xref: /openbmc/linux/kernel/cgroup/cgroup.c (revision baf2c002)
1 /*
2  *  Generic process-grouping system.
3  *
4  *  Based originally on the cpuset system, extracted by Paul Menage
5  *  Copyright (C) 2006 Google, Inc
6  *
7  *  Notifications support
8  *  Copyright (C) 2009 Nokia Corporation
9  *  Author: Kirill A. Shutemov
10  *
11  *  Copyright notices from the original cpuset code:
12  *  --------------------------------------------------
13  *  Copyright (C) 2003 BULL SA.
14  *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
15  *
16  *  Portions derived from Patrick Mochel's sysfs code.
17  *  sysfs is Copyright (c) 2001-3 Patrick Mochel
18  *
19  *  2003-10-10 Written by Simon Derr.
20  *  2003-10-22 Updates by Stephen Hemminger.
21  *  2004 May-July Rework by Paul Jackson.
22  *  ---------------------------------------------------
23  *
24  *  This file is subject to the terms and conditions of the GNU General Public
25  *  License.  See the file COPYING in the main directory of the Linux
26  *  distribution for more details.
27  */
28 
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 
31 #include "cgroup-internal.h"
32 
33 #include <linux/bpf-cgroup.h>
34 #include <linux/cred.h>
35 #include <linux/errno.h>
36 #include <linux/init_task.h>
37 #include <linux/kernel.h>
38 #include <linux/magic.h>
39 #include <linux/mutex.h>
40 #include <linux/mount.h>
41 #include <linux/pagemap.h>
42 #include <linux/proc_fs.h>
43 #include <linux/rcupdate.h>
44 #include <linux/sched.h>
45 #include <linux/sched/task.h>
46 #include <linux/slab.h>
47 #include <linux/spinlock.h>
48 #include <linux/percpu-rwsem.h>
49 #include <linux/string.h>
50 #include <linux/hashtable.h>
51 #include <linux/idr.h>
52 #include <linux/kthread.h>
53 #include <linux/atomic.h>
54 #include <linux/cpuset.h>
55 #include <linux/proc_ns.h>
56 #include <linux/nsproxy.h>
57 #include <linux/file.h>
58 #include <linux/fs_parser.h>
59 #include <linux/sched/cputime.h>
60 #include <linux/psi.h>
61 #include <net/sock.h>
62 
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/cgroup.h>
65 
66 #define CGROUP_FILE_NAME_MAX		(MAX_CGROUP_TYPE_NAMELEN +	\
67 					 MAX_CFTYPE_NAME + 2)
68 /* let's not notify more than 100 times per second */
69 #define CGROUP_FILE_NOTIFY_MIN_INTV	DIV_ROUND_UP(HZ, 100)
70 
71 /*
72  * To avoid confusing the compiler (and generating warnings) with code
73  * that attempts to access what would be a 0-element array (i.e. sized
74  * to a potentially empty array when CGROUP_SUBSYS_COUNT == 0), this
75  * constant expression can be added.
76  */
77 #define CGROUP_HAS_SUBSYS_CONFIG	(CGROUP_SUBSYS_COUNT > 0)
78 
79 /*
80  * cgroup_mutex is the master lock.  Any modification to cgroup or its
81  * hierarchy must be performed while holding it.
82  *
83  * css_set_lock protects task->cgroups pointer, the list of css_set
84  * objects, and the chain of tasks off each css_set.
85  *
86  * These locks are exported if CONFIG_PROVE_RCU so that accessors in
87  * cgroup.h can use them for lockdep annotations.
88  */
89 DEFINE_MUTEX(cgroup_mutex);
90 DEFINE_SPINLOCK(css_set_lock);
91 
92 #ifdef CONFIG_PROVE_RCU
93 EXPORT_SYMBOL_GPL(cgroup_mutex);
94 EXPORT_SYMBOL_GPL(css_set_lock);
95 #endif
96 
97 DEFINE_SPINLOCK(trace_cgroup_path_lock);
98 char trace_cgroup_path[TRACE_CGROUP_PATH_LEN];
99 static bool cgroup_debug __read_mostly;
100 
101 /*
102  * Protects cgroup_idr and css_idr so that IDs can be released without
103  * grabbing cgroup_mutex.
104  */
105 static DEFINE_SPINLOCK(cgroup_idr_lock);
106 
107 /*
108  * Protects cgroup_file->kn for !self csses.  It synchronizes notifications
109  * against file removal/re-creation across css hiding.
110  */
111 static DEFINE_SPINLOCK(cgroup_file_kn_lock);
112 
113 DEFINE_PERCPU_RWSEM(cgroup_threadgroup_rwsem);
114 
115 #define cgroup_assert_mutex_or_rcu_locked()				\
116 	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
117 			   !lockdep_is_held(&cgroup_mutex),		\
118 			   "cgroup_mutex or RCU read lock required");
119 
120 /*
121  * cgroup destruction makes heavy use of work items and there can be a lot
122  * of concurrent destructions.  Use a separate workqueue so that cgroup
123  * destruction work items don't end up filling up max_active of system_wq
124  * which may lead to deadlock.
125  */
126 static struct workqueue_struct *cgroup_destroy_wq;
127 
128 /* generate an array of cgroup subsystem pointers */
129 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
130 struct cgroup_subsys *cgroup_subsys[] = {
131 #include <linux/cgroup_subsys.h>
132 };
133 #undef SUBSYS
134 
135 /* array of cgroup subsystem names */
136 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
137 static const char *cgroup_subsys_name[] = {
138 #include <linux/cgroup_subsys.h>
139 };
140 #undef SUBSYS
141 
142 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
143 #define SUBSYS(_x)								\
144 	DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key);			\
145 	DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key);			\
146 	EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key);			\
147 	EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
148 #include <linux/cgroup_subsys.h>
149 #undef SUBSYS
150 
151 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
152 static struct static_key_true *cgroup_subsys_enabled_key[] = {
153 #include <linux/cgroup_subsys.h>
154 };
155 #undef SUBSYS
156 
157 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
158 static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
159 #include <linux/cgroup_subsys.h>
160 };
161 #undef SUBSYS
162 
163 static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu);
164 
165 /* the default hierarchy */
166 struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu };
167 EXPORT_SYMBOL_GPL(cgrp_dfl_root);
168 
169 /*
170  * The default hierarchy always exists but is hidden until mounted for the
171  * first time.  This is for backward compatibility.
172  */
173 static bool cgrp_dfl_visible;
174 
175 /* some controllers are not supported in the default hierarchy */
176 static u16 cgrp_dfl_inhibit_ss_mask;
177 
178 /* some controllers are implicitly enabled on the default hierarchy */
179 static u16 cgrp_dfl_implicit_ss_mask;
180 
181 /* some controllers can be threaded on the default hierarchy */
182 static u16 cgrp_dfl_threaded_ss_mask;
183 
184 /* The list of hierarchy roots */
185 LIST_HEAD(cgroup_roots);
186 static int cgroup_root_count;
187 
188 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
189 static DEFINE_IDR(cgroup_hierarchy_idr);
190 
191 /*
192  * Assign a monotonically increasing serial number to csses.  It guarantees
193  * cgroups with bigger numbers are newer than those with smaller numbers.
194  * Also, as csses are always appended to the parent's ->children list, it
195  * guarantees that sibling csses are always sorted in the ascending serial
196  * number order on the list.  Protected by cgroup_mutex.
197  */
198 static u64 css_serial_nr_next = 1;
199 
200 /*
201  * These bitmasks identify subsystems with specific features to avoid
202  * having to do iterative checks repeatedly.
203  */
204 static u16 have_fork_callback __read_mostly;
205 static u16 have_exit_callback __read_mostly;
206 static u16 have_release_callback __read_mostly;
207 static u16 have_canfork_callback __read_mostly;
208 
209 /* cgroup namespace for init task */
210 struct cgroup_namespace init_cgroup_ns = {
211 	.ns.count	= REFCOUNT_INIT(2),
212 	.user_ns	= &init_user_ns,
213 	.ns.ops		= &cgroupns_operations,
214 	.ns.inum	= PROC_CGROUP_INIT_INO,
215 	.root_cset	= &init_css_set,
216 };
217 
218 static struct file_system_type cgroup2_fs_type;
219 static struct cftype cgroup_base_files[];
220 
221 /* cgroup optional features */
222 enum cgroup_opt_features {
223 #ifdef CONFIG_PSI
224 	OPT_FEATURE_PRESSURE,
225 #endif
226 	OPT_FEATURE_COUNT
227 };
228 
229 static const char *cgroup_opt_feature_names[OPT_FEATURE_COUNT] = {
230 #ifdef CONFIG_PSI
231 	"pressure",
232 #endif
233 };
234 
235 static u16 cgroup_feature_disable_mask __read_mostly;
236 
237 static int cgroup_apply_control(struct cgroup *cgrp);
238 static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
239 static void css_task_iter_skip(struct css_task_iter *it,
240 			       struct task_struct *task);
241 static int cgroup_destroy_locked(struct cgroup *cgrp);
242 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
243 					      struct cgroup_subsys *ss);
244 static void css_release(struct percpu_ref *ref);
245 static void kill_css(struct cgroup_subsys_state *css);
246 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
247 			      struct cgroup *cgrp, struct cftype cfts[],
248 			      bool is_add);
249 
250 /**
251  * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
252  * @ssid: subsys ID of interest
253  *
254  * cgroup_subsys_enabled() can only be used with literal subsys names which
255  * is fine for individual subsystems but unsuitable for cgroup core.  This
256  * is slower static_key_enabled() based test indexed by @ssid.
257  */
258 bool cgroup_ssid_enabled(int ssid)
259 {
260 	if (!CGROUP_HAS_SUBSYS_CONFIG)
261 		return false;
262 
263 	return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
264 }
265 
266 /**
267  * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
268  * @cgrp: the cgroup of interest
269  *
270  * The default hierarchy is the v2 interface of cgroup and this function
271  * can be used to test whether a cgroup is on the default hierarchy for
272  * cases where a subsystem should behave differently depending on the
273  * interface version.
274  *
275  * List of changed behaviors:
276  *
277  * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
278  *   and "name" are disallowed.
279  *
280  * - When mounting an existing superblock, mount options should match.
281  *
282  * - rename(2) is disallowed.
283  *
284  * - "tasks" is removed.  Everything should be at process granularity.  Use
285  *   "cgroup.procs" instead.
286  *
287  * - "cgroup.procs" is not sorted.  pids will be unique unless they got
288  *   recycled in-between reads.
289  *
290  * - "release_agent" and "notify_on_release" are removed.  Replacement
291  *   notification mechanism will be implemented.
292  *
293  * - "cgroup.clone_children" is removed.
294  *
295  * - "cgroup.subtree_populated" is available.  Its value is 0 if the cgroup
296  *   and its descendants contain no task; otherwise, 1.  The file also
297  *   generates kernfs notification which can be monitored through poll and
298  *   [di]notify when the value of the file changes.
299  *
300  * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
301  *   take masks of ancestors with non-empty cpus/mems, instead of being
302  *   moved to an ancestor.
303  *
304  * - cpuset: a task can be moved into an empty cpuset, and again it takes
305  *   masks of ancestors.
306  *
307  * - blkcg: blk-throttle becomes properly hierarchical.
308  *
309  * - debug: disallowed on the default hierarchy.
310  */
311 bool cgroup_on_dfl(const struct cgroup *cgrp)
312 {
313 	return cgrp->root == &cgrp_dfl_root;
314 }
315 
316 /* IDR wrappers which synchronize using cgroup_idr_lock */
317 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
318 			    gfp_t gfp_mask)
319 {
320 	int ret;
321 
322 	idr_preload(gfp_mask);
323 	spin_lock_bh(&cgroup_idr_lock);
324 	ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
325 	spin_unlock_bh(&cgroup_idr_lock);
326 	idr_preload_end();
327 	return ret;
328 }
329 
330 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
331 {
332 	void *ret;
333 
334 	spin_lock_bh(&cgroup_idr_lock);
335 	ret = idr_replace(idr, ptr, id);
336 	spin_unlock_bh(&cgroup_idr_lock);
337 	return ret;
338 }
339 
340 static void cgroup_idr_remove(struct idr *idr, int id)
341 {
342 	spin_lock_bh(&cgroup_idr_lock);
343 	idr_remove(idr, id);
344 	spin_unlock_bh(&cgroup_idr_lock);
345 }
346 
347 static bool cgroup_has_tasks(struct cgroup *cgrp)
348 {
349 	return cgrp->nr_populated_csets;
350 }
351 
352 bool cgroup_is_threaded(struct cgroup *cgrp)
353 {
354 	return cgrp->dom_cgrp != cgrp;
355 }
356 
357 /* can @cgrp host both domain and threaded children? */
358 static bool cgroup_is_mixable(struct cgroup *cgrp)
359 {
360 	/*
361 	 * Root isn't under domain level resource control exempting it from
362 	 * the no-internal-process constraint, so it can serve as a thread
363 	 * root and a parent of resource domains at the same time.
364 	 */
365 	return !cgroup_parent(cgrp);
366 }
367 
368 /* can @cgrp become a thread root? Should always be true for a thread root */
369 static bool cgroup_can_be_thread_root(struct cgroup *cgrp)
370 {
371 	/* mixables don't care */
372 	if (cgroup_is_mixable(cgrp))
373 		return true;
374 
375 	/* domain roots can't be nested under threaded */
376 	if (cgroup_is_threaded(cgrp))
377 		return false;
378 
379 	/* can only have either domain or threaded children */
380 	if (cgrp->nr_populated_domain_children)
381 		return false;
382 
383 	/* and no domain controllers can be enabled */
384 	if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
385 		return false;
386 
387 	return true;
388 }
389 
390 /* is @cgrp root of a threaded subtree? */
391 bool cgroup_is_thread_root(struct cgroup *cgrp)
392 {
393 	/* thread root should be a domain */
394 	if (cgroup_is_threaded(cgrp))
395 		return false;
396 
397 	/* a domain w/ threaded children is a thread root */
398 	if (cgrp->nr_threaded_children)
399 		return true;
400 
401 	/*
402 	 * A domain which has tasks and explicit threaded controllers
403 	 * enabled is a thread root.
404 	 */
405 	if (cgroup_has_tasks(cgrp) &&
406 	    (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask))
407 		return true;
408 
409 	return false;
410 }
411 
412 /* a domain which isn't connected to the root w/o brekage can't be used */
413 static bool cgroup_is_valid_domain(struct cgroup *cgrp)
414 {
415 	/* the cgroup itself can be a thread root */
416 	if (cgroup_is_threaded(cgrp))
417 		return false;
418 
419 	/* but the ancestors can't be unless mixable */
420 	while ((cgrp = cgroup_parent(cgrp))) {
421 		if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp))
422 			return false;
423 		if (cgroup_is_threaded(cgrp))
424 			return false;
425 	}
426 
427 	return true;
428 }
429 
430 /* subsystems visibly enabled on a cgroup */
431 static u16 cgroup_control(struct cgroup *cgrp)
432 {
433 	struct cgroup *parent = cgroup_parent(cgrp);
434 	u16 root_ss_mask = cgrp->root->subsys_mask;
435 
436 	if (parent) {
437 		u16 ss_mask = parent->subtree_control;
438 
439 		/* threaded cgroups can only have threaded controllers */
440 		if (cgroup_is_threaded(cgrp))
441 			ss_mask &= cgrp_dfl_threaded_ss_mask;
442 		return ss_mask;
443 	}
444 
445 	if (cgroup_on_dfl(cgrp))
446 		root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
447 				  cgrp_dfl_implicit_ss_mask);
448 	return root_ss_mask;
449 }
450 
451 /* subsystems enabled on a cgroup */
452 static u16 cgroup_ss_mask(struct cgroup *cgrp)
453 {
454 	struct cgroup *parent = cgroup_parent(cgrp);
455 
456 	if (parent) {
457 		u16 ss_mask = parent->subtree_ss_mask;
458 
459 		/* threaded cgroups can only have threaded controllers */
460 		if (cgroup_is_threaded(cgrp))
461 			ss_mask &= cgrp_dfl_threaded_ss_mask;
462 		return ss_mask;
463 	}
464 
465 	return cgrp->root->subsys_mask;
466 }
467 
468 /**
469  * cgroup_css - obtain a cgroup's css for the specified subsystem
470  * @cgrp: the cgroup of interest
471  * @ss: the subsystem of interest (%NULL returns @cgrp->self)
472  *
473  * Return @cgrp's css (cgroup_subsys_state) associated with @ss.  This
474  * function must be called either under cgroup_mutex or rcu_read_lock() and
475  * the caller is responsible for pinning the returned css if it wants to
476  * keep accessing it outside the said locks.  This function may return
477  * %NULL if @cgrp doesn't have @subsys_id enabled.
478  */
479 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
480 					      struct cgroup_subsys *ss)
481 {
482 	if (CGROUP_HAS_SUBSYS_CONFIG && ss)
483 		return rcu_dereference_check(cgrp->subsys[ss->id],
484 					lockdep_is_held(&cgroup_mutex));
485 	else
486 		return &cgrp->self;
487 }
488 
489 /**
490  * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem
491  * @cgrp: the cgroup of interest
492  * @ss: the subsystem of interest
493  *
494  * Find and get @cgrp's css associated with @ss.  If the css doesn't exist
495  * or is offline, %NULL is returned.
496  */
497 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp,
498 						     struct cgroup_subsys *ss)
499 {
500 	struct cgroup_subsys_state *css;
501 
502 	rcu_read_lock();
503 	css = cgroup_css(cgrp, ss);
504 	if (css && !css_tryget_online(css))
505 		css = NULL;
506 	rcu_read_unlock();
507 
508 	return css;
509 }
510 
511 /**
512  * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss
513  * @cgrp: the cgroup of interest
514  * @ss: the subsystem of interest (%NULL returns @cgrp->self)
515  *
516  * Similar to cgroup_css() but returns the effective css, which is defined
517  * as the matching css of the nearest ancestor including self which has @ss
518  * enabled.  If @ss is associated with the hierarchy @cgrp is on, this
519  * function is guaranteed to return non-NULL css.
520  */
521 static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp,
522 							struct cgroup_subsys *ss)
523 {
524 	lockdep_assert_held(&cgroup_mutex);
525 
526 	if (!ss)
527 		return &cgrp->self;
528 
529 	/*
530 	 * This function is used while updating css associations and thus
531 	 * can't test the csses directly.  Test ss_mask.
532 	 */
533 	while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
534 		cgrp = cgroup_parent(cgrp);
535 		if (!cgrp)
536 			return NULL;
537 	}
538 
539 	return cgroup_css(cgrp, ss);
540 }
541 
542 /**
543  * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
544  * @cgrp: the cgroup of interest
545  * @ss: the subsystem of interest
546  *
547  * Find and get the effective css of @cgrp for @ss.  The effective css is
548  * defined as the matching css of the nearest ancestor including self which
549  * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
550  * the root css is returned, so this function always returns a valid css.
551  *
552  * The returned css is not guaranteed to be online, and therefore it is the
553  * callers responsibility to try get a reference for it.
554  */
555 struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
556 					 struct cgroup_subsys *ss)
557 {
558 	struct cgroup_subsys_state *css;
559 
560 	if (!CGROUP_HAS_SUBSYS_CONFIG)
561 		return NULL;
562 
563 	do {
564 		css = cgroup_css(cgrp, ss);
565 
566 		if (css)
567 			return css;
568 		cgrp = cgroup_parent(cgrp);
569 	} while (cgrp);
570 
571 	return init_css_set.subsys[ss->id];
572 }
573 
574 /**
575  * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
576  * @cgrp: the cgroup of interest
577  * @ss: the subsystem of interest
578  *
579  * Find and get the effective css of @cgrp for @ss.  The effective css is
580  * defined as the matching css of the nearest ancestor including self which
581  * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
582  * the root css is returned, so this function always returns a valid css.
583  * The returned css must be put using css_put().
584  */
585 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
586 					     struct cgroup_subsys *ss)
587 {
588 	struct cgroup_subsys_state *css;
589 
590 	if (!CGROUP_HAS_SUBSYS_CONFIG)
591 		return NULL;
592 
593 	rcu_read_lock();
594 
595 	do {
596 		css = cgroup_css(cgrp, ss);
597 
598 		if (css && css_tryget_online(css))
599 			goto out_unlock;
600 		cgrp = cgroup_parent(cgrp);
601 	} while (cgrp);
602 
603 	css = init_css_set.subsys[ss->id];
604 	css_get(css);
605 out_unlock:
606 	rcu_read_unlock();
607 	return css;
608 }
609 EXPORT_SYMBOL_GPL(cgroup_get_e_css);
610 
611 static void cgroup_get_live(struct cgroup *cgrp)
612 {
613 	WARN_ON_ONCE(cgroup_is_dead(cgrp));
614 	css_get(&cgrp->self);
615 }
616 
617 /**
618  * __cgroup_task_count - count the number of tasks in a cgroup. The caller
619  * is responsible for taking the css_set_lock.
620  * @cgrp: the cgroup in question
621  */
622 int __cgroup_task_count(const struct cgroup *cgrp)
623 {
624 	int count = 0;
625 	struct cgrp_cset_link *link;
626 
627 	lockdep_assert_held(&css_set_lock);
628 
629 	list_for_each_entry(link, &cgrp->cset_links, cset_link)
630 		count += link->cset->nr_tasks;
631 
632 	return count;
633 }
634 
635 /**
636  * cgroup_task_count - count the number of tasks in a cgroup.
637  * @cgrp: the cgroup in question
638  */
639 int cgroup_task_count(const struct cgroup *cgrp)
640 {
641 	int count;
642 
643 	spin_lock_irq(&css_set_lock);
644 	count = __cgroup_task_count(cgrp);
645 	spin_unlock_irq(&css_set_lock);
646 
647 	return count;
648 }
649 
650 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
651 {
652 	struct cgroup *cgrp = of->kn->parent->priv;
653 	struct cftype *cft = of_cft(of);
654 
655 	/*
656 	 * This is open and unprotected implementation of cgroup_css().
657 	 * seq_css() is only called from a kernfs file operation which has
658 	 * an active reference on the file.  Because all the subsystem
659 	 * files are drained before a css is disassociated with a cgroup,
660 	 * the matching css from the cgroup's subsys table is guaranteed to
661 	 * be and stay valid until the enclosing operation is complete.
662 	 */
663 	if (CGROUP_HAS_SUBSYS_CONFIG && cft->ss)
664 		return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
665 	else
666 		return &cgrp->self;
667 }
668 EXPORT_SYMBOL_GPL(of_css);
669 
670 /**
671  * for_each_css - iterate all css's of a cgroup
672  * @css: the iteration cursor
673  * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
674  * @cgrp: the target cgroup to iterate css's of
675  *
676  * Should be called under cgroup_[tree_]mutex.
677  */
678 #define for_each_css(css, ssid, cgrp)					\
679 	for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)	\
680 		if (!((css) = rcu_dereference_check(			\
681 				(cgrp)->subsys[(ssid)],			\
682 				lockdep_is_held(&cgroup_mutex)))) { }	\
683 		else
684 
685 /**
686  * for_each_e_css - iterate all effective css's of a cgroup
687  * @css: the iteration cursor
688  * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
689  * @cgrp: the target cgroup to iterate css's of
690  *
691  * Should be called under cgroup_[tree_]mutex.
692  */
693 #define for_each_e_css(css, ssid, cgrp)					    \
694 	for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)	    \
695 		if (!((css) = cgroup_e_css_by_mask(cgrp,		    \
696 						   cgroup_subsys[(ssid)]))) \
697 			;						    \
698 		else
699 
700 /**
701  * do_each_subsys_mask - filter for_each_subsys with a bitmask
702  * @ss: the iteration cursor
703  * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
704  * @ss_mask: the bitmask
705  *
706  * The block will only run for cases where the ssid-th bit (1 << ssid) of
707  * @ss_mask is set.
708  */
709 #define do_each_subsys_mask(ss, ssid, ss_mask) do {			\
710 	unsigned long __ss_mask = (ss_mask);				\
711 	if (!CGROUP_HAS_SUBSYS_CONFIG) {				\
712 		(ssid) = 0;						\
713 		break;							\
714 	}								\
715 	for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) {	\
716 		(ss) = cgroup_subsys[ssid];				\
717 		{
718 
719 #define while_each_subsys_mask()					\
720 		}							\
721 	}								\
722 } while (false)
723 
724 /* iterate over child cgrps, lock should be held throughout iteration */
725 #define cgroup_for_each_live_child(child, cgrp)				\
726 	list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
727 		if (({ lockdep_assert_held(&cgroup_mutex);		\
728 		       cgroup_is_dead(child); }))			\
729 			;						\
730 		else
731 
732 /* walk live descendants in pre order */
733 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)		\
734 	css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL))	\
735 		if (({ lockdep_assert_held(&cgroup_mutex);		\
736 		       (dsct) = (d_css)->cgroup;			\
737 		       cgroup_is_dead(dsct); }))			\
738 			;						\
739 		else
740 
741 /* walk live descendants in postorder */
742 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp)		\
743 	css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL))	\
744 		if (({ lockdep_assert_held(&cgroup_mutex);		\
745 		       (dsct) = (d_css)->cgroup;			\
746 		       cgroup_is_dead(dsct); }))			\
747 			;						\
748 		else
749 
750 /*
751  * The default css_set - used by init and its children prior to any
752  * hierarchies being mounted. It contains a pointer to the root state
753  * for each subsystem. Also used to anchor the list of css_sets. Not
754  * reference-counted, to improve performance when child cgroups
755  * haven't been created.
756  */
757 struct css_set init_css_set = {
758 	.refcount		= REFCOUNT_INIT(1),
759 	.dom_cset		= &init_css_set,
760 	.tasks			= LIST_HEAD_INIT(init_css_set.tasks),
761 	.mg_tasks		= LIST_HEAD_INIT(init_css_set.mg_tasks),
762 	.dying_tasks		= LIST_HEAD_INIT(init_css_set.dying_tasks),
763 	.task_iters		= LIST_HEAD_INIT(init_css_set.task_iters),
764 	.threaded_csets		= LIST_HEAD_INIT(init_css_set.threaded_csets),
765 	.cgrp_links		= LIST_HEAD_INIT(init_css_set.cgrp_links),
766 	.mg_src_preload_node	= LIST_HEAD_INIT(init_css_set.mg_src_preload_node),
767 	.mg_dst_preload_node	= LIST_HEAD_INIT(init_css_set.mg_dst_preload_node),
768 	.mg_node		= LIST_HEAD_INIT(init_css_set.mg_node),
769 
770 	/*
771 	 * The following field is re-initialized when this cset gets linked
772 	 * in cgroup_init().  However, let's initialize the field
773 	 * statically too so that the default cgroup can be accessed safely
774 	 * early during boot.
775 	 */
776 	.dfl_cgrp		= &cgrp_dfl_root.cgrp,
777 };
778 
779 static int css_set_count	= 1;	/* 1 for init_css_set */
780 
781 static bool css_set_threaded(struct css_set *cset)
782 {
783 	return cset->dom_cset != cset;
784 }
785 
786 /**
787  * css_set_populated - does a css_set contain any tasks?
788  * @cset: target css_set
789  *
790  * css_set_populated() should be the same as !!cset->nr_tasks at steady
791  * state. However, css_set_populated() can be called while a task is being
792  * added to or removed from the linked list before the nr_tasks is
793  * properly updated. Hence, we can't just look at ->nr_tasks here.
794  */
795 static bool css_set_populated(struct css_set *cset)
796 {
797 	lockdep_assert_held(&css_set_lock);
798 
799 	return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
800 }
801 
802 /**
803  * cgroup_update_populated - update the populated count of a cgroup
804  * @cgrp: the target cgroup
805  * @populated: inc or dec populated count
806  *
807  * One of the css_sets associated with @cgrp is either getting its first
808  * task or losing the last.  Update @cgrp->nr_populated_* accordingly.  The
809  * count is propagated towards root so that a given cgroup's
810  * nr_populated_children is zero iff none of its descendants contain any
811  * tasks.
812  *
813  * @cgrp's interface file "cgroup.populated" is zero if both
814  * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and
815  * 1 otherwise.  When the sum changes from or to zero, userland is notified
816  * that the content of the interface file has changed.  This can be used to
817  * detect when @cgrp and its descendants become populated or empty.
818  */
819 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
820 {
821 	struct cgroup *child = NULL;
822 	int adj = populated ? 1 : -1;
823 
824 	lockdep_assert_held(&css_set_lock);
825 
826 	do {
827 		bool was_populated = cgroup_is_populated(cgrp);
828 
829 		if (!child) {
830 			cgrp->nr_populated_csets += adj;
831 		} else {
832 			if (cgroup_is_threaded(child))
833 				cgrp->nr_populated_threaded_children += adj;
834 			else
835 				cgrp->nr_populated_domain_children += adj;
836 		}
837 
838 		if (was_populated == cgroup_is_populated(cgrp))
839 			break;
840 
841 		cgroup1_check_for_release(cgrp);
842 		TRACE_CGROUP_PATH(notify_populated, cgrp,
843 				  cgroup_is_populated(cgrp));
844 		cgroup_file_notify(&cgrp->events_file);
845 
846 		child = cgrp;
847 		cgrp = cgroup_parent(cgrp);
848 	} while (cgrp);
849 }
850 
851 /**
852  * css_set_update_populated - update populated state of a css_set
853  * @cset: target css_set
854  * @populated: whether @cset is populated or depopulated
855  *
856  * @cset is either getting the first task or losing the last.  Update the
857  * populated counters of all associated cgroups accordingly.
858  */
859 static void css_set_update_populated(struct css_set *cset, bool populated)
860 {
861 	struct cgrp_cset_link *link;
862 
863 	lockdep_assert_held(&css_set_lock);
864 
865 	list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
866 		cgroup_update_populated(link->cgrp, populated);
867 }
868 
869 /*
870  * @task is leaving, advance task iterators which are pointing to it so
871  * that they can resume at the next position.  Advancing an iterator might
872  * remove it from the list, use safe walk.  See css_task_iter_skip() for
873  * details.
