xref: /openbmc/linux/kernel/cgroup/cgroup.c (revision acf50233)
1 /*
2  *  Generic process-grouping system.
3  *
4  *  Based originally on the cpuset system, extracted by Paul Menage
5  *  Copyright (C) 2006 Google, Inc
6  *
7  *  Notifications support
8  *  Copyright (C) 2009 Nokia Corporation
9  *  Author: Kirill A. Shutemov
10  *
11  *  Copyright notices from the original cpuset code:
12  *  --------------------------------------------------
13  *  Copyright (C) 2003 BULL SA.
14  *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
15  *
16  *  Portions derived from Patrick Mochel's sysfs code.
17  *  sysfs is Copyright (c) 2001-3 Patrick Mochel
18  *
19  *  2003-10-10 Written by Simon Derr.
20  *  2003-10-22 Updates by Stephen Hemminger.
21  *  2004 May-July Rework by Paul Jackson.
22  *  ---------------------------------------------------
23  *
24  *  This file is subject to the terms and conditions of the GNU General Public
25  *  License.  See the file COPYING in the main directory of the Linux
26  *  distribution for more details.
27  */
28 
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 
31 #include "cgroup-internal.h"
32 
33 #include <linux/bpf-cgroup.h>
34 #include <linux/cred.h>
35 #include <linux/errno.h>
36 #include <linux/init_task.h>
37 #include <linux/kernel.h>
38 #include <linux/magic.h>
39 #include <linux/mutex.h>
40 #include <linux/mount.h>
41 #include <linux/pagemap.h>
42 #include <linux/proc_fs.h>
43 #include <linux/rcupdate.h>
44 #include <linux/sched.h>
45 #include <linux/sched/task.h>
46 #include <linux/slab.h>
47 #include <linux/spinlock.h>
48 #include <linux/percpu-rwsem.h>
49 #include <linux/string.h>
50 #include <linux/hashtable.h>
51 #include <linux/idr.h>
52 #include <linux/kthread.h>
53 #include <linux/atomic.h>
54 #include <linux/cpuset.h>
55 #include <linux/proc_ns.h>
56 #include <linux/nsproxy.h>
57 #include <linux/file.h>
58 #include <linux/fs_parser.h>
59 #include <linux/sched/cputime.h>
60 #include <linux/psi.h>
61 #include <net/sock.h>
62 
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/cgroup.h>
65 
66 #define CGROUP_FILE_NAME_MAX		(MAX_CGROUP_TYPE_NAMELEN +	\
67 					 MAX_CFTYPE_NAME + 2)
68 /* let's not notify more than 100 times per second */
69 #define CGROUP_FILE_NOTIFY_MIN_INTV	DIV_ROUND_UP(HZ, 100)
70 
71 /*
72  * To avoid confusing the compiler (and generating warnings) with code
73  * that attempts to access what would be a 0-element array (i.e. sized
74  * to a potentially empty array when CGROUP_SUBSYS_COUNT == 0), this
75  * constant expression can be added.
76  */
77 #define CGROUP_HAS_SUBSYS_CONFIG	(CGROUP_SUBSYS_COUNT > 0)
78 
79 /*
80  * cgroup_mutex is the master lock.  Any modification to cgroup or its
81  * hierarchy must be performed while holding it.
82  *
83  * css_set_lock protects task->cgroups pointer, the list of css_set
84  * objects, and the chain of tasks off each css_set.
85  *
86  * These locks are exported if CONFIG_PROVE_RCU so that accessors in
87  * cgroup.h can use them for lockdep annotations.
88  */
89 DEFINE_MUTEX(cgroup_mutex);
90 DEFINE_SPINLOCK(css_set_lock);
91 
92 #ifdef CONFIG_PROVE_RCU
93 EXPORT_SYMBOL_GPL(cgroup_mutex);
94 EXPORT_SYMBOL_GPL(css_set_lock);
95 #endif
96 
97 DEFINE_SPINLOCK(trace_cgroup_path_lock);
98 char trace_cgroup_path[TRACE_CGROUP_PATH_LEN];
99 static bool cgroup_debug __read_mostly;
100 
101 /*
102  * Protects cgroup_idr and css_idr so that IDs can be released without
103  * grabbing cgroup_mutex.
104  */
105 static DEFINE_SPINLOCK(cgroup_idr_lock);
106 
107 /*
108  * Protects cgroup_file->kn for !self csses.  It synchronizes notifications
109  * against file removal/re-creation across css hiding.
110  */
111 static DEFINE_SPINLOCK(cgroup_file_kn_lock);
112 
113 DEFINE_PERCPU_RWSEM(cgroup_threadgroup_rwsem);
114 
115 #define cgroup_assert_mutex_or_rcu_locked()				\
116 	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
117 			   !lockdep_is_held(&cgroup_mutex),		\
118 			   "cgroup_mutex or RCU read lock required");
119 
120 /*
121  * cgroup destruction makes heavy use of work items and there can be a lot
122  * of concurrent destructions.  Use a separate workqueue so that cgroup
123  * destruction work items don't end up filling up max_active of system_wq
124  * which may lead to deadlock.
125  */
126 static struct workqueue_struct *cgroup_destroy_wq;
127 
128 /* generate an array of cgroup subsystem pointers */
129 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
130 struct cgroup_subsys *cgroup_subsys[] = {
131 #include <linux/cgroup_subsys.h>
132 };
133 #undef SUBSYS
134 
135 /* array of cgroup subsystem names */
136 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
137 static const char *cgroup_subsys_name[] = {
138 #include <linux/cgroup_subsys.h>
139 };
140 #undef SUBSYS
141 
142 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
143 #define SUBSYS(_x)								\
144 	DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key);			\
145 	DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key);			\
146 	EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key);			\
147 	EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
148 #include <linux/cgroup_subsys.h>
149 #undef SUBSYS
150 
151 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
152 static struct static_key_true *cgroup_subsys_enabled_key[] = {
153 #include <linux/cgroup_subsys.h>
154 };
155 #undef SUBSYS
156 
157 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
158 static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
159 #include <linux/cgroup_subsys.h>
160 };
161 #undef SUBSYS
162 
163 static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu);
164 
165 /* the default hierarchy */
166 struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu };
167 EXPORT_SYMBOL_GPL(cgrp_dfl_root);
168 
169 /*
170  * The default hierarchy always exists but is hidden until mounted for the
171  * first time.  This is for backward compatibility.
172  */
173 static bool cgrp_dfl_visible;
174 
175 /* some controllers are not supported in the default hierarchy */
176 static u16 cgrp_dfl_inhibit_ss_mask;
177 
178 /* some controllers are implicitly enabled on the default hierarchy */
179 static u16 cgrp_dfl_implicit_ss_mask;
180 
181 /* some controllers can be threaded on the default hierarchy */
182 static u16 cgrp_dfl_threaded_ss_mask;
183 
184 /* The list of hierarchy roots */
185 LIST_HEAD(cgroup_roots);
186 static int cgroup_root_count;
187 
188 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
189 static DEFINE_IDR(cgroup_hierarchy_idr);
190 
191 /*
192  * Assign a monotonically increasing serial number to csses.  It guarantees
193  * cgroups with bigger numbers are newer than those with smaller numbers.
194  * Also, as csses are always appended to the parent's ->children list, it
195  * guarantees that sibling csses are always sorted in the ascending serial
196  * number order on the list.  Protected by cgroup_mutex.
197  */
198 static u64 css_serial_nr_next = 1;
199 
200 /*
201  * These bitmasks identify subsystems with specific features to avoid
202  * having to do iterative checks repeatedly.
203  */
204 static u16 have_fork_callback __read_mostly;
205 static u16 have_exit_callback __read_mostly;
206 static u16 have_release_callback __read_mostly;
207 static u16 have_canfork_callback __read_mostly;
208 
209 /* cgroup namespace for init task */
210 struct cgroup_namespace init_cgroup_ns = {
211 	.ns.count	= REFCOUNT_INIT(2),
212 	.user_ns	= &init_user_ns,
213 	.ns.ops		= &cgroupns_operations,
214 	.ns.inum	= PROC_CGROUP_INIT_INO,
215 	.root_cset	= &init_css_set,
216 };
217 
218 static struct file_system_type cgroup2_fs_type;
219 static struct cftype cgroup_base_files[];
220 
221 /* cgroup optional features */
222 enum cgroup_opt_features {
223 #ifdef CONFIG_PSI
224 	OPT_FEATURE_PRESSURE,
225 #endif
226 	OPT_FEATURE_COUNT
227 };
228 
229 static const char *cgroup_opt_feature_names[OPT_FEATURE_COUNT] = {
230 #ifdef CONFIG_PSI
231 	"pressure",
232 #endif
233 };
234 
235 static u16 cgroup_feature_disable_mask __read_mostly;
236 
237 static int cgroup_apply_control(struct cgroup *cgrp);
238 static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
239 static void css_task_iter_skip(struct css_task_iter *it,
240 			       struct task_struct *task);
241 static int cgroup_destroy_locked(struct cgroup *cgrp);
242 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
243 					      struct cgroup_subsys *ss);
244 static void css_release(struct percpu_ref *ref);
245 static void kill_css(struct cgroup_subsys_state *css);
246 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
247 			      struct cgroup *cgrp, struct cftype cfts[],
248 			      bool is_add);
249 
250 /**
251  * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
252  * @ssid: subsys ID of interest
253  *
254  * cgroup_subsys_enabled() can only be used with literal subsys names which
255  * is fine for individual subsystems but unsuitable for cgroup core.  This
256  * is slower static_key_enabled() based test indexed by @ssid.
257  */
258 bool cgroup_ssid_enabled(int ssid)
259 {
260 	if (!CGROUP_HAS_SUBSYS_CONFIG)
261 		return false;
262 
263 	return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
264 }
265 
266 /**
267  * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
268  * @cgrp: the cgroup of interest
269  *
270  * The default hierarchy is the v2 interface of cgroup and this function
271  * can be used to test whether a cgroup is on the default hierarchy for
272  * cases where a subsystem should behave differently depending on the
273  * interface version.
274  *
275  * List of changed behaviors:
276  *
277  * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
278  *   and "name" are disallowed.
279  *
280  * - When mounting an existing superblock, mount options should match.
281  *
282  * - Remount is disallowed.
283  *
284  * - rename(2) is disallowed.
285  *
286  * - "tasks" is removed.  Everything should be at process granularity.  Use
287  *   "cgroup.procs" instead.
288  *
289  * - "cgroup.procs" is not sorted.  pids will be unique unless they got
290  *   recycled in-between reads.
291  *
292  * - "release_agent" and "notify_on_release" are removed.  Replacement
293  *   notification mechanism will be implemented.
294  *
295  * - "cgroup.clone_children" is removed.
296  *
297  * - "cgroup.subtree_populated" is available.  Its value is 0 if the cgroup
298  *   and its descendants contain no task; otherwise, 1.  The file also
299  *   generates kernfs notification which can be monitored through poll and
300  *   [di]notify when the value of the file changes.
301  *
302  * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
303  *   take masks of ancestors with non-empty cpus/mems, instead of being
304  *   moved to an ancestor.
305  *
306  * - cpuset: a task can be moved into an empty cpuset, and again it takes
307  *   masks of ancestors.
308  *
309  * - blkcg: blk-throttle becomes properly hierarchical.
310  *
311  * - debug: disallowed on the default hierarchy.
312  */
313 bool cgroup_on_dfl(const struct cgroup *cgrp)
314 {
315 	return cgrp->root == &cgrp_dfl_root;
316 }
317 
318 /* IDR wrappers which synchronize using cgroup_idr_lock */
319 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
320 			    gfp_t gfp_mask)
321 {
322 	int ret;
323 
324 	idr_preload(gfp_mask);
325 	spin_lock_bh(&cgroup_idr_lock);
326 	ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
327 	spin_unlock_bh(&cgroup_idr_lock);
328 	idr_preload_end();
329 	return ret;
330 }
331 
332 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
333 {
334 	void *ret;
335 
336 	spin_lock_bh(&cgroup_idr_lock);
337 	ret = idr_replace(idr, ptr, id);
338 	spin_unlock_bh(&cgroup_idr_lock);
339 	return ret;
340 }
341 
342 static void cgroup_idr_remove(struct idr *idr, int id)
343 {
344 	spin_lock_bh(&cgroup_idr_lock);
345 	idr_remove(idr, id);
346 	spin_unlock_bh(&cgroup_idr_lock);
347 }
348 
349 static bool cgroup_has_tasks(struct cgroup *cgrp)
350 {
351 	return cgrp->nr_populated_csets;
352 }
353 
354 bool cgroup_is_threaded(struct cgroup *cgrp)
355 {
356 	return cgrp->dom_cgrp != cgrp;
357 }
358 
359 /* can @cgrp host both domain and threaded children? */
360 static bool cgroup_is_mixable(struct cgroup *cgrp)
361 {
362 	/*
363 	 * Root isn't under domain level resource control exempting it from
364 	 * the no-internal-process constraint, so it can serve as a thread
365 	 * root and a parent of resource domains at the same time.
366 	 */
367 	return !cgroup_parent(cgrp);
368 }
369 
370 /* can @cgrp become a thread root? Should always be true for a thread root */
371 static bool cgroup_can_be_thread_root(struct cgroup *cgrp)
372 {
373 	/* mixables don't care */
374 	if (cgroup_is_mixable(cgrp))
375 		return true;
376 
377 	/* domain roots can't be nested under threaded */
378 	if (cgroup_is_threaded(cgrp))
379 		return false;
380 
381 	/* can only have either domain or threaded children */
382 	if (cgrp->nr_populated_domain_children)
383 		return false;
384 
385 	/* and no domain controllers can be enabled */
386 	if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
387 		return false;
388 
389 	return true;
390 }
391 
392 /* is @cgrp root of a threaded subtree? */
393 bool cgroup_is_thread_root(struct cgroup *cgrp)
394 {
395 	/* thread root should be a domain */
396 	if (cgroup_is_threaded(cgrp))
397 		return false;
398 
399 	/* a domain w/ threaded children is a thread root */
400 	if (cgrp->nr_threaded_children)
401 		return true;
402 
403 	/*
404 	 * A domain which has tasks and explicit threaded controllers
405 	 * enabled is a thread root.
406 	 */
407 	if (cgroup_has_tasks(cgrp) &&
408 	    (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask))
409 		return true;
410 
411 	return false;
412 }
413 
414 /* a domain which isn't connected to the root w/o brekage can't be used */
415 static bool cgroup_is_valid_domain(struct cgroup *cgrp)
416 {
417 	/* the cgroup itself can be a thread root */
418 	if (cgroup_is_threaded(cgrp))
419 		return false;
420 
421 	/* but the ancestors can't be unless mixable */
422 	while ((cgrp = cgroup_parent(cgrp))) {
423 		if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp))
424 			return false;
425 		if (cgroup_is_threaded(cgrp))
426 			return false;
427 	}
428 
429 	return true;
430 }
431 
432 /* subsystems visibly enabled on a cgroup */
433 static u16 cgroup_control(struct cgroup *cgrp)
434 {
435 	struct cgroup *parent = cgroup_parent(cgrp);
436 	u16 root_ss_mask = cgrp->root->subsys_mask;
437 
438 	if (parent) {
439 		u16 ss_mask = parent->subtree_control;
440 
441 		/* threaded cgroups can only have threaded controllers */
442 		if (cgroup_is_threaded(cgrp))
443 			ss_mask &= cgrp_dfl_threaded_ss_mask;
444 		return ss_mask;
445 	}
446 
447 	if (cgroup_on_dfl(cgrp))
448 		root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
449 				  cgrp_dfl_implicit_ss_mask);
450 	return root_ss_mask;
451 }
452 
453 /* subsystems enabled on a cgroup */
454 static u16 cgroup_ss_mask(struct cgroup *cgrp)
455 {
456 	struct cgroup *parent = cgroup_parent(cgrp);
457 
458 	if (parent) {
459 		u16 ss_mask = parent->subtree_ss_mask;
460 
461 		/* threaded cgroups can only have threaded controllers */
462 		if (cgroup_is_threaded(cgrp))
463 			ss_mask &= cgrp_dfl_threaded_ss_mask;
464 		return ss_mask;
465 	}
466 
467 	return cgrp->root->subsys_mask;
468 }
469 
470 /**
471  * cgroup_css - obtain a cgroup's css for the specified subsystem
472  * @cgrp: the cgroup of interest
473  * @ss: the subsystem of interest (%NULL returns @cgrp->self)
474  *
475  * Return @cgrp's css (cgroup_subsys_state) associated with @ss.  This
476  * function must be called either under cgroup_mutex or rcu_read_lock() and
477  * the caller is responsible for pinning the returned css if it wants to
478  * keep accessing it outside the said locks.  This function may return
479  * %NULL if @cgrp doesn't have @subsys_id enabled.
480  */
481 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
482 					      struct cgroup_subsys *ss)
483 {
484 	if (CGROUP_HAS_SUBSYS_CONFIG && ss)
485 		return rcu_dereference_check(cgrp->subsys[ss->id],
486 					lockdep_is_held(&cgroup_mutex));
487 	else
488 		return &cgrp->self;
489 }
490 
491 /**
492  * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem
493  * @cgrp: the cgroup of interest
494  * @ss: the subsystem of interest
495  *
496  * Find and get @cgrp's css associated with @ss.  If the css doesn't exist
497  * or is offline, %NULL is returned.
498  */
499 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp,
500 						     struct cgroup_subsys *ss)
501 {
502 	struct cgroup_subsys_state *css;
503 
504 	rcu_read_lock();
505 	css = cgroup_css(cgrp, ss);
506 	if (css && !css_tryget_online(css))
507 		css = NULL;
508 	rcu_read_unlock();
509 
510 	return css;
511 }
512 
513 /**
514  * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss
515  * @cgrp: the cgroup of interest
516  * @ss: the subsystem of interest (%NULL returns @cgrp->self)
517  *
518  * Similar to cgroup_css() but returns the effective css, which is defined
519  * as the matching css of the nearest ancestor including self which has @ss
520  * enabled.  If @ss is associated with the hierarchy @cgrp is on, this
521  * function is guaranteed to return non-NULL css.
522  */
523 static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp,
524 							struct cgroup_subsys *ss)
525 {
526 	lockdep_assert_held(&cgroup_mutex);
527 
528 	if (!ss)
529 		return &cgrp->self;
530 
531 	/*
532 	 * This function is used while updating css associations and thus
533 	 * can't test the csses directly.  Test ss_mask.
534 	 */
535 	while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
536 		cgrp = cgroup_parent(cgrp);
537 		if (!cgrp)
538 			return NULL;
539 	}
540 
541 	return cgroup_css(cgrp, ss);
542 }
543 
544 /**
545  * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
546  * @cgrp: the cgroup of interest
547  * @ss: the subsystem of interest
548  *
549  * Find and get the effective css of @cgrp for @ss.  The effective css is
550  * defined as the matching css of the nearest ancestor including self which
551  * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
552  * the root css is returned, so this function always returns a valid css.
553  *
554  * The returned css is not guaranteed to be online, and therefore it is the
555  * callers responsibility to try get a reference for it.
556  */
557 struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
558 					 struct cgroup_subsys *ss)
559 {
560 	struct cgroup_subsys_state *css;
561 
562 	if (!CGROUP_HAS_SUBSYS_CONFIG)
563 		return NULL;
564 
565 	do {
566 		css = cgroup_css(cgrp, ss);
567 
568 		if (css)
569 			return css;
570 		cgrp = cgroup_parent(cgrp);
571 	} while (cgrp);
572 
573 	return init_css_set.subsys[ss->id];
574 }
575 
576 /**
577  * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
578  * @cgrp: the cgroup of interest
579  * @ss: the subsystem of interest
580  *
581  * Find and get the effective css of @cgrp for @ss.  The effective css is
582  * defined as the matching css of the nearest ancestor including self which
583  * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
584  * the root css is returned, so this function always returns a valid css.
585  * The returned css must be put using css_put().
586  */
587 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
588 					     struct cgroup_subsys *ss)
589 {
590 	struct cgroup_subsys_state *css;
591 
592 	if (!CGROUP_HAS_SUBSYS_CONFIG)
593 		return NULL;
594 
595 	rcu_read_lock();
596 
597 	do {
598 		css = cgroup_css(cgrp, ss);
599 
600 		if (css && css_tryget_online(css))
601 			goto out_unlock;
602 		cgrp = cgroup_parent(cgrp);
603 	} while (cgrp);
604 
605 	css = init_css_set.subsys[ss->id];
606 	css_get(css);
607 out_unlock:
608 	rcu_read_unlock();
609 	return css;
610 }
611 EXPORT_SYMBOL_GPL(cgroup_get_e_css);
612 
613 static void cgroup_get_live(struct cgroup *cgrp)
614 {
615 	WARN_ON_ONCE(cgroup_is_dead(cgrp));
616 	css_get(&cgrp->self);
617 }
618 
619 /**
620  * __cgroup_task_count - count the number of tasks in a cgroup. The caller
621  * is responsible for taking the css_set_lock.
622  * @cgrp: the cgroup in question
623  */
624 int __cgroup_task_count(const struct cgroup *cgrp)
625 {
626 	int count = 0;
627 	struct cgrp_cset_link *link;
628 
629 	lockdep_assert_held(&css_set_lock);
630 
631 	list_for_each_entry(link, &cgrp->cset_links, cset_link)
632 		count += link->cset->nr_tasks;
633 
634 	return count;
635 }
636 
637 /**
638  * cgroup_task_count - count the number of tasks in a cgroup.
639  * @cgrp: the cgroup in question
640  */
641 int cgroup_task_count(const struct cgroup *cgrp)
642 {
643 	int count;
644 
645 	spin_lock_irq(&css_set_lock);
646 	count = __cgroup_task_count(cgrp);
647 	spin_unlock_irq(&css_set_lock);
648 
649 	return count;
650 }
651 
652 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
653 {
654 	struct cgroup *cgrp = of->kn->parent->priv;
655 	struct cftype *cft = of_cft(of);
656 
657 	/*
658 	 * This is open and unprotected implementation of cgroup_css().
659 	 * seq_css() is only called from a kernfs file operation which has
660 	 * an active reference on the file.  Because all the subsystem
661 	 * files are drained before a css is disassociated with a cgroup,
662 	 * the matching css from the cgroup's subsys table is guaranteed to
663 	 * be and stay valid until the enclosing operation is complete.
664 	 */
665 	if (CGROUP_HAS_SUBSYS_CONFIG && cft->ss)
666 		return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
667 	else
668 		return &cgrp->self;
669 }
670 EXPORT_SYMBOL_GPL(of_css);
671 
672 /**
673  * for_each_css - iterate all css's of a cgroup
674  * @css: the iteration cursor
675  * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
676  * @cgrp: the target cgroup to iterate css's of
677  *
678  * Should be called under cgroup_[tree_]mutex.
679  */
680 #define for_each_css(css, ssid, cgrp)					\
681 	for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)	\
682 		if (!((css) = rcu_dereference_check(			\
683 				(cgrp)->subsys[(ssid)],			\
684 				lockdep_is_held(&cgroup_mutex)))) { }	\
685 		else
686 
687 /**
688  * for_each_e_css - iterate all effective css's of a cgroup
689  * @css: the iteration cursor
690  * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
691  * @cgrp: the target cgroup to iterate css's of
692  *
693  * Should be called under cgroup_[tree_]mutex.
694  */
695 #define for_each_e_css(css, ssid, cgrp)					    \
696 	for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)	    \
697 		if (!((css) = cgroup_e_css_by_mask(cgrp,		    \
698 						   cgroup_subsys[(ssid)]))) \
699 			;						    \
700 		else
701 
702 /**
703  * do_each_subsys_mask - filter for_each_subsys with a bitmask
704  * @ss: the iteration cursor
705  * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
706  * @ss_mask: the bitmask
707  *
708  * The block will only run for cases where the ssid-th bit (1 << ssid) of
709  * @ss_mask is set.
710  */
711 #define do_each_subsys_mask(ss, ssid, ss_mask) do {			\
712 	unsigned long __ss_mask = (ss_mask);				\
713 	if (!CGROUP_HAS_SUBSYS_CONFIG) {				\
714 		(ssid) = 0;						\
715 		break;							\
716 	}								\
717 	for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) {	\
718 		(ss) = cgroup_subsys[ssid];				\
719 		{
720 
721 #define while_each_subsys_mask()					\
722 		}							\
723 	}								\
724 } while (false)
725 
726 /* iterate over child cgrps, lock should be held throughout iteration */
727 #define cgroup_for_each_live_child(child, cgrp)				\
728 	list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
729 		if (({ lockdep_assert_held(&cgroup_mutex);		\
730 		       cgroup_is_dead(child); }))			\
731 			;						\
732 		else
733 
734 /* walk live descendants in pre order */
735 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)		\
736 	css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL))	\
737 		if (({ lockdep_assert_held(&cgroup_mutex);		\
738 		       (dsct) = (d_css)->cgroup;			\
739 		       cgroup_is_dead(dsct); }))			\
740 			;						\
741 		else
742 
743 /* walk live descendants in postorder */
744 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp)		\
745 	css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL))	\
746 		if (({ lockdep_assert_held(&cgroup_mutex);		\
747 		       (dsct) = (d_css)->cgroup;			\
748 		       cgroup_is_dead(dsct); }))			\
749 			;						\
750 		else
751 
752 /*
753  * The default css_set - used by init and its children prior to any
754  * hierarchies being mounted. It contains a pointer to the root state
755  * for each subsystem. Also used to anchor the list of css_sets. Not
756  * reference-counted, to improve performance when child cgroups
757  * haven't been created.
758  */
759 struct css_set init_css_set = {
760 	.refcount		= REFCOUNT_INIT(1),
761 	.dom_cset		= &init_css_set,
762 	.tasks			= LIST_HEAD_INIT(init_css_set.tasks),
763 	.mg_tasks		= LIST_HEAD_INIT(init_css_set.mg_tasks),
764 	.dying_tasks		= LIST_HEAD_INIT(init_css_set.dying_tasks),
765 	.task_iters		= LIST_HEAD_INIT(init_css_set.task_iters),
766 	.threaded_csets		= LIST_HEAD_INIT(init_css_set.threaded_csets),
767 	.cgrp_links		= LIST_HEAD_INIT(init_css_set.cgrp_links),
768 	.mg_preload_node	= LIST_HEAD_INIT(init_css_set.mg_preload_node),
769 	.mg_node		= LIST_HEAD_INIT(init_css_set.mg_node),
770 
771 	/*
772 	 * The following field is re-initialized when this cset gets linked
773 	 * in cgroup_init().  However, let's initialize the field
774 	 * statically too so that the default cgroup can be accessed safely
775 	 * early during boot.
776 	 */
777 	.dfl_cgrp		= &cgrp_dfl_root.cgrp,
778 };
779 
780 static int css_set_count	= 1;	/* 1 for init_css_set */
781 
782 static bool css_set_threaded(struct css_set *cset)
783 {
784 	return cset->dom_cset != cset;
785 }
786 
787 /**
788  * css_set_populated - does a css_set contain any tasks?
789  * @cset: target css_set
790  *
791  * css_set_populated() should be the same as !!cset->nr_tasks at steady
792  * state. However, css_set_populated() can be called while a task is being
793  * added to or removed from the linked list before the nr_tasks is
794  * properly updated. Hence, we can't just look at ->nr_tasks here.
795  */
796 static bool css_set_populated(struct css_set *cset)
797 {
798 	lockdep_assert_held(&css_set_lock);
799 
800 	return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
801 }
802 
803 /**
804  * cgroup_update_populated - update the populated count of a cgroup
805  * @cgrp: the target cgroup
806  * @populated: inc or dec populated count
807  *
808  * One of the css_sets associated with @cgrp is either getting its first
809  * task or losing the last.  Update @cgrp->nr_populated_* accordingly.  The
810  * count is propagated towards root so that a given cgroup's
811  * nr_populated_children is zero iff none of its descendants contain any
812  * tasks.
813  *
814  * @cgrp's interface file "cgroup.populated" is zero if both
815  * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and
816  * 1 otherwise.  When the sum changes from or to zero, userland is notified
817  * that the content of the interface file has changed.  This can be used to
818  * detect when @cgrp and its descendants become populated or empty.
819  */
820 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
821 {
822 	struct cgroup *child = NULL;
823 	int adj = populated ? 1 : -1;
824 
825 	lockdep_assert_held(&css_set_lock);
826 
827 	do {
828 		bool was_populated = cgroup_is_populated(cgrp);
829 
830 		if (!child) {
831 			cgrp->nr_populated_csets += adj;
832 		} else {
833 			if (cgroup_is_threaded(child))
834 				cgrp->nr_populated_threaded_children += adj;
835 			else
836 				cgrp->nr_populated_domain_children += adj;
837 		}
838 
839 		if (was_populated == cgroup_is_populated(cgrp))
840 			break;
841 
842 		cgroup1_check_for_release(cgrp);
843 		TRACE_CGROUP_PATH(notify_populated, cgrp,
844 				  cgroup_is_populated(cgrp));
845 		cgroup_file_notify(&cgrp->events_file);
846 
847 		child = cgrp;
848 		cgrp = cgroup_parent(cgrp);
849 	} while (cgrp);
850 }
851 
852 /**
853  * css_set_update_populated - update populated state of a css_set
854  * @cset: target css_set
855  * @populated: whether @cset is populated or depopulated
856  *
857  * @cset is either getting the first task or losing the last.  Update the
858  * populated counters of all associated cgroups accordingly.
