xref: /openbmc/linux/kernel/cgroup/cgroup.c (revision 9fb29c73)
1 /*
2  *  Generic process-grouping system.
3  *
4  *  Based originally on the cpuset system, extracted by Paul Menage
5  *  Copyright (C) 2006 Google, Inc
6  *
7  *  Notifications support
8  *  Copyright (C) 2009 Nokia Corporation
9  *  Author: Kirill A. Shutemov
10  *
11  *  Copyright notices from the original cpuset code:
12  *  --------------------------------------------------
13  *  Copyright (C) 2003 BULL SA.
14  *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
15  *
16  *  Portions derived from Patrick Mochel's sysfs code.
17  *  sysfs is Copyright (c) 2001-3 Patrick Mochel
18  *
19  *  2003-10-10 Written by Simon Derr.
20  *  2003-10-22 Updates by Stephen Hemminger.
21  *  2004 May-July Rework by Paul Jackson.
22  *  ---------------------------------------------------
23  *
24  *  This file is subject to the terms and conditions of the GNU General Public
25  *  License.  See the file COPYING in the main directory of the Linux
26  *  distribution for more details.
27  */
28 
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 
31 #include "cgroup-internal.h"
32 
33 #include <linux/cred.h>
34 #include <linux/errno.h>
35 #include <linux/init_task.h>
36 #include <linux/kernel.h>
37 #include <linux/magic.h>
38 #include <linux/mutex.h>
39 #include <linux/mount.h>
40 #include <linux/pagemap.h>
41 #include <linux/proc_fs.h>
42 #include <linux/rcupdate.h>
43 #include <linux/sched.h>
44 #include <linux/sched/task.h>
45 #include <linux/slab.h>
46 #include <linux/spinlock.h>
47 #include <linux/percpu-rwsem.h>
48 #include <linux/string.h>
49 #include <linux/hashtable.h>
50 #include <linux/idr.h>
51 #include <linux/kthread.h>
52 #include <linux/atomic.h>
53 #include <linux/cpuset.h>
54 #include <linux/proc_ns.h>
55 #include <linux/nsproxy.h>
56 #include <linux/file.h>
57 #include <linux/sched/cputime.h>
58 #include <linux/psi.h>
59 #include <net/sock.h>
60 
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/cgroup.h>
63 
64 #define CGROUP_FILE_NAME_MAX		(MAX_CGROUP_TYPE_NAMELEN +	\
65 					 MAX_CFTYPE_NAME + 2)
66 /* let's not notify more than 100 times per second */
67 #define CGROUP_FILE_NOTIFY_MIN_INTV	DIV_ROUND_UP(HZ, 100)
68 
69 /*
70  * cgroup_mutex is the master lock.  Any modification to cgroup or its
71  * hierarchy must be performed while holding it.
72  *
73  * css_set_lock protects task->cgroups pointer, the list of css_set
74  * objects, and the chain of tasks off each css_set.
75  *
76  * These locks are exported if CONFIG_PROVE_RCU so that accessors in
77  * cgroup.h can use them for lockdep annotations.
78  */
79 DEFINE_MUTEX(cgroup_mutex);
80 DEFINE_SPINLOCK(css_set_lock);
81 
82 #ifdef CONFIG_PROVE_RCU
83 EXPORT_SYMBOL_GPL(cgroup_mutex);
84 EXPORT_SYMBOL_GPL(css_set_lock);
85 #endif
86 
87 DEFINE_SPINLOCK(trace_cgroup_path_lock);
88 char trace_cgroup_path[TRACE_CGROUP_PATH_LEN];
89 bool cgroup_debug __read_mostly;
90 
91 /*
92  * Protects cgroup_idr and css_idr so that IDs can be released without
93  * grabbing cgroup_mutex.
94  */
95 static DEFINE_SPINLOCK(cgroup_idr_lock);
96 
97 /*
98  * Protects cgroup_file->kn for !self csses.  It synchronizes notifications
99  * against file removal/re-creation across css hiding.
100  */
101 static DEFINE_SPINLOCK(cgroup_file_kn_lock);
102 
103 struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
104 
105 #define cgroup_assert_mutex_or_rcu_locked()				\
106 	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
107 			   !lockdep_is_held(&cgroup_mutex),		\
108 			   "cgroup_mutex or RCU read lock required");
109 
110 /*
111  * cgroup destruction makes heavy use of work items and there can be a lot
112  * of concurrent destructions.  Use a separate workqueue so that cgroup
113  * destruction work items don't end up filling up max_active of system_wq
114  * which may lead to deadlock.
115  */
116 static struct workqueue_struct *cgroup_destroy_wq;
117 
118 /* generate an array of cgroup subsystem pointers */
119 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
120 struct cgroup_subsys *cgroup_subsys[] = {
121 #include <linux/cgroup_subsys.h>
122 };
123 #undef SUBSYS
124 
125 /* array of cgroup subsystem names */
126 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
127 static const char *cgroup_subsys_name[] = {
128 #include <linux/cgroup_subsys.h>
129 };
130 #undef SUBSYS
131 
132 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
133 #define SUBSYS(_x)								\
134 	DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key);			\
135 	DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key);			\
136 	EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key);			\
137 	EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
138 #include <linux/cgroup_subsys.h>
139 #undef SUBSYS
140 
141 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
142 static struct static_key_true *cgroup_subsys_enabled_key[] = {
143 #include <linux/cgroup_subsys.h>
144 };
145 #undef SUBSYS
146 
147 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
148 static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
149 #include <linux/cgroup_subsys.h>
150 };
151 #undef SUBSYS
152 
153 static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu);
154 
155 /*
156  * The default hierarchy, reserved for the subsystems that are otherwise
157  * unattached - it never has more than a single cgroup, and all tasks are
158  * part of that cgroup.
159  */
160 struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu };
161 EXPORT_SYMBOL_GPL(cgrp_dfl_root);
162 
163 /*
164  * The default hierarchy always exists but is hidden until mounted for the
165  * first time.  This is for backward compatibility.
166  */
167 static bool cgrp_dfl_visible;
168 
169 /* some controllers are not supported in the default hierarchy */
170 static u16 cgrp_dfl_inhibit_ss_mask;
171 
172 /* some controllers are implicitly enabled on the default hierarchy */
173 static u16 cgrp_dfl_implicit_ss_mask;
174 
175 /* some controllers can be threaded on the default hierarchy */
176 static u16 cgrp_dfl_threaded_ss_mask;
177 
178 /* The list of hierarchy roots */
179 LIST_HEAD(cgroup_roots);
180 static int cgroup_root_count;
181 
182 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
183 static DEFINE_IDR(cgroup_hierarchy_idr);
184 
185 /*
186  * Assign a monotonically increasing serial number to csses.  It guarantees
187  * cgroups with bigger numbers are newer than those with smaller numbers.
188  * Also, as csses are always appended to the parent's ->children list, it
189  * guarantees that sibling csses are always sorted in the ascending serial
190  * number order on the list.  Protected by cgroup_mutex.
191  */
192 static u64 css_serial_nr_next = 1;
193 
194 /*
195  * These bitmasks identify subsystems with specific features to avoid
196  * having to do iterative checks repeatedly.
197  */
198 static u16 have_fork_callback __read_mostly;
199 static u16 have_exit_callback __read_mostly;
200 static u16 have_free_callback __read_mostly;
201 static u16 have_canfork_callback __read_mostly;
202 
203 /* cgroup namespace for init task */
204 struct cgroup_namespace init_cgroup_ns = {
205 	.count		= REFCOUNT_INIT(2),
206 	.user_ns	= &init_user_ns,
207 	.ns.ops		= &cgroupns_operations,
208 	.ns.inum	= PROC_CGROUP_INIT_INO,
209 	.root_cset	= &init_css_set,
210 };
211 
212 static struct file_system_type cgroup2_fs_type;
213 static struct cftype cgroup_base_files[];
214 
215 static int cgroup_apply_control(struct cgroup *cgrp);
216 static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
217 static void css_task_iter_advance(struct css_task_iter *it);
218 static int cgroup_destroy_locked(struct cgroup *cgrp);
219 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
220 					      struct cgroup_subsys *ss);
221 static void css_release(struct percpu_ref *ref);
222 static void kill_css(struct cgroup_subsys_state *css);
223 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
224 			      struct cgroup *cgrp, struct cftype cfts[],
225 			      bool is_add);
226 
227 /**
228  * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
229  * @ssid: subsys ID of interest
230  *
231  * cgroup_subsys_enabled() can only be used with literal subsys names which
232  * is fine for individual subsystems but unsuitable for cgroup core.  This
233  * is slower static_key_enabled() based test indexed by @ssid.
234  */
235 bool cgroup_ssid_enabled(int ssid)
236 {
237 	if (CGROUP_SUBSYS_COUNT == 0)
238 		return false;
239 
240 	return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
241 }
242 
243 /**
244  * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
245  * @cgrp: the cgroup of interest
246  *
247  * The default hierarchy is the v2 interface of cgroup and this function
248  * can be used to test whether a cgroup is on the default hierarchy for
249  * cases where a subsystem should behave differnetly depending on the
250  * interface version.
251  *
252  * The set of behaviors which change on the default hierarchy are still
253  * being determined and the mount option is prefixed with __DEVEL__.
254  *
255  * List of changed behaviors:
256  *
257  * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
258  *   and "name" are disallowed.
259  *
260  * - When mounting an existing superblock, mount options should match.
261  *
262  * - Remount is disallowed.
263  *
264  * - rename(2) is disallowed.
265  *
266  * - "tasks" is removed.  Everything should be at process granularity.  Use
267  *   "cgroup.procs" instead.
268  *
269  * - "cgroup.procs" is not sorted.  pids will be unique unless they got
270  *   recycled inbetween reads.
271  *
272  * - "release_agent" and "notify_on_release" are removed.  Replacement
273  *   notification mechanism will be implemented.
274  *
275  * - "cgroup.clone_children" is removed.
276  *
277  * - "cgroup.subtree_populated" is available.  Its value is 0 if the cgroup
278  *   and its descendants contain no task; otherwise, 1.  The file also
279  *   generates kernfs notification which can be monitored through poll and
280  *   [di]notify when the value of the file changes.
281  *
282  * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
283  *   take masks of ancestors with non-empty cpus/mems, instead of being
284  *   moved to an ancestor.
285  *
286  * - cpuset: a task can be moved into an empty cpuset, and again it takes
287  *   masks of ancestors.
288  *
289  * - memcg: use_hierarchy is on by default and the cgroup file for the flag
290  *   is not created.
291  *
292  * - blkcg: blk-throttle becomes properly hierarchical.
293  *
294  * - debug: disallowed on the default hierarchy.
295  */
296 bool cgroup_on_dfl(const struct cgroup *cgrp)
297 {
298 	return cgrp->root == &cgrp_dfl_root;
299 }
300 
301 /* IDR wrappers which synchronize using cgroup_idr_lock */
302 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
303 			    gfp_t gfp_mask)
304 {
305 	int ret;
306 
307 	idr_preload(gfp_mask);
308 	spin_lock_bh(&cgroup_idr_lock);
309 	ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
310 	spin_unlock_bh(&cgroup_idr_lock);
311 	idr_preload_end();
312 	return ret;
313 }
314 
315 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
316 {
317 	void *ret;
318 
319 	spin_lock_bh(&cgroup_idr_lock);
320 	ret = idr_replace(idr, ptr, id);
321 	spin_unlock_bh(&cgroup_idr_lock);
322 	return ret;
323 }
324 
325 static void cgroup_idr_remove(struct idr *idr, int id)
326 {
327 	spin_lock_bh(&cgroup_idr_lock);
328 	idr_remove(idr, id);
329 	spin_unlock_bh(&cgroup_idr_lock);
330 }
331 
332 static bool cgroup_has_tasks(struct cgroup *cgrp)
333 {
334 	return cgrp->nr_populated_csets;
335 }
336 
337 bool cgroup_is_threaded(struct cgroup *cgrp)
338 {
339 	return cgrp->dom_cgrp != cgrp;
340 }
341 
342 /* can @cgrp host both domain and threaded children? */
343 static bool cgroup_is_mixable(struct cgroup *cgrp)
344 {
345 	/*
346 	 * Root isn't under domain level resource control exempting it from
347 	 * the no-internal-process constraint, so it can serve as a thread
348 	 * root and a parent of resource domains at the same time.
349 	 */
350 	return !cgroup_parent(cgrp);
351 }
352 
353 /* can @cgrp become a thread root? should always be true for a thread root */
354 static bool cgroup_can_be_thread_root(struct cgroup *cgrp)
355 {
356 	/* mixables don't care */
357 	if (cgroup_is_mixable(cgrp))
358 		return true;
359 
360 	/* domain roots can't be nested under threaded */
361 	if (cgroup_is_threaded(cgrp))
362 		return false;
363 
364 	/* can only have either domain or threaded children */
365 	if (cgrp->nr_populated_domain_children)
366 		return false;
367 
368 	/* and no domain controllers can be enabled */
369 	if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
370 		return false;
371 
372 	return true;
373 }
374 
375 /* is @cgrp root of a threaded subtree? */
376 bool cgroup_is_thread_root(struct cgroup *cgrp)
377 {
378 	/* thread root should be a domain */
379 	if (cgroup_is_threaded(cgrp))
380 		return false;
381 
382 	/* a domain w/ threaded children is a thread root */
383 	if (cgrp->nr_threaded_children)
384 		return true;
385 
386 	/*
387 	 * A domain which has tasks and explicit threaded controllers
388 	 * enabled is a thread root.
389 	 */
390 	if (cgroup_has_tasks(cgrp) &&
391 	    (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask))
392 		return true;
393 
394 	return false;
395 }
396 
397 /* a domain which isn't connected to the root w/o brekage can't be used */
398 static bool cgroup_is_valid_domain(struct cgroup *cgrp)
399 {
400 	/* the cgroup itself can be a thread root */
401 	if (cgroup_is_threaded(cgrp))
402 		return false;
403 
404 	/* but the ancestors can't be unless mixable */
405 	while ((cgrp = cgroup_parent(cgrp))) {
406 		if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp))
407 			return false;
408 		if (cgroup_is_threaded(cgrp))
409 			return false;
410 	}
411 
412 	return true;
413 }
414 
415 /* subsystems visibly enabled on a cgroup */
416 static u16 cgroup_control(struct cgroup *cgrp)
417 {
418 	struct cgroup *parent = cgroup_parent(cgrp);
419 	u16 root_ss_mask = cgrp->root->subsys_mask;
420 
421 	if (parent) {
422 		u16 ss_mask = parent->subtree_control;
423 
424 		/* threaded cgroups can only have threaded controllers */
425 		if (cgroup_is_threaded(cgrp))
426 			ss_mask &= cgrp_dfl_threaded_ss_mask;
427 		return ss_mask;
428 	}
429 
430 	if (cgroup_on_dfl(cgrp))
431 		root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
432 				  cgrp_dfl_implicit_ss_mask);
433 	return root_ss_mask;
434 }
435 
436 /* subsystems enabled on a cgroup */
437 static u16 cgroup_ss_mask(struct cgroup *cgrp)
438 {
439 	struct cgroup *parent = cgroup_parent(cgrp);
440 
441 	if (parent) {
442 		u16 ss_mask = parent->subtree_ss_mask;
443 
444 		/* threaded cgroups can only have threaded controllers */
445 		if (cgroup_is_threaded(cgrp))
446 			ss_mask &= cgrp_dfl_threaded_ss_mask;
447 		return ss_mask;
448 	}
449 
450 	return cgrp->root->subsys_mask;
451 }
452 
453 /**
454  * cgroup_css - obtain a cgroup's css for the specified subsystem
455  * @cgrp: the cgroup of interest
456  * @ss: the subsystem of interest (%NULL returns @cgrp->self)
457  *
458  * Return @cgrp's css (cgroup_subsys_state) associated with @ss.  This
459  * function must be called either under cgroup_mutex or rcu_read_lock() and
460  * the caller is responsible for pinning the returned css if it wants to
461  * keep accessing it outside the said locks.  This function may return
462  * %NULL if @cgrp doesn't have @subsys_id enabled.
463  */
464 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
465 					      struct cgroup_subsys *ss)
466 {
467 	if (ss)
468 		return rcu_dereference_check(cgrp->subsys[ss->id],
469 					lockdep_is_held(&cgroup_mutex));
470 	else
471 		return &cgrp->self;
472 }
473 
474 /**
475  * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem
476  * @cgrp: the cgroup of interest
477  * @ss: the subsystem of interest
478  *
479  * Find and get @cgrp's css assocaited with @ss.  If the css doesn't exist
480  * or is offline, %NULL is returned.
