1 /* 2 * Generic process-grouping system. 3 * 4 * Based originally on the cpuset system, extracted by Paul Menage 5 * Copyright (C) 2006 Google, Inc 6 * 7 * Notifications support 8 * Copyright (C) 2009 Nokia Corporation 9 * Author: Kirill A. Shutemov 10 * 11 * Copyright notices from the original cpuset code: 12 * -------------------------------------------------- 13 * Copyright (C) 2003 BULL SA. 14 * Copyright (C) 2004-2006 Silicon Graphics, Inc. 15 * 16 * Portions derived from Patrick Mochel's sysfs code. 17 * sysfs is Copyright (c) 2001-3 Patrick Mochel 18 * 19 * 2003-10-10 Written by Simon Derr. 20 * 2003-10-22 Updates by Stephen Hemminger. 21 * 2004 May-July Rework by Paul Jackson. 22 * --------------------------------------------------- 23 * 24 * This file is subject to the terms and conditions of the GNU General Public 25 * License. See the file COPYING in the main directory of the Linux 26 * distribution for more details. 27 */ 28 29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 30 31 #include "cgroup-internal.h" 32 33 #include <linux/cred.h> 34 #include <linux/errno.h> 35 #include <linux/init_task.h> 36 #include <linux/kernel.h> 37 #include <linux/magic.h> 38 #include <linux/mutex.h> 39 #include <linux/mount.h> 40 #include <linux/pagemap.h> 41 #include <linux/proc_fs.h> 42 #include <linux/rcupdate.h> 43 #include <linux/sched.h> 44 #include <linux/sched/task.h> 45 #include <linux/slab.h> 46 #include <linux/spinlock.h> 47 #include <linux/percpu-rwsem.h> 48 #include <linux/string.h> 49 #include <linux/hashtable.h> 50 #include <linux/idr.h> 51 #include <linux/kthread.h> 52 #include <linux/atomic.h> 53 #include <linux/cpuset.h> 54 #include <linux/proc_ns.h> 55 #include <linux/nsproxy.h> 56 #include <linux/file.h> 57 #include <linux/fs_parser.h> 58 #include <linux/sched/cputime.h> 59 #include <linux/psi.h> 60 #include <net/sock.h> 61 62 #define CREATE_TRACE_POINTS 63 #include <trace/events/cgroup.h> 64 65 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \ 66 MAX_CFTYPE_NAME + 2) 67 /* let's not notify more than 100 times per second */ 68 #define CGROUP_FILE_NOTIFY_MIN_INTV DIV_ROUND_UP(HZ, 100) 69 70 /* 71 * To avoid confusing the compiler (and generating warnings) with code 72 * that attempts to access what would be a 0-element array (i.e. sized 73 * to a potentially empty array when CGROUP_SUBSYS_COUNT == 0), this 74 * constant expression can be added. 75 */ 76 #define CGROUP_HAS_SUBSYS_CONFIG (CGROUP_SUBSYS_COUNT > 0) 77 78 /* 79 * cgroup_mutex is the master lock. Any modification to cgroup or its 80 * hierarchy must be performed while holding it. 81 * 82 * css_set_lock protects task->cgroups pointer, the list of css_set 83 * objects, and the chain of tasks off each css_set. 84 * 85 * These locks are exported if CONFIG_PROVE_RCU so that accessors in 86 * cgroup.h can use them for lockdep annotations. 87 */ 88 DEFINE_MUTEX(cgroup_mutex); 89 DEFINE_SPINLOCK(css_set_lock); 90 91 #ifdef CONFIG_PROVE_RCU 92 EXPORT_SYMBOL_GPL(cgroup_mutex); 93 EXPORT_SYMBOL_GPL(css_set_lock); 94 #endif 95 96 DEFINE_SPINLOCK(trace_cgroup_path_lock); 97 char trace_cgroup_path[TRACE_CGROUP_PATH_LEN]; 98 bool cgroup_debug __read_mostly; 99 100 /* 101 * Protects cgroup_idr and css_idr so that IDs can be released without 102 * grabbing cgroup_mutex. 103 */ 104 static DEFINE_SPINLOCK(cgroup_idr_lock); 105 106 /* 107 * Protects cgroup_file->kn for !self csses. It synchronizes notifications 108 * against file removal/re-creation across css hiding. 109 */ 110 static DEFINE_SPINLOCK(cgroup_file_kn_lock); 111 112 DEFINE_PERCPU_RWSEM(cgroup_threadgroup_rwsem); 113 114 #define cgroup_assert_mutex_or_rcu_locked() \ 115 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \ 116 !lockdep_is_held(&cgroup_mutex), \ 117 "cgroup_mutex or RCU read lock required"); 118 119 /* 120 * cgroup destruction makes heavy use of work items and there can be a lot 121 * of concurrent destructions. Use a separate workqueue so that cgroup 122 * destruction work items don't end up filling up max_active of system_wq 123 * which may lead to deadlock. 124 */ 125 static struct workqueue_struct *cgroup_destroy_wq; 126 127 /* generate an array of cgroup subsystem pointers */ 128 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys, 129 struct cgroup_subsys *cgroup_subsys[] = { 130 #include <linux/cgroup_subsys.h> 131 }; 132 #undef SUBSYS 133 134 /* array of cgroup subsystem names */ 135 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x, 136 static const char *cgroup_subsys_name[] = { 137 #include <linux/cgroup_subsys.h> 138 }; 139 #undef SUBSYS 140 141 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */ 142 #define SUBSYS(_x) \ 143 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \ 144 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \ 145 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \ 146 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key); 147 #include <linux/cgroup_subsys.h> 148 #undef SUBSYS 149 150 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key, 151 static struct static_key_true *cgroup_subsys_enabled_key[] = { 152 #include <linux/cgroup_subsys.h> 153 }; 154 #undef SUBSYS 155 156 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key, 157 static struct static_key_true *cgroup_subsys_on_dfl_key[] = { 158 #include <linux/cgroup_subsys.h> 159 }; 160 #undef SUBSYS 161 162 static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu); 163 164 /* the default hierarchy */ 165 struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu }; 166 EXPORT_SYMBOL_GPL(cgrp_dfl_root); 167 168 /* 169 * The default hierarchy always exists but is hidden until mounted for the 170 * first time. This is for backward compatibility. 171 */ 172 static bool cgrp_dfl_visible; 173 174 /* some controllers are not supported in the default hierarchy */ 175 static u16 cgrp_dfl_inhibit_ss_mask; 176 177 /* some controllers are implicitly enabled on the default hierarchy */ 178 static u16 cgrp_dfl_implicit_ss_mask; 179 180 /* some controllers can be threaded on the default hierarchy */ 181 static u16 cgrp_dfl_threaded_ss_mask; 182 183 /* The list of hierarchy roots */ 184 LIST_HEAD(cgroup_roots); 185 static int cgroup_root_count; 186 187 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */ 188 static DEFINE_IDR(cgroup_hierarchy_idr); 189 190 /* 191 * Assign a monotonically increasing serial number to csses. It guarantees 192 * cgroups with bigger numbers are newer than those with smaller numbers. 193 * Also, as csses are always appended to the parent's ->children list, it 194 * guarantees that sibling csses are always sorted in the ascending serial 195 * number order on the list. Protected by cgroup_mutex. 196 */ 197 static u64 css_serial_nr_next = 1; 198 199 /* 200 * These bitmasks identify subsystems with specific features to avoid 201 * having to do iterative checks repeatedly. 202 */ 203 static u16 have_fork_callback __read_mostly; 204 static u16 have_exit_callback __read_mostly; 205 static u16 have_release_callback __read_mostly; 206 static u16 have_canfork_callback __read_mostly; 207 208 /* cgroup namespace for init task */ 209 struct cgroup_namespace init_cgroup_ns = { 210 .ns.count = REFCOUNT_INIT(2), 211 .user_ns = &init_user_ns, 212 .ns.ops = &cgroupns_operations, 213 .ns.inum = PROC_CGROUP_INIT_INO, 214 .root_cset = &init_css_set, 215 }; 216 217 static struct file_system_type cgroup2_fs_type; 218 static struct cftype cgroup_base_files[]; 219 220 /* cgroup optional features */ 221 enum cgroup_opt_features { 222 #ifdef CONFIG_PSI 223 OPT_FEATURE_PRESSURE, 224 #endif 225 OPT_FEATURE_COUNT 226 }; 227 228 static const char *cgroup_opt_feature_names[OPT_FEATURE_COUNT] = { 229 #ifdef CONFIG_PSI 230 "pressure", 231 #endif 232 }; 233 234 static u16 cgroup_feature_disable_mask __read_mostly; 235 236 static int cgroup_apply_control(struct cgroup *cgrp); 237 static void cgroup_finalize_control(struct cgroup *cgrp, int ret); 238 static void css_task_iter_skip(struct css_task_iter *it, 239 struct task_struct *task); 240 static int cgroup_destroy_locked(struct cgroup *cgrp); 241 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp, 242 struct cgroup_subsys *ss); 243 static void css_release(struct percpu_ref *ref); 244 static void kill_css(struct cgroup_subsys_state *css); 245 static int cgroup_addrm_files(struct cgroup_subsys_state *css, 246 struct cgroup *cgrp, struct cftype cfts[], 247 bool is_add); 248 249 /** 250 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID 251 * @ssid: subsys ID of interest 252 * 253 * cgroup_subsys_enabled() can only be used with literal subsys names which 254 * is fine for individual subsystems but unsuitable for cgroup core. This 255 * is slower static_key_enabled() based test indexed by @ssid. 256 */ 257 bool cgroup_ssid_enabled(int ssid) 258 { 259 if (!CGROUP_HAS_SUBSYS_CONFIG) 260 return false; 261 262 return static_key_enabled(cgroup_subsys_enabled_key[ssid]); 263 } 264 265 /** 266 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy 267 * @cgrp: the cgroup of interest 268 * 269 * The default hierarchy is the v2 interface of cgroup and this function 270 * can be used to test whether a cgroup is on the default hierarchy for 271 * cases where a subsystem should behave differently depending on the 272 * interface version. 273 * 274 * List of changed behaviors: 275 * 276 * - Mount options "noprefix", "xattr", "clone_children", "release_agent" 277 * and "name" are disallowed. 278 * 279 * - When mounting an existing superblock, mount options should match. 280 * 281 * - Remount is disallowed. 282 * 283 * - rename(2) is disallowed. 284 * 285 * - "tasks" is removed. Everything should be at process granularity. Use 286 * "cgroup.procs" instead. 287 * 288 * - "cgroup.procs" is not sorted. pids will be unique unless they got 289 * recycled in-between reads. 290 * 291 * - "release_agent" and "notify_on_release" are removed. Replacement 292 * notification mechanism will be implemented. 293 * 294 * - "cgroup.clone_children" is removed. 295 * 296 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup 297 * and its descendants contain no task; otherwise, 1. The file also 298 * generates kernfs notification which can be monitored through poll and 299 * [di]notify when the value of the file changes. 300 * 301 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and 302 * take masks of ancestors with non-empty cpus/mems, instead of being 303 * moved to an ancestor. 304 * 305 * - cpuset: a task can be moved into an empty cpuset, and again it takes 306 * masks of ancestors. 307 * 308 * - blkcg: blk-throttle becomes properly hierarchical. 309 * 310 * - debug: disallowed on the default hierarchy. 311 */ 312 bool cgroup_on_dfl(const struct cgroup *cgrp) 313 { 314 return cgrp->root == &cgrp_dfl_root; 315 } 316 317 /* IDR wrappers which synchronize using cgroup_idr_lock */ 318 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end, 319 gfp_t gfp_mask) 320 { 321 int ret; 322 323 idr_preload(gfp_mask); 324 spin_lock_bh(&cgroup_idr_lock); 325 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM); 326 spin_unlock_bh(&cgroup_idr_lock); 327 idr_preload_end(); 328 return ret; 329 } 330 331 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id) 332 { 333 void *ret; 334 335 spin_lock_bh(&cgroup_idr_lock); 336 ret = idr_replace(idr, ptr, id); 337 spin_unlock_bh(&cgroup_idr_lock); 338 return ret; 339 } 340 341 static void cgroup_idr_remove(struct idr *idr, int id) 342 { 343 spin_lock_bh(&cgroup_idr_lock); 344 idr_remove(idr, id); 345 spin_unlock_bh(&cgroup_idr_lock); 346 } 347 348 static bool cgroup_has_tasks(struct cgroup *cgrp) 349 { 350 return cgrp->nr_populated_csets; 351 } 352 353 bool cgroup_is_threaded(struct cgroup *cgrp) 354 { 355 return cgrp->dom_cgrp != cgrp; 356 } 357 358 /* can @cgrp host both domain and threaded children? */ 359 static bool cgroup_is_mixable(struct cgroup *cgrp) 360 { 361 /* 362 * Root isn't under domain level resource control exempting it from 363 * the no-internal-process constraint, so it can serve as a thread 364 * root and a parent of resource domains at the same time. 365 */ 366 return !cgroup_parent(cgrp); 367 } 368 369 /* can @cgrp become a thread root? Should always be true for a thread root */ 370 static bool cgroup_can_be_thread_root(struct cgroup *cgrp) 371 { 372 /* mixables don't care */ 373 if (cgroup_is_mixable(cgrp)) 374 return true; 375 376 /* domain roots can't be nested under threaded */ 377 if (cgroup_is_threaded(cgrp)) 378 return false; 379 380 /* can only have either domain or threaded children */ 381 if (cgrp->nr_populated_domain_children) 382 return false; 383 384 /* and no domain controllers can be enabled */ 385 if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask) 386 return false; 387 388 return true; 389 } 390 391 /* is @cgrp root of a threaded subtree? */ 392 bool cgroup_is_thread_root(struct cgroup *cgrp) 393 { 394 /* thread root should be a domain */ 395 if (cgroup_is_threaded(cgrp)) 396 return false; 397 398 /* a domain w/ threaded children is a thread root */ 399 if (cgrp->nr_threaded_children) 400 return true; 401 402 /* 403 * A domain which has tasks and explicit threaded controllers 404 * enabled is a thread root. 405 */ 406 if (cgroup_has_tasks(cgrp) && 407 (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask)) 408 return true; 409 410 return false; 411 } 412 413 /* a domain which isn't connected to the root w/o brekage can't be used */ 414 static bool cgroup_is_valid_domain(struct cgroup *cgrp) 415 { 416 /* the cgroup itself can be a thread root */ 417 if (cgroup_is_threaded(cgrp)) 418 return false; 419 420 /* but the ancestors can't be unless mixable */ 421 while ((cgrp = cgroup_parent(cgrp))) { 422 if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp)) 423 return false; 424 if (cgroup_is_threaded(cgrp)) 425 return false; 426 } 427 428 return true; 429 } 430 431 /* subsystems visibly enabled on a cgroup */ 432 static u16 cgroup_control(struct cgroup *cgrp) 433 { 434 struct cgroup *parent = cgroup_parent(cgrp); 435 u16 root_ss_mask = cgrp->root->subsys_mask; 436 437 if (parent) { 438 u16 ss_mask = parent->subtree_control; 439 440 /* threaded cgroups can only have threaded controllers */ 441 if (cgroup_is_threaded(cgrp)) 442 ss_mask &= cgrp_dfl_threaded_ss_mask; 443 return ss_mask; 444 } 445 446 if (cgroup_on_dfl(cgrp)) 447 root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask | 448 cgrp_dfl_implicit_ss_mask); 449 return root_ss_mask; 450 } 451 452 /* subsystems enabled on a cgroup */ 453 static u16 cgroup_ss_mask(struct cgroup *cgrp) 454 { 455 struct cgroup *parent = cgroup_parent(cgrp); 456 457 if (parent) { 458 u16 ss_mask = parent->subtree_ss_mask; 459 460 /* threaded cgroups can only have threaded controllers */ 461 if (cgroup_is_threaded(cgrp)) 462 ss_mask &= cgrp_dfl_threaded_ss_mask; 463 return ss_mask; 464 } 465 466 return cgrp->root->subsys_mask; 467 } 468 469 /** 470 * cgroup_css - obtain a cgroup's css for the specified subsystem 471 * @cgrp: the cgroup of interest 472 * @ss: the subsystem of interest (%NULL returns @cgrp->self) 473 * 474 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This 475 * function must be called either under cgroup_mutex or rcu_read_lock() and 476 * the caller is responsible for pinning the returned css if it wants to 477 * keep accessing it outside the said locks. This function may return 478 * %NULL if @cgrp doesn't have @subsys_id enabled. 479 */ 480 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp, 481 struct cgroup_subsys *ss) 482 { 483 if (CGROUP_HAS_SUBSYS_CONFIG && ss) 484 return rcu_dereference_check(cgrp->subsys[ss->id], 485 lockdep_is_held(&cgroup_mutex)); 486 else 487 return &cgrp->self; 488 } 489 490 /** 491 * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem 492 * @cgrp: the cgroup of interest 493 * @ss: the subsystem of interest 494 * 495 * Find and get @cgrp's css associated with @ss. If the css doesn't exist 496 * or is offline, %NULL is returned. 497 */ 498 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp, 499 struct cgroup_subsys *ss) 500 { 501 struct cgroup_subsys_state *css; 502 503 rcu_read_lock(); 504 css = cgroup_css(cgrp, ss); 505 if (css && !css_tryget_online(css)) 506 css = NULL; 507 rcu_read_unlock(); 508 509 return css; 510 } 511 512 /** 513 * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss 514 * @cgrp: the cgroup of interest 515 * @ss: the subsystem of interest (%NULL returns @cgrp->self) 516 * 517 * Similar to cgroup_css() but returns the effective css, which is defined 518 * as the matching css of the nearest ancestor including self which has @ss 519 * enabled. If @ss is associated with the hierarchy @cgrp is on, this 520 * function is guaranteed to return non-NULL css. 521 */ 522 static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp, 523 struct cgroup_subsys *ss) 524 { 525 lockdep_assert_held(&cgroup_mutex); 526 527 if (!ss) 528 return &cgrp->self; 529 530 /* 531 * This function is used while updating css associations and thus 532 * can't test the csses directly. Test ss_mask. 533 */ 534 while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) { 535 cgrp = cgroup_parent(cgrp); 536 if (!cgrp) 537 return NULL; 538 } 539 540 return cgroup_css(cgrp, ss); 541 } 542 543 /** 544 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem 545 * @cgrp: the cgroup of interest 546 * @ss: the subsystem of interest 547 * 548 * Find and get the effective css of @cgrp for @ss. The effective css is 549 * defined as the matching css of the nearest ancestor including self which 550 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on, 551 * the root css is returned, so this function always returns a valid css. 552 * 553 * The returned css is not guaranteed to be online, and therefore it is the 554 * callers responsibility to try get a reference for it. 555 */ 556 struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp, 557 struct cgroup_subsys *ss) 558 { 559 struct cgroup_subsys_state *css; 560 561 if (!CGROUP_HAS_SUBSYS_CONFIG) 562 return NULL; 563 564 do { 565 css = cgroup_css(cgrp, ss); 566 567 if (css) 568 return css; 569 cgrp = cgroup_parent(cgrp); 570 } while (cgrp); 571 572 return init_css_set.subsys[ss->id]; 573 } 574 575 /** 576 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem 577 * @cgrp: the cgroup of interest 578 * @ss: the subsystem of interest 579 * 580 * Find and get the effective css of @cgrp for @ss. The effective css is 581 * defined as the matching css of the nearest ancestor including self which 582 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on, 583 * the root css is returned, so this function always returns a valid css. 584 * The returned css must be put using css_put(). 585 */ 586 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp, 587 struct cgroup_subsys *ss) 588 { 589 struct cgroup_subsys_state *css; 590 591 if (!CGROUP_HAS_SUBSYS_CONFIG) 592 return NULL; 593 594 rcu_read_lock(); 595 596 do { 597 css = cgroup_css(cgrp, ss); 598 599 if (css && css_tryget_online(css)) 600 goto out_unlock; 601 cgrp = cgroup_parent(cgrp); 602 } while (cgrp); 603 604 css = init_css_set.subsys[ss->id]; 605 css_get(css); 606 out_unlock: 607 rcu_read_unlock(); 608 return css; 609 } 610 EXPORT_SYMBOL_GPL(cgroup_get_e_css); 611 612 static void cgroup_get_live(struct cgroup *cgrp) 613 { 614 WARN_ON_ONCE(cgroup_is_dead(cgrp)); 615 css_get(&cgrp->self); 616 } 617 618 /** 619 * __cgroup_task_count - count the number of tasks in a cgroup. The caller 620 * is responsible for taking the css_set_lock. 621 * @cgrp: the cgroup in question 622 */ 623 int __cgroup_task_count(const struct cgroup *cgrp) 624 { 625 int count = 0; 626 struct cgrp_cset_link *link; 627 628 lockdep_assert_held(&css_set_lock); 629 630 list_for_each_entry(link, &cgrp->cset_links, cset_link) 631 count += link->cset->nr_tasks; 632 633 return count; 634 } 635 636 /** 637 * cgroup_task_count - count the number of tasks in a cgroup. 638 * @cgrp: the cgroup in question 639 */ 640 int cgroup_task_count(const struct cgroup *cgrp) 641 { 642 int count; 643 644 spin_lock_irq(&css_set_lock); 645 count = __cgroup_task_count(cgrp); 646 spin_unlock_irq(&css_set_lock); 647 648 return count; 649 } 650 651 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of) 652 { 653 struct cgroup *cgrp = of->kn->parent->priv; 654 struct cftype *cft = of_cft(of); 655 656 /* 657 * This is open and unprotected implementation of cgroup_css(). 658 * seq_css() is only called from a kernfs file operation which has 659 * an active reference on the file. Because all the subsystem 660 * files are drained before a css is disassociated with a cgroup, 661 * the matching css from the cgroup's subsys table is guaranteed to 662 * be and stay valid until the enclosing operation is complete. 663 */ 664 if (CGROUP_HAS_SUBSYS_CONFIG && cft->ss) 665 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]); 666 else 667 return &cgrp->self; 668 } 669 EXPORT_SYMBOL_GPL(of_css); 670 671 /** 672 * for_each_css - iterate all css's of a cgroup 673 * @css: the iteration cursor 674 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end 675 * @cgrp: the target cgroup to iterate css's of 676 * 677 * Should be called under cgroup_[tree_]mutex. 678 */ 679 #define for_each_css(css, ssid, cgrp) \ 680 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \ 681 if (!((css) = rcu_dereference_check( \ 682 (cgrp)->subsys[(ssid)], \ 683 lockdep_is_held(&cgroup_mutex)))) { } \ 684 else 685 686 /** 687 * for_each_e_css - iterate all effective css's of a cgroup 688 * @css: the iteration cursor 689 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end 690 * @cgrp: the target cgroup to iterate css's of 691 * 692 * Should be called under cgroup_[tree_]mutex. 693 */ 694 #define for_each_e_css(css, ssid, cgrp) \ 695 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \ 696 if (!((css) = cgroup_e_css_by_mask(cgrp, \ 697 cgroup_subsys[(ssid)]))) \ 698 ; \ 699 else 700 701 /** 702 * do_each_subsys_mask - filter for_each_subsys with a bitmask 703 * @ss: the iteration cursor 704 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end 705 * @ss_mask: the bitmask 706 * 707 * The block will only run for cases where the ssid-th bit (1 << ssid) of 708 * @ss_mask is set. 709 */ 710 #define do_each_subsys_mask(ss, ssid, ss_mask) do { \ 711 unsigned long __ss_mask = (ss_mask); \ 712 if (!CGROUP_HAS_SUBSYS_CONFIG) { \ 713 (ssid) = 0; \ 714 break; \ 715 } \ 716 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \ 717 (ss) = cgroup_subsys[ssid]; \ 718 { 719 720 #define while_each_subsys_mask() \ 721 } \ 722 } \ 723 } while (false) 724 725 /* iterate over child cgrps, lock should be held throughout iteration */ 726 #define cgroup_for_each_live_child(child, cgrp) \ 727 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \ 728 if (({ lockdep_assert_held(&cgroup_mutex); \ 729 cgroup_is_dead(child); })) \ 730 ; \ 731 else 732 733 /* walk live descendants in pre order */ 734 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \ 735 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \ 736 if (({ lockdep_assert_held(&cgroup_mutex); \ 737 (dsct) = (d_css)->cgroup; \ 738 cgroup_is_dead(dsct); })) \ 739 ; \ 740 else 741 742 /* walk live descendants in postorder */ 743 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \ 744 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \ 745 if (({ lockdep_assert_held(&cgroup_mutex); \ 746 (dsct) = (d_css)->cgroup; \ 747 cgroup_is_dead(dsct); })) \ 748 ; \ 749 else 750 751 /* 752 * The default css_set - used by init and its children prior to any 753 * hierarchies being mounted. It contains a pointer to the root state 754 * for each subsystem. Also used to anchor the list of css_sets. Not 755 * reference-counted, to improve performance when child cgroups 756 * haven't been created. 757 */ 758 struct css_set init_css_set = { 759 .refcount = REFCOUNT_INIT(1), 760 .dom_cset = &init_css_set, 761 .tasks = LIST_HEAD_INIT(init_css_set.tasks), 762 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks), 763 .dying_tasks = LIST_HEAD_INIT(init_css_set.dying_tasks), 764 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters), 765 .threaded_csets = LIST_HEAD_INIT(init_css_set.threaded_csets), 766 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links), 767 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node), 768 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node), 769 770 /* 771 * The following field is re-initialized when this cset gets linked 772 * in cgroup_init(). However, let's initialize the field 773 * statically too so that the default cgroup can be accessed safely 774 * early during boot. 775 */ 776 .dfl_cgrp = &cgrp_dfl_root.cgrp, 777 }; 778 779 static int css_set_count = 1; /* 1 for init_css_set */ 780 781 static bool css_set_threaded(struct css_set *cset) 782 { 783 return cset->dom_cset != cset; 784 } 785 786 /** 787 * css_set_populated - does a css_set contain any tasks? 