1 /* 2 * Generic process-grouping system. 3 * 4 * Based originally on the cpuset system, extracted by Paul Menage 5 * Copyright (C) 2006 Google, Inc 6 * 7 * Notifications support 8 * Copyright (C) 2009 Nokia Corporation 9 * Author: Kirill A. Shutemov 10 * 11 * Copyright notices from the original cpuset code: 12 * -------------------------------------------------- 13 * Copyright (C) 2003 BULL SA. 14 * Copyright (C) 2004-2006 Silicon Graphics, Inc. 15 * 16 * Portions derived from Patrick Mochel's sysfs code. 17 * sysfs is Copyright (c) 2001-3 Patrick Mochel 18 * 19 * 2003-10-10 Written by Simon Derr. 20 * 2003-10-22 Updates by Stephen Hemminger. 21 * 2004 May-July Rework by Paul Jackson. 22 * --------------------------------------------------- 23 * 24 * This file is subject to the terms and conditions of the GNU General Public 25 * License. See the file COPYING in the main directory of the Linux 26 * distribution for more details. 27 */ 28 29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 30 31 #include "cgroup-internal.h" 32 33 #include <linux/cred.h> 34 #include <linux/errno.h> 35 #include <linux/init_task.h> 36 #include <linux/kernel.h> 37 #include <linux/magic.h> 38 #include <linux/mutex.h> 39 #include <linux/mount.h> 40 #include <linux/pagemap.h> 41 #include <linux/proc_fs.h> 42 #include <linux/rcupdate.h> 43 #include <linux/sched.h> 44 #include <linux/sched/task.h> 45 #include <linux/slab.h> 46 #include <linux/spinlock.h> 47 #include <linux/percpu-rwsem.h> 48 #include <linux/string.h> 49 #include <linux/hashtable.h> 50 #include <linux/idr.h> 51 #include <linux/kthread.h> 52 #include <linux/atomic.h> 53 #include <linux/cpuset.h> 54 #include <linux/proc_ns.h> 55 #include <linux/nsproxy.h> 56 #include <linux/file.h> 57 #include <linux/fs_parser.h> 58 #include <linux/sched/cputime.h> 59 #include <linux/psi.h> 60 #include <net/sock.h> 61 62 #define CREATE_TRACE_POINTS 63 #include <trace/events/cgroup.h> 64 65 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \ 66 MAX_CFTYPE_NAME + 2) 67 /* let's not notify more than 100 times per second */ 68 #define CGROUP_FILE_NOTIFY_MIN_INTV DIV_ROUND_UP(HZ, 100) 69 70 /* 71 * To avoid confusing the compiler (and generating warnings) with code 72 * that attempts to access what would be a 0-element array (i.e. sized 73 * to a potentially empty array when CGROUP_SUBSYS_COUNT == 0), this 74 * constant expression can be added. 75 */ 76 #define CGROUP_HAS_SUBSYS_CONFIG (CGROUP_SUBSYS_COUNT > 0) 77 78 /* 79 * cgroup_mutex is the master lock. Any modification to cgroup or its 80 * hierarchy must be performed while holding it. 81 * 82 * css_set_lock protects task->cgroups pointer, the list of css_set 83 * objects, and the chain of tasks off each css_set. 84 * 85 * These locks are exported if CONFIG_PROVE_RCU so that accessors in 86 * cgroup.h can use them for lockdep annotations. 87 */ 88 DEFINE_MUTEX(cgroup_mutex); 89 DEFINE_SPINLOCK(css_set_lock); 90 91 #ifdef CONFIG_PROVE_RCU 92 EXPORT_SYMBOL_GPL(cgroup_mutex); 93 EXPORT_SYMBOL_GPL(css_set_lock); 94 #endif 95 96 DEFINE_SPINLOCK(trace_cgroup_path_lock); 97 char trace_cgroup_path[TRACE_CGROUP_PATH_LEN]; 98 bool cgroup_debug __read_mostly; 99 100 /* 101 * Protects cgroup_idr and css_idr so that IDs can be released without 102 * grabbing cgroup_mutex. 103 */ 104 static DEFINE_SPINLOCK(cgroup_idr_lock); 105 106 /* 107 * Protects cgroup_file->kn for !self csses. It synchronizes notifications 108 * against file removal/re-creation across css hiding. 109 */ 110 static DEFINE_SPINLOCK(cgroup_file_kn_lock); 111 112 DEFINE_PERCPU_RWSEM(cgroup_threadgroup_rwsem); 113 114 #define cgroup_assert_mutex_or_rcu_locked() \ 115 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \ 116 !lockdep_is_held(&cgroup_mutex), \ 117 "cgroup_mutex or RCU read lock required"); 118 119 /* 120 * cgroup destruction makes heavy use of work items and there can be a lot 121 * of concurrent destructions. Use a separate workqueue so that cgroup 122 * destruction work items don't end up filling up max_active of system_wq 123 * which may lead to deadlock. 124 */ 125 static struct workqueue_struct *cgroup_destroy_wq; 126 127 /* generate an array of cgroup subsystem pointers */ 128 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys, 129 struct cgroup_subsys *cgroup_subsys[] = { 130 #include <linux/cgroup_subsys.h> 131 }; 132 #undef SUBSYS 133 134 /* array of cgroup subsystem names */ 135 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x, 136 static const char *cgroup_subsys_name[] = { 137 #include <linux/cgroup_subsys.h> 138 }; 139 #undef SUBSYS 140 141 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */ 142 #define SUBSYS(_x) \ 143 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \ 144 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \ 145 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \ 146 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key); 147 #include <linux/cgroup_subsys.h> 148 #undef SUBSYS 149 150 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key, 151 static struct static_key_true *cgroup_subsys_enabled_key[] = { 152 #include <linux/cgroup_subsys.h> 153 }; 154 #undef SUBSYS 155 156 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key, 157 static struct static_key_true *cgroup_subsys_on_dfl_key[] = { 158 #include <linux/cgroup_subsys.h> 159 }; 160 #undef SUBSYS 161 162 static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu); 163 164 /* the default hierarchy */ 165 struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu }; 166 EXPORT_SYMBOL_GPL(cgrp_dfl_root); 167 168 /* 169 * The default hierarchy always exists but is hidden until mounted for the 170 * first time. This is for backward compatibility. 171 */ 172 static bool cgrp_dfl_visible; 173 174 /* some controllers are not supported in the default hierarchy */ 175 static u16 cgrp_dfl_inhibit_ss_mask; 176 177 /* some controllers are implicitly enabled on the default hierarchy */ 178 static u16 cgrp_dfl_implicit_ss_mask; 179 180 /* some controllers can be threaded on the default hierarchy */ 181 static u16 cgrp_dfl_threaded_ss_mask; 182 183 /* The list of hierarchy roots */ 184 LIST_HEAD(cgroup_roots); 185 static int cgroup_root_count; 186 187 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */ 188 static DEFINE_IDR(cgroup_hierarchy_idr); 189 190 /* 191 * Assign a monotonically increasing serial number to csses. It guarantees 192 * cgroups with bigger numbers are newer than those with smaller numbers. 193 * Also, as csses are always appended to the parent's ->children list, it 194 * guarantees that sibling csses are always sorted in the ascending serial 195 * number order on the list. Protected by cgroup_mutex. 196 */ 197 static u64 css_serial_nr_next = 1; 198 199 /* 200 * These bitmasks identify subsystems with specific features to avoid 201 * having to do iterative checks repeatedly. 202 */ 203 static u16 have_fork_callback __read_mostly; 204 static u16 have_exit_callback __read_mostly; 205 static u16 have_release_callback __read_mostly; 206 static u16 have_canfork_callback __read_mostly; 207 208 /* cgroup namespace for init task */ 209 struct cgroup_namespace init_cgroup_ns = { 210 .ns.count = REFCOUNT_INIT(2), 211 .user_ns = &init_user_ns, 212 .ns.ops = &cgroupns_operations, 213 .ns.inum = PROC_CGROUP_INIT_INO, 214 .root_cset = &init_css_set, 215 }; 216 217 static struct file_system_type cgroup2_fs_type; 218 static struct cftype cgroup_base_files[]; 219 220 /* cgroup optional features */ 221 enum cgroup_opt_features { 222 #ifdef CONFIG_PSI 223 OPT_FEATURE_PRESSURE, 224 #endif 225 OPT_FEATURE_COUNT 226 }; 227 228 static const char *cgroup_opt_feature_names[OPT_FEATURE_COUNT] = { 229 #ifdef CONFIG_PSI 230 "pressure", 231 #endif 232 }; 233 234 static u16 cgroup_feature_disable_mask __read_mostly; 235 236 static int cgroup_apply_control(struct cgroup *cgrp); 237 static void cgroup_finalize_control(struct cgroup *cgrp, int ret); 238 static void css_task_iter_skip(struct css_task_iter *it, 239 struct task_struct *task); 240 static int cgroup_destroy_locked(struct cgroup *cgrp); 241 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp, 242 struct cgroup_subsys *ss); 243 static void css_release(struct percpu_ref *ref); 244 static void kill_css(struct cgroup_subsys_state *css); 245 static int cgroup_addrm_files(struct cgroup_subsys_state *css, 246 struct cgroup *cgrp, struct cftype cfts[], 247 bool is_add); 248 249 /** 250 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID 251 * @ssid: subsys ID of interest 252 * 253 * cgroup_subsys_enabled() can only be used with literal subsys names which 254 * is fine for individual subsystems but unsuitable for cgroup core. This 255 * is slower static_key_enabled() based test indexed by @ssid. 256 */ 257 bool cgroup_ssid_enabled(int ssid) 258 { 259 if (!CGROUP_HAS_SUBSYS_CONFIG) 260 return false; 261 262 return static_key_enabled(cgroup_subsys_enabled_key[ssid]); 263 } 264 265 /** 266 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy 267 * @cgrp: the cgroup of interest 268 * 269 * The default hierarchy is the v2 interface of cgroup and this function 270 * can be used to test whether a cgroup is on the default hierarchy for 271 * cases where a subsystem should behave differently depending on the 272 * interface version. 273 * 274 * List of changed behaviors: 275 * 276 * - Mount options "noprefix", "xattr", "clone_children", "release_agent" 277 * and "name" are disallowed. 278 * 279 * - When mounting an existing superblock, mount options should match. 280 * 281 * - Remount is disallowed. 282 * 283 * - rename(2) is disallowed. 284 * 285 * - "tasks" is removed. Everything should be at process granularity. Use 286 * "cgroup.procs" instead. 287 * 288 * - "cgroup.procs" is not sorted. pids will be unique unless they got 289 * recycled in-between reads. 290 * 291 * - "release_agent" and "notify_on_release" are removed. Replacement 292 * notification mechanism will be implemented. 293 * 294 * - "cgroup.clone_children" is removed. 295 * 296 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup 297 * and its descendants contain no task; otherwise, 1. The file also 298 * generates kernfs notification which can be monitored through poll and 299 * [di]notify when the value of the file changes. 300 * 301 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and 302 * take masks of ancestors with non-empty cpus/mems, instead of being 303 * moved to an ancestor. 304 * 305 * - cpuset: a task can be moved into an empty cpuset, and again it takes 306 * masks of ancestors. 307 * 308 * - blkcg: blk-throttle becomes properly hierarchical. 309 * 310 * - debug: disallowed on the default hierarchy. 311 */ 312 bool cgroup_on_dfl(const struct cgroup *cgrp) 313 { 314 return cgrp->root == &cgrp_dfl_root; 315 } 316 317 /* IDR wrappers which synchronize using cgroup_idr_lock */ 318 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end, 319 gfp_t gfp_mask) 320 { 321 int ret; 322 323 idr_preload(gfp_mask); 324 spin_lock_bh(&cgroup_idr_lock); 325 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM); 326 spin_unlock_bh(&cgroup_idr_lock); 327 idr_preload_end(); 328 return ret; 329 } 330 331 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id) 332 { 333 void *ret; 334 335 spin_lock_bh(&cgroup_idr_lock); 336 ret = idr_replace(idr, ptr, id); 337 spin_unlock_bh(&cgroup_idr_lock); 338 return ret; 339 } 340 341 static void cgroup_idr_remove(struct idr *idr, int id) 342 { 343 spin_lock_bh(&cgroup_idr_lock); 344 idr_remove(idr, id); 345 spin_unlock_bh(&cgroup_idr_lock); 346 } 347 348 static bool cgroup_has_tasks(struct cgroup *cgrp) 349 { 350 return cgrp->nr_populated_csets; 351 } 352 353 bool cgroup_is_threaded(struct cgroup *cgrp) 354 { 355 return cgrp->dom_cgrp != cgrp; 356 } 357 358 /* can @cgrp host both domain and threaded children? */ 359 static bool cgroup_is_mixable(struct cgroup *cgrp) 360 { 361 /* 362 * Root isn't under domain level resource control exempting it from 363 * the no-internal-process constraint, so it can serve as a thread 364 * root and a parent of resource domains at the same time. 365 */ 366 return !cgroup_parent(cgrp); 367 } 368 369 /* can @cgrp become a thread root? Should always be true for a thread root */ 370 static bool cgroup_can_be_thread_root(struct cgroup *cgrp) 371 { 372 /* mixables don't care */ 373 if (cgroup_is_mixable(cgrp)) 374 return true; 375 376 /* domain roots can't be nested under threaded */ 377 if (cgroup_is_threaded(cgrp)) 378 return false; 379 380 /* can only have either domain or threaded children */ 381 if (cgrp->nr_populated_domain_children) 382 return false; 383 384 /* and no domain controllers can be enabled */ 385 if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask) 386 return false; 387 388 return true; 389 } 390 391 /* is @cgrp root of a threaded subtree? */ 392 bool cgroup_is_thread_root(struct cgroup *cgrp) 393 { 394 /* thread root should be a domain */ 395 if (cgroup_is_threaded(cgrp)) 396 return false; 397 398 /* a domain w/ threaded children is a thread root */ 399 if (cgrp->nr_threaded_children) 400 return true; 401 402 /* 403 * A domain which has tasks and explicit threaded controllers 404 * enabled is a thread root. 405 */ 406 if (cgroup_has_tasks(cgrp) && 407 (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask)) 408 return true; 409 410 return false; 411 } 412 413 /* a domain which isn't connected to the root w/o brekage can't be used */ 414 static bool cgroup_is_valid_domain(struct cgroup *cgrp) 415 { 416 /* the cgroup itself can be a thread root */ 417 if (cgroup_is_threaded(cgrp)) 418 return false; 419 420 /* but the ancestors can't be unless mixable */ 421 while ((cgrp = cgroup_parent(cgrp))) { 422 if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp)) 423 return false; 424 if (cgroup_is_threaded(cgrp)) 425 return false; 426 } 427 428 return true; 429 } 430 431 /* subsystems visibly enabled on a cgroup */ 432 static u16 cgroup_control(struct cgroup *cgrp) 433 { 434 struct cgroup *parent = cgroup_parent(cgrp); 435 u16 root_ss_mask = cgrp->root->subsys_mask; 436 437 if (parent) { 438 u16 ss_mask = parent->subtree_control; 439 440 /* threaded cgroups can only have threaded controllers */ 441 if (cgroup_is_threaded(cgrp)) 442 ss_mask &= cgrp_dfl_threaded_ss_mask; 443 return ss_mask; 444 } 445 446 if (cgroup_on_dfl(cgrp)) 447 root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask | 448 cgrp_dfl_implicit_ss_mask); 449 return root_ss_mask; 450 } 451 452 /* subsystems enabled on a cgroup */ 453 static u16 cgroup_ss_mask(struct cgroup *cgrp) 454 { 455 struct cgroup *parent = cgroup_parent(cgrp); 456 457 if (parent) { 458 u16 ss_mask = parent->subtree_ss_mask; 459 460 /* threaded cgroups can only have threaded controllers */ 461 if (cgroup_is_threaded(cgrp)) 462 ss_mask &= cgrp_dfl_threaded_ss_mask; 463 return ss_mask; 464 } 465 466 return cgrp->root->subsys_mask; 467 } 468 469 /** 470 * cgroup_css - obtain a cgroup's css for the specified subsystem 471 * @cgrp: the cgroup of interest 472 * @ss: the subsystem of interest (%NULL returns @cgrp->self) 473 * 474 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This 475 * function must be called either under cgroup_mutex or rcu_read_lock() and 476 * the caller is responsible for pinning the returned css if it wants to 477 * keep accessing it outside the said locks. This function may return 478 * %NULL if @cgrp doesn't have @subsys_id enabled. 479 */ 480 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp, 481 struct cgroup_subsys *ss) 482 { 483 if (CGROUP_HAS_SUBSYS_CONFIG && ss) 484 return rcu_dereference_check(cgrp->subsys[ss->id], 485 lockdep_is_held(&cgroup_mutex)); 486 else 487 return &cgrp->self; 488 } 489 490 /** 491 * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem 492 * @cgrp: the cgroup of interest 493 * @ss: the subsystem of interest 494 * 495 * Find and get @cgrp's css associated with @ss. If the css doesn't exist 496 * or is offline, %NULL is returned. 497 */ 498 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp, 499 struct cgroup_subsys *ss) 500 { 501 struct cgroup_subsys_state *css; 502 503 rcu_read_lock(); 504 css = cgroup_css(cgrp, ss); 505 if (css && !css_tryget_online(css)) 506 css = NULL; 507 rcu_read_unlock(); 508 509 return css; 510 } 511 512 /** 513 * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss 514 * @cgrp: the cgroup of interest 515 * @ss: the subsystem of interest (%NULL returns @cgrp->self) 516 * 517 * Similar to cgroup_css() but returns the effective css, which is defined 518 * as the matching css of the nearest ancestor including self which has @ss 519 * enabled. If @ss is associated with the hierarchy @cgrp is on, this 520 * function is guaranteed to return non-NULL css. 521 */ 522 static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp, 523 struct cgroup_subsys *ss) 524 { 525 lockdep_assert_held(&cgroup_mutex); 526 527 if (!ss) 528 return &cgrp->self; 529 530 /* 531 * This function is used while updating css associations and thus 532 * can't test the csses directly. Test ss_mask. 533 */ 534 while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) { 535 cgrp = cgroup_parent(cgrp); 536 if (!cgrp) 537 return NULL; 538 } 539 540 return cgroup_css(cgrp, ss); 541 } 542 543 /** 544 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem 545 * @cgrp: the cgroup of interest 546 * @ss: the subsystem of interest 547 * 548 * Find and get the effective css of @cgrp for @ss. The effective css is 549 * defined as the matching css of the nearest ancestor including self which 550 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on, 551 * the root css is returned, so this function always returns a valid css. 552 * 553 * The returned css is not guaranteed to be online, and therefore it is the 554 * callers responsibility to try get a reference for it. 555 */ 556 struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp, 557 struct cgroup_subsys *ss) 558 { 559 struct cgroup_subsys_state *css; 560 561 if (!CGROUP_HAS_SUBSYS_CONFIG) 562 return NULL; 563 564 do { 565 css = cgroup_css(cgrp, ss); 566 567 if (css) 568 return css; 569 cgrp = cgroup_parent(cgrp); 570 } while (cgrp); 571 572 return init_css_set.subsys[ss->id]; 573 } 574 575 /** 576 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem 577 * @cgrp: the cgroup of interest 578 * @ss: the subsystem of interest 579 * 580 * Find and get the effective css of @cgrp for @ss. The effective css is 581 * defined as the matching css of the nearest ancestor including self which 582 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on, 583 * the root css is returned, so this function always returns a valid css. 584 * The returned css must be put using css_put(). 585 */ 586 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp, 587 struct cgroup_subsys *ss) 588 { 589 struct cgroup_subsys_state *css; 590 591 if (!CGROUP_HAS_SUBSYS_CONFIG) 592 return NULL; 593 594 rcu_read_lock(); 595 596 do { 597 css = cgroup_css(cgrp, ss); 598 599 if (css && css_tryget_online(css)) 600 goto out_unlock; 601 cgrp = cgroup_parent(cgrp); 602 } while (cgrp); 603 604 css = init_css_set.subsys[ss->id]; 605 css_get(css); 606 out_unlock: 607 rcu_read_unlock(); 608 return css; 609 } 610 EXPORT_SYMBOL_GPL(cgroup_get_e_css); 611 612 static void cgroup_get_live(struct cgroup *cgrp) 613 { 614 WARN_ON_ONCE(cgroup_is_dead(cgrp)); 615 css_get(&cgrp->self); 616 } 617 618 /** 619 * __cgroup_task_count - count the number of tasks in a cgroup. The caller 620 * is responsible for taking the css_set_lock. 621 * @cgrp: the cgroup in question 622 */ 623 int __cgroup_task_count(const struct cgroup *cgrp) 624 { 625 int count = 0; 626 struct cgrp_cset_link *link; 627 628 lockdep_assert_held(&css_set_lock); 629 630 list_for_each_entry(link, &cgrp->cset_links, cset_link) 631 count += link->cset->nr_tasks; 632 633 return count; 634 } 635 636 /** 637 * cgroup_task_count - count the number of tasks in a cgroup. 638 * @cgrp: the cgroup in question 639 */ 640 int cgroup_task_count(const struct cgroup *cgrp) 641 { 642 int count; 643 644 spin_lock_irq(&css_set_lock); 645 count = __cgroup_task_count(cgrp); 646 spin_unlock_irq(&css_set_lock); 647 648 return count; 649 } 650 651 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of) 652 { 653 struct cgroup *cgrp = of->kn->parent->priv; 654 struct cftype *cft = of_cft(of); 655 656 /* 657 * This is open and unprotected implementation of cgroup_css(). 658 * seq_css() is only called from a kernfs file operation which has 659 * an active reference on the file. Because all the subsystem 660 * files are drained before a css is disassociated with a cgroup, 661 * the matching css from the cgroup's subsys table is guaranteed to 662 * be and stay valid until the enclosing operation is complete. 663 */ 664 if (CGROUP_HAS_SUBSYS_CONFIG && cft->ss) 665 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]); 666 else 667 return &cgrp->self; 668 } 669 EXPORT_SYMBOL_GPL(of_css); 670 671 /** 672 * for_each_css - iterate all css's of a cgroup 673 * @css: the iteration cursor 674 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end 675 * @cgrp: the target cgroup to iterate css's of 676 * 677 * Should be called under cgroup_[tree_]mutex. 678 */ 679 #define for_each_css(css, ssid, cgrp) \ 680 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \ 681 if (!((css) = rcu_dereference_check( \ 682 (cgrp)->subsys[(ssid)], \ 683 lockdep_is_held(&cgroup_mutex)))) { } \ 684 else 685 686 /** 687 * for_each_e_css - iterate all effective css's of a cgroup 688 * @css: the iteration cursor 689 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end 690 * @cgrp: the target cgroup to iterate css's of 691 * 692 * Should be called under cgroup_[tree_]mutex. 693 */ 694 #define for_each_e_css(css, ssid, cgrp) \ 695 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \ 696 if (!((css) = cgroup_e_css_by_mask(cgrp, \ 697 cgroup_subsys[(ssid)]))) \ 698 ; \ 699 else 700 701 /** 702 * do_each_subsys_mask - filter for_each_subsys with a bitmask 703 * @ss: the iteration cursor 704 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end 705 * @ss_mask: the bitmask 706 * 707 * The block will only run for cases where the ssid-th bit (1 << ssid) of 708 * @ss_mask is set. 709 */ 710 #define do_each_subsys_mask(ss, ssid, ss_mask) do { \ 711 unsigned long __ss_mask = (ss_mask); \ 712 if (!CGROUP_HAS_SUBSYS_CONFIG) { \ 713 (ssid) = 0; \ 714 break; \ 715 } \ 716 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \ 717 (ss) = cgroup_subsys[ssid]; \ 718 { 719 720 #define while_each_subsys_mask() \ 721 } \ 722 } \ 723 } while (false) 724 725 /* iterate over child cgrps, lock should be held throughout iteration */ 726 #define cgroup_for_each_live_child(child, cgrp) \ 727 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \ 728 if (({ lockdep_assert_held(&cgroup_mutex); \ 729 cgroup_is_dead(child); })) \ 730 ; \ 731 else 732 733 /* walk live descendants in pre order */ 734 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \ 735 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \ 736 if (({ lockdep_assert_held(&cgroup_mutex); \ 737 (dsct) = (d_css)->cgroup; \ 738 cgroup_is_dead(dsct); })) \ 739 ; \ 740 else 741 742 /* walk live descendants in postorder */ 743 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \ 744 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \ 745 if (({ lockdep_assert_held(&cgroup_mutex); \ 746 (dsct) = (d_css)->cgroup; \ 747 cgroup_is_dead(dsct); })) \ 748 ; \ 749 else 750 751 /* 752 * The default css_set - used by init and its children prior to any 753 * hierarchies being mounted. It contains a pointer to the root state 754 * for each subsystem. Also used to anchor the list of css_sets. Not 755 * reference-counted, to improve performance when child cgroups 756 * haven't been created. 757 */ 758 struct css_set init_css_set = { 759 .refcount = REFCOUNT_INIT(1), 760 .dom_cset = &init_css_set, 761 .tasks = LIST_HEAD_INIT(init_css_set.tasks), 762 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks), 763 .dying_tasks = LIST_HEAD_INIT(init_css_set.dying_tasks), 764 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters), 765 .threaded_csets = LIST_HEAD_INIT(init_css_set.threaded_csets), 766 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links), 767 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node), 768 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node), 769 770 /* 771 * The following field is re-initialized when this cset gets linked 772 * in cgroup_init(). However, let's initialize the field 773 * statically too so that the default cgroup can be accessed safely 774 * early during boot. 775 */ 776 .dfl_cgrp = &cgrp_dfl_root.cgrp, 777 }; 778 779 static int css_set_count = 1; /* 1 for init_css_set */ 780 781 static bool css_set_threaded(struct css_set *cset) 782 { 783 return cset->dom_cset != cset; 784 } 785 786 /** 787 * css_set_populated - does a css_set contain any tasks? 