xref: /openbmc/linux/kernel/cgroup/cgroup.c (revision aa0dc6a7)
1 /*
2  *  Generic process-grouping system.
3  *
4  *  Based originally on the cpuset system, extracted by Paul Menage
5  *  Copyright (C) 2006 Google, Inc
6  *
7  *  Notifications support
8  *  Copyright (C) 2009 Nokia Corporation
9  *  Author: Kirill A. Shutemov
10  *
11  *  Copyright notices from the original cpuset code:
12  *  --------------------------------------------------
13  *  Copyright (C) 2003 BULL SA.
14  *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
15  *
16  *  Portions derived from Patrick Mochel's sysfs code.
17  *  sysfs is Copyright (c) 2001-3 Patrick Mochel
18  *
19  *  2003-10-10 Written by Simon Derr.
20  *  2003-10-22 Updates by Stephen Hemminger.
21  *  2004 May-July Rework by Paul Jackson.
22  *  ---------------------------------------------------
23  *
24  *  This file is subject to the terms and conditions of the GNU General Public
25  *  License.  See the file COPYING in the main directory of the Linux
26  *  distribution for more details.
27  */
28 
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 
31 #include "cgroup-internal.h"
32 
33 #include <linux/cred.h>
34 #include <linux/errno.h>
35 #include <linux/init_task.h>
36 #include <linux/kernel.h>
37 #include <linux/magic.h>
38 #include <linux/mutex.h>
39 #include <linux/mount.h>
40 #include <linux/pagemap.h>
41 #include <linux/proc_fs.h>
42 #include <linux/rcupdate.h>
43 #include <linux/sched.h>
44 #include <linux/sched/task.h>
45 #include <linux/slab.h>
46 #include <linux/spinlock.h>
47 #include <linux/percpu-rwsem.h>
48 #include <linux/string.h>
49 #include <linux/hashtable.h>
50 #include <linux/idr.h>
51 #include <linux/kthread.h>
52 #include <linux/atomic.h>
53 #include <linux/cpuset.h>
54 #include <linux/proc_ns.h>
55 #include <linux/nsproxy.h>
56 #include <linux/file.h>
57 #include <linux/fs_parser.h>
58 #include <linux/sched/cputime.h>
59 #include <linux/psi.h>
60 #include <net/sock.h>
61 
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/cgroup.h>
64 
65 #define CGROUP_FILE_NAME_MAX		(MAX_CGROUP_TYPE_NAMELEN +	\
66 					 MAX_CFTYPE_NAME + 2)
67 /* let's not notify more than 100 times per second */
68 #define CGROUP_FILE_NOTIFY_MIN_INTV	DIV_ROUND_UP(HZ, 100)
69 
70 /*
71  * cgroup_mutex is the master lock.  Any modification to cgroup or its
72  * hierarchy must be performed while holding it.
73  *
74  * css_set_lock protects task->cgroups pointer, the list of css_set
75  * objects, and the chain of tasks off each css_set.
76  *
77  * These locks are exported if CONFIG_PROVE_RCU so that accessors in
78  * cgroup.h can use them for lockdep annotations.
79  */
80 DEFINE_MUTEX(cgroup_mutex);
81 DEFINE_SPINLOCK(css_set_lock);
82 
83 #ifdef CONFIG_PROVE_RCU
84 EXPORT_SYMBOL_GPL(cgroup_mutex);
85 EXPORT_SYMBOL_GPL(css_set_lock);
86 #endif
87 
88 DEFINE_SPINLOCK(trace_cgroup_path_lock);
89 char trace_cgroup_path[TRACE_CGROUP_PATH_LEN];
90 bool cgroup_debug __read_mostly;
91 
92 /*
93  * Protects cgroup_idr and css_idr so that IDs can be released without
94  * grabbing cgroup_mutex.
95  */
96 static DEFINE_SPINLOCK(cgroup_idr_lock);
97 
98 /*
99  * Protects cgroup_file->kn for !self csses.  It synchronizes notifications
100  * against file removal/re-creation across css hiding.
101  */
102 static DEFINE_SPINLOCK(cgroup_file_kn_lock);
103 
104 DEFINE_PERCPU_RWSEM(cgroup_threadgroup_rwsem);
105 
106 #define cgroup_assert_mutex_or_rcu_locked()				\
107 	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
108 			   !lockdep_is_held(&cgroup_mutex),		\
109 			   "cgroup_mutex or RCU read lock required");
110 
111 /*
112  * cgroup destruction makes heavy use of work items and there can be a lot
113  * of concurrent destructions.  Use a separate workqueue so that cgroup
114  * destruction work items don't end up filling up max_active of system_wq
115  * which may lead to deadlock.
116  */
117 static struct workqueue_struct *cgroup_destroy_wq;
118 
119 /* generate an array of cgroup subsystem pointers */
120 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
121 struct cgroup_subsys *cgroup_subsys[] = {
122 #include <linux/cgroup_subsys.h>
123 };
124 #undef SUBSYS
125 
126 /* array of cgroup subsystem names */
127 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
128 static const char *cgroup_subsys_name[] = {
129 #include <linux/cgroup_subsys.h>
130 };
131 #undef SUBSYS
132 
133 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
134 #define SUBSYS(_x)								\
135 	DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key);			\
136 	DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key);			\
137 	EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key);			\
138 	EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
139 #include <linux/cgroup_subsys.h>
140 #undef SUBSYS
141 
142 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
143 static struct static_key_true *cgroup_subsys_enabled_key[] = {
144 #include <linux/cgroup_subsys.h>
145 };
146 #undef SUBSYS
147 
148 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
149 static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
150 #include <linux/cgroup_subsys.h>
151 };
152 #undef SUBSYS
153 
154 static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu);
155 
156 /* the default hierarchy */
157 struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu };
158 EXPORT_SYMBOL_GPL(cgrp_dfl_root);
159 
160 /*
161  * The default hierarchy always exists but is hidden until mounted for the
162  * first time.  This is for backward compatibility.
163  */
164 static bool cgrp_dfl_visible;
165 
166 /* some controllers are not supported in the default hierarchy */
167 static u16 cgrp_dfl_inhibit_ss_mask;
168 
169 /* some controllers are implicitly enabled on the default hierarchy */
170 static u16 cgrp_dfl_implicit_ss_mask;
171 
172 /* some controllers can be threaded on the default hierarchy */
173 static u16 cgrp_dfl_threaded_ss_mask;
174 
175 /* The list of hierarchy roots */
176 LIST_HEAD(cgroup_roots);
177 static int cgroup_root_count;
178 
179 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
180 static DEFINE_IDR(cgroup_hierarchy_idr);
181 
182 /*
183  * Assign a monotonically increasing serial number to csses.  It guarantees
184  * cgroups with bigger numbers are newer than those with smaller numbers.
185  * Also, as csses are always appended to the parent's ->children list, it
186  * guarantees that sibling csses are always sorted in the ascending serial
187  * number order on the list.  Protected by cgroup_mutex.
188  */
189 static u64 css_serial_nr_next = 1;
190 
191 /*
192  * These bitmasks identify subsystems with specific features to avoid
193  * having to do iterative checks repeatedly.
194  */
195 static u16 have_fork_callback __read_mostly;
196 static u16 have_exit_callback __read_mostly;
197 static u16 have_release_callback __read_mostly;
198 static u16 have_canfork_callback __read_mostly;
199 
200 /* cgroup namespace for init task */
201 struct cgroup_namespace init_cgroup_ns = {
202 	.ns.count	= REFCOUNT_INIT(2),
203 	.user_ns	= &init_user_ns,
204 	.ns.ops		= &cgroupns_operations,
205 	.ns.inum	= PROC_CGROUP_INIT_INO,
206 	.root_cset	= &init_css_set,
207 };
208 
209 static struct file_system_type cgroup2_fs_type;
210 static struct cftype cgroup_base_files[];
211 
212 /* cgroup optional features */
213 enum cgroup_opt_features {
214 #ifdef CONFIG_PSI
215 	OPT_FEATURE_PRESSURE,
216 #endif
217 	OPT_FEATURE_COUNT
218 };
219 
220 static const char *cgroup_opt_feature_names[OPT_FEATURE_COUNT] = {
221 #ifdef CONFIG_PSI
222 	"pressure",
223 #endif
224 };
225 
226 static u16 cgroup_feature_disable_mask __read_mostly;
227 
228 static int cgroup_apply_control(struct cgroup *cgrp);
229 static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
230 static void css_task_iter_skip(struct css_task_iter *it,
231 			       struct task_struct *task);
232 static int cgroup_destroy_locked(struct cgroup *cgrp);
233 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
234 					      struct cgroup_subsys *ss);
235 static void css_release(struct percpu_ref *ref);
236 static void kill_css(struct cgroup_subsys_state *css);
237 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
238 			      struct cgroup *cgrp, struct cftype cfts[],
239 			      bool is_add);
240 
241 /**
242  * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
243  * @ssid: subsys ID of interest
244  *
245  * cgroup_subsys_enabled() can only be used with literal subsys names which
246  * is fine for individual subsystems but unsuitable for cgroup core.  This
247  * is slower static_key_enabled() based test indexed by @ssid.
248  */
249 bool cgroup_ssid_enabled(int ssid)
250 {
251 	if (CGROUP_SUBSYS_COUNT == 0)
252 		return false;
253 
254 	return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
255 }
256 
257 /**
258  * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
259  * @cgrp: the cgroup of interest
260  *
261  * The default hierarchy is the v2 interface of cgroup and this function
262  * can be used to test whether a cgroup is on the default hierarchy for
263  * cases where a subsystem should behave differently depending on the
264  * interface version.
265  *
266  * List of changed behaviors:
267  *
268  * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
269  *   and "name" are disallowed.
270  *
271  * - When mounting an existing superblock, mount options should match.
272  *
273  * - Remount is disallowed.
274  *
275  * - rename(2) is disallowed.
276  *
277  * - "tasks" is removed.  Everything should be at process granularity.  Use
278  *   "cgroup.procs" instead.
279  *
280  * - "cgroup.procs" is not sorted.  pids will be unique unless they got
281  *   recycled in-between reads.
282  *
283  * - "release_agent" and "notify_on_release" are removed.  Replacement
284  *   notification mechanism will be implemented.
285  *
286  * - "cgroup.clone_children" is removed.
287  *
288  * - "cgroup.subtree_populated" is available.  Its value is 0 if the cgroup
289  *   and its descendants contain no task; otherwise, 1.  The file also
290  *   generates kernfs notification which can be monitored through poll and
291  *   [di]notify when the value of the file changes.
292  *
293  * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
294  *   take masks of ancestors with non-empty cpus/mems, instead of being
295  *   moved to an ancestor.
296  *
297  * - cpuset: a task can be moved into an empty cpuset, and again it takes
298  *   masks of ancestors.
299  *
300  * - blkcg: blk-throttle becomes properly hierarchical.
301  *
302  * - debug: disallowed on the default hierarchy.
303  */
304 bool cgroup_on_dfl(const struct cgroup *cgrp)
305 {
306 	return cgrp->root == &cgrp_dfl_root;
307 }
308 
309 /* IDR wrappers which synchronize using cgroup_idr_lock */
310 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
311 			    gfp_t gfp_mask)
312 {
313 	int ret;
314 
315 	idr_preload(gfp_mask);
316 	spin_lock_bh(&cgroup_idr_lock);
317 	ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
318 	spin_unlock_bh(&cgroup_idr_lock);
319 	idr_preload_end();
320 	return ret;
321 }
322 
323 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
324 {
325 	void *ret;
326 
327 	spin_lock_bh(&cgroup_idr_lock);
328 	ret = idr_replace(idr, ptr, id);
329 	spin_unlock_bh(&cgroup_idr_lock);
330 	return ret;
331 }
332 
333 static void cgroup_idr_remove(struct idr *idr, int id)
334 {
335 	spin_lock_bh(&cgroup_idr_lock);
336 	idr_remove(idr, id);
337 	spin_unlock_bh(&cgroup_idr_lock);
338 }
339 
340 static bool cgroup_has_tasks(struct cgroup *cgrp)
341 {
342 	return cgrp->nr_populated_csets;
343 }
344 
345 bool cgroup_is_threaded(struct cgroup *cgrp)
346 {
347 	return cgrp->dom_cgrp != cgrp;
348 }
349 
350 /* can @cgrp host both domain and threaded children? */
351 static bool cgroup_is_mixable(struct cgroup *cgrp)
352 {
353 	/*
354 	 * Root isn't under domain level resource control exempting it from
355 	 * the no-internal-process constraint, so it can serve as a thread
356 	 * root and a parent of resource domains at the same time.
357 	 */
358 	return !cgroup_parent(cgrp);
359 }
360 
361 /* can @cgrp become a thread root? Should always be true for a thread root */
362 static bool cgroup_can_be_thread_root(struct cgroup *cgrp)
363 {
364 	/* mixables don't care */
365 	if (cgroup_is_mixable(cgrp))
366 		return true;
367 
368 	/* domain roots can't be nested under threaded */
369 	if (cgroup_is_threaded(cgrp))
370 		return false;
371 
372 	/* can only have either domain or threaded children */
373 	if (cgrp->nr_populated_domain_children)
374 		return false;
375 
376 	/* and no domain controllers can be enabled */
377 	if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
378 		return false;
379 
380 	return true;
381 }
382 
383 /* is @cgrp root of a threaded subtree? */
384 bool cgroup_is_thread_root(struct cgroup *cgrp)
385 {
386 	/* thread root should be a domain */
387 	if (cgroup_is_threaded(cgrp))
388 		return false;
389 
390 	/* a domain w/ threaded children is a thread root */
391 	if (cgrp->nr_threaded_children)
392 		return true;
393 
394 	/*
395 	 * A domain which has tasks and explicit threaded controllers
396 	 * enabled is a thread root.
397 	 */
398 	if (cgroup_has_tasks(cgrp) &&
399 	    (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask))
400 		return true;
401 
402 	return false;
403 }
404 
405 /* a domain which isn't connected to the root w/o brekage can't be used */
406 static bool cgroup_is_valid_domain(struct cgroup *cgrp)
407 {
408 	/* the cgroup itself can be a thread root */
409 	if (cgroup_is_threaded(cgrp))
410 		return false;
411 
412 	/* but the ancestors can't be unless mixable */
413 	while ((cgrp = cgroup_parent(cgrp))) {
414 		if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp))
415 			return false;
416 		if (cgroup_is_threaded(cgrp))
417 			return false;
418 	}
419 
420 	return true;
421 }
422 
423 /* subsystems visibly enabled on a cgroup */
424 static u16 cgroup_control(struct cgroup *cgrp)
425 {
426 	struct cgroup *parent = cgroup_parent(cgrp);
427 	u16 root_ss_mask = cgrp->root->subsys_mask;
428 
429 	if (parent) {
430 		u16 ss_mask = parent->subtree_control;
431 
432 		/* threaded cgroups can only have threaded controllers */
433 		if (cgroup_is_threaded(cgrp))
434 			ss_mask &= cgrp_dfl_threaded_ss_mask;
435 		return ss_mask;
436 	}
437 
438 	if (cgroup_on_dfl(cgrp))
439 		root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
440 				  cgrp_dfl_implicit_ss_mask);
441 	return root_ss_mask;
442 }
443 
444 /* subsystems enabled on a cgroup */
445 static u16 cgroup_ss_mask(struct cgroup *cgrp)
446 {
447 	struct cgroup *parent = cgroup_parent(cgrp);
448 
449 	if (parent) {
450 		u16 ss_mask = parent->subtree_ss_mask;
451 
452 		/* threaded cgroups can only have threaded controllers */
453 		if (cgroup_is_threaded(cgrp))
454 			ss_mask &= cgrp_dfl_threaded_ss_mask;
455 		return ss_mask;
456 	}
457 
458 	return cgrp->root->subsys_mask;
459 }
460 
461 /**
462  * cgroup_css - obtain a cgroup's css for the specified subsystem
463  * @cgrp: the cgroup of interest
464  * @ss: the subsystem of interest (%NULL returns @cgrp->self)
465  *
466  * Return @cgrp's css (cgroup_subsys_state) associated with @ss.  This
467  * function must be called either under cgroup_mutex or rcu_read_lock() and
468  * the caller is responsible for pinning the returned css if it wants to
469  * keep accessing it outside the said locks.  This function may return
470  * %NULL if @cgrp doesn't have @subsys_id enabled.
471  */
472 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
473 					      struct cgroup_subsys *ss)
474 {
475 	if (ss)
476 		return rcu_dereference_check(cgrp->subsys[ss->id],
477 					lockdep_is_held(&cgroup_mutex));
478 	else
479 		return &cgrp->self;
480 }
481 
482 /**
483  * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem
484  * @cgrp: the cgroup of interest
485  * @ss: the subsystem of interest
486  *
487  * Find and get @cgrp's css associated with @ss.  If the css doesn't exist
488  * or is offline, %NULL is returned.
489  */
490 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp,
491 						     struct cgroup_subsys *ss)
492 {
493 	struct cgroup_subsys_state *css;
494 
495 	rcu_read_lock();
496 	css = cgroup_css(cgrp, ss);
497 	if (css && !css_tryget_online(css))
498 		css = NULL;
499 	rcu_read_unlock();
500 
501 	return css;
502 }
503 
504 /**
505  * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss
506  * @cgrp: the cgroup of interest
507  * @ss: the subsystem of interest (%NULL returns @cgrp->self)
508  *
509  * Similar to cgroup_css() but returns the effective css, which is defined
510  * as the matching css of the nearest ancestor including self which has @ss
511  * enabled.  If @ss is associated with the hierarchy @cgrp is on, this
512  * function is guaranteed to return non-NULL css.
513  */
514 static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp,
515 							struct cgroup_subsys *ss)
516 {
517 	lockdep_assert_held(&cgroup_mutex);
518 
519 	if (!ss)
520 		return &cgrp->self;
521 
522 	/*
523 	 * This function is used while updating css associations and thus
524 	 * can't test the csses directly.  Test ss_mask.
525 	 */
526 	while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
527 		cgrp = cgroup_parent(cgrp);
528 		if (!cgrp)
529 			return NULL;
530 	}
531 
532 	return cgroup_css(cgrp, ss);
533 }
534 
535 /**
536  * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
537  * @cgrp: the cgroup of interest
538  * @ss: the subsystem of interest
539  *
540  * Find and get the effective css of @cgrp for @ss.  The effective css is
541  * defined as the matching css of the nearest ancestor including self which
542  * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
543  * the root css is returned, so this function always returns a valid css.
544  *
545  * The returned css is not guaranteed to be online, and therefore it is the
546  * callers responsibility to try get a reference for it.
547  */
548 struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
549 					 struct cgroup_subsys *ss)
550 {
551 	struct cgroup_subsys_state *css;
552 
553 	do {
554 		css = cgroup_css(cgrp, ss);
555 
556 		if (css)
557 			return css;
558 		cgrp = cgroup_parent(cgrp);
559 	} while (cgrp);
560 
561 	return init_css_set.subsys[ss->id];
562 }
563 
564 /**
565  * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
566  * @cgrp: the cgroup of interest
567  * @ss: the subsystem of interest
568  *
569  * Find and get the effective css of @cgrp for @ss.  The effective css is
570  * defined as the matching css of the nearest ancestor including self which
571  * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
572  * the root css is returned, so this function always returns a valid css.
573  * The returned css must be put using css_put().
574  */
575 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
576 					     struct cgroup_subsys *ss)
577 {
578 	struct cgroup_subsys_state *css;
579 
580 	rcu_read_lock();
581 
582 	do {
583 		css = cgroup_css(cgrp, ss);
584 
585 		if (css && css_tryget_online(css))
586 			goto out_unlock;
587 		cgrp = cgroup_parent(cgrp);
588 	} while (cgrp);
589 
590 	css = init_css_set.subsys[ss->id];
591 	css_get(css);
592 out_unlock:
593 	rcu_read_unlock();
594 	return css;
595 }
596 EXPORT_SYMBOL_GPL(cgroup_get_e_css);
597 
598 static void cgroup_get_live(struct cgroup *cgrp)
599 {
600 	WARN_ON_ONCE(cgroup_is_dead(cgrp));
601 	css_get(&cgrp->self);
602 }
603 
604 /**
605  * __cgroup_task_count - count the number of tasks in a cgroup. The caller
606  * is responsible for taking the css_set_lock.
607  * @cgrp: the cgroup in question
608  */
609 int __cgroup_task_count(const struct cgroup *cgrp)
610 {
611 	int count = 0;
612 	struct cgrp_cset_link *link;
613 
614 	lockdep_assert_held(&css_set_lock);
615 
616 	list_for_each_entry(link, &cgrp->cset_links, cset_link)
617 		count += link->cset->nr_tasks;
618 
619 	return count;
620 }
621 
622 /**
623  * cgroup_task_count - count the number of tasks in a cgroup.
624  * @cgrp: the cgroup in question
625  */
626 int cgroup_task_count(const struct cgroup *cgrp)
627 {
628 	int count;
629 
630 	spin_lock_irq(&css_set_lock);
631 	count = __cgroup_task_count(cgrp);
632 	spin_unlock_irq(&css_set_lock);
633 
634 	return count;
635 }
636 
637 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
638 {
639 	struct cgroup *cgrp = of->kn->parent->priv;
640 	struct cftype *cft = of_cft(of);
641 
642 	/*
643 	 * This is open and unprotected implementation of cgroup_css().
644 	 * seq_css() is only called from a kernfs file operation which has
645 	 * an active reference on the file.  Because all the subsystem
646 	 * files are drained before a css is disassociated with a cgroup,
647 	 * the matching css from the cgroup's subsys table is guaranteed to
648 	 * be and stay valid until the enclosing operation is complete.
649 	 */
650 	if (cft->ss)
651 		return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
652 	else
653 		return &cgrp->self;
654 }
655 EXPORT_SYMBOL_GPL(of_css);
656 
657 /**
658  * for_each_css - iterate all css's of a cgroup
659  * @css: the iteration cursor
660  * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
661  * @cgrp: the target cgroup to iterate css's of
662  *
663  * Should be called under cgroup_[tree_]mutex.
664  */
665 #define for_each_css(css, ssid, cgrp)					\
666 	for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)	\
667 		if (!((css) = rcu_dereference_check(			\
668 				(cgrp)->subsys[(ssid)],			\
669 				lockdep_is_held(&cgroup_mutex)))) { }	\
670 		else
671 
672 /**
673  * for_each_e_css - iterate all effective css's of a cgroup
674  * @css: the iteration cursor
675  * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
676  * @cgrp: the target cgroup to iterate css's of
677  *
678  * Should be called under cgroup_[tree_]mutex.
679  */
680 #define for_each_e_css(css, ssid, cgrp)					    \
681 	for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)	    \
682 		if (!((css) = cgroup_e_css_by_mask(cgrp,		    \
683 						   cgroup_subsys[(ssid)]))) \
684 			;						    \
685 		else
686 
687 /**
688  * do_each_subsys_mask - filter for_each_subsys with a bitmask
689  * @ss: the iteration cursor
690  * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
691  * @ss_mask: the bitmask
692  *
693  * The block will only run for cases where the ssid-th bit (1 << ssid) of
694  * @ss_mask is set.
695  */
696 #define do_each_subsys_mask(ss, ssid, ss_mask) do {			\
697 	unsigned long __ss_mask = (ss_mask);				\
698 	if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */	\
699 		(ssid) = 0;						\
700 		break;							\
701 	}								\
702 	for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) {	\
703 		(ss) = cgroup_subsys[ssid];				\
704 		{
705 
706 #define while_each_subsys_mask()					\
707 		}							\
708 	}								\
709 } while (false)
710 
711 /* iterate over child cgrps, lock should be held throughout iteration */
712 #define cgroup_for_each_live_child(child, cgrp)				\
713 	list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
714 		if (({ lockdep_assert_held(&cgroup_mutex);		\
715 		       cgroup_is_dead(child); }))			\
716 			;						\
717 		else
718 
719 /* walk live descendants in pre order */
720 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)		\
721 	css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL))	\
722 		if (({ lockdep_assert_held(&cgroup_mutex);		\
723 		       (dsct) = (d_css)->cgroup;			\
724 		       cgroup_is_dead(dsct); }))			\
725 			;						\
726 		else
727 
728 /* walk live descendants in postorder */
729 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp)		\
730 	css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL))	\
731 		if (({ lockdep_assert_held(&cgroup_mutex);		\
732 		       (dsct) = (d_css)->cgroup;			\
733 		       cgroup_is_dead(dsct); }))			\
734 			;						\
735 		else
736 
737 /*
738  * The default css_set - used by init and its children prior to any
739  * hierarchies being mounted. It contains a pointer to the root state
740  * for each subsystem. Also used to anchor the list of css_sets. Not
741  * reference-counted, to improve performance when child cgroups
742  * haven't been created.
743  */
744 struct css_set init_css_set = {
745 	.refcount		= REFCOUNT_INIT(1),
746 	.dom_cset		= &init_css_set,
747 	.tasks			= LIST_HEAD_INIT(init_css_set.tasks),
748 	.mg_tasks		= LIST_HEAD_INIT(init_css_set.mg_tasks),
749 	.dying_tasks		= LIST_HEAD_INIT(init_css_set.dying_tasks),
750 	.task_iters		= LIST_HEAD_INIT(init_css_set.task_iters),
751 	.threaded_csets		= LIST_HEAD_INIT(init_css_set.threaded_csets),
752 	.cgrp_links		= LIST_HEAD_INIT(init_css_set.cgrp_links),
753 	.mg_preload_node	= LIST_HEAD_INIT(init_css_set.mg_preload_node),
754 	.mg_node		= LIST_HEAD_INIT(init_css_set.mg_node),
755 
756 	/*
757 	 * The following field is re-initialized when this cset gets linked
758 	 * in cgroup_init().  However, let's initialize the field
759 	 * statically too so that the default cgroup can be accessed safely
760 	 * early during boot.
761 	 */
762 	.dfl_cgrp		= &cgrp_dfl_root.cgrp,
763 };
764 
765 static int css_set_count	= 1;	/* 1 for init_css_set */
766 
767 static bool css_set_threaded(struct css_set *cset)
768 {
769 	return cset->dom_cset != cset;
770 }
771 
772 /**
773  * css_set_populated - does a css_set contain any tasks?
774  * @cset: target css_set
775  *
776  * css_set_populated() should be the same as !!cset->nr_tasks at steady
777  * state. However, css_set_populated() can be called while a task is being
778  * added to or removed from the linked list before the nr_tasks is
779  * properly updated. Hence, we can't just look at ->nr_tasks here.
780  */
781 static bool css_set_populated(struct css_set *cset)
782 {
783 	lockdep_assert_held(&css_set_lock);
784 
785 	return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
786 }
787 
788 /**
789  * cgroup_update_populated - update the populated count of a cgroup
790  * @cgrp: the target cgroup
791  * @populated: inc or dec populated count
792  *
793  * One of the css_sets associated with @cgrp is either getting its first
794  * task or losing the last.  Update @cgrp->nr_populated_* accordingly.  The
795  * count is propagated towards root so that a given cgroup's
796  * nr_populated_children is zero iff none of its descendants contain any
797  * tasks.
798  *
799  * @cgrp's interface file "cgroup.populated" is zero if both
800  * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and
801  * 1 otherwise.  When the sum changes from or to zero, userland is notified
802  * that the content of the interface file has changed.  This can be used to
803  * detect when @cgrp and its descendants become populated or empty.
804  */
805 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
806 {
807 	struct cgroup *child = NULL;
808 	int adj = populated ? 1 : -1;
809 
810 	lockdep_assert_held(&css_set_lock);
811 
812 	do {
813 		bool was_populated = cgroup_is_populated(cgrp);
814 
815 		if (!child) {
816 			cgrp->nr_populated_csets += adj;
817 		} else {
818 			if (cgroup_is_threaded(child))
819 				cgrp->nr_populated_threaded_children += adj;
820 			else
821 				cgrp->nr_populated_domain_children += adj;
822 		}
823 
824 		if (was_populated == cgroup_is_populated(cgrp))
825 			break;
826 
827 		cgroup1_check_for_release(cgrp);
828 		TRACE_CGROUP_PATH(notify_populated, cgrp,
829 				  cgroup_is_populated(cgrp));
830 		cgroup_file_notify(&cgrp->events_file);
831 
832 		child = cgrp;
833 		cgrp = cgroup_parent(cgrp);
834 	} while (cgrp);
835 }
836 
837 /**
838  * css_set_update_populated - update populated state of a css_set
839  * @cset: target css_set
840  * @populated: whether @cset is populated or depopulated
841  *
842  * @cset is either getting the first task or losing the last.  Update the
843  * populated counters of all associated cgroups accordingly.
844  */
845 static void css_set_update_populated(struct css_set *cset, bool populated)
846 {
847 	struct cgrp_cset_link *link;
848 
849 	lockdep_assert_held(&css_set_lock);
850 
851 	list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
852 		cgroup_update_populated(link->cgrp, populated);
853 }
854 
855 /*
856  * @task is leaving, advance task iterators which are pointing to it so
857  * that they can resume at the next position.  Advancing an iterator might
858  * remove it from the list, use safe walk.  See css_task_iter_skip() for
859  * details.
