xref: /openbmc/linux/kernel/cgroup/cgroup.c (revision f519f0be)
1 /*
2  *  Generic process-grouping system.
3  *
4  *  Based originally on the cpuset system, extracted by Paul Menage
5  *  Copyright (C) 2006 Google, Inc
6  *
7  *  Notifications support
8  *  Copyright (C) 2009 Nokia Corporation
9  *  Author: Kirill A. Shutemov
10  *
11  *  Copyright notices from the original cpuset code:
12  *  --------------------------------------------------
13  *  Copyright (C) 2003 BULL SA.
14  *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
15  *
16  *  Portions derived from Patrick Mochel's sysfs code.
17  *  sysfs is Copyright (c) 2001-3 Patrick Mochel
18  *
19  *  2003-10-10 Written by Simon Derr.
20  *  2003-10-22 Updates by Stephen Hemminger.
21  *  2004 May-July Rework by Paul Jackson.
22  *  ---------------------------------------------------
23  *
24  *  This file is subject to the terms and conditions of the GNU General Public
25  *  License.  See the file COPYING in the main directory of the Linux
26  *  distribution for more details.
27  */
28 
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 
31 #include "cgroup-internal.h"
32 
33 #include <linux/cred.h>
34 #include <linux/errno.h>
35 #include <linux/init_task.h>
36 #include <linux/kernel.h>
37 #include <linux/magic.h>
38 #include <linux/mutex.h>
39 #include <linux/mount.h>
40 #include <linux/pagemap.h>
41 #include <linux/proc_fs.h>
42 #include <linux/rcupdate.h>
43 #include <linux/sched.h>
44 #include <linux/sched/task.h>
45 #include <linux/slab.h>
46 #include <linux/spinlock.h>
47 #include <linux/percpu-rwsem.h>
48 #include <linux/string.h>
49 #include <linux/hashtable.h>
50 #include <linux/idr.h>
51 #include <linux/kthread.h>
52 #include <linux/atomic.h>
53 #include <linux/cpuset.h>
54 #include <linux/proc_ns.h>
55 #include <linux/nsproxy.h>
56 #include <linux/file.h>
57 #include <linux/fs_parser.h>
58 #include <linux/sched/cputime.h>
59 #include <linux/psi.h>
60 #include <net/sock.h>
61 
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/cgroup.h>
64 
65 #define CGROUP_FILE_NAME_MAX		(MAX_CGROUP_TYPE_NAMELEN +	\
66 					 MAX_CFTYPE_NAME + 2)
67 /* let's not notify more than 100 times per second */
68 #define CGROUP_FILE_NOTIFY_MIN_INTV	DIV_ROUND_UP(HZ, 100)
69 
70 /*
71  * cgroup_mutex is the master lock.  Any modification to cgroup or its
72  * hierarchy must be performed while holding it.
73  *
74  * css_set_lock protects task->cgroups pointer, the list of css_set
75  * objects, and the chain of tasks off each css_set.
76  *
77  * These locks are exported if CONFIG_PROVE_RCU so that accessors in
78  * cgroup.h can use them for lockdep annotations.
79  */
80 DEFINE_MUTEX(cgroup_mutex);
81 DEFINE_SPINLOCK(css_set_lock);
82 
83 #ifdef CONFIG_PROVE_RCU
84 EXPORT_SYMBOL_GPL(cgroup_mutex);
85 EXPORT_SYMBOL_GPL(css_set_lock);
86 #endif
87 
88 DEFINE_SPINLOCK(trace_cgroup_path_lock);
89 char trace_cgroup_path[TRACE_CGROUP_PATH_LEN];
90 bool cgroup_debug __read_mostly;
91 
92 /*
93  * Protects cgroup_idr and css_idr so that IDs can be released without
94  * grabbing cgroup_mutex.
95  */
96 static DEFINE_SPINLOCK(cgroup_idr_lock);
97 
98 /*
99  * Protects cgroup_file->kn for !self csses.  It synchronizes notifications
100  * against file removal/re-creation across css hiding.
101  */
102 static DEFINE_SPINLOCK(cgroup_file_kn_lock);
103 
104 struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
105 
106 #define cgroup_assert_mutex_or_rcu_locked()				\
107 	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
108 			   !lockdep_is_held(&cgroup_mutex),		\
109 			   "cgroup_mutex or RCU read lock required");
110 
111 /*
112  * cgroup destruction makes heavy use of work items and there can be a lot
113  * of concurrent destructions.  Use a separate workqueue so that cgroup
114  * destruction work items don't end up filling up max_active of system_wq
115  * which may lead to deadlock.
116  */
117 static struct workqueue_struct *cgroup_destroy_wq;
118 
119 /* generate an array of cgroup subsystem pointers */
120 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
121 struct cgroup_subsys *cgroup_subsys[] = {
122 #include <linux/cgroup_subsys.h>
123 };
124 #undef SUBSYS
125 
126 /* array of cgroup subsystem names */
127 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
128 static const char *cgroup_subsys_name[] = {
129 #include <linux/cgroup_subsys.h>
130 };
131 #undef SUBSYS
132 
133 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
134 #define SUBSYS(_x)								\
135 	DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key);			\
136 	DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key);			\
137 	EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key);			\
138 	EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
139 #include <linux/cgroup_subsys.h>
140 #undef SUBSYS
141 
142 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
143 static struct static_key_true *cgroup_subsys_enabled_key[] = {
144 #include <linux/cgroup_subsys.h>
145 };
146 #undef SUBSYS
147 
148 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
149 static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
150 #include <linux/cgroup_subsys.h>
151 };
152 #undef SUBSYS
153 
154 static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu);
155 
156 /*
157  * The default hierarchy, reserved for the subsystems that are otherwise
158  * unattached - it never has more than a single cgroup, and all tasks are
159  * part of that cgroup.
160  */
161 struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu };
162 EXPORT_SYMBOL_GPL(cgrp_dfl_root);
163 
164 /*
165  * The default hierarchy always exists but is hidden until mounted for the
166  * first time.  This is for backward compatibility.
167  */
168 static bool cgrp_dfl_visible;
169 
170 /* some controllers are not supported in the default hierarchy */
171 static u16 cgrp_dfl_inhibit_ss_mask;
172 
173 /* some controllers are implicitly enabled on the default hierarchy */
174 static u16 cgrp_dfl_implicit_ss_mask;
175 
176 /* some controllers can be threaded on the default hierarchy */
177 static u16 cgrp_dfl_threaded_ss_mask;
178 
179 /* The list of hierarchy roots */
180 LIST_HEAD(cgroup_roots);
181 static int cgroup_root_count;
182 
183 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
184 static DEFINE_IDR(cgroup_hierarchy_idr);
185 
186 /*
187  * Assign a monotonically increasing serial number to csses.  It guarantees
188  * cgroups with bigger numbers are newer than those with smaller numbers.
189  * Also, as csses are always appended to the parent's ->children list, it
190  * guarantees that sibling csses are always sorted in the ascending serial
191  * number order on the list.  Protected by cgroup_mutex.
192  */
193 static u64 css_serial_nr_next = 1;
194 
195 /*
196  * These bitmasks identify subsystems with specific features to avoid
197  * having to do iterative checks repeatedly.
198  */
199 static u16 have_fork_callback __read_mostly;
200 static u16 have_exit_callback __read_mostly;
201 static u16 have_release_callback __read_mostly;
202 static u16 have_canfork_callback __read_mostly;
203 
204 /* cgroup namespace for init task */
205 struct cgroup_namespace init_cgroup_ns = {
206 	.count		= REFCOUNT_INIT(2),
207 	.user_ns	= &init_user_ns,
208 	.ns.ops		= &cgroupns_operations,
209 	.ns.inum	= PROC_CGROUP_INIT_INO,
210 	.root_cset	= &init_css_set,
211 };
212 
213 static struct file_system_type cgroup2_fs_type;
214 static struct cftype cgroup_base_files[];
215 
216 static int cgroup_apply_control(struct cgroup *cgrp);
217 static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
218 static void css_task_iter_advance(struct css_task_iter *it);
219 static int cgroup_destroy_locked(struct cgroup *cgrp);
220 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
221 					      struct cgroup_subsys *ss);
222 static void css_release(struct percpu_ref *ref);
223 static void kill_css(struct cgroup_subsys_state *css);
224 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
225 			      struct cgroup *cgrp, struct cftype cfts[],
226 			      bool is_add);
227 
228 /**
229  * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
230  * @ssid: subsys ID of interest
231  *
232  * cgroup_subsys_enabled() can only be used with literal subsys names which
233  * is fine for individual subsystems but unsuitable for cgroup core.  This
234  * is slower static_key_enabled() based test indexed by @ssid.
235  */
236 bool cgroup_ssid_enabled(int ssid)
237 {
238 	if (CGROUP_SUBSYS_COUNT == 0)
239 		return false;
240 
241 	return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
242 }
243 
244 /**
245  * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
246  * @cgrp: the cgroup of interest
247  *
248  * The default hierarchy is the v2 interface of cgroup and this function
249  * can be used to test whether a cgroup is on the default hierarchy for
250  * cases where a subsystem should behave differnetly depending on the
251  * interface version.
252  *
253  * The set of behaviors which change on the default hierarchy are still
254  * being determined and the mount option is prefixed with __DEVEL__.
255  *
256  * List of changed behaviors:
257  *
258  * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
259  *   and "name" are disallowed.
260  *
261  * - When mounting an existing superblock, mount options should match.
262  *
263  * - Remount is disallowed.
264  *
265  * - rename(2) is disallowed.
266  *
267  * - "tasks" is removed.  Everything should be at process granularity.  Use
268  *   "cgroup.procs" instead.
269  *
270  * - "cgroup.procs" is not sorted.  pids will be unique unless they got
271  *   recycled inbetween reads.
272  *
273  * - "release_agent" and "notify_on_release" are removed.  Replacement
274  *   notification mechanism will be implemented.
275  *
276  * - "cgroup.clone_children" is removed.
277  *
278  * - "cgroup.subtree_populated" is available.  Its value is 0 if the cgroup
279  *   and its descendants contain no task; otherwise, 1.  The file also
280  *   generates kernfs notification which can be monitored through poll and
281  *   [di]notify when the value of the file changes.
282  *
283  * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
284  *   take masks of ancestors with non-empty cpus/mems, instead of being
285  *   moved to an ancestor.
286  *
287  * - cpuset: a task can be moved into an empty cpuset, and again it takes
288  *   masks of ancestors.
289  *
290  * - memcg: use_hierarchy is on by default and the cgroup file for the flag
291  *   is not created.
292  *
293  * - blkcg: blk-throttle becomes properly hierarchical.
294  *
295  * - debug: disallowed on the default hierarchy.
296  */
297 bool cgroup_on_dfl(const struct cgroup *cgrp)
298 {
299 	return cgrp->root == &cgrp_dfl_root;
300 }
301 
302 /* IDR wrappers which synchronize using cgroup_idr_lock */
303 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
304 			    gfp_t gfp_mask)
305 {
306 	int ret;
307 
308 	idr_preload(gfp_mask);
309 	spin_lock_bh(&cgroup_idr_lock);
310 	ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
311 	spin_unlock_bh(&cgroup_idr_lock);
312 	idr_preload_end();
313 	return ret;
314 }
315 
316 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
317 {
318 	void *ret;
319 
320 	spin_lock_bh(&cgroup_idr_lock);
321 	ret = idr_replace(idr, ptr, id);
322 	spin_unlock_bh(&cgroup_idr_lock);
323 	return ret;
324 }
325 
326 static void cgroup_idr_remove(struct idr *idr, int id)
327 {
328 	spin_lock_bh(&cgroup_idr_lock);
329 	idr_remove(idr, id);
330 	spin_unlock_bh(&cgroup_idr_lock);
331 }
332 
333 static bool cgroup_has_tasks(struct cgroup *cgrp)
334 {
335 	return cgrp->nr_populated_csets;
336 }
337 
338 bool cgroup_is_threaded(struct cgroup *cgrp)
339 {
340 	return cgrp->dom_cgrp != cgrp;
341 }
342 
343 /* can @cgrp host both domain and threaded children? */
344 static bool cgroup_is_mixable(struct cgroup *cgrp)
345 {
346 	/*
347 	 * Root isn't under domain level resource control exempting it from
348 	 * the no-internal-process constraint, so it can serve as a thread
349 	 * root and a parent of resource domains at the same time.
350 	 */
351 	return !cgroup_parent(cgrp);
352 }
353 
354 /* can @cgrp become a thread root? should always be true for a thread root */
355 static bool cgroup_can_be_thread_root(struct cgroup *cgrp)
356 {
357 	/* mixables don't care */
358 	if (cgroup_is_mixable(cgrp))
359 		return true;
360 
361 	/* domain roots can't be nested under threaded */
362 	if (cgroup_is_threaded(cgrp))
363 		return false;
364 
365 	/* can only have either domain or threaded children */
366 	if (cgrp->nr_populated_domain_children)
367 		return false;
368 
369 	/* and no domain controllers can be enabled */
370 	if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
371 		return false;
372 
373 	return true;
374 }
375 
376 /* is @cgrp root of a threaded subtree? */
377 bool cgroup_is_thread_root(struct cgroup *cgrp)
378 {
379 	/* thread root should be a domain */
380 	if (cgroup_is_threaded(cgrp))
381 		return false;
382 
383 	/* a domain w/ threaded children is a thread root */
384 	if (cgrp->nr_threaded_children)
385 		return true;
386 
387 	/*
388 	 * A domain which has tasks and explicit threaded controllers
389 	 * enabled is a thread root.
390 	 */
391 	if (cgroup_has_tasks(cgrp) &&
392 	    (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask))
393 		return true;
394 
395 	return false;
396 }
397 
398 /* a domain which isn't connected to the root w/o brekage can't be used */
399 static bool cgroup_is_valid_domain(struct cgroup *cgrp)
400 {
401 	/* the cgroup itself can be a thread root */
402 	if (cgroup_is_threaded(cgrp))
403 		return false;
404 
405 	/* but the ancestors can't be unless mixable */
406 	while ((cgrp = cgroup_parent(cgrp))) {
407 		if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp))
408 			return false;
409 		if (cgroup_is_threaded(cgrp))
410 			return false;
411 	}
412 
413 	return true;
414 }
415 
416 /* subsystems visibly enabled on a cgroup */
417 static u16 cgroup_control(struct cgroup *cgrp)
418 {
419 	struct cgroup *parent = cgroup_parent(cgrp);
420 	u16 root_ss_mask = cgrp->root->subsys_mask;
421 
422 	if (parent) {
423 		u16 ss_mask = parent->subtree_control;
424 
425 		/* threaded cgroups can only have threaded controllers */
426 		if (cgroup_is_threaded(cgrp))
427 			ss_mask &= cgrp_dfl_threaded_ss_mask;
428 		return ss_mask;
429 	}
430 
431 	if (cgroup_on_dfl(cgrp))
432 		root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
433 				  cgrp_dfl_implicit_ss_mask);
434 	return root_ss_mask;
435 }
436 
437 /* subsystems enabled on a cgroup */
438 static u16 cgroup_ss_mask(struct cgroup *cgrp)
439 {
440 	struct cgroup *parent = cgroup_parent(cgrp);
441 
442 	if (parent) {
443 		u16 ss_mask = parent->subtree_ss_mask;
444 
445 		/* threaded cgroups can only have threaded controllers */
446 		if (cgroup_is_threaded(cgrp))
447 			ss_mask &= cgrp_dfl_threaded_ss_mask;
448 		return ss_mask;
449 	}
450 
451 	return cgrp->root->subsys_mask;
452 }
453 
454 /**
455  * cgroup_css - obtain a cgroup's css for the specified subsystem
456  * @cgrp: the cgroup of interest
457  * @ss: the subsystem of interest (%NULL returns @cgrp->self)
458  *
459  * Return @cgrp's css (cgroup_subsys_state) associated with @ss.  This
460  * function must be called either under cgroup_mutex or rcu_read_lock() and
461  * the caller is responsible for pinning the returned css if it wants to
462  * keep accessing it outside the said locks.  This function may return
463  * %NULL if @cgrp doesn't have @subsys_id enabled.
464  */
465 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
466 					      struct cgroup_subsys *ss)
467 {
468 	if (ss)
469 		return rcu_dereference_check(cgrp->subsys[ss->id],
470 					lockdep_is_held(&cgroup_mutex));
471 	else
472 		return &cgrp->self;
473 }
474 
475 /**
476  * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem
477  * @cgrp: the cgroup of interest
478  * @ss: the subsystem of interest
479  *
480  * Find and get @cgrp's css assocaited with @ss.  If the css doesn't exist
481  * or is offline, %NULL is returned.
482  */
483 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp,
484 						     struct cgroup_subsys *ss)
485 {
486 	struct cgroup_subsys_state *css;
487 
488 	rcu_read_lock();
489 	css = cgroup_css(cgrp, ss);
490 	if (!css || !css_tryget_online(css))
491 		css = NULL;
492 	rcu_read_unlock();
493 
494 	return css;
495 }
496 
497 /**
498  * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss
499  * @cgrp: the cgroup of interest
500  * @ss: the subsystem of interest (%NULL returns @cgrp->self)
501  *
502  * Similar to cgroup_css() but returns the effective css, which is defined
503  * as the matching css of the nearest ancestor including self which has @ss
504  * enabled.  If @ss is associated with the hierarchy @cgrp is on, this
505  * function is guaranteed to return non-NULL css.
506  */
507 static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp,
508 							struct cgroup_subsys *ss)
509 {
510 	lockdep_assert_held(&cgroup_mutex);
511 
512 	if (!ss)
513 		return &cgrp->self;
514 
515 	/*
516 	 * This function is used while updating css associations and thus
517 	 * can't test the csses directly.  Test ss_mask.
518 	 */
519 	while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
520 		cgrp = cgroup_parent(cgrp);
521 		if (!cgrp)
522 			return NULL;
523 	}
524 
525 	return cgroup_css(cgrp, ss);
526 }
527 
528 /**
529  * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
530  * @cgrp: the cgroup of interest
531  * @ss: the subsystem of interest
532  *
533  * Find and get the effective css of @cgrp for @ss.  The effective css is
534  * defined as the matching css of the nearest ancestor including self which
535  * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
536  * the root css is returned, so this function always returns a valid css.
537  *
538  * The returned css is not guaranteed to be online, and therefore it is the
539  * callers responsiblity to tryget a reference for it.
540  */
541 struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
542 					 struct cgroup_subsys *ss)
543 {
544 	struct cgroup_subsys_state *css;
545 
546 	do {
547 		css = cgroup_css(cgrp, ss);
548 
549 		if (css)
550 			return css;
551 		cgrp = cgroup_parent(cgrp);
552 	} while (cgrp);
553 
554 	return init_css_set.subsys[ss->id];
555 }
556 
557 /**
558  * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
559  * @cgrp: the cgroup of interest
560  * @ss: the subsystem of interest
561  *
562  * Find and get the effective css of @cgrp for @ss.  The effective css is
563  * defined as the matching css of the nearest ancestor including self which
564  * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
565  * the root css is returned, so this function always returns a valid css.
566  * The returned css must be put using css_put().
567  */
568 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
569 					     struct cgroup_subsys *ss)
570 {
571 	struct cgroup_subsys_state *css;
572 
573 	rcu_read_lock();
574 
575 	do {
576 		css = cgroup_css(cgrp, ss);
577 
578 		if (css && css_tryget_online(css))
579 			goto out_unlock;
580 		cgrp = cgroup_parent(cgrp);
581 	} while (cgrp);
582 
583 	css = init_css_set.subsys[ss->id];
584 	css_get(css);
585 out_unlock:
586 	rcu_read_unlock();
587 	return css;
588 }
589 
590 static void cgroup_get_live(struct cgroup *cgrp)
591 {
592 	WARN_ON_ONCE(cgroup_is_dead(cgrp));
593 	css_get(&cgrp->self);
594 }
595 
596 /**
597  * __cgroup_task_count - count the number of tasks in a cgroup. The caller
598  * is responsible for taking the css_set_lock.
599  * @cgrp: the cgroup in question
600  */
601 int __cgroup_task_count(const struct cgroup *cgrp)
602 {
603 	int count = 0;
604 	struct cgrp_cset_link *link;
605 
606 	lockdep_assert_held(&css_set_lock);
607 
608 	list_for_each_entry(link, &cgrp->cset_links, cset_link)
609 		count += link->cset->nr_tasks;
610 
611 	return count;
612 }
613 
614 /**
615  * cgroup_task_count - count the number of tasks in a cgroup.
616  * @cgrp: the cgroup in question
617  */
618 int cgroup_task_count(const struct cgroup *cgrp)
619 {
620 	int count;
621 
622 	spin_lock_irq(&css_set_lock);
623 	count = __cgroup_task_count(cgrp);
624 	spin_unlock_irq(&css_set_lock);
625 
626 	return count;
627 }
628 
629 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
630 {
631 	struct cgroup *cgrp = of->kn->parent->priv;
632 	struct cftype *cft = of_cft(of);
633 
634 	/*
635 	 * This is open and unprotected implementation of cgroup_css().
636 	 * seq_css() is only called from a kernfs file operation which has
637 	 * an active reference on the file.  Because all the subsystem
638 	 * files are drained before a css is disassociated with a cgroup,
639 	 * the matching css from the cgroup's subsys table is guaranteed to
640 	 * be and stay valid until the enclosing operation is complete.
641 	 */
642 	if (cft->ss)
643 		return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
644 	else
645 		return &cgrp->self;
646 }
647 EXPORT_SYMBOL_GPL(of_css);
648 
649 /**
650  * for_each_css - iterate all css's of a cgroup
651  * @css: the iteration cursor
652  * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
653  * @cgrp: the target cgroup to iterate css's of
654  *
655  * Should be called under cgroup_[tree_]mutex.
656  */
657 #define for_each_css(css, ssid, cgrp)					\
658 	for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)	\
659 		if (!((css) = rcu_dereference_check(			\
660 				(cgrp)->subsys[(ssid)],			\
661 				lockdep_is_held(&cgroup_mutex)))) { }	\
662 		else
663 
664 /**
665  * for_each_e_css - iterate all effective css's of a cgroup
666  * @css: the iteration cursor
667  * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
668  * @cgrp: the target cgroup to iterate css's of
669  *
670  * Should be called under cgroup_[tree_]mutex.
671  */
672 #define for_each_e_css(css, ssid, cgrp)					    \
673 	for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)	    \
674 		if (!((css) = cgroup_e_css_by_mask(cgrp,		    \
675 						   cgroup_subsys[(ssid)]))) \
676 			;						    \
677 		else
678 
679 /**
680  * do_each_subsys_mask - filter for_each_subsys with a bitmask
681  * @ss: the iteration cursor
682  * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
683  * @ss_mask: the bitmask
684  *
685  * The block will only run for cases where the ssid-th bit (1 << ssid) of
686  * @ss_mask is set.
687  */
688 #define do_each_subsys_mask(ss, ssid, ss_mask) do {			\
689 	unsigned long __ss_mask = (ss_mask);				\
690 	if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */	\
691 		(ssid) = 0;						\
692 		break;							\
693 	}								\
694 	for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) {	\
695 		(ss) = cgroup_subsys[ssid];				\
696 		{
697 
698 #define while_each_subsys_mask()					\
699 		}							\
700 	}								\
701 } while (false)
702 
703 /* iterate over child cgrps, lock should be held throughout iteration */
704 #define cgroup_for_each_live_child(child, cgrp)				\
705 	list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
706 		if (({ lockdep_assert_held(&cgroup_mutex);		\
707 		       cgroup_is_dead(child); }))			\
708 			;						\
709 		else
710 
711 /* walk live descendants in preorder */
712 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)		\
713 	css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL))	\
714 		if (({ lockdep_assert_held(&cgroup_mutex);		\
715 		       (dsct) = (d_css)->cgroup;			\
716 		       cgroup_is_dead(dsct); }))			\
717 			;						\
718 		else
719 
720 /* walk live descendants in postorder */
721 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp)		\
722 	css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL))	\
723 		if (({ lockdep_assert_held(&cgroup_mutex);		\
724 		       (dsct) = (d_css)->cgroup;			\
725 		       cgroup_is_dead(dsct); }))			\
726 			;						\
727 		else
728 
729 /*
730  * The default css_set - used by init and its children prior to any
731  * hierarchies being mounted. It contains a pointer to the root state
732  * for each subsystem. Also used to anchor the list of css_sets. Not
733  * reference-counted, to improve performance when child cgroups
734  * haven't been created.
735  */
736 struct css_set init_css_set = {
737 	.refcount		= REFCOUNT_INIT(1),
738 	.dom_cset		= &init_css_set,
739 	.tasks			= LIST_HEAD_INIT(init_css_set.tasks),
740 	.mg_tasks		= LIST_HEAD_INIT(init_css_set.mg_tasks),
741 	.task_iters		= LIST_HEAD_INIT(init_css_set.task_iters),
742 	.threaded_csets		= LIST_HEAD_INIT(init_css_set.threaded_csets),
743 	.cgrp_links		= LIST_HEAD_INIT(init_css_set.cgrp_links),
744 	.mg_preload_node	= LIST_HEAD_INIT(init_css_set.mg_preload_node),
745 	.mg_node		= LIST_HEAD_INIT(init_css_set.mg_node),
746 
747 	/*
748 	 * The following field is re-initialized when this cset gets linked
749 	 * in cgroup_init().  However, let's initialize the field
750 	 * statically too so that the default cgroup can be accessed safely
751 	 * early during boot.
752 	 */
753 	.dfl_cgrp		= &cgrp_dfl_root.cgrp,
754 };
755 
756 static int css_set_count	= 1;	/* 1 for init_css_set */
757 
758 static bool css_set_threaded(struct css_set *cset)
759 {
760 	return cset->dom_cset != cset;
761 }
762 
763 /**
764  * css_set_populated - does a css_set contain any tasks?
765  * @cset: target css_set
766  *
767  * css_set_populated() should be the same as !!cset->nr_tasks at steady
768  * state. However, css_set_populated() can be called while a task is being
769  * added to or removed from the linked list before the nr_tasks is
770  * properly updated. Hence, we can't just look at ->nr_tasks here.
771  */
772 static bool css_set_populated(struct css_set *cset)
773 {
774 	lockdep_assert_held(&css_set_lock);
775 
776 	return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
777 }
778 
779 /**
780  * cgroup_update_populated - update the populated count of a cgroup
781  * @cgrp: the target cgroup
782  * @populated: inc or dec populated count
783  *
784  * One of the css_sets associated with @cgrp is either getting its first
785  * task or losing the last.  Update @cgrp->nr_populated_* accordingly.  The
786  * count is propagated towards root so that a given cgroup's
787  * nr_populated_children is zero iff none of its descendants contain any
788  * tasks.
789  *
790  * @cgrp's interface file "cgroup.populated" is zero if both
791  * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and
792  * 1 otherwise.  When the sum changes from or to zero, userland is notified
793  * that the content of the interface file has changed.  This can be used to
794  * detect when @cgrp and its descendants become populated or empty.