481  */
482 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp,
483 						     struct cgroup_subsys *ss)
484 {
485 	struct cgroup_subsys_state *css;
486 
487 	rcu_read_lock();
488 	css = cgroup_css(cgrp, ss);
489 	if (!css || !css_tryget_online(css))
490 		css = NULL;
491 	rcu_read_unlock();
492 
493 	return css;
494 }
495 
496 /**
497  * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss
498  * @cgrp: the cgroup of interest
499  * @ss: the subsystem of interest (%NULL returns @cgrp->self)
500  *
501  * Similar to cgroup_css() but returns the effective css, which is defined
502  * as the matching css of the nearest ancestor including self which has @ss
503  * enabled.  If @ss is associated with the hierarchy @cgrp is on, this
504  * function is guaranteed to return non-NULL css.
505  */
506 static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp,
507 							struct cgroup_subsys *ss)
508 {
509 	lockdep_assert_held(&cgroup_mutex);
510 
511 	if (!ss)
512 		return &cgrp->self;
513 
514 	/*
515 	 * This function is used while updating css associations and thus
516 	 * can't test the csses directly.  Test ss_mask.
517 	 */
518 	while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
519 		cgrp = cgroup_parent(cgrp);
520 		if (!cgrp)
521 			return NULL;
522 	}
523 
524 	return cgroup_css(cgrp, ss);
525 }
526 
527 /**
528  * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
529  * @cgrp: the cgroup of interest
530  * @ss: the subsystem of interest
531  *
532  * Find and get the effective css of @cgrp for @ss.  The effective css is
533  * defined as the matching css of the nearest ancestor including self which
534  * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
535  * the root css is returned, so this function always returns a valid css.
536  *
537  * The returned css is not guaranteed to be online, and therefore it is the
538  * callers responsiblity to tryget a reference for it.
539  */
540 struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
541 					 struct cgroup_subsys *ss)
542 {
543 	struct cgroup_subsys_state *css;
544 
545 	do {
546 		css = cgroup_css(cgrp, ss);
547 
548 		if (css)
549 			return css;
550 		cgrp = cgroup_parent(cgrp);
551 	} while (cgrp);
552 
553 	return init_css_set.subsys[ss->id];
554 }
555 
556 /**
557  * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
558  * @cgrp: the cgroup of interest
559  * @ss: the subsystem of interest
560  *
561  * Find and get the effective css of @cgrp for @ss.  The effective css is
562  * defined as the matching css of the nearest ancestor including self which
563  * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
564  * the root css is returned, so this function always returns a valid css.
565  * The returned css must be put using css_put().
566  */
567 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
568 					     struct cgroup_subsys *ss)
569 {
570 	struct cgroup_subsys_state *css;
571 
572 	rcu_read_lock();
573 
574 	do {
575 		css = cgroup_css(cgrp, ss);
576 
577 		if (css && css_tryget_online(css))
578 			goto out_unlock;
579 		cgrp = cgroup_parent(cgrp);
580 	} while (cgrp);
581 
582 	css = init_css_set.subsys[ss->id];
583 	css_get(css);
584 out_unlock:
585 	rcu_read_unlock();
586 	return css;
587 }
588 
589 static void cgroup_get_live(struct cgroup *cgrp)
590 {
591 	WARN_ON_ONCE(cgroup_is_dead(cgrp));
592 	css_get(&cgrp->self);
593 }
594 
595 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
596 {
597 	struct cgroup *cgrp = of->kn->parent->priv;
598 	struct cftype *cft = of_cft(of);
599 
600 	/*
601 	 * This is open and unprotected implementation of cgroup_css().
602 	 * seq_css() is only called from a kernfs file operation which has
603 	 * an active reference on the file.  Because all the subsystem
604 	 * files are drained before a css is disassociated with a cgroup,
605 	 * the matching css from the cgroup's subsys table is guaranteed to
606 	 * be and stay valid until the enclosing operation is complete.
607 	 */
608 	if (cft->ss)
609 		return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
610 	else
611 		return &cgrp->self;
612 }
613 EXPORT_SYMBOL_GPL(of_css);
614 
615 /**
616  * for_each_css - iterate all css's of a cgroup
617  * @css: the iteration cursor
618  * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
619  * @cgrp: the target cgroup to iterate css's of
620  *
621  * Should be called under cgroup_[tree_]mutex.
622  */
623 #define for_each_css(css, ssid, cgrp)					\
624 	for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)	\
625 		if (!((css) = rcu_dereference_check(			\
626 				(cgrp)->subsys[(ssid)],			\
627 				lockdep_is_held(&cgroup_mutex)))) { }	\
628 		else
629 
630 /**
631  * for_each_e_css - iterate all effective css's of a cgroup
632  * @css: the iteration cursor
633  * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
634  * @cgrp: the target cgroup to iterate css's of
635  *
636  * Should be called under cgroup_[tree_]mutex.
637  */
638 #define for_each_e_css(css, ssid, cgrp)					    \
639 	for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)	    \
640 		if (!((css) = cgroup_e_css_by_mask(cgrp,		    \
641 						   cgroup_subsys[(ssid)]))) \
642 			;						    \
643 		else
644 
645 /**
646  * do_each_subsys_mask - filter for_each_subsys with a bitmask
647  * @ss: the iteration cursor
648  * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
649  * @ss_mask: the bitmask
650  *
651  * The block will only run for cases where the ssid-th bit (1 << ssid) of
652  * @ss_mask is set.
653  */
654 #define do_each_subsys_mask(ss, ssid, ss_mask) do {			\
655 	unsigned long __ss_mask = (ss_mask);				\
656 	if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */	\
657 		(ssid) = 0;						\
658 		break;							\
659 	}								\
660 	for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) {	\
661 		(ss) = cgroup_subsys[ssid];				\
662 		{
663 
664 #define while_each_subsys_mask()					\
665 		}							\
666 	}								\
667 } while (false)
668 
669 /* iterate over child cgrps, lock should be held throughout iteration */
670 #define cgroup_for_each_live_child(child, cgrp)				\
671 	list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
672 		if (({ lockdep_assert_held(&cgroup_mutex);		\
673 		       cgroup_is_dead(child); }))			\
674 			;						\
675 		else
676 
677 /* walk live descendants in preorder */
678 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)		\
679 	css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL))	\
680 		if (({ lockdep_assert_held(&cgroup_mutex);		\
681 		       (dsct) = (d_css)->cgroup;			\
682 		       cgroup_is_dead(dsct); }))			\
683 			;						\
684 		else
685 
686 /* walk live descendants in postorder */
687 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp)		\
688 	css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL))	\
689 		if (({ lockdep_assert_held(&cgroup_mutex);		\
690 		       (dsct) = (d_css)->cgroup;			\
691 		       cgroup_is_dead(dsct); }))			\
692 			;						\
693 		else
694 
695 /*
696  * The default css_set - used by init and its children prior to any
697  * hierarchies being mounted. It contains a pointer to the root state
698  * for each subsystem. Also used to anchor the list of css_sets. Not
699  * reference-counted, to improve performance when child cgroups
700  * haven't been created.
701  */
702 struct css_set init_css_set = {
703 	.refcount		= REFCOUNT_INIT(1),
704 	.dom_cset		= &init_css_set,
705 	.tasks			= LIST_HEAD_INIT(init_css_set.tasks),
706 	.mg_tasks		= LIST_HEAD_INIT(init_css_set.mg_tasks),
707 	.task_iters		= LIST_HEAD_INIT(init_css_set.task_iters),
708 	.threaded_csets		= LIST_HEAD_INIT(init_css_set.threaded_csets),
709 	.cgrp_links		= LIST_HEAD_INIT(init_css_set.cgrp_links),
710 	.mg_preload_node	= LIST_HEAD_INIT(init_css_set.mg_preload_node),
711 	.mg_node		= LIST_HEAD_INIT(init_css_set.mg_node),
712 
713 	/*
714 	 * The following field is re-initialized when this cset gets linked
715 	 * in cgroup_init().  However, let's initialize the field
716 	 * statically too so that the default cgroup can be accessed safely
717 	 * early during boot.
718 	 */
719 	.dfl_cgrp		= &cgrp_dfl_root.cgrp,
720 };
721 
722 static int css_set_count	= 1;	/* 1 for init_css_set */
723 
724 static bool css_set_threaded(struct css_set *cset)
725 {
726 	return cset->dom_cset != cset;
727 }
728 
729 /**
730  * css_set_populated - does a css_set contain any tasks?
731  * @cset: target css_set
732  *
733  * css_set_populated() should be the same as !!cset->nr_tasks at steady
734  * state. However, css_set_populated() can be called while a task is being
735  * added to or removed from the linked list before the nr_tasks is
736  * properly updated. Hence, we can't just look at ->nr_tasks here.
737  */
738 static bool css_set_populated(struct css_set *cset)
739 {
740 	lockdep_assert_held(&css_set_lock);
741 
742 	return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
743 }
744 
745 /**
746  * cgroup_update_populated - update the populated count of a cgroup
747  * @cgrp: the target cgroup
748  * @populated: inc or dec populated count
749  *
750  * One of the css_sets associated with @cgrp is either getting its first
751  * task or losing the last.  Update @cgrp->nr_populated_* accordingly.  The
752  * count is propagated towards root so that a given cgroup's
753  * nr_populated_children is zero iff none of its descendants contain any
754  * tasks.
755  *
756  * @cgrp's interface file "cgroup.populated" is zero if both
757  * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and
758  * 1 otherwise.  When the sum changes from or to zero, userland is notified
759  * that the content of the interface file has changed.  This can be used to
760  * detect when @cgrp and its descendants become populated or empty.
761  */
762 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
763 {
764 	struct cgroup *child = NULL;
765 	int adj = populated ? 1 : -1;
766 
767 	lockdep_assert_held(&css_set_lock);
768 
769 	do {
770 		bool was_populated = cgroup_is_populated(cgrp);
771 
772 		if (!child) {
773 			cgrp->nr_populated_csets += adj;
774 		} else {
775 			if (cgroup_is_threaded(child))
776 				cgrp->nr_populated_threaded_children += adj;
777 			else
778 				cgrp->nr_populated_domain_children += adj;
779 		}
780 
781 		if (was_populated == cgroup_is_populated(cgrp))
782 			break;
783 
784 		cgroup1_check_for_release(cgrp);
785 		cgroup_file_notify(&cgrp->events_file);
786 
787 		child = cgrp;
788 		cgrp = cgroup_parent(cgrp);
789 	} while (cgrp);
790 }
791 
792 /**
793  * css_set_update_populated - update populated state of a css_set
794  * @cset: target css_set
795  * @populated: whether @cset is populated or depopulated
796  *
797  * @cset is either getting the first task or losing the last.  Update the
798  * populated counters of all associated cgroups accordingly.
799  */
800 static void css_set_update_populated(struct css_set *cset, bool populated)
801 {
802 	struct cgrp_cset_link *link;
803 
804 	lockdep_assert_held(&css_set_lock);
805 
806 	list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
807 		cgroup_update_populated(link->cgrp, populated);
808 }
809 
810 /**
811  * css_set_move_task - move a task from one css_set to another
812  * @task: task being moved
813  * @from_cset: css_set @task currently belongs to (may be NULL)
814  * @to_cset: new css_set @task is being moved to (may be NULL)
815  * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
816  *
817  * Move @task from @from_cset to @to_cset.  If @task didn't belong to any
818  * css_set, @from_cset can be NULL.  If @task is being disassociated
819  * instead of moved, @to_cset can be NULL.
820  *
821  * This function automatically handles populated counter updates and
822  * css_task_iter adjustments but the caller is responsible for managing
823  * @from_cset and @to_cset's reference counts.
824  */
825 static void css_set_move_task(struct task_struct *task,
826 			      struct css_set *from_cset, struct css_set *to_cset,
827 			      bool use_mg_tasks)
828 {
829 	lockdep_assert_held(&css_set_lock);
830 
831 	if (to_cset && !css_set_populated(to_cset))
832 		css_set_update_populated(to_cset, true);
833 
834 	if (from_cset) {
835 		struct css_task_iter *it, *pos;
836 
837 		WARN_ON_ONCE(list_empty(&task->cg_list));
838 
839 		/*
840 		 * @task is leaving, advance task iterators which are
841 		 * pointing to it so that they can resume at the next
842 		 * position.  Advancing an iterator might remove it from
843 		 * the list, use safe walk.  See css_task_iter_advance*()
844 		 * for details.
845 		 */
846 		list_for_each_entry_safe(it, pos, &from_cset->task_iters,
847 					 iters_node)
848 			if (it->task_pos == &task->cg_list)
849 				css_task_iter_advance(it);
850 
851 		list_del_init(&task->cg_list);
852 		if (!css_set_populated(from_cset))
853 			css_set_update_populated(from_cset, false);
854 	} else {
855 		WARN_ON_ONCE(!list_empty(&task->cg_list));
856 	}
857 
858 	if (to_cset) {
859 		/*
860 		 * We are synchronized through cgroup_threadgroup_rwsem
861 		 * against PF_EXITING setting such that we can't race
862 		 * against cgroup_exit() changing the css_set to
863 		 * init_css_set and dropping the old one.
864 		 */
865 		WARN_ON_ONCE(task->flags & PF_EXITING);
866 
867 		cgroup_move_task(task, to_cset);
868 		list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
869 							     &to_cset->tasks);
870 	}
871 }
872 
873 /*
874  * hash table for cgroup groups. This improves the performance to find
875  * an existing css_set. This hash doesn't (currently) take into
876  * account cgroups in empty hierarchies.
877  */
878 #define CSS_SET_HASH_BITS	7
879 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
880 
881 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
882 {
883 	unsigned long key = 0UL;
884 	struct cgroup_subsys *ss;
885 	int i;
886 
887 	for_each_subsys(ss, i)
888 		key += (unsigned long)css[i];
889 	key = (key >> 16) ^ key;
890 
891 	return key;
892 }
893 
894 void put_css_set_locked(struct css_set *cset)
895 {
896 	struct cgrp_cset_link *link, *tmp_link;
897 	struct cgroup_subsys *ss;
898 	int ssid;
899 
900 	lockdep_assert_held(&css_set_lock);
901 
902 	if (!refcount_dec_and_test(&cset->refcount))
903 		return;
904 
905 	WARN_ON_ONCE(!list_empty(&cset->threaded_csets));
906 
907 	/* This css_set is dead. unlink it and release cgroup and css refs */
908 	for_each_subsys(ss, ssid) {
909 		list_del(&cset->e_cset_node[ssid]);
910 		css_put(cset->subsys[ssid]);
911 	}
912 	hash_del(&cset->hlist);
913 	css_set_count--;
914 
915 	list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
916 		list_del(&link->cset_link);
917 		list_del(&link->cgrp_link);
918 		if (cgroup_parent(link->cgrp))
919 			cgroup_put(link->cgrp);
920 		kfree(link);
921 	}
922 
923 	if (css_set_threaded(cset)) {
924 		list_del(&cset->threaded_csets_node);
925 		put_css_set_locked(cset->dom_cset);
926 	}
927 
928 	kfree_rcu(cset, rcu_head);
929 }
930 
931 /**
932  * compare_css_sets - helper function for find_existing_css_set().
933  * @cset: candidate css_set being tested
934  * @old_cset: existing css_set for a task
935  * @new_cgrp: cgroup that's being entered by the task
936  * @template: desired set of css pointers in css_set (pre-calculated)
937  *
938  * Returns true if "cset" matches "old_cset" except for the hierarchy
939  * which "new_cgrp" belongs to, for which it should match "new_cgrp".
940  */
941 static bool compare_css_sets(struct css_set *cset,
942 			     struct css_set *old_cset,
943 			     struct cgroup *new_cgrp,
944 			     struct cgroup_subsys_state *template[])
945 {
946 	struct cgroup *new_dfl_cgrp;
947 	struct list_head *l1, *l2;
948 
949 	/*
950 	 * On the default hierarchy, there can be csets which are
951 	 * associated with the same set of cgroups but different csses.
952 	 * Let's first ensure that csses match.
953 	 */
954 	if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
955 		return false;
956 
957 
958 	/* @cset's domain should match the default cgroup's */
959 	if (cgroup_on_dfl(new_cgrp))
960 		new_dfl_cgrp = new_cgrp;
961 	else
962 		new_dfl_cgrp = old_cset->dfl_cgrp;
963 
964 	if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp)
965 		return false;
966 
967 	/*
968 	 * Compare cgroup pointers in order to distinguish between
969 	 * different cgroups in hierarchies.  As different cgroups may
970 	 * share the same effective css, this comparison is always
971 	 * necessary.
