(buf, false); 4712 ret = PTR_ERR_OR_ZERO(task); 4713 if (ret) 4714 goto out_unlock; 4715 4716 /* find the source cgroup */ 4717 spin_lock_irq(&css_set_lock); 4718 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root); 4719 spin_unlock_irq(&css_set_lock); 4720 4721 /* thread migrations follow the cgroup.procs delegation rule */ 4722 ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, 4723 of->file->f_path.dentry->d_sb); 4724 if (ret) 4725 goto out_finish; 4726 4727 /* and must be contained in the same domain */ 4728 ret = -EOPNOTSUPP; 4729 if (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp) 4730 goto out_finish; 4731 4732 ret = cgroup_attach_task(dst_cgrp, task, false); 4733 4734 out_finish: 4735 cgroup_procs_write_finish(task); 4736 out_unlock: 4737 cgroup_kn_unlock(of->kn); 4738 4739 return ret ?: nbytes; 4740 } 4741 4742 /* cgroup core interface files for the default hierarchy */ 4743 static struct cftype cgroup_base_files[] = { 4744 { 4745 .name = "cgroup.type", 4746 .flags = CFTYPE_NOT_ON_ROOT, 4747 .seq_show = cgroup_type_show, 4748 .write = cgroup_type_write, 4749 }, 4750 { 4751 .name = "cgroup.procs", 4752 .flags = CFTYPE_NS_DELEGATABLE, 4753 .file_offset = offsetof(struct cgroup, procs_file), 4754 .release = cgroup_procs_release, 4755 .seq_start = cgroup_procs_start, 4756 .seq_next = cgroup_procs_next, 4757 .seq_show = cgroup_procs_show, 4758 .write = cgroup_procs_write, 4759 }, 4760 { 4761 .name = "cgroup.threads", 4762 .flags = CFTYPE_NS_DELEGATABLE, 4763 .release = cgroup_procs_release, 4764 .seq_start = cgroup_threads_start, 4765 .seq_next = cgroup_procs_next, 4766 .seq_show = cgroup_procs_show, 4767 .write = cgroup_threads_write, 4768 }, 4769 { 4770 .name = "cgroup.controllers", 4771 .seq_show = cgroup_controllers_show, 4772 }, 4773 { 4774 .name = "cgroup.subtree_control", 4775 .flags = CFTYPE_NS_DELEGATABLE, 4776 .seq_show = cgroup_subtree_control_show, 4777 .write = cgroup_subtree_control_write, 4778 }, 4779 { 4780 .name = "cgroup.events", 4781 .flags = CFTYPE_NOT_ON_ROOT, 4782 .file_offset = offsetof(struct cgroup, events_file), 4783 .seq_show = cgroup_events_show, 4784 }, 4785 { 4786 .name = "cgroup.max.descendants", 4787 .seq_show = cgroup_max_descendants_show, 4788 .write = cgroup_max_descendants_write, 4789 }, 4790 { 4791 .name = "cgroup.max.depth", 4792 .seq_show = cgroup_max_depth_show, 4793 .write = cgroup_max_depth_write, 4794 }, 4795 { 4796 .name = "cgroup.stat", 4797 .seq_show = cgroup_stat_show, 4798 }, 4799 { 4800 .name = "cgroup.freeze", 4801 .flags = CFTYPE_NOT_ON_ROOT, 4802 .seq_show = cgroup_freeze_show, 4803 .write = cgroup_freeze_write, 4804 }, 4805 { 4806 .name = "cpu.stat", 4807 .flags = CFTYPE_NOT_ON_ROOT, 4808 .seq_show = cpu_stat_show, 4809 }, 4810 #ifdef CONFIG_PSI 4811 { 4812 .name = "io.pressure", 4813 .seq_show = cgroup_io_pressure_show, 4814 .write = cgroup_io_pressure_write, 4815 .poll = cgroup_pressure_poll, 4816 .release = cgroup_pressure_release, 4817 }, 4818 { 4819 .name = "memory.pressure", 4820 .seq_show = cgroup_memory_pressure_show, 4821 .write = cgroup_memory_pressure_write, 4822 .poll = cgroup_pressure_poll, 4823 .release = cgroup_pressure_release, 4824 }, 4825 { 4826 .name = "cpu.pressure", 4827 .seq_show = cgroup_cpu_pressure_show, 4828 .write = cgroup_cpu_pressure_write, 4829 .poll = cgroup_pressure_poll, 4830 .release = cgroup_pressure_release, 4831 }, 4832 #endif /* CONFIG_PSI */ 4833 { } /* terminate */ 4834 }; 4835 4836 /* 4837 * css destruction is four-stage process. 4838 * 4839 * 1. Destruction starts. Killing of the percpu_ref is initiated. 4840 * Implemented in kill_css(). 4841 * 4842 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs 4843 * and thus css_tryget_online() is guaranteed to fail, the css can be 4844 * offlined by invoking offline_css(). After offlining, the base ref is 4845 * put. Implemented in css_killed_work_fn(). 4846 * 4847 * 3. When the percpu_ref reaches zero, the only possible remaining 4848 * accessors are inside RCU read sections. css_release() schedules the 4849 * RCU callback. 4850 * 4851 * 4. After the grace period, the css can be freed. Implemented in 4852 * css_free_work_fn(). 4853 * 4854 * It is actually hairier because both step 2 and 4 require process context 4855 * and thus involve punting to css->destroy_work adding two additional 4856 * steps to the already complex sequence. 4857 */ 4858 static void css_free_rwork_fn(struct work_struct *work) 4859 { 4860 struct cgroup_subsys_state *css = container_of(to_rcu_work(work), 4861 struct cgroup_subsys_state, destroy_rwork); 4862 struct cgroup_subsys *ss = css->ss; 4863 struct cgroup *cgrp = css->cgroup; 4864 4865 percpu_ref_exit(&css->refcnt); 4866 4867 if (ss) { 4868 /* css free path */ 4869 struct cgroup_subsys_state *parent = css->parent; 4870 int id = css->id; 4871 4872 ss->css_free(css); 4873 cgroup_idr_remove(&ss->css_idr, id); 4874 cgroup_put(cgrp); 4875 4876 if (parent) 4877 css_put(parent); 4878 } else { 4879 /* cgroup free path */ 4880 atomic_dec(&cgrp->root->nr_cgrps); 4881 cgroup1_pidlist_destroy_all(cgrp); 4882 cancel_work_sync(&cgrp->release_agent_work); 4883 4884 if (cgroup_parent(cgrp)) { 4885 /* 4886 * We get a ref to the parent, and put the ref when 4887 * this cgroup is being freed, so it's guaranteed 4888 * that the parent won't be destroyed before its 4889 * children. 4890 */ 4891 cgroup_put(cgroup_parent(cgrp)); 4892 kernfs_put(cgrp->kn); 4893 psi_cgroup_free(cgrp); 4894 if (cgroup_on_dfl(cgrp)) 4895 cgroup_rstat_exit(cgrp); 4896 kfree(cgrp); 4897 } else { 4898 /* 4899 * This is root cgroup's refcnt reaching zero, 4900 * which indicates that the root should be 4901 * released. 