859  */
860 static void css_set_update_populated(struct css_set *cset, bool populated)
861 {
862 	struct cgrp_cset_link *link;
863 
864 	lockdep_assert_held(&css_set_lock);
865 
866 	list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
867 		cgroup_update_populated(link->cgrp, populated);
868 }
869 
870 /*
871  * @task is leaving, advance task iterators which are pointing to it so
872  * that they can resume at the next position.  Advancing an iterator might
873  * remove it from the list, use safe walk.  See css_task_iter_skip() for
874  * details.
875  */
876 static void css_set_skip_task_iters(struct css_set *cset,
877 				    struct task_struct *task)
878 {
879 	struct css_task_iter *it, *pos;
880 
881 	list_for_each_entry_safe(it, pos, &cset->task_iters, iters_node)
882 		css_task_iter_skip(it, task);
883 }
884 
885 /**
886  * css_set_move_task - move a task from one css_set to another
887  * @task: task being moved
888  * @from_cset: css_set @task currently belongs to (may be NULL)
889  * @to_cset: new css_set @task is being moved to (may be NULL)
890  * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
891  *
892  * Move @task from @from_cset to @to_cset.  If @task didn't belong to any
893  * css_set, @from_cset can be NULL.  If @task is being disassociated
894  * instead of moved, @to_cset can be NULL.
895  *
896  * This function automatically handles populated counter updates and
897  * css_task_iter adjustments but the caller is responsible for managing
898  * @from_cset and @to_cset's reference counts.
899  */
900 static void css_set_move_task(struct task_struct *task,
901 			      struct css_set *from_cset, struct css_set *to_cset,
902 			      bool use_mg_tasks)
903 {
904 	lockdep_assert_held(&css_set_lock);
905 
906 	if (to_cset && !css_set_populated(to_cset))
907 		css_set_update_populated(to_cset, true);
908 
909 	if (from_cset) {
910 		WARN_ON_ONCE(list_empty(&task->cg_list));
911 
912 		css_set_skip_task_iters(from_cset, task);
913 		list_del_init(&task->cg_list);
914 		if (!css_set_populated(from_cset))
915 			css_set_update_populated(from_cset, false);
916 	} else {
917 		WARN_ON_ONCE(!list_empty(&task->cg_list));
918 	}
919 
920 	if (to_cset) {
921 		/*
922 		 * We are synchronized through cgroup_threadgroup_rwsem
923 		 * against PF_EXITING setting such that we can't race
924 		 * against cgroup_exit()/cgroup_free() dropping the css_set.
925 		 */
926 		WARN_ON_ONCE(task->flags & PF_EXITING);
927 
928 		cgroup_move_task(task, to_cset);
929 		list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
930 							     &to_cset->tasks);
931 	}
932 }
933 
934 /*
935  * hash table for cgroup groups. This improves the performance to find
936  * an existing css_set. This hash doesn't (currently) take into
937  * account cgroups in empty hierarchies.
938  */
939 #define CSS_SET_HASH_BITS	7
940 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
941 
942 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
943 {
944 	unsigned long key = 0UL;
945 	struct cgroup_subsys *ss;
946 	int i;
947 
948 	for_each_subsys(ss, i)
949 		key += (unsigned long)css[i];
950 	key = (key >> 16) ^ key;
951 
952 	return key;
953 }
954 
955 void put_css_set_locked(struct css_set *cset)
956 {
957 	struct cgrp_cset_link *link, *tmp_link;
958 	struct cgroup_subsys *ss;
959 	int ssid;
960 
961 	lockdep_assert_held(&css_set_lock);
962 
963 	if (!refcount_dec_and_test(&cset->refcount))
964 		return;
965 
966 	WARN_ON_ONCE(!list_empty(&cset->threaded_csets));
967 
968 	/* This css_set is dead. Unlink it and release cgroup and css refs */
969 	for_each_subsys(ss, ssid) {
970 		list_del(&cset->e_cset_node[ssid]);
971 		css_put(cset->subsys[ssid]);
972 	}
973 	hash_del(&cset->hlist);
974 	css_set_count--;
975 
976 	list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
977 		list_del(&link->cset_link);
978 		list_del(&link->cgrp_link);
979 		if (cgroup_parent(link->cgrp))
980 			cgroup_put(link->cgrp);
981 		kfree(link);
982 	}
983 
984 	if (css_set_threaded(cset)) {
985 		list_del(&cset->threaded_csets_node);
986 		put_css_set_locked(cset->dom_cset);
987 	}
988 
989 	kfree_rcu(cset, rcu_head);
990 }
991 
992 /**
993  * compare_css_sets - helper function for find_existing_css_set().
994  * @cset: candidate css_set being tested
995  * @old_cset: existing css_set for a task
996  * @new_cgrp: cgroup that's being entered by the task
997  * @template: desired set of css pointers in css_set (pre-calculated)
998  *
999  * Returns true if "cset" matches "old_cset" except for the hierarchy
1000  * which "new_cgrp" belongs to, for which it should match "new_cgrp".
1001  */
1002 static bool compare_css_sets(struct css_set *cset,
1003 			     struct css_set *old_cset,
1004 			     struct cgroup *new_cgrp,
1005 			     struct cgroup_subsys_state *template[])
1006 {
1007 	struct cgroup *new_dfl_cgrp;
1008 	struct list_head *l1, *l2;
1009 
1010 	/*
1011 	 * On the default hierarchy, there can be csets which are
1012 	 * associated with the same set of cgroups but different csses.
1013 	 * Let's first ensure that csses match.
1014 	 */
1015 	if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
1016 		return false;
1017 
1018 
1019 	/* @cset's domain should match the default cgroup's */
1020 	if (cgroup_on_dfl(new_cgrp))
1021 		new_dfl_cgrp = new_cgrp;
1022 	else
1023 		new_dfl_cgrp = old_cset->dfl_cgrp;
1024 
1025 	if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp)
1026 		return false;
1027 
1028 	/*
1029 	 * Compare cgroup pointers in order to distinguish between
1030 	 * different cgroups in hierarchies.  As different cgroups may
1031 	 * share the same effective css, this comparison is always
1032 	 * necessary.
1033 	 */
1034 	l1 = &cset->cgrp_links;
1035 	l2 = &old_cset->cgrp_links;
1036 	while (1) {
1037 		struct cgrp_cset_link *link1, *link2;
1038 		struct cgroup *cgrp1, *cgrp2;
1039 
1040 		l1 = l1->next;
1041 		l2 = l2->next;
1042 		/* See if we reached the end - both lists are equal length. */
1043 		if (l1 == &cset->cgrp_links) {
1044 			BUG_ON(l2 != &old_cset->cgrp_links);
1045 			break;
1046 		} else {
1047 			BUG_ON(l2 == &old_cset->cgrp_links);
1048 		}
1049 		/* Locate the cgroups associated with these links. */
1050 		link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
1051 		link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
1052 		cgrp1 = link1->cgrp;
1053 		cgrp2 = link2->cgrp;
1054 		/* Hierarchies should be linked in the same order. */
1055 		BUG_ON(cgrp1->root != cgrp2->root);
1056 
1057 		/*
1058 		 * If this hierarchy is the hierarchy of the cgroup
1059 		 * that's changing, then we need to check that this
1060 		 * css_set points to the new cgroup; if it's any other
1061 		 * hierarchy, then this css_set should point to the
1062 		 * same cgroup as the old css_set.
1063 		 */
1064 		if (cgrp1->root == new_cgrp->root) {
1065 			if (cgrp1 != new_cgrp)
1066 				return false;
1067 		} else {
1068 			if (cgrp1 != cgrp2)
1069 				return false;
1070 		}
1071 	}
1072 	return true;
1073 }
1074 
1075 /**
1076  * find_existing_css_set - init css array and find the matching css_set
1077  * @old_cset: the css_set that we're using before the cgroup transition
1078  * @cgrp: the cgroup that we're moving into
1079  * @template: out param for the new set of csses, should be clear on entry
1080  */
1081 static struct css_set *find_existing_css_set(struct css_set *old_cset,
1082 					struct cgroup *cgrp,
1083 					struct cgroup_subsys_state *template[])
1084 {
1085 	struct cgroup_root *root = cgrp->root;
1086 	struct cgroup_subsys *ss;
1087 	struct css_set *cset;
1088 	unsigned long key;
1089 	int i;
1090 
1091 	/*
1092 	 * Build the set of subsystem state objects that we want to see in the
1093 	 * new css_set. While subsystems can change globally, the entries here
1094 	 * won't change, so no need for locking.
1095 	 */
1096 	for_each_subsys(ss, i) {
1097 		if (root->subsys_mask & (1UL << i)) {
1098 			/*
1099 			 * @ss is in this hierarchy, so we want the
1100 			 * effective css from @cgrp.
1101 			 */
1102 			template[i] = cgroup_e_css_by_mask(cgrp, ss);
1103 		} else {
1104 			/*
1105 			 * @ss is not in this hierarchy, so we don't want
1106 			 * to change the css.
1107 			 */
1108 			template[i] = old_cset->subsys[i];
1109 		}
1110 	}
1111 
1112 	key = css_set_hash(template);
1113 	hash_for_each_possible(css_set_table, cset, hlist, key) {
1114 		if (!compare_css_sets(cset, old_cset, cgrp, template))
1115 			continue;
1116 
1117 		/* This css_set matches what we need */
1118 		return cset;
1119 	}
1120 
1121 	/* No existing cgroup group matched */
1122 	return NULL;
1123 }
1124 
1125 static void free_cgrp_cset_links(struct list_head *links_to_free)
1126 {
1127 	struct cgrp_cset_link *link, *tmp_link;
1128 
1129 	list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
1130 		list_del(&link->cset_link);
1131 		kfree(link);
1132 	}
1133 }
1134 
1135 /**
1136  * allocate_cgrp_cset_links - allocate cgrp_cset_links
1137  * @count: the number of links to allocate
1138  * @tmp_links: list_head the allocated links are put on
1139  *
1140  * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1141  * through ->cset_link.  Returns 0 on success or -errno.
1142  */
1143 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
1144 {
1145 	struct cgrp_cset_link *link;
1146 	int i;
1147 
1148 	INIT_LIST_HEAD(tmp_links);
1149 
1150 	for (i = 0; i < count; i++) {
1151 		link = kzalloc(sizeof(*link), GFP_KERNEL);
1152 		if (!link) {
1153 			free_cgrp_cset_links(tmp_links);
1154 			return -ENOMEM;
1155 		}
1156 		list_add(&link->cset_link, tmp_links);
1157 	}
1158 	return 0;
1159 }
1160 
1161 /**
1162  * link_css_set - a helper function to link a css_set to a cgroup
1163  * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
1164  * @cset: the css_set to be linked
1165  * @cgrp: the destination cgroup
1166  */
1167 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1168 			 struct cgroup *cgrp)
1169 {
1170 	struct cgrp_cset_link *link;
1171 
1172 	BUG_ON(list_empty(tmp_links));
1173 
1174 	if (cgroup_on_dfl(cgrp))
1175 		cset->dfl_cgrp = cgrp;
1176 
1177 	link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1178 	link->cset = cset;
1179 	link->cgrp = cgrp;
1180 
1181 	/*
1182 	 * Always add links to the tail of the lists so that the lists are
1183 	 * in chronological order.
1184 	 */
1185 	list_move_tail(&link->cset_link, &cgrp->cset_links);
1186 	list_add_tail(&link->cgrp_link, &cset->cgrp_links);
1187 
1188 	if (cgroup_parent(cgrp))
1189 		cgroup_get_live(cgrp);
1190 }
1191 
1192 /**
1193  * find_css_set - return a new css_set with one cgroup updated
1194  * @old_cset: the baseline css_set
1195  * @cgrp: the cgroup to be updated
1196  *
1197  * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1198  * substituted into the appropriate hierarchy.
1199  */
1200 static struct css_set *find_css_set(struct css_set *old_cset,
1201 				    struct cgroup *cgrp)
1202 {
1203 	struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
1204 	struct css_set *cset;
1205 	struct list_head tmp_links;
1206 	struct cgrp_cset_link *link;
1207 	struct cgroup_subsys *ss;
1208 	unsigned long key;
1209 	int ssid;
1210 
1211 	lockdep_assert_held(&cgroup_mutex);
1212 
1213 	/* First see if we already have a cgroup group that matches
1214 	 * the desired set */
1215 	spin_lock_irq(&css_set_lock);
1216 	cset = find_existing_css_set(old_cset, cgrp, template);
1217 	if (cset)
1218 		get_css_set(cset);
1219 	spin_unlock_irq(&css_set_lock);
1220 
1221 	if (cset)
1222 		return cset;
1223 
1224 	cset = kzalloc(sizeof(*cset), GFP_KERNEL);
1225 	if (!cset)
1226 		return NULL;
1227 
1228 	/* Allocate all the cgrp_cset_link objects that we'll need */
1229 	if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1230 		kfree(cset);
1231 		return NULL;
1232 	}
1233 
1234 	refcount_set(&cset->refcount, 1);
1235 	cset->dom_cset = cset;
1236 	INIT_LIST_HEAD(&cset->tasks);
1237 	INIT_LIST_HEAD(&cset->mg_tasks);
1238 	INIT_LIST_HEAD(&cset->dying_tasks);
1239 	INIT_LIST_HEAD(&cset->task_iters);
1240 	INIT_LIST_HEAD(&cset->threaded_csets);
1241 	INIT_HLIST_NODE(&cset->hlist);
1242 	INIT_LIST_HEAD(&cset->cgrp_links);
1243 	INIT_LIST_HEAD(&cset->mg_preload_node);
1244 	INIT_LIST_HEAD(&cset->mg_node);
1245 
1246 	/* Copy the set of subsystem state objects generated in
1247 	 * find_existing_css_set() */
1248 	memcpy(cset->subsys, template, sizeof(cset->subsys));
1249 
1250 	spin_lock_irq(&css_set_lock);
1251 	/* Add reference counts and links from the new css_set. */
1252 	list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1253 		struct cgroup *c = link->cgrp;
1254 
1255 		if (c->root == cgrp->root)
1256 			c = cgrp;
1257 		link_css_set(&tmp_links, cset, c);
1258 	}
1259 
1260 	BUG_ON(!list_empty(&tmp_links));
1261 
1262 	css_set_count++;
1263 
1264 	/* Add @cset to the hash table */
1265 	key = css_set_hash(cset->subsys);
1266 	hash_add(css_set_table, &cset->hlist, key);
1267 
1268 	for_each_subsys(ss, ssid) {
1269 		struct cgroup_subsys_state *css = cset->subsys[ssid];
1270 
1271 		list_add_tail(&cset->e_cset_node[ssid],
1272 			      &css->cgroup->e_csets[ssid]);
1273 		css_get(css);
1274 	}
1275 
1276 	spin_unlock_irq(&css_set_lock);
1277 
1278 	/*
1279 	 * If @cset should be threaded, look up the matching dom_cset and
1280 	 * link them up.  We first fully initialize @cset then look for the
1281 	 * dom_cset.  It's simpler this way and safe as @cset is guaranteed
1282 	 * to stay empty until we return.
1283 	 */
1284 	if (cgroup_is_threaded(cset->dfl_cgrp)) {
1285 		struct css_set *dcset;
1286 
1287 		dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp);
1288 		if (!dcset) {
1289 			put_css_set(cset);
1290 			return NULL;
1291 		}
1292 
1293 		spin_lock_irq(&css_set_lock);
1294 		cset->dom_cset = dcset;
1295 		list_add_tail(&cset->threaded_csets_node,
1296 			      &dcset->threaded_csets);
1297 		spin_unlock_irq(&css_set_lock);
1298 	}
1299 
1300 	return cset;
1301 }
1302 
1303 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1304 {
1305 	struct cgroup *root_cgrp = kernfs_root_to_node(kf_root)->priv;
1306 
1307 	return root_cgrp->root;
1308 }
1309 
1310 static int cgroup_init_root_id(struct cgroup_root *root)
1311 {
1312 	int id;
1313 
1314 	lockdep_assert_held(&cgroup_mutex);
1315 
1316 	id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1317 	if (id < 0)
1318 		return id;
1319 
1320 	root->hierarchy_id = id;
1321 	return 0;
1322 }
1323 
1324 static void cgroup_exit_root_id(struct cgroup_root *root)
1325 {
1326 	lockdep_assert_held(&cgroup_mutex);
1327 
1328 	idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1329 }
1330 
1331 void cgroup_free_root(struct cgroup_root *root)
1332 {
1333 	kfree(root);
1334 }
1335 
1336 static void cgroup_destroy_root(struct cgroup_root *root)
1337 {
1338 	struct cgroup *cgrp = &root->cgrp;
1339 	struct cgrp_cset_link *link, *tmp_link;
1340 
1341 	trace_cgroup_destroy_root(root);
1342 
1343 	cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1344 
1345 	BUG_ON(atomic_read(&root->nr_cgrps));
1346 	BUG_ON(!list_empty(&cgrp->self.children));
1347 
1348 	/* Rebind all subsystems back to the default hierarchy */
1349 	WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
1350 
1351 	/*
1352 	 * Release all the links from cset_links to this hierarchy's
1353 	 * root cgroup
1354 	 */
1355 	spin_lock_irq(&css_set_lock);
1356 
1357 	list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1358 		list_del(&link->cset_link);
1359 		list_del(&link->cgrp_link);
1360 		kfree(link);
1361 	}
1362 
1363 	spin_unlock_irq(&css_set_lock);
1364 
1365 	if (!list_empty(&root->root_list)) {
1366 		list_del(&root->root_list);
1367 		cgroup_root_count--;
1368 	}
1369 
1370 	cgroup_exit_root_id(root);
1371 
1372 	mutex_unlock(&cgroup_mutex);
1373 
1374 	cgroup_rstat_exit(cgrp);
1375 	kernfs_destroy_root(root->kf_root);
1376 	cgroup_free_root(root);
1377 }
1378 
1379 /*
1380  * look up cgroup associated with current task's cgroup namespace on the
1381  * specified hierarchy
1382  */
1383 static struct cgroup *
1384 current_cgns_cgroup_from_root(struct cgroup_root *root)
1385 {
1386 	struct cgroup *res = NULL;
1387 	struct css_set *cset;
1388 
1389 	lockdep_assert_held(&css_set_lock);
1390 
1391 	rcu_read_lock();
1392 
1393 	cset = current->nsproxy->cgroup_ns->root_cset;
1394 	if (cset == &init_css_set) {
1395 		res = &root->cgrp;
1396 	} else if (root == &cgrp_dfl_root) {
1397 		res = cset->dfl_cgrp;
1398 	} else {
1399 		struct cgrp_cset_link *link;
1400 
1401 		list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1402 			struct cgroup *c = link->cgrp;
1403 
1404 			if (c->root == root) {
1405 				res = c;
1406 				break;
1407 			}
1408 		}
1409 	}
1410 	rcu_read_unlock();
1411 
1412 	BUG_ON(!res);
1413 	return res;
1414 }
1415 
1416 /* look up cgroup associated with given css_set on the specified hierarchy */
1417 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1418 					    struct cgroup_root *root)
1419 {
1420 	struct cgroup *res = NULL;
1421 
1422 	lockdep_assert_held(&cgroup_mutex);
1423 	lockdep_assert_held(&css_set_lock);
1424 
1425 	if (cset == &init_css_set) {
1426 		res = &root->cgrp;
1427 	} else if (root == &cgrp_dfl_root) {
1428 		res = cset->dfl_cgrp;
1429 	} else {
1430 		struct cgrp_cset_link *link;
1431 
1432 		list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1433 			struct cgroup *c = link->cgrp;
1434 
1435 			if (c->root == root) {
1436 				res = c;
1437 				break;
1438 			}
1439 		}
1440 	}
1441 
1442 	BUG_ON(!res);
1443 	return res;
1444 }
1445 
1446 /*
1447  * Return the cgroup for "task" from the given hierarchy. Must be
1448  * called with cgroup_mutex and css_set_lock held.
1449  */
1450 struct cgroup *task_cgroup_from_root(struct task_struct *task,
1451 				     struct cgroup_root *root)
1452 {
1453 	/*
1454 	 * No need to lock the task - since we hold css_set_lock the
1455 	 * task can't change groups.
1456 	 */
1457 	return cset_cgroup_from_root(task_css_set(task), root);
1458 }
1459 
1460 /*
1461  * A task must hold cgroup_mutex to modify cgroups.
1462  *
1463  * Any task can increment and decrement the count field without lock.
1464  * So in general, code holding cgroup_mutex can't rely on the count
1465  * field not changing.  However, if the count goes to zero, then only
1466  * cgroup_attach_task() can increment it again.  Because a count of zero
1467  * means that no tasks are currently attached, therefore there is no
1468  * way a task attached to that cgroup can fork (the other way to
1469  * increment the count).  So code holding cgroup_mutex can safely
1470  * assume that if the count is zero, it will stay zero. Similarly, if
1471  * a task holds cgroup_mutex on a cgroup with zero count, it
1472  * knows that the cgroup won't be removed, as cgroup_rmdir()
1473  * needs that mutex.
1474  *
1475  * A cgroup can only be deleted if both its 'count' of using tasks
1476  * is zero, and its list of 'children' cgroups is empty.  Since all
1477  * tasks in the system use _some_ cgroup, and since there is always at
1478  * least one task in the system (init, pid == 1), therefore, root cgroup
1479  * always has either children cgroups and/or using tasks.  So we don't
1480  * need a special hack to ensure that root cgroup cannot be deleted.
1481  *
1482  * P.S.  One more locking exception.  RCU is used to guard the
1483  * update of a tasks cgroup pointer by cgroup_attach_task()
1484  */
1485 
1486 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1487 
1488 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1489 			      char *buf)
1490 {
1491 	struct cgroup_subsys *ss = cft->ss;
1492 
1493 	if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1494 	    !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
1495 		const char *dbg = (cft->flags & CFTYPE_DEBUG) ? ".__DEBUG__." : "";
1496 
1497 		snprintf(buf, CGROUP_FILE_NAME_MAX, "%s%s.%s",
1498 			 dbg, cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1499 			 cft->name);
1500 	} else {
1501 		strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1502 	}
1503 	return buf;
1504 }
1505 
1506 /**
1507  * cgroup_file_mode - deduce file mode of a control file
1508  * @cft: the control file in question
1509  *
1510  * S_IRUGO for read, S_IWUSR for write.
1511  */
1512 static umode_t cgroup_file_mode(const struct cftype *cft)
1513 {
1514 	umode_t mode = 0;
1515 
1516 	if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1517 		mode |= S_IRUGO;
1518 
1519 	if (cft->write_u64 || cft->write_s64 || cft->write) {
1520 		if (cft->flags & CFTYPE_WORLD_WRITABLE)
1521 			mode |= S_IWUGO;
1522 		else
1523 			mode |= S_IWUSR;
1524 	}
1525 
1526 	return mode;
1527 }
1528 
1529 /**
1530  * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1531  * @subtree_control: the new subtree_control mask to consider
1532  * @this_ss_mask: available subsystems
1533  *
1534  * On the default hierarchy, a subsystem may request other subsystems to be
1535  * enabled together through its ->depends_on mask.  In such cases, more
1536  * subsystems than specified in "cgroup.subtree_control" may be enabled.
1537  *
1538  * This function calculates which subsystems need to be enabled if
1539  * @subtree_control is to be applied while restricted to @this_ss_mask.
1540  */
1541 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
1542 {
1543 	u16 cur_ss_mask = subtree_control;
1544 	struct cgroup_subsys *ss;
1545 	int ssid;
1546 
1547 	lockdep_assert_held(&cgroup_mutex);
1548 
1549 	cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1550 
1551 	while (true) {
1552 		u16 new_ss_mask = cur_ss_mask;
1553 
1554 		do_each_subsys_mask(ss, ssid, cur_ss_mask) {
1555 			new_ss_mask |= ss->depends_on;
1556 		} while_each_subsys_mask();
1557 
1558 		/*
1559 		 * Mask out subsystems which aren't available.  This can
1560 		 * happen only if some depended-upon subsystems were bound
1561 		 * to non-default hierarchies.
1562 		 */
1563 		new_ss_mask &= this_ss_mask;
1564 
1565 		if (new_ss_mask == cur_ss_mask)
1566 			break;
1567 		cur_ss_mask = new_ss_mask;
1568 	}
1569 
1570 	return cur_ss_mask;
1571 }
1572 
1573 /**
1574  * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1575  * @kn: the kernfs_node being serviced
1576  *
1577  * This helper undoes cgroup_kn_lock_live() and should be invoked before
1578  * the method finishes if locking succeeded.  Note that once this function
1579  * returns the cgroup returned by cgroup_kn_lock_live() may become
1580  * inaccessible any time.  If the caller intends to continue to access the
1581  * cgroup, it should pin it before invoking this function.
1582  */
1583 void cgroup_kn_unlock(struct kernfs_node *kn)
1584 {
1585 	struct cgroup *cgrp;
1586 
1587 	if (kernfs_type(kn) == KERNFS_DIR)
1588 		cgrp = kn->priv;
1589 	else
1590 		cgrp = kn->parent->priv;
1591 
1592 	mutex_unlock(&cgroup_mutex);
1593 
1594 	kernfs_unbreak_active_protection(kn);
1595 	cgroup_put(cgrp);
1596 }
1597 
1598 /**
1599  * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1600  * @kn: the kernfs_node being serviced
1601  * @drain_offline: perform offline draining on the cgroup
1602  *
1603  * This helper is to be used by a cgroup kernfs method currently servicing
1604  * @kn.  It breaks the active protection, performs cgroup locking and
1605  * verifies that the associated cgroup is alive.  Returns the cgroup if
1606  * alive; otherwise, %NULL.  A successful return should be undone by a
1607  * matching cgroup_kn_unlock() invocation.  If @drain_offline is %true, the
1608  * cgroup is drained of offlining csses before return.
1609  *
1610  * Any cgroup kernfs method implementation which requires locking the
1611  * associated cgroup should use this helper.  It avoids nesting cgroup
1612  * locking under kernfs active protection and allows all kernfs operations
1613  * including self-removal.
1614  */
1615 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline)
1616 {
1617 	struct cgroup *cgrp;
1618 
1619 	if (kernfs_type(kn) == KERNFS_DIR)
1620 		cgrp = kn->priv;
1621 	else
1622 		cgrp = kn->parent->priv;
1623 
1624 	/*
1625 	 * We're gonna grab cgroup_mutex which nests outside kernfs
1626 	 * active_ref.  cgroup liveliness check alone provides enough
1627 	 * protection against removal.  Ensure @cgrp stays accessible and
1628 	 * break the active_ref protection.
1629 	 */
1630 	if (!cgroup_tryget(cgrp))
1631 		return NULL;
1632 	kernfs_break_active_protection(kn);
1633 
1634 	if (drain_offline)
1635 		cgroup_lock_and_drain_offline(cgrp);
1636 	else
1637 		mutex_lock(&cgroup_mutex);
1638 
1639 	if (!cgroup_is_dead(cgrp))
1640 		return cgrp;
1641 
1642 	cgroup_kn_unlock(kn);
1643 	return NULL;
1644 }
1645 
1646 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1647 {
1648 	char name[CGROUP_FILE_NAME_MAX];
1649 
1650 	lockdep_assert_held(&cgroup_mutex);
1651 
1652 	if (cft->file_offset) {
1653 		struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1654 		struct cgroup_file *cfile = (void *)css + cft->file_offset;
1655 
1656 		spin_lock_irq(&cgroup_file_kn_lock);
1657 		cfile->kn = NULL;
1658 		spin_unlock_irq(&cgroup_file_kn_lock);
1659 
1660 		del_timer_sync(&cfile->notify_timer);
1661 	}
1662 
1663 	kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1664 }
1665 
1666 /**
1667  * css_clear_dir - remove subsys files in a cgroup directory
1668  * @css: target css
1669  */
1670 static void css_clear_dir(struct cgroup_subsys_state *css)
1671 {
1672 	struct cgroup *cgrp = css->cgroup;
1673 	struct cftype *cfts;
1674 
1675 	if (!(css->flags & CSS_VISIBLE))
1676 		return;
1677 
1678 	css->flags &= ~CSS_VISIBLE;
1679 
1680 	if (!css->ss) {
1681 		if (cgroup_on_dfl(cgrp))
1682 			cfts = cgroup_base_files;
1683 		else
1684 			cfts = cgroup1_base_files;
1685 
1686 		cgroup_addrm_files(css, cgrp, cfts, false);
1687 	} else {
1688 		list_for_each_entry(cfts, &css->ss->cfts, node)
1689 			cgroup_addrm_files(css, cgrp, cfts, false);
1690 	}
1691 }
1692 
1693 /**
1694  * css_populate_dir - create subsys files in a cgroup directory
1695  * @css: target css
1696  *
1697  * On failure, no file is added.
1698  */
1699 static int css_populate_dir(struct cgroup_subsys_state *css)
1700 {
1701 	struct cgroup *cgrp = css->cgroup;
1702 	struct cftype *cfts, *failed_cfts;
1703 	int ret;
1704 
1705 	if ((css->flags & CSS_VISIBLE) || !cgrp->kn)
1706 		return 0;
1707 
1708 	if (!css->ss) {
1709 		if (cgroup_on_dfl(cgrp))
1710 			cfts = cgroup_base_files;
1711 		else
1712 			cfts = cgroup1_base_files;
1713 
1714 		ret = cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1715 		if (ret < 0)
1716 			return ret;
1717 	} else {
1718 		list_for_each_entry(cfts, &css->ss->cfts, node) {
1719 			ret = cgroup_addrm_files(css, cgrp, cfts, true);
1720 			if (ret < 0) {
1721 				failed_cfts = cfts;
1722 				goto err;
1723 			}
1724 		}
1725 	}
1726 
1727 	css->flags |= CSS_VISIBLE;
1728 
1729 	return 0;
1730 err:
1731 	list_for_each_entry(cfts, &css->ss->cfts, node) {
1732 		if (cfts == failed_cfts)
1733 			break;
1734 		cgroup_addrm_files(css, cgrp, cfts, false);
1735 	}
1736 	return ret;
1737 }
1738 
1739 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
1740 {
1741 	struct cgroup *dcgrp = &dst_root->cgrp;
1742 	struct cgroup_subsys *ss;
1743 	int ssid, i, ret;
1744 	u16 dfl_disable_ss_mask = 0;
1745 
1746 	lockdep_assert_held(&cgroup_mutex);
1747 
1748 	do_each_subsys_mask(ss, ssid, ss_mask) {
1749 		/*
1750 		 * If @ss has non-root csses attached to it, can't move.