788 * @cset: target css_set 789 * 790 * css_set_populated() should be the same as !!cset->nr_tasks at steady 791 * state. However, css_set_populated() can be called while a task is being 792 * added to or removed from the linked list before the nr_tasks is 793 * properly updated. Hence, we can't just look at ->nr_tasks here. 794 */ 795 static bool css_set_populated(struct css_set *cset) 796 { 797 lockdep_assert_held(&css_set_lock); 798 799 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks); 800 } 801 802 /** 803 * cgroup_update_populated - update the populated count of a cgroup 804 * @cgrp: the target cgroup 805 * @populated: inc or dec populated count 806 * 807 * One of the css_sets associated with @cgrp is either getting its first 808 * task or losing the last. Update @cgrp->nr_populated_* accordingly. The 809 * count is propagated towards root so that a given cgroup's 810 * nr_populated_children is zero iff none of its descendants contain any 811 * tasks. 812 * 813 * @cgrp's interface file "cgroup.populated" is zero if both 814 * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and 815 * 1 otherwise. When the sum changes from or to zero, userland is notified 816 * that the content of the interface file has changed. This can be used to 817 * detect when @cgrp and its descendants become populated or empty. 818 */ 819 static void cgroup_update_populated(struct cgroup *cgrp, bool populated) 820 { 821 struct cgroup *child = NULL; 822 int adj = populated ? 1 : -1; 823 824 lockdep_assert_held(&css_set_lock); 825 826 do { 827 bool was_populated = cgroup_is_populated(cgrp); 828 829 if (!child) { 830 cgrp->nr_populated_csets += adj; 831 } else { 832 if (cgroup_is_threaded(child)) 833 cgrp->nr_populated_threaded_children += adj; 834 else 835 cgrp->nr_populated_domain_children += adj; 836 } 837 838 if (was_populated == cgroup_is_populated(cgrp)) 839 break; 840 841 cgroup1_check_for_release(cgrp); 842 TRACE_CGROUP_PATH(notify_populated, cgrp, 843 cgroup_is_populated(cgrp)); 844 cgroup_file_notify(&cgrp->events_file); 845 846 child = cgrp; 847 cgrp = cgroup_parent(cgrp); 848 } while (cgrp); 849 } 850 851 /** 852 * css_set_update_populated - update populated state of a css_set 853 * @cset: target css_set 854 * @populated: whether @cset is populated or depopulated 855 * 856 * @cset is either getting the first task or losing the last. Update the 857 * populated counters of all associated cgroups accordingly. 858 */ 859 static void css_set_update_populated(struct css_set *cset, bool populated) 860 { 861 struct cgrp_cset_link *link; 862 863 lockdep_assert_held(&css_set_lock); 864 865 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) 866 cgroup_update_populated(link->cgrp, populated); 867 } 868 869 /* 870 * @task is leaving, advance task iterators which are pointing to it so 871 * that they can resume at the next position. Advancing an iterator might 872 * remove it from the list, use safe walk. See css_task_iter_skip() for 873 * details. 874 */ 875 static void css_set_skip_task_iters(struct css_set *cset, 876 struct task_struct *task) 877 { 878 struct css_task_iter *it, *pos; 879 880 list_for_each_entry_safe(it, pos, &cset->task_iters, iters_node) 881 css_task_iter_skip(it, task); 882 } 883 884 /** 885 * css_set_move_task - move a task from one css_set to another 886 * @task: task being moved 887 * @from_cset: css_set @task currently belongs to (may be NULL) 888 * @to_cset: new css_set @task is being moved to (may be NULL) 889 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks 890 * 891 * Move @task from @from_cset to @to_cset. If @task didn't belong to any 892 * css_set, @from_cset can be NULL. If @task is being disassociated 893 * instead of moved, @to_cset can be NULL. 894 * 895 * This function automatically handles populated counter updates and 896 * css_task_iter adjustments but the caller is responsible for managing 897 * @from_cset and @to_cset's reference counts. 898 */ 899 static void css_set_move_task(struct task_struct *task, 900 struct css_set *from_cset, struct css_set *to_cset, 901 bool use_mg_tasks) 902 { 903 lockdep_assert_held(&css_set_lock); 904 905 if (to_cset && !css_set_populated(to_cset)) 906 css_set_update_populated(to_cset, true); 907 908 if (from_cset) { 909 WARN_ON_ONCE(list_empty(&task->cg_list)); 910 911 css_set_skip_task_iters(from_cset, task); 912 list_del_init(&task->cg_list); 913 if (!css_set_populated(from_cset)) 914 css_set_update_populated(from_cset, false); 915 } else { 916 WARN_ON_ONCE(!list_empty(&task->cg_list)); 917 } 918 919 if (to_cset) { 920 /* 921 * We are synchronized through cgroup_threadgroup_rwsem 922 * against PF_EXITING setting such that we can't race 923 * against cgroup_exit()/cgroup_free() dropping the css_set. 924 */ 925 WARN_ON_ONCE(task->flags & PF_EXITING); 926 927 cgroup_move_task(task, to_cset); 928 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks : 929 &to_cset->tasks); 930 } 931 } 932 933 /* 934 * hash table for cgroup groups. This improves the performance to find 935 * an existing css_set. This hash doesn't (currently) take into 936 * account cgroups in empty hierarchies. 937 */ 938 #define CSS_SET_HASH_BITS 7 939 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS); 940 941 static unsigned long css_set_hash(struct cgroup_subsys_state *css[]) 942 { 943 unsigned long key = 0UL; 944 struct cgroup_subsys *ss; 945 int i; 946 947 for_each_subsys(ss, i) 948 key += (unsigned long)css[i]; 949 key = (key >> 16) ^ key; 950 951 return key; 952 } 953 954 void put_css_set_locked(struct css_set *cset) 955 { 956 struct cgrp_cset_link *link, *tmp_link; 957 struct cgroup_subsys *ss; 958 int ssid; 959 960 lockdep_assert_held(&css_set_lock); 961 962 if (!refcount_dec_and_test(&cset->refcount)) 963 return; 964 965 WARN_ON_ONCE(!list_empty(&cset->threaded_csets)); 966 967 /* This css_set is dead. Unlink it and release cgroup and css refs */ 968 for_each_subsys(ss, ssid) { 969 list_del(&cset->e_cset_node[ssid]); 970 css_put(cset->subsys[ssid]); 971 } 972 hash_del(&cset->hlist); 973 css_set_count--; 974 975 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) { 976 list_del(&link->cset_link); 977 list_del(&link->cgrp_link); 978 if (cgroup_parent(link->cgrp)) 979 cgroup_put(link->cgrp); 980 kfree(link); 981 } 982 983 if (css_set_threaded(cset)) { 984 list_del(&cset->threaded_csets_node); 985 put_css_set_locked(cset->dom_cset); 986 } 987 988 kfree_rcu(cset, rcu_head); 989 } 990 991 /** 992 * compare_css_sets - helper function for find_existing_css_set(). 993 * @cset: candidate css_set being tested 994 * @old_cset: existing css_set for a task 995 * @new_cgrp: cgroup that's being entered by the task 996 * @template: desired set of css pointers in css_set (pre-calculated) 997 * 998 * Returns true if "cset" matches "old_cset" except for the hierarchy 999 * which "new_cgrp" belongs to, for which it should match "new_cgrp". 1000 */ 1001 static bool compare_css_sets(struct css_set *cset, 1002 struct css_set *old_cset, 1003 struct cgroup *new_cgrp, 1004 struct cgroup_subsys_state *template[]) 1005 { 1006 struct cgroup *new_dfl_cgrp; 1007 struct list_head *l1, *l2; 1008 1009 /* 1010 * On the default hierarchy, there can be csets which are 1011 * associated with the same set of cgroups but different csses. 1012 * Let's first ensure that csses match. 1013 */ 1014 if (memcmp(template, cset->subsys, sizeof(cset->subsys))) 1015 return false; 1016 1017 1018 /* @cset's domain should match the default cgroup's */ 1019 if (cgroup_on_dfl(new_cgrp)) 1020 new_dfl_cgrp = new_cgrp; 1021 else 1022 new_dfl_cgrp = old_cset->dfl_cgrp; 1023 1024 if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp) 1025 return false; 1026 1027 /* 1028 * Compare cgroup pointers in order to distinguish between 1029 * different cgroups in hierarchies. As different cgroups may 1030 * share the same effective css, this comparison is always 1031 * necessary. 1032 */ 1033 l1 = &cset->cgrp_links; 1034 l2 = &old_cset->cgrp_links; 1035 while (1) { 1036 struct cgrp_cset_link *link1, *link2; 1037 struct cgroup *cgrp1, *cgrp2; 1038 1039 l1 = l1->next; 1040 l2 = l2->next; 1041 /* See if we reached the end - both lists are equal length. */ 1042 if (l1 == &cset->cgrp_links) { 1043 BUG_ON(l2 != &old_cset->cgrp_links); 1044 break; 1045 } else { 1046 BUG_ON(l2 == &old_cset->cgrp_links); 1047 } 1048 /* Locate the cgroups associated with these links. */ 1049 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link); 1050 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link); 1051 cgrp1 = link1->cgrp; 1052 cgrp2 = link2->cgrp; 1053 /* Hierarchies should be linked in the same order. */ 1054 BUG_ON(cgrp1->root != cgrp2->root); 1055 1056 /* 1057 * If this hierarchy is the hierarchy of the cgroup 1058 * that's changing, then we need to check that this 1059 * css_set points to the new cgroup; if it's any other 1060 * hierarchy, then this css_set should point to the 1061 * same cgroup as the old css_set. 1062 */ 1063 if (cgrp1->root == new_cgrp->root) { 1064 if (cgrp1 != new_cgrp) 1065 return false; 1066 } else { 1067 if (cgrp1 != cgrp2) 1068 return false; 1069 } 1070 } 1071 return true; 1072 } 1073 1074 /** 1075 * find_existing_css_set - init css array and find the matching css_set 1076 * @old_cset: the css_set that we're using before the cgroup transition 1077 * @cgrp: the cgroup that we're moving into 1078 * @template: out param for the new set of csses, should be clear on entry 1079 */ 1080 static struct css_set *find_existing_css_set(struct css_set *old_cset, 1081 struct cgroup *cgrp, 1082 struct cgroup_subsys_state *template[]) 1083 { 1084 struct cgroup_root *root = cgrp->root; 1085 struct cgroup_subsys *ss; 1086 struct css_set *cset; 1087 unsigned long key; 1088 int i; 1089 1090 /* 1091 * Build the set of subsystem state objects that we want to see in the 1092 * new css_set. While subsystems can change globally, the entries here 1093 * won't change, so no need for locking. 1094 */ 1095 for_each_subsys(ss, i) { 1096 if (root->subsys_mask & (1UL << i)) { 1097 /* 1098 * @ss is in this hierarchy, so we want the 1099 * effective css from @cgrp. 1100 */ 1101 template[i] = cgroup_e_css_by_mask(cgrp, ss); 1102 } else { 1103 /* 1104 * @ss is not in this hierarchy, so we don't want 1105 * to change the css. 1106 */ 1107 template[i] = old_cset->subsys[i]; 1108 } 1109 } 1110 1111 key = css_set_hash(template); 1112 hash_for_each_possible(css_set_table, cset, hlist, key) { 1113 if (!compare_css_sets(cset, old_cset, cgrp, template)) 1114 continue; 1115 1116 /* This css_set matches what we need */ 1117 return cset; 1118 } 1119 1120 /* No existing cgroup group matched */ 1121 return NULL; 1122 } 1123 1124 static void free_cgrp_cset_links(struct list_head *links_to_free) 1125 { 1126 struct cgrp_cset_link *link, *tmp_link; 1127 1128 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) { 1129 list_del(&link->cset_link); 1130 kfree(link); 1131 } 1132 } 1133 1134 /** 1135 * allocate_cgrp_cset_links - allocate cgrp_cset_links 1136 * @count: the number of links to allocate 1137 * @tmp_links: list_head the allocated links are put on 1138 * 1139 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links 1140 * through ->cset_link. Returns 0 on success or -errno. 1141 */ 1142 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links) 1143 { 1144 struct cgrp_cset_link *link; 1145 int i; 1146 1147 INIT_LIST_HEAD(tmp_links); 1148 1149 for (i = 0; i < count; i++) { 1150 link = kzalloc(sizeof(*link), GFP_KERNEL); 1151 if (!link) { 1152 free_cgrp_cset_links(tmp_links); 1153 return -ENOMEM; 1154 } 1155 list_add(&link->cset_link, tmp_links); 1156 } 1157 return 0; 1158 } 1159 1160 /** 1161 * link_css_set - a helper function to link a css_set to a cgroup 1162 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links() 1163 * @cset: the css_set to be linked 1164 * @cgrp: the destination cgroup 1165 */ 1166 static void link_css_set(struct list_head *tmp_links, struct css_set *cset, 1167 struct cgroup *cgrp) 1168 { 1169 struct cgrp_cset_link *link; 1170 1171 BUG_ON(list_empty(tmp_links)); 1172 1173 if (cgroup_on_dfl(cgrp)) 1174 cset->dfl_cgrp = cgrp; 1175 1176 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link); 1177 link->cset = cset; 1178 link->cgrp = cgrp; 1179 1180 /* 1181 * Always add links to the tail of the lists so that the lists are 1182 * in chronological order. 1183 */ 1184 list_move_tail(&link->cset_link, &cgrp->cset_links); 1185 list_add_tail(&link->cgrp_link, &cset->cgrp_links); 1186 1187 if (cgroup_parent(cgrp)) 1188 cgroup_get_live(cgrp); 1189 } 1190 1191 /** 1192 * find_css_set - return a new css_set with one cgroup updated 1193 * @old_cset: the baseline css_set 1194 * @cgrp: the cgroup to be updated 1195 * 1196 * Return a new css_set that's equivalent to @old_cset, but with @cgrp 1197 * substituted into the appropriate hierarchy. 1198 */ 1199 static struct css_set *find_css_set(struct css_set *old_cset, 1200 struct cgroup *cgrp) 1201 { 1202 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { }; 1203 struct css_set *cset; 1204 struct list_head tmp_links; 1205 struct cgrp_cset_link *link; 1206 struct cgroup_subsys *ss; 1207 unsigned long key; 1208 int ssid; 1209 1210 lockdep_assert_held(&cgroup_mutex); 1211 1212 /* First see if we already have a cgroup group that matches 1213 * the desired set */ 1214 spin_lock_irq(&css_set_lock); 1215 cset = find_existing_css_set(old_cset, cgrp, template); 1216 if (cset) 1217 get_css_set(cset); 1218 spin_unlock_irq(&css_set_lock); 1219 1220 if (cset) 1221 return cset; 1222 1223 cset = kzalloc(sizeof(*cset), GFP_KERNEL); 1224 if (!cset) 1225 return NULL; 1226 1227 /* Allocate all the cgrp_cset_link objects that we'll need */ 1228 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) { 1229 kfree(cset); 1230 return NULL; 1231 } 1232 1233 refcount_set(&cset->refcount, 1); 1234 cset->dom_cset = cset; 1235 INIT_LIST_HEAD(&cset->tasks); 1236 INIT_LIST_HEAD(&cset->mg_tasks); 1237 INIT_LIST_HEAD(&cset->dying_tasks); 1238 INIT_LIST_HEAD(&cset->task_iters); 1239 INIT_LIST_HEAD(&cset->threaded_csets); 1240 INIT_HLIST_NODE(&cset->hlist); 1241 INIT_LIST_HEAD(&cset->cgrp_links); 1242 INIT_LIST_HEAD(&cset->mg_preload_node); 1243 INIT_LIST_HEAD(&cset->mg_node); 1244 1245 /* Copy the set of subsystem state objects generated in 1246 * find_existing_css_set() */ 1247 memcpy(cset->subsys, template, sizeof(cset->subsys)); 1248 1249 spin_lock_irq(&css_set_lock); 1250 /* Add reference counts and links from the new css_set. */ 1251 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) { 1252 struct cgroup *c = link->cgrp; 1253 1254 if (c->root == cgrp->root) 1255 c = cgrp; 1256 link_css_set(&tmp_links, cset, c); 1257 } 1258 1259 BUG_ON(!list_empty(&tmp_links)); 1260 1261 css_set_count++; 1262 1263 /* Add @cset to the hash table */ 1264 key = css_set_hash(cset->subsys); 1265 hash_add(css_set_table, &cset->hlist, key); 1266 1267 for_each_subsys(ss, ssid) { 1268 struct cgroup_subsys_state *css = cset->subsys[ssid]; 1269 1270 list_add_tail(&cset->e_cset_node[ssid], 1271 &css->cgroup->e_csets[ssid]); 1272 css_get(css); 1273 } 1274 1275 spin_unlock_irq(&css_set_lock); 1276 1277 /* 1278 * If @cset should be threaded, look up the matching dom_cset and 1279 * link them up. We first fully initialize @cset then look for the 1280 * dom_cset. It's simpler this way and safe as @cset is guaranteed 1281 * to stay empty until we return. 1282 */ 1283 if (cgroup_is_threaded(cset->dfl_cgrp)) { 1284 struct css_set *dcset; 1285 1286 dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp); 1287 if (!dcset) { 1288 put_css_set(cset); 1289 return NULL; 1290 } 1291 1292 spin_lock_irq(&css_set_lock); 1293 cset->dom_cset = dcset; 1294 list_add_tail(&cset->threaded_csets_node, 1295 &dcset->threaded_csets); 1296 spin_unlock_irq(&css_set_lock); 1297 } 1298 1299 return cset; 1300 } 1301 1302 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root) 1303 { 1304 struct cgroup *root_cgrp = kf_root->kn->priv; 1305 1306 return root_cgrp->root; 1307 } 1308 1309 static int cgroup_init_root_id(struct cgroup_root *root) 1310 { 1311 int id; 1312 1313 lockdep_assert_held(&cgroup_mutex); 1314 1315 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL); 1316 if (id < 0) 1317 return id; 1318 1319 root->hierarchy_id = id; 1320 return 0; 1321 } 1322 1323 static void cgroup_exit_root_id(struct cgroup_root *root) 1324 { 1325 lockdep_assert_held(&cgroup_mutex); 1326 1327 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id); 1328 } 1329 1330 void cgroup_free_root(struct cgroup_root *root) 1331 { 1332 kfree(root); 1333 } 1334 1335 static void cgroup_destroy_root(struct cgroup_root *root) 1336 { 1337 struct cgroup *cgrp = &root->cgrp; 1338 struct cgrp_cset_link *link, *tmp_link; 1339 1340 trace_cgroup_destroy_root(root); 1341 1342 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp); 1343 1344 BUG_ON(atomic_read(&root->nr_cgrps)); 1345 BUG_ON(!list_empty(&cgrp->self.children)); 1346 1347 /* Rebind all subsystems back to the default hierarchy */ 1348 WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask)); 1349 1350 /* 1351 * Release all the links from cset_links to this hierarchy's 1352 * root cgroup 1353 */ 1354 spin_lock_irq(&css_set_lock); 1355 1356 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) { 1357 list_del(&link->cset_link); 1358 list_del(&link->cgrp_link); 1359 kfree(link); 1360 } 1361 1362 spin_unlock_irq(&css_set_lock); 1363 1364 if (!list_empty(&root->root_list)) { 1365 list_del(&root->root_list); 1366 cgroup_root_count--; 1367 } 1368 1369 cgroup_exit_root_id(root); 1370 1371 mutex_unlock(&cgroup_mutex); 1372 1373 cgroup_rstat_exit(cgrp); 1374 kernfs_destroy_root(root->kf_root); 1375 cgroup_free_root(root); 1376 } 1377 1378 /* 1379 * look up cgroup associated with current task's cgroup namespace on the 1380 * specified hierarchy 1381 */ 1382 static struct cgroup * 1383 current_cgns_cgroup_from_root(struct cgroup_root *root) 1384 { 1385 struct cgroup *res = NULL; 1386 struct css_set *cset; 1387 1388 lockdep_assert_held(&css_set_lock); 1389 1390 rcu_read_lock(); 1391 1392 cset = current->nsproxy->cgroup_ns->root_cset; 1393 if (cset == &init_css_set) { 1394 res = &root->cgrp; 1395 } else if (root == &cgrp_dfl_root) { 1396 res = cset->dfl_cgrp; 1397 } else { 1398 struct cgrp_cset_link *link; 1399 1400 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) { 1401 struct cgroup *c = link->cgrp; 1402 1403 if (c->root == root) { 1404 res = c; 1405 break; 1406 } 1407 } 1408 } 1409 rcu_read_unlock(); 1410 1411 BUG_ON(!res); 1412 return res; 1413 } 1414 1415 /* look up cgroup associated with given css_set on the specified hierarchy */ 1416 static struct cgroup *cset_cgroup_from_root(struct css_set *cset, 1417 struct cgroup_root *root) 1418 { 1419 struct cgroup *res = NULL; 1420 1421 lockdep_assert_held(&cgroup_mutex); 1422 lockdep_assert_held(&css_set_lock); 1423 1424 if (cset == &init_css_set) { 1425 res = &root->cgrp; 1426 } else if (root == &cgrp_dfl_root) { 1427 res = cset->dfl_cgrp; 1428 } else { 1429 struct cgrp_cset_link *link; 1430 1431 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) { 1432 struct cgroup *c = link->cgrp; 1433 1434 if (c->root == root) { 1435 res = c; 1436 break; 1437 } 1438 } 1439 } 1440 1441 BUG_ON(!res); 1442 return res; 1443 } 1444 1445 /* 1446 * Return the cgroup for "task" from the given hierarchy. Must be 1447 * called with cgroup_mutex and css_set_lock held. 1448 */ 1449 struct cgroup *task_cgroup_from_root(struct task_struct *task, 1450 struct cgroup_root *root) 1451 { 1452 /* 1453 * No need to lock the task - since we hold css_set_lock the 1454 * task can't change groups. 1455 */ 1456 return cset_cgroup_from_root(task_css_set(task), root); 1457 } 1458 1459 /* 1460 * A task must hold cgroup_mutex to modify cgroups. 1461 * 1462 * Any task can increment and decrement the count field without lock. 1463 * So in general, code holding cgroup_mutex can't rely on the count 1464 * field not changing. However, if the count goes to zero, then only 1465 * cgroup_attach_task() can increment it again. Because a count of zero 1466 * means that no tasks are currently attached, therefore there is no 1467 * way a task attached to that cgroup can fork (the other way to 1468 * increment the count). So code holding cgroup_mutex can safely 1469 * assume that if the count is zero, it will stay zero. Similarly, if 1470 * a task holds cgroup_mutex on a cgroup with zero count, it 1471 * knows that the cgroup won't be removed, as cgroup_rmdir() 1472 * needs that mutex. 1473 * 1474 * A cgroup can only be deleted if both its 'count' of using tasks 1475 * is zero, and its list of 'children' cgroups is empty. Since all 1476 * tasks in the system use _some_ cgroup, and since there is always at 1477 * least one task in the system (init, pid == 1), therefore, root cgroup 1478 * always has either children cgroups and/or using tasks. So we don't 1479 * need a special hack to ensure that root cgroup cannot be deleted. 1480 * 1481 * P.S. One more locking exception. RCU is used to guard the 1482 * update of a tasks cgroup pointer by cgroup_attach_task() 1483 */ 1484 1485 static struct kernfs_syscall_ops cgroup_kf_syscall_ops; 1486 1487 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft, 1488 char *buf) 1489 { 1490 struct cgroup_subsys *ss = cft->ss; 1491 1492 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) && 1493 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) { 1494 const char *dbg = (cft->flags & CFTYPE_DEBUG) ? ".__DEBUG__." : ""; 1495 1496 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s%s.%s", 1497 dbg, cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name, 1498 cft->name); 1499 } else { 1500 strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX); 1501 } 1502 return buf; 1503 } 1504 1505 /** 1506 * cgroup_file_mode - deduce file mode of a control file 1507 * @cft: the control file in question 1508 * 1509 * S_IRUGO for read, S_IWUSR for write. 1510 */ 1511 static umode_t cgroup_file_mode(const struct cftype *cft) 1512 { 1513 umode_t mode = 0; 1514 1515 if (cft->read_u64 || cft->read_s64 || cft->seq_show) 1516 mode |= S_IRUGO; 1517 1518 if (cft->write_u64 || cft->write_s64 || cft->write) { 1519 if (cft->flags & CFTYPE_WORLD_WRITABLE) 1520 mode |= S_IWUGO; 1521 else 1522 mode |= S_IWUSR; 1523 } 1524 1525 return mode; 1526 } 1527 1528 /** 1529 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask 1530 * @subtree_control: the new subtree_control mask to consider 1531 * @this_ss_mask: available subsystems 1532 * 1533 * On the default hierarchy, a subsystem may request other subsystems to be 1534 * enabled together through its ->depends_on mask. In such cases, more 1535 * subsystems than specified in "cgroup.subtree_control" may be enabled. 1536 * 1537 * This function calculates which subsystems need to be enabled if 1538 * @subtree_control is to be applied while restricted to @this_ss_mask. 1539 */ 1540 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask) 1541 { 1542 u16 cur_ss_mask = subtree_control; 1543 struct cgroup_subsys *ss; 1544 int ssid; 1545 1546 lockdep_assert_held(&cgroup_mutex); 1547 1548 cur_ss_mask |= cgrp_dfl_implicit_ss_mask; 1549 1550 while (true) { 1551 u16 new_ss_mask = cur_ss_mask; 1552 1553 do_each_subsys_mask(ss, ssid, cur_ss_mask) { 1554 new_ss_mask |= ss->depends_on; 1555 } while_each_subsys_mask(); 1556 1557 /* 1558 * Mask out subsystems which aren't available. This can 1559 * happen only if some depended-upon subsystems were bound 1560 * to non-default hierarchies. 1561 */ 1562 new_ss_mask &= this_ss_mask; 1563 1564 if (new_ss_mask == cur_ss_mask) 1565 break; 1566 cur_ss_mask = new_ss_mask; 1567 } 1568 1569 return cur_ss_mask; 1570 } 1571 1572 /** 1573 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods 1574 * @kn: the kernfs_node being serviced 1575 * 1576 * This helper undoes cgroup_kn_lock_live() and should be invoked before 1577 * the method finishes if locking succeeded. Note that once this function 1578 * returns the cgroup returned by cgroup_kn_lock_live() may become 1579 * inaccessible any time. If the caller intends to continue to access the 1580 * cgroup, it should pin it before invoking this function. 1581 */ 1582 void cgroup_kn_unlock(struct kernfs_node *kn) 1583 { 1584 struct cgroup *cgrp; 1585 1586 if (kernfs_type(kn) == KERNFS_DIR) 1587 cgrp = kn->priv; 1588 else 1589 cgrp = kn->parent->priv; 1590 1591 mutex_unlock(&cgroup_mutex); 1592 1593 kernfs_unbreak_active_protection(kn); 1594 cgroup_put(cgrp); 1595 } 1596 1597 /** 1598 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods 1599 * @kn: the kernfs_node being serviced 1600 * @drain_offline: perform offline draining on the cgroup 1601 * 1602 * This helper is to be used by a cgroup kernfs method currently servicing 1603 * @kn. It breaks the active protection, performs cgroup locking and 1604 * verifies that the associated cgroup is alive. Returns the cgroup if 1605 * alive; otherwise, %NULL. A successful return should be undone by a 1606 * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the 1607 * cgroup is drained of offlining csses before return. 