xref: /openbmc/linux/kernel/cgroup/cgroup.c (revision e8254a8e)
1 /*
2  *  Generic process-grouping system.
3  *
4  *  Based originally on the cpuset system, extracted by Paul Menage
5  *  Copyright (C) 2006 Google, Inc
6  *
7  *  Notifications support
8  *  Copyright (C) 2009 Nokia Corporation
9  *  Author: Kirill A. Shutemov
10  *
11  *  Copyright notices from the original cpuset code:
12  *  --------------------------------------------------
13  *  Copyright (C) 2003 BULL SA.
14  *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
15  *
16  *  Portions derived from Patrick Mochel's sysfs code.
17  *  sysfs is Copyright (c) 2001-3 Patrick Mochel
18  *
19  *  2003-10-10 Written by Simon Derr.
20  *  2003-10-22 Updates by Stephen Hemminger.
21  *  2004 May-July Rework by Paul Jackson.
22  *  ---------------------------------------------------
23  *
24  *  This file is subject to the terms and conditions of the GNU General Public
25  *  License.  See the file COPYING in the main directory of the Linux
26  *  distribution for more details.
27  */
28 
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 
31 #include "cgroup-internal.h"
32 
33 #include <linux/bpf-cgroup.h>
34 #include <linux/cred.h>
35 #include <linux/errno.h>
36 #include <linux/init_task.h>
37 #include <linux/kernel.h>
38 #include <linux/magic.h>
39 #include <linux/mutex.h>
40 #include <linux/mount.h>
41 #include <linux/pagemap.h>
42 #include <linux/proc_fs.h>
43 #include <linux/rcupdate.h>
44 #include <linux/sched.h>
45 #include <linux/sched/task.h>
46 #include <linux/slab.h>
47 #include <linux/spinlock.h>
48 #include <linux/percpu-rwsem.h>
49 #include <linux/string.h>
50 #include <linux/hashtable.h>
51 #include <linux/idr.h>
52 #include <linux/kthread.h>
53 #include <linux/atomic.h>
54 #include <linux/cpuset.h>
55 #include <linux/proc_ns.h>
56 #include <linux/nsproxy.h>
57 #include <linux/file.h>
58 #include <linux/fs_parser.h>
59 #include <linux/sched/cputime.h>
60 #include <linux/psi.h>
61 #include <net/sock.h>
62 
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/cgroup.h>
65 
66 #define CGROUP_FILE_NAME_MAX		(MAX_CGROUP_TYPE_NAMELEN +	\
67 					 MAX_CFTYPE_NAME + 2)
68 /* let's not notify more than 100 times per second */
69 #define CGROUP_FILE_NOTIFY_MIN_INTV	DIV_ROUND_UP(HZ, 100)
70 
71 /*
72  * To avoid confusing the compiler (and generating warnings) with code
73  * that attempts to access what would be a 0-element array (i.e. sized
74  * to a potentially empty array when CGROUP_SUBSYS_COUNT == 0), this
75  * constant expression can be added.
76  */
77 #define CGROUP_HAS_SUBSYS_CONFIG	(CGROUP_SUBSYS_COUNT > 0)
78 
79 /*
80  * cgroup_mutex is the master lock.  Any modification to cgroup or its
81  * hierarchy must be performed while holding it.
82  *
83  * css_set_lock protects task->cgroups pointer, the list of css_set
84  * objects, and the chain of tasks off each css_set.
85  *
86  * These locks are exported if CONFIG_PROVE_RCU so that accessors in
87  * cgroup.h can use them for lockdep annotations.
88  */
89 DEFINE_MUTEX(cgroup_mutex);
90 DEFINE_SPINLOCK(css_set_lock);
91 
92 #ifdef CONFIG_PROVE_RCU
93 EXPORT_SYMBOL_GPL(cgroup_mutex);
94 EXPORT_SYMBOL_GPL(css_set_lock);
95 #endif
96 
97 DEFINE_SPINLOCK(trace_cgroup_path_lock);
98 char trace_cgroup_path[TRACE_CGROUP_PATH_LEN];
99 static bool cgroup_debug __read_mostly;
100 
101 /*
102  * Protects cgroup_idr and css_idr so that IDs can be released without
103  * grabbing cgroup_mutex.
104  */
105 static DEFINE_SPINLOCK(cgroup_idr_lock);
106 
107 /*
108  * Protects cgroup_file->kn for !self csses.  It synchronizes notifications
109  * against file removal/re-creation across css hiding.
110  */
111 static DEFINE_SPINLOCK(cgroup_file_kn_lock);
112 
113 DEFINE_PERCPU_RWSEM(cgroup_threadgroup_rwsem);
114 
115 #define cgroup_assert_mutex_or_rcu_locked()				\
116 	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
117 			   !lockdep_is_held(&cgroup_mutex),		\
118 			   "cgroup_mutex or RCU read lock required");
119 
120 /*
121  * cgroup destruction makes heavy use of work items and there can be a lot
122  * of concurrent destructions.  Use a separate workqueue so that cgroup
123  * destruction work items don't end up filling up max_active of system_wq
124  * which may lead to deadlock.
125  */
126 static struct workqueue_struct *cgroup_destroy_wq;
127 
128 /* generate an array of cgroup subsystem pointers */
129 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
130 struct cgroup_subsys *cgroup_subsys[] = {
131 #include <linux/cgroup_subsys.h>
132 };
133 #undef SUBSYS
134 
135 /* array of cgroup subsystem names */
136 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
137 static const char *cgroup_subsys_name[] = {
138 #include <linux/cgroup_subsys.h>
139 };
140 #undef SUBSYS
141 
142 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
143 #define SUBSYS(_x)								\
144 	DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key);			\
145 	DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key);			\
146 	EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key);			\
147 	EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
148 #include <linux/cgroup_subsys.h>
149 #undef SUBSYS
150 
151 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
152 static struct static_key_true *cgroup_subsys_enabled_key[] = {
153 #include <linux/cgroup_subsys.h>
154 };
155 #undef SUBSYS
156 
157 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
158 static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
159 #include <linux/cgroup_subsys.h>
160 };
161 #undef SUBSYS
162 
163 static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu);
164 
165 /* the default hierarchy */
166 struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu };
167 EXPORT_SYMBOL_GPL(cgrp_dfl_root);
168 
169 /*
170  * The default hierarchy always exists but is hidden until mounted for the
171  * first time.  This is for backward compatibility.
172  */
173 static bool cgrp_dfl_visible;
174 
175 /* some controllers are not supported in the default hierarchy */
176 static u16 cgrp_dfl_inhibit_ss_mask;
177 
178 /* some controllers are implicitly enabled on the default hierarchy */
179 static u16 cgrp_dfl_implicit_ss_mask;
180 
181 /* some controllers can be threaded on the default hierarchy */
182 static u16 cgrp_dfl_threaded_ss_mask;
183 
184 /* The list of hierarchy roots */
185 LIST_HEAD(cgroup_roots);
186 static int cgroup_root_count;
187 
188 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
189 static DEFINE_IDR(cgroup_hierarchy_idr);
190 
191 /*
192  * Assign a monotonically increasing serial number to csses.  It guarantees
193  * cgroups with bigger numbers are newer than those with smaller numbers.
194  * Also, as csses are always appended to the parent's ->children list, it
195  * guarantees that sibling csses are always sorted in the ascending serial
196  * number order on the list.  Protected by cgroup_mutex.
197  */
198 static u64 css_serial_nr_next = 1;
199 
200 /*
201  * These bitmasks identify subsystems with specific features to avoid
202  * having to do iterative checks repeatedly.
203  */
204 static u16 have_fork_callback __read_mostly;
205 static u16 have_exit_callback __read_mostly;
206 static u16 have_release_callback __read_mostly;
207 static u16 have_canfork_callback __read_mostly;
208 
209 /* cgroup namespace for init task */
210 struct cgroup_namespace init_cgroup_ns = {
211 	.ns.count	= REFCOUNT_INIT(2),
212 	.user_ns	= &init_user_ns,
213 	.ns.ops		= &cgroupns_operations,
214 	.ns.inum	= PROC_CGROUP_INIT_INO,
215 	.root_cset	= &init_css_set,
216 };
217 
218 static struct file_system_type cgroup2_fs_type;
219 static struct cftype cgroup_base_files[];
220 static struct cftype cgroup_psi_files[];
221 
222 /* cgroup optional features */
223 enum cgroup_opt_features {
224 #ifdef CONFIG_PSI
225 	OPT_FEATURE_PRESSURE,
226 #endif
227 	OPT_FEATURE_COUNT
228 };
229 
230 static const char *cgroup_opt_feature_names[OPT_FEATURE_COUNT] = {
231 #ifdef CONFIG_PSI
232 	"pressure",
233 #endif
234 };
235 
236 static u16 cgroup_feature_disable_mask __read_mostly;
237 
238 static int cgroup_apply_control(struct cgroup *cgrp);
239 static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
240 static void css_task_iter_skip(struct css_task_iter *it,
241 			       struct task_struct *task);
242 static int cgroup_destroy_locked(struct cgroup *cgrp);
243 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
244 					      struct cgroup_subsys *ss);
245 static void css_release(struct percpu_ref *ref);
246 static void kill_css(struct cgroup_subsys_state *css);
247 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
248 			      struct cgroup *cgrp, struct cftype cfts[],
249 			      bool is_add);
250 
251 #ifdef CONFIG_DEBUG_CGROUP_REF
252 #define CGROUP_REF_FN_ATTRS	noinline
253 #define CGROUP_REF_EXPORT(fn)	EXPORT_SYMBOL_GPL(fn);
254 #include <linux/cgroup_refcnt.h>
255 #endif
256 
257 /**
258  * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
259  * @ssid: subsys ID of interest
260  *
261  * cgroup_subsys_enabled() can only be used with literal subsys names which
262  * is fine for individual subsystems but unsuitable for cgroup core.  This
263  * is slower static_key_enabled() based test indexed by @ssid.
264  */
265 bool cgroup_ssid_enabled(int ssid)
266 {
267 	if (!CGROUP_HAS_SUBSYS_CONFIG)
268 		return false;
269 
270 	return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
271 }
272 
273 /**
274  * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
275  * @cgrp: the cgroup of interest
276  *
277  * The default hierarchy is the v2 interface of cgroup and this function
278  * can be used to test whether a cgroup is on the default hierarchy for
279  * cases where a subsystem should behave differently depending on the
280  * interface version.
281  *
282  * List of changed behaviors:
283  *
284  * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
285  *   and "name" are disallowed.
286  *
287  * - When mounting an existing superblock, mount options should match.
288  *
289  * - rename(2) is disallowed.
290  *
291  * - "tasks" is removed.  Everything should be at process granularity.  Use
292  *   "cgroup.procs" instead.
293  *
294  * - "cgroup.procs" is not sorted.  pids will be unique unless they got
295  *   recycled in-between reads.
296  *
297  * - "release_agent" and "notify_on_release" are removed.  Replacement
298  *   notification mechanism will be implemented.
299  *
300  * - "cgroup.clone_children" is removed.
301  *
302  * - "cgroup.subtree_populated" is available.  Its value is 0 if the cgroup
303  *   and its descendants contain no task; otherwise, 1.  The file also
304  *   generates kernfs notification which can be monitored through poll and
305  *   [di]notify when the value of the file changes.
306  *
307  * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
308  *   take masks of ancestors with non-empty cpus/mems, instead of being
309  *   moved to an ancestor.
310  *
311  * - cpuset: a task can be moved into an empty cpuset, and again it takes
312  *   masks of ancestors.
313  *
314  * - blkcg: blk-throttle becomes properly hierarchical.
315  *
316  * - debug: disallowed on the default hierarchy.
317  */
318 bool cgroup_on_dfl(const struct cgroup *cgrp)
319 {
320 	return cgrp->root == &cgrp_dfl_root;
321 }
322 
323 /* IDR wrappers which synchronize using cgroup_idr_lock */
324 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
325 			    gfp_t gfp_mask)
326 {
327 	int ret;
328 
329 	idr_preload(gfp_mask);
330 	spin_lock_bh(&cgroup_idr_lock);
331 	ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
332 	spin_unlock_bh(&cgroup_idr_lock);
333 	idr_preload_end();
334 	return ret;
335 }
336 
337 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
338 {
339 	void *ret;
340 
341 	spin_lock_bh(&cgroup_idr_lock);
342 	ret = idr_replace(idr, ptr, id);
343 	spin_unlock_bh(&cgroup_idr_lock);
344 	return ret;
345 }
346 
347 static void cgroup_idr_remove(struct idr *idr, int id)
348 {
349 	spin_lock_bh(&cgroup_idr_lock);
350 	idr_remove(idr, id);
351 	spin_unlock_bh(&cgroup_idr_lock);
352 }
353 
354 static bool cgroup_has_tasks(struct cgroup *cgrp)
355 {
356 	return cgrp->nr_populated_csets;
357 }
358 
359 bool cgroup_is_threaded(struct cgroup *cgrp)
360 {
361 	return cgrp->dom_cgrp != cgrp;
362 }
363 
364 /* can @cgrp host both domain and threaded children? */
365 static bool cgroup_is_mixable(struct cgroup *cgrp)
366 {
367 	/*
368 	 * Root isn't under domain level resource control exempting it from
369 	 * the no-internal-process constraint, so it can serve as a thread
370 	 * root and a parent of resource domains at the same time.
371 	 */
372 	return !cgroup_parent(cgrp);
373 }
374 
375 /* can @cgrp become a thread root? Should always be true for a thread root */
376 static bool cgroup_can_be_thread_root(struct cgroup *cgrp)
377 {
378 	/* mixables don't care */
379 	if (cgroup_is_mixable(cgrp))
380 		return true;
381 
382 	/* domain roots can't be nested under threaded */
383 	if (cgroup_is_threaded(cgrp))
384 		return false;
385 
386 	/* can only have either domain or threaded children */
387 	if (cgrp->nr_populated_domain_children)
388 		return false;
389 
390 	/* and no domain controllers can be enabled */
391 	if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
392 		return false;
393 
394 	return true;
395 }
396 
397 /* is @cgrp root of a threaded subtree? */
398 bool cgroup_is_thread_root(struct cgroup *cgrp)
399 {
400 	/* thread root should be a domain */
401 	if (cgroup_is_threaded(cgrp))
402 		return false;
403 
404 	/* a domain w/ threaded children is a thread root */
405 	if (cgrp->nr_threaded_children)
406 		return true;
407 
408 	/*
409 	 * A domain which has tasks and explicit threaded controllers
410 	 * enabled is a thread root.
411 	 */
412 	if (cgroup_has_tasks(cgrp) &&
413 	    (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask))
414 		return true;
415 
416 	return false;
417 }
418 
419 /* a domain which isn't connected to the root w/o brekage can't be used */
420 static bool cgroup_is_valid_domain(struct cgroup *cgrp)
421 {
422 	/* the cgroup itself can be a thread root */
423 	if (cgroup_is_threaded(cgrp))
424 		return false;
425 
426 	/* but the ancestors can't be unless mixable */
427 	while ((cgrp = cgroup_parent(cgrp))) {
428 		if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp))
429 			return false;
430 		if (cgroup_is_threaded(cgrp))
431 			return false;
432 	}
433 
434 	return true;
435 }
436 
437 /* subsystems visibly enabled on a cgroup */
438 static u16 cgroup_control(struct cgroup *cgrp)
439 {
440 	struct cgroup *parent = cgroup_parent(cgrp);
441 	u16 root_ss_mask = cgrp->root->subsys_mask;
442 
443 	if (parent) {
444 		u16 ss_mask = parent->subtree_control;
445 
446 		/* threaded cgroups can only have threaded controllers */
447 		if (cgroup_is_threaded(cgrp))
448 			ss_mask &= cgrp_dfl_threaded_ss_mask;
449 		return ss_mask;
450 	}
451 
452 	if (cgroup_on_dfl(cgrp))
453 		root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
454 				  cgrp_dfl_implicit_ss_mask);
455 	return root_ss_mask;
456 }
457 
458 /* subsystems enabled on a cgroup */
459 static u16 cgroup_ss_mask(struct cgroup *cgrp)
460 {
461 	struct cgroup *parent = cgroup_parent(cgrp);
462 
463 	if (parent) {
464 		u16 ss_mask = parent->subtree_ss_mask;
465 
466 		/* threaded cgroups can only have threaded controllers */
467 		if (cgroup_is_threaded(cgrp))
468 			ss_mask &= cgrp_dfl_threaded_ss_mask;
469 		return ss_mask;
470 	}
471 
472 	return cgrp->root->subsys_mask;
473 }
474 
475 /**
476  * cgroup_css - obtain a cgroup's css for the specified subsystem
477  * @cgrp: the cgroup of interest
478  * @ss: the subsystem of interest (%NULL returns @cgrp->self)
479  *
480  * Return @cgrp's css (cgroup_subsys_state) associated with @ss.  This
481  * function must be called either under cgroup_mutex or rcu_read_lock() and
482  * the caller is responsible for pinning the returned css if it wants to
483  * keep accessing it outside the said locks.  This function may return
484  * %NULL if @cgrp doesn't have @subsys_id enabled.
485  */
486 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
487 					      struct cgroup_subsys *ss)
488 {
489 	if (CGROUP_HAS_SUBSYS_CONFIG && ss)
490 		return rcu_dereference_check(cgrp->subsys[ss->id],
491 					lockdep_is_held(&cgroup_mutex));
492 	else
493 		return &cgrp->self;
494 }
495 
496 /**
497  * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem
498  * @cgrp: the cgroup of interest
499  * @ss: the subsystem of interest
500  *
501  * Find and get @cgrp's css associated with @ss.  If the css doesn't exist
502  * or is offline, %NULL is returned.
503  */
504 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp,
505 						     struct cgroup_subsys *ss)
506 {
507 	struct cgroup_subsys_state *css;
508 
509 	rcu_read_lock();
510 	css = cgroup_css(cgrp, ss);
511 	if (css && !css_tryget_online(css))
512 		css = NULL;
513 	rcu_read_unlock();
514 
515 	return css;
516 }
517 
518 /**
519  * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss
520  * @cgrp: the cgroup of interest
521  * @ss: the subsystem of interest (%NULL returns @cgrp->self)
522  *
523  * Similar to cgroup_css() but returns the effective css, which is defined
524  * as the matching css of the nearest ancestor including self which has @ss
525  * enabled.  If @ss is associated with the hierarchy @cgrp is on, this
526  * function is guaranteed to return non-NULL css.
527  */
528 static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp,
529 							struct cgroup_subsys *ss)
530 {
531 	lockdep_assert_held(&cgroup_mutex);
532 
533 	if (!ss)
534 		return &cgrp->self;
535 
536 	/*
537 	 * This function is used while updating css associations and thus
538 	 * can't test the csses directly.  Test ss_mask.
539 	 */
540 	while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
541 		cgrp = cgroup_parent(cgrp);
542 		if (!cgrp)
543 			return NULL;
544 	}
545 
546 	return cgroup_css(cgrp, ss);
547 }
548 
549 /**
550  * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
551  * @cgrp: the cgroup of interest
552  * @ss: the subsystem of interest
553  *
554  * Find and get the effective css of @cgrp for @ss.  The effective css is
555  * defined as the matching css of the nearest ancestor including self which
556  * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
557  * the root css is returned, so this function always returns a valid css.
558  *
559  * The returned css is not guaranteed to be online, and therefore it is the
560  * callers responsibility to try get a reference for it.
561  */
562 struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
563 					 struct cgroup_subsys *ss)
564 {
565 	struct cgroup_subsys_state *css;
566 
567 	if (!CGROUP_HAS_SUBSYS_CONFIG)
568 		return NULL;
569 
570 	do {
571 		css = cgroup_css(cgrp, ss);
572 
573 		if (css)
574 			return css;
575 		cgrp = cgroup_parent(cgrp);
576 	} while (cgrp);
577 
578 	return init_css_set.subsys[ss->id];
579 }
580 
581 /**
582  * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
583  * @cgrp: the cgroup of interest
584  * @ss: the subsystem of interest
585  *
586  * Find and get the effective css of @cgrp for @ss.  The effective css is
587  * defined as the matching css of the nearest ancestor including self which
588  * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
589  * the root css is returned, so this function always returns a valid css.
590  * The returned css must be put using css_put().
591  */
592 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
593 					     struct cgroup_subsys *ss)
594 {
595 	struct cgroup_subsys_state *css;
596 
597 	if (!CGROUP_HAS_SUBSYS_CONFIG)
598 		return NULL;
599 
600 	rcu_read_lock();
601 
602 	do {
603 		css = cgroup_css(cgrp, ss);
604 
605 		if (css && css_tryget_online(css))
606 			goto out_unlock;
607 		cgrp = cgroup_parent(cgrp);
608 	} while (cgrp);
609 
610 	css = init_css_set.subsys[ss->id];
611 	css_get(css);
612 out_unlock:
613 	rcu_read_unlock();
614 	return css;
615 }
616 EXPORT_SYMBOL_GPL(cgroup_get_e_css);
617 
618 static void cgroup_get_live(struct cgroup *cgrp)
619 {
620 	WARN_ON_ONCE(cgroup_is_dead(cgrp));
621 	css_get(&cgrp->self);
622 }
623 
624 /**
625  * __cgroup_task_count - count the number of tasks in a cgroup. The caller
626  * is responsible for taking the css_set_lock.
627  * @cgrp: the cgroup in question
628  */
629 int __cgroup_task_count(const struct cgroup *cgrp)
630 {
631 	int count = 0;
632 	struct cgrp_cset_link *link;
633 
634 	lockdep_assert_held(&css_set_lock);
635 
636 	list_for_each_entry(link, &cgrp->cset_links, cset_link)
637 		count += link->cset->nr_tasks;
638 
639 	return count;
640 }
641 
642 /**
643  * cgroup_task_count - count the number of tasks in a cgroup.
644  * @cgrp: the cgroup in question
645  */
646 int cgroup_task_count(const struct cgroup *cgrp)
647 {
648 	int count;
649 
650 	spin_lock_irq(&css_set_lock);
651 	count = __cgroup_task_count(cgrp);
652 	spin_unlock_irq(&css_set_lock);
653 
654 	return count;
655 }
656 
657 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
658 {
659 	struct cgroup *cgrp = of->kn->parent->priv;
660 	struct cftype *cft = of_cft(of);
661 
662 	/*
663 	 * This is open and unprotected implementation of cgroup_css().
664 	 * seq_css() is only called from a kernfs file operation which has
665 	 * an active reference on the file.  Because all the subsystem
666 	 * files are drained before a css is disassociated with a cgroup,
667 	 * the matching css from the cgroup's subsys table is guaranteed to
668 	 * be and stay valid until the enclosing operation is complete.
669 	 */
670 	if (CGROUP_HAS_SUBSYS_CONFIG && cft->ss)
671 		return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
672 	else
673 		return &cgrp->self;
674 }
675 EXPORT_SYMBOL_GPL(of_css);
676 
677 /**
678  * for_each_css - iterate all css's of a cgroup
679  * @css: the iteration cursor
680  * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
681  * @cgrp: the target cgroup to iterate css's of
682  *
683  * Should be called under cgroup_[tree_]mutex.
684  */
685 #define for_each_css(css, ssid, cgrp)					\
686 	for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)	\
687 		if (!((css) = rcu_dereference_check(			\
688 				(cgrp)->subsys[(ssid)],			\
689 				lockdep_is_held(&cgroup_mutex)))) { }	\
690 		else
691 
692 /**
693  * for_each_e_css - iterate all effective css's of a cgroup
694  * @css: the iteration cursor
695  * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
696  * @cgrp: the target cgroup to iterate css's of
697  *
698  * Should be called under cgroup_[tree_]mutex.
699  */
700 #define for_each_e_css(css, ssid, cgrp)					    \
701 	for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)	    \
702 		if (!((css) = cgroup_e_css_by_mask(cgrp,		    \
703 						   cgroup_subsys[(ssid)]))) \
704 			;						    \
705 		else
706 
707 /**
708  * do_each_subsys_mask - filter for_each_subsys with a bitmask
709  * @ss: the iteration cursor
710  * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
711  * @ss_mask: the bitmask
712  *
713  * The block will only run for cases where the ssid-th bit (1 << ssid) of
714  * @ss_mask is set.
715  */
716 #define do_each_subsys_mask(ss, ssid, ss_mask) do {			\
717 	unsigned long __ss_mask = (ss_mask);				\
718 	if (!CGROUP_HAS_SUBSYS_CONFIG) {				\
719 		(ssid) = 0;						\
720 		break;							\
721 	}								\
722 	for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) {	\
723 		(ss) = cgroup_subsys[ssid];				\
724 		{
725 
726 #define while_each_subsys_mask()					\
727 		}							\
728 	}								\
729 } while (false)
730 
731 /* iterate over child cgrps, lock should be held throughout iteration */
732 #define cgroup_for_each_live_child(child, cgrp)				\
733 	list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
734 		if (({ lockdep_assert_held(&cgroup_mutex);		\
735 		       cgroup_is_dead(child); }))			\
736 			;						\
737 		else
738 
739 /* walk live descendants in pre order */
740 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)		\
741 	css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL))	\
742 		if (({ lockdep_assert_held(&cgroup_mutex);		\
743 		       (dsct) = (d_css)->cgroup;			\
744 		       cgroup_is_dead(dsct); }))			\
745 			;						\
746 		else
747 
748 /* walk live descendants in postorder */
749 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp)		\
750 	css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL))	\
751 		if (({ lockdep_assert_held(&cgroup_mutex);		\
752 		       (dsct) = (d_css)->cgroup;			\
753 		       cgroup_is_dead(dsct); }))			\
754 			;						\
755 		else
756 
757 /*
758  * The default css_set - used by init and its children prior to any
759  * hierarchies being mounted. It contains a pointer to the root state
760  * for each subsystem. Also used to anchor the list of css_sets. Not
761  * reference-counted, to improve performance when child cgroups
762  * haven't been created.
763  */
764 struct css_set init_css_set = {
765 	.refcount		= REFCOUNT_INIT(1),
766 	.dom_cset		= &init_css_set,
767 	.tasks			= LIST_HEAD_INIT(init_css_set.tasks),
768 	.mg_tasks		= LIST_HEAD_INIT(init_css_set.mg_tasks),
769 	.dying_tasks		= LIST_HEAD_INIT(init_css_set.dying_tasks),
770 	.task_iters		= LIST_HEAD_INIT(init_css_set.task_iters),
771 	.threaded_csets		= LIST_HEAD_INIT(init_css_set.threaded_csets),
772 	.cgrp_links		= LIST_HEAD_INIT(init_css_set.cgrp_links),
773 	.mg_src_preload_node	= LIST_HEAD_INIT(init_css_set.mg_src_preload_node),
774 	.mg_dst_preload_node	= LIST_HEAD_INIT(init_css_set.mg_dst_preload_node),
775 	.mg_node		= LIST_HEAD_INIT(init_css_set.mg_node),
776 
777 	/*
778 	 * The following field is re-initialized when this cset gets linked
779 	 * in cgroup_init().  However, let's initialize the field
780 	 * statically too so that the default cgroup can be accessed safely
781 	 * early during boot.
782 	 */
783 	.dfl_cgrp		= &cgrp_dfl_root.cgrp,
784 };
785 
786 static int css_set_count	= 1;	/* 1 for init_css_set */
787 
788 static bool css_set_threaded(struct css_set *cset)
789 {
790 	return cset->dom_cset != cset;
791 }
792 
793 /**
794  * css_set_populated - does a css_set contain any tasks?
795  * @cset: target css_set
796  *
797  * css_set_populated() should be the same as !!cset->nr_tasks at steady
798  * state. However, css_set_populated() can be called while a task is being
799  * added to or removed from the linked list before the nr_tasks is
800  * properly updated. Hence, we can't just look at ->nr_tasks here.
801  */
802 static bool css_set_populated(struct css_set *cset)
803 {
804 	lockdep_assert_held(&css_set_lock);
805 
806 	return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
807 }
808 
809 /**
810  * cgroup_update_populated - update the populated count of a cgroup
811  * @cgrp: the target cgroup
812  * @populated: inc or dec populated count
813  *
814  * One of the css_sets associated with @cgrp is either getting its first
815  * task or losing the last.  Update @cgrp->nr_populated_* accordingly.  The
816  * count is propagated towards root so that a given cgroup's
817  * nr_populated_children is zero iff none of its descendants contain any
818  * tasks.
819  *
820  * @cgrp's interface file "cgroup.populated" is zero if both
821  * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and
822  * 1 otherwise.  When the sum changes from or to zero, userland is notified
823  * that the content of the interface file has changed.  This can be used to
824  * detect when @cgrp and its descendants become populated or empty.
825  */
826 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
827 {
828 	struct cgroup *child = NULL;
829 	int adj = populated ? 1 : -1;
830 
831 	lockdep_assert_held(&css_set_lock);
832 
833 	do {
834 		bool was_populated = cgroup_is_populated(cgrp);
835 
836 		if (!child) {
837 			cgrp->nr_populated_csets += adj;
838 		} else {
839 			if (cgroup_is_threaded(child))
840 				cgrp->nr_populated_threaded_children += adj;
841 			else
842 				cgrp->nr_populated_domain_children += adj;
843 		}
844 
845 		if (was_populated == cgroup_is_populated(cgrp))
846 			break;
847 
848 		cgroup1_check_for_release(cgrp);
849 		TRACE_CGROUP_PATH(notify_populated, cgrp,
850 				  cgroup_is_populated(cgrp));
851 		cgroup_file_notify(&cgrp->events_file);
852 
853 		child = cgrp;
854 		cgrp = cgroup_parent(cgrp);
855 	} while (cgrp);
856 }
857 
858 /**
859  * css_set_update_populated - update populated state of a css_set
860  * @cset: target css_set
861  * @populated: whether @cset is populated or depopulated
862  *
863  * @cset is either getting the first task or losing the last.  Update the
864  * populated counters of all associated cgroups accordingly.
865  */
866 static void css_set_update_populated(struct css_set *cset, bool populated)
867 {
868 	struct cgrp_cset_link *link;
869 
870 	lockdep_assert_held(&css_set_lock);
871 
872 	list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
873 		cgroup_update_populated(link->cgrp, populated);
874 }
875 
876 /*
877  * @task is leaving, advance task iterators which are pointing to it so
878  * that they can resume at the next position.  Advancing an iterator might
879  * remove it from the list, use safe walk.  See css_task_iter_skip() for
880  * details.
881  */
882 static void css_set_skip_task_iters(struct css_set *cset,
883 				    struct task_struct *task)
884 {
885 	struct css_task_iter *it, *pos;
886 
887 	list_for_each_entry_safe(it, pos, &cset->task_iters, iters_node)
888 		css_task_iter_skip(it, task);
889 }
890 
891 /**
892  * css_set_move_task - move a task from one css_set to another
893  * @task: task being moved
894  * @from_cset: css_set @task currently belongs to (may be NULL)
895  * @to_cset: new css_set @task is being moved to (may be NULL)
896  * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
897  *
898  * Move @task from @from_cset to @to_cset.  If @task didn't belong to any
899  * css_set, @from_cset can be NULL.  If @task is being disassociated
900  * instead of moved, @to_cset can be NULL.
901  *
902  * This function automatically handles populated counter updates and
903  * css_task_iter adjustments but the caller is responsible for managing
904  * @from_cset and @to_cset's reference counts.