1751 		 * If @ss is an implicit controller, it is exempt from this
1752 		 * rule and can be stolen.
1753 		 */
1754 		if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1755 		    !ss->implicit_on_dfl)
1756 			return -EBUSY;
1757 
1758 		/* can't move between two non-dummy roots either */
1759 		if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1760 			return -EBUSY;
1761 
1762 		/*
1763 		 * Collect ssid's that need to be disabled from default
1764 		 * hierarchy.
1765 		 */
1766 		if (ss->root == &cgrp_dfl_root)
1767 			dfl_disable_ss_mask |= 1 << ssid;
1768 
1769 	} while_each_subsys_mask();
1770 
1771 	if (dfl_disable_ss_mask) {
1772 		struct cgroup *scgrp = &cgrp_dfl_root.cgrp;
1773 
1774 		/*
1775 		 * Controllers from default hierarchy that need to be rebound
1776 		 * are all disabled together in one go.
1777 		 */
1778 		cgrp_dfl_root.subsys_mask &= ~dfl_disable_ss_mask;
1779 		WARN_ON(cgroup_apply_control(scgrp));
1780 		cgroup_finalize_control(scgrp, 0);
1781 	}
1782 
1783 	do_each_subsys_mask(ss, ssid, ss_mask) {
1784 		struct cgroup_root *src_root = ss->root;
1785 		struct cgroup *scgrp = &src_root->cgrp;
1786 		struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1787 		struct css_set *cset;
1788 
1789 		WARN_ON(!css || cgroup_css(dcgrp, ss));
1790 
1791 		if (src_root != &cgrp_dfl_root) {
1792 			/* disable from the source */
1793 			src_root->subsys_mask &= ~(1 << ssid);
1794 			WARN_ON(cgroup_apply_control(scgrp));
1795 			cgroup_finalize_control(scgrp, 0);
1796 		}
1797 
1798 		/* rebind */
1799 		RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1800 		rcu_assign_pointer(dcgrp->subsys[ssid], css);
1801 		ss->root = dst_root;
1802 		css->cgroup = dcgrp;
1803 
1804 		spin_lock_irq(&css_set_lock);
1805 		hash_for_each(css_set_table, i, cset, hlist)
1806 			list_move_tail(&cset->e_cset_node[ss->id],
1807 				       &dcgrp->e_csets[ss->id]);
1808 		spin_unlock_irq(&css_set_lock);
1809 
1810 		if (ss->css_rstat_flush) {
1811 			list_del_rcu(&css->rstat_css_node);
1812 			list_add_rcu(&css->rstat_css_node,
1813 				     &dcgrp->rstat_css_list);
1814 		}
1815 
1816 		/* default hierarchy doesn't enable controllers by default */
1817 		dst_root->subsys_mask |= 1 << ssid;
1818 		if (dst_root == &cgrp_dfl_root) {
1819 			static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1820 		} else {
1821 			dcgrp->subtree_control |= 1 << ssid;
1822 			static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1823 		}
1824 
1825 		ret = cgroup_apply_control(dcgrp);
1826 		if (ret)
1827 			pr_warn("partial failure to rebind %s controller (err=%d)\n",
1828 				ss->name, ret);
1829 
1830 		if (ss->bind)
1831 			ss->bind(css);
1832 	} while_each_subsys_mask();
1833 
1834 	kernfs_activate(dcgrp->kn);
1835 	return 0;
1836 }
1837 
1838 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
1839 		     struct kernfs_root *kf_root)
1840 {
1841 	int len = 0;
1842 	char *buf = NULL;
1843 	struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
1844 	struct cgroup *ns_cgroup;
1845 
1846 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
1847 	if (!buf)
1848 		return -ENOMEM;
1849 
1850 	spin_lock_irq(&css_set_lock);
1851 	ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
1852 	len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
1853 	spin_unlock_irq(&css_set_lock);
1854 
1855 	if (len >= PATH_MAX)
1856 		len = -ERANGE;
1857 	else if (len > 0) {
1858 		seq_escape(sf, buf, " \t\n\\");
1859 		len = 0;
1860 	}
1861 	kfree(buf);
1862 	return len;
1863 }
1864 
1865 enum cgroup2_param {
1866 	Opt_nsdelegate,
1867 	Opt_memory_localevents,
1868 	Opt_memory_recursiveprot,
1869 	nr__cgroup2_params
1870 };
1871 
1872 static const struct fs_parameter_spec cgroup2_fs_parameters[] = {
1873 	fsparam_flag("nsdelegate",		Opt_nsdelegate),
1874 	fsparam_flag("memory_localevents",	Opt_memory_localevents),
1875 	fsparam_flag("memory_recursiveprot",	Opt_memory_recursiveprot),
1876 	{}
1877 };
1878 
1879 static int cgroup2_parse_param(struct fs_context *fc, struct fs_parameter *param)
1880 {
1881 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1882 	struct fs_parse_result result;
1883 	int opt;
1884 
1885 	opt = fs_parse(fc, cgroup2_fs_parameters, param, &result);
1886 	if (opt < 0)
1887 		return opt;
1888 
1889 	switch (opt) {
1890 	case Opt_nsdelegate:
1891 		ctx->flags |= CGRP_ROOT_NS_DELEGATE;
1892 		return 0;
1893 	case Opt_memory_localevents:
1894 		ctx->flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1895 		return 0;
1896 	case Opt_memory_recursiveprot:
1897 		ctx->flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1898 		return 0;
1899 	}
1900 	return -EINVAL;
1901 }
1902 
1903 static void apply_cgroup_root_flags(unsigned int root_flags)
1904 {
1905 	if (current->nsproxy->cgroup_ns == &init_cgroup_ns) {
1906 		if (root_flags & CGRP_ROOT_NS_DELEGATE)
1907 			cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE;
1908 		else
1909 			cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE;
1910 
1911 		if (root_flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1912 			cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1913 		else
1914 			cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1915 
1916 		if (root_flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
1917 			cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1918 		else
1919 			cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1920 	}
1921 }
1922 
1923 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
1924 {
1925 	if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE)
1926 		seq_puts(seq, ",nsdelegate");
1927 	if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1928 		seq_puts(seq, ",memory_localevents");
1929 	if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
1930 		seq_puts(seq, ",memory_recursiveprot");
1931 	return 0;
1932 }
1933 
1934 static int cgroup_reconfigure(struct fs_context *fc)
1935 {
1936 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1937 
1938 	apply_cgroup_root_flags(ctx->flags);
1939 	return 0;
1940 }
1941 
1942 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1943 {
1944 	struct cgroup_subsys *ss;
1945 	int ssid;
1946 
1947 	INIT_LIST_HEAD(&cgrp->self.sibling);
1948 	INIT_LIST_HEAD(&cgrp->self.children);
1949 	INIT_LIST_HEAD(&cgrp->cset_links);
1950 	INIT_LIST_HEAD(&cgrp->pidlists);
1951 	mutex_init(&cgrp->pidlist_mutex);
1952 	cgrp->self.cgroup = cgrp;
1953 	cgrp->self.flags |= CSS_ONLINE;
1954 	cgrp->dom_cgrp = cgrp;
1955 	cgrp->max_descendants = INT_MAX;
1956 	cgrp->max_depth = INT_MAX;
1957 	INIT_LIST_HEAD(&cgrp->rstat_css_list);
1958 	prev_cputime_init(&cgrp->prev_cputime);
1959 
1960 	for_each_subsys(ss, ssid)
1961 		INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
1962 
1963 	init_waitqueue_head(&cgrp->offline_waitq);
1964 	INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent);
1965 }
1966 
1967 void init_cgroup_root(struct cgroup_fs_context *ctx)
1968 {
1969 	struct cgroup_root *root = ctx->root;
1970 	struct cgroup *cgrp = &root->cgrp;
1971 
1972 	INIT_LIST_HEAD(&root->root_list);
1973 	atomic_set(&root->nr_cgrps, 1);
1974 	cgrp->root = root;
1975 	init_cgroup_housekeeping(cgrp);
1976 
1977 	root->flags = ctx->flags;
1978 	if (ctx->release_agent)
1979 		strscpy(root->release_agent_path, ctx->release_agent, PATH_MAX);
1980 	if (ctx->name)
1981 		strscpy(root->name, ctx->name, MAX_CGROUP_ROOT_NAMELEN);
1982 	if (ctx->cpuset_clone_children)
1983 		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
1984 }
1985 
1986 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask)
1987 {
1988 	LIST_HEAD(tmp_links);
1989 	struct cgroup *root_cgrp = &root->cgrp;
1990 	struct kernfs_syscall_ops *kf_sops;
1991 	struct css_set *cset;
1992 	int i, ret;
1993 
1994 	lockdep_assert_held(&cgroup_mutex);
1995 
1996 	ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release,
1997 			      0, GFP_KERNEL);
1998 	if (ret)
1999 		goto out;
2000 
2001 	/*
2002 	 * We're accessing css_set_count without locking css_set_lock here,
2003 	 * but that's OK - it can only be increased by someone holding
2004 	 * cgroup_lock, and that's us.  Later rebinding may disable
2005 	 * controllers on the default hierarchy and thus create new csets,
2006 	 * which can't be more than the existing ones.  Allocate 2x.
2007 	 */
2008 	ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
2009 	if (ret)
2010 		goto cancel_ref;
2011 
2012 	ret = cgroup_init_root_id(root);
2013 	if (ret)
2014 		goto cancel_ref;
2015 
2016 	kf_sops = root == &cgrp_dfl_root ?
2017 		&cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops;
2018 
2019 	root->kf_root = kernfs_create_root(kf_sops,
2020 					   KERNFS_ROOT_CREATE_DEACTIVATED |
2021 					   KERNFS_ROOT_SUPPORT_EXPORTOP |
2022 					   KERNFS_ROOT_SUPPORT_USER_XATTR,
2023 					   root_cgrp);
2024 	if (IS_ERR(root->kf_root)) {
2025 		ret = PTR_ERR(root->kf_root);
2026 		goto exit_root_id;
2027 	}
2028 	root_cgrp->kn = kernfs_root_to_node(root->kf_root);
2029 	WARN_ON_ONCE(cgroup_ino(root_cgrp) != 1);
2030 	root_cgrp->ancestor_ids[0] = cgroup_id(root_cgrp);
2031 
2032 	ret = css_populate_dir(&root_cgrp->self);
2033 	if (ret)
2034 		goto destroy_root;
2035 
2036 	ret = cgroup_rstat_init(root_cgrp);
2037 	if (ret)
2038 		goto destroy_root;
2039 
2040 	ret = rebind_subsystems(root, ss_mask);
2041 	if (ret)
2042 		goto exit_stats;
2043 
2044 	ret = cgroup_bpf_inherit(root_cgrp);
2045 	WARN_ON_ONCE(ret);
2046 
2047 	trace_cgroup_setup_root(root);
2048 
2049 	/*
2050 	 * There must be no failure case after here, since rebinding takes
2051 	 * care of subsystems' refcounts, which are explicitly dropped in
2052 	 * the failure exit path.
2053 	 */
2054 	list_add(&root->root_list, &cgroup_roots);
2055 	cgroup_root_count++;
2056 
2057 	/*
2058 	 * Link the root cgroup in this hierarchy into all the css_set
2059 	 * objects.
2060 	 */
2061 	spin_lock_irq(&css_set_lock);
2062 	hash_for_each(css_set_table, i, cset, hlist) {
2063 		link_css_set(&tmp_links, cset, root_cgrp);
2064 		if (css_set_populated(cset))
2065 			cgroup_update_populated(root_cgrp, true);
2066 	}
2067 	spin_unlock_irq(&css_set_lock);
2068 
2069 	BUG_ON(!list_empty(&root_cgrp->self.children));
2070 	BUG_ON(atomic_read(&root->nr_cgrps) != 1);
2071 
2072 	ret = 0;
2073 	goto out;
2074 
2075 exit_stats:
2076 	cgroup_rstat_exit(root_cgrp);
2077 destroy_root:
2078 	kernfs_destroy_root(root->kf_root);
2079 	root->kf_root = NULL;
2080 exit_root_id:
2081 	cgroup_exit_root_id(root);
2082 cancel_ref:
2083 	percpu_ref_exit(&root_cgrp->self.refcnt);
2084 out:
2085 	free_cgrp_cset_links(&tmp_links);
2086 	return ret;
2087 }
2088 
2089 int cgroup_do_get_tree(struct fs_context *fc)
2090 {
2091 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2092 	int ret;
2093 
2094 	ctx->kfc.root = ctx->root->kf_root;
2095 	if (fc->fs_type == &cgroup2_fs_type)
2096 		ctx->kfc.magic = CGROUP2_SUPER_MAGIC;
2097 	else
2098 		ctx->kfc.magic = CGROUP_SUPER_MAGIC;
2099 	ret = kernfs_get_tree(fc);
2100 
2101 	/*
2102 	 * In non-init cgroup namespace, instead of root cgroup's dentry,
2103 	 * we return the dentry corresponding to the cgroupns->root_cgrp.
2104 	 */
2105 	if (!ret && ctx->ns != &init_cgroup_ns) {
2106 		struct dentry *nsdentry;
2107 		struct super_block *sb = fc->root->d_sb;
2108 		struct cgroup *cgrp;
2109 
2110 		mutex_lock(&cgroup_mutex);
2111 		spin_lock_irq(&css_set_lock);
2112 
2113 		cgrp = cset_cgroup_from_root(ctx->ns->root_cset, ctx->root);
2114 
2115 		spin_unlock_irq(&css_set_lock);
2116 		mutex_unlock(&cgroup_mutex);
2117 
2118 		nsdentry = kernfs_node_dentry(cgrp->kn, sb);
2119 		dput(fc->root);
2120 		if (IS_ERR(nsdentry)) {
2121 			deactivate_locked_super(sb);
2122 			ret = PTR_ERR(nsdentry);
2123 			nsdentry = NULL;
2124 		}
2125 		fc->root = nsdentry;
2126 	}
2127 
2128 	if (!ctx->kfc.new_sb_created)
2129 		cgroup_put(&ctx->root->cgrp);
2130 
2131 	return ret;
2132 }
2133 
2134 /*
2135  * Destroy a cgroup filesystem context.
2136  */
2137 static void cgroup_fs_context_free(struct fs_context *fc)
2138 {
2139 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2140 
2141 	kfree(ctx->name);
2142 	kfree(ctx->release_agent);
2143 	put_cgroup_ns(ctx->ns);
2144 	kernfs_free_fs_context(fc);
2145 	kfree(ctx);
2146 }
2147 
2148 static int cgroup_get_tree(struct fs_context *fc)
2149 {
2150 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2151 	int ret;
2152 
2153 	cgrp_dfl_visible = true;
2154 	cgroup_get_live(&cgrp_dfl_root.cgrp);
2155 	ctx->root = &cgrp_dfl_root;
2156 
2157 	ret = cgroup_do_get_tree(fc);
2158 	if (!ret)
2159 		apply_cgroup_root_flags(ctx->flags);
2160 	return ret;
2161 }
2162 
2163 static const struct fs_context_operations cgroup_fs_context_ops = {
2164 	.free		= cgroup_fs_context_free,
2165 	.parse_param	= cgroup2_parse_param,
2166 	.get_tree	= cgroup_get_tree,
2167 	.reconfigure	= cgroup_reconfigure,
2168 };
2169 
2170 static const struct fs_context_operations cgroup1_fs_context_ops = {
2171 	.free		= cgroup_fs_context_free,
2172 	.parse_param	= cgroup1_parse_param,
2173 	.get_tree	= cgroup1_get_tree,
2174 	.reconfigure	= cgroup1_reconfigure,
2175 };
2176 
2177 /*
2178  * Initialise the cgroup filesystem creation/reconfiguration context.  Notably,
2179  * we select the namespace we're going to use.
2180  */
2181 static int cgroup_init_fs_context(struct fs_context *fc)
2182 {
2183 	struct cgroup_fs_context *ctx;
2184 
2185 	ctx = kzalloc(sizeof(struct cgroup_fs_context), GFP_KERNEL);
2186 	if (!ctx)
2187 		return -ENOMEM;
2188 
2189 	ctx->ns = current->nsproxy->cgroup_ns;
2190 	get_cgroup_ns(ctx->ns);
2191 	fc->fs_private = &ctx->kfc;
2192 	if (fc->fs_type == &cgroup2_fs_type)
2193 		fc->ops = &cgroup_fs_context_ops;
2194 	else
2195 		fc->ops = &cgroup1_fs_context_ops;
2196 	put_user_ns(fc->user_ns);
2197 	fc->user_ns = get_user_ns(ctx->ns->user_ns);
2198 	fc->global = true;
2199 	return 0;
2200 }
2201 
2202 static void cgroup_kill_sb(struct super_block *sb)
2203 {
2204 	struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2205 	struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2206 
2207 	/*
2208 	 * If @root doesn't have any children, start killing it.
2209 	 * This prevents new mounts by disabling percpu_ref_tryget_live().
2210 	 *
2211 	 * And don't kill the default root.
2212 	 */
2213 	if (list_empty(&root->cgrp.self.children) && root != &cgrp_dfl_root &&
2214 	    !percpu_ref_is_dying(&root->cgrp.self.refcnt)) {
2215 		cgroup_bpf_offline(&root->cgrp);
2216 		percpu_ref_kill(&root->cgrp.self.refcnt);
2217 	}
2218 	cgroup_put(&root->cgrp);
2219 	kernfs_kill_sb(sb);
2220 }
2221 
2222 struct file_system_type cgroup_fs_type = {
2223 	.name			= "cgroup",
2224 	.init_fs_context	= cgroup_init_fs_context,
2225 	.parameters		= cgroup1_fs_parameters,
2226 	.kill_sb		= cgroup_kill_sb,
2227 	.fs_flags		= FS_USERNS_MOUNT,
2228 };
2229 
2230 static struct file_system_type cgroup2_fs_type = {
2231 	.name			= "cgroup2",
2232 	.init_fs_context	= cgroup_init_fs_context,
2233 	.parameters		= cgroup2_fs_parameters,
2234 	.kill_sb		= cgroup_kill_sb,
2235 	.fs_flags		= FS_USERNS_MOUNT,
2236 };
2237 
2238 #ifdef CONFIG_CPUSETS
2239 static const struct fs_context_operations cpuset_fs_context_ops = {
2240 	.get_tree	= cgroup1_get_tree,
2241 	.free		= cgroup_fs_context_free,
2242 };
2243 
2244 /*
2245  * This is ugly, but preserves the userspace API for existing cpuset
2246  * users. If someone tries to mount the "cpuset" filesystem, we
2247  * silently switch it to mount "cgroup" instead
2248  */
2249 static int cpuset_init_fs_context(struct fs_context *fc)
2250 {
2251 	char *agent = kstrdup("/sbin/cpuset_release_agent", GFP_USER);
2252 	struct cgroup_fs_context *ctx;
2253 	int err;
2254 
2255 	err = cgroup_init_fs_context(fc);
2256 	if (err) {
2257 		kfree(agent);
2258 		return err;
2259 	}
2260 
2261 	fc->ops = &cpuset_fs_context_ops;
2262 
2263 	ctx = cgroup_fc2context(fc);
2264 	ctx->subsys_mask = 1 << cpuset_cgrp_id;
2265 	ctx->flags |= CGRP_ROOT_NOPREFIX;
2266 	ctx->release_agent = agent;
2267 
2268 	get_filesystem(&cgroup_fs_type);
2269 	put_filesystem(fc->fs_type);
2270 	fc->fs_type = &cgroup_fs_type;
2271 
2272 	return 0;
2273 }
2274 
2275 static struct file_system_type cpuset_fs_type = {
2276 	.name			= "cpuset",
2277 	.init_fs_context	= cpuset_init_fs_context,
2278 	.fs_flags		= FS_USERNS_MOUNT,
2279 };
2280 #endif
2281 
2282 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
2283 			  struct cgroup_namespace *ns)
2284 {
2285 	struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
2286 
2287 	return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
2288 }
2289 
2290 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
2291 		   struct cgroup_namespace *ns)
2292 {
2293 	int ret;
2294 
2295 	mutex_lock(&cgroup_mutex);
2296 	spin_lock_irq(&css_set_lock);
2297 
2298 	ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
2299 
2300 	spin_unlock_irq(&css_set_lock);
2301 	mutex_unlock(&cgroup_mutex);
2302 
2303 	return ret;
2304 }
2305 EXPORT_SYMBOL_GPL(cgroup_path_ns);
2306 
2307 /**
2308  * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
2309  * @task: target task
2310  * @buf: the buffer to write the path into
2311  * @buflen: the length of the buffer
2312  *
2313  * Determine @task's cgroup on the first (the one with the lowest non-zero
2314  * hierarchy_id) cgroup hierarchy and copy its path into @buf.  This
2315  * function grabs cgroup_mutex and shouldn't be used inside locks used by
2316  * cgroup controller callbacks.
2317  *
2318  * Return value is the same as kernfs_path().
2319  */
2320 int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
2321 {
2322 	struct cgroup_root *root;
2323 	struct cgroup *cgrp;
2324 	int hierarchy_id = 1;
2325 	int ret;
2326 
2327 	mutex_lock(&cgroup_mutex);
2328 	spin_lock_irq(&css_set_lock);
2329 
2330 	root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2331 
2332 	if (root) {
2333 		cgrp = task_cgroup_from_root(task, root);
2334 		ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns);
2335 	} else {
2336 		/* if no hierarchy exists, everyone is in "/" */
2337 		ret = strlcpy(buf, "/", buflen);
2338 	}
2339 
2340 	spin_unlock_irq(&css_set_lock);
2341 	mutex_unlock(&cgroup_mutex);
2342 	return ret;
2343 }
2344 EXPORT_SYMBOL_GPL(task_cgroup_path);
2345 
2346 /**
2347  * cgroup_migrate_add_task - add a migration target task to a migration context
2348  * @task: target task
2349  * @mgctx: target migration context
2350  *
2351  * Add @task, which is a migration target, to @mgctx->tset.  This function
2352  * becomes noop if @task doesn't need to be migrated.  @task's css_set
2353  * should have been added as a migration source and @task->cg_list will be
2354  * moved from the css_set's tasks list to mg_tasks one.
2355  */
2356 static void cgroup_migrate_add_task(struct task_struct *task,
2357 				    struct cgroup_mgctx *mgctx)
2358 {
2359 	struct css_set *cset;
2360 
2361 	lockdep_assert_held(&css_set_lock);
2362 
2363 	/* @task either already exited or can't exit until the end */
2364 	if (task->flags & PF_EXITING)
2365 		return;
2366 
2367 	/* cgroup_threadgroup_rwsem protects racing against forks */
2368 	WARN_ON_ONCE(list_empty(&task->cg_list));
2369 
2370 	cset = task_css_set(task);
2371 	if (!cset->mg_src_cgrp)
2372 		return;
2373 
2374 	mgctx->tset.nr_tasks++;
2375 
2376 	list_move_tail(&task->cg_list, &cset->mg_tasks);
2377 	if (list_empty(&cset->mg_node))
2378 		list_add_tail(&cset->mg_node,
2379 			      &mgctx->tset.src_csets);
2380 	if (list_empty(&cset->mg_dst_cset->mg_node))
2381 		list_add_tail(&cset->mg_dst_cset->mg_node,
2382 			      &mgctx->tset.dst_csets);
2383 }
2384 
2385 /**
2386  * cgroup_taskset_first - reset taskset and return the first task
2387  * @tset: taskset of interest
2388  * @dst_cssp: output variable for the destination css
2389  *
2390  * @tset iteration is initialized and the first task is returned.
2391  */
2392 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2393 					 struct cgroup_subsys_state **dst_cssp)
2394 {
2395 	tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2396 	tset->cur_task = NULL;
2397 
2398 	return cgroup_taskset_next(tset, dst_cssp);
2399 }
2400 
2401 /**
2402  * cgroup_taskset_next - iterate to the next task in taskset
2403  * @tset: taskset of interest
2404  * @dst_cssp: output variable for the destination css
2405  *
2406  * Return the next task in @tset.  Iteration must have been initialized
2407  * with cgroup_taskset_first().
2408  */
2409 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2410 					struct cgroup_subsys_state **dst_cssp)
2411 {
2412 	struct css_set *cset = tset->cur_cset;
2413 	struct task_struct *task = tset->cur_task;
2414 
2415 	while (CGROUP_HAS_SUBSYS_CONFIG && &cset->mg_node != tset->csets) {
2416 		if (!task)
2417 			task = list_first_entry(&cset->mg_tasks,
2418 						struct task_struct, cg_list);
2419 		else
2420 			task = list_next_entry(task, cg_list);
2421 
2422 		if (&task->cg_list != &cset->mg_tasks) {
2423 			tset->cur_cset = cset;
2424 			tset->cur_task = task;
2425 
2426 			/*
2427 			 * This function may be called both before and
2428 			 * after cgroup_taskset_migrate().  The two cases
2429 			 * can be distinguished by looking at whether @cset
2430 			 * has its ->mg_dst_cset set.
2431 			 */
2432 			if (cset->mg_dst_cset)
2433 				*dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2434 			else
2435 				*dst_cssp = cset->subsys[tset->ssid];
2436 
2437 			return task;
2438 		}
2439 
2440 		cset = list_next_entry(cset, mg_node);
2441 		task = NULL;
2442 	}
2443 
2444 	return NULL;
2445 }
2446 
2447 /**
2448  * cgroup_migrate_execute - migrate a taskset
2449  * @mgctx: migration context
2450  *
2451  * Migrate tasks in @mgctx as setup by migration preparation functions.
2452  * This function fails iff one of the ->can_attach callbacks fails and
2453  * guarantees that either all or none of the tasks in @mgctx are migrated.
2454  * @mgctx is consumed regardless of success.
2455  */
2456 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx)
2457 {
2458 	struct cgroup_taskset *tset = &mgctx->tset;
2459 	struct cgroup_subsys *ss;
2460 	struct task_struct *task, *tmp_task;
2461 	struct css_set *cset, *tmp_cset;
2462 	int ssid, failed_ssid, ret;
2463 
2464 	/* check that we can legitimately attach to the cgroup */
2465 	if (tset->nr_tasks) {
2466 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2467 			if (ss->can_attach) {
2468 				tset->ssid = ssid;
2469 				ret = ss->can_attach(tset);
2470 				if (ret) {
2471 					failed_ssid = ssid;
2472 					goto out_cancel_attach;
2473 				}
2474 			}
2475 		} while_each_subsys_mask();
2476 	}
2477 
2478 	/*
2479 	 * Now that we're guaranteed success, proceed to move all tasks to
2480 	 * the new cgroup.  There are no failure cases after here, so this
2481 	 * is the commit point.
2482 	 */
2483 	spin_lock_irq(&css_set_lock);
2484 	list_for_each_entry(cset, &tset->src_csets, mg_node) {
2485 		list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2486 			struct css_set *from_cset = task_css_set(task);
2487 			struct css_set *to_cset = cset->mg_dst_cset;
2488 
2489 			get_css_set(to_cset);
2490 			to_cset->nr_tasks++;
2491 			css_set_move_task(task, from_cset, to_cset, true);
2492 			from_cset->nr_tasks--;
2493 			/*
2494 			 * If the source or destination cgroup is frozen,
2495 			 * the task might require to change its state.
2496 			 */
2497 			cgroup_freezer_migrate_task(task, from_cset->dfl_cgrp,
2498 						    to_cset->dfl_cgrp);
2499 			put_css_set_locked(from_cset);
2500 
2501 		}
2502 	}
2503 	spin_unlock_irq(&css_set_lock);
2504 
2505 	/*
2506 	 * Migration is committed, all target tasks are now on dst_csets.
2507 	 * Nothing is sensitive to fork() after this point.  Notify
2508 	 * controllers that migration is complete.
2509 	 */
2510 	tset->csets = &tset->dst_csets;
2511 
2512 	if (tset->nr_tasks) {
2513 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2514 			if (ss->attach) {
2515 				tset->ssid = ssid;
2516 				ss->attach(tset);
2517 			}
2518 		} while_each_subsys_mask();
2519 	}
2520 
2521 	ret = 0;
2522 	goto out_release_tset;
2523 
2524 out_cancel_attach:
2525 	if (tset->nr_tasks) {
2526 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2527 			if (ssid == failed_ssid)
2528 				break;
2529 			if (ss->cancel_attach) {
2530 				tset->ssid = ssid;
2531 				ss->cancel_attach(tset);
2532 			}
2533 		} while_each_subsys_mask();
2534 	}
2535 out_release_tset:
2536 	spin_lock_irq(&css_set_lock);
2537 	list_splice_init(&tset->dst_csets, &tset->src_csets);
2538 	list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2539 		list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2540 		list_del_init(&cset->mg_node);
2541 	}
2542 	spin_unlock_irq(&css_set_lock);
2543 
2544 	/*
2545 	 * Re-initialize the cgroup_taskset structure in case it is reused
2546 	 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute()
2547 	 * iteration.
