1 /* 2 * Generic process-grouping system. 3 * 4 * Based originally on the cpuset system, extracted by Paul Menage 5 * Copyright (C) 2006 Google, Inc 6 * 7 * Notifications support 8 * Copyright (C) 2009 Nokia Corporation 9 * Author: Kirill A. Shutemov 10 * 11 * Copyright notices from the original cpuset code: 12 * -------------------------------------------------- 13 * Copyright (C) 2003 BULL SA. 14 * Copyright (C) 2004-2006 Silicon Graphics, Inc. 15 * 16 * Portions derived from Patrick Mochel's sysfs code. 17 * sysfs is Copyright (c) 2001-3 Patrick Mochel 18 * 19 * 2003-10-10 Written by Simon Derr. 20 * 2003-10-22 Updates by Stephen Hemminger. 21 * 2004 May-July Rework by Paul Jackson. 22 * --------------------------------------------------- 23 * 24 * This file is subject to the terms and conditions of the GNU General Public 25 * License. See the file COPYING in the main directory of the Linux 26 * distribution for more details. 27 */ 28 29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 30 31 #include "cgroup-internal.h" 32 33 #include <linux/cred.h> 34 #include <linux/errno.h> 35 #include <linux/init_task.h> 36 #include <linux/kernel.h> 37 #include <linux/magic.h> 38 #include <linux/mutex.h> 39 #include <linux/mount.h> 40 #include <linux/pagemap.h> 41 #include <linux/proc_fs.h> 42 #include <linux/rcupdate.h> 43 #include <linux/sched.h> 44 #include <linux/sched/task.h> 45 #include <linux/slab.h> 46 #include <linux/spinlock.h> 47 #include <linux/percpu-rwsem.h> 48 #include <linux/string.h> 49 #include <linux/hashtable.h> 50 #include <linux/idr.h> 51 #include <linux/kthread.h> 52 #include <linux/atomic.h> 53 #include <linux/cpuset.h> 54 #include <linux/proc_ns.h> 55 #include <linux/nsproxy.h> 56 #include <linux/file.h> 57 #include <linux/fs_parser.h> 58 #include <linux/sched/cputime.h> 59 #include <linux/psi.h> 60 #include <net/sock.h> 61 62 #define CREATE_TRACE_POINTS 63 #include <trace/events/cgroup.h> 64 65 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \ 66 MAX_CFTYPE_NAME + 2) 67 /* let's not notify more than 100 times per second */ 68 #define CGROUP_FILE_NOTIFY_MIN_INTV DIV_ROUND_UP(HZ, 100) 69 70 /* 71 * cgroup_mutex is the master lock. Any modification to cgroup or its 72 * hierarchy must be performed while holding it. 73 * 74 * css_set_lock protects task->cgroups pointer, the list of css_set 75 * objects, and the chain of tasks off each css_set. 76 * 77 * These locks are exported if CONFIG_PROVE_RCU so that accessors in 78 * cgroup.h can use them for lockdep annotations. 79 */ 80 DEFINE_MUTEX(cgroup_mutex); 81 DEFINE_SPINLOCK(css_set_lock); 82 83 #ifdef CONFIG_PROVE_RCU 84 EXPORT_SYMBOL_GPL(cgroup_mutex); 85 EXPORT_SYMBOL_GPL(css_set_lock); 86 #endif 87 88 DEFINE_SPINLOCK(trace_cgroup_path_lock); 89 char trace_cgroup_path[TRACE_CGROUP_PATH_LEN]; 90 bool cgroup_debug __read_mostly; 91 92 /* 93 * Protects cgroup_idr and css_idr so that IDs can be released without 94 * grabbing cgroup_mutex. 95 */ 96 static DEFINE_SPINLOCK(cgroup_idr_lock); 97 98 /* 99 * Protects cgroup_file->kn for !self csses. It synchronizes notifications 100 * against file removal/re-creation across css hiding. 101 */ 102 static DEFINE_SPINLOCK(cgroup_file_kn_lock); 103 104 DEFINE_PERCPU_RWSEM(cgroup_threadgroup_rwsem); 105 106 #define cgroup_assert_mutex_or_rcu_locked() \ 107 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \ 108 !lockdep_is_held(&cgroup_mutex), \ 109 "cgroup_mutex or RCU read lock required"); 110 111 /* 112 * cgroup destruction makes heavy use of work items and there can be a lot 113 * of concurrent destructions. Use a separate workqueue so that cgroup 114 * destruction work items don't end up filling up max_active of system_wq 115 * which may lead to deadlock. 116 */ 117 static struct workqueue_struct *cgroup_destroy_wq; 118 119 /* generate an array of cgroup subsystem pointers */ 120 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys, 121 struct cgroup_subsys *cgroup_subsys[] = { 122 #include <linux/cgroup_subsys.h> 123 }; 124 #undef SUBSYS 125 126 /* array of cgroup subsystem names */ 127 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x, 128 static const char *cgroup_subsys_name[] = { 129 #include <linux/cgroup_subsys.h> 130 }; 131 #undef SUBSYS 132 133 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */ 134 #define SUBSYS(_x) \ 135 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \ 136 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \ 137 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \ 138 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key); 139 #include <linux/cgroup_subsys.h> 140 #undef SUBSYS 141 142 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key, 143 static struct static_key_true *cgroup_subsys_enabled_key[] = { 144 #include <linux/cgroup_subsys.h> 145 }; 146 #undef SUBSYS 147 148 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key, 149 static struct static_key_true *cgroup_subsys_on_dfl_key[] = { 150 #include <linux/cgroup_subsys.h> 151 }; 152 #undef SUBSYS 153 154 static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu); 155 156 /* 157 * The default hierarchy, reserved for the subsystems that are otherwise 158 * unattached - it never has more than a single cgroup, and all tasks are 159 * part of that cgroup. 160 */ 161 struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu }; 162 EXPORT_SYMBOL_GPL(cgrp_dfl_root); 163 164 /* 165 * The default hierarchy always exists but is hidden until mounted for the 166 * first time. This is for backward compatibility. 167 */ 168 static bool cgrp_dfl_visible; 169 170 /* some controllers are not supported in the default hierarchy */ 171 static u16 cgrp_dfl_inhibit_ss_mask; 172 173 /* some controllers are implicitly enabled on the default hierarchy */ 174 static u16 cgrp_dfl_implicit_ss_mask; 175 176 /* some controllers can be threaded on the default hierarchy */ 177 static u16 cgrp_dfl_threaded_ss_mask; 178 179 /* The list of hierarchy roots */ 180 LIST_HEAD(cgroup_roots); 181 static int cgroup_root_count; 182 183 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */ 184 static DEFINE_IDR(cgroup_hierarchy_idr); 185 186 /* 187 * Assign a monotonically increasing serial number to csses. It guarantees 188 * cgroups with bigger numbers are newer than those with smaller numbers. 189 * Also, as csses are always appended to the parent's ->children list, it 190 * guarantees that sibling csses are always sorted in the ascending serial 191 * number order on the list. Protected by cgroup_mutex. 192 */ 193 static u64 css_serial_nr_next = 1; 194 195 /* 196 * These bitmasks identify subsystems with specific features to avoid 197 * having to do iterative checks repeatedly. 198 */ 199 static u16 have_fork_callback __read_mostly; 200 static u16 have_exit_callback __read_mostly; 201 static u16 have_release_callback __read_mostly; 202 static u16 have_canfork_callback __read_mostly; 203 204 /* cgroup namespace for init task */ 205 struct cgroup_namespace init_cgroup_ns = { 206 .count = REFCOUNT_INIT(2), 207 .user_ns = &init_user_ns, 208 .ns.ops = &cgroupns_operations, 209 .ns.inum = PROC_CGROUP_INIT_INO, 210 .root_cset = &init_css_set, 211 }; 212 213 static struct file_system_type cgroup2_fs_type; 214 static struct cftype cgroup_base_files[]; 215 216 static int cgroup_apply_control(struct cgroup *cgrp); 217 static void cgroup_finalize_control(struct cgroup *cgrp, int ret); 218 static void css_task_iter_skip(struct css_task_iter *it, 219 struct task_struct *task); 220 static int cgroup_destroy_locked(struct cgroup *cgrp); 221 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp, 222 struct cgroup_subsys *ss); 223 static void css_release(struct percpu_ref *ref); 224 static void kill_css(struct cgroup_subsys_state *css); 225 static int cgroup_addrm_files(struct cgroup_subsys_state *css, 226 struct cgroup *cgrp, struct cftype cfts[], 227 bool is_add); 228 229 /** 230 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID 231 * @ssid: subsys ID of interest 232 * 233 * cgroup_subsys_enabled() can only be used with literal subsys names which 234 * is fine for individual subsystems but unsuitable for cgroup core. This 235 * is slower static_key_enabled() based test indexed by @ssid. 236 */ 237 bool cgroup_ssid_enabled(int ssid) 238 { 239 if (CGROUP_SUBSYS_COUNT == 0) 240 return false; 241 242 return static_key_enabled(cgroup_subsys_enabled_key[ssid]); 243 } 244 245 /** 246 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy 247 * @cgrp: the cgroup of interest 248 * 249 * The default hierarchy is the v2 interface of cgroup and this function 250 * can be used to test whether a cgroup is on the default hierarchy for 251 * cases where a subsystem should behave differnetly depending on the 252 * interface version. 253 * 254 * The set of behaviors which change on the default hierarchy are still 255 * being determined and the mount option is prefixed with __DEVEL__. 256 * 257 * List of changed behaviors: 258 * 259 * - Mount options "noprefix", "xattr", "clone_children", "release_agent" 260 * and "name" are disallowed. 261 * 262 * - When mounting an existing superblock, mount options should match. 263 * 264 * - Remount is disallowed. 265 * 266 * - rename(2) is disallowed. 267 * 268 * - "tasks" is removed. Everything should be at process granularity. Use 269 * "cgroup.procs" instead. 270 * 271 * - "cgroup.procs" is not sorted. pids will be unique unless they got 272 * recycled inbetween reads. 273 * 274 * - "release_agent" and "notify_on_release" are removed. Replacement 275 * notification mechanism will be implemented. 276 * 277 * - "cgroup.clone_children" is removed. 278 * 279 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup 280 * and its descendants contain no task; otherwise, 1. The file also 281 * generates kernfs notification which can be monitored through poll and 282 * [di]notify when the value of the file changes. 283 * 284 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and 285 * take masks of ancestors with non-empty cpus/mems, instead of being 286 * moved to an ancestor. 287 * 288 * - cpuset: a task can be moved into an empty cpuset, and again it takes 289 * masks of ancestors. 290 * 291 * - memcg: use_hierarchy is on by default and the cgroup file for the flag 292 * is not created. 293 * 294 * - blkcg: blk-throttle becomes properly hierarchical. 295 * 296 * - debug: disallowed on the default hierarchy. 297 */ 298 bool cgroup_on_dfl(const struct cgroup *cgrp) 299 { 300 return cgrp->root == &cgrp_dfl_root; 301 } 302 303 /* IDR wrappers which synchronize using cgroup_idr_lock */ 304 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end, 305 gfp_t gfp_mask) 306 { 307 int ret; 308 309 idr_preload(gfp_mask); 310 spin_lock_bh(&cgroup_idr_lock); 311 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM); 312 spin_unlock_bh(&cgroup_idr_lock); 313 idr_preload_end(); 314 return ret; 315 } 316 317 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id) 318 { 319 void *ret; 320 321 spin_lock_bh(&cgroup_idr_lock); 322 ret = idr_replace(idr, ptr, id); 323 spin_unlock_bh(&cgroup_idr_lock); 324 return ret; 325 } 326 327 static void cgroup_idr_remove(struct idr *idr, int id) 328 { 329 spin_lock_bh(&cgroup_idr_lock); 330 idr_remove(idr, id); 331 spin_unlock_bh(&cgroup_idr_lock); 332 } 333 334 static bool cgroup_has_tasks(struct cgroup *cgrp) 335 { 336 return cgrp->nr_populated_csets; 337 } 338 339 bool cgroup_is_threaded(struct cgroup *cgrp) 340 { 341 return cgrp->dom_cgrp != cgrp; 342 } 343 344 /* can @cgrp host both domain and threaded children? */ 345 static bool cgroup_is_mixable(struct cgroup *cgrp) 346 { 347 /* 348 * Root isn't under domain level resource control exempting it from 349 * the no-internal-process constraint, so it can serve as a thread 350 * root and a parent of resource domains at the same time. 351 */ 352 return !cgroup_parent(cgrp); 353 } 354 355 /* can @cgrp become a thread root? should always be true for a thread root */ 356 static bool cgroup_can_be_thread_root(struct cgroup *cgrp) 357 { 358 /* mixables don't care */ 359 if (cgroup_is_mixable(cgrp)) 360 return true; 361 362 /* domain roots can't be nested under threaded */ 363 if (cgroup_is_threaded(cgrp)) 364 return false; 365 366 /* can only have either domain or threaded children */ 367 if (cgrp->nr_populated_domain_children) 368 return false; 369 370 /* and no domain controllers can be enabled */ 371 if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask) 372 return false; 373 374 return true; 375 } 376 377 /* is @cgrp root of a threaded subtree? */ 378 bool cgroup_is_thread_root(struct cgroup *cgrp) 379 { 380 /* thread root should be a domain */ 381 if (cgroup_is_threaded(cgrp)) 382 return false; 383 384 /* a domain w/ threaded children is a thread root */ 385 if (cgrp->nr_threaded_children) 386 return true; 387 388 /* 389 * A domain which has tasks and explicit threaded controllers 390 * enabled is a thread root. 391 */ 392 if (cgroup_has_tasks(cgrp) && 393 (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask)) 394 return true; 395 396 return false; 397 } 398 399 /* a domain which isn't connected to the root w/o brekage can't be used */ 400 static bool cgroup_is_valid_domain(struct cgroup *cgrp) 401 { 402 /* the cgroup itself can be a thread root */ 403 if (cgroup_is_threaded(cgrp)) 404 return false; 405 406 /* but the ancestors can't be unless mixable */ 407 while ((cgrp = cgroup_parent(cgrp))) { 408 if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp)) 409 return false; 410 if (cgroup_is_threaded(cgrp)) 411 return false; 412 } 413 414 return true; 415 } 416 417 /* subsystems visibly enabled on a cgroup */ 418 static u16 cgroup_control(struct cgroup *cgrp) 419 { 420 struct cgroup *parent = cgroup_parent(cgrp); 421 u16 root_ss_mask = cgrp->root->subsys_mask; 422 423 if (parent) { 424 u16 ss_mask = parent->subtree_control; 425 426 /* threaded cgroups can only have threaded controllers */ 427 if (cgroup_is_threaded(cgrp)) 428 ss_mask &= cgrp_dfl_threaded_ss_mask; 429 return ss_mask; 430 } 431 432 if (cgroup_on_dfl(cgrp)) 433 root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask | 434 cgrp_dfl_implicit_ss_mask); 435 return root_ss_mask; 436 } 437 438 /* subsystems enabled on a cgroup */ 439 static u16 cgroup_ss_mask(struct cgroup *cgrp) 440 { 441 struct cgroup *parent = cgroup_parent(cgrp); 442 443 if (parent) { 444 u16 ss_mask = parent->subtree_ss_mask; 445 446 /* threaded cgroups can only have threaded controllers */ 447 if (cgroup_is_threaded(cgrp)) 448 ss_mask &= cgrp_dfl_threaded_ss_mask; 449 return ss_mask; 450 } 451 452 return cgrp->root->subsys_mask; 453 } 454 455 /** 456 * cgroup_css - obtain a cgroup's css for the specified subsystem 457 * @cgrp: the cgroup of interest 458 * @ss: the subsystem of interest (%NULL returns @cgrp->self) 459 * 460 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This 461 * function must be called either under cgroup_mutex or rcu_read_lock() and 462 * the caller is responsible for pinning the returned css if it wants to 463 * keep accessing it outside the said locks. This function may return 464 * %NULL if @cgrp doesn't have @subsys_id enabled. 465 */ 466 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp, 467 struct cgroup_subsys *ss) 468 { 469 if (ss) 470 return rcu_dereference_check(cgrp->subsys[ss->id], 471 lockdep_is_held(&cgroup_mutex)); 472 else 473 return &cgrp->self; 474 } 475 476 /** 477 * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem 478 * @cgrp: the cgroup of interest 479 * @ss: the subsystem of interest 480 * 481 * Find and get @cgrp's css assocaited with @ss. If the css doesn't exist 482 * or is offline, %NULL is returned. 483 */ 484 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp, 485 struct cgroup_subsys *ss) 486 { 487 struct cgroup_subsys_state *css; 488 489 rcu_read_lock(); 490 css = cgroup_css(cgrp, ss); 491 if (css && !css_tryget_online(css)) 492 css = NULL; 493 rcu_read_unlock(); 494 495 return css; 496 } 497 498 /** 499 * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss 500 * @cgrp: the cgroup of interest 501 * @ss: the subsystem of interest (%NULL returns @cgrp->self) 502 * 503 * Similar to cgroup_css() but returns the effective css, which is defined 504 * as the matching css of the nearest ancestor including self which has @ss 505 * enabled. If @ss is associated with the hierarchy @cgrp is on, this 506 * function is guaranteed to return non-NULL css. 507 */ 508 static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp, 509 struct cgroup_subsys *ss) 510 { 511 lockdep_assert_held(&cgroup_mutex); 512 513 if (!ss) 514 return &cgrp->self; 515 516 /* 517 * This function is used while updating css associations and thus 518 * can't test the csses directly. Test ss_mask. 519 */ 520 while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) { 521 cgrp = cgroup_parent(cgrp); 522 if (!cgrp) 523 return NULL; 524 } 525 526 return cgroup_css(cgrp, ss); 527 } 528 529 /** 530 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem 531 * @cgrp: the cgroup of interest 532 * @ss: the subsystem of interest 533 * 534 * Find and get the effective css of @cgrp for @ss. The effective css is 535 * defined as the matching css of the nearest ancestor including self which 536 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on, 537 * the root css is returned, so this function always returns a valid css. 538 * 539 * The returned css is not guaranteed to be online, and therefore it is the 540 * callers responsiblity to tryget a reference for it. 541 */ 542 struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp, 543 struct cgroup_subsys *ss) 544 { 545 struct cgroup_subsys_state *css; 546 547 do { 548 css = cgroup_css(cgrp, ss); 549 550 if (css) 551 return css; 552 cgrp = cgroup_parent(cgrp); 553 } while (cgrp); 554 555 return init_css_set.subsys[ss->id]; 556 } 557 558 /** 559 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem 560 * @cgrp: the cgroup of interest 561 * @ss: the subsystem of interest 562 * 563 * Find and get the effective css of @cgrp for @ss. The effective css is 564 * defined as the matching css of the nearest ancestor including self which 565 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on, 566 * the root css is returned, so this function always returns a valid css. 567 * The returned css must be put using css_put(). 568 */ 569 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp, 570 struct cgroup_subsys *ss) 571 { 572 struct cgroup_subsys_state *css; 573 574 rcu_read_lock(); 575 576 do { 577 css = cgroup_css(cgrp, ss); 578 579 if (css && css_tryget_online(css)) 580 goto out_unlock; 581 cgrp = cgroup_parent(cgrp); 582 } while (cgrp); 583 584 css = init_css_set.subsys[ss->id]; 585 css_get(css); 586 out_unlock: 587 rcu_read_unlock(); 588 return css; 589 } 590 591 static void cgroup_get_live(struct cgroup *cgrp) 592 { 593 WARN_ON_ONCE(cgroup_is_dead(cgrp)); 594 css_get(&cgrp->self); 595 } 596 597 /** 598 * __cgroup_task_count - count the number of tasks in a cgroup. The caller 599 * is responsible for taking the css_set_lock. 600 * @cgrp: the cgroup in question 601 */ 602 int __cgroup_task_count(const struct cgroup *cgrp) 603 { 604 int count = 0; 605 struct cgrp_cset_link *link; 606 607 lockdep_assert_held(&css_set_lock); 608 609 list_for_each_entry(link, &cgrp->cset_links, cset_link) 610 count += link->cset->nr_tasks; 611 612 return count; 613 } 614 615 /** 616 * cgroup_task_count - count the number of tasks in a cgroup. 617 * @cgrp: the cgroup in question 618 */ 619 int cgroup_task_count(const struct cgroup *cgrp) 620 { 621 int count; 622 623 spin_lock_irq(&css_set_lock); 624 count = __cgroup_task_count(cgrp); 625 spin_unlock_irq(&css_set_lock); 626 627 return count; 628 } 629 630 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of) 631 { 632 struct cgroup *cgrp = of->kn->parent->priv; 633 struct cftype *cft = of_cft(of); 634 635 /* 636 * This is open and unprotected implementation of cgroup_css(). 637 * seq_css() is only called from a kernfs file operation which has 638 * an active reference on the file. Because all the subsystem 639 * files are drained before a css is disassociated with a cgroup, 640 * the matching css from the cgroup's subsys table is guaranteed to 641 * be and stay valid until the enclosing operation is complete. 642 */ 643 if (cft->ss) 644 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]); 645 else 646 return &cgrp->self; 647 } 648 EXPORT_SYMBOL_GPL(of_css); 649 650 /** 651 * for_each_css - iterate all css's of a cgroup 652 * @css: the iteration cursor 653 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end 654 * @cgrp: the target cgroup to iterate css's of 655 * 656 * Should be called under cgroup_[tree_]mutex. 657 */ 658 #define for_each_css(css, ssid, cgrp) \ 659 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \ 660 if (!((css) = rcu_dereference_check( \ 661 (cgrp)->subsys[(ssid)], \ 662 lockdep_is_held(&cgroup_mutex)))) { } \ 663 else 664 665 /** 666 * for_each_e_css - iterate all effective css's of a cgroup 667 * @css: the iteration cursor 668 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end 669 * @cgrp: the target cgroup to iterate css's of 670 * 671 * Should be called under cgroup_[tree_]mutex. 672 */ 673 #define for_each_e_css(css, ssid, cgrp) \ 674 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \ 675 if (!((css) = cgroup_e_css_by_mask(cgrp, \ 676 cgroup_subsys[(ssid)]))) \ 677 ; \ 678 else 679 680 /** 681 * do_each_subsys_mask - filter for_each_subsys with a bitmask 682 * @ss: the iteration cursor 683 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end 684 * @ss_mask: the bitmask 685 * 686 * The block will only run for cases where the ssid-th bit (1 << ssid) of 687 * @ss_mask is set. 688 */ 689 #define do_each_subsys_mask(ss, ssid, ss_mask) do { \ 690 unsigned long __ss_mask = (ss_mask); \ 691 if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */ \ 692 (ssid) = 0; \ 693 break; \ 694 } \ 695 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \ 696 (ss) = cgroup_subsys[ssid]; \ 697 { 698 699 #define while_each_subsys_mask() \ 700 } \ 701 } \ 702 } while (false) 703 704 /* iterate over child cgrps, lock should be held throughout iteration */ 705 #define cgroup_for_each_live_child(child, cgrp) \ 706 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \ 707 if (({ lockdep_assert_held(&cgroup_mutex); \ 708 cgroup_is_dead(child); })) \ 709 ; \ 710 else 711 712 /* walk live descendants in preorder */ 713 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \ 714 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \ 715 if (({ lockdep_assert_held(&cgroup_mutex); \ 716 (dsct) = (d_css)->cgroup; \ 717 cgroup_is_dead(dsct); })) \ 718 ; \ 719 else 720 721 /* walk live descendants in postorder */ 722 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \ 723 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \ 724 if (({ lockdep_assert_held(&cgroup_mutex); \ 725 (dsct) = (d_css)->cgroup; \ 726 cgroup_is_dead(dsct); })) \ 727 ; \ 728 else 729 730 /* 731 * The default css_set - used by init and its children prior to any 732 * hierarchies being mounted. It contains a pointer to the root state 733 * for each subsystem. Also used to anchor the list of css_sets. Not 734 * reference-counted, to improve performance when child cgroups 735 * haven't been created. 