795  */
796 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
797 {
798 	struct cgroup *child = NULL;
799 	int adj = populated ? 1 : -1;
800 
801 	lockdep_assert_held(&css_set_lock);
802 
803 	do {
804 		bool was_populated = cgroup_is_populated(cgrp);
805 
806 		if (!child) {
807 			cgrp->nr_populated_csets += adj;
808 		} else {
809 			if (cgroup_is_threaded(child))
810 				cgrp->nr_populated_threaded_children += adj;
811 			else
812 				cgrp->nr_populated_domain_children += adj;
813 		}
814 
815 		if (was_populated == cgroup_is_populated(cgrp))
816 			break;
817 
818 		cgroup1_check_for_release(cgrp);
819 		TRACE_CGROUP_PATH(notify_populated, cgrp,
820 				  cgroup_is_populated(cgrp));
821 		cgroup_file_notify(&cgrp->events_file);
822 
823 		child = cgrp;
824 		cgrp = cgroup_parent(cgrp);
825 	} while (cgrp);
826 }
827 
828 /**
829  * css_set_update_populated - update populated state of a css_set
830  * @cset: target css_set
831  * @populated: whether @cset is populated or depopulated
832  *
833  * @cset is either getting the first task or losing the last.  Update the
834  * populated counters of all associated cgroups accordingly.
835  */
836 static void css_set_update_populated(struct css_set *cset, bool populated)
837 {
838 	struct cgrp_cset_link *link;
839 
840 	lockdep_assert_held(&css_set_lock);
841 
842 	list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
843 		cgroup_update_populated(link->cgrp, populated);
844 }
845 
846 /**
847  * css_set_move_task - move a task from one css_set to another
848  * @task: task being moved
849  * @from_cset: css_set @task currently belongs to (may be NULL)
850  * @to_cset: new css_set @task is being moved to (may be NULL)
851  * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
852  *
853  * Move @task from @from_cset to @to_cset.  If @task didn't belong to any
854  * css_set, @from_cset can be NULL.  If @task is being disassociated
855  * instead of moved, @to_cset can be NULL.
856  *
857  * This function automatically handles populated counter updates and
858  * css_task_iter adjustments but the caller is responsible for managing
859  * @from_cset and @to_cset's reference counts.
860  */
861 static void css_set_move_task(struct task_struct *task,
862 			      struct css_set *from_cset, struct css_set *to_cset,
863 			      bool use_mg_tasks)
864 {
865 	lockdep_assert_held(&css_set_lock);
866 
867 	if (to_cset && !css_set_populated(to_cset))
868 		css_set_update_populated(to_cset, true);
869 
870 	if (from_cset) {
871 		struct css_task_iter *it, *pos;
872 
873 		WARN_ON_ONCE(list_empty(&task->cg_list));
874 
875 		/*
876 		 * @task is leaving, advance task iterators which are
877 		 * pointing to it so that they can resume at the next
878 		 * position.  Advancing an iterator might remove it from
879 		 * the list, use safe walk.  See css_task_iter_advance*()
880 		 * for details.
881 		 */
882 		list_for_each_entry_safe(it, pos, &from_cset->task_iters,
883 					 iters_node)
884 			if (it->task_pos == &task->cg_list)
885 				css_task_iter_advance(it);
886 
887 		list_del_init(&task->cg_list);
888 		if (!css_set_populated(from_cset))
889 			css_set_update_populated(from_cset, false);
890 	} else {
891 		WARN_ON_ONCE(!list_empty(&task->cg_list));
892 	}
893 
894 	if (to_cset) {
895 		/*
896 		 * We are synchronized through cgroup_threadgroup_rwsem
897 		 * against PF_EXITING setting such that we can't race
898 		 * against cgroup_exit() changing the css_set to
899 		 * init_css_set and dropping the old one.
900 		 */
901 		WARN_ON_ONCE(task->flags & PF_EXITING);
902 
903 		cgroup_move_task(task, to_cset);
904 		list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
905 							     &to_cset->tasks);
906 	}
907 }
908 
909 /*
910  * hash table for cgroup groups. This improves the performance to find
911  * an existing css_set. This hash doesn't (currently) take into
912  * account cgroups in empty hierarchies.
913  */
914 #define CSS_SET_HASH_BITS	7
915 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
916 
917 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
918 {
919 	unsigned long key = 0UL;
920 	struct cgroup_subsys *ss;
921 	int i;
922 
923 	for_each_subsys(ss, i)
924 		key += (unsigned long)css[i];
925 	key = (key >> 16) ^ key;
926 
927 	return key;
928 }
929 
930 void put_css_set_locked(struct css_set *cset)
931 {
932 	struct cgrp_cset_link *link, *tmp_link;
933 	struct cgroup_subsys *ss;
934 	int ssid;
935 
936 	lockdep_assert_held(&css_set_lock);
937 
938 	if (!refcount_dec_and_test(&cset->refcount))
939 		return;
940 
941 	WARN_ON_ONCE(!list_empty(&cset->threaded_csets));
942 
943 	/* This css_set is dead. unlink it and release cgroup and css refs */
944 	for_each_subsys(ss, ssid) {
945 		list_del(&cset->e_cset_node[ssid]);
946 		css_put(cset->subsys[ssid]);
947 	}
948 	hash_del(&cset->hlist);
949 	css_set_count--;
950 
951 	list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
952 		list_del(&link->cset_link);
953 		list_del(&link->cgrp_link);
954 		if (cgroup_parent(link->cgrp))
955 			cgroup_put(link->cgrp);
956 		kfree(link);
957 	}
958 
959 	if (css_set_threaded(cset)) {
960 		list_del(&cset->threaded_csets_node);
961 		put_css_set_locked(cset->dom_cset);
962 	}
963 
964 	kfree_rcu(cset, rcu_head);
965 }
966 
967 /**
968  * compare_css_sets - helper function for find_existing_css_set().
969  * @cset: candidate css_set being tested
970  * @old_cset: existing css_set for a task
971  * @new_cgrp: cgroup that's being entered by the task
972  * @template: desired set of css pointers in css_set (pre-calculated)
973  *
974  * Returns true if "cset" matches "old_cset" except for the hierarchy
975  * which "new_cgrp" belongs to, for which it should match "new_cgrp".
976  */
977 static bool compare_css_sets(struct css_set *cset,
978 			     struct css_set *old_cset,
979 			     struct cgroup *new_cgrp,
980 			     struct cgroup_subsys_state *template[])
981 {
982 	struct cgroup *new_dfl_cgrp;
983 	struct list_head *l1, *l2;
984 
985 	/*
986 	 * On the default hierarchy, there can be csets which are
987 	 * associated with the same set of cgroups but different csses.
988 	 * Let's first ensure that csses match.
989 	 */
990 	if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
991 		return false;
992 
993 
994 	/* @cset's domain should match the default cgroup's */
995 	if (cgroup_on_dfl(new_cgrp))
996 		new_dfl_cgrp = new_cgrp;
997 	else
998 		new_dfl_cgrp = old_cset->dfl_cgrp;
999 
1000 	if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp)
1001 		return false;
1002 
1003 	/*
1004 	 * Compare cgroup pointers in order to distinguish between
1005 	 * different cgroups in hierarchies.  As different cgroups may
1006 	 * share the same effective css, this comparison is always
1007 	 * necessary.
1008 	 */
1009 	l1 = &cset->cgrp_links;
1010 	l2 = &old_cset->cgrp_links;
1011 	while (1) {
1012 		struct cgrp_cset_link *link1, *link2;
1013 		struct cgroup *cgrp1, *cgrp2;
1014 
1015 		l1 = l1->next;
1016 		l2 = l2->next;
1017 		/* See if we reached the end - both lists are equal length. */
1018 		if (l1 == &cset->cgrp_links) {
1019 			BUG_ON(l2 != &old_cset->cgrp_links);
1020 			break;
1021 		} else {
1022 			BUG_ON(l2 == &old_cset->cgrp_links);
1023 		}
1024 		/* Locate the cgroups associated with these links. */
1025 		link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
1026 		link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
1027 		cgrp1 = link1->cgrp;
1028 		cgrp2 = link2->cgrp;
1029 		/* Hierarchies should be linked in the same order. */
1030 		BUG_ON(cgrp1->root != cgrp2->root);
1031 
1032 		/*
1033 		 * If this hierarchy is the hierarchy of the cgroup
1034 		 * that's changing, then we need to check that this
1035 		 * css_set points to the new cgroup; if it's any other
1036 		 * hierarchy, then this css_set should point to the
1037 		 * same cgroup as the old css_set.
1038 		 */
1039 		if (cgrp1->root == new_cgrp->root) {
1040 			if (cgrp1 != new_cgrp)
1041 				return false;
1042 		} else {
1043 			if (cgrp1 != cgrp2)
1044 				return false;
1045 		}
1046 	}
1047 	return true;
1048 }
1049 
1050 /**
1051  * find_existing_css_set - init css array and find the matching css_set
1052  * @old_cset: the css_set that we're using before the cgroup transition
1053  * @cgrp: the cgroup that we're moving into
1054  * @template: out param for the new set of csses, should be clear on entry
1055  */
1056 static struct css_set *find_existing_css_set(struct css_set *old_cset,
1057 					struct cgroup *cgrp,
1058 					struct cgroup_subsys_state *template[])
1059 {
1060 	struct cgroup_root *root = cgrp->root;
1061 	struct cgroup_subsys *ss;
1062 	struct css_set *cset;
1063 	unsigned long key;
1064 	int i;
1065 
1066 	/*
1067 	 * Build the set of subsystem state objects that we want to see in the
1068 	 * new css_set. while subsystems can change globally, the entries here
1069 	 * won't change, so no need for locking.
1070 	 */
1071 	for_each_subsys(ss, i) {
1072 		if (root->subsys_mask & (1UL << i)) {
1073 			/*
1074 			 * @ss is in this hierarchy, so we want the
1075 			 * effective css from @cgrp.
1076 			 */
1077 			template[i] = cgroup_e_css_by_mask(cgrp, ss);
1078 		} else {
1079 			/*
1080 			 * @ss is not in this hierarchy, so we don't want
1081 			 * to change the css.
1082 			 */
1083 			template[i] = old_cset->subsys[i];
1084 		}
1085 	}
1086 
1087 	key = css_set_hash(template);
1088 	hash_for_each_possible(css_set_table, cset, hlist, key) {
1089 		if (!compare_css_sets(cset, old_cset, cgrp, template))
1090 			continue;
1091 
1092 		/* This css_set matches what we need */
1093 		return cset;
1094 	}
1095 
1096 	/* No existing cgroup group matched */
1097 	return NULL;
1098 }
1099 
1100 static void free_cgrp_cset_links(struct list_head *links_to_free)
1101 {
1102 	struct cgrp_cset_link *link, *tmp_link;
1103 
1104 	list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
1105 		list_del(&link->cset_link);
1106 		kfree(link);
1107 	}
1108 }
1109 
1110 /**
1111  * allocate_cgrp_cset_links - allocate cgrp_cset_links
1112  * @count: the number of links to allocate
1113  * @tmp_links: list_head the allocated links are put on
1114  *
1115  * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1116  * through ->cset_link.  Returns 0 on success or -errno.
1117  */
1118 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
1119 {
1120 	struct cgrp_cset_link *link;
1121 	int i;
1122 
1123 	INIT_LIST_HEAD(tmp_links);
1124 
1125 	for (i = 0; i < count; i++) {
1126 		link = kzalloc(sizeof(*link), GFP_KERNEL);
1127 		if (!link) {
1128 			free_cgrp_cset_links(tmp_links);
1129 			return -ENOMEM;
1130 		}
1131 		list_add(&link->cset_link, tmp_links);
1132 	}
1133 	return 0;
1134 }
1135 
1136 /**
1137  * link_css_set - a helper function to link a css_set to a cgroup
1138  * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
1139  * @cset: the css_set to be linked
1140  * @cgrp: the destination cgroup
1141  */
1142 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1143 			 struct cgroup *cgrp)
1144 {
1145 	struct cgrp_cset_link *link;
1146 
1147 	BUG_ON(list_empty(tmp_links));
1148 
1149 	if (cgroup_on_dfl(cgrp))
1150 		cset->dfl_cgrp = cgrp;
1151 
1152 	link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1153 	link->cset = cset;
1154 	link->cgrp = cgrp;
1155 
1156 	/*
1157 	 * Always add links to the tail of the lists so that the lists are
1158 	 * in choronological order.
1159 	 */
1160 	list_move_tail(&link->cset_link, &cgrp->cset_links);
1161 	list_add_tail(&link->cgrp_link, &cset->cgrp_links);
1162 
1163 	if (cgroup_parent(cgrp))
1164 		cgroup_get_live(cgrp);
1165 }
1166 
1167 /**
1168  * find_css_set - return a new css_set with one cgroup updated
1169  * @old_cset: the baseline css_set
1170  * @cgrp: the cgroup to be updated
1171  *
1172  * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1173  * substituted into the appropriate hierarchy.
1174  */
1175 static struct css_set *find_css_set(struct css_set *old_cset,
1176 				    struct cgroup *cgrp)
1177 {
1178 	struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
1179 	struct css_set *cset;
1180 	struct list_head tmp_links;
1181 	struct cgrp_cset_link *link;
1182 	struct cgroup_subsys *ss;
1183 	unsigned long key;
1184 	int ssid;
1185 
1186 	lockdep_assert_held(&cgroup_mutex);
1187 
1188 	/* First see if we already have a cgroup group that matches
1189 	 * the desired set */
1190 	spin_lock_irq(&css_set_lock);
1191 	cset = find_existing_css_set(old_cset, cgrp, template);
1192 	if (cset)
1193 		get_css_set(cset);
1194 	spin_unlock_irq(&css_set_lock);
1195 
1196 	if (cset)
1197 		return cset;
1198 
1199 	cset = kzalloc(sizeof(*cset), GFP_KERNEL);
1200 	if (!cset)
1201 		return NULL;
1202 
1203 	/* Allocate all the cgrp_cset_link objects that we'll need */
1204 	if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1205 		kfree(cset);
1206 		return NULL;
1207 	}
1208 
1209 	refcount_set(&cset->refcount, 1);
1210 	cset->dom_cset = cset;
1211 	INIT_LIST_HEAD(&cset->tasks);
1212 	INIT_LIST_HEAD(&cset->mg_tasks);
1213 	INIT_LIST_HEAD(&cset->task_iters);
1214 	INIT_LIST_HEAD(&cset->threaded_csets);
1215 	INIT_HLIST_NODE(&cset->hlist);
1216 	INIT_LIST_HEAD(&cset->cgrp_links);
1217 	INIT_LIST_HEAD(&cset->mg_preload_node);
1218 	INIT_LIST_HEAD(&cset->mg_node);
1219 
1220 	/* Copy the set of subsystem state objects generated in
1221 	 * find_existing_css_set() */
1222 	memcpy(cset->subsys, template, sizeof(cset->subsys));
1223 
1224 	spin_lock_irq(&css_set_lock);
1225 	/* Add reference counts and links from the new css_set. */
1226 	list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1227 		struct cgroup *c = link->cgrp;
1228 
1229 		if (c->root == cgrp->root)
1230 			c = cgrp;
1231 		link_css_set(&tmp_links, cset, c);
1232 	}
1233 
1234 	BUG_ON(!list_empty(&tmp_links));
1235 
1236 	css_set_count++;
1237 
1238 	/* Add @cset to the hash table */
1239 	key = css_set_hash(cset->subsys);
1240 	hash_add(css_set_table, &cset->hlist, key);
1241 
1242 	for_each_subsys(ss, ssid) {
1243 		struct cgroup_subsys_state *css = cset->subsys[ssid];
1244 
1245 		list_add_tail(&cset->e_cset_node[ssid],
1246 			      &css->cgroup->e_csets[ssid]);
1247 		css_get(css);
1248 	}
1249 
1250 	spin_unlock_irq(&css_set_lock);
1251 
1252 	/*
1253 	 * If @cset should be threaded, look up the matching dom_cset and
1254 	 * link them up.  We first fully initialize @cset then look for the
1255 	 * dom_cset.  It's simpler this way and safe as @cset is guaranteed
1256 	 * to stay empty until we return.
1257 	 */
1258 	if (cgroup_is_threaded(cset->dfl_cgrp)) {
1259 		struct css_set *dcset;
1260 
1261 		dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp);
1262 		if (!dcset) {
1263 			put_css_set(cset);
1264 			return NULL;
1265 		}
1266 
1267 		spin_lock_irq(&css_set_lock);
1268 		cset->dom_cset = dcset;
1269 		list_add_tail(&cset->threaded_csets_node,
1270 			      &dcset->threaded_csets);
1271 		spin_unlock_irq(&css_set_lock);
1272 	}
1273 
1274 	return cset;
1275 }
1276 
1277 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1278 {
1279 	struct cgroup *root_cgrp = kf_root->kn->priv;
1280 
1281 	return root_cgrp->root;
1282 }
1283 
1284 static int cgroup_init_root_id(struct cgroup_root *root)
1285 {
1286 	int id;
1287 
1288 	lockdep_assert_held(&cgroup_mutex);
1289 
1290 	id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1291 	if (id < 0)
1292 		return id;
1293 
1294 	root->hierarchy_id = id;
1295 	return 0;
1296 }
1297 
1298 static void cgroup_exit_root_id(struct cgroup_root *root)
1299 {
1300 	lockdep_assert_held(&cgroup_mutex);
1301 
1302 	idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1303 }
1304 
1305 void cgroup_free_root(struct cgroup_root *root)
1306 {
1307 	if (root) {
1308 		idr_destroy(&root->cgroup_idr);
1309 		kfree(root);
1310 	}
1311 }
1312 
1313 static void cgroup_destroy_root(struct cgroup_root *root)
1314 {
1315 	struct cgroup *cgrp = &root->cgrp;
1316 	struct cgrp_cset_link *link, *tmp_link;
1317 
1318 	trace_cgroup_destroy_root(root);
1319 
1320 	cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1321 
1322 	BUG_ON(atomic_read(&root->nr_cgrps));
1323 	BUG_ON(!list_empty(&cgrp->self.children));
1324 
1325 	/* Rebind all subsystems back to the default hierarchy */
1326 	WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
1327 
1328 	/*
1329 	 * Release all the links from cset_links to this hierarchy's
1330 	 * root cgroup
1331 	 */
1332 	spin_lock_irq(&css_set_lock);
1333 
1334 	list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1335 		list_del(&link->cset_link);
1336 		list_del(&link->cgrp_link);
1337 		kfree(link);
1338 	}
1339 
1340 	spin_unlock_irq(&css_set_lock);
1341 
1342 	if (!list_empty(&root->root_list)) {
1343 		list_del(&root->root_list);
1344 		cgroup_root_count--;
1345 	}
1346 
1347 	cgroup_exit_root_id(root);
1348 
1349 	mutex_unlock(&cgroup_mutex);
1350 
1351 	kernfs_destroy_root(root->kf_root);
1352 	cgroup_free_root(root);
1353 }
1354 
1355 /*
1356  * look up cgroup associated with current task's cgroup namespace on the
1357  * specified hierarchy
1358  */
1359 static struct cgroup *
1360 current_cgns_cgroup_from_root(struct cgroup_root *root)
1361 {
1362 	struct cgroup *res = NULL;
1363 	struct css_set *cset;
1364 
1365 	lockdep_assert_held(&css_set_lock);
1366 
1367 	rcu_read_lock();
1368 
1369 	cset = current->nsproxy->cgroup_ns->root_cset;
1370 	if (cset == &init_css_set) {
1371 		res = &root->cgrp;
1372 	} else {
1373 		struct cgrp_cset_link *link;
1374 
1375 		list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1376 			struct cgroup *c = link->cgrp;
1377 
1378 			if (c->root == root) {
1379 				res = c;
1380 				break;
1381 			}
1382 		}
1383 	}
1384 	rcu_read_unlock();
1385 
1386 	BUG_ON(!res);
1387 	return res;
1388 }
1389 
1390 /* look up cgroup associated with given css_set on the specified hierarchy */
1391 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1392 					    struct cgroup_root *root)
1393 {
1394 	struct cgroup *res = NULL;
1395 
1396 	lockdep_assert_held(&cgroup_mutex);
1397 	lockdep_assert_held(&css_set_lock);
1398 
1399 	if (cset == &init_css_set) {
1400 		res = &root->cgrp;
1401 	} else if (root == &cgrp_dfl_root) {
1402 		res = cset->dfl_cgrp;
1403 	} else {
1404 		struct cgrp_cset_link *link;
1405 
1406 		list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1407 			struct cgroup *c = link->cgrp;
1408 
1409 			if (c->root == root) {
1410 				res = c;
1411 				break;
1412 			}
1413 		}
1414 	}
1415 
1416 	BUG_ON(!res);
1417 	return res;
1418 }
1419 
1420 /*
1421  * Return the cgroup for "task" from the given hierarchy. Must be
1422  * called with cgroup_mutex and css_set_lock held.
1423  */
1424 struct cgroup *task_cgroup_from_root(struct task_struct *task,
1425 				     struct cgroup_root *root)
1426 {
1427 	/*
1428 	 * No need to lock the task - since we hold cgroup_mutex the
1429 	 * task can't change groups, so the only thing that can happen
1430 	 * is that it exits and its css is set back to init_css_set.
1431 	 */
1432 	return cset_cgroup_from_root(task_css_set(task), root);
1433 }
1434 
1435 /*
1436  * A task must hold cgroup_mutex to modify cgroups.
1437  *
1438  * Any task can increment and decrement the count field without lock.
1439  * So in general, code holding cgroup_mutex can't rely on the count
1440  * field not changing.  However, if the count goes to zero, then only
1441  * cgroup_attach_task() can increment it again.  Because a count of zero
1442  * means that no tasks are currently attached, therefore there is no
1443  * way a task attached to that cgroup can fork (the other way to
1444  * increment the count).  So code holding cgroup_mutex can safely
1445  * assume that if the count is zero, it will stay zero. Similarly, if
1446  * a task holds cgroup_mutex on a cgroup with zero count, it
1447  * knows that the cgroup won't be removed, as cgroup_rmdir()
1448  * needs that mutex.
1449  *
1450  * A cgroup can only be deleted if both its 'count' of using tasks
1451  * is zero, and its list of 'children' cgroups is empty.  Since all
1452  * tasks in the system use _some_ cgroup, and since there is always at
1453  * least one task in the system (init, pid == 1), therefore, root cgroup
1454  * always has either children cgroups and/or using tasks.  So we don't
1455  * need a special hack to ensure that root cgroup cannot be deleted.
1456  *
1457  * P.S.  One more locking exception.  RCU is used to guard the
1458  * update of a tasks cgroup pointer by cgroup_attach_task()
1459  */
1460 
1461 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1462 
1463 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1464 			      char *buf)
1465 {
1466 	struct cgroup_subsys *ss = cft->ss;
1467 
1468 	if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1469 	    !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
1470 		const char *dbg = (cft->flags & CFTYPE_DEBUG) ? ".__DEBUG__." : "";
1471 
1472 		snprintf(buf, CGROUP_FILE_NAME_MAX, "%s%s.%s",
1473 			 dbg, cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1474 			 cft->name);
1475 	} else {
1476 		strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1477 	}
1478 	return buf;
1479 }
1480 
1481 /**
1482  * cgroup_file_mode - deduce file mode of a control file
1483  * @cft: the control file in question
1484  *
1485  * S_IRUGO for read, S_IWUSR for write.
1486  */
1487 static umode_t cgroup_file_mode(const struct cftype *cft)
1488 {
1489 	umode_t mode = 0;
1490 
1491 	if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1492 		mode |= S_IRUGO;
1493 
1494 	if (cft->write_u64 || cft->write_s64 || cft->write) {
1495 		if (cft->flags & CFTYPE_WORLD_WRITABLE)
1496 			mode |= S_IWUGO;
1497 		else
1498 			mode |= S_IWUSR;
1499 	}
1500 
1501 	return mode;
1502 }
1503 
1504 /**
1505  * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1506  * @subtree_control: the new subtree_control mask to consider
1507  * @this_ss_mask: available subsystems
1508  *
1509  * On the default hierarchy, a subsystem may request other subsystems to be
1510  * enabled together through its ->depends_on mask.  In such cases, more
1511  * subsystems than specified in "cgroup.subtree_control" may be enabled.
1512  *
1513  * This function calculates which subsystems need to be enabled if
1514  * @subtree_control is to be applied while restricted to @this_ss_mask.
1515  */
1516 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
1517 {
1518 	u16 cur_ss_mask = subtree_control;
1519 	struct cgroup_subsys *ss;
1520 	int ssid;
1521 
1522 	lockdep_assert_held(&cgroup_mutex);
1523 
1524 	cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1525 
1526 	while (true) {
1527 		u16 new_ss_mask = cur_ss_mask;
1528 
1529 		do_each_subsys_mask(ss, ssid, cur_ss_mask) {
1530 			new_ss_mask |= ss->depends_on;
1531 		} while_each_subsys_mask();
1532 
1533 		/*
1534 		 * Mask out subsystems which aren't available.  This can
1535 		 * happen only if some depended-upon subsystems were bound
1536 		 * to non-default hierarchies.
1537 		 */
1538 		new_ss_mask &= this_ss_mask;
1539 
1540 		if (new_ss_mask == cur_ss_mask)
1541 			break;
1542 		cur_ss_mask = new_ss_mask;
1543 	}
1544 
1545 	return cur_ss_mask;
1546 }
1547 
1548 /**
1549  * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1550  * @kn: the kernfs_node being serviced
1551  *
1552  * This helper undoes cgroup_kn_lock_live() and should be invoked before
1553  * the method finishes if locking succeeded.  Note that once this function
1554  * returns the cgroup returned by cgroup_kn_lock_live() may become
1555  * inaccessible any time.  If the caller intends to continue to access the
1556  * cgroup, it should pin it before invoking this function.
1557  */
1558 void cgroup_kn_unlock(struct kernfs_node *kn)
1559 {
1560 	struct cgroup *cgrp;
1561 
1562 	if (kernfs_type(kn) == KERNFS_DIR)
1563 		cgrp = kn->priv;
1564 	else
1565 		cgrp = kn->parent->priv;
1566 
1567 	mutex_unlock(&cgroup_mutex);
1568 
1569 	kernfs_unbreak_active_protection(kn);
1570 	cgroup_put(cgrp);
1571 }
1572 
1573 /**
1574  * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1575  * @kn: the kernfs_node being serviced
1576  * @drain_offline: perform offline draining on the cgroup
1577  *
1578  * This helper is to be used by a cgroup kernfs method currently servicing
1579  * @kn.  It breaks the active protection, performs cgroup locking and
1580  * verifies that the associated cgroup is alive.  Returns the cgroup if
1581  * alive; otherwise, %NULL.  A successful return should be undone by a
1582  * matching cgroup_kn_unlock() invocation.  If @drain_offline is %true, the
1583  * cgroup is drained of offlining csses before return.
1584  *
1585  * Any cgroup kernfs method implementation which requires locking the
1586  * associated cgroup should use this helper.  It avoids nesting cgroup
1587  * locking under kernfs active protection and allows all kernfs operations
1588  * including self-removal.
1589  */
1590 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline)
1591 {
1592 	struct cgroup *cgrp;
1593 
1594 	if (kernfs_type(kn) == KERNFS_DIR)
1595 		cgrp = kn->priv;
1596 	else
1597 		cgrp = kn->parent->priv;
1598 
1599 	/*
1600 	 * We're gonna grab cgroup_mutex which nests outside kernfs
1601 	 * active_ref.  cgroup liveliness check alone provides enough
1602 	 * protection against removal.  Ensure @cgrp stays accessible and
1603 	 * break the active_ref protection.
