1 /* 2 * Generic process-grouping system. 3 * 4 * Based originally on the cpuset system, extracted by Paul Menage 5 * Copyright (C) 2006 Google, Inc 6 * 7 * Notifications support 8 * Copyright (C) 2009 Nokia Corporation 9 * Author: Kirill A. Shutemov 10 * 11 * Copyright notices from the original cpuset code: 12 * -------------------------------------------------- 13 * Copyright (C) 2003 BULL SA. 14 * Copyright (C) 2004-2006 Silicon Graphics, Inc. 15 * 16 * Portions derived from Patrick Mochel's sysfs code. 17 * sysfs is Copyright (c) 2001-3 Patrick Mochel 18 * 19 * 2003-10-10 Written by Simon Derr. 20 * 2003-10-22 Updates by Stephen Hemminger. 21 * 2004 May-July Rework by Paul Jackson. 22 * --------------------------------------------------- 23 * 24 * This file is subject to the terms and conditions of the GNU General Public 25 * License. See the file COPYING in the main directory of the Linux 26 * distribution for more details. 27 */ 28 29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 30 31 #include "cgroup-internal.h" 32 33 #include <linux/cred.h> 34 #include <linux/errno.h> 35 #include <linux/init_task.h> 36 #include <linux/kernel.h> 37 #include <linux/magic.h> 38 #include <linux/mutex.h> 39 #include <linux/mount.h> 40 #include <linux/pagemap.h> 41 #include <linux/proc_fs.h> 42 #include <linux/rcupdate.h> 43 #include <linux/sched.h> 44 #include <linux/sched/task.h> 45 #include <linux/slab.h> 46 #include <linux/spinlock.h> 47 #include <linux/percpu-rwsem.h> 48 #include <linux/string.h> 49 #include <linux/hashtable.h> 50 #include <linux/idr.h> 51 #include <linux/kthread.h> 52 #include <linux/atomic.h> 53 #include <linux/cpuset.h> 54 #include <linux/proc_ns.h> 55 #include <linux/nsproxy.h> 56 #include <linux/file.h> 57 #include <linux/fs_parser.h> 58 #include <linux/sched/cputime.h> 59 #include <linux/psi.h> 60 #include <net/sock.h> 61 62 #define CREATE_TRACE_POINTS 63 #include <trace/events/cgroup.h> 64 65 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \ 66 MAX_CFTYPE_NAME + 2) 67 /* let's not notify more than 100 times per second */ 68 #define CGROUP_FILE_NOTIFY_MIN_INTV DIV_ROUND_UP(HZ, 100) 69 70 /* 71 * cgroup_mutex is the master lock. Any modification to cgroup or its 72 * hierarchy must be performed while holding it. 73 * 74 * css_set_lock protects task->cgroups pointer, the list of css_set 75 * objects, and the chain of tasks off each css_set. 76 * 77 * These locks are exported if CONFIG_PROVE_RCU so that accessors in 78 * cgroup.h can use them for lockdep annotations. 79 */ 80 DEFINE_MUTEX(cgroup_mutex); 81 DEFINE_SPINLOCK(css_set_lock); 82 83 #ifdef CONFIG_PROVE_RCU 84 EXPORT_SYMBOL_GPL(cgroup_mutex); 85 EXPORT_SYMBOL_GPL(css_set_lock); 86 #endif 87 88 DEFINE_SPINLOCK(trace_cgroup_path_lock); 89 char trace_cgroup_path[TRACE_CGROUP_PATH_LEN]; 90 bool cgroup_debug __read_mostly; 91 92 /* 93 * Protects cgroup_idr and css_idr so that IDs can be released without 94 * grabbing cgroup_mutex. 95 */ 96 static DEFINE_SPINLOCK(cgroup_idr_lock); 97 98 /* 99 * Protects cgroup_file->kn for !self csses. It synchronizes notifications 100 * against file removal/re-creation across css hiding. 101 */ 102 static DEFINE_SPINLOCK(cgroup_file_kn_lock); 103 104 struct percpu_rw_semaphore cgroup_threadgroup_rwsem; 105 106 #define cgroup_assert_mutex_or_rcu_locked() \ 107 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \ 108 !lockdep_is_held(&cgroup_mutex), \ 109 "cgroup_mutex or RCU read lock required"); 110 111 /* 112 * cgroup destruction makes heavy use of work items and there can be a lot 113 * of concurrent destructions. Use a separate workqueue so that cgroup 114 * destruction work items don't end up filling up max_active of system_wq 115 * which may lead to deadlock. 116 */ 117 static struct workqueue_struct *cgroup_destroy_wq; 118 119 /* generate an array of cgroup subsystem pointers */ 120 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys, 121 struct cgroup_subsys *cgroup_subsys[] = { 122 #include <linux/cgroup_subsys.h> 123 }; 124 #undef SUBSYS 125 126 /* array of cgroup subsystem names */ 127 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x, 128 static const char *cgroup_subsys_name[] = { 129 #include <linux/cgroup_subsys.h> 130 }; 131 #undef SUBSYS 132 133 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */ 134 #define SUBSYS(_x) \ 135 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \ 136 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \ 137 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \ 138 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key); 139 #include <linux/cgroup_subsys.h> 140 #undef SUBSYS 141 142 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key, 143 static struct static_key_true *cgroup_subsys_enabled_key[] = { 144 #include <linux/cgroup_subsys.h> 145 }; 146 #undef SUBSYS 147 148 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key, 149 static struct static_key_true *cgroup_subsys_on_dfl_key[] = { 150 #include <linux/cgroup_subsys.h> 151 }; 152 #undef SUBSYS 153 154 static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu); 155 156 /* 157 * The default hierarchy, reserved for the subsystems that are otherwise 158 * unattached - it never has more than a single cgroup, and all tasks are 159 * part of that cgroup. 160 */ 161 struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu }; 162 EXPORT_SYMBOL_GPL(cgrp_dfl_root); 163 164 /* 165 * The default hierarchy always exists but is hidden until mounted for the 166 * first time. This is for backward compatibility. 167 */ 168 static bool cgrp_dfl_visible; 169 170 /* some controllers are not supported in the default hierarchy */ 171 static u16 cgrp_dfl_inhibit_ss_mask; 172 173 /* some controllers are implicitly enabled on the default hierarchy */ 174 static u16 cgrp_dfl_implicit_ss_mask; 175 176 /* some controllers can be threaded on the default hierarchy */ 177 static u16 cgrp_dfl_threaded_ss_mask; 178 179 /* The list of hierarchy roots */ 180 LIST_HEAD(cgroup_roots); 181 static int cgroup_root_count; 182 183 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */ 184 static DEFINE_IDR(cgroup_hierarchy_idr); 185 186 /* 187 * Assign a monotonically increasing serial number to csses. It guarantees 188 * cgroups with bigger numbers are newer than those with smaller numbers. 189 * Also, as csses are always appended to the parent's ->children list, it 190 * guarantees that sibling csses are always sorted in the ascending serial 191 * number order on the list. Protected by cgroup_mutex. 192 */ 193 static u64 css_serial_nr_next = 1; 194 195 /* 196 * These bitmasks identify subsystems with specific features to avoid 197 * having to do iterative checks repeatedly. 198 */ 199 static u16 have_fork_callback __read_mostly; 200 static u16 have_exit_callback __read_mostly; 201 static u16 have_release_callback __read_mostly; 202 static u16 have_canfork_callback __read_mostly; 203 204 /* cgroup namespace for init task */ 205 struct cgroup_namespace init_cgroup_ns = { 206 .count = REFCOUNT_INIT(2), 207 .user_ns = &init_user_ns, 208 .ns.ops = &cgroupns_operations, 209 .ns.inum = PROC_CGROUP_INIT_INO, 210 .root_cset = &init_css_set, 211 }; 212 213 static struct file_system_type cgroup2_fs_type; 214 static struct cftype cgroup_base_files[]; 215 216 static int cgroup_apply_control(struct cgroup *cgrp); 217 static void cgroup_finalize_control(struct cgroup *cgrp, int ret); 218 static void css_task_iter_advance(struct css_task_iter *it); 219 static int cgroup_destroy_locked(struct cgroup *cgrp); 220 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp, 221 struct cgroup_subsys *ss); 222 static void css_release(struct percpu_ref *ref); 223 static void kill_css(struct cgroup_subsys_state *css); 224 static int cgroup_addrm_files(struct cgroup_subsys_state *css, 225 struct cgroup *cgrp, struct cftype cfts[], 226 bool is_add); 227 228 /** 229 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID 230 * @ssid: subsys ID of interest 231 * 232 * cgroup_subsys_enabled() can only be used with literal subsys names which 233 * is fine for individual subsystems but unsuitable for cgroup core. This 234 * is slower static_key_enabled() based test indexed by @ssid. 235 */ 236 bool cgroup_ssid_enabled(int ssid) 237 { 238 if (CGROUP_SUBSYS_COUNT == 0) 239 return false; 240 241 return static_key_enabled(cgroup_subsys_enabled_key[ssid]); 242 } 243 244 /** 245 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy 246 * @cgrp: the cgroup of interest 247 * 248 * The default hierarchy is the v2 interface of cgroup and this function 249 * can be used to test whether a cgroup is on the default hierarchy for 250 * cases where a subsystem should behave differnetly depending on the 251 * interface version. 252 * 253 * The set of behaviors which change on the default hierarchy are still 254 * being determined and the mount option is prefixed with __DEVEL__. 255 * 256 * List of changed behaviors: 257 * 258 * - Mount options "noprefix", "xattr", "clone_children", "release_agent" 259 * and "name" are disallowed. 260 * 261 * - When mounting an existing superblock, mount options should match. 262 * 263 * - Remount is disallowed. 264 * 265 * - rename(2) is disallowed. 266 * 267 * - "tasks" is removed. Everything should be at process granularity. Use 268 * "cgroup.procs" instead. 269 * 270 * - "cgroup.procs" is not sorted. pids will be unique unless they got 271 * recycled inbetween reads. 272 * 273 * - "release_agent" and "notify_on_release" are removed. Replacement 274 * notification mechanism will be implemented. 275 * 276 * - "cgroup.clone_children" is removed. 277 * 278 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup 279 * and its descendants contain no task; otherwise, 1. The file also 280 * generates kernfs notification which can be monitored through poll and 281 * [di]notify when the value of the file changes. 282 * 283 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and 284 * take masks of ancestors with non-empty cpus/mems, instead of being 285 * moved to an ancestor. 286 * 287 * - cpuset: a task can be moved into an empty cpuset, and again it takes 288 * masks of ancestors. 289 * 290 * - memcg: use_hierarchy is on by default and the cgroup file for the flag 291 * is not created. 292 * 293 * - blkcg: blk-throttle becomes properly hierarchical. 294 * 295 * - debug: disallowed on the default hierarchy. 296 */ 297 bool cgroup_on_dfl(const struct cgroup *cgrp) 298 { 299 return cgrp->root == &cgrp_dfl_root; 300 } 301 302 /* IDR wrappers which synchronize using cgroup_idr_lock */ 303 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end, 304 gfp_t gfp_mask) 305 { 306 int ret; 307 308 idr_preload(gfp_mask); 309 spin_lock_bh(&cgroup_idr_lock); 310 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM); 311 spin_unlock_bh(&cgroup_idr_lock); 312 idr_preload_end(); 313 return ret; 314 } 315 316 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id) 317 { 318 void *ret; 319 320 spin_lock_bh(&cgroup_idr_lock); 321 ret = idr_replace(idr, ptr, id); 322 spin_unlock_bh(&cgroup_idr_lock); 323 return ret; 324 } 325 326 static void cgroup_idr_remove(struct idr *idr, int id) 327 { 328 spin_lock_bh(&cgroup_idr_lock); 329 idr_remove(idr, id); 330 spin_unlock_bh(&cgroup_idr_lock); 331 } 332 333 static bool cgroup_has_tasks(struct cgroup *cgrp) 334 { 335 return cgrp->nr_populated_csets; 336 } 337 338 bool cgroup_is_threaded(struct cgroup *cgrp) 339 { 340 return cgrp->dom_cgrp != cgrp; 341 } 342 343 /* can @cgrp host both domain and threaded children? */ 344 static bool cgroup_is_mixable(struct cgroup *cgrp) 345 { 346 /* 347 * Root isn't under domain level resource control exempting it from 348 * the no-internal-process constraint, so it can serve as a thread 349 * root and a parent of resource domains at the same time. 350 */ 351 return !cgroup_parent(cgrp); 352 } 353 354 /* can @cgrp become a thread root? should always be true for a thread root */ 355 static bool cgroup_can_be_thread_root(struct cgroup *cgrp) 356 { 357 /* mixables don't care */ 358 if (cgroup_is_mixable(cgrp)) 359 return true; 360 361 /* domain roots can't be nested under threaded */ 362 if (cgroup_is_threaded(cgrp)) 363 return false; 364 365 /* can only have either domain or threaded children */ 366 if (cgrp->nr_populated_domain_children) 367 return false; 368 369 /* and no domain controllers can be enabled */ 370 if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask) 371 return false; 372 373 return true; 374 } 375 376 /* is @cgrp root of a threaded subtree? */ 377 bool cgroup_is_thread_root(struct cgroup *cgrp) 378 { 379 /* thread root should be a domain */ 380 if (cgroup_is_threaded(cgrp)) 381 return false; 382 383 /* a domain w/ threaded children is a thread root */ 384 if (cgrp->nr_threaded_children) 385 return true; 386 387 /* 388 * A domain which has tasks and explicit threaded controllers 389 * enabled is a thread root. 390 */ 391 if (cgroup_has_tasks(cgrp) && 392 (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask)) 393 return true; 394 395 return false; 396 } 397 398 /* a domain which isn't connected to the root w/o brekage can't be used */ 399 static bool cgroup_is_valid_domain(struct cgroup *cgrp) 400 { 401 /* the cgroup itself can be a thread root */ 402 if (cgroup_is_threaded(cgrp)) 403 return false; 404 405 /* but the ancestors can't be unless mixable */ 406 while ((cgrp = cgroup_parent(cgrp))) { 407 if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp)) 408 return false; 409 if (cgroup_is_threaded(cgrp)) 410 return false; 411 } 412 413 return true; 414 } 415 416 /* subsystems visibly enabled on a cgroup */ 417 static u16 cgroup_control(struct cgroup *cgrp) 418 { 419 struct cgroup *parent = cgroup_parent(cgrp); 420 u16 root_ss_mask = cgrp->root->subsys_mask; 421 422 if (parent) { 423 u16 ss_mask = parent->subtree_control; 424 425 /* threaded cgroups can only have threaded controllers */ 426 if (cgroup_is_threaded(cgrp)) 427 ss_mask &= cgrp_dfl_threaded_ss_mask; 428 return ss_mask; 429 } 430 431 if (cgroup_on_dfl(cgrp)) 432 root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask | 433 cgrp_dfl_implicit_ss_mask); 434 return root_ss_mask; 435 } 436 437 /* subsystems enabled on a cgroup */ 438 static u16 cgroup_ss_mask(struct cgroup *cgrp) 439 { 440 struct cgroup *parent = cgroup_parent(cgrp); 441 442 if (parent) { 443 u16 ss_mask = parent->subtree_ss_mask; 444 445 /* threaded cgroups can only have threaded controllers */ 446 if (cgroup_is_threaded(cgrp)) 447 ss_mask &= cgrp_dfl_threaded_ss_mask; 448 return ss_mask; 449 } 450 451 return cgrp->root->subsys_mask; 452 } 453 454 /** 455 * cgroup_css - obtain a cgroup's css for the specified subsystem 456 * @cgrp: the cgroup of interest 457 * @ss: the subsystem of interest (%NULL returns @cgrp->self) 458 * 459 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This 460 * function must be called either under cgroup_mutex or rcu_read_lock() and 461 * the caller is responsible for pinning the returned css if it wants to 462 * keep accessing it outside the said locks. This function may return 463 * %NULL if @cgrp doesn't have @subsys_id enabled. 464 */ 465 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp, 466 struct cgroup_subsys *ss) 467 { 468 if (ss) 469 return rcu_dereference_check(cgrp->subsys[ss->id], 470 lockdep_is_held(&cgroup_mutex)); 471 else 472 return &cgrp->self; 473 } 474 475 /** 476 * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem 477 * @cgrp: the cgroup of interest 478 * @ss: the subsystem of interest 479 * 480 * Find and get @cgrp's css assocaited with @ss. If the css doesn't exist 481 * or is offline, %NULL is returned. 482 */ 483 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp, 484 struct cgroup_subsys *ss) 485 { 486 struct cgroup_subsys_state *css; 487 488 rcu_read_lock(); 489 css = cgroup_css(cgrp, ss); 490 if (!css || !css_tryget_online(css)) 491 css = NULL; 492 rcu_read_unlock(); 493 494 return css; 495 } 496 497 /** 498 * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss 499 * @cgrp: the cgroup of interest 500 * @ss: the subsystem of interest (%NULL returns @cgrp->self) 501 * 502 * Similar to cgroup_css() but returns the effective css, which is defined 503 * as the matching css of the nearest ancestor including self which has @ss 504 * enabled. If @ss is associated with the hierarchy @cgrp is on, this 505 * function is guaranteed to return non-NULL css. 506 */ 507 static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp, 508 struct cgroup_subsys *ss) 509 { 510 lockdep_assert_held(&cgroup_mutex); 511 512 if (!ss) 513 return &cgrp->self; 514 515 /* 516 * This function is used while updating css associations and thus 517 * can't test the csses directly. Test ss_mask. 518 */ 519 while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) { 520 cgrp = cgroup_parent(cgrp); 521 if (!cgrp) 522 return NULL; 523 } 524 525 return cgroup_css(cgrp, ss); 526 } 527 528 /** 529 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem 530 * @cgrp: the cgroup of interest 531 * @ss: the subsystem of interest 532 * 533 * Find and get the effective css of @cgrp for @ss. The effective css is 534 * defined as the matching css of the nearest ancestor including self which 535 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on, 536 * the root css is returned, so this function always returns a valid css. 537 * 538 * The returned css is not guaranteed to be online, and therefore it is the 539 * callers responsiblity to tryget a reference for it. 540 */ 541 struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp, 542 struct cgroup_subsys *ss) 543 { 544 struct cgroup_subsys_state *css; 545 546 do { 547 css = cgroup_css(cgrp, ss); 548 549 if (css) 550 return css; 551 cgrp = cgroup_parent(cgrp); 552 } while (cgrp); 553 554 return init_css_set.subsys[ss->id]; 555 } 556 557 /** 558 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem 559 * @cgrp: the cgroup of interest 560 * @ss: the subsystem of interest 561 * 562 * Find and get the effective css of @cgrp for @ss. The effective css is 563 * defined as the matching css of the nearest ancestor including self which 564 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on, 565 * the root css is returned, so this function always returns a valid css. 566 * The returned css must be put using css_put(). 567 */ 568 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp, 569 struct cgroup_subsys *ss) 570 { 571 struct cgroup_subsys_state *css; 572 573 rcu_read_lock(); 574 575 do { 576 css = cgroup_css(cgrp, ss); 577 578 if (css && css_tryget_online(css)) 579 goto out_unlock; 580 cgrp = cgroup_parent(cgrp); 581 } while (cgrp); 582 583 css = init_css_set.subsys[ss->id]; 584 css_get(css); 585 out_unlock: 586 rcu_read_unlock(); 587 return css; 588 } 589 590 static void cgroup_get_live(struct cgroup *cgrp) 591 { 592 WARN_ON_ONCE(cgroup_is_dead(cgrp)); 593 css_get(&cgrp->self); 594 } 595 596 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of) 597 { 598 struct cgroup *cgrp = of->kn->parent->priv; 599 struct cftype *cft = of_cft(of); 600 601 /* 602 * This is open and unprotected implementation of cgroup_css(). 603 * seq_css() is only called from a kernfs file operation which has 604 * an active reference on the file. Because all the subsystem 605 * files are drained before a css is disassociated with a cgroup, 606 * the matching css from the cgroup's subsys table is guaranteed to 607 * be and stay valid until the enclosing operation is complete. 608 */ 609 if (cft->ss) 610 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]); 611 else 612 return &cgrp->self; 613 } 614 EXPORT_SYMBOL_GPL(of_css); 615 616 /** 617 * for_each_css - iterate all css's of a cgroup 618 * @css: the iteration cursor 619 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end 620 * @cgrp: the target cgroup to iterate css's of 621 * 622 * Should be called under cgroup_[tree_]mutex. 623 */ 624 #define for_each_css(css, ssid, cgrp) \ 625 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \ 626 if (!((css) = rcu_dereference_check( \ 627 (cgrp)->subsys[(ssid)], \ 628 lockdep_is_held(&cgroup_mutex)))) { } \ 629 else 630 631 /** 632 * for_each_e_css - iterate all effective css's of a cgroup 633 * @css: the iteration cursor 634 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end 635 * @cgrp: the target cgroup to iterate css's of 636 * 637 * Should be called under cgroup_[tree_]mutex. 638 */ 639 #define for_each_e_css(css, ssid, cgrp) \ 640 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \ 641 if (!((css) = cgroup_e_css_by_mask(cgrp, \ 642 cgroup_subsys[(ssid)]))) \ 643 ; \ 644 else 645 646 /** 647 * do_each_subsys_mask - filter for_each_subsys with a bitmask 648 * @ss: the iteration cursor 649 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end 650 * @ss_mask: the bitmask 651 * 652 * The block will only run for cases where the ssid-th bit (1 << ssid) of 653 * @ss_mask is set. 654 */ 655 #define do_each_subsys_mask(ss, ssid, ss_mask) do { \ 656 unsigned long __ss_mask = (ss_mask); \ 657 if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */ \ 658 (ssid) = 0; \ 659 break; \ 660 } \ 661 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \ 662 (ss) = cgroup_subsys[ssid]; \ 663 { 664 665 #define while_each_subsys_mask() \ 666 } \ 667 } \ 668 } while (false) 669 670 /* iterate over child cgrps, lock should be held throughout iteration */ 671 #define cgroup_for_each_live_child(child, cgrp) \ 672 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \ 673 if (({ lockdep_assert_held(&cgroup_mutex); \ 674 cgroup_is_dead(child); })) \ 675 ; \ 676 else 677 678 /* walk live descendants in preorder */ 679 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \ 680 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \ 681 if (({ lockdep_assert_held(&cgroup_mutex); \ 682 (dsct) = (d_css)->cgroup; \ 683 cgroup_is_dead(dsct); })) \ 684 ; \ 685 else 686 687 /* walk live descendants in postorder */ 688 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \ 689 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \ 690 if (({ lockdep_assert_held(&cgroup_mutex); \ 691 (dsct) = (d_css)->cgroup; \ 692 cgroup_is_dead(dsct); })) \ 693 ; \ 694 else 695 696 /* 697 * The default css_set - used by init and its children prior to any 698 * hierarchies being mounted. It contains a pointer to the root state 699 * for each subsystem. Also used to anchor the list of css_sets. Not 700 * reference-counted, to improve performance when child cgroups 701 * haven't been created. 