874  */
875 static void css_set_skip_task_iters(struct css_set *cset,
876 				    struct task_struct *task)
877 {
878 	struct css_task_iter *it, *pos;
879 
880 	list_for_each_entry_safe(it, pos, &cset->task_iters, iters_node)
881 		css_task_iter_skip(it, task);
882 }
883 
884 /**
885  * css_set_move_task - move a task from one css_set to another
886  * @task: task being moved
887  * @from_cset: css_set @task currently belongs to (may be NULL)
888  * @to_cset: new css_set @task is being moved to (may be NULL)
889  * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
890  *
891  * Move @task from @from_cset to @to_cset.  If @task didn't belong to any
892  * css_set, @from_cset can be NULL.  If @task is being disassociated
893  * instead of moved, @to_cset can be NULL.
894  *
895  * This function automatically handles populated counter updates and
896  * css_task_iter adjustments but the caller is responsible for managing
897  * @from_cset and @to_cset's reference counts.
898  */
899 static void css_set_move_task(struct task_struct *task,
900 			      struct css_set *from_cset, struct css_set *to_cset,
901 			      bool use_mg_tasks)
902 {
903 	lockdep_assert_held(&css_set_lock);
904 
905 	if (to_cset && !css_set_populated(to_cset))
906 		css_set_update_populated(to_cset, true);
907 
908 	if (from_cset) {
909 		WARN_ON_ONCE(list_empty(&task->cg_list));
910 
911 		css_set_skip_task_iters(from_cset, task);
912 		list_del_init(&task->cg_list);
913 		if (!css_set_populated(from_cset))
914 			css_set_update_populated(from_cset, false);
915 	} else {
916 		WARN_ON_ONCE(!list_empty(&task->cg_list));
917 	}
918 
919 	if (to_cset) {
920 		/*
921 		 * We are synchronized through cgroup_threadgroup_rwsem
922 		 * against PF_EXITING setting such that we can't race
923 		 * against cgroup_exit()/cgroup_free() dropping the css_set.
924 		 */
925 		WARN_ON_ONCE(task->flags & PF_EXITING);
926 
927 		cgroup_move_task(task, to_cset);
928 		list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
929 							     &to_cset->tasks);
930 	}
931 }
932 
933 /*
934  * hash table for cgroup groups. This improves the performance to find
935  * an existing css_set. This hash doesn't (currently) take into
936  * account cgroups in empty hierarchies.
937  */
938 #define CSS_SET_HASH_BITS	7
939 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
940 
941 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
942 {
943 	unsigned long key = 0UL;
944 	struct cgroup_subsys *ss;
945 	int i;
946 
947 	for_each_subsys(ss, i)
948 		key += (unsigned long)css[i];
949 	key = (key >> 16) ^ key;
950 
951 	return key;
952 }
953 
954 void put_css_set_locked(struct css_set *cset)
955 {
956 	struct cgrp_cset_link *link, *tmp_link;
957 	struct cgroup_subsys *ss;
958 	int ssid;
959 
960 	lockdep_assert_held(&css_set_lock);
961 
962 	if (!refcount_dec_and_test(&cset->refcount))
963 		return;
964 
965 	WARN_ON_ONCE(!list_empty(&cset->threaded_csets));
966 
967 	/* This css_set is dead. Unlink it and release cgroup and css refs */
968 	for_each_subsys(ss, ssid) {
969 		list_del(&cset->e_cset_node[ssid]);
970 		css_put(cset->subsys[ssid]);
971 	}
972 	hash_del(&cset->hlist);
973 	css_set_count--;
974 
975 	list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
976 		list_del(&link->cset_link);
977 		list_del(&link->cgrp_link);
978 		if (cgroup_parent(link->cgrp))
979 			cgroup_put(link->cgrp);
980 		kfree(link);
981 	}
982 
983 	if (css_set_threaded(cset)) {
984 		list_del(&cset->threaded_csets_node);
985 		put_css_set_locked(cset->dom_cset);
986 	}
987 
988 	kfree_rcu(cset, rcu_head);
989 }
990 
991 /**
992  * compare_css_sets - helper function for find_existing_css_set().
993  * @cset: candidate css_set being tested
994  * @old_cset: existing css_set for a task
995  * @new_cgrp: cgroup that's being entered by the task
996  * @template: desired set of css pointers in css_set (pre-calculated)
997  *
998  * Returns true if "cset" matches "old_cset" except for the hierarchy
999  * which "new_cgrp" belongs to, for which it should match "new_cgrp".
1000  */
1001 static bool compare_css_sets(struct css_set *cset,
1002 			     struct css_set *old_cset,
1003 			     struct cgroup *new_cgrp,
1004 			     struct cgroup_subsys_state *template[])
1005 {
1006 	struct cgroup *new_dfl_cgrp;
1007 	struct list_head *l1, *l2;
1008 
1009 	/*
1010 	 * On the default hierarchy, there can be csets which are
1011 	 * associated with the same set of cgroups but different csses.
1012 	 * Let's first ensure that csses match.
1013 	 */
1014 	if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
1015 		return false;
1016 
1017 
1018 	/* @cset's domain should match the default cgroup's */
1019 	if (cgroup_on_dfl(new_cgrp))
1020 		new_dfl_cgrp = new_cgrp;
1021 	else
1022 		new_dfl_cgrp = old_cset->dfl_cgrp;
1023 
1024 	if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp)
1025 		return false;
1026 
1027 	/*
1028 	 * Compare cgroup pointers in order to distinguish between
1029 	 * different cgroups in hierarchies.  As different cgroups may
1030 	 * share the same effective css, this comparison is always
1031 	 * necessary.
1032 	 */
1033 	l1 = &cset->cgrp_links;
1034 	l2 = &old_cset->cgrp_links;
1035 	while (1) {
1036 		struct cgrp_cset_link *link1, *link2;
1037 		struct cgroup *cgrp1, *cgrp2;
1038 
1039 		l1 = l1->next;
1040 		l2 = l2->next;
1041 		/* See if we reached the end - both lists are equal length. */
1042 		if (l1 == &cset->cgrp_links) {
1043 			BUG_ON(l2 != &old_cset->cgrp_links);
1044 			break;
1045 		} else {
1046 			BUG_ON(l2 == &old_cset->cgrp_links);
1047 		}
1048 		/* Locate the cgroups associated with these links. */
1049 		link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
1050 		link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
1051 		cgrp1 = link1->cgrp;
1052 		cgrp2 = link2->cgrp;
1053 		/* Hierarchies should be linked in the same order. */
1054 		BUG_ON(cgrp1->root != cgrp2->root);
1055 
1056 		/*
1057 		 * If this hierarchy is the hierarchy of the cgroup
1058 		 * that's changing, then we need to check that this
1059 		 * css_set points to the new cgroup; if it's any other
1060 		 * hierarchy, then this css_set should point to the
1061 		 * same cgroup as the old css_set.
1062 		 */
1063 		if (cgrp1->root == new_cgrp->root) {
1064 			if (cgrp1 != new_cgrp)
1065 				return false;
1066 		} else {
1067 			if (cgrp1 != cgrp2)
1068 				return false;
1069 		}
1070 	}
1071 	return true;
1072 }
1073 
1074 /**
1075  * find_existing_css_set - init css array and find the matching css_set
1076  * @old_cset: the css_set that we're using before the cgroup transition
1077  * @cgrp: the cgroup that we're moving into
1078  * @template: out param for the new set of csses, should be clear on entry
1079  */
1080 static struct css_set *find_existing_css_set(struct css_set *old_cset,
1081 					struct cgroup *cgrp,
1082 					struct cgroup_subsys_state *template[])
1083 {
1084 	struct cgroup_root *root = cgrp->root;
1085 	struct cgroup_subsys *ss;
1086 	struct css_set *cset;
1087 	unsigned long key;
1088 	int i;
1089 
1090 	/*
1091 	 * Build the set of subsystem state objects that we want to see in the
1092 	 * new css_set. While subsystems can change globally, the entries here
1093 	 * won't change, so no need for locking.
1094 	 */
1095 	for_each_subsys(ss, i) {
1096 		if (root->subsys_mask & (1UL << i)) {
1097 			/*
1098 			 * @ss is in this hierarchy, so we want the
1099 			 * effective css from @cgrp.
1100 			 */
1101 			template[i] = cgroup_e_css_by_mask(cgrp, ss);
1102 		} else {
1103 			/*
1104 			 * @ss is not in this hierarchy, so we don't want
1105 			 * to change the css.
1106 			 */
1107 			template[i] = old_cset->subsys[i];
1108 		}
1109 	}
1110 
1111 	key = css_set_hash(template);
1112 	hash_for_each_possible(css_set_table, cset, hlist, key) {
1113 		if (!compare_css_sets(cset, old_cset, cgrp, template))
1114 			continue;
1115 
1116 		/* This css_set matches what we need */
1117 		return cset;
1118 	}
1119 
1120 	/* No existing cgroup group matched */
1121 	return NULL;
1122 }
1123 
1124 static void free_cgrp_cset_links(struct list_head *links_to_free)
1125 {
1126 	struct cgrp_cset_link *link, *tmp_link;
1127 
1128 	list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
1129 		list_del(&link->cset_link);
1130 		kfree(link);
1131 	}
1132 }
1133 
1134 /**
1135  * allocate_cgrp_cset_links - allocate cgrp_cset_links
1136  * @count: the number of links to allocate
1137  * @tmp_links: list_head the allocated links are put on
1138  *
1139  * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1140  * through ->cset_link.  Returns 0 on success or -errno.
1141  */
1142 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
1143 {
1144 	struct cgrp_cset_link *link;
1145 	int i;
1146 
1147 	INIT_LIST_HEAD(tmp_links);
1148 
1149 	for (i = 0; i < count; i++) {
1150 		link = kzalloc(sizeof(*link), GFP_KERNEL);
1151 		if (!link) {
1152 			free_cgrp_cset_links(tmp_links);
1153 			return -ENOMEM;
1154 		}
1155 		list_add(&link->cset_link, tmp_links);
1156 	}
1157 	return 0;
1158 }
1159 
1160 /**
1161  * link_css_set - a helper function to link a css_set to a cgroup
1162  * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
1163  * @cset: the css_set to be linked
1164  * @cgrp: the destination cgroup
1165  */
1166 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1167 			 struct cgroup *cgrp)
1168 {
1169 	struct cgrp_cset_link *link;
1170 
1171 	BUG_ON(list_empty(tmp_links));
1172 
1173 	if (cgroup_on_dfl(cgrp))
1174 		cset->dfl_cgrp = cgrp;
1175 
1176 	link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1177 	link->cset = cset;
1178 	link->cgrp = cgrp;
1179 
1180 	/*
1181 	 * Always add links to the tail of the lists so that the lists are
1182 	 * in chronological order.
1183 	 */
1184 	list_move_tail(&link->cset_link, &cgrp->cset_links);
1185 	list_add_tail(&link->cgrp_link, &cset->cgrp_links);
1186 
1187 	if (cgroup_parent(cgrp))
1188 		cgroup_get_live(cgrp);
1189 }
1190 
1191 /**
1192  * find_css_set - return a new css_set with one cgroup updated
1193  * @old_cset: the baseline css_set
1194  * @cgrp: the cgroup to be updated
1195  *
1196  * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1197  * substituted into the appropriate hierarchy.
1198  */
1199 static struct css_set *find_css_set(struct css_set *old_cset,
1200 				    struct cgroup *cgrp)
1201 {
1202 	struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
1203 	struct css_set *cset;
1204 	struct list_head tmp_links;
1205 	struct cgrp_cset_link *link;
1206 	struct cgroup_subsys *ss;
1207 	unsigned long key;
1208 	int ssid;
1209 
1210 	lockdep_assert_held(&cgroup_mutex);
1211 
1212 	/* First see if we already have a cgroup group that matches
1213 	 * the desired set */
1214 	spin_lock_irq(&css_set_lock);
1215 	cset = find_existing_css_set(old_cset, cgrp, template);
1216 	if (cset)
1217 		get_css_set(cset);
1218 	spin_unlock_irq(&css_set_lock);
1219 
1220 	if (cset)
1221 		return cset;
1222 
1223 	cset = kzalloc(sizeof(*cset), GFP_KERNEL);
1224 	if (!cset)
1225 		return NULL;
1226 
1227 	/* Allocate all the cgrp_cset_link objects that we'll need */
1228 	if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1229 		kfree(cset);
1230 		return NULL;
1231 	}
1232 
1233 	refcount_set(&cset->refcount, 1);
1234 	cset->dom_cset = cset;
1235 	INIT_LIST_HEAD(&cset->tasks);
1236 	INIT_LIST_HEAD(&cset->mg_tasks);
1237 	INIT_LIST_HEAD(&cset->dying_tasks);
1238 	INIT_LIST_HEAD(&cset->task_iters);
1239 	INIT_LIST_HEAD(&cset->threaded_csets);
1240 	INIT_HLIST_NODE(&cset->hlist);
1241 	INIT_LIST_HEAD(&cset->cgrp_links);
1242 	INIT_LIST_HEAD(&cset->mg_src_preload_node);
1243 	INIT_LIST_HEAD(&cset->mg_dst_preload_node);
1244 	INIT_LIST_HEAD(&cset->mg_node);
1245 
1246 	/* Copy the set of subsystem state objects generated in
1247 	 * find_existing_css_set() */
1248 	memcpy(cset->subsys, template, sizeof(cset->subsys));
1249 
1250 	spin_lock_irq(&css_set_lock);
1251 	/* Add reference counts and links from the new css_set. */
1252 	list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1253 		struct cgroup *c = link->cgrp;
1254 
1255 		if (c->root == cgrp->root)
1256 			c = cgrp;
1257 		link_css_set(&tmp_links, cset, c);
1258 	}
1259 
1260 	BUG_ON(!list_empty(&tmp_links));
1261 
1262 	css_set_count++;
1263 
1264 	/* Add @cset to the hash table */
1265 	key = css_set_hash(cset->subsys);
1266 	hash_add(css_set_table, &cset->hlist, key);
1267 
1268 	for_each_subsys(ss, ssid) {
1269 		struct cgroup_subsys_state *css = cset->subsys[ssid];
1270 
1271 		list_add_tail(&cset->e_cset_node[ssid],
1272 			      &css->cgroup->e_csets[ssid]);
1273 		css_get(css);
1274 	}
1275 
1276 	spin_unlock_irq(&css_set_lock);
1277 
1278 	/*
1279 	 * If @cset should be threaded, look up the matching dom_cset and
1280 	 * link them up.  We first fully initialize @cset then look for the
1281 	 * dom_cset.  It's simpler this way and safe as @cset is guaranteed
1282 	 * to stay empty until we return.
1283 	 */
1284 	if (cgroup_is_threaded(cset->dfl_cgrp)) {
1285 		struct css_set *dcset;
1286 
1287 		dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp);
1288 		if (!dcset) {
1289 			put_css_set(cset);
1290 			return NULL;
1291 		}
1292 
1293 		spin_lock_irq(&css_set_lock);
1294 		cset->dom_cset = dcset;
1295 		list_add_tail(&cset->threaded_csets_node,
1296 			      &dcset->threaded_csets);
1297 		spin_unlock_irq(&css_set_lock);
1298 	}
1299 
1300 	return cset;
1301 }
1302 
1303 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1304 {
1305 	struct cgroup *root_cgrp = kernfs_root_to_node(kf_root)->priv;
1306 
1307 	return root_cgrp->root;
1308 }
1309 
1310 void cgroup_favor_dynmods(struct cgroup_root *root, bool favor)
1311 {
1312 	bool favoring = root->flags & CGRP_ROOT_FAVOR_DYNMODS;
1313 
1314 	/* see the comment above CGRP_ROOT_FAVOR_DYNMODS definition */
1315 	if (favor && !favoring) {
1316 		rcu_sync_enter(&cgroup_threadgroup_rwsem.rss);
1317 		root->flags |= CGRP_ROOT_FAVOR_DYNMODS;
1318 	} else if (!favor && favoring) {
1319 		rcu_sync_exit(&cgroup_threadgroup_rwsem.rss);
1320 		root->flags &= ~CGRP_ROOT_FAVOR_DYNMODS;
1321 	}
1322 }
1323 
1324 static int cgroup_init_root_id(struct cgroup_root *root)
1325 {
1326 	int id;
1327 
1328 	lockdep_assert_held(&cgroup_mutex);
1329 
1330 	id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1331 	if (id < 0)
1332 		return id;
1333 
1334 	root->hierarchy_id = id;
1335 	return 0;
1336 }
1337 
1338 static void cgroup_exit_root_id(struct cgroup_root *root)
1339 {
1340 	lockdep_assert_held(&cgroup_mutex);
1341 
1342 	idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1343 }
1344 
1345 void cgroup_free_root(struct cgroup_root *root)
1346 {
1347 	kfree(root);
1348 }
1349 
1350 static void cgroup_destroy_root(struct cgroup_root *root)
1351 {
1352 	struct cgroup *cgrp = &root->cgrp;
1353 	struct cgrp_cset_link *link, *tmp_link;
1354 
1355 	trace_cgroup_destroy_root(root);
1356 
1357 	cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1358 
1359 	BUG_ON(atomic_read(&root->nr_cgrps));
1360 	BUG_ON(!list_empty(&cgrp->self.children));
1361 
1362 	/* Rebind all subsystems back to the default hierarchy */
1363 	WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
1364 
1365 	/*
1366 	 * Release all the links from cset_links to this hierarchy's
1367 	 * root cgroup
1368 	 */
1369 	spin_lock_irq(&css_set_lock);
1370 
1371 	list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1372 		list_del(&link->cset_link);
1373 		list_del(&link->cgrp_link);
1374 		kfree(link);
1375 	}
1376 
1377 	spin_unlock_irq(&css_set_lock);
1378 
1379 	if (!list_empty(&root->root_list)) {
1380 		list_del(&root->root_list);
1381 		cgroup_root_count--;
1382 	}
1383 
1384 	cgroup_favor_dynmods(root, false);
1385 	cgroup_exit_root_id(root);
1386 
1387 	mutex_unlock(&cgroup_mutex);
1388 
1389 	cgroup_rstat_exit(cgrp);
1390 	kernfs_destroy_root(root->kf_root);
1391 	cgroup_free_root(root);
1392 }
1393 
1394 static inline struct cgroup *__cset_cgroup_from_root(struct css_set *cset,
1395 					    struct cgroup_root *root)
1396 {
1397 	struct cgroup *res_cgroup = NULL;
1398 
1399 	if (cset == &init_css_set) {
1400 		res_cgroup = &root->cgrp;
1401 	} else if (root == &cgrp_dfl_root) {
1402 		res_cgroup = cset->dfl_cgrp;
1403 	} else {
1404 		struct cgrp_cset_link *link;
1405 
1406 		list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1407 			struct cgroup *c = link->cgrp;
1408 
1409 			if (c->root == root) {
1410 				res_cgroup = c;
1411 				break;
1412 			}
1413 		}
1414 	}
1415 
1416 	return res_cgroup;
1417 }
1418 
1419 /*
1420  * look up cgroup associated with current task's cgroup namespace on the
1421  * specified hierarchy
1422  */
1423 static struct cgroup *
1424 current_cgns_cgroup_from_root(struct cgroup_root *root)
1425 {
1426 	struct cgroup *res = NULL;
1427 	struct css_set *cset;
1428 
1429 	lockdep_assert_held(&css_set_lock);
1430 
1431 	rcu_read_lock();
1432 
1433 	cset = current->nsproxy->cgroup_ns->root_cset;
1434 	res = __cset_cgroup_from_root(cset, root);
1435 
1436 	rcu_read_unlock();
1437 
1438 	BUG_ON(!res);
1439 	return res;
1440 }
1441 
1442 /* look up cgroup associated with given css_set on the specified hierarchy */
1443 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1444 					    struct cgroup_root *root)
1445 {
1446 	struct cgroup *res = NULL;
1447 
1448 	lockdep_assert_held(&cgroup_mutex);
1449 	lockdep_assert_held(&css_set_lock);
1450 
1451 	res = __cset_cgroup_from_root(cset, root);
1452 
1453 	BUG_ON(!res);
1454 	return res;
1455 }
1456 
1457 /*
1458  * Return the cgroup for "task" from the given hierarchy. Must be
1459  * called with cgroup_mutex and css_set_lock held.
1460  */
1461 struct cgroup *task_cgroup_from_root(struct task_struct *task,
1462 				     struct cgroup_root *root)
1463 {
1464 	/*
1465 	 * No need to lock the task - since we hold css_set_lock the
1466 	 * task can't change groups.
1467 	 */
1468 	return cset_cgroup_from_root(task_css_set(task), root);
1469 }
1470 
1471 /*
1472  * A task must hold cgroup_mutex to modify cgroups.
1473  *
1474  * Any task can increment and decrement the count field without lock.
1475  * So in general, code holding cgroup_mutex can't rely on the count
1476  * field not changing.  However, if the count goes to zero, then only
1477  * cgroup_attach_task() can increment it again.  Because a count of zero
1478  * means that no tasks are currently attached, therefore there is no
1479  * way a task attached to that cgroup can fork (the other way to
1480  * increment the count).  So code holding cgroup_mutex can safely
1481  * assume that if the count is zero, it will stay zero. Similarly, if
1482  * a task holds cgroup_mutex on a cgroup with zero count, it
1483  * knows that the cgroup won't be removed, as cgroup_rmdir()
1484  * needs that mutex.
1485  *
1486  * A cgroup can only be deleted if both its 'count' of using tasks
1487  * is zero, and its list of 'children' cgroups is empty.  Since all
1488  * tasks in the system use _some_ cgroup, and since there is always at
1489  * least one task in the system (init, pid == 1), therefore, root cgroup
1490  * always has either children cgroups and/or using tasks.  So we don't
1491  * need a special hack to ensure that root cgroup cannot be deleted.
1492  *
1493  * P.S.  One more locking exception.  RCU is used to guard the
1494  * update of a tasks cgroup pointer by cgroup_attach_task()
1495  */
1496 
1497 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1498 
1499 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1500 			      char *buf)
1501 {
1502 	struct cgroup_subsys *ss = cft->ss;
1503 
1504 	if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1505 	    !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
1506 		const char *dbg = (cft->flags & CFTYPE_DEBUG) ? ".__DEBUG__." : "";
1507 
1508 		snprintf(buf, CGROUP_FILE_NAME_MAX, "%s%s.%s",
1509 			 dbg, cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1510 			 cft->name);
1511 	} else {
1512 		strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1513 	}
1514 	return buf;
1515 }
1516 
1517 /**
1518  * cgroup_file_mode - deduce file mode of a control file
1519  * @cft: the control file in question
1520  *
1521  * S_IRUGO for read, S_IWUSR for write.
1522  */
1523 static umode_t cgroup_file_mode(const struct cftype *cft)
1524 {
1525 	umode_t mode = 0;
1526 
1527 	if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1528 		mode |= S_IRUGO;
1529 
1530 	if (cft->write_u64 || cft->write_s64 || cft->write) {
1531 		if (cft->flags & CFTYPE_WORLD_WRITABLE)
1532 			mode |= S_IWUGO;
1533 		else
1534 			mode |= S_IWUSR;
1535 	}
1536 
1537 	return mode;
1538 }
1539 
1540 /**
1541  * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1542  * @subtree_control: the new subtree_control mask to consider
1543  * @this_ss_mask: available subsystems
1544  *
1545  * On the default hierarchy, a subsystem may request other subsystems to be
1546  * enabled together through its ->depends_on mask.  In such cases, more
1547  * subsystems than specified in "cgroup.subtree_control" may be enabled.
1548  *
1549  * This function calculates which subsystems need to be enabled if
1550  * @subtree_control is to be applied while restricted to @this_ss_mask.
1551  */
1552 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
1553 {
1554 	u16 cur_ss_mask = subtree_control;
1555 	struct cgroup_subsys *ss;
1556 	int ssid;
1557 
1558 	lockdep_assert_held(&cgroup_mutex);
1559 
1560 	cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1561 
1562 	while (true) {
1563 		u16 new_ss_mask = cur_ss_mask;
1564 
1565 		do_each_subsys_mask(ss, ssid, cur_ss_mask) {
1566 			new_ss_mask |= ss->depends_on;
1567 		} while_each_subsys_mask();
1568 
1569 		/*
1570 		 * Mask out subsystems which aren't available.  This can
1571 		 * happen only if some depended-upon subsystems were bound
1572 		 * to non-default hierarchies.
1573 		 */
1574 		new_ss_mask &= this_ss_mask;
1575 
1576 		if (new_ss_mask == cur_ss_mask)
1577 			break;
1578 		cur_ss_mask = new_ss_mask;
1579 	}
1580 
1581 	return cur_ss_mask;
1582 }
1583 
1584 /**
1585  * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1586  * @kn: the kernfs_node being serviced
1587  *
1588  * This helper undoes cgroup_kn_lock_live() and should be invoked before
1589  * the method finishes if locking succeeded.  Note that once this function
1590  * returns the cgroup returned by cgroup_kn_lock_live() may become
1591  * inaccessible any time.  If the caller intends to continue to access the
1592  * cgroup, it should pin it before invoking this function.
1593  */
1594 void cgroup_kn_unlock(struct kernfs_node *kn)
1595 {
1596 	struct cgroup *cgrp;
1597 
1598 	if (kernfs_type(kn) == KERNFS_DIR)
1599 		cgrp = kn->priv;
1600 	else
1601 		cgrp = kn->parent->priv;
1602 
1603 	mutex_unlock(&cgroup_mutex);
1604 
1605 	kernfs_unbreak_active_protection(kn);
1606 	cgroup_put(cgrp);
1607 }
1608 
1609 /**
1610  * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1611  * @kn: the kernfs_node being serviced
1612  * @drain_offline: perform offline draining on the cgroup
1613  *
1614  * This helper is to be used by a cgroup kernfs method currently servicing
1615  * @kn.  It breaks the active protection, performs cgroup locking and
1616  * verifies that the associated cgroup is alive.  Returns the cgroup if
1617  * alive; otherwise, %NULL.  A successful return should be undone by a
1618  * matching cgroup_kn_unlock() invocation.  If @drain_offline is %true, the
1619  * cgroup is drained of offlining csses before return.
1620  *
1621  * Any cgroup kernfs method implementation which requires locking the
1622  * associated cgroup should use this helper.  It avoids nesting cgroup
1623  * locking under kernfs active protection and allows all kernfs operations
1624  * including self-removal.
1625  */
1626 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline)
1627 {
1628 	struct cgroup *cgrp;
1629 
1630 	if (kernfs_type(kn) == KERNFS_DIR)
1631 		cgrp = kn->priv;
1632 	else
1633 		cgrp = kn->parent->priv;
1634 
1635 	/*
1636 	 * We're gonna grab cgroup_mutex which nests outside kernfs
1637 	 * active_ref.  cgroup liveliness check alone provides enough
1638 	 * protection against removal.  Ensure @cgrp stays accessible and
1639 	 * break the active_ref protection.
1640 	 */
1641 	if (!cgroup_tryget(cgrp))
1642 		return NULL;
1643 	kernfs_break_active_protection(kn);
1644 
1645 	if (drain_offline)
1646 		cgroup_lock_and_drain_offline(cgrp);
1647 	else
1648 		mutex_lock(&cgroup_mutex);
1649 
1650 	if (!cgroup_is_dead(cgrp))
1651 		return cgrp;
1652 
1653 	cgroup_kn_unlock(kn);
1654 	return NULL;
1655 }
1656 
1657 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1658 {
1659 	char name[CGROUP_FILE_NAME_MAX];
1660 
1661 	lockdep_assert_held(&cgroup_mutex);
1662 
1663 	if (cft->file_offset) {
1664 		struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1665 		struct cgroup_file *cfile = (void *)css + cft->file_offset;
1666 
1667 		spin_lock_irq(&cgroup_file_kn_lock);
1668 		cfile->kn = NULL;
1669 		spin_unlock_irq(&cgroup_file_kn_lock);
1670 
1671 		del_timer_sync(&cfile->notify_timer);
1672 	}
1673 
1674 	kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1675 }
1676 
1677 /**
1678  * css_clear_dir - remove subsys files in a cgroup directory
1679  * @css: target css
1680  */
1681 static void css_clear_dir(struct cgroup_subsys_state *css)
1682 {
1683 	struct cgroup *cgrp = css->cgroup;
1684 	struct cftype *cfts;
1685 
1686 	if (!(css->flags & CSS_VISIBLE))
1687 		return;
1688 
1689 	css->flags &= ~CSS_VISIBLE;
1690 
1691 	if (!css->ss) {
1692 		if (cgroup_on_dfl(cgrp))
1693 			cfts = cgroup_base_files;
1694 		else
1695 			cfts = cgroup1_base_files;
1696 
1697 		cgroup_addrm_files(css, cgrp, cfts, false);
1698 	} else {
1699 		list_for_each_entry(cfts, &css->ss->cfts, node)
1700 			cgroup_addrm_files(css, cgrp, cfts, false);
1701 	}
1702 }
1703 
1704 /**
1705  * css_populate_dir - create subsys files in a cgroup directory
1706  * @css: target css
1707  *
1708  * On failure, no file is added.
1709  */
1710 static int css_populate_dir(struct cgroup_subsys_state *css)
1711 {
1712 	struct cgroup *cgrp = css->cgroup;
1713 	struct cftype *cfts, *failed_cfts;
1714 	int ret;
1715 
1716 	if ((css->flags & CSS_VISIBLE) || !cgrp->kn)
1717 		return 0;
1718 
1719 	if (!css->ss) {
1720 		if (cgroup_on_dfl(cgrp))
1721 			cfts = cgroup_base_files;
1722 		else
1723 			cfts = cgroup1_base_files;
1724 
1725 		ret = cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1726 		if (ret < 0)
1727 			return ret;
1728 	} else {
1729 		list_for_each_entry(cfts, &css->ss->cfts, node) {
1730 			ret = cgroup_addrm_files(css, cgrp, cfts, true);
1731 			if (ret < 0) {
1732 				failed_cfts = cfts;
1733 				goto err;
1734 			}
1735 		}
1736 	}
1737 
1738 	css->flags |= CSS_VISIBLE;
1739 
1740 	return 0;
1741 err:
1742 	list_for_each_entry(cfts, &css->ss->cfts, node) {
1743 		if (cfts == failed_cfts)
1744 			break;
1745 		cgroup_addrm_files(css, cgrp, cfts, false);
1746 	}
1747 	return ret;
1748 }
1749 
1750 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
1751 {
1752 	struct cgroup *dcgrp = &dst_root->cgrp;
1753 	struct cgroup_subsys *ss;
1754 	int ssid, i, ret;
1755 	u16 dfl_disable_ss_mask = 0;
1756 
1757 	lockdep_assert_held(&cgroup_mutex);
1758 
1759 	do_each_subsys_mask(ss, ssid, ss_mask) {
1760 		/*
1761 		 * If @ss has non-root csses attached to it, can't move.