905  */
906 static void css_set_move_task(struct task_struct *task,
907 			      struct css_set *from_cset, struct css_set *to_cset,
908 			      bool use_mg_tasks)
909 {
910 	lockdep_assert_held(&css_set_lock);
911 
912 	if (to_cset && !css_set_populated(to_cset))
913 		css_set_update_populated(to_cset, true);
914 
915 	if (from_cset) {
916 		WARN_ON_ONCE(list_empty(&task->cg_list));
917 
918 		css_set_skip_task_iters(from_cset, task);
919 		list_del_init(&task->cg_list);
920 		if (!css_set_populated(from_cset))
921 			css_set_update_populated(from_cset, false);
922 	} else {
923 		WARN_ON_ONCE(!list_empty(&task->cg_list));
924 	}
925 
926 	if (to_cset) {
927 		/*
928 		 * We are synchronized through cgroup_threadgroup_rwsem
929 		 * against PF_EXITING setting such that we can't race
930 		 * against cgroup_exit()/cgroup_free() dropping the css_set.
931 		 */
932 		WARN_ON_ONCE(task->flags & PF_EXITING);
933 
934 		cgroup_move_task(task, to_cset);
935 		list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
936 							     &to_cset->tasks);
937 	}
938 }
939 
940 /*
941  * hash table for cgroup groups. This improves the performance to find
942  * an existing css_set. This hash doesn't (currently) take into
943  * account cgroups in empty hierarchies.
944  */
945 #define CSS_SET_HASH_BITS	7
946 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
947 
948 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
949 {
950 	unsigned long key = 0UL;
951 	struct cgroup_subsys *ss;
952 	int i;
953 
954 	for_each_subsys(ss, i)
955 		key += (unsigned long)css[i];
956 	key = (key >> 16) ^ key;
957 
958 	return key;
959 }
960 
961 void put_css_set_locked(struct css_set *cset)
962 {
963 	struct cgrp_cset_link *link, *tmp_link;
964 	struct cgroup_subsys *ss;
965 	int ssid;
966 
967 	lockdep_assert_held(&css_set_lock);
968 
969 	if (!refcount_dec_and_test(&cset->refcount))
970 		return;
971 
972 	WARN_ON_ONCE(!list_empty(&cset->threaded_csets));
973 
974 	/* This css_set is dead. Unlink it and release cgroup and css refs */
975 	for_each_subsys(ss, ssid) {
976 		list_del(&cset->e_cset_node[ssid]);
977 		css_put(cset->subsys[ssid]);
978 	}
979 	hash_del(&cset->hlist);
980 	css_set_count--;
981 
982 	list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
983 		list_del(&link->cset_link);
984 		list_del(&link->cgrp_link);
985 		if (cgroup_parent(link->cgrp))
986 			cgroup_put(link->cgrp);
987 		kfree(link);
988 	}
989 
990 	if (css_set_threaded(cset)) {
991 		list_del(&cset->threaded_csets_node);
992 		put_css_set_locked(cset->dom_cset);
993 	}
994 
995 	kfree_rcu(cset, rcu_head);
996 }
997 
998 /**
999  * compare_css_sets - helper function for find_existing_css_set().
1000  * @cset: candidate css_set being tested
1001  * @old_cset: existing css_set for a task
1002  * @new_cgrp: cgroup that's being entered by the task
1003  * @template: desired set of css pointers in css_set (pre-calculated)
1004  *
1005  * Returns true if "cset" matches "old_cset" except for the hierarchy
1006  * which "new_cgrp" belongs to, for which it should match "new_cgrp".
1007  */
1008 static bool compare_css_sets(struct css_set *cset,
1009 			     struct css_set *old_cset,
1010 			     struct cgroup *new_cgrp,
1011 			     struct cgroup_subsys_state *template[])
1012 {
1013 	struct cgroup *new_dfl_cgrp;
1014 	struct list_head *l1, *l2;
1015 
1016 	/*
1017 	 * On the default hierarchy, there can be csets which are
1018 	 * associated with the same set of cgroups but different csses.
1019 	 * Let's first ensure that csses match.
1020 	 */
1021 	if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
1022 		return false;
1023 
1024 
1025 	/* @cset's domain should match the default cgroup's */
1026 	if (cgroup_on_dfl(new_cgrp))
1027 		new_dfl_cgrp = new_cgrp;
1028 	else
1029 		new_dfl_cgrp = old_cset->dfl_cgrp;
1030 
1031 	if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp)
1032 		return false;
1033 
1034 	/*
1035 	 * Compare cgroup pointers in order to distinguish between
1036 	 * different cgroups in hierarchies.  As different cgroups may
1037 	 * share the same effective css, this comparison is always
1038 	 * necessary.
1039 	 */
1040 	l1 = &cset->cgrp_links;
1041 	l2 = &old_cset->cgrp_links;
1042 	while (1) {
1043 		struct cgrp_cset_link *link1, *link2;
1044 		struct cgroup *cgrp1, *cgrp2;
1045 
1046 		l1 = l1->next;
1047 		l2 = l2->next;
1048 		/* See if we reached the end - both lists are equal length. */
1049 		if (l1 == &cset->cgrp_links) {
1050 			BUG_ON(l2 != &old_cset->cgrp_links);
1051 			break;
1052 		} else {
1053 			BUG_ON(l2 == &old_cset->cgrp_links);
1054 		}
1055 		/* Locate the cgroups associated with these links. */
1056 		link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
1057 		link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
1058 		cgrp1 = link1->cgrp;
1059 		cgrp2 = link2->cgrp;
1060 		/* Hierarchies should be linked in the same order. */
1061 		BUG_ON(cgrp1->root != cgrp2->root);
1062 
1063 		/*
1064 		 * If this hierarchy is the hierarchy of the cgroup
1065 		 * that's changing, then we need to check that this
1066 		 * css_set points to the new cgroup; if it's any other
1067 		 * hierarchy, then this css_set should point to the
1068 		 * same cgroup as the old css_set.
1069 		 */
1070 		if (cgrp1->root == new_cgrp->root) {
1071 			if (cgrp1 != new_cgrp)
1072 				return false;
1073 		} else {
1074 			if (cgrp1 != cgrp2)
1075 				return false;
1076 		}
1077 	}
1078 	return true;
1079 }
1080 
1081 /**
1082  * find_existing_css_set - init css array and find the matching css_set
1083  * @old_cset: the css_set that we're using before the cgroup transition
1084  * @cgrp: the cgroup that we're moving into
1085  * @template: out param for the new set of csses, should be clear on entry
1086  */
1087 static struct css_set *find_existing_css_set(struct css_set *old_cset,
1088 					struct cgroup *cgrp,
1089 					struct cgroup_subsys_state *template[])
1090 {
1091 	struct cgroup_root *root = cgrp->root;
1092 	struct cgroup_subsys *ss;
1093 	struct css_set *cset;
1094 	unsigned long key;
1095 	int i;
1096 
1097 	/*
1098 	 * Build the set of subsystem state objects that we want to see in the
1099 	 * new css_set. While subsystems can change globally, the entries here
1100 	 * won't change, so no need for locking.
1101 	 */
1102 	for_each_subsys(ss, i) {
1103 		if (root->subsys_mask & (1UL << i)) {
1104 			/*
1105 			 * @ss is in this hierarchy, so we want the
1106 			 * effective css from @cgrp.
1107 			 */
1108 			template[i] = cgroup_e_css_by_mask(cgrp, ss);
1109 		} else {
1110 			/*
1111 			 * @ss is not in this hierarchy, so we don't want
1112 			 * to change the css.
1113 			 */
1114 			template[i] = old_cset->subsys[i];
1115 		}
1116 	}
1117 
1118 	key = css_set_hash(template);
1119 	hash_for_each_possible(css_set_table, cset, hlist, key) {
1120 		if (!compare_css_sets(cset, old_cset, cgrp, template))
1121 			continue;
1122 
1123 		/* This css_set matches what we need */
1124 		return cset;
1125 	}
1126 
1127 	/* No existing cgroup group matched */
1128 	return NULL;
1129 }
1130 
1131 static void free_cgrp_cset_links(struct list_head *links_to_free)
1132 {
1133 	struct cgrp_cset_link *link, *tmp_link;
1134 
1135 	list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
1136 		list_del(&link->cset_link);
1137 		kfree(link);
1138 	}
1139 }
1140 
1141 /**
1142  * allocate_cgrp_cset_links - allocate cgrp_cset_links
1143  * @count: the number of links to allocate
1144  * @tmp_links: list_head the allocated links are put on
1145  *
1146  * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1147  * through ->cset_link.  Returns 0 on success or -errno.
1148  */
1149 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
1150 {
1151 	struct cgrp_cset_link *link;
1152 	int i;
1153 
1154 	INIT_LIST_HEAD(tmp_links);
1155 
1156 	for (i = 0; i < count; i++) {
1157 		link = kzalloc(sizeof(*link), GFP_KERNEL);
1158 		if (!link) {
1159 			free_cgrp_cset_links(tmp_links);
1160 			return -ENOMEM;
1161 		}
1162 		list_add(&link->cset_link, tmp_links);
1163 	}
1164 	return 0;
1165 }
1166 
1167 /**
1168  * link_css_set - a helper function to link a css_set to a cgroup
1169  * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
1170  * @cset: the css_set to be linked
1171  * @cgrp: the destination cgroup
1172  */
1173 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1174 			 struct cgroup *cgrp)
1175 {
1176 	struct cgrp_cset_link *link;
1177 
1178 	BUG_ON(list_empty(tmp_links));
1179 
1180 	if (cgroup_on_dfl(cgrp))
1181 		cset->dfl_cgrp = cgrp;
1182 
1183 	link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1184 	link->cset = cset;
1185 	link->cgrp = cgrp;
1186 
1187 	/*
1188 	 * Always add links to the tail of the lists so that the lists are
1189 	 * in chronological order.
1190 	 */
1191 	list_move_tail(&link->cset_link, &cgrp->cset_links);
1192 	list_add_tail(&link->cgrp_link, &cset->cgrp_links);
1193 
1194 	if (cgroup_parent(cgrp))
1195 		cgroup_get_live(cgrp);
1196 }
1197 
1198 /**
1199  * find_css_set - return a new css_set with one cgroup updated
1200  * @old_cset: the baseline css_set
1201  * @cgrp: the cgroup to be updated
1202  *
1203  * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1204  * substituted into the appropriate hierarchy.
1205  */
1206 static struct css_set *find_css_set(struct css_set *old_cset,
1207 				    struct cgroup *cgrp)
1208 {
1209 	struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
1210 	struct css_set *cset;
1211 	struct list_head tmp_links;
1212 	struct cgrp_cset_link *link;
1213 	struct cgroup_subsys *ss;
1214 	unsigned long key;
1215 	int ssid;
1216 
1217 	lockdep_assert_held(&cgroup_mutex);
1218 
1219 	/* First see if we already have a cgroup group that matches
1220 	 * the desired set */
1221 	spin_lock_irq(&css_set_lock);
1222 	cset = find_existing_css_set(old_cset, cgrp, template);
1223 	if (cset)
1224 		get_css_set(cset);
1225 	spin_unlock_irq(&css_set_lock);
1226 
1227 	if (cset)
1228 		return cset;
1229 
1230 	cset = kzalloc(sizeof(*cset), GFP_KERNEL);
1231 	if (!cset)
1232 		return NULL;
1233 
1234 	/* Allocate all the cgrp_cset_link objects that we'll need */
1235 	if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1236 		kfree(cset);
1237 		return NULL;
1238 	}
1239 
1240 	refcount_set(&cset->refcount, 1);
1241 	cset->dom_cset = cset;
1242 	INIT_LIST_HEAD(&cset->tasks);
1243 	INIT_LIST_HEAD(&cset->mg_tasks);
1244 	INIT_LIST_HEAD(&cset->dying_tasks);
1245 	INIT_LIST_HEAD(&cset->task_iters);
1246 	INIT_LIST_HEAD(&cset->threaded_csets);
1247 	INIT_HLIST_NODE(&cset->hlist);
1248 	INIT_LIST_HEAD(&cset->cgrp_links);
1249 	INIT_LIST_HEAD(&cset->mg_src_preload_node);
1250 	INIT_LIST_HEAD(&cset->mg_dst_preload_node);
1251 	INIT_LIST_HEAD(&cset->mg_node);
1252 
1253 	/* Copy the set of subsystem state objects generated in
1254 	 * find_existing_css_set() */
1255 	memcpy(cset->subsys, template, sizeof(cset->subsys));
1256 
1257 	spin_lock_irq(&css_set_lock);
1258 	/* Add reference counts and links from the new css_set. */
1259 	list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1260 		struct cgroup *c = link->cgrp;
1261 
1262 		if (c->root == cgrp->root)
1263 			c = cgrp;
1264 		link_css_set(&tmp_links, cset, c);
1265 	}
1266 
1267 	BUG_ON(!list_empty(&tmp_links));
1268 
1269 	css_set_count++;
1270 
1271 	/* Add @cset to the hash table */
1272 	key = css_set_hash(cset->subsys);
1273 	hash_add(css_set_table, &cset->hlist, key);
1274 
1275 	for_each_subsys(ss, ssid) {
1276 		struct cgroup_subsys_state *css = cset->subsys[ssid];
1277 
1278 		list_add_tail(&cset->e_cset_node[ssid],
1279 			      &css->cgroup->e_csets[ssid]);
1280 		css_get(css);
1281 	}
1282 
1283 	spin_unlock_irq(&css_set_lock);
1284 
1285 	/*
1286 	 * If @cset should be threaded, look up the matching dom_cset and
1287 	 * link them up.  We first fully initialize @cset then look for the
1288 	 * dom_cset.  It's simpler this way and safe as @cset is guaranteed
1289 	 * to stay empty until we return.
1290 	 */
1291 	if (cgroup_is_threaded(cset->dfl_cgrp)) {
1292 		struct css_set *dcset;
1293 
1294 		dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp);
1295 		if (!dcset) {
1296 			put_css_set(cset);
1297 			return NULL;
1298 		}
1299 
1300 		spin_lock_irq(&css_set_lock);
1301 		cset->dom_cset = dcset;
1302 		list_add_tail(&cset->threaded_csets_node,
1303 			      &dcset->threaded_csets);
1304 		spin_unlock_irq(&css_set_lock);
1305 	}
1306 
1307 	return cset;
1308 }
1309 
1310 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1311 {
1312 	struct cgroup *root_cgrp = kernfs_root_to_node(kf_root)->priv;
1313 
1314 	return root_cgrp->root;
1315 }
1316 
1317 void cgroup_favor_dynmods(struct cgroup_root *root, bool favor)
1318 {
1319 	bool favoring = root->flags & CGRP_ROOT_FAVOR_DYNMODS;
1320 
1321 	/* see the comment above CGRP_ROOT_FAVOR_DYNMODS definition */
1322 	if (favor && !favoring) {
1323 		rcu_sync_enter(&cgroup_threadgroup_rwsem.rss);
1324 		root->flags |= CGRP_ROOT_FAVOR_DYNMODS;
1325 	} else if (!favor && favoring) {
1326 		rcu_sync_exit(&cgroup_threadgroup_rwsem.rss);
1327 		root->flags &= ~CGRP_ROOT_FAVOR_DYNMODS;
1328 	}
1329 }
1330 
1331 static int cgroup_init_root_id(struct cgroup_root *root)
1332 {
1333 	int id;
1334 
1335 	lockdep_assert_held(&cgroup_mutex);
1336 
1337 	id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1338 	if (id < 0)
1339 		return id;
1340 
1341 	root->hierarchy_id = id;
1342 	return 0;
1343 }
1344 
1345 static void cgroup_exit_root_id(struct cgroup_root *root)
1346 {
1347 	lockdep_assert_held(&cgroup_mutex);
1348 
1349 	idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1350 }
1351 
1352 void cgroup_free_root(struct cgroup_root *root)
1353 {
1354 	kfree(root);
1355 }
1356 
1357 static void cgroup_destroy_root(struct cgroup_root *root)
1358 {
1359 	struct cgroup *cgrp = &root->cgrp;
1360 	struct cgrp_cset_link *link, *tmp_link;
1361 
1362 	trace_cgroup_destroy_root(root);
1363 
1364 	cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1365 
1366 	BUG_ON(atomic_read(&root->nr_cgrps));
1367 	BUG_ON(!list_empty(&cgrp->self.children));
1368 
1369 	/* Rebind all subsystems back to the default hierarchy */
1370 	WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
1371 
1372 	/*
1373 	 * Release all the links from cset_links to this hierarchy's
1374 	 * root cgroup
1375 	 */
1376 	spin_lock_irq(&css_set_lock);
1377 
1378 	list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1379 		list_del(&link->cset_link);
1380 		list_del(&link->cgrp_link);
1381 		kfree(link);
1382 	}
1383 
1384 	spin_unlock_irq(&css_set_lock);
1385 
1386 	if (!list_empty(&root->root_list)) {
1387 		list_del(&root->root_list);
1388 		cgroup_root_count--;
1389 	}
1390 
1391 	cgroup_favor_dynmods(root, false);
1392 	cgroup_exit_root_id(root);
1393 
1394 	mutex_unlock(&cgroup_mutex);
1395 
1396 	cgroup_rstat_exit(cgrp);
1397 	kernfs_destroy_root(root->kf_root);
1398 	cgroup_free_root(root);
1399 }
1400 
1401 /*
1402  * Returned cgroup is without refcount but it's valid as long as cset pins it.
1403  */
1404 static inline struct cgroup *__cset_cgroup_from_root(struct css_set *cset,
1405 					    struct cgroup_root *root)
1406 {
1407 	struct cgroup *res_cgroup = NULL;
1408 
1409 	if (cset == &init_css_set) {
1410 		res_cgroup = &root->cgrp;
1411 	} else if (root == &cgrp_dfl_root) {
1412 		res_cgroup = cset->dfl_cgrp;
1413 	} else {
1414 		struct cgrp_cset_link *link;
1415 		lockdep_assert_held(&css_set_lock);
1416 
1417 		list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1418 			struct cgroup *c = link->cgrp;
1419 
1420 			if (c->root == root) {
1421 				res_cgroup = c;
1422 				break;
1423 			}
1424 		}
1425 	}
1426 
1427 	BUG_ON(!res_cgroup);
1428 	return res_cgroup;
1429 }
1430 
1431 /*
1432  * look up cgroup associated with current task's cgroup namespace on the
1433  * specified hierarchy
1434  */
1435 static struct cgroup *
1436 current_cgns_cgroup_from_root(struct cgroup_root *root)
1437 {
1438 	struct cgroup *res = NULL;
1439 	struct css_set *cset;
1440 
1441 	lockdep_assert_held(&css_set_lock);
1442 
1443 	rcu_read_lock();
1444 
1445 	cset = current->nsproxy->cgroup_ns->root_cset;
1446 	res = __cset_cgroup_from_root(cset, root);
1447 
1448 	rcu_read_unlock();
1449 
1450 	return res;
1451 }
1452 
1453 /*
1454  * Look up cgroup associated with current task's cgroup namespace on the default
1455  * hierarchy.
1456  *
1457  * Unlike current_cgns_cgroup_from_root(), this doesn't need locks:
1458  * - Internal rcu_read_lock is unnecessary because we don't dereference any rcu
1459  *   pointers.
1460  * - css_set_lock is not needed because we just read cset->dfl_cgrp.
1461  * - As a bonus returned cgrp is pinned with the current because it cannot
1462  *   switch cgroup_ns asynchronously.
1463  */
1464 static struct cgroup *current_cgns_cgroup_dfl(void)
1465 {
1466 	struct css_set *cset;
1467 
1468 	cset = current->nsproxy->cgroup_ns->root_cset;
1469 	return __cset_cgroup_from_root(cset, &cgrp_dfl_root);
1470 }
1471 
1472 /* look up cgroup associated with given css_set on the specified hierarchy */
1473 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1474 					    struct cgroup_root *root)
1475 {
1476 	lockdep_assert_held(&cgroup_mutex);
1477 	lockdep_assert_held(&css_set_lock);
1478 
1479 	return __cset_cgroup_from_root(cset, root);
1480 }
1481 
1482 /*
1483  * Return the cgroup for "task" from the given hierarchy. Must be
1484  * called with cgroup_mutex and css_set_lock held.
1485  */
1486 struct cgroup *task_cgroup_from_root(struct task_struct *task,
1487 				     struct cgroup_root *root)
1488 {
1489 	/*
1490 	 * No need to lock the task - since we hold css_set_lock the
1491 	 * task can't change groups.
1492 	 */
1493 	return cset_cgroup_from_root(task_css_set(task), root);
1494 }
1495 
1496 /*
1497  * A task must hold cgroup_mutex to modify cgroups.
1498  *
1499  * Any task can increment and decrement the count field without lock.
1500  * So in general, code holding cgroup_mutex can't rely on the count
1501  * field not changing.  However, if the count goes to zero, then only
1502  * cgroup_attach_task() can increment it again.  Because a count of zero
1503  * means that no tasks are currently attached, therefore there is no
1504  * way a task attached to that cgroup can fork (the other way to
1505  * increment the count).  So code holding cgroup_mutex can safely
1506  * assume that if the count is zero, it will stay zero. Similarly, if
1507  * a task holds cgroup_mutex on a cgroup with zero count, it
1508  * knows that the cgroup won't be removed, as cgroup_rmdir()
1509  * needs that mutex.
1510  *
1511  * A cgroup can only be deleted if both its 'count' of using tasks
1512  * is zero, and its list of 'children' cgroups is empty.  Since all
1513  * tasks in the system use _some_ cgroup, and since there is always at
1514  * least one task in the system (init, pid == 1), therefore, root cgroup
1515  * always has either children cgroups and/or using tasks.  So we don't
1516  * need a special hack to ensure that root cgroup cannot be deleted.
1517  *
1518  * P.S.  One more locking exception.  RCU is used to guard the
1519  * update of a tasks cgroup pointer by cgroup_attach_task()
1520  */
1521 
1522 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1523 
1524 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1525 			      char *buf)
1526 {
1527 	struct cgroup_subsys *ss = cft->ss;
1528 
1529 	if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1530 	    !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
1531 		const char *dbg = (cft->flags & CFTYPE_DEBUG) ? ".__DEBUG__." : "";
1532 
1533 		snprintf(buf, CGROUP_FILE_NAME_MAX, "%s%s.%s",
1534 			 dbg, cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1535 			 cft->name);
1536 	} else {
1537 		strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1538 	}
1539 	return buf;
1540 }
1541 
1542 /**
1543  * cgroup_file_mode - deduce file mode of a control file
1544  * @cft: the control file in question
1545  *
1546  * S_IRUGO for read, S_IWUSR for write.
1547  */
1548 static umode_t cgroup_file_mode(const struct cftype *cft)
1549 {
1550 	umode_t mode = 0;
1551 
1552 	if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1553 		mode |= S_IRUGO;
1554 
1555 	if (cft->write_u64 || cft->write_s64 || cft->write) {
1556 		if (cft->flags & CFTYPE_WORLD_WRITABLE)
1557 			mode |= S_IWUGO;
1558 		else
1559 			mode |= S_IWUSR;
1560 	}
1561 
1562 	return mode;
1563 }
1564 
1565 /**
1566  * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1567  * @subtree_control: the new subtree_control mask to consider
1568  * @this_ss_mask: available subsystems
1569  *
1570  * On the default hierarchy, a subsystem may request other subsystems to be
1571  * enabled together through its ->depends_on mask.  In such cases, more
1572  * subsystems than specified in "cgroup.subtree_control" may be enabled.
1573  *
1574  * This function calculates which subsystems need to be enabled if
1575  * @subtree_control is to be applied while restricted to @this_ss_mask.
1576  */
1577 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
1578 {
1579 	u16 cur_ss_mask = subtree_control;
1580 	struct cgroup_subsys *ss;
1581 	int ssid;
1582 
1583 	lockdep_assert_held(&cgroup_mutex);
1584 
1585 	cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1586 
1587 	while (true) {
1588 		u16 new_ss_mask = cur_ss_mask;
1589 
1590 		do_each_subsys_mask(ss, ssid, cur_ss_mask) {
1591 			new_ss_mask |= ss->depends_on;
1592 		} while_each_subsys_mask();
1593 
1594 		/*
1595 		 * Mask out subsystems which aren't available.  This can
1596 		 * happen only if some depended-upon subsystems were bound
1597 		 * to non-default hierarchies.
1598 		 */
1599 		new_ss_mask &= this_ss_mask;
1600 
1601 		if (new_ss_mask == cur_ss_mask)
1602 			break;
1603 		cur_ss_mask = new_ss_mask;
1604 	}
1605 
1606 	return cur_ss_mask;
1607 }
1608 
1609 /**
1610  * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1611  * @kn: the kernfs_node being serviced
1612  *
1613  * This helper undoes cgroup_kn_lock_live() and should be invoked before
1614  * the method finishes if locking succeeded.  Note that once this function
1615  * returns the cgroup returned by cgroup_kn_lock_live() may become
1616  * inaccessible any time.  If the caller intends to continue to access the
1617  * cgroup, it should pin it before invoking this function.
1618  */
1619 void cgroup_kn_unlock(struct kernfs_node *kn)
1620 {
1621 	struct cgroup *cgrp;
1622 
1623 	if (kernfs_type(kn) == KERNFS_DIR)
1624 		cgrp = kn->priv;
1625 	else
1626 		cgrp = kn->parent->priv;
1627 
1628 	mutex_unlock(&cgroup_mutex);
1629 
1630 	kernfs_unbreak_active_protection(kn);
1631 	cgroup_put(cgrp);
1632 }
1633 
1634 /**
1635  * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1636  * @kn: the kernfs_node being serviced
1637  * @drain_offline: perform offline draining on the cgroup
1638  *
1639  * This helper is to be used by a cgroup kernfs method currently servicing
1640  * @kn.  It breaks the active protection, performs cgroup locking and
1641  * verifies that the associated cgroup is alive.  Returns the cgroup if
1642  * alive; otherwise, %NULL.  A successful return should be undone by a
1643  * matching cgroup_kn_unlock() invocation.  If @drain_offline is %true, the
1644  * cgroup is drained of offlining csses before return.
1645  *
1646  * Any cgroup kernfs method implementation which requires locking the
1647  * associated cgroup should use this helper.  It avoids nesting cgroup
1648  * locking under kernfs active protection and allows all kernfs operations
1649  * including self-removal.
1650  */
1651 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline)
1652 {
1653 	struct cgroup *cgrp;
1654 
1655 	if (kernfs_type(kn) == KERNFS_DIR)
1656 		cgrp = kn->priv;
1657 	else
1658 		cgrp = kn->parent->priv;
1659 
1660 	/*
1661 	 * We're gonna grab cgroup_mutex which nests outside kernfs
1662 	 * active_ref.  cgroup liveliness check alone provides enough
1663 	 * protection against removal.  Ensure @cgrp stays accessible and
1664 	 * break the active_ref protection.
1665 	 */
1666 	if (!cgroup_tryget(cgrp))
1667 		return NULL;
1668 	kernfs_break_active_protection(kn);
1669 
1670 	if (drain_offline)
1671 		cgroup_lock_and_drain_offline(cgrp);
1672 	else
1673 		mutex_lock(&cgroup_mutex);
1674 
1675 	if (!cgroup_is_dead(cgrp))
1676 		return cgrp;
1677 
1678 	cgroup_kn_unlock(kn);
1679 	return NULL;
1680 }
1681 
1682 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1683 {
1684 	char name[CGROUP_FILE_NAME_MAX];
1685 
1686 	lockdep_assert_held(&cgroup_mutex);
1687 
1688 	if (cft->file_offset) {
1689 		struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1690 		struct cgroup_file *cfile = (void *)css + cft->file_offset;
1691 
1692 		spin_lock_irq(&cgroup_file_kn_lock);
1693 		cfile->kn = NULL;
1694 		spin_unlock_irq(&cgroup_file_kn_lock);
1695 
1696 		del_timer_sync(&cfile->notify_timer);
1697 	}
1698 
1699 	kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1700 }
1701 
1702 /**
1703  * css_clear_dir - remove subsys files in a cgroup directory
1704  * @css: target css
1705  */
1706 static void css_clear_dir(struct cgroup_subsys_state *css)
1707 {
1708 	struct cgroup *cgrp = css->cgroup;
1709 	struct cftype *cfts;
1710 
1711 	if (!(css->flags & CSS_VISIBLE))
1712 		return;
1713 
1714 	css->flags &= ~CSS_VISIBLE;
1715 
1716 	if (!css->ss) {
1717 		if (cgroup_on_dfl(cgrp)) {
1718 			cgroup_addrm_files(css, cgrp,
1719 					   cgroup_base_files, false);
1720 			if (cgroup_psi_enabled())
1721 				cgroup_addrm_files(css, cgrp,
1722 						   cgroup_psi_files, false);
1723 		} else {
1724 			cgroup_addrm_files(css, cgrp,
1725 					   cgroup1_base_files, false);
1726 		}
1727 	} else {
1728 		list_for_each_entry(cfts, &css->ss->cfts, node)
1729 			cgroup_addrm_files(css, cgrp, cfts, false);
1730 	}
1731 }
1732 
1733 /**
1734  * css_populate_dir - create subsys files in a cgroup directory
1735  * @css: target css
1736  *
1737  * On failure, no file is added.
1738  */
1739 static int css_populate_dir(struct cgroup_subsys_state *css)
1740 {
1741 	struct cgroup *cgrp = css->cgroup;
1742 	struct cftype *cfts, *failed_cfts;
1743 	int ret;
1744 
1745 	if ((css->flags & CSS_VISIBLE) || !cgrp->kn)
1746 		return 0;
1747 
1748 	if (!css->ss) {
1749 		if (cgroup_on_dfl(cgrp)) {
1750 			ret = cgroup_addrm_files(&cgrp->self, cgrp,
1751 						 cgroup_base_files, true);
1752 			if (ret < 0)
1753 				return ret;
1754 
1755 			if (cgroup_psi_enabled()) {
1756 				ret = cgroup_addrm_files(&cgrp->self, cgrp,
1757 							 cgroup_psi_files, true);
1758 				if (ret < 0)
1759 					return ret;
1760 			}
1761 		} else {
1762 			cgroup_addrm_files(css, cgrp,
1763 					   cgroup1_base_files, true);
1764 		}
1765 	} else {
1766 		list_for_each_entry(cfts, &css->ss->cfts, node) {
1767 			ret = cgroup_addrm_files(css, cgrp, cfts, true);
1768 			if (ret < 0) {
1769 				failed_cfts = cfts;
1770 				goto err;
1771 			}
1772 		}
1773 	}
1774 
1775 	css->flags |= CSS_VISIBLE;
1776 
1777 	return 0;
1778 err:
1779 	list_for_each_entry(cfts, &css->ss->cfts, node) {
1780 		if (cfts == failed_cfts)
1781 			break;
1782 		cgroup_addrm_files(css, cgrp, cfts, false);
1783 	}
1784 	return ret;
1785 }
1786 
1787 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
1788 {
1789 	struct cgroup *dcgrp = &dst_root->cgrp;
1790 	struct cgroup_subsys *ss;
1791 	int ssid, i, ret;
1792 	u16 dfl_disable_ss_mask = 0;
1793 
1794 	lockdep_assert_held(&cgroup_mutex);
1795 
1796 	do_each_subsys_mask(ss, ssid, ss_mask) {
1797 		/*
1798 		 * If @ss has non-root csses attached to it, can't move.