4902 */ 4903 cgroup_destroy_root(cgrp->root); 4904 } 4905 } 4906 } 4907 4908 static void css_release_work_fn(struct work_struct *work) 4909 { 4910 struct cgroup_subsys_state *css = 4911 container_of(work, struct cgroup_subsys_state, destroy_work); 4912 struct cgroup_subsys *ss = css->ss; 4913 struct cgroup *cgrp = css->cgroup; 4914 4915 mutex_lock(&cgroup_mutex); 4916 4917 css->flags |= CSS_RELEASED; 4918 list_del_rcu(&css->sibling); 4919 4920 if (ss) { 4921 /* css release path */ 4922 if (!list_empty(&css->rstat_css_node)) { 4923 cgroup_rstat_flush(cgrp); 4924 list_del_rcu(&css->rstat_css_node); 4925 } 4926 4927 cgroup_idr_replace(&ss->css_idr, NULL, css->id); 4928 if (ss->css_released) 4929 ss->css_released(css); 4930 } else { 4931 struct cgroup *tcgrp; 4932 4933 /* cgroup release path */ 4934 TRACE_CGROUP_PATH(release, cgrp); 4935 4936 if (cgroup_on_dfl(cgrp)) 4937 cgroup_rstat_flush(cgrp); 4938 4939 spin_lock_irq(&css_set_lock); 4940 for (tcgrp = cgroup_parent(cgrp); tcgrp; 4941 tcgrp = cgroup_parent(tcgrp)) 4942 tcgrp->nr_dying_descendants--; 4943 spin_unlock_irq(&css_set_lock); 4944 4945 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id); 4946 cgrp->id = -1; 4947 4948 /* 4949 * There are two control paths which try to determine 4950 * cgroup from dentry without going through kernfs - 4951 * cgroupstats_build() and css_tryget_online_from_dir(). 4952 * Those are supported by RCU protecting clearing of 4953 * cgrp->kn->priv backpointer. 4954 */ 4955 if (cgrp->kn) 4956 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, 4957 NULL); 4958 4959 cgroup_bpf_put(cgrp); 4960 } 4961 4962 mutex_unlock(&cgroup_mutex); 4963 4964 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn); 4965 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork); 4966 } 4967 4968 static void css_release(struct percpu_ref *ref) 4969 { 4970 struct cgroup_subsys_state *css = 4971 container_of(ref, struct cgroup_subsys_state, refcnt); 4972 4973 INIT_WORK(&css->destroy_work, css_release_work_fn); 4974 queue_work(cgroup_destroy_wq, &css->destroy_work); 4975 } 4976 4977 static void init_and_link_css(struct cgroup_subsys_state *css, 4978 struct cgroup_subsys *ss, struct cgroup *cgrp) 4979 { 4980 lockdep_assert_held(&cgroup_mutex); 4981 4982 cgroup_get_live(cgrp); 4983 4984 memset(css, 0, sizeof(*css)); 4985 css->cgroup = cgrp; 4986 css->ss = ss; 4987 css->id = -1; 4988 INIT_LIST_HEAD(&css->sibling); 4989 INIT_LIST_HEAD(&css->children); 4990 INIT_LIST_HEAD(&css->rstat_css_node); 4991 css->serial_nr = css_serial_nr_next++; 4992 atomic_set(&css->online_cnt, 0); 4993 4994 if (cgroup_parent(cgrp)) { 4995 css->parent = cgroup_css(cgroup_parent(cgrp), ss); 4996 css_get(css->parent); 4997 } 4998 4999 if (cgroup_on_dfl(cgrp) && ss->css_rstat_flush) 5000 list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list); 5001 5002 BUG_ON(cgroup_css(cgrp, ss)); 5003 } 5004 5005 /* invoke ->css_online() on a new CSS and mark it online if successful */ 5006 static int online_css(struct cgroup_subsys_state *css) 5007 { 5008 struct cgroup_subsys *ss = css->ss; 5009 int ret = 0; 5010 5011 lockdep_assert_held(&cgroup_mutex); 5012 5013 if (ss->css_online) 5014 ret = ss->css_online(css); 5015 if (!ret) { 5016 css->flags |= CSS_ONLINE; 5017 rcu_assign_pointer(css->cgroup->subsys[ss->id], css); 5018 5019 atomic_inc(&css->online_cnt); 5020 if (css->parent) 5021 atomic_inc(&css->parent->online_cnt); 5022 } 5023 return ret; 5024 } 5025 5026 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */ 5027 static void offline_css(struct cgroup_subsys_state *css) 5028 { 5029 struct cgroup_subsys *ss = css->ss; 5030 5031 lockdep_assert_held(&cgroup_mutex); 5032 5033 if (!(css->flags & CSS_ONLINE)) 5034 return; 5035 5036 if (ss->css_offline) 5037 ss->css_offline(css); 5038 5039 css->flags &= ~CSS_ONLINE; 5040 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL); 5041 5042 wake_up_all(&css->cgroup->offline_waitq); 5043 } 5044 5045 /** 5046 * css_create - create a cgroup_subsys_state 5047 * @cgrp: the cgroup new css will be associated with 5048 * @ss: the subsys of new css 5049 * 5050 * Create a new css associated with @cgrp - @ss pair. On success, the new 5051 * css is online and installed in @cgrp. This function doesn't create the 5052 * interface files. Returns 0 on success, -errno on failure. 5053 */ 5054 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp, 5055 struct cgroup_subsys *ss) 5056 { 5057 struct cgroup *parent = cgroup_parent(cgrp); 5058 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss); 5059 struct cgroup_subsys_state *css; 5060 int err; 5061 5062 lockdep_assert_held(&cgroup_mutex); 5063 5064 css = ss->css_alloc(parent_css); 5065 if (!css) 5066 css = ERR_PTR(-ENOMEM); 5067 if (IS_ERR(css)) 5068 return css; 5069 5070 init_and_link_css(css, ss, cgrp); 5071 5072 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL); 5073 if (err) 5074 goto err_free_css; 5075 5076 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL); 5077 if (err < 0) 5078 goto err_free_css; 5079 css->id = err; 5080 5081 /* @css is ready to be brought online now, make it visible */ 5082 list_add_tail_rcu(&css->sibling, &parent_css->children); 5083 cgroup_idr_replace(&ss->css_idr, css, css->id); 5084 5085 err = online_css(css); 5086 if (err) 5087 goto err_list_del; 5088 5089 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy && 5090 cgroup_parent(parent)) { 5091 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n", 5092 current->comm, current->pid, ss->name); 5093 if (!strcmp(ss->name, "memory")) 5094 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n"); 5095 ss->warned_broken_hierarchy = true; 5096 } 5097 5098 return css; 5099 5100 err_list_del: 5101 list_del_rcu(&css->sibling); 5102 err_free_css: 5103 list_del_rcu(&css->rstat_css_node); 5104 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn); 5105 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork); 5106 return ERR_PTR(err); 5107 } 5108 5109 /* 5110 * The returned cgroup is fully initialized including its control mask, but 5111 * it isn't associated with its kernfs_node and doesn't have the control 5112 * mask applied. 