788 * @cset: target css_set 789 * 790 * css_set_populated() should be the same as !!cset->nr_tasks at steady 791 * state. However, css_set_populated() can be called while a task is being 792 * added to or removed from the linked list before the nr_tasks is 793 * properly updated. Hence, we can't just look at ->nr_tasks here. 794 */ 795 static bool css_set_populated(struct css_set *cset) 796 { 797 lockdep_assert_held(&css_set_lock); 798 799 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks); 800 } 801 802 /** 803 * cgroup_update_populated - update the populated count of a cgroup 804 * @cgrp: the target cgroup 805 * @populated: inc or dec populated count 806 * 807 * One of the css_sets associated with @cgrp is either getting its first 808 * task or losing the last. Update @cgrp->nr_populated_* accordingly. The 809 * count is propagated towards root so that a given cgroup's 810 * nr_populated_children is zero iff none of its descendants contain any 811 * tasks. 812 * 813 * @cgrp's interface file "cgroup.populated" is zero if both 814 * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and 815 * 1 otherwise. When the sum changes from or to zero, userland is notified 816 * that the content of the interface file has changed. This can be used to 817 * detect when @cgrp and its descendants become populated or empty. 818 */ 819 static void cgroup_update_populated(struct cgroup *cgrp, bool populated) 820 { 821 struct cgroup *child = NULL; 822 int adj = populated ? 1 : -1; 823 824 lockdep_assert_held(&css_set_lock); 825 826 do { 827 bool was_populated = cgroup_is_populated(cgrp); 828 829 if (!child) { 830 cgrp->nr_populated_csets += adj; 831 } else { 832 if (cgroup_is_threaded(child)) 833 cgrp->nr_populated_threaded_children += adj; 834 else 835 cgrp->nr_populated_domain_children += adj; 836 } 837 838 if (was_populated == cgroup_is_populated(cgrp)) 839 break; 840 841 cgroup1_check_for_release(cgrp); 842 TRACE_CGROUP_PATH(notify_populated, cgrp, 843 cgroup_is_populated(cgrp)); 844 cgroup_file_notify(&cgrp->events_file); 845 846 child = cgrp; 847 cgrp = cgroup_parent(cgrp); 848 } while (cgrp); 849 } 850 851 /** 852 * css_set_update_populated - update populated state of a css_set 853 * @cset: target css_set 854 * @populated: whether @cset is populated or depopulated 855 * 856 * @cset is either getting the first task or losing the last. Update the 857 * populated counters of all associated cgroups accordingly. 858 */ 859 static void css_set_update_populated(struct css_set *cset, bool populated) 860 { 861 struct cgrp_cset_link *link; 862 863 lockdep_assert_held(&css_set_lock); 864 865 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) 866 cgroup_update_populated(link->cgrp, populated); 867 } 868 869 /* 870 * @task is leaving, advance task iterators which are pointing to it so 871 * that they can resume at the next position. Advancing an iterator might 872 * remove it from the list, use safe walk. See css_task_iter_skip() for 873 * details. 874 */ 875 static void css_set_skip_task_iters(struct css_set *cset, 876 struct task_struct *task) 877 { 878 struct css_task_iter *it, *pos; 879 880 list_for_each_entry_safe(it, pos, &cset->task_iters, iters_node) 881 css_task_iter_skip(it, task); 882 } 883 884 /** 885 * css_set_move_task - move a task from one css_set to another 886 * @task: task being moved 887 * @from_cset: css_set @task currently belongs to (may be NULL) 888 * @to_cset: new css_set @task is being moved to (may be NULL) 889 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks 890 * 891 * Move @task from @from_cset to @to_cset. If @task didn't belong to any 892 * css_set, @from_cset can be NULL. If @task is being disassociated 893 * instead of moved, @to_cset can be NULL. 894 * 895 * This function automatically handles populated counter updates and 896 * css_task_iter adjustments but the caller is responsible for managing 897 * @from_cset and @to_cset's reference counts. 898 */ 899 static void css_set_move_task(struct task_struct *task, 900 struct css_set *from_cset, struct css_set *to_cset, 901 bool use_mg_tasks) 902 { 903 lockdep_assert_held(&css_set_lock); 904 905 if (to_cset && !css_set_populated(to_cset)) 906 css_set_update_populated(to_cset, true); 907 908 if (from_cset) { 909 WARN_ON_ONCE(list_empty(&task->cg_list)); 910 911 css_set_skip_task_iters(from_cset, task); 912 list_del_init(&task->cg_list); 913 if (!css_set_populated(from_cset)) 914 css_set_update_populated(from_cset, false); 915 } else { 916 WARN_ON_ONCE(!list_empty(&task->cg_list)); 917 } 918 919 if (to_cset) { 920 /* 921 * We are synchronized through cgroup_threadgroup_rwsem 922 * against PF_EXITING setting such that we can't race 923 * against cgroup_exit()/cgroup_free() dropping the css_set. 924 */ 925 WARN_ON_ONCE(task->flags & PF_EXITING); 926 927 cgroup_move_task(task, to_cset); 928 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks : 929 &to_cset->tasks); 930 } 931 } 932 933 /* 934 * hash table for cgroup groups. This improves the performance to find 935 * an existing css_set. This hash doesn't (currently) take into 936 * account cgroups in empty hierarchies. 937 */ 938 #define CSS_SET_HASH_BITS 7 939 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS); 940 941 static unsigned long css_set_hash(struct cgroup_subsys_state *css[]) 942 { 943 unsigned long key = 0UL; 944 struct cgroup_subsys *ss; 945 int i; 946 947 for_each_subsys(ss, i) 948 key += (unsigned long)css[i]; 949 key = (key >> 16) ^ key; 950 951 return key; 952 } 953 954 void put_css_set_locked(struct css_set *cset) 955 { 956 struct cgrp_cset_link *link, *tmp_link; 957 struct cgroup_subsys *ss; 958 int ssid; 959 960 lockdep_assert_held(&css_set_lock); 961 962 if (!refcount_dec_and_test(&cset->refcount)) 963 return; 964 965 WARN_ON_ONCE(!list_empty(&cset->threaded_csets)); 966 967 /* This css_set is dead. Unlink it and release cgroup and css refs */ 968 for_each_subsys(ss, ssid) { 969 list_del(&cset->e_cset_node[ssid]); 970 css_put(cset->subsys[ssid]); 971 } 972 hash_del(&cset->hlist); 973 css_set_count--; 974 975 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) { 976 list_del(&link->cset_link); 977 list_del(&link->cgrp_link); 978 if (cgroup_parent(link->cgrp)) 979 cgroup_put(link->cgrp); 980 kfree(link); 981 } 982 983 if (css_set_threaded(cset)) { 984 list_del(&cset->threaded_csets_node); 985 put_css_set_locked(cset->dom_cset); 986 } 987 988 kfree_rcu(cset, rcu_head); 989 } 990 991 /** 992 * compare_css_sets - helper function for find_existing_css_set(). 993 * @cset: candidate css_set being tested 994 * @old_cset: existing css_set for a task 995 * @new_cgrp: cgroup that's being entered by the task 996 * @template: desired set of css pointers in css_set (pre-calculated) 997 * 998 * Returns true if "cset" matches "old_cset" except for the hierarchy 999 * which "new_cgrp" belongs to, for which it should match "new_cgrp". 1000 */ 1001 static bool compare_css_sets(struct css_set *cset, 1002 struct css_set *old_cset, 1003 struct cgroup *new_cgrp, 1004 struct cgroup_subsys_state *template[]) 1005 { 1006 struct cgroup *new_dfl_cgrp; 1007 struct list_head *l1, *l2; 1008 1009 /* 1010 * On the default hierarchy, there can be csets which are 1011 * associated with the same set of cgroups but different csses. 1012 * Let's first ensure that csses match. 1013 */ 1014 if (memcmp(template, cset->subsys, sizeof(cset->subsys))) 1015 return false; 1016 1017 1018 /* @cset's domain should match the default cgroup's */ 1019 if (cgroup_on_dfl(new_cgrp)) 1020 new_dfl_cgrp = new_cgrp; 1021 else 1022 new_dfl_cgrp = old_cset->dfl_cgrp; 1023 1024 if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp) 1025 return false; 1026 1027 /* 1028 * Compare cgroup pointers in order to distinguish between 1029 * different cgroups in hierarchies. As different cgroups may 1030 * share the same effective css, this comparison is always 1031 * necessary. 1032 */ 1033 l1 = &cset->cgrp_links; 1034 l2 = &old_cset->cgrp_links; 1035 while (1) { 1036 struct cgrp_cset_link *link1, *link2; 1037 struct cgroup *cgrp1, *cgrp2; 1038 1039 l1 = l1->next; 1040 l2 = l2->next; 1041 /* See if we reached the end - both lists are equal length. */ 1042 if (l1 == &cset->cgrp_links) { 1043 BUG_ON(l2 != &old_cset->cgrp_links); 1044 break; 1045 } else { 1046 BUG_ON(l2 == &old_cset->cgrp_links); 1047 } 1048 /* Locate the cgroups associated with these links. */ 1049 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link); 1050 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link); 1051 cgrp1 = link1->cgrp; 1052 cgrp2 = link2->cgrp; 1053 /* Hierarchies should be linked in the same order. */ 1054 BUG_ON(cgrp1->root != cgrp2->root); 1055 1056 /* 1057 * If this hierarchy is the hierarchy of the cgroup 1058 * that's changing, then we need to check that this 1059 * css_set points to the new cgroup; if it's any other 1060 * hierarchy, then this css_set should point to the 1061 * same cgroup as the old css_set. 1062 */ 1063 if (cgrp1->root == new_cgrp->root) { 1064 if (cgrp1 != new_cgrp) 1065 return false; 1066 } else { 1067 if (cgrp1 != cgrp2) 1068 return false; 1069 } 1070 } 1071 return true; 1072 } 1073 1074 /** 1075 * find_existing_css_set - init css array and find the matching css_set 1076 * @old_cset: the css_set that we're using before the cgroup transition 1077 * @cgrp: the cgroup that we're moving into 1078 * @template: out param for the new set of csses, should be clear on entry 1079 */ 1080 static struct css_set *find_existing_css_set(struct css_set *old_cset, 1081 struct cgroup *cgrp, 1082 struct cgroup_subsys_state *template[]) 1083 { 1084 struct cgroup_root *root = cgrp->root; 1085 struct cgroup_subsys *ss; 1086 struct css_set *cset; 1087 unsigned long key; 1088 int i; 1089 1090 /* 1091 * Build the set of subsystem state objects that we want to see in the 1092 * new css_set. While subsystems can change globally, the entries here 1093 * won't change, so no need for locking. 1094 */ 1095 for_each_subsys(ss, i) { 1096 if (root->subsys_mask & (1UL << i)) { 1097 /* 1098 * @ss is in this hierarchy, so we want the 1099 * effective css from @cgrp. 1100 */ 1101 template[i] = cgroup_e_css_by_mask(cgrp, ss); 1102 } else { 1103 /* 1104 * @ss is not in this hierarchy, so we don't want 1105 * to change the css. 1106 */ 1107 template[i] = old_cset->subsys[i]; 1108 } 1109 } 1110 1111 key = css_set_hash(template); 1112 hash_for_each_possible(css_set_table, cset, hlist, key) { 1113 if (!compare_css_sets(cset, old_cset, cgrp, template)) 1114 continue; 1115 1116 /* This css_set matches what we need */ 1117 return cset; 1118 } 1119 1120 /* No existing cgroup group matched */ 1121 return NULL; 1122 } 1123 1124 static void free_cgrp_cset_links(struct list_head *links_to_free) 1125 { 1126 struct cgrp_cset_link *link, *tmp_link; 1127 1128 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) { 1129 list_del(&link->cset_link); 1130 kfree(link); 1131 } 1132 } 1133 1134 /** 1135 * allocate_cgrp_cset_links - allocate cgrp_cset_links 1136 * @count: the number of links to allocate 1137 * @tmp_links: list_head the allocated links are put on 1138 * 1139 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links 1140 * through ->cset_link. Returns 0 on success or -errno. 1141 */ 1142 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links) 1143 { 1144 struct cgrp_cset_link *link; 1145 int i; 1146 1147 INIT_LIST_HEAD(tmp_links); 1148 1149 for (i = 0; i < count; i++) { 1150 link = kzalloc(sizeof(*link), GFP_KERNEL); 1151 if (!link) { 1152 free_cgrp_cset_links(tmp_links); 1153 return -ENOMEM; 1154 } 1155 list_add(&link->cset_link, tmp_links); 1156 } 1157 return 0; 1158 } 1159 1160 /** 1161 * link_css_set - a helper function to link a css_set to a cgroup 1162 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links() 1163 * @cset: the css_set to be linked 1164 * @cgrp: the destination cgroup 1165 */ 1166 static void link_css_set(struct list_head *tmp_links, struct css_set *cset, 1167 struct cgroup *cgrp) 1168 { 1169 struct cgrp_cset_link *link; 1170 1171 BUG_ON(list_empty(tmp_links)); 1172 1173 if (cgroup_on_dfl(cgrp)) 1174 cset->dfl_cgrp = cgrp; 1175 1176 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link); 1177 link->cset = cset; 1178 link->cgrp = cgrp; 1179 1180 /* 1181 * Always add links to the tail of the lists so that the lists are 1182 * in chronological order. 1183 */ 1184 list_move_tail(&link->cset_link, &cgrp->cset_links); 1185 list_add_tail(&link->cgrp_link, &cset->cgrp_links); 1186 1187 if (cgroup_parent(cgrp)) 1188 cgroup_get_live(cgrp); 1189 } 1190 1191 /** 1192 * find_css_set - return a new css_set with one cgroup updated 1193 * @old_cset: the baseline css_set 1194 * @cgrp: the cgroup to be updated 1195 * 1196 * Return a new css_set that's equivalent to @old_cset, but with @cgrp 1197 * substituted into the appropriate hierarchy. 1198 */ 1199 static struct css_set *find_css_set(struct css_set *old_cset, 1200 struct cgroup *cgrp) 1201 { 1202 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { }; 1203 struct css_set *cset; 1204 struct list_head tmp_links; 1205 struct cgrp_cset_link *link; 1206 struct cgroup_subsys *ss; 1207 unsigned long key; 1208 int ssid; 1209 1210 lockdep_assert_held(&cgroup_mutex); 1211 1212 /* First see if we already have a cgroup group that matches 1213 * the desired set */ 1214 spin_lock_irq(&css_set_lock); 1215 cset = find_existing_css_set(old_cset, cgrp, template); 1216 if (cset) 1217 get_css_set(cset); 1218 spin_unlock_irq(&css_set_lock); 1219 1220 if (cset) 1221 return cset; 1222 1223 cset = kzalloc(sizeof(*cset), GFP_KERNEL); 1224 if (!cset) 1225 return NULL; 1226 1227 /* Allocate all the cgrp_cset_link objects that we'll need */ 1228 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) { 1229 kfree(cset); 1230 return NULL; 1231 } 1232 1233 refcount_set(&cset->refcount, 1); 1234 cset->dom_cset = cset; 1235 INIT_LIST_HEAD(&cset->tasks); 1236 INIT_LIST_HEAD(&cset->mg_tasks); 1237 INIT_LIST_HEAD(&cset->dying_tasks); 1238 INIT_LIST_HEAD(&cset->task_iters); 1239 INIT_LIST_HEAD(&cset->threaded_csets); 1240 INIT_HLIST_NODE(&cset->hlist); 1241 INIT_LIST_HEAD(&cset->cgrp_links); 1242 INIT_LIST_HEAD(&cset->mg_preload_node); 1243 INIT_LIST_HEAD(&cset->mg_node); 1244 1245 /* Copy the set of subsystem state objects generated in 1246 * find_existing_css_set() */ 1247 memcpy(cset->subsys, template, sizeof(cset->subsys)); 1248 1249 spin_lock_irq(&css_set_lock); 1250 /* Add reference counts and links from the new css_set. */ 1251 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) { 1252 struct cgroup *c = link->cgrp; 1253 1254 if (c->root == cgrp->root) 1255 c = cgrp; 1256 link_css_set(&tmp_links, cset, c); 1257 } 1258 1259 BUG_ON(!list_empty(&tmp_links)); 1260 1261 css_set_count++; 1262 1263 /* Add @cset to the hash table */ 1264 key = css_set_hash(cset->subsys); 1265 hash_add(css_set_table, &cset->hlist, key); 1266 1267 for_each_subsys(ss, ssid) { 1268 struct cgroup_subsys_state *css = cset->subsys[ssid]; 1269 1270 list_add_tail(&cset->e_cset_node[ssid], 1271 &css->cgroup->e_csets[ssid]); 1272 css_get(css); 1273 } 1274 1275 spin_unlock_irq(&css_set_lock); 1276 1277 /* 1278 * If @cset should be threaded, look up the matching dom_cset and 1279 * link them up. We first fully initialize @cset then look for the 1280 * dom_cset. It's simpler this way and safe as @cset is guaranteed 1281 * to stay empty until we return. 1282 */ 1283 if (cgroup_is_threaded(cset->dfl_cgrp)) { 1284 struct css_set *dcset; 1285 1286 dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp); 1287 if (!dcset) { 1288 put_css_set(cset); 1289 return NULL; 1290 } 1291 1292 spin_lock_irq(&css_set_lock); 1293 cset->dom_cset = dcset; 1294 list_add_tail(&cset->threaded_csets_node, 1295 &dcset->threaded_csets); 1296 spin_unlock_irq(&css_set_lock); 1297 } 1298 1299 return cset; 1300 } 1301 1302 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root) 1303 { 1304 struct cgroup *root_cgrp = kf_root->kn->priv; 1305 1306 return root_cgrp->root; 1307 } 1308 1309 static int cgroup_init_root_id(struct cgroup_root *root) 1310 { 1311 int id; 1312 1313 lockdep_assert_held(&cgroup_mutex); 1314 1315 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL); 1316 if (id < 0) 1317 return id; 1318 1319 root->hierarchy_id = id; 1320 return 0; 1321 } 1322 1323 static void cgroup_exit_root_id(struct cgroup_root *root) 1324 { 1325 lockdep_assert_held(&cgroup_mutex); 1326 1327 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id); 1328 } 1329 1330 void cgroup_free_root(struct cgroup_root *root) 1331 { 1332 kfree(root); 1333 } 1334 1335 static void cgroup_destroy_root(struct cgroup_root *root) 1336 { 1337 struct cgroup *cgrp = &root->cgrp; 1338 struct cgrp_cset_link *link, *tmp_link; 1339 1340 trace_cgroup_destroy_root(root); 1341 1342 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp); 1343 1344 BUG_ON(atomic_read(&root->nr_cgrps)); 1345 BUG_ON(!list_empty(&cgrp->self.children)); 1346 1347 /* Rebind all subsystems back to the default hierarchy */ 1348 WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask)); 1349 1350 /* 1351 * Release all the links from cset_links to this hierarchy's 1352 * root cgroup 1353 */ 1354 spin_lock_irq(&css_set_lock); 1355 1356 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) { 1357 list_del(&link->cset_link); 1358 list_del(&link->cgrp_link); 1359 kfree(link); 1360 } 1361 1362 spin_unlock_irq(&css_set_lock); 1363 1364 if (!list_empty(&root->root_list)) { 1365 list_del(&root->root_list); 1366 cgroup_root_count--; 1367 } 1368 1369 cgroup_exit_root_id(root); 1370 1371 mutex_unlock(&cgroup_mutex); 1372 1373 cgroup_rstat_exit(cgrp); 1374 kernfs_destroy_root(root->kf_root); 1375 cgroup_free_root(root); 1376 } 1377 1378 /* 1379 * look up cgroup associated with current task's cgroup namespace on the 1380 * specified hierarchy 1381 */ 1382 static struct cgroup * 1383 current_cgns_cgroup_from_root(struct cgroup_root *root) 1384 { 1385 struct cgroup *res = NULL; 1386 struct css_set *cset; 1387 1388 lockdep_assert_held(&css_set_lock); 1389 1390 rcu_read_lock(); 1391 1392 cset = current->nsproxy->cgroup_ns->root_cset; 1393 if (cset == &init_css_set) { 1394 res = &root->cgrp; 1395 } else if (root == &cgrp_dfl_root) { 1396 res = cset->dfl_cgrp; 1397 } else { 1398 struct cgrp_cset_link *link; 1399 1400 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) { 1401 struct cgroup *c = link->cgrp; 1402 1403 if (c->root == root) { 1404 res = c; 1405 break; 1406 } 1407 } 1408 } 1409 rcu_read_unlock(); 1410 1411 BUG_ON(!res); 1412 return res; 1413 } 1414 1415 /* look up cgroup associated with given css_set on the specified hierarchy */ 1416 static struct cgroup *cset_cgroup_from_root(struct css_set *cset, 1417 struct cgroup_root *root) 1418 { 1419 struct cgroup *res = NULL; 1420 1421 lockdep_assert_held(&cgroup_mutex); 1422 lockdep_assert_held(&css_set_lock); 1423 1424 if (cset == &init_css_set) { 1425 res = &root->cgrp; 1426 } else if (root == &cgrp_dfl_root) { 1427 res = cset->dfl_cgrp; 1428 } else { 1429 struct cgrp_cset_link *link; 1430 1431 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) { 1432 struct cgroup *c = link->cgrp; 1433 1434 if (c->root == root) { 1435 res = c; 1436 break; 1437 } 1438 } 1439 } 1440 1441 BUG_ON(!res); 1442 return res; 1443 } 1444 1445 /* 1446 * Return the cgroup for "task" from the given hierarchy. Must be 1447 * called with cgroup_mutex and css_set_lock held. 1448 */ 1449 struct cgroup *task_cgroup_from_root(struct task_struct *task, 1450 struct cgroup_root *root) 1451 { 1452 /* 1453 * No need to lock the task - since we hold css_set_lock the 1454 * task can't change groups. 1455 */ 1456 return cset_cgroup_from_root(task_css_set(task), root); 1457 } 1458 1459 /* 1460 * A task must hold cgroup_mutex to modify cgroups. 1461 * 1462 * Any task can increment and decrement the count field without lock. 1463 * So in general, code holding cgroup_mutex can't rely on the count 1464 * field not changing. However, if the count goes to zero, then only 1465 * cgroup_attach_task() can increment it again. Because a count of zero 1466 * means that no tasks are currently attached, therefore there is no 1467 * way a task attached to that cgroup can fork (the other way to 1468 * increment the count). So code holding cgroup_mutex can safely 1469 * assume that if the count is zero, it will stay zero. Similarly, if 1470 * a task holds cgroup_mutex on a cgroup with zero count, it 1471 * knows that the cgroup won't be removed, as cgroup_rmdir() 1472 * needs that mutex. 1473 * 1474 * A cgroup can only be deleted if both its 'count' of using tasks 1475 * is zero, and its list of 'children' cgroups is empty. Since all 1476 * tasks in the system use _some_ cgroup, and since there is always at 1477 * least one task in the system (init, pid == 1), therefore, root cgroup 1478 * always has either children cgroups and/or using tasks. So we don't 1479 * need a special hack to ensure that root cgroup cannot be deleted. 1480 * 1481 * P.S. One more locking exception. RCU is used to guard the 1482 * update of a tasks cgroup pointer by cgroup_attach_task() 1483 */ 1484 1485 static struct kernfs_syscall_ops cgroup_kf_syscall_ops; 1486 1487 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft, 1488 char *buf) 1489 { 1490 struct cgroup_subsys *ss = cft->ss; 1491 1492 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) && 1493 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) { 1494 const char *dbg = (cft->flags & CFTYPE_DEBUG) ? ".__DEBUG__." : ""; 1495 1496 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s%s.%s", 1497 dbg, cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name, 1498 cft->name); 1499 } else { 1500 strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX); 1501 } 1502 return buf; 1503 } 1504 1505 /** 1506 * cgroup_file_mode - deduce file mode of a control file 1507 * @cft: the control file in question 1508 * 1509 * S_IRUGO for read, S_IWUSR for write. 1510 */ 1511 static umode_t cgroup_file_mode(const struct cftype *cft) 1512 { 1513 umode_t mode = 0; 1514 1515 if (cft->read_u64 || cft->read_s64 || cft->seq_show) 1516 mode |= S_IRUGO; 1517 1518 if (cft->write_u64 || cft->write_s64 || cft->write) { 1519 if (cft->flags & CFTYPE_WORLD_WRITABLE) 1520 mode |= S_IWUGO; 1521 else 1522 mode |= S_IWUSR; 1523 } 1524 1525 return mode; 1526 } 1527 1528 /** 1529 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask 1530 * @subtree_control: the new subtree_control mask to consider 1531 * @this_ss_mask: available subsystems 1532 * 1533 * On the default hierarchy, a subsystem may request other subsystems to be 1534 * enabled together through its ->depends_on mask. In such cases, more 1535 * subsystems than specified in "cgroup.subtree_control" may be enabled. 1536 * 1537 * This function calculates which subsystems need to be enabled if 1538 * @subtree_control is to be applied while restricted to @this_ss_mask. 1539 */ 1540 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask) 1541 { 1542 u16 cur_ss_mask = subtree_control; 1543 struct cgroup_subsys *ss; 1544 int ssid; 1545 1546 lockdep_assert_held(&cgroup_mutex); 1547 1548 cur_ss_mask |= cgrp_dfl_implicit_ss_mask; 1549 1550 while (true) { 1551 u16 new_ss_mask = cur_ss_mask; 1552 1553 do_each_subsys_mask(ss, ssid, cur_ss_mask) { 1554 new_ss_mask |= ss->depends_on; 1555 } while_each_subsys_mask(); 1556 1557 /* 1558 * Mask out subsystems which aren't available. This can 1559 * happen only if some depended-upon subsystems were bound 1560 * to non-default hierarchies. 1561 */ 1562 new_ss_mask &= this_ss_mask; 1563 1564 if (new_ss_mask == cur_ss_mask) 1565 break; 1566 cur_ss_mask = new_ss_mask; 1567 } 1568 1569 return cur_ss_mask; 1570 } 1571 1572 /** 1573 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods 1574 * @kn: the kernfs_node being serviced 1575 * 1576 * This helper undoes cgroup_kn_lock_live() and should be invoked before 1577 * the method finishes if locking succeeded. Note that once this function 1578 * returns the cgroup returned by cgroup_kn_lock_live() may become 1579 * inaccessible any time. If the caller intends to continue to access the 1580 * cgroup, it should pin it before invoking this function. 1581 */ 1582 void cgroup_kn_unlock(struct kernfs_node *kn) 1583 { 1584 struct cgroup *cgrp; 1585 1586 if (kernfs_type(kn) == KERNFS_DIR) 1587 cgrp = kn->priv; 1588 else 1589 cgrp = kn->parent->priv; 1590 1591 mutex_unlock(&cgroup_mutex); 1592 1593 kernfs_unbreak_active_protection(kn); 1594 cgroup_put(cgrp); 1595 } 1596 1597 /** 1598 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods 1599 * @kn: the kernfs_node being serviced 1600 * @drain_offline: perform offline draining on the cgroup 1601 * 1602 * This helper is to be used by a cgroup kernfs method currently servicing 1603 * @kn. It breaks the active protection, performs cgroup locking and 1604 * verifies that the associated cgroup is alive. Returns the cgroup if 1605 * alive; otherwise, %NULL. A successful return should be undone by a 1606 * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the 1607 * cgroup is drained of offlining csses before return. 