1799 		 * If @ss is an implicit controller, it is exempt from this
1800 		 * rule and can be stolen.
1801 		 */
1802 		if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1803 		    !ss->implicit_on_dfl)
1804 			return -EBUSY;
1805 
1806 		/* can't move between two non-dummy roots either */
1807 		if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1808 			return -EBUSY;
1809 
1810 		/*
1811 		 * Collect ssid's that need to be disabled from default
1812 		 * hierarchy.
1813 		 */
1814 		if (ss->root == &cgrp_dfl_root)
1815 			dfl_disable_ss_mask |= 1 << ssid;
1816 
1817 	} while_each_subsys_mask();
1818 
1819 	if (dfl_disable_ss_mask) {
1820 		struct cgroup *scgrp = &cgrp_dfl_root.cgrp;
1821 
1822 		/*
1823 		 * Controllers from default hierarchy that need to be rebound
1824 		 * are all disabled together in one go.
1825 		 */
1826 		cgrp_dfl_root.subsys_mask &= ~dfl_disable_ss_mask;
1827 		WARN_ON(cgroup_apply_control(scgrp));
1828 		cgroup_finalize_control(scgrp, 0);
1829 	}
1830 
1831 	do_each_subsys_mask(ss, ssid, ss_mask) {
1832 		struct cgroup_root *src_root = ss->root;
1833 		struct cgroup *scgrp = &src_root->cgrp;
1834 		struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1835 		struct css_set *cset;
1836 
1837 		WARN_ON(!css || cgroup_css(dcgrp, ss));
1838 
1839 		if (src_root != &cgrp_dfl_root) {
1840 			/* disable from the source */
1841 			src_root->subsys_mask &= ~(1 << ssid);
1842 			WARN_ON(cgroup_apply_control(scgrp));
1843 			cgroup_finalize_control(scgrp, 0);
1844 		}
1845 
1846 		/* rebind */
1847 		RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1848 		rcu_assign_pointer(dcgrp->subsys[ssid], css);
1849 		ss->root = dst_root;
1850 		css->cgroup = dcgrp;
1851 
1852 		spin_lock_irq(&css_set_lock);
1853 		hash_for_each(css_set_table, i, cset, hlist)
1854 			list_move_tail(&cset->e_cset_node[ss->id],
1855 				       &dcgrp->e_csets[ss->id]);
1856 		spin_unlock_irq(&css_set_lock);
1857 
1858 		if (ss->css_rstat_flush) {
1859 			list_del_rcu(&css->rstat_css_node);
1860 			synchronize_rcu();
1861 			list_add_rcu(&css->rstat_css_node,
1862 				     &dcgrp->rstat_css_list);
1863 		}
1864 
1865 		/* default hierarchy doesn't enable controllers by default */
1866 		dst_root->subsys_mask |= 1 << ssid;
1867 		if (dst_root == &cgrp_dfl_root) {
1868 			static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1869 		} else {
1870 			dcgrp->subtree_control |= 1 << ssid;
1871 			static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1872 		}
1873 
1874 		ret = cgroup_apply_control(dcgrp);
1875 		if (ret)
1876 			pr_warn("partial failure to rebind %s controller (err=%d)\n",
1877 				ss->name, ret);
1878 
1879 		if (ss->bind)
1880 			ss->bind(css);
1881 	} while_each_subsys_mask();
1882 
1883 	kernfs_activate(dcgrp->kn);
1884 	return 0;
1885 }
1886 
1887 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
1888 		     struct kernfs_root *kf_root)
1889 {
1890 	int len = 0;
1891 	char *buf = NULL;
1892 	struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
1893 	struct cgroup *ns_cgroup;
1894 
1895 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
1896 	if (!buf)
1897 		return -ENOMEM;
1898 
1899 	spin_lock_irq(&css_set_lock);
1900 	ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
1901 	len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
1902 	spin_unlock_irq(&css_set_lock);
1903 
1904 	if (len >= PATH_MAX)
1905 		len = -ERANGE;
1906 	else if (len > 0) {
1907 		seq_escape(sf, buf, " \t\n\\");
1908 		len = 0;
1909 	}
1910 	kfree(buf);
1911 	return len;
1912 }
1913 
1914 enum cgroup2_param {
1915 	Opt_nsdelegate,
1916 	Opt_favordynmods,
1917 	Opt_memory_localevents,
1918 	Opt_memory_recursiveprot,
1919 	nr__cgroup2_params
1920 };
1921 
1922 static const struct fs_parameter_spec cgroup2_fs_parameters[] = {
1923 	fsparam_flag("nsdelegate",		Opt_nsdelegate),
1924 	fsparam_flag("favordynmods",		Opt_favordynmods),
1925 	fsparam_flag("memory_localevents",	Opt_memory_localevents),
1926 	fsparam_flag("memory_recursiveprot",	Opt_memory_recursiveprot),
1927 	{}
1928 };
1929 
1930 static int cgroup2_parse_param(struct fs_context *fc, struct fs_parameter *param)
1931 {
1932 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1933 	struct fs_parse_result result;
1934 	int opt;
1935 
1936 	opt = fs_parse(fc, cgroup2_fs_parameters, param, &result);
1937 	if (opt < 0)
1938 		return opt;
1939 
1940 	switch (opt) {
1941 	case Opt_nsdelegate:
1942 		ctx->flags |= CGRP_ROOT_NS_DELEGATE;
1943 		return 0;
1944 	case Opt_favordynmods:
1945 		ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS;
1946 		return 0;
1947 	case Opt_memory_localevents:
1948 		ctx->flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1949 		return 0;
1950 	case Opt_memory_recursiveprot:
1951 		ctx->flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1952 		return 0;
1953 	}
1954 	return -EINVAL;
1955 }
1956 
1957 static void apply_cgroup_root_flags(unsigned int root_flags)
1958 {
1959 	if (current->nsproxy->cgroup_ns == &init_cgroup_ns) {
1960 		if (root_flags & CGRP_ROOT_NS_DELEGATE)
1961 			cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE;
1962 		else
1963 			cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE;
1964 
1965 		cgroup_favor_dynmods(&cgrp_dfl_root,
1966 				     root_flags & CGRP_ROOT_FAVOR_DYNMODS);
1967 
1968 		if (root_flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1969 			cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1970 		else
1971 			cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1972 
1973 		if (root_flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
1974 			cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1975 		else
1976 			cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1977 	}
1978 }
1979 
1980 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
1981 {
1982 	if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE)
1983 		seq_puts(seq, ",nsdelegate");
1984 	if (cgrp_dfl_root.flags & CGRP_ROOT_FAVOR_DYNMODS)
1985 		seq_puts(seq, ",favordynmods");
1986 	if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1987 		seq_puts(seq, ",memory_localevents");
1988 	if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
1989 		seq_puts(seq, ",memory_recursiveprot");
1990 	return 0;
1991 }
1992 
1993 static int cgroup_reconfigure(struct fs_context *fc)
1994 {
1995 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1996 
1997 	apply_cgroup_root_flags(ctx->flags);
1998 	return 0;
1999 }
2000 
2001 static void init_cgroup_housekeeping(struct cgroup *cgrp)
2002 {
2003 	struct cgroup_subsys *ss;
2004 	int ssid;
2005 
2006 	INIT_LIST_HEAD(&cgrp->self.sibling);
2007 	INIT_LIST_HEAD(&cgrp->self.children);
2008 	INIT_LIST_HEAD(&cgrp->cset_links);
2009 	INIT_LIST_HEAD(&cgrp->pidlists);
2010 	mutex_init(&cgrp->pidlist_mutex);
2011 	cgrp->self.cgroup = cgrp;
2012 	cgrp->self.flags |= CSS_ONLINE;
2013 	cgrp->dom_cgrp = cgrp;
2014 	cgrp->max_descendants = INT_MAX;
2015 	cgrp->max_depth = INT_MAX;
2016 	INIT_LIST_HEAD(&cgrp->rstat_css_list);
2017 	prev_cputime_init(&cgrp->prev_cputime);
2018 
2019 	for_each_subsys(ss, ssid)
2020 		INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
2021 
2022 	init_waitqueue_head(&cgrp->offline_waitq);
2023 	INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent);
2024 }
2025 
2026 void init_cgroup_root(struct cgroup_fs_context *ctx)
2027 {
2028 	struct cgroup_root *root = ctx->root;
2029 	struct cgroup *cgrp = &root->cgrp;
2030 
2031 	INIT_LIST_HEAD(&root->root_list);
2032 	atomic_set(&root->nr_cgrps, 1);
2033 	cgrp->root = root;
2034 	init_cgroup_housekeeping(cgrp);
2035 
2036 	/* DYNMODS must be modified through cgroup_favor_dynmods() */
2037 	root->flags = ctx->flags & ~CGRP_ROOT_FAVOR_DYNMODS;
2038 	if (ctx->release_agent)
2039 		strscpy(root->release_agent_path, ctx->release_agent, PATH_MAX);
2040 	if (ctx->name)
2041 		strscpy(root->name, ctx->name, MAX_CGROUP_ROOT_NAMELEN);
2042 	if (ctx->cpuset_clone_children)
2043 		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
2044 }
2045 
2046 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask)
2047 {
2048 	LIST_HEAD(tmp_links);
2049 	struct cgroup *root_cgrp = &root->cgrp;
2050 	struct kernfs_syscall_ops *kf_sops;
2051 	struct css_set *cset;
2052 	int i, ret;
2053 
2054 	lockdep_assert_held(&cgroup_mutex);
2055 
2056 	ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release,
2057 			      0, GFP_KERNEL);
2058 	if (ret)
2059 		goto out;
2060 
2061 	/*
2062 	 * We're accessing css_set_count without locking css_set_lock here,
2063 	 * but that's OK - it can only be increased by someone holding
2064 	 * cgroup_lock, and that's us.  Later rebinding may disable
2065 	 * controllers on the default hierarchy and thus create new csets,
2066 	 * which can't be more than the existing ones.  Allocate 2x.
2067 	 */
2068 	ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
2069 	if (ret)
2070 		goto cancel_ref;
2071 
2072 	ret = cgroup_init_root_id(root);
2073 	if (ret)
2074 		goto cancel_ref;
2075 
2076 	kf_sops = root == &cgrp_dfl_root ?
2077 		&cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops;
2078 
2079 	root->kf_root = kernfs_create_root(kf_sops,
2080 					   KERNFS_ROOT_CREATE_DEACTIVATED |
2081 					   KERNFS_ROOT_SUPPORT_EXPORTOP |
2082 					   KERNFS_ROOT_SUPPORT_USER_XATTR,
2083 					   root_cgrp);
2084 	if (IS_ERR(root->kf_root)) {
2085 		ret = PTR_ERR(root->kf_root);
2086 		goto exit_root_id;
2087 	}
2088 	root_cgrp->kn = kernfs_root_to_node(root->kf_root);
2089 	WARN_ON_ONCE(cgroup_ino(root_cgrp) != 1);
2090 	root_cgrp->ancestors[0] = root_cgrp;
2091 
2092 	ret = css_populate_dir(&root_cgrp->self);
2093 	if (ret)
2094 		goto destroy_root;
2095 
2096 	ret = cgroup_rstat_init(root_cgrp);
2097 	if (ret)
2098 		goto destroy_root;
2099 
2100 	ret = rebind_subsystems(root, ss_mask);
2101 	if (ret)
2102 		goto exit_stats;
2103 
2104 	ret = cgroup_bpf_inherit(root_cgrp);
2105 	WARN_ON_ONCE(ret);
2106 
2107 	trace_cgroup_setup_root(root);
2108 
2109 	/*
2110 	 * There must be no failure case after here, since rebinding takes
2111 	 * care of subsystems' refcounts, which are explicitly dropped in
2112 	 * the failure exit path.
2113 	 */
2114 	list_add(&root->root_list, &cgroup_roots);
2115 	cgroup_root_count++;
2116 
2117 	/*
2118 	 * Link the root cgroup in this hierarchy into all the css_set
2119 	 * objects.
2120 	 */
2121 	spin_lock_irq(&css_set_lock);
2122 	hash_for_each(css_set_table, i, cset, hlist) {
2123 		link_css_set(&tmp_links, cset, root_cgrp);
2124 		if (css_set_populated(cset))
2125 			cgroup_update_populated(root_cgrp, true);
2126 	}
2127 	spin_unlock_irq(&css_set_lock);
2128 
2129 	BUG_ON(!list_empty(&root_cgrp->self.children));
2130 	BUG_ON(atomic_read(&root->nr_cgrps) != 1);
2131 
2132 	ret = 0;
2133 	goto out;
2134 
2135 exit_stats:
2136 	cgroup_rstat_exit(root_cgrp);
2137 destroy_root:
2138 	kernfs_destroy_root(root->kf_root);
2139 	root->kf_root = NULL;
2140 exit_root_id:
2141 	cgroup_exit_root_id(root);
2142 cancel_ref:
2143 	percpu_ref_exit(&root_cgrp->self.refcnt);
2144 out:
2145 	free_cgrp_cset_links(&tmp_links);
2146 	return ret;
2147 }
2148 
2149 int cgroup_do_get_tree(struct fs_context *fc)
2150 {
2151 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2152 	int ret;
2153 
2154 	ctx->kfc.root = ctx->root->kf_root;
2155 	if (fc->fs_type == &cgroup2_fs_type)
2156 		ctx->kfc.magic = CGROUP2_SUPER_MAGIC;
2157 	else
2158 		ctx->kfc.magic = CGROUP_SUPER_MAGIC;
2159 	ret = kernfs_get_tree(fc);
2160 
2161 	/*
2162 	 * In non-init cgroup namespace, instead of root cgroup's dentry,
2163 	 * we return the dentry corresponding to the cgroupns->root_cgrp.
2164 	 */
2165 	if (!ret && ctx->ns != &init_cgroup_ns) {
2166 		struct dentry *nsdentry;
2167 		struct super_block *sb = fc->root->d_sb;
2168 		struct cgroup *cgrp;
2169 
2170 		mutex_lock(&cgroup_mutex);
2171 		spin_lock_irq(&css_set_lock);
2172 
2173 		cgrp = cset_cgroup_from_root(ctx->ns->root_cset, ctx->root);
2174 
2175 		spin_unlock_irq(&css_set_lock);
2176 		mutex_unlock(&cgroup_mutex);
2177 
2178 		nsdentry = kernfs_node_dentry(cgrp->kn, sb);
2179 		dput(fc->root);
2180 		if (IS_ERR(nsdentry)) {
2181 			deactivate_locked_super(sb);
2182 			ret = PTR_ERR(nsdentry);
2183 			nsdentry = NULL;
2184 		}
2185 		fc->root = nsdentry;
2186 	}
2187 
2188 	if (!ctx->kfc.new_sb_created)
2189 		cgroup_put(&ctx->root->cgrp);
2190 
2191 	return ret;
2192 }
2193 
2194 /*
2195  * Destroy a cgroup filesystem context.
2196  */
2197 static void cgroup_fs_context_free(struct fs_context *fc)
2198 {
2199 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2200 
2201 	kfree(ctx->name);
2202 	kfree(ctx->release_agent);
2203 	put_cgroup_ns(ctx->ns);
2204 	kernfs_free_fs_context(fc);
2205 	kfree(ctx);
2206 }
2207 
2208 static int cgroup_get_tree(struct fs_context *fc)
2209 {
2210 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2211 	int ret;
2212 
2213 	WRITE_ONCE(cgrp_dfl_visible, true);
2214 	cgroup_get_live(&cgrp_dfl_root.cgrp);
2215 	ctx->root = &cgrp_dfl_root;
2216 
2217 	ret = cgroup_do_get_tree(fc);
2218 	if (!ret)
2219 		apply_cgroup_root_flags(ctx->flags);
2220 	return ret;
2221 }
2222 
2223 static const struct fs_context_operations cgroup_fs_context_ops = {
2224 	.free		= cgroup_fs_context_free,
2225 	.parse_param	= cgroup2_parse_param,
2226 	.get_tree	= cgroup_get_tree,
2227 	.reconfigure	= cgroup_reconfigure,
2228 };
2229 
2230 static const struct fs_context_operations cgroup1_fs_context_ops = {
2231 	.free		= cgroup_fs_context_free,
2232 	.parse_param	= cgroup1_parse_param,
2233 	.get_tree	= cgroup1_get_tree,
2234 	.reconfigure	= cgroup1_reconfigure,
2235 };
2236 
2237 /*
2238  * Initialise the cgroup filesystem creation/reconfiguration context.  Notably,
2239  * we select the namespace we're going to use.
2240  */
2241 static int cgroup_init_fs_context(struct fs_context *fc)
2242 {
2243 	struct cgroup_fs_context *ctx;
2244 
2245 	ctx = kzalloc(sizeof(struct cgroup_fs_context), GFP_KERNEL);
2246 	if (!ctx)
2247 		return -ENOMEM;
2248 
2249 	ctx->ns = current->nsproxy->cgroup_ns;
2250 	get_cgroup_ns(ctx->ns);
2251 	fc->fs_private = &ctx->kfc;
2252 	if (fc->fs_type == &cgroup2_fs_type)
2253 		fc->ops = &cgroup_fs_context_ops;
2254 	else
2255 		fc->ops = &cgroup1_fs_context_ops;
2256 	put_user_ns(fc->user_ns);
2257 	fc->user_ns = get_user_ns(ctx->ns->user_ns);
2258 	fc->global = true;
2259 
2260 #ifdef CONFIG_CGROUP_FAVOR_DYNMODS
2261 	ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS;
2262 #endif
2263 	return 0;
2264 }
2265 
2266 static void cgroup_kill_sb(struct super_block *sb)
2267 {
2268 	struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2269 	struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2270 
2271 	/*
2272 	 * If @root doesn't have any children, start killing it.
2273 	 * This prevents new mounts by disabling percpu_ref_tryget_live().
2274 	 *
2275 	 * And don't kill the default root.
2276 	 */
2277 	if (list_empty(&root->cgrp.self.children) && root != &cgrp_dfl_root &&
2278 	    !percpu_ref_is_dying(&root->cgrp.self.refcnt)) {
2279 		cgroup_bpf_offline(&root->cgrp);
2280 		percpu_ref_kill(&root->cgrp.self.refcnt);
2281 	}
2282 	cgroup_put(&root->cgrp);
2283 	kernfs_kill_sb(sb);
2284 }
2285 
2286 struct file_system_type cgroup_fs_type = {
2287 	.name			= "cgroup",
2288 	.init_fs_context	= cgroup_init_fs_context,
2289 	.parameters		= cgroup1_fs_parameters,
2290 	.kill_sb		= cgroup_kill_sb,
2291 	.fs_flags		= FS_USERNS_MOUNT,
2292 };
2293 
2294 static struct file_system_type cgroup2_fs_type = {
2295 	.name			= "cgroup2",
2296 	.init_fs_context	= cgroup_init_fs_context,
2297 	.parameters		= cgroup2_fs_parameters,
2298 	.kill_sb		= cgroup_kill_sb,
2299 	.fs_flags		= FS_USERNS_MOUNT,
2300 };
2301 
2302 #ifdef CONFIG_CPUSETS
2303 static const struct fs_context_operations cpuset_fs_context_ops = {
2304 	.get_tree	= cgroup1_get_tree,
2305 	.free		= cgroup_fs_context_free,
2306 };
2307 
2308 /*
2309  * This is ugly, but preserves the userspace API for existing cpuset
2310  * users. If someone tries to mount the "cpuset" filesystem, we
2311  * silently switch it to mount "cgroup" instead
2312  */
2313 static int cpuset_init_fs_context(struct fs_context *fc)
2314 {
2315 	char *agent = kstrdup("/sbin/cpuset_release_agent", GFP_USER);
2316 	struct cgroup_fs_context *ctx;
2317 	int err;
2318 
2319 	err = cgroup_init_fs_context(fc);
2320 	if (err) {
2321 		kfree(agent);
2322 		return err;
2323 	}
2324 
2325 	fc->ops = &cpuset_fs_context_ops;
2326 
2327 	ctx = cgroup_fc2context(fc);
2328 	ctx->subsys_mask = 1 << cpuset_cgrp_id;
2329 	ctx->flags |= CGRP_ROOT_NOPREFIX;
2330 	ctx->release_agent = agent;
2331 
2332 	get_filesystem(&cgroup_fs_type);
2333 	put_filesystem(fc->fs_type);
2334 	fc->fs_type = &cgroup_fs_type;
2335 
2336 	return 0;
2337 }
2338 
2339 static struct file_system_type cpuset_fs_type = {
2340 	.name			= "cpuset",
2341 	.init_fs_context	= cpuset_init_fs_context,
2342 	.fs_flags		= FS_USERNS_MOUNT,
2343 };
2344 #endif
2345 
2346 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
2347 			  struct cgroup_namespace *ns)
2348 {
2349 	struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
2350 
2351 	return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
2352 }
2353 
2354 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
2355 		   struct cgroup_namespace *ns)
2356 {
2357 	int ret;
2358 
2359 	mutex_lock(&cgroup_mutex);
2360 	spin_lock_irq(&css_set_lock);
2361 
2362 	ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
2363 
2364 	spin_unlock_irq(&css_set_lock);
2365 	mutex_unlock(&cgroup_mutex);
2366 
2367 	return ret;
2368 }
2369 EXPORT_SYMBOL_GPL(cgroup_path_ns);
2370 
2371 /**
2372  * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
2373  * @task: target task
2374  * @buf: the buffer to write the path into
2375  * @buflen: the length of the buffer
2376  *
2377  * Determine @task's cgroup on the first (the one with the lowest non-zero
2378  * hierarchy_id) cgroup hierarchy and copy its path into @buf.  This
2379  * function grabs cgroup_mutex and shouldn't be used inside locks used by
2380  * cgroup controller callbacks.
2381  *
2382  * Return value is the same as kernfs_path().
2383  */
2384 int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
2385 {
2386 	struct cgroup_root *root;
2387 	struct cgroup *cgrp;
2388 	int hierarchy_id = 1;
2389 	int ret;
2390 
2391 	mutex_lock(&cgroup_mutex);
2392 	spin_lock_irq(&css_set_lock);
2393 
2394 	root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2395 
2396 	if (root) {
2397 		cgrp = task_cgroup_from_root(task, root);
2398 		ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns);
2399 	} else {
2400 		/* if no hierarchy exists, everyone is in "/" */
2401 		ret = strscpy(buf, "/", buflen);
2402 	}
2403 
2404 	spin_unlock_irq(&css_set_lock);
2405 	mutex_unlock(&cgroup_mutex);
2406 	return ret;
2407 }
2408 EXPORT_SYMBOL_GPL(task_cgroup_path);
2409 
2410 /**
2411  * cgroup_attach_lock - Lock for ->attach()
2412  * @lock_threadgroup: whether to down_write cgroup_threadgroup_rwsem
2413  *
2414  * cgroup migration sometimes needs to stabilize threadgroups against forks and
2415  * exits by write-locking cgroup_threadgroup_rwsem. However, some ->attach()
2416  * implementations (e.g. cpuset), also need to disable CPU hotplug.
2417  * Unfortunately, letting ->attach() operations acquire cpus_read_lock() can
2418  * lead to deadlocks.
2419  *
2420  * Bringing up a CPU may involve creating and destroying tasks which requires
2421  * read-locking threadgroup_rwsem, so threadgroup_rwsem nests inside
2422  * cpus_read_lock(). If we call an ->attach() which acquires the cpus lock while
2423  * write-locking threadgroup_rwsem, the locking order is reversed and we end up
2424  * waiting for an on-going CPU hotplug operation which in turn is waiting for
2425  * the threadgroup_rwsem to be released to create new tasks. For more details:
2426  *
2427  *   http://lkml.kernel.org/r/20220711174629.uehfmqegcwn2lqzu@wubuntu
2428  *
2429  * Resolve the situation by always acquiring cpus_read_lock() before optionally
2430  * write-locking cgroup_threadgroup_rwsem. This allows ->attach() to assume that
2431  * CPU hotplug is disabled on entry.
2432  */
2433 void cgroup_attach_lock(bool lock_threadgroup)
2434 {
2435 	cpus_read_lock();
2436 	if (lock_threadgroup)
2437 		percpu_down_write(&cgroup_threadgroup_rwsem);
2438 }
2439 
2440 /**
2441  * cgroup_attach_unlock - Undo cgroup_attach_lock()
2442  * @lock_threadgroup: whether to up_write cgroup_threadgroup_rwsem
2443  */
2444 void cgroup_attach_unlock(bool lock_threadgroup)
2445 {
2446 	if (lock_threadgroup)
2447 		percpu_up_write(&cgroup_threadgroup_rwsem);
2448 	cpus_read_unlock();
2449 }
2450 
2451 /**
2452  * cgroup_migrate_add_task - add a migration target task to a migration context
2453  * @task: target task
2454  * @mgctx: target migration context
2455  *
2456  * Add @task, which is a migration target, to @mgctx->tset.  This function
2457  * becomes noop if @task doesn't need to be migrated.  @task's css_set
2458  * should have been added as a migration source and @task->cg_list will be
2459  * moved from the css_set's tasks list to mg_tasks one.
2460  */
2461 static void cgroup_migrate_add_task(struct task_struct *task,
2462 				    struct cgroup_mgctx *mgctx)
2463 {
2464 	struct css_set *cset;
2465 
2466 	lockdep_assert_held(&css_set_lock);
2467 
2468 	/* @task either already exited or can't exit until the end */
2469 	if (task->flags & PF_EXITING)
2470 		return;
2471 
2472 	/* cgroup_threadgroup_rwsem protects racing against forks */
2473 	WARN_ON_ONCE(list_empty(&task->cg_list));
2474 
2475 	cset = task_css_set(task);
2476 	if (!cset->mg_src_cgrp)
2477 		return;
2478 
2479 	mgctx->tset.nr_tasks++;
2480 
2481 	list_move_tail(&task->cg_list, &cset->mg_tasks);
2482 	if (list_empty(&cset->mg_node))
2483 		list_add_tail(&cset->mg_node,
2484 			      &mgctx->tset.src_csets);
2485 	if (list_empty(&cset->mg_dst_cset->mg_node))
2486 		list_add_tail(&cset->mg_dst_cset->mg_node,
2487 			      &mgctx->tset.dst_csets);
2488 }
2489 
2490 /**
2491  * cgroup_taskset_first - reset taskset and return the first task
2492  * @tset: taskset of interest
2493  * @dst_cssp: output variable for the destination css
2494  *
2495  * @tset iteration is initialized and the first task is returned.
2496  */
2497 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2498 					 struct cgroup_subsys_state **dst_cssp)
2499 {
2500 	tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2501 	tset->cur_task = NULL;
2502 
2503 	return cgroup_taskset_next(tset, dst_cssp);
2504 }
2505 
2506 /**
2507  * cgroup_taskset_next - iterate to the next task in taskset
2508  * @tset: taskset of interest
2509  * @dst_cssp: output variable for the destination css
2510  *
2511  * Return the next task in @tset.  Iteration must have been initialized
2512  * with cgroup_taskset_first().
2513  */
2514 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2515 					struct cgroup_subsys_state **dst_cssp)
2516 {
2517 	struct css_set *cset = tset->cur_cset;
2518 	struct task_struct *task = tset->cur_task;
2519 
2520 	while (CGROUP_HAS_SUBSYS_CONFIG && &cset->mg_node != tset->csets) {
2521 		if (!task)
2522 			task = list_first_entry(&cset->mg_tasks,
2523 						struct task_struct, cg_list);
2524 		else
2525 			task = list_next_entry(task, cg_list);
2526 
2527 		if (&task->cg_list != &cset->mg_tasks) {
2528 			tset->cur_cset = cset;
2529 			tset->cur_task = task;
2530 
2531 			/*
2532 			 * This function may be called both before and
2533 			 * after cgroup_taskset_migrate().  The two cases
2534 			 * can be distinguished by looking at whether @cset
2535 			 * has its ->mg_dst_cset set.
2536 			 */
2537 			if (cset->mg_dst_cset)
2538 				*dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2539 			else
2540 				*dst_cssp = cset->subsys[tset->ssid];
2541 
2542 			return task;
2543 		}
2544 
2545 		cset = list_next_entry(cset, mg_node);
2546 		task = NULL;
2547 	}
2548 
2549 	return NULL;
2550 }
2551 
2552 /**
2553  * cgroup_migrate_execute - migrate a taskset
2554  * @mgctx: migration context
2555  *
2556  * Migrate tasks in @mgctx as setup by migration preparation functions.
2557  * This function fails iff one of the ->can_attach callbacks fails and
2558  * guarantees that either all or none of the tasks in @mgctx are migrated.
2559  * @mgctx is consumed regardless of success.
2560  */
2561 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx)
2562 {
2563 	struct cgroup_taskset *tset = &mgctx->tset;
2564 	struct cgroup_subsys *ss;
2565 	struct task_struct *task, *tmp_task;
2566 	struct css_set *cset, *tmp_cset;
2567 	int ssid, failed_ssid, ret;
2568 
2569 	/* check that we can legitimately attach to the cgroup */
2570 	if (tset->nr_tasks) {
2571 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2572 			if (ss->can_attach) {
2573 				tset->ssid = ssid;
2574 				ret = ss->can_attach(tset);
2575 				if (ret) {
2576 					failed_ssid = ssid;
2577 					goto out_cancel_attach;
2578 				}
2579 			}
2580 		} while_each_subsys_mask();
2581 	}
2582 
2583 	/*
2584 	 * Now that we're guaranteed success, proceed to move all tasks to
2585 	 * the new cgroup.  There are no failure cases after here, so this
2586 	 * is the commit point.
2587 	 */
2588 	spin_lock_irq(&css_set_lock);
2589 	list_for_each_entry(cset, &tset->src_csets, mg_node) {
2590 		list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2591 			struct css_set *from_cset = task_css_set(task);
2592 			struct css_set *to_cset = cset->mg_dst_cset;
2593 
2594 			get_css_set(to_cset);
2595 			to_cset->nr_tasks++;
2596 			css_set_move_task(task, from_cset, to_cset, true);
2597 			from_cset->nr_tasks--;
2598 			/*
2599 			 * If the source or destination cgroup is frozen,
2600 			 * the task might require to change its state.
2601 			 */
2602 			cgroup_freezer_migrate_task(task, from_cset->dfl_cgrp,
2603 						    to_cset->dfl_cgrp);
2604 			put_css_set_locked(from_cset);
2605 
2606 		}
2607 	}
2608 	spin_unlock_irq(&css_set_lock);
2609 
2610 	/*
2611 	 * Migration is committed, all target tasks are now on dst_csets.
2612 	 * Nothing is sensitive to fork() after this point.  Notify
2613 	 * controllers that migration is complete.
