1 /* 2 * Generic process-grouping system. 3 * 4 * Based originally on the cpuset system, extracted by Paul Menage 5 * Copyright (C) 2006 Google, Inc 6 * 7 * Notifications support 8 * Copyright (C) 2009 Nokia Corporation 9 * Author: Kirill A. Shutemov 10 * 11 * Copyright notices from the original cpuset code: 12 * -------------------------------------------------- 13 * Copyright (C) 2003 BULL SA. 14 * Copyright (C) 2004-2006 Silicon Graphics, Inc. 15 * 16 * Portions derived from Patrick Mochel's sysfs code. 17 * sysfs is Copyright (c) 2001-3 Patrick Mochel 18 * 19 * 2003-10-10 Written by Simon Derr. 20 * 2003-10-22 Updates by Stephen Hemminger. 21 * 2004 May-July Rework by Paul Jackson. 22 * --------------------------------------------------- 23 * 24 * This file is subject to the terms and conditions of the GNU General Public 25 * License. See the file COPYING in the main directory of the Linux 26 * distribution for more details. 27 */ 28 29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 30 31 #include "cgroup-internal.h" 32 33 #include <linux/bpf-cgroup.h> 34 #include <linux/cred.h> 35 #include <linux/errno.h> 36 #include <linux/init_task.h> 37 #include <linux/kernel.h> 38 #include <linux/magic.h> 39 #include <linux/mutex.h> 40 #include <linux/mount.h> 41 #include <linux/pagemap.h> 42 #include <linux/proc_fs.h> 43 #include <linux/rcupdate.h> 44 #include <linux/sched.h> 45 #include <linux/sched/task.h> 46 #include <linux/slab.h> 47 #include <linux/spinlock.h> 48 #include <linux/percpu-rwsem.h> 49 #include <linux/string.h> 50 #include <linux/hashtable.h> 51 #include <linux/idr.h> 52 #include <linux/kthread.h> 53 #include <linux/atomic.h> 54 #include <linux/cpuset.h> 55 #include <linux/proc_ns.h> 56 #include <linux/nsproxy.h> 57 #include <linux/file.h> 58 #include <linux/fs_parser.h> 59 #include <linux/sched/cputime.h> 60 #include <linux/psi.h> 61 #include <net/sock.h> 62 63 #define CREATE_TRACE_POINTS 64 #include <trace/events/cgroup.h> 65 66 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \ 67 MAX_CFTYPE_NAME + 2) 68 /* let's not notify more than 100 times per second */ 69 #define CGROUP_FILE_NOTIFY_MIN_INTV DIV_ROUND_UP(HZ, 100) 70 71 /* 72 * To avoid confusing the compiler (and generating warnings) with code 73 * that attempts to access what would be a 0-element array (i.e. sized 74 * to a potentially empty array when CGROUP_SUBSYS_COUNT == 0), this 75 * constant expression can be added. 76 */ 77 #define CGROUP_HAS_SUBSYS_CONFIG (CGROUP_SUBSYS_COUNT > 0) 78 79 /* 80 * cgroup_mutex is the master lock. Any modification to cgroup or its 81 * hierarchy must be performed while holding it. 82 * 83 * css_set_lock protects task->cgroups pointer, the list of css_set 84 * objects, and the chain of tasks off each css_set. 85 * 86 * These locks are exported if CONFIG_PROVE_RCU so that accessors in 87 * cgroup.h can use them for lockdep annotations. 88 */ 89 DEFINE_MUTEX(cgroup_mutex); 90 DEFINE_SPINLOCK(css_set_lock); 91 92 #ifdef CONFIG_PROVE_RCU 93 EXPORT_SYMBOL_GPL(cgroup_mutex); 94 EXPORT_SYMBOL_GPL(css_set_lock); 95 #endif 96 97 DEFINE_SPINLOCK(trace_cgroup_path_lock); 98 char trace_cgroup_path[TRACE_CGROUP_PATH_LEN]; 99 static bool cgroup_debug __read_mostly; 100 101 /* 102 * Protects cgroup_idr and css_idr so that IDs can be released without 103 * grabbing cgroup_mutex. 104 */ 105 static DEFINE_SPINLOCK(cgroup_idr_lock); 106 107 /* 108 * Protects cgroup_file->kn for !self csses. It synchronizes notifications 109 * against file removal/re-creation across css hiding. 110 */ 111 static DEFINE_SPINLOCK(cgroup_file_kn_lock); 112 113 DEFINE_PERCPU_RWSEM(cgroup_threadgroup_rwsem); 114 115 #define cgroup_assert_mutex_or_rcu_locked() \ 116 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \ 117 !lockdep_is_held(&cgroup_mutex), \ 118 "cgroup_mutex or RCU read lock required"); 119 120 /* 121 * cgroup destruction makes heavy use of work items and there can be a lot 122 * of concurrent destructions. Use a separate workqueue so that cgroup 123 * destruction work items don't end up filling up max_active of system_wq 124 * which may lead to deadlock. 125 */ 126 static struct workqueue_struct *cgroup_destroy_wq; 127 128 /* generate an array of cgroup subsystem pointers */ 129 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys, 130 struct cgroup_subsys *cgroup_subsys[] = { 131 #include <linux/cgroup_subsys.h> 132 }; 133 #undef SUBSYS 134 135 /* array of cgroup subsystem names */ 136 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x, 137 static const char *cgroup_subsys_name[] = { 138 #include <linux/cgroup_subsys.h> 139 }; 140 #undef SUBSYS 141 142 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */ 143 #define SUBSYS(_x) \ 144 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \ 145 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \ 146 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \ 147 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key); 148 #include <linux/cgroup_subsys.h> 149 #undef SUBSYS 150 151 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key, 152 static struct static_key_true *cgroup_subsys_enabled_key[] = { 153 #include <linux/cgroup_subsys.h> 154 }; 155 #undef SUBSYS 156 157 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key, 158 static struct static_key_true *cgroup_subsys_on_dfl_key[] = { 159 #include <linux/cgroup_subsys.h> 160 }; 161 #undef SUBSYS 162 163 static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu); 164 165 /* the default hierarchy */ 166 struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu }; 167 EXPORT_SYMBOL_GPL(cgrp_dfl_root); 168 169 /* 170 * The default hierarchy always exists but is hidden until mounted for the 171 * first time. This is for backward compatibility. 172 */ 173 static bool cgrp_dfl_visible; 174 175 /* some controllers are not supported in the default hierarchy */ 176 static u16 cgrp_dfl_inhibit_ss_mask; 177 178 /* some controllers are implicitly enabled on the default hierarchy */ 179 static u16 cgrp_dfl_implicit_ss_mask; 180 181 /* some controllers can be threaded on the default hierarchy */ 182 static u16 cgrp_dfl_threaded_ss_mask; 183 184 /* The list of hierarchy roots */ 185 LIST_HEAD(cgroup_roots); 186 static int cgroup_root_count; 187 188 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */ 189 static DEFINE_IDR(cgroup_hierarchy_idr); 190 191 /* 192 * Assign a monotonically increasing serial number to csses. It guarantees 193 * cgroups with bigger numbers are newer than those with smaller numbers. 194 * Also, as csses are always appended to the parent's ->children list, it 195 * guarantees that sibling csses are always sorted in the ascending serial 196 * number order on the list. Protected by cgroup_mutex. 197 */ 198 static u64 css_serial_nr_next = 1; 199 200 /* 201 * These bitmasks identify subsystems with specific features to avoid 202 * having to do iterative checks repeatedly. 203 */ 204 static u16 have_fork_callback __read_mostly; 205 static u16 have_exit_callback __read_mostly; 206 static u16 have_release_callback __read_mostly; 207 static u16 have_canfork_callback __read_mostly; 208 209 /* cgroup namespace for init task */ 210 struct cgroup_namespace init_cgroup_ns = { 211 .ns.count = REFCOUNT_INIT(2), 212 .user_ns = &init_user_ns, 213 .ns.ops = &cgroupns_operations, 214 .ns.inum = PROC_CGROUP_INIT_INO, 215 .root_cset = &init_css_set, 216 }; 217 218 static struct file_system_type cgroup2_fs_type; 219 static struct cftype cgroup_base_files[]; 220 static struct cftype cgroup_psi_files[]; 221 222 /* cgroup optional features */ 223 enum cgroup_opt_features { 224 #ifdef CONFIG_PSI 225 OPT_FEATURE_PRESSURE, 226 #endif 227 OPT_FEATURE_COUNT 228 }; 229 230 static const char *cgroup_opt_feature_names[OPT_FEATURE_COUNT] = { 231 #ifdef CONFIG_PSI 232 "pressure", 233 #endif 234 }; 235 236 static u16 cgroup_feature_disable_mask __read_mostly; 237 238 static int cgroup_apply_control(struct cgroup *cgrp); 239 static void cgroup_finalize_control(struct cgroup *cgrp, int ret); 240 static void css_task_iter_skip(struct css_task_iter *it, 241 struct task_struct *task); 242 static int cgroup_destroy_locked(struct cgroup *cgrp); 243 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp, 244 struct cgroup_subsys *ss); 245 static void css_release(struct percpu_ref *ref); 246 static void kill_css(struct cgroup_subsys_state *css); 247 static int cgroup_addrm_files(struct cgroup_subsys_state *css, 248 struct cgroup *cgrp, struct cftype cfts[], 249 bool is_add); 250 251 #ifdef CONFIG_DEBUG_CGROUP_REF 252 #define CGROUP_REF_FN_ATTRS noinline 253 #define CGROUP_REF_EXPORT(fn) EXPORT_SYMBOL_GPL(fn); 254 #include <linux/cgroup_refcnt.h> 255 #endif 256 257 /** 258 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID 259 * @ssid: subsys ID of interest 260 * 261 * cgroup_subsys_enabled() can only be used with literal subsys names which 262 * is fine for individual subsystems but unsuitable for cgroup core. This 263 * is slower static_key_enabled() based test indexed by @ssid. 264 */ 265 bool cgroup_ssid_enabled(int ssid) 266 { 267 if (!CGROUP_HAS_SUBSYS_CONFIG) 268 return false; 269 270 return static_key_enabled(cgroup_subsys_enabled_key[ssid]); 271 } 272 273 /** 274 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy 275 * @cgrp: the cgroup of interest 276 * 277 * The default hierarchy is the v2 interface of cgroup and this function 278 * can be used to test whether a cgroup is on the default hierarchy for 279 * cases where a subsystem should behave differently depending on the 280 * interface version. 281 * 282 * List of changed behaviors: 283 * 284 * - Mount options "noprefix", "xattr", "clone_children", "release_agent" 285 * and "name" are disallowed. 286 * 287 * - When mounting an existing superblock, mount options should match. 288 * 289 * - rename(2) is disallowed. 290 * 291 * - "tasks" is removed. Everything should be at process granularity. Use 292 * "cgroup.procs" instead. 293 * 294 * - "cgroup.procs" is not sorted. pids will be unique unless they got 295 * recycled in-between reads. 296 * 297 * - "release_agent" and "notify_on_release" are removed. Replacement 298 * notification mechanism will be implemented. 299 * 300 * - "cgroup.clone_children" is removed. 301 * 302 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup 303 * and its descendants contain no task; otherwise, 1. The file also 304 * generates kernfs notification which can be monitored through poll and 305 * [di]notify when the value of the file changes. 306 * 307 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and 308 * take masks of ancestors with non-empty cpus/mems, instead of being 309 * moved to an ancestor. 310 * 311 * - cpuset: a task can be moved into an empty cpuset, and again it takes 312 * masks of ancestors. 313 * 314 * - blkcg: blk-throttle becomes properly hierarchical. 315 * 316 * - debug: disallowed on the default hierarchy. 317 */ 318 bool cgroup_on_dfl(const struct cgroup *cgrp) 319 { 320 return cgrp->root == &cgrp_dfl_root; 321 } 322 323 /* IDR wrappers which synchronize using cgroup_idr_lock */ 324 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end, 325 gfp_t gfp_mask) 326 { 327 int ret; 328 329 idr_preload(gfp_mask); 330 spin_lock_bh(&cgroup_idr_lock); 331 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM); 332 spin_unlock_bh(&cgroup_idr_lock); 333 idr_preload_end(); 334 return ret; 335 } 336 337 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id) 338 { 339 void *ret; 340 341 spin_lock_bh(&cgroup_idr_lock); 342 ret = idr_replace(idr, ptr, id); 343 spin_unlock_bh(&cgroup_idr_lock); 344 return ret; 345 } 346 347 static void cgroup_idr_remove(struct idr *idr, int id) 348 { 349 spin_lock_bh(&cgroup_idr_lock); 350 idr_remove(idr, id); 351 spin_unlock_bh(&cgroup_idr_lock); 352 } 353 354 static bool cgroup_has_tasks(struct cgroup *cgrp) 355 { 356 return cgrp->nr_populated_csets; 357 } 358 359 bool cgroup_is_threaded(struct cgroup *cgrp) 360 { 361 return cgrp->dom_cgrp != cgrp; 362 } 363 364 /* can @cgrp host both domain and threaded children? */ 365 static bool cgroup_is_mixable(struct cgroup *cgrp) 366 { 367 /* 368 * Root isn't under domain level resource control exempting it from 369 * the no-internal-process constraint, so it can serve as a thread 370 * root and a parent of resource domains at the same time. 371 */ 372 return !cgroup_parent(cgrp); 373 } 374 375 /* can @cgrp become a thread root? Should always be true for a thread root */ 376 static bool cgroup_can_be_thread_root(struct cgroup *cgrp) 377 { 378 /* mixables don't care */ 379 if (cgroup_is_mixable(cgrp)) 380 return true; 381 382 /* domain roots can't be nested under threaded */ 383 if (cgroup_is_threaded(cgrp)) 384 return false; 385 386 /* can only have either domain or threaded children */ 387 if (cgrp->nr_populated_domain_children) 388 return false; 389 390 /* and no domain controllers can be enabled */ 391 if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask) 392 return false; 393 394 return true; 395 } 396 397 /* is @cgrp root of a threaded subtree? */ 398 bool cgroup_is_thread_root(struct cgroup *cgrp) 399 { 400 /* thread root should be a domain */ 401 if (cgroup_is_threaded(cgrp)) 402 return false; 403 404 /* a domain w/ threaded children is a thread root */ 405 if (cgrp->nr_threaded_children) 406 return true; 407 408 /* 409 * A domain which has tasks and explicit threaded controllers 410 * enabled is a thread root. 411 */ 412 if (cgroup_has_tasks(cgrp) && 413 (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask)) 414 return true; 415 416 return false; 417 } 418 419 /* a domain which isn't connected to the root w/o brekage can't be used */ 420 static bool cgroup_is_valid_domain(struct cgroup *cgrp) 421 { 422 /* the cgroup itself can be a thread root */ 423 if (cgroup_is_threaded(cgrp)) 424 return false; 425 426 /* but the ancestors can't be unless mixable */ 427 while ((cgrp = cgroup_parent(cgrp))) { 428 if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp)) 429 return false; 430 if (cgroup_is_threaded(cgrp)) 431 return false; 432 } 433 434 return true; 435 } 436 437 /* subsystems visibly enabled on a cgroup */ 438 static u16 cgroup_control(struct cgroup *cgrp) 439 { 440 struct cgroup *parent = cgroup_parent(cgrp); 441 u16 root_ss_mask = cgrp->root->subsys_mask; 442 443 if (parent) { 444 u16 ss_mask = parent->subtree_control; 445 446 /* threaded cgroups can only have threaded controllers */ 447 if (cgroup_is_threaded(cgrp)) 448 ss_mask &= cgrp_dfl_threaded_ss_mask; 449 return ss_mask; 450 } 451 452 if (cgroup_on_dfl(cgrp)) 453 root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask | 454 cgrp_dfl_implicit_ss_mask); 455 return root_ss_mask; 456 } 457 458 /* subsystems enabled on a cgroup */ 459 static u16 cgroup_ss_mask(struct cgroup *cgrp) 460 { 461 struct cgroup *parent = cgroup_parent(cgrp); 462 463 if (parent) { 464 u16 ss_mask = parent->subtree_ss_mask; 465 466 /* threaded cgroups can only have threaded controllers */ 467 if (cgroup_is_threaded(cgrp)) 468 ss_mask &= cgrp_dfl_threaded_ss_mask; 469 return ss_mask; 470 } 471 472 return cgrp->root->subsys_mask; 473 } 474 475 /** 476 * cgroup_css - obtain a cgroup's css for the specified subsystem 477 * @cgrp: the cgroup of interest 478 * @ss: the subsystem of interest (%NULL returns @cgrp->self) 479 * 480 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This 481 * function must be called either under cgroup_mutex or rcu_read_lock() and 482 * the caller is responsible for pinning the returned css if it wants to 483 * keep accessing it outside the said locks. This function may return 484 * %NULL if @cgrp doesn't have @subsys_id enabled. 485 */ 486 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp, 487 struct cgroup_subsys *ss) 488 { 489 if (CGROUP_HAS_SUBSYS_CONFIG && ss) 490 return rcu_dereference_check(cgrp->subsys[ss->id], 491 lockdep_is_held(&cgroup_mutex)); 492 else 493 return &cgrp->self; 494 } 495 496 /** 497 * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem 498 * @cgrp: the cgroup of interest 499 * @ss: the subsystem of interest 500 * 501 * Find and get @cgrp's css associated with @ss. If the css doesn't exist 502 * or is offline, %NULL is returned. 503 */ 504 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp, 505 struct cgroup_subsys *ss) 506 { 507 struct cgroup_subsys_state *css; 508 509 rcu_read_lock(); 510 css = cgroup_css(cgrp, ss); 511 if (css && !css_tryget_online(css)) 512 css = NULL; 513 rcu_read_unlock(); 514 515 return css; 516 } 517 518 /** 519 * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss 520 * @cgrp: the cgroup of interest 521 * @ss: the subsystem of interest (%NULL returns @cgrp->self) 522 * 523 * Similar to cgroup_css() but returns the effective css, which is defined 524 * as the matching css of the nearest ancestor including self which has @ss 525 * enabled. If @ss is associated with the hierarchy @cgrp is on, this 526 * function is guaranteed to return non-NULL css. 527 */ 528 static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp, 529 struct cgroup_subsys *ss) 530 { 531 lockdep_assert_held(&cgroup_mutex); 532 533 if (!ss) 534 return &cgrp->self; 535 536 /* 537 * This function is used while updating css associations and thus 538 * can't test the csses directly. Test ss_mask. 539 */ 540 while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) { 541 cgrp = cgroup_parent(cgrp); 542 if (!cgrp) 543 return NULL; 544 } 545 546 return cgroup_css(cgrp, ss); 547 } 548 549 /** 550 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem 551 * @cgrp: the cgroup of interest 552 * @ss: the subsystem of interest 553 * 554 * Find and get the effective css of @cgrp for @ss. The effective css is 555 * defined as the matching css of the nearest ancestor including self which 556 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on, 557 * the root css is returned, so this function always returns a valid css. 558 * 559 * The returned css is not guaranteed to be online, and therefore it is the 560 * callers responsibility to try get a reference for it. 561 */ 562 struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp, 563 struct cgroup_subsys *ss) 564 { 565 struct cgroup_subsys_state *css; 566 567 if (!CGROUP_HAS_SUBSYS_CONFIG) 568 return NULL; 569 570 do { 571 css = cgroup_css(cgrp, ss); 572 573 if (css) 574 return css; 575 cgrp = cgroup_parent(cgrp); 576 } while (cgrp); 577 578 return init_css_set.subsys[ss->id]; 579 } 580 581 /** 582 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem 583 * @cgrp: the cgroup of interest 584 * @ss: the subsystem of interest 585 * 586 * Find and get the effective css of @cgrp for @ss. The effective css is 587 * defined as the matching css of the nearest ancestor including self which 588 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on, 589 * the root css is returned, so this function always returns a valid css. 590 * The returned css must be put using css_put(). 591 */ 592 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp, 593 struct cgroup_subsys *ss) 594 { 595 struct cgroup_subsys_state *css; 596 597 if (!CGROUP_HAS_SUBSYS_CONFIG) 598 return NULL; 599 600 rcu_read_lock(); 601 602 do { 603 css = cgroup_css(cgrp, ss); 604 605 if (css && css_tryget_online(css)) 606 goto out_unlock; 607 cgrp = cgroup_parent(cgrp); 608 } while (cgrp); 609 610 css = init_css_set.subsys[ss->id]; 611 css_get(css); 612 out_unlock: 613 rcu_read_unlock(); 614 return css; 615 } 616 EXPORT_SYMBOL_GPL(cgroup_get_e_css); 617 618 static void cgroup_get_live(struct cgroup *cgrp) 619 { 620 WARN_ON_ONCE(cgroup_is_dead(cgrp)); 621 css_get(&cgrp->self); 622 } 623 624 /** 625 * __cgroup_task_count - count the number of tasks in a cgroup. The caller 626 * is responsible for taking the css_set_lock. 627 * @cgrp: the cgroup in question 628 */ 629 int __cgroup_task_count(const struct cgroup *cgrp) 630 { 631 int count = 0; 632 struct cgrp_cset_link *link; 633 634 lockdep_assert_held(&css_set_lock); 635 636 list_for_each_entry(link, &cgrp->cset_links, cset_link) 637 count += link->cset->nr_tasks; 638 639 return count; 640 } 641 642 /** 643 * cgroup_task_count - count the number of tasks in a cgroup. 644 * @cgrp: the cgroup in question 645 */ 646 int cgroup_task_count(const struct cgroup *cgrp) 647 { 648 int count; 649 650 spin_lock_irq(&css_set_lock); 651 count = __cgroup_task_count(cgrp); 652 spin_unlock_irq(&css_set_lock); 653 654 return count; 655 } 656 657 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of) 658 { 659 struct cgroup *cgrp = of->kn->parent->priv; 660 struct cftype *cft = of_cft(of); 661 662 /* 663 * This is open and unprotected implementation of cgroup_css(). 664 * seq_css() is only called from a kernfs file operation which has 665 * an active reference on the file. Because all the subsystem 666 * files are drained before a css is disassociated with a cgroup, 667 * the matching css from the cgroup's subsys table is guaranteed to 668 * be and stay valid until the enclosing operation is complete. 669 */ 670 if (CGROUP_HAS_SUBSYS_CONFIG && cft->ss) 671 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]); 672 else 673 return &cgrp->self; 674 } 675 EXPORT_SYMBOL_GPL(of_css); 676 677 /** 678 * for_each_css - iterate all css's of a cgroup 679 * @css: the iteration cursor 680 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end 681 * @cgrp: the target cgroup to iterate css's of 682 * 683 * Should be called under cgroup_[tree_]mutex. 684 */ 685 #define for_each_css(css, ssid, cgrp) \ 686 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \ 687 if (!((css) = rcu_dereference_check( \ 688 (cgrp)->subsys[(ssid)], \ 689 lockdep_is_held(&cgroup_mutex)))) { } \ 690 else 691 692 /** 693 * for_each_e_css - iterate all effective css's of a cgroup 694 * @css: the iteration cursor 695 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end 696 * @cgrp: the target cgroup to iterate css's of 697 * 698 * Should be called under cgroup_[tree_]mutex. 699 */ 700 #define for_each_e_css(css, ssid, cgrp) \ 701 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \ 702 if (!((css) = cgroup_e_css_by_mask(cgrp, \ 703 cgroup_subsys[(ssid)]))) \ 704 ; \ 705 else 706 707 /** 708 * do_each_subsys_mask - filter for_each_subsys with a bitmask 709 * @ss: the iteration cursor 710 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end 711 * @ss_mask: the bitmask 712 * 713 * The block will only run for cases where the ssid-th bit (1 << ssid) of 714 * @ss_mask is set. 715 */ 716 #define do_each_subsys_mask(ss, ssid, ss_mask) do { \ 717 unsigned long __ss_mask = (ss_mask); \ 718 if (!CGROUP_HAS_SUBSYS_CONFIG) { \ 719 (ssid) = 0; \ 720 break; \ 721 } \ 722 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \ 723 (ss) = cgroup_subsys[ssid]; \ 724 { 725 726 #define while_each_subsys_mask() \ 727 } \ 728 } \ 729 } while (false) 730 731 /* iterate over child cgrps, lock should be held throughout iteration */ 732 #define cgroup_for_each_live_child(child, cgrp) \ 733 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \ 734 if (({ lockdep_assert_held(&cgroup_mutex); \ 735 cgroup_is_dead(child); })) \ 736 ; \ 737 else 738 739 /* walk live descendants in pre order */ 740 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \ 741 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \ 742 if (({ lockdep_assert_held(&cgroup_mutex); \ 743 (dsct) = (d_css)->cgroup; \ 744 cgroup_is_dead(dsct); })) \ 745 ; \ 746 else 747 748 /* walk live descendants in postorder */ 749 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \ 750 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \ 751 if (({ lockdep_assert_held(&cgroup_mutex); \ 752 (dsct) = (d_css)->cgroup; \ 753 cgroup_is_dead(dsct); })) \ 754 ; \ 755 else 756 757 /* 758 * The default css_set - used by init and its children prior to any 759 * hierarchies being mounted. It contains a pointer to the root state 760 * for each subsystem. Also used to anchor the list of css_sets. Not 761 * reference-counted, to improve performance when child cgroups 762 * haven't been created. 763 */ 764 struct css_set init_css_set = { 765 .refcount = REFCOUNT_INIT(1), 766 .dom_cset = &init_css_set, 767 .tasks = LIST_HEAD_INIT(init_css_set.tasks), 768 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks), 769 .dying_tasks = LIST_HEAD_INIT(init_css_set.dying_tasks), 770 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters), 771 .threaded_csets = LIST_HEAD_INIT(init_css_set.threaded_csets), 772 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links), 773 .mg_src_preload_node = LIST_HEAD_INIT(init_css_set.mg_src_preload_node), 774 .mg_dst_preload_node = LIST_HEAD_INIT(init_css_set.mg_dst_preload_node), 775 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node), 776 777 /* 778 * The following field is re-initialized when this cset gets linked 779 * in cgroup_init(). However, let's initialize the field 780 * statically too so that the default cgroup can be accessed safely 781 * early during boot. 782 */ 783 .dfl_cgrp = &cgrp_dfl_root.cgrp, 784 }; 785 786 static int css_set_count = 1; /* 1 for init_css_set */ 787 788 static bool css_set_threaded(struct css_set *cset) 789 { 790 return cset->dom_cset != cset; 791 } 792 793 /** 794 * css_set_populated - does a css_set contain any tasks? 795 * @cset: target css_set 796 * 797 * css_set_populated() should be the same as !!cset->nr_tasks at steady 798 * state. However, css_set_populated() can be called while a task is being 799 * added to or removed from the linked list before the nr_tasks is 800 * properly updated. Hence, we can't just look at ->nr_tasks here. 801 */ 802 static bool css_set_populated(struct css_set *cset) 803 { 804 lockdep_assert_held(&css_set_lock); 805 806 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks); 807 } 808 809 /** 810 * cgroup_update_populated - update the populated count of a cgroup 811 * @cgrp: the target cgroup 812 * @populated: inc or dec populated count 813 * 814 * One of the css_sets associated with @cgrp is either getting its first 815 * task or losing the last. Update @cgrp->nr_populated_* accordingly. The 816 * count is propagated towards root so that a given cgroup's 817 * nr_populated_children is zero iff none of its descendants contain any 818 * tasks. 819 * 820 * @cgrp's interface file "cgroup.populated" is zero if both 821 * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and 822 * 1 otherwise. When the sum changes from or to zero, userland is notified 823 * that the content of the interface file has changed. This can be used to 824 * detect when @cgrp and its descendants become populated or empty. 