xref: /openbmc/linux/kernel/cgroup/cgroup.c (revision a971b42c)
1 /*
2  *  Generic process-grouping system.
3  *
4  *  Based originally on the cpuset system, extracted by Paul Menage
5  *  Copyright (C) 2006 Google, Inc
6  *
7  *  Notifications support
8  *  Copyright (C) 2009 Nokia Corporation
9  *  Author: Kirill A. Shutemov
10  *
11  *  Copyright notices from the original cpuset code:
12  *  --------------------------------------------------
13  *  Copyright (C) 2003 BULL SA.
14  *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
15  *
16  *  Portions derived from Patrick Mochel's sysfs code.
17  *  sysfs is Copyright (c) 2001-3 Patrick Mochel
18  *
19  *  2003-10-10 Written by Simon Derr.
20  *  2003-10-22 Updates by Stephen Hemminger.
21  *  2004 May-July Rework by Paul Jackson.
22  *  ---------------------------------------------------
23  *
24  *  This file is subject to the terms and conditions of the GNU General Public
25  *  License.  See the file COPYING in the main directory of the Linux
26  *  distribution for more details.
27  */
28 
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 
31 #include "cgroup-internal.h"
32 
33 #include <linux/cred.h>
34 #include <linux/errno.h>
35 #include <linux/init_task.h>
36 #include <linux/kernel.h>
37 #include <linux/magic.h>
38 #include <linux/mutex.h>
39 #include <linux/mount.h>
40 #include <linux/pagemap.h>
41 #include <linux/proc_fs.h>
42 #include <linux/rcupdate.h>
43 #include <linux/sched.h>
44 #include <linux/sched/task.h>
45 #include <linux/slab.h>
46 #include <linux/spinlock.h>
47 #include <linux/percpu-rwsem.h>
48 #include <linux/string.h>
49 #include <linux/hashtable.h>
50 #include <linux/idr.h>
51 #include <linux/kthread.h>
52 #include <linux/atomic.h>
53 #include <linux/cpuset.h>
54 #include <linux/proc_ns.h>
55 #include <linux/nsproxy.h>
56 #include <linux/file.h>
57 #include <linux/fs_parser.h>
58 #include <linux/sched/cputime.h>
59 #include <linux/psi.h>
60 #include <net/sock.h>
61 
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/cgroup.h>
64 
65 #define CGROUP_FILE_NAME_MAX		(MAX_CGROUP_TYPE_NAMELEN +	\
66 					 MAX_CFTYPE_NAME + 2)
67 /* let's not notify more than 100 times per second */
68 #define CGROUP_FILE_NOTIFY_MIN_INTV	DIV_ROUND_UP(HZ, 100)
69 
70 /*
71  * cgroup_mutex is the master lock.  Any modification to cgroup or its
72  * hierarchy must be performed while holding it.
73  *
74  * css_set_lock protects task->cgroups pointer, the list of css_set
75  * objects, and the chain of tasks off each css_set.
76  *
77  * These locks are exported if CONFIG_PROVE_RCU so that accessors in
78  * cgroup.h can use them for lockdep annotations.
79  */
80 DEFINE_MUTEX(cgroup_mutex);
81 DEFINE_SPINLOCK(css_set_lock);
82 
83 #ifdef CONFIG_PROVE_RCU
84 EXPORT_SYMBOL_GPL(cgroup_mutex);
85 EXPORT_SYMBOL_GPL(css_set_lock);
86 #endif
87 
88 DEFINE_SPINLOCK(trace_cgroup_path_lock);
89 char trace_cgroup_path[TRACE_CGROUP_PATH_LEN];
90 bool cgroup_debug __read_mostly;
91 
92 /*
93  * Protects cgroup_idr and css_idr so that IDs can be released without
94  * grabbing cgroup_mutex.
95  */
96 static DEFINE_SPINLOCK(cgroup_idr_lock);
97 
98 /*
99  * Protects cgroup_file->kn for !self csses.  It synchronizes notifications
100  * against file removal/re-creation across css hiding.
101  */
102 static DEFINE_SPINLOCK(cgroup_file_kn_lock);
103 
104 DEFINE_PERCPU_RWSEM(cgroup_threadgroup_rwsem);
105 
106 #define cgroup_assert_mutex_or_rcu_locked()				\
107 	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
108 			   !lockdep_is_held(&cgroup_mutex),		\
109 			   "cgroup_mutex or RCU read lock required");
110 
111 /*
112  * cgroup destruction makes heavy use of work items and there can be a lot
113  * of concurrent destructions.  Use a separate workqueue so that cgroup
114  * destruction work items don't end up filling up max_active of system_wq
115  * which may lead to deadlock.
116  */
117 static struct workqueue_struct *cgroup_destroy_wq;
118 
119 /* generate an array of cgroup subsystem pointers */
120 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
121 struct cgroup_subsys *cgroup_subsys[] = {
122 #include <linux/cgroup_subsys.h>
123 };
124 #undef SUBSYS
125 
126 /* array of cgroup subsystem names */
127 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
128 static const char *cgroup_subsys_name[] = {
129 #include <linux/cgroup_subsys.h>
130 };
131 #undef SUBSYS
132 
133 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
134 #define SUBSYS(_x)								\
135 	DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key);			\
136 	DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key);			\
137 	EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key);			\
138 	EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
139 #include <linux/cgroup_subsys.h>
140 #undef SUBSYS
141 
142 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
143 static struct static_key_true *cgroup_subsys_enabled_key[] = {
144 #include <linux/cgroup_subsys.h>
145 };
146 #undef SUBSYS
147 
148 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
149 static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
150 #include <linux/cgroup_subsys.h>
151 };
152 #undef SUBSYS
153 
154 static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu);
155 
156 /* the default hierarchy */
157 struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu };
158 EXPORT_SYMBOL_GPL(cgrp_dfl_root);
159 
160 /*
161  * The default hierarchy always exists but is hidden until mounted for the
162  * first time.  This is for backward compatibility.
163  */
164 static bool cgrp_dfl_visible;
165 
166 /* some controllers are not supported in the default hierarchy */
167 static u16 cgrp_dfl_inhibit_ss_mask;
168 
169 /* some controllers are implicitly enabled on the default hierarchy */
170 static u16 cgrp_dfl_implicit_ss_mask;
171 
172 /* some controllers can be threaded on the default hierarchy */
173 static u16 cgrp_dfl_threaded_ss_mask;
174 
175 /* The list of hierarchy roots */
176 LIST_HEAD(cgroup_roots);
177 static int cgroup_root_count;
178 
179 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
180 static DEFINE_IDR(cgroup_hierarchy_idr);
181 
182 /*
183  * Assign a monotonically increasing serial number to csses.  It guarantees
184  * cgroups with bigger numbers are newer than those with smaller numbers.
185  * Also, as csses are always appended to the parent's ->children list, it
186  * guarantees that sibling csses are always sorted in the ascending serial
187  * number order on the list.  Protected by cgroup_mutex.
188  */
189 static u64 css_serial_nr_next = 1;
190 
191 /*
192  * These bitmasks identify subsystems with specific features to avoid
193  * having to do iterative checks repeatedly.
194  */
195 static u16 have_fork_callback __read_mostly;
196 static u16 have_exit_callback __read_mostly;
197 static u16 have_release_callback __read_mostly;
198 static u16 have_canfork_callback __read_mostly;
199 
200 /* cgroup namespace for init task */
201 struct cgroup_namespace init_cgroup_ns = {
202 	.count		= REFCOUNT_INIT(2),
203 	.user_ns	= &init_user_ns,
204 	.ns.ops		= &cgroupns_operations,
205 	.ns.inum	= PROC_CGROUP_INIT_INO,
206 	.root_cset	= &init_css_set,
207 };
208 
209 static struct file_system_type cgroup2_fs_type;
210 static struct cftype cgroup_base_files[];
211 
212 static int cgroup_apply_control(struct cgroup *cgrp);
213 static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
214 static void css_task_iter_skip(struct css_task_iter *it,
215 			       struct task_struct *task);
216 static int cgroup_destroy_locked(struct cgroup *cgrp);
217 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
218 					      struct cgroup_subsys *ss);
219 static void css_release(struct percpu_ref *ref);
220 static void kill_css(struct cgroup_subsys_state *css);
221 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
222 			      struct cgroup *cgrp, struct cftype cfts[],
223 			      bool is_add);
224 
225 /**
226  * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
227  * @ssid: subsys ID of interest
228  *
229  * cgroup_subsys_enabled() can only be used with literal subsys names which
230  * is fine for individual subsystems but unsuitable for cgroup core.  This
231  * is slower static_key_enabled() based test indexed by @ssid.
232  */
233 bool cgroup_ssid_enabled(int ssid)
234 {
235 	if (CGROUP_SUBSYS_COUNT == 0)
236 		return false;
237 
238 	return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
239 }
240 
241 /**
242  * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
243  * @cgrp: the cgroup of interest
244  *
245  * The default hierarchy is the v2 interface of cgroup and this function
246  * can be used to test whether a cgroup is on the default hierarchy for
247  * cases where a subsystem should behave differnetly depending on the
248  * interface version.
249  *
250  * List of changed behaviors:
251  *
252  * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
253  *   and "name" are disallowed.
254  *
255  * - When mounting an existing superblock, mount options should match.
256  *
257  * - Remount is disallowed.
258  *
259  * - rename(2) is disallowed.
260  *
261  * - "tasks" is removed.  Everything should be at process granularity.  Use
262  *   "cgroup.procs" instead.
263  *
264  * - "cgroup.procs" is not sorted.  pids will be unique unless they got
265  *   recycled inbetween reads.
266  *
267  * - "release_agent" and "notify_on_release" are removed.  Replacement
268  *   notification mechanism will be implemented.
269  *
270  * - "cgroup.clone_children" is removed.
271  *
272  * - "cgroup.subtree_populated" is available.  Its value is 0 if the cgroup
273  *   and its descendants contain no task; otherwise, 1.  The file also
274  *   generates kernfs notification which can be monitored through poll and
275  *   [di]notify when the value of the file changes.
276  *
277  * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
278  *   take masks of ancestors with non-empty cpus/mems, instead of being
279  *   moved to an ancestor.
280  *
281  * - cpuset: a task can be moved into an empty cpuset, and again it takes
282  *   masks of ancestors.
283  *
284  * - memcg: use_hierarchy is on by default and the cgroup file for the flag
285  *   is not created.
286  *
287  * - blkcg: blk-throttle becomes properly hierarchical.
288  *
289  * - debug: disallowed on the default hierarchy.
290  */
291 bool cgroup_on_dfl(const struct cgroup *cgrp)
292 {
293 	return cgrp->root == &cgrp_dfl_root;
294 }
295 
296 /* IDR wrappers which synchronize using cgroup_idr_lock */
297 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
298 			    gfp_t gfp_mask)
299 {
300 	int ret;
301 
302 	idr_preload(gfp_mask);
303 	spin_lock_bh(&cgroup_idr_lock);
304 	ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
305 	spin_unlock_bh(&cgroup_idr_lock);
306 	idr_preload_end();
307 	return ret;
308 }
309 
310 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
311 {
312 	void *ret;
313 
314 	spin_lock_bh(&cgroup_idr_lock);
315 	ret = idr_replace(idr, ptr, id);
316 	spin_unlock_bh(&cgroup_idr_lock);
317 	return ret;
318 }
319 
320 static void cgroup_idr_remove(struct idr *idr, int id)
321 {
322 	spin_lock_bh(&cgroup_idr_lock);
323 	idr_remove(idr, id);
324 	spin_unlock_bh(&cgroup_idr_lock);
325 }
326 
327 static bool cgroup_has_tasks(struct cgroup *cgrp)
328 {
329 	return cgrp->nr_populated_csets;
330 }
331 
332 bool cgroup_is_threaded(struct cgroup *cgrp)
333 {
334 	return cgrp->dom_cgrp != cgrp;
335 }
336 
337 /* can @cgrp host both domain and threaded children? */
338 static bool cgroup_is_mixable(struct cgroup *cgrp)
339 {
340 	/*
341 	 * Root isn't under domain level resource control exempting it from
342 	 * the no-internal-process constraint, so it can serve as a thread
343 	 * root and a parent of resource domains at the same time.
344 	 */
345 	return !cgroup_parent(cgrp);
346 }
347 
348 /* can @cgrp become a thread root? should always be true for a thread root */
349 static bool cgroup_can_be_thread_root(struct cgroup *cgrp)
350 {
351 	/* mixables don't care */
352 	if (cgroup_is_mixable(cgrp))
353 		return true;
354 
355 	/* domain roots can't be nested under threaded */
356 	if (cgroup_is_threaded(cgrp))
357 		return false;
358 
359 	/* can only have either domain or threaded children */
360 	if (cgrp->nr_populated_domain_children)
361 		return false;
362 
363 	/* and no domain controllers can be enabled */
364 	if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
365 		return false;
366 
367 	return true;
368 }
369 
370 /* is @cgrp root of a threaded subtree? */
371 bool cgroup_is_thread_root(struct cgroup *cgrp)
372 {
373 	/* thread root should be a domain */
374 	if (cgroup_is_threaded(cgrp))
375 		return false;
376 
377 	/* a domain w/ threaded children is a thread root */
378 	if (cgrp->nr_threaded_children)
379 		return true;
380 
381 	/*
382 	 * A domain which has tasks and explicit threaded controllers
383 	 * enabled is a thread root.
384 	 */
385 	if (cgroup_has_tasks(cgrp) &&
386 	    (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask))
387 		return true;
388 
389 	return false;
390 }
391 
392 /* a domain which isn't connected to the root w/o brekage can't be used */
393 static bool cgroup_is_valid_domain(struct cgroup *cgrp)
394 {
395 	/* the cgroup itself can be a thread root */
396 	if (cgroup_is_threaded(cgrp))
397 		return false;
398 
399 	/* but the ancestors can't be unless mixable */
400 	while ((cgrp = cgroup_parent(cgrp))) {
401 		if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp))
402 			return false;
403 		if (cgroup_is_threaded(cgrp))
404 			return false;
405 	}
406 
407 	return true;
408 }
409 
410 /* subsystems visibly enabled on a cgroup */
411 static u16 cgroup_control(struct cgroup *cgrp)
412 {
413 	struct cgroup *parent = cgroup_parent(cgrp);
414 	u16 root_ss_mask = cgrp->root->subsys_mask;
415 
416 	if (parent) {
417 		u16 ss_mask = parent->subtree_control;
418 
419 		/* threaded cgroups can only have threaded controllers */
420 		if (cgroup_is_threaded(cgrp))
421 			ss_mask &= cgrp_dfl_threaded_ss_mask;
422 		return ss_mask;
423 	}
424 
425 	if (cgroup_on_dfl(cgrp))
426 		root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
427 				  cgrp_dfl_implicit_ss_mask);
428 	return root_ss_mask;
429 }
430 
431 /* subsystems enabled on a cgroup */
432 static u16 cgroup_ss_mask(struct cgroup *cgrp)
433 {
434 	struct cgroup *parent = cgroup_parent(cgrp);
435 
436 	if (parent) {
437 		u16 ss_mask = parent->subtree_ss_mask;
438 
439 		/* threaded cgroups can only have threaded controllers */
440 		if (cgroup_is_threaded(cgrp))
441 			ss_mask &= cgrp_dfl_threaded_ss_mask;
442 		return ss_mask;
443 	}
444 
445 	return cgrp->root->subsys_mask;
446 }
447 
448 /**
449  * cgroup_css - obtain a cgroup's css for the specified subsystem
450  * @cgrp: the cgroup of interest
451  * @ss: the subsystem of interest (%NULL returns @cgrp->self)
452  *
453  * Return @cgrp's css (cgroup_subsys_state) associated with @ss.  This
454  * function must be called either under cgroup_mutex or rcu_read_lock() and
455  * the caller is responsible for pinning the returned css if it wants to
456  * keep accessing it outside the said locks.  This function may return
457  * %NULL if @cgrp doesn't have @subsys_id enabled.
458  */
459 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
460 					      struct cgroup_subsys *ss)
461 {
462 	if (ss)
463 		return rcu_dereference_check(cgrp->subsys[ss->id],
464 					lockdep_is_held(&cgroup_mutex));
465 	else
466 		return &cgrp->self;
467 }
468 
469 /**
470  * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem
471  * @cgrp: the cgroup of interest
472  * @ss: the subsystem of interest
473  *
474  * Find and get @cgrp's css assocaited with @ss.  If the css doesn't exist
475  * or is offline, %NULL is returned.
476  */
477 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp,
478 						     struct cgroup_subsys *ss)
479 {
480 	struct cgroup_subsys_state *css;
481 
482 	rcu_read_lock();
483 	css = cgroup_css(cgrp, ss);
484 	if (css && !css_tryget_online(css))
485 		css = NULL;
486 	rcu_read_unlock();
487 
488 	return css;
489 }
490 
491 /**
492  * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss
493  * @cgrp: the cgroup of interest
494  * @ss: the subsystem of interest (%NULL returns @cgrp->self)
495  *
496  * Similar to cgroup_css() but returns the effective css, which is defined
497  * as the matching css of the nearest ancestor including self which has @ss
498  * enabled.  If @ss is associated with the hierarchy @cgrp is on, this
499  * function is guaranteed to return non-NULL css.
500  */
501 static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp,
502 							struct cgroup_subsys *ss)
503 {
504 	lockdep_assert_held(&cgroup_mutex);
505 
506 	if (!ss)
507 		return &cgrp->self;
508 
509 	/*
510 	 * This function is used while updating css associations and thus
511 	 * can't test the csses directly.  Test ss_mask.
512 	 */
513 	while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
514 		cgrp = cgroup_parent(cgrp);
515 		if (!cgrp)
516 			return NULL;
517 	}
518 
519 	return cgroup_css(cgrp, ss);
520 }
521 
522 /**
523  * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
524  * @cgrp: the cgroup of interest
525  * @ss: the subsystem of interest
526  *
527  * Find and get the effective css of @cgrp for @ss.  The effective css is
528  * defined as the matching css of the nearest ancestor including self which
529  * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
530  * the root css is returned, so this function always returns a valid css.
531  *
532  * The returned css is not guaranteed to be online, and therefore it is the
533  * callers responsiblity to tryget a reference for it.
534  */
535 struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
536 					 struct cgroup_subsys *ss)
537 {
538 	struct cgroup_subsys_state *css;
539 
540 	do {
541 		css = cgroup_css(cgrp, ss);
542 
543 		if (css)
544 			return css;
545 		cgrp = cgroup_parent(cgrp);
546 	} while (cgrp);
547 
548 	return init_css_set.subsys[ss->id];
549 }
550 
551 /**
552  * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
553  * @cgrp: the cgroup of interest
554  * @ss: the subsystem of interest
555  *
556  * Find and get the effective css of @cgrp for @ss.  The effective css is
557  * defined as the matching css of the nearest ancestor including self which
558  * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
559  * the root css is returned, so this function always returns a valid css.
560  * The returned css must be put using css_put().
561  */
562 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
563 					     struct cgroup_subsys *ss)
564 {
565 	struct cgroup_subsys_state *css;
566 
567 	rcu_read_lock();
568 
569 	do {
570 		css = cgroup_css(cgrp, ss);
571 
572 		if (css && css_tryget_online(css))
573 			goto out_unlock;
574 		cgrp = cgroup_parent(cgrp);
575 	} while (cgrp);
576 
577 	css = init_css_set.subsys[ss->id];
578 	css_get(css);
579 out_unlock:
580 	rcu_read_unlock();
581 	return css;
582 }
583 
584 static void cgroup_get_live(struct cgroup *cgrp)
585 {
586 	WARN_ON_ONCE(cgroup_is_dead(cgrp));
587 	css_get(&cgrp->self);
588 }
589 
590 /**
591  * __cgroup_task_count - count the number of tasks in a cgroup. The caller
592  * is responsible for taking the css_set_lock.
593  * @cgrp: the cgroup in question
594  */
595 int __cgroup_task_count(const struct cgroup *cgrp)
596 {
597 	int count = 0;
598 	struct cgrp_cset_link *link;
599 
600 	lockdep_assert_held(&css_set_lock);
601 
602 	list_for_each_entry(link, &cgrp->cset_links, cset_link)
603 		count += link->cset->nr_tasks;
604 
605 	return count;
606 }
607 
608 /**
609  * cgroup_task_count - count the number of tasks in a cgroup.
610  * @cgrp: the cgroup in question
611  */
612 int cgroup_task_count(const struct cgroup *cgrp)
613 {
614 	int count;
615 
616 	spin_lock_irq(&css_set_lock);
617 	count = __cgroup_task_count(cgrp);
618 	spin_unlock_irq(&css_set_lock);
619 
620 	return count;
621 }
622 
623 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
624 {
625 	struct cgroup *cgrp = of->kn->parent->priv;
626 	struct cftype *cft = of_cft(of);
627 
628 	/*
629 	 * This is open and unprotected implementation of cgroup_css().
630 	 * seq_css() is only called from a kernfs file operation which has
631 	 * an active reference on the file.  Because all the subsystem
632 	 * files are drained before a css is disassociated with a cgroup,
633 	 * the matching css from the cgroup's subsys table is guaranteed to
634 	 * be and stay valid until the enclosing operation is complete.
635 	 */
636 	if (cft->ss)
637 		return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
638 	else
639 		return &cgrp->self;
640 }
641 EXPORT_SYMBOL_GPL(of_css);
642 
643 /**
644  * for_each_css - iterate all css's of a cgroup
645  * @css: the iteration cursor
646  * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
647  * @cgrp: the target cgroup to iterate css's of
648  *
649  * Should be called under cgroup_[tree_]mutex.
650  */
651 #define for_each_css(css, ssid, cgrp)					\
652 	for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)	\
653 		if (!((css) = rcu_dereference_check(			\
654 				(cgrp)->subsys[(ssid)],			\
655 				lockdep_is_held(&cgroup_mutex)))) { }	\
656 		else
657 
658 /**
659  * for_each_e_css - iterate all effective css's of a cgroup
660  * @css: the iteration cursor
661  * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
662  * @cgrp: the target cgroup to iterate css's of
663  *
664  * Should be called under cgroup_[tree_]mutex.
665  */
666 #define for_each_e_css(css, ssid, cgrp)					    \
667 	for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)	    \
668 		if (!((css) = cgroup_e_css_by_mask(cgrp,		    \
669 						   cgroup_subsys[(ssid)]))) \
670 			;						    \
671 		else
672 
673 /**
674  * do_each_subsys_mask - filter for_each_subsys with a bitmask
675  * @ss: the iteration cursor
676  * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
677  * @ss_mask: the bitmask
678  *
679  * The block will only run for cases where the ssid-th bit (1 << ssid) of
680  * @ss_mask is set.
681  */
682 #define do_each_subsys_mask(ss, ssid, ss_mask) do {			\
683 	unsigned long __ss_mask = (ss_mask);				\
684 	if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */	\
685 		(ssid) = 0;						\
686 		break;							\
687 	}								\
688 	for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) {	\
689 		(ss) = cgroup_subsys[ssid];				\
690 		{
691 
692 #define while_each_subsys_mask()					\
693 		}							\
694 	}								\
695 } while (false)
696 
697 /* iterate over child cgrps, lock should be held throughout iteration */
698 #define cgroup_for_each_live_child(child, cgrp)				\
699 	list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
700 		if (({ lockdep_assert_held(&cgroup_mutex);		\
701 		       cgroup_is_dead(child); }))			\
702 			;						\
703 		else
704 
705 /* walk live descendants in preorder */
706 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)		\
707 	css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL))	\
708 		if (({ lockdep_assert_held(&cgroup_mutex);		\
709 		       (dsct) = (d_css)->cgroup;			\
710 		       cgroup_is_dead(dsct); }))			\
711 			;						\
712 		else
713 
714 /* walk live descendants in postorder */
715 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp)		\
716 	css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL))	\
717 		if (({ lockdep_assert_held(&cgroup_mutex);		\
718 		       (dsct) = (d_css)->cgroup;			\
719 		       cgroup_is_dead(dsct); }))			\
720 			;						\
721 		else
722 
723 /*
724  * The default css_set - used by init and its children prior to any
725  * hierarchies being mounted. It contains a pointer to the root state
726  * for each subsystem. Also used to anchor the list of css_sets. Not
727  * reference-counted, to improve performance when child cgroups
728  * haven't been created.
729  */
730 struct css_set init_css_set = {
731 	.refcount		= REFCOUNT_INIT(1),
732 	.dom_cset		= &init_css_set,
733 	.tasks			= LIST_HEAD_INIT(init_css_set.tasks),
734 	.mg_tasks		= LIST_HEAD_INIT(init_css_set.mg_tasks),
735 	.dying_tasks		= LIST_HEAD_INIT(init_css_set.dying_tasks),
736 	.task_iters		= LIST_HEAD_INIT(init_css_set.task_iters),
737 	.threaded_csets		= LIST_HEAD_INIT(init_css_set.threaded_csets),
738 	.cgrp_links		= LIST_HEAD_INIT(init_css_set.cgrp_links),
739 	.mg_preload_node	= LIST_HEAD_INIT(init_css_set.mg_preload_node),
740 	.mg_node		= LIST_HEAD_INIT(init_css_set.mg_node),
741 
742 	/*
743 	 * The following field is re-initialized when this cset gets linked
744 	 * in cgroup_init().  However, let's initialize the field
745 	 * statically too so that the default cgroup can be accessed safely
746 	 * early during boot.
747 	 */
748 	.dfl_cgrp		= &cgrp_dfl_root.cgrp,
749 };
750 
751 static int css_set_count	= 1;	/* 1 for init_css_set */
752 
753 static bool css_set_threaded(struct css_set *cset)
754 {
755 	return cset->dom_cset != cset;
756 }
757 
758 /**
759  * css_set_populated - does a css_set contain any tasks?
760  * @cset: target css_set
761  *
762  * css_set_populated() should be the same as !!cset->nr_tasks at steady
763  * state. However, css_set_populated() can be called while a task is being
764  * added to or removed from the linked list before the nr_tasks is
765  * properly updated. Hence, we can't just look at ->nr_tasks here.
766  */
767 static bool css_set_populated(struct css_set *cset)
768 {
769 	lockdep_assert_held(&css_set_lock);
770 
771 	return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
772 }
773 
774 /**
775  * cgroup_update_populated - update the populated count of a cgroup
776  * @cgrp: the target cgroup
777  * @populated: inc or dec populated count
778  *
779  * One of the css_sets associated with @cgrp is either getting its first
780  * task or losing the last.  Update @cgrp->nr_populated_* accordingly.  The
781  * count is propagated towards root so that a given cgroup's
782  * nr_populated_children is zero iff none of its descendants contain any
783  * tasks.
784  *
785  * @cgrp's interface file "cgroup.populated" is zero if both
786  * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and
787  * 1 otherwise.  When the sum changes from or to zero, userland is notified
788  * that the content of the interface file has changed.  This can be used to
789  * detect when @cgrp and its descendants become populated or empty.
790  */
791 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
792 {
793 	struct cgroup *child = NULL;
794 	int adj = populated ? 1 : -1;
795 
796 	lockdep_assert_held(&css_set_lock);
797 
798 	do {
799 		bool was_populated = cgroup_is_populated(cgrp);
800 
801 		if (!child) {
802 			cgrp->nr_populated_csets += adj;
803 		} else {
804 			if (cgroup_is_threaded(child))
805 				cgrp->nr_populated_threaded_children += adj;
806 			else
807 				cgrp->nr_populated_domain_children += adj;
808 		}
809 
810 		if (was_populated == cgroup_is_populated(cgrp))
811 			break;
812 
813 		cgroup1_check_for_release(cgrp);
814 		TRACE_CGROUP_PATH(notify_populated, cgrp,
815 				  cgroup_is_populated(cgrp));
816 		cgroup_file_notify(&cgrp->events_file);
817 
818 		child = cgrp;
819 		cgrp = cgroup_parent(cgrp);
820 	} while (cgrp);
821 }
822 
823 /**
824  * css_set_update_populated - update populated state of a css_set
825  * @cset: target css_set
826  * @populated: whether @cset is populated or depopulated
827  *
828  * @cset is either getting the first task or losing the last.  Update the
829  * populated counters of all associated cgroups accordingly.
830  */
831 static void css_set_update_populated(struct css_set *cset, bool populated)
832 {
833 	struct cgrp_cset_link *link;
834 
835 	lockdep_assert_held(&css_set_lock);
836 
837 	list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
838 		cgroup_update_populated(link->cgrp, populated);
839 }
840 
841 /*
842  * @task is leaving, advance task iterators which are pointing to it so
843  * that they can resume at the next position.  Advancing an iterator might
844  * remove it from the list, use safe walk.  See css_task_iter_skip() for
845  * details.