2548 	 */
2549 	tset->nr_tasks = 0;
2550 	tset->csets    = &tset->src_csets;
2551 	return ret;
2552 }
2553 
2554 /**
2555  * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination
2556  * @dst_cgrp: destination cgroup to test
2557  *
2558  * On the default hierarchy, except for the mixable, (possible) thread root
2559  * and threaded cgroups, subtree_control must be zero for migration
2560  * destination cgroups with tasks so that child cgroups don't compete
2561  * against tasks.
2562  */
2563 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp)
2564 {
2565 	/* v1 doesn't have any restriction */
2566 	if (!cgroup_on_dfl(dst_cgrp))
2567 		return 0;
2568 
2569 	/* verify @dst_cgrp can host resources */
2570 	if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp))
2571 		return -EOPNOTSUPP;
2572 
2573 	/* mixables don't care */
2574 	if (cgroup_is_mixable(dst_cgrp))
2575 		return 0;
2576 
2577 	/*
2578 	 * If @dst_cgrp is already or can become a thread root or is
2579 	 * threaded, it doesn't matter.
2580 	 */
2581 	if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp))
2582 		return 0;
2583 
2584 	/* apply no-internal-process constraint */
2585 	if (dst_cgrp->subtree_control)
2586 		return -EBUSY;
2587 
2588 	return 0;
2589 }
2590 
2591 /**
2592  * cgroup_migrate_finish - cleanup after attach
2593  * @mgctx: migration context
2594  *
2595  * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst().  See
2596  * those functions for details.
2597  */
2598 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx)
2599 {
2600 	LIST_HEAD(preloaded);
2601 	struct css_set *cset, *tmp_cset;
2602 
2603 	lockdep_assert_held(&cgroup_mutex);
2604 
2605 	spin_lock_irq(&css_set_lock);
2606 
2607 	list_splice_tail_init(&mgctx->preloaded_src_csets, &preloaded);
2608 	list_splice_tail_init(&mgctx->preloaded_dst_csets, &preloaded);
2609 
2610 	list_for_each_entry_safe(cset, tmp_cset, &preloaded, mg_preload_node) {
2611 		cset->mg_src_cgrp = NULL;
2612 		cset->mg_dst_cgrp = NULL;
2613 		cset->mg_dst_cset = NULL;
2614 		list_del_init(&cset->mg_preload_node);
2615 		put_css_set_locked(cset);
2616 	}
2617 
2618 	spin_unlock_irq(&css_set_lock);
2619 }
2620 
2621 /**
2622  * cgroup_migrate_add_src - add a migration source css_set
2623  * @src_cset: the source css_set to add
2624  * @dst_cgrp: the destination cgroup
2625  * @mgctx: migration context
2626  *
2627  * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp.  Pin
2628  * @src_cset and add it to @mgctx->src_csets, which should later be cleaned
2629  * up by cgroup_migrate_finish().
2630  *
2631  * This function may be called without holding cgroup_threadgroup_rwsem
2632  * even if the target is a process.  Threads may be created and destroyed
2633  * but as long as cgroup_mutex is not dropped, no new css_set can be put
2634  * into play and the preloaded css_sets are guaranteed to cover all
2635  * migrations.
2636  */
2637 void cgroup_migrate_add_src(struct css_set *src_cset,
2638 			    struct cgroup *dst_cgrp,
2639 			    struct cgroup_mgctx *mgctx)
2640 {
2641 	struct cgroup *src_cgrp;
2642 
2643 	lockdep_assert_held(&cgroup_mutex);
2644 	lockdep_assert_held(&css_set_lock);
2645 
2646 	/*
2647 	 * If ->dead, @src_set is associated with one or more dead cgroups
2648 	 * and doesn't contain any migratable tasks.  Ignore it early so
2649 	 * that the rest of migration path doesn't get confused by it.
2650 	 */
2651 	if (src_cset->dead)
2652 		return;
2653 
2654 	if (!list_empty(&src_cset->mg_preload_node))
2655 		return;
2656 
2657 	src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2658 
2659 	WARN_ON(src_cset->mg_src_cgrp);
2660 	WARN_ON(src_cset->mg_dst_cgrp);
2661 	WARN_ON(!list_empty(&src_cset->mg_tasks));
2662 	WARN_ON(!list_empty(&src_cset->mg_node));
2663 
2664 	src_cset->mg_src_cgrp = src_cgrp;
2665 	src_cset->mg_dst_cgrp = dst_cgrp;
2666 	get_css_set(src_cset);
2667 	list_add_tail(&src_cset->mg_preload_node, &mgctx->preloaded_src_csets);
2668 }
2669 
2670 /**
2671  * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2672  * @mgctx: migration context
2673  *
2674  * Tasks are about to be moved and all the source css_sets have been
2675  * preloaded to @mgctx->preloaded_src_csets.  This function looks up and
2676  * pins all destination css_sets, links each to its source, and append them
2677  * to @mgctx->preloaded_dst_csets.
2678  *
2679  * This function must be called after cgroup_migrate_add_src() has been
2680  * called on each migration source css_set.  After migration is performed
2681  * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2682  * @mgctx.
2683  */
2684 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx)
2685 {
2686 	struct css_set *src_cset, *tmp_cset;
2687 
2688 	lockdep_assert_held(&cgroup_mutex);
2689 
2690 	/* look up the dst cset for each src cset and link it to src */
2691 	list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets,
2692 				 mg_preload_node) {
2693 		struct css_set *dst_cset;
2694 		struct cgroup_subsys *ss;
2695 		int ssid;
2696 
2697 		dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
2698 		if (!dst_cset)
2699 			return -ENOMEM;
2700 
2701 		WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2702 
2703 		/*
2704 		 * If src cset equals dst, it's noop.  Drop the src.
2705 		 * cgroup_migrate() will skip the cset too.  Note that we
2706 		 * can't handle src == dst as some nodes are used by both.
2707 		 */
2708 		if (src_cset == dst_cset) {
2709 			src_cset->mg_src_cgrp = NULL;
2710 			src_cset->mg_dst_cgrp = NULL;
2711 			list_del_init(&src_cset->mg_preload_node);
2712 			put_css_set(src_cset);
2713 			put_css_set(dst_cset);
2714 			continue;
2715 		}
2716 
2717 		src_cset->mg_dst_cset = dst_cset;
2718 
2719 		if (list_empty(&dst_cset->mg_preload_node))
2720 			list_add_tail(&dst_cset->mg_preload_node,
2721 				      &mgctx->preloaded_dst_csets);
2722 		else
2723 			put_css_set(dst_cset);
2724 
2725 		for_each_subsys(ss, ssid)
2726 			if (src_cset->subsys[ssid] != dst_cset->subsys[ssid])
2727 				mgctx->ss_mask |= 1 << ssid;
2728 	}
2729 
2730 	return 0;
2731 }
2732 
2733 /**
2734  * cgroup_migrate - migrate a process or task to a cgroup
2735  * @leader: the leader of the process or the task to migrate
2736  * @threadgroup: whether @leader points to the whole process or a single task
2737  * @mgctx: migration context
2738  *
2739  * Migrate a process or task denoted by @leader.  If migrating a process,
2740  * the caller must be holding cgroup_threadgroup_rwsem.  The caller is also
2741  * responsible for invoking cgroup_migrate_add_src() and
2742  * cgroup_migrate_prepare_dst() on the targets before invoking this
2743  * function and following up with cgroup_migrate_finish().
2744  *
2745  * As long as a controller's ->can_attach() doesn't fail, this function is
2746  * guaranteed to succeed.  This means that, excluding ->can_attach()
2747  * failure, when migrating multiple targets, the success or failure can be
2748  * decided for all targets by invoking group_migrate_prepare_dst() before
2749  * actually starting migrating.
2750  */
2751 int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2752 		   struct cgroup_mgctx *mgctx)
2753 {
2754 	struct task_struct *task;
2755 
2756 	/*
2757 	 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2758 	 * already PF_EXITING could be freed from underneath us unless we
2759 	 * take an rcu_read_lock.
2760 	 */
2761 	spin_lock_irq(&css_set_lock);
2762 	rcu_read_lock();
2763 	task = leader;
2764 	do {
2765 		cgroup_migrate_add_task(task, mgctx);
2766 		if (!threadgroup)
2767 			break;
2768 	} while_each_thread(leader, task);
2769 	rcu_read_unlock();
2770 	spin_unlock_irq(&css_set_lock);
2771 
2772 	return cgroup_migrate_execute(mgctx);
2773 }
2774 
2775 /**
2776  * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2777  * @dst_cgrp: the cgroup to attach to
2778  * @leader: the task or the leader of the threadgroup to be attached
2779  * @threadgroup: attach the whole threadgroup?
2780  *
2781  * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2782  */
2783 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader,
2784 		       bool threadgroup)
2785 {
2786 	DEFINE_CGROUP_MGCTX(mgctx);
2787 	struct task_struct *task;
2788 	int ret = 0;
2789 
2790 	/* look up all src csets */
2791 	spin_lock_irq(&css_set_lock);
2792 	rcu_read_lock();
2793 	task = leader;
2794 	do {
2795 		cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx);
2796 		if (!threadgroup)
2797 			break;
2798 	} while_each_thread(leader, task);
2799 	rcu_read_unlock();
2800 	spin_unlock_irq(&css_set_lock);
2801 
2802 	/* prepare dst csets and commit */
2803 	ret = cgroup_migrate_prepare_dst(&mgctx);
2804 	if (!ret)
2805 		ret = cgroup_migrate(leader, threadgroup, &mgctx);
2806 
2807 	cgroup_migrate_finish(&mgctx);
2808 
2809 	if (!ret)
2810 		TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup);
2811 
2812 	return ret;
2813 }
2814 
2815 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup,
2816 					     bool *locked)
2817 	__acquires(&cgroup_threadgroup_rwsem)
2818 {
2819 	struct task_struct *tsk;
2820 	pid_t pid;
2821 
2822 	if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2823 		return ERR_PTR(-EINVAL);
2824 
2825 	/*
2826 	 * If we migrate a single thread, we don't care about threadgroup
2827 	 * stability. If the thread is `current`, it won't exit(2) under our
2828 	 * hands or change PID through exec(2). We exclude
2829 	 * cgroup_update_dfl_csses and other cgroup_{proc,thread}s_write
2830 	 * callers by cgroup_mutex.
2831 	 * Therefore, we can skip the global lock.
2832 	 */
2833 	lockdep_assert_held(&cgroup_mutex);
2834 	if (pid || threadgroup) {
2835 		percpu_down_write(&cgroup_threadgroup_rwsem);
2836 		*locked = true;
2837 	} else {
2838 		*locked = false;
2839 	}
2840 
2841 	rcu_read_lock();
2842 	if (pid) {
2843 		tsk = find_task_by_vpid(pid);
2844 		if (!tsk) {
2845 			tsk = ERR_PTR(-ESRCH);
2846 			goto out_unlock_threadgroup;
2847 		}
2848 	} else {
2849 		tsk = current;
2850 	}
2851 
2852 	if (threadgroup)
2853 		tsk = tsk->group_leader;
2854 
2855 	/*
2856 	 * kthreads may acquire PF_NO_SETAFFINITY during initialization.
2857 	 * If userland migrates such a kthread to a non-root cgroup, it can
2858 	 * become trapped in a cpuset, or RT kthread may be born in a
2859 	 * cgroup with no rt_runtime allocated.  Just say no.
2860 	 */
2861 	if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) {
2862 		tsk = ERR_PTR(-EINVAL);
2863 		goto out_unlock_threadgroup;
2864 	}
2865 
2866 	get_task_struct(tsk);
2867 	goto out_unlock_rcu;
2868 
2869 out_unlock_threadgroup:
2870 	if (*locked) {
2871 		percpu_up_write(&cgroup_threadgroup_rwsem);
2872 		*locked = false;
2873 	}
2874 out_unlock_rcu:
2875 	rcu_read_unlock();
2876 	return tsk;
2877 }
2878 
2879 void cgroup_procs_write_finish(struct task_struct *task, bool locked)
2880 	__releases(&cgroup_threadgroup_rwsem)
2881 {
2882 	struct cgroup_subsys *ss;
2883 	int ssid;
2884 
2885 	/* release reference from cgroup_procs_write_start() */
2886 	put_task_struct(task);
2887 
2888 	if (locked)
2889 		percpu_up_write(&cgroup_threadgroup_rwsem);
2890 	for_each_subsys(ss, ssid)
2891 		if (ss->post_attach)
2892 			ss->post_attach();
2893 }
2894 
2895 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
2896 {
2897 	struct cgroup_subsys *ss;
2898 	bool printed = false;
2899 	int ssid;
2900 
2901 	do_each_subsys_mask(ss, ssid, ss_mask) {
2902 		if (printed)
2903 			seq_putc(seq, ' ');
2904 		seq_puts(seq, ss->name);
2905 		printed = true;
2906 	} while_each_subsys_mask();
2907 	if (printed)
2908 		seq_putc(seq, '\n');
2909 }
2910 
2911 /* show controllers which are enabled from the parent */
2912 static int cgroup_controllers_show(struct seq_file *seq, void *v)
2913 {
2914 	struct cgroup *cgrp = seq_css(seq)->cgroup;
2915 
2916 	cgroup_print_ss_mask(seq, cgroup_control(cgrp));
2917 	return 0;
2918 }
2919 
2920 /* show controllers which are enabled for a given cgroup's children */
2921 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
2922 {
2923 	struct cgroup *cgrp = seq_css(seq)->cgroup;
2924 
2925 	cgroup_print_ss_mask(seq, cgrp->subtree_control);
2926 	return 0;
2927 }
2928 
2929 /**
2930  * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2931  * @cgrp: root of the subtree to update csses for
2932  *
2933  * @cgrp's control masks have changed and its subtree's css associations
2934  * need to be updated accordingly.  This function looks up all css_sets
2935  * which are attached to the subtree, creates the matching updated css_sets
2936  * and migrates the tasks to the new ones.
2937  */
2938 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2939 {
2940 	DEFINE_CGROUP_MGCTX(mgctx);
2941 	struct cgroup_subsys_state *d_css;
2942 	struct cgroup *dsct;
2943 	struct css_set *src_cset;
2944 	int ret;
2945 
2946 	lockdep_assert_held(&cgroup_mutex);
2947 
2948 	percpu_down_write(&cgroup_threadgroup_rwsem);
2949 
2950 	/* look up all csses currently attached to @cgrp's subtree */
2951 	spin_lock_irq(&css_set_lock);
2952 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2953 		struct cgrp_cset_link *link;
2954 
2955 		list_for_each_entry(link, &dsct->cset_links, cset_link)
2956 			cgroup_migrate_add_src(link->cset, dsct, &mgctx);
2957 	}
2958 	spin_unlock_irq(&css_set_lock);
2959 
2960 	/* NULL dst indicates self on default hierarchy */
2961 	ret = cgroup_migrate_prepare_dst(&mgctx);
2962 	if (ret)
2963 		goto out_finish;
2964 
2965 	spin_lock_irq(&css_set_lock);
2966 	list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, mg_preload_node) {
2967 		struct task_struct *task, *ntask;
2968 
2969 		/* all tasks in src_csets need to be migrated */
2970 		list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
2971 			cgroup_migrate_add_task(task, &mgctx);
2972 	}
2973 	spin_unlock_irq(&css_set_lock);
2974 
2975 	ret = cgroup_migrate_execute(&mgctx);
2976 out_finish:
2977 	cgroup_migrate_finish(&mgctx);
2978 	percpu_up_write(&cgroup_threadgroup_rwsem);
2979 	return ret;
2980 }
2981 
2982 /**
2983  * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
2984  * @cgrp: root of the target subtree
2985  *
2986  * Because css offlining is asynchronous, userland may try to re-enable a
2987  * controller while the previous css is still around.  This function grabs
2988  * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
2989  */
2990 void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
2991 	__acquires(&cgroup_mutex)
2992 {
2993 	struct cgroup *dsct;
2994 	struct cgroup_subsys_state *d_css;
2995 	struct cgroup_subsys *ss;
2996 	int ssid;
2997 
2998 restart:
2999 	mutex_lock(&cgroup_mutex);
3000 
3001 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3002 		for_each_subsys(ss, ssid) {
3003 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3004 			DEFINE_WAIT(wait);
3005 
3006 			if (!css || !percpu_ref_is_dying(&css->refcnt))
3007 				continue;
3008 
3009 			cgroup_get_live(dsct);
3010 			prepare_to_wait(&dsct->offline_waitq, &wait,
3011 					TASK_UNINTERRUPTIBLE);
3012 
3013 			mutex_unlock(&cgroup_mutex);
3014 			schedule();
3015 			finish_wait(&dsct->offline_waitq, &wait);
3016 
3017 			cgroup_put(dsct);
3018 			goto restart;
3019 		}
3020 	}
3021 }
3022 
3023 /**
3024  * cgroup_save_control - save control masks and dom_cgrp of a subtree
3025  * @cgrp: root of the target subtree
3026  *
3027  * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the
3028  * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3029  * itself.
3030  */
3031 static void cgroup_save_control(struct cgroup *cgrp)
3032 {
3033 	struct cgroup *dsct;
3034 	struct cgroup_subsys_state *d_css;
3035 
3036 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3037 		dsct->old_subtree_control = dsct->subtree_control;
3038 		dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
3039 		dsct->old_dom_cgrp = dsct->dom_cgrp;
3040 	}
3041 }
3042 
3043 /**
3044  * cgroup_propagate_control - refresh control masks of a subtree
3045  * @cgrp: root of the target subtree
3046  *
3047  * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
3048  * ->subtree_control and propagate controller availability through the
3049  * subtree so that descendants don't have unavailable controllers enabled.
3050  */
3051 static void cgroup_propagate_control(struct cgroup *cgrp)
3052 {
3053 	struct cgroup *dsct;
3054 	struct cgroup_subsys_state *d_css;
3055 
3056 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3057 		dsct->subtree_control &= cgroup_control(dsct);
3058 		dsct->subtree_ss_mask =
3059 			cgroup_calc_subtree_ss_mask(dsct->subtree_control,
3060 						    cgroup_ss_mask(dsct));
3061 	}
3062 }
3063 
3064 /**
3065  * cgroup_restore_control - restore control masks and dom_cgrp of a subtree
3066  * @cgrp: root of the target subtree
3067  *
3068  * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the
3069  * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3070  * itself.
3071  */
3072 static void cgroup_restore_control(struct cgroup *cgrp)
3073 {
3074 	struct cgroup *dsct;
3075 	struct cgroup_subsys_state *d_css;
3076 
3077 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3078 		dsct->subtree_control = dsct->old_subtree_control;
3079 		dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
3080 		dsct->dom_cgrp = dsct->old_dom_cgrp;
3081 	}
3082 }
3083 
3084 static bool css_visible(struct cgroup_subsys_state *css)
3085 {
3086 	struct cgroup_subsys *ss = css->ss;
3087 	struct cgroup *cgrp = css->cgroup;
3088 
3089 	if (cgroup_control(cgrp) & (1 << ss->id))
3090 		return true;
3091 	if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
3092 		return false;
3093 	return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
3094 }
3095 
3096 /**
3097  * cgroup_apply_control_enable - enable or show csses according to control
3098  * @cgrp: root of the target subtree
3099  *
3100  * Walk @cgrp's subtree and create new csses or make the existing ones
3101  * visible.  A css is created invisible if it's being implicitly enabled
3102  * through dependency.  An invisible css is made visible when the userland
3103  * explicitly enables it.
3104  *
3105  * Returns 0 on success, -errno on failure.  On failure, csses which have
3106  * been processed already aren't cleaned up.  The caller is responsible for
3107  * cleaning up with cgroup_apply_control_disable().
3108  */
3109 static int cgroup_apply_control_enable(struct cgroup *cgrp)
3110 {
3111 	struct cgroup *dsct;
3112 	struct cgroup_subsys_state *d_css;
3113 	struct cgroup_subsys *ss;
3114 	int ssid, ret;
3115 
3116 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3117 		for_each_subsys(ss, ssid) {
3118 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3119 
3120 			if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
3121 				continue;
3122 
3123 			if (!css) {
3124 				css = css_create(dsct, ss);
3125 				if (IS_ERR(css))
3126 					return PTR_ERR(css);
3127 			}
3128 
3129 			WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3130 
3131 			if (css_visible(css)) {
3132 				ret = css_populate_dir(css);
3133 				if (ret)
3134 					return ret;
3135 			}
3136 		}
3137 	}
3138 
3139 	return 0;
3140 }
3141 
3142 /**
3143  * cgroup_apply_control_disable - kill or hide csses according to control
3144  * @cgrp: root of the target subtree
3145  *
3146  * Walk @cgrp's subtree and kill and hide csses so that they match
3147  * cgroup_ss_mask() and cgroup_visible_mask().
3148  *
3149  * A css is hidden when the userland requests it to be disabled while other
3150  * subsystems are still depending on it.  The css must not actively control
3151  * resources and be in the vanilla state if it's made visible again later.
3152  * Controllers which may be depended upon should provide ->css_reset() for
3153  * this purpose.
3154  */
3155 static void cgroup_apply_control_disable(struct cgroup *cgrp)
3156 {
3157 	struct cgroup *dsct;
3158 	struct cgroup_subsys_state *d_css;
3159 	struct cgroup_subsys *ss;
3160 	int ssid;
3161 
3162 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3163 		for_each_subsys(ss, ssid) {
3164 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3165 
3166 			if (!css)
3167 				continue;
3168 
3169 			WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3170 
3171 			if (css->parent &&
3172 			    !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
3173 				kill_css(css);
3174 			} else if (!css_visible(css)) {
3175 				css_clear_dir(css);
3176 				if (ss->css_reset)
3177 					ss->css_reset(css);
3178 			}
3179 		}
3180 	}
3181 }
3182 
3183 /**
3184  * cgroup_apply_control - apply control mask updates to the subtree
3185  * @cgrp: root of the target subtree
3186  *
3187  * subsystems can be enabled and disabled in a subtree using the following
3188  * steps.
3189  *
3190  * 1. Call cgroup_save_control() to stash the current state.
3191  * 2. Update ->subtree_control masks in the subtree as desired.
3192  * 3. Call cgroup_apply_control() to apply the changes.
3193  * 4. Optionally perform other related operations.
3194  * 5. Call cgroup_finalize_control() to finish up.
3195  *
3196  * This function implements step 3 and propagates the mask changes
3197  * throughout @cgrp's subtree, updates csses accordingly and perform
3198  * process migrations.
3199  */
3200 static int cgroup_apply_control(struct cgroup *cgrp)
3201 {
3202 	int ret;
3203 
3204 	cgroup_propagate_control(cgrp);
3205 
3206 	ret = cgroup_apply_control_enable(cgrp);
3207 	if (ret)
3208 		return ret;
3209 
3210 	/*
3211 	 * At this point, cgroup_e_css_by_mask() results reflect the new csses
3212 	 * making the following cgroup_update_dfl_csses() properly update
3213 	 * css associations of all tasks in the subtree.
3214 	 */
3215 	ret = cgroup_update_dfl_csses(cgrp);
3216 	if (ret)
3217 		return ret;
3218 
3219 	return 0;
3220 }
3221 
3222 /**
3223  * cgroup_finalize_control - finalize control mask update
3224  * @cgrp: root of the target subtree
3225  * @ret: the result of the update
3226  *
3227  * Finalize control mask update.  See cgroup_apply_control() for more info.
3228  */
3229 static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
3230 {
3231 	if (ret) {
3232 		cgroup_restore_control(cgrp);
3233 		cgroup_propagate_control(cgrp);
3234 	}
3235 
3236 	cgroup_apply_control_disable(cgrp);
3237 }
3238 
3239 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable)
3240 {
3241 	u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask;
3242 
3243 	/* if nothing is getting enabled, nothing to worry about */
3244 	if (!enable)
3245 		return 0;
3246 
3247 	/* can @cgrp host any resources? */
3248 	if (!cgroup_is_valid_domain(cgrp->dom_cgrp))
3249 		return -EOPNOTSUPP;
3250 
3251 	/* mixables don't care */
3252 	if (cgroup_is_mixable(cgrp))
3253 		return 0;
3254 
3255 	if (domain_enable) {
3256 		/* can't enable domain controllers inside a thread subtree */
3257 		if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3258 			return -EOPNOTSUPP;
3259 	} else {
3260 		/*
3261 		 * Threaded controllers can handle internal competitions
3262 		 * and are always allowed inside a (prospective) thread
3263 		 * subtree.
3264 		 */
3265 		if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3266 			return 0;
3267 	}
3268 
3269 	/*
3270 	 * Controllers can't be enabled for a cgroup with tasks to avoid
3271 	 * child cgroups competing against tasks.
3272 	 */
3273 	if (cgroup_has_tasks(cgrp))
3274 		return -EBUSY;
3275 
3276 	return 0;
3277 }
3278 
3279 /* change the enabled child controllers for a cgroup in the default hierarchy */
3280 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3281 					    char *buf, size_t nbytes,
3282 					    loff_t off)
3283 {
3284 	u16 enable = 0, disable = 0;
3285 	struct cgroup *cgrp, *child;
3286 	struct cgroup_subsys *ss;
3287 	char *tok;
3288 	int ssid, ret;
3289 
3290 	/*
3291 	 * Parse input - space separated list of subsystem names prefixed
3292 	 * with either + or -.
3293 	 */
3294 	buf = strstrip(buf);
3295 	while ((tok = strsep(&buf, " "))) {
3296 		if (tok[0] == '\0')
3297 			continue;
3298 		do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
3299 			if (!cgroup_ssid_enabled(ssid) ||
3300 			    strcmp(tok + 1, ss->name))
3301 				continue;
3302 
3303 			if (*tok == '+') {
3304 				enable |= 1 << ssid;
3305 				disable &= ~(1 << ssid);
3306 			} else if (*tok == '-') {
3307 				disable |= 1 << ssid;
3308 				enable &= ~(1 << ssid);
3309 			} else {
3310 				return -EINVAL;
3311 			}
3312 			break;
3313 		} while_each_subsys_mask();
3314 		if (ssid == CGROUP_SUBSYS_COUNT)
3315 			return -EINVAL;
3316 	}
3317 
3318 	cgrp = cgroup_kn_lock_live(of->kn, true);
3319 	if (!cgrp)
3320 		return -ENODEV;
3321 
3322 	for_each_subsys(ss, ssid) {
3323 		if (enable & (1 << ssid)) {
3324 			if (cgrp->subtree_control & (1 << ssid)) {
3325 				enable &= ~(1 << ssid);
3326 				continue;
3327 			}
3328 
3329 			if (!(cgroup_control(cgrp) & (1 << ssid))) {
3330 				ret = -ENOENT;
3331 				goto out_unlock;
3332 			}
3333 		} else if (disable & (1 << ssid)) {
3334 			if (!(cgrp->subtree_control & (1 << ssid))) {
3335 				disable &= ~(1 << ssid);
3336 				continue;
3337 			}
3338 
3339 			/* a child has it enabled? */
3340 			cgroup_for_each_live_child(child, cgrp) {
3341 				if (child->subtree_control & (1 << ssid)) {
3342 					ret = -EBUSY;
3343 					goto out_unlock;
3344 				}
3345 			}
3346 		}
3347 	}
3348 
3349 	if (!enable && !disable) {
3350 		ret = 0;
3351 		goto out_unlock;
3352 	}
3353 
3354 	ret = cgroup_vet_subtree_control_enable(cgrp, enable);
3355 	if (ret)
3356 		goto out_unlock;
3357 
3358 	/* save and update control masks and prepare csses */
3359 	cgroup_save_control(cgrp);
3360 
3361 	cgrp->subtree_control |= enable;
3362 	cgrp->subtree_control &= ~disable;
3363 
3364 	ret = cgroup_apply_control(cgrp);
3365 	cgroup_finalize_control(cgrp, ret);
3366 	if (ret)
3367 		goto out_unlock;
3368 
3369 	kernfs_activate(cgrp->kn);
3370 out_unlock:
3371 	cgroup_kn_unlock(of->kn);
3372 	return ret ?: nbytes;
3373 }
3374 
3375 /**
3376  * cgroup_enable_threaded - make @cgrp threaded
3377  * @cgrp: the target cgroup
3378  *
3379  * Called when "threaded" is written to the cgroup.type interface file and
3380  * tries to make @cgrp threaded and join the parent's resource domain.
3381  * This function is never called on the root cgroup as cgroup.type doesn't
3382  * exist on it.
3383  */
3384 static int cgroup_enable_threaded(struct cgroup *cgrp)
3385 {
3386 	struct cgroup *parent = cgroup_parent(cgrp);
3387 	struct cgroup *dom_cgrp = parent->dom_cgrp;
3388 	struct cgroup *dsct;
3389 	struct cgroup_subsys_state *d_css;
3390 	int ret;
3391 
3392 	lockdep_assert_held(&cgroup_mutex);
3393 
3394 	/* noop if already threaded */
3395 	if (cgroup_is_threaded(cgrp))
3396 		return 0;
3397 
3398 	/*
3399 	 * If @cgroup is populated or has domain controllers enabled, it
3400 	 * can't be switched.  While the below cgroup_can_be_thread_root()
3401 	 * test can catch the same conditions, that's only when @parent is
3402 	 * not mixable, so let's check it explicitly.
3403 	 */
3404 	if (cgroup_is_populated(cgrp) ||
3405 	    cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
3406 		return -EOPNOTSUPP;
3407 
3408 	/* we're joining the parent's domain, ensure its validity */
3409 	if (!cgroup_is_valid_domain(dom_cgrp) ||
3410 	    !cgroup_can_be_thread_root(dom_cgrp))
3411 		return -EOPNOTSUPP;
3412 
3413 	/*
3414 	 * The following shouldn't cause actual migrations and should
3415 	 * always succeed.