972 	 */
973 	l1 = &cset->cgrp_links;
974 	l2 = &old_cset->cgrp_links;
975 	while (1) {
976 		struct cgrp_cset_link *link1, *link2;
977 		struct cgroup *cgrp1, *cgrp2;
978 
979 		l1 = l1->next;
980 		l2 = l2->next;
981 		/* See if we reached the end - both lists are equal length. */
982 		if (l1 == &cset->cgrp_links) {
983 			BUG_ON(l2 != &old_cset->cgrp_links);
984 			break;
985 		} else {
986 			BUG_ON(l2 == &old_cset->cgrp_links);
987 		}
988 		/* Locate the cgroups associated with these links. */
989 		link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
990 		link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
991 		cgrp1 = link1->cgrp;
992 		cgrp2 = link2->cgrp;
993 		/* Hierarchies should be linked in the same order. */
994 		BUG_ON(cgrp1->root != cgrp2->root);
995 
996 		/*
997 		 * If this hierarchy is the hierarchy of the cgroup
998 		 * that's changing, then we need to check that this
999 		 * css_set points to the new cgroup; if it's any other
1000 		 * hierarchy, then this css_set should point to the
1001 		 * same cgroup as the old css_set.
1002 		 */
1003 		if (cgrp1->root == new_cgrp->root) {
1004 			if (cgrp1 != new_cgrp)
1005 				return false;
1006 		} else {
1007 			if (cgrp1 != cgrp2)
1008 				return false;
1009 		}
1010 	}
1011 	return true;
1012 }
1013 
1014 /**
1015  * find_existing_css_set - init css array and find the matching css_set
1016  * @old_cset: the css_set that we're using before the cgroup transition
1017  * @cgrp: the cgroup that we're moving into
1018  * @template: out param for the new set of csses, should be clear on entry
1019  */
1020 static struct css_set *find_existing_css_set(struct css_set *old_cset,
1021 					struct cgroup *cgrp,
1022 					struct cgroup_subsys_state *template[])
1023 {
1024 	struct cgroup_root *root = cgrp->root;
1025 	struct cgroup_subsys *ss;
1026 	struct css_set *cset;
1027 	unsigned long key;
1028 	int i;
1029 
1030 	/*
1031 	 * Build the set of subsystem state objects that we want to see in the
1032 	 * new css_set. while subsystems can change globally, the entries here
1033 	 * won't change, so no need for locking.
1034 	 */
1035 	for_each_subsys(ss, i) {
1036 		if (root->subsys_mask & (1UL << i)) {
1037 			/*
1038 			 * @ss is in this hierarchy, so we want the
1039 			 * effective css from @cgrp.
1040 			 */
1041 			template[i] = cgroup_e_css_by_mask(cgrp, ss);
1042 		} else {
1043 			/*
1044 			 * @ss is not in this hierarchy, so we don't want
1045 			 * to change the css.
1046 			 */
1047 			template[i] = old_cset->subsys[i];
1048 		}
1049 	}
1050 
1051 	key = css_set_hash(template);
1052 	hash_for_each_possible(css_set_table, cset, hlist, key) {
1053 		if (!compare_css_sets(cset, old_cset, cgrp, template))
1054 			continue;
1055 
1056 		/* This css_set matches what we need */
1057 		return cset;
1058 	}
1059 
1060 	/* No existing cgroup group matched */
1061 	return NULL;
1062 }
1063 
1064 static void free_cgrp_cset_links(struct list_head *links_to_free)
1065 {
1066 	struct cgrp_cset_link *link, *tmp_link;
1067 
1068 	list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
1069 		list_del(&link->cset_link);
1070 		kfree(link);
1071 	}
1072 }
1073 
1074 /**
1075  * allocate_cgrp_cset_links - allocate cgrp_cset_links
1076  * @count: the number of links to allocate
1077  * @tmp_links: list_head the allocated links are put on
1078  *
1079  * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1080  * through ->cset_link.  Returns 0 on success or -errno.
1081  */
1082 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
1083 {
1084 	struct cgrp_cset_link *link;
1085 	int i;
1086 
1087 	INIT_LIST_HEAD(tmp_links);
1088 
1089 	for (i = 0; i < count; i++) {
1090 		link = kzalloc(sizeof(*link), GFP_KERNEL);
1091 		if (!link) {
1092 			free_cgrp_cset_links(tmp_links);
1093 			return -ENOMEM;
1094 		}
1095 		list_add(&link->cset_link, tmp_links);
1096 	}
1097 	return 0;
1098 }
1099 
1100 /**
1101  * link_css_set - a helper function to link a css_set to a cgroup
1102  * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
1103  * @cset: the css_set to be linked
1104  * @cgrp: the destination cgroup
1105  */
1106 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1107 			 struct cgroup *cgrp)
1108 {
1109 	struct cgrp_cset_link *link;
1110 
1111 	BUG_ON(list_empty(tmp_links));
1112 
1113 	if (cgroup_on_dfl(cgrp))
1114 		cset->dfl_cgrp = cgrp;
1115 
1116 	link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1117 	link->cset = cset;
1118 	link->cgrp = cgrp;
1119 
1120 	/*
1121 	 * Always add links to the tail of the lists so that the lists are
1122 	 * in choronological order.
1123 	 */
1124 	list_move_tail(&link->cset_link, &cgrp->cset_links);
1125 	list_add_tail(&link->cgrp_link, &cset->cgrp_links);
1126 
1127 	if (cgroup_parent(cgrp))
1128 		cgroup_get_live(cgrp);
1129 }
1130 
1131 /**
1132  * find_css_set - return a new css_set with one cgroup updated
1133  * @old_cset: the baseline css_set
1134  * @cgrp: the cgroup to be updated
1135  *
1136  * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1137  * substituted into the appropriate hierarchy.
1138  */
1139 static struct css_set *find_css_set(struct css_set *old_cset,
1140 				    struct cgroup *cgrp)
1141 {
1142 	struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
1143 	struct css_set *cset;
1144 	struct list_head tmp_links;
1145 	struct cgrp_cset_link *link;
1146 	struct cgroup_subsys *ss;
1147 	unsigned long key;
1148 	int ssid;
1149 
1150 	lockdep_assert_held(&cgroup_mutex);
1151 
1152 	/* First see if we already have a cgroup group that matches
1153 	 * the desired set */
1154 	spin_lock_irq(&css_set_lock);
1155 	cset = find_existing_css_set(old_cset, cgrp, template);
1156 	if (cset)
1157 		get_css_set(cset);
1158 	spin_unlock_irq(&css_set_lock);
1159 
1160 	if (cset)
1161 		return cset;
1162 
1163 	cset = kzalloc(sizeof(*cset), GFP_KERNEL);
1164 	if (!cset)
1165 		return NULL;
1166 
1167 	/* Allocate all the cgrp_cset_link objects that we'll need */
1168 	if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1169 		kfree(cset);
1170 		return NULL;
1171 	}
1172 
1173 	refcount_set(&cset->refcount, 1);
1174 	cset->dom_cset = cset;
1175 	INIT_LIST_HEAD(&cset->tasks);
1176 	INIT_LIST_HEAD(&cset->mg_tasks);
1177 	INIT_LIST_HEAD(&cset->task_iters);
1178 	INIT_LIST_HEAD(&cset->threaded_csets);
1179 	INIT_HLIST_NODE(&cset->hlist);
1180 	INIT_LIST_HEAD(&cset->cgrp_links);
1181 	INIT_LIST_HEAD(&cset->mg_preload_node);
1182 	INIT_LIST_HEAD(&cset->mg_node);
1183 
1184 	/* Copy the set of subsystem state objects generated in
1185 	 * find_existing_css_set() */
1186 	memcpy(cset->subsys, template, sizeof(cset->subsys));
1187 
1188 	spin_lock_irq(&css_set_lock);
1189 	/* Add reference counts and links from the new css_set. */
1190 	list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1191 		struct cgroup *c = link->cgrp;
1192 
1193 		if (c->root == cgrp->root)
1194 			c = cgrp;
1195 		link_css_set(&tmp_links, cset, c);
1196 	}
1197 
1198 	BUG_ON(!list_empty(&tmp_links));
1199 
1200 	css_set_count++;
1201 
1202 	/* Add @cset to the hash table */
1203 	key = css_set_hash(cset->subsys);
1204 	hash_add(css_set_table, &cset->hlist, key);
1205 
1206 	for_each_subsys(ss, ssid) {
1207 		struct cgroup_subsys_state *css = cset->subsys[ssid];
1208 
1209 		list_add_tail(&cset->e_cset_node[ssid],
1210 			      &css->cgroup->e_csets[ssid]);
1211 		css_get(css);
1212 	}
1213 
1214 	spin_unlock_irq(&css_set_lock);
1215 
1216 	/*
1217 	 * If @cset should be threaded, look up the matching dom_cset and
1218 	 * link them up.  We first fully initialize @cset then look for the
1219 	 * dom_cset.  It's simpler this way and safe as @cset is guaranteed
1220 	 * to stay empty until we return.
1221 	 */
1222 	if (cgroup_is_threaded(cset->dfl_cgrp)) {
1223 		struct css_set *dcset;
1224 
1225 		dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp);
1226 		if (!dcset) {
1227 			put_css_set(cset);
1228 			return NULL;
1229 		}
1230 
1231 		spin_lock_irq(&css_set_lock);
1232 		cset->dom_cset = dcset;
1233 		list_add_tail(&cset->threaded_csets_node,
1234 			      &dcset->threaded_csets);
1235 		spin_unlock_irq(&css_set_lock);
1236 	}
1237 
1238 	return cset;
1239 }
1240 
1241 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1242 {
1243 	struct cgroup *root_cgrp = kf_root->kn->priv;
1244 
1245 	return root_cgrp->root;
1246 }
1247 
1248 static int cgroup_init_root_id(struct cgroup_root *root)
1249 {
1250 	int id;
1251 
1252 	lockdep_assert_held(&cgroup_mutex);
1253 
1254 	id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1255 	if (id < 0)
1256 		return id;
1257 
1258 	root->hierarchy_id = id;
1259 	return 0;
1260 }
1261 
1262 static void cgroup_exit_root_id(struct cgroup_root *root)
1263 {
1264 	lockdep_assert_held(&cgroup_mutex);
1265 
1266 	idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1267 }
1268 
1269 void cgroup_free_root(struct cgroup_root *root)
1270 {
1271 	if (root) {
1272 		idr_destroy(&root->cgroup_idr);
1273 		kfree(root);
1274 	}
1275 }
1276 
1277 static void cgroup_destroy_root(struct cgroup_root *root)
1278 {
1279 	struct cgroup *cgrp = &root->cgrp;
1280 	struct cgrp_cset_link *link, *tmp_link;
1281 
1282 	trace_cgroup_destroy_root(root);
1283 
1284 	cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1285 
1286 	BUG_ON(atomic_read(&root->nr_cgrps));
1287 	BUG_ON(!list_empty(&cgrp->self.children));
1288 
1289 	/* Rebind all subsystems back to the default hierarchy */
1290 	WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
1291 
1292 	/*
1293 	 * Release all the links from cset_links to this hierarchy's
1294 	 * root cgroup
1295 	 */
1296 	spin_lock_irq(&css_set_lock);
1297 
1298 	list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1299 		list_del(&link->cset_link);
1300 		list_del(&link->cgrp_link);
1301 		kfree(link);
1302 	}
1303 
1304 	spin_unlock_irq(&css_set_lock);
1305 
1306 	if (!list_empty(&root->root_list)) {
1307 		list_del(&root->root_list);
1308 		cgroup_root_count--;
1309 	}
1310 
1311 	cgroup_exit_root_id(root);
1312 
1313 	mutex_unlock(&cgroup_mutex);
1314 
1315 	kernfs_destroy_root(root->kf_root);
1316 	cgroup_free_root(root);
1317 }
1318 
1319 /*
1320  * look up cgroup associated with current task's cgroup namespace on the
1321  * specified hierarchy
1322  */
1323 static struct cgroup *
1324 current_cgns_cgroup_from_root(struct cgroup_root *root)
1325 {
1326 	struct cgroup *res = NULL;
1327 	struct css_set *cset;
1328 
1329 	lockdep_assert_held(&css_set_lock);
1330 
1331 	rcu_read_lock();
1332 
1333 	cset = current->nsproxy->cgroup_ns->root_cset;
1334 	if (cset == &init_css_set) {
1335 		res = &root->cgrp;
1336 	} else {
1337 		struct cgrp_cset_link *link;
1338 
1339 		list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1340 			struct cgroup *c = link->cgrp;
1341 
1342 			if (c->root == root) {
1343 				res = c;
1344 				break;
1345 			}
1346 		}
1347 	}
1348 	rcu_read_unlock();
1349 
1350 	BUG_ON(!res);
1351 	return res;
1352 }
1353 
1354 /* look up cgroup associated with given css_set on the specified hierarchy */
1355 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1356 					    struct cgroup_root *root)
1357 {
1358 	struct cgroup *res = NULL;
1359 
1360 	lockdep_assert_held(&cgroup_mutex);
1361 	lockdep_assert_held(&css_set_lock);
1362 
1363 	if (cset == &init_css_set) {
1364 		res = &root->cgrp;
1365 	} else if (root == &cgrp_dfl_root) {
1366 		res = cset->dfl_cgrp;
1367 	} else {
1368 		struct cgrp_cset_link *link;
1369 
1370 		list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1371 			struct cgroup *c = link->cgrp;
1372 
1373 			if (c->root == root) {
1374 				res = c;
1375 				break;
1376 			}
1377 		}
1378 	}
1379 
1380 	BUG_ON(!res);
1381 	return res;
1382 }
1383 
1384 /*
1385  * Return the cgroup for "task" from the given hierarchy. Must be
1386  * called with cgroup_mutex and css_set_lock held.
1387  */
1388 struct cgroup *task_cgroup_from_root(struct task_struct *task,
1389 				     struct cgroup_root *root)
1390 {
1391 	/*
1392 	 * No need to lock the task - since we hold cgroup_mutex the
1393 	 * task can't change groups, so the only thing that can happen
1394 	 * is that it exits and its css is set back to init_css_set.
1395 	 */
1396 	return cset_cgroup_from_root(task_css_set(task), root);
1397 }
1398 
1399 /*
1400  * A task must hold cgroup_mutex to modify cgroups.
1401  *
1402  * Any task can increment and decrement the count field without lock.
1403  * So in general, code holding cgroup_mutex can't rely on the count
1404  * field not changing.  However, if the count goes to zero, then only
1405  * cgroup_attach_task() can increment it again.  Because a count of zero
1406  * means that no tasks are currently attached, therefore there is no
1407  * way a task attached to that cgroup can fork (the other way to
1408  * increment the count).  So code holding cgroup_mutex can safely
1409  * assume that if the count is zero, it will stay zero. Similarly, if
1410  * a task holds cgroup_mutex on a cgroup with zero count, it
1411  * knows that the cgroup won't be removed, as cgroup_rmdir()
1412  * needs that mutex.
1413  *
1414  * A cgroup can only be deleted if both its 'count' of using tasks
1415  * is zero, and its list of 'children' cgroups is empty.  Since all
1416  * tasks in the system use _some_ cgroup, and since there is always at
1417  * least one task in the system (init, pid == 1), therefore, root cgroup
1418  * always has either children cgroups and/or using tasks.  So we don't
1419  * need a special hack to ensure that root cgroup cannot be deleted.
1420  *
1421  * P.S.  One more locking exception.  RCU is used to guard the
1422  * update of a tasks cgroup pointer by cgroup_attach_task()
1423  */
1424 
1425 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1426 
1427 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1428 			      char *buf)
1429 {
1430 	struct cgroup_subsys *ss = cft->ss;
1431 
1432 	if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1433 	    !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
1434 		const char *dbg = (cft->flags & CFTYPE_DEBUG) ? ".__DEBUG__." : "";
1435 
1436 		snprintf(buf, CGROUP_FILE_NAME_MAX, "%s%s.%s",
1437 			 dbg, cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1438 			 cft->name);
1439 	} else {
1440 		strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1441 	}
1442 	return buf;
1443 }
1444 
1445 /**
1446  * cgroup_file_mode - deduce file mode of a control file
1447  * @cft: the control file in question
1448  *
1449  * S_IRUGO for read, S_IWUSR for write.