1604 	 */
1605 	if (!cgroup_tryget(cgrp))
1606 		return NULL;
1607 	kernfs_break_active_protection(kn);
1608 
1609 	if (drain_offline)
1610 		cgroup_lock_and_drain_offline(cgrp);
1611 	else
1612 		mutex_lock(&cgroup_mutex);
1613 
1614 	if (!cgroup_is_dead(cgrp))
1615 		return cgrp;
1616 
1617 	cgroup_kn_unlock(kn);
1618 	return NULL;
1619 }
1620 
1621 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1622 {
1623 	char name[CGROUP_FILE_NAME_MAX];
1624 
1625 	lockdep_assert_held(&cgroup_mutex);
1626 
1627 	if (cft->file_offset) {
1628 		struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1629 		struct cgroup_file *cfile = (void *)css + cft->file_offset;
1630 
1631 		spin_lock_irq(&cgroup_file_kn_lock);
1632 		cfile->kn = NULL;
1633 		spin_unlock_irq(&cgroup_file_kn_lock);
1634 
1635 		del_timer_sync(&cfile->notify_timer);
1636 	}
1637 
1638 	kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1639 }
1640 
1641 /**
1642  * css_clear_dir - remove subsys files in a cgroup directory
1643  * @css: taget css
1644  */
1645 static void css_clear_dir(struct cgroup_subsys_state *css)
1646 {
1647 	struct cgroup *cgrp = css->cgroup;
1648 	struct cftype *cfts;
1649 
1650 	if (!(css->flags & CSS_VISIBLE))
1651 		return;
1652 
1653 	css->flags &= ~CSS_VISIBLE;
1654 
1655 	if (!css->ss) {
1656 		if (cgroup_on_dfl(cgrp))
1657 			cfts = cgroup_base_files;
1658 		else
1659 			cfts = cgroup1_base_files;
1660 
1661 		cgroup_addrm_files(css, cgrp, cfts, false);
1662 	} else {
1663 		list_for_each_entry(cfts, &css->ss->cfts, node)
1664 			cgroup_addrm_files(css, cgrp, cfts, false);
1665 	}
1666 }
1667 
1668 /**
1669  * css_populate_dir - create subsys files in a cgroup directory
1670  * @css: target css
1671  *
1672  * On failure, no file is added.
1673  */
1674 static int css_populate_dir(struct cgroup_subsys_state *css)
1675 {
1676 	struct cgroup *cgrp = css->cgroup;
1677 	struct cftype *cfts, *failed_cfts;
1678 	int ret;
1679 
1680 	if ((css->flags & CSS_VISIBLE) || !cgrp->kn)
1681 		return 0;
1682 
1683 	if (!css->ss) {
1684 		if (cgroup_on_dfl(cgrp))
1685 			cfts = cgroup_base_files;
1686 		else
1687 			cfts = cgroup1_base_files;
1688 
1689 		ret = cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1690 		if (ret < 0)
1691 			return ret;
1692 	} else {
1693 		list_for_each_entry(cfts, &css->ss->cfts, node) {
1694 			ret = cgroup_addrm_files(css, cgrp, cfts, true);
1695 			if (ret < 0) {
1696 				failed_cfts = cfts;
1697 				goto err;
1698 			}
1699 		}
1700 	}
1701 
1702 	css->flags |= CSS_VISIBLE;
1703 
1704 	return 0;
1705 err:
1706 	list_for_each_entry(cfts, &css->ss->cfts, node) {
1707 		if (cfts == failed_cfts)
1708 			break;
1709 		cgroup_addrm_files(css, cgrp, cfts, false);
1710 	}
1711 	return ret;
1712 }
1713 
1714 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
1715 {
1716 	struct cgroup *dcgrp = &dst_root->cgrp;
1717 	struct cgroup_subsys *ss;
1718 	int ssid, i, ret;
1719 
1720 	lockdep_assert_held(&cgroup_mutex);
1721 
1722 	do_each_subsys_mask(ss, ssid, ss_mask) {
1723 		/*
1724 		 * If @ss has non-root csses attached to it, can't move.
1725 		 * If @ss is an implicit controller, it is exempt from this
1726 		 * rule and can be stolen.
1727 		 */
1728 		if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1729 		    !ss->implicit_on_dfl)
1730 			return -EBUSY;
1731 
1732 		/* can't move between two non-dummy roots either */
1733 		if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1734 			return -EBUSY;
1735 	} while_each_subsys_mask();
1736 
1737 	do_each_subsys_mask(ss, ssid, ss_mask) {
1738 		struct cgroup_root *src_root = ss->root;
1739 		struct cgroup *scgrp = &src_root->cgrp;
1740 		struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1741 		struct css_set *cset;
1742 
1743 		WARN_ON(!css || cgroup_css(dcgrp, ss));
1744 
1745 		/* disable from the source */
1746 		src_root->subsys_mask &= ~(1 << ssid);
1747 		WARN_ON(cgroup_apply_control(scgrp));
1748 		cgroup_finalize_control(scgrp, 0);
1749 
1750 		/* rebind */
1751 		RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1752 		rcu_assign_pointer(dcgrp->subsys[ssid], css);
1753 		ss->root = dst_root;
1754 		css->cgroup = dcgrp;
1755 
1756 		spin_lock_irq(&css_set_lock);
1757 		hash_for_each(css_set_table, i, cset, hlist)
1758 			list_move_tail(&cset->e_cset_node[ss->id],
1759 				       &dcgrp->e_csets[ss->id]);
1760 		spin_unlock_irq(&css_set_lock);
1761 
1762 		/* default hierarchy doesn't enable controllers by default */
1763 		dst_root->subsys_mask |= 1 << ssid;
1764 		if (dst_root == &cgrp_dfl_root) {
1765 			static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1766 		} else {
1767 			dcgrp->subtree_control |= 1 << ssid;
1768 			static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1769 		}
1770 
1771 		ret = cgroup_apply_control(dcgrp);
1772 		if (ret)
1773 			pr_warn("partial failure to rebind %s controller (err=%d)\n",
1774 				ss->name, ret);
1775 
1776 		if (ss->bind)
1777 			ss->bind(css);
1778 	} while_each_subsys_mask();
1779 
1780 	kernfs_activate(dcgrp->kn);
1781 	return 0;
1782 }
1783 
1784 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
1785 		     struct kernfs_root *kf_root)
1786 {
1787 	int len = 0;
1788 	char *buf = NULL;
1789 	struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
1790 	struct cgroup *ns_cgroup;
1791 
1792 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
1793 	if (!buf)
1794 		return -ENOMEM;
1795 
1796 	spin_lock_irq(&css_set_lock);
1797 	ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
1798 	len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
1799 	spin_unlock_irq(&css_set_lock);
1800 
1801 	if (len >= PATH_MAX)
1802 		len = -ERANGE;
1803 	else if (len > 0) {
1804 		seq_escape(sf, buf, " \t\n\\");
1805 		len = 0;
1806 	}
1807 	kfree(buf);
1808 	return len;
1809 }
1810 
1811 enum cgroup2_param {
1812 	Opt_nsdelegate,
1813 	nr__cgroup2_params
1814 };
1815 
1816 static const struct fs_parameter_spec cgroup2_param_specs[] = {
1817 	fsparam_flag  ("nsdelegate",		Opt_nsdelegate),
1818 	{}
1819 };
1820 
1821 static const struct fs_parameter_description cgroup2_fs_parameters = {
1822 	.name		= "cgroup2",
1823 	.specs		= cgroup2_param_specs,
1824 };
1825 
1826 static int cgroup2_parse_param(struct fs_context *fc, struct fs_parameter *param)
1827 {
1828 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1829 	struct fs_parse_result result;
1830 	int opt;
1831 
1832 	opt = fs_parse(fc, &cgroup2_fs_parameters, param, &result);
1833 	if (opt < 0)
1834 		return opt;
1835 
1836 	switch (opt) {
1837 	case Opt_nsdelegate:
1838 		ctx->flags |= CGRP_ROOT_NS_DELEGATE;
1839 		return 0;
1840 	}
1841 	return -EINVAL;
1842 }
1843 
1844 static void apply_cgroup_root_flags(unsigned int root_flags)
1845 {
1846 	if (current->nsproxy->cgroup_ns == &init_cgroup_ns) {
1847 		if (root_flags & CGRP_ROOT_NS_DELEGATE)
1848 			cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE;
1849 		else
1850 			cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE;
1851 	}
1852 }
1853 
1854 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
1855 {
1856 	if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE)
1857 		seq_puts(seq, ",nsdelegate");
1858 	return 0;
1859 }
1860 
1861 static int cgroup_reconfigure(struct fs_context *fc)
1862 {
1863 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1864 
1865 	apply_cgroup_root_flags(ctx->flags);
1866 	return 0;
1867 }
1868 
1869 /*
1870  * To reduce the fork() overhead for systems that are not actually using
1871  * their cgroups capability, we don't maintain the lists running through
1872  * each css_set to its tasks until we see the list actually used - in other
1873  * words after the first mount.
1874  */
1875 static bool use_task_css_set_links __read_mostly;
1876 
1877 static void cgroup_enable_task_cg_lists(void)
1878 {
1879 	struct task_struct *p, *g;
1880 
1881 	/*
1882 	 * We need tasklist_lock because RCU is not safe against
1883 	 * while_each_thread(). Besides, a forking task that has passed
1884 	 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1885 	 * is not guaranteed to have its child immediately visible in the
1886 	 * tasklist if we walk through it with RCU.
1887 	 */
1888 	read_lock(&tasklist_lock);
1889 	spin_lock_irq(&css_set_lock);
1890 
1891 	if (use_task_css_set_links)
1892 		goto out_unlock;
1893 
1894 	use_task_css_set_links = true;
1895 
1896 	do_each_thread(g, p) {
1897 		WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1898 			     task_css_set(p) != &init_css_set);
1899 
1900 		/*
1901 		 * We should check if the process is exiting, otherwise
1902 		 * it will race with cgroup_exit() in that the list
1903 		 * entry won't be deleted though the process has exited.
1904 		 * Do it while holding siglock so that we don't end up
1905 		 * racing against cgroup_exit().
1906 		 *
1907 		 * Interrupts were already disabled while acquiring
1908 		 * the css_set_lock, so we do not need to disable it
1909 		 * again when acquiring the sighand->siglock here.
1910 		 */
1911 		spin_lock(&p->sighand->siglock);
1912 		if (!(p->flags & PF_EXITING)) {
1913 			struct css_set *cset = task_css_set(p);
1914 
1915 			if (!css_set_populated(cset))
1916 				css_set_update_populated(cset, true);
1917 			list_add_tail(&p->cg_list, &cset->tasks);
1918 			get_css_set(cset);
1919 			cset->nr_tasks++;
1920 		}
1921 		spin_unlock(&p->sighand->siglock);
1922 	} while_each_thread(g, p);
1923 out_unlock:
1924 	spin_unlock_irq(&css_set_lock);
1925 	read_unlock(&tasklist_lock);
1926 }
1927 
1928 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1929 {
1930 	struct cgroup_subsys *ss;
1931 	int ssid;
1932 
1933 	INIT_LIST_HEAD(&cgrp->self.sibling);
1934 	INIT_LIST_HEAD(&cgrp->self.children);
1935 	INIT_LIST_HEAD(&cgrp->cset_links);
1936 	INIT_LIST_HEAD(&cgrp->pidlists);
1937 	mutex_init(&cgrp->pidlist_mutex);
1938 	cgrp->self.cgroup = cgrp;
1939 	cgrp->self.flags |= CSS_ONLINE;
1940 	cgrp->dom_cgrp = cgrp;
1941 	cgrp->max_descendants = INT_MAX;
1942 	cgrp->max_depth = INT_MAX;
1943 	INIT_LIST_HEAD(&cgrp->rstat_css_list);
1944 	prev_cputime_init(&cgrp->prev_cputime);
1945 
1946 	for_each_subsys(ss, ssid)
1947 		INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
1948 
1949 	init_waitqueue_head(&cgrp->offline_waitq);
1950 	INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent);
1951 }
1952 
1953 void init_cgroup_root(struct cgroup_fs_context *ctx)
1954 {
1955 	struct cgroup_root *root = ctx->root;
1956 	struct cgroup *cgrp = &root->cgrp;
1957 
1958 	INIT_LIST_HEAD(&root->root_list);
1959 	atomic_set(&root->nr_cgrps, 1);
1960 	cgrp->root = root;
1961 	init_cgroup_housekeeping(cgrp);
1962 	idr_init(&root->cgroup_idr);
1963 
1964 	root->flags = ctx->flags;
1965 	if (ctx->release_agent)
1966 		strscpy(root->release_agent_path, ctx->release_agent, PATH_MAX);
1967 	if (ctx->name)
1968 		strscpy(root->name, ctx->name, MAX_CGROUP_ROOT_NAMELEN);
1969 	if (ctx->cpuset_clone_children)
1970 		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
1971 }
1972 
1973 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask)
1974 {
1975 	LIST_HEAD(tmp_links);
1976 	struct cgroup *root_cgrp = &root->cgrp;
1977 	struct kernfs_syscall_ops *kf_sops;
1978 	struct css_set *cset;
1979 	int i, ret;
1980 
1981 	lockdep_assert_held(&cgroup_mutex);
1982 
1983 	ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL);
1984 	if (ret < 0)
1985 		goto out;
1986 	root_cgrp->id = ret;
1987 	root_cgrp->ancestor_ids[0] = ret;
1988 
1989 	ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release,
1990 			      0, GFP_KERNEL);
1991 	if (ret)
1992 		goto out;
1993 
1994 	/*
1995 	 * We're accessing css_set_count without locking css_set_lock here,
1996 	 * but that's OK - it can only be increased by someone holding
1997 	 * cgroup_lock, and that's us.  Later rebinding may disable
1998 	 * controllers on the default hierarchy and thus create new csets,
1999 	 * which can't be more than the existing ones.  Allocate 2x.
2000 	 */
2001 	ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
2002 	if (ret)
2003 		goto cancel_ref;
2004 
2005 	ret = cgroup_init_root_id(root);
2006 	if (ret)
2007 		goto cancel_ref;
2008 
2009 	kf_sops = root == &cgrp_dfl_root ?
2010 		&cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops;
2011 
2012 	root->kf_root = kernfs_create_root(kf_sops,
2013 					   KERNFS_ROOT_CREATE_DEACTIVATED |
2014 					   KERNFS_ROOT_SUPPORT_EXPORTOP,
2015 					   root_cgrp);
2016 	if (IS_ERR(root->kf_root)) {
2017 		ret = PTR_ERR(root->kf_root);
2018 		goto exit_root_id;
2019 	}
2020 	root_cgrp->kn = root->kf_root->kn;
2021 
2022 	ret = css_populate_dir(&root_cgrp->self);
2023 	if (ret)
2024 		goto destroy_root;
2025 
2026 	ret = rebind_subsystems(root, ss_mask);
2027 	if (ret)
2028 		goto destroy_root;
2029 
2030 	ret = cgroup_bpf_inherit(root_cgrp);
2031 	WARN_ON_ONCE(ret);
2032 
2033 	trace_cgroup_setup_root(root);
2034 
2035 	/*
2036 	 * There must be no failure case after here, since rebinding takes
2037 	 * care of subsystems' refcounts, which are explicitly dropped in
2038 	 * the failure exit path.
2039 	 */
2040 	list_add(&root->root_list, &cgroup_roots);
2041 	cgroup_root_count++;
2042 
2043 	/*
2044 	 * Link the root cgroup in this hierarchy into all the css_set
2045 	 * objects.
2046 	 */
2047 	spin_lock_irq(&css_set_lock);
2048 	hash_for_each(css_set_table, i, cset, hlist) {
2049 		link_css_set(&tmp_links, cset, root_cgrp);
2050 		if (css_set_populated(cset))
2051 			cgroup_update_populated(root_cgrp, true);
2052 	}
2053 	spin_unlock_irq(&css_set_lock);
2054 
2055 	BUG_ON(!list_empty(&root_cgrp->self.children));
2056 	BUG_ON(atomic_read(&root->nr_cgrps) != 1);
2057 
2058 	kernfs_activate(root_cgrp->kn);
2059 	ret = 0;
2060 	goto out;
2061 
2062 destroy_root:
2063 	kernfs_destroy_root(root->kf_root);
2064 	root->kf_root = NULL;
2065 exit_root_id:
2066 	cgroup_exit_root_id(root);
2067 cancel_ref:
2068 	percpu_ref_exit(&root_cgrp->self.refcnt);
2069 out:
2070 	free_cgrp_cset_links(&tmp_links);
2071 	return ret;
2072 }
2073 
2074 int cgroup_do_get_tree(struct fs_context *fc)
2075 {
2076 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2077 	int ret;
2078 
2079 	ctx->kfc.root = ctx->root->kf_root;
2080 	if (fc->fs_type == &cgroup2_fs_type)
2081 		ctx->kfc.magic = CGROUP2_SUPER_MAGIC;
2082 	else
2083 		ctx->kfc.magic = CGROUP_SUPER_MAGIC;
2084 	ret = kernfs_get_tree(fc);
2085 
2086 	/*
2087 	 * In non-init cgroup namespace, instead of root cgroup's dentry,
2088 	 * we return the dentry corresponding to the cgroupns->root_cgrp.
2089 	 */
2090 	if (!ret && ctx->ns != &init_cgroup_ns) {
2091 		struct dentry *nsdentry;
2092 		struct super_block *sb = fc->root->d_sb;
2093 		struct cgroup *cgrp;
2094 
2095 		mutex_lock(&cgroup_mutex);
2096 		spin_lock_irq(&css_set_lock);
2097 
2098 		cgrp = cset_cgroup_from_root(ctx->ns->root_cset, ctx->root);
2099 
2100 		spin_unlock_irq(&css_set_lock);
2101 		mutex_unlock(&cgroup_mutex);
2102 
2103 		nsdentry = kernfs_node_dentry(cgrp->kn, sb);
2104 		dput(fc->root);
2105 		fc->root = nsdentry;
2106 		if (IS_ERR(nsdentry)) {
2107 			ret = PTR_ERR(nsdentry);
2108 			deactivate_locked_super(sb);
2109 		}
2110 	}
2111 
2112 	if (!ctx->kfc.new_sb_created)
2113 		cgroup_put(&ctx->root->cgrp);
2114 
2115 	return ret;
2116 }
2117 
2118 /*
2119  * Destroy a cgroup filesystem context.
2120  */
2121 static void cgroup_fs_context_free(struct fs_context *fc)
2122 {
2123 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2124 
2125 	kfree(ctx->name);
2126 	kfree(ctx->release_agent);
2127 	put_cgroup_ns(ctx->ns);
2128 	kernfs_free_fs_context(fc);
2129 	kfree(ctx);
2130 }
2131 
2132 static int cgroup_get_tree(struct fs_context *fc)
2133 {
2134 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2135 	int ret;
2136 
2137 	cgrp_dfl_visible = true;
2138 	cgroup_get_live(&cgrp_dfl_root.cgrp);
2139 	ctx->root = &cgrp_dfl_root;
2140 
2141 	ret = cgroup_do_get_tree(fc);
2142 	if (!ret)
2143 		apply_cgroup_root_flags(ctx->flags);
2144 	return ret;
2145 }
2146 
2147 static const struct fs_context_operations cgroup_fs_context_ops = {
2148 	.free		= cgroup_fs_context_free,
2149 	.parse_param	= cgroup2_parse_param,
2150 	.get_tree	= cgroup_get_tree,
2151 	.reconfigure	= cgroup_reconfigure,
2152 };
2153 
2154 static const struct fs_context_operations cgroup1_fs_context_ops = {
2155 	.free		= cgroup_fs_context_free,
2156 	.parse_param	= cgroup1_parse_param,
2157 	.get_tree	= cgroup1_get_tree,
2158 	.reconfigure	= cgroup1_reconfigure,
2159 };
2160 
2161 /*
2162  * Initialise the cgroup filesystem creation/reconfiguration context.  Notably,
2163  * we select the namespace we're going to use.
2164  */
2165 static int cgroup_init_fs_context(struct fs_context *fc)
2166 {
2167 	struct cgroup_fs_context *ctx;
2168 
2169 	ctx = kzalloc(sizeof(struct cgroup_fs_context), GFP_KERNEL);
2170 	if (!ctx)
2171 		return -ENOMEM;
2172 
2173 	/*
2174 	 * The first time anyone tries to mount a cgroup, enable the list
2175 	 * linking each css_set to its tasks and fix up all existing tasks.
2176 	 */
2177 	if (!use_task_css_set_links)
2178 		cgroup_enable_task_cg_lists();
2179 
2180 	ctx->ns = current->nsproxy->cgroup_ns;
2181 	get_cgroup_ns(ctx->ns);
2182 	fc->fs_private = &ctx->kfc;
2183 	if (fc->fs_type == &cgroup2_fs_type)
2184 		fc->ops = &cgroup_fs_context_ops;
2185 	else
2186 		fc->ops = &cgroup1_fs_context_ops;
2187 	if (fc->user_ns)
2188 		put_user_ns(fc->user_ns);
2189 	fc->user_ns = get_user_ns(ctx->ns->user_ns);
2190 	fc->global = true;
2191 	return 0;
2192 }
2193 
2194 static void cgroup_kill_sb(struct super_block *sb)
2195 {
2196 	struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2197 	struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2198 
2199 	/*
2200 	 * If @root doesn't have any children, start killing it.
2201 	 * This prevents new mounts by disabling percpu_ref_tryget_live().
2202 	 * cgroup_mount() may wait for @root's release.
2203 	 *
2204 	 * And don't kill the default root.
2205 	 */
2206 	if (list_empty(&root->cgrp.self.children) && root != &cgrp_dfl_root &&
2207 	    !percpu_ref_is_dying(&root->cgrp.self.refcnt))
2208 		percpu_ref_kill(&root->cgrp.self.refcnt);
2209 	cgroup_put(&root->cgrp);
2210 	kernfs_kill_sb(sb);
2211 }
2212 
2213 struct file_system_type cgroup_fs_type = {
2214 	.name			= "cgroup",
2215 	.init_fs_context	= cgroup_init_fs_context,
2216 	.parameters		= &cgroup1_fs_parameters,
2217 	.kill_sb		= cgroup_kill_sb,
2218 	.fs_flags		= FS_USERNS_MOUNT,
2219 };
2220 
2221 static struct file_system_type cgroup2_fs_type = {
2222 	.name			= "cgroup2",
2223 	.init_fs_context	= cgroup_init_fs_context,
2224 	.parameters		= &cgroup2_fs_parameters,
2225 	.kill_sb		= cgroup_kill_sb,
2226 	.fs_flags		= FS_USERNS_MOUNT,
2227 };
2228 
2229 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
2230 			  struct cgroup_namespace *ns)
2231 {
2232 	struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
2233 
2234 	return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
2235 }
2236 
2237 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
2238 		   struct cgroup_namespace *ns)
2239 {
2240 	int ret;
2241 
2242 	mutex_lock(&cgroup_mutex);
2243 	spin_lock_irq(&css_set_lock);
2244 
2245 	ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
2246 
2247 	spin_unlock_irq(&css_set_lock);
2248 	mutex_unlock(&cgroup_mutex);
2249 
2250 	return ret;
2251 }
2252 EXPORT_SYMBOL_GPL(cgroup_path_ns);
2253 
2254 /**
2255  * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
2256  * @task: target task
2257  * @buf: the buffer to write the path into
2258  * @buflen: the length of the buffer
2259  *
2260  * Determine @task's cgroup on the first (the one with the lowest non-zero
2261  * hierarchy_id) cgroup hierarchy and copy its path into @buf.  This
2262  * function grabs cgroup_mutex and shouldn't be used inside locks used by
2263  * cgroup controller callbacks.
2264  *
2265  * Return value is the same as kernfs_path().
2266  */
2267 int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
2268 {
2269 	struct cgroup_root *root;
2270 	struct cgroup *cgrp;
2271 	int hierarchy_id = 1;
2272 	int ret;
2273 
2274 	mutex_lock(&cgroup_mutex);
2275 	spin_lock_irq(&css_set_lock);
2276 
2277 	root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2278 
2279 	if (root) {
2280 		cgrp = task_cgroup_from_root(task, root);
2281 		ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns);
2282 	} else {
2283 		/* if no hierarchy exists, everyone is in "/" */
2284 		ret = strlcpy(buf, "/", buflen);
2285 	}
2286 
2287 	spin_unlock_irq(&css_set_lock);
2288 	mutex_unlock(&cgroup_mutex);
2289 	return ret;
2290 }
2291 EXPORT_SYMBOL_GPL(task_cgroup_path);
2292 
2293 /**
2294  * cgroup_migrate_add_task - add a migration target task to a migration context
2295  * @task: target task
2296  * @mgctx: target migration context
2297  *
2298  * Add @task, which is a migration target, to @mgctx->tset.  This function
2299  * becomes noop if @task doesn't need to be migrated.  @task's css_set
2300  * should have been added as a migration source and @task->cg_list will be
2301  * moved from the css_set's tasks list to mg_tasks one.
2302  */
2303 static void cgroup_migrate_add_task(struct task_struct *task,
2304 				    struct cgroup_mgctx *mgctx)
2305 {
2306 	struct css_set *cset;
2307 
2308 	lockdep_assert_held(&css_set_lock);
2309 
2310 	/* @task either already exited or can't exit until the end */
2311 	if (task->flags & PF_EXITING)
2312 		return;
2313 
2314 	/* leave @task alone if post_fork() hasn't linked it yet */
2315 	if (list_empty(&task->cg_list))
2316 		return;
2317 
2318 	cset = task_css_set(task);
2319 	if (!cset->mg_src_cgrp)
2320 		return;
2321 
2322 	mgctx->tset.nr_tasks++;
2323 
2324 	list_move_tail(&task->cg_list, &cset->mg_tasks);
2325 	if (list_empty(&cset->mg_node))
2326 		list_add_tail(&cset->mg_node,
2327 			      &mgctx->tset.src_csets);
2328 	if (list_empty(&cset->mg_dst_cset->mg_node))
2329 		list_add_tail(&cset->mg_dst_cset->mg_node,
2330 			      &mgctx->tset.dst_csets);
2331 }
2332 
2333 /**
2334  * cgroup_taskset_first - reset taskset and return the first task
2335  * @tset: taskset of interest
2336  * @dst_cssp: output variable for the destination css
2337  *
2338  * @tset iteration is initialized and the first task is returned.
2339  */
2340 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2341 					 struct cgroup_subsys_state **dst_cssp)
2342 {
2343 	tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2344 	tset->cur_task = NULL;
2345 
2346 	return cgroup_taskset_next(tset, dst_cssp);
2347 }
2348 
2349 /**
2350  * cgroup_taskset_next - iterate to the next task in taskset
2351  * @tset: taskset of interest
2352  * @dst_cssp: output variable for the destination css
2353  *
2354  * Return the next task in @tset.  Iteration must have been initialized
2355  * with cgroup_taskset_first().
2356  */
2357 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2358 					struct cgroup_subsys_state **dst_cssp)
2359 {
2360 	struct css_set *cset = tset->cur_cset;
2361 	struct task_struct *task = tset->cur_task;
2362 
2363 	while (&cset->mg_node != tset->csets) {
2364 		if (!task)
2365 			task = list_first_entry(&cset->mg_tasks,
2366 						struct task_struct, cg_list);
2367 		else
2368 			task = list_next_entry(task, cg_list);
2369 
2370 		if (&task->cg_list != &cset->mg_tasks) {
2371 			tset->cur_cset = cset;
2372 			tset->cur_task = task;
2373 
2374 			/*
2375 			 * This function may be called both before and
2376 			 * after cgroup_taskset_migrate().  The two cases
2377 			 * can be distinguished by looking at whether @cset
2378 			 * has its ->mg_dst_cset set.