825 */ 826 static void cgroup_update_populated(struct cgroup *cgrp, bool populated) 827 { 828 struct cgroup *child = NULL; 829 int adj = populated ? 1 : -1; 830 831 lockdep_assert_held(&css_set_lock); 832 833 do { 834 bool was_populated = cgroup_is_populated(cgrp); 835 836 if (!child) { 837 cgrp->nr_populated_csets += adj; 838 } else { 839 if (cgroup_is_threaded(child)) 840 cgrp->nr_populated_threaded_children += adj; 841 else 842 cgrp->nr_populated_domain_children += adj; 843 } 844 845 if (was_populated == cgroup_is_populated(cgrp)) 846 break; 847 848 cgroup1_check_for_release(cgrp); 849 TRACE_CGROUP_PATH(notify_populated, cgrp, 850 cgroup_is_populated(cgrp)); 851 cgroup_file_notify(&cgrp->events_file); 852 853 child = cgrp; 854 cgrp = cgroup_parent(cgrp); 855 } while (cgrp); 856 } 857 858 /** 859 * css_set_update_populated - update populated state of a css_set 860 * @cset: target css_set 861 * @populated: whether @cset is populated or depopulated 862 * 863 * @cset is either getting the first task or losing the last. Update the 864 * populated counters of all associated cgroups accordingly. 865 */ 866 static void css_set_update_populated(struct css_set *cset, bool populated) 867 { 868 struct cgrp_cset_link *link; 869 870 lockdep_assert_held(&css_set_lock); 871 872 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) 873 cgroup_update_populated(link->cgrp, populated); 874 } 875 876 /* 877 * @task is leaving, advance task iterators which are pointing to it so 878 * that they can resume at the next position. Advancing an iterator might 879 * remove it from the list, use safe walk. See css_task_iter_skip() for 880 * details. 881 */ 882 static void css_set_skip_task_iters(struct css_set *cset, 883 struct task_struct *task) 884 { 885 struct css_task_iter *it, *pos; 886 887 list_for_each_entry_safe(it, pos, &cset->task_iters, iters_node) 888 css_task_iter_skip(it, task); 889 } 890 891 /** 892 * css_set_move_task - move a task from one css_set to another 893 * @task: task being moved 894 * @from_cset: css_set @task currently belongs to (may be NULL) 895 * @to_cset: new css_set @task is being moved to (may be NULL) 896 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks 897 * 898 * Move @task from @from_cset to @to_cset. If @task didn't belong to any 899 * css_set, @from_cset can be NULL. If @task is being disassociated 900 * instead of moved, @to_cset can be NULL. 901 * 902 * This function automatically handles populated counter updates and 903 * css_task_iter adjustments but the caller is responsible for managing 904 * @from_cset and @to_cset's reference counts. 905 */ 906 static void css_set_move_task(struct task_struct *task, 907 struct css_set *from_cset, struct css_set *to_cset, 908 bool use_mg_tasks) 909 { 910 lockdep_assert_held(&css_set_lock); 911 912 if (to_cset && !css_set_populated(to_cset)) 913 css_set_update_populated(to_cset, true); 914 915 if (from_cset) { 916 WARN_ON_ONCE(list_empty(&task->cg_list)); 917 918 css_set_skip_task_iters(from_cset, task); 919 list_del_init(&task->cg_list); 920 if (!css_set_populated(from_cset)) 921 css_set_update_populated(from_cset, false); 922 } else { 923 WARN_ON_ONCE(!list_empty(&task->cg_list)); 924 } 925 926 if (to_cset) { 927 /* 928 * We are synchronized through cgroup_threadgroup_rwsem 929 * against PF_EXITING setting such that we can't race 930 * against cgroup_exit()/cgroup_free() dropping the css_set. 931 */ 932 WARN_ON_ONCE(task->flags & PF_EXITING); 933 934 cgroup_move_task(task, to_cset); 935 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks : 936 &to_cset->tasks); 937 } 938 } 939 940 /* 941 * hash table for cgroup groups. This improves the performance to find 942 * an existing css_set. This hash doesn't (currently) take into 943 * account cgroups in empty hierarchies. 944 */ 945 #define CSS_SET_HASH_BITS 7 946 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS); 947 948 static unsigned long css_set_hash(struct cgroup_subsys_state *css[]) 949 { 950 unsigned long key = 0UL; 951 struct cgroup_subsys *ss; 952 int i; 953 954 for_each_subsys(ss, i) 955 key += (unsigned long)css[i]; 956 key = (key >> 16) ^ key; 957 958 return key; 959 } 960 961 void put_css_set_locked(struct css_set *cset) 962 { 963 struct cgrp_cset_link *link, *tmp_link; 964 struct cgroup_subsys *ss; 965 int ssid; 966 967 lockdep_assert_held(&css_set_lock); 968 969 if (!refcount_dec_and_test(&cset->refcount)) 970 return; 971 972 WARN_ON_ONCE(!list_empty(&cset->threaded_csets)); 973 974 /* This css_set is dead. Unlink it and release cgroup and css refs */ 975 for_each_subsys(ss, ssid) { 976 list_del(&cset->e_cset_node[ssid]); 977 css_put(cset->subsys[ssid]); 978 } 979 hash_del(&cset->hlist); 980 css_set_count--; 981 982 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) { 983 list_del(&link->cset_link); 984 list_del(&link->cgrp_link); 985 if (cgroup_parent(link->cgrp)) 986 cgroup_put(link->cgrp); 987 kfree(link); 988 } 989 990 if (css_set_threaded(cset)) { 991 list_del(&cset->threaded_csets_node); 992 put_css_set_locked(cset->dom_cset); 993 } 994 995 kfree_rcu(cset, rcu_head); 996 } 997 998 /** 999 * compare_css_sets - helper function for find_existing_css_set(). 1000 * @cset: candidate css_set being tested 1001 * @old_cset: existing css_set for a task 1002 * @new_cgrp: cgroup that's being entered by the task 1003 * @template: desired set of css pointers in css_set (pre-calculated) 1004 * 1005 * Returns true if "cset" matches "old_cset" except for the hierarchy 1006 * which "new_cgrp" belongs to, for which it should match "new_cgrp". 1007 */ 1008 static bool compare_css_sets(struct css_set *cset, 1009 struct css_set *old_cset, 1010 struct cgroup *new_cgrp, 1011 struct cgroup_subsys_state *template[]) 1012 { 1013 struct cgroup *new_dfl_cgrp; 1014 struct list_head *l1, *l2; 1015 1016 /* 1017 * On the default hierarchy, there can be csets which are 1018 * associated with the same set of cgroups but different csses. 1019 * Let's first ensure that csses match. 1020 */ 1021 if (memcmp(template, cset->subsys, sizeof(cset->subsys))) 1022 return false; 1023 1024 1025 /* @cset's domain should match the default cgroup's */ 1026 if (cgroup_on_dfl(new_cgrp)) 1027 new_dfl_cgrp = new_cgrp; 1028 else 1029 new_dfl_cgrp = old_cset->dfl_cgrp; 1030 1031 if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp) 1032 return false; 1033 1034 /* 1035 * Compare cgroup pointers in order to distinguish between 1036 * different cgroups in hierarchies. As different cgroups may 1037 * share the same effective css, this comparison is always 1038 * necessary. 1039 */ 1040 l1 = &cset->cgrp_links; 1041 l2 = &old_cset->cgrp_links; 1042 while (1) { 1043 struct cgrp_cset_link *link1, *link2; 1044 struct cgroup *cgrp1, *cgrp2; 1045 1046 l1 = l1->next; 1047 l2 = l2->next; 1048 /* See if we reached the end - both lists are equal length. */ 1049 if (l1 == &cset->cgrp_links) { 1050 BUG_ON(l2 != &old_cset->cgrp_links); 1051 break; 1052 } else { 1053 BUG_ON(l2 == &old_cset->cgrp_links); 1054 } 1055 /* Locate the cgroups associated with these links. */ 1056 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link); 1057 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link); 1058 cgrp1 = link1->cgrp; 1059 cgrp2 = link2->cgrp; 1060 /* Hierarchies should be linked in the same order. */ 1061 BUG_ON(cgrp1->root != cgrp2->root); 1062 1063 /* 1064 * If this hierarchy is the hierarchy of the cgroup 1065 * that's changing, then we need to check that this 1066 * css_set points to the new cgroup; if it's any other 1067 * hierarchy, then this css_set should point to the 1068 * same cgroup as the old css_set. 1069 */ 1070 if (cgrp1->root == new_cgrp->root) { 1071 if (cgrp1 != new_cgrp) 1072 return false; 1073 } else { 1074 if (cgrp1 != cgrp2) 1075 return false; 1076 } 1077 } 1078 return true; 1079 } 1080 1081 /** 1082 * find_existing_css_set - init css array and find the matching css_set 1083 * @old_cset: the css_set that we're using before the cgroup transition 1084 * @cgrp: the cgroup that we're moving into 1085 * @template: out param for the new set of csses, should be clear on entry 1086 */ 1087 static struct css_set *find_existing_css_set(struct css_set *old_cset, 1088 struct cgroup *cgrp, 1089 struct cgroup_subsys_state *template[]) 1090 { 1091 struct cgroup_root *root = cgrp->root; 1092 struct cgroup_subsys *ss; 1093 struct css_set *cset; 1094 unsigned long key; 1095 int i; 1096 1097 /* 1098 * Build the set of subsystem state objects that we want to see in the 1099 * new css_set. While subsystems can change globally, the entries here 1100 * won't change, so no need for locking. 1101 */ 1102 for_each_subsys(ss, i) { 1103 if (root->subsys_mask & (1UL << i)) { 1104 /* 1105 * @ss is in this hierarchy, so we want the 1106 * effective css from @cgrp. 1107 */ 1108 template[i] = cgroup_e_css_by_mask(cgrp, ss); 1109 } else { 1110 /* 1111 * @ss is not in this hierarchy, so we don't want 1112 * to change the css. 1113 */ 1114 template[i] = old_cset->subsys[i]; 1115 } 1116 } 1117 1118 key = css_set_hash(template); 1119 hash_for_each_possible(css_set_table, cset, hlist, key) { 1120 if (!compare_css_sets(cset, old_cset, cgrp, template)) 1121 continue; 1122 1123 /* This css_set matches what we need */ 1124 return cset; 1125 } 1126 1127 /* No existing cgroup group matched */ 1128 return NULL; 1129 } 1130 1131 static void free_cgrp_cset_links(struct list_head *links_to_free) 1132 { 1133 struct cgrp_cset_link *link, *tmp_link; 1134 1135 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) { 1136 list_del(&link->cset_link); 1137 kfree(link); 1138 } 1139 } 1140 1141 /** 1142 * allocate_cgrp_cset_links - allocate cgrp_cset_links 1143 * @count: the number of links to allocate 1144 * @tmp_links: list_head the allocated links are put on 1145 * 1146 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links 1147 * through ->cset_link. Returns 0 on success or -errno. 1148 */ 1149 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links) 1150 { 1151 struct cgrp_cset_link *link; 1152 int i; 1153 1154 INIT_LIST_HEAD(tmp_links); 1155 1156 for (i = 0; i < count; i++) { 1157 link = kzalloc(sizeof(*link), GFP_KERNEL); 1158 if (!link) { 1159 free_cgrp_cset_links(tmp_links); 1160 return -ENOMEM; 1161 } 1162 list_add(&link->cset_link, tmp_links); 1163 } 1164 return 0; 1165 } 1166 1167 /** 1168 * link_css_set - a helper function to link a css_set to a cgroup 1169 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links() 1170 * @cset: the css_set to be linked 1171 * @cgrp: the destination cgroup 1172 */ 1173 static void link_css_set(struct list_head *tmp_links, struct css_set *cset, 1174 struct cgroup *cgrp) 1175 { 1176 struct cgrp_cset_link *link; 1177 1178 BUG_ON(list_empty(tmp_links)); 1179 1180 if (cgroup_on_dfl(cgrp)) 1181 cset->dfl_cgrp = cgrp; 1182 1183 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link); 1184 link->cset = cset; 1185 link->cgrp = cgrp; 1186 1187 /* 1188 * Always add links to the tail of the lists so that the lists are 1189 * in chronological order. 1190 */ 1191 list_move_tail(&link->cset_link, &cgrp->cset_links); 1192 list_add_tail(&link->cgrp_link, &cset->cgrp_links); 1193 1194 if (cgroup_parent(cgrp)) 1195 cgroup_get_live(cgrp); 1196 } 1197 1198 /** 1199 * find_css_set - return a new css_set with one cgroup updated 1200 * @old_cset: the baseline css_set 1201 * @cgrp: the cgroup to be updated 1202 * 1203 * Return a new css_set that's equivalent to @old_cset, but with @cgrp 1204 * substituted into the appropriate hierarchy. 1205 */ 1206 static struct css_set *find_css_set(struct css_set *old_cset, 1207 struct cgroup *cgrp) 1208 { 1209 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { }; 1210 struct css_set *cset; 1211 struct list_head tmp_links; 1212 struct cgrp_cset_link *link; 1213 struct cgroup_subsys *ss; 1214 unsigned long key; 1215 int ssid; 1216 1217 lockdep_assert_held(&cgroup_mutex); 1218 1219 /* First see if we already have a cgroup group that matches 1220 * the desired set */ 1221 spin_lock_irq(&css_set_lock); 1222 cset = find_existing_css_set(old_cset, cgrp, template); 1223 if (cset) 1224 get_css_set(cset); 1225 spin_unlock_irq(&css_set_lock); 1226 1227 if (cset) 1228 return cset; 1229 1230 cset = kzalloc(sizeof(*cset), GFP_KERNEL); 1231 if (!cset) 1232 return NULL; 1233 1234 /* Allocate all the cgrp_cset_link objects that we'll need */ 1235 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) { 1236 kfree(cset); 1237 return NULL; 1238 } 1239 1240 refcount_set(&cset->refcount, 1); 1241 cset->dom_cset = cset; 1242 INIT_LIST_HEAD(&cset->tasks); 1243 INIT_LIST_HEAD(&cset->mg_tasks); 1244 INIT_LIST_HEAD(&cset->dying_tasks); 1245 INIT_LIST_HEAD(&cset->task_iters); 1246 INIT_LIST_HEAD(&cset->threaded_csets); 1247 INIT_HLIST_NODE(&cset->hlist); 1248 INIT_LIST_HEAD(&cset->cgrp_links); 1249 INIT_LIST_HEAD(&cset->mg_src_preload_node); 1250 INIT_LIST_HEAD(&cset->mg_dst_preload_node); 1251 INIT_LIST_HEAD(&cset->mg_node); 1252 1253 /* Copy the set of subsystem state objects generated in 1254 * find_existing_css_set() */ 1255 memcpy(cset->subsys, template, sizeof(cset->subsys)); 1256 1257 spin_lock_irq(&css_set_lock); 1258 /* Add reference counts and links from the new css_set. */ 1259 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) { 1260 struct cgroup *c = link->cgrp; 1261 1262 if (c->root == cgrp->root) 1263 c = cgrp; 1264 link_css_set(&tmp_links, cset, c); 1265 } 1266 1267 BUG_ON(!list_empty(&tmp_links)); 1268 1269 css_set_count++; 1270 1271 /* Add @cset to the hash table */ 1272 key = css_set_hash(cset->subsys); 1273 hash_add(css_set_table, &cset->hlist, key); 1274 1275 for_each_subsys(ss, ssid) { 1276 struct cgroup_subsys_state *css = cset->subsys[ssid]; 1277 1278 list_add_tail(&cset->e_cset_node[ssid], 1279 &css->cgroup->e_csets[ssid]); 1280 css_get(css); 1281 } 1282 1283 spin_unlock_irq(&css_set_lock); 1284 1285 /* 1286 * If @cset should be threaded, look up the matching dom_cset and 1287 * link them up. We first fully initialize @cset then look for the 1288 * dom_cset. It's simpler this way and safe as @cset is guaranteed 1289 * to stay empty until we return. 1290 */ 1291 if (cgroup_is_threaded(cset->dfl_cgrp)) { 1292 struct css_set *dcset; 1293 1294 dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp); 1295 if (!dcset) { 1296 put_css_set(cset); 1297 return NULL; 1298 } 1299 1300 spin_lock_irq(&css_set_lock); 1301 cset->dom_cset = dcset; 1302 list_add_tail(&cset->threaded_csets_node, 1303 &dcset->threaded_csets); 1304 spin_unlock_irq(&css_set_lock); 1305 } 1306 1307 return cset; 1308 } 1309 1310 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root) 1311 { 1312 struct cgroup *root_cgrp = kernfs_root_to_node(kf_root)->priv; 1313 1314 return root_cgrp->root; 1315 } 1316 1317 void cgroup_favor_dynmods(struct cgroup_root *root, bool favor) 1318 { 1319 bool favoring = root->flags & CGRP_ROOT_FAVOR_DYNMODS; 1320 1321 /* see the comment above CGRP_ROOT_FAVOR_DYNMODS definition */ 1322 if (favor && !favoring) { 1323 rcu_sync_enter(&cgroup_threadgroup_rwsem.rss); 1324 root->flags |= CGRP_ROOT_FAVOR_DYNMODS; 1325 } else if (!favor && favoring) { 1326 rcu_sync_exit(&cgroup_threadgroup_rwsem.rss); 1327 root->flags &= ~CGRP_ROOT_FAVOR_DYNMODS; 1328 } 1329 } 1330 1331 static int cgroup_init_root_id(struct cgroup_root *root) 1332 { 1333 int id; 1334 1335 lockdep_assert_held(&cgroup_mutex); 1336 1337 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL); 1338 if (id < 0) 1339 return id; 1340 1341 root->hierarchy_id = id; 1342 return 0; 1343 } 1344 1345 static void cgroup_exit_root_id(struct cgroup_root *root) 1346 { 1347 lockdep_assert_held(&cgroup_mutex); 1348 1349 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id); 1350 } 1351 1352 void cgroup_free_root(struct cgroup_root *root) 1353 { 1354 kfree(root); 1355 } 1356 1357 static void cgroup_destroy_root(struct cgroup_root *root) 1358 { 1359 struct cgroup *cgrp = &root->cgrp; 1360 struct cgrp_cset_link *link, *tmp_link; 1361 1362 trace_cgroup_destroy_root(root); 1363 1364 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp); 1365 1366 BUG_ON(atomic_read(&root->nr_cgrps)); 1367 BUG_ON(!list_empty(&cgrp->self.children)); 1368 1369 /* Rebind all subsystems back to the default hierarchy */ 1370 WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask)); 1371 1372 /* 1373 * Release all the links from cset_links to this hierarchy's 1374 * root cgroup 1375 */ 1376 spin_lock_irq(&css_set_lock); 1377 1378 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) { 1379 list_del(&link->cset_link); 1380 list_del(&link->cgrp_link); 1381 kfree(link); 1382 } 1383 1384 spin_unlock_irq(&css_set_lock); 1385 1386 if (!list_empty(&root->root_list)) { 1387 list_del(&root->root_list); 1388 cgroup_root_count--; 1389 } 1390 1391 cgroup_favor_dynmods(root, false); 1392 cgroup_exit_root_id(root); 1393 1394 cgroup_unlock(); 1395 1396 cgroup_rstat_exit(cgrp); 1397 kernfs_destroy_root(root->kf_root); 1398 cgroup_free_root(root); 1399 } 1400 1401 /* 1402 * Returned cgroup is without refcount but it's valid as long as cset pins it. 1403 */ 1404 static inline struct cgroup *__cset_cgroup_from_root(struct css_set *cset, 1405 struct cgroup_root *root) 1406 { 1407 struct cgroup *res_cgroup = NULL; 1408 1409 if (cset == &init_css_set) { 1410 res_cgroup = &root->cgrp; 1411 } else if (root == &cgrp_dfl_root) { 1412 res_cgroup = cset->dfl_cgrp; 1413 } else { 1414 struct cgrp_cset_link *link; 1415 lockdep_assert_held(&css_set_lock); 1416 1417 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) { 1418 struct cgroup *c = link->cgrp; 1419 1420 if (c->root == root) { 1421 res_cgroup = c; 1422 break; 1423 } 1424 } 1425 } 1426 1427 BUG_ON(!res_cgroup); 1428 return res_cgroup; 1429 } 1430 1431 /* 1432 * look up cgroup associated with current task's cgroup namespace on the 1433 * specified hierarchy 1434 */ 1435 static struct cgroup * 1436 current_cgns_cgroup_from_root(struct cgroup_root *root) 1437 { 1438 struct cgroup *res = NULL; 1439 struct css_set *cset; 1440 1441 lockdep_assert_held(&css_set_lock); 1442 1443 rcu_read_lock(); 1444 1445 cset = current->nsproxy->cgroup_ns->root_cset; 1446 res = __cset_cgroup_from_root(cset, root); 1447 1448 rcu_read_unlock(); 1449 1450 return res; 1451 } 1452 1453 /* 1454 * Look up cgroup associated with current task's cgroup namespace on the default 1455 * hierarchy. 1456 * 1457 * Unlike current_cgns_cgroup_from_root(), this doesn't need locks: 1458 * - Internal rcu_read_lock is unnecessary because we don't dereference any rcu 1459 * pointers. 1460 * - css_set_lock is not needed because we just read cset->dfl_cgrp. 1461 * - As a bonus returned cgrp is pinned with the current because it cannot 1462 * switch cgroup_ns asynchronously. 1463 */ 1464 static struct cgroup *current_cgns_cgroup_dfl(void) 1465 { 1466 struct css_set *cset; 1467 1468 if (current->nsproxy) { 1469 cset = current->nsproxy->cgroup_ns->root_cset; 1470 return __cset_cgroup_from_root(cset, &cgrp_dfl_root); 1471 } else { 1472 /* 1473 * NOTE: This function may be called from bpf_cgroup_from_id() 1474 * on a task which has already passed exit_task_namespaces() and 1475 * nsproxy == NULL. Fall back to cgrp_dfl_root which will make all 1476 * cgroups visible for lookups. 1477 */ 1478 return &cgrp_dfl_root.cgrp; 1479 } 1480 } 1481 1482 /* look up cgroup associated with given css_set on the specified hierarchy */ 1483 static struct cgroup *cset_cgroup_from_root(struct css_set *cset, 1484 struct cgroup_root *root) 1485 { 1486 lockdep_assert_held(&cgroup_mutex); 1487 lockdep_assert_held(&css_set_lock); 1488 1489 return __cset_cgroup_from_root(cset, root); 1490 } 1491 1492 /* 1493 * Return the cgroup for "task" from the given hierarchy. Must be 1494 * called with cgroup_mutex and css_set_lock held. 1495 */ 1496 struct cgroup *task_cgroup_from_root(struct task_struct *task, 1497 struct cgroup_root *root) 1498 { 1499 /* 1500 * No need to lock the task - since we hold css_set_lock the 1501 * task can't change groups. 1502 */ 1503 return cset_cgroup_from_root(task_css_set(task), root); 1504 } 1505 1506 /* 1507 * A task must hold cgroup_mutex to modify cgroups. 1508 * 1509 * Any task can increment and decrement the count field without lock. 1510 * So in general, code holding cgroup_mutex can't rely on the count 1511 * field not changing. However, if the count goes to zero, then only 1512 * cgroup_attach_task() can increment it again. Because a count of zero 1513 * means that no tasks are currently attached, therefore there is no 1514 * way a task attached to that cgroup can fork (the other way to 1515 * increment the count). So code holding cgroup_mutex can safely 1516 * assume that if the count is zero, it will stay zero. Similarly, if 1517 * a task holds cgroup_mutex on a cgroup with zero count, it 1518 * knows that the cgroup won't be removed, as cgroup_rmdir() 1519 * needs that mutex. 1520 * 1521 * A cgroup can only be deleted if both its 'count' of using tasks 1522 * is zero, and its list of 'children' cgroups is empty. Since all 1523 * tasks in the system use _some_ cgroup, and since there is always at 1524 * least one task in the system (init, pid == 1), therefore, root cgroup 1525 * always has either children cgroups and/or using tasks. So we don't 1526 * need a special hack to ensure that root cgroup cannot be deleted. 1527 * 1528 * P.S. One more locking exception. RCU is used to guard the 1529 * update of a tasks cgroup pointer by cgroup_attach_task() 1530 */ 1531 1532 static struct kernfs_syscall_ops cgroup_kf_syscall_ops; 1533 1534 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft, 1535 char *buf) 1536 { 1537 struct cgroup_subsys *ss = cft->ss; 1538 1539 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) && 1540 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) { 1541 const char *dbg = (cft->flags & CFTYPE_DEBUG) ? ".__DEBUG__." : ""; 1542 1543 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s%s.%s", 1544 dbg, cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name, 1545 cft->name); 1546 } else { 1547 strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX); 1548 } 1549 return buf; 1550 } 1551 1552 /** 1553 * cgroup_file_mode - deduce file mode of a control file 1554 * @cft: the control file in question 1555 * 1556 * S_IRUGO for read, S_IWUSR for write. 1557 */ 1558 static umode_t cgroup_file_mode(const struct cftype *cft) 1559 { 1560 umode_t mode = 0; 1561 1562 if (cft->read_u64 || cft->read_s64 || cft->seq_show) 1563 mode |= S_IRUGO; 1564 1565 if (cft->write_u64 || cft->write_s64 || cft->write) { 1566 if (cft->flags & CFTYPE_WORLD_WRITABLE) 1567 mode |= S_IWUGO; 1568 else 1569 mode |= S_IWUSR; 1570 } 1571 1572 return mode; 1573 } 1574 1575 /** 1576 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask 1577 * @subtree_control: the new subtree_control mask to consider 1578 * @this_ss_mask: available subsystems 1579 * 1580 * On the default hierarchy, a subsystem may request other subsystems to be 1581 * enabled together through its ->depends_on mask. In such cases, more 1582 * subsystems than specified in "cgroup.subtree_control" may be enabled. 1583 * 1584 * This function calculates which subsystems need to be enabled if 1585 * @subtree_control is to be applied while restricted to @this_ss_mask. 1586 */ 1587 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask) 1588 { 1589 u16 cur_ss_mask = subtree_control; 1590 struct cgroup_subsys *ss; 1591 int ssid; 1592 1593 lockdep_assert_held(&cgroup_mutex); 1594 1595 cur_ss_mask |= cgrp_dfl_implicit_ss_mask; 1596 1597 while (true) { 1598 u16 new_ss_mask = cur_ss_mask; 1599 1600 do_each_subsys_mask(ss, ssid, cur_ss_mask) { 1601 new_ss_mask |= ss->depends_on; 1602 } while_each_subsys_mask(); 1603 1604 /* 1605 * Mask out subsystems which aren't available. This can 1606 * happen only if some depended-upon subsystems were bound 1607 * to non-default hierarchies. 1608 */ 1609 new_ss_mask &= this_ss_mask; 1610 1611 if (new_ss_mask == cur_ss_mask) 1612 break; 1613 cur_ss_mask = new_ss_mask; 1614 } 1615 1616 return cur_ss_mask; 1617 } 1618 1619 /** 1620 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods 1621 * @kn: the kernfs_node being serviced 1622 * 1623 * This helper undoes cgroup_kn_lock_live() and should be invoked before 1624 * the method finishes if locking succeeded. Note that once this function 1625 * returns the cgroup returned by cgroup_kn_lock_live() may become 1626 * inaccessible any time. If the caller intends to continue to access the 1627 * cgroup, it should pin it before invoking this function. 1628 */ 1629 void cgroup_kn_unlock(struct kernfs_node *kn) 1630 { 1631 struct cgroup *cgrp; 1632 1633 if (kernfs_type(kn) == KERNFS_DIR) 1634 cgrp = kn->priv; 1635 else 1636 cgrp = kn->parent->priv; 1637 1638 cgroup_unlock(); 1639 1640 kernfs_unbreak_active_protection(kn); 1641 cgroup_put(cgrp); 1642 } 1643 1644 /** 1645 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods 1646 * @kn: the kernfs_node being serviced 1647 * @drain_offline: perform offline draining on the cgroup 1648 * 1649 * This helper is to be used by a cgroup kernfs method currently servicing 1650 * @kn. It breaks the active protection, performs cgroup locking and 1651 * verifies that the associated cgroup is alive. Returns the cgroup if 1652 * alive; otherwise, %NULL. A successful return should be undone by a 1653 * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the 1654 * cgroup is drained of offlining csses before return. 1655 * 1656 * Any cgroup kernfs method implementation which requires locking the 1657 * associated cgroup should use this helper. It avoids nesting cgroup 1658 * locking under kernfs active protection and allows all kernfs operations 1659 * including self-removal. 1660 */ 1661 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline) 1662 { 1663 struct cgroup *cgrp; 1664 1665 if (kernfs_type(kn) == KERNFS_DIR) 1666 cgrp = kn->priv; 1667 else 1668 cgrp = kn->parent->priv; 1669 1670 /* 1671 * We're gonna grab cgroup_mutex which nests outside kernfs 1672 * active_ref. cgroup liveliness check alone provides enough 1673 * protection against removal. Ensure @cgrp stays accessible and 1674 * break the active_ref protection. 