5113 */ 5114 static struct cgroup *cgroup_create(struct cgroup *parent) 5115 { 5116 struct cgroup_root *root = parent->root; 5117 struct cgroup *cgrp, *tcgrp; 5118 int level = parent->level + 1; 5119 int ret; 5120 5121 /* allocate the cgroup and its ID, 0 is reserved for the root */ 5122 cgrp = kzalloc(struct_size(cgrp, ancestor_ids, (level + 1)), 5123 GFP_KERNEL); 5124 if (!cgrp) 5125 return ERR_PTR(-ENOMEM); 5126 5127 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL); 5128 if (ret) 5129 goto out_free_cgrp; 5130 5131 if (cgroup_on_dfl(parent)) { 5132 ret = cgroup_rstat_init(cgrp); 5133 if (ret) 5134 goto out_cancel_ref; 5135 } 5136 5137 /* 5138 * Temporarily set the pointer to NULL, so idr_find() won't return 5139 * a half-baked cgroup. 5140 */ 5141 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL); 5142 if (cgrp->id < 0) { 5143 ret = -ENOMEM; 5144 goto out_stat_exit; 5145 } 5146 5147 init_cgroup_housekeeping(cgrp); 5148 5149 cgrp->self.parent = &parent->self; 5150 cgrp->root = root; 5151 cgrp->level = level; 5152 5153 ret = psi_cgroup_alloc(cgrp); 5154 if (ret) 5155 goto out_idr_free; 5156 5157 ret = cgroup_bpf_inherit(cgrp); 5158 if (ret) 5159 goto out_psi_free; 5160 5161 /* 5162 * New cgroup inherits effective freeze counter, and 5163 * if the parent has to be frozen, the child has too. 5164 */ 5165 cgrp->freezer.e_freeze = parent->freezer.e_freeze; 5166 if (cgrp->freezer.e_freeze) 5167 set_bit(CGRP_FROZEN, &cgrp->flags); 5168 5169 spin_lock_irq(&css_set_lock); 5170 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) { 5171 cgrp->ancestor_ids[tcgrp->level] = tcgrp->id; 5172 5173 if (tcgrp != cgrp) { 5174 tcgrp->nr_descendants++; 5175 5176 /* 5177 * If the new cgroup is frozen, all ancestor cgroups 5178 * get a new frozen descendant, but their state can't 5179 * change because of this. 5180 */ 5181 if (cgrp->freezer.e_freeze) 5182 tcgrp->freezer.nr_frozen_descendants++; 5183 } 5184 } 5185 spin_unlock_irq(&css_set_lock); 5186 5187 if (notify_on_release(parent)) 5188 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags); 5189 5190 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags)) 5191 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags); 5192 5193 cgrp->self.serial_nr = css_serial_nr_next++; 5194 5195 /* allocation complete, commit to creation */ 5196 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children); 5197 atomic_inc(&root->nr_cgrps); 5198 cgroup_get_live(parent); 5199 5200 /* 5201 * @cgrp is now fully operational. If something fails after this 5202 * point, it'll be released via the normal destruction path. 5203 */ 5204 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id); 5205 5206 /* 5207 * On the default hierarchy, a child doesn't automatically inherit 5208 * subtree_control from the parent. Each is configured manually. 5209 */ 5210 if (!cgroup_on_dfl(cgrp)) 5211 cgrp->subtree_control = cgroup_control(cgrp); 5212 5213 cgroup_propagate_control(cgrp); 5214 5215 return cgrp; 5216 5217 out_psi_free: 5218 psi_cgroup_free(cgrp); 5219 out_idr_free: 5220 cgroup_idr_remove(&root->cgroup_idr, cgrp->id); 5221 out_stat_exit: 5222 if (cgroup_on_dfl(parent)) 5223 cgroup_rstat_exit(cgrp); 5224 out_cancel_ref: 5225 percpu_ref_exit(&cgrp->self.refcnt); 5226 out_free_cgrp: 5227 kfree(cgrp); 5228 return ERR_PTR(ret); 5229 } 5230 5231 static bool cgroup_check_hierarchy_limits(struct cgroup *parent) 5232 { 5233 struct cgroup *cgroup; 5234 int ret = false; 5235 int level = 1; 5236 5237 lockdep_assert_held(&cgroup_mutex); 5238 5239 for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) { 5240 if (cgroup->nr_descendants >= cgroup->max_descendants) 5241 goto fail; 5242 5243 if (level > cgroup->max_depth) 5244 goto fail; 5245 5246 level++; 5247 } 5248 5249 ret = true; 5250 fail: 5251 return ret; 5252 } 5253 5254 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode) 5255 { 5256 struct cgroup *parent, *cgrp; 5257 struct kernfs_node *kn; 5258 int ret; 5259 5260 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */ 5261 if (strchr(name, '\n')) 5262 return -EINVAL; 5263 5264 parent = cgroup_kn_lock_live(parent_kn, false); 5265 if (!parent) 5266 return -ENODEV; 5267 5268 if (!cgroup_check_hierarchy_limits(parent)) { 5269 ret = -EAGAIN; 5270 goto out_unlock; 5271 } 5272 5273 cgrp = cgroup_create(parent); 5274 if (IS_ERR(cgrp)) { 5275 ret = PTR_ERR(cgrp); 5276 goto out_unlock; 5277 } 5278 5279 /* create the directory */ 5280 kn = kernfs_create_dir(parent->kn, name, mode, cgrp); 5281 if (IS_ERR(kn)) { 5282 ret = PTR_ERR(kn); 5283 goto out_destroy; 5284 } 5285 cgrp->kn = kn; 5286 5287 /* 5288 * This extra ref will be put in cgroup_free_fn() and guarantees 5289 * that @cgrp->kn is always accessible. 5290 */ 5291 kernfs_get(kn); 5292 5293 ret = cgroup_kn_set_ugid(kn); 5294 if (ret) 5295 goto out_destroy; 5296 5297 ret = css_populate_dir(&cgrp->self); 5298 if (ret) 5299 goto out_destroy; 5300 5301 ret = cgroup_apply_control_enable(cgrp); 5302 if (ret) 5303 goto out_destroy; 5304 5305 TRACE_CGROUP_PATH(mkdir, cgrp); 5306 5307 /* let's create and online css's */ 5308 kernfs_activate(kn); 5309 5310 ret = 0; 5311 goto out_unlock; 5312 5313 out_destroy: 5314 cgroup_destroy_locked(cgrp); 5315 out_unlock: 5316 cgroup_kn_unlock(parent_kn); 5317 return ret; 5318 } 5319 5320 /* 5321 * This is called when the refcnt of a css is confirmed to be killed. 5322 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to 5323 * initate destruction and put the css ref from kill_css(). 5324 */ 5325 static void css_killed_work_fn(struct work_struct *work) 5326 { 5327 struct cgroup_subsys_state *css = 5328 container_of(work, struct cgroup_subsys_state, destroy_work); 5329 5330 mutex_lock(&cgroup_mutex); 5331 5332 do { 5333 offline_css(css); 5334 css_put(css); 5335 /* @css can't go away while we're holding cgroup_mutex */ 5336 css = css->parent; 5337 } while (css && atomic_dec_and_test(&css->online_cnt)); 5338 5339 mutex_unlock(&cgroup_mutex); 5340 } 5341 5342 /* css kill confirmation processing requires process context, bounce */ 5343 static void css_killed_ref_fn(struct percpu_ref *ref) 5344 { 5345 struct cgroup_subsys_state *css = 5346 container_of(ref, struct cgroup_subsys_state, refcnt); 5347 5348 if (atomic_dec_and_test(&css->online_cnt)) { 5349 INIT_WORK(&css->destroy_work, css_killed_work_fn); 5350 queue_work(cgroup_destroy_wq, &css->destroy_work); 5351 } 5352 } 5353 5354 /** 5355 * kill_css - destroy a css 5356 * @css: css to destroy 5357 * 5358 * This function initiates destruction of @css by removing cgroup interface 5359 * files and putting its base reference. ->css_offline() will be invoked 5360 * asynchronously once css_tryget_online() is guaranteed to fail and when 5361 * the reference count reaches zero, @css will be released. 