2379 			 */
2380 			if (cset->mg_dst_cset)
2381 				*dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2382 			else
2383 				*dst_cssp = cset->subsys[tset->ssid];
2384 
2385 			return task;
2386 		}
2387 
2388 		cset = list_next_entry(cset, mg_node);
2389 		task = NULL;
2390 	}
2391 
2392 	return NULL;
2393 }
2394 
2395 /**
2396  * cgroup_taskset_migrate - migrate a taskset
2397  * @mgctx: migration context
2398  *
2399  * Migrate tasks in @mgctx as setup by migration preparation functions.
2400  * This function fails iff one of the ->can_attach callbacks fails and
2401  * guarantees that either all or none of the tasks in @mgctx are migrated.
2402  * @mgctx is consumed regardless of success.
2403  */
2404 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx)
2405 {
2406 	struct cgroup_taskset *tset = &mgctx->tset;
2407 	struct cgroup_subsys *ss;
2408 	struct task_struct *task, *tmp_task;
2409 	struct css_set *cset, *tmp_cset;
2410 	int ssid, failed_ssid, ret;
2411 
2412 	/* check that we can legitimately attach to the cgroup */
2413 	if (tset->nr_tasks) {
2414 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2415 			if (ss->can_attach) {
2416 				tset->ssid = ssid;
2417 				ret = ss->can_attach(tset);
2418 				if (ret) {
2419 					failed_ssid = ssid;
2420 					goto out_cancel_attach;
2421 				}
2422 			}
2423 		} while_each_subsys_mask();
2424 	}
2425 
2426 	/*
2427 	 * Now that we're guaranteed success, proceed to move all tasks to
2428 	 * the new cgroup.  There are no failure cases after here, so this
2429 	 * is the commit point.
2430 	 */
2431 	spin_lock_irq(&css_set_lock);
2432 	list_for_each_entry(cset, &tset->src_csets, mg_node) {
2433 		list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2434 			struct css_set *from_cset = task_css_set(task);
2435 			struct css_set *to_cset = cset->mg_dst_cset;
2436 
2437 			get_css_set(to_cset);
2438 			to_cset->nr_tasks++;
2439 			css_set_move_task(task, from_cset, to_cset, true);
2440 			from_cset->nr_tasks--;
2441 			/*
2442 			 * If the source or destination cgroup is frozen,
2443 			 * the task might require to change its state.
2444 			 */
2445 			cgroup_freezer_migrate_task(task, from_cset->dfl_cgrp,
2446 						    to_cset->dfl_cgrp);
2447 			put_css_set_locked(from_cset);
2448 
2449 		}
2450 	}
2451 	spin_unlock_irq(&css_set_lock);
2452 
2453 	/*
2454 	 * Migration is committed, all target tasks are now on dst_csets.
2455 	 * Nothing is sensitive to fork() after this point.  Notify
2456 	 * controllers that migration is complete.
2457 	 */
2458 	tset->csets = &tset->dst_csets;
2459 
2460 	if (tset->nr_tasks) {
2461 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2462 			if (ss->attach) {
2463 				tset->ssid = ssid;
2464 				ss->attach(tset);
2465 			}
2466 		} while_each_subsys_mask();
2467 	}
2468 
2469 	ret = 0;
2470 	goto out_release_tset;
2471 
2472 out_cancel_attach:
2473 	if (tset->nr_tasks) {
2474 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2475 			if (ssid == failed_ssid)
2476 				break;
2477 			if (ss->cancel_attach) {
2478 				tset->ssid = ssid;
2479 				ss->cancel_attach(tset);
2480 			}
2481 		} while_each_subsys_mask();
2482 	}
2483 out_release_tset:
2484 	spin_lock_irq(&css_set_lock);
2485 	list_splice_init(&tset->dst_csets, &tset->src_csets);
2486 	list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2487 		list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2488 		list_del_init(&cset->mg_node);
2489 	}
2490 	spin_unlock_irq(&css_set_lock);
2491 
2492 	/*
2493 	 * Re-initialize the cgroup_taskset structure in case it is reused
2494 	 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute()
2495 	 * iteration.
2496 	 */
2497 	tset->nr_tasks = 0;
2498 	tset->csets    = &tset->src_csets;
2499 	return ret;
2500 }
2501 
2502 /**
2503  * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination
2504  * @dst_cgrp: destination cgroup to test
2505  *
2506  * On the default hierarchy, except for the mixable, (possible) thread root
2507  * and threaded cgroups, subtree_control must be zero for migration
2508  * destination cgroups with tasks so that child cgroups don't compete
2509  * against tasks.
2510  */
2511 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp)
2512 {
2513 	/* v1 doesn't have any restriction */
2514 	if (!cgroup_on_dfl(dst_cgrp))
2515 		return 0;
2516 
2517 	/* verify @dst_cgrp can host resources */
2518 	if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp))
2519 		return -EOPNOTSUPP;
2520 
2521 	/* mixables don't care */
2522 	if (cgroup_is_mixable(dst_cgrp))
2523 		return 0;
2524 
2525 	/*
2526 	 * If @dst_cgrp is already or can become a thread root or is
2527 	 * threaded, it doesn't matter.
2528 	 */
2529 	if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp))
2530 		return 0;
2531 
2532 	/* apply no-internal-process constraint */
2533 	if (dst_cgrp->subtree_control)
2534 		return -EBUSY;
2535 
2536 	return 0;
2537 }
2538 
2539 /**
2540  * cgroup_migrate_finish - cleanup after attach
2541  * @mgctx: migration context
2542  *
2543  * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst().  See
2544  * those functions for details.
2545  */
2546 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx)
2547 {
2548 	LIST_HEAD(preloaded);
2549 	struct css_set *cset, *tmp_cset;
2550 
2551 	lockdep_assert_held(&cgroup_mutex);
2552 
2553 	spin_lock_irq(&css_set_lock);
2554 
2555 	list_splice_tail_init(&mgctx->preloaded_src_csets, &preloaded);
2556 	list_splice_tail_init(&mgctx->preloaded_dst_csets, &preloaded);
2557 
2558 	list_for_each_entry_safe(cset, tmp_cset, &preloaded, mg_preload_node) {
2559 		cset->mg_src_cgrp = NULL;
2560 		cset->mg_dst_cgrp = NULL;
2561 		cset->mg_dst_cset = NULL;
2562 		list_del_init(&cset->mg_preload_node);
2563 		put_css_set_locked(cset);
2564 	}
2565 
2566 	spin_unlock_irq(&css_set_lock);
2567 }
2568 
2569 /**
2570  * cgroup_migrate_add_src - add a migration source css_set
2571  * @src_cset: the source css_set to add
2572  * @dst_cgrp: the destination cgroup
2573  * @mgctx: migration context
2574  *
2575  * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp.  Pin
2576  * @src_cset and add it to @mgctx->src_csets, which should later be cleaned
2577  * up by cgroup_migrate_finish().
2578  *
2579  * This function may be called without holding cgroup_threadgroup_rwsem
2580  * even if the target is a process.  Threads may be created and destroyed
2581  * but as long as cgroup_mutex is not dropped, no new css_set can be put
2582  * into play and the preloaded css_sets are guaranteed to cover all
2583  * migrations.
2584  */
2585 void cgroup_migrate_add_src(struct css_set *src_cset,
2586 			    struct cgroup *dst_cgrp,
2587 			    struct cgroup_mgctx *mgctx)
2588 {
2589 	struct cgroup *src_cgrp;
2590 
2591 	lockdep_assert_held(&cgroup_mutex);
2592 	lockdep_assert_held(&css_set_lock);
2593 
2594 	/*
2595 	 * If ->dead, @src_set is associated with one or more dead cgroups
2596 	 * and doesn't contain any migratable tasks.  Ignore it early so
2597 	 * that the rest of migration path doesn't get confused by it.
2598 	 */
2599 	if (src_cset->dead)
2600 		return;
2601 
2602 	src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2603 
2604 	if (!list_empty(&src_cset->mg_preload_node))
2605 		return;
2606 
2607 	WARN_ON(src_cset->mg_src_cgrp);
2608 	WARN_ON(src_cset->mg_dst_cgrp);
2609 	WARN_ON(!list_empty(&src_cset->mg_tasks));
2610 	WARN_ON(!list_empty(&src_cset->mg_node));
2611 
2612 	src_cset->mg_src_cgrp = src_cgrp;
2613 	src_cset->mg_dst_cgrp = dst_cgrp;
2614 	get_css_set(src_cset);
2615 	list_add_tail(&src_cset->mg_preload_node, &mgctx->preloaded_src_csets);
2616 }
2617 
2618 /**
2619  * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2620  * @mgctx: migration context
2621  *
2622  * Tasks are about to be moved and all the source css_sets have been
2623  * preloaded to @mgctx->preloaded_src_csets.  This function looks up and
2624  * pins all destination css_sets, links each to its source, and append them
2625  * to @mgctx->preloaded_dst_csets.
2626  *
2627  * This function must be called after cgroup_migrate_add_src() has been
2628  * called on each migration source css_set.  After migration is performed
2629  * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2630  * @mgctx.
2631  */
2632 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx)
2633 {
2634 	struct css_set *src_cset, *tmp_cset;
2635 
2636 	lockdep_assert_held(&cgroup_mutex);
2637 
2638 	/* look up the dst cset for each src cset and link it to src */
2639 	list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets,
2640 				 mg_preload_node) {
2641 		struct css_set *dst_cset;
2642 		struct cgroup_subsys *ss;
2643 		int ssid;
2644 
2645 		dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
2646 		if (!dst_cset)
2647 			return -ENOMEM;
2648 
2649 		WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2650 
2651 		/*
2652 		 * If src cset equals dst, it's noop.  Drop the src.
2653 		 * cgroup_migrate() will skip the cset too.  Note that we
2654 		 * can't handle src == dst as some nodes are used by both.
2655 		 */
2656 		if (src_cset == dst_cset) {
2657 			src_cset->mg_src_cgrp = NULL;
2658 			src_cset->mg_dst_cgrp = NULL;
2659 			list_del_init(&src_cset->mg_preload_node);
2660 			put_css_set(src_cset);
2661 			put_css_set(dst_cset);
2662 			continue;
2663 		}
2664 
2665 		src_cset->mg_dst_cset = dst_cset;
2666 
2667 		if (list_empty(&dst_cset->mg_preload_node))
2668 			list_add_tail(&dst_cset->mg_preload_node,
2669 				      &mgctx->preloaded_dst_csets);
2670 		else
2671 			put_css_set(dst_cset);
2672 
2673 		for_each_subsys(ss, ssid)
2674 			if (src_cset->subsys[ssid] != dst_cset->subsys[ssid])
2675 				mgctx->ss_mask |= 1 << ssid;
2676 	}
2677 
2678 	return 0;
2679 }
2680 
2681 /**
2682  * cgroup_migrate - migrate a process or task to a cgroup
2683  * @leader: the leader of the process or the task to migrate
2684  * @threadgroup: whether @leader points to the whole process or a single task
2685  * @mgctx: migration context
2686  *
2687  * Migrate a process or task denoted by @leader.  If migrating a process,
2688  * the caller must be holding cgroup_threadgroup_rwsem.  The caller is also
2689  * responsible for invoking cgroup_migrate_add_src() and
2690  * cgroup_migrate_prepare_dst() on the targets before invoking this
2691  * function and following up with cgroup_migrate_finish().
2692  *
2693  * As long as a controller's ->can_attach() doesn't fail, this function is
2694  * guaranteed to succeed.  This means that, excluding ->can_attach()
2695  * failure, when migrating multiple targets, the success or failure can be
2696  * decided for all targets by invoking group_migrate_prepare_dst() before
2697  * actually starting migrating.
2698  */
2699 int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2700 		   struct cgroup_mgctx *mgctx)
2701 {
2702 	struct task_struct *task;
2703 
2704 	/*
2705 	 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2706 	 * already PF_EXITING could be freed from underneath us unless we
2707 	 * take an rcu_read_lock.
2708 	 */
2709 	spin_lock_irq(&css_set_lock);
2710 	rcu_read_lock();
2711 	task = leader;
2712 	do {
2713 		cgroup_migrate_add_task(task, mgctx);
2714 		if (!threadgroup)
2715 			break;
2716 	} while_each_thread(leader, task);
2717 	rcu_read_unlock();
2718 	spin_unlock_irq(&css_set_lock);
2719 
2720 	return cgroup_migrate_execute(mgctx);
2721 }
2722 
2723 /**
2724  * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2725  * @dst_cgrp: the cgroup to attach to
2726  * @leader: the task or the leader of the threadgroup to be attached
2727  * @threadgroup: attach the whole threadgroup?
2728  *
2729  * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2730  */
2731 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader,
2732 		       bool threadgroup)
2733 {
2734 	DEFINE_CGROUP_MGCTX(mgctx);
2735 	struct task_struct *task;
2736 	int ret;
2737 
2738 	ret = cgroup_migrate_vet_dst(dst_cgrp);
2739 	if (ret)
2740 		return ret;
2741 
2742 	/* look up all src csets */
2743 	spin_lock_irq(&css_set_lock);
2744 	rcu_read_lock();
2745 	task = leader;
2746 	do {
2747 		cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx);
2748 		if (!threadgroup)
2749 			break;
2750 	} while_each_thread(leader, task);
2751 	rcu_read_unlock();
2752 	spin_unlock_irq(&css_set_lock);
2753 
2754 	/* prepare dst csets and commit */
2755 	ret = cgroup_migrate_prepare_dst(&mgctx);
2756 	if (!ret)
2757 		ret = cgroup_migrate(leader, threadgroup, &mgctx);
2758 
2759 	cgroup_migrate_finish(&mgctx);
2760 
2761 	if (!ret)
2762 		TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup);
2763 
2764 	return ret;
2765 }
2766 
2767 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup)
2768 	__acquires(&cgroup_threadgroup_rwsem)
2769 {
2770 	struct task_struct *tsk;
2771 	pid_t pid;
2772 
2773 	if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2774 		return ERR_PTR(-EINVAL);
2775 
2776 	percpu_down_write(&cgroup_threadgroup_rwsem);
2777 
2778 	rcu_read_lock();
2779 	if (pid) {
2780 		tsk = find_task_by_vpid(pid);
2781 		if (!tsk) {
2782 			tsk = ERR_PTR(-ESRCH);
2783 			goto out_unlock_threadgroup;
2784 		}
2785 	} else {
2786 		tsk = current;
2787 	}
2788 
2789 	if (threadgroup)
2790 		tsk = tsk->group_leader;
2791 
2792 	/*
2793 	 * kthreads may acquire PF_NO_SETAFFINITY during initialization.
2794 	 * If userland migrates such a kthread to a non-root cgroup, it can
2795 	 * become trapped in a cpuset, or RT kthread may be born in a
2796 	 * cgroup with no rt_runtime allocated.  Just say no.
2797 	 */
2798 	if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) {
2799 		tsk = ERR_PTR(-EINVAL);
2800 		goto out_unlock_threadgroup;
2801 	}
2802 
2803 	get_task_struct(tsk);
2804 	goto out_unlock_rcu;
2805 
2806 out_unlock_threadgroup:
2807 	percpu_up_write(&cgroup_threadgroup_rwsem);
2808 out_unlock_rcu:
2809 	rcu_read_unlock();
2810 	return tsk;
2811 }
2812 
2813 void cgroup_procs_write_finish(struct task_struct *task)
2814 	__releases(&cgroup_threadgroup_rwsem)
2815 {
2816 	struct cgroup_subsys *ss;
2817 	int ssid;
2818 
2819 	/* release reference from cgroup_procs_write_start() */
2820 	put_task_struct(task);
2821 
2822 	percpu_up_write(&cgroup_threadgroup_rwsem);
2823 	for_each_subsys(ss, ssid)
2824 		if (ss->post_attach)
2825 			ss->post_attach();
2826 }
2827 
2828 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
2829 {
2830 	struct cgroup_subsys *ss;
2831 	bool printed = false;
2832 	int ssid;
2833 
2834 	do_each_subsys_mask(ss, ssid, ss_mask) {
2835 		if (printed)
2836 			seq_putc(seq, ' ');
2837 		seq_printf(seq, "%s", ss->name);
2838 		printed = true;
2839 	} while_each_subsys_mask();
2840 	if (printed)
2841 		seq_putc(seq, '\n');
2842 }
2843 
2844 /* show controllers which are enabled from the parent */
2845 static int cgroup_controllers_show(struct seq_file *seq, void *v)
2846 {
2847 	struct cgroup *cgrp = seq_css(seq)->cgroup;
2848 
2849 	cgroup_print_ss_mask(seq, cgroup_control(cgrp));
2850 	return 0;
2851 }
2852 
2853 /* show controllers which are enabled for a given cgroup's children */
2854 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
2855 {
2856 	struct cgroup *cgrp = seq_css(seq)->cgroup;
2857 
2858 	cgroup_print_ss_mask(seq, cgrp->subtree_control);
2859 	return 0;
2860 }
2861 
2862 /**
2863  * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2864  * @cgrp: root of the subtree to update csses for
2865  *
2866  * @cgrp's control masks have changed and its subtree's css associations
2867  * need to be updated accordingly.  This function looks up all css_sets
2868  * which are attached to the subtree, creates the matching updated css_sets
2869  * and migrates the tasks to the new ones.
2870  */
2871 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2872 {
2873 	DEFINE_CGROUP_MGCTX(mgctx);
2874 	struct cgroup_subsys_state *d_css;
2875 	struct cgroup *dsct;
2876 	struct css_set *src_cset;
2877 	int ret;
2878 
2879 	lockdep_assert_held(&cgroup_mutex);
2880 
2881 	percpu_down_write(&cgroup_threadgroup_rwsem);
2882 
2883 	/* look up all csses currently attached to @cgrp's subtree */
2884 	spin_lock_irq(&css_set_lock);
2885 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2886 		struct cgrp_cset_link *link;
2887 
2888 		list_for_each_entry(link, &dsct->cset_links, cset_link)
2889 			cgroup_migrate_add_src(link->cset, dsct, &mgctx);
2890 	}
2891 	spin_unlock_irq(&css_set_lock);
2892 
2893 	/* NULL dst indicates self on default hierarchy */
2894 	ret = cgroup_migrate_prepare_dst(&mgctx);
2895 	if (ret)
2896 		goto out_finish;
2897 
2898 	spin_lock_irq(&css_set_lock);
2899 	list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, mg_preload_node) {
2900 		struct task_struct *task, *ntask;
2901 
2902 		/* all tasks in src_csets need to be migrated */
2903 		list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
2904 			cgroup_migrate_add_task(task, &mgctx);
2905 	}
2906 	spin_unlock_irq(&css_set_lock);
2907 
2908 	ret = cgroup_migrate_execute(&mgctx);
2909 out_finish:
2910 	cgroup_migrate_finish(&mgctx);
2911 	percpu_up_write(&cgroup_threadgroup_rwsem);
2912 	return ret;
2913 }
2914 
2915 /**
2916  * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
2917  * @cgrp: root of the target subtree
2918  *
2919  * Because css offlining is asynchronous, userland may try to re-enable a
2920  * controller while the previous css is still around.  This function grabs
2921  * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
2922  */
2923 void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
2924 	__acquires(&cgroup_mutex)
2925 {
2926 	struct cgroup *dsct;
2927 	struct cgroup_subsys_state *d_css;
2928 	struct cgroup_subsys *ss;
2929 	int ssid;
2930 
2931 restart:
2932 	mutex_lock(&cgroup_mutex);
2933 
2934 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
2935 		for_each_subsys(ss, ssid) {
2936 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
2937 			DEFINE_WAIT(wait);
2938 
2939 			if (!css || !percpu_ref_is_dying(&css->refcnt))
2940 				continue;
2941 
2942 			cgroup_get_live(dsct);
2943 			prepare_to_wait(&dsct->offline_waitq, &wait,
2944 					TASK_UNINTERRUPTIBLE);
2945 
2946 			mutex_unlock(&cgroup_mutex);
2947 			schedule();
2948 			finish_wait(&dsct->offline_waitq, &wait);
2949 
2950 			cgroup_put(dsct);
2951 			goto restart;
2952 		}
2953 	}
2954 }
2955 
2956 /**
2957  * cgroup_save_control - save control masks and dom_cgrp of a subtree
2958  * @cgrp: root of the target subtree
2959  *
2960  * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the
2961  * respective old_ prefixed fields for @cgrp's subtree including @cgrp
2962  * itself.
2963  */
2964 static void cgroup_save_control(struct cgroup *cgrp)
2965 {
2966 	struct cgroup *dsct;
2967 	struct cgroup_subsys_state *d_css;
2968 
2969 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2970 		dsct->old_subtree_control = dsct->subtree_control;
2971 		dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
2972 		dsct->old_dom_cgrp = dsct->dom_cgrp;
2973 	}
2974 }
2975 
2976 /**
2977  * cgroup_propagate_control - refresh control masks of a subtree
2978  * @cgrp: root of the target subtree
2979  *
2980  * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
2981  * ->subtree_control and propagate controller availability through the
2982  * subtree so that descendants don't have unavailable controllers enabled.
2983  */
2984 static void cgroup_propagate_control(struct cgroup *cgrp)
2985 {
2986 	struct cgroup *dsct;
2987 	struct cgroup_subsys_state *d_css;
2988 
2989 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2990 		dsct->subtree_control &= cgroup_control(dsct);
2991 		dsct->subtree_ss_mask =
2992 			cgroup_calc_subtree_ss_mask(dsct->subtree_control,
2993 						    cgroup_ss_mask(dsct));
2994 	}
2995 }
2996 
2997 /**
2998  * cgroup_restore_control - restore control masks and dom_cgrp of a subtree
2999  * @cgrp: root of the target subtree
3000  *
3001  * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the
3002  * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3003  * itself.
3004  */
3005 static void cgroup_restore_control(struct cgroup *cgrp)
3006 {
3007 	struct cgroup *dsct;
3008 	struct cgroup_subsys_state *d_css;
3009 
3010 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3011 		dsct->subtree_control = dsct->old_subtree_control;
3012 		dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
3013 		dsct->dom_cgrp = dsct->old_dom_cgrp;
3014 	}
3015 }
3016 
3017 static bool css_visible(struct cgroup_subsys_state *css)
3018 {
3019 	struct cgroup_subsys *ss = css->ss;
3020 	struct cgroup *cgrp = css->cgroup;
3021 
3022 	if (cgroup_control(cgrp) & (1 << ss->id))
3023 		return true;
3024 	if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
3025 		return false;
3026 	return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
3027 }
3028 
3029 /**
3030  * cgroup_apply_control_enable - enable or show csses according to control
3031  * @cgrp: root of the target subtree
3032  *
3033  * Walk @cgrp's subtree and create new csses or make the existing ones
3034  * visible.  A css is created invisible if it's being implicitly enabled
3035  * through dependency.  An invisible css is made visible when the userland
3036  * explicitly enables it.
3037  *
3038  * Returns 0 on success, -errno on failure.  On failure, csses which have
3039  * been processed already aren't cleaned up.  The caller is responsible for
3040  * cleaning up with cgroup_apply_control_disable().
3041  */
3042 static int cgroup_apply_control_enable(struct cgroup *cgrp)
3043 {
3044 	struct cgroup *dsct;
3045 	struct cgroup_subsys_state *d_css;
3046 	struct cgroup_subsys *ss;
3047 	int ssid, ret;
3048 
3049 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3050 		for_each_subsys(ss, ssid) {
3051 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3052 
3053 			WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
3054 
3055 			if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
3056 				continue;
3057 
3058 			if (!css) {
3059 				css = css_create(dsct, ss);
3060 				if (IS_ERR(css))
3061 					return PTR_ERR(css);
3062 			}
3063 
3064 			if (css_visible(css)) {
3065 				ret = css_populate_dir(css);
3066 				if (ret)
3067 					return ret;
3068 			}
3069 		}
3070 	}
3071 
3072 	return 0;
3073 }
3074 
3075 /**
3076  * cgroup_apply_control_disable - kill or hide csses according to control
3077  * @cgrp: root of the target subtree
3078  *
3079  * Walk @cgrp's subtree and kill and hide csses so that they match
3080  * cgroup_ss_mask() and cgroup_visible_mask().
3081  *
3082  * A css is hidden when the userland requests it to be disabled while other
3083  * subsystems are still depending on it.  The css must not actively control
3084  * resources and be in the vanilla state if it's made visible again later.
3085  * Controllers which may be depended upon should provide ->css_reset() for
3086  * this purpose.
3087  */
3088 static void cgroup_apply_control_disable(struct cgroup *cgrp)
3089 {
3090 	struct cgroup *dsct;
3091 	struct cgroup_subsys_state *d_css;
3092 	struct cgroup_subsys *ss;
3093 	int ssid;
3094 
3095 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3096 		for_each_subsys(ss, ssid) {
3097 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3098 
3099 			WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
3100 
3101 			if (!css)
3102 				continue;
3103 
3104 			if (css->parent &&
3105 			    !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
3106 				kill_css(css);
3107 			} else if (!css_visible(css)) {
3108 				css_clear_dir(css);
3109 				if (ss->css_reset)
3110 					ss->css_reset(css);
3111 			}
3112 		}
3113 	}
3114 }
3115 
3116 /**
3117  * cgroup_apply_control - apply control mask updates to the subtree
3118  * @cgrp: root of the target subtree
3119  *
3120  * subsystems can be enabled and disabled in a subtree using the following
3121  * steps.
3122  *
3123  * 1. Call cgroup_save_control() to stash the current state.
3124  * 2. Update ->subtree_control masks in the subtree as desired.
3125  * 3. Call cgroup_apply_control() to apply the changes.
3126  * 4. Optionally perform other related operations.
3127  * 5. Call cgroup_finalize_control() to finish up.
3128  *
3129  * This function implements step 3 and propagates the mask changes
3130  * throughout @cgrp's subtree, updates csses accordingly and perform
3131  * process migrations.
3132  */
3133 static int cgroup_apply_control(struct cgroup *cgrp)
3134 {
3135 	int ret;
3136 
3137 	cgroup_propagate_control(cgrp);
3138 
3139 	ret = cgroup_apply_control_enable(cgrp);
3140 	if (ret)
3141 		return ret;
3142 
3143 	/*
3144 	 * At this point, cgroup_e_css_by_mask() results reflect the new csses
3145 	 * making the following cgroup_update_dfl_csses() properly update
3146 	 * css associations of all tasks in the subtree.
3147 	 */
3148 	ret = cgroup_update_dfl_csses(cgrp);
3149 	if (ret)
3150 		return ret;
3151 
3152 	return 0;
3153 }
3154 
3155 /**
3156  * cgroup_finalize_control - finalize control mask update
3157  * @cgrp: root of the target subtree
3158  * @ret: the result of the update
3159  *
3160  * Finalize control mask update.  See cgroup_apply_control() for more info.
3161  */
3162 static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
3163 {
3164 	if (ret) {
3165 		cgroup_restore_control(cgrp);
3166 		cgroup_propagate_control(cgrp);
3167 	}
3168 
3169 	cgroup_apply_control_disable(cgrp);
3170 }
3171 
3172 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable)
3173 {
3174 	u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask;
3175 
3176 	/* if nothing is getting enabled, nothing to worry about */
3177 	if (!enable)
3178 		return 0;
3179 
3180 	/* can @cgrp host any resources? */
3181 	if (!cgroup_is_valid_domain(cgrp->dom_cgrp))
3182 		return -EOPNOTSUPP;
3183 
3184 	/* mixables don't care */
3185 	if (cgroup_is_mixable(cgrp))
3186 		return 0;
3187 
3188 	if (domain_enable) {
3189 		/* can't enable domain controllers inside a thread subtree */
3190 		if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3191 			return -EOPNOTSUPP;
3192 	} else {
3193 		/*
3194 		 * Threaded controllers can handle internal competitions
3195 		 * and are always allowed inside a (prospective) thread
3196 		 * subtree.