1675 */ 1676 if (!cgroup_tryget(cgrp)) 1677 return NULL; 1678 kernfs_break_active_protection(kn); 1679 1680 if (drain_offline) 1681 cgroup_lock_and_drain_offline(cgrp); 1682 else 1683 cgroup_lock(); 1684 1685 if (!cgroup_is_dead(cgrp)) 1686 return cgrp; 1687 1688 cgroup_kn_unlock(kn); 1689 return NULL; 1690 } 1691 1692 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft) 1693 { 1694 char name[CGROUP_FILE_NAME_MAX]; 1695 1696 lockdep_assert_held(&cgroup_mutex); 1697 1698 if (cft->file_offset) { 1699 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss); 1700 struct cgroup_file *cfile = (void *)css + cft->file_offset; 1701 1702 spin_lock_irq(&cgroup_file_kn_lock); 1703 cfile->kn = NULL; 1704 spin_unlock_irq(&cgroup_file_kn_lock); 1705 1706 del_timer_sync(&cfile->notify_timer); 1707 } 1708 1709 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name)); 1710 } 1711 1712 /** 1713 * css_clear_dir - remove subsys files in a cgroup directory 1714 * @css: target css 1715 */ 1716 static void css_clear_dir(struct cgroup_subsys_state *css) 1717 { 1718 struct cgroup *cgrp = css->cgroup; 1719 struct cftype *cfts; 1720 1721 if (!(css->flags & CSS_VISIBLE)) 1722 return; 1723 1724 css->flags &= ~CSS_VISIBLE; 1725 1726 if (!css->ss) { 1727 if (cgroup_on_dfl(cgrp)) { 1728 cgroup_addrm_files(css, cgrp, 1729 cgroup_base_files, false); 1730 if (cgroup_psi_enabled()) 1731 cgroup_addrm_files(css, cgrp, 1732 cgroup_psi_files, false); 1733 } else { 1734 cgroup_addrm_files(css, cgrp, 1735 cgroup1_base_files, false); 1736 } 1737 } else { 1738 list_for_each_entry(cfts, &css->ss->cfts, node) 1739 cgroup_addrm_files(css, cgrp, cfts, false); 1740 } 1741 } 1742 1743 /** 1744 * css_populate_dir - create subsys files in a cgroup directory 1745 * @css: target css 1746 * 1747 * On failure, no file is added. 1748 */ 1749 static int css_populate_dir(struct cgroup_subsys_state *css) 1750 { 1751 struct cgroup *cgrp = css->cgroup; 1752 struct cftype *cfts, *failed_cfts; 1753 int ret; 1754 1755 if ((css->flags & CSS_VISIBLE) || !cgrp->kn) 1756 return 0; 1757 1758 if (!css->ss) { 1759 if (cgroup_on_dfl(cgrp)) { 1760 ret = cgroup_addrm_files(&cgrp->self, cgrp, 1761 cgroup_base_files, true); 1762 if (ret < 0) 1763 return ret; 1764 1765 if (cgroup_psi_enabled()) { 1766 ret = cgroup_addrm_files(&cgrp->self, cgrp, 1767 cgroup_psi_files, true); 1768 if (ret < 0) 1769 return ret; 1770 } 1771 } else { 1772 cgroup_addrm_files(css, cgrp, 1773 cgroup1_base_files, true); 1774 } 1775 } else { 1776 list_for_each_entry(cfts, &css->ss->cfts, node) { 1777 ret = cgroup_addrm_files(css, cgrp, cfts, true); 1778 if (ret < 0) { 1779 failed_cfts = cfts; 1780 goto err; 1781 } 1782 } 1783 } 1784 1785 css->flags |= CSS_VISIBLE; 1786 1787 return 0; 1788 err: 1789 list_for_each_entry(cfts, &css->ss->cfts, node) { 1790 if (cfts == failed_cfts) 1791 break; 1792 cgroup_addrm_files(css, cgrp, cfts, false); 1793 } 1794 return ret; 1795 } 1796 1797 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask) 1798 { 1799 struct cgroup *dcgrp = &dst_root->cgrp; 1800 struct cgroup_subsys *ss; 1801 int ssid, ret; 1802 u16 dfl_disable_ss_mask = 0; 1803 1804 lockdep_assert_held(&cgroup_mutex); 1805 1806 do_each_subsys_mask(ss, ssid, ss_mask) { 1807 /* 1808 * If @ss has non-root csses attached to it, can't move. 1809 * If @ss is an implicit controller, it is exempt from this 1810 * rule and can be stolen. 1811 */ 1812 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) && 1813 !ss->implicit_on_dfl) 1814 return -EBUSY; 1815 1816 /* can't move between two non-dummy roots either */ 1817 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root) 1818 return -EBUSY; 1819 1820 /* 1821 * Collect ssid's that need to be disabled from default 1822 * hierarchy. 1823 */ 1824 if (ss->root == &cgrp_dfl_root) 1825 dfl_disable_ss_mask |= 1 << ssid; 1826 1827 } while_each_subsys_mask(); 1828 1829 if (dfl_disable_ss_mask) { 1830 struct cgroup *scgrp = &cgrp_dfl_root.cgrp; 1831 1832 /* 1833 * Controllers from default hierarchy that need to be rebound 1834 * are all disabled together in one go. 1835 */ 1836 cgrp_dfl_root.subsys_mask &= ~dfl_disable_ss_mask; 1837 WARN_ON(cgroup_apply_control(scgrp)); 1838 cgroup_finalize_control(scgrp, 0); 1839 } 1840 1841 do_each_subsys_mask(ss, ssid, ss_mask) { 1842 struct cgroup_root *src_root = ss->root; 1843 struct cgroup *scgrp = &src_root->cgrp; 1844 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss); 1845 struct css_set *cset, *cset_pos; 1846 struct css_task_iter *it; 1847 1848 WARN_ON(!css || cgroup_css(dcgrp, ss)); 1849 1850 if (src_root != &cgrp_dfl_root) { 1851 /* disable from the source */ 1852 src_root->subsys_mask &= ~(1 << ssid); 1853 WARN_ON(cgroup_apply_control(scgrp)); 1854 cgroup_finalize_control(scgrp, 0); 1855 } 1856 1857 /* rebind */ 1858 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL); 1859 rcu_assign_pointer(dcgrp->subsys[ssid], css); 1860 ss->root = dst_root; 1861 css->cgroup = dcgrp; 1862 1863 spin_lock_irq(&css_set_lock); 1864 WARN_ON(!list_empty(&dcgrp->e_csets[ss->id])); 1865 list_for_each_entry_safe(cset, cset_pos, &scgrp->e_csets[ss->id], 1866 e_cset_node[ss->id]) { 1867 list_move_tail(&cset->e_cset_node[ss->id], 1868 &dcgrp->e_csets[ss->id]); 1869 /* 1870 * all css_sets of scgrp together in same order to dcgrp, 1871 * patch in-flight iterators to preserve correct iteration. 1872 * since the iterator is always advanced right away and 1873 * finished when it->cset_pos meets it->cset_head, so only 1874 * update it->cset_head is enough here. 1875 */ 1876 list_for_each_entry(it, &cset->task_iters, iters_node) 1877 if (it->cset_head == &scgrp->e_csets[ss->id]) 1878 it->cset_head = &dcgrp->e_csets[ss->id]; 1879 } 1880 spin_unlock_irq(&css_set_lock); 1881 1882 if (ss->css_rstat_flush) { 1883 list_del_rcu(&css->rstat_css_node); 1884 synchronize_rcu(); 1885 list_add_rcu(&css->rstat_css_node, 1886 &dcgrp->rstat_css_list); 1887 } 1888 1889 /* default hierarchy doesn't enable controllers by default */ 1890 dst_root->subsys_mask |= 1 << ssid; 1891 if (dst_root == &cgrp_dfl_root) { 1892 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]); 1893 } else { 1894 dcgrp->subtree_control |= 1 << ssid; 1895 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]); 1896 } 1897 1898 ret = cgroup_apply_control(dcgrp); 1899 if (ret) 1900 pr_warn("partial failure to rebind %s controller (err=%d)\n", 1901 ss->name, ret); 1902 1903 if (ss->bind) 1904 ss->bind(css); 1905 } while_each_subsys_mask(); 1906 1907 kernfs_activate(dcgrp->kn); 1908 return 0; 1909 } 1910 1911 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node, 1912 struct kernfs_root *kf_root) 1913 { 1914 int len = 0; 1915 char *buf = NULL; 1916 struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root); 1917 struct cgroup *ns_cgroup; 1918 1919 buf = kmalloc(PATH_MAX, GFP_KERNEL); 1920 if (!buf) 1921 return -ENOMEM; 1922 1923 spin_lock_irq(&css_set_lock); 1924 ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot); 1925 len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX); 1926 spin_unlock_irq(&css_set_lock); 1927 1928 if (len >= PATH_MAX) 1929 len = -ERANGE; 1930 else if (len > 0) { 1931 seq_escape(sf, buf, " \t\n\\"); 1932 len = 0; 1933 } 1934 kfree(buf); 1935 return len; 1936 } 1937 1938 enum cgroup2_param { 1939 Opt_nsdelegate, 1940 Opt_favordynmods, 1941 Opt_memory_localevents, 1942 Opt_memory_recursiveprot, 1943 nr__cgroup2_params 1944 }; 1945 1946 static const struct fs_parameter_spec cgroup2_fs_parameters[] = { 1947 fsparam_flag("nsdelegate", Opt_nsdelegate), 1948 fsparam_flag("favordynmods", Opt_favordynmods), 1949 fsparam_flag("memory_localevents", Opt_memory_localevents), 1950 fsparam_flag("memory_recursiveprot", Opt_memory_recursiveprot), 1951 {} 1952 }; 1953 1954 static int cgroup2_parse_param(struct fs_context *fc, struct fs_parameter *param) 1955 { 1956 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 1957 struct fs_parse_result result; 1958 int opt; 1959 1960 opt = fs_parse(fc, cgroup2_fs_parameters, param, &result); 1961 if (opt < 0) 1962 return opt; 1963 1964 switch (opt) { 1965 case Opt_nsdelegate: 1966 ctx->flags |= CGRP_ROOT_NS_DELEGATE; 1967 return 0; 1968 case Opt_favordynmods: 1969 ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS; 1970 return 0; 1971 case Opt_memory_localevents: 1972 ctx->flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS; 1973 return 0; 1974 case Opt_memory_recursiveprot: 1975 ctx->flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT; 1976 return 0; 1977 } 1978 return -EINVAL; 1979 } 1980 1981 static void apply_cgroup_root_flags(unsigned int root_flags) 1982 { 1983 if (current->nsproxy->cgroup_ns == &init_cgroup_ns) { 1984 if (root_flags & CGRP_ROOT_NS_DELEGATE) 1985 cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE; 1986 else 1987 cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE; 1988 1989 cgroup_favor_dynmods(&cgrp_dfl_root, 1990 root_flags & CGRP_ROOT_FAVOR_DYNMODS); 1991 1992 if (root_flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS) 1993 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS; 1994 else 1995 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_LOCAL_EVENTS; 1996 1997 if (root_flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT) 1998 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT; 1999 else 2000 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_RECURSIVE_PROT; 2001 } 2002 } 2003 2004 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root) 2005 { 2006 if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) 2007 seq_puts(seq, ",nsdelegate"); 2008 if (cgrp_dfl_root.flags & CGRP_ROOT_FAVOR_DYNMODS) 2009 seq_puts(seq, ",favordynmods"); 2010 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS) 2011 seq_puts(seq, ",memory_localevents"); 2012 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT) 2013 seq_puts(seq, ",memory_recursiveprot"); 2014 return 0; 2015 } 2016 2017 static int cgroup_reconfigure(struct fs_context *fc) 2018 { 2019 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2020 2021 apply_cgroup_root_flags(ctx->flags); 2022 return 0; 2023 } 2024 2025 static void init_cgroup_housekeeping(struct cgroup *cgrp) 2026 { 2027 struct cgroup_subsys *ss; 2028 int ssid; 2029 2030 INIT_LIST_HEAD(&cgrp->self.sibling); 2031 INIT_LIST_HEAD(&cgrp->self.children); 2032 INIT_LIST_HEAD(&cgrp->cset_links); 2033 INIT_LIST_HEAD(&cgrp->pidlists); 2034 mutex_init(&cgrp->pidlist_mutex); 2035 cgrp->self.cgroup = cgrp; 2036 cgrp->self.flags |= CSS_ONLINE; 2037 cgrp->dom_cgrp = cgrp; 2038 cgrp->max_descendants = INT_MAX; 2039 cgrp->max_depth = INT_MAX; 2040 INIT_LIST_HEAD(&cgrp->rstat_css_list); 2041 prev_cputime_init(&cgrp->prev_cputime); 2042 2043 for_each_subsys(ss, ssid) 2044 INIT_LIST_HEAD(&cgrp->e_csets[ssid]); 2045 2046 init_waitqueue_head(&cgrp->offline_waitq); 2047 INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent); 2048 } 2049 2050 void init_cgroup_root(struct cgroup_fs_context *ctx) 2051 { 2052 struct cgroup_root *root = ctx->root; 2053 struct cgroup *cgrp = &root->cgrp; 2054 2055 INIT_LIST_HEAD(&root->root_list); 2056 atomic_set(&root->nr_cgrps, 1); 2057 cgrp->root = root; 2058 init_cgroup_housekeeping(cgrp); 2059 2060 /* DYNMODS must be modified through cgroup_favor_dynmods() */ 2061 root->flags = ctx->flags & ~CGRP_ROOT_FAVOR_DYNMODS; 2062 if (ctx->release_agent) 2063 strscpy(root->release_agent_path, ctx->release_agent, PATH_MAX); 2064 if (ctx->name) 2065 strscpy(root->name, ctx->name, MAX_CGROUP_ROOT_NAMELEN); 2066 if (ctx->cpuset_clone_children) 2067 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags); 2068 } 2069 2070 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask) 2071 { 2072 LIST_HEAD(tmp_links); 2073 struct cgroup *root_cgrp = &root->cgrp; 2074 struct kernfs_syscall_ops *kf_sops; 2075 struct css_set *cset; 2076 int i, ret; 2077 2078 lockdep_assert_held(&cgroup_mutex); 2079 2080 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 2081 0, GFP_KERNEL); 2082 if (ret) 2083 goto out; 2084 2085 /* 2086 * We're accessing css_set_count without locking css_set_lock here, 2087 * but that's OK - it can only be increased by someone holding 2088 * cgroup_lock, and that's us. Later rebinding may disable 2089 * controllers on the default hierarchy and thus create new csets, 2090 * which can't be more than the existing ones. Allocate 2x. 2091 */ 2092 ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links); 2093 if (ret) 2094 goto cancel_ref; 2095 2096 ret = cgroup_init_root_id(root); 2097 if (ret) 2098 goto cancel_ref; 2099 2100 kf_sops = root == &cgrp_dfl_root ? 2101 &cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops; 2102 2103 root->kf_root = kernfs_create_root(kf_sops, 2104 KERNFS_ROOT_CREATE_DEACTIVATED | 2105 KERNFS_ROOT_SUPPORT_EXPORTOP | 2106 KERNFS_ROOT_SUPPORT_USER_XATTR, 2107 root_cgrp); 2108 if (IS_ERR(root->kf_root)) { 2109 ret = PTR_ERR(root->kf_root); 2110 goto exit_root_id; 2111 } 2112 root_cgrp->kn = kernfs_root_to_node(root->kf_root); 2113 WARN_ON_ONCE(cgroup_ino(root_cgrp) != 1); 2114 root_cgrp->ancestors[0] = root_cgrp; 2115 2116 ret = css_populate_dir(&root_cgrp->self); 2117 if (ret) 2118 goto destroy_root; 2119 2120 ret = cgroup_rstat_init(root_cgrp); 2121 if (ret) 2122 goto destroy_root; 2123 2124 ret = rebind_subsystems(root, ss_mask); 2125 if (ret) 2126 goto exit_stats; 2127 2128 ret = cgroup_bpf_inherit(root_cgrp); 2129 WARN_ON_ONCE(ret); 2130 2131 trace_cgroup_setup_root(root); 2132 2133 /* 2134 * There must be no failure case after here, since rebinding takes 2135 * care of subsystems' refcounts, which are explicitly dropped in 2136 * the failure exit path. 2137 */ 2138 list_add(&root->root_list, &cgroup_roots); 2139 cgroup_root_count++; 2140 2141 /* 2142 * Link the root cgroup in this hierarchy into all the css_set 2143 * objects. 2144 */ 2145 spin_lock_irq(&css_set_lock); 2146 hash_for_each(css_set_table, i, cset, hlist) { 2147 link_css_set(&tmp_links, cset, root_cgrp); 2148 if (css_set_populated(cset)) 2149 cgroup_update_populated(root_cgrp, true); 2150 } 2151 spin_unlock_irq(&css_set_lock); 2152 2153 BUG_ON(!list_empty(&root_cgrp->self.children)); 2154 BUG_ON(atomic_read(&root->nr_cgrps) != 1); 2155 2156 ret = 0; 2157 goto out; 2158 2159 exit_stats: 2160 cgroup_rstat_exit(root_cgrp); 2161 destroy_root: 2162 kernfs_destroy_root(root->kf_root); 2163 root->kf_root = NULL; 2164 exit_root_id: 2165 cgroup_exit_root_id(root); 2166 cancel_ref: 2167 percpu_ref_exit(&root_cgrp->self.refcnt); 2168 out: 2169 free_cgrp_cset_links(&tmp_links); 2170 return ret; 2171 } 2172 2173 int cgroup_do_get_tree(struct fs_context *fc) 2174 { 2175 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2176 int ret; 2177 2178 ctx->kfc.root = ctx->root->kf_root; 2179 if (fc->fs_type == &cgroup2_fs_type) 2180 ctx->kfc.magic = CGROUP2_SUPER_MAGIC; 2181 else 2182 ctx->kfc.magic = CGROUP_SUPER_MAGIC; 2183 ret = kernfs_get_tree(fc); 2184 2185 /* 2186 * In non-init cgroup namespace, instead of root cgroup's dentry, 2187 * we return the dentry corresponding to the cgroupns->root_cgrp. 2188 */ 2189 if (!ret && ctx->ns != &init_cgroup_ns) { 2190 struct dentry *nsdentry; 2191 struct super_block *sb = fc->root->d_sb; 2192 struct cgroup *cgrp; 2193 2194 cgroup_lock(); 2195 spin_lock_irq(&css_set_lock); 2196 2197 cgrp = cset_cgroup_from_root(ctx->ns->root_cset, ctx->root); 2198 2199 spin_unlock_irq(&css_set_lock); 2200 cgroup_unlock(); 2201 2202 nsdentry = kernfs_node_dentry(cgrp->kn, sb); 2203 dput(fc->root); 2204 if (IS_ERR(nsdentry)) { 2205 deactivate_locked_super(sb); 2206 ret = PTR_ERR(nsdentry); 2207 nsdentry = NULL; 2208 } 2209 fc->root = nsdentry; 2210 } 2211 2212 if (!ctx->kfc.new_sb_created) 2213 cgroup_put(&ctx->root->cgrp); 2214 2215 return ret; 2216 } 2217 2218 /* 2219 * Destroy a cgroup filesystem context. 2220 */ 2221 static void cgroup_fs_context_free(struct fs_context *fc) 2222 { 2223 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2224 2225 kfree(ctx->name); 2226 kfree(ctx->release_agent); 2227 put_cgroup_ns(ctx->ns); 2228 kernfs_free_fs_context(fc); 2229 kfree(ctx); 2230 } 2231 2232 static int cgroup_get_tree(struct fs_context *fc) 2233 { 2234 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2235 int ret; 2236 2237 WRITE_ONCE(cgrp_dfl_visible, true); 2238 cgroup_get_live(&cgrp_dfl_root.cgrp); 2239 ctx->root = &cgrp_dfl_root; 2240 2241 ret = cgroup_do_get_tree(fc); 2242 if (!ret) 2243 apply_cgroup_root_flags(ctx->flags); 2244 return ret; 2245 } 2246 2247 static const struct fs_context_operations cgroup_fs_context_ops = { 2248 .free = cgroup_fs_context_free, 2249 .parse_param = cgroup2_parse_param, 2250 .get_tree = cgroup_get_tree, 2251 .reconfigure = cgroup_reconfigure, 2252 }; 2253 2254 static const struct fs_context_operations cgroup1_fs_context_ops = { 2255 .free = cgroup_fs_context_free, 2256 .parse_param = cgroup1_parse_param, 2257 .get_tree = cgroup1_get_tree, 2258 .reconfigure = cgroup1_reconfigure, 2259 }; 2260 2261 /* 2262 * Initialise the cgroup filesystem creation/reconfiguration context. Notably, 2263 * we select the namespace we're going to use. 2264 */ 2265 static int cgroup_init_fs_context(struct fs_context *fc) 2266 { 2267 struct cgroup_fs_context *ctx; 2268 2269 ctx = kzalloc(sizeof(struct cgroup_fs_context), GFP_KERNEL); 2270 if (!ctx) 2271 return -ENOMEM; 2272 2273 ctx->ns = current->nsproxy->cgroup_ns; 2274 get_cgroup_ns(ctx->ns); 2275 fc->fs_private = &ctx->kfc; 2276 if (fc->fs_type == &cgroup2_fs_type) 2277 fc->ops = &cgroup_fs_context_ops; 2278 else 2279 fc->ops = &cgroup1_fs_context_ops; 2280 put_user_ns(fc->user_ns); 2281 fc->user_ns = get_user_ns(ctx->ns->user_ns); 2282 fc->global = true; 2283 2284 #ifdef CONFIG_CGROUP_FAVOR_DYNMODS 2285 ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS; 2286 #endif 2287 return 0; 2288 } 2289 2290 static void cgroup_kill_sb(struct super_block *sb) 2291 { 2292 struct kernfs_root *kf_root = kernfs_root_from_sb(sb); 2293 struct cgroup_root *root = cgroup_root_from_kf(kf_root); 2294 2295 /* 2296 * If @root doesn't have any children, start killing it. 2297 * This prevents new mounts by disabling percpu_ref_tryget_live(). 2298 * 2299 * And don't kill the default root. 2300 */ 2301 if (list_empty(&root->cgrp.self.children) && root != &cgrp_dfl_root && 2302 !percpu_ref_is_dying(&root->cgrp.self.refcnt)) { 2303 cgroup_bpf_offline(&root->cgrp); 2304 percpu_ref_kill(&root->cgrp.self.refcnt); 2305 } 2306 cgroup_put(&root->cgrp); 2307 kernfs_kill_sb(sb); 2308 } 2309 2310 struct file_system_type cgroup_fs_type = { 2311 .name = "cgroup", 2312 .init_fs_context = cgroup_init_fs_context, 2313 .parameters = cgroup1_fs_parameters, 2314 .kill_sb = cgroup_kill_sb, 2315 .fs_flags = FS_USERNS_MOUNT, 2316 }; 2317 2318 static struct file_system_type cgroup2_fs_type = { 2319 .name = "cgroup2", 2320 .init_fs_context = cgroup_init_fs_context, 2321 .parameters = cgroup2_fs_parameters, 2322 .kill_sb = cgroup_kill_sb, 2323 .fs_flags = FS_USERNS_MOUNT, 2324 }; 2325 2326 #ifdef CONFIG_CPUSETS 2327 static const struct fs_context_operations cpuset_fs_context_ops = { 2328 .get_tree = cgroup1_get_tree, 2329 .free = cgroup_fs_context_free, 2330 }; 2331 2332 /* 2333 * This is ugly, but preserves the userspace API for existing cpuset 2334 * users. If someone tries to mount the "cpuset" filesystem, we 2335 * silently switch it to mount "cgroup" instead 2336 */ 2337 static int cpuset_init_fs_context(struct fs_context *fc) 2338 { 2339 char *agent = kstrdup("/sbin/cpuset_release_agent", GFP_USER); 2340 struct cgroup_fs_context *ctx; 2341 int err; 2342 2343 err = cgroup_init_fs_context(fc); 2344 if (err) { 2345 kfree(agent); 2346 return err; 2347 } 2348 2349 fc->ops = &cpuset_fs_context_ops; 2350 2351 ctx = cgroup_fc2context(fc); 2352 ctx->subsys_mask = 1 << cpuset_cgrp_id; 2353 ctx->flags |= CGRP_ROOT_NOPREFIX; 2354 ctx->release_agent = agent; 2355 2356 get_filesystem(&cgroup_fs_type); 2357 put_filesystem(fc->fs_type); 2358 fc->fs_type = &cgroup_fs_type; 2359 2360 return 0; 2361 } 2362 2363 static struct file_system_type cpuset_fs_type = { 2364 .name = "cpuset", 2365 .init_fs_context = cpuset_init_fs_context, 2366 .fs_flags = FS_USERNS_MOUNT, 2367 }; 2368 #endif 2369 2370 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen, 2371 struct cgroup_namespace *ns) 2372 { 2373 struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root); 2374 2375 return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen); 2376 } 2377 2378 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen, 2379 struct cgroup_namespace *ns) 2380 { 2381 int ret; 2382 2383 cgroup_lock(); 2384 spin_lock_irq(&css_set_lock); 2385 2386 ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns); 2387 2388 spin_unlock_irq(&css_set_lock); 2389 cgroup_unlock(); 2390 2391 return ret; 2392 } 2393 EXPORT_SYMBOL_GPL(cgroup_path_ns); 2394 2395 /** 2396 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy 2397 * @task: target task 2398 * @buf: the buffer to write the path into 2399 * @buflen: the length of the buffer 2400 * 2401 * Determine @task's cgroup on the first (the one with the lowest non-zero 2402 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This 2403 * function grabs cgroup_mutex and shouldn't be used inside locks used by 2404 * cgroup controller callbacks. 2405 * 2406 * Return value is the same as kernfs_path(). 2407 */ 2408 int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen) 2409 { 2410 struct cgroup_root *root; 2411 struct cgroup *cgrp; 2412 int hierarchy_id = 1; 2413 int ret; 2414 2415 cgroup_lock(); 2416 spin_lock_irq(&css_set_lock); 2417 2418 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id); 2419 2420 if (root) { 2421 cgrp = task_cgroup_from_root(task, root); 2422 ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns); 2423 } else { 2424 /* if no hierarchy exists, everyone is in "/" */ 2425 ret = strscpy(buf, "/", buflen); 2426 } 2427 2428 spin_unlock_irq(&css_set_lock); 2429 cgroup_unlock(); 2430 return ret; 2431 } 2432 EXPORT_SYMBOL_GPL(task_cgroup_path); 2433 2434 /** 2435 * cgroup_attach_lock - Lock for ->attach() 2436 * @lock_threadgroup: whether to down_write cgroup_threadgroup_rwsem 2437 * 2438 * cgroup migration sometimes needs to stabilize threadgroups against forks and 2439 * exits by write-locking cgroup_threadgroup_rwsem. However, some ->attach() 2440 * implementations (e.g. cpuset), also need to disable CPU hotplug. 2441 * Unfortunately, letting ->attach() operations acquire cpus_read_lock() can 2442 * lead to deadlocks. 2443 * 2444 * Bringing up a CPU may involve creating and destroying tasks which requires 2445 * read-locking threadgroup_rwsem, so threadgroup_rwsem nests inside 2446 * cpus_read_lock(). If we call an ->attach() which acquires the cpus lock while 2447 * write-locking threadgroup_rwsem, the locking order is reversed and we end up 2448 * waiting for an on-going CPU hotplug operation which in turn is waiting for 2449 * the threadgroup_rwsem to be released to create new tasks. For more details: 2450 * 2451 * http://lkml.kernel.org/r/20220711174629.uehfmqegcwn2lqzu@wubuntu 2452 * 2453 * Resolve the situation by always acquiring cpus_read_lock() before optionally 2454 * write-locking cgroup_threadgroup_rwsem. This allows ->attach() to assume that 2455 * CPU hotplug is disabled on entry. 2456 */ 2457 void cgroup_attach_lock(bool lock_threadgroup) 2458 { 2459 cpus_read_lock(); 2460 if (lock_threadgroup) 2461 percpu_down_write(&cgroup_threadgroup_rwsem); 2462 } 2463 2464 /** 2465 * cgroup_attach_unlock - Undo cgroup_attach_lock() 2466 * @lock_threadgroup: whether to up_write cgroup_threadgroup_rwsem 2467 */ 2468 void cgroup_attach_unlock(bool lock_threadgroup) 2469 { 2470 if (lock_threadgroup) 2471 percpu_up_write(&cgroup_threadgroup_rwsem); 2472 cpus_read_unlock(); 2473 } 2474 2475 /** 2476 * cgroup_migrate_add_task - add a migration target task to a migration context 2477 * @task: target task 2478 * @mgctx: target migration context 2479 * 2480 * Add @task, which is a migration target, to @mgctx->tset. This function 2481 * becomes noop if @task doesn't need to be migrated. @task's css_set 2482 * should have been added as a migration source and @task->cg_list will be 2483 * moved from the css_set's tasks list to mg_tasks one. 2484 */ 2485 static void cgroup_migrate_add_task(struct task_struct *task, 2486 struct cgroup_mgctx *mgctx) 2487 { 2488 struct css_set *cset; 2489 2490 lockdep_assert_held(&css_set_lock); 2491 2492 /* @task either already exited or can't exit until the end */ 2493 if (task->flags & PF_EXITING) 2494 return; 2495 2496 /* cgroup_threadgroup_rwsem protects racing against forks */ 2497 WARN_ON_ONCE(list_empty(&task->cg_list)); 2498 2499 cset = task_css_set(task); 2500 if (!cset->mg_src_cgrp) 2501 return; 2502 2503 mgctx->tset.nr_tasks++; 2504 2505 list_move_tail(&task->cg_list, &cset->mg_tasks); 2506 if (list_empty(&cset->mg_node)) 2507 list_add_tail(&cset->mg_node, 2508 &mgctx->tset.src_csets); 2509 if (list_empty(&cset->mg_dst_cset->mg_node)) 2510 list_add_tail(&cset->mg_dst_cset->mg_node, 2511 &mgctx->tset.dst_csets); 2512 } 2513 2514 /** 2515 * cgroup_taskset_first - reset taskset and return the first task 2516 * @tset: taskset of interest 2517 * @dst_cssp: output variable for the destination css 2518 * 2519 * @tset iteration is initialized and the first task is returned. 2520 */ 2521 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset, 2522 struct cgroup_subsys_state **dst_cssp) 2523 { 2524 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node); 2525 tset->cur_task = NULL; 2526 2527 return cgroup_taskset_next(tset, dst_cssp); 2528 } 2529 2530 /** 2531 * cgroup_taskset_next - iterate to the next task in taskset 2532 * @tset: taskset of interest 2533 * @dst_cssp: output variable for the destination css 2534 * 2535 * Return the next task in @tset. Iteration must have been initialized 2536 * with cgroup_taskset_first(). 2537 */ 2538 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset, 2539 struct cgroup_subsys_state **dst_cssp) 2540 { 2541 struct css_set *cset = tset->cur_cset; 2542 struct task_struct *task = tset->cur_task; 2543 2544 while (CGROUP_HAS_SUBSYS_CONFIG && &cset->mg_node != tset->csets) { 2545 if (!task) 2546 task = list_first_entry(&cset->mg_tasks, 2547 struct task_struct, cg_list); 2548 else 2549 task = list_next_entry(task, cg_list); 2550 2551 if (&task->cg_list != &cset->mg_tasks) { 2552 tset->cur_cset = cset; 2553 tset->cur_task = task; 2554 2555 /* 2556 * This function may be called both before and 2557 * after cgroup_taskset_migrate(). The two cases 2558 * can be distinguished by looking at whether @cset 2559 * has its ->mg_dst_cset set. 2560 */ 2561 if (cset->mg_dst_cset) 2562 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid]; 2563 else 2564 *dst_cssp = cset->subsys[tset->ssid]; 2565 2566 return task; 2567 } 2568 2569 cset = list_next_entry(cset, mg_node); 2570 task = NULL; 2571 } 2572 2573 return NULL; 2574 } 2575 2576 /** 2577 * cgroup_migrate_execute - migrate a taskset 2578 * @mgctx: migration context 2579 * 2580 * Migrate tasks in @mgctx as setup by migration preparation functions. 