736 */ 737 struct css_set init_css_set = { 738 .refcount = REFCOUNT_INIT(1), 739 .dom_cset = &init_css_set, 740 .tasks = LIST_HEAD_INIT(init_css_set.tasks), 741 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks), 742 .dying_tasks = LIST_HEAD_INIT(init_css_set.dying_tasks), 743 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters), 744 .threaded_csets = LIST_HEAD_INIT(init_css_set.threaded_csets), 745 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links), 746 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node), 747 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node), 748 749 /* 750 * The following field is re-initialized when this cset gets linked 751 * in cgroup_init(). However, let's initialize the field 752 * statically too so that the default cgroup can be accessed safely 753 * early during boot. 754 */ 755 .dfl_cgrp = &cgrp_dfl_root.cgrp, 756 }; 757 758 static int css_set_count = 1; /* 1 for init_css_set */ 759 760 static bool css_set_threaded(struct css_set *cset) 761 { 762 return cset->dom_cset != cset; 763 } 764 765 /** 766 * css_set_populated - does a css_set contain any tasks? 767 * @cset: target css_set 768 * 769 * css_set_populated() should be the same as !!cset->nr_tasks at steady 770 * state. However, css_set_populated() can be called while a task is being 771 * added to or removed from the linked list before the nr_tasks is 772 * properly updated. Hence, we can't just look at ->nr_tasks here. 773 */ 774 static bool css_set_populated(struct css_set *cset) 775 { 776 lockdep_assert_held(&css_set_lock); 777 778 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks); 779 } 780 781 /** 782 * cgroup_update_populated - update the populated count of a cgroup 783 * @cgrp: the target cgroup 784 * @populated: inc or dec populated count 785 * 786 * One of the css_sets associated with @cgrp is either getting its first 787 * task or losing the last. Update @cgrp->nr_populated_* accordingly. The 788 * count is propagated towards root so that a given cgroup's 789 * nr_populated_children is zero iff none of its descendants contain any 790 * tasks. 791 * 792 * @cgrp's interface file "cgroup.populated" is zero if both 793 * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and 794 * 1 otherwise. When the sum changes from or to zero, userland is notified 795 * that the content of the interface file has changed. This can be used to 796 * detect when @cgrp and its descendants become populated or empty. 797 */ 798 static void cgroup_update_populated(struct cgroup *cgrp, bool populated) 799 { 800 struct cgroup *child = NULL; 801 int adj = populated ? 1 : -1; 802 803 lockdep_assert_held(&css_set_lock); 804 805 do { 806 bool was_populated = cgroup_is_populated(cgrp); 807 808 if (!child) { 809 cgrp->nr_populated_csets += adj; 810 } else { 811 if (cgroup_is_threaded(child)) 812 cgrp->nr_populated_threaded_children += adj; 813 else 814 cgrp->nr_populated_domain_children += adj; 815 } 816 817 if (was_populated == cgroup_is_populated(cgrp)) 818 break; 819 820 cgroup1_check_for_release(cgrp); 821 TRACE_CGROUP_PATH(notify_populated, cgrp, 822 cgroup_is_populated(cgrp)); 823 cgroup_file_notify(&cgrp->events_file); 824 825 child = cgrp; 826 cgrp = cgroup_parent(cgrp); 827 } while (cgrp); 828 } 829 830 /** 831 * css_set_update_populated - update populated state of a css_set 832 * @cset: target css_set 833 * @populated: whether @cset is populated or depopulated 834 * 835 * @cset is either getting the first task or losing the last. Update the 836 * populated counters of all associated cgroups accordingly. 837 */ 838 static void css_set_update_populated(struct css_set *cset, bool populated) 839 { 840 struct cgrp_cset_link *link; 841 842 lockdep_assert_held(&css_set_lock); 843 844 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) 845 cgroup_update_populated(link->cgrp, populated); 846 } 847 848 /* 849 * @task is leaving, advance task iterators which are pointing to it so 850 * that they can resume at the next position. Advancing an iterator might 851 * remove it from the list, use safe walk. See css_task_iter_skip() for 852 * details. 853 */ 854 static void css_set_skip_task_iters(struct css_set *cset, 855 struct task_struct *task) 856 { 857 struct css_task_iter *it, *pos; 858 859 list_for_each_entry_safe(it, pos, &cset->task_iters, iters_node) 860 css_task_iter_skip(it, task); 861 } 862 863 /** 864 * css_set_move_task - move a task from one css_set to another 865 * @task: task being moved 866 * @from_cset: css_set @task currently belongs to (may be NULL) 867 * @to_cset: new css_set @task is being moved to (may be NULL) 868 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks 869 * 870 * Move @task from @from_cset to @to_cset. If @task didn't belong to any 871 * css_set, @from_cset can be NULL. If @task is being disassociated 872 * instead of moved, @to_cset can be NULL. 873 * 874 * This function automatically handles populated counter updates and 875 * css_task_iter adjustments but the caller is responsible for managing 876 * @from_cset and @to_cset's reference counts. 877 */ 878 static void css_set_move_task(struct task_struct *task, 879 struct css_set *from_cset, struct css_set *to_cset, 880 bool use_mg_tasks) 881 { 882 lockdep_assert_held(&css_set_lock); 883 884 if (to_cset && !css_set_populated(to_cset)) 885 css_set_update_populated(to_cset, true); 886 887 if (from_cset) { 888 WARN_ON_ONCE(list_empty(&task->cg_list)); 889 890 css_set_skip_task_iters(from_cset, task); 891 list_del_init(&task->cg_list); 892 if (!css_set_populated(from_cset)) 893 css_set_update_populated(from_cset, false); 894 } else { 895 WARN_ON_ONCE(!list_empty(&task->cg_list)); 896 } 897 898 if (to_cset) { 899 /* 900 * We are synchronized through cgroup_threadgroup_rwsem 901 * against PF_EXITING setting such that we can't race 902 * against cgroup_exit()/cgroup_free() dropping the css_set. 903 */ 904 WARN_ON_ONCE(task->flags & PF_EXITING); 905 906 cgroup_move_task(task, to_cset); 907 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks : 908 &to_cset->tasks); 909 } 910 } 911 912 /* 913 * hash table for cgroup groups. This improves the performance to find 914 * an existing css_set. This hash doesn't (currently) take into 915 * account cgroups in empty hierarchies. 916 */ 917 #define CSS_SET_HASH_BITS 7 918 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS); 919 920 static unsigned long css_set_hash(struct cgroup_subsys_state *css[]) 921 { 922 unsigned long key = 0UL; 923 struct cgroup_subsys *ss; 924 int i; 925 926 for_each_subsys(ss, i) 927 key += (unsigned long)css[i]; 928 key = (key >> 16) ^ key; 929 930 return key; 931 } 932 933 void put_css_set_locked(struct css_set *cset) 934 { 935 struct cgrp_cset_link *link, *tmp_link; 936 struct cgroup_subsys *ss; 937 int ssid; 938 939 lockdep_assert_held(&css_set_lock); 940 941 if (!refcount_dec_and_test(&cset->refcount)) 942 return; 943 944 WARN_ON_ONCE(!list_empty(&cset->threaded_csets)); 945 946 /* This css_set is dead. unlink it and release cgroup and css refs */ 947 for_each_subsys(ss, ssid) { 948 list_del(&cset->e_cset_node[ssid]); 949 css_put(cset->subsys[ssid]); 950 } 951 hash_del(&cset->hlist); 952 css_set_count--; 953 954 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) { 955 list_del(&link->cset_link); 956 list_del(&link->cgrp_link); 957 if (cgroup_parent(link->cgrp)) 958 cgroup_put(link->cgrp); 959 kfree(link); 960 } 961 962 if (css_set_threaded(cset)) { 963 list_del(&cset->threaded_csets_node); 964 put_css_set_locked(cset->dom_cset); 965 } 966 967 kfree_rcu(cset, rcu_head); 968 } 969 970 /** 971 * compare_css_sets - helper function for find_existing_css_set(). 972 * @cset: candidate css_set being tested 973 * @old_cset: existing css_set for a task 974 * @new_cgrp: cgroup that's being entered by the task 975 * @template: desired set of css pointers in css_set (pre-calculated) 976 * 977 * Returns true if "cset" matches "old_cset" except for the hierarchy 978 * which "new_cgrp" belongs to, for which it should match "new_cgrp". 979 */ 980 static bool compare_css_sets(struct css_set *cset, 981 struct css_set *old_cset, 982 struct cgroup *new_cgrp, 983 struct cgroup_subsys_state *template[]) 984 { 985 struct cgroup *new_dfl_cgrp; 986 struct list_head *l1, *l2; 987 988 /* 989 * On the default hierarchy, there can be csets which are 990 * associated with the same set of cgroups but different csses. 991 * Let's first ensure that csses match. 992 */ 993 if (memcmp(template, cset->subsys, sizeof(cset->subsys))) 994 return false; 995 996 997 /* @cset's domain should match the default cgroup's */ 998 if (cgroup_on_dfl(new_cgrp)) 999 new_dfl_cgrp = new_cgrp; 1000 else 1001 new_dfl_cgrp = old_cset->dfl_cgrp; 1002 1003 if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp) 1004 return false; 1005 1006 /* 1007 * Compare cgroup pointers in order to distinguish between 1008 * different cgroups in hierarchies. As different cgroups may 1009 * share the same effective css, this comparison is always 1010 * necessary. 1011 */ 1012 l1 = &cset->cgrp_links; 1013 l2 = &old_cset->cgrp_links; 1014 while (1) { 1015 struct cgrp_cset_link *link1, *link2; 1016 struct cgroup *cgrp1, *cgrp2; 1017 1018 l1 = l1->next; 1019 l2 = l2->next; 1020 /* See if we reached the end - both lists are equal length. */ 1021 if (l1 == &cset->cgrp_links) { 1022 BUG_ON(l2 != &old_cset->cgrp_links); 1023 break; 1024 } else { 1025 BUG_ON(l2 == &old_cset->cgrp_links); 1026 } 1027 /* Locate the cgroups associated with these links. */ 1028 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link); 1029 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link); 1030 cgrp1 = link1->cgrp; 1031 cgrp2 = link2->cgrp; 1032 /* Hierarchies should be linked in the same order. */ 1033 BUG_ON(cgrp1->root != cgrp2->root); 1034 1035 /* 1036 * If this hierarchy is the hierarchy of the cgroup 1037 * that's changing, then we need to check that this 1038 * css_set points to the new cgroup; if it's any other 1039 * hierarchy, then this css_set should point to the 1040 * same cgroup as the old css_set. 1041 */ 1042 if (cgrp1->root == new_cgrp->root) { 1043 if (cgrp1 != new_cgrp) 1044 return false; 1045 } else { 1046 if (cgrp1 != cgrp2) 1047 return false; 1048 } 1049 } 1050 return true; 1051 } 1052 1053 /** 1054 * find_existing_css_set - init css array and find the matching css_set 1055 * @old_cset: the css_set that we're using before the cgroup transition 1056 * @cgrp: the cgroup that we're moving into 1057 * @template: out param for the new set of csses, should be clear on entry 1058 */ 1059 static struct css_set *find_existing_css_set(struct css_set *old_cset, 1060 struct cgroup *cgrp, 1061 struct cgroup_subsys_state *template[]) 1062 { 1063 struct cgroup_root *root = cgrp->root; 1064 struct cgroup_subsys *ss; 1065 struct css_set *cset; 1066 unsigned long key; 1067 int i; 1068 1069 /* 1070 * Build the set of subsystem state objects that we want to see in the 1071 * new css_set. while subsystems can change globally, the entries here 1072 * won't change, so no need for locking. 1073 */ 1074 for_each_subsys(ss, i) { 1075 if (root->subsys_mask & (1UL << i)) { 1076 /* 1077 * @ss is in this hierarchy, so we want the 1078 * effective css from @cgrp. 1079 */ 1080 template[i] = cgroup_e_css_by_mask(cgrp, ss); 1081 } else { 1082 /* 1083 * @ss is not in this hierarchy, so we don't want 1084 * to change the css. 1085 */ 1086 template[i] = old_cset->subsys[i]; 1087 } 1088 } 1089 1090 key = css_set_hash(template); 1091 hash_for_each_possible(css_set_table, cset, hlist, key) { 1092 if (!compare_css_sets(cset, old_cset, cgrp, template)) 1093 continue; 1094 1095 /* This css_set matches what we need */ 1096 return cset; 1097 } 1098 1099 /* No existing cgroup group matched */ 1100 return NULL; 1101 } 1102 1103 static void free_cgrp_cset_links(struct list_head *links_to_free) 1104 { 1105 struct cgrp_cset_link *link, *tmp_link; 1106 1107 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) { 1108 list_del(&link->cset_link); 1109 kfree(link); 1110 } 1111 } 1112 1113 /** 1114 * allocate_cgrp_cset_links - allocate cgrp_cset_links 1115 * @count: the number of links to allocate 1116 * @tmp_links: list_head the allocated links are put on 1117 * 1118 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links 1119 * through ->cset_link. Returns 0 on success or -errno. 1120 */ 1121 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links) 1122 { 1123 struct cgrp_cset_link *link; 1124 int i; 1125 1126 INIT_LIST_HEAD(tmp_links); 1127 1128 for (i = 0; i < count; i++) { 1129 link = kzalloc(sizeof(*link), GFP_KERNEL); 1130 if (!link) { 1131 free_cgrp_cset_links(tmp_links); 1132 return -ENOMEM; 1133 } 1134 list_add(&link->cset_link, tmp_links); 1135 } 1136 return 0; 1137 } 1138 1139 /** 1140 * link_css_set - a helper function to link a css_set to a cgroup 1141 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links() 1142 * @cset: the css_set to be linked 1143 * @cgrp: the destination cgroup 1144 */ 1145 static void link_css_set(struct list_head *tmp_links, struct css_set *cset, 1146 struct cgroup *cgrp) 1147 { 1148 struct cgrp_cset_link *link; 1149 1150 BUG_ON(list_empty(tmp_links)); 1151 1152 if (cgroup_on_dfl(cgrp)) 1153 cset->dfl_cgrp = cgrp; 1154 1155 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link); 1156 link->cset = cset; 1157 link->cgrp = cgrp; 1158 1159 /* 1160 * Always add links to the tail of the lists so that the lists are 1161 * in choronological order. 1162 */ 1163 list_move_tail(&link->cset_link, &cgrp->cset_links); 1164 list_add_tail(&link->cgrp_link, &cset->cgrp_links); 1165 1166 if (cgroup_parent(cgrp)) 1167 cgroup_get_live(cgrp); 1168 } 1169 1170 /** 1171 * find_css_set - return a new css_set with one cgroup updated 1172 * @old_cset: the baseline css_set 1173 * @cgrp: the cgroup to be updated 1174 * 1175 * Return a new css_set that's equivalent to @old_cset, but with @cgrp 1176 * substituted into the appropriate hierarchy. 1177 */ 1178 static struct css_set *find_css_set(struct css_set *old_cset, 1179 struct cgroup *cgrp) 1180 { 1181 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { }; 1182 struct css_set *cset; 1183 struct list_head tmp_links; 1184 struct cgrp_cset_link *link; 1185 struct cgroup_subsys *ss; 1186 unsigned long key; 1187 int ssid; 1188 1189 lockdep_assert_held(&cgroup_mutex); 1190 1191 /* First see if we already have a cgroup group that matches 1192 * the desired set */ 1193 spin_lock_irq(&css_set_lock); 1194 cset = find_existing_css_set(old_cset, cgrp, template); 1195 if (cset) 1196 get_css_set(cset); 1197 spin_unlock_irq(&css_set_lock); 1198 1199 if (cset) 1200 return cset; 1201 1202 cset = kzalloc(sizeof(*cset), GFP_KERNEL); 1203 if (!cset) 1204 return NULL; 1205 1206 /* Allocate all the cgrp_cset_link objects that we'll need */ 1207 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) { 1208 kfree(cset); 1209 return NULL; 1210 } 1211 1212 refcount_set(&cset->refcount, 1); 1213 cset->dom_cset = cset; 1214 INIT_LIST_HEAD(&cset->tasks); 1215 INIT_LIST_HEAD(&cset->mg_tasks); 1216 INIT_LIST_HEAD(&cset->dying_tasks); 1217 INIT_LIST_HEAD(&cset->task_iters); 1218 INIT_LIST_HEAD(&cset->threaded_csets); 1219 INIT_HLIST_NODE(&cset->hlist); 1220 INIT_LIST_HEAD(&cset->cgrp_links); 1221 INIT_LIST_HEAD(&cset->mg_preload_node); 1222 INIT_LIST_HEAD(&cset->mg_node); 1223 1224 /* Copy the set of subsystem state objects generated in 1225 * find_existing_css_set() */ 1226 memcpy(cset->subsys, template, sizeof(cset->subsys)); 1227 1228 spin_lock_irq(&css_set_lock); 1229 /* Add reference counts and links from the new css_set. */ 1230 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) { 1231 struct cgroup *c = link->cgrp; 1232 1233 if (c->root == cgrp->root) 1234 c = cgrp; 1235 link_css_set(&tmp_links, cset, c); 1236 } 1237 1238 BUG_ON(!list_empty(&tmp_links)); 1239 1240 css_set_count++; 1241 1242 /* Add @cset to the hash table */ 1243 key = css_set_hash(cset->subsys); 1244 hash_add(css_set_table, &cset->hlist, key); 1245 1246 for_each_subsys(ss, ssid) { 1247 struct cgroup_subsys_state *css = cset->subsys[ssid]; 1248 1249 list_add_tail(&cset->e_cset_node[ssid], 1250 &css->cgroup->e_csets[ssid]); 1251 css_get(css); 1252 } 1253 1254 spin_unlock_irq(&css_set_lock); 1255 1256 /* 1257 * If @cset should be threaded, look up the matching dom_cset and 1258 * link them up. We first fully initialize @cset then look for the 1259 * dom_cset. It's simpler this way and safe as @cset is guaranteed 1260 * to stay empty until we return. 1261 */ 1262 if (cgroup_is_threaded(cset->dfl_cgrp)) { 1263 struct css_set *dcset; 1264 1265 dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp); 1266 if (!dcset) { 1267 put_css_set(cset); 1268 return NULL; 1269 } 1270 1271 spin_lock_irq(&css_set_lock); 1272 cset->dom_cset = dcset; 1273 list_add_tail(&cset->threaded_csets_node, 1274 &dcset->threaded_csets); 1275 spin_unlock_irq(&css_set_lock); 1276 } 1277 1278 return cset; 1279 } 1280 1281 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root) 1282 { 1283 struct cgroup *root_cgrp = kf_root->kn->priv; 1284 1285 return root_cgrp->root; 1286 } 1287 1288 static int cgroup_init_root_id(struct cgroup_root *root) 1289 { 1290 int id; 1291 1292 lockdep_assert_held(&cgroup_mutex); 1293 1294 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL); 1295 if (id < 0) 1296 return id; 1297 1298 root->hierarchy_id = id; 1299 return 0; 1300 } 1301 1302 static void cgroup_exit_root_id(struct cgroup_root *root) 1303 { 1304 lockdep_assert_held(&cgroup_mutex); 1305 1306 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id); 1307 } 1308 1309 void cgroup_free_root(struct cgroup_root *root) 1310 { 1311 kfree(root); 1312 } 1313 1314 static void cgroup_destroy_root(struct cgroup_root *root) 1315 { 1316 struct cgroup *cgrp = &root->cgrp; 1317 struct cgrp_cset_link *link, *tmp_link; 1318 1319 trace_cgroup_destroy_root(root); 1320 1321 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp); 1322 1323 BUG_ON(atomic_read(&root->nr_cgrps)); 1324 BUG_ON(!list_empty(&cgrp->self.children)); 1325 1326 /* Rebind all subsystems back to the default hierarchy */ 1327 WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask)); 1328 1329 /* 1330 * Release all the links from cset_links to this hierarchy's 1331 * root cgroup 1332 */ 1333 spin_lock_irq(&css_set_lock); 1334 1335 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) { 1336 list_del(&link->cset_link); 1337 list_del(&link->cgrp_link); 1338 kfree(link); 1339 } 1340 1341 spin_unlock_irq(&css_set_lock); 1342 1343 if (!list_empty(&root->root_list)) { 1344 list_del(&root->root_list); 1345 cgroup_root_count--; 1346 } 1347 1348 cgroup_exit_root_id(root); 1349 1350 mutex_unlock(&cgroup_mutex); 1351 1352 kernfs_destroy_root(root->kf_root); 1353 cgroup_free_root(root); 1354 } 1355 1356 /* 1357 * look up cgroup associated with current task's cgroup namespace on the 1358 * specified hierarchy 1359 */ 1360 static struct cgroup * 1361 current_cgns_cgroup_from_root(struct cgroup_root *root) 1362 { 1363 struct cgroup *res = NULL; 1364 struct css_set *cset; 1365 1366 lockdep_assert_held(&css_set_lock); 1367 1368 rcu_read_lock(); 1369 1370 cset = current->nsproxy->cgroup_ns->root_cset; 1371 if (cset == &init_css_set) { 1372 res = &root->cgrp; 1373 } else if (root == &cgrp_dfl_root) { 1374 res = cset->dfl_cgrp; 1375 } else { 1376 struct cgrp_cset_link *link; 1377 1378 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) { 1379 struct cgroup *c = link->cgrp; 1380 1381 if (c->root == root) { 1382 res = c; 1383 break; 1384 } 1385 } 1386 } 1387 rcu_read_unlock(); 1388 1389 BUG_ON(!res); 1390 return res; 1391 } 1392 1393 /* look up cgroup associated with given css_set on the specified hierarchy */ 1394 static struct cgroup *cset_cgroup_from_root(struct css_set *cset, 1395 struct cgroup_root *root) 1396 { 1397 struct cgroup *res = NULL; 1398 1399 lockdep_assert_held(&cgroup_mutex); 1400 lockdep_assert_held(&css_set_lock); 1401 1402 if (cset == &init_css_set) { 1403 res = &root->cgrp; 1404 } else if (root == &cgrp_dfl_root) { 1405 res = cset->dfl_cgrp; 1406 } else { 1407 struct cgrp_cset_link *link; 1408 1409 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) { 1410 struct cgroup *c = link->cgrp; 1411 1412 if (c->root == root) { 1413 res = c; 1414 break; 1415 } 1416 } 1417 } 1418 1419 BUG_ON(!res); 1420 return res; 1421 } 1422 1423 /* 1424 * Return the cgroup for "task" from the given hierarchy. Must be 1425 * called with cgroup_mutex and css_set_lock held. 1426 */ 1427 struct cgroup *task_cgroup_from_root(struct task_struct *task, 1428 struct cgroup_root *root) 1429 { 1430 /* 1431 * No need to lock the task - since we hold css_set_lock the 1432 * task can't change groups. 1433 */ 1434 return cset_cgroup_from_root(task_css_set(task), root); 1435 } 1436 1437 /* 1438 * A task must hold cgroup_mutex to modify cgroups. 1439 * 1440 * Any task can increment and decrement the count field without lock. 1441 * So in general, code holding cgroup_mutex can't rely on the count 1442 * field not changing. However, if the count goes to zero, then only 1443 * cgroup_attach_task() can increment it again. Because a count of zero 1444 * means that no tasks are currently attached, therefore there is no 1445 * way a task attached to that cgroup can fork (the other way to 1446 * increment the count). So code holding cgroup_mutex can safely 1447 * assume that if the count is zero, it will stay zero. Similarly, if 1448 * a task holds cgroup_mutex on a cgroup with zero count, it 1449 * knows that the cgroup won't be removed, as cgroup_rmdir() 1450 * needs that mutex. 1451 * 1452 * A cgroup can only be deleted if both its 'count' of using tasks 1453 * is zero, and its list of 'children' cgroups is empty. Since all 1454 * tasks in the system use _some_ cgroup, and since there is always at 1455 * least one task in the system (init, pid == 1), therefore, root cgroup 1456 * always has either children cgroups and/or using tasks. So we don't 1457 * need a special hack to ensure that root cgroup cannot be deleted. 1458 * 1459 * P.S. One more locking exception. RCU is used to guard the 1460 * update of a tasks cgroup pointer by cgroup_attach_task() 1461 */ 1462 1463 static struct kernfs_syscall_ops cgroup_kf_syscall_ops; 1464 1465 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft, 1466 char *buf) 1467 { 1468 struct cgroup_subsys *ss = cft->ss; 1469 1470 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) && 1471 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) { 1472 const char *dbg = (cft->flags & CFTYPE_DEBUG) ? ".__DEBUG__." : ""; 1473 1474 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s%s.%s", 1475 dbg, cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name, 1476 cft->name); 1477 } else { 1478 strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX); 1479 } 1480 return buf; 1481 } 1482 1483 /** 1484 * cgroup_file_mode - deduce file mode of a control file 1485 * @cft: the control file in question 1486 * 1487 * S_IRUGO for read, S_IWUSR for write. 1488 */ 1489 static umode_t cgroup_file_mode(const struct cftype *cft) 1490 { 1491 umode_t mode = 0; 1492 1493 if (cft->read_u64 || cft->read_s64 || cft->seq_show) 1494 mode |= S_IRUGO; 1495 1496 if (cft->write_u64 || cft->write_s64 || cft->write) { 1497 if (cft->flags & CFTYPE_WORLD_WRITABLE) 1498 mode |= S_IWUGO; 1499 else 1500 mode |= S_IWUSR; 1501 } 1502 1503 return mode; 1504 } 1505 1506 /** 1507 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask 1508 * @subtree_control: the new subtree_control mask to consider 1509 * @this_ss_mask: available subsystems 1510 * 1511 * On the default hierarchy, a subsystem may request other subsystems to be 1512 * enabled together through its ->depends_on mask. In such cases, more 1513 * subsystems than specified in "cgroup.subtree_control" may be enabled. 1514 * 1515 * This function calculates which subsystems need to be enabled if 1516 * @subtree_control is to be applied while restricted to @this_ss_mask. 1517 */ 1518 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask) 1519 { 1520 u16 cur_ss_mask = subtree_control; 1521 struct cgroup_subsys *ss; 1522 int ssid; 1523 1524 lockdep_assert_held(&cgroup_mutex); 1525 1526 cur_ss_mask |= cgrp_dfl_implicit_ss_mask; 1527 1528 while (true) { 1529 u16 new_ss_mask = cur_ss_mask; 1530 1531 do_each_subsys_mask(ss, ssid, cur_ss_mask) { 1532 new_ss_mask |= ss->depends_on; 1533 } while_each_subsys_mask(); 1534 1535 /* 1536 * Mask out subsystems which aren't available. This can 1537 * happen only if some depended-upon subsystems were bound 1538 * to non-default hierarchies. 