2614 	 */
2615 	tset->csets = &tset->dst_csets;
2616 
2617 	if (tset->nr_tasks) {
2618 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2619 			if (ss->attach) {
2620 				tset->ssid = ssid;
2621 				ss->attach(tset);
2622 			}
2623 		} while_each_subsys_mask();
2624 	}
2625 
2626 	ret = 0;
2627 	goto out_release_tset;
2628 
2629 out_cancel_attach:
2630 	if (tset->nr_tasks) {
2631 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2632 			if (ssid == failed_ssid)
2633 				break;
2634 			if (ss->cancel_attach) {
2635 				tset->ssid = ssid;
2636 				ss->cancel_attach(tset);
2637 			}
2638 		} while_each_subsys_mask();
2639 	}
2640 out_release_tset:
2641 	spin_lock_irq(&css_set_lock);
2642 	list_splice_init(&tset->dst_csets, &tset->src_csets);
2643 	list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2644 		list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2645 		list_del_init(&cset->mg_node);
2646 	}
2647 	spin_unlock_irq(&css_set_lock);
2648 
2649 	/*
2650 	 * Re-initialize the cgroup_taskset structure in case it is reused
2651 	 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute()
2652 	 * iteration.
2653 	 */
2654 	tset->nr_tasks = 0;
2655 	tset->csets    = &tset->src_csets;
2656 	return ret;
2657 }
2658 
2659 /**
2660  * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination
2661  * @dst_cgrp: destination cgroup to test
2662  *
2663  * On the default hierarchy, except for the mixable, (possible) thread root
2664  * and threaded cgroups, subtree_control must be zero for migration
2665  * destination cgroups with tasks so that child cgroups don't compete
2666  * against tasks.
2667  */
2668 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp)
2669 {
2670 	/* v1 doesn't have any restriction */
2671 	if (!cgroup_on_dfl(dst_cgrp))
2672 		return 0;
2673 
2674 	/* verify @dst_cgrp can host resources */
2675 	if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp))
2676 		return -EOPNOTSUPP;
2677 
2678 	/*
2679 	 * If @dst_cgrp is already or can become a thread root or is
2680 	 * threaded, it doesn't matter.
2681 	 */
2682 	if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp))
2683 		return 0;
2684 
2685 	/* apply no-internal-process constraint */
2686 	if (dst_cgrp->subtree_control)
2687 		return -EBUSY;
2688 
2689 	return 0;
2690 }
2691 
2692 /**
2693  * cgroup_migrate_finish - cleanup after attach
2694  * @mgctx: migration context
2695  *
2696  * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst().  See
2697  * those functions for details.
2698  */
2699 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx)
2700 {
2701 	struct css_set *cset, *tmp_cset;
2702 
2703 	lockdep_assert_held(&cgroup_mutex);
2704 
2705 	spin_lock_irq(&css_set_lock);
2706 
2707 	list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_src_csets,
2708 				 mg_src_preload_node) {
2709 		cset->mg_src_cgrp = NULL;
2710 		cset->mg_dst_cgrp = NULL;
2711 		cset->mg_dst_cset = NULL;
2712 		list_del_init(&cset->mg_src_preload_node);
2713 		put_css_set_locked(cset);
2714 	}
2715 
2716 	list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_dst_csets,
2717 				 mg_dst_preload_node) {
2718 		cset->mg_src_cgrp = NULL;
2719 		cset->mg_dst_cgrp = NULL;
2720 		cset->mg_dst_cset = NULL;
2721 		list_del_init(&cset->mg_dst_preload_node);
2722 		put_css_set_locked(cset);
2723 	}
2724 
2725 	spin_unlock_irq(&css_set_lock);
2726 }
2727 
2728 /**
2729  * cgroup_migrate_add_src - add a migration source css_set
2730  * @src_cset: the source css_set to add
2731  * @dst_cgrp: the destination cgroup
2732  * @mgctx: migration context
2733  *
2734  * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp.  Pin
2735  * @src_cset and add it to @mgctx->src_csets, which should later be cleaned
2736  * up by cgroup_migrate_finish().
2737  *
2738  * This function may be called without holding cgroup_threadgroup_rwsem
2739  * even if the target is a process.  Threads may be created and destroyed
2740  * but as long as cgroup_mutex is not dropped, no new css_set can be put
2741  * into play and the preloaded css_sets are guaranteed to cover all
2742  * migrations.
2743  */
2744 void cgroup_migrate_add_src(struct css_set *src_cset,
2745 			    struct cgroup *dst_cgrp,
2746 			    struct cgroup_mgctx *mgctx)
2747 {
2748 	struct cgroup *src_cgrp;
2749 
2750 	lockdep_assert_held(&cgroup_mutex);
2751 	lockdep_assert_held(&css_set_lock);
2752 
2753 	/*
2754 	 * If ->dead, @src_set is associated with one or more dead cgroups
2755 	 * and doesn't contain any migratable tasks.  Ignore it early so
2756 	 * that the rest of migration path doesn't get confused by it.
2757 	 */
2758 	if (src_cset->dead)
2759 		return;
2760 
2761 	if (!list_empty(&src_cset->mg_src_preload_node))
2762 		return;
2763 
2764 	src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2765 
2766 	WARN_ON(src_cset->mg_src_cgrp);
2767 	WARN_ON(src_cset->mg_dst_cgrp);
2768 	WARN_ON(!list_empty(&src_cset->mg_tasks));
2769 	WARN_ON(!list_empty(&src_cset->mg_node));
2770 
2771 	src_cset->mg_src_cgrp = src_cgrp;
2772 	src_cset->mg_dst_cgrp = dst_cgrp;
2773 	get_css_set(src_cset);
2774 	list_add_tail(&src_cset->mg_src_preload_node, &mgctx->preloaded_src_csets);
2775 }
2776 
2777 /**
2778  * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2779  * @mgctx: migration context
2780  *
2781  * Tasks are about to be moved and all the source css_sets have been
2782  * preloaded to @mgctx->preloaded_src_csets.  This function looks up and
2783  * pins all destination css_sets, links each to its source, and append them
2784  * to @mgctx->preloaded_dst_csets.
2785  *
2786  * This function must be called after cgroup_migrate_add_src() has been
2787  * called on each migration source css_set.  After migration is performed
2788  * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2789  * @mgctx.
2790  */
2791 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx)
2792 {
2793 	struct css_set *src_cset, *tmp_cset;
2794 
2795 	lockdep_assert_held(&cgroup_mutex);
2796 
2797 	/* look up the dst cset for each src cset and link it to src */
2798 	list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets,
2799 				 mg_src_preload_node) {
2800 		struct css_set *dst_cset;
2801 		struct cgroup_subsys *ss;
2802 		int ssid;
2803 
2804 		dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
2805 		if (!dst_cset)
2806 			return -ENOMEM;
2807 
2808 		WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2809 
2810 		/*
2811 		 * If src cset equals dst, it's noop.  Drop the src.
2812 		 * cgroup_migrate() will skip the cset too.  Note that we
2813 		 * can't handle src == dst as some nodes are used by both.
2814 		 */
2815 		if (src_cset == dst_cset) {
2816 			src_cset->mg_src_cgrp = NULL;
2817 			src_cset->mg_dst_cgrp = NULL;
2818 			list_del_init(&src_cset->mg_src_preload_node);
2819 			put_css_set(src_cset);
2820 			put_css_set(dst_cset);
2821 			continue;
2822 		}
2823 
2824 		src_cset->mg_dst_cset = dst_cset;
2825 
2826 		if (list_empty(&dst_cset->mg_dst_preload_node))
2827 			list_add_tail(&dst_cset->mg_dst_preload_node,
2828 				      &mgctx->preloaded_dst_csets);
2829 		else
2830 			put_css_set(dst_cset);
2831 
2832 		for_each_subsys(ss, ssid)
2833 			if (src_cset->subsys[ssid] != dst_cset->subsys[ssid])
2834 				mgctx->ss_mask |= 1 << ssid;
2835 	}
2836 
2837 	return 0;
2838 }
2839 
2840 /**
2841  * cgroup_migrate - migrate a process or task to a cgroup
2842  * @leader: the leader of the process or the task to migrate
2843  * @threadgroup: whether @leader points to the whole process or a single task
2844  * @mgctx: migration context
2845  *
2846  * Migrate a process or task denoted by @leader.  If migrating a process,
2847  * the caller must be holding cgroup_threadgroup_rwsem.  The caller is also
2848  * responsible for invoking cgroup_migrate_add_src() and
2849  * cgroup_migrate_prepare_dst() on the targets before invoking this
2850  * function and following up with cgroup_migrate_finish().
2851  *
2852  * As long as a controller's ->can_attach() doesn't fail, this function is
2853  * guaranteed to succeed.  This means that, excluding ->can_attach()
2854  * failure, when migrating multiple targets, the success or failure can be
2855  * decided for all targets by invoking group_migrate_prepare_dst() before
2856  * actually starting migrating.
2857  */
2858 int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2859 		   struct cgroup_mgctx *mgctx)
2860 {
2861 	struct task_struct *task;
2862 
2863 	/*
2864 	 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2865 	 * already PF_EXITING could be freed from underneath us unless we
2866 	 * take an rcu_read_lock.
2867 	 */
2868 	spin_lock_irq(&css_set_lock);
2869 	task = leader;
2870 	do {
2871 		cgroup_migrate_add_task(task, mgctx);
2872 		if (!threadgroup)
2873 			break;
2874 	} while_each_thread(leader, task);
2875 	spin_unlock_irq(&css_set_lock);
2876 
2877 	return cgroup_migrate_execute(mgctx);
2878 }
2879 
2880 /**
2881  * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2882  * @dst_cgrp: the cgroup to attach to
2883  * @leader: the task or the leader of the threadgroup to be attached
2884  * @threadgroup: attach the whole threadgroup?
2885  *
2886  * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2887  */
2888 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader,
2889 		       bool threadgroup)
2890 {
2891 	DEFINE_CGROUP_MGCTX(mgctx);
2892 	struct task_struct *task;
2893 	int ret = 0;
2894 
2895 	/* look up all src csets */
2896 	spin_lock_irq(&css_set_lock);
2897 	rcu_read_lock();
2898 	task = leader;
2899 	do {
2900 		cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx);
2901 		if (!threadgroup)
2902 			break;
2903 	} while_each_thread(leader, task);
2904 	rcu_read_unlock();
2905 	spin_unlock_irq(&css_set_lock);
2906 
2907 	/* prepare dst csets and commit */
2908 	ret = cgroup_migrate_prepare_dst(&mgctx);
2909 	if (!ret)
2910 		ret = cgroup_migrate(leader, threadgroup, &mgctx);
2911 
2912 	cgroup_migrate_finish(&mgctx);
2913 
2914 	if (!ret)
2915 		TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup);
2916 
2917 	return ret;
2918 }
2919 
2920 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup,
2921 					     bool *threadgroup_locked)
2922 {
2923 	struct task_struct *tsk;
2924 	pid_t pid;
2925 
2926 	if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2927 		return ERR_PTR(-EINVAL);
2928 
2929 	/*
2930 	 * If we migrate a single thread, we don't care about threadgroup
2931 	 * stability. If the thread is `current`, it won't exit(2) under our
2932 	 * hands or change PID through exec(2). We exclude
2933 	 * cgroup_update_dfl_csses and other cgroup_{proc,thread}s_write
2934 	 * callers by cgroup_mutex.
2935 	 * Therefore, we can skip the global lock.
2936 	 */
2937 	lockdep_assert_held(&cgroup_mutex);
2938 	*threadgroup_locked = pid || threadgroup;
2939 	cgroup_attach_lock(*threadgroup_locked);
2940 
2941 	rcu_read_lock();
2942 	if (pid) {
2943 		tsk = find_task_by_vpid(pid);
2944 		if (!tsk) {
2945 			tsk = ERR_PTR(-ESRCH);
2946 			goto out_unlock_threadgroup;
2947 		}
2948 	} else {
2949 		tsk = current;
2950 	}
2951 
2952 	if (threadgroup)
2953 		tsk = tsk->group_leader;
2954 
2955 	/*
2956 	 * kthreads may acquire PF_NO_SETAFFINITY during initialization.
2957 	 * If userland migrates such a kthread to a non-root cgroup, it can
2958 	 * become trapped in a cpuset, or RT kthread may be born in a
2959 	 * cgroup with no rt_runtime allocated.  Just say no.
2960 	 */
2961 	if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) {
2962 		tsk = ERR_PTR(-EINVAL);
2963 		goto out_unlock_threadgroup;
2964 	}
2965 
2966 	get_task_struct(tsk);
2967 	goto out_unlock_rcu;
2968 
2969 out_unlock_threadgroup:
2970 	cgroup_attach_unlock(*threadgroup_locked);
2971 	*threadgroup_locked = false;
2972 out_unlock_rcu:
2973 	rcu_read_unlock();
2974 	return tsk;
2975 }
2976 
2977 void cgroup_procs_write_finish(struct task_struct *task, bool threadgroup_locked)
2978 {
2979 	struct cgroup_subsys *ss;
2980 	int ssid;
2981 
2982 	/* release reference from cgroup_procs_write_start() */
2983 	put_task_struct(task);
2984 
2985 	cgroup_attach_unlock(threadgroup_locked);
2986 
2987 	for_each_subsys(ss, ssid)
2988 		if (ss->post_attach)
2989 			ss->post_attach();
2990 }
2991 
2992 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
2993 {
2994 	struct cgroup_subsys *ss;
2995 	bool printed = false;
2996 	int ssid;
2997 
2998 	do_each_subsys_mask(ss, ssid, ss_mask) {
2999 		if (printed)
3000 			seq_putc(seq, ' ');
3001 		seq_puts(seq, ss->name);
3002 		printed = true;
3003 	} while_each_subsys_mask();
3004 	if (printed)
3005 		seq_putc(seq, '\n');
3006 }
3007 
3008 /* show controllers which are enabled from the parent */
3009 static int cgroup_controllers_show(struct seq_file *seq, void *v)
3010 {
3011 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3012 
3013 	cgroup_print_ss_mask(seq, cgroup_control(cgrp));
3014 	return 0;
3015 }
3016 
3017 /* show controllers which are enabled for a given cgroup's children */
3018 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
3019 {
3020 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3021 
3022 	cgroup_print_ss_mask(seq, cgrp->subtree_control);
3023 	return 0;
3024 }
3025 
3026 /**
3027  * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
3028  * @cgrp: root of the subtree to update csses for
3029  *
3030  * @cgrp's control masks have changed and its subtree's css associations
3031  * need to be updated accordingly.  This function looks up all css_sets
3032  * which are attached to the subtree, creates the matching updated css_sets
3033  * and migrates the tasks to the new ones.
3034  */
3035 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
3036 {
3037 	DEFINE_CGROUP_MGCTX(mgctx);
3038 	struct cgroup_subsys_state *d_css;
3039 	struct cgroup *dsct;
3040 	struct css_set *src_cset;
3041 	bool has_tasks;
3042 	int ret;
3043 
3044 	lockdep_assert_held(&cgroup_mutex);
3045 
3046 	/* look up all csses currently attached to @cgrp's subtree */
3047 	spin_lock_irq(&css_set_lock);
3048 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3049 		struct cgrp_cset_link *link;
3050 
3051 		/*
3052 		 * As cgroup_update_dfl_csses() is only called by
3053 		 * cgroup_apply_control(). The csses associated with the
3054 		 * given cgrp will not be affected by changes made to
3055 		 * its subtree_control file. We can skip them.
3056 		 */
3057 		if (dsct == cgrp)
3058 			continue;
3059 
3060 		list_for_each_entry(link, &dsct->cset_links, cset_link)
3061 			cgroup_migrate_add_src(link->cset, dsct, &mgctx);
3062 	}
3063 	spin_unlock_irq(&css_set_lock);
3064 
3065 	/*
3066 	 * We need to write-lock threadgroup_rwsem while migrating tasks.
3067 	 * However, if there are no source csets for @cgrp, changing its
3068 	 * controllers isn't gonna produce any task migrations and the
3069 	 * write-locking can be skipped safely.
3070 	 */
3071 	has_tasks = !list_empty(&mgctx.preloaded_src_csets);
3072 	cgroup_attach_lock(has_tasks);
3073 
3074 	/* NULL dst indicates self on default hierarchy */
3075 	ret = cgroup_migrate_prepare_dst(&mgctx);
3076 	if (ret)
3077 		goto out_finish;
3078 
3079 	spin_lock_irq(&css_set_lock);
3080 	list_for_each_entry(src_cset, &mgctx.preloaded_src_csets,
3081 			    mg_src_preload_node) {
3082 		struct task_struct *task, *ntask;
3083 
3084 		/* all tasks in src_csets need to be migrated */
3085 		list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
3086 			cgroup_migrate_add_task(task, &mgctx);
3087 	}
3088 	spin_unlock_irq(&css_set_lock);
3089 
3090 	ret = cgroup_migrate_execute(&mgctx);
3091 out_finish:
3092 	cgroup_migrate_finish(&mgctx);
3093 	cgroup_attach_unlock(has_tasks);
3094 	return ret;
3095 }
3096 
3097 /**
3098  * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
3099  * @cgrp: root of the target subtree
3100  *
3101  * Because css offlining is asynchronous, userland may try to re-enable a
3102  * controller while the previous css is still around.  This function grabs
3103  * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
3104  */
3105 void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
3106 	__acquires(&cgroup_mutex)
3107 {
3108 	struct cgroup *dsct;
3109 	struct cgroup_subsys_state *d_css;
3110 	struct cgroup_subsys *ss;
3111 	int ssid;
3112 
3113 restart:
3114 	mutex_lock(&cgroup_mutex);
3115 
3116 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3117 		for_each_subsys(ss, ssid) {
3118 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3119 			DEFINE_WAIT(wait);
3120 
3121 			if (!css || !percpu_ref_is_dying(&css->refcnt))
3122 				continue;
3123 
3124 			cgroup_get_live(dsct);
3125 			prepare_to_wait(&dsct->offline_waitq, &wait,
3126 					TASK_UNINTERRUPTIBLE);
3127 
3128 			mutex_unlock(&cgroup_mutex);
3129 			schedule();
3130 			finish_wait(&dsct->offline_waitq, &wait);
3131 
3132 			cgroup_put(dsct);
3133 			goto restart;
3134 		}
3135 	}
3136 }
3137 
3138 /**
3139  * cgroup_save_control - save control masks and dom_cgrp of a subtree
3140  * @cgrp: root of the target subtree
3141  *
3142  * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the
3143  * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3144  * itself.
3145  */
3146 static void cgroup_save_control(struct cgroup *cgrp)
3147 {
3148 	struct cgroup *dsct;
3149 	struct cgroup_subsys_state *d_css;
3150 
3151 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3152 		dsct->old_subtree_control = dsct->subtree_control;
3153 		dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
3154 		dsct->old_dom_cgrp = dsct->dom_cgrp;
3155 	}
3156 }
3157 
3158 /**
3159  * cgroup_propagate_control - refresh control masks of a subtree
3160  * @cgrp: root of the target subtree
3161  *
3162  * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
3163  * ->subtree_control and propagate controller availability through the
3164  * subtree so that descendants don't have unavailable controllers enabled.
3165  */
3166 static void cgroup_propagate_control(struct cgroup *cgrp)
3167 {
3168 	struct cgroup *dsct;
3169 	struct cgroup_subsys_state *d_css;
3170 
3171 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3172 		dsct->subtree_control &= cgroup_control(dsct);
3173 		dsct->subtree_ss_mask =
3174 			cgroup_calc_subtree_ss_mask(dsct->subtree_control,
3175 						    cgroup_ss_mask(dsct));
3176 	}
3177 }
3178 
3179 /**
3180  * cgroup_restore_control - restore control masks and dom_cgrp of a subtree
3181  * @cgrp: root of the target subtree
3182  *
3183  * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the
3184  * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3185  * itself.
3186  */
3187 static void cgroup_restore_control(struct cgroup *cgrp)
3188 {
3189 	struct cgroup *dsct;
3190 	struct cgroup_subsys_state *d_css;
3191 
3192 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3193 		dsct->subtree_control = dsct->old_subtree_control;
3194 		dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
3195 		dsct->dom_cgrp = dsct->old_dom_cgrp;
3196 	}
3197 }
3198 
3199 static bool css_visible(struct cgroup_subsys_state *css)
3200 {
3201 	struct cgroup_subsys *ss = css->ss;
3202 	struct cgroup *cgrp = css->cgroup;
3203 
3204 	if (cgroup_control(cgrp) & (1 << ss->id))
3205 		return true;
3206 	if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
3207 		return false;
3208 	return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
3209 }
3210 
3211 /**
3212  * cgroup_apply_control_enable - enable or show csses according to control
3213  * @cgrp: root of the target subtree
3214  *
3215  * Walk @cgrp's subtree and create new csses or make the existing ones
3216  * visible.  A css is created invisible if it's being implicitly enabled
3217  * through dependency.  An invisible css is made visible when the userland
3218  * explicitly enables it.
3219  *
3220  * Returns 0 on success, -errno on failure.  On failure, csses which have
3221  * been processed already aren't cleaned up.  The caller is responsible for
3222  * cleaning up with cgroup_apply_control_disable().
3223  */
3224 static int cgroup_apply_control_enable(struct cgroup *cgrp)
3225 {
3226 	struct cgroup *dsct;
3227 	struct cgroup_subsys_state *d_css;
3228 	struct cgroup_subsys *ss;
3229 	int ssid, ret;
3230 
3231 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3232 		for_each_subsys(ss, ssid) {
3233 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3234 
3235 			if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
3236 				continue;
3237 
3238 			if (!css) {
3239 				css = css_create(dsct, ss);
3240 				if (IS_ERR(css))
3241 					return PTR_ERR(css);
3242 			}
3243 
3244 			WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3245 
3246 			if (css_visible(css)) {
3247 				ret = css_populate_dir(css);
3248 				if (ret)
3249 					return ret;
3250 			}
3251 		}
3252 	}
3253 
3254 	return 0;
3255 }
3256 
3257 /**
3258  * cgroup_apply_control_disable - kill or hide csses according to control
3259  * @cgrp: root of the target subtree
3260  *
3261  * Walk @cgrp's subtree and kill and hide csses so that they match
3262  * cgroup_ss_mask() and cgroup_visible_mask().
3263  *
3264  * A css is hidden when the userland requests it to be disabled while other
3265  * subsystems are still depending on it.  The css must not actively control
3266  * resources and be in the vanilla state if it's made visible again later.
3267  * Controllers which may be depended upon should provide ->css_reset() for
3268  * this purpose.
3269  */
3270 static void cgroup_apply_control_disable(struct cgroup *cgrp)
3271 {
3272 	struct cgroup *dsct;
3273 	struct cgroup_subsys_state *d_css;
3274 	struct cgroup_subsys *ss;
3275 	int ssid;
3276 
3277 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3278 		for_each_subsys(ss, ssid) {
3279 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3280 
3281 			if (!css)
3282 				continue;
3283 
3284 			WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3285 
3286 			if (css->parent &&
3287 			    !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
3288 				kill_css(css);
3289 			} else if (!css_visible(css)) {
3290 				css_clear_dir(css);
3291 				if (ss->css_reset)
3292 					ss->css_reset(css);
3293 			}
3294 		}
3295 	}
3296 }
3297 
3298 /**
3299  * cgroup_apply_control - apply control mask updates to the subtree
3300  * @cgrp: root of the target subtree
3301  *
3302  * subsystems can be enabled and disabled in a subtree using the following
3303  * steps.
3304  *
3305  * 1. Call cgroup_save_control() to stash the current state.
3306  * 2. Update ->subtree_control masks in the subtree as desired.
3307  * 3. Call cgroup_apply_control() to apply the changes.
3308  * 4. Optionally perform other related operations.
3309  * 5. Call cgroup_finalize_control() to finish up.
3310  *
3311  * This function implements step 3 and propagates the mask changes
3312  * throughout @cgrp's subtree, updates csses accordingly and perform
3313  * process migrations.
3314  */
3315 static int cgroup_apply_control(struct cgroup *cgrp)
3316 {
3317 	int ret;
3318 
3319 	cgroup_propagate_control(cgrp);
3320 
3321 	ret = cgroup_apply_control_enable(cgrp);
3322 	if (ret)
3323 		return ret;
3324 
3325 	/*
3326 	 * At this point, cgroup_e_css_by_mask() results reflect the new csses
3327 	 * making the following cgroup_update_dfl_csses() properly update
3328 	 * css associations of all tasks in the subtree.
3329 	 */
3330 	return cgroup_update_dfl_csses(cgrp);
3331 }
3332 
3333 /**
3334  * cgroup_finalize_control - finalize control mask update
3335  * @cgrp: root of the target subtree
3336  * @ret: the result of the update
3337  *
3338  * Finalize control mask update.  See cgroup_apply_control() for more info.
3339  */
3340 static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
3341 {
3342 	if (ret) {
3343 		cgroup_restore_control(cgrp);
3344 		cgroup_propagate_control(cgrp);
3345 	}
3346 
3347 	cgroup_apply_control_disable(cgrp);
3348 }
3349 
3350 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable)
3351 {
3352 	u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask;
3353 
3354 	/* if nothing is getting enabled, nothing to worry about */
3355 	if (!enable)
3356 		return 0;
3357 
3358 	/* can @cgrp host any resources? */
3359 	if (!cgroup_is_valid_domain(cgrp->dom_cgrp))
3360 		return -EOPNOTSUPP;
3361 
3362 	/* mixables don't care */
3363 	if (cgroup_is_mixable(cgrp))
3364 		return 0;
3365 
3366 	if (domain_enable) {
3367 		/* can't enable domain controllers inside a thread subtree */
3368 		if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3369 			return -EOPNOTSUPP;
3370 	} else {
3371 		/*
3372 		 * Threaded controllers can handle internal competitions
3373 		 * and are always allowed inside a (prospective) thread
3374 		 * subtree.
3375 		 */
3376 		if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3377 			return 0;
3378 	}
3379 
3380 	/*
3381 	 * Controllers can't be enabled for a cgroup with tasks to avoid
3382 	 * child cgroups competing against tasks.
3383 	 */
3384 	if (cgroup_has_tasks(cgrp))
3385 		return -EBUSY;
3386 
3387 	return 0;
3388 }
3389 
3390 /* change the enabled child controllers for a cgroup in the default hierarchy */
3391 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3392 					    char *buf, size_t nbytes,
3393 					    loff_t off)
3394 {
3395 	u16 enable = 0, disable = 0;
3396 	struct cgroup *cgrp, *child;
3397 	struct cgroup_subsys *ss;
3398 	char *tok;
3399 	int ssid, ret;
3400 
3401 	/*
3402 	 * Parse input - space separated list of subsystem names prefixed
3403 	 * with either + or -.
3404 	 */
3405 	buf = strstrip(buf);
3406 	while ((tok = strsep(&buf, " "))) {
3407 		if (tok[0] == '\0')
3408 			continue;
3409 		do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
3410 			if (!cgroup_ssid_enabled(ssid) ||
3411 			    strcmp(tok + 1, ss->name))
3412 				continue;
3413 
3414 			if (*tok == '+') {
3415 				enable |= 1 << ssid;
3416 				disable &= ~(1 << ssid);
3417 			} else if (*tok == '-') {
3418 				disable |= 1 << ssid;
3419 				enable &= ~(1 << ssid);
3420 			} else {
3421 				return -EINVAL;
3422 			}
3423 			break;
3424 		} while_each_subsys_mask();
3425 		if (ssid == CGROUP_SUBSYS_COUNT)
3426 			return -EINVAL;
3427 	}
3428 
3429 	cgrp = cgroup_kn_lock_live(of->kn, true);
3430 	if (!cgrp)
3431 		return -ENODEV;
3432 
3433 	for_each_subsys(ss, ssid) {
3434 		if (enable & (1 << ssid)) {
3435 			if (cgrp->subtree_control & (1 << ssid)) {
3436 				enable &= ~(1 << ssid);
3437 				continue;
3438 			}
3439 
3440 			if (!(cgroup_control(cgrp) & (1 << ssid))) {
3441 				ret = -ENOENT;
3442 				goto out_unlock;
3443 			}
3444 		} else if (disable & (1 << ssid)) {
3445 			if (!(cgrp->subtree_control & (1 << ssid))) {
3446 				disable &= ~(1 << ssid);
3447 				continue;
3448 			}
3449 
3450 			/* a child has it enabled? */
3451 			cgroup_for_each_live_child(child, cgrp) {
3452 				if (child->subtree_control & (1 << ssid)) {
3453 					ret = -EBUSY;
3454 					goto out_unlock;
3455 				}
3456 			}
3457 		}
3458 	}
3459 
3460 	if (!enable && !disable) {
3461 		ret = 0;
3462 		goto out_unlock;
3463 	}
3464 
3465 	ret = cgroup_vet_subtree_control_enable(cgrp, enable);
3466 	if (ret)
3467 		goto out_unlock;
3468 
3469 	/* save and update control masks and prepare csses */
3470 	cgroup_save_control(cgrp);
3471 
3472 	cgrp->subtree_control |= enable;
3473 	cgrp->subtree_control &= ~disable;
3474 
3475 	ret = cgroup_apply_control(cgrp);
3476 	cgroup_finalize_control(cgrp, ret);
3477 	if (ret)
3478 		goto out_unlock;
3479 
3480 	kernfs_activate(cgrp->kn);
3481 out_unlock:
3482 	cgroup_kn_unlock(of->kn);
3483 	return ret ?: nbytes;
3484 }
3485 
3486 /**
3487  * cgroup_enable_threaded - make @cgrp threaded
3488  * @cgrp: the target cgroup
3489  *
3490  * Called when "threaded" is written to the cgroup.type interface file and
3491  * tries to make @cgrp threaded and join the parent's resource domain.
3492  * This function is never called on the root cgroup as cgroup.type doesn't
3493  * exist on it.
3494  */
3495 static int cgroup_enable_threaded(struct cgroup *cgrp)
3496 {
3497 	struct cgroup *parent = cgroup_parent(cgrp);
3498 	struct cgroup *dom_cgrp = parent->dom_cgrp;
3499 	struct cgroup *dsct;
3500 	struct cgroup_subsys_state *d_css;
3501 	int ret;
3502 
3503 	lockdep_assert_held(&cgroup_mutex);
3504 
3505 	/* noop if already threaded */
3506 	if (cgroup_is_threaded(cgrp))
3507 		return 0;
3508 
3509 	/*
3510 	 * If @cgroup is populated or has domain controllers enabled, it
3511 	 * can't be switched.  While the below cgroup_can_be_thread_root()
3512 	 * test can catch the same conditions, that's only when @parent is
3513 	 * not mixable, so let's check it explicitly.
3514 	 */
3515 	if (cgroup_is_populated(cgrp) ||
3516 	    cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
3517 		return -EOPNOTSUPP;
3518 
3519 	/* we're joining the parent's domain, ensure its validity */
3520 	if (!cgroup_is_valid_domain(dom_cgrp) ||
3521 	    !cgroup_can_be_thread_root(dom_cgrp))
3522 		return -EOPNOTSUPP;
3523 
3524 	/*
3525 	 * The following shouldn't cause actual migrations and should
3526 	 * always succeed.