3197 		 */
3198 		if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3199 			return 0;
3200 	}
3201 
3202 	/*
3203 	 * Controllers can't be enabled for a cgroup with tasks to avoid
3204 	 * child cgroups competing against tasks.
3205 	 */
3206 	if (cgroup_has_tasks(cgrp))
3207 		return -EBUSY;
3208 
3209 	return 0;
3210 }
3211 
3212 /* change the enabled child controllers for a cgroup in the default hierarchy */
3213 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3214 					    char *buf, size_t nbytes,
3215 					    loff_t off)
3216 {
3217 	u16 enable = 0, disable = 0;
3218 	struct cgroup *cgrp, *child;
3219 	struct cgroup_subsys *ss;
3220 	char *tok;
3221 	int ssid, ret;
3222 
3223 	/*
3224 	 * Parse input - space separated list of subsystem names prefixed
3225 	 * with either + or -.
3226 	 */
3227 	buf = strstrip(buf);
3228 	while ((tok = strsep(&buf, " "))) {
3229 		if (tok[0] == '\0')
3230 			continue;
3231 		do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
3232 			if (!cgroup_ssid_enabled(ssid) ||
3233 			    strcmp(tok + 1, ss->name))
3234 				continue;
3235 
3236 			if (*tok == '+') {
3237 				enable |= 1 << ssid;
3238 				disable &= ~(1 << ssid);
3239 			} else if (*tok == '-') {
3240 				disable |= 1 << ssid;
3241 				enable &= ~(1 << ssid);
3242 			} else {
3243 				return -EINVAL;
3244 			}
3245 			break;
3246 		} while_each_subsys_mask();
3247 		if (ssid == CGROUP_SUBSYS_COUNT)
3248 			return -EINVAL;
3249 	}
3250 
3251 	cgrp = cgroup_kn_lock_live(of->kn, true);
3252 	if (!cgrp)
3253 		return -ENODEV;
3254 
3255 	for_each_subsys(ss, ssid) {
3256 		if (enable & (1 << ssid)) {
3257 			if (cgrp->subtree_control & (1 << ssid)) {
3258 				enable &= ~(1 << ssid);
3259 				continue;
3260 			}
3261 
3262 			if (!(cgroup_control(cgrp) & (1 << ssid))) {
3263 				ret = -ENOENT;
3264 				goto out_unlock;
3265 			}
3266 		} else if (disable & (1 << ssid)) {
3267 			if (!(cgrp->subtree_control & (1 << ssid))) {
3268 				disable &= ~(1 << ssid);
3269 				continue;
3270 			}
3271 
3272 			/* a child has it enabled? */
3273 			cgroup_for_each_live_child(child, cgrp) {
3274 				if (child->subtree_control & (1 << ssid)) {
3275 					ret = -EBUSY;
3276 					goto out_unlock;
3277 				}
3278 			}
3279 		}
3280 	}
3281 
3282 	if (!enable && !disable) {
3283 		ret = 0;
3284 		goto out_unlock;
3285 	}
3286 
3287 	ret = cgroup_vet_subtree_control_enable(cgrp, enable);
3288 	if (ret)
3289 		goto out_unlock;
3290 
3291 	/* save and update control masks and prepare csses */
3292 	cgroup_save_control(cgrp);
3293 
3294 	cgrp->subtree_control |= enable;
3295 	cgrp->subtree_control &= ~disable;
3296 
3297 	ret = cgroup_apply_control(cgrp);
3298 	cgroup_finalize_control(cgrp, ret);
3299 	if (ret)
3300 		goto out_unlock;
3301 
3302 	kernfs_activate(cgrp->kn);
3303 out_unlock:
3304 	cgroup_kn_unlock(of->kn);
3305 	return ret ?: nbytes;
3306 }
3307 
3308 /**
3309  * cgroup_enable_threaded - make @cgrp threaded
3310  * @cgrp: the target cgroup
3311  *
3312  * Called when "threaded" is written to the cgroup.type interface file and
3313  * tries to make @cgrp threaded and join the parent's resource domain.
3314  * This function is never called on the root cgroup as cgroup.type doesn't
3315  * exist on it.
3316  */
3317 static int cgroup_enable_threaded(struct cgroup *cgrp)
3318 {
3319 	struct cgroup *parent = cgroup_parent(cgrp);
3320 	struct cgroup *dom_cgrp = parent->dom_cgrp;
3321 	struct cgroup *dsct;
3322 	struct cgroup_subsys_state *d_css;
3323 	int ret;
3324 
3325 	lockdep_assert_held(&cgroup_mutex);
3326 
3327 	/* noop if already threaded */
3328 	if (cgroup_is_threaded(cgrp))
3329 		return 0;
3330 
3331 	/*
3332 	 * If @cgroup is populated or has domain controllers enabled, it
3333 	 * can't be switched.  While the below cgroup_can_be_thread_root()
3334 	 * test can catch the same conditions, that's only when @parent is
3335 	 * not mixable, so let's check it explicitly.
3336 	 */
3337 	if (cgroup_is_populated(cgrp) ||
3338 	    cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
3339 		return -EOPNOTSUPP;
3340 
3341 	/* we're joining the parent's domain, ensure its validity */
3342 	if (!cgroup_is_valid_domain(dom_cgrp) ||
3343 	    !cgroup_can_be_thread_root(dom_cgrp))
3344 		return -EOPNOTSUPP;
3345 
3346 	/*
3347 	 * The following shouldn't cause actual migrations and should
3348 	 * always succeed.
3349 	 */
3350 	cgroup_save_control(cgrp);
3351 
3352 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)
3353 		if (dsct == cgrp || cgroup_is_threaded(dsct))
3354 			dsct->dom_cgrp = dom_cgrp;
3355 
3356 	ret = cgroup_apply_control(cgrp);
3357 	if (!ret)
3358 		parent->nr_threaded_children++;
3359 
3360 	cgroup_finalize_control(cgrp, ret);
3361 	return ret;
3362 }
3363 
3364 static int cgroup_type_show(struct seq_file *seq, void *v)
3365 {
3366 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3367 
3368 	if (cgroup_is_threaded(cgrp))
3369 		seq_puts(seq, "threaded\n");
3370 	else if (!cgroup_is_valid_domain(cgrp))
3371 		seq_puts(seq, "domain invalid\n");
3372 	else if (cgroup_is_thread_root(cgrp))
3373 		seq_puts(seq, "domain threaded\n");
3374 	else
3375 		seq_puts(seq, "domain\n");
3376 
3377 	return 0;
3378 }
3379 
3380 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf,
3381 				 size_t nbytes, loff_t off)
3382 {
3383 	struct cgroup *cgrp;
3384 	int ret;
3385 
3386 	/* only switching to threaded mode is supported */
3387 	if (strcmp(strstrip(buf), "threaded"))
3388 		return -EINVAL;
3389 
3390 	cgrp = cgroup_kn_lock_live(of->kn, false);
3391 	if (!cgrp)
3392 		return -ENOENT;
3393 
3394 	/* threaded can only be enabled */
3395 	ret = cgroup_enable_threaded(cgrp);
3396 
3397 	cgroup_kn_unlock(of->kn);
3398 	return ret ?: nbytes;
3399 }
3400 
3401 static int cgroup_max_descendants_show(struct seq_file *seq, void *v)
3402 {
3403 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3404 	int descendants = READ_ONCE(cgrp->max_descendants);
3405 
3406 	if (descendants == INT_MAX)
3407 		seq_puts(seq, "max\n");
3408 	else
3409 		seq_printf(seq, "%d\n", descendants);
3410 
3411 	return 0;
3412 }
3413 
3414 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of,
3415 					   char *buf, size_t nbytes, loff_t off)
3416 {
3417 	struct cgroup *cgrp;
3418 	int descendants;
3419 	ssize_t ret;
3420 
3421 	buf = strstrip(buf);
3422 	if (!strcmp(buf, "max")) {
3423 		descendants = INT_MAX;
3424 	} else {
3425 		ret = kstrtoint(buf, 0, &descendants);
3426 		if (ret)
3427 			return ret;
3428 	}
3429 
3430 	if (descendants < 0)
3431 		return -ERANGE;
3432 
3433 	cgrp = cgroup_kn_lock_live(of->kn, false);
3434 	if (!cgrp)
3435 		return -ENOENT;
3436 
3437 	cgrp->max_descendants = descendants;
3438 
3439 	cgroup_kn_unlock(of->kn);
3440 
3441 	return nbytes;
3442 }
3443 
3444 static int cgroup_max_depth_show(struct seq_file *seq, void *v)
3445 {
3446 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3447 	int depth = READ_ONCE(cgrp->max_depth);
3448 
3449 	if (depth == INT_MAX)
3450 		seq_puts(seq, "max\n");
3451 	else
3452 		seq_printf(seq, "%d\n", depth);
3453 
3454 	return 0;
3455 }
3456 
3457 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of,
3458 				      char *buf, size_t nbytes, loff_t off)
3459 {
3460 	struct cgroup *cgrp;
3461 	ssize_t ret;
3462 	int depth;
3463 
3464 	buf = strstrip(buf);
3465 	if (!strcmp(buf, "max")) {
3466 		depth = INT_MAX;
3467 	} else {
3468 		ret = kstrtoint(buf, 0, &depth);
3469 		if (ret)
3470 			return ret;
3471 	}
3472 
3473 	if (depth < 0)
3474 		return -ERANGE;
3475 
3476 	cgrp = cgroup_kn_lock_live(of->kn, false);
3477 	if (!cgrp)
3478 		return -ENOENT;
3479 
3480 	cgrp->max_depth = depth;
3481 
3482 	cgroup_kn_unlock(of->kn);
3483 
3484 	return nbytes;
3485 }
3486 
3487 static int cgroup_events_show(struct seq_file *seq, void *v)
3488 {
3489 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3490 
3491 	seq_printf(seq, "populated %d\n", cgroup_is_populated(cgrp));
3492 	seq_printf(seq, "frozen %d\n", test_bit(CGRP_FROZEN, &cgrp->flags));
3493 
3494 	return 0;
3495 }
3496 
3497 static int cgroup_stat_show(struct seq_file *seq, void *v)
3498 {
3499 	struct cgroup *cgroup = seq_css(seq)->cgroup;
3500 
3501 	seq_printf(seq, "nr_descendants %d\n",
3502 		   cgroup->nr_descendants);
3503 	seq_printf(seq, "nr_dying_descendants %d\n",
3504 		   cgroup->nr_dying_descendants);
3505 
3506 	return 0;
3507 }
3508 
3509 static int __maybe_unused cgroup_extra_stat_show(struct seq_file *seq,
3510 						 struct cgroup *cgrp, int ssid)
3511 {
3512 	struct cgroup_subsys *ss = cgroup_subsys[ssid];
3513 	struct cgroup_subsys_state *css;
3514 	int ret;
3515 
3516 	if (!ss->css_extra_stat_show)
3517 		return 0;
3518 
3519 	css = cgroup_tryget_css(cgrp, ss);
3520 	if (!css)
3521 		return 0;
3522 
3523 	ret = ss->css_extra_stat_show(seq, css);
3524 	css_put(css);
3525 	return ret;
3526 }
3527 
3528 static int cpu_stat_show(struct seq_file *seq, void *v)
3529 {
3530 	struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup;
3531 	int ret = 0;
3532 
3533 	cgroup_base_stat_cputime_show(seq);
3534 #ifdef CONFIG_CGROUP_SCHED
3535 	ret = cgroup_extra_stat_show(seq, cgrp, cpu_cgrp_id);
3536 #endif
3537 	return ret;
3538 }
3539 
3540 #ifdef CONFIG_PSI
3541 static int cgroup_io_pressure_show(struct seq_file *seq, void *v)
3542 {
3543 	struct cgroup *cgroup = seq_css(seq)->cgroup;
3544 	struct psi_group *psi = cgroup->id == 1 ? &psi_system : &cgroup->psi;
3545 
3546 	return psi_show(seq, psi, PSI_IO);
3547 }
3548 static int cgroup_memory_pressure_show(struct seq_file *seq, void *v)
3549 {
3550 	struct cgroup *cgroup = seq_css(seq)->cgroup;
3551 	struct psi_group *psi = cgroup->id == 1 ? &psi_system : &cgroup->psi;
3552 
3553 	return psi_show(seq, psi, PSI_MEM);
3554 }
3555 static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v)
3556 {
3557 	struct cgroup *cgroup = seq_css(seq)->cgroup;
3558 	struct psi_group *psi = cgroup->id == 1 ? &psi_system : &cgroup->psi;
3559 
3560 	return psi_show(seq, psi, PSI_CPU);
3561 }
3562 
3563 static ssize_t cgroup_pressure_write(struct kernfs_open_file *of, char *buf,
3564 					  size_t nbytes, enum psi_res res)
3565 {
3566 	struct psi_trigger *new;
3567 	struct cgroup *cgrp;
3568 
3569 	cgrp = cgroup_kn_lock_live(of->kn, false);
3570 	if (!cgrp)
3571 		return -ENODEV;
3572 
3573 	cgroup_get(cgrp);
3574 	cgroup_kn_unlock(of->kn);
3575 
3576 	new = psi_trigger_create(&cgrp->psi, buf, nbytes, res);
3577 	if (IS_ERR(new)) {
3578 		cgroup_put(cgrp);
3579 		return PTR_ERR(new);
3580 	}
3581 
3582 	psi_trigger_replace(&of->priv, new);
3583 
3584 	cgroup_put(cgrp);
3585 
3586 	return nbytes;
3587 }
3588 
3589 static ssize_t cgroup_io_pressure_write(struct kernfs_open_file *of,
3590 					  char *buf, size_t nbytes,
3591 					  loff_t off)
3592 {
3593 	return cgroup_pressure_write(of, buf, nbytes, PSI_IO);
3594 }
3595 
3596 static ssize_t cgroup_memory_pressure_write(struct kernfs_open_file *of,
3597 					  char *buf, size_t nbytes,
3598 					  loff_t off)
3599 {
3600 	return cgroup_pressure_write(of, buf, nbytes, PSI_MEM);
3601 }
3602 
3603 static ssize_t cgroup_cpu_pressure_write(struct kernfs_open_file *of,
3604 					  char *buf, size_t nbytes,
3605 					  loff_t off)
3606 {
3607 	return cgroup_pressure_write(of, buf, nbytes, PSI_CPU);
3608 }
3609 
3610 static __poll_t cgroup_pressure_poll(struct kernfs_open_file *of,
3611 					  poll_table *pt)
3612 {
3613 	return psi_trigger_poll(&of->priv, of->file, pt);
3614 }
3615 
3616 static void cgroup_pressure_release(struct kernfs_open_file *of)
3617 {
3618 	psi_trigger_replace(&of->priv, NULL);
3619 }
3620 #endif /* CONFIG_PSI */
3621 
3622 static int cgroup_freeze_show(struct seq_file *seq, void *v)
3623 {
3624 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3625 
3626 	seq_printf(seq, "%d\n", cgrp->freezer.freeze);
3627 
3628 	return 0;
3629 }
3630 
3631 static ssize_t cgroup_freeze_write(struct kernfs_open_file *of,
3632 				   char *buf, size_t nbytes, loff_t off)
3633 {
3634 	struct cgroup *cgrp;
3635 	ssize_t ret;
3636 	int freeze;
3637 
3638 	ret = kstrtoint(strstrip(buf), 0, &freeze);
3639 	if (ret)
3640 		return ret;
3641 
3642 	if (freeze < 0 || freeze > 1)
3643 		return -ERANGE;
3644 
3645 	cgrp = cgroup_kn_lock_live(of->kn, false);
3646 	if (!cgrp)
3647 		return -ENOENT;
3648 
3649 	cgroup_freeze(cgrp, freeze);
3650 
3651 	cgroup_kn_unlock(of->kn);
3652 
3653 	return nbytes;
3654 }
3655 
3656 static int cgroup_file_open(struct kernfs_open_file *of)
3657 {
3658 	struct cftype *cft = of->kn->priv;
3659 
3660 	if (cft->open)
3661 		return cft->open(of);
3662 	return 0;
3663 }
3664 
3665 static void cgroup_file_release(struct kernfs_open_file *of)
3666 {
3667 	struct cftype *cft = of->kn->priv;
3668 
3669 	if (cft->release)
3670 		cft->release(of);
3671 }
3672 
3673 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3674 				 size_t nbytes, loff_t off)
3675 {
3676 	struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
3677 	struct cgroup *cgrp = of->kn->parent->priv;
3678 	struct cftype *cft = of->kn->priv;
3679 	struct cgroup_subsys_state *css;
3680 	int ret;
3681 
3682 	/*
3683 	 * If namespaces are delegation boundaries, disallow writes to
3684 	 * files in an non-init namespace root from inside the namespace
3685 	 * except for the files explicitly marked delegatable -
3686 	 * cgroup.procs and cgroup.subtree_control.
3687 	 */
3688 	if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) &&
3689 	    !(cft->flags & CFTYPE_NS_DELEGATABLE) &&
3690 	    ns != &init_cgroup_ns && ns->root_cset->dfl_cgrp == cgrp)
3691 		return -EPERM;
3692 
3693 	if (cft->write)
3694 		return cft->write(of, buf, nbytes, off);
3695 
3696 	/*
3697 	 * kernfs guarantees that a file isn't deleted with operations in
3698 	 * flight, which means that the matching css is and stays alive and
3699 	 * doesn't need to be pinned.  The RCU locking is not necessary
3700 	 * either.  It's just for the convenience of using cgroup_css().
3701 	 */
3702 	rcu_read_lock();
3703 	css = cgroup_css(cgrp, cft->ss);
3704 	rcu_read_unlock();
3705 
3706 	if (cft->write_u64) {
3707 		unsigned long long v;
3708 		ret = kstrtoull(buf, 0, &v);
3709 		if (!ret)
3710 			ret = cft->write_u64(css, cft, v);
3711 	} else if (cft->write_s64) {
3712 		long long v;
3713 		ret = kstrtoll(buf, 0, &v);
3714 		if (!ret)
3715 			ret = cft->write_s64(css, cft, v);
3716 	} else {
3717 		ret = -EINVAL;
3718 	}
3719 
3720 	return ret ?: nbytes;
3721 }
3722 
3723 static __poll_t cgroup_file_poll(struct kernfs_open_file *of, poll_table *pt)
3724 {
3725 	struct cftype *cft = of->kn->priv;
3726 
3727 	if (cft->poll)
3728 		return cft->poll(of, pt);
3729 
3730 	return kernfs_generic_poll(of, pt);
3731 }
3732 
3733 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
3734 {
3735 	return seq_cft(seq)->seq_start(seq, ppos);
3736 }
3737 
3738 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
3739 {
3740 	return seq_cft(seq)->seq_next(seq, v, ppos);
3741 }
3742 
3743 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
3744 {
3745 	if (seq_cft(seq)->seq_stop)
3746 		seq_cft(seq)->seq_stop(seq, v);
3747 }
3748 
3749 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
3750 {
3751 	struct cftype *cft = seq_cft(m);
3752 	struct cgroup_subsys_state *css = seq_css(m);
3753 
3754 	if (cft->seq_show)
3755 		return cft->seq_show(m, arg);
3756 
3757 	if (cft->read_u64)
3758 		seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3759 	else if (cft->read_s64)
3760 		seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3761 	else
3762 		return -EINVAL;
3763 	return 0;
3764 }
3765 
3766 static struct kernfs_ops cgroup_kf_single_ops = {
3767 	.atomic_write_len	= PAGE_SIZE,
3768 	.open			= cgroup_file_open,
3769 	.release		= cgroup_file_release,
3770 	.write			= cgroup_file_write,
3771 	.poll			= cgroup_file_poll,
3772 	.seq_show		= cgroup_seqfile_show,
3773 };
3774 
3775 static struct kernfs_ops cgroup_kf_ops = {
3776 	.atomic_write_len	= PAGE_SIZE,
3777 	.open			= cgroup_file_open,
3778 	.release		= cgroup_file_release,
3779 	.write			= cgroup_file_write,
3780 	.poll			= cgroup_file_poll,
3781 	.seq_start		= cgroup_seqfile_start,
3782 	.seq_next		= cgroup_seqfile_next,
3783 	.seq_stop		= cgroup_seqfile_stop,
3784 	.seq_show		= cgroup_seqfile_show,
3785 };
3786 
3787 /* set uid and gid of cgroup dirs and files to that of the creator */
3788 static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3789 {
3790 	struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3791 			       .ia_uid = current_fsuid(),
3792 			       .ia_gid = current_fsgid(), };
3793 
3794 	if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3795 	    gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3796 		return 0;
3797 
3798 	return kernfs_setattr(kn, &iattr);
3799 }
3800 
3801 static void cgroup_file_notify_timer(struct timer_list *timer)
3802 {
3803 	cgroup_file_notify(container_of(timer, struct cgroup_file,
3804 					notify_timer));
3805 }
3806 
3807 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3808 			   struct cftype *cft)
3809 {
3810 	char name[CGROUP_FILE_NAME_MAX];
3811 	struct kernfs_node *kn;
3812 	struct lock_class_key *key = NULL;
3813 	int ret;
3814 
3815 #ifdef CONFIG_DEBUG_LOCK_ALLOC
3816 	key = &cft->lockdep_key;
3817 #endif
3818 	kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3819 				  cgroup_file_mode(cft),
3820 				  GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
3821 				  0, cft->kf_ops, cft,
3822 				  NULL, key);
3823 	if (IS_ERR(kn))
3824 		return PTR_ERR(kn);
3825 
3826 	ret = cgroup_kn_set_ugid(kn);
3827 	if (ret) {
3828 		kernfs_remove(kn);
3829 		return ret;
3830 	}
3831 
3832 	if (cft->file_offset) {
3833 		struct cgroup_file *cfile = (void *)css + cft->file_offset;
3834 
3835 		timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0);
3836 
3837 		spin_lock_irq(&cgroup_file_kn_lock);
3838 		cfile->kn = kn;
3839 		spin_unlock_irq(&cgroup_file_kn_lock);
3840 	}
3841 
3842 	return 0;
3843 }
3844 
3845 /**
3846  * cgroup_addrm_files - add or remove files to a cgroup directory
3847  * @css: the target css
3848  * @cgrp: the target cgroup (usually css->cgroup)
3849  * @cfts: array of cftypes to be added
3850  * @is_add: whether to add or remove
3851  *
3852  * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3853  * For removals, this function never fails.
3854  */
3855 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3856 			      struct cgroup *cgrp, struct cftype cfts[],
3857 			      bool is_add)
3858 {
3859 	struct cftype *cft, *cft_end = NULL;
3860 	int ret = 0;
3861 
3862 	lockdep_assert_held(&cgroup_mutex);
3863 
3864 restart:
3865 	for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
3866 		/* does cft->flags tell us to skip this file on @cgrp? */
3867 		if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
3868 			continue;
3869 		if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
3870 			continue;
3871 		if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
3872 			continue;
3873 		if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
3874 			continue;
3875 		if ((cft->flags & CFTYPE_DEBUG) && !cgroup_debug)
3876 			continue;
3877 		if (is_add) {
3878 			ret = cgroup_add_file(css, cgrp, cft);
3879 			if (ret) {
3880 				pr_warn("%s: failed to add %s, err=%d\n",
3881 					__func__, cft->name, ret);
3882 				cft_end = cft;
3883 				is_add = false;
3884 				goto restart;
3885 			}
3886 		} else {
3887 			cgroup_rm_file(cgrp, cft);
3888 		}
3889 	}
3890 	return ret;
3891 }
3892 
3893 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
3894 {
3895 	struct cgroup_subsys *ss = cfts[0].ss;
3896 	struct cgroup *root = &ss->root->cgrp;
3897 	struct cgroup_subsys_state *css;
3898 	int ret = 0;
3899 
3900 	lockdep_assert_held(&cgroup_mutex);
3901 
3902 	/* add/rm files for all cgroups created before */
3903 	css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
3904 		struct cgroup *cgrp = css->cgroup;
3905 
3906 		if (!(css->flags & CSS_VISIBLE))
3907 			continue;
3908 
3909 		ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
3910 		if (ret)
3911 			break;
3912 	}
3913 
3914 	if (is_add && !ret)
3915 		kernfs_activate(root->kn);
3916 	return ret;
3917 }
3918 
3919 static void cgroup_exit_cftypes(struct cftype *cfts)
3920 {
3921 	struct cftype *cft;
3922 
3923 	for (cft = cfts; cft->name[0] != '\0'; cft++) {
3924 		/* free copy for custom atomic_write_len, see init_cftypes() */
3925 		if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3926 			kfree(cft->kf_ops);
3927 		cft->kf_ops = NULL;
3928 		cft->ss = NULL;
3929 
3930 		/* revert flags set by cgroup core while adding @cfts */
3931 		cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
3932 	}
3933 }
3934 
3935 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3936 {
3937 	struct cftype *cft;
3938 
3939 	for (cft = cfts; cft->name[0] != '\0'; cft++) {
3940 		struct kernfs_ops *kf_ops;
3941 
3942 		WARN_ON(cft->ss || cft->kf_ops);
3943 
3944 		if (cft->seq_start)
3945 			kf_ops = &cgroup_kf_ops;
3946 		else
3947 			kf_ops = &cgroup_kf_single_ops;
3948 
3949 		/*
3950 		 * Ugh... if @cft wants a custom max_write_len, we need to
3951 		 * make a copy of kf_ops to set its atomic_write_len.
3952 		 */
3953 		if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3954 			kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3955 			if (!kf_ops) {
3956 				cgroup_exit_cftypes(cfts);
3957 				return -ENOMEM;
3958 			}
3959 			kf_ops->atomic_write_len = cft->max_write_len;
3960 		}
3961 
3962 		cft->kf_ops = kf_ops;
3963 		cft->ss = ss;
3964 	}
3965 
3966 	return 0;
3967 }
3968 
3969 static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3970 {
3971 	lockdep_assert_held(&cgroup_mutex);
3972 
3973 	if (!cfts || !cfts[0].ss)
3974 		return -ENOENT;
3975 
3976 	list_del(&cfts->node);
3977 	cgroup_apply_cftypes(cfts, false);
3978 	cgroup_exit_cftypes(cfts);
3979 	return 0;
3980 }
3981 
3982 /**
3983  * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
3984  * @cfts: zero-length name terminated array of cftypes
3985  *
3986  * Unregister @cfts.  Files described by @cfts are removed from all
3987  * existing cgroups and all future cgroups won't have them either.  This
3988  * function can be called anytime whether @cfts' subsys is attached or not.
3989  *
3990  * Returns 0 on successful unregistration, -ENOENT if @cfts is not
3991  * registered.
3992  */
3993 int cgroup_rm_cftypes(struct cftype *cfts)
3994 {
3995 	int ret;
3996 
3997 	mutex_lock(&cgroup_mutex);
3998 	ret = cgroup_rm_cftypes_locked(cfts);
3999 	mutex_unlock(&cgroup_mutex);
4000 	return ret;
4001 }
4002 
4003 /**
4004  * cgroup_add_cftypes - add an array of cftypes to a subsystem
4005  * @ss: target cgroup subsystem
4006  * @cfts: zero-length name terminated array of cftypes
4007  *
4008  * Register @cfts to @ss.  Files described by @cfts are created for all
4009  * existing cgroups to which @ss is attached and all future cgroups will
4010  * have them too.  This function can be called anytime whether @ss is
4011  * attached or not.