1539 */ 1540 new_ss_mask &= this_ss_mask; 1541 1542 if (new_ss_mask == cur_ss_mask) 1543 break; 1544 cur_ss_mask = new_ss_mask; 1545 } 1546 1547 return cur_ss_mask; 1548 } 1549 1550 /** 1551 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods 1552 * @kn: the kernfs_node being serviced 1553 * 1554 * This helper undoes cgroup_kn_lock_live() and should be invoked before 1555 * the method finishes if locking succeeded. Note that once this function 1556 * returns the cgroup returned by cgroup_kn_lock_live() may become 1557 * inaccessible any time. If the caller intends to continue to access the 1558 * cgroup, it should pin it before invoking this function. 1559 */ 1560 void cgroup_kn_unlock(struct kernfs_node *kn) 1561 { 1562 struct cgroup *cgrp; 1563 1564 if (kernfs_type(kn) == KERNFS_DIR) 1565 cgrp = kn->priv; 1566 else 1567 cgrp = kn->parent->priv; 1568 1569 mutex_unlock(&cgroup_mutex); 1570 1571 kernfs_unbreak_active_protection(kn); 1572 cgroup_put(cgrp); 1573 } 1574 1575 /** 1576 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods 1577 * @kn: the kernfs_node being serviced 1578 * @drain_offline: perform offline draining on the cgroup 1579 * 1580 * This helper is to be used by a cgroup kernfs method currently servicing 1581 * @kn. It breaks the active protection, performs cgroup locking and 1582 * verifies that the associated cgroup is alive. Returns the cgroup if 1583 * alive; otherwise, %NULL. A successful return should be undone by a 1584 * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the 1585 * cgroup is drained of offlining csses before return. 1586 * 1587 * Any cgroup kernfs method implementation which requires locking the 1588 * associated cgroup should use this helper. It avoids nesting cgroup 1589 * locking under kernfs active protection and allows all kernfs operations 1590 * including self-removal. 1591 */ 1592 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline) 1593 { 1594 struct cgroup *cgrp; 1595 1596 if (kernfs_type(kn) == KERNFS_DIR) 1597 cgrp = kn->priv; 1598 else 1599 cgrp = kn->parent->priv; 1600 1601 /* 1602 * We're gonna grab cgroup_mutex which nests outside kernfs 1603 * active_ref. cgroup liveliness check alone provides enough 1604 * protection against removal. Ensure @cgrp stays accessible and 1605 * break the active_ref protection. 1606 */ 1607 if (!cgroup_tryget(cgrp)) 1608 return NULL; 1609 kernfs_break_active_protection(kn); 1610 1611 if (drain_offline) 1612 cgroup_lock_and_drain_offline(cgrp); 1613 else 1614 mutex_lock(&cgroup_mutex); 1615 1616 if (!cgroup_is_dead(cgrp)) 1617 return cgrp; 1618 1619 cgroup_kn_unlock(kn); 1620 return NULL; 1621 } 1622 1623 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft) 1624 { 1625 char name[CGROUP_FILE_NAME_MAX]; 1626 1627 lockdep_assert_held(&cgroup_mutex); 1628 1629 if (cft->file_offset) { 1630 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss); 1631 struct cgroup_file *cfile = (void *)css + cft->file_offset; 1632 1633 spin_lock_irq(&cgroup_file_kn_lock); 1634 cfile->kn = NULL; 1635 spin_unlock_irq(&cgroup_file_kn_lock); 1636 1637 del_timer_sync(&cfile->notify_timer); 1638 } 1639 1640 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name)); 1641 } 1642 1643 /** 1644 * css_clear_dir - remove subsys files in a cgroup directory 1645 * @css: taget css 1646 */ 1647 static void css_clear_dir(struct cgroup_subsys_state *css) 1648 { 1649 struct cgroup *cgrp = css->cgroup; 1650 struct cftype *cfts; 1651 1652 if (!(css->flags & CSS_VISIBLE)) 1653 return; 1654 1655 css->flags &= ~CSS_VISIBLE; 1656 1657 if (!css->ss) { 1658 if (cgroup_on_dfl(cgrp)) 1659 cfts = cgroup_base_files; 1660 else 1661 cfts = cgroup1_base_files; 1662 1663 cgroup_addrm_files(css, cgrp, cfts, false); 1664 } else { 1665 list_for_each_entry(cfts, &css->ss->cfts, node) 1666 cgroup_addrm_files(css, cgrp, cfts, false); 1667 } 1668 } 1669 1670 /** 1671 * css_populate_dir - create subsys files in a cgroup directory 1672 * @css: target css 1673 * 1674 * On failure, no file is added. 1675 */ 1676 static int css_populate_dir(struct cgroup_subsys_state *css) 1677 { 1678 struct cgroup *cgrp = css->cgroup; 1679 struct cftype *cfts, *failed_cfts; 1680 int ret; 1681 1682 if ((css->flags & CSS_VISIBLE) || !cgrp->kn) 1683 return 0; 1684 1685 if (!css->ss) { 1686 if (cgroup_on_dfl(cgrp)) 1687 cfts = cgroup_base_files; 1688 else 1689 cfts = cgroup1_base_files; 1690 1691 ret = cgroup_addrm_files(&cgrp->self, cgrp, cfts, true); 1692 if (ret < 0) 1693 return ret; 1694 } else { 1695 list_for_each_entry(cfts, &css->ss->cfts, node) { 1696 ret = cgroup_addrm_files(css, cgrp, cfts, true); 1697 if (ret < 0) { 1698 failed_cfts = cfts; 1699 goto err; 1700 } 1701 } 1702 } 1703 1704 css->flags |= CSS_VISIBLE; 1705 1706 return 0; 1707 err: 1708 list_for_each_entry(cfts, &css->ss->cfts, node) { 1709 if (cfts == failed_cfts) 1710 break; 1711 cgroup_addrm_files(css, cgrp, cfts, false); 1712 } 1713 return ret; 1714 } 1715 1716 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask) 1717 { 1718 struct cgroup *dcgrp = &dst_root->cgrp; 1719 struct cgroup_subsys *ss; 1720 int ssid, i, ret; 1721 1722 lockdep_assert_held(&cgroup_mutex); 1723 1724 do_each_subsys_mask(ss, ssid, ss_mask) { 1725 /* 1726 * If @ss has non-root csses attached to it, can't move. 1727 * If @ss is an implicit controller, it is exempt from this 1728 * rule and can be stolen. 1729 */ 1730 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) && 1731 !ss->implicit_on_dfl) 1732 return -EBUSY; 1733 1734 /* can't move between two non-dummy roots either */ 1735 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root) 1736 return -EBUSY; 1737 } while_each_subsys_mask(); 1738 1739 do_each_subsys_mask(ss, ssid, ss_mask) { 1740 struct cgroup_root *src_root = ss->root; 1741 struct cgroup *scgrp = &src_root->cgrp; 1742 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss); 1743 struct css_set *cset; 1744 1745 WARN_ON(!css || cgroup_css(dcgrp, ss)); 1746 1747 /* disable from the source */ 1748 src_root->subsys_mask &= ~(1 << ssid); 1749 WARN_ON(cgroup_apply_control(scgrp)); 1750 cgroup_finalize_control(scgrp, 0); 1751 1752 /* rebind */ 1753 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL); 1754 rcu_assign_pointer(dcgrp->subsys[ssid], css); 1755 ss->root = dst_root; 1756 css->cgroup = dcgrp; 1757 1758 spin_lock_irq(&css_set_lock); 1759 hash_for_each(css_set_table, i, cset, hlist) 1760 list_move_tail(&cset->e_cset_node[ss->id], 1761 &dcgrp->e_csets[ss->id]); 1762 spin_unlock_irq(&css_set_lock); 1763 1764 /* default hierarchy doesn't enable controllers by default */ 1765 dst_root->subsys_mask |= 1 << ssid; 1766 if (dst_root == &cgrp_dfl_root) { 1767 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]); 1768 } else { 1769 dcgrp->subtree_control |= 1 << ssid; 1770 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]); 1771 } 1772 1773 ret = cgroup_apply_control(dcgrp); 1774 if (ret) 1775 pr_warn("partial failure to rebind %s controller (err=%d)\n", 1776 ss->name, ret); 1777 1778 if (ss->bind) 1779 ss->bind(css); 1780 } while_each_subsys_mask(); 1781 1782 kernfs_activate(dcgrp->kn); 1783 return 0; 1784 } 1785 1786 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node, 1787 struct kernfs_root *kf_root) 1788 { 1789 int len = 0; 1790 char *buf = NULL; 1791 struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root); 1792 struct cgroup *ns_cgroup; 1793 1794 buf = kmalloc(PATH_MAX, GFP_KERNEL); 1795 if (!buf) 1796 return -ENOMEM; 1797 1798 spin_lock_irq(&css_set_lock); 1799 ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot); 1800 len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX); 1801 spin_unlock_irq(&css_set_lock); 1802 1803 if (len >= PATH_MAX) 1804 len = -ERANGE; 1805 else if (len > 0) { 1806 seq_escape(sf, buf, " \t\n\\"); 1807 len = 0; 1808 } 1809 kfree(buf); 1810 return len; 1811 } 1812 1813 enum cgroup2_param { 1814 Opt_nsdelegate, 1815 Opt_memory_localevents, 1816 nr__cgroup2_params 1817 }; 1818 1819 static const struct fs_parameter_spec cgroup2_param_specs[] = { 1820 fsparam_flag("nsdelegate", Opt_nsdelegate), 1821 fsparam_flag("memory_localevents", Opt_memory_localevents), 1822 {} 1823 }; 1824 1825 static const struct fs_parameter_description cgroup2_fs_parameters = { 1826 .name = "cgroup2", 1827 .specs = cgroup2_param_specs, 1828 }; 1829 1830 static int cgroup2_parse_param(struct fs_context *fc, struct fs_parameter *param) 1831 { 1832 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 1833 struct fs_parse_result result; 1834 int opt; 1835 1836 opt = fs_parse(fc, &cgroup2_fs_parameters, param, &result); 1837 if (opt < 0) 1838 return opt; 1839 1840 switch (opt) { 1841 case Opt_nsdelegate: 1842 ctx->flags |= CGRP_ROOT_NS_DELEGATE; 1843 return 0; 1844 case Opt_memory_localevents: 1845 ctx->flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS; 1846 return 0; 1847 } 1848 return -EINVAL; 1849 } 1850 1851 static void apply_cgroup_root_flags(unsigned int root_flags) 1852 { 1853 if (current->nsproxy->cgroup_ns == &init_cgroup_ns) { 1854 if (root_flags & CGRP_ROOT_NS_DELEGATE) 1855 cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE; 1856 else 1857 cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE; 1858 1859 if (root_flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS) 1860 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS; 1861 else 1862 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_LOCAL_EVENTS; 1863 } 1864 } 1865 1866 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root) 1867 { 1868 if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) 1869 seq_puts(seq, ",nsdelegate"); 1870 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS) 1871 seq_puts(seq, ",memory_localevents"); 1872 return 0; 1873 } 1874 1875 static int cgroup_reconfigure(struct fs_context *fc) 1876 { 1877 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 1878 1879 apply_cgroup_root_flags(ctx->flags); 1880 return 0; 1881 } 1882 1883 static void init_cgroup_housekeeping(struct cgroup *cgrp) 1884 { 1885 struct cgroup_subsys *ss; 1886 int ssid; 1887 1888 INIT_LIST_HEAD(&cgrp->self.sibling); 1889 INIT_LIST_HEAD(&cgrp->self.children); 1890 INIT_LIST_HEAD(&cgrp->cset_links); 1891 INIT_LIST_HEAD(&cgrp->pidlists); 1892 mutex_init(&cgrp->pidlist_mutex); 1893 cgrp->self.cgroup = cgrp; 1894 cgrp->self.flags |= CSS_ONLINE; 1895 cgrp->dom_cgrp = cgrp; 1896 cgrp->max_descendants = INT_MAX; 1897 cgrp->max_depth = INT_MAX; 1898 INIT_LIST_HEAD(&cgrp->rstat_css_list); 1899 prev_cputime_init(&cgrp->prev_cputime); 1900 1901 for_each_subsys(ss, ssid) 1902 INIT_LIST_HEAD(&cgrp->e_csets[ssid]); 1903 1904 init_waitqueue_head(&cgrp->offline_waitq); 1905 INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent); 1906 } 1907 1908 void init_cgroup_root(struct cgroup_fs_context *ctx) 1909 { 1910 struct cgroup_root *root = ctx->root; 1911 struct cgroup *cgrp = &root->cgrp; 1912 1913 INIT_LIST_HEAD(&root->root_list); 1914 atomic_set(&root->nr_cgrps, 1); 1915 cgrp->root = root; 1916 init_cgroup_housekeeping(cgrp); 1917 1918 root->flags = ctx->flags; 1919 if (ctx->release_agent) 1920 strscpy(root->release_agent_path, ctx->release_agent, PATH_MAX); 1921 if (ctx->name) 1922 strscpy(root->name, ctx->name, MAX_CGROUP_ROOT_NAMELEN); 1923 if (ctx->cpuset_clone_children) 1924 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags); 1925 } 1926 1927 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask) 1928 { 1929 LIST_HEAD(tmp_links); 1930 struct cgroup *root_cgrp = &root->cgrp; 1931 struct kernfs_syscall_ops *kf_sops; 1932 struct css_set *cset; 1933 int i, ret; 1934 1935 lockdep_assert_held(&cgroup_mutex); 1936 1937 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 1938 0, GFP_KERNEL); 1939 if (ret) 1940 goto out; 1941 1942 /* 1943 * We're accessing css_set_count without locking css_set_lock here, 1944 * but that's OK - it can only be increased by someone holding 1945 * cgroup_lock, and that's us. Later rebinding may disable 1946 * controllers on the default hierarchy and thus create new csets, 1947 * which can't be more than the existing ones. Allocate 2x. 1948 */ 1949 ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links); 1950 if (ret) 1951 goto cancel_ref; 1952 1953 ret = cgroup_init_root_id(root); 1954 if (ret) 1955 goto cancel_ref; 1956 1957 kf_sops = root == &cgrp_dfl_root ? 1958 &cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops; 1959 1960 root->kf_root = kernfs_create_root(kf_sops, 1961 KERNFS_ROOT_CREATE_DEACTIVATED | 1962 KERNFS_ROOT_SUPPORT_EXPORTOP, 1963 root_cgrp); 1964 if (IS_ERR(root->kf_root)) { 1965 ret = PTR_ERR(root->kf_root); 1966 goto exit_root_id; 1967 } 1968 root_cgrp->kn = root->kf_root->kn; 1969 WARN_ON_ONCE(cgroup_ino(root_cgrp) != 1); 1970 root_cgrp->ancestor_ids[0] = cgroup_id(root_cgrp); 1971 1972 ret = css_populate_dir(&root_cgrp->self); 1973 if (ret) 1974 goto destroy_root; 1975 1976 ret = rebind_subsystems(root, ss_mask); 1977 if (ret) 1978 goto destroy_root; 1979 1980 ret = cgroup_bpf_inherit(root_cgrp); 1981 WARN_ON_ONCE(ret); 1982 1983 trace_cgroup_setup_root(root); 1984 1985 /* 1986 * There must be no failure case after here, since rebinding takes 1987 * care of subsystems' refcounts, which are explicitly dropped in 1988 * the failure exit path. 1989 */ 1990 list_add(&root->root_list, &cgroup_roots); 1991 cgroup_root_count++; 1992 1993 /* 1994 * Link the root cgroup in this hierarchy into all the css_set 1995 * objects. 1996 */ 1997 spin_lock_irq(&css_set_lock); 1998 hash_for_each(css_set_table, i, cset, hlist) { 1999 link_css_set(&tmp_links, cset, root_cgrp); 2000 if (css_set_populated(cset)) 2001 cgroup_update_populated(root_cgrp, true); 2002 } 2003 spin_unlock_irq(&css_set_lock); 2004 2005 BUG_ON(!list_empty(&root_cgrp->self.children)); 2006 BUG_ON(atomic_read(&root->nr_cgrps) != 1); 2007 2008 kernfs_activate(root_cgrp->kn); 2009 ret = 0; 2010 goto out; 2011 2012 destroy_root: 2013 kernfs_destroy_root(root->kf_root); 2014 root->kf_root = NULL; 2015 exit_root_id: 2016 cgroup_exit_root_id(root); 2017 cancel_ref: 2018 percpu_ref_exit(&root_cgrp->self.refcnt); 2019 out: 2020 free_cgrp_cset_links(&tmp_links); 2021 return ret; 2022 } 2023 2024 int cgroup_do_get_tree(struct fs_context *fc) 2025 { 2026 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2027 int ret; 2028 2029 ctx->kfc.root = ctx->root->kf_root; 2030 if (fc->fs_type == &cgroup2_fs_type) 2031 ctx->kfc.magic = CGROUP2_SUPER_MAGIC; 2032 else 2033 ctx->kfc.magic = CGROUP_SUPER_MAGIC; 2034 ret = kernfs_get_tree(fc); 2035 2036 /* 2037 * In non-init cgroup namespace, instead of root cgroup's dentry, 2038 * we return the dentry corresponding to the cgroupns->root_cgrp. 2039 */ 2040 if (!ret && ctx->ns != &init_cgroup_ns) { 2041 struct dentry *nsdentry; 2042 struct super_block *sb = fc->root->d_sb; 2043 struct cgroup *cgrp; 2044 2045 mutex_lock(&cgroup_mutex); 2046 spin_lock_irq(&css_set_lock); 2047 2048 cgrp = cset_cgroup_from_root(ctx->ns->root_cset, ctx->root); 2049 2050 spin_unlock_irq(&css_set_lock); 2051 mutex_unlock(&cgroup_mutex); 2052 2053 nsdentry = kernfs_node_dentry(cgrp->kn, sb); 2054 dput(fc->root); 2055 if (IS_ERR(nsdentry)) { 2056 deactivate_locked_super(sb); 2057 ret = PTR_ERR(nsdentry); 2058 nsdentry = NULL; 2059 } 2060 fc->root = nsdentry; 2061 } 2062 2063 if (!ctx->kfc.new_sb_created) 2064 cgroup_put(&ctx->root->cgrp); 2065 2066 return ret; 2067 } 2068 2069 /* 2070 * Destroy a cgroup filesystem context. 2071 */ 2072 static void cgroup_fs_context_free(struct fs_context *fc) 2073 { 2074 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2075 2076 kfree(ctx->name); 2077 kfree(ctx->release_agent); 2078 put_cgroup_ns(ctx->ns); 2079 kernfs_free_fs_context(fc); 2080 kfree(ctx); 2081 } 2082 2083 static int cgroup_get_tree(struct fs_context *fc) 2084 { 2085 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2086 int ret; 2087 2088 cgrp_dfl_visible = true; 2089 cgroup_get_live(&cgrp_dfl_root.cgrp); 2090 ctx->root = &cgrp_dfl_root; 2091 2092 ret = cgroup_do_get_tree(fc); 2093 if (!ret) 2094 apply_cgroup_root_flags(ctx->flags); 2095 return ret; 2096 } 2097 2098 static const struct fs_context_operations cgroup_fs_context_ops = { 2099 .free = cgroup_fs_context_free, 2100 .parse_param = cgroup2_parse_param, 2101 .get_tree = cgroup_get_tree, 2102 .reconfigure = cgroup_reconfigure, 2103 }; 2104 2105 static const struct fs_context_operations cgroup1_fs_context_ops = { 2106 .free = cgroup_fs_context_free, 2107 .parse_param = cgroup1_parse_param, 2108 .get_tree = cgroup1_get_tree, 2109 .reconfigure = cgroup1_reconfigure, 2110 }; 2111 2112 /* 2113 * Initialise the cgroup filesystem creation/reconfiguration context. Notably, 2114 * we select the namespace we're going to use. 2115 */ 2116 static int cgroup_init_fs_context(struct fs_context *fc) 2117 { 2118 struct cgroup_fs_context *ctx; 2119 2120 ctx = kzalloc(sizeof(struct cgroup_fs_context), GFP_KERNEL); 2121 if (!ctx) 2122 return -ENOMEM; 2123 2124 ctx->ns = current->nsproxy->cgroup_ns; 2125 get_cgroup_ns(ctx->ns); 2126 fc->fs_private = &ctx->kfc; 2127 if (fc->fs_type == &cgroup2_fs_type) 2128 fc->ops = &cgroup_fs_context_ops; 2129 else 2130 fc->ops = &cgroup1_fs_context_ops; 2131 put_user_ns(fc->user_ns); 2132 fc->user_ns = get_user_ns(ctx->ns->user_ns); 2133 fc->global = true; 2134 return 0; 2135 } 2136 2137 static void cgroup_kill_sb(struct super_block *sb) 2138 { 2139 struct kernfs_root *kf_root = kernfs_root_from_sb(sb); 2140 struct cgroup_root *root = cgroup_root_from_kf(kf_root); 2141 2142 /* 2143 * If @root doesn't have any children, start killing it. 2144 * This prevents new mounts by disabling percpu_ref_tryget_live(). 2145 * cgroup_mount() may wait for @root's release. 2146 * 2147 * And don't kill the default root. 2148 */ 2149 if (list_empty(&root->cgrp.self.children) && root != &cgrp_dfl_root && 2150 !percpu_ref_is_dying(&root->cgrp.self.refcnt)) 2151 percpu_ref_kill(&root->cgrp.self.refcnt); 2152 cgroup_put(&root->cgrp); 2153 kernfs_kill_sb(sb); 2154 } 2155 2156 struct file_system_type cgroup_fs_type = { 2157 .name = "cgroup", 2158 .init_fs_context = cgroup_init_fs_context, 2159 .parameters = &cgroup1_fs_parameters, 2160 .kill_sb = cgroup_kill_sb, 2161 .fs_flags = FS_USERNS_MOUNT, 2162 }; 2163 2164 static struct file_system_type cgroup2_fs_type = { 2165 .name = "cgroup2", 2166 .init_fs_context = cgroup_init_fs_context, 2167 .parameters = &cgroup2_fs_parameters, 2168 .kill_sb = cgroup_kill_sb, 2169 .fs_flags = FS_USERNS_MOUNT, 2170 }; 2171 2172 #ifdef CONFIG_CPUSETS 2173 static const struct fs_context_operations cpuset_fs_context_ops = { 2174 .get_tree = cgroup1_get_tree, 2175 .free = cgroup_fs_context_free, 2176 }; 2177 2178 /* 2179 * This is ugly, but preserves the userspace API for existing cpuset 2180 * users. If someone tries to mount the "cpuset" filesystem, we 2181 * silently switch it to mount "cgroup" instead 2182 */ 2183 static int cpuset_init_fs_context(struct fs_context *fc) 2184 { 2185 char *agent = kstrdup("/sbin/cpuset_release_agent", GFP_USER); 2186 struct cgroup_fs_context *ctx; 2187 int err; 2188 2189 err = cgroup_init_fs_context(fc); 2190 if (err) { 2191 kfree(agent); 2192 return err; 2193 } 2194 2195 fc->ops = &cpuset_fs_context_ops; 2196 2197 ctx = cgroup_fc2context(fc); 2198 ctx->subsys_mask = 1 << cpuset_cgrp_id; 2199 ctx->flags |= CGRP_ROOT_NOPREFIX; 2200 ctx->release_agent = agent; 2201 2202 get_filesystem(&cgroup_fs_type); 2203 put_filesystem(fc->fs_type); 2204 fc->fs_type = &cgroup_fs_type; 2205 2206 return 0; 2207 } 2208 2209 static struct file_system_type cpuset_fs_type = { 2210 .name = "cpuset", 2211 .init_fs_context = cpuset_init_fs_context, 2212 .fs_flags = FS_USERNS_MOUNT, 2213 }; 2214 #endif 2215 2216 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen, 2217 struct cgroup_namespace *ns) 2218 { 2219 struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root); 2220 2221 return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen); 2222 } 2223 2224 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen, 2225 struct cgroup_namespace *ns) 2226 { 2227 int ret; 2228 2229 mutex_lock(&cgroup_mutex); 2230 spin_lock_irq(&css_set_lock); 2231 2232 ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns); 2233 2234 spin_unlock_irq(&css_set_lock); 2235 mutex_unlock(&cgroup_mutex); 2236 2237 return ret; 2238 } 2239 EXPORT_SYMBOL_GPL(cgroup_path_ns); 2240 2241 /** 2242 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy 2243 * @task: target task 2244 * @buf: the buffer to write the path into 2245 * @buflen: the length of the buffer 2246 * 2247 * Determine @task's cgroup on the first (the one with the lowest non-zero 2248 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This 2249 * function grabs cgroup_mutex and shouldn't be used inside locks used by 2250 * cgroup controller callbacks. 2251 * 2252 * Return value is the same as kernfs_path(). 2253 */ 2254 int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen) 2255 { 2256 struct cgroup_root *root; 2257 struct cgroup *cgrp; 2258 int hierarchy_id = 1; 2259 int ret; 2260 2261 mutex_lock(&cgroup_mutex); 2262 spin_lock_irq(&css_set_lock); 2263 2264 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id); 2265 2266 if (root) { 2267 cgrp = task_cgroup_from_root(task, root); 2268 ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns); 2269 } else { 2270 /* if no hierarchy exists, everyone is in "/" */ 2271 ret = strlcpy(buf, "/", buflen); 2272 } 2273 2274 spin_unlock_irq(&css_set_lock); 2275 mutex_unlock(&cgroup_mutex); 2276 return ret; 2277 } 2278 EXPORT_SYMBOL_GPL(task_cgroup_path); 2279 2280 /** 2281 * cgroup_migrate_add_task - add a migration target task to a migration context 2282 * @task: target task 2283 * @mgctx: target migration context 2284 * 2285 * Add @task, which is a migration target, to @mgctx->tset. This function 2286 * becomes noop if @task doesn't need to be migrated. @task's css_set 2287 * should have been added as a migration source and @task->cg_list will be 2288 * moved from the css_set's tasks list to mg_tasks one. 2289 */ 2290 static void cgroup_migrate_add_task(struct task_struct *task, 2291 struct cgroup_mgctx *mgctx) 2292 { 2293 struct css_set *cset; 2294 2295 lockdep_assert_held(&css_set_lock); 2296 2297 /* @task either already exited or can't exit until the end */ 2298 if (task->flags & PF_EXITING) 2299 return; 2300 2301 /* cgroup_threadgroup_rwsem protects racing against forks */ 2302 WARN_ON_ONCE(list_empty(&task->cg_list)); 2303 2304 cset = task_css_set(task); 2305 if (!cset->mg_src_cgrp) 2306 return; 2307 2308 mgctx->tset.nr_tasks++; 2309 2310 list_move_tail(&task->cg_list, &cset->mg_tasks); 2311 if (list_empty(&cset->mg_node)) 2312 list_add_tail(&cset->mg_node, 2313 &mgctx->tset.src_csets); 2314 if (list_empty(&cset->mg_dst_cset->mg_node)) 2315 list_add_tail(&cset->mg_dst_cset->mg_node, 2316 &mgctx->tset.dst_csets); 2317 } 2318 2319 /** 2320 * cgroup_taskset_first - reset taskset and return the first task 2321 * @tset: taskset of interest 2322 * @dst_cssp: output variable for the destination css 2323 * 2324 * @tset iteration is initialized and the first task is returned. 2325 */ 2326 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset, 2327 struct cgroup_subsys_state **dst_cssp) 2328 { 2329 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node); 2330 tset->cur_task = NULL; 2331 2332 return cgroup_taskset_next(tset, dst_cssp); 2333 } 2334 2335 /** 2336 * cgroup_taskset_next - iterate to the next task in taskset 2337 * @tset: taskset of interest 2338 * @dst_cssp: output variable for the destination css 2339 * 2340 * Return the next task in @tset. Iteration must have been initialized 2341 * with cgroup_taskset_first(). 