1762 		 * If @ss is an implicit controller, it is exempt from this
1763 		 * rule and can be stolen.
1764 		 */
1765 		if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1766 		    !ss->implicit_on_dfl)
1767 			return -EBUSY;
1768 
1769 		/* can't move between two non-dummy roots either */
1770 		if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1771 			return -EBUSY;
1772 
1773 		/*
1774 		 * Collect ssid's that need to be disabled from default
1775 		 * hierarchy.
1776 		 */
1777 		if (ss->root == &cgrp_dfl_root)
1778 			dfl_disable_ss_mask |= 1 << ssid;
1779 
1780 	} while_each_subsys_mask();
1781 
1782 	if (dfl_disable_ss_mask) {
1783 		struct cgroup *scgrp = &cgrp_dfl_root.cgrp;
1784 
1785 		/*
1786 		 * Controllers from default hierarchy that need to be rebound
1787 		 * are all disabled together in one go.
1788 		 */
1789 		cgrp_dfl_root.subsys_mask &= ~dfl_disable_ss_mask;
1790 		WARN_ON(cgroup_apply_control(scgrp));
1791 		cgroup_finalize_control(scgrp, 0);
1792 	}
1793 
1794 	do_each_subsys_mask(ss, ssid, ss_mask) {
1795 		struct cgroup_root *src_root = ss->root;
1796 		struct cgroup *scgrp = &src_root->cgrp;
1797 		struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1798 		struct css_set *cset;
1799 
1800 		WARN_ON(!css || cgroup_css(dcgrp, ss));
1801 
1802 		if (src_root != &cgrp_dfl_root) {
1803 			/* disable from the source */
1804 			src_root->subsys_mask &= ~(1 << ssid);
1805 			WARN_ON(cgroup_apply_control(scgrp));
1806 			cgroup_finalize_control(scgrp, 0);
1807 		}
1808 
1809 		/* rebind */
1810 		RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1811 		rcu_assign_pointer(dcgrp->subsys[ssid], css);
1812 		ss->root = dst_root;
1813 		css->cgroup = dcgrp;
1814 
1815 		spin_lock_irq(&css_set_lock);
1816 		hash_for_each(css_set_table, i, cset, hlist)
1817 			list_move_tail(&cset->e_cset_node[ss->id],
1818 				       &dcgrp->e_csets[ss->id]);
1819 		spin_unlock_irq(&css_set_lock);
1820 
1821 		if (ss->css_rstat_flush) {
1822 			list_del_rcu(&css->rstat_css_node);
1823 			synchronize_rcu();
1824 			list_add_rcu(&css->rstat_css_node,
1825 				     &dcgrp->rstat_css_list);
1826 		}
1827 
1828 		/* default hierarchy doesn't enable controllers by default */
1829 		dst_root->subsys_mask |= 1 << ssid;
1830 		if (dst_root == &cgrp_dfl_root) {
1831 			static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1832 		} else {
1833 			dcgrp->subtree_control |= 1 << ssid;
1834 			static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1835 		}
1836 
1837 		ret = cgroup_apply_control(dcgrp);
1838 		if (ret)
1839 			pr_warn("partial failure to rebind %s controller (err=%d)\n",
1840 				ss->name, ret);
1841 
1842 		if (ss->bind)
1843 			ss->bind(css);
1844 	} while_each_subsys_mask();
1845 
1846 	kernfs_activate(dcgrp->kn);
1847 	return 0;
1848 }
1849 
1850 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
1851 		     struct kernfs_root *kf_root)
1852 {
1853 	int len = 0;
1854 	char *buf = NULL;
1855 	struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
1856 	struct cgroup *ns_cgroup;
1857 
1858 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
1859 	if (!buf)
1860 		return -ENOMEM;
1861 
1862 	spin_lock_irq(&css_set_lock);
1863 	ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
1864 	len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
1865 	spin_unlock_irq(&css_set_lock);
1866 
1867 	if (len >= PATH_MAX)
1868 		len = -ERANGE;
1869 	else if (len > 0) {
1870 		seq_escape(sf, buf, " \t\n\\");
1871 		len = 0;
1872 	}
1873 	kfree(buf);
1874 	return len;
1875 }
1876 
1877 enum cgroup2_param {
1878 	Opt_nsdelegate,
1879 	Opt_favordynmods,
1880 	Opt_memory_localevents,
1881 	Opt_memory_recursiveprot,
1882 	nr__cgroup2_params
1883 };
1884 
1885 static const struct fs_parameter_spec cgroup2_fs_parameters[] = {
1886 	fsparam_flag("nsdelegate",		Opt_nsdelegate),
1887 	fsparam_flag("favordynmods",		Opt_favordynmods),
1888 	fsparam_flag("memory_localevents",	Opt_memory_localevents),
1889 	fsparam_flag("memory_recursiveprot",	Opt_memory_recursiveprot),
1890 	{}
1891 };
1892 
1893 static int cgroup2_parse_param(struct fs_context *fc, struct fs_parameter *param)
1894 {
1895 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1896 	struct fs_parse_result result;
1897 	int opt;
1898 
1899 	opt = fs_parse(fc, cgroup2_fs_parameters, param, &result);
1900 	if (opt < 0)
1901 		return opt;
1902 
1903 	switch (opt) {
1904 	case Opt_nsdelegate:
1905 		ctx->flags |= CGRP_ROOT_NS_DELEGATE;
1906 		return 0;
1907 	case Opt_favordynmods:
1908 		ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS;
1909 		return 0;
1910 	case Opt_memory_localevents:
1911 		ctx->flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1912 		return 0;
1913 	case Opt_memory_recursiveprot:
1914 		ctx->flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1915 		return 0;
1916 	}
1917 	return -EINVAL;
1918 }
1919 
1920 static void apply_cgroup_root_flags(unsigned int root_flags)
1921 {
1922 	if (current->nsproxy->cgroup_ns == &init_cgroup_ns) {
1923 		if (root_flags & CGRP_ROOT_NS_DELEGATE)
1924 			cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE;
1925 		else
1926 			cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE;
1927 
1928 		cgroup_favor_dynmods(&cgrp_dfl_root,
1929 				     root_flags & CGRP_ROOT_FAVOR_DYNMODS);
1930 
1931 		if (root_flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1932 			cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1933 		else
1934 			cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1935 
1936 		if (root_flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
1937 			cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1938 		else
1939 			cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1940 	}
1941 }
1942 
1943 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
1944 {
1945 	if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE)
1946 		seq_puts(seq, ",nsdelegate");
1947 	if (cgrp_dfl_root.flags & CGRP_ROOT_FAVOR_DYNMODS)
1948 		seq_puts(seq, ",favordynmods");
1949 	if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1950 		seq_puts(seq, ",memory_localevents");
1951 	if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
1952 		seq_puts(seq, ",memory_recursiveprot");
1953 	return 0;
1954 }
1955 
1956 static int cgroup_reconfigure(struct fs_context *fc)
1957 {
1958 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1959 
1960 	apply_cgroup_root_flags(ctx->flags);
1961 	return 0;
1962 }
1963 
1964 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1965 {
1966 	struct cgroup_subsys *ss;
1967 	int ssid;
1968 
1969 	INIT_LIST_HEAD(&cgrp->self.sibling);
1970 	INIT_LIST_HEAD(&cgrp->self.children);
1971 	INIT_LIST_HEAD(&cgrp->cset_links);
1972 	INIT_LIST_HEAD(&cgrp->pidlists);
1973 	mutex_init(&cgrp->pidlist_mutex);
1974 	cgrp->self.cgroup = cgrp;
1975 	cgrp->self.flags |= CSS_ONLINE;
1976 	cgrp->dom_cgrp = cgrp;
1977 	cgrp->max_descendants = INT_MAX;
1978 	cgrp->max_depth = INT_MAX;
1979 	INIT_LIST_HEAD(&cgrp->rstat_css_list);
1980 	prev_cputime_init(&cgrp->prev_cputime);
1981 
1982 	for_each_subsys(ss, ssid)
1983 		INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
1984 
1985 	init_waitqueue_head(&cgrp->offline_waitq);
1986 	INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent);
1987 }
1988 
1989 void init_cgroup_root(struct cgroup_fs_context *ctx)
1990 {
1991 	struct cgroup_root *root = ctx->root;
1992 	struct cgroup *cgrp = &root->cgrp;
1993 
1994 	INIT_LIST_HEAD(&root->root_list);
1995 	atomic_set(&root->nr_cgrps, 1);
1996 	cgrp->root = root;
1997 	init_cgroup_housekeeping(cgrp);
1998 
1999 	/* DYNMODS must be modified through cgroup_favor_dynmods() */
2000 	root->flags = ctx->flags & ~CGRP_ROOT_FAVOR_DYNMODS;
2001 	if (ctx->release_agent)
2002 		strscpy(root->release_agent_path, ctx->release_agent, PATH_MAX);
2003 	if (ctx->name)
2004 		strscpy(root->name, ctx->name, MAX_CGROUP_ROOT_NAMELEN);
2005 	if (ctx->cpuset_clone_children)
2006 		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
2007 }
2008 
2009 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask)
2010 {
2011 	LIST_HEAD(tmp_links);
2012 	struct cgroup *root_cgrp = &root->cgrp;
2013 	struct kernfs_syscall_ops *kf_sops;
2014 	struct css_set *cset;
2015 	int i, ret;
2016 
2017 	lockdep_assert_held(&cgroup_mutex);
2018 
2019 	ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release,
2020 			      0, GFP_KERNEL);
2021 	if (ret)
2022 		goto out;
2023 
2024 	/*
2025 	 * We're accessing css_set_count without locking css_set_lock here,
2026 	 * but that's OK - it can only be increased by someone holding
2027 	 * cgroup_lock, and that's us.  Later rebinding may disable
2028 	 * controllers on the default hierarchy and thus create new csets,
2029 	 * which can't be more than the existing ones.  Allocate 2x.
2030 	 */
2031 	ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
2032 	if (ret)
2033 		goto cancel_ref;
2034 
2035 	ret = cgroup_init_root_id(root);
2036 	if (ret)
2037 		goto cancel_ref;
2038 
2039 	kf_sops = root == &cgrp_dfl_root ?
2040 		&cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops;
2041 
2042 	root->kf_root = kernfs_create_root(kf_sops,
2043 					   KERNFS_ROOT_CREATE_DEACTIVATED |
2044 					   KERNFS_ROOT_SUPPORT_EXPORTOP |
2045 					   KERNFS_ROOT_SUPPORT_USER_XATTR,
2046 					   root_cgrp);
2047 	if (IS_ERR(root->kf_root)) {
2048 		ret = PTR_ERR(root->kf_root);
2049 		goto exit_root_id;
2050 	}
2051 	root_cgrp->kn = kernfs_root_to_node(root->kf_root);
2052 	WARN_ON_ONCE(cgroup_ino(root_cgrp) != 1);
2053 	root_cgrp->ancestor_ids[0] = cgroup_id(root_cgrp);
2054 
2055 	ret = css_populate_dir(&root_cgrp->self);
2056 	if (ret)
2057 		goto destroy_root;
2058 
2059 	ret = cgroup_rstat_init(root_cgrp);
2060 	if (ret)
2061 		goto destroy_root;
2062 
2063 	ret = rebind_subsystems(root, ss_mask);
2064 	if (ret)
2065 		goto exit_stats;
2066 
2067 	ret = cgroup_bpf_inherit(root_cgrp);
2068 	WARN_ON_ONCE(ret);
2069 
2070 	trace_cgroup_setup_root(root);
2071 
2072 	/*
2073 	 * There must be no failure case after here, since rebinding takes
2074 	 * care of subsystems' refcounts, which are explicitly dropped in
2075 	 * the failure exit path.
2076 	 */
2077 	list_add(&root->root_list, &cgroup_roots);
2078 	cgroup_root_count++;
2079 
2080 	/*
2081 	 * Link the root cgroup in this hierarchy into all the css_set
2082 	 * objects.
2083 	 */
2084 	spin_lock_irq(&css_set_lock);
2085 	hash_for_each(css_set_table, i, cset, hlist) {
2086 		link_css_set(&tmp_links, cset, root_cgrp);
2087 		if (css_set_populated(cset))
2088 			cgroup_update_populated(root_cgrp, true);
2089 	}
2090 	spin_unlock_irq(&css_set_lock);
2091 
2092 	BUG_ON(!list_empty(&root_cgrp->self.children));
2093 	BUG_ON(atomic_read(&root->nr_cgrps) != 1);
2094 
2095 	ret = 0;
2096 	goto out;
2097 
2098 exit_stats:
2099 	cgroup_rstat_exit(root_cgrp);
2100 destroy_root:
2101 	kernfs_destroy_root(root->kf_root);
2102 	root->kf_root = NULL;
2103 exit_root_id:
2104 	cgroup_exit_root_id(root);
2105 cancel_ref:
2106 	percpu_ref_exit(&root_cgrp->self.refcnt);
2107 out:
2108 	free_cgrp_cset_links(&tmp_links);
2109 	return ret;
2110 }
2111 
2112 int cgroup_do_get_tree(struct fs_context *fc)
2113 {
2114 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2115 	int ret;
2116 
2117 	ctx->kfc.root = ctx->root->kf_root;
2118 	if (fc->fs_type == &cgroup2_fs_type)
2119 		ctx->kfc.magic = CGROUP2_SUPER_MAGIC;
2120 	else
2121 		ctx->kfc.magic = CGROUP_SUPER_MAGIC;
2122 	ret = kernfs_get_tree(fc);
2123 
2124 	/*
2125 	 * In non-init cgroup namespace, instead of root cgroup's dentry,
2126 	 * we return the dentry corresponding to the cgroupns->root_cgrp.
2127 	 */
2128 	if (!ret && ctx->ns != &init_cgroup_ns) {
2129 		struct dentry *nsdentry;
2130 		struct super_block *sb = fc->root->d_sb;
2131 		struct cgroup *cgrp;
2132 
2133 		mutex_lock(&cgroup_mutex);
2134 		spin_lock_irq(&css_set_lock);
2135 
2136 		cgrp = cset_cgroup_from_root(ctx->ns->root_cset, ctx->root);
2137 
2138 		spin_unlock_irq(&css_set_lock);
2139 		mutex_unlock(&cgroup_mutex);
2140 
2141 		nsdentry = kernfs_node_dentry(cgrp->kn, sb);
2142 		dput(fc->root);
2143 		if (IS_ERR(nsdentry)) {
2144 			deactivate_locked_super(sb);
2145 			ret = PTR_ERR(nsdentry);
2146 			nsdentry = NULL;
2147 		}
2148 		fc->root = nsdentry;
2149 	}
2150 
2151 	if (!ctx->kfc.new_sb_created)
2152 		cgroup_put(&ctx->root->cgrp);
2153 
2154 	return ret;
2155 }
2156 
2157 /*
2158  * Destroy a cgroup filesystem context.
2159  */
2160 static void cgroup_fs_context_free(struct fs_context *fc)
2161 {
2162 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2163 
2164 	kfree(ctx->name);
2165 	kfree(ctx->release_agent);
2166 	put_cgroup_ns(ctx->ns);
2167 	kernfs_free_fs_context(fc);
2168 	kfree(ctx);
2169 }
2170 
2171 static int cgroup_get_tree(struct fs_context *fc)
2172 {
2173 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2174 	int ret;
2175 
2176 	cgrp_dfl_visible = true;
2177 	cgroup_get_live(&cgrp_dfl_root.cgrp);
2178 	ctx->root = &cgrp_dfl_root;
2179 
2180 	ret = cgroup_do_get_tree(fc);
2181 	if (!ret)
2182 		apply_cgroup_root_flags(ctx->flags);
2183 	return ret;
2184 }
2185 
2186 static const struct fs_context_operations cgroup_fs_context_ops = {
2187 	.free		= cgroup_fs_context_free,
2188 	.parse_param	= cgroup2_parse_param,
2189 	.get_tree	= cgroup_get_tree,
2190 	.reconfigure	= cgroup_reconfigure,
2191 };
2192 
2193 static const struct fs_context_operations cgroup1_fs_context_ops = {
2194 	.free		= cgroup_fs_context_free,
2195 	.parse_param	= cgroup1_parse_param,
2196 	.get_tree	= cgroup1_get_tree,
2197 	.reconfigure	= cgroup1_reconfigure,
2198 };
2199 
2200 /*
2201  * Initialise the cgroup filesystem creation/reconfiguration context.  Notably,
2202  * we select the namespace we're going to use.
2203  */
2204 static int cgroup_init_fs_context(struct fs_context *fc)
2205 {
2206 	struct cgroup_fs_context *ctx;
2207 
2208 	ctx = kzalloc(sizeof(struct cgroup_fs_context), GFP_KERNEL);
2209 	if (!ctx)
2210 		return -ENOMEM;
2211 
2212 	ctx->ns = current->nsproxy->cgroup_ns;
2213 	get_cgroup_ns(ctx->ns);
2214 	fc->fs_private = &ctx->kfc;
2215 	if (fc->fs_type == &cgroup2_fs_type)
2216 		fc->ops = &cgroup_fs_context_ops;
2217 	else
2218 		fc->ops = &cgroup1_fs_context_ops;
2219 	put_user_ns(fc->user_ns);
2220 	fc->user_ns = get_user_ns(ctx->ns->user_ns);
2221 	fc->global = true;
2222 
2223 #ifdef CONFIG_CGROUP_FAVOR_DYNMODS
2224 	ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS;
2225 #endif
2226 	return 0;
2227 }
2228 
2229 static void cgroup_kill_sb(struct super_block *sb)
2230 {
2231 	struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2232 	struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2233 
2234 	/*
2235 	 * If @root doesn't have any children, start killing it.
2236 	 * This prevents new mounts by disabling percpu_ref_tryget_live().
2237 	 *
2238 	 * And don't kill the default root.
2239 	 */
2240 	if (list_empty(&root->cgrp.self.children) && root != &cgrp_dfl_root &&
2241 	    !percpu_ref_is_dying(&root->cgrp.self.refcnt)) {
2242 		cgroup_bpf_offline(&root->cgrp);
2243 		percpu_ref_kill(&root->cgrp.self.refcnt);
2244 	}
2245 	cgroup_put(&root->cgrp);
2246 	kernfs_kill_sb(sb);
2247 }
2248 
2249 struct file_system_type cgroup_fs_type = {
2250 	.name			= "cgroup",
2251 	.init_fs_context	= cgroup_init_fs_context,
2252 	.parameters		= cgroup1_fs_parameters,
2253 	.kill_sb		= cgroup_kill_sb,
2254 	.fs_flags		= FS_USERNS_MOUNT,
2255 };
2256 
2257 static struct file_system_type cgroup2_fs_type = {
2258 	.name			= "cgroup2",
2259 	.init_fs_context	= cgroup_init_fs_context,
2260 	.parameters		= cgroup2_fs_parameters,
2261 	.kill_sb		= cgroup_kill_sb,
2262 	.fs_flags		= FS_USERNS_MOUNT,
2263 };
2264 
2265 #ifdef CONFIG_CPUSETS
2266 static const struct fs_context_operations cpuset_fs_context_ops = {
2267 	.get_tree	= cgroup1_get_tree,
2268 	.free		= cgroup_fs_context_free,
2269 };
2270 
2271 /*
2272  * This is ugly, but preserves the userspace API for existing cpuset
2273  * users. If someone tries to mount the "cpuset" filesystem, we
2274  * silently switch it to mount "cgroup" instead
2275  */
2276 static int cpuset_init_fs_context(struct fs_context *fc)
2277 {
2278 	char *agent = kstrdup("/sbin/cpuset_release_agent", GFP_USER);
2279 	struct cgroup_fs_context *ctx;
2280 	int err;
2281 
2282 	err = cgroup_init_fs_context(fc);
2283 	if (err) {
2284 		kfree(agent);
2285 		return err;
2286 	}
2287 
2288 	fc->ops = &cpuset_fs_context_ops;
2289 
2290 	ctx = cgroup_fc2context(fc);
2291 	ctx->subsys_mask = 1 << cpuset_cgrp_id;
2292 	ctx->flags |= CGRP_ROOT_NOPREFIX;
2293 	ctx->release_agent = agent;
2294 
2295 	get_filesystem(&cgroup_fs_type);
2296 	put_filesystem(fc->fs_type);
2297 	fc->fs_type = &cgroup_fs_type;
2298 
2299 	return 0;
2300 }
2301 
2302 static struct file_system_type cpuset_fs_type = {
2303 	.name			= "cpuset",
2304 	.init_fs_context	= cpuset_init_fs_context,
2305 	.fs_flags		= FS_USERNS_MOUNT,
2306 };
2307 #endif
2308 
2309 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
2310 			  struct cgroup_namespace *ns)
2311 {
2312 	struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
2313 
2314 	return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
2315 }
2316 
2317 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
2318 		   struct cgroup_namespace *ns)
2319 {
2320 	int ret;
2321 
2322 	mutex_lock(&cgroup_mutex);
2323 	spin_lock_irq(&css_set_lock);
2324 
2325 	ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
2326 
2327 	spin_unlock_irq(&css_set_lock);
2328 	mutex_unlock(&cgroup_mutex);
2329 
2330 	return ret;
2331 }
2332 EXPORT_SYMBOL_GPL(cgroup_path_ns);
2333 
2334 /**
2335  * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
2336  * @task: target task
2337  * @buf: the buffer to write the path into
2338  * @buflen: the length of the buffer
2339  *
2340  * Determine @task's cgroup on the first (the one with the lowest non-zero
2341  * hierarchy_id) cgroup hierarchy and copy its path into @buf.  This
2342  * function grabs cgroup_mutex and shouldn't be used inside locks used by
2343  * cgroup controller callbacks.
2344  *
2345  * Return value is the same as kernfs_path().
2346  */
2347 int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
2348 {
2349 	struct cgroup_root *root;
2350 	struct cgroup *cgrp;
2351 	int hierarchy_id = 1;
2352 	int ret;
2353 
2354 	mutex_lock(&cgroup_mutex);
2355 	spin_lock_irq(&css_set_lock);
2356 
2357 	root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2358 
2359 	if (root) {
2360 		cgrp = task_cgroup_from_root(task, root);
2361 		ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns);
2362 	} else {
2363 		/* if no hierarchy exists, everyone is in "/" */
2364 		ret = strlcpy(buf, "/", buflen);
2365 	}
2366 
2367 	spin_unlock_irq(&css_set_lock);
2368 	mutex_unlock(&cgroup_mutex);
2369 	return ret;
2370 }
2371 EXPORT_SYMBOL_GPL(task_cgroup_path);
2372 
2373 /**
2374  * cgroup_attach_lock - Lock for ->attach()
2375  * @lock_threadgroup: whether to down_write cgroup_threadgroup_rwsem
2376  *
2377  * cgroup migration sometimes needs to stabilize threadgroups against forks and
2378  * exits by write-locking cgroup_threadgroup_rwsem. However, some ->attach()
2379  * implementations (e.g. cpuset), also need to disable CPU hotplug.
2380  * Unfortunately, letting ->attach() operations acquire cpus_read_lock() can
2381  * lead to deadlocks.
2382  *
2383  * Bringing up a CPU may involve creating and destroying tasks which requires
2384  * read-locking threadgroup_rwsem, so threadgroup_rwsem nests inside
2385  * cpus_read_lock(). If we call an ->attach() which acquires the cpus lock while
2386  * write-locking threadgroup_rwsem, the locking order is reversed and we end up
2387  * waiting for an on-going CPU hotplug operation which in turn is waiting for
2388  * the threadgroup_rwsem to be released to create new tasks. For more details:
2389  *
2390  *   http://lkml.kernel.org/r/20220711174629.uehfmqegcwn2lqzu@wubuntu
2391  *
2392  * Resolve the situation by always acquiring cpus_read_lock() before optionally
2393  * write-locking cgroup_threadgroup_rwsem. This allows ->attach() to assume that
2394  * CPU hotplug is disabled on entry.
2395  */
2396 static void cgroup_attach_lock(bool lock_threadgroup)
2397 {
2398 	cpus_read_lock();
2399 	if (lock_threadgroup)
2400 		percpu_down_write(&cgroup_threadgroup_rwsem);
2401 }
2402 
2403 /**
2404  * cgroup_attach_unlock - Undo cgroup_attach_lock()
2405  * @lock_threadgroup: whether to up_write cgroup_threadgroup_rwsem
2406  */
2407 static void cgroup_attach_unlock(bool lock_threadgroup)
2408 {
2409 	if (lock_threadgroup)
2410 		percpu_up_write(&cgroup_threadgroup_rwsem);
2411 	cpus_read_unlock();
2412 }
2413 
2414 /**
2415  * cgroup_migrate_add_task - add a migration target task to a migration context
2416  * @task: target task
2417  * @mgctx: target migration context
2418  *
2419  * Add @task, which is a migration target, to @mgctx->tset.  This function
2420  * becomes noop if @task doesn't need to be migrated.  @task's css_set
2421  * should have been added as a migration source and @task->cg_list will be
2422  * moved from the css_set's tasks list to mg_tasks one.
2423  */
2424 static void cgroup_migrate_add_task(struct task_struct *task,
2425 				    struct cgroup_mgctx *mgctx)
2426 {
2427 	struct css_set *cset;
2428 
2429 	lockdep_assert_held(&css_set_lock);
2430 
2431 	/* @task either already exited or can't exit until the end */
2432 	if (task->flags & PF_EXITING)
2433 		return;
2434 
2435 	/* cgroup_threadgroup_rwsem protects racing against forks */
2436 	WARN_ON_ONCE(list_empty(&task->cg_list));
2437 
2438 	cset = task_css_set(task);
2439 	if (!cset->mg_src_cgrp)
2440 		return;
2441 
2442 	mgctx->tset.nr_tasks++;
2443 
2444 	list_move_tail(&task->cg_list, &cset->mg_tasks);
2445 	if (list_empty(&cset->mg_node))
2446 		list_add_tail(&cset->mg_node,
2447 			      &mgctx->tset.src_csets);
2448 	if (list_empty(&cset->mg_dst_cset->mg_node))
2449 		list_add_tail(&cset->mg_dst_cset->mg_node,
2450 			      &mgctx->tset.dst_csets);
2451 }
2452 
2453 /**
2454  * cgroup_taskset_first - reset taskset and return the first task
2455  * @tset: taskset of interest
2456  * @dst_cssp: output variable for the destination css
2457  *
2458  * @tset iteration is initialized and the first task is returned.
2459  */
2460 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2461 					 struct cgroup_subsys_state **dst_cssp)
2462 {
2463 	tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2464 	tset->cur_task = NULL;
2465 
2466 	return cgroup_taskset_next(tset, dst_cssp);
2467 }
2468 
2469 /**
2470  * cgroup_taskset_next - iterate to the next task in taskset
2471  * @tset: taskset of interest
2472  * @dst_cssp: output variable for the destination css
2473  *
2474  * Return the next task in @tset.  Iteration must have been initialized
2475  * with cgroup_taskset_first().
2476  */
2477 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2478 					struct cgroup_subsys_state **dst_cssp)
2479 {
2480 	struct css_set *cset = tset->cur_cset;
2481 	struct task_struct *task = tset->cur_task;
2482 
2483 	while (CGROUP_HAS_SUBSYS_CONFIG && &cset->mg_node != tset->csets) {
2484 		if (!task)
2485 			task = list_first_entry(&cset->mg_tasks,
2486 						struct task_struct, cg_list);
2487 		else
2488 			task = list_next_entry(task, cg_list);
2489 
2490 		if (&task->cg_list != &cset->mg_tasks) {
2491 			tset->cur_cset = cset;
2492 			tset->cur_task = task;
2493 
2494 			/*
2495 			 * This function may be called both before and
2496 			 * after cgroup_taskset_migrate().  The two cases
2497 			 * can be distinguished by looking at whether @cset
2498 			 * has its ->mg_dst_cset set.
2499 			 */
2500 			if (cset->mg_dst_cset)
2501 				*dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2502 			else
2503 				*dst_cssp = cset->subsys[tset->ssid];
2504 
2505 			return task;
2506 		}
2507 
2508 		cset = list_next_entry(cset, mg_node);
2509 		task = NULL;
2510 	}
2511 
2512 	return NULL;
2513 }
2514 
2515 /**
2516  * cgroup_migrate_execute - migrate a taskset
2517  * @mgctx: migration context
2518  *
2519  * Migrate tasks in @mgctx as setup by migration preparation functions.
2520  * This function fails iff one of the ->can_attach callbacks fails and
2521  * guarantees that either all or none of the tasks in @mgctx are migrated.
2522  * @mgctx is consumed regardless of success.
2523  */
2524 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx)
2525 {
2526 	struct cgroup_taskset *tset = &mgctx->tset;
2527 	struct cgroup_subsys *ss;
2528 	struct task_struct *task, *tmp_task;
2529 	struct css_set *cset, *tmp_cset;
2530 	int ssid, failed_ssid, ret;
2531 
2532 	/* check that we can legitimately attach to the cgroup */
2533 	if (tset->nr_tasks) {
2534 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2535 			if (ss->can_attach) {
2536 				tset->ssid = ssid;
2537 				ret = ss->can_attach(tset);
2538 				if (ret) {
2539 					failed_ssid = ssid;
2540 					goto out_cancel_attach;
2541 				}
2542 			}
2543 		} while_each_subsys_mask();
2544 	}
2545 
2546 	/*
2547 	 * Now that we're guaranteed success, proceed to move all tasks to
2548 	 * the new cgroup.  There are no failure cases after here, so this
2549 	 * is the commit point.
2550 	 */
2551 	spin_lock_irq(&css_set_lock);
2552 	list_for_each_entry(cset, &tset->src_csets, mg_node) {
2553 		list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2554 			struct css_set *from_cset = task_css_set(task);
2555 			struct css_set *to_cset = cset->mg_dst_cset;
2556 
2557 			get_css_set(to_cset);
2558 			to_cset->nr_tasks++;
2559 			css_set_move_task(task, from_cset, to_cset, true);
2560 			from_cset->nr_tasks--;
2561 			/*
2562 			 * If the source or destination cgroup is frozen,
2563 			 * the task might require to change its state.