1450  */
1451 static umode_t cgroup_file_mode(const struct cftype *cft)
1452 {
1453 	umode_t mode = 0;
1454 
1455 	if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1456 		mode |= S_IRUGO;
1457 
1458 	if (cft->write_u64 || cft->write_s64 || cft->write) {
1459 		if (cft->flags & CFTYPE_WORLD_WRITABLE)
1460 			mode |= S_IWUGO;
1461 		else
1462 			mode |= S_IWUSR;
1463 	}
1464 
1465 	return mode;
1466 }
1467 
1468 /**
1469  * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1470  * @subtree_control: the new subtree_control mask to consider
1471  * @this_ss_mask: available subsystems
1472  *
1473  * On the default hierarchy, a subsystem may request other subsystems to be
1474  * enabled together through its ->depends_on mask.  In such cases, more
1475  * subsystems than specified in "cgroup.subtree_control" may be enabled.
1476  *
1477  * This function calculates which subsystems need to be enabled if
1478  * @subtree_control is to be applied while restricted to @this_ss_mask.
1479  */
1480 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
1481 {
1482 	u16 cur_ss_mask = subtree_control;
1483 	struct cgroup_subsys *ss;
1484 	int ssid;
1485 
1486 	lockdep_assert_held(&cgroup_mutex);
1487 
1488 	cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1489 
1490 	while (true) {
1491 		u16 new_ss_mask = cur_ss_mask;
1492 
1493 		do_each_subsys_mask(ss, ssid, cur_ss_mask) {
1494 			new_ss_mask |= ss->depends_on;
1495 		} while_each_subsys_mask();
1496 
1497 		/*
1498 		 * Mask out subsystems which aren't available.  This can
1499 		 * happen only if some depended-upon subsystems were bound
1500 		 * to non-default hierarchies.
1501 		 */
1502 		new_ss_mask &= this_ss_mask;
1503 
1504 		if (new_ss_mask == cur_ss_mask)
1505 			break;
1506 		cur_ss_mask = new_ss_mask;
1507 	}
1508 
1509 	return cur_ss_mask;
1510 }
1511 
1512 /**
1513  * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1514  * @kn: the kernfs_node being serviced
1515  *
1516  * This helper undoes cgroup_kn_lock_live() and should be invoked before
1517  * the method finishes if locking succeeded.  Note that once this function
1518  * returns the cgroup returned by cgroup_kn_lock_live() may become
1519  * inaccessible any time.  If the caller intends to continue to access the
1520  * cgroup, it should pin it before invoking this function.
1521  */
1522 void cgroup_kn_unlock(struct kernfs_node *kn)
1523 {
1524 	struct cgroup *cgrp;
1525 
1526 	if (kernfs_type(kn) == KERNFS_DIR)
1527 		cgrp = kn->priv;
1528 	else
1529 		cgrp = kn->parent->priv;
1530 
1531 	mutex_unlock(&cgroup_mutex);
1532 
1533 	kernfs_unbreak_active_protection(kn);
1534 	cgroup_put(cgrp);
1535 }
1536 
1537 /**
1538  * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1539  * @kn: the kernfs_node being serviced
1540  * @drain_offline: perform offline draining on the cgroup
1541  *
1542  * This helper is to be used by a cgroup kernfs method currently servicing
1543  * @kn.  It breaks the active protection, performs cgroup locking and
1544  * verifies that the associated cgroup is alive.  Returns the cgroup if
1545  * alive; otherwise, %NULL.  A successful return should be undone by a
1546  * matching cgroup_kn_unlock() invocation.  If @drain_offline is %true, the
1547  * cgroup is drained of offlining csses before return.
1548  *
1549  * Any cgroup kernfs method implementation which requires locking the
1550  * associated cgroup should use this helper.  It avoids nesting cgroup
1551  * locking under kernfs active protection and allows all kernfs operations
1552  * including self-removal.
1553  */
1554 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline)
1555 {
1556 	struct cgroup *cgrp;
1557 
1558 	if (kernfs_type(kn) == KERNFS_DIR)
1559 		cgrp = kn->priv;
1560 	else
1561 		cgrp = kn->parent->priv;
1562 
1563 	/*
1564 	 * We're gonna grab cgroup_mutex which nests outside kernfs
1565 	 * active_ref.  cgroup liveliness check alone provides enough
1566 	 * protection against removal.  Ensure @cgrp stays accessible and
1567 	 * break the active_ref protection.
1568 	 */
1569 	if (!cgroup_tryget(cgrp))
1570 		return NULL;
1571 	kernfs_break_active_protection(kn);
1572 
1573 	if (drain_offline)
1574 		cgroup_lock_and_drain_offline(cgrp);
1575 	else
1576 		mutex_lock(&cgroup_mutex);
1577 
1578 	if (!cgroup_is_dead(cgrp))
1579 		return cgrp;
1580 
1581 	cgroup_kn_unlock(kn);
1582 	return NULL;
1583 }
1584 
1585 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1586 {
1587 	char name[CGROUP_FILE_NAME_MAX];
1588 
1589 	lockdep_assert_held(&cgroup_mutex);
1590 
1591 	if (cft->file_offset) {
1592 		struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1593 		struct cgroup_file *cfile = (void *)css + cft->file_offset;
1594 
1595 		spin_lock_irq(&cgroup_file_kn_lock);
1596 		cfile->kn = NULL;
1597 		spin_unlock_irq(&cgroup_file_kn_lock);
1598 
1599 		del_timer_sync(&cfile->notify_timer);
1600 	}
1601 
1602 	kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1603 }
1604 
1605 /**
1606  * css_clear_dir - remove subsys files in a cgroup directory
1607  * @css: taget css
1608  */
1609 static void css_clear_dir(struct cgroup_subsys_state *css)
1610 {
1611 	struct cgroup *cgrp = css->cgroup;
1612 	struct cftype *cfts;
1613 
1614 	if (!(css->flags & CSS_VISIBLE))
1615 		return;
1616 
1617 	css->flags &= ~CSS_VISIBLE;
1618 
1619 	if (!css->ss) {
1620 		if (cgroup_on_dfl(cgrp))
1621 			cfts = cgroup_base_files;
1622 		else
1623 			cfts = cgroup1_base_files;
1624 
1625 		cgroup_addrm_files(css, cgrp, cfts, false);
1626 	} else {
1627 		list_for_each_entry(cfts, &css->ss->cfts, node)
1628 			cgroup_addrm_files(css, cgrp, cfts, false);
1629 	}
1630 }
1631 
1632 /**
1633  * css_populate_dir - create subsys files in a cgroup directory
1634  * @css: target css
1635  *
1636  * On failure, no file is added.
1637  */
1638 static int css_populate_dir(struct cgroup_subsys_state *css)
1639 {
1640 	struct cgroup *cgrp = css->cgroup;
1641 	struct cftype *cfts, *failed_cfts;
1642 	int ret;
1643 
1644 	if ((css->flags & CSS_VISIBLE) || !cgrp->kn)
1645 		return 0;
1646 
1647 	if (!css->ss) {
1648 		if (cgroup_on_dfl(cgrp))
1649 			cfts = cgroup_base_files;
1650 		else
1651 			cfts = cgroup1_base_files;
1652 
1653 		ret = cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1654 		if (ret < 0)
1655 			return ret;
1656 	} else {
1657 		list_for_each_entry(cfts, &css->ss->cfts, node) {
1658 			ret = cgroup_addrm_files(css, cgrp, cfts, true);
1659 			if (ret < 0) {
1660 				failed_cfts = cfts;
1661 				goto err;
1662 			}
1663 		}
1664 	}
1665 
1666 	css->flags |= CSS_VISIBLE;
1667 
1668 	return 0;
1669 err:
1670 	list_for_each_entry(cfts, &css->ss->cfts, node) {
1671 		if (cfts == failed_cfts)
1672 			break;
1673 		cgroup_addrm_files(css, cgrp, cfts, false);
1674 	}
1675 	return ret;
1676 }
1677 
1678 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
1679 {
1680 	struct cgroup *dcgrp = &dst_root->cgrp;
1681 	struct cgroup_subsys *ss;
1682 	int ssid, i, ret;
1683 
1684 	lockdep_assert_held(&cgroup_mutex);
1685 
1686 	do_each_subsys_mask(ss, ssid, ss_mask) {
1687 		/*
1688 		 * If @ss has non-root csses attached to it, can't move.
1689 		 * If @ss is an implicit controller, it is exempt from this
1690 		 * rule and can be stolen.
1691 		 */
1692 		if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1693 		    !ss->implicit_on_dfl)
1694 			return -EBUSY;
1695 
1696 		/* can't move between two non-dummy roots either */
1697 		if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1698 			return -EBUSY;
1699 	} while_each_subsys_mask();
1700 
1701 	do_each_subsys_mask(ss, ssid, ss_mask) {
1702 		struct cgroup_root *src_root = ss->root;
1703 		struct cgroup *scgrp = &src_root->cgrp;
1704 		struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1705 		struct css_set *cset;
1706 
1707 		WARN_ON(!css || cgroup_css(dcgrp, ss));
1708 
1709 		/* disable from the source */
1710 		src_root->subsys_mask &= ~(1 << ssid);
1711 		WARN_ON(cgroup_apply_control(scgrp));
1712 		cgroup_finalize_control(scgrp, 0);
1713 
1714 		/* rebind */
1715 		RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1716 		rcu_assign_pointer(dcgrp->subsys[ssid], css);
1717 		ss->root = dst_root;
1718 		css->cgroup = dcgrp;
1719 
1720 		spin_lock_irq(&css_set_lock);
1721 		hash_for_each(css_set_table, i, cset, hlist)
1722 			list_move_tail(&cset->e_cset_node[ss->id],
1723 				       &dcgrp->e_csets[ss->id]);
1724 		spin_unlock_irq(&css_set_lock);
1725 
1726 		/* default hierarchy doesn't enable controllers by default */
1727 		dst_root->subsys_mask |= 1 << ssid;
1728 		if (dst_root == &cgrp_dfl_root) {
1729 			static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1730 		} else {
1731 			dcgrp->subtree_control |= 1 << ssid;
1732 			static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1733 		}
1734 
1735 		ret = cgroup_apply_control(dcgrp);
1736 		if (ret)
1737 			pr_warn("partial failure to rebind %s controller (err=%d)\n",
1738 				ss->name, ret);
1739 
1740 		if (ss->bind)
1741 			ss->bind(css);
1742 	} while_each_subsys_mask();
1743 
1744 	kernfs_activate(dcgrp->kn);
1745 	return 0;
1746 }
1747 
1748 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
1749 		     struct kernfs_root *kf_root)
1750 {
1751 	int len = 0;
1752 	char *buf = NULL;
1753 	struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
1754 	struct cgroup *ns_cgroup;
1755 
1756 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
1757 	if (!buf)
1758 		return -ENOMEM;
1759 
1760 	spin_lock_irq(&css_set_lock);
1761 	ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
1762 	len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
1763 	spin_unlock_irq(&css_set_lock);
1764 
1765 	if (len >= PATH_MAX)
1766 		len = -ERANGE;
1767 	else if (len > 0) {
1768 		seq_escape(sf, buf, " \t\n\\");
1769 		len = 0;
1770 	}
1771 	kfree(buf);
1772 	return len;
1773 }
1774 
1775 static int parse_cgroup_root_flags(char *data, unsigned int *root_flags)
1776 {
1777 	char *token;
1778 
1779 	*root_flags = 0;
1780 
1781 	if (!data || *data == '\0')
1782 		return 0;
1783 
1784 	while ((token = strsep(&data, ",")) != NULL) {
1785 		if (!strcmp(token, "nsdelegate")) {
1786 			*root_flags |= CGRP_ROOT_NS_DELEGATE;
1787 			continue;
1788 		}
1789 
1790 		pr_err("cgroup2: unknown option \"%s\"\n", token);
1791 		return -EINVAL;
1792 	}
1793 
1794 	return 0;
1795 }
1796 
1797 static void apply_cgroup_root_flags(unsigned int root_flags)
1798 {
1799 	if (current->nsproxy->cgroup_ns == &init_cgroup_ns) {
1800 		if (root_flags & CGRP_ROOT_NS_DELEGATE)
1801 			cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE;
1802 		else
1803 			cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE;
1804 	}
1805 }
1806 
1807 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
1808 {
1809 	if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE)
1810 		seq_puts(seq, ",nsdelegate");
1811 	return 0;
1812 }
1813 
1814 static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
1815 {
1816 	unsigned int root_flags;
1817 	int ret;
1818 
1819 	ret = parse_cgroup_root_flags(data, &root_flags);
1820 	if (ret)
1821 		return ret;
1822 
1823 	apply_cgroup_root_flags(root_flags);
1824 	return 0;
1825 }
1826 
1827 /*
1828  * To reduce the fork() overhead for systems that are not actually using
1829  * their cgroups capability, we don't maintain the lists running through
1830  * each css_set to its tasks until we see the list actually used - in other
1831  * words after the first mount.
1832  */
1833 static bool use_task_css_set_links __read_mostly;
1834 
1835 static void cgroup_enable_task_cg_lists(void)
1836 {
1837 	struct task_struct *p, *g;
1838 
1839 	/*
1840 	 * We need tasklist_lock because RCU is not safe against
1841 	 * while_each_thread(). Besides, a forking task that has passed
1842 	 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1843 	 * is not guaranteed to have its child immediately visible in the
1844 	 * tasklist if we walk through it with RCU.
1845 	 */
1846 	read_lock(&tasklist_lock);
1847 	spin_lock_irq(&css_set_lock);
1848 
1849 	if (use_task_css_set_links)
1850 		goto out_unlock;
1851 
1852 	use_task_css_set_links = true;
1853 
1854 	do_each_thread(g, p) {
1855 		WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1856 			     task_css_set(p) != &init_css_set);
1857 
1858 		/*
1859 		 * We should check if the process is exiting, otherwise
1860 		 * it will race with cgroup_exit() in that the list
1861 		 * entry won't be deleted though the process has exited.
1862 		 * Do it while holding siglock so that we don't end up
1863 		 * racing against cgroup_exit().
1864 		 *
1865 		 * Interrupts were already disabled while acquiring
1866 		 * the css_set_lock, so we do not need to disable it
1867 		 * again when acquiring the sighand->siglock here.
1868 		 */
1869 		spin_lock(&p->sighand->siglock);
1870 		if (!(p->flags & PF_EXITING)) {
1871 			struct css_set *cset = task_css_set(p);
1872 
1873 			if (!css_set_populated(cset))
1874 				css_set_update_populated(cset, true);
1875 			list_add_tail(&p->cg_list, &cset->tasks);
1876 			get_css_set(cset);
1877 			cset->nr_tasks++;
1878 		}
1879 		spin_unlock(&p->sighand->siglock);
1880 	} while_each_thread(g, p);
1881 out_unlock:
1882 	spin_unlock_irq(&css_set_lock);
1883 	read_unlock(&tasklist_lock);
1884 }
1885 
1886 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1887 {
1888 	struct cgroup_subsys *ss;
1889 	int ssid;
1890 
1891 	INIT_LIST_HEAD(&cgrp->self.sibling);
1892 	INIT_LIST_HEAD(&cgrp->self.children);
1893 	INIT_LIST_HEAD(&cgrp->cset_links);
1894 	INIT_LIST_HEAD(&cgrp->pidlists);
1895 	mutex_init(&cgrp->pidlist_mutex);
1896 	cgrp->self.cgroup = cgrp;
1897 	cgrp->self.flags |= CSS_ONLINE;
1898 	cgrp->dom_cgrp = cgrp;
1899 	cgrp->max_descendants = INT_MAX;
1900 	cgrp->max_depth = INT_MAX;
1901 	INIT_LIST_HEAD(&cgrp->rstat_css_list);
1902 	prev_cputime_init(&cgrp->prev_cputime);
1903 
1904 	for_each_subsys(ss, ssid)
1905 		INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
1906 
1907 	init_waitqueue_head(&cgrp->offline_waitq);
1908 	INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent);
1909 }
1910 
1911 void init_cgroup_root(struct cgroup_root *root, struct cgroup_sb_opts *opts)
1912 {
1913 	struct cgroup *cgrp = &root->cgrp;
1914 
1915 	INIT_LIST_HEAD(&root->root_list);
1916 	atomic_set(&root->nr_cgrps, 1);
1917 	cgrp->root = root;
1918 	init_cgroup_housekeeping(cgrp);
1919 	idr_init(&root->cgroup_idr);
1920 
1921 	root->flags = opts->flags;
1922 	if (opts->release_agent)
1923 		strscpy(root->release_agent_path, opts->release_agent, PATH_MAX);
1924 	if (opts->name)
1925 		strscpy(root->name, opts->name, MAX_CGROUP_ROOT_NAMELEN);
1926 	if (opts->cpuset_clone_children)
1927 		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
1928 }
1929 
1930 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask, int ref_flags)
1931 {
1932 	LIST_HEAD(tmp_links);
1933 	struct cgroup *root_cgrp = &root->cgrp;
1934 	struct kernfs_syscall_ops *kf_sops;
1935 	struct css_set *cset;
1936 	int i, ret;
1937 
1938 	lockdep_assert_held(&cgroup_mutex);
1939 
1940 	ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL);
1941 	if (ret < 0)
1942 		goto out;
1943 	root_cgrp->id = ret;
1944 	root_cgrp->ancestor_ids[0] = ret;
1945 
1946 	ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release,
1947 			      ref_flags, GFP_KERNEL);
1948 	if (ret)
1949 		goto out;
1950 
1951 	/*
1952 	 * We're accessing css_set_count without locking css_set_lock here,
1953 	 * but that's OK - it can only be increased by someone holding
1954 	 * cgroup_lock, and that's us.  Later rebinding may disable
1955 	 * controllers on the default hierarchy and thus create new csets,
1956 	 * which can't be more than the existing ones.  Allocate 2x.