1608 * 1609 * Any cgroup kernfs method implementation which requires locking the 1610 * associated cgroup should use this helper. It avoids nesting cgroup 1611 * locking under kernfs active protection and allows all kernfs operations 1612 * including self-removal. 1613 */ 1614 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline) 1615 { 1616 struct cgroup *cgrp; 1617 1618 if (kernfs_type(kn) == KERNFS_DIR) 1619 cgrp = kn->priv; 1620 else 1621 cgrp = kn->parent->priv; 1622 1623 /* 1624 * We're gonna grab cgroup_mutex which nests outside kernfs 1625 * active_ref. cgroup liveliness check alone provides enough 1626 * protection against removal. Ensure @cgrp stays accessible and 1627 * break the active_ref protection. 1628 */ 1629 if (!cgroup_tryget(cgrp)) 1630 return NULL; 1631 kernfs_break_active_protection(kn); 1632 1633 if (drain_offline) 1634 cgroup_lock_and_drain_offline(cgrp); 1635 else 1636 mutex_lock(&cgroup_mutex); 1637 1638 if (!cgroup_is_dead(cgrp)) 1639 return cgrp; 1640 1641 cgroup_kn_unlock(kn); 1642 return NULL; 1643 } 1644 1645 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft) 1646 { 1647 char name[CGROUP_FILE_NAME_MAX]; 1648 1649 lockdep_assert_held(&cgroup_mutex); 1650 1651 if (cft->file_offset) { 1652 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss); 1653 struct cgroup_file *cfile = (void *)css + cft->file_offset; 1654 1655 spin_lock_irq(&cgroup_file_kn_lock); 1656 cfile->kn = NULL; 1657 spin_unlock_irq(&cgroup_file_kn_lock); 1658 1659 del_timer_sync(&cfile->notify_timer); 1660 } 1661 1662 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name)); 1663 } 1664 1665 /** 1666 * css_clear_dir - remove subsys files in a cgroup directory 1667 * @css: target css 1668 */ 1669 static void css_clear_dir(struct cgroup_subsys_state *css) 1670 { 1671 struct cgroup *cgrp = css->cgroup; 1672 struct cftype *cfts; 1673 1674 if (!(css->flags & CSS_VISIBLE)) 1675 return; 1676 1677 css->flags &= ~CSS_VISIBLE; 1678 1679 if (!css->ss) { 1680 if (cgroup_on_dfl(cgrp)) 1681 cfts = cgroup_base_files; 1682 else 1683 cfts = cgroup1_base_files; 1684 1685 cgroup_addrm_files(css, cgrp, cfts, false); 1686 } else { 1687 list_for_each_entry(cfts, &css->ss->cfts, node) 1688 cgroup_addrm_files(css, cgrp, cfts, false); 1689 } 1690 } 1691 1692 /** 1693 * css_populate_dir - create subsys files in a cgroup directory 1694 * @css: target css 1695 * 1696 * On failure, no file is added. 1697 */ 1698 static int css_populate_dir(struct cgroup_subsys_state *css) 1699 { 1700 struct cgroup *cgrp = css->cgroup; 1701 struct cftype *cfts, *failed_cfts; 1702 int ret; 1703 1704 if ((css->flags & CSS_VISIBLE) || !cgrp->kn) 1705 return 0; 1706 1707 if (!css->ss) { 1708 if (cgroup_on_dfl(cgrp)) 1709 cfts = cgroup_base_files; 1710 else 1711 cfts = cgroup1_base_files; 1712 1713 ret = cgroup_addrm_files(&cgrp->self, cgrp, cfts, true); 1714 if (ret < 0) 1715 return ret; 1716 } else { 1717 list_for_each_entry(cfts, &css->ss->cfts, node) { 1718 ret = cgroup_addrm_files(css, cgrp, cfts, true); 1719 if (ret < 0) { 1720 failed_cfts = cfts; 1721 goto err; 1722 } 1723 } 1724 } 1725 1726 css->flags |= CSS_VISIBLE; 1727 1728 return 0; 1729 err: 1730 list_for_each_entry(cfts, &css->ss->cfts, node) { 1731 if (cfts == failed_cfts) 1732 break; 1733 cgroup_addrm_files(css, cgrp, cfts, false); 1734 } 1735 return ret; 1736 } 1737 1738 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask) 1739 { 1740 struct cgroup *dcgrp = &dst_root->cgrp; 1741 struct cgroup_subsys *ss; 1742 int ssid, i, ret; 1743 u16 dfl_disable_ss_mask = 0; 1744 1745 lockdep_assert_held(&cgroup_mutex); 1746 1747 do_each_subsys_mask(ss, ssid, ss_mask) { 1748 /* 1749 * If @ss has non-root csses attached to it, can't move. 1750 * If @ss is an implicit controller, it is exempt from this 1751 * rule and can be stolen. 1752 */ 1753 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) && 1754 !ss->implicit_on_dfl) 1755 return -EBUSY; 1756 1757 /* can't move between two non-dummy roots either */ 1758 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root) 1759 return -EBUSY; 1760 1761 /* 1762 * Collect ssid's that need to be disabled from default 1763 * hierarchy. 1764 */ 1765 if (ss->root == &cgrp_dfl_root) 1766 dfl_disable_ss_mask |= 1 << ssid; 1767 1768 } while_each_subsys_mask(); 1769 1770 if (dfl_disable_ss_mask) { 1771 struct cgroup *scgrp = &cgrp_dfl_root.cgrp; 1772 1773 /* 1774 * Controllers from default hierarchy that need to be rebound 1775 * are all disabled together in one go. 1776 */ 1777 cgrp_dfl_root.subsys_mask &= ~dfl_disable_ss_mask; 1778 WARN_ON(cgroup_apply_control(scgrp)); 1779 cgroup_finalize_control(scgrp, 0); 1780 } 1781 1782 do_each_subsys_mask(ss, ssid, ss_mask) { 1783 struct cgroup_root *src_root = ss->root; 1784 struct cgroup *scgrp = &src_root->cgrp; 1785 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss); 1786 struct css_set *cset; 1787 1788 WARN_ON(!css || cgroup_css(dcgrp, ss)); 1789 1790 if (src_root != &cgrp_dfl_root) { 1791 /* disable from the source */ 1792 src_root->subsys_mask &= ~(1 << ssid); 1793 WARN_ON(cgroup_apply_control(scgrp)); 1794 cgroup_finalize_control(scgrp, 0); 1795 } 1796 1797 /* rebind */ 1798 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL); 1799 rcu_assign_pointer(dcgrp->subsys[ssid], css); 1800 ss->root = dst_root; 1801 css->cgroup = dcgrp; 1802 1803 spin_lock_irq(&css_set_lock); 1804 hash_for_each(css_set_table, i, cset, hlist) 1805 list_move_tail(&cset->e_cset_node[ss->id], 1806 &dcgrp->e_csets[ss->id]); 1807 spin_unlock_irq(&css_set_lock); 1808 1809 if (ss->css_rstat_flush) { 1810 list_del_rcu(&css->rstat_css_node); 1811 list_add_rcu(&css->rstat_css_node, 1812 &dcgrp->rstat_css_list); 1813 } 1814 1815 /* default hierarchy doesn't enable controllers by default */ 1816 dst_root->subsys_mask |= 1 << ssid; 1817 if (dst_root == &cgrp_dfl_root) { 1818 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]); 1819 } else { 1820 dcgrp->subtree_control |= 1 << ssid; 1821 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]); 1822 } 1823 1824 ret = cgroup_apply_control(dcgrp); 1825 if (ret) 1826 pr_warn("partial failure to rebind %s controller (err=%d)\n", 1827 ss->name, ret); 1828 1829 if (ss->bind) 1830 ss->bind(css); 1831 } while_each_subsys_mask(); 1832 1833 kernfs_activate(dcgrp->kn); 1834 return 0; 1835 } 1836 1837 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node, 1838 struct kernfs_root *kf_root) 1839 { 1840 int len = 0; 1841 char *buf = NULL; 1842 struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root); 1843 struct cgroup *ns_cgroup; 1844 1845 buf = kmalloc(PATH_MAX, GFP_KERNEL); 1846 if (!buf) 1847 return -ENOMEM; 1848 1849 spin_lock_irq(&css_set_lock); 1850 ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot); 1851 len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX); 1852 spin_unlock_irq(&css_set_lock); 1853 1854 if (len >= PATH_MAX) 1855 len = -ERANGE; 1856 else if (len > 0) { 1857 seq_escape(sf, buf, " \t\n\\"); 1858 len = 0; 1859 } 1860 kfree(buf); 1861 return len; 1862 } 1863 1864 enum cgroup2_param { 1865 Opt_nsdelegate, 1866 Opt_memory_localevents, 1867 Opt_memory_recursiveprot, 1868 nr__cgroup2_params 1869 }; 1870 1871 static const struct fs_parameter_spec cgroup2_fs_parameters[] = { 1872 fsparam_flag("nsdelegate", Opt_nsdelegate), 1873 fsparam_flag("memory_localevents", Opt_memory_localevents), 1874 fsparam_flag("memory_recursiveprot", Opt_memory_recursiveprot), 1875 {} 1876 }; 1877 1878 static int cgroup2_parse_param(struct fs_context *fc, struct fs_parameter *param) 1879 { 1880 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 1881 struct fs_parse_result result; 1882 int opt; 1883 1884 opt = fs_parse(fc, cgroup2_fs_parameters, param, &result); 1885 if (opt < 0) 1886 return opt; 1887 1888 switch (opt) { 1889 case Opt_nsdelegate: 1890 ctx->flags |= CGRP_ROOT_NS_DELEGATE; 1891 return 0; 1892 case Opt_memory_localevents: 1893 ctx->flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS; 1894 return 0; 1895 case Opt_memory_recursiveprot: 1896 ctx->flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT; 1897 return 0; 1898 } 1899 return -EINVAL; 1900 } 1901 1902 static void apply_cgroup_root_flags(unsigned int root_flags) 1903 { 1904 if (current->nsproxy->cgroup_ns == &init_cgroup_ns) { 1905 if (root_flags & CGRP_ROOT_NS_DELEGATE) 1906 cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE; 1907 else 1908 cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE; 1909 1910 if (root_flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS) 1911 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS; 1912 else 1913 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_LOCAL_EVENTS; 1914 1915 if (root_flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT) 1916 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT; 1917 else 1918 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_RECURSIVE_PROT; 1919 } 1920 } 1921 1922 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root) 1923 { 1924 if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) 1925 seq_puts(seq, ",nsdelegate"); 1926 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS) 1927 seq_puts(seq, ",memory_localevents"); 1928 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT) 1929 seq_puts(seq, ",memory_recursiveprot"); 1930 return 0; 1931 } 1932 1933 static int cgroup_reconfigure(struct fs_context *fc) 1934 { 1935 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 1936 1937 apply_cgroup_root_flags(ctx->flags); 1938 return 0; 1939 } 1940 1941 static void init_cgroup_housekeeping(struct cgroup *cgrp) 1942 { 1943 struct cgroup_subsys *ss; 1944 int ssid; 1945 1946 INIT_LIST_HEAD(&cgrp->self.sibling); 1947 INIT_LIST_HEAD(&cgrp->self.children); 1948 INIT_LIST_HEAD(&cgrp->cset_links); 1949 INIT_LIST_HEAD(&cgrp->pidlists); 1950 mutex_init(&cgrp->pidlist_mutex); 1951 cgrp->self.cgroup = cgrp; 1952 cgrp->self.flags |= CSS_ONLINE; 1953 cgrp->dom_cgrp = cgrp; 1954 cgrp->max_descendants = INT_MAX; 1955 cgrp->max_depth = INT_MAX; 1956 INIT_LIST_HEAD(&cgrp->rstat_css_list); 1957 prev_cputime_init(&cgrp->prev_cputime); 1958 1959 for_each_subsys(ss, ssid) 1960 INIT_LIST_HEAD(&cgrp->e_csets[ssid]); 1961 1962 init_waitqueue_head(&cgrp->offline_waitq); 1963 INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent); 1964 } 1965 1966 void init_cgroup_root(struct cgroup_fs_context *ctx) 1967 { 1968 struct cgroup_root *root = ctx->root; 1969 struct cgroup *cgrp = &root->cgrp; 1970 1971 INIT_LIST_HEAD(&root->root_list); 1972 atomic_set(&root->nr_cgrps, 1); 1973 cgrp->root = root; 1974 init_cgroup_housekeeping(cgrp); 1975 1976 root->flags = ctx->flags; 1977 if (ctx->release_agent) 1978 strscpy(root->release_agent_path, ctx->release_agent, PATH_MAX); 1979 if (ctx->name) 1980 strscpy(root->name, ctx->name, MAX_CGROUP_ROOT_NAMELEN); 1981 if (ctx->cpuset_clone_children) 1982 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags); 1983 } 1984 1985 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask) 1986 { 1987 LIST_HEAD(tmp_links); 1988 struct cgroup *root_cgrp = &root->cgrp; 1989 struct kernfs_syscall_ops *kf_sops; 1990 struct css_set *cset; 1991 int i, ret; 1992 1993 lockdep_assert_held(&cgroup_mutex); 1994 1995 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 1996 0, GFP_KERNEL); 1997 if (ret) 1998 goto out; 1999 2000 /* 2001 * We're accessing css_set_count without locking css_set_lock here, 2002 * but that's OK - it can only be increased by someone holding 2003 * cgroup_lock, and that's us. Later rebinding may disable 2004 * controllers on the default hierarchy and thus create new csets, 2005 * which can't be more than the existing ones. Allocate 2x. 2006 */ 2007 ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links); 2008 if (ret) 2009 goto cancel_ref; 2010 2011 ret = cgroup_init_root_id(root); 2012 if (ret) 2013 goto cancel_ref; 2014 2015 kf_sops = root == &cgrp_dfl_root ? 2016 &cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops; 2017 2018 root->kf_root = kernfs_create_root(kf_sops, 2019 KERNFS_ROOT_CREATE_DEACTIVATED | 2020 KERNFS_ROOT_SUPPORT_EXPORTOP | 2021 KERNFS_ROOT_SUPPORT_USER_XATTR, 2022 root_cgrp); 2023 if (IS_ERR(root->kf_root)) { 2024 ret = PTR_ERR(root->kf_root); 2025 goto exit_root_id; 2026 } 2027 root_cgrp->kn = root->kf_root->kn; 2028 WARN_ON_ONCE(cgroup_ino(root_cgrp) != 1); 2029 root_cgrp->ancestor_ids[0] = cgroup_id(root_cgrp); 2030 2031 ret = css_populate_dir(&root_cgrp->self); 2032 if (ret) 2033 goto destroy_root; 2034 2035 ret = cgroup_rstat_init(root_cgrp); 2036 if (ret) 2037 goto destroy_root; 2038 2039 ret = rebind_subsystems(root, ss_mask); 2040 if (ret) 2041 goto exit_stats; 2042 2043 ret = cgroup_bpf_inherit(root_cgrp); 2044 WARN_ON_ONCE(ret); 2045 2046 trace_cgroup_setup_root(root); 2047 2048 /* 2049 * There must be no failure case after here, since rebinding takes 2050 * care of subsystems' refcounts, which are explicitly dropped in 2051 * the failure exit path. 2052 */ 2053 list_add(&root->root_list, &cgroup_roots); 2054 cgroup_root_count++; 2055 2056 /* 2057 * Link the root cgroup in this hierarchy into all the css_set 2058 * objects. 2059 */ 2060 spin_lock_irq(&css_set_lock); 2061 hash_for_each(css_set_table, i, cset, hlist) { 2062 link_css_set(&tmp_links, cset, root_cgrp); 2063 if (css_set_populated(cset)) 2064 cgroup_update_populated(root_cgrp, true); 2065 } 2066 spin_unlock_irq(&css_set_lock); 2067 2068 BUG_ON(!list_empty(&root_cgrp->self.children)); 2069 BUG_ON(atomic_read(&root->nr_cgrps) != 1); 2070 2071 ret = 0; 2072 goto out; 2073 2074 exit_stats: 2075 cgroup_rstat_exit(root_cgrp); 2076 destroy_root: 2077 kernfs_destroy_root(root->kf_root); 2078 root->kf_root = NULL; 2079 exit_root_id: 2080 cgroup_exit_root_id(root); 2081 cancel_ref: 2082 percpu_ref_exit(&root_cgrp->self.refcnt); 2083 out: 2084 free_cgrp_cset_links(&tmp_links); 2085 return ret; 2086 } 2087 2088 int cgroup_do_get_tree(struct fs_context *fc) 2089 { 2090 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2091 int ret; 2092 2093 ctx->kfc.root = ctx->root->kf_root; 2094 if (fc->fs_type == &cgroup2_fs_type) 2095 ctx->kfc.magic = CGROUP2_SUPER_MAGIC; 2096 else 2097 ctx->kfc.magic = CGROUP_SUPER_MAGIC; 2098 ret = kernfs_get_tree(fc); 2099 2100 /* 2101 * In non-init cgroup namespace, instead of root cgroup's dentry, 2102 * we return the dentry corresponding to the cgroupns->root_cgrp. 2103 */ 2104 if (!ret && ctx->ns != &init_cgroup_ns) { 2105 struct dentry *nsdentry; 2106 struct super_block *sb = fc->root->d_sb; 2107 struct cgroup *cgrp; 2108 2109 mutex_lock(&cgroup_mutex); 2110 spin_lock_irq(&css_set_lock); 2111 2112 cgrp = cset_cgroup_from_root(ctx->ns->root_cset, ctx->root); 2113 2114 spin_unlock_irq(&css_set_lock); 2115 mutex_unlock(&cgroup_mutex); 2116 2117 nsdentry = kernfs_node_dentry(cgrp->kn, sb); 2118 dput(fc->root); 2119 if (IS_ERR(nsdentry)) { 2120 deactivate_locked_super(sb); 2121 ret = PTR_ERR(nsdentry); 2122 nsdentry = NULL; 2123 } 2124 fc->root = nsdentry; 2125 } 2126 2127 if (!ctx->kfc.new_sb_created) 2128 cgroup_put(&ctx->root->cgrp); 2129 2130 return ret; 2131 } 2132 2133 /* 2134 * Destroy a cgroup filesystem context. 2135 */ 2136 static void cgroup_fs_context_free(struct fs_context *fc) 2137 { 2138 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2139 2140 kfree(ctx->name); 2141 kfree(ctx->release_agent); 2142 put_cgroup_ns(ctx->ns); 2143 kernfs_free_fs_context(fc); 2144 kfree(ctx); 2145 } 2146 2147 static int cgroup_get_tree(struct fs_context *fc) 2148 { 2149 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2150 int ret; 2151 2152 cgrp_dfl_visible = true; 2153 cgroup_get_live(&cgrp_dfl_root.cgrp); 2154 ctx->root = &cgrp_dfl_root; 2155 2156 ret = cgroup_do_get_tree(fc); 2157 if (!ret) 2158 apply_cgroup_root_flags(ctx->flags); 2159 return ret; 2160 } 2161 2162 static const struct fs_context_operations cgroup_fs_context_ops = { 2163 .free = cgroup_fs_context_free, 2164 .parse_param = cgroup2_parse_param, 2165 .get_tree = cgroup_get_tree, 2166 .reconfigure = cgroup_reconfigure, 2167 }; 2168 2169 static const struct fs_context_operations cgroup1_fs_context_ops = { 2170 .free = cgroup_fs_context_free, 2171 .parse_param = cgroup1_parse_param, 2172 .get_tree = cgroup1_get_tree, 2173 .reconfigure = cgroup1_reconfigure, 2174 }; 2175 2176 /* 2177 * Initialise the cgroup filesystem creation/reconfiguration context. Notably, 2178 * we select the namespace we're going to use. 2179 */ 2180 static int cgroup_init_fs_context(struct fs_context *fc) 2181 { 2182 struct cgroup_fs_context *ctx; 2183 2184 ctx = kzalloc(sizeof(struct cgroup_fs_context), GFP_KERNEL); 2185 if (!ctx) 2186 return -ENOMEM; 2187 2188 ctx->ns = current->nsproxy->cgroup_ns; 2189 get_cgroup_ns(ctx->ns); 2190 fc->fs_private = &ctx->kfc; 2191 if (fc->fs_type == &cgroup2_fs_type) 2192 fc->ops = &cgroup_fs_context_ops; 2193 else 2194 fc->ops = &cgroup1_fs_context_ops; 2195 put_user_ns(fc->user_ns); 2196 fc->user_ns = get_user_ns(ctx->ns->user_ns); 2197 fc->global = true; 2198 return 0; 2199 } 2200 2201 static void cgroup_kill_sb(struct super_block *sb) 2202 { 2203 struct kernfs_root *kf_root = kernfs_root_from_sb(sb); 2204 struct cgroup_root *root = cgroup_root_from_kf(kf_root); 2205 2206 /* 2207 * If @root doesn't have any children, start killing it. 2208 * This prevents new mounts by disabling percpu_ref_tryget_live(). 2209 * 2210 * And don't kill the default root. 2211 */ 2212 if (list_empty(&root->cgrp.self.children) && root != &cgrp_dfl_root && 2213 !percpu_ref_is_dying(&root->cgrp.self.refcnt)) { 2214 cgroup_bpf_offline(&root->cgrp); 2215 percpu_ref_kill(&root->cgrp.self.refcnt); 2216 } 2217 cgroup_put(&root->cgrp); 2218 kernfs_kill_sb(sb); 2219 } 2220 2221 struct file_system_type cgroup_fs_type = { 2222 .name = "cgroup", 2223 .init_fs_context = cgroup_init_fs_context, 2224 .parameters = cgroup1_fs_parameters, 2225 .kill_sb = cgroup_kill_sb, 2226 .fs_flags = FS_USERNS_MOUNT, 2227 }; 2228 2229 static struct file_system_type cgroup2_fs_type = { 2230 .name = "cgroup2", 2231 .init_fs_context = cgroup_init_fs_context, 2232 .parameters = cgroup2_fs_parameters, 2233 .kill_sb = cgroup_kill_sb, 2234 .fs_flags = FS_USERNS_MOUNT, 2235 }; 2236 2237 #ifdef CONFIG_CPUSETS 2238 static const struct fs_context_operations cpuset_fs_context_ops = { 2239 .get_tree = cgroup1_get_tree, 2240 .free = cgroup_fs_context_free, 2241 }; 2242 2243 /* 2244 * This is ugly, but preserves the userspace API for existing cpuset 2245 * users. If someone tries to mount the "cpuset" filesystem, we 2246 * silently switch it to mount "cgroup" instead 2247 */ 2248 static int cpuset_init_fs_context(struct fs_context *fc) 2249 { 2250 char *agent = kstrdup("/sbin/cpuset_release_agent", GFP_USER); 2251 struct cgroup_fs_context *ctx; 2252 int err; 2253 2254 err = cgroup_init_fs_context(fc); 2255 if (err) { 2256 kfree(agent); 2257 return err; 2258 } 2259 2260 fc->ops = &cpuset_fs_context_ops; 2261 2262 ctx = cgroup_fc2context(fc); 2263 ctx->subsys_mask = 1 << cpuset_cgrp_id; 2264 ctx->flags |= CGRP_ROOT_NOPREFIX; 2265 ctx->release_agent = agent; 2266 2267 get_filesystem(&cgroup_fs_type); 2268 put_filesystem(fc->fs_type); 2269 fc->fs_type = &cgroup_fs_type; 2270 2271 return 0; 2272 } 2273 2274 static struct file_system_type cpuset_fs_type = { 2275 .name = "cpuset", 2276 .init_fs_context = cpuset_init_fs_context, 2277 .fs_flags = FS_USERNS_MOUNT, 2278 }; 2279 #endif 2280 2281 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen, 2282 struct cgroup_namespace *ns) 2283 { 2284 struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root); 2285 2286 return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen); 2287 } 2288 2289 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen, 2290 struct cgroup_namespace *ns) 2291 { 2292 int ret; 2293 2294 mutex_lock(&cgroup_mutex); 2295 spin_lock_irq(&css_set_lock); 2296 2297 ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns); 2298 2299 spin_unlock_irq(&css_set_lock); 2300 mutex_unlock(&cgroup_mutex); 2301 2302 return ret; 2303 } 2304 EXPORT_SYMBOL_GPL(cgroup_path_ns); 2305 2306 /** 2307 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy 2308 * @task: target task 2309 * @buf: the buffer to write the path into 2310 * @buflen: the length of the buffer 2311 * 2312 * Determine @task's cgroup on the first (the one with the lowest non-zero 2313 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This 2314 * function grabs cgroup_mutex and shouldn't be used inside locks used by 2315 * cgroup controller callbacks. 2316 * 2317 * Return value is the same as kernfs_path(). 2318 */ 2319 int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen) 2320 { 2321 struct cgroup_root *root; 2322 struct cgroup *cgrp; 2323 int hierarchy_id = 1; 2324 int ret; 2325 2326 mutex_lock(&cgroup_mutex); 2327 spin_lock_irq(&css_set_lock); 2328 2329 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id); 2330 2331 if (root) { 2332 cgrp = task_cgroup_from_root(task, root); 2333 ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns); 2334 } else { 2335 /* if no hierarchy exists, everyone is in "/" */ 2336 ret = strlcpy(buf, "/", buflen); 2337 } 2338 2339 spin_unlock_irq(&css_set_lock); 2340 mutex_unlock(&cgroup_mutex); 2341 return ret; 2342 } 2343 EXPORT_SYMBOL_GPL(task_cgroup_path); 2344 2345 /** 2346 * cgroup_migrate_add_task - add a migration target task to a migration context 2347 * @task: target task 2348 * @mgctx: target migration context 2349 * 2350 * Add @task, which is a migration target, to @mgctx->tset. This function 2351 * becomes noop if @task doesn't need to be migrated. @task's css_set 2352 * should have been added as a migration source and @task->cg_list will be 2353 * moved from the css_set's tasks list to mg_tasks one. 2354 */ 2355 static void cgroup_migrate_add_task(struct task_struct *task, 2356 struct cgroup_mgctx *mgctx) 2357 { 2358 struct css_set *cset; 2359 2360 lockdep_assert_held(&css_set_lock); 2361 2362 /* @task either already exited or can't exit until the end */ 2363 if (task->flags & PF_EXITING) 2364 return; 2365 2366 /* cgroup_threadgroup_rwsem protects racing against forks */ 2367 WARN_ON_ONCE(list_empty(&task->cg_list)); 2368 2369 cset = task_css_set(task); 2370 if (!cset->mg_src_cgrp) 2371 return; 2372 2373 mgctx->tset.nr_tasks++; 2374 2375 list_move_tail(&task->cg_list, &cset->mg_tasks); 2376 if (list_empty(&cset->mg_node)) 2377 list_add_tail(&cset->mg_node, 2378 &mgctx->tset.src_csets); 2379 if (list_empty(&cset->mg_dst_cset->mg_node)) 2380 list_add_tail(&cset->mg_dst_cset->mg_node, 2381 &mgctx->tset.dst_csets); 2382 } 2383 2384 /** 2385 * cgroup_taskset_first - reset taskset and return the first task 2386 * @tset: taskset of interest 2387 * @dst_cssp: output variable for the destination css 2388 * 2389 * @tset iteration is initialized and the first task is returned. 2390 */ 2391 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset, 2392 struct cgroup_subsys_state **dst_cssp) 2393 { 2394 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node); 2395 tset->cur_task = NULL; 2396 2397 return cgroup_taskset_next(tset, dst_cssp); 2398 } 2399 2400 /** 2401 * cgroup_taskset_next - iterate to the next task in taskset 2402 * @tset: taskset of interest 2403 * @dst_cssp: output variable for the destination css 2404 * 2405 * Return the next task in @tset. Iteration must have been initialized 2406 * with cgroup_taskset_first(). 2407 */ 2408 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset, 2409 struct cgroup_subsys_state **dst_cssp) 2410 { 2411 struct css_set *cset = tset->cur_cset; 2412 struct task_struct *task = tset->cur_task; 2413 2414 while (CGROUP_HAS_SUBSYS_CONFIG && &cset->mg_node != tset->csets) { 2415 if (!task) 2416 task = list_first_entry(&cset->mg_tasks, 2417 struct task_struct, cg_list); 2418 else 2419 task = list_next_entry(task, cg_list); 2420 2421 if (&task->cg_list != &cset->mg_tasks) { 2422 tset->cur_cset = cset; 2423 tset->cur_task = task; 2424 2425 /* 2426 * This function may be called both before and 2427 * after cgroup_taskset_migrate(). The two cases 2428 * can be distinguished by looking at whether @cset 2429 * has its ->mg_dst_cset set. 2430 */ 2431 if (cset->mg_dst_cset) 2432 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid]; 2433 else 2434 *dst_cssp = cset->subsys[tset->ssid]; 2435 2436 return task; 2437 } 2438 2439 cset = list_next_entry(cset, mg_node); 2440 task = NULL; 2441 } 2442 2443 return NULL; 2444 } 2445 2446 /** 2447 * cgroup_migrate_execute - migrate a taskset 2448 * @mgctx: migration context 2449 * 2450 * Migrate tasks in @mgctx as setup by migration preparation functions. 2451 * This function fails iff one of the ->can_attach callbacks fails and 2452 * guarantees that either all or none of the tasks in @mgctx are migrated. 2453 * @mgctx is consumed regardless of success. 