4012  *
4013  * Returns 0 on successful registration, -errno on failure.  Note that this
4014  * function currently returns 0 as long as @cfts registration is successful
4015  * even if some file creation attempts on existing cgroups fail.
4016  */
4017 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4018 {
4019 	int ret;
4020 
4021 	if (!cgroup_ssid_enabled(ss->id))
4022 		return 0;
4023 
4024 	if (!cfts || cfts[0].name[0] == '\0')
4025 		return 0;
4026 
4027 	ret = cgroup_init_cftypes(ss, cfts);
4028 	if (ret)
4029 		return ret;
4030 
4031 	mutex_lock(&cgroup_mutex);
4032 
4033 	list_add_tail(&cfts->node, &ss->cfts);
4034 	ret = cgroup_apply_cftypes(cfts, true);
4035 	if (ret)
4036 		cgroup_rm_cftypes_locked(cfts);
4037 
4038 	mutex_unlock(&cgroup_mutex);
4039 	return ret;
4040 }
4041 
4042 /**
4043  * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
4044  * @ss: target cgroup subsystem
4045  * @cfts: zero-length name terminated array of cftypes
4046  *
4047  * Similar to cgroup_add_cftypes() but the added files are only used for
4048  * the default hierarchy.
4049  */
4050 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4051 {
4052 	struct cftype *cft;
4053 
4054 	for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4055 		cft->flags |= __CFTYPE_ONLY_ON_DFL;
4056 	return cgroup_add_cftypes(ss, cfts);
4057 }
4058 
4059 /**
4060  * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
4061  * @ss: target cgroup subsystem
4062  * @cfts: zero-length name terminated array of cftypes
4063  *
4064  * Similar to cgroup_add_cftypes() but the added files are only used for
4065  * the legacy hierarchies.
4066  */
4067 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4068 {
4069 	struct cftype *cft;
4070 
4071 	for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4072 		cft->flags |= __CFTYPE_NOT_ON_DFL;
4073 	return cgroup_add_cftypes(ss, cfts);
4074 }
4075 
4076 /**
4077  * cgroup_file_notify - generate a file modified event for a cgroup_file
4078  * @cfile: target cgroup_file
4079  *
4080  * @cfile must have been obtained by setting cftype->file_offset.
4081  */
4082 void cgroup_file_notify(struct cgroup_file *cfile)
4083 {
4084 	unsigned long flags;
4085 
4086 	spin_lock_irqsave(&cgroup_file_kn_lock, flags);
4087 	if (cfile->kn) {
4088 		unsigned long last = cfile->notified_at;
4089 		unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV;
4090 
4091 		if (time_in_range(jiffies, last, next)) {
4092 			timer_reduce(&cfile->notify_timer, next);
4093 		} else {
4094 			kernfs_notify(cfile->kn);
4095 			cfile->notified_at = jiffies;
4096 		}
4097 	}
4098 	spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
4099 }
4100 
4101 /**
4102  * css_next_child - find the next child of a given css
4103  * @pos: the current position (%NULL to initiate traversal)
4104  * @parent: css whose children to walk
4105  *
4106  * This function returns the next child of @parent and should be called
4107  * under either cgroup_mutex or RCU read lock.  The only requirement is
4108  * that @parent and @pos are accessible.  The next sibling is guaranteed to
4109  * be returned regardless of their states.
4110  *
4111  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4112  * css which finished ->css_online() is guaranteed to be visible in the
4113  * future iterations and will stay visible until the last reference is put.
4114  * A css which hasn't finished ->css_online() or already finished
4115  * ->css_offline() may show up during traversal.  It's each subsystem's
4116  * responsibility to synchronize against on/offlining.
4117  */
4118 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
4119 					   struct cgroup_subsys_state *parent)
4120 {
4121 	struct cgroup_subsys_state *next;
4122 
4123 	cgroup_assert_mutex_or_rcu_locked();
4124 
4125 	/*
4126 	 * @pos could already have been unlinked from the sibling list.
4127 	 * Once a cgroup is removed, its ->sibling.next is no longer
4128 	 * updated when its next sibling changes.  CSS_RELEASED is set when
4129 	 * @pos is taken off list, at which time its next pointer is valid,
4130 	 * and, as releases are serialized, the one pointed to by the next
4131 	 * pointer is guaranteed to not have started release yet.  This
4132 	 * implies that if we observe !CSS_RELEASED on @pos in this RCU
4133 	 * critical section, the one pointed to by its next pointer is
4134 	 * guaranteed to not have finished its RCU grace period even if we
4135 	 * have dropped rcu_read_lock() inbetween iterations.
4136 	 *
4137 	 * If @pos has CSS_RELEASED set, its next pointer can't be
4138 	 * dereferenced; however, as each css is given a monotonically
4139 	 * increasing unique serial number and always appended to the
4140 	 * sibling list, the next one can be found by walking the parent's
4141 	 * children until the first css with higher serial number than
4142 	 * @pos's.  While this path can be slower, it happens iff iteration
4143 	 * races against release and the race window is very small.
4144 	 */
4145 	if (!pos) {
4146 		next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
4147 	} else if (likely(!(pos->flags & CSS_RELEASED))) {
4148 		next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
4149 	} else {
4150 		list_for_each_entry_rcu(next, &parent->children, sibling)
4151 			if (next->serial_nr > pos->serial_nr)
4152 				break;
4153 	}
4154 
4155 	/*
4156 	 * @next, if not pointing to the head, can be dereferenced and is
4157 	 * the next sibling.
4158 	 */
4159 	if (&next->sibling != &parent->children)
4160 		return next;
4161 	return NULL;
4162 }
4163 
4164 /**
4165  * css_next_descendant_pre - find the next descendant for pre-order walk
4166  * @pos: the current position (%NULL to initiate traversal)
4167  * @root: css whose descendants to walk
4168  *
4169  * To be used by css_for_each_descendant_pre().  Find the next descendant
4170  * to visit for pre-order traversal of @root's descendants.  @root is
4171  * included in the iteration and the first node to be visited.
4172  *
4173  * While this function requires cgroup_mutex or RCU read locking, it
4174  * doesn't require the whole traversal to be contained in a single critical
4175  * section.  This function will return the correct next descendant as long
4176  * as both @pos and @root are accessible and @pos is a descendant of @root.
4177  *
4178  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4179  * css which finished ->css_online() is guaranteed to be visible in the
4180  * future iterations and will stay visible until the last reference is put.
4181  * A css which hasn't finished ->css_online() or already finished
4182  * ->css_offline() may show up during traversal.  It's each subsystem's
4183  * responsibility to synchronize against on/offlining.
4184  */
4185 struct cgroup_subsys_state *
4186 css_next_descendant_pre(struct cgroup_subsys_state *pos,
4187 			struct cgroup_subsys_state *root)
4188 {
4189 	struct cgroup_subsys_state *next;
4190 
4191 	cgroup_assert_mutex_or_rcu_locked();
4192 
4193 	/* if first iteration, visit @root */
4194 	if (!pos)
4195 		return root;
4196 
4197 	/* visit the first child if exists */
4198 	next = css_next_child(NULL, pos);
4199 	if (next)
4200 		return next;
4201 
4202 	/* no child, visit my or the closest ancestor's next sibling */
4203 	while (pos != root) {
4204 		next = css_next_child(pos, pos->parent);
4205 		if (next)
4206 			return next;
4207 		pos = pos->parent;
4208 	}
4209 
4210 	return NULL;
4211 }
4212 
4213 /**
4214  * css_rightmost_descendant - return the rightmost descendant of a css
4215  * @pos: css of interest
4216  *
4217  * Return the rightmost descendant of @pos.  If there's no descendant, @pos
4218  * is returned.  This can be used during pre-order traversal to skip
4219  * subtree of @pos.
4220  *
4221  * While this function requires cgroup_mutex or RCU read locking, it
4222  * doesn't require the whole traversal to be contained in a single critical
4223  * section.  This function will return the correct rightmost descendant as
4224  * long as @pos is accessible.
4225  */
4226 struct cgroup_subsys_state *
4227 css_rightmost_descendant(struct cgroup_subsys_state *pos)
4228 {
4229 	struct cgroup_subsys_state *last, *tmp;
4230 
4231 	cgroup_assert_mutex_or_rcu_locked();
4232 
4233 	do {
4234 		last = pos;
4235 		/* ->prev isn't RCU safe, walk ->next till the end */
4236 		pos = NULL;
4237 		css_for_each_child(tmp, last)
4238 			pos = tmp;
4239 	} while (pos);
4240 
4241 	return last;
4242 }
4243 
4244 static struct cgroup_subsys_state *
4245 css_leftmost_descendant(struct cgroup_subsys_state *pos)
4246 {
4247 	struct cgroup_subsys_state *last;
4248 
4249 	do {
4250 		last = pos;
4251 		pos = css_next_child(NULL, pos);
4252 	} while (pos);
4253 
4254 	return last;
4255 }
4256 
4257 /**
4258  * css_next_descendant_post - find the next descendant for post-order walk
4259  * @pos: the current position (%NULL to initiate traversal)
4260  * @root: css whose descendants to walk
4261  *
4262  * To be used by css_for_each_descendant_post().  Find the next descendant
4263  * to visit for post-order traversal of @root's descendants.  @root is
4264  * included in the iteration and the last node to be visited.
4265  *
4266  * While this function requires cgroup_mutex or RCU read locking, it
4267  * doesn't require the whole traversal to be contained in a single critical
4268  * section.  This function will return the correct next descendant as long
4269  * as both @pos and @cgroup are accessible and @pos is a descendant of
4270  * @cgroup.
4271  *
4272  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4273  * css which finished ->css_online() is guaranteed to be visible in the
4274  * future iterations and will stay visible until the last reference is put.
4275  * A css which hasn't finished ->css_online() or already finished
4276  * ->css_offline() may show up during traversal.  It's each subsystem's
4277  * responsibility to synchronize against on/offlining.
4278  */
4279 struct cgroup_subsys_state *
4280 css_next_descendant_post(struct cgroup_subsys_state *pos,
4281 			 struct cgroup_subsys_state *root)
4282 {
4283 	struct cgroup_subsys_state *next;
4284 
4285 	cgroup_assert_mutex_or_rcu_locked();
4286 
4287 	/* if first iteration, visit leftmost descendant which may be @root */
4288 	if (!pos)
4289 		return css_leftmost_descendant(root);
4290 
4291 	/* if we visited @root, we're done */
4292 	if (pos == root)
4293 		return NULL;
4294 
4295 	/* if there's an unvisited sibling, visit its leftmost descendant */
4296 	next = css_next_child(pos, pos->parent);
4297 	if (next)
4298 		return css_leftmost_descendant(next);
4299 
4300 	/* no sibling left, visit parent */
4301 	return pos->parent;
4302 }
4303 
4304 /**
4305  * css_has_online_children - does a css have online children
4306  * @css: the target css
4307  *
4308  * Returns %true if @css has any online children; otherwise, %false.  This
4309  * function can be called from any context but the caller is responsible
4310  * for synchronizing against on/offlining as necessary.
4311  */
4312 bool css_has_online_children(struct cgroup_subsys_state *css)
4313 {
4314 	struct cgroup_subsys_state *child;
4315 	bool ret = false;
4316 
4317 	rcu_read_lock();
4318 	css_for_each_child(child, css) {
4319 		if (child->flags & CSS_ONLINE) {
4320 			ret = true;
4321 			break;
4322 		}
4323 	}
4324 	rcu_read_unlock();
4325 	return ret;
4326 }
4327 
4328 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it)
4329 {
4330 	struct list_head *l;
4331 	struct cgrp_cset_link *link;
4332 	struct css_set *cset;
4333 
4334 	lockdep_assert_held(&css_set_lock);
4335 
4336 	/* find the next threaded cset */
4337 	if (it->tcset_pos) {
4338 		l = it->tcset_pos->next;
4339 
4340 		if (l != it->tcset_head) {
4341 			it->tcset_pos = l;
4342 			return container_of(l, struct css_set,
4343 					    threaded_csets_node);
4344 		}
4345 
4346 		it->tcset_pos = NULL;
4347 	}
4348 
4349 	/* find the next cset */
4350 	l = it->cset_pos;
4351 	l = l->next;
4352 	if (l == it->cset_head) {
4353 		it->cset_pos = NULL;
4354 		return NULL;
4355 	}
4356 
4357 	if (it->ss) {
4358 		cset = container_of(l, struct css_set, e_cset_node[it->ss->id]);
4359 	} else {
4360 		link = list_entry(l, struct cgrp_cset_link, cset_link);
4361 		cset = link->cset;
4362 	}
4363 
4364 	it->cset_pos = l;
4365 
4366 	/* initialize threaded css_set walking */
4367 	if (it->flags & CSS_TASK_ITER_THREADED) {
4368 		if (it->cur_dcset)
4369 			put_css_set_locked(it->cur_dcset);
4370 		it->cur_dcset = cset;
4371 		get_css_set(cset);
4372 
4373 		it->tcset_head = &cset->threaded_csets;
4374 		it->tcset_pos = &cset->threaded_csets;
4375 	}
4376 
4377 	return cset;
4378 }
4379 
4380 /**
4381  * css_task_iter_advance_css_set - advance a task itererator to the next css_set
4382  * @it: the iterator to advance
4383  *
4384  * Advance @it to the next css_set to walk.
4385  */
4386 static void css_task_iter_advance_css_set(struct css_task_iter *it)
4387 {
4388 	struct css_set *cset;
4389 
4390 	lockdep_assert_held(&css_set_lock);
4391 
4392 	/* Advance to the next non-empty css_set */
4393 	do {
4394 		cset = css_task_iter_next_css_set(it);
4395 		if (!cset) {
4396 			it->task_pos = NULL;
4397 			return;
4398 		}
4399 	} while (!css_set_populated(cset));
4400 
4401 	if (!list_empty(&cset->tasks))
4402 		it->task_pos = cset->tasks.next;
4403 	else
4404 		it->task_pos = cset->mg_tasks.next;
4405 
4406 	it->tasks_head = &cset->tasks;
4407 	it->mg_tasks_head = &cset->mg_tasks;
4408 
4409 	/*
4410 	 * We don't keep css_sets locked across iteration steps and thus
4411 	 * need to take steps to ensure that iteration can be resumed after
4412 	 * the lock is re-acquired.  Iteration is performed at two levels -
4413 	 * css_sets and tasks in them.
4414 	 *
4415 	 * Once created, a css_set never leaves its cgroup lists, so a
4416 	 * pinned css_set is guaranteed to stay put and we can resume
4417 	 * iteration afterwards.
4418 	 *
4419 	 * Tasks may leave @cset across iteration steps.  This is resolved
4420 	 * by registering each iterator with the css_set currently being
4421 	 * walked and making css_set_move_task() advance iterators whose
4422 	 * next task is leaving.
4423 	 */
4424 	if (it->cur_cset) {
4425 		list_del(&it->iters_node);
4426 		put_css_set_locked(it->cur_cset);
4427 	}
4428 	get_css_set(cset);
4429 	it->cur_cset = cset;
4430 	list_add(&it->iters_node, &cset->task_iters);
4431 }
4432 
4433 static void css_task_iter_advance(struct css_task_iter *it)
4434 {
4435 	struct list_head *next;
4436 
4437 	lockdep_assert_held(&css_set_lock);
4438 repeat:
4439 	if (it->task_pos) {
4440 		/*
4441 		 * Advance iterator to find next entry.  cset->tasks is
4442 		 * consumed first and then ->mg_tasks.  After ->mg_tasks,
4443 		 * we move onto the next cset.
4444 		 */
4445 		next = it->task_pos->next;
4446 
4447 		if (next == it->tasks_head)
4448 			next = it->mg_tasks_head->next;
4449 
4450 		if (next == it->mg_tasks_head)
4451 			css_task_iter_advance_css_set(it);
4452 		else
4453 			it->task_pos = next;
4454 	} else {
4455 		/* called from start, proceed to the first cset */
4456 		css_task_iter_advance_css_set(it);
4457 	}
4458 
4459 	/* if PROCS, skip over tasks which aren't group leaders */
4460 	if ((it->flags & CSS_TASK_ITER_PROCS) && it->task_pos &&
4461 	    !thread_group_leader(list_entry(it->task_pos, struct task_struct,
4462 					    cg_list)))
4463 		goto repeat;
4464 }
4465 
4466 /**
4467  * css_task_iter_start - initiate task iteration
4468  * @css: the css to walk tasks of
4469  * @flags: CSS_TASK_ITER_* flags
4470  * @it: the task iterator to use
4471  *
4472  * Initiate iteration through the tasks of @css.  The caller can call
4473  * css_task_iter_next() to walk through the tasks until the function
4474  * returns NULL.  On completion of iteration, css_task_iter_end() must be
4475  * called.
4476  */
4477 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags,
4478 			 struct css_task_iter *it)
4479 {
4480 	/* no one should try to iterate before mounting cgroups */
4481 	WARN_ON_ONCE(!use_task_css_set_links);
4482 
4483 	memset(it, 0, sizeof(*it));
4484 
4485 	spin_lock_irq(&css_set_lock);
4486 
4487 	it->ss = css->ss;
4488 	it->flags = flags;
4489 
4490 	if (it->ss)
4491 		it->cset_pos = &css->cgroup->e_csets[css->ss->id];
4492 	else
4493 		it->cset_pos = &css->cgroup->cset_links;
4494 
4495 	it->cset_head = it->cset_pos;
4496 
4497 	css_task_iter_advance(it);
4498 
4499 	spin_unlock_irq(&css_set_lock);
4500 }
4501 
4502 /**
4503  * css_task_iter_next - return the next task for the iterator
4504  * @it: the task iterator being iterated
4505  *
4506  * The "next" function for task iteration.  @it should have been
4507  * initialized via css_task_iter_start().  Returns NULL when the iteration
4508  * reaches the end.
4509  */
4510 struct task_struct *css_task_iter_next(struct css_task_iter *it)
4511 {
4512 	if (it->cur_task) {
4513 		put_task_struct(it->cur_task);
4514 		it->cur_task = NULL;
4515 	}
4516 
4517 	spin_lock_irq(&css_set_lock);
4518 
4519 	if (it->task_pos) {
4520 		it->cur_task = list_entry(it->task_pos, struct task_struct,
4521 					  cg_list);
4522 		get_task_struct(it->cur_task);
4523 		css_task_iter_advance(it);
4524 	}
4525 
4526 	spin_unlock_irq(&css_set_lock);
4527 
4528 	return it->cur_task;
4529 }
4530 
4531 /**
4532  * css_task_iter_end - finish task iteration
4533  * @it: the task iterator to finish
4534  *
4535  * Finish task iteration started by css_task_iter_start().
4536  */
4537 void css_task_iter_end(struct css_task_iter *it)
4538 {
4539 	if (it->cur_cset) {
4540 		spin_lock_irq(&css_set_lock);
4541 		list_del(&it->iters_node);
4542 		put_css_set_locked(it->cur_cset);
4543 		spin_unlock_irq(&css_set_lock);
4544 	}
4545 
4546 	if (it->cur_dcset)
4547 		put_css_set(it->cur_dcset);
4548 
4549 	if (it->cur_task)
4550 		put_task_struct(it->cur_task);
4551 }
4552 
4553 static void cgroup_procs_release(struct kernfs_open_file *of)
4554 {
4555 	if (of->priv) {
4556 		css_task_iter_end(of->priv);
4557 		kfree(of->priv);
4558 	}
4559 }
4560 
4561 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos)
4562 {
4563 	struct kernfs_open_file *of = s->private;
4564 	struct css_task_iter *it = of->priv;
4565 
4566 	return css_task_iter_next(it);
4567 }
4568 
4569 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos,
4570 				  unsigned int iter_flags)
4571 {
4572 	struct kernfs_open_file *of = s->private;
4573 	struct cgroup *cgrp = seq_css(s)->cgroup;
4574 	struct css_task_iter *it = of->priv;
4575 
4576 	/*
4577 	 * When a seq_file is seeked, it's always traversed sequentially
4578 	 * from position 0, so we can simply keep iterating on !0 *pos.
4579 	 */
4580 	if (!it) {
4581 		if (WARN_ON_ONCE((*pos)++))
4582 			return ERR_PTR(-EINVAL);
4583 
4584 		it = kzalloc(sizeof(*it), GFP_KERNEL);
4585 		if (!it)
4586 			return ERR_PTR(-ENOMEM);
4587 		of->priv = it;
4588 		css_task_iter_start(&cgrp->self, iter_flags, it);
4589 	} else if (!(*pos)++) {
4590 		css_task_iter_end(it);
4591 		css_task_iter_start(&cgrp->self, iter_flags, it);
4592 	}
4593 
4594 	return cgroup_procs_next(s, NULL, NULL);
4595 }
4596 
4597 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos)
4598 {
4599 	struct cgroup *cgrp = seq_css(s)->cgroup;
4600 
4601 	/*
4602 	 * All processes of a threaded subtree belong to the domain cgroup
4603 	 * of the subtree.  Only threads can be distributed across the
4604 	 * subtree.  Reject reads on cgroup.procs in the subtree proper.
4605 	 * They're always empty anyway.
4606 	 */
4607 	if (cgroup_is_threaded(cgrp))
4608 		return ERR_PTR(-EOPNOTSUPP);
4609 
4610 	return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS |
4611 					    CSS_TASK_ITER_THREADED);
4612 }
4613 
4614 static int cgroup_procs_show(struct seq_file *s, void *v)
4615 {
4616 	seq_printf(s, "%d\n", task_pid_vnr(v));
4617 	return 0;
4618 }
4619 
4620 static int cgroup_procs_write_permission(struct cgroup *src_cgrp,
4621 					 struct cgroup *dst_cgrp,
4622 					 struct super_block *sb)
4623 {
4624 	struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
4625 	struct cgroup *com_cgrp = src_cgrp;
4626 	struct inode *inode;
4627 	int ret;
4628 
4629 	lockdep_assert_held(&cgroup_mutex);
4630 
4631 	/* find the common ancestor */
4632 	while (!cgroup_is_descendant(dst_cgrp, com_cgrp))
4633 		com_cgrp = cgroup_parent(com_cgrp);
4634 
4635 	/* %current should be authorized to migrate to the common ancestor */
4636 	inode = kernfs_get_inode(sb, com_cgrp->procs_file.kn);
4637 	if (!inode)
4638 		return -ENOMEM;
4639 
4640 	ret = inode_permission(inode, MAY_WRITE);
4641 	iput(inode);
4642 	if (ret)
4643 		return ret;
4644 
4645 	/*
4646 	 * If namespaces are delegation boundaries, %current must be able
4647 	 * to see both source and destination cgroups from its namespace.
4648 	 */
4649 	if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) &&
4650 	    (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) ||
4651 	     !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp)))
4652 		return -ENOENT;
4653 
4654 	return 0;
4655 }
4656 
4657 static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
4658 				  char *buf, size_t nbytes, loff_t off)
4659 {
4660 	struct cgroup *src_cgrp, *dst_cgrp;
4661 	struct task_struct *task;
4662 	ssize_t ret;
4663 
4664 	dst_cgrp = cgroup_kn_lock_live(of->kn, false);
4665 	if (!dst_cgrp)
4666 		return -ENODEV;
4667 
4668 	task = cgroup_procs_write_start(buf, true);
4669 	ret = PTR_ERR_OR_ZERO(task);
4670 	if (ret)
4671 		goto out_unlock;
4672 
4673 	/* find the source cgroup */
4674 	spin_lock_irq(&css_set_lock);
4675 	src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
4676 	spin_unlock_irq(&css_set_lock);
4677 
4678 	ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp,
4679 					    of->file->f_path.dentry->d_sb);
4680 	if (ret)
4681 		goto out_finish;
4682 
4683 	ret = cgroup_attach_task(dst_cgrp, task, true);
4684 
4685 out_finish:
4686 	cgroup_procs_write_finish(task);
4687 out_unlock:
4688 	cgroup_kn_unlock(of->kn);
4689 
4690 	return ret ?: nbytes;
4691 }
4692 
4693 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos)
4694 {
4695 	return __cgroup_procs_start(s, pos, 0);
4696 }
4697 
4698 static ssize_t cgroup_threads_write(struct kernfs_open_file *of,
4699 				    char *buf, size_t nbytes, loff_t off)
4700 {
4701 	struct cgroup *src_cgrp, *dst_cgrp;
4702 	struct task_struct *task;
4703 	ssize_t ret;
4704 
4705 	buf = strstrip(buf);
4706 
4707 	dst_cgrp = cgroup_kn_lock_live(of->kn, false);
4708 	if (!dst_cgrp)
4709 		return -ENODEV;
4710 
4711 	task = cgroup_procs_write_start(buf, false);
4712 	ret = PTR_ERR_OR_ZERO(task);
4713 	if (ret)
4714 		goto out_unlock;
4715 
4716 	/* find the source cgroup */
4717 	spin_lock_irq(&css_set_lock);
4718 	src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
4719 	spin_unlock_irq(&css_set_lock);
4720 
4721 	/* thread migrations follow the cgroup.procs delegation rule */
4722 	ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp,
4723 					    of->file->f_path.dentry->d_sb);
4724 	if (ret)
4725 		goto out_finish;
4726 
4727 	/* and must be contained in the same domain */
4728 	ret = -EOPNOTSUPP;
4729 	if (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp)
4730 		goto out_finish;
4731 
4732 	ret = cgroup_attach_task(dst_cgrp, task, false);
4733 
4734 out_finish:
4735 	cgroup_procs_write_finish(task);
4736 out_unlock:
4737 	cgroup_kn_unlock(of->kn);
4738 
4739 	return ret ?: nbytes;
4740 }
4741 
4742 /* cgroup core interface files for the default hierarchy */
4743 static struct cftype cgroup_base_files[] = {
4744 	{
4745 		.name = "cgroup.type",
4746 		.flags = CFTYPE_NOT_ON_ROOT,
4747 		.seq_show = cgroup_type_show,
4748 		.write = cgroup_type_write,
4749 	},
4750 	{
4751 		.name = "cgroup.procs",
4752 		.flags = CFTYPE_NS_DELEGATABLE,
4753 		.file_offset = offsetof(struct cgroup, procs_file),
4754 		.release = cgroup_procs_release,
4755 		.seq_start = cgroup_procs_start,
4756 		.seq_next = cgroup_procs_next,
4757 		.seq_show = cgroup_procs_show,
4758 		.write = cgroup_procs_write,
4759 	},
4760 	{
4761 		.name = "cgroup.threads",
4762 		.flags = CFTYPE_NS_DELEGATABLE,
4763 		.release = cgroup_procs_release,
4764 		.seq_start = cgroup_threads_start,
4765 		.seq_next = cgroup_procs_next,
4766 		.seq_show = cgroup_procs_show,
4767 		.write = cgroup_threads_write,
4768 	},
4769 	{
4770 		.name = "cgroup.controllers",
4771 		.seq_show = cgroup_controllers_show,
4772 	},
4773 	{
4774 		.name = "cgroup.subtree_control",
4775 		.flags = CFTYPE_NS_DELEGATABLE,
4776 		.seq_show = cgroup_subtree_control_show,
4777 		.write = cgroup_subtree_control_write,
4778 	},
4779 	{
4780 		.name = "cgroup.events",
4781 		.flags = CFTYPE_NOT_ON_ROOT,
4782 		.file_offset = offsetof(struct cgroup, events_file),
4783 		.seq_show = cgroup_events_show,
4784 	},
4785 	{
4786 		.name = "cgroup.max.descendants",
4787 		.seq_show = cgroup_max_descendants_show,
4788 		.write = cgroup_max_descendants_write,
4789 	},
4790 	{
4791 		.name = "cgroup.max.depth",
4792 		.seq_show = cgroup_max_depth_show,
4793 		.write = cgroup_max_depth_write,
4794 	},
4795 	{
4796 		.name = "cgroup.stat",
4797 		.seq_show = cgroup_stat_show,
4798 	},
4799 	{
4800 		.name = "cgroup.freeze",
4801 		.flags = CFTYPE_NOT_ON_ROOT,
4802 		.seq_show = cgroup_freeze_show,
4803 		.write = cgroup_freeze_write,
4804 	},
4805 	{
4806 		.name = "cpu.stat",
4807 		.flags = CFTYPE_NOT_ON_ROOT,
4808 		.seq_show = cpu_stat_show,
4809 	},
4810 #ifdef CONFIG_PSI
4811 	{
4812 		.name = "io.pressure",
4813 		.seq_show = cgroup_io_pressure_show,
4814 		.write = cgroup_io_pressure_write,
4815 		.poll = cgroup_pressure_poll,
4816 		.release = cgroup_pressure_release,
4817 	},
4818 	{
4819 		.name = "memory.pressure",
4820 		.seq_show = cgroup_memory_pressure_show,
4821 		.write = cgroup_memory_pressure_write,
4822 		.poll = cgroup_pressure_poll,
4823 		.release = cgroup_pressure_release,
4824 	},
4825 	{
4826 		.name = "cpu.pressure",
4827 		.seq_show = cgroup_cpu_pressure_show,
4828 		.write = cgroup_cpu_pressure_write,
4829 		.poll = cgroup_pressure_poll,
4830 		.release = cgroup_pressure_release,
4831 	},
4832 #endif /* CONFIG_PSI */
4833 	{ }	/* terminate */
4834 };
4835 
4836 /*
4837  * css destruction is four-stage process.