5362 */ 5363 static void kill_css(struct cgroup_subsys_state *css) 5364 { 5365 lockdep_assert_held(&cgroup_mutex); 5366 5367 if (css->flags & CSS_DYING) 5368 return; 5369 5370 css->flags |= CSS_DYING; 5371 5372 /* 5373 * This must happen before css is disassociated with its cgroup. 5374 * See seq_css() for details. 5375 */ 5376 css_clear_dir(css); 5377 5378 /* 5379 * Killing would put the base ref, but we need to keep it alive 5380 * until after ->css_offline(). 5381 */ 5382 css_get(css); 5383 5384 /* 5385 * cgroup core guarantees that, by the time ->css_offline() is 5386 * invoked, no new css reference will be given out via 5387 * css_tryget_online(). We can't simply call percpu_ref_kill() and 5388 * proceed to offlining css's because percpu_ref_kill() doesn't 5389 * guarantee that the ref is seen as killed on all CPUs on return. 5390 * 5391 * Use percpu_ref_kill_and_confirm() to get notifications as each 5392 * css is confirmed to be seen as killed on all CPUs. 5393 */ 5394 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn); 5395 } 5396 5397 /** 5398 * cgroup_destroy_locked - the first stage of cgroup destruction 5399 * @cgrp: cgroup to be destroyed 5400 * 5401 * css's make use of percpu refcnts whose killing latency shouldn't be 5402 * exposed to userland and are RCU protected. Also, cgroup core needs to 5403 * guarantee that css_tryget_online() won't succeed by the time 5404 * ->css_offline() is invoked. To satisfy all the requirements, 5405 * destruction is implemented in the following two steps. 5406 * 5407 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all 5408 * userland visible parts and start killing the percpu refcnts of 5409 * css's. Set up so that the next stage will be kicked off once all 5410 * the percpu refcnts are confirmed to be killed. 5411 * 5412 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the 5413 * rest of destruction. Once all cgroup references are gone, the 5414 * cgroup is RCU-freed. 5415 * 5416 * This function implements s1. After this step, @cgrp is gone as far as 5417 * the userland is concerned and a new cgroup with the same name may be 5418 * created. As cgroup doesn't care about the names internally, this 5419 * doesn't cause any problem. 5420 */ 5421 static int cgroup_destroy_locked(struct cgroup *cgrp) 5422 __releases(&cgroup_mutex) __acquires(&cgroup_mutex) 5423 { 5424 struct cgroup *tcgrp, *parent = cgroup_parent(cgrp); 5425 struct cgroup_subsys_state *css; 5426 struct cgrp_cset_link *link; 5427 int ssid; 5428 5429 lockdep_assert_held(&cgroup_mutex); 5430 5431 /* 5432 * Only migration can raise populated from zero and we're already 5433 * holding cgroup_mutex. 5434 */ 5435 if (cgroup_is_populated(cgrp)) 5436 return -EBUSY; 5437 5438 /* 5439 * Make sure there's no live children. We can't test emptiness of 5440 * ->self.children as dead children linger on it while being 5441 * drained; otherwise, "rmdir parent/child parent" may fail. 5442 */ 5443 if (css_has_online_children(&cgrp->self)) 5444 return -EBUSY; 5445 5446 /* 5447 * Mark @cgrp and the associated csets dead. The former prevents 5448 * further task migration and child creation by disabling 5449 * cgroup_lock_live_group(). The latter makes the csets ignored by 5450 * the migration path. 5451 */ 5452 cgrp->self.flags &= ~CSS_ONLINE; 5453 5454 spin_lock_irq(&css_set_lock); 5455 list_for_each_entry(link, &cgrp->cset_links, cset_link) 5456 link->cset->dead = true; 5457 spin_unlock_irq(&css_set_lock); 5458 5459 /* initiate massacre of all css's */ 5460 for_each_css(css, ssid, cgrp) 5461 kill_css(css); 5462 5463 /* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */ 5464 css_clear_dir(&cgrp->self); 5465 kernfs_remove(cgrp->kn); 5466 5467 if (parent && cgroup_is_threaded(cgrp)) 5468 parent->nr_threaded_children--; 5469 5470 spin_lock_irq(&css_set_lock); 5471 for (tcgrp = cgroup_parent(cgrp); tcgrp; tcgrp = cgroup_parent(tcgrp)) { 5472 tcgrp->nr_descendants--; 5473 tcgrp->nr_dying_descendants++; 5474 /* 5475 * If the dying cgroup is frozen, decrease frozen descendants 5476 * counters of ancestor cgroups. 5477 */ 5478 if (test_bit(CGRP_FROZEN, &cgrp->flags)) 5479 tcgrp->freezer.nr_frozen_descendants--; 5480 } 5481 spin_unlock_irq(&css_set_lock); 5482 5483 cgroup1_check_for_release(parent); 5484 5485 /* put the base reference */ 5486 percpu_ref_kill(&cgrp->self.refcnt); 5487 5488 return 0; 5489 }; 5490 5491 int cgroup_rmdir(struct kernfs_node *kn) 5492 { 5493 struct cgroup *cgrp; 5494 int ret = 0; 5495 5496 cgrp = cgroup_kn_lock_live(kn, false); 5497 if (!cgrp) 5498 return 0; 5499 5500 ret = cgroup_destroy_locked(cgrp); 5501 if (!ret) 5502 TRACE_CGROUP_PATH(rmdir, cgrp); 5503 5504 cgroup_kn_unlock(kn); 5505 return ret; 5506 } 5507 5508 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = { 5509 .show_options = cgroup_show_options, 5510 .mkdir = cgroup_mkdir, 5511 .rmdir = cgroup_rmdir, 5512 .show_path = cgroup_show_path, 5513 }; 5514 5515 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early) 5516 { 5517 struct cgroup_subsys_state *css; 5518 5519 pr_debug("Initializing cgroup subsys %s\n", ss->name); 5520 5521 mutex_lock(&cgroup_mutex); 5522 5523 idr_init(&ss->css_idr); 5524 INIT_LIST_HEAD(&ss->cfts); 5525 5526 /* Create the root cgroup state for this subsystem */ 5527 ss->root = &cgrp_dfl_root; 5528 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss)); 5529 /* We don't handle early failures gracefully */ 5530 BUG_ON(IS_ERR(css)); 5531 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp); 5532 5533 /* 5534 * Root csses are never destroyed and we can't initialize 5535 * percpu_ref during early init. Disable refcnting. 