2581 * This function fails iff one of the ->can_attach callbacks fails and 2582 * guarantees that either all or none of the tasks in @mgctx are migrated. 2583 * @mgctx is consumed regardless of success. 2584 */ 2585 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx) 2586 { 2587 struct cgroup_taskset *tset = &mgctx->tset; 2588 struct cgroup_subsys *ss; 2589 struct task_struct *task, *tmp_task; 2590 struct css_set *cset, *tmp_cset; 2591 int ssid, failed_ssid, ret; 2592 2593 /* check that we can legitimately attach to the cgroup */ 2594 if (tset->nr_tasks) { 2595 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2596 if (ss->can_attach) { 2597 tset->ssid = ssid; 2598 ret = ss->can_attach(tset); 2599 if (ret) { 2600 failed_ssid = ssid; 2601 goto out_cancel_attach; 2602 } 2603 } 2604 } while_each_subsys_mask(); 2605 } 2606 2607 /* 2608 * Now that we're guaranteed success, proceed to move all tasks to 2609 * the new cgroup. There are no failure cases after here, so this 2610 * is the commit point. 2611 */ 2612 spin_lock_irq(&css_set_lock); 2613 list_for_each_entry(cset, &tset->src_csets, mg_node) { 2614 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) { 2615 struct css_set *from_cset = task_css_set(task); 2616 struct css_set *to_cset = cset->mg_dst_cset; 2617 2618 get_css_set(to_cset); 2619 to_cset->nr_tasks++; 2620 css_set_move_task(task, from_cset, to_cset, true); 2621 from_cset->nr_tasks--; 2622 /* 2623 * If the source or destination cgroup is frozen, 2624 * the task might require to change its state. 2625 */ 2626 cgroup_freezer_migrate_task(task, from_cset->dfl_cgrp, 2627 to_cset->dfl_cgrp); 2628 put_css_set_locked(from_cset); 2629 2630 } 2631 } 2632 spin_unlock_irq(&css_set_lock); 2633 2634 /* 2635 * Migration is committed, all target tasks are now on dst_csets. 2636 * Nothing is sensitive to fork() after this point. Notify 2637 * controllers that migration is complete. 2638 */ 2639 tset->csets = &tset->dst_csets; 2640 2641 if (tset->nr_tasks) { 2642 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2643 if (ss->attach) { 2644 tset->ssid = ssid; 2645 ss->attach(tset); 2646 } 2647 } while_each_subsys_mask(); 2648 } 2649 2650 ret = 0; 2651 goto out_release_tset; 2652 2653 out_cancel_attach: 2654 if (tset->nr_tasks) { 2655 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2656 if (ssid == failed_ssid) 2657 break; 2658 if (ss->cancel_attach) { 2659 tset->ssid = ssid; 2660 ss->cancel_attach(tset); 2661 } 2662 } while_each_subsys_mask(); 2663 } 2664 out_release_tset: 2665 spin_lock_irq(&css_set_lock); 2666 list_splice_init(&tset->dst_csets, &tset->src_csets); 2667 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) { 2668 list_splice_tail_init(&cset->mg_tasks, &cset->tasks); 2669 list_del_init(&cset->mg_node); 2670 } 2671 spin_unlock_irq(&css_set_lock); 2672 2673 /* 2674 * Re-initialize the cgroup_taskset structure in case it is reused 2675 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute() 2676 * iteration. 2677 */ 2678 tset->nr_tasks = 0; 2679 tset->csets = &tset->src_csets; 2680 return ret; 2681 } 2682 2683 /** 2684 * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination 2685 * @dst_cgrp: destination cgroup to test 2686 * 2687 * On the default hierarchy, except for the mixable, (possible) thread root 2688 * and threaded cgroups, subtree_control must be zero for migration 2689 * destination cgroups with tasks so that child cgroups don't compete 2690 * against tasks. 2691 */ 2692 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp) 2693 { 2694 /* v1 doesn't have any restriction */ 2695 if (!cgroup_on_dfl(dst_cgrp)) 2696 return 0; 2697 2698 /* verify @dst_cgrp can host resources */ 2699 if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp)) 2700 return -EOPNOTSUPP; 2701 2702 /* 2703 * If @dst_cgrp is already or can become a thread root or is 2704 * threaded, it doesn't matter. 2705 */ 2706 if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp)) 2707 return 0; 2708 2709 /* apply no-internal-process constraint */ 2710 if (dst_cgrp->subtree_control) 2711 return -EBUSY; 2712 2713 return 0; 2714 } 2715 2716 /** 2717 * cgroup_migrate_finish - cleanup after attach 2718 * @mgctx: migration context 2719 * 2720 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See 2721 * those functions for details. 2722 */ 2723 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx) 2724 { 2725 struct css_set *cset, *tmp_cset; 2726 2727 lockdep_assert_held(&cgroup_mutex); 2728 2729 spin_lock_irq(&css_set_lock); 2730 2731 list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_src_csets, 2732 mg_src_preload_node) { 2733 cset->mg_src_cgrp = NULL; 2734 cset->mg_dst_cgrp = NULL; 2735 cset->mg_dst_cset = NULL; 2736 list_del_init(&cset->mg_src_preload_node); 2737 put_css_set_locked(cset); 2738 } 2739 2740 list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_dst_csets, 2741 mg_dst_preload_node) { 2742 cset->mg_src_cgrp = NULL; 2743 cset->mg_dst_cgrp = NULL; 2744 cset->mg_dst_cset = NULL; 2745 list_del_init(&cset->mg_dst_preload_node); 2746 put_css_set_locked(cset); 2747 } 2748 2749 spin_unlock_irq(&css_set_lock); 2750 } 2751 2752 /** 2753 * cgroup_migrate_add_src - add a migration source css_set 2754 * @src_cset: the source css_set to add 2755 * @dst_cgrp: the destination cgroup 2756 * @mgctx: migration context 2757 * 2758 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin 2759 * @src_cset and add it to @mgctx->src_csets, which should later be cleaned 2760 * up by cgroup_migrate_finish(). 2761 * 2762 * This function may be called without holding cgroup_threadgroup_rwsem 2763 * even if the target is a process. Threads may be created and destroyed 2764 * but as long as cgroup_mutex is not dropped, no new css_set can be put 2765 * into play and the preloaded css_sets are guaranteed to cover all 2766 * migrations. 2767 */ 2768 void cgroup_migrate_add_src(struct css_set *src_cset, 2769 struct cgroup *dst_cgrp, 2770 struct cgroup_mgctx *mgctx) 2771 { 2772 struct cgroup *src_cgrp; 2773 2774 lockdep_assert_held(&cgroup_mutex); 2775 lockdep_assert_held(&css_set_lock); 2776 2777 /* 2778 * If ->dead, @src_set is associated with one or more dead cgroups 2779 * and doesn't contain any migratable tasks. Ignore it early so 2780 * that the rest of migration path doesn't get confused by it. 2781 */ 2782 if (src_cset->dead) 2783 return; 2784 2785 if (!list_empty(&src_cset->mg_src_preload_node)) 2786 return; 2787 2788 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root); 2789 2790 WARN_ON(src_cset->mg_src_cgrp); 2791 WARN_ON(src_cset->mg_dst_cgrp); 2792 WARN_ON(!list_empty(&src_cset->mg_tasks)); 2793 WARN_ON(!list_empty(&src_cset->mg_node)); 2794 2795 src_cset->mg_src_cgrp = src_cgrp; 2796 src_cset->mg_dst_cgrp = dst_cgrp; 2797 get_css_set(src_cset); 2798 list_add_tail(&src_cset->mg_src_preload_node, &mgctx->preloaded_src_csets); 2799 } 2800 2801 /** 2802 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration 2803 * @mgctx: migration context 2804 * 2805 * Tasks are about to be moved and all the source css_sets have been 2806 * preloaded to @mgctx->preloaded_src_csets. This function looks up and 2807 * pins all destination css_sets, links each to its source, and append them 2808 * to @mgctx->preloaded_dst_csets. 2809 * 2810 * This function must be called after cgroup_migrate_add_src() has been 2811 * called on each migration source css_set. After migration is performed 2812 * using cgroup_migrate(), cgroup_migrate_finish() must be called on 2813 * @mgctx. 2814 */ 2815 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx) 2816 { 2817 struct css_set *src_cset, *tmp_cset; 2818 2819 lockdep_assert_held(&cgroup_mutex); 2820 2821 /* look up the dst cset for each src cset and link it to src */ 2822 list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets, 2823 mg_src_preload_node) { 2824 struct css_set *dst_cset; 2825 struct cgroup_subsys *ss; 2826 int ssid; 2827 2828 dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp); 2829 if (!dst_cset) 2830 return -ENOMEM; 2831 2832 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset); 2833 2834 /* 2835 * If src cset equals dst, it's noop. Drop the src. 2836 * cgroup_migrate() will skip the cset too. Note that we 2837 * can't handle src == dst as some nodes are used by both. 2838 */ 2839 if (src_cset == dst_cset) { 2840 src_cset->mg_src_cgrp = NULL; 2841 src_cset->mg_dst_cgrp = NULL; 2842 list_del_init(&src_cset->mg_src_preload_node); 2843 put_css_set(src_cset); 2844 put_css_set(dst_cset); 2845 continue; 2846 } 2847 2848 src_cset->mg_dst_cset = dst_cset; 2849 2850 if (list_empty(&dst_cset->mg_dst_preload_node)) 2851 list_add_tail(&dst_cset->mg_dst_preload_node, 2852 &mgctx->preloaded_dst_csets); 2853 else 2854 put_css_set(dst_cset); 2855 2856 for_each_subsys(ss, ssid) 2857 if (src_cset->subsys[ssid] != dst_cset->subsys[ssid]) 2858 mgctx->ss_mask |= 1 << ssid; 2859 } 2860 2861 return 0; 2862 } 2863 2864 /** 2865 * cgroup_migrate - migrate a process or task to a cgroup 2866 * @leader: the leader of the process or the task to migrate 2867 * @threadgroup: whether @leader points to the whole process or a single task 2868 * @mgctx: migration context 2869 * 2870 * Migrate a process or task denoted by @leader. If migrating a process, 2871 * the caller must be holding cgroup_threadgroup_rwsem. The caller is also 2872 * responsible for invoking cgroup_migrate_add_src() and 2873 * cgroup_migrate_prepare_dst() on the targets before invoking this 2874 * function and following up with cgroup_migrate_finish(). 2875 * 2876 * As long as a controller's ->can_attach() doesn't fail, this function is 2877 * guaranteed to succeed. This means that, excluding ->can_attach() 2878 * failure, when migrating multiple targets, the success or failure can be 2879 * decided for all targets by invoking group_migrate_prepare_dst() before 2880 * actually starting migrating. 2881 */ 2882 int cgroup_migrate(struct task_struct *leader, bool threadgroup, 2883 struct cgroup_mgctx *mgctx) 2884 { 2885 struct task_struct *task; 2886 2887 /* 2888 * Prevent freeing of tasks while we take a snapshot. Tasks that are 2889 * already PF_EXITING could be freed from underneath us unless we 2890 * take an rcu_read_lock. 2891 */ 2892 spin_lock_irq(&css_set_lock); 2893 task = leader; 2894 do { 2895 cgroup_migrate_add_task(task, mgctx); 2896 if (!threadgroup) 2897 break; 2898 } while_each_thread(leader, task); 2899 spin_unlock_irq(&css_set_lock); 2900 2901 return cgroup_migrate_execute(mgctx); 2902 } 2903 2904 /** 2905 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup 2906 * @dst_cgrp: the cgroup to attach to 2907 * @leader: the task or the leader of the threadgroup to be attached 2908 * @threadgroup: attach the whole threadgroup? 2909 * 2910 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem. 2911 */ 2912 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader, 2913 bool threadgroup) 2914 { 2915 DEFINE_CGROUP_MGCTX(mgctx); 2916 struct task_struct *task; 2917 int ret = 0; 2918 2919 /* look up all src csets */ 2920 spin_lock_irq(&css_set_lock); 2921 rcu_read_lock(); 2922 task = leader; 2923 do { 2924 cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx); 2925 if (!threadgroup) 2926 break; 2927 } while_each_thread(leader, task); 2928 rcu_read_unlock(); 2929 spin_unlock_irq(&css_set_lock); 2930 2931 /* prepare dst csets and commit */ 2932 ret = cgroup_migrate_prepare_dst(&mgctx); 2933 if (!ret) 2934 ret = cgroup_migrate(leader, threadgroup, &mgctx); 2935 2936 cgroup_migrate_finish(&mgctx); 2937 2938 if (!ret) 2939 TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup); 2940 2941 return ret; 2942 } 2943 2944 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup, 2945 bool *threadgroup_locked) 2946 { 2947 struct task_struct *tsk; 2948 pid_t pid; 2949 2950 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0) 2951 return ERR_PTR(-EINVAL); 2952 2953 /* 2954 * If we migrate a single thread, we don't care about threadgroup 2955 * stability. If the thread is `current`, it won't exit(2) under our 2956 * hands or change PID through exec(2). We exclude 2957 * cgroup_update_dfl_csses and other cgroup_{proc,thread}s_write 2958 * callers by cgroup_mutex. 2959 * Therefore, we can skip the global lock. 2960 */ 2961 lockdep_assert_held(&cgroup_mutex); 2962 *threadgroup_locked = pid || threadgroup; 2963 cgroup_attach_lock(*threadgroup_locked); 2964 2965 rcu_read_lock(); 2966 if (pid) { 2967 tsk = find_task_by_vpid(pid); 2968 if (!tsk) { 2969 tsk = ERR_PTR(-ESRCH); 2970 goto out_unlock_threadgroup; 2971 } 2972 } else { 2973 tsk = current; 2974 } 2975 2976 if (threadgroup) 2977 tsk = tsk->group_leader; 2978 2979 /* 2980 * kthreads may acquire PF_NO_SETAFFINITY during initialization. 2981 * If userland migrates such a kthread to a non-root cgroup, it can 2982 * become trapped in a cpuset, or RT kthread may be born in a 2983 * cgroup with no rt_runtime allocated. Just say no. 2984 */ 2985 if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) { 2986 tsk = ERR_PTR(-EINVAL); 2987 goto out_unlock_threadgroup; 2988 } 2989 2990 get_task_struct(tsk); 2991 goto out_unlock_rcu; 2992 2993 out_unlock_threadgroup: 2994 cgroup_attach_unlock(*threadgroup_locked); 2995 *threadgroup_locked = false; 2996 out_unlock_rcu: 2997 rcu_read_unlock(); 2998 return tsk; 2999 } 3000 3001 void cgroup_procs_write_finish(struct task_struct *task, bool threadgroup_locked) 3002 { 3003 struct cgroup_subsys *ss; 3004 int ssid; 3005 3006 /* release reference from cgroup_procs_write_start() */ 3007 put_task_struct(task); 3008 3009 cgroup_attach_unlock(threadgroup_locked); 3010 3011 for_each_subsys(ss, ssid) 3012 if (ss->post_attach) 3013 ss->post_attach(); 3014 } 3015 3016 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask) 3017 { 3018 struct cgroup_subsys *ss; 3019 bool printed = false; 3020 int ssid; 3021 3022 do_each_subsys_mask(ss, ssid, ss_mask) { 3023 if (printed) 3024 seq_putc(seq, ' '); 3025 seq_puts(seq, ss->name); 3026 printed = true; 3027 } while_each_subsys_mask(); 3028 if (printed) 3029 seq_putc(seq, '\n'); 3030 } 3031 3032 /* show controllers which are enabled from the parent */ 3033 static int cgroup_controllers_show(struct seq_file *seq, void *v) 3034 { 3035 struct cgroup *cgrp = seq_css(seq)->cgroup; 3036 3037 cgroup_print_ss_mask(seq, cgroup_control(cgrp)); 3038 return 0; 3039 } 3040 3041 /* show controllers which are enabled for a given cgroup's children */ 3042 static int cgroup_subtree_control_show(struct seq_file *seq, void *v) 3043 { 3044 struct cgroup *cgrp = seq_css(seq)->cgroup; 3045 3046 cgroup_print_ss_mask(seq, cgrp->subtree_control); 3047 return 0; 3048 } 3049 3050 /** 3051 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy 3052 * @cgrp: root of the subtree to update csses for 3053 * 3054 * @cgrp's control masks have changed and its subtree's css associations 3055 * need to be updated accordingly. This function looks up all css_sets 3056 * which are attached to the subtree, creates the matching updated css_sets 3057 * and migrates the tasks to the new ones. 3058 */ 3059 static int cgroup_update_dfl_csses(struct cgroup *cgrp) 3060 { 3061 DEFINE_CGROUP_MGCTX(mgctx); 3062 struct cgroup_subsys_state *d_css; 3063 struct cgroup *dsct; 3064 struct css_set *src_cset; 3065 bool has_tasks; 3066 int ret; 3067 3068 lockdep_assert_held(&cgroup_mutex); 3069 3070 /* look up all csses currently attached to @cgrp's subtree */ 3071 spin_lock_irq(&css_set_lock); 3072 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 3073 struct cgrp_cset_link *link; 3074 3075 /* 3076 * As cgroup_update_dfl_csses() is only called by 3077 * cgroup_apply_control(). The csses associated with the 3078 * given cgrp will not be affected by changes made to 3079 * its subtree_control file. We can skip them. 3080 */ 3081 if (dsct == cgrp) 3082 continue; 3083 3084 list_for_each_entry(link, &dsct->cset_links, cset_link) 3085 cgroup_migrate_add_src(link->cset, dsct, &mgctx); 3086 } 3087 spin_unlock_irq(&css_set_lock); 3088 3089 /* 3090 * We need to write-lock threadgroup_rwsem while migrating tasks. 3091 * However, if there are no source csets for @cgrp, changing its 3092 * controllers isn't gonna produce any task migrations and the 3093 * write-locking can be skipped safely. 3094 */ 3095 has_tasks = !list_empty(&mgctx.preloaded_src_csets); 3096 cgroup_attach_lock(has_tasks); 3097 3098 /* NULL dst indicates self on default hierarchy */ 3099 ret = cgroup_migrate_prepare_dst(&mgctx); 3100 if (ret) 3101 goto out_finish; 3102 3103 spin_lock_irq(&css_set_lock); 3104 list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, 3105 mg_src_preload_node) { 3106 struct task_struct *task, *ntask; 3107 3108 /* all tasks in src_csets need to be migrated */ 3109 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list) 3110 cgroup_migrate_add_task(task, &mgctx); 3111 } 3112 spin_unlock_irq(&css_set_lock); 3113 3114 ret = cgroup_migrate_execute(&mgctx); 3115 out_finish: 3116 cgroup_migrate_finish(&mgctx); 3117 cgroup_attach_unlock(has_tasks); 3118 return ret; 3119 } 3120 3121 /** 3122 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses 3123 * @cgrp: root of the target subtree 3124 * 3125 * Because css offlining is asynchronous, userland may try to re-enable a 3126 * controller while the previous css is still around. This function grabs 3127 * cgroup_mutex and drains the previous css instances of @cgrp's subtree. 3128 */ 3129 void cgroup_lock_and_drain_offline(struct cgroup *cgrp) 3130 __acquires(&cgroup_mutex) 3131 { 3132 struct cgroup *dsct; 3133 struct cgroup_subsys_state *d_css; 3134 struct cgroup_subsys *ss; 3135 int ssid; 3136 3137 restart: 3138 cgroup_lock(); 3139 3140 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 3141 for_each_subsys(ss, ssid) { 3142 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 3143 DEFINE_WAIT(wait); 3144 3145 if (!css || !percpu_ref_is_dying(&css->refcnt)) 3146 continue; 3147 3148 cgroup_get_live(dsct); 3149 prepare_to_wait(&dsct->offline_waitq, &wait, 3150 TASK_UNINTERRUPTIBLE); 3151 3152 cgroup_unlock(); 3153 schedule(); 3154 finish_wait(&dsct->offline_waitq, &wait); 3155 3156 cgroup_put(dsct); 3157 goto restart; 3158 } 3159 } 3160 } 3161 3162 /** 3163 * cgroup_save_control - save control masks and dom_cgrp of a subtree 3164 * @cgrp: root of the target subtree 3165 * 3166 * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the 3167 * respective old_ prefixed fields for @cgrp's subtree including @cgrp 3168 * itself. 3169 */ 3170 static void cgroup_save_control(struct cgroup *cgrp) 3171 { 3172 struct cgroup *dsct; 3173 struct cgroup_subsys_state *d_css; 3174 3175 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 3176 dsct->old_subtree_control = dsct->subtree_control; 3177 dsct->old_subtree_ss_mask = dsct->subtree_ss_mask; 3178 dsct->old_dom_cgrp = dsct->dom_cgrp; 3179 } 3180 } 3181 3182 /** 3183 * cgroup_propagate_control - refresh control masks of a subtree 3184 * @cgrp: root of the target subtree 3185 * 3186 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches 3187 * ->subtree_control and propagate controller availability through the 3188 * subtree so that descendants don't have unavailable controllers enabled. 3189 */ 3190 static void cgroup_propagate_control(struct cgroup *cgrp) 3191 { 3192 struct cgroup *dsct; 3193 struct cgroup_subsys_state *d_css; 3194 3195 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 3196 dsct->subtree_control &= cgroup_control(dsct); 3197 dsct->subtree_ss_mask = 3198 cgroup_calc_subtree_ss_mask(dsct->subtree_control, 3199 cgroup_ss_mask(dsct)); 3200 } 3201 } 3202 3203 /** 3204 * cgroup_restore_control - restore control masks and dom_cgrp of a subtree 3205 * @cgrp: root of the target subtree 3206 * 3207 * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the 3208 * respective old_ prefixed fields for @cgrp's subtree including @cgrp 3209 * itself. 3210 */ 3211 static void cgroup_restore_control(struct cgroup *cgrp) 3212 { 3213 struct cgroup *dsct; 3214 struct cgroup_subsys_state *d_css; 3215 3216 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 3217 dsct->subtree_control = dsct->old_subtree_control; 3218 dsct->subtree_ss_mask = dsct->old_subtree_ss_mask; 3219 dsct->dom_cgrp = dsct->old_dom_cgrp; 3220 } 3221 } 3222 3223 static bool css_visible(struct cgroup_subsys_state *css) 3224 { 3225 struct cgroup_subsys *ss = css->ss; 3226 struct cgroup *cgrp = css->cgroup; 3227 3228 if (cgroup_control(cgrp) & (1 << ss->id)) 3229 return true; 3230 if (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) 3231 return false; 3232 return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl; 3233 } 3234 3235 /** 3236 * cgroup_apply_control_enable - enable or show csses according to control 3237 * @cgrp: root of the target subtree 3238 * 3239 * Walk @cgrp's subtree and create new csses or make the existing ones 3240 * visible. A css is created invisible if it's being implicitly enabled 3241 * through dependency. An invisible css is made visible when the userland 3242 * explicitly enables it. 3243 * 3244 * Returns 0 on success, -errno on failure. On failure, csses which have 3245 * been processed already aren't cleaned up. The caller is responsible for 3246 * cleaning up with cgroup_apply_control_disable(). 3247 */ 3248 static int cgroup_apply_control_enable(struct cgroup *cgrp) 3249 { 3250 struct cgroup *dsct; 3251 struct cgroup_subsys_state *d_css; 3252 struct cgroup_subsys *ss; 3253 int ssid, ret; 3254 3255 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 3256 for_each_subsys(ss, ssid) { 3257 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 3258 3259 if (!(cgroup_ss_mask(dsct) & (1 << ss->id))) 3260 continue; 3261 3262 if (!css) { 3263 css = css_create(dsct, ss); 3264 if (IS_ERR(css)) 3265 return PTR_ERR(css); 3266 } 3267 3268 WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt)); 3269 3270 if (css_visible(css)) { 3271 ret = css_populate_dir(css); 3272 if (ret) 3273 return ret; 3274 } 3275 } 3276 } 3277 3278 return 0; 3279 } 3280 3281 /** 3282 * cgroup_apply_control_disable - kill or hide csses according to control 3283 * @cgrp: root of the target subtree 3284 * 3285 * Walk @cgrp's subtree and kill and hide csses so that they match 3286 * cgroup_ss_mask() and cgroup_visible_mask(). 3287 * 3288 * A css is hidden when the userland requests it to be disabled while other 3289 * subsystems are still depending on it. The css must not actively control 3290 * resources and be in the vanilla state if it's made visible again later. 3291 * Controllers which may be depended upon should provide ->css_reset() for 3292 * this purpose. 3293 */ 3294 static void cgroup_apply_control_disable(struct cgroup *cgrp) 3295 { 3296 struct cgroup *dsct; 3297 struct cgroup_subsys_state *d_css; 3298 struct cgroup_subsys *ss; 3299 int ssid; 3300 3301 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 3302 for_each_subsys(ss, ssid) { 3303 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 3304 3305 if (!css) 3306 continue; 3307 3308 WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt)); 3309 3310 if (css->parent && 3311 !(cgroup_ss_mask(dsct) & (1 << ss->id))) { 3312 kill_css(css); 3313 } else if (!css_visible(css)) { 3314 css_clear_dir(css); 3315 if (ss->css_reset) 3316 ss->css_reset(css); 3317 } 3318 } 3319 } 3320 } 3321 3322 /** 3323 * cgroup_apply_control - apply control mask updates to the subtree 3324 * @cgrp: root of the target subtree 3325 * 3326 * subsystems can be enabled and disabled in a subtree using the following 3327 * steps. 3328 * 3329 * 1. Call cgroup_save_control() to stash the current state. 3330 * 2. Update ->subtree_control masks in the subtree as desired. 3331 * 3. Call cgroup_apply_control() to apply the changes. 3332 * 4. Optionally perform other related operations. 3333 * 5. Call cgroup_finalize_control() to finish up. 3334 * 3335 * This function implements step 3 and propagates the mask changes 3336 * throughout @cgrp's subtree, updates csses accordingly and perform 3337 * process migrations. 3338 */ 3339 static int cgroup_apply_control(struct cgroup *cgrp) 3340 { 3341 int ret; 3342 3343 cgroup_propagate_control(cgrp); 3344 3345 ret = cgroup_apply_control_enable(cgrp); 3346 if (ret) 3347 return ret; 3348 3349 /* 3350 * At this point, cgroup_e_css_by_mask() results reflect the new csses 3351 * making the following cgroup_update_dfl_csses() properly update 3352 * css associations of all tasks in the subtree. 3353 */ 3354 return cgroup_update_dfl_csses(cgrp); 3355 } 3356 3357 /** 3358 * cgroup_finalize_control - finalize control mask update 3359 * @cgrp: root of the target subtree 3360 * @ret: the result of the update 3361 * 3362 * Finalize control mask update. See cgroup_apply_control() for more info. 3363 */ 3364 static void cgroup_finalize_control(struct cgroup *cgrp, int ret) 3365 { 3366 if (ret) { 3367 cgroup_restore_control(cgrp); 3368 cgroup_propagate_control(cgrp); 3369 } 3370 3371 cgroup_apply_control_disable(cgrp); 3372 } 3373 3374 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable) 3375 { 3376 u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask; 3377 3378 /* if nothing is getting enabled, nothing to worry about */ 3379 if (!enable) 3380 return 0; 3381 3382 /* can @cgrp host any resources? */ 3383 if (!cgroup_is_valid_domain(cgrp->dom_cgrp)) 3384 return -EOPNOTSUPP; 3385 3386 /* mixables don't care */ 3387 if (cgroup_is_mixable(cgrp)) 3388 return 0; 3389 3390 if (domain_enable) { 3391 /* can't enable domain controllers inside a thread subtree */ 3392 if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp)) 3393 return -EOPNOTSUPP; 3394 } else { 3395 /* 3396 * Threaded controllers can handle internal competitions 3397 * and are always allowed inside a (prospective) thread 3398 * subtree. 3399 */ 3400 if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp)) 3401 return 0; 3402 } 3403 3404 /* 3405 * Controllers can't be enabled for a cgroup with tasks to avoid 3406 * child cgroups competing against tasks. 