860  */
861 static void css_set_skip_task_iters(struct css_set *cset,
862 				    struct task_struct *task)
863 {
864 	struct css_task_iter *it, *pos;
865 
866 	list_for_each_entry_safe(it, pos, &cset->task_iters, iters_node)
867 		css_task_iter_skip(it, task);
868 }
869 
870 /**
871  * css_set_move_task - move a task from one css_set to another
872  * @task: task being moved
873  * @from_cset: css_set @task currently belongs to (may be NULL)
874  * @to_cset: new css_set @task is being moved to (may be NULL)
875  * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
876  *
877  * Move @task from @from_cset to @to_cset.  If @task didn't belong to any
878  * css_set, @from_cset can be NULL.  If @task is being disassociated
879  * instead of moved, @to_cset can be NULL.
880  *
881  * This function automatically handles populated counter updates and
882  * css_task_iter adjustments but the caller is responsible for managing
883  * @from_cset and @to_cset's reference counts.
884  */
885 static void css_set_move_task(struct task_struct *task,
886 			      struct css_set *from_cset, struct css_set *to_cset,
887 			      bool use_mg_tasks)
888 {
889 	lockdep_assert_held(&css_set_lock);
890 
891 	if (to_cset && !css_set_populated(to_cset))
892 		css_set_update_populated(to_cset, true);
893 
894 	if (from_cset) {
895 		WARN_ON_ONCE(list_empty(&task->cg_list));
896 
897 		css_set_skip_task_iters(from_cset, task);
898 		list_del_init(&task->cg_list);
899 		if (!css_set_populated(from_cset))
900 			css_set_update_populated(from_cset, false);
901 	} else {
902 		WARN_ON_ONCE(!list_empty(&task->cg_list));
903 	}
904 
905 	if (to_cset) {
906 		/*
907 		 * We are synchronized through cgroup_threadgroup_rwsem
908 		 * against PF_EXITING setting such that we can't race
909 		 * against cgroup_exit()/cgroup_free() dropping the css_set.
910 		 */
911 		WARN_ON_ONCE(task->flags & PF_EXITING);
912 
913 		cgroup_move_task(task, to_cset);
914 		list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
915 							     &to_cset->tasks);
916 	}
917 }
918 
919 /*
920  * hash table for cgroup groups. This improves the performance to find
921  * an existing css_set. This hash doesn't (currently) take into
922  * account cgroups in empty hierarchies.
923  */
924 #define CSS_SET_HASH_BITS	7
925 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
926 
927 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
928 {
929 	unsigned long key = 0UL;
930 	struct cgroup_subsys *ss;
931 	int i;
932 
933 	for_each_subsys(ss, i)
934 		key += (unsigned long)css[i];
935 	key = (key >> 16) ^ key;
936 
937 	return key;
938 }
939 
940 void put_css_set_locked(struct css_set *cset)
941 {
942 	struct cgrp_cset_link *link, *tmp_link;
943 	struct cgroup_subsys *ss;
944 	int ssid;
945 
946 	lockdep_assert_held(&css_set_lock);
947 
948 	if (!refcount_dec_and_test(&cset->refcount))
949 		return;
950 
951 	WARN_ON_ONCE(!list_empty(&cset->threaded_csets));
952 
953 	/* This css_set is dead. Unlink it and release cgroup and css refs */
954 	for_each_subsys(ss, ssid) {
955 		list_del(&cset->e_cset_node[ssid]);
956 		css_put(cset->subsys[ssid]);
957 	}
958 	hash_del(&cset->hlist);
959 	css_set_count--;
960 
961 	list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
962 		list_del(&link->cset_link);
963 		list_del(&link->cgrp_link);
964 		if (cgroup_parent(link->cgrp))
965 			cgroup_put(link->cgrp);
966 		kfree(link);
967 	}
968 
969 	if (css_set_threaded(cset)) {
970 		list_del(&cset->threaded_csets_node);
971 		put_css_set_locked(cset->dom_cset);
972 	}
973 
974 	kfree_rcu(cset, rcu_head);
975 }
976 
977 /**
978  * compare_css_sets - helper function for find_existing_css_set().
979  * @cset: candidate css_set being tested
980  * @old_cset: existing css_set for a task
981  * @new_cgrp: cgroup that's being entered by the task
982  * @template: desired set of css pointers in css_set (pre-calculated)
983  *
984  * Returns true if "cset" matches "old_cset" except for the hierarchy
985  * which "new_cgrp" belongs to, for which it should match "new_cgrp".
986  */
987 static bool compare_css_sets(struct css_set *cset,
988 			     struct css_set *old_cset,
989 			     struct cgroup *new_cgrp,
990 			     struct cgroup_subsys_state *template[])
991 {
992 	struct cgroup *new_dfl_cgrp;
993 	struct list_head *l1, *l2;
994 
995 	/*
996 	 * On the default hierarchy, there can be csets which are
997 	 * associated with the same set of cgroups but different csses.
998 	 * Let's first ensure that csses match.
999 	 */
1000 	if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
1001 		return false;
1002 
1003 
1004 	/* @cset's domain should match the default cgroup's */
1005 	if (cgroup_on_dfl(new_cgrp))
1006 		new_dfl_cgrp = new_cgrp;
1007 	else
1008 		new_dfl_cgrp = old_cset->dfl_cgrp;
1009 
1010 	if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp)
1011 		return false;
1012 
1013 	/*
1014 	 * Compare cgroup pointers in order to distinguish between
1015 	 * different cgroups in hierarchies.  As different cgroups may
1016 	 * share the same effective css, this comparison is always
1017 	 * necessary.
1018 	 */
1019 	l1 = &cset->cgrp_links;
1020 	l2 = &old_cset->cgrp_links;
1021 	while (1) {
1022 		struct cgrp_cset_link *link1, *link2;
1023 		struct cgroup *cgrp1, *cgrp2;
1024 
1025 		l1 = l1->next;
1026 		l2 = l2->next;
1027 		/* See if we reached the end - both lists are equal length. */
1028 		if (l1 == &cset->cgrp_links) {
1029 			BUG_ON(l2 != &old_cset->cgrp_links);
1030 			break;
1031 		} else {
1032 			BUG_ON(l2 == &old_cset->cgrp_links);
1033 		}
1034 		/* Locate the cgroups associated with these links. */
1035 		link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
1036 		link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
1037 		cgrp1 = link1->cgrp;
1038 		cgrp2 = link2->cgrp;
1039 		/* Hierarchies should be linked in the same order. */
1040 		BUG_ON(cgrp1->root != cgrp2->root);
1041 
1042 		/*
1043 		 * If this hierarchy is the hierarchy of the cgroup
1044 		 * that's changing, then we need to check that this
1045 		 * css_set points to the new cgroup; if it's any other
1046 		 * hierarchy, then this css_set should point to the
1047 		 * same cgroup as the old css_set.
1048 		 */
1049 		if (cgrp1->root == new_cgrp->root) {
1050 			if (cgrp1 != new_cgrp)
1051 				return false;
1052 		} else {
1053 			if (cgrp1 != cgrp2)
1054 				return false;
1055 		}
1056 	}
1057 	return true;
1058 }
1059 
1060 /**
1061  * find_existing_css_set - init css array and find the matching css_set
1062  * @old_cset: the css_set that we're using before the cgroup transition
1063  * @cgrp: the cgroup that we're moving into
1064  * @template: out param for the new set of csses, should be clear on entry
1065  */
1066 static struct css_set *find_existing_css_set(struct css_set *old_cset,
1067 					struct cgroup *cgrp,
1068 					struct cgroup_subsys_state *template[])
1069 {
1070 	struct cgroup_root *root = cgrp->root;
1071 	struct cgroup_subsys *ss;
1072 	struct css_set *cset;
1073 	unsigned long key;
1074 	int i;
1075 
1076 	/*
1077 	 * Build the set of subsystem state objects that we want to see in the
1078 	 * new css_set. While subsystems can change globally, the entries here
1079 	 * won't change, so no need for locking.
1080 	 */
1081 	for_each_subsys(ss, i) {
1082 		if (root->subsys_mask & (1UL << i)) {
1083 			/*
1084 			 * @ss is in this hierarchy, so we want the
1085 			 * effective css from @cgrp.
1086 			 */
1087 			template[i] = cgroup_e_css_by_mask(cgrp, ss);
1088 		} else {
1089 			/*
1090 			 * @ss is not in this hierarchy, so we don't want
1091 			 * to change the css.
1092 			 */
1093 			template[i] = old_cset->subsys[i];
1094 		}
1095 	}
1096 
1097 	key = css_set_hash(template);
1098 	hash_for_each_possible(css_set_table, cset, hlist, key) {
1099 		if (!compare_css_sets(cset, old_cset, cgrp, template))
1100 			continue;
1101 
1102 		/* This css_set matches what we need */
1103 		return cset;
1104 	}
1105 
1106 	/* No existing cgroup group matched */
1107 	return NULL;
1108 }
1109 
1110 static void free_cgrp_cset_links(struct list_head *links_to_free)
1111 {
1112 	struct cgrp_cset_link *link, *tmp_link;
1113 
1114 	list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
1115 		list_del(&link->cset_link);
1116 		kfree(link);
1117 	}
1118 }
1119 
1120 /**
1121  * allocate_cgrp_cset_links - allocate cgrp_cset_links
1122  * @count: the number of links to allocate
1123  * @tmp_links: list_head the allocated links are put on
1124  *
1125  * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1126  * through ->cset_link.  Returns 0 on success or -errno.
1127  */
1128 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
1129 {
1130 	struct cgrp_cset_link *link;
1131 	int i;
1132 
1133 	INIT_LIST_HEAD(tmp_links);
1134 
1135 	for (i = 0; i < count; i++) {
1136 		link = kzalloc(sizeof(*link), GFP_KERNEL);
1137 		if (!link) {
1138 			free_cgrp_cset_links(tmp_links);
1139 			return -ENOMEM;
1140 		}
1141 		list_add(&link->cset_link, tmp_links);
1142 	}
1143 	return 0;
1144 }
1145 
1146 /**
1147  * link_css_set - a helper function to link a css_set to a cgroup
1148  * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
1149  * @cset: the css_set to be linked
1150  * @cgrp: the destination cgroup
1151  */
1152 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1153 			 struct cgroup *cgrp)
1154 {
1155 	struct cgrp_cset_link *link;
1156 
1157 	BUG_ON(list_empty(tmp_links));
1158 
1159 	if (cgroup_on_dfl(cgrp))
1160 		cset->dfl_cgrp = cgrp;
1161 
1162 	link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1163 	link->cset = cset;
1164 	link->cgrp = cgrp;
1165 
1166 	/*
1167 	 * Always add links to the tail of the lists so that the lists are
1168 	 * in chronological order.
1169 	 */
1170 	list_move_tail(&link->cset_link, &cgrp->cset_links);
1171 	list_add_tail(&link->cgrp_link, &cset->cgrp_links);
1172 
1173 	if (cgroup_parent(cgrp))
1174 		cgroup_get_live(cgrp);
1175 }
1176 
1177 /**
1178  * find_css_set - return a new css_set with one cgroup updated
1179  * @old_cset: the baseline css_set
1180  * @cgrp: the cgroup to be updated
1181  *
1182  * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1183  * substituted into the appropriate hierarchy.
1184  */
1185 static struct css_set *find_css_set(struct css_set *old_cset,
1186 				    struct cgroup *cgrp)
1187 {
1188 	struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
1189 	struct css_set *cset;
1190 	struct list_head tmp_links;
1191 	struct cgrp_cset_link *link;
1192 	struct cgroup_subsys *ss;
1193 	unsigned long key;
1194 	int ssid;
1195 
1196 	lockdep_assert_held(&cgroup_mutex);
1197 
1198 	/* First see if we already have a cgroup group that matches
1199 	 * the desired set */
1200 	spin_lock_irq(&css_set_lock);
1201 	cset = find_existing_css_set(old_cset, cgrp, template);
1202 	if (cset)
1203 		get_css_set(cset);
1204 	spin_unlock_irq(&css_set_lock);
1205 
1206 	if (cset)
1207 		return cset;
1208 
1209 	cset = kzalloc(sizeof(*cset), GFP_KERNEL);
1210 	if (!cset)
1211 		return NULL;
1212 
1213 	/* Allocate all the cgrp_cset_link objects that we'll need */
1214 	if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1215 		kfree(cset);
1216 		return NULL;
1217 	}
1218 
1219 	refcount_set(&cset->refcount, 1);
1220 	cset->dom_cset = cset;
1221 	INIT_LIST_HEAD(&cset->tasks);
1222 	INIT_LIST_HEAD(&cset->mg_tasks);
1223 	INIT_LIST_HEAD(&cset->dying_tasks);
1224 	INIT_LIST_HEAD(&cset->task_iters);
1225 	INIT_LIST_HEAD(&cset->threaded_csets);
1226 	INIT_HLIST_NODE(&cset->hlist);
1227 	INIT_LIST_HEAD(&cset->cgrp_links);
1228 	INIT_LIST_HEAD(&cset->mg_preload_node);
1229 	INIT_LIST_HEAD(&cset->mg_node);
1230 
1231 	/* Copy the set of subsystem state objects generated in
1232 	 * find_existing_css_set() */
1233 	memcpy(cset->subsys, template, sizeof(cset->subsys));
1234 
1235 	spin_lock_irq(&css_set_lock);
1236 	/* Add reference counts and links from the new css_set. */
1237 	list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1238 		struct cgroup *c = link->cgrp;
1239 
1240 		if (c->root == cgrp->root)
1241 			c = cgrp;
1242 		link_css_set(&tmp_links, cset, c);
1243 	}
1244 
1245 	BUG_ON(!list_empty(&tmp_links));
1246 
1247 	css_set_count++;
1248 
1249 	/* Add @cset to the hash table */
1250 	key = css_set_hash(cset->subsys);
1251 	hash_add(css_set_table, &cset->hlist, key);
1252 
1253 	for_each_subsys(ss, ssid) {
1254 		struct cgroup_subsys_state *css = cset->subsys[ssid];
1255 
1256 		list_add_tail(&cset->e_cset_node[ssid],
1257 			      &css->cgroup->e_csets[ssid]);
1258 		css_get(css);
1259 	}
1260 
1261 	spin_unlock_irq(&css_set_lock);
1262 
1263 	/*
1264 	 * If @cset should be threaded, look up the matching dom_cset and
1265 	 * link them up.  We first fully initialize @cset then look for the
1266 	 * dom_cset.  It's simpler this way and safe as @cset is guaranteed
1267 	 * to stay empty until we return.
1268 	 */
1269 	if (cgroup_is_threaded(cset->dfl_cgrp)) {
1270 		struct css_set *dcset;
1271 
1272 		dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp);
1273 		if (!dcset) {
1274 			put_css_set(cset);
1275 			return NULL;
1276 		}
1277 
1278 		spin_lock_irq(&css_set_lock);
1279 		cset->dom_cset = dcset;
1280 		list_add_tail(&cset->threaded_csets_node,
1281 			      &dcset->threaded_csets);
1282 		spin_unlock_irq(&css_set_lock);
1283 	}
1284 
1285 	return cset;
1286 }
1287 
1288 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1289 {
1290 	struct cgroup *root_cgrp = kf_root->kn->priv;
1291 
1292 	return root_cgrp->root;
1293 }
1294 
1295 static int cgroup_init_root_id(struct cgroup_root *root)
1296 {
1297 	int id;
1298 
1299 	lockdep_assert_held(&cgroup_mutex);
1300 
1301 	id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1302 	if (id < 0)
1303 		return id;
1304 
1305 	root->hierarchy_id = id;
1306 	return 0;
1307 }
1308 
1309 static void cgroup_exit_root_id(struct cgroup_root *root)
1310 {
1311 	lockdep_assert_held(&cgroup_mutex);
1312 
1313 	idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1314 }
1315 
1316 void cgroup_free_root(struct cgroup_root *root)
1317 {
1318 	kfree(root);
1319 }
1320 
1321 static void cgroup_destroy_root(struct cgroup_root *root)
1322 {
1323 	struct cgroup *cgrp = &root->cgrp;
1324 	struct cgrp_cset_link *link, *tmp_link;
1325 
1326 	trace_cgroup_destroy_root(root);
1327 
1328 	cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1329 
1330 	BUG_ON(atomic_read(&root->nr_cgrps));
1331 	BUG_ON(!list_empty(&cgrp->self.children));
1332 
1333 	/* Rebind all subsystems back to the default hierarchy */
1334 	WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
1335 
1336 	/*
1337 	 * Release all the links from cset_links to this hierarchy's
1338 	 * root cgroup
1339 	 */
1340 	spin_lock_irq(&css_set_lock);
1341 
1342 	list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1343 		list_del(&link->cset_link);
1344 		list_del(&link->cgrp_link);
1345 		kfree(link);
1346 	}
1347 
1348 	spin_unlock_irq(&css_set_lock);
1349 
1350 	if (!list_empty(&root->root_list)) {
1351 		list_del(&root->root_list);
1352 		cgroup_root_count--;
1353 	}
1354 
1355 	cgroup_exit_root_id(root);
1356 
1357 	mutex_unlock(&cgroup_mutex);
1358 
1359 	cgroup_rstat_exit(cgrp);
1360 	kernfs_destroy_root(root->kf_root);
1361 	cgroup_free_root(root);
1362 }
1363 
1364 /*
1365  * look up cgroup associated with current task's cgroup namespace on the
1366  * specified hierarchy
1367  */
1368 static struct cgroup *
1369 current_cgns_cgroup_from_root(struct cgroup_root *root)
1370 {
1371 	struct cgroup *res = NULL;
1372 	struct css_set *cset;
1373 
1374 	lockdep_assert_held(&css_set_lock);
1375 
1376 	rcu_read_lock();
1377 
1378 	cset = current->nsproxy->cgroup_ns->root_cset;
1379 	if (cset == &init_css_set) {
1380 		res = &root->cgrp;
1381 	} else if (root == &cgrp_dfl_root) {
1382 		res = cset->dfl_cgrp;
1383 	} else {
1384 		struct cgrp_cset_link *link;
1385 
1386 		list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1387 			struct cgroup *c = link->cgrp;
1388 
1389 			if (c->root == root) {
1390 				res = c;
1391 				break;
1392 			}
1393 		}
1394 	}
1395 	rcu_read_unlock();
1396 
1397 	BUG_ON(!res);
1398 	return res;
1399 }
1400 
1401 /* look up cgroup associated with given css_set on the specified hierarchy */
1402 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1403 					    struct cgroup_root *root)
1404 {
1405 	struct cgroup *res = NULL;
1406 
1407 	lockdep_assert_held(&cgroup_mutex);
1408 	lockdep_assert_held(&css_set_lock);
1409 
1410 	if (cset == &init_css_set) {
1411 		res = &root->cgrp;
1412 	} else if (root == &cgrp_dfl_root) {
1413 		res = cset->dfl_cgrp;
1414 	} else {
1415 		struct cgrp_cset_link *link;
1416 
1417 		list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1418 			struct cgroup *c = link->cgrp;
1419 
1420 			if (c->root == root) {
1421 				res = c;
1422 				break;
1423 			}
1424 		}
1425 	}
1426 
1427 	BUG_ON(!res);
1428 	return res;
1429 }
1430 
1431 /*
1432  * Return the cgroup for "task" from the given hierarchy. Must be
1433  * called with cgroup_mutex and css_set_lock held.
1434  */
1435 struct cgroup *task_cgroup_from_root(struct task_struct *task,
1436 				     struct cgroup_root *root)
1437 {
1438 	/*
1439 	 * No need to lock the task - since we hold css_set_lock the
1440 	 * task can't change groups.
1441 	 */
1442 	return cset_cgroup_from_root(task_css_set(task), root);
1443 }
1444 
1445 /*
1446  * A task must hold cgroup_mutex to modify cgroups.
1447  *
1448  * Any task can increment and decrement the count field without lock.
1449  * So in general, code holding cgroup_mutex can't rely on the count
1450  * field not changing.  However, if the count goes to zero, then only
1451  * cgroup_attach_task() can increment it again.  Because a count of zero
1452  * means that no tasks are currently attached, therefore there is no
1453  * way a task attached to that cgroup can fork (the other way to
1454  * increment the count).  So code holding cgroup_mutex can safely
1455  * assume that if the count is zero, it will stay zero. Similarly, if
1456  * a task holds cgroup_mutex on a cgroup with zero count, it
1457  * knows that the cgroup won't be removed, as cgroup_rmdir()
1458  * needs that mutex.
1459  *
1460  * A cgroup can only be deleted if both its 'count' of using tasks
1461  * is zero, and its list of 'children' cgroups is empty.  Since all
1462  * tasks in the system use _some_ cgroup, and since there is always at
1463  * least one task in the system (init, pid == 1), therefore, root cgroup
1464  * always has either children cgroups and/or using tasks.  So we don't
1465  * need a special hack to ensure that root cgroup cannot be deleted.
1466  *
1467  * P.S.  One more locking exception.  RCU is used to guard the
1468  * update of a tasks cgroup pointer by cgroup_attach_task()
1469  */
1470 
1471 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1472 
1473 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1474 			      char *buf)
1475 {
1476 	struct cgroup_subsys *ss = cft->ss;
1477 
1478 	if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1479 	    !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
1480 		const char *dbg = (cft->flags & CFTYPE_DEBUG) ? ".__DEBUG__." : "";
1481 
1482 		snprintf(buf, CGROUP_FILE_NAME_MAX, "%s%s.%s",
1483 			 dbg, cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1484 			 cft->name);
1485 	} else {
1486 		strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1487 	}
1488 	return buf;
1489 }
1490 
1491 /**
1492  * cgroup_file_mode - deduce file mode of a control file
1493  * @cft: the control file in question
1494  *
1495  * S_IRUGO for read, S_IWUSR for write.
1496  */
1497 static umode_t cgroup_file_mode(const struct cftype *cft)
1498 {
1499 	umode_t mode = 0;
1500 
1501 	if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1502 		mode |= S_IRUGO;
1503 
1504 	if (cft->write_u64 || cft->write_s64 || cft->write) {
1505 		if (cft->flags & CFTYPE_WORLD_WRITABLE)
1506 			mode |= S_IWUGO;
1507 		else
1508 			mode |= S_IWUSR;
1509 	}
1510 
1511 	return mode;
1512 }
1513 
1514 /**
1515  * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1516  * @subtree_control: the new subtree_control mask to consider
1517  * @this_ss_mask: available subsystems
1518  *
1519  * On the default hierarchy, a subsystem may request other subsystems to be
1520  * enabled together through its ->depends_on mask.  In such cases, more
1521  * subsystems than specified in "cgroup.subtree_control" may be enabled.
1522  *
1523  * This function calculates which subsystems need to be enabled if
1524  * @subtree_control is to be applied while restricted to @this_ss_mask.
1525  */
1526 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
1527 {
1528 	u16 cur_ss_mask = subtree_control;
1529 	struct cgroup_subsys *ss;
1530 	int ssid;
1531 
1532 	lockdep_assert_held(&cgroup_mutex);
1533 
1534 	cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1535 
1536 	while (true) {
1537 		u16 new_ss_mask = cur_ss_mask;
1538 
1539 		do_each_subsys_mask(ss, ssid, cur_ss_mask) {
1540 			new_ss_mask |= ss->depends_on;
1541 		} while_each_subsys_mask();
1542 
1543 		/*
1544 		 * Mask out subsystems which aren't available.  This can
1545 		 * happen only if some depended-upon subsystems were bound
1546 		 * to non-default hierarchies.
1547 		 */
1548 		new_ss_mask &= this_ss_mask;
1549 
1550 		if (new_ss_mask == cur_ss_mask)
1551 			break;
1552 		cur_ss_mask = new_ss_mask;
1553 	}
1554 
1555 	return cur_ss_mask;
1556 }
1557 
1558 /**
1559  * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1560  * @kn: the kernfs_node being serviced
1561  *
1562  * This helper undoes cgroup_kn_lock_live() and should be invoked before
1563  * the method finishes if locking succeeded.  Note that once this function
1564  * returns the cgroup returned by cgroup_kn_lock_live() may become
1565  * inaccessible any time.  If the caller intends to continue to access the
1566  * cgroup, it should pin it before invoking this function.
1567  */
1568 void cgroup_kn_unlock(struct kernfs_node *kn)
1569 {
1570 	struct cgroup *cgrp;
1571 
1572 	if (kernfs_type(kn) == KERNFS_DIR)
1573 		cgrp = kn->priv;
1574 	else
1575 		cgrp = kn->parent->priv;
1576 
1577 	mutex_unlock(&cgroup_mutex);
1578 
1579 	kernfs_unbreak_active_protection(kn);
1580 	cgroup_put(cgrp);
1581 }
1582 
1583 /**
1584  * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1585  * @kn: the kernfs_node being serviced
1586  * @drain_offline: perform offline draining on the cgroup
1587  *
1588  * This helper is to be used by a cgroup kernfs method currently servicing
1589  * @kn.  It breaks the active protection, performs cgroup locking and
1590  * verifies that the associated cgroup is alive.  Returns the cgroup if
1591  * alive; otherwise, %NULL.  A successful return should be undone by a
1592  * matching cgroup_kn_unlock() invocation.  If @drain_offline is %true, the
1593  * cgroup is drained of offlining csses before return.
1594  *
1595  * Any cgroup kernfs method implementation which requires locking the
1596  * associated cgroup should use this helper.  It avoids nesting cgroup
1597  * locking under kernfs active protection and allows all kernfs operations
1598  * including self-removal.
1599  */
1600 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline)
1601 {
1602 	struct cgroup *cgrp;
1603 
1604 	if (kernfs_type(kn) == KERNFS_DIR)
1605 		cgrp = kn->priv;
1606 	else
1607 		cgrp = kn->parent->priv;
1608 
1609 	/*
1610 	 * We're gonna grab cgroup_mutex which nests outside kernfs
1611 	 * active_ref.  cgroup liveliness check alone provides enough
1612 	 * protection against removal.  Ensure @cgrp stays accessible and
1613 	 * break the active_ref protection.
1614 	 */
1615 	if (!cgroup_tryget(cgrp))
1616 		return NULL;
1617 	kernfs_break_active_protection(kn);
1618 
1619 	if (drain_offline)
1620 		cgroup_lock_and_drain_offline(cgrp);
1621 	else
1622 		mutex_lock(&cgroup_mutex);
1623 
1624 	if (!cgroup_is_dead(cgrp))
1625 		return cgrp;
1626 
1627 	cgroup_kn_unlock(kn);
1628 	return NULL;
1629 }
1630 
1631 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1632 {
1633 	char name[CGROUP_FILE_NAME_MAX];
1634 
1635 	lockdep_assert_held(&cgroup_mutex);
1636 
1637 	if (cft->file_offset) {
1638 		struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1639 		struct cgroup_file *cfile = (void *)css + cft->file_offset;
1640 
1641 		spin_lock_irq(&cgroup_file_kn_lock);
1642 		cfile->kn = NULL;
1643 		spin_unlock_irq(&cgroup_file_kn_lock);
1644 
1645 		del_timer_sync(&cfile->notify_timer);
1646 	}
1647 
1648 	kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1649 }
1650 
1651 /**
1652  * css_clear_dir - remove subsys files in a cgroup directory
1653  * @css: target css
1654  */
1655 static void css_clear_dir(struct cgroup_subsys_state *css)
1656 {
1657 	struct cgroup *cgrp = css->cgroup;
1658 	struct cftype *cfts;
1659 
1660 	if (!(css->flags & CSS_VISIBLE))
1661 		return;
1662 
1663 	css->flags &= ~CSS_VISIBLE;
1664 
1665 	if (!css->ss) {
1666 		if (cgroup_on_dfl(cgrp))
1667 			cfts = cgroup_base_files;
1668 		else
1669 			cfts = cgroup1_base_files;
1670 
1671 		cgroup_addrm_files(css, cgrp, cfts, false);
1672 	} else {
1673 		list_for_each_entry(cfts, &css->ss->cfts, node)
1674 			cgroup_addrm_files(css, cgrp, cfts, false);
1675 	}
1676 }
1677 
1678 /**
1679  * css_populate_dir - create subsys files in a cgroup directory
1680  * @css: target css
1681  *
1682  * On failure, no file is added.
1683  */
1684 static int css_populate_dir(struct cgroup_subsys_state *css)
1685 {
1686 	struct cgroup *cgrp = css->cgroup;
1687 	struct cftype *cfts, *failed_cfts;
1688 	int ret;
1689 
1690 	if ((css->flags & CSS_VISIBLE) || !cgrp->kn)
1691 		return 0;
1692 
1693 	if (!css->ss) {
1694 		if (cgroup_on_dfl(cgrp))
1695 			cfts = cgroup_base_files;
1696 		else
1697 			cfts = cgroup1_base_files;
1698 
1699 		ret = cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1700 		if (ret < 0)
1701 			return ret;
1702 	} else {
1703 		list_for_each_entry(cfts, &css->ss->cfts, node) {
1704 			ret = cgroup_addrm_files(css, cgrp, cfts, true);
1705 			if (ret < 0) {
1706 				failed_cfts = cfts;
1707 				goto err;
1708 			}
1709 		}
1710 	}
1711 
1712 	css->flags |= CSS_VISIBLE;
1713 
1714 	return 0;
1715 err:
1716 	list_for_each_entry(cfts, &css->ss->cfts, node) {
1717 		if (cfts == failed_cfts)
1718 			break;
1719 		cgroup_addrm_files(css, cgrp, cfts, false);
1720 	}
1721 	return ret;
1722 }
1723 
1724 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
1725 {
1726 	struct cgroup *dcgrp = &dst_root->cgrp;
1727 	struct cgroup_subsys *ss;
1728 	int ssid, i, ret;
1729 
1730 	lockdep_assert_held(&cgroup_mutex);
1731 
1732 	do_each_subsys_mask(ss, ssid, ss_mask) {
1733 		/*
1734 		 * If @ss has non-root csses attached to it, can't move.
