1 /* 2 * Generic process-grouping system. 3 * 4 * Based originally on the cpuset system, extracted by Paul Menage 5 * Copyright (C) 2006 Google, Inc 6 * 7 * Notifications support 8 * Copyright (C) 2009 Nokia Corporation 9 * Author: Kirill A. Shutemov 10 * 11 * Copyright notices from the original cpuset code: 12 * -------------------------------------------------- 13 * Copyright (C) 2003 BULL SA. 14 * Copyright (C) 2004-2006 Silicon Graphics, Inc. 15 * 16 * Portions derived from Patrick Mochel's sysfs code. 17 * sysfs is Copyright (c) 2001-3 Patrick Mochel 18 * 19 * 2003-10-10 Written by Simon Derr. 20 * 2003-10-22 Updates by Stephen Hemminger. 21 * 2004 May-July Rework by Paul Jackson. 22 * --------------------------------------------------- 23 * 24 * This file is subject to the terms and conditions of the GNU General Public 25 * License. See the file COPYING in the main directory of the Linux 26 * distribution for more details. 27 */ 28 29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 30 31 #include "cgroup-internal.h" 32 33 #include <linux/cred.h> 34 #include <linux/errno.h> 35 #include <linux/init_task.h> 36 #include <linux/kernel.h> 37 #include <linux/magic.h> 38 #include <linux/mutex.h> 39 #include <linux/mount.h> 40 #include <linux/pagemap.h> 41 #include <linux/proc_fs.h> 42 #include <linux/rcupdate.h> 43 #include <linux/sched.h> 44 #include <linux/sched/task.h> 45 #include <linux/slab.h> 46 #include <linux/spinlock.h> 47 #include <linux/percpu-rwsem.h> 48 #include <linux/string.h> 49 #include <linux/hashtable.h> 50 #include <linux/idr.h> 51 #include <linux/kthread.h> 52 #include <linux/atomic.h> 53 #include <linux/cpuset.h> 54 #include <linux/proc_ns.h> 55 #include <linux/nsproxy.h> 56 #include <linux/file.h> 57 #include <net/sock.h> 58 59 #define CREATE_TRACE_POINTS 60 #include <trace/events/cgroup.h> 61 62 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \ 63 MAX_CFTYPE_NAME + 2) 64 65 /* 66 * cgroup_mutex is the master lock. Any modification to cgroup or its 67 * hierarchy must be performed while holding it. 68 * 69 * css_set_lock protects task->cgroups pointer, the list of css_set 70 * objects, and the chain of tasks off each css_set. 71 * 72 * These locks are exported if CONFIG_PROVE_RCU so that accessors in 73 * cgroup.h can use them for lockdep annotations. 74 */ 75 DEFINE_MUTEX(cgroup_mutex); 76 DEFINE_SPINLOCK(css_set_lock); 77 78 #ifdef CONFIG_PROVE_RCU 79 EXPORT_SYMBOL_GPL(cgroup_mutex); 80 EXPORT_SYMBOL_GPL(css_set_lock); 81 #endif 82 83 /* 84 * Protects cgroup_idr and css_idr so that IDs can be released without 85 * grabbing cgroup_mutex. 86 */ 87 static DEFINE_SPINLOCK(cgroup_idr_lock); 88 89 /* 90 * Protects cgroup_file->kn for !self csses. It synchronizes notifications 91 * against file removal/re-creation across css hiding. 92 */ 93 static DEFINE_SPINLOCK(cgroup_file_kn_lock); 94 95 struct percpu_rw_semaphore cgroup_threadgroup_rwsem; 96 97 #define cgroup_assert_mutex_or_rcu_locked() \ 98 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \ 99 !lockdep_is_held(&cgroup_mutex), \ 100 "cgroup_mutex or RCU read lock required"); 101 102 /* 103 * cgroup destruction makes heavy use of work items and there can be a lot 104 * of concurrent destructions. Use a separate workqueue so that cgroup 105 * destruction work items don't end up filling up max_active of system_wq 106 * which may lead to deadlock. 107 */ 108 static struct workqueue_struct *cgroup_destroy_wq; 109 110 /* generate an array of cgroup subsystem pointers */ 111 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys, 112 struct cgroup_subsys *cgroup_subsys[] = { 113 #include <linux/cgroup_subsys.h> 114 }; 115 #undef SUBSYS 116 117 /* array of cgroup subsystem names */ 118 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x, 119 static const char *cgroup_subsys_name[] = { 120 #include <linux/cgroup_subsys.h> 121 }; 122 #undef SUBSYS 123 124 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */ 125 #define SUBSYS(_x) \ 126 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \ 127 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \ 128 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \ 129 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key); 130 #include <linux/cgroup_subsys.h> 131 #undef SUBSYS 132 133 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key, 134 static struct static_key_true *cgroup_subsys_enabled_key[] = { 135 #include <linux/cgroup_subsys.h> 136 }; 137 #undef SUBSYS 138 139 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key, 140 static struct static_key_true *cgroup_subsys_on_dfl_key[] = { 141 #include <linux/cgroup_subsys.h> 142 }; 143 #undef SUBSYS 144 145 /* 146 * The default hierarchy, reserved for the subsystems that are otherwise 147 * unattached - it never has more than a single cgroup, and all tasks are 148 * part of that cgroup. 149 */ 150 struct cgroup_root cgrp_dfl_root; 151 EXPORT_SYMBOL_GPL(cgrp_dfl_root); 152 153 /* 154 * The default hierarchy always exists but is hidden until mounted for the 155 * first time. This is for backward compatibility. 156 */ 157 static bool cgrp_dfl_visible; 158 159 /* some controllers are not supported in the default hierarchy */ 160 static u16 cgrp_dfl_inhibit_ss_mask; 161 162 /* some controllers are implicitly enabled on the default hierarchy */ 163 static u16 cgrp_dfl_implicit_ss_mask; 164 165 /* The list of hierarchy roots */ 166 LIST_HEAD(cgroup_roots); 167 static int cgroup_root_count; 168 169 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */ 170 static DEFINE_IDR(cgroup_hierarchy_idr); 171 172 /* 173 * Assign a monotonically increasing serial number to csses. It guarantees 174 * cgroups with bigger numbers are newer than those with smaller numbers. 175 * Also, as csses are always appended to the parent's ->children list, it 176 * guarantees that sibling csses are always sorted in the ascending serial 177 * number order on the list. Protected by cgroup_mutex. 178 */ 179 static u64 css_serial_nr_next = 1; 180 181 /* 182 * These bitmasks identify subsystems with specific features to avoid 183 * having to do iterative checks repeatedly. 184 */ 185 static u16 have_fork_callback __read_mostly; 186 static u16 have_exit_callback __read_mostly; 187 static u16 have_free_callback __read_mostly; 188 static u16 have_canfork_callback __read_mostly; 189 190 /* cgroup namespace for init task */ 191 struct cgroup_namespace init_cgroup_ns = { 192 .count = REFCOUNT_INIT(2), 193 .user_ns = &init_user_ns, 194 .ns.ops = &cgroupns_operations, 195 .ns.inum = PROC_CGROUP_INIT_INO, 196 .root_cset = &init_css_set, 197 }; 198 199 static struct file_system_type cgroup2_fs_type; 200 static struct cftype cgroup_base_files[]; 201 202 static int cgroup_apply_control(struct cgroup *cgrp); 203 static void cgroup_finalize_control(struct cgroup *cgrp, int ret); 204 static void css_task_iter_advance(struct css_task_iter *it); 205 static int cgroup_destroy_locked(struct cgroup *cgrp); 206 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp, 207 struct cgroup_subsys *ss); 208 static void css_release(struct percpu_ref *ref); 209 static void kill_css(struct cgroup_subsys_state *css); 210 static int cgroup_addrm_files(struct cgroup_subsys_state *css, 211 struct cgroup *cgrp, struct cftype cfts[], 212 bool is_add); 213 214 /** 215 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID 216 * @ssid: subsys ID of interest 217 * 218 * cgroup_subsys_enabled() can only be used with literal subsys names which 219 * is fine for individual subsystems but unsuitable for cgroup core. This 220 * is slower static_key_enabled() based test indexed by @ssid. 221 */ 222 bool cgroup_ssid_enabled(int ssid) 223 { 224 if (CGROUP_SUBSYS_COUNT == 0) 225 return false; 226 227 return static_key_enabled(cgroup_subsys_enabled_key[ssid]); 228 } 229 230 /** 231 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy 232 * @cgrp: the cgroup of interest 233 * 234 * The default hierarchy is the v2 interface of cgroup and this function 235 * can be used to test whether a cgroup is on the default hierarchy for 236 * cases where a subsystem should behave differnetly depending on the 237 * interface version. 238 * 239 * The set of behaviors which change on the default hierarchy are still 240 * being determined and the mount option is prefixed with __DEVEL__. 241 * 242 * List of changed behaviors: 243 * 244 * - Mount options "noprefix", "xattr", "clone_children", "release_agent" 245 * and "name" are disallowed. 246 * 247 * - When mounting an existing superblock, mount options should match. 248 * 249 * - Remount is disallowed. 250 * 251 * - rename(2) is disallowed. 252 * 253 * - "tasks" is removed. Everything should be at process granularity. Use 254 * "cgroup.procs" instead. 255 * 256 * - "cgroup.procs" is not sorted. pids will be unique unless they got 257 * recycled inbetween reads. 258 * 259 * - "release_agent" and "notify_on_release" are removed. Replacement 260 * notification mechanism will be implemented. 261 * 262 * - "cgroup.clone_children" is removed. 263 * 264 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup 265 * and its descendants contain no task; otherwise, 1. The file also 266 * generates kernfs notification which can be monitored through poll and 267 * [di]notify when the value of the file changes. 268 * 269 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and 270 * take masks of ancestors with non-empty cpus/mems, instead of being 271 * moved to an ancestor. 272 * 273 * - cpuset: a task can be moved into an empty cpuset, and again it takes 274 * masks of ancestors. 275 * 276 * - memcg: use_hierarchy is on by default and the cgroup file for the flag 277 * is not created. 278 * 279 * - blkcg: blk-throttle becomes properly hierarchical. 280 * 281 * - debug: disallowed on the default hierarchy. 282 */ 283 bool cgroup_on_dfl(const struct cgroup *cgrp) 284 { 285 return cgrp->root == &cgrp_dfl_root; 286 } 287 288 /* IDR wrappers which synchronize using cgroup_idr_lock */ 289 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end, 290 gfp_t gfp_mask) 291 { 292 int ret; 293 294 idr_preload(gfp_mask); 295 spin_lock_bh(&cgroup_idr_lock); 296 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM); 297 spin_unlock_bh(&cgroup_idr_lock); 298 idr_preload_end(); 299 return ret; 300 } 301 302 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id) 303 { 304 void *ret; 305 306 spin_lock_bh(&cgroup_idr_lock); 307 ret = idr_replace(idr, ptr, id); 308 spin_unlock_bh(&cgroup_idr_lock); 309 return ret; 310 } 311 312 static void cgroup_idr_remove(struct idr *idr, int id) 313 { 314 spin_lock_bh(&cgroup_idr_lock); 315 idr_remove(idr, id); 316 spin_unlock_bh(&cgroup_idr_lock); 317 } 318 319 static struct cgroup *cgroup_parent(struct cgroup *cgrp) 320 { 321 struct cgroup_subsys_state *parent_css = cgrp->self.parent; 322 323 if (parent_css) 324 return container_of(parent_css, struct cgroup, self); 325 return NULL; 326 } 327 328 /* subsystems visibly enabled on a cgroup */ 329 static u16 cgroup_control(struct cgroup *cgrp) 330 { 331 struct cgroup *parent = cgroup_parent(cgrp); 332 u16 root_ss_mask = cgrp->root->subsys_mask; 333 334 if (parent) 335 return parent->subtree_control; 336 337 if (cgroup_on_dfl(cgrp)) 338 root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask | 339 cgrp_dfl_implicit_ss_mask); 340 return root_ss_mask; 341 } 342 343 /* subsystems enabled on a cgroup */ 344 static u16 cgroup_ss_mask(struct cgroup *cgrp) 345 { 346 struct cgroup *parent = cgroup_parent(cgrp); 347 348 if (parent) 349 return parent->subtree_ss_mask; 350 351 return cgrp->root->subsys_mask; 352 } 353 354 /** 355 * cgroup_css - obtain a cgroup's css for the specified subsystem 356 * @cgrp: the cgroup of interest 357 * @ss: the subsystem of interest (%NULL returns @cgrp->self) 358 * 359 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This 360 * function must be called either under cgroup_mutex or rcu_read_lock() and 361 * the caller is responsible for pinning the returned css if it wants to 362 * keep accessing it outside the said locks. This function may return 363 * %NULL if @cgrp doesn't have @subsys_id enabled. 364 */ 365 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp, 366 struct cgroup_subsys *ss) 367 { 368 if (ss) 369 return rcu_dereference_check(cgrp->subsys[ss->id], 370 lockdep_is_held(&cgroup_mutex)); 371 else 372 return &cgrp->self; 373 } 374 375 /** 376 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem 377 * @cgrp: the cgroup of interest 378 * @ss: the subsystem of interest (%NULL returns @cgrp->self) 379 * 380 * Similar to cgroup_css() but returns the effective css, which is defined 381 * as the matching css of the nearest ancestor including self which has @ss 382 * enabled. If @ss is associated with the hierarchy @cgrp is on, this 383 * function is guaranteed to return non-NULL css. 384 */ 385 static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp, 386 struct cgroup_subsys *ss) 387 { 388 lockdep_assert_held(&cgroup_mutex); 389 390 if (!ss) 391 return &cgrp->self; 392 393 /* 394 * This function is used while updating css associations and thus 395 * can't test the csses directly. Test ss_mask. 396 */ 397 while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) { 398 cgrp = cgroup_parent(cgrp); 399 if (!cgrp) 400 return NULL; 401 } 402 403 return cgroup_css(cgrp, ss); 404 } 405 406 /** 407 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem 408 * @cgrp: the cgroup of interest 409 * @ss: the subsystem of interest 410 * 411 * Find and get the effective css of @cgrp for @ss. The effective css is 412 * defined as the matching css of the nearest ancestor including self which 413 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on, 414 * the root css is returned, so this function always returns a valid css. 415 * The returned css must be put using css_put(). 416 */ 417 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp, 418 struct cgroup_subsys *ss) 419 { 420 struct cgroup_subsys_state *css; 421 422 rcu_read_lock(); 423 424 do { 425 css = cgroup_css(cgrp, ss); 426 427 if (css && css_tryget_online(css)) 428 goto out_unlock; 429 cgrp = cgroup_parent(cgrp); 430 } while (cgrp); 431 432 css = init_css_set.subsys[ss->id]; 433 css_get(css); 434 out_unlock: 435 rcu_read_unlock(); 436 return css; 437 } 438 439 static void __maybe_unused cgroup_get(struct cgroup *cgrp) 440 { 441 css_get(&cgrp->self); 442 } 443 444 static void cgroup_get_live(struct cgroup *cgrp) 445 { 446 WARN_ON_ONCE(cgroup_is_dead(cgrp)); 447 css_get(&cgrp->self); 448 } 449 450 static bool cgroup_tryget(struct cgroup *cgrp) 451 { 452 return css_tryget(&cgrp->self); 453 } 454 455 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of) 456 { 457 struct cgroup *cgrp = of->kn->parent->priv; 458 struct cftype *cft = of_cft(of); 459 460 /* 461 * This is open and unprotected implementation of cgroup_css(). 462 * seq_css() is only called from a kernfs file operation which has 463 * an active reference on the file. Because all the subsystem 464 * files are drained before a css is disassociated with a cgroup, 465 * the matching css from the cgroup's subsys table is guaranteed to 466 * be and stay valid until the enclosing operation is complete. 467 */ 468 if (cft->ss) 469 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]); 470 else 471 return &cgrp->self; 472 } 473 EXPORT_SYMBOL_GPL(of_css); 474 475 /** 476 * for_each_css - iterate all css's of a cgroup 477 * @css: the iteration cursor 478 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end 479 * @cgrp: the target cgroup to iterate css's of 480 * 481 * Should be called under cgroup_[tree_]mutex. 482 */ 483 #define for_each_css(css, ssid, cgrp) \ 484 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \ 485 if (!((css) = rcu_dereference_check( \ 486 (cgrp)->subsys[(ssid)], \ 487 lockdep_is_held(&cgroup_mutex)))) { } \ 488 else 489 490 /** 491 * for_each_e_css - iterate all effective css's of a cgroup 492 * @css: the iteration cursor 493 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end 494 * @cgrp: the target cgroup to iterate css's of 495 * 496 * Should be called under cgroup_[tree_]mutex. 497 */ 498 #define for_each_e_css(css, ssid, cgrp) \ 499 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \ 500 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \ 501 ; \ 502 else 503 504 /** 505 * do_each_subsys_mask - filter for_each_subsys with a bitmask 506 * @ss: the iteration cursor 507 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end 508 * @ss_mask: the bitmask 509 * 510 * The block will only run for cases where the ssid-th bit (1 << ssid) of 511 * @ss_mask is set. 512 */ 513 #define do_each_subsys_mask(ss, ssid, ss_mask) do { \ 514 unsigned long __ss_mask = (ss_mask); \ 515 if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */ \ 516 (ssid) = 0; \ 517 break; \ 518 } \ 519 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \ 520 (ss) = cgroup_subsys[ssid]; \ 521 { 522 523 #define while_each_subsys_mask() \ 524 } \ 525 } \ 526 } while (false) 527 528 /* iterate over child cgrps, lock should be held throughout iteration */ 529 #define cgroup_for_each_live_child(child, cgrp) \ 530 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \ 531 if (({ lockdep_assert_held(&cgroup_mutex); \ 532 cgroup_is_dead(child); })) \ 533 ; \ 534 else 535 536 /* walk live descendants in preorder */ 537 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \ 538 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \ 539 if (({ lockdep_assert_held(&cgroup_mutex); \ 540 (dsct) = (d_css)->cgroup; \ 541 cgroup_is_dead(dsct); })) \ 542 ; \ 543 else 544 545 /* walk live descendants in postorder */ 546 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \ 547 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \ 548 if (({ lockdep_assert_held(&cgroup_mutex); \ 549 (dsct) = (d_css)->cgroup; \ 550 cgroup_is_dead(dsct); })) \ 551 ; \ 552 else 553 554 /* 555 * The default css_set - used by init and its children prior to any 556 * hierarchies being mounted. It contains a pointer to the root state 557 * for each subsystem. Also used to anchor the list of css_sets. Not 558 * reference-counted, to improve performance when child cgroups 559 * haven't been created. 560 */ 561 struct css_set init_css_set = { 562 .refcount = REFCOUNT_INIT(1), 563 .tasks = LIST_HEAD_INIT(init_css_set.tasks), 564 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks), 565 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters), 566 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links), 567 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node), 568 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node), 569 }; 570 571 static int css_set_count = 1; /* 1 for init_css_set */ 572 573 /** 574 * css_set_populated - does a css_set contain any tasks? 575 * @cset: target css_set 576 * 577 * css_set_populated() should be the same as !!cset->nr_tasks at steady 578 * state. However, css_set_populated() can be called while a task is being 579 * added to or removed from the linked list before the nr_tasks is 580 * properly updated. Hence, we can't just look at ->nr_tasks here. 581 */ 582 static bool css_set_populated(struct css_set *cset) 583 { 584 lockdep_assert_held(&css_set_lock); 585 586 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks); 587 } 588 589 /** 590 * cgroup_update_populated - updated populated count of a cgroup 591 * @cgrp: the target cgroup 592 * @populated: inc or dec populated count 593 * 594 * One of the css_sets associated with @cgrp is either getting its first 595 * task or losing the last. Update @cgrp->populated_cnt accordingly. The 596 * count is propagated towards root so that a given cgroup's populated_cnt 597 * is zero iff the cgroup and all its descendants don't contain any tasks. 