5536 */ 5537 css->flags |= CSS_NO_REF; 5538 5539 if (early) { 5540 /* allocation can't be done safely during early init */ 5541 css->id = 1; 5542 } else { 5543 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL); 5544 BUG_ON(css->id < 0); 5545 } 5546 5547 /* Update the init_css_set to contain a subsys 5548 * pointer to this state - since the subsystem is 5549 * newly registered, all tasks and hence the 5550 * init_css_set is in the subsystem's root cgroup. */ 5551 init_css_set.subsys[ss->id] = css; 5552 5553 have_fork_callback |= (bool)ss->fork << ss->id; 5554 have_exit_callback |= (bool)ss->exit << ss->id; 5555 have_release_callback |= (bool)ss->release << ss->id; 5556 have_canfork_callback |= (bool)ss->can_fork << ss->id; 5557 5558 /* At system boot, before all subsystems have been 5559 * registered, no tasks have been forked, so we don't 5560 * need to invoke fork callbacks here. */ 5561 BUG_ON(!list_empty(&init_task.tasks)); 5562 5563 BUG_ON(online_css(css)); 5564 5565 mutex_unlock(&cgroup_mutex); 5566 } 5567 5568 /** 5569 * cgroup_init_early - cgroup initialization at system boot 5570 * 5571 * Initialize cgroups at system boot, and initialize any 5572 * subsystems that request early init. 5573 */ 5574 int __init cgroup_init_early(void) 5575 { 5576 static struct cgroup_fs_context __initdata ctx; 5577 struct cgroup_subsys *ss; 5578 int i; 5579 5580 ctx.root = &cgrp_dfl_root; 5581 init_cgroup_root(&ctx); 5582 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF; 5583 5584 RCU_INIT_POINTER(init_task.cgroups, &init_css_set); 5585 5586 for_each_subsys(ss, i) { 5587 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id, 5588 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n", 5589 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free, 5590 ss->id, ss->name); 5591 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN, 5592 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]); 5593 5594 ss->id = i; 5595 ss->name = cgroup_subsys_name[i]; 5596 if (!ss->legacy_name) 5597 ss->legacy_name = cgroup_subsys_name[i]; 5598 5599 if (ss->early_init) 5600 cgroup_init_subsys(ss, true); 5601 } 5602 return 0; 5603 } 5604 5605 static u16 cgroup_disable_mask __initdata; 5606 5607 /** 5608 * cgroup_init - cgroup initialization 5609 * 5610 * Register cgroup filesystem and /proc file, and initialize 5611 * any subsystems that didn't request early init. 5612 */ 5613 int __init cgroup_init(void) 5614 { 5615 struct cgroup_subsys *ss; 5616 int ssid; 5617 5618 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16); 5619 BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem)); 5620 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files)); 5621 BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files)); 5622 5623 cgroup_rstat_boot(); 5624 5625 /* 5626 * The latency of the synchronize_rcu() is too high for cgroups, 5627 * avoid it at the cost of forcing all readers into the slow path. 5628 */ 5629 rcu_sync_enter_start(&cgroup_threadgroup_rwsem.rss); 5630 5631 get_user_ns(init_cgroup_ns.user_ns); 5632 5633 mutex_lock(&cgroup_mutex); 5634 5635 /* 5636 * Add init_css_set to the hash table so that dfl_root can link to 5637 * it during init. 5638 */ 5639 hash_add(css_set_table, &init_css_set.hlist, 5640 css_set_hash(init_css_set.subsys)); 5641 5642 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0)); 5643 5644 mutex_unlock(&cgroup_mutex); 5645 5646 for_each_subsys(ss, ssid) { 5647 if (ss->early_init) { 5648 struct cgroup_subsys_state *css = 5649 init_css_set.subsys[ss->id]; 5650 5651 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, 5652 GFP_KERNEL); 5653 BUG_ON(css->id < 0); 5654 } else { 5655 cgroup_init_subsys(ss, false); 5656 } 5657 5658 list_add_tail(&init_css_set.e_cset_node[ssid], 5659 &cgrp_dfl_root.cgrp.e_csets[ssid]); 5660 5661 /* 5662 * Setting dfl_root subsys_mask needs to consider the 5663 * disabled flag and cftype registration needs kmalloc, 5664 * both of which aren't available during early_init. 5665 */ 5666 if (cgroup_disable_mask & (1 << ssid)) { 5667 static_branch_disable(cgroup_subsys_enabled_key[ssid]); 5668 printk(KERN_INFO "Disabling %s control group subsystem\n", 5669 ss->name); 5670 continue; 5671 } 5672 5673 if (cgroup1_ssid_disabled(ssid)) 5674 printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n", 5675 ss->name); 5676 5677 cgrp_dfl_root.subsys_mask |= 1 << ss->id; 5678 5679 /* implicit controllers must be threaded too */ 5680 WARN_ON(ss->implicit_on_dfl && !ss->threaded); 5681 5682 if (ss->implicit_on_dfl) 5683 cgrp_dfl_implicit_ss_mask |= 1 << ss->id; 5684 else if (!ss->dfl_cftypes) 5685 cgrp_dfl_inhibit_ss_mask |= 1 << ss->id; 5686 5687 if (ss->threaded) 5688 cgrp_dfl_threaded_ss_mask |= 1 << ss->id; 5689 5690 if (ss->dfl_cftypes == ss->legacy_cftypes) { 5691 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes)); 5692 } else { 5693 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes)); 5694 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes)); 5695 } 5696 5697 if (ss->bind) 5698 ss->bind(init_css_set.subsys[ssid]); 5699 5700 mutex_lock(&cgroup_mutex); 5701 css_populate_dir(init_css_set.subsys[ssid]); 5702 mutex_unlock(&cgroup_mutex); 5703 } 5704 5705 /* init_css_set.subsys[] has been updated, re-hash */ 5706 hash_del(&init_css_set.hlist); 5707 hash_add(css_set_table, &init_css_set.hlist, 5708 css_set_hash(init_css_set.subsys)); 5709 5710 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup")); 5711 WARN_ON(register_filesystem(&cgroup_fs_type)); 5712 WARN_ON(register_filesystem(&cgroup2_fs_type)); 5713 WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show)); 5714 5715 return 0; 5716 } 5717 5718 static int __init cgroup_wq_init(void) 5719 { 5720 /* 5721 * There isn't much point in executing destruction path in 5722 * parallel. Good chunk is serialized with cgroup_mutex anyway. 5723 * Use 1 for @max_active. 5724 * 5725 * We would prefer to do this in cgroup_init() above, but that 5726 * is called before init_workqueues(): so leave this until after. 