2454 */ 2455 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx) 2456 { 2457 struct cgroup_taskset *tset = &mgctx->tset; 2458 struct cgroup_subsys *ss; 2459 struct task_struct *task, *tmp_task; 2460 struct css_set *cset, *tmp_cset; 2461 int ssid, failed_ssid, ret; 2462 2463 /* check that we can legitimately attach to the cgroup */ 2464 if (tset->nr_tasks) { 2465 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2466 if (ss->can_attach) { 2467 tset->ssid = ssid; 2468 ret = ss->can_attach(tset); 2469 if (ret) { 2470 failed_ssid = ssid; 2471 goto out_cancel_attach; 2472 } 2473 } 2474 } while_each_subsys_mask(); 2475 } 2476 2477 /* 2478 * Now that we're guaranteed success, proceed to move all tasks to 2479 * the new cgroup. There are no failure cases after here, so this 2480 * is the commit point. 2481 */ 2482 spin_lock_irq(&css_set_lock); 2483 list_for_each_entry(cset, &tset->src_csets, mg_node) { 2484 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) { 2485 struct css_set *from_cset = task_css_set(task); 2486 struct css_set *to_cset = cset->mg_dst_cset; 2487 2488 get_css_set(to_cset); 2489 to_cset->nr_tasks++; 2490 css_set_move_task(task, from_cset, to_cset, true); 2491 from_cset->nr_tasks--; 2492 /* 2493 * If the source or destination cgroup is frozen, 2494 * the task might require to change its state. 2495 */ 2496 cgroup_freezer_migrate_task(task, from_cset->dfl_cgrp, 2497 to_cset->dfl_cgrp); 2498 put_css_set_locked(from_cset); 2499 2500 } 2501 } 2502 spin_unlock_irq(&css_set_lock); 2503 2504 /* 2505 * Migration is committed, all target tasks are now on dst_csets. 2506 * Nothing is sensitive to fork() after this point. Notify 2507 * controllers that migration is complete. 2508 */ 2509 tset->csets = &tset->dst_csets; 2510 2511 if (tset->nr_tasks) { 2512 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2513 if (ss->attach) { 2514 tset->ssid = ssid; 2515 ss->attach(tset); 2516 } 2517 } while_each_subsys_mask(); 2518 } 2519 2520 ret = 0; 2521 goto out_release_tset; 2522 2523 out_cancel_attach: 2524 if (tset->nr_tasks) { 2525 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2526 if (ssid == failed_ssid) 2527 break; 2528 if (ss->cancel_attach) { 2529 tset->ssid = ssid; 2530 ss->cancel_attach(tset); 2531 } 2532 } while_each_subsys_mask(); 2533 } 2534 out_release_tset: 2535 spin_lock_irq(&css_set_lock); 2536 list_splice_init(&tset->dst_csets, &tset->src_csets); 2537 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) { 2538 list_splice_tail_init(&cset->mg_tasks, &cset->tasks); 2539 list_del_init(&cset->mg_node); 2540 } 2541 spin_unlock_irq(&css_set_lock); 2542 2543 /* 2544 * Re-initialize the cgroup_taskset structure in case it is reused 2545 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute() 2546 * iteration. 2547 */ 2548 tset->nr_tasks = 0; 2549 tset->csets = &tset->src_csets; 2550 return ret; 2551 } 2552 2553 /** 2554 * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination 2555 * @dst_cgrp: destination cgroup to test 2556 * 2557 * On the default hierarchy, except for the mixable, (possible) thread root 2558 * and threaded cgroups, subtree_control must be zero for migration 2559 * destination cgroups with tasks so that child cgroups don't compete 2560 * against tasks. 2561 */ 2562 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp) 2563 { 2564 /* v1 doesn't have any restriction */ 2565 if (!cgroup_on_dfl(dst_cgrp)) 2566 return 0; 2567 2568 /* verify @dst_cgrp can host resources */ 2569 if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp)) 2570 return -EOPNOTSUPP; 2571 2572 /* mixables don't care */ 2573 if (cgroup_is_mixable(dst_cgrp)) 2574 return 0; 2575 2576 /* 2577 * If @dst_cgrp is already or can become a thread root or is 2578 * threaded, it doesn't matter. 2579 */ 2580 if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp)) 2581 return 0; 2582 2583 /* apply no-internal-process constraint */ 2584 if (dst_cgrp->subtree_control) 2585 return -EBUSY; 2586 2587 return 0; 2588 } 2589 2590 /** 2591 * cgroup_migrate_finish - cleanup after attach 2592 * @mgctx: migration context 2593 * 2594 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See 2595 * those functions for details. 2596 */ 2597 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx) 2598 { 2599 LIST_HEAD(preloaded); 2600 struct css_set *cset, *tmp_cset; 2601 2602 lockdep_assert_held(&cgroup_mutex); 2603 2604 spin_lock_irq(&css_set_lock); 2605 2606 list_splice_tail_init(&mgctx->preloaded_src_csets, &preloaded); 2607 list_splice_tail_init(&mgctx->preloaded_dst_csets, &preloaded); 2608 2609 list_for_each_entry_safe(cset, tmp_cset, &preloaded, mg_preload_node) { 2610 cset->mg_src_cgrp = NULL; 2611 cset->mg_dst_cgrp = NULL; 2612 cset->mg_dst_cset = NULL; 2613 list_del_init(&cset->mg_preload_node); 2614 put_css_set_locked(cset); 2615 } 2616 2617 spin_unlock_irq(&css_set_lock); 2618 } 2619 2620 /** 2621 * cgroup_migrate_add_src - add a migration source css_set 2622 * @src_cset: the source css_set to add 2623 * @dst_cgrp: the destination cgroup 2624 * @mgctx: migration context 2625 * 2626 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin 2627 * @src_cset and add it to @mgctx->src_csets, which should later be cleaned 2628 * up by cgroup_migrate_finish(). 2629 * 2630 * This function may be called without holding cgroup_threadgroup_rwsem 2631 * even if the target is a process. Threads may be created and destroyed 2632 * but as long as cgroup_mutex is not dropped, no new css_set can be put 2633 * into play and the preloaded css_sets are guaranteed to cover all 2634 * migrations. 2635 */ 2636 void cgroup_migrate_add_src(struct css_set *src_cset, 2637 struct cgroup *dst_cgrp, 2638 struct cgroup_mgctx *mgctx) 2639 { 2640 struct cgroup *src_cgrp; 2641 2642 lockdep_assert_held(&cgroup_mutex); 2643 lockdep_assert_held(&css_set_lock); 2644 2645 /* 2646 * If ->dead, @src_set is associated with one or more dead cgroups 2647 * and doesn't contain any migratable tasks. Ignore it early so 2648 * that the rest of migration path doesn't get confused by it. 2649 */ 2650 if (src_cset->dead) 2651 return; 2652 2653 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root); 2654 2655 if (!list_empty(&src_cset->mg_preload_node)) 2656 return; 2657 2658 WARN_ON(src_cset->mg_src_cgrp); 2659 WARN_ON(src_cset->mg_dst_cgrp); 2660 WARN_ON(!list_empty(&src_cset->mg_tasks)); 2661 WARN_ON(!list_empty(&src_cset->mg_node)); 2662 2663 src_cset->mg_src_cgrp = src_cgrp; 2664 src_cset->mg_dst_cgrp = dst_cgrp; 2665 get_css_set(src_cset); 2666 list_add_tail(&src_cset->mg_preload_node, &mgctx->preloaded_src_csets); 2667 } 2668 2669 /** 2670 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration 2671 * @mgctx: migration context 2672 * 2673 * Tasks are about to be moved and all the source css_sets have been 2674 * preloaded to @mgctx->preloaded_src_csets. This function looks up and 2675 * pins all destination css_sets, links each to its source, and append them 2676 * to @mgctx->preloaded_dst_csets. 2677 * 2678 * This function must be called after cgroup_migrate_add_src() has been 2679 * called on each migration source css_set. After migration is performed 2680 * using cgroup_migrate(), cgroup_migrate_finish() must be called on 2681 * @mgctx. 2682 */ 2683 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx) 2684 { 2685 struct css_set *src_cset, *tmp_cset; 2686 2687 lockdep_assert_held(&cgroup_mutex); 2688 2689 /* look up the dst cset for each src cset and link it to src */ 2690 list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets, 2691 mg_preload_node) { 2692 struct css_set *dst_cset; 2693 struct cgroup_subsys *ss; 2694 int ssid; 2695 2696 dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp); 2697 if (!dst_cset) 2698 return -ENOMEM; 2699 2700 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset); 2701 2702 /* 2703 * If src cset equals dst, it's noop. Drop the src. 2704 * cgroup_migrate() will skip the cset too. Note that we 2705 * can't handle src == dst as some nodes are used by both. 2706 */ 2707 if (src_cset == dst_cset) { 2708 src_cset->mg_src_cgrp = NULL; 2709 src_cset->mg_dst_cgrp = NULL; 2710 list_del_init(&src_cset->mg_preload_node); 2711 put_css_set(src_cset); 2712 put_css_set(dst_cset); 2713 continue; 2714 } 2715 2716 src_cset->mg_dst_cset = dst_cset; 2717 2718 if (list_empty(&dst_cset->mg_preload_node)) 2719 list_add_tail(&dst_cset->mg_preload_node, 2720 &mgctx->preloaded_dst_csets); 2721 else 2722 put_css_set(dst_cset); 2723 2724 for_each_subsys(ss, ssid) 2725 if (src_cset->subsys[ssid] != dst_cset->subsys[ssid]) 2726 mgctx->ss_mask |= 1 << ssid; 2727 } 2728 2729 return 0; 2730 } 2731 2732 /** 2733 * cgroup_migrate - migrate a process or task to a cgroup 2734 * @leader: the leader of the process or the task to migrate 2735 * @threadgroup: whether @leader points to the whole process or a single task 2736 * @mgctx: migration context 2737 * 2738 * Migrate a process or task denoted by @leader. If migrating a process, 2739 * the caller must be holding cgroup_threadgroup_rwsem. The caller is also 2740 * responsible for invoking cgroup_migrate_add_src() and 2741 * cgroup_migrate_prepare_dst() on the targets before invoking this 2742 * function and following up with cgroup_migrate_finish(). 2743 * 2744 * As long as a controller's ->can_attach() doesn't fail, this function is 2745 * guaranteed to succeed. This means that, excluding ->can_attach() 2746 * failure, when migrating multiple targets, the success or failure can be 2747 * decided for all targets by invoking group_migrate_prepare_dst() before 2748 * actually starting migrating. 2749 */ 2750 int cgroup_migrate(struct task_struct *leader, bool threadgroup, 2751 struct cgroup_mgctx *mgctx) 2752 { 2753 struct task_struct *task; 2754 2755 /* 2756 * Prevent freeing of tasks while we take a snapshot. Tasks that are 2757 * already PF_EXITING could be freed from underneath us unless we 2758 * take an rcu_read_lock. 2759 */ 2760 spin_lock_irq(&css_set_lock); 2761 rcu_read_lock(); 2762 task = leader; 2763 do { 2764 cgroup_migrate_add_task(task, mgctx); 2765 if (!threadgroup) 2766 break; 2767 } while_each_thread(leader, task); 2768 rcu_read_unlock(); 2769 spin_unlock_irq(&css_set_lock); 2770 2771 return cgroup_migrate_execute(mgctx); 2772 } 2773 2774 /** 2775 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup 2776 * @dst_cgrp: the cgroup to attach to 2777 * @leader: the task or the leader of the threadgroup to be attached 2778 * @threadgroup: attach the whole threadgroup? 2779 * 2780 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem. 2781 */ 2782 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader, 2783 bool threadgroup) 2784 { 2785 DEFINE_CGROUP_MGCTX(mgctx); 2786 struct task_struct *task; 2787 int ret = 0; 2788 2789 /* look up all src csets */ 2790 spin_lock_irq(&css_set_lock); 2791 rcu_read_lock(); 2792 task = leader; 2793 do { 2794 cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx); 2795 if (!threadgroup) 2796 break; 2797 } while_each_thread(leader, task); 2798 rcu_read_unlock(); 2799 spin_unlock_irq(&css_set_lock); 2800 2801 /* prepare dst csets and commit */ 2802 ret = cgroup_migrate_prepare_dst(&mgctx); 2803 if (!ret) 2804 ret = cgroup_migrate(leader, threadgroup, &mgctx); 2805 2806 cgroup_migrate_finish(&mgctx); 2807 2808 if (!ret) 2809 TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup); 2810 2811 return ret; 2812 } 2813 2814 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup, 2815 bool *locked) 2816 __acquires(&cgroup_threadgroup_rwsem) 2817 { 2818 struct task_struct *tsk; 2819 pid_t pid; 2820 2821 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0) 2822 return ERR_PTR(-EINVAL); 2823 2824 /* 2825 * If we migrate a single thread, we don't care about threadgroup 2826 * stability. If the thread is `current`, it won't exit(2) under our 2827 * hands or change PID through exec(2). We exclude 2828 * cgroup_update_dfl_csses and other cgroup_{proc,thread}s_write 2829 * callers by cgroup_mutex. 2830 * Therefore, we can skip the global lock. 2831 */ 2832 lockdep_assert_held(&cgroup_mutex); 2833 if (pid || threadgroup) { 2834 percpu_down_write(&cgroup_threadgroup_rwsem); 2835 *locked = true; 2836 } else { 2837 *locked = false; 2838 } 2839 2840 rcu_read_lock(); 2841 if (pid) { 2842 tsk = find_task_by_vpid(pid); 2843 if (!tsk) { 2844 tsk = ERR_PTR(-ESRCH); 2845 goto out_unlock_threadgroup; 2846 } 2847 } else { 2848 tsk = current; 2849 } 2850 2851 if (threadgroup) 2852 tsk = tsk->group_leader; 2853 2854 /* 2855 * kthreads may acquire PF_NO_SETAFFINITY during initialization. 2856 * If userland migrates such a kthread to a non-root cgroup, it can 2857 * become trapped in a cpuset, or RT kthread may be born in a 2858 * cgroup with no rt_runtime allocated. Just say no. 2859 */ 2860 if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) { 2861 tsk = ERR_PTR(-EINVAL); 2862 goto out_unlock_threadgroup; 2863 } 2864 2865 get_task_struct(tsk); 2866 goto out_unlock_rcu; 2867 2868 out_unlock_threadgroup: 2869 if (*locked) { 2870 percpu_up_write(&cgroup_threadgroup_rwsem); 2871 *locked = false; 2872 } 2873 out_unlock_rcu: 2874 rcu_read_unlock(); 2875 return tsk; 2876 } 2877 2878 void cgroup_procs_write_finish(struct task_struct *task, bool locked) 2879 __releases(&cgroup_threadgroup_rwsem) 2880 { 2881 struct cgroup_subsys *ss; 2882 int ssid; 2883 2884 /* release reference from cgroup_procs_write_start() */ 2885 put_task_struct(task); 2886 2887 if (locked) 2888 percpu_up_write(&cgroup_threadgroup_rwsem); 2889 for_each_subsys(ss, ssid) 2890 if (ss->post_attach) 2891 ss->post_attach(); 2892 } 2893 2894 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask) 2895 { 2896 struct cgroup_subsys *ss; 2897 bool printed = false; 2898 int ssid; 2899 2900 do_each_subsys_mask(ss, ssid, ss_mask) { 2901 if (printed) 2902 seq_putc(seq, ' '); 2903 seq_puts(seq, ss->name); 2904 printed = true; 2905 } while_each_subsys_mask(); 2906 if (printed) 2907 seq_putc(seq, '\n'); 2908 } 2909 2910 /* show controllers which are enabled from the parent */ 2911 static int cgroup_controllers_show(struct seq_file *seq, void *v) 2912 { 2913 struct cgroup *cgrp = seq_css(seq)->cgroup; 2914 2915 cgroup_print_ss_mask(seq, cgroup_control(cgrp)); 2916 return 0; 2917 } 2918 2919 /* show controllers which are enabled for a given cgroup's children */ 2920 static int cgroup_subtree_control_show(struct seq_file *seq, void *v) 2921 { 2922 struct cgroup *cgrp = seq_css(seq)->cgroup; 2923 2924 cgroup_print_ss_mask(seq, cgrp->subtree_control); 2925 return 0; 2926 } 2927 2928 /** 2929 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy 2930 * @cgrp: root of the subtree to update csses for 2931 * 2932 * @cgrp's control masks have changed and its subtree's css associations 2933 * need to be updated accordingly. This function looks up all css_sets 2934 * which are attached to the subtree, creates the matching updated css_sets 2935 * and migrates the tasks to the new ones. 2936 */ 2937 static int cgroup_update_dfl_csses(struct cgroup *cgrp) 2938 { 2939 DEFINE_CGROUP_MGCTX(mgctx); 2940 struct cgroup_subsys_state *d_css; 2941 struct cgroup *dsct; 2942 struct css_set *src_cset; 2943 int ret; 2944 2945 lockdep_assert_held(&cgroup_mutex); 2946 2947 percpu_down_write(&cgroup_threadgroup_rwsem); 2948 2949 /* look up all csses currently attached to @cgrp's subtree */ 2950 spin_lock_irq(&css_set_lock); 2951 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 2952 struct cgrp_cset_link *link; 2953 2954 list_for_each_entry(link, &dsct->cset_links, cset_link) 2955 cgroup_migrate_add_src(link->cset, dsct, &mgctx); 2956 } 2957 spin_unlock_irq(&css_set_lock); 2958 2959 /* NULL dst indicates self on default hierarchy */ 2960 ret = cgroup_migrate_prepare_dst(&mgctx); 2961 if (ret) 2962 goto out_finish; 2963 2964 spin_lock_irq(&css_set_lock); 2965 list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, mg_preload_node) { 2966 struct task_struct *task, *ntask; 2967 2968 /* all tasks in src_csets need to be migrated */ 2969 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list) 2970 cgroup_migrate_add_task(task, &mgctx); 2971 } 2972 spin_unlock_irq(&css_set_lock); 2973 2974 ret = cgroup_migrate_execute(&mgctx); 2975 out_finish: 2976 cgroup_migrate_finish(&mgctx); 2977 percpu_up_write(&cgroup_threadgroup_rwsem); 2978 return ret; 2979 } 2980 2981 /** 2982 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses 2983 * @cgrp: root of the target subtree 2984 * 2985 * Because css offlining is asynchronous, userland may try to re-enable a 2986 * controller while the previous css is still around. This function grabs 2987 * cgroup_mutex and drains the previous css instances of @cgrp's subtree. 2988 */ 2989 void cgroup_lock_and_drain_offline(struct cgroup *cgrp) 2990 __acquires(&cgroup_mutex) 2991 { 2992 struct cgroup *dsct; 2993 struct cgroup_subsys_state *d_css; 2994 struct cgroup_subsys *ss; 2995 int ssid; 2996 2997 restart: 2998 mutex_lock(&cgroup_mutex); 2999 3000 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 3001 for_each_subsys(ss, ssid) { 3002 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 3003 DEFINE_WAIT(wait); 3004 3005 if (!css || !percpu_ref_is_dying(&css->refcnt)) 3006 continue; 3007 3008 cgroup_get_live(dsct); 3009 prepare_to_wait(&dsct->offline_waitq, &wait, 3010 TASK_UNINTERRUPTIBLE); 3011 3012 mutex_unlock(&cgroup_mutex); 3013 schedule(); 3014 finish_wait(&dsct->offline_waitq, &wait); 3015 3016 cgroup_put(dsct); 3017 goto restart; 3018 } 3019 } 3020 } 3021 3022 /** 3023 * cgroup_save_control - save control masks and dom_cgrp of a subtree 3024 * @cgrp: root of the target subtree 3025 * 3026 * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the 3027 * respective old_ prefixed fields for @cgrp's subtree including @cgrp 3028 * itself. 3029 */ 3030 static void cgroup_save_control(struct cgroup *cgrp) 3031 { 3032 struct cgroup *dsct; 3033 struct cgroup_subsys_state *d_css; 3034 3035 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 3036 dsct->old_subtree_control = dsct->subtree_control; 3037 dsct->old_subtree_ss_mask = dsct->subtree_ss_mask; 3038 dsct->old_dom_cgrp = dsct->dom_cgrp; 3039 } 3040 } 3041 3042 /** 3043 * cgroup_propagate_control - refresh control masks of a subtree 3044 * @cgrp: root of the target subtree 3045 * 3046 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches 3047 * ->subtree_control and propagate controller availability through the 3048 * subtree so that descendants don't have unavailable controllers enabled. 3049 */ 3050 static void cgroup_propagate_control(struct cgroup *cgrp) 3051 { 3052 struct cgroup *dsct; 3053 struct cgroup_subsys_state *d_css; 3054 3055 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 3056 dsct->subtree_control &= cgroup_control(dsct); 3057 dsct->subtree_ss_mask = 3058 cgroup_calc_subtree_ss_mask(dsct->subtree_control, 3059 cgroup_ss_mask(dsct)); 3060 } 3061 } 3062 3063 /** 3064 * cgroup_restore_control - restore control masks and dom_cgrp of a subtree 3065 * @cgrp: root of the target subtree 3066 * 3067 * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the 3068 * respective old_ prefixed fields for @cgrp's subtree including @cgrp 3069 * itself. 3070 */ 3071 static void cgroup_restore_control(struct cgroup *cgrp) 3072 { 3073 struct cgroup *dsct; 3074 struct cgroup_subsys_state *d_css; 3075 3076 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 3077 dsct->subtree_control = dsct->old_subtree_control; 3078 dsct->subtree_ss_mask = dsct->old_subtree_ss_mask; 3079 dsct->dom_cgrp = dsct->old_dom_cgrp; 3080 } 3081 } 3082 3083 static bool css_visible(struct cgroup_subsys_state *css) 3084 { 3085 struct cgroup_subsys *ss = css->ss; 3086 struct cgroup *cgrp = css->cgroup; 3087 3088 if (cgroup_control(cgrp) & (1 << ss->id)) 3089 return true; 3090 if (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) 3091 return false; 3092 return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl; 3093 } 3094 3095 /** 3096 * cgroup_apply_control_enable - enable or show csses according to control 3097 * @cgrp: root of the target subtree 3098 * 3099 * Walk @cgrp's subtree and create new csses or make the existing ones 3100 * visible. A css is created invisible if it's being implicitly enabled 3101 * through dependency. An invisible css is made visible when the userland 3102 * explicitly enables it. 3103 * 3104 * Returns 0 on success, -errno on failure. On failure, csses which have 3105 * been processed already aren't cleaned up. The caller is responsible for 3106 * cleaning up with cgroup_apply_control_disable(). 3107 */ 3108 static int cgroup_apply_control_enable(struct cgroup *cgrp) 3109 { 3110 struct cgroup *dsct; 3111 struct cgroup_subsys_state *d_css; 3112 struct cgroup_subsys *ss; 3113 int ssid, ret; 3114 3115 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 3116 for_each_subsys(ss, ssid) { 3117 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 3118 3119 if (!(cgroup_ss_mask(dsct) & (1 << ss->id))) 3120 continue; 3121 3122 if (!css) { 3123 css = css_create(dsct, ss); 3124 if (IS_ERR(css)) 3125 return PTR_ERR(css); 3126 } 3127 3128 WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt)); 3129 3130 if (css_visible(css)) { 3131 ret = css_populate_dir(css); 3132 if (ret) 3133 return ret; 3134 } 3135 } 3136 } 3137 3138 return 0; 3139 } 3140 3141 /** 3142 * cgroup_apply_control_disable - kill or hide csses according to control 3143 * @cgrp: root of the target subtree 3144 * 3145 * Walk @cgrp's subtree and kill and hide csses so that they match 3146 * cgroup_ss_mask() and cgroup_visible_mask(). 3147 * 3148 * A css is hidden when the userland requests it to be disabled while other 3149 * subsystems are still depending on it. The css must not actively control 3150 * resources and be in the vanilla state if it's made visible again later. 3151 * Controllers which may be depended upon should provide ->css_reset() for 3152 * this purpose. 3153 */ 3154 static void cgroup_apply_control_disable(struct cgroup *cgrp) 3155 { 3156 struct cgroup *dsct; 3157 struct cgroup_subsys_state *d_css; 3158 struct cgroup_subsys *ss; 3159 int ssid; 3160 3161 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 3162 for_each_subsys(ss, ssid) { 3163 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 3164 3165 if (!css) 3166 continue; 3167 3168 WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt)); 3169 3170 if (css->parent && 3171 !(cgroup_ss_mask(dsct) & (1 << ss->id))) { 3172 kill_css(css); 3173 } else if (!css_visible(css)) { 3174 css_clear_dir(css); 3175 if (ss->css_reset) 3176 ss->css_reset(css); 3177 } 3178 } 3179 } 3180 } 3181 3182 /** 3183 * cgroup_apply_control - apply control mask updates to the subtree 3184 * @cgrp: root of the target subtree 3185 * 3186 * subsystems can be enabled and disabled in a subtree using the following 3187 * steps. 3188 * 3189 * 1. Call cgroup_save_control() to stash the current state. 3190 * 2. Update ->subtree_control masks in the subtree as desired. 3191 * 3. Call cgroup_apply_control() to apply the changes. 3192 * 4. Optionally perform other related operations. 3193 * 5. Call cgroup_finalize_control() to finish up. 3194 * 3195 * This function implements step 3 and propagates the mask changes 3196 * throughout @cgrp's subtree, updates csses accordingly and perform 3197 * process migrations. 3198 */ 3199 static int cgroup_apply_control(struct cgroup *cgrp) 3200 { 3201 int ret; 3202 3203 cgroup_propagate_control(cgrp); 3204 3205 ret = cgroup_apply_control_enable(cgrp); 3206 if (ret) 3207 return ret; 3208 3209 /* 3210 * At this point, cgroup_e_css_by_mask() results reflect the new csses 3211 * making the following cgroup_update_dfl_csses() properly update 3212 * css associations of all tasks in the subtree. 3213 */ 3214 ret = cgroup_update_dfl_csses(cgrp); 3215 if (ret) 3216 return ret; 3217 3218 return 0; 3219 } 3220 3221 /** 3222 * cgroup_finalize_control - finalize control mask update 3223 * @cgrp: root of the target subtree 3224 * @ret: the result of the update 3225 * 3226 * Finalize control mask update. See cgroup_apply_control() for more info. 3227 */ 3228 static void cgroup_finalize_control(struct cgroup *cgrp, int ret) 3229 { 3230 if (ret) { 3231 cgroup_restore_control(cgrp); 3232 cgroup_propagate_control(cgrp); 3233 } 3234 3235 cgroup_apply_control_disable(cgrp); 3236 } 3237 3238 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable) 3239 { 3240 u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask; 3241 3242 /* if nothing is getting enabled, nothing to worry about */ 3243 if (!enable) 3244 return 0; 3245 3246 /* can @cgrp host any resources? */ 3247 if (!cgroup_is_valid_domain(cgrp->dom_cgrp)) 3248 return -EOPNOTSUPP; 3249 3250 /* mixables don't care */ 3251 if (cgroup_is_mixable(cgrp)) 3252 return 0; 3253 3254 if (domain_enable) { 3255 /* can't enable domain controllers inside a thread subtree */ 3256 if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp)) 3257 return -EOPNOTSUPP; 3258 } else { 3259 /* 3260 * Threaded controllers can handle internal competitions 3261 * and are always allowed inside a (prospective) thread 3262 * subtree. 