598 * 599 * @cgrp's interface file "cgroup.populated" is zero if 600 * @cgrp->populated_cnt is zero and 1 otherwise. When @cgrp->populated_cnt 601 * changes from or to zero, userland is notified that the content of the 602 * interface file has changed. This can be used to detect when @cgrp and 603 * its descendants become populated or empty. 604 */ 605 static void cgroup_update_populated(struct cgroup *cgrp, bool populated) 606 { 607 lockdep_assert_held(&css_set_lock); 608 609 do { 610 bool trigger; 611 612 if (populated) 613 trigger = !cgrp->populated_cnt++; 614 else 615 trigger = !--cgrp->populated_cnt; 616 617 if (!trigger) 618 break; 619 620 cgroup1_check_for_release(cgrp); 621 cgroup_file_notify(&cgrp->events_file); 622 623 cgrp = cgroup_parent(cgrp); 624 } while (cgrp); 625 } 626 627 /** 628 * css_set_update_populated - update populated state of a css_set 629 * @cset: target css_set 630 * @populated: whether @cset is populated or depopulated 631 * 632 * @cset is either getting the first task or losing the last. Update the 633 * ->populated_cnt of all associated cgroups accordingly. 634 */ 635 static void css_set_update_populated(struct css_set *cset, bool populated) 636 { 637 struct cgrp_cset_link *link; 638 639 lockdep_assert_held(&css_set_lock); 640 641 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) 642 cgroup_update_populated(link->cgrp, populated); 643 } 644 645 /** 646 * css_set_move_task - move a task from one css_set to another 647 * @task: task being moved 648 * @from_cset: css_set @task currently belongs to (may be NULL) 649 * @to_cset: new css_set @task is being moved to (may be NULL) 650 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks 651 * 652 * Move @task from @from_cset to @to_cset. If @task didn't belong to any 653 * css_set, @from_cset can be NULL. If @task is being disassociated 654 * instead of moved, @to_cset can be NULL. 655 * 656 * This function automatically handles populated_cnt updates and 657 * css_task_iter adjustments but the caller is responsible for managing 658 * @from_cset and @to_cset's reference counts. 659 */ 660 static void css_set_move_task(struct task_struct *task, 661 struct css_set *from_cset, struct css_set *to_cset, 662 bool use_mg_tasks) 663 { 664 lockdep_assert_held(&css_set_lock); 665 666 if (to_cset && !css_set_populated(to_cset)) 667 css_set_update_populated(to_cset, true); 668 669 if (from_cset) { 670 struct css_task_iter *it, *pos; 671 672 WARN_ON_ONCE(list_empty(&task->cg_list)); 673 674 /* 675 * @task is leaving, advance task iterators which are 676 * pointing to it so that they can resume at the next 677 * position. Advancing an iterator might remove it from 678 * the list, use safe walk. See css_task_iter_advance*() 679 * for details. 680 */ 681 list_for_each_entry_safe(it, pos, &from_cset->task_iters, 682 iters_node) 683 if (it->task_pos == &task->cg_list) 684 css_task_iter_advance(it); 685 686 list_del_init(&task->cg_list); 687 if (!css_set_populated(from_cset)) 688 css_set_update_populated(from_cset, false); 689 } else { 690 WARN_ON_ONCE(!list_empty(&task->cg_list)); 691 } 692 693 if (to_cset) { 694 /* 695 * We are synchronized through cgroup_threadgroup_rwsem 696 * against PF_EXITING setting such that we can't race 697 * against cgroup_exit() changing the css_set to 698 * init_css_set and dropping the old one. 699 */ 700 WARN_ON_ONCE(task->flags & PF_EXITING); 701 702 rcu_assign_pointer(task->cgroups, to_cset); 703 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks : 704 &to_cset->tasks); 705 } 706 } 707 708 /* 709 * hash table for cgroup groups. This improves the performance to find 710 * an existing css_set. This hash doesn't (currently) take into 711 * account cgroups in empty hierarchies. 712 */ 713 #define CSS_SET_HASH_BITS 7 714 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS); 715 716 static unsigned long css_set_hash(struct cgroup_subsys_state *css[]) 717 { 718 unsigned long key = 0UL; 719 struct cgroup_subsys *ss; 720 int i; 721 722 for_each_subsys(ss, i) 723 key += (unsigned long)css[i]; 724 key = (key >> 16) ^ key; 725 726 return key; 727 } 728 729 void put_css_set_locked(struct css_set *cset) 730 { 731 struct cgrp_cset_link *link, *tmp_link; 732 struct cgroup_subsys *ss; 733 int ssid; 734 735 lockdep_assert_held(&css_set_lock); 736 737 if (!refcount_dec_and_test(&cset->refcount)) 738 return; 739 740 /* This css_set is dead. unlink it and release cgroup and css refs */ 741 for_each_subsys(ss, ssid) { 742 list_del(&cset->e_cset_node[ssid]); 743 css_put(cset->subsys[ssid]); 744 } 745 hash_del(&cset->hlist); 746 css_set_count--; 747 748 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) { 749 list_del(&link->cset_link); 750 list_del(&link->cgrp_link); 751 if (cgroup_parent(link->cgrp)) 752 cgroup_put(link->cgrp); 753 kfree(link); 754 } 755 756 kfree_rcu(cset, rcu_head); 757 } 758 759 /** 760 * compare_css_sets - helper function for find_existing_css_set(). 761 * @cset: candidate css_set being tested 762 * @old_cset: existing css_set for a task 763 * @new_cgrp: cgroup that's being entered by the task 764 * @template: desired set of css pointers in css_set (pre-calculated) 765 * 766 * Returns true if "cset" matches "old_cset" except for the hierarchy 767 * which "new_cgrp" belongs to, for which it should match "new_cgrp". 768 */ 769 static bool compare_css_sets(struct css_set *cset, 770 struct css_set *old_cset, 771 struct cgroup *new_cgrp, 772 struct cgroup_subsys_state *template[]) 773 { 774 struct list_head *l1, *l2; 775 776 /* 777 * On the default hierarchy, there can be csets which are 778 * associated with the same set of cgroups but different csses. 779 * Let's first ensure that csses match. 780 */ 781 if (memcmp(template, cset->subsys, sizeof(cset->subsys))) 782 return false; 783 784 /* 785 * Compare cgroup pointers in order to distinguish between 786 * different cgroups in hierarchies. As different cgroups may 787 * share the same effective css, this comparison is always 788 * necessary. 789 */ 790 l1 = &cset->cgrp_links; 791 l2 = &old_cset->cgrp_links; 792 while (1) { 793 struct cgrp_cset_link *link1, *link2; 794 struct cgroup *cgrp1, *cgrp2; 795 796 l1 = l1->next; 797 l2 = l2->next; 798 /* See if we reached the end - both lists are equal length. */ 799 if (l1 == &cset->cgrp_links) { 800 BUG_ON(l2 != &old_cset->cgrp_links); 801 break; 802 } else { 803 BUG_ON(l2 == &old_cset->cgrp_links); 804 } 805 /* Locate the cgroups associated with these links. */ 806 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link); 807 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link); 808 cgrp1 = link1->cgrp; 809 cgrp2 = link2->cgrp; 810 /* Hierarchies should be linked in the same order. */ 811 BUG_ON(cgrp1->root != cgrp2->root); 812 813 /* 814 * If this hierarchy is the hierarchy of the cgroup 815 * that's changing, then we need to check that this 816 * css_set points to the new cgroup; if it's any other 817 * hierarchy, then this css_set should point to the 818 * same cgroup as the old css_set. 819 */ 820 if (cgrp1->root == new_cgrp->root) { 821 if (cgrp1 != new_cgrp) 822 return false; 823 } else { 824 if (cgrp1 != cgrp2) 825 return false; 826 } 827 } 828 return true; 829 } 830 831 /** 832 * find_existing_css_set - init css array and find the matching css_set 833 * @old_cset: the css_set that we're using before the cgroup transition 834 * @cgrp: the cgroup that we're moving into 835 * @template: out param for the new set of csses, should be clear on entry 836 */ 837 static struct css_set *find_existing_css_set(struct css_set *old_cset, 838 struct cgroup *cgrp, 839 struct cgroup_subsys_state *template[]) 840 { 841 struct cgroup_root *root = cgrp->root; 842 struct cgroup_subsys *ss; 843 struct css_set *cset; 844 unsigned long key; 845 int i; 846 847 /* 848 * Build the set of subsystem state objects that we want to see in the 849 * new css_set. while subsystems can change globally, the entries here 850 * won't change, so no need for locking. 851 */ 852 for_each_subsys(ss, i) { 853 if (root->subsys_mask & (1UL << i)) { 854 /* 855 * @ss is in this hierarchy, so we want the 856 * effective css from @cgrp. 857 */ 858 template[i] = cgroup_e_css(cgrp, ss); 859 } else { 860 /* 861 * @ss is not in this hierarchy, so we don't want 862 * to change the css. 863 */ 864 template[i] = old_cset->subsys[i]; 865 } 866 } 867 868 key = css_set_hash(template); 869 hash_for_each_possible(css_set_table, cset, hlist, key) { 870 if (!compare_css_sets(cset, old_cset, cgrp, template)) 871 continue; 872 873 /* This css_set matches what we need */ 874 return cset; 875 } 876 877 /* No existing cgroup group matched */ 878 return NULL; 879 } 880 881 static void free_cgrp_cset_links(struct list_head *links_to_free) 882 { 883 struct cgrp_cset_link *link, *tmp_link; 884 885 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) { 886 list_del(&link->cset_link); 887 kfree(link); 888 } 889 } 890 891 /** 892 * allocate_cgrp_cset_links - allocate cgrp_cset_links 893 * @count: the number of links to allocate 894 * @tmp_links: list_head the allocated links are put on 895 * 896 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links 897 * through ->cset_link. Returns 0 on success or -errno. 898 */ 899 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links) 900 { 901 struct cgrp_cset_link *link; 902 int i; 903 904 INIT_LIST_HEAD(tmp_links); 905 906 for (i = 0; i < count; i++) { 907 link = kzalloc(sizeof(*link), GFP_KERNEL); 908 if (!link) { 909 free_cgrp_cset_links(tmp_links); 910 return -ENOMEM; 911 } 912 list_add(&link->cset_link, tmp_links); 913 } 914 return 0; 915 } 916 917 /** 918 * link_css_set - a helper function to link a css_set to a cgroup 919 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links() 920 * @cset: the css_set to be linked 921 * @cgrp: the destination cgroup 922 */ 923 static void link_css_set(struct list_head *tmp_links, struct css_set *cset, 924 struct cgroup *cgrp) 925 { 926 struct cgrp_cset_link *link; 927 928 BUG_ON(list_empty(tmp_links)); 929 930 if (cgroup_on_dfl(cgrp)) 931 cset->dfl_cgrp = cgrp; 932 933 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link); 934 link->cset = cset; 935 link->cgrp = cgrp; 936 937 /* 938 * Always add links to the tail of the lists so that the lists are 939 * in choronological order. 940 */ 941 list_move_tail(&link->cset_link, &cgrp->cset_links); 942 list_add_tail(&link->cgrp_link, &cset->cgrp_links); 943 944 if (cgroup_parent(cgrp)) 945 cgroup_get_live(cgrp); 946 } 947 948 /** 949 * find_css_set - return a new css_set with one cgroup updated 950 * @old_cset: the baseline css_set 951 * @cgrp: the cgroup to be updated 952 * 953 * Return a new css_set that's equivalent to @old_cset, but with @cgrp 954 * substituted into the appropriate hierarchy. 955 */ 956 static struct css_set *find_css_set(struct css_set *old_cset, 957 struct cgroup *cgrp) 958 { 959 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { }; 960 struct css_set *cset; 961 struct list_head tmp_links; 962 struct cgrp_cset_link *link; 963 struct cgroup_subsys *ss; 964 unsigned long key; 965 int ssid; 966 967 lockdep_assert_held(&cgroup_mutex); 968 969 /* First see if we already have a cgroup group that matches 970 * the desired set */ 971 spin_lock_irq(&css_set_lock); 972 cset = find_existing_css_set(old_cset, cgrp, template); 973 if (cset) 974 get_css_set(cset); 975 spin_unlock_irq(&css_set_lock); 976 977 if (cset) 978 return cset; 979 980 cset = kzalloc(sizeof(*cset), GFP_KERNEL); 981 if (!cset) 982 return NULL; 983 984 /* Allocate all the cgrp_cset_link objects that we'll need */ 985 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) { 986 kfree(cset); 987 return NULL; 988 } 989 990 refcount_set(&cset->refcount, 1); 991 INIT_LIST_HEAD(&cset->tasks); 992 INIT_LIST_HEAD(&cset->mg_tasks); 993 INIT_LIST_HEAD(&cset->task_iters); 994 INIT_HLIST_NODE(&cset->hlist); 995 INIT_LIST_HEAD(&cset->cgrp_links); 996 INIT_LIST_HEAD(&cset->mg_preload_node); 997 INIT_LIST_HEAD(&cset->mg_node); 998 999 /* Copy the set of subsystem state objects generated in 1000 * find_existing_css_set() */ 1001 memcpy(cset->subsys, template, sizeof(cset->subsys)); 1002 1003 spin_lock_irq(&css_set_lock); 1004 /* Add reference counts and links from the new css_set. */ 1005 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) { 1006 struct cgroup *c = link->cgrp; 1007 1008 if (c->root == cgrp->root) 1009 c = cgrp; 1010 link_css_set(&tmp_links, cset, c); 1011 } 1012 1013 BUG_ON(!list_empty(&tmp_links)); 1014 1015 css_set_count++; 1016 1017 /* Add @cset to the hash table */ 1018 key = css_set_hash(cset->subsys); 1019 hash_add(css_set_table, &cset->hlist, key); 1020 1021 for_each_subsys(ss, ssid) { 1022 struct cgroup_subsys_state *css = cset->subsys[ssid]; 1023 1024 list_add_tail(&cset->e_cset_node[ssid], 1025 &css->cgroup->e_csets[ssid]); 1026 css_get(css); 1027 } 1028 1029 spin_unlock_irq(&css_set_lock); 1030 1031 return cset; 1032 } 1033 1034 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root) 1035 { 1036 struct cgroup *root_cgrp = kf_root->kn->priv; 1037 1038 return root_cgrp->root; 1039 } 1040 1041 static int cgroup_init_root_id(struct cgroup_root *root) 1042 { 1043 int id; 1044 1045 lockdep_assert_held(&cgroup_mutex); 1046 1047 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL); 1048 if (id < 0) 1049 return id; 1050 1051 root->hierarchy_id = id; 1052 return 0; 1053 } 1054 1055 static void cgroup_exit_root_id(struct cgroup_root *root) 1056 { 1057 lockdep_assert_held(&cgroup_mutex); 1058 1059 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id); 1060 } 1061 1062 void cgroup_free_root(struct cgroup_root *root) 1063 { 1064 if (root) { 1065 idr_destroy(&root->cgroup_idr); 1066 kfree(root); 1067 } 1068 } 1069 1070 static void cgroup_destroy_root(struct cgroup_root *root) 1071 { 1072 struct cgroup *cgrp = &root->cgrp; 1073 struct cgrp_cset_link *link, *tmp_link; 1074 1075 trace_cgroup_destroy_root(root); 1076 1077 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp); 1078 1079 BUG_ON(atomic_read(&root->nr_cgrps)); 1080 BUG_ON(!list_empty(&cgrp->self.children)); 1081 1082 /* Rebind all subsystems back to the default hierarchy */ 1083 WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask)); 1084 1085 /* 1086 * Release all the links from cset_links to this hierarchy's 1087 * root cgroup 1088 */ 1089 spin_lock_irq(&css_set_lock); 1090 1091 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) { 1092 list_del(&link->cset_link); 1093 list_del(&link->cgrp_link); 1094 kfree(link); 1095 } 1096 1097 spin_unlock_irq(&css_set_lock); 1098 1099 if (!list_empty(&root->root_list)) { 1100 list_del(&root->root_list); 1101 cgroup_root_count--; 1102 } 1103 1104 cgroup_exit_root_id(root); 1105 1106 mutex_unlock(&cgroup_mutex); 1107 1108 kernfs_destroy_root(root->kf_root); 1109 cgroup_free_root(root); 1110 } 1111 1112 /* 1113 * look up cgroup associated with current task's cgroup namespace on the 1114 * specified hierarchy 1115 */ 1116 static struct cgroup * 1117 current_cgns_cgroup_from_root(struct cgroup_root *root) 1118 { 1119 struct cgroup *res = NULL; 1120 struct css_set *cset; 1121 1122 lockdep_assert_held(&css_set_lock); 1123 1124 rcu_read_lock(); 1125 1126 cset = current->nsproxy->cgroup_ns->root_cset; 1127 if (cset == &init_css_set) { 1128 res = &root->cgrp; 1129 } else { 1130 struct cgrp_cset_link *link; 1131 1132 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) { 1133 struct cgroup *c = link->cgrp; 1134 1135 if (c->root == root) { 1136 res = c; 1137 break; 1138 } 1139 } 1140 } 1141 rcu_read_unlock(); 1142 1143 BUG_ON(!res); 1144 return res; 1145 } 1146 1147 /* look up cgroup associated with given css_set on the specified hierarchy */ 1148 static struct cgroup *cset_cgroup_from_root(struct css_set *cset, 1149 struct cgroup_root *root) 1150 { 1151 struct cgroup *res = NULL; 1152 1153 lockdep_assert_held(&cgroup_mutex); 1154 lockdep_assert_held(&css_set_lock); 1155 1156 if (cset == &init_css_set) { 1157 res = &root->cgrp; 1158 } else { 1159 struct cgrp_cset_link *link; 1160 1161 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) { 1162 struct cgroup *c = link->cgrp; 1163 1164 if (c->root == root) { 1165 res = c; 1166 break; 1167 } 1168 } 1169 } 1170 1171 BUG_ON(!res); 1172 return res; 1173 } 1174 1175 /* 1176 * Return the cgroup for "task" from the given hierarchy. Must be 1177 * called with cgroup_mutex and css_set_lock held. 1178 */ 1179 struct cgroup *task_cgroup_from_root(struct task_struct *task, 1180 struct cgroup_root *root) 1181 { 1182 /* 1183 * No need to lock the task - since we hold cgroup_mutex the 1184 * task can't change groups, so the only thing that can happen 1185 * is that it exits and its css is set back to init_css_set. 1186 */ 1187 return cset_cgroup_from_root(task_css_set(task), root); 1188 } 1189 1190 /* 1191 * A task must hold cgroup_mutex to modify cgroups. 1192 * 1193 * Any task can increment and decrement the count field without lock. 1194 * So in general, code holding cgroup_mutex can't rely on the count 1195 * field not changing. However, if the count goes to zero, then only 1196 * cgroup_attach_task() can increment it again. Because a count of zero 1197 * means that no tasks are currently attached, therefore there is no 1198 * way a task attached to that cgroup can fork (the other way to 1199 * increment the count). So code holding cgroup_mutex can safely 1200 * assume that if the count is zero, it will stay zero. Similarly, if 1201 * a task holds cgroup_mutex on a cgroup with zero count, it 1202 * knows that the cgroup won't be removed, as cgroup_rmdir() 1203 * needs that mutex. 1204 * 1205 * A cgroup can only be deleted if both its 'count' of using tasks 1206 * is zero, and its list of 'children' cgroups is empty. Since all 1207 * tasks in the system use _some_ cgroup, and since there is always at 1208 * least one task in the system (init, pid == 1), therefore, root cgroup 1209 * always has either children cgroups and/or using tasks. So we don't 1210 * need a special hack to ensure that root cgroup cannot be deleted. 1211 * 1212 * P.S. One more locking exception. RCU is used to guard the 1213 * update of a tasks cgroup pointer by cgroup_attach_task() 1214 */ 1215 1216 static struct kernfs_syscall_ops cgroup_kf_syscall_ops; 1217 1218 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft, 1219 char *buf) 1220 { 1221 struct cgroup_subsys *ss = cft->ss; 1222 1223 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) && 1224 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) 1225 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s", 1226 cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name, 1227 cft->name); 1228 else 1229 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX); 1230 return buf; 1231 } 1232 1233 /** 1234 * cgroup_file_mode - deduce file mode of a control file 1235 * @cft: the control file in question 1236 * 1237 * S_IRUGO for read, S_IWUSR for write. 1238 */ 1239 static umode_t cgroup_file_mode(const struct cftype *cft) 1240 { 1241 umode_t mode = 0; 1242 1243 if (cft->read_u64 || cft->read_s64 || cft->seq_show) 1244 mode |= S_IRUGO; 1245 1246 if (cft->write_u64 || cft->write_s64 || cft->write) { 1247 if (cft->flags & CFTYPE_WORLD_WRITABLE) 1248 mode |= S_IWUGO; 1249 else 1250 mode |= S_IWUSR; 1251 } 1252 1253 return mode; 1254 } 1255 1256 /** 1257 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask 1258 * @subtree_control: the new subtree_control mask to consider 1259 * @this_ss_mask: available subsystems 1260 * 1261 * On the default hierarchy, a subsystem may request other subsystems to be 1262 * enabled together through its ->depends_on mask. In such cases, more 1263 * subsystems than specified in "cgroup.subtree_control" may be enabled. 