5727 */ 5728 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1); 5729 BUG_ON(!cgroup_destroy_wq); 5730 return 0; 5731 } 5732 core_initcall(cgroup_wq_init); 5733 5734 void cgroup_path_from_kernfs_id(const union kernfs_node_id *id, 5735 char *buf, size_t buflen) 5736 { 5737 struct kernfs_node *kn; 5738 5739 kn = kernfs_get_node_by_id(cgrp_dfl_root.kf_root, id); 5740 if (!kn) 5741 return; 5742 kernfs_path(kn, buf, buflen); 5743 kernfs_put(kn); 5744 } 5745 5746 /* 5747 * proc_cgroup_show() 5748 * - Print task's cgroup paths into seq_file, one line for each hierarchy 5749 * - Used for /proc/<pid>/cgroup. 5750 */ 5751 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns, 5752 struct pid *pid, struct task_struct *tsk) 5753 { 5754 char *buf; 5755 int retval; 5756 struct cgroup_root *root; 5757 5758 retval = -ENOMEM; 5759 buf = kmalloc(PATH_MAX, GFP_KERNEL); 5760 if (!buf) 5761 goto out; 5762 5763 mutex_lock(&cgroup_mutex); 5764 spin_lock_irq(&css_set_lock); 5765 5766 for_each_root(root) { 5767 struct cgroup_subsys *ss; 5768 struct cgroup *cgrp; 5769 int ssid, count = 0; 5770 5771 if (root == &cgrp_dfl_root && !cgrp_dfl_visible) 5772 continue; 5773 5774 seq_printf(m, "%d:", root->hierarchy_id); 5775 if (root != &cgrp_dfl_root) 5776 for_each_subsys(ss, ssid) 5777 if (root->subsys_mask & (1 << ssid)) 5778 seq_printf(m, "%s%s", count++ ? "," : "", 5779 ss->legacy_name); 5780 if (strlen(root->name)) 5781 seq_printf(m, "%sname=%s", count ? "," : "", 5782 root->name); 5783 seq_putc(m, ':'); 5784 5785 cgrp = task_cgroup_from_root(tsk, root); 5786 5787 /* 5788 * On traditional hierarchies, all zombie tasks show up as 5789 * belonging to the root cgroup. On the default hierarchy, 5790 * while a zombie doesn't show up in "cgroup.procs" and 5791 * thus can't be migrated, its /proc/PID/cgroup keeps 5792 * reporting the cgroup it belonged to before exiting. If 5793 * the cgroup is removed before the zombie is reaped, 5794 * " (deleted)" is appended to the cgroup path. 5795 */ 5796 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) { 5797 retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX, 5798 current->nsproxy->cgroup_ns); 5799 if (retval >= PATH_MAX) 5800 retval = -ENAMETOOLONG; 5801 if (retval < 0) 5802 goto out_unlock; 5803 5804 seq_puts(m, buf); 5805 } else { 5806 seq_puts(m, "/"); 5807 } 5808 5809 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp)) 5810 seq_puts(m, " (deleted)\n"); 5811 else 5812 seq_putc(m, '\n'); 5813 } 5814 5815 retval = 0; 5816 out_unlock: 5817 spin_unlock_irq(&css_set_lock); 5818 mutex_unlock(&cgroup_mutex); 5819 kfree(buf); 5820 out: 5821 return retval; 5822 } 5823 5824 /** 5825 * cgroup_fork - initialize cgroup related fields during copy_process() 5826 * @child: pointer to task_struct of forking parent process. 5827 * 5828 * A task is associated with the init_css_set until cgroup_post_fork() 5829 * attaches it to the parent's css_set. Empty cg_list indicates that 5830 * @child isn't holding reference to its css_set. 5831 */ 5832 void cgroup_fork(struct task_struct *child) 5833 { 5834 RCU_INIT_POINTER(child->cgroups, &init_css_set); 5835 INIT_LIST_HEAD(&child->cg_list); 5836 } 5837 5838 /** 5839 * cgroup_can_fork - called on a new task before the process is exposed 5840 * @child: the task in question. 5841 * 5842 * This calls the subsystem can_fork() callbacks. If the can_fork() callback 5843 * returns an error, the fork aborts with that error code. This allows for 5844 * a cgroup subsystem to conditionally allow or deny new forks. 5845 */ 5846 int cgroup_can_fork(struct task_struct *child) 5847 { 5848 struct cgroup_subsys *ss; 5849 int i, j, ret; 5850 5851 do_each_subsys_mask(ss, i, have_canfork_callback) { 5852 ret = ss->can_fork(child); 5853 if (ret) 5854 goto out_revert; 5855 } while_each_subsys_mask(); 5856 5857 return 0; 5858 5859 out_revert: 5860 for_each_subsys(ss, j) { 5861 if (j >= i) 5862 break; 5863 if (ss->cancel_fork) 5864 ss->cancel_fork(child); 5865 } 5866 5867 return ret; 5868 } 5869 5870 /** 5871 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork() 5872 * @child: the task in question 5873 * 5874 * This calls the cancel_fork() callbacks if a fork failed *after* 5875 * cgroup_can_fork() succeded. 5876 */ 5877 void cgroup_cancel_fork(struct task_struct *child) 5878 { 5879 struct cgroup_subsys *ss; 5880 int i; 5881 5882 for_each_subsys(ss, i) 5883 if (ss->cancel_fork) 5884 ss->cancel_fork(child); 5885 } 5886 5887 /** 5888 * cgroup_post_fork - called on a new task after adding it to the task list 5889 * @child: the task in question 5890 * 5891 * Adds the task to the list running through its css_set if necessary and 5892 * call the subsystem fork() callbacks. Has to be after the task is 5893 * visible on the task list in case we race with the first call to 5894 * cgroup_task_iter_start() - to guarantee that the new task ends up on its 5895 * list. 5896 */ 5897 void cgroup_post_fork(struct task_struct *child) 5898 { 5899 struct cgroup_subsys *ss; 5900 int i; 5901 5902 /* 5903 * This may race against cgroup_enable_task_cg_lists(). As that 5904 * function sets use_task_css_set_links before grabbing 5905 * tasklist_lock and we just went through tasklist_lock to add 5906 * @child, it's guaranteed that either we see the set 5907 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees 5908 * @child during its iteration. 5909 * 5910 * If we won the race, @child is associated with %current's 5911 * css_set. Grabbing css_set_lock guarantees both that the 5912 * association is stable, and, on completion of the parent's 5913 * migration, @child is visible in the source of migration or 5914 * already in the destination cgroup. This guarantee is necessary 5915 * when implementing operations which need to migrate all tasks of 5916 * a cgroup to another. 