1957 	 */
1958 	ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
1959 	if (ret)
1960 		goto cancel_ref;
1961 
1962 	ret = cgroup_init_root_id(root);
1963 	if (ret)
1964 		goto cancel_ref;
1965 
1966 	kf_sops = root == &cgrp_dfl_root ?
1967 		&cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops;
1968 
1969 	root->kf_root = kernfs_create_root(kf_sops,
1970 					   KERNFS_ROOT_CREATE_DEACTIVATED |
1971 					   KERNFS_ROOT_SUPPORT_EXPORTOP,
1972 					   root_cgrp);
1973 	if (IS_ERR(root->kf_root)) {
1974 		ret = PTR_ERR(root->kf_root);
1975 		goto exit_root_id;
1976 	}
1977 	root_cgrp->kn = root->kf_root->kn;
1978 
1979 	ret = css_populate_dir(&root_cgrp->self);
1980 	if (ret)
1981 		goto destroy_root;
1982 
1983 	ret = rebind_subsystems(root, ss_mask);
1984 	if (ret)
1985 		goto destroy_root;
1986 
1987 	ret = cgroup_bpf_inherit(root_cgrp);
1988 	WARN_ON_ONCE(ret);
1989 
1990 	trace_cgroup_setup_root(root);
1991 
1992 	/*
1993 	 * There must be no failure case after here, since rebinding takes
1994 	 * care of subsystems' refcounts, which are explicitly dropped in
1995 	 * the failure exit path.
1996 	 */
1997 	list_add(&root->root_list, &cgroup_roots);
1998 	cgroup_root_count++;
1999 
2000 	/*
2001 	 * Link the root cgroup in this hierarchy into all the css_set
2002 	 * objects.
2003 	 */
2004 	spin_lock_irq(&css_set_lock);
2005 	hash_for_each(css_set_table, i, cset, hlist) {
2006 		link_css_set(&tmp_links, cset, root_cgrp);
2007 		if (css_set_populated(cset))
2008 			cgroup_update_populated(root_cgrp, true);
2009 	}
2010 	spin_unlock_irq(&css_set_lock);
2011 
2012 	BUG_ON(!list_empty(&root_cgrp->self.children));
2013 	BUG_ON(atomic_read(&root->nr_cgrps) != 1);
2014 
2015 	kernfs_activate(root_cgrp->kn);
2016 	ret = 0;
2017 	goto out;
2018 
2019 destroy_root:
2020 	kernfs_destroy_root(root->kf_root);
2021 	root->kf_root = NULL;
2022 exit_root_id:
2023 	cgroup_exit_root_id(root);
2024 cancel_ref:
2025 	percpu_ref_exit(&root_cgrp->self.refcnt);
2026 out:
2027 	free_cgrp_cset_links(&tmp_links);
2028 	return ret;
2029 }
2030 
2031 struct dentry *cgroup_do_mount(struct file_system_type *fs_type, int flags,
2032 			       struct cgroup_root *root, unsigned long magic,
2033 			       struct cgroup_namespace *ns)
2034 {
2035 	struct dentry *dentry;
2036 	bool new_sb;
2037 
2038 	dentry = kernfs_mount(fs_type, flags, root->kf_root, magic, &new_sb);
2039 
2040 	/*
2041 	 * In non-init cgroup namespace, instead of root cgroup's dentry,
2042 	 * we return the dentry corresponding to the cgroupns->root_cgrp.
2043 	 */
2044 	if (!IS_ERR(dentry) && ns != &init_cgroup_ns) {
2045 		struct dentry *nsdentry;
2046 		struct cgroup *cgrp;
2047 
2048 		mutex_lock(&cgroup_mutex);
2049 		spin_lock_irq(&css_set_lock);
2050 
2051 		cgrp = cset_cgroup_from_root(ns->root_cset, root);
2052 
2053 		spin_unlock_irq(&css_set_lock);
2054 		mutex_unlock(&cgroup_mutex);
2055 
2056 		nsdentry = kernfs_node_dentry(cgrp->kn, dentry->d_sb);
2057 		dput(dentry);
2058 		dentry = nsdentry;
2059 	}
2060 
2061 	if (IS_ERR(dentry) || !new_sb)
2062 		cgroup_put(&root->cgrp);
2063 
2064 	return dentry;
2065 }
2066 
2067 static struct dentry *cgroup_mount(struct file_system_type *fs_type,
2068 			 int flags, const char *unused_dev_name,
2069 			 void *data)
2070 {
2071 	struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
2072 	struct dentry *dentry;
2073 	int ret;
2074 
2075 	get_cgroup_ns(ns);
2076 
2077 	/* Check if the caller has permission to mount. */
2078 	if (!ns_capable(ns->user_ns, CAP_SYS_ADMIN)) {
2079 		put_cgroup_ns(ns);
2080 		return ERR_PTR(-EPERM);
2081 	}
2082 
2083 	/*
2084 	 * The first time anyone tries to mount a cgroup, enable the list
2085 	 * linking each css_set to its tasks and fix up all existing tasks.
2086 	 */
2087 	if (!use_task_css_set_links)
2088 		cgroup_enable_task_cg_lists();
2089 
2090 	if (fs_type == &cgroup2_fs_type) {
2091 		unsigned int root_flags;
2092 
2093 		ret = parse_cgroup_root_flags(data, &root_flags);
2094 		if (ret) {
2095 			put_cgroup_ns(ns);
2096 			return ERR_PTR(ret);
2097 		}
2098 
2099 		cgrp_dfl_visible = true;
2100 		cgroup_get_live(&cgrp_dfl_root.cgrp);
2101 
2102 		dentry = cgroup_do_mount(&cgroup2_fs_type, flags, &cgrp_dfl_root,
2103 					 CGROUP2_SUPER_MAGIC, ns);
2104 		if (!IS_ERR(dentry))
2105 			apply_cgroup_root_flags(root_flags);
2106 	} else {
2107 		dentry = cgroup1_mount(&cgroup_fs_type, flags, data,
2108 				       CGROUP_SUPER_MAGIC, ns);
2109 	}
2110 
2111 	put_cgroup_ns(ns);
2112 	return dentry;
2113 }
2114 
2115 static void cgroup_kill_sb(struct super_block *sb)
2116 {
2117 	struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2118 	struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2119 
2120 	/*
2121 	 * If @root doesn't have any mounts or children, start killing it.
2122 	 * This prevents new mounts by disabling percpu_ref_tryget_live().
2123 	 * cgroup_mount() may wait for @root's release.
2124 	 *
2125 	 * And don't kill the default root.
2126 	 */
2127 	if (!list_empty(&root->cgrp.self.children) ||
2128 	    root == &cgrp_dfl_root)
2129 		cgroup_put(&root->cgrp);
2130 	else
2131 		percpu_ref_kill(&root->cgrp.self.refcnt);
2132 
2133 	kernfs_kill_sb(sb);
2134 }
2135 
2136 struct file_system_type cgroup_fs_type = {
2137 	.name = "cgroup",
2138 	.mount = cgroup_mount,
2139 	.kill_sb = cgroup_kill_sb,
2140 	.fs_flags = FS_USERNS_MOUNT,
2141 };
2142 
2143 static struct file_system_type cgroup2_fs_type = {
2144 	.name = "cgroup2",
2145 	.mount = cgroup_mount,
2146 	.kill_sb = cgroup_kill_sb,
2147 	.fs_flags = FS_USERNS_MOUNT,
2148 };
2149 
2150 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
2151 			  struct cgroup_namespace *ns)
2152 {
2153 	struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
2154 
2155 	return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
2156 }
2157 
2158 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
2159 		   struct cgroup_namespace *ns)
2160 {
2161 	int ret;
2162 
2163 	mutex_lock(&cgroup_mutex);
2164 	spin_lock_irq(&css_set_lock);
2165 
2166 	ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
2167 
2168 	spin_unlock_irq(&css_set_lock);
2169 	mutex_unlock(&cgroup_mutex);
2170 
2171 	return ret;
2172 }
2173 EXPORT_SYMBOL_GPL(cgroup_path_ns);
2174 
2175 /**
2176  * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
2177  * @task: target task
2178  * @buf: the buffer to write the path into
2179  * @buflen: the length of the buffer
2180  *
2181  * Determine @task's cgroup on the first (the one with the lowest non-zero
2182  * hierarchy_id) cgroup hierarchy and copy its path into @buf.  This
2183  * function grabs cgroup_mutex and shouldn't be used inside locks used by
2184  * cgroup controller callbacks.
2185  *
2186  * Return value is the same as kernfs_path().
2187  */
2188 int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
2189 {
2190 	struct cgroup_root *root;
2191 	struct cgroup *cgrp;
2192 	int hierarchy_id = 1;
2193 	int ret;
2194 
2195 	mutex_lock(&cgroup_mutex);
2196 	spin_lock_irq(&css_set_lock);
2197 
2198 	root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2199 
2200 	if (root) {
2201 		cgrp = task_cgroup_from_root(task, root);
2202 		ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns);
2203 	} else {
2204 		/* if no hierarchy exists, everyone is in "/" */
2205 		ret = strlcpy(buf, "/", buflen);
2206 	}
2207 
2208 	spin_unlock_irq(&css_set_lock);
2209 	mutex_unlock(&cgroup_mutex);
2210 	return ret;
2211 }
2212 EXPORT_SYMBOL_GPL(task_cgroup_path);
2213 
2214 /**
2215  * cgroup_migrate_add_task - add a migration target task to a migration context
2216  * @task: target task
2217  * @mgctx: target migration context
2218  *
2219  * Add @task, which is a migration target, to @mgctx->tset.  This function
2220  * becomes noop if @task doesn't need to be migrated.  @task's css_set
2221  * should have been added as a migration source and @task->cg_list will be
2222  * moved from the css_set's tasks list to mg_tasks one.
2223  */
2224 static void cgroup_migrate_add_task(struct task_struct *task,
2225 				    struct cgroup_mgctx *mgctx)
2226 {
2227 	struct css_set *cset;
2228 
2229 	lockdep_assert_held(&css_set_lock);
2230 
2231 	/* @task either already exited or can't exit until the end */
2232 	if (task->flags & PF_EXITING)
2233 		return;
2234 
2235 	/* leave @task alone if post_fork() hasn't linked it yet */
2236 	if (list_empty(&task->cg_list))
2237 		return;
2238 
2239 	cset = task_css_set(task);
2240 	if (!cset->mg_src_cgrp)
2241 		return;
2242 
2243 	mgctx->tset.nr_tasks++;
2244 
2245 	list_move_tail(&task->cg_list, &cset->mg_tasks);
2246 	if (list_empty(&cset->mg_node))
2247 		list_add_tail(&cset->mg_node,
2248 			      &mgctx->tset.src_csets);
2249 	if (list_empty(&cset->mg_dst_cset->mg_node))
2250 		list_add_tail(&cset->mg_dst_cset->mg_node,
2251 			      &mgctx->tset.dst_csets);
2252 }
2253 
2254 /**
2255  * cgroup_taskset_first - reset taskset and return the first task
2256  * @tset: taskset of interest
2257  * @dst_cssp: output variable for the destination css
2258  *
2259  * @tset iteration is initialized and the first task is returned.
2260  */
2261 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2262 					 struct cgroup_subsys_state **dst_cssp)
2263 {
2264 	tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2265 	tset->cur_task = NULL;
2266 
2267 	return cgroup_taskset_next(tset, dst_cssp);
2268 }
2269 
2270 /**
2271  * cgroup_taskset_next - iterate to the next task in taskset
2272  * @tset: taskset of interest
2273  * @dst_cssp: output variable for the destination css
2274  *
2275  * Return the next task in @tset.  Iteration must have been initialized
2276  * with cgroup_taskset_first().
2277  */
2278 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2279 					struct cgroup_subsys_state **dst_cssp)
2280 {
2281 	struct css_set *cset = tset->cur_cset;
2282 	struct task_struct *task = tset->cur_task;
2283 
2284 	while (&cset->mg_node != tset->csets) {
2285 		if (!task)
2286 			task = list_first_entry(&cset->mg_tasks,
2287 						struct task_struct, cg_list);
2288 		else
2289 			task = list_next_entry(task, cg_list);
2290 
2291 		if (&task->cg_list != &cset->mg_tasks) {
2292 			tset->cur_cset = cset;
2293 			tset->cur_task = task;
2294 
2295 			/*
2296 			 * This function may be called both before and
2297 			 * after cgroup_taskset_migrate().  The two cases
2298 			 * can be distinguished by looking at whether @cset
2299 			 * has its ->mg_dst_cset set.
2300 			 */
2301 			if (cset->mg_dst_cset)
2302 				*dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2303 			else
2304 				*dst_cssp = cset->subsys[tset->ssid];
2305 
2306 			return task;
2307 		}
2308 
2309 		cset = list_next_entry(cset, mg_node);
2310 		task = NULL;
2311 	}
2312 
2313 	return NULL;
2314 }
2315 
2316 /**
2317  * cgroup_taskset_migrate - migrate a taskset
2318  * @mgctx: migration context
2319  *
2320  * Migrate tasks in @mgctx as setup by migration preparation functions.
2321  * This function fails iff one of the ->can_attach callbacks fails and
2322  * guarantees that either all or none of the tasks in @mgctx are migrated.
2323  * @mgctx is consumed regardless of success.
2324  */
2325 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx)
2326 {
2327 	struct cgroup_taskset *tset = &mgctx->tset;
2328 	struct cgroup_subsys *ss;
2329 	struct task_struct *task, *tmp_task;
2330 	struct css_set *cset, *tmp_cset;
2331 	int ssid, failed_ssid, ret;
2332 
2333 	/* check that we can legitimately attach to the cgroup */
2334 	if (tset->nr_tasks) {
2335 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2336 			if (ss->can_attach) {
2337 				tset->ssid = ssid;
2338 				ret = ss->can_attach(tset);
2339 				if (ret) {
2340 					failed_ssid = ssid;
2341 					goto out_cancel_attach;
2342 				}
2343 			}
2344 		} while_each_subsys_mask();
2345 	}
2346 
2347 	/*
2348 	 * Now that we're guaranteed success, proceed to move all tasks to
2349 	 * the new cgroup.  There are no failure cases after here, so this
2350 	 * is the commit point.
2351 	 */
2352 	spin_lock_irq(&css_set_lock);
2353 	list_for_each_entry(cset, &tset->src_csets, mg_node) {
2354 		list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2355 			struct css_set *from_cset = task_css_set(task);
2356 			struct css_set *to_cset = cset->mg_dst_cset;
2357 
2358 			get_css_set(to_cset);
2359 			to_cset->nr_tasks++;
2360 			css_set_move_task(task, from_cset, to_cset, true);
2361 			put_css_set_locked(from_cset);
2362 			from_cset->nr_tasks--;
2363 		}
2364 	}
2365 	spin_unlock_irq(&css_set_lock);
2366 
2367 	/*
2368 	 * Migration is committed, all target tasks are now on dst_csets.
2369 	 * Nothing is sensitive to fork() after this point.  Notify
2370 	 * controllers that migration is complete.