1608 * 1609 * Any cgroup kernfs method implementation which requires locking the 1610 * associated cgroup should use this helper. It avoids nesting cgroup 1611 * locking under kernfs active protection and allows all kernfs operations 1612 * including self-removal. 1613 */ 1614 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline) 1615 { 1616 struct cgroup *cgrp; 1617 1618 if (kernfs_type(kn) == KERNFS_DIR) 1619 cgrp = kn->priv; 1620 else 1621 cgrp = kn->parent->priv; 1622 1623 /* 1624 * We're gonna grab cgroup_mutex which nests outside kernfs 1625 * active_ref. cgroup liveliness check alone provides enough 1626 * protection against removal. Ensure @cgrp stays accessible and 1627 * break the active_ref protection. 1628 */ 1629 if (!cgroup_tryget(cgrp)) 1630 return NULL; 1631 kernfs_break_active_protection(kn); 1632 1633 if (drain_offline) 1634 cgroup_lock_and_drain_offline(cgrp); 1635 else 1636 mutex_lock(&cgroup_mutex); 1637 1638 if (!cgroup_is_dead(cgrp)) 1639 return cgrp; 1640 1641 cgroup_kn_unlock(kn); 1642 return NULL; 1643 } 1644 1645 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft) 1646 { 1647 char name[CGROUP_FILE_NAME_MAX]; 1648 1649 lockdep_assert_held(&cgroup_mutex); 1650 1651 if (cft->file_offset) { 1652 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss); 1653 struct cgroup_file *cfile = (void *)css + cft->file_offset; 1654 1655 spin_lock_irq(&cgroup_file_kn_lock); 1656 cfile->kn = NULL; 1657 spin_unlock_irq(&cgroup_file_kn_lock); 1658 1659 del_timer_sync(&cfile->notify_timer); 1660 } 1661 1662 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name)); 1663 } 1664 1665 /** 1666 * css_clear_dir - remove subsys files in a cgroup directory 1667 * @css: target css 1668 */ 1669 static void css_clear_dir(struct cgroup_subsys_state *css) 1670 { 1671 struct cgroup *cgrp = css->cgroup; 1672 struct cftype *cfts; 1673 1674 if (!(css->flags & CSS_VISIBLE)) 1675 return; 1676 1677 css->flags &= ~CSS_VISIBLE; 1678 1679 if (!css->ss) { 1680 if (cgroup_on_dfl(cgrp)) 1681 cfts = cgroup_base_files; 1682 else 1683 cfts = cgroup1_base_files; 1684 1685 cgroup_addrm_files(css, cgrp, cfts, false); 1686 } else { 1687 list_for_each_entry(cfts, &css->ss->cfts, node) 1688 cgroup_addrm_files(css, cgrp, cfts, false); 1689 } 1690 } 1691 1692 /** 1693 * css_populate_dir - create subsys files in a cgroup directory 1694 * @css: target css 1695 * 1696 * On failure, no file is added. 1697 */ 1698 static int css_populate_dir(struct cgroup_subsys_state *css) 1699 { 1700 struct cgroup *cgrp = css->cgroup; 1701 struct cftype *cfts, *failed_cfts; 1702 int ret; 1703 1704 if ((css->flags & CSS_VISIBLE) || !cgrp->kn) 1705 return 0; 1706 1707 if (!css->ss) { 1708 if (cgroup_on_dfl(cgrp)) 1709 cfts = cgroup_base_files; 1710 else 1711 cfts = cgroup1_base_files; 1712 1713 ret = cgroup_addrm_files(&cgrp->self, cgrp, cfts, true); 1714 if (ret < 0) 1715 return ret; 1716 } else { 1717 list_for_each_entry(cfts, &css->ss->cfts, node) { 1718 ret = cgroup_addrm_files(css, cgrp, cfts, true); 1719 if (ret < 0) { 1720 failed_cfts = cfts; 1721 goto err; 1722 } 1723 } 1724 } 1725 1726 css->flags |= CSS_VISIBLE; 1727 1728 return 0; 1729 err: 1730 list_for_each_entry(cfts, &css->ss->cfts, node) { 1731 if (cfts == failed_cfts) 1732 break; 1733 cgroup_addrm_files(css, cgrp, cfts, false); 1734 } 1735 return ret; 1736 } 1737 1738 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask) 1739 { 1740 struct cgroup *dcgrp = &dst_root->cgrp; 1741 struct cgroup_subsys *ss; 1742 int ssid, i, ret; 1743 1744 lockdep_assert_held(&cgroup_mutex); 1745 1746 do_each_subsys_mask(ss, ssid, ss_mask) { 1747 /* 1748 * If @ss has non-root csses attached to it, can't move. 1749 * If @ss is an implicit controller, it is exempt from this 1750 * rule and can be stolen. 1751 */ 1752 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) && 1753 !ss->implicit_on_dfl) 1754 return -EBUSY; 1755 1756 /* can't move between two non-dummy roots either */ 1757 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root) 1758 return -EBUSY; 1759 } while_each_subsys_mask(); 1760 1761 do_each_subsys_mask(ss, ssid, ss_mask) { 1762 struct cgroup_root *src_root = ss->root; 1763 struct cgroup *scgrp = &src_root->cgrp; 1764 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss); 1765 struct css_set *cset; 1766 1767 WARN_ON(!css || cgroup_css(dcgrp, ss)); 1768 1769 /* disable from the source */ 1770 src_root->subsys_mask &= ~(1 << ssid); 1771 WARN_ON(cgroup_apply_control(scgrp)); 1772 cgroup_finalize_control(scgrp, 0); 1773 1774 /* rebind */ 1775 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL); 1776 rcu_assign_pointer(dcgrp->subsys[ssid], css); 1777 ss->root = dst_root; 1778 css->cgroup = dcgrp; 1779 1780 spin_lock_irq(&css_set_lock); 1781 hash_for_each(css_set_table, i, cset, hlist) 1782 list_move_tail(&cset->e_cset_node[ss->id], 1783 &dcgrp->e_csets[ss->id]); 1784 spin_unlock_irq(&css_set_lock); 1785 1786 if (ss->css_rstat_flush) { 1787 list_del_rcu(&css->rstat_css_node); 1788 list_add_rcu(&css->rstat_css_node, 1789 &dcgrp->rstat_css_list); 1790 } 1791 1792 /* default hierarchy doesn't enable controllers by default */ 1793 dst_root->subsys_mask |= 1 << ssid; 1794 if (dst_root == &cgrp_dfl_root) { 1795 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]); 1796 } else { 1797 dcgrp->subtree_control |= 1 << ssid; 1798 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]); 1799 } 1800 1801 ret = cgroup_apply_control(dcgrp); 1802 if (ret) 1803 pr_warn("partial failure to rebind %s controller (err=%d)\n", 1804 ss->name, ret); 1805 1806 if (ss->bind) 1807 ss->bind(css); 1808 } while_each_subsys_mask(); 1809 1810 kernfs_activate(dcgrp->kn); 1811 return 0; 1812 } 1813 1814 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node, 1815 struct kernfs_root *kf_root) 1816 { 1817 int len = 0; 1818 char *buf = NULL; 1819 struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root); 1820 struct cgroup *ns_cgroup; 1821 1822 buf = kmalloc(PATH_MAX, GFP_KERNEL); 1823 if (!buf) 1824 return -ENOMEM; 1825 1826 spin_lock_irq(&css_set_lock); 1827 ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot); 1828 len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX); 1829 spin_unlock_irq(&css_set_lock); 1830 1831 if (len >= PATH_MAX) 1832 len = -ERANGE; 1833 else if (len > 0) { 1834 seq_escape(sf, buf, " \t\n\\"); 1835 len = 0; 1836 } 1837 kfree(buf); 1838 return len; 1839 } 1840 1841 enum cgroup2_param { 1842 Opt_nsdelegate, 1843 Opt_memory_localevents, 1844 Opt_memory_recursiveprot, 1845 nr__cgroup2_params 1846 }; 1847 1848 static const struct fs_parameter_spec cgroup2_fs_parameters[] = { 1849 fsparam_flag("nsdelegate", Opt_nsdelegate), 1850 fsparam_flag("memory_localevents", Opt_memory_localevents), 1851 fsparam_flag("memory_recursiveprot", Opt_memory_recursiveprot), 1852 {} 1853 }; 1854 1855 static int cgroup2_parse_param(struct fs_context *fc, struct fs_parameter *param) 1856 { 1857 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 1858 struct fs_parse_result result; 1859 int opt; 1860 1861 opt = fs_parse(fc, cgroup2_fs_parameters, param, &result); 1862 if (opt < 0) 1863 return opt; 1864 1865 switch (opt) { 1866 case Opt_nsdelegate: 1867 ctx->flags |= CGRP_ROOT_NS_DELEGATE; 1868 return 0; 1869 case Opt_memory_localevents: 1870 ctx->flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS; 1871 return 0; 1872 case Opt_memory_recursiveprot: 1873 ctx->flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT; 1874 return 0; 1875 } 1876 return -EINVAL; 1877 } 1878 1879 static void apply_cgroup_root_flags(unsigned int root_flags) 1880 { 1881 if (current->nsproxy->cgroup_ns == &init_cgroup_ns) { 1882 if (root_flags & CGRP_ROOT_NS_DELEGATE) 1883 cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE; 1884 else 1885 cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE; 1886 1887 if (root_flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS) 1888 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS; 1889 else 1890 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_LOCAL_EVENTS; 1891 1892 if (root_flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT) 1893 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT; 1894 else 1895 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_RECURSIVE_PROT; 1896 } 1897 } 1898 1899 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root) 1900 { 1901 if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) 1902 seq_puts(seq, ",nsdelegate"); 1903 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS) 1904 seq_puts(seq, ",memory_localevents"); 1905 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT) 1906 seq_puts(seq, ",memory_recursiveprot"); 1907 return 0; 1908 } 1909 1910 static int cgroup_reconfigure(struct fs_context *fc) 1911 { 1912 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 1913 1914 apply_cgroup_root_flags(ctx->flags); 1915 return 0; 1916 } 1917 1918 static void init_cgroup_housekeeping(struct cgroup *cgrp) 1919 { 1920 struct cgroup_subsys *ss; 1921 int ssid; 1922 1923 INIT_LIST_HEAD(&cgrp->self.sibling); 1924 INIT_LIST_HEAD(&cgrp->self.children); 1925 INIT_LIST_HEAD(&cgrp->cset_links); 1926 INIT_LIST_HEAD(&cgrp->pidlists); 1927 mutex_init(&cgrp->pidlist_mutex); 1928 cgrp->self.cgroup = cgrp; 1929 cgrp->self.flags |= CSS_ONLINE; 1930 cgrp->dom_cgrp = cgrp; 1931 cgrp->max_descendants = INT_MAX; 1932 cgrp->max_depth = INT_MAX; 1933 INIT_LIST_HEAD(&cgrp->rstat_css_list); 1934 prev_cputime_init(&cgrp->prev_cputime); 1935 1936 for_each_subsys(ss, ssid) 1937 INIT_LIST_HEAD(&cgrp->e_csets[ssid]); 1938 1939 init_waitqueue_head(&cgrp->offline_waitq); 1940 INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent); 1941 } 1942 1943 void init_cgroup_root(struct cgroup_fs_context *ctx) 1944 { 1945 struct cgroup_root *root = ctx->root; 1946 struct cgroup *cgrp = &root->cgrp; 1947 1948 INIT_LIST_HEAD(&root->root_list); 1949 atomic_set(&root->nr_cgrps, 1); 1950 cgrp->root = root; 1951 init_cgroup_housekeeping(cgrp); 1952 1953 root->flags = ctx->flags; 1954 if (ctx->release_agent) 1955 strscpy(root->release_agent_path, ctx->release_agent, PATH_MAX); 1956 if (ctx->name) 1957 strscpy(root->name, ctx->name, MAX_CGROUP_ROOT_NAMELEN); 1958 if (ctx->cpuset_clone_children) 1959 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags); 1960 } 1961 1962 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask) 1963 { 1964 LIST_HEAD(tmp_links); 1965 struct cgroup *root_cgrp = &root->cgrp; 1966 struct kernfs_syscall_ops *kf_sops; 1967 struct css_set *cset; 1968 int i, ret; 1969 1970 lockdep_assert_held(&cgroup_mutex); 1971 1972 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 1973 0, GFP_KERNEL); 1974 if (ret) 1975 goto out; 1976 1977 /* 1978 * We're accessing css_set_count without locking css_set_lock here, 1979 * but that's OK - it can only be increased by someone holding 1980 * cgroup_lock, and that's us. Later rebinding may disable 1981 * controllers on the default hierarchy and thus create new csets, 1982 * which can't be more than the existing ones. Allocate 2x. 1983 */ 1984 ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links); 1985 if (ret) 1986 goto cancel_ref; 1987 1988 ret = cgroup_init_root_id(root); 1989 if (ret) 1990 goto cancel_ref; 1991 1992 kf_sops = root == &cgrp_dfl_root ? 1993 &cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops; 1994 1995 root->kf_root = kernfs_create_root(kf_sops, 1996 KERNFS_ROOT_CREATE_DEACTIVATED | 1997 KERNFS_ROOT_SUPPORT_EXPORTOP | 1998 KERNFS_ROOT_SUPPORT_USER_XATTR, 1999 root_cgrp); 2000 if (IS_ERR(root->kf_root)) { 2001 ret = PTR_ERR(root->kf_root); 2002 goto exit_root_id; 2003 } 2004 root_cgrp->kn = root->kf_root->kn; 2005 WARN_ON_ONCE(cgroup_ino(root_cgrp) != 1); 2006 root_cgrp->ancestor_ids[0] = cgroup_id(root_cgrp); 2007 2008 ret = css_populate_dir(&root_cgrp->self); 2009 if (ret) 2010 goto destroy_root; 2011 2012 ret = cgroup_rstat_init(root_cgrp); 2013 if (ret) 2014 goto destroy_root; 2015 2016 ret = rebind_subsystems(root, ss_mask); 2017 if (ret) 2018 goto exit_stats; 2019 2020 ret = cgroup_bpf_inherit(root_cgrp); 2021 WARN_ON_ONCE(ret); 2022 2023 trace_cgroup_setup_root(root); 2024 2025 /* 2026 * There must be no failure case after here, since rebinding takes 2027 * care of subsystems' refcounts, which are explicitly dropped in 2028 * the failure exit path. 2029 */ 2030 list_add(&root->root_list, &cgroup_roots); 2031 cgroup_root_count++; 2032 2033 /* 2034 * Link the root cgroup in this hierarchy into all the css_set 2035 * objects. 2036 */ 2037 spin_lock_irq(&css_set_lock); 2038 hash_for_each(css_set_table, i, cset, hlist) { 2039 link_css_set(&tmp_links, cset, root_cgrp); 2040 if (css_set_populated(cset)) 2041 cgroup_update_populated(root_cgrp, true); 2042 } 2043 spin_unlock_irq(&css_set_lock); 2044 2045 BUG_ON(!list_empty(&root_cgrp->self.children)); 2046 BUG_ON(atomic_read(&root->nr_cgrps) != 1); 2047 2048 ret = 0; 2049 goto out; 2050 2051 exit_stats: 2052 cgroup_rstat_exit(root_cgrp); 2053 destroy_root: 2054 kernfs_destroy_root(root->kf_root); 2055 root->kf_root = NULL; 2056 exit_root_id: 2057 cgroup_exit_root_id(root); 2058 cancel_ref: 2059 percpu_ref_exit(&root_cgrp->self.refcnt); 2060 out: 2061 free_cgrp_cset_links(&tmp_links); 2062 return ret; 2063 } 2064 2065 int cgroup_do_get_tree(struct fs_context *fc) 2066 { 2067 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2068 int ret; 2069 2070 ctx->kfc.root = ctx->root->kf_root; 2071 if (fc->fs_type == &cgroup2_fs_type) 2072 ctx->kfc.magic = CGROUP2_SUPER_MAGIC; 2073 else 2074 ctx->kfc.magic = CGROUP_SUPER_MAGIC; 2075 ret = kernfs_get_tree(fc); 2076 2077 /* 2078 * In non-init cgroup namespace, instead of root cgroup's dentry, 2079 * we return the dentry corresponding to the cgroupns->root_cgrp. 2080 */ 2081 if (!ret && ctx->ns != &init_cgroup_ns) { 2082 struct dentry *nsdentry; 2083 struct super_block *sb = fc->root->d_sb; 2084 struct cgroup *cgrp; 2085 2086 mutex_lock(&cgroup_mutex); 2087 spin_lock_irq(&css_set_lock); 2088 2089 cgrp = cset_cgroup_from_root(ctx->ns->root_cset, ctx->root); 2090 2091 spin_unlock_irq(&css_set_lock); 2092 mutex_unlock(&cgroup_mutex); 2093 2094 nsdentry = kernfs_node_dentry(cgrp->kn, sb); 2095 dput(fc->root); 2096 if (IS_ERR(nsdentry)) { 2097 deactivate_locked_super(sb); 2098 ret = PTR_ERR(nsdentry); 2099 nsdentry = NULL; 2100 } 2101 fc->root = nsdentry; 2102 } 2103 2104 if (!ctx->kfc.new_sb_created) 2105 cgroup_put(&ctx->root->cgrp); 2106 2107 return ret; 2108 } 2109 2110 /* 2111 * Destroy a cgroup filesystem context. 2112 */ 2113 static void cgroup_fs_context_free(struct fs_context *fc) 2114 { 2115 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2116 2117 kfree(ctx->name); 2118 kfree(ctx->release_agent); 2119 put_cgroup_ns(ctx->ns); 2120 kernfs_free_fs_context(fc); 2121 kfree(ctx); 2122 } 2123 2124 static int cgroup_get_tree(struct fs_context *fc) 2125 { 2126 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2127 int ret; 2128 2129 cgrp_dfl_visible = true; 2130 cgroup_get_live(&cgrp_dfl_root.cgrp); 2131 ctx->root = &cgrp_dfl_root; 2132 2133 ret = cgroup_do_get_tree(fc); 2134 if (!ret) 2135 apply_cgroup_root_flags(ctx->flags); 2136 return ret; 2137 } 2138 2139 static const struct fs_context_operations cgroup_fs_context_ops = { 2140 .free = cgroup_fs_context_free, 2141 .parse_param = cgroup2_parse_param, 2142 .get_tree = cgroup_get_tree, 2143 .reconfigure = cgroup_reconfigure, 2144 }; 2145 2146 static const struct fs_context_operations cgroup1_fs_context_ops = { 2147 .free = cgroup_fs_context_free, 2148 .parse_param = cgroup1_parse_param, 2149 .get_tree = cgroup1_get_tree, 2150 .reconfigure = cgroup1_reconfigure, 2151 }; 2152 2153 /* 2154 * Initialise the cgroup filesystem creation/reconfiguration context. Notably, 2155 * we select the namespace we're going to use. 2156 */ 2157 static int cgroup_init_fs_context(struct fs_context *fc) 2158 { 2159 struct cgroup_fs_context *ctx; 2160 2161 ctx = kzalloc(sizeof(struct cgroup_fs_context), GFP_KERNEL); 2162 if (!ctx) 2163 return -ENOMEM; 2164 2165 ctx->ns = current->nsproxy->cgroup_ns; 2166 get_cgroup_ns(ctx->ns); 2167 fc->fs_private = &ctx->kfc; 2168 if (fc->fs_type == &cgroup2_fs_type) 2169 fc->ops = &cgroup_fs_context_ops; 2170 else 2171 fc->ops = &cgroup1_fs_context_ops; 2172 put_user_ns(fc->user_ns); 2173 fc->user_ns = get_user_ns(ctx->ns->user_ns); 2174 fc->global = true; 2175 return 0; 2176 } 2177 2178 static void cgroup_kill_sb(struct super_block *sb) 2179 { 2180 struct kernfs_root *kf_root = kernfs_root_from_sb(sb); 2181 struct cgroup_root *root = cgroup_root_from_kf(kf_root); 2182 2183 /* 2184 * If @root doesn't have any children, start killing it. 2185 * This prevents new mounts by disabling percpu_ref_tryget_live(). 2186 * 2187 * And don't kill the default root. 2188 */ 2189 if (list_empty(&root->cgrp.self.children) && root != &cgrp_dfl_root && 2190 !percpu_ref_is_dying(&root->cgrp.self.refcnt)) { 2191 cgroup_bpf_offline(&root->cgrp); 2192 percpu_ref_kill(&root->cgrp.self.refcnt); 2193 } 2194 cgroup_put(&root->cgrp); 2195 kernfs_kill_sb(sb); 2196 } 2197 2198 struct file_system_type cgroup_fs_type = { 2199 .name = "cgroup", 2200 .init_fs_context = cgroup_init_fs_context, 2201 .parameters = cgroup1_fs_parameters, 2202 .kill_sb = cgroup_kill_sb, 2203 .fs_flags = FS_USERNS_MOUNT, 2204 }; 2205 2206 static struct file_system_type cgroup2_fs_type = { 2207 .name = "cgroup2", 2208 .init_fs_context = cgroup_init_fs_context, 2209 .parameters = cgroup2_fs_parameters, 2210 .kill_sb = cgroup_kill_sb, 2211 .fs_flags = FS_USERNS_MOUNT, 2212 }; 2213 2214 #ifdef CONFIG_CPUSETS 2215 static const struct fs_context_operations cpuset_fs_context_ops = { 2216 .get_tree = cgroup1_get_tree, 2217 .free = cgroup_fs_context_free, 2218 }; 2219 2220 /* 2221 * This is ugly, but preserves the userspace API for existing cpuset 2222 * users. If someone tries to mount the "cpuset" filesystem, we 2223 * silently switch it to mount "cgroup" instead 2224 */ 2225 static int cpuset_init_fs_context(struct fs_context *fc) 2226 { 2227 char *agent = kstrdup("/sbin/cpuset_release_agent", GFP_USER); 2228 struct cgroup_fs_context *ctx; 2229 int err; 2230 2231 err = cgroup_init_fs_context(fc); 2232 if (err) { 2233 kfree(agent); 2234 return err; 2235 } 2236 2237 fc->ops = &cpuset_fs_context_ops; 2238 2239 ctx = cgroup_fc2context(fc); 2240 ctx->subsys_mask = 1 << cpuset_cgrp_id; 2241 ctx->flags |= CGRP_ROOT_NOPREFIX; 2242 ctx->release_agent = agent; 2243 2244 get_filesystem(&cgroup_fs_type); 2245 put_filesystem(fc->fs_type); 2246 fc->fs_type = &cgroup_fs_type; 2247 2248 return 0; 2249 } 2250 2251 static struct file_system_type cpuset_fs_type = { 2252 .name = "cpuset", 2253 .init_fs_context = cpuset_init_fs_context, 2254 .fs_flags = FS_USERNS_MOUNT, 2255 }; 2256 #endif 2257 2258 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen, 2259 struct cgroup_namespace *ns) 2260 { 2261 struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root); 2262 2263 return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen); 2264 } 2265 2266 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen, 2267 struct cgroup_namespace *ns) 2268 { 2269 int ret; 2270 2271 mutex_lock(&cgroup_mutex); 2272 spin_lock_irq(&css_set_lock); 2273 2274 ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns); 2275 2276 spin_unlock_irq(&css_set_lock); 2277 mutex_unlock(&cgroup_mutex); 2278 2279 return ret; 2280 } 2281 EXPORT_SYMBOL_GPL(cgroup_path_ns); 2282 2283 /** 2284 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy 2285 * @task: target task 2286 * @buf: the buffer to write the path into 2287 * @buflen: the length of the buffer 2288 * 2289 * Determine @task's cgroup on the first (the one with the lowest non-zero 2290 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This 2291 * function grabs cgroup_mutex and shouldn't be used inside locks used by 2292 * cgroup controller callbacks. 2293 * 2294 * Return value is the same as kernfs_path(). 2295 */ 2296 int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen) 2297 { 2298 struct cgroup_root *root; 2299 struct cgroup *cgrp; 2300 int hierarchy_id = 1; 2301 int ret; 2302 2303 mutex_lock(&cgroup_mutex); 2304 spin_lock_irq(&css_set_lock); 2305 2306 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id); 2307 2308 if (root) { 2309 cgrp = task_cgroup_from_root(task, root); 2310 ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns); 2311 } else { 2312 /* if no hierarchy exists, everyone is in "/" */ 2313 ret = strlcpy(buf, "/", buflen); 2314 } 2315 2316 spin_unlock_irq(&css_set_lock); 2317 mutex_unlock(&cgroup_mutex); 2318 return ret; 2319 } 2320 EXPORT_SYMBOL_GPL(task_cgroup_path); 2321 2322 /** 2323 * cgroup_migrate_add_task - add a migration target task to a migration context 2324 * @task: target task 2325 * @mgctx: target migration context 2326 * 2327 * Add @task, which is a migration target, to @mgctx->tset. This function 2328 * becomes noop if @task doesn't need to be migrated. @task's css_set 2329 * should have been added as a migration source and @task->cg_list will be 2330 * moved from the css_set's tasks list to mg_tasks one. 2331 */ 2332 static void cgroup_migrate_add_task(struct task_struct *task, 2333 struct cgroup_mgctx *mgctx) 2334 { 2335 struct css_set *cset; 2336 2337 lockdep_assert_held(&css_set_lock); 2338 2339 /* @task either already exited or can't exit until the end */ 2340 if (task->flags & PF_EXITING) 2341 return; 2342 2343 /* cgroup_threadgroup_rwsem protects racing against forks */ 2344 WARN_ON_ONCE(list_empty(&task->cg_list)); 2345 2346 cset = task_css_set(task); 2347 if (!cset->mg_src_cgrp) 2348 return; 2349 2350 mgctx->tset.nr_tasks++; 2351 2352 list_move_tail(&task->cg_list, &cset->mg_tasks); 2353 if (list_empty(&cset->mg_node)) 2354 list_add_tail(&cset->mg_node, 2355 &mgctx->tset.src_csets); 2356 if (list_empty(&cset->mg_dst_cset->mg_node)) 2357 list_add_tail(&cset->mg_dst_cset->mg_node, 2358 &mgctx->tset.dst_csets); 2359 } 2360 2361 /** 2362 * cgroup_taskset_first - reset taskset and return the first task 2363 * @tset: taskset of interest 2364 * @dst_cssp: output variable for the destination css 2365 * 2366 * @tset iteration is initialized and the first task is returned. 2367 */ 2368 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset, 2369 struct cgroup_subsys_state **dst_cssp) 2370 { 2371 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node); 2372 tset->cur_task = NULL; 2373 2374 return cgroup_taskset_next(tset, dst_cssp); 2375 } 2376 2377 /** 2378 * cgroup_taskset_next - iterate to the next task in taskset 2379 * @tset: taskset of interest 2380 * @dst_cssp: output variable for the destination css 2381 * 2382 * Return the next task in @tset. Iteration must have been initialized 2383 * with cgroup_taskset_first(). 2384 */ 2385 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset, 2386 struct cgroup_subsys_state **dst_cssp) 2387 { 2388 struct css_set *cset = tset->cur_cset; 2389 struct task_struct *task = tset->cur_task; 2390 2391 while (CGROUP_HAS_SUBSYS_CONFIG && &cset->mg_node != tset->csets) { 2392 if (!task) 2393 task = list_first_entry(&cset->mg_tasks, 2394 struct task_struct, cg_list); 2395 else 2396 task = list_next_entry(task, cg_list); 2397 2398 if (&task->cg_list != &cset->mg_tasks) { 2399 tset->cur_cset = cset; 2400 tset->cur_task = task; 2401 2402 /* 2403 * This function may be called both before and 2404 * after cgroup_taskset_migrate(). The two cases 2405 * can be distinguished by looking at whether @cset 2406 * has its ->mg_dst_cset set. 2407 */ 2408 if (cset->mg_dst_cset) 2409 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid]; 2410 else 2411 *dst_cssp = cset->subsys[tset->ssid]; 2412 2413 return task; 2414 } 2415 2416 cset = list_next_entry(cset, mg_node); 2417 task = NULL; 2418 } 2419 2420 return NULL; 2421 } 2422 2423 /** 2424 * cgroup_migrate_execute - migrate a taskset 2425 * @mgctx: migration context 2426 * 2427 * Migrate tasks in @mgctx as setup by migration preparation functions. 2428 * This function fails iff one of the ->can_attach callbacks fails and 2429 * guarantees that either all or none of the tasks in @mgctx are migrated. 2430 * @mgctx is consumed regardless of success. 2431 */ 2432 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx) 2433 { 2434 struct cgroup_taskset *tset = &mgctx->tset; 2435 struct cgroup_subsys *ss; 2436 struct task_struct *task, *tmp_task; 2437 struct css_set *cset, *tmp_cset; 2438 int ssid, failed_ssid, ret; 2439 2440 /* check that we can legitimately attach to the cgroup */ 2441 if (tset->nr_tasks) { 2442 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2443 if (ss->can_attach) { 2444 tset->ssid = ssid; 2445 ret = ss->can_attach(tset); 2446 if (ret) { 2447 failed_ssid = ssid; 2448 goto out_cancel_attach; 2449 } 2450 } 2451 } while_each_subsys_mask(); 2452 } 2453 2454 /* 2455 * Now that we're guaranteed success, proceed to move all tasks to 2456 * the new cgroup. There are no failure cases after here, so this 2457 * is the commit point. 