702 */ 703 struct css_set init_css_set = { 704 .refcount = REFCOUNT_INIT(1), 705 .dom_cset = &init_css_set, 706 .tasks = LIST_HEAD_INIT(init_css_set.tasks), 707 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks), 708 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters), 709 .threaded_csets = LIST_HEAD_INIT(init_css_set.threaded_csets), 710 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links), 711 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node), 712 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node), 713 714 /* 715 * The following field is re-initialized when this cset gets linked 716 * in cgroup_init(). However, let's initialize the field 717 * statically too so that the default cgroup can be accessed safely 718 * early during boot. 719 */ 720 .dfl_cgrp = &cgrp_dfl_root.cgrp, 721 }; 722 723 static int css_set_count = 1; /* 1 for init_css_set */ 724 725 static bool css_set_threaded(struct css_set *cset) 726 { 727 return cset->dom_cset != cset; 728 } 729 730 /** 731 * css_set_populated - does a css_set contain any tasks? 732 * @cset: target css_set 733 * 734 * css_set_populated() should be the same as !!cset->nr_tasks at steady 735 * state. However, css_set_populated() can be called while a task is being 736 * added to or removed from the linked list before the nr_tasks is 737 * properly updated. Hence, we can't just look at ->nr_tasks here. 738 */ 739 static bool css_set_populated(struct css_set *cset) 740 { 741 lockdep_assert_held(&css_set_lock); 742 743 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks); 744 } 745 746 /** 747 * cgroup_update_populated - update the populated count of a cgroup 748 * @cgrp: the target cgroup 749 * @populated: inc or dec populated count 750 * 751 * One of the css_sets associated with @cgrp is either getting its first 752 * task or losing the last. Update @cgrp->nr_populated_* accordingly. The 753 * count is propagated towards root so that a given cgroup's 754 * nr_populated_children is zero iff none of its descendants contain any 755 * tasks. 756 * 757 * @cgrp's interface file "cgroup.populated" is zero if both 758 * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and 759 * 1 otherwise. When the sum changes from or to zero, userland is notified 760 * that the content of the interface file has changed. This can be used to 761 * detect when @cgrp and its descendants become populated or empty. 762 */ 763 static void cgroup_update_populated(struct cgroup *cgrp, bool populated) 764 { 765 struct cgroup *child = NULL; 766 int adj = populated ? 1 : -1; 767 768 lockdep_assert_held(&css_set_lock); 769 770 do { 771 bool was_populated = cgroup_is_populated(cgrp); 772 773 if (!child) { 774 cgrp->nr_populated_csets += adj; 775 } else { 776 if (cgroup_is_threaded(child)) 777 cgrp->nr_populated_threaded_children += adj; 778 else 779 cgrp->nr_populated_domain_children += adj; 780 } 781 782 if (was_populated == cgroup_is_populated(cgrp)) 783 break; 784 785 cgroup1_check_for_release(cgrp); 786 cgroup_file_notify(&cgrp->events_file); 787 788 child = cgrp; 789 cgrp = cgroup_parent(cgrp); 790 } while (cgrp); 791 } 792 793 /** 794 * css_set_update_populated - update populated state of a css_set 795 * @cset: target css_set 796 * @populated: whether @cset is populated or depopulated 797 * 798 * @cset is either getting the first task or losing the last. Update the 799 * populated counters of all associated cgroups accordingly. 800 */ 801 static void css_set_update_populated(struct css_set *cset, bool populated) 802 { 803 struct cgrp_cset_link *link; 804 805 lockdep_assert_held(&css_set_lock); 806 807 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) 808 cgroup_update_populated(link->cgrp, populated); 809 } 810 811 /** 812 * css_set_move_task - move a task from one css_set to another 813 * @task: task being moved 814 * @from_cset: css_set @task currently belongs to (may be NULL) 815 * @to_cset: new css_set @task is being moved to (may be NULL) 816 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks 817 * 818 * Move @task from @from_cset to @to_cset. If @task didn't belong to any 819 * css_set, @from_cset can be NULL. If @task is being disassociated 820 * instead of moved, @to_cset can be NULL. 821 * 822 * This function automatically handles populated counter updates and 823 * css_task_iter adjustments but the caller is responsible for managing 824 * @from_cset and @to_cset's reference counts. 825 */ 826 static void css_set_move_task(struct task_struct *task, 827 struct css_set *from_cset, struct css_set *to_cset, 828 bool use_mg_tasks) 829 { 830 lockdep_assert_held(&css_set_lock); 831 832 if (to_cset && !css_set_populated(to_cset)) 833 css_set_update_populated(to_cset, true); 834 835 if (from_cset) { 836 struct css_task_iter *it, *pos; 837 838 WARN_ON_ONCE(list_empty(&task->cg_list)); 839 840 /* 841 * @task is leaving, advance task iterators which are 842 * pointing to it so that they can resume at the next 843 * position. Advancing an iterator might remove it from 844 * the list, use safe walk. See css_task_iter_advance*() 845 * for details. 846 */ 847 list_for_each_entry_safe(it, pos, &from_cset->task_iters, 848 iters_node) 849 if (it->task_pos == &task->cg_list) 850 css_task_iter_advance(it); 851 852 list_del_init(&task->cg_list); 853 if (!css_set_populated(from_cset)) 854 css_set_update_populated(from_cset, false); 855 } else { 856 WARN_ON_ONCE(!list_empty(&task->cg_list)); 857 } 858 859 if (to_cset) { 860 /* 861 * We are synchronized through cgroup_threadgroup_rwsem 862 * against PF_EXITING setting such that we can't race 863 * against cgroup_exit() changing the css_set to 864 * init_css_set and dropping the old one. 865 */ 866 WARN_ON_ONCE(task->flags & PF_EXITING); 867 868 cgroup_move_task(task, to_cset); 869 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks : 870 &to_cset->tasks); 871 } 872 } 873 874 /* 875 * hash table for cgroup groups. This improves the performance to find 876 * an existing css_set. This hash doesn't (currently) take into 877 * account cgroups in empty hierarchies. 878 */ 879 #define CSS_SET_HASH_BITS 7 880 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS); 881 882 static unsigned long css_set_hash(struct cgroup_subsys_state *css[]) 883 { 884 unsigned long key = 0UL; 885 struct cgroup_subsys *ss; 886 int i; 887 888 for_each_subsys(ss, i) 889 key += (unsigned long)css[i]; 890 key = (key >> 16) ^ key; 891 892 return key; 893 } 894 895 void put_css_set_locked(struct css_set *cset) 896 { 897 struct cgrp_cset_link *link, *tmp_link; 898 struct cgroup_subsys *ss; 899 int ssid; 900 901 lockdep_assert_held(&css_set_lock); 902 903 if (!refcount_dec_and_test(&cset->refcount)) 904 return; 905 906 WARN_ON_ONCE(!list_empty(&cset->threaded_csets)); 907 908 /* This css_set is dead. unlink it and release cgroup and css refs */ 909 for_each_subsys(ss, ssid) { 910 list_del(&cset->e_cset_node[ssid]); 911 css_put(cset->subsys[ssid]); 912 } 913 hash_del(&cset->hlist); 914 css_set_count--; 915 916 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) { 917 list_del(&link->cset_link); 918 list_del(&link->cgrp_link); 919 if (cgroup_parent(link->cgrp)) 920 cgroup_put(link->cgrp); 921 kfree(link); 922 } 923 924 if (css_set_threaded(cset)) { 925 list_del(&cset->threaded_csets_node); 926 put_css_set_locked(cset->dom_cset); 927 } 928 929 kfree_rcu(cset, rcu_head); 930 } 931 932 /** 933 * compare_css_sets - helper function for find_existing_css_set(). 934 * @cset: candidate css_set being tested 935 * @old_cset: existing css_set for a task 936 * @new_cgrp: cgroup that's being entered by the task 937 * @template: desired set of css pointers in css_set (pre-calculated) 938 * 939 * Returns true if "cset" matches "old_cset" except for the hierarchy 940 * which "new_cgrp" belongs to, for which it should match "new_cgrp". 941 */ 942 static bool compare_css_sets(struct css_set *cset, 943 struct css_set *old_cset, 944 struct cgroup *new_cgrp, 945 struct cgroup_subsys_state *template[]) 946 { 947 struct cgroup *new_dfl_cgrp; 948 struct list_head *l1, *l2; 949 950 /* 951 * On the default hierarchy, there can be csets which are 952 * associated with the same set of cgroups but different csses. 953 * Let's first ensure that csses match. 954 */ 955 if (memcmp(template, cset->subsys, sizeof(cset->subsys))) 956 return false; 957 958 959 /* @cset's domain should match the default cgroup's */ 960 if (cgroup_on_dfl(new_cgrp)) 961 new_dfl_cgrp = new_cgrp; 962 else 963 new_dfl_cgrp = old_cset->dfl_cgrp; 964 965 if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp) 966 return false; 967 968 /* 969 * Compare cgroup pointers in order to distinguish between 970 * different cgroups in hierarchies. As different cgroups may 971 * share the same effective css, this comparison is always 972 * necessary. 973 */ 974 l1 = &cset->cgrp_links; 975 l2 = &old_cset->cgrp_links; 976 while (1) { 977 struct cgrp_cset_link *link1, *link2; 978 struct cgroup *cgrp1, *cgrp2; 979 980 l1 = l1->next; 981 l2 = l2->next; 982 /* See if we reached the end - both lists are equal length. */ 983 if (l1 == &cset->cgrp_links) { 984 BUG_ON(l2 != &old_cset->cgrp_links); 985 break; 986 } else { 987 BUG_ON(l2 == &old_cset->cgrp_links); 988 } 989 /* Locate the cgroups associated with these links. */ 990 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link); 991 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link); 992 cgrp1 = link1->cgrp; 993 cgrp2 = link2->cgrp; 994 /* Hierarchies should be linked in the same order. */ 995 BUG_ON(cgrp1->root != cgrp2->root); 996 997 /* 998 * If this hierarchy is the hierarchy of the cgroup 999 * that's changing, then we need to check that this 1000 * css_set points to the new cgroup; if it's any other 1001 * hierarchy, then this css_set should point to the 1002 * same cgroup as the old css_set. 1003 */ 1004 if (cgrp1->root == new_cgrp->root) { 1005 if (cgrp1 != new_cgrp) 1006 return false; 1007 } else { 1008 if (cgrp1 != cgrp2) 1009 return false; 1010 } 1011 } 1012 return true; 1013 } 1014 1015 /** 1016 * find_existing_css_set - init css array and find the matching css_set 1017 * @old_cset: the css_set that we're using before the cgroup transition 1018 * @cgrp: the cgroup that we're moving into 1019 * @template: out param for the new set of csses, should be clear on entry 1020 */ 1021 static struct css_set *find_existing_css_set(struct css_set *old_cset, 1022 struct cgroup *cgrp, 1023 struct cgroup_subsys_state *template[]) 1024 { 1025 struct cgroup_root *root = cgrp->root; 1026 struct cgroup_subsys *ss; 1027 struct css_set *cset; 1028 unsigned long key; 1029 int i; 1030 1031 /* 1032 * Build the set of subsystem state objects that we want to see in the 1033 * new css_set. while subsystems can change globally, the entries here 1034 * won't change, so no need for locking. 1035 */ 1036 for_each_subsys(ss, i) { 1037 if (root->subsys_mask & (1UL << i)) { 1038 /* 1039 * @ss is in this hierarchy, so we want the 1040 * effective css from @cgrp. 1041 */ 1042 template[i] = cgroup_e_css_by_mask(cgrp, ss); 1043 } else { 1044 /* 1045 * @ss is not in this hierarchy, so we don't want 1046 * to change the css. 1047 */ 1048 template[i] = old_cset->subsys[i]; 1049 } 1050 } 1051 1052 key = css_set_hash(template); 1053 hash_for_each_possible(css_set_table, cset, hlist, key) { 1054 if (!compare_css_sets(cset, old_cset, cgrp, template)) 1055 continue; 1056 1057 /* This css_set matches what we need */ 1058 return cset; 1059 } 1060 1061 /* No existing cgroup group matched */ 1062 return NULL; 1063 } 1064 1065 static void free_cgrp_cset_links(struct list_head *links_to_free) 1066 { 1067 struct cgrp_cset_link *link, *tmp_link; 1068 1069 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) { 1070 list_del(&link->cset_link); 1071 kfree(link); 1072 } 1073 } 1074 1075 /** 1076 * allocate_cgrp_cset_links - allocate cgrp_cset_links 1077 * @count: the number of links to allocate 1078 * @tmp_links: list_head the allocated links are put on 1079 * 1080 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links 1081 * through ->cset_link. Returns 0 on success or -errno. 1082 */ 1083 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links) 1084 { 1085 struct cgrp_cset_link *link; 1086 int i; 1087 1088 INIT_LIST_HEAD(tmp_links); 1089 1090 for (i = 0; i < count; i++) { 1091 link = kzalloc(sizeof(*link), GFP_KERNEL); 1092 if (!link) { 1093 free_cgrp_cset_links(tmp_links); 1094 return -ENOMEM; 1095 } 1096 list_add(&link->cset_link, tmp_links); 1097 } 1098 return 0; 1099 } 1100 1101 /** 1102 * link_css_set - a helper function to link a css_set to a cgroup 1103 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links() 1104 * @cset: the css_set to be linked 1105 * @cgrp: the destination cgroup 1106 */ 1107 static void link_css_set(struct list_head *tmp_links, struct css_set *cset, 1108 struct cgroup *cgrp) 1109 { 1110 struct cgrp_cset_link *link; 1111 1112 BUG_ON(list_empty(tmp_links)); 1113 1114 if (cgroup_on_dfl(cgrp)) 1115 cset->dfl_cgrp = cgrp; 1116 1117 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link); 1118 link->cset = cset; 1119 link->cgrp = cgrp; 1120 1121 /* 1122 * Always add links to the tail of the lists so that the lists are 1123 * in choronological order. 1124 */ 1125 list_move_tail(&link->cset_link, &cgrp->cset_links); 1126 list_add_tail(&link->cgrp_link, &cset->cgrp_links); 1127 1128 if (cgroup_parent(cgrp)) 1129 cgroup_get_live(cgrp); 1130 } 1131 1132 /** 1133 * find_css_set - return a new css_set with one cgroup updated 1134 * @old_cset: the baseline css_set 1135 * @cgrp: the cgroup to be updated 1136 * 1137 * Return a new css_set that's equivalent to @old_cset, but with @cgrp 1138 * substituted into the appropriate hierarchy. 1139 */ 1140 static struct css_set *find_css_set(struct css_set *old_cset, 1141 struct cgroup *cgrp) 1142 { 1143 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { }; 1144 struct css_set *cset; 1145 struct list_head tmp_links; 1146 struct cgrp_cset_link *link; 1147 struct cgroup_subsys *ss; 1148 unsigned long key; 1149 int ssid; 1150 1151 lockdep_assert_held(&cgroup_mutex); 1152 1153 /* First see if we already have a cgroup group that matches 1154 * the desired set */ 1155 spin_lock_irq(&css_set_lock); 1156 cset = find_existing_css_set(old_cset, cgrp, template); 1157 if (cset) 1158 get_css_set(cset); 1159 spin_unlock_irq(&css_set_lock); 1160 1161 if (cset) 1162 return cset; 1163 1164 cset = kzalloc(sizeof(*cset), GFP_KERNEL); 1165 if (!cset) 1166 return NULL; 1167 1168 /* Allocate all the cgrp_cset_link objects that we'll need */ 1169 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) { 1170 kfree(cset); 1171 return NULL; 1172 } 1173 1174 refcount_set(&cset->refcount, 1); 1175 cset->dom_cset = cset; 1176 INIT_LIST_HEAD(&cset->tasks); 1177 INIT_LIST_HEAD(&cset->mg_tasks); 1178 INIT_LIST_HEAD(&cset->task_iters); 1179 INIT_LIST_HEAD(&cset->threaded_csets); 1180 INIT_HLIST_NODE(&cset->hlist); 1181 INIT_LIST_HEAD(&cset->cgrp_links); 1182 INIT_LIST_HEAD(&cset->mg_preload_node); 1183 INIT_LIST_HEAD(&cset->mg_node); 1184 1185 /* Copy the set of subsystem state objects generated in 1186 * find_existing_css_set() */ 1187 memcpy(cset->subsys, template, sizeof(cset->subsys)); 1188 1189 spin_lock_irq(&css_set_lock); 1190 /* Add reference counts and links from the new css_set. */ 1191 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) { 1192 struct cgroup *c = link->cgrp; 1193 1194 if (c->root == cgrp->root) 1195 c = cgrp; 1196 link_css_set(&tmp_links, cset, c); 1197 } 1198 1199 BUG_ON(!list_empty(&tmp_links)); 1200 1201 css_set_count++; 1202 1203 /* Add @cset to the hash table */ 1204 key = css_set_hash(cset->subsys); 1205 hash_add(css_set_table, &cset->hlist, key); 1206 1207 for_each_subsys(ss, ssid) { 1208 struct cgroup_subsys_state *css = cset->subsys[ssid]; 1209 1210 list_add_tail(&cset->e_cset_node[ssid], 1211 &css->cgroup->e_csets[ssid]); 1212 css_get(css); 1213 } 1214 1215 spin_unlock_irq(&css_set_lock); 1216 1217 /* 1218 * If @cset should be threaded, look up the matching dom_cset and 1219 * link them up. We first fully initialize @cset then look for the 1220 * dom_cset. It's simpler this way and safe as @cset is guaranteed 1221 * to stay empty until we return. 1222 */ 1223 if (cgroup_is_threaded(cset->dfl_cgrp)) { 1224 struct css_set *dcset; 1225 1226 dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp); 1227 if (!dcset) { 1228 put_css_set(cset); 1229 return NULL; 1230 } 1231 1232 spin_lock_irq(&css_set_lock); 1233 cset->dom_cset = dcset; 1234 list_add_tail(&cset->threaded_csets_node, 1235 &dcset->threaded_csets); 1236 spin_unlock_irq(&css_set_lock); 1237 } 1238 1239 return cset; 1240 } 1241 1242 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root) 1243 { 1244 struct cgroup *root_cgrp = kf_root->kn->priv; 1245 1246 return root_cgrp->root; 1247 } 1248 1249 static int cgroup_init_root_id(struct cgroup_root *root) 1250 { 1251 int id; 1252 1253 lockdep_assert_held(&cgroup_mutex); 1254 1255 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL); 1256 if (id < 0) 1257 return id; 1258 1259 root->hierarchy_id = id; 1260 return 0; 1261 } 1262 1263 static void cgroup_exit_root_id(struct cgroup_root *root) 1264 { 1265 lockdep_assert_held(&cgroup_mutex); 1266 1267 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id); 1268 } 1269 1270 void cgroup_free_root(struct cgroup_root *root) 1271 { 1272 if (root) { 1273 idr_destroy(&root->cgroup_idr); 1274 kfree(root); 1275 } 1276 } 1277 1278 static void cgroup_destroy_root(struct cgroup_root *root) 1279 { 1280 struct cgroup *cgrp = &root->cgrp; 1281 struct cgrp_cset_link *link, *tmp_link; 1282 1283 trace_cgroup_destroy_root(root); 1284 1285 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp); 1286 1287 BUG_ON(atomic_read(&root->nr_cgrps)); 1288 BUG_ON(!list_empty(&cgrp->self.children)); 1289 1290 /* Rebind all subsystems back to the default hierarchy */ 1291 WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask)); 1292 1293 /* 1294 * Release all the links from cset_links to this hierarchy's 1295 * root cgroup 1296 */ 1297 spin_lock_irq(&css_set_lock); 1298 1299 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) { 1300 list_del(&link->cset_link); 1301 list_del(&link->cgrp_link); 1302 kfree(link); 1303 } 1304 1305 spin_unlock_irq(&css_set_lock); 1306 1307 if (!list_empty(&root->root_list)) { 1308 list_del(&root->root_list); 1309 cgroup_root_count--; 1310 } 1311 1312 cgroup_exit_root_id(root); 1313 1314 mutex_unlock(&cgroup_mutex); 1315 1316 kernfs_destroy_root(root->kf_root); 1317 cgroup_free_root(root); 1318 } 1319 1320 /* 1321 * look up cgroup associated with current task's cgroup namespace on the 1322 * specified hierarchy 1323 */ 1324 static struct cgroup * 1325 current_cgns_cgroup_from_root(struct cgroup_root *root) 1326 { 1327 struct cgroup *res = NULL; 1328 struct css_set *cset; 1329 1330 lockdep_assert_held(&css_set_lock); 1331 1332 rcu_read_lock(); 1333 1334 cset = current->nsproxy->cgroup_ns->root_cset; 1335 if (cset == &init_css_set) { 1336 res = &root->cgrp; 1337 } else { 1338 struct cgrp_cset_link *link; 1339 1340 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) { 1341 struct cgroup *c = link->cgrp; 1342 1343 if (c->root == root) { 1344 res = c; 1345 break; 1346 } 1347 } 1348 } 1349 rcu_read_unlock(); 1350 1351 BUG_ON(!res); 1352 return res; 1353 } 1354 1355 /* look up cgroup associated with given css_set on the specified hierarchy */ 1356 static struct cgroup *cset_cgroup_from_root(struct css_set *cset, 1357 struct cgroup_root *root) 1358 { 1359 struct cgroup *res = NULL; 1360 1361 lockdep_assert_held(&cgroup_mutex); 1362 lockdep_assert_held(&css_set_lock); 1363 1364 if (cset == &init_css_set) { 1365 res = &root->cgrp; 1366 } else if (root == &cgrp_dfl_root) { 1367 res = cset->dfl_cgrp; 1368 } else { 1369 struct cgrp_cset_link *link; 1370 1371 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) { 1372 struct cgroup *c = link->cgrp; 1373 1374 if (c->root == root) { 1375 res = c; 1376 break; 1377 } 1378 } 1379 } 1380 1381 BUG_ON(!res); 1382 return res; 1383 } 1384 1385 /* 1386 * Return the cgroup for "task" from the given hierarchy. Must be 1387 * called with cgroup_mutex and css_set_lock held. 1388 */ 1389 struct cgroup *task_cgroup_from_root(struct task_struct *task, 1390 struct cgroup_root *root) 1391 { 1392 /* 1393 * No need to lock the task - since we hold cgroup_mutex the 1394 * task can't change groups, so the only thing that can happen 1395 * is that it exits and its css is set back to init_css_set. 1396 */ 1397 return cset_cgroup_from_root(task_css_set(task), root); 1398 } 1399 1400 /* 1401 * A task must hold cgroup_mutex to modify cgroups. 1402 * 1403 * Any task can increment and decrement the count field without lock. 1404 * So in general, code holding cgroup_mutex can't rely on the count 1405 * field not changing. However, if the count goes to zero, then only 1406 * cgroup_attach_task() can increment it again. Because a count of zero 1407 * means that no tasks are currently attached, therefore there is no 1408 * way a task attached to that cgroup can fork (the other way to 1409 * increment the count). So code holding cgroup_mutex can safely 1410 * assume that if the count is zero, it will stay zero. Similarly, if 1411 * a task holds cgroup_mutex on a cgroup with zero count, it 1412 * knows that the cgroup won't be removed, as cgroup_rmdir() 1413 * needs that mutex. 1414 * 1415 * A cgroup can only be deleted if both its 'count' of using tasks 1416 * is zero, and its list of 'children' cgroups is empty. Since all 1417 * tasks in the system use _some_ cgroup, and since there is always at 1418 * least one task in the system (init, pid == 1), therefore, root cgroup 1419 * always has either children cgroups and/or using tasks. So we don't 1420 * need a special hack to ensure that root cgroup cannot be deleted. 1421 * 1422 * P.S. One more locking exception. RCU is used to guard the 1423 * update of a tasks cgroup pointer by cgroup_attach_task() 1424 */ 1425 1426 static struct kernfs_syscall_ops cgroup_kf_syscall_ops; 1427 1428 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft, 1429 char *buf) 1430 { 1431 struct cgroup_subsys *ss = cft->ss; 1432 1433 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) && 1434 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) { 1435 const char *dbg = (cft->flags & CFTYPE_DEBUG) ? ".__DEBUG__." : ""; 1436 1437 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s%s.%s", 1438 dbg, cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name, 1439 cft->name); 1440 } else { 1441 strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX); 1442 } 1443 return buf; 1444 } 1445 1446 /** 1447 * cgroup_file_mode - deduce file mode of a control file 1448 * @cft: the control file in question 1449 * 1450 * S_IRUGO for read, S_IWUSR for write. 1451 */ 1452 static umode_t cgroup_file_mode(const struct cftype *cft) 1453 { 1454 umode_t mode = 0; 1455 1456 if (cft->read_u64 || cft->read_s64 || cft->seq_show) 1457 mode |= S_IRUGO; 1458 1459 if (cft->write_u64 || cft->write_s64 || cft->write) { 1460 if (cft->flags & CFTYPE_WORLD_WRITABLE) 1461 mode |= S_IWUGO; 1462 else 1463 mode |= S_IWUSR; 1464 } 1465 1466 return mode; 1467 } 1468 1469 /** 1470 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask 1471 * @subtree_control: the new subtree_control mask to consider 1472 * @this_ss_mask: available subsystems 1473 * 1474 * On the default hierarchy, a subsystem may request other subsystems to be 1475 * enabled together through its ->depends_on mask. In such cases, more 1476 * subsystems than specified in "cgroup.subtree_control" may be enabled. 