4838  *
4839  * 1. Destruction starts.  Killing of the percpu_ref is initiated.
4840  *    Implemented in kill_css().
4841  *
4842  * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
4843  *    and thus css_tryget_online() is guaranteed to fail, the css can be
4844  *    offlined by invoking offline_css().  After offlining, the base ref is
4845  *    put.  Implemented in css_killed_work_fn().
4846  *
4847  * 3. When the percpu_ref reaches zero, the only possible remaining
4848  *    accessors are inside RCU read sections.  css_release() schedules the
4849  *    RCU callback.
4850  *
4851  * 4. After the grace period, the css can be freed.  Implemented in
4852  *    css_free_work_fn().
4853  *
4854  * It is actually hairier because both step 2 and 4 require process context
4855  * and thus involve punting to css->destroy_work adding two additional
4856  * steps to the already complex sequence.
4857  */
4858 static void css_free_rwork_fn(struct work_struct *work)
4859 {
4860 	struct cgroup_subsys_state *css = container_of(to_rcu_work(work),
4861 				struct cgroup_subsys_state, destroy_rwork);
4862 	struct cgroup_subsys *ss = css->ss;
4863 	struct cgroup *cgrp = css->cgroup;
4864 
4865 	percpu_ref_exit(&css->refcnt);
4866 
4867 	if (ss) {
4868 		/* css free path */
4869 		struct cgroup_subsys_state *parent = css->parent;
4870 		int id = css->id;
4871 
4872 		ss->css_free(css);
4873 		cgroup_idr_remove(&ss->css_idr, id);
4874 		cgroup_put(cgrp);
4875 
4876 		if (parent)
4877 			css_put(parent);
4878 	} else {
4879 		/* cgroup free path */
4880 		atomic_dec(&cgrp->root->nr_cgrps);
4881 		cgroup1_pidlist_destroy_all(cgrp);
4882 		cancel_work_sync(&cgrp->release_agent_work);
4883 
4884 		if (cgroup_parent(cgrp)) {
4885 			/*
4886 			 * We get a ref to the parent, and put the ref when
4887 			 * this cgroup is being freed, so it's guaranteed
4888 			 * that the parent won't be destroyed before its
4889 			 * children.
4890 			 */
4891 			cgroup_put(cgroup_parent(cgrp));
4892 			kernfs_put(cgrp->kn);
4893 			psi_cgroup_free(cgrp);
4894 			if (cgroup_on_dfl(cgrp))
4895 				cgroup_rstat_exit(cgrp);
4896 			kfree(cgrp);
4897 		} else {
4898 			/*
4899 			 * This is root cgroup's refcnt reaching zero,
4900 			 * which indicates that the root should be
4901 			 * released.
4902 			 */
4903 			cgroup_destroy_root(cgrp->root);
4904 		}
4905 	}
4906 }
4907 
4908 static void css_release_work_fn(struct work_struct *work)
4909 {
4910 	struct cgroup_subsys_state *css =
4911 		container_of(work, struct cgroup_subsys_state, destroy_work);
4912 	struct cgroup_subsys *ss = css->ss;
4913 	struct cgroup *cgrp = css->cgroup;
4914 
4915 	mutex_lock(&cgroup_mutex);
4916 
4917 	css->flags |= CSS_RELEASED;
4918 	list_del_rcu(&css->sibling);
4919 
4920 	if (ss) {
4921 		/* css release path */
4922 		if (!list_empty(&css->rstat_css_node)) {
4923 			cgroup_rstat_flush(cgrp);
4924 			list_del_rcu(&css->rstat_css_node);
4925 		}
4926 
4927 		cgroup_idr_replace(&ss->css_idr, NULL, css->id);
4928 		if (ss->css_released)
4929 			ss->css_released(css);
4930 	} else {
4931 		struct cgroup *tcgrp;
4932 
4933 		/* cgroup release path */
4934 		TRACE_CGROUP_PATH(release, cgrp);
4935 
4936 		if (cgroup_on_dfl(cgrp))
4937 			cgroup_rstat_flush(cgrp);
4938 
4939 		spin_lock_irq(&css_set_lock);
4940 		for (tcgrp = cgroup_parent(cgrp); tcgrp;
4941 		     tcgrp = cgroup_parent(tcgrp))
4942 			tcgrp->nr_dying_descendants--;
4943 		spin_unlock_irq(&css_set_lock);
4944 
4945 		cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4946 		cgrp->id = -1;
4947 
4948 		/*
4949 		 * There are two control paths which try to determine
4950 		 * cgroup from dentry without going through kernfs -
4951 		 * cgroupstats_build() and css_tryget_online_from_dir().
4952 		 * Those are supported by RCU protecting clearing of
4953 		 * cgrp->kn->priv backpointer.
4954 		 */
4955 		if (cgrp->kn)
4956 			RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
4957 					 NULL);
4958 
4959 		cgroup_bpf_put(cgrp);
4960 	}
4961 
4962 	mutex_unlock(&cgroup_mutex);
4963 
4964 	INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
4965 	queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
4966 }
4967 
4968 static void css_release(struct percpu_ref *ref)
4969 {
4970 	struct cgroup_subsys_state *css =
4971 		container_of(ref, struct cgroup_subsys_state, refcnt);
4972 
4973 	INIT_WORK(&css->destroy_work, css_release_work_fn);
4974 	queue_work(cgroup_destroy_wq, &css->destroy_work);
4975 }
4976 
4977 static void init_and_link_css(struct cgroup_subsys_state *css,
4978 			      struct cgroup_subsys *ss, struct cgroup *cgrp)
4979 {
4980 	lockdep_assert_held(&cgroup_mutex);
4981 
4982 	cgroup_get_live(cgrp);
4983 
4984 	memset(css, 0, sizeof(*css));
4985 	css->cgroup = cgrp;
4986 	css->ss = ss;
4987 	css->id = -1;
4988 	INIT_LIST_HEAD(&css->sibling);
4989 	INIT_LIST_HEAD(&css->children);
4990 	INIT_LIST_HEAD(&css->rstat_css_node);
4991 	css->serial_nr = css_serial_nr_next++;
4992 	atomic_set(&css->online_cnt, 0);
4993 
4994 	if (cgroup_parent(cgrp)) {
4995 		css->parent = cgroup_css(cgroup_parent(cgrp), ss);
4996 		css_get(css->parent);
4997 	}
4998 
4999 	if (cgroup_on_dfl(cgrp) && ss->css_rstat_flush)
5000 		list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list);
5001 
5002 	BUG_ON(cgroup_css(cgrp, ss));
5003 }
5004 
5005 /* invoke ->css_online() on a new CSS and mark it online if successful */
5006 static int online_css(struct cgroup_subsys_state *css)
5007 {
5008 	struct cgroup_subsys *ss = css->ss;
5009 	int ret = 0;
5010 
5011 	lockdep_assert_held(&cgroup_mutex);
5012 
5013 	if (ss->css_online)
5014 		ret = ss->css_online(css);
5015 	if (!ret) {
5016 		css->flags |= CSS_ONLINE;
5017 		rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
5018 
5019 		atomic_inc(&css->online_cnt);
5020 		if (css->parent)
5021 			atomic_inc(&css->parent->online_cnt);
5022 	}
5023 	return ret;
5024 }
5025 
5026 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
5027 static void offline_css(struct cgroup_subsys_state *css)
5028 {
5029 	struct cgroup_subsys *ss = css->ss;
5030 
5031 	lockdep_assert_held(&cgroup_mutex);
5032 
5033 	if (!(css->flags & CSS_ONLINE))
5034 		return;
5035 
5036 	if (ss->css_offline)
5037 		ss->css_offline(css);
5038 
5039 	css->flags &= ~CSS_ONLINE;
5040 	RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
5041 
5042 	wake_up_all(&css->cgroup->offline_waitq);
5043 }
5044 
5045 /**
5046  * css_create - create a cgroup_subsys_state
5047  * @cgrp: the cgroup new css will be associated with
5048  * @ss: the subsys of new css
5049  *
5050  * Create a new css associated with @cgrp - @ss pair.  On success, the new
5051  * css is online and installed in @cgrp.  This function doesn't create the
5052  * interface files.  Returns 0 on success, -errno on failure.
5053  */
5054 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
5055 					      struct cgroup_subsys *ss)
5056 {
5057 	struct cgroup *parent = cgroup_parent(cgrp);
5058 	struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
5059 	struct cgroup_subsys_state *css;
5060 	int err;
5061 
5062 	lockdep_assert_held(&cgroup_mutex);
5063 
5064 	css = ss->css_alloc(parent_css);
5065 	if (!css)
5066 		css = ERR_PTR(-ENOMEM);
5067 	if (IS_ERR(css))
5068 		return css;
5069 
5070 	init_and_link_css(css, ss, cgrp);
5071 
5072 	err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
5073 	if (err)
5074 		goto err_free_css;
5075 
5076 	err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
5077 	if (err < 0)
5078 		goto err_free_css;
5079 	css->id = err;
5080 
5081 	/* @css is ready to be brought online now, make it visible */
5082 	list_add_tail_rcu(&css->sibling, &parent_css->children);
5083 	cgroup_idr_replace(&ss->css_idr, css, css->id);
5084 
5085 	err = online_css(css);
5086 	if (err)
5087 		goto err_list_del;
5088 
5089 	if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
5090 	    cgroup_parent(parent)) {
5091 		pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
5092 			current->comm, current->pid, ss->name);
5093 		if (!strcmp(ss->name, "memory"))
5094 			pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
5095 		ss->warned_broken_hierarchy = true;
5096 	}
5097 
5098 	return css;
5099 
5100 err_list_del:
5101 	list_del_rcu(&css->sibling);
5102 err_free_css:
5103 	list_del_rcu(&css->rstat_css_node);
5104 	INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5105 	queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5106 	return ERR_PTR(err);
5107 }
5108 
5109 /*
5110  * The returned cgroup is fully initialized including its control mask, but
5111  * it isn't associated with its kernfs_node and doesn't have the control
5112  * mask applied.
5113  */
5114 static struct cgroup *cgroup_create(struct cgroup *parent)
5115 {
5116 	struct cgroup_root *root = parent->root;
5117 	struct cgroup *cgrp, *tcgrp;
5118 	int level = parent->level + 1;
5119 	int ret;
5120 
5121 	/* allocate the cgroup and its ID, 0 is reserved for the root */
5122 	cgrp = kzalloc(struct_size(cgrp, ancestor_ids, (level + 1)),
5123 		       GFP_KERNEL);
5124 	if (!cgrp)
5125 		return ERR_PTR(-ENOMEM);
5126 
5127 	ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
5128 	if (ret)
5129 		goto out_free_cgrp;
5130 
5131 	if (cgroup_on_dfl(parent)) {
5132 		ret = cgroup_rstat_init(cgrp);
5133 		if (ret)
5134 			goto out_cancel_ref;
5135 	}
5136 
5137 	/*
5138 	 * Temporarily set the pointer to NULL, so idr_find() won't return
5139 	 * a half-baked cgroup.
5140 	 */
5141 	cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL);
5142 	if (cgrp->id < 0) {
5143 		ret = -ENOMEM;
5144 		goto out_stat_exit;
5145 	}
5146 
5147 	init_cgroup_housekeeping(cgrp);
5148 
5149 	cgrp->self.parent = &parent->self;
5150 	cgrp->root = root;
5151 	cgrp->level = level;
5152 
5153 	ret = psi_cgroup_alloc(cgrp);
5154 	if (ret)
5155 		goto out_idr_free;
5156 
5157 	ret = cgroup_bpf_inherit(cgrp);
5158 	if (ret)
5159 		goto out_psi_free;
5160 
5161 	/*
5162 	 * New cgroup inherits effective freeze counter, and
5163 	 * if the parent has to be frozen, the child has too.
5164 	 */
5165 	cgrp->freezer.e_freeze = parent->freezer.e_freeze;
5166 	if (cgrp->freezer.e_freeze)
5167 		set_bit(CGRP_FROZEN, &cgrp->flags);
5168 
5169 	spin_lock_irq(&css_set_lock);
5170 	for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5171 		cgrp->ancestor_ids[tcgrp->level] = tcgrp->id;
5172 
5173 		if (tcgrp != cgrp) {
5174 			tcgrp->nr_descendants++;
5175 
5176 			/*
5177 			 * If the new cgroup is frozen, all ancestor cgroups
5178 			 * get a new frozen descendant, but their state can't
5179 			 * change because of this.
5180 			 */
5181 			if (cgrp->freezer.e_freeze)
5182 				tcgrp->freezer.nr_frozen_descendants++;
5183 		}
5184 	}
5185 	spin_unlock_irq(&css_set_lock);
5186 
5187 	if (notify_on_release(parent))
5188 		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
5189 
5190 	if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
5191 		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
5192 
5193 	cgrp->self.serial_nr = css_serial_nr_next++;
5194 
5195 	/* allocation complete, commit to creation */
5196 	list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
5197 	atomic_inc(&root->nr_cgrps);
5198 	cgroup_get_live(parent);
5199 
5200 	/*
5201 	 * @cgrp is now fully operational.  If something fails after this
5202 	 * point, it'll be released via the normal destruction path.
5203 	 */
5204 	cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
5205 
5206 	/*
5207 	 * On the default hierarchy, a child doesn't automatically inherit
5208 	 * subtree_control from the parent.  Each is configured manually.
5209 	 */
5210 	if (!cgroup_on_dfl(cgrp))
5211 		cgrp->subtree_control = cgroup_control(cgrp);
5212 
5213 	cgroup_propagate_control(cgrp);
5214 
5215 	return cgrp;
5216 
5217 out_psi_free:
5218 	psi_cgroup_free(cgrp);
5219 out_idr_free:
5220 	cgroup_idr_remove(&root->cgroup_idr, cgrp->id);
5221 out_stat_exit:
5222 	if (cgroup_on_dfl(parent))
5223 		cgroup_rstat_exit(cgrp);
5224 out_cancel_ref:
5225 	percpu_ref_exit(&cgrp->self.refcnt);
5226 out_free_cgrp:
5227 	kfree(cgrp);
5228 	return ERR_PTR(ret);
5229 }
5230 
5231 static bool cgroup_check_hierarchy_limits(struct cgroup *parent)
5232 {
5233 	struct cgroup *cgroup;
5234 	int ret = false;
5235 	int level = 1;
5236 
5237 	lockdep_assert_held(&cgroup_mutex);
5238 
5239 	for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) {
5240 		if (cgroup->nr_descendants >= cgroup->max_descendants)
5241 			goto fail;
5242 
5243 		if (level > cgroup->max_depth)
5244 			goto fail;
5245 
5246 		level++;
5247 	}
5248 
5249 	ret = true;
5250 fail:
5251 	return ret;
5252 }
5253 
5254 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode)
5255 {
5256 	struct cgroup *parent, *cgrp;
5257 	struct kernfs_node *kn;
5258 	int ret;
5259 
5260 	/* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
5261 	if (strchr(name, '\n'))
5262 		return -EINVAL;
5263 
5264 	parent = cgroup_kn_lock_live(parent_kn, false);
5265 	if (!parent)
5266 		return -ENODEV;
5267 
5268 	if (!cgroup_check_hierarchy_limits(parent)) {
5269 		ret = -EAGAIN;
5270 		goto out_unlock;
5271 	}
5272 
5273 	cgrp = cgroup_create(parent);
5274 	if (IS_ERR(cgrp)) {
5275 		ret = PTR_ERR(cgrp);
5276 		goto out_unlock;
5277 	}
5278 
5279 	/* create the directory */
5280 	kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
5281 	if (IS_ERR(kn)) {
5282 		ret = PTR_ERR(kn);
5283 		goto out_destroy;
5284 	}
5285 	cgrp->kn = kn;
5286 
5287 	/*
5288 	 * This extra ref will be put in cgroup_free_fn() and guarantees
5289 	 * that @cgrp->kn is always accessible.
5290 	 */
5291 	kernfs_get(kn);
5292 
5293 	ret = cgroup_kn_set_ugid(kn);
5294 	if (ret)
5295 		goto out_destroy;
5296 
5297 	ret = css_populate_dir(&cgrp->self);
5298 	if (ret)
5299 		goto out_destroy;
5300 
5301 	ret = cgroup_apply_control_enable(cgrp);
5302 	if (ret)
5303 		goto out_destroy;
5304 
5305 	TRACE_CGROUP_PATH(mkdir, cgrp);
5306 
5307 	/* let's create and online css's */
5308 	kernfs_activate(kn);
5309 
5310 	ret = 0;
5311 	goto out_unlock;
5312 
5313 out_destroy:
5314 	cgroup_destroy_locked(cgrp);
5315 out_unlock:
5316 	cgroup_kn_unlock(parent_kn);
5317 	return ret;
5318 }
5319 
5320 /*
5321  * This is called when the refcnt of a css is confirmed to be killed.
5322  * css_tryget_online() is now guaranteed to fail.  Tell the subsystem to
5323  * initate destruction and put the css ref from kill_css().
5324  */
5325 static void css_killed_work_fn(struct work_struct *work)
5326 {
5327 	struct cgroup_subsys_state *css =
5328 		container_of(work, struct cgroup_subsys_state, destroy_work);
5329 
5330 	mutex_lock(&cgroup_mutex);
5331 
5332 	do {
5333 		offline_css(css);
5334 		css_put(css);
5335 		/* @css can't go away while we're holding cgroup_mutex */
5336 		css = css->parent;
5337 	} while (css && atomic_dec_and_test(&css->online_cnt));
5338 
5339 	mutex_unlock(&cgroup_mutex);
5340 }
5341 
5342 /* css kill confirmation processing requires process context, bounce */
5343 static void css_killed_ref_fn(struct percpu_ref *ref)
5344 {
5345 	struct cgroup_subsys_state *css =
5346 		container_of(ref, struct cgroup_subsys_state, refcnt);
5347 
5348 	if (atomic_dec_and_test(&css->online_cnt)) {
5349 		INIT_WORK(&css->destroy_work, css_killed_work_fn);
5350 		queue_work(cgroup_destroy_wq, &css->destroy_work);
5351 	}
5352 }
5353 
5354 /**
5355  * kill_css - destroy a css
5356  * @css: css to destroy
5357  *
5358  * This function initiates destruction of @css by removing cgroup interface
5359  * files and putting its base reference.  ->css_offline() will be invoked
5360  * asynchronously once css_tryget_online() is guaranteed to fail and when
5361  * the reference count reaches zero, @css will be released.
5362  */
5363 static void kill_css(struct cgroup_subsys_state *css)
5364 {
5365 	lockdep_assert_held(&cgroup_mutex);
5366 
5367 	if (css->flags & CSS_DYING)
5368 		return;
5369 
5370 	css->flags |= CSS_DYING;
5371 
5372 	/*
5373 	 * This must happen before css is disassociated with its cgroup.
5374 	 * See seq_css() for details.
5375 	 */
5376 	css_clear_dir(css);
5377 
5378 	/*
5379 	 * Killing would put the base ref, but we need to keep it alive
5380 	 * until after ->css_offline().
5381 	 */
5382 	css_get(css);
5383 
5384 	/*
5385 	 * cgroup core guarantees that, by the time ->css_offline() is
5386 	 * invoked, no new css reference will be given out via
5387 	 * css_tryget_online().  We can't simply call percpu_ref_kill() and
5388 	 * proceed to offlining css's because percpu_ref_kill() doesn't
5389 	 * guarantee that the ref is seen as killed on all CPUs on return.
5390 	 *
5391 	 * Use percpu_ref_kill_and_confirm() to get notifications as each
5392 	 * css is confirmed to be seen as killed on all CPUs.
5393 	 */
5394 	percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
5395 }
5396 
5397 /**
5398  * cgroup_destroy_locked - the first stage of cgroup destruction
5399  * @cgrp: cgroup to be destroyed
5400  *
5401  * css's make use of percpu refcnts whose killing latency shouldn't be
5402  * exposed to userland and are RCU protected.  Also, cgroup core needs to
5403  * guarantee that css_tryget_online() won't succeed by the time
5404  * ->css_offline() is invoked.  To satisfy all the requirements,
5405  * destruction is implemented in the following two steps.
5406  *
5407  * s1. Verify @cgrp can be destroyed and mark it dying.  Remove all
5408  *     userland visible parts and start killing the percpu refcnts of
5409  *     css's.  Set up so that the next stage will be kicked off once all
5410  *     the percpu refcnts are confirmed to be killed.
5411  *
5412  * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5413  *     rest of destruction.  Once all cgroup references are gone, the
5414  *     cgroup is RCU-freed.
5415  *
5416  * This function implements s1.  After this step, @cgrp is gone as far as
5417  * the userland is concerned and a new cgroup with the same name may be
5418  * created.  As cgroup doesn't care about the names internally, this
5419  * doesn't cause any problem.
5420  */
5421 static int cgroup_destroy_locked(struct cgroup *cgrp)
5422 	__releases(&cgroup_mutex) __acquires(&cgroup_mutex)
5423 {
5424 	struct cgroup *tcgrp, *parent = cgroup_parent(cgrp);
5425 	struct cgroup_subsys_state *css;
5426 	struct cgrp_cset_link *link;
5427 	int ssid;
5428 
5429 	lockdep_assert_held(&cgroup_mutex);
5430 
5431 	/*
5432 	 * Only migration can raise populated from zero and we're already
5433 	 * holding cgroup_mutex.
5434 	 */
5435 	if (cgroup_is_populated(cgrp))
5436 		return -EBUSY;
5437 
5438 	/*
5439 	 * Make sure there's no live children.  We can't test emptiness of
5440 	 * ->self.children as dead children linger on it while being
5441 	 * drained; otherwise, "rmdir parent/child parent" may fail.
5442 	 */
5443 	if (css_has_online_children(&cgrp->self))
5444 		return -EBUSY;
5445 
5446 	/*
5447 	 * Mark @cgrp and the associated csets dead.  The former prevents
5448 	 * further task migration and child creation by disabling
5449 	 * cgroup_lock_live_group().  The latter makes the csets ignored by
5450 	 * the migration path.
5451 	 */
5452 	cgrp->self.flags &= ~CSS_ONLINE;
5453 
5454 	spin_lock_irq(&css_set_lock);
5455 	list_for_each_entry(link, &cgrp->cset_links, cset_link)
5456 		link->cset->dead = true;
5457 	spin_unlock_irq(&css_set_lock);
5458 
5459 	/* initiate massacre of all css's */
5460 	for_each_css(css, ssid, cgrp)
5461 		kill_css(css);
5462 
5463 	/* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */
5464 	css_clear_dir(&cgrp->self);
5465 	kernfs_remove(cgrp->kn);
5466 
5467 	if (parent && cgroup_is_threaded(cgrp))
5468 		parent->nr_threaded_children--;
5469 
5470 	spin_lock_irq(&css_set_lock);
5471 	for (tcgrp = cgroup_parent(cgrp); tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5472 		tcgrp->nr_descendants--;
5473 		tcgrp->nr_dying_descendants++;
5474 		/*
5475 		 * If the dying cgroup is frozen, decrease frozen descendants
5476 		 * counters of ancestor cgroups.
5477 		 */
5478 		if (test_bit(CGRP_FROZEN, &cgrp->flags))
5479 			tcgrp->freezer.nr_frozen_descendants--;
5480 	}
5481 	spin_unlock_irq(&css_set_lock);
5482 
5483 	cgroup1_check_for_release(parent);
5484 
5485 	/* put the base reference */
5486 	percpu_ref_kill(&cgrp->self.refcnt);
5487 
5488 	return 0;
5489 };
5490 
5491 int cgroup_rmdir(struct kernfs_node *kn)
5492 {
5493 	struct cgroup *cgrp;
5494 	int ret = 0;
5495 
5496 	cgrp = cgroup_kn_lock_live(kn, false);
5497 	if (!cgrp)
5498 		return 0;
5499 
5500 	ret = cgroup_destroy_locked(cgrp);
5501 	if (!ret)
5502 		TRACE_CGROUP_PATH(rmdir, cgrp);
5503 
5504 	cgroup_kn_unlock(kn);
5505 	return ret;
5506 }
5507 
5508 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5509 	.show_options		= cgroup_show_options,
5510 	.mkdir			= cgroup_mkdir,
5511 	.rmdir			= cgroup_rmdir,
5512 	.show_path		= cgroup_show_path,
5513 };
5514 
5515 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
5516 {
5517 	struct cgroup_subsys_state *css;
5518 
5519 	pr_debug("Initializing cgroup subsys %s\n", ss->name);
5520 
5521 	mutex_lock(&cgroup_mutex);
5522 
5523 	idr_init(&ss->css_idr);
5524 	INIT_LIST_HEAD(&ss->cfts);
5525 
5526 	/* Create the root cgroup state for this subsystem */
5527 	ss->root = &cgrp_dfl_root;
5528 	css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
5529 	/* We don't handle early failures gracefully */
5530 	BUG_ON(IS_ERR(css));
5531 	init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
5532 
5533 	/*
5534 	 * Root csses are never destroyed and we can't initialize
5535 	 * percpu_ref during early init.  Disable refcnting.
5536 	 */
5537 	css->flags |= CSS_NO_REF;
5538 
5539 	if (early) {
5540 		/* allocation can't be done safely during early init */
5541 		css->id = 1;
5542 	} else {
5543 		css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5544 		BUG_ON(css->id < 0);
5545 	}
5546 
5547 	/* Update the init_css_set to contain a subsys
5548 	 * pointer to this state - since the subsystem is
5549 	 * newly registered, all tasks and hence the
5550 	 * init_css_set is in the subsystem's root cgroup. */
5551 	init_css_set.subsys[ss->id] = css;
5552 
5553 	have_fork_callback |= (bool)ss->fork << ss->id;
5554 	have_exit_callback |= (bool)ss->exit << ss->id;
5555 	have_release_callback |= (bool)ss->release << ss->id;
5556 	have_canfork_callback |= (bool)ss->can_fork << ss->id;
5557 
5558 	/* At system boot, before all subsystems have been
5559 	 * registered, no tasks have been forked, so we don't
5560 	 * need to invoke fork callbacks here. */
5561 	BUG_ON(!list_empty(&init_task.tasks));
5562 
5563 	BUG_ON(online_css(css));
5564 
5565 	mutex_unlock(&cgroup_mutex);
5566 }
5567 
5568 /**
5569  * cgroup_init_early - cgroup initialization at system boot
5570  *
5571  * Initialize cgroups at system boot, and initialize any
5572  * subsystems that request early init.