2458 */ 2459 spin_lock_irq(&css_set_lock); 2460 list_for_each_entry(cset, &tset->src_csets, mg_node) { 2461 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) { 2462 struct css_set *from_cset = task_css_set(task); 2463 struct css_set *to_cset = cset->mg_dst_cset; 2464 2465 get_css_set(to_cset); 2466 to_cset->nr_tasks++; 2467 css_set_move_task(task, from_cset, to_cset, true); 2468 from_cset->nr_tasks--; 2469 /* 2470 * If the source or destination cgroup is frozen, 2471 * the task might require to change its state. 2472 */ 2473 cgroup_freezer_migrate_task(task, from_cset->dfl_cgrp, 2474 to_cset->dfl_cgrp); 2475 put_css_set_locked(from_cset); 2476 2477 } 2478 } 2479 spin_unlock_irq(&css_set_lock); 2480 2481 /* 2482 * Migration is committed, all target tasks are now on dst_csets. 2483 * Nothing is sensitive to fork() after this point. Notify 2484 * controllers that migration is complete. 2485 */ 2486 tset->csets = &tset->dst_csets; 2487 2488 if (tset->nr_tasks) { 2489 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2490 if (ss->attach) { 2491 tset->ssid = ssid; 2492 ss->attach(tset); 2493 } 2494 } while_each_subsys_mask(); 2495 } 2496 2497 ret = 0; 2498 goto out_release_tset; 2499 2500 out_cancel_attach: 2501 if (tset->nr_tasks) { 2502 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2503 if (ssid == failed_ssid) 2504 break; 2505 if (ss->cancel_attach) { 2506 tset->ssid = ssid; 2507 ss->cancel_attach(tset); 2508 } 2509 } while_each_subsys_mask(); 2510 } 2511 out_release_tset: 2512 spin_lock_irq(&css_set_lock); 2513 list_splice_init(&tset->dst_csets, &tset->src_csets); 2514 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) { 2515 list_splice_tail_init(&cset->mg_tasks, &cset->tasks); 2516 list_del_init(&cset->mg_node); 2517 } 2518 spin_unlock_irq(&css_set_lock); 2519 2520 /* 2521 * Re-initialize the cgroup_taskset structure in case it is reused 2522 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute() 2523 * iteration. 2524 */ 2525 tset->nr_tasks = 0; 2526 tset->csets = &tset->src_csets; 2527 return ret; 2528 } 2529 2530 /** 2531 * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination 2532 * @dst_cgrp: destination cgroup to test 2533 * 2534 * On the default hierarchy, except for the mixable, (possible) thread root 2535 * and threaded cgroups, subtree_control must be zero for migration 2536 * destination cgroups with tasks so that child cgroups don't compete 2537 * against tasks. 2538 */ 2539 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp) 2540 { 2541 /* v1 doesn't have any restriction */ 2542 if (!cgroup_on_dfl(dst_cgrp)) 2543 return 0; 2544 2545 /* verify @dst_cgrp can host resources */ 2546 if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp)) 2547 return -EOPNOTSUPP; 2548 2549 /* mixables don't care */ 2550 if (cgroup_is_mixable(dst_cgrp)) 2551 return 0; 2552 2553 /* 2554 * If @dst_cgrp is already or can become a thread root or is 2555 * threaded, it doesn't matter. 2556 */ 2557 if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp)) 2558 return 0; 2559 2560 /* apply no-internal-process constraint */ 2561 if (dst_cgrp->subtree_control) 2562 return -EBUSY; 2563 2564 return 0; 2565 } 2566 2567 /** 2568 * cgroup_migrate_finish - cleanup after attach 2569 * @mgctx: migration context 2570 * 2571 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See 2572 * those functions for details. 2573 */ 2574 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx) 2575 { 2576 LIST_HEAD(preloaded); 2577 struct css_set *cset, *tmp_cset; 2578 2579 lockdep_assert_held(&cgroup_mutex); 2580 2581 spin_lock_irq(&css_set_lock); 2582 2583 list_splice_tail_init(&mgctx->preloaded_src_csets, &preloaded); 2584 list_splice_tail_init(&mgctx->preloaded_dst_csets, &preloaded); 2585 2586 list_for_each_entry_safe(cset, tmp_cset, &preloaded, mg_preload_node) { 2587 cset->mg_src_cgrp = NULL; 2588 cset->mg_dst_cgrp = NULL; 2589 cset->mg_dst_cset = NULL; 2590 list_del_init(&cset->mg_preload_node); 2591 put_css_set_locked(cset); 2592 } 2593 2594 spin_unlock_irq(&css_set_lock); 2595 } 2596 2597 /** 2598 * cgroup_migrate_add_src - add a migration source css_set 2599 * @src_cset: the source css_set to add 2600 * @dst_cgrp: the destination cgroup 2601 * @mgctx: migration context 2602 * 2603 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin 2604 * @src_cset and add it to @mgctx->src_csets, which should later be cleaned 2605 * up by cgroup_migrate_finish(). 2606 * 2607 * This function may be called without holding cgroup_threadgroup_rwsem 2608 * even if the target is a process. Threads may be created and destroyed 2609 * but as long as cgroup_mutex is not dropped, no new css_set can be put 2610 * into play and the preloaded css_sets are guaranteed to cover all 2611 * migrations. 2612 */ 2613 void cgroup_migrate_add_src(struct css_set *src_cset, 2614 struct cgroup *dst_cgrp, 2615 struct cgroup_mgctx *mgctx) 2616 { 2617 struct cgroup *src_cgrp; 2618 2619 lockdep_assert_held(&cgroup_mutex); 2620 lockdep_assert_held(&css_set_lock); 2621 2622 /* 2623 * If ->dead, @src_set is associated with one or more dead cgroups 2624 * and doesn't contain any migratable tasks. Ignore it early so 2625 * that the rest of migration path doesn't get confused by it. 2626 */ 2627 if (src_cset->dead) 2628 return; 2629 2630 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root); 2631 2632 if (!list_empty(&src_cset->mg_preload_node)) 2633 return; 2634 2635 WARN_ON(src_cset->mg_src_cgrp); 2636 WARN_ON(src_cset->mg_dst_cgrp); 2637 WARN_ON(!list_empty(&src_cset->mg_tasks)); 2638 WARN_ON(!list_empty(&src_cset->mg_node)); 2639 2640 src_cset->mg_src_cgrp = src_cgrp; 2641 src_cset->mg_dst_cgrp = dst_cgrp; 2642 get_css_set(src_cset); 2643 list_add_tail(&src_cset->mg_preload_node, &mgctx->preloaded_src_csets); 2644 } 2645 2646 /** 2647 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration 2648 * @mgctx: migration context 2649 * 2650 * Tasks are about to be moved and all the source css_sets have been 2651 * preloaded to @mgctx->preloaded_src_csets. This function looks up and 2652 * pins all destination css_sets, links each to its source, and append them 2653 * to @mgctx->preloaded_dst_csets. 2654 * 2655 * This function must be called after cgroup_migrate_add_src() has been 2656 * called on each migration source css_set. After migration is performed 2657 * using cgroup_migrate(), cgroup_migrate_finish() must be called on 2658 * @mgctx. 2659 */ 2660 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx) 2661 { 2662 struct css_set *src_cset, *tmp_cset; 2663 2664 lockdep_assert_held(&cgroup_mutex); 2665 2666 /* look up the dst cset for each src cset and link it to src */ 2667 list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets, 2668 mg_preload_node) { 2669 struct css_set *dst_cset; 2670 struct cgroup_subsys *ss; 2671 int ssid; 2672 2673 dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp); 2674 if (!dst_cset) 2675 return -ENOMEM; 2676 2677 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset); 2678 2679 /* 2680 * If src cset equals dst, it's noop. Drop the src. 2681 * cgroup_migrate() will skip the cset too. Note that we 2682 * can't handle src == dst as some nodes are used by both. 2683 */ 2684 if (src_cset == dst_cset) { 2685 src_cset->mg_src_cgrp = NULL; 2686 src_cset->mg_dst_cgrp = NULL; 2687 list_del_init(&src_cset->mg_preload_node); 2688 put_css_set(src_cset); 2689 put_css_set(dst_cset); 2690 continue; 2691 } 2692 2693 src_cset->mg_dst_cset = dst_cset; 2694 2695 if (list_empty(&dst_cset->mg_preload_node)) 2696 list_add_tail(&dst_cset->mg_preload_node, 2697 &mgctx->preloaded_dst_csets); 2698 else 2699 put_css_set(dst_cset); 2700 2701 for_each_subsys(ss, ssid) 2702 if (src_cset->subsys[ssid] != dst_cset->subsys[ssid]) 2703 mgctx->ss_mask |= 1 << ssid; 2704 } 2705 2706 return 0; 2707 } 2708 2709 /** 2710 * cgroup_migrate - migrate a process or task to a cgroup 2711 * @leader: the leader of the process or the task to migrate 2712 * @threadgroup: whether @leader points to the whole process or a single task 2713 * @mgctx: migration context 2714 * 2715 * Migrate a process or task denoted by @leader. If migrating a process, 2716 * the caller must be holding cgroup_threadgroup_rwsem. The caller is also 2717 * responsible for invoking cgroup_migrate_add_src() and 2718 * cgroup_migrate_prepare_dst() on the targets before invoking this 2719 * function and following up with cgroup_migrate_finish(). 2720 * 2721 * As long as a controller's ->can_attach() doesn't fail, this function is 2722 * guaranteed to succeed. This means that, excluding ->can_attach() 2723 * failure, when migrating multiple targets, the success or failure can be 2724 * decided for all targets by invoking group_migrate_prepare_dst() before 2725 * actually starting migrating. 2726 */ 2727 int cgroup_migrate(struct task_struct *leader, bool threadgroup, 2728 struct cgroup_mgctx *mgctx) 2729 { 2730 struct task_struct *task; 2731 2732 /* 2733 * Prevent freeing of tasks while we take a snapshot. Tasks that are 2734 * already PF_EXITING could be freed from underneath us unless we 2735 * take an rcu_read_lock. 2736 */ 2737 spin_lock_irq(&css_set_lock); 2738 rcu_read_lock(); 2739 task = leader; 2740 do { 2741 cgroup_migrate_add_task(task, mgctx); 2742 if (!threadgroup) 2743 break; 2744 } while_each_thread(leader, task); 2745 rcu_read_unlock(); 2746 spin_unlock_irq(&css_set_lock); 2747 2748 return cgroup_migrate_execute(mgctx); 2749 } 2750 2751 /** 2752 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup 2753 * @dst_cgrp: the cgroup to attach to 2754 * @leader: the task or the leader of the threadgroup to be attached 2755 * @threadgroup: attach the whole threadgroup? 2756 * 2757 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem. 2758 */ 2759 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader, 2760 bool threadgroup) 2761 { 2762 DEFINE_CGROUP_MGCTX(mgctx); 2763 struct task_struct *task; 2764 int ret = 0; 2765 2766 /* look up all src csets */ 2767 spin_lock_irq(&css_set_lock); 2768 rcu_read_lock(); 2769 task = leader; 2770 do { 2771 cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx); 2772 if (!threadgroup) 2773 break; 2774 } while_each_thread(leader, task); 2775 rcu_read_unlock(); 2776 spin_unlock_irq(&css_set_lock); 2777 2778 /* prepare dst csets and commit */ 2779 ret = cgroup_migrate_prepare_dst(&mgctx); 2780 if (!ret) 2781 ret = cgroup_migrate(leader, threadgroup, &mgctx); 2782 2783 cgroup_migrate_finish(&mgctx); 2784 2785 if (!ret) 2786 TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup); 2787 2788 return ret; 2789 } 2790 2791 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup, 2792 bool *locked) 2793 __acquires(&cgroup_threadgroup_rwsem) 2794 { 2795 struct task_struct *tsk; 2796 pid_t pid; 2797 2798 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0) 2799 return ERR_PTR(-EINVAL); 2800 2801 /* 2802 * If we migrate a single thread, we don't care about threadgroup 2803 * stability. If the thread is `current`, it won't exit(2) under our 2804 * hands or change PID through exec(2). We exclude 2805 * cgroup_update_dfl_csses and other cgroup_{proc,thread}s_write 2806 * callers by cgroup_mutex. 2807 * Therefore, we can skip the global lock. 2808 */ 2809 lockdep_assert_held(&cgroup_mutex); 2810 if (pid || threadgroup) { 2811 percpu_down_write(&cgroup_threadgroup_rwsem); 2812 *locked = true; 2813 } else { 2814 *locked = false; 2815 } 2816 2817 rcu_read_lock(); 2818 if (pid) { 2819 tsk = find_task_by_vpid(pid); 2820 if (!tsk) { 2821 tsk = ERR_PTR(-ESRCH); 2822 goto out_unlock_threadgroup; 2823 } 2824 } else { 2825 tsk = current; 2826 } 2827 2828 if (threadgroup) 2829 tsk = tsk->group_leader; 2830 2831 /* 2832 * kthreads may acquire PF_NO_SETAFFINITY during initialization. 2833 * If userland migrates such a kthread to a non-root cgroup, it can 2834 * become trapped in a cpuset, or RT kthread may be born in a 2835 * cgroup with no rt_runtime allocated. Just say no. 2836 */ 2837 if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) { 2838 tsk = ERR_PTR(-EINVAL); 2839 goto out_unlock_threadgroup; 2840 } 2841 2842 get_task_struct(tsk); 2843 goto out_unlock_rcu; 2844 2845 out_unlock_threadgroup: 2846 if (*locked) { 2847 percpu_up_write(&cgroup_threadgroup_rwsem); 2848 *locked = false; 2849 } 2850 out_unlock_rcu: 2851 rcu_read_unlock(); 2852 return tsk; 2853 } 2854 2855 void cgroup_procs_write_finish(struct task_struct *task, bool locked) 2856 __releases(&cgroup_threadgroup_rwsem) 2857 { 2858 struct cgroup_subsys *ss; 2859 int ssid; 2860 2861 /* release reference from cgroup_procs_write_start() */ 2862 put_task_struct(task); 2863 2864 if (locked) 2865 percpu_up_write(&cgroup_threadgroup_rwsem); 2866 for_each_subsys(ss, ssid) 2867 if (ss->post_attach) 2868 ss->post_attach(); 2869 } 2870 2871 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask) 2872 { 2873 struct cgroup_subsys *ss; 2874 bool printed = false; 2875 int ssid; 2876 2877 do_each_subsys_mask(ss, ssid, ss_mask) { 2878 if (printed) 2879 seq_putc(seq, ' '); 2880 seq_puts(seq, ss->name); 2881 printed = true; 2882 } while_each_subsys_mask(); 2883 if (printed) 2884 seq_putc(seq, '\n'); 2885 } 2886 2887 /* show controllers which are enabled from the parent */ 2888 static int cgroup_controllers_show(struct seq_file *seq, void *v) 2889 { 2890 struct cgroup *cgrp = seq_css(seq)->cgroup; 2891 2892 cgroup_print_ss_mask(seq, cgroup_control(cgrp)); 2893 return 0; 2894 } 2895 2896 /* show controllers which are enabled for a given cgroup's children */ 2897 static int cgroup_subtree_control_show(struct seq_file *seq, void *v) 2898 { 2899 struct cgroup *cgrp = seq_css(seq)->cgroup; 2900 2901 cgroup_print_ss_mask(seq, cgrp->subtree_control); 2902 return 0; 2903 } 2904 2905 /** 2906 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy 2907 * @cgrp: root of the subtree to update csses for 2908 * 2909 * @cgrp's control masks have changed and its subtree's css associations 2910 * need to be updated accordingly. This function looks up all css_sets 2911 * which are attached to the subtree, creates the matching updated css_sets 2912 * and migrates the tasks to the new ones. 2913 */ 2914 static int cgroup_update_dfl_csses(struct cgroup *cgrp) 2915 { 2916 DEFINE_CGROUP_MGCTX(mgctx); 2917 struct cgroup_subsys_state *d_css; 2918 struct cgroup *dsct; 2919 struct css_set *src_cset; 2920 int ret; 2921 2922 lockdep_assert_held(&cgroup_mutex); 2923 2924 percpu_down_write(&cgroup_threadgroup_rwsem); 2925 2926 /* look up all csses currently attached to @cgrp's subtree */ 2927 spin_lock_irq(&css_set_lock); 2928 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 2929 struct cgrp_cset_link *link; 2930 2931 list_for_each_entry(link, &dsct->cset_links, cset_link) 2932 cgroup_migrate_add_src(link->cset, dsct, &mgctx); 2933 } 2934 spin_unlock_irq(&css_set_lock); 2935 2936 /* NULL dst indicates self on default hierarchy */ 2937 ret = cgroup_migrate_prepare_dst(&mgctx); 2938 if (ret) 2939 goto out_finish; 2940 2941 spin_lock_irq(&css_set_lock); 2942 list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, mg_preload_node) { 2943 struct task_struct *task, *ntask; 2944 2945 /* all tasks in src_csets need to be migrated */ 2946 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list) 2947 cgroup_migrate_add_task(task, &mgctx); 2948 } 2949 spin_unlock_irq(&css_set_lock); 2950 2951 ret = cgroup_migrate_execute(&mgctx); 2952 out_finish: 2953 cgroup_migrate_finish(&mgctx); 2954 percpu_up_write(&cgroup_threadgroup_rwsem); 2955 return ret; 2956 } 2957 2958 /** 2959 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses 2960 * @cgrp: root of the target subtree 2961 * 2962 * Because css offlining is asynchronous, userland may try to re-enable a 2963 * controller while the previous css is still around. This function grabs 2964 * cgroup_mutex and drains the previous css instances of @cgrp's subtree. 2965 */ 2966 void cgroup_lock_and_drain_offline(struct cgroup *cgrp) 2967 __acquires(&cgroup_mutex) 2968 { 2969 struct cgroup *dsct; 2970 struct cgroup_subsys_state *d_css; 2971 struct cgroup_subsys *ss; 2972 int ssid; 2973 2974 restart: 2975 mutex_lock(&cgroup_mutex); 2976 2977 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 2978 for_each_subsys(ss, ssid) { 2979 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 2980 DEFINE_WAIT(wait); 2981 2982 if (!css || !percpu_ref_is_dying(&css->refcnt)) 2983 continue; 2984 2985 cgroup_get_live(dsct); 2986 prepare_to_wait(&dsct->offline_waitq, &wait, 2987 TASK_UNINTERRUPTIBLE); 2988 2989 mutex_unlock(&cgroup_mutex); 2990 schedule(); 2991 finish_wait(&dsct->offline_waitq, &wait); 2992 2993 cgroup_put(dsct); 2994 goto restart; 2995 } 2996 } 2997 } 2998 2999 /** 3000 * cgroup_save_control - save control masks and dom_cgrp of a subtree 3001 * @cgrp: root of the target subtree 3002 * 3003 * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the 3004 * respective old_ prefixed fields for @cgrp's subtree including @cgrp 3005 * itself. 3006 */ 3007 static void cgroup_save_control(struct cgroup *cgrp) 3008 { 3009 struct cgroup *dsct; 3010 struct cgroup_subsys_state *d_css; 3011 3012 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 3013 dsct->old_subtree_control = dsct->subtree_control; 3014 dsct->old_subtree_ss_mask = dsct->subtree_ss_mask; 3015 dsct->old_dom_cgrp = dsct->dom_cgrp; 3016 } 3017 } 3018 3019 /** 3020 * cgroup_propagate_control - refresh control masks of a subtree 3021 * @cgrp: root of the target subtree 3022 * 3023 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches 3024 * ->subtree_control and propagate controller availability through the 3025 * subtree so that descendants don't have unavailable controllers enabled. 3026 */ 3027 static void cgroup_propagate_control(struct cgroup *cgrp) 3028 { 3029 struct cgroup *dsct; 3030 struct cgroup_subsys_state *d_css; 3031 3032 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 3033 dsct->subtree_control &= cgroup_control(dsct); 3034 dsct->subtree_ss_mask = 3035 cgroup_calc_subtree_ss_mask(dsct->subtree_control, 3036 cgroup_ss_mask(dsct)); 3037 } 3038 } 3039 3040 /** 3041 * cgroup_restore_control - restore control masks and dom_cgrp of a subtree 3042 * @cgrp: root of the target subtree 3043 * 3044 * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the 3045 * respective old_ prefixed fields for @cgrp's subtree including @cgrp 3046 * itself. 3047 */ 3048 static void cgroup_restore_control(struct cgroup *cgrp) 3049 { 3050 struct cgroup *dsct; 3051 struct cgroup_subsys_state *d_css; 3052 3053 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 3054 dsct->subtree_control = dsct->old_subtree_control; 3055 dsct->subtree_ss_mask = dsct->old_subtree_ss_mask; 3056 dsct->dom_cgrp = dsct->old_dom_cgrp; 3057 } 3058 } 3059 3060 static bool css_visible(struct cgroup_subsys_state *css) 3061 { 3062 struct cgroup_subsys *ss = css->ss; 3063 struct cgroup *cgrp = css->cgroup; 3064 3065 if (cgroup_control(cgrp) & (1 << ss->id)) 3066 return true; 3067 if (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) 3068 return false; 3069 return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl; 3070 } 3071 3072 /** 3073 * cgroup_apply_control_enable - enable or show csses according to control 3074 * @cgrp: root of the target subtree 3075 * 3076 * Walk @cgrp's subtree and create new csses or make the existing ones 3077 * visible. A css is created invisible if it's being implicitly enabled 3078 * through dependency. An invisible css is made visible when the userland 3079 * explicitly enables it. 3080 * 3081 * Returns 0 on success, -errno on failure. On failure, csses which have 3082 * been processed already aren't cleaned up. The caller is responsible for 3083 * cleaning up with cgroup_apply_control_disable(). 3084 */ 3085 static int cgroup_apply_control_enable(struct cgroup *cgrp) 3086 { 3087 struct cgroup *dsct; 3088 struct cgroup_subsys_state *d_css; 3089 struct cgroup_subsys *ss; 3090 int ssid, ret; 3091 3092 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 3093 for_each_subsys(ss, ssid) { 3094 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 3095 3096 if (!(cgroup_ss_mask(dsct) & (1 << ss->id))) 3097 continue; 3098 3099 if (!css) { 3100 css = css_create(dsct, ss); 3101 if (IS_ERR(css)) 3102 return PTR_ERR(css); 3103 } 3104 3105 WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt)); 3106 3107 if (css_visible(css)) { 3108 ret = css_populate_dir(css); 3109 if (ret) 3110 return ret; 3111 } 3112 } 3113 } 3114 3115 return 0; 3116 } 3117 3118 /** 3119 * cgroup_apply_control_disable - kill or hide csses according to control 3120 * @cgrp: root of the target subtree 3121 * 3122 * Walk @cgrp's subtree and kill and hide csses so that they match 3123 * cgroup_ss_mask() and cgroup_visible_mask(). 3124 * 3125 * A css is hidden when the userland requests it to be disabled while other 3126 * subsystems are still depending on it. The css must not actively control 3127 * resources and be in the vanilla state if it's made visible again later. 3128 * Controllers which may be depended upon should provide ->css_reset() for 3129 * this purpose. 3130 */ 3131 static void cgroup_apply_control_disable(struct cgroup *cgrp) 3132 { 3133 struct cgroup *dsct; 3134 struct cgroup_subsys_state *d_css; 3135 struct cgroup_subsys *ss; 3136 int ssid; 3137 3138 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 3139 for_each_subsys(ss, ssid) { 3140 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 3141 3142 if (!css) 3143 continue; 3144 3145 WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt)); 3146 3147 if (css->parent && 3148 !(cgroup_ss_mask(dsct) & (1 << ss->id))) { 3149 kill_css(css); 3150 } else if (!css_visible(css)) { 3151 css_clear_dir(css); 3152 if (ss->css_reset) 3153 ss->css_reset(css); 3154 } 3155 } 3156 } 3157 } 3158 3159 /** 3160 * cgroup_apply_control - apply control mask updates to the subtree 3161 * @cgrp: root of the target subtree 3162 * 3163 * subsystems can be enabled and disabled in a subtree using the following 3164 * steps. 3165 * 3166 * 1. Call cgroup_save_control() to stash the current state. 3167 * 2. Update ->subtree_control masks in the subtree as desired. 3168 * 3. Call cgroup_apply_control() to apply the changes. 3169 * 4. Optionally perform other related operations. 3170 * 5. Call cgroup_finalize_control() to finish up. 3171 * 3172 * This function implements step 3 and propagates the mask changes 3173 * throughout @cgrp's subtree, updates csses accordingly and perform 3174 * process migrations. 3175 */ 3176 static int cgroup_apply_control(struct cgroup *cgrp) 3177 { 3178 int ret; 3179 3180 cgroup_propagate_control(cgrp); 3181 3182 ret = cgroup_apply_control_enable(cgrp); 3183 if (ret) 3184 return ret; 3185 3186 /* 3187 * At this point, cgroup_e_css_by_mask() results reflect the new csses 3188 * making the following cgroup_update_dfl_csses() properly update 3189 * css associations of all tasks in the subtree. 3190 */ 3191 ret = cgroup_update_dfl_csses(cgrp); 3192 if (ret) 3193 return ret; 3194 3195 return 0; 3196 } 3197 3198 /** 3199 * cgroup_finalize_control - finalize control mask update 3200 * @cgrp: root of the target subtree 3201 * @ret: the result of the update 3202 * 3203 * Finalize control mask update. See cgroup_apply_control() for more info. 3204 */ 3205 static void cgroup_finalize_control(struct cgroup *cgrp, int ret) 3206 { 3207 if (ret) { 3208 cgroup_restore_control(cgrp); 3209 cgroup_propagate_control(cgrp); 3210 } 3211 3212 cgroup_apply_control_disable(cgrp); 3213 } 3214 3215 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable) 3216 { 3217 u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask; 3218 3219 /* if nothing is getting enabled, nothing to worry about */ 3220 if (!enable) 3221 return 0; 3222 3223 /* can @cgrp host any resources? */ 3224 if (!cgroup_is_valid_domain(cgrp->dom_cgrp)) 3225 return -EOPNOTSUPP; 3226 3227 /* mixables don't care */ 3228 if (cgroup_is_mixable(cgrp)) 3229 return 0; 3230 3231 if (domain_enable) { 3232 /* can't enable domain controllers inside a thread subtree */ 3233 if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp)) 3234 return -EOPNOTSUPP; 3235 } else { 3236 /* 3237 * Threaded controllers can handle internal competitions 3238 * and are always allowed inside a (prospective) thread 3239 * subtree. 3240 */ 3241 if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp)) 3242 return 0; 3243 } 3244 3245 /* 3246 * Controllers can't be enabled for a cgroup with tasks to avoid 3247 * child cgroups competing against tasks. 3248 */ 3249 if (cgroup_has_tasks(cgrp)) 3250 return -EBUSY; 3251 3252 return 0; 3253 } 3254 3255 /* change the enabled child controllers for a cgroup in the default hierarchy */ 3256 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of, 3257 char *buf, size_t nbytes, 3258 loff_t off) 3259 { 3260 u16 enable = 0, disable = 0; 3261 struct cgroup *cgrp, *child; 3262 struct cgroup_subsys *ss; 3263 char *tok; 3264 int ssid, ret; 3265 3266 /* 3267 * Parse input - space separated list of subsystem names prefixed 3268 * with either + or -. 