2342 */ 2343 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset, 2344 struct cgroup_subsys_state **dst_cssp) 2345 { 2346 struct css_set *cset = tset->cur_cset; 2347 struct task_struct *task = tset->cur_task; 2348 2349 while (&cset->mg_node != tset->csets) { 2350 if (!task) 2351 task = list_first_entry(&cset->mg_tasks, 2352 struct task_struct, cg_list); 2353 else 2354 task = list_next_entry(task, cg_list); 2355 2356 if (&task->cg_list != &cset->mg_tasks) { 2357 tset->cur_cset = cset; 2358 tset->cur_task = task; 2359 2360 /* 2361 * This function may be called both before and 2362 * after cgroup_taskset_migrate(). The two cases 2363 * can be distinguished by looking at whether @cset 2364 * has its ->mg_dst_cset set. 2365 */ 2366 if (cset->mg_dst_cset) 2367 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid]; 2368 else 2369 *dst_cssp = cset->subsys[tset->ssid]; 2370 2371 return task; 2372 } 2373 2374 cset = list_next_entry(cset, mg_node); 2375 task = NULL; 2376 } 2377 2378 return NULL; 2379 } 2380 2381 /** 2382 * cgroup_taskset_migrate - migrate a taskset 2383 * @mgctx: migration context 2384 * 2385 * Migrate tasks in @mgctx as setup by migration preparation functions. 2386 * This function fails iff one of the ->can_attach callbacks fails and 2387 * guarantees that either all or none of the tasks in @mgctx are migrated. 2388 * @mgctx is consumed regardless of success. 2389 */ 2390 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx) 2391 { 2392 struct cgroup_taskset *tset = &mgctx->tset; 2393 struct cgroup_subsys *ss; 2394 struct task_struct *task, *tmp_task; 2395 struct css_set *cset, *tmp_cset; 2396 int ssid, failed_ssid, ret; 2397 2398 /* check that we can legitimately attach to the cgroup */ 2399 if (tset->nr_tasks) { 2400 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2401 if (ss->can_attach) { 2402 tset->ssid = ssid; 2403 ret = ss->can_attach(tset); 2404 if (ret) { 2405 failed_ssid = ssid; 2406 goto out_cancel_attach; 2407 } 2408 } 2409 } while_each_subsys_mask(); 2410 } 2411 2412 /* 2413 * Now that we're guaranteed success, proceed to move all tasks to 2414 * the new cgroup. There are no failure cases after here, so this 2415 * is the commit point. 2416 */ 2417 spin_lock_irq(&css_set_lock); 2418 list_for_each_entry(cset, &tset->src_csets, mg_node) { 2419 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) { 2420 struct css_set *from_cset = task_css_set(task); 2421 struct css_set *to_cset = cset->mg_dst_cset; 2422 2423 get_css_set(to_cset); 2424 to_cset->nr_tasks++; 2425 css_set_move_task(task, from_cset, to_cset, true); 2426 from_cset->nr_tasks--; 2427 /* 2428 * If the source or destination cgroup is frozen, 2429 * the task might require to change its state. 2430 */ 2431 cgroup_freezer_migrate_task(task, from_cset->dfl_cgrp, 2432 to_cset->dfl_cgrp); 2433 put_css_set_locked(from_cset); 2434 2435 } 2436 } 2437 spin_unlock_irq(&css_set_lock); 2438 2439 /* 2440 * Migration is committed, all target tasks are now on dst_csets. 2441 * Nothing is sensitive to fork() after this point. Notify 2442 * controllers that migration is complete. 2443 */ 2444 tset->csets = &tset->dst_csets; 2445 2446 if (tset->nr_tasks) { 2447 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2448 if (ss->attach) { 2449 tset->ssid = ssid; 2450 ss->attach(tset); 2451 } 2452 } while_each_subsys_mask(); 2453 } 2454 2455 ret = 0; 2456 goto out_release_tset; 2457 2458 out_cancel_attach: 2459 if (tset->nr_tasks) { 2460 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2461 if (ssid == failed_ssid) 2462 break; 2463 if (ss->cancel_attach) { 2464 tset->ssid = ssid; 2465 ss->cancel_attach(tset); 2466 } 2467 } while_each_subsys_mask(); 2468 } 2469 out_release_tset: 2470 spin_lock_irq(&css_set_lock); 2471 list_splice_init(&tset->dst_csets, &tset->src_csets); 2472 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) { 2473 list_splice_tail_init(&cset->mg_tasks, &cset->tasks); 2474 list_del_init(&cset->mg_node); 2475 } 2476 spin_unlock_irq(&css_set_lock); 2477 2478 /* 2479 * Re-initialize the cgroup_taskset structure in case it is reused 2480 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute() 2481 * iteration. 2482 */ 2483 tset->nr_tasks = 0; 2484 tset->csets = &tset->src_csets; 2485 return ret; 2486 } 2487 2488 /** 2489 * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination 2490 * @dst_cgrp: destination cgroup to test 2491 * 2492 * On the default hierarchy, except for the mixable, (possible) thread root 2493 * and threaded cgroups, subtree_control must be zero for migration 2494 * destination cgroups with tasks so that child cgroups don't compete 2495 * against tasks. 2496 */ 2497 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp) 2498 { 2499 /* v1 doesn't have any restriction */ 2500 if (!cgroup_on_dfl(dst_cgrp)) 2501 return 0; 2502 2503 /* verify @dst_cgrp can host resources */ 2504 if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp)) 2505 return -EOPNOTSUPP; 2506 2507 /* mixables don't care */ 2508 if (cgroup_is_mixable(dst_cgrp)) 2509 return 0; 2510 2511 /* 2512 * If @dst_cgrp is already or can become a thread root or is 2513 * threaded, it doesn't matter. 2514 */ 2515 if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp)) 2516 return 0; 2517 2518 /* apply no-internal-process constraint */ 2519 if (dst_cgrp->subtree_control) 2520 return -EBUSY; 2521 2522 return 0; 2523 } 2524 2525 /** 2526 * cgroup_migrate_finish - cleanup after attach 2527 * @mgctx: migration context 2528 * 2529 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See 2530 * those functions for details. 2531 */ 2532 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx) 2533 { 2534 LIST_HEAD(preloaded); 2535 struct css_set *cset, *tmp_cset; 2536 2537 lockdep_assert_held(&cgroup_mutex); 2538 2539 spin_lock_irq(&css_set_lock); 2540 2541 list_splice_tail_init(&mgctx->preloaded_src_csets, &preloaded); 2542 list_splice_tail_init(&mgctx->preloaded_dst_csets, &preloaded); 2543 2544 list_for_each_entry_safe(cset, tmp_cset, &preloaded, mg_preload_node) { 2545 cset->mg_src_cgrp = NULL; 2546 cset->mg_dst_cgrp = NULL; 2547 cset->mg_dst_cset = NULL; 2548 list_del_init(&cset->mg_preload_node); 2549 put_css_set_locked(cset); 2550 } 2551 2552 spin_unlock_irq(&css_set_lock); 2553 } 2554 2555 /** 2556 * cgroup_migrate_add_src - add a migration source css_set 2557 * @src_cset: the source css_set to add 2558 * @dst_cgrp: the destination cgroup 2559 * @mgctx: migration context 2560 * 2561 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin 2562 * @src_cset and add it to @mgctx->src_csets, which should later be cleaned 2563 * up by cgroup_migrate_finish(). 2564 * 2565 * This function may be called without holding cgroup_threadgroup_rwsem 2566 * even if the target is a process. Threads may be created and destroyed 2567 * but as long as cgroup_mutex is not dropped, no new css_set can be put 2568 * into play and the preloaded css_sets are guaranteed to cover all 2569 * migrations. 2570 */ 2571 void cgroup_migrate_add_src(struct css_set *src_cset, 2572 struct cgroup *dst_cgrp, 2573 struct cgroup_mgctx *mgctx) 2574 { 2575 struct cgroup *src_cgrp; 2576 2577 lockdep_assert_held(&cgroup_mutex); 2578 lockdep_assert_held(&css_set_lock); 2579 2580 /* 2581 * If ->dead, @src_set is associated with one or more dead cgroups 2582 * and doesn't contain any migratable tasks. Ignore it early so 2583 * that the rest of migration path doesn't get confused by it. 2584 */ 2585 if (src_cset->dead) 2586 return; 2587 2588 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root); 2589 2590 if (!list_empty(&src_cset->mg_preload_node)) 2591 return; 2592 2593 WARN_ON(src_cset->mg_src_cgrp); 2594 WARN_ON(src_cset->mg_dst_cgrp); 2595 WARN_ON(!list_empty(&src_cset->mg_tasks)); 2596 WARN_ON(!list_empty(&src_cset->mg_node)); 2597 2598 src_cset->mg_src_cgrp = src_cgrp; 2599 src_cset->mg_dst_cgrp = dst_cgrp; 2600 get_css_set(src_cset); 2601 list_add_tail(&src_cset->mg_preload_node, &mgctx->preloaded_src_csets); 2602 } 2603 2604 /** 2605 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration 2606 * @mgctx: migration context 2607 * 2608 * Tasks are about to be moved and all the source css_sets have been 2609 * preloaded to @mgctx->preloaded_src_csets. This function looks up and 2610 * pins all destination css_sets, links each to its source, and append them 2611 * to @mgctx->preloaded_dst_csets. 2612 * 2613 * This function must be called after cgroup_migrate_add_src() has been 2614 * called on each migration source css_set. After migration is performed 2615 * using cgroup_migrate(), cgroup_migrate_finish() must be called on 2616 * @mgctx. 2617 */ 2618 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx) 2619 { 2620 struct css_set *src_cset, *tmp_cset; 2621 2622 lockdep_assert_held(&cgroup_mutex); 2623 2624 /* look up the dst cset for each src cset and link it to src */ 2625 list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets, 2626 mg_preload_node) { 2627 struct css_set *dst_cset; 2628 struct cgroup_subsys *ss; 2629 int ssid; 2630 2631 dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp); 2632 if (!dst_cset) 2633 return -ENOMEM; 2634 2635 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset); 2636 2637 /* 2638 * If src cset equals dst, it's noop. Drop the src. 2639 * cgroup_migrate() will skip the cset too. Note that we 2640 * can't handle src == dst as some nodes are used by both. 2641 */ 2642 if (src_cset == dst_cset) { 2643 src_cset->mg_src_cgrp = NULL; 2644 src_cset->mg_dst_cgrp = NULL; 2645 list_del_init(&src_cset->mg_preload_node); 2646 put_css_set(src_cset); 2647 put_css_set(dst_cset); 2648 continue; 2649 } 2650 2651 src_cset->mg_dst_cset = dst_cset; 2652 2653 if (list_empty(&dst_cset->mg_preload_node)) 2654 list_add_tail(&dst_cset->mg_preload_node, 2655 &mgctx->preloaded_dst_csets); 2656 else 2657 put_css_set(dst_cset); 2658 2659 for_each_subsys(ss, ssid) 2660 if (src_cset->subsys[ssid] != dst_cset->subsys[ssid]) 2661 mgctx->ss_mask |= 1 << ssid; 2662 } 2663 2664 return 0; 2665 } 2666 2667 /** 2668 * cgroup_migrate - migrate a process or task to a cgroup 2669 * @leader: the leader of the process or the task to migrate 2670 * @threadgroup: whether @leader points to the whole process or a single task 2671 * @mgctx: migration context 2672 * 2673 * Migrate a process or task denoted by @leader. If migrating a process, 2674 * the caller must be holding cgroup_threadgroup_rwsem. The caller is also 2675 * responsible for invoking cgroup_migrate_add_src() and 2676 * cgroup_migrate_prepare_dst() on the targets before invoking this 2677 * function and following up with cgroup_migrate_finish(). 2678 * 2679 * As long as a controller's ->can_attach() doesn't fail, this function is 2680 * guaranteed to succeed. This means that, excluding ->can_attach() 2681 * failure, when migrating multiple targets, the success or failure can be 2682 * decided for all targets by invoking group_migrate_prepare_dst() before 2683 * actually starting migrating. 2684 */ 2685 int cgroup_migrate(struct task_struct *leader, bool threadgroup, 2686 struct cgroup_mgctx *mgctx) 2687 { 2688 struct task_struct *task; 2689 2690 /* 2691 * Prevent freeing of tasks while we take a snapshot. Tasks that are 2692 * already PF_EXITING could be freed from underneath us unless we 2693 * take an rcu_read_lock. 2694 */ 2695 spin_lock_irq(&css_set_lock); 2696 rcu_read_lock(); 2697 task = leader; 2698 do { 2699 cgroup_migrate_add_task(task, mgctx); 2700 if (!threadgroup) 2701 break; 2702 } while_each_thread(leader, task); 2703 rcu_read_unlock(); 2704 spin_unlock_irq(&css_set_lock); 2705 2706 return cgroup_migrate_execute(mgctx); 2707 } 2708 2709 /** 2710 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup 2711 * @dst_cgrp: the cgroup to attach to 2712 * @leader: the task or the leader of the threadgroup to be attached 2713 * @threadgroup: attach the whole threadgroup? 2714 * 2715 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem. 2716 */ 2717 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader, 2718 bool threadgroup) 2719 { 2720 DEFINE_CGROUP_MGCTX(mgctx); 2721 struct task_struct *task; 2722 int ret; 2723 2724 ret = cgroup_migrate_vet_dst(dst_cgrp); 2725 if (ret) 2726 return ret; 2727 2728 /* look up all src csets */ 2729 spin_lock_irq(&css_set_lock); 2730 rcu_read_lock(); 2731 task = leader; 2732 do { 2733 cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx); 2734 if (!threadgroup) 2735 break; 2736 } while_each_thread(leader, task); 2737 rcu_read_unlock(); 2738 spin_unlock_irq(&css_set_lock); 2739 2740 /* prepare dst csets and commit */ 2741 ret = cgroup_migrate_prepare_dst(&mgctx); 2742 if (!ret) 2743 ret = cgroup_migrate(leader, threadgroup, &mgctx); 2744 2745 cgroup_migrate_finish(&mgctx); 2746 2747 if (!ret) 2748 TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup); 2749 2750 return ret; 2751 } 2752 2753 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup, 2754 bool *locked) 2755 __acquires(&cgroup_threadgroup_rwsem) 2756 { 2757 struct task_struct *tsk; 2758 pid_t pid; 2759 2760 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0) 2761 return ERR_PTR(-EINVAL); 2762 2763 /* 2764 * If we migrate a single thread, we don't care about threadgroup 2765 * stability. If the thread is `current`, it won't exit(2) under our 2766 * hands or change PID through exec(2). We exclude 2767 * cgroup_update_dfl_csses and other cgroup_{proc,thread}s_write 2768 * callers by cgroup_mutex. 2769 * Therefore, we can skip the global lock. 2770 */ 2771 lockdep_assert_held(&cgroup_mutex); 2772 if (pid || threadgroup) { 2773 percpu_down_write(&cgroup_threadgroup_rwsem); 2774 *locked = true; 2775 } else { 2776 *locked = false; 2777 } 2778 2779 rcu_read_lock(); 2780 if (pid) { 2781 tsk = find_task_by_vpid(pid); 2782 if (!tsk) { 2783 tsk = ERR_PTR(-ESRCH); 2784 goto out_unlock_threadgroup; 2785 } 2786 } else { 2787 tsk = current; 2788 } 2789 2790 if (threadgroup) 2791 tsk = tsk->group_leader; 2792 2793 /* 2794 * kthreads may acquire PF_NO_SETAFFINITY during initialization. 2795 * If userland migrates such a kthread to a non-root cgroup, it can 2796 * become trapped in a cpuset, or RT kthread may be born in a 2797 * cgroup with no rt_runtime allocated. Just say no. 2798 */ 2799 if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) { 2800 tsk = ERR_PTR(-EINVAL); 2801 goto out_unlock_threadgroup; 2802 } 2803 2804 get_task_struct(tsk); 2805 goto out_unlock_rcu; 2806 2807 out_unlock_threadgroup: 2808 if (*locked) { 2809 percpu_up_write(&cgroup_threadgroup_rwsem); 2810 *locked = false; 2811 } 2812 out_unlock_rcu: 2813 rcu_read_unlock(); 2814 return tsk; 2815 } 2816 2817 void cgroup_procs_write_finish(struct task_struct *task, bool locked) 2818 __releases(&cgroup_threadgroup_rwsem) 2819 { 2820 struct cgroup_subsys *ss; 2821 int ssid; 2822 2823 /* release reference from cgroup_procs_write_start() */ 2824 put_task_struct(task); 2825 2826 if (locked) 2827 percpu_up_write(&cgroup_threadgroup_rwsem); 2828 for_each_subsys(ss, ssid) 2829 if (ss->post_attach) 2830 ss->post_attach(); 2831 } 2832 2833 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask) 2834 { 2835 struct cgroup_subsys *ss; 2836 bool printed = false; 2837 int ssid; 2838 2839 do_each_subsys_mask(ss, ssid, ss_mask) { 2840 if (printed) 2841 seq_putc(seq, ' '); 2842 seq_puts(seq, ss->name); 2843 printed = true; 2844 } while_each_subsys_mask(); 2845 if (printed) 2846 seq_putc(seq, '\n'); 2847 } 2848 2849 /* show controllers which are enabled from the parent */ 2850 static int cgroup_controllers_show(struct seq_file *seq, void *v) 2851 { 2852 struct cgroup *cgrp = seq_css(seq)->cgroup; 2853 2854 cgroup_print_ss_mask(seq, cgroup_control(cgrp)); 2855 return 0; 2856 } 2857 2858 /* show controllers which are enabled for a given cgroup's children */ 2859 static int cgroup_subtree_control_show(struct seq_file *seq, void *v) 2860 { 2861 struct cgroup *cgrp = seq_css(seq)->cgroup; 2862 2863 cgroup_print_ss_mask(seq, cgrp->subtree_control); 2864 return 0; 2865 } 2866 2867 /** 2868 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy 2869 * @cgrp: root of the subtree to update csses for 2870 * 2871 * @cgrp's control masks have changed and its subtree's css associations 2872 * need to be updated accordingly. This function looks up all css_sets 2873 * which are attached to the subtree, creates the matching updated css_sets 2874 * and migrates the tasks to the new ones. 2875 */ 2876 static int cgroup_update_dfl_csses(struct cgroup *cgrp) 2877 { 2878 DEFINE_CGROUP_MGCTX(mgctx); 2879 struct cgroup_subsys_state *d_css; 2880 struct cgroup *dsct; 2881 struct css_set *src_cset; 2882 int ret; 2883 2884 lockdep_assert_held(&cgroup_mutex); 2885 2886 percpu_down_write(&cgroup_threadgroup_rwsem); 2887 2888 /* look up all csses currently attached to @cgrp's subtree */ 2889 spin_lock_irq(&css_set_lock); 2890 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 2891 struct cgrp_cset_link *link; 2892 2893 list_for_each_entry(link, &dsct->cset_links, cset_link) 2894 cgroup_migrate_add_src(link->cset, dsct, &mgctx); 2895 } 2896 spin_unlock_irq(&css_set_lock); 2897 2898 /* NULL dst indicates self on default hierarchy */ 2899 ret = cgroup_migrate_prepare_dst(&mgctx); 2900 if (ret) 2901 goto out_finish; 2902 2903 spin_lock_irq(&css_set_lock); 2904 list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, mg_preload_node) { 2905 struct task_struct *task, *ntask; 2906 2907 /* all tasks in src_csets need to be migrated */ 2908 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list) 2909 cgroup_migrate_add_task(task, &mgctx); 2910 } 2911 spin_unlock_irq(&css_set_lock); 2912 2913 ret = cgroup_migrate_execute(&mgctx); 2914 out_finish: 2915 cgroup_migrate_finish(&mgctx); 2916 percpu_up_write(&cgroup_threadgroup_rwsem); 2917 return ret; 2918 } 2919 2920 /** 2921 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses 2922 * @cgrp: root of the target subtree 2923 * 2924 * Because css offlining is asynchronous, userland may try to re-enable a 2925 * controller while the previous css is still around. This function grabs 2926 * cgroup_mutex and drains the previous css instances of @cgrp's subtree. 2927 */ 2928 void cgroup_lock_and_drain_offline(struct cgroup *cgrp) 2929 __acquires(&cgroup_mutex) 2930 { 2931 struct cgroup *dsct; 2932 struct cgroup_subsys_state *d_css; 2933 struct cgroup_subsys *ss; 2934 int ssid; 2935 2936 restart: 2937 mutex_lock(&cgroup_mutex); 2938 2939 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 2940 for_each_subsys(ss, ssid) { 2941 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 2942 DEFINE_WAIT(wait); 2943 2944 if (!css || !percpu_ref_is_dying(&css->refcnt)) 2945 continue; 2946 2947 cgroup_get_live(dsct); 2948 prepare_to_wait(&dsct->offline_waitq, &wait, 2949 TASK_UNINTERRUPTIBLE); 2950 2951 mutex_unlock(&cgroup_mutex); 2952 schedule(); 2953 finish_wait(&dsct->offline_waitq, &wait); 2954 2955 cgroup_put(dsct); 2956 goto restart; 2957 } 2958 } 2959 } 2960 2961 /** 2962 * cgroup_save_control - save control masks and dom_cgrp of a subtree 2963 * @cgrp: root of the target subtree 2964 * 2965 * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the 2966 * respective old_ prefixed fields for @cgrp's subtree including @cgrp 2967 * itself. 2968 */ 2969 static void cgroup_save_control(struct cgroup *cgrp) 2970 { 2971 struct cgroup *dsct; 2972 struct cgroup_subsys_state *d_css; 2973 2974 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 2975 dsct->old_subtree_control = dsct->subtree_control; 2976 dsct->old_subtree_ss_mask = dsct->subtree_ss_mask; 2977 dsct->old_dom_cgrp = dsct->dom_cgrp; 2978 } 2979 } 2980 2981 /** 2982 * cgroup_propagate_control - refresh control masks of a subtree 2983 * @cgrp: root of the target subtree 2984 * 2985 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches 2986 * ->subtree_control and propagate controller availability through the 2987 * subtree so that descendants don't have unavailable controllers enabled. 2988 */ 2989 static void cgroup_propagate_control(struct cgroup *cgrp) 2990 { 2991 struct cgroup *dsct; 2992 struct cgroup_subsys_state *d_css; 2993 2994 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 2995 dsct->subtree_control &= cgroup_control(dsct); 2996 dsct->subtree_ss_mask = 2997 cgroup_calc_subtree_ss_mask(dsct->subtree_control, 2998 cgroup_ss_mask(dsct)); 2999 } 3000 } 3001 3002 /** 3003 * cgroup_restore_control - restore control masks and dom_cgrp of a subtree 3004 * @cgrp: root of the target subtree 3005 * 3006 * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the 3007 * respective old_ prefixed fields for @cgrp's subtree including @cgrp 3008 * itself. 3009 */ 3010 static void cgroup_restore_control(struct cgroup *cgrp) 3011 { 3012 struct cgroup *dsct; 3013 struct cgroup_subsys_state *d_css; 3014 3015 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 3016 dsct->subtree_control = dsct->old_subtree_control; 3017 dsct->subtree_ss_mask = dsct->old_subtree_ss_mask; 3018 dsct->dom_cgrp = dsct->old_dom_cgrp; 3019 } 3020 } 3021 3022 static bool css_visible(struct cgroup_subsys_state *css) 3023 { 3024 struct cgroup_subsys *ss = css->ss; 3025 struct cgroup *cgrp = css->cgroup; 3026 3027 if (cgroup_control(cgrp) & (1 << ss->id)) 3028 return true; 3029 if (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) 3030 return false; 3031 return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl; 3032 } 3033 3034 /** 3035 * cgroup_apply_control_enable - enable or show csses according to control 3036 * @cgrp: root of the target subtree 3037 * 3038 * Walk @cgrp's subtree and create new csses or make the existing ones 3039 * visible. A css is created invisible if it's being implicitly enabled 3040 * through dependency. An invisible css is made visible when the userland 3041 * explicitly enables it. 3042 * 3043 * Returns 0 on success, -errno on failure. On failure, csses which have 3044 * been processed already aren't cleaned up. The caller is responsible for 3045 * cleaning up with cgroup_apply_control_disable(). 3046 */ 3047 static int cgroup_apply_control_enable(struct cgroup *cgrp) 3048 { 3049 struct cgroup *dsct; 3050 struct cgroup_subsys_state *d_css; 3051 struct cgroup_subsys *ss; 3052 int ssid, ret; 3053 3054 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 3055 for_each_subsys(ss, ssid) { 3056 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 3057 3058 if (!(cgroup_ss_mask(dsct) & (1 << ss->id))) 3059 continue; 3060 3061 if (!css) { 3062 css = css_create(dsct, ss); 3063 if (IS_ERR(css)) 3064 return PTR_ERR(css); 3065 } 3066 3067 WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt)); 3068 3069 if (css_visible(css)) { 3070 ret = css_populate_dir(css); 3071 if (ret) 3072 return ret; 3073 } 3074 } 3075 } 3076 3077 return 0; 3078 } 3079 3080 /** 3081 * cgroup_apply_control_disable - kill or hide csses according to control 3082 * @cgrp: root of the target subtree 3083 * 3084 * Walk @cgrp's subtree and kill and hide csses so that they match 3085 * cgroup_ss_mask() and cgroup_visible_mask(). 3086 * 3087 * A css is hidden when the userland requests it to be disabled while other 3088 * subsystems are still depending on it. The css must not actively control 3089 * resources and be in the vanilla state if it's made visible again later. 3090 * Controllers which may be depended upon should provide ->css_reset() for 3091 * this purpose. 3092 */ 3093 static void cgroup_apply_control_disable(struct cgroup *cgrp) 3094 { 3095 struct cgroup *dsct; 3096 struct cgroup_subsys_state *d_css; 3097 struct cgroup_subsys *ss; 3098 int ssid; 3099 3100 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 3101 for_each_subsys(ss, ssid) { 3102 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 3103 3104 if (!css) 3105 continue; 3106 3107 WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt)); 3108 3109 if (css->parent && 3110 !