1264 * 1265 * This function calculates which subsystems need to be enabled if 1266 * @subtree_control is to be applied while restricted to @this_ss_mask. 1267 */ 1268 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask) 1269 { 1270 u16 cur_ss_mask = subtree_control; 1271 struct cgroup_subsys *ss; 1272 int ssid; 1273 1274 lockdep_assert_held(&cgroup_mutex); 1275 1276 cur_ss_mask |= cgrp_dfl_implicit_ss_mask; 1277 1278 while (true) { 1279 u16 new_ss_mask = cur_ss_mask; 1280 1281 do_each_subsys_mask(ss, ssid, cur_ss_mask) { 1282 new_ss_mask |= ss->depends_on; 1283 } while_each_subsys_mask(); 1284 1285 /* 1286 * Mask out subsystems which aren't available. This can 1287 * happen only if some depended-upon subsystems were bound 1288 * to non-default hierarchies. 1289 */ 1290 new_ss_mask &= this_ss_mask; 1291 1292 if (new_ss_mask == cur_ss_mask) 1293 break; 1294 cur_ss_mask = new_ss_mask; 1295 } 1296 1297 return cur_ss_mask; 1298 } 1299 1300 /** 1301 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods 1302 * @kn: the kernfs_node being serviced 1303 * 1304 * This helper undoes cgroup_kn_lock_live() and should be invoked before 1305 * the method finishes if locking succeeded. Note that once this function 1306 * returns the cgroup returned by cgroup_kn_lock_live() may become 1307 * inaccessible any time. If the caller intends to continue to access the 1308 * cgroup, it should pin it before invoking this function. 1309 */ 1310 void cgroup_kn_unlock(struct kernfs_node *kn) 1311 { 1312 struct cgroup *cgrp; 1313 1314 if (kernfs_type(kn) == KERNFS_DIR) 1315 cgrp = kn->priv; 1316 else 1317 cgrp = kn->parent->priv; 1318 1319 mutex_unlock(&cgroup_mutex); 1320 1321 kernfs_unbreak_active_protection(kn); 1322 cgroup_put(cgrp); 1323 } 1324 1325 /** 1326 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods 1327 * @kn: the kernfs_node being serviced 1328 * @drain_offline: perform offline draining on the cgroup 1329 * 1330 * This helper is to be used by a cgroup kernfs method currently servicing 1331 * @kn. It breaks the active protection, performs cgroup locking and 1332 * verifies that the associated cgroup is alive. Returns the cgroup if 1333 * alive; otherwise, %NULL. A successful return should be undone by a 1334 * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the 1335 * cgroup is drained of offlining csses before return. 1336 * 1337 * Any cgroup kernfs method implementation which requires locking the 1338 * associated cgroup should use this helper. It avoids nesting cgroup 1339 * locking under kernfs active protection and allows all kernfs operations 1340 * including self-removal. 1341 */ 1342 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline) 1343 { 1344 struct cgroup *cgrp; 1345 1346 if (kernfs_type(kn) == KERNFS_DIR) 1347 cgrp = kn->priv; 1348 else 1349 cgrp = kn->parent->priv; 1350 1351 /* 1352 * We're gonna grab cgroup_mutex which nests outside kernfs 1353 * active_ref. cgroup liveliness check alone provides enough 1354 * protection against removal. Ensure @cgrp stays accessible and 1355 * break the active_ref protection. 1356 */ 1357 if (!cgroup_tryget(cgrp)) 1358 return NULL; 1359 kernfs_break_active_protection(kn); 1360 1361 if (drain_offline) 1362 cgroup_lock_and_drain_offline(cgrp); 1363 else 1364 mutex_lock(&cgroup_mutex); 1365 1366 if (!cgroup_is_dead(cgrp)) 1367 return cgrp; 1368 1369 cgroup_kn_unlock(kn); 1370 return NULL; 1371 } 1372 1373 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft) 1374 { 1375 char name[CGROUP_FILE_NAME_MAX]; 1376 1377 lockdep_assert_held(&cgroup_mutex); 1378 1379 if (cft->file_offset) { 1380 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss); 1381 struct cgroup_file *cfile = (void *)css + cft->file_offset; 1382 1383 spin_lock_irq(&cgroup_file_kn_lock); 1384 cfile->kn = NULL; 1385 spin_unlock_irq(&cgroup_file_kn_lock); 1386 } 1387 1388 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name)); 1389 } 1390 1391 /** 1392 * css_clear_dir - remove subsys files in a cgroup directory 1393 * @css: taget css 1394 */ 1395 static void css_clear_dir(struct cgroup_subsys_state *css) 1396 { 1397 struct cgroup *cgrp = css->cgroup; 1398 struct cftype *cfts; 1399 1400 if (!(css->flags & CSS_VISIBLE)) 1401 return; 1402 1403 css->flags &= ~CSS_VISIBLE; 1404 1405 list_for_each_entry(cfts, &css->ss->cfts, node) 1406 cgroup_addrm_files(css, cgrp, cfts, false); 1407 } 1408 1409 /** 1410 * css_populate_dir - create subsys files in a cgroup directory 1411 * @css: target css 1412 * 1413 * On failure, no file is added. 1414 */ 1415 static int css_populate_dir(struct cgroup_subsys_state *css) 1416 { 1417 struct cgroup *cgrp = css->cgroup; 1418 struct cftype *cfts, *failed_cfts; 1419 int ret; 1420 1421 if ((css->flags & CSS_VISIBLE) || !cgrp->kn) 1422 return 0; 1423 1424 if (!css->ss) { 1425 if (cgroup_on_dfl(cgrp)) 1426 cfts = cgroup_base_files; 1427 else 1428 cfts = cgroup1_base_files; 1429 1430 return cgroup_addrm_files(&cgrp->self, cgrp, cfts, true); 1431 } 1432 1433 list_for_each_entry(cfts, &css->ss->cfts, node) { 1434 ret = cgroup_addrm_files(css, cgrp, cfts, true); 1435 if (ret < 0) { 1436 failed_cfts = cfts; 1437 goto err; 1438 } 1439 } 1440 1441 css->flags |= CSS_VISIBLE; 1442 1443 return 0; 1444 err: 1445 list_for_each_entry(cfts, &css->ss->cfts, node) { 1446 if (cfts == failed_cfts) 1447 break; 1448 cgroup_addrm_files(css, cgrp, cfts, false); 1449 } 1450 return ret; 1451 } 1452 1453 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask) 1454 { 1455 struct cgroup *dcgrp = &dst_root->cgrp; 1456 struct cgroup_subsys *ss; 1457 int ssid, i, ret; 1458 1459 lockdep_assert_held(&cgroup_mutex); 1460 1461 do_each_subsys_mask(ss, ssid, ss_mask) { 1462 /* 1463 * If @ss has non-root csses attached to it, can't move. 1464 * If @ss is an implicit controller, it is exempt from this 1465 * rule and can be stolen. 1466 */ 1467 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) && 1468 !ss->implicit_on_dfl) 1469 return -EBUSY; 1470 1471 /* can't move between two non-dummy roots either */ 1472 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root) 1473 return -EBUSY; 1474 } while_each_subsys_mask(); 1475 1476 do_each_subsys_mask(ss, ssid, ss_mask) { 1477 struct cgroup_root *src_root = ss->root; 1478 struct cgroup *scgrp = &src_root->cgrp; 1479 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss); 1480 struct css_set *cset; 1481 1482 WARN_ON(!css || cgroup_css(dcgrp, ss)); 1483 1484 /* disable from the source */ 1485 src_root->subsys_mask &= ~(1 << ssid); 1486 WARN_ON(cgroup_apply_control(scgrp)); 1487 cgroup_finalize_control(scgrp, 0); 1488 1489 /* rebind */ 1490 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL); 1491 rcu_assign_pointer(dcgrp->subsys[ssid], css); 1492 ss->root = dst_root; 1493 css->cgroup = dcgrp; 1494 1495 spin_lock_irq(&css_set_lock); 1496 hash_for_each(css_set_table, i, cset, hlist) 1497 list_move_tail(&cset->e_cset_node[ss->id], 1498 &dcgrp->e_csets[ss->id]); 1499 spin_unlock_irq(&css_set_lock); 1500 1501 /* default hierarchy doesn't enable controllers by default */ 1502 dst_root->subsys_mask |= 1 << ssid; 1503 if (dst_root == &cgrp_dfl_root) { 1504 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]); 1505 } else { 1506 dcgrp->subtree_control |= 1 << ssid; 1507 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]); 1508 } 1509 1510 ret = cgroup_apply_control(dcgrp); 1511 if (ret) 1512 pr_warn("partial failure to rebind %s controller (err=%d)\n", 1513 ss->name, ret); 1514 1515 if (ss->bind) 1516 ss->bind(css); 1517 } while_each_subsys_mask(); 1518 1519 kernfs_activate(dcgrp->kn); 1520 return 0; 1521 } 1522 1523 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node, 1524 struct kernfs_root *kf_root) 1525 { 1526 int len = 0; 1527 char *buf = NULL; 1528 struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root); 1529 struct cgroup *ns_cgroup; 1530 1531 buf = kmalloc(PATH_MAX, GFP_KERNEL); 1532 if (!buf) 1533 return -ENOMEM; 1534 1535 spin_lock_irq(&css_set_lock); 1536 ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot); 1537 len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX); 1538 spin_unlock_irq(&css_set_lock); 1539 1540 if (len >= PATH_MAX) 1541 len = -ERANGE; 1542 else if (len > 0) { 1543 seq_escape(sf, buf, " \t\n\\"); 1544 len = 0; 1545 } 1546 kfree(buf); 1547 return len; 1548 } 1549 1550 static int parse_cgroup_root_flags(char *data, unsigned int *root_flags) 1551 { 1552 char *token; 1553 1554 *root_flags = 0; 1555 1556 if (!data) 1557 return 0; 1558 1559 while ((token = strsep(&data, ",")) != NULL) { 1560 if (!strcmp(token, "nsdelegate")) { 1561 *root_flags |= CGRP_ROOT_NS_DELEGATE; 1562 continue; 1563 } 1564 1565 pr_err("cgroup2: unknown option \"%s\"\n", token); 1566 return -EINVAL; 1567 } 1568 1569 return 0; 1570 } 1571 1572 static void apply_cgroup_root_flags(unsigned int root_flags) 1573 { 1574 if (current->nsproxy->cgroup_ns == &init_cgroup_ns) { 1575 if (root_flags & CGRP_ROOT_NS_DELEGATE) 1576 cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE; 1577 else 1578 cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE; 1579 } 1580 } 1581 1582 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root) 1583 { 1584 if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) 1585 seq_puts(seq, ",nsdelegate"); 1586 return 0; 1587 } 1588 1589 static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data) 1590 { 1591 unsigned int root_flags; 1592 int ret; 1593 1594 ret = parse_cgroup_root_flags(data, &root_flags); 1595 if (ret) 1596 return ret; 1597 1598 apply_cgroup_root_flags(root_flags); 1599 return 0; 1600 } 1601 1602 /* 1603 * To reduce the fork() overhead for systems that are not actually using 1604 * their cgroups capability, we don't maintain the lists running through 1605 * each css_set to its tasks until we see the list actually used - in other 1606 * words after the first mount. 1607 */ 1608 static bool use_task_css_set_links __read_mostly; 1609 1610 static void cgroup_enable_task_cg_lists(void) 1611 { 1612 struct task_struct *p, *g; 1613 1614 spin_lock_irq(&css_set_lock); 1615 1616 if (use_task_css_set_links) 1617 goto out_unlock; 1618 1619 use_task_css_set_links = true; 1620 1621 /* 1622 * We need tasklist_lock because RCU is not safe against 1623 * while_each_thread(). Besides, a forking task that has passed 1624 * cgroup_post_fork() without seeing use_task_css_set_links = 1 1625 * is not guaranteed to have its child immediately visible in the 1626 * tasklist if we walk through it with RCU. 1627 */ 1628 read_lock(&tasklist_lock); 1629 do_each_thread(g, p) { 1630 WARN_ON_ONCE(!list_empty(&p->cg_list) || 1631 task_css_set(p) != &init_css_set); 1632 1633 /* 1634 * We should check if the process is exiting, otherwise 1635 * it will race with cgroup_exit() in that the list 1636 * entry won't be deleted though the process has exited. 1637 * Do it while holding siglock so that we don't end up 1638 * racing against cgroup_exit(). 1639 * 1640 * Interrupts were already disabled while acquiring 1641 * the css_set_lock, so we do not need to disable it 1642 * again when acquiring the sighand->siglock here. 1643 */ 1644 spin_lock(&p->sighand->siglock); 1645 if (!(p->flags & PF_EXITING)) { 1646 struct css_set *cset = task_css_set(p); 1647 1648 if (!css_set_populated(cset)) 1649 css_set_update_populated(cset, true); 1650 list_add_tail(&p->cg_list, &cset->tasks); 1651 get_css_set(cset); 1652 cset->nr_tasks++; 1653 } 1654 spin_unlock(&p->sighand->siglock); 1655 } while_each_thread(g, p); 1656 read_unlock(&tasklist_lock); 1657 out_unlock: 1658 spin_unlock_irq(&css_set_lock); 1659 } 1660 1661 static void init_cgroup_housekeeping(struct cgroup *cgrp) 1662 { 1663 struct cgroup_subsys *ss; 1664 int ssid; 1665 1666 INIT_LIST_HEAD(&cgrp->self.sibling); 1667 INIT_LIST_HEAD(&cgrp->self.children); 1668 INIT_LIST_HEAD(&cgrp->cset_links); 1669 INIT_LIST_HEAD(&cgrp->pidlists); 1670 mutex_init(&cgrp->pidlist_mutex); 1671 cgrp->self.cgroup = cgrp; 1672 cgrp->self.flags |= CSS_ONLINE; 1673 1674 for_each_subsys(ss, ssid) 1675 INIT_LIST_HEAD(&cgrp->e_csets[ssid]); 1676 1677 init_waitqueue_head(&cgrp->offline_waitq); 1678 INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent); 1679 } 1680 1681 void init_cgroup_root(struct cgroup_root *root, struct cgroup_sb_opts *opts) 1682 { 1683 struct cgroup *cgrp = &root->cgrp; 1684 1685 INIT_LIST_HEAD(&root->root_list); 1686 atomic_set(&root->nr_cgrps, 1); 1687 cgrp->root = root; 1688 init_cgroup_housekeeping(cgrp); 1689 idr_init(&root->cgroup_idr); 1690 1691 root->flags = opts->flags; 1692 if (opts->release_agent) 1693 strcpy(root->release_agent_path, opts->release_agent); 1694 if (opts->name) 1695 strcpy(root->name, opts->name); 1696 if (opts->cpuset_clone_children) 1697 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags); 1698 } 1699 1700 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask, int ref_flags) 1701 { 1702 LIST_HEAD(tmp_links); 1703 struct cgroup *root_cgrp = &root->cgrp; 1704 struct kernfs_syscall_ops *kf_sops; 1705 struct css_set *cset; 1706 int i, ret; 1707 1708 lockdep_assert_held(&cgroup_mutex); 1709 1710 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL); 1711 if (ret < 0) 1712 goto out; 1713 root_cgrp->id = ret; 1714 root_cgrp->ancestor_ids[0] = ret; 1715 1716 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 1717 ref_flags, GFP_KERNEL); 1718 if (ret) 1719 goto out; 1720 1721 /* 1722 * We're accessing css_set_count without locking css_set_lock here, 1723 * but that's OK - it can only be increased by someone holding 1724 * cgroup_lock, and that's us. Later rebinding may disable 1725 * controllers on the default hierarchy and thus create new csets, 1726 * which can't be more than the existing ones. Allocate 2x. 1727 */ 1728 ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links); 1729 if (ret) 1730 goto cancel_ref; 1731 1732 ret = cgroup_init_root_id(root); 1733 if (ret) 1734 goto cancel_ref; 1735 1736 kf_sops = root == &cgrp_dfl_root ? 1737 &cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops; 1738 1739 root->kf_root = kernfs_create_root(kf_sops, 1740 KERNFS_ROOT_CREATE_DEACTIVATED, 1741 root_cgrp); 1742 if (IS_ERR(root->kf_root)) { 1743 ret = PTR_ERR(root->kf_root); 1744 goto exit_root_id; 1745 } 1746 root_cgrp->kn = root->kf_root->kn; 1747 1748 ret = css_populate_dir(&root_cgrp->self); 1749 if (ret) 1750 goto destroy_root; 1751 1752 ret = rebind_subsystems(root, ss_mask); 1753 if (ret) 1754 goto destroy_root; 1755 1756 trace_cgroup_setup_root(root); 1757 1758 /* 1759 * There must be no failure case after here, since rebinding takes 1760 * care of subsystems' refcounts, which are explicitly dropped in 1761 * the failure exit path. 1762 */ 1763 list_add(&root->root_list, &cgroup_roots); 1764 cgroup_root_count++; 1765 1766 /* 1767 * Link the root cgroup in this hierarchy into all the css_set 1768 * objects. 1769 */ 1770 spin_lock_irq(&css_set_lock); 1771 hash_for_each(css_set_table, i, cset, hlist) { 1772 link_css_set(&tmp_links, cset, root_cgrp); 1773 if (css_set_populated(cset)) 1774 cgroup_update_populated(root_cgrp, true); 1775 } 1776 spin_unlock_irq(&css_set_lock); 1777 1778 BUG_ON(!list_empty(&root_cgrp->self.children)); 1779 BUG_ON(atomic_read(&root->nr_cgrps) != 1); 1780 1781 kernfs_activate(root_cgrp->kn); 1782 ret = 0; 1783 goto out; 1784 1785 destroy_root: 1786 kernfs_destroy_root(root->kf_root); 1787 root->kf_root = NULL; 1788 exit_root_id: 1789 cgroup_exit_root_id(root); 1790 cancel_ref: 1791 percpu_ref_exit(&root_cgrp->self.refcnt); 1792 out: 1793 free_cgrp_cset_links(&tmp_links); 1794 return ret; 1795 } 1796 1797 struct dentry *cgroup_do_mount(struct file_system_type *fs_type, int flags, 1798 struct cgroup_root *root, unsigned long magic, 1799 struct cgroup_namespace *ns) 1800 { 1801 struct dentry *dentry; 1802 bool new_sb; 1803 1804 dentry = kernfs_mount(fs_type, flags, root->kf_root, magic, &new_sb); 1805 1806 /* 1807 * In non-init cgroup namespace, instead of root cgroup's dentry, 1808 * we return the dentry corresponding to the cgroupns->root_cgrp. 1809 */ 1810 if (!IS_ERR(dentry) && ns != &init_cgroup_ns) { 1811 struct dentry *nsdentry; 1812 struct cgroup *cgrp; 1813 1814 mutex_lock(&cgroup_mutex); 1815 spin_lock_irq(&css_set_lock); 1816 1817 cgrp = cset_cgroup_from_root(ns->root_cset, root); 1818 1819 spin_unlock_irq(&css_set_lock); 1820 mutex_unlock(&cgroup_mutex); 1821 1822 nsdentry = kernfs_node_dentry(cgrp->kn, dentry->d_sb); 1823 dput(dentry); 1824 dentry = nsdentry; 1825 } 1826 1827 if (IS_ERR(dentry) || !new_sb) 1828 cgroup_put(&root->cgrp); 1829 1830 return dentry; 1831 } 1832 1833 static struct dentry *cgroup_mount(struct file_system_type *fs_type, 1834 int flags, const char *unused_dev_name, 1835 void *data) 1836 { 1837 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns; 1838 struct dentry *dentry; 1839 int ret; 1840 1841 get_cgroup_ns(ns); 1842 1843 /* Check if the caller has permission to mount. */ 1844 if (!ns_capable(ns->user_ns, CAP_SYS_ADMIN)) { 1845 put_cgroup_ns(ns); 1846 return ERR_PTR(-EPERM); 1847 } 1848 1849 /* 1850 * The first time anyone tries to mount a cgroup, enable the list 1851 * linking each css_set to its tasks and fix up all existing tasks. 1852 */ 1853 if (!use_task_css_set_links) 1854 cgroup_enable_task_cg_lists(); 1855 1856 if (fs_type == &cgroup2_fs_type) { 1857 unsigned int root_flags; 1858 1859 ret = parse_cgroup_root_flags(data, &root_flags); 1860 if (ret) { 1861 put_cgroup_ns(ns); 1862 return ERR_PTR(ret); 1863 } 1864 1865 cgrp_dfl_visible = true; 1866 cgroup_get_live(&cgrp_dfl_root.cgrp); 1867 1868 dentry = cgroup_do_mount(&cgroup2_fs_type, flags, &cgrp_dfl_root, 1869 CGROUP2_SUPER_MAGIC, ns); 1870 if (!IS_ERR(dentry)) 1871 apply_cgroup_root_flags(root_flags); 1872 } else { 1873 dentry = cgroup1_mount(&cgroup_fs_type, flags, data, 1874 CGROUP_SUPER_MAGIC, ns); 1875 } 1876 1877 put_cgroup_ns(ns); 1878 return dentry; 1879 } 1880 1881 static void cgroup_kill_sb(struct super_block *sb) 1882 { 1883 struct kernfs_root *kf_root = kernfs_root_from_sb(sb); 1884 struct cgroup_root *root = cgroup_root_from_kf(kf_root); 1885 1886 /* 1887 * If @root doesn't have any mounts or children, start killing it. 1888 * This prevents new mounts by disabling percpu_ref_tryget_live(). 1889 * cgroup_mount() may wait for @root's release. 1890 * 1891 * And don't kill the default root. 1892 */ 1893 if (!list_empty(&root->cgrp.self.children) || 1894 root == &cgrp_dfl_root) 1895 cgroup_put(&root->cgrp); 1896 else 1897 percpu_ref_kill(&root->cgrp.self.refcnt); 1898 1899 kernfs_kill_sb(sb); 1900 } 1901 1902 struct file_system_type cgroup_fs_type = { 1903 .name = "cgroup", 1904 .mount = cgroup_mount, 1905 .kill_sb = cgroup_kill_sb, 1906 .fs_flags = FS_USERNS_MOUNT, 1907 }; 1908 1909 static struct file_system_type cgroup2_fs_type = { 1910 .name = "cgroup2", 1911 .mount = cgroup_mount, 1912 .kill_sb = cgroup_kill_sb, 1913 .fs_flags = FS_USERNS_MOUNT, 1914 }; 1915 1916 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen, 1917 struct cgroup_namespace *ns) 1918 { 1919 struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root); 1920 1921 return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen); 1922 } 1923 1924 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen, 1925 struct cgroup_namespace *ns) 1926 { 1927 int ret; 1928 1929 mutex_lock(&cgroup_mutex); 1930 spin_lock_irq(&css_set_lock); 1931 1932 ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns); 1933 1934 spin_unlock_irq(&css_set_lock); 1935 mutex_unlock(&cgroup_mutex); 1936 1937 return ret; 1938 } 1939 EXPORT_SYMBOL_GPL(cgroup_path_ns); 1940 1941 /** 1942 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy 1943 * @task: target task 1944 * @buf: the buffer to write the path into 1945 * @buflen: the length of the buffer 1946 * 1947 * Determine @task's cgroup on the first (the one with the lowest non-zero 1948 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This 1949 * function grabs cgroup_mutex and shouldn't be used inside locks used by 1950 * cgroup controller callbacks. 