3269 */ 3270 buf = strstrip(buf); 3271 while ((tok = strsep(&buf, " "))) { 3272 if (tok[0] == '\0') 3273 continue; 3274 do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) { 3275 if (!cgroup_ssid_enabled(ssid) || 3276 strcmp(tok + 1, ss->name)) 3277 continue; 3278 3279 if (*tok == '+') { 3280 enable |= 1 << ssid; 3281 disable &= ~(1 << ssid); 3282 } else if (*tok == '-') { 3283 disable |= 1 << ssid; 3284 enable &= ~(1 << ssid); 3285 } else { 3286 return -EINVAL; 3287 } 3288 break; 3289 } while_each_subsys_mask(); 3290 if (ssid == CGROUP_SUBSYS_COUNT) 3291 return -EINVAL; 3292 } 3293 3294 cgrp = cgroup_kn_lock_live(of->kn, true); 3295 if (!cgrp) 3296 return -ENODEV; 3297 3298 for_each_subsys(ss, ssid) { 3299 if (enable & (1 << ssid)) { 3300 if (cgrp->subtree_control & (1 << ssid)) { 3301 enable &= ~(1 << ssid); 3302 continue; 3303 } 3304 3305 if (!(cgroup_control(cgrp) & (1 << ssid))) { 3306 ret = -ENOENT; 3307 goto out_unlock; 3308 } 3309 } else if (disable & (1 << ssid)) { 3310 if (!(cgrp->subtree_control & (1 << ssid))) { 3311 disable &= ~(1 << ssid); 3312 continue; 3313 } 3314 3315 /* a child has it enabled? */ 3316 cgroup_for_each_live_child(child, cgrp) { 3317 if (child->subtree_control & (1 << ssid)) { 3318 ret = -EBUSY; 3319 goto out_unlock; 3320 } 3321 } 3322 } 3323 } 3324 3325 if (!enable && !disable) { 3326 ret = 0; 3327 goto out_unlock; 3328 } 3329 3330 ret = cgroup_vet_subtree_control_enable(cgrp, enable); 3331 if (ret) 3332 goto out_unlock; 3333 3334 /* save and update control masks and prepare csses */ 3335 cgroup_save_control(cgrp); 3336 3337 cgrp->subtree_control |= enable; 3338 cgrp->subtree_control &= ~disable; 3339 3340 ret = cgroup_apply_control(cgrp); 3341 cgroup_finalize_control(cgrp, ret); 3342 if (ret) 3343 goto out_unlock; 3344 3345 kernfs_activate(cgrp->kn); 3346 out_unlock: 3347 cgroup_kn_unlock(of->kn); 3348 return ret ?: nbytes; 3349 } 3350 3351 /** 3352 * cgroup_enable_threaded - make @cgrp threaded 3353 * @cgrp: the target cgroup 3354 * 3355 * Called when "threaded" is written to the cgroup.type interface file and 3356 * tries to make @cgrp threaded and join the parent's resource domain. 3357 * This function is never called on the root cgroup as cgroup.type doesn't 3358 * exist on it. 3359 */ 3360 static int cgroup_enable_threaded(struct cgroup *cgrp) 3361 { 3362 struct cgroup *parent = cgroup_parent(cgrp); 3363 struct cgroup *dom_cgrp = parent->dom_cgrp; 3364 struct cgroup *dsct; 3365 struct cgroup_subsys_state *d_css; 3366 int ret; 3367 3368 lockdep_assert_held(&cgroup_mutex); 3369 3370 /* noop if already threaded */ 3371 if (cgroup_is_threaded(cgrp)) 3372 return 0; 3373 3374 /* 3375 * If @cgroup is populated or has domain controllers enabled, it 3376 * can't be switched. While the below cgroup_can_be_thread_root() 3377 * test can catch the same conditions, that's only when @parent is 3378 * not mixable, so let's check it explicitly. 3379 */ 3380 if (cgroup_is_populated(cgrp) || 3381 cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask) 3382 return -EOPNOTSUPP; 3383 3384 /* we're joining the parent's domain, ensure its validity */ 3385 if (!cgroup_is_valid_domain(dom_cgrp) || 3386 !cgroup_can_be_thread_root(dom_cgrp)) 3387 return -EOPNOTSUPP; 3388 3389 /* 3390 * The following shouldn't cause actual migrations and should 3391 * always succeed. 3392 */ 3393 cgroup_save_control(cgrp); 3394 3395 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) 3396 if (dsct == cgrp || cgroup_is_threaded(dsct)) 3397 dsct->dom_cgrp = dom_cgrp; 3398 3399 ret = cgroup_apply_control(cgrp); 3400 if (!ret) 3401 parent->nr_threaded_children++; 3402 3403 cgroup_finalize_control(cgrp, ret); 3404 return ret; 3405 } 3406 3407 static int cgroup_type_show(struct seq_file *seq, void *v) 3408 { 3409 struct cgroup *cgrp = seq_css(seq)->cgroup; 3410 3411 if (cgroup_is_threaded(cgrp)) 3412 seq_puts(seq, "threaded\n"); 3413 else if (!cgroup_is_valid_domain(cgrp)) 3414 seq_puts(seq, "domain invalid\n"); 3415 else if (cgroup_is_thread_root(cgrp)) 3416 seq_puts(seq, "domain threaded\n"); 3417 else 3418 seq_puts(seq, "domain\n"); 3419 3420 return 0; 3421 } 3422 3423 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf, 3424 size_t nbytes, loff_t off) 3425 { 3426 struct cgroup *cgrp; 3427 int ret; 3428 3429 /* only switching to threaded mode is supported */ 3430 if (strcmp(strstrip(buf), "threaded")) 3431 return -EINVAL; 3432 3433 /* drain dying csses before we re-apply (threaded) subtree control */ 3434 cgrp = cgroup_kn_lock_live(of->kn, true); 3435 if (!cgrp) 3436 return -ENOENT; 3437 3438 /* threaded can only be enabled */ 3439 ret = cgroup_enable_threaded(cgrp); 3440 3441 cgroup_kn_unlock(of->kn); 3442 return ret ?: nbytes; 3443 } 3444 3445 static int cgroup_max_descendants_show(struct seq_file *seq, void *v) 3446 { 3447 struct cgroup *cgrp = seq_css(seq)->cgroup; 3448 int descendants = READ_ONCE(cgrp->max_descendants); 3449 3450 if (descendants == INT_MAX) 3451 seq_puts(seq, "max\n"); 3452 else 3453 seq_printf(seq, "%d\n", descendants); 3454 3455 return 0; 3456 } 3457 3458 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of, 3459 char *buf, size_t nbytes, loff_t off) 3460 { 3461 struct cgroup *cgrp; 3462 int descendants; 3463 ssize_t ret; 3464 3465 buf = strstrip(buf); 3466 if (!strcmp(buf, "max")) { 3467 descendants = INT_MAX; 3468 } else { 3469 ret = kstrtoint(buf, 0, &descendants); 3470 if (ret) 3471 return ret; 3472 } 3473 3474 if (descendants < 0) 3475 return -ERANGE; 3476 3477 cgrp = cgroup_kn_lock_live(of->kn, false); 3478 if (!cgrp) 3479 return -ENOENT; 3480 3481 cgrp->max_descendants = descendants; 3482 3483 cgroup_kn_unlock(of->kn); 3484 3485 return nbytes; 3486 } 3487 3488 static int cgroup_max_depth_show(struct seq_file *seq, void *v) 3489 { 3490 struct cgroup *cgrp = seq_css(seq)->cgroup; 3491 int depth = READ_ONCE(cgrp->max_depth); 3492 3493 if (depth == INT_MAX) 3494 seq_puts(seq, "max\n"); 3495 else 3496 seq_printf(seq, "%d\n", depth); 3497 3498 return 0; 3499 } 3500 3501 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of, 3502 char *buf, size_t nbytes, loff_t off) 3503 { 3504 struct cgroup *cgrp; 3505 ssize_t ret; 3506 int depth; 3507 3508 buf = strstrip(buf); 3509 if (!strcmp(buf, "max")) { 3510 depth = INT_MAX; 3511 } else { 3512 ret = kstrtoint(buf, 0, &depth); 3513 if (ret) 3514 return ret; 3515 } 3516 3517 if (depth < 0) 3518 return -ERANGE; 3519 3520 cgrp = cgroup_kn_lock_live(of->kn, false); 3521 if (!cgrp) 3522 return -ENOENT; 3523 3524 cgrp->max_depth = depth; 3525 3526 cgroup_kn_unlock(of->kn); 3527 3528 return nbytes; 3529 } 3530 3531 static int cgroup_events_show(struct seq_file *seq, void *v) 3532 { 3533 struct cgroup *cgrp = seq_css(seq)->cgroup; 3534 3535 seq_printf(seq, "populated %d\n", cgroup_is_populated(cgrp)); 3536 seq_printf(seq, "frozen %d\n", test_bit(CGRP_FROZEN, &cgrp->flags)); 3537 3538 return 0; 3539 } 3540 3541 static int cgroup_stat_show(struct seq_file *seq, void *v) 3542 { 3543 struct cgroup *cgroup = seq_css(seq)->cgroup; 3544 3545 seq_printf(seq, "nr_descendants %d\n", 3546 cgroup->nr_descendants); 3547 seq_printf(seq, "nr_dying_descendants %d\n", 3548 cgroup->nr_dying_descendants); 3549 3550 return 0; 3551 } 3552 3553 static int __maybe_unused cgroup_extra_stat_show(struct seq_file *seq, 3554 struct cgroup *cgrp, int ssid) 3555 { 3556 struct cgroup_subsys *ss = cgroup_subsys[ssid]; 3557 struct cgroup_subsys_state *css; 3558 int ret; 3559 3560 if (!ss->css_extra_stat_show) 3561 return 0; 3562 3563 css = cgroup_tryget_css(cgrp, ss); 3564 if (!css) 3565 return 0; 3566 3567 ret = ss->css_extra_stat_show(seq, css); 3568 css_put(css); 3569 return ret; 3570 } 3571 3572 static int cpu_stat_show(struct seq_file *seq, void *v) 3573 { 3574 struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup; 3575 int ret = 0; 3576 3577 cgroup_base_stat_cputime_show(seq); 3578 #ifdef CONFIG_CGROUP_SCHED 3579 ret = cgroup_extra_stat_show(seq, cgrp, cpu_cgrp_id); 3580 #endif 3581 return ret; 3582 } 3583 3584 #ifdef CONFIG_PSI 3585 static int cgroup_io_pressure_show(struct seq_file *seq, void *v) 3586 { 3587 struct cgroup *cgrp = seq_css(seq)->cgroup; 3588 struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi; 3589 3590 return psi_show(seq, psi, PSI_IO); 3591 } 3592 static int cgroup_memory_pressure_show(struct seq_file *seq, void *v) 3593 { 3594 struct cgroup *cgrp = seq_css(seq)->cgroup; 3595 struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi; 3596 3597 return psi_show(seq, psi, PSI_MEM); 3598 } 3599 static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v) 3600 { 3601 struct cgroup *cgrp = seq_css(seq)->cgroup; 3602 struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi; 3603 3604 return psi_show(seq, psi, PSI_CPU); 3605 } 3606 3607 static ssize_t cgroup_pressure_write(struct kernfs_open_file *of, char *buf, 3608 size_t nbytes, enum psi_res res) 3609 { 3610 struct psi_trigger *new; 3611 struct cgroup *cgrp; 3612 struct psi_group *psi; 3613 3614 cgrp = cgroup_kn_lock_live(of->kn, false); 3615 if (!cgrp) 3616 return -ENODEV; 3617 3618 cgroup_get(cgrp); 3619 cgroup_kn_unlock(of->kn); 3620 3621 psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi; 3622 new = psi_trigger_create(psi, buf, nbytes, res); 3623 if (IS_ERR(new)) { 3624 cgroup_put(cgrp); 3625 return PTR_ERR(new); 3626 } 3627 3628 psi_trigger_replace(&of->priv, new); 3629 3630 cgroup_put(cgrp); 3631 3632 return nbytes; 3633 } 3634 3635 static ssize_t cgroup_io_pressure_write(struct kernfs_open_file *of, 3636 char *buf, size_t nbytes, 3637 loff_t off) 3638 { 3639 return cgroup_pressure_write(of, buf, nbytes, PSI_IO); 3640 } 3641 3642 static ssize_t cgroup_memory_pressure_write(struct kernfs_open_file *of, 3643 char *buf, size_t nbytes, 3644 loff_t off) 3645 { 3646 return cgroup_pressure_write(of, buf, nbytes, PSI_MEM); 3647 } 3648 3649 static ssize_t cgroup_cpu_pressure_write(struct kernfs_open_file *of, 3650 char *buf, size_t nbytes, 3651 loff_t off) 3652 { 3653 return cgroup_pressure_write(of, buf, nbytes, PSI_CPU); 3654 } 3655 3656 static __poll_t cgroup_pressure_poll(struct kernfs_open_file *of, 3657 poll_table *pt) 3658 { 3659 return psi_trigger_poll(&of->priv, of->file, pt); 3660 } 3661 3662 static void cgroup_pressure_release(struct kernfs_open_file *of) 3663 { 3664 psi_trigger_replace(&of->priv, NULL); 3665 } 3666 3667 bool cgroup_psi_enabled(void) 3668 { 3669 return (cgroup_feature_disable_mask & (1 << OPT_FEATURE_PRESSURE)) == 0; 3670 } 3671 3672 #else /* CONFIG_PSI */ 3673 bool cgroup_psi_enabled(void) 3674 { 3675 return false; 3676 } 3677 3678 #endif /* CONFIG_PSI */ 3679 3680 static int cgroup_freeze_show(struct seq_file *seq, void *v) 3681 { 3682 struct cgroup *cgrp = seq_css(seq)->cgroup; 3683 3684 seq_printf(seq, "%d\n", cgrp->freezer.freeze); 3685 3686 return 0; 3687 } 3688 3689 static ssize_t cgroup_freeze_write(struct kernfs_open_file *of, 3690 char *buf, size_t nbytes, loff_t off) 3691 { 3692 struct cgroup *cgrp; 3693 ssize_t ret; 3694 int freeze; 3695 3696 ret = kstrtoint(strstrip(buf), 0, &freeze); 3697 if (ret) 3698 return ret; 3699 3700 if (freeze < 0 || freeze > 1) 3701 return -ERANGE; 3702 3703 cgrp = cgroup_kn_lock_live(of->kn, false); 3704 if (!cgrp) 3705 return -ENOENT; 3706 3707 cgroup_freeze(cgrp, freeze); 3708 3709 cgroup_kn_unlock(of->kn); 3710 3711 return nbytes; 3712 } 3713 3714 static void __cgroup_kill(struct cgroup *cgrp) 3715 { 3716 struct css_task_iter it; 3717 struct task_struct *task; 3718 3719 lockdep_assert_held(&cgroup_mutex); 3720 3721 spin_lock_irq(&css_set_lock); 3722 set_bit(CGRP_KILL, &cgrp->flags); 3723 spin_unlock_irq(&css_set_lock); 3724 3725 css_task_iter_start(&cgrp->self, CSS_TASK_ITER_PROCS | CSS_TASK_ITER_THREADED, &it); 3726 while ((task = css_task_iter_next(&it))) { 3727 /* Ignore kernel threads here. */ 3728 if (task->flags & PF_KTHREAD) 3729 continue; 3730 3731 /* Skip tasks that are already dying. */ 3732 if (__fatal_signal_pending(task)) 3733 continue; 3734 3735 send_sig(SIGKILL, task, 0); 3736 } 3737 css_task_iter_end(&it); 3738 3739 spin_lock_irq(&css_set_lock); 3740 clear_bit(CGRP_KILL, &cgrp->flags); 3741 spin_unlock_irq(&css_set_lock); 3742 } 3743 3744 static void cgroup_kill(struct cgroup *cgrp) 3745 { 3746 struct cgroup_subsys_state *css; 3747 struct cgroup *dsct; 3748 3749 lockdep_assert_held(&cgroup_mutex); 3750 3751 cgroup_for_each_live_descendant_pre(dsct, css, cgrp) 3752 __cgroup_kill(dsct); 3753 } 3754 3755 static ssize_t cgroup_kill_write(struct kernfs_open_file *of, char *buf, 3756 size_t nbytes, loff_t off) 3757 { 3758 ssize_t ret = 0; 3759 int kill; 3760 struct cgroup *cgrp; 3761 3762 ret = kstrtoint(strstrip(buf), 0, &kill); 3763 if (ret) 3764 return ret; 3765 3766 if (kill != 1) 3767 return -ERANGE; 3768 3769 cgrp = cgroup_kn_lock_live(of->kn, false); 3770 if (!cgrp) 3771 return -ENOENT; 3772 3773 /* 3774 * Killing is a process directed operation, i.e. the whole thread-group 3775 * is taken down so act like we do for cgroup.procs and only make this 3776 * writable in non-threaded cgroups. 3777 */ 3778 if (cgroup_is_threaded(cgrp)) 3779 ret = -EOPNOTSUPP; 3780 else 3781 cgroup_kill(cgrp); 3782 3783 cgroup_kn_unlock(of->kn); 3784 3785 return ret ?: nbytes; 3786 } 3787 3788 static int cgroup_file_open(struct kernfs_open_file *of) 3789 { 3790 struct cftype *cft = of_cft(of); 3791 3792 if (cft->open) 3793 return cft->open(of); 3794 return 0; 3795 } 3796 3797 static void cgroup_file_release(struct kernfs_open_file *of) 3798 { 3799 struct cftype *cft = of_cft(of); 3800 3801 if (cft->release) 3802 cft->release(of); 3803 } 3804 3805 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf, 3806 size_t nbytes, loff_t off) 3807 { 3808 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns; 3809 struct cgroup *cgrp = of->kn->parent->priv; 3810 struct cftype *cft = of_cft(of); 3811 struct cgroup_subsys_state *css; 3812 int ret; 3813 3814 if (!nbytes) 3815 return 0; 3816 3817 /* 3818 * If namespaces are delegation boundaries, disallow writes to 3819 * files in an non-init namespace root from inside the namespace 3820 * except for the files explicitly marked delegatable - 3821 * cgroup.procs and cgroup.subtree_control. 3822 */ 3823 if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) && 3824 !(cft->flags & CFTYPE_NS_DELEGATABLE) && 3825 ns != &init_cgroup_ns && ns->root_cset->dfl_cgrp == cgrp) 3826 return -EPERM; 3827 3828 if (cft->write) 3829 return cft->write(of, buf, nbytes, off); 3830 3831 /* 3832 * kernfs guarantees that a file isn't deleted with operations in 3833 * flight, which means that the matching css is and stays alive and 3834 * doesn't need to be pinned. The RCU locking is not necessary 3835 * either. It's just for the convenience of using cgroup_css(). 3836 */ 3837 rcu_read_lock(); 3838 css = cgroup_css(cgrp, cft->ss); 3839 rcu_read_unlock(); 3840 3841 if (cft->write_u64) { 3842 unsigned long long v; 3843 ret = kstrtoull(buf, 0, &v); 3844 if (!ret) 3845 ret = cft->write_u64(css, cft, v); 3846 } else if (cft->write_s64) { 3847 long long v; 3848 ret = kstrtoll(buf, 0, &v); 3849 if (!ret) 3850 ret = cft->write_s64(css, cft, v); 3851 } else { 3852 ret = -EINVAL; 3853 } 3854 3855 return ret ?: nbytes; 3856 } 3857 3858 static __poll_t cgroup_file_poll(struct kernfs_open_file *of, poll_table *pt) 3859 { 3860 struct cftype *cft = of_cft(of); 3861 3862 if (cft->poll) 3863 return cft->poll(of, pt); 3864 3865 return kernfs_generic_poll(of, pt); 3866 } 3867 3868 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos) 3869 { 3870 return seq_cft(seq)->seq_start(seq, ppos); 3871 } 3872 3873 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos) 3874 { 3875 return seq_cft(seq)->seq_next(seq, v, ppos); 3876 } 3877 3878 static void cgroup_seqfile_stop(struct seq_file *seq, void *v) 3879 { 3880 if (seq_cft(seq)->seq_stop) 3881 seq_cft(seq)->seq_stop(seq, v); 3882 } 3883 3884 static int cgroup_seqfile_show(struct seq_file *m, void *arg) 3885 { 3886 struct cftype *cft = seq_cft(m); 3887 struct cgroup_subsys_state *css = seq_css(m); 3888 3889 if (cft->seq_show) 3890 return cft->seq_show(m, arg); 3891 3892 if (cft->read_u64) 3893 seq_printf(m, "%llu\n", cft->read_u64(css, cft)); 3894 else if (cft->read_s64) 3895 seq_printf(m, "%lld\n", cft->read_s64(css, cft)); 3896 else 3897 return -EINVAL; 3898 return 0; 3899 } 3900 3901 static struct kernfs_ops cgroup_kf_single_ops = { 3902 .atomic_write_len = PAGE_SIZE, 3903 .open = cgroup_file_open, 3904 .release = cgroup_file_release, 3905 .write = cgroup_file_write, 3906 .poll = cgroup_file_poll, 3907 .seq_show = cgroup_seqfile_show, 3908 }; 3909 3910 static struct kernfs_ops cgroup_kf_ops = { 3911 .atomic_write_len = PAGE_SIZE, 3912 .open = cgroup_file_open, 3913 .release = cgroup_file_release, 3914 .write = cgroup_file_write, 3915 .poll = cgroup_file_poll, 3916 .seq_start = cgroup_seqfile_start, 3917 .seq_next = cgroup_seqfile_next, 3918 .seq_stop = cgroup_seqfile_stop, 3919 .seq_show = cgroup_seqfile_show, 3920 }; 3921 3922 /* set uid and gid of cgroup dirs and files to that of the creator */ 3923 static int cgroup_kn_set_ugid(struct kernfs_node *kn) 3924 { 3925 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID, 3926 .ia_uid = current_fsuid(), 3927 .ia_gid = current_fsgid(), }; 3928 3929 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) && 3930 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID)) 3931 return 0; 3932 3933 return kernfs_setattr(kn, &iattr); 3934 } 3935 3936 static void cgroup_file_notify_timer(struct timer_list *timer) 3937 { 3938 cgroup_file_notify(container_of(timer, struct cgroup_file, 3939 notify_timer)); 3940 } 3941 3942 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp, 3943 struct cftype *cft) 3944 { 3945 char name[CGROUP_FILE_NAME_MAX]; 3946 struct kernfs_node *kn; 3947 struct lock_class_key *key = NULL; 3948 int ret; 3949 3950 #ifdef CONFIG_DEBUG_LOCK_ALLOC 3951 key = &cft->lockdep_key; 3952 #endif 3953 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name), 3954 cgroup_file_mode(cft), 3955 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 3956 0, cft->kf_ops, cft, 3957 NULL, key); 3958 if (IS_ERR(kn)) 3959 return PTR_ERR(kn); 3960 3961 ret = cgroup_kn_set_ugid(kn); 3962 if (ret) { 3963 kernfs_remove(kn); 3964 return ret; 3965 } 3966 3967 if (cft->file_offset) { 3968 struct cgroup_file *cfile = (void *)css + cft->file_offset; 3969 3970 timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0); 3971 3972 spin_lock_irq(&cgroup_file_kn_lock); 3973 cfile->kn = kn; 3974 spin_unlock_irq(&cgroup_file_kn_lock); 3975 } 3976 3977 return 0; 3978 } 3979 3980 /** 3981 * cgroup_addrm_files - add or remove files to a cgroup directory 3982 * @css: the target css 3983 * @cgrp: the target cgroup (usually css->cgroup) 3984 * @cfts: array of cftypes to be added 3985 * @is_add: whether to add or remove 3986 * 3987 * Depending on @is_add, add or remove files defined by @cfts on @cgrp. 3988 * For removals, this function never fails. 3989 */ 3990 static int cgroup_addrm_files(struct cgroup_subsys_state *css, 3991 struct cgroup *cgrp, struct cftype cfts[], 3992 bool is_add) 3993 { 3994 struct cftype *cft, *cft_end = NULL; 3995 int ret = 0; 3996 3997 lockdep_assert_held(&cgroup_mutex); 3998 3999 restart: 4000 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) { 4001 /* does cft->flags tell us to skip this file on @cgrp? */ 4002 if ((cft->flags & CFTYPE_PRESSURE) && !cgroup_psi_enabled()) 4003 continue; 4004 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp)) 4005 continue; 4006 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp)) 4007 continue; 4008 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp)) 4009 continue; 4010 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp)) 4011 continue; 4012 if ((cft->flags & CFTYPE_DEBUG) && !cgroup_debug) 4013 continue; 4014 if (is_add) { 4015 ret = cgroup_add_file(css, cgrp, cft); 4016 if (ret) { 4017 pr_warn("%s: failed to add %s, err=%d\n", 4018 __func__, cft->name, ret); 4019 cft_end = cft; 4020 is_add = false; 4021 goto restart; 4022 } 4023 } else { 4024 cgroup_rm_file(cgrp, cft); 4025 } 4026 } 4027 return ret; 4028 } 4029 4030 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add) 4031 { 4032 struct cgroup_subsys *ss = cfts[0].ss; 4033 struct cgroup *root = &ss->root->cgrp; 4034 struct cgroup_subsys_state *css; 4035 int ret = 0; 4036 4037 lockdep_assert_held(&cgroup_mutex); 4038 4039 /* add/rm files for all cgroups created before */ 4040 css_for_each_descendant_pre(css, cgroup_css(root, ss)) { 4041 struct cgroup *cgrp = css->cgroup; 4042 4043 if (!(css->flags & CSS_VISIBLE)) 4044 continue; 4045 4046 ret = cgroup_addrm_files(css, cgrp, cfts, is_add); 4047 if (ret) 4048 break; 4049 } 4050 4051 if (is_add && !ret) 4052 kernfs_activate(root->kn); 4053 return ret; 4054 } 4055 4056 static void cgroup_exit_cftypes(struct cftype *cfts) 4057 { 4058 struct cftype *cft; 4059 4060 for (cft = cfts; cft->name[0] != '\0'; cft++) { 4061 /* free copy for custom atomic_write_len, see init_cftypes() */ 4062 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) 4063 kfree(cft->kf_ops); 4064 cft->kf_ops = NULL; 4065 cft->ss = NULL; 4066 4067 /* revert flags set by cgroup core while adding @cfts */ 4068 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL); 4069 } 4070 } 4071 4072 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4073 { 4074 struct cftype *cft; 4075 4076 for (cft = cfts; cft->name[0] != '\0'; cft++) { 4077 struct kernfs_ops *kf_ops; 4078 4079 WARN_ON(cft->ss || cft->kf_ops); 4080 4081 if ((cft->flags & CFTYPE_PRESSURE) && !cgroup_psi_enabled()) 4082 continue; 4083 4084 if (cft->seq_start) 4085 kf_ops = &cgroup_kf_ops; 4086 else 4087 kf_ops = &cgroup_kf_single_ops; 4088 4089 /* 4090 * Ugh... if @cft wants a custom max_write_len, we need to 4091 * make a copy of kf_ops to set its atomic_write_len. 4092 */ 4093 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) { 4094 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL); 4095 if (!kf_ops) { 4096 cgroup_exit_cftypes(cfts); 4097 return -ENOMEM; 4098 } 4099 kf_ops->atomic_write_len = cft->max_write_len; 4100 } 4101 4102 cft->kf_ops = kf_ops; 4103 cft->ss = ss; 4104 } 4105 4106 return 0; 4107 } 4108 4109 static int cgroup_rm_cftypes_locked(struct cftype *cfts) 4110 { 4111 lockdep_assert_held(&cgroup_mutex); 4112 4113 if (!cfts || !cfts[0].ss) 4114 return -ENOENT; 4115 4116 list_del(&cfts->node); 4117 cgroup_apply_cftypes(cfts, false); 4118 cgroup_exit_cftypes(cfts); 4119 return 0; 4120 } 4121 4122 /** 4123 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem 4124 * @cfts: zero-length name terminated array of cftypes 4125 * 4126 * Unregister @cfts. Files described by @cfts are removed from all 4127 * existing cgroups and all future cgroups won't have them either. This 4128 * function can be called anytime whether @cfts' subsys is attached or not. 4129 * 4130 * Returns 0 on successful unregistration, -ENOENT if @cfts is not 4131 * registered. 4132 */ 4133 int cgroup_rm_cftypes(struct cftype *cfts) 4134 { 4135 int ret; 4136 4137 mutex_lock(&cgroup_mutex); 4138 ret = cgroup_rm_cftypes_locked(cfts); 4139 mutex_unlock(&cgroup_mutex); 4140 return ret; 4141 } 4142 4143 /** 4144 * cgroup_add_cftypes - add an array of cftypes to a subsystem 4145 * @ss: target cgroup subsystem 4146 * @cfts: zero-length name terminated array of cftypes 4147 * 4148 * Register @cfts to @ss. Files described by @cfts are created for all 4149 * existing cgroups to which @ss is attached and all future cgroups will 4150 * have them too. This function can be called anytime whether @ss is 4151 * attached or not. 4152 * 4153 * Returns 0 on successful registration, -errno on failure. Note that this 4154 * function currently returns 0 as long as @cfts registration is successful 4155 * even if some file creation attempts on existing cgroups fail. 4156 */ 4157 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4158 { 4159 int ret; 4160 4161 if (!cgroup_ssid_enabled(ss->id)) 4162 return 0; 4163 4164 if (!cfts || cfts[0].name[0] == '\0') 4165 return 0; 4166 4167 ret = cgroup_init_cftypes(ss, cfts); 4168 if (ret) 4169 return ret; 4170 4171 mutex_lock(&cgroup_mutex); 4172 4173 list_add_tail(&cfts->node, &ss->cfts); 4174 ret = cgroup_apply_cftypes(cfts, true); 4175 if (ret) 4176 cgroup_rm_cftypes_locked(cfts); 4177 4178 mutex_unlock(&cgroup_mutex); 4179 return ret; 4180 } 4181 4182 /** 4183 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy 4184 * @ss: target cgroup subsystem 4185 * @cfts: zero-length name terminated array of cftypes 4186 * 4187 * Similar to cgroup_add_cftypes() but the added files are only used for 4188 * the default hierarchy. 4189 */ 4190 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4191 { 4192 struct cftype *cft; 4193 4194 for (cft = cfts; cft && cft->name[0] != '\0'; cft++) 4195 cft->flags |= __CFTYPE_ONLY_ON_DFL; 4196 return cgroup_add_cftypes(ss, cfts); 4197 } 4198 4199 /** 4200 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies 4201 * @ss: target cgroup subsystem 4202 * @cfts: zero-length name terminated array of cftypes 4203 * 4204 * Similar to cgroup_add_cftypes() but the added files are only used for 4205 * the legacy hierarchies. 