(cgroup_ss_mask(dsct) & (1 << ss->id))) { 3111 kill_css(css); 3112 } else if (!css_visible(css)) { 3113 css_clear_dir(css); 3114 if (ss->css_reset) 3115 ss->css_reset(css); 3116 } 3117 } 3118 } 3119 } 3120 3121 /** 3122 * cgroup_apply_control - apply control mask updates to the subtree 3123 * @cgrp: root of the target subtree 3124 * 3125 * subsystems can be enabled and disabled in a subtree using the following 3126 * steps. 3127 * 3128 * 1. Call cgroup_save_control() to stash the current state. 3129 * 2. Update ->subtree_control masks in the subtree as desired. 3130 * 3. Call cgroup_apply_control() to apply the changes. 3131 * 4. Optionally perform other related operations. 3132 * 5. Call cgroup_finalize_control() to finish up. 3133 * 3134 * This function implements step 3 and propagates the mask changes 3135 * throughout @cgrp's subtree, updates csses accordingly and perform 3136 * process migrations. 3137 */ 3138 static int cgroup_apply_control(struct cgroup *cgrp) 3139 { 3140 int ret; 3141 3142 cgroup_propagate_control(cgrp); 3143 3144 ret = cgroup_apply_control_enable(cgrp); 3145 if (ret) 3146 return ret; 3147 3148 /* 3149 * At this point, cgroup_e_css_by_mask() results reflect the new csses 3150 * making the following cgroup_update_dfl_csses() properly update 3151 * css associations of all tasks in the subtree. 3152 */ 3153 ret = cgroup_update_dfl_csses(cgrp); 3154 if (ret) 3155 return ret; 3156 3157 return 0; 3158 } 3159 3160 /** 3161 * cgroup_finalize_control - finalize control mask update 3162 * @cgrp: root of the target subtree 3163 * @ret: the result of the update 3164 * 3165 * Finalize control mask update. See cgroup_apply_control() for more info. 3166 */ 3167 static void cgroup_finalize_control(struct cgroup *cgrp, int ret) 3168 { 3169 if (ret) { 3170 cgroup_restore_control(cgrp); 3171 cgroup_propagate_control(cgrp); 3172 } 3173 3174 cgroup_apply_control_disable(cgrp); 3175 } 3176 3177 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable) 3178 { 3179 u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask; 3180 3181 /* if nothing is getting enabled, nothing to worry about */ 3182 if (!enable) 3183 return 0; 3184 3185 /* can @cgrp host any resources? */ 3186 if (!cgroup_is_valid_domain(cgrp->dom_cgrp)) 3187 return -EOPNOTSUPP; 3188 3189 /* mixables don't care */ 3190 if (cgroup_is_mixable(cgrp)) 3191 return 0; 3192 3193 if (domain_enable) { 3194 /* can't enable domain controllers inside a thread subtree */ 3195 if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp)) 3196 return -EOPNOTSUPP; 3197 } else { 3198 /* 3199 * Threaded controllers can handle internal competitions 3200 * and are always allowed inside a (prospective) thread 3201 * subtree. 3202 */ 3203 if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp)) 3204 return 0; 3205 } 3206 3207 /* 3208 * Controllers can't be enabled for a cgroup with tasks to avoid 3209 * child cgroups competing against tasks. 3210 */ 3211 if (cgroup_has_tasks(cgrp)) 3212 return -EBUSY; 3213 3214 return 0; 3215 } 3216 3217 /* change the enabled child controllers for a cgroup in the default hierarchy */ 3218 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of, 3219 char *buf, size_t nbytes, 3220 loff_t off) 3221 { 3222 u16 enable = 0, disable = 0; 3223 struct cgroup *cgrp, *child; 3224 struct cgroup_subsys *ss; 3225 char *tok; 3226 int ssid, ret; 3227 3228 /* 3229 * Parse input - space separated list of subsystem names prefixed 3230 * with either + or -. 3231 */ 3232 buf = strstrip(buf); 3233 while ((tok = strsep(&buf, " "))) { 3234 if (tok[0] == '\0') 3235 continue; 3236 do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) { 3237 if (!cgroup_ssid_enabled(ssid) || 3238 strcmp(tok + 1, ss->name)) 3239 continue; 3240 3241 if (*tok == '+') { 3242 enable |= 1 << ssid; 3243 disable &= ~(1 << ssid); 3244 } else if (*tok == '-') { 3245 disable |= 1 << ssid; 3246 enable &= ~(1 << ssid); 3247 } else { 3248 return -EINVAL; 3249 } 3250 break; 3251 } while_each_subsys_mask(); 3252 if (ssid == CGROUP_SUBSYS_COUNT) 3253 return -EINVAL; 3254 } 3255 3256 cgrp = cgroup_kn_lock_live(of->kn, true); 3257 if (!cgrp) 3258 return -ENODEV; 3259 3260 for_each_subsys(ss, ssid) { 3261 if (enable & (1 << ssid)) { 3262 if (cgrp->subtree_control & (1 << ssid)) { 3263 enable &= ~(1 << ssid); 3264 continue; 3265 } 3266 3267 if (!(cgroup_control(cgrp) & (1 << ssid))) { 3268 ret = -ENOENT; 3269 goto out_unlock; 3270 } 3271 } else if (disable & (1 << ssid)) { 3272 if (!(cgrp->subtree_control & (1 << ssid))) { 3273 disable &= ~(1 << ssid); 3274 continue; 3275 } 3276 3277 /* a child has it enabled? */ 3278 cgroup_for_each_live_child(child, cgrp) { 3279 if (child->subtree_control & (1 << ssid)) { 3280 ret = -EBUSY; 3281 goto out_unlock; 3282 } 3283 } 3284 } 3285 } 3286 3287 if (!enable && !disable) { 3288 ret = 0; 3289 goto out_unlock; 3290 } 3291 3292 ret = cgroup_vet_subtree_control_enable(cgrp, enable); 3293 if (ret) 3294 goto out_unlock; 3295 3296 /* save and update control masks and prepare csses */ 3297 cgroup_save_control(cgrp); 3298 3299 cgrp->subtree_control |= enable; 3300 cgrp->subtree_control &= ~disable; 3301 3302 ret = cgroup_apply_control(cgrp); 3303 cgroup_finalize_control(cgrp, ret); 3304 if (ret) 3305 goto out_unlock; 3306 3307 kernfs_activate(cgrp->kn); 3308 out_unlock: 3309 cgroup_kn_unlock(of->kn); 3310 return ret ?: nbytes; 3311 } 3312 3313 /** 3314 * cgroup_enable_threaded - make @cgrp threaded 3315 * @cgrp: the target cgroup 3316 * 3317 * Called when "threaded" is written to the cgroup.type interface file and 3318 * tries to make @cgrp threaded and join the parent's resource domain. 3319 * This function is never called on the root cgroup as cgroup.type doesn't 3320 * exist on it. 3321 */ 3322 static int cgroup_enable_threaded(struct cgroup *cgrp) 3323 { 3324 struct cgroup *parent = cgroup_parent(cgrp); 3325 struct cgroup *dom_cgrp = parent->dom_cgrp; 3326 struct cgroup *dsct; 3327 struct cgroup_subsys_state *d_css; 3328 int ret; 3329 3330 lockdep_assert_held(&cgroup_mutex); 3331 3332 /* noop if already threaded */ 3333 if (cgroup_is_threaded(cgrp)) 3334 return 0; 3335 3336 /* 3337 * If @cgroup is populated or has domain controllers enabled, it 3338 * can't be switched. While the below cgroup_can_be_thread_root() 3339 * test can catch the same conditions, that's only when @parent is 3340 * not mixable, so let's check it explicitly. 3341 */ 3342 if (cgroup_is_populated(cgrp) || 3343 cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask) 3344 return -EOPNOTSUPP; 3345 3346 /* we're joining the parent's domain, ensure its validity */ 3347 if (!cgroup_is_valid_domain(dom_cgrp) || 3348 !cgroup_can_be_thread_root(dom_cgrp)) 3349 return -EOPNOTSUPP; 3350 3351 /* 3352 * The following shouldn't cause actual migrations and should 3353 * always succeed. 3354 */ 3355 cgroup_save_control(cgrp); 3356 3357 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) 3358 if (dsct == cgrp || cgroup_is_threaded(dsct)) 3359 dsct->dom_cgrp = dom_cgrp; 3360 3361 ret = cgroup_apply_control(cgrp); 3362 if (!ret) 3363 parent->nr_threaded_children++; 3364 3365 cgroup_finalize_control(cgrp, ret); 3366 return ret; 3367 } 3368 3369 static int cgroup_type_show(struct seq_file *seq, void *v) 3370 { 3371 struct cgroup *cgrp = seq_css(seq)->cgroup; 3372 3373 if (cgroup_is_threaded(cgrp)) 3374 seq_puts(seq, "threaded\n"); 3375 else if (!cgroup_is_valid_domain(cgrp)) 3376 seq_puts(seq, "domain invalid\n"); 3377 else if (cgroup_is_thread_root(cgrp)) 3378 seq_puts(seq, "domain threaded\n"); 3379 else 3380 seq_puts(seq, "domain\n"); 3381 3382 return 0; 3383 } 3384 3385 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf, 3386 size_t nbytes, loff_t off) 3387 { 3388 struct cgroup *cgrp; 3389 int ret; 3390 3391 /* only switching to threaded mode is supported */ 3392 if (strcmp(strstrip(buf), "threaded")) 3393 return -EINVAL; 3394 3395 /* drain dying csses before we re-apply (threaded) subtree control */ 3396 cgrp = cgroup_kn_lock_live(of->kn, true); 3397 if (!cgrp) 3398 return -ENOENT; 3399 3400 /* threaded can only be enabled */ 3401 ret = cgroup_enable_threaded(cgrp); 3402 3403 cgroup_kn_unlock(of->kn); 3404 return ret ?: nbytes; 3405 } 3406 3407 static int cgroup_max_descendants_show(struct seq_file *seq, void *v) 3408 { 3409 struct cgroup *cgrp = seq_css(seq)->cgroup; 3410 int descendants = READ_ONCE(cgrp->max_descendants); 3411 3412 if (descendants == INT_MAX) 3413 seq_puts(seq, "max\n"); 3414 else 3415 seq_printf(seq, "%d\n", descendants); 3416 3417 return 0; 3418 } 3419 3420 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of, 3421 char *buf, size_t nbytes, loff_t off) 3422 { 3423 struct cgroup *cgrp; 3424 int descendants; 3425 ssize_t ret; 3426 3427 buf = strstrip(buf); 3428 if (!strcmp(buf, "max")) { 3429 descendants = INT_MAX; 3430 } else { 3431 ret = kstrtoint(buf, 0, &descendants); 3432 if (ret) 3433 return ret; 3434 } 3435 3436 if (descendants < 0) 3437 return -ERANGE; 3438 3439 cgrp = cgroup_kn_lock_live(of->kn, false); 3440 if (!cgrp) 3441 return -ENOENT; 3442 3443 cgrp->max_descendants = descendants; 3444 3445 cgroup_kn_unlock(of->kn); 3446 3447 return nbytes; 3448 } 3449 3450 static int cgroup_max_depth_show(struct seq_file *seq, void *v) 3451 { 3452 struct cgroup *cgrp = seq_css(seq)->cgroup; 3453 int depth = READ_ONCE(cgrp->max_depth); 3454 3455 if (depth == INT_MAX) 3456 seq_puts(seq, "max\n"); 3457 else 3458 seq_printf(seq, "%d\n", depth); 3459 3460 return 0; 3461 } 3462 3463 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of, 3464 char *buf, size_t nbytes, loff_t off) 3465 { 3466 struct cgroup *cgrp; 3467 ssize_t ret; 3468 int depth; 3469 3470 buf = strstrip(buf); 3471 if (!strcmp(buf, "max")) { 3472 depth = INT_MAX; 3473 } else { 3474 ret = kstrtoint(buf, 0, &depth); 3475 if (ret) 3476 return ret; 3477 } 3478 3479 if (depth < 0) 3480 return -ERANGE; 3481 3482 cgrp = cgroup_kn_lock_live(of->kn, false); 3483 if (!cgrp) 3484 return -ENOENT; 3485 3486 cgrp->max_depth = depth; 3487 3488 cgroup_kn_unlock(of->kn); 3489 3490 return nbytes; 3491 } 3492 3493 static int cgroup_events_show(struct seq_file *seq, void *v) 3494 { 3495 struct cgroup *cgrp = seq_css(seq)->cgroup; 3496 3497 seq_printf(seq, "populated %d\n", cgroup_is_populated(cgrp)); 3498 seq_printf(seq, "frozen %d\n", test_bit(CGRP_FROZEN, &cgrp->flags)); 3499 3500 return 0; 3501 } 3502 3503 static int cgroup_stat_show(struct seq_file *seq, void *v) 3504 { 3505 struct cgroup *cgroup = seq_css(seq)->cgroup; 3506 3507 seq_printf(seq, "nr_descendants %d\n", 3508 cgroup->nr_descendants); 3509 seq_printf(seq, "nr_dying_descendants %d\n", 3510 cgroup->nr_dying_descendants); 3511 3512 return 0; 3513 } 3514 3515 static int __maybe_unused cgroup_extra_stat_show(struct seq_file *seq, 3516 struct cgroup *cgrp, int ssid) 3517 { 3518 struct cgroup_subsys *ss = cgroup_subsys[ssid]; 3519 struct cgroup_subsys_state *css; 3520 int ret; 3521 3522 if (!ss->css_extra_stat_show) 3523 return 0; 3524 3525 css = cgroup_tryget_css(cgrp, ss); 3526 if (!css) 3527 return 0; 3528 3529 ret = ss->css_extra_stat_show(seq, css); 3530 css_put(css); 3531 return ret; 3532 } 3533 3534 static int cpu_stat_show(struct seq_file *seq, void *v) 3535 { 3536 struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup; 3537 int ret = 0; 3538 3539 cgroup_base_stat_cputime_show(seq); 3540 #ifdef CONFIG_CGROUP_SCHED 3541 ret = cgroup_extra_stat_show(seq, cgrp, cpu_cgrp_id); 3542 #endif 3543 return ret; 3544 } 3545 3546 #ifdef CONFIG_PSI 3547 static int cgroup_io_pressure_show(struct seq_file *seq, void *v) 3548 { 3549 struct cgroup *cgrp = seq_css(seq)->cgroup; 3550 struct psi_group *psi = cgroup_id(cgrp) == 1 ? &psi_system : &cgrp->psi; 3551 3552 return psi_show(seq, psi, PSI_IO); 3553 } 3554 static int cgroup_memory_pressure_show(struct seq_file *seq, void *v) 3555 { 3556 struct cgroup *cgrp = seq_css(seq)->cgroup; 3557 struct psi_group *psi = cgroup_id(cgrp) == 1 ? &psi_system : &cgrp->psi; 3558 3559 return psi_show(seq, psi, PSI_MEM); 3560 } 3561 static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v) 3562 { 3563 struct cgroup *cgrp = seq_css(seq)->cgroup; 3564 struct psi_group *psi = cgroup_id(cgrp) == 1 ? &psi_system : &cgrp->psi; 3565 3566 return psi_show(seq, psi, PSI_CPU); 3567 } 3568 3569 static ssize_t cgroup_pressure_write(struct kernfs_open_file *of, char *buf, 3570 size_t nbytes, enum psi_res res) 3571 { 3572 struct psi_trigger *new; 3573 struct cgroup *cgrp; 3574 3575 cgrp = cgroup_kn_lock_live(of->kn, false); 3576 if (!cgrp) 3577 return -ENODEV; 3578 3579 cgroup_get(cgrp); 3580 cgroup_kn_unlock(of->kn); 3581 3582 new = psi_trigger_create(&cgrp->psi, buf, nbytes, res); 3583 if (IS_ERR(new)) { 3584 cgroup_put(cgrp); 3585 return PTR_ERR(new); 3586 } 3587 3588 psi_trigger_replace(&of->priv, new); 3589 3590 cgroup_put(cgrp); 3591 3592 return nbytes; 3593 } 3594 3595 static ssize_t cgroup_io_pressure_write(struct kernfs_open_file *of, 3596 char *buf, size_t nbytes, 3597 loff_t off) 3598 { 3599 return cgroup_pressure_write(of, buf, nbytes, PSI_IO); 3600 } 3601 3602 static ssize_t cgroup_memory_pressure_write(struct kernfs_open_file *of, 3603 char *buf, size_t nbytes, 3604 loff_t off) 3605 { 3606 return cgroup_pressure_write(of, buf, nbytes, PSI_MEM); 3607 } 3608 3609 static ssize_t cgroup_cpu_pressure_write(struct kernfs_open_file *of, 3610 char *buf, size_t nbytes, 3611 loff_t off) 3612 { 3613 return cgroup_pressure_write(of, buf, nbytes, PSI_CPU); 3614 } 3615 3616 static __poll_t cgroup_pressure_poll(struct kernfs_open_file *of, 3617 poll_table *pt) 3618 { 3619 return psi_trigger_poll(&of->priv, of->file, pt); 3620 } 3621 3622 static void cgroup_pressure_release(struct kernfs_open_file *of) 3623 { 3624 psi_trigger_replace(&of->priv, NULL); 3625 } 3626 #endif /* CONFIG_PSI */ 3627 3628 static int cgroup_freeze_show(struct seq_file *seq, void *v) 3629 { 3630 struct cgroup *cgrp = seq_css(seq)->cgroup; 3631 3632 seq_printf(seq, "%d\n", cgrp->freezer.freeze); 3633 3634 return 0; 3635 } 3636 3637 static ssize_t cgroup_freeze_write(struct kernfs_open_file *of, 3638 char *buf, size_t nbytes, loff_t off) 3639 { 3640 struct cgroup *cgrp; 3641 ssize_t ret; 3642 int freeze; 3643 3644 ret = kstrtoint(strstrip(buf), 0, &freeze); 3645 if (ret) 3646 return ret; 3647 3648 if (freeze < 0 || freeze > 1) 3649 return -ERANGE; 3650 3651 cgrp = cgroup_kn_lock_live(of->kn, false); 3652 if (!cgrp) 3653 return -ENOENT; 3654 3655 cgroup_freeze(cgrp, freeze); 3656 3657 cgroup_kn_unlock(of->kn); 3658 3659 return nbytes; 3660 } 3661 3662 static int cgroup_file_open(struct kernfs_open_file *of) 3663 { 3664 struct cftype *cft = of->kn->priv; 3665 3666 if (cft->open) 3667 return cft->open(of); 3668 return 0; 3669 } 3670 3671 static void cgroup_file_release(struct kernfs_open_file *of) 3672 { 3673 struct cftype *cft = of->kn->priv; 3674 3675 if (cft->release) 3676 cft->release(of); 3677 } 3678 3679 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf, 3680 size_t nbytes, loff_t off) 3681 { 3682 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns; 3683 struct cgroup *cgrp = of->kn->parent->priv; 3684 struct cftype *cft = of->kn->priv; 3685 struct cgroup_subsys_state *css; 3686 int ret; 3687 3688 /* 3689 * If namespaces are delegation boundaries, disallow writes to 3690 * files in an non-init namespace root from inside the namespace 3691 * except for the files explicitly marked delegatable - 3692 * cgroup.procs and cgroup.subtree_control. 3693 */ 3694 if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) && 3695 !(cft->flags & CFTYPE_NS_DELEGATABLE) && 3696 ns != &init_cgroup_ns && ns->root_cset->dfl_cgrp == cgrp) 3697 return -EPERM; 3698 3699 if (cft->write) 3700 return cft->write(of, buf, nbytes, off); 3701 3702 /* 3703 * kernfs guarantees that a file isn't deleted with operations in 3704 * flight, which means that the matching css is and stays alive and 3705 * doesn't need to be pinned. The RCU locking is not necessary 3706 * either. It's just for the convenience of using cgroup_css(). 3707 */ 3708 rcu_read_lock(); 3709 css = cgroup_css(cgrp, cft->ss); 3710 rcu_read_unlock(); 3711 3712 if (cft->write_u64) { 3713 unsigned long long v; 3714 ret = kstrtoull(buf, 0, &v); 3715 if (!ret) 3716 ret = cft->write_u64(css, cft, v); 3717 } else if (cft->write_s64) { 3718 long long v; 3719 ret = kstrtoll(buf, 0, &v); 3720 if (!ret) 3721 ret = cft->write_s64(css, cft, v); 3722 } else { 3723 ret = -EINVAL; 3724 } 3725 3726 return ret ?: nbytes; 3727 } 3728 3729 static __poll_t cgroup_file_poll(struct kernfs_open_file *of, poll_table *pt) 3730 { 3731 struct cftype *cft = of->kn->priv; 3732 3733 if (cft->poll) 3734 return cft->poll(of, pt); 3735 3736 return kernfs_generic_poll(of, pt); 3737 } 3738 3739 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos) 3740 { 3741 return seq_cft(seq)->seq_start(seq, ppos); 3742 } 3743 3744 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos) 3745 { 3746 return seq_cft(seq)->seq_next(seq, v, ppos); 3747 } 3748 3749 static void cgroup_seqfile_stop(struct seq_file *seq, void *v) 3750 { 3751 if (seq_cft(seq)->seq_stop) 3752 seq_cft(seq)->seq_stop(seq, v); 3753 } 3754 3755 static int cgroup_seqfile_show(struct seq_file *m, void *arg) 3756 { 3757 struct cftype *cft = seq_cft(m); 3758 struct cgroup_subsys_state *css = seq_css(m); 3759 3760 if (cft->seq_show) 3761 return cft->seq_show(m, arg); 3762 3763 if (cft->read_u64) 3764 seq_printf(m, "%llu\n", cft->read_u64(css, cft)); 3765 else if (cft->read_s64) 3766 seq_printf(m, "%lld\n", cft->read_s64(css, cft)); 3767 else 3768 return -EINVAL; 3769 return 0; 3770 } 3771 3772 static struct kernfs_ops cgroup_kf_single_ops = { 3773 .atomic_write_len = PAGE_SIZE, 3774 .open = cgroup_file_open, 3775 .release = cgroup_file_release, 3776 .write = cgroup_file_write, 3777 .poll = cgroup_file_poll, 3778 .seq_show = cgroup_seqfile_show, 3779 }; 3780 3781 static struct kernfs_ops cgroup_kf_ops = { 3782 .atomic_write_len = PAGE_SIZE, 3783 .open = cgroup_file_open, 3784 .release = cgroup_file_release, 3785 .write = cgroup_file_write, 3786 .poll = cgroup_file_poll, 3787 .seq_start = cgroup_seqfile_start, 3788 .seq_next = cgroup_seqfile_next, 3789 .seq_stop = cgroup_seqfile_stop, 3790 .seq_show = cgroup_seqfile_show, 3791 }; 3792 3793 /* set uid and gid of cgroup dirs and files to that of the creator */ 3794 static int cgroup_kn_set_ugid(struct kernfs_node *kn) 3795 { 3796 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID, 3797 .ia_uid = current_fsuid(), 3798 .ia_gid = current_fsgid(), }; 3799 3800 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) && 3801 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID)) 3802 return 0; 3803 3804 return kernfs_setattr(kn, &iattr); 3805 } 3806 3807 static void cgroup_file_notify_timer(struct timer_list *timer) 3808 { 3809 cgroup_file_notify(container_of(timer, struct cgroup_file, 3810 notify_timer)); 3811 } 3812 3813 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp, 3814 struct cftype *cft) 3815 { 3816 char name[CGROUP_FILE_NAME_MAX]; 3817 struct kernfs_node *kn; 3818 struct lock_class_key *key = NULL; 3819 int ret; 3820 3821 #ifdef CONFIG_DEBUG_LOCK_ALLOC 3822 key = &cft->lockdep_key; 3823 #endif 3824 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name), 3825 cgroup_file_mode(cft), 3826 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 3827 0, cft->kf_ops, cft, 3828 NULL, key); 3829 if (IS_ERR(kn)) 3830 return PTR_ERR(kn); 3831 3832 ret = cgroup_kn_set_ugid(kn); 3833 if (ret) { 3834 kernfs_remove(kn); 3835 return ret; 3836 } 3837 3838 if (cft->file_offset) { 3839 struct cgroup_file *cfile = (void *)css + cft->file_offset; 3840 3841 timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0); 3842 3843 spin_lock_irq(&cgroup_file_kn_lock); 3844 cfile->kn = kn; 3845 spin_unlock_irq(&cgroup_file_kn_lock); 3846 } 3847 3848 return 0; 3849 } 3850 3851 /** 3852 * cgroup_addrm_files - add or remove files to a cgroup directory 3853 * @css: the target css 3854 * @cgrp: the target cgroup (usually css->cgroup) 3855 * @cfts: array of cftypes to be added 3856 * @is_add: whether to add or remove 3857 * 3858 * Depending on @is_add, add or remove files defined by @cfts on @cgrp. 3859 * For removals, this function never fails. 3860 */ 3861 static int cgroup_addrm_files(struct cgroup_subsys_state *css, 3862 struct cgroup *cgrp, struct cftype cfts[], 3863 bool is_add) 3864 { 3865 struct cftype *cft, *cft_end = NULL; 3866 int ret = 0; 3867 3868 lockdep_assert_held(&cgroup_mutex); 3869 3870 restart: 3871 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) { 3872 /* does cft->flags tell us to skip this file on @cgrp? */ 3873 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp)) 3874 continue; 3875 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp)) 3876 continue; 3877 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp)) 3878 continue; 3879 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp)) 3880 continue; 3881 if ((cft->flags & CFTYPE_DEBUG) && !cgroup_debug) 3882 continue; 3883 if (is_add) { 3884 ret = cgroup_add_file(css, cgrp, cft); 3885 if (ret) { 3886 pr_warn("%s: failed to add %s, err=%d\n", 3887 __func__, cft->name, ret); 3888 cft_end = cft; 3889 is_add = false; 3890 goto restart; 3891 } 3892 } else { 3893 cgroup_rm_file(cgrp, cft); 3894 } 3895 } 3896 return ret; 3897 } 3898 3899 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add) 3900 { 3901 struct cgroup_subsys *ss = cfts[0].ss; 3902 struct cgroup *root = &ss->root->cgrp; 3903 struct cgroup_subsys_state *css; 3904 int ret = 0; 3905 3906 lockdep_assert_held(&cgroup_mutex); 3907 3908 /* add/rm files for all cgroups created before */ 3909 css_for_each_descendant_pre(css, cgroup_css(root, ss)) { 3910 struct cgroup *cgrp = css->cgroup; 3911 3912 if (!(css->flags & CSS_VISIBLE)) 3913 continue; 3914 3915 ret = cgroup_addrm_files(css, cgrp, cfts, is_add); 3916 if (ret) 3917 break; 3918 } 3919 3920 if (is_add && !ret) 3921 kernfs_activate(root->kn); 3922 return ret; 3923 } 3924 3925 static void cgroup_exit_cftypes(struct cftype *cfts) 3926 { 3927 struct cftype *cft; 3928 3929 for (cft = cfts; cft->name[0] != '\0'; cft++) { 3930 /* free copy for custom atomic_write_len, see init_cftypes() */ 3931 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) 3932 kfree(cft->kf_ops); 3933 cft->kf_ops = NULL; 3934 cft->ss = NULL; 3935 3936 /* revert flags set by cgroup core while adding @cfts */ 3937 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL); 3938 } 3939 } 3940 3941 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 3942 { 3943 struct cftype *cft; 3944 3945 for (cft = cfts; cft->name[0] != '\0'; cft++) { 3946 struct kernfs_ops *kf_ops; 3947 3948 WARN_ON(cft->ss || cft->kf_ops); 3949 3950 if (cft->seq_start) 3951 kf_ops = &cgroup_kf_ops; 3952 else 3953 kf_ops = &cgroup_kf_single_ops; 3954 3955 /* 3956 * Ugh... if @cft wants a custom max_write_len, we need to 3957 * make a copy of kf_ops to set its atomic_write_len. 3958 */ 3959 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) { 3960 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL); 3961 if (!kf_ops) { 3962 cgroup_exit_cftypes(cfts); 3963 return -ENOMEM; 3964 } 3965 kf_ops->atomic_write_len = cft->max_write_len; 3966 } 3967 3968 cft->kf_ops = kf_ops; 3969 cft->ss = ss; 3970 } 3971 3972 return 0; 3973 } 3974 3975 static int cgroup_rm_cftypes_locked(struct cftype *cfts) 3976 { 3977 lockdep_assert_held(&cgroup_mutex); 3978 3979 if (!cfts || !cfts[0].ss) 3980 return -ENOENT; 3981 3982 list_del(&cfts->node); 3983 cgroup_apply_cftypes(cfts, false); 3984 cgroup_exit_cftypes(cfts); 3985 return 0; 3986 } 3987 3988 /** 3989 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem 3990 * @cfts: zero-length name terminated array of cftypes 3991 * 3992 * Unregister @cfts. Files described by @cfts are removed from all 3993 * existing cgroups and all future cgroups won't have them either. This 3994 * function can be called anytime whether @cfts' subsys is attached or not. 3995 * 3996 * Returns 0 on successful unregistration, -ENOENT if @cfts is not 3997 * registered. 