3263 */ 3264 if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp)) 3265 return 0; 3266 } 3267 3268 /* 3269 * Controllers can't be enabled for a cgroup with tasks to avoid 3270 * child cgroups competing against tasks. 3271 */ 3272 if (cgroup_has_tasks(cgrp)) 3273 return -EBUSY; 3274 3275 return 0; 3276 } 3277 3278 /* change the enabled child controllers for a cgroup in the default hierarchy */ 3279 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of, 3280 char *buf, size_t nbytes, 3281 loff_t off) 3282 { 3283 u16 enable = 0, disable = 0; 3284 struct cgroup *cgrp, *child; 3285 struct cgroup_subsys *ss; 3286 char *tok; 3287 int ssid, ret; 3288 3289 /* 3290 * Parse input - space separated list of subsystem names prefixed 3291 * with either + or -. 3292 */ 3293 buf = strstrip(buf); 3294 while ((tok = strsep(&buf, " "))) { 3295 if (tok[0] == '\0') 3296 continue; 3297 do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) { 3298 if (!cgroup_ssid_enabled(ssid) || 3299 strcmp(tok + 1, ss->name)) 3300 continue; 3301 3302 if (*tok == '+') { 3303 enable |= 1 << ssid; 3304 disable &= ~(1 << ssid); 3305 } else if (*tok == '-') { 3306 disable |= 1 << ssid; 3307 enable &= ~(1 << ssid); 3308 } else { 3309 return -EINVAL; 3310 } 3311 break; 3312 } while_each_subsys_mask(); 3313 if (ssid == CGROUP_SUBSYS_COUNT) 3314 return -EINVAL; 3315 } 3316 3317 cgrp = cgroup_kn_lock_live(of->kn, true); 3318 if (!cgrp) 3319 return -ENODEV; 3320 3321 for_each_subsys(ss, ssid) { 3322 if (enable & (1 << ssid)) { 3323 if (cgrp->subtree_control & (1 << ssid)) { 3324 enable &= ~(1 << ssid); 3325 continue; 3326 } 3327 3328 if (!(cgroup_control(cgrp) & (1 << ssid))) { 3329 ret = -ENOENT; 3330 goto out_unlock; 3331 } 3332 } else if (disable & (1 << ssid)) { 3333 if (!(cgrp->subtree_control & (1 << ssid))) { 3334 disable &= ~(1 << ssid); 3335 continue; 3336 } 3337 3338 /* a child has it enabled? */ 3339 cgroup_for_each_live_child(child, cgrp) { 3340 if (child->subtree_control & (1 << ssid)) { 3341 ret = -EBUSY; 3342 goto out_unlock; 3343 } 3344 } 3345 } 3346 } 3347 3348 if (!enable && !disable) { 3349 ret = 0; 3350 goto out_unlock; 3351 } 3352 3353 ret = cgroup_vet_subtree_control_enable(cgrp, enable); 3354 if (ret) 3355 goto out_unlock; 3356 3357 /* save and update control masks and prepare csses */ 3358 cgroup_save_control(cgrp); 3359 3360 cgrp->subtree_control |= enable; 3361 cgrp->subtree_control &= ~disable; 3362 3363 ret = cgroup_apply_control(cgrp); 3364 cgroup_finalize_control(cgrp, ret); 3365 if (ret) 3366 goto out_unlock; 3367 3368 kernfs_activate(cgrp->kn); 3369 out_unlock: 3370 cgroup_kn_unlock(of->kn); 3371 return ret ?: nbytes; 3372 } 3373 3374 /** 3375 * cgroup_enable_threaded - make @cgrp threaded 3376 * @cgrp: the target cgroup 3377 * 3378 * Called when "threaded" is written to the cgroup.type interface file and 3379 * tries to make @cgrp threaded and join the parent's resource domain. 3380 * This function is never called on the root cgroup as cgroup.type doesn't 3381 * exist on it. 3382 */ 3383 static int cgroup_enable_threaded(struct cgroup *cgrp) 3384 { 3385 struct cgroup *parent = cgroup_parent(cgrp); 3386 struct cgroup *dom_cgrp = parent->dom_cgrp; 3387 struct cgroup *dsct; 3388 struct cgroup_subsys_state *d_css; 3389 int ret; 3390 3391 lockdep_assert_held(&cgroup_mutex); 3392 3393 /* noop if already threaded */ 3394 if (cgroup_is_threaded(cgrp)) 3395 return 0; 3396 3397 /* 3398 * If @cgroup is populated or has domain controllers enabled, it 3399 * can't be switched. While the below cgroup_can_be_thread_root() 3400 * test can catch the same conditions, that's only when @parent is 3401 * not mixable, so let's check it explicitly. 3402 */ 3403 if (cgroup_is_populated(cgrp) || 3404 cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask) 3405 return -EOPNOTSUPP; 3406 3407 /* we're joining the parent's domain, ensure its validity */ 3408 if (!cgroup_is_valid_domain(dom_cgrp) || 3409 !cgroup_can_be_thread_root(dom_cgrp)) 3410 return -EOPNOTSUPP; 3411 3412 /* 3413 * The following shouldn't cause actual migrations and should 3414 * always succeed. 3415 */ 3416 cgroup_save_control(cgrp); 3417 3418 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) 3419 if (dsct == cgrp || cgroup_is_threaded(dsct)) 3420 dsct->dom_cgrp = dom_cgrp; 3421 3422 ret = cgroup_apply_control(cgrp); 3423 if (!ret) 3424 parent->nr_threaded_children++; 3425 3426 cgroup_finalize_control(cgrp, ret); 3427 return ret; 3428 } 3429 3430 static int cgroup_type_show(struct seq_file *seq, void *v) 3431 { 3432 struct cgroup *cgrp = seq_css(seq)->cgroup; 3433 3434 if (cgroup_is_threaded(cgrp)) 3435 seq_puts(seq, "threaded\n"); 3436 else if (!cgroup_is_valid_domain(cgrp)) 3437 seq_puts(seq, "domain invalid\n"); 3438 else if (cgroup_is_thread_root(cgrp)) 3439 seq_puts(seq, "domain threaded\n"); 3440 else 3441 seq_puts(seq, "domain\n"); 3442 3443 return 0; 3444 } 3445 3446 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf, 3447 size_t nbytes, loff_t off) 3448 { 3449 struct cgroup *cgrp; 3450 int ret; 3451 3452 /* only switching to threaded mode is supported */ 3453 if (strcmp(strstrip(buf), "threaded")) 3454 return -EINVAL; 3455 3456 /* drain dying csses before we re-apply (threaded) subtree control */ 3457 cgrp = cgroup_kn_lock_live(of->kn, true); 3458 if (!cgrp) 3459 return -ENOENT; 3460 3461 /* threaded can only be enabled */ 3462 ret = cgroup_enable_threaded(cgrp); 3463 3464 cgroup_kn_unlock(of->kn); 3465 return ret ?: nbytes; 3466 } 3467 3468 static int cgroup_max_descendants_show(struct seq_file *seq, void *v) 3469 { 3470 struct cgroup *cgrp = seq_css(seq)->cgroup; 3471 int descendants = READ_ONCE(cgrp->max_descendants); 3472 3473 if (descendants == INT_MAX) 3474 seq_puts(seq, "max\n"); 3475 else 3476 seq_printf(seq, "%d\n", descendants); 3477 3478 return 0; 3479 } 3480 3481 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of, 3482 char *buf, size_t nbytes, loff_t off) 3483 { 3484 struct cgroup *cgrp; 3485 int descendants; 3486 ssize_t ret; 3487 3488 buf = strstrip(buf); 3489 if (!strcmp(buf, "max")) { 3490 descendants = INT_MAX; 3491 } else { 3492 ret = kstrtoint(buf, 0, &descendants); 3493 if (ret) 3494 return ret; 3495 } 3496 3497 if (descendants < 0) 3498 return -ERANGE; 3499 3500 cgrp = cgroup_kn_lock_live(of->kn, false); 3501 if (!cgrp) 3502 return -ENOENT; 3503 3504 cgrp->max_descendants = descendants; 3505 3506 cgroup_kn_unlock(of->kn); 3507 3508 return nbytes; 3509 } 3510 3511 static int cgroup_max_depth_show(struct seq_file *seq, void *v) 3512 { 3513 struct cgroup *cgrp = seq_css(seq)->cgroup; 3514 int depth = READ_ONCE(cgrp->max_depth); 3515 3516 if (depth == INT_MAX) 3517 seq_puts(seq, "max\n"); 3518 else 3519 seq_printf(seq, "%d\n", depth); 3520 3521 return 0; 3522 } 3523 3524 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of, 3525 char *buf, size_t nbytes, loff_t off) 3526 { 3527 struct cgroup *cgrp; 3528 ssize_t ret; 3529 int depth; 3530 3531 buf = strstrip(buf); 3532 if (!strcmp(buf, "max")) { 3533 depth = INT_MAX; 3534 } else { 3535 ret = kstrtoint(buf, 0, &depth); 3536 if (ret) 3537 return ret; 3538 } 3539 3540 if (depth < 0) 3541 return -ERANGE; 3542 3543 cgrp = cgroup_kn_lock_live(of->kn, false); 3544 if (!cgrp) 3545 return -ENOENT; 3546 3547 cgrp->max_depth = depth; 3548 3549 cgroup_kn_unlock(of->kn); 3550 3551 return nbytes; 3552 } 3553 3554 static int cgroup_events_show(struct seq_file *seq, void *v) 3555 { 3556 struct cgroup *cgrp = seq_css(seq)->cgroup; 3557 3558 seq_printf(seq, "populated %d\n", cgroup_is_populated(cgrp)); 3559 seq_printf(seq, "frozen %d\n", test_bit(CGRP_FROZEN, &cgrp->flags)); 3560 3561 return 0; 3562 } 3563 3564 static int cgroup_stat_show(struct seq_file *seq, void *v) 3565 { 3566 struct cgroup *cgroup = seq_css(seq)->cgroup; 3567 3568 seq_printf(seq, "nr_descendants %d\n", 3569 cgroup->nr_descendants); 3570 seq_printf(seq, "nr_dying_descendants %d\n", 3571 cgroup->nr_dying_descendants); 3572 3573 return 0; 3574 } 3575 3576 static int __maybe_unused cgroup_extra_stat_show(struct seq_file *seq, 3577 struct cgroup *cgrp, int ssid) 3578 { 3579 struct cgroup_subsys *ss = cgroup_subsys[ssid]; 3580 struct cgroup_subsys_state *css; 3581 int ret; 3582 3583 if (!ss->css_extra_stat_show) 3584 return 0; 3585 3586 css = cgroup_tryget_css(cgrp, ss); 3587 if (!css) 3588 return 0; 3589 3590 ret = ss->css_extra_stat_show(seq, css); 3591 css_put(css); 3592 return ret; 3593 } 3594 3595 static int cpu_stat_show(struct seq_file *seq, void *v) 3596 { 3597 struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup; 3598 int ret = 0; 3599 3600 cgroup_base_stat_cputime_show(seq); 3601 #ifdef CONFIG_CGROUP_SCHED 3602 ret = cgroup_extra_stat_show(seq, cgrp, cpu_cgrp_id); 3603 #endif 3604 return ret; 3605 } 3606 3607 #ifdef CONFIG_PSI 3608 static int cgroup_io_pressure_show(struct seq_file *seq, void *v) 3609 { 3610 struct cgroup *cgrp = seq_css(seq)->cgroup; 3611 struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi; 3612 3613 return psi_show(seq, psi, PSI_IO); 3614 } 3615 static int cgroup_memory_pressure_show(struct seq_file *seq, void *v) 3616 { 3617 struct cgroup *cgrp = seq_css(seq)->cgroup; 3618 struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi; 3619 3620 return psi_show(seq, psi, PSI_MEM); 3621 } 3622 static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v) 3623 { 3624 struct cgroup *cgrp = seq_css(seq)->cgroup; 3625 struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi; 3626 3627 return psi_show(seq, psi, PSI_CPU); 3628 } 3629 3630 static ssize_t cgroup_pressure_write(struct kernfs_open_file *of, char *buf, 3631 size_t nbytes, enum psi_res res) 3632 { 3633 struct psi_trigger *new; 3634 struct cgroup *cgrp; 3635 struct psi_group *psi; 3636 3637 cgrp = cgroup_kn_lock_live(of->kn, false); 3638 if (!cgrp) 3639 return -ENODEV; 3640 3641 cgroup_get(cgrp); 3642 cgroup_kn_unlock(of->kn); 3643 3644 psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi; 3645 new = psi_trigger_create(psi, buf, nbytes, res); 3646 if (IS_ERR(new)) { 3647 cgroup_put(cgrp); 3648 return PTR_ERR(new); 3649 } 3650 3651 psi_trigger_replace(&of->priv, new); 3652 3653 cgroup_put(cgrp); 3654 3655 return nbytes; 3656 } 3657 3658 static ssize_t cgroup_io_pressure_write(struct kernfs_open_file *of, 3659 char *buf, size_t nbytes, 3660 loff_t off) 3661 { 3662 return cgroup_pressure_write(of, buf, nbytes, PSI_IO); 3663 } 3664 3665 static ssize_t cgroup_memory_pressure_write(struct kernfs_open_file *of, 3666 char *buf, size_t nbytes, 3667 loff_t off) 3668 { 3669 return cgroup_pressure_write(of, buf, nbytes, PSI_MEM); 3670 } 3671 3672 static ssize_t cgroup_cpu_pressure_write(struct kernfs_open_file *of, 3673 char *buf, size_t nbytes, 3674 loff_t off) 3675 { 3676 return cgroup_pressure_write(of, buf, nbytes, PSI_CPU); 3677 } 3678 3679 static __poll_t cgroup_pressure_poll(struct kernfs_open_file *of, 3680 poll_table *pt) 3681 { 3682 return psi_trigger_poll(&of->priv, of->file, pt); 3683 } 3684 3685 static void cgroup_pressure_release(struct kernfs_open_file *of) 3686 { 3687 psi_trigger_replace(&of->priv, NULL); 3688 } 3689 3690 bool cgroup_psi_enabled(void) 3691 { 3692 return (cgroup_feature_disable_mask & (1 << OPT_FEATURE_PRESSURE)) == 0; 3693 } 3694 3695 #else /* CONFIG_PSI */ 3696 bool cgroup_psi_enabled(void) 3697 { 3698 return false; 3699 } 3700 3701 #endif /* CONFIG_PSI */ 3702 3703 static int cgroup_freeze_show(struct seq_file *seq, void *v) 3704 { 3705 struct cgroup *cgrp = seq_css(seq)->cgroup; 3706 3707 seq_printf(seq, "%d\n", cgrp->freezer.freeze); 3708 3709 return 0; 3710 } 3711 3712 static ssize_t cgroup_freeze_write(struct kernfs_open_file *of, 3713 char *buf, size_t nbytes, loff_t off) 3714 { 3715 struct cgroup *cgrp; 3716 ssize_t ret; 3717 int freeze; 3718 3719 ret = kstrtoint(strstrip(buf), 0, &freeze); 3720 if (ret) 3721 return ret; 3722 3723 if (freeze < 0 || freeze > 1) 3724 return -ERANGE; 3725 3726 cgrp = cgroup_kn_lock_live(of->kn, false); 3727 if (!cgrp) 3728 return -ENOENT; 3729 3730 cgroup_freeze(cgrp, freeze); 3731 3732 cgroup_kn_unlock(of->kn); 3733 3734 return nbytes; 3735 } 3736 3737 static void __cgroup_kill(struct cgroup *cgrp) 3738 { 3739 struct css_task_iter it; 3740 struct task_struct *task; 3741 3742 lockdep_assert_held(&cgroup_mutex); 3743 3744 spin_lock_irq(&css_set_lock); 3745 set_bit(CGRP_KILL, &cgrp->flags); 3746 spin_unlock_irq(&css_set_lock); 3747 3748 css_task_iter_start(&cgrp->self, CSS_TASK_ITER_PROCS | CSS_TASK_ITER_THREADED, &it); 3749 while ((task = css_task_iter_next(&it))) { 3750 /* Ignore kernel threads here. */ 3751 if (task->flags & PF_KTHREAD) 3752 continue; 3753 3754 /* Skip tasks that are already dying. */ 3755 if (__fatal_signal_pending(task)) 3756 continue; 3757 3758 send_sig(SIGKILL, task, 0); 3759 } 3760 css_task_iter_end(&it); 3761 3762 spin_lock_irq(&css_set_lock); 3763 clear_bit(CGRP_KILL, &cgrp->flags); 3764 spin_unlock_irq(&css_set_lock); 3765 } 3766 3767 static void cgroup_kill(struct cgroup *cgrp) 3768 { 3769 struct cgroup_subsys_state *css; 3770 struct cgroup *dsct; 3771 3772 lockdep_assert_held(&cgroup_mutex); 3773 3774 cgroup_for_each_live_descendant_pre(dsct, css, cgrp) 3775 __cgroup_kill(dsct); 3776 } 3777 3778 static ssize_t cgroup_kill_write(struct kernfs_open_file *of, char *buf, 3779 size_t nbytes, loff_t off) 3780 { 3781 ssize_t ret = 0; 3782 int kill; 3783 struct cgroup *cgrp; 3784 3785 ret = kstrtoint(strstrip(buf), 0, &kill); 3786 if (ret) 3787 return ret; 3788 3789 if (kill != 1) 3790 return -ERANGE; 3791 3792 cgrp = cgroup_kn_lock_live(of->kn, false); 3793 if (!cgrp) 3794 return -ENOENT; 3795 3796 /* 3797 * Killing is a process directed operation, i.e. the whole thread-group 3798 * is taken down so act like we do for cgroup.procs and only make this 3799 * writable in non-threaded cgroups. 3800 */ 3801 if (cgroup_is_threaded(cgrp)) 3802 ret = -EOPNOTSUPP; 3803 else 3804 cgroup_kill(cgrp); 3805 3806 cgroup_kn_unlock(of->kn); 3807 3808 return ret ?: nbytes; 3809 } 3810 3811 static int cgroup_file_open(struct kernfs_open_file *of) 3812 { 3813 struct cftype *cft = of_cft(of); 3814 3815 if (cft->open) 3816 return cft->open(of); 3817 return 0; 3818 } 3819 3820 static void cgroup_file_release(struct kernfs_open_file *of) 3821 { 3822 struct cftype *cft = of_cft(of); 3823 3824 if (cft->release) 3825 cft->release(of); 3826 } 3827 3828 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf, 3829 size_t nbytes, loff_t off) 3830 { 3831 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns; 3832 struct cgroup *cgrp = of->kn->parent->priv; 3833 struct cftype *cft = of_cft(of); 3834 struct cgroup_subsys_state *css; 3835 int ret; 3836 3837 if (!nbytes) 3838 return 0; 3839 3840 /* 3841 * If namespaces are delegation boundaries, disallow writes to 3842 * files in an non-init namespace root from inside the namespace 3843 * except for the files explicitly marked delegatable - 3844 * cgroup.procs and cgroup.subtree_control. 3845 */ 3846 if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) && 3847 !(cft->flags & CFTYPE_NS_DELEGATABLE) && 3848 ns != &init_cgroup_ns && ns->root_cset->dfl_cgrp == cgrp) 3849 return -EPERM; 3850 3851 if (cft->write) 3852 return cft->write(of, buf, nbytes, off); 3853 3854 /* 3855 * kernfs guarantees that a file isn't deleted with operations in 3856 * flight, which means that the matching css is and stays alive and 3857 * doesn't need to be pinned. The RCU locking is not necessary 3858 * either. It's just for the convenience of using cgroup_css(). 3859 */ 3860 rcu_read_lock(); 3861 css = cgroup_css(cgrp, cft->ss); 3862 rcu_read_unlock(); 3863 3864 if (cft->write_u64) { 3865 unsigned long long v; 3866 ret = kstrtoull(buf, 0, &v); 3867 if (!ret) 3868 ret = cft->write_u64(css, cft, v); 3869 } else if (cft->write_s64) { 3870 long long v; 3871 ret = kstrtoll(buf, 0, &v); 3872 if (!ret) 3873 ret = cft->write_s64(css, cft, v); 3874 } else { 3875 ret = -EINVAL; 3876 } 3877 3878 return ret ?: nbytes; 3879 } 3880 3881 static __poll_t cgroup_file_poll(struct kernfs_open_file *of, poll_table *pt) 3882 { 3883 struct cftype *cft = of_cft(of); 3884 3885 if (cft->poll) 3886 return cft->poll(of, pt); 3887 3888 return kernfs_generic_poll(of, pt); 3889 } 3890 3891 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos) 3892 { 3893 return seq_cft(seq)->seq_start(seq, ppos); 3894 } 3895 3896 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos) 3897 { 3898 return seq_cft(seq)->seq_next(seq, v, ppos); 3899 } 3900 3901 static void cgroup_seqfile_stop(struct seq_file *seq, void *v) 3902 { 3903 if (seq_cft(seq)->seq_stop) 3904 seq_cft(seq)->seq_stop(seq, v); 3905 } 3906 3907 static int cgroup_seqfile_show(struct seq_file *m, void *arg) 3908 { 3909 struct cftype *cft = seq_cft(m); 3910 struct cgroup_subsys_state *css = seq_css(m); 3911 3912 if (cft->seq_show) 3913 return cft->seq_show(m, arg); 3914 3915 if (cft->read_u64) 3916 seq_printf(m, "%llu\n", cft->read_u64(css, cft)); 3917 else if (cft->read_s64) 3918 seq_printf(m, "%lld\n", cft->read_s64(css, cft)); 3919 else 3920 return -EINVAL; 3921 return 0; 3922 } 3923 3924 static struct kernfs_ops cgroup_kf_single_ops = { 3925 .atomic_write_len = PAGE_SIZE, 3926 .open = cgroup_file_open, 3927 .release = cgroup_file_release, 3928 .write = cgroup_file_write, 3929 .poll = cgroup_file_poll, 3930 .seq_show = cgroup_seqfile_show, 3931 }; 3932 3933 static struct kernfs_ops cgroup_kf_ops = { 3934 .atomic_write_len = PAGE_SIZE, 3935 .open = cgroup_file_open, 3936 .release = cgroup_file_release, 3937 .write = cgroup_file_write, 3938 .poll = cgroup_file_poll, 3939 .seq_start = cgroup_seqfile_start, 3940 .seq_next = cgroup_seqfile_next, 3941 .seq_stop = cgroup_seqfile_stop, 3942 .seq_show = cgroup_seqfile_show, 3943 }; 3944 3945 /* set uid and gid of cgroup dirs and files to that of the creator */ 3946 static int cgroup_kn_set_ugid(struct kernfs_node *kn) 3947 { 3948 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID, 3949 .ia_uid = current_fsuid(), 3950 .ia_gid = current_fsgid(), }; 3951 3952 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) && 3953 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID)) 3954 return 0; 3955 3956 return kernfs_setattr(kn, &iattr); 3957 } 3958 3959 static void cgroup_file_notify_timer(struct timer_list *timer) 3960 { 3961 cgroup_file_notify(container_of(timer, struct cgroup_file, 3962 notify_timer)); 3963 } 3964 3965 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp, 3966 struct cftype *cft) 3967 { 3968 char name[CGROUP_FILE_NAME_MAX]; 3969 struct kernfs_node *kn; 3970 struct lock_class_key *key = NULL; 3971 int ret; 3972 3973 #ifdef CONFIG_DEBUG_LOCK_ALLOC 3974 key = &cft->lockdep_key; 3975 #endif 3976 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name), 3977 cgroup_file_mode(cft), 3978 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 3979 0, cft->kf_ops, cft, 3980 NULL, key); 3981 if (IS_ERR(kn)) 3982 return PTR_ERR(kn); 3983 3984 ret = cgroup_kn_set_ugid(kn); 3985 if (ret) { 3986 kernfs_remove(kn); 3987 return ret; 3988 } 3989 3990 if (cft->file_offset) { 3991 struct cgroup_file *cfile = (void *)css + cft->file_offset; 3992 3993 timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0); 3994 3995 spin_lock_irq(&cgroup_file_kn_lock); 3996 cfile->kn = kn; 3997 spin_unlock_irq(&cgroup_file_kn_lock); 3998 } 3999 4000 return 0; 4001 } 4002 4003 /** 4004 * cgroup_addrm_files - add or remove files to a cgroup directory 4005 * @css: the target css 4006 * @cgrp: the target cgroup (usually css->cgroup) 4007 * @cfts: array of cftypes to be added 4008 * @is_add: whether to add or remove 4009 * 4010 * Depending on @is_add, add or remove files defined by @cfts on @cgrp. 4011 * For removals, this function never fails. 4012 */ 4013 static int cgroup_addrm_files(struct cgroup_subsys_state *css, 4014 struct cgroup *cgrp, struct cftype cfts[], 4015 bool is_add) 4016 { 4017 struct cftype *cft, *cft_end = NULL; 4018 int ret = 0; 4019 4020 lockdep_assert_held(&cgroup_mutex); 4021 4022 restart: 4023 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) { 4024 /* does cft->flags tell us to skip this file on @cgrp? */ 4025 if ((cft->flags & CFTYPE_PRESSURE) && !cgroup_psi_enabled()) 4026 continue; 4027 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp)) 4028 continue; 4029 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp)) 4030 continue; 4031 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp)) 4032 continue; 4033 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp)) 4034 continue; 4035 if ((cft->flags & CFTYPE_DEBUG) && !cgroup_debug) 4036 continue; 4037 if (is_add) { 4038 ret = cgroup_add_file(css, cgrp, cft); 4039 if (ret) { 4040 pr_warn("%s: failed to add %s, err=%d\n", 4041 __func__, cft->name, ret); 4042 cft_end = cft; 4043 is_add = false; 4044 goto restart; 4045 } 4046 } else { 4047 cgroup_rm_file(cgrp, cft); 4048 } 4049 } 4050 return ret; 4051 } 4052 4053 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add) 4054 { 4055 struct cgroup_subsys *ss = cfts[0].ss; 4056 struct cgroup *root = &ss->root->cgrp; 4057 struct cgroup_subsys_state *css; 4058 int ret = 0; 4059 4060 lockdep_assert_held(&cgroup_mutex); 4061 4062 /* add/rm files for all cgroups created before */ 4063 css_for_each_descendant_pre(css, cgroup_css(root, ss)) { 4064 struct cgroup *cgrp = css->cgroup; 4065 4066 if (!(css->flags & CSS_VISIBLE)) 4067 continue; 4068 4069 ret = cgroup_addrm_files(css, cgrp, cfts, is_add); 4070 if (ret) 4071 break; 4072 } 4073 4074 if (is_add && !ret) 4075 kernfs_activate(root->kn); 4076 return ret; 4077 } 4078 4079 static void cgroup_exit_cftypes(struct cftype *cfts) 4080 { 4081 struct cftype *cft; 4082 4083 for (cft = cfts; cft->name[0] != '\0'; cft++) { 4084 /* free copy for custom atomic_write_len, see init_cftypes() */ 4085 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) 4086 kfree(cft->kf_ops); 4087 cft->kf_ops = NULL; 4088 cft->ss = NULL; 4089 4090 /* revert flags set by cgroup core while adding @cfts */ 4091 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL); 4092 } 4093 } 4094 4095 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4096 { 4097 struct cftype *cft; 4098 4099 for (cft = cfts; cft->name[0] != '\0'; cft++) { 4100 struct kernfs_ops *kf_ops; 4101 4102 WARN_ON(cft->ss || cft->kf_ops); 4103 4104 if ((cft->flags & CFTYPE_PRESSURE) && !cgroup_psi_enabled()) 4105 continue; 4106 4107 if (cft->seq_start) 4108 kf_ops = &cgroup_kf_ops; 4109 else 4110 kf_ops = &cgroup_kf_single_ops; 4111 4112 /* 4113 * Ugh... if @cft wants a custom max_write_len, we need to 4114 * make a copy of kf_ops to set its atomic_write_len. 4115 */ 4116 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) { 4117 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL); 4118 if (!kf_ops) { 4119 cgroup_exit_cftypes(cfts); 4120 return -ENOMEM; 4121 } 4122 kf_ops->atomic_write_len = cft->max_write_len; 4123 } 4124 4125 cft->kf_ops = kf_ops; 4126 cft->ss = ss; 4127 } 4128 4129 return 0; 4130 } 4131 4132 static int cgroup_rm_cftypes_locked(struct cftype *cfts) 4133 { 4134 lockdep_assert_held(&cgroup_mutex); 4135 4136 if (!cfts || !cfts[0].ss) 4137 return -ENOENT; 4138 4139 list_del(&cfts->node); 4140 cgroup_apply_cftypes(cfts, false); 4141 cgroup_exit_cftypes(cfts); 4142 return 0; 4143 } 4144 4145 /** 4146 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem 4147 * @cfts: zero-length name terminated array of cftypes 4148 * 4149 * Unregister @cfts. Files described by @cfts are removed from all 4150 * existing cgroups and all future cgroups won't have them either. This 4151 * function can be called anytime whether @cfts' subsys is attached or not. 4152 * 4153 * Returns 0 on successful unregistration, -ENOENT if @cfts is not 4154 * registered. 4155 */ 4156 int cgroup_rm_cftypes(struct cftype *cfts) 4157 { 4158 int ret; 4159 4160 mutex_lock(&cgroup_mutex); 4161 ret = cgroup_rm_cftypes_locked(cfts); 4162 mutex_unlock(&cgroup_mutex); 4163 return ret; 4164 } 4165 4166 /** 4167 * cgroup_add_cftypes - add an array of cftypes to a subsystem 4168 * @ss: target cgroup subsystem 4169 * @cfts: zero-length name terminated array of cftypes 4170 * 4171 * Register @cfts to @ss. Files described by @cfts are created for all 4172 * existing cgroups to which @ss is attached and all future cgroups will 4173 * have them too. This function can be called anytime whether @ss is 4174 * attached or not. 4175 * 4176 * Returns 0 on successful registration, -errno on failure. Note that this 4177 * function currently returns 0 as long as @cfts registration is successful 4178 * even if some file creation attempts on existing cgroups fail. 4179 */ 4180 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4181 { 4182 int ret; 4183 4184 if (!cgroup_ssid_enabled(ss->id)) 4185 return 0; 4186 4187 if (!cfts || cfts[0].name[0] == '\0') 4188 return 0; 4189 4190 ret = cgroup_init_cftypes(ss, cfts); 4191 if (ret) 4192 return ret; 4193 4194 mutex_lock(&cgroup_mutex); 4195 4196 list_add_tail(&cfts->node, &ss->cfts); 4197 ret = cgroup_apply_cftypes(cfts, true); 4198 if (ret) 4199 cgroup_rm_cftypes_locked(cfts); 4200 4201 mutex_unlock(&cgroup_mutex); 4202 return ret; 4203 } 4204 4205 /** 4206 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy 4207 * @ss: target cgroup subsystem 4208 * @cfts: zero-length name terminated array of cftypes 4209 * 4210 * Similar to cgroup_add_cftypes() but the added files are only used for 4211 * the default hierarchy. 