3407 */ 3408 if (cgroup_has_tasks(cgrp)) 3409 return -EBUSY; 3410 3411 return 0; 3412 } 3413 3414 /* change the enabled child controllers for a cgroup in the default hierarchy */ 3415 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of, 3416 char *buf, size_t nbytes, 3417 loff_t off) 3418 { 3419 u16 enable = 0, disable = 0; 3420 struct cgroup *cgrp, *child; 3421 struct cgroup_subsys *ss; 3422 char *tok; 3423 int ssid, ret; 3424 3425 /* 3426 * Parse input - space separated list of subsystem names prefixed 3427 * with either + or -. 3428 */ 3429 buf = strstrip(buf); 3430 while ((tok = strsep(&buf, " "))) { 3431 if (tok[0] == '\0') 3432 continue; 3433 do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) { 3434 if (!cgroup_ssid_enabled(ssid) || 3435 strcmp(tok + 1, ss->name)) 3436 continue; 3437 3438 if (*tok == '+') { 3439 enable |= 1 << ssid; 3440 disable &= ~(1 << ssid); 3441 } else if (*tok == '-') { 3442 disable |= 1 << ssid; 3443 enable &= ~(1 << ssid); 3444 } else { 3445 return -EINVAL; 3446 } 3447 break; 3448 } while_each_subsys_mask(); 3449 if (ssid == CGROUP_SUBSYS_COUNT) 3450 return -EINVAL; 3451 } 3452 3453 cgrp = cgroup_kn_lock_live(of->kn, true); 3454 if (!cgrp) 3455 return -ENODEV; 3456 3457 for_each_subsys(ss, ssid) { 3458 if (enable & (1 << ssid)) { 3459 if (cgrp->subtree_control & (1 << ssid)) { 3460 enable &= ~(1 << ssid); 3461 continue; 3462 } 3463 3464 if (!(cgroup_control(cgrp) & (1 << ssid))) { 3465 ret = -ENOENT; 3466 goto out_unlock; 3467 } 3468 } else if (disable & (1 << ssid)) { 3469 if (!(cgrp->subtree_control & (1 << ssid))) { 3470 disable &= ~(1 << ssid); 3471 continue; 3472 } 3473 3474 /* a child has it enabled? */ 3475 cgroup_for_each_live_child(child, cgrp) { 3476 if (child->subtree_control & (1 << ssid)) { 3477 ret = -EBUSY; 3478 goto out_unlock; 3479 } 3480 } 3481 } 3482 } 3483 3484 if (!enable && !disable) { 3485 ret = 0; 3486 goto out_unlock; 3487 } 3488 3489 ret = cgroup_vet_subtree_control_enable(cgrp, enable); 3490 if (ret) 3491 goto out_unlock; 3492 3493 /* save and update control masks and prepare csses */ 3494 cgroup_save_control(cgrp); 3495 3496 cgrp->subtree_control |= enable; 3497 cgrp->subtree_control &= ~disable; 3498 3499 ret = cgroup_apply_control(cgrp); 3500 cgroup_finalize_control(cgrp, ret); 3501 if (ret) 3502 goto out_unlock; 3503 3504 kernfs_activate(cgrp->kn); 3505 out_unlock: 3506 cgroup_kn_unlock(of->kn); 3507 return ret ?: nbytes; 3508 } 3509 3510 /** 3511 * cgroup_enable_threaded - make @cgrp threaded 3512 * @cgrp: the target cgroup 3513 * 3514 * Called when "threaded" is written to the cgroup.type interface file and 3515 * tries to make @cgrp threaded and join the parent's resource domain. 3516 * This function is never called on the root cgroup as cgroup.type doesn't 3517 * exist on it. 3518 */ 3519 static int cgroup_enable_threaded(struct cgroup *cgrp) 3520 { 3521 struct cgroup *parent = cgroup_parent(cgrp); 3522 struct cgroup *dom_cgrp = parent->dom_cgrp; 3523 struct cgroup *dsct; 3524 struct cgroup_subsys_state *d_css; 3525 int ret; 3526 3527 lockdep_assert_held(&cgroup_mutex); 3528 3529 /* noop if already threaded */ 3530 if (cgroup_is_threaded(cgrp)) 3531 return 0; 3532 3533 /* 3534 * If @cgroup is populated or has domain controllers enabled, it 3535 * can't be switched. While the below cgroup_can_be_thread_root() 3536 * test can catch the same conditions, that's only when @parent is 3537 * not mixable, so let's check it explicitly. 3538 */ 3539 if (cgroup_is_populated(cgrp) || 3540 cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask) 3541 return -EOPNOTSUPP; 3542 3543 /* we're joining the parent's domain, ensure its validity */ 3544 if (!cgroup_is_valid_domain(dom_cgrp) || 3545 !cgroup_can_be_thread_root(dom_cgrp)) 3546 return -EOPNOTSUPP; 3547 3548 /* 3549 * The following shouldn't cause actual migrations and should 3550 * always succeed. 3551 */ 3552 cgroup_save_control(cgrp); 3553 3554 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) 3555 if (dsct == cgrp || cgroup_is_threaded(dsct)) 3556 dsct->dom_cgrp = dom_cgrp; 3557 3558 ret = cgroup_apply_control(cgrp); 3559 if (!ret) 3560 parent->nr_threaded_children++; 3561 3562 cgroup_finalize_control(cgrp, ret); 3563 return ret; 3564 } 3565 3566 static int cgroup_type_show(struct seq_file *seq, void *v) 3567 { 3568 struct cgroup *cgrp = seq_css(seq)->cgroup; 3569 3570 if (cgroup_is_threaded(cgrp)) 3571 seq_puts(seq, "threaded\n"); 3572 else if (!cgroup_is_valid_domain(cgrp)) 3573 seq_puts(seq, "domain invalid\n"); 3574 else if (cgroup_is_thread_root(cgrp)) 3575 seq_puts(seq, "domain threaded\n"); 3576 else 3577 seq_puts(seq, "domain\n"); 3578 3579 return 0; 3580 } 3581 3582 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf, 3583 size_t nbytes, loff_t off) 3584 { 3585 struct cgroup *cgrp; 3586 int ret; 3587 3588 /* only switching to threaded mode is supported */ 3589 if (strcmp(strstrip(buf), "threaded")) 3590 return -EINVAL; 3591 3592 /* drain dying csses before we re-apply (threaded) subtree control */ 3593 cgrp = cgroup_kn_lock_live(of->kn, true); 3594 if (!cgrp) 3595 return -ENOENT; 3596 3597 /* threaded can only be enabled */ 3598 ret = cgroup_enable_threaded(cgrp); 3599 3600 cgroup_kn_unlock(of->kn); 3601 return ret ?: nbytes; 3602 } 3603 3604 static int cgroup_max_descendants_show(struct seq_file *seq, void *v) 3605 { 3606 struct cgroup *cgrp = seq_css(seq)->cgroup; 3607 int descendants = READ_ONCE(cgrp->max_descendants); 3608 3609 if (descendants == INT_MAX) 3610 seq_puts(seq, "max\n"); 3611 else 3612 seq_printf(seq, "%d\n", descendants); 3613 3614 return 0; 3615 } 3616 3617 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of, 3618 char *buf, size_t nbytes, loff_t off) 3619 { 3620 struct cgroup *cgrp; 3621 int descendants; 3622 ssize_t ret; 3623 3624 buf = strstrip(buf); 3625 if (!strcmp(buf, "max")) { 3626 descendants = INT_MAX; 3627 } else { 3628 ret = kstrtoint(buf, 0, &descendants); 3629 if (ret) 3630 return ret; 3631 } 3632 3633 if (descendants < 0) 3634 return -ERANGE; 3635 3636 cgrp = cgroup_kn_lock_live(of->kn, false); 3637 if (!cgrp) 3638 return -ENOENT; 3639 3640 cgrp->max_descendants = descendants; 3641 3642 cgroup_kn_unlock(of->kn); 3643 3644 return nbytes; 3645 } 3646 3647 static int cgroup_max_depth_show(struct seq_file *seq, void *v) 3648 { 3649 struct cgroup *cgrp = seq_css(seq)->cgroup; 3650 int depth = READ_ONCE(cgrp->max_depth); 3651 3652 if (depth == INT_MAX) 3653 seq_puts(seq, "max\n"); 3654 else 3655 seq_printf(seq, "%d\n", depth); 3656 3657 return 0; 3658 } 3659 3660 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of, 3661 char *buf, size_t nbytes, loff_t off) 3662 { 3663 struct cgroup *cgrp; 3664 ssize_t ret; 3665 int depth; 3666 3667 buf = strstrip(buf); 3668 if (!strcmp(buf, "max")) { 3669 depth = INT_MAX; 3670 } else { 3671 ret = kstrtoint(buf, 0, &depth); 3672 if (ret) 3673 return ret; 3674 } 3675 3676 if (depth < 0) 3677 return -ERANGE; 3678 3679 cgrp = cgroup_kn_lock_live(of->kn, false); 3680 if (!cgrp) 3681 return -ENOENT; 3682 3683 cgrp->max_depth = depth; 3684 3685 cgroup_kn_unlock(of->kn); 3686 3687 return nbytes; 3688 } 3689 3690 static int cgroup_events_show(struct seq_file *seq, void *v) 3691 { 3692 struct cgroup *cgrp = seq_css(seq)->cgroup; 3693 3694 seq_printf(seq, "populated %d\n", cgroup_is_populated(cgrp)); 3695 seq_printf(seq, "frozen %d\n", test_bit(CGRP_FROZEN, &cgrp->flags)); 3696 3697 return 0; 3698 } 3699 3700 static int cgroup_stat_show(struct seq_file *seq, void *v) 3701 { 3702 struct cgroup *cgroup = seq_css(seq)->cgroup; 3703 3704 seq_printf(seq, "nr_descendants %d\n", 3705 cgroup->nr_descendants); 3706 seq_printf(seq, "nr_dying_descendants %d\n", 3707 cgroup->nr_dying_descendants); 3708 3709 return 0; 3710 } 3711 3712 static int __maybe_unused cgroup_extra_stat_show(struct seq_file *seq, 3713 struct cgroup *cgrp, int ssid) 3714 { 3715 struct cgroup_subsys *ss = cgroup_subsys[ssid]; 3716 struct cgroup_subsys_state *css; 3717 int ret; 3718 3719 if (!ss->css_extra_stat_show) 3720 return 0; 3721 3722 css = cgroup_tryget_css(cgrp, ss); 3723 if (!css) 3724 return 0; 3725 3726 ret = ss->css_extra_stat_show(seq, css); 3727 css_put(css); 3728 return ret; 3729 } 3730 3731 static int cpu_stat_show(struct seq_file *seq, void *v) 3732 { 3733 struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup; 3734 int ret = 0; 3735 3736 cgroup_base_stat_cputime_show(seq); 3737 #ifdef CONFIG_CGROUP_SCHED 3738 ret = cgroup_extra_stat_show(seq, cgrp, cpu_cgrp_id); 3739 #endif 3740 return ret; 3741 } 3742 3743 #ifdef CONFIG_PSI 3744 static int cgroup_io_pressure_show(struct seq_file *seq, void *v) 3745 { 3746 struct cgroup *cgrp = seq_css(seq)->cgroup; 3747 struct psi_group *psi = cgroup_psi(cgrp); 3748 3749 return psi_show(seq, psi, PSI_IO); 3750 } 3751 static int cgroup_memory_pressure_show(struct seq_file *seq, void *v) 3752 { 3753 struct cgroup *cgrp = seq_css(seq)->cgroup; 3754 struct psi_group *psi = cgroup_psi(cgrp); 3755 3756 return psi_show(seq, psi, PSI_MEM); 3757 } 3758 static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v) 3759 { 3760 struct cgroup *cgrp = seq_css(seq)->cgroup; 3761 struct psi_group *psi = cgroup_psi(cgrp); 3762 3763 return psi_show(seq, psi, PSI_CPU); 3764 } 3765 3766 static ssize_t pressure_write(struct kernfs_open_file *of, char *buf, 3767 size_t nbytes, enum psi_res res) 3768 { 3769 struct cgroup_file_ctx *ctx = of->priv; 3770 struct psi_trigger *new; 3771 struct cgroup *cgrp; 3772 struct psi_group *psi; 3773 3774 cgrp = cgroup_kn_lock_live(of->kn, false); 3775 if (!cgrp) 3776 return -ENODEV; 3777 3778 cgroup_get(cgrp); 3779 cgroup_kn_unlock(of->kn); 3780 3781 /* Allow only one trigger per file descriptor */ 3782 if (ctx->psi.trigger) { 3783 cgroup_put(cgrp); 3784 return -EBUSY; 3785 } 3786 3787 psi = cgroup_psi(cgrp); 3788 new = psi_trigger_create(psi, buf, res, of->file); 3789 if (IS_ERR(new)) { 3790 cgroup_put(cgrp); 3791 return PTR_ERR(new); 3792 } 3793 3794 smp_store_release(&ctx->psi.trigger, new); 3795 cgroup_put(cgrp); 3796 3797 return nbytes; 3798 } 3799 3800 static ssize_t cgroup_io_pressure_write(struct kernfs_open_file *of, 3801 char *buf, size_t nbytes, 3802 loff_t off) 3803 { 3804 return pressure_write(of, buf, nbytes, PSI_IO); 3805 } 3806 3807 static ssize_t cgroup_memory_pressure_write(struct kernfs_open_file *of, 3808 char *buf, size_t nbytes, 3809 loff_t off) 3810 { 3811 return pressure_write(of, buf, nbytes, PSI_MEM); 3812 } 3813 3814 static ssize_t cgroup_cpu_pressure_write(struct kernfs_open_file *of, 3815 char *buf, size_t nbytes, 3816 loff_t off) 3817 { 3818 return pressure_write(of, buf, nbytes, PSI_CPU); 3819 } 3820 3821 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 3822 static int cgroup_irq_pressure_show(struct seq_file *seq, void *v) 3823 { 3824 struct cgroup *cgrp = seq_css(seq)->cgroup; 3825 struct psi_group *psi = cgroup_psi(cgrp); 3826 3827 return psi_show(seq, psi, PSI_IRQ); 3828 } 3829 3830 static ssize_t cgroup_irq_pressure_write(struct kernfs_open_file *of, 3831 char *buf, size_t nbytes, 3832 loff_t off) 3833 { 3834 return pressure_write(of, buf, nbytes, PSI_IRQ); 3835 } 3836 #endif 3837 3838 static int cgroup_pressure_show(struct seq_file *seq, void *v) 3839 { 3840 struct cgroup *cgrp = seq_css(seq)->cgroup; 3841 struct psi_group *psi = cgroup_psi(cgrp); 3842 3843 seq_printf(seq, "%d\n", psi->enabled); 3844 3845 return 0; 3846 } 3847 3848 static ssize_t cgroup_pressure_write(struct kernfs_open_file *of, 3849 char *buf, size_t nbytes, 3850 loff_t off) 3851 { 3852 ssize_t ret; 3853 int enable; 3854 struct cgroup *cgrp; 3855 struct psi_group *psi; 3856 3857 ret = kstrtoint(strstrip(buf), 0, &enable); 3858 if (ret) 3859 return ret; 3860 3861 if (enable < 0 || enable > 1) 3862 return -ERANGE; 3863 3864 cgrp = cgroup_kn_lock_live(of->kn, false); 3865 if (!cgrp) 3866 return -ENOENT; 3867 3868 psi = cgroup_psi(cgrp); 3869 if (psi->enabled != enable) { 3870 int i; 3871 3872 /* show or hide {cpu,memory,io,irq}.pressure files */ 3873 for (i = 0; i < NR_PSI_RESOURCES; i++) 3874 cgroup_file_show(&cgrp->psi_files[i], enable); 3875 3876 psi->enabled = enable; 3877 if (enable) 3878 psi_cgroup_restart(psi); 3879 } 3880 3881 cgroup_kn_unlock(of->kn); 3882 3883 return nbytes; 3884 } 3885 3886 static __poll_t cgroup_pressure_poll(struct kernfs_open_file *of, 3887 poll_table *pt) 3888 { 3889 struct cgroup_file_ctx *ctx = of->priv; 3890 3891 return psi_trigger_poll(&ctx->psi.trigger, of->file, pt); 3892 } 3893 3894 static void cgroup_pressure_release(struct kernfs_open_file *of) 3895 { 3896 struct cgroup_file_ctx *ctx = of->priv; 3897 3898 psi_trigger_destroy(ctx->psi.trigger); 3899 } 3900 3901 bool cgroup_psi_enabled(void) 3902 { 3903 if (static_branch_likely(&psi_disabled)) 3904 return false; 3905 3906 return (cgroup_feature_disable_mask & (1 << OPT_FEATURE_PRESSURE)) == 0; 3907 } 3908 3909 #else /* CONFIG_PSI */ 3910 bool cgroup_psi_enabled(void) 3911 { 3912 return false; 3913 } 3914 3915 #endif /* CONFIG_PSI */ 3916 3917 static int cgroup_freeze_show(struct seq_file *seq, void *v) 3918 { 3919 struct cgroup *cgrp = seq_css(seq)->cgroup; 3920 3921 seq_printf(seq, "%d\n", cgrp->freezer.freeze); 3922 3923 return 0; 3924 } 3925 3926 static ssize_t cgroup_freeze_write(struct kernfs_open_file *of, 3927 char *buf, size_t nbytes, loff_t off) 3928 { 3929 struct cgroup *cgrp; 3930 ssize_t ret; 3931 int freeze; 3932 3933 ret = kstrtoint(strstrip(buf), 0, &freeze); 3934 if (ret) 3935 return ret; 3936 3937 if (freeze < 0 || freeze > 1) 3938 return -ERANGE; 3939 3940 cgrp = cgroup_kn_lock_live(of->kn, false); 3941 if (!cgrp) 3942 return -ENOENT; 3943 3944 cgroup_freeze(cgrp, freeze); 3945 3946 cgroup_kn_unlock(of->kn); 3947 3948 return nbytes; 3949 } 3950 3951 static void __cgroup_kill(struct cgroup *cgrp) 3952 { 3953 struct css_task_iter it; 3954 struct task_struct *task; 3955 3956 lockdep_assert_held(&cgroup_mutex); 3957 3958 spin_lock_irq(&css_set_lock); 3959 set_bit(CGRP_KILL, &cgrp->flags); 3960 spin_unlock_irq(&css_set_lock); 3961 3962 css_task_iter_start(&cgrp->self, CSS_TASK_ITER_PROCS | CSS_TASK_ITER_THREADED, &it); 3963 while ((task = css_task_iter_next(&it))) { 3964 /* Ignore kernel threads here. */ 3965 if (task->flags & PF_KTHREAD) 3966 continue; 3967 3968 /* Skip tasks that are already dying. */ 3969 if (__fatal_signal_pending(task)) 3970 continue; 3971 3972 send_sig(SIGKILL, task, 0); 3973 } 3974 css_task_iter_end(&it); 3975 3976 spin_lock_irq(&css_set_lock); 3977 clear_bit(CGRP_KILL, &cgrp->flags); 3978 spin_unlock_irq(&css_set_lock); 3979 } 3980 3981 static void cgroup_kill(struct cgroup *cgrp) 3982 { 3983 struct cgroup_subsys_state *css; 3984 struct cgroup *dsct; 3985 3986 lockdep_assert_held(&cgroup_mutex); 3987 3988 cgroup_for_each_live_descendant_pre(dsct, css, cgrp) 3989 __cgroup_kill(dsct); 3990 } 3991 3992 static ssize_t cgroup_kill_write(struct kernfs_open_file *of, char *buf, 3993 size_t nbytes, loff_t off) 3994 { 3995 ssize_t ret = 0; 3996 int kill; 3997 struct cgroup *cgrp; 3998 3999 ret = kstrtoint(strstrip(buf), 0, &kill); 4000 if (ret) 4001 return ret; 4002 4003 if (kill != 1) 4004 return -ERANGE; 4005 4006 cgrp = cgroup_kn_lock_live(of->kn, false); 4007 if (!cgrp) 4008 return -ENOENT; 4009 4010 /* 4011 * Killing is a process directed operation, i.e. the whole thread-group 4012 * is taken down so act like we do for cgroup.procs and only make this 4013 * writable in non-threaded cgroups. 4014 */ 4015 if (cgroup_is_threaded(cgrp)) 4016 ret = -EOPNOTSUPP; 4017 else 4018 cgroup_kill(cgrp); 4019 4020 cgroup_kn_unlock(of->kn); 4021 4022 return ret ?: nbytes; 4023 } 4024 4025 static int cgroup_file_open(struct kernfs_open_file *of) 4026 { 4027 struct cftype *cft = of_cft(of); 4028 struct cgroup_file_ctx *ctx; 4029 int ret; 4030 4031 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 4032 if (!ctx) 4033 return -ENOMEM; 4034 4035 ctx->ns = current->nsproxy->cgroup_ns; 4036 get_cgroup_ns(ctx->ns); 4037 of->priv = ctx; 4038 4039 if (!cft->open) 4040 return 0; 4041 4042 ret = cft->open(of); 4043 if (ret) { 4044 put_cgroup_ns(ctx->ns); 4045 kfree(ctx); 4046 } 4047 return ret; 4048 } 4049 4050 static void cgroup_file_release(struct kernfs_open_file *of) 4051 { 4052 struct cftype *cft = of_cft(of); 4053 struct cgroup_file_ctx *ctx = of->priv; 4054 4055 if (cft->release) 4056 cft->release(of); 4057 put_cgroup_ns(ctx->ns); 4058 kfree(ctx); 4059 } 4060 4061 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf, 4062 size_t nbytes, loff_t off) 4063 { 4064 struct cgroup_file_ctx *ctx = of->priv; 4065 struct cgroup *cgrp = of->kn->parent->priv; 4066 struct cftype *cft = of_cft(of); 4067 struct cgroup_subsys_state *css; 4068 int ret; 4069 4070 if (!nbytes) 4071 return 0; 4072 4073 /* 4074 * If namespaces are delegation boundaries, disallow writes to 4075 * files in an non-init namespace root from inside the namespace 4076 * except for the files explicitly marked delegatable - 4077 * cgroup.procs and cgroup.subtree_control. 4078 */ 4079 if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) && 4080 !(cft->flags & CFTYPE_NS_DELEGATABLE) && 4081 ctx->ns != &init_cgroup_ns && ctx->ns->root_cset->dfl_cgrp == cgrp) 4082 return -EPERM; 4083 4084 if (cft->write) 4085 return cft->write(of, buf, nbytes, off); 4086 4087 /* 4088 * kernfs guarantees that a file isn't deleted with operations in 4089 * flight, which means that the matching css is and stays alive and 4090 * doesn't need to be pinned. The RCU locking is not necessary 4091 * either. It's just for the convenience of using cgroup_css(). 4092 */ 4093 rcu_read_lock(); 4094 css = cgroup_css(cgrp, cft->ss); 4095 rcu_read_unlock(); 4096 4097 if (cft->write_u64) { 4098 unsigned long long v; 4099 ret = kstrtoull(buf, 0, &v); 4100 if (!ret) 4101 ret = cft->write_u64(css, cft, v); 4102 } else if (cft->write_s64) { 4103 long long v; 4104 ret = kstrtoll(buf, 0, &v); 4105 if (!ret) 4106 ret = cft->write_s64(css, cft, v); 4107 } else { 4108 ret = -EINVAL; 4109 } 4110 4111 return ret ?: nbytes; 4112 } 4113 4114 static __poll_t cgroup_file_poll(struct kernfs_open_file *of, poll_table *pt) 4115 { 4116 struct cftype *cft = of_cft(of); 4117 4118 if (cft->poll) 4119 return cft->poll(of, pt); 4120 4121 return kernfs_generic_poll(of, pt); 4122 } 4123 4124 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos) 4125 { 4126 return seq_cft(seq)->seq_start(seq, ppos); 4127 } 4128 4129 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos) 4130 { 4131 return seq_cft(seq)->seq_next(seq, v, ppos); 4132 } 4133 4134 static void cgroup_seqfile_stop(struct seq_file *seq, void *v) 4135 { 4136 if (seq_cft(seq)->seq_stop) 4137 seq_cft(seq)->seq_stop(seq, v); 4138 } 4139 4140 static int cgroup_seqfile_show(struct seq_file *m, void *arg) 4141 { 4142 struct cftype *cft = seq_cft(m); 4143 struct cgroup_subsys_state *css = seq_css(m); 4144 4145 if (cft->seq_show) 4146 return cft->seq_show(m, arg); 4147 4148 if (cft->read_u64) 4149 seq_printf(m, "%llu\n", cft->read_u64(css, cft)); 4150 else if (cft->read_s64) 4151 seq_printf(m, "%lld\n", cft->read_s64(css, cft)); 4152 else 4153 return -EINVAL; 4154 return 0; 4155 } 4156 4157 static struct kernfs_ops cgroup_kf_single_ops = { 4158 .atomic_write_len = PAGE_SIZE, 4159 .open = cgroup_file_open, 4160 .release = cgroup_file_release, 4161 .write = cgroup_file_write, 4162 .poll = cgroup_file_poll, 4163 .seq_show = cgroup_seqfile_show, 4164 }; 4165 4166 static struct kernfs_ops cgroup_kf_ops = { 4167 .atomic_write_len = PAGE_SIZE, 4168 .open = cgroup_file_open, 4169 .release = cgroup_file_release, 4170 .write = cgroup_file_write, 4171 .poll = cgroup_file_poll, 4172 .seq_start = cgroup_seqfile_start, 4173 .seq_next = cgroup_seqfile_next, 4174 .seq_stop = cgroup_seqfile_stop, 4175 .seq_show = cgroup_seqfile_show, 4176 }; 4177 4178 /* set uid and gid of cgroup dirs and files to that of the creator */ 4179 static int cgroup_kn_set_ugid(struct kernfs_node *kn) 4180 { 4181 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID, 4182 .ia_uid = current_fsuid(), 4183 .ia_gid = current_fsgid(), }; 4184 4185 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) && 4186 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID)) 4187 return 0; 4188 4189 return kernfs_setattr(kn, &iattr); 4190 } 4191 4192 static void cgroup_file_notify_timer(struct timer_list *timer) 4193 { 4194 cgroup_file_notify(container_of(timer, struct cgroup_file, 4195 notify_timer)); 4196 } 4197 4198 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp, 4199 struct cftype *cft) 4200 { 4201 char name[CGROUP_FILE_NAME_MAX]; 4202 struct kernfs_node *kn; 4203 struct lock_class_key *key = NULL; 4204 int ret; 4205 4206 #ifdef CONFIG_DEBUG_LOCK_ALLOC 4207 key = &cft->lockdep_key; 4208 #endif 4209 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name), 4210 cgroup_file_mode(cft), 4211 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 4212 0, cft->kf_ops, cft, 4213 NULL, key); 4214 if (IS_ERR(kn)) 4215 return PTR_ERR(kn); 4216 4217 ret = cgroup_kn_set_ugid(kn); 4218 if (ret) { 4219 kernfs_remove(kn); 4220 return ret; 4221 } 4222 4223 if (cft->file_offset) { 4224 struct cgroup_file *cfile = (void *)css + cft->file_offset; 4225 4226 timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0); 4227 4228 spin_lock_irq(&cgroup_file_kn_lock); 4229 cfile->kn = kn; 4230 spin_unlock_irq(&cgroup_file_kn_lock); 4231 } 4232 4233 return 0; 4234 } 4235 4236 /** 4237 * cgroup_addrm_files - add or remove files to a cgroup directory 4238 * @css: the target css 4239 * @cgrp: the target cgroup (usually css->cgroup) 4240 * @cfts: array of cftypes to be added 4241 * @is_add: whether to add or remove 4242 * 4243 * Depending on @is_add, add or remove files defined by @cfts on @cgrp. 4244 * For removals, this function never fails. 4245 */ 4246 static int cgroup_addrm_files(struct cgroup_subsys_state *css, 4247 struct cgroup *cgrp, struct cftype cfts[], 4248 bool is_add) 4249 { 4250 struct cftype *cft, *cft_end = NULL; 4251 int ret = 0; 4252 4253 lockdep_assert_held(&cgroup_mutex); 4254 4255 restart: 4256 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) { 4257 /* does cft->flags tell us to skip this file on @cgrp? */ 4258 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp)) 4259 continue; 4260 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp)) 4261 continue; 4262 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp)) 4263 continue; 4264 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp)) 4265 continue; 4266 if ((cft->flags & CFTYPE_DEBUG) && !cgroup_debug) 4267 continue; 4268 if (is_add) { 4269 ret = cgroup_add_file(css, cgrp, cft); 4270 if (ret) { 4271 pr_warn("%s: failed to add %s, err=%d\n", 4272 __func__, cft->name, ret); 4273 cft_end = cft; 4274 is_add = false; 4275 goto restart; 4276 } 4277 } else { 4278 cgroup_rm_file(cgrp, cft); 4279 } 4280 } 4281 return ret; 4282 } 4283 4284 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add) 4285 { 4286 struct cgroup_subsys *ss = cfts[0].ss; 4287 struct cgroup *root = &ss->root->cgrp; 4288 struct cgroup_subsys_state *css; 4289 int ret = 0; 4290 4291 lockdep_assert_held(&cgroup_mutex); 4292 4293 /* add/rm files for all cgroups created before */ 4294 css_for_each_descendant_pre(css, cgroup_css(root, ss)) { 4295 struct cgroup *cgrp = css->cgroup; 4296 4297 if (!(css->flags & CSS_VISIBLE)) 4298 continue; 4299 4300 ret = cgroup_addrm_files(css, cgrp, cfts, is_add); 4301 if (ret) 4302 break; 4303 } 4304 4305 if (is_add && !ret) 4306 kernfs_activate(root->kn); 4307 return ret; 4308 } 4309 4310 static void cgroup_exit_cftypes(struct cftype *cfts) 4311 { 4312 struct cftype *cft; 4313 4314 for (cft = cfts; cft->name[0] != '\0'; cft++) { 4315 /* free copy for custom atomic_write_len, see init_cftypes() */ 4316 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) 4317 kfree(cft->kf_ops); 4318 cft->kf_ops = NULL; 4319 cft->ss = NULL; 4320 4321 /* revert flags set by cgroup core while adding @cfts */ 4322 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL | 4323 __CFTYPE_ADDED); 4324 } 4325 } 4326 4327 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4328 { 4329 struct cftype *cft; 4330 int ret = 0; 4331 4332 for (cft = cfts; cft->name[0] != '\0'; cft++) { 4333 struct kernfs_ops *kf_ops; 4334 4335 WARN_ON(cft->ss || cft->kf_ops); 4336 4337 if (cft->flags & __CFTYPE_ADDED) { 4338 ret = -EBUSY; 4339 break; 4340 } 4341 4342 if (cft->seq_start) 4343 kf_ops = &cgroup_kf_ops; 4344 else 4345 kf_ops = &cgroup_kf_single_ops; 4346 4347 /* 4348 * Ugh... if @cft wants a custom max_write_len, we need to 4349 * make a copy of kf_ops to set its atomic_write_len. 4350 */ 4351 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) { 4352 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL); 4353 if (!kf_ops) { 4354 ret = -ENOMEM; 4355 break; 4356 } 4357 kf_ops->atomic_write_len = cft->max_write_len; 4358 } 4359 4360 cft->kf_ops = kf_ops; 4361 cft->ss = ss; 4362 cft->flags |= __CFTYPE_ADDED; 4363 } 4364 4365 if (ret) 4366 cgroup_exit_cftypes(cfts); 4367 return ret; 4368 } 4369 4370 static int cgroup_rm_cftypes_locked(struct cftype *cfts) 4371 { 4372 lockdep_assert_held(&cgroup_mutex); 4373 4374 list_del(&cfts->node); 4375 cgroup_apply_cftypes(cfts, false); 4376 cgroup_exit_cftypes(cfts); 4377 return 0; 4378 } 4379 4380 /** 4381 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem 4382 * @cfts: zero-length name terminated array of cftypes 4383 * 4384 * Unregister @cfts. Files described by @cfts are removed from all 4385 * existing cgroups and all future cgroups won't have them either. This 4386 * function can be called anytime whether @cfts' subsys is attached or not. 4387 * 4388 * Returns 0 on successful unregistration, -ENOENT if @cfts is not 4389 * registered. 4390 */ 4391 int cgroup_rm_cftypes(struct cftype *cfts) 4392 { 4393 int ret; 4394 4395 if (!cfts || cfts[0].name[0] == '\0') 4396 return 0; 4397 4398 if (!