2564 			 */
2565 			cgroup_freezer_migrate_task(task, from_cset->dfl_cgrp,
2566 						    to_cset->dfl_cgrp);
2567 			put_css_set_locked(from_cset);
2568 
2569 		}
2570 	}
2571 	spin_unlock_irq(&css_set_lock);
2572 
2573 	/*
2574 	 * Migration is committed, all target tasks are now on dst_csets.
2575 	 * Nothing is sensitive to fork() after this point.  Notify
2576 	 * controllers that migration is complete.
2577 	 */
2578 	tset->csets = &tset->dst_csets;
2579 
2580 	if (tset->nr_tasks) {
2581 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2582 			if (ss->attach) {
2583 				tset->ssid = ssid;
2584 				ss->attach(tset);
2585 			}
2586 		} while_each_subsys_mask();
2587 	}
2588 
2589 	ret = 0;
2590 	goto out_release_tset;
2591 
2592 out_cancel_attach:
2593 	if (tset->nr_tasks) {
2594 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2595 			if (ssid == failed_ssid)
2596 				break;
2597 			if (ss->cancel_attach) {
2598 				tset->ssid = ssid;
2599 				ss->cancel_attach(tset);
2600 			}
2601 		} while_each_subsys_mask();
2602 	}
2603 out_release_tset:
2604 	spin_lock_irq(&css_set_lock);
2605 	list_splice_init(&tset->dst_csets, &tset->src_csets);
2606 	list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2607 		list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2608 		list_del_init(&cset->mg_node);
2609 	}
2610 	spin_unlock_irq(&css_set_lock);
2611 
2612 	/*
2613 	 * Re-initialize the cgroup_taskset structure in case it is reused
2614 	 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute()
2615 	 * iteration.
2616 	 */
2617 	tset->nr_tasks = 0;
2618 	tset->csets    = &tset->src_csets;
2619 	return ret;
2620 }
2621 
2622 /**
2623  * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination
2624  * @dst_cgrp: destination cgroup to test
2625  *
2626  * On the default hierarchy, except for the mixable, (possible) thread root
2627  * and threaded cgroups, subtree_control must be zero for migration
2628  * destination cgroups with tasks so that child cgroups don't compete
2629  * against tasks.
2630  */
2631 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp)
2632 {
2633 	/* v1 doesn't have any restriction */
2634 	if (!cgroup_on_dfl(dst_cgrp))
2635 		return 0;
2636 
2637 	/* verify @dst_cgrp can host resources */
2638 	if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp))
2639 		return -EOPNOTSUPP;
2640 
2641 	/*
2642 	 * If @dst_cgrp is already or can become a thread root or is
2643 	 * threaded, it doesn't matter.
2644 	 */
2645 	if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp))
2646 		return 0;
2647 
2648 	/* apply no-internal-process constraint */
2649 	if (dst_cgrp->subtree_control)
2650 		return -EBUSY;
2651 
2652 	return 0;
2653 }
2654 
2655 /**
2656  * cgroup_migrate_finish - cleanup after attach
2657  * @mgctx: migration context
2658  *
2659  * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst().  See
2660  * those functions for details.
2661  */
2662 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx)
2663 {
2664 	struct css_set *cset, *tmp_cset;
2665 
2666 	lockdep_assert_held(&cgroup_mutex);
2667 
2668 	spin_lock_irq(&css_set_lock);
2669 
2670 	list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_src_csets,
2671 				 mg_src_preload_node) {
2672 		cset->mg_src_cgrp = NULL;
2673 		cset->mg_dst_cgrp = NULL;
2674 		cset->mg_dst_cset = NULL;
2675 		list_del_init(&cset->mg_src_preload_node);
2676 		put_css_set_locked(cset);
2677 	}
2678 
2679 	list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_dst_csets,
2680 				 mg_dst_preload_node) {
2681 		cset->mg_src_cgrp = NULL;
2682 		cset->mg_dst_cgrp = NULL;
2683 		cset->mg_dst_cset = NULL;
2684 		list_del_init(&cset->mg_dst_preload_node);
2685 		put_css_set_locked(cset);
2686 	}
2687 
2688 	spin_unlock_irq(&css_set_lock);
2689 }
2690 
2691 /**
2692  * cgroup_migrate_add_src - add a migration source css_set
2693  * @src_cset: the source css_set to add
2694  * @dst_cgrp: the destination cgroup
2695  * @mgctx: migration context
2696  *
2697  * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp.  Pin
2698  * @src_cset and add it to @mgctx->src_csets, which should later be cleaned
2699  * up by cgroup_migrate_finish().
2700  *
2701  * This function may be called without holding cgroup_threadgroup_rwsem
2702  * even if the target is a process.  Threads may be created and destroyed
2703  * but as long as cgroup_mutex is not dropped, no new css_set can be put
2704  * into play and the preloaded css_sets are guaranteed to cover all
2705  * migrations.
2706  */
2707 void cgroup_migrate_add_src(struct css_set *src_cset,
2708 			    struct cgroup *dst_cgrp,
2709 			    struct cgroup_mgctx *mgctx)
2710 {
2711 	struct cgroup *src_cgrp;
2712 
2713 	lockdep_assert_held(&cgroup_mutex);
2714 	lockdep_assert_held(&css_set_lock);
2715 
2716 	/*
2717 	 * If ->dead, @src_set is associated with one or more dead cgroups
2718 	 * and doesn't contain any migratable tasks.  Ignore it early so
2719 	 * that the rest of migration path doesn't get confused by it.
2720 	 */
2721 	if (src_cset->dead)
2722 		return;
2723 
2724 	if (!list_empty(&src_cset->mg_src_preload_node))
2725 		return;
2726 
2727 	src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2728 
2729 	WARN_ON(src_cset->mg_src_cgrp);
2730 	WARN_ON(src_cset->mg_dst_cgrp);
2731 	WARN_ON(!list_empty(&src_cset->mg_tasks));
2732 	WARN_ON(!list_empty(&src_cset->mg_node));
2733 
2734 	src_cset->mg_src_cgrp = src_cgrp;
2735 	src_cset->mg_dst_cgrp = dst_cgrp;
2736 	get_css_set(src_cset);
2737 	list_add_tail(&src_cset->mg_src_preload_node, &mgctx->preloaded_src_csets);
2738 }
2739 
2740 /**
2741  * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2742  * @mgctx: migration context
2743  *
2744  * Tasks are about to be moved and all the source css_sets have been
2745  * preloaded to @mgctx->preloaded_src_csets.  This function looks up and
2746  * pins all destination css_sets, links each to its source, and append them
2747  * to @mgctx->preloaded_dst_csets.
2748  *
2749  * This function must be called after cgroup_migrate_add_src() has been
2750  * called on each migration source css_set.  After migration is performed
2751  * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2752  * @mgctx.
2753  */
2754 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx)
2755 {
2756 	struct css_set *src_cset, *tmp_cset;
2757 
2758 	lockdep_assert_held(&cgroup_mutex);
2759 
2760 	/* look up the dst cset for each src cset and link it to src */
2761 	list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets,
2762 				 mg_src_preload_node) {
2763 		struct css_set *dst_cset;
2764 		struct cgroup_subsys *ss;
2765 		int ssid;
2766 
2767 		dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
2768 		if (!dst_cset)
2769 			return -ENOMEM;
2770 
2771 		WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2772 
2773 		/*
2774 		 * If src cset equals dst, it's noop.  Drop the src.
2775 		 * cgroup_migrate() will skip the cset too.  Note that we
2776 		 * can't handle src == dst as some nodes are used by both.
2777 		 */
2778 		if (src_cset == dst_cset) {
2779 			src_cset->mg_src_cgrp = NULL;
2780 			src_cset->mg_dst_cgrp = NULL;
2781 			list_del_init(&src_cset->mg_src_preload_node);
2782 			put_css_set(src_cset);
2783 			put_css_set(dst_cset);
2784 			continue;
2785 		}
2786 
2787 		src_cset->mg_dst_cset = dst_cset;
2788 
2789 		if (list_empty(&dst_cset->mg_dst_preload_node))
2790 			list_add_tail(&dst_cset->mg_dst_preload_node,
2791 				      &mgctx->preloaded_dst_csets);
2792 		else
2793 			put_css_set(dst_cset);
2794 
2795 		for_each_subsys(ss, ssid)
2796 			if (src_cset->subsys[ssid] != dst_cset->subsys[ssid])
2797 				mgctx->ss_mask |= 1 << ssid;
2798 	}
2799 
2800 	return 0;
2801 }
2802 
2803 /**
2804  * cgroup_migrate - migrate a process or task to a cgroup
2805  * @leader: the leader of the process or the task to migrate
2806  * @threadgroup: whether @leader points to the whole process or a single task
2807  * @mgctx: migration context
2808  *
2809  * Migrate a process or task denoted by @leader.  If migrating a process,
2810  * the caller must be holding cgroup_threadgroup_rwsem.  The caller is also
2811  * responsible for invoking cgroup_migrate_add_src() and
2812  * cgroup_migrate_prepare_dst() on the targets before invoking this
2813  * function and following up with cgroup_migrate_finish().
2814  *
2815  * As long as a controller's ->can_attach() doesn't fail, this function is
2816  * guaranteed to succeed.  This means that, excluding ->can_attach()
2817  * failure, when migrating multiple targets, the success or failure can be
2818  * decided for all targets by invoking group_migrate_prepare_dst() before
2819  * actually starting migrating.
2820  */
2821 int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2822 		   struct cgroup_mgctx *mgctx)
2823 {
2824 	struct task_struct *task;
2825 
2826 	/*
2827 	 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2828 	 * already PF_EXITING could be freed from underneath us unless we
2829 	 * take an rcu_read_lock.
2830 	 */
2831 	spin_lock_irq(&css_set_lock);
2832 	rcu_read_lock();
2833 	task = leader;
2834 	do {
2835 		cgroup_migrate_add_task(task, mgctx);
2836 		if (!threadgroup)
2837 			break;
2838 	} while_each_thread(leader, task);
2839 	rcu_read_unlock();
2840 	spin_unlock_irq(&css_set_lock);
2841 
2842 	return cgroup_migrate_execute(mgctx);
2843 }
2844 
2845 /**
2846  * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2847  * @dst_cgrp: the cgroup to attach to
2848  * @leader: the task or the leader of the threadgroup to be attached
2849  * @threadgroup: attach the whole threadgroup?
2850  *
2851  * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2852  */
2853 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader,
2854 		       bool threadgroup)
2855 {
2856 	DEFINE_CGROUP_MGCTX(mgctx);
2857 	struct task_struct *task;
2858 	int ret = 0;
2859 
2860 	/* look up all src csets */
2861 	spin_lock_irq(&css_set_lock);
2862 	rcu_read_lock();
2863 	task = leader;
2864 	do {
2865 		cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx);
2866 		if (!threadgroup)
2867 			break;
2868 	} while_each_thread(leader, task);
2869 	rcu_read_unlock();
2870 	spin_unlock_irq(&css_set_lock);
2871 
2872 	/* prepare dst csets and commit */
2873 	ret = cgroup_migrate_prepare_dst(&mgctx);
2874 	if (!ret)
2875 		ret = cgroup_migrate(leader, threadgroup, &mgctx);
2876 
2877 	cgroup_migrate_finish(&mgctx);
2878 
2879 	if (!ret)
2880 		TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup);
2881 
2882 	return ret;
2883 }
2884 
2885 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup,
2886 					     bool *threadgroup_locked)
2887 {
2888 	struct task_struct *tsk;
2889 	pid_t pid;
2890 
2891 	if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2892 		return ERR_PTR(-EINVAL);
2893 
2894 	/*
2895 	 * If we migrate a single thread, we don't care about threadgroup
2896 	 * stability. If the thread is `current`, it won't exit(2) under our
2897 	 * hands or change PID through exec(2). We exclude
2898 	 * cgroup_update_dfl_csses and other cgroup_{proc,thread}s_write
2899 	 * callers by cgroup_mutex.
2900 	 * Therefore, we can skip the global lock.
2901 	 */
2902 	lockdep_assert_held(&cgroup_mutex);
2903 	*threadgroup_locked = pid || threadgroup;
2904 	cgroup_attach_lock(*threadgroup_locked);
2905 
2906 	rcu_read_lock();
2907 	if (pid) {
2908 		tsk = find_task_by_vpid(pid);
2909 		if (!tsk) {
2910 			tsk = ERR_PTR(-ESRCH);
2911 			goto out_unlock_threadgroup;
2912 		}
2913 	} else {
2914 		tsk = current;
2915 	}
2916 
2917 	if (threadgroup)
2918 		tsk = tsk->group_leader;
2919 
2920 	/*
2921 	 * kthreads may acquire PF_NO_SETAFFINITY during initialization.
2922 	 * If userland migrates such a kthread to a non-root cgroup, it can
2923 	 * become trapped in a cpuset, or RT kthread may be born in a
2924 	 * cgroup with no rt_runtime allocated.  Just say no.
2925 	 */
2926 	if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) {
2927 		tsk = ERR_PTR(-EINVAL);
2928 		goto out_unlock_threadgroup;
2929 	}
2930 
2931 	get_task_struct(tsk);
2932 	goto out_unlock_rcu;
2933 
2934 out_unlock_threadgroup:
2935 	cgroup_attach_unlock(*threadgroup_locked);
2936 	*threadgroup_locked = false;
2937 out_unlock_rcu:
2938 	rcu_read_unlock();
2939 	return tsk;
2940 }
2941 
2942 void cgroup_procs_write_finish(struct task_struct *task, bool threadgroup_locked)
2943 {
2944 	struct cgroup_subsys *ss;
2945 	int ssid;
2946 
2947 	/* release reference from cgroup_procs_write_start() */
2948 	put_task_struct(task);
2949 
2950 	cgroup_attach_unlock(threadgroup_locked);
2951 
2952 	for_each_subsys(ss, ssid)
2953 		if (ss->post_attach)
2954 			ss->post_attach();
2955 }
2956 
2957 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
2958 {
2959 	struct cgroup_subsys *ss;
2960 	bool printed = false;
2961 	int ssid;
2962 
2963 	do_each_subsys_mask(ss, ssid, ss_mask) {
2964 		if (printed)
2965 			seq_putc(seq, ' ');
2966 		seq_puts(seq, ss->name);
2967 		printed = true;
2968 	} while_each_subsys_mask();
2969 	if (printed)
2970 		seq_putc(seq, '\n');
2971 }
2972 
2973 /* show controllers which are enabled from the parent */
2974 static int cgroup_controllers_show(struct seq_file *seq, void *v)
2975 {
2976 	struct cgroup *cgrp = seq_css(seq)->cgroup;
2977 
2978 	cgroup_print_ss_mask(seq, cgroup_control(cgrp));
2979 	return 0;
2980 }
2981 
2982 /* show controllers which are enabled for a given cgroup's children */
2983 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
2984 {
2985 	struct cgroup *cgrp = seq_css(seq)->cgroup;
2986 
2987 	cgroup_print_ss_mask(seq, cgrp->subtree_control);
2988 	return 0;
2989 }
2990 
2991 /**
2992  * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2993  * @cgrp: root of the subtree to update csses for
2994  *
2995  * @cgrp's control masks have changed and its subtree's css associations
2996  * need to be updated accordingly.  This function looks up all css_sets
2997  * which are attached to the subtree, creates the matching updated css_sets
2998  * and migrates the tasks to the new ones.
2999  */
3000 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
3001 {
3002 	DEFINE_CGROUP_MGCTX(mgctx);
3003 	struct cgroup_subsys_state *d_css;
3004 	struct cgroup *dsct;
3005 	struct css_set *src_cset;
3006 	bool has_tasks;
3007 	int ret;
3008 
3009 	lockdep_assert_held(&cgroup_mutex);
3010 
3011 	/* look up all csses currently attached to @cgrp's subtree */
3012 	spin_lock_irq(&css_set_lock);
3013 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3014 		struct cgrp_cset_link *link;
3015 
3016 		/*
3017 		 * As cgroup_update_dfl_csses() is only called by
3018 		 * cgroup_apply_control(). The csses associated with the
3019 		 * given cgrp will not be affected by changes made to
3020 		 * its subtree_control file. We can skip them.
3021 		 */
3022 		if (dsct == cgrp)
3023 			continue;
3024 
3025 		list_for_each_entry(link, &dsct->cset_links, cset_link)
3026 			cgroup_migrate_add_src(link->cset, dsct, &mgctx);
3027 	}
3028 	spin_unlock_irq(&css_set_lock);
3029 
3030 	/*
3031 	 * We need to write-lock threadgroup_rwsem while migrating tasks.
3032 	 * However, if there are no source csets for @cgrp, changing its
3033 	 * controllers isn't gonna produce any task migrations and the
3034 	 * write-locking can be skipped safely.
3035 	 */
3036 	has_tasks = !list_empty(&mgctx.preloaded_src_csets);
3037 	cgroup_attach_lock(has_tasks);
3038 
3039 	/* NULL dst indicates self on default hierarchy */
3040 	ret = cgroup_migrate_prepare_dst(&mgctx);
3041 	if (ret)
3042 		goto out_finish;
3043 
3044 	spin_lock_irq(&css_set_lock);
3045 	list_for_each_entry(src_cset, &mgctx.preloaded_src_csets,
3046 			    mg_src_preload_node) {
3047 		struct task_struct *task, *ntask;
3048 
3049 		/* all tasks in src_csets need to be migrated */
3050 		list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
3051 			cgroup_migrate_add_task(task, &mgctx);
3052 	}
3053 	spin_unlock_irq(&css_set_lock);
3054 
3055 	ret = cgroup_migrate_execute(&mgctx);
3056 out_finish:
3057 	cgroup_migrate_finish(&mgctx);
3058 	cgroup_attach_unlock(has_tasks);
3059 	return ret;
3060 }
3061 
3062 /**
3063  * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
3064  * @cgrp: root of the target subtree
3065  *
3066  * Because css offlining is asynchronous, userland may try to re-enable a
3067  * controller while the previous css is still around.  This function grabs
3068  * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
3069  */
3070 void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
3071 	__acquires(&cgroup_mutex)
3072 {
3073 	struct cgroup *dsct;
3074 	struct cgroup_subsys_state *d_css;
3075 	struct cgroup_subsys *ss;
3076 	int ssid;
3077 
3078 restart:
3079 	mutex_lock(&cgroup_mutex);
3080 
3081 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3082 		for_each_subsys(ss, ssid) {
3083 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3084 			DEFINE_WAIT(wait);
3085 
3086 			if (!css || !percpu_ref_is_dying(&css->refcnt))
3087 				continue;
3088 
3089 			cgroup_get_live(dsct);
3090 			prepare_to_wait(&dsct->offline_waitq, &wait,
3091 					TASK_UNINTERRUPTIBLE);
3092 
3093 			mutex_unlock(&cgroup_mutex);
3094 			schedule();
3095 			finish_wait(&dsct->offline_waitq, &wait);
3096 
3097 			cgroup_put(dsct);
3098 			goto restart;
3099 		}
3100 	}
3101 }
3102 
3103 /**
3104  * cgroup_save_control - save control masks and dom_cgrp of a subtree
3105  * @cgrp: root of the target subtree
3106  *
3107  * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the
3108  * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3109  * itself.
3110  */
3111 static void cgroup_save_control(struct cgroup *cgrp)
3112 {
3113 	struct cgroup *dsct;
3114 	struct cgroup_subsys_state *d_css;
3115 
3116 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3117 		dsct->old_subtree_control = dsct->subtree_control;
3118 		dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
3119 		dsct->old_dom_cgrp = dsct->dom_cgrp;
3120 	}
3121 }
3122 
3123 /**
3124  * cgroup_propagate_control - refresh control masks of a subtree
3125  * @cgrp: root of the target subtree
3126  *
3127  * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
3128  * ->subtree_control and propagate controller availability through the
3129  * subtree so that descendants don't have unavailable controllers enabled.
3130  */
3131 static void cgroup_propagate_control(struct cgroup *cgrp)
3132 {
3133 	struct cgroup *dsct;
3134 	struct cgroup_subsys_state *d_css;
3135 
3136 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3137 		dsct->subtree_control &= cgroup_control(dsct);
3138 		dsct->subtree_ss_mask =
3139 			cgroup_calc_subtree_ss_mask(dsct->subtree_control,
3140 						    cgroup_ss_mask(dsct));
3141 	}
3142 }
3143 
3144 /**
3145  * cgroup_restore_control - restore control masks and dom_cgrp of a subtree
3146  * @cgrp: root of the target subtree
3147  *
3148  * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the
3149  * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3150  * itself.
3151  */
3152 static void cgroup_restore_control(struct cgroup *cgrp)
3153 {
3154 	struct cgroup *dsct;
3155 	struct cgroup_subsys_state *d_css;
3156 
3157 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3158 		dsct->subtree_control = dsct->old_subtree_control;
3159 		dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
3160 		dsct->dom_cgrp = dsct->old_dom_cgrp;
3161 	}
3162 }
3163 
3164 static bool css_visible(struct cgroup_subsys_state *css)
3165 {
3166 	struct cgroup_subsys *ss = css->ss;
3167 	struct cgroup *cgrp = css->cgroup;
3168 
3169 	if (cgroup_control(cgrp) & (1 << ss->id))
3170 		return true;
3171 	if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
3172 		return false;
3173 	return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
3174 }
3175 
3176 /**
3177  * cgroup_apply_control_enable - enable or show csses according to control
3178  * @cgrp: root of the target subtree
3179  *
3180  * Walk @cgrp's subtree and create new csses or make the existing ones
3181  * visible.  A css is created invisible if it's being implicitly enabled
3182  * through dependency.  An invisible css is made visible when the userland
3183  * explicitly enables it.
3184  *
3185  * Returns 0 on success, -errno on failure.  On failure, csses which have
3186  * been processed already aren't cleaned up.  The caller is responsible for
3187  * cleaning up with cgroup_apply_control_disable().
3188  */
3189 static int cgroup_apply_control_enable(struct cgroup *cgrp)
3190 {
3191 	struct cgroup *dsct;
3192 	struct cgroup_subsys_state *d_css;
3193 	struct cgroup_subsys *ss;
3194 	int ssid, ret;
3195 
3196 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3197 		for_each_subsys(ss, ssid) {
3198 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3199 
3200 			if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
3201 				continue;
3202 
3203 			if (!css) {
3204 				css = css_create(dsct, ss);
3205 				if (IS_ERR(css))
3206 					return PTR_ERR(css);
3207 			}
3208 
3209 			WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3210 
3211 			if (css_visible(css)) {
3212 				ret = css_populate_dir(css);
3213 				if (ret)
3214 					return ret;
3215 			}
3216 		}
3217 	}
3218 
3219 	return 0;
3220 }
3221 
3222 /**
3223  * cgroup_apply_control_disable - kill or hide csses according to control
3224  * @cgrp: root of the target subtree
3225  *
3226  * Walk @cgrp's subtree and kill and hide csses so that they match
3227  * cgroup_ss_mask() and cgroup_visible_mask().
3228  *
3229  * A css is hidden when the userland requests it to be disabled while other
3230  * subsystems are still depending on it.  The css must not actively control
3231  * resources and be in the vanilla state if it's made visible again later.
3232  * Controllers which may be depended upon should provide ->css_reset() for
3233  * this purpose.
3234  */
3235 static void cgroup_apply_control_disable(struct cgroup *cgrp)
3236 {
3237 	struct cgroup *dsct;
3238 	struct cgroup_subsys_state *d_css;
3239 	struct cgroup_subsys *ss;
3240 	int ssid;
3241 
3242 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3243 		for_each_subsys(ss, ssid) {
3244 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3245 
3246 			if (!css)
3247 				continue;
3248 
3249 			WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3250 
3251 			if (css->parent &&
3252 			    !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
3253 				kill_css(css);
3254 			} else if (!css_visible(css)) {
3255 				css_clear_dir(css);
3256 				if (ss->css_reset)
3257 					ss->css_reset(css);
3258 			}
3259 		}
3260 	}
3261 }
3262 
3263 /**
3264  * cgroup_apply_control - apply control mask updates to the subtree
3265  * @cgrp: root of the target subtree
3266  *
3267  * subsystems can be enabled and disabled in a subtree using the following
3268  * steps.
3269  *
3270  * 1. Call cgroup_save_control() to stash the current state.
3271  * 2. Update ->subtree_control masks in the subtree as desired.
3272  * 3. Call cgroup_apply_control() to apply the changes.
3273  * 4. Optionally perform other related operations.
3274  * 5. Call cgroup_finalize_control() to finish up.
3275  *
3276  * This function implements step 3 and propagates the mask changes
3277  * throughout @cgrp's subtree, updates csses accordingly and perform
3278  * process migrations.
3279  */
3280 static int cgroup_apply_control(struct cgroup *cgrp)
3281 {
3282 	int ret;
3283 
3284 	cgroup_propagate_control(cgrp);
3285 
3286 	ret = cgroup_apply_control_enable(cgrp);
3287 	if (ret)
3288 		return ret;
3289 
3290 	/*
3291 	 * At this point, cgroup_e_css_by_mask() results reflect the new csses
3292 	 * making the following cgroup_update_dfl_csses() properly update
3293 	 * css associations of all tasks in the subtree.
3294 	 */
3295 	ret = cgroup_update_dfl_csses(cgrp);
3296 	if (ret)
3297 		return ret;
3298 
3299 	return 0;
3300 }
3301 
3302 /**
3303  * cgroup_finalize_control - finalize control mask update
3304  * @cgrp: root of the target subtree
3305  * @ret: the result of the update
3306  *
3307  * Finalize control mask update.  See cgroup_apply_control() for more info.
3308  */
3309 static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
3310 {
3311 	if (ret) {
3312 		cgroup_restore_control(cgrp);
3313 		cgroup_propagate_control(cgrp);
3314 	}
3315 
3316 	cgroup_apply_control_disable(cgrp);
3317 }
3318 
3319 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable)
3320 {
3321 	u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask;
3322 
3323 	/* if nothing is getting enabled, nothing to worry about */
3324 	if (!enable)
3325 		return 0;
3326 
3327 	/* can @cgrp host any resources? */
3328 	if (!cgroup_is_valid_domain(cgrp->dom_cgrp))
3329 		return -EOPNOTSUPP;
3330 
3331 	/* mixables don't care */
3332 	if (cgroup_is_mixable(cgrp))
3333 		return 0;
3334 
3335 	if (domain_enable) {
3336 		/* can't enable domain controllers inside a thread subtree */
3337 		if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3338 			return -EOPNOTSUPP;
3339 	} else {
3340 		/*
3341 		 * Threaded controllers can handle internal competitions
3342 		 * and are always allowed inside a (prospective) thread
3343 		 * subtree.
3344 		 */
3345 		if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3346 			return 0;
3347 	}
3348 
3349 	/*
3350 	 * Controllers can't be enabled for a cgroup with tasks to avoid
3351 	 * child cgroups competing against tasks.
3352 	 */
3353 	if (cgroup_has_tasks(cgrp))
3354 		return -EBUSY;
3355 
3356 	return 0;
3357 }
3358 
3359 /* change the enabled child controllers for a cgroup in the default hierarchy */
3360 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3361 					    char *buf, size_t nbytes,
3362 					    loff_t off)
3363 {
3364 	u16 enable = 0, disable = 0;
3365 	struct cgroup *cgrp, *child;
3366 	struct cgroup_subsys *ss;
3367 	char *tok;
3368 	int ssid, ret;
3369 
3370 	/*
3371 	 * Parse input - space separated list of subsystem names prefixed
3372 	 * with either + or -.
3373 	 */
3374 	buf = strstrip(buf);
3375 	while ((tok = strsep(&buf, " "))) {
3376 		if (tok[0] == '\0')
3377 			continue;
3378 		do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
3379 			if (!cgroup_ssid_enabled(ssid) ||
3380 			    strcmp(tok + 1, ss->name))
3381 				continue;
3382 
3383 			if (*tok == '+') {
3384 				enable |= 1 << ssid;
3385 				disable &= ~(1 << ssid);
3386 			} else if (*tok == '-') {
3387 				disable |= 1 << ssid;
3388 				enable &= ~(1 << ssid);
3389 			} else {
3390 				return -EINVAL;
3391 			}
3392 			break;
3393 		} while_each_subsys_mask();
3394 		if (ssid == CGROUP_SUBSYS_COUNT)
3395 			return -EINVAL;
3396 	}
3397 
3398 	cgrp = cgroup_kn_lock_live(of->kn, true);
3399 	if (!cgrp)
3400 		return -ENODEV;
3401 
3402 	for_each_subsys(ss, ssid) {
3403 		if (enable & (1 << ssid)) {
3404 			if (cgrp->subtree_control & (1 << ssid)) {
3405 				enable &= ~(1 << ssid);
3406 				continue;
3407 			}
3408 
3409 			if (!(cgroup_control(cgrp) & (1 << ssid))) {
3410 				ret = -ENOENT;
3411 				goto out_unlock;
3412 			}
3413 		} else if (disable & (1 << ssid)) {
3414 			if (!(cgrp->subtree_control & (1 << ssid))) {
3415 				disable &= ~(1 << ssid);
3416 				continue;
3417 			}
3418 
3419 			/* a child has it enabled? */
3420 			cgroup_for_each_live_child(child, cgrp) {
3421 				if (child->subtree_control & (1 << ssid)) {
3422 					ret = -EBUSY;
3423 					goto out_unlock;
3424 				}
3425 			}
3426 		}
3427 	}
3428 
3429 	if (!enable && !disable) {
3430 		ret = 0;
3431 		goto out_unlock;
3432 	}
3433 
3434 	ret = cgroup_vet_subtree_control_enable(cgrp, enable);
3435 	if (ret)
3436 		goto out_unlock;
3437 
3438 	/* save and update control masks and prepare csses */
3439 	cgroup_save_control(cgrp);
3440 
3441 	cgrp->subtree_control |= enable;
3442 	cgrp->subtree_control &= ~disable;
3443 
3444 	ret = cgroup_apply_control(cgrp);
3445 	cgroup_finalize_control(cgrp, ret);
3446 	if (ret)
3447 		goto out_unlock;
3448 
3449 	kernfs_activate(cgrp->kn);
3450 out_unlock:
3451 	cgroup_kn_unlock(of->kn);
3452 	return ret ?: nbytes;
3453 }
3454 
3455 /**
3456  * cgroup_enable_threaded - make @cgrp threaded
3457  * @cgrp: the target cgroup
3458  *
3459  * Called when "threaded" is written to the cgroup.type interface file and
3460  * tries to make @cgrp threaded and join the parent's resource domain.