846  */
847 static void css_set_skip_task_iters(struct css_set *cset,
848 				    struct task_struct *task)
849 {
850 	struct css_task_iter *it, *pos;
851 
852 	list_for_each_entry_safe(it, pos, &cset->task_iters, iters_node)
853 		css_task_iter_skip(it, task);
854 }
855 
856 /**
857  * css_set_move_task - move a task from one css_set to another
858  * @task: task being moved
859  * @from_cset: css_set @task currently belongs to (may be NULL)
860  * @to_cset: new css_set @task is being moved to (may be NULL)
861  * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
862  *
863  * Move @task from @from_cset to @to_cset.  If @task didn't belong to any
864  * css_set, @from_cset can be NULL.  If @task is being disassociated
865  * instead of moved, @to_cset can be NULL.
866  *
867  * This function automatically handles populated counter updates and
868  * css_task_iter adjustments but the caller is responsible for managing
869  * @from_cset and @to_cset's reference counts.
870  */
871 static void css_set_move_task(struct task_struct *task,
872 			      struct css_set *from_cset, struct css_set *to_cset,
873 			      bool use_mg_tasks)
874 {
875 	lockdep_assert_held(&css_set_lock);
876 
877 	if (to_cset && !css_set_populated(to_cset))
878 		css_set_update_populated(to_cset, true);
879 
880 	if (from_cset) {
881 		WARN_ON_ONCE(list_empty(&task->cg_list));
882 
883 		css_set_skip_task_iters(from_cset, task);
884 		list_del_init(&task->cg_list);
885 		if (!css_set_populated(from_cset))
886 			css_set_update_populated(from_cset, false);
887 	} else {
888 		WARN_ON_ONCE(!list_empty(&task->cg_list));
889 	}
890 
891 	if (to_cset) {
892 		/*
893 		 * We are synchronized through cgroup_threadgroup_rwsem
894 		 * against PF_EXITING setting such that we can't race
895 		 * against cgroup_exit()/cgroup_free() dropping the css_set.
896 		 */
897 		WARN_ON_ONCE(task->flags & PF_EXITING);
898 
899 		cgroup_move_task(task, to_cset);
900 		list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
901 							     &to_cset->tasks);
902 	}
903 }
904 
905 /*
906  * hash table for cgroup groups. This improves the performance to find
907  * an existing css_set. This hash doesn't (currently) take into
908  * account cgroups in empty hierarchies.
909  */
910 #define CSS_SET_HASH_BITS	7
911 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
912 
913 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
914 {
915 	unsigned long key = 0UL;
916 	struct cgroup_subsys *ss;
917 	int i;
918 
919 	for_each_subsys(ss, i)
920 		key += (unsigned long)css[i];
921 	key = (key >> 16) ^ key;
922 
923 	return key;
924 }
925 
926 void put_css_set_locked(struct css_set *cset)
927 {
928 	struct cgrp_cset_link *link, *tmp_link;
929 	struct cgroup_subsys *ss;
930 	int ssid;
931 
932 	lockdep_assert_held(&css_set_lock);
933 
934 	if (!refcount_dec_and_test(&cset->refcount))
935 		return;
936 
937 	WARN_ON_ONCE(!list_empty(&cset->threaded_csets));
938 
939 	/* This css_set is dead. unlink it and release cgroup and css refs */
940 	for_each_subsys(ss, ssid) {
941 		list_del(&cset->e_cset_node[ssid]);
942 		css_put(cset->subsys[ssid]);
943 	}
944 	hash_del(&cset->hlist);
945 	css_set_count--;
946 
947 	list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
948 		list_del(&link->cset_link);
949 		list_del(&link->cgrp_link);
950 		if (cgroup_parent(link->cgrp))
951 			cgroup_put(link->cgrp);
952 		kfree(link);
953 	}
954 
955 	if (css_set_threaded(cset)) {
956 		list_del(&cset->threaded_csets_node);
957 		put_css_set_locked(cset->dom_cset);
958 	}
959 
960 	kfree_rcu(cset, rcu_head);
961 }
962 
963 /**
964  * compare_css_sets - helper function for find_existing_css_set().
965  * @cset: candidate css_set being tested
966  * @old_cset: existing css_set for a task
967  * @new_cgrp: cgroup that's being entered by the task
968  * @template: desired set of css pointers in css_set (pre-calculated)
969  *
970  * Returns true if "cset" matches "old_cset" except for the hierarchy
971  * which "new_cgrp" belongs to, for which it should match "new_cgrp".
972  */
973 static bool compare_css_sets(struct css_set *cset,
974 			     struct css_set *old_cset,
975 			     struct cgroup *new_cgrp,
976 			     struct cgroup_subsys_state *template[])
977 {
978 	struct cgroup *new_dfl_cgrp;
979 	struct list_head *l1, *l2;
980 
981 	/*
982 	 * On the default hierarchy, there can be csets which are
983 	 * associated with the same set of cgroups but different csses.
984 	 * Let's first ensure that csses match.
985 	 */
986 	if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
987 		return false;
988 
989 
990 	/* @cset's domain should match the default cgroup's */
991 	if (cgroup_on_dfl(new_cgrp))
992 		new_dfl_cgrp = new_cgrp;
993 	else
994 		new_dfl_cgrp = old_cset->dfl_cgrp;
995 
996 	if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp)
997 		return false;
998 
999 	/*
1000 	 * Compare cgroup pointers in order to distinguish between
1001 	 * different cgroups in hierarchies.  As different cgroups may
1002 	 * share the same effective css, this comparison is always
1003 	 * necessary.
1004 	 */
1005 	l1 = &cset->cgrp_links;
1006 	l2 = &old_cset->cgrp_links;
1007 	while (1) {
1008 		struct cgrp_cset_link *link1, *link2;
1009 		struct cgroup *cgrp1, *cgrp2;
1010 
1011 		l1 = l1->next;
1012 		l2 = l2->next;
1013 		/* See if we reached the end - both lists are equal length. */
1014 		if (l1 == &cset->cgrp_links) {
1015 			BUG_ON(l2 != &old_cset->cgrp_links);
1016 			break;
1017 		} else {
1018 			BUG_ON(l2 == &old_cset->cgrp_links);
1019 		}
1020 		/* Locate the cgroups associated with these links. */
1021 		link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
1022 		link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
1023 		cgrp1 = link1->cgrp;
1024 		cgrp2 = link2->cgrp;
1025 		/* Hierarchies should be linked in the same order. */
1026 		BUG_ON(cgrp1->root != cgrp2->root);
1027 
1028 		/*
1029 		 * If this hierarchy is the hierarchy of the cgroup
1030 		 * that's changing, then we need to check that this
1031 		 * css_set points to the new cgroup; if it's any other
1032 		 * hierarchy, then this css_set should point to the
1033 		 * same cgroup as the old css_set.
1034 		 */
1035 		if (cgrp1->root == new_cgrp->root) {
1036 			if (cgrp1 != new_cgrp)
1037 				return false;
1038 		} else {
1039 			if (cgrp1 != cgrp2)
1040 				return false;
1041 		}
1042 	}
1043 	return true;
1044 }
1045 
1046 /**
1047  * find_existing_css_set - init css array and find the matching css_set
1048  * @old_cset: the css_set that we're using before the cgroup transition
1049  * @cgrp: the cgroup that we're moving into
1050  * @template: out param for the new set of csses, should be clear on entry
1051  */
1052 static struct css_set *find_existing_css_set(struct css_set *old_cset,
1053 					struct cgroup *cgrp,
1054 					struct cgroup_subsys_state *template[])
1055 {
1056 	struct cgroup_root *root = cgrp->root;
1057 	struct cgroup_subsys *ss;
1058 	struct css_set *cset;
1059 	unsigned long key;
1060 	int i;
1061 
1062 	/*
1063 	 * Build the set of subsystem state objects that we want to see in the
1064 	 * new css_set. while subsystems can change globally, the entries here
1065 	 * won't change, so no need for locking.
1066 	 */
1067 	for_each_subsys(ss, i) {
1068 		if (root->subsys_mask & (1UL << i)) {
1069 			/*
1070 			 * @ss is in this hierarchy, so we want the
1071 			 * effective css from @cgrp.
1072 			 */
1073 			template[i] = cgroup_e_css_by_mask(cgrp, ss);
1074 		} else {
1075 			/*
1076 			 * @ss is not in this hierarchy, so we don't want
1077 			 * to change the css.
1078 			 */
1079 			template[i] = old_cset->subsys[i];
1080 		}
1081 	}
1082 
1083 	key = css_set_hash(template);
1084 	hash_for_each_possible(css_set_table, cset, hlist, key) {
1085 		if (!compare_css_sets(cset, old_cset, cgrp, template))
1086 			continue;
1087 
1088 		/* This css_set matches what we need */
1089 		return cset;
1090 	}
1091 
1092 	/* No existing cgroup group matched */
1093 	return NULL;
1094 }
1095 
1096 static void free_cgrp_cset_links(struct list_head *links_to_free)
1097 {
1098 	struct cgrp_cset_link *link, *tmp_link;
1099 
1100 	list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
1101 		list_del(&link->cset_link);
1102 		kfree(link);
1103 	}
1104 }
1105 
1106 /**
1107  * allocate_cgrp_cset_links - allocate cgrp_cset_links
1108  * @count: the number of links to allocate
1109  * @tmp_links: list_head the allocated links are put on
1110  *
1111  * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1112  * through ->cset_link.  Returns 0 on success or -errno.
1113  */
1114 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
1115 {
1116 	struct cgrp_cset_link *link;
1117 	int i;
1118 
1119 	INIT_LIST_HEAD(tmp_links);
1120 
1121 	for (i = 0; i < count; i++) {
1122 		link = kzalloc(sizeof(*link), GFP_KERNEL);
1123 		if (!link) {
1124 			free_cgrp_cset_links(tmp_links);
1125 			return -ENOMEM;
1126 		}
1127 		list_add(&link->cset_link, tmp_links);
1128 	}
1129 	return 0;
1130 }
1131 
1132 /**
1133  * link_css_set - a helper function to link a css_set to a cgroup
1134  * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
1135  * @cset: the css_set to be linked
1136  * @cgrp: the destination cgroup
1137  */
1138 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1139 			 struct cgroup *cgrp)
1140 {
1141 	struct cgrp_cset_link *link;
1142 
1143 	BUG_ON(list_empty(tmp_links));
1144 
1145 	if (cgroup_on_dfl(cgrp))
1146 		cset->dfl_cgrp = cgrp;
1147 
1148 	link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1149 	link->cset = cset;
1150 	link->cgrp = cgrp;
1151 
1152 	/*
1153 	 * Always add links to the tail of the lists so that the lists are
1154 	 * in choronological order.
1155 	 */
1156 	list_move_tail(&link->cset_link, &cgrp->cset_links);
1157 	list_add_tail(&link->cgrp_link, &cset->cgrp_links);
1158 
1159 	if (cgroup_parent(cgrp))
1160 		cgroup_get_live(cgrp);
1161 }
1162 
1163 /**
1164  * find_css_set - return a new css_set with one cgroup updated
1165  * @old_cset: the baseline css_set
1166  * @cgrp: the cgroup to be updated
1167  *
1168  * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1169  * substituted into the appropriate hierarchy.
1170  */
1171 static struct css_set *find_css_set(struct css_set *old_cset,
1172 				    struct cgroup *cgrp)
1173 {
1174 	struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
1175 	struct css_set *cset;
1176 	struct list_head tmp_links;
1177 	struct cgrp_cset_link *link;
1178 	struct cgroup_subsys *ss;
1179 	unsigned long key;
1180 	int ssid;
1181 
1182 	lockdep_assert_held(&cgroup_mutex);
1183 
1184 	/* First see if we already have a cgroup group that matches
1185 	 * the desired set */
1186 	spin_lock_irq(&css_set_lock);
1187 	cset = find_existing_css_set(old_cset, cgrp, template);
1188 	if (cset)
1189 		get_css_set(cset);
1190 	spin_unlock_irq(&css_set_lock);
1191 
1192 	if (cset)
1193 		return cset;
1194 
1195 	cset = kzalloc(sizeof(*cset), GFP_KERNEL);
1196 	if (!cset)
1197 		return NULL;
1198 
1199 	/* Allocate all the cgrp_cset_link objects that we'll need */
1200 	if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1201 		kfree(cset);
1202 		return NULL;
1203 	}
1204 
1205 	refcount_set(&cset->refcount, 1);
1206 	cset->dom_cset = cset;
1207 	INIT_LIST_HEAD(&cset->tasks);
1208 	INIT_LIST_HEAD(&cset->mg_tasks);
1209 	INIT_LIST_HEAD(&cset->dying_tasks);
1210 	INIT_LIST_HEAD(&cset->task_iters);
1211 	INIT_LIST_HEAD(&cset->threaded_csets);
1212 	INIT_HLIST_NODE(&cset->hlist);
1213 	INIT_LIST_HEAD(&cset->cgrp_links);
1214 	INIT_LIST_HEAD(&cset->mg_preload_node);
1215 	INIT_LIST_HEAD(&cset->mg_node);
1216 
1217 	/* Copy the set of subsystem state objects generated in
1218 	 * find_existing_css_set() */
1219 	memcpy(cset->subsys, template, sizeof(cset->subsys));
1220 
1221 	spin_lock_irq(&css_set_lock);
1222 	/* Add reference counts and links from the new css_set. */
1223 	list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1224 		struct cgroup *c = link->cgrp;
1225 
1226 		if (c->root == cgrp->root)
1227 			c = cgrp;
1228 		link_css_set(&tmp_links, cset, c);
1229 	}
1230 
1231 	BUG_ON(!list_empty(&tmp_links));
1232 
1233 	css_set_count++;
1234 
1235 	/* Add @cset to the hash table */
1236 	key = css_set_hash(cset->subsys);
1237 	hash_add(css_set_table, &cset->hlist, key);
1238 
1239 	for_each_subsys(ss, ssid) {
1240 		struct cgroup_subsys_state *css = cset->subsys[ssid];
1241 
1242 		list_add_tail(&cset->e_cset_node[ssid],
1243 			      &css->cgroup->e_csets[ssid]);
1244 		css_get(css);
1245 	}
1246 
1247 	spin_unlock_irq(&css_set_lock);
1248 
1249 	/*
1250 	 * If @cset should be threaded, look up the matching dom_cset and
1251 	 * link them up.  We first fully initialize @cset then look for the
1252 	 * dom_cset.  It's simpler this way and safe as @cset is guaranteed
1253 	 * to stay empty until we return.
1254 	 */
1255 	if (cgroup_is_threaded(cset->dfl_cgrp)) {
1256 		struct css_set *dcset;
1257 
1258 		dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp);
1259 		if (!dcset) {
1260 			put_css_set(cset);
1261 			return NULL;
1262 		}
1263 
1264 		spin_lock_irq(&css_set_lock);
1265 		cset->dom_cset = dcset;
1266 		list_add_tail(&cset->threaded_csets_node,
1267 			      &dcset->threaded_csets);
1268 		spin_unlock_irq(&css_set_lock);
1269 	}
1270 
1271 	return cset;
1272 }
1273 
1274 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1275 {
1276 	struct cgroup *root_cgrp = kf_root->kn->priv;
1277 
1278 	return root_cgrp->root;
1279 }
1280 
1281 static int cgroup_init_root_id(struct cgroup_root *root)
1282 {
1283 	int id;
1284 
1285 	lockdep_assert_held(&cgroup_mutex);
1286 
1287 	id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1288 	if (id < 0)
1289 		return id;
1290 
1291 	root->hierarchy_id = id;
1292 	return 0;
1293 }
1294 
1295 static void cgroup_exit_root_id(struct cgroup_root *root)
1296 {
1297 	lockdep_assert_held(&cgroup_mutex);
1298 
1299 	idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1300 }
1301 
1302 void cgroup_free_root(struct cgroup_root *root)
1303 {
1304 	kfree(root);
1305 }
1306 
1307 static void cgroup_destroy_root(struct cgroup_root *root)
1308 {
1309 	struct cgroup *cgrp = &root->cgrp;
1310 	struct cgrp_cset_link *link, *tmp_link;
1311 
1312 	trace_cgroup_destroy_root(root);
1313 
1314 	cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1315 
1316 	BUG_ON(atomic_read(&root->nr_cgrps));
1317 	BUG_ON(!list_empty(&cgrp->self.children));
1318 
1319 	/* Rebind all subsystems back to the default hierarchy */
1320 	WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
1321 
1322 	/*
1323 	 * Release all the links from cset_links to this hierarchy's
1324 	 * root cgroup
1325 	 */
1326 	spin_lock_irq(&css_set_lock);
1327 
1328 	list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1329 		list_del(&link->cset_link);
1330 		list_del(&link->cgrp_link);
1331 		kfree(link);
1332 	}
1333 
1334 	spin_unlock_irq(&css_set_lock);
1335 
1336 	if (!list_empty(&root->root_list)) {
1337 		list_del(&root->root_list);
1338 		cgroup_root_count--;
1339 	}
1340 
1341 	cgroup_exit_root_id(root);
1342 
1343 	mutex_unlock(&cgroup_mutex);
1344 
1345 	kernfs_destroy_root(root->kf_root);
1346 	cgroup_free_root(root);
1347 }
1348 
1349 /*
1350  * look up cgroup associated with current task's cgroup namespace on the
1351  * specified hierarchy
1352  */
1353 static struct cgroup *
1354 current_cgns_cgroup_from_root(struct cgroup_root *root)
1355 {
1356 	struct cgroup *res = NULL;
1357 	struct css_set *cset;
1358 
1359 	lockdep_assert_held(&css_set_lock);
1360 
1361 	rcu_read_lock();
1362 
1363 	cset = current->nsproxy->cgroup_ns->root_cset;
1364 	if (cset == &init_css_set) {
1365 		res = &root->cgrp;
1366 	} else if (root == &cgrp_dfl_root) {
1367 		res = cset->dfl_cgrp;
1368 	} else {
1369 		struct cgrp_cset_link *link;
1370 
1371 		list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1372 			struct cgroup *c = link->cgrp;
1373 
1374 			if (c->root == root) {
1375 				res = c;
1376 				break;
1377 			}
1378 		}
1379 	}
1380 	rcu_read_unlock();
1381 
1382 	BUG_ON(!res);
1383 	return res;
1384 }
1385 
1386 /* look up cgroup associated with given css_set on the specified hierarchy */
1387 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1388 					    struct cgroup_root *root)
1389 {
1390 	struct cgroup *res = NULL;
1391 
1392 	lockdep_assert_held(&cgroup_mutex);
1393 	lockdep_assert_held(&css_set_lock);
1394 
1395 	if (cset == &init_css_set) {
1396 		res = &root->cgrp;
1397 	} else if (root == &cgrp_dfl_root) {
1398 		res = cset->dfl_cgrp;
1399 	} else {
1400 		struct cgrp_cset_link *link;
1401 
1402 		list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1403 			struct cgroup *c = link->cgrp;
1404 
1405 			if (c->root == root) {
1406 				res = c;
1407 				break;
1408 			}
1409 		}
1410 	}
1411 
1412 	BUG_ON(!res);
1413 	return res;
1414 }
1415 
1416 /*
1417  * Return the cgroup for "task" from the given hierarchy. Must be
1418  * called with cgroup_mutex and css_set_lock held.
1419  */
1420 struct cgroup *task_cgroup_from_root(struct task_struct *task,
1421 				     struct cgroup_root *root)
1422 {
1423 	/*
1424 	 * No need to lock the task - since we hold css_set_lock the
1425 	 * task can't change groups.
1426 	 */
1427 	return cset_cgroup_from_root(task_css_set(task), root);
1428 }
1429 
1430 /*
1431  * A task must hold cgroup_mutex to modify cgroups.
1432  *
1433  * Any task can increment and decrement the count field without lock.
1434  * So in general, code holding cgroup_mutex can't rely on the count
1435  * field not changing.  However, if the count goes to zero, then only
1436  * cgroup_attach_task() can increment it again.  Because a count of zero
1437  * means that no tasks are currently attached, therefore there is no
1438  * way a task attached to that cgroup can fork (the other way to
1439  * increment the count).  So code holding cgroup_mutex can safely
1440  * assume that if the count is zero, it will stay zero. Similarly, if
1441  * a task holds cgroup_mutex on a cgroup with zero count, it
1442  * knows that the cgroup won't be removed, as cgroup_rmdir()
1443  * needs that mutex.
1444  *
1445  * A cgroup can only be deleted if both its 'count' of using tasks
1446  * is zero, and its list of 'children' cgroups is empty.  Since all
1447  * tasks in the system use _some_ cgroup, and since there is always at
1448  * least one task in the system (init, pid == 1), therefore, root cgroup
1449  * always has either children cgroups and/or using tasks.  So we don't
1450  * need a special hack to ensure that root cgroup cannot be deleted.
1451  *
1452  * P.S.  One more locking exception.  RCU is used to guard the
1453  * update of a tasks cgroup pointer by cgroup_attach_task()
1454  */
1455 
1456 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1457 
1458 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1459 			      char *buf)
1460 {
1461 	struct cgroup_subsys *ss = cft->ss;
1462 
1463 	if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1464 	    !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
1465 		const char *dbg = (cft->flags & CFTYPE_DEBUG) ? ".__DEBUG__." : "";
1466 
1467 		snprintf(buf, CGROUP_FILE_NAME_MAX, "%s%s.%s",
1468 			 dbg, cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1469 			 cft->name);
1470 	} else {
1471 		strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1472 	}
1473 	return buf;
1474 }
1475 
1476 /**
1477  * cgroup_file_mode - deduce file mode of a control file
1478  * @cft: the control file in question
1479  *
1480  * S_IRUGO for read, S_IWUSR for write.
1481  */
1482 static umode_t cgroup_file_mode(const struct cftype *cft)
1483 {
1484 	umode_t mode = 0;
1485 
1486 	if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1487 		mode |= S_IRUGO;
1488 
1489 	if (cft->write_u64 || cft->write_s64 || cft->write) {
1490 		if (cft->flags & CFTYPE_WORLD_WRITABLE)
1491 			mode |= S_IWUGO;
1492 		else
1493 			mode |= S_IWUSR;
1494 	}
1495 
1496 	return mode;
1497 }
1498 
1499 /**
1500  * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1501  * @subtree_control: the new subtree_control mask to consider
1502  * @this_ss_mask: available subsystems
1503  *
1504  * On the default hierarchy, a subsystem may request other subsystems to be
1505  * enabled together through its ->depends_on mask.  In such cases, more
1506  * subsystems than specified in "cgroup.subtree_control" may be enabled.
1507  *
1508  * This function calculates which subsystems need to be enabled if
1509  * @subtree_control is to be applied while restricted to @this_ss_mask.
1510  */
1511 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
1512 {
1513 	u16 cur_ss_mask = subtree_control;
1514 	struct cgroup_subsys *ss;
1515 	int ssid;
1516 
1517 	lockdep_assert_held(&cgroup_mutex);
1518 
1519 	cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1520 
1521 	while (true) {
1522 		u16 new_ss_mask = cur_ss_mask;
1523 
1524 		do_each_subsys_mask(ss, ssid, cur_ss_mask) {
1525 			new_ss_mask |= ss->depends_on;
1526 		} while_each_subsys_mask();
1527 
1528 		/*
1529 		 * Mask out subsystems which aren't available.  This can
1530 		 * happen only if some depended-upon subsystems were bound
1531 		 * to non-default hierarchies.
1532 		 */
1533 		new_ss_mask &= this_ss_mask;
1534 
1535 		if (new_ss_mask == cur_ss_mask)
1536 			break;
1537 		cur_ss_mask = new_ss_mask;
1538 	}
1539 
1540 	return cur_ss_mask;
1541 }
1542 
1543 /**
1544  * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1545  * @kn: the kernfs_node being serviced
1546  *
1547  * This helper undoes cgroup_kn_lock_live() and should be invoked before
1548  * the method finishes if locking succeeded.  Note that once this function
1549  * returns the cgroup returned by cgroup_kn_lock_live() may become
1550  * inaccessible any time.  If the caller intends to continue to access the
1551  * cgroup, it should pin it before invoking this function.
1552  */
1553 void cgroup_kn_unlock(struct kernfs_node *kn)
1554 {
1555 	struct cgroup *cgrp;
1556 
1557 	if (kernfs_type(kn) == KERNFS_DIR)
1558 		cgrp = kn->priv;
1559 	else
1560 		cgrp = kn->parent->priv;
1561 
1562 	mutex_unlock(&cgroup_mutex);
1563 
1564 	kernfs_unbreak_active_protection(kn);
1565 	cgroup_put(cgrp);
1566 }
1567 
1568 /**
1569  * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1570  * @kn: the kernfs_node being serviced
1571  * @drain_offline: perform offline draining on the cgroup
1572  *
1573  * This helper is to be used by a cgroup kernfs method currently servicing
1574  * @kn.  It breaks the active protection, performs cgroup locking and
1575  * verifies that the associated cgroup is alive.  Returns the cgroup if
1576  * alive; otherwise, %NULL.  A successful return should be undone by a
1577  * matching cgroup_kn_unlock() invocation.  If @drain_offline is %true, the
1578  * cgroup is drained of offlining csses before return.
1579  *
1580  * Any cgroup kernfs method implementation which requires locking the
1581  * associated cgroup should use this helper.  It avoids nesting cgroup
1582  * locking under kernfs active protection and allows all kernfs operations
1583  * including self-removal.
1584  */
1585 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline)
1586 {
1587 	struct cgroup *cgrp;
1588 
1589 	if (kernfs_type(kn) == KERNFS_DIR)
1590 		cgrp = kn->priv;
1591 	else
1592 		cgrp = kn->parent->priv;
1593 
1594 	/*
1595 	 * We're gonna grab cgroup_mutex which nests outside kernfs
1596 	 * active_ref.  cgroup liveliness check alone provides enough
1597 	 * protection against removal.  Ensure @cgrp stays accessible and
1598 	 * break the active_ref protection.
1599 	 */
1600 	if (!cgroup_tryget(cgrp))
1601 		return NULL;
1602 	kernfs_break_active_protection(kn);
1603 
1604 	if (drain_offline)
1605 		cgroup_lock_and_drain_offline(cgrp);
1606 	else
1607 		mutex_lock(&cgroup_mutex);
1608 
1609 	if (!cgroup_is_dead(cgrp))
1610 		return cgrp;
1611 
1612 	cgroup_kn_unlock(kn);
1613 	return NULL;
1614 }
1615 
1616 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1617 {
1618 	char name[CGROUP_FILE_NAME_MAX];
1619 
1620 	lockdep_assert_held(&cgroup_mutex);
1621 
1622 	if (cft->file_offset) {
1623 		struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1624 		struct cgroup_file *cfile = (void *)css + cft->file_offset;
1625 
1626 		spin_lock_irq(&cgroup_file_kn_lock);
1627 		cfile->kn = NULL;
1628 		spin_unlock_irq(&cgroup_file_kn_lock);
1629 
1630 		del_timer_sync(&cfile->notify_timer);
1631 	}
1632 
1633 	kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1634 }
1635 
1636 /**
1637  * css_clear_dir - remove subsys files in a cgroup directory
1638  * @css: taget css
1639  */
1640 static void css_clear_dir(struct cgroup_subsys_state *css)
1641 {
1642 	struct cgroup *cgrp = css->cgroup;
1643 	struct cftype *cfts;
1644 
1645 	if (!(css->flags & CSS_VISIBLE))
1646 		return;
1647 
1648 	css->flags &= ~CSS_VISIBLE;
1649 
1650 	if (!css->ss) {
1651 		if (cgroup_on_dfl(cgrp))
1652 			cfts = cgroup_base_files;
1653 		else
1654 			cfts = cgroup1_base_files;
1655 
1656 		cgroup_addrm_files(css, cgrp, cfts, false);
1657 	} else {
1658 		list_for_each_entry(cfts, &css->ss->cfts, node)
1659 			cgroup_addrm_files(css, cgrp, cfts, false);
1660 	}
1661 }
1662 
1663 /**
1664  * css_populate_dir - create subsys files in a cgroup directory
1665  * @css: target css
1666  *
1667  * On failure, no file is added.