1735 		 * If @ss is an implicit controller, it is exempt from this
1736 		 * rule and can be stolen.
1737 		 */
1738 		if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1739 		    !ss->implicit_on_dfl)
1740 			return -EBUSY;
1741 
1742 		/* can't move between two non-dummy roots either */
1743 		if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1744 			return -EBUSY;
1745 	} while_each_subsys_mask();
1746 
1747 	do_each_subsys_mask(ss, ssid, ss_mask) {
1748 		struct cgroup_root *src_root = ss->root;
1749 		struct cgroup *scgrp = &src_root->cgrp;
1750 		struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1751 		struct css_set *cset;
1752 
1753 		WARN_ON(!css || cgroup_css(dcgrp, ss));
1754 
1755 		/* disable from the source */
1756 		src_root->subsys_mask &= ~(1 << ssid);
1757 		WARN_ON(cgroup_apply_control(scgrp));
1758 		cgroup_finalize_control(scgrp, 0);
1759 
1760 		/* rebind */
1761 		RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1762 		rcu_assign_pointer(dcgrp->subsys[ssid], css);
1763 		ss->root = dst_root;
1764 		css->cgroup = dcgrp;
1765 
1766 		spin_lock_irq(&css_set_lock);
1767 		hash_for_each(css_set_table, i, cset, hlist)
1768 			list_move_tail(&cset->e_cset_node[ss->id],
1769 				       &dcgrp->e_csets[ss->id]);
1770 		spin_unlock_irq(&css_set_lock);
1771 
1772 		if (ss->css_rstat_flush) {
1773 			list_del_rcu(&css->rstat_css_node);
1774 			list_add_rcu(&css->rstat_css_node,
1775 				     &dcgrp->rstat_css_list);
1776 		}
1777 
1778 		/* default hierarchy doesn't enable controllers by default */
1779 		dst_root->subsys_mask |= 1 << ssid;
1780 		if (dst_root == &cgrp_dfl_root) {
1781 			static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1782 		} else {
1783 			dcgrp->subtree_control |= 1 << ssid;
1784 			static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1785 		}
1786 
1787 		ret = cgroup_apply_control(dcgrp);
1788 		if (ret)
1789 			pr_warn("partial failure to rebind %s controller (err=%d)\n",
1790 				ss->name, ret);
1791 
1792 		if (ss->bind)
1793 			ss->bind(css);
1794 	} while_each_subsys_mask();
1795 
1796 	kernfs_activate(dcgrp->kn);
1797 	return 0;
1798 }
1799 
1800 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
1801 		     struct kernfs_root *kf_root)
1802 {
1803 	int len = 0;
1804 	char *buf = NULL;
1805 	struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
1806 	struct cgroup *ns_cgroup;
1807 
1808 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
1809 	if (!buf)
1810 		return -ENOMEM;
1811 
1812 	spin_lock_irq(&css_set_lock);
1813 	ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
1814 	len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
1815 	spin_unlock_irq(&css_set_lock);
1816 
1817 	if (len >= PATH_MAX)
1818 		len = -ERANGE;
1819 	else if (len > 0) {
1820 		seq_escape(sf, buf, " \t\n\\");
1821 		len = 0;
1822 	}
1823 	kfree(buf);
1824 	return len;
1825 }
1826 
1827 enum cgroup2_param {
1828 	Opt_nsdelegate,
1829 	Opt_memory_localevents,
1830 	Opt_memory_recursiveprot,
1831 	nr__cgroup2_params
1832 };
1833 
1834 static const struct fs_parameter_spec cgroup2_fs_parameters[] = {
1835 	fsparam_flag("nsdelegate",		Opt_nsdelegate),
1836 	fsparam_flag("memory_localevents",	Opt_memory_localevents),
1837 	fsparam_flag("memory_recursiveprot",	Opt_memory_recursiveprot),
1838 	{}
1839 };
1840 
1841 static int cgroup2_parse_param(struct fs_context *fc, struct fs_parameter *param)
1842 {
1843 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1844 	struct fs_parse_result result;
1845 	int opt;
1846 
1847 	opt = fs_parse(fc, cgroup2_fs_parameters, param, &result);
1848 	if (opt < 0)
1849 		return opt;
1850 
1851 	switch (opt) {
1852 	case Opt_nsdelegate:
1853 		ctx->flags |= CGRP_ROOT_NS_DELEGATE;
1854 		return 0;
1855 	case Opt_memory_localevents:
1856 		ctx->flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1857 		return 0;
1858 	case Opt_memory_recursiveprot:
1859 		ctx->flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1860 		return 0;
1861 	}
1862 	return -EINVAL;
1863 }
1864 
1865 static void apply_cgroup_root_flags(unsigned int root_flags)
1866 {
1867 	if (current->nsproxy->cgroup_ns == &init_cgroup_ns) {
1868 		if (root_flags & CGRP_ROOT_NS_DELEGATE)
1869 			cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE;
1870 		else
1871 			cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE;
1872 
1873 		if (root_flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1874 			cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1875 		else
1876 			cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1877 
1878 		if (root_flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
1879 			cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1880 		else
1881 			cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1882 	}
1883 }
1884 
1885 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
1886 {
1887 	if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE)
1888 		seq_puts(seq, ",nsdelegate");
1889 	if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1890 		seq_puts(seq, ",memory_localevents");
1891 	if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
1892 		seq_puts(seq, ",memory_recursiveprot");
1893 	return 0;
1894 }
1895 
1896 static int cgroup_reconfigure(struct fs_context *fc)
1897 {
1898 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1899 
1900 	apply_cgroup_root_flags(ctx->flags);
1901 	return 0;
1902 }
1903 
1904 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1905 {
1906 	struct cgroup_subsys *ss;
1907 	int ssid;
1908 
1909 	INIT_LIST_HEAD(&cgrp->self.sibling);
1910 	INIT_LIST_HEAD(&cgrp->self.children);
1911 	INIT_LIST_HEAD(&cgrp->cset_links);
1912 	INIT_LIST_HEAD(&cgrp->pidlists);
1913 	mutex_init(&cgrp->pidlist_mutex);
1914 	cgrp->self.cgroup = cgrp;
1915 	cgrp->self.flags |= CSS_ONLINE;
1916 	cgrp->dom_cgrp = cgrp;
1917 	cgrp->max_descendants = INT_MAX;
1918 	cgrp->max_depth = INT_MAX;
1919 	INIT_LIST_HEAD(&cgrp->rstat_css_list);
1920 	prev_cputime_init(&cgrp->prev_cputime);
1921 
1922 	for_each_subsys(ss, ssid)
1923 		INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
1924 
1925 	init_waitqueue_head(&cgrp->offline_waitq);
1926 	INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent);
1927 }
1928 
1929 void init_cgroup_root(struct cgroup_fs_context *ctx)
1930 {
1931 	struct cgroup_root *root = ctx->root;
1932 	struct cgroup *cgrp = &root->cgrp;
1933 
1934 	INIT_LIST_HEAD(&root->root_list);
1935 	atomic_set(&root->nr_cgrps, 1);
1936 	cgrp->root = root;
1937 	init_cgroup_housekeeping(cgrp);
1938 
1939 	root->flags = ctx->flags;
1940 	if (ctx->release_agent)
1941 		strscpy(root->release_agent_path, ctx->release_agent, PATH_MAX);
1942 	if (ctx->name)
1943 		strscpy(root->name, ctx->name, MAX_CGROUP_ROOT_NAMELEN);
1944 	if (ctx->cpuset_clone_children)
1945 		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
1946 }
1947 
1948 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask)
1949 {
1950 	LIST_HEAD(tmp_links);
1951 	struct cgroup *root_cgrp = &root->cgrp;
1952 	struct kernfs_syscall_ops *kf_sops;
1953 	struct css_set *cset;
1954 	int i, ret;
1955 
1956 	lockdep_assert_held(&cgroup_mutex);
1957 
1958 	ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release,
1959 			      0, GFP_KERNEL);
1960 	if (ret)
1961 		goto out;
1962 
1963 	/*
1964 	 * We're accessing css_set_count without locking css_set_lock here,
1965 	 * but that's OK - it can only be increased by someone holding
1966 	 * cgroup_lock, and that's us.  Later rebinding may disable
1967 	 * controllers on the default hierarchy and thus create new csets,
1968 	 * which can't be more than the existing ones.  Allocate 2x.
1969 	 */
1970 	ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
1971 	if (ret)
1972 		goto cancel_ref;
1973 
1974 	ret = cgroup_init_root_id(root);
1975 	if (ret)
1976 		goto cancel_ref;
1977 
1978 	kf_sops = root == &cgrp_dfl_root ?
1979 		&cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops;
1980 
1981 	root->kf_root = kernfs_create_root(kf_sops,
1982 					   KERNFS_ROOT_CREATE_DEACTIVATED |
1983 					   KERNFS_ROOT_SUPPORT_EXPORTOP |
1984 					   KERNFS_ROOT_SUPPORT_USER_XATTR,
1985 					   root_cgrp);
1986 	if (IS_ERR(root->kf_root)) {
1987 		ret = PTR_ERR(root->kf_root);
1988 		goto exit_root_id;
1989 	}
1990 	root_cgrp->kn = root->kf_root->kn;
1991 	WARN_ON_ONCE(cgroup_ino(root_cgrp) != 1);
1992 	root_cgrp->ancestor_ids[0] = cgroup_id(root_cgrp);
1993 
1994 	ret = css_populate_dir(&root_cgrp->self);
1995 	if (ret)
1996 		goto destroy_root;
1997 
1998 	ret = cgroup_rstat_init(root_cgrp);
1999 	if (ret)
2000 		goto destroy_root;
2001 
2002 	ret = rebind_subsystems(root, ss_mask);
2003 	if (ret)
2004 		goto exit_stats;
2005 
2006 	ret = cgroup_bpf_inherit(root_cgrp);
2007 	WARN_ON_ONCE(ret);
2008 
2009 	trace_cgroup_setup_root(root);
2010 
2011 	/*
2012 	 * There must be no failure case after here, since rebinding takes
2013 	 * care of subsystems' refcounts, which are explicitly dropped in
2014 	 * the failure exit path.
2015 	 */
2016 	list_add(&root->root_list, &cgroup_roots);
2017 	cgroup_root_count++;
2018 
2019 	/*
2020 	 * Link the root cgroup in this hierarchy into all the css_set
2021 	 * objects.
2022 	 */
2023 	spin_lock_irq(&css_set_lock);
2024 	hash_for_each(css_set_table, i, cset, hlist) {
2025 		link_css_set(&tmp_links, cset, root_cgrp);
2026 		if (css_set_populated(cset))
2027 			cgroup_update_populated(root_cgrp, true);
2028 	}
2029 	spin_unlock_irq(&css_set_lock);
2030 
2031 	BUG_ON(!list_empty(&root_cgrp->self.children));
2032 	BUG_ON(atomic_read(&root->nr_cgrps) != 1);
2033 
2034 	ret = 0;
2035 	goto out;
2036 
2037 exit_stats:
2038 	cgroup_rstat_exit(root_cgrp);
2039 destroy_root:
2040 	kernfs_destroy_root(root->kf_root);
2041 	root->kf_root = NULL;
2042 exit_root_id:
2043 	cgroup_exit_root_id(root);
2044 cancel_ref:
2045 	percpu_ref_exit(&root_cgrp->self.refcnt);
2046 out:
2047 	free_cgrp_cset_links(&tmp_links);
2048 	return ret;
2049 }
2050 
2051 int cgroup_do_get_tree(struct fs_context *fc)
2052 {
2053 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2054 	int ret;
2055 
2056 	ctx->kfc.root = ctx->root->kf_root;
2057 	if (fc->fs_type == &cgroup2_fs_type)
2058 		ctx->kfc.magic = CGROUP2_SUPER_MAGIC;
2059 	else
2060 		ctx->kfc.magic = CGROUP_SUPER_MAGIC;
2061 	ret = kernfs_get_tree(fc);
2062 
2063 	/*
2064 	 * In non-init cgroup namespace, instead of root cgroup's dentry,
2065 	 * we return the dentry corresponding to the cgroupns->root_cgrp.
2066 	 */
2067 	if (!ret && ctx->ns != &init_cgroup_ns) {
2068 		struct dentry *nsdentry;
2069 		struct super_block *sb = fc->root->d_sb;
2070 		struct cgroup *cgrp;
2071 
2072 		mutex_lock(&cgroup_mutex);
2073 		spin_lock_irq(&css_set_lock);
2074 
2075 		cgrp = cset_cgroup_from_root(ctx->ns->root_cset, ctx->root);
2076 
2077 		spin_unlock_irq(&css_set_lock);
2078 		mutex_unlock(&cgroup_mutex);
2079 
2080 		nsdentry = kernfs_node_dentry(cgrp->kn, sb);
2081 		dput(fc->root);
2082 		if (IS_ERR(nsdentry)) {
2083 			deactivate_locked_super(sb);
2084 			ret = PTR_ERR(nsdentry);
2085 			nsdentry = NULL;
2086 		}
2087 		fc->root = nsdentry;
2088 	}
2089 
2090 	if (!ctx->kfc.new_sb_created)
2091 		cgroup_put(&ctx->root->cgrp);
2092 
2093 	return ret;
2094 }
2095 
2096 /*
2097  * Destroy a cgroup filesystem context.
2098  */
2099 static void cgroup_fs_context_free(struct fs_context *fc)
2100 {
2101 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2102 
2103 	kfree(ctx->name);
2104 	kfree(ctx->release_agent);
2105 	put_cgroup_ns(ctx->ns);
2106 	kernfs_free_fs_context(fc);
2107 	kfree(ctx);
2108 }
2109 
2110 static int cgroup_get_tree(struct fs_context *fc)
2111 {
2112 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2113 	int ret;
2114 
2115 	cgrp_dfl_visible = true;
2116 	cgroup_get_live(&cgrp_dfl_root.cgrp);
2117 	ctx->root = &cgrp_dfl_root;
2118 
2119 	ret = cgroup_do_get_tree(fc);
2120 	if (!ret)
2121 		apply_cgroup_root_flags(ctx->flags);
2122 	return ret;
2123 }
2124 
2125 static const struct fs_context_operations cgroup_fs_context_ops = {
2126 	.free		= cgroup_fs_context_free,
2127 	.parse_param	= cgroup2_parse_param,
2128 	.get_tree	= cgroup_get_tree,
2129 	.reconfigure	= cgroup_reconfigure,
2130 };
2131 
2132 static const struct fs_context_operations cgroup1_fs_context_ops = {
2133 	.free		= cgroup_fs_context_free,
2134 	.parse_param	= cgroup1_parse_param,
2135 	.get_tree	= cgroup1_get_tree,
2136 	.reconfigure	= cgroup1_reconfigure,
2137 };
2138 
2139 /*
2140  * Initialise the cgroup filesystem creation/reconfiguration context.  Notably,
2141  * we select the namespace we're going to use.
2142  */
2143 static int cgroup_init_fs_context(struct fs_context *fc)
2144 {
2145 	struct cgroup_fs_context *ctx;
2146 
2147 	ctx = kzalloc(sizeof(struct cgroup_fs_context), GFP_KERNEL);
2148 	if (!ctx)
2149 		return -ENOMEM;
2150 
2151 	ctx->ns = current->nsproxy->cgroup_ns;
2152 	get_cgroup_ns(ctx->ns);
2153 	fc->fs_private = &ctx->kfc;
2154 	if (fc->fs_type == &cgroup2_fs_type)
2155 		fc->ops = &cgroup_fs_context_ops;
2156 	else
2157 		fc->ops = &cgroup1_fs_context_ops;
2158 	put_user_ns(fc->user_ns);
2159 	fc->user_ns = get_user_ns(ctx->ns->user_ns);
2160 	fc->global = true;
2161 	return 0;
2162 }
2163 
2164 static void cgroup_kill_sb(struct super_block *sb)
2165 {
2166 	struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2167 	struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2168 
2169 	/*
2170 	 * If @root doesn't have any children, start killing it.
2171 	 * This prevents new mounts by disabling percpu_ref_tryget_live().
2172 	 * cgroup_mount() may wait for @root's release.
2173 	 *
2174 	 * And don't kill the default root.
2175 	 */
2176 	if (list_empty(&root->cgrp.self.children) && root != &cgrp_dfl_root &&
2177 	    !percpu_ref_is_dying(&root->cgrp.self.refcnt))
2178 		percpu_ref_kill(&root->cgrp.self.refcnt);
2179 	cgroup_put(&root->cgrp);
2180 	kernfs_kill_sb(sb);
2181 }
2182 
2183 struct file_system_type cgroup_fs_type = {
2184 	.name			= "cgroup",
2185 	.init_fs_context	= cgroup_init_fs_context,
2186 	.parameters		= cgroup1_fs_parameters,
2187 	.kill_sb		= cgroup_kill_sb,
2188 	.fs_flags		= FS_USERNS_MOUNT,
2189 };
2190 
2191 static struct file_system_type cgroup2_fs_type = {
2192 	.name			= "cgroup2",
2193 	.init_fs_context	= cgroup_init_fs_context,
2194 	.parameters		= cgroup2_fs_parameters,
2195 	.kill_sb		= cgroup_kill_sb,
2196 	.fs_flags		= FS_USERNS_MOUNT,
2197 };
2198 
2199 #ifdef CONFIG_CPUSETS
2200 static const struct fs_context_operations cpuset_fs_context_ops = {
2201 	.get_tree	= cgroup1_get_tree,
2202 	.free		= cgroup_fs_context_free,
2203 };
2204 
2205 /*
2206  * This is ugly, but preserves the userspace API for existing cpuset
2207  * users. If someone tries to mount the "cpuset" filesystem, we
2208  * silently switch it to mount "cgroup" instead
2209  */
2210 static int cpuset_init_fs_context(struct fs_context *fc)
2211 {
2212 	char *agent = kstrdup("/sbin/cpuset_release_agent", GFP_USER);
2213 	struct cgroup_fs_context *ctx;
2214 	int err;
2215 
2216 	err = cgroup_init_fs_context(fc);
2217 	if (err) {
2218 		kfree(agent);
2219 		return err;
2220 	}
2221 
2222 	fc->ops = &cpuset_fs_context_ops;
2223 
2224 	ctx = cgroup_fc2context(fc);
2225 	ctx->subsys_mask = 1 << cpuset_cgrp_id;
2226 	ctx->flags |= CGRP_ROOT_NOPREFIX;
2227 	ctx->release_agent = agent;
2228 
2229 	get_filesystem(&cgroup_fs_type);
2230 	put_filesystem(fc->fs_type);
2231 	fc->fs_type = &cgroup_fs_type;
2232 
2233 	return 0;
2234 }
2235 
2236 static struct file_system_type cpuset_fs_type = {
2237 	.name			= "cpuset",
2238 	.init_fs_context	= cpuset_init_fs_context,
2239 	.fs_flags		= FS_USERNS_MOUNT,
2240 };
2241 #endif
2242 
2243 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
2244 			  struct cgroup_namespace *ns)
2245 {
2246 	struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
2247 
2248 	return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
2249 }
2250 
2251 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
2252 		   struct cgroup_namespace *ns)
2253 {
2254 	int ret;
2255 
2256 	mutex_lock(&cgroup_mutex);
2257 	spin_lock_irq(&css_set_lock);
2258 
2259 	ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
2260 
2261 	spin_unlock_irq(&css_set_lock);
2262 	mutex_unlock(&cgroup_mutex);
2263 
2264 	return ret;
2265 }
2266 EXPORT_SYMBOL_GPL(cgroup_path_ns);
2267 
2268 /**
2269  * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
2270  * @task: target task
2271  * @buf: the buffer to write the path into
2272  * @buflen: the length of the buffer
2273  *
2274  * Determine @task's cgroup on the first (the one with the lowest non-zero
2275  * hierarchy_id) cgroup hierarchy and copy its path into @buf.  This
2276  * function grabs cgroup_mutex and shouldn't be used inside locks used by
2277  * cgroup controller callbacks.
2278  *
2279  * Return value is the same as kernfs_path().
2280  */
2281 int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
2282 {
2283 	struct cgroup_root *root;
2284 	struct cgroup *cgrp;
2285 	int hierarchy_id = 1;
2286 	int ret;
2287 
2288 	mutex_lock(&cgroup_mutex);
2289 	spin_lock_irq(&css_set_lock);
2290 
2291 	root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2292 
2293 	if (root) {
2294 		cgrp = task_cgroup_from_root(task, root);
2295 		ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns);
2296 	} else {
2297 		/* if no hierarchy exists, everyone is in "/" */
2298 		ret = strlcpy(buf, "/", buflen);
2299 	}
2300 
2301 	spin_unlock_irq(&css_set_lock);
2302 	mutex_unlock(&cgroup_mutex);
2303 	return ret;
2304 }
2305 EXPORT_SYMBOL_GPL(task_cgroup_path);
2306 
2307 /**
2308  * cgroup_migrate_add_task - add a migration target task to a migration context
2309  * @task: target task
2310  * @mgctx: target migration context
2311  *
2312  * Add @task, which is a migration target, to @mgctx->tset.  This function
2313  * becomes noop if @task doesn't need to be migrated.  @task's css_set
2314  * should have been added as a migration source and @task->cg_list will be
2315  * moved from the css_set's tasks list to mg_tasks one.
2316  */
2317 static void cgroup_migrate_add_task(struct task_struct *task,
2318 				    struct cgroup_mgctx *mgctx)
2319 {
2320 	struct css_set *cset;
2321 
2322 	lockdep_assert_held(&css_set_lock);
2323 
2324 	/* @task either already exited or can't exit until the end */
2325 	if (task->flags & PF_EXITING)
2326 		return;
2327 
2328 	/* cgroup_threadgroup_rwsem protects racing against forks */
2329 	WARN_ON_ONCE(list_empty(&task->cg_list));
2330 
2331 	cset = task_css_set(task);
2332 	if (!cset->mg_src_cgrp)
2333 		return;
2334 
2335 	mgctx->tset.nr_tasks++;
2336 
2337 	list_move_tail(&task->cg_list, &cset->mg_tasks);
2338 	if (list_empty(&cset->mg_node))
2339 		list_add_tail(&cset->mg_node,
2340 			      &mgctx->tset.src_csets);
2341 	if (list_empty(&cset->mg_dst_cset->mg_node))
2342 		list_add_tail(&cset->mg_dst_cset->mg_node,
2343 			      &mgctx->tset.dst_csets);
2344 }
2345 
2346 /**
2347  * cgroup_taskset_first - reset taskset and return the first task
2348  * @tset: taskset of interest
2349  * @dst_cssp: output variable for the destination css
2350  *
2351  * @tset iteration is initialized and the first task is returned.
2352  */
2353 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2354 					 struct cgroup_subsys_state **dst_cssp)
2355 {
2356 	tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2357 	tset->cur_task = NULL;
2358 
2359 	return cgroup_taskset_next(tset, dst_cssp);
2360 }
2361 
2362 /**
2363  * cgroup_taskset_next - iterate to the next task in taskset
2364  * @tset: taskset of interest
2365  * @dst_cssp: output variable for the destination css
2366  *
2367  * Return the next task in @tset.  Iteration must have been initialized
2368  * with cgroup_taskset_first().
2369  */
2370 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2371 					struct cgroup_subsys_state **dst_cssp)
2372 {
2373 	struct css_set *cset = tset->cur_cset;
2374 	struct task_struct *task = tset->cur_task;
2375 
2376 	while (&cset->mg_node != tset->csets) {
2377 		if (!task)
2378 			task = list_first_entry(&cset->mg_tasks,
2379 						struct task_struct, cg_list);
2380 		else
2381 			task = list_next_entry(task, cg_list);
2382 
2383 		if (&task->cg_list != &cset->mg_tasks) {
2384 			tset->cur_cset = cset;
2385 			tset->cur_task = task;
2386 
2387 			/*
2388 			 * This function may be called both before and
2389 			 * after cgroup_taskset_migrate().  The two cases
2390 			 * can be distinguished by looking at whether @cset
2391 			 * has its ->mg_dst_cset set.
2392 			 */
2393 			if (cset->mg_dst_cset)
2394 				*dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2395 			else
2396 				*dst_cssp = cset->subsys[tset->ssid];
2397 
2398 			return task;
2399 		}
2400 
2401 		cset = list_next_entry(cset, mg_node);
2402 		task = NULL;
2403 	}
2404 
2405 	return NULL;
2406 }
2407 
2408 /**
2409  * cgroup_migrate_execute - migrate a taskset
2410  * @mgctx: migration context
2411  *
2412  * Migrate tasks in @mgctx as setup by migration preparation functions.
2413  * This function fails iff one of the ->can_attach callbacks fails and
2414  * guarantees that either all or none of the tasks in @mgctx are migrated.
2415  * @mgctx is consumed regardless of success.
2416  */
2417 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx)
2418 {
2419 	struct cgroup_taskset *tset = &mgctx->tset;
2420 	struct cgroup_subsys *ss;
2421 	struct task_struct *task, *tmp_task;
2422 	struct css_set *cset, *tmp_cset;
2423 	int ssid, failed_ssid, ret;
2424 
2425 	/* check that we can legitimately attach to the cgroup */
2426 	if (tset->nr_tasks) {
2427 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2428 			if (ss->can_attach) {
2429 				tset->ssid = ssid;
2430 				ret = ss->can_attach(tset);
2431 				if (ret) {
2432 					failed_ssid = ssid;
2433 					goto out_cancel_attach;
2434 				}
2435 			}
2436 		} while_each_subsys_mask();
2437 	}
2438 
2439 	/*
2440 	 * Now that we're guaranteed success, proceed to move all tasks to
2441 	 * the new cgroup.  There are no failure cases after here, so this
2442 	 * is the commit point.
2443 	 */
2444 	spin_lock_irq(&css_set_lock);
2445 	list_for_each_entry(cset, &tset->src_csets, mg_node) {
2446 		list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2447 			struct css_set *from_cset = task_css_set(task);
2448 			struct css_set *to_cset = cset->mg_dst_cset;
2449 
2450 			get_css_set(to_cset);
2451 			to_cset->nr_tasks++;
2452 			css_set_move_task(task, from_cset, to_cset, true);
2453 			from_cset->nr_tasks--;
2454 			/*
2455 			 * If the source or destination cgroup is frozen,
2456 			 * the task might require to change its state.
2457 			 */
2458 			cgroup_freezer_migrate_task(task, from_cset->dfl_cgrp,
2459 						    to_cset->dfl_cgrp);
2460 			put_css_set_locked(from_cset);
2461 
2462 		}
2463 	}
2464 	spin_unlock_irq(&css_set_lock);
2465 
2466 	/*
2467 	 * Migration is committed, all target tasks are now on dst_csets.
2468 	 * Nothing is sensitive to fork() after this point.  Notify
2469 	 * controllers that migration is complete.
2470 	 */
2471 	tset->csets = &tset->dst_csets;
2472 
2473 	if (tset->nr_tasks) {
2474 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2475 			if (ss->attach) {
2476 				tset->ssid = ssid;
2477 				ss->attach(tset);
2478 			}
2479 		} while_each_subsys_mask();
2480 	}
2481 
2482 	ret = 0;
2483 	goto out_release_tset;
2484 
2485 out_cancel_attach:
2486 	if (tset->nr_tasks) {
2487 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2488 			if (ssid == failed_ssid)
2489 				break;
2490 			if (ss->cancel_attach) {
2491 				tset->ssid = ssid;
2492 				ss->cancel_attach(tset);
2493 			}
2494 		} while_each_subsys_mask();
2495 	}
2496 out_release_tset:
2497 	spin_lock_irq(&css_set_lock);
2498 	list_splice_init(&tset->dst_csets, &tset->src_csets);
2499 	list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2500 		list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2501 		list_del_init(&cset->mg_node);
2502 	}
2503 	spin_unlock_irq(&css_set_lock);
2504 
2505 	/*
2506 	 * Re-initialize the cgroup_taskset structure in case it is reused
2507 	 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute()
2508 	 * iteration.
2509 	 */
2510 	tset->nr_tasks = 0;
2511 	tset->csets    = &tset->src_csets;
2512 	return ret;
2513 }
2514 
2515 /**
2516  * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination
2517  * @dst_cgrp: destination cgroup to test
2518  *
2519  * On the default hierarchy, except for the mixable, (possible) thread root
2520  * and threaded cgroups, subtree_control must be zero for migration
2521  * destination cgroups with tasks so that child cgroups don't compete
2522  * against tasks.
2523  */
2524 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp)
2525 {
2526 	/* v1 doesn't have any restriction */
2527 	if (!cgroup_on_dfl(dst_cgrp))
2528 		return 0;
2529 
2530 	/* verify @dst_cgrp can host resources */
2531 	if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp))
2532 		return -EOPNOTSUPP;
2533 
2534 	/* mixables don't care */
2535 	if (cgroup_is_mixable(dst_cgrp))
2536 		return 0;
2537 
2538 	/*
2539 	 * If @dst_cgrp is already or can become a thread root or is
2540 	 * threaded, it doesn't matter.