1951 * 1952 * Return value is the same as kernfs_path(). 1953 */ 1954 int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen) 1955 { 1956 struct cgroup_root *root; 1957 struct cgroup *cgrp; 1958 int hierarchy_id = 1; 1959 int ret; 1960 1961 mutex_lock(&cgroup_mutex); 1962 spin_lock_irq(&css_set_lock); 1963 1964 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id); 1965 1966 if (root) { 1967 cgrp = task_cgroup_from_root(task, root); 1968 ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns); 1969 } else { 1970 /* if no hierarchy exists, everyone is in "/" */ 1971 ret = strlcpy(buf, "/", buflen); 1972 } 1973 1974 spin_unlock_irq(&css_set_lock); 1975 mutex_unlock(&cgroup_mutex); 1976 return ret; 1977 } 1978 EXPORT_SYMBOL_GPL(task_cgroup_path); 1979 1980 /** 1981 * cgroup_migrate_add_task - add a migration target task to a migration context 1982 * @task: target task 1983 * @mgctx: target migration context 1984 * 1985 * Add @task, which is a migration target, to @mgctx->tset. This function 1986 * becomes noop if @task doesn't need to be migrated. @task's css_set 1987 * should have been added as a migration source and @task->cg_list will be 1988 * moved from the css_set's tasks list to mg_tasks one. 1989 */ 1990 static void cgroup_migrate_add_task(struct task_struct *task, 1991 struct cgroup_mgctx *mgctx) 1992 { 1993 struct css_set *cset; 1994 1995 lockdep_assert_held(&css_set_lock); 1996 1997 /* @task either already exited or can't exit until the end */ 1998 if (task->flags & PF_EXITING) 1999 return; 2000 2001 /* leave @task alone if post_fork() hasn't linked it yet */ 2002 if (list_empty(&task->cg_list)) 2003 return; 2004 2005 cset = task_css_set(task); 2006 if (!cset->mg_src_cgrp) 2007 return; 2008 2009 mgctx->tset.nr_tasks++; 2010 2011 list_move_tail(&task->cg_list, &cset->mg_tasks); 2012 if (list_empty(&cset->mg_node)) 2013 list_add_tail(&cset->mg_node, 2014 &mgctx->tset.src_csets); 2015 if (list_empty(&cset->mg_dst_cset->mg_node)) 2016 list_add_tail(&cset->mg_dst_cset->mg_node, 2017 &mgctx->tset.dst_csets); 2018 } 2019 2020 /** 2021 * cgroup_taskset_first - reset taskset and return the first task 2022 * @tset: taskset of interest 2023 * @dst_cssp: output variable for the destination css 2024 * 2025 * @tset iteration is initialized and the first task is returned. 2026 */ 2027 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset, 2028 struct cgroup_subsys_state **dst_cssp) 2029 { 2030 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node); 2031 tset->cur_task = NULL; 2032 2033 return cgroup_taskset_next(tset, dst_cssp); 2034 } 2035 2036 /** 2037 * cgroup_taskset_next - iterate to the next task in taskset 2038 * @tset: taskset of interest 2039 * @dst_cssp: output variable for the destination css 2040 * 2041 * Return the next task in @tset. Iteration must have been initialized 2042 * with cgroup_taskset_first(). 2043 */ 2044 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset, 2045 struct cgroup_subsys_state **dst_cssp) 2046 { 2047 struct css_set *cset = tset->cur_cset; 2048 struct task_struct *task = tset->cur_task; 2049 2050 while (&cset->mg_node != tset->csets) { 2051 if (!task) 2052 task = list_first_entry(&cset->mg_tasks, 2053 struct task_struct, cg_list); 2054 else 2055 task = list_next_entry(task, cg_list); 2056 2057 if (&task->cg_list != &cset->mg_tasks) { 2058 tset->cur_cset = cset; 2059 tset->cur_task = task; 2060 2061 /* 2062 * This function may be called both before and 2063 * after cgroup_taskset_migrate(). The two cases 2064 * can be distinguished by looking at whether @cset 2065 * has its ->mg_dst_cset set. 2066 */ 2067 if (cset->mg_dst_cset) 2068 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid]; 2069 else 2070 *dst_cssp = cset->subsys[tset->ssid]; 2071 2072 return task; 2073 } 2074 2075 cset = list_next_entry(cset, mg_node); 2076 task = NULL; 2077 } 2078 2079 return NULL; 2080 } 2081 2082 /** 2083 * cgroup_taskset_migrate - migrate a taskset 2084 * @mgctx: migration context 2085 * 2086 * Migrate tasks in @mgctx as setup by migration preparation functions. 2087 * This function fails iff one of the ->can_attach callbacks fails and 2088 * guarantees that either all or none of the tasks in @mgctx are migrated. 2089 * @mgctx is consumed regardless of success. 2090 */ 2091 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx) 2092 { 2093 struct cgroup_taskset *tset = &mgctx->tset; 2094 struct cgroup_subsys *ss; 2095 struct task_struct *task, *tmp_task; 2096 struct css_set *cset, *tmp_cset; 2097 int ssid, failed_ssid, ret; 2098 2099 /* check that we can legitimately attach to the cgroup */ 2100 if (tset->nr_tasks) { 2101 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2102 if (ss->can_attach) { 2103 tset->ssid = ssid; 2104 ret = ss->can_attach(tset); 2105 if (ret) { 2106 failed_ssid = ssid; 2107 goto out_cancel_attach; 2108 } 2109 } 2110 } while_each_subsys_mask(); 2111 } 2112 2113 /* 2114 * Now that we're guaranteed success, proceed to move all tasks to 2115 * the new cgroup. There are no failure cases after here, so this 2116 * is the commit point. 2117 */ 2118 spin_lock_irq(&css_set_lock); 2119 list_for_each_entry(cset, &tset->src_csets, mg_node) { 2120 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) { 2121 struct css_set *from_cset = task_css_set(task); 2122 struct css_set *to_cset = cset->mg_dst_cset; 2123 2124 get_css_set(to_cset); 2125 to_cset->nr_tasks++; 2126 css_set_move_task(task, from_cset, to_cset, true); 2127 put_css_set_locked(from_cset); 2128 from_cset->nr_tasks--; 2129 } 2130 } 2131 spin_unlock_irq(&css_set_lock); 2132 2133 /* 2134 * Migration is committed, all target tasks are now on dst_csets. 2135 * Nothing is sensitive to fork() after this point. Notify 2136 * controllers that migration is complete. 2137 */ 2138 tset->csets = &tset->dst_csets; 2139 2140 if (tset->nr_tasks) { 2141 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2142 if (ss->attach) { 2143 tset->ssid = ssid; 2144 ss->attach(tset); 2145 } 2146 } while_each_subsys_mask(); 2147 } 2148 2149 ret = 0; 2150 goto out_release_tset; 2151 2152 out_cancel_attach: 2153 if (tset->nr_tasks) { 2154 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2155 if (ssid == failed_ssid) 2156 break; 2157 if (ss->cancel_attach) { 2158 tset->ssid = ssid; 2159 ss->cancel_attach(tset); 2160 } 2161 } while_each_subsys_mask(); 2162 } 2163 out_release_tset: 2164 spin_lock_irq(&css_set_lock); 2165 list_splice_init(&tset->dst_csets, &tset->src_csets); 2166 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) { 2167 list_splice_tail_init(&cset->mg_tasks, &cset->tasks); 2168 list_del_init(&cset->mg_node); 2169 } 2170 spin_unlock_irq(&css_set_lock); 2171 return ret; 2172 } 2173 2174 /** 2175 * cgroup_may_migrate_to - verify whether a cgroup can be migration destination 2176 * @dst_cgrp: destination cgroup to test 2177 * 2178 * On the default hierarchy, except for the root, subtree_control must be 2179 * zero for migration destination cgroups with tasks so that child cgroups 2180 * don't compete against tasks. 2181 */ 2182 bool cgroup_may_migrate_to(struct cgroup *dst_cgrp) 2183 { 2184 return !cgroup_on_dfl(dst_cgrp) || !cgroup_parent(dst_cgrp) || 2185 !dst_cgrp->subtree_control; 2186 } 2187 2188 /** 2189 * cgroup_migrate_finish - cleanup after attach 2190 * @mgctx: migration context 2191 * 2192 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See 2193 * those functions for details. 2194 */ 2195 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx) 2196 { 2197 LIST_HEAD(preloaded); 2198 struct css_set *cset, *tmp_cset; 2199 2200 lockdep_assert_held(&cgroup_mutex); 2201 2202 spin_lock_irq(&css_set_lock); 2203 2204 list_splice_tail_init(&mgctx->preloaded_src_csets, &preloaded); 2205 list_splice_tail_init(&mgctx->preloaded_dst_csets, &preloaded); 2206 2207 list_for_each_entry_safe(cset, tmp_cset, &preloaded, mg_preload_node) { 2208 cset->mg_src_cgrp = NULL; 2209 cset->mg_dst_cgrp = NULL; 2210 cset->mg_dst_cset = NULL; 2211 list_del_init(&cset->mg_preload_node); 2212 put_css_set_locked(cset); 2213 } 2214 2215 spin_unlock_irq(&css_set_lock); 2216 } 2217 2218 /** 2219 * cgroup_migrate_add_src - add a migration source css_set 2220 * @src_cset: the source css_set to add 2221 * @dst_cgrp: the destination cgroup 2222 * @mgctx: migration context 2223 * 2224 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin 2225 * @src_cset and add it to @mgctx->src_csets, which should later be cleaned 2226 * up by cgroup_migrate_finish(). 2227 * 2228 * This function may be called without holding cgroup_threadgroup_rwsem 2229 * even if the target is a process. Threads may be created and destroyed 2230 * but as long as cgroup_mutex is not dropped, no new css_set can be put 2231 * into play and the preloaded css_sets are guaranteed to cover all 2232 * migrations. 2233 */ 2234 void cgroup_migrate_add_src(struct css_set *src_cset, 2235 struct cgroup *dst_cgrp, 2236 struct cgroup_mgctx *mgctx) 2237 { 2238 struct cgroup *src_cgrp; 2239 2240 lockdep_assert_held(&cgroup_mutex); 2241 lockdep_assert_held(&css_set_lock); 2242 2243 /* 2244 * If ->dead, @src_set is associated with one or more dead cgroups 2245 * and doesn't contain any migratable tasks. Ignore it early so 2246 * that the rest of migration path doesn't get confused by it. 2247 */ 2248 if (src_cset->dead) 2249 return; 2250 2251 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root); 2252 2253 if (!list_empty(&src_cset->mg_preload_node)) 2254 return; 2255 2256 WARN_ON(src_cset->mg_src_cgrp); 2257 WARN_ON(src_cset->mg_dst_cgrp); 2258 WARN_ON(!list_empty(&src_cset->mg_tasks)); 2259 WARN_ON(!list_empty(&src_cset->mg_node)); 2260 2261 src_cset->mg_src_cgrp = src_cgrp; 2262 src_cset->mg_dst_cgrp = dst_cgrp; 2263 get_css_set(src_cset); 2264 list_add_tail(&src_cset->mg_preload_node, &mgctx->preloaded_src_csets); 2265 } 2266 2267 /** 2268 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration 2269 * @mgctx: migration context 2270 * 2271 * Tasks are about to be moved and all the source css_sets have been 2272 * preloaded to @mgctx->preloaded_src_csets. This function looks up and 2273 * pins all destination css_sets, links each to its source, and append them 2274 * to @mgctx->preloaded_dst_csets. 2275 * 2276 * This function must be called after cgroup_migrate_add_src() has been 2277 * called on each migration source css_set. After migration is performed 2278 * using cgroup_migrate(), cgroup_migrate_finish() must be called on 2279 * @mgctx. 2280 */ 2281 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx) 2282 { 2283 struct css_set *src_cset, *tmp_cset; 2284 2285 lockdep_assert_held(&cgroup_mutex); 2286 2287 /* look up the dst cset for each src cset and link it to src */ 2288 list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets, 2289 mg_preload_node) { 2290 struct css_set *dst_cset; 2291 struct cgroup_subsys *ss; 2292 int ssid; 2293 2294 dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp); 2295 if (!dst_cset) 2296 goto err; 2297 2298 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset); 2299 2300 /* 2301 * If src cset equals dst, it's noop. Drop the src. 2302 * cgroup_migrate() will skip the cset too. Note that we 2303 * can't handle src == dst as some nodes are used by both. 2304 */ 2305 if (src_cset == dst_cset) { 2306 src_cset->mg_src_cgrp = NULL; 2307 src_cset->mg_dst_cgrp = NULL; 2308 list_del_init(&src_cset->mg_preload_node); 2309 put_css_set(src_cset); 2310 put_css_set(dst_cset); 2311 continue; 2312 } 2313 2314 src_cset->mg_dst_cset = dst_cset; 2315 2316 if (list_empty(&dst_cset->mg_preload_node)) 2317 list_add_tail(&dst_cset->mg_preload_node, 2318 &mgctx->preloaded_dst_csets); 2319 else 2320 put_css_set(dst_cset); 2321 2322 for_each_subsys(ss, ssid) 2323 if (src_cset->subsys[ssid] != dst_cset->subsys[ssid]) 2324 mgctx->ss_mask |= 1 << ssid; 2325 } 2326 2327 return 0; 2328 err: 2329 cgroup_migrate_finish(mgctx); 2330 return -ENOMEM; 2331 } 2332 2333 /** 2334 * cgroup_migrate - migrate a process or task to a cgroup 2335 * @leader: the leader of the process or the task to migrate 2336 * @threadgroup: whether @leader points to the whole process or a single task 2337 * @mgctx: migration context 2338 * 2339 * Migrate a process or task denoted by @leader. If migrating a process, 2340 * the caller must be holding cgroup_threadgroup_rwsem. The caller is also 2341 * responsible for invoking cgroup_migrate_add_src() and 2342 * cgroup_migrate_prepare_dst() on the targets before invoking this 2343 * function and following up with cgroup_migrate_finish(). 2344 * 2345 * As long as a controller's ->can_attach() doesn't fail, this function is 2346 * guaranteed to succeed. This means that, excluding ->can_attach() 2347 * failure, when migrating multiple targets, the success or failure can be 2348 * decided for all targets by invoking group_migrate_prepare_dst() before 2349 * actually starting migrating. 2350 */ 2351 int cgroup_migrate(struct task_struct *leader, bool threadgroup, 2352 struct cgroup_mgctx *mgctx) 2353 { 2354 struct task_struct *task; 2355 2356 /* 2357 * Prevent freeing of tasks while we take a snapshot. Tasks that are 2358 * already PF_EXITING could be freed from underneath us unless we 2359 * take an rcu_read_lock. 2360 */ 2361 spin_lock_irq(&css_set_lock); 2362 rcu_read_lock(); 2363 task = leader; 2364 do { 2365 cgroup_migrate_add_task(task, mgctx); 2366 if (!threadgroup) 2367 break; 2368 } while_each_thread(leader, task); 2369 rcu_read_unlock(); 2370 spin_unlock_irq(&css_set_lock); 2371 2372 return cgroup_migrate_execute(mgctx); 2373 } 2374 2375 /** 2376 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup 2377 * @dst_cgrp: the cgroup to attach to 2378 * @leader: the task or the leader of the threadgroup to be attached 2379 * @threadgroup: attach the whole threadgroup? 2380 * 2381 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem. 2382 */ 2383 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader, 2384 bool threadgroup) 2385 { 2386 DEFINE_CGROUP_MGCTX(mgctx); 2387 struct task_struct *task; 2388 int ret; 2389 2390 if (!cgroup_may_migrate_to(dst_cgrp)) 2391 return -EBUSY; 2392 2393 /* look up all src csets */ 2394 spin_lock_irq(&css_set_lock); 2395 rcu_read_lock(); 2396 task = leader; 2397 do { 2398 cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx); 2399 if (!threadgroup) 2400 break; 2401 } while_each_thread(leader, task); 2402 rcu_read_unlock(); 2403 spin_unlock_irq(&css_set_lock); 2404 2405 /* prepare dst csets and commit */ 2406 ret = cgroup_migrate_prepare_dst(&mgctx); 2407 if (!ret) 2408 ret = cgroup_migrate(leader, threadgroup, &mgctx); 2409 2410 cgroup_migrate_finish(&mgctx); 2411 2412 if (!ret) 2413 trace_cgroup_attach_task(dst_cgrp, leader, threadgroup); 2414 2415 return ret; 2416 } 2417 2418 static int cgroup_procs_write_permission(struct task_struct *task, 2419 struct cgroup *dst_cgrp, 2420 struct kernfs_open_file *of) 2421 { 2422 struct super_block *sb = of->file->f_path.dentry->d_sb; 2423 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns; 2424 struct cgroup *root_cgrp = ns->root_cset->dfl_cgrp; 2425 struct cgroup *src_cgrp, *com_cgrp; 2426 struct inode *inode; 2427 int ret; 2428 2429 if (!cgroup_on_dfl(dst_cgrp)) { 2430 const struct cred *cred = current_cred(); 2431 const struct cred *tcred = get_task_cred(task); 2432 2433 /* 2434 * even if we're attaching all tasks in the thread group, 2435 * we only need to check permissions on one of them. 2436 */ 2437 if (uid_eq(cred->euid, GLOBAL_ROOT_UID) || 2438 uid_eq(cred->euid, tcred->uid) || 2439 uid_eq(cred->euid, tcred->suid)) 2440 ret = 0; 2441 else 2442 ret = -EACCES; 2443 2444 put_cred(tcred); 2445 return ret; 2446 } 2447 2448 /* find the source cgroup */ 2449 spin_lock_irq(&css_set_lock); 2450 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root); 2451 spin_unlock_irq(&css_set_lock); 2452 2453 /* and the common ancestor */ 2454 com_cgrp = src_cgrp; 2455 while (!cgroup_is_descendant(dst_cgrp, com_cgrp)) 2456 com_cgrp = cgroup_parent(com_cgrp); 2457 2458 /* %current should be authorized to migrate to the common ancestor */ 2459 inode = kernfs_get_inode(sb, com_cgrp->procs_file.kn); 2460 if (!inode) 2461 return -ENOMEM; 2462 2463 ret = inode_permission(inode, MAY_WRITE); 2464 iput(inode); 2465 if (ret) 2466 return ret; 2467 2468 /* 2469 * If namespaces are delegation boundaries, %current must be able 2470 * to see both source and destination cgroups from its namespace. 2471 */ 2472 if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) && 2473 (!cgroup_is_descendant(src_cgrp, root_cgrp) || 2474 !cgroup_is_descendant(dst_cgrp, root_cgrp))) 2475 return -ENOENT; 2476 2477 return 0; 2478 } 2479 2480 /* 2481 * Find the task_struct of the task to attach by vpid and pass it along to the 2482 * function to attach either it or all tasks in its threadgroup. Will lock 2483 * cgroup_mutex and threadgroup. 2484 */ 2485 ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf, 2486 size_t nbytes, loff_t off, bool threadgroup) 2487 { 2488 struct task_struct *tsk; 2489 struct cgroup_subsys *ss; 2490 struct cgroup *cgrp; 2491 pid_t pid; 2492 int ssid, ret; 2493 2494 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0) 2495 return -EINVAL; 2496 2497 cgrp = cgroup_kn_lock_live(of->kn, false); 2498 if (!cgrp) 2499 return -ENODEV; 2500 2501 percpu_down_write(&cgroup_threadgroup_rwsem); 2502 rcu_read_lock(); 2503 if (pid) { 2504 tsk = find_task_by_vpid(pid); 2505 if (!tsk) { 2506 ret = -ESRCH; 2507 goto out_unlock_rcu; 2508 } 2509 } else { 2510 tsk = current; 2511 } 2512 2513 if (threadgroup) 2514 tsk = tsk->group_leader; 2515 2516 /* 2517 * kthreads may acquire PF_NO_SETAFFINITY during initialization. 