4206 */ 4207 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4208 { 4209 struct cftype *cft; 4210 4211 for (cft = cfts; cft && cft->name[0] != '\0'; cft++) 4212 cft->flags |= __CFTYPE_NOT_ON_DFL; 4213 return cgroup_add_cftypes(ss, cfts); 4214 } 4215 4216 /** 4217 * cgroup_file_notify - generate a file modified event for a cgroup_file 4218 * @cfile: target cgroup_file 4219 * 4220 * @cfile must have been obtained by setting cftype->file_offset. 4221 */ 4222 void cgroup_file_notify(struct cgroup_file *cfile) 4223 { 4224 unsigned long flags; 4225 4226 spin_lock_irqsave(&cgroup_file_kn_lock, flags); 4227 if (cfile->kn) { 4228 unsigned long last = cfile->notified_at; 4229 unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV; 4230 4231 if (time_in_range(jiffies, last, next)) { 4232 timer_reduce(&cfile->notify_timer, next); 4233 } else { 4234 kernfs_notify(cfile->kn); 4235 cfile->notified_at = jiffies; 4236 } 4237 } 4238 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags); 4239 } 4240 4241 /** 4242 * css_next_child - find the next child of a given css 4243 * @pos: the current position (%NULL to initiate traversal) 4244 * @parent: css whose children to walk 4245 * 4246 * This function returns the next child of @parent and should be called 4247 * under either cgroup_mutex or RCU read lock. The only requirement is 4248 * that @parent and @pos are accessible. The next sibling is guaranteed to 4249 * be returned regardless of their states. 4250 * 4251 * If a subsystem synchronizes ->css_online() and the start of iteration, a 4252 * css which finished ->css_online() is guaranteed to be visible in the 4253 * future iterations and will stay visible until the last reference is put. 4254 * A css which hasn't finished ->css_online() or already finished 4255 * ->css_offline() may show up during traversal. It's each subsystem's 4256 * responsibility to synchronize against on/offlining. 4257 */ 4258 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos, 4259 struct cgroup_subsys_state *parent) 4260 { 4261 struct cgroup_subsys_state *next; 4262 4263 cgroup_assert_mutex_or_rcu_locked(); 4264 4265 /* 4266 * @pos could already have been unlinked from the sibling list. 4267 * Once a cgroup is removed, its ->sibling.next is no longer 4268 * updated when its next sibling changes. CSS_RELEASED is set when 4269 * @pos is taken off list, at which time its next pointer is valid, 4270 * and, as releases are serialized, the one pointed to by the next 4271 * pointer is guaranteed to not have started release yet. This 4272 * implies that if we observe !CSS_RELEASED on @pos in this RCU 4273 * critical section, the one pointed to by its next pointer is 4274 * guaranteed to not have finished its RCU grace period even if we 4275 * have dropped rcu_read_lock() in-between iterations. 4276 * 4277 * If @pos has CSS_RELEASED set, its next pointer can't be 4278 * dereferenced; however, as each css is given a monotonically 4279 * increasing unique serial number and always appended to the 4280 * sibling list, the next one can be found by walking the parent's 4281 * children until the first css with higher serial number than 4282 * @pos's. While this path can be slower, it happens iff iteration 4283 * races against release and the race window is very small. 4284 */ 4285 if (!pos) { 4286 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling); 4287 } else if (likely(!(pos->flags & CSS_RELEASED))) { 4288 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling); 4289 } else { 4290 list_for_each_entry_rcu(next, &parent->children, sibling, 4291 lockdep_is_held(&cgroup_mutex)) 4292 if (next->serial_nr > pos->serial_nr) 4293 break; 4294 } 4295 4296 /* 4297 * @next, if not pointing to the head, can be dereferenced and is 4298 * the next sibling. 4299 */ 4300 if (&next->sibling != &parent->children) 4301 return next; 4302 return NULL; 4303 } 4304 4305 /** 4306 * css_next_descendant_pre - find the next descendant for pre-order walk 4307 * @pos: the current position (%NULL to initiate traversal) 4308 * @root: css whose descendants to walk 4309 * 4310 * To be used by css_for_each_descendant_pre(). Find the next descendant 4311 * to visit for pre-order traversal of @root's descendants. @root is 4312 * included in the iteration and the first node to be visited. 4313 * 4314 * While this function requires cgroup_mutex or RCU read locking, it 4315 * doesn't require the whole traversal to be contained in a single critical 4316 * section. This function will return the correct next descendant as long 4317 * as both @pos and @root are accessible and @pos is a descendant of @root. 4318 * 4319 * If a subsystem synchronizes ->css_online() and the start of iteration, a 4320 * css which finished ->css_online() is guaranteed to be visible in the 4321 * future iterations and will stay visible until the last reference is put. 4322 * A css which hasn't finished ->css_online() or already finished 4323 * ->css_offline() may show up during traversal. It's each subsystem's 4324 * responsibility to synchronize against on/offlining. 4325 */ 4326 struct cgroup_subsys_state * 4327 css_next_descendant_pre(struct cgroup_subsys_state *pos, 4328 struct cgroup_subsys_state *root) 4329 { 4330 struct cgroup_subsys_state *next; 4331 4332 cgroup_assert_mutex_or_rcu_locked(); 4333 4334 /* if first iteration, visit @root */ 4335 if (!pos) 4336 return root; 4337 4338 /* visit the first child if exists */ 4339 next = css_next_child(NULL, pos); 4340 if (next) 4341 return next; 4342 4343 /* no child, visit my or the closest ancestor's next sibling */ 4344 while (pos != root) { 4345 next = css_next_child(pos, pos->parent); 4346 if (next) 4347 return next; 4348 pos = pos->parent; 4349 } 4350 4351 return NULL; 4352 } 4353 EXPORT_SYMBOL_GPL(css_next_descendant_pre); 4354 4355 /** 4356 * css_rightmost_descendant - return the rightmost descendant of a css 4357 * @pos: css of interest 4358 * 4359 * Return the rightmost descendant of @pos. If there's no descendant, @pos 4360 * is returned. This can be used during pre-order traversal to skip 4361 * subtree of @pos. 4362 * 4363 * While this function requires cgroup_mutex or RCU read locking, it 4364 * doesn't require the whole traversal to be contained in a single critical 4365 * section. This function will return the correct rightmost descendant as 4366 * long as @pos is accessible. 4367 */ 4368 struct cgroup_subsys_state * 4369 css_rightmost_descendant(struct cgroup_subsys_state *pos) 4370 { 4371 struct cgroup_subsys_state *last, *tmp; 4372 4373 cgroup_assert_mutex_or_rcu_locked(); 4374 4375 do { 4376 last = pos; 4377 /* ->prev isn't RCU safe, walk ->next till the end */ 4378 pos = NULL; 4379 css_for_each_child(tmp, last) 4380 pos = tmp; 4381 } while (pos); 4382 4383 return last; 4384 } 4385 4386 static struct cgroup_subsys_state * 4387 css_leftmost_descendant(struct cgroup_subsys_state *pos) 4388 { 4389 struct cgroup_subsys_state *last; 4390 4391 do { 4392 last = pos; 4393 pos = css_next_child(NULL, pos); 4394 } while (pos); 4395 4396 return last; 4397 } 4398 4399 /** 4400 * css_next_descendant_post - find the next descendant for post-order walk 4401 * @pos: the current position (%NULL to initiate traversal) 4402 * @root: css whose descendants to walk 4403 * 4404 * To be used by css_for_each_descendant_post(). Find the next descendant 4405 * to visit for post-order traversal of @root's descendants. @root is 4406 * included in the iteration and the last node to be visited. 4407 * 4408 * While this function requires cgroup_mutex or RCU read locking, it 4409 * doesn't require the whole traversal to be contained in a single critical 4410 * section. This function will return the correct next descendant as long 4411 * as both @pos and @cgroup are accessible and @pos is a descendant of 4412 * @cgroup. 4413 * 4414 * If a subsystem synchronizes ->css_online() and the start of iteration, a 4415 * css which finished ->css_online() is guaranteed to be visible in the 4416 * future iterations and will stay visible until the last reference is put. 4417 * A css which hasn't finished ->css_online() or already finished 4418 * ->css_offline() may show up during traversal. It's each subsystem's 4419 * responsibility to synchronize against on/offlining. 4420 */ 4421 struct cgroup_subsys_state * 4422 css_next_descendant_post(struct cgroup_subsys_state *pos, 4423 struct cgroup_subsys_state *root) 4424 { 4425 struct cgroup_subsys_state *next; 4426 4427 cgroup_assert_mutex_or_rcu_locked(); 4428 4429 /* if first iteration, visit leftmost descendant which may be @root */ 4430 if (!pos) 4431 return css_leftmost_descendant(root); 4432 4433 /* if we visited @root, we're done */ 4434 if (pos == root) 4435 return NULL; 4436 4437 /* if there's an unvisited sibling, visit its leftmost descendant */ 4438 next = css_next_child(pos, pos->parent); 4439 if (next) 4440 return css_leftmost_descendant(next); 4441 4442 /* no sibling left, visit parent */ 4443 return pos->parent; 4444 } 4445 4446 /** 4447 * css_has_online_children - does a css have online children 4448 * @css: the target css 4449 * 4450 * Returns %true if @css has any online children; otherwise, %false. This 4451 * function can be called from any context but the caller is responsible 4452 * for synchronizing against on/offlining as necessary. 4453 */ 4454 bool css_has_online_children(struct cgroup_subsys_state *css) 4455 { 4456 struct cgroup_subsys_state *child; 4457 bool ret = false; 4458 4459 rcu_read_lock(); 4460 css_for_each_child(child, css) { 4461 if (child->flags & CSS_ONLINE) { 4462 ret = true; 4463 break; 4464 } 4465 } 4466 rcu_read_unlock(); 4467 return ret; 4468 } 4469 4470 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it) 4471 { 4472 struct list_head *l; 4473 struct cgrp_cset_link *link; 4474 struct css_set *cset; 4475 4476 lockdep_assert_held(&css_set_lock); 4477 4478 /* find the next threaded cset */ 4479 if (it->tcset_pos) { 4480 l = it->tcset_pos->next; 4481 4482 if (l != it->tcset_head) { 4483 it->tcset_pos = l; 4484 return container_of(l, struct css_set, 4485 threaded_csets_node); 4486 } 4487 4488 it->tcset_pos = NULL; 4489 } 4490 4491 /* find the next cset */ 4492 l = it->cset_pos; 4493 l = l->next; 4494 if (l == it->cset_head) { 4495 it->cset_pos = NULL; 4496 return NULL; 4497 } 4498 4499 if (it->ss) { 4500 cset = container_of(l, struct css_set, e_cset_node[it->ss->id]); 4501 } else { 4502 link = list_entry(l, struct cgrp_cset_link, cset_link); 4503 cset = link->cset; 4504 } 4505 4506 it->cset_pos = l; 4507 4508 /* initialize threaded css_set walking */ 4509 if (it->flags & CSS_TASK_ITER_THREADED) { 4510 if (it->cur_dcset) 4511 put_css_set_locked(it->cur_dcset); 4512 it->cur_dcset = cset; 4513 get_css_set(cset); 4514 4515 it->tcset_head = &cset->threaded_csets; 4516 it->tcset_pos = &cset->threaded_csets; 4517 } 4518 4519 return cset; 4520 } 4521 4522 /** 4523 * css_task_iter_advance_css_set - advance a task iterator to the next css_set 4524 * @it: the iterator to advance 4525 * 4526 * Advance @it to the next css_set to walk. 4527 */ 4528 static void css_task_iter_advance_css_set(struct css_task_iter *it) 4529 { 4530 struct css_set *cset; 4531 4532 lockdep_assert_held(&css_set_lock); 4533 4534 /* Advance to the next non-empty css_set and find first non-empty tasks list*/ 4535 while ((cset = css_task_iter_next_css_set(it))) { 4536 if (!list_empty(&cset->tasks)) { 4537 it->cur_tasks_head = &cset->tasks; 4538 break; 4539 } else if (!list_empty(&cset->mg_tasks)) { 4540 it->cur_tasks_head = &cset->mg_tasks; 4541 break; 4542 } else if (!list_empty(&cset->dying_tasks)) { 4543 it->cur_tasks_head = &cset->dying_tasks; 4544 break; 4545 } 4546 } 4547 if (!cset) { 4548 it->task_pos = NULL; 4549 return; 4550 } 4551 it->task_pos = it->cur_tasks_head->next; 4552 4553 /* 4554 * We don't keep css_sets locked across iteration steps and thus 4555 * need to take steps to ensure that iteration can be resumed after 4556 * the lock is re-acquired. Iteration is performed at two levels - 4557 * css_sets and tasks in them. 4558 * 4559 * Once created, a css_set never leaves its cgroup lists, so a 4560 * pinned css_set is guaranteed to stay put and we can resume 4561 * iteration afterwards. 4562 * 4563 * Tasks may leave @cset across iteration steps. This is resolved 4564 * by registering each iterator with the css_set currently being 4565 * walked and making css_set_move_task() advance iterators whose 4566 * next task is leaving. 4567 */ 4568 if (it->cur_cset) { 4569 list_del(&it->iters_node); 4570 put_css_set_locked(it->cur_cset); 4571 } 4572 get_css_set(cset); 4573 it->cur_cset = cset; 4574 list_add(&it->iters_node, &cset->task_iters); 4575 } 4576 4577 static void css_task_iter_skip(struct css_task_iter *it, 4578 struct task_struct *task) 4579 { 4580 lockdep_assert_held(&css_set_lock); 4581 4582 if (it->task_pos == &task->cg_list) { 4583 it->task_pos = it->task_pos->next; 4584 it->flags |= CSS_TASK_ITER_SKIPPED; 4585 } 4586 } 4587 4588 static void css_task_iter_advance(struct css_task_iter *it) 4589 { 4590 struct task_struct *task; 4591 4592 lockdep_assert_held(&css_set_lock); 4593 repeat: 4594 if (it->task_pos) { 4595 /* 4596 * Advance iterator to find next entry. We go through cset 4597 * tasks, mg_tasks and dying_tasks, when consumed we move onto 4598 * the next cset. 4599 */ 4600 if (it->flags & CSS_TASK_ITER_SKIPPED) 4601 it->flags &= ~CSS_TASK_ITER_SKIPPED; 4602 else 4603 it->task_pos = it->task_pos->next; 4604 4605 if (it->task_pos == &it->cur_cset->tasks) { 4606 it->cur_tasks_head = &it->cur_cset->mg_tasks; 4607 it->task_pos = it->cur_tasks_head->next; 4608 } 4609 if (it->task_pos == &it->cur_cset->mg_tasks) { 4610 it->cur_tasks_head = &it->cur_cset->dying_tasks; 4611 it->task_pos = it->cur_tasks_head->next; 4612 } 4613 if (it->task_pos == &it->cur_cset->dying_tasks) 4614 css_task_iter_advance_css_set(it); 4615 } else { 4616 /* called from start, proceed to the first cset */ 4617 css_task_iter_advance_css_set(it); 4618 } 4619 4620 if (!it->task_pos) 4621 return; 4622 4623 task = list_entry(it->task_pos, struct task_struct, cg_list); 4624 4625 if (it->flags & CSS_TASK_ITER_PROCS) { 4626 /* if PROCS, skip over tasks which aren't group leaders */ 4627 if (!thread_group_leader(task)) 4628 goto repeat; 4629 4630 /* and dying leaders w/o live member threads */ 4631 if (it->cur_tasks_head == &it->cur_cset->dying_tasks && 4632 !atomic_read(&task->signal->live)) 4633 goto repeat; 4634 } else { 4635 /* skip all dying ones */ 4636 if (it->cur_tasks_head == &it->cur_cset->dying_tasks) 4637 goto repeat; 4638 } 4639 } 4640 4641 /** 4642 * css_task_iter_start - initiate task iteration 4643 * @css: the css to walk tasks of 4644 * @flags: CSS_TASK_ITER_* flags 4645 * @it: the task iterator to use 4646 * 4647 * Initiate iteration through the tasks of @css. The caller can call 4648 * css_task_iter_next() to walk through the tasks until the function 4649 * returns NULL. On completion of iteration, css_task_iter_end() must be 4650 * called. 4651 */ 4652 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags, 4653 struct css_task_iter *it) 4654 { 4655 memset(it, 0, sizeof(*it)); 4656 4657 spin_lock_irq(&css_set_lock); 4658 4659 it->ss = css->ss; 4660 it->flags = flags; 4661 4662 if (CGROUP_HAS_SUBSYS_CONFIG && it->ss) 4663 it->cset_pos = &css->cgroup->e_csets[css->ss->id]; 4664 else 4665 it->cset_pos = &css->cgroup->cset_links; 4666 4667 it->cset_head = it->cset_pos; 4668 4669 css_task_iter_advance(it); 4670 4671 spin_unlock_irq(&css_set_lock); 4672 } 4673 4674 /** 4675 * css_task_iter_next - return the next task for the iterator 4676 * @it: the task iterator being iterated 4677 * 4678 * The "next" function for task iteration. @it should have been 4679 * initialized via css_task_iter_start(). Returns NULL when the iteration 4680 * reaches the end. 4681 */ 4682 struct task_struct *css_task_iter_next(struct css_task_iter *it) 4683 { 4684 if (it->cur_task) { 4685 put_task_struct(it->cur_task); 4686 it->cur_task = NULL; 4687 } 4688 4689 spin_lock_irq(&css_set_lock); 4690 4691 /* @it may be half-advanced by skips, finish advancing */ 4692 if (it->flags & CSS_TASK_ITER_SKIPPED) 4693 css_task_iter_advance(it); 4694 4695 if (it->task_pos) { 4696 it->cur_task = list_entry(it->task_pos, struct task_struct, 4697 cg_list); 4698 get_task_struct(it->cur_task); 4699 css_task_iter_advance(it); 4700 } 4701 4702 spin_unlock_irq(&css_set_lock); 4703 4704 return it->cur_task; 4705 } 4706 4707 /** 4708 * css_task_iter_end - finish task iteration 4709 * @it: the task iterator to finish 4710 * 4711 * Finish task iteration started by css_task_iter_start(). 4712 */ 4713 void css_task_iter_end(struct css_task_iter *it) 4714 { 4715 if (it->cur_cset) { 4716 spin_lock_irq(&css_set_lock); 4717 list_del(&it->iters_node); 4718 put_css_set_locked(it->cur_cset); 4719 spin_unlock_irq(&css_set_lock); 4720 } 4721 4722 if (it->cur_dcset) 4723 put_css_set(it->cur_dcset); 4724 4725 if (it->cur_task) 4726 put_task_struct(it->cur_task); 4727 } 4728 4729 static void cgroup_procs_release(struct kernfs_open_file *of) 4730 { 4731 if (of->priv) { 4732 css_task_iter_end(of->priv); 4733 kfree(of->priv); 4734 } 4735 } 4736 4737 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos) 4738 { 4739 struct kernfs_open_file *of = s->private; 4740 struct css_task_iter *it = of->priv; 4741 4742 if (pos) 4743 (*pos)++; 4744 4745 return css_task_iter_next(it); 4746 } 4747 4748 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos, 4749 unsigned int iter_flags) 4750 { 4751 struct kernfs_open_file *of = s->private; 4752 struct cgroup *cgrp = seq_css(s)->cgroup; 4753 struct css_task_iter *it = of->priv; 4754 4755 /* 4756 * When a seq_file is seeked, it's always traversed sequentially 4757 * from position 0, so we can simply keep iterating on !0 *pos. 4758 */ 4759 if (!it) { 4760 if (WARN_ON_ONCE((*pos))) 4761 return ERR_PTR(-EINVAL); 4762 4763 it = kzalloc(sizeof(*it), GFP_KERNEL); 4764 if (!it) 4765 return ERR_PTR(-ENOMEM); 4766 of->priv = it; 4767 css_task_iter_start(&cgrp->self, iter_flags, it); 4768 } else if (!(*pos)) { 4769 css_task_iter_end(it); 4770 css_task_iter_start(&cgrp->self, iter_flags, it); 4771 } else 4772 return it->cur_task; 4773 4774 return cgroup_procs_next(s, NULL, NULL); 4775 } 4776 4777 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos) 4778 { 4779 struct cgroup *cgrp = seq_css(s)->cgroup; 4780 4781 /* 4782 * All processes of a threaded subtree belong to the domain cgroup 4783 * of the subtree. Only threads can be distributed across the 4784 * subtree. Reject reads on cgroup.procs in the subtree proper. 4785 * They're always empty anyway. 4786 */ 4787 if (cgroup_is_threaded(cgrp)) 4788 return ERR_PTR(-EOPNOTSUPP); 4789 4790 return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS | 4791 CSS_TASK_ITER_THREADED); 4792 } 4793 4794 static int cgroup_procs_show(struct seq_file *s, void *v) 4795 { 4796 seq_printf(s, "%d\n", task_pid_vnr(v)); 4797 return 0; 4798 } 4799 4800 static int cgroup_may_write(const struct cgroup *cgrp, struct super_block *sb) 4801 { 4802 int ret; 4803 struct inode *inode; 4804 4805 lockdep_assert_held(&cgroup_mutex); 4806 4807 inode = kernfs_get_inode(sb, cgrp->procs_file.kn); 4808 if (!inode) 4809 return -ENOMEM; 4810 4811 ret = inode_permission(&init_user_ns, inode, MAY_WRITE); 4812 iput(inode); 4813 return ret; 4814 } 4815 4816 static int cgroup_procs_write_permission(struct cgroup *src_cgrp, 4817 struct cgroup *dst_cgrp, 4818 struct super_block *sb) 4819 { 4820 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns; 4821 struct cgroup *com_cgrp = src_cgrp; 4822 int ret; 4823 4824 lockdep_assert_held(&cgroup_mutex); 4825 4826 /* find the common ancestor */ 4827 while (!cgroup_is_descendant(dst_cgrp, com_cgrp)) 4828 com_cgrp = cgroup_parent(com_cgrp); 4829 4830 /* %current should be authorized to migrate to the common ancestor */ 4831 ret = cgroup_may_write(com_cgrp, sb); 4832 if (ret) 4833 return ret; 4834 4835 /* 4836 * If namespaces are delegation boundaries, %current must be able 4837 * to see both source and destination cgroups from its namespace. 4838 */ 4839 if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) && 4840 (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) || 4841 !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp))) 4842 return -ENOENT; 4843 4844 return 0; 4845 } 4846 4847 static int cgroup_attach_permissions(struct cgroup *src_cgrp, 4848 struct cgroup *dst_cgrp, 4849 struct super_block *sb, bool threadgroup) 4850 { 4851 int ret = 0; 4852 4853 ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, sb); 4854 if (ret) 4855 return ret; 4856 4857 ret = cgroup_migrate_vet_dst(dst_cgrp); 4858 if (ret) 4859 return ret; 4860 4861 if (!threadgroup && (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp)) 4862 ret = -EOPNOTSUPP; 4863 4864 return ret; 4865 } 4866 4867 static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf, 4868 bool threadgroup) 4869 { 4870 struct cgroup *src_cgrp, *dst_cgrp; 4871 struct task_struct *task; 4872 ssize_t ret; 4873 bool locked; 4874 4875 dst_cgrp = cgroup_kn_lock_live(of->kn, false); 4876 if (!dst_cgrp) 4877 return -ENODEV; 4878 4879 task = cgroup_procs_write_start(buf, threadgroup, &locked); 4880 ret = PTR_ERR_OR_ZERO(task); 4881 if (ret) 4882 goto out_unlock; 4883 4884 /* find the source cgroup */ 4885 spin_lock_irq(&css_set_lock); 4886 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root); 4887 spin_unlock_irq(&css_set_lock); 4888 4889 /* process and thread migrations follow same delegation rule */ 4890 ret = cgroup_attach_permissions(src_cgrp, dst_cgrp, 4891 of->file->f_path.dentry->d_sb, threadgroup); 4892 if (ret) 4893 goto out_finish; 4894 4895 ret = cgroup_attach_task(dst_cgrp, task, threadgroup); 4896 4897 out_finish: 4898 cgroup_procs_write_finish(task, locked); 4899 out_unlock: 4900 cgroup_kn_unlock(of->kn); 4901 4902 return ret; 4903 } 4904 4905 static ssize_t cgroup_procs_write(struct kernfs_open_file *of, 4906 char *buf, size_t nbytes, loff_t off) 4907 { 4908 return __cgroup_procs_write(of, buf, true) ?: nbytes; 4909 } 4910 4911 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos) 4912 { 4913 return __cgroup_procs_start(s, pos, 0); 4914 } 4915 4916 static ssize_t cgroup_threads_write(struct kernfs_open_file *of, 4917 char *buf, size_t nbytes, loff_t off) 4918 { 4919 return __cgroup_procs_write(of, buf, false) ?: nbytes; 4920 } 4921 4922 /* cgroup core interface files for the default hierarchy */ 4923 static struct cftype cgroup_base_files[] = { 4924 { 4925 .name = "cgroup.type", 4926 .flags = CFTYPE_NOT_ON_ROOT, 4927 .seq_show = cgroup_type_show, 4928 .write = cgroup_type_write, 4929 }, 4930 { 4931 .name = "cgroup.procs", 4932 .flags = CFTYPE_NS_DELEGATABLE, 4933 .file_offset = offsetof(struct cgroup, procs_file), 4934 .release = cgroup_procs_release, 4935 .seq_start = cgroup_procs_start, 4936 .seq_next = cgroup_procs_next, 4937 .seq_show = cgroup_procs_show, 4938 .write = cgroup_procs_write, 4939 }, 4940 { 4941 .name = "cgroup.threads", 4942 .flags = CFTYPE_NS_DELEGATABLE, 4943 .release = cgroup_procs_release, 4944 .seq_start = cgroup_threads_start, 4945 .seq_next = cgroup_procs_next, 4946 .seq_show = cgroup_procs_show, 4947 .write = cgroup_threads_write, 4948 }, 4949 { 4950 .name = "cgroup.controllers", 4951 .seq_show = cgroup_controllers_show, 4952 }, 4953 { 4954 .name = "cgroup.subtree_control", 4955 .flags = CFTYPE_NS_DELEGATABLE, 4956 .seq_show = cgroup_subtree_control_show, 4957 .write = cgroup_subtree_control_write, 4958 }, 4959 { 4960 .name = "cgroup.events", 4961 .flags = CFTYPE_NOT_ON_ROOT, 4962 .file_offset = offsetof(struct cgroup, events_file), 4963 .seq_show = cgroup_events_show, 4964 }, 4965 { 4966 .name = "cgroup.max.descendants", 4967 .seq_show = cgroup_max_descendants_show, 4968 .write = cgroup_max_descendants_write, 4969 }, 4970 { 4971 .name = "cgroup.max.depth", 4972 .seq_show = cgroup_max_depth_show, 4973 .write = cgroup_max_depth_write, 4974 }, 4975 { 4976 .name = "cgroup.stat", 4977 .seq_show = cgroup_stat_show, 4978 }, 4979 { 4980 .name = "cgroup.freeze", 4981 .flags = CFTYPE_NOT_ON_ROOT, 4982 .seq_show = cgroup_freeze_show, 4983 .write = cgroup_freeze_write, 4984 }, 4985 { 4986 .name = "cgroup.kill", 4987 .flags = CFTYPE_NOT_ON_ROOT, 4988 .write = cgroup_kill_write, 4989 }, 4990 { 4991 .name = "cpu.stat", 4992 .seq_show = cpu_stat_show, 4993 }, 4994 #ifdef CONFIG_PSI 4995 { 4996 .name = "io.pressure", 4997 .flags = CFTYPE_PRESSURE, 4998 .seq_show = cgroup_io_pressure_show, 4999 .write = cgroup_io_pressure_write, 5000 .poll = cgroup_pressure_poll, 5001 .release = cgroup_pressure_release, 5002 }, 5003 { 5004 .name = "memory.pressure", 5005 .flags = CFTYPE_PRESSURE, 5006 .seq_show = cgroup_memory_pressure_show, 5007 .write = cgroup_memory_pressure_write, 5008 .poll = cgroup_pressure_poll, 5009 .release = cgroup_pressure_release, 5010 }, 5011 { 5012 .name = "cpu.pressure", 5013 .flags = CFTYPE_PRESSURE, 5014 .seq_show = cgroup_cpu_pressure_show, 5015 .write = cgroup_cpu_pressure_write, 5016 .poll = cgroup_pressure_poll, 5017 .release = cgroup_pressure_release, 5018 }, 5019 #endif /* CONFIG_PSI */ 5020 { } /* terminate */ 5021 }; 5022 5023 /* 5024 * css destruction is four-stage process. 