(cfts[0].flags & __CFTYPE_ADDED)) 4399 return -ENOENT; 4400 4401 cgroup_lock(); 4402 ret = cgroup_rm_cftypes_locked(cfts); 4403 cgroup_unlock(); 4404 return ret; 4405 } 4406 4407 /** 4408 * cgroup_add_cftypes - add an array of cftypes to a subsystem 4409 * @ss: target cgroup subsystem 4410 * @cfts: zero-length name terminated array of cftypes 4411 * 4412 * Register @cfts to @ss. Files described by @cfts are created for all 4413 * existing cgroups to which @ss is attached and all future cgroups will 4414 * have them too. This function can be called anytime whether @ss is 4415 * attached or not. 4416 * 4417 * Returns 0 on successful registration, -errno on failure. Note that this 4418 * function currently returns 0 as long as @cfts registration is successful 4419 * even if some file creation attempts on existing cgroups fail. 4420 */ 4421 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4422 { 4423 int ret; 4424 4425 if (!cgroup_ssid_enabled(ss->id)) 4426 return 0; 4427 4428 if (!cfts || cfts[0].name[0] == '\0') 4429 return 0; 4430 4431 ret = cgroup_init_cftypes(ss, cfts); 4432 if (ret) 4433 return ret; 4434 4435 cgroup_lock(); 4436 4437 list_add_tail(&cfts->node, &ss->cfts); 4438 ret = cgroup_apply_cftypes(cfts, true); 4439 if (ret) 4440 cgroup_rm_cftypes_locked(cfts); 4441 4442 cgroup_unlock(); 4443 return ret; 4444 } 4445 4446 /** 4447 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy 4448 * @ss: target cgroup subsystem 4449 * @cfts: zero-length name terminated array of cftypes 4450 * 4451 * Similar to cgroup_add_cftypes() but the added files are only used for 4452 * the default hierarchy. 4453 */ 4454 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4455 { 4456 struct cftype *cft; 4457 4458 for (cft = cfts; cft && cft->name[0] != '\0'; cft++) 4459 cft->flags |= __CFTYPE_ONLY_ON_DFL; 4460 return cgroup_add_cftypes(ss, cfts); 4461 } 4462 4463 /** 4464 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies 4465 * @ss: target cgroup subsystem 4466 * @cfts: zero-length name terminated array of cftypes 4467 * 4468 * Similar to cgroup_add_cftypes() but the added files are only used for 4469 * the legacy hierarchies. 4470 */ 4471 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4472 { 4473 struct cftype *cft; 4474 4475 for (cft = cfts; cft && cft->name[0] != '\0'; cft++) 4476 cft->flags |= __CFTYPE_NOT_ON_DFL; 4477 return cgroup_add_cftypes(ss, cfts); 4478 } 4479 4480 /** 4481 * cgroup_file_notify - generate a file modified event for a cgroup_file 4482 * @cfile: target cgroup_file 4483 * 4484 * @cfile must have been obtained by setting cftype->file_offset. 4485 */ 4486 void cgroup_file_notify(struct cgroup_file *cfile) 4487 { 4488 unsigned long flags; 4489 4490 spin_lock_irqsave(&cgroup_file_kn_lock, flags); 4491 if (cfile->kn) { 4492 unsigned long last = cfile->notified_at; 4493 unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV; 4494 4495 if (time_in_range(jiffies, last, next)) { 4496 timer_reduce(&cfile->notify_timer, next); 4497 } else { 4498 kernfs_notify(cfile->kn); 4499 cfile->notified_at = jiffies; 4500 } 4501 } 4502 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags); 4503 } 4504 4505 /** 4506 * cgroup_file_show - show or hide a hidden cgroup file 4507 * @cfile: target cgroup_file obtained by setting cftype->file_offset 4508 * @show: whether to show or hide 4509 */ 4510 void cgroup_file_show(struct cgroup_file *cfile, bool show) 4511 { 4512 struct kernfs_node *kn; 4513 4514 spin_lock_irq(&cgroup_file_kn_lock); 4515 kn = cfile->kn; 4516 kernfs_get(kn); 4517 spin_unlock_irq(&cgroup_file_kn_lock); 4518 4519 if (kn) 4520 kernfs_show(kn, show); 4521 4522 kernfs_put(kn); 4523 } 4524 4525 /** 4526 * css_next_child - find the next child of a given css 4527 * @pos: the current position (%NULL to initiate traversal) 4528 * @parent: css whose children to walk 4529 * 4530 * This function returns the next child of @parent and should be called 4531 * under either cgroup_mutex or RCU read lock. The only requirement is 4532 * that @parent and @pos are accessible. The next sibling is guaranteed to 4533 * be returned regardless of their states. 4534 * 4535 * If a subsystem synchronizes ->css_online() and the start of iteration, a 4536 * css which finished ->css_online() is guaranteed to be visible in the 4537 * future iterations and will stay visible until the last reference is put. 4538 * A css which hasn't finished ->css_online() or already finished 4539 * ->css_offline() may show up during traversal. It's each subsystem's 4540 * responsibility to synchronize against on/offlining. 4541 */ 4542 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos, 4543 struct cgroup_subsys_state *parent) 4544 { 4545 struct cgroup_subsys_state *next; 4546 4547 cgroup_assert_mutex_or_rcu_locked(); 4548 4549 /* 4550 * @pos could already have been unlinked from the sibling list. 4551 * Once a cgroup is removed, its ->sibling.next is no longer 4552 * updated when its next sibling changes. CSS_RELEASED is set when 4553 * @pos is taken off list, at which time its next pointer is valid, 4554 * and, as releases are serialized, the one pointed to by the next 4555 * pointer is guaranteed to not have started release yet. This 4556 * implies that if we observe !CSS_RELEASED on @pos in this RCU 4557 * critical section, the one pointed to by its next pointer is 4558 * guaranteed to not have finished its RCU grace period even if we 4559 * have dropped rcu_read_lock() in-between iterations. 4560 * 4561 * If @pos has CSS_RELEASED set, its next pointer can't be 4562 * dereferenced; however, as each css is given a monotonically 4563 * increasing unique serial number and always appended to the 4564 * sibling list, the next one can be found by walking the parent's 4565 * children until the first css with higher serial number than 4566 * @pos's. While this path can be slower, it happens iff iteration 4567 * races against release and the race window is very small. 4568 */ 4569 if (!pos) { 4570 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling); 4571 } else if (likely(!(pos->flags & CSS_RELEASED))) { 4572 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling); 4573 } else { 4574 list_for_each_entry_rcu(next, &parent->children, sibling, 4575 lockdep_is_held(&cgroup_mutex)) 4576 if (next->serial_nr > pos->serial_nr) 4577 break; 4578 } 4579 4580 /* 4581 * @next, if not pointing to the head, can be dereferenced and is 4582 * the next sibling. 4583 */ 4584 if (&next->sibling != &parent->children) 4585 return next; 4586 return NULL; 4587 } 4588 4589 /** 4590 * css_next_descendant_pre - find the next descendant for pre-order walk 4591 * @pos: the current position (%NULL to initiate traversal) 4592 * @root: css whose descendants to walk 4593 * 4594 * To be used by css_for_each_descendant_pre(). Find the next descendant 4595 * to visit for pre-order traversal of @root's descendants. @root is 4596 * included in the iteration and the first node to be visited. 4597 * 4598 * While this function requires cgroup_mutex or RCU read locking, it 4599 * doesn't require the whole traversal to be contained in a single critical 4600 * section. This function will return the correct next descendant as long 4601 * as both @pos and @root are accessible and @pos is a descendant of @root. 4602 * 4603 * If a subsystem synchronizes ->css_online() and the start of iteration, a 4604 * css which finished ->css_online() is guaranteed to be visible in the 4605 * future iterations and will stay visible until the last reference is put. 4606 * A css which hasn't finished ->css_online() or already finished 4607 * ->css_offline() may show up during traversal. It's each subsystem's 4608 * responsibility to synchronize against on/offlining. 4609 */ 4610 struct cgroup_subsys_state * 4611 css_next_descendant_pre(struct cgroup_subsys_state *pos, 4612 struct cgroup_subsys_state *root) 4613 { 4614 struct cgroup_subsys_state *next; 4615 4616 cgroup_assert_mutex_or_rcu_locked(); 4617 4618 /* if first iteration, visit @root */ 4619 if (!pos) 4620 return root; 4621 4622 /* visit the first child if exists */ 4623 next = css_next_child(NULL, pos); 4624 if (next) 4625 return next; 4626 4627 /* no child, visit my or the closest ancestor's next sibling */ 4628 while (pos != root) { 4629 next = css_next_child(pos, pos->parent); 4630 if (next) 4631 return next; 4632 pos = pos->parent; 4633 } 4634 4635 return NULL; 4636 } 4637 EXPORT_SYMBOL_GPL(css_next_descendant_pre); 4638 4639 /** 4640 * css_rightmost_descendant - return the rightmost descendant of a css 4641 * @pos: css of interest 4642 * 4643 * Return the rightmost descendant of @pos. If there's no descendant, @pos 4644 * is returned. This can be used during pre-order traversal to skip 4645 * subtree of @pos. 4646 * 4647 * While this function requires cgroup_mutex or RCU read locking, it 4648 * doesn't require the whole traversal to be contained in a single critical 4649 * section. This function will return the correct rightmost descendant as 4650 * long as @pos is accessible. 4651 */ 4652 struct cgroup_subsys_state * 4653 css_rightmost_descendant(struct cgroup_subsys_state *pos) 4654 { 4655 struct cgroup_subsys_state *last, *tmp; 4656 4657 cgroup_assert_mutex_or_rcu_locked(); 4658 4659 do { 4660 last = pos; 4661 /* ->prev isn't RCU safe, walk ->next till the end */ 4662 pos = NULL; 4663 css_for_each_child(tmp, last) 4664 pos = tmp; 4665 } while (pos); 4666 4667 return last; 4668 } 4669 4670 static struct cgroup_subsys_state * 4671 css_leftmost_descendant(struct cgroup_subsys_state *pos) 4672 { 4673 struct cgroup_subsys_state *last; 4674 4675 do { 4676 last = pos; 4677 pos = css_next_child(NULL, pos); 4678 } while (pos); 4679 4680 return last; 4681 } 4682 4683 /** 4684 * css_next_descendant_post - find the next descendant for post-order walk 4685 * @pos: the current position (%NULL to initiate traversal) 4686 * @root: css whose descendants to walk 4687 * 4688 * To be used by css_for_each_descendant_post(). Find the next descendant 4689 * to visit for post-order traversal of @root's descendants. @root is 4690 * included in the iteration and the last node to be visited. 4691 * 4692 * While this function requires cgroup_mutex or RCU read locking, it 4693 * doesn't require the whole traversal to be contained in a single critical 4694 * section. This function will return the correct next descendant as long 4695 * as both @pos and @cgroup are accessible and @pos is a descendant of 4696 * @cgroup. 4697 * 4698 * If a subsystem synchronizes ->css_online() and the start of iteration, a 4699 * css which finished ->css_online() is guaranteed to be visible in the 4700 * future iterations and will stay visible until the last reference is put. 4701 * A css which hasn't finished ->css_online() or already finished 4702 * ->css_offline() may show up during traversal. It's each subsystem's 4703 * responsibility to synchronize against on/offlining. 4704 */ 4705 struct cgroup_subsys_state * 4706 css_next_descendant_post(struct cgroup_subsys_state *pos, 4707 struct cgroup_subsys_state *root) 4708 { 4709 struct cgroup_subsys_state *next; 4710 4711 cgroup_assert_mutex_or_rcu_locked(); 4712 4713 /* if first iteration, visit leftmost descendant which may be @root */ 4714 if (!pos) 4715 return css_leftmost_descendant(root); 4716 4717 /* if we visited @root, we're done */ 4718 if (pos == root) 4719 return NULL; 4720 4721 /* if there's an unvisited sibling, visit its leftmost descendant */ 4722 next = css_next_child(pos, pos->parent); 4723 if (next) 4724 return css_leftmost_descendant(next); 4725 4726 /* no sibling left, visit parent */ 4727 return pos->parent; 4728 } 4729 4730 /** 4731 * css_has_online_children - does a css have online children 4732 * @css: the target css 4733 * 4734 * Returns %true if @css has any online children; otherwise, %false. This 4735 * function can be called from any context but the caller is responsible 4736 * for synchronizing against on/offlining as necessary. 4737 */ 4738 bool css_has_online_children(struct cgroup_subsys_state *css) 4739 { 4740 struct cgroup_subsys_state *child; 4741 bool ret = false; 4742 4743 rcu_read_lock(); 4744 css_for_each_child(child, css) { 4745 if (child->flags & CSS_ONLINE) { 4746 ret = true; 4747 break; 4748 } 4749 } 4750 rcu_read_unlock(); 4751 return ret; 4752 } 4753 4754 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it) 4755 { 4756 struct list_head *l; 4757 struct cgrp_cset_link *link; 4758 struct css_set *cset; 4759 4760 lockdep_assert_held(&css_set_lock); 4761 4762 /* find the next threaded cset */ 4763 if (it->tcset_pos) { 4764 l = it->tcset_pos->next; 4765 4766 if (l != it->tcset_head) { 4767 it->tcset_pos = l; 4768 return container_of(l, struct css_set, 4769 threaded_csets_node); 4770 } 4771 4772 it->tcset_pos = NULL; 4773 } 4774 4775 /* find the next cset */ 4776 l = it->cset_pos; 4777 l = l->next; 4778 if (l == it->cset_head) { 4779 it->cset_pos = NULL; 4780 return NULL; 4781 } 4782 4783 if (it->ss) { 4784 cset = container_of(l, struct css_set, e_cset_node[it->ss->id]); 4785 } else { 4786 link = list_entry(l, struct cgrp_cset_link, cset_link); 4787 cset = link->cset; 4788 } 4789 4790 it->cset_pos = l; 4791 4792 /* initialize threaded css_set walking */ 4793 if (it->flags & CSS_TASK_ITER_THREADED) { 4794 if (it->cur_dcset) 4795 put_css_set_locked(it->cur_dcset); 4796 it->cur_dcset = cset; 4797 get_css_set(cset); 4798 4799 it->tcset_head = &cset->threaded_csets; 4800 it->tcset_pos = &cset->threaded_csets; 4801 } 4802 4803 return cset; 4804 } 4805 4806 /** 4807 * css_task_iter_advance_css_set - advance a task iterator to the next css_set 4808 * @it: the iterator to advance 4809 * 4810 * Advance @it to the next css_set to walk. 4811 */ 4812 static void css_task_iter_advance_css_set(struct css_task_iter *it) 4813 { 4814 struct css_set *cset; 4815 4816 lockdep_assert_held(&css_set_lock); 4817 4818 /* Advance to the next non-empty css_set and find first non-empty tasks list*/ 4819 while ((cset = css_task_iter_next_css_set(it))) { 4820 if (!list_empty(&cset->tasks)) { 4821 it->cur_tasks_head = &cset->tasks; 4822 break; 4823 } else if (!list_empty(&cset->mg_tasks)) { 4824 it->cur_tasks_head = &cset->mg_tasks; 4825 break; 4826 } else if (!list_empty(&cset->dying_tasks)) { 4827 it->cur_tasks_head = &cset->dying_tasks; 4828 break; 4829 } 4830 } 4831 if (!cset) { 4832 it->task_pos = NULL; 4833 return; 4834 } 4835 it->task_pos = it->cur_tasks_head->next; 4836 4837 /* 4838 * We don't keep css_sets locked across iteration steps and thus 4839 * need to take steps to ensure that iteration can be resumed after 4840 * the lock is re-acquired. Iteration is performed at two levels - 4841 * css_sets and tasks in them. 4842 * 4843 * Once created, a css_set never leaves its cgroup lists, so a 4844 * pinned css_set is guaranteed to stay put and we can resume 4845 * iteration afterwards. 4846 * 4847 * Tasks may leave @cset across iteration steps. This is resolved 4848 * by registering each iterator with the css_set currently being 4849 * walked and making css_set_move_task() advance iterators whose 4850 * next task is leaving. 4851 */ 4852 if (it->cur_cset) { 4853 list_del(&it->iters_node); 4854 put_css_set_locked(it->cur_cset); 4855 } 4856 get_css_set(cset); 4857 it->cur_cset = cset; 4858 list_add(&it->iters_node, &cset->task_iters); 4859 } 4860 4861 static void css_task_iter_skip(struct css_task_iter *it, 4862 struct task_struct *task) 4863 { 4864 lockdep_assert_held(&css_set_lock); 4865 4866 if (it->task_pos == &task->cg_list) { 4867 it->task_pos = it->task_pos->next; 4868 it->flags |= CSS_TASK_ITER_SKIPPED; 4869 } 4870 } 4871 4872 static void css_task_iter_advance(struct css_task_iter *it) 4873 { 4874 struct task_struct *task; 4875 4876 lockdep_assert_held(&css_set_lock); 4877 repeat: 4878 if (it->task_pos) { 4879 /* 4880 * Advance iterator to find next entry. We go through cset 4881 * tasks, mg_tasks and dying_tasks, when consumed we move onto 4882 * the next cset. 4883 */ 4884 if (it->flags & CSS_TASK_ITER_SKIPPED) 4885 it->flags &= ~CSS_TASK_ITER_SKIPPED; 4886 else 4887 it->task_pos = it->task_pos->next; 4888 4889 if (it->task_pos == &it->cur_cset->tasks) { 4890 it->cur_tasks_head = &it->cur_cset->mg_tasks; 4891 it->task_pos = it->cur_tasks_head->next; 4892 } 4893 if (it->task_pos == &it->cur_cset->mg_tasks) { 4894 it->cur_tasks_head = &it->cur_cset->dying_tasks; 4895 it->task_pos = it->cur_tasks_head->next; 4896 } 4897 if (it->task_pos == &it->cur_cset->dying_tasks) 4898 css_task_iter_advance_css_set(it); 4899 } else { 4900 /* called from start, proceed to the first cset */ 4901 css_task_iter_advance_css_set(it); 4902 } 4903 4904 if (!it->task_pos) 4905 return; 4906 4907 task = list_entry(it->task_pos, struct task_struct, cg_list); 4908 4909 if (it->flags & CSS_TASK_ITER_PROCS) { 4910 /* if PROCS, skip over tasks which aren't group leaders */ 4911 if (!thread_group_leader(task)) 4912 goto repeat; 4913 4914 /* and dying leaders w/o live member threads */ 4915 if (it->cur_tasks_head == &it->cur_cset->dying_tasks && 4916 !atomic_read(&task->signal->live)) 4917 goto repeat; 4918 } else { 4919 /* skip all dying ones */ 4920 if (it->cur_tasks_head == &it->cur_cset->dying_tasks) 4921 goto repeat; 4922 } 4923 } 4924 4925 /** 4926 * css_task_iter_start - initiate task iteration 4927 * @css: the css to walk tasks of 4928 * @flags: CSS_TASK_ITER_* flags 4929 * @it: the task iterator to use 4930 * 4931 * Initiate iteration through the tasks of @css. The caller can call 4932 * css_task_iter_next() to walk through the tasks until the function 4933 * returns NULL. On completion of iteration, css_task_iter_end() must be 4934 * called. 4935 */ 4936 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags, 4937 struct css_task_iter *it) 4938 { 4939 memset(it, 0, sizeof(*it)); 4940 4941 spin_lock_irq(&css_set_lock); 4942 4943 it->ss = css->ss; 4944 it->flags = flags; 4945 4946 if (CGROUP_HAS_SUBSYS_CONFIG && it->ss) 4947 it->cset_pos = &css->cgroup->e_csets[css->ss->id]; 4948 else 4949 it->cset_pos = &css->cgroup->cset_links; 4950 4951 it->cset_head = it->cset_pos; 4952 4953 css_task_iter_advance(it); 4954 4955 spin_unlock_irq(&css_set_lock); 4956 } 4957 4958 /** 4959 * css_task_iter_next - return the next task for the iterator 4960 * @it: the task iterator being iterated 4961 * 4962 * The "next" function for task iteration. @it should have been 4963 * initialized via css_task_iter_start(). Returns NULL when the iteration 4964 * reaches the end. 4965 */ 4966 struct task_struct *css_task_iter_next(struct css_task_iter *it) 4967 { 4968 if (it->cur_task) { 4969 put_task_struct(it->cur_task); 4970 it->cur_task = NULL; 4971 } 4972 4973 spin_lock_irq(&css_set_lock); 4974 4975 /* @it may be half-advanced by skips, finish advancing */ 4976 if (it->flags & CSS_TASK_ITER_SKIPPED) 4977 css_task_iter_advance(it); 4978 4979 if (it->task_pos) { 4980 it->cur_task = list_entry(it->task_pos, struct task_struct, 4981 cg_list); 4982 get_task_struct(it->cur_task); 4983 css_task_iter_advance(it); 4984 } 4985 4986 spin_unlock_irq(&css_set_lock); 4987 4988 return it->cur_task; 4989 } 4990 4991 /** 4992 * css_task_iter_end - finish task iteration 4993 * @it: the task iterator to finish 4994 * 4995 * Finish task iteration started by css_task_iter_start(). 4996 */ 4997 void css_task_iter_end(struct css_task_iter *it) 4998 { 4999 if (it->cur_cset) { 5000 spin_lock_irq(&css_set_lock); 5001 list_del(&it->iters_node); 5002 put_css_set_locked(it->cur_cset); 5003 spin_unlock_irq(&css_set_lock); 5004 } 5005 5006 if (it->cur_dcset) 5007 put_css_set(it->cur_dcset); 5008 5009 if (it->cur_task) 5010 put_task_struct(it->cur_task); 5011 } 5012 5013 static void cgroup_procs_release(struct kernfs_open_file *of) 5014 { 5015 struct cgroup_file_ctx *ctx = of->priv; 5016 5017 if (ctx->procs.started) 5018 css_task_iter_end(&ctx->procs.iter); 5019 } 5020 5021 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos) 5022 { 5023 struct kernfs_open_file *of = s->private; 5024 struct cgroup_file_ctx *ctx = of->priv; 5025 5026 if (pos) 5027 (*pos)++; 5028 5029 return css_task_iter_next(&ctx->procs.iter); 5030 } 5031 5032 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos, 5033 unsigned int iter_flags) 5034 { 5035 struct kernfs_open_file *of = s->private; 5036 struct cgroup *cgrp = seq_css(s)->cgroup; 5037 struct cgroup_file_ctx *ctx = of->priv; 5038 struct css_task_iter *it = &ctx->procs.iter; 5039 5040 /* 5041 * When a seq_file is seeked, it's always traversed sequentially 5042 * from position 0, so we can simply keep iterating on !0 *pos. 5043 */ 5044 if (!ctx->procs.started) { 5045 if (WARN_ON_ONCE((*pos))) 5046 return ERR_PTR(-EINVAL); 5047 css_task_iter_start(&cgrp->self, iter_flags, it); 5048 ctx->procs.started = true; 5049 } else if (!(*pos)) { 5050 css_task_iter_end(it); 5051 css_task_iter_start(&cgrp->self, iter_flags, it); 5052 } else 5053 return it->cur_task; 5054 5055 return cgroup_procs_next(s, NULL, NULL); 5056 } 5057 5058 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos) 5059 { 5060 struct cgroup *cgrp = seq_css(s)->cgroup; 5061 5062 /* 5063 * All processes of a threaded subtree belong to the domain cgroup 5064 * of the subtree. Only threads can be distributed across the 5065 * subtree. Reject reads on cgroup.procs in the subtree proper. 5066 * They're always empty anyway. 5067 */ 5068 if (cgroup_is_threaded(cgrp)) 5069 return ERR_PTR(-EOPNOTSUPP); 5070 5071 return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS | 5072 CSS_TASK_ITER_THREADED); 5073 } 5074 5075 static int cgroup_procs_show(struct seq_file *s, void *v) 5076 { 5077 seq_printf(s, "%d\n", task_pid_vnr(v)); 5078 return 0; 5079 } 5080 5081 static int cgroup_may_write(const struct cgroup *cgrp, struct super_block *sb) 5082 { 5083 int ret; 5084 struct inode *inode; 5085 5086 lockdep_assert_held(&cgroup_mutex); 5087 5088 inode = kernfs_get_inode(sb, cgrp->procs_file.kn); 5089 if (!inode) 5090 return -ENOMEM; 5091 5092 ret = inode_permission(&nop_mnt_idmap, inode, MAY_WRITE); 5093 iput(inode); 5094 return ret; 5095 } 5096 5097 static int cgroup_procs_write_permission(struct cgroup *src_cgrp, 5098 struct cgroup *dst_cgrp, 5099 struct super_block *sb, 5100 struct cgroup_namespace *ns) 5101 { 5102 struct cgroup *com_cgrp = src_cgrp; 5103 int ret; 5104 5105 lockdep_assert_held(&cgroup_mutex); 5106 5107 /* find the common ancestor */ 5108 while (!cgroup_is_descendant(dst_cgrp, com_cgrp)) 5109 com_cgrp = cgroup_parent(com_cgrp); 5110 5111 /* %current should be authorized to migrate to the common ancestor */ 5112 ret = cgroup_may_write(com_cgrp, sb); 5113 if (ret) 5114 return ret; 5115 5116 /* 5117 * If namespaces are delegation boundaries, %current must be able 5118 * to see both source and destination cgroups from its namespace. 5119 */ 5120 if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) && 5121 (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) || 5122 !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp))) 5123 return -ENOENT; 5124 5125 return 0; 5126 } 5127 5128 static int cgroup_attach_permissions(struct cgroup *src_cgrp, 5129 struct cgroup *dst_cgrp, 5130 struct super_block *sb, bool threadgroup, 5131 struct cgroup_namespace *ns) 5132 { 5133 int ret = 0; 5134 5135 ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, sb, ns); 5136 if (ret) 5137 return ret; 5138 5139 ret = cgroup_migrate_vet_dst(dst_cgrp); 5140 if (ret) 5141 return ret; 5142 5143 if (!threadgroup && (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp)) 5144 ret = -EOPNOTSUPP; 5145 5146 return ret; 5147 } 5148 5149 static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf, 5150 bool threadgroup) 5151 { 5152 struct cgroup_file_ctx *ctx = of->priv; 5153 struct cgroup *src_cgrp, *dst_cgrp; 5154 struct task_struct *task; 5155 const struct cred *saved_cred; 5156 ssize_t ret; 5157 bool threadgroup_locked; 5158 5159 dst_cgrp = cgroup_kn_lock_live(of->kn, false); 5160 if (!dst_cgrp) 5161 return -ENODEV; 5162 5163 task = cgroup_procs_write_start(buf, threadgroup, &threadgroup_locked); 5164 ret = PTR_ERR_OR_ZERO(task); 5165 if (ret) 5166 goto out_unlock; 5167 5168 /* find the source cgroup */ 5169 spin_lock_irq(&css_set_lock); 5170 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root); 5171 spin_unlock_irq(&css_set_lock); 5172 5173 /* 5174 * Process and thread migrations follow same delegation rule. Check 5175 * permissions using the credentials from file open to protect against 5176 * inherited fd attacks. 5177 */ 5178 saved_cred = override_creds(of->file->f_cred); 5179 ret = cgroup_attach_permissions(src_cgrp, dst_cgrp, 5180 of->file->f_path.dentry->d_sb, 5181 threadgroup, ctx->ns); 5182 revert_creds(saved_cred); 5183 if (ret) 5184 goto out_finish; 5185 5186 ret = cgroup_attach_task(dst_cgrp, task, threadgroup); 5187 5188 out_finish: 5189 cgroup_procs_write_finish(task, threadgroup_locked); 5190 out_unlock: 5191 cgroup_kn_unlock(of->kn); 5192 5193 return ret; 5194 } 5195 5196 static ssize_t cgroup_procs_write(struct kernfs_open_file *of, 5197 char *buf, size_t nbytes, loff_t off) 5198 { 5199 return __cgroup_procs_write(of, buf, true) ?: nbytes; 5200 } 5201 5202 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos) 5203 { 5204 return __cgroup_procs_start(s, pos, 0); 5205 } 5206 5207 static ssize_t cgroup_threads_write(struct kernfs_open_file *of, 5208 char *buf, size_t nbytes, loff_t off) 5209 { 5210 return __cgroup_procs_write(of, buf, false) ?: nbytes; 5211 } 5212 5213 /* cgroup core interface files for the default hierarchy */ 5214 static struct cftype cgroup_base_files[] = { 5215 { 5216 .name = "cgroup.type", 5217 .flags = CFTYPE_NOT_ON_ROOT, 5218 .seq_show = cgroup_type_show, 5219 .write = cgroup_type_write, 5220 }, 5221 { 5222 .name = "cgroup.procs", 5223 .flags = CFTYPE_NS_DELEGATABLE, 5224 .file_offset = offsetof(struct cgroup, procs_file), 5225 .release = cgroup_procs_release, 5226 .seq_start = cgroup_procs_start, 5227 .seq_next = cgroup_procs_next, 5228 .seq_show = cgroup_procs_show, 5229 .write = cgroup_procs_write, 5230 }, 5231 { 5232 .name = "cgroup.threads", 5233 .flags = CFTYPE_NS_DELEGATABLE, 5234 .release = cgroup_procs_release, 5235 .seq_start = cgroup_threads_start, 5236 .seq_next = cgroup_procs_next, 5237 .seq_show = cgroup_procs_show, 5238 .write = cgroup_threads_write, 5239 }, 5240 { 5241 .name = "cgroup.controllers", 5242 .seq_show = cgroup_controllers_show, 5243 }, 5244 { 5245 .name = "cgroup.subtree_control", 5246 .flags = CFTYPE_NS_DELEGATABLE, 5247 .seq_show = cgroup_subtree_control_show, 5248 .write = cgroup_subtree_control_write, 5249 }, 5250 { 5251 .name = "cgroup.events", 5252 .flags = CFTYPE_NOT_ON_ROOT, 5253 .file_offset = offsetof(struct cgroup, events_file), 5254 .seq_show = cgroup_events_show, 5255 }, 5256 { 5257 .name = "cgroup.max.descendants", 5258 .seq_show = cgroup_max_descendants_show, 5259 .write = cgroup_max_descendants_write, 5260 }, 5261 { 5262 .name = "cgroup.max.depth", 5263 .seq_show = cgroup_max_depth_show, 5264 .write = cgroup_max_depth_write, 5265 }, 5266 { 5267 .name = "cgroup.stat", 5268 .seq_show = cgroup_stat_show, 5269 }, 5270 { 5271 .name = "cgroup.freeze", 5272 .flags = CFTYPE_NOT_ON_ROOT, 5273 .seq_show = cgroup_freeze_show, 5274 .write = cgroup_freeze_write, 5275 }, 5276 { 5277 .name = "cgroup.kill", 5278 .flags = CFTYPE_NOT_ON_ROOT, 5279 .write = cgroup_kill_write, 5280 }, 5281 { 5282 .name = "cpu.stat", 5283 .seq_show = cpu_stat_show, 5284 }, 5285 { } /* terminate */ 5286 }; 5287 5288 static struct cftype cgroup_psi_files[] = { 5289 #ifdef CONFIG_PSI 5290 { 5291 .name = "io.pressure", 5292 .file_offset = offsetof(struct cgroup, psi_files[PSI_IO]), 5293 .seq_show = cgroup_io_pressure_show, 5294 .write = cgroup_io_pressure_write, 5295 .poll = cgroup_pressure_poll, 5296 .release = cgroup_pressure_release, 5297 }, 5298 { 5299 .name = "memory.pressure", 5300 .file_offset = offsetof(struct cgroup, psi_files[PSI_MEM]), 5301 .seq_show = cgroup_memory_pressure_show, 5302 .write = cgroup_memory_pressure_write, 5303 .poll = cgroup_pressure_poll, 5304 .release = cgroup_pressure_release, 5305 }, 5306 { 5307 .name = "cpu.pressure", 5308 .file_offset = offsetof(struct cgroup, psi_files[PSI_CPU]), 5309 .seq_show = cgroup_cpu_pressure_show, 5310 .write = cgroup_cpu_pressure_write, 5311 .poll = cgroup_pressure_poll, 5312 .release = cgroup_pressure_release, 5313 }, 5314 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 5315 { 5316 .name = "irq.pressure", 5317 .file_offset = offsetof(struct cgroup, psi_files[PSI_IRQ]), 5318 .seq_show = cgroup_irq_pressure_show, 5319 .write = cgroup_irq_pressure_write, 5320 .poll = cgroup_pressure_poll, 5321 .release = cgroup_pressure_release, 5322 }, 5323 #endif 5324 { 5325 .name = "cgroup.pressure", 5326 .seq_show = cgroup_pressure_show, 5327 .write = cgroup_pressure_write, 5328 }, 5329 #endif /* CONFIG_PSI */ 5330 { } /* terminate */ 5331 }; 5332 5333 /* 5334 * css destruction is four-stage process. 