4212 */ 4213 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4214 { 4215 struct cftype *cft; 4216 4217 for (cft = cfts; cft && cft->name[0] != '\0'; cft++) 4218 cft->flags |= __CFTYPE_ONLY_ON_DFL; 4219 return cgroup_add_cftypes(ss, cfts); 4220 } 4221 4222 /** 4223 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies 4224 * @ss: target cgroup subsystem 4225 * @cfts: zero-length name terminated array of cftypes 4226 * 4227 * Similar to cgroup_add_cftypes() but the added files are only used for 4228 * the legacy hierarchies. 4229 */ 4230 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4231 { 4232 struct cftype *cft; 4233 4234 for (cft = cfts; cft && cft->name[0] != '\0'; cft++) 4235 cft->flags |= __CFTYPE_NOT_ON_DFL; 4236 return cgroup_add_cftypes(ss, cfts); 4237 } 4238 4239 /** 4240 * cgroup_file_notify - generate a file modified event for a cgroup_file 4241 * @cfile: target cgroup_file 4242 * 4243 * @cfile must have been obtained by setting cftype->file_offset. 4244 */ 4245 void cgroup_file_notify(struct cgroup_file *cfile) 4246 { 4247 unsigned long flags; 4248 4249 spin_lock_irqsave(&cgroup_file_kn_lock, flags); 4250 if (cfile->kn) { 4251 unsigned long last = cfile->notified_at; 4252 unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV; 4253 4254 if (time_in_range(jiffies, last, next)) { 4255 timer_reduce(&cfile->notify_timer, next); 4256 } else { 4257 kernfs_notify(cfile->kn); 4258 cfile->notified_at = jiffies; 4259 } 4260 } 4261 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags); 4262 } 4263 4264 /** 4265 * css_next_child - find the next child of a given css 4266 * @pos: the current position (%NULL to initiate traversal) 4267 * @parent: css whose children to walk 4268 * 4269 * This function returns the next child of @parent and should be called 4270 * under either cgroup_mutex or RCU read lock. The only requirement is 4271 * that @parent and @pos are accessible. The next sibling is guaranteed to 4272 * be returned regardless of their states. 4273 * 4274 * If a subsystem synchronizes ->css_online() and the start of iteration, a 4275 * css which finished ->css_online() is guaranteed to be visible in the 4276 * future iterations and will stay visible until the last reference is put. 4277 * A css which hasn't finished ->css_online() or already finished 4278 * ->css_offline() may show up during traversal. It's each subsystem's 4279 * responsibility to synchronize against on/offlining. 4280 */ 4281 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos, 4282 struct cgroup_subsys_state *parent) 4283 { 4284 struct cgroup_subsys_state *next; 4285 4286 cgroup_assert_mutex_or_rcu_locked(); 4287 4288 /* 4289 * @pos could already have been unlinked from the sibling list. 4290 * Once a cgroup is removed, its ->sibling.next is no longer 4291 * updated when its next sibling changes. CSS_RELEASED is set when 4292 * @pos is taken off list, at which time its next pointer is valid, 4293 * and, as releases are serialized, the one pointed to by the next 4294 * pointer is guaranteed to not have started release yet. This 4295 * implies that if we observe !CSS_RELEASED on @pos in this RCU 4296 * critical section, the one pointed to by its next pointer is 4297 * guaranteed to not have finished its RCU grace period even if we 4298 * have dropped rcu_read_lock() in-between iterations. 4299 * 4300 * If @pos has CSS_RELEASED set, its next pointer can't be 4301 * dereferenced; however, as each css is given a monotonically 4302 * increasing unique serial number and always appended to the 4303 * sibling list, the next one can be found by walking the parent's 4304 * children until the first css with higher serial number than 4305 * @pos's. While this path can be slower, it happens iff iteration 4306 * races against release and the race window is very small. 4307 */ 4308 if (!pos) { 4309 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling); 4310 } else if (likely(!(pos->flags & CSS_RELEASED))) { 4311 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling); 4312 } else { 4313 list_for_each_entry_rcu(next, &parent->children, sibling, 4314 lockdep_is_held(&cgroup_mutex)) 4315 if (next->serial_nr > pos->serial_nr) 4316 break; 4317 } 4318 4319 /* 4320 * @next, if not pointing to the head, can be dereferenced and is 4321 * the next sibling. 4322 */ 4323 if (&next->sibling != &parent->children) 4324 return next; 4325 return NULL; 4326 } 4327 4328 /** 4329 * css_next_descendant_pre - find the next descendant for pre-order walk 4330 * @pos: the current position (%NULL to initiate traversal) 4331 * @root: css whose descendants to walk 4332 * 4333 * To be used by css_for_each_descendant_pre(). Find the next descendant 4334 * to visit for pre-order traversal of @root's descendants. @root is 4335 * included in the iteration and the first node to be visited. 4336 * 4337 * While this function requires cgroup_mutex or RCU read locking, it 4338 * doesn't require the whole traversal to be contained in a single critical 4339 * section. This function will return the correct next descendant as long 4340 * as both @pos and @root are accessible and @pos is a descendant of @root. 4341 * 4342 * If a subsystem synchronizes ->css_online() and the start of iteration, a 4343 * css which finished ->css_online() is guaranteed to be visible in the 4344 * future iterations and will stay visible until the last reference is put. 4345 * A css which hasn't finished ->css_online() or already finished 4346 * ->css_offline() may show up during traversal. It's each subsystem's 4347 * responsibility to synchronize against on/offlining. 4348 */ 4349 struct cgroup_subsys_state * 4350 css_next_descendant_pre(struct cgroup_subsys_state *pos, 4351 struct cgroup_subsys_state *root) 4352 { 4353 struct cgroup_subsys_state *next; 4354 4355 cgroup_assert_mutex_or_rcu_locked(); 4356 4357 /* if first iteration, visit @root */ 4358 if (!pos) 4359 return root; 4360 4361 /* visit the first child if exists */ 4362 next = css_next_child(NULL, pos); 4363 if (next) 4364 return next; 4365 4366 /* no child, visit my or the closest ancestor's next sibling */ 4367 while (pos != root) { 4368 next = css_next_child(pos, pos->parent); 4369 if (next) 4370 return next; 4371 pos = pos->parent; 4372 } 4373 4374 return NULL; 4375 } 4376 EXPORT_SYMBOL_GPL(css_next_descendant_pre); 4377 4378 /** 4379 * css_rightmost_descendant - return the rightmost descendant of a css 4380 * @pos: css of interest 4381 * 4382 * Return the rightmost descendant of @pos. If there's no descendant, @pos 4383 * is returned. This can be used during pre-order traversal to skip 4384 * subtree of @pos. 4385 * 4386 * While this function requires cgroup_mutex or RCU read locking, it 4387 * doesn't require the whole traversal to be contained in a single critical 4388 * section. This function will return the correct rightmost descendant as 4389 * long as @pos is accessible. 4390 */ 4391 struct cgroup_subsys_state * 4392 css_rightmost_descendant(struct cgroup_subsys_state *pos) 4393 { 4394 struct cgroup_subsys_state *last, *tmp; 4395 4396 cgroup_assert_mutex_or_rcu_locked(); 4397 4398 do { 4399 last = pos; 4400 /* ->prev isn't RCU safe, walk ->next till the end */ 4401 pos = NULL; 4402 css_for_each_child(tmp, last) 4403 pos = tmp; 4404 } while (pos); 4405 4406 return last; 4407 } 4408 4409 static struct cgroup_subsys_state * 4410 css_leftmost_descendant(struct cgroup_subsys_state *pos) 4411 { 4412 struct cgroup_subsys_state *last; 4413 4414 do { 4415 last = pos; 4416 pos = css_next_child(NULL, pos); 4417 } while (pos); 4418 4419 return last; 4420 } 4421 4422 /** 4423 * css_next_descendant_post - find the next descendant for post-order walk 4424 * @pos: the current position (%NULL to initiate traversal) 4425 * @root: css whose descendants to walk 4426 * 4427 * To be used by css_for_each_descendant_post(). Find the next descendant 4428 * to visit for post-order traversal of @root's descendants. @root is 4429 * included in the iteration and the last node to be visited. 4430 * 4431 * While this function requires cgroup_mutex or RCU read locking, it 4432 * doesn't require the whole traversal to be contained in a single critical 4433 * section. This function will return the correct next descendant as long 4434 * as both @pos and @cgroup are accessible and @pos is a descendant of 4435 * @cgroup. 4436 * 4437 * If a subsystem synchronizes ->css_online() and the start of iteration, a 4438 * css which finished ->css_online() is guaranteed to be visible in the 4439 * future iterations and will stay visible until the last reference is put. 4440 * A css which hasn't finished ->css_online() or already finished 4441 * ->css_offline() may show up during traversal. It's each subsystem's 4442 * responsibility to synchronize against on/offlining. 4443 */ 4444 struct cgroup_subsys_state * 4445 css_next_descendant_post(struct cgroup_subsys_state *pos, 4446 struct cgroup_subsys_state *root) 4447 { 4448 struct cgroup_subsys_state *next; 4449 4450 cgroup_assert_mutex_or_rcu_locked(); 4451 4452 /* if first iteration, visit leftmost descendant which may be @root */ 4453 if (!pos) 4454 return css_leftmost_descendant(root); 4455 4456 /* if we visited @root, we're done */ 4457 if (pos == root) 4458 return NULL; 4459 4460 /* if there's an unvisited sibling, visit its leftmost descendant */ 4461 next = css_next_child(pos, pos->parent); 4462 if (next) 4463 return css_leftmost_descendant(next); 4464 4465 /* no sibling left, visit parent */ 4466 return pos->parent; 4467 } 4468 4469 /** 4470 * css_has_online_children - does a css have online children 4471 * @css: the target css 4472 * 4473 * Returns %true if @css has any online children; otherwise, %false. This 4474 * function can be called from any context but the caller is responsible 4475 * for synchronizing against on/offlining as necessary. 4476 */ 4477 bool css_has_online_children(struct cgroup_subsys_state *css) 4478 { 4479 struct cgroup_subsys_state *child; 4480 bool ret = false; 4481 4482 rcu_read_lock(); 4483 css_for_each_child(child, css) { 4484 if (child->flags & CSS_ONLINE) { 4485 ret = true; 4486 break; 4487 } 4488 } 4489 rcu_read_unlock(); 4490 return ret; 4491 } 4492 4493 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it) 4494 { 4495 struct list_head *l; 4496 struct cgrp_cset_link *link; 4497 struct css_set *cset; 4498 4499 lockdep_assert_held(&css_set_lock); 4500 4501 /* find the next threaded cset */ 4502 if (it->tcset_pos) { 4503 l = it->tcset_pos->next; 4504 4505 if (l != it->tcset_head) { 4506 it->tcset_pos = l; 4507 return container_of(l, struct css_set, 4508 threaded_csets_node); 4509 } 4510 4511 it->tcset_pos = NULL; 4512 } 4513 4514 /* find the next cset */ 4515 l = it->cset_pos; 4516 l = l->next; 4517 if (l == it->cset_head) { 4518 it->cset_pos = NULL; 4519 return NULL; 4520 } 4521 4522 if (it->ss) { 4523 cset = container_of(l, struct css_set, e_cset_node[it->ss->id]); 4524 } else { 4525 link = list_entry(l, struct cgrp_cset_link, cset_link); 4526 cset = link->cset; 4527 } 4528 4529 it->cset_pos = l; 4530 4531 /* initialize threaded css_set walking */ 4532 if (it->flags & CSS_TASK_ITER_THREADED) { 4533 if (it->cur_dcset) 4534 put_css_set_locked(it->cur_dcset); 4535 it->cur_dcset = cset; 4536 get_css_set(cset); 4537 4538 it->tcset_head = &cset->threaded_csets; 4539 it->tcset_pos = &cset->threaded_csets; 4540 } 4541 4542 return cset; 4543 } 4544 4545 /** 4546 * css_task_iter_advance_css_set - advance a task iterator to the next css_set 4547 * @it: the iterator to advance 4548 * 4549 * Advance @it to the next css_set to walk. 4550 */ 4551 static void css_task_iter_advance_css_set(struct css_task_iter *it) 4552 { 4553 struct css_set *cset; 4554 4555 lockdep_assert_held(&css_set_lock); 4556 4557 /* Advance to the next non-empty css_set and find first non-empty tasks list*/ 4558 while ((cset = css_task_iter_next_css_set(it))) { 4559 if (!list_empty(&cset->tasks)) { 4560 it->cur_tasks_head = &cset->tasks; 4561 break; 4562 } else if (!list_empty(&cset->mg_tasks)) { 4563 it->cur_tasks_head = &cset->mg_tasks; 4564 break; 4565 } else if (!list_empty(&cset->dying_tasks)) { 4566 it->cur_tasks_head = &cset->dying_tasks; 4567 break; 4568 } 4569 } 4570 if (!cset) { 4571 it->task_pos = NULL; 4572 return; 4573 } 4574 it->task_pos = it->cur_tasks_head->next; 4575 4576 /* 4577 * We don't keep css_sets locked across iteration steps and thus 4578 * need to take steps to ensure that iteration can be resumed after 4579 * the lock is re-acquired. Iteration is performed at two levels - 4580 * css_sets and tasks in them. 4581 * 4582 * Once created, a css_set never leaves its cgroup lists, so a 4583 * pinned css_set is guaranteed to stay put and we can resume 4584 * iteration afterwards. 4585 * 4586 * Tasks may leave @cset across iteration steps. This is resolved 4587 * by registering each iterator with the css_set currently being 4588 * walked and making css_set_move_task() advance iterators whose 4589 * next task is leaving. 4590 */ 4591 if (it->cur_cset) { 4592 list_del(&it->iters_node); 4593 put_css_set_locked(it->cur_cset); 4594 } 4595 get_css_set(cset); 4596 it->cur_cset = cset; 4597 list_add(&it->iters_node, &cset->task_iters); 4598 } 4599 4600 static void css_task_iter_skip(struct css_task_iter *it, 4601 struct task_struct *task) 4602 { 4603 lockdep_assert_held(&css_set_lock); 4604 4605 if (it->task_pos == &task->cg_list) { 4606 it->task_pos = it->task_pos->next; 4607 it->flags |= CSS_TASK_ITER_SKIPPED; 4608 } 4609 } 4610 4611 static void css_task_iter_advance(struct css_task_iter *it) 4612 { 4613 struct task_struct *task; 4614 4615 lockdep_assert_held(&css_set_lock); 4616 repeat: 4617 if (it->task_pos) { 4618 /* 4619 * Advance iterator to find next entry. We go through cset 4620 * tasks, mg_tasks and dying_tasks, when consumed we move onto 4621 * the next cset. 4622 */ 4623 if (it->flags & CSS_TASK_ITER_SKIPPED) 4624 it->flags &= ~CSS_TASK_ITER_SKIPPED; 4625 else 4626 it->task_pos = it->task_pos->next; 4627 4628 if (it->task_pos == &it->cur_cset->tasks) { 4629 it->cur_tasks_head = &it->cur_cset->mg_tasks; 4630 it->task_pos = it->cur_tasks_head->next; 4631 } 4632 if (it->task_pos == &it->cur_cset->mg_tasks) { 4633 it->cur_tasks_head = &it->cur_cset->dying_tasks; 4634 it->task_pos = it->cur_tasks_head->next; 4635 } 4636 if (it->task_pos == &it->cur_cset->dying_tasks) 4637 css_task_iter_advance_css_set(it); 4638 } else { 4639 /* called from start, proceed to the first cset */ 4640 css_task_iter_advance_css_set(it); 4641 } 4642 4643 if (!it->task_pos) 4644 return; 4645 4646 task = list_entry(it->task_pos, struct task_struct, cg_list); 4647 4648 if (it->flags & CSS_TASK_ITER_PROCS) { 4649 /* if PROCS, skip over tasks which aren't group leaders */ 4650 if (!thread_group_leader(task)) 4651 goto repeat; 4652 4653 /* and dying leaders w/o live member threads */ 4654 if (it->cur_tasks_head == &it->cur_cset->dying_tasks && 4655 !atomic_read(&task->signal->live)) 4656 goto repeat; 4657 } else { 4658 /* skip all dying ones */ 4659 if (it->cur_tasks_head == &it->cur_cset->dying_tasks) 4660 goto repeat; 4661 } 4662 } 4663 4664 /** 4665 * css_task_iter_start - initiate task iteration 4666 * @css: the css to walk tasks of 4667 * @flags: CSS_TASK_ITER_* flags 4668 * @it: the task iterator to use 4669 * 4670 * Initiate iteration through the tasks of @css. The caller can call 4671 * css_task_iter_next() to walk through the tasks until the function 4672 * returns NULL. On completion of iteration, css_task_iter_end() must be 4673 * called. 4674 */ 4675 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags, 4676 struct css_task_iter *it) 4677 { 4678 memset(it, 0, sizeof(*it)); 4679 4680 spin_lock_irq(&css_set_lock); 4681 4682 it->ss = css->ss; 4683 it->flags = flags; 4684 4685 if (CGROUP_HAS_SUBSYS_CONFIG && it->ss) 4686 it->cset_pos = &css->cgroup->e_csets[css->ss->id]; 4687 else 4688 it->cset_pos = &css->cgroup->cset_links; 4689 4690 it->cset_head = it->cset_pos; 4691 4692 css_task_iter_advance(it); 4693 4694 spin_unlock_irq(&css_set_lock); 4695 } 4696 4697 /** 4698 * css_task_iter_next - return the next task for the iterator 4699 * @it: the task iterator being iterated 4700 * 4701 * The "next" function for task iteration. @it should have been 4702 * initialized via css_task_iter_start(). Returns NULL when the iteration 4703 * reaches the end. 4704 */ 4705 struct task_struct *css_task_iter_next(struct css_task_iter *it) 4706 { 4707 if (it->cur_task) { 4708 put_task_struct(it->cur_task); 4709 it->cur_task = NULL; 4710 } 4711 4712 spin_lock_irq(&css_set_lock); 4713 4714 /* @it may be half-advanced by skips, finish advancing */ 4715 if (it->flags & CSS_TASK_ITER_SKIPPED) 4716 css_task_iter_advance(it); 4717 4718 if (it->task_pos) { 4719 it->cur_task = list_entry(it->task_pos, struct task_struct, 4720 cg_list); 4721 get_task_struct(it->cur_task); 4722 css_task_iter_advance(it); 4723 } 4724 4725 spin_unlock_irq(&css_set_lock); 4726 4727 return it->cur_task; 4728 } 4729 4730 /** 4731 * css_task_iter_end - finish task iteration 4732 * @it: the task iterator to finish 4733 * 4734 * Finish task iteration started by css_task_iter_start(). 4735 */ 4736 void css_task_iter_end(struct css_task_iter *it) 4737 { 4738 if (it->cur_cset) { 4739 spin_lock_irq(&css_set_lock); 4740 list_del(&it->iters_node); 4741 put_css_set_locked(it->cur_cset); 4742 spin_unlock_irq(&css_set_lock); 4743 } 4744 4745 if (it->cur_dcset) 4746 put_css_set(it->cur_dcset); 4747 4748 if (it->cur_task) 4749 put_task_struct(it->cur_task); 4750 } 4751 4752 static void cgroup_procs_release(struct kernfs_open_file *of) 4753 { 4754 if (of->priv) { 4755 css_task_iter_end(of->priv); 4756 kfree(of->priv); 4757 } 4758 } 4759 4760 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos) 4761 { 4762 struct kernfs_open_file *of = s->private; 4763 struct css_task_iter *it = of->priv; 4764 4765 if (pos) 4766 (*pos)++; 4767 4768 return css_task_iter_next(it); 4769 } 4770 4771 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos, 4772 unsigned int iter_flags) 4773 { 4774 struct kernfs_open_file *of = s->private; 4775 struct cgroup *cgrp = seq_css(s)->cgroup; 4776 struct css_task_iter *it = of->priv; 4777 4778 /* 4779 * When a seq_file is seeked, it's always traversed sequentially 4780 * from position 0, so we can simply keep iterating on !0 *pos. 4781 */ 4782 if (!it) { 4783 if (WARN_ON_ONCE((*pos))) 4784 return ERR_PTR(-EINVAL); 4785 4786 it = kzalloc(sizeof(*it), GFP_KERNEL); 4787 if (!it) 4788 return ERR_PTR(-ENOMEM); 4789 of->priv = it; 4790 css_task_iter_start(&cgrp->self, iter_flags, it); 4791 } else if (!(*pos)) { 4792 css_task_iter_end(it); 4793 css_task_iter_start(&cgrp->self, iter_flags, it); 4794 } else 4795 return it->cur_task; 4796 4797 return cgroup_procs_next(s, NULL, NULL); 4798 } 4799 4800 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos) 4801 { 4802 struct cgroup *cgrp = seq_css(s)->cgroup; 4803 4804 /* 4805 * All processes of a threaded subtree belong to the domain cgroup 4806 * of the subtree. Only threads can be distributed across the 4807 * subtree. Reject reads on cgroup.procs in the subtree proper. 4808 * They're always empty anyway. 4809 */ 4810 if (cgroup_is_threaded(cgrp)) 4811 return ERR_PTR(-EOPNOTSUPP); 4812 4813 return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS | 4814 CSS_TASK_ITER_THREADED); 4815 } 4816 4817 static int cgroup_procs_show(struct seq_file *s, void *v) 4818 { 4819 seq_printf(s, "%d\n", task_pid_vnr(v)); 4820 return 0; 4821 } 4822 4823 static int cgroup_may_write(const struct cgroup *cgrp, struct super_block *sb) 4824 { 4825 int ret; 4826 struct inode *inode; 4827 4828 lockdep_assert_held(&cgroup_mutex); 4829 4830 inode = kernfs_get_inode(sb, cgrp->procs_file.kn); 4831 if (!inode) 4832 return -ENOMEM; 4833 4834 ret = inode_permission(&init_user_ns, inode, MAY_WRITE); 4835 iput(inode); 4836 return ret; 4837 } 4838 4839 static int cgroup_procs_write_permission(struct cgroup *src_cgrp, 4840 struct cgroup *dst_cgrp, 4841 struct super_block *sb) 4842 { 4843 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns; 4844 struct cgroup *com_cgrp = src_cgrp; 4845 int ret; 4846 4847 lockdep_assert_held(&cgroup_mutex); 4848 4849 /* find the common ancestor */ 4850 while (!cgroup_is_descendant(dst_cgrp, com_cgrp)) 4851 com_cgrp = cgroup_parent(com_cgrp); 4852 4853 /* %current should be authorized to migrate to the common ancestor */ 4854 ret = cgroup_may_write(com_cgrp, sb); 4855 if (ret) 4856 return ret; 4857 4858 /* 4859 * If namespaces are delegation boundaries, %current must be able 4860 * to see both source and destination cgroups from its namespace. 4861 */ 4862 if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) && 4863 (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) || 4864 !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp))) 4865 return -ENOENT; 4866 4867 return 0; 4868 } 4869 4870 static int cgroup_attach_permissions(struct cgroup *src_cgrp, 4871 struct cgroup *dst_cgrp, 4872 struct super_block *sb, bool threadgroup) 4873 { 4874 int ret = 0; 4875 4876 ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, sb); 4877 if (ret) 4878 return ret; 4879 4880 ret = cgroup_migrate_vet_dst(dst_cgrp); 4881 if (ret) 4882 return ret; 4883 4884 if (!threadgroup && (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp)) 4885 ret = -EOPNOTSUPP; 4886 4887 return ret; 4888 } 4889 4890 static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf, 4891 bool threadgroup) 4892 { 4893 struct cgroup *src_cgrp, *dst_cgrp; 4894 struct task_struct *task; 4895 ssize_t ret; 4896 bool locked; 4897 4898 dst_cgrp = cgroup_kn_lock_live(of->kn, false); 4899 if (!dst_cgrp) 4900 return -ENODEV; 4901 4902 task = cgroup_procs_write_start(buf, threadgroup, &locked); 4903 ret = PTR_ERR_OR_ZERO(task); 4904 if (ret) 4905 goto out_unlock; 4906 4907 /* find the source cgroup */ 4908 spin_lock_irq(&css_set_lock); 4909 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root); 4910 spin_unlock_irq(&css_set_lock); 4911 4912 /* process and thread migrations follow same delegation rule */ 4913 ret = cgroup_attach_permissions(src_cgrp, dst_cgrp, 4914 of->file->f_path.dentry->d_sb, threadgroup); 4915 if (ret) 4916 goto out_finish; 4917 4918 ret = cgroup_attach_task(dst_cgrp, task, threadgroup); 4919 4920 out_finish: 4921 cgroup_procs_write_finish(task, locked); 4922 out_unlock: 4923 cgroup_kn_unlock(of->kn); 4924 4925 return ret; 4926 } 4927 4928 static ssize_t cgroup_procs_write(struct kernfs_open_file *of, 4929 char *buf, size_t nbytes, loff_t off) 4930 { 4931 return __cgroup_procs_write(of, buf, true) ?: nbytes; 4932 } 4933 4934 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos) 4935 { 4936 return __cgroup_procs_start(s, pos, 0); 4937 } 4938 4939 static ssize_t cgroup_threads_write(struct kernfs_open_file *of, 4940 char *buf, size_t nbytes, loff_t off) 4941 { 4942 return __cgroup_procs_write(of, buf, false) ?: nbytes; 4943 } 4944 4945 /* cgroup core interface files for the default hierarchy */ 4946 static struct cftype cgroup_base_files[] = { 4947 { 4948 .name = "cgroup.type", 4949 .flags = CFTYPE_NOT_ON_ROOT, 4950 .seq_show = cgroup_type_show, 4951 .write = cgroup_type_write, 4952 }, 4953 { 4954 .name = "cgroup.procs", 4955 .flags = CFTYPE_NS_DELEGATABLE, 4956 .file_offset = offsetof(struct cgroup, procs_file), 4957 .release = cgroup_procs_release, 4958 .seq_start = cgroup_procs_start, 4959 .seq_next = cgroup_procs_next, 4960 .seq_show = cgroup_procs_show, 4961 .write = cgroup_procs_write, 4962 }, 4963 { 4964 .name = "cgroup.threads", 4965 .flags = CFTYPE_NS_DELEGATABLE, 4966 .release = cgroup_procs_release, 4967 .seq_start = cgroup_threads_start, 4968 .seq_next = cgroup_procs_next, 4969 .seq_show = cgroup_procs_show, 4970 .write = cgroup_threads_write, 4971 }, 4972 { 4973 .name = "cgroup.controllers", 4974 .seq_show = cgroup_controllers_show, 4975 }, 4976 { 4977 .name = "cgroup.subtree_control", 4978 .flags = CFTYPE_NS_DELEGATABLE, 4979 .seq_show = cgroup_subtree_control_show, 4980 .write = cgroup_subtree_control_write, 4981 }, 4982 { 4983 .name = "cgroup.events", 4984 .flags = CFTYPE_NOT_ON_ROOT, 4985 .file_offset = offsetof(struct cgroup, events_file), 4986 .seq_show = cgroup_events_show, 4987 }, 4988 { 4989 .name = "cgroup.max.descendants", 4990 .seq_show = cgroup_max_descendants_show, 4991 .write = cgroup_max_descendants_write, 4992 }, 4993 { 4994 .name = "cgroup.max.depth", 4995 .seq_show = cgroup_max_depth_show, 4996 .write = cgroup_max_depth_write, 4997 }, 4998 { 4999 .name = "cgroup.stat", 5000 .seq_show = cgroup_stat_show, 5001 }, 5002 { 5003 .name = "cgroup.freeze", 5004 .flags = CFTYPE_NOT_ON_ROOT, 5005 .seq_show = cgroup_freeze_show, 5006 .write = cgroup_freeze_write, 5007 }, 5008 { 5009 .name = "cgroup.kill", 5010 .flags = CFTYPE_NOT_ON_ROOT, 5011 .write = cgroup_kill_write, 5012 }, 5013 { 5014 .name = "cpu.stat", 5015 .seq_show = cpu_stat_show, 5016 }, 5017 #ifdef CONFIG_PSI 5018 { 5019 .name = "io.pressure", 5020 .flags = CFTYPE_PRESSURE, 5021 .seq_show = cgroup_io_pressure_show, 5022 .write = cgroup_io_pressure_write, 5023 .poll = cgroup_pressure_poll, 5024 .release = cgroup_pressure_release, 5025 }, 5026 { 5027 .name = "memory.pressure", 5028 .flags = CFTYPE_PRESSURE, 5029 .seq_show = cgroup_memory_pressure_show, 5030 .write = cgroup_memory_pressure_write, 5031 .poll = cgroup_pressure_poll, 5032 .release = cgroup_pressure_release, 5033 }, 5034 { 5035 .name = "cpu.pressure", 5036 .flags = CFTYPE_PRESSURE, 5037 .seq_show = cgroup_cpu_pressure_show, 5038 .write = cgroup_cpu_pressure_write, 5039 .poll = cgroup_pressure_poll, 5040 .release = cgroup_pressure_release, 5041 }, 5042 #endif /* CONFIG_PSI */ 5043 { } /* terminate */ 5044 }; 5045 5046 /* 5047 * css destruction is four-stage process. 