2541 	 */
2542 	if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp))
2543 		return 0;
2544 
2545 	/* apply no-internal-process constraint */
2546 	if (dst_cgrp->subtree_control)
2547 		return -EBUSY;
2548 
2549 	return 0;
2550 }
2551 
2552 /**
2553  * cgroup_migrate_finish - cleanup after attach
2554  * @mgctx: migration context
2555  *
2556  * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst().  See
2557  * those functions for details.
2558  */
2559 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx)
2560 {
2561 	LIST_HEAD(preloaded);
2562 	struct css_set *cset, *tmp_cset;
2563 
2564 	lockdep_assert_held(&cgroup_mutex);
2565 
2566 	spin_lock_irq(&css_set_lock);
2567 
2568 	list_splice_tail_init(&mgctx->preloaded_src_csets, &preloaded);
2569 	list_splice_tail_init(&mgctx->preloaded_dst_csets, &preloaded);
2570 
2571 	list_for_each_entry_safe(cset, tmp_cset, &preloaded, mg_preload_node) {
2572 		cset->mg_src_cgrp = NULL;
2573 		cset->mg_dst_cgrp = NULL;
2574 		cset->mg_dst_cset = NULL;
2575 		list_del_init(&cset->mg_preload_node);
2576 		put_css_set_locked(cset);
2577 	}
2578 
2579 	spin_unlock_irq(&css_set_lock);
2580 }
2581 
2582 /**
2583  * cgroup_migrate_add_src - add a migration source css_set
2584  * @src_cset: the source css_set to add
2585  * @dst_cgrp: the destination cgroup
2586  * @mgctx: migration context
2587  *
2588  * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp.  Pin
2589  * @src_cset and add it to @mgctx->src_csets, which should later be cleaned
2590  * up by cgroup_migrate_finish().
2591  *
2592  * This function may be called without holding cgroup_threadgroup_rwsem
2593  * even if the target is a process.  Threads may be created and destroyed
2594  * but as long as cgroup_mutex is not dropped, no new css_set can be put
2595  * into play and the preloaded css_sets are guaranteed to cover all
2596  * migrations.
2597  */
2598 void cgroup_migrate_add_src(struct css_set *src_cset,
2599 			    struct cgroup *dst_cgrp,
2600 			    struct cgroup_mgctx *mgctx)
2601 {
2602 	struct cgroup *src_cgrp;
2603 
2604 	lockdep_assert_held(&cgroup_mutex);
2605 	lockdep_assert_held(&css_set_lock);
2606 
2607 	/*
2608 	 * If ->dead, @src_set is associated with one or more dead cgroups
2609 	 * and doesn't contain any migratable tasks.  Ignore it early so
2610 	 * that the rest of migration path doesn't get confused by it.
2611 	 */
2612 	if (src_cset->dead)
2613 		return;
2614 
2615 	src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2616 
2617 	if (!list_empty(&src_cset->mg_preload_node))
2618 		return;
2619 
2620 	WARN_ON(src_cset->mg_src_cgrp);
2621 	WARN_ON(src_cset->mg_dst_cgrp);
2622 	WARN_ON(!list_empty(&src_cset->mg_tasks));
2623 	WARN_ON(!list_empty(&src_cset->mg_node));
2624 
2625 	src_cset->mg_src_cgrp = src_cgrp;
2626 	src_cset->mg_dst_cgrp = dst_cgrp;
2627 	get_css_set(src_cset);
2628 	list_add_tail(&src_cset->mg_preload_node, &mgctx->preloaded_src_csets);
2629 }
2630 
2631 /**
2632  * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2633  * @mgctx: migration context
2634  *
2635  * Tasks are about to be moved and all the source css_sets have been
2636  * preloaded to @mgctx->preloaded_src_csets.  This function looks up and
2637  * pins all destination css_sets, links each to its source, and append them
2638  * to @mgctx->preloaded_dst_csets.
2639  *
2640  * This function must be called after cgroup_migrate_add_src() has been
2641  * called on each migration source css_set.  After migration is performed
2642  * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2643  * @mgctx.
2644  */
2645 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx)
2646 {
2647 	struct css_set *src_cset, *tmp_cset;
2648 
2649 	lockdep_assert_held(&cgroup_mutex);
2650 
2651 	/* look up the dst cset for each src cset and link it to src */
2652 	list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets,
2653 				 mg_preload_node) {
2654 		struct css_set *dst_cset;
2655 		struct cgroup_subsys *ss;
2656 		int ssid;
2657 
2658 		dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
2659 		if (!dst_cset)
2660 			return -ENOMEM;
2661 
2662 		WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2663 
2664 		/*
2665 		 * If src cset equals dst, it's noop.  Drop the src.
2666 		 * cgroup_migrate() will skip the cset too.  Note that we
2667 		 * can't handle src == dst as some nodes are used by both.
2668 		 */
2669 		if (src_cset == dst_cset) {
2670 			src_cset->mg_src_cgrp = NULL;
2671 			src_cset->mg_dst_cgrp = NULL;
2672 			list_del_init(&src_cset->mg_preload_node);
2673 			put_css_set(src_cset);
2674 			put_css_set(dst_cset);
2675 			continue;
2676 		}
2677 
2678 		src_cset->mg_dst_cset = dst_cset;
2679 
2680 		if (list_empty(&dst_cset->mg_preload_node))
2681 			list_add_tail(&dst_cset->mg_preload_node,
2682 				      &mgctx->preloaded_dst_csets);
2683 		else
2684 			put_css_set(dst_cset);
2685 
2686 		for_each_subsys(ss, ssid)
2687 			if (src_cset->subsys[ssid] != dst_cset->subsys[ssid])
2688 				mgctx->ss_mask |= 1 << ssid;
2689 	}
2690 
2691 	return 0;
2692 }
2693 
2694 /**
2695  * cgroup_migrate - migrate a process or task to a cgroup
2696  * @leader: the leader of the process or the task to migrate
2697  * @threadgroup: whether @leader points to the whole process or a single task
2698  * @mgctx: migration context
2699  *
2700  * Migrate a process or task denoted by @leader.  If migrating a process,
2701  * the caller must be holding cgroup_threadgroup_rwsem.  The caller is also
2702  * responsible for invoking cgroup_migrate_add_src() and
2703  * cgroup_migrate_prepare_dst() on the targets before invoking this
2704  * function and following up with cgroup_migrate_finish().
2705  *
2706  * As long as a controller's ->can_attach() doesn't fail, this function is
2707  * guaranteed to succeed.  This means that, excluding ->can_attach()
2708  * failure, when migrating multiple targets, the success or failure can be
2709  * decided for all targets by invoking group_migrate_prepare_dst() before
2710  * actually starting migrating.
2711  */
2712 int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2713 		   struct cgroup_mgctx *mgctx)
2714 {
2715 	struct task_struct *task;
2716 
2717 	/*
2718 	 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2719 	 * already PF_EXITING could be freed from underneath us unless we
2720 	 * take an rcu_read_lock.
2721 	 */
2722 	spin_lock_irq(&css_set_lock);
2723 	rcu_read_lock();
2724 	task = leader;
2725 	do {
2726 		cgroup_migrate_add_task(task, mgctx);
2727 		if (!threadgroup)
2728 			break;
2729 	} while_each_thread(leader, task);
2730 	rcu_read_unlock();
2731 	spin_unlock_irq(&css_set_lock);
2732 
2733 	return cgroup_migrate_execute(mgctx);
2734 }
2735 
2736 /**
2737  * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2738  * @dst_cgrp: the cgroup to attach to
2739  * @leader: the task or the leader of the threadgroup to be attached
2740  * @threadgroup: attach the whole threadgroup?
2741  *
2742  * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2743  */
2744 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader,
2745 		       bool threadgroup)
2746 {
2747 	DEFINE_CGROUP_MGCTX(mgctx);
2748 	struct task_struct *task;
2749 	int ret = 0;
2750 
2751 	/* look up all src csets */
2752 	spin_lock_irq(&css_set_lock);
2753 	rcu_read_lock();
2754 	task = leader;
2755 	do {
2756 		cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx);
2757 		if (!threadgroup)
2758 			break;
2759 	} while_each_thread(leader, task);
2760 	rcu_read_unlock();
2761 	spin_unlock_irq(&css_set_lock);
2762 
2763 	/* prepare dst csets and commit */
2764 	ret = cgroup_migrate_prepare_dst(&mgctx);
2765 	if (!ret)
2766 		ret = cgroup_migrate(leader, threadgroup, &mgctx);
2767 
2768 	cgroup_migrate_finish(&mgctx);
2769 
2770 	if (!ret)
2771 		TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup);
2772 
2773 	return ret;
2774 }
2775 
2776 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup,
2777 					     bool *locked)
2778 	__acquires(&cgroup_threadgroup_rwsem)
2779 {
2780 	struct task_struct *tsk;
2781 	pid_t pid;
2782 
2783 	if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2784 		return ERR_PTR(-EINVAL);
2785 
2786 	/*
2787 	 * If we migrate a single thread, we don't care about threadgroup
2788 	 * stability. If the thread is `current`, it won't exit(2) under our
2789 	 * hands or change PID through exec(2). We exclude
2790 	 * cgroup_update_dfl_csses and other cgroup_{proc,thread}s_write
2791 	 * callers by cgroup_mutex.
2792 	 * Therefore, we can skip the global lock.
2793 	 */
2794 	lockdep_assert_held(&cgroup_mutex);
2795 	if (pid || threadgroup) {
2796 		percpu_down_write(&cgroup_threadgroup_rwsem);
2797 		*locked = true;
2798 	} else {
2799 		*locked = false;
2800 	}
2801 
2802 	rcu_read_lock();
2803 	if (pid) {
2804 		tsk = find_task_by_vpid(pid);
2805 		if (!tsk) {
2806 			tsk = ERR_PTR(-ESRCH);
2807 			goto out_unlock_threadgroup;
2808 		}
2809 	} else {
2810 		tsk = current;
2811 	}
2812 
2813 	if (threadgroup)
2814 		tsk = tsk->group_leader;
2815 
2816 	/*
2817 	 * kthreads may acquire PF_NO_SETAFFINITY during initialization.
2818 	 * If userland migrates such a kthread to a non-root cgroup, it can
2819 	 * become trapped in a cpuset, or RT kthread may be born in a
2820 	 * cgroup with no rt_runtime allocated.  Just say no.
2821 	 */
2822 	if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) {
2823 		tsk = ERR_PTR(-EINVAL);
2824 		goto out_unlock_threadgroup;
2825 	}
2826 
2827 	get_task_struct(tsk);
2828 	goto out_unlock_rcu;
2829 
2830 out_unlock_threadgroup:
2831 	if (*locked) {
2832 		percpu_up_write(&cgroup_threadgroup_rwsem);
2833 		*locked = false;
2834 	}
2835 out_unlock_rcu:
2836 	rcu_read_unlock();
2837 	return tsk;
2838 }
2839 
2840 void cgroup_procs_write_finish(struct task_struct *task, bool locked)
2841 	__releases(&cgroup_threadgroup_rwsem)
2842 {
2843 	struct cgroup_subsys *ss;
2844 	int ssid;
2845 
2846 	/* release reference from cgroup_procs_write_start() */
2847 	put_task_struct(task);
2848 
2849 	if (locked)
2850 		percpu_up_write(&cgroup_threadgroup_rwsem);
2851 	for_each_subsys(ss, ssid)
2852 		if (ss->post_attach)
2853 			ss->post_attach();
2854 }
2855 
2856 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
2857 {
2858 	struct cgroup_subsys *ss;
2859 	bool printed = false;
2860 	int ssid;
2861 
2862 	do_each_subsys_mask(ss, ssid, ss_mask) {
2863 		if (printed)
2864 			seq_putc(seq, ' ');
2865 		seq_puts(seq, ss->name);
2866 		printed = true;
2867 	} while_each_subsys_mask();
2868 	if (printed)
2869 		seq_putc(seq, '\n');
2870 }
2871 
2872 /* show controllers which are enabled from the parent */
2873 static int cgroup_controllers_show(struct seq_file *seq, void *v)
2874 {
2875 	struct cgroup *cgrp = seq_css(seq)->cgroup;
2876 
2877 	cgroup_print_ss_mask(seq, cgroup_control(cgrp));
2878 	return 0;
2879 }
2880 
2881 /* show controllers which are enabled for a given cgroup's children */
2882 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
2883 {
2884 	struct cgroup *cgrp = seq_css(seq)->cgroup;
2885 
2886 	cgroup_print_ss_mask(seq, cgrp->subtree_control);
2887 	return 0;
2888 }
2889 
2890 /**
2891  * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2892  * @cgrp: root of the subtree to update csses for
2893  *
2894  * @cgrp's control masks have changed and its subtree's css associations
2895  * need to be updated accordingly.  This function looks up all css_sets
2896  * which are attached to the subtree, creates the matching updated css_sets
2897  * and migrates the tasks to the new ones.
2898  */
2899 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2900 {
2901 	DEFINE_CGROUP_MGCTX(mgctx);
2902 	struct cgroup_subsys_state *d_css;
2903 	struct cgroup *dsct;
2904 	struct css_set *src_cset;
2905 	int ret;
2906 
2907 	lockdep_assert_held(&cgroup_mutex);
2908 
2909 	percpu_down_write(&cgroup_threadgroup_rwsem);
2910 
2911 	/* look up all csses currently attached to @cgrp's subtree */
2912 	spin_lock_irq(&css_set_lock);
2913 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2914 		struct cgrp_cset_link *link;
2915 
2916 		list_for_each_entry(link, &dsct->cset_links, cset_link)
2917 			cgroup_migrate_add_src(link->cset, dsct, &mgctx);
2918 	}
2919 	spin_unlock_irq(&css_set_lock);
2920 
2921 	/* NULL dst indicates self on default hierarchy */
2922 	ret = cgroup_migrate_prepare_dst(&mgctx);
2923 	if (ret)
2924 		goto out_finish;
2925 
2926 	spin_lock_irq(&css_set_lock);
2927 	list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, mg_preload_node) {
2928 		struct task_struct *task, *ntask;
2929 
2930 		/* all tasks in src_csets need to be migrated */
2931 		list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
2932 			cgroup_migrate_add_task(task, &mgctx);
2933 	}
2934 	spin_unlock_irq(&css_set_lock);
2935 
2936 	ret = cgroup_migrate_execute(&mgctx);
2937 out_finish:
2938 	cgroup_migrate_finish(&mgctx);
2939 	percpu_up_write(&cgroup_threadgroup_rwsem);
2940 	return ret;
2941 }
2942 
2943 /**
2944  * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
2945  * @cgrp: root of the target subtree
2946  *
2947  * Because css offlining is asynchronous, userland may try to re-enable a
2948  * controller while the previous css is still around.  This function grabs
2949  * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
2950  */
2951 void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
2952 	__acquires(&cgroup_mutex)
2953 {
2954 	struct cgroup *dsct;
2955 	struct cgroup_subsys_state *d_css;
2956 	struct cgroup_subsys *ss;
2957 	int ssid;
2958 
2959 restart:
2960 	mutex_lock(&cgroup_mutex);
2961 
2962 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
2963 		for_each_subsys(ss, ssid) {
2964 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
2965 			DEFINE_WAIT(wait);
2966 
2967 			if (!css || !percpu_ref_is_dying(&css->refcnt))
2968 				continue;
2969 
2970 			cgroup_get_live(dsct);
2971 			prepare_to_wait(&dsct->offline_waitq, &wait,
2972 					TASK_UNINTERRUPTIBLE);
2973 
2974 			mutex_unlock(&cgroup_mutex);
2975 			schedule();
2976 			finish_wait(&dsct->offline_waitq, &wait);
2977 
2978 			cgroup_put(dsct);
2979 			goto restart;
2980 		}
2981 	}
2982 }
2983 
2984 /**
2985  * cgroup_save_control - save control masks and dom_cgrp of a subtree
2986  * @cgrp: root of the target subtree
2987  *
2988  * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the
2989  * respective old_ prefixed fields for @cgrp's subtree including @cgrp
2990  * itself.
2991  */
2992 static void cgroup_save_control(struct cgroup *cgrp)
2993 {
2994 	struct cgroup *dsct;
2995 	struct cgroup_subsys_state *d_css;
2996 
2997 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2998 		dsct->old_subtree_control = dsct->subtree_control;
2999 		dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
3000 		dsct->old_dom_cgrp = dsct->dom_cgrp;
3001 	}
3002 }
3003 
3004 /**
3005  * cgroup_propagate_control - refresh control masks of a subtree
3006  * @cgrp: root of the target subtree
3007  *
3008  * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
3009  * ->subtree_control and propagate controller availability through the
3010  * subtree so that descendants don't have unavailable controllers enabled.
3011  */
3012 static void cgroup_propagate_control(struct cgroup *cgrp)
3013 {
3014 	struct cgroup *dsct;
3015 	struct cgroup_subsys_state *d_css;
3016 
3017 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3018 		dsct->subtree_control &= cgroup_control(dsct);
3019 		dsct->subtree_ss_mask =
3020 			cgroup_calc_subtree_ss_mask(dsct->subtree_control,
3021 						    cgroup_ss_mask(dsct));
3022 	}
3023 }
3024 
3025 /**
3026  * cgroup_restore_control - restore control masks and dom_cgrp of a subtree
3027  * @cgrp: root of the target subtree
3028  *
3029  * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the
3030  * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3031  * itself.
3032  */
3033 static void cgroup_restore_control(struct cgroup *cgrp)
3034 {
3035 	struct cgroup *dsct;
3036 	struct cgroup_subsys_state *d_css;
3037 
3038 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3039 		dsct->subtree_control = dsct->old_subtree_control;
3040 		dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
3041 		dsct->dom_cgrp = dsct->old_dom_cgrp;
3042 	}
3043 }
3044 
3045 static bool css_visible(struct cgroup_subsys_state *css)
3046 {
3047 	struct cgroup_subsys *ss = css->ss;
3048 	struct cgroup *cgrp = css->cgroup;
3049 
3050 	if (cgroup_control(cgrp) & (1 << ss->id))
3051 		return true;
3052 	if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
3053 		return false;
3054 	return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
3055 }
3056 
3057 /**
3058  * cgroup_apply_control_enable - enable or show csses according to control
3059  * @cgrp: root of the target subtree
3060  *
3061  * Walk @cgrp's subtree and create new csses or make the existing ones
3062  * visible.  A css is created invisible if it's being implicitly enabled
3063  * through dependency.  An invisible css is made visible when the userland
3064  * explicitly enables it.
3065  *
3066  * Returns 0 on success, -errno on failure.  On failure, csses which have
3067  * been processed already aren't cleaned up.  The caller is responsible for
3068  * cleaning up with cgroup_apply_control_disable().
3069  */
3070 static int cgroup_apply_control_enable(struct cgroup *cgrp)
3071 {
3072 	struct cgroup *dsct;
3073 	struct cgroup_subsys_state *d_css;
3074 	struct cgroup_subsys *ss;
3075 	int ssid, ret;
3076 
3077 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3078 		for_each_subsys(ss, ssid) {
3079 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3080 
3081 			if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
3082 				continue;
3083 
3084 			if (!css) {
3085 				css = css_create(dsct, ss);
3086 				if (IS_ERR(css))
3087 					return PTR_ERR(css);
3088 			}
3089 
3090 			WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3091 
3092 			if (css_visible(css)) {
3093 				ret = css_populate_dir(css);
3094 				if (ret)
3095 					return ret;
3096 			}
3097 		}
3098 	}
3099 
3100 	return 0;
3101 }
3102 
3103 /**
3104  * cgroup_apply_control_disable - kill or hide csses according to control
3105  * @cgrp: root of the target subtree
3106  *
3107  * Walk @cgrp's subtree and kill and hide csses so that they match
3108  * cgroup_ss_mask() and cgroup_visible_mask().
3109  *
3110  * A css is hidden when the userland requests it to be disabled while other
3111  * subsystems are still depending on it.  The css must not actively control
3112  * resources and be in the vanilla state if it's made visible again later.
3113  * Controllers which may be depended upon should provide ->css_reset() for
3114  * this purpose.
3115  */
3116 static void cgroup_apply_control_disable(struct cgroup *cgrp)
3117 {
3118 	struct cgroup *dsct;
3119 	struct cgroup_subsys_state *d_css;
3120 	struct cgroup_subsys *ss;
3121 	int ssid;
3122 
3123 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3124 		for_each_subsys(ss, ssid) {
3125 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3126 
3127 			if (!css)
3128 				continue;
3129 
3130 			WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3131 
3132 			if (css->parent &&
3133 			    !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
3134 				kill_css(css);
3135 			} else if (!css_visible(css)) {
3136 				css_clear_dir(css);
3137 				if (ss->css_reset)
3138 					ss->css_reset(css);
3139 			}
3140 		}
3141 	}
3142 }
3143 
3144 /**
3145  * cgroup_apply_control - apply control mask updates to the subtree
3146  * @cgrp: root of the target subtree
3147  *
3148  * subsystems can be enabled and disabled in a subtree using the following
3149  * steps.
3150  *
3151  * 1. Call cgroup_save_control() to stash the current state.
3152  * 2. Update ->subtree_control masks in the subtree as desired.
3153  * 3. Call cgroup_apply_control() to apply the changes.
3154  * 4. Optionally perform other related operations.
3155  * 5. Call cgroup_finalize_control() to finish up.
3156  *
3157  * This function implements step 3 and propagates the mask changes
3158  * throughout @cgrp's subtree, updates csses accordingly and perform
3159  * process migrations.
3160  */
3161 static int cgroup_apply_control(struct cgroup *cgrp)
3162 {
3163 	int ret;
3164 
3165 	cgroup_propagate_control(cgrp);
3166 
3167 	ret = cgroup_apply_control_enable(cgrp);
3168 	if (ret)
3169 		return ret;
3170 
3171 	/*
3172 	 * At this point, cgroup_e_css_by_mask() results reflect the new csses
3173 	 * making the following cgroup_update_dfl_csses() properly update
3174 	 * css associations of all tasks in the subtree.
3175 	 */
3176 	ret = cgroup_update_dfl_csses(cgrp);
3177 	if (ret)
3178 		return ret;
3179 
3180 	return 0;
3181 }
3182 
3183 /**
3184  * cgroup_finalize_control - finalize control mask update
3185  * @cgrp: root of the target subtree
3186  * @ret: the result of the update
3187  *
3188  * Finalize control mask update.  See cgroup_apply_control() for more info.
3189  */
3190 static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
3191 {
3192 	if (ret) {
3193 		cgroup_restore_control(cgrp);
3194 		cgroup_propagate_control(cgrp);
3195 	}
3196 
3197 	cgroup_apply_control_disable(cgrp);
3198 }
3199 
3200 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable)
3201 {
3202 	u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask;
3203 
3204 	/* if nothing is getting enabled, nothing to worry about */
3205 	if (!enable)
3206 		return 0;
3207 
3208 	/* can @cgrp host any resources? */
3209 	if (!cgroup_is_valid_domain(cgrp->dom_cgrp))
3210 		return -EOPNOTSUPP;
3211 
3212 	/* mixables don't care */
3213 	if (cgroup_is_mixable(cgrp))
3214 		return 0;
3215 
3216 	if (domain_enable) {
3217 		/* can't enable domain controllers inside a thread subtree */
3218 		if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3219 			return -EOPNOTSUPP;
3220 	} else {
3221 		/*
3222 		 * Threaded controllers can handle internal competitions
3223 		 * and are always allowed inside a (prospective) thread
3224 		 * subtree.
3225 		 */
3226 		if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3227 			return 0;
3228 	}
3229 
3230 	/*
3231 	 * Controllers can't be enabled for a cgroup with tasks to avoid
3232 	 * child cgroups competing against tasks.
3233 	 */
3234 	if (cgroup_has_tasks(cgrp))
3235 		return -EBUSY;
3236 
3237 	return 0;
3238 }
3239 
3240 /* change the enabled child controllers for a cgroup in the default hierarchy */
3241 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3242 					    char *buf, size_t nbytes,
3243 					    loff_t off)
3244 {
3245 	u16 enable = 0, disable = 0;
3246 	struct cgroup *cgrp, *child;
3247 	struct cgroup_subsys *ss;
3248 	char *tok;
3249 	int ssid, ret;
3250 
3251 	/*
3252 	 * Parse input - space separated list of subsystem names prefixed
3253 	 * with either + or -.
3254 	 */
3255 	buf = strstrip(buf);
3256 	while ((tok = strsep(&buf, " "))) {
3257 		if (tok[0] == '\0')
3258 			continue;
3259 		do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
3260 			if (!cgroup_ssid_enabled(ssid) ||
3261 			    strcmp(tok + 1, ss->name))
3262 				continue;
3263 
3264 			if (*tok == '+') {
3265 				enable |= 1 << ssid;
3266 				disable &= ~(1 << ssid);
3267 			} else if (*tok == '-') {
3268 				disable |= 1 << ssid;
3269 				enable &= ~(1 << ssid);
3270 			} else {
3271 				return -EINVAL;
3272 			}
3273 			break;
3274 		} while_each_subsys_mask();
3275 		if (ssid == CGROUP_SUBSYS_COUNT)
3276 			return -EINVAL;
3277 	}
3278 
3279 	cgrp = cgroup_kn_lock_live(of->kn, true);
3280 	if (!cgrp)
3281 		return -ENODEV;
3282 
3283 	for_each_subsys(ss, ssid) {
3284 		if (enable & (1 << ssid)) {
3285 			if (cgrp->subtree_control & (1 << ssid)) {
3286 				enable &= ~(1 << ssid);
3287 				continue;
3288 			}
3289 
3290 			if (!(cgroup_control(cgrp) & (1 << ssid))) {
3291 				ret = -ENOENT;
3292 				goto out_unlock;
3293 			}
3294 		} else if (disable & (1 << ssid)) {
3295 			if (!(cgrp->subtree_control & (1 << ssid))) {
3296 				disable &= ~(1 << ssid);
3297 				continue;
3298 			}
3299 
3300 			/* a child has it enabled? */
3301 			cgroup_for_each_live_child(child, cgrp) {
3302 				if (child->subtree_control & (1 << ssid)) {
3303 					ret = -EBUSY;
3304 					goto out_unlock;
3305 				}
3306 			}
3307 		}
3308 	}
3309 
3310 	if (!enable && !disable) {
3311 		ret = 0;
3312 		goto out_unlock;
3313 	}
3314 
3315 	ret = cgroup_vet_subtree_control_enable(cgrp, enable);
3316 	if (ret)
3317 		goto out_unlock;
3318 
3319 	/* save and update control masks and prepare csses */
3320 	cgroup_save_control(cgrp);
3321 
3322 	cgrp->subtree_control |= enable;
3323 	cgrp->subtree_control &= ~disable;
3324 
3325 	ret = cgroup_apply_control(cgrp);
3326 	cgroup_finalize_control(cgrp, ret);
3327 	if (ret)
3328 		goto out_unlock;
3329 
3330 	kernfs_activate(cgrp->kn);
3331 out_unlock:
3332 	cgroup_kn_unlock(of->kn);
3333 	return ret ?: nbytes;
3334 }
3335 
3336 /**
3337  * cgroup_enable_threaded - make @cgrp threaded
3338  * @cgrp: the target cgroup
3339  *
3340  * Called when "threaded" is written to the cgroup.type interface file and
3341  * tries to make @cgrp threaded and join the parent's resource domain.
3342  * This function is never called on the root cgroup as cgroup.type doesn't
3343  * exist on it.
3344  */
3345 static int cgroup_enable_threaded(struct cgroup *cgrp)
3346 {
3347 	struct cgroup *parent = cgroup_parent(cgrp);
3348 	struct cgroup *dom_cgrp = parent->dom_cgrp;
3349 	struct cgroup *dsct;
3350 	struct cgroup_subsys_state *d_css;
3351 	int ret;
3352 
3353 	lockdep_assert_held(&cgroup_mutex);
3354 
3355 	/* noop if already threaded */
3356 	if (cgroup_is_threaded(cgrp))
3357 		return 0;
3358 
3359 	/*
3360 	 * If @cgroup is populated or has domain controllers enabled, it
3361 	 * can't be switched.  While the below cgroup_can_be_thread_root()
3362 	 * test can catch the same conditions, that's only when @parent is
3363 	 * not mixable, so let's check it explicitly.
3364 	 */
3365 	if (cgroup_is_populated(cgrp) ||
3366 	    cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
3367 		return -EOPNOTSUPP;
3368 
3369 	/* we're joining the parent's domain, ensure its validity */
3370 	if (!cgroup_is_valid_domain(dom_cgrp) ||
3371 	    !cgroup_can_be_thread_root(dom_cgrp))
3372 		return -EOPNOTSUPP;
3373 
3374 	/*
3375 	 * The following shouldn't cause actual migrations and should
3376 	 * always succeed.