3416 	 */
3417 	cgroup_save_control(cgrp);
3418 
3419 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)
3420 		if (dsct == cgrp || cgroup_is_threaded(dsct))
3421 			dsct->dom_cgrp = dom_cgrp;
3422 
3423 	ret = cgroup_apply_control(cgrp);
3424 	if (!ret)
3425 		parent->nr_threaded_children++;
3426 
3427 	cgroup_finalize_control(cgrp, ret);
3428 	return ret;
3429 }
3430 
3431 static int cgroup_type_show(struct seq_file *seq, void *v)
3432 {
3433 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3434 
3435 	if (cgroup_is_threaded(cgrp))
3436 		seq_puts(seq, "threaded\n");
3437 	else if (!cgroup_is_valid_domain(cgrp))
3438 		seq_puts(seq, "domain invalid\n");
3439 	else if (cgroup_is_thread_root(cgrp))
3440 		seq_puts(seq, "domain threaded\n");
3441 	else
3442 		seq_puts(seq, "domain\n");
3443 
3444 	return 0;
3445 }
3446 
3447 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf,
3448 				 size_t nbytes, loff_t off)
3449 {
3450 	struct cgroup *cgrp;
3451 	int ret;
3452 
3453 	/* only switching to threaded mode is supported */
3454 	if (strcmp(strstrip(buf), "threaded"))
3455 		return -EINVAL;
3456 
3457 	/* drain dying csses before we re-apply (threaded) subtree control */
3458 	cgrp = cgroup_kn_lock_live(of->kn, true);
3459 	if (!cgrp)
3460 		return -ENOENT;
3461 
3462 	/* threaded can only be enabled */
3463 	ret = cgroup_enable_threaded(cgrp);
3464 
3465 	cgroup_kn_unlock(of->kn);
3466 	return ret ?: nbytes;
3467 }
3468 
3469 static int cgroup_max_descendants_show(struct seq_file *seq, void *v)
3470 {
3471 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3472 	int descendants = READ_ONCE(cgrp->max_descendants);
3473 
3474 	if (descendants == INT_MAX)
3475 		seq_puts(seq, "max\n");
3476 	else
3477 		seq_printf(seq, "%d\n", descendants);
3478 
3479 	return 0;
3480 }
3481 
3482 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of,
3483 					   char *buf, size_t nbytes, loff_t off)
3484 {
3485 	struct cgroup *cgrp;
3486 	int descendants;
3487 	ssize_t ret;
3488 
3489 	buf = strstrip(buf);
3490 	if (!strcmp(buf, "max")) {
3491 		descendants = INT_MAX;
3492 	} else {
3493 		ret = kstrtoint(buf, 0, &descendants);
3494 		if (ret)
3495 			return ret;
3496 	}
3497 
3498 	if (descendants < 0)
3499 		return -ERANGE;
3500 
3501 	cgrp = cgroup_kn_lock_live(of->kn, false);
3502 	if (!cgrp)
3503 		return -ENOENT;
3504 
3505 	cgrp->max_descendants = descendants;
3506 
3507 	cgroup_kn_unlock(of->kn);
3508 
3509 	return nbytes;
3510 }
3511 
3512 static int cgroup_max_depth_show(struct seq_file *seq, void *v)
3513 {
3514 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3515 	int depth = READ_ONCE(cgrp->max_depth);
3516 
3517 	if (depth == INT_MAX)
3518 		seq_puts(seq, "max\n");
3519 	else
3520 		seq_printf(seq, "%d\n", depth);
3521 
3522 	return 0;
3523 }
3524 
3525 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of,
3526 				      char *buf, size_t nbytes, loff_t off)
3527 {
3528 	struct cgroup *cgrp;
3529 	ssize_t ret;
3530 	int depth;
3531 
3532 	buf = strstrip(buf);
3533 	if (!strcmp(buf, "max")) {
3534 		depth = INT_MAX;
3535 	} else {
3536 		ret = kstrtoint(buf, 0, &depth);
3537 		if (ret)
3538 			return ret;
3539 	}
3540 
3541 	if (depth < 0)
3542 		return -ERANGE;
3543 
3544 	cgrp = cgroup_kn_lock_live(of->kn, false);
3545 	if (!cgrp)
3546 		return -ENOENT;
3547 
3548 	cgrp->max_depth = depth;
3549 
3550 	cgroup_kn_unlock(of->kn);
3551 
3552 	return nbytes;
3553 }
3554 
3555 static int cgroup_events_show(struct seq_file *seq, void *v)
3556 {
3557 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3558 
3559 	seq_printf(seq, "populated %d\n", cgroup_is_populated(cgrp));
3560 	seq_printf(seq, "frozen %d\n", test_bit(CGRP_FROZEN, &cgrp->flags));
3561 
3562 	return 0;
3563 }
3564 
3565 static int cgroup_stat_show(struct seq_file *seq, void *v)
3566 {
3567 	struct cgroup *cgroup = seq_css(seq)->cgroup;
3568 
3569 	seq_printf(seq, "nr_descendants %d\n",
3570 		   cgroup->nr_descendants);
3571 	seq_printf(seq, "nr_dying_descendants %d\n",
3572 		   cgroup->nr_dying_descendants);
3573 
3574 	return 0;
3575 }
3576 
3577 static int __maybe_unused cgroup_extra_stat_show(struct seq_file *seq,
3578 						 struct cgroup *cgrp, int ssid)
3579 {
3580 	struct cgroup_subsys *ss = cgroup_subsys[ssid];
3581 	struct cgroup_subsys_state *css;
3582 	int ret;
3583 
3584 	if (!ss->css_extra_stat_show)
3585 		return 0;
3586 
3587 	css = cgroup_tryget_css(cgrp, ss);
3588 	if (!css)
3589 		return 0;
3590 
3591 	ret = ss->css_extra_stat_show(seq, css);
3592 	css_put(css);
3593 	return ret;
3594 }
3595 
3596 static int cpu_stat_show(struct seq_file *seq, void *v)
3597 {
3598 	struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup;
3599 	int ret = 0;
3600 
3601 	cgroup_base_stat_cputime_show(seq);
3602 #ifdef CONFIG_CGROUP_SCHED
3603 	ret = cgroup_extra_stat_show(seq, cgrp, cpu_cgrp_id);
3604 #endif
3605 	return ret;
3606 }
3607 
3608 #ifdef CONFIG_PSI
3609 static int cgroup_io_pressure_show(struct seq_file *seq, void *v)
3610 {
3611 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3612 	struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi;
3613 
3614 	return psi_show(seq, psi, PSI_IO);
3615 }
3616 static int cgroup_memory_pressure_show(struct seq_file *seq, void *v)
3617 {
3618 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3619 	struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi;
3620 
3621 	return psi_show(seq, psi, PSI_MEM);
3622 }
3623 static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v)
3624 {
3625 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3626 	struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi;
3627 
3628 	return psi_show(seq, psi, PSI_CPU);
3629 }
3630 
3631 static ssize_t cgroup_pressure_write(struct kernfs_open_file *of, char *buf,
3632 					  size_t nbytes, enum psi_res res)
3633 {
3634 	struct cgroup_file_ctx *ctx = of->priv;
3635 	struct psi_trigger *new;
3636 	struct cgroup *cgrp;
3637 	struct psi_group *psi;
3638 
3639 	cgrp = cgroup_kn_lock_live(of->kn, false);
3640 	if (!cgrp)
3641 		return -ENODEV;
3642 
3643 	cgroup_get(cgrp);
3644 	cgroup_kn_unlock(of->kn);
3645 
3646 	/* Allow only one trigger per file descriptor */
3647 	if (ctx->psi.trigger) {
3648 		cgroup_put(cgrp);
3649 		return -EBUSY;
3650 	}
3651 
3652 	psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi;
3653 	new = psi_trigger_create(psi, buf, nbytes, res);
3654 	if (IS_ERR(new)) {
3655 		cgroup_put(cgrp);
3656 		return PTR_ERR(new);
3657 	}
3658 
3659 	smp_store_release(&ctx->psi.trigger, new);
3660 	cgroup_put(cgrp);
3661 
3662 	return nbytes;
3663 }
3664 
3665 static ssize_t cgroup_io_pressure_write(struct kernfs_open_file *of,
3666 					  char *buf, size_t nbytes,
3667 					  loff_t off)
3668 {
3669 	return cgroup_pressure_write(of, buf, nbytes, PSI_IO);
3670 }
3671 
3672 static ssize_t cgroup_memory_pressure_write(struct kernfs_open_file *of,
3673 					  char *buf, size_t nbytes,
3674 					  loff_t off)
3675 {
3676 	return cgroup_pressure_write(of, buf, nbytes, PSI_MEM);
3677 }
3678 
3679 static ssize_t cgroup_cpu_pressure_write(struct kernfs_open_file *of,
3680 					  char *buf, size_t nbytes,
3681 					  loff_t off)
3682 {
3683 	return cgroup_pressure_write(of, buf, nbytes, PSI_CPU);
3684 }
3685 
3686 static __poll_t cgroup_pressure_poll(struct kernfs_open_file *of,
3687 					  poll_table *pt)
3688 {
3689 	struct cgroup_file_ctx *ctx = of->priv;
3690 
3691 	return psi_trigger_poll(&ctx->psi.trigger, of->file, pt);
3692 }
3693 
3694 static void cgroup_pressure_release(struct kernfs_open_file *of)
3695 {
3696 	struct cgroup_file_ctx *ctx = of->priv;
3697 
3698 	psi_trigger_destroy(ctx->psi.trigger);
3699 }
3700 
3701 bool cgroup_psi_enabled(void)
3702 {
3703 	return (cgroup_feature_disable_mask & (1 << OPT_FEATURE_PRESSURE)) == 0;
3704 }
3705 
3706 #else /* CONFIG_PSI */
3707 bool cgroup_psi_enabled(void)
3708 {
3709 	return false;
3710 }
3711 
3712 #endif /* CONFIG_PSI */
3713 
3714 static int cgroup_freeze_show(struct seq_file *seq, void *v)
3715 {
3716 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3717 
3718 	seq_printf(seq, "%d\n", cgrp->freezer.freeze);
3719 
3720 	return 0;
3721 }
3722 
3723 static ssize_t cgroup_freeze_write(struct kernfs_open_file *of,
3724 				   char *buf, size_t nbytes, loff_t off)
3725 {
3726 	struct cgroup *cgrp;
3727 	ssize_t ret;
3728 	int freeze;
3729 
3730 	ret = kstrtoint(strstrip(buf), 0, &freeze);
3731 	if (ret)
3732 		return ret;
3733 
3734 	if (freeze < 0 || freeze > 1)
3735 		return -ERANGE;
3736 
3737 	cgrp = cgroup_kn_lock_live(of->kn, false);
3738 	if (!cgrp)
3739 		return -ENOENT;
3740 
3741 	cgroup_freeze(cgrp, freeze);
3742 
3743 	cgroup_kn_unlock(of->kn);
3744 
3745 	return nbytes;
3746 }
3747 
3748 static void __cgroup_kill(struct cgroup *cgrp)
3749 {
3750 	struct css_task_iter it;
3751 	struct task_struct *task;
3752 
3753 	lockdep_assert_held(&cgroup_mutex);
3754 
3755 	spin_lock_irq(&css_set_lock);
3756 	set_bit(CGRP_KILL, &cgrp->flags);
3757 	spin_unlock_irq(&css_set_lock);
3758 
3759 	css_task_iter_start(&cgrp->self, CSS_TASK_ITER_PROCS | CSS_TASK_ITER_THREADED, &it);
3760 	while ((task = css_task_iter_next(&it))) {
3761 		/* Ignore kernel threads here. */
3762 		if (task->flags & PF_KTHREAD)
3763 			continue;
3764 
3765 		/* Skip tasks that are already dying. */
3766 		if (__fatal_signal_pending(task))
3767 			continue;
3768 
3769 		send_sig(SIGKILL, task, 0);
3770 	}
3771 	css_task_iter_end(&it);
3772 
3773 	spin_lock_irq(&css_set_lock);
3774 	clear_bit(CGRP_KILL, &cgrp->flags);
3775 	spin_unlock_irq(&css_set_lock);
3776 }
3777 
3778 static void cgroup_kill(struct cgroup *cgrp)
3779 {
3780 	struct cgroup_subsys_state *css;
3781 	struct cgroup *dsct;
3782 
3783 	lockdep_assert_held(&cgroup_mutex);
3784 
3785 	cgroup_for_each_live_descendant_pre(dsct, css, cgrp)
3786 		__cgroup_kill(dsct);
3787 }
3788 
3789 static ssize_t cgroup_kill_write(struct kernfs_open_file *of, char *buf,
3790 				 size_t nbytes, loff_t off)
3791 {
3792 	ssize_t ret = 0;
3793 	int kill;
3794 	struct cgroup *cgrp;
3795 
3796 	ret = kstrtoint(strstrip(buf), 0, &kill);
3797 	if (ret)
3798 		return ret;
3799 
3800 	if (kill != 1)
3801 		return -ERANGE;
3802 
3803 	cgrp = cgroup_kn_lock_live(of->kn, false);
3804 	if (!cgrp)
3805 		return -ENOENT;
3806 
3807 	/*
3808 	 * Killing is a process directed operation, i.e. the whole thread-group
3809 	 * is taken down so act like we do for cgroup.procs and only make this
3810 	 * writable in non-threaded cgroups.
3811 	 */
3812 	if (cgroup_is_threaded(cgrp))
3813 		ret = -EOPNOTSUPP;
3814 	else
3815 		cgroup_kill(cgrp);
3816 
3817 	cgroup_kn_unlock(of->kn);
3818 
3819 	return ret ?: nbytes;
3820 }
3821 
3822 static int cgroup_file_open(struct kernfs_open_file *of)
3823 {
3824 	struct cftype *cft = of_cft(of);
3825 	struct cgroup_file_ctx *ctx;
3826 	int ret;
3827 
3828 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
3829 	if (!ctx)
3830 		return -ENOMEM;
3831 
3832 	ctx->ns = current->nsproxy->cgroup_ns;
3833 	get_cgroup_ns(ctx->ns);
3834 	of->priv = ctx;
3835 
3836 	if (!cft->open)
3837 		return 0;
3838 
3839 	ret = cft->open(of);
3840 	if (ret) {
3841 		put_cgroup_ns(ctx->ns);
3842 		kfree(ctx);
3843 	}
3844 	return ret;
3845 }
3846 
3847 static void cgroup_file_release(struct kernfs_open_file *of)
3848 {
3849 	struct cftype *cft = of_cft(of);
3850 	struct cgroup_file_ctx *ctx = of->priv;
3851 
3852 	if (cft->release)
3853 		cft->release(of);
3854 	put_cgroup_ns(ctx->ns);
3855 	kfree(ctx);
3856 }
3857 
3858 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3859 				 size_t nbytes, loff_t off)
3860 {
3861 	struct cgroup_file_ctx *ctx = of->priv;
3862 	struct cgroup *cgrp = of->kn->parent->priv;
3863 	struct cftype *cft = of_cft(of);
3864 	struct cgroup_subsys_state *css;
3865 	int ret;
3866 
3867 	if (!nbytes)
3868 		return 0;
3869 
3870 	/*
3871 	 * If namespaces are delegation boundaries, disallow writes to
3872 	 * files in an non-init namespace root from inside the namespace
3873 	 * except for the files explicitly marked delegatable -
3874 	 * cgroup.procs and cgroup.subtree_control.
3875 	 */
3876 	if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) &&
3877 	    !(cft->flags & CFTYPE_NS_DELEGATABLE) &&
3878 	    ctx->ns != &init_cgroup_ns && ctx->ns->root_cset->dfl_cgrp == cgrp)
3879 		return -EPERM;
3880 
3881 	if (cft->write)
3882 		return cft->write(of, buf, nbytes, off);
3883 
3884 	/*
3885 	 * kernfs guarantees that a file isn't deleted with operations in
3886 	 * flight, which means that the matching css is and stays alive and
3887 	 * doesn't need to be pinned.  The RCU locking is not necessary
3888 	 * either.  It's just for the convenience of using cgroup_css().
3889 	 */
3890 	rcu_read_lock();
3891 	css = cgroup_css(cgrp, cft->ss);
3892 	rcu_read_unlock();
3893 
3894 	if (cft->write_u64) {
3895 		unsigned long long v;
3896 		ret = kstrtoull(buf, 0, &v);
3897 		if (!ret)
3898 			ret = cft->write_u64(css, cft, v);
3899 	} else if (cft->write_s64) {
3900 		long long v;
3901 		ret = kstrtoll(buf, 0, &v);
3902 		if (!ret)
3903 			ret = cft->write_s64(css, cft, v);
3904 	} else {
3905 		ret = -EINVAL;
3906 	}
3907 
3908 	return ret ?: nbytes;
3909 }
3910 
3911 static __poll_t cgroup_file_poll(struct kernfs_open_file *of, poll_table *pt)
3912 {
3913 	struct cftype *cft = of_cft(of);
3914 
3915 	if (cft->poll)
3916 		return cft->poll(of, pt);
3917 
3918 	return kernfs_generic_poll(of, pt);
3919 }
3920 
3921 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
3922 {
3923 	return seq_cft(seq)->seq_start(seq, ppos);
3924 }
3925 
3926 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
3927 {
3928 	return seq_cft(seq)->seq_next(seq, v, ppos);
3929 }
3930 
3931 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
3932 {
3933 	if (seq_cft(seq)->seq_stop)
3934 		seq_cft(seq)->seq_stop(seq, v);
3935 }
3936 
3937 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
3938 {
3939 	struct cftype *cft = seq_cft(m);
3940 	struct cgroup_subsys_state *css = seq_css(m);
3941 
3942 	if (cft->seq_show)
3943 		return cft->seq_show(m, arg);
3944 
3945 	if (cft->read_u64)
3946 		seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3947 	else if (cft->read_s64)
3948 		seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3949 	else
3950 		return -EINVAL;
3951 	return 0;
3952 }
3953 
3954 static struct kernfs_ops cgroup_kf_single_ops = {
3955 	.atomic_write_len	= PAGE_SIZE,
3956 	.open			= cgroup_file_open,
3957 	.release		= cgroup_file_release,
3958 	.write			= cgroup_file_write,
3959 	.poll			= cgroup_file_poll,
3960 	.seq_show		= cgroup_seqfile_show,
3961 };
3962 
3963 static struct kernfs_ops cgroup_kf_ops = {
3964 	.atomic_write_len	= PAGE_SIZE,
3965 	.open			= cgroup_file_open,
3966 	.release		= cgroup_file_release,
3967 	.write			= cgroup_file_write,
3968 	.poll			= cgroup_file_poll,
3969 	.seq_start		= cgroup_seqfile_start,
3970 	.seq_next		= cgroup_seqfile_next,
3971 	.seq_stop		= cgroup_seqfile_stop,
3972 	.seq_show		= cgroup_seqfile_show,
3973 };
3974 
3975 /* set uid and gid of cgroup dirs and files to that of the creator */
3976 static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3977 {
3978 	struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3979 			       .ia_uid = current_fsuid(),
3980 			       .ia_gid = current_fsgid(), };
3981 
3982 	if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3983 	    gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3984 		return 0;
3985 
3986 	return kernfs_setattr(kn, &iattr);
3987 }
3988 
3989 static void cgroup_file_notify_timer(struct timer_list *timer)
3990 {
3991 	cgroup_file_notify(container_of(timer, struct cgroup_file,
3992 					notify_timer));
3993 }
3994 
3995 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3996 			   struct cftype *cft)
3997 {
3998 	char name[CGROUP_FILE_NAME_MAX];
3999 	struct kernfs_node *kn;
4000 	struct lock_class_key *key = NULL;
4001 	int ret;
4002 
4003 #ifdef CONFIG_DEBUG_LOCK_ALLOC
4004 	key = &cft->lockdep_key;
4005 #endif
4006 	kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
4007 				  cgroup_file_mode(cft),
4008 				  GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
4009 				  0, cft->kf_ops, cft,
4010 				  NULL, key);
4011 	if (IS_ERR(kn))
4012 		return PTR_ERR(kn);
4013 
4014 	ret = cgroup_kn_set_ugid(kn);
4015 	if (ret) {
4016 		kernfs_remove(kn);
4017 		return ret;
4018 	}
4019 
4020 	if (cft->file_offset) {
4021 		struct cgroup_file *cfile = (void *)css + cft->file_offset;
4022 
4023 		timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0);
4024 
4025 		spin_lock_irq(&cgroup_file_kn_lock);
4026 		cfile->kn = kn;
4027 		spin_unlock_irq(&cgroup_file_kn_lock);
4028 	}
4029 
4030 	return 0;
4031 }
4032 
4033 /**
4034  * cgroup_addrm_files - add or remove files to a cgroup directory
4035  * @css: the target css
4036  * @cgrp: the target cgroup (usually css->cgroup)
4037  * @cfts: array of cftypes to be added
4038  * @is_add: whether to add or remove
4039  *
4040  * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
4041  * For removals, this function never fails.
4042  */
4043 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
4044 			      struct cgroup *cgrp, struct cftype cfts[],
4045 			      bool is_add)
4046 {
4047 	struct cftype *cft, *cft_end = NULL;
4048 	int ret = 0;
4049 
4050 	lockdep_assert_held(&cgroup_mutex);
4051 
4052 restart:
4053 	for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
4054 		/* does cft->flags tell us to skip this file on @cgrp? */
4055 		if ((cft->flags & CFTYPE_PRESSURE) && !cgroup_psi_enabled())
4056 			continue;
4057 		if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
4058 			continue;
4059 		if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
4060 			continue;
4061 		if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
4062 			continue;
4063 		if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
4064 			continue;
4065 		if ((cft->flags & CFTYPE_DEBUG) && !cgroup_debug)
4066 			continue;
4067 		if (is_add) {
4068 			ret = cgroup_add_file(css, cgrp, cft);
4069 			if (ret) {
4070 				pr_warn("%s: failed to add %s, err=%d\n",
4071 					__func__, cft->name, ret);
4072 				cft_end = cft;
4073 				is_add = false;
4074 				goto restart;
4075 			}
4076 		} else {
4077 			cgroup_rm_file(cgrp, cft);
4078 		}
4079 	}
4080 	return ret;
4081 }
4082 
4083 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
4084 {
4085 	struct cgroup_subsys *ss = cfts[0].ss;
4086 	struct cgroup *root = &ss->root->cgrp;
4087 	struct cgroup_subsys_state *css;
4088 	int ret = 0;
4089 
4090 	lockdep_assert_held(&cgroup_mutex);
4091 
4092 	/* add/rm files for all cgroups created before */
4093 	css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
4094 		struct cgroup *cgrp = css->cgroup;
4095 
4096 		if (!(css->flags & CSS_VISIBLE))
4097 			continue;
4098 
4099 		ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
4100 		if (ret)
4101 			break;
4102 	}
4103 
4104 	if (is_add && !ret)
4105 		kernfs_activate(root->kn);
4106 	return ret;
4107 }
4108 
4109 static void cgroup_exit_cftypes(struct cftype *cfts)
4110 {
4111 	struct cftype *cft;
4112 
4113 	for (cft = cfts; cft->name[0] != '\0'; cft++) {
4114 		/* free copy for custom atomic_write_len, see init_cftypes() */
4115 		if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
4116 			kfree(cft->kf_ops);
4117 		cft->kf_ops = NULL;
4118 		cft->ss = NULL;
4119 
4120 		/* revert flags set by cgroup core while adding @cfts */
4121 		cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
4122 	}
4123 }
4124 
4125 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4126 {
4127 	struct cftype *cft;
4128 
4129 	for (cft = cfts; cft->name[0] != '\0'; cft++) {
4130 		struct kernfs_ops *kf_ops;
4131 
4132 		WARN_ON(cft->ss || cft->kf_ops);
4133 
4134 		if ((cft->flags & CFTYPE_PRESSURE) && !cgroup_psi_enabled())
4135 			continue;
4136 
4137 		if (cft->seq_start)
4138 			kf_ops = &cgroup_kf_ops;
4139 		else
4140 			kf_ops = &cgroup_kf_single_ops;
4141 
4142 		/*
4143 		 * Ugh... if @cft wants a custom max_write_len, we need to
4144 		 * make a copy of kf_ops to set its atomic_write_len.
4145 		 */
4146 		if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
4147 			kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
4148 			if (!kf_ops) {
4149 				cgroup_exit_cftypes(cfts);
4150 				return -ENOMEM;
4151 			}
4152 			kf_ops->atomic_write_len = cft->max_write_len;
4153 		}
4154 
4155 		cft->kf_ops = kf_ops;
4156 		cft->ss = ss;
4157 	}
4158 
4159 	return 0;
4160 }
4161 
4162 static int cgroup_rm_cftypes_locked(struct cftype *cfts)
4163 {
4164 	lockdep_assert_held(&cgroup_mutex);
4165 
4166 	if (!cfts || !cfts[0].ss)
4167 		return -ENOENT;
4168 
4169 	list_del(&cfts->node);
4170 	cgroup_apply_cftypes(cfts, false);
4171 	cgroup_exit_cftypes(cfts);
4172 	return 0;
4173 }
4174 
4175 /**
4176  * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
4177  * @cfts: zero-length name terminated array of cftypes
4178  *
4179  * Unregister @cfts.  Files described by @cfts are removed from all
4180  * existing cgroups and all future cgroups won't have them either.  This
4181  * function can be called anytime whether @cfts' subsys is attached or not.
4182  *
4183  * Returns 0 on successful unregistration, -ENOENT if @cfts is not
4184  * registered.
4185  */
4186 int cgroup_rm_cftypes(struct cftype *cfts)
4187 {
4188 	int ret;
4189 
4190 	mutex_lock(&cgroup_mutex);
4191 	ret = cgroup_rm_cftypes_locked(cfts);
4192 	mutex_unlock(&cgroup_mutex);
4193 	return ret;
4194 }
4195 
4196 /**
4197  * cgroup_add_cftypes - add an array of cftypes to a subsystem
4198  * @ss: target cgroup subsystem
4199  * @cfts: zero-length name terminated array of cftypes
4200  *
4201  * Register @cfts to @ss.  Files described by @cfts are created for all
4202  * existing cgroups to which @ss is attached and all future cgroups will
4203  * have them too.  This function can be called anytime whether @ss is
4204  * attached or not.
4205  *
4206  * Returns 0 on successful registration, -errno on failure.  Note that this
4207  * function currently returns 0 as long as @cfts registration is successful
4208  * even if some file creation attempts on existing cgroups fail.
4209  */
4210 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4211 {
4212 	int ret;
4213 
4214 	if (!cgroup_ssid_enabled(ss->id))
4215 		return 0;
4216 
4217 	if (!cfts || cfts[0].name[0] == '\0')
4218 		return 0;
4219 
4220 	ret = cgroup_init_cftypes(ss, cfts);
4221 	if (ret)
4222 		return ret;
4223 
4224 	mutex_lock(&cgroup_mutex);
4225 
4226 	list_add_tail(&cfts->node, &ss->cfts);
4227 	ret = cgroup_apply_cftypes(cfts, true);
4228 	if (ret)
4229 		cgroup_rm_cftypes_locked(cfts);
4230 
4231 	mutex_unlock(&cgroup_mutex);
4232 	return ret;
4233 }
4234 
4235 /**
4236  * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
4237  * @ss: target cgroup subsystem
4238  * @cfts: zero-length name terminated array of cftypes
4239  *
4240  * Similar to cgroup_add_cftypes() but the added files are only used for
4241  * the default hierarchy.
4242  */
4243 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4244 {
4245 	struct cftype *cft;
4246 
4247 	for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4248 		cft->flags |= __CFTYPE_ONLY_ON_DFL;
4249 	return cgroup_add_cftypes(ss, cfts);
4250 }
4251 
4252 /**
4253  * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
4254  * @ss: target cgroup subsystem
4255  * @cfts: zero-length name terminated array of cftypes
4256  *
4257  * Similar to cgroup_add_cftypes() but the added files are only used for
4258  * the legacy hierarchies.
4259  */
4260 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4261 {
4262 	struct cftype *cft;
4263 
4264 	for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4265 		cft->flags |= __CFTYPE_NOT_ON_DFL;
4266 	return cgroup_add_cftypes(ss, cfts);
4267 }
4268 
4269 /**
4270  * cgroup_file_notify - generate a file modified event for a cgroup_file
4271  * @cfile: target cgroup_file
4272  *
4273  * @cfile must have been obtained by setting cftype->file_offset.
4274  */
4275 void cgroup_file_notify(struct cgroup_file *cfile)
4276 {
4277 	unsigned long flags;
4278 
4279 	spin_lock_irqsave(&cgroup_file_kn_lock, flags);
4280 	if (cfile->kn) {
4281 		unsigned long last = cfile->notified_at;
4282 		unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV;
4283 
4284 		if (time_in_range(jiffies, last, next)) {
4285 			timer_reduce(&cfile->notify_timer, next);
4286 		} else {
4287 			kernfs_notify(cfile->kn);
4288 			cfile->notified_at = jiffies;
4289 		}
4290 	}
4291 	spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
4292 }
4293 
4294 /**
4295  * css_next_child - find the next child of a given css
4296  * @pos: the current position (%NULL to initiate traversal)
4297  * @parent: css whose children to walk
4298  *
4299  * This function returns the next child of @parent and should be called
4300  * under either cgroup_mutex or RCU read lock.  The only requirement is
4301  * that @parent and @pos are accessible.  The next sibling is guaranteed to
4302  * be returned regardless of their states.
4303  *
4304  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4305  * css which finished ->css_online() is guaranteed to be visible in the
4306  * future iterations and will stay visible until the last reference is put.
4307  * A css which hasn't finished ->css_online() or already finished
4308  * ->css_offline() may show up during traversal.  It's each subsystem's
4309  * responsibility to synchronize against on/offlining.