2518 * If userland migrates such a kthread to a non-root cgroup, it can 2519 * become trapped in a cpuset, or RT kthread may be born in a 2520 * cgroup with no rt_runtime allocated. Just say no. 2521 */ 2522 if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) { 2523 ret = -EINVAL; 2524 goto out_unlock_rcu; 2525 } 2526 2527 get_task_struct(tsk); 2528 rcu_read_unlock(); 2529 2530 ret = cgroup_procs_write_permission(tsk, cgrp, of); 2531 if (!ret) 2532 ret = cgroup_attach_task(cgrp, tsk, threadgroup); 2533 2534 put_task_struct(tsk); 2535 goto out_unlock_threadgroup; 2536 2537 out_unlock_rcu: 2538 rcu_read_unlock(); 2539 out_unlock_threadgroup: 2540 percpu_up_write(&cgroup_threadgroup_rwsem); 2541 for_each_subsys(ss, ssid) 2542 if (ss->post_attach) 2543 ss->post_attach(); 2544 cgroup_kn_unlock(of->kn); 2545 return ret ?: nbytes; 2546 } 2547 2548 ssize_t cgroup_procs_write(struct kernfs_open_file *of, char *buf, size_t nbytes, 2549 loff_t off) 2550 { 2551 return __cgroup_procs_write(of, buf, nbytes, off, true); 2552 } 2553 2554 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask) 2555 { 2556 struct cgroup_subsys *ss; 2557 bool printed = false; 2558 int ssid; 2559 2560 do_each_subsys_mask(ss, ssid, ss_mask) { 2561 if (printed) 2562 seq_putc(seq, ' '); 2563 seq_printf(seq, "%s", ss->name); 2564 printed = true; 2565 } while_each_subsys_mask(); 2566 if (printed) 2567 seq_putc(seq, '\n'); 2568 } 2569 2570 /* show controllers which are enabled from the parent */ 2571 static int cgroup_controllers_show(struct seq_file *seq, void *v) 2572 { 2573 struct cgroup *cgrp = seq_css(seq)->cgroup; 2574 2575 cgroup_print_ss_mask(seq, cgroup_control(cgrp)); 2576 return 0; 2577 } 2578 2579 /* show controllers which are enabled for a given cgroup's children */ 2580 static int cgroup_subtree_control_show(struct seq_file *seq, void *v) 2581 { 2582 struct cgroup *cgrp = seq_css(seq)->cgroup; 2583 2584 cgroup_print_ss_mask(seq, cgrp->subtree_control); 2585 return 0; 2586 } 2587 2588 /** 2589 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy 2590 * @cgrp: root of the subtree to update csses for 2591 * 2592 * @cgrp's control masks have changed and its subtree's css associations 2593 * need to be updated accordingly. This function looks up all css_sets 2594 * which are attached to the subtree, creates the matching updated css_sets 2595 * and migrates the tasks to the new ones. 2596 */ 2597 static int cgroup_update_dfl_csses(struct cgroup *cgrp) 2598 { 2599 DEFINE_CGROUP_MGCTX(mgctx); 2600 struct cgroup_subsys_state *d_css; 2601 struct cgroup *dsct; 2602 struct css_set *src_cset; 2603 int ret; 2604 2605 lockdep_assert_held(&cgroup_mutex); 2606 2607 percpu_down_write(&cgroup_threadgroup_rwsem); 2608 2609 /* look up all csses currently attached to @cgrp's subtree */ 2610 spin_lock_irq(&css_set_lock); 2611 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 2612 struct cgrp_cset_link *link; 2613 2614 list_for_each_entry(link, &dsct->cset_links, cset_link) 2615 cgroup_migrate_add_src(link->cset, dsct, &mgctx); 2616 } 2617 spin_unlock_irq(&css_set_lock); 2618 2619 /* NULL dst indicates self on default hierarchy */ 2620 ret = cgroup_migrate_prepare_dst(&mgctx); 2621 if (ret) 2622 goto out_finish; 2623 2624 spin_lock_irq(&css_set_lock); 2625 list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, mg_preload_node) { 2626 struct task_struct *task, *ntask; 2627 2628 /* all tasks in src_csets need to be migrated */ 2629 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list) 2630 cgroup_migrate_add_task(task, &mgctx); 2631 } 2632 spin_unlock_irq(&css_set_lock); 2633 2634 ret = cgroup_migrate_execute(&mgctx); 2635 out_finish: 2636 cgroup_migrate_finish(&mgctx); 2637 percpu_up_write(&cgroup_threadgroup_rwsem); 2638 return ret; 2639 } 2640 2641 /** 2642 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses 2643 * @cgrp: root of the target subtree 2644 * 2645 * Because css offlining is asynchronous, userland may try to re-enable a 2646 * controller while the previous css is still around. This function grabs 2647 * cgroup_mutex and drains the previous css instances of @cgrp's subtree. 2648 */ 2649 void cgroup_lock_and_drain_offline(struct cgroup *cgrp) 2650 __acquires(&cgroup_mutex) 2651 { 2652 struct cgroup *dsct; 2653 struct cgroup_subsys_state *d_css; 2654 struct cgroup_subsys *ss; 2655 int ssid; 2656 2657 restart: 2658 mutex_lock(&cgroup_mutex); 2659 2660 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 2661 for_each_subsys(ss, ssid) { 2662 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 2663 DEFINE_WAIT(wait); 2664 2665 if (!css || !percpu_ref_is_dying(&css->refcnt)) 2666 continue; 2667 2668 cgroup_get_live(dsct); 2669 prepare_to_wait(&dsct->offline_waitq, &wait, 2670 TASK_UNINTERRUPTIBLE); 2671 2672 mutex_unlock(&cgroup_mutex); 2673 schedule(); 2674 finish_wait(&dsct->offline_waitq, &wait); 2675 2676 cgroup_put(dsct); 2677 goto restart; 2678 } 2679 } 2680 } 2681 2682 /** 2683 * cgroup_save_control - save control masks of a subtree 2684 * @cgrp: root of the target subtree 2685 * 2686 * Save ->subtree_control and ->subtree_ss_mask to the respective old_ 2687 * prefixed fields for @cgrp's subtree including @cgrp itself. 2688 */ 2689 static void cgroup_save_control(struct cgroup *cgrp) 2690 { 2691 struct cgroup *dsct; 2692 struct cgroup_subsys_state *d_css; 2693 2694 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 2695 dsct->old_subtree_control = dsct->subtree_control; 2696 dsct->old_subtree_ss_mask = dsct->subtree_ss_mask; 2697 } 2698 } 2699 2700 /** 2701 * cgroup_propagate_control - refresh control masks of a subtree 2702 * @cgrp: root of the target subtree 2703 * 2704 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches 2705 * ->subtree_control and propagate controller availability through the 2706 * subtree so that descendants don't have unavailable controllers enabled. 2707 */ 2708 static void cgroup_propagate_control(struct cgroup *cgrp) 2709 { 2710 struct cgroup *dsct; 2711 struct cgroup_subsys_state *d_css; 2712 2713 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 2714 dsct->subtree_control &= cgroup_control(dsct); 2715 dsct->subtree_ss_mask = 2716 cgroup_calc_subtree_ss_mask(dsct->subtree_control, 2717 cgroup_ss_mask(dsct)); 2718 } 2719 } 2720 2721 /** 2722 * cgroup_restore_control - restore control masks of a subtree 2723 * @cgrp: root of the target subtree 2724 * 2725 * Restore ->subtree_control and ->subtree_ss_mask from the respective old_ 2726 * prefixed fields for @cgrp's subtree including @cgrp itself. 2727 */ 2728 static void cgroup_restore_control(struct cgroup *cgrp) 2729 { 2730 struct cgroup *dsct; 2731 struct cgroup_subsys_state *d_css; 2732 2733 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 2734 dsct->subtree_control = dsct->old_subtree_control; 2735 dsct->subtree_ss_mask = dsct->old_subtree_ss_mask; 2736 } 2737 } 2738 2739 static bool css_visible(struct cgroup_subsys_state *css) 2740 { 2741 struct cgroup_subsys *ss = css->ss; 2742 struct cgroup *cgrp = css->cgroup; 2743 2744 if (cgroup_control(cgrp) & (1 << ss->id)) 2745 return true; 2746 if (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) 2747 return false; 2748 return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl; 2749 } 2750 2751 /** 2752 * cgroup_apply_control_enable - enable or show csses according to control 2753 * @cgrp: root of the target subtree 2754 * 2755 * Walk @cgrp's subtree and create new csses or make the existing ones 2756 * visible. A css is created invisible if it's being implicitly enabled 2757 * through dependency. An invisible css is made visible when the userland 2758 * explicitly enables it. 2759 * 2760 * Returns 0 on success, -errno on failure. On failure, csses which have 2761 * been processed already aren't cleaned up. The caller is responsible for 2762 * cleaning up with cgroup_apply_control_disable(). 2763 */ 2764 static int cgroup_apply_control_enable(struct cgroup *cgrp) 2765 { 2766 struct cgroup *dsct; 2767 struct cgroup_subsys_state *d_css; 2768 struct cgroup_subsys *ss; 2769 int ssid, ret; 2770 2771 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 2772 for_each_subsys(ss, ssid) { 2773 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 2774 2775 WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt)); 2776 2777 if (!(cgroup_ss_mask(dsct) & (1 << ss->id))) 2778 continue; 2779 2780 if (!css) { 2781 css = css_create(dsct, ss); 2782 if (IS_ERR(css)) 2783 return PTR_ERR(css); 2784 } 2785 2786 if (css_visible(css)) { 2787 ret = css_populate_dir(css); 2788 if (ret) 2789 return ret; 2790 } 2791 } 2792 } 2793 2794 return 0; 2795 } 2796 2797 /** 2798 * cgroup_apply_control_disable - kill or hide csses according to control 2799 * @cgrp: root of the target subtree 2800 * 2801 * Walk @cgrp's subtree and kill and hide csses so that they match 2802 * cgroup_ss_mask() and cgroup_visible_mask(). 2803 * 2804 * A css is hidden when the userland requests it to be disabled while other 2805 * subsystems are still depending on it. The css must not actively control 2806 * resources and be in the vanilla state if it's made visible again later. 2807 * Controllers which may be depended upon should provide ->css_reset() for 2808 * this purpose. 2809 */ 2810 static void cgroup_apply_control_disable(struct cgroup *cgrp) 2811 { 2812 struct cgroup *dsct; 2813 struct cgroup_subsys_state *d_css; 2814 struct cgroup_subsys *ss; 2815 int ssid; 2816 2817 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 2818 for_each_subsys(ss, ssid) { 2819 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 2820 2821 WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt)); 2822 2823 if (!css) 2824 continue; 2825 2826 if (css->parent && 2827 !(cgroup_ss_mask(dsct) & (1 << ss->id))) { 2828 kill_css(css); 2829 } else if (!css_visible(css)) { 2830 css_clear_dir(css); 2831 if (ss->css_reset) 2832 ss->css_reset(css); 2833 } 2834 } 2835 } 2836 } 2837 2838 /** 2839 * cgroup_apply_control - apply control mask updates to the subtree 2840 * @cgrp: root of the target subtree 2841 * 2842 * subsystems can be enabled and disabled in a subtree using the following 2843 * steps. 2844 * 2845 * 1. Call cgroup_save_control() to stash the current state. 2846 * 2. Update ->subtree_control masks in the subtree as desired. 2847 * 3. Call cgroup_apply_control() to apply the changes. 2848 * 4. Optionally perform other related operations. 2849 * 5. Call cgroup_finalize_control() to finish up. 2850 * 2851 * This function implements step 3 and propagates the mask changes 2852 * throughout @cgrp's subtree, updates csses accordingly and perform 2853 * process migrations. 2854 */ 2855 static int cgroup_apply_control(struct cgroup *cgrp) 2856 { 2857 int ret; 2858 2859 cgroup_propagate_control(cgrp); 2860 2861 ret = cgroup_apply_control_enable(cgrp); 2862 if (ret) 2863 return ret; 2864 2865 /* 2866 * At this point, cgroup_e_css() results reflect the new csses 2867 * making the following cgroup_update_dfl_csses() properly update 2868 * css associations of all tasks in the subtree. 2869 */ 2870 ret = cgroup_update_dfl_csses(cgrp); 2871 if (ret) 2872 return ret; 2873 2874 return 0; 2875 } 2876 2877 /** 2878 * cgroup_finalize_control - finalize control mask update 2879 * @cgrp: root of the target subtree 2880 * @ret: the result of the update 2881 * 2882 * Finalize control mask update. See cgroup_apply_control() for more info. 2883 */ 2884 static void cgroup_finalize_control(struct cgroup *cgrp, int ret) 2885 { 2886 if (ret) { 2887 cgroup_restore_control(cgrp); 2888 cgroup_propagate_control(cgrp); 2889 } 2890 2891 cgroup_apply_control_disable(cgrp); 2892 } 2893 2894 /* change the enabled child controllers for a cgroup in the default hierarchy */ 2895 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of, 2896 char *buf, size_t nbytes, 2897 loff_t off) 2898 { 2899 u16 enable = 0, disable = 0; 2900 struct cgroup *cgrp, *child; 2901 struct cgroup_subsys *ss; 2902 char *tok; 2903 int ssid, ret; 2904 2905 /* 2906 * Parse input - space separated list of subsystem names prefixed 2907 * with either + or -. 2908 */ 2909 buf = strstrip(buf); 2910 while ((tok = strsep(&buf, " "))) { 2911 if (tok[0] == '\0') 2912 continue; 2913 do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) { 2914 if (!cgroup_ssid_enabled(ssid) || 2915 strcmp(tok + 1, ss->name)) 2916 continue; 2917 2918 if (*tok == '+') { 2919 enable |= 1 << ssid; 2920 disable &= ~(1 << ssid); 2921 } else if (*tok == '-') { 2922 disable |= 1 << ssid; 2923 enable &= ~(1 << ssid); 2924 } else { 2925 return -EINVAL; 2926 } 2927 break; 2928 } while_each_subsys_mask(); 2929 if (ssid == CGROUP_SUBSYS_COUNT) 2930 return -EINVAL; 2931 } 2932 2933 cgrp = cgroup_kn_lock_live(of->kn, true); 2934 if (!cgrp) 2935 return -ENODEV; 2936 2937 for_each_subsys(ss, ssid) { 2938 if (enable & (1 << ssid)) { 2939 if (cgrp->subtree_control & (1 << ssid)) { 2940 enable &= ~(1 << ssid); 2941 continue; 2942 } 2943 2944 if (!(cgroup_control(cgrp) & (1 << ssid))) { 2945 ret = -ENOENT; 2946 goto out_unlock; 2947 } 2948 } else if (disable & (1 << ssid)) { 2949 if (!(cgrp->subtree_control & (1 << ssid))) { 2950 disable &= ~(1 << ssid); 2951 continue; 2952 } 2953 2954 /* a child has it enabled? */ 2955 cgroup_for_each_live_child(child, cgrp) { 2956 if (child->subtree_control & (1 << ssid)) { 2957 ret = -EBUSY; 2958 goto out_unlock; 2959 } 2960 } 2961 } 2962 } 2963 2964 if (!enable && !disable) { 2965 ret = 0; 2966 goto out_unlock; 2967 } 2968 2969 /* 2970 * Except for the root, subtree_control must be zero for a cgroup 2971 * with tasks so that child cgroups don't compete against tasks. 2972 */ 2973 if (enable && cgroup_parent(cgrp)) { 2974 struct cgrp_cset_link *link; 2975 2976 /* 2977 * Because namespaces pin csets too, @cgrp->cset_links 2978 * might not be empty even when @cgrp is empty. Walk and 2979 * verify each cset. 2980 */ 2981 spin_lock_irq(&css_set_lock); 2982 2983 ret = 0; 2984 list_for_each_entry(link, &cgrp->cset_links, cset_link) { 2985 if (css_set_populated(link->cset)) { 2986 ret = -EBUSY; 2987 break; 2988 } 2989 } 2990 2991 spin_unlock_irq(&css_set_lock); 2992 2993 if (ret) 2994 goto out_unlock; 2995 } 2996 2997 /* save and update control masks and prepare csses */ 2998 cgroup_save_control(cgrp); 2999 3000 cgrp->subtree_control |= enable; 3001 cgrp->subtree_control &= ~disable; 3002 3003 ret = cgroup_apply_control(cgrp); 3004 cgroup_finalize_control(cgrp, ret); 3005 if (ret) 3006 goto out_unlock; 3007 3008 kernfs_activate(cgrp->kn); 3009 out_unlock: 3010 cgroup_kn_unlock(of->kn); 3011 return ret ?: nbytes; 3012 } 3013 3014 static int cgroup_events_show(struct seq_file *seq, void *v) 3015 { 3016 seq_printf(seq, "populated %d\n", 3017 cgroup_is_populated(seq_css(seq)->cgroup)); 3018 return 0; 3019 } 3020 3021 static int cgroup_file_open(struct kernfs_open_file *of) 3022 { 3023 struct cftype *cft = of->kn->priv; 3024 3025 if (cft->open) 3026 return cft->open(of); 3027 return 0; 3028 } 3029 3030 static void cgroup_file_release(struct kernfs_open_file *of) 3031 { 3032 struct cftype *cft = of->kn->priv; 3033 3034 if (cft->release) 3035 cft->release(of); 3036 } 3037 3038 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf, 3039 size_t nbytes, loff_t off) 3040 { 3041 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns; 3042 struct cgroup *cgrp = of->kn->parent->priv; 3043 struct cftype *cft = of->kn->priv; 3044 struct cgroup_subsys_state *css; 3045 int ret; 3046 3047 /* 3048 * If namespaces are delegation boundaries, disallow writes to 3049 * files in an non-init namespace root from inside the namespace 3050 * except for the files explicitly marked delegatable - 3051 * cgroup.procs and cgroup.subtree_control. 3052 */ 3053 if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) && 3054 !(cft->flags & CFTYPE_NS_DELEGATABLE) && 3055 ns != &init_cgroup_ns && ns->root_cset->dfl_cgrp == cgrp) 3056 return -EPERM; 3057 3058 if (cft->write) 3059 return cft->write(of, buf, nbytes, off); 3060 3061 /* 3062 * kernfs guarantees that a file isn't deleted with operations in 3063 * flight, which means that the matching css is and stays alive and 3064 * doesn't need to be pinned. The RCU locking is not necessary 3065 * either. It's just for the convenience of using cgroup_css(). 3066 */ 3067 rcu_read_lock(); 3068 css = cgroup_css(cgrp, cft->ss); 3069 rcu_read_unlock(); 3070 3071 if (cft->write_u64) { 3072 unsigned long long v; 3073 ret = kstrtoull(buf, 0, &v); 3074 if (!ret) 3075 ret = cft->write_u64(css, cft, v); 3076 } else if (cft->write_s64) { 3077 long long v; 3078 ret = kstrtoll(buf, 0, &v); 3079 if (!ret) 3080 ret = cft->write_s64(css, cft, v); 3081 } else { 3082 ret = -EINVAL; 3083 } 3084 3085 return ret ?: nbytes; 3086 } 3087 3088 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos) 3089 { 3090 return seq_cft(seq)->seq_start(seq, ppos); 3091 } 3092 3093 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos) 3094 { 3095 return seq_cft(seq)->seq_next(seq, v, ppos); 3096 } 3097 3098 static void cgroup_seqfile_stop(struct seq_file *seq, void *v) 3099 { 3100 if (seq_cft(seq)->seq_stop) 3101 seq_cft(seq)->seq_stop(seq, v); 3102 } 3103 3104 static int cgroup_seqfile_show(struct seq_file *m, void *arg) 3105 { 3106 struct cftype *cft = seq_cft(m); 3107 struct cgroup_subsys_state *css = seq_css(m); 3108 3109 if (cft->seq_show) 3110 return cft->seq_show(m, arg); 3111 3112 if (cft->read_u64) 3113 seq_printf(m, "%llu\n", cft->read_u64(css, cft)); 3114 else if (cft->read_s64) 3115 seq_printf(m, "%lld\n", cft->read_s64(css, cft)); 3116 else 3117 return -EINVAL; 3118 return 0; 3119 } 3120 3121 static struct kernfs_ops cgroup_kf_single_ops = { 3122 .atomic_write_len = PAGE_SIZE, 3123 .open = cgroup_file_open, 3124 .release = cgroup_file_release, 3125 .write = cgroup_file_write, 3126 .seq_show = cgroup_seqfile_show, 3127 }; 3128 3129 static struct kernfs_ops cgroup_kf_ops = { 3130 .atomic_write_len = PAGE_SIZE, 3131 .open = cgroup_file_open, 3132 .release = cgroup_file_release, 3133 .write = cgroup_file_write, 3134 .seq_start = cgroup_seqfile_start, 3135 .seq_next = cgroup_seqfile_next, 3136 .seq_stop = cgroup_seqfile_stop, 3137 .seq_show = cgroup_seqfile_show, 3138 }; 3139 3140 /* set uid and gid of cgroup dirs and files to that of the creator */ 3141 static int cgroup_kn_set_ugid(struct kernfs_node *kn) 3142 { 3143 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID, 3144 .ia_uid = current_fsuid(), 3145 .ia_gid = current_fsgid(), }; 3146 3147 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) && 3148 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID)) 3149 return 0; 3150 3151 return kernfs_setattr(kn, &iattr); 3152 } 3153 3154 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp, 3155 struct cftype *cft) 3156 { 3157 char name[CGROUP_FILE_NAME_MAX]; 3158 struct kernfs_node *kn; 3159 struct lock_class_key *key = NULL; 3160 int ret; 3161 3162 #ifdef CONFIG_DEBUG_LOCK_ALLOC 3163 key = &cft->lockdep_key; 3164 #endif 3165 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name), 3166 cgroup_file_mode(cft), 0, cft->kf_ops, cft, 3167 NULL, key); 3168 if (IS_ERR(kn)) 3169 return PTR_ERR(kn); 3170 3171 ret = cgroup_kn_set_ugid(kn); 3172 if (ret) { 3173 kernfs_remove(kn); 3174 return ret; 3175 } 3176 3177 if (cft->file_offset) { 3178 struct cgroup_file *cfile = (void *)css + cft->file_offset; 3179 3180 spin_lock_irq(&cgroup_file_kn_lock); 3181 cfile->kn = kn; 3182 spin_unlock_irq(&cgroup_file_kn_lock); 3183 } 3184 3185 return 0; 3186 } 3187 3188 /** 3189 * cgroup_addrm_files - add or remove files to a cgroup directory 3190 * @css: the target css 3191 * @cgrp: the target cgroup (usually css->cgroup) 3192 * @cfts: array of cftypes to be added 3193 * @is_add: whether to add or remove 3194 * 3195 * Depending on @is_add, add or remove files defined by @cfts on @cgrp. 3196 * For removals, this function never fails. 3197 */ 3198 static int cgroup_addrm_files(struct cgroup_subsys_state *css, 3199 struct cgroup *cgrp, struct cftype cfts[], 3200 bool is_add) 3201 { 3202 struct cftype *cft, *cft_end = NULL; 3203 int ret = 0; 3204 3205 lockdep_assert_held(&cgroup_mutex); 3206 3207 restart: 3208 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) { 3209 /* does cft->flags tell us to skip this file on @cgrp? */ 3210 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp)) 3211 continue; 3212 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp)) 3213 continue; 3214 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp)) 3215 continue; 3216 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp)) 3217 continue; 3218 3219 if (is_add) { 3220 ret = cgroup_add_file(css, cgrp, cft); 3221 if (ret) { 3222 pr_warn("%s: failed to add %s, err=%d\n", 3223 __func__, cft->name, ret); 3224 cft_end = cft; 3225 is_add = false; 3226 goto restart; 3227 } 3228 } else { 3229 cgroup_rm_file(cgrp, cft); 3230 } 3231 } 3232 return ret; 3233 } 3234 3235 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add) 3236 { 3237 LIST_HEAD(pending); 3238 struct cgroup_subsys *ss = cfts[0].ss; 3239 struct cgroup *root = &ss->root->cgrp; 3240 struct cgroup_subsys_state *css; 3241 int ret = 0; 3242 3243 lockdep_assert_held(&cgroup_mutex); 3244 3245 /* add/rm files for all cgroups created before */ 3246 css_for_each_descendant_pre(css, cgroup_css(root, ss)) { 3247 struct cgroup *cgrp = css->cgroup; 3248 3249 if (!