3377 	 */
3378 	cgroup_save_control(cgrp);
3379 
3380 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)
3381 		if (dsct == cgrp || cgroup_is_threaded(dsct))
3382 			dsct->dom_cgrp = dom_cgrp;
3383 
3384 	ret = cgroup_apply_control(cgrp);
3385 	if (!ret)
3386 		parent->nr_threaded_children++;
3387 
3388 	cgroup_finalize_control(cgrp, ret);
3389 	return ret;
3390 }
3391 
3392 static int cgroup_type_show(struct seq_file *seq, void *v)
3393 {
3394 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3395 
3396 	if (cgroup_is_threaded(cgrp))
3397 		seq_puts(seq, "threaded\n");
3398 	else if (!cgroup_is_valid_domain(cgrp))
3399 		seq_puts(seq, "domain invalid\n");
3400 	else if (cgroup_is_thread_root(cgrp))
3401 		seq_puts(seq, "domain threaded\n");
3402 	else
3403 		seq_puts(seq, "domain\n");
3404 
3405 	return 0;
3406 }
3407 
3408 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf,
3409 				 size_t nbytes, loff_t off)
3410 {
3411 	struct cgroup *cgrp;
3412 	int ret;
3413 
3414 	/* only switching to threaded mode is supported */
3415 	if (strcmp(strstrip(buf), "threaded"))
3416 		return -EINVAL;
3417 
3418 	/* drain dying csses before we re-apply (threaded) subtree control */
3419 	cgrp = cgroup_kn_lock_live(of->kn, true);
3420 	if (!cgrp)
3421 		return -ENOENT;
3422 
3423 	/* threaded can only be enabled */
3424 	ret = cgroup_enable_threaded(cgrp);
3425 
3426 	cgroup_kn_unlock(of->kn);
3427 	return ret ?: nbytes;
3428 }
3429 
3430 static int cgroup_max_descendants_show(struct seq_file *seq, void *v)
3431 {
3432 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3433 	int descendants = READ_ONCE(cgrp->max_descendants);
3434 
3435 	if (descendants == INT_MAX)
3436 		seq_puts(seq, "max\n");
3437 	else
3438 		seq_printf(seq, "%d\n", descendants);
3439 
3440 	return 0;
3441 }
3442 
3443 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of,
3444 					   char *buf, size_t nbytes, loff_t off)
3445 {
3446 	struct cgroup *cgrp;
3447 	int descendants;
3448 	ssize_t ret;
3449 
3450 	buf = strstrip(buf);
3451 	if (!strcmp(buf, "max")) {
3452 		descendants = INT_MAX;
3453 	} else {
3454 		ret = kstrtoint(buf, 0, &descendants);
3455 		if (ret)
3456 			return ret;
3457 	}
3458 
3459 	if (descendants < 0)
3460 		return -ERANGE;
3461 
3462 	cgrp = cgroup_kn_lock_live(of->kn, false);
3463 	if (!cgrp)
3464 		return -ENOENT;
3465 
3466 	cgrp->max_descendants = descendants;
3467 
3468 	cgroup_kn_unlock(of->kn);
3469 
3470 	return nbytes;
3471 }
3472 
3473 static int cgroup_max_depth_show(struct seq_file *seq, void *v)
3474 {
3475 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3476 	int depth = READ_ONCE(cgrp->max_depth);
3477 
3478 	if (depth == INT_MAX)
3479 		seq_puts(seq, "max\n");
3480 	else
3481 		seq_printf(seq, "%d\n", depth);
3482 
3483 	return 0;
3484 }
3485 
3486 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of,
3487 				      char *buf, size_t nbytes, loff_t off)
3488 {
3489 	struct cgroup *cgrp;
3490 	ssize_t ret;
3491 	int depth;
3492 
3493 	buf = strstrip(buf);
3494 	if (!strcmp(buf, "max")) {
3495 		depth = INT_MAX;
3496 	} else {
3497 		ret = kstrtoint(buf, 0, &depth);
3498 		if (ret)
3499 			return ret;
3500 	}
3501 
3502 	if (depth < 0)
3503 		return -ERANGE;
3504 
3505 	cgrp = cgroup_kn_lock_live(of->kn, false);
3506 	if (!cgrp)
3507 		return -ENOENT;
3508 
3509 	cgrp->max_depth = depth;
3510 
3511 	cgroup_kn_unlock(of->kn);
3512 
3513 	return nbytes;
3514 }
3515 
3516 static int cgroup_events_show(struct seq_file *seq, void *v)
3517 {
3518 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3519 
3520 	seq_printf(seq, "populated %d\n", cgroup_is_populated(cgrp));
3521 	seq_printf(seq, "frozen %d\n", test_bit(CGRP_FROZEN, &cgrp->flags));
3522 
3523 	return 0;
3524 }
3525 
3526 static int cgroup_stat_show(struct seq_file *seq, void *v)
3527 {
3528 	struct cgroup *cgroup = seq_css(seq)->cgroup;
3529 
3530 	seq_printf(seq, "nr_descendants %d\n",
3531 		   cgroup->nr_descendants);
3532 	seq_printf(seq, "nr_dying_descendants %d\n",
3533 		   cgroup->nr_dying_descendants);
3534 
3535 	return 0;
3536 }
3537 
3538 static int __maybe_unused cgroup_extra_stat_show(struct seq_file *seq,
3539 						 struct cgroup *cgrp, int ssid)
3540 {
3541 	struct cgroup_subsys *ss = cgroup_subsys[ssid];
3542 	struct cgroup_subsys_state *css;
3543 	int ret;
3544 
3545 	if (!ss->css_extra_stat_show)
3546 		return 0;
3547 
3548 	css = cgroup_tryget_css(cgrp, ss);
3549 	if (!css)
3550 		return 0;
3551 
3552 	ret = ss->css_extra_stat_show(seq, css);
3553 	css_put(css);
3554 	return ret;
3555 }
3556 
3557 static int cpu_stat_show(struct seq_file *seq, void *v)
3558 {
3559 	struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup;
3560 	int ret = 0;
3561 
3562 	cgroup_base_stat_cputime_show(seq);
3563 #ifdef CONFIG_CGROUP_SCHED
3564 	ret = cgroup_extra_stat_show(seq, cgrp, cpu_cgrp_id);
3565 #endif
3566 	return ret;
3567 }
3568 
3569 #ifdef CONFIG_PSI
3570 static int cgroup_io_pressure_show(struct seq_file *seq, void *v)
3571 {
3572 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3573 	struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi;
3574 
3575 	return psi_show(seq, psi, PSI_IO);
3576 }
3577 static int cgroup_memory_pressure_show(struct seq_file *seq, void *v)
3578 {
3579 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3580 	struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi;
3581 
3582 	return psi_show(seq, psi, PSI_MEM);
3583 }
3584 static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v)
3585 {
3586 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3587 	struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi;
3588 
3589 	return psi_show(seq, psi, PSI_CPU);
3590 }
3591 
3592 static ssize_t cgroup_pressure_write(struct kernfs_open_file *of, char *buf,
3593 					  size_t nbytes, enum psi_res res)
3594 {
3595 	struct psi_trigger *new;
3596 	struct cgroup *cgrp;
3597 	struct psi_group *psi;
3598 
3599 	cgrp = cgroup_kn_lock_live(of->kn, false);
3600 	if (!cgrp)
3601 		return -ENODEV;
3602 
3603 	cgroup_get(cgrp);
3604 	cgroup_kn_unlock(of->kn);
3605 
3606 	psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi;
3607 	new = psi_trigger_create(psi, buf, nbytes, res);
3608 	if (IS_ERR(new)) {
3609 		cgroup_put(cgrp);
3610 		return PTR_ERR(new);
3611 	}
3612 
3613 	psi_trigger_replace(&of->priv, new);
3614 
3615 	cgroup_put(cgrp);
3616 
3617 	return nbytes;
3618 }
3619 
3620 static ssize_t cgroup_io_pressure_write(struct kernfs_open_file *of,
3621 					  char *buf, size_t nbytes,
3622 					  loff_t off)
3623 {
3624 	return cgroup_pressure_write(of, buf, nbytes, PSI_IO);
3625 }
3626 
3627 static ssize_t cgroup_memory_pressure_write(struct kernfs_open_file *of,
3628 					  char *buf, size_t nbytes,
3629 					  loff_t off)
3630 {
3631 	return cgroup_pressure_write(of, buf, nbytes, PSI_MEM);
3632 }
3633 
3634 static ssize_t cgroup_cpu_pressure_write(struct kernfs_open_file *of,
3635 					  char *buf, size_t nbytes,
3636 					  loff_t off)
3637 {
3638 	return cgroup_pressure_write(of, buf, nbytes, PSI_CPU);
3639 }
3640 
3641 static __poll_t cgroup_pressure_poll(struct kernfs_open_file *of,
3642 					  poll_table *pt)
3643 {
3644 	return psi_trigger_poll(&of->priv, of->file, pt);
3645 }
3646 
3647 static void cgroup_pressure_release(struct kernfs_open_file *of)
3648 {
3649 	psi_trigger_replace(&of->priv, NULL);
3650 }
3651 
3652 bool cgroup_psi_enabled(void)
3653 {
3654 	return (cgroup_feature_disable_mask & (1 << OPT_FEATURE_PRESSURE)) == 0;
3655 }
3656 
3657 #else /* CONFIG_PSI */
3658 bool cgroup_psi_enabled(void)
3659 {
3660 	return false;
3661 }
3662 
3663 #endif /* CONFIG_PSI */
3664 
3665 static int cgroup_freeze_show(struct seq_file *seq, void *v)
3666 {
3667 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3668 
3669 	seq_printf(seq, "%d\n", cgrp->freezer.freeze);
3670 
3671 	return 0;
3672 }
3673 
3674 static ssize_t cgroup_freeze_write(struct kernfs_open_file *of,
3675 				   char *buf, size_t nbytes, loff_t off)
3676 {
3677 	struct cgroup *cgrp;
3678 	ssize_t ret;
3679 	int freeze;
3680 
3681 	ret = kstrtoint(strstrip(buf), 0, &freeze);
3682 	if (ret)
3683 		return ret;
3684 
3685 	if (freeze < 0 || freeze > 1)
3686 		return -ERANGE;
3687 
3688 	cgrp = cgroup_kn_lock_live(of->kn, false);
3689 	if (!cgrp)
3690 		return -ENOENT;
3691 
3692 	cgroup_freeze(cgrp, freeze);
3693 
3694 	cgroup_kn_unlock(of->kn);
3695 
3696 	return nbytes;
3697 }
3698 
3699 static void __cgroup_kill(struct cgroup *cgrp)
3700 {
3701 	struct css_task_iter it;
3702 	struct task_struct *task;
3703 
3704 	lockdep_assert_held(&cgroup_mutex);
3705 
3706 	spin_lock_irq(&css_set_lock);
3707 	set_bit(CGRP_KILL, &cgrp->flags);
3708 	spin_unlock_irq(&css_set_lock);
3709 
3710 	css_task_iter_start(&cgrp->self, CSS_TASK_ITER_PROCS | CSS_TASK_ITER_THREADED, &it);
3711 	while ((task = css_task_iter_next(&it))) {
3712 		/* Ignore kernel threads here. */
3713 		if (task->flags & PF_KTHREAD)
3714 			continue;
3715 
3716 		/* Skip tasks that are already dying. */
3717 		if (__fatal_signal_pending(task))
3718 			continue;
3719 
3720 		send_sig(SIGKILL, task, 0);
3721 	}
3722 	css_task_iter_end(&it);
3723 
3724 	spin_lock_irq(&css_set_lock);
3725 	clear_bit(CGRP_KILL, &cgrp->flags);
3726 	spin_unlock_irq(&css_set_lock);
3727 }
3728 
3729 static void cgroup_kill(struct cgroup *cgrp)
3730 {
3731 	struct cgroup_subsys_state *css;
3732 	struct cgroup *dsct;
3733 
3734 	lockdep_assert_held(&cgroup_mutex);
3735 
3736 	cgroup_for_each_live_descendant_pre(dsct, css, cgrp)
3737 		__cgroup_kill(dsct);
3738 }
3739 
3740 static ssize_t cgroup_kill_write(struct kernfs_open_file *of, char *buf,
3741 				 size_t nbytes, loff_t off)
3742 {
3743 	ssize_t ret = 0;
3744 	int kill;
3745 	struct cgroup *cgrp;
3746 
3747 	ret = kstrtoint(strstrip(buf), 0, &kill);
3748 	if (ret)
3749 		return ret;
3750 
3751 	if (kill != 1)
3752 		return -ERANGE;
3753 
3754 	cgrp = cgroup_kn_lock_live(of->kn, false);
3755 	if (!cgrp)
3756 		return -ENOENT;
3757 
3758 	/*
3759 	 * Killing is a process directed operation, i.e. the whole thread-group
3760 	 * is taken down so act like we do for cgroup.procs and only make this
3761 	 * writable in non-threaded cgroups.
3762 	 */
3763 	if (cgroup_is_threaded(cgrp))
3764 		ret = -EOPNOTSUPP;
3765 	else
3766 		cgroup_kill(cgrp);
3767 
3768 	cgroup_kn_unlock(of->kn);
3769 
3770 	return ret ?: nbytes;
3771 }
3772 
3773 static int cgroup_file_open(struct kernfs_open_file *of)
3774 {
3775 	struct cftype *cft = of_cft(of);
3776 
3777 	if (cft->open)
3778 		return cft->open(of);
3779 	return 0;
3780 }
3781 
3782 static void cgroup_file_release(struct kernfs_open_file *of)
3783 {
3784 	struct cftype *cft = of_cft(of);
3785 
3786 	if (cft->release)
3787 		cft->release(of);
3788 }
3789 
3790 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3791 				 size_t nbytes, loff_t off)
3792 {
3793 	struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
3794 	struct cgroup *cgrp = of->kn->parent->priv;
3795 	struct cftype *cft = of_cft(of);
3796 	struct cgroup_subsys_state *css;
3797 	int ret;
3798 
3799 	if (!nbytes)
3800 		return 0;
3801 
3802 	/*
3803 	 * If namespaces are delegation boundaries, disallow writes to
3804 	 * files in an non-init namespace root from inside the namespace
3805 	 * except for the files explicitly marked delegatable -
3806 	 * cgroup.procs and cgroup.subtree_control.
3807 	 */
3808 	if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) &&
3809 	    !(cft->flags & CFTYPE_NS_DELEGATABLE) &&
3810 	    ns != &init_cgroup_ns && ns->root_cset->dfl_cgrp == cgrp)
3811 		return -EPERM;
3812 
3813 	if (cft->write)
3814 		return cft->write(of, buf, nbytes, off);
3815 
3816 	/*
3817 	 * kernfs guarantees that a file isn't deleted with operations in
3818 	 * flight, which means that the matching css is and stays alive and
3819 	 * doesn't need to be pinned.  The RCU locking is not necessary
3820 	 * either.  It's just for the convenience of using cgroup_css().
3821 	 */
3822 	rcu_read_lock();
3823 	css = cgroup_css(cgrp, cft->ss);
3824 	rcu_read_unlock();
3825 
3826 	if (cft->write_u64) {
3827 		unsigned long long v;
3828 		ret = kstrtoull(buf, 0, &v);
3829 		if (!ret)
3830 			ret = cft->write_u64(css, cft, v);
3831 	} else if (cft->write_s64) {
3832 		long long v;
3833 		ret = kstrtoll(buf, 0, &v);
3834 		if (!ret)
3835 			ret = cft->write_s64(css, cft, v);
3836 	} else {
3837 		ret = -EINVAL;
3838 	}
3839 
3840 	return ret ?: nbytes;
3841 }
3842 
3843 static __poll_t cgroup_file_poll(struct kernfs_open_file *of, poll_table *pt)
3844 {
3845 	struct cftype *cft = of_cft(of);
3846 
3847 	if (cft->poll)
3848 		return cft->poll(of, pt);
3849 
3850 	return kernfs_generic_poll(of, pt);
3851 }
3852 
3853 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
3854 {
3855 	return seq_cft(seq)->seq_start(seq, ppos);
3856 }
3857 
3858 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
3859 {
3860 	return seq_cft(seq)->seq_next(seq, v, ppos);
3861 }
3862 
3863 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
3864 {
3865 	if (seq_cft(seq)->seq_stop)
3866 		seq_cft(seq)->seq_stop(seq, v);
3867 }
3868 
3869 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
3870 {
3871 	struct cftype *cft = seq_cft(m);
3872 	struct cgroup_subsys_state *css = seq_css(m);
3873 
3874 	if (cft->seq_show)
3875 		return cft->seq_show(m, arg);
3876 
3877 	if (cft->read_u64)
3878 		seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3879 	else if (cft->read_s64)
3880 		seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3881 	else
3882 		return -EINVAL;
3883 	return 0;
3884 }
3885 
3886 static struct kernfs_ops cgroup_kf_single_ops = {
3887 	.atomic_write_len	= PAGE_SIZE,
3888 	.open			= cgroup_file_open,
3889 	.release		= cgroup_file_release,
3890 	.write			= cgroup_file_write,
3891 	.poll			= cgroup_file_poll,
3892 	.seq_show		= cgroup_seqfile_show,
3893 };
3894 
3895 static struct kernfs_ops cgroup_kf_ops = {
3896 	.atomic_write_len	= PAGE_SIZE,
3897 	.open			= cgroup_file_open,
3898 	.release		= cgroup_file_release,
3899 	.write			= cgroup_file_write,
3900 	.poll			= cgroup_file_poll,
3901 	.seq_start		= cgroup_seqfile_start,
3902 	.seq_next		= cgroup_seqfile_next,
3903 	.seq_stop		= cgroup_seqfile_stop,
3904 	.seq_show		= cgroup_seqfile_show,
3905 };
3906 
3907 /* set uid and gid of cgroup dirs and files to that of the creator */
3908 static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3909 {
3910 	struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3911 			       .ia_uid = current_fsuid(),
3912 			       .ia_gid = current_fsgid(), };
3913 
3914 	if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3915 	    gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3916 		return 0;
3917 
3918 	return kernfs_setattr(kn, &iattr);
3919 }
3920 
3921 static void cgroup_file_notify_timer(struct timer_list *timer)
3922 {
3923 	cgroup_file_notify(container_of(timer, struct cgroup_file,
3924 					notify_timer));
3925 }
3926 
3927 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3928 			   struct cftype *cft)
3929 {
3930 	char name[CGROUP_FILE_NAME_MAX];
3931 	struct kernfs_node *kn;
3932 	struct lock_class_key *key = NULL;
3933 	int ret;
3934 
3935 #ifdef CONFIG_DEBUG_LOCK_ALLOC
3936 	key = &cft->lockdep_key;
3937 #endif
3938 	kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3939 				  cgroup_file_mode(cft),
3940 				  GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
3941 				  0, cft->kf_ops, cft,
3942 				  NULL, key);
3943 	if (IS_ERR(kn))
3944 		return PTR_ERR(kn);
3945 
3946 	ret = cgroup_kn_set_ugid(kn);
3947 	if (ret) {
3948 		kernfs_remove(kn);
3949 		return ret;
3950 	}
3951 
3952 	if (cft->file_offset) {
3953 		struct cgroup_file *cfile = (void *)css + cft->file_offset;
3954 
3955 		timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0);
3956 
3957 		spin_lock_irq(&cgroup_file_kn_lock);
3958 		cfile->kn = kn;
3959 		spin_unlock_irq(&cgroup_file_kn_lock);
3960 	}
3961 
3962 	return 0;
3963 }
3964 
3965 /**
3966  * cgroup_addrm_files - add or remove files to a cgroup directory
3967  * @css: the target css
3968  * @cgrp: the target cgroup (usually css->cgroup)
3969  * @cfts: array of cftypes to be added
3970  * @is_add: whether to add or remove
3971  *
3972  * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3973  * For removals, this function never fails.
3974  */
3975 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3976 			      struct cgroup *cgrp, struct cftype cfts[],
3977 			      bool is_add)
3978 {
3979 	struct cftype *cft, *cft_end = NULL;
3980 	int ret = 0;
3981 
3982 	lockdep_assert_held(&cgroup_mutex);
3983 
3984 restart:
3985 	for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
3986 		/* does cft->flags tell us to skip this file on @cgrp? */
3987 		if ((cft->flags & CFTYPE_PRESSURE) && !cgroup_psi_enabled())
3988 			continue;
3989 		if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
3990 			continue;
3991 		if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
3992 			continue;
3993 		if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
3994 			continue;
3995 		if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
3996 			continue;
3997 		if ((cft->flags & CFTYPE_DEBUG) && !cgroup_debug)
3998 			continue;
3999 		if (is_add) {
4000 			ret = cgroup_add_file(css, cgrp, cft);
4001 			if (ret) {
4002 				pr_warn("%s: failed to add %s, err=%d\n",
4003 					__func__, cft->name, ret);
4004 				cft_end = cft;
4005 				is_add = false;
4006 				goto restart;
4007 			}
4008 		} else {
4009 			cgroup_rm_file(cgrp, cft);
4010 		}
4011 	}
4012 	return ret;
4013 }
4014 
4015 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
4016 {
4017 	struct cgroup_subsys *ss = cfts[0].ss;
4018 	struct cgroup *root = &ss->root->cgrp;
4019 	struct cgroup_subsys_state *css;
4020 	int ret = 0;
4021 
4022 	lockdep_assert_held(&cgroup_mutex);
4023 
4024 	/* add/rm files for all cgroups created before */
4025 	css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
4026 		struct cgroup *cgrp = css->cgroup;
4027 
4028 		if (!(css->flags & CSS_VISIBLE))
4029 			continue;
4030 
4031 		ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
4032 		if (ret)
4033 			break;
4034 	}
4035 
4036 	if (is_add && !ret)
4037 		kernfs_activate(root->kn);
4038 	return ret;
4039 }
4040 
4041 static void cgroup_exit_cftypes(struct cftype *cfts)
4042 {
4043 	struct cftype *cft;
4044 
4045 	for (cft = cfts; cft->name[0] != '\0'; cft++) {
4046 		/* free copy for custom atomic_write_len, see init_cftypes() */
4047 		if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
4048 			kfree(cft->kf_ops);
4049 		cft->kf_ops = NULL;
4050 		cft->ss = NULL;
4051 
4052 		/* revert flags set by cgroup core while adding @cfts */
4053 		cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
4054 	}
4055 }
4056 
4057 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4058 {
4059 	struct cftype *cft;
4060 
4061 	for (cft = cfts; cft->name[0] != '\0'; cft++) {
4062 		struct kernfs_ops *kf_ops;
4063 
4064 		WARN_ON(cft->ss || cft->kf_ops);
4065 
4066 		if ((cft->flags & CFTYPE_PRESSURE) && !cgroup_psi_enabled())
4067 			continue;
4068 
4069 		if (cft->seq_start)
4070 			kf_ops = &cgroup_kf_ops;
4071 		else
4072 			kf_ops = &cgroup_kf_single_ops;
4073 
4074 		/*
4075 		 * Ugh... if @cft wants a custom max_write_len, we need to
4076 		 * make a copy of kf_ops to set its atomic_write_len.
4077 		 */
4078 		if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
4079 			kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
4080 			if (!kf_ops) {
4081 				cgroup_exit_cftypes(cfts);
4082 				return -ENOMEM;
4083 			}
4084 			kf_ops->atomic_write_len = cft->max_write_len;
4085 		}
4086 
4087 		cft->kf_ops = kf_ops;
4088 		cft->ss = ss;
4089 	}
4090 
4091 	return 0;
4092 }
4093 
4094 static int cgroup_rm_cftypes_locked(struct cftype *cfts)
4095 {
4096 	lockdep_assert_held(&cgroup_mutex);
4097 
4098 	if (!cfts || !cfts[0].ss)
4099 		return -ENOENT;
4100 
4101 	list_del(&cfts->node);
4102 	cgroup_apply_cftypes(cfts, false);
4103 	cgroup_exit_cftypes(cfts);
4104 	return 0;
4105 }
4106 
4107 /**
4108  * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
4109  * @cfts: zero-length name terminated array of cftypes
4110  *
4111  * Unregister @cfts.  Files described by @cfts are removed from all
4112  * existing cgroups and all future cgroups won't have them either.  This
4113  * function can be called anytime whether @cfts' subsys is attached or not.
4114  *
4115  * Returns 0 on successful unregistration, -ENOENT if @cfts is not
4116  * registered.
4117  */
4118 int cgroup_rm_cftypes(struct cftype *cfts)
4119 {
4120 	int ret;
4121 
4122 	mutex_lock(&cgroup_mutex);
4123 	ret = cgroup_rm_cftypes_locked(cfts);
4124 	mutex_unlock(&cgroup_mutex);
4125 	return ret;
4126 }
4127 
4128 /**
4129  * cgroup_add_cftypes - add an array of cftypes to a subsystem
4130  * @ss: target cgroup subsystem
4131  * @cfts: zero-length name terminated array of cftypes
4132  *
4133  * Register @cfts to @ss.  Files described by @cfts are created for all
4134  * existing cgroups to which @ss is attached and all future cgroups will
4135  * have them too.  This function can be called anytime whether @ss is
4136  * attached or not.
4137  *
4138  * Returns 0 on successful registration, -errno on failure.  Note that this
4139  * function currently returns 0 as long as @cfts registration is successful
4140  * even if some file creation attempts on existing cgroups fail.
4141  */
4142 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4143 {
4144 	int ret;
4145 
4146 	if (!cgroup_ssid_enabled(ss->id))
4147 		return 0;
4148 
4149 	if (!cfts || cfts[0].name[0] == '\0')
4150 		return 0;
4151 
4152 	ret = cgroup_init_cftypes(ss, cfts);
4153 	if (ret)
4154 		return ret;
4155 
4156 	mutex_lock(&cgroup_mutex);
4157 
4158 	list_add_tail(&cfts->node, &ss->cfts);
4159 	ret = cgroup_apply_cftypes(cfts, true);
4160 	if (ret)
4161 		cgroup_rm_cftypes_locked(cfts);
4162 
4163 	mutex_unlock(&cgroup_mutex);
4164 	return ret;
4165 }
4166 
4167 /**
4168  * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
4169  * @ss: target cgroup subsystem
4170  * @cfts: zero-length name terminated array of cftypes
4171  *
4172  * Similar to cgroup_add_cftypes() but the added files are only used for
4173  * the default hierarchy.
4174  */
4175 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4176 {
4177 	struct cftype *cft;
4178 
4179 	for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4180 		cft->flags |= __CFTYPE_ONLY_ON_DFL;
4181 	return cgroup_add_cftypes(ss, cfts);
4182 }
4183 
4184 /**
4185  * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
4186  * @ss: target cgroup subsystem
4187  * @cfts: zero-length name terminated array of cftypes
4188  *
4189  * Similar to cgroup_add_cftypes() but the added files are only used for
4190  * the legacy hierarchies.
4191  */
4192 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4193 {
4194 	struct cftype *cft;
4195 
4196 	for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4197 		cft->flags |= __CFTYPE_NOT_ON_DFL;
4198 	return cgroup_add_cftypes(ss, cfts);
4199 }
4200 
4201 /**
4202  * cgroup_file_notify - generate a file modified event for a cgroup_file
4203  * @cfile: target cgroup_file
4204  *
4205  * @cfile must have been obtained by setting cftype->file_offset.
4206  */
4207 void cgroup_file_notify(struct cgroup_file *cfile)
4208 {
4209 	unsigned long flags;
4210 
4211 	spin_lock_irqsave(&cgroup_file_kn_lock, flags);
4212 	if (cfile->kn) {
4213 		unsigned long last = cfile->notified_at;
4214 		unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV;
4215 
4216 		if (time_in_range(jiffies, last, next)) {
4217 			timer_reduce(&cfile->notify_timer, next);
4218 		} else {
4219 			kernfs_notify(cfile->kn);
4220 			cfile->notified_at = jiffies;
4221 		}
4222 	}
4223 	spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
4224 }
4225 
4226 /**
4227  * css_next_child - find the next child of a given css
4228  * @pos: the current position (%NULL to initiate traversal)
4229  * @parent: css whose children to walk
4230  *
4231  * This function returns the next child of @parent and should be called
4232  * under either cgroup_mutex or RCU read lock.  The only requirement is
4233  * that @parent and @pos are accessible.  The next sibling is guaranteed to
4234  * be returned regardless of their states.
4235  *
4236  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4237  * css which finished ->css_online() is guaranteed to be visible in the
4238  * future iterations and will stay visible until the last reference is put.
4239  * A css which hasn't finished ->css_online() or already finished
4240  * ->css_offline() may show up during traversal.  It's each subsystem's
4241  * responsibility to synchronize against on/offlining.
4242  */
4243 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
4244 					   struct cgroup_subsys_state *parent)
4245 {
4246 	struct cgroup_subsys_state *next;
4247 
4248 	cgroup_assert_mutex_or_rcu_locked();
4249 
4250 	/*
4251 	 * @pos could already have been unlinked from the sibling list.
4252 	 * Once a cgroup is removed, its ->sibling.next is no longer
4253 	 * updated when its next sibling changes.  CSS_RELEASED is set when
4254 	 * @pos is taken off list, at which time its next pointer is valid,
4255 	 * and, as releases are serialized, the one pointed to by the next
4256 	 * pointer is guaranteed to not have started release yet.  This
4257 	 * implies that if we observe !CSS_RELEASED on @pos in this RCU
4258 	 * critical section, the one pointed to by its next pointer is
4259 	 * guaranteed to not have finished its RCU grace period even if we
4260 	 * have dropped rcu_read_lock() in-between iterations.
4261 	 *
4262 	 * If @pos has CSS_RELEASED set, its next pointer can't be
4263 	 * dereferenced; however, as each css is given a monotonically
4264 	 * increasing unique serial number and always appended to the
4265 	 * sibling list, the next one can be found by walking the parent's
4266 	 * children until the first css with higher serial number than
4267 	 * @pos's.  While this path can be slower, it happens iff iteration
4268 	 * races against release and the race window is very small.