1477 * 1478 * This function calculates which subsystems need to be enabled if 1479 * @subtree_control is to be applied while restricted to @this_ss_mask. 1480 */ 1481 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask) 1482 { 1483 u16 cur_ss_mask = subtree_control; 1484 struct cgroup_subsys *ss; 1485 int ssid; 1486 1487 lockdep_assert_held(&cgroup_mutex); 1488 1489 cur_ss_mask |= cgrp_dfl_implicit_ss_mask; 1490 1491 while (true) { 1492 u16 new_ss_mask = cur_ss_mask; 1493 1494 do_each_subsys_mask(ss, ssid, cur_ss_mask) { 1495 new_ss_mask |= ss->depends_on; 1496 } while_each_subsys_mask(); 1497 1498 /* 1499 * Mask out subsystems which aren't available. This can 1500 * happen only if some depended-upon subsystems were bound 1501 * to non-default hierarchies. 1502 */ 1503 new_ss_mask &= this_ss_mask; 1504 1505 if (new_ss_mask == cur_ss_mask) 1506 break; 1507 cur_ss_mask = new_ss_mask; 1508 } 1509 1510 return cur_ss_mask; 1511 } 1512 1513 /** 1514 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods 1515 * @kn: the kernfs_node being serviced 1516 * 1517 * This helper undoes cgroup_kn_lock_live() and should be invoked before 1518 * the method finishes if locking succeeded. Note that once this function 1519 * returns the cgroup returned by cgroup_kn_lock_live() may become 1520 * inaccessible any time. If the caller intends to continue to access the 1521 * cgroup, it should pin it before invoking this function. 1522 */ 1523 void cgroup_kn_unlock(struct kernfs_node *kn) 1524 { 1525 struct cgroup *cgrp; 1526 1527 if (kernfs_type(kn) == KERNFS_DIR) 1528 cgrp = kn->priv; 1529 else 1530 cgrp = kn->parent->priv; 1531 1532 mutex_unlock(&cgroup_mutex); 1533 1534 kernfs_unbreak_active_protection(kn); 1535 cgroup_put(cgrp); 1536 } 1537 1538 /** 1539 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods 1540 * @kn: the kernfs_node being serviced 1541 * @drain_offline: perform offline draining on the cgroup 1542 * 1543 * This helper is to be used by a cgroup kernfs method currently servicing 1544 * @kn. It breaks the active protection, performs cgroup locking and 1545 * verifies that the associated cgroup is alive. Returns the cgroup if 1546 * alive; otherwise, %NULL. A successful return should be undone by a 1547 * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the 1548 * cgroup is drained of offlining csses before return. 1549 * 1550 * Any cgroup kernfs method implementation which requires locking the 1551 * associated cgroup should use this helper. It avoids nesting cgroup 1552 * locking under kernfs active protection and allows all kernfs operations 1553 * including self-removal. 1554 */ 1555 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline) 1556 { 1557 struct cgroup *cgrp; 1558 1559 if (kernfs_type(kn) == KERNFS_DIR) 1560 cgrp = kn->priv; 1561 else 1562 cgrp = kn->parent->priv; 1563 1564 /* 1565 * We're gonna grab cgroup_mutex which nests outside kernfs 1566 * active_ref. cgroup liveliness check alone provides enough 1567 * protection against removal. Ensure @cgrp stays accessible and 1568 * break the active_ref protection. 1569 */ 1570 if (!cgroup_tryget(cgrp)) 1571 return NULL; 1572 kernfs_break_active_protection(kn); 1573 1574 if (drain_offline) 1575 cgroup_lock_and_drain_offline(cgrp); 1576 else 1577 mutex_lock(&cgroup_mutex); 1578 1579 if (!cgroup_is_dead(cgrp)) 1580 return cgrp; 1581 1582 cgroup_kn_unlock(kn); 1583 return NULL; 1584 } 1585 1586 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft) 1587 { 1588 char name[CGROUP_FILE_NAME_MAX]; 1589 1590 lockdep_assert_held(&cgroup_mutex); 1591 1592 if (cft->file_offset) { 1593 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss); 1594 struct cgroup_file *cfile = (void *)css + cft->file_offset; 1595 1596 spin_lock_irq(&cgroup_file_kn_lock); 1597 cfile->kn = NULL; 1598 spin_unlock_irq(&cgroup_file_kn_lock); 1599 1600 del_timer_sync(&cfile->notify_timer); 1601 } 1602 1603 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name)); 1604 } 1605 1606 /** 1607 * css_clear_dir - remove subsys files in a cgroup directory 1608 * @css: taget css 1609 */ 1610 static void css_clear_dir(struct cgroup_subsys_state *css) 1611 { 1612 struct cgroup *cgrp = css->cgroup; 1613 struct cftype *cfts; 1614 1615 if (!(css->flags & CSS_VISIBLE)) 1616 return; 1617 1618 css->flags &= ~CSS_VISIBLE; 1619 1620 if (!css->ss) { 1621 if (cgroup_on_dfl(cgrp)) 1622 cfts = cgroup_base_files; 1623 else 1624 cfts = cgroup1_base_files; 1625 1626 cgroup_addrm_files(css, cgrp, cfts, false); 1627 } else { 1628 list_for_each_entry(cfts, &css->ss->cfts, node) 1629 cgroup_addrm_files(css, cgrp, cfts, false); 1630 } 1631 } 1632 1633 /** 1634 * css_populate_dir - create subsys files in a cgroup directory 1635 * @css: target css 1636 * 1637 * On failure, no file is added. 1638 */ 1639 static int css_populate_dir(struct cgroup_subsys_state *css) 1640 { 1641 struct cgroup *cgrp = css->cgroup; 1642 struct cftype *cfts, *failed_cfts; 1643 int ret; 1644 1645 if ((css->flags & CSS_VISIBLE) || !cgrp->kn) 1646 return 0; 1647 1648 if (!css->ss) { 1649 if (cgroup_on_dfl(cgrp)) 1650 cfts = cgroup_base_files; 1651 else 1652 cfts = cgroup1_base_files; 1653 1654 ret = cgroup_addrm_files(&cgrp->self, cgrp, cfts, true); 1655 if (ret < 0) 1656 return ret; 1657 } else { 1658 list_for_each_entry(cfts, &css->ss->cfts, node) { 1659 ret = cgroup_addrm_files(css, cgrp, cfts, true); 1660 if (ret < 0) { 1661 failed_cfts = cfts; 1662 goto err; 1663 } 1664 } 1665 } 1666 1667 css->flags |= CSS_VISIBLE; 1668 1669 return 0; 1670 err: 1671 list_for_each_entry(cfts, &css->ss->cfts, node) { 1672 if (cfts == failed_cfts) 1673 break; 1674 cgroup_addrm_files(css, cgrp, cfts, false); 1675 } 1676 return ret; 1677 } 1678 1679 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask) 1680 { 1681 struct cgroup *dcgrp = &dst_root->cgrp; 1682 struct cgroup_subsys *ss; 1683 int ssid, i, ret; 1684 1685 lockdep_assert_held(&cgroup_mutex); 1686 1687 do_each_subsys_mask(ss, ssid, ss_mask) { 1688 /* 1689 * If @ss has non-root csses attached to it, can't move. 1690 * If @ss is an implicit controller, it is exempt from this 1691 * rule and can be stolen. 1692 */ 1693 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) && 1694 !ss->implicit_on_dfl) 1695 return -EBUSY; 1696 1697 /* can't move between two non-dummy roots either */ 1698 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root) 1699 return -EBUSY; 1700 } while_each_subsys_mask(); 1701 1702 do_each_subsys_mask(ss, ssid, ss_mask) { 1703 struct cgroup_root *src_root = ss->root; 1704 struct cgroup *scgrp = &src_root->cgrp; 1705 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss); 1706 struct css_set *cset; 1707 1708 WARN_ON(!css || cgroup_css(dcgrp, ss)); 1709 1710 /* disable from the source */ 1711 src_root->subsys_mask &= ~(1 << ssid); 1712 WARN_ON(cgroup_apply_control(scgrp)); 1713 cgroup_finalize_control(scgrp, 0); 1714 1715 /* rebind */ 1716 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL); 1717 rcu_assign_pointer(dcgrp->subsys[ssid], css); 1718 ss->root = dst_root; 1719 css->cgroup = dcgrp; 1720 1721 spin_lock_irq(&css_set_lock); 1722 hash_for_each(css_set_table, i, cset, hlist) 1723 list_move_tail(&cset->e_cset_node[ss->id], 1724 &dcgrp->e_csets[ss->id]); 1725 spin_unlock_irq(&css_set_lock); 1726 1727 /* default hierarchy doesn't enable controllers by default */ 1728 dst_root->subsys_mask |= 1 << ssid; 1729 if (dst_root == &cgrp_dfl_root) { 1730 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]); 1731 } else { 1732 dcgrp->subtree_control |= 1 << ssid; 1733 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]); 1734 } 1735 1736 ret = cgroup_apply_control(dcgrp); 1737 if (ret) 1738 pr_warn("partial failure to rebind %s controller (err=%d)\n", 1739 ss->name, ret); 1740 1741 if (ss->bind) 1742 ss->bind(css); 1743 } while_each_subsys_mask(); 1744 1745 kernfs_activate(dcgrp->kn); 1746 return 0; 1747 } 1748 1749 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node, 1750 struct kernfs_root *kf_root) 1751 { 1752 int len = 0; 1753 char *buf = NULL; 1754 struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root); 1755 struct cgroup *ns_cgroup; 1756 1757 buf = kmalloc(PATH_MAX, GFP_KERNEL); 1758 if (!buf) 1759 return -ENOMEM; 1760 1761 spin_lock_irq(&css_set_lock); 1762 ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot); 1763 len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX); 1764 spin_unlock_irq(&css_set_lock); 1765 1766 if (len >= PATH_MAX) 1767 len = -ERANGE; 1768 else if (len > 0) { 1769 seq_escape(sf, buf, " \t\n\\"); 1770 len = 0; 1771 } 1772 kfree(buf); 1773 return len; 1774 } 1775 1776 enum cgroup2_param { 1777 Opt_nsdelegate, 1778 nr__cgroup2_params 1779 }; 1780 1781 static const struct fs_parameter_spec cgroup2_param_specs[] = { 1782 fsparam_flag ("nsdelegate", Opt_nsdelegate), 1783 {} 1784 }; 1785 1786 static const struct fs_parameter_description cgroup2_fs_parameters = { 1787 .name = "cgroup2", 1788 .specs = cgroup2_param_specs, 1789 }; 1790 1791 static int cgroup2_parse_param(struct fs_context *fc, struct fs_parameter *param) 1792 { 1793 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 1794 struct fs_parse_result result; 1795 int opt; 1796 1797 opt = fs_parse(fc, &cgroup2_fs_parameters, param, &result); 1798 if (opt < 0) 1799 return opt; 1800 1801 switch (opt) { 1802 case Opt_nsdelegate: 1803 ctx->flags |= CGRP_ROOT_NS_DELEGATE; 1804 return 0; 1805 } 1806 return -EINVAL; 1807 } 1808 1809 static void apply_cgroup_root_flags(unsigned int root_flags) 1810 { 1811 if (current->nsproxy->cgroup_ns == &init_cgroup_ns) { 1812 if (root_flags & CGRP_ROOT_NS_DELEGATE) 1813 cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE; 1814 else 1815 cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE; 1816 } 1817 } 1818 1819 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root) 1820 { 1821 if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) 1822 seq_puts(seq, ",nsdelegate"); 1823 return 0; 1824 } 1825 1826 static int cgroup_reconfigure(struct fs_context *fc) 1827 { 1828 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 1829 1830 apply_cgroup_root_flags(ctx->flags); 1831 return 0; 1832 } 1833 1834 /* 1835 * To reduce the fork() overhead for systems that are not actually using 1836 * their cgroups capability, we don't maintain the lists running through 1837 * each css_set to its tasks until we see the list actually used - in other 1838 * words after the first mount. 1839 */ 1840 static bool use_task_css_set_links __read_mostly; 1841 1842 static void cgroup_enable_task_cg_lists(void) 1843 { 1844 struct task_struct *p, *g; 1845 1846 /* 1847 * We need tasklist_lock because RCU is not safe against 1848 * while_each_thread(). Besides, a forking task that has passed 1849 * cgroup_post_fork() without seeing use_task_css_set_links = 1 1850 * is not guaranteed to have its child immediately visible in the 1851 * tasklist if we walk through it with RCU. 1852 */ 1853 read_lock(&tasklist_lock); 1854 spin_lock_irq(&css_set_lock); 1855 1856 if (use_task_css_set_links) 1857 goto out_unlock; 1858 1859 use_task_css_set_links = true; 1860 1861 do_each_thread(g, p) { 1862 WARN_ON_ONCE(!list_empty(&p->cg_list) || 1863 task_css_set(p) != &init_css_set); 1864 1865 /* 1866 * We should check if the process is exiting, otherwise 1867 * it will race with cgroup_exit() in that the list 1868 * entry won't be deleted though the process has exited. 1869 * Do it while holding siglock so that we don't end up 1870 * racing against cgroup_exit(). 1871 * 1872 * Interrupts were already disabled while acquiring 1873 * the css_set_lock, so we do not need to disable it 1874 * again when acquiring the sighand->siglock here. 1875 */ 1876 spin_lock(&p->sighand->siglock); 1877 if (!(p->flags & PF_EXITING)) { 1878 struct css_set *cset = task_css_set(p); 1879 1880 if (!css_set_populated(cset)) 1881 css_set_update_populated(cset, true); 1882 list_add_tail(&p->cg_list, &cset->tasks); 1883 get_css_set(cset); 1884 cset->nr_tasks++; 1885 } 1886 spin_unlock(&p->sighand->siglock); 1887 } while_each_thread(g, p); 1888 out_unlock: 1889 spin_unlock_irq(&css_set_lock); 1890 read_unlock(&tasklist_lock); 1891 } 1892 1893 static void init_cgroup_housekeeping(struct cgroup *cgrp) 1894 { 1895 struct cgroup_subsys *ss; 1896 int ssid; 1897 1898 INIT_LIST_HEAD(&cgrp->self.sibling); 1899 INIT_LIST_HEAD(&cgrp->self.children); 1900 INIT_LIST_HEAD(&cgrp->cset_links); 1901 INIT_LIST_HEAD(&cgrp->pidlists); 1902 mutex_init(&cgrp->pidlist_mutex); 1903 cgrp->self.cgroup = cgrp; 1904 cgrp->self.flags |= CSS_ONLINE; 1905 cgrp->dom_cgrp = cgrp; 1906 cgrp->max_descendants = INT_MAX; 1907 cgrp->max_depth = INT_MAX; 1908 INIT_LIST_HEAD(&cgrp->rstat_css_list); 1909 prev_cputime_init(&cgrp->prev_cputime); 1910 1911 for_each_subsys(ss, ssid) 1912 INIT_LIST_HEAD(&cgrp->e_csets[ssid]); 1913 1914 init_waitqueue_head(&cgrp->offline_waitq); 1915 INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent); 1916 } 1917 1918 void init_cgroup_root(struct cgroup_fs_context *ctx) 1919 { 1920 struct cgroup_root *root = ctx->root; 1921 struct cgroup *cgrp = &root->cgrp; 1922 1923 INIT_LIST_HEAD(&root->root_list); 1924 atomic_set(&root->nr_cgrps, 1); 1925 cgrp->root = root; 1926 init_cgroup_housekeeping(cgrp); 1927 idr_init(&root->cgroup_idr); 1928 1929 root->flags = ctx->flags; 1930 if (ctx->release_agent) 1931 strscpy(root->release_agent_path, ctx->release_agent, PATH_MAX); 1932 if (ctx->name) 1933 strscpy(root->name, ctx->name, MAX_CGROUP_ROOT_NAMELEN); 1934 if (ctx->cpuset_clone_children) 1935 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags); 1936 } 1937 1938 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask) 1939 { 1940 LIST_HEAD(tmp_links); 1941 struct cgroup *root_cgrp = &root->cgrp; 1942 struct kernfs_syscall_ops *kf_sops; 1943 struct css_set *cset; 1944 int i, ret; 1945 1946 lockdep_assert_held(&cgroup_mutex); 1947 1948 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL); 1949 if (ret < 0) 1950 goto out; 1951 root_cgrp->id = ret; 1952 root_cgrp->ancestor_ids[0] = ret; 1953 1954 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 1955 0, GFP_KERNEL); 1956 if (ret) 1957 goto out; 1958 1959 /* 1960 * We're accessing css_set_count without locking css_set_lock here, 1961 * but that's OK - it can only be increased by someone holding 1962 * cgroup_lock, and that's us. Later rebinding may disable 1963 * controllers on the default hierarchy and thus create new csets, 1964 * which can't be more than the existing ones. Allocate 2x. 1965 */ 1966 ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links); 1967 if (ret) 1968 goto cancel_ref; 1969 1970 ret = cgroup_init_root_id(root); 1971 if (ret) 1972 goto cancel_ref; 1973 1974 kf_sops = root == &cgrp_dfl_root ? 1975 &cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops; 1976 1977 root->kf_root = kernfs_create_root(kf_sops, 1978 KERNFS_ROOT_CREATE_DEACTIVATED | 1979 KERNFS_ROOT_SUPPORT_EXPORTOP, 1980 root_cgrp); 1981 if (IS_ERR(root->kf_root)) { 1982 ret = PTR_ERR(root->kf_root); 1983 goto exit_root_id; 1984 } 1985 root_cgrp->kn = root->kf_root->kn; 1986 1987 ret = css_populate_dir(&root_cgrp->self); 1988 if (ret) 1989 goto destroy_root; 1990 1991 ret = rebind_subsystems(root, ss_mask); 1992 if (ret) 1993 goto destroy_root; 1994 1995 ret = cgroup_bpf_inherit(root_cgrp); 1996 WARN_ON_ONCE(ret); 1997 1998 trace_cgroup_setup_root(root); 1999 2000 /* 2001 * There must be no failure case after here, since rebinding takes 2002 * care of subsystems' refcounts, which are explicitly dropped in 2003 * the failure exit path. 2004 */ 2005 list_add(&root->root_list, &cgroup_roots); 2006 cgroup_root_count++; 2007 2008 /* 2009 * Link the root cgroup in this hierarchy into all the css_set 2010 * objects. 2011 */ 2012 spin_lock_irq(&css_set_lock); 2013 hash_for_each(css_set_table, i, cset, hlist) { 2014 link_css_set(&tmp_links, cset, root_cgrp); 2015 if (css_set_populated(cset)) 2016 cgroup_update_populated(root_cgrp, true); 2017 } 2018 spin_unlock_irq(&css_set_lock); 2019 2020 BUG_ON(!list_empty(&root_cgrp->self.children)); 2021 BUG_ON(atomic_read(&root->nr_cgrps) != 1); 2022 2023 kernfs_activate(root_cgrp->kn); 2024 ret = 0; 2025 goto out; 2026 2027 destroy_root: 2028 kernfs_destroy_root(root->kf_root); 2029 root->kf_root = NULL; 2030 exit_root_id: 2031 cgroup_exit_root_id(root); 2032 cancel_ref: 2033 percpu_ref_exit(&root_cgrp->self.refcnt); 2034 out: 2035 free_cgrp_cset_links(&tmp_links); 2036 return ret; 2037 } 2038 2039 int cgroup_do_get_tree(struct fs_context *fc) 2040 { 2041 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2042 int ret; 2043 2044 ctx->kfc.root = ctx->root->kf_root; 2045 if (fc->fs_type == &cgroup2_fs_type) 2046 ctx->kfc.magic = CGROUP2_SUPER_MAGIC; 2047 else 2048 ctx->kfc.magic = CGROUP_SUPER_MAGIC; 2049 ret = kernfs_get_tree(fc); 2050 2051 /* 2052 * In non-init cgroup namespace, instead of root cgroup's dentry, 2053 * we return the dentry corresponding to the cgroupns->root_cgrp. 2054 */ 2055 if (!ret && ctx->ns != &init_cgroup_ns) { 2056 struct dentry *nsdentry; 2057 struct super_block *sb = fc->root->d_sb; 2058 struct cgroup *cgrp; 2059 2060 mutex_lock(&cgroup_mutex); 2061 spin_lock_irq(&css_set_lock); 2062 2063 cgrp = cset_cgroup_from_root(ctx->ns->root_cset, ctx->root); 2064 2065 spin_unlock_irq(&css_set_lock); 2066 mutex_unlock(&cgroup_mutex); 2067 2068 nsdentry = kernfs_node_dentry(cgrp->kn, sb); 2069 dput(fc->root); 2070 fc->root = nsdentry; 2071 if (IS_ERR(nsdentry)) { 2072 ret = PTR_ERR(nsdentry); 2073 deactivate_locked_super(sb); 2074 } 2075 } 2076 2077 if (!ctx->kfc.new_sb_created) 2078 cgroup_put(&ctx->root->cgrp); 2079 2080 return ret; 2081 } 2082 2083 /* 2084 * Destroy a cgroup filesystem context. 2085 */ 2086 static void cgroup_fs_context_free(struct fs_context *fc) 2087 { 2088 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2089 2090 kfree(ctx->name); 2091 kfree(ctx->release_agent); 2092 put_cgroup_ns(ctx->ns); 2093 kernfs_free_fs_context(fc); 2094 kfree(ctx); 2095 } 2096 2097 static int cgroup_get_tree(struct fs_context *fc) 2098 { 2099 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2100 int ret; 2101 2102 cgrp_dfl_visible = true; 2103 cgroup_get_live(&cgrp_dfl_root.cgrp); 2104 ctx->root = &cgrp_dfl_root; 2105 2106 ret = cgroup_do_get_tree(fc); 2107 if (!ret) 2108 apply_cgroup_root_flags(ctx->flags); 2109 return ret; 2110 } 2111 2112 static const struct fs_context_operations cgroup_fs_context_ops = { 2113 .free = cgroup_fs_context_free, 2114 .parse_param = cgroup2_parse_param, 2115 .get_tree = cgroup_get_tree, 2116 .reconfigure = cgroup_reconfigure, 2117 }; 2118 2119 static const struct fs_context_operations cgroup1_fs_context_ops = { 2120 .free = cgroup_fs_context_free, 2121 .parse_param = cgroup1_parse_param, 2122 .get_tree = cgroup1_get_tree, 2123 .reconfigure = cgroup1_reconfigure, 2124 }; 2125 2126 /* 2127 * Initialise the cgroup filesystem creation/reconfiguration context. Notably, 2128 * we select the namespace we're going to use. 2129 */ 2130 static int cgroup_init_fs_context(struct fs_context *fc) 2131 { 2132 struct cgroup_fs_context *ctx; 2133 2134 ctx = kzalloc(sizeof(struct cgroup_fs_context), GFP_KERNEL); 2135 if (!ctx) 2136 return -ENOMEM; 2137 2138 /* 2139 * The first time anyone tries to mount a cgroup, enable the list 2140 * linking each css_set to its tasks and fix up all existing tasks. 2141 */ 2142 if (!use_task_css_set_links) 2143 cgroup_enable_task_cg_lists(); 2144 2145 ctx->ns = current->nsproxy->cgroup_ns; 2146 get_cgroup_ns(ctx->ns); 2147 fc->fs_private = &ctx->kfc; 2148 if (fc->fs_type == &cgroup2_fs_type) 2149 fc->ops = &cgroup_fs_context_ops; 2150 else 2151 fc->ops = &cgroup1_fs_context_ops; 2152 if (fc->user_ns) 2153 put_user_ns(fc->user_ns); 2154 fc->user_ns = get_user_ns(ctx->ns->user_ns); 2155 fc->global = true; 2156 return 0; 2157 } 2158 2159 static void cgroup_kill_sb(struct super_block *sb) 2160 { 2161 struct kernfs_root *kf_root = kernfs_root_from_sb(sb); 2162 struct cgroup_root *root = cgroup_root_from_kf(kf_root); 2163 2164 /* 2165 * If @root doesn't have any children, start killing it. 2166 * This prevents new mounts by disabling percpu_ref_tryget_live(). 2167 * cgroup_mount() may wait for @root's release. 2168 * 2169 * And don't kill the default root. 2170 */ 2171 if (list_empty(&root->cgrp.self.children) && root != &cgrp_dfl_root && 2172 !percpu_ref_is_dying(&root->cgrp.self.refcnt)) 2173 percpu_ref_kill(&root->cgrp.self.refcnt); 2174 cgroup_put(&root->cgrp); 2175 kernfs_kill_sb(sb); 2176 } 2177 2178 struct file_system_type cgroup_fs_type = { 2179 .name = "cgroup", 2180 .init_fs_context = cgroup_init_fs_context, 2181 .parameters = &cgroup1_fs_parameters, 2182 .kill_sb = cgroup_kill_sb, 2183 .fs_flags = FS_USERNS_MOUNT, 2184 }; 2185 2186 static struct file_system_type cgroup2_fs_type = { 2187 .name = "cgroup2", 2188 .init_fs_context = cgroup_init_fs_context, 2189 .parameters = &cgroup2_fs_parameters, 2190 .kill_sb = cgroup_kill_sb, 2191 .fs_flags = FS_USERNS_MOUNT, 2192 }; 2193 2194 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen, 2195 struct cgroup_namespace *ns) 2196 { 2197 struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root); 2198 2199 return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen); 2200 } 2201 2202 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen, 2203 struct cgroup_namespace *ns) 2204 { 2205 int ret; 2206 2207 mutex_lock(&cgroup_mutex); 2208 spin_lock_irq(&css_set_lock); 2209 2210 ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns); 2211 2212 spin_unlock_irq(&css_set_lock); 2213 mutex_unlock(&cgroup_mutex); 2214 2215 return ret; 2216 } 2217 EXPORT_SYMBOL_GPL(cgroup_path_ns); 2218 2219 /** 2220 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy 2221 * @task: target task 2222 * @buf: the buffer to write the path into 2223 * @buflen: the length of the buffer 2224 * 2225 * Determine @task's cgroup on the first (the one with the lowest non-zero 2226 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This 2227 * function grabs cgroup_mutex and shouldn't be used inside locks used by 2228 * cgroup controller callbacks. 2229 * 2230 * Return value is the same as kernfs_path(). 