5917 * 5918 * Note that if we lose to cgroup_enable_task_cg_lists(), @child 5919 * will remain in init_css_set. This is safe because all tasks are 5920 * in the init_css_set before cg_links is enabled and there's no 5921 * operation which transfers all tasks out of init_css_set. 5922 */ 5923 if (use_task_css_set_links) { 5924 struct css_set *cset; 5925 5926 spin_lock_irq(&css_set_lock); 5927 cset = task_css_set(current); 5928 if (list_empty(&child->cg_list)) { 5929 get_css_set(cset); 5930 cset->nr_tasks++; 5931 css_set_move_task(child, NULL, cset, false); 5932 } 5933 5934 /* 5935 * If the cgroup has to be frozen, the new task has too. 5936 * Let's set the JOBCTL_TRAP_FREEZE jobctl bit to get 5937 * the task into the frozen state. 5938 */ 5939 if (unlikely(cgroup_task_freeze(child))) { 5940 spin_lock(&child->sighand->siglock); 5941 WARN_ON_ONCE(child->frozen); 5942 child->jobctl |= JOBCTL_TRAP_FREEZE; 5943 spin_unlock(&child->sighand->siglock); 5944 5945 /* 5946 * Calling cgroup_update_frozen() isn't required here, 5947 * because it will be called anyway a bit later 5948 * from do_freezer_trap(). So we avoid cgroup's 5949 * transient switch from the frozen state and back. 5950 */ 5951 } 5952 5953 spin_unlock_irq(&css_set_lock); 5954 } 5955 5956 /* 5957 * Call ss->fork(). This must happen after @child is linked on 5958 * css_set; otherwise, @child might change state between ->fork() 5959 * and addition to css_set. 5960 */ 5961 do_each_subsys_mask(ss, i, have_fork_callback) { 5962 ss->fork(child); 5963 } while_each_subsys_mask(); 5964 } 5965 5966 /** 5967 * cgroup_exit - detach cgroup from exiting task 5968 * @tsk: pointer to task_struct of exiting process 5969 * 5970 * Description: Detach cgroup from @tsk and release it. 5971 * 5972 * Note that cgroups marked notify_on_release force every task in 5973 * them to take the global cgroup_mutex mutex when exiting. 5974 * This could impact scaling on very large systems. Be reluctant to 5975 * use notify_on_release cgroups where very high task exit scaling 5976 * is required on large systems. 5977 * 5978 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We 5979 * call cgroup_exit() while the task is still competent to handle 5980 * notify_on_release(), then leave the task attached to the root cgroup in 5981 * each hierarchy for the remainder of its exit. No need to bother with 5982 * init_css_set refcnting. init_css_set never goes away and we can't race 5983 * with migration path - PF_EXITING is visible to migration path. 5984 */ 5985 void cgroup_exit(struct task_struct *tsk) 5986 { 5987 struct cgroup_subsys *ss; 5988 struct css_set *cset; 5989 int i; 5990 5991 /* 5992 * Unlink from @tsk from its css_set. As migration path can't race 5993 * with us, we can check css_set and cg_list without synchronization. 5994 */ 5995 cset = task_css_set(tsk); 5996 5997 if (!list_empty(&tsk->cg_list)) { 5998 spin_lock_irq(&css_set_lock); 5999 css_set_move_task(tsk, cset, NULL, false); 6000 cset->nr_tasks--; 6001 6002 WARN_ON_ONCE(cgroup_task_frozen(tsk)); 6003 if (unlikely(cgroup_task_freeze(tsk))) 6004 cgroup_update_frozen(task_dfl_cgroup(tsk)); 6005 6006 spin_unlock_irq(&css_set_lock); 6007 } else { 6008 get_css_set(cset); 6009 } 6010 6011 /* see cgroup_post_fork() for details */ 6012 do_each_subsys_mask(ss, i, have_exit_callback) { 6013 ss->exit(tsk); 6014 } while_each_subsys_mask(); 6015 } 6016 6017 void cgroup_release(struct task_struct *task) 6018 { 6019 struct cgroup_subsys *ss; 6020 int ssid; 6021 6022 do_each_subsys_mask(ss, ssid, have_release_callback) { 6023 ss->release(task); 6024 } while_each_subsys_mask(); 6025 } 6026 6027 void cgroup_free(struct task_struct *task) 6028 { 6029 struct css_set *cset = task_css_set(task); 6030 put_css_set(cset); 6031 } 6032 6033 static int __init cgroup_disable(char *str) 6034 { 6035 struct cgroup_subsys *ss; 6036 char *token; 6037 int i; 6038 6039 while ((token = strsep(&str, ",")) != NULL) { 6040 if (!*token) 6041 continue; 6042 6043 for_each_subsys(ss, i) { 6044 if (strcmp(token, ss->name) && 6045 strcmp(token, ss->legacy_name)) 6046 continue; 6047 cgroup_disable_mask |= 1 << i; 6048 } 6049 } 6050 return 1; 6051 } 6052 __setup("cgroup_disable=", cgroup_disable); 6053 6054 void __init __weak enable_debug_cgroup(void) { } 6055 6056 static int __init enable_cgroup_debug(char *str) 6057 { 6058 cgroup_debug = true; 6059 enable_debug_cgroup(); 6060 return 1; 6061 } 6062 __setup("cgroup_debug", enable_cgroup_debug); 6063 6064 /** 6065 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry 6066 * @dentry: directory dentry of interest 6067 * @ss: subsystem of interest 6068 * 6069 * If @dentry is a directory for a cgroup which has @ss enabled on it, try 6070 * to get the corresponding css and return it. If such css doesn't exist 6071 * or can't be pinned, an ERR_PTR value is returned. 6072 */ 6073 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry, 6074 struct cgroup_subsys *ss) 6075 { 6076 struct kernfs_node *kn = kernfs_node_from_dentry(dentry); 6077 struct file_system_type *s_type = dentry->d_sb->s_type; 6078 struct cgroup_subsys_state *css = NULL; 6079 struct cgroup *cgrp; 6080 6081 /* is @dentry a cgroup dir? */ 6082 if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) || 6083 !kn || kernfs_type(kn) != KERNFS_DIR) 6084 return ERR_PTR(-EBADF); 6085 6086 rcu_read_lock(); 6087 6088 /* 6089 * This path doesn't originate from kernfs and @kn could already 6090 * have been or be removed at any point. @kn->priv is RCU 6091 * protected for this access. See css_release_work_fn() for details. 6092 */ 6093 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); 6094 if (cgrp) 6095 css = cgroup_css(cgrp, ss); 6096 6097 if (!css || !css_tryget_online(css)) 6098 css = ERR_PTR(-ENOENT); 6099 6100 rcu_read_unlock(); 6101 return css; 6102 } 6103 6104 /** 6105 * css_from_id - lookup css by id 6106 * @id: the cgroup id 6107 * @ss: cgroup subsys to be looked into 6108 * 6109 * Returns the css if there's valid one with @id, otherwise returns NULL. 6110 * Should be called under rcu_read_lock(). 