4269 	 */
4270 	if (!pos) {
4271 		next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
4272 	} else if (likely(!(pos->flags & CSS_RELEASED))) {
4273 		next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
4274 	} else {
4275 		list_for_each_entry_rcu(next, &parent->children, sibling,
4276 					lockdep_is_held(&cgroup_mutex))
4277 			if (next->serial_nr > pos->serial_nr)
4278 				break;
4279 	}
4280 
4281 	/*
4282 	 * @next, if not pointing to the head, can be dereferenced and is
4283 	 * the next sibling.
4284 	 */
4285 	if (&next->sibling != &parent->children)
4286 		return next;
4287 	return NULL;
4288 }
4289 
4290 /**
4291  * css_next_descendant_pre - find the next descendant for pre-order walk
4292  * @pos: the current position (%NULL to initiate traversal)
4293  * @root: css whose descendants to walk
4294  *
4295  * To be used by css_for_each_descendant_pre().  Find the next descendant
4296  * to visit for pre-order traversal of @root's descendants.  @root is
4297  * included in the iteration and the first node to be visited.
4298  *
4299  * While this function requires cgroup_mutex or RCU read locking, it
4300  * doesn't require the whole traversal to be contained in a single critical
4301  * section.  This function will return the correct next descendant as long
4302  * as both @pos and @root are accessible and @pos is a descendant of @root.
4303  *
4304  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4305  * css which finished ->css_online() is guaranteed to be visible in the
4306  * future iterations and will stay visible until the last reference is put.
4307  * A css which hasn't finished ->css_online() or already finished
4308  * ->css_offline() may show up during traversal.  It's each subsystem's
4309  * responsibility to synchronize against on/offlining.
4310  */
4311 struct cgroup_subsys_state *
4312 css_next_descendant_pre(struct cgroup_subsys_state *pos,
4313 			struct cgroup_subsys_state *root)
4314 {
4315 	struct cgroup_subsys_state *next;
4316 
4317 	cgroup_assert_mutex_or_rcu_locked();
4318 
4319 	/* if first iteration, visit @root */
4320 	if (!pos)
4321 		return root;
4322 
4323 	/* visit the first child if exists */
4324 	next = css_next_child(NULL, pos);
4325 	if (next)
4326 		return next;
4327 
4328 	/* no child, visit my or the closest ancestor's next sibling */
4329 	while (pos != root) {
4330 		next = css_next_child(pos, pos->parent);
4331 		if (next)
4332 			return next;
4333 		pos = pos->parent;
4334 	}
4335 
4336 	return NULL;
4337 }
4338 EXPORT_SYMBOL_GPL(css_next_descendant_pre);
4339 
4340 /**
4341  * css_rightmost_descendant - return the rightmost descendant of a css
4342  * @pos: css of interest
4343  *
4344  * Return the rightmost descendant of @pos.  If there's no descendant, @pos
4345  * is returned.  This can be used during pre-order traversal to skip
4346  * subtree of @pos.
4347  *
4348  * While this function requires cgroup_mutex or RCU read locking, it
4349  * doesn't require the whole traversal to be contained in a single critical
4350  * section.  This function will return the correct rightmost descendant as
4351  * long as @pos is accessible.
4352  */
4353 struct cgroup_subsys_state *
4354 css_rightmost_descendant(struct cgroup_subsys_state *pos)
4355 {
4356 	struct cgroup_subsys_state *last, *tmp;
4357 
4358 	cgroup_assert_mutex_or_rcu_locked();
4359 
4360 	do {
4361 		last = pos;
4362 		/* ->prev isn't RCU safe, walk ->next till the end */
4363 		pos = NULL;
4364 		css_for_each_child(tmp, last)
4365 			pos = tmp;
4366 	} while (pos);
4367 
4368 	return last;
4369 }
4370 
4371 static struct cgroup_subsys_state *
4372 css_leftmost_descendant(struct cgroup_subsys_state *pos)
4373 {
4374 	struct cgroup_subsys_state *last;
4375 
4376 	do {
4377 		last = pos;
4378 		pos = css_next_child(NULL, pos);
4379 	} while (pos);
4380 
4381 	return last;
4382 }
4383 
4384 /**
4385  * css_next_descendant_post - find the next descendant for post-order walk
4386  * @pos: the current position (%NULL to initiate traversal)
4387  * @root: css whose descendants to walk
4388  *
4389  * To be used by css_for_each_descendant_post().  Find the next descendant
4390  * to visit for post-order traversal of @root's descendants.  @root is
4391  * included in the iteration and the last node to be visited.
4392  *
4393  * While this function requires cgroup_mutex or RCU read locking, it
4394  * doesn't require the whole traversal to be contained in a single critical
4395  * section.  This function will return the correct next descendant as long
4396  * as both @pos and @cgroup are accessible and @pos is a descendant of
4397  * @cgroup.
4398  *
4399  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4400  * css which finished ->css_online() is guaranteed to be visible in the
4401  * future iterations and will stay visible until the last reference is put.
4402  * A css which hasn't finished ->css_online() or already finished
4403  * ->css_offline() may show up during traversal.  It's each subsystem's
4404  * responsibility to synchronize against on/offlining.
4405  */
4406 struct cgroup_subsys_state *
4407 css_next_descendant_post(struct cgroup_subsys_state *pos,
4408 			 struct cgroup_subsys_state *root)
4409 {
4410 	struct cgroup_subsys_state *next;
4411 
4412 	cgroup_assert_mutex_or_rcu_locked();
4413 
4414 	/* if first iteration, visit leftmost descendant which may be @root */
4415 	if (!pos)
4416 		return css_leftmost_descendant(root);
4417 
4418 	/* if we visited @root, we're done */
4419 	if (pos == root)
4420 		return NULL;
4421 
4422 	/* if there's an unvisited sibling, visit its leftmost descendant */
4423 	next = css_next_child(pos, pos->parent);
4424 	if (next)
4425 		return css_leftmost_descendant(next);
4426 
4427 	/* no sibling left, visit parent */
4428 	return pos->parent;
4429 }
4430 
4431 /**
4432  * css_has_online_children - does a css have online children
4433  * @css: the target css
4434  *
4435  * Returns %true if @css has any online children; otherwise, %false.  This
4436  * function can be called from any context but the caller is responsible
4437  * for synchronizing against on/offlining as necessary.
4438  */
4439 bool css_has_online_children(struct cgroup_subsys_state *css)
4440 {
4441 	struct cgroup_subsys_state *child;
4442 	bool ret = false;
4443 
4444 	rcu_read_lock();
4445 	css_for_each_child(child, css) {
4446 		if (child->flags & CSS_ONLINE) {
4447 			ret = true;
4448 			break;
4449 		}
4450 	}
4451 	rcu_read_unlock();
4452 	return ret;
4453 }
4454 
4455 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it)
4456 {
4457 	struct list_head *l;
4458 	struct cgrp_cset_link *link;
4459 	struct css_set *cset;
4460 
4461 	lockdep_assert_held(&css_set_lock);
4462 
4463 	/* find the next threaded cset */
4464 	if (it->tcset_pos) {
4465 		l = it->tcset_pos->next;
4466 
4467 		if (l != it->tcset_head) {
4468 			it->tcset_pos = l;
4469 			return container_of(l, struct css_set,
4470 					    threaded_csets_node);
4471 		}
4472 
4473 		it->tcset_pos = NULL;
4474 	}
4475 
4476 	/* find the next cset */
4477 	l = it->cset_pos;
4478 	l = l->next;
4479 	if (l == it->cset_head) {
4480 		it->cset_pos = NULL;
4481 		return NULL;
4482 	}
4483 
4484 	if (it->ss) {
4485 		cset = container_of(l, struct css_set, e_cset_node[it->ss->id]);
4486 	} else {
4487 		link = list_entry(l, struct cgrp_cset_link, cset_link);
4488 		cset = link->cset;
4489 	}
4490 
4491 	it->cset_pos = l;
4492 
4493 	/* initialize threaded css_set walking */
4494 	if (it->flags & CSS_TASK_ITER_THREADED) {
4495 		if (it->cur_dcset)
4496 			put_css_set_locked(it->cur_dcset);
4497 		it->cur_dcset = cset;
4498 		get_css_set(cset);
4499 
4500 		it->tcset_head = &cset->threaded_csets;
4501 		it->tcset_pos = &cset->threaded_csets;
4502 	}
4503 
4504 	return cset;
4505 }
4506 
4507 /**
4508  * css_task_iter_advance_css_set - advance a task iterator to the next css_set
4509  * @it: the iterator to advance
4510  *
4511  * Advance @it to the next css_set to walk.
4512  */
4513 static void css_task_iter_advance_css_set(struct css_task_iter *it)
4514 {
4515 	struct css_set *cset;
4516 
4517 	lockdep_assert_held(&css_set_lock);
4518 
4519 	/* Advance to the next non-empty css_set and find first non-empty tasks list*/
4520 	while ((cset = css_task_iter_next_css_set(it))) {
4521 		if (!list_empty(&cset->tasks)) {
4522 			it->cur_tasks_head = &cset->tasks;
4523 			break;
4524 		} else if (!list_empty(&cset->mg_tasks)) {
4525 			it->cur_tasks_head = &cset->mg_tasks;
4526 			break;
4527 		} else if (!list_empty(&cset->dying_tasks)) {
4528 			it->cur_tasks_head = &cset->dying_tasks;
4529 			break;
4530 		}
4531 	}
4532 	if (!cset) {
4533 		it->task_pos = NULL;
4534 		return;
4535 	}
4536 	it->task_pos = it->cur_tasks_head->next;
4537 
4538 	/*
4539 	 * We don't keep css_sets locked across iteration steps and thus
4540 	 * need to take steps to ensure that iteration can be resumed after
4541 	 * the lock is re-acquired.  Iteration is performed at two levels -
4542 	 * css_sets and tasks in them.
4543 	 *
4544 	 * Once created, a css_set never leaves its cgroup lists, so a
4545 	 * pinned css_set is guaranteed to stay put and we can resume
4546 	 * iteration afterwards.
4547 	 *
4548 	 * Tasks may leave @cset across iteration steps.  This is resolved
4549 	 * by registering each iterator with the css_set currently being
4550 	 * walked and making css_set_move_task() advance iterators whose
4551 	 * next task is leaving.
4552 	 */
4553 	if (it->cur_cset) {
4554 		list_del(&it->iters_node);
4555 		put_css_set_locked(it->cur_cset);
4556 	}
4557 	get_css_set(cset);
4558 	it->cur_cset = cset;
4559 	list_add(&it->iters_node, &cset->task_iters);
4560 }
4561 
4562 static void css_task_iter_skip(struct css_task_iter *it,
4563 			       struct task_struct *task)
4564 {
4565 	lockdep_assert_held(&css_set_lock);
4566 
4567 	if (it->task_pos == &task->cg_list) {
4568 		it->task_pos = it->task_pos->next;
4569 		it->flags |= CSS_TASK_ITER_SKIPPED;
4570 	}
4571 }
4572 
4573 static void css_task_iter_advance(struct css_task_iter *it)
4574 {
4575 	struct task_struct *task;
4576 
4577 	lockdep_assert_held(&css_set_lock);
4578 repeat:
4579 	if (it->task_pos) {
4580 		/*
4581 		 * Advance iterator to find next entry. We go through cset
4582 		 * tasks, mg_tasks and dying_tasks, when consumed we move onto
4583 		 * the next cset.
4584 		 */
4585 		if (it->flags & CSS_TASK_ITER_SKIPPED)
4586 			it->flags &= ~CSS_TASK_ITER_SKIPPED;
4587 		else
4588 			it->task_pos = it->task_pos->next;
4589 
4590 		if (it->task_pos == &it->cur_cset->tasks) {
4591 			it->cur_tasks_head = &it->cur_cset->mg_tasks;
4592 			it->task_pos = it->cur_tasks_head->next;
4593 		}
4594 		if (it->task_pos == &it->cur_cset->mg_tasks) {
4595 			it->cur_tasks_head = &it->cur_cset->dying_tasks;
4596 			it->task_pos = it->cur_tasks_head->next;
4597 		}
4598 		if (it->task_pos == &it->cur_cset->dying_tasks)
4599 			css_task_iter_advance_css_set(it);
4600 	} else {
4601 		/* called from start, proceed to the first cset */
4602 		css_task_iter_advance_css_set(it);
4603 	}
4604 
4605 	if (!it->task_pos)
4606 		return;
4607 
4608 	task = list_entry(it->task_pos, struct task_struct, cg_list);
4609 
4610 	if (it->flags & CSS_TASK_ITER_PROCS) {
4611 		/* if PROCS, skip over tasks which aren't group leaders */
4612 		if (!thread_group_leader(task))
4613 			goto repeat;
4614 
4615 		/* and dying leaders w/o live member threads */
4616 		if (it->cur_tasks_head == &it->cur_cset->dying_tasks &&
4617 		    !atomic_read(&task->signal->live))
4618 			goto repeat;
4619 	} else {
4620 		/* skip all dying ones */
4621 		if (it->cur_tasks_head == &it->cur_cset->dying_tasks)
4622 			goto repeat;
4623 	}
4624 }
4625 
4626 /**
4627  * css_task_iter_start - initiate task iteration
4628  * @css: the css to walk tasks of
4629  * @flags: CSS_TASK_ITER_* flags
4630  * @it: the task iterator to use
4631  *
4632  * Initiate iteration through the tasks of @css.  The caller can call
4633  * css_task_iter_next() to walk through the tasks until the function
4634  * returns NULL.  On completion of iteration, css_task_iter_end() must be
4635  * called.
4636  */
4637 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags,
4638 			 struct css_task_iter *it)
4639 {
4640 	memset(it, 0, sizeof(*it));
4641 
4642 	spin_lock_irq(&css_set_lock);
4643 
4644 	it->ss = css->ss;
4645 	it->flags = flags;
4646 
4647 	if (it->ss)
4648 		it->cset_pos = &css->cgroup->e_csets[css->ss->id];
4649 	else
4650 		it->cset_pos = &css->cgroup->cset_links;
4651 
4652 	it->cset_head = it->cset_pos;
4653 
4654 	css_task_iter_advance(it);
4655 
4656 	spin_unlock_irq(&css_set_lock);
4657 }
4658 
4659 /**
4660  * css_task_iter_next - return the next task for the iterator
4661  * @it: the task iterator being iterated
4662  *
4663  * The "next" function for task iteration.  @it should have been
4664  * initialized via css_task_iter_start().  Returns NULL when the iteration
4665  * reaches the end.
4666  */
4667 struct task_struct *css_task_iter_next(struct css_task_iter *it)
4668 {
4669 	if (it->cur_task) {
4670 		put_task_struct(it->cur_task);
4671 		it->cur_task = NULL;
4672 	}
4673 
4674 	spin_lock_irq(&css_set_lock);
4675 
4676 	/* @it may be half-advanced by skips, finish advancing */
4677 	if (it->flags & CSS_TASK_ITER_SKIPPED)
4678 		css_task_iter_advance(it);
4679 
4680 	if (it->task_pos) {
4681 		it->cur_task = list_entry(it->task_pos, struct task_struct,
4682 					  cg_list);
4683 		get_task_struct(it->cur_task);
4684 		css_task_iter_advance(it);
4685 	}
4686 
4687 	spin_unlock_irq(&css_set_lock);
4688 
4689 	return it->cur_task;
4690 }
4691 
4692 /**
4693  * css_task_iter_end - finish task iteration
4694  * @it: the task iterator to finish
4695  *
4696  * Finish task iteration started by css_task_iter_start().
4697  */
4698 void css_task_iter_end(struct css_task_iter *it)
4699 {
4700 	if (it->cur_cset) {
4701 		spin_lock_irq(&css_set_lock);
4702 		list_del(&it->iters_node);
4703 		put_css_set_locked(it->cur_cset);
4704 		spin_unlock_irq(&css_set_lock);
4705 	}
4706 
4707 	if (it->cur_dcset)
4708 		put_css_set(it->cur_dcset);
4709 
4710 	if (it->cur_task)
4711 		put_task_struct(it->cur_task);
4712 }
4713 
4714 static void cgroup_procs_release(struct kernfs_open_file *of)
4715 {
4716 	if (of->priv) {
4717 		css_task_iter_end(of->priv);
4718 		kfree(of->priv);
4719 	}
4720 }
4721 
4722 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos)
4723 {
4724 	struct kernfs_open_file *of = s->private;
4725 	struct css_task_iter *it = of->priv;
4726 
4727 	if (pos)
4728 		(*pos)++;
4729 
4730 	return css_task_iter_next(it);
4731 }
4732 
4733 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos,
4734 				  unsigned int iter_flags)
4735 {
4736 	struct kernfs_open_file *of = s->private;
4737 	struct cgroup *cgrp = seq_css(s)->cgroup;
4738 	struct css_task_iter *it = of->priv;
4739 
4740 	/*
4741 	 * When a seq_file is seeked, it's always traversed sequentially
4742 	 * from position 0, so we can simply keep iterating on !0 *pos.
4743 	 */
4744 	if (!it) {
4745 		if (WARN_ON_ONCE((*pos)))
4746 			return ERR_PTR(-EINVAL);
4747 
4748 		it = kzalloc(sizeof(*it), GFP_KERNEL);
4749 		if (!it)
4750 			return ERR_PTR(-ENOMEM);
4751 		of->priv = it;
4752 		css_task_iter_start(&cgrp->self, iter_flags, it);
4753 	} else if (!(*pos)) {
4754 		css_task_iter_end(it);
4755 		css_task_iter_start(&cgrp->self, iter_flags, it);
4756 	} else
4757 		return it->cur_task;
4758 
4759 	return cgroup_procs_next(s, NULL, NULL);
4760 }
4761 
4762 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos)
4763 {
4764 	struct cgroup *cgrp = seq_css(s)->cgroup;
4765 
4766 	/*
4767 	 * All processes of a threaded subtree belong to the domain cgroup
4768 	 * of the subtree.  Only threads can be distributed across the
4769 	 * subtree.  Reject reads on cgroup.procs in the subtree proper.
4770 	 * They're always empty anyway.
4771 	 */
4772 	if (cgroup_is_threaded(cgrp))
4773 		return ERR_PTR(-EOPNOTSUPP);
4774 
4775 	return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS |
4776 					    CSS_TASK_ITER_THREADED);
4777 }
4778 
4779 static int cgroup_procs_show(struct seq_file *s, void *v)
4780 {
4781 	seq_printf(s, "%d\n", task_pid_vnr(v));
4782 	return 0;
4783 }
4784 
4785 static int cgroup_may_write(const struct cgroup *cgrp, struct super_block *sb)
4786 {
4787 	int ret;
4788 	struct inode *inode;
4789 
4790 	lockdep_assert_held(&cgroup_mutex);
4791 
4792 	inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
4793 	if (!inode)
4794 		return -ENOMEM;
4795 
4796 	ret = inode_permission(&init_user_ns, inode, MAY_WRITE);
4797 	iput(inode);
4798 	return ret;
4799 }
4800 
4801 static int cgroup_procs_write_permission(struct cgroup *src_cgrp,
4802 					 struct cgroup *dst_cgrp,
4803 					 struct super_block *sb)
4804 {
4805 	struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
4806 	struct cgroup *com_cgrp = src_cgrp;
4807 	int ret;
4808 
4809 	lockdep_assert_held(&cgroup_mutex);
4810 
4811 	/* find the common ancestor */
4812 	while (!cgroup_is_descendant(dst_cgrp, com_cgrp))
4813 		com_cgrp = cgroup_parent(com_cgrp);
4814 
4815 	/* %current should be authorized to migrate to the common ancestor */
4816 	ret = cgroup_may_write(com_cgrp, sb);
4817 	if (ret)
4818 		return ret;
4819 
4820 	/*
4821 	 * If namespaces are delegation boundaries, %current must be able
4822 	 * to see both source and destination cgroups from its namespace.
4823 	 */
4824 	if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) &&
4825 	    (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) ||
4826 	     !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp)))
4827 		return -ENOENT;
4828 
4829 	return 0;
4830 }
4831 
4832 static int cgroup_attach_permissions(struct cgroup *src_cgrp,
4833 				     struct cgroup *dst_cgrp,
4834 				     struct super_block *sb, bool threadgroup)
4835 {
4836 	int ret = 0;
4837 
4838 	ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, sb);
4839 	if (ret)
4840 		return ret;
4841 
4842 	ret = cgroup_migrate_vet_dst(dst_cgrp);
4843 	if (ret)
4844 		return ret;
4845 
4846 	if (!threadgroup && (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp))
4847 		ret = -EOPNOTSUPP;
4848 
4849 	return ret;
4850 }
4851 
4852 static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
4853 				    bool threadgroup)
4854 {
4855 	struct cgroup *src_cgrp, *dst_cgrp;
4856 	struct task_struct *task;
4857 	ssize_t ret;
4858 	bool locked;
4859 
4860 	dst_cgrp = cgroup_kn_lock_live(of->kn, false);
4861 	if (!dst_cgrp)
4862 		return -ENODEV;
4863 
4864 	task = cgroup_procs_write_start(buf, threadgroup, &locked);
4865 	ret = PTR_ERR_OR_ZERO(task);
4866 	if (ret)
4867 		goto out_unlock;
4868 
4869 	/* find the source cgroup */
4870 	spin_lock_irq(&css_set_lock);
4871 	src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
4872 	spin_unlock_irq(&css_set_lock);
4873 
4874 	/* process and thread migrations follow same delegation rule */
4875 	ret = cgroup_attach_permissions(src_cgrp, dst_cgrp,
4876 					of->file->f_path.dentry->d_sb, threadgroup);
4877 	if (ret)
4878 		goto out_finish;
4879 
4880 	ret = cgroup_attach_task(dst_cgrp, task, threadgroup);
4881 
4882 out_finish:
4883 	cgroup_procs_write_finish(task, locked);
4884 out_unlock:
4885 	cgroup_kn_unlock(of->kn);
4886 
4887 	return ret;
4888 }
4889 
4890 static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
4891 				  char *buf, size_t nbytes, loff_t off)
4892 {
4893 	return __cgroup_procs_write(of, buf, true) ?: nbytes;
4894 }
4895 
4896 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos)
4897 {
4898 	return __cgroup_procs_start(s, pos, 0);
4899 }
4900 
4901 static ssize_t cgroup_threads_write(struct kernfs_open_file *of,
4902 				    char *buf, size_t nbytes, loff_t off)
4903 {
4904 	return __cgroup_procs_write(of, buf, false) ?: nbytes;
4905 }
4906 
4907 /* cgroup core interface files for the default hierarchy */
4908 static struct cftype cgroup_base_files[] = {
4909 	{
4910 		.name = "cgroup.type",
4911 		.flags = CFTYPE_NOT_ON_ROOT,
4912 		.seq_show = cgroup_type_show,
4913 		.write = cgroup_type_write,
4914 	},
4915 	{
4916 		.name = "cgroup.procs",
4917 		.flags = CFTYPE_NS_DELEGATABLE,
4918 		.file_offset = offsetof(struct cgroup, procs_file),
4919 		.release = cgroup_procs_release,
4920 		.seq_start = cgroup_procs_start,
4921 		.seq_next = cgroup_procs_next,
4922 		.seq_show = cgroup_procs_show,
4923 		.write = cgroup_procs_write,
4924 	},
4925 	{
4926 		.name = "cgroup.threads",
4927 		.flags = CFTYPE_NS_DELEGATABLE,
4928 		.release = cgroup_procs_release,
4929 		.seq_start = cgroup_threads_start,
4930 		.seq_next = cgroup_procs_next,
4931 		.seq_show = cgroup_procs_show,
4932 		.write = cgroup_threads_write,
4933 	},
4934 	{
4935 		.name = "cgroup.controllers",
4936 		.seq_show = cgroup_controllers_show,
4937 	},
4938 	{
4939 		.name = "cgroup.subtree_control",
4940 		.flags = CFTYPE_NS_DELEGATABLE,
4941 		.seq_show = cgroup_subtree_control_show,
4942 		.write = cgroup_subtree_control_write,
4943 	},
4944 	{
4945 		.name = "cgroup.events",
4946 		.flags = CFTYPE_NOT_ON_ROOT,
4947 		.file_offset = offsetof(struct cgroup, events_file),
4948 		.seq_show = cgroup_events_show,
4949 	},
4950 	{
4951 		.name = "cgroup.max.descendants",
4952 		.seq_show = cgroup_max_descendants_show,
4953 		.write = cgroup_max_descendants_write,
4954 	},
4955 	{
4956 		.name = "cgroup.max.depth",
4957 		.seq_show = cgroup_max_depth_show,
4958 		.write = cgroup_max_depth_write,
4959 	},
4960 	{
4961 		.name = "cgroup.stat",
4962 		.seq_show = cgroup_stat_show,
4963 	},
4964 	{
4965 		.name = "cgroup.freeze",
4966 		.flags = CFTYPE_NOT_ON_ROOT,
4967 		.seq_show = cgroup_freeze_show,
4968 		.write = cgroup_freeze_write,
4969 	},
4970 	{
4971 		.name = "cgroup.kill",
4972 		.flags = CFTYPE_NOT_ON_ROOT,
4973 		.write = cgroup_kill_write,
4974 	},
4975 	{
4976 		.name = "cpu.stat",
4977 		.seq_show = cpu_stat_show,
4978 	},
4979 #ifdef CONFIG_PSI
4980 	{
4981 		.name = "io.pressure",
4982 		.flags = CFTYPE_PRESSURE,
4983 		.seq_show = cgroup_io_pressure_show,
4984 		.write = cgroup_io_pressure_write,
4985 		.poll = cgroup_pressure_poll,
4986 		.release = cgroup_pressure_release,
4987 	},
4988 	{
4989 		.name = "memory.pressure",
4990 		.flags = CFTYPE_PRESSURE,
4991 		.seq_show = cgroup_memory_pressure_show,
4992 		.write = cgroup_memory_pressure_write,
4993 		.poll = cgroup_pressure_poll,
4994 		.release = cgroup_pressure_release,
4995 	},
4996 	{
4997 		.name = "cpu.pressure",
4998 		.flags = CFTYPE_PRESSURE,
4999 		.seq_show = cgroup_cpu_pressure_show,
5000 		.write = cgroup_cpu_pressure_write,
5001 		.poll = cgroup_pressure_poll,
5002 		.release = cgroup_pressure_release,
5003 	},
5004 #endif /* CONFIG_PSI */
5005 	{ }	/* terminate */
5006 };
5007 
5008 /*
5009  * css destruction is four-stage process.
5010  *
5011  * 1. Destruction starts.  Killing of the percpu_ref is initiated.
5012  *    Implemented in kill_css().
5013  *
5014  * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
5015  *    and thus css_tryget_online() is guaranteed to fail, the css can be
5016  *    offlined by invoking offline_css().  After offlining, the base ref is
5017  *    put.  Implemented in css_killed_work_fn().
5018  *
5019  * 3. When the percpu_ref reaches zero, the only possible remaining
5020  *    accessors are inside RCU read sections.  css_release() schedules the
5021  *    RCU callback.
5022  *
5023  * 4. After the grace period, the css can be freed.  Implemented in
5024  *    css_free_work_fn().
5025  *
5026  * It is actually hairier because both step 2 and 4 require process context
5027  * and thus involve punting to css->destroy_work adding two additional
5028  * steps to the already complex sequence.
5029  */
5030 static void css_free_rwork_fn(struct work_struct *work)
5031 {
5032 	struct cgroup_subsys_state *css = container_of(to_rcu_work(work),
5033 				struct cgroup_subsys_state, destroy_rwork);
5034 	struct cgroup_subsys *ss = css->ss;
5035 	struct cgroup *cgrp = css->cgroup;
5036 
5037 	percpu_ref_exit(&css->refcnt);
5038 
5039 	if (ss) {
5040 		/* css free path */
5041 		struct cgroup_subsys_state *parent = css->parent;
5042 		int id = css->id;
5043 
5044 		ss->css_free(css);
5045 		cgroup_idr_remove(&ss->css_idr, id);
5046 		cgroup_put(cgrp);
5047 
5048 		if (parent)
5049 			css_put(parent);
5050 	} else {
5051 		/* cgroup free path */
5052 		atomic_dec(&cgrp->root->nr_cgrps);
5053 		cgroup1_pidlist_destroy_all(cgrp);
5054 		cancel_work_sync(&cgrp->release_agent_work);
5055 
5056 		if (cgroup_parent(cgrp)) {
5057 			/*
5058 			 * We get a ref to the parent, and put the ref when
5059 			 * this cgroup is being freed, so it's guaranteed
5060 			 * that the parent won't be destroyed before its
5061 			 * children.
5062 			 */
5063 			cgroup_put(cgroup_parent(cgrp));
5064 			kernfs_put(cgrp->kn);
5065 			psi_cgroup_free(cgrp);
5066 			cgroup_rstat_exit(cgrp);
5067 			kfree(cgrp);
5068 		} else {
5069 			/*
5070 			 * This is root cgroup's refcnt reaching zero,
5071 			 * which indicates that the root should be
5072 			 * released.