3998 */ 3999 int cgroup_rm_cftypes(struct cftype *cfts) 4000 { 4001 int ret; 4002 4003 mutex_lock(&cgroup_mutex); 4004 ret = cgroup_rm_cftypes_locked(cfts); 4005 mutex_unlock(&cgroup_mutex); 4006 return ret; 4007 } 4008 4009 /** 4010 * cgroup_add_cftypes - add an array of cftypes to a subsystem 4011 * @ss: target cgroup subsystem 4012 * @cfts: zero-length name terminated array of cftypes 4013 * 4014 * Register @cfts to @ss. Files described by @cfts are created for all 4015 * existing cgroups to which @ss is attached and all future cgroups will 4016 * have them too. This function can be called anytime whether @ss is 4017 * attached or not. 4018 * 4019 * Returns 0 on successful registration, -errno on failure. Note that this 4020 * function currently returns 0 as long as @cfts registration is successful 4021 * even if some file creation attempts on existing cgroups fail. 4022 */ 4023 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4024 { 4025 int ret; 4026 4027 if (!cgroup_ssid_enabled(ss->id)) 4028 return 0; 4029 4030 if (!cfts || cfts[0].name[0] == '\0') 4031 return 0; 4032 4033 ret = cgroup_init_cftypes(ss, cfts); 4034 if (ret) 4035 return ret; 4036 4037 mutex_lock(&cgroup_mutex); 4038 4039 list_add_tail(&cfts->node, &ss->cfts); 4040 ret = cgroup_apply_cftypes(cfts, true); 4041 if (ret) 4042 cgroup_rm_cftypes_locked(cfts); 4043 4044 mutex_unlock(&cgroup_mutex); 4045 return ret; 4046 } 4047 4048 /** 4049 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy 4050 * @ss: target cgroup subsystem 4051 * @cfts: zero-length name terminated array of cftypes 4052 * 4053 * Similar to cgroup_add_cftypes() but the added files are only used for 4054 * the default hierarchy. 4055 */ 4056 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4057 { 4058 struct cftype *cft; 4059 4060 for (cft = cfts; cft && cft->name[0] != '\0'; cft++) 4061 cft->flags |= __CFTYPE_ONLY_ON_DFL; 4062 return cgroup_add_cftypes(ss, cfts); 4063 } 4064 4065 /** 4066 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies 4067 * @ss: target cgroup subsystem 4068 * @cfts: zero-length name terminated array of cftypes 4069 * 4070 * Similar to cgroup_add_cftypes() but the added files are only used for 4071 * the legacy hierarchies. 4072 */ 4073 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4074 { 4075 struct cftype *cft; 4076 4077 for (cft = cfts; cft && cft->name[0] != '\0'; cft++) 4078 cft->flags |= __CFTYPE_NOT_ON_DFL; 4079 return cgroup_add_cftypes(ss, cfts); 4080 } 4081 4082 /** 4083 * cgroup_file_notify - generate a file modified event for a cgroup_file 4084 * @cfile: target cgroup_file 4085 * 4086 * @cfile must have been obtained by setting cftype->file_offset. 4087 */ 4088 void cgroup_file_notify(struct cgroup_file *cfile) 4089 { 4090 unsigned long flags; 4091 4092 spin_lock_irqsave(&cgroup_file_kn_lock, flags); 4093 if (cfile->kn) { 4094 unsigned long last = cfile->notified_at; 4095 unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV; 4096 4097 if (time_in_range(jiffies, last, next)) { 4098 timer_reduce(&cfile->notify_timer, next); 4099 } else { 4100 kernfs_notify(cfile->kn); 4101 cfile->notified_at = jiffies; 4102 } 4103 } 4104 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags); 4105 } 4106 4107 /** 4108 * css_next_child - find the next child of a given css 4109 * @pos: the current position (%NULL to initiate traversal) 4110 * @parent: css whose children to walk 4111 * 4112 * This function returns the next child of @parent and should be called 4113 * under either cgroup_mutex or RCU read lock. The only requirement is 4114 * that @parent and @pos are accessible. The next sibling is guaranteed to 4115 * be returned regardless of their states. 4116 * 4117 * If a subsystem synchronizes ->css_online() and the start of iteration, a 4118 * css which finished ->css_online() is guaranteed to be visible in the 4119 * future iterations and will stay visible until the last reference is put. 4120 * A css which hasn't finished ->css_online() or already finished 4121 * ->css_offline() may show up during traversal. It's each subsystem's 4122 * responsibility to synchronize against on/offlining. 4123 */ 4124 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos, 4125 struct cgroup_subsys_state *parent) 4126 { 4127 struct cgroup_subsys_state *next; 4128 4129 cgroup_assert_mutex_or_rcu_locked(); 4130 4131 /* 4132 * @pos could already have been unlinked from the sibling list. 4133 * Once a cgroup is removed, its ->sibling.next is no longer 4134 * updated when its next sibling changes. CSS_RELEASED is set when 4135 * @pos is taken off list, at which time its next pointer is valid, 4136 * and, as releases are serialized, the one pointed to by the next 4137 * pointer is guaranteed to not have started release yet. This 4138 * implies that if we observe !CSS_RELEASED on @pos in this RCU 4139 * critical section, the one pointed to by its next pointer is 4140 * guaranteed to not have finished its RCU grace period even if we 4141 * have dropped rcu_read_lock() inbetween iterations. 4142 * 4143 * If @pos has CSS_RELEASED set, its next pointer can't be 4144 * dereferenced; however, as each css is given a monotonically 4145 * increasing unique serial number and always appended to the 4146 * sibling list, the next one can be found by walking the parent's 4147 * children until the first css with higher serial number than 4148 * @pos's. While this path can be slower, it happens iff iteration 4149 * races against release and the race window is very small. 4150 */ 4151 if (!pos) { 4152 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling); 4153 } else if (likely(!(pos->flags & CSS_RELEASED))) { 4154 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling); 4155 } else { 4156 list_for_each_entry_rcu(next, &parent->children, sibling) 4157 if (next->serial_nr > pos->serial_nr) 4158 break; 4159 } 4160 4161 /* 4162 * @next, if not pointing to the head, can be dereferenced and is 4163 * the next sibling. 4164 */ 4165 if (&next->sibling != &parent->children) 4166 return next; 4167 return NULL; 4168 } 4169 4170 /** 4171 * css_next_descendant_pre - find the next descendant for pre-order walk 4172 * @pos: the current position (%NULL to initiate traversal) 4173 * @root: css whose descendants to walk 4174 * 4175 * To be used by css_for_each_descendant_pre(). Find the next descendant 4176 * to visit for pre-order traversal of @root's descendants. @root is 4177 * included in the iteration and the first node to be visited. 4178 * 4179 * While this function requires cgroup_mutex or RCU read locking, it 4180 * doesn't require the whole traversal to be contained in a single critical 4181 * section. This function will return the correct next descendant as long 4182 * as both @pos and @root are accessible and @pos is a descendant of @root. 4183 * 4184 * If a subsystem synchronizes ->css_online() and the start of iteration, a 4185 * css which finished ->css_online() is guaranteed to be visible in the 4186 * future iterations and will stay visible until the last reference is put. 4187 * A css which hasn't finished ->css_online() or already finished 4188 * ->css_offline() may show up during traversal. It's each subsystem's 4189 * responsibility to synchronize against on/offlining. 4190 */ 4191 struct cgroup_subsys_state * 4192 css_next_descendant_pre(struct cgroup_subsys_state *pos, 4193 struct cgroup_subsys_state *root) 4194 { 4195 struct cgroup_subsys_state *next; 4196 4197 cgroup_assert_mutex_or_rcu_locked(); 4198 4199 /* if first iteration, visit @root */ 4200 if (!pos) 4201 return root; 4202 4203 /* visit the first child if exists */ 4204 next = css_next_child(NULL, pos); 4205 if (next) 4206 return next; 4207 4208 /* no child, visit my or the closest ancestor's next sibling */ 4209 while (pos != root) { 4210 next = css_next_child(pos, pos->parent); 4211 if (next) 4212 return next; 4213 pos = pos->parent; 4214 } 4215 4216 return NULL; 4217 } 4218 EXPORT_SYMBOL_GPL(css_next_descendant_pre); 4219 4220 /** 4221 * css_rightmost_descendant - return the rightmost descendant of a css 4222 * @pos: css of interest 4223 * 4224 * Return the rightmost descendant of @pos. If there's no descendant, @pos 4225 * is returned. This can be used during pre-order traversal to skip 4226 * subtree of @pos. 4227 * 4228 * While this function requires cgroup_mutex or RCU read locking, it 4229 * doesn't require the whole traversal to be contained in a single critical 4230 * section. This function will return the correct rightmost descendant as 4231 * long as @pos is accessible. 4232 */ 4233 struct cgroup_subsys_state * 4234 css_rightmost_descendant(struct cgroup_subsys_state *pos) 4235 { 4236 struct cgroup_subsys_state *last, *tmp; 4237 4238 cgroup_assert_mutex_or_rcu_locked(); 4239 4240 do { 4241 last = pos; 4242 /* ->prev isn't RCU safe, walk ->next till the end */ 4243 pos = NULL; 4244 css_for_each_child(tmp, last) 4245 pos = tmp; 4246 } while (pos); 4247 4248 return last; 4249 } 4250 4251 static struct cgroup_subsys_state * 4252 css_leftmost_descendant(struct cgroup_subsys_state *pos) 4253 { 4254 struct cgroup_subsys_state *last; 4255 4256 do { 4257 last = pos; 4258 pos = css_next_child(NULL, pos); 4259 } while (pos); 4260 4261 return last; 4262 } 4263 4264 /** 4265 * css_next_descendant_post - find the next descendant for post-order walk 4266 * @pos: the current position (%NULL to initiate traversal) 4267 * @root: css whose descendants to walk 4268 * 4269 * To be used by css_for_each_descendant_post(). Find the next descendant 4270 * to visit for post-order traversal of @root's descendants. @root is 4271 * included in the iteration and the last node to be visited. 4272 * 4273 * While this function requires cgroup_mutex or RCU read locking, it 4274 * doesn't require the whole traversal to be contained in a single critical 4275 * section. This function will return the correct next descendant as long 4276 * as both @pos and @cgroup are accessible and @pos is a descendant of 4277 * @cgroup. 4278 * 4279 * If a subsystem synchronizes ->css_online() and the start of iteration, a 4280 * css which finished ->css_online() is guaranteed to be visible in the 4281 * future iterations and will stay visible until the last reference is put. 4282 * A css which hasn't finished ->css_online() or already finished 4283 * ->css_offline() may show up during traversal. It's each subsystem's 4284 * responsibility to synchronize against on/offlining. 4285 */ 4286 struct cgroup_subsys_state * 4287 css_next_descendant_post(struct cgroup_subsys_state *pos, 4288 struct cgroup_subsys_state *root) 4289 { 4290 struct cgroup_subsys_state *next; 4291 4292 cgroup_assert_mutex_or_rcu_locked(); 4293 4294 /* if first iteration, visit leftmost descendant which may be @root */ 4295 if (!pos) 4296 return css_leftmost_descendant(root); 4297 4298 /* if we visited @root, we're done */ 4299 if (pos == root) 4300 return NULL; 4301 4302 /* if there's an unvisited sibling, visit its leftmost descendant */ 4303 next = css_next_child(pos, pos->parent); 4304 if (next) 4305 return css_leftmost_descendant(next); 4306 4307 /* no sibling left, visit parent */ 4308 return pos->parent; 4309 } 4310 4311 /** 4312 * css_has_online_children - does a css have online children 4313 * @css: the target css 4314 * 4315 * Returns %true if @css has any online children; otherwise, %false. This 4316 * function can be called from any context but the caller is responsible 4317 * for synchronizing against on/offlining as necessary. 4318 */ 4319 bool css_has_online_children(struct cgroup_subsys_state *css) 4320 { 4321 struct cgroup_subsys_state *child; 4322 bool ret = false; 4323 4324 rcu_read_lock(); 4325 css_for_each_child(child, css) { 4326 if (child->flags & CSS_ONLINE) { 4327 ret = true; 4328 break; 4329 } 4330 } 4331 rcu_read_unlock(); 4332 return ret; 4333 } 4334 4335 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it) 4336 { 4337 struct list_head *l; 4338 struct cgrp_cset_link *link; 4339 struct css_set *cset; 4340 4341 lockdep_assert_held(&css_set_lock); 4342 4343 /* find the next threaded cset */ 4344 if (it->tcset_pos) { 4345 l = it->tcset_pos->next; 4346 4347 if (l != it->tcset_head) { 4348 it->tcset_pos = l; 4349 return container_of(l, struct css_set, 4350 threaded_csets_node); 4351 } 4352 4353 it->tcset_pos = NULL; 4354 } 4355 4356 /* find the next cset */ 4357 l = it->cset_pos; 4358 l = l->next; 4359 if (l == it->cset_head) { 4360 it->cset_pos = NULL; 4361 return NULL; 4362 } 4363 4364 if (it->ss) { 4365 cset = container_of(l, struct css_set, e_cset_node[it->ss->id]); 4366 } else { 4367 link = list_entry(l, struct cgrp_cset_link, cset_link); 4368 cset = link->cset; 4369 } 4370 4371 it->cset_pos = l; 4372 4373 /* initialize threaded css_set walking */ 4374 if (it->flags & CSS_TASK_ITER_THREADED) { 4375 if (it->cur_dcset) 4376 put_css_set_locked(it->cur_dcset); 4377 it->cur_dcset = cset; 4378 get_css_set(cset); 4379 4380 it->tcset_head = &cset->threaded_csets; 4381 it->tcset_pos = &cset->threaded_csets; 4382 } 4383 4384 return cset; 4385 } 4386 4387 /** 4388 * css_task_iter_advance_css_set - advance a task itererator to the next css_set 4389 * @it: the iterator to advance 4390 * 4391 * Advance @it to the next css_set to walk. 4392 */ 4393 static void css_task_iter_advance_css_set(struct css_task_iter *it) 4394 { 4395 struct css_set *cset; 4396 4397 lockdep_assert_held(&css_set_lock); 4398 4399 /* Advance to the next non-empty css_set */ 4400 do { 4401 cset = css_task_iter_next_css_set(it); 4402 if (!cset) { 4403 it->task_pos = NULL; 4404 return; 4405 } 4406 } while (!css_set_populated(cset) && list_empty(&cset->dying_tasks)); 4407 4408 if (!list_empty(&cset->tasks)) 4409 it->task_pos = cset->tasks.next; 4410 else if (!list_empty(&cset->mg_tasks)) 4411 it->task_pos = cset->mg_tasks.next; 4412 else 4413 it->task_pos = cset->dying_tasks.next; 4414 4415 it->tasks_head = &cset->tasks; 4416 it->mg_tasks_head = &cset->mg_tasks; 4417 it->dying_tasks_head = &cset->dying_tasks; 4418 4419 /* 4420 * We don't keep css_sets locked across iteration steps and thus 4421 * need to take steps to ensure that iteration can be resumed after 4422 * the lock is re-acquired. Iteration is performed at two levels - 4423 * css_sets and tasks in them. 4424 * 4425 * Once created, a css_set never leaves its cgroup lists, so a 4426 * pinned css_set is guaranteed to stay put and we can resume 4427 * iteration afterwards. 4428 * 4429 * Tasks may leave @cset across iteration steps. This is resolved 4430 * by registering each iterator with the css_set currently being 4431 * walked and making css_set_move_task() advance iterators whose 4432 * next task is leaving. 4433 */ 4434 if (it->cur_cset) { 4435 list_del(&it->iters_node); 4436 put_css_set_locked(it->cur_cset); 4437 } 4438 get_css_set(cset); 4439 it->cur_cset = cset; 4440 list_add(&it->iters_node, &cset->task_iters); 4441 } 4442 4443 static void css_task_iter_skip(struct css_task_iter *it, 4444 struct task_struct *task) 4445 { 4446 lockdep_assert_held(&css_set_lock); 4447 4448 if (it->task_pos == &task->cg_list) { 4449 it->task_pos = it->task_pos->next; 4450 it->flags |= CSS_TASK_ITER_SKIPPED; 4451 } 4452 } 4453 4454 static void css_task_iter_advance(struct css_task_iter *it) 4455 { 4456 struct task_struct *task; 4457 4458 lockdep_assert_held(&css_set_lock); 4459 repeat: 4460 if (it->task_pos) { 4461 /* 4462 * Advance iterator to find next entry. cset->tasks is 4463 * consumed first and then ->mg_tasks. After ->mg_tasks, 4464 * we move onto the next cset. 4465 */ 4466 if (it->flags & CSS_TASK_ITER_SKIPPED) 4467 it->flags &= ~CSS_TASK_ITER_SKIPPED; 4468 else 4469 it->task_pos = it->task_pos->next; 4470 4471 if (it->task_pos == it->tasks_head) 4472 it->task_pos = it->mg_tasks_head->next; 4473 if (it->task_pos == it->mg_tasks_head) 4474 it->task_pos = it->dying_tasks_head->next; 4475 if (it->task_pos == it->dying_tasks_head) 4476 css_task_iter_advance_css_set(it); 4477 } else { 4478 /* called from start, proceed to the first cset */ 4479 css_task_iter_advance_css_set(it); 4480 } 4481 4482 if (!it->task_pos) 4483 return; 4484 4485 task = list_entry(it->task_pos, struct task_struct, cg_list); 4486 4487 if (it->flags & CSS_TASK_ITER_PROCS) { 4488 /* if PROCS, skip over tasks which aren't group leaders */ 4489 if (!thread_group_leader(task)) 4490 goto repeat; 4491 4492 /* and dying leaders w/o live member threads */ 4493 if (!atomic_read(&task->signal->live)) 4494 goto repeat; 4495 } else { 4496 /* skip all dying ones */ 4497 if (task->flags & PF_EXITING) 4498 goto repeat; 4499 } 4500 } 4501 4502 /** 4503 * css_task_iter_start - initiate task iteration 4504 * @css: the css to walk tasks of 4505 * @flags: CSS_TASK_ITER_* flags 4506 * @it: the task iterator to use 4507 * 4508 * Initiate iteration through the tasks of @css. The caller can call 4509 * css_task_iter_next() to walk through the tasks until the function 4510 * returns NULL. On completion of iteration, css_task_iter_end() must be 4511 * called. 4512 */ 4513 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags, 4514 struct css_task_iter *it) 4515 { 4516 memset(it, 0, sizeof(*it)); 4517 4518 spin_lock_irq(&css_set_lock); 4519 4520 it->ss = css->ss; 4521 it->flags = flags; 4522 4523 if (it->ss) 4524 it->cset_pos = &css->cgroup->e_csets[css->ss->id]; 4525 else 4526 it->cset_pos = &css->cgroup->cset_links; 4527 4528 it->cset_head = it->cset_pos; 4529 4530 css_task_iter_advance(it); 4531 4532 spin_unlock_irq(&css_set_lock); 4533 } 4534 4535 /** 4536 * css_task_iter_next - return the next task for the iterator 4537 * @it: the task iterator being iterated 4538 * 4539 * The "next" function for task iteration. @it should have been 4540 * initialized via css_task_iter_start(). Returns NULL when the iteration 4541 * reaches the end. 4542 */ 4543 struct task_struct *css_task_iter_next(struct css_task_iter *it) 4544 { 4545 if (it->cur_task) { 4546 put_task_struct(it->cur_task); 4547 it->cur_task = NULL; 4548 } 4549 4550 spin_lock_irq(&css_set_lock); 4551 4552 /* @it may be half-advanced by skips, finish advancing */ 4553 if (it->flags & CSS_TASK_ITER_SKIPPED) 4554 css_task_iter_advance(it); 4555 4556 if (it->task_pos) { 4557 it->cur_task = list_entry(it->task_pos, struct task_struct, 4558 cg_list); 4559 get_task_struct(it->cur_task); 4560 css_task_iter_advance(it); 4561 } 4562 4563 spin_unlock_irq(&css_set_lock); 4564 4565 return it->cur_task; 4566 } 4567 4568 /** 4569 * css_task_iter_end - finish task iteration 4570 * @it: the task iterator to finish 4571 * 4572 * Finish task iteration started by css_task_iter_start(). 4573 */ 4574 void css_task_iter_end(struct css_task_iter *it) 4575 { 4576 if (it->cur_cset) { 4577 spin_lock_irq(&css_set_lock); 4578 list_del(&it->iters_node); 4579 put_css_set_locked(it->cur_cset); 4580 spin_unlock_irq(&css_set_lock); 4581 } 4582 4583 if (it->cur_dcset) 4584 put_css_set(it->cur_dcset); 4585 4586 if (it->cur_task) 4587 put_task_struct(it->cur_task); 4588 } 4589 4590 static void cgroup_procs_release(struct kernfs_open_file *of) 4591 { 4592 if (of->priv) { 4593 css_task_iter_end(of->priv); 4594 kfree(of->priv); 4595 } 4596 } 4597 4598 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos) 4599 { 4600 struct kernfs_open_file *of = s->private; 4601 struct css_task_iter *it = of->priv; 4602 4603 return css_task_iter_next(it); 4604 } 4605 4606 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos, 4607 unsigned int iter_flags) 4608 { 4609 struct kernfs_open_file *of = s->private; 4610 struct cgroup *cgrp = seq_css(s)->cgroup; 4611 struct css_task_iter *it = of->priv; 4612 4613 /* 4614 * When a seq_file is seeked, it's always traversed sequentially 4615 * from position 0, so we can simply keep iterating on !0 *pos. 4616 */ 4617 if (!it) { 4618 if (WARN_ON_ONCE((*pos)++)) 4619 return ERR_PTR(-EINVAL); 4620 4621 it = kzalloc(sizeof(*it), GFP_KERNEL); 4622 if (!it) 4623 return ERR_PTR(-ENOMEM); 4624 of->priv = it; 4625 css_task_iter_start(&cgrp->self, iter_flags, it); 4626 } else if (!(*pos)++) { 4627 css_task_iter_end(it); 4628 css_task_iter_start(&cgrp->self, iter_flags, it); 4629 } 4630 4631 return cgroup_procs_next(s, NULL, NULL); 4632 } 4633 4634 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos) 4635 { 4636 struct cgroup *cgrp = seq_css(s)->cgroup; 4637 4638 /* 4639 * All processes of a threaded subtree belong to the domain cgroup 4640 * of the subtree. Only threads can be distributed across the 4641 * subtree. Reject reads on cgroup.procs in the subtree proper. 4642 * They're always empty anyway. 4643 */ 4644 if (cgroup_is_threaded(cgrp)) 4645 return ERR_PTR(-EOPNOTSUPP); 4646 4647 return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS | 4648 CSS_TASK_ITER_THREADED); 4649 } 4650 4651 static int cgroup_procs_show(struct seq_file *s, void *v) 4652 { 4653 seq_printf(s, "%d\n", task_pid_vnr(v)); 4654 return 0; 4655 } 4656 4657 static int cgroup_procs_write_permission(struct cgroup *src_cgrp, 4658 struct cgroup *dst_cgrp, 4659 struct super_block *sb) 4660 { 4661 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns; 4662 struct cgroup *com_cgrp = src_cgrp; 4663 struct inode *inode; 4664 int ret; 4665 4666 lockdep_assert_held(&cgroup_mutex); 4667 4668 /* find the common ancestor */ 4669 while (!cgroup_is_descendant(dst_cgrp, com_cgrp)) 4670 com_cgrp = cgroup_parent(com_cgrp); 4671 4672 /* %current should be authorized to migrate to the common ancestor */ 4673 inode = kernfs_get_inode(sb, com_cgrp->procs_file.kn); 4674 if (!inode) 4675 return -ENOMEM; 4676 4677 ret = inode_permission(inode, MAY_WRITE); 4678 iput(inode); 4679 if (ret) 4680 return ret; 4681 4682 /* 4683 * If namespaces are delegation boundaries, %current must be able 4684 * to see both source and destination cgroups from its namespace. 4685 */ 4686 if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) && 4687 (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) || 4688 !