5048 * 5049 * 1. Destruction starts. Killing of the percpu_ref is initiated. 5050 * Implemented in kill_css(). 5051 * 5052 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs 5053 * and thus css_tryget_online() is guaranteed to fail, the css can be 5054 * offlined by invoking offline_css(). After offlining, the base ref is 5055 * put. Implemented in css_killed_work_fn(). 5056 * 5057 * 3. When the percpu_ref reaches zero, the only possible remaining 5058 * accessors are inside RCU read sections. css_release() schedules the 5059 * RCU callback. 5060 * 5061 * 4. After the grace period, the css can be freed. Implemented in 5062 * css_free_work_fn(). 5063 * 5064 * It is actually hairier because both step 2 and 4 require process context 5065 * and thus involve punting to css->destroy_work adding two additional 5066 * steps to the already complex sequence. 5067 */ 5068 static void css_free_rwork_fn(struct work_struct *work) 5069 { 5070 struct cgroup_subsys_state *css = container_of(to_rcu_work(work), 5071 struct cgroup_subsys_state, destroy_rwork); 5072 struct cgroup_subsys *ss = css->ss; 5073 struct cgroup *cgrp = css->cgroup; 5074 5075 percpu_ref_exit(&css->refcnt); 5076 5077 if (ss) { 5078 /* css free path */ 5079 struct cgroup_subsys_state *parent = css->parent; 5080 int id = css->id; 5081 5082 ss->css_free(css); 5083 cgroup_idr_remove(&ss->css_idr, id); 5084 cgroup_put(cgrp); 5085 5086 if (parent) 5087 css_put(parent); 5088 } else { 5089 /* cgroup free path */ 5090 atomic_dec(&cgrp->root->nr_cgrps); 5091 cgroup1_pidlist_destroy_all(cgrp); 5092 cancel_work_sync(&cgrp->release_agent_work); 5093 5094 if (cgroup_parent(cgrp)) { 5095 /* 5096 * We get a ref to the parent, and put the ref when 5097 * this cgroup is being freed, so it's guaranteed 5098 * that the parent won't be destroyed before its 5099 * children. 5100 */ 5101 cgroup_put(cgroup_parent(cgrp)); 5102 kernfs_put(cgrp->kn); 5103 psi_cgroup_free(cgrp); 5104 cgroup_rstat_exit(cgrp); 5105 kfree(cgrp); 5106 } else { 5107 /* 5108 * This is root cgroup's refcnt reaching zero, 5109 * which indicates that the root should be 5110 * released. 5111 */ 5112 cgroup_destroy_root(cgrp->root); 5113 } 5114 } 5115 } 5116 5117 static void css_release_work_fn(struct work_struct *work) 5118 { 5119 struct cgroup_subsys_state *css = 5120 container_of(work, struct cgroup_subsys_state, destroy_work); 5121 struct cgroup_subsys *ss = css->ss; 5122 struct cgroup *cgrp = css->cgroup; 5123 5124 mutex_lock(&cgroup_mutex); 5125 5126 css->flags |= CSS_RELEASED; 5127 list_del_rcu(&css->sibling); 5128 5129 if (ss) { 5130 /* css release path */ 5131 if (!list_empty(&css->rstat_css_node)) { 5132 cgroup_rstat_flush(cgrp); 5133 list_del_rcu(&css->rstat_css_node); 5134 } 5135 5136 cgroup_idr_replace(&ss->css_idr, NULL, css->id); 5137 if (ss->css_released) 5138 ss->css_released(css); 5139 } else { 5140 struct cgroup *tcgrp; 5141 5142 /* cgroup release path */ 5143 TRACE_CGROUP_PATH(release, cgrp); 5144 5145 cgroup_rstat_flush(cgrp); 5146 5147 spin_lock_irq(&css_set_lock); 5148 for (tcgrp = cgroup_parent(cgrp); tcgrp; 5149 tcgrp = cgroup_parent(tcgrp)) 5150 tcgrp->nr_dying_descendants--; 5151 spin_unlock_irq(&css_set_lock); 5152 5153 /* 5154 * There are two control paths which try to determine 5155 * cgroup from dentry without going through kernfs - 5156 * cgroupstats_build() and css_tryget_online_from_dir(). 5157 * Those are supported by RCU protecting clearing of 5158 * cgrp->kn->priv backpointer. 5159 */ 5160 if (cgrp->kn) 5161 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, 5162 NULL); 5163 } 5164 5165 mutex_unlock(&cgroup_mutex); 5166 5167 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn); 5168 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork); 5169 } 5170 5171 static void css_release(struct percpu_ref *ref) 5172 { 5173 struct cgroup_subsys_state *css = 5174 container_of(ref, struct cgroup_subsys_state, refcnt); 5175 5176 INIT_WORK(&css->destroy_work, css_release_work_fn); 5177 queue_work(cgroup_destroy_wq, &css->destroy_work); 5178 } 5179 5180 static void init_and_link_css(struct cgroup_subsys_state *css, 5181 struct cgroup_subsys *ss, struct cgroup *cgrp) 5182 { 5183 lockdep_assert_held(&cgroup_mutex); 5184 5185 cgroup_get_live(cgrp); 5186 5187 memset(css, 0, sizeof(*css)); 5188 css->cgroup = cgrp; 5189 css->ss = ss; 5190 css->id = -1; 5191 INIT_LIST_HEAD(&css->sibling); 5192 INIT_LIST_HEAD(&css->children); 5193 INIT_LIST_HEAD(&css->rstat_css_node); 5194 css->serial_nr = css_serial_nr_next++; 5195 atomic_set(&css->online_cnt, 0); 5196 5197 if (cgroup_parent(cgrp)) { 5198 css->parent = cgroup_css(cgroup_parent(cgrp), ss); 5199 css_get(css->parent); 5200 } 5201 5202 if (ss->css_rstat_flush) 5203 list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list); 5204 5205 BUG_ON(cgroup_css(cgrp, ss)); 5206 } 5207 5208 /* invoke ->css_online() on a new CSS and mark it online if successful */ 5209 static int online_css(struct cgroup_subsys_state *css) 5210 { 5211 struct cgroup_subsys *ss = css->ss; 5212 int ret = 0; 5213 5214 lockdep_assert_held(&cgroup_mutex); 5215 5216 if (ss->css_online) 5217 ret = ss->css_online(css); 5218 if (!ret) { 5219 css->flags |= CSS_ONLINE; 5220 rcu_assign_pointer(css->cgroup->subsys[ss->id], css); 5221 5222 atomic_inc(&css->online_cnt); 5223 if (css->parent) 5224 atomic_inc(&css->parent->online_cnt); 5225 } 5226 return ret; 5227 } 5228 5229 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */ 5230 static void offline_css(struct cgroup_subsys_state *css) 5231 { 5232 struct cgroup_subsys *ss = css->ss; 5233 5234 lockdep_assert_held(&cgroup_mutex); 5235 5236 if (!(css->flags & CSS_ONLINE)) 5237 return; 5238 5239 if (ss->css_offline) 5240 ss->css_offline(css); 5241 5242 css->flags &= ~CSS_ONLINE; 5243 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL); 5244 5245 wake_up_all(&css->cgroup->offline_waitq); 5246 } 5247 5248 /** 5249 * css_create - create a cgroup_subsys_state 5250 * @cgrp: the cgroup new css will be associated with 5251 * @ss: the subsys of new css 5252 * 5253 * Create a new css associated with @cgrp - @ss pair. On success, the new 5254 * css is online and installed in @cgrp. This function doesn't create the 5255 * interface files. Returns 0 on success, -errno on failure. 5256 */ 5257 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp, 5258 struct cgroup_subsys *ss) 5259 { 5260 struct cgroup *parent = cgroup_parent(cgrp); 5261 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss); 5262 struct cgroup_subsys_state *css; 5263 int err; 5264 5265 lockdep_assert_held(&cgroup_mutex); 5266 5267 css = ss->css_alloc(parent_css); 5268 if (!css) 5269 css = ERR_PTR(-ENOMEM); 5270 if (IS_ERR(css)) 5271 return css; 5272 5273 init_and_link_css(css, ss, cgrp); 5274 5275 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL); 5276 if (err) 5277 goto err_free_css; 5278 5279 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL); 5280 if (err < 0) 5281 goto err_free_css; 5282 css->id = err; 5283 5284 /* @css is ready to be brought online now, make it visible */ 5285 list_add_tail_rcu(&css->sibling, &parent_css->children); 5286 cgroup_idr_replace(&ss->css_idr, css, css->id); 5287 5288 err = online_css(css); 5289 if (err) 5290 goto err_list_del; 5291 5292 return css; 5293 5294 err_list_del: 5295 list_del_rcu(&css->sibling); 5296 err_free_css: 5297 list_del_rcu(&css->rstat_css_node); 5298 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn); 5299 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork); 5300 return ERR_PTR(err); 5301 } 5302 5303 /* 5304 * The returned cgroup is fully initialized including its control mask, but 5305 * it isn't associated with its kernfs_node and doesn't have the control 5306 * mask applied. 5307 */ 5308 static struct cgroup *cgroup_create(struct cgroup *parent, const char *name, 5309 umode_t mode) 5310 { 5311 struct cgroup_root *root = parent->root; 5312 struct cgroup *cgrp, *tcgrp; 5313 struct kernfs_node *kn; 5314 int level = parent->level + 1; 5315 int ret; 5316 5317 /* allocate the cgroup and its ID, 0 is reserved for the root */ 5318 cgrp = kzalloc(struct_size(cgrp, ancestor_ids, (level + 1)), 5319 GFP_KERNEL); 5320 if (!cgrp) 5321 return ERR_PTR(-ENOMEM); 5322 5323 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL); 5324 if (ret) 5325 goto out_free_cgrp; 5326 5327 ret = cgroup_rstat_init(cgrp); 5328 if (ret) 5329 goto out_cancel_ref; 5330 5331 /* create the directory */ 5332 kn = kernfs_create_dir(parent->kn, name, mode, cgrp); 5333 if (IS_ERR(kn)) { 5334 ret = PTR_ERR(kn); 5335 goto out_stat_exit; 5336 } 5337 cgrp->kn = kn; 5338 5339 init_cgroup_housekeeping(cgrp); 5340 5341 cgrp->self.parent = &parent->self; 5342 cgrp->root = root; 5343 cgrp->level = level; 5344 5345 ret = psi_cgroup_alloc(cgrp); 5346 if (ret) 5347 goto out_kernfs_remove; 5348 5349 ret = cgroup_bpf_inherit(cgrp); 5350 if (ret) 5351 goto out_psi_free; 5352 5353 /* 5354 * New cgroup inherits effective freeze counter, and 5355 * if the parent has to be frozen, the child has too. 5356 */ 5357 cgrp->freezer.e_freeze = parent->freezer.e_freeze; 5358 if (cgrp->freezer.e_freeze) { 5359 /* 5360 * Set the CGRP_FREEZE flag, so when a process will be 5361 * attached to the child cgroup, it will become frozen. 5362 * At this point the new cgroup is unpopulated, so we can 5363 * consider it frozen immediately. 5364 */ 5365 set_bit(CGRP_FREEZE, &cgrp->flags); 5366 set_bit(CGRP_FROZEN, &cgrp->flags); 5367 } 5368 5369 spin_lock_irq(&css_set_lock); 5370 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) { 5371 cgrp->ancestor_ids[tcgrp->level] = cgroup_id(tcgrp); 5372 5373 if (tcgrp != cgrp) { 5374 tcgrp->nr_descendants++; 5375 5376 /* 5377 * If the new cgroup is frozen, all ancestor cgroups 5378 * get a new frozen descendant, but their state can't 5379 * change because of this. 5380 */ 5381 if (cgrp->freezer.e_freeze) 5382 tcgrp->freezer.nr_frozen_descendants++; 5383 } 5384 } 5385 spin_unlock_irq(&css_set_lock); 5386 5387 if (notify_on_release(parent)) 5388 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags); 5389 5390 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags)) 5391 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags); 5392 5393 cgrp->self.serial_nr = css_serial_nr_next++; 5394 5395 /* allocation complete, commit to creation */ 5396 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children); 5397 atomic_inc(&root->nr_cgrps); 5398 cgroup_get_live(parent); 5399 5400 /* 5401 * On the default hierarchy, a child doesn't automatically inherit 5402 * subtree_control from the parent. Each is configured manually. 5403 */ 5404 if (!cgroup_on_dfl(cgrp)) 5405 cgrp->subtree_control = cgroup_control(cgrp); 5406 5407 cgroup_propagate_control(cgrp); 5408 5409 return cgrp; 5410 5411 out_psi_free: 5412 psi_cgroup_free(cgrp); 5413 out_kernfs_remove: 5414 kernfs_remove(cgrp->kn); 5415 out_stat_exit: 5416 cgroup_rstat_exit(cgrp); 5417 out_cancel_ref: 5418 percpu_ref_exit(&cgrp->self.refcnt); 5419 out_free_cgrp: 5420 kfree(cgrp); 5421 return ERR_PTR(ret); 5422 } 5423 5424 static bool cgroup_check_hierarchy_limits(struct cgroup *parent) 5425 { 5426 struct cgroup *cgroup; 5427 int ret = false; 5428 int level = 1; 5429 5430 lockdep_assert_held(&cgroup_mutex); 5431 5432 for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) { 5433 if (cgroup->nr_descendants >= cgroup->max_descendants) 5434 goto fail; 5435 5436 if (level > cgroup->max_depth) 5437 goto fail; 5438 5439 level++; 5440 } 5441 5442 ret = true; 5443 fail: 5444 return ret; 5445 } 5446 5447 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode) 5448 { 5449 struct cgroup *parent, *cgrp; 5450 int ret; 5451 5452 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */ 5453 if (strchr(name, '\n')) 5454 return -EINVAL; 5455 5456 parent = cgroup_kn_lock_live(parent_kn, false); 5457 if (!parent) 5458 return -ENODEV; 5459 5460 if (!cgroup_check_hierarchy_limits(parent)) { 5461 ret = -EAGAIN; 5462 goto out_unlock; 5463 } 5464 5465 cgrp = cgroup_create(parent, name, mode); 5466 if (IS_ERR(cgrp)) { 5467 ret = PTR_ERR(cgrp); 5468 goto out_unlock; 5469 } 5470 5471 /* 5472 * This extra ref will be put in cgroup_free_fn() and guarantees 5473 * that @cgrp->kn is always accessible. 5474 */ 5475 kernfs_get(cgrp->kn); 5476 5477 ret = cgroup_kn_set_ugid(cgrp->kn); 5478 if (ret) 5479 goto out_destroy; 5480 5481 ret = css_populate_dir(&cgrp->self); 5482 if (ret) 5483 goto out_destroy; 5484 5485 ret = cgroup_apply_control_enable(cgrp); 5486 if (ret) 5487 goto out_destroy; 5488 5489 TRACE_CGROUP_PATH(mkdir, cgrp); 5490 5491 /* let's create and online css's */ 5492 kernfs_activate(cgrp->kn); 5493 5494 ret = 0; 5495 goto out_unlock; 5496 5497 out_destroy: 5498 cgroup_destroy_locked(cgrp); 5499 out_unlock: 5500 cgroup_kn_unlock(parent_kn); 5501 return ret; 5502 } 5503 5504 /* 5505 * This is called when the refcnt of a css is confirmed to be killed. 5506 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to 5507 * initiate destruction and put the css ref from kill_css(). 5508 */ 5509 static void css_killed_work_fn(struct work_struct *work) 5510 { 5511 struct cgroup_subsys_state *css = 5512 container_of(work, struct cgroup_subsys_state, destroy_work); 5513 5514 mutex_lock(&cgroup_mutex); 5515 5516 do { 5517 offline_css(css); 5518 css_put(css); 5519 /* @css can't go away while we're holding cgroup_mutex */ 5520 css = css->parent; 5521 } while (css && atomic_dec_and_test(&css->online_cnt)); 5522 5523 mutex_unlock(&cgroup_mutex); 5524 } 5525 5526 /* css kill confirmation processing requires process context, bounce */ 5527 static void css_killed_ref_fn(struct percpu_ref *ref) 5528 { 5529 struct cgroup_subsys_state *css = 5530 container_of(ref, struct cgroup_subsys_state, refcnt); 5531 5532 if (atomic_dec_and_test(&css->online_cnt)) { 5533 INIT_WORK(&css->destroy_work, css_killed_work_fn); 5534 queue_work(cgroup_destroy_wq, &css->destroy_work); 5535 } 5536 } 5537 5538 /** 5539 * kill_css - destroy a css 5540 * @css: css to destroy 5541 * 5542 * This function initiates destruction of @css by removing cgroup interface 5543 * files and putting its base reference. ->css_offline() will be invoked 5544 * asynchronously once css_tryget_online() is guaranteed to fail and when 5545 * the reference count reaches zero, @css will be released. 5546 */ 5547 static void kill_css(struct cgroup_subsys_state *css) 5548 { 5549 lockdep_assert_held(&cgroup_mutex); 5550 5551 if (css->flags & CSS_DYING) 5552 return; 5553 5554 css->flags |= CSS_DYING; 5555 5556 /* 5557 * This must happen before css is disassociated with its cgroup. 5558 * See seq_css() for details. 5559 */ 5560 css_clear_dir(css); 5561 5562 /* 5563 * Killing would put the base ref, but we need to keep it alive 5564 * until after ->css_offline(). 5565 */ 5566 css_get(css); 5567 5568 /* 5569 * cgroup core guarantees that, by the time ->css_offline() is 5570 * invoked, no new css reference will be given out via 5571 * css_tryget_online(). We can't simply call percpu_ref_kill() and 5572 * proceed to offlining css's because percpu_ref_kill() doesn't 5573 * guarantee that the ref is seen as killed on all CPUs on return. 5574 * 5575 * Use percpu_ref_kill_and_confirm() to get notifications as each 5576 * css is confirmed to be seen as killed on all CPUs. 5577 */ 5578 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn); 5579 } 5580 5581 /** 5582 * cgroup_destroy_locked - the first stage of cgroup destruction 5583 * @cgrp: cgroup to be destroyed 5584 * 5585 * css's make use of percpu refcnts whose killing latency shouldn't be 5586 * exposed to userland and are RCU protected. Also, cgroup core needs to 5587 * guarantee that css_tryget_online() won't succeed by the time 5588 * ->css_offline() is invoked. To satisfy all the requirements, 5589 * destruction is implemented in the following two steps. 5590 * 5591 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all 5592 * userland visible parts and start killing the percpu refcnts of 5593 * css's. Set up so that the next stage will be kicked off once all 5594 * the percpu refcnts are confirmed to be killed. 5595 * 5596 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the 5597 * rest of destruction. Once all cgroup references are gone, the 5598 * cgroup is RCU-freed. 5599 * 5600 * This function implements s1. After this step, @cgrp is gone as far as 5601 * the userland is concerned and a new cgroup with the same name may be 5602 * created. As cgroup doesn't care about the names internally, this 5603 * doesn't cause any problem. 5604 */ 5605 static int cgroup_destroy_locked(struct cgroup *cgrp) 5606 __releases(&cgroup_mutex) __acquires(&cgroup_mutex) 5607 { 5608 struct cgroup *tcgrp, *parent = cgroup_parent(cgrp); 5609 struct cgroup_subsys_state *css; 5610 struct cgrp_cset_link *link; 5611 int ssid; 5612 5613 lockdep_assert_held(&cgroup_mutex); 5614 5615 /* 5616 * Only migration can raise populated from zero and we're already 5617 * holding cgroup_mutex. 5618 */ 5619 if (cgroup_is_populated(cgrp)) 5620 return -EBUSY; 5621 5622 /* 5623 * Make sure there's no live children. We can't test emptiness of 5624 * ->self.children as dead children linger on it while being 5625 * drained; otherwise, "rmdir parent/child parent" may fail. 5626 */ 5627 if (css_has_online_children(&cgrp->self)) 5628 return -EBUSY; 5629 5630 /* 5631 * Mark @cgrp and the associated csets dead. The former prevents 5632 * further task migration and child creation by disabling 5633 * cgroup_lock_live_group(). The latter makes the csets ignored by 5634 * the migration path. 5635 */ 5636 cgrp->self.flags &= ~CSS_ONLINE; 5637 5638 spin_lock_irq(&css_set_lock); 5639 list_for_each_entry(link, &cgrp->cset_links, cset_link) 5640 link->cset->dead = true; 5641 spin_unlock_irq(&css_set_lock); 5642 5643 /* initiate massacre of all css's */ 5644 for_each_css(css, ssid, cgrp) 5645 kill_css(css); 5646 5647 /* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */ 5648 css_clear_dir(&cgrp->self); 5649 kernfs_remove(cgrp->kn); 5650 5651 if (parent && cgroup_is_threaded(cgrp)) 5652 parent->nr_threaded_children--; 5653 5654 spin_lock_irq(&css_set_lock); 5655 for (tcgrp = cgroup_parent(cgrp); tcgrp; tcgrp = cgroup_parent(tcgrp)) { 5656 tcgrp->nr_descendants--; 5657 tcgrp->nr_dying_descendants++; 5658 /* 5659 * If the dying cgroup is frozen, decrease frozen descendants 5660 * counters of ancestor cgroups. 5661 */ 5662 if (test_bit(CGRP_FROZEN, &cgrp->flags)) 5663 tcgrp->freezer.nr_frozen_descendants--; 5664 } 5665 spin_unlock_irq(&css_set_lock); 5666 5667 cgroup1_check_for_release(parent); 5668 5669 cgroup_bpf_offline(cgrp); 5670 5671 /* put the base reference */ 5672 percpu_ref_kill(&cgrp->self.refcnt); 5673 5674 return 0; 5675 }; 5676 5677 int cgroup_rmdir(struct kernfs_node *kn) 5678 { 5679 struct cgroup *cgrp; 5680 int ret = 0; 5681 5682 cgrp = cgroup_kn_lock_live(kn, false); 5683 if (!cgrp) 5684 return 0; 5685 5686 ret = cgroup_destroy_locked(cgrp); 5687 if (!ret) 5688 TRACE_CGROUP_PATH(rmdir, cgrp); 5689 5690 cgroup_kn_unlock(kn); 5691 return ret; 5692 } 5693 5694 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = { 5695 .show_options = cgroup_show_options, 5696 .mkdir = cgroup_mkdir, 5697 .rmdir = cgroup_rmdir, 5698 .show_path = cgroup_show_path, 5699 }; 5700 5701 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early) 5702 { 5703 struct cgroup_subsys_state *css; 5704 5705 pr_debug("Initializing cgroup subsys %s\n", ss->name); 5706 5707 mutex_lock(&cgroup_mutex); 5708 5709 idr_init(&ss->css_idr); 5710 INIT_LIST_HEAD(&ss->cfts); 5711 5712 /* Create the root cgroup state for this subsystem */ 5713 ss->root = &cgrp_dfl_root; 5714 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss)); 5715 /* We don't handle early failures gracefully */ 5716 BUG_ON(IS_ERR(css)); 5717 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp); 5718 5719 /* 5720 * Root csses are never destroyed and we can't initialize 5721 * percpu_ref during early init. Disable refcnting. 5722 */ 5723 css->flags |= CSS_NO_REF; 5724 5725 if (early) { 5726 /* allocation can't be done safely during early init */ 5727 css->id = 1; 5728 } else { 5729 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL); 5730 BUG_ON(css->id < 0); 5731 } 5732 5733 /* Update the init_css_set to contain a subsys 5734 * pointer to this state - since the subsystem is 5735 * newly registered, all tasks and hence the 5736 * init_css_set is in the subsystem's root cgroup. */ 5737 init_css_set.subsys[ss->id] = css; 5738 5739 have_fork_callback |= (bool)ss->fork << ss->id; 5740 have_exit_callback |= (bool)ss->exit << ss->id; 5741 have_release_callback |= (bool)ss->release << ss->id; 5742 have_canfork_callback |= (bool)ss->can_fork << ss->id; 5743 5744 /* At system boot, before all subsystems have been 5745 * registered, no tasks have been forked, so we don't 5746 * need to invoke fork callbacks here. */ 5747 BUG_ON(!list_empty(&init_task.tasks)); 5748 5749 BUG_ON(online_css(css)); 5750 5751 mutex_unlock(&cgroup_mutex); 5752 } 5753 5754 /** 5755 * cgroup_init_early - cgroup initialization at system boot 5756 * 5757 * Initialize cgroups at system boot, and initialize any 5758 * subsystems that request early init. 5759 */ 5760 int __init cgroup_init_early(void) 5761 { 5762 static struct cgroup_fs_context __initdata ctx; 5763 struct cgroup_subsys *ss; 5764 int i; 5765 5766 ctx.root = &cgrp_dfl_root; 5767 init_cgroup_root(&ctx); 5768 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF; 5769 5770 RCU_INIT_POINTER(init_task.cgroups, &init_css_set); 5771 5772 for_each_subsys(ss, i) { 5773 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id, 5774 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n", 5775 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free, 5776 ss->id, ss->name); 5777 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN, 5778 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]); 5779 5780 ss->id = i; 5781 ss->name = cgroup_subsys_name[i]; 5782 if (!ss->legacy_name) 5783 ss->legacy_name = cgroup_subsys_name[i]; 5784 5785 if (ss->early_init) 5786 cgroup_init_subsys(ss, true); 5787 } 5788 return 0; 5789 } 5790 5791 /** 5792 * cgroup_init - cgroup initialization 5793 * 5794 * Register cgroup filesystem and /proc file, and initialize 5795 * any subsystems that didn't request early init. 5796 */ 5797 int __init cgroup_init(void) 5798 { 5799 struct cgroup_subsys *ss; 5800 int ssid; 5801 5802 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16); 5803 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files)); 5804 BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files)); 5805 5806 cgroup_rstat_boot(); 5807 5808 /* 5809 * The latency of the synchronize_rcu() is too high for cgroups, 5810 * avoid it at the cost of forcing all readers into the slow path. 5811 */ 5812 rcu_sync_enter_start(&cgroup_threadgroup_rwsem.rss); 5813 5814 get_user_ns(init_cgroup_ns.user_ns); 5815 5816 mutex_lock(&cgroup_mutex); 5817 5818 /* 5819 * Add init_css_set to the hash table so that dfl_root can link to 5820 * it during init. 5821 */ 5822 hash_add(css_set_table, &init_css_set.hlist, 5823 css_set_hash(init_css_set.subsys)); 5824 5825 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0)); 5826 5827 mutex_unlock(&cgroup_mutex); 5828 5829 for_each_subsys(ss, ssid) { 5830 if (ss->early_init) { 5831 struct cgroup_subsys_state *css = 5832 init_css_set.subsys[ss->id]; 5833 5834 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, 5835 GFP_KERNEL); 5836 BUG_ON(css->id < 0); 5837 } else { 5838 cgroup_init_subsys(ss, false); 5839 } 5840 5841 list_add_tail(&init_css_set.e_cset_node[ssid], 5842 &cgrp_dfl_root.cgrp.e_csets[ssid]); 5843 5844 /* 5845 * Setting dfl_root subsys_mask needs to consider the 5846 * disabled flag and cftype registration needs kmalloc, 5847 * both of which aren't available during early_init. 5848 */ 5849 if (!cgroup_ssid_enabled(ssid)) 5850 continue; 5851 5852 if (cgroup1_ssid_disabled(ssid)) 5853 printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n", 5854 ss->name); 5855 5856 cgrp_dfl_root.subsys_mask |= 1 << ss->id; 5857 5858 /* implicit controllers must be threaded too */ 5859 WARN_ON(ss->implicit_on_dfl && !ss->threaded); 5860 5861 if (ss->implicit_on_dfl) 5862 cgrp_dfl_implicit_ss_mask |= 1 << ss->id; 5863 else if (!ss->dfl_cftypes) 5864 cgrp_dfl_inhibit_ss_mask |= 1 << ss->id; 5865 5866 if (ss->threaded) 5867 cgrp_dfl_threaded_ss_mask |= 1 << ss->id; 5868 5869 if (ss->dfl_cftypes == ss->legacy_cftypes) { 5870 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes)); 5871 } else { 5872 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes)); 5873 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes)); 5874 } 5875 5876 if (ss->bind) 5877 ss->bind(init_css_set.subsys[ssid]); 5878 5879 mutex_lock(&cgroup_mutex); 5880 css_populate_dir(init_css_set.subsys[ssid]); 5881 mutex_unlock(&cgroup_mutex); 5882 } 5883 5884 /* init_css_set.subsys[] has been updated, re-hash */ 5885 hash_del(&init_css_set.hlist); 5886 hash_add(css_set_table, &init_css_set.hlist, 5887 css_set_hash(init_css_set.subsys)); 5888 5889 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup")); 5890 WARN_ON(register_filesystem(&cgroup_fs_type)); 5891 WARN_ON(register_filesystem(&cgroup2_fs_type)); 5892 WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show)); 5893 #ifdef CONFIG_CPUSETS 5894 WARN_ON(register_filesystem(&cpuset_fs_type)); 5895 #endif 5896 5897 return 0; 5898 } 5899 5900 static int __init cgroup_wq_init(void) 5901 { 5902 /* 5903 * There isn't much point in executing destruction path in 5904 * parallel. Good chunk is serialized with cgroup_mutex anyway. 