1668  */
1669 static int css_populate_dir(struct cgroup_subsys_state *css)
1670 {
1671 	struct cgroup *cgrp = css->cgroup;
1672 	struct cftype *cfts, *failed_cfts;
1673 	int ret;
1674 
1675 	if ((css->flags & CSS_VISIBLE) || !cgrp->kn)
1676 		return 0;
1677 
1678 	if (!css->ss) {
1679 		if (cgroup_on_dfl(cgrp))
1680 			cfts = cgroup_base_files;
1681 		else
1682 			cfts = cgroup1_base_files;
1683 
1684 		ret = cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1685 		if (ret < 0)
1686 			return ret;
1687 	} else {
1688 		list_for_each_entry(cfts, &css->ss->cfts, node) {
1689 			ret = cgroup_addrm_files(css, cgrp, cfts, true);
1690 			if (ret < 0) {
1691 				failed_cfts = cfts;
1692 				goto err;
1693 			}
1694 		}
1695 	}
1696 
1697 	css->flags |= CSS_VISIBLE;
1698 
1699 	return 0;
1700 err:
1701 	list_for_each_entry(cfts, &css->ss->cfts, node) {
1702 		if (cfts == failed_cfts)
1703 			break;
1704 		cgroup_addrm_files(css, cgrp, cfts, false);
1705 	}
1706 	return ret;
1707 }
1708 
1709 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
1710 {
1711 	struct cgroup *dcgrp = &dst_root->cgrp;
1712 	struct cgroup_subsys *ss;
1713 	int ssid, i, ret;
1714 
1715 	lockdep_assert_held(&cgroup_mutex);
1716 
1717 	do_each_subsys_mask(ss, ssid, ss_mask) {
1718 		/*
1719 		 * If @ss has non-root csses attached to it, can't move.
1720 		 * If @ss is an implicit controller, it is exempt from this
1721 		 * rule and can be stolen.
1722 		 */
1723 		if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1724 		    !ss->implicit_on_dfl)
1725 			return -EBUSY;
1726 
1727 		/* can't move between two non-dummy roots either */
1728 		if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1729 			return -EBUSY;
1730 	} while_each_subsys_mask();
1731 
1732 	do_each_subsys_mask(ss, ssid, ss_mask) {
1733 		struct cgroup_root *src_root = ss->root;
1734 		struct cgroup *scgrp = &src_root->cgrp;
1735 		struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1736 		struct css_set *cset;
1737 
1738 		WARN_ON(!css || cgroup_css(dcgrp, ss));
1739 
1740 		/* disable from the source */
1741 		src_root->subsys_mask &= ~(1 << ssid);
1742 		WARN_ON(cgroup_apply_control(scgrp));
1743 		cgroup_finalize_control(scgrp, 0);
1744 
1745 		/* rebind */
1746 		RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1747 		rcu_assign_pointer(dcgrp->subsys[ssid], css);
1748 		ss->root = dst_root;
1749 		css->cgroup = dcgrp;
1750 
1751 		spin_lock_irq(&css_set_lock);
1752 		hash_for_each(css_set_table, i, cset, hlist)
1753 			list_move_tail(&cset->e_cset_node[ss->id],
1754 				       &dcgrp->e_csets[ss->id]);
1755 		spin_unlock_irq(&css_set_lock);
1756 
1757 		/* default hierarchy doesn't enable controllers by default */
1758 		dst_root->subsys_mask |= 1 << ssid;
1759 		if (dst_root == &cgrp_dfl_root) {
1760 			static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1761 		} else {
1762 			dcgrp->subtree_control |= 1 << ssid;
1763 			static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1764 		}
1765 
1766 		ret = cgroup_apply_control(dcgrp);
1767 		if (ret)
1768 			pr_warn("partial failure to rebind %s controller (err=%d)\n",
1769 				ss->name, ret);
1770 
1771 		if (ss->bind)
1772 			ss->bind(css);
1773 	} while_each_subsys_mask();
1774 
1775 	kernfs_activate(dcgrp->kn);
1776 	return 0;
1777 }
1778 
1779 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
1780 		     struct kernfs_root *kf_root)
1781 {
1782 	int len = 0;
1783 	char *buf = NULL;
1784 	struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
1785 	struct cgroup *ns_cgroup;
1786 
1787 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
1788 	if (!buf)
1789 		return -ENOMEM;
1790 
1791 	spin_lock_irq(&css_set_lock);
1792 	ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
1793 	len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
1794 	spin_unlock_irq(&css_set_lock);
1795 
1796 	if (len >= PATH_MAX)
1797 		len = -ERANGE;
1798 	else if (len > 0) {
1799 		seq_escape(sf, buf, " \t\n\\");
1800 		len = 0;
1801 	}
1802 	kfree(buf);
1803 	return len;
1804 }
1805 
1806 enum cgroup2_param {
1807 	Opt_nsdelegate,
1808 	Opt_memory_localevents,
1809 	Opt_memory_recursiveprot,
1810 	nr__cgroup2_params
1811 };
1812 
1813 static const struct fs_parameter_spec cgroup2_fs_parameters[] = {
1814 	fsparam_flag("nsdelegate",		Opt_nsdelegate),
1815 	fsparam_flag("memory_localevents",	Opt_memory_localevents),
1816 	fsparam_flag("memory_recursiveprot",	Opt_memory_recursiveprot),
1817 	{}
1818 };
1819 
1820 static int cgroup2_parse_param(struct fs_context *fc, struct fs_parameter *param)
1821 {
1822 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1823 	struct fs_parse_result result;
1824 	int opt;
1825 
1826 	opt = fs_parse(fc, cgroup2_fs_parameters, param, &result);
1827 	if (opt < 0)
1828 		return opt;
1829 
1830 	switch (opt) {
1831 	case Opt_nsdelegate:
1832 		ctx->flags |= CGRP_ROOT_NS_DELEGATE;
1833 		return 0;
1834 	case Opt_memory_localevents:
1835 		ctx->flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1836 		return 0;
1837 	case Opt_memory_recursiveprot:
1838 		ctx->flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1839 		return 0;
1840 	}
1841 	return -EINVAL;
1842 }
1843 
1844 static void apply_cgroup_root_flags(unsigned int root_flags)
1845 {
1846 	if (current->nsproxy->cgroup_ns == &init_cgroup_ns) {
1847 		if (root_flags & CGRP_ROOT_NS_DELEGATE)
1848 			cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE;
1849 		else
1850 			cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE;
1851 
1852 		if (root_flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1853 			cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1854 		else
1855 			cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1856 
1857 		if (root_flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
1858 			cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1859 		else
1860 			cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1861 	}
1862 }
1863 
1864 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
1865 {
1866 	if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE)
1867 		seq_puts(seq, ",nsdelegate");
1868 	if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1869 		seq_puts(seq, ",memory_localevents");
1870 	if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
1871 		seq_puts(seq, ",memory_recursiveprot");
1872 	return 0;
1873 }
1874 
1875 static int cgroup_reconfigure(struct fs_context *fc)
1876 {
1877 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1878 
1879 	apply_cgroup_root_flags(ctx->flags);
1880 	return 0;
1881 }
1882 
1883 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1884 {
1885 	struct cgroup_subsys *ss;
1886 	int ssid;
1887 
1888 	INIT_LIST_HEAD(&cgrp->self.sibling);
1889 	INIT_LIST_HEAD(&cgrp->self.children);
1890 	INIT_LIST_HEAD(&cgrp->cset_links);
1891 	INIT_LIST_HEAD(&cgrp->pidlists);
1892 	mutex_init(&cgrp->pidlist_mutex);
1893 	cgrp->self.cgroup = cgrp;
1894 	cgrp->self.flags |= CSS_ONLINE;
1895 	cgrp->dom_cgrp = cgrp;
1896 	cgrp->max_descendants = INT_MAX;
1897 	cgrp->max_depth = INT_MAX;
1898 	INIT_LIST_HEAD(&cgrp->rstat_css_list);
1899 	prev_cputime_init(&cgrp->prev_cputime);
1900 
1901 	for_each_subsys(ss, ssid)
1902 		INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
1903 
1904 	init_waitqueue_head(&cgrp->offline_waitq);
1905 	INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent);
1906 }
1907 
1908 void init_cgroup_root(struct cgroup_fs_context *ctx)
1909 {
1910 	struct cgroup_root *root = ctx->root;
1911 	struct cgroup *cgrp = &root->cgrp;
1912 
1913 	INIT_LIST_HEAD(&root->root_list);
1914 	atomic_set(&root->nr_cgrps, 1);
1915 	cgrp->root = root;
1916 	init_cgroup_housekeeping(cgrp);
1917 
1918 	root->flags = ctx->flags;
1919 	if (ctx->release_agent)
1920 		strscpy(root->release_agent_path, ctx->release_agent, PATH_MAX);
1921 	if (ctx->name)
1922 		strscpy(root->name, ctx->name, MAX_CGROUP_ROOT_NAMELEN);
1923 	if (ctx->cpuset_clone_children)
1924 		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
1925 }
1926 
1927 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask)
1928 {
1929 	LIST_HEAD(tmp_links);
1930 	struct cgroup *root_cgrp = &root->cgrp;
1931 	struct kernfs_syscall_ops *kf_sops;
1932 	struct css_set *cset;
1933 	int i, ret;
1934 
1935 	lockdep_assert_held(&cgroup_mutex);
1936 
1937 	ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release,
1938 			      0, GFP_KERNEL);
1939 	if (ret)
1940 		goto out;
1941 
1942 	/*
1943 	 * We're accessing css_set_count without locking css_set_lock here,
1944 	 * but that's OK - it can only be increased by someone holding
1945 	 * cgroup_lock, and that's us.  Later rebinding may disable
1946 	 * controllers on the default hierarchy and thus create new csets,
1947 	 * which can't be more than the existing ones.  Allocate 2x.
1948 	 */
1949 	ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
1950 	if (ret)
1951 		goto cancel_ref;
1952 
1953 	ret = cgroup_init_root_id(root);
1954 	if (ret)
1955 		goto cancel_ref;
1956 
1957 	kf_sops = root == &cgrp_dfl_root ?
1958 		&cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops;
1959 
1960 	root->kf_root = kernfs_create_root(kf_sops,
1961 					   KERNFS_ROOT_CREATE_DEACTIVATED |
1962 					   KERNFS_ROOT_SUPPORT_EXPORTOP |
1963 					   KERNFS_ROOT_SUPPORT_USER_XATTR,
1964 					   root_cgrp);
1965 	if (IS_ERR(root->kf_root)) {
1966 		ret = PTR_ERR(root->kf_root);
1967 		goto exit_root_id;
1968 	}
1969 	root_cgrp->kn = root->kf_root->kn;
1970 	WARN_ON_ONCE(cgroup_ino(root_cgrp) != 1);
1971 	root_cgrp->ancestor_ids[0] = cgroup_id(root_cgrp);
1972 
1973 	ret = css_populate_dir(&root_cgrp->self);
1974 	if (ret)
1975 		goto destroy_root;
1976 
1977 	ret = rebind_subsystems(root, ss_mask);
1978 	if (ret)
1979 		goto destroy_root;
1980 
1981 	ret = cgroup_bpf_inherit(root_cgrp);
1982 	WARN_ON_ONCE(ret);
1983 
1984 	trace_cgroup_setup_root(root);
1985 
1986 	/*
1987 	 * There must be no failure case after here, since rebinding takes
1988 	 * care of subsystems' refcounts, which are explicitly dropped in
1989 	 * the failure exit path.
1990 	 */
1991 	list_add(&root->root_list, &cgroup_roots);
1992 	cgroup_root_count++;
1993 
1994 	/*
1995 	 * Link the root cgroup in this hierarchy into all the css_set
1996 	 * objects.
1997 	 */
1998 	spin_lock_irq(&css_set_lock);
1999 	hash_for_each(css_set_table, i, cset, hlist) {
2000 		link_css_set(&tmp_links, cset, root_cgrp);
2001 		if (css_set_populated(cset))
2002 			cgroup_update_populated(root_cgrp, true);
2003 	}
2004 	spin_unlock_irq(&css_set_lock);
2005 
2006 	BUG_ON(!list_empty(&root_cgrp->self.children));
2007 	BUG_ON(atomic_read(&root->nr_cgrps) != 1);
2008 
2009 	kernfs_activate(root_cgrp->kn);
2010 	ret = 0;
2011 	goto out;
2012 
2013 destroy_root:
2014 	kernfs_destroy_root(root->kf_root);
2015 	root->kf_root = NULL;
2016 exit_root_id:
2017 	cgroup_exit_root_id(root);
2018 cancel_ref:
2019 	percpu_ref_exit(&root_cgrp->self.refcnt);
2020 out:
2021 	free_cgrp_cset_links(&tmp_links);
2022 	return ret;
2023 }
2024 
2025 int cgroup_do_get_tree(struct fs_context *fc)
2026 {
2027 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2028 	int ret;
2029 
2030 	ctx->kfc.root = ctx->root->kf_root;
2031 	if (fc->fs_type == &cgroup2_fs_type)
2032 		ctx->kfc.magic = CGROUP2_SUPER_MAGIC;
2033 	else
2034 		ctx->kfc.magic = CGROUP_SUPER_MAGIC;
2035 	ret = kernfs_get_tree(fc);
2036 
2037 	/*
2038 	 * In non-init cgroup namespace, instead of root cgroup's dentry,
2039 	 * we return the dentry corresponding to the cgroupns->root_cgrp.
2040 	 */
2041 	if (!ret && ctx->ns != &init_cgroup_ns) {
2042 		struct dentry *nsdentry;
2043 		struct super_block *sb = fc->root->d_sb;
2044 		struct cgroup *cgrp;
2045 
2046 		mutex_lock(&cgroup_mutex);
2047 		spin_lock_irq(&css_set_lock);
2048 
2049 		cgrp = cset_cgroup_from_root(ctx->ns->root_cset, ctx->root);
2050 
2051 		spin_unlock_irq(&css_set_lock);
2052 		mutex_unlock(&cgroup_mutex);
2053 
2054 		nsdentry = kernfs_node_dentry(cgrp->kn, sb);
2055 		dput(fc->root);
2056 		if (IS_ERR(nsdentry)) {
2057 			deactivate_locked_super(sb);
2058 			ret = PTR_ERR(nsdentry);
2059 			nsdentry = NULL;
2060 		}
2061 		fc->root = nsdentry;
2062 	}
2063 
2064 	if (!ctx->kfc.new_sb_created)
2065 		cgroup_put(&ctx->root->cgrp);
2066 
2067 	return ret;
2068 }
2069 
2070 /*
2071  * Destroy a cgroup filesystem context.
2072  */
2073 static void cgroup_fs_context_free(struct fs_context *fc)
2074 {
2075 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2076 
2077 	kfree(ctx->name);
2078 	kfree(ctx->release_agent);
2079 	put_cgroup_ns(ctx->ns);
2080 	kernfs_free_fs_context(fc);
2081 	kfree(ctx);
2082 }
2083 
2084 static int cgroup_get_tree(struct fs_context *fc)
2085 {
2086 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2087 	int ret;
2088 
2089 	cgrp_dfl_visible = true;
2090 	cgroup_get_live(&cgrp_dfl_root.cgrp);
2091 	ctx->root = &cgrp_dfl_root;
2092 
2093 	ret = cgroup_do_get_tree(fc);
2094 	if (!ret)
2095 		apply_cgroup_root_flags(ctx->flags);
2096 	return ret;
2097 }
2098 
2099 static const struct fs_context_operations cgroup_fs_context_ops = {
2100 	.free		= cgroup_fs_context_free,
2101 	.parse_param	= cgroup2_parse_param,
2102 	.get_tree	= cgroup_get_tree,
2103 	.reconfigure	= cgroup_reconfigure,
2104 };
2105 
2106 static const struct fs_context_operations cgroup1_fs_context_ops = {
2107 	.free		= cgroup_fs_context_free,
2108 	.parse_param	= cgroup1_parse_param,
2109 	.get_tree	= cgroup1_get_tree,
2110 	.reconfigure	= cgroup1_reconfigure,
2111 };
2112 
2113 /*
2114  * Initialise the cgroup filesystem creation/reconfiguration context.  Notably,
2115  * we select the namespace we're going to use.
2116  */
2117 static int cgroup_init_fs_context(struct fs_context *fc)
2118 {
2119 	struct cgroup_fs_context *ctx;
2120 
2121 	ctx = kzalloc(sizeof(struct cgroup_fs_context), GFP_KERNEL);
2122 	if (!ctx)
2123 		return -ENOMEM;
2124 
2125 	ctx->ns = current->nsproxy->cgroup_ns;
2126 	get_cgroup_ns(ctx->ns);
2127 	fc->fs_private = &ctx->kfc;
2128 	if (fc->fs_type == &cgroup2_fs_type)
2129 		fc->ops = &cgroup_fs_context_ops;
2130 	else
2131 		fc->ops = &cgroup1_fs_context_ops;
2132 	put_user_ns(fc->user_ns);
2133 	fc->user_ns = get_user_ns(ctx->ns->user_ns);
2134 	fc->global = true;
2135 	return 0;
2136 }
2137 
2138 static void cgroup_kill_sb(struct super_block *sb)
2139 {
2140 	struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2141 	struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2142 
2143 	/*
2144 	 * If @root doesn't have any children, start killing it.
2145 	 * This prevents new mounts by disabling percpu_ref_tryget_live().
2146 	 * cgroup_mount() may wait for @root's release.
2147 	 *
2148 	 * And don't kill the default root.
2149 	 */
2150 	if (list_empty(&root->cgrp.self.children) && root != &cgrp_dfl_root &&
2151 	    !percpu_ref_is_dying(&root->cgrp.self.refcnt))
2152 		percpu_ref_kill(&root->cgrp.self.refcnt);
2153 	cgroup_put(&root->cgrp);
2154 	kernfs_kill_sb(sb);
2155 }
2156 
2157 struct file_system_type cgroup_fs_type = {
2158 	.name			= "cgroup",
2159 	.init_fs_context	= cgroup_init_fs_context,
2160 	.parameters		= cgroup1_fs_parameters,
2161 	.kill_sb		= cgroup_kill_sb,
2162 	.fs_flags		= FS_USERNS_MOUNT,
2163 };
2164 
2165 static struct file_system_type cgroup2_fs_type = {
2166 	.name			= "cgroup2",
2167 	.init_fs_context	= cgroup_init_fs_context,
2168 	.parameters		= cgroup2_fs_parameters,
2169 	.kill_sb		= cgroup_kill_sb,
2170 	.fs_flags		= FS_USERNS_MOUNT,
2171 };
2172 
2173 #ifdef CONFIG_CPUSETS
2174 static const struct fs_context_operations cpuset_fs_context_ops = {
2175 	.get_tree	= cgroup1_get_tree,
2176 	.free		= cgroup_fs_context_free,
2177 };
2178 
2179 /*
2180  * This is ugly, but preserves the userspace API for existing cpuset
2181  * users. If someone tries to mount the "cpuset" filesystem, we
2182  * silently switch it to mount "cgroup" instead
2183  */
2184 static int cpuset_init_fs_context(struct fs_context *fc)
2185 {
2186 	char *agent = kstrdup("/sbin/cpuset_release_agent", GFP_USER);
2187 	struct cgroup_fs_context *ctx;
2188 	int err;
2189 
2190 	err = cgroup_init_fs_context(fc);
2191 	if (err) {
2192 		kfree(agent);
2193 		return err;
2194 	}
2195 
2196 	fc->ops = &cpuset_fs_context_ops;
2197 
2198 	ctx = cgroup_fc2context(fc);
2199 	ctx->subsys_mask = 1 << cpuset_cgrp_id;
2200 	ctx->flags |= CGRP_ROOT_NOPREFIX;
2201 	ctx->release_agent = agent;
2202 
2203 	get_filesystem(&cgroup_fs_type);
2204 	put_filesystem(fc->fs_type);
2205 	fc->fs_type = &cgroup_fs_type;
2206 
2207 	return 0;
2208 }
2209 
2210 static struct file_system_type cpuset_fs_type = {
2211 	.name			= "cpuset",
2212 	.init_fs_context	= cpuset_init_fs_context,
2213 	.fs_flags		= FS_USERNS_MOUNT,
2214 };
2215 #endif
2216 
2217 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
2218 			  struct cgroup_namespace *ns)
2219 {
2220 	struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
2221 
2222 	return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
2223 }
2224 
2225 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
2226 		   struct cgroup_namespace *ns)
2227 {
2228 	int ret;
2229 
2230 	mutex_lock(&cgroup_mutex);
2231 	spin_lock_irq(&css_set_lock);
2232 
2233 	ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
2234 
2235 	spin_unlock_irq(&css_set_lock);
2236 	mutex_unlock(&cgroup_mutex);
2237 
2238 	return ret;
2239 }
2240 EXPORT_SYMBOL_GPL(cgroup_path_ns);
2241 
2242 /**
2243  * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
2244  * @task: target task
2245  * @buf: the buffer to write the path into
2246  * @buflen: the length of the buffer
2247  *
2248  * Determine @task's cgroup on the first (the one with the lowest non-zero
2249  * hierarchy_id) cgroup hierarchy and copy its path into @buf.  This
2250  * function grabs cgroup_mutex and shouldn't be used inside locks used by
2251  * cgroup controller callbacks.
2252  *
2253  * Return value is the same as kernfs_path().
2254  */
2255 int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
2256 {
2257 	struct cgroup_root *root;
2258 	struct cgroup *cgrp;
2259 	int hierarchy_id = 1;
2260 	int ret;
2261 
2262 	mutex_lock(&cgroup_mutex);
2263 	spin_lock_irq(&css_set_lock);
2264 
2265 	root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2266 
2267 	if (root) {
2268 		cgrp = task_cgroup_from_root(task, root);
2269 		ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns);
2270 	} else {
2271 		/* if no hierarchy exists, everyone is in "/" */
2272 		ret = strlcpy(buf, "/", buflen);
2273 	}
2274 
2275 	spin_unlock_irq(&css_set_lock);
2276 	mutex_unlock(&cgroup_mutex);
2277 	return ret;
2278 }
2279 EXPORT_SYMBOL_GPL(task_cgroup_path);
2280 
2281 /**
2282  * cgroup_migrate_add_task - add a migration target task to a migration context
2283  * @task: target task
2284  * @mgctx: target migration context
2285  *
2286  * Add @task, which is a migration target, to @mgctx->tset.  This function
2287  * becomes noop if @task doesn't need to be migrated.  @task's css_set
2288  * should have been added as a migration source and @task->cg_list will be
2289  * moved from the css_set's tasks list to mg_tasks one.
2290  */
2291 static void cgroup_migrate_add_task(struct task_struct *task,
2292 				    struct cgroup_mgctx *mgctx)
2293 {
2294 	struct css_set *cset;
2295 
2296 	lockdep_assert_held(&css_set_lock);
2297 
2298 	/* @task either already exited or can't exit until the end */
2299 	if (task->flags & PF_EXITING)
2300 		return;
2301 
2302 	/* cgroup_threadgroup_rwsem protects racing against forks */
2303 	WARN_ON_ONCE(list_empty(&task->cg_list));
2304 
2305 	cset = task_css_set(task);
2306 	if (!cset->mg_src_cgrp)
2307 		return;
2308 
2309 	mgctx->tset.nr_tasks++;
2310 
2311 	list_move_tail(&task->cg_list, &cset->mg_tasks);
2312 	if (list_empty(&cset->mg_node))
2313 		list_add_tail(&cset->mg_node,
2314 			      &mgctx->tset.src_csets);
2315 	if (list_empty(&cset->mg_dst_cset->mg_node))
2316 		list_add_tail(&cset->mg_dst_cset->mg_node,
2317 			      &mgctx->tset.dst_csets);
2318 }
2319 
2320 /**
2321  * cgroup_taskset_first - reset taskset and return the first task
2322  * @tset: taskset of interest
2323  * @dst_cssp: output variable for the destination css
2324  *
2325  * @tset iteration is initialized and the first task is returned.
2326  */
2327 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2328 					 struct cgroup_subsys_state **dst_cssp)
2329 {
2330 	tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2331 	tset->cur_task = NULL;
2332 
2333 	return cgroup_taskset_next(tset, dst_cssp);
2334 }
2335 
2336 /**
2337  * cgroup_taskset_next - iterate to the next task in taskset
2338  * @tset: taskset of interest
2339  * @dst_cssp: output variable for the destination css
2340  *
2341  * Return the next task in @tset.  Iteration must have been initialized
2342  * with cgroup_taskset_first().
2343  */
2344 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2345 					struct cgroup_subsys_state **dst_cssp)
2346 {
2347 	struct css_set *cset = tset->cur_cset;
2348 	struct task_struct *task = tset->cur_task;
2349 
2350 	while (&cset->mg_node != tset->csets) {
2351 		if (!task)
2352 			task = list_first_entry(&cset->mg_tasks,
2353 						struct task_struct, cg_list);
2354 		else
2355 			task = list_next_entry(task, cg_list);
2356 
2357 		if (&task->cg_list != &cset->mg_tasks) {
2358 			tset->cur_cset = cset;
2359 			tset->cur_task = task;
2360 
2361 			/*
2362 			 * This function may be called both before and
2363 			 * after cgroup_taskset_migrate().  The two cases
2364 			 * can be distinguished by looking at whether @cset
2365 			 * has its ->mg_dst_cset set.
2366 			 */
2367 			if (cset->mg_dst_cset)
2368 				*dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2369 			else
2370 				*dst_cssp = cset->subsys[tset->ssid];
2371 
2372 			return task;
2373 		}
2374 
2375 		cset = list_next_entry(cset, mg_node);
2376 		task = NULL;
2377 	}
2378 
2379 	return NULL;
2380 }
2381 
2382 /**
2383  * cgroup_taskset_migrate - migrate a taskset
2384  * @mgctx: migration context
2385  *
2386  * Migrate tasks in @mgctx as setup by migration preparation functions.
2387  * This function fails iff one of the ->can_attach callbacks fails and
2388  * guarantees that either all or none of the tasks in @mgctx are migrated.
2389  * @mgctx is consumed regardless of success.
2390  */
2391 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx)
2392 {
2393 	struct cgroup_taskset *tset = &mgctx->tset;
2394 	struct cgroup_subsys *ss;
2395 	struct task_struct *task, *tmp_task;
2396 	struct css_set *cset, *tmp_cset;
2397 	int ssid, failed_ssid, ret;
2398 
2399 	/* check that we can legitimately attach to the cgroup */
2400 	if (tset->nr_tasks) {
2401 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2402 			if (ss->can_attach) {
2403 				tset->ssid = ssid;
2404 				ret = ss->can_attach(tset);
2405 				if (ret) {
2406 					failed_ssid = ssid;
2407 					goto out_cancel_attach;
2408 				}
2409 			}
2410 		} while_each_subsys_mask();
2411 	}
2412 
2413 	/*
2414 	 * Now that we're guaranteed success, proceed to move all tasks to
2415 	 * the new cgroup.  There are no failure cases after here, so this
2416 	 * is the commit point.
2417 	 */
2418 	spin_lock_irq(&css_set_lock);
2419 	list_for_each_entry(cset, &tset->src_csets, mg_node) {
2420 		list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2421 			struct css_set *from_cset = task_css_set(task);
2422 			struct css_set *to_cset = cset->mg_dst_cset;
2423 
2424 			get_css_set(to_cset);
2425 			to_cset->nr_tasks++;
2426 			css_set_move_task(task, from_cset, to_cset, true);
2427 			from_cset->nr_tasks--;
2428 			/*
2429 			 * If the source or destination cgroup is frozen,
2430 			 * the task might require to change its state.
2431 			 */
2432 			cgroup_freezer_migrate_task(task, from_cset->dfl_cgrp,
2433 						    to_cset->dfl_cgrp);
2434 			put_css_set_locked(from_cset);
2435 
2436 		}
2437 	}
2438 	spin_unlock_irq(&css_set_lock);
2439 
2440 	/*
2441 	 * Migration is committed, all target tasks are now on dst_csets.
2442 	 * Nothing is sensitive to fork() after this point.  Notify
2443 	 * controllers that migration is complete.
2444 	 */
2445 	tset->csets = &tset->dst_csets;
2446 
2447 	if (tset->nr_tasks) {
2448 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2449 			if (ss->attach) {
2450 				tset->ssid = ssid;
2451 				ss->attach(tset);
2452 			}
2453 		} while_each_subsys_mask();
2454 	}
2455 
2456 	ret = 0;
2457 	goto out_release_tset;
2458 
2459 out_cancel_attach:
2460 	if (tset->nr_tasks) {
2461 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2462 			if (ssid == failed_ssid)
2463 				break;
2464 			if (ss->cancel_attach) {
2465 				tset->ssid = ssid;
2466 				ss->cancel_attach(tset);
2467 			}
2468 		} while_each_subsys_mask();
2469 	}
2470 out_release_tset:
2471 	spin_lock_irq(&css_set_lock);
2472 	list_splice_init(&tset->dst_csets, &tset->src_csets);
2473 	list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2474 		list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2475 		list_del_init(&cset->mg_node);
2476 	}
2477 	spin_unlock_irq(&css_set_lock);
2478 
2479 	/*
2480 	 * Re-initialize the cgroup_taskset structure in case it is reused
2481 	 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute()
2482 	 * iteration.