3527 	 */
3528 	cgroup_save_control(cgrp);
3529 
3530 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)
3531 		if (dsct == cgrp || cgroup_is_threaded(dsct))
3532 			dsct->dom_cgrp = dom_cgrp;
3533 
3534 	ret = cgroup_apply_control(cgrp);
3535 	if (!ret)
3536 		parent->nr_threaded_children++;
3537 
3538 	cgroup_finalize_control(cgrp, ret);
3539 	return ret;
3540 }
3541 
3542 static int cgroup_type_show(struct seq_file *seq, void *v)
3543 {
3544 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3545 
3546 	if (cgroup_is_threaded(cgrp))
3547 		seq_puts(seq, "threaded\n");
3548 	else if (!cgroup_is_valid_domain(cgrp))
3549 		seq_puts(seq, "domain invalid\n");
3550 	else if (cgroup_is_thread_root(cgrp))
3551 		seq_puts(seq, "domain threaded\n");
3552 	else
3553 		seq_puts(seq, "domain\n");
3554 
3555 	return 0;
3556 }
3557 
3558 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf,
3559 				 size_t nbytes, loff_t off)
3560 {
3561 	struct cgroup *cgrp;
3562 	int ret;
3563 
3564 	/* only switching to threaded mode is supported */
3565 	if (strcmp(strstrip(buf), "threaded"))
3566 		return -EINVAL;
3567 
3568 	/* drain dying csses before we re-apply (threaded) subtree control */
3569 	cgrp = cgroup_kn_lock_live(of->kn, true);
3570 	if (!cgrp)
3571 		return -ENOENT;
3572 
3573 	/* threaded can only be enabled */
3574 	ret = cgroup_enable_threaded(cgrp);
3575 
3576 	cgroup_kn_unlock(of->kn);
3577 	return ret ?: nbytes;
3578 }
3579 
3580 static int cgroup_max_descendants_show(struct seq_file *seq, void *v)
3581 {
3582 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3583 	int descendants = READ_ONCE(cgrp->max_descendants);
3584 
3585 	if (descendants == INT_MAX)
3586 		seq_puts(seq, "max\n");
3587 	else
3588 		seq_printf(seq, "%d\n", descendants);
3589 
3590 	return 0;
3591 }
3592 
3593 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of,
3594 					   char *buf, size_t nbytes, loff_t off)
3595 {
3596 	struct cgroup *cgrp;
3597 	int descendants;
3598 	ssize_t ret;
3599 
3600 	buf = strstrip(buf);
3601 	if (!strcmp(buf, "max")) {
3602 		descendants = INT_MAX;
3603 	} else {
3604 		ret = kstrtoint(buf, 0, &descendants);
3605 		if (ret)
3606 			return ret;
3607 	}
3608 
3609 	if (descendants < 0)
3610 		return -ERANGE;
3611 
3612 	cgrp = cgroup_kn_lock_live(of->kn, false);
3613 	if (!cgrp)
3614 		return -ENOENT;
3615 
3616 	cgrp->max_descendants = descendants;
3617 
3618 	cgroup_kn_unlock(of->kn);
3619 
3620 	return nbytes;
3621 }
3622 
3623 static int cgroup_max_depth_show(struct seq_file *seq, void *v)
3624 {
3625 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3626 	int depth = READ_ONCE(cgrp->max_depth);
3627 
3628 	if (depth == INT_MAX)
3629 		seq_puts(seq, "max\n");
3630 	else
3631 		seq_printf(seq, "%d\n", depth);
3632 
3633 	return 0;
3634 }
3635 
3636 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of,
3637 				      char *buf, size_t nbytes, loff_t off)
3638 {
3639 	struct cgroup *cgrp;
3640 	ssize_t ret;
3641 	int depth;
3642 
3643 	buf = strstrip(buf);
3644 	if (!strcmp(buf, "max")) {
3645 		depth = INT_MAX;
3646 	} else {
3647 		ret = kstrtoint(buf, 0, &depth);
3648 		if (ret)
3649 			return ret;
3650 	}
3651 
3652 	if (depth < 0)
3653 		return -ERANGE;
3654 
3655 	cgrp = cgroup_kn_lock_live(of->kn, false);
3656 	if (!cgrp)
3657 		return -ENOENT;
3658 
3659 	cgrp->max_depth = depth;
3660 
3661 	cgroup_kn_unlock(of->kn);
3662 
3663 	return nbytes;
3664 }
3665 
3666 static int cgroup_events_show(struct seq_file *seq, void *v)
3667 {
3668 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3669 
3670 	seq_printf(seq, "populated %d\n", cgroup_is_populated(cgrp));
3671 	seq_printf(seq, "frozen %d\n", test_bit(CGRP_FROZEN, &cgrp->flags));
3672 
3673 	return 0;
3674 }
3675 
3676 static int cgroup_stat_show(struct seq_file *seq, void *v)
3677 {
3678 	struct cgroup *cgroup = seq_css(seq)->cgroup;
3679 
3680 	seq_printf(seq, "nr_descendants %d\n",
3681 		   cgroup->nr_descendants);
3682 	seq_printf(seq, "nr_dying_descendants %d\n",
3683 		   cgroup->nr_dying_descendants);
3684 
3685 	return 0;
3686 }
3687 
3688 static int __maybe_unused cgroup_extra_stat_show(struct seq_file *seq,
3689 						 struct cgroup *cgrp, int ssid)
3690 {
3691 	struct cgroup_subsys *ss = cgroup_subsys[ssid];
3692 	struct cgroup_subsys_state *css;
3693 	int ret;
3694 
3695 	if (!ss->css_extra_stat_show)
3696 		return 0;
3697 
3698 	css = cgroup_tryget_css(cgrp, ss);
3699 	if (!css)
3700 		return 0;
3701 
3702 	ret = ss->css_extra_stat_show(seq, css);
3703 	css_put(css);
3704 	return ret;
3705 }
3706 
3707 static int cpu_stat_show(struct seq_file *seq, void *v)
3708 {
3709 	struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup;
3710 	int ret = 0;
3711 
3712 	cgroup_base_stat_cputime_show(seq);
3713 #ifdef CONFIG_CGROUP_SCHED
3714 	ret = cgroup_extra_stat_show(seq, cgrp, cpu_cgrp_id);
3715 #endif
3716 	return ret;
3717 }
3718 
3719 #ifdef CONFIG_PSI
3720 static int cgroup_io_pressure_show(struct seq_file *seq, void *v)
3721 {
3722 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3723 	struct psi_group *psi = cgroup_psi(cgrp);
3724 
3725 	return psi_show(seq, psi, PSI_IO);
3726 }
3727 static int cgroup_memory_pressure_show(struct seq_file *seq, void *v)
3728 {
3729 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3730 	struct psi_group *psi = cgroup_psi(cgrp);
3731 
3732 	return psi_show(seq, psi, PSI_MEM);
3733 }
3734 static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v)
3735 {
3736 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3737 	struct psi_group *psi = cgroup_psi(cgrp);
3738 
3739 	return psi_show(seq, psi, PSI_CPU);
3740 }
3741 
3742 static ssize_t pressure_write(struct kernfs_open_file *of, char *buf,
3743 			      size_t nbytes, enum psi_res res)
3744 {
3745 	struct cgroup_file_ctx *ctx = of->priv;
3746 	struct psi_trigger *new;
3747 	struct cgroup *cgrp;
3748 	struct psi_group *psi;
3749 
3750 	cgrp = cgroup_kn_lock_live(of->kn, false);
3751 	if (!cgrp)
3752 		return -ENODEV;
3753 
3754 	cgroup_get(cgrp);
3755 	cgroup_kn_unlock(of->kn);
3756 
3757 	/* Allow only one trigger per file descriptor */
3758 	if (ctx->psi.trigger) {
3759 		cgroup_put(cgrp);
3760 		return -EBUSY;
3761 	}
3762 
3763 	psi = cgroup_psi(cgrp);
3764 	new = psi_trigger_create(psi, buf, res);
3765 	if (IS_ERR(new)) {
3766 		cgroup_put(cgrp);
3767 		return PTR_ERR(new);
3768 	}
3769 
3770 	smp_store_release(&ctx->psi.trigger, new);
3771 	cgroup_put(cgrp);
3772 
3773 	return nbytes;
3774 }
3775 
3776 static ssize_t cgroup_io_pressure_write(struct kernfs_open_file *of,
3777 					  char *buf, size_t nbytes,
3778 					  loff_t off)
3779 {
3780 	return pressure_write(of, buf, nbytes, PSI_IO);
3781 }
3782 
3783 static ssize_t cgroup_memory_pressure_write(struct kernfs_open_file *of,
3784 					  char *buf, size_t nbytes,
3785 					  loff_t off)
3786 {
3787 	return pressure_write(of, buf, nbytes, PSI_MEM);
3788 }
3789 
3790 static ssize_t cgroup_cpu_pressure_write(struct kernfs_open_file *of,
3791 					  char *buf, size_t nbytes,
3792 					  loff_t off)
3793 {
3794 	return pressure_write(of, buf, nbytes, PSI_CPU);
3795 }
3796 
3797 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
3798 static int cgroup_irq_pressure_show(struct seq_file *seq, void *v)
3799 {
3800 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3801 	struct psi_group *psi = cgroup_psi(cgrp);
3802 
3803 	return psi_show(seq, psi, PSI_IRQ);
3804 }
3805 
3806 static ssize_t cgroup_irq_pressure_write(struct kernfs_open_file *of,
3807 					 char *buf, size_t nbytes,
3808 					 loff_t off)
3809 {
3810 	return pressure_write(of, buf, nbytes, PSI_IRQ);
3811 }
3812 #endif
3813 
3814 static int cgroup_pressure_show(struct seq_file *seq, void *v)
3815 {
3816 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3817 	struct psi_group *psi = cgroup_psi(cgrp);
3818 
3819 	seq_printf(seq, "%d\n", psi->enabled);
3820 
3821 	return 0;
3822 }
3823 
3824 static ssize_t cgroup_pressure_write(struct kernfs_open_file *of,
3825 				     char *buf, size_t nbytes,
3826 				     loff_t off)
3827 {
3828 	ssize_t ret;
3829 	int enable;
3830 	struct cgroup *cgrp;
3831 	struct psi_group *psi;
3832 
3833 	ret = kstrtoint(strstrip(buf), 0, &enable);
3834 	if (ret)
3835 		return ret;
3836 
3837 	if (enable < 0 || enable > 1)
3838 		return -ERANGE;
3839 
3840 	cgrp = cgroup_kn_lock_live(of->kn, false);
3841 	if (!cgrp)
3842 		return -ENOENT;
3843 
3844 	psi = cgroup_psi(cgrp);
3845 	if (psi->enabled != enable) {
3846 		int i;
3847 
3848 		/* show or hide {cpu,memory,io,irq}.pressure files */
3849 		for (i = 0; i < NR_PSI_RESOURCES; i++)
3850 			cgroup_file_show(&cgrp->psi_files[i], enable);
3851 
3852 		psi->enabled = enable;
3853 		if (enable)
3854 			psi_cgroup_restart(psi);
3855 	}
3856 
3857 	cgroup_kn_unlock(of->kn);
3858 
3859 	return nbytes;
3860 }
3861 
3862 static __poll_t cgroup_pressure_poll(struct kernfs_open_file *of,
3863 					  poll_table *pt)
3864 {
3865 	struct cgroup_file_ctx *ctx = of->priv;
3866 
3867 	return psi_trigger_poll(&ctx->psi.trigger, of->file, pt);
3868 }
3869 
3870 static void cgroup_pressure_release(struct kernfs_open_file *of)
3871 {
3872 	struct cgroup_file_ctx *ctx = of->priv;
3873 
3874 	psi_trigger_destroy(ctx->psi.trigger);
3875 }
3876 
3877 bool cgroup_psi_enabled(void)
3878 {
3879 	if (static_branch_likely(&psi_disabled))
3880 		return false;
3881 
3882 	return (cgroup_feature_disable_mask & (1 << OPT_FEATURE_PRESSURE)) == 0;
3883 }
3884 
3885 #else /* CONFIG_PSI */
3886 bool cgroup_psi_enabled(void)
3887 {
3888 	return false;
3889 }
3890 
3891 #endif /* CONFIG_PSI */
3892 
3893 static int cgroup_freeze_show(struct seq_file *seq, void *v)
3894 {
3895 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3896 
3897 	seq_printf(seq, "%d\n", cgrp->freezer.freeze);
3898 
3899 	return 0;
3900 }
3901 
3902 static ssize_t cgroup_freeze_write(struct kernfs_open_file *of,
3903 				   char *buf, size_t nbytes, loff_t off)
3904 {
3905 	struct cgroup *cgrp;
3906 	ssize_t ret;
3907 	int freeze;
3908 
3909 	ret = kstrtoint(strstrip(buf), 0, &freeze);
3910 	if (ret)
3911 		return ret;
3912 
3913 	if (freeze < 0 || freeze > 1)
3914 		return -ERANGE;
3915 
3916 	cgrp = cgroup_kn_lock_live(of->kn, false);
3917 	if (!cgrp)
3918 		return -ENOENT;
3919 
3920 	cgroup_freeze(cgrp, freeze);
3921 
3922 	cgroup_kn_unlock(of->kn);
3923 
3924 	return nbytes;
3925 }
3926 
3927 static void __cgroup_kill(struct cgroup *cgrp)
3928 {
3929 	struct css_task_iter it;
3930 	struct task_struct *task;
3931 
3932 	lockdep_assert_held(&cgroup_mutex);
3933 
3934 	spin_lock_irq(&css_set_lock);
3935 	set_bit(CGRP_KILL, &cgrp->flags);
3936 	spin_unlock_irq(&css_set_lock);
3937 
3938 	css_task_iter_start(&cgrp->self, CSS_TASK_ITER_PROCS | CSS_TASK_ITER_THREADED, &it);
3939 	while ((task = css_task_iter_next(&it))) {
3940 		/* Ignore kernel threads here. */
3941 		if (task->flags & PF_KTHREAD)
3942 			continue;
3943 
3944 		/* Skip tasks that are already dying. */
3945 		if (__fatal_signal_pending(task))
3946 			continue;
3947 
3948 		send_sig(SIGKILL, task, 0);
3949 	}
3950 	css_task_iter_end(&it);
3951 
3952 	spin_lock_irq(&css_set_lock);
3953 	clear_bit(CGRP_KILL, &cgrp->flags);
3954 	spin_unlock_irq(&css_set_lock);
3955 }
3956 
3957 static void cgroup_kill(struct cgroup *cgrp)
3958 {
3959 	struct cgroup_subsys_state *css;
3960 	struct cgroup *dsct;
3961 
3962 	lockdep_assert_held(&cgroup_mutex);
3963 
3964 	cgroup_for_each_live_descendant_pre(dsct, css, cgrp)
3965 		__cgroup_kill(dsct);
3966 }
3967 
3968 static ssize_t cgroup_kill_write(struct kernfs_open_file *of, char *buf,
3969 				 size_t nbytes, loff_t off)
3970 {
3971 	ssize_t ret = 0;
3972 	int kill;
3973 	struct cgroup *cgrp;
3974 
3975 	ret = kstrtoint(strstrip(buf), 0, &kill);
3976 	if (ret)
3977 		return ret;
3978 
3979 	if (kill != 1)
3980 		return -ERANGE;
3981 
3982 	cgrp = cgroup_kn_lock_live(of->kn, false);
3983 	if (!cgrp)
3984 		return -ENOENT;
3985 
3986 	/*
3987 	 * Killing is a process directed operation, i.e. the whole thread-group
3988 	 * is taken down so act like we do for cgroup.procs and only make this
3989 	 * writable in non-threaded cgroups.
3990 	 */
3991 	if (cgroup_is_threaded(cgrp))
3992 		ret = -EOPNOTSUPP;
3993 	else
3994 		cgroup_kill(cgrp);
3995 
3996 	cgroup_kn_unlock(of->kn);
3997 
3998 	return ret ?: nbytes;
3999 }
4000 
4001 static int cgroup_file_open(struct kernfs_open_file *of)
4002 {
4003 	struct cftype *cft = of_cft(of);
4004 	struct cgroup_file_ctx *ctx;
4005 	int ret;
4006 
4007 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
4008 	if (!ctx)
4009 		return -ENOMEM;
4010 
4011 	ctx->ns = current->nsproxy->cgroup_ns;
4012 	get_cgroup_ns(ctx->ns);
4013 	of->priv = ctx;
4014 
4015 	if (!cft->open)
4016 		return 0;
4017 
4018 	ret = cft->open(of);
4019 	if (ret) {
4020 		put_cgroup_ns(ctx->ns);
4021 		kfree(ctx);
4022 	}
4023 	return ret;
4024 }
4025 
4026 static void cgroup_file_release(struct kernfs_open_file *of)
4027 {
4028 	struct cftype *cft = of_cft(of);
4029 	struct cgroup_file_ctx *ctx = of->priv;
4030 
4031 	if (cft->release)
4032 		cft->release(of);
4033 	put_cgroup_ns(ctx->ns);
4034 	kfree(ctx);
4035 }
4036 
4037 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
4038 				 size_t nbytes, loff_t off)
4039 {
4040 	struct cgroup_file_ctx *ctx = of->priv;
4041 	struct cgroup *cgrp = of->kn->parent->priv;
4042 	struct cftype *cft = of_cft(of);
4043 	struct cgroup_subsys_state *css;
4044 	int ret;
4045 
4046 	if (!nbytes)
4047 		return 0;
4048 
4049 	/*
4050 	 * If namespaces are delegation boundaries, disallow writes to
4051 	 * files in an non-init namespace root from inside the namespace
4052 	 * except for the files explicitly marked delegatable -
4053 	 * cgroup.procs and cgroup.subtree_control.
4054 	 */
4055 	if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) &&
4056 	    !(cft->flags & CFTYPE_NS_DELEGATABLE) &&
4057 	    ctx->ns != &init_cgroup_ns && ctx->ns->root_cset->dfl_cgrp == cgrp)
4058 		return -EPERM;
4059 
4060 	if (cft->write)
4061 		return cft->write(of, buf, nbytes, off);
4062 
4063 	/*
4064 	 * kernfs guarantees that a file isn't deleted with operations in
4065 	 * flight, which means that the matching css is and stays alive and
4066 	 * doesn't need to be pinned.  The RCU locking is not necessary
4067 	 * either.  It's just for the convenience of using cgroup_css().
4068 	 */
4069 	rcu_read_lock();
4070 	css = cgroup_css(cgrp, cft->ss);
4071 	rcu_read_unlock();
4072 
4073 	if (cft->write_u64) {
4074 		unsigned long long v;
4075 		ret = kstrtoull(buf, 0, &v);
4076 		if (!ret)
4077 			ret = cft->write_u64(css, cft, v);
4078 	} else if (cft->write_s64) {
4079 		long long v;
4080 		ret = kstrtoll(buf, 0, &v);
4081 		if (!ret)
4082 			ret = cft->write_s64(css, cft, v);
4083 	} else {
4084 		ret = -EINVAL;
4085 	}
4086 
4087 	return ret ?: nbytes;
4088 }
4089 
4090 static __poll_t cgroup_file_poll(struct kernfs_open_file *of, poll_table *pt)
4091 {
4092 	struct cftype *cft = of_cft(of);
4093 
4094 	if (cft->poll)
4095 		return cft->poll(of, pt);
4096 
4097 	return kernfs_generic_poll(of, pt);
4098 }
4099 
4100 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
4101 {
4102 	return seq_cft(seq)->seq_start(seq, ppos);
4103 }
4104 
4105 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
4106 {
4107 	return seq_cft(seq)->seq_next(seq, v, ppos);
4108 }
4109 
4110 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
4111 {
4112 	if (seq_cft(seq)->seq_stop)
4113 		seq_cft(seq)->seq_stop(seq, v);
4114 }
4115 
4116 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
4117 {
4118 	struct cftype *cft = seq_cft(m);
4119 	struct cgroup_subsys_state *css = seq_css(m);
4120 
4121 	if (cft->seq_show)
4122 		return cft->seq_show(m, arg);
4123 
4124 	if (cft->read_u64)
4125 		seq_printf(m, "%llu\n", cft->read_u64(css, cft));
4126 	else if (cft->read_s64)
4127 		seq_printf(m, "%lld\n", cft->read_s64(css, cft));
4128 	else
4129 		return -EINVAL;
4130 	return 0;
4131 }
4132 
4133 static struct kernfs_ops cgroup_kf_single_ops = {
4134 	.atomic_write_len	= PAGE_SIZE,
4135 	.open			= cgroup_file_open,
4136 	.release		= cgroup_file_release,
4137 	.write			= cgroup_file_write,
4138 	.poll			= cgroup_file_poll,
4139 	.seq_show		= cgroup_seqfile_show,
4140 };
4141 
4142 static struct kernfs_ops cgroup_kf_ops = {
4143 	.atomic_write_len	= PAGE_SIZE,
4144 	.open			= cgroup_file_open,
4145 	.release		= cgroup_file_release,
4146 	.write			= cgroup_file_write,
4147 	.poll			= cgroup_file_poll,
4148 	.seq_start		= cgroup_seqfile_start,
4149 	.seq_next		= cgroup_seqfile_next,
4150 	.seq_stop		= cgroup_seqfile_stop,
4151 	.seq_show		= cgroup_seqfile_show,
4152 };
4153 
4154 /* set uid and gid of cgroup dirs and files to that of the creator */
4155 static int cgroup_kn_set_ugid(struct kernfs_node *kn)
4156 {
4157 	struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
4158 			       .ia_uid = current_fsuid(),
4159 			       .ia_gid = current_fsgid(), };
4160 
4161 	if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
4162 	    gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
4163 		return 0;
4164 
4165 	return kernfs_setattr(kn, &iattr);
4166 }
4167 
4168 static void cgroup_file_notify_timer(struct timer_list *timer)
4169 {
4170 	cgroup_file_notify(container_of(timer, struct cgroup_file,
4171 					notify_timer));
4172 }
4173 
4174 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
4175 			   struct cftype *cft)
4176 {
4177 	char name[CGROUP_FILE_NAME_MAX];
4178 	struct kernfs_node *kn;
4179 	struct lock_class_key *key = NULL;
4180 	int ret;
4181 
4182 #ifdef CONFIG_DEBUG_LOCK_ALLOC
4183 	key = &cft->lockdep_key;
4184 #endif
4185 	kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
4186 				  cgroup_file_mode(cft),
4187 				  GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
4188 				  0, cft->kf_ops, cft,
4189 				  NULL, key);
4190 	if (IS_ERR(kn))
4191 		return PTR_ERR(kn);
4192 
4193 	ret = cgroup_kn_set_ugid(kn);
4194 	if (ret) {
4195 		kernfs_remove(kn);
4196 		return ret;
4197 	}
4198 
4199 	if (cft->file_offset) {
4200 		struct cgroup_file *cfile = (void *)css + cft->file_offset;
4201 
4202 		timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0);
4203 
4204 		spin_lock_irq(&cgroup_file_kn_lock);
4205 		cfile->kn = kn;
4206 		spin_unlock_irq(&cgroup_file_kn_lock);
4207 	}
4208 
4209 	return 0;
4210 }
4211 
4212 /**
4213  * cgroup_addrm_files - add or remove files to a cgroup directory
4214  * @css: the target css
4215  * @cgrp: the target cgroup (usually css->cgroup)
4216  * @cfts: array of cftypes to be added
4217  * @is_add: whether to add or remove
4218  *
4219  * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
4220  * For removals, this function never fails.
4221  */
4222 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
4223 			      struct cgroup *cgrp, struct cftype cfts[],
4224 			      bool is_add)
4225 {
4226 	struct cftype *cft, *cft_end = NULL;
4227 	int ret = 0;
4228 
4229 	lockdep_assert_held(&cgroup_mutex);
4230 
4231 restart:
4232 	for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
4233 		/* does cft->flags tell us to skip this file on @cgrp? */
4234 		if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
4235 			continue;
4236 		if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
4237 			continue;
4238 		if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
4239 			continue;
4240 		if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
4241 			continue;
4242 		if ((cft->flags & CFTYPE_DEBUG) && !cgroup_debug)
4243 			continue;
4244 		if (is_add) {
4245 			ret = cgroup_add_file(css, cgrp, cft);
4246 			if (ret) {
4247 				pr_warn("%s: failed to add %s, err=%d\n",
4248 					__func__, cft->name, ret);
4249 				cft_end = cft;
4250 				is_add = false;
4251 				goto restart;
4252 			}
4253 		} else {
4254 			cgroup_rm_file(cgrp, cft);
4255 		}
4256 	}
4257 	return ret;
4258 }
4259 
4260 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
4261 {
4262 	struct cgroup_subsys *ss = cfts[0].ss;
4263 	struct cgroup *root = &ss->root->cgrp;
4264 	struct cgroup_subsys_state *css;
4265 	int ret = 0;
4266 
4267 	lockdep_assert_held(&cgroup_mutex);
4268 
4269 	/* add/rm files for all cgroups created before */
4270 	css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
4271 		struct cgroup *cgrp = css->cgroup;
4272 
4273 		if (!(css->flags & CSS_VISIBLE))
4274 			continue;
4275 
4276 		ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
4277 		if (ret)
4278 			break;
4279 	}
4280 
4281 	if (is_add && !ret)
4282 		kernfs_activate(root->kn);
4283 	return ret;
4284 }
4285 
4286 static void cgroup_exit_cftypes(struct cftype *cfts)
4287 {
4288 	struct cftype *cft;
4289 
4290 	for (cft = cfts; cft->name[0] != '\0'; cft++) {
4291 		/* free copy for custom atomic_write_len, see init_cftypes() */
4292 		if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
4293 			kfree(cft->kf_ops);
4294 		cft->kf_ops = NULL;
4295 		cft->ss = NULL;
4296 
4297 		/* revert flags set by cgroup core while adding @cfts */
4298 		cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL |
4299 				__CFTYPE_ADDED);
4300 	}
4301 }
4302 
4303 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4304 {
4305 	struct cftype *cft;
4306 	int ret = 0;
4307 
4308 	for (cft = cfts; cft->name[0] != '\0'; cft++) {
4309 		struct kernfs_ops *kf_ops;
4310 
4311 		WARN_ON(cft->ss || cft->kf_ops);
4312 
4313 		if (cft->flags & __CFTYPE_ADDED) {
4314 			ret = -EBUSY;
4315 			break;
4316 		}
4317 
4318 		if (cft->seq_start)
4319 			kf_ops = &cgroup_kf_ops;
4320 		else
4321 			kf_ops = &cgroup_kf_single_ops;
4322 
4323 		/*
4324 		 * Ugh... if @cft wants a custom max_write_len, we need to
4325 		 * make a copy of kf_ops to set its atomic_write_len.
4326 		 */
4327 		if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
4328 			kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
4329 			if (!kf_ops) {
4330 				ret = -ENOMEM;
4331 				break;
4332 			}
4333 			kf_ops->atomic_write_len = cft->max_write_len;
4334 		}
4335 
4336 		cft->kf_ops = kf_ops;
4337 		cft->ss = ss;
4338 		cft->flags |= __CFTYPE_ADDED;
4339 	}
4340 
4341 	if (ret)
4342 		cgroup_exit_cftypes(cfts);
4343 	return ret;
4344 }
4345 
4346 static int cgroup_rm_cftypes_locked(struct cftype *cfts)
4347 {
4348 	lockdep_assert_held(&cgroup_mutex);
4349 
4350 	list_del(&cfts->node);
4351 	cgroup_apply_cftypes(cfts, false);
4352 	cgroup_exit_cftypes(cfts);
4353 	return 0;
4354 }
4355 
4356 /**
4357  * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
4358  * @cfts: zero-length name terminated array of cftypes
4359  *
4360  * Unregister @cfts.  Files described by @cfts are removed from all
4361  * existing cgroups and all future cgroups won't have them either.  This
4362  * function can be called anytime whether @cfts' subsys is attached or not.
4363  *
4364  * Returns 0 on successful unregistration, -ENOENT if @cfts is not
4365  * registered.
4366  */
4367 int cgroup_rm_cftypes(struct cftype *cfts)
4368 {
4369 	int ret;
4370 
4371 	if (!cfts || cfts[0].name[0] == '\0')
4372 		return 0;
4373 
4374 	if (!(cfts[0].flags & __CFTYPE_ADDED))
4375 		return -ENOENT;
4376 
4377 	mutex_lock(&cgroup_mutex);
4378 	ret = cgroup_rm_cftypes_locked(cfts);
4379 	mutex_unlock(&cgroup_mutex);
4380 	return ret;
4381 }
4382 
4383 /**
4384  * cgroup_add_cftypes - add an array of cftypes to a subsystem
4385  * @ss: target cgroup subsystem
4386  * @cfts: zero-length name terminated array of cftypes
4387  *
4388  * Register @cfts to @ss.  Files described by @cfts are created for all
4389  * existing cgroups to which @ss is attached and all future cgroups will
4390  * have them too.  This function can be called anytime whether @ss is
4391  * attached or not.
4392  *
4393  * Returns 0 on successful registration, -errno on failure.  Note that this
4394  * function currently returns 0 as long as @cfts registration is successful
4395  * even if some file creation attempts on existing cgroups fail.
4396  */
4397 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4398 {
4399 	int ret;
4400 
4401 	if (!cgroup_ssid_enabled(ss->id))
4402 		return 0;
4403 
4404 	if (!cfts || cfts[0].name[0] == '\0')
4405 		return 0;
4406 
4407 	ret = cgroup_init_cftypes(ss, cfts);
4408 	if (ret)
4409 		return ret;
4410 
4411 	mutex_lock(&cgroup_mutex);
4412 
4413 	list_add_tail(&cfts->node, &ss->cfts);
4414 	ret = cgroup_apply_cftypes(cfts, true);
4415 	if (ret)
4416 		cgroup_rm_cftypes_locked(cfts);
4417 
4418 	mutex_unlock(&cgroup_mutex);
4419 	return ret;
4420 }
4421 
4422 /**
4423  * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
4424  * @ss: target cgroup subsystem
4425  * @cfts: zero-length name terminated array of cftypes
4426  *
4427  * Similar to cgroup_add_cftypes() but the added files are only used for
4428  * the default hierarchy.
4429  */
4430 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4431 {
4432 	struct cftype *cft;
4433 
4434 	for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4435 		cft->flags |= __CFTYPE_ONLY_ON_DFL;
4436 	return cgroup_add_cftypes(ss, cfts);
4437 }
4438 
4439 /**
4440  * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
4441  * @ss: target cgroup subsystem
4442  * @cfts: zero-length name terminated array of cftypes
4443  *
4444  * Similar to cgroup_add_cftypes() but the added files are only used for
4445  * the legacy hierarchies.
4446  */
4447 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4448 {
4449 	struct cftype *cft;
4450 
4451 	for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4452 		cft->flags |= __CFTYPE_NOT_ON_DFL;
4453 	return cgroup_add_cftypes(ss, cfts);
4454 }
4455 
4456 /**
4457  * cgroup_file_notify - generate a file modified event for a cgroup_file
4458  * @cfile: target cgroup_file
4459  *
4460  * @cfile must have been obtained by setting cftype->file_offset.