2231 */ 2232 int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen) 2233 { 2234 struct cgroup_root *root; 2235 struct cgroup *cgrp; 2236 int hierarchy_id = 1; 2237 int ret; 2238 2239 mutex_lock(&cgroup_mutex); 2240 spin_lock_irq(&css_set_lock); 2241 2242 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id); 2243 2244 if (root) { 2245 cgrp = task_cgroup_from_root(task, root); 2246 ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns); 2247 } else { 2248 /* if no hierarchy exists, everyone is in "/" */ 2249 ret = strlcpy(buf, "/", buflen); 2250 } 2251 2252 spin_unlock_irq(&css_set_lock); 2253 mutex_unlock(&cgroup_mutex); 2254 return ret; 2255 } 2256 EXPORT_SYMBOL_GPL(task_cgroup_path); 2257 2258 /** 2259 * cgroup_migrate_add_task - add a migration target task to a migration context 2260 * @task: target task 2261 * @mgctx: target migration context 2262 * 2263 * Add @task, which is a migration target, to @mgctx->tset. This function 2264 * becomes noop if @task doesn't need to be migrated. @task's css_set 2265 * should have been added as a migration source and @task->cg_list will be 2266 * moved from the css_set's tasks list to mg_tasks one. 2267 */ 2268 static void cgroup_migrate_add_task(struct task_struct *task, 2269 struct cgroup_mgctx *mgctx) 2270 { 2271 struct css_set *cset; 2272 2273 lockdep_assert_held(&css_set_lock); 2274 2275 /* @task either already exited or can't exit until the end */ 2276 if (task->flags & PF_EXITING) 2277 return; 2278 2279 /* leave @task alone if post_fork() hasn't linked it yet */ 2280 if (list_empty(&task->cg_list)) 2281 return; 2282 2283 cset = task_css_set(task); 2284 if (!cset->mg_src_cgrp) 2285 return; 2286 2287 mgctx->tset.nr_tasks++; 2288 2289 list_move_tail(&task->cg_list, &cset->mg_tasks); 2290 if (list_empty(&cset->mg_node)) 2291 list_add_tail(&cset->mg_node, 2292 &mgctx->tset.src_csets); 2293 if (list_empty(&cset->mg_dst_cset->mg_node)) 2294 list_add_tail(&cset->mg_dst_cset->mg_node, 2295 &mgctx->tset.dst_csets); 2296 } 2297 2298 /** 2299 * cgroup_taskset_first - reset taskset and return the first task 2300 * @tset: taskset of interest 2301 * @dst_cssp: output variable for the destination css 2302 * 2303 * @tset iteration is initialized and the first task is returned. 2304 */ 2305 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset, 2306 struct cgroup_subsys_state **dst_cssp) 2307 { 2308 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node); 2309 tset->cur_task = NULL; 2310 2311 return cgroup_taskset_next(tset, dst_cssp); 2312 } 2313 2314 /** 2315 * cgroup_taskset_next - iterate to the next task in taskset 2316 * @tset: taskset of interest 2317 * @dst_cssp: output variable for the destination css 2318 * 2319 * Return the next task in @tset. Iteration must have been initialized 2320 * with cgroup_taskset_first(). 2321 */ 2322 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset, 2323 struct cgroup_subsys_state **dst_cssp) 2324 { 2325 struct css_set *cset = tset->cur_cset; 2326 struct task_struct *task = tset->cur_task; 2327 2328 while (&cset->mg_node != tset->csets) { 2329 if (!task) 2330 task = list_first_entry(&cset->mg_tasks, 2331 struct task_struct, cg_list); 2332 else 2333 task = list_next_entry(task, cg_list); 2334 2335 if (&task->cg_list != &cset->mg_tasks) { 2336 tset->cur_cset = cset; 2337 tset->cur_task = task; 2338 2339 /* 2340 * This function may be called both before and 2341 * after cgroup_taskset_migrate(). The two cases 2342 * can be distinguished by looking at whether @cset 2343 * has its ->mg_dst_cset set. 2344 */ 2345 if (cset->mg_dst_cset) 2346 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid]; 2347 else 2348 *dst_cssp = cset->subsys[tset->ssid]; 2349 2350 return task; 2351 } 2352 2353 cset = list_next_entry(cset, mg_node); 2354 task = NULL; 2355 } 2356 2357 return NULL; 2358 } 2359 2360 /** 2361 * cgroup_taskset_migrate - migrate a taskset 2362 * @mgctx: migration context 2363 * 2364 * Migrate tasks in @mgctx as setup by migration preparation functions. 2365 * This function fails iff one of the ->can_attach callbacks fails and 2366 * guarantees that either all or none of the tasks in @mgctx are migrated. 2367 * @mgctx is consumed regardless of success. 2368 */ 2369 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx) 2370 { 2371 struct cgroup_taskset *tset = &mgctx->tset; 2372 struct cgroup_subsys *ss; 2373 struct task_struct *task, *tmp_task; 2374 struct css_set *cset, *tmp_cset; 2375 int ssid, failed_ssid, ret; 2376 2377 /* check that we can legitimately attach to the cgroup */ 2378 if (tset->nr_tasks) { 2379 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2380 if (ss->can_attach) { 2381 tset->ssid = ssid; 2382 ret = ss->can_attach(tset); 2383 if (ret) { 2384 failed_ssid = ssid; 2385 goto out_cancel_attach; 2386 } 2387 } 2388 } while_each_subsys_mask(); 2389 } 2390 2391 /* 2392 * Now that we're guaranteed success, proceed to move all tasks to 2393 * the new cgroup. There are no failure cases after here, so this 2394 * is the commit point. 2395 */ 2396 spin_lock_irq(&css_set_lock); 2397 list_for_each_entry(cset, &tset->src_csets, mg_node) { 2398 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) { 2399 struct css_set *from_cset = task_css_set(task); 2400 struct css_set *to_cset = cset->mg_dst_cset; 2401 2402 get_css_set(to_cset); 2403 to_cset->nr_tasks++; 2404 css_set_move_task(task, from_cset, to_cset, true); 2405 put_css_set_locked(from_cset); 2406 from_cset->nr_tasks--; 2407 } 2408 } 2409 spin_unlock_irq(&css_set_lock); 2410 2411 /* 2412 * Migration is committed, all target tasks are now on dst_csets. 2413 * Nothing is sensitive to fork() after this point. Notify 2414 * controllers that migration is complete. 2415 */ 2416 tset->csets = &tset->dst_csets; 2417 2418 if (tset->nr_tasks) { 2419 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2420 if (ss->attach) { 2421 tset->ssid = ssid; 2422 ss->attach(tset); 2423 } 2424 } while_each_subsys_mask(); 2425 } 2426 2427 ret = 0; 2428 goto out_release_tset; 2429 2430 out_cancel_attach: 2431 if (tset->nr_tasks) { 2432 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2433 if (ssid == failed_ssid) 2434 break; 2435 if (ss->cancel_attach) { 2436 tset->ssid = ssid; 2437 ss->cancel_attach(tset); 2438 } 2439 } while_each_subsys_mask(); 2440 } 2441 out_release_tset: 2442 spin_lock_irq(&css_set_lock); 2443 list_splice_init(&tset->dst_csets, &tset->src_csets); 2444 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) { 2445 list_splice_tail_init(&cset->mg_tasks, &cset->tasks); 2446 list_del_init(&cset->mg_node); 2447 } 2448 spin_unlock_irq(&css_set_lock); 2449 2450 /* 2451 * Re-initialize the cgroup_taskset structure in case it is reused 2452 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute() 2453 * iteration. 2454 */ 2455 tset->nr_tasks = 0; 2456 tset->csets = &tset->src_csets; 2457 return ret; 2458 } 2459 2460 /** 2461 * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination 2462 * @dst_cgrp: destination cgroup to test 2463 * 2464 * On the default hierarchy, except for the mixable, (possible) thread root 2465 * and threaded cgroups, subtree_control must be zero for migration 2466 * destination cgroups with tasks so that child cgroups don't compete 2467 * against tasks. 2468 */ 2469 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp) 2470 { 2471 /* v1 doesn't have any restriction */ 2472 if (!cgroup_on_dfl(dst_cgrp)) 2473 return 0; 2474 2475 /* verify @dst_cgrp can host resources */ 2476 if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp)) 2477 return -EOPNOTSUPP; 2478 2479 /* mixables don't care */ 2480 if (cgroup_is_mixable(dst_cgrp)) 2481 return 0; 2482 2483 /* 2484 * If @dst_cgrp is already or can become a thread root or is 2485 * threaded, it doesn't matter. 2486 */ 2487 if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp)) 2488 return 0; 2489 2490 /* apply no-internal-process constraint */ 2491 if (dst_cgrp->subtree_control) 2492 return -EBUSY; 2493 2494 return 0; 2495 } 2496 2497 /** 2498 * cgroup_migrate_finish - cleanup after attach 2499 * @mgctx: migration context 2500 * 2501 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See 2502 * those functions for details. 2503 */ 2504 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx) 2505 { 2506 LIST_HEAD(preloaded); 2507 struct css_set *cset, *tmp_cset; 2508 2509 lockdep_assert_held(&cgroup_mutex); 2510 2511 spin_lock_irq(&css_set_lock); 2512 2513 list_splice_tail_init(&mgctx->preloaded_src_csets, &preloaded); 2514 list_splice_tail_init(&mgctx->preloaded_dst_csets, &preloaded); 2515 2516 list_for_each_entry_safe(cset, tmp_cset, &preloaded, mg_preload_node) { 2517 cset->mg_src_cgrp = NULL; 2518 cset->mg_dst_cgrp = NULL; 2519 cset->mg_dst_cset = NULL; 2520 list_del_init(&cset->mg_preload_node); 2521 put_css_set_locked(cset); 2522 } 2523 2524 spin_unlock_irq(&css_set_lock); 2525 } 2526 2527 /** 2528 * cgroup_migrate_add_src - add a migration source css_set 2529 * @src_cset: the source css_set to add 2530 * @dst_cgrp: the destination cgroup 2531 * @mgctx: migration context 2532 * 2533 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin 2534 * @src_cset and add it to @mgctx->src_csets, which should later be cleaned 2535 * up by cgroup_migrate_finish(). 2536 * 2537 * This function may be called without holding cgroup_threadgroup_rwsem 2538 * even if the target is a process. Threads may be created and destroyed 2539 * but as long as cgroup_mutex is not dropped, no new css_set can be put 2540 * into play and the preloaded css_sets are guaranteed to cover all 2541 * migrations. 2542 */ 2543 void cgroup_migrate_add_src(struct css_set *src_cset, 2544 struct cgroup *dst_cgrp, 2545 struct cgroup_mgctx *mgctx) 2546 { 2547 struct cgroup *src_cgrp; 2548 2549 lockdep_assert_held(&cgroup_mutex); 2550 lockdep_assert_held(&css_set_lock); 2551 2552 /* 2553 * If ->dead, @src_set is associated with one or more dead cgroups 2554 * and doesn't contain any migratable tasks. Ignore it early so 2555 * that the rest of migration path doesn't get confused by it. 2556 */ 2557 if (src_cset->dead) 2558 return; 2559 2560 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root); 2561 2562 if (!list_empty(&src_cset->mg_preload_node)) 2563 return; 2564 2565 WARN_ON(src_cset->mg_src_cgrp); 2566 WARN_ON(src_cset->mg_dst_cgrp); 2567 WARN_ON(!list_empty(&src_cset->mg_tasks)); 2568 WARN_ON(!list_empty(&src_cset->mg_node)); 2569 2570 src_cset->mg_src_cgrp = src_cgrp; 2571 src_cset->mg_dst_cgrp = dst_cgrp; 2572 get_css_set(src_cset); 2573 list_add_tail(&src_cset->mg_preload_node, &mgctx->preloaded_src_csets); 2574 } 2575 2576 /** 2577 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration 2578 * @mgctx: migration context 2579 * 2580 * Tasks are about to be moved and all the source css_sets have been 2581 * preloaded to @mgctx->preloaded_src_csets. This function looks up and 2582 * pins all destination css_sets, links each to its source, and append them 2583 * to @mgctx->preloaded_dst_csets. 2584 * 2585 * This function must be called after cgroup_migrate_add_src() has been 2586 * called on each migration source css_set. After migration is performed 2587 * using cgroup_migrate(), cgroup_migrate_finish() must be called on 2588 * @mgctx. 2589 */ 2590 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx) 2591 { 2592 struct css_set *src_cset, *tmp_cset; 2593 2594 lockdep_assert_held(&cgroup_mutex); 2595 2596 /* look up the dst cset for each src cset and link it to src */ 2597 list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets, 2598 mg_preload_node) { 2599 struct css_set *dst_cset; 2600 struct cgroup_subsys *ss; 2601 int ssid; 2602 2603 dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp); 2604 if (!dst_cset) 2605 goto err; 2606 2607 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset); 2608 2609 /* 2610 * If src cset equals dst, it's noop. Drop the src. 2611 * cgroup_migrate() will skip the cset too. Note that we 2612 * can't handle src == dst as some nodes are used by both. 2613 */ 2614 if (src_cset == dst_cset) { 2615 src_cset->mg_src_cgrp = NULL; 2616 src_cset->mg_dst_cgrp = NULL; 2617 list_del_init(&src_cset->mg_preload_node); 2618 put_css_set(src_cset); 2619 put_css_set(dst_cset); 2620 continue; 2621 } 2622 2623 src_cset->mg_dst_cset = dst_cset; 2624 2625 if (list_empty(&dst_cset->mg_preload_node)) 2626 list_add_tail(&dst_cset->mg_preload_node, 2627 &mgctx->preloaded_dst_csets); 2628 else 2629 put_css_set(dst_cset); 2630 2631 for_each_subsys(ss, ssid) 2632 if (src_cset->subsys[ssid] != dst_cset->subsys[ssid]) 2633 mgctx->ss_mask |= 1 << ssid; 2634 } 2635 2636 return 0; 2637 err: 2638 cgroup_migrate_finish(mgctx); 2639 return -ENOMEM; 2640 } 2641 2642 /** 2643 * cgroup_migrate - migrate a process or task to a cgroup 2644 * @leader: the leader of the process or the task to migrate 2645 * @threadgroup: whether @leader points to the whole process or a single task 2646 * @mgctx: migration context 2647 * 2648 * Migrate a process or task denoted by @leader. If migrating a process, 2649 * the caller must be holding cgroup_threadgroup_rwsem. The caller is also 2650 * responsible for invoking cgroup_migrate_add_src() and 2651 * cgroup_migrate_prepare_dst() on the targets before invoking this 2652 * function and following up with cgroup_migrate_finish(). 2653 * 2654 * As long as a controller's ->can_attach() doesn't fail, this function is 2655 * guaranteed to succeed. This means that, excluding ->can_attach() 2656 * failure, when migrating multiple targets, the success or failure can be 2657 * decided for all targets by invoking group_migrate_prepare_dst() before 2658 * actually starting migrating. 2659 */ 2660 int cgroup_migrate(struct task_struct *leader, bool threadgroup, 2661 struct cgroup_mgctx *mgctx) 2662 { 2663 struct task_struct *task; 2664 2665 /* 2666 * Prevent freeing of tasks while we take a snapshot. Tasks that are 2667 * already PF_EXITING could be freed from underneath us unless we 2668 * take an rcu_read_lock. 2669 */ 2670 spin_lock_irq(&css_set_lock); 2671 rcu_read_lock(); 2672 task = leader; 2673 do { 2674 cgroup_migrate_add_task(task, mgctx); 2675 if (!threadgroup) 2676 break; 2677 } while_each_thread(leader, task); 2678 rcu_read_unlock(); 2679 spin_unlock_irq(&css_set_lock); 2680 2681 return cgroup_migrate_execute(mgctx); 2682 } 2683 2684 /** 2685 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup 2686 * @dst_cgrp: the cgroup to attach to 2687 * @leader: the task or the leader of the threadgroup to be attached 2688 * @threadgroup: attach the whole threadgroup? 2689 * 2690 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem. 2691 */ 2692 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader, 2693 bool threadgroup) 2694 { 2695 DEFINE_CGROUP_MGCTX(mgctx); 2696 struct task_struct *task; 2697 int ret; 2698 2699 ret = cgroup_migrate_vet_dst(dst_cgrp); 2700 if (ret) 2701 return ret; 2702 2703 /* look up all src csets */ 2704 spin_lock_irq(&css_set_lock); 2705 rcu_read_lock(); 2706 task = leader; 2707 do { 2708 cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx); 2709 if (!threadgroup) 2710 break; 2711 } while_each_thread(leader, task); 2712 rcu_read_unlock(); 2713 spin_unlock_irq(&css_set_lock); 2714 2715 /* prepare dst csets and commit */ 2716 ret = cgroup_migrate_prepare_dst(&mgctx); 2717 if (!ret) 2718 ret = cgroup_migrate(leader, threadgroup, &mgctx); 2719 2720 cgroup_migrate_finish(&mgctx); 2721 2722 if (!ret) 2723 TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup); 2724 2725 return ret; 2726 } 2727 2728 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup) 2729 __acquires(&cgroup_threadgroup_rwsem) 2730 { 2731 struct task_struct *tsk; 2732 pid_t pid; 2733 2734 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0) 2735 return ERR_PTR(-EINVAL); 2736 2737 percpu_down_write(&cgroup_threadgroup_rwsem); 2738 2739 rcu_read_lock(); 2740 if (pid) { 2741 tsk = find_task_by_vpid(pid); 2742 if (!tsk) { 2743 tsk = ERR_PTR(-ESRCH); 2744 goto out_unlock_threadgroup; 2745 } 2746 } else { 2747 tsk = current; 2748 } 2749 2750 if (threadgroup) 2751 tsk = tsk->group_leader; 2752 2753 /* 2754 * kthreads may acquire PF_NO_SETAFFINITY during initialization. 2755 * If userland migrates such a kthread to a non-root cgroup, it can 2756 * become trapped in a cpuset, or RT kthread may be born in a 2757 * cgroup with no rt_runtime allocated. Just say no. 2758 */ 2759 if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) { 2760 tsk = ERR_PTR(-EINVAL); 2761 goto out_unlock_threadgroup; 2762 } 2763 2764 get_task_struct(tsk); 2765 goto out_unlock_rcu; 2766 2767 out_unlock_threadgroup: 2768 percpu_up_write(&cgroup_threadgroup_rwsem); 2769 out_unlock_rcu: 2770 rcu_read_unlock(); 2771 return tsk; 2772 } 2773 2774 void cgroup_procs_write_finish(struct task_struct *task) 2775 __releases(&cgroup_threadgroup_rwsem) 2776 { 2777 struct cgroup_subsys *ss; 2778 int ssid; 2779 2780 /* release reference from cgroup_procs_write_start() */ 2781 put_task_struct(task); 2782 2783 percpu_up_write(&cgroup_threadgroup_rwsem); 2784 for_each_subsys(ss, ssid) 2785 if (ss->post_attach) 2786 ss->post_attach(); 2787 } 2788 2789 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask) 2790 { 2791 struct cgroup_subsys *ss; 2792 bool printed = false; 2793 int ssid; 2794 2795 do_each_subsys_mask(ss, ssid, ss_mask) { 2796 if (printed) 2797 seq_putc(seq, ' '); 2798 seq_printf(seq, "%s", ss->name); 2799 printed = true; 2800 } while_each_subsys_mask(); 2801 if (printed) 2802 seq_putc(seq, '\n'); 2803 } 2804 2805 /* show controllers which are enabled from the parent */ 2806 static int cgroup_controllers_show(struct seq_file *seq, void *v) 2807 { 2808 struct cgroup *cgrp = seq_css(seq)->cgroup; 2809 2810 cgroup_print_ss_mask(seq, cgroup_control(cgrp)); 2811 return 0; 2812 } 2813 2814 /* show controllers which are enabled for a given cgroup's children */ 2815 static int cgroup_subtree_control_show(struct seq_file *seq, void *v) 2816 { 2817 struct cgroup *cgrp = seq_css(seq)->cgroup; 2818 2819 cgroup_print_ss_mask(seq, cgrp->subtree_control); 2820 return 0; 2821 } 2822 2823 /** 2824 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy 2825 * @cgrp: root of the subtree to update csses for 2826 * 2827 * @cgrp's control masks have changed and its subtree's css associations 2828 * need to be updated accordingly. This function looks up all css_sets 2829 * which are attached to the subtree, creates the matching updated css_sets 2830 * and migrates the tasks to the new ones. 2831 */ 2832 static int cgroup_update_dfl_csses(struct cgroup *cgrp) 2833 { 2834 DEFINE_CGROUP_MGCTX(mgctx); 2835 struct cgroup_subsys_state *d_css; 2836 struct cgroup *dsct; 2837 struct css_set *src_cset; 2838 int ret; 2839 2840 lockdep_assert_held(&cgroup_mutex); 2841 2842 percpu_down_write(&cgroup_threadgroup_rwsem); 2843 2844 /* look up all csses currently attached to @cgrp's subtree */ 2845 spin_lock_irq(&css_set_lock); 2846 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 2847 struct cgrp_cset_link *link; 2848 2849 list_for_each_entry(link, &dsct->cset_links, cset_link) 2850 cgroup_migrate_add_src(link->cset, dsct, &mgctx); 2851 } 2852 spin_unlock_irq(&css_set_lock); 2853 2854 /* NULL dst indicates self on default hierarchy */ 2855 ret = cgroup_migrate_prepare_dst(&mgctx); 2856 if (ret) 2857 goto out_finish; 2858 2859 spin_lock_irq(&css_set_lock); 2860 list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, mg_preload_node) { 2861 struct task_struct *task, *ntask; 2862 2863 /* all tasks in src_csets need to be migrated */ 2864 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list) 2865 cgroup_migrate_add_task(task, &mgctx); 2866 } 2867 spin_unlock_irq(&css_set_lock); 2868 2869 ret = cgroup_migrate_execute(&mgctx); 2870 out_finish: 2871 cgroup_migrate_finish(&mgctx); 2872 percpu_up_write(&cgroup_threadgroup_rwsem); 2873 return ret; 2874 } 2875 2876 /** 2877 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses 2878 * @cgrp: root of the target subtree 2879 * 2880 * Because css offlining is asynchronous, userland may try to re-enable a 2881 * controller while the previous css is still around. This function grabs 2882 * cgroup_mutex and drains the previous css instances of @cgrp's subtree. 2883 */ 2884 void cgroup_lock_and_drain_offline(struct cgroup *cgrp) 2885 __acquires(&cgroup_mutex) 2886 { 2887 struct cgroup *dsct; 2888 struct cgroup_subsys_state *d_css; 2889 struct cgroup_subsys *ss; 2890 int ssid; 2891 2892 restart: 2893 mutex_lock(&cgroup_mutex); 2894 2895 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 2896 for_each_subsys(ss, ssid) { 2897 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 2898 DEFINE_WAIT(wait); 2899 2900 if (!css || !percpu_ref_is_dying(&css->refcnt)) 2901 continue; 2902 2903 cgroup_get_live(dsct); 2904 prepare_to_wait(&dsct->offline_waitq, &wait, 2905 TASK_UNINTERRUPTIBLE); 2906 2907 mutex_unlock(&cgroup_mutex); 2908 schedule(); 2909 finish_wait(&dsct->offline_waitq, &wait); 2910 2911 cgroup_put(dsct); 2912 goto restart; 2913 } 2914 } 2915 } 2916 2917 /** 2918 * cgroup_save_control - save control masks and dom_cgrp of a subtree 2919 * @cgrp: root of the target subtree 2920 * 2921 * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the 2922 * respective old_ prefixed fields for @cgrp's subtree including @cgrp 2923 * itself. 2924 */ 2925 static void cgroup_save_control(struct cgroup *cgrp) 2926 { 2927 struct cgroup *dsct; 2928 struct cgroup_subsys_state *d_css; 2929 2930 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 2931 dsct->old_subtree_control = dsct->subtree_control; 2932 dsct->old_subtree_ss_mask = dsct->subtree_ss_mask; 2933 dsct->old_dom_cgrp = dsct->dom_cgrp; 2934 } 2935 } 2936 2937 /** 2938 * cgroup_propagate_control - refresh control masks of a subtree 2939 * @cgrp: root of the target subtree 2940 * 2941 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches 2942 * ->subtree_control and propagate controller availability through the 2943 * subtree so that descendants don't have unavailable controllers enabled. 2944 */ 2945 static void cgroup_propagate_control(struct cgroup *cgrp) 2946 { 2947 struct cgroup *dsct; 2948 struct cgroup_subsys_state *d_css; 2949 2950 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 2951 dsct->subtree_control &= cgroup_control(dsct); 2952 dsct->subtree_ss_mask = 2953 cgroup_calc_subtree_ss_mask(dsct->subtree_control, 2954 cgroup_ss_mask(dsct)); 2955 } 2956 } 2957 2958 /** 2959 * cgroup_restore_control - restore control masks and dom_cgrp of a subtree 2960 * @cgrp: root of the target subtree 2961 * 2962 * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the 2963 * respective old_ prefixed fields for @cgrp's subtree including @cgrp 2964 * itself. 2965 */ 2966 static void cgroup_restore_control(struct cgroup *cgrp) 2967 { 2968 struct cgroup *dsct; 2969 struct cgroup_subsys_state *d_css; 2970 2971 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 2972 dsct->subtree_control = dsct->old_subtree_control; 2973 dsct->subtree_ss_mask = dsct->old_subtree_ss_mask; 2974 dsct->dom_cgrp = dsct->old_dom_cgrp; 2975 } 2976 } 2977 2978 static bool css_visible(struct cgroup_subsys_state *css) 2979 { 2980 struct cgroup_subsys *ss = css->ss; 2981 struct cgroup *cgrp = css->cgroup; 2982 2983 if (cgroup_control(cgrp) & (1 << ss->id)) 2984 return true; 2985 if (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) 2986 return false; 2987 return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl; 2988 } 2989 2990 /** 2991 * cgroup_apply_control_enable - enable or show csses according to control 2992 * @cgrp: root of the target subtree 2993 * 2994 * Walk @cgrp's subtree and create new csses or make the existing ones 2995 * visible. A css is created invisible if it's being implicitly enabled 2996 * through dependency. An invisible css is made visible when the userland 2997 * explicitly enables it. 2998 * 2999 * Returns 0 on success, -errno on failure. On failure, csses which have 3000 * been processed already aren't cleaned up. The caller is responsible for 3001 * cleaning up with cgroup_apply_control_disable(). 