4310  */
4311 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
4312 					   struct cgroup_subsys_state *parent)
4313 {
4314 	struct cgroup_subsys_state *next;
4315 
4316 	cgroup_assert_mutex_or_rcu_locked();
4317 
4318 	/*
4319 	 * @pos could already have been unlinked from the sibling list.
4320 	 * Once a cgroup is removed, its ->sibling.next is no longer
4321 	 * updated when its next sibling changes.  CSS_RELEASED is set when
4322 	 * @pos is taken off list, at which time its next pointer is valid,
4323 	 * and, as releases are serialized, the one pointed to by the next
4324 	 * pointer is guaranteed to not have started release yet.  This
4325 	 * implies that if we observe !CSS_RELEASED on @pos in this RCU
4326 	 * critical section, the one pointed to by its next pointer is
4327 	 * guaranteed to not have finished its RCU grace period even if we
4328 	 * have dropped rcu_read_lock() in-between iterations.
4329 	 *
4330 	 * If @pos has CSS_RELEASED set, its next pointer can't be
4331 	 * dereferenced; however, as each css is given a monotonically
4332 	 * increasing unique serial number and always appended to the
4333 	 * sibling list, the next one can be found by walking the parent's
4334 	 * children until the first css with higher serial number than
4335 	 * @pos's.  While this path can be slower, it happens iff iteration
4336 	 * races against release and the race window is very small.
4337 	 */
4338 	if (!pos) {
4339 		next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
4340 	} else if (likely(!(pos->flags & CSS_RELEASED))) {
4341 		next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
4342 	} else {
4343 		list_for_each_entry_rcu(next, &parent->children, sibling,
4344 					lockdep_is_held(&cgroup_mutex))
4345 			if (next->serial_nr > pos->serial_nr)
4346 				break;
4347 	}
4348 
4349 	/*
4350 	 * @next, if not pointing to the head, can be dereferenced and is
4351 	 * the next sibling.
4352 	 */
4353 	if (&next->sibling != &parent->children)
4354 		return next;
4355 	return NULL;
4356 }
4357 
4358 /**
4359  * css_next_descendant_pre - find the next descendant for pre-order walk
4360  * @pos: the current position (%NULL to initiate traversal)
4361  * @root: css whose descendants to walk
4362  *
4363  * To be used by css_for_each_descendant_pre().  Find the next descendant
4364  * to visit for pre-order traversal of @root's descendants.  @root is
4365  * included in the iteration and the first node to be visited.
4366  *
4367  * While this function requires cgroup_mutex or RCU read locking, it
4368  * doesn't require the whole traversal to be contained in a single critical
4369  * section.  This function will return the correct next descendant as long
4370  * as both @pos and @root are accessible and @pos is a descendant of @root.
4371  *
4372  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4373  * css which finished ->css_online() is guaranteed to be visible in the
4374  * future iterations and will stay visible until the last reference is put.
4375  * A css which hasn't finished ->css_online() or already finished
4376  * ->css_offline() may show up during traversal.  It's each subsystem's
4377  * responsibility to synchronize against on/offlining.
4378  */
4379 struct cgroup_subsys_state *
4380 css_next_descendant_pre(struct cgroup_subsys_state *pos,
4381 			struct cgroup_subsys_state *root)
4382 {
4383 	struct cgroup_subsys_state *next;
4384 
4385 	cgroup_assert_mutex_or_rcu_locked();
4386 
4387 	/* if first iteration, visit @root */
4388 	if (!pos)
4389 		return root;
4390 
4391 	/* visit the first child if exists */
4392 	next = css_next_child(NULL, pos);
4393 	if (next)
4394 		return next;
4395 
4396 	/* no child, visit my or the closest ancestor's next sibling */
4397 	while (pos != root) {
4398 		next = css_next_child(pos, pos->parent);
4399 		if (next)
4400 			return next;
4401 		pos = pos->parent;
4402 	}
4403 
4404 	return NULL;
4405 }
4406 EXPORT_SYMBOL_GPL(css_next_descendant_pre);
4407 
4408 /**
4409  * css_rightmost_descendant - return the rightmost descendant of a css
4410  * @pos: css of interest
4411  *
4412  * Return the rightmost descendant of @pos.  If there's no descendant, @pos
4413  * is returned.  This can be used during pre-order traversal to skip
4414  * subtree of @pos.
4415  *
4416  * While this function requires cgroup_mutex or RCU read locking, it
4417  * doesn't require the whole traversal to be contained in a single critical
4418  * section.  This function will return the correct rightmost descendant as
4419  * long as @pos is accessible.
4420  */
4421 struct cgroup_subsys_state *
4422 css_rightmost_descendant(struct cgroup_subsys_state *pos)
4423 {
4424 	struct cgroup_subsys_state *last, *tmp;
4425 
4426 	cgroup_assert_mutex_or_rcu_locked();
4427 
4428 	do {
4429 		last = pos;
4430 		/* ->prev isn't RCU safe, walk ->next till the end */
4431 		pos = NULL;
4432 		css_for_each_child(tmp, last)
4433 			pos = tmp;
4434 	} while (pos);
4435 
4436 	return last;
4437 }
4438 
4439 static struct cgroup_subsys_state *
4440 css_leftmost_descendant(struct cgroup_subsys_state *pos)
4441 {
4442 	struct cgroup_subsys_state *last;
4443 
4444 	do {
4445 		last = pos;
4446 		pos = css_next_child(NULL, pos);
4447 	} while (pos);
4448 
4449 	return last;
4450 }
4451 
4452 /**
4453  * css_next_descendant_post - find the next descendant for post-order walk
4454  * @pos: the current position (%NULL to initiate traversal)
4455  * @root: css whose descendants to walk
4456  *
4457  * To be used by css_for_each_descendant_post().  Find the next descendant
4458  * to visit for post-order traversal of @root's descendants.  @root is
4459  * included in the iteration and the last node to be visited.
4460  *
4461  * While this function requires cgroup_mutex or RCU read locking, it
4462  * doesn't require the whole traversal to be contained in a single critical
4463  * section.  This function will return the correct next descendant as long
4464  * as both @pos and @cgroup are accessible and @pos is a descendant of
4465  * @cgroup.
4466  *
4467  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4468  * css which finished ->css_online() is guaranteed to be visible in the
4469  * future iterations and will stay visible until the last reference is put.
4470  * A css which hasn't finished ->css_online() or already finished
4471  * ->css_offline() may show up during traversal.  It's each subsystem's
4472  * responsibility to synchronize against on/offlining.
4473  */
4474 struct cgroup_subsys_state *
4475 css_next_descendant_post(struct cgroup_subsys_state *pos,
4476 			 struct cgroup_subsys_state *root)
4477 {
4478 	struct cgroup_subsys_state *next;
4479 
4480 	cgroup_assert_mutex_or_rcu_locked();
4481 
4482 	/* if first iteration, visit leftmost descendant which may be @root */
4483 	if (!pos)
4484 		return css_leftmost_descendant(root);
4485 
4486 	/* if we visited @root, we're done */
4487 	if (pos == root)
4488 		return NULL;
4489 
4490 	/* if there's an unvisited sibling, visit its leftmost descendant */
4491 	next = css_next_child(pos, pos->parent);
4492 	if (next)
4493 		return css_leftmost_descendant(next);
4494 
4495 	/* no sibling left, visit parent */
4496 	return pos->parent;
4497 }
4498 
4499 /**
4500  * css_has_online_children - does a css have online children
4501  * @css: the target css
4502  *
4503  * Returns %true if @css has any online children; otherwise, %false.  This
4504  * function can be called from any context but the caller is responsible
4505  * for synchronizing against on/offlining as necessary.
4506  */
4507 bool css_has_online_children(struct cgroup_subsys_state *css)
4508 {
4509 	struct cgroup_subsys_state *child;
4510 	bool ret = false;
4511 
4512 	rcu_read_lock();
4513 	css_for_each_child(child, css) {
4514 		if (child->flags & CSS_ONLINE) {
4515 			ret = true;
4516 			break;
4517 		}
4518 	}
4519 	rcu_read_unlock();
4520 	return ret;
4521 }
4522 
4523 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it)
4524 {
4525 	struct list_head *l;
4526 	struct cgrp_cset_link *link;
4527 	struct css_set *cset;
4528 
4529 	lockdep_assert_held(&css_set_lock);
4530 
4531 	/* find the next threaded cset */
4532 	if (it->tcset_pos) {
4533 		l = it->tcset_pos->next;
4534 
4535 		if (l != it->tcset_head) {
4536 			it->tcset_pos = l;
4537 			return container_of(l, struct css_set,
4538 					    threaded_csets_node);
4539 		}
4540 
4541 		it->tcset_pos = NULL;
4542 	}
4543 
4544 	/* find the next cset */
4545 	l = it->cset_pos;
4546 	l = l->next;
4547 	if (l == it->cset_head) {
4548 		it->cset_pos = NULL;
4549 		return NULL;
4550 	}
4551 
4552 	if (it->ss) {
4553 		cset = container_of(l, struct css_set, e_cset_node[it->ss->id]);
4554 	} else {
4555 		link = list_entry(l, struct cgrp_cset_link, cset_link);
4556 		cset = link->cset;
4557 	}
4558 
4559 	it->cset_pos = l;
4560 
4561 	/* initialize threaded css_set walking */
4562 	if (it->flags & CSS_TASK_ITER_THREADED) {
4563 		if (it->cur_dcset)
4564 			put_css_set_locked(it->cur_dcset);
4565 		it->cur_dcset = cset;
4566 		get_css_set(cset);
4567 
4568 		it->tcset_head = &cset->threaded_csets;
4569 		it->tcset_pos = &cset->threaded_csets;
4570 	}
4571 
4572 	return cset;
4573 }
4574 
4575 /**
4576  * css_task_iter_advance_css_set - advance a task iterator to the next css_set
4577  * @it: the iterator to advance
4578  *
4579  * Advance @it to the next css_set to walk.
4580  */
4581 static void css_task_iter_advance_css_set(struct css_task_iter *it)
4582 {
4583 	struct css_set *cset;
4584 
4585 	lockdep_assert_held(&css_set_lock);
4586 
4587 	/* Advance to the next non-empty css_set and find first non-empty tasks list*/
4588 	while ((cset = css_task_iter_next_css_set(it))) {
4589 		if (!list_empty(&cset->tasks)) {
4590 			it->cur_tasks_head = &cset->tasks;
4591 			break;
4592 		} else if (!list_empty(&cset->mg_tasks)) {
4593 			it->cur_tasks_head = &cset->mg_tasks;
4594 			break;
4595 		} else if (!list_empty(&cset->dying_tasks)) {
4596 			it->cur_tasks_head = &cset->dying_tasks;
4597 			break;
4598 		}
4599 	}
4600 	if (!cset) {
4601 		it->task_pos = NULL;
4602 		return;
4603 	}
4604 	it->task_pos = it->cur_tasks_head->next;
4605 
4606 	/*
4607 	 * We don't keep css_sets locked across iteration steps and thus
4608 	 * need to take steps to ensure that iteration can be resumed after
4609 	 * the lock is re-acquired.  Iteration is performed at two levels -
4610 	 * css_sets and tasks in them.
4611 	 *
4612 	 * Once created, a css_set never leaves its cgroup lists, so a
4613 	 * pinned css_set is guaranteed to stay put and we can resume
4614 	 * iteration afterwards.
4615 	 *
4616 	 * Tasks may leave @cset across iteration steps.  This is resolved
4617 	 * by registering each iterator with the css_set currently being
4618 	 * walked and making css_set_move_task() advance iterators whose
4619 	 * next task is leaving.
4620 	 */
4621 	if (it->cur_cset) {
4622 		list_del(&it->iters_node);
4623 		put_css_set_locked(it->cur_cset);
4624 	}
4625 	get_css_set(cset);
4626 	it->cur_cset = cset;
4627 	list_add(&it->iters_node, &cset->task_iters);
4628 }
4629 
4630 static void css_task_iter_skip(struct css_task_iter *it,
4631 			       struct task_struct *task)
4632 {
4633 	lockdep_assert_held(&css_set_lock);
4634 
4635 	if (it->task_pos == &task->cg_list) {
4636 		it->task_pos = it->task_pos->next;
4637 		it->flags |= CSS_TASK_ITER_SKIPPED;
4638 	}
4639 }
4640 
4641 static void css_task_iter_advance(struct css_task_iter *it)
4642 {
4643 	struct task_struct *task;
4644 
4645 	lockdep_assert_held(&css_set_lock);
4646 repeat:
4647 	if (it->task_pos) {
4648 		/*
4649 		 * Advance iterator to find next entry. We go through cset
4650 		 * tasks, mg_tasks and dying_tasks, when consumed we move onto
4651 		 * the next cset.
4652 		 */
4653 		if (it->flags & CSS_TASK_ITER_SKIPPED)
4654 			it->flags &= ~CSS_TASK_ITER_SKIPPED;
4655 		else
4656 			it->task_pos = it->task_pos->next;
4657 
4658 		if (it->task_pos == &it->cur_cset->tasks) {
4659 			it->cur_tasks_head = &it->cur_cset->mg_tasks;
4660 			it->task_pos = it->cur_tasks_head->next;
4661 		}
4662 		if (it->task_pos == &it->cur_cset->mg_tasks) {
4663 			it->cur_tasks_head = &it->cur_cset->dying_tasks;
4664 			it->task_pos = it->cur_tasks_head->next;
4665 		}
4666 		if (it->task_pos == &it->cur_cset->dying_tasks)
4667 			css_task_iter_advance_css_set(it);
4668 	} else {
4669 		/* called from start, proceed to the first cset */
4670 		css_task_iter_advance_css_set(it);
4671 	}
4672 
4673 	if (!it->task_pos)
4674 		return;
4675 
4676 	task = list_entry(it->task_pos, struct task_struct, cg_list);
4677 
4678 	if (it->flags & CSS_TASK_ITER_PROCS) {
4679 		/* if PROCS, skip over tasks which aren't group leaders */
4680 		if (!thread_group_leader(task))
4681 			goto repeat;
4682 
4683 		/* and dying leaders w/o live member threads */
4684 		if (it->cur_tasks_head == &it->cur_cset->dying_tasks &&
4685 		    !atomic_read(&task->signal->live))
4686 			goto repeat;
4687 	} else {
4688 		/* skip all dying ones */
4689 		if (it->cur_tasks_head == &it->cur_cset->dying_tasks)
4690 			goto repeat;
4691 	}
4692 }
4693 
4694 /**
4695  * css_task_iter_start - initiate task iteration
4696  * @css: the css to walk tasks of
4697  * @flags: CSS_TASK_ITER_* flags
4698  * @it: the task iterator to use
4699  *
4700  * Initiate iteration through the tasks of @css.  The caller can call
4701  * css_task_iter_next() to walk through the tasks until the function
4702  * returns NULL.  On completion of iteration, css_task_iter_end() must be
4703  * called.
4704  */
4705 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags,
4706 			 struct css_task_iter *it)
4707 {
4708 	memset(it, 0, sizeof(*it));
4709 
4710 	spin_lock_irq(&css_set_lock);
4711 
4712 	it->ss = css->ss;
4713 	it->flags = flags;
4714 
4715 	if (CGROUP_HAS_SUBSYS_CONFIG && it->ss)
4716 		it->cset_pos = &css->cgroup->e_csets[css->ss->id];
4717 	else
4718 		it->cset_pos = &css->cgroup->cset_links;
4719 
4720 	it->cset_head = it->cset_pos;
4721 
4722 	css_task_iter_advance(it);
4723 
4724 	spin_unlock_irq(&css_set_lock);
4725 }
4726 
4727 /**
4728  * css_task_iter_next - return the next task for the iterator
4729  * @it: the task iterator being iterated
4730  *
4731  * The "next" function for task iteration.  @it should have been
4732  * initialized via css_task_iter_start().  Returns NULL when the iteration
4733  * reaches the end.
4734  */
4735 struct task_struct *css_task_iter_next(struct css_task_iter *it)
4736 {
4737 	if (it->cur_task) {
4738 		put_task_struct(it->cur_task);
4739 		it->cur_task = NULL;
4740 	}
4741 
4742 	spin_lock_irq(&css_set_lock);
4743 
4744 	/* @it may be half-advanced by skips, finish advancing */
4745 	if (it->flags & CSS_TASK_ITER_SKIPPED)
4746 		css_task_iter_advance(it);
4747 
4748 	if (it->task_pos) {
4749 		it->cur_task = list_entry(it->task_pos, struct task_struct,
4750 					  cg_list);
4751 		get_task_struct(it->cur_task);
4752 		css_task_iter_advance(it);
4753 	}
4754 
4755 	spin_unlock_irq(&css_set_lock);
4756 
4757 	return it->cur_task;
4758 }
4759 
4760 /**
4761  * css_task_iter_end - finish task iteration
4762  * @it: the task iterator to finish
4763  *
4764  * Finish task iteration started by css_task_iter_start().
4765  */
4766 void css_task_iter_end(struct css_task_iter *it)
4767 {
4768 	if (it->cur_cset) {
4769 		spin_lock_irq(&css_set_lock);
4770 		list_del(&it->iters_node);
4771 		put_css_set_locked(it->cur_cset);
4772 		spin_unlock_irq(&css_set_lock);
4773 	}
4774 
4775 	if (it->cur_dcset)
4776 		put_css_set(it->cur_dcset);
4777 
4778 	if (it->cur_task)
4779 		put_task_struct(it->cur_task);
4780 }
4781 
4782 static void cgroup_procs_release(struct kernfs_open_file *of)
4783 {
4784 	struct cgroup_file_ctx *ctx = of->priv;
4785 
4786 	if (ctx->procs.started)
4787 		css_task_iter_end(&ctx->procs.iter);
4788 }
4789 
4790 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos)
4791 {
4792 	struct kernfs_open_file *of = s->private;
4793 	struct cgroup_file_ctx *ctx = of->priv;
4794 
4795 	if (pos)
4796 		(*pos)++;
4797 
4798 	return css_task_iter_next(&ctx->procs.iter);
4799 }
4800 
4801 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos,
4802 				  unsigned int iter_flags)
4803 {
4804 	struct kernfs_open_file *of = s->private;
4805 	struct cgroup *cgrp = seq_css(s)->cgroup;
4806 	struct cgroup_file_ctx *ctx = of->priv;
4807 	struct css_task_iter *it = &ctx->procs.iter;
4808 
4809 	/*
4810 	 * When a seq_file is seeked, it's always traversed sequentially
4811 	 * from position 0, so we can simply keep iterating on !0 *pos.
4812 	 */
4813 	if (!ctx->procs.started) {
4814 		if (WARN_ON_ONCE((*pos)))
4815 			return ERR_PTR(-EINVAL);
4816 		css_task_iter_start(&cgrp->self, iter_flags, it);
4817 		ctx->procs.started = true;
4818 	} else if (!(*pos)) {
4819 		css_task_iter_end(it);
4820 		css_task_iter_start(&cgrp->self, iter_flags, it);
4821 	} else
4822 		return it->cur_task;
4823 
4824 	return cgroup_procs_next(s, NULL, NULL);
4825 }
4826 
4827 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos)
4828 {
4829 	struct cgroup *cgrp = seq_css(s)->cgroup;
4830 
4831 	/*
4832 	 * All processes of a threaded subtree belong to the domain cgroup
4833 	 * of the subtree.  Only threads can be distributed across the
4834 	 * subtree.  Reject reads on cgroup.procs in the subtree proper.
4835 	 * They're always empty anyway.
4836 	 */
4837 	if (cgroup_is_threaded(cgrp))
4838 		return ERR_PTR(-EOPNOTSUPP);
4839 
4840 	return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS |
4841 					    CSS_TASK_ITER_THREADED);
4842 }
4843 
4844 static int cgroup_procs_show(struct seq_file *s, void *v)
4845 {
4846 	seq_printf(s, "%d\n", task_pid_vnr(v));
4847 	return 0;
4848 }
4849 
4850 static int cgroup_may_write(const struct cgroup *cgrp, struct super_block *sb)
4851 {
4852 	int ret;
4853 	struct inode *inode;
4854 
4855 	lockdep_assert_held(&cgroup_mutex);
4856 
4857 	inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
4858 	if (!inode)
4859 		return -ENOMEM;
4860 
4861 	ret = inode_permission(&init_user_ns, inode, MAY_WRITE);
4862 	iput(inode);
4863 	return ret;
4864 }
4865 
4866 static int cgroup_procs_write_permission(struct cgroup *src_cgrp,
4867 					 struct cgroup *dst_cgrp,
4868 					 struct super_block *sb,
4869 					 struct cgroup_namespace *ns)
4870 {
4871 	struct cgroup *com_cgrp = src_cgrp;
4872 	int ret;
4873 
4874 	lockdep_assert_held(&cgroup_mutex);
4875 
4876 	/* find the common ancestor */
4877 	while (!cgroup_is_descendant(dst_cgrp, com_cgrp))
4878 		com_cgrp = cgroup_parent(com_cgrp);
4879 
4880 	/* %current should be authorized to migrate to the common ancestor */
4881 	ret = cgroup_may_write(com_cgrp, sb);
4882 	if (ret)
4883 		return ret;
4884 
4885 	/*
4886 	 * If namespaces are delegation boundaries, %current must be able
4887 	 * to see both source and destination cgroups from its namespace.
4888 	 */
4889 	if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) &&
4890 	    (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) ||
4891 	     !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp)))
4892 		return -ENOENT;
4893 
4894 	return 0;
4895 }
4896 
4897 static int cgroup_attach_permissions(struct cgroup *src_cgrp,
4898 				     struct cgroup *dst_cgrp,
4899 				     struct super_block *sb, bool threadgroup,
4900 				     struct cgroup_namespace *ns)
4901 {
4902 	int ret = 0;
4903 
4904 	ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, sb, ns);
4905 	if (ret)
4906 		return ret;
4907 
4908 	ret = cgroup_migrate_vet_dst(dst_cgrp);
4909 	if (ret)
4910 		return ret;
4911 
4912 	if (!threadgroup && (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp))
4913 		ret = -EOPNOTSUPP;
4914 
4915 	return ret;
4916 }
4917 
4918 static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
4919 				    bool threadgroup)
4920 {
4921 	struct cgroup_file_ctx *ctx = of->priv;
4922 	struct cgroup *src_cgrp, *dst_cgrp;
4923 	struct task_struct *task;
4924 	const struct cred *saved_cred;
4925 	ssize_t ret;
4926 	bool locked;
4927 
4928 	dst_cgrp = cgroup_kn_lock_live(of->kn, false);
4929 	if (!dst_cgrp)
4930 		return -ENODEV;
4931 
4932 	task = cgroup_procs_write_start(buf, threadgroup, &locked);
4933 	ret = PTR_ERR_OR_ZERO(task);
4934 	if (ret)
4935 		goto out_unlock;
4936 
4937 	/* find the source cgroup */
4938 	spin_lock_irq(&css_set_lock);
4939 	src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
4940 	spin_unlock_irq(&css_set_lock);
4941 
4942 	/*
4943 	 * Process and thread migrations follow same delegation rule. Check
4944 	 * permissions using the credentials from file open to protect against
4945 	 * inherited fd attacks.
4946 	 */
4947 	saved_cred = override_creds(of->file->f_cred);
4948 	ret = cgroup_attach_permissions(src_cgrp, dst_cgrp,
4949 					of->file->f_path.dentry->d_sb,
4950 					threadgroup, ctx->ns);
4951 	revert_creds(saved_cred);
4952 	if (ret)
4953 		goto out_finish;
4954 
4955 	ret = cgroup_attach_task(dst_cgrp, task, threadgroup);
4956 
4957 out_finish:
4958 	cgroup_procs_write_finish(task, locked);
4959 out_unlock:
4960 	cgroup_kn_unlock(of->kn);
4961 
4962 	return ret;
4963 }
4964 
4965 static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
4966 				  char *buf, size_t nbytes, loff_t off)
4967 {
4968 	return __cgroup_procs_write(of, buf, true) ?: nbytes;
4969 }
4970 
4971 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos)
4972 {
4973 	return __cgroup_procs_start(s, pos, 0);
4974 }
4975 
4976 static ssize_t cgroup_threads_write(struct kernfs_open_file *of,
4977 				    char *buf, size_t nbytes, loff_t off)
4978 {
4979 	return __cgroup_procs_write(of, buf, false) ?: nbytes;
4980 }
4981 
4982 /* cgroup core interface files for the default hierarchy */
4983 static struct cftype cgroup_base_files[] = {
4984 	{
4985 		.name = "cgroup.type",
4986 		.flags = CFTYPE_NOT_ON_ROOT,
4987 		.seq_show = cgroup_type_show,
4988 		.write = cgroup_type_write,
4989 	},
4990 	{
4991 		.name = "cgroup.procs",
4992 		.flags = CFTYPE_NS_DELEGATABLE,
4993 		.file_offset = offsetof(struct cgroup, procs_file),
4994 		.release = cgroup_procs_release,
4995 		.seq_start = cgroup_procs_start,
4996 		.seq_next = cgroup_procs_next,
4997 		.seq_show = cgroup_procs_show,
4998 		.write = cgroup_procs_write,
4999 	},
5000 	{
5001 		.name = "cgroup.threads",
5002 		.flags = CFTYPE_NS_DELEGATABLE,
5003 		.release = cgroup_procs_release,
5004 		.seq_start = cgroup_threads_start,
5005 		.seq_next = cgroup_procs_next,
5006 		.seq_show = cgroup_procs_show,
5007 		.write = cgroup_threads_write,
5008 	},
5009 	{
5010 		.name = "cgroup.controllers",
5011 		.seq_show = cgroup_controllers_show,
5012 	},
5013 	{
5014 		.name = "cgroup.subtree_control",
5015 		.flags = CFTYPE_NS_DELEGATABLE,
5016 		.seq_show = cgroup_subtree_control_show,
5017 		.write = cgroup_subtree_control_write,
5018 	},
5019 	{
5020 		.name = "cgroup.events",
5021 		.flags = CFTYPE_NOT_ON_ROOT,
5022 		.file_offset = offsetof(struct cgroup, events_file),
5023 		.seq_show = cgroup_events_show,
5024 	},
5025 	{
5026 		.name = "cgroup.max.descendants",
5027 		.seq_show = cgroup_max_descendants_show,
5028 		.write = cgroup_max_descendants_write,
5029 	},
5030 	{
5031 		.name = "cgroup.max.depth",
5032 		.seq_show = cgroup_max_depth_show,
5033 		.write = cgroup_max_depth_write,
5034 	},
5035 	{
5036 		.name = "cgroup.stat",
5037 		.seq_show = cgroup_stat_show,
5038 	},
5039 	{
5040 		.name = "cgroup.freeze",
5041 		.flags = CFTYPE_NOT_ON_ROOT,
5042 		.seq_show = cgroup_freeze_show,
5043 		.write = cgroup_freeze_write,
5044 	},
5045 	{
5046 		.name = "cgroup.kill",
5047 		.flags = CFTYPE_NOT_ON_ROOT,
5048 		.write = cgroup_kill_write,
5049 	},
5050 	{
5051 		.name = "cpu.stat",
5052 		.seq_show = cpu_stat_show,
5053 	},
5054 #ifdef CONFIG_PSI
5055 	{
5056 		.name = "io.pressure",
5057 		.flags = CFTYPE_PRESSURE,
5058 		.seq_show = cgroup_io_pressure_show,
5059 		.write = cgroup_io_pressure_write,
5060 		.poll = cgroup_pressure_poll,
5061 		.release = cgroup_pressure_release,
5062 	},
5063 	{
5064 		.name = "memory.pressure",
5065 		.flags = CFTYPE_PRESSURE,
5066 		.seq_show = cgroup_memory_pressure_show,
5067 		.write = cgroup_memory_pressure_write,
5068 		.poll = cgroup_pressure_poll,
5069 		.release = cgroup_pressure_release,
5070 	},
5071 	{
5072 		.name = "cpu.pressure",
5073 		.flags = CFTYPE_PRESSURE,
5074 		.seq_show = cgroup_cpu_pressure_show,
5075 		.write = cgroup_cpu_pressure_write,
5076 		.poll = cgroup_pressure_poll,
5077 		.release = cgroup_pressure_release,
5078 	},
5079 #endif /* CONFIG_PSI */
5080 	{ }	/* terminate */
5081 };
5082 
5083 /*
5084  * css destruction is four-stage process.
5085  *
5086  * 1. Destruction starts.  Killing of the percpu_ref is initiated.
5087  *    Implemented in kill_css().
5088  *
5089  * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
5090  *    and thus css_tryget_online() is guaranteed to fail, the css can be
5091  *    offlined by invoking offline_css().  After offlining, the base ref is
5092  *    put.  Implemented in css_killed_work_fn().
5093  *
5094  * 3. When the percpu_ref reaches zero, the only possible remaining
5095  *    accessors are inside RCU read sections.  css_release() schedules the
5096  *    RCU callback.
5097  *
5098  * 4. After the grace period, the css can be freed.  Implemented in
5099  *    css_free_work_fn().
5100  *
5101  * It is actually hairier because both step 2 and 4 require process context
5102  * and thus involve punting to css->destroy_work adding two additional
5103  * steps to the already complex sequence.