5905 * Use 1 for @max_active. 5906 * 5907 * We would prefer to do this in cgroup_init() above, but that 5908 * is called before init_workqueues(): so leave this until after. 5909 */ 5910 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1); 5911 BUG_ON(!cgroup_destroy_wq); 5912 return 0; 5913 } 5914 core_initcall(cgroup_wq_init); 5915 5916 void cgroup_path_from_kernfs_id(u64 id, char *buf, size_t buflen) 5917 { 5918 struct kernfs_node *kn; 5919 5920 kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id); 5921 if (!kn) 5922 return; 5923 kernfs_path(kn, buf, buflen); 5924 kernfs_put(kn); 5925 } 5926 5927 /* 5928 * cgroup_get_from_id : get the cgroup associated with cgroup id 5929 * @id: cgroup id 5930 * On success return the cgrp, on failure return NULL 5931 */ 5932 struct cgroup *cgroup_get_from_id(u64 id) 5933 { 5934 struct kernfs_node *kn; 5935 struct cgroup *cgrp = NULL; 5936 5937 kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id); 5938 if (!kn) 5939 goto out; 5940 5941 rcu_read_lock(); 5942 5943 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); 5944 if (cgrp && !cgroup_tryget(cgrp)) 5945 cgrp = NULL; 5946 5947 rcu_read_unlock(); 5948 5949 kernfs_put(kn); 5950 out: 5951 return cgrp; 5952 } 5953 EXPORT_SYMBOL_GPL(cgroup_get_from_id); 5954 5955 /* 5956 * proc_cgroup_show() 5957 * - Print task's cgroup paths into seq_file, one line for each hierarchy 5958 * - Used for /proc/<pid>/cgroup. 5959 */ 5960 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns, 5961 struct pid *pid, struct task_struct *tsk) 5962 { 5963 char *buf; 5964 int retval; 5965 struct cgroup_root *root; 5966 5967 retval = -ENOMEM; 5968 buf = kmalloc(PATH_MAX, GFP_KERNEL); 5969 if (!buf) 5970 goto out; 5971 5972 mutex_lock(&cgroup_mutex); 5973 spin_lock_irq(&css_set_lock); 5974 5975 for_each_root(root) { 5976 struct cgroup_subsys *ss; 5977 struct cgroup *cgrp; 5978 int ssid, count = 0; 5979 5980 if (root == &cgrp_dfl_root && !cgrp_dfl_visible) 5981 continue; 5982 5983 seq_printf(m, "%d:", root->hierarchy_id); 5984 if (root != &cgrp_dfl_root) 5985 for_each_subsys(ss, ssid) 5986 if (root->subsys_mask & (1 << ssid)) 5987 seq_printf(m, "%s%s", count++ ? "," : "", 5988 ss->legacy_name); 5989 if (strlen(root->name)) 5990 seq_printf(m, "%sname=%s", count ? "," : "", 5991 root->name); 5992 seq_putc(m, ':'); 5993 5994 cgrp = task_cgroup_from_root(tsk, root); 5995 5996 /* 5997 * On traditional hierarchies, all zombie tasks show up as 5998 * belonging to the root cgroup. On the default hierarchy, 5999 * while a zombie doesn't show up in "cgroup.procs" and 6000 * thus can't be migrated, its /proc/PID/cgroup keeps 6001 * reporting the cgroup it belonged to before exiting. If 6002 * the cgroup is removed before the zombie is reaped, 6003 * " (deleted)" is appended to the cgroup path. 6004 */ 6005 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) { 6006 retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX, 6007 current->nsproxy->cgroup_ns); 6008 if (retval >= PATH_MAX) 6009 retval = -ENAMETOOLONG; 6010 if (retval < 0) 6011 goto out_unlock; 6012 6013 seq_puts(m, buf); 6014 } else { 6015 seq_puts(m, "/"); 6016 } 6017 6018 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp)) 6019 seq_puts(m, " (deleted)\n"); 6020 else 6021 seq_putc(m, '\n'); 6022 } 6023 6024 retval = 0; 6025 out_unlock: 6026 spin_unlock_irq(&css_set_lock); 6027 mutex_unlock(&cgroup_mutex); 6028 kfree(buf); 6029 out: 6030 return retval; 6031 } 6032 6033 /** 6034 * cgroup_fork - initialize cgroup related fields during copy_process() 6035 * @child: pointer to task_struct of forking parent process. 6036 * 6037 * A task is associated with the init_css_set until cgroup_post_fork() 6038 * attaches it to the target css_set. 6039 */ 6040 void cgroup_fork(struct task_struct *child) 6041 { 6042 RCU_INIT_POINTER(child->cgroups, &init_css_set); 6043 INIT_LIST_HEAD(&child->cg_list); 6044 } 6045 6046 static struct cgroup *cgroup_get_from_file(struct file *f) 6047 { 6048 struct cgroup_subsys_state *css; 6049 struct cgroup *cgrp; 6050 6051 css = css_tryget_online_from_dir(f->f_path.dentry, NULL); 6052 if (IS_ERR(css)) 6053 return ERR_CAST(css); 6054 6055 cgrp = css->cgroup; 6056 if (!cgroup_on_dfl(cgrp)) { 6057 cgroup_put(cgrp); 6058 return ERR_PTR(-EBADF); 6059 } 6060 6061 return cgrp; 6062 } 6063 6064 /** 6065 * cgroup_css_set_fork - find or create a css_set for a child process 6066 * @kargs: the arguments passed to create the child process 6067 * 6068 * This functions finds or creates a new css_set which the child 6069 * process will be attached to in cgroup_post_fork(). By default, 6070 * the child process will be given the same css_set as its parent. 6071 * 6072 * If CLONE_INTO_CGROUP is specified this function will try to find an 6073 * existing css_set which includes the requested cgroup and if not create 6074 * a new css_set that the child will be attached to later. If this function 6075 * succeeds it will hold cgroup_threadgroup_rwsem on return. If 6076 * CLONE_INTO_CGROUP is requested this function will grab cgroup mutex 6077 * before grabbing cgroup_threadgroup_rwsem and will hold a reference 6078 * to the target cgroup. 6079 */ 6080 static int cgroup_css_set_fork(struct kernel_clone_args *kargs) 6081 __acquires(&cgroup_mutex) __acquires(&cgroup_threadgroup_rwsem) 6082 { 6083 int ret; 6084 struct cgroup *dst_cgrp = NULL; 6085 struct css_set *cset; 6086 struct super_block *sb; 6087 struct file *f; 6088 6089 if (kargs->flags & CLONE_INTO_CGROUP) 6090 mutex_lock(&cgroup_mutex); 6091 6092 cgroup_threadgroup_change_begin(current); 6093 6094 spin_lock_irq(&css_set_lock); 6095 cset = task_css_set(current); 6096 get_css_set(cset); 6097 spin_unlock_irq(&css_set_lock); 6098 6099 if (!(kargs->flags & CLONE_INTO_CGROUP)) { 6100 kargs->cset = cset; 6101 return 0; 6102 } 6103 6104 f = fget_raw(kargs->cgroup); 6105 if (!f) { 6106 ret = -EBADF; 6107 goto err; 6108 } 6109 sb = f->f_path.dentry->d_sb; 6110 6111 dst_cgrp = cgroup_get_from_file(f); 6112 if (IS_ERR(dst_cgrp)) { 6113 ret = PTR_ERR(dst_cgrp); 6114 dst_cgrp = NULL; 6115 goto err; 6116 } 6117 6118 if (cgroup_is_dead(dst_cgrp)) { 6119 ret = -ENODEV; 6120 goto err; 6121 } 6122 6123 /* 6124 * Verify that we the target cgroup is writable for us. This is 6125 * usually done by the vfs layer but since we're not going through 6126 * the vfs layer here we need to do it "manually". 6127 */ 6128 ret = cgroup_may_write(dst_cgrp, sb); 6129 if (ret) 6130 goto err; 6131 6132 ret = cgroup_attach_permissions(cset->dfl_cgrp, dst_cgrp, sb, 6133 !(kargs->flags & CLONE_THREAD)); 6134 if (ret) 6135 goto err; 6136 6137 kargs->cset = find_css_set(cset, dst_cgrp); 6138 if (!kargs->cset) { 6139 ret = -ENOMEM; 6140 goto err; 6141 } 6142 6143 put_css_set(cset); 6144 fput(f); 6145 kargs->cgrp = dst_cgrp; 6146 return ret; 6147 6148 err: 6149 cgroup_threadgroup_change_end(current); 6150 mutex_unlock(&cgroup_mutex); 6151 if (f) 6152 fput(f); 6153 if (dst_cgrp) 6154 cgroup_put(dst_cgrp); 6155 put_css_set(cset); 6156 if (kargs->cset) 6157 put_css_set(kargs->cset); 6158 return ret; 6159 } 6160 6161 /** 6162 * cgroup_css_set_put_fork - drop references we took during fork 6163 * @kargs: the arguments passed to create the child process 6164 * 6165 * Drop references to the prepared css_set and target cgroup if 6166 * CLONE_INTO_CGROUP was requested. 6167 */ 6168 static void cgroup_css_set_put_fork(struct kernel_clone_args *kargs) 6169 __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex) 6170 { 6171 cgroup_threadgroup_change_end(current); 6172 6173 if (kargs->flags & CLONE_INTO_CGROUP) { 6174 struct cgroup *cgrp = kargs->cgrp; 6175 struct css_set *cset = kargs->cset; 6176 6177 mutex_unlock(&cgroup_mutex); 6178 6179 if (cset) { 6180 put_css_set(cset); 6181 kargs->cset = NULL; 6182 } 6183 6184 if (cgrp) { 6185 cgroup_put(cgrp); 6186 kargs->cgrp = NULL; 6187 } 6188 } 6189 } 6190 6191 /** 6192 * cgroup_can_fork - called on a new task before the process is exposed 6193 * @child: the child process 6194 * 6195 * This prepares a new css_set for the child process which the child will 6196 * be attached to in cgroup_post_fork(). 6197 * This calls the subsystem can_fork() callbacks. If the cgroup_can_fork() 6198 * callback returns an error, the fork aborts with that error code. This 6199 * allows for a cgroup subsystem to conditionally allow or deny new forks. 6200 */ 6201 int cgroup_can_fork(struct task_struct *child, struct kernel_clone_args *kargs) 6202 { 6203 struct cgroup_subsys *ss; 6204 int i, j, ret; 6205 6206 ret = cgroup_css_set_fork(kargs); 6207 if (ret) 6208 return ret; 6209 6210 do_each_subsys_mask(ss, i, have_canfork_callback) { 6211 ret = ss->can_fork(child, kargs->cset); 6212 if (ret) 6213 goto out_revert; 6214 } while_each_subsys_mask(); 6215 6216 return 0; 6217 6218 out_revert: 6219 for_each_subsys(ss, j) { 6220 if (j >= i) 6221 break; 6222 if (ss->cancel_fork) 6223 ss->cancel_fork(child, kargs->cset); 6224 } 6225 6226 cgroup_css_set_put_fork(kargs); 6227 6228 return ret; 6229 } 6230 6231 /** 6232 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork() 6233 * @child: the child process 6234 * @kargs: the arguments passed to create the child process 6235 * 6236 * This calls the cancel_fork() callbacks if a fork failed *after* 6237 * cgroup_can_fork() succeeded and cleans up references we took to 6238 * prepare a new css_set for the child process in cgroup_can_fork(). 6239 */ 6240 void cgroup_cancel_fork(struct task_struct *child, 6241 struct kernel_clone_args *kargs) 6242 { 6243 struct cgroup_subsys *ss; 6244 int i; 6245 6246 for_each_subsys(ss, i) 6247 if (ss->cancel_fork) 6248 ss->cancel_fork(child, kargs->cset); 6249 6250 cgroup_css_set_put_fork(kargs); 6251 } 6252 6253 /** 6254 * cgroup_post_fork - finalize cgroup setup for the child process 6255 * @child: the child process 6256 * 6257 * Attach the child process to its css_set calling the subsystem fork() 6258 * callbacks. 6259 */ 6260 void cgroup_post_fork(struct task_struct *child, 6261 struct kernel_clone_args *kargs) 6262 __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex) 6263 { 6264 unsigned long cgrp_flags = 0; 6265 bool kill = false; 6266 struct cgroup_subsys *ss; 6267 struct css_set *cset; 6268 int i; 6269 6270 cset = kargs->cset; 6271 kargs->cset = NULL; 6272 6273 spin_lock_irq(&css_set_lock); 6274 6275 /* init tasks are special, only link regular threads */ 6276 if (likely(child->pid)) { 6277 if (kargs->cgrp) 6278 cgrp_flags = kargs->cgrp->flags; 6279 else 6280 cgrp_flags = cset->dfl_cgrp->flags; 6281 6282 WARN_ON_ONCE(!list_empty(&child->cg_list)); 6283 cset->nr_tasks++; 6284 css_set_move_task(child, NULL, cset, false); 6285 } else { 6286 put_css_set(cset); 6287 cset = NULL; 6288 } 6289 6290 if (!(child->flags & PF_KTHREAD)) { 6291 if (unlikely(test_bit(CGRP_FREEZE, &cgrp_flags))) { 6292 /* 6293 * If the cgroup has to be frozen, the new task has 6294 * too. Let's set the JOBCTL_TRAP_FREEZE jobctl bit to 6295 * get the task into the frozen state. 6296 */ 6297 spin_lock(&child->sighand->siglock); 6298 WARN_ON_ONCE(child->frozen); 6299 child->jobctl |= JOBCTL_TRAP_FREEZE; 6300 spin_unlock(&child->sighand->siglock); 6301 6302 /* 6303 * Calling cgroup_update_frozen() isn't required here, 6304 * because it will be called anyway a bit later from 6305 * do_freezer_trap(). So we avoid cgroup's transient 6306 * switch from the frozen state and back. 6307 */ 6308 } 6309 6310 /* 6311 * If the cgroup is to be killed notice it now and take the 6312 * child down right after we finished preparing it for 6313 * userspace. 6314 */ 6315 kill = test_bit(CGRP_KILL, &cgrp_flags); 6316 } 6317 6318 spin_unlock_irq(&css_set_lock); 6319 6320 /* 6321 * Call ss->fork(). This must happen after @child is linked on 6322 * css_set; otherwise, @child might change state between ->fork() 6323 * and addition to css_set. 6324 */ 6325 do_each_subsys_mask(ss, i, have_fork_callback) { 6326 ss->fork(child); 6327 } while_each_subsys_mask(); 6328 6329 /* Make the new cset the root_cset of the new cgroup namespace. */ 6330 if (kargs->flags & CLONE_NEWCGROUP) { 6331 struct css_set *rcset = child->nsproxy->cgroup_ns->root_cset; 6332 6333 get_css_set(cset); 6334 child->nsproxy->cgroup_ns->root_cset = cset; 6335 put_css_set(rcset); 6336 } 6337 6338 /* Cgroup has to be killed so take down child immediately. */ 6339 if (unlikely(kill)) 6340 do_send_sig_info(SIGKILL, SEND_SIG_NOINFO, child, PIDTYPE_TGID); 6341 6342 cgroup_css_set_put_fork(kargs); 6343 } 6344 6345 /** 6346 * cgroup_exit - detach cgroup from exiting task 6347 * @tsk: pointer to task_struct of exiting process 6348 * 6349 * Description: Detach cgroup from @tsk. 6350 * 6351 */ 6352 void cgroup_exit(struct task_struct *tsk) 6353 { 6354 struct cgroup_subsys *ss; 6355 struct css_set *cset; 6356 int i; 6357 6358 spin_lock_irq(&css_set_lock); 6359 6360 WARN_ON_ONCE(list_empty(&tsk->cg_list)); 6361 cset = task_css_set(tsk); 6362 css_set_move_task(tsk, cset, NULL, false); 6363 list_add_tail(&tsk->cg_list, &cset->dying_tasks); 6364 cset->nr_tasks--; 6365 6366 WARN_ON_ONCE(cgroup_task_frozen(tsk)); 6367 if (unlikely(!(tsk->flags & PF_KTHREAD) && 6368 test_bit(CGRP_FREEZE, &task_dfl_cgroup(tsk)->flags))) 6369 cgroup_update_frozen(task_dfl_cgroup(tsk)); 6370 6371 spin_unlock_irq(&css_set_lock); 6372 6373 /* see cgroup_post_fork() for details */ 6374 do_each_subsys_mask(ss, i, have_exit_callback) { 6375 ss->exit(tsk); 6376 } while_each_subsys_mask(); 6377 } 6378 6379 void cgroup_release(struct task_struct *task) 6380 { 6381 struct cgroup_subsys *ss; 6382 int ssid; 6383 6384 do_each_subsys_mask(ss, ssid, have_release_callback) { 6385 ss->release(task); 6386 } while_each_subsys_mask(); 6387 6388 spin_lock_irq(&css_set_lock); 6389 css_set_skip_task_iters(task_css_set(task), task); 6390 list_del_init(&task->cg_list); 6391 spin_unlock_irq(&css_set_lock); 6392 } 6393 6394 void cgroup_free(struct task_struct *task) 6395 { 6396 struct css_set *cset = task_css_set(task); 6397 put_css_set(cset); 6398 } 6399 6400 static int __init cgroup_disable(char *str) 6401 { 6402 struct cgroup_subsys *ss; 6403 char *token; 6404 int i; 6405 6406 while ((token = strsep(&str, ",")) != NULL) { 6407 if (!*token) 6408 continue; 6409 6410 for_each_subsys(ss, i) { 6411 if (strcmp(token, ss->name) && 6412 strcmp(token, ss->legacy_name)) 6413 continue; 6414 6415 static_branch_disable(cgroup_subsys_enabled_key[i]); 6416 pr_info("Disabling %s control group subsystem\n", 6417 ss->name); 6418 } 6419 6420 for (i = 0; i < OPT_FEATURE_COUNT; i++) { 6421 if (strcmp(token, cgroup_opt_feature_names[i])) 6422 continue; 6423 cgroup_feature_disable_mask |= 1 << i; 6424 pr_info("Disabling %s control group feature\n", 6425 cgroup_opt_feature_names[i]); 6426 break; 6427 } 6428 } 6429 return 1; 6430 } 6431 __setup("cgroup_disable=", cgroup_disable); 6432 6433 void __init __weak enable_debug_cgroup(void) { } 6434 6435 static int __init enable_cgroup_debug(char *str) 6436 { 6437 cgroup_debug = true; 6438 enable_debug_cgroup(); 6439 return 1; 6440 } 6441 __setup("cgroup_debug", enable_cgroup_debug); 6442 6443 /** 6444 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry 6445 * @dentry: directory dentry of interest 6446 * @ss: subsystem of interest 6447 * 6448 * If @dentry is a directory for a cgroup which has @ss enabled on it, try 6449 * to get the corresponding css and return it. If such css doesn't exist 6450 * or can't be pinned, an ERR_PTR value is returned. 6451 */ 6452 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry, 6453 struct cgroup_subsys *ss) 6454 { 6455 struct kernfs_node *kn = kernfs_node_from_dentry(dentry); 6456 struct file_system_type *s_type = dentry->d_sb->s_type; 6457 struct cgroup_subsys_state *css = NULL; 6458 struct cgroup *cgrp; 6459 6460 /* is @dentry a cgroup dir? */ 6461 if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) || 6462 !kn || kernfs_type(kn) != KERNFS_DIR) 6463 return ERR_PTR(-EBADF); 6464 6465 rcu_read_lock(); 6466 6467 /* 6468 * This path doesn't originate from kernfs and @kn could already 6469 * have been or be removed at any point. @kn->priv is RCU 6470 * protected for this access. See css_release_work_fn() for details. 6471 */ 6472 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); 6473 if (cgrp) 6474 css = cgroup_css(cgrp, ss); 6475 6476 if (!css || !css_tryget_online(css)) 6477 css = ERR_PTR(-ENOENT); 6478 6479 rcu_read_unlock(); 6480 return css; 6481 } 6482 6483 /** 6484 * css_from_id - lookup css by id 6485 * @id: the cgroup id 6486 * @ss: cgroup subsys to be looked into 6487 * 6488 * Returns the css if there's valid one with @id, otherwise returns NULL. 6489 * Should be called under rcu_read_lock(). 6490 */ 6491 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss) 6492 { 6493 WARN_ON_ONCE(!rcu_read_lock_held()); 6494 return idr_find(&ss->css_idr, id); 6495 } 6496 6497 /** 6498 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path 6499 * @path: path on the default hierarchy 6500 * 6501 * Find the cgroup at @path on the default hierarchy, increment its 6502 * reference count and return it. Returns pointer to the found cgroup on 6503 * success, ERR_PTR(-ENOENT) if @path doesn't exist or if the cgroup has already 6504 * been released and ERR_PTR(-ENOTDIR) if @path points to a non-directory. 6505 */ 6506 struct cgroup *cgroup_get_from_path(const char *path) 6507 { 6508 struct kernfs_node *kn; 6509 struct cgroup *cgrp = ERR_PTR(-ENOENT); 6510 6511 kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path); 6512 if (!kn) 6513 goto out; 6514 6515 if (kernfs_type(kn) != KERNFS_DIR) { 6516 cgrp = ERR_PTR(-ENOTDIR); 6517 goto out_kernfs; 6518 } 6519 6520 rcu_read_lock(); 6521 6522 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); 6523 if (!cgrp || !cgroup_tryget(cgrp)) 6524 cgrp = ERR_PTR(-ENOENT); 6525 6526 rcu_read_unlock(); 6527 6528 out_kernfs: 6529 kernfs_put(kn); 6530 out: 6531 return cgrp; 6532 } 6533 EXPORT_SYMBOL_GPL(cgroup_get_from_path); 6534 6535 /** 6536 * cgroup_get_from_fd - get a cgroup pointer from a fd 6537 * @fd: fd obtained by open(cgroup2_dir) 6538 * 6539 * Find the cgroup from a fd which should be obtained 6540 * by opening a cgroup directory. Returns a pointer to the 6541 * cgroup on success. ERR_PTR is returned if the cgroup 6542 * cannot be found. 6543 */ 6544 struct cgroup *cgroup_get_from_fd(int fd) 6545 { 6546 struct cgroup *cgrp; 6547 struct file *f; 6548 6549 f = fget_raw(fd); 6550 if (!f) 6551 return ERR_PTR(-EBADF); 6552 6553 cgrp = cgroup_get_from_file(f); 6554 fput(f); 6555 return cgrp; 6556 } 6557 EXPORT_SYMBOL_GPL(cgroup_get_from_fd); 6558 6559 static u64 power_of_ten(int power) 6560 { 6561 u64 v = 1; 6562 while (power--) 6563 v *= 10; 6564 return v; 6565 } 6566 6567 /** 6568 * cgroup_parse_float - parse a floating number 6569 * @input: input string 6570 * @dec_shift: number of decimal digits to shift 6571 * @v: output 6572 * 6573 * Parse a decimal floating point number in @input and store the result in 6574 * @v with decimal point right shifted @dec_shift times. For example, if 6575 * @input is "12.3456" and @dec_shift is 3, *@v will be set to 12345. 6576 * Returns 0 on success, -errno otherwise. 6577 * 6578 * There's nothing cgroup specific about this function except that it's 6579 * currently the only user. 6580 */ 6581 int cgroup_parse_float(const char *input, unsigned dec_shift, s64 *v) 6582 { 6583 s64 whole, frac = 0; 6584 int fstart = 0, fend = 0, flen; 6585 6586 if (!sscanf(input, "%lld.%n%lld%n", &whole, &fstart, &frac, &fend)) 6587 return -EINVAL; 6588 if (frac < 0) 6589 return -EINVAL; 6590 6591 flen = fend > fstart ? fend - fstart : 0; 6592 if (flen < dec_shift) 6593 frac *= power_of_ten(dec_shift - flen); 6594 else 6595 frac = DIV_ROUND_CLOSEST_ULL(frac, power_of_ten(flen - dec_shift)); 6596 6597 *v = whole * power_of_ten(dec_shift) + frac; 6598 return 0; 6599 } 6600 6601 /* 6602 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data 6603 * definition in cgroup-defs.h. 6604 */ 6605 #ifdef CONFIG_SOCK_CGROUP_DATA 6606 6607 void cgroup_sk_alloc(struct sock_cgroup_data *skcd) 6608 { 6609 struct cgroup *cgroup; 6610 6611 rcu_read_lock(); 6612 /* Don't associate the sock with unrelated interrupted task's cgroup. */ 6613 if (in_interrupt()) { 6614 cgroup = &cgrp_dfl_root.cgrp; 6615 cgroup_get(cgroup); 6616 goto out; 6617 } 6618 6619 while (true) { 6620 struct css_set *cset; 6621 6622 cset = task_css_set(current); 6623 if (likely(cgroup_tryget(cset->dfl_cgrp))) { 6624 cgroup = cset->dfl_cgrp; 6625 break; 6626 } 6627 cpu_relax(); 6628 } 6629 out: 6630 skcd->cgroup = cgroup; 6631 cgroup_bpf_get(cgroup); 6632 rcu_read_unlock(); 6633 } 6634 6635 void cgroup_sk_clone(struct sock_cgroup_data *skcd) 6636 { 6637 struct cgroup *cgrp = sock_cgroup_ptr(skcd); 6638 6639 /* 6640 * We might be cloning a socket which is left in an empty 6641 * cgroup and the cgroup might have already been rmdir'd. 6642 * Don't use cgroup_get_live(). 6643 */ 6644 cgroup_get(cgrp); 6645 cgroup_bpf_get(cgrp); 6646 } 6647 6648 void cgroup_sk_free(struct sock_cgroup_data *skcd) 6649 { 6650 struct cgroup *cgrp = sock_cgroup_ptr(skcd); 6651 6652 cgroup_bpf_put(cgrp); 6653 cgroup_put(cgrp); 6654 } 6655 6656 #endif /* CONFIG_SOCK_CGROUP_DATA */ 6657 6658 #ifdef CONFIG_SYSFS 6659 static ssize_t show_delegatable_files(struct cftype *files, char *buf, 6660 ssize_t size, const char *prefix) 6661 { 6662 struct cftype *cft; 6663 ssize_t ret = 0; 6664 6665 for (cft = files; cft && cft->name[0] != '\0'; cft++) { 6666 if (!(cft->flags & CFTYPE_NS_DELEGATABLE)) 6667 continue; 6668 6669 if ((cft->flags & CFTYPE_PRESSURE) && !cgroup_psi_enabled()) 6670 continue; 6671 6672 if (prefix) 6673 ret += snprintf(buf + ret, size - ret, "%s.", prefix); 6674 6675 ret += snprintf(buf + ret, size - ret, "%s\n", cft->name); 6676 6677 if (WARN_ON(ret >= size)) 6678 break; 6679 } 6680 6681 return ret; 6682 } 6683 6684 static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr, 6685 char *buf) 6686 { 6687 struct cgroup_subsys *ss; 6688 int ssid; 6689 ssize_t ret = 0; 6690 6691 ret = show_delegatable_files(cgroup_base_files, buf, PAGE_SIZE - ret, 6692 NULL); 6693 6694 for_each_subsys(ss, ssid) 6695 ret += show_delegatable_files(ss->dfl_cftypes, buf + ret, 6696 PAGE_SIZE - ret, 6697 cgroup_subsys_name[ssid]); 6698 6699 return ret; 6700 } 6701 static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate); 6702 6703 static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr, 6704 char *buf) 6705 { 6706 return snprintf(buf, PAGE_SIZE, 6707 "nsdelegate\n" 6708 "memory_localevents\n" 6709 "memory_recursiveprot\n"); 6710 } 6711 static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features); 6712 6713 static struct attribute *cgroup_sysfs_attrs[] = { 6714 &cgroup_delegate_attr.attr, 6715 &cgroup_features_attr.attr, 6716 NULL, 6717 }; 6718 6719 static const struct attribute_group cgroup_sysfs_attr_group = { 6720 .attrs = cgroup_sysfs_attrs, 6721 .name = "cgroup", 6722 }; 6723 6724 static int __init cgroup_sysfs_init(void) 6725 { 6726 return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group); 6727 } 6728 subsys_initcall(cgroup_sysfs_init); 6729 6730 #endif /* CONFIG_SYSFS */ 6731