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp))) 4689 return -ENOENT; 4690 4691 return 0; 4692 } 4693 4694 static ssize_t cgroup_procs_write(struct kernfs_open_file *of, 4695 char *buf, size_t nbytes, loff_t off) 4696 { 4697 struct cgroup *src_cgrp, *dst_cgrp; 4698 struct task_struct *task; 4699 ssize_t ret; 4700 bool locked; 4701 4702 dst_cgrp = cgroup_kn_lock_live(of->kn, false); 4703 if (!dst_cgrp) 4704 return -ENODEV; 4705 4706 task = cgroup_procs_write_start(buf, true, &locked); 4707 ret = PTR_ERR_OR_ZERO(task); 4708 if (ret) 4709 goto out_unlock; 4710 4711 /* find the source cgroup */ 4712 spin_lock_irq(&css_set_lock); 4713 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root); 4714 spin_unlock_irq(&css_set_lock); 4715 4716 ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, 4717 of->file->f_path.dentry->d_sb); 4718 if (ret) 4719 goto out_finish; 4720 4721 ret = cgroup_attach_task(dst_cgrp, task, true); 4722 4723 out_finish: 4724 cgroup_procs_write_finish(task, locked); 4725 out_unlock: 4726 cgroup_kn_unlock(of->kn); 4727 4728 return ret ?: nbytes; 4729 } 4730 4731 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos) 4732 { 4733 return __cgroup_procs_start(s, pos, 0); 4734 } 4735 4736 static ssize_t cgroup_threads_write(struct kernfs_open_file *of, 4737 char *buf, size_t nbytes, loff_t off) 4738 { 4739 struct cgroup *src_cgrp, *dst_cgrp; 4740 struct task_struct *task; 4741 ssize_t ret; 4742 bool locked; 4743 4744 buf = strstrip(buf); 4745 4746 dst_cgrp = cgroup_kn_lock_live(of->kn, false); 4747 if (!dst_cgrp) 4748 return -ENODEV; 4749 4750 task = cgroup_procs_write_start(buf, false, &locked); 4751 ret = PTR_ERR_OR_ZERO(task); 4752 if (ret) 4753 goto out_unlock; 4754 4755 /* find the source cgroup */ 4756 spin_lock_irq(&css_set_lock); 4757 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root); 4758 spin_unlock_irq(&css_set_lock); 4759 4760 /* thread migrations follow the cgroup.procs delegation rule */ 4761 ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, 4762 of->file->f_path.dentry->d_sb); 4763 if (ret) 4764 goto out_finish; 4765 4766 /* and must be contained in the same domain */ 4767 ret = -EOPNOTSUPP; 4768 if (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp) 4769 goto out_finish; 4770 4771 ret = cgroup_attach_task(dst_cgrp, task, false); 4772 4773 out_finish: 4774 cgroup_procs_write_finish(task, locked); 4775 out_unlock: 4776 cgroup_kn_unlock(of->kn); 4777 4778 return ret ?: nbytes; 4779 } 4780 4781 /* cgroup core interface files for the default hierarchy */ 4782 static struct cftype cgroup_base_files[] = { 4783 { 4784 .name = "cgroup.type", 4785 .flags = CFTYPE_NOT_ON_ROOT, 4786 .seq_show = cgroup_type_show, 4787 .write = cgroup_type_write, 4788 }, 4789 { 4790 .name = "cgroup.procs", 4791 .flags = CFTYPE_NS_DELEGATABLE, 4792 .file_offset = offsetof(struct cgroup, procs_file), 4793 .release = cgroup_procs_release, 4794 .seq_start = cgroup_procs_start, 4795 .seq_next = cgroup_procs_next, 4796 .seq_show = cgroup_procs_show, 4797 .write = cgroup_procs_write, 4798 }, 4799 { 4800 .name = "cgroup.threads", 4801 .flags = CFTYPE_NS_DELEGATABLE, 4802 .release = cgroup_procs_release, 4803 .seq_start = cgroup_threads_start, 4804 .seq_next = cgroup_procs_next, 4805 .seq_show = cgroup_procs_show, 4806 .write = cgroup_threads_write, 4807 }, 4808 { 4809 .name = "cgroup.controllers", 4810 .seq_show = cgroup_controllers_show, 4811 }, 4812 { 4813 .name = "cgroup.subtree_control", 4814 .flags = CFTYPE_NS_DELEGATABLE, 4815 .seq_show = cgroup_subtree_control_show, 4816 .write = cgroup_subtree_control_write, 4817 }, 4818 { 4819 .name = "cgroup.events", 4820 .flags = CFTYPE_NOT_ON_ROOT, 4821 .file_offset = offsetof(struct cgroup, events_file), 4822 .seq_show = cgroup_events_show, 4823 }, 4824 { 4825 .name = "cgroup.max.descendants", 4826 .seq_show = cgroup_max_descendants_show, 4827 .write = cgroup_max_descendants_write, 4828 }, 4829 { 4830 .name = "cgroup.max.depth", 4831 .seq_show = cgroup_max_depth_show, 4832 .write = cgroup_max_depth_write, 4833 }, 4834 { 4835 .name = "cgroup.stat", 4836 .seq_show = cgroup_stat_show, 4837 }, 4838 { 4839 .name = "cgroup.freeze", 4840 .flags = CFTYPE_NOT_ON_ROOT, 4841 .seq_show = cgroup_freeze_show, 4842 .write = cgroup_freeze_write, 4843 }, 4844 { 4845 .name = "cpu.stat", 4846 .flags = CFTYPE_NOT_ON_ROOT, 4847 .seq_show = cpu_stat_show, 4848 }, 4849 #ifdef CONFIG_PSI 4850 { 4851 .name = "io.pressure", 4852 .seq_show = cgroup_io_pressure_show, 4853 .write = cgroup_io_pressure_write, 4854 .poll = cgroup_pressure_poll, 4855 .release = cgroup_pressure_release, 4856 }, 4857 { 4858 .name = "memory.pressure", 4859 .seq_show = cgroup_memory_pressure_show, 4860 .write = cgroup_memory_pressure_write, 4861 .poll = cgroup_pressure_poll, 4862 .release = cgroup_pressure_release, 4863 }, 4864 { 4865 .name = "cpu.pressure", 4866 .seq_show = cgroup_cpu_pressure_show, 4867 .write = cgroup_cpu_pressure_write, 4868 .poll = cgroup_pressure_poll, 4869 .release = cgroup_pressure_release, 4870 }, 4871 #endif /* CONFIG_PSI */ 4872 { } /* terminate */ 4873 }; 4874 4875 /* 4876 * css destruction is four-stage process. 4877 * 4878 * 1. Destruction starts. Killing of the percpu_ref is initiated. 4879 * Implemented in kill_css(). 4880 * 4881 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs 4882 * and thus css_tryget_online() is guaranteed to fail, the css can be 4883 * offlined by invoking offline_css(). After offlining, the base ref is 4884 * put. Implemented in css_killed_work_fn(). 4885 * 4886 * 3. When the percpu_ref reaches zero, the only possible remaining 4887 * accessors are inside RCU read sections. css_release() schedules the 4888 * RCU callback. 4889 * 4890 * 4. After the grace period, the css can be freed. Implemented in 4891 * css_free_work_fn(). 4892 * 4893 * It is actually hairier because both step 2 and 4 require process context 4894 * and thus involve punting to css->destroy_work adding two additional 4895 * steps to the already complex sequence. 4896 */ 4897 static void css_free_rwork_fn(struct work_struct *work) 4898 { 4899 struct cgroup_subsys_state *css = container_of(to_rcu_work(work), 4900 struct cgroup_subsys_state, destroy_rwork); 4901 struct cgroup_subsys *ss = css->ss; 4902 struct cgroup *cgrp = css->cgroup; 4903 4904 percpu_ref_exit(&css->refcnt); 4905 4906 if (ss) { 4907 /* css free path */ 4908 struct cgroup_subsys_state *parent = css->parent; 4909 int id = css->id; 4910 4911 ss->css_free(css); 4912 cgroup_idr_remove(&ss->css_idr, id); 4913 cgroup_put(cgrp); 4914 4915 if (parent) 4916 css_put(parent); 4917 } else { 4918 /* cgroup free path */ 4919 atomic_dec(&cgrp->root->nr_cgrps); 4920 cgroup1_pidlist_destroy_all(cgrp); 4921 cancel_work_sync(&cgrp->release_agent_work); 4922 4923 if (cgroup_parent(cgrp)) { 4924 /* 4925 * We get a ref to the parent, and put the ref when 4926 * this cgroup is being freed, so it's guaranteed 4927 * that the parent won't be destroyed before its 4928 * children. 4929 */ 4930 cgroup_put(cgroup_parent(cgrp)); 4931 kernfs_put(cgrp->kn); 4932 psi_cgroup_free(cgrp); 4933 if (cgroup_on_dfl(cgrp)) 4934 cgroup_rstat_exit(cgrp); 4935 kfree(cgrp); 4936 } else { 4937 /* 4938 * This is root cgroup's refcnt reaching zero, 4939 * which indicates that the root should be 4940 * released. 4941 */ 4942 cgroup_destroy_root(cgrp->root); 4943 } 4944 } 4945 } 4946 4947 static void css_release_work_fn(struct work_struct *work) 4948 { 4949 struct cgroup_subsys_state *css = 4950 container_of(work, struct cgroup_subsys_state, destroy_work); 4951 struct cgroup_subsys *ss = css->ss; 4952 struct cgroup *cgrp = css->cgroup; 4953 4954 mutex_lock(&cgroup_mutex); 4955 4956 css->flags |= CSS_RELEASED; 4957 list_del_rcu(&css->sibling); 4958 4959 if (ss) { 4960 /* css release path */ 4961 if (!list_empty(&css->rstat_css_node)) { 4962 cgroup_rstat_flush(cgrp); 4963 list_del_rcu(&css->rstat_css_node); 4964 } 4965 4966 cgroup_idr_replace(&ss->css_idr, NULL, css->id); 4967 if (ss->css_released) 4968 ss->css_released(css); 4969 } else { 4970 struct cgroup *tcgrp; 4971 4972 /* cgroup release path */ 4973 TRACE_CGROUP_PATH(release, cgrp); 4974 4975 if (cgroup_on_dfl(cgrp)) 4976 cgroup_rstat_flush(cgrp); 4977 4978 spin_lock_irq(&css_set_lock); 4979 for (tcgrp = cgroup_parent(cgrp); tcgrp; 4980 tcgrp = cgroup_parent(tcgrp)) 4981 tcgrp->nr_dying_descendants--; 4982 spin_unlock_irq(&css_set_lock); 4983 4984 /* 4985 * There are two control paths which try to determine 4986 * cgroup from dentry without going through kernfs - 4987 * cgroupstats_build() and css_tryget_online_from_dir(). 4988 * Those are supported by RCU protecting clearing of 4989 * cgrp->kn->priv backpointer. 4990 */ 4991 if (cgrp->kn) 4992 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, 4993 NULL); 4994 } 4995 4996 mutex_unlock(&cgroup_mutex); 4997 4998 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn); 4999 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork); 5000 } 5001 5002 static void css_release(struct percpu_ref *ref) 5003 { 5004 struct cgroup_subsys_state *css = 5005 container_of(ref, struct cgroup_subsys_state, refcnt); 5006 5007 INIT_WORK(&css->destroy_work, css_release_work_fn); 5008 queue_work(cgroup_destroy_wq, &css->destroy_work); 5009 } 5010 5011 static void init_and_link_css(struct cgroup_subsys_state *css, 5012 struct cgroup_subsys *ss, struct cgroup *cgrp) 5013 { 5014 lockdep_assert_held(&cgroup_mutex); 5015 5016 cgroup_get_live(cgrp); 5017 5018 memset(css, 0, sizeof(*css)); 5019 css->cgroup = cgrp; 5020 css->ss = ss; 5021 css->id = -1; 5022 INIT_LIST_HEAD(&css->sibling); 5023 INIT_LIST_HEAD(&css->children); 5024 INIT_LIST_HEAD(&css->rstat_css_node); 5025 css->serial_nr = css_serial_nr_next++; 5026 atomic_set(&css->online_cnt, 0); 5027 5028 if (cgroup_parent(cgrp)) { 5029 css->parent = cgroup_css(cgroup_parent(cgrp), ss); 5030 css_get(css->parent); 5031 } 5032 5033 if (cgroup_on_dfl(cgrp) && ss->css_rstat_flush) 5034 list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list); 5035 5036 BUG_ON(cgroup_css(cgrp, ss)); 5037 } 5038 5039 /* invoke ->css_online() on a new CSS and mark it online if successful */ 5040 static int online_css(struct cgroup_subsys_state *css) 5041 { 5042 struct cgroup_subsys *ss = css->ss; 5043 int ret = 0; 5044 5045 lockdep_assert_held(&cgroup_mutex); 5046 5047 if (ss->css_online) 5048 ret = ss->css_online(css); 5049 if (!ret) { 5050 css->flags |= CSS_ONLINE; 5051 rcu_assign_pointer(css->cgroup->subsys[ss->id], css); 5052 5053 atomic_inc(&css->online_cnt); 5054 if (css->parent) 5055 atomic_inc(&css->parent->online_cnt); 5056 } 5057 return ret; 5058 } 5059 5060 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */ 5061 static void offline_css(struct cgroup_subsys_state *css) 5062 { 5063 struct cgroup_subsys *ss = css->ss; 5064 5065 lockdep_assert_held(&cgroup_mutex); 5066 5067 if (!(css->flags & CSS_ONLINE)) 5068 return; 5069 5070 if (ss->css_offline) 5071 ss->css_offline(css); 5072 5073 css->flags &= ~CSS_ONLINE; 5074 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL); 5075 5076 wake_up_all(&css->cgroup->offline_waitq); 5077 } 5078 5079 /** 5080 * css_create - create a cgroup_subsys_state 5081 * @cgrp: the cgroup new css will be associated with 5082 * @ss: the subsys of new css 5083 * 5084 * Create a new css associated with @cgrp - @ss pair. On success, the new 5085 * css is online and installed in @cgrp. This function doesn't create the 5086 * interface files. Returns 0 on success, -errno on failure. 5087 */ 5088 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp, 5089 struct cgroup_subsys *ss) 5090 { 5091 struct cgroup *parent = cgroup_parent(cgrp); 5092 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss); 5093 struct cgroup_subsys_state *css; 5094 int err; 5095 5096 lockdep_assert_held(&cgroup_mutex); 5097 5098 css = ss->css_alloc(parent_css); 5099 if (!css) 5100 css = ERR_PTR(-ENOMEM); 5101 if (IS_ERR(css)) 5102 return css; 5103 5104 init_and_link_css(css, ss, cgrp); 5105 5106 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL); 5107 if (err) 5108 goto err_free_css; 5109 5110 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL); 5111 if (err < 0) 5112 goto err_free_css; 5113 css->id = err; 5114 5115 /* @css is ready to be brought online now, make it visible */ 5116 list_add_tail_rcu(&css->sibling, &parent_css->children); 5117 cgroup_idr_replace(&ss->css_idr, css, css->id); 5118 5119 err = online_css(css); 5120 if (err) 5121 goto err_list_del; 5122 5123 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy && 5124 cgroup_parent(parent)) { 5125 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n", 5126 current->comm, current->pid, ss->name); 5127 if (!strcmp(ss->name, "memory")) 5128 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n"); 5129 ss->warned_broken_hierarchy = true; 5130 } 5131 5132 return css; 5133 5134 err_list_del: 5135 list_del_rcu(&css->sibling); 5136 err_free_css: 5137 list_del_rcu(&css->rstat_css_node); 5138 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn); 5139 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork); 5140 return ERR_PTR(err); 5141 } 5142 5143 /* 5144 * The returned cgroup is fully initialized including its control mask, but 5145 * it isn't associated with its kernfs_node and doesn't have the control 5146 * mask applied. 5147 */ 5148 static struct cgroup *cgroup_create(struct cgroup *parent, const char *name, 5149 umode_t mode) 5150 { 5151 struct cgroup_root *root = parent->root; 5152 struct cgroup *cgrp, *tcgrp; 5153 struct kernfs_node *kn; 5154 int level = parent->level + 1; 5155 int ret; 5156 5157 /* allocate the cgroup and its ID, 0 is reserved for the root */ 5158 cgrp = kzalloc(struct_size(cgrp, ancestor_ids, (level + 1)), 5159 GFP_KERNEL); 5160 if (!cgrp) 5161 return ERR_PTR(-ENOMEM); 5162 5163 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL); 5164 if (ret) 5165 goto out_free_cgrp; 5166 5167 if (cgroup_on_dfl(parent)) { 5168 ret = cgroup_rstat_init(cgrp); 5169 if (ret) 5170 goto out_cancel_ref; 5171 } 5172 5173 /* create the directory */ 5174 kn = kernfs_create_dir(parent->kn, name, mode, cgrp); 5175 if (IS_ERR(kn)) { 5176 ret = PTR_ERR(kn); 5177 goto out_stat_exit; 5178 } 5179 cgrp->kn = kn; 5180 5181 init_cgroup_housekeeping(cgrp); 5182 5183 cgrp->self.parent = &parent->self; 5184 cgrp->root = root; 5185 cgrp->level = level; 5186 5187 ret = psi_cgroup_alloc(cgrp); 5188 if (ret) 5189 goto out_kernfs_remove; 5190 5191 ret = cgroup_bpf_inherit(cgrp); 5192 if (ret) 5193 goto out_psi_free; 5194 5195 /* 5196 * New cgroup inherits effective freeze counter, and 5197 * if the parent has to be frozen, the child has too. 5198 */ 5199 cgrp->freezer.e_freeze = parent->freezer.e_freeze; 5200 if (cgrp->freezer.e_freeze) { 5201 /* 5202 * Set the CGRP_FREEZE flag, so when a process will be 5203 * attached to the child cgroup, it will become frozen. 5204 * At this point the new cgroup is unpopulated, so we can 5205 * consider it frozen immediately. 5206 */ 5207 set_bit(CGRP_FREEZE, &cgrp->flags); 5208 set_bit(CGRP_FROZEN, &cgrp->flags); 5209 } 5210 5211 spin_lock_irq(&css_set_lock); 5212 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) { 5213 cgrp->ancestor_ids[tcgrp->level] = cgroup_id(tcgrp); 5214 5215 if (tcgrp != cgrp) { 5216 tcgrp->nr_descendants++; 5217 5218 /* 5219 * If the new cgroup is frozen, all ancestor cgroups 5220 * get a new frozen descendant, but their state can't 5221 * change because of this. 5222 */ 5223 if (cgrp->freezer.e_freeze) 5224 tcgrp->freezer.nr_frozen_descendants++; 5225 } 5226 } 5227 spin_unlock_irq(&css_set_lock); 5228 5229 if (notify_on_release(parent)) 5230 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags); 5231 5232 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags)) 5233 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags); 5234 5235 cgrp->self.serial_nr = css_serial_nr_next++; 5236 5237 /* allocation complete, commit to creation */ 5238 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children); 5239 atomic_inc(&root->nr_cgrps); 5240 cgroup_get_live(parent); 5241 5242 /* 5243 * On the default hierarchy, a child doesn't automatically inherit 5244 * subtree_control from the parent. Each is configured manually. 5245 */ 5246 if (!cgroup_on_dfl(cgrp)) 5247 cgrp->subtree_control = cgroup_control(cgrp); 5248 5249 cgroup_propagate_control(cgrp); 5250 5251 return cgrp; 5252 5253 out_psi_free: 5254 psi_cgroup_free(cgrp); 5255 out_kernfs_remove: 5256 kernfs_remove(cgrp->kn); 5257 out_stat_exit: 5258 if (cgroup_on_dfl(parent)) 5259 cgroup_rstat_exit(cgrp); 5260 out_cancel_ref: 5261 percpu_ref_exit(&cgrp->self.refcnt); 5262 out_free_cgrp: 5263 kfree(cgrp); 5264 return ERR_PTR(ret); 5265 } 5266 5267 static bool cgroup_check_hierarchy_limits(struct cgroup *parent) 5268 { 5269 struct cgroup *cgroup; 5270 int ret = false; 5271 int level = 1; 5272 5273 lockdep_assert_held(&cgroup_mutex); 5274 5275 for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) { 5276 if (cgroup->nr_descendants >= cgroup->max_descendants) 5277 goto fail; 5278 5279 if (level > cgroup->max_depth) 5280 goto fail; 5281 5282 level++; 5283 } 5284 5285 ret = true; 5286 fail: 5287 return ret; 5288 } 5289 5290 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode) 5291 { 5292 struct cgroup *parent, *cgrp; 5293 int ret; 5294 5295 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */ 5296 if (strchr(name, '\n')) 5297 return -EINVAL; 5298 5299 parent = cgroup_kn_lock_live(parent_kn, false); 5300 if (!parent) 5301 return -ENODEV; 5302 5303 if (!cgroup_check_hierarchy_limits(parent)) { 5304 ret = -EAGAIN; 5305 goto out_unlock; 5306 } 5307 5308 cgrp = cgroup_create(parent, name, mode); 5309 if (IS_ERR(cgrp)) { 5310 ret = PTR_ERR(cgrp); 5311 goto out_unlock; 5312 } 5313 5314 /* 5315 * This extra ref will be put in cgroup_free_fn() and guarantees 5316 * that @cgrp->kn is always accessible. 5317 */ 5318 kernfs_get(cgrp->kn); 5319 5320 ret = cgroup_kn_set_ugid(cgrp->kn); 5321 if (ret) 5322 goto out_destroy; 5323 5324 ret = css_populate_dir(&cgrp->self); 5325 if (ret) 5326 goto out_destroy; 5327 5328 ret = cgroup_apply_control_enable(cgrp); 5329 if (ret) 5330 goto out_destroy; 5331 5332 TRACE_CGROUP_PATH(mkdir, cgrp); 5333 5334 /* let's create and online css's */ 5335 kernfs_activate(cgrp->kn); 5336 5337 ret = 0; 5338 goto out_unlock; 5339 5340 out_destroy: 5341 cgroup_destroy_locked(cgrp); 5342 out_unlock: 5343 cgroup_kn_unlock(parent_kn); 5344 return ret; 5345 } 5346 5347 /* 5348 * This is called when the refcnt of a css is confirmed to be killed. 5349 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to 5350 * initate destruction and put the css ref from kill_css(). 5351 */ 5352 static void css_killed_work_fn(struct work_struct *work) 5353 { 5354 struct cgroup_subsys_state *css = 5355 container_of(work, struct cgroup_subsys_state, destroy_work); 5356 5357 mutex_lock(&cgroup_mutex); 5358 5359 do { 5360 offline_css(css); 5361 css_put(css); 5362 /* @css can't go away while we're holding cgroup_mutex */ 5363 css = css->parent; 5364 } while (css && atomic_dec_and_test(&css->online_cnt)); 5365 5366 mutex_unlock(&cgroup_mutex); 5367 } 5368 5369 /* css kill confirmation processing requires process context, bounce */ 5370 static void css_killed_ref_fn(struct percpu_ref *ref) 5371 { 5372 struct cgroup_subsys_state *css = 5373 container_of(ref, struct cgroup_subsys_state, refcnt); 5374 5375 if (atomic_dec_and_test(&css->online_cnt)) { 5376 INIT_WORK(&css->destroy_work, css_killed_work_fn); 5377 queue_work(cgroup_destroy_wq, &css->destroy_work); 5378 } 5379 } 5380 5381 /** 5382 * kill_css - destroy a css 5383 * @css: css to destroy 5384 * 5385 * This function initiates destruction of @css by removing cgroup interface 5386 * files and putting its base reference. ->css_offline() will be invoked 5387 * asynchronously once css_tryget_online() is guaranteed to fail and when 5388 * the reference count reaches zero, @css will be released. 5389 */ 5390 static void kill_css(struct cgroup_subsys_state *css) 5391 { 5392 lockdep_assert_held(&cgroup_mutex); 5393 5394 if (css->flags & CSS_DYING) 5395 return; 5396 5397 css->flags |= CSS_DYING; 5398 5399 /* 5400 * This must happen before css is disassociated with its cgroup. 5401 * See seq_css() for details. 5402 */ 5403 css_clear_dir(css); 5404 5405 /* 5406 * Killing would put the base ref, but we need to keep it alive 5407 * until after ->css_offline(). 5408 */ 5409 css_get(css); 5410 5411 /* 5412 * cgroup core guarantees that, by the time ->css_offline() is 5413 * invoked, no new css reference will be given out via 5414 * css_tryget_online(). We can't simply call percpu_ref_kill() and 5415 * proceed to offlining css's because percpu_ref_kill() doesn't 5416 * guarantee that the ref is seen as killed on all CPUs on return. 5417 * 5418 * Use percpu_ref_kill_and_confirm() to get notifications as each 5419 * css is confirmed to be seen as killed on all CPUs. 5420 */ 5421 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn); 5422 } 5423 5424 /** 5425 * cgroup_destroy_locked - the first stage of cgroup destruction 5426 * @cgrp: cgroup to be destroyed 5427 * 5428 * css's make use of percpu refcnts whose killing latency shouldn't be 5429 * exposed to userland and are RCU protected. Also, cgroup core needs to 5430 * guarantee that css_tryget_online() won't succeed by the time 5431 * ->css_offline() is invoked. To satisfy all the requirements, 5432 * destruction is implemented in the following two steps. 5433 * 5434 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all 5435 * userland visible parts and start killing the percpu refcnts of 5436 * css's. Set up so that the next stage will be kicked off once all 5437 * the percpu refcnts are confirmed to be killed. 5438 * 5439 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the 5440 * rest of destruction. Once all cgroup references are gone, the 5441 * cgroup is RCU-freed. 5442 * 5443 * This function implements s1. After this step, @cgrp is gone as far as 5444 * the userland is concerned and a new cgroup with the same name may be 5445 * created. As cgroup doesn't care about the names internally, this 5446 * doesn't cause any problem. 5447 */ 5448 static int cgroup_destroy_locked(struct cgroup *cgrp) 5449 __releases(&cgroup_mutex) __acquires(&cgroup_mutex) 5450 { 5451 struct cgroup *tcgrp, *parent = cgroup_parent(cgrp); 5452 struct cgroup_subsys_state *css; 5453 struct cgrp_cset_link *link; 5454 int ssid; 5455 5456 lockdep_assert_held(&cgroup_mutex); 5457 5458 /* 5459 * Only migration can raise populated from zero and we're already 5460 * holding cgroup_mutex. 5461 */ 5462 if (cgroup_is_populated(cgrp)) 5463 return -EBUSY; 5464 5465 /* 5466 * Make sure there's no live children. We can't test emptiness of 5467 * ->self.children as dead children linger on it while being 5468 * drained; otherwise, "rmdir parent/child parent" may fail. 5469 */ 5470 if (css_has_online_children(&cgrp->self)) 5471 return -EBUSY; 5472 5473 /* 5474 * Mark @cgrp and the associated csets dead. The former prevents 5475 * further task migration and child creation by disabling 5476 * cgroup_lock_live_group(). The latter makes the csets ignored by 5477 * the migration path. 5478 */ 5479 cgrp->self.flags &= ~CSS_ONLINE; 5480 5481 spin_lock_irq(&css_set_lock); 5482 list_for_each_entry(link, &cgrp->cset_links, cset_link) 5483 link->cset->dead = true; 5484 spin_unlock_irq(&css_set_lock); 5485 5486 /* initiate massacre of all css's */ 5487 for_each_css(css, ssid, cgrp) 5488 kill_css(css); 5489 5490 /* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */ 5491 css_clear_dir(&cgrp->self); 5492 kernfs_remove(cgrp->kn); 5493 5494 if (parent && cgroup_is_threaded(cgrp)) 5495 parent->nr_threaded_children--; 5496 5497 spin_lock_irq(&css_set_lock); 5498 for (tcgrp = cgroup_parent(cgrp); tcgrp; tcgrp = cgroup_parent(tcgrp)) { 5499 tcgrp->nr_descendants--; 5500 tcgrp->nr_dying_descendants++; 5501 /* 5502 * If the dying cgroup is frozen, decrease frozen descendants 5503 * counters of ancestor cgroups. 5504 */ 5505 if (test_bit(CGRP_FROZEN, &cgrp->flags)) 5506 tcgrp->freezer.nr_frozen_descendants--; 5507 } 5508 spin_unlock_irq(&css_set_lock); 5509 5510 cgroup1_check_for_release(parent); 5511 5512 cgroup_bpf_offline(cgrp); 5513 5514 /* put the base reference */ 5515 percpu_ref_kill(&cgrp->self.refcnt); 5516 5517 return 0; 5518 }; 5519 5520 int cgroup_rmdir(struct kernfs_node *kn) 5521 { 5522 struct cgroup *cgrp; 5523 int ret = 0; 5524 5525 cgrp = cgroup_kn_lock_live(kn, false); 5526 if (!cgrp) 5527 return 0; 5528 5529 ret = cgroup_destroy_locked(cgrp); 5530 if (!ret) 5531 TRACE_CGROUP_PATH(rmdir, cgrp); 5532 5533 cgroup_kn_unlock(kn); 5534 return ret; 5535 } 5536 5537 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = { 5538 .show_options = cgroup_show_options, 5539 .mkdir = cgroup_mkdir, 5540 .rmdir = cgroup_rmdir, 5541 .show_path = cgroup_show_path, 5542 }; 5543 5544 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early) 5545 { 5546 struct cgroup_subsys_state *css; 5547 5548 pr_debug("Initializing cgroup subsys %s\n", ss->name); 5549 5550 mutex_lock(&cgroup_mutex); 5551 5552 idr_init(&ss->css_idr); 5553 INIT_LIST_HEAD(&ss->cfts); 5554 5555 /* Create the root cgroup state for this subsystem */ 5556 ss->root = &cgrp_dfl_root; 5557 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss)); 5558 /* We don't handle early failures gracefully */ 5559 BUG_ON(IS_ERR(css)); 5560 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp); 5561 5562 /* 5563 * Root csses are never destroyed and we can't initialize 5564 * percpu_ref during early init. Disable refcnting. 