3461  * This function is never called on the root cgroup as cgroup.type doesn't
3462  * exist on it.
3463  */
3464 static int cgroup_enable_threaded(struct cgroup *cgrp)
3465 {
3466 	struct cgroup *parent = cgroup_parent(cgrp);
3467 	struct cgroup *dom_cgrp = parent->dom_cgrp;
3468 	struct cgroup *dsct;
3469 	struct cgroup_subsys_state *d_css;
3470 	int ret;
3471 
3472 	lockdep_assert_held(&cgroup_mutex);
3473 
3474 	/* noop if already threaded */
3475 	if (cgroup_is_threaded(cgrp))
3476 		return 0;
3477 
3478 	/*
3479 	 * If @cgroup is populated or has domain controllers enabled, it
3480 	 * can't be switched.  While the below cgroup_can_be_thread_root()
3481 	 * test can catch the same conditions, that's only when @parent is
3482 	 * not mixable, so let's check it explicitly.
3483 	 */
3484 	if (cgroup_is_populated(cgrp) ||
3485 	    cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
3486 		return -EOPNOTSUPP;
3487 
3488 	/* we're joining the parent's domain, ensure its validity */
3489 	if (!cgroup_is_valid_domain(dom_cgrp) ||
3490 	    !cgroup_can_be_thread_root(dom_cgrp))
3491 		return -EOPNOTSUPP;
3492 
3493 	/*
3494 	 * The following shouldn't cause actual migrations and should
3495 	 * always succeed.
3496 	 */
3497 	cgroup_save_control(cgrp);
3498 
3499 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)
3500 		if (dsct == cgrp || cgroup_is_threaded(dsct))
3501 			dsct->dom_cgrp = dom_cgrp;
3502 
3503 	ret = cgroup_apply_control(cgrp);
3504 	if (!ret)
3505 		parent->nr_threaded_children++;
3506 
3507 	cgroup_finalize_control(cgrp, ret);
3508 	return ret;
3509 }
3510 
3511 static int cgroup_type_show(struct seq_file *seq, void *v)
3512 {
3513 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3514 
3515 	if (cgroup_is_threaded(cgrp))
3516 		seq_puts(seq, "threaded\n");
3517 	else if (!cgroup_is_valid_domain(cgrp))
3518 		seq_puts(seq, "domain invalid\n");
3519 	else if (cgroup_is_thread_root(cgrp))
3520 		seq_puts(seq, "domain threaded\n");
3521 	else
3522 		seq_puts(seq, "domain\n");
3523 
3524 	return 0;
3525 }
3526 
3527 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf,
3528 				 size_t nbytes, loff_t off)
3529 {
3530 	struct cgroup *cgrp;
3531 	int ret;
3532 
3533 	/* only switching to threaded mode is supported */
3534 	if (strcmp(strstrip(buf), "threaded"))
3535 		return -EINVAL;
3536 
3537 	/* drain dying csses before we re-apply (threaded) subtree control */
3538 	cgrp = cgroup_kn_lock_live(of->kn, true);
3539 	if (!cgrp)
3540 		return -ENOENT;
3541 
3542 	/* threaded can only be enabled */
3543 	ret = cgroup_enable_threaded(cgrp);
3544 
3545 	cgroup_kn_unlock(of->kn);
3546 	return ret ?: nbytes;
3547 }
3548 
3549 static int cgroup_max_descendants_show(struct seq_file *seq, void *v)
3550 {
3551 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3552 	int descendants = READ_ONCE(cgrp->max_descendants);
3553 
3554 	if (descendants == INT_MAX)
3555 		seq_puts(seq, "max\n");
3556 	else
3557 		seq_printf(seq, "%d\n", descendants);
3558 
3559 	return 0;
3560 }
3561 
3562 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of,
3563 					   char *buf, size_t nbytes, loff_t off)
3564 {
3565 	struct cgroup *cgrp;
3566 	int descendants;
3567 	ssize_t ret;
3568 
3569 	buf = strstrip(buf);
3570 	if (!strcmp(buf, "max")) {
3571 		descendants = INT_MAX;
3572 	} else {
3573 		ret = kstrtoint(buf, 0, &descendants);
3574 		if (ret)
3575 			return ret;
3576 	}
3577 
3578 	if (descendants < 0)
3579 		return -ERANGE;
3580 
3581 	cgrp = cgroup_kn_lock_live(of->kn, false);
3582 	if (!cgrp)
3583 		return -ENOENT;
3584 
3585 	cgrp->max_descendants = descendants;
3586 
3587 	cgroup_kn_unlock(of->kn);
3588 
3589 	return nbytes;
3590 }
3591 
3592 static int cgroup_max_depth_show(struct seq_file *seq, void *v)
3593 {
3594 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3595 	int depth = READ_ONCE(cgrp->max_depth);
3596 
3597 	if (depth == INT_MAX)
3598 		seq_puts(seq, "max\n");
3599 	else
3600 		seq_printf(seq, "%d\n", depth);
3601 
3602 	return 0;
3603 }
3604 
3605 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of,
3606 				      char *buf, size_t nbytes, loff_t off)
3607 {
3608 	struct cgroup *cgrp;
3609 	ssize_t ret;
3610 	int depth;
3611 
3612 	buf = strstrip(buf);
3613 	if (!strcmp(buf, "max")) {
3614 		depth = INT_MAX;
3615 	} else {
3616 		ret = kstrtoint(buf, 0, &depth);
3617 		if (ret)
3618 			return ret;
3619 	}
3620 
3621 	if (depth < 0)
3622 		return -ERANGE;
3623 
3624 	cgrp = cgroup_kn_lock_live(of->kn, false);
3625 	if (!cgrp)
3626 		return -ENOENT;
3627 
3628 	cgrp->max_depth = depth;
3629 
3630 	cgroup_kn_unlock(of->kn);
3631 
3632 	return nbytes;
3633 }
3634 
3635 static int cgroup_events_show(struct seq_file *seq, void *v)
3636 {
3637 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3638 
3639 	seq_printf(seq, "populated %d\n", cgroup_is_populated(cgrp));
3640 	seq_printf(seq, "frozen %d\n", test_bit(CGRP_FROZEN, &cgrp->flags));
3641 
3642 	return 0;
3643 }
3644 
3645 static int cgroup_stat_show(struct seq_file *seq, void *v)
3646 {
3647 	struct cgroup *cgroup = seq_css(seq)->cgroup;
3648 
3649 	seq_printf(seq, "nr_descendants %d\n",
3650 		   cgroup->nr_descendants);
3651 	seq_printf(seq, "nr_dying_descendants %d\n",
3652 		   cgroup->nr_dying_descendants);
3653 
3654 	return 0;
3655 }
3656 
3657 static int __maybe_unused cgroup_extra_stat_show(struct seq_file *seq,
3658 						 struct cgroup *cgrp, int ssid)
3659 {
3660 	struct cgroup_subsys *ss = cgroup_subsys[ssid];
3661 	struct cgroup_subsys_state *css;
3662 	int ret;
3663 
3664 	if (!ss->css_extra_stat_show)
3665 		return 0;
3666 
3667 	css = cgroup_tryget_css(cgrp, ss);
3668 	if (!css)
3669 		return 0;
3670 
3671 	ret = ss->css_extra_stat_show(seq, css);
3672 	css_put(css);
3673 	return ret;
3674 }
3675 
3676 static int cpu_stat_show(struct seq_file *seq, void *v)
3677 {
3678 	struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup;
3679 	int ret = 0;
3680 
3681 	cgroup_base_stat_cputime_show(seq);
3682 #ifdef CONFIG_CGROUP_SCHED
3683 	ret = cgroup_extra_stat_show(seq, cgrp, cpu_cgrp_id);
3684 #endif
3685 	return ret;
3686 }
3687 
3688 #ifdef CONFIG_PSI
3689 static int cgroup_io_pressure_show(struct seq_file *seq, void *v)
3690 {
3691 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3692 	struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : cgrp->psi;
3693 
3694 	return psi_show(seq, psi, PSI_IO);
3695 }
3696 static int cgroup_memory_pressure_show(struct seq_file *seq, void *v)
3697 {
3698 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3699 	struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : cgrp->psi;
3700 
3701 	return psi_show(seq, psi, PSI_MEM);
3702 }
3703 static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v)
3704 {
3705 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3706 	struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : cgrp->psi;
3707 
3708 	return psi_show(seq, psi, PSI_CPU);
3709 }
3710 
3711 static ssize_t cgroup_pressure_write(struct kernfs_open_file *of, char *buf,
3712 					  size_t nbytes, enum psi_res res)
3713 {
3714 	struct cgroup_file_ctx *ctx = of->priv;
3715 	struct psi_trigger *new;
3716 	struct cgroup *cgrp;
3717 	struct psi_group *psi;
3718 
3719 	cgrp = cgroup_kn_lock_live(of->kn, false);
3720 	if (!cgrp)
3721 		return -ENODEV;
3722 
3723 	cgroup_get(cgrp);
3724 	cgroup_kn_unlock(of->kn);
3725 
3726 	/* Allow only one trigger per file descriptor */
3727 	if (ctx->psi.trigger) {
3728 		cgroup_put(cgrp);
3729 		return -EBUSY;
3730 	}
3731 
3732 	psi = cgroup_ino(cgrp) == 1 ? &psi_system : cgrp->psi;
3733 	new = psi_trigger_create(psi, buf, res);
3734 	if (IS_ERR(new)) {
3735 		cgroup_put(cgrp);
3736 		return PTR_ERR(new);
3737 	}
3738 
3739 	smp_store_release(&ctx->psi.trigger, new);
3740 	cgroup_put(cgrp);
3741 
3742 	return nbytes;
3743 }
3744 
3745 static ssize_t cgroup_io_pressure_write(struct kernfs_open_file *of,
3746 					  char *buf, size_t nbytes,
3747 					  loff_t off)
3748 {
3749 	return cgroup_pressure_write(of, buf, nbytes, PSI_IO);
3750 }
3751 
3752 static ssize_t cgroup_memory_pressure_write(struct kernfs_open_file *of,
3753 					  char *buf, size_t nbytes,
3754 					  loff_t off)
3755 {
3756 	return cgroup_pressure_write(of, buf, nbytes, PSI_MEM);
3757 }
3758 
3759 static ssize_t cgroup_cpu_pressure_write(struct kernfs_open_file *of,
3760 					  char *buf, size_t nbytes,
3761 					  loff_t off)
3762 {
3763 	return cgroup_pressure_write(of, buf, nbytes, PSI_CPU);
3764 }
3765 
3766 static __poll_t cgroup_pressure_poll(struct kernfs_open_file *of,
3767 					  poll_table *pt)
3768 {
3769 	struct cgroup_file_ctx *ctx = of->priv;
3770 
3771 	return psi_trigger_poll(&ctx->psi.trigger, of->file, pt);
3772 }
3773 
3774 static void cgroup_pressure_release(struct kernfs_open_file *of)
3775 {
3776 	struct cgroup_file_ctx *ctx = of->priv;
3777 
3778 	psi_trigger_destroy(ctx->psi.trigger);
3779 }
3780 
3781 bool cgroup_psi_enabled(void)
3782 {
3783 	return (cgroup_feature_disable_mask & (1 << OPT_FEATURE_PRESSURE)) == 0;
3784 }
3785 
3786 #else /* CONFIG_PSI */
3787 bool cgroup_psi_enabled(void)
3788 {
3789 	return false;
3790 }
3791 
3792 #endif /* CONFIG_PSI */
3793 
3794 static int cgroup_freeze_show(struct seq_file *seq, void *v)
3795 {
3796 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3797 
3798 	seq_printf(seq, "%d\n", cgrp->freezer.freeze);
3799 
3800 	return 0;
3801 }
3802 
3803 static ssize_t cgroup_freeze_write(struct kernfs_open_file *of,
3804 				   char *buf, size_t nbytes, loff_t off)
3805 {
3806 	struct cgroup *cgrp;
3807 	ssize_t ret;
3808 	int freeze;
3809 
3810 	ret = kstrtoint(strstrip(buf), 0, &freeze);
3811 	if (ret)
3812 		return ret;
3813 
3814 	if (freeze < 0 || freeze > 1)
3815 		return -ERANGE;
3816 
3817 	cgrp = cgroup_kn_lock_live(of->kn, false);
3818 	if (!cgrp)
3819 		return -ENOENT;
3820 
3821 	cgroup_freeze(cgrp, freeze);
3822 
3823 	cgroup_kn_unlock(of->kn);
3824 
3825 	return nbytes;
3826 }
3827 
3828 static void __cgroup_kill(struct cgroup *cgrp)
3829 {
3830 	struct css_task_iter it;
3831 	struct task_struct *task;
3832 
3833 	lockdep_assert_held(&cgroup_mutex);
3834 
3835 	spin_lock_irq(&css_set_lock);
3836 	set_bit(CGRP_KILL, &cgrp->flags);
3837 	spin_unlock_irq(&css_set_lock);
3838 
3839 	css_task_iter_start(&cgrp->self, CSS_TASK_ITER_PROCS | CSS_TASK_ITER_THREADED, &it);
3840 	while ((task = css_task_iter_next(&it))) {
3841 		/* Ignore kernel threads here. */
3842 		if (task->flags & PF_KTHREAD)
3843 			continue;
3844 
3845 		/* Skip tasks that are already dying. */
3846 		if (__fatal_signal_pending(task))
3847 			continue;
3848 
3849 		send_sig(SIGKILL, task, 0);
3850 	}
3851 	css_task_iter_end(&it);
3852 
3853 	spin_lock_irq(&css_set_lock);
3854 	clear_bit(CGRP_KILL, &cgrp->flags);
3855 	spin_unlock_irq(&css_set_lock);
3856 }
3857 
3858 static void cgroup_kill(struct cgroup *cgrp)
3859 {
3860 	struct cgroup_subsys_state *css;
3861 	struct cgroup *dsct;
3862 
3863 	lockdep_assert_held(&cgroup_mutex);
3864 
3865 	cgroup_for_each_live_descendant_pre(dsct, css, cgrp)
3866 		__cgroup_kill(dsct);
3867 }
3868 
3869 static ssize_t cgroup_kill_write(struct kernfs_open_file *of, char *buf,
3870 				 size_t nbytes, loff_t off)
3871 {
3872 	ssize_t ret = 0;
3873 	int kill;
3874 	struct cgroup *cgrp;
3875 
3876 	ret = kstrtoint(strstrip(buf), 0, &kill);
3877 	if (ret)
3878 		return ret;
3879 
3880 	if (kill != 1)
3881 		return -ERANGE;
3882 
3883 	cgrp = cgroup_kn_lock_live(of->kn, false);
3884 	if (!cgrp)
3885 		return -ENOENT;
3886 
3887 	/*
3888 	 * Killing is a process directed operation, i.e. the whole thread-group
3889 	 * is taken down so act like we do for cgroup.procs and only make this
3890 	 * writable in non-threaded cgroups.
3891 	 */
3892 	if (cgroup_is_threaded(cgrp))
3893 		ret = -EOPNOTSUPP;
3894 	else
3895 		cgroup_kill(cgrp);
3896 
3897 	cgroup_kn_unlock(of->kn);
3898 
3899 	return ret ?: nbytes;
3900 }
3901 
3902 static int cgroup_file_open(struct kernfs_open_file *of)
3903 {
3904 	struct cftype *cft = of_cft(of);
3905 	struct cgroup_file_ctx *ctx;
3906 	int ret;
3907 
3908 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
3909 	if (!ctx)
3910 		return -ENOMEM;
3911 
3912 	ctx->ns = current->nsproxy->cgroup_ns;
3913 	get_cgroup_ns(ctx->ns);
3914 	of->priv = ctx;
3915 
3916 	if (!cft->open)
3917 		return 0;
3918 
3919 	ret = cft->open(of);
3920 	if (ret) {
3921 		put_cgroup_ns(ctx->ns);
3922 		kfree(ctx);
3923 	}
3924 	return ret;
3925 }
3926 
3927 static void cgroup_file_release(struct kernfs_open_file *of)
3928 {
3929 	struct cftype *cft = of_cft(of);
3930 	struct cgroup_file_ctx *ctx = of->priv;
3931 
3932 	if (cft->release)
3933 		cft->release(of);
3934 	put_cgroup_ns(ctx->ns);
3935 	kfree(ctx);
3936 }
3937 
3938 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3939 				 size_t nbytes, loff_t off)
3940 {
3941 	struct cgroup_file_ctx *ctx = of->priv;
3942 	struct cgroup *cgrp = of->kn->parent->priv;
3943 	struct cftype *cft = of_cft(of);
3944 	struct cgroup_subsys_state *css;
3945 	int ret;
3946 
3947 	if (!nbytes)
3948 		return 0;
3949 
3950 	/*
3951 	 * If namespaces are delegation boundaries, disallow writes to
3952 	 * files in an non-init namespace root from inside the namespace
3953 	 * except for the files explicitly marked delegatable -
3954 	 * cgroup.procs and cgroup.subtree_control.
3955 	 */
3956 	if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) &&
3957 	    !(cft->flags & CFTYPE_NS_DELEGATABLE) &&
3958 	    ctx->ns != &init_cgroup_ns && ctx->ns->root_cset->dfl_cgrp == cgrp)
3959 		return -EPERM;
3960 
3961 	if (cft->write)
3962 		return cft->write(of, buf, nbytes, off);
3963 
3964 	/*
3965 	 * kernfs guarantees that a file isn't deleted with operations in
3966 	 * flight, which means that the matching css is and stays alive and
3967 	 * doesn't need to be pinned.  The RCU locking is not necessary
3968 	 * either.  It's just for the convenience of using cgroup_css().
3969 	 */
3970 	rcu_read_lock();
3971 	css = cgroup_css(cgrp, cft->ss);
3972 	rcu_read_unlock();
3973 
3974 	if (cft->write_u64) {
3975 		unsigned long long v;
3976 		ret = kstrtoull(buf, 0, &v);
3977 		if (!ret)
3978 			ret = cft->write_u64(css, cft, v);
3979 	} else if (cft->write_s64) {
3980 		long long v;
3981 		ret = kstrtoll(buf, 0, &v);
3982 		if (!ret)
3983 			ret = cft->write_s64(css, cft, v);
3984 	} else {
3985 		ret = -EINVAL;
3986 	}
3987 
3988 	return ret ?: nbytes;
3989 }
3990 
3991 static __poll_t cgroup_file_poll(struct kernfs_open_file *of, poll_table *pt)
3992 {
3993 	struct cftype *cft = of_cft(of);
3994 
3995 	if (cft->poll)
3996 		return cft->poll(of, pt);
3997 
3998 	return kernfs_generic_poll(of, pt);
3999 }
4000 
4001 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
4002 {
4003 	return seq_cft(seq)->seq_start(seq, ppos);
4004 }
4005 
4006 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
4007 {
4008 	return seq_cft(seq)->seq_next(seq, v, ppos);
4009 }
4010 
4011 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
4012 {
4013 	if (seq_cft(seq)->seq_stop)
4014 		seq_cft(seq)->seq_stop(seq, v);
4015 }
4016 
4017 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
4018 {
4019 	struct cftype *cft = seq_cft(m);
4020 	struct cgroup_subsys_state *css = seq_css(m);
4021 
4022 	if (cft->seq_show)
4023 		return cft->seq_show(m, arg);
4024 
4025 	if (cft->read_u64)
4026 		seq_printf(m, "%llu\n", cft->read_u64(css, cft));
4027 	else if (cft->read_s64)
4028 		seq_printf(m, "%lld\n", cft->read_s64(css, cft));
4029 	else
4030 		return -EINVAL;
4031 	return 0;
4032 }
4033 
4034 static struct kernfs_ops cgroup_kf_single_ops = {
4035 	.atomic_write_len	= PAGE_SIZE,
4036 	.open			= cgroup_file_open,
4037 	.release		= cgroup_file_release,
4038 	.write			= cgroup_file_write,
4039 	.poll			= cgroup_file_poll,
4040 	.seq_show		= cgroup_seqfile_show,
4041 };
4042 
4043 static struct kernfs_ops cgroup_kf_ops = {
4044 	.atomic_write_len	= PAGE_SIZE,
4045 	.open			= cgroup_file_open,
4046 	.release		= cgroup_file_release,
4047 	.write			= cgroup_file_write,
4048 	.poll			= cgroup_file_poll,
4049 	.seq_start		= cgroup_seqfile_start,
4050 	.seq_next		= cgroup_seqfile_next,
4051 	.seq_stop		= cgroup_seqfile_stop,
4052 	.seq_show		= cgroup_seqfile_show,
4053 };
4054 
4055 /* set uid and gid of cgroup dirs and files to that of the creator */
4056 static int cgroup_kn_set_ugid(struct kernfs_node *kn)
4057 {
4058 	struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
4059 			       .ia_uid = current_fsuid(),
4060 			       .ia_gid = current_fsgid(), };
4061 
4062 	if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
4063 	    gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
4064 		return 0;
4065 
4066 	return kernfs_setattr(kn, &iattr);
4067 }
4068 
4069 static void cgroup_file_notify_timer(struct timer_list *timer)
4070 {
4071 	cgroup_file_notify(container_of(timer, struct cgroup_file,
4072 					notify_timer));
4073 }
4074 
4075 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
4076 			   struct cftype *cft)
4077 {
4078 	char name[CGROUP_FILE_NAME_MAX];
4079 	struct kernfs_node *kn;
4080 	struct lock_class_key *key = NULL;
4081 	int ret;
4082 
4083 #ifdef CONFIG_DEBUG_LOCK_ALLOC
4084 	key = &cft->lockdep_key;
4085 #endif
4086 	kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
4087 				  cgroup_file_mode(cft),
4088 				  GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
4089 				  0, cft->kf_ops, cft,
4090 				  NULL, key);
4091 	if (IS_ERR(kn))
4092 		return PTR_ERR(kn);
4093 
4094 	ret = cgroup_kn_set_ugid(kn);
4095 	if (ret) {
4096 		kernfs_remove(kn);
4097 		return ret;
4098 	}
4099 
4100 	if (cft->file_offset) {
4101 		struct cgroup_file *cfile = (void *)css + cft->file_offset;
4102 
4103 		timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0);
4104 
4105 		spin_lock_irq(&cgroup_file_kn_lock);
4106 		cfile->kn = kn;
4107 		spin_unlock_irq(&cgroup_file_kn_lock);
4108 	}
4109 
4110 	return 0;
4111 }
4112 
4113 /**
4114  * cgroup_addrm_files - add or remove files to a cgroup directory
4115  * @css: the target css
4116  * @cgrp: the target cgroup (usually css->cgroup)
4117  * @cfts: array of cftypes to be added
4118  * @is_add: whether to add or remove
4119  *
4120  * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
4121  * For removals, this function never fails.
4122  */
4123 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
4124 			      struct cgroup *cgrp, struct cftype cfts[],
4125 			      bool is_add)
4126 {
4127 	struct cftype *cft, *cft_end = NULL;
4128 	int ret = 0;
4129 
4130 	lockdep_assert_held(&cgroup_mutex);
4131 
4132 restart:
4133 	for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
4134 		/* does cft->flags tell us to skip this file on @cgrp? */
4135 		if ((cft->flags & CFTYPE_PRESSURE) && !cgroup_psi_enabled())
4136 			continue;
4137 		if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
4138 			continue;
4139 		if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
4140 			continue;
4141 		if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
4142 			continue;
4143 		if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
4144 			continue;
4145 		if ((cft->flags & CFTYPE_DEBUG) && !cgroup_debug)
4146 			continue;
4147 		if (is_add) {
4148 			ret = cgroup_add_file(css, cgrp, cft);
4149 			if (ret) {
4150 				pr_warn("%s: failed to add %s, err=%d\n",
4151 					__func__, cft->name, ret);
4152 				cft_end = cft;
4153 				is_add = false;
4154 				goto restart;
4155 			}
4156 		} else {
4157 			cgroup_rm_file(cgrp, cft);
4158 		}
4159 	}
4160 	return ret;
4161 }
4162 
4163 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
4164 {
4165 	struct cgroup_subsys *ss = cfts[0].ss;
4166 	struct cgroup *root = &ss->root->cgrp;
4167 	struct cgroup_subsys_state *css;
4168 	int ret = 0;
4169 
4170 	lockdep_assert_held(&cgroup_mutex);
4171 
4172 	/* add/rm files for all cgroups created before */
4173 	css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
4174 		struct cgroup *cgrp = css->cgroup;
4175 
4176 		if (!(css->flags & CSS_VISIBLE))
4177 			continue;
4178 
4179 		ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
4180 		if (ret)
4181 			break;
4182 	}
4183 
4184 	if (is_add && !ret)
4185 		kernfs_activate(root->kn);
4186 	return ret;
4187 }
4188 
4189 static void cgroup_exit_cftypes(struct cftype *cfts)
4190 {
4191 	struct cftype *cft;
4192 
4193 	for (cft = cfts; cft->name[0] != '\0'; cft++) {
4194 		/* free copy for custom atomic_write_len, see init_cftypes() */
4195 		if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
4196 			kfree(cft->kf_ops);
4197 		cft->kf_ops = NULL;
4198 		cft->ss = NULL;
4199 
4200 		/* revert flags set by cgroup core while adding @cfts */
4201 		cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
4202 	}
4203 }
4204 
4205 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4206 {
4207 	struct cftype *cft;
4208 
4209 	for (cft = cfts; cft->name[0] != '\0'; cft++) {
4210 		struct kernfs_ops *kf_ops;
4211 
4212 		WARN_ON(cft->ss || cft->kf_ops);
4213 
4214 		if ((cft->flags & CFTYPE_PRESSURE) && !cgroup_psi_enabled())
4215 			continue;
4216 
4217 		if (cft->seq_start)
4218 			kf_ops = &cgroup_kf_ops;
4219 		else
4220 			kf_ops = &cgroup_kf_single_ops;
4221 
4222 		/*
4223 		 * Ugh... if @cft wants a custom max_write_len, we need to
4224 		 * make a copy of kf_ops to set its atomic_write_len.
4225 		 */
4226 		if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
4227 			kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
4228 			if (!kf_ops) {
4229 				cgroup_exit_cftypes(cfts);
4230 				return -ENOMEM;
4231 			}
4232 			kf_ops->atomic_write_len = cft->max_write_len;
4233 		}
4234 
4235 		cft->kf_ops = kf_ops;
4236 		cft->ss = ss;
4237 	}
4238 
4239 	return 0;
4240 }
4241 
4242 static int cgroup_rm_cftypes_locked(struct cftype *cfts)
4243 {
4244 	lockdep_assert_held(&cgroup_mutex);
4245 
4246 	if (!cfts || !cfts[0].ss)
4247 		return -ENOENT;
4248 
4249 	list_del(&cfts->node);
4250 	cgroup_apply_cftypes(cfts, false);
4251 	cgroup_exit_cftypes(cfts);
4252 	return 0;
4253 }
4254 
4255 /**
4256  * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
4257  * @cfts: zero-length name terminated array of cftypes
4258  *
4259  * Unregister @cfts.  Files described by @cfts are removed from all
4260  * existing cgroups and all future cgroups won't have them either.  This
4261  * function can be called anytime whether @cfts' subsys is attached or not.
4262  *
4263  * Returns 0 on successful unregistration, -ENOENT if @cfts is not
4264  * registered.
4265  */
4266 int cgroup_rm_cftypes(struct cftype *cfts)
4267 {
4268 	int ret;
4269 
4270 	mutex_lock(&cgroup_mutex);
4271 	ret = cgroup_rm_cftypes_locked(cfts);
4272 	mutex_unlock(&cgroup_mutex);
4273 	return ret;
4274 }
4275 
4276 /**
4277  * cgroup_add_cftypes - add an array of cftypes to a subsystem
4278  * @ss: target cgroup subsystem
4279  * @cfts: zero-length name terminated array of cftypes
4280  *
4281  * Register @cfts to @ss.  Files described by @cfts are created for all
4282  * existing cgroups to which @ss is attached and all future cgroups will
4283  * have them too.  This function can be called anytime whether @ss is
4284  * attached or not.
4285  *
4286  * Returns 0 on successful registration, -errno on failure.  Note that this
4287  * function currently returns 0 as long as @cfts registration is successful
4288  * even if some file creation attempts on existing cgroups fail.
4289  */
4290 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4291 {
4292 	int ret;
4293 
4294 	if (!cgroup_ssid_enabled(ss->id))
4295 		return 0;
4296 
4297 	if (!cfts || cfts[0].name[0] == '\0')
4298 		return 0;
4299 
4300 	ret = cgroup_init_cftypes(ss, cfts);
4301 	if (ret)
4302 		return ret;
4303 
4304 	mutex_lock(&cgroup_mutex);
4305 
4306 	list_add_tail(&cfts->node, &ss->cfts);
4307 	ret = cgroup_apply_cftypes(cfts, true);
4308 	if (ret)
4309 		cgroup_rm_cftypes_locked(cfts);
4310 
4311 	mutex_unlock(&cgroup_mutex);
4312 	return ret;
4313 }
4314 
4315 /**
4316  * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
4317  * @ss: target cgroup subsystem
4318  * @cfts: zero-length name terminated array of cftypes
4319  *
4320  * Similar to cgroup_add_cftypes() but the added files are only used for
4321  * the default hierarchy.
4322  */
4323 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4324 {
4325 	struct cftype *cft;
4326 
4327 	for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4328 		cft->flags |= __CFTYPE_ONLY_ON_DFL;
4329 	return cgroup_add_cftypes(ss, cfts);
4330 }
4331 
4332 /**
4333  * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
4334  * @ss: target cgroup subsystem
4335  * @cfts: zero-length name terminated array of cftypes
4336  *
4337  * Similar to cgroup_add_cftypes() but the added files are only used for
4338  * the legacy hierarchies.