5104  */
5105 static void css_free_rwork_fn(struct work_struct *work)
5106 {
5107 	struct cgroup_subsys_state *css = container_of(to_rcu_work(work),
5108 				struct cgroup_subsys_state, destroy_rwork);
5109 	struct cgroup_subsys *ss = css->ss;
5110 	struct cgroup *cgrp = css->cgroup;
5111 
5112 	percpu_ref_exit(&css->refcnt);
5113 
5114 	if (ss) {
5115 		/* css free path */
5116 		struct cgroup_subsys_state *parent = css->parent;
5117 		int id = css->id;
5118 
5119 		ss->css_free(css);
5120 		cgroup_idr_remove(&ss->css_idr, id);
5121 		cgroup_put(cgrp);
5122 
5123 		if (parent)
5124 			css_put(parent);
5125 	} else {
5126 		/* cgroup free path */
5127 		atomic_dec(&cgrp->root->nr_cgrps);
5128 		cgroup1_pidlist_destroy_all(cgrp);
5129 		cancel_work_sync(&cgrp->release_agent_work);
5130 
5131 		if (cgroup_parent(cgrp)) {
5132 			/*
5133 			 * We get a ref to the parent, and put the ref when
5134 			 * this cgroup is being freed, so it's guaranteed
5135 			 * that the parent won't be destroyed before its
5136 			 * children.
5137 			 */
5138 			cgroup_put(cgroup_parent(cgrp));
5139 			kernfs_put(cgrp->kn);
5140 			psi_cgroup_free(cgrp);
5141 			cgroup_rstat_exit(cgrp);
5142 			kfree(cgrp);
5143 		} else {
5144 			/*
5145 			 * This is root cgroup's refcnt reaching zero,
5146 			 * which indicates that the root should be
5147 			 * released.
5148 			 */
5149 			cgroup_destroy_root(cgrp->root);
5150 		}
5151 	}
5152 }
5153 
5154 static void css_release_work_fn(struct work_struct *work)
5155 {
5156 	struct cgroup_subsys_state *css =
5157 		container_of(work, struct cgroup_subsys_state, destroy_work);
5158 	struct cgroup_subsys *ss = css->ss;
5159 	struct cgroup *cgrp = css->cgroup;
5160 
5161 	mutex_lock(&cgroup_mutex);
5162 
5163 	css->flags |= CSS_RELEASED;
5164 	list_del_rcu(&css->sibling);
5165 
5166 	if (ss) {
5167 		/* css release path */
5168 		if (!list_empty(&css->rstat_css_node)) {
5169 			cgroup_rstat_flush(cgrp);
5170 			list_del_rcu(&css->rstat_css_node);
5171 		}
5172 
5173 		cgroup_idr_replace(&ss->css_idr, NULL, css->id);
5174 		if (ss->css_released)
5175 			ss->css_released(css);
5176 	} else {
5177 		struct cgroup *tcgrp;
5178 
5179 		/* cgroup release path */
5180 		TRACE_CGROUP_PATH(release, cgrp);
5181 
5182 		cgroup_rstat_flush(cgrp);
5183 
5184 		spin_lock_irq(&css_set_lock);
5185 		for (tcgrp = cgroup_parent(cgrp); tcgrp;
5186 		     tcgrp = cgroup_parent(tcgrp))
5187 			tcgrp->nr_dying_descendants--;
5188 		spin_unlock_irq(&css_set_lock);
5189 
5190 		/*
5191 		 * There are two control paths which try to determine
5192 		 * cgroup from dentry without going through kernfs -
5193 		 * cgroupstats_build() and css_tryget_online_from_dir().
5194 		 * Those are supported by RCU protecting clearing of
5195 		 * cgrp->kn->priv backpointer.
5196 		 */
5197 		if (cgrp->kn)
5198 			RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
5199 					 NULL);
5200 	}
5201 
5202 	mutex_unlock(&cgroup_mutex);
5203 
5204 	INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5205 	queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5206 }
5207 
5208 static void css_release(struct percpu_ref *ref)
5209 {
5210 	struct cgroup_subsys_state *css =
5211 		container_of(ref, struct cgroup_subsys_state, refcnt);
5212 
5213 	INIT_WORK(&css->destroy_work, css_release_work_fn);
5214 	queue_work(cgroup_destroy_wq, &css->destroy_work);
5215 }
5216 
5217 static void init_and_link_css(struct cgroup_subsys_state *css,
5218 			      struct cgroup_subsys *ss, struct cgroup *cgrp)
5219 {
5220 	lockdep_assert_held(&cgroup_mutex);
5221 
5222 	cgroup_get_live(cgrp);
5223 
5224 	memset(css, 0, sizeof(*css));
5225 	css->cgroup = cgrp;
5226 	css->ss = ss;
5227 	css->id = -1;
5228 	INIT_LIST_HEAD(&css->sibling);
5229 	INIT_LIST_HEAD(&css->children);
5230 	INIT_LIST_HEAD(&css->rstat_css_node);
5231 	css->serial_nr = css_serial_nr_next++;
5232 	atomic_set(&css->online_cnt, 0);
5233 
5234 	if (cgroup_parent(cgrp)) {
5235 		css->parent = cgroup_css(cgroup_parent(cgrp), ss);
5236 		css_get(css->parent);
5237 	}
5238 
5239 	if (ss->css_rstat_flush)
5240 		list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list);
5241 
5242 	BUG_ON(cgroup_css(cgrp, ss));
5243 }
5244 
5245 /* invoke ->css_online() on a new CSS and mark it online if successful */
5246 static int online_css(struct cgroup_subsys_state *css)
5247 {
5248 	struct cgroup_subsys *ss = css->ss;
5249 	int ret = 0;
5250 
5251 	lockdep_assert_held(&cgroup_mutex);
5252 
5253 	if (ss->css_online)
5254 		ret = ss->css_online(css);
5255 	if (!ret) {
5256 		css->flags |= CSS_ONLINE;
5257 		rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
5258 
5259 		atomic_inc(&css->online_cnt);
5260 		if (css->parent)
5261 			atomic_inc(&css->parent->online_cnt);
5262 	}
5263 	return ret;
5264 }
5265 
5266 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
5267 static void offline_css(struct cgroup_subsys_state *css)
5268 {
5269 	struct cgroup_subsys *ss = css->ss;
5270 
5271 	lockdep_assert_held(&cgroup_mutex);
5272 
5273 	if (!(css->flags & CSS_ONLINE))
5274 		return;
5275 
5276 	if (ss->css_offline)
5277 		ss->css_offline(css);
5278 
5279 	css->flags &= ~CSS_ONLINE;
5280 	RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
5281 
5282 	wake_up_all(&css->cgroup->offline_waitq);
5283 }
5284 
5285 /**
5286  * css_create - create a cgroup_subsys_state
5287  * @cgrp: the cgroup new css will be associated with
5288  * @ss: the subsys of new css
5289  *
5290  * Create a new css associated with @cgrp - @ss pair.  On success, the new
5291  * css is online and installed in @cgrp.  This function doesn't create the
5292  * interface files.  Returns 0 on success, -errno on failure.
5293  */
5294 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
5295 					      struct cgroup_subsys *ss)
5296 {
5297 	struct cgroup *parent = cgroup_parent(cgrp);
5298 	struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
5299 	struct cgroup_subsys_state *css;
5300 	int err;
5301 
5302 	lockdep_assert_held(&cgroup_mutex);
5303 
5304 	css = ss->css_alloc(parent_css);
5305 	if (!css)
5306 		css = ERR_PTR(-ENOMEM);
5307 	if (IS_ERR(css))
5308 		return css;
5309 
5310 	init_and_link_css(css, ss, cgrp);
5311 
5312 	err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
5313 	if (err)
5314 		goto err_free_css;
5315 
5316 	err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
5317 	if (err < 0)
5318 		goto err_free_css;
5319 	css->id = err;
5320 
5321 	/* @css is ready to be brought online now, make it visible */
5322 	list_add_tail_rcu(&css->sibling, &parent_css->children);
5323 	cgroup_idr_replace(&ss->css_idr, css, css->id);
5324 
5325 	err = online_css(css);
5326 	if (err)
5327 		goto err_list_del;
5328 
5329 	return css;
5330 
5331 err_list_del:
5332 	list_del_rcu(&css->sibling);
5333 err_free_css:
5334 	list_del_rcu(&css->rstat_css_node);
5335 	INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5336 	queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5337 	return ERR_PTR(err);
5338 }
5339 
5340 /*
5341  * The returned cgroup is fully initialized including its control mask, but
5342  * it isn't associated with its kernfs_node and doesn't have the control
5343  * mask applied.
5344  */
5345 static struct cgroup *cgroup_create(struct cgroup *parent, const char *name,
5346 				    umode_t mode)
5347 {
5348 	struct cgroup_root *root = parent->root;
5349 	struct cgroup *cgrp, *tcgrp;
5350 	struct kernfs_node *kn;
5351 	int level = parent->level + 1;
5352 	int ret;
5353 
5354 	/* allocate the cgroup and its ID, 0 is reserved for the root */
5355 	cgrp = kzalloc(struct_size(cgrp, ancestor_ids, (level + 1)),
5356 		       GFP_KERNEL);
5357 	if (!cgrp)
5358 		return ERR_PTR(-ENOMEM);
5359 
5360 	ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
5361 	if (ret)
5362 		goto out_free_cgrp;
5363 
5364 	ret = cgroup_rstat_init(cgrp);
5365 	if (ret)
5366 		goto out_cancel_ref;
5367 
5368 	/* create the directory */
5369 	kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
5370 	if (IS_ERR(kn)) {
5371 		ret = PTR_ERR(kn);
5372 		goto out_stat_exit;
5373 	}
5374 	cgrp->kn = kn;
5375 
5376 	init_cgroup_housekeeping(cgrp);
5377 
5378 	cgrp->self.parent = &parent->self;
5379 	cgrp->root = root;
5380 	cgrp->level = level;
5381 
5382 	ret = psi_cgroup_alloc(cgrp);
5383 	if (ret)
5384 		goto out_kernfs_remove;
5385 
5386 	ret = cgroup_bpf_inherit(cgrp);
5387 	if (ret)
5388 		goto out_psi_free;
5389 
5390 	/*
5391 	 * New cgroup inherits effective freeze counter, and
5392 	 * if the parent has to be frozen, the child has too.
5393 	 */
5394 	cgrp->freezer.e_freeze = parent->freezer.e_freeze;
5395 	if (cgrp->freezer.e_freeze) {
5396 		/*
5397 		 * Set the CGRP_FREEZE flag, so when a process will be
5398 		 * attached to the child cgroup, it will become frozen.
5399 		 * At this point the new cgroup is unpopulated, so we can
5400 		 * consider it frozen immediately.
5401 		 */
5402 		set_bit(CGRP_FREEZE, &cgrp->flags);
5403 		set_bit(CGRP_FROZEN, &cgrp->flags);
5404 	}
5405 
5406 	spin_lock_irq(&css_set_lock);
5407 	for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5408 		cgrp->ancestor_ids[tcgrp->level] = cgroup_id(tcgrp);
5409 
5410 		if (tcgrp != cgrp) {
5411 			tcgrp->nr_descendants++;
5412 
5413 			/*
5414 			 * If the new cgroup is frozen, all ancestor cgroups
5415 			 * get a new frozen descendant, but their state can't
5416 			 * change because of this.
5417 			 */
5418 			if (cgrp->freezer.e_freeze)
5419 				tcgrp->freezer.nr_frozen_descendants++;
5420 		}
5421 	}
5422 	spin_unlock_irq(&css_set_lock);
5423 
5424 	if (notify_on_release(parent))
5425 		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
5426 
5427 	if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
5428 		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
5429 
5430 	cgrp->self.serial_nr = css_serial_nr_next++;
5431 
5432 	/* allocation complete, commit to creation */
5433 	list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
5434 	atomic_inc(&root->nr_cgrps);
5435 	cgroup_get_live(parent);
5436 
5437 	/*
5438 	 * On the default hierarchy, a child doesn't automatically inherit
5439 	 * subtree_control from the parent.  Each is configured manually.
5440 	 */
5441 	if (!cgroup_on_dfl(cgrp))
5442 		cgrp->subtree_control = cgroup_control(cgrp);
5443 
5444 	cgroup_propagate_control(cgrp);
5445 
5446 	return cgrp;
5447 
5448 out_psi_free:
5449 	psi_cgroup_free(cgrp);
5450 out_kernfs_remove:
5451 	kernfs_remove(cgrp->kn);
5452 out_stat_exit:
5453 	cgroup_rstat_exit(cgrp);
5454 out_cancel_ref:
5455 	percpu_ref_exit(&cgrp->self.refcnt);
5456 out_free_cgrp:
5457 	kfree(cgrp);
5458 	return ERR_PTR(ret);
5459 }
5460 
5461 static bool cgroup_check_hierarchy_limits(struct cgroup *parent)
5462 {
5463 	struct cgroup *cgroup;
5464 	int ret = false;
5465 	int level = 1;
5466 
5467 	lockdep_assert_held(&cgroup_mutex);
5468 
5469 	for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) {
5470 		if (cgroup->nr_descendants >= cgroup->max_descendants)
5471 			goto fail;
5472 
5473 		if (level > cgroup->max_depth)
5474 			goto fail;
5475 
5476 		level++;
5477 	}
5478 
5479 	ret = true;
5480 fail:
5481 	return ret;
5482 }
5483 
5484 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode)
5485 {
5486 	struct cgroup *parent, *cgrp;
5487 	int ret;
5488 
5489 	/* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
5490 	if (strchr(name, '\n'))
5491 		return -EINVAL;
5492 
5493 	parent = cgroup_kn_lock_live(parent_kn, false);
5494 	if (!parent)
5495 		return -ENODEV;
5496 
5497 	if (!cgroup_check_hierarchy_limits(parent)) {
5498 		ret = -EAGAIN;
5499 		goto out_unlock;
5500 	}
5501 
5502 	cgrp = cgroup_create(parent, name, mode);
5503 	if (IS_ERR(cgrp)) {
5504 		ret = PTR_ERR(cgrp);
5505 		goto out_unlock;
5506 	}
5507 
5508 	/*
5509 	 * This extra ref will be put in cgroup_free_fn() and guarantees
5510 	 * that @cgrp->kn is always accessible.
5511 	 */
5512 	kernfs_get(cgrp->kn);
5513 
5514 	ret = cgroup_kn_set_ugid(cgrp->kn);
5515 	if (ret)
5516 		goto out_destroy;
5517 
5518 	ret = css_populate_dir(&cgrp->self);
5519 	if (ret)
5520 		goto out_destroy;
5521 
5522 	ret = cgroup_apply_control_enable(cgrp);
5523 	if (ret)
5524 		goto out_destroy;
5525 
5526 	TRACE_CGROUP_PATH(mkdir, cgrp);
5527 
5528 	/* let's create and online css's */
5529 	kernfs_activate(cgrp->kn);
5530 
5531 	ret = 0;
5532 	goto out_unlock;
5533 
5534 out_destroy:
5535 	cgroup_destroy_locked(cgrp);
5536 out_unlock:
5537 	cgroup_kn_unlock(parent_kn);
5538 	return ret;
5539 }
5540 
5541 /*
5542  * This is called when the refcnt of a css is confirmed to be killed.
5543  * css_tryget_online() is now guaranteed to fail.  Tell the subsystem to
5544  * initiate destruction and put the css ref from kill_css().
5545  */
5546 static void css_killed_work_fn(struct work_struct *work)
5547 {
5548 	struct cgroup_subsys_state *css =
5549 		container_of(work, struct cgroup_subsys_state, destroy_work);
5550 
5551 	mutex_lock(&cgroup_mutex);
5552 
5553 	do {
5554 		offline_css(css);
5555 		css_put(css);
5556 		/* @css can't go away while we're holding cgroup_mutex */
5557 		css = css->parent;
5558 	} while (css && atomic_dec_and_test(&css->online_cnt));
5559 
5560 	mutex_unlock(&cgroup_mutex);
5561 }
5562 
5563 /* css kill confirmation processing requires process context, bounce */
5564 static void css_killed_ref_fn(struct percpu_ref *ref)
5565 {
5566 	struct cgroup_subsys_state *css =
5567 		container_of(ref, struct cgroup_subsys_state, refcnt);
5568 
5569 	if (atomic_dec_and_test(&css->online_cnt)) {
5570 		INIT_WORK(&css->destroy_work, css_killed_work_fn);
5571 		queue_work(cgroup_destroy_wq, &css->destroy_work);
5572 	}
5573 }
5574 
5575 /**
5576  * kill_css - destroy a css
5577  * @css: css to destroy
5578  *
5579  * This function initiates destruction of @css by removing cgroup interface
5580  * files and putting its base reference.  ->css_offline() will be invoked
5581  * asynchronously once css_tryget_online() is guaranteed to fail and when
5582  * the reference count reaches zero, @css will be released.
5583  */
5584 static void kill_css(struct cgroup_subsys_state *css)
5585 {
5586 	lockdep_assert_held(&cgroup_mutex);
5587 
5588 	if (css->flags & CSS_DYING)
5589 		return;
5590 
5591 	css->flags |= CSS_DYING;
5592 
5593 	/*
5594 	 * This must happen before css is disassociated with its cgroup.
5595 	 * See seq_css() for details.
5596 	 */
5597 	css_clear_dir(css);
5598 
5599 	/*
5600 	 * Killing would put the base ref, but we need to keep it alive
5601 	 * until after ->css_offline().
5602 	 */
5603 	css_get(css);
5604 
5605 	/*
5606 	 * cgroup core guarantees that, by the time ->css_offline() is
5607 	 * invoked, no new css reference will be given out via
5608 	 * css_tryget_online().  We can't simply call percpu_ref_kill() and
5609 	 * proceed to offlining css's because percpu_ref_kill() doesn't
5610 	 * guarantee that the ref is seen as killed on all CPUs on return.
5611 	 *
5612 	 * Use percpu_ref_kill_and_confirm() to get notifications as each
5613 	 * css is confirmed to be seen as killed on all CPUs.
5614 	 */
5615 	percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
5616 }
5617 
5618 /**
5619  * cgroup_destroy_locked - the first stage of cgroup destruction
5620  * @cgrp: cgroup to be destroyed
5621  *
5622  * css's make use of percpu refcnts whose killing latency shouldn't be
5623  * exposed to userland and are RCU protected.  Also, cgroup core needs to
5624  * guarantee that css_tryget_online() won't succeed by the time
5625  * ->css_offline() is invoked.  To satisfy all the requirements,
5626  * destruction is implemented in the following two steps.
5627  *
5628  * s1. Verify @cgrp can be destroyed and mark it dying.  Remove all
5629  *     userland visible parts and start killing the percpu refcnts of
5630  *     css's.  Set up so that the next stage will be kicked off once all
5631  *     the percpu refcnts are confirmed to be killed.
5632  *
5633  * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5634  *     rest of destruction.  Once all cgroup references are gone, the
5635  *     cgroup is RCU-freed.
5636  *
5637  * This function implements s1.  After this step, @cgrp is gone as far as
5638  * the userland is concerned and a new cgroup with the same name may be
5639  * created.  As cgroup doesn't care about the names internally, this
5640  * doesn't cause any problem.
5641  */
5642 static int cgroup_destroy_locked(struct cgroup *cgrp)
5643 	__releases(&cgroup_mutex) __acquires(&cgroup_mutex)
5644 {
5645 	struct cgroup *tcgrp, *parent = cgroup_parent(cgrp);
5646 	struct cgroup_subsys_state *css;
5647 	struct cgrp_cset_link *link;
5648 	int ssid;
5649 
5650 	lockdep_assert_held(&cgroup_mutex);
5651 
5652 	/*
5653 	 * Only migration can raise populated from zero and we're already
5654 	 * holding cgroup_mutex.
5655 	 */
5656 	if (cgroup_is_populated(cgrp))
5657 		return -EBUSY;
5658 
5659 	/*
5660 	 * Make sure there's no live children.  We can't test emptiness of
5661 	 * ->self.children as dead children linger on it while being
5662 	 * drained; otherwise, "rmdir parent/child parent" may fail.
5663 	 */
5664 	if (css_has_online_children(&cgrp->self))
5665 		return -EBUSY;
5666 
5667 	/*
5668 	 * Mark @cgrp and the associated csets dead.  The former prevents
5669 	 * further task migration and child creation by disabling
5670 	 * cgroup_lock_live_group().  The latter makes the csets ignored by
5671 	 * the migration path.
5672 	 */
5673 	cgrp->self.flags &= ~CSS_ONLINE;
5674 
5675 	spin_lock_irq(&css_set_lock);
5676 	list_for_each_entry(link, &cgrp->cset_links, cset_link)
5677 		link->cset->dead = true;
5678 	spin_unlock_irq(&css_set_lock);
5679 
5680 	/* initiate massacre of all css's */
5681 	for_each_css(css, ssid, cgrp)
5682 		kill_css(css);
5683 
5684 	/* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */
5685 	css_clear_dir(&cgrp->self);
5686 	kernfs_remove(cgrp->kn);
5687 
5688 	if (cgroup_is_threaded(cgrp))
5689 		parent->nr_threaded_children--;
5690 
5691 	spin_lock_irq(&css_set_lock);
5692 	for (tcgrp = cgroup_parent(cgrp); tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5693 		tcgrp->nr_descendants--;
5694 		tcgrp->nr_dying_descendants++;
5695 		/*
5696 		 * If the dying cgroup is frozen, decrease frozen descendants
5697 		 * counters of ancestor cgroups.
5698 		 */
5699 		if (test_bit(CGRP_FROZEN, &cgrp->flags))
5700 			tcgrp->freezer.nr_frozen_descendants--;
5701 	}
5702 	spin_unlock_irq(&css_set_lock);
5703 
5704 	cgroup1_check_for_release(parent);
5705 
5706 	cgroup_bpf_offline(cgrp);
5707 
5708 	/* put the base reference */
5709 	percpu_ref_kill(&cgrp->self.refcnt);
5710 
5711 	return 0;
5712 };
5713 
5714 int cgroup_rmdir(struct kernfs_node *kn)
5715 {
5716 	struct cgroup *cgrp;
5717 	int ret = 0;
5718 
5719 	cgrp = cgroup_kn_lock_live(kn, false);
5720 	if (!cgrp)
5721 		return 0;
5722 
5723 	ret = cgroup_destroy_locked(cgrp);
5724 	if (!ret)
5725 		TRACE_CGROUP_PATH(rmdir, cgrp);
5726 
5727 	cgroup_kn_unlock(kn);
5728 	return ret;
5729 }
5730 
5731 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5732 	.show_options		= cgroup_show_options,
5733 	.mkdir			= cgroup_mkdir,
5734 	.rmdir			= cgroup_rmdir,
5735 	.show_path		= cgroup_show_path,
5736 };
5737 
5738 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
5739 {
5740 	struct cgroup_subsys_state *css;
5741 
5742 	pr_debug("Initializing cgroup subsys %s\n", ss->name);
5743 
5744 	mutex_lock(&cgroup_mutex);
5745 
5746 	idr_init(&ss->css_idr);
5747 	INIT_LIST_HEAD(&ss->cfts);
5748 
5749 	/* Create the root cgroup state for this subsystem */
5750 	ss->root = &cgrp_dfl_root;
5751 	css = ss->css_alloc(NULL);
5752 	/* We don't handle early failures gracefully */
5753 	BUG_ON(IS_ERR(css));
5754 	init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
5755 
5756 	/*
5757 	 * Root csses are never destroyed and we can't initialize
5758 	 * percpu_ref during early init.  Disable refcnting.
5759 	 */
5760 	css->flags |= CSS_NO_REF;
5761 
5762 	if (early) {
5763 		/* allocation can't be done safely during early init */
5764 		css->id = 1;
5765 	} else {
5766 		css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5767 		BUG_ON(css->id < 0);
5768 	}
5769 
5770 	/* Update the init_css_set to contain a subsys
5771 	 * pointer to this state - since the subsystem is
5772 	 * newly registered, all tasks and hence the
5773 	 * init_css_set is in the subsystem's root cgroup. */
5774 	init_css_set.subsys[ss->id] = css;
5775 
5776 	have_fork_callback |= (bool)ss->fork << ss->id;
5777 	have_exit_callback |= (bool)ss->exit << ss->id;
5778 	have_release_callback |= (bool)ss->release << ss->id;
5779 	have_canfork_callback |= (bool)ss->can_fork << ss->id;
5780 
5781 	/* At system boot, before all subsystems have been
5782 	 * registered, no tasks have been forked, so we don't
5783 	 * need to invoke fork callbacks here. */
5784 	BUG_ON(!list_empty(&init_task.tasks));
5785 
5786 	BUG_ON(online_css(css));
5787 
5788 	mutex_unlock(&cgroup_mutex);
5789 }
5790 
5791 /**
5792  * cgroup_init_early - cgroup initialization at system boot
5793  *
5794  * Initialize cgroups at system boot, and initialize any
5795  * subsystems that request early init.
5796  */
5797 int __init cgroup_init_early(void)
5798 {
5799 	static struct cgroup_fs_context __initdata ctx;
5800 	struct cgroup_subsys *ss;
5801 	int i;
5802 
5803 	ctx.root = &cgrp_dfl_root;
5804 	init_cgroup_root(&ctx);
5805 	cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5806 
5807 	RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
5808 
5809 	for_each_subsys(ss, i) {
5810 		WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
5811 		     "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
5812 		     i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
5813 		     ss->id, ss->name);
5814 		WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5815 		     "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5816 
5817 		ss->id = i;
5818 		ss->name = cgroup_subsys_name[i];
5819 		if (!ss->legacy_name)
5820 			ss->legacy_name = cgroup_subsys_name[i];
5821 
5822 		if (ss->early_init)
5823 			cgroup_init_subsys(ss, true);
5824 	}
5825 	return 0;
5826 }
5827 
5828 /**
5829  * cgroup_init - cgroup initialization
5830  *
5831  * Register cgroup filesystem and /proc file, and initialize
5832  * any subsystems that didn't request early init.
5833  */
5834 int __init cgroup_init(void)
5835 {
5836 	struct cgroup_subsys *ss;
5837 	int ssid;
5838 
5839 	BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
5840 	BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
5841 	BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files));
5842 
5843 	cgroup_rstat_boot();
5844 
5845 	/*
5846 	 * The latency of the synchronize_rcu() is too high for cgroups,
5847 	 * avoid it at the cost of forcing all readers into the slow path.
5848 	 */
5849 	rcu_sync_enter_start(&cgroup_threadgroup_rwsem.rss);
5850 
5851 	get_user_ns(init_cgroup_ns.user_ns);
5852 
5853 	mutex_lock(&cgroup_mutex);
5854 
5855 	/*
5856 	 * Add init_css_set to the hash table so that dfl_root can link to
5857 	 * it during init.
5858 	 */
5859 	hash_add(css_set_table, &init_css_set.hlist,
5860 		 css_set_hash(init_css_set.subsys));
5861 
5862 	BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
5863 
5864 	mutex_unlock(&cgroup_mutex);
5865 
5866 	for_each_subsys(ss, ssid) {
5867 		if (ss->early_init) {
5868 			struct cgroup_subsys_state *css =
5869 				init_css_set.subsys[ss->id];
5870 
5871 			css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5872 						   GFP_KERNEL);
5873 			BUG_ON(css->id < 0);
5874 		} else {
5875 			cgroup_init_subsys(ss, false);
5876 		}
5877 
5878 		list_add_tail(&init_css_set.e_cset_node[ssid],
5879 			      &cgrp_dfl_root.cgrp.e_csets[ssid]);
5880 
5881 		/*
5882 		 * Setting dfl_root subsys_mask needs to consider the
5883 		 * disabled flag and cftype registration needs kmalloc,
5884 		 * both of which aren't available during early_init.
5885 		 */
5886 		if (!cgroup_ssid_enabled(ssid))
5887 			continue;
5888 
5889 		if (cgroup1_ssid_disabled(ssid))
5890 			printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n",
5891 			       ss->name);
5892 
5893 		cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5894 
5895 		/* implicit controllers must be threaded too */
5896 		WARN_ON(ss->implicit_on_dfl && !ss->threaded);
5897 
5898 		if (ss->implicit_on_dfl)
5899 			cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
5900 		else if (!ss->dfl_cftypes)
5901 			cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
5902 
5903 		if (ss->threaded)
5904 			cgrp_dfl_threaded_ss_mask |= 1 << ss->id;
5905 
5906 		if (ss->dfl_cftypes == ss->legacy_cftypes) {
5907 			WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5908 		} else {
5909 			WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5910 			WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
5911 		}
5912 
5913 		if (ss->bind)
5914 			ss->bind(init_css_set.subsys[ssid]);
5915 
5916 		mutex_lock(&cgroup_mutex);
5917 		css_populate_dir(init_css_set.subsys[ssid]);
5918 		mutex_unlock(&cgroup_mutex);
5919 	}
5920 
5921 	/* init_css_set.subsys[] has been updated, re-hash */
5922 	hash_del(&init_css_set.hlist);
5923 	hash_add(css_set_table, &init_css_set.hlist,
5924 		 css_set_hash(init_css_set.subsys));
5925 
5926 	WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
5927 	WARN_ON(register_filesystem(&cgroup_fs_type));
5928 	WARN_ON(register_filesystem(&cgroup2_fs_type));
5929 	WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show));
5930 #ifdef CONFIG_CPUSETS
5931 	WARN_ON(register_filesystem(&cpuset_fs_type));
5932 #endif
5933 
5934 	return 0;
5935 }
5936 
5937 static int __init cgroup_wq_init(void)
5938 {
5939 	/*
5940 	 * There isn't much point in executing destruction path in
5941 	 * parallel.  Good chunk is serialized with cgroup_mutex anyway.
5942 	 * Use 1 for @max_active.
5943 	 *
5944 	 * We would prefer to do this in cgroup_init() above, but that
5945 	 * is called before init_workqueues(): so leave this until after.