4461  */
4462 void cgroup_file_notify(struct cgroup_file *cfile)
4463 {
4464 	unsigned long flags;
4465 
4466 	spin_lock_irqsave(&cgroup_file_kn_lock, flags);
4467 	if (cfile->kn) {
4468 		unsigned long last = cfile->notified_at;
4469 		unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV;
4470 
4471 		if (time_in_range(jiffies, last, next)) {
4472 			timer_reduce(&cfile->notify_timer, next);
4473 		} else {
4474 			kernfs_notify(cfile->kn);
4475 			cfile->notified_at = jiffies;
4476 		}
4477 	}
4478 	spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
4479 }
4480 
4481 /**
4482  * cgroup_file_show - show or hide a hidden cgroup file
4483  * @cfile: target cgroup_file obtained by setting cftype->file_offset
4484  * @show: whether to show or hide
4485  */
4486 void cgroup_file_show(struct cgroup_file *cfile, bool show)
4487 {
4488 	struct kernfs_node *kn;
4489 
4490 	spin_lock_irq(&cgroup_file_kn_lock);
4491 	kn = cfile->kn;
4492 	kernfs_get(kn);
4493 	spin_unlock_irq(&cgroup_file_kn_lock);
4494 
4495 	if (kn)
4496 		kernfs_show(kn, show);
4497 
4498 	kernfs_put(kn);
4499 }
4500 
4501 /**
4502  * css_next_child - find the next child of a given css
4503  * @pos: the current position (%NULL to initiate traversal)
4504  * @parent: css whose children to walk
4505  *
4506  * This function returns the next child of @parent and should be called
4507  * under either cgroup_mutex or RCU read lock.  The only requirement is
4508  * that @parent and @pos are accessible.  The next sibling is guaranteed to
4509  * be returned regardless of their states.
4510  *
4511  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4512  * css which finished ->css_online() is guaranteed to be visible in the
4513  * future iterations and will stay visible until the last reference is put.
4514  * A css which hasn't finished ->css_online() or already finished
4515  * ->css_offline() may show up during traversal.  It's each subsystem's
4516  * responsibility to synchronize against on/offlining.
4517  */
4518 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
4519 					   struct cgroup_subsys_state *parent)
4520 {
4521 	struct cgroup_subsys_state *next;
4522 
4523 	cgroup_assert_mutex_or_rcu_locked();
4524 
4525 	/*
4526 	 * @pos could already have been unlinked from the sibling list.
4527 	 * Once a cgroup is removed, its ->sibling.next is no longer
4528 	 * updated when its next sibling changes.  CSS_RELEASED is set when
4529 	 * @pos is taken off list, at which time its next pointer is valid,
4530 	 * and, as releases are serialized, the one pointed to by the next
4531 	 * pointer is guaranteed to not have started release yet.  This
4532 	 * implies that if we observe !CSS_RELEASED on @pos in this RCU
4533 	 * critical section, the one pointed to by its next pointer is
4534 	 * guaranteed to not have finished its RCU grace period even if we
4535 	 * have dropped rcu_read_lock() in-between iterations.
4536 	 *
4537 	 * If @pos has CSS_RELEASED set, its next pointer can't be
4538 	 * dereferenced; however, as each css is given a monotonically
4539 	 * increasing unique serial number and always appended to the
4540 	 * sibling list, the next one can be found by walking the parent's
4541 	 * children until the first css with higher serial number than
4542 	 * @pos's.  While this path can be slower, it happens iff iteration
4543 	 * races against release and the race window is very small.
4544 	 */
4545 	if (!pos) {
4546 		next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
4547 	} else if (likely(!(pos->flags & CSS_RELEASED))) {
4548 		next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
4549 	} else {
4550 		list_for_each_entry_rcu(next, &parent->children, sibling,
4551 					lockdep_is_held(&cgroup_mutex))
4552 			if (next->serial_nr > pos->serial_nr)
4553 				break;
4554 	}
4555 
4556 	/*
4557 	 * @next, if not pointing to the head, can be dereferenced and is
4558 	 * the next sibling.
4559 	 */
4560 	if (&next->sibling != &parent->children)
4561 		return next;
4562 	return NULL;
4563 }
4564 
4565 /**
4566  * css_next_descendant_pre - find the next descendant for pre-order walk
4567  * @pos: the current position (%NULL to initiate traversal)
4568  * @root: css whose descendants to walk
4569  *
4570  * To be used by css_for_each_descendant_pre().  Find the next descendant
4571  * to visit for pre-order traversal of @root's descendants.  @root is
4572  * included in the iteration and the first node to be visited.
4573  *
4574  * While this function requires cgroup_mutex or RCU read locking, it
4575  * doesn't require the whole traversal to be contained in a single critical
4576  * section.  This function will return the correct next descendant as long
4577  * as both @pos and @root are accessible and @pos is a descendant of @root.
4578  *
4579  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4580  * css which finished ->css_online() is guaranteed to be visible in the
4581  * future iterations and will stay visible until the last reference is put.
4582  * A css which hasn't finished ->css_online() or already finished
4583  * ->css_offline() may show up during traversal.  It's each subsystem's
4584  * responsibility to synchronize against on/offlining.
4585  */
4586 struct cgroup_subsys_state *
4587 css_next_descendant_pre(struct cgroup_subsys_state *pos,
4588 			struct cgroup_subsys_state *root)
4589 {
4590 	struct cgroup_subsys_state *next;
4591 
4592 	cgroup_assert_mutex_or_rcu_locked();
4593 
4594 	/* if first iteration, visit @root */
4595 	if (!pos)
4596 		return root;
4597 
4598 	/* visit the first child if exists */
4599 	next = css_next_child(NULL, pos);
4600 	if (next)
4601 		return next;
4602 
4603 	/* no child, visit my or the closest ancestor's next sibling */
4604 	while (pos != root) {
4605 		next = css_next_child(pos, pos->parent);
4606 		if (next)
4607 			return next;
4608 		pos = pos->parent;
4609 	}
4610 
4611 	return NULL;
4612 }
4613 EXPORT_SYMBOL_GPL(css_next_descendant_pre);
4614 
4615 /**
4616  * css_rightmost_descendant - return the rightmost descendant of a css
4617  * @pos: css of interest
4618  *
4619  * Return the rightmost descendant of @pos.  If there's no descendant, @pos
4620  * is returned.  This can be used during pre-order traversal to skip
4621  * subtree of @pos.
4622  *
4623  * While this function requires cgroup_mutex or RCU read locking, it
4624  * doesn't require the whole traversal to be contained in a single critical
4625  * section.  This function will return the correct rightmost descendant as
4626  * long as @pos is accessible.
4627  */
4628 struct cgroup_subsys_state *
4629 css_rightmost_descendant(struct cgroup_subsys_state *pos)
4630 {
4631 	struct cgroup_subsys_state *last, *tmp;
4632 
4633 	cgroup_assert_mutex_or_rcu_locked();
4634 
4635 	do {
4636 		last = pos;
4637 		/* ->prev isn't RCU safe, walk ->next till the end */
4638 		pos = NULL;
4639 		css_for_each_child(tmp, last)
4640 			pos = tmp;
4641 	} while (pos);
4642 
4643 	return last;
4644 }
4645 
4646 static struct cgroup_subsys_state *
4647 css_leftmost_descendant(struct cgroup_subsys_state *pos)
4648 {
4649 	struct cgroup_subsys_state *last;
4650 
4651 	do {
4652 		last = pos;
4653 		pos = css_next_child(NULL, pos);
4654 	} while (pos);
4655 
4656 	return last;
4657 }
4658 
4659 /**
4660  * css_next_descendant_post - find the next descendant for post-order walk
4661  * @pos: the current position (%NULL to initiate traversal)
4662  * @root: css whose descendants to walk
4663  *
4664  * To be used by css_for_each_descendant_post().  Find the next descendant
4665  * to visit for post-order traversal of @root's descendants.  @root is
4666  * included in the iteration and the last node to be visited.
4667  *
4668  * While this function requires cgroup_mutex or RCU read locking, it
4669  * doesn't require the whole traversal to be contained in a single critical
4670  * section.  This function will return the correct next descendant as long
4671  * as both @pos and @cgroup are accessible and @pos is a descendant of
4672  * @cgroup.
4673  *
4674  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4675  * css which finished ->css_online() is guaranteed to be visible in the
4676  * future iterations and will stay visible until the last reference is put.
4677  * A css which hasn't finished ->css_online() or already finished
4678  * ->css_offline() may show up during traversal.  It's each subsystem's
4679  * responsibility to synchronize against on/offlining.
4680  */
4681 struct cgroup_subsys_state *
4682 css_next_descendant_post(struct cgroup_subsys_state *pos,
4683 			 struct cgroup_subsys_state *root)
4684 {
4685 	struct cgroup_subsys_state *next;
4686 
4687 	cgroup_assert_mutex_or_rcu_locked();
4688 
4689 	/* if first iteration, visit leftmost descendant which may be @root */
4690 	if (!pos)
4691 		return css_leftmost_descendant(root);
4692 
4693 	/* if we visited @root, we're done */
4694 	if (pos == root)
4695 		return NULL;
4696 
4697 	/* if there's an unvisited sibling, visit its leftmost descendant */
4698 	next = css_next_child(pos, pos->parent);
4699 	if (next)
4700 		return css_leftmost_descendant(next);
4701 
4702 	/* no sibling left, visit parent */
4703 	return pos->parent;
4704 }
4705 
4706 /**
4707  * css_has_online_children - does a css have online children
4708  * @css: the target css
4709  *
4710  * Returns %true if @css has any online children; otherwise, %false.  This
4711  * function can be called from any context but the caller is responsible
4712  * for synchronizing against on/offlining as necessary.
4713  */
4714 bool css_has_online_children(struct cgroup_subsys_state *css)
4715 {
4716 	struct cgroup_subsys_state *child;
4717 	bool ret = false;
4718 
4719 	rcu_read_lock();
4720 	css_for_each_child(child, css) {
4721 		if (child->flags & CSS_ONLINE) {
4722 			ret = true;
4723 			break;
4724 		}
4725 	}
4726 	rcu_read_unlock();
4727 	return ret;
4728 }
4729 
4730 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it)
4731 {
4732 	struct list_head *l;
4733 	struct cgrp_cset_link *link;
4734 	struct css_set *cset;
4735 
4736 	lockdep_assert_held(&css_set_lock);
4737 
4738 	/* find the next threaded cset */
4739 	if (it->tcset_pos) {
4740 		l = it->tcset_pos->next;
4741 
4742 		if (l != it->tcset_head) {
4743 			it->tcset_pos = l;
4744 			return container_of(l, struct css_set,
4745 					    threaded_csets_node);
4746 		}
4747 
4748 		it->tcset_pos = NULL;
4749 	}
4750 
4751 	/* find the next cset */
4752 	l = it->cset_pos;
4753 	l = l->next;
4754 	if (l == it->cset_head) {
4755 		it->cset_pos = NULL;
4756 		return NULL;
4757 	}
4758 
4759 	if (it->ss) {
4760 		cset = container_of(l, struct css_set, e_cset_node[it->ss->id]);
4761 	} else {
4762 		link = list_entry(l, struct cgrp_cset_link, cset_link);
4763 		cset = link->cset;
4764 	}
4765 
4766 	it->cset_pos = l;
4767 
4768 	/* initialize threaded css_set walking */
4769 	if (it->flags & CSS_TASK_ITER_THREADED) {
4770 		if (it->cur_dcset)
4771 			put_css_set_locked(it->cur_dcset);
4772 		it->cur_dcset = cset;
4773 		get_css_set(cset);
4774 
4775 		it->tcset_head = &cset->threaded_csets;
4776 		it->tcset_pos = &cset->threaded_csets;
4777 	}
4778 
4779 	return cset;
4780 }
4781 
4782 /**
4783  * css_task_iter_advance_css_set - advance a task iterator to the next css_set
4784  * @it: the iterator to advance
4785  *
4786  * Advance @it to the next css_set to walk.
4787  */
4788 static void css_task_iter_advance_css_set(struct css_task_iter *it)
4789 {
4790 	struct css_set *cset;
4791 
4792 	lockdep_assert_held(&css_set_lock);
4793 
4794 	/* Advance to the next non-empty css_set and find first non-empty tasks list*/
4795 	while ((cset = css_task_iter_next_css_set(it))) {
4796 		if (!list_empty(&cset->tasks)) {
4797 			it->cur_tasks_head = &cset->tasks;
4798 			break;
4799 		} else if (!list_empty(&cset->mg_tasks)) {
4800 			it->cur_tasks_head = &cset->mg_tasks;
4801 			break;
4802 		} else if (!list_empty(&cset->dying_tasks)) {
4803 			it->cur_tasks_head = &cset->dying_tasks;
4804 			break;
4805 		}
4806 	}
4807 	if (!cset) {
4808 		it->task_pos = NULL;
4809 		return;
4810 	}
4811 	it->task_pos = it->cur_tasks_head->next;
4812 
4813 	/*
4814 	 * We don't keep css_sets locked across iteration steps and thus
4815 	 * need to take steps to ensure that iteration can be resumed after
4816 	 * the lock is re-acquired.  Iteration is performed at two levels -
4817 	 * css_sets and tasks in them.
4818 	 *
4819 	 * Once created, a css_set never leaves its cgroup lists, so a
4820 	 * pinned css_set is guaranteed to stay put and we can resume
4821 	 * iteration afterwards.
4822 	 *
4823 	 * Tasks may leave @cset across iteration steps.  This is resolved
4824 	 * by registering each iterator with the css_set currently being
4825 	 * walked and making css_set_move_task() advance iterators whose
4826 	 * next task is leaving.
4827 	 */
4828 	if (it->cur_cset) {
4829 		list_del(&it->iters_node);
4830 		put_css_set_locked(it->cur_cset);
4831 	}
4832 	get_css_set(cset);
4833 	it->cur_cset = cset;
4834 	list_add(&it->iters_node, &cset->task_iters);
4835 }
4836 
4837 static void css_task_iter_skip(struct css_task_iter *it,
4838 			       struct task_struct *task)
4839 {
4840 	lockdep_assert_held(&css_set_lock);
4841 
4842 	if (it->task_pos == &task->cg_list) {
4843 		it->task_pos = it->task_pos->next;
4844 		it->flags |= CSS_TASK_ITER_SKIPPED;
4845 	}
4846 }
4847 
4848 static void css_task_iter_advance(struct css_task_iter *it)
4849 {
4850 	struct task_struct *task;
4851 
4852 	lockdep_assert_held(&css_set_lock);
4853 repeat:
4854 	if (it->task_pos) {
4855 		/*
4856 		 * Advance iterator to find next entry. We go through cset
4857 		 * tasks, mg_tasks and dying_tasks, when consumed we move onto
4858 		 * the next cset.
4859 		 */
4860 		if (it->flags & CSS_TASK_ITER_SKIPPED)
4861 			it->flags &= ~CSS_TASK_ITER_SKIPPED;
4862 		else
4863 			it->task_pos = it->task_pos->next;
4864 
4865 		if (it->task_pos == &it->cur_cset->tasks) {
4866 			it->cur_tasks_head = &it->cur_cset->mg_tasks;
4867 			it->task_pos = it->cur_tasks_head->next;
4868 		}
4869 		if (it->task_pos == &it->cur_cset->mg_tasks) {
4870 			it->cur_tasks_head = &it->cur_cset->dying_tasks;
4871 			it->task_pos = it->cur_tasks_head->next;
4872 		}
4873 		if (it->task_pos == &it->cur_cset->dying_tasks)
4874 			css_task_iter_advance_css_set(it);
4875 	} else {
4876 		/* called from start, proceed to the first cset */
4877 		css_task_iter_advance_css_set(it);
4878 	}
4879 
4880 	if (!it->task_pos)
4881 		return;
4882 
4883 	task = list_entry(it->task_pos, struct task_struct, cg_list);
4884 
4885 	if (it->flags & CSS_TASK_ITER_PROCS) {
4886 		/* if PROCS, skip over tasks which aren't group leaders */
4887 		if (!thread_group_leader(task))
4888 			goto repeat;
4889 
4890 		/* and dying leaders w/o live member threads */
4891 		if (it->cur_tasks_head == &it->cur_cset->dying_tasks &&
4892 		    !atomic_read(&task->signal->live))
4893 			goto repeat;
4894 	} else {
4895 		/* skip all dying ones */
4896 		if (it->cur_tasks_head == &it->cur_cset->dying_tasks)
4897 			goto repeat;
4898 	}
4899 }
4900 
4901 /**
4902  * css_task_iter_start - initiate task iteration
4903  * @css: the css to walk tasks of
4904  * @flags: CSS_TASK_ITER_* flags
4905  * @it: the task iterator to use
4906  *
4907  * Initiate iteration through the tasks of @css.  The caller can call
4908  * css_task_iter_next() to walk through the tasks until the function
4909  * returns NULL.  On completion of iteration, css_task_iter_end() must be
4910  * called.
4911  */
4912 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags,
4913 			 struct css_task_iter *it)
4914 {
4915 	memset(it, 0, sizeof(*it));
4916 
4917 	spin_lock_irq(&css_set_lock);
4918 
4919 	it->ss = css->ss;
4920 	it->flags = flags;
4921 
4922 	if (CGROUP_HAS_SUBSYS_CONFIG && it->ss)
4923 		it->cset_pos = &css->cgroup->e_csets[css->ss->id];
4924 	else
4925 		it->cset_pos = &css->cgroup->cset_links;
4926 
4927 	it->cset_head = it->cset_pos;
4928 
4929 	css_task_iter_advance(it);
4930 
4931 	spin_unlock_irq(&css_set_lock);
4932 }
4933 
4934 /**
4935  * css_task_iter_next - return the next task for the iterator
4936  * @it: the task iterator being iterated
4937  *
4938  * The "next" function for task iteration.  @it should have been
4939  * initialized via css_task_iter_start().  Returns NULL when the iteration
4940  * reaches the end.
4941  */
4942 struct task_struct *css_task_iter_next(struct css_task_iter *it)
4943 {
4944 	if (it->cur_task) {
4945 		put_task_struct(it->cur_task);
4946 		it->cur_task = NULL;
4947 	}
4948 
4949 	spin_lock_irq(&css_set_lock);
4950 
4951 	/* @it may be half-advanced by skips, finish advancing */
4952 	if (it->flags & CSS_TASK_ITER_SKIPPED)
4953 		css_task_iter_advance(it);
4954 
4955 	if (it->task_pos) {
4956 		it->cur_task = list_entry(it->task_pos, struct task_struct,
4957 					  cg_list);
4958 		get_task_struct(it->cur_task);
4959 		css_task_iter_advance(it);
4960 	}
4961 
4962 	spin_unlock_irq(&css_set_lock);
4963 
4964 	return it->cur_task;
4965 }
4966 
4967 /**
4968  * css_task_iter_end - finish task iteration
4969  * @it: the task iterator to finish
4970  *
4971  * Finish task iteration started by css_task_iter_start().
4972  */
4973 void css_task_iter_end(struct css_task_iter *it)
4974 {
4975 	if (it->cur_cset) {
4976 		spin_lock_irq(&css_set_lock);
4977 		list_del(&it->iters_node);
4978 		put_css_set_locked(it->cur_cset);
4979 		spin_unlock_irq(&css_set_lock);
4980 	}
4981 
4982 	if (it->cur_dcset)
4983 		put_css_set(it->cur_dcset);
4984 
4985 	if (it->cur_task)
4986 		put_task_struct(it->cur_task);
4987 }
4988 
4989 static void cgroup_procs_release(struct kernfs_open_file *of)
4990 {
4991 	struct cgroup_file_ctx *ctx = of->priv;
4992 
4993 	if (ctx->procs.started)
4994 		css_task_iter_end(&ctx->procs.iter);
4995 }
4996 
4997 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos)
4998 {
4999 	struct kernfs_open_file *of = s->private;
5000 	struct cgroup_file_ctx *ctx = of->priv;
5001 
5002 	if (pos)
5003 		(*pos)++;
5004 
5005 	return css_task_iter_next(&ctx->procs.iter);
5006 }
5007 
5008 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos,
5009 				  unsigned int iter_flags)
5010 {
5011 	struct kernfs_open_file *of = s->private;
5012 	struct cgroup *cgrp = seq_css(s)->cgroup;
5013 	struct cgroup_file_ctx *ctx = of->priv;
5014 	struct css_task_iter *it = &ctx->procs.iter;
5015 
5016 	/*
5017 	 * When a seq_file is seeked, it's always traversed sequentially
5018 	 * from position 0, so we can simply keep iterating on !0 *pos.
5019 	 */
5020 	if (!ctx->procs.started) {
5021 		if (WARN_ON_ONCE((*pos)))
5022 			return ERR_PTR(-EINVAL);
5023 		css_task_iter_start(&cgrp->self, iter_flags, it);
5024 		ctx->procs.started = true;
5025 	} else if (!(*pos)) {
5026 		css_task_iter_end(it);
5027 		css_task_iter_start(&cgrp->self, iter_flags, it);
5028 	} else
5029 		return it->cur_task;
5030 
5031 	return cgroup_procs_next(s, NULL, NULL);
5032 }
5033 
5034 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos)
5035 {
5036 	struct cgroup *cgrp = seq_css(s)->cgroup;
5037 
5038 	/*
5039 	 * All processes of a threaded subtree belong to the domain cgroup
5040 	 * of the subtree.  Only threads can be distributed across the
5041 	 * subtree.  Reject reads on cgroup.procs in the subtree proper.
5042 	 * They're always empty anyway.
5043 	 */
5044 	if (cgroup_is_threaded(cgrp))
5045 		return ERR_PTR(-EOPNOTSUPP);
5046 
5047 	return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS |
5048 					    CSS_TASK_ITER_THREADED);
5049 }
5050 
5051 static int cgroup_procs_show(struct seq_file *s, void *v)
5052 {
5053 	seq_printf(s, "%d\n", task_pid_vnr(v));
5054 	return 0;
5055 }
5056 
5057 static int cgroup_may_write(const struct cgroup *cgrp, struct super_block *sb)
5058 {
5059 	int ret;
5060 	struct inode *inode;
5061 
5062 	lockdep_assert_held(&cgroup_mutex);
5063 
5064 	inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
5065 	if (!inode)
5066 		return -ENOMEM;
5067 
5068 	ret = inode_permission(&init_user_ns, inode, MAY_WRITE);
5069 	iput(inode);
5070 	return ret;
5071 }
5072 
5073 static int cgroup_procs_write_permission(struct cgroup *src_cgrp,
5074 					 struct cgroup *dst_cgrp,
5075 					 struct super_block *sb,
5076 					 struct cgroup_namespace *ns)
5077 {
5078 	struct cgroup *com_cgrp = src_cgrp;
5079 	int ret;
5080 
5081 	lockdep_assert_held(&cgroup_mutex);
5082 
5083 	/* find the common ancestor */
5084 	while (!cgroup_is_descendant(dst_cgrp, com_cgrp))
5085 		com_cgrp = cgroup_parent(com_cgrp);
5086 
5087 	/* %current should be authorized to migrate to the common ancestor */
5088 	ret = cgroup_may_write(com_cgrp, sb);
5089 	if (ret)
5090 		return ret;
5091 
5092 	/*
5093 	 * If namespaces are delegation boundaries, %current must be able
5094 	 * to see both source and destination cgroups from its namespace.
5095 	 */
5096 	if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) &&
5097 	    (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) ||
5098 	     !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp)))
5099 		return -ENOENT;
5100 
5101 	return 0;
5102 }
5103 
5104 static int cgroup_attach_permissions(struct cgroup *src_cgrp,
5105 				     struct cgroup *dst_cgrp,
5106 				     struct super_block *sb, bool threadgroup,
5107 				     struct cgroup_namespace *ns)
5108 {
5109 	int ret = 0;
5110 
5111 	ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, sb, ns);
5112 	if (ret)
5113 		return ret;
5114 
5115 	ret = cgroup_migrate_vet_dst(dst_cgrp);
5116 	if (ret)
5117 		return ret;
5118 
5119 	if (!threadgroup && (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp))
5120 		ret = -EOPNOTSUPP;
5121 
5122 	return ret;
5123 }
5124 
5125 static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
5126 				    bool threadgroup)
5127 {
5128 	struct cgroup_file_ctx *ctx = of->priv;
5129 	struct cgroup *src_cgrp, *dst_cgrp;
5130 	struct task_struct *task;
5131 	const struct cred *saved_cred;
5132 	ssize_t ret;
5133 	bool threadgroup_locked;
5134 
5135 	dst_cgrp = cgroup_kn_lock_live(of->kn, false);
5136 	if (!dst_cgrp)
5137 		return -ENODEV;
5138 
5139 	task = cgroup_procs_write_start(buf, threadgroup, &threadgroup_locked);
5140 	ret = PTR_ERR_OR_ZERO(task);
5141 	if (ret)
5142 		goto out_unlock;
5143 
5144 	/* find the source cgroup */
5145 	spin_lock_irq(&css_set_lock);
5146 	src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
5147 	spin_unlock_irq(&css_set_lock);
5148 
5149 	/*
5150 	 * Process and thread migrations follow same delegation rule. Check
5151 	 * permissions using the credentials from file open to protect against
5152 	 * inherited fd attacks.
5153 	 */
5154 	saved_cred = override_creds(of->file->f_cred);
5155 	ret = cgroup_attach_permissions(src_cgrp, dst_cgrp,
5156 					of->file->f_path.dentry->d_sb,
5157 					threadgroup, ctx->ns);
5158 	revert_creds(saved_cred);
5159 	if (ret)
5160 		goto out_finish;
5161 
5162 	ret = cgroup_attach_task(dst_cgrp, task, threadgroup);
5163 
5164 out_finish:
5165 	cgroup_procs_write_finish(task, threadgroup_locked);
5166 out_unlock:
5167 	cgroup_kn_unlock(of->kn);
5168 
5169 	return ret;
5170 }
5171 
5172 static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
5173 				  char *buf, size_t nbytes, loff_t off)
5174 {
5175 	return __cgroup_procs_write(of, buf, true) ?: nbytes;
5176 }
5177 
5178 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos)
5179 {
5180 	return __cgroup_procs_start(s, pos, 0);
5181 }
5182 
5183 static ssize_t cgroup_threads_write(struct kernfs_open_file *of,
5184 				    char *buf, size_t nbytes, loff_t off)
5185 {
5186 	return __cgroup_procs_write(of, buf, false) ?: nbytes;
5187 }
5188 
5189 /* cgroup core interface files for the default hierarchy */
5190 static struct cftype cgroup_base_files[] = {
5191 	{
5192 		.name = "cgroup.type",
5193 		.flags = CFTYPE_NOT_ON_ROOT,
5194 		.seq_show = cgroup_type_show,
5195 		.write = cgroup_type_write,
5196 	},
5197 	{
5198 		.name = "cgroup.procs",
5199 		.flags = CFTYPE_NS_DELEGATABLE,
5200 		.file_offset = offsetof(struct cgroup, procs_file),
5201 		.release = cgroup_procs_release,
5202 		.seq_start = cgroup_procs_start,
5203 		.seq_next = cgroup_procs_next,
5204 		.seq_show = cgroup_procs_show,
5205 		.write = cgroup_procs_write,
5206 	},
5207 	{
5208 		.name = "cgroup.threads",
5209 		.flags = CFTYPE_NS_DELEGATABLE,
5210 		.release = cgroup_procs_release,
5211 		.seq_start = cgroup_threads_start,
5212 		.seq_next = cgroup_procs_next,
5213 		.seq_show = cgroup_procs_show,
5214 		.write = cgroup_threads_write,
5215 	},
5216 	{
5217 		.name = "cgroup.controllers",
5218 		.seq_show = cgroup_controllers_show,
5219 	},
5220 	{
5221 		.name = "cgroup.subtree_control",
5222 		.flags = CFTYPE_NS_DELEGATABLE,
5223 		.seq_show = cgroup_subtree_control_show,
5224 		.write = cgroup_subtree_control_write,
5225 	},
5226 	{
5227 		.name = "cgroup.events",
5228 		.flags = CFTYPE_NOT_ON_ROOT,
5229 		.file_offset = offsetof(struct cgroup, events_file),
5230 		.seq_show = cgroup_events_show,
5231 	},
5232 	{
5233 		.name = "cgroup.max.descendants",
5234 		.seq_show = cgroup_max_descendants_show,
5235 		.write = cgroup_max_descendants_write,
5236 	},
5237 	{
5238 		.name = "cgroup.max.depth",
5239 		.seq_show = cgroup_max_depth_show,
5240 		.write = cgroup_max_depth_write,
5241 	},
5242 	{
5243 		.name = "cgroup.stat",
5244 		.seq_show = cgroup_stat_show,
5245 	},
5246 	{
5247 		.name = "cgroup.freeze",
5248 		.flags = CFTYPE_NOT_ON_ROOT,
5249 		.seq_show = cgroup_freeze_show,
5250 		.write = cgroup_freeze_write,
5251 	},
5252 	{
5253 		.name = "cgroup.kill",
5254 		.flags = CFTYPE_NOT_ON_ROOT,
5255 		.write = cgroup_kill_write,
5256 	},
5257 	{
5258 		.name = "cpu.stat",
5259 		.seq_show = cpu_stat_show,
5260 	},
5261 	{ }	/* terminate */
5262 };
5263 
5264 static struct cftype cgroup_psi_files[] = {
5265 #ifdef CONFIG_PSI
5266 	{
5267 		.name = "io.pressure",
5268 		.file_offset = offsetof(struct cgroup, psi_files[PSI_IO]),
5269 		.seq_show = cgroup_io_pressure_show,
5270 		.write = cgroup_io_pressure_write,
5271 		.poll = cgroup_pressure_poll,
5272 		.release = cgroup_pressure_release,
5273 	},
5274 	{
5275 		.name = "memory.pressure",
5276 		.file_offset = offsetof(struct cgroup, psi_files[PSI_MEM]),
5277 		.seq_show = cgroup_memory_pressure_show,
5278 		.write = cgroup_memory_pressure_write,
5279 		.poll = cgroup_pressure_poll,
5280 		.release = cgroup_pressure_release,
5281 	},
5282 	{
5283 		.name = "cpu.pressure",
5284 		.file_offset = offsetof(struct cgroup, psi_files[PSI_CPU]),
5285 		.seq_show = cgroup_cpu_pressure_show,
5286 		.write = cgroup_cpu_pressure_write,
5287 		.poll = cgroup_pressure_poll,
5288 		.release = cgroup_pressure_release,
5289 	},
5290 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
5291 	{
5292 		.name = "irq.pressure",
5293 		.file_offset = offsetof(struct cgroup, psi_files[PSI_IRQ]),
5294 		.seq_show = cgroup_irq_pressure_show,
5295 		.write = cgroup_irq_pressure_write,
5296 		.poll = cgroup_pressure_poll,
5297 		.release = cgroup_pressure_release,
5298 	},
5299 #endif
5300 	{
5301 		.name = "cgroup.pressure",
5302 		.seq_show = cgroup_pressure_show,
5303 		.write = cgroup_pressure_write,
5304 	},
5305 #endif /* CONFIG_PSI */
5306 	{ }	/* terminate */
5307 };
5308 
5309 /*
5310  * css destruction is four-stage process.
5311  *
5312  * 1. Destruction starts.  Killing of the percpu_ref is initiated.
5313  *    Implemented in kill_css().
5314  *
5315  * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
5316  *    and thus css_tryget_online() is guaranteed to fail, the css can be
5317  *    offlined by invoking offline_css().  After offlining, the base ref is
5318  *    put.  Implemented in css_killed_work_fn().
5319  *
5320  * 3. When the percpu_ref reaches zero, the only possible remaining
5321  *    accessors are inside RCU read sections.  css_release() schedules the
5322  *    RCU callback.
5323  *
5324  * 4. After the grace period, the css can be freed.  Implemented in
5325  *    css_free_work_fn().