3002 */ 3003 static int cgroup_apply_control_enable(struct cgroup *cgrp) 3004 { 3005 struct cgroup *dsct; 3006 struct cgroup_subsys_state *d_css; 3007 struct cgroup_subsys *ss; 3008 int ssid, ret; 3009 3010 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 3011 for_each_subsys(ss, ssid) { 3012 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 3013 3014 WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt)); 3015 3016 if (!(cgroup_ss_mask(dsct) & (1 << ss->id))) 3017 continue; 3018 3019 if (!css) { 3020 css = css_create(dsct, ss); 3021 if (IS_ERR(css)) 3022 return PTR_ERR(css); 3023 } 3024 3025 if (css_visible(css)) { 3026 ret = css_populate_dir(css); 3027 if (ret) 3028 return ret; 3029 } 3030 } 3031 } 3032 3033 return 0; 3034 } 3035 3036 /** 3037 * cgroup_apply_control_disable - kill or hide csses according to control 3038 * @cgrp: root of the target subtree 3039 * 3040 * Walk @cgrp's subtree and kill and hide csses so that they match 3041 * cgroup_ss_mask() and cgroup_visible_mask(). 3042 * 3043 * A css is hidden when the userland requests it to be disabled while other 3044 * subsystems are still depending on it. The css must not actively control 3045 * resources and be in the vanilla state if it's made visible again later. 3046 * Controllers which may be depended upon should provide ->css_reset() for 3047 * this purpose. 3048 */ 3049 static void cgroup_apply_control_disable(struct cgroup *cgrp) 3050 { 3051 struct cgroup *dsct; 3052 struct cgroup_subsys_state *d_css; 3053 struct cgroup_subsys *ss; 3054 int ssid; 3055 3056 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 3057 for_each_subsys(ss, ssid) { 3058 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 3059 3060 WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt)); 3061 3062 if (!css) 3063 continue; 3064 3065 if (css->parent && 3066 !(cgroup_ss_mask(dsct) & (1 << ss->id))) { 3067 kill_css(css); 3068 } else if (!css_visible(css)) { 3069 css_clear_dir(css); 3070 if (ss->css_reset) 3071 ss->css_reset(css); 3072 } 3073 } 3074 } 3075 } 3076 3077 /** 3078 * cgroup_apply_control - apply control mask updates to the subtree 3079 * @cgrp: root of the target subtree 3080 * 3081 * subsystems can be enabled and disabled in a subtree using the following 3082 * steps. 3083 * 3084 * 1. Call cgroup_save_control() to stash the current state. 3085 * 2. Update ->subtree_control masks in the subtree as desired. 3086 * 3. Call cgroup_apply_control() to apply the changes. 3087 * 4. Optionally perform other related operations. 3088 * 5. Call cgroup_finalize_control() to finish up. 3089 * 3090 * This function implements step 3 and propagates the mask changes 3091 * throughout @cgrp's subtree, updates csses accordingly and perform 3092 * process migrations. 3093 */ 3094 static int cgroup_apply_control(struct cgroup *cgrp) 3095 { 3096 int ret; 3097 3098 cgroup_propagate_control(cgrp); 3099 3100 ret = cgroup_apply_control_enable(cgrp); 3101 if (ret) 3102 return ret; 3103 3104 /* 3105 * At this point, cgroup_e_css_by_mask() results reflect the new csses 3106 * making the following cgroup_update_dfl_csses() properly update 3107 * css associations of all tasks in the subtree. 3108 */ 3109 ret = cgroup_update_dfl_csses(cgrp); 3110 if (ret) 3111 return ret; 3112 3113 return 0; 3114 } 3115 3116 /** 3117 * cgroup_finalize_control - finalize control mask update 3118 * @cgrp: root of the target subtree 3119 * @ret: the result of the update 3120 * 3121 * Finalize control mask update. See cgroup_apply_control() for more info. 3122 */ 3123 static void cgroup_finalize_control(struct cgroup *cgrp, int ret) 3124 { 3125 if (ret) { 3126 cgroup_restore_control(cgrp); 3127 cgroup_propagate_control(cgrp); 3128 } 3129 3130 cgroup_apply_control_disable(cgrp); 3131 } 3132 3133 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable) 3134 { 3135 u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask; 3136 3137 /* if nothing is getting enabled, nothing to worry about */ 3138 if (!enable) 3139 return 0; 3140 3141 /* can @cgrp host any resources? */ 3142 if (!cgroup_is_valid_domain(cgrp->dom_cgrp)) 3143 return -EOPNOTSUPP; 3144 3145 /* mixables don't care */ 3146 if (cgroup_is_mixable(cgrp)) 3147 return 0; 3148 3149 if (domain_enable) { 3150 /* can't enable domain controllers inside a thread subtree */ 3151 if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp)) 3152 return -EOPNOTSUPP; 3153 } else { 3154 /* 3155 * Threaded controllers can handle internal competitions 3156 * and are always allowed inside a (prospective) thread 3157 * subtree. 3158 */ 3159 if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp)) 3160 return 0; 3161 } 3162 3163 /* 3164 * Controllers can't be enabled for a cgroup with tasks to avoid 3165 * child cgroups competing against tasks. 3166 */ 3167 if (cgroup_has_tasks(cgrp)) 3168 return -EBUSY; 3169 3170 return 0; 3171 } 3172 3173 /* change the enabled child controllers for a cgroup in the default hierarchy */ 3174 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of, 3175 char *buf, size_t nbytes, 3176 loff_t off) 3177 { 3178 u16 enable = 0, disable = 0; 3179 struct cgroup *cgrp, *child; 3180 struct cgroup_subsys *ss; 3181 char *tok; 3182 int ssid, ret; 3183 3184 /* 3185 * Parse input - space separated list of subsystem names prefixed 3186 * with either + or -. 3187 */ 3188 buf = strstrip(buf); 3189 while ((tok = strsep(&buf, " "))) { 3190 if (tok[0] == '\0') 3191 continue; 3192 do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) { 3193 if (!cgroup_ssid_enabled(ssid) || 3194 strcmp(tok + 1, ss->name)) 3195 continue; 3196 3197 if (*tok == '+') { 3198 enable |= 1 << ssid; 3199 disable &= ~(1 << ssid); 3200 } else if (*tok == '-') { 3201 disable |= 1 << ssid; 3202 enable &= ~(1 << ssid); 3203 } else { 3204 return -EINVAL; 3205 } 3206 break; 3207 } while_each_subsys_mask(); 3208 if (ssid == CGROUP_SUBSYS_COUNT) 3209 return -EINVAL; 3210 } 3211 3212 cgrp = cgroup_kn_lock_live(of->kn, true); 3213 if (!cgrp) 3214 return -ENODEV; 3215 3216 for_each_subsys(ss, ssid) { 3217 if (enable & (1 << ssid)) { 3218 if (cgrp->subtree_control & (1 << ssid)) { 3219 enable &= ~(1 << ssid); 3220 continue; 3221 } 3222 3223 if (!(cgroup_control(cgrp) & (1 << ssid))) { 3224 ret = -ENOENT; 3225 goto out_unlock; 3226 } 3227 } else if (disable & (1 << ssid)) { 3228 if (!(cgrp->subtree_control & (1 << ssid))) { 3229 disable &= ~(1 << ssid); 3230 continue; 3231 } 3232 3233 /* a child has it enabled? */ 3234 cgroup_for_each_live_child(child, cgrp) { 3235 if (child->subtree_control & (1 << ssid)) { 3236 ret = -EBUSY; 3237 goto out_unlock; 3238 } 3239 } 3240 } 3241 } 3242 3243 if (!enable && !disable) { 3244 ret = 0; 3245 goto out_unlock; 3246 } 3247 3248 ret = cgroup_vet_subtree_control_enable(cgrp, enable); 3249 if (ret) 3250 goto out_unlock; 3251 3252 /* save and update control masks and prepare csses */ 3253 cgroup_save_control(cgrp); 3254 3255 cgrp->subtree_control |= enable; 3256 cgrp->subtree_control &= ~disable; 3257 3258 ret = cgroup_apply_control(cgrp); 3259 cgroup_finalize_control(cgrp, ret); 3260 if (ret) 3261 goto out_unlock; 3262 3263 kernfs_activate(cgrp->kn); 3264 out_unlock: 3265 cgroup_kn_unlock(of->kn); 3266 return ret ?: nbytes; 3267 } 3268 3269 /** 3270 * cgroup_enable_threaded - make @cgrp threaded 3271 * @cgrp: the target cgroup 3272 * 3273 * Called when "threaded" is written to the cgroup.type interface file and 3274 * tries to make @cgrp threaded and join the parent's resource domain. 3275 * This function is never called on the root cgroup as cgroup.type doesn't 3276 * exist on it. 3277 */ 3278 static int cgroup_enable_threaded(struct cgroup *cgrp) 3279 { 3280 struct cgroup *parent = cgroup_parent(cgrp); 3281 struct cgroup *dom_cgrp = parent->dom_cgrp; 3282 struct cgroup *dsct; 3283 struct cgroup_subsys_state *d_css; 3284 int ret; 3285 3286 lockdep_assert_held(&cgroup_mutex); 3287 3288 /* noop if already threaded */ 3289 if (cgroup_is_threaded(cgrp)) 3290 return 0; 3291 3292 /* 3293 * If @cgroup is populated or has domain controllers enabled, it 3294 * can't be switched. While the below cgroup_can_be_thread_root() 3295 * test can catch the same conditions, that's only when @parent is 3296 * not mixable, so let's check it explicitly. 3297 */ 3298 if (cgroup_is_populated(cgrp) || 3299 cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask) 3300 return -EOPNOTSUPP; 3301 3302 /* we're joining the parent's domain, ensure its validity */ 3303 if (!cgroup_is_valid_domain(dom_cgrp) || 3304 !cgroup_can_be_thread_root(dom_cgrp)) 3305 return -EOPNOTSUPP; 3306 3307 /* 3308 * The following shouldn't cause actual migrations and should 3309 * always succeed. 3310 */ 3311 cgroup_save_control(cgrp); 3312 3313 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) 3314 if (dsct == cgrp || cgroup_is_threaded(dsct)) 3315 dsct->dom_cgrp = dom_cgrp; 3316 3317 ret = cgroup_apply_control(cgrp); 3318 if (!ret) 3319 parent->nr_threaded_children++; 3320 3321 cgroup_finalize_control(cgrp, ret); 3322 return ret; 3323 } 3324 3325 static int cgroup_type_show(struct seq_file *seq, void *v) 3326 { 3327 struct cgroup *cgrp = seq_css(seq)->cgroup; 3328 3329 if (cgroup_is_threaded(cgrp)) 3330 seq_puts(seq, "threaded\n"); 3331 else if (!cgroup_is_valid_domain(cgrp)) 3332 seq_puts(seq, "domain invalid\n"); 3333 else if (cgroup_is_thread_root(cgrp)) 3334 seq_puts(seq, "domain threaded\n"); 3335 else 3336 seq_puts(seq, "domain\n"); 3337 3338 return 0; 3339 } 3340 3341 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf, 3342 size_t nbytes, loff_t off) 3343 { 3344 struct cgroup *cgrp; 3345 int ret; 3346 3347 /* only switching to threaded mode is supported */ 3348 if (strcmp(strstrip(buf), "threaded")) 3349 return -EINVAL; 3350 3351 cgrp = cgroup_kn_lock_live(of->kn, false); 3352 if (!cgrp) 3353 return -ENOENT; 3354 3355 /* threaded can only be enabled */ 3356 ret = cgroup_enable_threaded(cgrp); 3357 3358 cgroup_kn_unlock(of->kn); 3359 return ret ?: nbytes; 3360 } 3361 3362 static int cgroup_max_descendants_show(struct seq_file *seq, void *v) 3363 { 3364 struct cgroup *cgrp = seq_css(seq)->cgroup; 3365 int descendants = READ_ONCE(cgrp->max_descendants); 3366 3367 if (descendants == INT_MAX) 3368 seq_puts(seq, "max\n"); 3369 else 3370 seq_printf(seq, "%d\n", descendants); 3371 3372 return 0; 3373 } 3374 3375 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of, 3376 char *buf, size_t nbytes, loff_t off) 3377 { 3378 struct cgroup *cgrp; 3379 int descendants; 3380 ssize_t ret; 3381 3382 buf = strstrip(buf); 3383 if (!strcmp(buf, "max")) { 3384 descendants = INT_MAX; 3385 } else { 3386 ret = kstrtoint(buf, 0, &descendants); 3387 if (ret) 3388 return ret; 3389 } 3390 3391 if (descendants < 0) 3392 return -ERANGE; 3393 3394 cgrp = cgroup_kn_lock_live(of->kn, false); 3395 if (!cgrp) 3396 return -ENOENT; 3397 3398 cgrp->max_descendants = descendants; 3399 3400 cgroup_kn_unlock(of->kn); 3401 3402 return nbytes; 3403 } 3404 3405 static int cgroup_max_depth_show(struct seq_file *seq, void *v) 3406 { 3407 struct cgroup *cgrp = seq_css(seq)->cgroup; 3408 int depth = READ_ONCE(cgrp->max_depth); 3409 3410 if (depth == INT_MAX) 3411 seq_puts(seq, "max\n"); 3412 else 3413 seq_printf(seq, "%d\n", depth); 3414 3415 return 0; 3416 } 3417 3418 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of, 3419 char *buf, size_t nbytes, loff_t off) 3420 { 3421 struct cgroup *cgrp; 3422 ssize_t ret; 3423 int depth; 3424 3425 buf = strstrip(buf); 3426 if (!strcmp(buf, "max")) { 3427 depth = INT_MAX; 3428 } else { 3429 ret = kstrtoint(buf, 0, &depth); 3430 if (ret) 3431 return ret; 3432 } 3433 3434 if (depth < 0) 3435 return -ERANGE; 3436 3437 cgrp = cgroup_kn_lock_live(of->kn, false); 3438 if (!cgrp) 3439 return -ENOENT; 3440 3441 cgrp->max_depth = depth; 3442 3443 cgroup_kn_unlock(of->kn); 3444 3445 return nbytes; 3446 } 3447 3448 static int cgroup_events_show(struct seq_file *seq, void *v) 3449 { 3450 seq_printf(seq, "populated %d\n", 3451 cgroup_is_populated(seq_css(seq)->cgroup)); 3452 return 0; 3453 } 3454 3455 static int cgroup_stat_show(struct seq_file *seq, void *v) 3456 { 3457 struct cgroup *cgroup = seq_css(seq)->cgroup; 3458 3459 seq_printf(seq, "nr_descendants %d\n", 3460 cgroup->nr_descendants); 3461 seq_printf(seq, "nr_dying_descendants %d\n", 3462 cgroup->nr_dying_descendants); 3463 3464 return 0; 3465 } 3466 3467 static int __maybe_unused cgroup_extra_stat_show(struct seq_file *seq, 3468 struct cgroup *cgrp, int ssid) 3469 { 3470 struct cgroup_subsys *ss = cgroup_subsys[ssid]; 3471 struct cgroup_subsys_state *css; 3472 int ret; 3473 3474 if (!ss->css_extra_stat_show) 3475 return 0; 3476 3477 css = cgroup_tryget_css(cgrp, ss); 3478 if (!css) 3479 return 0; 3480 3481 ret = ss->css_extra_stat_show(seq, css); 3482 css_put(css); 3483 return ret; 3484 } 3485 3486 static int cpu_stat_show(struct seq_file *seq, void *v) 3487 { 3488 struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup; 3489 int ret = 0; 3490 3491 cgroup_base_stat_cputime_show(seq); 3492 #ifdef CONFIG_CGROUP_SCHED 3493 ret = cgroup_extra_stat_show(seq, cgrp, cpu_cgrp_id); 3494 #endif 3495 return ret; 3496 } 3497 3498 #ifdef CONFIG_PSI 3499 static int cgroup_io_pressure_show(struct seq_file *seq, void *v) 3500 { 3501 return psi_show(seq, &seq_css(seq)->cgroup->psi, PSI_IO); 3502 } 3503 static int cgroup_memory_pressure_show(struct seq_file *seq, void *v) 3504 { 3505 return psi_show(seq, &seq_css(seq)->cgroup->psi, PSI_MEM); 3506 } 3507 static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v) 3508 { 3509 return psi_show(seq, &seq_css(seq)->cgroup->psi, PSI_CPU); 3510 } 3511 #endif 3512 3513 static int cgroup_file_open(struct kernfs_open_file *of) 3514 { 3515 struct cftype *cft = of->kn->priv; 3516 3517 if (cft->open) 3518 return cft->open(of); 3519 return 0; 3520 } 3521 3522 static void cgroup_file_release(struct kernfs_open_file *of) 3523 { 3524 struct cftype *cft = of->kn->priv; 3525 3526 if (cft->release) 3527 cft->release(of); 3528 } 3529 3530 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf, 3531 size_t nbytes, loff_t off) 3532 { 3533 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns; 3534 struct cgroup *cgrp = of->kn->parent->priv; 3535 struct cftype *cft = of->kn->priv; 3536 struct cgroup_subsys_state *css; 3537 int ret; 3538 3539 /* 3540 * If namespaces are delegation boundaries, disallow writes to 3541 * files in an non-init namespace root from inside the namespace 3542 * except for the files explicitly marked delegatable - 3543 * cgroup.procs and cgroup.subtree_control. 3544 */ 3545 if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) && 3546 !(cft->flags & CFTYPE_NS_DELEGATABLE) && 3547 ns != &init_cgroup_ns && ns->root_cset->dfl_cgrp == cgrp) 3548 return -EPERM; 3549 3550 if (cft->write) 3551 return cft->write(of, buf, nbytes, off); 3552 3553 /* 3554 * kernfs guarantees that a file isn't deleted with operations in 3555 * flight, which means that the matching css is and stays alive and 3556 * doesn't need to be pinned. The RCU locking is not necessary 3557 * either. It's just for the convenience of using cgroup_css(). 3558 */ 3559 rcu_read_lock(); 3560 css = cgroup_css(cgrp, cft->ss); 3561 rcu_read_unlock(); 3562 3563 if (cft->write_u64) { 3564 unsigned long long v; 3565 ret = kstrtoull(buf, 0, &v); 3566 if (!ret) 3567 ret = cft->write_u64(css, cft, v); 3568 } else if (cft->write_s64) { 3569 long long v; 3570 ret = kstrtoll(buf, 0, &v); 3571 if (!ret) 3572 ret = cft->write_s64(css, cft, v); 3573 } else { 3574 ret = -EINVAL; 3575 } 3576 3577 return ret ?: nbytes; 3578 } 3579 3580 static __poll_t cgroup_file_poll(struct kernfs_open_file *of, poll_table *pt) 3581 { 3582 struct cftype *cft = of->kn->priv; 3583 3584 if (cft->poll) 3585 return cft->poll(of, pt); 3586 3587 return kernfs_generic_poll(of, pt); 3588 } 3589 3590 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos) 3591 { 3592 return seq_cft(seq)->seq_start(seq, ppos); 3593 } 3594 3595 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos) 3596 { 3597 return seq_cft(seq)->seq_next(seq, v, ppos); 3598 } 3599 3600 static void cgroup_seqfile_stop(struct seq_file *seq, void *v) 3601 { 3602 if (seq_cft(seq)->seq_stop) 3603 seq_cft(seq)->seq_stop(seq, v); 3604 } 3605 3606 static int cgroup_seqfile_show(struct seq_file *m, void *arg) 3607 { 3608 struct cftype *cft = seq_cft(m); 3609 struct cgroup_subsys_state *css = seq_css(m); 3610 3611 if (cft->seq_show) 3612 return cft->seq_show(m, arg); 3613 3614 if (cft->read_u64) 3615 seq_printf(m, "%llu\n", cft->read_u64(css, cft)); 3616 else if (cft->read_s64) 3617 seq_printf(m, "%lld\n", cft->read_s64(css, cft)); 3618 else 3619 return -EINVAL; 3620 return 0; 3621 } 3622 3623 static struct kernfs_ops cgroup_kf_single_ops = { 3624 .atomic_write_len = PAGE_SIZE, 3625 .open = cgroup_file_open, 3626 .release = cgroup_file_release, 3627 .write = cgroup_file_write, 3628 .poll = cgroup_file_poll, 3629 .seq_show = cgroup_seqfile_show, 3630 }; 3631 3632 static struct kernfs_ops cgroup_kf_ops = { 3633 .atomic_write_len = PAGE_SIZE, 3634 .open = cgroup_file_open, 3635 .release = cgroup_file_release, 3636 .write = cgroup_file_write, 3637 .poll = cgroup_file_poll, 3638 .seq_start = cgroup_seqfile_start, 3639 .seq_next = cgroup_seqfile_next, 3640 .seq_stop = cgroup_seqfile_stop, 3641 .seq_show = cgroup_seqfile_show, 3642 }; 3643 3644 /* set uid and gid of cgroup dirs and files to that of the creator */ 3645 static int cgroup_kn_set_ugid(struct kernfs_node *kn) 3646 { 3647 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID, 3648 .ia_uid = current_fsuid(), 3649 .ia_gid = current_fsgid(), }; 3650 3651 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) && 3652 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID)) 3653 return 0; 3654 3655 return kernfs_setattr(kn, &iattr); 3656 } 3657 3658 static void cgroup_file_notify_timer(struct timer_list *timer) 3659 { 3660 cgroup_file_notify(container_of(timer, struct cgroup_file, 3661 notify_timer)); 3662 } 3663 3664 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp, 3665 struct cftype *cft) 3666 { 3667 char name[CGROUP_FILE_NAME_MAX]; 3668 struct kernfs_node *kn; 3669 struct lock_class_key *key = NULL; 3670 int ret; 3671 3672 #ifdef CONFIG_DEBUG_LOCK_ALLOC 3673 key = &cft->lockdep_key; 3674 #endif 3675 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name), 3676 cgroup_file_mode(cft), 3677 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 3678 0, cft->kf_ops, cft, 3679 NULL, key); 3680 if (IS_ERR(kn)) 3681 return PTR_ERR(kn); 3682 3683 ret = cgroup_kn_set_ugid(kn); 3684 if (ret) { 3685 kernfs_remove(kn); 3686 return ret; 3687 } 3688 3689 if (cft->file_offset) { 3690 struct cgroup_file *cfile = (void *)css + cft->file_offset; 3691 3692 timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0); 3693 3694 spin_lock_irq(&cgroup_file_kn_lock); 3695 cfile->kn = kn; 3696 spin_unlock_irq(&cgroup_file_kn_lock); 3697 } 3698 3699 return 0; 3700 } 3701 3702 /** 3703 * cgroup_addrm_files - add or remove files to a cgroup directory 3704 * @css: the target css 3705 * @cgrp: the target cgroup (usually css->cgroup) 3706 * @cfts: array of cftypes to be added 3707 * @is_add: whether to add or remove 3708 * 3709 * Depending on @is_add, add or remove files defined by @cfts on @cgrp. 3710 * For removals, this function never fails. 3711 */ 3712 static int cgroup_addrm_files(struct cgroup_subsys_state *css, 3713 struct cgroup *cgrp, struct cftype cfts[], 3714 bool is_add) 3715 { 3716 struct cftype *cft, *cft_end = NULL; 3717 int ret = 0; 3718 3719 lockdep_assert_held(&cgroup_mutex); 3720 3721 restart: 3722 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) { 3723 /* does cft->flags tell us to skip this file on @cgrp? */ 3724 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp)) 3725 continue; 3726 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp)) 3727 continue; 3728 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp)) 3729 continue; 3730 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp)) 3731 continue; 3732 if ((cft->flags & CFTYPE_DEBUG) && !cgroup_debug) 3733 continue; 3734 if (is_add) { 3735 ret = cgroup_add_file(css, cgrp, cft); 3736 if (ret) { 3737 pr_warn("%s: failed to add %s, err=%d\n", 3738 __func__, cft->name, ret); 3739 cft_end = cft; 3740 is_add = false; 3741 goto restart; 3742 } 3743 } else { 3744 cgroup_rm_file(cgrp, cft); 3745 } 3746 } 3747 return ret; 3748 } 3749 3750 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add) 3751 { 3752 struct cgroup_subsys *ss = cfts[0].ss; 3753 struct cgroup *root = &ss->root->cgrp; 3754 struct cgroup_subsys_state *css; 3755 int ret = 0; 3756 3757 lockdep_assert_held(&cgroup_mutex); 3758 3759 /* add/rm files for all cgroups created before */ 3760 css_for_each_descendant_pre(css, cgroup_css(root, ss)) { 3761 struct cgroup *cgrp = css->cgroup; 3762 3763 if (!(css->flags & CSS_VISIBLE)) 3764 continue; 3765 3766 ret = cgroup_addrm_files(css, cgrp, cfts, is_add); 3767 if (ret) 3768 break; 3769 } 3770 3771 if (is_add && !ret) 3772 kernfs_activate(root->kn); 3773 return ret; 3774 } 3775 3776 static void cgroup_exit_cftypes(struct cftype *cfts) 3777 { 3778 struct cftype *cft; 3779 3780 for (cft = cfts; cft->name[0] != '\0'; cft++) { 3781 /* free copy for custom atomic_write_len, see init_cftypes() */ 3782 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) 3783 kfree(cft->kf_ops); 3784 cft->kf_ops = NULL; 3785 cft->ss = NULL; 3786 3787 /* revert flags set by cgroup core while adding @cfts */ 3788 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL); 3789 } 3790 } 3791 3792 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 3793 { 3794 struct cftype *cft; 3795 3796 for (cft = cfts; cft->name[0] != '\0'; cft++) { 3797 struct kernfs_ops *kf_ops; 3798 3799 WARN_ON(cft->ss || cft->kf_ops); 3800 3801 if (cft->seq_start) 3802 kf_ops = &cgroup_kf_ops; 3803 else 3804 kf_ops = &cgroup_kf_single_ops; 3805 3806 /* 3807 * Ugh... if @cft wants a custom max_write_len, we need to 3808 * make a copy of kf_ops to set its atomic_write_len. 3809 */ 3810 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) { 3811 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL); 3812 if (!kf_ops) { 3813 cgroup_exit_cftypes(cfts); 3814 return -ENOMEM; 3815 } 3816 kf_ops->atomic_write_len = cft->max_write_len; 3817 } 3818 3819 cft->kf_ops = kf_ops; 3820 cft->ss = ss; 3821 } 3822 3823 return 0; 3824 } 3825 3826 static int cgroup_rm_cftypes_locked(struct cftype *cfts) 3827 { 3828 lockdep_assert_held(&cgroup_mutex); 3829 3830 if (!cfts || !cfts[0].ss) 3831 return -ENOENT; 3832 3833 list_del(&cfts->node); 3834 cgroup_apply_cftypes(cfts, false); 3835 cgroup_exit_cftypes(cfts); 3836 return 0; 3837 } 3838 3839 /** 3840 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem 3841 * @cfts: zero-length name terminated array of cftypes 3842 * 3843 * Unregister @cfts. Files described by @cfts are removed from all 3844 * existing cgroups and all future cgroups won't have them either. This 3845 * function can be called anytime whether @cfts' subsys is attached or not. 3846 * 3847 * Returns 0 on successful unregistration, -ENOENT if @cfts is not 3848 * registered. 