4339  */
4340 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4341 {
4342 	struct cftype *cft;
4343 
4344 	for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4345 		cft->flags |= __CFTYPE_NOT_ON_DFL;
4346 	return cgroup_add_cftypes(ss, cfts);
4347 }
4348 
4349 /**
4350  * cgroup_file_notify - generate a file modified event for a cgroup_file
4351  * @cfile: target cgroup_file
4352  *
4353  * @cfile must have been obtained by setting cftype->file_offset.
4354  */
4355 void cgroup_file_notify(struct cgroup_file *cfile)
4356 {
4357 	unsigned long flags;
4358 
4359 	spin_lock_irqsave(&cgroup_file_kn_lock, flags);
4360 	if (cfile->kn) {
4361 		unsigned long last = cfile->notified_at;
4362 		unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV;
4363 
4364 		if (time_in_range(jiffies, last, next)) {
4365 			timer_reduce(&cfile->notify_timer, next);
4366 		} else {
4367 			kernfs_notify(cfile->kn);
4368 			cfile->notified_at = jiffies;
4369 		}
4370 	}
4371 	spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
4372 }
4373 
4374 /**
4375  * css_next_child - find the next child of a given css
4376  * @pos: the current position (%NULL to initiate traversal)
4377  * @parent: css whose children to walk
4378  *
4379  * This function returns the next child of @parent and should be called
4380  * under either cgroup_mutex or RCU read lock.  The only requirement is
4381  * that @parent and @pos are accessible.  The next sibling is guaranteed to
4382  * be returned regardless of their states.
4383  *
4384  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4385  * css which finished ->css_online() is guaranteed to be visible in the
4386  * future iterations and will stay visible until the last reference is put.
4387  * A css which hasn't finished ->css_online() or already finished
4388  * ->css_offline() may show up during traversal.  It's each subsystem's
4389  * responsibility to synchronize against on/offlining.
4390  */
4391 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
4392 					   struct cgroup_subsys_state *parent)
4393 {
4394 	struct cgroup_subsys_state *next;
4395 
4396 	cgroup_assert_mutex_or_rcu_locked();
4397 
4398 	/*
4399 	 * @pos could already have been unlinked from the sibling list.
4400 	 * Once a cgroup is removed, its ->sibling.next is no longer
4401 	 * updated when its next sibling changes.  CSS_RELEASED is set when
4402 	 * @pos is taken off list, at which time its next pointer is valid,
4403 	 * and, as releases are serialized, the one pointed to by the next
4404 	 * pointer is guaranteed to not have started release yet.  This
4405 	 * implies that if we observe !CSS_RELEASED on @pos in this RCU
4406 	 * critical section, the one pointed to by its next pointer is
4407 	 * guaranteed to not have finished its RCU grace period even if we
4408 	 * have dropped rcu_read_lock() in-between iterations.
4409 	 *
4410 	 * If @pos has CSS_RELEASED set, its next pointer can't be
4411 	 * dereferenced; however, as each css is given a monotonically
4412 	 * increasing unique serial number and always appended to the
4413 	 * sibling list, the next one can be found by walking the parent's
4414 	 * children until the first css with higher serial number than
4415 	 * @pos's.  While this path can be slower, it happens iff iteration
4416 	 * races against release and the race window is very small.
4417 	 */
4418 	if (!pos) {
4419 		next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
4420 	} else if (likely(!(pos->flags & CSS_RELEASED))) {
4421 		next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
4422 	} else {
4423 		list_for_each_entry_rcu(next, &parent->children, sibling,
4424 					lockdep_is_held(&cgroup_mutex))
4425 			if (next->serial_nr > pos->serial_nr)
4426 				break;
4427 	}
4428 
4429 	/*
4430 	 * @next, if not pointing to the head, can be dereferenced and is
4431 	 * the next sibling.
4432 	 */
4433 	if (&next->sibling != &parent->children)
4434 		return next;
4435 	return NULL;
4436 }
4437 
4438 /**
4439  * css_next_descendant_pre - find the next descendant for pre-order walk
4440  * @pos: the current position (%NULL to initiate traversal)
4441  * @root: css whose descendants to walk
4442  *
4443  * To be used by css_for_each_descendant_pre().  Find the next descendant
4444  * to visit for pre-order traversal of @root's descendants.  @root is
4445  * included in the iteration and the first node to be visited.
4446  *
4447  * While this function requires cgroup_mutex or RCU read locking, it
4448  * doesn't require the whole traversal to be contained in a single critical
4449  * section.  This function will return the correct next descendant as long
4450  * as both @pos and @root are accessible and @pos is a descendant of @root.
4451  *
4452  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4453  * css which finished ->css_online() is guaranteed to be visible in the
4454  * future iterations and will stay visible until the last reference is put.
4455  * A css which hasn't finished ->css_online() or already finished
4456  * ->css_offline() may show up during traversal.  It's each subsystem's
4457  * responsibility to synchronize against on/offlining.
4458  */
4459 struct cgroup_subsys_state *
4460 css_next_descendant_pre(struct cgroup_subsys_state *pos,
4461 			struct cgroup_subsys_state *root)
4462 {
4463 	struct cgroup_subsys_state *next;
4464 
4465 	cgroup_assert_mutex_or_rcu_locked();
4466 
4467 	/* if first iteration, visit @root */
4468 	if (!pos)
4469 		return root;
4470 
4471 	/* visit the first child if exists */
4472 	next = css_next_child(NULL, pos);
4473 	if (next)
4474 		return next;
4475 
4476 	/* no child, visit my or the closest ancestor's next sibling */
4477 	while (pos != root) {
4478 		next = css_next_child(pos, pos->parent);
4479 		if (next)
4480 			return next;
4481 		pos = pos->parent;
4482 	}
4483 
4484 	return NULL;
4485 }
4486 EXPORT_SYMBOL_GPL(css_next_descendant_pre);
4487 
4488 /**
4489  * css_rightmost_descendant - return the rightmost descendant of a css
4490  * @pos: css of interest
4491  *
4492  * Return the rightmost descendant of @pos.  If there's no descendant, @pos
4493  * is returned.  This can be used during pre-order traversal to skip
4494  * subtree of @pos.
4495  *
4496  * While this function requires cgroup_mutex or RCU read locking, it
4497  * doesn't require the whole traversal to be contained in a single critical
4498  * section.  This function will return the correct rightmost descendant as
4499  * long as @pos is accessible.
4500  */
4501 struct cgroup_subsys_state *
4502 css_rightmost_descendant(struct cgroup_subsys_state *pos)
4503 {
4504 	struct cgroup_subsys_state *last, *tmp;
4505 
4506 	cgroup_assert_mutex_or_rcu_locked();
4507 
4508 	do {
4509 		last = pos;
4510 		/* ->prev isn't RCU safe, walk ->next till the end */
4511 		pos = NULL;
4512 		css_for_each_child(tmp, last)
4513 			pos = tmp;
4514 	} while (pos);
4515 
4516 	return last;
4517 }
4518 
4519 static struct cgroup_subsys_state *
4520 css_leftmost_descendant(struct cgroup_subsys_state *pos)
4521 {
4522 	struct cgroup_subsys_state *last;
4523 
4524 	do {
4525 		last = pos;
4526 		pos = css_next_child(NULL, pos);
4527 	} while (pos);
4528 
4529 	return last;
4530 }
4531 
4532 /**
4533  * css_next_descendant_post - find the next descendant for post-order walk
4534  * @pos: the current position (%NULL to initiate traversal)
4535  * @root: css whose descendants to walk
4536  *
4537  * To be used by css_for_each_descendant_post().  Find the next descendant
4538  * to visit for post-order traversal of @root's descendants.  @root is
4539  * included in the iteration and the last node to be visited.
4540  *
4541  * While this function requires cgroup_mutex or RCU read locking, it
4542  * doesn't require the whole traversal to be contained in a single critical
4543  * section.  This function will return the correct next descendant as long
4544  * as both @pos and @cgroup are accessible and @pos is a descendant of
4545  * @cgroup.
4546  *
4547  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4548  * css which finished ->css_online() is guaranteed to be visible in the
4549  * future iterations and will stay visible until the last reference is put.
4550  * A css which hasn't finished ->css_online() or already finished
4551  * ->css_offline() may show up during traversal.  It's each subsystem's
4552  * responsibility to synchronize against on/offlining.
4553  */
4554 struct cgroup_subsys_state *
4555 css_next_descendant_post(struct cgroup_subsys_state *pos,
4556 			 struct cgroup_subsys_state *root)
4557 {
4558 	struct cgroup_subsys_state *next;
4559 
4560 	cgroup_assert_mutex_or_rcu_locked();
4561 
4562 	/* if first iteration, visit leftmost descendant which may be @root */
4563 	if (!pos)
4564 		return css_leftmost_descendant(root);
4565 
4566 	/* if we visited @root, we're done */
4567 	if (pos == root)
4568 		return NULL;
4569 
4570 	/* if there's an unvisited sibling, visit its leftmost descendant */
4571 	next = css_next_child(pos, pos->parent);
4572 	if (next)
4573 		return css_leftmost_descendant(next);
4574 
4575 	/* no sibling left, visit parent */
4576 	return pos->parent;
4577 }
4578 
4579 /**
4580  * css_has_online_children - does a css have online children
4581  * @css: the target css
4582  *
4583  * Returns %true if @css has any online children; otherwise, %false.  This
4584  * function can be called from any context but the caller is responsible
4585  * for synchronizing against on/offlining as necessary.
4586  */
4587 bool css_has_online_children(struct cgroup_subsys_state *css)
4588 {
4589 	struct cgroup_subsys_state *child;
4590 	bool ret = false;
4591 
4592 	rcu_read_lock();
4593 	css_for_each_child(child, css) {
4594 		if (child->flags & CSS_ONLINE) {
4595 			ret = true;
4596 			break;
4597 		}
4598 	}
4599 	rcu_read_unlock();
4600 	return ret;
4601 }
4602 
4603 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it)
4604 {
4605 	struct list_head *l;
4606 	struct cgrp_cset_link *link;
4607 	struct css_set *cset;
4608 
4609 	lockdep_assert_held(&css_set_lock);
4610 
4611 	/* find the next threaded cset */
4612 	if (it->tcset_pos) {
4613 		l = it->tcset_pos->next;
4614 
4615 		if (l != it->tcset_head) {
4616 			it->tcset_pos = l;
4617 			return container_of(l, struct css_set,
4618 					    threaded_csets_node);
4619 		}
4620 
4621 		it->tcset_pos = NULL;
4622 	}
4623 
4624 	/* find the next cset */
4625 	l = it->cset_pos;
4626 	l = l->next;
4627 	if (l == it->cset_head) {
4628 		it->cset_pos = NULL;
4629 		return NULL;
4630 	}
4631 
4632 	if (it->ss) {
4633 		cset = container_of(l, struct css_set, e_cset_node[it->ss->id]);
4634 	} else {
4635 		link = list_entry(l, struct cgrp_cset_link, cset_link);
4636 		cset = link->cset;
4637 	}
4638 
4639 	it->cset_pos = l;
4640 
4641 	/* initialize threaded css_set walking */
4642 	if (it->flags & CSS_TASK_ITER_THREADED) {
4643 		if (it->cur_dcset)
4644 			put_css_set_locked(it->cur_dcset);
4645 		it->cur_dcset = cset;
4646 		get_css_set(cset);
4647 
4648 		it->tcset_head = &cset->threaded_csets;
4649 		it->tcset_pos = &cset->threaded_csets;
4650 	}
4651 
4652 	return cset;
4653 }
4654 
4655 /**
4656  * css_task_iter_advance_css_set - advance a task iterator to the next css_set
4657  * @it: the iterator to advance
4658  *
4659  * Advance @it to the next css_set to walk.
4660  */
4661 static void css_task_iter_advance_css_set(struct css_task_iter *it)
4662 {
4663 	struct css_set *cset;
4664 
4665 	lockdep_assert_held(&css_set_lock);
4666 
4667 	/* Advance to the next non-empty css_set and find first non-empty tasks list*/
4668 	while ((cset = css_task_iter_next_css_set(it))) {
4669 		if (!list_empty(&cset->tasks)) {
4670 			it->cur_tasks_head = &cset->tasks;
4671 			break;
4672 		} else if (!list_empty(&cset->mg_tasks)) {
4673 			it->cur_tasks_head = &cset->mg_tasks;
4674 			break;
4675 		} else if (!list_empty(&cset->dying_tasks)) {
4676 			it->cur_tasks_head = &cset->dying_tasks;
4677 			break;
4678 		}
4679 	}
4680 	if (!cset) {
4681 		it->task_pos = NULL;
4682 		return;
4683 	}
4684 	it->task_pos = it->cur_tasks_head->next;
4685 
4686 	/*
4687 	 * We don't keep css_sets locked across iteration steps and thus
4688 	 * need to take steps to ensure that iteration can be resumed after
4689 	 * the lock is re-acquired.  Iteration is performed at two levels -
4690 	 * css_sets and tasks in them.
4691 	 *
4692 	 * Once created, a css_set never leaves its cgroup lists, so a
4693 	 * pinned css_set is guaranteed to stay put and we can resume
4694 	 * iteration afterwards.
4695 	 *
4696 	 * Tasks may leave @cset across iteration steps.  This is resolved
4697 	 * by registering each iterator with the css_set currently being
4698 	 * walked and making css_set_move_task() advance iterators whose
4699 	 * next task is leaving.
4700 	 */
4701 	if (it->cur_cset) {
4702 		list_del(&it->iters_node);
4703 		put_css_set_locked(it->cur_cset);
4704 	}
4705 	get_css_set(cset);
4706 	it->cur_cset = cset;
4707 	list_add(&it->iters_node, &cset->task_iters);
4708 }
4709 
4710 static void css_task_iter_skip(struct css_task_iter *it,
4711 			       struct task_struct *task)
4712 {
4713 	lockdep_assert_held(&css_set_lock);
4714 
4715 	if (it->task_pos == &task->cg_list) {
4716 		it->task_pos = it->task_pos->next;
4717 		it->flags |= CSS_TASK_ITER_SKIPPED;
4718 	}
4719 }
4720 
4721 static void css_task_iter_advance(struct css_task_iter *it)
4722 {
4723 	struct task_struct *task;
4724 
4725 	lockdep_assert_held(&css_set_lock);
4726 repeat:
4727 	if (it->task_pos) {
4728 		/*
4729 		 * Advance iterator to find next entry. We go through cset
4730 		 * tasks, mg_tasks and dying_tasks, when consumed we move onto
4731 		 * the next cset.
4732 		 */
4733 		if (it->flags & CSS_TASK_ITER_SKIPPED)
4734 			it->flags &= ~CSS_TASK_ITER_SKIPPED;
4735 		else
4736 			it->task_pos = it->task_pos->next;
4737 
4738 		if (it->task_pos == &it->cur_cset->tasks) {
4739 			it->cur_tasks_head = &it->cur_cset->mg_tasks;
4740 			it->task_pos = it->cur_tasks_head->next;
4741 		}
4742 		if (it->task_pos == &it->cur_cset->mg_tasks) {
4743 			it->cur_tasks_head = &it->cur_cset->dying_tasks;
4744 			it->task_pos = it->cur_tasks_head->next;
4745 		}
4746 		if (it->task_pos == &it->cur_cset->dying_tasks)
4747 			css_task_iter_advance_css_set(it);
4748 	} else {
4749 		/* called from start, proceed to the first cset */
4750 		css_task_iter_advance_css_set(it);
4751 	}
4752 
4753 	if (!it->task_pos)
4754 		return;
4755 
4756 	task = list_entry(it->task_pos, struct task_struct, cg_list);
4757 
4758 	if (it->flags & CSS_TASK_ITER_PROCS) {
4759 		/* if PROCS, skip over tasks which aren't group leaders */
4760 		if (!thread_group_leader(task))
4761 			goto repeat;
4762 
4763 		/* and dying leaders w/o live member threads */
4764 		if (it->cur_tasks_head == &it->cur_cset->dying_tasks &&
4765 		    !atomic_read(&task->signal->live))
4766 			goto repeat;
4767 	} else {
4768 		/* skip all dying ones */
4769 		if (it->cur_tasks_head == &it->cur_cset->dying_tasks)
4770 			goto repeat;
4771 	}
4772 }
4773 
4774 /**
4775  * css_task_iter_start - initiate task iteration
4776  * @css: the css to walk tasks of
4777  * @flags: CSS_TASK_ITER_* flags
4778  * @it: the task iterator to use
4779  *
4780  * Initiate iteration through the tasks of @css.  The caller can call
4781  * css_task_iter_next() to walk through the tasks until the function
4782  * returns NULL.  On completion of iteration, css_task_iter_end() must be
4783  * called.
4784  */
4785 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags,
4786 			 struct css_task_iter *it)
4787 {
4788 	memset(it, 0, sizeof(*it));
4789 
4790 	spin_lock_irq(&css_set_lock);
4791 
4792 	it->ss = css->ss;
4793 	it->flags = flags;
4794 
4795 	if (CGROUP_HAS_SUBSYS_CONFIG && it->ss)
4796 		it->cset_pos = &css->cgroup->e_csets[css->ss->id];
4797 	else
4798 		it->cset_pos = &css->cgroup->cset_links;
4799 
4800 	it->cset_head = it->cset_pos;
4801 
4802 	css_task_iter_advance(it);
4803 
4804 	spin_unlock_irq(&css_set_lock);
4805 }
4806 
4807 /**
4808  * css_task_iter_next - return the next task for the iterator
4809  * @it: the task iterator being iterated
4810  *
4811  * The "next" function for task iteration.  @it should have been
4812  * initialized via css_task_iter_start().  Returns NULL when the iteration
4813  * reaches the end.
4814  */
4815 struct task_struct *css_task_iter_next(struct css_task_iter *it)
4816 {
4817 	if (it->cur_task) {
4818 		put_task_struct(it->cur_task);
4819 		it->cur_task = NULL;
4820 	}
4821 
4822 	spin_lock_irq(&css_set_lock);
4823 
4824 	/* @it may be half-advanced by skips, finish advancing */
4825 	if (it->flags & CSS_TASK_ITER_SKIPPED)
4826 		css_task_iter_advance(it);
4827 
4828 	if (it->task_pos) {
4829 		it->cur_task = list_entry(it->task_pos, struct task_struct,
4830 					  cg_list);
4831 		get_task_struct(it->cur_task);
4832 		css_task_iter_advance(it);
4833 	}
4834 
4835 	spin_unlock_irq(&css_set_lock);
4836 
4837 	return it->cur_task;
4838 }
4839 
4840 /**
4841  * css_task_iter_end - finish task iteration
4842  * @it: the task iterator to finish
4843  *
4844  * Finish task iteration started by css_task_iter_start().
4845  */
4846 void css_task_iter_end(struct css_task_iter *it)
4847 {
4848 	if (it->cur_cset) {
4849 		spin_lock_irq(&css_set_lock);
4850 		list_del(&it->iters_node);
4851 		put_css_set_locked(it->cur_cset);
4852 		spin_unlock_irq(&css_set_lock);
4853 	}
4854 
4855 	if (it->cur_dcset)
4856 		put_css_set(it->cur_dcset);
4857 
4858 	if (it->cur_task)
4859 		put_task_struct(it->cur_task);
4860 }
4861 
4862 static void cgroup_procs_release(struct kernfs_open_file *of)
4863 {
4864 	struct cgroup_file_ctx *ctx = of->priv;
4865 
4866 	if (ctx->procs.started)
4867 		css_task_iter_end(&ctx->procs.iter);
4868 }
4869 
4870 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos)
4871 {
4872 	struct kernfs_open_file *of = s->private;
4873 	struct cgroup_file_ctx *ctx = of->priv;
4874 
4875 	if (pos)
4876 		(*pos)++;
4877 
4878 	return css_task_iter_next(&ctx->procs.iter);
4879 }
4880 
4881 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos,
4882 				  unsigned int iter_flags)
4883 {
4884 	struct kernfs_open_file *of = s->private;
4885 	struct cgroup *cgrp = seq_css(s)->cgroup;
4886 	struct cgroup_file_ctx *ctx = of->priv;
4887 	struct css_task_iter *it = &ctx->procs.iter;
4888 
4889 	/*
4890 	 * When a seq_file is seeked, it's always traversed sequentially
4891 	 * from position 0, so we can simply keep iterating on !0 *pos.
4892 	 */
4893 	if (!ctx->procs.started) {
4894 		if (WARN_ON_ONCE((*pos)))
4895 			return ERR_PTR(-EINVAL);
4896 		css_task_iter_start(&cgrp->self, iter_flags, it);
4897 		ctx->procs.started = true;
4898 	} else if (!(*pos)) {
4899 		css_task_iter_end(it);
4900 		css_task_iter_start(&cgrp->self, iter_flags, it);
4901 	} else
4902 		return it->cur_task;
4903 
4904 	return cgroup_procs_next(s, NULL, NULL);
4905 }
4906 
4907 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos)
4908 {
4909 	struct cgroup *cgrp = seq_css(s)->cgroup;
4910 
4911 	/*
4912 	 * All processes of a threaded subtree belong to the domain cgroup
4913 	 * of the subtree.  Only threads can be distributed across the
4914 	 * subtree.  Reject reads on cgroup.procs in the subtree proper.
4915 	 * They're always empty anyway.
4916 	 */
4917 	if (cgroup_is_threaded(cgrp))
4918 		return ERR_PTR(-EOPNOTSUPP);
4919 
4920 	return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS |
4921 					    CSS_TASK_ITER_THREADED);
4922 }
4923 
4924 static int cgroup_procs_show(struct seq_file *s, void *v)
4925 {
4926 	seq_printf(s, "%d\n", task_pid_vnr(v));
4927 	return 0;
4928 }
4929 
4930 static int cgroup_may_write(const struct cgroup *cgrp, struct super_block *sb)
4931 {
4932 	int ret;
4933 	struct inode *inode;
4934 
4935 	lockdep_assert_held(&cgroup_mutex);
4936 
4937 	inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
4938 	if (!inode)
4939 		return -ENOMEM;
4940 
4941 	ret = inode_permission(&init_user_ns, inode, MAY_WRITE);
4942 	iput(inode);
4943 	return ret;
4944 }
4945 
4946 static int cgroup_procs_write_permission(struct cgroup *src_cgrp,
4947 					 struct cgroup *dst_cgrp,
4948 					 struct super_block *sb,
4949 					 struct cgroup_namespace *ns)
4950 {
4951 	struct cgroup *com_cgrp = src_cgrp;
4952 	int ret;
4953 
4954 	lockdep_assert_held(&cgroup_mutex);
4955 
4956 	/* find the common ancestor */
4957 	while (!cgroup_is_descendant(dst_cgrp, com_cgrp))
4958 		com_cgrp = cgroup_parent(com_cgrp);
4959 
4960 	/* %current should be authorized to migrate to the common ancestor */
4961 	ret = cgroup_may_write(com_cgrp, sb);
4962 	if (ret)
4963 		return ret;
4964 
4965 	/*
4966 	 * If namespaces are delegation boundaries, %current must be able
4967 	 * to see both source and destination cgroups from its namespace.
4968 	 */
4969 	if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) &&
4970 	    (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) ||
4971 	     !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp)))
4972 		return -ENOENT;
4973 
4974 	return 0;
4975 }
4976 
4977 static int cgroup_attach_permissions(struct cgroup *src_cgrp,
4978 				     struct cgroup *dst_cgrp,
4979 				     struct super_block *sb, bool threadgroup,
4980 				     struct cgroup_namespace *ns)
4981 {
4982 	int ret = 0;
4983 
4984 	ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, sb, ns);
4985 	if (ret)
4986 		return ret;
4987 
4988 	ret = cgroup_migrate_vet_dst(dst_cgrp);
4989 	if (ret)
4990 		return ret;
4991 
4992 	if (!threadgroup && (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp))
4993 		ret = -EOPNOTSUPP;
4994 
4995 	return ret;
4996 }
4997 
4998 static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
4999 				    bool threadgroup)
5000 {
5001 	struct cgroup_file_ctx *ctx = of->priv;
5002 	struct cgroup *src_cgrp, *dst_cgrp;
5003 	struct task_struct *task;
5004 	const struct cred *saved_cred;
5005 	ssize_t ret;
5006 	bool threadgroup_locked;
5007 
5008 	dst_cgrp = cgroup_kn_lock_live(of->kn, false);
5009 	if (!dst_cgrp)
5010 		return -ENODEV;
5011 
5012 	task = cgroup_procs_write_start(buf, threadgroup, &threadgroup_locked);
5013 	ret = PTR_ERR_OR_ZERO(task);
5014 	if (ret)
5015 		goto out_unlock;
5016 
5017 	/* find the source cgroup */
5018 	spin_lock_irq(&css_set_lock);
5019 	src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
5020 	spin_unlock_irq(&css_set_lock);
5021 
5022 	/*
5023 	 * Process and thread migrations follow same delegation rule. Check
5024 	 * permissions using the credentials from file open to protect against
5025 	 * inherited fd attacks.
5026 	 */
5027 	saved_cred = override_creds(of->file->f_cred);
5028 	ret = cgroup_attach_permissions(src_cgrp, dst_cgrp,
5029 					of->file->f_path.dentry->d_sb,
5030 					threadgroup, ctx->ns);
5031 	revert_creds(saved_cred);
5032 	if (ret)
5033 		goto out_finish;
5034 
5035 	ret = cgroup_attach_task(dst_cgrp, task, threadgroup);
5036 
5037 out_finish:
5038 	cgroup_procs_write_finish(task, threadgroup_locked);
5039 out_unlock:
5040 	cgroup_kn_unlock(of->kn);
5041 
5042 	return ret;
5043 }
5044 
5045 static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
5046 				  char *buf, size_t nbytes, loff_t off)
5047 {
5048 	return __cgroup_procs_write(of, buf, true) ?: nbytes;
5049 }
5050 
5051 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos)
5052 {
5053 	return __cgroup_procs_start(s, pos, 0);
5054 }
5055 
5056 static ssize_t cgroup_threads_write(struct kernfs_open_file *of,
5057 				    char *buf, size_t nbytes, loff_t off)
5058 {
5059 	return __cgroup_procs_write(of, buf, false) ?: nbytes;
5060 }
5061 
5062 /* cgroup core interface files for the default hierarchy */
5063 static struct cftype cgroup_base_files[] = {
5064 	{
5065 		.name = "cgroup.type",
5066 		.flags = CFTYPE_NOT_ON_ROOT,
5067 		.seq_show = cgroup_type_show,
5068 		.write = cgroup_type_write,
5069 	},
5070 	{
5071 		.name = "cgroup.procs",
5072 		.flags = CFTYPE_NS_DELEGATABLE,
5073 		.file_offset = offsetof(struct cgroup, procs_file),
5074 		.release = cgroup_procs_release,
5075 		.seq_start = cgroup_procs_start,
5076 		.seq_next = cgroup_procs_next,
5077 		.seq_show = cgroup_procs_show,
5078 		.write = cgroup_procs_write,
5079 	},
5080 	{
5081 		.name = "cgroup.threads",
5082 		.flags = CFTYPE_NS_DELEGATABLE,
5083 		.release = cgroup_procs_release,
5084 		.seq_start = cgroup_threads_start,
5085 		.seq_next = cgroup_procs_next,
5086 		.seq_show = cgroup_procs_show,
5087 		.write = cgroup_threads_write,
5088 	},
5089 	{
5090 		.name = "cgroup.controllers",
5091 		.seq_show = cgroup_controllers_show,
5092 	},
5093 	{
5094 		.name = "cgroup.subtree_control",
5095 		.flags = CFTYPE_NS_DELEGATABLE,
5096 		.seq_show = cgroup_subtree_control_show,
5097 		.write = cgroup_subtree_control_write,
5098 	},
5099 	{
5100 		.name = "cgroup.events",
5101 		.flags = CFTYPE_NOT_ON_ROOT,
5102 		.file_offset = offsetof(struct cgroup, events_file),
5103 		.seq_show = cgroup_events_show,
5104 	},
5105 	{
5106 		.name = "cgroup.max.descendants",
5107 		.seq_show = cgroup_max_descendants_show,
5108 		.write = cgroup_max_descendants_write,
5109 	},
5110 	{
5111 		.name = "cgroup.max.depth",
5112 		.seq_show = cgroup_max_depth_show,
5113 		.write = cgroup_max_depth_write,
5114 	},
5115 	{
5116 		.name = "cgroup.stat",
5117 		.seq_show = cgroup_stat_show,
5118 	},
5119 	{
5120 		.name = "cgroup.freeze",
5121 		.flags = CFTYPE_NOT_ON_ROOT,
5122 		.seq_show = cgroup_freeze_show,
5123 		.write = cgroup_freeze_write,
5124 	},
5125 	{
5126 		.name = "cgroup.kill",
5127 		.flags = CFTYPE_NOT_ON_ROOT,
5128 		.write = cgroup_kill_write,
5129 	},
5130 	{
5131 		.name = "cpu.stat",
5132 		.seq_show = cpu_stat_show,
5133 	},
5134 #ifdef CONFIG_PSI
5135 	{
5136 		.name = "io.pressure",
5137 		.flags = CFTYPE_PRESSURE,
5138 		.seq_show = cgroup_io_pressure_show,
5139 		.write = cgroup_io_pressure_write,
5140 		.poll = cgroup_pressure_poll,
5141 		.release = cgroup_pressure_release,
5142 	},
5143 	{
5144 		.name = "memory.pressure",
5145 		.flags = CFTYPE_PRESSURE,
5146 		.seq_show = cgroup_memory_pressure_show,
5147 		.write = cgroup_memory_pressure_write,
5148 		.poll = cgroup_pressure_poll,
5149 		.release = cgroup_pressure_release,
5150 	},
5151 	{
5152 		.name = "cpu.pressure",
5153 		.flags = CFTYPE_PRESSURE,
5154 		.seq_show = cgroup_cpu_pressure_show,
5155 		.write = cgroup_cpu_pressure_write,
5156 		.poll = cgroup_pressure_poll,
5157 		.release = cgroup_pressure_release,
5158 	},
5159 #endif /* CONFIG_PSI */
5160 	{ }	/* terminate */
5161 };
5162 
5163 /*
5164  * css destruction is four-stage process.
5165  *
5166  * 1. Destruction starts.  Killing of the percpu_ref is initiated.