5073 			 */
5074 			cgroup_destroy_root(cgrp->root);
5075 		}
5076 	}
5077 }
5078 
5079 static void css_release_work_fn(struct work_struct *work)
5080 {
5081 	struct cgroup_subsys_state *css =
5082 		container_of(work, struct cgroup_subsys_state, destroy_work);
5083 	struct cgroup_subsys *ss = css->ss;
5084 	struct cgroup *cgrp = css->cgroup;
5085 
5086 	mutex_lock(&cgroup_mutex);
5087 
5088 	css->flags |= CSS_RELEASED;
5089 	list_del_rcu(&css->sibling);
5090 
5091 	if (ss) {
5092 		/* css release path */
5093 		if (!list_empty(&css->rstat_css_node)) {
5094 			cgroup_rstat_flush(cgrp);
5095 			list_del_rcu(&css->rstat_css_node);
5096 		}
5097 
5098 		cgroup_idr_replace(&ss->css_idr, NULL, css->id);
5099 		if (ss->css_released)
5100 			ss->css_released(css);
5101 	} else {
5102 		struct cgroup *tcgrp;
5103 
5104 		/* cgroup release path */
5105 		TRACE_CGROUP_PATH(release, cgrp);
5106 
5107 		cgroup_rstat_flush(cgrp);
5108 
5109 		spin_lock_irq(&css_set_lock);
5110 		for (tcgrp = cgroup_parent(cgrp); tcgrp;
5111 		     tcgrp = cgroup_parent(tcgrp))
5112 			tcgrp->nr_dying_descendants--;
5113 		spin_unlock_irq(&css_set_lock);
5114 
5115 		/*
5116 		 * There are two control paths which try to determine
5117 		 * cgroup from dentry without going through kernfs -
5118 		 * cgroupstats_build() and css_tryget_online_from_dir().
5119 		 * Those are supported by RCU protecting clearing of
5120 		 * cgrp->kn->priv backpointer.
5121 		 */
5122 		if (cgrp->kn)
5123 			RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
5124 					 NULL);
5125 	}
5126 
5127 	mutex_unlock(&cgroup_mutex);
5128 
5129 	INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5130 	queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5131 }
5132 
5133 static void css_release(struct percpu_ref *ref)
5134 {
5135 	struct cgroup_subsys_state *css =
5136 		container_of(ref, struct cgroup_subsys_state, refcnt);
5137 
5138 	INIT_WORK(&css->destroy_work, css_release_work_fn);
5139 	queue_work(cgroup_destroy_wq, &css->destroy_work);
5140 }
5141 
5142 static void init_and_link_css(struct cgroup_subsys_state *css,
5143 			      struct cgroup_subsys *ss, struct cgroup *cgrp)
5144 {
5145 	lockdep_assert_held(&cgroup_mutex);
5146 
5147 	cgroup_get_live(cgrp);
5148 
5149 	memset(css, 0, sizeof(*css));
5150 	css->cgroup = cgrp;
5151 	css->ss = ss;
5152 	css->id = -1;
5153 	INIT_LIST_HEAD(&css->sibling);
5154 	INIT_LIST_HEAD(&css->children);
5155 	INIT_LIST_HEAD(&css->rstat_css_node);
5156 	css->serial_nr = css_serial_nr_next++;
5157 	atomic_set(&css->online_cnt, 0);
5158 
5159 	if (cgroup_parent(cgrp)) {
5160 		css->parent = cgroup_css(cgroup_parent(cgrp), ss);
5161 		css_get(css->parent);
5162 	}
5163 
5164 	if (ss->css_rstat_flush)
5165 		list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list);
5166 
5167 	BUG_ON(cgroup_css(cgrp, ss));
5168 }
5169 
5170 /* invoke ->css_online() on a new CSS and mark it online if successful */
5171 static int online_css(struct cgroup_subsys_state *css)
5172 {
5173 	struct cgroup_subsys *ss = css->ss;
5174 	int ret = 0;
5175 
5176 	lockdep_assert_held(&cgroup_mutex);
5177 
5178 	if (ss->css_online)
5179 		ret = ss->css_online(css);
5180 	if (!ret) {
5181 		css->flags |= CSS_ONLINE;
5182 		rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
5183 
5184 		atomic_inc(&css->online_cnt);
5185 		if (css->parent)
5186 			atomic_inc(&css->parent->online_cnt);
5187 	}
5188 	return ret;
5189 }
5190 
5191 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
5192 static void offline_css(struct cgroup_subsys_state *css)
5193 {
5194 	struct cgroup_subsys *ss = css->ss;
5195 
5196 	lockdep_assert_held(&cgroup_mutex);
5197 
5198 	if (!(css->flags & CSS_ONLINE))
5199 		return;
5200 
5201 	if (ss->css_offline)
5202 		ss->css_offline(css);
5203 
5204 	css->flags &= ~CSS_ONLINE;
5205 	RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
5206 
5207 	wake_up_all(&css->cgroup->offline_waitq);
5208 }
5209 
5210 /**
5211  * css_create - create a cgroup_subsys_state
5212  * @cgrp: the cgroup new css will be associated with
5213  * @ss: the subsys of new css
5214  *
5215  * Create a new css associated with @cgrp - @ss pair.  On success, the new
5216  * css is online and installed in @cgrp.  This function doesn't create the
5217  * interface files.  Returns 0 on success, -errno on failure.
5218  */
5219 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
5220 					      struct cgroup_subsys *ss)
5221 {
5222 	struct cgroup *parent = cgroup_parent(cgrp);
5223 	struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
5224 	struct cgroup_subsys_state *css;
5225 	int err;
5226 
5227 	lockdep_assert_held(&cgroup_mutex);
5228 
5229 	css = ss->css_alloc(parent_css);
5230 	if (!css)
5231 		css = ERR_PTR(-ENOMEM);
5232 	if (IS_ERR(css))
5233 		return css;
5234 
5235 	init_and_link_css(css, ss, cgrp);
5236 
5237 	err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
5238 	if (err)
5239 		goto err_free_css;
5240 
5241 	err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
5242 	if (err < 0)
5243 		goto err_free_css;
5244 	css->id = err;
5245 
5246 	/* @css is ready to be brought online now, make it visible */
5247 	list_add_tail_rcu(&css->sibling, &parent_css->children);
5248 	cgroup_idr_replace(&ss->css_idr, css, css->id);
5249 
5250 	err = online_css(css);
5251 	if (err)
5252 		goto err_list_del;
5253 
5254 	return css;
5255 
5256 err_list_del:
5257 	list_del_rcu(&css->sibling);
5258 err_free_css:
5259 	list_del_rcu(&css->rstat_css_node);
5260 	INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5261 	queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5262 	return ERR_PTR(err);
5263 }
5264 
5265 /*
5266  * The returned cgroup is fully initialized including its control mask, but
5267  * it isn't associated with its kernfs_node and doesn't have the control
5268  * mask applied.
5269  */
5270 static struct cgroup *cgroup_create(struct cgroup *parent, const char *name,
5271 				    umode_t mode)
5272 {
5273 	struct cgroup_root *root = parent->root;
5274 	struct cgroup *cgrp, *tcgrp;
5275 	struct kernfs_node *kn;
5276 	int level = parent->level + 1;
5277 	int ret;
5278 
5279 	/* allocate the cgroup and its ID, 0 is reserved for the root */
5280 	cgrp = kzalloc(struct_size(cgrp, ancestor_ids, (level + 1)),
5281 		       GFP_KERNEL);
5282 	if (!cgrp)
5283 		return ERR_PTR(-ENOMEM);
5284 
5285 	ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
5286 	if (ret)
5287 		goto out_free_cgrp;
5288 
5289 	ret = cgroup_rstat_init(cgrp);
5290 	if (ret)
5291 		goto out_cancel_ref;
5292 
5293 	/* create the directory */
5294 	kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
5295 	if (IS_ERR(kn)) {
5296 		ret = PTR_ERR(kn);
5297 		goto out_stat_exit;
5298 	}
5299 	cgrp->kn = kn;
5300 
5301 	init_cgroup_housekeeping(cgrp);
5302 
5303 	cgrp->self.parent = &parent->self;
5304 	cgrp->root = root;
5305 	cgrp->level = level;
5306 
5307 	ret = psi_cgroup_alloc(cgrp);
5308 	if (ret)
5309 		goto out_kernfs_remove;
5310 
5311 	ret = cgroup_bpf_inherit(cgrp);
5312 	if (ret)
5313 		goto out_psi_free;
5314 
5315 	/*
5316 	 * New cgroup inherits effective freeze counter, and
5317 	 * if the parent has to be frozen, the child has too.
5318 	 */
5319 	cgrp->freezer.e_freeze = parent->freezer.e_freeze;
5320 	if (cgrp->freezer.e_freeze) {
5321 		/*
5322 		 * Set the CGRP_FREEZE flag, so when a process will be
5323 		 * attached to the child cgroup, it will become frozen.
5324 		 * At this point the new cgroup is unpopulated, so we can
5325 		 * consider it frozen immediately.
5326 		 */
5327 		set_bit(CGRP_FREEZE, &cgrp->flags);
5328 		set_bit(CGRP_FROZEN, &cgrp->flags);
5329 	}
5330 
5331 	spin_lock_irq(&css_set_lock);
5332 	for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5333 		cgrp->ancestor_ids[tcgrp->level] = cgroup_id(tcgrp);
5334 
5335 		if (tcgrp != cgrp) {
5336 			tcgrp->nr_descendants++;
5337 
5338 			/*
5339 			 * If the new cgroup is frozen, all ancestor cgroups
5340 			 * get a new frozen descendant, but their state can't
5341 			 * change because of this.
5342 			 */
5343 			if (cgrp->freezer.e_freeze)
5344 				tcgrp->freezer.nr_frozen_descendants++;
5345 		}
5346 	}
5347 	spin_unlock_irq(&css_set_lock);
5348 
5349 	if (notify_on_release(parent))
5350 		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
5351 
5352 	if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
5353 		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
5354 
5355 	cgrp->self.serial_nr = css_serial_nr_next++;
5356 
5357 	/* allocation complete, commit to creation */
5358 	list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
5359 	atomic_inc(&root->nr_cgrps);
5360 	cgroup_get_live(parent);
5361 
5362 	/*
5363 	 * On the default hierarchy, a child doesn't automatically inherit
5364 	 * subtree_control from the parent.  Each is configured manually.
5365 	 */
5366 	if (!cgroup_on_dfl(cgrp))
5367 		cgrp->subtree_control = cgroup_control(cgrp);
5368 
5369 	cgroup_propagate_control(cgrp);
5370 
5371 	return cgrp;
5372 
5373 out_psi_free:
5374 	psi_cgroup_free(cgrp);
5375 out_kernfs_remove:
5376 	kernfs_remove(cgrp->kn);
5377 out_stat_exit:
5378 	cgroup_rstat_exit(cgrp);
5379 out_cancel_ref:
5380 	percpu_ref_exit(&cgrp->self.refcnt);
5381 out_free_cgrp:
5382 	kfree(cgrp);
5383 	return ERR_PTR(ret);
5384 }
5385 
5386 static bool cgroup_check_hierarchy_limits(struct cgroup *parent)
5387 {
5388 	struct cgroup *cgroup;
5389 	int ret = false;
5390 	int level = 1;
5391 
5392 	lockdep_assert_held(&cgroup_mutex);
5393 
5394 	for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) {
5395 		if (cgroup->nr_descendants >= cgroup->max_descendants)
5396 			goto fail;
5397 
5398 		if (level > cgroup->max_depth)
5399 			goto fail;
5400 
5401 		level++;
5402 	}
5403 
5404 	ret = true;
5405 fail:
5406 	return ret;
5407 }
5408 
5409 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode)
5410 {
5411 	struct cgroup *parent, *cgrp;
5412 	int ret;
5413 
5414 	/* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
5415 	if (strchr(name, '\n'))
5416 		return -EINVAL;
5417 
5418 	parent = cgroup_kn_lock_live(parent_kn, false);
5419 	if (!parent)
5420 		return -ENODEV;
5421 
5422 	if (!cgroup_check_hierarchy_limits(parent)) {
5423 		ret = -EAGAIN;
5424 		goto out_unlock;
5425 	}
5426 
5427 	cgrp = cgroup_create(parent, name, mode);
5428 	if (IS_ERR(cgrp)) {
5429 		ret = PTR_ERR(cgrp);
5430 		goto out_unlock;
5431 	}
5432 
5433 	/*
5434 	 * This extra ref will be put in cgroup_free_fn() and guarantees
5435 	 * that @cgrp->kn is always accessible.
5436 	 */
5437 	kernfs_get(cgrp->kn);
5438 
5439 	ret = cgroup_kn_set_ugid(cgrp->kn);
5440 	if (ret)
5441 		goto out_destroy;
5442 
5443 	ret = css_populate_dir(&cgrp->self);
5444 	if (ret)
5445 		goto out_destroy;
5446 
5447 	ret = cgroup_apply_control_enable(cgrp);
5448 	if (ret)
5449 		goto out_destroy;
5450 
5451 	TRACE_CGROUP_PATH(mkdir, cgrp);
5452 
5453 	/* let's create and online css's */
5454 	kernfs_activate(cgrp->kn);
5455 
5456 	ret = 0;
5457 	goto out_unlock;
5458 
5459 out_destroy:
5460 	cgroup_destroy_locked(cgrp);
5461 out_unlock:
5462 	cgroup_kn_unlock(parent_kn);
5463 	return ret;
5464 }
5465 
5466 /*
5467  * This is called when the refcnt of a css is confirmed to be killed.
5468  * css_tryget_online() is now guaranteed to fail.  Tell the subsystem to
5469  * initiate destruction and put the css ref from kill_css().
5470  */
5471 static void css_killed_work_fn(struct work_struct *work)
5472 {
5473 	struct cgroup_subsys_state *css =
5474 		container_of(work, struct cgroup_subsys_state, destroy_work);
5475 
5476 	mutex_lock(&cgroup_mutex);
5477 
5478 	do {
5479 		offline_css(css);
5480 		css_put(css);
5481 		/* @css can't go away while we're holding cgroup_mutex */
5482 		css = css->parent;
5483 	} while (css && atomic_dec_and_test(&css->online_cnt));
5484 
5485 	mutex_unlock(&cgroup_mutex);
5486 }
5487 
5488 /* css kill confirmation processing requires process context, bounce */
5489 static void css_killed_ref_fn(struct percpu_ref *ref)
5490 {
5491 	struct cgroup_subsys_state *css =
5492 		container_of(ref, struct cgroup_subsys_state, refcnt);
5493 
5494 	if (atomic_dec_and_test(&css->online_cnt)) {
5495 		INIT_WORK(&css->destroy_work, css_killed_work_fn);
5496 		queue_work(cgroup_destroy_wq, &css->destroy_work);
5497 	}
5498 }
5499 
5500 /**
5501  * kill_css - destroy a css
5502  * @css: css to destroy
5503  *
5504  * This function initiates destruction of @css by removing cgroup interface
5505  * files and putting its base reference.  ->css_offline() will be invoked
5506  * asynchronously once css_tryget_online() is guaranteed to fail and when
5507  * the reference count reaches zero, @css will be released.
5508  */
5509 static void kill_css(struct cgroup_subsys_state *css)
5510 {
5511 	lockdep_assert_held(&cgroup_mutex);
5512 
5513 	if (css->flags & CSS_DYING)
5514 		return;
5515 
5516 	css->flags |= CSS_DYING;
5517 
5518 	/*
5519 	 * This must happen before css is disassociated with its cgroup.
5520 	 * See seq_css() for details.
5521 	 */
5522 	css_clear_dir(css);
5523 
5524 	/*
5525 	 * Killing would put the base ref, but we need to keep it alive
5526 	 * until after ->css_offline().
5527 	 */
5528 	css_get(css);
5529 
5530 	/*
5531 	 * cgroup core guarantees that, by the time ->css_offline() is
5532 	 * invoked, no new css reference will be given out via
5533 	 * css_tryget_online().  We can't simply call percpu_ref_kill() and
5534 	 * proceed to offlining css's because percpu_ref_kill() doesn't
5535 	 * guarantee that the ref is seen as killed on all CPUs on return.
5536 	 *
5537 	 * Use percpu_ref_kill_and_confirm() to get notifications as each
5538 	 * css is confirmed to be seen as killed on all CPUs.
5539 	 */
5540 	percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
5541 }
5542 
5543 /**
5544  * cgroup_destroy_locked - the first stage of cgroup destruction
5545  * @cgrp: cgroup to be destroyed
5546  *
5547  * css's make use of percpu refcnts whose killing latency shouldn't be
5548  * exposed to userland and are RCU protected.  Also, cgroup core needs to
5549  * guarantee that css_tryget_online() won't succeed by the time
5550  * ->css_offline() is invoked.  To satisfy all the requirements,
5551  * destruction is implemented in the following two steps.
5552  *
5553  * s1. Verify @cgrp can be destroyed and mark it dying.  Remove all
5554  *     userland visible parts and start killing the percpu refcnts of
5555  *     css's.  Set up so that the next stage will be kicked off once all
5556  *     the percpu refcnts are confirmed to be killed.
5557  *
5558  * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5559  *     rest of destruction.  Once all cgroup references are gone, the
5560  *     cgroup is RCU-freed.
5561  *
5562  * This function implements s1.  After this step, @cgrp is gone as far as
5563  * the userland is concerned and a new cgroup with the same name may be
5564  * created.  As cgroup doesn't care about the names internally, this
5565  * doesn't cause any problem.
5566  */
5567 static int cgroup_destroy_locked(struct cgroup *cgrp)
5568 	__releases(&cgroup_mutex) __acquires(&cgroup_mutex)
5569 {
5570 	struct cgroup *tcgrp, *parent = cgroup_parent(cgrp);
5571 	struct cgroup_subsys_state *css;
5572 	struct cgrp_cset_link *link;
5573 	int ssid;
5574 
5575 	lockdep_assert_held(&cgroup_mutex);
5576 
5577 	/*
5578 	 * Only migration can raise populated from zero and we're already
5579 	 * holding cgroup_mutex.
5580 	 */
5581 	if (cgroup_is_populated(cgrp))
5582 		return -EBUSY;
5583 
5584 	/*
5585 	 * Make sure there's no live children.  We can't test emptiness of
5586 	 * ->self.children as dead children linger on it while being
5587 	 * drained; otherwise, "rmdir parent/child parent" may fail.
5588 	 */
5589 	if (css_has_online_children(&cgrp->self))
5590 		return -EBUSY;
5591 
5592 	/*
5593 	 * Mark @cgrp and the associated csets dead.  The former prevents
5594 	 * further task migration and child creation by disabling
5595 	 * cgroup_lock_live_group().  The latter makes the csets ignored by
5596 	 * the migration path.
5597 	 */
5598 	cgrp->self.flags &= ~CSS_ONLINE;
5599 
5600 	spin_lock_irq(&css_set_lock);
5601 	list_for_each_entry(link, &cgrp->cset_links, cset_link)
5602 		link->cset->dead = true;
5603 	spin_unlock_irq(&css_set_lock);
5604 
5605 	/* initiate massacre of all css's */
5606 	for_each_css(css, ssid, cgrp)
5607 		kill_css(css);
5608 
5609 	/* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */
5610 	css_clear_dir(&cgrp->self);
5611 	kernfs_remove(cgrp->kn);
5612 
5613 	if (parent && cgroup_is_threaded(cgrp))
5614 		parent->nr_threaded_children--;
5615 
5616 	spin_lock_irq(&css_set_lock);
5617 	for (tcgrp = cgroup_parent(cgrp); tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5618 		tcgrp->nr_descendants--;
5619 		tcgrp->nr_dying_descendants++;
5620 		/*
5621 		 * If the dying cgroup is frozen, decrease frozen descendants
5622 		 * counters of ancestor cgroups.
5623 		 */
5624 		if (test_bit(CGRP_FROZEN, &cgrp->flags))
5625 			tcgrp->freezer.nr_frozen_descendants--;
5626 	}
5627 	spin_unlock_irq(&css_set_lock);
5628 
5629 	cgroup1_check_for_release(parent);
5630 
5631 	cgroup_bpf_offline(cgrp);
5632 
5633 	/* put the base reference */
5634 	percpu_ref_kill(&cgrp->self.refcnt);
5635 
5636 	return 0;
5637 };
5638 
5639 int cgroup_rmdir(struct kernfs_node *kn)
5640 {
5641 	struct cgroup *cgrp;
5642 	int ret = 0;
5643 
5644 	cgrp = cgroup_kn_lock_live(kn, false);
5645 	if (!cgrp)
5646 		return 0;
5647 
5648 	ret = cgroup_destroy_locked(cgrp);
5649 	if (!ret)
5650 		TRACE_CGROUP_PATH(rmdir, cgrp);
5651 
5652 	cgroup_kn_unlock(kn);
5653 	return ret;
5654 }
5655 
5656 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5657 	.show_options		= cgroup_show_options,
5658 	.mkdir			= cgroup_mkdir,
5659 	.rmdir			= cgroup_rmdir,
5660 	.show_path		= cgroup_show_path,
5661 };
5662 
5663 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
5664 {
5665 	struct cgroup_subsys_state *css;
5666 
5667 	pr_debug("Initializing cgroup subsys %s\n", ss->name);
5668 
5669 	mutex_lock(&cgroup_mutex);
5670 
5671 	idr_init(&ss->css_idr);
5672 	INIT_LIST_HEAD(&ss->cfts);
5673 
5674 	/* Create the root cgroup state for this subsystem */
5675 	ss->root = &cgrp_dfl_root;
5676 	css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
5677 	/* We don't handle early failures gracefully */
5678 	BUG_ON(IS_ERR(css));
5679 	init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
5680 
5681 	/*
5682 	 * Root csses are never destroyed and we can't initialize
5683 	 * percpu_ref during early init.  Disable refcnting.
5684 	 */
5685 	css->flags |= CSS_NO_REF;
5686 
5687 	if (early) {
5688 		/* allocation can't be done safely during early init */
5689 		css->id = 1;
5690 	} else {
5691 		css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5692 		BUG_ON(css->id < 0);
5693 	}
5694 
5695 	/* Update the init_css_set to contain a subsys
5696 	 * pointer to this state - since the subsystem is
5697 	 * newly registered, all tasks and hence the
5698 	 * init_css_set is in the subsystem's root cgroup. */
5699 	init_css_set.subsys[ss->id] = css;
5700 
5701 	have_fork_callback |= (bool)ss->fork << ss->id;
5702 	have_exit_callback |= (bool)ss->exit << ss->id;
5703 	have_release_callback |= (bool)ss->release << ss->id;
5704 	have_canfork_callback |= (bool)ss->can_fork << ss->id;
5705 
5706 	/* At system boot, before all subsystems have been
5707 	 * registered, no tasks have been forked, so we don't
5708 	 * need to invoke fork callbacks here. */
5709 	BUG_ON(!list_empty(&init_task.tasks));
5710 
5711 	BUG_ON(online_css(css));
5712 
5713 	mutex_unlock(&cgroup_mutex);
5714 }
5715 
5716 /**
5717  * cgroup_init_early - cgroup initialization at system boot
5718  *
5719  * Initialize cgroups at system boot, and initialize any
5720  * subsystems that request early init.
5721  */
5722 int __init cgroup_init_early(void)
5723 {
5724 	static struct cgroup_fs_context __initdata ctx;
5725 	struct cgroup_subsys *ss;
5726 	int i;
5727 
5728 	ctx.root = &cgrp_dfl_root;
5729 	init_cgroup_root(&ctx);
5730 	cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5731 
5732 	RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
5733 
5734 	for_each_subsys(ss, i) {
5735 		WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
5736 		     "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
5737 		     i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
5738 		     ss->id, ss->name);
5739 		WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5740 		     "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5741 
5742 		ss->id = i;
5743 		ss->name = cgroup_subsys_name[i];
5744 		if (!ss->legacy_name)
5745 			ss->legacy_name = cgroup_subsys_name[i];
5746 
5747 		if (ss->early_init)
5748 			cgroup_init_subsys(ss, true);
5749 	}
5750 	return 0;
5751 }
5752 
5753 /**
5754  * cgroup_init - cgroup initialization
5755  *
5756  * Register cgroup filesystem and /proc file, and initialize
5757  * any subsystems that didn't request early init.
5758  */
5759 int __init cgroup_init(void)
5760 {
5761 	struct cgroup_subsys *ss;
5762 	int ssid;
5763 
5764 	BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
5765 	BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
5766 	BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files));
5767 
5768 	cgroup_rstat_boot();
5769 
5770 	/*
5771 	 * The latency of the synchronize_rcu() is too high for cgroups,
5772 	 * avoid it at the cost of forcing all readers into the slow path.
5773 	 */
5774 	rcu_sync_enter_start(&cgroup_threadgroup_rwsem.rss);
5775 
5776 	get_user_ns(init_cgroup_ns.user_ns);
5777 
5778 	mutex_lock(&cgroup_mutex);
5779 
5780 	/*
5781 	 * Add init_css_set to the hash table so that dfl_root can link to
5782 	 * it during init.
5783 	 */
5784 	hash_add(css_set_table, &init_css_set.hlist,
5785 		 css_set_hash(init_css_set.subsys));
5786 
5787 	BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
5788 
5789 	mutex_unlock(&cgroup_mutex);
5790 
5791 	for_each_subsys(ss, ssid) {
5792 		if (ss->early_init) {
5793 			struct cgroup_subsys_state *css =
5794 				init_css_set.subsys[ss->id];
5795 
5796 			css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5797 						   GFP_KERNEL);
5798 			BUG_ON(css->id < 0);
5799 		} else {
5800 			cgroup_init_subsys(ss, false);
5801 		}
5802 
5803 		list_add_tail(&init_css_set.e_cset_node[ssid],
5804 			      &cgrp_dfl_root.cgrp.e_csets[ssid]);
5805 
5806 		/*
5807 		 * Setting dfl_root subsys_mask needs to consider the
5808 		 * disabled flag and cftype registration needs kmalloc,
5809 		 * both of which aren't available during early_init.
5810 		 */
5811 		if (!cgroup_ssid_enabled(ssid))
5812 			continue;
5813 
5814 		if (cgroup1_ssid_disabled(ssid))
5815 			printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n",
5816 			       ss->name);
5817 
5818 		cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5819 
5820 		/* implicit controllers must be threaded too */
5821 		WARN_ON(ss->implicit_on_dfl && !ss->threaded);
5822 
5823 		if (ss->implicit_on_dfl)
5824 			cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
5825 		else if (!ss->dfl_cftypes)
5826 			cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
5827 
5828 		if (ss->threaded)
5829 			cgrp_dfl_threaded_ss_mask |= 1 << ss->id;
5830 
5831 		if (ss->dfl_cftypes == ss->legacy_cftypes) {
5832 			WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5833 		} else {
5834 			WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5835 			WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
5836 		}
5837 
5838 		if (ss->bind)
5839 			ss->bind(init_css_set.subsys[ssid]);
5840 
5841 		mutex_lock(&cgroup_mutex);
5842 		css_populate_dir(init_css_set.subsys[ssid]);
5843 		mutex_unlock(&cgroup_mutex);
5844 	}
5845 
5846 	/* init_css_set.subsys[] has been updated, re-hash */
5847 	hash_del(&init_css_set.hlist);
5848 	hash_add(css_set_table, &init_css_set.hlist,
5849 		 css_set_hash(init_css_set.subsys));
5850 
5851 	WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
5852 	WARN_ON(register_filesystem(&cgroup_fs_type));
5853 	WARN_ON(register_filesystem(&cgroup2_fs_type));
5854 	WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show));
5855 #ifdef CONFIG_CPUSETS
5856 	WARN_ON(register_filesystem(&cpuset_fs_type));
5857 #endif
5858 
5859 	return 0;
5860 }
5861 
5862 static int __init cgroup_wq_init(void)
5863 {
5864 	/*
5865 	 * There isn't much point in executing destruction path in
5866 	 * parallel.  Good chunk is serialized with cgroup_mutex anyway.
5867 	 * Use 1 for @max_active.
5868 	 *
5869 	 * We would prefer to do this in cgroup_init() above, but that
5870 	 * is called before init_workqueues(): so leave this until after.
5871 	 */
5872 	cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
5873 	BUG_ON(!cgroup_destroy_wq);
5874 	return 0;
5875 }
5876 core_initcall(cgroup_wq_init);
5877 
5878 void cgroup_path_from_kernfs_id(u64 id, char *buf, size_t buflen)
5879 {
5880 	struct kernfs_node *kn;
5881 
5882 	kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id);
5883 	if (!kn)
5884 		return;
5885 	kernfs_path(kn, buf, buflen);
5886 	kernfs_put(kn);
5887 }
5888 
5889 /*
5890  * cgroup_get_from_id : get the cgroup associated with cgroup id
5891  * @id: cgroup id
5892  * On success return the cgrp, on failure return NULL
5893  */
5894 struct cgroup *cgroup_get_from_id(u64 id)
5895 {
5896 	struct kernfs_node *kn;
5897 	struct cgroup *cgrp = NULL;
5898 
5899 	mutex_lock(&cgroup_mutex);
5900 	kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id);
5901 	if (!kn)
5902 		goto out_unlock;
5903 
5904 	cgrp = kn->priv;
5905 	if (cgroup_is_dead(cgrp) || !cgroup_tryget(cgrp))
5906 		cgrp = NULL;
5907 	kernfs_put(kn);
5908 out_unlock:
5909 	mutex_unlock(&cgroup_mutex);
5910 	return cgrp;
5911 }
5912 EXPORT_SYMBOL_GPL(cgroup_get_from_id);
5913 
5914 /*
5915  * proc_cgroup_show()
5916  *  - Print task's cgroup paths into seq_file, one line for each hierarchy
5917  *  - Used for /proc/<pid>/cgroup.