2483 	 */
2484 	tset->nr_tasks = 0;
2485 	tset->csets    = &tset->src_csets;
2486 	return ret;
2487 }
2488 
2489 /**
2490  * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination
2491  * @dst_cgrp: destination cgroup to test
2492  *
2493  * On the default hierarchy, except for the mixable, (possible) thread root
2494  * and threaded cgroups, subtree_control must be zero for migration
2495  * destination cgroups with tasks so that child cgroups don't compete
2496  * against tasks.
2497  */
2498 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp)
2499 {
2500 	/* v1 doesn't have any restriction */
2501 	if (!cgroup_on_dfl(dst_cgrp))
2502 		return 0;
2503 
2504 	/* verify @dst_cgrp can host resources */
2505 	if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp))
2506 		return -EOPNOTSUPP;
2507 
2508 	/* mixables don't care */
2509 	if (cgroup_is_mixable(dst_cgrp))
2510 		return 0;
2511 
2512 	/*
2513 	 * If @dst_cgrp is already or can become a thread root or is
2514 	 * threaded, it doesn't matter.
2515 	 */
2516 	if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp))
2517 		return 0;
2518 
2519 	/* apply no-internal-process constraint */
2520 	if (dst_cgrp->subtree_control)
2521 		return -EBUSY;
2522 
2523 	return 0;
2524 }
2525 
2526 /**
2527  * cgroup_migrate_finish - cleanup after attach
2528  * @mgctx: migration context
2529  *
2530  * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst().  See
2531  * those functions for details.
2532  */
2533 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx)
2534 {
2535 	LIST_HEAD(preloaded);
2536 	struct css_set *cset, *tmp_cset;
2537 
2538 	lockdep_assert_held(&cgroup_mutex);
2539 
2540 	spin_lock_irq(&css_set_lock);
2541 
2542 	list_splice_tail_init(&mgctx->preloaded_src_csets, &preloaded);
2543 	list_splice_tail_init(&mgctx->preloaded_dst_csets, &preloaded);
2544 
2545 	list_for_each_entry_safe(cset, tmp_cset, &preloaded, mg_preload_node) {
2546 		cset->mg_src_cgrp = NULL;
2547 		cset->mg_dst_cgrp = NULL;
2548 		cset->mg_dst_cset = NULL;
2549 		list_del_init(&cset->mg_preload_node);
2550 		put_css_set_locked(cset);
2551 	}
2552 
2553 	spin_unlock_irq(&css_set_lock);
2554 }
2555 
2556 /**
2557  * cgroup_migrate_add_src - add a migration source css_set
2558  * @src_cset: the source css_set to add
2559  * @dst_cgrp: the destination cgroup
2560  * @mgctx: migration context
2561  *
2562  * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp.  Pin
2563  * @src_cset and add it to @mgctx->src_csets, which should later be cleaned
2564  * up by cgroup_migrate_finish().
2565  *
2566  * This function may be called without holding cgroup_threadgroup_rwsem
2567  * even if the target is a process.  Threads may be created and destroyed
2568  * but as long as cgroup_mutex is not dropped, no new css_set can be put
2569  * into play and the preloaded css_sets are guaranteed to cover all
2570  * migrations.
2571  */
2572 void cgroup_migrate_add_src(struct css_set *src_cset,
2573 			    struct cgroup *dst_cgrp,
2574 			    struct cgroup_mgctx *mgctx)
2575 {
2576 	struct cgroup *src_cgrp;
2577 
2578 	lockdep_assert_held(&cgroup_mutex);
2579 	lockdep_assert_held(&css_set_lock);
2580 
2581 	/*
2582 	 * If ->dead, @src_set is associated with one or more dead cgroups
2583 	 * and doesn't contain any migratable tasks.  Ignore it early so
2584 	 * that the rest of migration path doesn't get confused by it.
2585 	 */
2586 	if (src_cset->dead)
2587 		return;
2588 
2589 	src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2590 
2591 	if (!list_empty(&src_cset->mg_preload_node))
2592 		return;
2593 
2594 	WARN_ON(src_cset->mg_src_cgrp);
2595 	WARN_ON(src_cset->mg_dst_cgrp);
2596 	WARN_ON(!list_empty(&src_cset->mg_tasks));
2597 	WARN_ON(!list_empty(&src_cset->mg_node));
2598 
2599 	src_cset->mg_src_cgrp = src_cgrp;
2600 	src_cset->mg_dst_cgrp = dst_cgrp;
2601 	get_css_set(src_cset);
2602 	list_add_tail(&src_cset->mg_preload_node, &mgctx->preloaded_src_csets);
2603 }
2604 
2605 /**
2606  * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2607  * @mgctx: migration context
2608  *
2609  * Tasks are about to be moved and all the source css_sets have been
2610  * preloaded to @mgctx->preloaded_src_csets.  This function looks up and
2611  * pins all destination css_sets, links each to its source, and append them
2612  * to @mgctx->preloaded_dst_csets.
2613  *
2614  * This function must be called after cgroup_migrate_add_src() has been
2615  * called on each migration source css_set.  After migration is performed
2616  * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2617  * @mgctx.
2618  */
2619 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx)
2620 {
2621 	struct css_set *src_cset, *tmp_cset;
2622 
2623 	lockdep_assert_held(&cgroup_mutex);
2624 
2625 	/* look up the dst cset for each src cset and link it to src */
2626 	list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets,
2627 				 mg_preload_node) {
2628 		struct css_set *dst_cset;
2629 		struct cgroup_subsys *ss;
2630 		int ssid;
2631 
2632 		dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
2633 		if (!dst_cset)
2634 			return -ENOMEM;
2635 
2636 		WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2637 
2638 		/*
2639 		 * If src cset equals dst, it's noop.  Drop the src.
2640 		 * cgroup_migrate() will skip the cset too.  Note that we
2641 		 * can't handle src == dst as some nodes are used by both.
2642 		 */
2643 		if (src_cset == dst_cset) {
2644 			src_cset->mg_src_cgrp = NULL;
2645 			src_cset->mg_dst_cgrp = NULL;
2646 			list_del_init(&src_cset->mg_preload_node);
2647 			put_css_set(src_cset);
2648 			put_css_set(dst_cset);
2649 			continue;
2650 		}
2651 
2652 		src_cset->mg_dst_cset = dst_cset;
2653 
2654 		if (list_empty(&dst_cset->mg_preload_node))
2655 			list_add_tail(&dst_cset->mg_preload_node,
2656 				      &mgctx->preloaded_dst_csets);
2657 		else
2658 			put_css_set(dst_cset);
2659 
2660 		for_each_subsys(ss, ssid)
2661 			if (src_cset->subsys[ssid] != dst_cset->subsys[ssid])
2662 				mgctx->ss_mask |= 1 << ssid;
2663 	}
2664 
2665 	return 0;
2666 }
2667 
2668 /**
2669  * cgroup_migrate - migrate a process or task to a cgroup
2670  * @leader: the leader of the process or the task to migrate
2671  * @threadgroup: whether @leader points to the whole process or a single task
2672  * @mgctx: migration context
2673  *
2674  * Migrate a process or task denoted by @leader.  If migrating a process,
2675  * the caller must be holding cgroup_threadgroup_rwsem.  The caller is also
2676  * responsible for invoking cgroup_migrate_add_src() and
2677  * cgroup_migrate_prepare_dst() on the targets before invoking this
2678  * function and following up with cgroup_migrate_finish().
2679  *
2680  * As long as a controller's ->can_attach() doesn't fail, this function is
2681  * guaranteed to succeed.  This means that, excluding ->can_attach()
2682  * failure, when migrating multiple targets, the success or failure can be
2683  * decided for all targets by invoking group_migrate_prepare_dst() before
2684  * actually starting migrating.
2685  */
2686 int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2687 		   struct cgroup_mgctx *mgctx)
2688 {
2689 	struct task_struct *task;
2690 
2691 	/*
2692 	 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2693 	 * already PF_EXITING could be freed from underneath us unless we
2694 	 * take an rcu_read_lock.
2695 	 */
2696 	spin_lock_irq(&css_set_lock);
2697 	rcu_read_lock();
2698 	task = leader;
2699 	do {
2700 		cgroup_migrate_add_task(task, mgctx);
2701 		if (!threadgroup)
2702 			break;
2703 	} while_each_thread(leader, task);
2704 	rcu_read_unlock();
2705 	spin_unlock_irq(&css_set_lock);
2706 
2707 	return cgroup_migrate_execute(mgctx);
2708 }
2709 
2710 /**
2711  * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2712  * @dst_cgrp: the cgroup to attach to
2713  * @leader: the task or the leader of the threadgroup to be attached
2714  * @threadgroup: attach the whole threadgroup?
2715  *
2716  * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2717  */
2718 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader,
2719 		       bool threadgroup)
2720 {
2721 	DEFINE_CGROUP_MGCTX(mgctx);
2722 	struct task_struct *task;
2723 	int ret = 0;
2724 
2725 	/* look up all src csets */
2726 	spin_lock_irq(&css_set_lock);
2727 	rcu_read_lock();
2728 	task = leader;
2729 	do {
2730 		cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx);
2731 		if (!threadgroup)
2732 			break;
2733 	} while_each_thread(leader, task);
2734 	rcu_read_unlock();
2735 	spin_unlock_irq(&css_set_lock);
2736 
2737 	/* prepare dst csets and commit */
2738 	ret = cgroup_migrate_prepare_dst(&mgctx);
2739 	if (!ret)
2740 		ret = cgroup_migrate(leader, threadgroup, &mgctx);
2741 
2742 	cgroup_migrate_finish(&mgctx);
2743 
2744 	if (!ret)
2745 		TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup);
2746 
2747 	return ret;
2748 }
2749 
2750 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup,
2751 					     bool *locked)
2752 	__acquires(&cgroup_threadgroup_rwsem)
2753 {
2754 	struct task_struct *tsk;
2755 	pid_t pid;
2756 
2757 	if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2758 		return ERR_PTR(-EINVAL);
2759 
2760 	/*
2761 	 * If we migrate a single thread, we don't care about threadgroup
2762 	 * stability. If the thread is `current`, it won't exit(2) under our
2763 	 * hands or change PID through exec(2). We exclude
2764 	 * cgroup_update_dfl_csses and other cgroup_{proc,thread}s_write
2765 	 * callers by cgroup_mutex.
2766 	 * Therefore, we can skip the global lock.
2767 	 */
2768 	lockdep_assert_held(&cgroup_mutex);
2769 	if (pid || threadgroup) {
2770 		percpu_down_write(&cgroup_threadgroup_rwsem);
2771 		*locked = true;
2772 	} else {
2773 		*locked = false;
2774 	}
2775 
2776 	rcu_read_lock();
2777 	if (pid) {
2778 		tsk = find_task_by_vpid(pid);
2779 		if (!tsk) {
2780 			tsk = ERR_PTR(-ESRCH);
2781 			goto out_unlock_threadgroup;
2782 		}
2783 	} else {
2784 		tsk = current;
2785 	}
2786 
2787 	if (threadgroup)
2788 		tsk = tsk->group_leader;
2789 
2790 	/*
2791 	 * kthreads may acquire PF_NO_SETAFFINITY during initialization.
2792 	 * If userland migrates such a kthread to a non-root cgroup, it can
2793 	 * become trapped in a cpuset, or RT kthread may be born in a
2794 	 * cgroup with no rt_runtime allocated.  Just say no.
2795 	 */
2796 	if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) {
2797 		tsk = ERR_PTR(-EINVAL);
2798 		goto out_unlock_threadgroup;
2799 	}
2800 
2801 	get_task_struct(tsk);
2802 	goto out_unlock_rcu;
2803 
2804 out_unlock_threadgroup:
2805 	if (*locked) {
2806 		percpu_up_write(&cgroup_threadgroup_rwsem);
2807 		*locked = false;
2808 	}
2809 out_unlock_rcu:
2810 	rcu_read_unlock();
2811 	return tsk;
2812 }
2813 
2814 void cgroup_procs_write_finish(struct task_struct *task, bool locked)
2815 	__releases(&cgroup_threadgroup_rwsem)
2816 {
2817 	struct cgroup_subsys *ss;
2818 	int ssid;
2819 
2820 	/* release reference from cgroup_procs_write_start() */
2821 	put_task_struct(task);
2822 
2823 	if (locked)
2824 		percpu_up_write(&cgroup_threadgroup_rwsem);
2825 	for_each_subsys(ss, ssid)
2826 		if (ss->post_attach)
2827 			ss->post_attach();
2828 }
2829 
2830 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
2831 {
2832 	struct cgroup_subsys *ss;
2833 	bool printed = false;
2834 	int ssid;
2835 
2836 	do_each_subsys_mask(ss, ssid, ss_mask) {
2837 		if (printed)
2838 			seq_putc(seq, ' ');
2839 		seq_puts(seq, ss->name);
2840 		printed = true;
2841 	} while_each_subsys_mask();
2842 	if (printed)
2843 		seq_putc(seq, '\n');
2844 }
2845 
2846 /* show controllers which are enabled from the parent */
2847 static int cgroup_controllers_show(struct seq_file *seq, void *v)
2848 {
2849 	struct cgroup *cgrp = seq_css(seq)->cgroup;
2850 
2851 	cgroup_print_ss_mask(seq, cgroup_control(cgrp));
2852 	return 0;
2853 }
2854 
2855 /* show controllers which are enabled for a given cgroup's children */
2856 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
2857 {
2858 	struct cgroup *cgrp = seq_css(seq)->cgroup;
2859 
2860 	cgroup_print_ss_mask(seq, cgrp->subtree_control);
2861 	return 0;
2862 }
2863 
2864 /**
2865  * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2866  * @cgrp: root of the subtree to update csses for
2867  *
2868  * @cgrp's control masks have changed and its subtree's css associations
2869  * need to be updated accordingly.  This function looks up all css_sets
2870  * which are attached to the subtree, creates the matching updated css_sets
2871  * and migrates the tasks to the new ones.
2872  */
2873 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2874 {
2875 	DEFINE_CGROUP_MGCTX(mgctx);
2876 	struct cgroup_subsys_state *d_css;
2877 	struct cgroup *dsct;
2878 	struct css_set *src_cset;
2879 	int ret;
2880 
2881 	lockdep_assert_held(&cgroup_mutex);
2882 
2883 	percpu_down_write(&cgroup_threadgroup_rwsem);
2884 
2885 	/* look up all csses currently attached to @cgrp's subtree */
2886 	spin_lock_irq(&css_set_lock);
2887 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2888 		struct cgrp_cset_link *link;
2889 
2890 		list_for_each_entry(link, &dsct->cset_links, cset_link)
2891 			cgroup_migrate_add_src(link->cset, dsct, &mgctx);
2892 	}
2893 	spin_unlock_irq(&css_set_lock);
2894 
2895 	/* NULL dst indicates self on default hierarchy */
2896 	ret = cgroup_migrate_prepare_dst(&mgctx);
2897 	if (ret)
2898 		goto out_finish;
2899 
2900 	spin_lock_irq(&css_set_lock);
2901 	list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, mg_preload_node) {
2902 		struct task_struct *task, *ntask;
2903 
2904 		/* all tasks in src_csets need to be migrated */
2905 		list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
2906 			cgroup_migrate_add_task(task, &mgctx);
2907 	}
2908 	spin_unlock_irq(&css_set_lock);
2909 
2910 	ret = cgroup_migrate_execute(&mgctx);
2911 out_finish:
2912 	cgroup_migrate_finish(&mgctx);
2913 	percpu_up_write(&cgroup_threadgroup_rwsem);
2914 	return ret;
2915 }
2916 
2917 /**
2918  * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
2919  * @cgrp: root of the target subtree
2920  *
2921  * Because css offlining is asynchronous, userland may try to re-enable a
2922  * controller while the previous css is still around.  This function grabs
2923  * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
2924  */
2925 void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
2926 	__acquires(&cgroup_mutex)
2927 {
2928 	struct cgroup *dsct;
2929 	struct cgroup_subsys_state *d_css;
2930 	struct cgroup_subsys *ss;
2931 	int ssid;
2932 
2933 restart:
2934 	mutex_lock(&cgroup_mutex);
2935 
2936 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
2937 		for_each_subsys(ss, ssid) {
2938 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
2939 			DEFINE_WAIT(wait);
2940 
2941 			if (!css || !percpu_ref_is_dying(&css->refcnt))
2942 				continue;
2943 
2944 			cgroup_get_live(dsct);
2945 			prepare_to_wait(&dsct->offline_waitq, &wait,
2946 					TASK_UNINTERRUPTIBLE);
2947 
2948 			mutex_unlock(&cgroup_mutex);
2949 			schedule();
2950 			finish_wait(&dsct->offline_waitq, &wait);
2951 
2952 			cgroup_put(dsct);
2953 			goto restart;
2954 		}
2955 	}
2956 }
2957 
2958 /**
2959  * cgroup_save_control - save control masks and dom_cgrp of a subtree
2960  * @cgrp: root of the target subtree
2961  *
2962  * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the
2963  * respective old_ prefixed fields for @cgrp's subtree including @cgrp
2964  * itself.
2965  */
2966 static void cgroup_save_control(struct cgroup *cgrp)
2967 {
2968 	struct cgroup *dsct;
2969 	struct cgroup_subsys_state *d_css;
2970 
2971 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2972 		dsct->old_subtree_control = dsct->subtree_control;
2973 		dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
2974 		dsct->old_dom_cgrp = dsct->dom_cgrp;
2975 	}
2976 }
2977 
2978 /**
2979  * cgroup_propagate_control - refresh control masks of a subtree
2980  * @cgrp: root of the target subtree
2981  *
2982  * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
2983  * ->subtree_control and propagate controller availability through the
2984  * subtree so that descendants don't have unavailable controllers enabled.
2985  */
2986 static void cgroup_propagate_control(struct cgroup *cgrp)
2987 {
2988 	struct cgroup *dsct;
2989 	struct cgroup_subsys_state *d_css;
2990 
2991 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2992 		dsct->subtree_control &= cgroup_control(dsct);
2993 		dsct->subtree_ss_mask =
2994 			cgroup_calc_subtree_ss_mask(dsct->subtree_control,
2995 						    cgroup_ss_mask(dsct));
2996 	}
2997 }
2998 
2999 /**
3000  * cgroup_restore_control - restore control masks and dom_cgrp of a subtree
3001  * @cgrp: root of the target subtree
3002  *
3003  * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the
3004  * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3005  * itself.
3006  */
3007 static void cgroup_restore_control(struct cgroup *cgrp)
3008 {
3009 	struct cgroup *dsct;
3010 	struct cgroup_subsys_state *d_css;
3011 
3012 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3013 		dsct->subtree_control = dsct->old_subtree_control;
3014 		dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
3015 		dsct->dom_cgrp = dsct->old_dom_cgrp;
3016 	}
3017 }
3018 
3019 static bool css_visible(struct cgroup_subsys_state *css)
3020 {
3021 	struct cgroup_subsys *ss = css->ss;
3022 	struct cgroup *cgrp = css->cgroup;
3023 
3024 	if (cgroup_control(cgrp) & (1 << ss->id))
3025 		return true;
3026 	if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
3027 		return false;
3028 	return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
3029 }
3030 
3031 /**
3032  * cgroup_apply_control_enable - enable or show csses according to control
3033  * @cgrp: root of the target subtree
3034  *
3035  * Walk @cgrp's subtree and create new csses or make the existing ones
3036  * visible.  A css is created invisible if it's being implicitly enabled
3037  * through dependency.  An invisible css is made visible when the userland
3038  * explicitly enables it.
3039  *
3040  * Returns 0 on success, -errno on failure.  On failure, csses which have
3041  * been processed already aren't cleaned up.  The caller is responsible for
3042  * cleaning up with cgroup_apply_control_disable().
3043  */
3044 static int cgroup_apply_control_enable(struct cgroup *cgrp)
3045 {
3046 	struct cgroup *dsct;
3047 	struct cgroup_subsys_state *d_css;
3048 	struct cgroup_subsys *ss;
3049 	int ssid, ret;
3050 
3051 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3052 		for_each_subsys(ss, ssid) {
3053 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3054 
3055 			if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
3056 				continue;
3057 
3058 			if (!css) {
3059 				css = css_create(dsct, ss);
3060 				if (IS_ERR(css))
3061 					return PTR_ERR(css);
3062 			}
3063 
3064 			WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3065 
3066 			if (css_visible(css)) {
3067 				ret = css_populate_dir(css);
3068 				if (ret)
3069 					return ret;
3070 			}
3071 		}
3072 	}
3073 
3074 	return 0;
3075 }
3076 
3077 /**
3078  * cgroup_apply_control_disable - kill or hide csses according to control
3079  * @cgrp: root of the target subtree
3080  *
3081  * Walk @cgrp's subtree and kill and hide csses so that they match
3082  * cgroup_ss_mask() and cgroup_visible_mask().
3083  *
3084  * A css is hidden when the userland requests it to be disabled while other
3085  * subsystems are still depending on it.  The css must not actively control
3086  * resources and be in the vanilla state if it's made visible again later.
3087  * Controllers which may be depended upon should provide ->css_reset() for
3088  * this purpose.
3089  */
3090 static void cgroup_apply_control_disable(struct cgroup *cgrp)
3091 {
3092 	struct cgroup *dsct;
3093 	struct cgroup_subsys_state *d_css;
3094 	struct cgroup_subsys *ss;
3095 	int ssid;
3096 
3097 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3098 		for_each_subsys(ss, ssid) {
3099 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3100 
3101 			if (!css)
3102 				continue;
3103 
3104 			WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3105 
3106 			if (css->parent &&
3107 			    !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
3108 				kill_css(css);
3109 			} else if (!css_visible(css)) {
3110 				css_clear_dir(css);
3111 				if (ss->css_reset)
3112 					ss->css_reset(css);
3113 			}
3114 		}
3115 	}
3116 }
3117 
3118 /**
3119  * cgroup_apply_control - apply control mask updates to the subtree
3120  * @cgrp: root of the target subtree
3121  *
3122  * subsystems can be enabled and disabled in a subtree using the following
3123  * steps.
3124  *
3125  * 1. Call cgroup_save_control() to stash the current state.
3126  * 2. Update ->subtree_control masks in the subtree as desired.
3127  * 3. Call cgroup_apply_control() to apply the changes.
3128  * 4. Optionally perform other related operations.
3129  * 5. Call cgroup_finalize_control() to finish up.
3130  *
3131  * This function implements step 3 and propagates the mask changes
3132  * throughout @cgrp's subtree, updates csses accordingly and perform
3133  * process migrations.
3134  */
3135 static int cgroup_apply_control(struct cgroup *cgrp)
3136 {
3137 	int ret;
3138 
3139 	cgroup_propagate_control(cgrp);
3140 
3141 	ret = cgroup_apply_control_enable(cgrp);
3142 	if (ret)
3143 		return ret;
3144 
3145 	/*
3146 	 * At this point, cgroup_e_css_by_mask() results reflect the new csses
3147 	 * making the following cgroup_update_dfl_csses() properly update
3148 	 * css associations of all tasks in the subtree.
3149 	 */
3150 	ret = cgroup_update_dfl_csses(cgrp);
3151 	if (ret)
3152 		return ret;
3153 
3154 	return 0;
3155 }
3156 
3157 /**
3158  * cgroup_finalize_control - finalize control mask update
3159  * @cgrp: root of the target subtree
3160  * @ret: the result of the update
3161  *
3162  * Finalize control mask update.  See cgroup_apply_control() for more info.
3163  */
3164 static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
3165 {
3166 	if (ret) {
3167 		cgroup_restore_control(cgrp);
3168 		cgroup_propagate_control(cgrp);
3169 	}
3170 
3171 	cgroup_apply_control_disable(cgrp);
3172 }
3173 
3174 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable)
3175 {
3176 	u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask;
3177 
3178 	/* if nothing is getting enabled, nothing to worry about */
3179 	if (!enable)
3180 		return 0;
3181 
3182 	/* can @cgrp host any resources? */
3183 	if (!cgroup_is_valid_domain(cgrp->dom_cgrp))
3184 		return -EOPNOTSUPP;
3185 
3186 	/* mixables don't care */
3187 	if (cgroup_is_mixable(cgrp))
3188 		return 0;
3189 
3190 	if (domain_enable) {
3191 		/* can't enable domain controllers inside a thread subtree */
3192 		if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3193 			return -EOPNOTSUPP;
3194 	} else {
3195 		/*
3196 		 * Threaded controllers can handle internal competitions
3197 		 * and are always allowed inside a (prospective) thread
3198 		 * subtree.
3199 		 */
3200 		if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3201 			return 0;
3202 	}
3203 
3204 	/*
3205 	 * Controllers can't be enabled for a cgroup with tasks to avoid
3206 	 * child cgroups competing against tasks.
3207 	 */
3208 	if (cgroup_has_tasks(cgrp))
3209 		return -EBUSY;
3210 
3211 	return 0;
3212 }
3213 
3214 /* change the enabled child controllers for a cgroup in the default hierarchy */
3215 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3216 					    char *buf, size_t nbytes,
3217 					    loff_t off)
3218 {
3219 	u16 enable = 0, disable = 0;
3220 	struct cgroup *cgrp, *child;
3221 	struct cgroup_subsys *ss;
3222 	char *tok;
3223 	int ssid, ret;
3224 
3225 	/*
3226 	 * Parse input - space separated list of subsystem names prefixed
3227 	 * with either + or -.
3228 	 */
3229 	buf = strstrip(buf);
3230 	while ((tok = strsep(&buf, " "))) {
3231 		if (tok[0] == '\0')
3232 			continue;
3233 		do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
3234 			if (!cgroup_ssid_enabled(ssid) ||
3235 			    strcmp(tok + 1, ss->name))
3236 				continue;
3237 
3238 			if (*tok == '+') {
3239 				enable |= 1 << ssid;
3240 				disable &= ~(1 << ssid);
3241 			} else if (*tok == '-') {
3242 				disable |= 1 << ssid;
3243 				enable &= ~(1 << ssid);
3244 			} else {
3245 				return -EINVAL;
3246 			}
3247 			break;
3248 		} while_each_subsys_mask();
3249 		if (ssid == CGROUP_SUBSYS_COUNT)
3250 			return -EINVAL;
3251 	}
3252 
3253 	cgrp = cgroup_kn_lock_live(of->kn, true);
3254 	if (!cgrp)
3255 		return -ENODEV;
3256 
3257 	for_each_subsys(ss, ssid) {
3258 		if (enable & (1 << ssid)) {
3259 			if (cgrp->subtree_control & (1 << ssid)) {
3260 				enable &= ~(1 << ssid);
3261 				continue;
3262 			}
3263 
3264 			if (!(cgroup_control(cgrp) & (1 << ssid))) {
3265 				ret = -ENOENT;
3266 				goto out_unlock;
3267 			}
3268 		} else if (disable & (1 << ssid)) {
3269 			if (!(cgrp->subtree_control & (1 << ssid))) {
3270 				disable &= ~(1 << ssid);
3271 				continue;
3272 			}
3273 
3274 			/* a child has it enabled? */
3275 			cgroup_for_each_live_child(child, cgrp) {
3276 				if (child->subtree_control & (1 << ssid)) {
3277 					ret = -EBUSY;
3278 					goto out_unlock;
3279 				}
3280 			}
3281 		}
3282 	}
3283 
3284 	if (!enable && !disable) {
3285 		ret = 0;
3286 		goto out_unlock;
3287 	}
3288 
3289 	ret = cgroup_vet_subtree_control_enable(cgrp, enable);
3290 	if (ret)
3291 		goto out_unlock;
3292 
3293 	/* save and update control masks and prepare csses */
3294 	cgroup_save_control(cgrp);
3295 
3296 	cgrp->subtree_control |= enable;
3297 	cgrp->subtree_control &= ~disable;
3298 
3299 	ret = cgroup_apply_control(cgrp);
3300 	cgroup_finalize_control(cgrp, ret);
3301 	if (ret)
3302 		goto out_unlock;
3303 
3304 	kernfs_activate(cgrp->kn);
3305 out_unlock:
3306 	cgroup_kn_unlock(of->kn);
3307 	return ret ?: nbytes;
3308 }
3309 
3310 /**
3311  * cgroup_enable_threaded - make @cgrp threaded
3312  * @cgrp: the target cgroup
3313  *
3314  * Called when "threaded" is written to the cgroup.type interface file and
3315  * tries to make @cgrp threaded and join the parent's resource domain.
3316  * This function is never called on the root cgroup as cgroup.type doesn't
3317  * exist on it.