2371 	 */
2372 	tset->csets = &tset->dst_csets;
2373 
2374 	if (tset->nr_tasks) {
2375 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2376 			if (ss->attach) {
2377 				tset->ssid = ssid;
2378 				ss->attach(tset);
2379 			}
2380 		} while_each_subsys_mask();
2381 	}
2382 
2383 	ret = 0;
2384 	goto out_release_tset;
2385 
2386 out_cancel_attach:
2387 	if (tset->nr_tasks) {
2388 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2389 			if (ssid == failed_ssid)
2390 				break;
2391 			if (ss->cancel_attach) {
2392 				tset->ssid = ssid;
2393 				ss->cancel_attach(tset);
2394 			}
2395 		} while_each_subsys_mask();
2396 	}
2397 out_release_tset:
2398 	spin_lock_irq(&css_set_lock);
2399 	list_splice_init(&tset->dst_csets, &tset->src_csets);
2400 	list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2401 		list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2402 		list_del_init(&cset->mg_node);
2403 	}
2404 	spin_unlock_irq(&css_set_lock);
2405 
2406 	/*
2407 	 * Re-initialize the cgroup_taskset structure in case it is reused
2408 	 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute()
2409 	 * iteration.
2410 	 */
2411 	tset->nr_tasks = 0;
2412 	tset->csets    = &tset->src_csets;
2413 	return ret;
2414 }
2415 
2416 /**
2417  * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination
2418  * @dst_cgrp: destination cgroup to test
2419  *
2420  * On the default hierarchy, except for the mixable, (possible) thread root
2421  * and threaded cgroups, subtree_control must be zero for migration
2422  * destination cgroups with tasks so that child cgroups don't compete
2423  * against tasks.
2424  */
2425 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp)
2426 {
2427 	/* v1 doesn't have any restriction */
2428 	if (!cgroup_on_dfl(dst_cgrp))
2429 		return 0;
2430 
2431 	/* verify @dst_cgrp can host resources */
2432 	if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp))
2433 		return -EOPNOTSUPP;
2434 
2435 	/* mixables don't care */
2436 	if (cgroup_is_mixable(dst_cgrp))
2437 		return 0;
2438 
2439 	/*
2440 	 * If @dst_cgrp is already or can become a thread root or is
2441 	 * threaded, it doesn't matter.
2442 	 */
2443 	if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp))
2444 		return 0;
2445 
2446 	/* apply no-internal-process constraint */
2447 	if (dst_cgrp->subtree_control)
2448 		return -EBUSY;
2449 
2450 	return 0;
2451 }
2452 
2453 /**
2454  * cgroup_migrate_finish - cleanup after attach
2455  * @mgctx: migration context
2456  *
2457  * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst().  See
2458  * those functions for details.
2459  */
2460 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx)
2461 {
2462 	LIST_HEAD(preloaded);
2463 	struct css_set *cset, *tmp_cset;
2464 
2465 	lockdep_assert_held(&cgroup_mutex);
2466 
2467 	spin_lock_irq(&css_set_lock);
2468 
2469 	list_splice_tail_init(&mgctx->preloaded_src_csets, &preloaded);
2470 	list_splice_tail_init(&mgctx->preloaded_dst_csets, &preloaded);
2471 
2472 	list_for_each_entry_safe(cset, tmp_cset, &preloaded, mg_preload_node) {
2473 		cset->mg_src_cgrp = NULL;
2474 		cset->mg_dst_cgrp = NULL;
2475 		cset->mg_dst_cset = NULL;
2476 		list_del_init(&cset->mg_preload_node);
2477 		put_css_set_locked(cset);
2478 	}
2479 
2480 	spin_unlock_irq(&css_set_lock);
2481 }
2482 
2483 /**
2484  * cgroup_migrate_add_src - add a migration source css_set
2485  * @src_cset: the source css_set to add
2486  * @dst_cgrp: the destination cgroup
2487  * @mgctx: migration context
2488  *
2489  * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp.  Pin
2490  * @src_cset and add it to @mgctx->src_csets, which should later be cleaned
2491  * up by cgroup_migrate_finish().
2492  *
2493  * This function may be called without holding cgroup_threadgroup_rwsem
2494  * even if the target is a process.  Threads may be created and destroyed
2495  * but as long as cgroup_mutex is not dropped, no new css_set can be put
2496  * into play and the preloaded css_sets are guaranteed to cover all
2497  * migrations.
2498  */
2499 void cgroup_migrate_add_src(struct css_set *src_cset,
2500 			    struct cgroup *dst_cgrp,
2501 			    struct cgroup_mgctx *mgctx)
2502 {
2503 	struct cgroup *src_cgrp;
2504 
2505 	lockdep_assert_held(&cgroup_mutex);
2506 	lockdep_assert_held(&css_set_lock);
2507 
2508 	/*
2509 	 * If ->dead, @src_set is associated with one or more dead cgroups
2510 	 * and doesn't contain any migratable tasks.  Ignore it early so
2511 	 * that the rest of migration path doesn't get confused by it.
2512 	 */
2513 	if (src_cset->dead)
2514 		return;
2515 
2516 	src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2517 
2518 	if (!list_empty(&src_cset->mg_preload_node))
2519 		return;
2520 
2521 	WARN_ON(src_cset->mg_src_cgrp);
2522 	WARN_ON(src_cset->mg_dst_cgrp);
2523 	WARN_ON(!list_empty(&src_cset->mg_tasks));
2524 	WARN_ON(!list_empty(&src_cset->mg_node));
2525 
2526 	src_cset->mg_src_cgrp = src_cgrp;
2527 	src_cset->mg_dst_cgrp = dst_cgrp;
2528 	get_css_set(src_cset);
2529 	list_add_tail(&src_cset->mg_preload_node, &mgctx->preloaded_src_csets);
2530 }
2531 
2532 /**
2533  * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2534  * @mgctx: migration context
2535  *
2536  * Tasks are about to be moved and all the source css_sets have been
2537  * preloaded to @mgctx->preloaded_src_csets.  This function looks up and
2538  * pins all destination css_sets, links each to its source, and append them
2539  * to @mgctx->preloaded_dst_csets.
2540  *
2541  * This function must be called after cgroup_migrate_add_src() has been
2542  * called on each migration source css_set.  After migration is performed
2543  * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2544  * @mgctx.
2545  */
2546 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx)
2547 {
2548 	struct css_set *src_cset, *tmp_cset;
2549 
2550 	lockdep_assert_held(&cgroup_mutex);
2551 
2552 	/* look up the dst cset for each src cset and link it to src */
2553 	list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets,
2554 				 mg_preload_node) {
2555 		struct css_set *dst_cset;
2556 		struct cgroup_subsys *ss;
2557 		int ssid;
2558 
2559 		dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
2560 		if (!dst_cset)
2561 			goto err;
2562 
2563 		WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2564 
2565 		/*
2566 		 * If src cset equals dst, it's noop.  Drop the src.
2567 		 * cgroup_migrate() will skip the cset too.  Note that we
2568 		 * can't handle src == dst as some nodes are used by both.
2569 		 */
2570 		if (src_cset == dst_cset) {
2571 			src_cset->mg_src_cgrp = NULL;
2572 			src_cset->mg_dst_cgrp = NULL;
2573 			list_del_init(&src_cset->mg_preload_node);
2574 			put_css_set(src_cset);
2575 			put_css_set(dst_cset);
2576 			continue;
2577 		}
2578 
2579 		src_cset->mg_dst_cset = dst_cset;
2580 
2581 		if (list_empty(&dst_cset->mg_preload_node))
2582 			list_add_tail(&dst_cset->mg_preload_node,
2583 				      &mgctx->preloaded_dst_csets);
2584 		else
2585 			put_css_set(dst_cset);
2586 
2587 		for_each_subsys(ss, ssid)
2588 			if (src_cset->subsys[ssid] != dst_cset->subsys[ssid])
2589 				mgctx->ss_mask |= 1 << ssid;
2590 	}
2591 
2592 	return 0;
2593 err:
2594 	cgroup_migrate_finish(mgctx);
2595 	return -ENOMEM;
2596 }
2597 
2598 /**
2599  * cgroup_migrate - migrate a process or task to a cgroup
2600  * @leader: the leader of the process or the task to migrate
2601  * @threadgroup: whether @leader points to the whole process or a single task
2602  * @mgctx: migration context
2603  *
2604  * Migrate a process or task denoted by @leader.  If migrating a process,
2605  * the caller must be holding cgroup_threadgroup_rwsem.  The caller is also
2606  * responsible for invoking cgroup_migrate_add_src() and
2607  * cgroup_migrate_prepare_dst() on the targets before invoking this
2608  * function and following up with cgroup_migrate_finish().
2609  *
2610  * As long as a controller's ->can_attach() doesn't fail, this function is
2611  * guaranteed to succeed.  This means that, excluding ->can_attach()
2612  * failure, when migrating multiple targets, the success or failure can be
2613  * decided for all targets by invoking group_migrate_prepare_dst() before
2614  * actually starting migrating.
2615  */
2616 int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2617 		   struct cgroup_mgctx *mgctx)
2618 {
2619 	struct task_struct *task;
2620 
2621 	/*
2622 	 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2623 	 * already PF_EXITING could be freed from underneath us unless we
2624 	 * take an rcu_read_lock.
2625 	 */
2626 	spin_lock_irq(&css_set_lock);
2627 	rcu_read_lock();
2628 	task = leader;
2629 	do {
2630 		cgroup_migrate_add_task(task, mgctx);
2631 		if (!threadgroup)
2632 			break;
2633 	} while_each_thread(leader, task);
2634 	rcu_read_unlock();
2635 	spin_unlock_irq(&css_set_lock);
2636 
2637 	return cgroup_migrate_execute(mgctx);
2638 }
2639 
2640 /**
2641  * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2642  * @dst_cgrp: the cgroup to attach to
2643  * @leader: the task or the leader of the threadgroup to be attached
2644  * @threadgroup: attach the whole threadgroup?
2645  *
2646  * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2647  */
2648 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader,
2649 		       bool threadgroup)
2650 {
2651 	DEFINE_CGROUP_MGCTX(mgctx);
2652 	struct task_struct *task;
2653 	int ret;
2654 
2655 	ret = cgroup_migrate_vet_dst(dst_cgrp);
2656 	if (ret)
2657 		return ret;
2658 
2659 	/* look up all src csets */
2660 	spin_lock_irq(&css_set_lock);
2661 	rcu_read_lock();
2662 	task = leader;
2663 	do {
2664 		cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx);
2665 		if (!threadgroup)
2666 			break;
2667 	} while_each_thread(leader, task);
2668 	rcu_read_unlock();
2669 	spin_unlock_irq(&css_set_lock);
2670 
2671 	/* prepare dst csets and commit */
2672 	ret = cgroup_migrate_prepare_dst(&mgctx);
2673 	if (!ret)
2674 		ret = cgroup_migrate(leader, threadgroup, &mgctx);
2675 
2676 	cgroup_migrate_finish(&mgctx);
2677 
2678 	if (!ret)
2679 		TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup);
2680 
2681 	return ret;
2682 }
2683 
2684 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup)
2685 	__acquires(&cgroup_threadgroup_rwsem)
2686 {
2687 	struct task_struct *tsk;
2688 	pid_t pid;
2689 
2690 	if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2691 		return ERR_PTR(-EINVAL);
2692 
2693 	percpu_down_write(&cgroup_threadgroup_rwsem);
2694 
2695 	rcu_read_lock();
2696 	if (pid) {
2697 		tsk = find_task_by_vpid(pid);
2698 		if (!tsk) {
2699 			tsk = ERR_PTR(-ESRCH);
2700 			goto out_unlock_threadgroup;
2701 		}
2702 	} else {
2703 		tsk = current;
2704 	}
2705 
2706 	if (threadgroup)
2707 		tsk = tsk->group_leader;
2708 
2709 	/*
2710 	 * kthreads may acquire PF_NO_SETAFFINITY during initialization.
2711 	 * If userland migrates such a kthread to a non-root cgroup, it can
2712 	 * become trapped in a cpuset, or RT kthread may be born in a
2713 	 * cgroup with no rt_runtime allocated.  Just say no.
2714 	 */
2715 	if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) {
2716 		tsk = ERR_PTR(-EINVAL);
2717 		goto out_unlock_threadgroup;
2718 	}
2719 
2720 	get_task_struct(tsk);
2721 	goto out_unlock_rcu;
2722 
2723 out_unlock_threadgroup:
2724 	percpu_up_write(&cgroup_threadgroup_rwsem);
2725 out_unlock_rcu:
2726 	rcu_read_unlock();
2727 	return tsk;
2728 }
2729 
2730 void cgroup_procs_write_finish(struct task_struct *task)
2731 	__releases(&cgroup_threadgroup_rwsem)
2732 {
2733 	struct cgroup_subsys *ss;
2734 	int ssid;
2735 
2736 	/* release reference from cgroup_procs_write_start() */
2737 	put_task_struct(task);
2738 
2739 	percpu_up_write(&cgroup_threadgroup_rwsem);
2740 	for_each_subsys(ss, ssid)
2741 		if (ss->post_attach)
2742 			ss->post_attach();
2743 }
2744 
2745 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
2746 {
2747 	struct cgroup_subsys *ss;
2748 	bool printed = false;
2749 	int ssid;
2750 
2751 	do_each_subsys_mask(ss, ssid, ss_mask) {
2752 		if (printed)
2753 			seq_putc(seq, ' ');
2754 		seq_printf(seq, "%s", ss->name);
2755 		printed = true;
2756 	} while_each_subsys_mask();
2757 	if (printed)
2758 		seq_putc(seq, '\n');
2759 }
2760 
2761 /* show controllers which are enabled from the parent */
2762 static int cgroup_controllers_show(struct seq_file *seq, void *v)
2763 {
2764 	struct cgroup *cgrp = seq_css(seq)->cgroup;
2765 
2766 	cgroup_print_ss_mask(seq, cgroup_control(cgrp));
2767 	return 0;
2768 }
2769 
2770 /* show controllers which are enabled for a given cgroup's children */
2771 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
2772 {
2773 	struct cgroup *cgrp = seq_css(seq)->cgroup;
2774 
2775 	cgroup_print_ss_mask(seq, cgrp->subtree_control);
2776 	return 0;
2777 }
2778 
2779 /**
2780  * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2781  * @cgrp: root of the subtree to update csses for
2782  *
2783  * @cgrp's control masks have changed and its subtree's css associations
2784  * need to be updated accordingly.  This function looks up all css_sets
2785  * which are attached to the subtree, creates the matching updated css_sets
2786  * and migrates the tasks to the new ones.
2787  */
2788 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2789 {
2790 	DEFINE_CGROUP_MGCTX(mgctx);
2791 	struct cgroup_subsys_state *d_css;
2792 	struct cgroup *dsct;
2793 	struct css_set *src_cset;
2794 	int ret;
2795 
2796 	lockdep_assert_held(&cgroup_mutex);
2797 
2798 	percpu_down_write(&cgroup_threadgroup_rwsem);
2799 
2800 	/* look up all csses currently attached to @cgrp's subtree */
2801 	spin_lock_irq(&css_set_lock);
2802 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2803 		struct cgrp_cset_link *link;
2804 
2805 		list_for_each_entry(link, &dsct->cset_links, cset_link)
2806 			cgroup_migrate_add_src(link->cset, dsct, &mgctx);
2807 	}
2808 	spin_unlock_irq(&css_set_lock);
2809 
2810 	/* NULL dst indicates self on default hierarchy */
2811 	ret = cgroup_migrate_prepare_dst(&mgctx);
2812 	if (ret)
2813 		goto out_finish;
2814 
2815 	spin_lock_irq(&css_set_lock);
2816 	list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, mg_preload_node) {
2817 		struct task_struct *task, *ntask;
2818 
2819 		/* all tasks in src_csets need to be migrated */
2820 		list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
2821 			cgroup_migrate_add_task(task, &mgctx);
2822 	}
2823 	spin_unlock_irq(&css_set_lock);
2824 
2825 	ret = cgroup_migrate_execute(&mgctx);
2826 out_finish:
2827 	cgroup_migrate_finish(&mgctx);
2828 	percpu_up_write(&cgroup_threadgroup_rwsem);
2829 	return ret;
2830 }
2831 
2832 /**
2833  * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
2834  * @cgrp: root of the target subtree
2835  *
2836  * Because css offlining is asynchronous, userland may try to re-enable a
2837  * controller while the previous css is still around.  This function grabs
2838  * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
2839  */
2840 void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
2841 	__acquires(&cgroup_mutex)
2842 {
2843 	struct cgroup *dsct;
2844 	struct cgroup_subsys_state *d_css;
2845 	struct cgroup_subsys *ss;
2846 	int ssid;
2847 
2848 restart:
2849 	mutex_lock(&cgroup_mutex);
2850 
2851 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
2852 		for_each_subsys(ss, ssid) {
2853 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
2854 			DEFINE_WAIT(wait);
2855 
2856 			if (!css || !percpu_ref_is_dying(&css->refcnt))
2857 				continue;
2858 
2859 			cgroup_get_live(dsct);
2860 			prepare_to_wait(&dsct->offline_waitq, &wait,
2861 					TASK_UNINTERRUPTIBLE);
2862 
2863 			mutex_unlock(&cgroup_mutex);
2864 			schedule();
2865 			finish_wait(&dsct->offline_waitq, &wait);
2866 
2867 			cgroup_put(dsct);
2868 			goto restart;
2869 		}
2870 	}
2871 }
2872 
2873 /**
2874  * cgroup_save_control - save control masks and dom_cgrp of a subtree
2875  * @cgrp: root of the target subtree
2876  *
2877  * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the
2878  * respective old_ prefixed fields for @cgrp's subtree including @cgrp
2879  * itself.