5565 */ 5566 css->flags |= CSS_NO_REF; 5567 5568 if (early) { 5569 /* allocation can't be done safely during early init */ 5570 css->id = 1; 5571 } else { 5572 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL); 5573 BUG_ON(css->id < 0); 5574 } 5575 5576 /* Update the init_css_set to contain a subsys 5577 * pointer to this state - since the subsystem is 5578 * newly registered, all tasks and hence the 5579 * init_css_set is in the subsystem's root cgroup. */ 5580 init_css_set.subsys[ss->id] = css; 5581 5582 have_fork_callback |= (bool)ss->fork << ss->id; 5583 have_exit_callback |= (bool)ss->exit << ss->id; 5584 have_release_callback |= (bool)ss->release << ss->id; 5585 have_canfork_callback |= (bool)ss->can_fork << ss->id; 5586 5587 /* At system boot, before all subsystems have been 5588 * registered, no tasks have been forked, so we don't 5589 * need to invoke fork callbacks here. */ 5590 BUG_ON(!list_empty(&init_task.tasks)); 5591 5592 BUG_ON(online_css(css)); 5593 5594 mutex_unlock(&cgroup_mutex); 5595 } 5596 5597 /** 5598 * cgroup_init_early - cgroup initialization at system boot 5599 * 5600 * Initialize cgroups at system boot, and initialize any 5601 * subsystems that request early init. 5602 */ 5603 int __init cgroup_init_early(void) 5604 { 5605 static struct cgroup_fs_context __initdata ctx; 5606 struct cgroup_subsys *ss; 5607 int i; 5608 5609 ctx.root = &cgrp_dfl_root; 5610 init_cgroup_root(&ctx); 5611 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF; 5612 5613 RCU_INIT_POINTER(init_task.cgroups, &init_css_set); 5614 5615 for_each_subsys(ss, i) { 5616 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id, 5617 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n", 5618 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free, 5619 ss->id, ss->name); 5620 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN, 5621 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]); 5622 5623 ss->id = i; 5624 ss->name = cgroup_subsys_name[i]; 5625 if (!ss->legacy_name) 5626 ss->legacy_name = cgroup_subsys_name[i]; 5627 5628 if (ss->early_init) 5629 cgroup_init_subsys(ss, true); 5630 } 5631 return 0; 5632 } 5633 5634 static u16 cgroup_disable_mask __initdata; 5635 5636 /** 5637 * cgroup_init - cgroup initialization 5638 * 5639 * Register cgroup filesystem and /proc file, and initialize 5640 * any subsystems that didn't request early init. 5641 */ 5642 int __init cgroup_init(void) 5643 { 5644 struct cgroup_subsys *ss; 5645 int ssid; 5646 5647 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16); 5648 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files)); 5649 BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files)); 5650 5651 cgroup_rstat_boot(); 5652 5653 /* 5654 * The latency of the synchronize_rcu() is too high for cgroups, 5655 * avoid it at the cost of forcing all readers into the slow path. 5656 */ 5657 rcu_sync_enter_start(&cgroup_threadgroup_rwsem.rss); 5658 5659 get_user_ns(init_cgroup_ns.user_ns); 5660 5661 mutex_lock(&cgroup_mutex); 5662 5663 /* 5664 * Add init_css_set to the hash table so that dfl_root can link to 5665 * it during init. 5666 */ 5667 hash_add(css_set_table, &init_css_set.hlist, 5668 css_set_hash(init_css_set.subsys)); 5669 5670 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0)); 5671 5672 mutex_unlock(&cgroup_mutex); 5673 5674 for_each_subsys(ss, ssid) { 5675 if (ss->early_init) { 5676 struct cgroup_subsys_state *css = 5677 init_css_set.subsys[ss->id]; 5678 5679 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, 5680 GFP_KERNEL); 5681 BUG_ON(css->id < 0); 5682 } else { 5683 cgroup_init_subsys(ss, false); 5684 } 5685 5686 list_add_tail(&init_css_set.e_cset_node[ssid], 5687 &cgrp_dfl_root.cgrp.e_csets[ssid]); 5688 5689 /* 5690 * Setting dfl_root subsys_mask needs to consider the 5691 * disabled flag and cftype registration needs kmalloc, 5692 * both of which aren't available during early_init. 5693 */ 5694 if (cgroup_disable_mask & (1 << ssid)) { 5695 static_branch_disable(cgroup_subsys_enabled_key[ssid]); 5696 printk(KERN_INFO "Disabling %s control group subsystem\n", 5697 ss->name); 5698 continue; 5699 } 5700 5701 if (cgroup1_ssid_disabled(ssid)) 5702 printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n", 5703 ss->name); 5704 5705 cgrp_dfl_root.subsys_mask |= 1 << ss->id; 5706 5707 /* implicit controllers must be threaded too */ 5708 WARN_ON(ss->implicit_on_dfl && !ss->threaded); 5709 5710 if (ss->implicit_on_dfl) 5711 cgrp_dfl_implicit_ss_mask |= 1 << ss->id; 5712 else if (!ss->dfl_cftypes) 5713 cgrp_dfl_inhibit_ss_mask |= 1 << ss->id; 5714 5715 if (ss->threaded) 5716 cgrp_dfl_threaded_ss_mask |= 1 << ss->id; 5717 5718 if (ss->dfl_cftypes == ss->legacy_cftypes) { 5719 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes)); 5720 } else { 5721 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes)); 5722 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes)); 5723 } 5724 5725 if (ss->bind) 5726 ss->bind(init_css_set.subsys[ssid]); 5727 5728 mutex_lock(&cgroup_mutex); 5729 css_populate_dir(init_css_set.subsys[ssid]); 5730 mutex_unlock(&cgroup_mutex); 5731 } 5732 5733 /* init_css_set.subsys[] has been updated, re-hash */ 5734 hash_del(&init_css_set.hlist); 5735 hash_add(css_set_table, &init_css_set.hlist, 5736 css_set_hash(init_css_set.subsys)); 5737 5738 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup")); 5739 WARN_ON(register_filesystem(&cgroup_fs_type)); 5740 WARN_ON(register_filesystem(&cgroup2_fs_type)); 5741 WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show)); 5742 #ifdef CONFIG_CPUSETS 5743 WARN_ON(register_filesystem(&cpuset_fs_type)); 5744 #endif 5745 5746 return 0; 5747 } 5748 5749 static int __init cgroup_wq_init(void) 5750 { 5751 /* 5752 * There isn't much point in executing destruction path in 5753 * parallel. Good chunk is serialized with cgroup_mutex anyway. 5754 * Use 1 for @max_active. 5755 * 5756 * We would prefer to do this in cgroup_init() above, but that 5757 * is called before init_workqueues(): so leave this until after. 5758 */ 5759 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1); 5760 BUG_ON(!cgroup_destroy_wq); 5761 return 0; 5762 } 5763 core_initcall(cgroup_wq_init); 5764 5765 void cgroup_path_from_kernfs_id(u64 id, char *buf, size_t buflen) 5766 { 5767 struct kernfs_node *kn; 5768 5769 kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id); 5770 if (!kn) 5771 return; 5772 kernfs_path(kn, buf, buflen); 5773 kernfs_put(kn); 5774 } 5775 5776 /* 5777 * proc_cgroup_show() 5778 * - Print task's cgroup paths into seq_file, one line for each hierarchy 5779 * - Used for /proc/<pid>/cgroup. 5780 */ 5781 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns, 5782 struct pid *pid, struct task_struct *tsk) 5783 { 5784 char *buf; 5785 int retval; 5786 struct cgroup_root *root; 5787 5788 retval = -ENOMEM; 5789 buf = kmalloc(PATH_MAX, GFP_KERNEL); 5790 if (!buf) 5791 goto out; 5792 5793 mutex_lock(&cgroup_mutex); 5794 spin_lock_irq(&css_set_lock); 5795 5796 for_each_root(root) { 5797 struct cgroup_subsys *ss; 5798 struct cgroup *cgrp; 5799 int ssid, count = 0; 5800 5801 if (root == &cgrp_dfl_root && !cgrp_dfl_visible) 5802 continue; 5803 5804 seq_printf(m, "%d:", root->hierarchy_id); 5805 if (root != &cgrp_dfl_root) 5806 for_each_subsys(ss, ssid) 5807 if (root->subsys_mask & (1 << ssid)) 5808 seq_printf(m, "%s%s", count++ ? "," : "", 5809 ss->legacy_name); 5810 if (strlen(root->name)) 5811 seq_printf(m, "%sname=%s", count ? "," : "", 5812 root->name); 5813 seq_putc(m, ':'); 5814 5815 cgrp = task_cgroup_from_root(tsk, root); 5816 5817 /* 5818 * On traditional hierarchies, all zombie tasks show up as 5819 * belonging to the root cgroup. On the default hierarchy, 5820 * while a zombie doesn't show up in "cgroup.procs" and 5821 * thus can't be migrated, its /proc/PID/cgroup keeps 5822 * reporting the cgroup it belonged to before exiting. If 5823 * the cgroup is removed before the zombie is reaped, 5824 * " (deleted)" is appended to the cgroup path. 5825 */ 5826 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) { 5827 retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX, 5828 current->nsproxy->cgroup_ns); 5829 if (retval >= PATH_MAX) 5830 retval = -ENAMETOOLONG; 5831 if (retval < 0) 5832 goto out_unlock; 5833 5834 seq_puts(m, buf); 5835 } else { 5836 seq_puts(m, "/"); 5837 } 5838 5839 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp)) 5840 seq_puts(m, " (deleted)\n"); 5841 else 5842 seq_putc(m, '\n'); 5843 } 5844 5845 retval = 0; 5846 out_unlock: 5847 spin_unlock_irq(&css_set_lock); 5848 mutex_unlock(&cgroup_mutex); 5849 kfree(buf); 5850 out: 5851 return retval; 5852 } 5853 5854 /** 5855 * cgroup_fork - initialize cgroup related fields during copy_process() 5856 * @child: pointer to task_struct of forking parent process. 5857 * 5858 * A task is associated with the init_css_set until cgroup_post_fork() 5859 * attaches it to the parent's css_set. Empty cg_list indicates that 5860 * @child isn't holding reference to its css_set. 5861 */ 5862 void cgroup_fork(struct task_struct *child) 5863 { 5864 RCU_INIT_POINTER(child->cgroups, &init_css_set); 5865 INIT_LIST_HEAD(&child->cg_list); 5866 } 5867 5868 /** 5869 * cgroup_can_fork - called on a new task before the process is exposed 5870 * @child: the task in question. 5871 * 5872 * This calls the subsystem can_fork() callbacks. If the can_fork() callback 5873 * returns an error, the fork aborts with that error code. This allows for 5874 * a cgroup subsystem to conditionally allow or deny new forks. 5875 */ 5876 int cgroup_can_fork(struct task_struct *child) 5877 { 5878 struct cgroup_subsys *ss; 5879 int i, j, ret; 5880 5881 do_each_subsys_mask(ss, i, have_canfork_callback) { 5882 ret = ss->can_fork(child); 5883 if (ret) 5884 goto out_revert; 5885 } while_each_subsys_mask(); 5886 5887 return 0; 5888 5889 out_revert: 5890 for_each_subsys(ss, j) { 5891 if (j >= i) 5892 break; 5893 if (ss->cancel_fork) 5894 ss->cancel_fork(child); 5895 } 5896 5897 return ret; 5898 } 5899 5900 /** 5901 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork() 5902 * @child: the task in question 5903 * 5904 * This calls the cancel_fork() callbacks if a fork failed *after* 5905 * cgroup_can_fork() succeded. 5906 */ 5907 void cgroup_cancel_fork(struct task_struct *child) 5908 { 5909 struct cgroup_subsys *ss; 5910 int i; 5911 5912 for_each_subsys(ss, i) 5913 if (ss->cancel_fork) 5914 ss->cancel_fork(child); 5915 } 5916 5917 /** 5918 * cgroup_post_fork - called on a new task after adding it to the task list 5919 * @child: the task in question 5920 * 5921 * Adds the task to the list running through its css_set if necessary and 5922 * call the subsystem fork() callbacks. Has to be after the task is 5923 * visible on the task list in case we race with the first call to 5924 * cgroup_task_iter_start() - to guarantee that the new task ends up on its 5925 * list. 5926 */ 5927 void cgroup_post_fork(struct task_struct *child) 5928 { 5929 struct cgroup_subsys *ss; 5930 struct css_set *cset; 5931 int i; 5932 5933 spin_lock_irq(&css_set_lock); 5934 5935 WARN_ON_ONCE(!list_empty(&child->cg_list)); 5936 cset = task_css_set(current); /* current is @child's parent */ 5937 get_css_set(cset); 5938 cset->nr_tasks++; 5939 css_set_move_task(child, NULL, cset, false); 5940 5941 /* 5942 * If the cgroup has to be frozen, the new task has too. Let's set 5943 * the JOBCTL_TRAP_FREEZE jobctl bit to get the task into the 5944 * frozen state. 5945 */ 5946 if (unlikely(cgroup_task_freeze(child))) { 5947 spin_lock(&child->sighand->siglock); 5948 WARN_ON_ONCE(child->frozen); 5949 child->jobctl |= JOBCTL_TRAP_FREEZE; 5950 spin_unlock(&child->sighand->siglock); 5951 5952 /* 5953 * Calling cgroup_update_frozen() isn't required here, 5954 * because it will be called anyway a bit later from 5955 * do_freezer_trap(). So we avoid cgroup's transient switch 5956 * from the frozen state and back. 5957 */ 5958 } 5959 5960 spin_unlock_irq(&css_set_lock); 5961 5962 /* 5963 * Call ss->fork(). This must happen after @child is linked on 5964 * css_set; otherwise, @child might change state between ->fork() 5965 * and addition to css_set. 5966 */ 5967 do_each_subsys_mask(ss, i, have_fork_callback) { 5968 ss->fork(child); 5969 } while_each_subsys_mask(); 5970 } 5971 5972 /** 5973 * cgroup_exit - detach cgroup from exiting task 5974 * @tsk: pointer to task_struct of exiting process 5975 * 5976 * Description: Detach cgroup from @tsk. 5977 * 5978 */ 5979 void cgroup_exit(struct task_struct *tsk) 5980 { 5981 struct cgroup_subsys *ss; 5982 struct css_set *cset; 5983 int i; 5984 5985 spin_lock_irq(&css_set_lock); 5986 5987 WARN_ON_ONCE(list_empty(&tsk->cg_list)); 5988 cset = task_css_set(tsk); 5989 css_set_move_task(tsk, cset, NULL, false); 5990 list_add_tail(&tsk->cg_list, &cset->dying_tasks); 5991 cset->nr_tasks--; 5992 5993 WARN_ON_ONCE(cgroup_task_frozen(tsk)); 5994 if (unlikely(cgroup_task_freeze(tsk))) 5995 cgroup_update_frozen(task_dfl_cgroup(tsk)); 5996 5997 spin_unlock_irq(&css_set_lock); 5998 5999 /* see cgroup_post_fork() for details */ 6000 do_each_subsys_mask(ss, i, have_exit_callback) { 6001 ss->exit(tsk); 6002 } while_each_subsys_mask(); 6003 } 6004 6005 void cgroup_release(struct task_struct *task) 6006 { 6007 struct cgroup_subsys *ss; 6008 int ssid; 6009 6010 do_each_subsys_mask(ss, ssid, have_release_callback) { 6011 ss->release(task); 6012 } while_each_subsys_mask(); 6013 6014 spin_lock_irq(&css_set_lock); 6015 css_set_skip_task_iters(task_css_set(task), task); 6016 list_del_init(&task->cg_list); 6017 spin_unlock_irq(&css_set_lock); 6018 } 6019 6020 void cgroup_free(struct task_struct *task) 6021 { 6022 struct css_set *cset = task_css_set(task); 6023 put_css_set(cset); 6024 } 6025 6026 static int __init cgroup_disable(char *str) 6027 { 6028 struct cgroup_subsys *ss; 6029 char *token; 6030 int i; 6031 6032 while ((token = strsep(&str, ",")) != NULL) { 6033 if (!*token) 6034 continue; 6035 6036 for_each_subsys(ss, i) { 6037 if (strcmp(token, ss->name) && 6038 strcmp(token, ss->legacy_name)) 6039 continue; 6040 cgroup_disable_mask |= 1 << i; 6041 } 6042 } 6043 return 1; 6044 } 6045 __setup("cgroup_disable=", cgroup_disable); 6046 6047 void __init __weak enable_debug_cgroup(void) { } 6048 6049 static int __init enable_cgroup_debug(char *str) 6050 { 6051 cgroup_debug = true; 6052 enable_debug_cgroup(); 6053 return 1; 6054 } 6055 __setup("cgroup_debug", enable_cgroup_debug); 6056 6057 /** 6058 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry 6059 * @dentry: directory dentry of interest 6060 * @ss: subsystem of interest 6061 * 6062 * If @dentry is a directory for a cgroup which has @ss enabled on it, try 6063 * to get the corresponding css and return it. If such css doesn't exist 6064 * or can't be pinned, an ERR_PTR value is returned. 6065 */ 6066 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry, 6067 struct cgroup_subsys *ss) 6068 { 6069 struct kernfs_node *kn = kernfs_node_from_dentry(dentry); 6070 struct file_system_type *s_type = dentry->d_sb->s_type; 6071 struct cgroup_subsys_state *css = NULL; 6072 struct cgroup *cgrp; 6073 6074 /* is @dentry a cgroup dir? */ 6075 if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) || 6076 !kn || kernfs_type(kn) != KERNFS_DIR) 6077 return ERR_PTR(-EBADF); 6078 6079 rcu_read_lock(); 6080 6081 /* 6082 * This path doesn't originate from kernfs and @kn could already 6083 * have been or be removed at any point. @kn->priv is RCU 6084 * protected for this access. See css_release_work_fn() for details. 6085 */ 6086 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); 6087 if (cgrp) 6088 css = cgroup_css(cgrp, ss); 6089 6090 if (!css || !css_tryget_online(css)) 6091 css = ERR_PTR(-ENOENT); 6092 6093 rcu_read_unlock(); 6094 return css; 6095 } 6096 6097 /** 6098 * css_from_id - lookup css by id 6099 * @id: the cgroup id 6100 * @ss: cgroup subsys to be looked into 6101 * 6102 * Returns the css if there's valid one with @id, otherwise returns NULL. 6103 * Should be called under rcu_read_lock(). 6104 */ 6105 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss) 6106 { 6107 WARN_ON_ONCE(!rcu_read_lock_held()); 6108 return idr_find(&ss->css_idr, id); 6109 } 6110 6111 /** 6112 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path 6113 * @path: path on the default hierarchy 6114 * 6115 * Find the cgroup at @path on the default hierarchy, increment its 6116 * reference count and return it. Returns pointer to the found cgroup on 6117 * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR) 6118 * if @path points to a non-directory. 6119 */ 6120 struct cgroup *cgroup_get_from_path(const char *path) 6121 { 6122 struct kernfs_node *kn; 6123 struct cgroup *cgrp; 6124 6125 mutex_lock(&cgroup_mutex); 6126 6127 kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path); 6128 if (kn) { 6129 if (kernfs_type(kn) == KERNFS_DIR) { 6130 cgrp = kn->priv; 6131 cgroup_get_live(cgrp); 6132 } else { 6133 cgrp = ERR_PTR(-ENOTDIR); 6134 } 6135 kernfs_put(kn); 6136 } else { 6137 cgrp = ERR_PTR(-ENOENT); 6138 } 6139 6140 mutex_unlock(&cgroup_mutex); 6141 return cgrp; 6142 } 6143 EXPORT_SYMBOL_GPL(cgroup_get_from_path); 6144 6145 /** 6146 * cgroup_get_from_fd - get a cgroup pointer from a fd 6147 * @fd: fd obtained by open(cgroup2_dir) 6148 * 6149 * Find the cgroup from a fd which should be obtained 6150 * by opening a cgroup directory. Returns a pointer to the 6151 * cgroup on success. ERR_PTR is returned if the cgroup 6152 * cannot be found. 6153 */ 6154 struct cgroup *cgroup_get_from_fd(int fd) 6155 { 6156 struct cgroup_subsys_state *css; 6157 struct cgroup *cgrp; 6158 struct file *f; 6159 6160 f = fget_raw(fd); 6161 if (!f) 6162 return ERR_PTR(-EBADF); 6163 6164 css = css_tryget_online_from_dir(f->f_path.dentry, NULL); 6165 fput(f); 6166 if (IS_ERR(css)) 6167 return ERR_CAST(css); 6168 6169 cgrp = css->cgroup; 6170 if (!cgroup_on_dfl(cgrp)) { 6171 cgroup_put(cgrp); 6172 return ERR_PTR(-EBADF); 6173 } 6174 6175 return cgrp; 6176 } 6177 EXPORT_SYMBOL_GPL(cgroup_get_from_fd); 6178 6179 static u64 power_of_ten(int power) 6180 { 6181 u64 v = 1; 6182 while (power--) 6183 v *= 10; 6184 return v; 6185 } 6186 6187 /** 6188 * cgroup_parse_float - parse a floating number 6189 * @input: input string 6190 * @dec_shift: number of decimal digits to shift 6191 * @v: output 6192 * 6193 * Parse a decimal floating point number in @input and store the result in 6194 * @v with decimal point right shifted @dec_shift times. For example, if 6195 * @input is "12.3456" and @dec_shift is 3, *@v will be set to 12345. 6196 * Returns 0 on success, -errno otherwise. 6197 * 6198 * There's nothing cgroup specific about this function except that it's 6199 * currently the only user. 6200 */ 6201 int cgroup_parse_float(const char *input, unsigned dec_shift, s64 *v) 6202 { 6203 s64 whole, frac = 0; 6204 int fstart = 0, fend = 0, flen; 6205 6206 if (!sscanf(input, "%lld.%n%lld%n", &whole, &fstart, &frac, &fend)) 6207 return -EINVAL; 6208 if (frac < 0) 6209 return -EINVAL; 6210 6211 flen = fend > fstart ? fend - fstart : 0; 6212 if (flen < dec_shift) 6213 frac *= power_of_ten(dec_shift - flen); 6214 else 6215 frac = DIV_ROUND_CLOSEST_ULL(frac, power_of_ten(flen - dec_shift)); 6216 6217 *v = whole * power_of_ten(dec_shift) + frac; 6218 return 0; 6219 } 6220 6221 /* 6222 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data 6223 * definition in cgroup-defs.h. 6224 */ 6225 #ifdef CONFIG_SOCK_CGROUP_DATA 6226 6227 #if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID) 6228 6229 DEFINE_SPINLOCK(cgroup_sk_update_lock); 6230 static bool cgroup_sk_alloc_disabled __read_mostly; 6231 6232 void cgroup_sk_alloc_disable(void) 6233 { 6234 if (cgroup_sk_alloc_disabled) 6235 return; 6236 pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n"); 6237 cgroup_sk_alloc_disabled = true; 6238 } 6239 6240 #else 6241 6242 #define cgroup_sk_alloc_disabled false 6243 6244 #endif 6245 6246 void cgroup_sk_alloc(struct sock_cgroup_data *skcd) 6247 { 6248 if (cgroup_sk_alloc_disabled) 6249 return; 6250 6251 /* Socket clone path */ 6252 if (skcd->val) { 6253 /* 6254 * We might be cloning a socket which is left in an empty 6255 * cgroup and the cgroup might have already been rmdir'd. 6256 * Don't use cgroup_get_live(). 6257 */ 6258 cgroup_get(sock_cgroup_ptr(skcd)); 6259 cgroup_bpf_get(sock_cgroup_ptr(skcd)); 6260 return; 6261 } 6262 6263 rcu_read_lock(); 6264 6265 while (true) { 6266 struct css_set *cset; 6267 6268 cset = task_css_set(current); 6269 if (likely(cgroup_tryget(cset->dfl_cgrp))) { 6270 skcd->val = (unsigned long)cset->dfl_cgrp; 6271 cgroup_bpf_get(cset->dfl_cgrp); 6272 break; 6273 } 6274 cpu_relax(); 6275 } 6276 6277 rcu_read_unlock(); 6278 } 6279 6280 void cgroup_sk_free(struct sock_cgroup_data *skcd) 6281 { 6282 struct cgroup *cgrp = sock_cgroup_ptr(skcd); 6283 6284 cgroup_bpf_put(cgrp); 6285 cgroup_put(cgrp); 6286 } 6287 6288 #endif /* CONFIG_SOCK_CGROUP_DATA */ 6289 6290 #ifdef CONFIG_CGROUP_BPF 6291 int cgroup_bpf_attach(struct cgroup *cgrp, struct bpf_prog *prog, 6292 struct bpf_prog *replace_prog, enum bpf_attach_type type, 6293 u32 flags) 6294 { 6295 int ret; 6296 6297 mutex_lock(&cgroup_mutex); 6298 ret = __cgroup_bpf_attach(cgrp, prog, replace_prog, type, flags); 6299 mutex_unlock(&cgroup_mutex); 6300 return ret; 6301 } 6302 int cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog, 6303 enum bpf_attach_type type, u32 flags) 6304 { 6305 int ret; 6306 6307 mutex_lock(&cgroup_mutex); 6308 ret = __cgroup_bpf_detach(cgrp, prog, type); 6309 mutex_unlock(&cgroup_mutex); 6310 return ret; 6311 } 6312 int cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr, 6313 union bpf_attr __user *uattr) 6314 { 6315 int ret; 6316 6317 mutex_lock(&cgroup_mutex); 6318 ret = __cgroup_bpf_query(cgrp, attr, uattr); 6319 mutex_unlock(&cgroup_mutex); 6320 return ret; 6321 } 6322 #endif /* CONFIG_CGROUP_BPF */ 6323 6324 #ifdef CONFIG_SYSFS 6325 static ssize_t show_delegatable_files(struct cftype *files, char *buf, 6326 ssize_t size, const char *prefix) 6327 { 6328 struct cftype *cft; 6329 ssize_t ret = 0; 6330 6331 for (cft = files; cft && cft->name[0] != '\0'; cft++) { 6332 if (!(cft->flags & CFTYPE_NS_DELEGATABLE)) 6333 continue; 6334 6335 if (prefix) 6336 ret += snprintf(buf + ret, size - ret, "%s.", prefix); 6337 6338 ret += snprintf(buf + ret, size - ret, "%s\n", cft->name); 6339 6340 if (WARN_ON(ret >= size)) 6341 break; 6342 } 6343 6344 return ret; 6345 } 6346 6347 static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr, 6348 char *buf) 6349 { 6350 struct cgroup_subsys *ss; 6351 int ssid; 6352 ssize_t ret = 0; 6353 6354 ret = show_delegatable_files(cgroup_base_files, buf, PAGE_SIZE - ret, 6355 NULL); 6356 6357 for_each_subsys(ss, ssid) 6358 ret += show_delegatable_files(ss->dfl_cftypes, buf + ret, 6359 PAGE_SIZE - ret, 6360 cgroup_subsys_name[ssid]); 6361 6362 return ret; 6363 } 6364 static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate); 6365 6366 static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr, 6367 char *buf) 6368 { 6369 return snprintf(buf, PAGE_SIZE, "nsdelegate\nmemory_localevents\n"); 6370 } 6371 static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features); 6372 6373 static struct attribute *cgroup_sysfs_attrs[] = { 6374 &cgroup_delegate_attr.attr, 6375 &cgroup_features_attr.attr, 6376 NULL, 6377 }; 6378 6379 static const struct attribute_group cgroup_sysfs_attr_group = { 6380 .attrs = cgroup_sysfs_attrs, 6381 .name = "cgroup", 6382 }; 6383 6384 static int __init cgroup_sysfs_init(void) 6385 { 6386 return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group); 6387 } 6388 subsys_initcall(cgroup_sysfs_init); 6389 6390 #endif /* CONFIG_SYSFS */ 6391