5167  *    Implemented in kill_css().
5168  *
5169  * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
5170  *    and thus css_tryget_online() is guaranteed to fail, the css can be
5171  *    offlined by invoking offline_css().  After offlining, the base ref is
5172  *    put.  Implemented in css_killed_work_fn().
5173  *
5174  * 3. When the percpu_ref reaches zero, the only possible remaining
5175  *    accessors are inside RCU read sections.  css_release() schedules the
5176  *    RCU callback.
5177  *
5178  * 4. After the grace period, the css can be freed.  Implemented in
5179  *    css_free_work_fn().
5180  *
5181  * It is actually hairier because both step 2 and 4 require process context
5182  * and thus involve punting to css->destroy_work adding two additional
5183  * steps to the already complex sequence.
5184  */
5185 static void css_free_rwork_fn(struct work_struct *work)
5186 {
5187 	struct cgroup_subsys_state *css = container_of(to_rcu_work(work),
5188 				struct cgroup_subsys_state, destroy_rwork);
5189 	struct cgroup_subsys *ss = css->ss;
5190 	struct cgroup *cgrp = css->cgroup;
5191 
5192 	percpu_ref_exit(&css->refcnt);
5193 
5194 	if (ss) {
5195 		/* css free path */
5196 		struct cgroup_subsys_state *parent = css->parent;
5197 		int id = css->id;
5198 
5199 		ss->css_free(css);
5200 		cgroup_idr_remove(&ss->css_idr, id);
5201 		cgroup_put(cgrp);
5202 
5203 		if (parent)
5204 			css_put(parent);
5205 	} else {
5206 		/* cgroup free path */
5207 		atomic_dec(&cgrp->root->nr_cgrps);
5208 		cgroup1_pidlist_destroy_all(cgrp);
5209 		cancel_work_sync(&cgrp->release_agent_work);
5210 
5211 		if (cgroup_parent(cgrp)) {
5212 			/*
5213 			 * We get a ref to the parent, and put the ref when
5214 			 * this cgroup is being freed, so it's guaranteed
5215 			 * that the parent won't be destroyed before its
5216 			 * children.
5217 			 */
5218 			cgroup_put(cgroup_parent(cgrp));
5219 			kernfs_put(cgrp->kn);
5220 			psi_cgroup_free(cgrp);
5221 			cgroup_rstat_exit(cgrp);
5222 			kfree(cgrp);
5223 		} else {
5224 			/*
5225 			 * This is root cgroup's refcnt reaching zero,
5226 			 * which indicates that the root should be
5227 			 * released.
5228 			 */
5229 			cgroup_destroy_root(cgrp->root);
5230 		}
5231 	}
5232 }
5233 
5234 static void css_release_work_fn(struct work_struct *work)
5235 {
5236 	struct cgroup_subsys_state *css =
5237 		container_of(work, struct cgroup_subsys_state, destroy_work);
5238 	struct cgroup_subsys *ss = css->ss;
5239 	struct cgroup *cgrp = css->cgroup;
5240 
5241 	mutex_lock(&cgroup_mutex);
5242 
5243 	css->flags |= CSS_RELEASED;
5244 	list_del_rcu(&css->sibling);
5245 
5246 	if (ss) {
5247 		/* css release path */
5248 		if (!list_empty(&css->rstat_css_node)) {
5249 			cgroup_rstat_flush(cgrp);
5250 			list_del_rcu(&css->rstat_css_node);
5251 		}
5252 
5253 		cgroup_idr_replace(&ss->css_idr, NULL, css->id);
5254 		if (ss->css_released)
5255 			ss->css_released(css);
5256 	} else {
5257 		struct cgroup *tcgrp;
5258 
5259 		/* cgroup release path */
5260 		TRACE_CGROUP_PATH(release, cgrp);
5261 
5262 		cgroup_rstat_flush(cgrp);
5263 
5264 		spin_lock_irq(&css_set_lock);
5265 		for (tcgrp = cgroup_parent(cgrp); tcgrp;
5266 		     tcgrp = cgroup_parent(tcgrp))
5267 			tcgrp->nr_dying_descendants--;
5268 		spin_unlock_irq(&css_set_lock);
5269 
5270 		/*
5271 		 * There are two control paths which try to determine
5272 		 * cgroup from dentry without going through kernfs -
5273 		 * cgroupstats_build() and css_tryget_online_from_dir().
5274 		 * Those are supported by RCU protecting clearing of
5275 		 * cgrp->kn->priv backpointer.
5276 		 */
5277 		if (cgrp->kn)
5278 			RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
5279 					 NULL);
5280 	}
5281 
5282 	mutex_unlock(&cgroup_mutex);
5283 
5284 	INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5285 	queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5286 }
5287 
5288 static void css_release(struct percpu_ref *ref)
5289 {
5290 	struct cgroup_subsys_state *css =
5291 		container_of(ref, struct cgroup_subsys_state, refcnt);
5292 
5293 	INIT_WORK(&css->destroy_work, css_release_work_fn);
5294 	queue_work(cgroup_destroy_wq, &css->destroy_work);
5295 }
5296 
5297 static void init_and_link_css(struct cgroup_subsys_state *css,
5298 			      struct cgroup_subsys *ss, struct cgroup *cgrp)
5299 {
5300 	lockdep_assert_held(&cgroup_mutex);
5301 
5302 	cgroup_get_live(cgrp);
5303 
5304 	memset(css, 0, sizeof(*css));
5305 	css->cgroup = cgrp;
5306 	css->ss = ss;
5307 	css->id = -1;
5308 	INIT_LIST_HEAD(&css->sibling);
5309 	INIT_LIST_HEAD(&css->children);
5310 	INIT_LIST_HEAD(&css->rstat_css_node);
5311 	css->serial_nr = css_serial_nr_next++;
5312 	atomic_set(&css->online_cnt, 0);
5313 
5314 	if (cgroup_parent(cgrp)) {
5315 		css->parent = cgroup_css(cgroup_parent(cgrp), ss);
5316 		css_get(css->parent);
5317 	}
5318 
5319 	if (ss->css_rstat_flush)
5320 		list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list);
5321 
5322 	BUG_ON(cgroup_css(cgrp, ss));
5323 }
5324 
5325 /* invoke ->css_online() on a new CSS and mark it online if successful */
5326 static int online_css(struct cgroup_subsys_state *css)
5327 {
5328 	struct cgroup_subsys *ss = css->ss;
5329 	int ret = 0;
5330 
5331 	lockdep_assert_held(&cgroup_mutex);
5332 
5333 	if (ss->css_online)
5334 		ret = ss->css_online(css);
5335 	if (!ret) {
5336 		css->flags |= CSS_ONLINE;
5337 		rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
5338 
5339 		atomic_inc(&css->online_cnt);
5340 		if (css->parent)
5341 			atomic_inc(&css->parent->online_cnt);
5342 	}
5343 	return ret;
5344 }
5345 
5346 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
5347 static void offline_css(struct cgroup_subsys_state *css)
5348 {
5349 	struct cgroup_subsys *ss = css->ss;
5350 
5351 	lockdep_assert_held(&cgroup_mutex);
5352 
5353 	if (!(css->flags & CSS_ONLINE))
5354 		return;
5355 
5356 	if (ss->css_offline)
5357 		ss->css_offline(css);
5358 
5359 	css->flags &= ~CSS_ONLINE;
5360 	RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
5361 
5362 	wake_up_all(&css->cgroup->offline_waitq);
5363 }
5364 
5365 /**
5366  * css_create - create a cgroup_subsys_state
5367  * @cgrp: the cgroup new css will be associated with
5368  * @ss: the subsys of new css
5369  *
5370  * Create a new css associated with @cgrp - @ss pair.  On success, the new
5371  * css is online and installed in @cgrp.  This function doesn't create the
5372  * interface files.  Returns 0 on success, -errno on failure.
5373  */
5374 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
5375 					      struct cgroup_subsys *ss)
5376 {
5377 	struct cgroup *parent = cgroup_parent(cgrp);
5378 	struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
5379 	struct cgroup_subsys_state *css;
5380 	int err;
5381 
5382 	lockdep_assert_held(&cgroup_mutex);
5383 
5384 	css = ss->css_alloc(parent_css);
5385 	if (!css)
5386 		css = ERR_PTR(-ENOMEM);
5387 	if (IS_ERR(css))
5388 		return css;
5389 
5390 	init_and_link_css(css, ss, cgrp);
5391 
5392 	err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
5393 	if (err)
5394 		goto err_free_css;
5395 
5396 	err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
5397 	if (err < 0)
5398 		goto err_free_css;
5399 	css->id = err;
5400 
5401 	/* @css is ready to be brought online now, make it visible */
5402 	list_add_tail_rcu(&css->sibling, &parent_css->children);
5403 	cgroup_idr_replace(&ss->css_idr, css, css->id);
5404 
5405 	err = online_css(css);
5406 	if (err)
5407 		goto err_list_del;
5408 
5409 	return css;
5410 
5411 err_list_del:
5412 	list_del_rcu(&css->sibling);
5413 err_free_css:
5414 	list_del_rcu(&css->rstat_css_node);
5415 	INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5416 	queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5417 	return ERR_PTR(err);
5418 }
5419 
5420 /*
5421  * The returned cgroup is fully initialized including its control mask, but
5422  * it isn't associated with its kernfs_node and doesn't have the control
5423  * mask applied.
5424  */
5425 static struct cgroup *cgroup_create(struct cgroup *parent, const char *name,
5426 				    umode_t mode)
5427 {
5428 	struct cgroup_root *root = parent->root;
5429 	struct cgroup *cgrp, *tcgrp;
5430 	struct kernfs_node *kn;
5431 	int level = parent->level + 1;
5432 	int ret;
5433 
5434 	/* allocate the cgroup and its ID, 0 is reserved for the root */
5435 	cgrp = kzalloc(struct_size(cgrp, ancestor_ids, (level + 1)),
5436 		       GFP_KERNEL);
5437 	if (!cgrp)
5438 		return ERR_PTR(-ENOMEM);
5439 
5440 	ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
5441 	if (ret)
5442 		goto out_free_cgrp;
5443 
5444 	ret = cgroup_rstat_init(cgrp);
5445 	if (ret)
5446 		goto out_cancel_ref;
5447 
5448 	/* create the directory */
5449 	kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
5450 	if (IS_ERR(kn)) {
5451 		ret = PTR_ERR(kn);
5452 		goto out_stat_exit;
5453 	}
5454 	cgrp->kn = kn;
5455 
5456 	init_cgroup_housekeeping(cgrp);
5457 
5458 	cgrp->self.parent = &parent->self;
5459 	cgrp->root = root;
5460 	cgrp->level = level;
5461 
5462 	ret = psi_cgroup_alloc(cgrp);
5463 	if (ret)
5464 		goto out_kernfs_remove;
5465 
5466 	ret = cgroup_bpf_inherit(cgrp);
5467 	if (ret)
5468 		goto out_psi_free;
5469 
5470 	/*
5471 	 * New cgroup inherits effective freeze counter, and
5472 	 * if the parent has to be frozen, the child has too.
5473 	 */
5474 	cgrp->freezer.e_freeze = parent->freezer.e_freeze;
5475 	if (cgrp->freezer.e_freeze) {
5476 		/*
5477 		 * Set the CGRP_FREEZE flag, so when a process will be
5478 		 * attached to the child cgroup, it will become frozen.
5479 		 * At this point the new cgroup is unpopulated, so we can
5480 		 * consider it frozen immediately.
5481 		 */
5482 		set_bit(CGRP_FREEZE, &cgrp->flags);
5483 		set_bit(CGRP_FROZEN, &cgrp->flags);
5484 	}
5485 
5486 	spin_lock_irq(&css_set_lock);
5487 	for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5488 		cgrp->ancestor_ids[tcgrp->level] = cgroup_id(tcgrp);
5489 
5490 		if (tcgrp != cgrp) {
5491 			tcgrp->nr_descendants++;
5492 
5493 			/*
5494 			 * If the new cgroup is frozen, all ancestor cgroups
5495 			 * get a new frozen descendant, but their state can't
5496 			 * change because of this.
5497 			 */
5498 			if (cgrp->freezer.e_freeze)
5499 				tcgrp->freezer.nr_frozen_descendants++;
5500 		}
5501 	}
5502 	spin_unlock_irq(&css_set_lock);
5503 
5504 	if (notify_on_release(parent))
5505 		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
5506 
5507 	if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
5508 		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
5509 
5510 	cgrp->self.serial_nr = css_serial_nr_next++;
5511 
5512 	/* allocation complete, commit to creation */
5513 	list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
5514 	atomic_inc(&root->nr_cgrps);
5515 	cgroup_get_live(parent);
5516 
5517 	/*
5518 	 * On the default hierarchy, a child doesn't automatically inherit
5519 	 * subtree_control from the parent.  Each is configured manually.
5520 	 */
5521 	if (!cgroup_on_dfl(cgrp))
5522 		cgrp->subtree_control = cgroup_control(cgrp);
5523 
5524 	cgroup_propagate_control(cgrp);
5525 
5526 	return cgrp;
5527 
5528 out_psi_free:
5529 	psi_cgroup_free(cgrp);
5530 out_kernfs_remove:
5531 	kernfs_remove(cgrp->kn);
5532 out_stat_exit:
5533 	cgroup_rstat_exit(cgrp);
5534 out_cancel_ref:
5535 	percpu_ref_exit(&cgrp->self.refcnt);
5536 out_free_cgrp:
5537 	kfree(cgrp);
5538 	return ERR_PTR(ret);
5539 }
5540 
5541 static bool cgroup_check_hierarchy_limits(struct cgroup *parent)
5542 {
5543 	struct cgroup *cgroup;
5544 	int ret = false;
5545 	int level = 1;
5546 
5547 	lockdep_assert_held(&cgroup_mutex);
5548 
5549 	for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) {
5550 		if (cgroup->nr_descendants >= cgroup->max_descendants)
5551 			goto fail;
5552 
5553 		if (level > cgroup->max_depth)
5554 			goto fail;
5555 
5556 		level++;
5557 	}
5558 
5559 	ret = true;
5560 fail:
5561 	return ret;
5562 }
5563 
5564 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode)
5565 {
5566 	struct cgroup *parent, *cgrp;
5567 	int ret;
5568 
5569 	/* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
5570 	if (strchr(name, '\n'))
5571 		return -EINVAL;
5572 
5573 	parent = cgroup_kn_lock_live(parent_kn, false);
5574 	if (!parent)
5575 		return -ENODEV;
5576 
5577 	if (!cgroup_check_hierarchy_limits(parent)) {
5578 		ret = -EAGAIN;
5579 		goto out_unlock;
5580 	}
5581 
5582 	cgrp = cgroup_create(parent, name, mode);
5583 	if (IS_ERR(cgrp)) {
5584 		ret = PTR_ERR(cgrp);
5585 		goto out_unlock;
5586 	}
5587 
5588 	/*
5589 	 * This extra ref will be put in cgroup_free_fn() and guarantees
5590 	 * that @cgrp->kn is always accessible.
5591 	 */
5592 	kernfs_get(cgrp->kn);
5593 
5594 	ret = cgroup_kn_set_ugid(cgrp->kn);
5595 	if (ret)
5596 		goto out_destroy;
5597 
5598 	ret = css_populate_dir(&cgrp->self);
5599 	if (ret)
5600 		goto out_destroy;
5601 
5602 	ret = cgroup_apply_control_enable(cgrp);
5603 	if (ret)
5604 		goto out_destroy;
5605 
5606 	TRACE_CGROUP_PATH(mkdir, cgrp);
5607 
5608 	/* let's create and online css's */
5609 	kernfs_activate(cgrp->kn);
5610 
5611 	ret = 0;
5612 	goto out_unlock;
5613 
5614 out_destroy:
5615 	cgroup_destroy_locked(cgrp);
5616 out_unlock:
5617 	cgroup_kn_unlock(parent_kn);
5618 	return ret;
5619 }
5620 
5621 /*
5622  * This is called when the refcnt of a css is confirmed to be killed.
5623  * css_tryget_online() is now guaranteed to fail.  Tell the subsystem to
5624  * initiate destruction and put the css ref from kill_css().
5625  */
5626 static void css_killed_work_fn(struct work_struct *work)
5627 {
5628 	struct cgroup_subsys_state *css =
5629 		container_of(work, struct cgroup_subsys_state, destroy_work);
5630 
5631 	mutex_lock(&cgroup_mutex);
5632 
5633 	do {
5634 		offline_css(css);
5635 		css_put(css);
5636 		/* @css can't go away while we're holding cgroup_mutex */
5637 		css = css->parent;
5638 	} while (css && atomic_dec_and_test(&css->online_cnt));
5639 
5640 	mutex_unlock(&cgroup_mutex);
5641 }
5642 
5643 /* css kill confirmation processing requires process context, bounce */
5644 static void css_killed_ref_fn(struct percpu_ref *ref)
5645 {
5646 	struct cgroup_subsys_state *css =
5647 		container_of(ref, struct cgroup_subsys_state, refcnt);
5648 
5649 	if (atomic_dec_and_test(&css->online_cnt)) {
5650 		INIT_WORK(&css->destroy_work, css_killed_work_fn);
5651 		queue_work(cgroup_destroy_wq, &css->destroy_work);
5652 	}
5653 }
5654 
5655 /**
5656  * kill_css - destroy a css
5657  * @css: css to destroy
5658  *
5659  * This function initiates destruction of @css by removing cgroup interface
5660  * files and putting its base reference.  ->css_offline() will be invoked
5661  * asynchronously once css_tryget_online() is guaranteed to fail and when
5662  * the reference count reaches zero, @css will be released.
5663  */
5664 static void kill_css(struct cgroup_subsys_state *css)
5665 {
5666 	lockdep_assert_held(&cgroup_mutex);
5667 
5668 	if (css->flags & CSS_DYING)
5669 		return;
5670 
5671 	css->flags |= CSS_DYING;
5672 
5673 	/*
5674 	 * This must happen before css is disassociated with its cgroup.
5675 	 * See seq_css() for details.
5676 	 */
5677 	css_clear_dir(css);
5678 
5679 	/*
5680 	 * Killing would put the base ref, but we need to keep it alive
5681 	 * until after ->css_offline().
5682 	 */
5683 	css_get(css);
5684 
5685 	/*
5686 	 * cgroup core guarantees that, by the time ->css_offline() is
5687 	 * invoked, no new css reference will be given out via
5688 	 * css_tryget_online().  We can't simply call percpu_ref_kill() and
5689 	 * proceed to offlining css's because percpu_ref_kill() doesn't
5690 	 * guarantee that the ref is seen as killed on all CPUs on return.
5691 	 *
5692 	 * Use percpu_ref_kill_and_confirm() to get notifications as each
5693 	 * css is confirmed to be seen as killed on all CPUs.
5694 	 */
5695 	percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
5696 }
5697 
5698 /**
5699  * cgroup_destroy_locked - the first stage of cgroup destruction
5700  * @cgrp: cgroup to be destroyed
5701  *
5702  * css's make use of percpu refcnts whose killing latency shouldn't be
5703  * exposed to userland and are RCU protected.  Also, cgroup core needs to
5704  * guarantee that css_tryget_online() won't succeed by the time
5705  * ->css_offline() is invoked.  To satisfy all the requirements,
5706  * destruction is implemented in the following two steps.
5707  *
5708  * s1. Verify @cgrp can be destroyed and mark it dying.  Remove all
5709  *     userland visible parts and start killing the percpu refcnts of
5710  *     css's.  Set up so that the next stage will be kicked off once all
5711  *     the percpu refcnts are confirmed to be killed.
5712  *
5713  * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5714  *     rest of destruction.  Once all cgroup references are gone, the
5715  *     cgroup is RCU-freed.
5716  *
5717  * This function implements s1.  After this step, @cgrp is gone as far as
5718  * the userland is concerned and a new cgroup with the same name may be
5719  * created.  As cgroup doesn't care about the names internally, this
5720  * doesn't cause any problem.
5721  */
5722 static int cgroup_destroy_locked(struct cgroup *cgrp)
5723 	__releases(&cgroup_mutex) __acquires(&cgroup_mutex)
5724 {
5725 	struct cgroup *tcgrp, *parent = cgroup_parent(cgrp);
5726 	struct cgroup_subsys_state *css;
5727 	struct cgrp_cset_link *link;
5728 	int ssid;
5729 
5730 	lockdep_assert_held(&cgroup_mutex);
5731 
5732 	/*
5733 	 * Only migration can raise populated from zero and we're already
5734 	 * holding cgroup_mutex.
5735 	 */
5736 	if (cgroup_is_populated(cgrp))
5737 		return -EBUSY;
5738 
5739 	/*
5740 	 * Make sure there's no live children.  We can't test emptiness of
5741 	 * ->self.children as dead children linger on it while being
5742 	 * drained; otherwise, "rmdir parent/child parent" may fail.
5743 	 */
5744 	if (css_has_online_children(&cgrp->self))
5745 		return -EBUSY;
5746 
5747 	/*
5748 	 * Mark @cgrp and the associated csets dead.  The former prevents
5749 	 * further task migration and child creation by disabling
5750 	 * cgroup_lock_live_group().  The latter makes the csets ignored by
5751 	 * the migration path.
5752 	 */
5753 	cgrp->self.flags &= ~CSS_ONLINE;
5754 
5755 	spin_lock_irq(&css_set_lock);
5756 	list_for_each_entry(link, &cgrp->cset_links, cset_link)
5757 		link->cset->dead = true;
5758 	spin_unlock_irq(&css_set_lock);
5759 
5760 	/* initiate massacre of all css's */
5761 	for_each_css(css, ssid, cgrp)
5762 		kill_css(css);
5763 
5764 	/* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */
5765 	css_clear_dir(&cgrp->self);
5766 	kernfs_remove(cgrp->kn);
5767 
5768 	if (cgroup_is_threaded(cgrp))
5769 		parent->nr_threaded_children--;
5770 
5771 	spin_lock_irq(&css_set_lock);
5772 	for (tcgrp = cgroup_parent(cgrp); tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5773 		tcgrp->nr_descendants--;
5774 		tcgrp->nr_dying_descendants++;
5775 		/*
5776 		 * If the dying cgroup is frozen, decrease frozen descendants
5777 		 * counters of ancestor cgroups.
5778 		 */
5779 		if (test_bit(CGRP_FROZEN, &cgrp->flags))
5780 			tcgrp->freezer.nr_frozen_descendants--;
5781 	}
5782 	spin_unlock_irq(&css_set_lock);
5783 
5784 	cgroup1_check_for_release(parent);
5785 
5786 	cgroup_bpf_offline(cgrp);
5787 
5788 	/* put the base reference */
5789 	percpu_ref_kill(&cgrp->self.refcnt);
5790 
5791 	return 0;
5792 };
5793 
5794 int cgroup_rmdir(struct kernfs_node *kn)
5795 {
5796 	struct cgroup *cgrp;
5797 	int ret = 0;
5798 
5799 	cgrp = cgroup_kn_lock_live(kn, false);
5800 	if (!cgrp)
5801 		return 0;
5802 
5803 	ret = cgroup_destroy_locked(cgrp);
5804 	if (!ret)
5805 		TRACE_CGROUP_PATH(rmdir, cgrp);
5806 
5807 	cgroup_kn_unlock(kn);
5808 	return ret;
5809 }
5810 
5811 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5812 	.show_options		= cgroup_show_options,
5813 	.mkdir			= cgroup_mkdir,
5814 	.rmdir			= cgroup_rmdir,
5815 	.show_path		= cgroup_show_path,
5816 };
5817 
5818 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
5819 {
5820 	struct cgroup_subsys_state *css;
5821 
5822 	pr_debug("Initializing cgroup subsys %s\n", ss->name);
5823 
5824 	mutex_lock(&cgroup_mutex);
5825 
5826 	idr_init(&ss->css_idr);
5827 	INIT_LIST_HEAD(&ss->cfts);
5828 
5829 	/* Create the root cgroup state for this subsystem */
5830 	ss->root = &cgrp_dfl_root;
5831 	css = ss->css_alloc(NULL);
5832 	/* We don't handle early failures gracefully */
5833 	BUG_ON(IS_ERR(css));
5834 	init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
5835 
5836 	/*
5837 	 * Root csses are never destroyed and we can't initialize
5838 	 * percpu_ref during early init.  Disable refcnting.
5839 	 */
5840 	css->flags |= CSS_NO_REF;
5841 
5842 	if (early) {
5843 		/* allocation can't be done safely during early init */
5844 		css->id = 1;
5845 	} else {
5846 		css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5847 		BUG_ON(css->id < 0);
5848 	}
5849 
5850 	/* Update the init_css_set to contain a subsys
5851 	 * pointer to this state - since the subsystem is
5852 	 * newly registered, all tasks and hence the
5853 	 * init_css_set is in the subsystem's root cgroup. */
5854 	init_css_set.subsys[ss->id] = css;
5855 
5856 	have_fork_callback |= (bool)ss->fork << ss->id;
5857 	have_exit_callback |= (bool)ss->exit << ss->id;
5858 	have_release_callback |= (bool)ss->release << ss->id;
5859 	have_canfork_callback |= (bool)ss->can_fork << ss->id;
5860 
5861 	/* At system boot, before all subsystems have been
5862 	 * registered, no tasks have been forked, so we don't
5863 	 * need to invoke fork callbacks here. */
5864 	BUG_ON(!list_empty(&init_task.tasks));
5865 
5866 	BUG_ON(online_css(css));
5867 
5868 	mutex_unlock(&cgroup_mutex);
5869 }
5870 
5871 /**
5872  * cgroup_init_early - cgroup initialization at system boot
5873  *
5874  * Initialize cgroups at system boot, and initialize any
5875  * subsystems that request early init.
5876  */
5877 int __init cgroup_init_early(void)
5878 {
5879 	static struct cgroup_fs_context __initdata ctx;
5880 	struct cgroup_subsys *ss;
5881 	int i;
5882 
5883 	ctx.root = &cgrp_dfl_root;
5884 	init_cgroup_root(&ctx);
5885 	cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5886 
5887 	RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
5888 
5889 	for_each_subsys(ss, i) {
5890 		WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
5891 		     "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
5892 		     i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
5893 		     ss->id, ss->name);
5894 		WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5895 		     "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5896 
5897 		ss->id = i;
5898 		ss->name = cgroup_subsys_name[i];
5899 		if (!ss->legacy_name)
5900 			ss->legacy_name = cgroup_subsys_name[i];
5901 
5902 		if (ss->early_init)
5903 			cgroup_init_subsys(ss, true);
5904 	}
5905 	return 0;
5906 }
5907 
5908 /**
5909  * cgroup_init - cgroup initialization
5910  *
5911  * Register cgroup filesystem and /proc file, and initialize
5912  * any subsystems that didn't request early init.
5913  */
5914 int __init cgroup_init(void)
5915 {
5916 	struct cgroup_subsys *ss;
5917 	int ssid;
5918 
5919 	BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
5920 	BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
5921 	BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files));
5922 
5923 	cgroup_rstat_boot();
5924 
5925 	get_user_ns(init_cgroup_ns.user_ns);
5926 
5927 	mutex_lock(&cgroup_mutex);
5928 
5929 	/*
5930 	 * Add init_css_set to the hash table so that dfl_root can link to
5931 	 * it during init.
5932 	 */
5933 	hash_add(css_set_table, &init_css_set.hlist,
5934 		 css_set_hash(init_css_set.subsys));
5935 
5936 	BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
5937 
5938 	mutex_unlock(&cgroup_mutex);
5939 
5940 	for_each_subsys(ss, ssid) {
5941 		if (ss->early_init) {
5942 			struct cgroup_subsys_state *css =
5943 				init_css_set.subsys[ss->id];
5944 
5945 			css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5946 						   GFP_KERNEL);
5947 			BUG_ON(css->id < 0);
5948 		} else {
5949 			cgroup_init_subsys(ss, false);
5950 		}
5951 
5952 		list_add_tail(&init_css_set.e_cset_node[ssid],
5953 			      &cgrp_dfl_root.cgrp.e_csets[ssid]);
5954 
5955 		/*
5956 		 * Setting dfl_root subsys_mask needs to consider the
5957 		 * disabled flag and cftype registration needs kmalloc,
5958 		 * both of which aren't available during early_init.
5959 		 */
5960 		if (!cgroup_ssid_enabled(ssid))
5961 			continue;
5962 
5963 		if (cgroup1_ssid_disabled(ssid))
5964 			printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n",
5965 			       ss->name);
5966 
5967 		cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5968 
5969 		/* implicit controllers must be threaded too */
5970 		WARN_ON(ss->implicit_on_dfl && !ss->threaded);
5971 
5972 		if (ss->implicit_on_dfl)
5973 			cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
5974 		else if (!ss->dfl_cftypes)
5975 			cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
5976 
5977 		if (ss->threaded)
5978 			cgrp_dfl_threaded_ss_mask |= 1 << ss->id;
5979 
5980 		if (ss->dfl_cftypes == ss->legacy_cftypes) {
5981 			WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5982 		} else {
5983 			WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5984 			WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
5985 		}
5986 
5987 		if (ss->bind)
5988 			ss->bind(init_css_set.subsys[ssid]);
5989 
5990 		mutex_lock(&cgroup_mutex);
5991 		css_populate_dir(init_css_set.subsys[ssid]);
5992 		mutex_unlock(&cgroup_mutex);
5993 	}
5994 
5995 	/* init_css_set.subsys[] has been updated, re-hash */
5996 	hash_del(&init_css_set.hlist);
5997 	hash_add(css_set_table, &init_css_set.hlist,
5998 		 css_set_hash(init_css_set.subsys));
5999 
6000 	WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
6001 	WARN_ON(register_filesystem(&cgroup_fs_type));
6002 	WARN_ON(register_filesystem(&cgroup2_fs_type));
6003 	WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show));
6004 #ifdef CONFIG_CPUSETS
6005 	WARN_ON(register_filesystem(&cpuset_fs_type));
6006 #endif
6007 
6008 	return 0;
6009 }
6010 
6011 static int __init cgroup_wq_init(void)
6012 {
6013 	/*
6014 	 * There isn't much point in executing destruction path in
6015 	 * parallel.  Good chunk is serialized with cgroup_mutex anyway.
6016 	 * Use 1 for @max_active.