2880  */
2881 static void cgroup_save_control(struct cgroup *cgrp)
2882 {
2883 	struct cgroup *dsct;
2884 	struct cgroup_subsys_state *d_css;
2885 
2886 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2887 		dsct->old_subtree_control = dsct->subtree_control;
2888 		dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
2889 		dsct->old_dom_cgrp = dsct->dom_cgrp;
2890 	}
2891 }
2892 
2893 /**
2894  * cgroup_propagate_control - refresh control masks of a subtree
2895  * @cgrp: root of the target subtree
2896  *
2897  * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
2898  * ->subtree_control and propagate controller availability through the
2899  * subtree so that descendants don't have unavailable controllers enabled.
2900  */
2901 static void cgroup_propagate_control(struct cgroup *cgrp)
2902 {
2903 	struct cgroup *dsct;
2904 	struct cgroup_subsys_state *d_css;
2905 
2906 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2907 		dsct->subtree_control &= cgroup_control(dsct);
2908 		dsct->subtree_ss_mask =
2909 			cgroup_calc_subtree_ss_mask(dsct->subtree_control,
2910 						    cgroup_ss_mask(dsct));
2911 	}
2912 }
2913 
2914 /**
2915  * cgroup_restore_control - restore control masks and dom_cgrp of a subtree
2916  * @cgrp: root of the target subtree
2917  *
2918  * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the
2919  * respective old_ prefixed fields for @cgrp's subtree including @cgrp
2920  * itself.
2921  */
2922 static void cgroup_restore_control(struct cgroup *cgrp)
2923 {
2924 	struct cgroup *dsct;
2925 	struct cgroup_subsys_state *d_css;
2926 
2927 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
2928 		dsct->subtree_control = dsct->old_subtree_control;
2929 		dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
2930 		dsct->dom_cgrp = dsct->old_dom_cgrp;
2931 	}
2932 }
2933 
2934 static bool css_visible(struct cgroup_subsys_state *css)
2935 {
2936 	struct cgroup_subsys *ss = css->ss;
2937 	struct cgroup *cgrp = css->cgroup;
2938 
2939 	if (cgroup_control(cgrp) & (1 << ss->id))
2940 		return true;
2941 	if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
2942 		return false;
2943 	return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
2944 }
2945 
2946 /**
2947  * cgroup_apply_control_enable - enable or show csses according to control
2948  * @cgrp: root of the target subtree
2949  *
2950  * Walk @cgrp's subtree and create new csses or make the existing ones
2951  * visible.  A css is created invisible if it's being implicitly enabled
2952  * through dependency.  An invisible css is made visible when the userland
2953  * explicitly enables it.
2954  *
2955  * Returns 0 on success, -errno on failure.  On failure, csses which have
2956  * been processed already aren't cleaned up.  The caller is responsible for
2957  * cleaning up with cgroup_apply_control_disable().
2958  */
2959 static int cgroup_apply_control_enable(struct cgroup *cgrp)
2960 {
2961 	struct cgroup *dsct;
2962 	struct cgroup_subsys_state *d_css;
2963 	struct cgroup_subsys *ss;
2964 	int ssid, ret;
2965 
2966 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2967 		for_each_subsys(ss, ssid) {
2968 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
2969 
2970 			WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
2971 
2972 			if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
2973 				continue;
2974 
2975 			if (!css) {
2976 				css = css_create(dsct, ss);
2977 				if (IS_ERR(css))
2978 					return PTR_ERR(css);
2979 			}
2980 
2981 			if (css_visible(css)) {
2982 				ret = css_populate_dir(css);
2983 				if (ret)
2984 					return ret;
2985 			}
2986 		}
2987 	}
2988 
2989 	return 0;
2990 }
2991 
2992 /**
2993  * cgroup_apply_control_disable - kill or hide csses according to control
2994  * @cgrp: root of the target subtree
2995  *
2996  * Walk @cgrp's subtree and kill and hide csses so that they match
2997  * cgroup_ss_mask() and cgroup_visible_mask().
2998  *
2999  * A css is hidden when the userland requests it to be disabled while other
3000  * subsystems are still depending on it.  The css must not actively control
3001  * resources and be in the vanilla state if it's made visible again later.
3002  * Controllers which may be depended upon should provide ->css_reset() for
3003  * this purpose.
3004  */
3005 static void cgroup_apply_control_disable(struct cgroup *cgrp)
3006 {
3007 	struct cgroup *dsct;
3008 	struct cgroup_subsys_state *d_css;
3009 	struct cgroup_subsys *ss;
3010 	int ssid;
3011 
3012 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3013 		for_each_subsys(ss, ssid) {
3014 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3015 
3016 			WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
3017 
3018 			if (!css)
3019 				continue;
3020 
3021 			if (css->parent &&
3022 			    !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
3023 				kill_css(css);
3024 			} else if (!css_visible(css)) {
3025 				css_clear_dir(css);
3026 				if (ss->css_reset)
3027 					ss->css_reset(css);
3028 			}
3029 		}
3030 	}
3031 }
3032 
3033 /**
3034  * cgroup_apply_control - apply control mask updates to the subtree
3035  * @cgrp: root of the target subtree
3036  *
3037  * subsystems can be enabled and disabled in a subtree using the following
3038  * steps.
3039  *
3040  * 1. Call cgroup_save_control() to stash the current state.
3041  * 2. Update ->subtree_control masks in the subtree as desired.
3042  * 3. Call cgroup_apply_control() to apply the changes.
3043  * 4. Optionally perform other related operations.
3044  * 5. Call cgroup_finalize_control() to finish up.
3045  *
3046  * This function implements step 3 and propagates the mask changes
3047  * throughout @cgrp's subtree, updates csses accordingly and perform
3048  * process migrations.
3049  */
3050 static int cgroup_apply_control(struct cgroup *cgrp)
3051 {
3052 	int ret;
3053 
3054 	cgroup_propagate_control(cgrp);
3055 
3056 	ret = cgroup_apply_control_enable(cgrp);
3057 	if (ret)
3058 		return ret;
3059 
3060 	/*
3061 	 * At this point, cgroup_e_css_by_mask() results reflect the new csses
3062 	 * making the following cgroup_update_dfl_csses() properly update
3063 	 * css associations of all tasks in the subtree.
3064 	 */
3065 	ret = cgroup_update_dfl_csses(cgrp);
3066 	if (ret)
3067 		return ret;
3068 
3069 	return 0;
3070 }
3071 
3072 /**
3073  * cgroup_finalize_control - finalize control mask update
3074  * @cgrp: root of the target subtree
3075  * @ret: the result of the update
3076  *
3077  * Finalize control mask update.  See cgroup_apply_control() for more info.
3078  */
3079 static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
3080 {
3081 	if (ret) {
3082 		cgroup_restore_control(cgrp);
3083 		cgroup_propagate_control(cgrp);
3084 	}
3085 
3086 	cgroup_apply_control_disable(cgrp);
3087 }
3088 
3089 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable)
3090 {
3091 	u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask;
3092 
3093 	/* if nothing is getting enabled, nothing to worry about */
3094 	if (!enable)
3095 		return 0;
3096 
3097 	/* can @cgrp host any resources? */
3098 	if (!cgroup_is_valid_domain(cgrp->dom_cgrp))
3099 		return -EOPNOTSUPP;
3100 
3101 	/* mixables don't care */
3102 	if (cgroup_is_mixable(cgrp))
3103 		return 0;
3104 
3105 	if (domain_enable) {
3106 		/* can't enable domain controllers inside a thread subtree */
3107 		if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3108 			return -EOPNOTSUPP;
3109 	} else {
3110 		/*
3111 		 * Threaded controllers can handle internal competitions
3112 		 * and are always allowed inside a (prospective) thread
3113 		 * subtree.
3114 		 */
3115 		if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3116 			return 0;
3117 	}
3118 
3119 	/*
3120 	 * Controllers can't be enabled for a cgroup with tasks to avoid
3121 	 * child cgroups competing against tasks.
3122 	 */
3123 	if (cgroup_has_tasks(cgrp))
3124 		return -EBUSY;
3125 
3126 	return 0;
3127 }
3128 
3129 /* change the enabled child controllers for a cgroup in the default hierarchy */
3130 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3131 					    char *buf, size_t nbytes,
3132 					    loff_t off)
3133 {
3134 	u16 enable = 0, disable = 0;
3135 	struct cgroup *cgrp, *child;
3136 	struct cgroup_subsys *ss;
3137 	char *tok;
3138 	int ssid, ret;
3139 
3140 	/*
3141 	 * Parse input - space separated list of subsystem names prefixed
3142 	 * with either + or -.
3143 	 */
3144 	buf = strstrip(buf);
3145 	while ((tok = strsep(&buf, " "))) {
3146 		if (tok[0] == '\0')
3147 			continue;
3148 		do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
3149 			if (!cgroup_ssid_enabled(ssid) ||
3150 			    strcmp(tok + 1, ss->name))
3151 				continue;
3152 
3153 			if (*tok == '+') {
3154 				enable |= 1 << ssid;
3155 				disable &= ~(1 << ssid);
3156 			} else if (*tok == '-') {
3157 				disable |= 1 << ssid;
3158 				enable &= ~(1 << ssid);
3159 			} else {
3160 				return -EINVAL;
3161 			}
3162 			break;
3163 		} while_each_subsys_mask();
3164 		if (ssid == CGROUP_SUBSYS_COUNT)
3165 			return -EINVAL;
3166 	}
3167 
3168 	cgrp = cgroup_kn_lock_live(of->kn, true);
3169 	if (!cgrp)
3170 		return -ENODEV;
3171 
3172 	for_each_subsys(ss, ssid) {
3173 		if (enable & (1 << ssid)) {
3174 			if (cgrp->subtree_control & (1 << ssid)) {
3175 				enable &= ~(1 << ssid);
3176 				continue;
3177 			}
3178 
3179 			if (!(cgroup_control(cgrp) & (1 << ssid))) {
3180 				ret = -ENOENT;
3181 				goto out_unlock;
3182 			}
3183 		} else if (disable & (1 << ssid)) {
3184 			if (!(cgrp->subtree_control & (1 << ssid))) {
3185 				disable &= ~(1 << ssid);
3186 				continue;
3187 			}
3188 
3189 			/* a child has it enabled? */
3190 			cgroup_for_each_live_child(child, cgrp) {
3191 				if (child->subtree_control & (1 << ssid)) {
3192 					ret = -EBUSY;
3193 					goto out_unlock;
3194 				}
3195 			}
3196 		}
3197 	}
3198 
3199 	if (!enable && !disable) {
3200 		ret = 0;
3201 		goto out_unlock;
3202 	}
3203 
3204 	ret = cgroup_vet_subtree_control_enable(cgrp, enable);
3205 	if (ret)
3206 		goto out_unlock;
3207 
3208 	/* save and update control masks and prepare csses */
3209 	cgroup_save_control(cgrp);
3210 
3211 	cgrp->subtree_control |= enable;
3212 	cgrp->subtree_control &= ~disable;
3213 
3214 	ret = cgroup_apply_control(cgrp);
3215 	cgroup_finalize_control(cgrp, ret);
3216 	if (ret)
3217 		goto out_unlock;
3218 
3219 	kernfs_activate(cgrp->kn);
3220 out_unlock:
3221 	cgroup_kn_unlock(of->kn);
3222 	return ret ?: nbytes;
3223 }
3224 
3225 /**
3226  * cgroup_enable_threaded - make @cgrp threaded
3227  * @cgrp: the target cgroup
3228  *
3229  * Called when "threaded" is written to the cgroup.type interface file and
3230  * tries to make @cgrp threaded and join the parent's resource domain.
3231  * This function is never called on the root cgroup as cgroup.type doesn't
3232  * exist on it.
3233  */
3234 static int cgroup_enable_threaded(struct cgroup *cgrp)
3235 {
3236 	struct cgroup *parent = cgroup_parent(cgrp);
3237 	struct cgroup *dom_cgrp = parent->dom_cgrp;
3238 	struct cgroup *dsct;
3239 	struct cgroup_subsys_state *d_css;
3240 	int ret;
3241 
3242 	lockdep_assert_held(&cgroup_mutex);
3243 
3244 	/* noop if already threaded */
3245 	if (cgroup_is_threaded(cgrp))
3246 		return 0;
3247 
3248 	/*
3249 	 * If @cgroup is populated or has domain controllers enabled, it
3250 	 * can't be switched.  While the below cgroup_can_be_thread_root()
3251 	 * test can catch the same conditions, that's only when @parent is
3252 	 * not mixable, so let's check it explicitly.
3253 	 */
3254 	if (cgroup_is_populated(cgrp) ||
3255 	    cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
3256 		return -EOPNOTSUPP;
3257 
3258 	/* we're joining the parent's domain, ensure its validity */
3259 	if (!cgroup_is_valid_domain(dom_cgrp) ||
3260 	    !cgroup_can_be_thread_root(dom_cgrp))
3261 		return -EOPNOTSUPP;
3262 
3263 	/*
3264 	 * The following shouldn't cause actual migrations and should
3265 	 * always succeed.