6111 */ 6112 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss) 6113 { 6114 WARN_ON_ONCE(!rcu_read_lock_held()); 6115 return idr_find(&ss->css_idr, id); 6116 } 6117 6118 /** 6119 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path 6120 * @path: path on the default hierarchy 6121 * 6122 * Find the cgroup at @path on the default hierarchy, increment its 6123 * reference count and return it. Returns pointer to the found cgroup on 6124 * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR) 6125 * if @path points to a non-directory. 6126 */ 6127 struct cgroup *cgroup_get_from_path(const char *path) 6128 { 6129 struct kernfs_node *kn; 6130 struct cgroup *cgrp; 6131 6132 mutex_lock(&cgroup_mutex); 6133 6134 kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path); 6135 if (kn) { 6136 if (kernfs_type(kn) == KERNFS_DIR) { 6137 cgrp = kn->priv; 6138 cgroup_get_live(cgrp); 6139 } else { 6140 cgrp = ERR_PTR(-ENOTDIR); 6141 } 6142 kernfs_put(kn); 6143 } else { 6144 cgrp = ERR_PTR(-ENOENT); 6145 } 6146 6147 mutex_unlock(&cgroup_mutex); 6148 return cgrp; 6149 } 6150 EXPORT_SYMBOL_GPL(cgroup_get_from_path); 6151 6152 /** 6153 * cgroup_get_from_fd - get a cgroup pointer from a fd 6154 * @fd: fd obtained by open(cgroup2_dir) 6155 * 6156 * Find the cgroup from a fd which should be obtained 6157 * by opening a cgroup directory. Returns a pointer to the 6158 * cgroup on success. ERR_PTR is returned if the cgroup 6159 * cannot be found. 6160 */ 6161 struct cgroup *cgroup_get_from_fd(int fd) 6162 { 6163 struct cgroup_subsys_state *css; 6164 struct cgroup *cgrp; 6165 struct file *f; 6166 6167 f = fget_raw(fd); 6168 if (!f) 6169 return ERR_PTR(-EBADF); 6170 6171 css = css_tryget_online_from_dir(f->f_path.dentry, NULL); 6172 fput(f); 6173 if (IS_ERR(css)) 6174 return ERR_CAST(css); 6175 6176 cgrp = css->cgroup; 6177 if (!cgroup_on_dfl(cgrp)) { 6178 cgroup_put(cgrp); 6179 return ERR_PTR(-EBADF); 6180 } 6181 6182 return cgrp; 6183 } 6184 EXPORT_SYMBOL_GPL(cgroup_get_from_fd); 6185 6186 /* 6187 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data 6188 * definition in cgroup-defs.h. 6189 */ 6190 #ifdef CONFIG_SOCK_CGROUP_DATA 6191 6192 #if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID) 6193 6194 DEFINE_SPINLOCK(cgroup_sk_update_lock); 6195 static bool cgroup_sk_alloc_disabled __read_mostly; 6196 6197 void cgroup_sk_alloc_disable(void) 6198 { 6199 if (cgroup_sk_alloc_disabled) 6200 return; 6201 pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n"); 6202 cgroup_sk_alloc_disabled = true; 6203 } 6204 6205 #else 6206 6207 #define cgroup_sk_alloc_disabled false 6208 6209 #endif 6210 6211 void cgroup_sk_alloc(struct sock_cgroup_data *skcd) 6212 { 6213 if (cgroup_sk_alloc_disabled) 6214 return; 6215 6216 /* Socket clone path */ 6217 if (skcd->val) { 6218 /* 6219 * We might be cloning a socket which is left in an empty 6220 * cgroup and the cgroup might have already been rmdir'd. 6221 * Don't use cgroup_get_live(). 6222 */ 6223 cgroup_get(sock_cgroup_ptr(skcd)); 6224 return; 6225 } 6226 6227 rcu_read_lock(); 6228 6229 while (true) { 6230 struct css_set *cset; 6231 6232 cset = task_css_set(current); 6233 if (likely(cgroup_tryget(cset->dfl_cgrp))) { 6234 skcd->val = (unsigned long)cset->dfl_cgrp; 6235 break; 6236 } 6237 cpu_relax(); 6238 } 6239 6240 rcu_read_unlock(); 6241 } 6242 6243 void cgroup_sk_free(struct sock_cgroup_data *skcd) 6244 { 6245 cgroup_put(sock_cgroup_ptr(skcd)); 6246 } 6247 6248 #endif /* CONFIG_SOCK_CGROUP_DATA */ 6249 6250 #ifdef CONFIG_CGROUP_BPF 6251 int cgroup_bpf_attach(struct cgroup *cgrp, struct bpf_prog *prog, 6252 enum bpf_attach_type type, u32 flags) 6253 { 6254 int ret; 6255 6256 mutex_lock(&cgroup_mutex); 6257 ret = __cgroup_bpf_attach(cgrp, prog, type, flags); 6258 mutex_unlock(&cgroup_mutex); 6259 return ret; 6260 } 6261 int cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog, 6262 enum bpf_attach_type type, u32 flags) 6263 { 6264 int ret; 6265 6266 mutex_lock(&cgroup_mutex); 6267 ret = __cgroup_bpf_detach(cgrp, prog, type); 6268 mutex_unlock(&cgroup_mutex); 6269 return ret; 6270 } 6271 int cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr, 6272 union bpf_attr __user *uattr) 6273 { 6274 int ret; 6275 6276 mutex_lock(&cgroup_mutex); 6277 ret = __cgroup_bpf_query(cgrp, attr, uattr); 6278 mutex_unlock(&cgroup_mutex); 6279 return ret; 6280 } 6281 #endif /* CONFIG_CGROUP_BPF */ 6282 6283 #ifdef CONFIG_SYSFS 6284 static ssize_t show_delegatable_files(struct cftype *files, char *buf, 6285 ssize_t size, const char *prefix) 6286 { 6287 struct cftype *cft; 6288 ssize_t ret = 0; 6289 6290 for (cft = files; cft && cft->name[0] != '\0'; cft++) { 6291 if (!(cft->flags & CFTYPE_NS_DELEGATABLE)) 6292 continue; 6293 6294 if (prefix) 6295 ret += snprintf(buf + ret, size - ret, "%s.", prefix); 6296 6297 ret += snprintf(buf + ret, size - ret, "%s\n", cft->name); 6298 6299 if (WARN_ON(ret >= size)) 6300 break; 6301 } 6302 6303 return ret; 6304 } 6305 6306 static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr, 6307 char *buf) 6308 { 6309 struct cgroup_subsys *ss; 6310 int ssid; 6311 ssize_t ret = 0; 6312 6313 ret = show_delegatable_files(cgroup_base_files, buf, PAGE_SIZE - ret, 6314 NULL); 6315 6316 for_each_subsys(ss, ssid) 6317 ret += show_delegatable_files(ss->dfl_cftypes, buf + ret, 6318 PAGE_SIZE - ret, 6319 cgroup_subsys_name[ssid]); 6320 6321 return ret; 6322 } 6323 static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate); 6324 6325 static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr, 6326 char *buf) 6327 { 6328 return snprintf(buf, PAGE_SIZE, "nsdelegate\n"); 6329 } 6330 static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features); 6331 6332 static struct attribute *cgroup_sysfs_attrs[] = { 6333 &cgroup_delegate_attr.attr, 6334 &cgroup_features_attr.attr, 6335 NULL, 6336 }; 6337 6338 static const struct attribute_group cgroup_sysfs_attr_group = { 6339 .attrs = cgroup_sysfs_attrs, 6340 .name = "cgroup", 6341 }; 6342 6343 static int __init cgroup_sysfs_init(void) 6344 { 6345 return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group); 6346 } 6347 subsys_initcall(cgroup_sysfs_init); 6348 #endif /* CONFIG_SYSFS */ 6349