(css->flags & CSS_VISIBLE)) 3250 continue; 3251 3252 ret = cgroup_addrm_files(css, cgrp, cfts, is_add); 3253 if (ret) 3254 break; 3255 } 3256 3257 if (is_add && !ret) 3258 kernfs_activate(root->kn); 3259 return ret; 3260 } 3261 3262 static void cgroup_exit_cftypes(struct cftype *cfts) 3263 { 3264 struct cftype *cft; 3265 3266 for (cft = cfts; cft->name[0] != '\0'; cft++) { 3267 /* free copy for custom atomic_write_len, see init_cftypes() */ 3268 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) 3269 kfree(cft->kf_ops); 3270 cft->kf_ops = NULL; 3271 cft->ss = NULL; 3272 3273 /* revert flags set by cgroup core while adding @cfts */ 3274 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL); 3275 } 3276 } 3277 3278 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 3279 { 3280 struct cftype *cft; 3281 3282 for (cft = cfts; cft->name[0] != '\0'; cft++) { 3283 struct kernfs_ops *kf_ops; 3284 3285 WARN_ON(cft->ss || cft->kf_ops); 3286 3287 if (cft->seq_start) 3288 kf_ops = &cgroup_kf_ops; 3289 else 3290 kf_ops = &cgroup_kf_single_ops; 3291 3292 /* 3293 * Ugh... if @cft wants a custom max_write_len, we need to 3294 * make a copy of kf_ops to set its atomic_write_len. 3295 */ 3296 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) { 3297 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL); 3298 if (!kf_ops) { 3299 cgroup_exit_cftypes(cfts); 3300 return -ENOMEM; 3301 } 3302 kf_ops->atomic_write_len = cft->max_write_len; 3303 } 3304 3305 cft->kf_ops = kf_ops; 3306 cft->ss = ss; 3307 } 3308 3309 return 0; 3310 } 3311 3312 static int cgroup_rm_cftypes_locked(struct cftype *cfts) 3313 { 3314 lockdep_assert_held(&cgroup_mutex); 3315 3316 if (!cfts || !cfts[0].ss) 3317 return -ENOENT; 3318 3319 list_del(&cfts->node); 3320 cgroup_apply_cftypes(cfts, false); 3321 cgroup_exit_cftypes(cfts); 3322 return 0; 3323 } 3324 3325 /** 3326 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem 3327 * @cfts: zero-length name terminated array of cftypes 3328 * 3329 * Unregister @cfts. Files described by @cfts are removed from all 3330 * existing cgroups and all future cgroups won't have them either. This 3331 * function can be called anytime whether @cfts' subsys is attached or not. 3332 * 3333 * Returns 0 on successful unregistration, -ENOENT if @cfts is not 3334 * registered. 3335 */ 3336 int cgroup_rm_cftypes(struct cftype *cfts) 3337 { 3338 int ret; 3339 3340 mutex_lock(&cgroup_mutex); 3341 ret = cgroup_rm_cftypes_locked(cfts); 3342 mutex_unlock(&cgroup_mutex); 3343 return ret; 3344 } 3345 3346 /** 3347 * cgroup_add_cftypes - add an array of cftypes to a subsystem 3348 * @ss: target cgroup subsystem 3349 * @cfts: zero-length name terminated array of cftypes 3350 * 3351 * Register @cfts to @ss. Files described by @cfts are created for all 3352 * existing cgroups to which @ss is attached and all future cgroups will 3353 * have them too. This function can be called anytime whether @ss is 3354 * attached or not. 3355 * 3356 * Returns 0 on successful registration, -errno on failure. Note that this 3357 * function currently returns 0 as long as @cfts registration is successful 3358 * even if some file creation attempts on existing cgroups fail. 3359 */ 3360 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 3361 { 3362 int ret; 3363 3364 if (!cgroup_ssid_enabled(ss->id)) 3365 return 0; 3366 3367 if (!cfts || cfts[0].name[0] == '\0') 3368 return 0; 3369 3370 ret = cgroup_init_cftypes(ss, cfts); 3371 if (ret) 3372 return ret; 3373 3374 mutex_lock(&cgroup_mutex); 3375 3376 list_add_tail(&cfts->node, &ss->cfts); 3377 ret = cgroup_apply_cftypes(cfts, true); 3378 if (ret) 3379 cgroup_rm_cftypes_locked(cfts); 3380 3381 mutex_unlock(&cgroup_mutex); 3382 return ret; 3383 } 3384 3385 /** 3386 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy 3387 * @ss: target cgroup subsystem 3388 * @cfts: zero-length name terminated array of cftypes 3389 * 3390 * Similar to cgroup_add_cftypes() but the added files are only used for 3391 * the default hierarchy. 3392 */ 3393 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 3394 { 3395 struct cftype *cft; 3396 3397 for (cft = cfts; cft && cft->name[0] != '\0'; cft++) 3398 cft->flags |= __CFTYPE_ONLY_ON_DFL; 3399 return cgroup_add_cftypes(ss, cfts); 3400 } 3401 3402 /** 3403 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies 3404 * @ss: target cgroup subsystem 3405 * @cfts: zero-length name terminated array of cftypes 3406 * 3407 * Similar to cgroup_add_cftypes() but the added files are only used for 3408 * the legacy hierarchies. 3409 */ 3410 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 3411 { 3412 struct cftype *cft; 3413 3414 for (cft = cfts; cft && cft->name[0] != '\0'; cft++) 3415 cft->flags |= __CFTYPE_NOT_ON_DFL; 3416 return cgroup_add_cftypes(ss, cfts); 3417 } 3418 3419 /** 3420 * cgroup_file_notify - generate a file modified event for a cgroup_file 3421 * @cfile: target cgroup_file 3422 * 3423 * @cfile must have been obtained by setting cftype->file_offset. 3424 */ 3425 void cgroup_file_notify(struct cgroup_file *cfile) 3426 { 3427 unsigned long flags; 3428 3429 spin_lock_irqsave(&cgroup_file_kn_lock, flags); 3430 if (cfile->kn) 3431 kernfs_notify(cfile->kn); 3432 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags); 3433 } 3434 3435 /** 3436 * css_next_child - find the next child of a given css 3437 * @pos: the current position (%NULL to initiate traversal) 3438 * @parent: css whose children to walk 3439 * 3440 * This function returns the next child of @parent and should be called 3441 * under either cgroup_mutex or RCU read lock. The only requirement is 3442 * that @parent and @pos are accessible. The next sibling is guaranteed to 3443 * be returned regardless of their states. 3444 * 3445 * If a subsystem synchronizes ->css_online() and the start of iteration, a 3446 * css which finished ->css_online() is guaranteed to be visible in the 3447 * future iterations and will stay visible until the last reference is put. 3448 * A css which hasn't finished ->css_online() or already finished 3449 * ->css_offline() may show up during traversal. It's each subsystem's 3450 * responsibility to synchronize against on/offlining. 3451 */ 3452 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos, 3453 struct cgroup_subsys_state *parent) 3454 { 3455 struct cgroup_subsys_state *next; 3456 3457 cgroup_assert_mutex_or_rcu_locked(); 3458 3459 /* 3460 * @pos could already have been unlinked from the sibling list. 3461 * Once a cgroup is removed, its ->sibling.next is no longer 3462 * updated when its next sibling changes. CSS_RELEASED is set when 3463 * @pos is taken off list, at which time its next pointer is valid, 3464 * and, as releases are serialized, the one pointed to by the next 3465 * pointer is guaranteed to not have started release yet. This 3466 * implies that if we observe !CSS_RELEASED on @pos in this RCU 3467 * critical section, the one pointed to by its next pointer is 3468 * guaranteed to not have finished its RCU grace period even if we 3469 * have dropped rcu_read_lock() inbetween iterations. 3470 * 3471 * If @pos has CSS_RELEASED set, its next pointer can't be 3472 * dereferenced; however, as each css is given a monotonically 3473 * increasing unique serial number and always appended to the 3474 * sibling list, the next one can be found by walking the parent's 3475 * children until the first css with higher serial number than 3476 * @pos's. While this path can be slower, it happens iff iteration 3477 * races against release and the race window is very small. 3478 */ 3479 if (!pos) { 3480 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling); 3481 } else if (likely(!(pos->flags & CSS_RELEASED))) { 3482 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling); 3483 } else { 3484 list_for_each_entry_rcu(next, &parent->children, sibling) 3485 if (next->serial_nr > pos->serial_nr) 3486 break; 3487 } 3488 3489 /* 3490 * @next, if not pointing to the head, can be dereferenced and is 3491 * the next sibling. 3492 */ 3493 if (&next->sibling != &parent->children) 3494 return next; 3495 return NULL; 3496 } 3497 3498 /** 3499 * css_next_descendant_pre - find the next descendant for pre-order walk 3500 * @pos: the current position (%NULL to initiate traversal) 3501 * @root: css whose descendants to walk 3502 * 3503 * To be used by css_for_each_descendant_pre(). Find the next descendant 3504 * to visit for pre-order traversal of @root's descendants. @root is 3505 * included in the iteration and the first node to be visited. 3506 * 3507 * While this function requires cgroup_mutex or RCU read locking, it 3508 * doesn't require the whole traversal to be contained in a single critical 3509 * section. This function will return the correct next descendant as long 3510 * as both @pos and @root are accessible and @pos is a descendant of @root. 3511 * 3512 * If a subsystem synchronizes ->css_online() and the start of iteration, a 3513 * css which finished ->css_online() is guaranteed to be visible in the 3514 * future iterations and will stay visible until the last reference is put. 3515 * A css which hasn't finished ->css_online() or already finished 3516 * ->css_offline() may show up during traversal. It's each subsystem's 3517 * responsibility to synchronize against on/offlining. 3518 */ 3519 struct cgroup_subsys_state * 3520 css_next_descendant_pre(struct cgroup_subsys_state *pos, 3521 struct cgroup_subsys_state *root) 3522 { 3523 struct cgroup_subsys_state *next; 3524 3525 cgroup_assert_mutex_or_rcu_locked(); 3526 3527 /* if first iteration, visit @root */ 3528 if (!pos) 3529 return root; 3530 3531 /* visit the first child if exists */ 3532 next = css_next_child(NULL, pos); 3533 if (next) 3534 return next; 3535 3536 /* no child, visit my or the closest ancestor's next sibling */ 3537 while (pos != root) { 3538 next = css_next_child(pos, pos->parent); 3539 if (next) 3540 return next; 3541 pos = pos->parent; 3542 } 3543 3544 return NULL; 3545 } 3546 3547 /** 3548 * css_rightmost_descendant - return the rightmost descendant of a css 3549 * @pos: css of interest 3550 * 3551 * Return the rightmost descendant of @pos. If there's no descendant, @pos 3552 * is returned. This can be used during pre-order traversal to skip 3553 * subtree of @pos. 3554 * 3555 * While this function requires cgroup_mutex or RCU read locking, it 3556 * doesn't require the whole traversal to be contained in a single critical 3557 * section. This function will return the correct rightmost descendant as 3558 * long as @pos is accessible. 3559 */ 3560 struct cgroup_subsys_state * 3561 css_rightmost_descendant(struct cgroup_subsys_state *pos) 3562 { 3563 struct cgroup_subsys_state *last, *tmp; 3564 3565 cgroup_assert_mutex_or_rcu_locked(); 3566 3567 do { 3568 last = pos; 3569 /* ->prev isn't RCU safe, walk ->next till the end */ 3570 pos = NULL; 3571 css_for_each_child(tmp, last) 3572 pos = tmp; 3573 } while (pos); 3574 3575 return last; 3576 } 3577 3578 static struct cgroup_subsys_state * 3579 css_leftmost_descendant(struct cgroup_subsys_state *pos) 3580 { 3581 struct cgroup_subsys_state *last; 3582 3583 do { 3584 last = pos; 3585 pos = css_next_child(NULL, pos); 3586 } while (pos); 3587 3588 return last; 3589 } 3590 3591 /** 3592 * css_next_descendant_post - find the next descendant for post-order walk 3593 * @pos: the current position (%NULL to initiate traversal) 3594 * @root: css whose descendants to walk 3595 * 3596 * To be used by css_for_each_descendant_post(). Find the next descendant 3597 * to visit for post-order traversal of @root's descendants. @root is 3598 * included in the iteration and the last node to be visited. 3599 * 3600 * While this function requires cgroup_mutex or RCU read locking, it 3601 * doesn't require the whole traversal to be contained in a single critical 3602 * section. This function will return the correct next descendant as long 3603 * as both @pos and @cgroup are accessible and @pos is a descendant of 3604 * @cgroup. 3605 * 3606 * If a subsystem synchronizes ->css_online() and the start of iteration, a 3607 * css which finished ->css_online() is guaranteed to be visible in the 3608 * future iterations and will stay visible until the last reference is put. 3609 * A css which hasn't finished ->css_online() or already finished 3610 * ->css_offline() may show up during traversal. It's each subsystem's 3611 * responsibility to synchronize against on/offlining. 3612 */ 3613 struct cgroup_subsys_state * 3614 css_next_descendant_post(struct cgroup_subsys_state *pos, 3615 struct cgroup_subsys_state *root) 3616 { 3617 struct cgroup_subsys_state *next; 3618 3619 cgroup_assert_mutex_or_rcu_locked(); 3620 3621 /* if first iteration, visit leftmost descendant which may be @root */ 3622 if (!pos) 3623 return css_leftmost_descendant(root); 3624 3625 /* if we visited @root, we're done */ 3626 if (pos == root) 3627 return NULL; 3628 3629 /* if there's an unvisited sibling, visit its leftmost descendant */ 3630 next = css_next_child(pos, pos->parent); 3631 if (next) 3632 return css_leftmost_descendant(next); 3633 3634 /* no sibling left, visit parent */ 3635 return pos->parent; 3636 } 3637 3638 /** 3639 * css_has_online_children - does a css have online children 3640 * @css: the target css 3641 * 3642 * Returns %true if @css has any online children; otherwise, %false. This 3643 * function can be called from any context but the caller is responsible 3644 * for synchronizing against on/offlining as necessary. 3645 */ 3646 bool css_has_online_children(struct cgroup_subsys_state *css) 3647 { 3648 struct cgroup_subsys_state *child; 3649 bool ret = false; 3650 3651 rcu_read_lock(); 3652 css_for_each_child(child, css) { 3653 if (child->flags & CSS_ONLINE) { 3654 ret = true; 3655 break; 3656 } 3657 } 3658 rcu_read_unlock(); 3659 return ret; 3660 } 3661 3662 /** 3663 * css_task_iter_advance_css_set - advance a task itererator to the next css_set 3664 * @it: the iterator to advance 3665 * 3666 * Advance @it to the next css_set to walk. 3667 */ 3668 static void css_task_iter_advance_css_set(struct css_task_iter *it) 3669 { 3670 struct list_head *l = it->cset_pos; 3671 struct cgrp_cset_link *link; 3672 struct css_set *cset; 3673 3674 lockdep_assert_held(&css_set_lock); 3675 3676 /* Advance to the next non-empty css_set */ 3677 do { 3678 l = l->next; 3679 if (l == it->cset_head) { 3680 it->cset_pos = NULL; 3681 it->task_pos = NULL; 3682 return; 3683 } 3684 3685 if (it->ss) { 3686 cset = container_of(l, struct css_set, 3687 e_cset_node[it->ss->id]); 3688 } else { 3689 link = list_entry(l, struct cgrp_cset_link, cset_link); 3690 cset = link->cset; 3691 } 3692 } while (!css_set_populated(cset)); 3693 3694 it->cset_pos = l; 3695 3696 if (!list_empty(&cset->tasks)) 3697 it->task_pos = cset->tasks.next; 3698 else 3699 it->task_pos = cset->mg_tasks.next; 3700 3701 it->tasks_head = &cset->tasks; 3702 it->mg_tasks_head = &cset->mg_tasks; 3703 3704 /* 3705 * We don't keep css_sets locked across iteration steps and thus 3706 * need to take steps to ensure that iteration can be resumed after 3707 * the lock is re-acquired. Iteration is performed at two levels - 3708 * css_sets and tasks in them. 3709 * 3710 * Once created, a css_set never leaves its cgroup lists, so a 3711 * pinned css_set is guaranteed to stay put and we can resume 3712 * iteration afterwards. 3713 * 3714 * Tasks may leave @cset across iteration steps. This is resolved 3715 * by registering each iterator with the css_set currently being 3716 * walked and making css_set_move_task() advance iterators whose 3717 * next task is leaving. 3718 */ 3719 if (it->cur_cset) { 3720 list_del(&it->iters_node); 3721 put_css_set_locked(it->cur_cset); 3722 } 3723 get_css_set(cset); 3724 it->cur_cset = cset; 3725 list_add(&it->iters_node, &cset->task_iters); 3726 } 3727 3728 static void css_task_iter_advance(struct css_task_iter *it) 3729 { 3730 struct list_head *l = it->task_pos; 3731 3732 lockdep_assert_held(&css_set_lock); 3733 WARN_ON_ONCE(!l); 3734 3735 /* 3736 * Advance iterator to find next entry. cset->tasks is consumed 3737 * first and then ->mg_tasks. After ->mg_tasks, we move onto the 3738 * next cset. 3739 */ 3740 l = l->next; 3741 3742 if (l == it->tasks_head) 3743 l = it->mg_tasks_head->next; 3744 3745 if (l == it->mg_tasks_head) 3746 css_task_iter_advance_css_set(it); 3747 else 3748 it->task_pos = l; 3749 } 3750 3751 /** 3752 * css_task_iter_start - initiate task iteration 3753 * @css: the css to walk tasks of 3754 * @it: the task iterator to use 3755 * 3756 * Initiate iteration through the tasks of @css. The caller can call 3757 * css_task_iter_next() to walk through the tasks until the function 3758 * returns NULL. On completion of iteration, css_task_iter_end() must be 3759 * called. 3760 */ 3761 void css_task_iter_start(struct cgroup_subsys_state *css, 3762 struct css_task_iter *it) 3763 { 3764 /* no one should try to iterate before mounting cgroups */ 3765 WARN_ON_ONCE(!use_task_css_set_links); 3766 3767 memset(it, 0, sizeof(*it)); 3768 3769 spin_lock_irq(&css_set_lock); 3770 3771 it->ss = css->ss; 3772 3773 if (it->ss) 3774 it->cset_pos = &css->cgroup->e_csets[css->ss->id]; 3775 else 3776 it->cset_pos = &css->cgroup->cset_links; 3777 3778 it->cset_head = it->cset_pos; 3779 3780 css_task_iter_advance_css_set(it); 3781 3782 spin_unlock_irq(&css_set_lock); 3783 } 3784 3785 /** 3786 * css_task_iter_next - return the next task for the iterator 3787 * @it: the task iterator being iterated 3788 * 3789 * The "next" function for task iteration. @it should have been 3790 * initialized via css_task_iter_start(). Returns NULL when the iteration 3791 * reaches the end. 3792 */ 3793 struct task_struct *css_task_iter_next(struct css_task_iter *it) 3794 { 3795 if (it->cur_task) { 3796 put_task_struct(it->cur_task); 3797 it->cur_task = NULL; 3798 } 3799 3800 spin_lock_irq(&css_set_lock); 3801 3802 if (it->task_pos) { 3803 it->cur_task = list_entry(it->task_pos, struct task_struct, 3804 cg_list); 3805 get_task_struct(it->cur_task); 3806 css_task_iter_advance(it); 3807 } 3808 3809 spin_unlock_irq(&css_set_lock); 3810 3811 return it->cur_task; 3812 } 3813 3814 /** 3815 * css_task_iter_end - finish task iteration 3816 * @it: the task iterator to finish 3817 * 3818 * Finish task iteration started by css_task_iter_start(). 3819 */ 3820 void css_task_iter_end(struct css_task_iter *it) 3821 { 3822 if (it->cur_cset) { 3823 spin_lock_irq(&css_set_lock); 3824 list_del(&it->iters_node); 3825 put_css_set_locked(it->cur_cset); 3826 spin_unlock_irq(&css_set_lock); 3827 } 3828 3829 if (it->cur_task) 3830 put_task_struct(it->cur_task); 3831 } 3832 3833 static void cgroup_procs_release(struct kernfs_open_file *of) 3834 { 3835 if (of->priv) { 3836 css_task_iter_end(of->priv); 3837 kfree(of->priv); 3838 } 3839 } 3840 3841 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos) 3842 { 3843 struct kernfs_open_file *of = s->private; 3844 struct css_task_iter *it = of->priv; 3845 struct task_struct *task; 3846 3847 do { 3848 task = css_task_iter_next(it); 3849 } while (task && !thread_group_leader(task)); 3850 3851 return task; 3852 } 3853 3854 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos) 3855 { 3856 struct kernfs_open_file *of = s->private; 3857 struct cgroup *cgrp = seq_css(s)->cgroup; 3858 struct css_task_iter *it = of->priv; 3859 3860 /* 3861 * When a seq_file is seeked, it's always traversed sequentially 3862 * from position 0, so we can simply keep iterating on !0 *pos. 3863 */ 3864 if (!it) { 3865 if (WARN_ON_ONCE((*pos)++)) 3866 return ERR_PTR(-EINVAL); 3867 3868 it = kzalloc(sizeof(*it), GFP_KERNEL); 3869 if (!it) 3870 return ERR_PTR(-ENOMEM); 3871 of->priv = it; 3872 css_task_iter_start(&cgrp->self, it); 3873 } else if (!