5335 * 5336 * 1. Destruction starts. Killing of the percpu_ref is initiated. 5337 * Implemented in kill_css(). 5338 * 5339 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs 5340 * and thus css_tryget_online() is guaranteed to fail, the css can be 5341 * offlined by invoking offline_css(). After offlining, the base ref is 5342 * put. Implemented in css_killed_work_fn(). 5343 * 5344 * 3. When the percpu_ref reaches zero, the only possible remaining 5345 * accessors are inside RCU read sections. css_release() schedules the 5346 * RCU callback. 5347 * 5348 * 4. After the grace period, the css can be freed. Implemented in 5349 * css_free_work_fn(). 5350 * 5351 * It is actually hairier because both step 2 and 4 require process context 5352 * and thus involve punting to css->destroy_work adding two additional 5353 * steps to the already complex sequence. 5354 */ 5355 static void css_free_rwork_fn(struct work_struct *work) 5356 { 5357 struct cgroup_subsys_state *css = container_of(to_rcu_work(work), 5358 struct cgroup_subsys_state, destroy_rwork); 5359 struct cgroup_subsys *ss = css->ss; 5360 struct cgroup *cgrp = css->cgroup; 5361 5362 percpu_ref_exit(&css->refcnt); 5363 5364 if (ss) { 5365 /* css free path */ 5366 struct cgroup_subsys_state *parent = css->parent; 5367 int id = css->id; 5368 5369 ss->css_free(css); 5370 cgroup_idr_remove(&ss->css_idr, id); 5371 cgroup_put(cgrp); 5372 5373 if (parent) 5374 css_put(parent); 5375 } else { 5376 /* cgroup free path */ 5377 atomic_dec(&cgrp->root->nr_cgrps); 5378 cgroup1_pidlist_destroy_all(cgrp); 5379 cancel_work_sync(&cgrp->release_agent_work); 5380 bpf_cgrp_storage_free(cgrp); 5381 5382 if (cgroup_parent(cgrp)) { 5383 /* 5384 * We get a ref to the parent, and put the ref when 5385 * this cgroup is being freed, so it's guaranteed 5386 * that the parent won't be destroyed before its 5387 * children. 5388 */ 5389 cgroup_put(cgroup_parent(cgrp)); 5390 kernfs_put(cgrp->kn); 5391 psi_cgroup_free(cgrp); 5392 cgroup_rstat_exit(cgrp); 5393 kfree(cgrp); 5394 } else { 5395 /* 5396 * This is root cgroup's refcnt reaching zero, 5397 * which indicates that the root should be 5398 * released. 5399 */ 5400 cgroup_destroy_root(cgrp->root); 5401 } 5402 } 5403 } 5404 5405 static void css_release_work_fn(struct work_struct *work) 5406 { 5407 struct cgroup_subsys_state *css = 5408 container_of(work, struct cgroup_subsys_state, destroy_work); 5409 struct cgroup_subsys *ss = css->ss; 5410 struct cgroup *cgrp = css->cgroup; 5411 5412 cgroup_lock(); 5413 5414 css->flags |= CSS_RELEASED; 5415 list_del_rcu(&css->sibling); 5416 5417 if (ss) { 5418 /* css release path */ 5419 if (!list_empty(&css->rstat_css_node)) { 5420 cgroup_rstat_flush(cgrp); 5421 list_del_rcu(&css->rstat_css_node); 5422 } 5423 5424 cgroup_idr_replace(&ss->css_idr, NULL, css->id); 5425 if (ss->css_released) 5426 ss->css_released(css); 5427 } else { 5428 struct cgroup *tcgrp; 5429 5430 /* cgroup release path */ 5431 TRACE_CGROUP_PATH(release, cgrp); 5432 5433 cgroup_rstat_flush(cgrp); 5434 5435 spin_lock_irq(&css_set_lock); 5436 for (tcgrp = cgroup_parent(cgrp); tcgrp; 5437 tcgrp = cgroup_parent(tcgrp)) 5438 tcgrp->nr_dying_descendants--; 5439 spin_unlock_irq(&css_set_lock); 5440 5441 /* 5442 * There are two control paths which try to determine 5443 * cgroup from dentry without going through kernfs - 5444 * cgroupstats_build() and css_tryget_online_from_dir(). 5445 * Those are supported by RCU protecting clearing of 5446 * cgrp->kn->priv backpointer. 5447 */ 5448 if (cgrp->kn) 5449 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, 5450 NULL); 5451 } 5452 5453 cgroup_unlock(); 5454 5455 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn); 5456 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork); 5457 } 5458 5459 static void css_release(struct percpu_ref *ref) 5460 { 5461 struct cgroup_subsys_state *css = 5462 container_of(ref, struct cgroup_subsys_state, refcnt); 5463 5464 INIT_WORK(&css->destroy_work, css_release_work_fn); 5465 queue_work(cgroup_destroy_wq, &css->destroy_work); 5466 } 5467 5468 static void init_and_link_css(struct cgroup_subsys_state *css, 5469 struct cgroup_subsys *ss, struct cgroup *cgrp) 5470 { 5471 lockdep_assert_held(&cgroup_mutex); 5472 5473 cgroup_get_live(cgrp); 5474 5475 memset(css, 0, sizeof(*css)); 5476 css->cgroup = cgrp; 5477 css->ss = ss; 5478 css->id = -1; 5479 INIT_LIST_HEAD(&css->sibling); 5480 INIT_LIST_HEAD(&css->children); 5481 INIT_LIST_HEAD(&css->rstat_css_node); 5482 css->serial_nr = css_serial_nr_next++; 5483 atomic_set(&css->online_cnt, 0); 5484 5485 if (cgroup_parent(cgrp)) { 5486 css->parent = cgroup_css(cgroup_parent(cgrp), ss); 5487 css_get(css->parent); 5488 } 5489 5490 if (ss->css_rstat_flush) 5491 list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list); 5492 5493 BUG_ON(cgroup_css(cgrp, ss)); 5494 } 5495 5496 /* invoke ->css_online() on a new CSS and mark it online if successful */ 5497 static int online_css(struct cgroup_subsys_state *css) 5498 { 5499 struct cgroup_subsys *ss = css->ss; 5500 int ret = 0; 5501 5502 lockdep_assert_held(&cgroup_mutex); 5503 5504 if (ss->css_online) 5505 ret = ss->css_online(css); 5506 if (!ret) { 5507 css->flags |= CSS_ONLINE; 5508 rcu_assign_pointer(css->cgroup->subsys[ss->id], css); 5509 5510 atomic_inc(&css->online_cnt); 5511 if (css->parent) 5512 atomic_inc(&css->parent->online_cnt); 5513 } 5514 return ret; 5515 } 5516 5517 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */ 5518 static void offline_css(struct cgroup_subsys_state *css) 5519 { 5520 struct cgroup_subsys *ss = css->ss; 5521 5522 lockdep_assert_held(&cgroup_mutex); 5523 5524 if (!(css->flags & CSS_ONLINE)) 5525 return; 5526 5527 if (ss->css_offline) 5528 ss->css_offline(css); 5529 5530 css->flags &= ~CSS_ONLINE; 5531 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL); 5532 5533 wake_up_all(&css->cgroup->offline_waitq); 5534 } 5535 5536 /** 5537 * css_create - create a cgroup_subsys_state 5538 * @cgrp: the cgroup new css will be associated with 5539 * @ss: the subsys of new css 5540 * 5541 * Create a new css associated with @cgrp - @ss pair. On success, the new 5542 * css is online and installed in @cgrp. This function doesn't create the 5543 * interface files. Returns 0 on success, -errno on failure. 5544 */ 5545 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp, 5546 struct cgroup_subsys *ss) 5547 { 5548 struct cgroup *parent = cgroup_parent(cgrp); 5549 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss); 5550 struct cgroup_subsys_state *css; 5551 int err; 5552 5553 lockdep_assert_held(&cgroup_mutex); 5554 5555 css = ss->css_alloc(parent_css); 5556 if (!css) 5557 css = ERR_PTR(-ENOMEM); 5558 if (IS_ERR(css)) 5559 return css; 5560 5561 init_and_link_css(css, ss, cgrp); 5562 5563 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL); 5564 if (err) 5565 goto err_free_css; 5566 5567 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL); 5568 if (err < 0) 5569 goto err_free_css; 5570 css->id = err; 5571 5572 /* @css is ready to be brought online now, make it visible */ 5573 list_add_tail_rcu(&css->sibling, &parent_css->children); 5574 cgroup_idr_replace(&ss->css_idr, css, css->id); 5575 5576 err = online_css(css); 5577 if (err) 5578 goto err_list_del; 5579 5580 return css; 5581 5582 err_list_del: 5583 list_del_rcu(&css->sibling); 5584 err_free_css: 5585 list_del_rcu(&css->rstat_css_node); 5586 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn); 5587 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork); 5588 return ERR_PTR(err); 5589 } 5590 5591 /* 5592 * The returned cgroup is fully initialized including its control mask, but 5593 * it isn't associated with its kernfs_node and doesn't have the control 5594 * mask applied. 5595 */ 5596 static struct cgroup *cgroup_create(struct cgroup *parent, const char *name, 5597 umode_t mode) 5598 { 5599 struct cgroup_root *root = parent->root; 5600 struct cgroup *cgrp, *tcgrp; 5601 struct kernfs_node *kn; 5602 int level = parent->level + 1; 5603 int ret; 5604 5605 /* allocate the cgroup and its ID, 0 is reserved for the root */ 5606 cgrp = kzalloc(struct_size(cgrp, ancestors, (level + 1)), GFP_KERNEL); 5607 if (!cgrp) 5608 return ERR_PTR(-ENOMEM); 5609 5610 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL); 5611 if (ret) 5612 goto out_free_cgrp; 5613 5614 ret = cgroup_rstat_init(cgrp); 5615 if (ret) 5616 goto out_cancel_ref; 5617 5618 /* create the directory */ 5619 kn = kernfs_create_dir(parent->kn, name, mode, cgrp); 5620 if (IS_ERR(kn)) { 5621 ret = PTR_ERR(kn); 5622 goto out_stat_exit; 5623 } 5624 cgrp->kn = kn; 5625 5626 init_cgroup_housekeeping(cgrp); 5627 5628 cgrp->self.parent = &parent->self; 5629 cgrp->root = root; 5630 cgrp->level = level; 5631 5632 ret = psi_cgroup_alloc(cgrp); 5633 if (ret) 5634 goto out_kernfs_remove; 5635 5636 ret = cgroup_bpf_inherit(cgrp); 5637 if (ret) 5638 goto out_psi_free; 5639 5640 /* 5641 * New cgroup inherits effective freeze counter, and 5642 * if the parent has to be frozen, the child has too. 5643 */ 5644 cgrp->freezer.e_freeze = parent->freezer.e_freeze; 5645 if (cgrp->freezer.e_freeze) { 5646 /* 5647 * Set the CGRP_FREEZE flag, so when a process will be 5648 * attached to the child cgroup, it will become frozen. 5649 * At this point the new cgroup is unpopulated, so we can 5650 * consider it frozen immediately. 5651 */ 5652 set_bit(CGRP_FREEZE, &cgrp->flags); 5653 set_bit(CGRP_FROZEN, &cgrp->flags); 5654 } 5655 5656 spin_lock_irq(&css_set_lock); 5657 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) { 5658 cgrp->ancestors[tcgrp->level] = tcgrp; 5659 5660 if (tcgrp != cgrp) { 5661 tcgrp->nr_descendants++; 5662 5663 /* 5664 * If the new cgroup is frozen, all ancestor cgroups 5665 * get a new frozen descendant, but their state can't 5666 * change because of this. 5667 */ 5668 if (cgrp->freezer.e_freeze) 5669 tcgrp->freezer.nr_frozen_descendants++; 5670 } 5671 } 5672 spin_unlock_irq(&css_set_lock); 5673 5674 if (notify_on_release(parent)) 5675 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags); 5676 5677 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags)) 5678 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags); 5679 5680 cgrp->self.serial_nr = css_serial_nr_next++; 5681 5682 /* allocation complete, commit to creation */ 5683 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children); 5684 atomic_inc(&root->nr_cgrps); 5685 cgroup_get_live(parent); 5686 5687 /* 5688 * On the default hierarchy, a child doesn't automatically inherit 5689 * subtree_control from the parent. Each is configured manually. 5690 */ 5691 if (!cgroup_on_dfl(cgrp)) 5692 cgrp->subtree_control = cgroup_control(cgrp); 5693 5694 cgroup_propagate_control(cgrp); 5695 5696 return cgrp; 5697 5698 out_psi_free: 5699 psi_cgroup_free(cgrp); 5700 out_kernfs_remove: 5701 kernfs_remove(cgrp->kn); 5702 out_stat_exit: 5703 cgroup_rstat_exit(cgrp); 5704 out_cancel_ref: 5705 percpu_ref_exit(&cgrp->self.refcnt); 5706 out_free_cgrp: 5707 kfree(cgrp); 5708 return ERR_PTR(ret); 5709 } 5710 5711 static bool cgroup_check_hierarchy_limits(struct cgroup *parent) 5712 { 5713 struct cgroup *cgroup; 5714 int ret = false; 5715 int level = 1; 5716 5717 lockdep_assert_held(&cgroup_mutex); 5718 5719 for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) { 5720 if (cgroup->nr_descendants >= cgroup->max_descendants) 5721 goto fail; 5722 5723 if (level > cgroup->max_depth) 5724 goto fail; 5725 5726 level++; 5727 } 5728 5729 ret = true; 5730 fail: 5731 return ret; 5732 } 5733 5734 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode) 5735 { 5736 struct cgroup *parent, *cgrp; 5737 int ret; 5738 5739 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */ 5740 if (strchr(name, '\n')) 5741 return -EINVAL; 5742 5743 parent = cgroup_kn_lock_live(parent_kn, false); 5744 if (!parent) 5745 return -ENODEV; 5746 5747 if (!cgroup_check_hierarchy_limits(parent)) { 5748 ret = -EAGAIN; 5749 goto out_unlock; 5750 } 5751 5752 cgrp = cgroup_create(parent, name, mode); 5753 if (IS_ERR(cgrp)) { 5754 ret = PTR_ERR(cgrp); 5755 goto out_unlock; 5756 } 5757 5758 /* 5759 * This extra ref will be put in cgroup_free_fn() and guarantees 5760 * that @cgrp->kn is always accessible. 5761 */ 5762 kernfs_get(cgrp->kn); 5763 5764 ret = cgroup_kn_set_ugid(cgrp->kn); 5765 if (ret) 5766 goto out_destroy; 5767 5768 ret = css_populate_dir(&cgrp->self); 5769 if (ret) 5770 goto out_destroy; 5771 5772 ret = cgroup_apply_control_enable(cgrp); 5773 if (ret) 5774 goto out_destroy; 5775 5776 TRACE_CGROUP_PATH(mkdir, cgrp); 5777 5778 /* let's create and online css's */ 5779 kernfs_activate(cgrp->kn); 5780 5781 ret = 0; 5782 goto out_unlock; 5783 5784 out_destroy: 5785 cgroup_destroy_locked(cgrp); 5786 out_unlock: 5787 cgroup_kn_unlock(parent_kn); 5788 return ret; 5789 } 5790 5791 /* 5792 * This is called when the refcnt of a css is confirmed to be killed. 5793 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to 5794 * initiate destruction and put the css ref from kill_css(). 5795 */ 5796 static void css_killed_work_fn(struct work_struct *work) 5797 { 5798 struct cgroup_subsys_state *css = 5799 container_of(work, struct cgroup_subsys_state, destroy_work); 5800 5801 cgroup_lock(); 5802 5803 do { 5804 offline_css(css); 5805 css_put(css); 5806 /* @css can't go away while we're holding cgroup_mutex */ 5807 css = css->parent; 5808 } while (css && atomic_dec_and_test(&css->online_cnt)); 5809 5810 cgroup_unlock(); 5811 } 5812 5813 /* css kill confirmation processing requires process context, bounce */ 5814 static void css_killed_ref_fn(struct percpu_ref *ref) 5815 { 5816 struct cgroup_subsys_state *css = 5817 container_of(ref, struct cgroup_subsys_state, refcnt); 5818 5819 if (atomic_dec_and_test(&css->online_cnt)) { 5820 INIT_WORK(&css->destroy_work, css_killed_work_fn); 5821 queue_work(cgroup_destroy_wq, &css->destroy_work); 5822 } 5823 } 5824 5825 /** 5826 * kill_css - destroy a css 5827 * @css: css to destroy 5828 * 5829 * This function initiates destruction of @css by removing cgroup interface 5830 * files and putting its base reference. ->css_offline() will be invoked 5831 * asynchronously once css_tryget_online() is guaranteed to fail and when 5832 * the reference count reaches zero, @css will be released. 5833 */ 5834 static void kill_css(struct cgroup_subsys_state *css) 5835 { 5836 lockdep_assert_held(&cgroup_mutex); 5837 5838 if (css->flags & CSS_DYING) 5839 return; 5840 5841 css->flags |= CSS_DYING; 5842 5843 /* 5844 * This must happen before css is disassociated with its cgroup. 5845 * See seq_css() for details. 5846 */ 5847 css_clear_dir(css); 5848 5849 /* 5850 * Killing would put the base ref, but we need to keep it alive 5851 * until after ->css_offline(). 5852 */ 5853 css_get(css); 5854 5855 /* 5856 * cgroup core guarantees that, by the time ->css_offline() is 5857 * invoked, no new css reference will be given out via 5858 * css_tryget_online(). We can't simply call percpu_ref_kill() and 5859 * proceed to offlining css's because percpu_ref_kill() doesn't 5860 * guarantee that the ref is seen as killed on all CPUs on return. 5861 * 5862 * Use percpu_ref_kill_and_confirm() to get notifications as each 5863 * css is confirmed to be seen as killed on all CPUs. 5864 */ 5865 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn); 5866 } 5867 5868 /** 5869 * cgroup_destroy_locked - the first stage of cgroup destruction 5870 * @cgrp: cgroup to be destroyed 5871 * 5872 * css's make use of percpu refcnts whose killing latency shouldn't be 5873 * exposed to userland and are RCU protected. Also, cgroup core needs to 5874 * guarantee that css_tryget_online() won't succeed by the time 5875 * ->css_offline() is invoked. To satisfy all the requirements, 5876 * destruction is implemented in the following two steps. 5877 * 5878 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all 5879 * userland visible parts and start killing the percpu refcnts of 5880 * css's. Set up so that the next stage will be kicked off once all 5881 * the percpu refcnts are confirmed to be killed. 5882 * 5883 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the 5884 * rest of destruction. Once all cgroup references are gone, the 5885 * cgroup is RCU-freed. 5886 * 5887 * This function implements s1. After this step, @cgrp is gone as far as 5888 * the userland is concerned and a new cgroup with the same name may be 5889 * created. As cgroup doesn't care about the names internally, this 5890 * doesn't cause any problem. 5891 */ 5892 static int cgroup_destroy_locked(struct cgroup *cgrp) 5893 __releases(&cgroup_mutex) __acquires(&cgroup_mutex) 5894 { 5895 struct cgroup *tcgrp, *parent = cgroup_parent(cgrp); 5896 struct cgroup_subsys_state *css; 5897 struct cgrp_cset_link *link; 5898 int ssid; 5899 5900 lockdep_assert_held(&cgroup_mutex); 5901 5902 /* 5903 * Only migration can raise populated from zero and we're already 5904 * holding cgroup_mutex. 5905 */ 5906 if (cgroup_is_populated(cgrp)) 5907 return -EBUSY; 5908 5909 /* 5910 * Make sure there's no live children. We can't test emptiness of 5911 * ->self.children as dead children linger on it while being 5912 * drained; otherwise, "rmdir parent/child parent" may fail. 5913 */ 5914 if (css_has_online_children(&cgrp->self)) 5915 return -EBUSY; 5916 5917 /* 5918 * Mark @cgrp and the associated csets dead. The former prevents 5919 * further task migration and child creation by disabling 5920 * cgroup_lock_live_group(). The latter makes the csets ignored by 5921 * the migration path. 5922 */ 5923 cgrp->self.flags &= ~CSS_ONLINE; 5924 5925 spin_lock_irq(&css_set_lock); 5926 list_for_each_entry(link, &cgrp->cset_links, cset_link) 5927 link->cset->dead = true; 5928 spin_unlock_irq(&css_set_lock); 5929 5930 /* initiate massacre of all css's */ 5931 for_each_css(css, ssid, cgrp) 5932 kill_css(css); 5933 5934 /* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */ 5935 css_clear_dir(&cgrp->self); 5936 kernfs_remove(cgrp->kn); 5937 5938 if (cgroup_is_threaded(cgrp)) 5939 parent->nr_threaded_children--; 5940 5941 spin_lock_irq(&css_set_lock); 5942 for (tcgrp = cgroup_parent(cgrp); tcgrp; tcgrp = cgroup_parent(tcgrp)) { 5943 tcgrp->nr_descendants--; 5944 tcgrp->nr_dying_descendants++; 5945 /* 5946 * If the dying cgroup is frozen, decrease frozen descendants 5947 * counters of ancestor cgroups. 5948 */ 5949 if (test_bit(CGRP_FROZEN, &cgrp->flags)) 5950 tcgrp->freezer.nr_frozen_descendants--; 5951 } 5952 spin_unlock_irq(&css_set_lock); 5953 5954 cgroup1_check_for_release(parent); 5955 5956 cgroup_bpf_offline(cgrp); 5957 5958 /* put the base reference */ 5959 percpu_ref_kill(&cgrp->self.refcnt); 5960 5961 return 0; 5962 }; 5963 5964 int cgroup_rmdir(struct kernfs_node *kn) 5965 { 5966 struct cgroup *cgrp; 5967 int ret = 0; 5968 5969 cgrp = cgroup_kn_lock_live(kn, false); 5970 if (!cgrp) 5971 return 0; 5972 5973 ret = cgroup_destroy_locked(cgrp); 5974 if (!ret) 5975 TRACE_CGROUP_PATH(rmdir, cgrp); 5976 5977 cgroup_kn_unlock(kn); 5978 return ret; 5979 } 5980 5981 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = { 5982 .show_options = cgroup_show_options, 5983 .mkdir = cgroup_mkdir, 5984 .rmdir = cgroup_rmdir, 5985 .show_path = cgroup_show_path, 5986 }; 5987 5988 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early) 5989 { 5990 struct cgroup_subsys_state *css; 5991 5992 pr_debug("Initializing cgroup subsys %s\n", ss->name); 5993 5994 cgroup_lock(); 5995 5996 idr_init(&ss->css_idr); 5997 INIT_LIST_HEAD(&ss->cfts); 5998 5999 /* Create the root cgroup state for this subsystem */ 6000 ss->root = &cgrp_dfl_root; 6001 css = ss->css_alloc(NULL); 6002 /* We don't handle early failures gracefully */ 6003 BUG_ON(IS_ERR(css)); 6004 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp); 6005 6006 /* 6007 * Root csses are never destroyed and we can't initialize 6008 * percpu_ref during early init. Disable refcnting. 6009 */ 6010 css->flags |= CSS_NO_REF; 6011 6012 if (early) { 6013 /* allocation can't be done safely during early init */ 6014 css->id = 1; 6015 } else { 6016 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL); 6017 BUG_ON(css->id < 0); 6018 } 6019 6020 /* Update the init_css_set to contain a subsys 6021 * pointer to this state - since the subsystem is 6022 * newly registered, all tasks and hence the 6023 * init_css_set is in the subsystem's root cgroup. */ 6024 init_css_set.subsys[ss->id] = css; 6025 6026 have_fork_callback |= (bool)ss->fork << ss->id; 6027 have_exit_callback |= (bool)ss->exit << ss->id; 6028 have_release_callback |= (bool)ss->release << ss->id; 6029 have_canfork_callback |= (bool)ss->can_fork << ss->id; 6030 6031 /* At system boot, before all subsystems have been 6032 * registered, no tasks have been forked, so we don't 6033 * need to invoke fork callbacks here. */ 6034 BUG_ON(!list_empty(&init_task.tasks)); 6035 6036 BUG_ON(online_css(css)); 6037 6038 cgroup_unlock(); 6039 } 6040 6041 /** 6042 * cgroup_init_early - cgroup initialization at system boot 6043 * 6044 * Initialize cgroups at system boot, and initialize any 6045 * subsystems that request early init. 6046 */ 6047 int __init cgroup_init_early(void) 6048 { 6049 static struct cgroup_fs_context __initdata ctx; 6050 struct cgroup_subsys *ss; 6051 int i; 6052 6053 ctx.root = &cgrp_dfl_root; 6054 init_cgroup_root(&ctx); 6055 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF; 6056 6057 RCU_INIT_POINTER(init_task.cgroups, &init_css_set); 6058 6059 for_each_subsys(ss, i) { 6060 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id, 6061 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n", 6062 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free, 6063 ss->id, ss->name); 6064 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN, 6065 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]); 6066 6067 ss->id = i; 6068 ss->name = cgroup_subsys_name[i]; 6069 if (!ss->legacy_name) 6070 ss->legacy_name = cgroup_subsys_name[i]; 6071 6072 if (ss->early_init) 6073 cgroup_init_subsys(ss, true); 6074 } 6075 return 0; 6076 } 6077 6078 /** 6079 * cgroup_init - cgroup initialization 6080 * 6081 * Register cgroup filesystem and /proc file, and initialize 6082 * any subsystems that didn't request early init. 6083 */ 6084 int __init cgroup_init(void) 6085 { 6086 struct cgroup_subsys *ss; 6087 int ssid; 6088 6089 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16); 6090 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files)); 6091 BUG_ON(cgroup_init_cftypes(NULL, cgroup_psi_files)); 6092 BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files)); 6093 6094 cgroup_rstat_boot(); 6095 6096 get_user_ns(init_cgroup_ns.user_ns); 6097 6098 cgroup_lock(); 6099 6100 /* 6101 * Add init_css_set to the hash table so that dfl_root can link to 6102 * it during init. 6103 */ 6104 hash_add(css_set_table, &init_css_set.hlist, 6105 css_set_hash(init_css_set.subsys)); 6106 6107 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0)); 6108 6109 cgroup_unlock(); 6110 6111 for_each_subsys(ss, ssid) { 6112 if (ss->early_init) { 6113 struct cgroup_subsys_state *css = 6114 init_css_set.subsys[ss->id]; 6115 6116 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, 6117 GFP_KERNEL); 6118 BUG_ON(css->id < 0); 6119 } else { 6120 cgroup_init_subsys(ss, false); 6121 } 6122 6123 list_add_tail(&init_css_set.e_cset_node[ssid], 6124 &cgrp_dfl_root.cgrp.e_csets[ssid]); 6125 6126 /* 6127 * Setting dfl_root subsys_mask needs to consider the 6128 * disabled flag and cftype registration needs kmalloc, 6129 * both of which aren't available during early_init. 6130 */ 6131 if (!cgroup_ssid_enabled(ssid)) 6132 continue; 6133 6134 if (cgroup1_ssid_disabled(ssid)) 6135 printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n", 6136 ss->name); 6137 6138 cgrp_dfl_root.subsys_mask |= 1 << ss->id; 6139 6140 /* implicit controllers must be threaded too */ 6141 WARN_ON(ss->implicit_on_dfl && !ss->threaded); 6142 6143 if (ss->implicit_on_dfl) 6144 cgrp_dfl_implicit_ss_mask |= 1 << ss->id; 6145 else if (!ss->dfl_cftypes) 6146 cgrp_dfl_inhibit_ss_mask |= 1 << ss->id; 6147 6148 if (ss->threaded) 6149 cgrp_dfl_threaded_ss_mask |= 1 << ss->id; 6150 6151 if (ss->dfl_cftypes == ss->legacy_cftypes) { 6152 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes)); 6153 } else { 6154 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes)); 6155 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes)); 6156 } 6157 6158 if (ss->bind) 6159 ss->bind(init_css_set.subsys[ssid]); 6160 6161 cgroup_lock(); 6162 css_populate_dir(init_css_set.subsys[ssid]); 6163 cgroup_unlock(); 6164 } 6165 6166 /* init_css_set.subsys[] has been updated, re-hash */ 6167 hash_del(&init_css_set.hlist); 6168 hash_add(css_set_table, &init_css_set.hlist, 6169 css_set_hash(init_css_set.subsys)); 6170 6171 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup")); 6172 WARN_ON(register_filesystem(&cgroup_fs_type)); 6173 WARN_ON(register_filesystem(&cgroup2_fs_type)); 6174 WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show)); 6175 #ifdef CONFIG_CPUSETS 6176 WARN_ON(register_filesystem(&cpuset_fs_type)); 6177 #endif 6178 6179 return 0; 6180 } 6181 6182 static int __init cgroup_wq_init(void) 6183 { 6184 /* 6185 * There isn't much point in executing destruction path in 6186 * parallel. Good chunk is serialized with cgroup_mutex anyway. 