5326  *
5327  * It is actually hairier because both step 2 and 4 require process context
5328  * and thus involve punting to css->destroy_work adding two additional
5329  * steps to the already complex sequence.
5330  */
5331 static void css_free_rwork_fn(struct work_struct *work)
5332 {
5333 	struct cgroup_subsys_state *css = container_of(to_rcu_work(work),
5334 				struct cgroup_subsys_state, destroy_rwork);
5335 	struct cgroup_subsys *ss = css->ss;
5336 	struct cgroup *cgrp = css->cgroup;
5337 
5338 	percpu_ref_exit(&css->refcnt);
5339 
5340 	if (ss) {
5341 		/* css free path */
5342 		struct cgroup_subsys_state *parent = css->parent;
5343 		int id = css->id;
5344 
5345 		ss->css_free(css);
5346 		cgroup_idr_remove(&ss->css_idr, id);
5347 		cgroup_put(cgrp);
5348 
5349 		if (parent)
5350 			css_put(parent);
5351 	} else {
5352 		/* cgroup free path */
5353 		atomic_dec(&cgrp->root->nr_cgrps);
5354 		cgroup1_pidlist_destroy_all(cgrp);
5355 		cancel_work_sync(&cgrp->release_agent_work);
5356 		bpf_cgrp_storage_free(cgrp);
5357 
5358 		if (cgroup_parent(cgrp)) {
5359 			/*
5360 			 * We get a ref to the parent, and put the ref when
5361 			 * this cgroup is being freed, so it's guaranteed
5362 			 * that the parent won't be destroyed before its
5363 			 * children.
5364 			 */
5365 			cgroup_put(cgroup_parent(cgrp));
5366 			kernfs_put(cgrp->kn);
5367 			psi_cgroup_free(cgrp);
5368 			cgroup_rstat_exit(cgrp);
5369 			kfree(cgrp);
5370 		} else {
5371 			/*
5372 			 * This is root cgroup's refcnt reaching zero,
5373 			 * which indicates that the root should be
5374 			 * released.
5375 			 */
5376 			cgroup_destroy_root(cgrp->root);
5377 		}
5378 	}
5379 }
5380 
5381 static void css_release_work_fn(struct work_struct *work)
5382 {
5383 	struct cgroup_subsys_state *css =
5384 		container_of(work, struct cgroup_subsys_state, destroy_work);
5385 	struct cgroup_subsys *ss = css->ss;
5386 	struct cgroup *cgrp = css->cgroup;
5387 
5388 	mutex_lock(&cgroup_mutex);
5389 
5390 	css->flags |= CSS_RELEASED;
5391 	list_del_rcu(&css->sibling);
5392 
5393 	if (ss) {
5394 		/* css release path */
5395 		if (!list_empty(&css->rstat_css_node)) {
5396 			cgroup_rstat_flush(cgrp);
5397 			list_del_rcu(&css->rstat_css_node);
5398 		}
5399 
5400 		cgroup_idr_replace(&ss->css_idr, NULL, css->id);
5401 		if (ss->css_released)
5402 			ss->css_released(css);
5403 	} else {
5404 		struct cgroup *tcgrp;
5405 
5406 		/* cgroup release path */
5407 		TRACE_CGROUP_PATH(release, cgrp);
5408 
5409 		cgroup_rstat_flush(cgrp);
5410 
5411 		spin_lock_irq(&css_set_lock);
5412 		for (tcgrp = cgroup_parent(cgrp); tcgrp;
5413 		     tcgrp = cgroup_parent(tcgrp))
5414 			tcgrp->nr_dying_descendants--;
5415 		spin_unlock_irq(&css_set_lock);
5416 
5417 		/*
5418 		 * There are two control paths which try to determine
5419 		 * cgroup from dentry without going through kernfs -
5420 		 * cgroupstats_build() and css_tryget_online_from_dir().
5421 		 * Those are supported by RCU protecting clearing of
5422 		 * cgrp->kn->priv backpointer.
5423 		 */
5424 		if (cgrp->kn)
5425 			RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
5426 					 NULL);
5427 	}
5428 
5429 	mutex_unlock(&cgroup_mutex);
5430 
5431 	INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5432 	queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5433 }
5434 
5435 static void css_release(struct percpu_ref *ref)
5436 {
5437 	struct cgroup_subsys_state *css =
5438 		container_of(ref, struct cgroup_subsys_state, refcnt);
5439 
5440 	INIT_WORK(&css->destroy_work, css_release_work_fn);
5441 	queue_work(cgroup_destroy_wq, &css->destroy_work);
5442 }
5443 
5444 static void init_and_link_css(struct cgroup_subsys_state *css,
5445 			      struct cgroup_subsys *ss, struct cgroup *cgrp)
5446 {
5447 	lockdep_assert_held(&cgroup_mutex);
5448 
5449 	cgroup_get_live(cgrp);
5450 
5451 	memset(css, 0, sizeof(*css));
5452 	css->cgroup = cgrp;
5453 	css->ss = ss;
5454 	css->id = -1;
5455 	INIT_LIST_HEAD(&css->sibling);
5456 	INIT_LIST_HEAD(&css->children);
5457 	INIT_LIST_HEAD(&css->rstat_css_node);
5458 	css->serial_nr = css_serial_nr_next++;
5459 	atomic_set(&css->online_cnt, 0);
5460 
5461 	if (cgroup_parent(cgrp)) {
5462 		css->parent = cgroup_css(cgroup_parent(cgrp), ss);
5463 		css_get(css->parent);
5464 	}
5465 
5466 	if (ss->css_rstat_flush)
5467 		list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list);
5468 
5469 	BUG_ON(cgroup_css(cgrp, ss));
5470 }
5471 
5472 /* invoke ->css_online() on a new CSS and mark it online if successful */
5473 static int online_css(struct cgroup_subsys_state *css)
5474 {
5475 	struct cgroup_subsys *ss = css->ss;
5476 	int ret = 0;
5477 
5478 	lockdep_assert_held(&cgroup_mutex);
5479 
5480 	if (ss->css_online)
5481 		ret = ss->css_online(css);
5482 	if (!ret) {
5483 		css->flags |= CSS_ONLINE;
5484 		rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
5485 
5486 		atomic_inc(&css->online_cnt);
5487 		if (css->parent)
5488 			atomic_inc(&css->parent->online_cnt);
5489 	}
5490 	return ret;
5491 }
5492 
5493 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
5494 static void offline_css(struct cgroup_subsys_state *css)
5495 {
5496 	struct cgroup_subsys *ss = css->ss;
5497 
5498 	lockdep_assert_held(&cgroup_mutex);
5499 
5500 	if (!(css->flags & CSS_ONLINE))
5501 		return;
5502 
5503 	if (ss->css_offline)
5504 		ss->css_offline(css);
5505 
5506 	css->flags &= ~CSS_ONLINE;
5507 	RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
5508 
5509 	wake_up_all(&css->cgroup->offline_waitq);
5510 }
5511 
5512 /**
5513  * css_create - create a cgroup_subsys_state
5514  * @cgrp: the cgroup new css will be associated with
5515  * @ss: the subsys of new css
5516  *
5517  * Create a new css associated with @cgrp - @ss pair.  On success, the new
5518  * css is online and installed in @cgrp.  This function doesn't create the
5519  * interface files.  Returns 0 on success, -errno on failure.
5520  */
5521 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
5522 					      struct cgroup_subsys *ss)
5523 {
5524 	struct cgroup *parent = cgroup_parent(cgrp);
5525 	struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
5526 	struct cgroup_subsys_state *css;
5527 	int err;
5528 
5529 	lockdep_assert_held(&cgroup_mutex);
5530 
5531 	css = ss->css_alloc(parent_css);
5532 	if (!css)
5533 		css = ERR_PTR(-ENOMEM);
5534 	if (IS_ERR(css))
5535 		return css;
5536 
5537 	init_and_link_css(css, ss, cgrp);
5538 
5539 	err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
5540 	if (err)
5541 		goto err_free_css;
5542 
5543 	err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
5544 	if (err < 0)
5545 		goto err_free_css;
5546 	css->id = err;
5547 
5548 	/* @css is ready to be brought online now, make it visible */
5549 	list_add_tail_rcu(&css->sibling, &parent_css->children);
5550 	cgroup_idr_replace(&ss->css_idr, css, css->id);
5551 
5552 	err = online_css(css);
5553 	if (err)
5554 		goto err_list_del;
5555 
5556 	return css;
5557 
5558 err_list_del:
5559 	list_del_rcu(&css->sibling);
5560 err_free_css:
5561 	list_del_rcu(&css->rstat_css_node);
5562 	INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5563 	queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5564 	return ERR_PTR(err);
5565 }
5566 
5567 /*
5568  * The returned cgroup is fully initialized including its control mask, but
5569  * it isn't associated with its kernfs_node and doesn't have the control
5570  * mask applied.
5571  */
5572 static struct cgroup *cgroup_create(struct cgroup *parent, const char *name,
5573 				    umode_t mode)
5574 {
5575 	struct cgroup_root *root = parent->root;
5576 	struct cgroup *cgrp, *tcgrp;
5577 	struct kernfs_node *kn;
5578 	int level = parent->level + 1;
5579 	int ret;
5580 
5581 	/* allocate the cgroup and its ID, 0 is reserved for the root */
5582 	cgrp = kzalloc(struct_size(cgrp, ancestors, (level + 1)), GFP_KERNEL);
5583 	if (!cgrp)
5584 		return ERR_PTR(-ENOMEM);
5585 
5586 	ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
5587 	if (ret)
5588 		goto out_free_cgrp;
5589 
5590 	ret = cgroup_rstat_init(cgrp);
5591 	if (ret)
5592 		goto out_cancel_ref;
5593 
5594 	/* create the directory */
5595 	kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
5596 	if (IS_ERR(kn)) {
5597 		ret = PTR_ERR(kn);
5598 		goto out_stat_exit;
5599 	}
5600 	cgrp->kn = kn;
5601 
5602 	init_cgroup_housekeeping(cgrp);
5603 
5604 	cgrp->self.parent = &parent->self;
5605 	cgrp->root = root;
5606 	cgrp->level = level;
5607 
5608 	ret = psi_cgroup_alloc(cgrp);
5609 	if (ret)
5610 		goto out_kernfs_remove;
5611 
5612 	ret = cgroup_bpf_inherit(cgrp);
5613 	if (ret)
5614 		goto out_psi_free;
5615 
5616 	/*
5617 	 * New cgroup inherits effective freeze counter, and
5618 	 * if the parent has to be frozen, the child has too.
5619 	 */
5620 	cgrp->freezer.e_freeze = parent->freezer.e_freeze;
5621 	if (cgrp->freezer.e_freeze) {
5622 		/*
5623 		 * Set the CGRP_FREEZE flag, so when a process will be
5624 		 * attached to the child cgroup, it will become frozen.
5625 		 * At this point the new cgroup is unpopulated, so we can
5626 		 * consider it frozen immediately.
5627 		 */
5628 		set_bit(CGRP_FREEZE, &cgrp->flags);
5629 		set_bit(CGRP_FROZEN, &cgrp->flags);
5630 	}
5631 
5632 	spin_lock_irq(&css_set_lock);
5633 	for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5634 		cgrp->ancestors[tcgrp->level] = tcgrp;
5635 
5636 		if (tcgrp != cgrp) {
5637 			tcgrp->nr_descendants++;
5638 
5639 			/*
5640 			 * If the new cgroup is frozen, all ancestor cgroups
5641 			 * get a new frozen descendant, but their state can't
5642 			 * change because of this.
5643 			 */
5644 			if (cgrp->freezer.e_freeze)
5645 				tcgrp->freezer.nr_frozen_descendants++;
5646 		}
5647 	}
5648 	spin_unlock_irq(&css_set_lock);
5649 
5650 	if (notify_on_release(parent))
5651 		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
5652 
5653 	if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
5654 		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
5655 
5656 	cgrp->self.serial_nr = css_serial_nr_next++;
5657 
5658 	/* allocation complete, commit to creation */
5659 	list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
5660 	atomic_inc(&root->nr_cgrps);
5661 	cgroup_get_live(parent);
5662 
5663 	/*
5664 	 * On the default hierarchy, a child doesn't automatically inherit
5665 	 * subtree_control from the parent.  Each is configured manually.
5666 	 */
5667 	if (!cgroup_on_dfl(cgrp))
5668 		cgrp->subtree_control = cgroup_control(cgrp);
5669 
5670 	cgroup_propagate_control(cgrp);
5671 
5672 	return cgrp;
5673 
5674 out_psi_free:
5675 	psi_cgroup_free(cgrp);
5676 out_kernfs_remove:
5677 	kernfs_remove(cgrp->kn);
5678 out_stat_exit:
5679 	cgroup_rstat_exit(cgrp);
5680 out_cancel_ref:
5681 	percpu_ref_exit(&cgrp->self.refcnt);
5682 out_free_cgrp:
5683 	kfree(cgrp);
5684 	return ERR_PTR(ret);
5685 }
5686 
5687 static bool cgroup_check_hierarchy_limits(struct cgroup *parent)
5688 {
5689 	struct cgroup *cgroup;
5690 	int ret = false;
5691 	int level = 1;
5692 
5693 	lockdep_assert_held(&cgroup_mutex);
5694 
5695 	for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) {
5696 		if (cgroup->nr_descendants >= cgroup->max_descendants)
5697 			goto fail;
5698 
5699 		if (level > cgroup->max_depth)
5700 			goto fail;
5701 
5702 		level++;
5703 	}
5704 
5705 	ret = true;
5706 fail:
5707 	return ret;
5708 }
5709 
5710 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode)
5711 {
5712 	struct cgroup *parent, *cgrp;
5713 	int ret;
5714 
5715 	/* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
5716 	if (strchr(name, '\n'))
5717 		return -EINVAL;
5718 
5719 	parent = cgroup_kn_lock_live(parent_kn, false);
5720 	if (!parent)
5721 		return -ENODEV;
5722 
5723 	if (!cgroup_check_hierarchy_limits(parent)) {
5724 		ret = -EAGAIN;
5725 		goto out_unlock;
5726 	}
5727 
5728 	cgrp = cgroup_create(parent, name, mode);
5729 	if (IS_ERR(cgrp)) {
5730 		ret = PTR_ERR(cgrp);
5731 		goto out_unlock;
5732 	}
5733 
5734 	/*
5735 	 * This extra ref will be put in cgroup_free_fn() and guarantees
5736 	 * that @cgrp->kn is always accessible.
5737 	 */
5738 	kernfs_get(cgrp->kn);
5739 
5740 	ret = cgroup_kn_set_ugid(cgrp->kn);
5741 	if (ret)
5742 		goto out_destroy;
5743 
5744 	ret = css_populate_dir(&cgrp->self);
5745 	if (ret)
5746 		goto out_destroy;
5747 
5748 	ret = cgroup_apply_control_enable(cgrp);
5749 	if (ret)
5750 		goto out_destroy;
5751 
5752 	TRACE_CGROUP_PATH(mkdir, cgrp);
5753 
5754 	/* let's create and online css's */
5755 	kernfs_activate(cgrp->kn);
5756 
5757 	ret = 0;
5758 	goto out_unlock;
5759 
5760 out_destroy:
5761 	cgroup_destroy_locked(cgrp);
5762 out_unlock:
5763 	cgroup_kn_unlock(parent_kn);
5764 	return ret;
5765 }
5766 
5767 /*
5768  * This is called when the refcnt of a css is confirmed to be killed.
5769  * css_tryget_online() is now guaranteed to fail.  Tell the subsystem to
5770  * initiate destruction and put the css ref from kill_css().
5771  */
5772 static void css_killed_work_fn(struct work_struct *work)
5773 {
5774 	struct cgroup_subsys_state *css =
5775 		container_of(work, struct cgroup_subsys_state, destroy_work);
5776 
5777 	mutex_lock(&cgroup_mutex);
5778 
5779 	do {
5780 		offline_css(css);
5781 		css_put(css);
5782 		/* @css can't go away while we're holding cgroup_mutex */
5783 		css = css->parent;
5784 	} while (css && atomic_dec_and_test(&css->online_cnt));
5785 
5786 	mutex_unlock(&cgroup_mutex);
5787 }
5788 
5789 /* css kill confirmation processing requires process context, bounce */
5790 static void css_killed_ref_fn(struct percpu_ref *ref)
5791 {
5792 	struct cgroup_subsys_state *css =
5793 		container_of(ref, struct cgroup_subsys_state, refcnt);
5794 
5795 	if (atomic_dec_and_test(&css->online_cnt)) {
5796 		INIT_WORK(&css->destroy_work, css_killed_work_fn);
5797 		queue_work(cgroup_destroy_wq, &css->destroy_work);
5798 	}
5799 }
5800 
5801 /**
5802  * kill_css - destroy a css
5803  * @css: css to destroy
5804  *
5805  * This function initiates destruction of @css by removing cgroup interface
5806  * files and putting its base reference.  ->css_offline() will be invoked
5807  * asynchronously once css_tryget_online() is guaranteed to fail and when
5808  * the reference count reaches zero, @css will be released.
5809  */
5810 static void kill_css(struct cgroup_subsys_state *css)
5811 {
5812 	lockdep_assert_held(&cgroup_mutex);
5813 
5814 	if (css->flags & CSS_DYING)
5815 		return;
5816 
5817 	css->flags |= CSS_DYING;
5818 
5819 	/*
5820 	 * This must happen before css is disassociated with its cgroup.
5821 	 * See seq_css() for details.
5822 	 */
5823 	css_clear_dir(css);
5824 
5825 	/*
5826 	 * Killing would put the base ref, but we need to keep it alive
5827 	 * until after ->css_offline().
5828 	 */
5829 	css_get(css);
5830 
5831 	/*
5832 	 * cgroup core guarantees that, by the time ->css_offline() is
5833 	 * invoked, no new css reference will be given out via
5834 	 * css_tryget_online().  We can't simply call percpu_ref_kill() and
5835 	 * proceed to offlining css's because percpu_ref_kill() doesn't
5836 	 * guarantee that the ref is seen as killed on all CPUs on return.
5837 	 *
5838 	 * Use percpu_ref_kill_and_confirm() to get notifications as each
5839 	 * css is confirmed to be seen as killed on all CPUs.
5840 	 */
5841 	percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
5842 }
5843 
5844 /**
5845  * cgroup_destroy_locked - the first stage of cgroup destruction
5846  * @cgrp: cgroup to be destroyed
5847  *
5848  * css's make use of percpu refcnts whose killing latency shouldn't be
5849  * exposed to userland and are RCU protected.  Also, cgroup core needs to
5850  * guarantee that css_tryget_online() won't succeed by the time
5851  * ->css_offline() is invoked.  To satisfy all the requirements,
5852  * destruction is implemented in the following two steps.
5853  *
5854  * s1. Verify @cgrp can be destroyed and mark it dying.  Remove all
5855  *     userland visible parts and start killing the percpu refcnts of
5856  *     css's.  Set up so that the next stage will be kicked off once all
5857  *     the percpu refcnts are confirmed to be killed.
5858  *
5859  * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5860  *     rest of destruction.  Once all cgroup references are gone, the
5861  *     cgroup is RCU-freed.
5862  *
5863  * This function implements s1.  After this step, @cgrp is gone as far as
5864  * the userland is concerned and a new cgroup with the same name may be
5865  * created.  As cgroup doesn't care about the names internally, this
5866  * doesn't cause any problem.
5867  */
5868 static int cgroup_destroy_locked(struct cgroup *cgrp)
5869 	__releases(&cgroup_mutex) __acquires(&cgroup_mutex)
5870 {
5871 	struct cgroup *tcgrp, *parent = cgroup_parent(cgrp);
5872 	struct cgroup_subsys_state *css;
5873 	struct cgrp_cset_link *link;
5874 	int ssid;
5875 
5876 	lockdep_assert_held(&cgroup_mutex);
5877 
5878 	/*
5879 	 * Only migration can raise populated from zero and we're already
5880 	 * holding cgroup_mutex.
5881 	 */
5882 	if (cgroup_is_populated(cgrp))
5883 		return -EBUSY;
5884 
5885 	/*
5886 	 * Make sure there's no live children.  We can't test emptiness of
5887 	 * ->self.children as dead children linger on it while being
5888 	 * drained; otherwise, "rmdir parent/child parent" may fail.
5889 	 */
5890 	if (css_has_online_children(&cgrp->self))
5891 		return -EBUSY;
5892 
5893 	/*
5894 	 * Mark @cgrp and the associated csets dead.  The former prevents
5895 	 * further task migration and child creation by disabling
5896 	 * cgroup_lock_live_group().  The latter makes the csets ignored by
5897 	 * the migration path.
5898 	 */
5899 	cgrp->self.flags &= ~CSS_ONLINE;
5900 
5901 	spin_lock_irq(&css_set_lock);
5902 	list_for_each_entry(link, &cgrp->cset_links, cset_link)
5903 		link->cset->dead = true;
5904 	spin_unlock_irq(&css_set_lock);
5905 
5906 	/* initiate massacre of all css's */
5907 	for_each_css(css, ssid, cgrp)
5908 		kill_css(css);
5909 
5910 	/* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */
5911 	css_clear_dir(&cgrp->self);
5912 	kernfs_remove(cgrp->kn);
5913 
5914 	if (cgroup_is_threaded(cgrp))
5915 		parent->nr_threaded_children--;
5916 
5917 	spin_lock_irq(&css_set_lock);
5918 	for (tcgrp = cgroup_parent(cgrp); tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5919 		tcgrp->nr_descendants--;
5920 		tcgrp->nr_dying_descendants++;
5921 		/*
5922 		 * If the dying cgroup is frozen, decrease frozen descendants
5923 		 * counters of ancestor cgroups.
5924 		 */
5925 		if (test_bit(CGRP_FROZEN, &cgrp->flags))
5926 			tcgrp->freezer.nr_frozen_descendants--;
5927 	}
5928 	spin_unlock_irq(&css_set_lock);
5929 
5930 	cgroup1_check_for_release(parent);
5931 
5932 	cgroup_bpf_offline(cgrp);
5933 
5934 	/* put the base reference */
5935 	percpu_ref_kill(&cgrp->self.refcnt);
5936 
5937 	return 0;
5938 };
5939 
5940 int cgroup_rmdir(struct kernfs_node *kn)
5941 {
5942 	struct cgroup *cgrp;
5943 	int ret = 0;
5944 
5945 	cgrp = cgroup_kn_lock_live(kn, false);
5946 	if (!cgrp)
5947 		return 0;
5948 
5949 	ret = cgroup_destroy_locked(cgrp);
5950 	if (!ret)
5951 		TRACE_CGROUP_PATH(rmdir, cgrp);
5952 
5953 	cgroup_kn_unlock(kn);
5954 	return ret;
5955 }
5956 
5957 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5958 	.show_options		= cgroup_show_options,
5959 	.mkdir			= cgroup_mkdir,
5960 	.rmdir			= cgroup_rmdir,
5961 	.show_path		= cgroup_show_path,
5962 };
5963 
5964 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
5965 {
5966 	struct cgroup_subsys_state *css;
5967 
5968 	pr_debug("Initializing cgroup subsys %s\n", ss->name);
5969 
5970 	mutex_lock(&cgroup_mutex);
5971 
5972 	idr_init(&ss->css_idr);
5973 	INIT_LIST_HEAD(&ss->cfts);
5974 
5975 	/* Create the root cgroup state for this subsystem */
5976 	ss->root = &cgrp_dfl_root;
5977 	css = ss->css_alloc(NULL);
5978 	/* We don't handle early failures gracefully */
5979 	BUG_ON(IS_ERR(css));
5980 	init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
5981 
5982 	/*
5983 	 * Root csses are never destroyed and we can't initialize
5984 	 * percpu_ref during early init.  Disable refcnting.
5985 	 */
5986 	css->flags |= CSS_NO_REF;
5987 
5988 	if (early) {
5989 		/* allocation can't be done safely during early init */
5990 		css->id = 1;
5991 	} else {
5992 		css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5993 		BUG_ON(css->id < 0);
5994 	}
5995 
5996 	/* Update the init_css_set to contain a subsys
5997 	 * pointer to this state - since the subsystem is
5998 	 * newly registered, all tasks and hence the
5999 	 * init_css_set is in the subsystem's root cgroup. */
6000 	init_css_set.subsys[ss->id] = css;
6001 
6002 	have_fork_callback |= (bool)ss->fork << ss->id;
6003 	have_exit_callback |= (bool)ss->exit << ss->id;
6004 	have_release_callback |= (bool)ss->release << ss->id;
6005 	have_canfork_callback |= (bool)ss->can_fork << ss->id;
6006 
6007 	/* At system boot, before all subsystems have been
6008 	 * registered, no tasks have been forked, so we don't
6009 	 * need to invoke fork callbacks here. */
6010 	BUG_ON(!list_empty(&init_task.tasks));
6011 
6012 	BUG_ON(online_css(css));
6013 
6014 	mutex_unlock(&cgroup_mutex);
6015 }
6016 
6017 /**
6018  * cgroup_init_early - cgroup initialization at system boot
6019  *
6020  * Initialize cgroups at system boot, and initialize any
6021  * subsystems that request early init.
6022  */
6023 int __init cgroup_init_early(void)
6024 {
6025 	static struct cgroup_fs_context __initdata ctx;
6026 	struct cgroup_subsys *ss;
6027 	int i;
6028 
6029 	ctx.root = &cgrp_dfl_root;
6030 	init_cgroup_root(&ctx);
6031 	cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
6032 
6033 	RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
6034 
6035 	for_each_subsys(ss, i) {
6036 		WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
6037 		     "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
6038 		     i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
6039 		     ss->id, ss->name);
6040 		WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
6041 		     "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
6042 
6043 		ss->id = i;
6044 		ss->name = cgroup_subsys_name[i];
6045 		if (!ss->legacy_name)
6046 			ss->legacy_name = cgroup_subsys_name[i];
6047 
6048 		if (ss->early_init)
6049 			cgroup_init_subsys(ss, true);
6050 	}
6051 	return 0;
6052 }
6053 
6054 /**
6055  * cgroup_init - cgroup initialization
6056  *
6057  * Register cgroup filesystem and /proc file, and initialize
6058  * any subsystems that didn't request early init.
6059  */
6060 int __init cgroup_init(void)
6061 {
6062 	struct cgroup_subsys *ss;
6063 	int ssid;
6064 
6065 	BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
6066 	BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
6067 	BUG_ON(cgroup_init_cftypes(NULL, cgroup_psi_files));
6068 	BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files));
6069 
6070 	cgroup_rstat_boot();
6071 
6072 	get_user_ns(init_cgroup_ns.user_ns);
6073 
6074 	mutex_lock(&cgroup_mutex);
6075 
6076 	/*
6077 	 * Add init_css_set to the hash table so that dfl_root can link to
6078 	 * it during init.
6079 	 */
6080 	hash_add(css_set_table, &init_css_set.hlist,
6081 		 css_set_hash(init_css_set.subsys));
6082 
6083 	BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
6084 
6085 	mutex_unlock(&cgroup_mutex);
6086 
6087 	for_each_subsys(ss, ssid) {
6088 		if (ss->early_init) {
6089 			struct cgroup_subsys_state *css =
6090 				init_css_set.subsys[ss->id];
6091 
6092 			css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
6093 						   GFP_KERNEL);
6094 			BUG_ON(css->id < 0);
6095 		} else {
6096 			cgroup_init_subsys(ss, false);
6097 		}
6098 
6099 		list_add_tail(&init_css_set.e_cset_node[ssid],
6100 			      &cgrp_dfl_root.cgrp.e_csets[ssid]);
6101 
6102 		/*
6103 		 * Setting dfl_root subsys_mask needs to consider the
6104 		 * disabled flag and cftype registration needs kmalloc,
6105 		 * both of which aren't available during early_init.
6106 		 */
6107 		if (!cgroup_ssid_enabled(ssid))
6108 			continue;
6109 
6110 		if (cgroup1_ssid_disabled(ssid))
6111 			printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n",
6112 			       ss->name);
6113 
6114 		cgrp_dfl_root.subsys_mask |= 1 << ss->id;
6115 
6116 		/* implicit controllers must be threaded too */
6117 		WARN_ON(ss->implicit_on_dfl && !ss->threaded);
6118 
6119 		if (ss->implicit_on_dfl)
6120 			cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
6121 		else if (!ss->dfl_cftypes)
6122 			cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
6123 
6124 		if (ss->threaded)
6125 			cgrp_dfl_threaded_ss_mask |= 1 << ss->id;
6126 
6127 		if (ss->dfl_cftypes == ss->legacy_cftypes) {
6128 			WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
6129 		} else {
6130 			WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
6131 			WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
6132 		}
6133 
6134 		if (ss->bind)
6135 			ss->bind(init_css_set.subsys[ssid]);
6136 
6137 		mutex_lock(&cgroup_mutex);
6138 		css_populate_dir(init_css_set.subsys[ssid]);
6139 		mutex_unlock(&cgroup_mutex);
6140 	}
6141 
6142 	/* init_css_set.subsys[] has been updated, re-hash */
6143 	hash_del(&init_css_set.hlist);
6144 	hash_add(css_set_table, &init_css_set.hlist,
6145 		 css_set_hash(init_css_set.subsys));
6146 
6147 	WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
6148 	WARN_ON(register_filesystem(&cgroup_fs_type));
6149 	WARN_ON(register_filesystem(&cgroup2_fs_type));
6150 	WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show));
6151 #ifdef CONFIG_CPUSETS
6152 	WARN_ON(register_filesystem(&cpuset_fs_type));
6153 #endif
6154 
6155 	return 0;
6156 }
6157 
6158 static int __init cgroup_wq_init(void)
6159 {
6160 	/*
6161 	 * There isn't much point in executing destruction path in
6162 	 * parallel.  Good chunk is serialized with cgroup_mutex anyway.
6163 	 * Use 1 for @max_active.
6164 	 *
6165 	 * We would prefer to do this in cgroup_init() above, but that
6166 	 * is called before init_workqueues(): so leave this until after.
6167 	 */
6168 	cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
6169 	BUG_ON(!cgroup_destroy_wq);
6170 	return 0;
6171 }
6172 core_initcall(cgroup_wq_init);
6173 
6174 void cgroup_path_from_kernfs_id(u64 id, char *buf, size_t buflen)
6175 {
6176 	struct kernfs_node *kn;
6177 
6178 	kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id);
6179 	if (!kn)
6180 		return;
6181 	kernfs_path(kn, buf, buflen);
6182 	kernfs_put(kn);
6183 }
6184 
6185 /*
6186  * cgroup_get_from_id : get the cgroup associated with cgroup id
6187  * @id: cgroup id
6188  * On success return the cgrp or ERR_PTR on failure
6189  * Only cgroups within current task's cgroup NS are valid.