(*pos)++) { 3874 css_task_iter_end(it); 3875 css_task_iter_start(&cgrp->self, it); 3876 } 3877 3878 return cgroup_procs_next(s, NULL, NULL); 3879 } 3880 3881 static int cgroup_procs_show(struct seq_file *s, void *v) 3882 { 3883 seq_printf(s, "%d\n", task_tgid_vnr(v)); 3884 return 0; 3885 } 3886 3887 /* cgroup core interface files for the default hierarchy */ 3888 static struct cftype cgroup_base_files[] = { 3889 { 3890 .name = "cgroup.procs", 3891 .flags = CFTYPE_NS_DELEGATABLE, 3892 .file_offset = offsetof(struct cgroup, procs_file), 3893 .release = cgroup_procs_release, 3894 .seq_start = cgroup_procs_start, 3895 .seq_next = cgroup_procs_next, 3896 .seq_show = cgroup_procs_show, 3897 .write = cgroup_procs_write, 3898 }, 3899 { 3900 .name = "cgroup.controllers", 3901 .seq_show = cgroup_controllers_show, 3902 }, 3903 { 3904 .name = "cgroup.subtree_control", 3905 .flags = CFTYPE_NS_DELEGATABLE, 3906 .seq_show = cgroup_subtree_control_show, 3907 .write = cgroup_subtree_control_write, 3908 }, 3909 { 3910 .name = "cgroup.events", 3911 .flags = CFTYPE_NOT_ON_ROOT, 3912 .file_offset = offsetof(struct cgroup, events_file), 3913 .seq_show = cgroup_events_show, 3914 }, 3915 { } /* terminate */ 3916 }; 3917 3918 /* 3919 * css destruction is four-stage process. 3920 * 3921 * 1. Destruction starts. Killing of the percpu_ref is initiated. 3922 * Implemented in kill_css(). 3923 * 3924 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs 3925 * and thus css_tryget_online() is guaranteed to fail, the css can be 3926 * offlined by invoking offline_css(). After offlining, the base ref is 3927 * put. Implemented in css_killed_work_fn(). 3928 * 3929 * 3. When the percpu_ref reaches zero, the only possible remaining 3930 * accessors are inside RCU read sections. css_release() schedules the 3931 * RCU callback. 3932 * 3933 * 4. After the grace period, the css can be freed. Implemented in 3934 * css_free_work_fn(). 3935 * 3936 * It is actually hairier because both step 2 and 4 require process context 3937 * and thus involve punting to css->destroy_work adding two additional 3938 * steps to the already complex sequence. 3939 */ 3940 static void css_free_work_fn(struct work_struct *work) 3941 { 3942 struct cgroup_subsys_state *css = 3943 container_of(work, struct cgroup_subsys_state, destroy_work); 3944 struct cgroup_subsys *ss = css->ss; 3945 struct cgroup *cgrp = css->cgroup; 3946 3947 percpu_ref_exit(&css->refcnt); 3948 3949 if (ss) { 3950 /* css free path */ 3951 struct cgroup_subsys_state *parent = css->parent; 3952 int id = css->id; 3953 3954 ss->css_free(css); 3955 cgroup_idr_remove(&ss->css_idr, id); 3956 cgroup_put(cgrp); 3957 3958 if (parent) 3959 css_put(parent); 3960 } else { 3961 /* cgroup free path */ 3962 atomic_dec(&cgrp->root->nr_cgrps); 3963 cgroup1_pidlist_destroy_all(cgrp); 3964 cancel_work_sync(&cgrp->release_agent_work); 3965 3966 if (cgroup_parent(cgrp)) { 3967 /* 3968 * We get a ref to the parent, and put the ref when 3969 * this cgroup is being freed, so it's guaranteed 3970 * that the parent won't be destroyed before its 3971 * children. 3972 */ 3973 cgroup_put(cgroup_parent(cgrp)); 3974 kernfs_put(cgrp->kn); 3975 kfree(cgrp); 3976 } else { 3977 /* 3978 * This is root cgroup's refcnt reaching zero, 3979 * which indicates that the root should be 3980 * released. 3981 */ 3982 cgroup_destroy_root(cgrp->root); 3983 } 3984 } 3985 } 3986 3987 static void css_free_rcu_fn(struct rcu_head *rcu_head) 3988 { 3989 struct cgroup_subsys_state *css = 3990 container_of(rcu_head, struct cgroup_subsys_state, rcu_head); 3991 3992 INIT_WORK(&css->destroy_work, css_free_work_fn); 3993 queue_work(cgroup_destroy_wq, &css->destroy_work); 3994 } 3995 3996 static void css_release_work_fn(struct work_struct *work) 3997 { 3998 struct cgroup_subsys_state *css = 3999 container_of(work, struct cgroup_subsys_state, destroy_work); 4000 struct cgroup_subsys *ss = css->ss; 4001 struct cgroup *cgrp = css->cgroup; 4002 4003 mutex_lock(&cgroup_mutex); 4004 4005 css->flags |= CSS_RELEASED; 4006 list_del_rcu(&css->sibling); 4007 4008 if (ss) { 4009 /* css release path */ 4010 cgroup_idr_replace(&ss->css_idr, NULL, css->id); 4011 if (ss->css_released) 4012 ss->css_released(css); 4013 } else { 4014 /* cgroup release path */ 4015 trace_cgroup_release(cgrp); 4016 4017 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id); 4018 cgrp->id = -1; 4019 4020 /* 4021 * There are two control paths which try to determine 4022 * cgroup from dentry without going through kernfs - 4023 * cgroupstats_build() and css_tryget_online_from_dir(). 4024 * Those are supported by RCU protecting clearing of 4025 * cgrp->kn->priv backpointer. 4026 */ 4027 if (cgrp->kn) 4028 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, 4029 NULL); 4030 4031 cgroup_bpf_put(cgrp); 4032 } 4033 4034 mutex_unlock(&cgroup_mutex); 4035 4036 call_rcu(&css->rcu_head, css_free_rcu_fn); 4037 } 4038 4039 static void css_release(struct percpu_ref *ref) 4040 { 4041 struct cgroup_subsys_state *css = 4042 container_of(ref, struct cgroup_subsys_state, refcnt); 4043 4044 INIT_WORK(&css->destroy_work, css_release_work_fn); 4045 queue_work(cgroup_destroy_wq, &css->destroy_work); 4046 } 4047 4048 static void init_and_link_css(struct cgroup_subsys_state *css, 4049 struct cgroup_subsys *ss, struct cgroup *cgrp) 4050 { 4051 lockdep_assert_held(&cgroup_mutex); 4052 4053 cgroup_get_live(cgrp); 4054 4055 memset(css, 0, sizeof(*css)); 4056 css->cgroup = cgrp; 4057 css->ss = ss; 4058 css->id = -1; 4059 INIT_LIST_HEAD(&css->sibling); 4060 INIT_LIST_HEAD(&css->children); 4061 css->serial_nr = css_serial_nr_next++; 4062 atomic_set(&css->online_cnt, 0); 4063 4064 if (cgroup_parent(cgrp)) { 4065 css->parent = cgroup_css(cgroup_parent(cgrp), ss); 4066 css_get(css->parent); 4067 } 4068 4069 BUG_ON(cgroup_css(cgrp, ss)); 4070 } 4071 4072 /* invoke ->css_online() on a new CSS and mark it online if successful */ 4073 static int online_css(struct cgroup_subsys_state *css) 4074 { 4075 struct cgroup_subsys *ss = css->ss; 4076 int ret = 0; 4077 4078 lockdep_assert_held(&cgroup_mutex); 4079 4080 if (ss->css_online) 4081 ret = ss->css_online(css); 4082 if (!ret) { 4083 css->flags |= CSS_ONLINE; 4084 rcu_assign_pointer(css->cgroup->subsys[ss->id], css); 4085 4086 atomic_inc(&css->online_cnt); 4087 if (css->parent) 4088 atomic_inc(&css->parent->online_cnt); 4089 } 4090 return ret; 4091 } 4092 4093 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */ 4094 static void offline_css(struct cgroup_subsys_state *css) 4095 { 4096 struct cgroup_subsys *ss = css->ss; 4097 4098 lockdep_assert_held(&cgroup_mutex); 4099 4100 if (!(css->flags & CSS_ONLINE)) 4101 return; 4102 4103 if (ss->css_reset) 4104 ss->css_reset(css); 4105 4106 if (ss->css_offline) 4107 ss->css_offline(css); 4108 4109 css->flags &= ~CSS_ONLINE; 4110 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL); 4111 4112 wake_up_all(&css->cgroup->offline_waitq); 4113 } 4114 4115 /** 4116 * css_create - create a cgroup_subsys_state 4117 * @cgrp: the cgroup new css will be associated with 4118 * @ss: the subsys of new css 4119 * 4120 * Create a new css associated with @cgrp - @ss pair. On success, the new 4121 * css is online and installed in @cgrp. This function doesn't create the 4122 * interface files. Returns 0 on success, -errno on failure. 4123 */ 4124 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp, 4125 struct cgroup_subsys *ss) 4126 { 4127 struct cgroup *parent = cgroup_parent(cgrp); 4128 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss); 4129 struct cgroup_subsys_state *css; 4130 int err; 4131 4132 lockdep_assert_held(&cgroup_mutex); 4133 4134 css = ss->css_alloc(parent_css); 4135 if (!css) 4136 css = ERR_PTR(-ENOMEM); 4137 if (IS_ERR(css)) 4138 return css; 4139 4140 init_and_link_css(css, ss, cgrp); 4141 4142 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL); 4143 if (err) 4144 goto err_free_css; 4145 4146 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL); 4147 if (err < 0) 4148 goto err_free_css; 4149 css->id = err; 4150 4151 /* @css is ready to be brought online now, make it visible */ 4152 list_add_tail_rcu(&css->sibling, &parent_css->children); 4153 cgroup_idr_replace(&ss->css_idr, css, css->id); 4154 4155 err = online_css(css); 4156 if (err) 4157 goto err_list_del; 4158 4159 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy && 4160 cgroup_parent(parent)) { 4161 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n", 4162 current->comm, current->pid, ss->name); 4163 if (!strcmp(ss->name, "memory")) 4164 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n"); 4165 ss->warned_broken_hierarchy = true; 4166 } 4167 4168 return css; 4169 4170 err_list_del: 4171 list_del_rcu(&css->sibling); 4172 err_free_css: 4173 call_rcu(&css->rcu_head, css_free_rcu_fn); 4174 return ERR_PTR(err); 4175 } 4176 4177 /* 4178 * The returned cgroup is fully initialized including its control mask, but 4179 * it isn't associated with its kernfs_node and doesn't have the control 4180 * mask applied. 4181 */ 4182 static struct cgroup *cgroup_create(struct cgroup *parent) 4183 { 4184 struct cgroup_root *root = parent->root; 4185 struct cgroup *cgrp, *tcgrp; 4186 int level = parent->level + 1; 4187 int ret; 4188 4189 /* allocate the cgroup and its ID, 0 is reserved for the root */ 4190 cgrp = kzalloc(sizeof(*cgrp) + 4191 sizeof(cgrp->ancestor_ids[0]) * (level + 1), GFP_KERNEL); 4192 if (!cgrp) 4193 return ERR_PTR(-ENOMEM); 4194 4195 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL); 4196 if (ret) 4197 goto out_free_cgrp; 4198 4199 /* 4200 * Temporarily set the pointer to NULL, so idr_find() won't return 4201 * a half-baked cgroup. 4202 */ 4203 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL); 4204 if (cgrp->id < 0) { 4205 ret = -ENOMEM; 4206 goto out_cancel_ref; 4207 } 4208 4209 init_cgroup_housekeeping(cgrp); 4210 4211 cgrp->self.parent = &parent->self; 4212 cgrp->root = root; 4213 cgrp->level = level; 4214 4215 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) 4216 cgrp->ancestor_ids[tcgrp->level] = tcgrp->id; 4217 4218 if (notify_on_release(parent)) 4219 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags); 4220 4221 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags)) 4222 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags); 4223 4224 cgrp->self.serial_nr = css_serial_nr_next++; 4225 4226 /* allocation complete, commit to creation */ 4227 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children); 4228 atomic_inc(&root->nr_cgrps); 4229 cgroup_get_live(parent); 4230 4231 /* 4232 * @cgrp is now fully operational. If something fails after this 4233 * point, it'll be released via the normal destruction path. 4234 */ 4235 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id); 4236 4237 /* 4238 * On the default hierarchy, a child doesn't automatically inherit 4239 * subtree_control from the parent. Each is configured manually. 4240 */ 4241 if (!cgroup_on_dfl(cgrp)) 4242 cgrp->subtree_control = cgroup_control(cgrp); 4243 4244 if (parent) 4245 cgroup_bpf_inherit(cgrp, parent); 4246 4247 cgroup_propagate_control(cgrp); 4248 4249 return cgrp; 4250 4251 out_cancel_ref: 4252 percpu_ref_exit(&cgrp->self.refcnt); 4253 out_free_cgrp: 4254 kfree(cgrp); 4255 return ERR_PTR(ret); 4256 } 4257 4258 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode) 4259 { 4260 struct cgroup *parent, *cgrp; 4261 struct kernfs_node *kn; 4262 int ret; 4263 4264 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */ 4265 if (strchr(name, '\n')) 4266 return -EINVAL; 4267 4268 parent = cgroup_kn_lock_live(parent_kn, false); 4269 if (!parent) 4270 return -ENODEV; 4271 4272 cgrp = cgroup_create(parent); 4273 if (IS_ERR(cgrp)) { 4274 ret = PTR_ERR(cgrp); 4275 goto out_unlock; 4276 } 4277 4278 /* create the directory */ 4279 kn = kernfs_create_dir(parent->kn, name, mode, cgrp); 4280 if (IS_ERR(kn)) { 4281 ret = PTR_ERR(kn); 4282 goto out_destroy; 4283 } 4284 cgrp->kn = kn; 4285 4286 /* 4287 * This extra ref will be put in cgroup_free_fn() and guarantees 4288 * that @cgrp->kn is always accessible. 4289 */ 4290 kernfs_get(kn); 4291 4292 ret = cgroup_kn_set_ugid(kn); 4293 if (ret) 4294 goto out_destroy; 4295 4296 ret = css_populate_dir(&cgrp->self); 4297 if (ret) 4298 goto out_destroy; 4299 4300 ret = cgroup_apply_control_enable(cgrp); 4301 if (ret) 4302 goto out_destroy; 4303 4304 trace_cgroup_mkdir(cgrp); 4305 4306 /* let's create and online css's */ 4307 kernfs_activate(kn); 4308 4309 ret = 0; 4310 goto out_unlock; 4311 4312 out_destroy: 4313 cgroup_destroy_locked(cgrp); 4314 out_unlock: 4315 cgroup_kn_unlock(parent_kn); 4316 return ret; 4317 } 4318 4319 /* 4320 * This is called when the refcnt of a css is confirmed to be killed. 4321 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to 4322 * initate destruction and put the css ref from kill_css(). 4323 */ 4324 static void css_killed_work_fn(struct work_struct *work) 4325 { 4326 struct cgroup_subsys_state *css = 4327 container_of(work, struct cgroup_subsys_state, destroy_work); 4328 4329 mutex_lock(&cgroup_mutex); 4330 4331 do { 4332 offline_css(css); 4333 css_put(css); 4334 /* @css can't go away while we're holding cgroup_mutex */ 4335 css = css->parent; 4336 } while (css && atomic_dec_and_test(&css->online_cnt)); 4337 4338 mutex_unlock(&cgroup_mutex); 4339 } 4340 4341 /* css kill confirmation processing requires process context, bounce */ 4342 static void css_killed_ref_fn(struct percpu_ref *ref) 4343 { 4344 struct cgroup_subsys_state *css = 4345 container_of(ref, struct cgroup_subsys_state, refcnt); 4346 4347 if (atomic_dec_and_test(&css->online_cnt)) { 4348 INIT_WORK(&css->destroy_work, css_killed_work_fn); 4349 queue_work(cgroup_destroy_wq, &css->destroy_work); 4350 } 4351 } 4352 4353 /** 4354 * kill_css - destroy a css 4355 * @css: css to destroy 4356 * 4357 * This function initiates destruction of @css by removing cgroup interface 4358 * files and putting its base reference. ->css_offline() will be invoked 4359 * asynchronously once css_tryget_online() is guaranteed to fail and when 4360 * the reference count reaches zero, @css will be released. 4361 */ 4362 static void kill_css(struct cgroup_subsys_state *css) 4363 { 4364 lockdep_assert_held(&cgroup_mutex); 4365 4366 if (css->flags & CSS_DYING) 4367 return; 4368 4369 css->flags |= CSS_DYING; 4370 4371 /* 4372 * This must happen before css is disassociated with its cgroup. 4373 * See seq_css() for details. 4374 */ 4375 css_clear_dir(css); 4376 4377 /* 4378 * Killing would put the base ref, but we need to keep it alive 4379 * until after ->css_offline(). 4380 */ 4381 css_get(css); 4382 4383 /* 4384 * cgroup core guarantees that, by the time ->css_offline() is 4385 * invoked, no new css reference will be given out via 4386 * css_tryget_online(). We can't simply call percpu_ref_kill() and 4387 * proceed to offlining css's because percpu_ref_kill() doesn't 4388 * guarantee that the ref is seen as killed on all CPUs on return. 4389 * 4390 * Use percpu_ref_kill_and_confirm() to get notifications as each 4391 * css is confirmed to be seen as killed on all CPUs. 4392 */ 4393 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn); 4394 } 4395 4396 /** 4397 * cgroup_destroy_locked - the first stage of cgroup destruction 4398 * @cgrp: cgroup to be destroyed 4399 * 4400 * css's make use of percpu refcnts whose killing latency shouldn't be 4401 * exposed to userland and are RCU protected. Also, cgroup core needs to 4402 * guarantee that css_tryget_online() won't succeed by the time 4403 * ->css_offline() is invoked. To satisfy all the requirements, 4404 * destruction is implemented in the following two steps. 4405 * 4406 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all 4407 * userland visible parts and start killing the percpu refcnts of 4408 * css's. Set up so that the next stage will be kicked off once all 4409 * the percpu refcnts are confirmed to be killed. 4410 * 4411 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the 4412 * rest of destruction. Once all cgroup references are gone, the 4413 * cgroup is RCU-freed. 4414 * 4415 * This function implements s1. After this step, @cgrp is gone as far as 4416 * the userland is concerned and a new cgroup with the same name may be 4417 * created. As cgroup doesn't care about the names internally, this 4418 * doesn't cause any problem. 4419 */ 4420 static int cgroup_destroy_locked(struct cgroup *cgrp) 4421 __releases(&cgroup_mutex) __acquires(&cgroup_mutex) 4422 { 4423 struct cgroup_subsys_state *css; 4424 struct cgrp_cset_link *link; 4425 int ssid; 4426 4427 lockdep_assert_held(&cgroup_mutex); 4428 4429 /* 4430 * Only migration can raise populated from zero and we're already 4431 * holding cgroup_mutex. 4432 */ 4433 if (cgroup_is_populated(cgrp)) 4434 return -EBUSY; 4435 4436 /* 4437 * Make sure there's no live children. We can't test emptiness of 4438 * ->self.children as dead children linger on it while being 4439 * drained; otherwise, "rmdir parent/child parent" may fail. 4440 */ 4441 if (css_has_online_children(&cgrp->self)) 4442 return -EBUSY; 4443 4444 /* 4445 * Mark @cgrp and the associated csets dead. The former prevents 4446 * further task migration and child creation by disabling 4447 * cgroup_lock_live_group(). The latter makes the csets ignored by 4448 * the migration path. 4449 */ 4450 cgrp->self.flags &= ~CSS_ONLINE; 4451 4452 spin_lock_irq(&css_set_lock); 4453 list_for_each_entry(link, &cgrp->cset_links, cset_link) 4454 link->cset->dead = true; 4455 spin_unlock_irq(&css_set_lock); 4456 4457 /* initiate massacre of all css's */ 4458 for_each_css(css, ssid, cgrp) 4459 kill_css(css); 4460 4461 /* 4462 * Remove @cgrp directory along with the base files. @cgrp has an 4463 * extra ref on its kn. 4464 */ 4465 kernfs_remove(cgrp->kn); 4466 4467 cgroup1_check_for_release(cgroup_parent(cgrp)); 4468 4469 /* put the base reference */ 4470 percpu_ref_kill(&cgrp->self.refcnt); 4471 4472 return 0; 4473 }; 4474 4475 int cgroup_rmdir(struct kernfs_node *kn) 4476 { 4477 struct cgroup *cgrp; 4478 int ret = 0; 4479 4480 cgrp = cgroup_kn_lock_live(kn, false); 4481 if (!cgrp) 4482 return 0; 4483 4484 ret = cgroup_destroy_locked(cgrp); 4485 4486 if (!ret) 4487 trace_cgroup_rmdir(cgrp); 4488 4489 cgroup_kn_unlock(kn); 4490 return ret; 4491 } 4492 4493 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = { 4494 .show_options = cgroup_show_options, 4495 .remount_fs = cgroup_remount, 4496 .mkdir = cgroup_mkdir, 4497 .rmdir = cgroup_rmdir, 4498 .show_path = cgroup_show_path, 4499 }; 4500 4501 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early) 4502 { 4503 struct cgroup_subsys_state *css; 4504 4505 pr_debug("Initializing cgroup subsys %s\n", ss->name); 4506 4507 mutex_lock(&cgroup_mutex); 4508 4509 idr_init(&ss->css_idr); 4510 INIT_LIST_HEAD(&ss->cfts); 4511 4512 /* Create the root cgroup state for this subsystem */ 4513 ss->root = &cgrp_dfl_root; 4514 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss)); 4515 /* We don't handle early failures gracefully */ 4516 BUG_ON(IS_ERR(css)); 4517 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp); 4518 4519 /* 4520 * Root csses are never destroyed and we can't initialize 4521 * percpu_ref during early init. Disable refcnting. 