3849 */ 3850 int cgroup_rm_cftypes(struct cftype *cfts) 3851 { 3852 int ret; 3853 3854 mutex_lock(&cgroup_mutex); 3855 ret = cgroup_rm_cftypes_locked(cfts); 3856 mutex_unlock(&cgroup_mutex); 3857 return ret; 3858 } 3859 3860 /** 3861 * cgroup_add_cftypes - add an array of cftypes to a subsystem 3862 * @ss: target cgroup subsystem 3863 * @cfts: zero-length name terminated array of cftypes 3864 * 3865 * Register @cfts to @ss. Files described by @cfts are created for all 3866 * existing cgroups to which @ss is attached and all future cgroups will 3867 * have them too. This function can be called anytime whether @ss is 3868 * attached or not. 3869 * 3870 * Returns 0 on successful registration, -errno on failure. Note that this 3871 * function currently returns 0 as long as @cfts registration is successful 3872 * even if some file creation attempts on existing cgroups fail. 3873 */ 3874 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 3875 { 3876 int ret; 3877 3878 if (!cgroup_ssid_enabled(ss->id)) 3879 return 0; 3880 3881 if (!cfts || cfts[0].name[0] == '\0') 3882 return 0; 3883 3884 ret = cgroup_init_cftypes(ss, cfts); 3885 if (ret) 3886 return ret; 3887 3888 mutex_lock(&cgroup_mutex); 3889 3890 list_add_tail(&cfts->node, &ss->cfts); 3891 ret = cgroup_apply_cftypes(cfts, true); 3892 if (ret) 3893 cgroup_rm_cftypes_locked(cfts); 3894 3895 mutex_unlock(&cgroup_mutex); 3896 return ret; 3897 } 3898 3899 /** 3900 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy 3901 * @ss: target cgroup subsystem 3902 * @cfts: zero-length name terminated array of cftypes 3903 * 3904 * Similar to cgroup_add_cftypes() but the added files are only used for 3905 * the default hierarchy. 3906 */ 3907 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 3908 { 3909 struct cftype *cft; 3910 3911 for (cft = cfts; cft && cft->name[0] != '\0'; cft++) 3912 cft->flags |= __CFTYPE_ONLY_ON_DFL; 3913 return cgroup_add_cftypes(ss, cfts); 3914 } 3915 3916 /** 3917 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies 3918 * @ss: target cgroup subsystem 3919 * @cfts: zero-length name terminated array of cftypes 3920 * 3921 * Similar to cgroup_add_cftypes() but the added files are only used for 3922 * the legacy hierarchies. 3923 */ 3924 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 3925 { 3926 struct cftype *cft; 3927 3928 for (cft = cfts; cft && cft->name[0] != '\0'; cft++) 3929 cft->flags |= __CFTYPE_NOT_ON_DFL; 3930 return cgroup_add_cftypes(ss, cfts); 3931 } 3932 3933 /** 3934 * cgroup_file_notify - generate a file modified event for a cgroup_file 3935 * @cfile: target cgroup_file 3936 * 3937 * @cfile must have been obtained by setting cftype->file_offset. 3938 */ 3939 void cgroup_file_notify(struct cgroup_file *cfile) 3940 { 3941 unsigned long flags; 3942 3943 spin_lock_irqsave(&cgroup_file_kn_lock, flags); 3944 if (cfile->kn) { 3945 unsigned long last = cfile->notified_at; 3946 unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV; 3947 3948 if (time_in_range(jiffies, last, next)) { 3949 timer_reduce(&cfile->notify_timer, next); 3950 } else { 3951 kernfs_notify(cfile->kn); 3952 cfile->notified_at = jiffies; 3953 } 3954 } 3955 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags); 3956 } 3957 3958 /** 3959 * css_next_child - find the next child of a given css 3960 * @pos: the current position (%NULL to initiate traversal) 3961 * @parent: css whose children to walk 3962 * 3963 * This function returns the next child of @parent and should be called 3964 * under either cgroup_mutex or RCU read lock. The only requirement is 3965 * that @parent and @pos are accessible. The next sibling is guaranteed to 3966 * be returned regardless of their states. 3967 * 3968 * If a subsystem synchronizes ->css_online() and the start of iteration, a 3969 * css which finished ->css_online() is guaranteed to be visible in the 3970 * future iterations and will stay visible until the last reference is put. 3971 * A css which hasn't finished ->css_online() or already finished 3972 * ->css_offline() may show up during traversal. It's each subsystem's 3973 * responsibility to synchronize against on/offlining. 3974 */ 3975 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos, 3976 struct cgroup_subsys_state *parent) 3977 { 3978 struct cgroup_subsys_state *next; 3979 3980 cgroup_assert_mutex_or_rcu_locked(); 3981 3982 /* 3983 * @pos could already have been unlinked from the sibling list. 3984 * Once a cgroup is removed, its ->sibling.next is no longer 3985 * updated when its next sibling changes. CSS_RELEASED is set when 3986 * @pos is taken off list, at which time its next pointer is valid, 3987 * and, as releases are serialized, the one pointed to by the next 3988 * pointer is guaranteed to not have started release yet. This 3989 * implies that if we observe !CSS_RELEASED on @pos in this RCU 3990 * critical section, the one pointed to by its next pointer is 3991 * guaranteed to not have finished its RCU grace period even if we 3992 * have dropped rcu_read_lock() inbetween iterations. 3993 * 3994 * If @pos has CSS_RELEASED set, its next pointer can't be 3995 * dereferenced; however, as each css is given a monotonically 3996 * increasing unique serial number and always appended to the 3997 * sibling list, the next one can be found by walking the parent's 3998 * children until the first css with higher serial number than 3999 * @pos's. While this path can be slower, it happens iff iteration 4000 * races against release and the race window is very small. 4001 */ 4002 if (!pos) { 4003 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling); 4004 } else if (likely(!(pos->flags & CSS_RELEASED))) { 4005 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling); 4006 } else { 4007 list_for_each_entry_rcu(next, &parent->children, sibling) 4008 if (next->serial_nr > pos->serial_nr) 4009 break; 4010 } 4011 4012 /* 4013 * @next, if not pointing to the head, can be dereferenced and is 4014 * the next sibling. 4015 */ 4016 if (&next->sibling != &parent->children) 4017 return next; 4018 return NULL; 4019 } 4020 4021 /** 4022 * css_next_descendant_pre - find the next descendant for pre-order walk 4023 * @pos: the current position (%NULL to initiate traversal) 4024 * @root: css whose descendants to walk 4025 * 4026 * To be used by css_for_each_descendant_pre(). Find the next descendant 4027 * to visit for pre-order traversal of @root's descendants. @root is 4028 * included in the iteration and the first node to be visited. 4029 * 4030 * While this function requires cgroup_mutex or RCU read locking, it 4031 * doesn't require the whole traversal to be contained in a single critical 4032 * section. This function will return the correct next descendant as long 4033 * as both @pos and @root are accessible and @pos is a descendant of @root. 4034 * 4035 * If a subsystem synchronizes ->css_online() and the start of iteration, a 4036 * css which finished ->css_online() is guaranteed to be visible in the 4037 * future iterations and will stay visible until the last reference is put. 4038 * A css which hasn't finished ->css_online() or already finished 4039 * ->css_offline() may show up during traversal. It's each subsystem's 4040 * responsibility to synchronize against on/offlining. 4041 */ 4042 struct cgroup_subsys_state * 4043 css_next_descendant_pre(struct cgroup_subsys_state *pos, 4044 struct cgroup_subsys_state *root) 4045 { 4046 struct cgroup_subsys_state *next; 4047 4048 cgroup_assert_mutex_or_rcu_locked(); 4049 4050 /* if first iteration, visit @root */ 4051 if (!pos) 4052 return root; 4053 4054 /* visit the first child if exists */ 4055 next = css_next_child(NULL, pos); 4056 if (next) 4057 return next; 4058 4059 /* no child, visit my or the closest ancestor's next sibling */ 4060 while (pos != root) { 4061 next = css_next_child(pos, pos->parent); 4062 if (next) 4063 return next; 4064 pos = pos->parent; 4065 } 4066 4067 return NULL; 4068 } 4069 4070 /** 4071 * css_rightmost_descendant - return the rightmost descendant of a css 4072 * @pos: css of interest 4073 * 4074 * Return the rightmost descendant of @pos. If there's no descendant, @pos 4075 * is returned. This can be used during pre-order traversal to skip 4076 * subtree of @pos. 4077 * 4078 * While this function requires cgroup_mutex or RCU read locking, it 4079 * doesn't require the whole traversal to be contained in a single critical 4080 * section. This function will return the correct rightmost descendant as 4081 * long as @pos is accessible. 4082 */ 4083 struct cgroup_subsys_state * 4084 css_rightmost_descendant(struct cgroup_subsys_state *pos) 4085 { 4086 struct cgroup_subsys_state *last, *tmp; 4087 4088 cgroup_assert_mutex_or_rcu_locked(); 4089 4090 do { 4091 last = pos; 4092 /* ->prev isn't RCU safe, walk ->next till the end */ 4093 pos = NULL; 4094 css_for_each_child(tmp, last) 4095 pos = tmp; 4096 } while (pos); 4097 4098 return last; 4099 } 4100 4101 static struct cgroup_subsys_state * 4102 css_leftmost_descendant(struct cgroup_subsys_state *pos) 4103 { 4104 struct cgroup_subsys_state *last; 4105 4106 do { 4107 last = pos; 4108 pos = css_next_child(NULL, pos); 4109 } while (pos); 4110 4111 return last; 4112 } 4113 4114 /** 4115 * css_next_descendant_post - find the next descendant for post-order walk 4116 * @pos: the current position (%NULL to initiate traversal) 4117 * @root: css whose descendants to walk 4118 * 4119 * To be used by css_for_each_descendant_post(). Find the next descendant 4120 * to visit for post-order traversal of @root's descendants. @root is 4121 * included in the iteration and the last node to be visited. 4122 * 4123 * While this function requires cgroup_mutex or RCU read locking, it 4124 * doesn't require the whole traversal to be contained in a single critical 4125 * section. This function will return the correct next descendant as long 4126 * as both @pos and @cgroup are accessible and @pos is a descendant of 4127 * @cgroup. 4128 * 4129 * If a subsystem synchronizes ->css_online() and the start of iteration, a 4130 * css which finished ->css_online() is guaranteed to be visible in the 4131 * future iterations and will stay visible until the last reference is put. 4132 * A css which hasn't finished ->css_online() or already finished 4133 * ->css_offline() may show up during traversal. It's each subsystem's 4134 * responsibility to synchronize against on/offlining. 4135 */ 4136 struct cgroup_subsys_state * 4137 css_next_descendant_post(struct cgroup_subsys_state *pos, 4138 struct cgroup_subsys_state *root) 4139 { 4140 struct cgroup_subsys_state *next; 4141 4142 cgroup_assert_mutex_or_rcu_locked(); 4143 4144 /* if first iteration, visit leftmost descendant which may be @root */ 4145 if (!pos) 4146 return css_leftmost_descendant(root); 4147 4148 /* if we visited @root, we're done */ 4149 if (pos == root) 4150 return NULL; 4151 4152 /* if there's an unvisited sibling, visit its leftmost descendant */ 4153 next = css_next_child(pos, pos->parent); 4154 if (next) 4155 return css_leftmost_descendant(next); 4156 4157 /* no sibling left, visit parent */ 4158 return pos->parent; 4159 } 4160 4161 /** 4162 * css_has_online_children - does a css have online children 4163 * @css: the target css 4164 * 4165 * Returns %true if @css has any online children; otherwise, %false. This 4166 * function can be called from any context but the caller is responsible 4167 * for synchronizing against on/offlining as necessary. 4168 */ 4169 bool css_has_online_children(struct cgroup_subsys_state *css) 4170 { 4171 struct cgroup_subsys_state *child; 4172 bool ret = false; 4173 4174 rcu_read_lock(); 4175 css_for_each_child(child, css) { 4176 if (child->flags & CSS_ONLINE) { 4177 ret = true; 4178 break; 4179 } 4180 } 4181 rcu_read_unlock(); 4182 return ret; 4183 } 4184 4185 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it) 4186 { 4187 struct list_head *l; 4188 struct cgrp_cset_link *link; 4189 struct css_set *cset; 4190 4191 lockdep_assert_held(&css_set_lock); 4192 4193 /* find the next threaded cset */ 4194 if (it->tcset_pos) { 4195 l = it->tcset_pos->next; 4196 4197 if (l != it->tcset_head) { 4198 it->tcset_pos = l; 4199 return container_of(l, struct css_set, 4200 threaded_csets_node); 4201 } 4202 4203 it->tcset_pos = NULL; 4204 } 4205 4206 /* find the next cset */ 4207 l = it->cset_pos; 4208 l = l->next; 4209 if (l == it->cset_head) { 4210 it->cset_pos = NULL; 4211 return NULL; 4212 } 4213 4214 if (it->ss) { 4215 cset = container_of(l, struct css_set, e_cset_node[it->ss->id]); 4216 } else { 4217 link = list_entry(l, struct cgrp_cset_link, cset_link); 4218 cset = link->cset; 4219 } 4220 4221 it->cset_pos = l; 4222 4223 /* initialize threaded css_set walking */ 4224 if (it->flags & CSS_TASK_ITER_THREADED) { 4225 if (it->cur_dcset) 4226 put_css_set_locked(it->cur_dcset); 4227 it->cur_dcset = cset; 4228 get_css_set(cset); 4229 4230 it->tcset_head = &cset->threaded_csets; 4231 it->tcset_pos = &cset->threaded_csets; 4232 } 4233 4234 return cset; 4235 } 4236 4237 /** 4238 * css_task_iter_advance_css_set - advance a task itererator to the next css_set 4239 * @it: the iterator to advance 4240 * 4241 * Advance @it to the next css_set to walk. 4242 */ 4243 static void css_task_iter_advance_css_set(struct css_task_iter *it) 4244 { 4245 struct css_set *cset; 4246 4247 lockdep_assert_held(&css_set_lock); 4248 4249 /* Advance to the next non-empty css_set */ 4250 do { 4251 cset = css_task_iter_next_css_set(it); 4252 if (!cset) { 4253 it->task_pos = NULL; 4254 return; 4255 } 4256 } while (!css_set_populated(cset)); 4257 4258 if (!list_empty(&cset->tasks)) 4259 it->task_pos = cset->tasks.next; 4260 else 4261 it->task_pos = cset->mg_tasks.next; 4262 4263 it->tasks_head = &cset->tasks; 4264 it->mg_tasks_head = &cset->mg_tasks; 4265 4266 /* 4267 * We don't keep css_sets locked across iteration steps and thus 4268 * need to take steps to ensure that iteration can be resumed after 4269 * the lock is re-acquired. Iteration is performed at two levels - 4270 * css_sets and tasks in them. 4271 * 4272 * Once created, a css_set never leaves its cgroup lists, so a 4273 * pinned css_set is guaranteed to stay put and we can resume 4274 * iteration afterwards. 4275 * 4276 * Tasks may leave @cset across iteration steps. This is resolved 4277 * by registering each iterator with the css_set currently being 4278 * walked and making css_set_move_task() advance iterators whose 4279 * next task is leaving. 4280 */ 4281 if (it->cur_cset) { 4282 list_del(&it->iters_node); 4283 put_css_set_locked(it->cur_cset); 4284 } 4285 get_css_set(cset); 4286 it->cur_cset = cset; 4287 list_add(&it->iters_node, &cset->task_iters); 4288 } 4289 4290 static void css_task_iter_advance(struct css_task_iter *it) 4291 { 4292 struct list_head *next; 4293 4294 lockdep_assert_held(&css_set_lock); 4295 repeat: 4296 if (it->task_pos) { 4297 /* 4298 * Advance iterator to find next entry. cset->tasks is 4299 * consumed first and then ->mg_tasks. After ->mg_tasks, 4300 * we move onto the next cset. 4301 */ 4302 next = it->task_pos->next; 4303 4304 if (next == it->tasks_head) 4305 next = it->mg_tasks_head->next; 4306 4307 if (next == it->mg_tasks_head) 4308 css_task_iter_advance_css_set(it); 4309 else 4310 it->task_pos = next; 4311 } else { 4312 /* called from start, proceed to the first cset */ 4313 css_task_iter_advance_css_set(it); 4314 } 4315 4316 /* if PROCS, skip over tasks which aren't group leaders */ 4317 if ((it->flags & CSS_TASK_ITER_PROCS) && it->task_pos && 4318 !thread_group_leader(list_entry(it->task_pos, struct task_struct, 4319 cg_list))) 4320 goto repeat; 4321 } 4322 4323 /** 4324 * css_task_iter_start - initiate task iteration 4325 * @css: the css to walk tasks of 4326 * @flags: CSS_TASK_ITER_* flags 4327 * @it: the task iterator to use 4328 * 4329 * Initiate iteration through the tasks of @css. The caller can call 4330 * css_task_iter_next() to walk through the tasks until the function 4331 * returns NULL. On completion of iteration, css_task_iter_end() must be 4332 * called. 4333 */ 4334 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags, 4335 struct css_task_iter *it) 4336 { 4337 /* no one should try to iterate before mounting cgroups */ 4338 WARN_ON_ONCE(!use_task_css_set_links); 4339 4340 memset(it, 0, sizeof(*it)); 4341 4342 spin_lock_irq(&css_set_lock); 4343 4344 it->ss = css->ss; 4345 it->flags = flags; 4346 4347 if (it->ss) 4348 it->cset_pos = &css->cgroup->e_csets[css->ss->id]; 4349 else 4350 it->cset_pos = &css->cgroup->cset_links; 4351 4352 it->cset_head = it->cset_pos; 4353 4354 css_task_iter_advance(it); 4355 4356 spin_unlock_irq(&css_set_lock); 4357 } 4358 4359 /** 4360 * css_task_iter_next - return the next task for the iterator 4361 * @it: the task iterator being iterated 4362 * 4363 * The "next" function for task iteration. @it should have been 4364 * initialized via css_task_iter_start(). Returns NULL when the iteration 4365 * reaches the end. 4366 */ 4367 struct task_struct *css_task_iter_next(struct css_task_iter *it) 4368 { 4369 if (it->cur_task) { 4370 put_task_struct(it->cur_task); 4371 it->cur_task = NULL; 4372 } 4373 4374 spin_lock_irq(&css_set_lock); 4375 4376 if (it->task_pos) { 4377 it->cur_task = list_entry(it->task_pos, struct task_struct, 4378 cg_list); 4379 get_task_struct(it->cur_task); 4380 css_task_iter_advance(it); 4381 } 4382 4383 spin_unlock_irq(&css_set_lock); 4384 4385 return it->cur_task; 4386 } 4387 4388 /** 4389 * css_task_iter_end - finish task iteration 4390 * @it: the task iterator to finish 4391 * 4392 * Finish task iteration started by css_task_iter_start(). 4393 */ 4394 void css_task_iter_end(struct css_task_iter *it) 4395 { 4396 if (it->cur_cset) { 4397 spin_lock_irq(&css_set_lock); 4398 list_del(&it->iters_node); 4399 put_css_set_locked(it->cur_cset); 4400 spin_unlock_irq(&css_set_lock); 4401 } 4402 4403 if (it->cur_dcset) 4404 put_css_set(it->cur_dcset); 4405 4406 if (it->cur_task) 4407 put_task_struct(it->cur_task); 4408 } 4409 4410 static void cgroup_procs_release(struct kernfs_open_file *of) 4411 { 4412 if (of->priv) { 4413 css_task_iter_end(of->priv); 4414 kfree(of->priv); 4415 } 4416 } 4417 4418 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos) 4419 { 4420 struct kernfs_open_file *of = s->private; 4421 struct css_task_iter *it = of->priv; 4422 4423 return css_task_iter_next(it); 4424 } 4425 4426 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos, 4427 unsigned int iter_flags) 4428 { 4429 struct kernfs_open_file *of = s->private; 4430 struct cgroup *cgrp = seq_css(s)->cgroup; 4431 struct css_task_iter *it = of->priv; 4432 4433 /* 4434 * When a seq_file is seeked, it's always traversed sequentially 4435 * from position 0, so we can simply keep iterating on !0 *pos. 4436 */ 4437 if (!it) { 4438 if (WARN_ON_ONCE((*pos)++)) 4439 return ERR_PTR(-EINVAL); 4440 4441 it = kzalloc(sizeof(*it), GFP_KERNEL); 4442 if (!it) 4443 return ERR_PTR(-ENOMEM); 4444 of->priv = it; 4445 css_task_iter_start(&cgrp->self, iter_flags, it); 4446 } else if (!(*pos)++) { 4447 css_task_iter_end(it); 4448 css_task_iter_start(&cgrp->self, iter_flags, it); 4449 } 4450 4451 return cgroup_procs_next(s, NULL, NULL); 4452 } 4453 4454 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos) 4455 { 4456 struct cgroup *cgrp = seq_css(s)->cgroup; 4457 4458 /* 4459 * All processes of a threaded subtree belong to the domain cgroup 4460 * of the subtree. Only threads can be distributed across the 4461 * subtree. Reject reads on cgroup.procs in the subtree proper. 4462 * They're always empty anyway. 4463 */ 4464 if (cgroup_is_threaded(cgrp)) 4465 return ERR_PTR(-EOPNOTSUPP); 4466 4467 return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS | 4468 CSS_TASK_ITER_THREADED); 4469 } 4470 4471 static int cgroup_procs_show(struct seq_file *s, void *v) 4472 { 4473 seq_printf(s, "%d\n", task_pid_vnr(v)); 4474 return 0; 4475 } 4476 4477 static int cgroup_procs_write_permission(struct cgroup *src_cgrp, 4478 struct cgroup *dst_cgrp, 4479 struct super_block *sb) 4480 { 4481 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns; 4482 struct cgroup *com_cgrp = src_cgrp; 4483 struct inode *inode; 4484 int ret; 4485 4486 lockdep_assert_held(&cgroup_mutex); 4487 4488 /* find the common ancestor */ 4489 while (!cgroup_is_descendant(dst_cgrp, com_cgrp)) 4490 com_cgrp = cgroup_parent(com_cgrp); 4491 4492 /* %current should be authorized to migrate to the common ancestor */ 4493 inode = kernfs_get_inode(sb, com_cgrp->procs_file.kn); 4494 if (!inode) 4495 return -ENOMEM; 4496 4497 ret = inode_permission(inode, MAY_WRITE); 4498 iput(inode); 4499 if (ret) 4500 return ret; 4501 4502 /* 4503 * If namespaces are delegation boundaries, %current must be able 4504 * to see both source and destination cgroups from its namespace. 4505 */ 4506 if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) && 4507 (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) || 4508 !