5025 * 5026 * 1. Destruction starts. Killing of the percpu_ref is initiated. 5027 * Implemented in kill_css(). 5028 * 5029 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs 5030 * and thus css_tryget_online() is guaranteed to fail, the css can be 5031 * offlined by invoking offline_css(). After offlining, the base ref is 5032 * put. Implemented in css_killed_work_fn(). 5033 * 5034 * 3. When the percpu_ref reaches zero, the only possible remaining 5035 * accessors are inside RCU read sections. css_release() schedules the 5036 * RCU callback. 5037 * 5038 * 4. After the grace period, the css can be freed. Implemented in 5039 * css_free_work_fn(). 5040 * 5041 * It is actually hairier because both step 2 and 4 require process context 5042 * and thus involve punting to css->destroy_work adding two additional 5043 * steps to the already complex sequence. 5044 */ 5045 static void css_free_rwork_fn(struct work_struct *work) 5046 { 5047 struct cgroup_subsys_state *css = container_of(to_rcu_work(work), 5048 struct cgroup_subsys_state, destroy_rwork); 5049 struct cgroup_subsys *ss = css->ss; 5050 struct cgroup *cgrp = css->cgroup; 5051 5052 percpu_ref_exit(&css->refcnt); 5053 5054 if (ss) { 5055 /* css free path */ 5056 struct cgroup_subsys_state *parent = css->parent; 5057 int id = css->id; 5058 5059 ss->css_free(css); 5060 cgroup_idr_remove(&ss->css_idr, id); 5061 cgroup_put(cgrp); 5062 5063 if (parent) 5064 css_put(parent); 5065 } else { 5066 /* cgroup free path */ 5067 atomic_dec(&cgrp->root->nr_cgrps); 5068 cgroup1_pidlist_destroy_all(cgrp); 5069 cancel_work_sync(&cgrp->release_agent_work); 5070 5071 if (cgroup_parent(cgrp)) { 5072 /* 5073 * We get a ref to the parent, and put the ref when 5074 * this cgroup is being freed, so it's guaranteed 5075 * that the parent won't be destroyed before its 5076 * children. 5077 */ 5078 cgroup_put(cgroup_parent(cgrp)); 5079 kernfs_put(cgrp->kn); 5080 psi_cgroup_free(cgrp); 5081 cgroup_rstat_exit(cgrp); 5082 kfree(cgrp); 5083 } else { 5084 /* 5085 * This is root cgroup's refcnt reaching zero, 5086 * which indicates that the root should be 5087 * released. 5088 */ 5089 cgroup_destroy_root(cgrp->root); 5090 } 5091 } 5092 } 5093 5094 static void css_release_work_fn(struct work_struct *work) 5095 { 5096 struct cgroup_subsys_state *css = 5097 container_of(work, struct cgroup_subsys_state, destroy_work); 5098 struct cgroup_subsys *ss = css->ss; 5099 struct cgroup *cgrp = css->cgroup; 5100 5101 mutex_lock(&cgroup_mutex); 5102 5103 css->flags |= CSS_RELEASED; 5104 list_del_rcu(&css->sibling); 5105 5106 if (ss) { 5107 /* css release path */ 5108 if (!list_empty(&css->rstat_css_node)) { 5109 cgroup_rstat_flush(cgrp); 5110 list_del_rcu(&css->rstat_css_node); 5111 } 5112 5113 cgroup_idr_replace(&ss->css_idr, NULL, css->id); 5114 if (ss->css_released) 5115 ss->css_released(css); 5116 } else { 5117 struct cgroup *tcgrp; 5118 5119 /* cgroup release path */ 5120 TRACE_CGROUP_PATH(release, cgrp); 5121 5122 cgroup_rstat_flush(cgrp); 5123 5124 spin_lock_irq(&css_set_lock); 5125 for (tcgrp = cgroup_parent(cgrp); tcgrp; 5126 tcgrp = cgroup_parent(tcgrp)) 5127 tcgrp->nr_dying_descendants--; 5128 spin_unlock_irq(&css_set_lock); 5129 5130 /* 5131 * There are two control paths which try to determine 5132 * cgroup from dentry without going through kernfs - 5133 * cgroupstats_build() and css_tryget_online_from_dir(). 5134 * Those are supported by RCU protecting clearing of 5135 * cgrp->kn->priv backpointer. 5136 */ 5137 if (cgrp->kn) 5138 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, 5139 NULL); 5140 } 5141 5142 mutex_unlock(&cgroup_mutex); 5143 5144 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn); 5145 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork); 5146 } 5147 5148 static void css_release(struct percpu_ref *ref) 5149 { 5150 struct cgroup_subsys_state *css = 5151 container_of(ref, struct cgroup_subsys_state, refcnt); 5152 5153 INIT_WORK(&css->destroy_work, css_release_work_fn); 5154 queue_work(cgroup_destroy_wq, &css->destroy_work); 5155 } 5156 5157 static void init_and_link_css(struct cgroup_subsys_state *css, 5158 struct cgroup_subsys *ss, struct cgroup *cgrp) 5159 { 5160 lockdep_assert_held(&cgroup_mutex); 5161 5162 cgroup_get_live(cgrp); 5163 5164 memset(css, 0, sizeof(*css)); 5165 css->cgroup = cgrp; 5166 css->ss = ss; 5167 css->id = -1; 5168 INIT_LIST_HEAD(&css->sibling); 5169 INIT_LIST_HEAD(&css->children); 5170 INIT_LIST_HEAD(&css->rstat_css_node); 5171 css->serial_nr = css_serial_nr_next++; 5172 atomic_set(&css->online_cnt, 0); 5173 5174 if (cgroup_parent(cgrp)) { 5175 css->parent = cgroup_css(cgroup_parent(cgrp), ss); 5176 css_get(css->parent); 5177 } 5178 5179 if (ss->css_rstat_flush) 5180 list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list); 5181 5182 BUG_ON(cgroup_css(cgrp, ss)); 5183 } 5184 5185 /* invoke ->css_online() on a new CSS and mark it online if successful */ 5186 static int online_css(struct cgroup_subsys_state *css) 5187 { 5188 struct cgroup_subsys *ss = css->ss; 5189 int ret = 0; 5190 5191 lockdep_assert_held(&cgroup_mutex); 5192 5193 if (ss->css_online) 5194 ret = ss->css_online(css); 5195 if (!ret) { 5196 css->flags |= CSS_ONLINE; 5197 rcu_assign_pointer(css->cgroup->subsys[ss->id], css); 5198 5199 atomic_inc(&css->online_cnt); 5200 if (css->parent) 5201 atomic_inc(&css->parent->online_cnt); 5202 } 5203 return ret; 5204 } 5205 5206 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */ 5207 static void offline_css(struct cgroup_subsys_state *css) 5208 { 5209 struct cgroup_subsys *ss = css->ss; 5210 5211 lockdep_assert_held(&cgroup_mutex); 5212 5213 if (!(css->flags & CSS_ONLINE)) 5214 return; 5215 5216 if (ss->css_offline) 5217 ss->css_offline(css); 5218 5219 css->flags &= ~CSS_ONLINE; 5220 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL); 5221 5222 wake_up_all(&css->cgroup->offline_waitq); 5223 } 5224 5225 /** 5226 * css_create - create a cgroup_subsys_state 5227 * @cgrp: the cgroup new css will be associated with 5228 * @ss: the subsys of new css 5229 * 5230 * Create a new css associated with @cgrp - @ss pair. On success, the new 5231 * css is online and installed in @cgrp. This function doesn't create the 5232 * interface files. Returns 0 on success, -errno on failure. 5233 */ 5234 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp, 5235 struct cgroup_subsys *ss) 5236 { 5237 struct cgroup *parent = cgroup_parent(cgrp); 5238 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss); 5239 struct cgroup_subsys_state *css; 5240 int err; 5241 5242 lockdep_assert_held(&cgroup_mutex); 5243 5244 css = ss->css_alloc(parent_css); 5245 if (!css) 5246 css = ERR_PTR(-ENOMEM); 5247 if (IS_ERR(css)) 5248 return css; 5249 5250 init_and_link_css(css, ss, cgrp); 5251 5252 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL); 5253 if (err) 5254 goto err_free_css; 5255 5256 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL); 5257 if (err < 0) 5258 goto err_free_css; 5259 css->id = err; 5260 5261 /* @css is ready to be brought online now, make it visible */ 5262 list_add_tail_rcu(&css->sibling, &parent_css->children); 5263 cgroup_idr_replace(&ss->css_idr, css, css->id); 5264 5265 err = online_css(css); 5266 if (err) 5267 goto err_list_del; 5268 5269 return css; 5270 5271 err_list_del: 5272 list_del_rcu(&css->sibling); 5273 err_free_css: 5274 list_del_rcu(&css->rstat_css_node); 5275 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn); 5276 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork); 5277 return ERR_PTR(err); 5278 } 5279 5280 /* 5281 * The returned cgroup is fully initialized including its control mask, but 5282 * it isn't associated with its kernfs_node and doesn't have the control 5283 * mask applied. 5284 */ 5285 static struct cgroup *cgroup_create(struct cgroup *parent, const char *name, 5286 umode_t mode) 5287 { 5288 struct cgroup_root *root = parent->root; 5289 struct cgroup *cgrp, *tcgrp; 5290 struct kernfs_node *kn; 5291 int level = parent->level + 1; 5292 int ret; 5293 5294 /* allocate the cgroup and its ID, 0 is reserved for the root */ 5295 cgrp = kzalloc(struct_size(cgrp, ancestor_ids, (level + 1)), 5296 GFP_KERNEL); 5297 if (!cgrp) 5298 return ERR_PTR(-ENOMEM); 5299 5300 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL); 5301 if (ret) 5302 goto out_free_cgrp; 5303 5304 ret = cgroup_rstat_init(cgrp); 5305 if (ret) 5306 goto out_cancel_ref; 5307 5308 /* create the directory */ 5309 kn = kernfs_create_dir(parent->kn, name, mode, cgrp); 5310 if (IS_ERR(kn)) { 5311 ret = PTR_ERR(kn); 5312 goto out_stat_exit; 5313 } 5314 cgrp->kn = kn; 5315 5316 init_cgroup_housekeeping(cgrp); 5317 5318 cgrp->self.parent = &parent->self; 5319 cgrp->root = root; 5320 cgrp->level = level; 5321 5322 ret = psi_cgroup_alloc(cgrp); 5323 if (ret) 5324 goto out_kernfs_remove; 5325 5326 ret = cgroup_bpf_inherit(cgrp); 5327 if (ret) 5328 goto out_psi_free; 5329 5330 /* 5331 * New cgroup inherits effective freeze counter, and 5332 * if the parent has to be frozen, the child has too. 5333 */ 5334 cgrp->freezer.e_freeze = parent->freezer.e_freeze; 5335 if (cgrp->freezer.e_freeze) { 5336 /* 5337 * Set the CGRP_FREEZE flag, so when a process will be 5338 * attached to the child cgroup, it will become frozen. 5339 * At this point the new cgroup is unpopulated, so we can 5340 * consider it frozen immediately. 5341 */ 5342 set_bit(CGRP_FREEZE, &cgrp->flags); 5343 set_bit(CGRP_FROZEN, &cgrp->flags); 5344 } 5345 5346 spin_lock_irq(&css_set_lock); 5347 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) { 5348 cgrp->ancestor_ids[tcgrp->level] = cgroup_id(tcgrp); 5349 5350 if (tcgrp != cgrp) { 5351 tcgrp->nr_descendants++; 5352 5353 /* 5354 * If the new cgroup is frozen, all ancestor cgroups 5355 * get a new frozen descendant, but their state can't 5356 * change because of this. 5357 */ 5358 if (cgrp->freezer.e_freeze) 5359 tcgrp->freezer.nr_frozen_descendants++; 5360 } 5361 } 5362 spin_unlock_irq(&css_set_lock); 5363 5364 if (notify_on_release(parent)) 5365 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags); 5366 5367 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags)) 5368 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags); 5369 5370 cgrp->self.serial_nr = css_serial_nr_next++; 5371 5372 /* allocation complete, commit to creation */ 5373 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children); 5374 atomic_inc(&root->nr_cgrps); 5375 cgroup_get_live(parent); 5376 5377 /* 5378 * On the default hierarchy, a child doesn't automatically inherit 5379 * subtree_control from the parent. Each is configured manually. 5380 */ 5381 if (!cgroup_on_dfl(cgrp)) 5382 cgrp->subtree_control = cgroup_control(cgrp); 5383 5384 cgroup_propagate_control(cgrp); 5385 5386 return cgrp; 5387 5388 out_psi_free: 5389 psi_cgroup_free(cgrp); 5390 out_kernfs_remove: 5391 kernfs_remove(cgrp->kn); 5392 out_stat_exit: 5393 cgroup_rstat_exit(cgrp); 5394 out_cancel_ref: 5395 percpu_ref_exit(&cgrp->self.refcnt); 5396 out_free_cgrp: 5397 kfree(cgrp); 5398 return ERR_PTR(ret); 5399 } 5400 5401 static bool cgroup_check_hierarchy_limits(struct cgroup *parent) 5402 { 5403 struct cgroup *cgroup; 5404 int ret = false; 5405 int level = 1; 5406 5407 lockdep_assert_held(&cgroup_mutex); 5408 5409 for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) { 5410 if (cgroup->nr_descendants >= cgroup->max_descendants) 5411 goto fail; 5412 5413 if (level > cgroup->max_depth) 5414 goto fail; 5415 5416 level++; 5417 } 5418 5419 ret = true; 5420 fail: 5421 return ret; 5422 } 5423 5424 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode) 5425 { 5426 struct cgroup *parent, *cgrp; 5427 int ret; 5428 5429 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */ 5430 if (strchr(name, '\n')) 5431 return -EINVAL; 5432 5433 parent = cgroup_kn_lock_live(parent_kn, false); 5434 if (!parent) 5435 return -ENODEV; 5436 5437 if (!cgroup_check_hierarchy_limits(parent)) { 5438 ret = -EAGAIN; 5439 goto out_unlock; 5440 } 5441 5442 cgrp = cgroup_create(parent, name, mode); 5443 if (IS_ERR(cgrp)) { 5444 ret = PTR_ERR(cgrp); 5445 goto out_unlock; 5446 } 5447 5448 /* 5449 * This extra ref will be put in cgroup_free_fn() and guarantees 5450 * that @cgrp->kn is always accessible. 5451 */ 5452 kernfs_get(cgrp->kn); 5453 5454 ret = cgroup_kn_set_ugid(cgrp->kn); 5455 if (ret) 5456 goto out_destroy; 5457 5458 ret = css_populate_dir(&cgrp->self); 5459 if (ret) 5460 goto out_destroy; 5461 5462 ret = cgroup_apply_control_enable(cgrp); 5463 if (ret) 5464 goto out_destroy; 5465 5466 TRACE_CGROUP_PATH(mkdir, cgrp); 5467 5468 /* let's create and online css's */ 5469 kernfs_activate(cgrp->kn); 5470 5471 ret = 0; 5472 goto out_unlock; 5473 5474 out_destroy: 5475 cgroup_destroy_locked(cgrp); 5476 out_unlock: 5477 cgroup_kn_unlock(parent_kn); 5478 return ret; 5479 } 5480 5481 /* 5482 * This is called when the refcnt of a css is confirmed to be killed. 5483 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to 5484 * initiate destruction and put the css ref from kill_css(). 5485 */ 5486 static void css_killed_work_fn(struct work_struct *work) 5487 { 5488 struct cgroup_subsys_state *css = 5489 container_of(work, struct cgroup_subsys_state, destroy_work); 5490 5491 mutex_lock(&cgroup_mutex); 5492 5493 do { 5494 offline_css(css); 5495 css_put(css); 5496 /* @css can't go away while we're holding cgroup_mutex */ 5497 css = css->parent; 5498 } while (css && atomic_dec_and_test(&css->online_cnt)); 5499 5500 mutex_unlock(&cgroup_mutex); 5501 } 5502 5503 /* css kill confirmation processing requires process context, bounce */ 5504 static void css_killed_ref_fn(struct percpu_ref *ref) 5505 { 5506 struct cgroup_subsys_state *css = 5507 container_of(ref, struct cgroup_subsys_state, refcnt); 5508 5509 if (atomic_dec_and_test(&css->online_cnt)) { 5510 INIT_WORK(&css->destroy_work, css_killed_work_fn); 5511 queue_work(cgroup_destroy_wq, &css->destroy_work); 5512 } 5513 } 5514 5515 /** 5516 * kill_css - destroy a css 5517 * @css: css to destroy 5518 * 5519 * This function initiates destruction of @css by removing cgroup interface 5520 * files and putting its base reference. ->css_offline() will be invoked 5521 * asynchronously once css_tryget_online() is guaranteed to fail and when 5522 * the reference count reaches zero, @css will be released. 5523 */ 5524 static void kill_css(struct cgroup_subsys_state *css) 5525 { 5526 lockdep_assert_held(&cgroup_mutex); 5527 5528 if (css->flags & CSS_DYING) 5529 return; 5530 5531 css->flags |= CSS_DYING; 5532 5533 /* 5534 * This must happen before css is disassociated with its cgroup. 5535 * See seq_css() for details. 5536 */ 5537 css_clear_dir(css); 5538 5539 /* 5540 * Killing would put the base ref, but we need to keep it alive 5541 * until after ->css_offline(). 5542 */ 5543 css_get(css); 5544 5545 /* 5546 * cgroup core guarantees that, by the time ->css_offline() is 5547 * invoked, no new css reference will be given out via 5548 * css_tryget_online(). We can't simply call percpu_ref_kill() and 5549 * proceed to offlining css's because percpu_ref_kill() doesn't 5550 * guarantee that the ref is seen as killed on all CPUs on return. 5551 * 5552 * Use percpu_ref_kill_and_confirm() to get notifications as each 5553 * css is confirmed to be seen as killed on all CPUs. 5554 */ 5555 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn); 5556 } 5557 5558 /** 5559 * cgroup_destroy_locked - the first stage of cgroup destruction 5560 * @cgrp: cgroup to be destroyed 5561 * 5562 * css's make use of percpu refcnts whose killing latency shouldn't be 5563 * exposed to userland and are RCU protected. Also, cgroup core needs to 5564 * guarantee that css_tryget_online() won't succeed by the time 5565 * ->css_offline() is invoked. To satisfy all the requirements, 5566 * destruction is implemented in the following two steps. 5567 * 5568 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all 5569 * userland visible parts and start killing the percpu refcnts of 5570 * css's. Set up so that the next stage will be kicked off once all 5571 * the percpu refcnts are confirmed to be killed. 5572 * 5573 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the 5574 * rest of destruction. Once all cgroup references are gone, the 5575 * cgroup is RCU-freed. 5576 * 5577 * This function implements s1. After this step, @cgrp is gone as far as 5578 * the userland is concerned and a new cgroup with the same name may be 5579 * created. As cgroup doesn't care about the names internally, this 5580 * doesn't cause any problem. 5581 */ 5582 static int cgroup_destroy_locked(struct cgroup *cgrp) 5583 __releases(&cgroup_mutex) __acquires(&cgroup_mutex) 5584 { 5585 struct cgroup *tcgrp, *parent = cgroup_parent(cgrp); 5586 struct cgroup_subsys_state *css; 5587 struct cgrp_cset_link *link; 5588 int ssid; 5589 5590 lockdep_assert_held(&cgroup_mutex); 5591 5592 /* 5593 * Only migration can raise populated from zero and we're already 5594 * holding cgroup_mutex. 5595 */ 5596 if (cgroup_is_populated(cgrp)) 5597 return -EBUSY; 5598 5599 /* 5600 * Make sure there's no live children. We can't test emptiness of 5601 * ->self.children as dead children linger on it while being 5602 * drained; otherwise, "rmdir parent/child parent" may fail. 5603 */ 5604 if (css_has_online_children(&cgrp->self)) 5605 return -EBUSY; 5606 5607 /* 5608 * Mark @cgrp and the associated csets dead. The former prevents 5609 * further task migration and child creation by disabling 5610 * cgroup_lock_live_group(). The latter makes the csets ignored by 5611 * the migration path. 5612 */ 5613 cgrp->self.flags &= ~CSS_ONLINE; 5614 5615 spin_lock_irq(&css_set_lock); 5616 list_for_each_entry(link, &cgrp->cset_links, cset_link) 5617 link->cset->dead = true; 5618 spin_unlock_irq(&css_set_lock); 5619 5620 /* initiate massacre of all css's */ 5621 for_each_css(css, ssid, cgrp) 5622 kill_css(css); 5623 5624 /* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */ 5625 css_clear_dir(&cgrp->self); 5626 kernfs_remove(cgrp->kn); 5627 5628 if (parent && cgroup_is_threaded(cgrp)) 5629 parent->nr_threaded_children--; 5630 5631 spin_lock_irq(&css_set_lock); 5632 for (tcgrp = cgroup_parent(cgrp); tcgrp; tcgrp = cgroup_parent(tcgrp)) { 5633 tcgrp->nr_descendants--; 5634 tcgrp->nr_dying_descendants++; 5635 /* 5636 * If the dying cgroup is frozen, decrease frozen descendants 5637 * counters of ancestor cgroups. 5638 */ 5639 if (test_bit(CGRP_FROZEN, &cgrp->flags)) 5640 tcgrp->freezer.nr_frozen_descendants--; 5641 } 5642 spin_unlock_irq(&css_set_lock); 5643 5644 cgroup1_check_for_release(parent); 5645 5646 cgroup_bpf_offline(cgrp); 5647 5648 /* put the base reference */ 5649 percpu_ref_kill(&cgrp->self.refcnt); 5650 5651 return 0; 5652 }; 5653 5654 int cgroup_rmdir(struct kernfs_node *kn) 5655 { 5656 struct cgroup *cgrp; 5657 int ret = 0; 5658 5659 cgrp = cgroup_kn_lock_live(kn, false); 5660 if (!cgrp) 5661 return 0; 5662 5663 ret = cgroup_destroy_locked(cgrp); 5664 if (!ret) 5665 TRACE_CGROUP_PATH(rmdir, cgrp); 5666 5667 cgroup_kn_unlock(kn); 5668 return ret; 5669 } 5670 5671 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = { 5672 .show_options = cgroup_show_options, 5673 .mkdir = cgroup_mkdir, 5674 .rmdir = cgroup_rmdir, 5675 .show_path = cgroup_show_path, 5676 }; 5677 5678 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early) 5679 { 5680 struct cgroup_subsys_state *css; 5681 5682 pr_debug("Initializing cgroup subsys %s\n", ss->name); 5683 5684 mutex_lock(&cgroup_mutex); 5685 5686 idr_init(&ss->css_idr); 5687 INIT_LIST_HEAD(&ss->cfts); 5688 5689 /* Create the root cgroup state for this subsystem */ 5690 ss->root = &cgrp_dfl_root; 5691 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss)); 5692 /* We don't handle early failures gracefully */ 5693 BUG_ON(IS_ERR(css)); 5694 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp); 5695 5696 /* 5697 * Root csses are never destroyed and we can't initialize 5698 * percpu_ref during early init. Disable refcnting. 5699 */ 5700 css->flags |= CSS_NO_REF; 5701 5702 if (early) { 5703 /* allocation can't be done safely during early init */ 5704 css->id = 1; 5705 } else { 5706 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL); 5707 BUG_ON(css->id < 0); 5708 } 5709 5710 /* Update the init_css_set to contain a subsys 5711 * pointer to this state - since the subsystem is 5712 * newly registered, all tasks and hence the 5713 * init_css_set is in the subsystem's root cgroup. */ 5714 init_css_set.subsys[ss->id] = css; 5715 5716 have_fork_callback |= (bool)ss->fork << ss->id; 5717 have_exit_callback |= (bool)ss->exit << ss->id; 5718 have_release_callback |= (bool)ss->release << ss->id; 5719 have_canfork_callback |= (bool)ss->can_fork << ss->id; 5720 5721 /* At system boot, before all subsystems have been 5722 * registered, no tasks have been forked, so we don't 5723 * need to invoke fork callbacks here. */ 5724 BUG_ON(!list_empty(&init_task.tasks)); 5725 5726 BUG_ON(online_css(css)); 5727 5728 mutex_unlock(&cgroup_mutex); 5729 } 5730 5731 /** 5732 * cgroup_init_early - cgroup initialization at system boot 5733 * 5734 * Initialize cgroups at system boot, and initialize any 5735 * subsystems that request early init. 5736 */ 5737 int __init cgroup_init_early(void) 5738 { 5739 static struct cgroup_fs_context __initdata ctx; 5740 struct cgroup_subsys *ss; 5741 int i; 5742 5743 ctx.root = &cgrp_dfl_root; 5744 init_cgroup_root(&ctx); 5745 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF; 5746 5747 RCU_INIT_POINTER(init_task.cgroups, &init_css_set); 5748 5749 for_each_subsys(ss, i) { 5750 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id, 5751 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n", 5752 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free, 5753 ss->id, ss->name); 5754 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN, 5755 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]); 5756 5757 ss->id = i; 5758 ss->name = cgroup_subsys_name[i]; 5759 if (!ss->legacy_name) 5760 ss->legacy_name = cgroup_subsys_name[i]; 5761 5762 if (ss->early_init) 5763 cgroup_init_subsys(ss, true); 5764 } 5765 return 0; 5766 } 5767 5768 /** 5769 * cgroup_init - cgroup initialization 5770 * 5771 * Register cgroup filesystem and /proc file, and initialize 5772 * any subsystems that didn't request early init. 5773 */ 5774 int __init cgroup_init(void) 5775 { 5776 struct cgroup_subsys *ss; 5777 int ssid; 5778 5779 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16); 5780 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files)); 5781 BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files)); 5782 5783 cgroup_rstat_boot(); 5784 5785 /* 5786 * The latency of the synchronize_rcu() is too high for cgroups, 5787 * avoid it at the cost of forcing all readers into the slow path. 5788 */ 5789 rcu_sync_enter_start(&cgroup_threadgroup_rwsem.rss); 5790 5791 get_user_ns(init_cgroup_ns.user_ns); 5792 5793 mutex_lock(&cgroup_mutex); 5794 5795 /* 5796 * Add init_css_set to the hash table so that dfl_root can link to 5797 * it during init. 5798 */ 5799 hash_add(css_set_table, &init_css_set.hlist, 5800 css_set_hash(init_css_set.subsys)); 5801 5802 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0)); 5803 5804 mutex_unlock(&cgroup_mutex); 5805 5806 for_each_subsys(ss, ssid) { 5807 if (ss->early_init) { 5808 struct cgroup_subsys_state *css = 5809 init_css_set.subsys[ss->id]; 5810 5811 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, 5812 GFP_KERNEL); 5813 BUG_ON(css->id < 0); 5814 } else { 5815 cgroup_init_subsys(ss, false); 5816 } 5817 5818 list_add_tail(&init_css_set.e_cset_node[ssid], 5819 &cgrp_dfl_root.cgrp.e_csets[ssid]); 5820 5821 /* 5822 * Setting dfl_root subsys_mask needs to consider the 5823 * disabled flag and cftype registration needs kmalloc, 5824 * both of which aren't available during early_init. 5825 */ 5826 if (!cgroup_ssid_enabled(ssid)) 5827 continue; 5828 5829 if (cgroup1_ssid_disabled(ssid)) 5830 printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n", 5831 ss->name); 5832 5833 cgrp_dfl_root.subsys_mask |= 1 << ss->id; 5834 5835 /* implicit controllers must be threaded too */ 5836 WARN_ON(ss->implicit_on_dfl && !ss->threaded); 5837 5838 if (ss->implicit_on_dfl) 5839 cgrp_dfl_implicit_ss_mask |= 1 << ss->id; 5840 else if (!ss->dfl_cftypes) 5841 cgrp_dfl_inhibit_ss_mask |= 1 << ss->id; 5842 5843 if (ss->threaded) 5844 cgrp_dfl_threaded_ss_mask |= 1 << ss->id; 5845 5846 if (ss->dfl_cftypes == ss->legacy_cftypes) { 5847 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes)); 5848 } else { 5849 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes)); 5850 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes)); 5851 } 5852 5853 if (ss->bind) 5854 ss->bind(init_css_set.subsys[ssid]); 5855 5856 mutex_lock(&cgroup_mutex); 5857 css_populate_dir(init_css_set.subsys[ssid]); 5858 mutex_unlock(&cgroup_mutex); 5859 } 5860 5861 /* init_css_set.subsys[] has been updated, re-hash */ 5862 hash_del(&init_css_set.hlist); 5863 hash_add(css_set_table, &init_css_set.hlist, 5864 css_set_hash(init_css_set.subsys)); 5865 5866 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup")); 5867 WARN_ON(register_filesystem(&cgroup_fs_type)); 5868 WARN_ON(register_filesystem(&cgroup2_fs_type)); 5869 WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show)); 5870 #ifdef CONFIG_CPUSETS 5871 WARN_ON(register_filesystem(&cpuset_fs_type)); 5872 #endif 5873 5874 return 0; 5875 } 5876 5877 static int __init cgroup_wq_init(void) 5878 { 5879 /* 5880 * There isn't much point in executing destruction path in 5881 * parallel. Good chunk is serialized with cgroup_mutex anyway. 