3318  */
3319 static int cgroup_enable_threaded(struct cgroup *cgrp)
3320 {
3321 	struct cgroup *parent = cgroup_parent(cgrp);
3322 	struct cgroup *dom_cgrp = parent->dom_cgrp;
3323 	struct cgroup *dsct;
3324 	struct cgroup_subsys_state *d_css;
3325 	int ret;
3326 
3327 	lockdep_assert_held(&cgroup_mutex);
3328 
3329 	/* noop if already threaded */
3330 	if (cgroup_is_threaded(cgrp))
3331 		return 0;
3332 
3333 	/*
3334 	 * If @cgroup is populated or has domain controllers enabled, it
3335 	 * can't be switched.  While the below cgroup_can_be_thread_root()
3336 	 * test can catch the same conditions, that's only when @parent is
3337 	 * not mixable, so let's check it explicitly.
3338 	 */
3339 	if (cgroup_is_populated(cgrp) ||
3340 	    cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
3341 		return -EOPNOTSUPP;
3342 
3343 	/* we're joining the parent's domain, ensure its validity */
3344 	if (!cgroup_is_valid_domain(dom_cgrp) ||
3345 	    !cgroup_can_be_thread_root(dom_cgrp))
3346 		return -EOPNOTSUPP;
3347 
3348 	/*
3349 	 * The following shouldn't cause actual migrations and should
3350 	 * always succeed.
3351 	 */
3352 	cgroup_save_control(cgrp);
3353 
3354 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)
3355 		if (dsct == cgrp || cgroup_is_threaded(dsct))
3356 			dsct->dom_cgrp = dom_cgrp;
3357 
3358 	ret = cgroup_apply_control(cgrp);
3359 	if (!ret)
3360 		parent->nr_threaded_children++;
3361 
3362 	cgroup_finalize_control(cgrp, ret);
3363 	return ret;
3364 }
3365 
3366 static int cgroup_type_show(struct seq_file *seq, void *v)
3367 {
3368 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3369 
3370 	if (cgroup_is_threaded(cgrp))
3371 		seq_puts(seq, "threaded\n");
3372 	else if (!cgroup_is_valid_domain(cgrp))
3373 		seq_puts(seq, "domain invalid\n");
3374 	else if (cgroup_is_thread_root(cgrp))
3375 		seq_puts(seq, "domain threaded\n");
3376 	else
3377 		seq_puts(seq, "domain\n");
3378 
3379 	return 0;
3380 }
3381 
3382 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf,
3383 				 size_t nbytes, loff_t off)
3384 {
3385 	struct cgroup *cgrp;
3386 	int ret;
3387 
3388 	/* only switching to threaded mode is supported */
3389 	if (strcmp(strstrip(buf), "threaded"))
3390 		return -EINVAL;
3391 
3392 	/* drain dying csses before we re-apply (threaded) subtree control */
3393 	cgrp = cgroup_kn_lock_live(of->kn, true);
3394 	if (!cgrp)
3395 		return -ENOENT;
3396 
3397 	/* threaded can only be enabled */
3398 	ret = cgroup_enable_threaded(cgrp);
3399 
3400 	cgroup_kn_unlock(of->kn);
3401 	return ret ?: nbytes;
3402 }
3403 
3404 static int cgroup_max_descendants_show(struct seq_file *seq, void *v)
3405 {
3406 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3407 	int descendants = READ_ONCE(cgrp->max_descendants);
3408 
3409 	if (descendants == INT_MAX)
3410 		seq_puts(seq, "max\n");
3411 	else
3412 		seq_printf(seq, "%d\n", descendants);
3413 
3414 	return 0;
3415 }
3416 
3417 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of,
3418 					   char *buf, size_t nbytes, loff_t off)
3419 {
3420 	struct cgroup *cgrp;
3421 	int descendants;
3422 	ssize_t ret;
3423 
3424 	buf = strstrip(buf);
3425 	if (!strcmp(buf, "max")) {
3426 		descendants = INT_MAX;
3427 	} else {
3428 		ret = kstrtoint(buf, 0, &descendants);
3429 		if (ret)
3430 			return ret;
3431 	}
3432 
3433 	if (descendants < 0)
3434 		return -ERANGE;
3435 
3436 	cgrp = cgroup_kn_lock_live(of->kn, false);
3437 	if (!cgrp)
3438 		return -ENOENT;
3439 
3440 	cgrp->max_descendants = descendants;
3441 
3442 	cgroup_kn_unlock(of->kn);
3443 
3444 	return nbytes;
3445 }
3446 
3447 static int cgroup_max_depth_show(struct seq_file *seq, void *v)
3448 {
3449 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3450 	int depth = READ_ONCE(cgrp->max_depth);
3451 
3452 	if (depth == INT_MAX)
3453 		seq_puts(seq, "max\n");
3454 	else
3455 		seq_printf(seq, "%d\n", depth);
3456 
3457 	return 0;
3458 }
3459 
3460 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of,
3461 				      char *buf, size_t nbytes, loff_t off)
3462 {
3463 	struct cgroup *cgrp;
3464 	ssize_t ret;
3465 	int depth;
3466 
3467 	buf = strstrip(buf);
3468 	if (!strcmp(buf, "max")) {
3469 		depth = INT_MAX;
3470 	} else {
3471 		ret = kstrtoint(buf, 0, &depth);
3472 		if (ret)
3473 			return ret;
3474 	}
3475 
3476 	if (depth < 0)
3477 		return -ERANGE;
3478 
3479 	cgrp = cgroup_kn_lock_live(of->kn, false);
3480 	if (!cgrp)
3481 		return -ENOENT;
3482 
3483 	cgrp->max_depth = depth;
3484 
3485 	cgroup_kn_unlock(of->kn);
3486 
3487 	return nbytes;
3488 }
3489 
3490 static int cgroup_events_show(struct seq_file *seq, void *v)
3491 {
3492 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3493 
3494 	seq_printf(seq, "populated %d\n", cgroup_is_populated(cgrp));
3495 	seq_printf(seq, "frozen %d\n", test_bit(CGRP_FROZEN, &cgrp->flags));
3496 
3497 	return 0;
3498 }
3499 
3500 static int cgroup_stat_show(struct seq_file *seq, void *v)
3501 {
3502 	struct cgroup *cgroup = seq_css(seq)->cgroup;
3503 
3504 	seq_printf(seq, "nr_descendants %d\n",
3505 		   cgroup->nr_descendants);
3506 	seq_printf(seq, "nr_dying_descendants %d\n",
3507 		   cgroup->nr_dying_descendants);
3508 
3509 	return 0;
3510 }
3511 
3512 static int __maybe_unused cgroup_extra_stat_show(struct seq_file *seq,
3513 						 struct cgroup *cgrp, int ssid)
3514 {
3515 	struct cgroup_subsys *ss = cgroup_subsys[ssid];
3516 	struct cgroup_subsys_state *css;
3517 	int ret;
3518 
3519 	if (!ss->css_extra_stat_show)
3520 		return 0;
3521 
3522 	css = cgroup_tryget_css(cgrp, ss);
3523 	if (!css)
3524 		return 0;
3525 
3526 	ret = ss->css_extra_stat_show(seq, css);
3527 	css_put(css);
3528 	return ret;
3529 }
3530 
3531 static int cpu_stat_show(struct seq_file *seq, void *v)
3532 {
3533 	struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup;
3534 	int ret = 0;
3535 
3536 	cgroup_base_stat_cputime_show(seq);
3537 #ifdef CONFIG_CGROUP_SCHED
3538 	ret = cgroup_extra_stat_show(seq, cgrp, cpu_cgrp_id);
3539 #endif
3540 	return ret;
3541 }
3542 
3543 #ifdef CONFIG_PSI
3544 static int cgroup_io_pressure_show(struct seq_file *seq, void *v)
3545 {
3546 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3547 	struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi;
3548 
3549 	return psi_show(seq, psi, PSI_IO);
3550 }
3551 static int cgroup_memory_pressure_show(struct seq_file *seq, void *v)
3552 {
3553 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3554 	struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi;
3555 
3556 	return psi_show(seq, psi, PSI_MEM);
3557 }
3558 static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v)
3559 {
3560 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3561 	struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi;
3562 
3563 	return psi_show(seq, psi, PSI_CPU);
3564 }
3565 
3566 static ssize_t cgroup_pressure_write(struct kernfs_open_file *of, char *buf,
3567 					  size_t nbytes, enum psi_res res)
3568 {
3569 	struct psi_trigger *new;
3570 	struct cgroup *cgrp;
3571 
3572 	cgrp = cgroup_kn_lock_live(of->kn, false);
3573 	if (!cgrp)
3574 		return -ENODEV;
3575 
3576 	cgroup_get(cgrp);
3577 	cgroup_kn_unlock(of->kn);
3578 
3579 	new = psi_trigger_create(&cgrp->psi, buf, nbytes, res);
3580 	if (IS_ERR(new)) {
3581 		cgroup_put(cgrp);
3582 		return PTR_ERR(new);
3583 	}
3584 
3585 	psi_trigger_replace(&of->priv, new);
3586 
3587 	cgroup_put(cgrp);
3588 
3589 	return nbytes;
3590 }
3591 
3592 static ssize_t cgroup_io_pressure_write(struct kernfs_open_file *of,
3593 					  char *buf, size_t nbytes,
3594 					  loff_t off)
3595 {
3596 	return cgroup_pressure_write(of, buf, nbytes, PSI_IO);
3597 }
3598 
3599 static ssize_t cgroup_memory_pressure_write(struct kernfs_open_file *of,
3600 					  char *buf, size_t nbytes,
3601 					  loff_t off)
3602 {
3603 	return cgroup_pressure_write(of, buf, nbytes, PSI_MEM);
3604 }
3605 
3606 static ssize_t cgroup_cpu_pressure_write(struct kernfs_open_file *of,
3607 					  char *buf, size_t nbytes,
3608 					  loff_t off)
3609 {
3610 	return cgroup_pressure_write(of, buf, nbytes, PSI_CPU);
3611 }
3612 
3613 static __poll_t cgroup_pressure_poll(struct kernfs_open_file *of,
3614 					  poll_table *pt)
3615 {
3616 	return psi_trigger_poll(&of->priv, of->file, pt);
3617 }
3618 
3619 static void cgroup_pressure_release(struct kernfs_open_file *of)
3620 {
3621 	psi_trigger_replace(&of->priv, NULL);
3622 }
3623 #endif /* CONFIG_PSI */
3624 
3625 static int cgroup_freeze_show(struct seq_file *seq, void *v)
3626 {
3627 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3628 
3629 	seq_printf(seq, "%d\n", cgrp->freezer.freeze);
3630 
3631 	return 0;
3632 }
3633 
3634 static ssize_t cgroup_freeze_write(struct kernfs_open_file *of,
3635 				   char *buf, size_t nbytes, loff_t off)
3636 {
3637 	struct cgroup *cgrp;
3638 	ssize_t ret;
3639 	int freeze;
3640 
3641 	ret = kstrtoint(strstrip(buf), 0, &freeze);
3642 	if (ret)
3643 		return ret;
3644 
3645 	if (freeze < 0 || freeze > 1)
3646 		return -ERANGE;
3647 
3648 	cgrp = cgroup_kn_lock_live(of->kn, false);
3649 	if (!cgrp)
3650 		return -ENOENT;
3651 
3652 	cgroup_freeze(cgrp, freeze);
3653 
3654 	cgroup_kn_unlock(of->kn);
3655 
3656 	return nbytes;
3657 }
3658 
3659 static int cgroup_file_open(struct kernfs_open_file *of)
3660 {
3661 	struct cftype *cft = of->kn->priv;
3662 
3663 	if (cft->open)
3664 		return cft->open(of);
3665 	return 0;
3666 }
3667 
3668 static void cgroup_file_release(struct kernfs_open_file *of)
3669 {
3670 	struct cftype *cft = of->kn->priv;
3671 
3672 	if (cft->release)
3673 		cft->release(of);
3674 }
3675 
3676 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3677 				 size_t nbytes, loff_t off)
3678 {
3679 	struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
3680 	struct cgroup *cgrp = of->kn->parent->priv;
3681 	struct cftype *cft = of->kn->priv;
3682 	struct cgroup_subsys_state *css;
3683 	int ret;
3684 
3685 	/*
3686 	 * If namespaces are delegation boundaries, disallow writes to
3687 	 * files in an non-init namespace root from inside the namespace
3688 	 * except for the files explicitly marked delegatable -
3689 	 * cgroup.procs and cgroup.subtree_control.
3690 	 */
3691 	if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) &&
3692 	    !(cft->flags & CFTYPE_NS_DELEGATABLE) &&
3693 	    ns != &init_cgroup_ns && ns->root_cset->dfl_cgrp == cgrp)
3694 		return -EPERM;
3695 
3696 	if (cft->write)
3697 		return cft->write(of, buf, nbytes, off);
3698 
3699 	/*
3700 	 * kernfs guarantees that a file isn't deleted with operations in
3701 	 * flight, which means that the matching css is and stays alive and
3702 	 * doesn't need to be pinned.  The RCU locking is not necessary
3703 	 * either.  It's just for the convenience of using cgroup_css().
3704 	 */
3705 	rcu_read_lock();
3706 	css = cgroup_css(cgrp, cft->ss);
3707 	rcu_read_unlock();
3708 
3709 	if (cft->write_u64) {
3710 		unsigned long long v;
3711 		ret = kstrtoull(buf, 0, &v);
3712 		if (!ret)
3713 			ret = cft->write_u64(css, cft, v);
3714 	} else if (cft->write_s64) {
3715 		long long v;
3716 		ret = kstrtoll(buf, 0, &v);
3717 		if (!ret)
3718 			ret = cft->write_s64(css, cft, v);
3719 	} else {
3720 		ret = -EINVAL;
3721 	}
3722 
3723 	return ret ?: nbytes;
3724 }
3725 
3726 static __poll_t cgroup_file_poll(struct kernfs_open_file *of, poll_table *pt)
3727 {
3728 	struct cftype *cft = of->kn->priv;
3729 
3730 	if (cft->poll)
3731 		return cft->poll(of, pt);
3732 
3733 	return kernfs_generic_poll(of, pt);
3734 }
3735 
3736 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
3737 {
3738 	return seq_cft(seq)->seq_start(seq, ppos);
3739 }
3740 
3741 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
3742 {
3743 	return seq_cft(seq)->seq_next(seq, v, ppos);
3744 }
3745 
3746 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
3747 {
3748 	if (seq_cft(seq)->seq_stop)
3749 		seq_cft(seq)->seq_stop(seq, v);
3750 }
3751 
3752 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
3753 {
3754 	struct cftype *cft = seq_cft(m);
3755 	struct cgroup_subsys_state *css = seq_css(m);
3756 
3757 	if (cft->seq_show)
3758 		return cft->seq_show(m, arg);
3759 
3760 	if (cft->read_u64)
3761 		seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3762 	else if (cft->read_s64)
3763 		seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3764 	else
3765 		return -EINVAL;
3766 	return 0;
3767 }
3768 
3769 static struct kernfs_ops cgroup_kf_single_ops = {
3770 	.atomic_write_len	= PAGE_SIZE,
3771 	.open			= cgroup_file_open,
3772 	.release		= cgroup_file_release,
3773 	.write			= cgroup_file_write,
3774 	.poll			= cgroup_file_poll,
3775 	.seq_show		= cgroup_seqfile_show,
3776 };
3777 
3778 static struct kernfs_ops cgroup_kf_ops = {
3779 	.atomic_write_len	= PAGE_SIZE,
3780 	.open			= cgroup_file_open,
3781 	.release		= cgroup_file_release,
3782 	.write			= cgroup_file_write,
3783 	.poll			= cgroup_file_poll,
3784 	.seq_start		= cgroup_seqfile_start,
3785 	.seq_next		= cgroup_seqfile_next,
3786 	.seq_stop		= cgroup_seqfile_stop,
3787 	.seq_show		= cgroup_seqfile_show,
3788 };
3789 
3790 /* set uid and gid of cgroup dirs and files to that of the creator */
3791 static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3792 {
3793 	struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3794 			       .ia_uid = current_fsuid(),
3795 			       .ia_gid = current_fsgid(), };
3796 
3797 	if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3798 	    gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3799 		return 0;
3800 
3801 	return kernfs_setattr(kn, &iattr);
3802 }
3803 
3804 static void cgroup_file_notify_timer(struct timer_list *timer)
3805 {
3806 	cgroup_file_notify(container_of(timer, struct cgroup_file,
3807 					notify_timer));
3808 }
3809 
3810 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3811 			   struct cftype *cft)
3812 {
3813 	char name[CGROUP_FILE_NAME_MAX];
3814 	struct kernfs_node *kn;
3815 	struct lock_class_key *key = NULL;
3816 	int ret;
3817 
3818 #ifdef CONFIG_DEBUG_LOCK_ALLOC
3819 	key = &cft->lockdep_key;
3820 #endif
3821 	kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3822 				  cgroup_file_mode(cft),
3823 				  GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
3824 				  0, cft->kf_ops, cft,
3825 				  NULL, key);
3826 	if (IS_ERR(kn))
3827 		return PTR_ERR(kn);
3828 
3829 	ret = cgroup_kn_set_ugid(kn);
3830 	if (ret) {
3831 		kernfs_remove(kn);
3832 		return ret;
3833 	}
3834 
3835 	if (cft->file_offset) {
3836 		struct cgroup_file *cfile = (void *)css + cft->file_offset;
3837 
3838 		timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0);
3839 
3840 		spin_lock_irq(&cgroup_file_kn_lock);
3841 		cfile->kn = kn;
3842 		spin_unlock_irq(&cgroup_file_kn_lock);
3843 	}
3844 
3845 	return 0;
3846 }
3847 
3848 /**
3849  * cgroup_addrm_files - add or remove files to a cgroup directory
3850  * @css: the target css
3851  * @cgrp: the target cgroup (usually css->cgroup)
3852  * @cfts: array of cftypes to be added
3853  * @is_add: whether to add or remove
3854  *
3855  * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3856  * For removals, this function never fails.
3857  */
3858 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3859 			      struct cgroup *cgrp, struct cftype cfts[],
3860 			      bool is_add)
3861 {
3862 	struct cftype *cft, *cft_end = NULL;
3863 	int ret = 0;
3864 
3865 	lockdep_assert_held(&cgroup_mutex);
3866 
3867 restart:
3868 	for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
3869 		/* does cft->flags tell us to skip this file on @cgrp? */
3870 		if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
3871 			continue;
3872 		if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
3873 			continue;
3874 		if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
3875 			continue;
3876 		if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
3877 			continue;
3878 		if ((cft->flags & CFTYPE_DEBUG) && !cgroup_debug)
3879 			continue;
3880 		if (is_add) {
3881 			ret = cgroup_add_file(css, cgrp, cft);
3882 			if (ret) {
3883 				pr_warn("%s: failed to add %s, err=%d\n",
3884 					__func__, cft->name, ret);
3885 				cft_end = cft;
3886 				is_add = false;
3887 				goto restart;
3888 			}
3889 		} else {
3890 			cgroup_rm_file(cgrp, cft);
3891 		}
3892 	}
3893 	return ret;
3894 }
3895 
3896 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
3897 {
3898 	struct cgroup_subsys *ss = cfts[0].ss;
3899 	struct cgroup *root = &ss->root->cgrp;
3900 	struct cgroup_subsys_state *css;
3901 	int ret = 0;
3902 
3903 	lockdep_assert_held(&cgroup_mutex);
3904 
3905 	/* add/rm files for all cgroups created before */
3906 	css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
3907 		struct cgroup *cgrp = css->cgroup;
3908 
3909 		if (!(css->flags & CSS_VISIBLE))
3910 			continue;
3911 
3912 		ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
3913 		if (ret)
3914 			break;
3915 	}
3916 
3917 	if (is_add && !ret)
3918 		kernfs_activate(root->kn);
3919 	return ret;
3920 }
3921 
3922 static void cgroup_exit_cftypes(struct cftype *cfts)
3923 {
3924 	struct cftype *cft;
3925 
3926 	for (cft = cfts; cft->name[0] != '\0'; cft++) {
3927 		/* free copy for custom atomic_write_len, see init_cftypes() */
3928 		if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3929 			kfree(cft->kf_ops);
3930 		cft->kf_ops = NULL;
3931 		cft->ss = NULL;
3932 
3933 		/* revert flags set by cgroup core while adding @cfts */
3934 		cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
3935 	}
3936 }
3937 
3938 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3939 {
3940 	struct cftype *cft;
3941 
3942 	for (cft = cfts; cft->name[0] != '\0'; cft++) {
3943 		struct kernfs_ops *kf_ops;
3944 
3945 		WARN_ON(cft->ss || cft->kf_ops);
3946 
3947 		if (cft->seq_start)
3948 			kf_ops = &cgroup_kf_ops;
3949 		else
3950 			kf_ops = &cgroup_kf_single_ops;
3951 
3952 		/*
3953 		 * Ugh... if @cft wants a custom max_write_len, we need to
3954 		 * make a copy of kf_ops to set its atomic_write_len.
3955 		 */
3956 		if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3957 			kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3958 			if (!kf_ops) {
3959 				cgroup_exit_cftypes(cfts);
3960 				return -ENOMEM;
3961 			}
3962 			kf_ops->atomic_write_len = cft->max_write_len;
3963 		}
3964 
3965 		cft->kf_ops = kf_ops;
3966 		cft->ss = ss;
3967 	}
3968 
3969 	return 0;
3970 }
3971 
3972 static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3973 {
3974 	lockdep_assert_held(&cgroup_mutex);
3975 
3976 	if (!cfts || !cfts[0].ss)
3977 		return -ENOENT;
3978 
3979 	list_del(&cfts->node);
3980 	cgroup_apply_cftypes(cfts, false);
3981 	cgroup_exit_cftypes(cfts);
3982 	return 0;
3983 }
3984 
3985 /**
3986  * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
3987  * @cfts: zero-length name terminated array of cftypes
3988  *
3989  * Unregister @cfts.  Files described by @cfts are removed from all
3990  * existing cgroups and all future cgroups won't have them either.  This
3991  * function can be called anytime whether @cfts' subsys is attached or not.
3992  *
3993  * Returns 0 on successful unregistration, -ENOENT if @cfts is not
3994  * registered.
3995  */
3996 int cgroup_rm_cftypes(struct cftype *cfts)
3997 {
3998 	int ret;
3999 
4000 	mutex_lock(&cgroup_mutex);
4001 	ret = cgroup_rm_cftypes_locked(cfts);
4002 	mutex_unlock(&cgroup_mutex);
4003 	return ret;
4004 }
4005 
4006 /**
4007  * cgroup_add_cftypes - add an array of cftypes to a subsystem
4008  * @ss: target cgroup subsystem
4009  * @cfts: zero-length name terminated array of cftypes
4010  *
4011  * Register @cfts to @ss.  Files described by @cfts are created for all
4012  * existing cgroups to which @ss is attached and all future cgroups will
4013  * have them too.  This function can be called anytime whether @ss is
4014  * attached or not.
4015  *
4016  * Returns 0 on successful registration, -errno on failure.  Note that this
4017  * function currently returns 0 as long as @cfts registration is successful
4018  * even if some file creation attempts on existing cgroups fail.
4019  */
4020 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4021 {
4022 	int ret;
4023 
4024 	if (!cgroup_ssid_enabled(ss->id))
4025 		return 0;
4026 
4027 	if (!cfts || cfts[0].name[0] == '\0')
4028 		return 0;
4029 
4030 	ret = cgroup_init_cftypes(ss, cfts);
4031 	if (ret)
4032 		return ret;
4033 
4034 	mutex_lock(&cgroup_mutex);
4035 
4036 	list_add_tail(&cfts->node, &ss->cfts);
4037 	ret = cgroup_apply_cftypes(cfts, true);
4038 	if (ret)
4039 		cgroup_rm_cftypes_locked(cfts);
4040 
4041 	mutex_unlock(&cgroup_mutex);
4042 	return ret;
4043 }
4044 
4045 /**
4046  * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
4047  * @ss: target cgroup subsystem
4048  * @cfts: zero-length name terminated array of cftypes
4049  *
4050  * Similar to cgroup_add_cftypes() but the added files are only used for
4051  * the default hierarchy.
4052  */
4053 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4054 {
4055 	struct cftype *cft;
4056 
4057 	for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4058 		cft->flags |= __CFTYPE_ONLY_ON_DFL;
4059 	return cgroup_add_cftypes(ss, cfts);
4060 }
4061 
4062 /**
4063  * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
4064  * @ss: target cgroup subsystem
4065  * @cfts: zero-length name terminated array of cftypes
4066  *
4067  * Similar to cgroup_add_cftypes() but the added files are only used for
4068  * the legacy hierarchies.
4069  */
4070 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4071 {
4072 	struct cftype *cft;
4073 
4074 	for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4075 		cft->flags |= __CFTYPE_NOT_ON_DFL;
4076 	return cgroup_add_cftypes(ss, cfts);
4077 }
4078 
4079 /**
4080  * cgroup_file_notify - generate a file modified event for a cgroup_file
4081  * @cfile: target cgroup_file
4082  *
4083  * @cfile must have been obtained by setting cftype->file_offset.
4084  */
4085 void cgroup_file_notify(struct cgroup_file *cfile)
4086 {
4087 	unsigned long flags;
4088 
4089 	spin_lock_irqsave(&cgroup_file_kn_lock, flags);
4090 	if (cfile->kn) {
4091 		unsigned long last = cfile->notified_at;
4092 		unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV;
4093 
4094 		if (time_in_range(jiffies, last, next)) {
4095 			timer_reduce(&cfile->notify_timer, next);
4096 		} else {
4097 			kernfs_notify(cfile->kn);
4098 			cfile->notified_at = jiffies;
4099 		}
4100 	}
4101 	spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
4102 }
4103 
4104 /**
4105  * css_next_child - find the next child of a given css
4106  * @pos: the current position (%NULL to initiate traversal)
4107  * @parent: css whose children to walk
4108  *
4109  * This function returns the next child of @parent and should be called
4110  * under either cgroup_mutex or RCU read lock.  The only requirement is
4111  * that @parent and @pos are accessible.  The next sibling is guaranteed to
4112  * be returned regardless of their states.
4113  *
4114  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4115  * css which finished ->css_online() is guaranteed to be visible in the
4116  * future iterations and will stay visible until the last reference is put.
4117  * A css which hasn't finished ->css_online() or already finished
4118  * ->css_offline() may show up during traversal.  It's each subsystem's
4119  * responsibility to synchronize against on/offlining.
4120  */
4121 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
4122 					   struct cgroup_subsys_state *parent)
4123 {
4124 	struct cgroup_subsys_state *next;
4125 
4126 	cgroup_assert_mutex_or_rcu_locked();
4127 
4128 	/*
4129 	 * @pos could already have been unlinked from the sibling list.
4130 	 * Once a cgroup is removed, its ->sibling.next is no longer
4131 	 * updated when its next sibling changes.  CSS_RELEASED is set when
4132 	 * @pos is taken off list, at which time its next pointer is valid,
4133 	 * and, as releases are serialized, the one pointed to by the next
4134 	 * pointer is guaranteed to not have started release yet.  This
4135 	 * implies that if we observe !CSS_RELEASED on @pos in this RCU
4136 	 * critical section, the one pointed to by its next pointer is
4137 	 * guaranteed to not have finished its RCU grace period even if we
4138 	 * have dropped rcu_read_lock() inbetween iterations.
4139 	 *
4140 	 * If @pos has CSS_RELEASED set, its next pointer can't be
4141 	 * dereferenced; however, as each css is given a monotonically
4142 	 * increasing unique serial number and always appended to the
4143 	 * sibling list, the next one can be found by walking the parent's
4144 	 * children until the first css with higher serial number than
4145 	 * @pos's.  While this path can be slower, it happens iff iteration
4146 	 * races against release and the race window is very small.
4147 	 */
4148 	if (!pos) {
4149 		next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
4150 	} else if (likely(!(pos->flags & CSS_RELEASED))) {
4151 		next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
4152 	} else {
4153 		list_for_each_entry_rcu(next, &parent->children, sibling,
4154 					lockdep_is_held(&cgroup_mutex))
4155 			if (next->serial_nr > pos->serial_nr)
4156 				break;
4157 	}
4158 
4159 	/*
4160 	 * @next, if not pointing to the head, can be dereferenced and is
4161 	 * the next sibling.
4162 	 */
4163 	if (&next->sibling != &parent->children)
4164 		return next;
4165 	return NULL;
4166 }
4167 
4168 /**
4169  * css_next_descendant_pre - find the next descendant for pre-order walk
4170  * @pos: the current position (%NULL to initiate traversal)
4171  * @root: css whose descendants to walk
4172  *
4173  * To be used by css_for_each_descendant_pre().  Find the next descendant
4174  * to visit for pre-order traversal of @root's descendants.  @root is
4175  * included in the iteration and the first node to be visited.