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp))) 4509 return -ENOENT; 4510 4511 return 0; 4512 } 4513 4514 static ssize_t cgroup_procs_write(struct kernfs_open_file *of, 4515 char *buf, size_t nbytes, loff_t off) 4516 { 4517 struct cgroup *src_cgrp, *dst_cgrp; 4518 struct task_struct *task; 4519 ssize_t ret; 4520 4521 dst_cgrp = cgroup_kn_lock_live(of->kn, false); 4522 if (!dst_cgrp) 4523 return -ENODEV; 4524 4525 task = cgroup_procs_write_start(buf, true); 4526 ret = PTR_ERR_OR_ZERO(task); 4527 if (ret) 4528 goto out_unlock; 4529 4530 /* find the source cgroup */ 4531 spin_lock_irq(&css_set_lock); 4532 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root); 4533 spin_unlock_irq(&css_set_lock); 4534 4535 ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, 4536 of->file->f_path.dentry->d_sb); 4537 if (ret) 4538 goto out_finish; 4539 4540 ret = cgroup_attach_task(dst_cgrp, task, true); 4541 4542 out_finish: 4543 cgroup_procs_write_finish(task); 4544 out_unlock: 4545 cgroup_kn_unlock(of->kn); 4546 4547 return ret ?: nbytes; 4548 } 4549 4550 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos) 4551 { 4552 return __cgroup_procs_start(s, pos, 0); 4553 } 4554 4555 static ssize_t cgroup_threads_write(struct kernfs_open_file *of, 4556 char *buf, size_t nbytes, loff_t off) 4557 { 4558 struct cgroup *src_cgrp, *dst_cgrp; 4559 struct task_struct *task; 4560 ssize_t ret; 4561 4562 buf = strstrip(buf); 4563 4564 dst_cgrp = cgroup_kn_lock_live(of->kn, false); 4565 if (!dst_cgrp) 4566 return -ENODEV; 4567 4568 task = cgroup_procs_write_start(buf, false); 4569 ret = PTR_ERR_OR_ZERO(task); 4570 if (ret) 4571 goto out_unlock; 4572 4573 /* find the source cgroup */ 4574 spin_lock_irq(&css_set_lock); 4575 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root); 4576 spin_unlock_irq(&css_set_lock); 4577 4578 /* thread migrations follow the cgroup.procs delegation rule */ 4579 ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, 4580 of->file->f_path.dentry->d_sb); 4581 if (ret) 4582 goto out_finish; 4583 4584 /* and must be contained in the same domain */ 4585 ret = -EOPNOTSUPP; 4586 if (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp) 4587 goto out_finish; 4588 4589 ret = cgroup_attach_task(dst_cgrp, task, false); 4590 4591 out_finish: 4592 cgroup_procs_write_finish(task); 4593 out_unlock: 4594 cgroup_kn_unlock(of->kn); 4595 4596 return ret ?: nbytes; 4597 } 4598 4599 /* cgroup core interface files for the default hierarchy */ 4600 static struct cftype cgroup_base_files[] = { 4601 { 4602 .name = "cgroup.type", 4603 .flags = CFTYPE_NOT_ON_ROOT, 4604 .seq_show = cgroup_type_show, 4605 .write = cgroup_type_write, 4606 }, 4607 { 4608 .name = "cgroup.procs", 4609 .flags = CFTYPE_NS_DELEGATABLE, 4610 .file_offset = offsetof(struct cgroup, procs_file), 4611 .release = cgroup_procs_release, 4612 .seq_start = cgroup_procs_start, 4613 .seq_next = cgroup_procs_next, 4614 .seq_show = cgroup_procs_show, 4615 .write = cgroup_procs_write, 4616 }, 4617 { 4618 .name = "cgroup.threads", 4619 .flags = CFTYPE_NS_DELEGATABLE, 4620 .release = cgroup_procs_release, 4621 .seq_start = cgroup_threads_start, 4622 .seq_next = cgroup_procs_next, 4623 .seq_show = cgroup_procs_show, 4624 .write = cgroup_threads_write, 4625 }, 4626 { 4627 .name = "cgroup.controllers", 4628 .seq_show = cgroup_controllers_show, 4629 }, 4630 { 4631 .name = "cgroup.subtree_control", 4632 .flags = CFTYPE_NS_DELEGATABLE, 4633 .seq_show = cgroup_subtree_control_show, 4634 .write = cgroup_subtree_control_write, 4635 }, 4636 { 4637 .name = "cgroup.events", 4638 .flags = CFTYPE_NOT_ON_ROOT, 4639 .file_offset = offsetof(struct cgroup, events_file), 4640 .seq_show = cgroup_events_show, 4641 }, 4642 { 4643 .name = "cgroup.max.descendants", 4644 .seq_show = cgroup_max_descendants_show, 4645 .write = cgroup_max_descendants_write, 4646 }, 4647 { 4648 .name = "cgroup.max.depth", 4649 .seq_show = cgroup_max_depth_show, 4650 .write = cgroup_max_depth_write, 4651 }, 4652 { 4653 .name = "cgroup.stat", 4654 .seq_show = cgroup_stat_show, 4655 }, 4656 { 4657 .name = "cpu.stat", 4658 .flags = CFTYPE_NOT_ON_ROOT, 4659 .seq_show = cpu_stat_show, 4660 }, 4661 #ifdef CONFIG_PSI 4662 { 4663 .name = "io.pressure", 4664 .flags = CFTYPE_NOT_ON_ROOT, 4665 .seq_show = cgroup_io_pressure_show, 4666 }, 4667 { 4668 .name = "memory.pressure", 4669 .flags = CFTYPE_NOT_ON_ROOT, 4670 .seq_show = cgroup_memory_pressure_show, 4671 }, 4672 { 4673 .name = "cpu.pressure", 4674 .flags = CFTYPE_NOT_ON_ROOT, 4675 .seq_show = cgroup_cpu_pressure_show, 4676 }, 4677 #endif 4678 { } /* terminate */ 4679 }; 4680 4681 /* 4682 * css destruction is four-stage process. 4683 * 4684 * 1. Destruction starts. Killing of the percpu_ref is initiated. 4685 * Implemented in kill_css(). 4686 * 4687 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs 4688 * and thus css_tryget_online() is guaranteed to fail, the css can be 4689 * offlined by invoking offline_css(). After offlining, the base ref is 4690 * put. Implemented in css_killed_work_fn(). 4691 * 4692 * 3. When the percpu_ref reaches zero, the only possible remaining 4693 * accessors are inside RCU read sections. css_release() schedules the 4694 * RCU callback. 4695 * 4696 * 4. After the grace period, the css can be freed. Implemented in 4697 * css_free_work_fn(). 4698 * 4699 * It is actually hairier because both step 2 and 4 require process context 4700 * and thus involve punting to css->destroy_work adding two additional 4701 * steps to the already complex sequence. 4702 */ 4703 static void css_free_rwork_fn(struct work_struct *work) 4704 { 4705 struct cgroup_subsys_state *css = container_of(to_rcu_work(work), 4706 struct cgroup_subsys_state, destroy_rwork); 4707 struct cgroup_subsys *ss = css->ss; 4708 struct cgroup *cgrp = css->cgroup; 4709 4710 percpu_ref_exit(&css->refcnt); 4711 4712 if (ss) { 4713 /* css free path */ 4714 struct cgroup_subsys_state *parent = css->parent; 4715 int id = css->id; 4716 4717 ss->css_free(css); 4718 cgroup_idr_remove(&ss->css_idr, id); 4719 cgroup_put(cgrp); 4720 4721 if (parent) 4722 css_put(parent); 4723 } else { 4724 /* cgroup free path */ 4725 atomic_dec(&cgrp->root->nr_cgrps); 4726 cgroup1_pidlist_destroy_all(cgrp); 4727 cancel_work_sync(&cgrp->release_agent_work); 4728 4729 if (cgroup_parent(cgrp)) { 4730 /* 4731 * We get a ref to the parent, and put the ref when 4732 * this cgroup is being freed, so it's guaranteed 4733 * that the parent won't be destroyed before its 4734 * children. 4735 */ 4736 cgroup_put(cgroup_parent(cgrp)); 4737 kernfs_put(cgrp->kn); 4738 psi_cgroup_free(cgrp); 4739 if (cgroup_on_dfl(cgrp)) 4740 cgroup_rstat_exit(cgrp); 4741 kfree(cgrp); 4742 } else { 4743 /* 4744 * This is root cgroup's refcnt reaching zero, 4745 * which indicates that the root should be 4746 * released. 4747 */ 4748 cgroup_destroy_root(cgrp->root); 4749 } 4750 } 4751 } 4752 4753 static void css_release_work_fn(struct work_struct *work) 4754 { 4755 struct cgroup_subsys_state *css = 4756 container_of(work, struct cgroup_subsys_state, destroy_work); 4757 struct cgroup_subsys *ss = css->ss; 4758 struct cgroup *cgrp = css->cgroup; 4759 4760 mutex_lock(&cgroup_mutex); 4761 4762 css->flags |= CSS_RELEASED; 4763 list_del_rcu(&css->sibling); 4764 4765 if (ss) { 4766 /* css release path */ 4767 if (!list_empty(&css->rstat_css_node)) { 4768 cgroup_rstat_flush(cgrp); 4769 list_del_rcu(&css->rstat_css_node); 4770 } 4771 4772 cgroup_idr_replace(&ss->css_idr, NULL, css->id); 4773 if (ss->css_released) 4774 ss->css_released(css); 4775 } else { 4776 struct cgroup *tcgrp; 4777 4778 /* cgroup release path */ 4779 TRACE_CGROUP_PATH(release, cgrp); 4780 4781 if (cgroup_on_dfl(cgrp)) 4782 cgroup_rstat_flush(cgrp); 4783 4784 for (tcgrp = cgroup_parent(cgrp); tcgrp; 4785 tcgrp = cgroup_parent(tcgrp)) 4786 tcgrp->nr_dying_descendants--; 4787 4788 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id); 4789 cgrp->id = -1; 4790 4791 /* 4792 * There are two control paths which try to determine 4793 * cgroup from dentry without going through kernfs - 4794 * cgroupstats_build() and css_tryget_online_from_dir(). 4795 * Those are supported by RCU protecting clearing of 4796 * cgrp->kn->priv backpointer. 4797 */ 4798 if (cgrp->kn) 4799 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, 4800 NULL); 4801 4802 cgroup_bpf_put(cgrp); 4803 } 4804 4805 mutex_unlock(&cgroup_mutex); 4806 4807 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn); 4808 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork); 4809 } 4810 4811 static void css_release(struct percpu_ref *ref) 4812 { 4813 struct cgroup_subsys_state *css = 4814 container_of(ref, struct cgroup_subsys_state, refcnt); 4815 4816 INIT_WORK(&css->destroy_work, css_release_work_fn); 4817 queue_work(cgroup_destroy_wq, &css->destroy_work); 4818 } 4819 4820 static void init_and_link_css(struct cgroup_subsys_state *css, 4821 struct cgroup_subsys *ss, struct cgroup *cgrp) 4822 { 4823 lockdep_assert_held(&cgroup_mutex); 4824 4825 cgroup_get_live(cgrp); 4826 4827 memset(css, 0, sizeof(*css)); 4828 css->cgroup = cgrp; 4829 css->ss = ss; 4830 css->id = -1; 4831 INIT_LIST_HEAD(&css->sibling); 4832 INIT_LIST_HEAD(&css->children); 4833 INIT_LIST_HEAD(&css->rstat_css_node); 4834 css->serial_nr = css_serial_nr_next++; 4835 atomic_set(&css->online_cnt, 0); 4836 4837 if (cgroup_parent(cgrp)) { 4838 css->parent = cgroup_css(cgroup_parent(cgrp), ss); 4839 css_get(css->parent); 4840 } 4841 4842 if (cgroup_on_dfl(cgrp) && ss->css_rstat_flush) 4843 list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list); 4844 4845 BUG_ON(cgroup_css(cgrp, ss)); 4846 } 4847 4848 /* invoke ->css_online() on a new CSS and mark it online if successful */ 4849 static int online_css(struct cgroup_subsys_state *css) 4850 { 4851 struct cgroup_subsys *ss = css->ss; 4852 int ret = 0; 4853 4854 lockdep_assert_held(&cgroup_mutex); 4855 4856 if (ss->css_online) 4857 ret = ss->css_online(css); 4858 if (!ret) { 4859 css->flags |= CSS_ONLINE; 4860 rcu_assign_pointer(css->cgroup->subsys[ss->id], css); 4861 4862 atomic_inc(&css->online_cnt); 4863 if (css->parent) 4864 atomic_inc(&css->parent->online_cnt); 4865 } 4866 return ret; 4867 } 4868 4869 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */ 4870 static void offline_css(struct cgroup_subsys_state *css) 4871 { 4872 struct cgroup_subsys *ss = css->ss; 4873 4874 lockdep_assert_held(&cgroup_mutex); 4875 4876 if (!(css->flags & CSS_ONLINE)) 4877 return; 4878 4879 if (ss->css_offline) 4880 ss->css_offline(css); 4881 4882 css->flags &= ~CSS_ONLINE; 4883 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL); 4884 4885 wake_up_all(&css->cgroup->offline_waitq); 4886 } 4887 4888 /** 4889 * css_create - create a cgroup_subsys_state 4890 * @cgrp: the cgroup new css will be associated with 4891 * @ss: the subsys of new css 4892 * 4893 * Create a new css associated with @cgrp - @ss pair. On success, the new 4894 * css is online and installed in @cgrp. This function doesn't create the 4895 * interface files. Returns 0 on success, -errno on failure. 4896 */ 4897 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp, 4898 struct cgroup_subsys *ss) 4899 { 4900 struct cgroup *parent = cgroup_parent(cgrp); 4901 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss); 4902 struct cgroup_subsys_state *css; 4903 int err; 4904 4905 lockdep_assert_held(&cgroup_mutex); 4906 4907 css = ss->css_alloc(parent_css); 4908 if (!css) 4909 css = ERR_PTR(-ENOMEM); 4910 if (IS_ERR(css)) 4911 return css; 4912 4913 init_and_link_css(css, ss, cgrp); 4914 4915 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL); 4916 if (err) 4917 goto err_free_css; 4918 4919 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL); 4920 if (err < 0) 4921 goto err_free_css; 4922 css->id = err; 4923 4924 /* @css is ready to be brought online now, make it visible */ 4925 list_add_tail_rcu(&css->sibling, &parent_css->children); 4926 cgroup_idr_replace(&ss->css_idr, css, css->id); 4927 4928 err = online_css(css); 4929 if (err) 4930 goto err_list_del; 4931 4932 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy && 4933 cgroup_parent(parent)) { 4934 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n", 4935 current->comm, current->pid, ss->name); 4936 if (!strcmp(ss->name, "memory")) 4937 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n"); 4938 ss->warned_broken_hierarchy = true; 4939 } 4940 4941 return css; 4942 4943 err_list_del: 4944 list_del_rcu(&css->sibling); 4945 err_free_css: 4946 list_del_rcu(&css->rstat_css_node); 4947 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn); 4948 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork); 4949 return ERR_PTR(err); 4950 } 4951 4952 /* 4953 * The returned cgroup is fully initialized including its control mask, but 4954 * it isn't associated with its kernfs_node and doesn't have the control 4955 * mask applied. 4956 */ 4957 static struct cgroup *cgroup_create(struct cgroup *parent) 4958 { 4959 struct cgroup_root *root = parent->root; 4960 struct cgroup *cgrp, *tcgrp; 4961 int level = parent->level + 1; 4962 int ret; 4963 4964 /* allocate the cgroup and its ID, 0 is reserved for the root */ 4965 cgrp = kzalloc(struct_size(cgrp, ancestor_ids, (level + 1)), 4966 GFP_KERNEL); 4967 if (!cgrp) 4968 return ERR_PTR(-ENOMEM); 4969 4970 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL); 4971 if (ret) 4972 goto out_free_cgrp; 4973 4974 if (cgroup_on_dfl(parent)) { 4975 ret = cgroup_rstat_init(cgrp); 4976 if (ret) 4977 goto out_cancel_ref; 4978 } 4979 4980 /* 4981 * Temporarily set the pointer to NULL, so idr_find() won't return 4982 * a half-baked cgroup. 4983 */ 4984 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL); 4985 if (cgrp->id < 0) { 4986 ret = -ENOMEM; 4987 goto out_stat_exit; 4988 } 4989 4990 init_cgroup_housekeeping(cgrp); 4991 4992 cgrp->self.parent = &parent->self; 4993 cgrp->root = root; 4994 cgrp->level = level; 4995 4996 ret = psi_cgroup_alloc(cgrp); 4997 if (ret) 4998 goto out_idr_free; 4999 5000 ret = cgroup_bpf_inherit(cgrp); 5001 if (ret) 5002 goto out_psi_free; 5003 5004 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) { 5005 cgrp->ancestor_ids[tcgrp->level] = tcgrp->id; 5006 5007 if (tcgrp != cgrp) 5008 tcgrp->nr_descendants++; 5009 } 5010 5011 if (notify_on_release(parent)) 5012 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags); 5013 5014 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags)) 5015 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags); 5016 5017 cgrp->self.serial_nr = css_serial_nr_next++; 5018 5019 /* allocation complete, commit to creation */ 5020 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children); 5021 atomic_inc(&root->nr_cgrps); 5022 cgroup_get_live(parent); 5023 5024 /* 5025 * @cgrp is now fully operational. If something fails after this 5026 * point, it'll be released via the normal destruction path. 5027 */ 5028 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id); 5029 5030 /* 5031 * On the default hierarchy, a child doesn't automatically inherit 5032 * subtree_control from the parent. Each is configured manually. 5033 */ 5034 if (!cgroup_on_dfl(cgrp)) 5035 cgrp->subtree_control = cgroup_control(cgrp); 5036 5037 cgroup_propagate_control(cgrp); 5038 5039 return cgrp; 5040 5041 out_psi_free: 5042 psi_cgroup_free(cgrp); 5043 out_idr_free: 5044 cgroup_idr_remove(&root->cgroup_idr, cgrp->id); 5045 out_stat_exit: 5046 if (cgroup_on_dfl(parent)) 5047 cgroup_rstat_exit(cgrp); 5048 out_cancel_ref: 5049 percpu_ref_exit(&cgrp->self.refcnt); 5050 out_free_cgrp: 5051 kfree(cgrp); 5052 return ERR_PTR(ret); 5053 } 5054 5055 static bool cgroup_check_hierarchy_limits(struct cgroup *parent) 5056 { 5057 struct cgroup *cgroup; 5058 int ret = false; 5059 int level = 1; 5060 5061 lockdep_assert_held(&cgroup_mutex); 5062 5063 for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) { 5064 if (cgroup->nr_descendants >= cgroup->max_descendants) 5065 goto fail; 5066 5067 if (level > cgroup->max_depth) 5068 goto fail; 5069 5070 level++; 5071 } 5072 5073 ret = true; 5074 fail: 5075 return ret; 5076 } 5077 5078 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode) 5079 { 5080 struct cgroup *parent, *cgrp; 5081 struct kernfs_node *kn; 5082 int ret; 5083 5084 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */ 5085 if (strchr(name, '\n')) 5086 return -EINVAL; 5087 5088 parent = cgroup_kn_lock_live(parent_kn, false); 5089 if (!parent) 5090 return -ENODEV; 5091 5092 if (!cgroup_check_hierarchy_limits(parent)) { 5093 ret = -EAGAIN; 5094 goto out_unlock; 5095 } 5096 5097 cgrp = cgroup_create(parent); 5098 if (IS_ERR(cgrp)) { 5099 ret = PTR_ERR(cgrp); 5100 goto out_unlock; 5101 } 5102 5103 /* create the directory */ 5104 kn = kernfs_create_dir(parent->kn, name, mode, cgrp); 5105 if (IS_ERR(kn)) { 5106 ret = PTR_ERR(kn); 5107 goto out_destroy; 5108 } 5109 cgrp->kn = kn; 5110 5111 /* 5112 * This extra ref will be put in cgroup_free_fn() and guarantees 5113 * that @cgrp->kn is always accessible. 5114 */ 5115 kernfs_get(kn); 5116 5117 ret = cgroup_kn_set_ugid(kn); 5118 if (ret) 5119 goto out_destroy; 5120 5121 ret = css_populate_dir(&cgrp->self); 5122 if (ret) 5123 goto out_destroy; 5124 5125 ret = cgroup_apply_control_enable(cgrp); 5126 if (ret) 5127 goto out_destroy; 5128 5129 TRACE_CGROUP_PATH(mkdir, cgrp); 5130 5131 /* let's create and online css's */ 5132 kernfs_activate(kn); 5133 5134 ret = 0; 5135 goto out_unlock; 5136 5137 out_destroy: 5138 cgroup_destroy_locked(cgrp); 5139 out_unlock: 5140 cgroup_kn_unlock(parent_kn); 5141 return ret; 5142 } 5143 5144 /* 5145 * This is called when the refcnt of a css is confirmed to be killed. 5146 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to 5147 * initate destruction and put the css ref from kill_css(). 5148 */ 5149 static void css_killed_work_fn(struct work_struct *work) 5150 { 5151 struct cgroup_subsys_state *css = 5152 container_of(work, struct cgroup_subsys_state, destroy_work); 5153 5154 mutex_lock(&cgroup_mutex); 5155 5156 do { 5157 offline_css(css); 5158 css_put(css); 5159 /* @css can't go away while we're holding cgroup_mutex */ 5160 css = css->parent; 5161 } while (css && atomic_dec_and_test(&css->online_cnt)); 5162 5163 mutex_unlock(&cgroup_mutex); 5164 } 5165 5166 /* css kill confirmation processing requires process context, bounce */ 5167 static void css_killed_ref_fn(struct percpu_ref *ref) 5168 { 5169 struct cgroup_subsys_state *css = 5170 container_of(ref, struct cgroup_subsys_state, refcnt); 5171 5172 if (atomic_dec_and_test(&css->online_cnt)) { 5173 INIT_WORK(&css->destroy_work, css_killed_work_fn); 5174 queue_work(cgroup_destroy_wq, &css->destroy_work); 5175 } 5176 } 5177 5178 /** 5179 * kill_css - destroy a css 5180 * @css: css to destroy 5181 * 5182 * This function initiates destruction of @css by removing cgroup interface 5183 * files and putting its base reference. ->css_offline() will be invoked 5184 * asynchronously once css_tryget_online() is guaranteed to fail and when 5185 * the reference count reaches zero, @css will be released. 5186 */ 5187 static void kill_css(struct cgroup_subsys_state *css) 5188 { 5189 lockdep_assert_held(&cgroup_mutex); 5190 5191 if (css->flags & CSS_DYING) 5192 return; 5193 5194 css->flags |= CSS_DYING; 5195 5196 /* 5197 * This must happen before css is disassociated with its cgroup. 5198 * See seq_css() for details. 5199 */ 5200 css_clear_dir(css); 5201 5202 /* 5203 * Killing would put the base ref, but we need to keep it alive 5204 * until after ->css_offline(). 5205 */ 5206 css_get(css); 5207 5208 /* 5209 * cgroup core guarantees that, by the time ->css_offline() is 5210 * invoked, no new css reference will be given out via 5211 * css_tryget_online(). We can't simply call percpu_ref_kill() and 5212 * proceed to offlining css's because percpu_ref_kill() doesn't 5213 * guarantee that the ref is seen as killed on all CPUs on return. 5214 * 5215 * Use percpu_ref_kill_and_confirm() to get notifications as each 5216 * css is confirmed to be seen as killed on all CPUs. 5217 */ 5218 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn); 5219 } 5220 5221 /** 5222 * cgroup_destroy_locked - the first stage of cgroup destruction 5223 * @cgrp: cgroup to be destroyed 5224 * 5225 * css's make use of percpu refcnts whose killing latency shouldn't be 5226 * exposed to userland and are RCU protected. Also, cgroup core needs to 5227 * guarantee that css_tryget_online() won't succeed by the time 5228 * ->css_offline() is invoked. To satisfy all the requirements, 5229 * destruction is implemented in the following two steps. 5230 * 5231 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all 5232 * userland visible parts and start killing the percpu refcnts of 5233 * css's. Set up so that the next stage will be kicked off once all 5234 * the percpu refcnts are confirmed to be killed. 5235 * 5236 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the 5237 * rest of destruction. Once all cgroup references are gone, the 5238 * cgroup is RCU-freed. 5239 * 5240 * This function implements s1. After this step, @cgrp is gone as far as 5241 * the userland is concerned and a new cgroup with the same name may be 5242 * created. As cgroup doesn't care about the names internally, this 5243 * doesn't cause any problem. 5244 */ 5245 static int cgroup_destroy_locked(struct cgroup *cgrp) 5246 __releases(&cgroup_mutex) __acquires(&cgroup_mutex) 5247 { 5248 struct cgroup *tcgrp, *parent = cgroup_parent(cgrp); 5249 struct cgroup_subsys_state *css; 5250 struct cgrp_cset_link *link; 5251 int ssid; 5252 5253 lockdep_assert_held(&cgroup_mutex); 5254 5255 /* 5256 * Only migration can raise populated from zero and we're already 5257 * holding cgroup_mutex. 5258 */ 5259 if (cgroup_is_populated(cgrp)) 5260 return -EBUSY; 5261 5262 /* 5263 * Make sure there's no live children. We can't test emptiness of 5264 * ->self.children as dead children linger on it while being 5265 * drained; otherwise, "rmdir parent/child parent" may fail. 5266 */ 5267 if (css_has_online_children(&cgrp->self)) 5268 return -EBUSY; 5269 5270 /* 5271 * Mark @cgrp and the associated csets dead. The former prevents 5272 * further task migration and child creation by disabling 5273 * cgroup_lock_live_group(). The latter makes the csets ignored by 5274 * the migration path. 5275 */ 5276 cgrp->self.flags &= ~CSS_ONLINE; 5277 5278 spin_lock_irq(&css_set_lock); 5279 list_for_each_entry(link, &cgrp->cset_links, cset_link) 5280 link->cset->dead = true; 5281 spin_unlock_irq(&css_set_lock); 5282 5283 /* initiate massacre of all css's */ 5284 for_each_css(css, ssid, cgrp) 5285 kill_css(css); 5286 5287 /* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */ 5288 css_clear_dir(&cgrp->self); 5289 kernfs_remove(cgrp->kn); 5290 5291 if (parent && cgroup_is_threaded(cgrp)) 5292 parent->nr_threaded_children--; 5293 5294 for (tcgrp = cgroup_parent(cgrp); tcgrp; tcgrp = cgroup_parent(tcgrp)) { 5295 tcgrp->nr_descendants--; 5296 tcgrp->nr_dying_descendants++; 5297 } 5298 5299 cgroup1_check_for_release(parent); 5300 5301 /* put the base reference */ 5302 percpu_ref_kill(&cgrp->self.refcnt); 5303 5304 return 0; 5305 }; 5306 5307 int cgroup_rmdir(struct kernfs_node *kn) 5308 { 5309 struct cgroup *cgrp; 5310 int ret = 0; 5311 5312 cgrp = cgroup_kn_lock_live(kn, false); 5313 if (!cgrp) 5314 return 0; 5315 5316 ret = cgroup_destroy_locked(cgrp); 5317 if (!ret) 5318 TRACE_CGROUP_PATH(rmdir, cgrp); 5319 5320 cgroup_kn_unlock(kn); 5321 return ret; 5322 } 5323 5324 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = { 5325 .show_options = cgroup_show_options, 5326 .mkdir = cgroup_mkdir, 5327 .rmdir = cgroup_rmdir, 5328 .show_path = cgroup_show_path, 5329 }; 5330 5331 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early) 5332 { 5333 struct cgroup_subsys_state *css; 5334 5335 pr_debug("Initializing cgroup subsys %s\n", ss->name); 5336 5337 mutex_lock(&cgroup_mutex); 5338 5339 idr_init(&ss->css_idr); 5340 INIT_LIST_HEAD(&ss->cfts); 5341 5342 /* Create the root cgroup state for this subsystem */ 5343 ss->root = &cgrp_dfl_root; 5344 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss)); 5345 /* We don't handle early failures gracefully */ 5346 BUG_ON(IS_ERR(css)); 5347 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp); 5348 5349 /* 5350 * Root csses are never destroyed and we can't initialize 5351 * percpu_ref during early init. Disable refcnting. 