5882 * Use 1 for @max_active. 5883 * 5884 * We would prefer to do this in cgroup_init() above, but that 5885 * is called before init_workqueues(): so leave this until after. 5886 */ 5887 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1); 5888 BUG_ON(!cgroup_destroy_wq); 5889 return 0; 5890 } 5891 core_initcall(cgroup_wq_init); 5892 5893 void cgroup_path_from_kernfs_id(u64 id, char *buf, size_t buflen) 5894 { 5895 struct kernfs_node *kn; 5896 5897 kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id); 5898 if (!kn) 5899 return; 5900 kernfs_path(kn, buf, buflen); 5901 kernfs_put(kn); 5902 } 5903 5904 /* 5905 * cgroup_get_from_id : get the cgroup associated with cgroup id 5906 * @id: cgroup id 5907 * On success return the cgrp, on failure return NULL 5908 */ 5909 struct cgroup *cgroup_get_from_id(u64 id) 5910 { 5911 struct kernfs_node *kn; 5912 struct cgroup *cgrp = NULL; 5913 5914 mutex_lock(&cgroup_mutex); 5915 kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id); 5916 if (!kn) 5917 goto out_unlock; 5918 5919 cgrp = kn->priv; 5920 if (cgroup_is_dead(cgrp) || !cgroup_tryget(cgrp)) 5921 cgrp = NULL; 5922 kernfs_put(kn); 5923 out_unlock: 5924 mutex_unlock(&cgroup_mutex); 5925 return cgrp; 5926 } 5927 EXPORT_SYMBOL_GPL(cgroup_get_from_id); 5928 5929 /* 5930 * proc_cgroup_show() 5931 * - Print task's cgroup paths into seq_file, one line for each hierarchy 5932 * - Used for /proc/<pid>/cgroup. 5933 */ 5934 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns, 5935 struct pid *pid, struct task_struct *tsk) 5936 { 5937 char *buf; 5938 int retval; 5939 struct cgroup_root *root; 5940 5941 retval = -ENOMEM; 5942 buf = kmalloc(PATH_MAX, GFP_KERNEL); 5943 if (!buf) 5944 goto out; 5945 5946 mutex_lock(&cgroup_mutex); 5947 spin_lock_irq(&css_set_lock); 5948 5949 for_each_root(root) { 5950 struct cgroup_subsys *ss; 5951 struct cgroup *cgrp; 5952 int ssid, count = 0; 5953 5954 if (root == &cgrp_dfl_root && !cgrp_dfl_visible) 5955 continue; 5956 5957 seq_printf(m, "%d:", root->hierarchy_id); 5958 if (root != &cgrp_dfl_root) 5959 for_each_subsys(ss, ssid) 5960 if (root->subsys_mask & (1 << ssid)) 5961 seq_printf(m, "%s%s", count++ ? "," : "", 5962 ss->legacy_name); 5963 if (strlen(root->name)) 5964 seq_printf(m, "%sname=%s", count ? "," : "", 5965 root->name); 5966 seq_putc(m, ':'); 5967 5968 cgrp = task_cgroup_from_root(tsk, root); 5969 5970 /* 5971 * On traditional hierarchies, all zombie tasks show up as 5972 * belonging to the root cgroup. On the default hierarchy, 5973 * while a zombie doesn't show up in "cgroup.procs" and 5974 * thus can't be migrated, its /proc/PID/cgroup keeps 5975 * reporting the cgroup it belonged to before exiting. If 5976 * the cgroup is removed before the zombie is reaped, 5977 * " (deleted)" is appended to the cgroup path. 5978 */ 5979 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) { 5980 retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX, 5981 current->nsproxy->cgroup_ns); 5982 if (retval >= PATH_MAX) 5983 retval = -ENAMETOOLONG; 5984 if (retval < 0) 5985 goto out_unlock; 5986 5987 seq_puts(m, buf); 5988 } else { 5989 seq_puts(m, "/"); 5990 } 5991 5992 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp)) 5993 seq_puts(m, " (deleted)\n"); 5994 else 5995 seq_putc(m, '\n'); 5996 } 5997 5998 retval = 0; 5999 out_unlock: 6000 spin_unlock_irq(&css_set_lock); 6001 mutex_unlock(&cgroup_mutex); 6002 kfree(buf); 6003 out: 6004 return retval; 6005 } 6006 6007 /** 6008 * cgroup_fork - initialize cgroup related fields during copy_process() 6009 * @child: pointer to task_struct of forking parent process. 6010 * 6011 * A task is associated with the init_css_set until cgroup_post_fork() 6012 * attaches it to the target css_set. 6013 */ 6014 void cgroup_fork(struct task_struct *child) 6015 { 6016 RCU_INIT_POINTER(child->cgroups, &init_css_set); 6017 INIT_LIST_HEAD(&child->cg_list); 6018 } 6019 6020 static struct cgroup *cgroup_get_from_file(struct file *f) 6021 { 6022 struct cgroup_subsys_state *css; 6023 struct cgroup *cgrp; 6024 6025 css = css_tryget_online_from_dir(f->f_path.dentry, NULL); 6026 if (IS_ERR(css)) 6027 return ERR_CAST(css); 6028 6029 cgrp = css->cgroup; 6030 if (!cgroup_on_dfl(cgrp)) { 6031 cgroup_put(cgrp); 6032 return ERR_PTR(-EBADF); 6033 } 6034 6035 return cgrp; 6036 } 6037 6038 /** 6039 * cgroup_css_set_fork - find or create a css_set for a child process 6040 * @kargs: the arguments passed to create the child process 6041 * 6042 * This functions finds or creates a new css_set which the child 6043 * process will be attached to in cgroup_post_fork(). By default, 6044 * the child process will be given the same css_set as its parent. 6045 * 6046 * If CLONE_INTO_CGROUP is specified this function will try to find an 6047 * existing css_set which includes the requested cgroup and if not create 6048 * a new css_set that the child will be attached to later. If this function 6049 * succeeds it will hold cgroup_threadgroup_rwsem on return. If 6050 * CLONE_INTO_CGROUP is requested this function will grab cgroup mutex 6051 * before grabbing cgroup_threadgroup_rwsem and will hold a reference 6052 * to the target cgroup. 6053 */ 6054 static int cgroup_css_set_fork(struct kernel_clone_args *kargs) 6055 __acquires(&cgroup_mutex) __acquires(&cgroup_threadgroup_rwsem) 6056 { 6057 int ret; 6058 struct cgroup *dst_cgrp = NULL; 6059 struct css_set *cset; 6060 struct super_block *sb; 6061 struct file *f; 6062 6063 if (kargs->flags & CLONE_INTO_CGROUP) 6064 mutex_lock(&cgroup_mutex); 6065 6066 cgroup_threadgroup_change_begin(current); 6067 6068 spin_lock_irq(&css_set_lock); 6069 cset = task_css_set(current); 6070 get_css_set(cset); 6071 spin_unlock_irq(&css_set_lock); 6072 6073 if (!(kargs->flags & CLONE_INTO_CGROUP)) { 6074 kargs->cset = cset; 6075 return 0; 6076 } 6077 6078 f = fget_raw(kargs->cgroup); 6079 if (!f) { 6080 ret = -EBADF; 6081 goto err; 6082 } 6083 sb = f->f_path.dentry->d_sb; 6084 6085 dst_cgrp = cgroup_get_from_file(f); 6086 if (IS_ERR(dst_cgrp)) { 6087 ret = PTR_ERR(dst_cgrp); 6088 dst_cgrp = NULL; 6089 goto err; 6090 } 6091 6092 if (cgroup_is_dead(dst_cgrp)) { 6093 ret = -ENODEV; 6094 goto err; 6095 } 6096 6097 /* 6098 * Verify that we the target cgroup is writable for us. This is 6099 * usually done by the vfs layer but since we're not going through 6100 * the vfs layer here we need to do it "manually". 6101 */ 6102 ret = cgroup_may_write(dst_cgrp, sb); 6103 if (ret) 6104 goto err; 6105 6106 ret = cgroup_attach_permissions(cset->dfl_cgrp, dst_cgrp, sb, 6107 !(kargs->flags & CLONE_THREAD)); 6108 if (ret) 6109 goto err; 6110 6111 kargs->cset = find_css_set(cset, dst_cgrp); 6112 if (!kargs->cset) { 6113 ret = -ENOMEM; 6114 goto err; 6115 } 6116 6117 put_css_set(cset); 6118 fput(f); 6119 kargs->cgrp = dst_cgrp; 6120 return ret; 6121 6122 err: 6123 cgroup_threadgroup_change_end(current); 6124 mutex_unlock(&cgroup_mutex); 6125 if (f) 6126 fput(f); 6127 if (dst_cgrp) 6128 cgroup_put(dst_cgrp); 6129 put_css_set(cset); 6130 if (kargs->cset) 6131 put_css_set(kargs->cset); 6132 return ret; 6133 } 6134 6135 /** 6136 * cgroup_css_set_put_fork - drop references we took during fork 6137 * @kargs: the arguments passed to create the child process 6138 * 6139 * Drop references to the prepared css_set and target cgroup if 6140 * CLONE_INTO_CGROUP was requested. 6141 */ 6142 static void cgroup_css_set_put_fork(struct kernel_clone_args *kargs) 6143 __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex) 6144 { 6145 cgroup_threadgroup_change_end(current); 6146 6147 if (kargs->flags & CLONE_INTO_CGROUP) { 6148 struct cgroup *cgrp = kargs->cgrp; 6149 struct css_set *cset = kargs->cset; 6150 6151 mutex_unlock(&cgroup_mutex); 6152 6153 if (cset) { 6154 put_css_set(cset); 6155 kargs->cset = NULL; 6156 } 6157 6158 if (cgrp) { 6159 cgroup_put(cgrp); 6160 kargs->cgrp = NULL; 6161 } 6162 } 6163 } 6164 6165 /** 6166 * cgroup_can_fork - called on a new task before the process is exposed 6167 * @child: the child process 6168 * 6169 * This prepares a new css_set for the child process which the child will 6170 * be attached to in cgroup_post_fork(). 6171 * This calls the subsystem can_fork() callbacks. If the cgroup_can_fork() 6172 * callback returns an error, the fork aborts with that error code. This 6173 * allows for a cgroup subsystem to conditionally allow or deny new forks. 6174 */ 6175 int cgroup_can_fork(struct task_struct *child, struct kernel_clone_args *kargs) 6176 { 6177 struct cgroup_subsys *ss; 6178 int i, j, ret; 6179 6180 ret = cgroup_css_set_fork(kargs); 6181 if (ret) 6182 return ret; 6183 6184 do_each_subsys_mask(ss, i, have_canfork_callback) { 6185 ret = ss->can_fork(child, kargs->cset); 6186 if (ret) 6187 goto out_revert; 6188 } while_each_subsys_mask(); 6189 6190 return 0; 6191 6192 out_revert: 6193 for_each_subsys(ss, j) { 6194 if (j >= i) 6195 break; 6196 if (ss->cancel_fork) 6197 ss->cancel_fork(child, kargs->cset); 6198 } 6199 6200 cgroup_css_set_put_fork(kargs); 6201 6202 return ret; 6203 } 6204 6205 /** 6206 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork() 6207 * @child: the child process 6208 * @kargs: the arguments passed to create the child process 6209 * 6210 * This calls the cancel_fork() callbacks if a fork failed *after* 6211 * cgroup_can_fork() succeeded and cleans up references we took to 6212 * prepare a new css_set for the child process in cgroup_can_fork(). 6213 */ 6214 void cgroup_cancel_fork(struct task_struct *child, 6215 struct kernel_clone_args *kargs) 6216 { 6217 struct cgroup_subsys *ss; 6218 int i; 6219 6220 for_each_subsys(ss, i) 6221 if (ss->cancel_fork) 6222 ss->cancel_fork(child, kargs->cset); 6223 6224 cgroup_css_set_put_fork(kargs); 6225 } 6226 6227 /** 6228 * cgroup_post_fork - finalize cgroup setup for the child process 6229 * @child: the child process 6230 * 6231 * Attach the child process to its css_set calling the subsystem fork() 6232 * callbacks. 6233 */ 6234 void cgroup_post_fork(struct task_struct *child, 6235 struct kernel_clone_args *kargs) 6236 __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex) 6237 { 6238 unsigned long cgrp_flags = 0; 6239 bool kill = false; 6240 struct cgroup_subsys *ss; 6241 struct css_set *cset; 6242 int i; 6243 6244 cset = kargs->cset; 6245 kargs->cset = NULL; 6246 6247 spin_lock_irq(&css_set_lock); 6248 6249 /* init tasks are special, only link regular threads */ 6250 if (likely(child->pid)) { 6251 if (kargs->cgrp) 6252 cgrp_flags = kargs->cgrp->flags; 6253 else 6254 cgrp_flags = cset->dfl_cgrp->flags; 6255 6256 WARN_ON_ONCE(!list_empty(&child->cg_list)); 6257 cset->nr_tasks++; 6258 css_set_move_task(child, NULL, cset, false); 6259 } else { 6260 put_css_set(cset); 6261 cset = NULL; 6262 } 6263 6264 if (!(child->flags & PF_KTHREAD)) { 6265 if (unlikely(test_bit(CGRP_FREEZE, &cgrp_flags))) { 6266 /* 6267 * If the cgroup has to be frozen, the new task has 6268 * too. Let's set the JOBCTL_TRAP_FREEZE jobctl bit to 6269 * get the task into the frozen state. 6270 */ 6271 spin_lock(&child->sighand->siglock); 6272 WARN_ON_ONCE(child->frozen); 6273 child->jobctl |= JOBCTL_TRAP_FREEZE; 6274 spin_unlock(&child->sighand->siglock); 6275 6276 /* 6277 * Calling cgroup_update_frozen() isn't required here, 6278 * because it will be called anyway a bit later from 6279 * do_freezer_trap(). So we avoid cgroup's transient 6280 * switch from the frozen state and back. 6281 */ 6282 } 6283 6284 /* 6285 * If the cgroup is to be killed notice it now and take the 6286 * child down right after we finished preparing it for 6287 * userspace. 6288 */ 6289 kill = test_bit(CGRP_KILL, &cgrp_flags); 6290 } 6291 6292 spin_unlock_irq(&css_set_lock); 6293 6294 /* 6295 * Call ss->fork(). This must happen after @child is linked on 6296 * css_set; otherwise, @child might change state between ->fork() 6297 * and addition to css_set. 6298 */ 6299 do_each_subsys_mask(ss, i, have_fork_callback) { 6300 ss->fork(child); 6301 } while_each_subsys_mask(); 6302 6303 /* Make the new cset the root_cset of the new cgroup namespace. */ 6304 if (kargs->flags & CLONE_NEWCGROUP) { 6305 struct css_set *rcset = child->nsproxy->cgroup_ns->root_cset; 6306 6307 get_css_set(cset); 6308 child->nsproxy->cgroup_ns->root_cset = cset; 6309 put_css_set(rcset); 6310 } 6311 6312 /* Cgroup has to be killed so take down child immediately. */ 6313 if (unlikely(kill)) 6314 do_send_sig_info(SIGKILL, SEND_SIG_NOINFO, child, PIDTYPE_TGID); 6315 6316 cgroup_css_set_put_fork(kargs); 6317 } 6318 6319 /** 6320 * cgroup_exit - detach cgroup from exiting task 6321 * @tsk: pointer to task_struct of exiting process 6322 * 6323 * Description: Detach cgroup from @tsk. 6324 * 6325 */ 6326 void cgroup_exit(struct task_struct *tsk) 6327 { 6328 struct cgroup_subsys *ss; 6329 struct css_set *cset; 6330 int i; 6331 6332 spin_lock_irq(&css_set_lock); 6333 6334 WARN_ON_ONCE(list_empty(&tsk->cg_list)); 6335 cset = task_css_set(tsk); 6336 css_set_move_task(tsk, cset, NULL, false); 6337 list_add_tail(&tsk->cg_list, &cset->dying_tasks); 6338 cset->nr_tasks--; 6339 6340 WARN_ON_ONCE(cgroup_task_frozen(tsk)); 6341 if (unlikely(!(tsk->flags & PF_KTHREAD) && 6342 test_bit(CGRP_FREEZE, &task_dfl_cgroup(tsk)->flags))) 6343 cgroup_update_frozen(task_dfl_cgroup(tsk)); 6344 6345 spin_unlock_irq(&css_set_lock); 6346 6347 /* see cgroup_post_fork() for details */ 6348 do_each_subsys_mask(ss, i, have_exit_callback) { 6349 ss->exit(tsk); 6350 } while_each_subsys_mask(); 6351 } 6352 6353 void cgroup_release(struct task_struct *task) 6354 { 6355 struct cgroup_subsys *ss; 6356 int ssid; 6357 6358 do_each_subsys_mask(ss, ssid, have_release_callback) { 6359 ss->release(task); 6360 } while_each_subsys_mask(); 6361 6362 spin_lock_irq(&css_set_lock); 6363 css_set_skip_task_iters(task_css_set(task), task); 6364 list_del_init(&task->cg_list); 6365 spin_unlock_irq(&css_set_lock); 6366 } 6367 6368 void cgroup_free(struct task_struct *task) 6369 { 6370 struct css_set *cset = task_css_set(task); 6371 put_css_set(cset); 6372 } 6373 6374 static int __init cgroup_disable(char *str) 6375 { 6376 struct cgroup_subsys *ss; 6377 char *token; 6378 int i; 6379 6380 while ((token = strsep(&str, ",")) != NULL) { 6381 if (!*token) 6382 continue; 6383 6384 for_each_subsys(ss, i) { 6385 if (strcmp(token, ss->name) && 6386 strcmp(token, ss->legacy_name)) 6387 continue; 6388 6389 static_branch_disable(cgroup_subsys_enabled_key[i]); 6390 pr_info("Disabling %s control group subsystem\n", 6391 ss->name); 6392 } 6393 6394 for (i = 0; i < OPT_FEATURE_COUNT; i++) { 6395 if (strcmp(token, cgroup_opt_feature_names[i])) 6396 continue; 6397 cgroup_feature_disable_mask |= 1 << i; 6398 pr_info("Disabling %s control group feature\n", 6399 cgroup_opt_feature_names[i]); 6400 break; 6401 } 6402 } 6403 return 1; 6404 } 6405 __setup("cgroup_disable=", cgroup_disable); 6406 6407 void __init __weak enable_debug_cgroup(void) { } 6408 6409 static int __init enable_cgroup_debug(char *str) 6410 { 6411 cgroup_debug = true; 6412 enable_debug_cgroup(); 6413 return 1; 6414 } 6415 __setup("cgroup_debug", enable_cgroup_debug); 6416 6417 /** 6418 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry 6419 * @dentry: directory dentry of interest 6420 * @ss: subsystem of interest 6421 * 6422 * If @dentry is a directory for a cgroup which has @ss enabled on it, try 6423 * to get the corresponding css and return it. If such css doesn't exist 6424 * or can't be pinned, an ERR_PTR value is returned. 6425 */ 6426 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry, 6427 struct cgroup_subsys *ss) 6428 { 6429 struct kernfs_node *kn = kernfs_node_from_dentry(dentry); 6430 struct file_system_type *s_type = dentry->d_sb->s_type; 6431 struct cgroup_subsys_state *css = NULL; 6432 struct cgroup *cgrp; 6433 6434 /* is @dentry a cgroup dir? */ 6435 if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) || 6436 !kn || kernfs_type(kn) != KERNFS_DIR) 6437 return ERR_PTR(-EBADF); 6438 6439 rcu_read_lock(); 6440 6441 /* 6442 * This path doesn't originate from kernfs and @kn could already 6443 * have been or be removed at any point. @kn->priv is RCU 6444 * protected for this access. See css_release_work_fn() for details. 6445 */ 6446 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); 6447 if (cgrp) 6448 css = cgroup_css(cgrp, ss); 6449 6450 if (!css || !css_tryget_online(css)) 6451 css = ERR_PTR(-ENOENT); 6452 6453 rcu_read_unlock(); 6454 return css; 6455 } 6456 6457 /** 6458 * css_from_id - lookup css by id 6459 * @id: the cgroup id 6460 * @ss: cgroup subsys to be looked into 6461 * 6462 * Returns the css if there's valid one with @id, otherwise returns NULL. 6463 * Should be called under rcu_read_lock(). 6464 */ 6465 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss) 6466 { 6467 WARN_ON_ONCE(!rcu_read_lock_held()); 6468 return idr_find(&ss->css_idr, id); 6469 } 6470 6471 /** 6472 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path 6473 * @path: path on the default hierarchy 6474 * 6475 * Find the cgroup at @path on the default hierarchy, increment its 6476 * reference count and return it. Returns pointer to the found cgroup on 6477 * success, ERR_PTR(-ENOENT) if @path doesn't exist and ERR_PTR(-ENOTDIR) 6478 * if @path points to a non-directory. 6479 */ 6480 struct cgroup *cgroup_get_from_path(const char *path) 6481 { 6482 struct kernfs_node *kn; 6483 struct cgroup *cgrp; 6484 6485 mutex_lock(&cgroup_mutex); 6486 6487 kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path); 6488 if (kn) { 6489 if (kernfs_type(kn) == KERNFS_DIR) { 6490 cgrp = kn->priv; 6491 cgroup_get_live(cgrp); 6492 } else { 6493 cgrp = ERR_PTR(-ENOTDIR); 6494 } 6495 kernfs_put(kn); 6496 } else { 6497 cgrp = ERR_PTR(-ENOENT); 6498 } 6499 6500 mutex_unlock(&cgroup_mutex); 6501 return cgrp; 6502 } 6503 EXPORT_SYMBOL_GPL(cgroup_get_from_path); 6504 6505 /** 6506 * cgroup_get_from_fd - get a cgroup pointer from a fd 6507 * @fd: fd obtained by open(cgroup2_dir) 6508 * 6509 * Find the cgroup from a fd which should be obtained 6510 * by opening a cgroup directory. Returns a pointer to the 6511 * cgroup on success. ERR_PTR is returned if the cgroup 6512 * cannot be found. 6513 */ 6514 struct cgroup *cgroup_get_from_fd(int fd) 6515 { 6516 struct cgroup *cgrp; 6517 struct file *f; 6518 6519 f = fget_raw(fd); 6520 if (!f) 6521 return ERR_PTR(-EBADF); 6522 6523 cgrp = cgroup_get_from_file(f); 6524 fput(f); 6525 return cgrp; 6526 } 6527 EXPORT_SYMBOL_GPL(cgroup_get_from_fd); 6528 6529 static u64 power_of_ten(int power) 6530 { 6531 u64 v = 1; 6532 while (power--) 6533 v *= 10; 6534 return v; 6535 } 6536 6537 /** 6538 * cgroup_parse_float - parse a floating number 6539 * @input: input string 6540 * @dec_shift: number of decimal digits to shift 6541 * @v: output 6542 * 6543 * Parse a decimal floating point number in @input and store the result in 6544 * @v with decimal point right shifted @dec_shift times. For example, if 6545 * @input is "12.3456" and @dec_shift is 3, *@v will be set to 12345. 6546 * Returns 0 on success, -errno otherwise. 6547 * 6548 * There's nothing cgroup specific about this function except that it's 6549 * currently the only user. 6550 */ 6551 int cgroup_parse_float(const char *input, unsigned dec_shift, s64 *v) 6552 { 6553 s64 whole, frac = 0; 6554 int fstart = 0, fend = 0, flen; 6555 6556 if (!sscanf(input, "%lld.%n%lld%n", &whole, &fstart, &frac, &fend)) 6557 return -EINVAL; 6558 if (frac < 0) 6559 return -EINVAL; 6560 6561 flen = fend > fstart ? fend - fstart : 0; 6562 if (flen < dec_shift) 6563 frac *= power_of_ten(dec_shift - flen); 6564 else 6565 frac = DIV_ROUND_CLOSEST_ULL(frac, power_of_ten(flen - dec_shift)); 6566 6567 *v = whole * power_of_ten(dec_shift) + frac; 6568 return 0; 6569 } 6570 6571 /* 6572 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data 6573 * definition in cgroup-defs.h. 6574 */ 6575 #ifdef CONFIG_SOCK_CGROUP_DATA 6576 6577 void cgroup_sk_alloc(struct sock_cgroup_data *skcd) 6578 { 6579 struct cgroup *cgroup; 6580 6581 rcu_read_lock(); 6582 /* Don't associate the sock with unrelated interrupted task's cgroup. */ 6583 if (in_interrupt()) { 6584 cgroup = &cgrp_dfl_root.cgrp; 6585 cgroup_get(cgroup); 6586 goto out; 6587 } 6588 6589 while (true) { 6590 struct css_set *cset; 6591 6592 cset = task_css_set(current); 6593 if (likely(cgroup_tryget(cset->dfl_cgrp))) { 6594 cgroup = cset->dfl_cgrp; 6595 break; 6596 } 6597 cpu_relax(); 6598 } 6599 out: 6600 skcd->cgroup = cgroup; 6601 cgroup_bpf_get(cgroup); 6602 rcu_read_unlock(); 6603 } 6604 6605 void cgroup_sk_clone(struct sock_cgroup_data *skcd) 6606 { 6607 struct cgroup *cgrp = sock_cgroup_ptr(skcd); 6608 6609 /* 6610 * We might be cloning a socket which is left in an empty 6611 * cgroup and the cgroup might have already been rmdir'd. 6612 * Don't use cgroup_get_live(). 6613 */ 6614 cgroup_get(cgrp); 6615 cgroup_bpf_get(cgrp); 6616 } 6617 6618 void cgroup_sk_free(struct sock_cgroup_data *skcd) 6619 { 6620 struct cgroup *cgrp = sock_cgroup_ptr(skcd); 6621 6622 cgroup_bpf_put(cgrp); 6623 cgroup_put(cgrp); 6624 } 6625 6626 #endif /* CONFIG_SOCK_CGROUP_DATA */ 6627 6628 #ifdef CONFIG_CGROUP_BPF 6629 int cgroup_bpf_attach(struct cgroup *cgrp, 6630 struct bpf_prog *prog, struct bpf_prog *replace_prog, 6631 struct bpf_cgroup_link *link, 6632 enum bpf_attach_type type, 6633 u32 flags) 6634 { 6635 int ret; 6636 6637 mutex_lock(&cgroup_mutex); 6638 ret = __cgroup_bpf_attach(cgrp, prog, replace_prog, link, type, flags); 6639 mutex_unlock(&cgroup_mutex); 6640 return ret; 6641 } 6642 6643 int cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog, 6644 enum bpf_attach_type type) 6645 { 6646 int ret; 6647 6648 mutex_lock(&cgroup_mutex); 6649 ret = __cgroup_bpf_detach(cgrp, prog, NULL, type); 6650 mutex_unlock(&cgroup_mutex); 6651 return ret; 6652 } 6653 6654 int cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr, 6655 union bpf_attr __user *uattr) 6656 { 6657 int ret; 6658 6659 mutex_lock(&cgroup_mutex); 6660 ret = __cgroup_bpf_query(cgrp, attr, uattr); 6661 mutex_unlock(&cgroup_mutex); 6662 return ret; 6663 } 6664 #endif /* CONFIG_CGROUP_BPF */ 6665 6666 #ifdef CONFIG_SYSFS 6667 static ssize_t show_delegatable_files(struct cftype *files, char *buf, 6668 ssize_t size, const char *prefix) 6669 { 6670 struct cftype *cft; 6671 ssize_t ret = 0; 6672 6673 for (cft = files; cft && cft->name[0] != '\0'; cft++) { 6674 if (!(cft->flags & CFTYPE_NS_DELEGATABLE)) 6675 continue; 6676 6677 if ((cft->flags & CFTYPE_PRESSURE) && !cgroup_psi_enabled()) 6678 continue; 6679 6680 if (prefix) 6681 ret += snprintf(buf + ret, size - ret, "%s.", prefix); 6682 6683 ret += snprintf(buf + ret, size - ret, "%s\n", cft->name); 6684 6685 if (WARN_ON(ret >= size)) 6686 break; 6687 } 6688 6689 return ret; 6690 } 6691 6692 static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr, 6693 char *buf) 6694 { 6695 struct cgroup_subsys *ss; 6696 int ssid; 6697 ssize_t ret = 0; 6698 6699 ret = show_delegatable_files(cgroup_base_files, buf, PAGE_SIZE - ret, 6700 NULL); 6701 6702 for_each_subsys(ss, ssid) 6703 ret += show_delegatable_files(ss->dfl_cftypes, buf + ret, 6704 PAGE_SIZE - ret, 6705 cgroup_subsys_name[ssid]); 6706 6707 return ret; 6708 } 6709 static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate); 6710 6711 static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr, 6712 char *buf) 6713 { 6714 return snprintf(buf, PAGE_SIZE, 6715 "nsdelegate\n" 6716 "memory_localevents\n" 6717 "memory_recursiveprot\n"); 6718 } 6719 static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features); 6720 6721 static struct attribute *cgroup_sysfs_attrs[] = { 6722 &cgroup_delegate_attr.attr, 6723 &cgroup_features_attr.attr, 6724 NULL, 6725 }; 6726 6727 static const struct attribute_group cgroup_sysfs_attr_group = { 6728 .attrs = cgroup_sysfs_attrs, 6729 .name = "cgroup", 6730 }; 6731 6732 static int __init cgroup_sysfs_init(void) 6733 { 6734 return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group); 6735 } 6736 subsys_initcall(cgroup_sysfs_init); 6737 6738 #endif /* CONFIG_SYSFS */ 6739