4176  *
4177  * While this function requires cgroup_mutex or RCU read locking, it
4178  * doesn't require the whole traversal to be contained in a single critical
4179  * section.  This function will return the correct next descendant as long
4180  * as both @pos and @root are accessible and @pos is a descendant of @root.
4181  *
4182  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4183  * css which finished ->css_online() is guaranteed to be visible in the
4184  * future iterations and will stay visible until the last reference is put.
4185  * A css which hasn't finished ->css_online() or already finished
4186  * ->css_offline() may show up during traversal.  It's each subsystem's
4187  * responsibility to synchronize against on/offlining.
4188  */
4189 struct cgroup_subsys_state *
4190 css_next_descendant_pre(struct cgroup_subsys_state *pos,
4191 			struct cgroup_subsys_state *root)
4192 {
4193 	struct cgroup_subsys_state *next;
4194 
4195 	cgroup_assert_mutex_or_rcu_locked();
4196 
4197 	/* if first iteration, visit @root */
4198 	if (!pos)
4199 		return root;
4200 
4201 	/* visit the first child if exists */
4202 	next = css_next_child(NULL, pos);
4203 	if (next)
4204 		return next;
4205 
4206 	/* no child, visit my or the closest ancestor's next sibling */
4207 	while (pos != root) {
4208 		next = css_next_child(pos, pos->parent);
4209 		if (next)
4210 			return next;
4211 		pos = pos->parent;
4212 	}
4213 
4214 	return NULL;
4215 }
4216 EXPORT_SYMBOL_GPL(css_next_descendant_pre);
4217 
4218 /**
4219  * css_rightmost_descendant - return the rightmost descendant of a css
4220  * @pos: css of interest
4221  *
4222  * Return the rightmost descendant of @pos.  If there's no descendant, @pos
4223  * is returned.  This can be used during pre-order traversal to skip
4224  * subtree of @pos.
4225  *
4226  * While this function requires cgroup_mutex or RCU read locking, it
4227  * doesn't require the whole traversal to be contained in a single critical
4228  * section.  This function will return the correct rightmost descendant as
4229  * long as @pos is accessible.
4230  */
4231 struct cgroup_subsys_state *
4232 css_rightmost_descendant(struct cgroup_subsys_state *pos)
4233 {
4234 	struct cgroup_subsys_state *last, *tmp;
4235 
4236 	cgroup_assert_mutex_or_rcu_locked();
4237 
4238 	do {
4239 		last = pos;
4240 		/* ->prev isn't RCU safe, walk ->next till the end */
4241 		pos = NULL;
4242 		css_for_each_child(tmp, last)
4243 			pos = tmp;
4244 	} while (pos);
4245 
4246 	return last;
4247 }
4248 
4249 static struct cgroup_subsys_state *
4250 css_leftmost_descendant(struct cgroup_subsys_state *pos)
4251 {
4252 	struct cgroup_subsys_state *last;
4253 
4254 	do {
4255 		last = pos;
4256 		pos = css_next_child(NULL, pos);
4257 	} while (pos);
4258 
4259 	return last;
4260 }
4261 
4262 /**
4263  * css_next_descendant_post - find the next descendant for post-order walk
4264  * @pos: the current position (%NULL to initiate traversal)
4265  * @root: css whose descendants to walk
4266  *
4267  * To be used by css_for_each_descendant_post().  Find the next descendant
4268  * to visit for post-order traversal of @root's descendants.  @root is
4269  * included in the iteration and the last node to be visited.
4270  *
4271  * While this function requires cgroup_mutex or RCU read locking, it
4272  * doesn't require the whole traversal to be contained in a single critical
4273  * section.  This function will return the correct next descendant as long
4274  * as both @pos and @cgroup are accessible and @pos is a descendant of
4275  * @cgroup.
4276  *
4277  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4278  * css which finished ->css_online() is guaranteed to be visible in the
4279  * future iterations and will stay visible until the last reference is put.
4280  * A css which hasn't finished ->css_online() or already finished
4281  * ->css_offline() may show up during traversal.  It's each subsystem's
4282  * responsibility to synchronize against on/offlining.
4283  */
4284 struct cgroup_subsys_state *
4285 css_next_descendant_post(struct cgroup_subsys_state *pos,
4286 			 struct cgroup_subsys_state *root)
4287 {
4288 	struct cgroup_subsys_state *next;
4289 
4290 	cgroup_assert_mutex_or_rcu_locked();
4291 
4292 	/* if first iteration, visit leftmost descendant which may be @root */
4293 	if (!pos)
4294 		return css_leftmost_descendant(root);
4295 
4296 	/* if we visited @root, we're done */
4297 	if (pos == root)
4298 		return NULL;
4299 
4300 	/* if there's an unvisited sibling, visit its leftmost descendant */
4301 	next = css_next_child(pos, pos->parent);
4302 	if (next)
4303 		return css_leftmost_descendant(next);
4304 
4305 	/* no sibling left, visit parent */
4306 	return pos->parent;
4307 }
4308 
4309 /**
4310  * css_has_online_children - does a css have online children
4311  * @css: the target css
4312  *
4313  * Returns %true if @css has any online children; otherwise, %false.  This
4314  * function can be called from any context but the caller is responsible
4315  * for synchronizing against on/offlining as necessary.
4316  */
4317 bool css_has_online_children(struct cgroup_subsys_state *css)
4318 {
4319 	struct cgroup_subsys_state *child;
4320 	bool ret = false;
4321 
4322 	rcu_read_lock();
4323 	css_for_each_child(child, css) {
4324 		if (child->flags & CSS_ONLINE) {
4325 			ret = true;
4326 			break;
4327 		}
4328 	}
4329 	rcu_read_unlock();
4330 	return ret;
4331 }
4332 
4333 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it)
4334 {
4335 	struct list_head *l;
4336 	struct cgrp_cset_link *link;
4337 	struct css_set *cset;
4338 
4339 	lockdep_assert_held(&css_set_lock);
4340 
4341 	/* find the next threaded cset */
4342 	if (it->tcset_pos) {
4343 		l = it->tcset_pos->next;
4344 
4345 		if (l != it->tcset_head) {
4346 			it->tcset_pos = l;
4347 			return container_of(l, struct css_set,
4348 					    threaded_csets_node);
4349 		}
4350 
4351 		it->tcset_pos = NULL;
4352 	}
4353 
4354 	/* find the next cset */
4355 	l = it->cset_pos;
4356 	l = l->next;
4357 	if (l == it->cset_head) {
4358 		it->cset_pos = NULL;
4359 		return NULL;
4360 	}
4361 
4362 	if (it->ss) {
4363 		cset = container_of(l, struct css_set, e_cset_node[it->ss->id]);
4364 	} else {
4365 		link = list_entry(l, struct cgrp_cset_link, cset_link);
4366 		cset = link->cset;
4367 	}
4368 
4369 	it->cset_pos = l;
4370 
4371 	/* initialize threaded css_set walking */
4372 	if (it->flags & CSS_TASK_ITER_THREADED) {
4373 		if (it->cur_dcset)
4374 			put_css_set_locked(it->cur_dcset);
4375 		it->cur_dcset = cset;
4376 		get_css_set(cset);
4377 
4378 		it->tcset_head = &cset->threaded_csets;
4379 		it->tcset_pos = &cset->threaded_csets;
4380 	}
4381 
4382 	return cset;
4383 }
4384 
4385 /**
4386  * css_task_iter_advance_css_set - advance a task itererator to the next css_set
4387  * @it: the iterator to advance
4388  *
4389  * Advance @it to the next css_set to walk.
4390  */
4391 static void css_task_iter_advance_css_set(struct css_task_iter *it)
4392 {
4393 	struct css_set *cset;
4394 
4395 	lockdep_assert_held(&css_set_lock);
4396 
4397 	/* Advance to the next non-empty css_set and find first non-empty tasks list*/
4398 	while ((cset = css_task_iter_next_css_set(it))) {
4399 		if (!list_empty(&cset->tasks)) {
4400 			it->cur_tasks_head = &cset->tasks;
4401 			break;
4402 		} else if (!list_empty(&cset->mg_tasks)) {
4403 			it->cur_tasks_head = &cset->mg_tasks;
4404 			break;
4405 		} else if (!list_empty(&cset->dying_tasks)) {
4406 			it->cur_tasks_head = &cset->dying_tasks;
4407 			break;
4408 		}
4409 	}
4410 	if (!cset) {
4411 		it->task_pos = NULL;
4412 		return;
4413 	}
4414 	it->task_pos = it->cur_tasks_head->next;
4415 
4416 	/*
4417 	 * We don't keep css_sets locked across iteration steps and thus
4418 	 * need to take steps to ensure that iteration can be resumed after
4419 	 * the lock is re-acquired.  Iteration is performed at two levels -
4420 	 * css_sets and tasks in them.
4421 	 *
4422 	 * Once created, a css_set never leaves its cgroup lists, so a
4423 	 * pinned css_set is guaranteed to stay put and we can resume
4424 	 * iteration afterwards.
4425 	 *
4426 	 * Tasks may leave @cset across iteration steps.  This is resolved
4427 	 * by registering each iterator with the css_set currently being
4428 	 * walked and making css_set_move_task() advance iterators whose
4429 	 * next task is leaving.
4430 	 */
4431 	if (it->cur_cset) {
4432 		list_del(&it->iters_node);
4433 		put_css_set_locked(it->cur_cset);
4434 	}
4435 	get_css_set(cset);
4436 	it->cur_cset = cset;
4437 	list_add(&it->iters_node, &cset->task_iters);
4438 }
4439 
4440 static void css_task_iter_skip(struct css_task_iter *it,
4441 			       struct task_struct *task)
4442 {
4443 	lockdep_assert_held(&css_set_lock);
4444 
4445 	if (it->task_pos == &task->cg_list) {
4446 		it->task_pos = it->task_pos->next;
4447 		it->flags |= CSS_TASK_ITER_SKIPPED;
4448 	}
4449 }
4450 
4451 static void css_task_iter_advance(struct css_task_iter *it)
4452 {
4453 	struct task_struct *task;
4454 
4455 	lockdep_assert_held(&css_set_lock);
4456 repeat:
4457 	if (it->task_pos) {
4458 		/*
4459 		 * Advance iterator to find next entry. We go through cset
4460 		 * tasks, mg_tasks and dying_tasks, when consumed we move onto
4461 		 * the next cset.
4462 		 */
4463 		if (it->flags & CSS_TASK_ITER_SKIPPED)
4464 			it->flags &= ~CSS_TASK_ITER_SKIPPED;
4465 		else
4466 			it->task_pos = it->task_pos->next;
4467 
4468 		if (it->task_pos == &it->cur_cset->tasks) {
4469 			it->cur_tasks_head = &it->cur_cset->mg_tasks;
4470 			it->task_pos = it->cur_tasks_head->next;
4471 		}
4472 		if (it->task_pos == &it->cur_cset->mg_tasks) {
4473 			it->cur_tasks_head = &it->cur_cset->dying_tasks;
4474 			it->task_pos = it->cur_tasks_head->next;
4475 		}
4476 		if (it->task_pos == &it->cur_cset->dying_tasks)
4477 			css_task_iter_advance_css_set(it);
4478 	} else {
4479 		/* called from start, proceed to the first cset */
4480 		css_task_iter_advance_css_set(it);
4481 	}
4482 
4483 	if (!it->task_pos)
4484 		return;
4485 
4486 	task = list_entry(it->task_pos, struct task_struct, cg_list);
4487 
4488 	if (it->flags & CSS_TASK_ITER_PROCS) {
4489 		/* if PROCS, skip over tasks which aren't group leaders */
4490 		if (!thread_group_leader(task))
4491 			goto repeat;
4492 
4493 		/* and dying leaders w/o live member threads */
4494 		if (it->cur_tasks_head == &it->cur_cset->dying_tasks &&
4495 		    !atomic_read(&task->signal->live))
4496 			goto repeat;
4497 	} else {
4498 		/* skip all dying ones */
4499 		if (it->cur_tasks_head == &it->cur_cset->dying_tasks)
4500 			goto repeat;
4501 	}
4502 }
4503 
4504 /**
4505  * css_task_iter_start - initiate task iteration
4506  * @css: the css to walk tasks of
4507  * @flags: CSS_TASK_ITER_* flags
4508  * @it: the task iterator to use
4509  *
4510  * Initiate iteration through the tasks of @css.  The caller can call
4511  * css_task_iter_next() to walk through the tasks until the function
4512  * returns NULL.  On completion of iteration, css_task_iter_end() must be
4513  * called.
4514  */
4515 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags,
4516 			 struct css_task_iter *it)
4517 {
4518 	memset(it, 0, sizeof(*it));
4519 
4520 	spin_lock_irq(&css_set_lock);
4521 
4522 	it->ss = css->ss;
4523 	it->flags = flags;
4524 
4525 	if (it->ss)
4526 		it->cset_pos = &css->cgroup->e_csets[css->ss->id];
4527 	else
4528 		it->cset_pos = &css->cgroup->cset_links;
4529 
4530 	it->cset_head = it->cset_pos;
4531 
4532 	css_task_iter_advance(it);
4533 
4534 	spin_unlock_irq(&css_set_lock);
4535 }
4536 
4537 /**
4538  * css_task_iter_next - return the next task for the iterator
4539  * @it: the task iterator being iterated
4540  *
4541  * The "next" function for task iteration.  @it should have been
4542  * initialized via css_task_iter_start().  Returns NULL when the iteration
4543  * reaches the end.
4544  */
4545 struct task_struct *css_task_iter_next(struct css_task_iter *it)
4546 {
4547 	if (it->cur_task) {
4548 		put_task_struct(it->cur_task);
4549 		it->cur_task = NULL;
4550 	}
4551 
4552 	spin_lock_irq(&css_set_lock);
4553 
4554 	/* @it may be half-advanced by skips, finish advancing */
4555 	if (it->flags & CSS_TASK_ITER_SKIPPED)
4556 		css_task_iter_advance(it);
4557 
4558 	if (it->task_pos) {
4559 		it->cur_task = list_entry(it->task_pos, struct task_struct,
4560 					  cg_list);
4561 		get_task_struct(it->cur_task);
4562 		css_task_iter_advance(it);
4563 	}
4564 
4565 	spin_unlock_irq(&css_set_lock);
4566 
4567 	return it->cur_task;
4568 }
4569 
4570 /**
4571  * css_task_iter_end - finish task iteration
4572  * @it: the task iterator to finish
4573  *
4574  * Finish task iteration started by css_task_iter_start().
4575  */
4576 void css_task_iter_end(struct css_task_iter *it)
4577 {
4578 	if (it->cur_cset) {
4579 		spin_lock_irq(&css_set_lock);
4580 		list_del(&it->iters_node);
4581 		put_css_set_locked(it->cur_cset);
4582 		spin_unlock_irq(&css_set_lock);
4583 	}
4584 
4585 	if (it->cur_dcset)
4586 		put_css_set(it->cur_dcset);
4587 
4588 	if (it->cur_task)
4589 		put_task_struct(it->cur_task);
4590 }
4591 
4592 static void cgroup_procs_release(struct kernfs_open_file *of)
4593 {
4594 	if (of->priv) {
4595 		css_task_iter_end(of->priv);
4596 		kfree(of->priv);
4597 	}
4598 }
4599 
4600 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos)
4601 {
4602 	struct kernfs_open_file *of = s->private;
4603 	struct css_task_iter *it = of->priv;
4604 
4605 	if (pos)
4606 		(*pos)++;
4607 
4608 	return css_task_iter_next(it);
4609 }
4610 
4611 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos,
4612 				  unsigned int iter_flags)
4613 {
4614 	struct kernfs_open_file *of = s->private;
4615 	struct cgroup *cgrp = seq_css(s)->cgroup;
4616 	struct css_task_iter *it = of->priv;
4617 
4618 	/*
4619 	 * When a seq_file is seeked, it's always traversed sequentially
4620 	 * from position 0, so we can simply keep iterating on !0 *pos.
4621 	 */
4622 	if (!it) {
4623 		if (WARN_ON_ONCE((*pos)))
4624 			return ERR_PTR(-EINVAL);
4625 
4626 		it = kzalloc(sizeof(*it), GFP_KERNEL);
4627 		if (!it)
4628 			return ERR_PTR(-ENOMEM);
4629 		of->priv = it;
4630 		css_task_iter_start(&cgrp->self, iter_flags, it);
4631 	} else if (!(*pos)) {
4632 		css_task_iter_end(it);
4633 		css_task_iter_start(&cgrp->self, iter_flags, it);
4634 	} else
4635 		return it->cur_task;
4636 
4637 	return cgroup_procs_next(s, NULL, NULL);
4638 }
4639 
4640 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos)
4641 {
4642 	struct cgroup *cgrp = seq_css(s)->cgroup;
4643 
4644 	/*
4645 	 * All processes of a threaded subtree belong to the domain cgroup
4646 	 * of the subtree.  Only threads can be distributed across the
4647 	 * subtree.  Reject reads on cgroup.procs in the subtree proper.
4648 	 * They're always empty anyway.
4649 	 */
4650 	if (cgroup_is_threaded(cgrp))
4651 		return ERR_PTR(-EOPNOTSUPP);
4652 
4653 	return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS |
4654 					    CSS_TASK_ITER_THREADED);
4655 }
4656 
4657 static int cgroup_procs_show(struct seq_file *s, void *v)
4658 {
4659 	seq_printf(s, "%d\n", task_pid_vnr(v));
4660 	return 0;
4661 }
4662 
4663 static int cgroup_may_write(const struct cgroup *cgrp, struct super_block *sb)
4664 {
4665 	int ret;
4666 	struct inode *inode;
4667 
4668 	lockdep_assert_held(&cgroup_mutex);
4669 
4670 	inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
4671 	if (!inode)
4672 		return -ENOMEM;
4673 
4674 	ret = inode_permission(inode, MAY_WRITE);
4675 	iput(inode);
4676 	return ret;
4677 }
4678 
4679 static int cgroup_procs_write_permission(struct cgroup *src_cgrp,
4680 					 struct cgroup *dst_cgrp,
4681 					 struct super_block *sb)
4682 {
4683 	struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
4684 	struct cgroup *com_cgrp = src_cgrp;
4685 	int ret;
4686 
4687 	lockdep_assert_held(&cgroup_mutex);
4688 
4689 	/* find the common ancestor */
4690 	while (!cgroup_is_descendant(dst_cgrp, com_cgrp))
4691 		com_cgrp = cgroup_parent(com_cgrp);
4692 
4693 	/* %current should be authorized to migrate to the common ancestor */
4694 	ret = cgroup_may_write(com_cgrp, sb);
4695 	if (ret)
4696 		return ret;
4697 
4698 	/*
4699 	 * If namespaces are delegation boundaries, %current must be able
4700 	 * to see both source and destination cgroups from its namespace.
4701 	 */
4702 	if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) &&
4703 	    (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) ||
4704 	     !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp)))
4705 		return -ENOENT;
4706 
4707 	return 0;
4708 }
4709 
4710 static int cgroup_attach_permissions(struct cgroup *src_cgrp,
4711 				     struct cgroup *dst_cgrp,
4712 				     struct super_block *sb, bool threadgroup)
4713 {
4714 	int ret = 0;
4715 
4716 	ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, sb);
4717 	if (ret)
4718 		return ret;
4719 
4720 	ret = cgroup_migrate_vet_dst(dst_cgrp);
4721 	if (ret)
4722 		return ret;
4723 
4724 	if (!threadgroup && (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp))
4725 		ret = -EOPNOTSUPP;
4726 
4727 	return ret;
4728 }
4729 
4730 static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
4731 				  char *buf, size_t nbytes, loff_t off)
4732 {
4733 	struct cgroup *src_cgrp, *dst_cgrp;
4734 	struct task_struct *task;
4735 	ssize_t ret;
4736 	bool locked;
4737 
4738 	dst_cgrp = cgroup_kn_lock_live(of->kn, false);
4739 	if (!dst_cgrp)
4740 		return -ENODEV;
4741 
4742 	task = cgroup_procs_write_start(buf, true, &locked);
4743 	ret = PTR_ERR_OR_ZERO(task);
4744 	if (ret)
4745 		goto out_unlock;
4746 
4747 	/* find the source cgroup */
4748 	spin_lock_irq(&css_set_lock);
4749 	src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
4750 	spin_unlock_irq(&css_set_lock);
4751 
4752 	ret = cgroup_attach_permissions(src_cgrp, dst_cgrp,
4753 					of->file->f_path.dentry->d_sb, true);
4754 	if (ret)
4755 		goto out_finish;
4756 
4757 	ret = cgroup_attach_task(dst_cgrp, task, true);
4758 
4759 out_finish:
4760 	cgroup_procs_write_finish(task, locked);
4761 out_unlock:
4762 	cgroup_kn_unlock(of->kn);
4763 
4764 	return ret ?: nbytes;
4765 }
4766 
4767 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos)
4768 {
4769 	return __cgroup_procs_start(s, pos, 0);
4770 }
4771 
4772 static ssize_t cgroup_threads_write(struct kernfs_open_file *of,
4773 				    char *buf, size_t nbytes, loff_t off)
4774 {
4775 	struct cgroup *src_cgrp, *dst_cgrp;
4776 	struct task_struct *task;
4777 	ssize_t ret;
4778 	bool locked;
4779 
4780 	buf = strstrip(buf);
4781 
4782 	dst_cgrp = cgroup_kn_lock_live(of->kn, false);
4783 	if (!dst_cgrp)
4784 		return -ENODEV;
4785 
4786 	task = cgroup_procs_write_start(buf, false, &locked);
4787 	ret = PTR_ERR_OR_ZERO(task);
4788 	if (ret)
4789 		goto out_unlock;
4790 
4791 	/* find the source cgroup */
4792 	spin_lock_irq(&css_set_lock);
4793 	src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
4794 	spin_unlock_irq(&css_set_lock);
4795 
4796 	/* thread migrations follow the cgroup.procs delegation rule */
4797 	ret = cgroup_attach_permissions(src_cgrp, dst_cgrp,
4798 					of->file->f_path.dentry->d_sb, false);
4799 	if (ret)
4800 		goto out_finish;
4801 
4802 	ret = cgroup_attach_task(dst_cgrp, task, false);
4803 
4804 out_finish:
4805 	cgroup_procs_write_finish(task, locked);
4806 out_unlock:
4807 	cgroup_kn_unlock(of->kn);
4808 
4809 	return ret ?: nbytes;
4810 }
4811 
4812 /* cgroup core interface files for the default hierarchy */
4813 static struct cftype cgroup_base_files[] = {
4814 	{
4815 		.name = "cgroup.type",
4816 		.flags = CFTYPE_NOT_ON_ROOT,
4817 		.seq_show = cgroup_type_show,
4818 		.write = cgroup_type_write,
4819 	},
4820 	{
4821 		.name = "cgroup.procs",
4822 		.flags = CFTYPE_NS_DELEGATABLE,
4823 		.file_offset = offsetof(struct cgroup, procs_file),
4824 		.release = cgroup_procs_release,
4825 		.seq_start = cgroup_procs_start,
4826 		.seq_next = cgroup_procs_next,
4827 		.seq_show = cgroup_procs_show,
4828 		.write = cgroup_procs_write,
4829 	},
4830 	{
4831 		.name = "cgroup.threads",
4832 		.flags = CFTYPE_NS_DELEGATABLE,
4833 		.release = cgroup_procs_release,
4834 		.seq_start = cgroup_threads_start,
4835 		.seq_next = cgroup_procs_next,
4836 		.seq_show = cgroup_procs_show,
4837 		.write = cgroup_threads_write,
4838 	},
4839 	{
4840 		.name = "cgroup.controllers",
4841 		.seq_show = cgroup_controllers_show,
4842 	},
4843 	{
4844 		.name = "cgroup.subtree_control",
4845 		.flags = CFTYPE_NS_DELEGATABLE,
4846 		.seq_show = cgroup_subtree_control_show,
4847 		.write = cgroup_subtree_control_write,
4848 	},
4849 	{
4850 		.name = "cgroup.events",
4851 		.flags = CFTYPE_NOT_ON_ROOT,
4852 		.file_offset = offsetof(struct cgroup, events_file),
4853 		.seq_show = cgroup_events_show,
4854 	},
4855 	{
4856 		.name = "cgroup.max.descendants",
4857 		.seq_show = cgroup_max_descendants_show,
4858 		.write = cgroup_max_descendants_write,
4859 	},
4860 	{
4861 		.name = "cgroup.max.depth",
4862 		.seq_show = cgroup_max_depth_show,
4863 		.write = cgroup_max_depth_write,
4864 	},
4865 	{
4866 		.name = "cgroup.stat",
4867 		.seq_show = cgroup_stat_show,
4868 	},
4869 	{
4870 		.name = "cgroup.freeze",
4871 		.flags = CFTYPE_NOT_ON_ROOT,
4872 		.seq_show = cgroup_freeze_show,
4873 		.write = cgroup_freeze_write,
4874 	},
4875 	{
4876 		.name = "cpu.stat",
4877 		.seq_show = cpu_stat_show,
4878 	},
4879 #ifdef CONFIG_PSI
4880 	{
4881 		.name = "io.pressure",
4882 		.seq_show = cgroup_io_pressure_show,
4883 		.write = cgroup_io_pressure_write,
4884 		.poll = cgroup_pressure_poll,
4885 		.release = cgroup_pressure_release,
4886 	},
4887 	{
4888 		.name = "memory.pressure",
4889 		.seq_show = cgroup_memory_pressure_show,
4890 		.write = cgroup_memory_pressure_write,
4891 		.poll = cgroup_pressure_poll,
4892 		.release = cgroup_pressure_release,
4893 	},
4894 	{
4895 		.name = "cpu.pressure",
4896 		.seq_show = cgroup_cpu_pressure_show,
4897 		.write = cgroup_cpu_pressure_write,
4898 		.poll = cgroup_pressure_poll,
4899 		.release = cgroup_pressure_release,
4900 	},
4901 #endif /* CONFIG_PSI */
4902 	{ }	/* terminate */
4903 };
4904 
4905 /*
4906  * css destruction is four-stage process.
4907  *
4908  * 1. Destruction starts.  Killing of the percpu_ref is initiated.
4909  *    Implemented in kill_css().
4910  *
4911  * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
4912  *    and thus css_tryget_online() is guaranteed to fail, the css can be
4913  *    offlined by invoking offline_css().  After offlining, the base ref is
4914  *    put.  Implemented in css_killed_work_fn().
4915  *
4916  * 3. When the percpu_ref reaches zero, the only possible remaining
4917  *    accessors are inside RCU read sections.  css_release() schedules the
4918  *    RCU callback.
4919  *
4920  * 4. After the grace period, the css can be freed.  Implemented in
4921  *    css_free_work_fn().
4922  *
4923  * It is actually hairier because both step 2 and 4 require process context
4924  * and thus involve punting to css->destroy_work adding two additional
4925  * steps to the already complex sequence.
4926  */
4927 static void css_free_rwork_fn(struct work_struct *work)
4928 {
4929 	struct cgroup_subsys_state *css = container_of(to_rcu_work(work),
4930 				struct cgroup_subsys_state, destroy_rwork);
4931 	struct cgroup_subsys *ss = css->ss;
4932 	struct cgroup *cgrp = css->cgroup;
4933 
4934 	percpu_ref_exit(&css->refcnt);
4935 
4936 	if (ss) {
4937 		/* css free path */
4938 		struct cgroup_subsys_state *parent = css->parent;
4939 		int id = css->id;
4940 
4941 		ss->css_free(css);
4942 		cgroup_idr_remove(&ss->css_idr, id);
4943 		cgroup_put(cgrp);
4944 
4945 		if (parent)
4946 			css_put(parent);
4947 	} else {
4948 		/* cgroup free path */
4949 		atomic_dec(&cgrp->root->nr_cgrps);
4950 		cgroup1_pidlist_destroy_all(cgrp);
4951 		cancel_work_sync(&cgrp->release_agent_work);
4952 
4953 		if (cgroup_parent(cgrp)) {
4954 			/*
4955 			 * We get a ref to the parent, and put the ref when
4956 			 * this cgroup is being freed, so it's guaranteed
4957 			 * that the parent won't be destroyed before its
4958 			 * children.
4959 			 */
4960 			cgroup_put(cgroup_parent(cgrp));
4961 			kernfs_put(cgrp->kn);
4962 			psi_cgroup_free(cgrp);
4963 			if (cgroup_on_dfl(cgrp))
4964 				cgroup_rstat_exit(cgrp);
4965 			kfree(cgrp);
4966 		} else {
4967 			/*
4968 			 * This is root cgroup's refcnt reaching zero,
4969 			 * which indicates that the root should be
4970 			 * released.