5352 */ 5353 css->flags |= CSS_NO_REF; 5354 5355 if (early) { 5356 /* allocation can't be done safely during early init */ 5357 css->id = 1; 5358 } else { 5359 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL); 5360 BUG_ON(css->id < 0); 5361 } 5362 5363 /* Update the init_css_set to contain a subsys 5364 * pointer to this state - since the subsystem is 5365 * newly registered, all tasks and hence the 5366 * init_css_set is in the subsystem's root cgroup. */ 5367 init_css_set.subsys[ss->id] = css; 5368 5369 have_fork_callback |= (bool)ss->fork << ss->id; 5370 have_exit_callback |= (bool)ss->exit << ss->id; 5371 have_release_callback |= (bool)ss->release << ss->id; 5372 have_canfork_callback |= (bool)ss->can_fork << ss->id; 5373 5374 /* At system boot, before all subsystems have been 5375 * registered, no tasks have been forked, so we don't 5376 * need to invoke fork callbacks here. */ 5377 BUG_ON(!list_empty(&init_task.tasks)); 5378 5379 BUG_ON(online_css(css)); 5380 5381 mutex_unlock(&cgroup_mutex); 5382 } 5383 5384 /** 5385 * cgroup_init_early - cgroup initialization at system boot 5386 * 5387 * Initialize cgroups at system boot, and initialize any 5388 * subsystems that request early init. 5389 */ 5390 int __init cgroup_init_early(void) 5391 { 5392 static struct cgroup_fs_context __initdata ctx; 5393 struct cgroup_subsys *ss; 5394 int i; 5395 5396 ctx.root = &cgrp_dfl_root; 5397 init_cgroup_root(&ctx); 5398 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF; 5399 5400 RCU_INIT_POINTER(init_task.cgroups, &init_css_set); 5401 5402 for_each_subsys(ss, i) { 5403 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id, 5404 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n", 5405 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free, 5406 ss->id, ss->name); 5407 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN, 5408 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]); 5409 5410 ss->id = i; 5411 ss->name = cgroup_subsys_name[i]; 5412 if (!ss->legacy_name) 5413 ss->legacy_name = cgroup_subsys_name[i]; 5414 5415 if (ss->early_init) 5416 cgroup_init_subsys(ss, true); 5417 } 5418 return 0; 5419 } 5420 5421 static u16 cgroup_disable_mask __initdata; 5422 5423 /** 5424 * cgroup_init - cgroup initialization 5425 * 5426 * Register cgroup filesystem and /proc file, and initialize 5427 * any subsystems that didn't request early init. 5428 */ 5429 int __init cgroup_init(void) 5430 { 5431 struct cgroup_subsys *ss; 5432 int ssid; 5433 5434 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16); 5435 BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem)); 5436 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files)); 5437 BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files)); 5438 5439 cgroup_rstat_boot(); 5440 5441 /* 5442 * The latency of the synchronize_rcu() is too high for cgroups, 5443 * avoid it at the cost of forcing all readers into the slow path. 5444 */ 5445 rcu_sync_enter_start(&cgroup_threadgroup_rwsem.rss); 5446 5447 get_user_ns(init_cgroup_ns.user_ns); 5448 5449 mutex_lock(&cgroup_mutex); 5450 5451 /* 5452 * Add init_css_set to the hash table so that dfl_root can link to 5453 * it during init. 5454 */ 5455 hash_add(css_set_table, &init_css_set.hlist, 5456 css_set_hash(init_css_set.subsys)); 5457 5458 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0)); 5459 5460 mutex_unlock(&cgroup_mutex); 5461 5462 for_each_subsys(ss, ssid) { 5463 if (ss->early_init) { 5464 struct cgroup_subsys_state *css = 5465 init_css_set.subsys[ss->id]; 5466 5467 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, 5468 GFP_KERNEL); 5469 BUG_ON(css->id < 0); 5470 } else { 5471 cgroup_init_subsys(ss, false); 5472 } 5473 5474 list_add_tail(&init_css_set.e_cset_node[ssid], 5475 &cgrp_dfl_root.cgrp.e_csets[ssid]); 5476 5477 /* 5478 * Setting dfl_root subsys_mask needs to consider the 5479 * disabled flag and cftype registration needs kmalloc, 5480 * both of which aren't available during early_init. 5481 */ 5482 if (cgroup_disable_mask & (1 << ssid)) { 5483 static_branch_disable(cgroup_subsys_enabled_key[ssid]); 5484 printk(KERN_INFO "Disabling %s control group subsystem\n", 5485 ss->name); 5486 continue; 5487 } 5488 5489 if (cgroup1_ssid_disabled(ssid)) 5490 printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n", 5491 ss->name); 5492 5493 cgrp_dfl_root.subsys_mask |= 1 << ss->id; 5494 5495 /* implicit controllers must be threaded too */ 5496 WARN_ON(ss->implicit_on_dfl && !ss->threaded); 5497 5498 if (ss->implicit_on_dfl) 5499 cgrp_dfl_implicit_ss_mask |= 1 << ss->id; 5500 else if (!ss->dfl_cftypes) 5501 cgrp_dfl_inhibit_ss_mask |= 1 << ss->id; 5502 5503 if (ss->threaded) 5504 cgrp_dfl_threaded_ss_mask |= 1 << ss->id; 5505 5506 if (ss->dfl_cftypes == ss->legacy_cftypes) { 5507 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes)); 5508 } else { 5509 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes)); 5510 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes)); 5511 } 5512 5513 if (ss->bind) 5514 ss->bind(init_css_set.subsys[ssid]); 5515 5516 mutex_lock(&cgroup_mutex); 5517 css_populate_dir(init_css_set.subsys[ssid]); 5518 mutex_unlock(&cgroup_mutex); 5519 } 5520 5521 /* init_css_set.subsys[] has been updated, re-hash */ 5522 hash_del(&init_css_set.hlist); 5523 hash_add(css_set_table, &init_css_set.hlist, 5524 css_set_hash(init_css_set.subsys)); 5525 5526 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup")); 5527 WARN_ON(register_filesystem(&cgroup_fs_type)); 5528 WARN_ON(register_filesystem(&cgroup2_fs_type)); 5529 WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show)); 5530 5531 return 0; 5532 } 5533 5534 static int __init cgroup_wq_init(void) 5535 { 5536 /* 5537 * There isn't much point in executing destruction path in 5538 * parallel. Good chunk is serialized with cgroup_mutex anyway. 5539 * Use 1 for @max_active. 5540 * 5541 * We would prefer to do this in cgroup_init() above, but that 5542 * is called before init_workqueues(): so leave this until after. 5543 */ 5544 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1); 5545 BUG_ON(!cgroup_destroy_wq); 5546 return 0; 5547 } 5548 core_initcall(cgroup_wq_init); 5549 5550 void cgroup_path_from_kernfs_id(const union kernfs_node_id *id, 5551 char *buf, size_t buflen) 5552 { 5553 struct kernfs_node *kn; 5554 5555 kn = kernfs_get_node_by_id(cgrp_dfl_root.kf_root, id); 5556 if (!kn) 5557 return; 5558 kernfs_path(kn, buf, buflen); 5559 kernfs_put(kn); 5560 } 5561 5562 /* 5563 * proc_cgroup_show() 5564 * - Print task's cgroup paths into seq_file, one line for each hierarchy 5565 * - Used for /proc/<pid>/cgroup. 5566 */ 5567 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns, 5568 struct pid *pid, struct task_struct *tsk) 5569 { 5570 char *buf; 5571 int retval; 5572 struct cgroup_root *root; 5573 5574 retval = -ENOMEM; 5575 buf = kmalloc(PATH_MAX, GFP_KERNEL); 5576 if (!buf) 5577 goto out; 5578 5579 mutex_lock(&cgroup_mutex); 5580 spin_lock_irq(&css_set_lock); 5581 5582 for_each_root(root) { 5583 struct cgroup_subsys *ss; 5584 struct cgroup *cgrp; 5585 int ssid, count = 0; 5586 5587 if (root == &cgrp_dfl_root && !cgrp_dfl_visible) 5588 continue; 5589 5590 seq_printf(m, "%d:", root->hierarchy_id); 5591 if (root != &cgrp_dfl_root) 5592 for_each_subsys(ss, ssid) 5593 if (root->subsys_mask & (1 << ssid)) 5594 seq_printf(m, "%s%s", count++ ? "," : "", 5595 ss->legacy_name); 5596 if (strlen(root->name)) 5597 seq_printf(m, "%sname=%s", count ? "," : "", 5598 root->name); 5599 seq_putc(m, ':'); 5600 5601 cgrp = task_cgroup_from_root(tsk, root); 5602 5603 /* 5604 * On traditional hierarchies, all zombie tasks show up as 5605 * belonging to the root cgroup. On the default hierarchy, 5606 * while a zombie doesn't show up in "cgroup.procs" and 5607 * thus can't be migrated, its /proc/PID/cgroup keeps 5608 * reporting the cgroup it belonged to before exiting. If 5609 * the cgroup is removed before the zombie is reaped, 5610 * " (deleted)" is appended to the cgroup path. 5611 */ 5612 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) { 5613 retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX, 5614 current->nsproxy->cgroup_ns); 5615 if (retval >= PATH_MAX) 5616 retval = -ENAMETOOLONG; 5617 if (retval < 0) 5618 goto out_unlock; 5619 5620 seq_puts(m, buf); 5621 } else { 5622 seq_puts(m, "/"); 5623 } 5624 5625 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp)) 5626 seq_puts(m, " (deleted)\n"); 5627 else 5628 seq_putc(m, '\n'); 5629 } 5630 5631 retval = 0; 5632 out_unlock: 5633 spin_unlock_irq(&css_set_lock); 5634 mutex_unlock(&cgroup_mutex); 5635 kfree(buf); 5636 out: 5637 return retval; 5638 } 5639 5640 /** 5641 * cgroup_fork - initialize cgroup related fields during copy_process() 5642 * @child: pointer to task_struct of forking parent process. 5643 * 5644 * A task is associated with the init_css_set until cgroup_post_fork() 5645 * attaches it to the parent's css_set. Empty cg_list indicates that 5646 * @child isn't holding reference to its css_set. 5647 */ 5648 void cgroup_fork(struct task_struct *child) 5649 { 5650 RCU_INIT_POINTER(child->cgroups, &init_css_set); 5651 INIT_LIST_HEAD(&child->cg_list); 5652 } 5653 5654 /** 5655 * cgroup_can_fork - called on a new task before the process is exposed 5656 * @child: the task in question. 5657 * 5658 * This calls the subsystem can_fork() callbacks. If the can_fork() callback 5659 * returns an error, the fork aborts with that error code. This allows for 5660 * a cgroup subsystem to conditionally allow or deny new forks. 5661 */ 5662 int cgroup_can_fork(struct task_struct *child) 5663 { 5664 struct cgroup_subsys *ss; 5665 int i, j, ret; 5666 5667 do_each_subsys_mask(ss, i, have_canfork_callback) { 5668 ret = ss->can_fork(child); 5669 if (ret) 5670 goto out_revert; 5671 } while_each_subsys_mask(); 5672 5673 return 0; 5674 5675 out_revert: 5676 for_each_subsys(ss, j) { 5677 if (j >= i) 5678 break; 5679 if (ss->cancel_fork) 5680 ss->cancel_fork(child); 5681 } 5682 5683 return ret; 5684 } 5685 5686 /** 5687 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork() 5688 * @child: the task in question 5689 * 5690 * This calls the cancel_fork() callbacks if a fork failed *after* 5691 * cgroup_can_fork() succeded. 5692 */ 5693 void cgroup_cancel_fork(struct task_struct *child) 5694 { 5695 struct cgroup_subsys *ss; 5696 int i; 5697 5698 for_each_subsys(ss, i) 5699 if (ss->cancel_fork) 5700 ss->cancel_fork(child); 5701 } 5702 5703 /** 5704 * cgroup_post_fork - called on a new task after adding it to the task list 5705 * @child: the task in question 5706 * 5707 * Adds the task to the list running through its css_set if necessary and 5708 * call the subsystem fork() callbacks. Has to be after the task is 5709 * visible on the task list in case we race with the first call to 5710 * cgroup_task_iter_start() - to guarantee that the new task ends up on its 5711 * list. 5712 */ 5713 void cgroup_post_fork(struct task_struct *child) 5714 { 5715 struct cgroup_subsys *ss; 5716 int i; 5717 5718 /* 5719 * This may race against cgroup_enable_task_cg_lists(). As that 5720 * function sets use_task_css_set_links before grabbing 5721 * tasklist_lock and we just went through tasklist_lock to add 5722 * @child, it's guaranteed that either we see the set 5723 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees 5724 * @child during its iteration. 5725 * 5726 * If we won the race, @child is associated with %current's 5727 * css_set. Grabbing css_set_lock guarantees both that the 5728 * association is stable, and, on completion of the parent's 5729 * migration, @child is visible in the source of migration or 5730 * already in the destination cgroup. This guarantee is necessary 5731 * when implementing operations which need to migrate all tasks of 5732 * a cgroup to another. 5733 * 5734 * Note that if we lose to cgroup_enable_task_cg_lists(), @child 5735 * will remain in init_css_set. This is safe because all tasks are 5736 * in the init_css_set before cg_links is enabled and there's no 5737 * operation which transfers all tasks out of init_css_set. 5738 */ 5739 if (use_task_css_set_links) { 5740 struct css_set *cset; 5741 5742 spin_lock_irq(&css_set_lock); 5743 cset = task_css_set(current); 5744 if (list_empty(&child->cg_list)) { 5745 get_css_set(cset); 5746 cset->nr_tasks++; 5747 css_set_move_task(child, NULL, cset, false); 5748 } 5749 spin_unlock_irq(&css_set_lock); 5750 } 5751 5752 /* 5753 * Call ss->fork(). This must happen after @child is linked on 5754 * css_set; otherwise, @child might change state between ->fork() 5755 * and addition to css_set. 5756 */ 5757 do_each_subsys_mask(ss, i, have_fork_callback) { 5758 ss->fork(child); 5759 } while_each_subsys_mask(); 5760 } 5761 5762 /** 5763 * cgroup_exit - detach cgroup from exiting task 5764 * @tsk: pointer to task_struct of exiting process 5765 * 5766 * Description: Detach cgroup from @tsk and release it. 5767 * 5768 * Note that cgroups marked notify_on_release force every task in 5769 * them to take the global cgroup_mutex mutex when exiting. 5770 * This could impact scaling on very large systems. Be reluctant to 5771 * use notify_on_release cgroups where very high task exit scaling 5772 * is required on large systems. 5773 * 5774 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We 5775 * call cgroup_exit() while the task is still competent to handle 5776 * notify_on_release(), then leave the task attached to the root cgroup in 5777 * each hierarchy for the remainder of its exit. No need to bother with 5778 * init_css_set refcnting. init_css_set never goes away and we can't race 5779 * with migration path - PF_EXITING is visible to migration path. 5780 */ 5781 void cgroup_exit(struct task_struct *tsk) 5782 { 5783 struct cgroup_subsys *ss; 5784 struct css_set *cset; 5785 int i; 5786 5787 /* 5788 * Unlink from @tsk from its css_set. As migration path can't race 5789 * with us, we can check css_set and cg_list without synchronization. 5790 */ 5791 cset = task_css_set(tsk); 5792 5793 if (!list_empty(&tsk->cg_list)) { 5794 spin_lock_irq(&css_set_lock); 5795 css_set_move_task(tsk, cset, NULL, false); 5796 cset->nr_tasks--; 5797 spin_unlock_irq(&css_set_lock); 5798 } else { 5799 get_css_set(cset); 5800 } 5801 5802 /* see cgroup_post_fork() for details */ 5803 do_each_subsys_mask(ss, i, have_exit_callback) { 5804 ss->exit(tsk); 5805 } while_each_subsys_mask(); 5806 } 5807 5808 void cgroup_release(struct task_struct *task) 5809 { 5810 struct cgroup_subsys *ss; 5811 int ssid; 5812 5813 do_each_subsys_mask(ss, ssid, have_release_callback) { 5814 ss->release(task); 5815 } while_each_subsys_mask(); 5816 } 5817 5818 void cgroup_free(struct task_struct *task) 5819 { 5820 struct css_set *cset = task_css_set(task); 5821 put_css_set(cset); 5822 } 5823 5824 static int __init cgroup_disable(char *str) 5825 { 5826 struct cgroup_subsys *ss; 5827 char *token; 5828 int i; 5829 5830 while ((token = strsep(&str, ",")) != NULL) { 5831 if (!*token) 5832 continue; 5833 5834 for_each_subsys(ss, i) { 5835 if (strcmp(token, ss->name) && 5836 strcmp(token, ss->legacy_name)) 5837 continue; 5838 cgroup_disable_mask |= 1 << i; 5839 } 5840 } 5841 return 1; 5842 } 5843 __setup("cgroup_disable=", cgroup_disable); 5844 5845 void __init __weak enable_debug_cgroup(void) { } 5846 5847 static int __init enable_cgroup_debug(char *str) 5848 { 5849 cgroup_debug = true; 5850 enable_debug_cgroup(); 5851 return 1; 5852 } 5853 __setup("cgroup_debug", enable_cgroup_debug); 5854 5855 /** 5856 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry 5857 * @dentry: directory dentry of interest 5858 * @ss: subsystem of interest 5859 * 5860 * If @dentry is a directory for a cgroup which has @ss enabled on it, try 5861 * to get the corresponding css and return it. If such css doesn't exist 5862 * or can't be pinned, an ERR_PTR value is returned. 5863 */ 5864 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry, 5865 struct cgroup_subsys *ss) 5866 { 5867 struct kernfs_node *kn = kernfs_node_from_dentry(dentry); 5868 struct file_system_type *s_type = dentry->d_sb->s_type; 5869 struct cgroup_subsys_state *css = NULL; 5870 struct cgroup *cgrp; 5871 5872 /* is @dentry a cgroup dir? */ 5873 if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) || 5874 !kn || kernfs_type(kn) != KERNFS_DIR) 5875 return ERR_PTR(-EBADF); 5876 5877 rcu_read_lock(); 5878 5879 /* 5880 * This path doesn't originate from kernfs and @kn could already 5881 * have been or be removed at any point. @kn->priv is RCU 5882 * protected for this access. See css_release_work_fn() for details. 5883 */ 5884 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); 5885 if (cgrp) 5886 css = cgroup_css(cgrp, ss); 5887 5888 if (!css || !css_tryget_online(css)) 5889 css = ERR_PTR(-ENOENT); 5890 5891 rcu_read_unlock(); 5892 return css; 5893 } 5894 5895 /** 5896 * css_from_id - lookup css by id 5897 * @id: the cgroup id 5898 * @ss: cgroup subsys to be looked into 5899 * 5900 * Returns the css if there's valid one with @id, otherwise returns NULL. 5901 * Should be called under rcu_read_lock(). 5902 */ 5903 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss) 5904 { 5905 WARN_ON_ONCE(!rcu_read_lock_held()); 5906 return idr_find(&ss->css_idr, id); 5907 } 5908 5909 /** 5910 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path 5911 * @path: path on the default hierarchy 5912 * 5913 * Find the cgroup at @path on the default hierarchy, increment its 5914 * reference count and return it. Returns pointer to the found cgroup on 5915 * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR) 5916 * if @path points to a non-directory. 5917 */ 5918 struct cgroup *cgroup_get_from_path(const char *path) 5919 { 5920 struct kernfs_node *kn; 5921 struct cgroup *cgrp; 5922 5923 mutex_lock(&cgroup_mutex); 5924 5925 kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path); 5926 if (kn) { 5927 if (kernfs_type(kn) == KERNFS_DIR) { 5928 cgrp = kn->priv; 5929 cgroup_get_live(cgrp); 5930 } else { 5931 cgrp = ERR_PTR(-ENOTDIR); 5932 } 5933 kernfs_put(kn); 5934 } else { 5935 cgrp = ERR_PTR(-ENOENT); 5936 } 5937 5938 mutex_unlock(&cgroup_mutex); 5939 return cgrp; 5940 } 5941 EXPORT_SYMBOL_GPL(cgroup_get_from_path); 5942 5943 /** 5944 * cgroup_get_from_fd - get a cgroup pointer from a fd 5945 * @fd: fd obtained by open(cgroup2_dir) 5946 * 5947 * Find the cgroup from a fd which should be obtained 5948 * by opening a cgroup directory. Returns a pointer to the 5949 * cgroup on success. ERR_PTR is returned if the cgroup 5950 * cannot be found. 5951 */ 5952 struct cgroup *cgroup_get_from_fd(int fd) 5953 { 5954 struct cgroup_subsys_state *css; 5955 struct cgroup *cgrp; 5956 struct file *f; 5957 5958 f = fget_raw(fd); 5959 if (!f) 5960 return ERR_PTR(-EBADF); 5961 5962 css = css_tryget_online_from_dir(f->f_path.dentry, NULL); 5963 fput(f); 5964 if (IS_ERR(css)) 5965 return ERR_CAST(css); 5966 5967 cgrp = css->cgroup; 5968 if (!cgroup_on_dfl(cgrp)) { 5969 cgroup_put(cgrp); 5970 return ERR_PTR(-EBADF); 5971 } 5972 5973 return cgrp; 5974 } 5975 EXPORT_SYMBOL_GPL(cgroup_get_from_fd); 5976 5977 /* 5978 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data 5979 * definition in cgroup-defs.h. 5980 */ 5981 #ifdef CONFIG_SOCK_CGROUP_DATA 5982 5983 #if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID) 5984 5985 DEFINE_SPINLOCK(cgroup_sk_update_lock); 5986 static bool cgroup_sk_alloc_disabled __read_mostly; 5987 5988 void cgroup_sk_alloc_disable(void) 5989 { 5990 if (cgroup_sk_alloc_disabled) 5991 return; 5992 pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n"); 5993 cgroup_sk_alloc_disabled = true; 5994 } 5995 5996 #else 5997 5998 #define cgroup_sk_alloc_disabled false 5999 6000 #endif 6001 6002 void cgroup_sk_alloc(struct sock_cgroup_data *skcd) 6003 { 6004 if (cgroup_sk_alloc_disabled) 6005 return; 6006 6007 /* Socket clone path */ 6008 if (skcd->val) { 6009 /* 6010 * We might be cloning a socket which is left in an empty 6011 * cgroup and the cgroup might have already been rmdir'd. 6012 * Don't use cgroup_get_live(). 6013 */ 6014 cgroup_get(sock_cgroup_ptr(skcd)); 6015 return; 6016 } 6017 6018 rcu_read_lock(); 6019 6020 while (true) { 6021 struct css_set *cset; 6022 6023 cset = task_css_set(current); 6024 if (likely(cgroup_tryget(cset->dfl_cgrp))) { 6025 skcd->val = (unsigned long)cset->dfl_cgrp; 6026 break; 6027 } 6028 cpu_relax(); 6029 } 6030 6031 rcu_read_unlock(); 6032 } 6033 6034 void cgroup_sk_free(struct sock_cgroup_data *skcd) 6035 { 6036 cgroup_put(sock_cgroup_ptr(skcd)); 6037 } 6038 6039 #endif /* CONFIG_SOCK_CGROUP_DATA */ 6040 6041 #ifdef CONFIG_CGROUP_BPF 6042 int cgroup_bpf_attach(struct cgroup *cgrp, struct bpf_prog *prog, 6043 enum bpf_attach_type type, u32 flags) 6044 { 6045 int ret; 6046 6047 mutex_lock(&cgroup_mutex); 6048 ret = __cgroup_bpf_attach(cgrp, prog, type, flags); 6049 mutex_unlock(&cgroup_mutex); 6050 return ret; 6051 } 6052 int cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog, 6053 enum bpf_attach_type type, u32 flags) 6054 { 6055 int ret; 6056 6057 mutex_lock(&cgroup_mutex); 6058 ret = __cgroup_bpf_detach(cgrp, prog, type); 6059 mutex_unlock(&cgroup_mutex); 6060 return ret; 6061 } 6062 int cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr, 6063 union bpf_attr __user *uattr) 6064 { 6065 int ret; 6066 6067 mutex_lock(&cgroup_mutex); 6068 ret = __cgroup_bpf_query(cgrp, attr, uattr); 6069 mutex_unlock(&cgroup_mutex); 6070 return ret; 6071 } 6072 #endif /* CONFIG_CGROUP_BPF */ 6073 6074 #ifdef CONFIG_SYSFS 6075 static ssize_t show_delegatable_files(struct cftype *files, char *buf, 6076 ssize_t size, const char *prefix) 6077 { 6078 struct cftype *cft; 6079 ssize_t ret = 0; 6080 6081 for (cft = files; cft && cft->name[0] != '\0'; cft++) { 6082 if (!(cft->flags & CFTYPE_NS_DELEGATABLE)) 6083 continue; 6084 6085 if (prefix) 6086 ret += snprintf(buf + ret, size - ret, "%s.", prefix); 6087 6088 ret += snprintf(buf + ret, size - ret, "%s\n", cft->name); 6089 6090 if (WARN_ON(ret >= size)) 6091 break; 6092 } 6093 6094 return ret; 6095 } 6096 6097 static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr, 6098 char *buf) 6099 { 6100 struct cgroup_subsys *ss; 6101 int ssid; 6102 ssize_t ret = 0; 6103 6104 ret = show_delegatable_files(cgroup_base_files, buf, PAGE_SIZE - ret, 6105 NULL); 6106 6107 for_each_subsys(ss, ssid) 6108 ret += show_delegatable_files(ss->dfl_cftypes, buf + ret, 6109 PAGE_SIZE - ret, 6110 cgroup_subsys_name[ssid]); 6111 6112 return ret; 6113 } 6114 static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate); 6115 6116 static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr, 6117 char *buf) 6118 { 6119 return snprintf(buf, PAGE_SIZE, "nsdelegate\n"); 6120 } 6121 static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features); 6122 6123 static struct attribute *cgroup_sysfs_attrs[] = { 6124 &cgroup_delegate_attr.attr, 6125 &cgroup_features_attr.attr, 6126 NULL, 6127 }; 6128 6129 static const struct attribute_group cgroup_sysfs_attr_group = { 6130 .attrs = cgroup_sysfs_attrs, 6131 .name = "cgroup", 6132 }; 6133 6134 static int __init cgroup_sysfs_init(void) 6135 { 6136 return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group); 6137 } 6138 subsys_initcall(cgroup_sysfs_init); 6139 #endif /* CONFIG_SYSFS */ 6140