6187 * Use 1 for @max_active. 6188 * 6189 * We would prefer to do this in cgroup_init() above, but that 6190 * is called before init_workqueues(): so leave this until after. 6191 */ 6192 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1); 6193 BUG_ON(!cgroup_destroy_wq); 6194 return 0; 6195 } 6196 core_initcall(cgroup_wq_init); 6197 6198 void cgroup_path_from_kernfs_id(u64 id, char *buf, size_t buflen) 6199 { 6200 struct kernfs_node *kn; 6201 6202 kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id); 6203 if (!kn) 6204 return; 6205 kernfs_path(kn, buf, buflen); 6206 kernfs_put(kn); 6207 } 6208 6209 /* 6210 * cgroup_get_from_id : get the cgroup associated with cgroup id 6211 * @id: cgroup id 6212 * On success return the cgrp or ERR_PTR on failure 6213 * Only cgroups within current task's cgroup NS are valid. 6214 */ 6215 struct cgroup *cgroup_get_from_id(u64 id) 6216 { 6217 struct kernfs_node *kn; 6218 struct cgroup *cgrp, *root_cgrp; 6219 6220 kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id); 6221 if (!kn) 6222 return ERR_PTR(-ENOENT); 6223 6224 if (kernfs_type(kn) != KERNFS_DIR) { 6225 kernfs_put(kn); 6226 return ERR_PTR(-ENOENT); 6227 } 6228 6229 rcu_read_lock(); 6230 6231 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); 6232 if (cgrp && !cgroup_tryget(cgrp)) 6233 cgrp = NULL; 6234 6235 rcu_read_unlock(); 6236 kernfs_put(kn); 6237 6238 if (!cgrp) 6239 return ERR_PTR(-ENOENT); 6240 6241 root_cgrp = current_cgns_cgroup_dfl(); 6242 if (!cgroup_is_descendant(cgrp, root_cgrp)) { 6243 cgroup_put(cgrp); 6244 return ERR_PTR(-ENOENT); 6245 } 6246 6247 return cgrp; 6248 } 6249 EXPORT_SYMBOL_GPL(cgroup_get_from_id); 6250 6251 /* 6252 * proc_cgroup_show() 6253 * - Print task's cgroup paths into seq_file, one line for each hierarchy 6254 * - Used for /proc/<pid>/cgroup. 6255 */ 6256 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns, 6257 struct pid *pid, struct task_struct *tsk) 6258 { 6259 char *buf; 6260 int retval; 6261 struct cgroup_root *root; 6262 6263 retval = -ENOMEM; 6264 buf = kmalloc(PATH_MAX, GFP_KERNEL); 6265 if (!buf) 6266 goto out; 6267 6268 cgroup_lock(); 6269 spin_lock_irq(&css_set_lock); 6270 6271 for_each_root(root) { 6272 struct cgroup_subsys *ss; 6273 struct cgroup *cgrp; 6274 int ssid, count = 0; 6275 6276 if (root == &cgrp_dfl_root && !READ_ONCE(cgrp_dfl_visible)) 6277 continue; 6278 6279 seq_printf(m, "%d:", root->hierarchy_id); 6280 if (root != &cgrp_dfl_root) 6281 for_each_subsys(ss, ssid) 6282 if (root->subsys_mask & (1 << ssid)) 6283 seq_printf(m, "%s%s", count++ ? "," : "", 6284 ss->legacy_name); 6285 if (strlen(root->name)) 6286 seq_printf(m, "%sname=%s", count ? "," : "", 6287 root->name); 6288 seq_putc(m, ':'); 6289 6290 cgrp = task_cgroup_from_root(tsk, root); 6291 6292 /* 6293 * On traditional hierarchies, all zombie tasks show up as 6294 * belonging to the root cgroup. On the default hierarchy, 6295 * while a zombie doesn't show up in "cgroup.procs" and 6296 * thus can't be migrated, its /proc/PID/cgroup keeps 6297 * reporting the cgroup it belonged to before exiting. If 6298 * the cgroup is removed before the zombie is reaped, 6299 * " (deleted)" is appended to the cgroup path. 6300 */ 6301 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) { 6302 retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX, 6303 current->nsproxy->cgroup_ns); 6304 if (retval >= PATH_MAX) 6305 retval = -ENAMETOOLONG; 6306 if (retval < 0) 6307 goto out_unlock; 6308 6309 seq_puts(m, buf); 6310 } else { 6311 seq_puts(m, "/"); 6312 } 6313 6314 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp)) 6315 seq_puts(m, " (deleted)\n"); 6316 else 6317 seq_putc(m, '\n'); 6318 } 6319 6320 retval = 0; 6321 out_unlock: 6322 spin_unlock_irq(&css_set_lock); 6323 cgroup_unlock(); 6324 kfree(buf); 6325 out: 6326 return retval; 6327 } 6328 6329 /** 6330 * cgroup_fork - initialize cgroup related fields during copy_process() 6331 * @child: pointer to task_struct of forking parent process. 6332 * 6333 * A task is associated with the init_css_set until cgroup_post_fork() 6334 * attaches it to the target css_set. 6335 */ 6336 void cgroup_fork(struct task_struct *child) 6337 { 6338 RCU_INIT_POINTER(child->cgroups, &init_css_set); 6339 INIT_LIST_HEAD(&child->cg_list); 6340 } 6341 6342 /** 6343 * cgroup_v1v2_get_from_file - get a cgroup pointer from a file pointer 6344 * @f: file corresponding to cgroup_dir 6345 * 6346 * Find the cgroup from a file pointer associated with a cgroup directory. 6347 * Returns a pointer to the cgroup on success. ERR_PTR is returned if the 6348 * cgroup cannot be found. 6349 */ 6350 static struct cgroup *cgroup_v1v2_get_from_file(struct file *f) 6351 { 6352 struct cgroup_subsys_state *css; 6353 6354 css = css_tryget_online_from_dir(f->f_path.dentry, NULL); 6355 if (IS_ERR(css)) 6356 return ERR_CAST(css); 6357 6358 return css->cgroup; 6359 } 6360 6361 /** 6362 * cgroup_get_from_file - same as cgroup_v1v2_get_from_file, but only supports 6363 * cgroup2. 6364 * @f: file corresponding to cgroup2_dir 6365 */ 6366 static struct cgroup *cgroup_get_from_file(struct file *f) 6367 { 6368 struct cgroup *cgrp = cgroup_v1v2_get_from_file(f); 6369 6370 if (IS_ERR(cgrp)) 6371 return ERR_CAST(cgrp); 6372 6373 if (!cgroup_on_dfl(cgrp)) { 6374 cgroup_put(cgrp); 6375 return ERR_PTR(-EBADF); 6376 } 6377 6378 return cgrp; 6379 } 6380 6381 /** 6382 * cgroup_css_set_fork - find or create a css_set for a child process 6383 * @kargs: the arguments passed to create the child process 6384 * 6385 * This functions finds or creates a new css_set which the child 6386 * process will be attached to in cgroup_post_fork(). By default, 6387 * the child process will be given the same css_set as its parent. 6388 * 6389 * If CLONE_INTO_CGROUP is specified this function will try to find an 6390 * existing css_set which includes the requested cgroup and if not create 6391 * a new css_set that the child will be attached to later. If this function 6392 * succeeds it will hold cgroup_threadgroup_rwsem on return. If 6393 * CLONE_INTO_CGROUP is requested this function will grab cgroup mutex 6394 * before grabbing cgroup_threadgroup_rwsem and will hold a reference 6395 * to the target cgroup. 6396 */ 6397 static int cgroup_css_set_fork(struct kernel_clone_args *kargs) 6398 __acquires(&cgroup_mutex) __acquires(&cgroup_threadgroup_rwsem) 6399 { 6400 int ret; 6401 struct cgroup *dst_cgrp = NULL; 6402 struct css_set *cset; 6403 struct super_block *sb; 6404 struct file *f; 6405 6406 if (kargs->flags & CLONE_INTO_CGROUP) 6407 cgroup_lock(); 6408 6409 cgroup_threadgroup_change_begin(current); 6410 6411 spin_lock_irq(&css_set_lock); 6412 cset = task_css_set(current); 6413 get_css_set(cset); 6414 spin_unlock_irq(&css_set_lock); 6415 6416 if (!(kargs->flags & CLONE_INTO_CGROUP)) { 6417 kargs->cset = cset; 6418 return 0; 6419 } 6420 6421 f = fget_raw(kargs->cgroup); 6422 if (!f) { 6423 ret = -EBADF; 6424 goto err; 6425 } 6426 sb = f->f_path.dentry->d_sb; 6427 6428 dst_cgrp = cgroup_get_from_file(f); 6429 if (IS_ERR(dst_cgrp)) { 6430 ret = PTR_ERR(dst_cgrp); 6431 dst_cgrp = NULL; 6432 goto err; 6433 } 6434 6435 if (cgroup_is_dead(dst_cgrp)) { 6436 ret = -ENODEV; 6437 goto err; 6438 } 6439 6440 /* 6441 * Verify that we the target cgroup is writable for us. This is 6442 * usually done by the vfs layer but since we're not going through 6443 * the vfs layer here we need to do it "manually". 6444 */ 6445 ret = cgroup_may_write(dst_cgrp, sb); 6446 if (ret) 6447 goto err; 6448 6449 /* 6450 * Spawning a task directly into a cgroup works by passing a file 6451 * descriptor to the target cgroup directory. This can even be an O_PATH 6452 * file descriptor. But it can never be a cgroup.procs file descriptor. 6453 * This was done on purpose so spawning into a cgroup could be 6454 * conceptualized as an atomic 6455 * 6456 * fd = openat(dfd_cgroup, "cgroup.procs", ...); 6457 * write(fd, <child-pid>, ...); 6458 * 6459 * sequence, i.e. it's a shorthand for the caller opening and writing 6460 * cgroup.procs of the cgroup indicated by @dfd_cgroup. This allows us 6461 * to always use the caller's credentials. 6462 */ 6463 ret = cgroup_attach_permissions(cset->dfl_cgrp, dst_cgrp, sb, 6464 !(kargs->flags & CLONE_THREAD), 6465 current->nsproxy->cgroup_ns); 6466 if (ret) 6467 goto err; 6468 6469 kargs->cset = find_css_set(cset, dst_cgrp); 6470 if (!kargs->cset) { 6471 ret = -ENOMEM; 6472 goto err; 6473 } 6474 6475 put_css_set(cset); 6476 fput(f); 6477 kargs->cgrp = dst_cgrp; 6478 return ret; 6479 6480 err: 6481 cgroup_threadgroup_change_end(current); 6482 cgroup_unlock(); 6483 if (f) 6484 fput(f); 6485 if (dst_cgrp) 6486 cgroup_put(dst_cgrp); 6487 put_css_set(cset); 6488 if (kargs->cset) 6489 put_css_set(kargs->cset); 6490 return ret; 6491 } 6492 6493 /** 6494 * cgroup_css_set_put_fork - drop references we took during fork 6495 * @kargs: the arguments passed to create the child process 6496 * 6497 * Drop references to the prepared css_set and target cgroup if 6498 * CLONE_INTO_CGROUP was requested. 6499 */ 6500 static void cgroup_css_set_put_fork(struct kernel_clone_args *kargs) 6501 __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex) 6502 { 6503 struct cgroup *cgrp = kargs->cgrp; 6504 struct css_set *cset = kargs->cset; 6505 6506 cgroup_threadgroup_change_end(current); 6507 6508 if (cset) { 6509 put_css_set(cset); 6510 kargs->cset = NULL; 6511 } 6512 6513 if (kargs->flags & CLONE_INTO_CGROUP) { 6514 cgroup_unlock(); 6515 if (cgrp) { 6516 cgroup_put(cgrp); 6517 kargs->cgrp = NULL; 6518 } 6519 } 6520 } 6521 6522 /** 6523 * cgroup_can_fork - called on a new task before the process is exposed 6524 * @child: the child process 6525 * @kargs: the arguments passed to create the child process 6526 * 6527 * This prepares a new css_set for the child process which the child will 6528 * be attached to in cgroup_post_fork(). 6529 * This calls the subsystem can_fork() callbacks. If the cgroup_can_fork() 6530 * callback returns an error, the fork aborts with that error code. This 6531 * allows for a cgroup subsystem to conditionally allow or deny new forks. 6532 */ 6533 int cgroup_can_fork(struct task_struct *child, struct kernel_clone_args *kargs) 6534 { 6535 struct cgroup_subsys *ss; 6536 int i, j, ret; 6537 6538 ret = cgroup_css_set_fork(kargs); 6539 if (ret) 6540 return ret; 6541 6542 do_each_subsys_mask(ss, i, have_canfork_callback) { 6543 ret = ss->can_fork(child, kargs->cset); 6544 if (ret) 6545 goto out_revert; 6546 } while_each_subsys_mask(); 6547 6548 return 0; 6549 6550 out_revert: 6551 for_each_subsys(ss, j) { 6552 if (j >= i) 6553 break; 6554 if (ss->cancel_fork) 6555 ss->cancel_fork(child, kargs->cset); 6556 } 6557 6558 cgroup_css_set_put_fork(kargs); 6559 6560 return ret; 6561 } 6562 6563 /** 6564 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork() 6565 * @child: the child process 6566 * @kargs: the arguments passed to create the child process 6567 * 6568 * This calls the cancel_fork() callbacks if a fork failed *after* 6569 * cgroup_can_fork() succeeded and cleans up references we took to 6570 * prepare a new css_set for the child process in cgroup_can_fork(). 6571 */ 6572 void cgroup_cancel_fork(struct task_struct *child, 6573 struct kernel_clone_args *kargs) 6574 { 6575 struct cgroup_subsys *ss; 6576 int i; 6577 6578 for_each_subsys(ss, i) 6579 if (ss->cancel_fork) 6580 ss->cancel_fork(child, kargs->cset); 6581 6582 cgroup_css_set_put_fork(kargs); 6583 } 6584 6585 /** 6586 * cgroup_post_fork - finalize cgroup setup for the child process 6587 * @child: the child process 6588 * @kargs: the arguments passed to create the child process 6589 * 6590 * Attach the child process to its css_set calling the subsystem fork() 6591 * callbacks. 6592 */ 6593 void cgroup_post_fork(struct task_struct *child, 6594 struct kernel_clone_args *kargs) 6595 __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex) 6596 { 6597 unsigned long cgrp_flags = 0; 6598 bool kill = false; 6599 struct cgroup_subsys *ss; 6600 struct css_set *cset; 6601 int i; 6602 6603 cset = kargs->cset; 6604 kargs->cset = NULL; 6605 6606 spin_lock_irq(&css_set_lock); 6607 6608 /* init tasks are special, only link regular threads */ 6609 if (likely(child->pid)) { 6610 if (kargs->cgrp) 6611 cgrp_flags = kargs->cgrp->flags; 6612 else 6613 cgrp_flags = cset->dfl_cgrp->flags; 6614 6615 WARN_ON_ONCE(!list_empty(&child->cg_list)); 6616 cset->nr_tasks++; 6617 css_set_move_task(child, NULL, cset, false); 6618 } else { 6619 put_css_set(cset); 6620 cset = NULL; 6621 } 6622 6623 if (!(child->flags & PF_KTHREAD)) { 6624 if (unlikely(test_bit(CGRP_FREEZE, &cgrp_flags))) { 6625 /* 6626 * If the cgroup has to be frozen, the new task has 6627 * too. Let's set the JOBCTL_TRAP_FREEZE jobctl bit to 6628 * get the task into the frozen state. 6629 */ 6630 spin_lock(&child->sighand->siglock); 6631 WARN_ON_ONCE(child->frozen); 6632 child->jobctl |= JOBCTL_TRAP_FREEZE; 6633 spin_unlock(&child->sighand->siglock); 6634 6635 /* 6636 * Calling cgroup_update_frozen() isn't required here, 6637 * because it will be called anyway a bit later from 6638 * do_freezer_trap(). So we avoid cgroup's transient 6639 * switch from the frozen state and back. 6640 */ 6641 } 6642 6643 /* 6644 * If the cgroup is to be killed notice it now and take the 6645 * child down right after we finished preparing it for 6646 * userspace. 6647 */ 6648 kill = test_bit(CGRP_KILL, &cgrp_flags); 6649 } 6650 6651 spin_unlock_irq(&css_set_lock); 6652 6653 /* 6654 * Call ss->fork(). This must happen after @child is linked on 6655 * css_set; otherwise, @child might change state between ->fork() 6656 * and addition to css_set. 6657 */ 6658 do_each_subsys_mask(ss, i, have_fork_callback) { 6659 ss->fork(child); 6660 } while_each_subsys_mask(); 6661 6662 /* Make the new cset the root_cset of the new cgroup namespace. */ 6663 if (kargs->flags & CLONE_NEWCGROUP) { 6664 struct css_set *rcset = child->nsproxy->cgroup_ns->root_cset; 6665 6666 get_css_set(cset); 6667 child->nsproxy->cgroup_ns->root_cset = cset; 6668 put_css_set(rcset); 6669 } 6670 6671 /* Cgroup has to be killed so take down child immediately. */ 6672 if (unlikely(kill)) 6673 do_send_sig_info(SIGKILL, SEND_SIG_NOINFO, child, PIDTYPE_TGID); 6674 6675 cgroup_css_set_put_fork(kargs); 6676 } 6677 6678 /** 6679 * cgroup_exit - detach cgroup from exiting task 6680 * @tsk: pointer to task_struct of exiting process 6681 * 6682 * Description: Detach cgroup from @tsk. 6683 * 6684 */ 6685 void cgroup_exit(struct task_struct *tsk) 6686 { 6687 struct cgroup_subsys *ss; 6688 struct css_set *cset; 6689 int i; 6690 6691 spin_lock_irq(&css_set_lock); 6692 6693 WARN_ON_ONCE(list_empty(&tsk->cg_list)); 6694 cset = task_css_set(tsk); 6695 css_set_move_task(tsk, cset, NULL, false); 6696 list_add_tail(&tsk->cg_list, &cset->dying_tasks); 6697 cset->nr_tasks--; 6698 6699 WARN_ON_ONCE(cgroup_task_frozen(tsk)); 6700 if (unlikely(!(tsk->flags & PF_KTHREAD) && 6701 test_bit(CGRP_FREEZE, &task_dfl_cgroup(tsk)->flags))) 6702 cgroup_update_frozen(task_dfl_cgroup(tsk)); 6703 6704 spin_unlock_irq(&css_set_lock); 6705 6706 /* see cgroup_post_fork() for details */ 6707 do_each_subsys_mask(ss, i, have_exit_callback) { 6708 ss->exit(tsk); 6709 } while_each_subsys_mask(); 6710 } 6711 6712 void cgroup_release(struct task_struct *task) 6713 { 6714 struct cgroup_subsys *ss; 6715 int ssid; 6716 6717 do_each_subsys_mask(ss, ssid, have_release_callback) { 6718 ss->release(task); 6719 } while_each_subsys_mask(); 6720 6721 spin_lock_irq(&css_set_lock); 6722 css_set_skip_task_iters(task_css_set(task), task); 6723 list_del_init(&task->cg_list); 6724 spin_unlock_irq(&css_set_lock); 6725 } 6726 6727 void cgroup_free(struct task_struct *task) 6728 { 6729 struct css_set *cset = task_css_set(task); 6730 put_css_set(cset); 6731 } 6732 6733 static int __init cgroup_disable(char *str) 6734 { 6735 struct cgroup_subsys *ss; 6736 char *token; 6737 int i; 6738 6739 while ((token = strsep(&str, ",")) != NULL) { 6740 if (!*token) 6741 continue; 6742 6743 for_each_subsys(ss, i) { 6744 if (strcmp(token, ss->name) && 6745 strcmp(token, ss->legacy_name)) 6746 continue; 6747 6748 static_branch_disable(cgroup_subsys_enabled_key[i]); 6749 pr_info("Disabling %s control group subsystem\n", 6750 ss->name); 6751 } 6752 6753 for (i = 0; i < OPT_FEATURE_COUNT; i++) { 6754 if (strcmp(token, cgroup_opt_feature_names[i])) 6755 continue; 6756 cgroup_feature_disable_mask |= 1 << i; 6757 pr_info("Disabling %s control group feature\n", 6758 cgroup_opt_feature_names[i]); 6759 break; 6760 } 6761 } 6762 return 1; 6763 } 6764 __setup("cgroup_disable=", cgroup_disable); 6765 6766 void __init __weak enable_debug_cgroup(void) { } 6767 6768 static int __init enable_cgroup_debug(char *str) 6769 { 6770 cgroup_debug = true; 6771 enable_debug_cgroup(); 6772 return 1; 6773 } 6774 __setup("cgroup_debug", enable_cgroup_debug); 6775 6776 /** 6777 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry 6778 * @dentry: directory dentry of interest 6779 * @ss: subsystem of interest 6780 * 6781 * If @dentry is a directory for a cgroup which has @ss enabled on it, try 6782 * to get the corresponding css and return it. If such css doesn't exist 6783 * or can't be pinned, an ERR_PTR value is returned. 6784 */ 6785 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry, 6786 struct cgroup_subsys *ss) 6787 { 6788 struct kernfs_node *kn = kernfs_node_from_dentry(dentry); 6789 struct file_system_type *s_type = dentry->d_sb->s_type; 6790 struct cgroup_subsys_state *css = NULL; 6791 struct cgroup *cgrp; 6792 6793 /* is @dentry a cgroup dir? */ 6794 if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) || 6795 !kn || kernfs_type(kn) != KERNFS_DIR) 6796 return ERR_PTR(-EBADF); 6797 6798 rcu_read_lock(); 6799 6800 /* 6801 * This path doesn't originate from kernfs and @kn could already 6802 * have been or be removed at any point. @kn->priv is RCU 6803 * protected for this access. See css_release_work_fn() for details. 6804 */ 6805 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); 6806 if (cgrp) 6807 css = cgroup_css(cgrp, ss); 6808 6809 if (!css || !css_tryget_online(css)) 6810 css = ERR_PTR(-ENOENT); 6811 6812 rcu_read_unlock(); 6813 return css; 6814 } 6815 6816 /** 6817 * css_from_id - lookup css by id 6818 * @id: the cgroup id 6819 * @ss: cgroup subsys to be looked into 6820 * 6821 * Returns the css if there's valid one with @id, otherwise returns NULL. 6822 * Should be called under rcu_read_lock(). 6823 */ 6824 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss) 6825 { 6826 WARN_ON_ONCE(!rcu_read_lock_held()); 6827 return idr_find(&ss->css_idr, id); 6828 } 6829 6830 /** 6831 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path 6832 * @path: path on the default hierarchy 6833 * 6834 * Find the cgroup at @path on the default hierarchy, increment its 6835 * reference count and return it. Returns pointer to the found cgroup on 6836 * success, ERR_PTR(-ENOENT) if @path doesn't exist or if the cgroup has already 6837 * been released and ERR_PTR(-ENOTDIR) if @path points to a non-directory. 6838 */ 6839 struct cgroup *cgroup_get_from_path(const char *path) 6840 { 6841 struct kernfs_node *kn; 6842 struct cgroup *cgrp = ERR_PTR(-ENOENT); 6843 struct cgroup *root_cgrp; 6844 6845 root_cgrp = current_cgns_cgroup_dfl(); 6846 kn = kernfs_walk_and_get(root_cgrp->kn, path); 6847 if (!kn) 6848 goto out; 6849 6850 if (kernfs_type(kn) != KERNFS_DIR) { 6851 cgrp = ERR_PTR(-ENOTDIR); 6852 goto out_kernfs; 6853 } 6854 6855 rcu_read_lock(); 6856 6857 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); 6858 if (!cgrp || !cgroup_tryget(cgrp)) 6859 cgrp = ERR_PTR(-ENOENT); 6860 6861 rcu_read_unlock(); 6862 6863 out_kernfs: 6864 kernfs_put(kn); 6865 out: 6866 return cgrp; 6867 } 6868 EXPORT_SYMBOL_GPL(cgroup_get_from_path); 6869 6870 /** 6871 * cgroup_v1v2_get_from_fd - get a cgroup pointer from a fd 6872 * @fd: fd obtained by open(cgroup_dir) 6873 * 6874 * Find the cgroup from a fd which should be obtained 6875 * by opening a cgroup directory. Returns a pointer to the 6876 * cgroup on success. ERR_PTR is returned if the cgroup 6877 * cannot be found. 6878 */ 6879 struct cgroup *cgroup_v1v2_get_from_fd(int fd) 6880 { 6881 struct cgroup *cgrp; 6882 struct fd f = fdget_raw(fd); 6883 if (!f.file) 6884 return ERR_PTR(-EBADF); 6885 6886 cgrp = cgroup_v1v2_get_from_file(f.file); 6887 fdput(f); 6888 return cgrp; 6889 } 6890 6891 /** 6892 * cgroup_get_from_fd - same as cgroup_v1v2_get_from_fd, but only supports 6893 * cgroup2. 6894 * @fd: fd obtained by open(cgroup2_dir) 6895 */ 6896 struct cgroup *cgroup_get_from_fd(int fd) 6897 { 6898 struct cgroup *cgrp = cgroup_v1v2_get_from_fd(fd); 6899 6900 if (IS_ERR(cgrp)) 6901 return ERR_CAST(cgrp); 6902 6903 if (!cgroup_on_dfl(cgrp)) { 6904 cgroup_put(cgrp); 6905 return ERR_PTR(-EBADF); 6906 } 6907 return cgrp; 6908 } 6909 EXPORT_SYMBOL_GPL(cgroup_get_from_fd); 6910 6911 static u64 power_of_ten(int power) 6912 { 6913 u64 v = 1; 6914 while (power--) 6915 v *= 10; 6916 return v; 6917 } 6918 6919 /** 6920 * cgroup_parse_float - parse a floating number 6921 * @input: input string 6922 * @dec_shift: number of decimal digits to shift 6923 * @v: output 6924 * 6925 * Parse a decimal floating point number in @input and store the result in 6926 * @v with decimal point right shifted @dec_shift times. For example, if 6927 * @input is "12.3456" and @dec_shift is 3, *@v will be set to 12345. 6928 * Returns 0 on success, -errno otherwise. 6929 * 6930 * There's nothing cgroup specific about this function except that it's 6931 * currently the only user. 6932 */ 6933 int cgroup_parse_float(const char *input, unsigned dec_shift, s64 *v) 6934 { 6935 s64 whole, frac = 0; 6936 int fstart = 0, fend = 0, flen; 6937 6938 if (!sscanf(input, "%lld.%n%lld%n", &whole, &fstart, &frac, &fend)) 6939 return -EINVAL; 6940 if (frac < 0) 6941 return -EINVAL; 6942 6943 flen = fend > fstart ? fend - fstart : 0; 6944 if (flen < dec_shift) 6945 frac *= power_of_ten(dec_shift - flen); 6946 else 6947 frac = DIV_ROUND_CLOSEST_ULL(frac, power_of_ten(flen - dec_shift)); 6948 6949 *v = whole * power_of_ten(dec_shift) + frac; 6950 return 0; 6951 } 6952 6953 /* 6954 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data 6955 * definition in cgroup-defs.h. 6956 */ 6957 #ifdef CONFIG_SOCK_CGROUP_DATA 6958 6959 void cgroup_sk_alloc(struct sock_cgroup_data *skcd) 6960 { 6961 struct cgroup *cgroup; 6962 6963 rcu_read_lock(); 6964 /* Don't associate the sock with unrelated interrupted task's cgroup. */ 6965 if (in_interrupt()) { 6966 cgroup = &cgrp_dfl_root.cgrp; 6967 cgroup_get(cgroup); 6968 goto out; 6969 } 6970 6971 while (true) { 6972 struct css_set *cset; 6973 6974 cset = task_css_set(current); 6975 if (likely(cgroup_tryget(cset->dfl_cgrp))) { 6976 cgroup = cset->dfl_cgrp; 6977 break; 6978 } 6979 cpu_relax(); 6980 } 6981 out: 6982 skcd->cgroup = cgroup; 6983 cgroup_bpf_get(cgroup); 6984 rcu_read_unlock(); 6985 } 6986 6987 void cgroup_sk_clone(struct sock_cgroup_data *skcd) 6988 { 6989 struct cgroup *cgrp = sock_cgroup_ptr(skcd); 6990 6991 /* 6992 * We might be cloning a socket which is left in an empty 6993 * cgroup and the cgroup might have already been rmdir'd. 6994 * Don't use cgroup_get_live(). 6995 */ 6996 cgroup_get(cgrp); 6997 cgroup_bpf_get(cgrp); 6998 } 6999 7000 void cgroup_sk_free(struct sock_cgroup_data *skcd) 7001 { 7002 struct cgroup *cgrp = sock_cgroup_ptr(skcd); 7003 7004 cgroup_bpf_put(cgrp); 7005 cgroup_put(cgrp); 7006 } 7007 7008 #endif /* CONFIG_SOCK_CGROUP_DATA */ 7009 7010 #ifdef CONFIG_SYSFS 7011 static ssize_t show_delegatable_files(struct cftype *files, char *buf, 7012 ssize_t size, const char *prefix) 7013 { 7014 struct cftype *cft; 7015 ssize_t ret = 0; 7016 7017 for (cft = files; cft && cft->name[0] != '\0'; cft++) { 7018 if (!(cft->flags & CFTYPE_NS_DELEGATABLE)) 7019 continue; 7020 7021 if (prefix) 7022 ret += snprintf(buf + ret, size - ret, "%s.", prefix); 7023 7024 ret += snprintf(buf + ret, size - ret, "%s\n", cft->name); 7025 7026 if (WARN_ON(ret >= size)) 7027 break; 7028 } 7029 7030 return ret; 7031 } 7032 7033 static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr, 7034 char *buf) 7035 { 7036 struct cgroup_subsys *ss; 7037 int ssid; 7038 ssize_t ret = 0; 7039 7040 ret = show_delegatable_files(cgroup_base_files, buf + ret, 7041 PAGE_SIZE - ret, NULL); 7042 if (cgroup_psi_enabled()) 7043 ret += show_delegatable_files(cgroup_psi_files, buf + ret, 7044 PAGE_SIZE - ret, NULL); 7045 7046 for_each_subsys(ss, ssid) 7047 ret += show_delegatable_files(ss->dfl_cftypes, buf + ret, 7048 PAGE_SIZE - ret, 7049 cgroup_subsys_name[ssid]); 7050 7051 return ret; 7052 } 7053 static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate); 7054 7055 static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr, 7056 char *buf) 7057 { 7058 return snprintf(buf, PAGE_SIZE, 7059 "nsdelegate\n" 7060 "favordynmods\n" 7061 "memory_localevents\n" 7062 "memory_recursiveprot\n"); 7063 } 7064 static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features); 7065 7066 static struct attribute *cgroup_sysfs_attrs[] = { 7067 &cgroup_delegate_attr.attr, 7068 &cgroup_features_attr.attr, 7069 NULL, 7070 }; 7071 7072 static const struct attribute_group cgroup_sysfs_attr_group = { 7073 .attrs = cgroup_sysfs_attrs, 7074 .name = "cgroup", 7075 }; 7076 7077 static int __init cgroup_sysfs_init(void) 7078 { 7079 return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group); 7080 } 7081 subsys_initcall(cgroup_sysfs_init); 7082 7083 #endif /* CONFIG_SYSFS */ 7084