4971 			 */
4972 			cgroup_destroy_root(cgrp->root);
4973 		}
4974 	}
4975 }
4976 
4977 static void css_release_work_fn(struct work_struct *work)
4978 {
4979 	struct cgroup_subsys_state *css =
4980 		container_of(work, struct cgroup_subsys_state, destroy_work);
4981 	struct cgroup_subsys *ss = css->ss;
4982 	struct cgroup *cgrp = css->cgroup;
4983 
4984 	mutex_lock(&cgroup_mutex);
4985 
4986 	css->flags |= CSS_RELEASED;
4987 	list_del_rcu(&css->sibling);
4988 
4989 	if (ss) {
4990 		/* css release path */
4991 		if (!list_empty(&css->rstat_css_node)) {
4992 			cgroup_rstat_flush(cgrp);
4993 			list_del_rcu(&css->rstat_css_node);
4994 		}
4995 
4996 		cgroup_idr_replace(&ss->css_idr, NULL, css->id);
4997 		if (ss->css_released)
4998 			ss->css_released(css);
4999 	} else {
5000 		struct cgroup *tcgrp;
5001 
5002 		/* cgroup release path */
5003 		TRACE_CGROUP_PATH(release, cgrp);
5004 
5005 		if (cgroup_on_dfl(cgrp))
5006 			cgroup_rstat_flush(cgrp);
5007 
5008 		spin_lock_irq(&css_set_lock);
5009 		for (tcgrp = cgroup_parent(cgrp); tcgrp;
5010 		     tcgrp = cgroup_parent(tcgrp))
5011 			tcgrp->nr_dying_descendants--;
5012 		spin_unlock_irq(&css_set_lock);
5013 
5014 		/*
5015 		 * There are two control paths which try to determine
5016 		 * cgroup from dentry without going through kernfs -
5017 		 * cgroupstats_build() and css_tryget_online_from_dir().
5018 		 * Those are supported by RCU protecting clearing of
5019 		 * cgrp->kn->priv backpointer.
5020 		 */
5021 		if (cgrp->kn)
5022 			RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
5023 					 NULL);
5024 	}
5025 
5026 	mutex_unlock(&cgroup_mutex);
5027 
5028 	INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5029 	queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5030 }
5031 
5032 static void css_release(struct percpu_ref *ref)
5033 {
5034 	struct cgroup_subsys_state *css =
5035 		container_of(ref, struct cgroup_subsys_state, refcnt);
5036 
5037 	INIT_WORK(&css->destroy_work, css_release_work_fn);
5038 	queue_work(cgroup_destroy_wq, &css->destroy_work);
5039 }
5040 
5041 static void init_and_link_css(struct cgroup_subsys_state *css,
5042 			      struct cgroup_subsys *ss, struct cgroup *cgrp)
5043 {
5044 	lockdep_assert_held(&cgroup_mutex);
5045 
5046 	cgroup_get_live(cgrp);
5047 
5048 	memset(css, 0, sizeof(*css));
5049 	css->cgroup = cgrp;
5050 	css->ss = ss;
5051 	css->id = -1;
5052 	INIT_LIST_HEAD(&css->sibling);
5053 	INIT_LIST_HEAD(&css->children);
5054 	INIT_LIST_HEAD(&css->rstat_css_node);
5055 	css->serial_nr = css_serial_nr_next++;
5056 	atomic_set(&css->online_cnt, 0);
5057 
5058 	if (cgroup_parent(cgrp)) {
5059 		css->parent = cgroup_css(cgroup_parent(cgrp), ss);
5060 		css_get(css->parent);
5061 	}
5062 
5063 	if (cgroup_on_dfl(cgrp) && ss->css_rstat_flush)
5064 		list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list);
5065 
5066 	BUG_ON(cgroup_css(cgrp, ss));
5067 }
5068 
5069 /* invoke ->css_online() on a new CSS and mark it online if successful */
5070 static int online_css(struct cgroup_subsys_state *css)
5071 {
5072 	struct cgroup_subsys *ss = css->ss;
5073 	int ret = 0;
5074 
5075 	lockdep_assert_held(&cgroup_mutex);
5076 
5077 	if (ss->css_online)
5078 		ret = ss->css_online(css);
5079 	if (!ret) {
5080 		css->flags |= CSS_ONLINE;
5081 		rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
5082 
5083 		atomic_inc(&css->online_cnt);
5084 		if (css->parent)
5085 			atomic_inc(&css->parent->online_cnt);
5086 	}
5087 	return ret;
5088 }
5089 
5090 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
5091 static void offline_css(struct cgroup_subsys_state *css)
5092 {
5093 	struct cgroup_subsys *ss = css->ss;
5094 
5095 	lockdep_assert_held(&cgroup_mutex);
5096 
5097 	if (!(css->flags & CSS_ONLINE))
5098 		return;
5099 
5100 	if (ss->css_offline)
5101 		ss->css_offline(css);
5102 
5103 	css->flags &= ~CSS_ONLINE;
5104 	RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
5105 
5106 	wake_up_all(&css->cgroup->offline_waitq);
5107 }
5108 
5109 /**
5110  * css_create - create a cgroup_subsys_state
5111  * @cgrp: the cgroup new css will be associated with
5112  * @ss: the subsys of new css
5113  *
5114  * Create a new css associated with @cgrp - @ss pair.  On success, the new
5115  * css is online and installed in @cgrp.  This function doesn't create the
5116  * interface files.  Returns 0 on success, -errno on failure.
5117  */
5118 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
5119 					      struct cgroup_subsys *ss)
5120 {
5121 	struct cgroup *parent = cgroup_parent(cgrp);
5122 	struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
5123 	struct cgroup_subsys_state *css;
5124 	int err;
5125 
5126 	lockdep_assert_held(&cgroup_mutex);
5127 
5128 	css = ss->css_alloc(parent_css);
5129 	if (!css)
5130 		css = ERR_PTR(-ENOMEM);
5131 	if (IS_ERR(css))
5132 		return css;
5133 
5134 	init_and_link_css(css, ss, cgrp);
5135 
5136 	err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
5137 	if (err)
5138 		goto err_free_css;
5139 
5140 	err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
5141 	if (err < 0)
5142 		goto err_free_css;
5143 	css->id = err;
5144 
5145 	/* @css is ready to be brought online now, make it visible */
5146 	list_add_tail_rcu(&css->sibling, &parent_css->children);
5147 	cgroup_idr_replace(&ss->css_idr, css, css->id);
5148 
5149 	err = online_css(css);
5150 	if (err)
5151 		goto err_list_del;
5152 
5153 	if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
5154 	    cgroup_parent(parent)) {
5155 		pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
5156 			current->comm, current->pid, ss->name);
5157 		if (!strcmp(ss->name, "memory"))
5158 			pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
5159 		ss->warned_broken_hierarchy = true;
5160 	}
5161 
5162 	return css;
5163 
5164 err_list_del:
5165 	list_del_rcu(&css->sibling);
5166 err_free_css:
5167 	list_del_rcu(&css->rstat_css_node);
5168 	INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5169 	queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5170 	return ERR_PTR(err);
5171 }
5172 
5173 /*
5174  * The returned cgroup is fully initialized including its control mask, but
5175  * it isn't associated with its kernfs_node and doesn't have the control
5176  * mask applied.
5177  */
5178 static struct cgroup *cgroup_create(struct cgroup *parent, const char *name,
5179 				    umode_t mode)
5180 {
5181 	struct cgroup_root *root = parent->root;
5182 	struct cgroup *cgrp, *tcgrp;
5183 	struct kernfs_node *kn;
5184 	int level = parent->level + 1;
5185 	int ret;
5186 
5187 	/* allocate the cgroup and its ID, 0 is reserved for the root */
5188 	cgrp = kzalloc(struct_size(cgrp, ancestor_ids, (level + 1)),
5189 		       GFP_KERNEL);
5190 	if (!cgrp)
5191 		return ERR_PTR(-ENOMEM);
5192 
5193 	ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
5194 	if (ret)
5195 		goto out_free_cgrp;
5196 
5197 	if (cgroup_on_dfl(parent)) {
5198 		ret = cgroup_rstat_init(cgrp);
5199 		if (ret)
5200 			goto out_cancel_ref;
5201 	}
5202 
5203 	/* create the directory */
5204 	kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
5205 	if (IS_ERR(kn)) {
5206 		ret = PTR_ERR(kn);
5207 		goto out_stat_exit;
5208 	}
5209 	cgrp->kn = kn;
5210 
5211 	init_cgroup_housekeeping(cgrp);
5212 
5213 	cgrp->self.parent = &parent->self;
5214 	cgrp->root = root;
5215 	cgrp->level = level;
5216 
5217 	ret = psi_cgroup_alloc(cgrp);
5218 	if (ret)
5219 		goto out_kernfs_remove;
5220 
5221 	ret = cgroup_bpf_inherit(cgrp);
5222 	if (ret)
5223 		goto out_psi_free;
5224 
5225 	/*
5226 	 * New cgroup inherits effective freeze counter, and
5227 	 * if the parent has to be frozen, the child has too.
5228 	 */
5229 	cgrp->freezer.e_freeze = parent->freezer.e_freeze;
5230 	if (cgrp->freezer.e_freeze) {
5231 		/*
5232 		 * Set the CGRP_FREEZE flag, so when a process will be
5233 		 * attached to the child cgroup, it will become frozen.
5234 		 * At this point the new cgroup is unpopulated, so we can
5235 		 * consider it frozen immediately.
5236 		 */
5237 		set_bit(CGRP_FREEZE, &cgrp->flags);
5238 		set_bit(CGRP_FROZEN, &cgrp->flags);
5239 	}
5240 
5241 	spin_lock_irq(&css_set_lock);
5242 	for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5243 		cgrp->ancestor_ids[tcgrp->level] = cgroup_id(tcgrp);
5244 
5245 		if (tcgrp != cgrp) {
5246 			tcgrp->nr_descendants++;
5247 
5248 			/*
5249 			 * If the new cgroup is frozen, all ancestor cgroups
5250 			 * get a new frozen descendant, but their state can't
5251 			 * change because of this.
5252 			 */
5253 			if (cgrp->freezer.e_freeze)
5254 				tcgrp->freezer.nr_frozen_descendants++;
5255 		}
5256 	}
5257 	spin_unlock_irq(&css_set_lock);
5258 
5259 	if (notify_on_release(parent))
5260 		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
5261 
5262 	if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
5263 		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
5264 
5265 	cgrp->self.serial_nr = css_serial_nr_next++;
5266 
5267 	/* allocation complete, commit to creation */
5268 	list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
5269 	atomic_inc(&root->nr_cgrps);
5270 	cgroup_get_live(parent);
5271 
5272 	/*
5273 	 * On the default hierarchy, a child doesn't automatically inherit
5274 	 * subtree_control from the parent.  Each is configured manually.
5275 	 */
5276 	if (!cgroup_on_dfl(cgrp))
5277 		cgrp->subtree_control = cgroup_control(cgrp);
5278 
5279 	cgroup_propagate_control(cgrp);
5280 
5281 	return cgrp;
5282 
5283 out_psi_free:
5284 	psi_cgroup_free(cgrp);
5285 out_kernfs_remove:
5286 	kernfs_remove(cgrp->kn);
5287 out_stat_exit:
5288 	if (cgroup_on_dfl(parent))
5289 		cgroup_rstat_exit(cgrp);
5290 out_cancel_ref:
5291 	percpu_ref_exit(&cgrp->self.refcnt);
5292 out_free_cgrp:
5293 	kfree(cgrp);
5294 	return ERR_PTR(ret);
5295 }
5296 
5297 static bool cgroup_check_hierarchy_limits(struct cgroup *parent)
5298 {
5299 	struct cgroup *cgroup;
5300 	int ret = false;
5301 	int level = 1;
5302 
5303 	lockdep_assert_held(&cgroup_mutex);
5304 
5305 	for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) {
5306 		if (cgroup->nr_descendants >= cgroup->max_descendants)
5307 			goto fail;
5308 
5309 		if (level > cgroup->max_depth)
5310 			goto fail;
5311 
5312 		level++;
5313 	}
5314 
5315 	ret = true;
5316 fail:
5317 	return ret;
5318 }
5319 
5320 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode)
5321 {
5322 	struct cgroup *parent, *cgrp;
5323 	int ret;
5324 
5325 	/* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
5326 	if (strchr(name, '\n'))
5327 		return -EINVAL;
5328 
5329 	parent = cgroup_kn_lock_live(parent_kn, false);
5330 	if (!parent)
5331 		return -ENODEV;
5332 
5333 	if (!cgroup_check_hierarchy_limits(parent)) {
5334 		ret = -EAGAIN;
5335 		goto out_unlock;
5336 	}
5337 
5338 	cgrp = cgroup_create(parent, name, mode);
5339 	if (IS_ERR(cgrp)) {
5340 		ret = PTR_ERR(cgrp);
5341 		goto out_unlock;
5342 	}
5343 
5344 	/*
5345 	 * This extra ref will be put in cgroup_free_fn() and guarantees
5346 	 * that @cgrp->kn is always accessible.
5347 	 */
5348 	kernfs_get(cgrp->kn);
5349 
5350 	ret = cgroup_kn_set_ugid(cgrp->kn);
5351 	if (ret)
5352 		goto out_destroy;
5353 
5354 	ret = css_populate_dir(&cgrp->self);
5355 	if (ret)
5356 		goto out_destroy;
5357 
5358 	ret = cgroup_apply_control_enable(cgrp);
5359 	if (ret)
5360 		goto out_destroy;
5361 
5362 	TRACE_CGROUP_PATH(mkdir, cgrp);
5363 
5364 	/* let's create and online css's */
5365 	kernfs_activate(cgrp->kn);
5366 
5367 	ret = 0;
5368 	goto out_unlock;
5369 
5370 out_destroy:
5371 	cgroup_destroy_locked(cgrp);
5372 out_unlock:
5373 	cgroup_kn_unlock(parent_kn);
5374 	return ret;
5375 }
5376 
5377 /*
5378  * This is called when the refcnt of a css is confirmed to be killed.
5379  * css_tryget_online() is now guaranteed to fail.  Tell the subsystem to
5380  * initate destruction and put the css ref from kill_css().
5381  */
5382 static void css_killed_work_fn(struct work_struct *work)
5383 {
5384 	struct cgroup_subsys_state *css =
5385 		container_of(work, struct cgroup_subsys_state, destroy_work);
5386 
5387 	mutex_lock(&cgroup_mutex);
5388 
5389 	do {
5390 		offline_css(css);
5391 		css_put(css);
5392 		/* @css can't go away while we're holding cgroup_mutex */
5393 		css = css->parent;
5394 	} while (css && atomic_dec_and_test(&css->online_cnt));
5395 
5396 	mutex_unlock(&cgroup_mutex);
5397 }
5398 
5399 /* css kill confirmation processing requires process context, bounce */
5400 static void css_killed_ref_fn(struct percpu_ref *ref)
5401 {
5402 	struct cgroup_subsys_state *css =
5403 		container_of(ref, struct cgroup_subsys_state, refcnt);
5404 
5405 	if (atomic_dec_and_test(&css->online_cnt)) {
5406 		INIT_WORK(&css->destroy_work, css_killed_work_fn);
5407 		queue_work(cgroup_destroy_wq, &css->destroy_work);
5408 	}
5409 }
5410 
5411 /**
5412  * kill_css - destroy a css
5413  * @css: css to destroy
5414  *
5415  * This function initiates destruction of @css by removing cgroup interface
5416  * files and putting its base reference.  ->css_offline() will be invoked
5417  * asynchronously once css_tryget_online() is guaranteed to fail and when
5418  * the reference count reaches zero, @css will be released.
5419  */
5420 static void kill_css(struct cgroup_subsys_state *css)
5421 {
5422 	lockdep_assert_held(&cgroup_mutex);
5423 
5424 	if (css->flags & CSS_DYING)
5425 		return;
5426 
5427 	css->flags |= CSS_DYING;
5428 
5429 	/*
5430 	 * This must happen before css is disassociated with its cgroup.
5431 	 * See seq_css() for details.
5432 	 */
5433 	css_clear_dir(css);
5434 
5435 	/*
5436 	 * Killing would put the base ref, but we need to keep it alive
5437 	 * until after ->css_offline().
5438 	 */
5439 	css_get(css);
5440 
5441 	/*
5442 	 * cgroup core guarantees that, by the time ->css_offline() is
5443 	 * invoked, no new css reference will be given out via
5444 	 * css_tryget_online().  We can't simply call percpu_ref_kill() and
5445 	 * proceed to offlining css's because percpu_ref_kill() doesn't
5446 	 * guarantee that the ref is seen as killed on all CPUs on return.
5447 	 *
5448 	 * Use percpu_ref_kill_and_confirm() to get notifications as each
5449 	 * css is confirmed to be seen as killed on all CPUs.
5450 	 */
5451 	percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
5452 }
5453 
5454 /**
5455  * cgroup_destroy_locked - the first stage of cgroup destruction
5456  * @cgrp: cgroup to be destroyed
5457  *
5458  * css's make use of percpu refcnts whose killing latency shouldn't be
5459  * exposed to userland and are RCU protected.  Also, cgroup core needs to
5460  * guarantee that css_tryget_online() won't succeed by the time
5461  * ->css_offline() is invoked.  To satisfy all the requirements,
5462  * destruction is implemented in the following two steps.
5463  *
5464  * s1. Verify @cgrp can be destroyed and mark it dying.  Remove all
5465  *     userland visible parts and start killing the percpu refcnts of
5466  *     css's.  Set up so that the next stage will be kicked off once all
5467  *     the percpu refcnts are confirmed to be killed.
5468  *
5469  * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5470  *     rest of destruction.  Once all cgroup references are gone, the
5471  *     cgroup is RCU-freed.
5472  *
5473  * This function implements s1.  After this step, @cgrp is gone as far as
5474  * the userland is concerned and a new cgroup with the same name may be
5475  * created.  As cgroup doesn't care about the names internally, this
5476  * doesn't cause any problem.
5477  */
5478 static int cgroup_destroy_locked(struct cgroup *cgrp)
5479 	__releases(&cgroup_mutex) __acquires(&cgroup_mutex)
5480 {
5481 	struct cgroup *tcgrp, *parent = cgroup_parent(cgrp);
5482 	struct cgroup_subsys_state *css;
5483 	struct cgrp_cset_link *link;
5484 	int ssid;
5485 
5486 	lockdep_assert_held(&cgroup_mutex);
5487 
5488 	/*
5489 	 * Only migration can raise populated from zero and we're already
5490 	 * holding cgroup_mutex.
5491 	 */
5492 	if (cgroup_is_populated(cgrp))
5493 		return -EBUSY;
5494 
5495 	/*
5496 	 * Make sure there's no live children.  We can't test emptiness of
5497 	 * ->self.children as dead children linger on it while being
5498 	 * drained; otherwise, "rmdir parent/child parent" may fail.
5499 	 */
5500 	if (css_has_online_children(&cgrp->self))
5501 		return -EBUSY;
5502 
5503 	/*
5504 	 * Mark @cgrp and the associated csets dead.  The former prevents
5505 	 * further task migration and child creation by disabling
5506 	 * cgroup_lock_live_group().  The latter makes the csets ignored by
5507 	 * the migration path.
5508 	 */
5509 	cgrp->self.flags &= ~CSS_ONLINE;
5510 
5511 	spin_lock_irq(&css_set_lock);
5512 	list_for_each_entry(link, &cgrp->cset_links, cset_link)
5513 		link->cset->dead = true;
5514 	spin_unlock_irq(&css_set_lock);
5515 
5516 	/* initiate massacre of all css's */
5517 	for_each_css(css, ssid, cgrp)
5518 		kill_css(css);
5519 
5520 	/* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */
5521 	css_clear_dir(&cgrp->self);
5522 	kernfs_remove(cgrp->kn);
5523 
5524 	if (parent && cgroup_is_threaded(cgrp))
5525 		parent->nr_threaded_children--;
5526 
5527 	spin_lock_irq(&css_set_lock);
5528 	for (tcgrp = cgroup_parent(cgrp); tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5529 		tcgrp->nr_descendants--;
5530 		tcgrp->nr_dying_descendants++;
5531 		/*
5532 		 * If the dying cgroup is frozen, decrease frozen descendants
5533 		 * counters of ancestor cgroups.
5534 		 */
5535 		if (test_bit(CGRP_FROZEN, &cgrp->flags))
5536 			tcgrp->freezer.nr_frozen_descendants--;
5537 	}
5538 	spin_unlock_irq(&css_set_lock);
5539 
5540 	cgroup1_check_for_release(parent);
5541 
5542 	cgroup_bpf_offline(cgrp);
5543 
5544 	/* put the base reference */
5545 	percpu_ref_kill(&cgrp->self.refcnt);
5546 
5547 	return 0;
5548 };
5549 
5550 int cgroup_rmdir(struct kernfs_node *kn)
5551 {
5552 	struct cgroup *cgrp;
5553 	int ret = 0;
5554 
5555 	cgrp = cgroup_kn_lock_live(kn, false);
5556 	if (!cgrp)
5557 		return 0;
5558 
5559 	ret = cgroup_destroy_locked(cgrp);
5560 	if (!ret)
5561 		TRACE_CGROUP_PATH(rmdir, cgrp);
5562 
5563 	cgroup_kn_unlock(kn);
5564 	return ret;
5565 }
5566 
5567 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5568 	.show_options		= cgroup_show_options,
5569 	.mkdir			= cgroup_mkdir,
5570 	.rmdir			= cgroup_rmdir,
5571 	.show_path		= cgroup_show_path,
5572 };
5573 
5574 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
5575 {
5576 	struct cgroup_subsys_state *css;
5577 
5578 	pr_debug("Initializing cgroup subsys %s\n", ss->name);
5579 
5580 	mutex_lock(&cgroup_mutex);
5581 
5582 	idr_init(&ss->css_idr);
5583 	INIT_LIST_HEAD(&ss->cfts);
5584 
5585 	/* Create the root cgroup state for this subsystem */
5586 	ss->root = &cgrp_dfl_root;
5587 	css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
5588 	/* We don't handle early failures gracefully */
5589 	BUG_ON(IS_ERR(css));
5590 	init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
5591 
5592 	/*
5593 	 * Root csses are never destroyed and we can't initialize
5594 	 * percpu_ref during early init.  Disable refcnting.
5595 	 */
5596 	css->flags |= CSS_NO_REF;
5597 
5598 	if (early) {
5599 		/* allocation can't be done safely during early init */
5600 		css->id = 1;
5601 	} else {
5602 		css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5603 		BUG_ON(css->id < 0);
5604 	}
5605 
5606 	/* Update the init_css_set to contain a subsys
5607 	 * pointer to this state - since the subsystem is
5608 	 * newly registered, all tasks and hence the
5609 	 * init_css_set is in the subsystem's root cgroup. */
5610 	init_css_set.subsys[ss->id] = css;
5611 
5612 	have_fork_callback |= (bool)ss->fork << ss->id;
5613 	have_exit_callback |= (bool)ss->exit << ss->id;
5614 	have_release_callback |= (bool)ss->release << ss->id;
5615 	have_canfork_callback |= (bool)ss->can_fork << ss->id;
5616 
5617 	/* At system boot, before all subsystems have been
5618 	 * registered, no tasks have been forked, so we don't
5619 	 * need to invoke fork callbacks here. */
5620 	BUG_ON(!list_empty(&init_task.tasks));
5621 
5622 	BUG_ON(online_css(css));
5623 
5624 	mutex_unlock(&cgroup_mutex);
5625 }
5626 
5627 /**
5628  * cgroup_init_early - cgroup initialization at system boot
5629  *
5630  * Initialize cgroups at system boot, and initialize any
5631  * subsystems that request early init.
5632  */
5633 int __init cgroup_init_early(void)
5634 {
5635 	static struct cgroup_fs_context __initdata ctx;
5636 	struct cgroup_subsys *ss;
5637 	int i;
5638 
5639 	ctx.root = &cgrp_dfl_root;
5640 	init_cgroup_root(&ctx);
5641 	cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5642 
5643 	RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
5644 
5645 	for_each_subsys(ss, i) {
5646 		WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
5647 		     "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
5648 		     i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
5649 		     ss->id, ss->name);
5650 		WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5651 		     "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5652 
5653 		ss->id = i;
5654 		ss->name = cgroup_subsys_name[i];
5655 		if (!ss->legacy_name)
5656 			ss->legacy_name = cgroup_subsys_name[i];
5657 
5658 		if (ss->early_init)
5659 			cgroup_init_subsys(ss, true);
5660 	}
5661 	return 0;
5662 }
5663 
5664 static u16 cgroup_disable_mask __initdata;
5665 
5666 /**
5667  * cgroup_init - cgroup initialization
5668  *
5669  * Register cgroup filesystem and /proc file, and initialize
5670  * any subsystems that didn't request early init.
5671  */
5672 int __init cgroup_init(void)
5673 {
5674 	struct cgroup_subsys *ss;
5675 	int ssid;
5676 
5677 	BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
5678 	BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
5679 	BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files));
5680 
5681 	cgroup_rstat_boot();
5682 
5683 	/*
5684 	 * The latency of the synchronize_rcu() is too high for cgroups,
5685 	 * avoid it at the cost of forcing all readers into the slow path.
5686 	 */
5687 	rcu_sync_enter_start(&cgroup_threadgroup_rwsem.rss);
5688 
5689 	get_user_ns(init_cgroup_ns.user_ns);
5690 
5691 	mutex_lock(&cgroup_mutex);
5692 
5693 	/*
5694 	 * Add init_css_set to the hash table so that dfl_root can link to
5695 	 * it during init.
5696 	 */
5697 	hash_add(css_set_table, &init_css_set.hlist,
5698 		 css_set_hash(init_css_set.subsys));
5699 
5700 	BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
5701 
5702 	mutex_unlock(&cgroup_mutex);
5703 
5704 	for_each_subsys(ss, ssid) {
5705 		if (ss->early_init) {
5706 			struct cgroup_subsys_state *css =
5707 				init_css_set.subsys[ss->id];
5708 
5709 			css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5710 						   GFP_KERNEL);
5711 			BUG_ON(css->id < 0);
5712 		} else {
5713 			cgroup_init_subsys(ss, false);
5714 		}
5715 
5716 		list_add_tail(&init_css_set.e_cset_node[ssid],
5717 			      &cgrp_dfl_root.cgrp.e_csets[ssid]);
5718 
5719 		/*
5720 		 * Setting dfl_root subsys_mask needs to consider the
5721 		 * disabled flag and cftype registration needs kmalloc,
5722 		 * both of which aren't available during early_init.
5723 		 */
5724 		if (cgroup_disable_mask & (1 << ssid)) {
5725 			static_branch_disable(cgroup_subsys_enabled_key[ssid]);
5726 			printk(KERN_INFO "Disabling %s control group subsystem\n",
5727 			       ss->name);
5728 			continue;
5729 		}
5730 
5731 		if (cgroup1_ssid_disabled(ssid))
5732 			printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n",
5733 			       ss->name);
5734 
5735 		cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5736 
5737 		/* implicit controllers must be threaded too */
5738 		WARN_ON(ss->implicit_on_dfl && !ss->threaded);
5739 
5740 		if (ss->implicit_on_dfl)
5741 			cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
5742 		else if (!ss->dfl_cftypes)
5743 			cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
5744 
5745 		if (ss->threaded)
5746 			cgrp_dfl_threaded_ss_mask |= 1 << ss->id;
5747 
5748 		if (ss->dfl_cftypes == ss->legacy_cftypes) {
5749 			WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5750 		} else {
5751 			WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5752 			WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
5753 		}
5754 
5755 		if (ss->bind)
5756 			ss->bind(init_css_set.subsys[ssid]);
5757 
5758 		mutex_lock(&cgroup_mutex);
5759 		css_populate_dir(init_css_set.subsys[ssid]);
5760 		mutex_unlock(&cgroup_mutex);
5761 	}
5762 
5763 	/* init_css_set.subsys[] has been updated, re-hash */
5764 	hash_del(&init_css_set.hlist);
5765 	hash_add(css_set_table, &init_css_set.hlist,
5766 		 css_set_hash(init_css_set.subsys));
5767 
5768 	WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
5769 	WARN_ON(register_filesystem(&cgroup_fs_type));
5770 	WARN_ON(register_filesystem(&cgroup2_fs_type));
5771 	WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show));
5772 #ifdef CONFIG_CPUSETS
5773 	WARN_ON(register_filesystem(&cpuset_fs_type));
5774 #endif
5775 
5776 	return 0;
5777 }
5778 
5779 static int __init cgroup_wq_init(void)
5780 {
5781 	/*
5782 	 * There isn't much point in executing destruction path in
5783 	 * parallel.  Good chunk is serialized with cgroup_mutex anyway.
5784 	 * Use 1 for @max_active.