5573  */
5574 int __init cgroup_init_early(void)
5575 {
5576 	static struct cgroup_fs_context __initdata ctx;
5577 	struct cgroup_subsys *ss;
5578 	int i;
5579 
5580 	ctx.root = &cgrp_dfl_root;
5581 	init_cgroup_root(&ctx);
5582 	cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5583 
5584 	RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
5585 
5586 	for_each_subsys(ss, i) {
5587 		WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
5588 		     "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
5589 		     i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
5590 		     ss->id, ss->name);
5591 		WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5592 		     "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5593 
5594 		ss->id = i;
5595 		ss->name = cgroup_subsys_name[i];
5596 		if (!ss->legacy_name)
5597 			ss->legacy_name = cgroup_subsys_name[i];
5598 
5599 		if (ss->early_init)
5600 			cgroup_init_subsys(ss, true);
5601 	}
5602 	return 0;
5603 }
5604 
5605 static u16 cgroup_disable_mask __initdata;
5606 
5607 /**
5608  * cgroup_init - cgroup initialization
5609  *
5610  * Register cgroup filesystem and /proc file, and initialize
5611  * any subsystems that didn't request early init.
5612  */
5613 int __init cgroup_init(void)
5614 {
5615 	struct cgroup_subsys *ss;
5616 	int ssid;
5617 
5618 	BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
5619 	BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem));
5620 	BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
5621 	BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files));
5622 
5623 	cgroup_rstat_boot();
5624 
5625 	/*
5626 	 * The latency of the synchronize_rcu() is too high for cgroups,
5627 	 * avoid it at the cost of forcing all readers into the slow path.
5628 	 */
5629 	rcu_sync_enter_start(&cgroup_threadgroup_rwsem.rss);
5630 
5631 	get_user_ns(init_cgroup_ns.user_ns);
5632 
5633 	mutex_lock(&cgroup_mutex);
5634 
5635 	/*
5636 	 * Add init_css_set to the hash table so that dfl_root can link to
5637 	 * it during init.
5638 	 */
5639 	hash_add(css_set_table, &init_css_set.hlist,
5640 		 css_set_hash(init_css_set.subsys));
5641 
5642 	BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
5643 
5644 	mutex_unlock(&cgroup_mutex);
5645 
5646 	for_each_subsys(ss, ssid) {
5647 		if (ss->early_init) {
5648 			struct cgroup_subsys_state *css =
5649 				init_css_set.subsys[ss->id];
5650 
5651 			css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5652 						   GFP_KERNEL);
5653 			BUG_ON(css->id < 0);
5654 		} else {
5655 			cgroup_init_subsys(ss, false);
5656 		}
5657 
5658 		list_add_tail(&init_css_set.e_cset_node[ssid],
5659 			      &cgrp_dfl_root.cgrp.e_csets[ssid]);
5660 
5661 		/*
5662 		 * Setting dfl_root subsys_mask needs to consider the
5663 		 * disabled flag and cftype registration needs kmalloc,
5664 		 * both of which aren't available during early_init.
5665 		 */
5666 		if (cgroup_disable_mask & (1 << ssid)) {
5667 			static_branch_disable(cgroup_subsys_enabled_key[ssid]);
5668 			printk(KERN_INFO "Disabling %s control group subsystem\n",
5669 			       ss->name);
5670 			continue;
5671 		}
5672 
5673 		if (cgroup1_ssid_disabled(ssid))
5674 			printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n",
5675 			       ss->name);
5676 
5677 		cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5678 
5679 		/* implicit controllers must be threaded too */
5680 		WARN_ON(ss->implicit_on_dfl && !ss->threaded);
5681 
5682 		if (ss->implicit_on_dfl)
5683 			cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
5684 		else if (!ss->dfl_cftypes)
5685 			cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
5686 
5687 		if (ss->threaded)
5688 			cgrp_dfl_threaded_ss_mask |= 1 << ss->id;
5689 
5690 		if (ss->dfl_cftypes == ss->legacy_cftypes) {
5691 			WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5692 		} else {
5693 			WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5694 			WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
5695 		}
5696 
5697 		if (ss->bind)
5698 			ss->bind(init_css_set.subsys[ssid]);
5699 
5700 		mutex_lock(&cgroup_mutex);
5701 		css_populate_dir(init_css_set.subsys[ssid]);
5702 		mutex_unlock(&cgroup_mutex);
5703 	}
5704 
5705 	/* init_css_set.subsys[] has been updated, re-hash */
5706 	hash_del(&init_css_set.hlist);
5707 	hash_add(css_set_table, &init_css_set.hlist,
5708 		 css_set_hash(init_css_set.subsys));
5709 
5710 	WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
5711 	WARN_ON(register_filesystem(&cgroup_fs_type));
5712 	WARN_ON(register_filesystem(&cgroup2_fs_type));
5713 	WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show));
5714 
5715 	return 0;
5716 }
5717 
5718 static int __init cgroup_wq_init(void)
5719 {
5720 	/*
5721 	 * There isn't much point in executing destruction path in
5722 	 * parallel.  Good chunk is serialized with cgroup_mutex anyway.
5723 	 * Use 1 for @max_active.
5724 	 *
5725 	 * We would prefer to do this in cgroup_init() above, but that
5726 	 * is called before init_workqueues(): so leave this until after.
5727 	 */
5728 	cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
5729 	BUG_ON(!cgroup_destroy_wq);
5730 	return 0;
5731 }
5732 core_initcall(cgroup_wq_init);
5733 
5734 void cgroup_path_from_kernfs_id(const union kernfs_node_id *id,
5735 					char *buf, size_t buflen)
5736 {
5737 	struct kernfs_node *kn;
5738 
5739 	kn = kernfs_get_node_by_id(cgrp_dfl_root.kf_root, id);
5740 	if (!kn)
5741 		return;
5742 	kernfs_path(kn, buf, buflen);
5743 	kernfs_put(kn);
5744 }
5745 
5746 /*
5747  * proc_cgroup_show()
5748  *  - Print task's cgroup paths into seq_file, one line for each hierarchy
5749  *  - Used for /proc/<pid>/cgroup.
5750  */
5751 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5752 		     struct pid *pid, struct task_struct *tsk)
5753 {
5754 	char *buf;
5755 	int retval;
5756 	struct cgroup_root *root;
5757 
5758 	retval = -ENOMEM;
5759 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
5760 	if (!buf)
5761 		goto out;
5762 
5763 	mutex_lock(&cgroup_mutex);
5764 	spin_lock_irq(&css_set_lock);
5765 
5766 	for_each_root(root) {
5767 		struct cgroup_subsys *ss;
5768 		struct cgroup *cgrp;
5769 		int ssid, count = 0;
5770 
5771 		if (root == &cgrp_dfl_root && !cgrp_dfl_visible)
5772 			continue;
5773 
5774 		seq_printf(m, "%d:", root->hierarchy_id);
5775 		if (root != &cgrp_dfl_root)
5776 			for_each_subsys(ss, ssid)
5777 				if (root->subsys_mask & (1 << ssid))
5778 					seq_printf(m, "%s%s", count++ ? "," : "",
5779 						   ss->legacy_name);
5780 		if (strlen(root->name))
5781 			seq_printf(m, "%sname=%s", count ? "," : "",
5782 				   root->name);
5783 		seq_putc(m, ':');
5784 
5785 		cgrp = task_cgroup_from_root(tsk, root);
5786 
5787 		/*
5788 		 * On traditional hierarchies, all zombie tasks show up as
5789 		 * belonging to the root cgroup.  On the default hierarchy,
5790 		 * while a zombie doesn't show up in "cgroup.procs" and
5791 		 * thus can't be migrated, its /proc/PID/cgroup keeps
5792 		 * reporting the cgroup it belonged to before exiting.  If
5793 		 * the cgroup is removed before the zombie is reaped,
5794 		 * " (deleted)" is appended to the cgroup path.
5795 		 */
5796 		if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
5797 			retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
5798 						current->nsproxy->cgroup_ns);
5799 			if (retval >= PATH_MAX)
5800 				retval = -ENAMETOOLONG;
5801 			if (retval < 0)
5802 				goto out_unlock;
5803 
5804 			seq_puts(m, buf);
5805 		} else {
5806 			seq_puts(m, "/");
5807 		}
5808 
5809 		if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
5810 			seq_puts(m, " (deleted)\n");
5811 		else
5812 			seq_putc(m, '\n');
5813 	}
5814 
5815 	retval = 0;
5816 out_unlock:
5817 	spin_unlock_irq(&css_set_lock);
5818 	mutex_unlock(&cgroup_mutex);
5819 	kfree(buf);
5820 out:
5821 	return retval;
5822 }
5823 
5824 /**
5825  * cgroup_fork - initialize cgroup related fields during copy_process()
5826  * @child: pointer to task_struct of forking parent process.
5827  *
5828  * A task is associated with the init_css_set until cgroup_post_fork()
5829  * attaches it to the parent's css_set.  Empty cg_list indicates that
5830  * @child isn't holding reference to its css_set.
5831  */
5832 void cgroup_fork(struct task_struct *child)
5833 {
5834 	RCU_INIT_POINTER(child->cgroups, &init_css_set);
5835 	INIT_LIST_HEAD(&child->cg_list);
5836 }
5837 
5838 /**
5839  * cgroup_can_fork - called on a new task before the process is exposed
5840  * @child: the task in question.
5841  *
5842  * This calls the subsystem can_fork() callbacks. If the can_fork() callback
5843  * returns an error, the fork aborts with that error code. This allows for
5844  * a cgroup subsystem to conditionally allow or deny new forks.
5845  */
5846 int cgroup_can_fork(struct task_struct *child)
5847 {
5848 	struct cgroup_subsys *ss;
5849 	int i, j, ret;
5850 
5851 	do_each_subsys_mask(ss, i, have_canfork_callback) {
5852 		ret = ss->can_fork(child);
5853 		if (ret)
5854 			goto out_revert;
5855 	} while_each_subsys_mask();
5856 
5857 	return 0;
5858 
5859 out_revert:
5860 	for_each_subsys(ss, j) {
5861 		if (j >= i)
5862 			break;
5863 		if (ss->cancel_fork)
5864 			ss->cancel_fork(child);
5865 	}
5866 
5867 	return ret;
5868 }
5869 
5870 /**
5871  * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
5872  * @child: the task in question
5873  *
5874  * This calls the cancel_fork() callbacks if a fork failed *after*
5875  * cgroup_can_fork() succeded.
5876  */
5877 void cgroup_cancel_fork(struct task_struct *child)
5878 {
5879 	struct cgroup_subsys *ss;
5880 	int i;
5881 
5882 	for_each_subsys(ss, i)
5883 		if (ss->cancel_fork)
5884 			ss->cancel_fork(child);
5885 }
5886 
5887 /**
5888  * cgroup_post_fork - called on a new task after adding it to the task list
5889  * @child: the task in question
5890  *
5891  * Adds the task to the list running through its css_set if necessary and
5892  * call the subsystem fork() callbacks.  Has to be after the task is
5893  * visible on the task list in case we race with the first call to
5894  * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5895  * list.
5896  */
5897 void cgroup_post_fork(struct task_struct *child)
5898 {
5899 	struct cgroup_subsys *ss;
5900 	int i;
5901 
5902 	/*
5903 	 * This may race against cgroup_enable_task_cg_lists().  As that
5904 	 * function sets use_task_css_set_links before grabbing
5905 	 * tasklist_lock and we just went through tasklist_lock to add
5906 	 * @child, it's guaranteed that either we see the set
5907 	 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5908 	 * @child during its iteration.
5909 	 *
5910 	 * If we won the race, @child is associated with %current's
5911 	 * css_set.  Grabbing css_set_lock guarantees both that the
5912 	 * association is stable, and, on completion of the parent's
5913 	 * migration, @child is visible in the source of migration or
5914 	 * already in the destination cgroup.  This guarantee is necessary
5915 	 * when implementing operations which need to migrate all tasks of
5916 	 * a cgroup to another.
5917 	 *
5918 	 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
5919 	 * will remain in init_css_set.  This is safe because all tasks are
5920 	 * in the init_css_set before cg_links is enabled and there's no
5921 	 * operation which transfers all tasks out of init_css_set.
5922 	 */
5923 	if (use_task_css_set_links) {
5924 		struct css_set *cset;
5925 
5926 		spin_lock_irq(&css_set_lock);
5927 		cset = task_css_set(current);
5928 		if (list_empty(&child->cg_list)) {
5929 			get_css_set(cset);
5930 			cset->nr_tasks++;
5931 			css_set_move_task(child, NULL, cset, false);
5932 		}
5933 
5934 		/*
5935 		 * If the cgroup has to be frozen, the new task has too.
5936 		 * Let's set the JOBCTL_TRAP_FREEZE jobctl bit to get
5937 		 * the task into the frozen state.
5938 		 */
5939 		if (unlikely(cgroup_task_freeze(child))) {
5940 			spin_lock(&child->sighand->siglock);
5941 			WARN_ON_ONCE(child->frozen);
5942 			child->jobctl |= JOBCTL_TRAP_FREEZE;
5943 			spin_unlock(&child->sighand->siglock);
5944 
5945 			/*
5946 			 * Calling cgroup_update_frozen() isn't required here,
5947 			 * because it will be called anyway a bit later
5948 			 * from do_freezer_trap(). So we avoid cgroup's
5949 			 * transient switch from the frozen state and back.
5950 			 */
5951 		}
5952 
5953 		spin_unlock_irq(&css_set_lock);
5954 	}
5955 
5956 	/*
5957 	 * Call ss->fork().  This must happen after @child is linked on
5958 	 * css_set; otherwise, @child might change state between ->fork()
5959 	 * and addition to css_set.
5960 	 */
5961 	do_each_subsys_mask(ss, i, have_fork_callback) {
5962 		ss->fork(child);
5963 	} while_each_subsys_mask();
5964 }
5965 
5966 /**
5967  * cgroup_exit - detach cgroup from exiting task
5968  * @tsk: pointer to task_struct of exiting process
5969  *
5970  * Description: Detach cgroup from @tsk and release it.
5971  *
5972  * Note that cgroups marked notify_on_release force every task in
5973  * them to take the global cgroup_mutex mutex when exiting.
5974  * This could impact scaling on very large systems.  Be reluctant to
5975  * use notify_on_release cgroups where very high task exit scaling
5976  * is required on large systems.
5977  *
5978  * We set the exiting tasks cgroup to the root cgroup (top_cgroup).  We
5979  * call cgroup_exit() while the task is still competent to handle
5980  * notify_on_release(), then leave the task attached to the root cgroup in
5981  * each hierarchy for the remainder of its exit.  No need to bother with
5982  * init_css_set refcnting.  init_css_set never goes away and we can't race
5983  * with migration path - PF_EXITING is visible to migration path.
5984  */
5985 void cgroup_exit(struct task_struct *tsk)
5986 {
5987 	struct cgroup_subsys *ss;
5988 	struct css_set *cset;
5989 	int i;
5990 
5991 	/*
5992 	 * Unlink from @tsk from its css_set.  As migration path can't race
5993 	 * with us, we can check css_set and cg_list without synchronization.
5994 	 */
5995 	cset = task_css_set(tsk);
5996 
5997 	if (!list_empty(&tsk->cg_list)) {
5998 		spin_lock_irq(&css_set_lock);
5999 		css_set_move_task(tsk, cset, NULL, false);
6000 		cset->nr_tasks--;
6001 
6002 		WARN_ON_ONCE(cgroup_task_frozen(tsk));
6003 		if (unlikely(cgroup_task_freeze(tsk)))
6004 			cgroup_update_frozen(task_dfl_cgroup(tsk));
6005 
6006 		spin_unlock_irq(&css_set_lock);
6007 	} else {
6008 		get_css_set(cset);
6009 	}
6010 
6011 	/* see cgroup_post_fork() for details */
6012 	do_each_subsys_mask(ss, i, have_exit_callback) {
6013 		ss->exit(tsk);
6014 	} while_each_subsys_mask();
6015 }
6016 
6017 void cgroup_release(struct task_struct *task)
6018 {
6019 	struct cgroup_subsys *ss;
6020 	int ssid;
6021 
6022 	do_each_subsys_mask(ss, ssid, have_release_callback) {
6023 		ss->release(task);
6024 	} while_each_subsys_mask();
6025 }
6026 
6027 void cgroup_free(struct task_struct *task)
6028 {
6029 	struct css_set *cset = task_css_set(task);
6030 	put_css_set(cset);
6031 }
6032 
6033 static int __init cgroup_disable(char *str)
6034 {
6035 	struct cgroup_subsys *ss;
6036 	char *token;
6037 	int i;
6038 
6039 	while ((token = strsep(&str, ",")) != NULL) {
6040 		if (!*token)
6041 			continue;
6042 
6043 		for_each_subsys(ss, i) {
6044 			if (strcmp(token, ss->name) &&
6045 			    strcmp(token, ss->legacy_name))
6046 				continue;
6047 			cgroup_disable_mask |= 1 << i;
6048 		}
6049 	}
6050 	return 1;
6051 }
6052 __setup("cgroup_disable=", cgroup_disable);
6053 
6054 void __init __weak enable_debug_cgroup(void) { }
6055 
6056 static int __init enable_cgroup_debug(char *str)
6057 {
6058 	cgroup_debug = true;
6059 	enable_debug_cgroup();
6060 	return 1;
6061 }
6062 __setup("cgroup_debug", enable_cgroup_debug);
6063 
6064 /**
6065  * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
6066  * @dentry: directory dentry of interest
6067  * @ss: subsystem of interest
6068  *
6069  * If @dentry is a directory for a cgroup which has @ss enabled on it, try
6070  * to get the corresponding css and return it.  If such css doesn't exist
6071  * or can't be pinned, an ERR_PTR value is returned.
6072  */
6073 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
6074 						       struct cgroup_subsys *ss)
6075 {
6076 	struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
6077 	struct file_system_type *s_type = dentry->d_sb->s_type;
6078 	struct cgroup_subsys_state *css = NULL;
6079 	struct cgroup *cgrp;
6080 
6081 	/* is @dentry a cgroup dir? */
6082 	if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
6083 	    !kn || kernfs_type(kn) != KERNFS_DIR)
6084 		return ERR_PTR(-EBADF);
6085 
6086 	rcu_read_lock();
6087 
6088 	/*
6089 	 * This path doesn't originate from kernfs and @kn could already
6090 	 * have been or be removed at any point.  @kn->priv is RCU
6091 	 * protected for this access.  See css_release_work_fn() for details.
6092 	 */
6093 	cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6094 	if (cgrp)
6095 		css = cgroup_css(cgrp, ss);
6096 
6097 	if (!css || !css_tryget_online(css))
6098 		css = ERR_PTR(-ENOENT);
6099 
6100 	rcu_read_unlock();
6101 	return css;
6102 }
6103 
6104 /**
6105  * css_from_id - lookup css by id
6106  * @id: the cgroup id
6107  * @ss: cgroup subsys to be looked into
6108  *
6109  * Returns the css if there's valid one with @id, otherwise returns NULL.
6110  * Should be called under rcu_read_lock().
6111  */
6112 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
6113 {
6114 	WARN_ON_ONCE(!rcu_read_lock_held());
6115 	return idr_find(&ss->css_idr, id);
6116 }
6117 
6118 /**
6119  * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
6120  * @path: path on the default hierarchy
6121  *
6122  * Find the cgroup at @path on the default hierarchy, increment its
6123  * reference count and return it.  Returns pointer to the found cgroup on
6124  * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR)
6125  * if @path points to a non-directory.
6126  */
6127 struct cgroup *cgroup_get_from_path(const char *path)
6128 {
6129 	struct kernfs_node *kn;
6130 	struct cgroup *cgrp;
6131 
6132 	mutex_lock(&cgroup_mutex);
6133 
6134 	kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path);
6135 	if (kn) {
6136 		if (kernfs_type(kn) == KERNFS_DIR) {
6137 			cgrp = kn->priv;
6138 			cgroup_get_live(cgrp);
6139 		} else {
6140 			cgrp = ERR_PTR(-ENOTDIR);
6141 		}
6142 		kernfs_put(kn);
6143 	} else {
6144 		cgrp = ERR_PTR(-ENOENT);
6145 	}
6146 
6147 	mutex_unlock(&cgroup_mutex);
6148 	return cgrp;
6149 }
6150 EXPORT_SYMBOL_GPL(cgroup_get_from_path);
6151 
6152 /**
6153  * cgroup_get_from_fd - get a cgroup pointer from a fd
6154  * @fd: fd obtained by open(cgroup2_dir)
6155  *
6156  * Find the cgroup from a fd which should be obtained
6157  * by opening a cgroup directory.  Returns a pointer to the
6158  * cgroup on success. ERR_PTR is returned if the cgroup
6159  * cannot be found.
6160  */
6161 struct cgroup *cgroup_get_from_fd(int fd)
6162 {
6163 	struct cgroup_subsys_state *css;
6164 	struct cgroup *cgrp;
6165 	struct file *f;
6166 
6167 	f = fget_raw(fd);
6168 	if (!f)
6169 		return ERR_PTR(-EBADF);
6170 
6171 	css = css_tryget_online_from_dir(f->f_path.dentry, NULL);
6172 	fput(f);
6173 	if (IS_ERR(css))
6174 		return ERR_CAST(css);
6175 
6176 	cgrp = css->cgroup;
6177 	if (!cgroup_on_dfl(cgrp)) {
6178 		cgroup_put(cgrp);
6179 		return ERR_PTR(-EBADF);
6180 	}
6181 
6182 	return cgrp;
6183 }
6184 EXPORT_SYMBOL_GPL(cgroup_get_from_fd);
6185 
6186 /*
6187  * sock->sk_cgrp_data handling.  For more info, see sock_cgroup_data
6188  * definition in cgroup-defs.h.
6189  */
6190 #ifdef CONFIG_SOCK_CGROUP_DATA
6191 
6192 #if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID)
6193 
6194 DEFINE_SPINLOCK(cgroup_sk_update_lock);
6195 static bool cgroup_sk_alloc_disabled __read_mostly;
6196 
6197 void cgroup_sk_alloc_disable(void)
6198 {
6199 	if (cgroup_sk_alloc_disabled)
6200 		return;
6201 	pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n");
6202 	cgroup_sk_alloc_disabled = true;
6203 }
6204 
6205 #else
6206 
6207 #define cgroup_sk_alloc_disabled	false
6208 
6209 #endif
6210 
6211 void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
6212 {
6213 	if (cgroup_sk_alloc_disabled)
6214 		return;
6215 
6216 	/* Socket clone path */
6217 	if (skcd->val) {
6218 		/*
6219 		 * We might be cloning a socket which is left in an empty
6220 		 * cgroup and the cgroup might have already been rmdir'd.
6221 		 * Don't use cgroup_get_live().
6222 		 */
6223 		cgroup_get(sock_cgroup_ptr(skcd));
6224 		return;
6225 	}
6226 
6227 	rcu_read_lock();
6228 
6229 	while (true) {
6230 		struct css_set *cset;
6231 
6232 		cset = task_css_set(current);
6233 		if (likely(cgroup_tryget(cset->dfl_cgrp))) {
6234 			skcd->val = (unsigned long)cset->dfl_cgrp;
6235 			break;
6236 		}
6237 		cpu_relax();
6238 	}
6239 
6240 	rcu_read_unlock();
6241 }
6242 
6243 void cgroup_sk_free(struct sock_cgroup_data *skcd)
6244 {
6245 	cgroup_put(sock_cgroup_ptr(skcd));
6246 }
6247 
6248 #endif	/* CONFIG_SOCK_CGROUP_DATA */
6249 
6250 #ifdef CONFIG_CGROUP_BPF
6251 int cgroup_bpf_attach(struct cgroup *cgrp, struct bpf_prog *prog,
6252 		      enum bpf_attach_type type, u32 flags)
6253 {
6254 	int ret;
6255 
6256 	mutex_lock(&cgroup_mutex);
6257 	ret = __cgroup_bpf_attach(cgrp, prog, type, flags);
6258 	mutex_unlock(&cgroup_mutex);
6259 	return ret;
6260 }
6261 int cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog,
6262 		      enum bpf_attach_type type, u32 flags)
6263 {
6264 	int ret;
6265 
6266 	mutex_lock(&cgroup_mutex);
6267 	ret = __cgroup_bpf_detach(cgrp, prog, type);
6268 	mutex_unlock(&cgroup_mutex);
6269 	return ret;
6270 }
6271 int cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr,
6272 		     union bpf_attr __user *uattr)
6273 {
6274 	int ret;
6275 
6276 	mutex_lock(&cgroup_mutex);
6277 	ret = __cgroup_bpf_query(cgrp, attr, uattr);
6278 	mutex_unlock(&cgroup_mutex);
6279 	return ret;
6280 }
6281 #endif /* CONFIG_CGROUP_BPF */
6282 
6283 #ifdef CONFIG_SYSFS
6284 static ssize_t show_delegatable_files(struct cftype *files, char *buf,
6285 				      ssize_t size, const char *prefix)
6286 {
6287 	struct cftype *cft;
6288 	ssize_t ret = 0;
6289 
6290 	for (cft = files; cft && cft->name[0] != '\0'; cft++) {
6291 		if (!(cft->flags & CFTYPE_NS_DELEGATABLE))
6292 			continue;
6293 
6294 		if (prefix)
6295 			ret += snprintf(buf + ret, size - ret, "%s.", prefix);
6296 
6297 		ret += snprintf(buf + ret, size - ret, "%s\n", cft->name);
6298 
6299 		if (WARN_ON(ret >= size))
6300 			break;
6301 	}
6302 
6303 	return ret;
6304 }
6305 
6306 static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr,
6307 			      char *buf)
6308 {
6309 	struct cgroup_subsys *ss;
6310 	int ssid;
6311 	ssize_t ret = 0;
6312 
6313 	ret = show_delegatable_files(cgroup_base_files, buf, PAGE_SIZE - ret,
6314 				     NULL);
6315 
6316 	for_each_subsys(ss, ssid)
6317 		ret += show_delegatable_files(ss->dfl_cftypes, buf + ret,
6318 					      PAGE_SIZE - ret,
6319 					      cgroup_subsys_name[ssid]);
6320 
6321 	return ret;
6322 }
6323 static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate);
6324 
6325 static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr,
6326 			     char *buf)
6327 {
6328 	return snprintf(buf, PAGE_SIZE, "nsdelegate\n");
6329 }
6330 static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features);
6331 
6332 static struct attribute *cgroup_sysfs_attrs[] = {
6333 	&cgroup_delegate_attr.attr,
6334 	&cgroup_features_attr.attr,
6335 	NULL,
6336 };
6337 
6338 static const struct attribute_group cgroup_sysfs_attr_group = {
6339 	.attrs = cgroup_sysfs_attrs,
6340 	.name = "cgroup",
6341 };
6342 
6343 static int __init cgroup_sysfs_init(void)
6344 {
6345 	return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group);
6346 }
6347 subsys_initcall(cgroup_sysfs_init);
6348 #endif /* CONFIG_SYSFS */
6349