5918  */
5919 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5920 		     struct pid *pid, struct task_struct *tsk)
5921 {
5922 	char *buf;
5923 	int retval;
5924 	struct cgroup_root *root;
5925 
5926 	retval = -ENOMEM;
5927 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
5928 	if (!buf)
5929 		goto out;
5930 
5931 	mutex_lock(&cgroup_mutex);
5932 	spin_lock_irq(&css_set_lock);
5933 
5934 	for_each_root(root) {
5935 		struct cgroup_subsys *ss;
5936 		struct cgroup *cgrp;
5937 		int ssid, count = 0;
5938 
5939 		if (root == &cgrp_dfl_root && !cgrp_dfl_visible)
5940 			continue;
5941 
5942 		seq_printf(m, "%d:", root->hierarchy_id);
5943 		if (root != &cgrp_dfl_root)
5944 			for_each_subsys(ss, ssid)
5945 				if (root->subsys_mask & (1 << ssid))
5946 					seq_printf(m, "%s%s", count++ ? "," : "",
5947 						   ss->legacy_name);
5948 		if (strlen(root->name))
5949 			seq_printf(m, "%sname=%s", count ? "," : "",
5950 				   root->name);
5951 		seq_putc(m, ':');
5952 
5953 		cgrp = task_cgroup_from_root(tsk, root);
5954 
5955 		/*
5956 		 * On traditional hierarchies, all zombie tasks show up as
5957 		 * belonging to the root cgroup.  On the default hierarchy,
5958 		 * while a zombie doesn't show up in "cgroup.procs" and
5959 		 * thus can't be migrated, its /proc/PID/cgroup keeps
5960 		 * reporting the cgroup it belonged to before exiting.  If
5961 		 * the cgroup is removed before the zombie is reaped,
5962 		 * " (deleted)" is appended to the cgroup path.
5963 		 */
5964 		if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
5965 			retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
5966 						current->nsproxy->cgroup_ns);
5967 			if (retval >= PATH_MAX)
5968 				retval = -ENAMETOOLONG;
5969 			if (retval < 0)
5970 				goto out_unlock;
5971 
5972 			seq_puts(m, buf);
5973 		} else {
5974 			seq_puts(m, "/");
5975 		}
5976 
5977 		if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
5978 			seq_puts(m, " (deleted)\n");
5979 		else
5980 			seq_putc(m, '\n');
5981 	}
5982 
5983 	retval = 0;
5984 out_unlock:
5985 	spin_unlock_irq(&css_set_lock);
5986 	mutex_unlock(&cgroup_mutex);
5987 	kfree(buf);
5988 out:
5989 	return retval;
5990 }
5991 
5992 /**
5993  * cgroup_fork - initialize cgroup related fields during copy_process()
5994  * @child: pointer to task_struct of forking parent process.
5995  *
5996  * A task is associated with the init_css_set until cgroup_post_fork()
5997  * attaches it to the target css_set.
5998  */
5999 void cgroup_fork(struct task_struct *child)
6000 {
6001 	RCU_INIT_POINTER(child->cgroups, &init_css_set);
6002 	INIT_LIST_HEAD(&child->cg_list);
6003 }
6004 
6005 static struct cgroup *cgroup_get_from_file(struct file *f)
6006 {
6007 	struct cgroup_subsys_state *css;
6008 	struct cgroup *cgrp;
6009 
6010 	css = css_tryget_online_from_dir(f->f_path.dentry, NULL);
6011 	if (IS_ERR(css))
6012 		return ERR_CAST(css);
6013 
6014 	cgrp = css->cgroup;
6015 	if (!cgroup_on_dfl(cgrp)) {
6016 		cgroup_put(cgrp);
6017 		return ERR_PTR(-EBADF);
6018 	}
6019 
6020 	return cgrp;
6021 }
6022 
6023 /**
6024  * cgroup_css_set_fork - find or create a css_set for a child process
6025  * @kargs: the arguments passed to create the child process
6026  *
6027  * This functions finds or creates a new css_set which the child
6028  * process will be attached to in cgroup_post_fork(). By default,
6029  * the child process will be given the same css_set as its parent.
6030  *
6031  * If CLONE_INTO_CGROUP is specified this function will try to find an
6032  * existing css_set which includes the requested cgroup and if not create
6033  * a new css_set that the child will be attached to later. If this function
6034  * succeeds it will hold cgroup_threadgroup_rwsem on return. If
6035  * CLONE_INTO_CGROUP is requested this function will grab cgroup mutex
6036  * before grabbing cgroup_threadgroup_rwsem and will hold a reference
6037  * to the target cgroup.
6038  */
6039 static int cgroup_css_set_fork(struct kernel_clone_args *kargs)
6040 	__acquires(&cgroup_mutex) __acquires(&cgroup_threadgroup_rwsem)
6041 {
6042 	int ret;
6043 	struct cgroup *dst_cgrp = NULL;
6044 	struct css_set *cset;
6045 	struct super_block *sb;
6046 	struct file *f;
6047 
6048 	if (kargs->flags & CLONE_INTO_CGROUP)
6049 		mutex_lock(&cgroup_mutex);
6050 
6051 	cgroup_threadgroup_change_begin(current);
6052 
6053 	spin_lock_irq(&css_set_lock);
6054 	cset = task_css_set(current);
6055 	get_css_set(cset);
6056 	spin_unlock_irq(&css_set_lock);
6057 
6058 	if (!(kargs->flags & CLONE_INTO_CGROUP)) {
6059 		kargs->cset = cset;
6060 		return 0;
6061 	}
6062 
6063 	f = fget_raw(kargs->cgroup);
6064 	if (!f) {
6065 		ret = -EBADF;
6066 		goto err;
6067 	}
6068 	sb = f->f_path.dentry->d_sb;
6069 
6070 	dst_cgrp = cgroup_get_from_file(f);
6071 	if (IS_ERR(dst_cgrp)) {
6072 		ret = PTR_ERR(dst_cgrp);
6073 		dst_cgrp = NULL;
6074 		goto err;
6075 	}
6076 
6077 	if (cgroup_is_dead(dst_cgrp)) {
6078 		ret = -ENODEV;
6079 		goto err;
6080 	}
6081 
6082 	/*
6083 	 * Verify that we the target cgroup is writable for us. This is
6084 	 * usually done by the vfs layer but since we're not going through
6085 	 * the vfs layer here we need to do it "manually".
6086 	 */
6087 	ret = cgroup_may_write(dst_cgrp, sb);
6088 	if (ret)
6089 		goto err;
6090 
6091 	ret = cgroup_attach_permissions(cset->dfl_cgrp, dst_cgrp, sb,
6092 					!(kargs->flags & CLONE_THREAD));
6093 	if (ret)
6094 		goto err;
6095 
6096 	kargs->cset = find_css_set(cset, dst_cgrp);
6097 	if (!kargs->cset) {
6098 		ret = -ENOMEM;
6099 		goto err;
6100 	}
6101 
6102 	put_css_set(cset);
6103 	fput(f);
6104 	kargs->cgrp = dst_cgrp;
6105 	return ret;
6106 
6107 err:
6108 	cgroup_threadgroup_change_end(current);
6109 	mutex_unlock(&cgroup_mutex);
6110 	if (f)
6111 		fput(f);
6112 	if (dst_cgrp)
6113 		cgroup_put(dst_cgrp);
6114 	put_css_set(cset);
6115 	if (kargs->cset)
6116 		put_css_set(kargs->cset);
6117 	return ret;
6118 }
6119 
6120 /**
6121  * cgroup_css_set_put_fork - drop references we took during fork
6122  * @kargs: the arguments passed to create the child process
6123  *
6124  * Drop references to the prepared css_set and target cgroup if
6125  * CLONE_INTO_CGROUP was requested.
6126  */
6127 static void cgroup_css_set_put_fork(struct kernel_clone_args *kargs)
6128 	__releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
6129 {
6130 	cgroup_threadgroup_change_end(current);
6131 
6132 	if (kargs->flags & CLONE_INTO_CGROUP) {
6133 		struct cgroup *cgrp = kargs->cgrp;
6134 		struct css_set *cset = kargs->cset;
6135 
6136 		mutex_unlock(&cgroup_mutex);
6137 
6138 		if (cset) {
6139 			put_css_set(cset);
6140 			kargs->cset = NULL;
6141 		}
6142 
6143 		if (cgrp) {
6144 			cgroup_put(cgrp);
6145 			kargs->cgrp = NULL;
6146 		}
6147 	}
6148 }
6149 
6150 /**
6151  * cgroup_can_fork - called on a new task before the process is exposed
6152  * @child: the child process
6153  *
6154  * This prepares a new css_set for the child process which the child will
6155  * be attached to in cgroup_post_fork().
6156  * This calls the subsystem can_fork() callbacks. If the cgroup_can_fork()
6157  * callback returns an error, the fork aborts with that error code. This
6158  * allows for a cgroup subsystem to conditionally allow or deny new forks.
6159  */
6160 int cgroup_can_fork(struct task_struct *child, struct kernel_clone_args *kargs)
6161 {
6162 	struct cgroup_subsys *ss;
6163 	int i, j, ret;
6164 
6165 	ret = cgroup_css_set_fork(kargs);
6166 	if (ret)
6167 		return ret;
6168 
6169 	do_each_subsys_mask(ss, i, have_canfork_callback) {
6170 		ret = ss->can_fork(child, kargs->cset);
6171 		if (ret)
6172 			goto out_revert;
6173 	} while_each_subsys_mask();
6174 
6175 	return 0;
6176 
6177 out_revert:
6178 	for_each_subsys(ss, j) {
6179 		if (j >= i)
6180 			break;
6181 		if (ss->cancel_fork)
6182 			ss->cancel_fork(child, kargs->cset);
6183 	}
6184 
6185 	cgroup_css_set_put_fork(kargs);
6186 
6187 	return ret;
6188 }
6189 
6190 /**
6191  * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
6192  * @child: the child process
6193  * @kargs: the arguments passed to create the child process
6194  *
6195  * This calls the cancel_fork() callbacks if a fork failed *after*
6196  * cgroup_can_fork() succeeded and cleans up references we took to
6197  * prepare a new css_set for the child process in cgroup_can_fork().
6198  */
6199 void cgroup_cancel_fork(struct task_struct *child,
6200 			struct kernel_clone_args *kargs)
6201 {
6202 	struct cgroup_subsys *ss;
6203 	int i;
6204 
6205 	for_each_subsys(ss, i)
6206 		if (ss->cancel_fork)
6207 			ss->cancel_fork(child, kargs->cset);
6208 
6209 	cgroup_css_set_put_fork(kargs);
6210 }
6211 
6212 /**
6213  * cgroup_post_fork - finalize cgroup setup for the child process
6214  * @child: the child process
6215  *
6216  * Attach the child process to its css_set calling the subsystem fork()
6217  * callbacks.
6218  */
6219 void cgroup_post_fork(struct task_struct *child,
6220 		      struct kernel_clone_args *kargs)
6221 	__releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
6222 {
6223 	unsigned long cgrp_flags = 0;
6224 	bool kill = false;
6225 	struct cgroup_subsys *ss;
6226 	struct css_set *cset;
6227 	int i;
6228 
6229 	cset = kargs->cset;
6230 	kargs->cset = NULL;
6231 
6232 	spin_lock_irq(&css_set_lock);
6233 
6234 	/* init tasks are special, only link regular threads */
6235 	if (likely(child->pid)) {
6236 		if (kargs->cgrp)
6237 			cgrp_flags = kargs->cgrp->flags;
6238 		else
6239 			cgrp_flags = cset->dfl_cgrp->flags;
6240 
6241 		WARN_ON_ONCE(!list_empty(&child->cg_list));
6242 		cset->nr_tasks++;
6243 		css_set_move_task(child, NULL, cset, false);
6244 	} else {
6245 		put_css_set(cset);
6246 		cset = NULL;
6247 	}
6248 
6249 	if (!(child->flags & PF_KTHREAD)) {
6250 		if (unlikely(test_bit(CGRP_FREEZE, &cgrp_flags))) {
6251 			/*
6252 			 * If the cgroup has to be frozen, the new task has
6253 			 * too. Let's set the JOBCTL_TRAP_FREEZE jobctl bit to
6254 			 * get the task into the frozen state.
6255 			 */
6256 			spin_lock(&child->sighand->siglock);
6257 			WARN_ON_ONCE(child->frozen);
6258 			child->jobctl |= JOBCTL_TRAP_FREEZE;
6259 			spin_unlock(&child->sighand->siglock);
6260 
6261 			/*
6262 			 * Calling cgroup_update_frozen() isn't required here,
6263 			 * because it will be called anyway a bit later from
6264 			 * do_freezer_trap(). So we avoid cgroup's transient
6265 			 * switch from the frozen state and back.
6266 			 */
6267 		}
6268 
6269 		/*
6270 		 * If the cgroup is to be killed notice it now and take the
6271 		 * child down right after we finished preparing it for
6272 		 * userspace.
6273 		 */
6274 		kill = test_bit(CGRP_KILL, &cgrp_flags);
6275 	}
6276 
6277 	spin_unlock_irq(&css_set_lock);
6278 
6279 	/*
6280 	 * Call ss->fork().  This must happen after @child is linked on
6281 	 * css_set; otherwise, @child might change state between ->fork()
6282 	 * and addition to css_set.
6283 	 */
6284 	do_each_subsys_mask(ss, i, have_fork_callback) {
6285 		ss->fork(child);
6286 	} while_each_subsys_mask();
6287 
6288 	/* Make the new cset the root_cset of the new cgroup namespace. */
6289 	if (kargs->flags & CLONE_NEWCGROUP) {
6290 		struct css_set *rcset = child->nsproxy->cgroup_ns->root_cset;
6291 
6292 		get_css_set(cset);
6293 		child->nsproxy->cgroup_ns->root_cset = cset;
6294 		put_css_set(rcset);
6295 	}
6296 
6297 	/* Cgroup has to be killed so take down child immediately. */
6298 	if (unlikely(kill))
6299 		do_send_sig_info(SIGKILL, SEND_SIG_NOINFO, child, PIDTYPE_TGID);
6300 
6301 	cgroup_css_set_put_fork(kargs);
6302 }
6303 
6304 /**
6305  * cgroup_exit - detach cgroup from exiting task
6306  * @tsk: pointer to task_struct of exiting process
6307  *
6308  * Description: Detach cgroup from @tsk.
6309  *
6310  */
6311 void cgroup_exit(struct task_struct *tsk)
6312 {
6313 	struct cgroup_subsys *ss;
6314 	struct css_set *cset;
6315 	int i;
6316 
6317 	spin_lock_irq(&css_set_lock);
6318 
6319 	WARN_ON_ONCE(list_empty(&tsk->cg_list));
6320 	cset = task_css_set(tsk);
6321 	css_set_move_task(tsk, cset, NULL, false);
6322 	list_add_tail(&tsk->cg_list, &cset->dying_tasks);
6323 	cset->nr_tasks--;
6324 
6325 	WARN_ON_ONCE(cgroup_task_frozen(tsk));
6326 	if (unlikely(!(tsk->flags & PF_KTHREAD) &&
6327 		     test_bit(CGRP_FREEZE, &task_dfl_cgroup(tsk)->flags)))
6328 		cgroup_update_frozen(task_dfl_cgroup(tsk));
6329 
6330 	spin_unlock_irq(&css_set_lock);
6331 
6332 	/* see cgroup_post_fork() for details */
6333 	do_each_subsys_mask(ss, i, have_exit_callback) {
6334 		ss->exit(tsk);
6335 	} while_each_subsys_mask();
6336 }
6337 
6338 void cgroup_release(struct task_struct *task)
6339 {
6340 	struct cgroup_subsys *ss;
6341 	int ssid;
6342 
6343 	do_each_subsys_mask(ss, ssid, have_release_callback) {
6344 		ss->release(task);
6345 	} while_each_subsys_mask();
6346 
6347 	spin_lock_irq(&css_set_lock);
6348 	css_set_skip_task_iters(task_css_set(task), task);
6349 	list_del_init(&task->cg_list);
6350 	spin_unlock_irq(&css_set_lock);
6351 }
6352 
6353 void cgroup_free(struct task_struct *task)
6354 {
6355 	struct css_set *cset = task_css_set(task);
6356 	put_css_set(cset);
6357 }
6358 
6359 static int __init cgroup_disable(char *str)
6360 {
6361 	struct cgroup_subsys *ss;
6362 	char *token;
6363 	int i;
6364 
6365 	while ((token = strsep(&str, ",")) != NULL) {
6366 		if (!*token)
6367 			continue;
6368 
6369 		for_each_subsys(ss, i) {
6370 			if (strcmp(token, ss->name) &&
6371 			    strcmp(token, ss->legacy_name))
6372 				continue;
6373 
6374 			static_branch_disable(cgroup_subsys_enabled_key[i]);
6375 			pr_info("Disabling %s control group subsystem\n",
6376 				ss->name);
6377 		}
6378 
6379 		for (i = 0; i < OPT_FEATURE_COUNT; i++) {
6380 			if (strcmp(token, cgroup_opt_feature_names[i]))
6381 				continue;
6382 			cgroup_feature_disable_mask |= 1 << i;
6383 			pr_info("Disabling %s control group feature\n",
6384 				cgroup_opt_feature_names[i]);
6385 			break;
6386 		}
6387 	}
6388 	return 1;
6389 }
6390 __setup("cgroup_disable=", cgroup_disable);
6391 
6392 void __init __weak enable_debug_cgroup(void) { }
6393 
6394 static int __init enable_cgroup_debug(char *str)
6395 {
6396 	cgroup_debug = true;
6397 	enable_debug_cgroup();
6398 	return 1;
6399 }
6400 __setup("cgroup_debug", enable_cgroup_debug);
6401 
6402 /**
6403  * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
6404  * @dentry: directory dentry of interest
6405  * @ss: subsystem of interest
6406  *
6407  * If @dentry is a directory for a cgroup which has @ss enabled on it, try
6408  * to get the corresponding css and return it.  If such css doesn't exist
6409  * or can't be pinned, an ERR_PTR value is returned.
6410  */
6411 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
6412 						       struct cgroup_subsys *ss)
6413 {
6414 	struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
6415 	struct file_system_type *s_type = dentry->d_sb->s_type;
6416 	struct cgroup_subsys_state *css = NULL;
6417 	struct cgroup *cgrp;
6418 
6419 	/* is @dentry a cgroup dir? */
6420 	if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
6421 	    !kn || kernfs_type(kn) != KERNFS_DIR)
6422 		return ERR_PTR(-EBADF);
6423 
6424 	rcu_read_lock();
6425 
6426 	/*
6427 	 * This path doesn't originate from kernfs and @kn could already
6428 	 * have been or be removed at any point.  @kn->priv is RCU
6429 	 * protected for this access.  See css_release_work_fn() for details.
6430 	 */
6431 	cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6432 	if (cgrp)
6433 		css = cgroup_css(cgrp, ss);
6434 
6435 	if (!css || !css_tryget_online(css))
6436 		css = ERR_PTR(-ENOENT);
6437 
6438 	rcu_read_unlock();
6439 	return css;
6440 }
6441 
6442 /**
6443  * css_from_id - lookup css by id
6444  * @id: the cgroup id
6445  * @ss: cgroup subsys to be looked into
6446  *
6447  * Returns the css if there's valid one with @id, otherwise returns NULL.
6448  * Should be called under rcu_read_lock().
6449  */
6450 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
6451 {
6452 	WARN_ON_ONCE(!rcu_read_lock_held());
6453 	return idr_find(&ss->css_idr, id);
6454 }
6455 
6456 /**
6457  * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
6458  * @path: path on the default hierarchy
6459  *
6460  * Find the cgroup at @path on the default hierarchy, increment its
6461  * reference count and return it.  Returns pointer to the found cgroup on
6462  * success, ERR_PTR(-ENOENT) if @path doesn't exist and ERR_PTR(-ENOTDIR)
6463  * if @path points to a non-directory.
6464  */
6465 struct cgroup *cgroup_get_from_path(const char *path)
6466 {
6467 	struct kernfs_node *kn;
6468 	struct cgroup *cgrp;
6469 
6470 	mutex_lock(&cgroup_mutex);
6471 
6472 	kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path);
6473 	if (kn) {
6474 		if (kernfs_type(kn) == KERNFS_DIR) {
6475 			cgrp = kn->priv;
6476 			cgroup_get_live(cgrp);
6477 		} else {
6478 			cgrp = ERR_PTR(-ENOTDIR);
6479 		}
6480 		kernfs_put(kn);
6481 	} else {
6482 		cgrp = ERR_PTR(-ENOENT);
6483 	}
6484 
6485 	mutex_unlock(&cgroup_mutex);
6486 	return cgrp;
6487 }
6488 EXPORT_SYMBOL_GPL(cgroup_get_from_path);
6489 
6490 /**
6491  * cgroup_get_from_fd - get a cgroup pointer from a fd
6492  * @fd: fd obtained by open(cgroup2_dir)
6493  *
6494  * Find the cgroup from a fd which should be obtained
6495  * by opening a cgroup directory.  Returns a pointer to the
6496  * cgroup on success. ERR_PTR is returned if the cgroup
6497  * cannot be found.
6498  */
6499 struct cgroup *cgroup_get_from_fd(int fd)
6500 {
6501 	struct cgroup *cgrp;
6502 	struct file *f;
6503 
6504 	f = fget_raw(fd);
6505 	if (!f)
6506 		return ERR_PTR(-EBADF);
6507 
6508 	cgrp = cgroup_get_from_file(f);
6509 	fput(f);
6510 	return cgrp;
6511 }
6512 EXPORT_SYMBOL_GPL(cgroup_get_from_fd);
6513 
6514 static u64 power_of_ten(int power)
6515 {
6516 	u64 v = 1;
6517 	while (power--)
6518 		v *= 10;
6519 	return v;
6520 }
6521 
6522 /**
6523  * cgroup_parse_float - parse a floating number
6524  * @input: input string
6525  * @dec_shift: number of decimal digits to shift
6526  * @v: output
6527  *
6528  * Parse a decimal floating point number in @input and store the result in
6529  * @v with decimal point right shifted @dec_shift times.  For example, if
6530  * @input is "12.3456" and @dec_shift is 3, *@v will be set to 12345.
6531  * Returns 0 on success, -errno otherwise.
6532  *
6533  * There's nothing cgroup specific about this function except that it's
6534  * currently the only user.
6535  */
6536 int cgroup_parse_float(const char *input, unsigned dec_shift, s64 *v)
6537 {
6538 	s64 whole, frac = 0;
6539 	int fstart = 0, fend = 0, flen;
6540 
6541 	if (!sscanf(input, "%lld.%n%lld%n", &whole, &fstart, &frac, &fend))
6542 		return -EINVAL;
6543 	if (frac < 0)
6544 		return -EINVAL;
6545 
6546 	flen = fend > fstart ? fend - fstart : 0;
6547 	if (flen < dec_shift)
6548 		frac *= power_of_ten(dec_shift - flen);
6549 	else
6550 		frac = DIV_ROUND_CLOSEST_ULL(frac, power_of_ten(flen - dec_shift));
6551 
6552 	*v = whole * power_of_ten(dec_shift) + frac;
6553 	return 0;
6554 }
6555 
6556 /*
6557  * sock->sk_cgrp_data handling.  For more info, see sock_cgroup_data
6558  * definition in cgroup-defs.h.
6559  */
6560 #ifdef CONFIG_SOCK_CGROUP_DATA
6561 
6562 #if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID)
6563 
6564 DEFINE_SPINLOCK(cgroup_sk_update_lock);
6565 static bool cgroup_sk_alloc_disabled __read_mostly;
6566 
6567 void cgroup_sk_alloc_disable(void)
6568 {
6569 	if (cgroup_sk_alloc_disabled)
6570 		return;
6571 	pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n");
6572 	cgroup_sk_alloc_disabled = true;
6573 }
6574 
6575 #else
6576 
6577 #define cgroup_sk_alloc_disabled	false
6578 
6579 #endif
6580 
6581 void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
6582 {
6583 	if (cgroup_sk_alloc_disabled) {
6584 		skcd->no_refcnt = 1;
6585 		return;
6586 	}
6587 
6588 	/* Don't associate the sock with unrelated interrupted task's cgroup. */
6589 	if (in_interrupt())
6590 		return;
6591 
6592 	rcu_read_lock();
6593 
6594 	while (true) {
6595 		struct css_set *cset;
6596 
6597 		cset = task_css_set(current);
6598 		if (likely(cgroup_tryget(cset->dfl_cgrp))) {
6599 			skcd->val = (unsigned long)cset->dfl_cgrp;
6600 			cgroup_bpf_get(cset->dfl_cgrp);
6601 			break;
6602 		}
6603 		cpu_relax();
6604 	}
6605 
6606 	rcu_read_unlock();
6607 }
6608 
6609 void cgroup_sk_clone(struct sock_cgroup_data *skcd)
6610 {
6611 	if (skcd->val) {
6612 		if (skcd->no_refcnt)
6613 			return;
6614 		/*
6615 		 * We might be cloning a socket which is left in an empty
6616 		 * cgroup and the cgroup might have already been rmdir'd.
6617 		 * Don't use cgroup_get_live().
6618 		 */
6619 		cgroup_get(sock_cgroup_ptr(skcd));
6620 		cgroup_bpf_get(sock_cgroup_ptr(skcd));
6621 	}
6622 }
6623 
6624 void cgroup_sk_free(struct sock_cgroup_data *skcd)
6625 {
6626 	struct cgroup *cgrp = sock_cgroup_ptr(skcd);
6627 
6628 	if (skcd->no_refcnt)
6629 		return;
6630 	cgroup_bpf_put(cgrp);
6631 	cgroup_put(cgrp);
6632 }
6633 
6634 #endif	/* CONFIG_SOCK_CGROUP_DATA */
6635 
6636 #ifdef CONFIG_CGROUP_BPF
6637 int cgroup_bpf_attach(struct cgroup *cgrp,
6638 		      struct bpf_prog *prog, struct bpf_prog *replace_prog,
6639 		      struct bpf_cgroup_link *link,
6640 		      enum bpf_attach_type type,
6641 		      u32 flags)
6642 {
6643 	int ret;
6644 
6645 	mutex_lock(&cgroup_mutex);
6646 	ret = __cgroup_bpf_attach(cgrp, prog, replace_prog, link, type, flags);
6647 	mutex_unlock(&cgroup_mutex);
6648 	return ret;
6649 }
6650 
6651 int cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog,
6652 		      enum bpf_attach_type type)
6653 {
6654 	int ret;
6655 
6656 	mutex_lock(&cgroup_mutex);
6657 	ret = __cgroup_bpf_detach(cgrp, prog, NULL, type);
6658 	mutex_unlock(&cgroup_mutex);
6659 	return ret;
6660 }
6661 
6662 int cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr,
6663 		     union bpf_attr __user *uattr)
6664 {
6665 	int ret;
6666 
6667 	mutex_lock(&cgroup_mutex);
6668 	ret = __cgroup_bpf_query(cgrp, attr, uattr);
6669 	mutex_unlock(&cgroup_mutex);
6670 	return ret;
6671 }
6672 #endif /* CONFIG_CGROUP_BPF */
6673 
6674 #ifdef CONFIG_SYSFS
6675 static ssize_t show_delegatable_files(struct cftype *files, char *buf,
6676 				      ssize_t size, const char *prefix)
6677 {
6678 	struct cftype *cft;
6679 	ssize_t ret = 0;
6680 
6681 	for (cft = files; cft && cft->name[0] != '\0'; cft++) {
6682 		if (!(cft->flags & CFTYPE_NS_DELEGATABLE))
6683 			continue;
6684 
6685 		if ((cft->flags & CFTYPE_PRESSURE) && !cgroup_psi_enabled())
6686 			continue;
6687 
6688 		if (prefix)
6689 			ret += snprintf(buf + ret, size - ret, "%s.", prefix);
6690 
6691 		ret += snprintf(buf + ret, size - ret, "%s\n", cft->name);
6692 
6693 		if (WARN_ON(ret >= size))
6694 			break;
6695 	}
6696 
6697 	return ret;
6698 }
6699 
6700 static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr,
6701 			      char *buf)
6702 {
6703 	struct cgroup_subsys *ss;
6704 	int ssid;
6705 	ssize_t ret = 0;
6706 
6707 	ret = show_delegatable_files(cgroup_base_files, buf, PAGE_SIZE - ret,
6708 				     NULL);
6709 
6710 	for_each_subsys(ss, ssid)
6711 		ret += show_delegatable_files(ss->dfl_cftypes, buf + ret,
6712 					      PAGE_SIZE - ret,
6713 					      cgroup_subsys_name[ssid]);
6714 
6715 	return ret;
6716 }
6717 static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate);
6718 
6719 static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr,
6720 			     char *buf)
6721 {
6722 	return snprintf(buf, PAGE_SIZE,
6723 			"nsdelegate\n"
6724 			"memory_localevents\n"
6725 			"memory_recursiveprot\n");
6726 }
6727 static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features);
6728 
6729 static struct attribute *cgroup_sysfs_attrs[] = {
6730 	&cgroup_delegate_attr.attr,
6731 	&cgroup_features_attr.attr,
6732 	NULL,
6733 };
6734 
6735 static const struct attribute_group cgroup_sysfs_attr_group = {
6736 	.attrs = cgroup_sysfs_attrs,
6737 	.name = "cgroup",
6738 };
6739 
6740 static int __init cgroup_sysfs_init(void)
6741 {
6742 	return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group);
6743 }
6744 subsys_initcall(cgroup_sysfs_init);
6745 
6746 #endif /* CONFIG_SYSFS */
6747