5946 	 */
5947 	cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
5948 	BUG_ON(!cgroup_destroy_wq);
5949 	return 0;
5950 }
5951 core_initcall(cgroup_wq_init);
5952 
5953 void cgroup_path_from_kernfs_id(u64 id, char *buf, size_t buflen)
5954 {
5955 	struct kernfs_node *kn;
5956 
5957 	kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id);
5958 	if (!kn)
5959 		return;
5960 	kernfs_path(kn, buf, buflen);
5961 	kernfs_put(kn);
5962 }
5963 
5964 /*
5965  * cgroup_get_from_id : get the cgroup associated with cgroup id
5966  * @id: cgroup id
5967  * On success return the cgrp, on failure return NULL
5968  */
5969 struct cgroup *cgroup_get_from_id(u64 id)
5970 {
5971 	struct kernfs_node *kn;
5972 	struct cgroup *cgrp = NULL;
5973 
5974 	kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id);
5975 	if (!kn)
5976 		goto out;
5977 
5978 	rcu_read_lock();
5979 
5980 	cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
5981 	if (cgrp && !cgroup_tryget(cgrp))
5982 		cgrp = NULL;
5983 
5984 	rcu_read_unlock();
5985 
5986 	kernfs_put(kn);
5987 out:
5988 	return cgrp;
5989 }
5990 EXPORT_SYMBOL_GPL(cgroup_get_from_id);
5991 
5992 /*
5993  * proc_cgroup_show()
5994  *  - Print task's cgroup paths into seq_file, one line for each hierarchy
5995  *  - Used for /proc/<pid>/cgroup.
5996  */
5997 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5998 		     struct pid *pid, struct task_struct *tsk)
5999 {
6000 	char *buf;
6001 	int retval;
6002 	struct cgroup_root *root;
6003 
6004 	retval = -ENOMEM;
6005 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
6006 	if (!buf)
6007 		goto out;
6008 
6009 	mutex_lock(&cgroup_mutex);
6010 	spin_lock_irq(&css_set_lock);
6011 
6012 	for_each_root(root) {
6013 		struct cgroup_subsys *ss;
6014 		struct cgroup *cgrp;
6015 		int ssid, count = 0;
6016 
6017 		if (root == &cgrp_dfl_root && !cgrp_dfl_visible)
6018 			continue;
6019 
6020 		seq_printf(m, "%d:", root->hierarchy_id);
6021 		if (root != &cgrp_dfl_root)
6022 			for_each_subsys(ss, ssid)
6023 				if (root->subsys_mask & (1 << ssid))
6024 					seq_printf(m, "%s%s", count++ ? "," : "",
6025 						   ss->legacy_name);
6026 		if (strlen(root->name))
6027 			seq_printf(m, "%sname=%s", count ? "," : "",
6028 				   root->name);
6029 		seq_putc(m, ':');
6030 
6031 		cgrp = task_cgroup_from_root(tsk, root);
6032 
6033 		/*
6034 		 * On traditional hierarchies, all zombie tasks show up as
6035 		 * belonging to the root cgroup.  On the default hierarchy,
6036 		 * while a zombie doesn't show up in "cgroup.procs" and
6037 		 * thus can't be migrated, its /proc/PID/cgroup keeps
6038 		 * reporting the cgroup it belonged to before exiting.  If
6039 		 * the cgroup is removed before the zombie is reaped,
6040 		 * " (deleted)" is appended to the cgroup path.
6041 		 */
6042 		if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
6043 			retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
6044 						current->nsproxy->cgroup_ns);
6045 			if (retval >= PATH_MAX)
6046 				retval = -ENAMETOOLONG;
6047 			if (retval < 0)
6048 				goto out_unlock;
6049 
6050 			seq_puts(m, buf);
6051 		} else {
6052 			seq_puts(m, "/");
6053 		}
6054 
6055 		if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
6056 			seq_puts(m, " (deleted)\n");
6057 		else
6058 			seq_putc(m, '\n');
6059 	}
6060 
6061 	retval = 0;
6062 out_unlock:
6063 	spin_unlock_irq(&css_set_lock);
6064 	mutex_unlock(&cgroup_mutex);
6065 	kfree(buf);
6066 out:
6067 	return retval;
6068 }
6069 
6070 /**
6071  * cgroup_fork - initialize cgroup related fields during copy_process()
6072  * @child: pointer to task_struct of forking parent process.
6073  *
6074  * A task is associated with the init_css_set until cgroup_post_fork()
6075  * attaches it to the target css_set.
6076  */
6077 void cgroup_fork(struct task_struct *child)
6078 {
6079 	RCU_INIT_POINTER(child->cgroups, &init_css_set);
6080 	INIT_LIST_HEAD(&child->cg_list);
6081 }
6082 
6083 static struct cgroup *cgroup_get_from_file(struct file *f)
6084 {
6085 	struct cgroup_subsys_state *css;
6086 	struct cgroup *cgrp;
6087 
6088 	css = css_tryget_online_from_dir(f->f_path.dentry, NULL);
6089 	if (IS_ERR(css))
6090 		return ERR_CAST(css);
6091 
6092 	cgrp = css->cgroup;
6093 	if (!cgroup_on_dfl(cgrp)) {
6094 		cgroup_put(cgrp);
6095 		return ERR_PTR(-EBADF);
6096 	}
6097 
6098 	return cgrp;
6099 }
6100 
6101 /**
6102  * cgroup_css_set_fork - find or create a css_set for a child process
6103  * @kargs: the arguments passed to create the child process
6104  *
6105  * This functions finds or creates a new css_set which the child
6106  * process will be attached to in cgroup_post_fork(). By default,
6107  * the child process will be given the same css_set as its parent.
6108  *
6109  * If CLONE_INTO_CGROUP is specified this function will try to find an
6110  * existing css_set which includes the requested cgroup and if not create
6111  * a new css_set that the child will be attached to later. If this function
6112  * succeeds it will hold cgroup_threadgroup_rwsem on return. If
6113  * CLONE_INTO_CGROUP is requested this function will grab cgroup mutex
6114  * before grabbing cgroup_threadgroup_rwsem and will hold a reference
6115  * to the target cgroup.
6116  */
6117 static int cgroup_css_set_fork(struct kernel_clone_args *kargs)
6118 	__acquires(&cgroup_mutex) __acquires(&cgroup_threadgroup_rwsem)
6119 {
6120 	int ret;
6121 	struct cgroup *dst_cgrp = NULL;
6122 	struct css_set *cset;
6123 	struct super_block *sb;
6124 	struct file *f;
6125 
6126 	if (kargs->flags & CLONE_INTO_CGROUP)
6127 		mutex_lock(&cgroup_mutex);
6128 
6129 	cgroup_threadgroup_change_begin(current);
6130 
6131 	spin_lock_irq(&css_set_lock);
6132 	cset = task_css_set(current);
6133 	get_css_set(cset);
6134 	spin_unlock_irq(&css_set_lock);
6135 
6136 	if (!(kargs->flags & CLONE_INTO_CGROUP)) {
6137 		kargs->cset = cset;
6138 		return 0;
6139 	}
6140 
6141 	f = fget_raw(kargs->cgroup);
6142 	if (!f) {
6143 		ret = -EBADF;
6144 		goto err;
6145 	}
6146 	sb = f->f_path.dentry->d_sb;
6147 
6148 	dst_cgrp = cgroup_get_from_file(f);
6149 	if (IS_ERR(dst_cgrp)) {
6150 		ret = PTR_ERR(dst_cgrp);
6151 		dst_cgrp = NULL;
6152 		goto err;
6153 	}
6154 
6155 	if (cgroup_is_dead(dst_cgrp)) {
6156 		ret = -ENODEV;
6157 		goto err;
6158 	}
6159 
6160 	/*
6161 	 * Verify that we the target cgroup is writable for us. This is
6162 	 * usually done by the vfs layer but since we're not going through
6163 	 * the vfs layer here we need to do it "manually".
6164 	 */
6165 	ret = cgroup_may_write(dst_cgrp, sb);
6166 	if (ret)
6167 		goto err;
6168 
6169 	/*
6170 	 * Spawning a task directly into a cgroup works by passing a file
6171 	 * descriptor to the target cgroup directory. This can even be an O_PATH
6172 	 * file descriptor. But it can never be a cgroup.procs file descriptor.
6173 	 * This was done on purpose so spawning into a cgroup could be
6174 	 * conceptualized as an atomic
6175 	 *
6176 	 *   fd = openat(dfd_cgroup, "cgroup.procs", ...);
6177 	 *   write(fd, <child-pid>, ...);
6178 	 *
6179 	 * sequence, i.e. it's a shorthand for the caller opening and writing
6180 	 * cgroup.procs of the cgroup indicated by @dfd_cgroup. This allows us
6181 	 * to always use the caller's credentials.
6182 	 */
6183 	ret = cgroup_attach_permissions(cset->dfl_cgrp, dst_cgrp, sb,
6184 					!(kargs->flags & CLONE_THREAD),
6185 					current->nsproxy->cgroup_ns);
6186 	if (ret)
6187 		goto err;
6188 
6189 	kargs->cset = find_css_set(cset, dst_cgrp);
6190 	if (!kargs->cset) {
6191 		ret = -ENOMEM;
6192 		goto err;
6193 	}
6194 
6195 	put_css_set(cset);
6196 	fput(f);
6197 	kargs->cgrp = dst_cgrp;
6198 	return ret;
6199 
6200 err:
6201 	cgroup_threadgroup_change_end(current);
6202 	mutex_unlock(&cgroup_mutex);
6203 	if (f)
6204 		fput(f);
6205 	if (dst_cgrp)
6206 		cgroup_put(dst_cgrp);
6207 	put_css_set(cset);
6208 	if (kargs->cset)
6209 		put_css_set(kargs->cset);
6210 	return ret;
6211 }
6212 
6213 /**
6214  * cgroup_css_set_put_fork - drop references we took during fork
6215  * @kargs: the arguments passed to create the child process
6216  *
6217  * Drop references to the prepared css_set and target cgroup if
6218  * CLONE_INTO_CGROUP was requested.
6219  */
6220 static void cgroup_css_set_put_fork(struct kernel_clone_args *kargs)
6221 	__releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
6222 {
6223 	cgroup_threadgroup_change_end(current);
6224 
6225 	if (kargs->flags & CLONE_INTO_CGROUP) {
6226 		struct cgroup *cgrp = kargs->cgrp;
6227 		struct css_set *cset = kargs->cset;
6228 
6229 		mutex_unlock(&cgroup_mutex);
6230 
6231 		if (cset) {
6232 			put_css_set(cset);
6233 			kargs->cset = NULL;
6234 		}
6235 
6236 		if (cgrp) {
6237 			cgroup_put(cgrp);
6238 			kargs->cgrp = NULL;
6239 		}
6240 	}
6241 }
6242 
6243 /**
6244  * cgroup_can_fork - called on a new task before the process is exposed
6245  * @child: the child process
6246  * @kargs: the arguments passed to create the child process
6247  *
6248  * This prepares a new css_set for the child process which the child will
6249  * be attached to in cgroup_post_fork().
6250  * This calls the subsystem can_fork() callbacks. If the cgroup_can_fork()
6251  * callback returns an error, the fork aborts with that error code. This
6252  * allows for a cgroup subsystem to conditionally allow or deny new forks.
6253  */
6254 int cgroup_can_fork(struct task_struct *child, struct kernel_clone_args *kargs)
6255 {
6256 	struct cgroup_subsys *ss;
6257 	int i, j, ret;
6258 
6259 	ret = cgroup_css_set_fork(kargs);
6260 	if (ret)
6261 		return ret;
6262 
6263 	do_each_subsys_mask(ss, i, have_canfork_callback) {
6264 		ret = ss->can_fork(child, kargs->cset);
6265 		if (ret)
6266 			goto out_revert;
6267 	} while_each_subsys_mask();
6268 
6269 	return 0;
6270 
6271 out_revert:
6272 	for_each_subsys(ss, j) {
6273 		if (j >= i)
6274 			break;
6275 		if (ss->cancel_fork)
6276 			ss->cancel_fork(child, kargs->cset);
6277 	}
6278 
6279 	cgroup_css_set_put_fork(kargs);
6280 
6281 	return ret;
6282 }
6283 
6284 /**
6285  * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
6286  * @child: the child process
6287  * @kargs: the arguments passed to create the child process
6288  *
6289  * This calls the cancel_fork() callbacks if a fork failed *after*
6290  * cgroup_can_fork() succeeded and cleans up references we took to
6291  * prepare a new css_set for the child process in cgroup_can_fork().
6292  */
6293 void cgroup_cancel_fork(struct task_struct *child,
6294 			struct kernel_clone_args *kargs)
6295 {
6296 	struct cgroup_subsys *ss;
6297 	int i;
6298 
6299 	for_each_subsys(ss, i)
6300 		if (ss->cancel_fork)
6301 			ss->cancel_fork(child, kargs->cset);
6302 
6303 	cgroup_css_set_put_fork(kargs);
6304 }
6305 
6306 /**
6307  * cgroup_post_fork - finalize cgroup setup for the child process
6308  * @child: the child process
6309  * @kargs: the arguments passed to create the child process
6310  *
6311  * Attach the child process to its css_set calling the subsystem fork()
6312  * callbacks.
6313  */
6314 void cgroup_post_fork(struct task_struct *child,
6315 		      struct kernel_clone_args *kargs)
6316 	__releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
6317 {
6318 	unsigned long cgrp_flags = 0;
6319 	bool kill = false;
6320 	struct cgroup_subsys *ss;
6321 	struct css_set *cset;
6322 	int i;
6323 
6324 	cset = kargs->cset;
6325 	kargs->cset = NULL;
6326 
6327 	spin_lock_irq(&css_set_lock);
6328 
6329 	/* init tasks are special, only link regular threads */
6330 	if (likely(child->pid)) {
6331 		if (kargs->cgrp)
6332 			cgrp_flags = kargs->cgrp->flags;
6333 		else
6334 			cgrp_flags = cset->dfl_cgrp->flags;
6335 
6336 		WARN_ON_ONCE(!list_empty(&child->cg_list));
6337 		cset->nr_tasks++;
6338 		css_set_move_task(child, NULL, cset, false);
6339 	} else {
6340 		put_css_set(cset);
6341 		cset = NULL;
6342 	}
6343 
6344 	if (!(child->flags & PF_KTHREAD)) {
6345 		if (unlikely(test_bit(CGRP_FREEZE, &cgrp_flags))) {
6346 			/*
6347 			 * If the cgroup has to be frozen, the new task has
6348 			 * too. Let's set the JOBCTL_TRAP_FREEZE jobctl bit to
6349 			 * get the task into the frozen state.
6350 			 */
6351 			spin_lock(&child->sighand->siglock);
6352 			WARN_ON_ONCE(child->frozen);
6353 			child->jobctl |= JOBCTL_TRAP_FREEZE;
6354 			spin_unlock(&child->sighand->siglock);
6355 
6356 			/*
6357 			 * Calling cgroup_update_frozen() isn't required here,
6358 			 * because it will be called anyway a bit later from
6359 			 * do_freezer_trap(). So we avoid cgroup's transient
6360 			 * switch from the frozen state and back.
6361 			 */
6362 		}
6363 
6364 		/*
6365 		 * If the cgroup is to be killed notice it now and take the
6366 		 * child down right after we finished preparing it for
6367 		 * userspace.
6368 		 */
6369 		kill = test_bit(CGRP_KILL, &cgrp_flags);
6370 	}
6371 
6372 	spin_unlock_irq(&css_set_lock);
6373 
6374 	/*
6375 	 * Call ss->fork().  This must happen after @child is linked on
6376 	 * css_set; otherwise, @child might change state between ->fork()
6377 	 * and addition to css_set.
6378 	 */
6379 	do_each_subsys_mask(ss, i, have_fork_callback) {
6380 		ss->fork(child);
6381 	} while_each_subsys_mask();
6382 
6383 	/* Make the new cset the root_cset of the new cgroup namespace. */
6384 	if (kargs->flags & CLONE_NEWCGROUP) {
6385 		struct css_set *rcset = child->nsproxy->cgroup_ns->root_cset;
6386 
6387 		get_css_set(cset);
6388 		child->nsproxy->cgroup_ns->root_cset = cset;
6389 		put_css_set(rcset);
6390 	}
6391 
6392 	/* Cgroup has to be killed so take down child immediately. */
6393 	if (unlikely(kill))
6394 		do_send_sig_info(SIGKILL, SEND_SIG_NOINFO, child, PIDTYPE_TGID);
6395 
6396 	cgroup_css_set_put_fork(kargs);
6397 }
6398 
6399 /**
6400  * cgroup_exit - detach cgroup from exiting task
6401  * @tsk: pointer to task_struct of exiting process
6402  *
6403  * Description: Detach cgroup from @tsk.
6404  *
6405  */
6406 void cgroup_exit(struct task_struct *tsk)
6407 {
6408 	struct cgroup_subsys *ss;
6409 	struct css_set *cset;
6410 	int i;
6411 
6412 	spin_lock_irq(&css_set_lock);
6413 
6414 	WARN_ON_ONCE(list_empty(&tsk->cg_list));
6415 	cset = task_css_set(tsk);
6416 	css_set_move_task(tsk, cset, NULL, false);
6417 	list_add_tail(&tsk->cg_list, &cset->dying_tasks);
6418 	cset->nr_tasks--;
6419 
6420 	WARN_ON_ONCE(cgroup_task_frozen(tsk));
6421 	if (unlikely(!(tsk->flags & PF_KTHREAD) &&
6422 		     test_bit(CGRP_FREEZE, &task_dfl_cgroup(tsk)->flags)))
6423 		cgroup_update_frozen(task_dfl_cgroup(tsk));
6424 
6425 	spin_unlock_irq(&css_set_lock);
6426 
6427 	/* see cgroup_post_fork() for details */
6428 	do_each_subsys_mask(ss, i, have_exit_callback) {
6429 		ss->exit(tsk);
6430 	} while_each_subsys_mask();
6431 }
6432 
6433 void cgroup_release(struct task_struct *task)
6434 {
6435 	struct cgroup_subsys *ss;
6436 	int ssid;
6437 
6438 	do_each_subsys_mask(ss, ssid, have_release_callback) {
6439 		ss->release(task);
6440 	} while_each_subsys_mask();
6441 
6442 	spin_lock_irq(&css_set_lock);
6443 	css_set_skip_task_iters(task_css_set(task), task);
6444 	list_del_init(&task->cg_list);
6445 	spin_unlock_irq(&css_set_lock);
6446 }
6447 
6448 void cgroup_free(struct task_struct *task)
6449 {
6450 	struct css_set *cset = task_css_set(task);
6451 	put_css_set(cset);
6452 }
6453 
6454 static int __init cgroup_disable(char *str)
6455 {
6456 	struct cgroup_subsys *ss;
6457 	char *token;
6458 	int i;
6459 
6460 	while ((token = strsep(&str, ",")) != NULL) {
6461 		if (!*token)
6462 			continue;
6463 
6464 		for_each_subsys(ss, i) {
6465 			if (strcmp(token, ss->name) &&
6466 			    strcmp(token, ss->legacy_name))
6467 				continue;
6468 
6469 			static_branch_disable(cgroup_subsys_enabled_key[i]);
6470 			pr_info("Disabling %s control group subsystem\n",
6471 				ss->name);
6472 		}
6473 
6474 		for (i = 0; i < OPT_FEATURE_COUNT; i++) {
6475 			if (strcmp(token, cgroup_opt_feature_names[i]))
6476 				continue;
6477 			cgroup_feature_disable_mask |= 1 << i;
6478 			pr_info("Disabling %s control group feature\n",
6479 				cgroup_opt_feature_names[i]);
6480 			break;
6481 		}
6482 	}
6483 	return 1;
6484 }
6485 __setup("cgroup_disable=", cgroup_disable);
6486 
6487 void __init __weak enable_debug_cgroup(void) { }
6488 
6489 static int __init enable_cgroup_debug(char *str)
6490 {
6491 	cgroup_debug = true;
6492 	enable_debug_cgroup();
6493 	return 1;
6494 }
6495 __setup("cgroup_debug", enable_cgroup_debug);
6496 
6497 /**
6498  * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
6499  * @dentry: directory dentry of interest
6500  * @ss: subsystem of interest
6501  *
6502  * If @dentry is a directory for a cgroup which has @ss enabled on it, try
6503  * to get the corresponding css and return it.  If such css doesn't exist
6504  * or can't be pinned, an ERR_PTR value is returned.
6505  */
6506 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
6507 						       struct cgroup_subsys *ss)
6508 {
6509 	struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
6510 	struct file_system_type *s_type = dentry->d_sb->s_type;
6511 	struct cgroup_subsys_state *css = NULL;
6512 	struct cgroup *cgrp;
6513 
6514 	/* is @dentry a cgroup dir? */
6515 	if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
6516 	    !kn || kernfs_type(kn) != KERNFS_DIR)
6517 		return ERR_PTR(-EBADF);
6518 
6519 	rcu_read_lock();
6520 
6521 	/*
6522 	 * This path doesn't originate from kernfs and @kn could already
6523 	 * have been or be removed at any point.  @kn->priv is RCU
6524 	 * protected for this access.  See css_release_work_fn() for details.
6525 	 */
6526 	cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6527 	if (cgrp)
6528 		css = cgroup_css(cgrp, ss);
6529 
6530 	if (!css || !css_tryget_online(css))
6531 		css = ERR_PTR(-ENOENT);
6532 
6533 	rcu_read_unlock();
6534 	return css;
6535 }
6536 
6537 /**
6538  * css_from_id - lookup css by id
6539  * @id: the cgroup id
6540  * @ss: cgroup subsys to be looked into
6541  *
6542  * Returns the css if there's valid one with @id, otherwise returns NULL.
6543  * Should be called under rcu_read_lock().
6544  */
6545 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
6546 {
6547 	WARN_ON_ONCE(!rcu_read_lock_held());
6548 	return idr_find(&ss->css_idr, id);
6549 }
6550 
6551 /**
6552  * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
6553  * @path: path on the default hierarchy
6554  *
6555  * Find the cgroup at @path on the default hierarchy, increment its
6556  * reference count and return it.  Returns pointer to the found cgroup on
6557  * success, ERR_PTR(-ENOENT) if @path doesn't exist or if the cgroup has already
6558  * been released and ERR_PTR(-ENOTDIR) if @path points to a non-directory.
6559  */
6560 struct cgroup *cgroup_get_from_path(const char *path)
6561 {
6562 	struct kernfs_node *kn;
6563 	struct cgroup *cgrp = ERR_PTR(-ENOENT);
6564 
6565 	kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path);
6566 	if (!kn)
6567 		goto out;
6568 
6569 	if (kernfs_type(kn) != KERNFS_DIR) {
6570 		cgrp = ERR_PTR(-ENOTDIR);
6571 		goto out_kernfs;
6572 	}
6573 
6574 	rcu_read_lock();
6575 
6576 	cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6577 	if (!cgrp || !cgroup_tryget(cgrp))
6578 		cgrp = ERR_PTR(-ENOENT);
6579 
6580 	rcu_read_unlock();
6581 
6582 out_kernfs:
6583 	kernfs_put(kn);
6584 out:
6585 	return cgrp;
6586 }
6587 EXPORT_SYMBOL_GPL(cgroup_get_from_path);
6588 
6589 /**
6590  * cgroup_get_from_fd - get a cgroup pointer from a fd
6591  * @fd: fd obtained by open(cgroup2_dir)
6592  *
6593  * Find the cgroup from a fd which should be obtained
6594  * by opening a cgroup directory.  Returns a pointer to the
6595  * cgroup on success. ERR_PTR is returned if the cgroup
6596  * cannot be found.
6597  */
6598 struct cgroup *cgroup_get_from_fd(int fd)
6599 {
6600 	struct cgroup *cgrp;
6601 	struct file *f;
6602 
6603 	f = fget_raw(fd);
6604 	if (!f)
6605 		return ERR_PTR(-EBADF);
6606 
6607 	cgrp = cgroup_get_from_file(f);
6608 	fput(f);
6609 	return cgrp;
6610 }
6611 EXPORT_SYMBOL_GPL(cgroup_get_from_fd);
6612 
6613 static u64 power_of_ten(int power)
6614 {
6615 	u64 v = 1;
6616 	while (power--)
6617 		v *= 10;
6618 	return v;
6619 }
6620 
6621 /**
6622  * cgroup_parse_float - parse a floating number
6623  * @input: input string
6624  * @dec_shift: number of decimal digits to shift
6625  * @v: output
6626  *
6627  * Parse a decimal floating point number in @input and store the result in
6628  * @v with decimal point right shifted @dec_shift times.  For example, if
6629  * @input is "12.3456" and @dec_shift is 3, *@v will be set to 12345.
6630  * Returns 0 on success, -errno otherwise.
6631  *
6632  * There's nothing cgroup specific about this function except that it's
6633  * currently the only user.
6634  */
6635 int cgroup_parse_float(const char *input, unsigned dec_shift, s64 *v)
6636 {
6637 	s64 whole, frac = 0;
6638 	int fstart = 0, fend = 0, flen;
6639 
6640 	if (!sscanf(input, "%lld.%n%lld%n", &whole, &fstart, &frac, &fend))
6641 		return -EINVAL;
6642 	if (frac < 0)
6643 		return -EINVAL;
6644 
6645 	flen = fend > fstart ? fend - fstart : 0;
6646 	if (flen < dec_shift)
6647 		frac *= power_of_ten(dec_shift - flen);
6648 	else
6649 		frac = DIV_ROUND_CLOSEST_ULL(frac, power_of_ten(flen - dec_shift));
6650 
6651 	*v = whole * power_of_ten(dec_shift) + frac;
6652 	return 0;
6653 }
6654 
6655 /*
6656  * sock->sk_cgrp_data handling.  For more info, see sock_cgroup_data
6657  * definition in cgroup-defs.h.
6658  */
6659 #ifdef CONFIG_SOCK_CGROUP_DATA
6660 
6661 void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
6662 {
6663 	struct cgroup *cgroup;
6664 
6665 	rcu_read_lock();
6666 	/* Don't associate the sock with unrelated interrupted task's cgroup. */
6667 	if (in_interrupt()) {
6668 		cgroup = &cgrp_dfl_root.cgrp;
6669 		cgroup_get(cgroup);
6670 		goto out;
6671 	}
6672 
6673 	while (true) {
6674 		struct css_set *cset;
6675 
6676 		cset = task_css_set(current);
6677 		if (likely(cgroup_tryget(cset->dfl_cgrp))) {
6678 			cgroup = cset->dfl_cgrp;
6679 			break;
6680 		}
6681 		cpu_relax();
6682 	}
6683 out:
6684 	skcd->cgroup = cgroup;
6685 	cgroup_bpf_get(cgroup);
6686 	rcu_read_unlock();
6687 }
6688 
6689 void cgroup_sk_clone(struct sock_cgroup_data *skcd)
6690 {
6691 	struct cgroup *cgrp = sock_cgroup_ptr(skcd);
6692 
6693 	/*
6694 	 * We might be cloning a socket which is left in an empty
6695 	 * cgroup and the cgroup might have already been rmdir'd.
6696 	 * Don't use cgroup_get_live().
6697 	 */
6698 	cgroup_get(cgrp);
6699 	cgroup_bpf_get(cgrp);
6700 }
6701 
6702 void cgroup_sk_free(struct sock_cgroup_data *skcd)
6703 {
6704 	struct cgroup *cgrp = sock_cgroup_ptr(skcd);
6705 
6706 	cgroup_bpf_put(cgrp);
6707 	cgroup_put(cgrp);
6708 }
6709 
6710 #endif	/* CONFIG_SOCK_CGROUP_DATA */
6711 
6712 #ifdef CONFIG_SYSFS
6713 static ssize_t show_delegatable_files(struct cftype *files, char *buf,
6714 				      ssize_t size, const char *prefix)
6715 {
6716 	struct cftype *cft;
6717 	ssize_t ret = 0;
6718 
6719 	for (cft = files; cft && cft->name[0] != '\0'; cft++) {
6720 		if (!(cft->flags & CFTYPE_NS_DELEGATABLE))
6721 			continue;
6722 
6723 		if ((cft->flags & CFTYPE_PRESSURE) && !cgroup_psi_enabled())
6724 			continue;
6725 
6726 		if (prefix)
6727 			ret += snprintf(buf + ret, size - ret, "%s.", prefix);
6728 
6729 		ret += snprintf(buf + ret, size - ret, "%s\n", cft->name);
6730 
6731 		if (WARN_ON(ret >= size))
6732 			break;
6733 	}
6734 
6735 	return ret;
6736 }
6737 
6738 static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr,
6739 			      char *buf)
6740 {
6741 	struct cgroup_subsys *ss;
6742 	int ssid;
6743 	ssize_t ret = 0;
6744 
6745 	ret = show_delegatable_files(cgroup_base_files, buf, PAGE_SIZE - ret,
6746 				     NULL);
6747 
6748 	for_each_subsys(ss, ssid)
6749 		ret += show_delegatable_files(ss->dfl_cftypes, buf + ret,
6750 					      PAGE_SIZE - ret,
6751 					      cgroup_subsys_name[ssid]);
6752 
6753 	return ret;
6754 }
6755 static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate);
6756 
6757 static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr,
6758 			     char *buf)
6759 {
6760 	return snprintf(buf, PAGE_SIZE,
6761 			"nsdelegate\n"
6762 			"memory_localevents\n"
6763 			"memory_recursiveprot\n");
6764 }
6765 static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features);
6766 
6767 static struct attribute *cgroup_sysfs_attrs[] = {
6768 	&cgroup_delegate_attr.attr,
6769 	&cgroup_features_attr.attr,
6770 	NULL,
6771 };
6772 
6773 static const struct attribute_group cgroup_sysfs_attr_group = {
6774 	.attrs = cgroup_sysfs_attrs,
6775 	.name = "cgroup",
6776 };
6777 
6778 static int __init cgroup_sysfs_init(void)
6779 {
6780 	return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group);
6781 }
6782 subsys_initcall(cgroup_sysfs_init);
6783 
6784 #endif /* CONFIG_SYSFS */
6785