5785 	 *
5786 	 * We would prefer to do this in cgroup_init() above, but that
5787 	 * is called before init_workqueues(): so leave this until after.
5788 	 */
5789 	cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
5790 	BUG_ON(!cgroup_destroy_wq);
5791 	return 0;
5792 }
5793 core_initcall(cgroup_wq_init);
5794 
5795 void cgroup_path_from_kernfs_id(u64 id, char *buf, size_t buflen)
5796 {
5797 	struct kernfs_node *kn;
5798 
5799 	kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id);
5800 	if (!kn)
5801 		return;
5802 	kernfs_path(kn, buf, buflen);
5803 	kernfs_put(kn);
5804 }
5805 
5806 /*
5807  * proc_cgroup_show()
5808  *  - Print task's cgroup paths into seq_file, one line for each hierarchy
5809  *  - Used for /proc/<pid>/cgroup.
5810  */
5811 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5812 		     struct pid *pid, struct task_struct *tsk)
5813 {
5814 	char *buf;
5815 	int retval;
5816 	struct cgroup_root *root;
5817 
5818 	retval = -ENOMEM;
5819 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
5820 	if (!buf)
5821 		goto out;
5822 
5823 	mutex_lock(&cgroup_mutex);
5824 	spin_lock_irq(&css_set_lock);
5825 
5826 	for_each_root(root) {
5827 		struct cgroup_subsys *ss;
5828 		struct cgroup *cgrp;
5829 		int ssid, count = 0;
5830 
5831 		if (root == &cgrp_dfl_root && !cgrp_dfl_visible)
5832 			continue;
5833 
5834 		seq_printf(m, "%d:", root->hierarchy_id);
5835 		if (root != &cgrp_dfl_root)
5836 			for_each_subsys(ss, ssid)
5837 				if (root->subsys_mask & (1 << ssid))
5838 					seq_printf(m, "%s%s", count++ ? "," : "",
5839 						   ss->legacy_name);
5840 		if (strlen(root->name))
5841 			seq_printf(m, "%sname=%s", count ? "," : "",
5842 				   root->name);
5843 		seq_putc(m, ':');
5844 
5845 		cgrp = task_cgroup_from_root(tsk, root);
5846 
5847 		/*
5848 		 * On traditional hierarchies, all zombie tasks show up as
5849 		 * belonging to the root cgroup.  On the default hierarchy,
5850 		 * while a zombie doesn't show up in "cgroup.procs" and
5851 		 * thus can't be migrated, its /proc/PID/cgroup keeps
5852 		 * reporting the cgroup it belonged to before exiting.  If
5853 		 * the cgroup is removed before the zombie is reaped,
5854 		 * " (deleted)" is appended to the cgroup path.
5855 		 */
5856 		if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
5857 			retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
5858 						current->nsproxy->cgroup_ns);
5859 			if (retval >= PATH_MAX)
5860 				retval = -ENAMETOOLONG;
5861 			if (retval < 0)
5862 				goto out_unlock;
5863 
5864 			seq_puts(m, buf);
5865 		} else {
5866 			seq_puts(m, "/");
5867 		}
5868 
5869 		if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
5870 			seq_puts(m, " (deleted)\n");
5871 		else
5872 			seq_putc(m, '\n');
5873 	}
5874 
5875 	retval = 0;
5876 out_unlock:
5877 	spin_unlock_irq(&css_set_lock);
5878 	mutex_unlock(&cgroup_mutex);
5879 	kfree(buf);
5880 out:
5881 	return retval;
5882 }
5883 
5884 /**
5885  * cgroup_fork - initialize cgroup related fields during copy_process()
5886  * @child: pointer to task_struct of forking parent process.
5887  *
5888  * A task is associated with the init_css_set until cgroup_post_fork()
5889  * attaches it to the target css_set.
5890  */
5891 void cgroup_fork(struct task_struct *child)
5892 {
5893 	RCU_INIT_POINTER(child->cgroups, &init_css_set);
5894 	INIT_LIST_HEAD(&child->cg_list);
5895 }
5896 
5897 static struct cgroup *cgroup_get_from_file(struct file *f)
5898 {
5899 	struct cgroup_subsys_state *css;
5900 	struct cgroup *cgrp;
5901 
5902 	css = css_tryget_online_from_dir(f->f_path.dentry, NULL);
5903 	if (IS_ERR(css))
5904 		return ERR_CAST(css);
5905 
5906 	cgrp = css->cgroup;
5907 	if (!cgroup_on_dfl(cgrp)) {
5908 		cgroup_put(cgrp);
5909 		return ERR_PTR(-EBADF);
5910 	}
5911 
5912 	return cgrp;
5913 }
5914 
5915 /**
5916  * cgroup_css_set_fork - find or create a css_set for a child process
5917  * @kargs: the arguments passed to create the child process
5918  *
5919  * This functions finds or creates a new css_set which the child
5920  * process will be attached to in cgroup_post_fork(). By default,
5921  * the child process will be given the same css_set as its parent.
5922  *
5923  * If CLONE_INTO_CGROUP is specified this function will try to find an
5924  * existing css_set which includes the requested cgroup and if not create
5925  * a new css_set that the child will be attached to later. If this function
5926  * succeeds it will hold cgroup_threadgroup_rwsem on return. If
5927  * CLONE_INTO_CGROUP is requested this function will grab cgroup mutex
5928  * before grabbing cgroup_threadgroup_rwsem and will hold a reference
5929  * to the target cgroup.
5930  */
5931 static int cgroup_css_set_fork(struct kernel_clone_args *kargs)
5932 	__acquires(&cgroup_mutex) __acquires(&cgroup_threadgroup_rwsem)
5933 {
5934 	int ret;
5935 	struct cgroup *dst_cgrp = NULL;
5936 	struct css_set *cset;
5937 	struct super_block *sb;
5938 	struct file *f;
5939 
5940 	if (kargs->flags & CLONE_INTO_CGROUP)
5941 		mutex_lock(&cgroup_mutex);
5942 
5943 	cgroup_threadgroup_change_begin(current);
5944 
5945 	spin_lock_irq(&css_set_lock);
5946 	cset = task_css_set(current);
5947 	get_css_set(cset);
5948 	spin_unlock_irq(&css_set_lock);
5949 
5950 	if (!(kargs->flags & CLONE_INTO_CGROUP)) {
5951 		kargs->cset = cset;
5952 		return 0;
5953 	}
5954 
5955 	f = fget_raw(kargs->cgroup);
5956 	if (!f) {
5957 		ret = -EBADF;
5958 		goto err;
5959 	}
5960 	sb = f->f_path.dentry->d_sb;
5961 
5962 	dst_cgrp = cgroup_get_from_file(f);
5963 	if (IS_ERR(dst_cgrp)) {
5964 		ret = PTR_ERR(dst_cgrp);
5965 		dst_cgrp = NULL;
5966 		goto err;
5967 	}
5968 
5969 	if (cgroup_is_dead(dst_cgrp)) {
5970 		ret = -ENODEV;
5971 		goto err;
5972 	}
5973 
5974 	/*
5975 	 * Verify that we the target cgroup is writable for us. This is
5976 	 * usually done by the vfs layer but since we're not going through
5977 	 * the vfs layer here we need to do it "manually".
5978 	 */
5979 	ret = cgroup_may_write(dst_cgrp, sb);
5980 	if (ret)
5981 		goto err;
5982 
5983 	ret = cgroup_attach_permissions(cset->dfl_cgrp, dst_cgrp, sb,
5984 					!(kargs->flags & CLONE_THREAD));
5985 	if (ret)
5986 		goto err;
5987 
5988 	kargs->cset = find_css_set(cset, dst_cgrp);
5989 	if (!kargs->cset) {
5990 		ret = -ENOMEM;
5991 		goto err;
5992 	}
5993 
5994 	put_css_set(cset);
5995 	fput(f);
5996 	kargs->cgrp = dst_cgrp;
5997 	return ret;
5998 
5999 err:
6000 	cgroup_threadgroup_change_end(current);
6001 	mutex_unlock(&cgroup_mutex);
6002 	if (f)
6003 		fput(f);
6004 	if (dst_cgrp)
6005 		cgroup_put(dst_cgrp);
6006 	put_css_set(cset);
6007 	if (kargs->cset)
6008 		put_css_set(kargs->cset);
6009 	return ret;
6010 }
6011 
6012 /**
6013  * cgroup_css_set_put_fork - drop references we took during fork
6014  * @kargs: the arguments passed to create the child process
6015  *
6016  * Drop references to the prepared css_set and target cgroup if
6017  * CLONE_INTO_CGROUP was requested.
6018  */
6019 static void cgroup_css_set_put_fork(struct kernel_clone_args *kargs)
6020 	__releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
6021 {
6022 	cgroup_threadgroup_change_end(current);
6023 
6024 	if (kargs->flags & CLONE_INTO_CGROUP) {
6025 		struct cgroup *cgrp = kargs->cgrp;
6026 		struct css_set *cset = kargs->cset;
6027 
6028 		mutex_unlock(&cgroup_mutex);
6029 
6030 		if (cset) {
6031 			put_css_set(cset);
6032 			kargs->cset = NULL;
6033 		}
6034 
6035 		if (cgrp) {
6036 			cgroup_put(cgrp);
6037 			kargs->cgrp = NULL;
6038 		}
6039 	}
6040 }
6041 
6042 /**
6043  * cgroup_can_fork - called on a new task before the process is exposed
6044  * @child: the child process
6045  *
6046  * This prepares a new css_set for the child process which the child will
6047  * be attached to in cgroup_post_fork().
6048  * This calls the subsystem can_fork() callbacks. If the cgroup_can_fork()
6049  * callback returns an error, the fork aborts with that error code. This
6050  * allows for a cgroup subsystem to conditionally allow or deny new forks.
6051  */
6052 int cgroup_can_fork(struct task_struct *child, struct kernel_clone_args *kargs)
6053 {
6054 	struct cgroup_subsys *ss;
6055 	int i, j, ret;
6056 
6057 	ret = cgroup_css_set_fork(kargs);
6058 	if (ret)
6059 		return ret;
6060 
6061 	do_each_subsys_mask(ss, i, have_canfork_callback) {
6062 		ret = ss->can_fork(child, kargs->cset);
6063 		if (ret)
6064 			goto out_revert;
6065 	} while_each_subsys_mask();
6066 
6067 	return 0;
6068 
6069 out_revert:
6070 	for_each_subsys(ss, j) {
6071 		if (j >= i)
6072 			break;
6073 		if (ss->cancel_fork)
6074 			ss->cancel_fork(child, kargs->cset);
6075 	}
6076 
6077 	cgroup_css_set_put_fork(kargs);
6078 
6079 	return ret;
6080 }
6081 
6082 /**
6083  * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
6084  * @child: the child process
6085  * @kargs: the arguments passed to create the child process
6086  *
6087  * This calls the cancel_fork() callbacks if a fork failed *after*
6088  * cgroup_can_fork() succeded and cleans up references we took to
6089  * prepare a new css_set for the child process in cgroup_can_fork().
6090  */
6091 void cgroup_cancel_fork(struct task_struct *child,
6092 			struct kernel_clone_args *kargs)
6093 {
6094 	struct cgroup_subsys *ss;
6095 	int i;
6096 
6097 	for_each_subsys(ss, i)
6098 		if (ss->cancel_fork)
6099 			ss->cancel_fork(child, kargs->cset);
6100 
6101 	cgroup_css_set_put_fork(kargs);
6102 }
6103 
6104 /**
6105  * cgroup_post_fork - finalize cgroup setup for the child process
6106  * @child: the child process
6107  *
6108  * Attach the child process to its css_set calling the subsystem fork()
6109  * callbacks.
6110  */
6111 void cgroup_post_fork(struct task_struct *child,
6112 		      struct kernel_clone_args *kargs)
6113 	__releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
6114 {
6115 	struct cgroup_subsys *ss;
6116 	struct css_set *cset;
6117 	int i;
6118 
6119 	cset = kargs->cset;
6120 	kargs->cset = NULL;
6121 
6122 	spin_lock_irq(&css_set_lock);
6123 
6124 	/* init tasks are special, only link regular threads */
6125 	if (likely(child->pid)) {
6126 		WARN_ON_ONCE(!list_empty(&child->cg_list));
6127 		cset->nr_tasks++;
6128 		css_set_move_task(child, NULL, cset, false);
6129 	} else {
6130 		put_css_set(cset);
6131 		cset = NULL;
6132 	}
6133 
6134 	/*
6135 	 * If the cgroup has to be frozen, the new task has too.  Let's set
6136 	 * the JOBCTL_TRAP_FREEZE jobctl bit to get the task into the
6137 	 * frozen state.
6138 	 */
6139 	if (unlikely(cgroup_task_freeze(child))) {
6140 		spin_lock(&child->sighand->siglock);
6141 		WARN_ON_ONCE(child->frozen);
6142 		child->jobctl |= JOBCTL_TRAP_FREEZE;
6143 		spin_unlock(&child->sighand->siglock);
6144 
6145 		/*
6146 		 * Calling cgroup_update_frozen() isn't required here,
6147 		 * because it will be called anyway a bit later from
6148 		 * do_freezer_trap(). So we avoid cgroup's transient switch
6149 		 * from the frozen state and back.
6150 		 */
6151 	}
6152 
6153 	spin_unlock_irq(&css_set_lock);
6154 
6155 	/*
6156 	 * Call ss->fork().  This must happen after @child is linked on
6157 	 * css_set; otherwise, @child might change state between ->fork()
6158 	 * and addition to css_set.
6159 	 */
6160 	do_each_subsys_mask(ss, i, have_fork_callback) {
6161 		ss->fork(child);
6162 	} while_each_subsys_mask();
6163 
6164 	/* Make the new cset the root_cset of the new cgroup namespace. */
6165 	if (kargs->flags & CLONE_NEWCGROUP) {
6166 		struct css_set *rcset = child->nsproxy->cgroup_ns->root_cset;
6167 
6168 		get_css_set(cset);
6169 		child->nsproxy->cgroup_ns->root_cset = cset;
6170 		put_css_set(rcset);
6171 	}
6172 
6173 	cgroup_css_set_put_fork(kargs);
6174 }
6175 
6176 /**
6177  * cgroup_exit - detach cgroup from exiting task
6178  * @tsk: pointer to task_struct of exiting process
6179  *
6180  * Description: Detach cgroup from @tsk.
6181  *
6182  */
6183 void cgroup_exit(struct task_struct *tsk)
6184 {
6185 	struct cgroup_subsys *ss;
6186 	struct css_set *cset;
6187 	int i;
6188 
6189 	spin_lock_irq(&css_set_lock);
6190 
6191 	WARN_ON_ONCE(list_empty(&tsk->cg_list));
6192 	cset = task_css_set(tsk);
6193 	css_set_move_task(tsk, cset, NULL, false);
6194 	list_add_tail(&tsk->cg_list, &cset->dying_tasks);
6195 	cset->nr_tasks--;
6196 
6197 	WARN_ON_ONCE(cgroup_task_frozen(tsk));
6198 	if (unlikely(cgroup_task_freeze(tsk)))
6199 		cgroup_update_frozen(task_dfl_cgroup(tsk));
6200 
6201 	spin_unlock_irq(&css_set_lock);
6202 
6203 	/* see cgroup_post_fork() for details */
6204 	do_each_subsys_mask(ss, i, have_exit_callback) {
6205 		ss->exit(tsk);
6206 	} while_each_subsys_mask();
6207 }
6208 
6209 void cgroup_release(struct task_struct *task)
6210 {
6211 	struct cgroup_subsys *ss;
6212 	int ssid;
6213 
6214 	do_each_subsys_mask(ss, ssid, have_release_callback) {
6215 		ss->release(task);
6216 	} while_each_subsys_mask();
6217 
6218 	spin_lock_irq(&css_set_lock);
6219 	css_set_skip_task_iters(task_css_set(task), task);
6220 	list_del_init(&task->cg_list);
6221 	spin_unlock_irq(&css_set_lock);
6222 }
6223 
6224 void cgroup_free(struct task_struct *task)
6225 {
6226 	struct css_set *cset = task_css_set(task);
6227 	put_css_set(cset);
6228 }
6229 
6230 static int __init cgroup_disable(char *str)
6231 {
6232 	struct cgroup_subsys *ss;
6233 	char *token;
6234 	int i;
6235 
6236 	while ((token = strsep(&str, ",")) != NULL) {
6237 		if (!*token)
6238 			continue;
6239 
6240 		for_each_subsys(ss, i) {
6241 			if (strcmp(token, ss->name) &&
6242 			    strcmp(token, ss->legacy_name))
6243 				continue;
6244 			cgroup_disable_mask |= 1 << i;
6245 		}
6246 	}
6247 	return 1;
6248 }
6249 __setup("cgroup_disable=", cgroup_disable);
6250 
6251 void __init __weak enable_debug_cgroup(void) { }
6252 
6253 static int __init enable_cgroup_debug(char *str)
6254 {
6255 	cgroup_debug = true;
6256 	enable_debug_cgroup();
6257 	return 1;
6258 }
6259 __setup("cgroup_debug", enable_cgroup_debug);
6260 
6261 /**
6262  * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
6263  * @dentry: directory dentry of interest
6264  * @ss: subsystem of interest
6265  *
6266  * If @dentry is a directory for a cgroup which has @ss enabled on it, try
6267  * to get the corresponding css and return it.  If such css doesn't exist
6268  * or can't be pinned, an ERR_PTR value is returned.
6269  */
6270 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
6271 						       struct cgroup_subsys *ss)
6272 {
6273 	struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
6274 	struct file_system_type *s_type = dentry->d_sb->s_type;
6275 	struct cgroup_subsys_state *css = NULL;
6276 	struct cgroup *cgrp;
6277 
6278 	/* is @dentry a cgroup dir? */
6279 	if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
6280 	    !kn || kernfs_type(kn) != KERNFS_DIR)
6281 		return ERR_PTR(-EBADF);
6282 
6283 	rcu_read_lock();
6284 
6285 	/*
6286 	 * This path doesn't originate from kernfs and @kn could already
6287 	 * have been or be removed at any point.  @kn->priv is RCU
6288 	 * protected for this access.  See css_release_work_fn() for details.
6289 	 */
6290 	cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6291 	if (cgrp)
6292 		css = cgroup_css(cgrp, ss);
6293 
6294 	if (!css || !css_tryget_online(css))
6295 		css = ERR_PTR(-ENOENT);
6296 
6297 	rcu_read_unlock();
6298 	return css;
6299 }
6300 
6301 /**
6302  * css_from_id - lookup css by id
6303  * @id: the cgroup id
6304  * @ss: cgroup subsys to be looked into
6305  *
6306  * Returns the css if there's valid one with @id, otherwise returns NULL.
6307  * Should be called under rcu_read_lock().
6308  */
6309 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
6310 {
6311 	WARN_ON_ONCE(!rcu_read_lock_held());
6312 	return idr_find(&ss->css_idr, id);
6313 }
6314 
6315 /**
6316  * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
6317  * @path: path on the default hierarchy
6318  *
6319  * Find the cgroup at @path on the default hierarchy, increment its
6320  * reference count and return it.  Returns pointer to the found cgroup on
6321  * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR)
6322  * if @path points to a non-directory.
6323  */
6324 struct cgroup *cgroup_get_from_path(const char *path)
6325 {
6326 	struct kernfs_node *kn;
6327 	struct cgroup *cgrp;
6328 
6329 	mutex_lock(&cgroup_mutex);
6330 
6331 	kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path);
6332 	if (kn) {
6333 		if (kernfs_type(kn) == KERNFS_DIR) {
6334 			cgrp = kn->priv;
6335 			cgroup_get_live(cgrp);
6336 		} else {
6337 			cgrp = ERR_PTR(-ENOTDIR);
6338 		}
6339 		kernfs_put(kn);
6340 	} else {
6341 		cgrp = ERR_PTR(-ENOENT);
6342 	}
6343 
6344 	mutex_unlock(&cgroup_mutex);
6345 	return cgrp;
6346 }
6347 EXPORT_SYMBOL_GPL(cgroup_get_from_path);
6348 
6349 /**
6350  * cgroup_get_from_fd - get a cgroup pointer from a fd
6351  * @fd: fd obtained by open(cgroup2_dir)
6352  *
6353  * Find the cgroup from a fd which should be obtained
6354  * by opening a cgroup directory.  Returns a pointer to the
6355  * cgroup on success. ERR_PTR is returned if the cgroup
6356  * cannot be found.
6357  */
6358 struct cgroup *cgroup_get_from_fd(int fd)
6359 {
6360 	struct cgroup *cgrp;
6361 	struct file *f;
6362 
6363 	f = fget_raw(fd);
6364 	if (!f)
6365 		return ERR_PTR(-EBADF);
6366 
6367 	cgrp = cgroup_get_from_file(f);
6368 	fput(f);
6369 	return cgrp;
6370 }
6371 EXPORT_SYMBOL_GPL(cgroup_get_from_fd);
6372 
6373 static u64 power_of_ten(int power)
6374 {
6375 	u64 v = 1;
6376 	while (power--)
6377 		v *= 10;
6378 	return v;
6379 }
6380 
6381 /**
6382  * cgroup_parse_float - parse a floating number
6383  * @input: input string
6384  * @dec_shift: number of decimal digits to shift
6385  * @v: output
6386  *
6387  * Parse a decimal floating point number in @input and store the result in
6388  * @v with decimal point right shifted @dec_shift times.  For example, if
6389  * @input is "12.3456" and @dec_shift is 3, *@v will be set to 12345.
6390  * Returns 0 on success, -errno otherwise.
6391  *
6392  * There's nothing cgroup specific about this function except that it's
6393  * currently the only user.
6394  */
6395 int cgroup_parse_float(const char *input, unsigned dec_shift, s64 *v)
6396 {
6397 	s64 whole, frac = 0;
6398 	int fstart = 0, fend = 0, flen;
6399 
6400 	if (!sscanf(input, "%lld.%n%lld%n", &whole, &fstart, &frac, &fend))
6401 		return -EINVAL;
6402 	if (frac < 0)
6403 		return -EINVAL;
6404 
6405 	flen = fend > fstart ? fend - fstart : 0;
6406 	if (flen < dec_shift)
6407 		frac *= power_of_ten(dec_shift - flen);
6408 	else
6409 		frac = DIV_ROUND_CLOSEST_ULL(frac, power_of_ten(flen - dec_shift));
6410 
6411 	*v = whole * power_of_ten(dec_shift) + frac;
6412 	return 0;
6413 }
6414 
6415 /*
6416  * sock->sk_cgrp_data handling.  For more info, see sock_cgroup_data
6417  * definition in cgroup-defs.h.
6418  */
6419 #ifdef CONFIG_SOCK_CGROUP_DATA
6420 
6421 #if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID)
6422 
6423 DEFINE_SPINLOCK(cgroup_sk_update_lock);
6424 static bool cgroup_sk_alloc_disabled __read_mostly;
6425 
6426 void cgroup_sk_alloc_disable(void)
6427 {
6428 	if (cgroup_sk_alloc_disabled)
6429 		return;
6430 	pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n");
6431 	cgroup_sk_alloc_disabled = true;
6432 }
6433 
6434 #else
6435 
6436 #define cgroup_sk_alloc_disabled	false
6437 
6438 #endif
6439 
6440 void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
6441 {
6442 	if (cgroup_sk_alloc_disabled) {
6443 		skcd->no_refcnt = 1;
6444 		return;
6445 	}
6446 
6447 	/* Don't associate the sock with unrelated interrupted task's cgroup. */
6448 	if (in_interrupt())
6449 		return;
6450 
6451 	rcu_read_lock();
6452 
6453 	while (true) {
6454 		struct css_set *cset;
6455 
6456 		cset = task_css_set(current);
6457 		if (likely(cgroup_tryget(cset->dfl_cgrp))) {
6458 			skcd->val = (unsigned long)cset->dfl_cgrp;
6459 			cgroup_bpf_get(cset->dfl_cgrp);
6460 			break;
6461 		}
6462 		cpu_relax();
6463 	}
6464 
6465 	rcu_read_unlock();
6466 }
6467 
6468 void cgroup_sk_clone(struct sock_cgroup_data *skcd)
6469 {
6470 	if (skcd->val) {
6471 		if (skcd->no_refcnt)
6472 			return;
6473 		/*
6474 		 * We might be cloning a socket which is left in an empty
6475 		 * cgroup and the cgroup might have already been rmdir'd.
6476 		 * Don't use cgroup_get_live().
6477 		 */
6478 		cgroup_get(sock_cgroup_ptr(skcd));
6479 		cgroup_bpf_get(sock_cgroup_ptr(skcd));
6480 	}
6481 }
6482 
6483 void cgroup_sk_free(struct sock_cgroup_data *skcd)
6484 {
6485 	struct cgroup *cgrp = sock_cgroup_ptr(skcd);
6486 
6487 	if (skcd->no_refcnt)
6488 		return;
6489 	cgroup_bpf_put(cgrp);
6490 	cgroup_put(cgrp);
6491 }
6492 
6493 #endif	/* CONFIG_SOCK_CGROUP_DATA */
6494 
6495 #ifdef CONFIG_CGROUP_BPF
6496 int cgroup_bpf_attach(struct cgroup *cgrp,
6497 		      struct bpf_prog *prog, struct bpf_prog *replace_prog,
6498 		      struct bpf_cgroup_link *link,
6499 		      enum bpf_attach_type type,
6500 		      u32 flags)
6501 {
6502 	int ret;
6503 
6504 	mutex_lock(&cgroup_mutex);
6505 	ret = __cgroup_bpf_attach(cgrp, prog, replace_prog, link, type, flags);
6506 	mutex_unlock(&cgroup_mutex);
6507 	return ret;
6508 }
6509 
6510 int cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog,
6511 		      enum bpf_attach_type type)
6512 {
6513 	int ret;
6514 
6515 	mutex_lock(&cgroup_mutex);
6516 	ret = __cgroup_bpf_detach(cgrp, prog, NULL, type);
6517 	mutex_unlock(&cgroup_mutex);
6518 	return ret;
6519 }
6520 
6521 int cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr,
6522 		     union bpf_attr __user *uattr)
6523 {
6524 	int ret;
6525 
6526 	mutex_lock(&cgroup_mutex);
6527 	ret = __cgroup_bpf_query(cgrp, attr, uattr);
6528 	mutex_unlock(&cgroup_mutex);
6529 	return ret;
6530 }
6531 #endif /* CONFIG_CGROUP_BPF */
6532 
6533 #ifdef CONFIG_SYSFS
6534 static ssize_t show_delegatable_files(struct cftype *files, char *buf,
6535 				      ssize_t size, const char *prefix)
6536 {
6537 	struct cftype *cft;
6538 	ssize_t ret = 0;
6539 
6540 	for (cft = files; cft && cft->name[0] != '\0'; cft++) {
6541 		if (!(cft->flags & CFTYPE_NS_DELEGATABLE))
6542 			continue;
6543 
6544 		if (prefix)
6545 			ret += snprintf(buf + ret, size - ret, "%s.", prefix);
6546 
6547 		ret += snprintf(buf + ret, size - ret, "%s\n", cft->name);
6548 
6549 		if (WARN_ON(ret >= size))
6550 			break;
6551 	}
6552 
6553 	return ret;
6554 }
6555 
6556 static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr,
6557 			      char *buf)
6558 {
6559 	struct cgroup_subsys *ss;
6560 	int ssid;
6561 	ssize_t ret = 0;
6562 
6563 	ret = show_delegatable_files(cgroup_base_files, buf, PAGE_SIZE - ret,
6564 				     NULL);
6565 
6566 	for_each_subsys(ss, ssid)
6567 		ret += show_delegatable_files(ss->dfl_cftypes, buf + ret,
6568 					      PAGE_SIZE - ret,
6569 					      cgroup_subsys_name[ssid]);
6570 
6571 	return ret;
6572 }
6573 static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate);
6574 
6575 static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr,
6576 			     char *buf)
6577 {
6578 	return snprintf(buf, PAGE_SIZE,
6579 			"nsdelegate\n"
6580 			"memory_localevents\n"
6581 			"memory_recursiveprot\n");
6582 }
6583 static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features);
6584 
6585 static struct attribute *cgroup_sysfs_attrs[] = {
6586 	&cgroup_delegate_attr.attr,
6587 	&cgroup_features_attr.attr,
6588 	NULL,
6589 };
6590 
6591 static const struct attribute_group cgroup_sysfs_attr_group = {
6592 	.attrs = cgroup_sysfs_attrs,
6593 	.name = "cgroup",
6594 };
6595 
6596 static int __init cgroup_sysfs_init(void)
6597 {
6598 	return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group);
6599 }
6600 subsys_initcall(cgroup_sysfs_init);
6601 
6602 #endif /* CONFIG_SYSFS */
6603