6190  */
6191 struct cgroup *cgroup_get_from_id(u64 id)
6192 {
6193 	struct kernfs_node *kn;
6194 	struct cgroup *cgrp, *root_cgrp;
6195 
6196 	kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id);
6197 	if (!kn)
6198 		return ERR_PTR(-ENOENT);
6199 
6200 	if (kernfs_type(kn) != KERNFS_DIR) {
6201 		kernfs_put(kn);
6202 		return ERR_PTR(-ENOENT);
6203 	}
6204 
6205 	rcu_read_lock();
6206 
6207 	cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6208 	if (cgrp && !cgroup_tryget(cgrp))
6209 		cgrp = NULL;
6210 
6211 	rcu_read_unlock();
6212 	kernfs_put(kn);
6213 
6214 	if (!cgrp)
6215 		return ERR_PTR(-ENOENT);
6216 
6217 	root_cgrp = current_cgns_cgroup_dfl();
6218 	if (!cgroup_is_descendant(cgrp, root_cgrp)) {
6219 		cgroup_put(cgrp);
6220 		return ERR_PTR(-ENOENT);
6221 	}
6222 
6223 	return cgrp;
6224 }
6225 EXPORT_SYMBOL_GPL(cgroup_get_from_id);
6226 
6227 /*
6228  * proc_cgroup_show()
6229  *  - Print task's cgroup paths into seq_file, one line for each hierarchy
6230  *  - Used for /proc/<pid>/cgroup.
6231  */
6232 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
6233 		     struct pid *pid, struct task_struct *tsk)
6234 {
6235 	char *buf;
6236 	int retval;
6237 	struct cgroup_root *root;
6238 
6239 	retval = -ENOMEM;
6240 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
6241 	if (!buf)
6242 		goto out;
6243 
6244 	mutex_lock(&cgroup_mutex);
6245 	spin_lock_irq(&css_set_lock);
6246 
6247 	for_each_root(root) {
6248 		struct cgroup_subsys *ss;
6249 		struct cgroup *cgrp;
6250 		int ssid, count = 0;
6251 
6252 		if (root == &cgrp_dfl_root && !READ_ONCE(cgrp_dfl_visible))
6253 			continue;
6254 
6255 		seq_printf(m, "%d:", root->hierarchy_id);
6256 		if (root != &cgrp_dfl_root)
6257 			for_each_subsys(ss, ssid)
6258 				if (root->subsys_mask & (1 << ssid))
6259 					seq_printf(m, "%s%s", count++ ? "," : "",
6260 						   ss->legacy_name);
6261 		if (strlen(root->name))
6262 			seq_printf(m, "%sname=%s", count ? "," : "",
6263 				   root->name);
6264 		seq_putc(m, ':');
6265 
6266 		cgrp = task_cgroup_from_root(tsk, root);
6267 
6268 		/*
6269 		 * On traditional hierarchies, all zombie tasks show up as
6270 		 * belonging to the root cgroup.  On the default hierarchy,
6271 		 * while a zombie doesn't show up in "cgroup.procs" and
6272 		 * thus can't be migrated, its /proc/PID/cgroup keeps
6273 		 * reporting the cgroup it belonged to before exiting.  If
6274 		 * the cgroup is removed before the zombie is reaped,
6275 		 * " (deleted)" is appended to the cgroup path.
6276 		 */
6277 		if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
6278 			retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
6279 						current->nsproxy->cgroup_ns);
6280 			if (retval >= PATH_MAX)
6281 				retval = -ENAMETOOLONG;
6282 			if (retval < 0)
6283 				goto out_unlock;
6284 
6285 			seq_puts(m, buf);
6286 		} else {
6287 			seq_puts(m, "/");
6288 		}
6289 
6290 		if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
6291 			seq_puts(m, " (deleted)\n");
6292 		else
6293 			seq_putc(m, '\n');
6294 	}
6295 
6296 	retval = 0;
6297 out_unlock:
6298 	spin_unlock_irq(&css_set_lock);
6299 	mutex_unlock(&cgroup_mutex);
6300 	kfree(buf);
6301 out:
6302 	return retval;
6303 }
6304 
6305 /**
6306  * cgroup_fork - initialize cgroup related fields during copy_process()
6307  * @child: pointer to task_struct of forking parent process.
6308  *
6309  * A task is associated with the init_css_set until cgroup_post_fork()
6310  * attaches it to the target css_set.
6311  */
6312 void cgroup_fork(struct task_struct *child)
6313 {
6314 	RCU_INIT_POINTER(child->cgroups, &init_css_set);
6315 	INIT_LIST_HEAD(&child->cg_list);
6316 }
6317 
6318 /**
6319  * cgroup_v1v2_get_from_file - get a cgroup pointer from a file pointer
6320  * @f: file corresponding to cgroup_dir
6321  *
6322  * Find the cgroup from a file pointer associated with a cgroup directory.
6323  * Returns a pointer to the cgroup on success. ERR_PTR is returned if the
6324  * cgroup cannot be found.
6325  */
6326 static struct cgroup *cgroup_v1v2_get_from_file(struct file *f)
6327 {
6328 	struct cgroup_subsys_state *css;
6329 
6330 	css = css_tryget_online_from_dir(f->f_path.dentry, NULL);
6331 	if (IS_ERR(css))
6332 		return ERR_CAST(css);
6333 
6334 	return css->cgroup;
6335 }
6336 
6337 /**
6338  * cgroup_get_from_file - same as cgroup_v1v2_get_from_file, but only supports
6339  * cgroup2.
6340  * @f: file corresponding to cgroup2_dir
6341  */
6342 static struct cgroup *cgroup_get_from_file(struct file *f)
6343 {
6344 	struct cgroup *cgrp = cgroup_v1v2_get_from_file(f);
6345 
6346 	if (IS_ERR(cgrp))
6347 		return ERR_CAST(cgrp);
6348 
6349 	if (!cgroup_on_dfl(cgrp)) {
6350 		cgroup_put(cgrp);
6351 		return ERR_PTR(-EBADF);
6352 	}
6353 
6354 	return cgrp;
6355 }
6356 
6357 /**
6358  * cgroup_css_set_fork - find or create a css_set for a child process
6359  * @kargs: the arguments passed to create the child process
6360  *
6361  * This functions finds or creates a new css_set which the child
6362  * process will be attached to in cgroup_post_fork(). By default,
6363  * the child process will be given the same css_set as its parent.
6364  *
6365  * If CLONE_INTO_CGROUP is specified this function will try to find an
6366  * existing css_set which includes the requested cgroup and if not create
6367  * a new css_set that the child will be attached to later. If this function
6368  * succeeds it will hold cgroup_threadgroup_rwsem on return. If
6369  * CLONE_INTO_CGROUP is requested this function will grab cgroup mutex
6370  * before grabbing cgroup_threadgroup_rwsem and will hold a reference
6371  * to the target cgroup.
6372  */
6373 static int cgroup_css_set_fork(struct kernel_clone_args *kargs)
6374 	__acquires(&cgroup_mutex) __acquires(&cgroup_threadgroup_rwsem)
6375 {
6376 	int ret;
6377 	struct cgroup *dst_cgrp = NULL;
6378 	struct css_set *cset;
6379 	struct super_block *sb;
6380 	struct file *f;
6381 
6382 	if (kargs->flags & CLONE_INTO_CGROUP)
6383 		mutex_lock(&cgroup_mutex);
6384 
6385 	cgroup_threadgroup_change_begin(current);
6386 
6387 	spin_lock_irq(&css_set_lock);
6388 	cset = task_css_set(current);
6389 	get_css_set(cset);
6390 	spin_unlock_irq(&css_set_lock);
6391 
6392 	if (!(kargs->flags & CLONE_INTO_CGROUP)) {
6393 		kargs->cset = cset;
6394 		return 0;
6395 	}
6396 
6397 	f = fget_raw(kargs->cgroup);
6398 	if (!f) {
6399 		ret = -EBADF;
6400 		goto err;
6401 	}
6402 	sb = f->f_path.dentry->d_sb;
6403 
6404 	dst_cgrp = cgroup_get_from_file(f);
6405 	if (IS_ERR(dst_cgrp)) {
6406 		ret = PTR_ERR(dst_cgrp);
6407 		dst_cgrp = NULL;
6408 		goto err;
6409 	}
6410 
6411 	if (cgroup_is_dead(dst_cgrp)) {
6412 		ret = -ENODEV;
6413 		goto err;
6414 	}
6415 
6416 	/*
6417 	 * Verify that we the target cgroup is writable for us. This is
6418 	 * usually done by the vfs layer but since we're not going through
6419 	 * the vfs layer here we need to do it "manually".
6420 	 */
6421 	ret = cgroup_may_write(dst_cgrp, sb);
6422 	if (ret)
6423 		goto err;
6424 
6425 	/*
6426 	 * Spawning a task directly into a cgroup works by passing a file
6427 	 * descriptor to the target cgroup directory. This can even be an O_PATH
6428 	 * file descriptor. But it can never be a cgroup.procs file descriptor.
6429 	 * This was done on purpose so spawning into a cgroup could be
6430 	 * conceptualized as an atomic
6431 	 *
6432 	 *   fd = openat(dfd_cgroup, "cgroup.procs", ...);
6433 	 *   write(fd, <child-pid>, ...);
6434 	 *
6435 	 * sequence, i.e. it's a shorthand for the caller opening and writing
6436 	 * cgroup.procs of the cgroup indicated by @dfd_cgroup. This allows us
6437 	 * to always use the caller's credentials.
6438 	 */
6439 	ret = cgroup_attach_permissions(cset->dfl_cgrp, dst_cgrp, sb,
6440 					!(kargs->flags & CLONE_THREAD),
6441 					current->nsproxy->cgroup_ns);
6442 	if (ret)
6443 		goto err;
6444 
6445 	kargs->cset = find_css_set(cset, dst_cgrp);
6446 	if (!kargs->cset) {
6447 		ret = -ENOMEM;
6448 		goto err;
6449 	}
6450 
6451 	put_css_set(cset);
6452 	fput(f);
6453 	kargs->cgrp = dst_cgrp;
6454 	return ret;
6455 
6456 err:
6457 	cgroup_threadgroup_change_end(current);
6458 	mutex_unlock(&cgroup_mutex);
6459 	if (f)
6460 		fput(f);
6461 	if (dst_cgrp)
6462 		cgroup_put(dst_cgrp);
6463 	put_css_set(cset);
6464 	if (kargs->cset)
6465 		put_css_set(kargs->cset);
6466 	return ret;
6467 }
6468 
6469 /**
6470  * cgroup_css_set_put_fork - drop references we took during fork
6471  * @kargs: the arguments passed to create the child process
6472  *
6473  * Drop references to the prepared css_set and target cgroup if
6474  * CLONE_INTO_CGROUP was requested.
6475  */
6476 static void cgroup_css_set_put_fork(struct kernel_clone_args *kargs)
6477 	__releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
6478 {
6479 	cgroup_threadgroup_change_end(current);
6480 
6481 	if (kargs->flags & CLONE_INTO_CGROUP) {
6482 		struct cgroup *cgrp = kargs->cgrp;
6483 		struct css_set *cset = kargs->cset;
6484 
6485 		mutex_unlock(&cgroup_mutex);
6486 
6487 		if (cset) {
6488 			put_css_set(cset);
6489 			kargs->cset = NULL;
6490 		}
6491 
6492 		if (cgrp) {
6493 			cgroup_put(cgrp);
6494 			kargs->cgrp = NULL;
6495 		}
6496 	}
6497 }
6498 
6499 /**
6500  * cgroup_can_fork - called on a new task before the process is exposed
6501  * @child: the child process
6502  * @kargs: the arguments passed to create the child process
6503  *
6504  * This prepares a new css_set for the child process which the child will
6505  * be attached to in cgroup_post_fork().
6506  * This calls the subsystem can_fork() callbacks. If the cgroup_can_fork()
6507  * callback returns an error, the fork aborts with that error code. This
6508  * allows for a cgroup subsystem to conditionally allow or deny new forks.
6509  */
6510 int cgroup_can_fork(struct task_struct *child, struct kernel_clone_args *kargs)
6511 {
6512 	struct cgroup_subsys *ss;
6513 	int i, j, ret;
6514 
6515 	ret = cgroup_css_set_fork(kargs);
6516 	if (ret)
6517 		return ret;
6518 
6519 	do_each_subsys_mask(ss, i, have_canfork_callback) {
6520 		ret = ss->can_fork(child, kargs->cset);
6521 		if (ret)
6522 			goto out_revert;
6523 	} while_each_subsys_mask();
6524 
6525 	return 0;
6526 
6527 out_revert:
6528 	for_each_subsys(ss, j) {
6529 		if (j >= i)
6530 			break;
6531 		if (ss->cancel_fork)
6532 			ss->cancel_fork(child, kargs->cset);
6533 	}
6534 
6535 	cgroup_css_set_put_fork(kargs);
6536 
6537 	return ret;
6538 }
6539 
6540 /**
6541  * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
6542  * @child: the child process
6543  * @kargs: the arguments passed to create the child process
6544  *
6545  * This calls the cancel_fork() callbacks if a fork failed *after*
6546  * cgroup_can_fork() succeeded and cleans up references we took to
6547  * prepare a new css_set for the child process in cgroup_can_fork().
6548  */
6549 void cgroup_cancel_fork(struct task_struct *child,
6550 			struct kernel_clone_args *kargs)
6551 {
6552 	struct cgroup_subsys *ss;
6553 	int i;
6554 
6555 	for_each_subsys(ss, i)
6556 		if (ss->cancel_fork)
6557 			ss->cancel_fork(child, kargs->cset);
6558 
6559 	cgroup_css_set_put_fork(kargs);
6560 }
6561 
6562 /**
6563  * cgroup_post_fork - finalize cgroup setup for the child process
6564  * @child: the child process
6565  * @kargs: the arguments passed to create the child process
6566  *
6567  * Attach the child process to its css_set calling the subsystem fork()
6568  * callbacks.
6569  */
6570 void cgroup_post_fork(struct task_struct *child,
6571 		      struct kernel_clone_args *kargs)
6572 	__releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
6573 {
6574 	unsigned long cgrp_flags = 0;
6575 	bool kill = false;
6576 	struct cgroup_subsys *ss;
6577 	struct css_set *cset;
6578 	int i;
6579 
6580 	cset = kargs->cset;
6581 	kargs->cset = NULL;
6582 
6583 	spin_lock_irq(&css_set_lock);
6584 
6585 	/* init tasks are special, only link regular threads */
6586 	if (likely(child->pid)) {
6587 		if (kargs->cgrp)
6588 			cgrp_flags = kargs->cgrp->flags;
6589 		else
6590 			cgrp_flags = cset->dfl_cgrp->flags;
6591 
6592 		WARN_ON_ONCE(!list_empty(&child->cg_list));
6593 		cset->nr_tasks++;
6594 		css_set_move_task(child, NULL, cset, false);
6595 	} else {
6596 		put_css_set(cset);
6597 		cset = NULL;
6598 	}
6599 
6600 	if (!(child->flags & PF_KTHREAD)) {
6601 		if (unlikely(test_bit(CGRP_FREEZE, &cgrp_flags))) {
6602 			/*
6603 			 * If the cgroup has to be frozen, the new task has
6604 			 * too. Let's set the JOBCTL_TRAP_FREEZE jobctl bit to
6605 			 * get the task into the frozen state.
6606 			 */
6607 			spin_lock(&child->sighand->siglock);
6608 			WARN_ON_ONCE(child->frozen);
6609 			child->jobctl |= JOBCTL_TRAP_FREEZE;
6610 			spin_unlock(&child->sighand->siglock);
6611 
6612 			/*
6613 			 * Calling cgroup_update_frozen() isn't required here,
6614 			 * because it will be called anyway a bit later from
6615 			 * do_freezer_trap(). So we avoid cgroup's transient
6616 			 * switch from the frozen state and back.
6617 			 */
6618 		}
6619 
6620 		/*
6621 		 * If the cgroup is to be killed notice it now and take the
6622 		 * child down right after we finished preparing it for
6623 		 * userspace.
6624 		 */
6625 		kill = test_bit(CGRP_KILL, &cgrp_flags);
6626 	}
6627 
6628 	spin_unlock_irq(&css_set_lock);
6629 
6630 	/*
6631 	 * Call ss->fork().  This must happen after @child is linked on
6632 	 * css_set; otherwise, @child might change state between ->fork()
6633 	 * and addition to css_set.
6634 	 */
6635 	do_each_subsys_mask(ss, i, have_fork_callback) {
6636 		ss->fork(child);
6637 	} while_each_subsys_mask();
6638 
6639 	/* Make the new cset the root_cset of the new cgroup namespace. */
6640 	if (kargs->flags & CLONE_NEWCGROUP) {
6641 		struct css_set *rcset = child->nsproxy->cgroup_ns->root_cset;
6642 
6643 		get_css_set(cset);
6644 		child->nsproxy->cgroup_ns->root_cset = cset;
6645 		put_css_set(rcset);
6646 	}
6647 
6648 	/* Cgroup has to be killed so take down child immediately. */
6649 	if (unlikely(kill))
6650 		do_send_sig_info(SIGKILL, SEND_SIG_NOINFO, child, PIDTYPE_TGID);
6651 
6652 	cgroup_css_set_put_fork(kargs);
6653 }
6654 
6655 /**
6656  * cgroup_exit - detach cgroup from exiting task
6657  * @tsk: pointer to task_struct of exiting process
6658  *
6659  * Description: Detach cgroup from @tsk.
6660  *
6661  */
6662 void cgroup_exit(struct task_struct *tsk)
6663 {
6664 	struct cgroup_subsys *ss;
6665 	struct css_set *cset;
6666 	int i;
6667 
6668 	spin_lock_irq(&css_set_lock);
6669 
6670 	WARN_ON_ONCE(list_empty(&tsk->cg_list));
6671 	cset = task_css_set(tsk);
6672 	css_set_move_task(tsk, cset, NULL, false);
6673 	list_add_tail(&tsk->cg_list, &cset->dying_tasks);
6674 	cset->nr_tasks--;
6675 
6676 	WARN_ON_ONCE(cgroup_task_frozen(tsk));
6677 	if (unlikely(!(tsk->flags & PF_KTHREAD) &&
6678 		     test_bit(CGRP_FREEZE, &task_dfl_cgroup(tsk)->flags)))
6679 		cgroup_update_frozen(task_dfl_cgroup(tsk));
6680 
6681 	spin_unlock_irq(&css_set_lock);
6682 
6683 	/* see cgroup_post_fork() for details */
6684 	do_each_subsys_mask(ss, i, have_exit_callback) {
6685 		ss->exit(tsk);
6686 	} while_each_subsys_mask();
6687 }
6688 
6689 void cgroup_release(struct task_struct *task)
6690 {
6691 	struct cgroup_subsys *ss;
6692 	int ssid;
6693 
6694 	do_each_subsys_mask(ss, ssid, have_release_callback) {
6695 		ss->release(task);
6696 	} while_each_subsys_mask();
6697 
6698 	spin_lock_irq(&css_set_lock);
6699 	css_set_skip_task_iters(task_css_set(task), task);
6700 	list_del_init(&task->cg_list);
6701 	spin_unlock_irq(&css_set_lock);
6702 }
6703 
6704 void cgroup_free(struct task_struct *task)
6705 {
6706 	struct css_set *cset = task_css_set(task);
6707 	put_css_set(cset);
6708 }
6709 
6710 static int __init cgroup_disable(char *str)
6711 {
6712 	struct cgroup_subsys *ss;
6713 	char *token;
6714 	int i;
6715 
6716 	while ((token = strsep(&str, ",")) != NULL) {
6717 		if (!*token)
6718 			continue;
6719 
6720 		for_each_subsys(ss, i) {
6721 			if (strcmp(token, ss->name) &&
6722 			    strcmp(token, ss->legacy_name))
6723 				continue;
6724 
6725 			static_branch_disable(cgroup_subsys_enabled_key[i]);
6726 			pr_info("Disabling %s control group subsystem\n",
6727 				ss->name);
6728 		}
6729 
6730 		for (i = 0; i < OPT_FEATURE_COUNT; i++) {
6731 			if (strcmp(token, cgroup_opt_feature_names[i]))
6732 				continue;
6733 			cgroup_feature_disable_mask |= 1 << i;
6734 			pr_info("Disabling %s control group feature\n",
6735 				cgroup_opt_feature_names[i]);
6736 			break;
6737 		}
6738 	}
6739 	return 1;
6740 }
6741 __setup("cgroup_disable=", cgroup_disable);
6742 
6743 void __init __weak enable_debug_cgroup(void) { }
6744 
6745 static int __init enable_cgroup_debug(char *str)
6746 {
6747 	cgroup_debug = true;
6748 	enable_debug_cgroup();
6749 	return 1;
6750 }
6751 __setup("cgroup_debug", enable_cgroup_debug);
6752 
6753 /**
6754  * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
6755  * @dentry: directory dentry of interest
6756  * @ss: subsystem of interest
6757  *
6758  * If @dentry is a directory for a cgroup which has @ss enabled on it, try
6759  * to get the corresponding css and return it.  If such css doesn't exist
6760  * or can't be pinned, an ERR_PTR value is returned.
6761  */
6762 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
6763 						       struct cgroup_subsys *ss)
6764 {
6765 	struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
6766 	struct file_system_type *s_type = dentry->d_sb->s_type;
6767 	struct cgroup_subsys_state *css = NULL;
6768 	struct cgroup *cgrp;
6769 
6770 	/* is @dentry a cgroup dir? */
6771 	if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
6772 	    !kn || kernfs_type(kn) != KERNFS_DIR)
6773 		return ERR_PTR(-EBADF);
6774 
6775 	rcu_read_lock();
6776 
6777 	/*
6778 	 * This path doesn't originate from kernfs and @kn could already
6779 	 * have been or be removed at any point.  @kn->priv is RCU
6780 	 * protected for this access.  See css_release_work_fn() for details.
6781 	 */
6782 	cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6783 	if (cgrp)
6784 		css = cgroup_css(cgrp, ss);
6785 
6786 	if (!css || !css_tryget_online(css))
6787 		css = ERR_PTR(-ENOENT);
6788 
6789 	rcu_read_unlock();
6790 	return css;
6791 }
6792 
6793 /**
6794  * css_from_id - lookup css by id
6795  * @id: the cgroup id
6796  * @ss: cgroup subsys to be looked into
6797  *
6798  * Returns the css if there's valid one with @id, otherwise returns NULL.
6799  * Should be called under rcu_read_lock().
6800  */
6801 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
6802 {
6803 	WARN_ON_ONCE(!rcu_read_lock_held());
6804 	return idr_find(&ss->css_idr, id);
6805 }
6806 
6807 /**
6808  * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
6809  * @path: path on the default hierarchy
6810  *
6811  * Find the cgroup at @path on the default hierarchy, increment its
6812  * reference count and return it.  Returns pointer to the found cgroup on
6813  * success, ERR_PTR(-ENOENT) if @path doesn't exist or if the cgroup has already
6814  * been released and ERR_PTR(-ENOTDIR) if @path points to a non-directory.
6815  */
6816 struct cgroup *cgroup_get_from_path(const char *path)
6817 {
6818 	struct kernfs_node *kn;
6819 	struct cgroup *cgrp = ERR_PTR(-ENOENT);
6820 	struct cgroup *root_cgrp;
6821 
6822 	root_cgrp = current_cgns_cgroup_dfl();
6823 	kn = kernfs_walk_and_get(root_cgrp->kn, path);
6824 	if (!kn)
6825 		goto out;
6826 
6827 	if (kernfs_type(kn) != KERNFS_DIR) {
6828 		cgrp = ERR_PTR(-ENOTDIR);
6829 		goto out_kernfs;
6830 	}
6831 
6832 	rcu_read_lock();
6833 
6834 	cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6835 	if (!cgrp || !cgroup_tryget(cgrp))
6836 		cgrp = ERR_PTR(-ENOENT);
6837 
6838 	rcu_read_unlock();
6839 
6840 out_kernfs:
6841 	kernfs_put(kn);
6842 out:
6843 	return cgrp;
6844 }
6845 EXPORT_SYMBOL_GPL(cgroup_get_from_path);
6846 
6847 /**
6848  * cgroup_v1v2_get_from_fd - get a cgroup pointer from a fd
6849  * @fd: fd obtained by open(cgroup_dir)
6850  *
6851  * Find the cgroup from a fd which should be obtained
6852  * by opening a cgroup directory.  Returns a pointer to the
6853  * cgroup on success. ERR_PTR is returned if the cgroup
6854  * cannot be found.
6855  */
6856 struct cgroup *cgroup_v1v2_get_from_fd(int fd)
6857 {
6858 	struct cgroup *cgrp;
6859 	struct file *f;
6860 
6861 	f = fget_raw(fd);
6862 	if (!f)
6863 		return ERR_PTR(-EBADF);
6864 
6865 	cgrp = cgroup_v1v2_get_from_file(f);
6866 	fput(f);
6867 	return cgrp;
6868 }
6869 
6870 /**
6871  * cgroup_get_from_fd - same as cgroup_v1v2_get_from_fd, but only supports
6872  * cgroup2.
6873  * @fd: fd obtained by open(cgroup2_dir)
6874  */
6875 struct cgroup *cgroup_get_from_fd(int fd)
6876 {
6877 	struct cgroup *cgrp = cgroup_v1v2_get_from_fd(fd);
6878 
6879 	if (IS_ERR(cgrp))
6880 		return ERR_CAST(cgrp);
6881 
6882 	if (!cgroup_on_dfl(cgrp)) {
6883 		cgroup_put(cgrp);
6884 		return ERR_PTR(-EBADF);
6885 	}
6886 	return cgrp;
6887 }
6888 EXPORT_SYMBOL_GPL(cgroup_get_from_fd);
6889 
6890 static u64 power_of_ten(int power)
6891 {
6892 	u64 v = 1;
6893 	while (power--)
6894 		v *= 10;
6895 	return v;
6896 }
6897 
6898 /**
6899  * cgroup_parse_float - parse a floating number
6900  * @input: input string
6901  * @dec_shift: number of decimal digits to shift
6902  * @v: output
6903  *
6904  * Parse a decimal floating point number in @input and store the result in
6905  * @v with decimal point right shifted @dec_shift times.  For example, if
6906  * @input is "12.3456" and @dec_shift is 3, *@v will be set to 12345.
6907  * Returns 0 on success, -errno otherwise.
6908  *
6909  * There's nothing cgroup specific about this function except that it's
6910  * currently the only user.
6911  */
6912 int cgroup_parse_float(const char *input, unsigned dec_shift, s64 *v)
6913 {
6914 	s64 whole, frac = 0;
6915 	int fstart = 0, fend = 0, flen;
6916 
6917 	if (!sscanf(input, "%lld.%n%lld%n", &whole, &fstart, &frac, &fend))
6918 		return -EINVAL;
6919 	if (frac < 0)
6920 		return -EINVAL;
6921 
6922 	flen = fend > fstart ? fend - fstart : 0;
6923 	if (flen < dec_shift)
6924 		frac *= power_of_ten(dec_shift - flen);
6925 	else
6926 		frac = DIV_ROUND_CLOSEST_ULL(frac, power_of_ten(flen - dec_shift));
6927 
6928 	*v = whole * power_of_ten(dec_shift) + frac;
6929 	return 0;
6930 }
6931 
6932 /*
6933  * sock->sk_cgrp_data handling.  For more info, see sock_cgroup_data
6934  * definition in cgroup-defs.h.
6935  */
6936 #ifdef CONFIG_SOCK_CGROUP_DATA
6937 
6938 void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
6939 {
6940 	struct cgroup *cgroup;
6941 
6942 	rcu_read_lock();
6943 	/* Don't associate the sock with unrelated interrupted task's cgroup. */
6944 	if (in_interrupt()) {
6945 		cgroup = &cgrp_dfl_root.cgrp;
6946 		cgroup_get(cgroup);
6947 		goto out;
6948 	}
6949 
6950 	while (true) {
6951 		struct css_set *cset;
6952 
6953 		cset = task_css_set(current);
6954 		if (likely(cgroup_tryget(cset->dfl_cgrp))) {
6955 			cgroup = cset->dfl_cgrp;
6956 			break;
6957 		}
6958 		cpu_relax();
6959 	}
6960 out:
6961 	skcd->cgroup = cgroup;
6962 	cgroup_bpf_get(cgroup);
6963 	rcu_read_unlock();
6964 }
6965 
6966 void cgroup_sk_clone(struct sock_cgroup_data *skcd)
6967 {
6968 	struct cgroup *cgrp = sock_cgroup_ptr(skcd);
6969 
6970 	/*
6971 	 * We might be cloning a socket which is left in an empty
6972 	 * cgroup and the cgroup might have already been rmdir'd.
6973 	 * Don't use cgroup_get_live().
6974 	 */
6975 	cgroup_get(cgrp);
6976 	cgroup_bpf_get(cgrp);
6977 }
6978 
6979 void cgroup_sk_free(struct sock_cgroup_data *skcd)
6980 {
6981 	struct cgroup *cgrp = sock_cgroup_ptr(skcd);
6982 
6983 	cgroup_bpf_put(cgrp);
6984 	cgroup_put(cgrp);
6985 }
6986 
6987 #endif	/* CONFIG_SOCK_CGROUP_DATA */
6988 
6989 #ifdef CONFIG_SYSFS
6990 static ssize_t show_delegatable_files(struct cftype *files, char *buf,
6991 				      ssize_t size, const char *prefix)
6992 {
6993 	struct cftype *cft;
6994 	ssize_t ret = 0;
6995 
6996 	for (cft = files; cft && cft->name[0] != '\0'; cft++) {
6997 		if (!(cft->flags & CFTYPE_NS_DELEGATABLE))
6998 			continue;
6999 
7000 		if (prefix)
7001 			ret += snprintf(buf + ret, size - ret, "%s.", prefix);
7002 
7003 		ret += snprintf(buf + ret, size - ret, "%s\n", cft->name);
7004 
7005 		if (WARN_ON(ret >= size))
7006 			break;
7007 	}
7008 
7009 	return ret;
7010 }
7011 
7012 static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr,
7013 			      char *buf)
7014 {
7015 	struct cgroup_subsys *ss;
7016 	int ssid;
7017 	ssize_t ret = 0;
7018 
7019 	ret = show_delegatable_files(cgroup_base_files, buf + ret,
7020 				     PAGE_SIZE - ret, NULL);
7021 	if (cgroup_psi_enabled())
7022 		ret += show_delegatable_files(cgroup_psi_files, buf + ret,
7023 					      PAGE_SIZE - ret, NULL);
7024 
7025 	for_each_subsys(ss, ssid)
7026 		ret += show_delegatable_files(ss->dfl_cftypes, buf + ret,
7027 					      PAGE_SIZE - ret,
7028 					      cgroup_subsys_name[ssid]);
7029 
7030 	return ret;
7031 }
7032 static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate);
7033 
7034 static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr,
7035 			     char *buf)
7036 {
7037 	return snprintf(buf, PAGE_SIZE,
7038 			"nsdelegate\n"
7039 			"favordynmods\n"
7040 			"memory_localevents\n"
7041 			"memory_recursiveprot\n");
7042 }
7043 static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features);
7044 
7045 static struct attribute *cgroup_sysfs_attrs[] = {
7046 	&cgroup_delegate_attr.attr,
7047 	&cgroup_features_attr.attr,
7048 	NULL,
7049 };
7050 
7051 static const struct attribute_group cgroup_sysfs_attr_group = {
7052 	.attrs = cgroup_sysfs_attrs,
7053 	.name = "cgroup",
7054 };
7055 
7056 static int __init cgroup_sysfs_init(void)
7057 {
7058 	return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group);
7059 }
7060 subsys_initcall(cgroup_sysfs_init);
7061 
7062 #endif /* CONFIG_SYSFS */
7063