4522 */ 4523 css->flags |= CSS_NO_REF; 4524 4525 if (early) { 4526 /* allocation can't be done safely during early init */ 4527 css->id = 1; 4528 } else { 4529 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL); 4530 BUG_ON(css->id < 0); 4531 } 4532 4533 /* Update the init_css_set to contain a subsys 4534 * pointer to this state - since the subsystem is 4535 * newly registered, all tasks and hence the 4536 * init_css_set is in the subsystem's root cgroup. */ 4537 init_css_set.subsys[ss->id] = css; 4538 4539 have_fork_callback |= (bool)ss->fork << ss->id; 4540 have_exit_callback |= (bool)ss->exit << ss->id; 4541 have_free_callback |= (bool)ss->free << ss->id; 4542 have_canfork_callback |= (bool)ss->can_fork << ss->id; 4543 4544 /* At system boot, before all subsystems have been 4545 * registered, no tasks have been forked, so we don't 4546 * need to invoke fork callbacks here. */ 4547 BUG_ON(!list_empty(&init_task.tasks)); 4548 4549 BUG_ON(online_css(css)); 4550 4551 mutex_unlock(&cgroup_mutex); 4552 } 4553 4554 /** 4555 * cgroup_init_early - cgroup initialization at system boot 4556 * 4557 * Initialize cgroups at system boot, and initialize any 4558 * subsystems that request early init. 4559 */ 4560 int __init cgroup_init_early(void) 4561 { 4562 static struct cgroup_sb_opts __initdata opts; 4563 struct cgroup_subsys *ss; 4564 int i; 4565 4566 init_cgroup_root(&cgrp_dfl_root, &opts); 4567 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF; 4568 4569 RCU_INIT_POINTER(init_task.cgroups, &init_css_set); 4570 4571 for_each_subsys(ss, i) { 4572 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id, 4573 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n", 4574 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free, 4575 ss->id, ss->name); 4576 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN, 4577 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]); 4578 4579 ss->id = i; 4580 ss->name = cgroup_subsys_name[i]; 4581 if (!ss->legacy_name) 4582 ss->legacy_name = cgroup_subsys_name[i]; 4583 4584 if (ss->early_init) 4585 cgroup_init_subsys(ss, true); 4586 } 4587 return 0; 4588 } 4589 4590 static u16 cgroup_disable_mask __initdata; 4591 4592 /** 4593 * cgroup_init - cgroup initialization 4594 * 4595 * Register cgroup filesystem and /proc file, and initialize 4596 * any subsystems that didn't request early init. 4597 */ 4598 int __init cgroup_init(void) 4599 { 4600 struct cgroup_subsys *ss; 4601 int ssid; 4602 4603 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16); 4604 BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem)); 4605 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files)); 4606 BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files)); 4607 4608 /* 4609 * The latency of the synchronize_sched() is too high for cgroups, 4610 * avoid it at the cost of forcing all readers into the slow path. 4611 */ 4612 rcu_sync_enter_start(&cgroup_threadgroup_rwsem.rss); 4613 4614 get_user_ns(init_cgroup_ns.user_ns); 4615 4616 mutex_lock(&cgroup_mutex); 4617 4618 /* 4619 * Add init_css_set to the hash table so that dfl_root can link to 4620 * it during init. 4621 */ 4622 hash_add(css_set_table, &init_css_set.hlist, 4623 css_set_hash(init_css_set.subsys)); 4624 4625 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0, 0)); 4626 4627 mutex_unlock(&cgroup_mutex); 4628 4629 for_each_subsys(ss, ssid) { 4630 if (ss->early_init) { 4631 struct cgroup_subsys_state *css = 4632 init_css_set.subsys[ss->id]; 4633 4634 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, 4635 GFP_KERNEL); 4636 BUG_ON(css->id < 0); 4637 } else { 4638 cgroup_init_subsys(ss, false); 4639 } 4640 4641 list_add_tail(&init_css_set.e_cset_node[ssid], 4642 &cgrp_dfl_root.cgrp.e_csets[ssid]); 4643 4644 /* 4645 * Setting dfl_root subsys_mask needs to consider the 4646 * disabled flag and cftype registration needs kmalloc, 4647 * both of which aren't available during early_init. 4648 */ 4649 if (cgroup_disable_mask & (1 << ssid)) { 4650 static_branch_disable(cgroup_subsys_enabled_key[ssid]); 4651 printk(KERN_INFO "Disabling %s control group subsystem\n", 4652 ss->name); 4653 continue; 4654 } 4655 4656 if (cgroup1_ssid_disabled(ssid)) 4657 printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n", 4658 ss->name); 4659 4660 cgrp_dfl_root.subsys_mask |= 1 << ss->id; 4661 4662 if (ss->implicit_on_dfl) 4663 cgrp_dfl_implicit_ss_mask |= 1 << ss->id; 4664 else if (!ss->dfl_cftypes) 4665 cgrp_dfl_inhibit_ss_mask |= 1 << ss->id; 4666 4667 if (ss->dfl_cftypes == ss->legacy_cftypes) { 4668 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes)); 4669 } else { 4670 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes)); 4671 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes)); 4672 } 4673 4674 if (ss->bind) 4675 ss->bind(init_css_set.subsys[ssid]); 4676 4677 mutex_lock(&cgroup_mutex); 4678 css_populate_dir(init_css_set.subsys[ssid]); 4679 mutex_unlock(&cgroup_mutex); 4680 } 4681 4682 /* init_css_set.subsys[] has been updated, re-hash */ 4683 hash_del(&init_css_set.hlist); 4684 hash_add(css_set_table, &init_css_set.hlist, 4685 css_set_hash(init_css_set.subsys)); 4686 4687 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup")); 4688 WARN_ON(register_filesystem(&cgroup_fs_type)); 4689 WARN_ON(register_filesystem(&cgroup2_fs_type)); 4690 WARN_ON(!proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations)); 4691 4692 return 0; 4693 } 4694 4695 static int __init cgroup_wq_init(void) 4696 { 4697 /* 4698 * There isn't much point in executing destruction path in 4699 * parallel. Good chunk is serialized with cgroup_mutex anyway. 4700 * Use 1 for @max_active. 4701 * 4702 * We would prefer to do this in cgroup_init() above, but that 4703 * is called before init_workqueues(): so leave this until after. 4704 */ 4705 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1); 4706 BUG_ON(!cgroup_destroy_wq); 4707 return 0; 4708 } 4709 core_initcall(cgroup_wq_init); 4710 4711 /* 4712 * proc_cgroup_show() 4713 * - Print task's cgroup paths into seq_file, one line for each hierarchy 4714 * - Used for /proc/<pid>/cgroup. 4715 */ 4716 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns, 4717 struct pid *pid, struct task_struct *tsk) 4718 { 4719 char *buf; 4720 int retval; 4721 struct cgroup_root *root; 4722 4723 retval = -ENOMEM; 4724 buf = kmalloc(PATH_MAX, GFP_KERNEL); 4725 if (!buf) 4726 goto out; 4727 4728 mutex_lock(&cgroup_mutex); 4729 spin_lock_irq(&css_set_lock); 4730 4731 for_each_root(root) { 4732 struct cgroup_subsys *ss; 4733 struct cgroup *cgrp; 4734 int ssid, count = 0; 4735 4736 if (root == &cgrp_dfl_root && !cgrp_dfl_visible) 4737 continue; 4738 4739 seq_printf(m, "%d:", root->hierarchy_id); 4740 if (root != &cgrp_dfl_root) 4741 for_each_subsys(ss, ssid) 4742 if (root->subsys_mask & (1 << ssid)) 4743 seq_printf(m, "%s%s", count++ ? "," : "", 4744 ss->legacy_name); 4745 if (strlen(root->name)) 4746 seq_printf(m, "%sname=%s", count ? "," : "", 4747 root->name); 4748 seq_putc(m, ':'); 4749 4750 cgrp = task_cgroup_from_root(tsk, root); 4751 4752 /* 4753 * On traditional hierarchies, all zombie tasks show up as 4754 * belonging to the root cgroup. On the default hierarchy, 4755 * while a zombie doesn't show up in "cgroup.procs" and 4756 * thus can't be migrated, its /proc/PID/cgroup keeps 4757 * reporting the cgroup it belonged to before exiting. If 4758 * the cgroup is removed before the zombie is reaped, 4759 * " (deleted)" is appended to the cgroup path. 4760 */ 4761 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) { 4762 retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX, 4763 current->nsproxy->cgroup_ns); 4764 if (retval >= PATH_MAX) 4765 retval = -ENAMETOOLONG; 4766 if (retval < 0) 4767 goto out_unlock; 4768 4769 seq_puts(m, buf); 4770 } else { 4771 seq_puts(m, "/"); 4772 } 4773 4774 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp)) 4775 seq_puts(m, " (deleted)\n"); 4776 else 4777 seq_putc(m, '\n'); 4778 } 4779 4780 retval = 0; 4781 out_unlock: 4782 spin_unlock_irq(&css_set_lock); 4783 mutex_unlock(&cgroup_mutex); 4784 kfree(buf); 4785 out: 4786 return retval; 4787 } 4788 4789 /** 4790 * cgroup_fork - initialize cgroup related fields during copy_process() 4791 * @child: pointer to task_struct of forking parent process. 4792 * 4793 * A task is associated with the init_css_set until cgroup_post_fork() 4794 * attaches it to the parent's css_set. Empty cg_list indicates that 4795 * @child isn't holding reference to its css_set. 4796 */ 4797 void cgroup_fork(struct task_struct *child) 4798 { 4799 RCU_INIT_POINTER(child->cgroups, &init_css_set); 4800 INIT_LIST_HEAD(&child->cg_list); 4801 } 4802 4803 /** 4804 * cgroup_can_fork - called on a new task before the process is exposed 4805 * @child: the task in question. 4806 * 4807 * This calls the subsystem can_fork() callbacks. If the can_fork() callback 4808 * returns an error, the fork aborts with that error code. This allows for 4809 * a cgroup subsystem to conditionally allow or deny new forks. 4810 */ 4811 int cgroup_can_fork(struct task_struct *child) 4812 { 4813 struct cgroup_subsys *ss; 4814 int i, j, ret; 4815 4816 do_each_subsys_mask(ss, i, have_canfork_callback) { 4817 ret = ss->can_fork(child); 4818 if (ret) 4819 goto out_revert; 4820 } while_each_subsys_mask(); 4821 4822 return 0; 4823 4824 out_revert: 4825 for_each_subsys(ss, j) { 4826 if (j >= i) 4827 break; 4828 if (ss->cancel_fork) 4829 ss->cancel_fork(child); 4830 } 4831 4832 return ret; 4833 } 4834 4835 /** 4836 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork() 4837 * @child: the task in question 4838 * 4839 * This calls the cancel_fork() callbacks if a fork failed *after* 4840 * cgroup_can_fork() succeded. 4841 */ 4842 void cgroup_cancel_fork(struct task_struct *child) 4843 { 4844 struct cgroup_subsys *ss; 4845 int i; 4846 4847 for_each_subsys(ss, i) 4848 if (ss->cancel_fork) 4849 ss->cancel_fork(child); 4850 } 4851 4852 /** 4853 * cgroup_post_fork - called on a new task after adding it to the task list 4854 * @child: the task in question 4855 * 4856 * Adds the task to the list running through its css_set if necessary and 4857 * call the subsystem fork() callbacks. Has to be after the task is 4858 * visible on the task list in case we race with the first call to 4859 * cgroup_task_iter_start() - to guarantee that the new task ends up on its 4860 * list. 4861 */ 4862 void cgroup_post_fork(struct task_struct *child) 4863 { 4864 struct cgroup_subsys *ss; 4865 int i; 4866 4867 /* 4868 * This may race against cgroup_enable_task_cg_lists(). As that 4869 * function sets use_task_css_set_links before grabbing 4870 * tasklist_lock and we just went through tasklist_lock to add 4871 * @child, it's guaranteed that either we see the set 4872 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees 4873 * @child during its iteration. 4874 * 4875 * If we won the race, @child is associated with %current's 4876 * css_set. Grabbing css_set_lock guarantees both that the 4877 * association is stable, and, on completion of the parent's 4878 * migration, @child is visible in the source of migration or 4879 * already in the destination cgroup. This guarantee is necessary 4880 * when implementing operations which need to migrate all tasks of 4881 * a cgroup to another. 4882 * 4883 * Note that if we lose to cgroup_enable_task_cg_lists(), @child 4884 * will remain in init_css_set. This is safe because all tasks are 4885 * in the init_css_set before cg_links is enabled and there's no 4886 * operation which transfers all tasks out of init_css_set. 4887 */ 4888 if (use_task_css_set_links) { 4889 struct css_set *cset; 4890 4891 spin_lock_irq(&css_set_lock); 4892 cset = task_css_set(current); 4893 if (list_empty(&child->cg_list)) { 4894 get_css_set(cset); 4895 cset->nr_tasks++; 4896 css_set_move_task(child, NULL, cset, false); 4897 } 4898 spin_unlock_irq(&css_set_lock); 4899 } 4900 4901 /* 4902 * Call ss->fork(). This must happen after @child is linked on 4903 * css_set; otherwise, @child might change state between ->fork() 4904 * and addition to css_set. 4905 */ 4906 do_each_subsys_mask(ss, i, have_fork_callback) { 4907 ss->fork(child); 4908 } while_each_subsys_mask(); 4909 } 4910 4911 /** 4912 * cgroup_exit - detach cgroup from exiting task 4913 * @tsk: pointer to task_struct of exiting process 4914 * 4915 * Description: Detach cgroup from @tsk and release it. 4916 * 4917 * Note that cgroups marked notify_on_release force every task in 4918 * them to take the global cgroup_mutex mutex when exiting. 4919 * This could impact scaling on very large systems. Be reluctant to 4920 * use notify_on_release cgroups where very high task exit scaling 4921 * is required on large systems. 4922 * 4923 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We 4924 * call cgroup_exit() while the task is still competent to handle 4925 * notify_on_release(), then leave the task attached to the root cgroup in 4926 * each hierarchy for the remainder of its exit. No need to bother with 4927 * init_css_set refcnting. init_css_set never goes away and we can't race 4928 * with migration path - PF_EXITING is visible to migration path. 4929 */ 4930 void cgroup_exit(struct task_struct *tsk) 4931 { 4932 struct cgroup_subsys *ss; 4933 struct css_set *cset; 4934 int i; 4935 4936 /* 4937 * Unlink from @tsk from its css_set. As migration path can't race 4938 * with us, we can check css_set and cg_list without synchronization. 4939 */ 4940 cset = task_css_set(tsk); 4941 4942 if (!list_empty(&tsk->cg_list)) { 4943 spin_lock_irq(&css_set_lock); 4944 css_set_move_task(tsk, cset, NULL, false); 4945 cset->nr_tasks--; 4946 spin_unlock_irq(&css_set_lock); 4947 } else { 4948 get_css_set(cset); 4949 } 4950 4951 /* see cgroup_post_fork() for details */ 4952 do_each_subsys_mask(ss, i, have_exit_callback) { 4953 ss->exit(tsk); 4954 } while_each_subsys_mask(); 4955 } 4956 4957 void cgroup_free(struct task_struct *task) 4958 { 4959 struct css_set *cset = task_css_set(task); 4960 struct cgroup_subsys *ss; 4961 int ssid; 4962 4963 do_each_subsys_mask(ss, ssid, have_free_callback) { 4964 ss->free(task); 4965 } while_each_subsys_mask(); 4966 4967 put_css_set(cset); 4968 } 4969 4970 static int __init cgroup_disable(char *str) 4971 { 4972 struct cgroup_subsys *ss; 4973 char *token; 4974 int i; 4975 4976 while ((token = strsep(&str, ",")) != NULL) { 4977 if (!*token) 4978 continue; 4979 4980 for_each_subsys(ss, i) { 4981 if (strcmp(token, ss->name) && 4982 strcmp(token, ss->legacy_name)) 4983 continue; 4984 cgroup_disable_mask |= 1 << i; 4985 } 4986 } 4987 return 1; 4988 } 4989 __setup("cgroup_disable=", cgroup_disable); 4990 4991 /** 4992 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry 4993 * @dentry: directory dentry of interest 4994 * @ss: subsystem of interest 4995 * 4996 * If @dentry is a directory for a cgroup which has @ss enabled on it, try 4997 * to get the corresponding css and return it. If such css doesn't exist 4998 * or can't be pinned, an ERR_PTR value is returned. 4999 */ 5000 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry, 5001 struct cgroup_subsys *ss) 5002 { 5003 struct kernfs_node *kn = kernfs_node_from_dentry(dentry); 5004 struct file_system_type *s_type = dentry->d_sb->s_type; 5005 struct cgroup_subsys_state *css = NULL; 5006 struct cgroup *cgrp; 5007 5008 /* is @dentry a cgroup dir? */ 5009 if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) || 5010 !kn || kernfs_type(kn) != KERNFS_DIR) 5011 return ERR_PTR(-EBADF); 5012 5013 rcu_read_lock(); 5014 5015 /* 5016 * This path doesn't originate from kernfs and @kn could already 5017 * have been or be removed at any point. @kn->priv is RCU 5018 * protected for this access. See css_release_work_fn() for details. 5019 */ 5020 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); 5021 if (cgrp) 5022 css = cgroup_css(cgrp, ss); 5023 5024 if (!css || !css_tryget_online(css)) 5025 css = ERR_PTR(-ENOENT); 5026 5027 rcu_read_unlock(); 5028 return css; 5029 } 5030 5031 /** 5032 * css_from_id - lookup css by id 5033 * @id: the cgroup id 5034 * @ss: cgroup subsys to be looked into 5035 * 5036 * Returns the css if there's valid one with @id, otherwise returns NULL. 5037 * Should be called under rcu_read_lock(). 5038 */ 5039 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss) 5040 { 5041 WARN_ON_ONCE(!rcu_read_lock_held()); 5042 return idr_find(&ss->css_idr, id); 5043 } 5044 5045 /** 5046 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path 5047 * @path: path on the default hierarchy 5048 * 5049 * Find the cgroup at @path on the default hierarchy, increment its 5050 * reference count and return it. Returns pointer to the found cgroup on 5051 * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR) 5052 * if @path points to a non-directory. 5053 */ 5054 struct cgroup *cgroup_get_from_path(const char *path) 5055 { 5056 struct kernfs_node *kn; 5057 struct cgroup *cgrp; 5058 5059 mutex_lock(&cgroup_mutex); 5060 5061 kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path); 5062 if (kn) { 5063 if (kernfs_type(kn) == KERNFS_DIR) { 5064 cgrp = kn->priv; 5065 cgroup_get_live(cgrp); 5066 } else { 5067 cgrp = ERR_PTR(-ENOTDIR); 5068 } 5069 kernfs_put(kn); 5070 } else { 5071 cgrp = ERR_PTR(-ENOENT); 5072 } 5073 5074 mutex_unlock(&cgroup_mutex); 5075 return cgrp; 5076 } 5077 EXPORT_SYMBOL_GPL(cgroup_get_from_path); 5078 5079 /** 5080 * cgroup_get_from_fd - get a cgroup pointer from a fd 5081 * @fd: fd obtained by open(cgroup2_dir) 5082 * 5083 * Find the cgroup from a fd which should be obtained 5084 * by opening a cgroup directory. Returns a pointer to the 5085 * cgroup on success. ERR_PTR is returned if the cgroup 5086 * cannot be found. 5087 */ 5088 struct cgroup *cgroup_get_from_fd(int fd) 5089 { 5090 struct cgroup_subsys_state *css; 5091 struct cgroup *cgrp; 5092 struct file *f; 5093 5094 f = fget_raw(fd); 5095 if (!f) 5096 return ERR_PTR(-EBADF); 5097 5098 css = css_tryget_online_from_dir(f->f_path.dentry, NULL); 5099 fput(f); 5100 if (IS_ERR(css)) 5101 return ERR_CAST(css); 5102 5103 cgrp = css->cgroup; 5104 if (!cgroup_on_dfl(cgrp)) { 5105 cgroup_put(cgrp); 5106 return ERR_PTR(-EBADF); 5107 } 5108 5109 return cgrp; 5110 } 5111 EXPORT_SYMBOL_GPL(cgroup_get_from_fd); 5112 5113 /* 5114 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data 5115 * definition in cgroup-defs.h. 5116 */ 5117 #ifdef CONFIG_SOCK_CGROUP_DATA 5118 5119 #if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID) 5120 5121 DEFINE_SPINLOCK(cgroup_sk_update_lock); 5122 static bool cgroup_sk_alloc_disabled __read_mostly; 5123 5124 void cgroup_sk_alloc_disable(void) 5125 { 5126 if (cgroup_sk_alloc_disabled) 5127 return; 5128 pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n"); 5129 cgroup_sk_alloc_disabled = true; 5130 } 5131 5132 #else 5133 5134 #define cgroup_sk_alloc_disabled false 5135 5136 #endif 5137 5138 void cgroup_sk_alloc(struct sock_cgroup_data *skcd) 5139 { 5140 if (cgroup_sk_alloc_disabled) 5141 return; 5142 5143 /* Socket clone path */ 5144 if (skcd->val) { 5145 /* 5146 * We might be cloning a socket which is left in an empty 5147 * cgroup and the cgroup might have already been rmdir'd. 5148 * Don't use cgroup_get_live(). 5149 */ 5150 cgroup_get(sock_cgroup_ptr(skcd)); 5151 return; 5152 } 5153 5154 rcu_read_lock(); 5155 5156 while (true) { 5157 struct css_set *cset; 5158 5159 cset = task_css_set(current); 5160 if (likely(cgroup_tryget(cset->dfl_cgrp))) { 5161 skcd->val = (unsigned long)cset->dfl_cgrp; 5162 break; 5163 } 5164 cpu_relax(); 5165 } 5166 5167 rcu_read_unlock(); 5168 } 5169 5170 void cgroup_sk_free(struct sock_cgroup_data *skcd) 5171 { 5172 cgroup_put(sock_cgroup_ptr(skcd)); 5173 } 5174 5175 #endif /* CONFIG_SOCK_CGROUP_DATA */ 5176 5177 #ifdef CONFIG_CGROUP_BPF 5178 int cgroup_bpf_update(struct cgroup *cgrp, struct bpf_prog *prog, 5179 enum bpf_attach_type type, bool overridable) 5180 { 5181 struct cgroup *parent = cgroup_parent(cgrp); 5182 int ret; 5183 5184 mutex_lock(&cgroup_mutex); 5185 ret = __cgroup_bpf_update(cgrp, parent, prog, type, overridable); 5186 mutex_unlock(&cgroup_mutex); 5187 return ret; 5188 } 5189 #endif /* CONFIG_CGROUP_BPF */ 5190