6017 	 *
6018 	 * We would prefer to do this in cgroup_init() above, but that
6019 	 * is called before init_workqueues(): so leave this until after.
6020 	 */
6021 	cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
6022 	BUG_ON(!cgroup_destroy_wq);
6023 	return 0;
6024 }
6025 core_initcall(cgroup_wq_init);
6026 
6027 void cgroup_path_from_kernfs_id(u64 id, char *buf, size_t buflen)
6028 {
6029 	struct kernfs_node *kn;
6030 
6031 	kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id);
6032 	if (!kn)
6033 		return;
6034 	kernfs_path(kn, buf, buflen);
6035 	kernfs_put(kn);
6036 }
6037 
6038 /*
6039  * cgroup_get_from_id : get the cgroup associated with cgroup id
6040  * @id: cgroup id
6041  * On success return the cgrp, on failure return NULL
6042  */
6043 struct cgroup *cgroup_get_from_id(u64 id)
6044 {
6045 	struct kernfs_node *kn;
6046 	struct cgroup *cgrp = NULL;
6047 
6048 	kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id);
6049 	if (!kn)
6050 		goto out;
6051 
6052 	rcu_read_lock();
6053 
6054 	cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6055 	if (cgrp && !cgroup_tryget(cgrp))
6056 		cgrp = NULL;
6057 
6058 	rcu_read_unlock();
6059 
6060 	kernfs_put(kn);
6061 out:
6062 	return cgrp;
6063 }
6064 EXPORT_SYMBOL_GPL(cgroup_get_from_id);
6065 
6066 /*
6067  * proc_cgroup_show()
6068  *  - Print task's cgroup paths into seq_file, one line for each hierarchy
6069  *  - Used for /proc/<pid>/cgroup.
6070  */
6071 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
6072 		     struct pid *pid, struct task_struct *tsk)
6073 {
6074 	char *buf;
6075 	int retval;
6076 	struct cgroup_root *root;
6077 
6078 	retval = -ENOMEM;
6079 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
6080 	if (!buf)
6081 		goto out;
6082 
6083 	mutex_lock(&cgroup_mutex);
6084 	spin_lock_irq(&css_set_lock);
6085 
6086 	for_each_root(root) {
6087 		struct cgroup_subsys *ss;
6088 		struct cgroup *cgrp;
6089 		int ssid, count = 0;
6090 
6091 		if (root == &cgrp_dfl_root && !cgrp_dfl_visible)
6092 			continue;
6093 
6094 		seq_printf(m, "%d:", root->hierarchy_id);
6095 		if (root != &cgrp_dfl_root)
6096 			for_each_subsys(ss, ssid)
6097 				if (root->subsys_mask & (1 << ssid))
6098 					seq_printf(m, "%s%s", count++ ? "," : "",
6099 						   ss->legacy_name);
6100 		if (strlen(root->name))
6101 			seq_printf(m, "%sname=%s", count ? "," : "",
6102 				   root->name);
6103 		seq_putc(m, ':');
6104 
6105 		cgrp = task_cgroup_from_root(tsk, root);
6106 
6107 		/*
6108 		 * On traditional hierarchies, all zombie tasks show up as
6109 		 * belonging to the root cgroup.  On the default hierarchy,
6110 		 * while a zombie doesn't show up in "cgroup.procs" and
6111 		 * thus can't be migrated, its /proc/PID/cgroup keeps
6112 		 * reporting the cgroup it belonged to before exiting.  If
6113 		 * the cgroup is removed before the zombie is reaped,
6114 		 * " (deleted)" is appended to the cgroup path.
6115 		 */
6116 		if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
6117 			retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
6118 						current->nsproxy->cgroup_ns);
6119 			if (retval >= PATH_MAX)
6120 				retval = -ENAMETOOLONG;
6121 			if (retval < 0)
6122 				goto out_unlock;
6123 
6124 			seq_puts(m, buf);
6125 		} else {
6126 			seq_puts(m, "/");
6127 		}
6128 
6129 		if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
6130 			seq_puts(m, " (deleted)\n");
6131 		else
6132 			seq_putc(m, '\n');
6133 	}
6134 
6135 	retval = 0;
6136 out_unlock:
6137 	spin_unlock_irq(&css_set_lock);
6138 	mutex_unlock(&cgroup_mutex);
6139 	kfree(buf);
6140 out:
6141 	return retval;
6142 }
6143 
6144 /**
6145  * cgroup_fork - initialize cgroup related fields during copy_process()
6146  * @child: pointer to task_struct of forking parent process.
6147  *
6148  * A task is associated with the init_css_set until cgroup_post_fork()
6149  * attaches it to the target css_set.
6150  */
6151 void cgroup_fork(struct task_struct *child)
6152 {
6153 	RCU_INIT_POINTER(child->cgroups, &init_css_set);
6154 	INIT_LIST_HEAD(&child->cg_list);
6155 }
6156 
6157 static struct cgroup *cgroup_get_from_file(struct file *f)
6158 {
6159 	struct cgroup_subsys_state *css;
6160 	struct cgroup *cgrp;
6161 
6162 	css = css_tryget_online_from_dir(f->f_path.dentry, NULL);
6163 	if (IS_ERR(css))
6164 		return ERR_CAST(css);
6165 
6166 	cgrp = css->cgroup;
6167 	if (!cgroup_on_dfl(cgrp)) {
6168 		cgroup_put(cgrp);
6169 		return ERR_PTR(-EBADF);
6170 	}
6171 
6172 	return cgrp;
6173 }
6174 
6175 /**
6176  * cgroup_css_set_fork - find or create a css_set for a child process
6177  * @kargs: the arguments passed to create the child process
6178  *
6179  * This functions finds or creates a new css_set which the child
6180  * process will be attached to in cgroup_post_fork(). By default,
6181  * the child process will be given the same css_set as its parent.
6182  *
6183  * If CLONE_INTO_CGROUP is specified this function will try to find an
6184  * existing css_set which includes the requested cgroup and if not create
6185  * a new css_set that the child will be attached to later. If this function
6186  * succeeds it will hold cgroup_threadgroup_rwsem on return. If
6187  * CLONE_INTO_CGROUP is requested this function will grab cgroup mutex
6188  * before grabbing cgroup_threadgroup_rwsem and will hold a reference
6189  * to the target cgroup.
6190  */
6191 static int cgroup_css_set_fork(struct kernel_clone_args *kargs)
6192 	__acquires(&cgroup_mutex) __acquires(&cgroup_threadgroup_rwsem)
6193 {
6194 	int ret;
6195 	struct cgroup *dst_cgrp = NULL;
6196 	struct css_set *cset;
6197 	struct super_block *sb;
6198 	struct file *f;
6199 
6200 	if (kargs->flags & CLONE_INTO_CGROUP)
6201 		mutex_lock(&cgroup_mutex);
6202 
6203 	cgroup_threadgroup_change_begin(current);
6204 
6205 	spin_lock_irq(&css_set_lock);
6206 	cset = task_css_set(current);
6207 	get_css_set(cset);
6208 	spin_unlock_irq(&css_set_lock);
6209 
6210 	if (!(kargs->flags & CLONE_INTO_CGROUP)) {
6211 		kargs->cset = cset;
6212 		return 0;
6213 	}
6214 
6215 	f = fget_raw(kargs->cgroup);
6216 	if (!f) {
6217 		ret = -EBADF;
6218 		goto err;
6219 	}
6220 	sb = f->f_path.dentry->d_sb;
6221 
6222 	dst_cgrp = cgroup_get_from_file(f);
6223 	if (IS_ERR(dst_cgrp)) {
6224 		ret = PTR_ERR(dst_cgrp);
6225 		dst_cgrp = NULL;
6226 		goto err;
6227 	}
6228 
6229 	if (cgroup_is_dead(dst_cgrp)) {
6230 		ret = -ENODEV;
6231 		goto err;
6232 	}
6233 
6234 	/*
6235 	 * Verify that we the target cgroup is writable for us. This is
6236 	 * usually done by the vfs layer but since we're not going through
6237 	 * the vfs layer here we need to do it "manually".
6238 	 */
6239 	ret = cgroup_may_write(dst_cgrp, sb);
6240 	if (ret)
6241 		goto err;
6242 
6243 	/*
6244 	 * Spawning a task directly into a cgroup works by passing a file
6245 	 * descriptor to the target cgroup directory. This can even be an O_PATH
6246 	 * file descriptor. But it can never be a cgroup.procs file descriptor.
6247 	 * This was done on purpose so spawning into a cgroup could be
6248 	 * conceptualized as an atomic
6249 	 *
6250 	 *   fd = openat(dfd_cgroup, "cgroup.procs", ...);
6251 	 *   write(fd, <child-pid>, ...);
6252 	 *
6253 	 * sequence, i.e. it's a shorthand for the caller opening and writing
6254 	 * cgroup.procs of the cgroup indicated by @dfd_cgroup. This allows us
6255 	 * to always use the caller's credentials.
6256 	 */
6257 	ret = cgroup_attach_permissions(cset->dfl_cgrp, dst_cgrp, sb,
6258 					!(kargs->flags & CLONE_THREAD),
6259 					current->nsproxy->cgroup_ns);
6260 	if (ret)
6261 		goto err;
6262 
6263 	kargs->cset = find_css_set(cset, dst_cgrp);
6264 	if (!kargs->cset) {
6265 		ret = -ENOMEM;
6266 		goto err;
6267 	}
6268 
6269 	put_css_set(cset);
6270 	fput(f);
6271 	kargs->cgrp = dst_cgrp;
6272 	return ret;
6273 
6274 err:
6275 	cgroup_threadgroup_change_end(current);
6276 	mutex_unlock(&cgroup_mutex);
6277 	if (f)
6278 		fput(f);
6279 	if (dst_cgrp)
6280 		cgroup_put(dst_cgrp);
6281 	put_css_set(cset);
6282 	if (kargs->cset)
6283 		put_css_set(kargs->cset);
6284 	return ret;
6285 }
6286 
6287 /**
6288  * cgroup_css_set_put_fork - drop references we took during fork
6289  * @kargs: the arguments passed to create the child process
6290  *
6291  * Drop references to the prepared css_set and target cgroup if
6292  * CLONE_INTO_CGROUP was requested.
6293  */
6294 static void cgroup_css_set_put_fork(struct kernel_clone_args *kargs)
6295 	__releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
6296 {
6297 	cgroup_threadgroup_change_end(current);
6298 
6299 	if (kargs->flags & CLONE_INTO_CGROUP) {
6300 		struct cgroup *cgrp = kargs->cgrp;
6301 		struct css_set *cset = kargs->cset;
6302 
6303 		mutex_unlock(&cgroup_mutex);
6304 
6305 		if (cset) {
6306 			put_css_set(cset);
6307 			kargs->cset = NULL;
6308 		}
6309 
6310 		if (cgrp) {
6311 			cgroup_put(cgrp);
6312 			kargs->cgrp = NULL;
6313 		}
6314 	}
6315 }
6316 
6317 /**
6318  * cgroup_can_fork - called on a new task before the process is exposed
6319  * @child: the child process
6320  * @kargs: the arguments passed to create the child process
6321  *
6322  * This prepares a new css_set for the child process which the child will
6323  * be attached to in cgroup_post_fork().
6324  * This calls the subsystem can_fork() callbacks. If the cgroup_can_fork()
6325  * callback returns an error, the fork aborts with that error code. This
6326  * allows for a cgroup subsystem to conditionally allow or deny new forks.
6327  */
6328 int cgroup_can_fork(struct task_struct *child, struct kernel_clone_args *kargs)
6329 {
6330 	struct cgroup_subsys *ss;
6331 	int i, j, ret;
6332 
6333 	ret = cgroup_css_set_fork(kargs);
6334 	if (ret)
6335 		return ret;
6336 
6337 	do_each_subsys_mask(ss, i, have_canfork_callback) {
6338 		ret = ss->can_fork(child, kargs->cset);
6339 		if (ret)
6340 			goto out_revert;
6341 	} while_each_subsys_mask();
6342 
6343 	return 0;
6344 
6345 out_revert:
6346 	for_each_subsys(ss, j) {
6347 		if (j >= i)
6348 			break;
6349 		if (ss->cancel_fork)
6350 			ss->cancel_fork(child, kargs->cset);
6351 	}
6352 
6353 	cgroup_css_set_put_fork(kargs);
6354 
6355 	return ret;
6356 }
6357 
6358 /**
6359  * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
6360  * @child: the child process
6361  * @kargs: the arguments passed to create the child process
6362  *
6363  * This calls the cancel_fork() callbacks if a fork failed *after*
6364  * cgroup_can_fork() succeeded and cleans up references we took to
6365  * prepare a new css_set for the child process in cgroup_can_fork().
6366  */
6367 void cgroup_cancel_fork(struct task_struct *child,
6368 			struct kernel_clone_args *kargs)
6369 {
6370 	struct cgroup_subsys *ss;
6371 	int i;
6372 
6373 	for_each_subsys(ss, i)
6374 		if (ss->cancel_fork)
6375 			ss->cancel_fork(child, kargs->cset);
6376 
6377 	cgroup_css_set_put_fork(kargs);
6378 }
6379 
6380 /**
6381  * cgroup_post_fork - finalize cgroup setup for the child process
6382  * @child: the child process
6383  * @kargs: the arguments passed to create the child process
6384  *
6385  * Attach the child process to its css_set calling the subsystem fork()
6386  * callbacks.
6387  */
6388 void cgroup_post_fork(struct task_struct *child,
6389 		      struct kernel_clone_args *kargs)
6390 	__releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
6391 {
6392 	unsigned long cgrp_flags = 0;
6393 	bool kill = false;
6394 	struct cgroup_subsys *ss;
6395 	struct css_set *cset;
6396 	int i;
6397 
6398 	cset = kargs->cset;
6399 	kargs->cset = NULL;
6400 
6401 	spin_lock_irq(&css_set_lock);
6402 
6403 	/* init tasks are special, only link regular threads */
6404 	if (likely(child->pid)) {
6405 		if (kargs->cgrp)
6406 			cgrp_flags = kargs->cgrp->flags;
6407 		else
6408 			cgrp_flags = cset->dfl_cgrp->flags;
6409 
6410 		WARN_ON_ONCE(!list_empty(&child->cg_list));
6411 		cset->nr_tasks++;
6412 		css_set_move_task(child, NULL, cset, false);
6413 	} else {
6414 		put_css_set(cset);
6415 		cset = NULL;
6416 	}
6417 
6418 	if (!(child->flags & PF_KTHREAD)) {
6419 		if (unlikely(test_bit(CGRP_FREEZE, &cgrp_flags))) {
6420 			/*
6421 			 * If the cgroup has to be frozen, the new task has
6422 			 * too. Let's set the JOBCTL_TRAP_FREEZE jobctl bit to
6423 			 * get the task into the frozen state.
6424 			 */
6425 			spin_lock(&child->sighand->siglock);
6426 			WARN_ON_ONCE(child->frozen);
6427 			child->jobctl |= JOBCTL_TRAP_FREEZE;
6428 			spin_unlock(&child->sighand->siglock);
6429 
6430 			/*
6431 			 * Calling cgroup_update_frozen() isn't required here,
6432 			 * because it will be called anyway a bit later from
6433 			 * do_freezer_trap(). So we avoid cgroup's transient
6434 			 * switch from the frozen state and back.
6435 			 */
6436 		}
6437 
6438 		/*
6439 		 * If the cgroup is to be killed notice it now and take the
6440 		 * child down right after we finished preparing it for
6441 		 * userspace.
6442 		 */
6443 		kill = test_bit(CGRP_KILL, &cgrp_flags);
6444 	}
6445 
6446 	spin_unlock_irq(&css_set_lock);
6447 
6448 	/*
6449 	 * Call ss->fork().  This must happen after @child is linked on
6450 	 * css_set; otherwise, @child might change state between ->fork()
6451 	 * and addition to css_set.
6452 	 */
6453 	do_each_subsys_mask(ss, i, have_fork_callback) {
6454 		ss->fork(child);
6455 	} while_each_subsys_mask();
6456 
6457 	/* Make the new cset the root_cset of the new cgroup namespace. */
6458 	if (kargs->flags & CLONE_NEWCGROUP) {
6459 		struct css_set *rcset = child->nsproxy->cgroup_ns->root_cset;
6460 
6461 		get_css_set(cset);
6462 		child->nsproxy->cgroup_ns->root_cset = cset;
6463 		put_css_set(rcset);
6464 	}
6465 
6466 	/* Cgroup has to be killed so take down child immediately. */
6467 	if (unlikely(kill))
6468 		do_send_sig_info(SIGKILL, SEND_SIG_NOINFO, child, PIDTYPE_TGID);
6469 
6470 	cgroup_css_set_put_fork(kargs);
6471 }
6472 
6473 /**
6474  * cgroup_exit - detach cgroup from exiting task
6475  * @tsk: pointer to task_struct of exiting process
6476  *
6477  * Description: Detach cgroup from @tsk.
6478  *
6479  */
6480 void cgroup_exit(struct task_struct *tsk)
6481 {
6482 	struct cgroup_subsys *ss;
6483 	struct css_set *cset;
6484 	int i;
6485 
6486 	spin_lock_irq(&css_set_lock);
6487 
6488 	WARN_ON_ONCE(list_empty(&tsk->cg_list));
6489 	cset = task_css_set(tsk);
6490 	css_set_move_task(tsk, cset, NULL, false);
6491 	list_add_tail(&tsk->cg_list, &cset->dying_tasks);
6492 	cset->nr_tasks--;
6493 
6494 	WARN_ON_ONCE(cgroup_task_frozen(tsk));
6495 	if (unlikely(!(tsk->flags & PF_KTHREAD) &&
6496 		     test_bit(CGRP_FREEZE, &task_dfl_cgroup(tsk)->flags)))
6497 		cgroup_update_frozen(task_dfl_cgroup(tsk));
6498 
6499 	spin_unlock_irq(&css_set_lock);
6500 
6501 	/* see cgroup_post_fork() for details */
6502 	do_each_subsys_mask(ss, i, have_exit_callback) {
6503 		ss->exit(tsk);
6504 	} while_each_subsys_mask();
6505 }
6506 
6507 void cgroup_release(struct task_struct *task)
6508 {
6509 	struct cgroup_subsys *ss;
6510 	int ssid;
6511 
6512 	do_each_subsys_mask(ss, ssid, have_release_callback) {
6513 		ss->release(task);
6514 	} while_each_subsys_mask();
6515 
6516 	spin_lock_irq(&css_set_lock);
6517 	css_set_skip_task_iters(task_css_set(task), task);
6518 	list_del_init(&task->cg_list);
6519 	spin_unlock_irq(&css_set_lock);
6520 }
6521 
6522 void cgroup_free(struct task_struct *task)
6523 {
6524 	struct css_set *cset = task_css_set(task);
6525 	put_css_set(cset);
6526 }
6527 
6528 static int __init cgroup_disable(char *str)
6529 {
6530 	struct cgroup_subsys *ss;
6531 	char *token;
6532 	int i;
6533 
6534 	while ((token = strsep(&str, ",")) != NULL) {
6535 		if (!*token)
6536 			continue;
6537 
6538 		for_each_subsys(ss, i) {
6539 			if (strcmp(token, ss->name) &&
6540 			    strcmp(token, ss->legacy_name))
6541 				continue;
6542 
6543 			static_branch_disable(cgroup_subsys_enabled_key[i]);
6544 			pr_info("Disabling %s control group subsystem\n",
6545 				ss->name);
6546 		}
6547 
6548 		for (i = 0; i < OPT_FEATURE_COUNT; i++) {
6549 			if (strcmp(token, cgroup_opt_feature_names[i]))
6550 				continue;
6551 			cgroup_feature_disable_mask |= 1 << i;
6552 			pr_info("Disabling %s control group feature\n",
6553 				cgroup_opt_feature_names[i]);
6554 			break;
6555 		}
6556 	}
6557 	return 1;
6558 }
6559 __setup("cgroup_disable=", cgroup_disable);
6560 
6561 void __init __weak enable_debug_cgroup(void) { }
6562 
6563 static int __init enable_cgroup_debug(char *str)
6564 {
6565 	cgroup_debug = true;
6566 	enable_debug_cgroup();
6567 	return 1;
6568 }
6569 __setup("cgroup_debug", enable_cgroup_debug);
6570 
6571 /**
6572  * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
6573  * @dentry: directory dentry of interest
6574  * @ss: subsystem of interest
6575  *
6576  * If @dentry is a directory for a cgroup which has @ss enabled on it, try
6577  * to get the corresponding css and return it.  If such css doesn't exist
6578  * or can't be pinned, an ERR_PTR value is returned.
6579  */
6580 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
6581 						       struct cgroup_subsys *ss)
6582 {
6583 	struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
6584 	struct file_system_type *s_type = dentry->d_sb->s_type;
6585 	struct cgroup_subsys_state *css = NULL;
6586 	struct cgroup *cgrp;
6587 
6588 	/* is @dentry a cgroup dir? */
6589 	if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
6590 	    !kn || kernfs_type(kn) != KERNFS_DIR)
6591 		return ERR_PTR(-EBADF);
6592 
6593 	rcu_read_lock();
6594 
6595 	/*
6596 	 * This path doesn't originate from kernfs and @kn could already
6597 	 * have been or be removed at any point.  @kn->priv is RCU
6598 	 * protected for this access.  See css_release_work_fn() for details.
6599 	 */
6600 	cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6601 	if (cgrp)
6602 		css = cgroup_css(cgrp, ss);
6603 
6604 	if (!css || !css_tryget_online(css))
6605 		css = ERR_PTR(-ENOENT);
6606 
6607 	rcu_read_unlock();
6608 	return css;
6609 }
6610 
6611 /**
6612  * css_from_id - lookup css by id
6613  * @id: the cgroup id
6614  * @ss: cgroup subsys to be looked into
6615  *
6616  * Returns the css if there's valid one with @id, otherwise returns NULL.
6617  * Should be called under rcu_read_lock().
6618  */
6619 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
6620 {
6621 	WARN_ON_ONCE(!rcu_read_lock_held());
6622 	return idr_find(&ss->css_idr, id);
6623 }
6624 
6625 /**
6626  * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
6627  * @path: path on the default hierarchy
6628  *
6629  * Find the cgroup at @path on the default hierarchy, increment its
6630  * reference count and return it.  Returns pointer to the found cgroup on
6631  * success, ERR_PTR(-ENOENT) if @path doesn't exist or if the cgroup has already
6632  * been released and ERR_PTR(-ENOTDIR) if @path points to a non-directory.
6633  */
6634 struct cgroup *cgroup_get_from_path(const char *path)
6635 {
6636 	struct kernfs_node *kn;
6637 	struct cgroup *cgrp = ERR_PTR(-ENOENT);
6638 
6639 	kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path);
6640 	if (!kn)
6641 		goto out;
6642 
6643 	if (kernfs_type(kn) != KERNFS_DIR) {
6644 		cgrp = ERR_PTR(-ENOTDIR);
6645 		goto out_kernfs;
6646 	}
6647 
6648 	rcu_read_lock();
6649 
6650 	cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6651 	if (!cgrp || !cgroup_tryget(cgrp))
6652 		cgrp = ERR_PTR(-ENOENT);
6653 
6654 	rcu_read_unlock();
6655 
6656 out_kernfs:
6657 	kernfs_put(kn);
6658 out:
6659 	return cgrp;
6660 }
6661 EXPORT_SYMBOL_GPL(cgroup_get_from_path);
6662 
6663 /**
6664  * cgroup_get_from_fd - get a cgroup pointer from a fd
6665  * @fd: fd obtained by open(cgroup2_dir)
6666  *
6667  * Find the cgroup from a fd which should be obtained
6668  * by opening a cgroup directory.  Returns a pointer to the
6669  * cgroup on success. ERR_PTR is returned if the cgroup
6670  * cannot be found.
6671  */
6672 struct cgroup *cgroup_get_from_fd(int fd)
6673 {
6674 	struct cgroup *cgrp;
6675 	struct file *f;
6676 
6677 	f = fget_raw(fd);
6678 	if (!f)
6679 		return ERR_PTR(-EBADF);
6680 
6681 	cgrp = cgroup_get_from_file(f);
6682 	fput(f);
6683 	return cgrp;
6684 }
6685 EXPORT_SYMBOL_GPL(cgroup_get_from_fd);
6686 
6687 static u64 power_of_ten(int power)
6688 {
6689 	u64 v = 1;
6690 	while (power--)
6691 		v *= 10;
6692 	return v;
6693 }
6694 
6695 /**
6696  * cgroup_parse_float - parse a floating number
6697  * @input: input string
6698  * @dec_shift: number of decimal digits to shift
6699  * @v: output
6700  *
6701  * Parse a decimal floating point number in @input and store the result in
6702  * @v with decimal point right shifted @dec_shift times.  For example, if
6703  * @input is "12.3456" and @dec_shift is 3, *@v will be set to 12345.
6704  * Returns 0 on success, -errno otherwise.
6705  *
6706  * There's nothing cgroup specific about this function except that it's
6707  * currently the only user.
6708  */
6709 int cgroup_parse_float(const char *input, unsigned dec_shift, s64 *v)
6710 {
6711 	s64 whole, frac = 0;
6712 	int fstart = 0, fend = 0, flen;
6713 
6714 	if (!sscanf(input, "%lld.%n%lld%n", &whole, &fstart, &frac, &fend))
6715 		return -EINVAL;
6716 	if (frac < 0)
6717 		return -EINVAL;
6718 
6719 	flen = fend > fstart ? fend - fstart : 0;
6720 	if (flen < dec_shift)
6721 		frac *= power_of_ten(dec_shift - flen);
6722 	else
6723 		frac = DIV_ROUND_CLOSEST_ULL(frac, power_of_ten(flen - dec_shift));
6724 
6725 	*v = whole * power_of_ten(dec_shift) + frac;
6726 	return 0;
6727 }
6728 
6729 /*
6730  * sock->sk_cgrp_data handling.  For more info, see sock_cgroup_data
6731  * definition in cgroup-defs.h.
6732  */
6733 #ifdef CONFIG_SOCK_CGROUP_DATA
6734 
6735 void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
6736 {
6737 	struct cgroup *cgroup;
6738 
6739 	rcu_read_lock();
6740 	/* Don't associate the sock with unrelated interrupted task's cgroup. */
6741 	if (in_interrupt()) {
6742 		cgroup = &cgrp_dfl_root.cgrp;
6743 		cgroup_get(cgroup);
6744 		goto out;
6745 	}
6746 
6747 	while (true) {
6748 		struct css_set *cset;
6749 
6750 		cset = task_css_set(current);
6751 		if (likely(cgroup_tryget(cset->dfl_cgrp))) {
6752 			cgroup = cset->dfl_cgrp;
6753 			break;
6754 		}
6755 		cpu_relax();
6756 	}
6757 out:
6758 	skcd->cgroup = cgroup;
6759 	cgroup_bpf_get(cgroup);
6760 	rcu_read_unlock();
6761 }
6762 
6763 void cgroup_sk_clone(struct sock_cgroup_data *skcd)
6764 {
6765 	struct cgroup *cgrp = sock_cgroup_ptr(skcd);
6766 
6767 	/*
6768 	 * We might be cloning a socket which is left in an empty
6769 	 * cgroup and the cgroup might have already been rmdir'd.
6770 	 * Don't use cgroup_get_live().
6771 	 */
6772 	cgroup_get(cgrp);
6773 	cgroup_bpf_get(cgrp);
6774 }
6775 
6776 void cgroup_sk_free(struct sock_cgroup_data *skcd)
6777 {
6778 	struct cgroup *cgrp = sock_cgroup_ptr(skcd);
6779 
6780 	cgroup_bpf_put(cgrp);
6781 	cgroup_put(cgrp);
6782 }
6783 
6784 #endif	/* CONFIG_SOCK_CGROUP_DATA */
6785 
6786 #ifdef CONFIG_SYSFS
6787 static ssize_t show_delegatable_files(struct cftype *files, char *buf,
6788 				      ssize_t size, const char *prefix)
6789 {
6790 	struct cftype *cft;
6791 	ssize_t ret = 0;
6792 
6793 	for (cft = files; cft && cft->name[0] != '\0'; cft++) {
6794 		if (!(cft->flags & CFTYPE_NS_DELEGATABLE))
6795 			continue;
6796 
6797 		if ((cft->flags & CFTYPE_PRESSURE) && !cgroup_psi_enabled())
6798 			continue;
6799 
6800 		if (prefix)
6801 			ret += snprintf(buf + ret, size - ret, "%s.", prefix);
6802 
6803 		ret += snprintf(buf + ret, size - ret, "%s\n", cft->name);
6804 
6805 		if (WARN_ON(ret >= size))
6806 			break;
6807 	}
6808 
6809 	return ret;
6810 }
6811 
6812 static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr,
6813 			      char *buf)
6814 {
6815 	struct cgroup_subsys *ss;
6816 	int ssid;
6817 	ssize_t ret = 0;
6818 
6819 	ret = show_delegatable_files(cgroup_base_files, buf, PAGE_SIZE - ret,
6820 				     NULL);
6821 
6822 	for_each_subsys(ss, ssid)
6823 		ret += show_delegatable_files(ss->dfl_cftypes, buf + ret,
6824 					      PAGE_SIZE - ret,
6825 					      cgroup_subsys_name[ssid]);
6826 
6827 	return ret;
6828 }
6829 static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate);
6830 
6831 static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr,
6832 			     char *buf)
6833 {
6834 	return snprintf(buf, PAGE_SIZE,
6835 			"nsdelegate\n"
6836 			"favordynmods\n"
6837 			"memory_localevents\n"
6838 			"memory_recursiveprot\n");
6839 }
6840 static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features);
6841 
6842 static struct attribute *cgroup_sysfs_attrs[] = {
6843 	&cgroup_delegate_attr.attr,
6844 	&cgroup_features_attr.attr,
6845 	NULL,
6846 };
6847 
6848 static const struct attribute_group cgroup_sysfs_attr_group = {
6849 	.attrs = cgroup_sysfs_attrs,
6850 	.name = "cgroup",
6851 };
6852 
6853 static int __init cgroup_sysfs_init(void)
6854 {
6855 	return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group);
6856 }
6857 subsys_initcall(cgroup_sysfs_init);
6858 
6859 #endif /* CONFIG_SYSFS */
6860