3266 	 */
3267 	cgroup_save_control(cgrp);
3268 
3269 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)
3270 		if (dsct == cgrp || cgroup_is_threaded(dsct))
3271 			dsct->dom_cgrp = dom_cgrp;
3272 
3273 	ret = cgroup_apply_control(cgrp);
3274 	if (!ret)
3275 		parent->nr_threaded_children++;
3276 
3277 	cgroup_finalize_control(cgrp, ret);
3278 	return ret;
3279 }
3280 
3281 static int cgroup_type_show(struct seq_file *seq, void *v)
3282 {
3283 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3284 
3285 	if (cgroup_is_threaded(cgrp))
3286 		seq_puts(seq, "threaded\n");
3287 	else if (!cgroup_is_valid_domain(cgrp))
3288 		seq_puts(seq, "domain invalid\n");
3289 	else if (cgroup_is_thread_root(cgrp))
3290 		seq_puts(seq, "domain threaded\n");
3291 	else
3292 		seq_puts(seq, "domain\n");
3293 
3294 	return 0;
3295 }
3296 
3297 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf,
3298 				 size_t nbytes, loff_t off)
3299 {
3300 	struct cgroup *cgrp;
3301 	int ret;
3302 
3303 	/* only switching to threaded mode is supported */
3304 	if (strcmp(strstrip(buf), "threaded"))
3305 		return -EINVAL;
3306 
3307 	cgrp = cgroup_kn_lock_live(of->kn, false);
3308 	if (!cgrp)
3309 		return -ENOENT;
3310 
3311 	/* threaded can only be enabled */
3312 	ret = cgroup_enable_threaded(cgrp);
3313 
3314 	cgroup_kn_unlock(of->kn);
3315 	return ret ?: nbytes;
3316 }
3317 
3318 static int cgroup_max_descendants_show(struct seq_file *seq, void *v)
3319 {
3320 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3321 	int descendants = READ_ONCE(cgrp->max_descendants);
3322 
3323 	if (descendants == INT_MAX)
3324 		seq_puts(seq, "max\n");
3325 	else
3326 		seq_printf(seq, "%d\n", descendants);
3327 
3328 	return 0;
3329 }
3330 
3331 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of,
3332 					   char *buf, size_t nbytes, loff_t off)
3333 {
3334 	struct cgroup *cgrp;
3335 	int descendants;
3336 	ssize_t ret;
3337 
3338 	buf = strstrip(buf);
3339 	if (!strcmp(buf, "max")) {
3340 		descendants = INT_MAX;
3341 	} else {
3342 		ret = kstrtoint(buf, 0, &descendants);
3343 		if (ret)
3344 			return ret;
3345 	}
3346 
3347 	if (descendants < 0)
3348 		return -ERANGE;
3349 
3350 	cgrp = cgroup_kn_lock_live(of->kn, false);
3351 	if (!cgrp)
3352 		return -ENOENT;
3353 
3354 	cgrp->max_descendants = descendants;
3355 
3356 	cgroup_kn_unlock(of->kn);
3357 
3358 	return nbytes;
3359 }
3360 
3361 static int cgroup_max_depth_show(struct seq_file *seq, void *v)
3362 {
3363 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3364 	int depth = READ_ONCE(cgrp->max_depth);
3365 
3366 	if (depth == INT_MAX)
3367 		seq_puts(seq, "max\n");
3368 	else
3369 		seq_printf(seq, "%d\n", depth);
3370 
3371 	return 0;
3372 }
3373 
3374 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of,
3375 				      char *buf, size_t nbytes, loff_t off)
3376 {
3377 	struct cgroup *cgrp;
3378 	ssize_t ret;
3379 	int depth;
3380 
3381 	buf = strstrip(buf);
3382 	if (!strcmp(buf, "max")) {
3383 		depth = INT_MAX;
3384 	} else {
3385 		ret = kstrtoint(buf, 0, &depth);
3386 		if (ret)
3387 			return ret;
3388 	}
3389 
3390 	if (depth < 0)
3391 		return -ERANGE;
3392 
3393 	cgrp = cgroup_kn_lock_live(of->kn, false);
3394 	if (!cgrp)
3395 		return -ENOENT;
3396 
3397 	cgrp->max_depth = depth;
3398 
3399 	cgroup_kn_unlock(of->kn);
3400 
3401 	return nbytes;
3402 }
3403 
3404 static int cgroup_events_show(struct seq_file *seq, void *v)
3405 {
3406 	seq_printf(seq, "populated %d\n",
3407 		   cgroup_is_populated(seq_css(seq)->cgroup));
3408 	return 0;
3409 }
3410 
3411 static int cgroup_stat_show(struct seq_file *seq, void *v)
3412 {
3413 	struct cgroup *cgroup = seq_css(seq)->cgroup;
3414 
3415 	seq_printf(seq, "nr_descendants %d\n",
3416 		   cgroup->nr_descendants);
3417 	seq_printf(seq, "nr_dying_descendants %d\n",
3418 		   cgroup->nr_dying_descendants);
3419 
3420 	return 0;
3421 }
3422 
3423 static int __maybe_unused cgroup_extra_stat_show(struct seq_file *seq,
3424 						 struct cgroup *cgrp, int ssid)
3425 {
3426 	struct cgroup_subsys *ss = cgroup_subsys[ssid];
3427 	struct cgroup_subsys_state *css;
3428 	int ret;
3429 
3430 	if (!ss->css_extra_stat_show)
3431 		return 0;
3432 
3433 	css = cgroup_tryget_css(cgrp, ss);
3434 	if (!css)
3435 		return 0;
3436 
3437 	ret = ss->css_extra_stat_show(seq, css);
3438 	css_put(css);
3439 	return ret;
3440 }
3441 
3442 static int cpu_stat_show(struct seq_file *seq, void *v)
3443 {
3444 	struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup;
3445 	int ret = 0;
3446 
3447 	cgroup_base_stat_cputime_show(seq);
3448 #ifdef CONFIG_CGROUP_SCHED
3449 	ret = cgroup_extra_stat_show(seq, cgrp, cpu_cgrp_id);
3450 #endif
3451 	return ret;
3452 }
3453 
3454 #ifdef CONFIG_PSI
3455 static int cgroup_io_pressure_show(struct seq_file *seq, void *v)
3456 {
3457 	return psi_show(seq, &seq_css(seq)->cgroup->psi, PSI_IO);
3458 }
3459 static int cgroup_memory_pressure_show(struct seq_file *seq, void *v)
3460 {
3461 	return psi_show(seq, &seq_css(seq)->cgroup->psi, PSI_MEM);
3462 }
3463 static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v)
3464 {
3465 	return psi_show(seq, &seq_css(seq)->cgroup->psi, PSI_CPU);
3466 }
3467 #endif
3468 
3469 static int cgroup_file_open(struct kernfs_open_file *of)
3470 {
3471 	struct cftype *cft = of->kn->priv;
3472 
3473 	if (cft->open)
3474 		return cft->open(of);
3475 	return 0;
3476 }
3477 
3478 static void cgroup_file_release(struct kernfs_open_file *of)
3479 {
3480 	struct cftype *cft = of->kn->priv;
3481 
3482 	if (cft->release)
3483 		cft->release(of);
3484 }
3485 
3486 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3487 				 size_t nbytes, loff_t off)
3488 {
3489 	struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
3490 	struct cgroup *cgrp = of->kn->parent->priv;
3491 	struct cftype *cft = of->kn->priv;
3492 	struct cgroup_subsys_state *css;
3493 	int ret;
3494 
3495 	/*
3496 	 * If namespaces are delegation boundaries, disallow writes to
3497 	 * files in an non-init namespace root from inside the namespace
3498 	 * except for the files explicitly marked delegatable -
3499 	 * cgroup.procs and cgroup.subtree_control.
3500 	 */
3501 	if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) &&
3502 	    !(cft->flags & CFTYPE_NS_DELEGATABLE) &&
3503 	    ns != &init_cgroup_ns && ns->root_cset->dfl_cgrp == cgrp)
3504 		return -EPERM;
3505 
3506 	if (cft->write)
3507 		return cft->write(of, buf, nbytes, off);
3508 
3509 	/*
3510 	 * kernfs guarantees that a file isn't deleted with operations in
3511 	 * flight, which means that the matching css is and stays alive and
3512 	 * doesn't need to be pinned.  The RCU locking is not necessary
3513 	 * either.  It's just for the convenience of using cgroup_css().
3514 	 */
3515 	rcu_read_lock();
3516 	css = cgroup_css(cgrp, cft->ss);
3517 	rcu_read_unlock();
3518 
3519 	if (cft->write_u64) {
3520 		unsigned long long v;
3521 		ret = kstrtoull(buf, 0, &v);
3522 		if (!ret)
3523 			ret = cft->write_u64(css, cft, v);
3524 	} else if (cft->write_s64) {
3525 		long long v;
3526 		ret = kstrtoll(buf, 0, &v);
3527 		if (!ret)
3528 			ret = cft->write_s64(css, cft, v);
3529 	} else {
3530 		ret = -EINVAL;
3531 	}
3532 
3533 	return ret ?: nbytes;
3534 }
3535 
3536 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
3537 {
3538 	return seq_cft(seq)->seq_start(seq, ppos);
3539 }
3540 
3541 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
3542 {
3543 	return seq_cft(seq)->seq_next(seq, v, ppos);
3544 }
3545 
3546 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
3547 {
3548 	if (seq_cft(seq)->seq_stop)
3549 		seq_cft(seq)->seq_stop(seq, v);
3550 }
3551 
3552 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
3553 {
3554 	struct cftype *cft = seq_cft(m);
3555 	struct cgroup_subsys_state *css = seq_css(m);
3556 
3557 	if (cft->seq_show)
3558 		return cft->seq_show(m, arg);
3559 
3560 	if (cft->read_u64)
3561 		seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3562 	else if (cft->read_s64)
3563 		seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3564 	else
3565 		return -EINVAL;
3566 	return 0;
3567 }
3568 
3569 static struct kernfs_ops cgroup_kf_single_ops = {
3570 	.atomic_write_len	= PAGE_SIZE,
3571 	.open			= cgroup_file_open,
3572 	.release		= cgroup_file_release,
3573 	.write			= cgroup_file_write,
3574 	.seq_show		= cgroup_seqfile_show,
3575 };
3576 
3577 static struct kernfs_ops cgroup_kf_ops = {
3578 	.atomic_write_len	= PAGE_SIZE,
3579 	.open			= cgroup_file_open,
3580 	.release		= cgroup_file_release,
3581 	.write			= cgroup_file_write,
3582 	.seq_start		= cgroup_seqfile_start,
3583 	.seq_next		= cgroup_seqfile_next,
3584 	.seq_stop		= cgroup_seqfile_stop,
3585 	.seq_show		= cgroup_seqfile_show,
3586 };
3587 
3588 /* set uid and gid of cgroup dirs and files to that of the creator */
3589 static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3590 {
3591 	struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3592 			       .ia_uid = current_fsuid(),
3593 			       .ia_gid = current_fsgid(), };
3594 
3595 	if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3596 	    gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3597 		return 0;
3598 
3599 	return kernfs_setattr(kn, &iattr);
3600 }
3601 
3602 static void cgroup_file_notify_timer(struct timer_list *timer)
3603 {
3604 	cgroup_file_notify(container_of(timer, struct cgroup_file,
3605 					notify_timer));
3606 }
3607 
3608 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3609 			   struct cftype *cft)
3610 {
3611 	char name[CGROUP_FILE_NAME_MAX];
3612 	struct kernfs_node *kn;
3613 	struct lock_class_key *key = NULL;
3614 	int ret;
3615 
3616 #ifdef CONFIG_DEBUG_LOCK_ALLOC
3617 	key = &cft->lockdep_key;
3618 #endif
3619 	kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3620 				  cgroup_file_mode(cft),
3621 				  GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
3622 				  0, cft->kf_ops, cft,
3623 				  NULL, key);
3624 	if (IS_ERR(kn))
3625 		return PTR_ERR(kn);
3626 
3627 	ret = cgroup_kn_set_ugid(kn);
3628 	if (ret) {
3629 		kernfs_remove(kn);
3630 		return ret;
3631 	}
3632 
3633 	if (cft->file_offset) {
3634 		struct cgroup_file *cfile = (void *)css + cft->file_offset;
3635 
3636 		timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0);
3637 
3638 		spin_lock_irq(&cgroup_file_kn_lock);
3639 		cfile->kn = kn;
3640 		spin_unlock_irq(&cgroup_file_kn_lock);
3641 	}
3642 
3643 	return 0;
3644 }
3645 
3646 /**
3647  * cgroup_addrm_files - add or remove files to a cgroup directory
3648  * @css: the target css
3649  * @cgrp: the target cgroup (usually css->cgroup)
3650  * @cfts: array of cftypes to be added
3651  * @is_add: whether to add or remove
3652  *
3653  * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3654  * For removals, this function never fails.
3655  */
3656 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3657 			      struct cgroup *cgrp, struct cftype cfts[],
3658 			      bool is_add)
3659 {
3660 	struct cftype *cft, *cft_end = NULL;
3661 	int ret = 0;
3662 
3663 	lockdep_assert_held(&cgroup_mutex);
3664 
3665 restart:
3666 	for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
3667 		/* does cft->flags tell us to skip this file on @cgrp? */
3668 		if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
3669 			continue;
3670 		if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
3671 			continue;
3672 		if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
3673 			continue;
3674 		if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
3675 			continue;
3676 		if ((cft->flags & CFTYPE_DEBUG) && !cgroup_debug)
3677 			continue;
3678 		if (is_add) {
3679 			ret = cgroup_add_file(css, cgrp, cft);
3680 			if (ret) {
3681 				pr_warn("%s: failed to add %s, err=%d\n",
3682 					__func__, cft->name, ret);
3683 				cft_end = cft;
3684 				is_add = false;
3685 				goto restart;
3686 			}
3687 		} else {
3688 			cgroup_rm_file(cgrp, cft);
3689 		}
3690 	}
3691 	return ret;
3692 }
3693 
3694 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
3695 {
3696 	struct cgroup_subsys *ss = cfts[0].ss;
3697 	struct cgroup *root = &ss->root->cgrp;
3698 	struct cgroup_subsys_state *css;
3699 	int ret = 0;
3700 
3701 	lockdep_assert_held(&cgroup_mutex);
3702 
3703 	/* add/rm files for all cgroups created before */
3704 	css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
3705 		struct cgroup *cgrp = css->cgroup;
3706 
3707 		if (!(css->flags & CSS_VISIBLE))
3708 			continue;
3709 
3710 		ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
3711 		if (ret)
3712 			break;
3713 	}
3714 
3715 	if (is_add && !ret)
3716 		kernfs_activate(root->kn);
3717 	return ret;
3718 }
3719 
3720 static void cgroup_exit_cftypes(struct cftype *cfts)
3721 {
3722 	struct cftype *cft;
3723 
3724 	for (cft = cfts; cft->name[0] != '\0'; cft++) {
3725 		/* free copy for custom atomic_write_len, see init_cftypes() */
3726 		if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3727 			kfree(cft->kf_ops);
3728 		cft->kf_ops = NULL;
3729 		cft->ss = NULL;
3730 
3731 		/* revert flags set by cgroup core while adding @cfts */
3732 		cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
3733 	}
3734 }
3735 
3736 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3737 {
3738 	struct cftype *cft;
3739 
3740 	for (cft = cfts; cft->name[0] != '\0'; cft++) {
3741 		struct kernfs_ops *kf_ops;
3742 
3743 		WARN_ON(cft->ss || cft->kf_ops);
3744 
3745 		if (cft->seq_start)
3746 			kf_ops = &cgroup_kf_ops;
3747 		else
3748 			kf_ops = &cgroup_kf_single_ops;
3749 
3750 		/*
3751 		 * Ugh... if @cft wants a custom max_write_len, we need to
3752 		 * make a copy of kf_ops to set its atomic_write_len.
3753 		 */
3754 		if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3755 			kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3756 			if (!kf_ops) {
3757 				cgroup_exit_cftypes(cfts);
3758 				return -ENOMEM;
3759 			}
3760 			kf_ops->atomic_write_len = cft->max_write_len;
3761 		}
3762 
3763 		cft->kf_ops = kf_ops;
3764 		cft->ss = ss;
3765 	}
3766 
3767 	return 0;
3768 }
3769 
3770 static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3771 {
3772 	lockdep_assert_held(&cgroup_mutex);
3773 
3774 	if (!cfts || !cfts[0].ss)
3775 		return -ENOENT;
3776 
3777 	list_del(&cfts->node);
3778 	cgroup_apply_cftypes(cfts, false);
3779 	cgroup_exit_cftypes(cfts);
3780 	return 0;
3781 }
3782 
3783 /**
3784  * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
3785  * @cfts: zero-length name terminated array of cftypes
3786  *
3787  * Unregister @cfts.  Files described by @cfts are removed from all
3788  * existing cgroups and all future cgroups won't have them either.  This
3789  * function can be called anytime whether @cfts' subsys is attached or not.
3790  *
3791  * Returns 0 on successful unregistration, -ENOENT if @cfts is not
3792  * registered.
3793  */
3794 int cgroup_rm_cftypes(struct cftype *cfts)
3795 {
3796 	int ret;
3797 
3798 	mutex_lock(&cgroup_mutex);
3799 	ret = cgroup_rm_cftypes_locked(cfts);
3800 	mutex_unlock(&cgroup_mutex);
3801 	return ret;
3802 }
3803 
3804 /**
3805  * cgroup_add_cftypes - add an array of cftypes to a subsystem
3806  * @ss: target cgroup subsystem
3807  * @cfts: zero-length name terminated array of cftypes
3808  *
3809  * Register @cfts to @ss.  Files described by @cfts are created for all
3810  * existing cgroups to which @ss is attached and all future cgroups will
3811  * have them too.  This function can be called anytime whether @ss is
3812  * attached or not.
3813  *
3814  * Returns 0 on successful registration, -errno on failure.  Note that this
3815  * function currently returns 0 as long as @cfts registration is successful
3816  * even if some file creation attempts on existing cgroups fail.
3817  */
3818 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3819 {
3820 	int ret;
3821 
3822 	if (!cgroup_ssid_enabled(ss->id))
3823 		return 0;
3824 
3825 	if (!cfts || cfts[0].name[0] == '\0')
3826 		return 0;
3827 
3828 	ret = cgroup_init_cftypes(ss, cfts);
3829 	if (ret)
3830 		return ret;
3831 
3832 	mutex_lock(&cgroup_mutex);
3833 
3834 	list_add_tail(&cfts->node, &ss->cfts);
3835 	ret = cgroup_apply_cftypes(cfts, true);
3836 	if (ret)
3837 		cgroup_rm_cftypes_locked(cfts);
3838 
3839 	mutex_unlock(&cgroup_mutex);
3840 	return ret;
3841 }
3842 
3843 /**
3844  * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3845  * @ss: target cgroup subsystem
3846  * @cfts: zero-length name terminated array of cftypes
3847  *
3848  * Similar to cgroup_add_cftypes() but the added files are only used for
3849  * the default hierarchy.
3850  */
3851 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3852 {
3853 	struct cftype *cft;
3854 
3855 	for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3856 		cft->flags |= __CFTYPE_ONLY_ON_DFL;
3857 	return cgroup_add_cftypes(ss, cfts);
3858 }
3859 
3860 /**
3861  * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3862  * @ss: target cgroup subsystem
3863  * @cfts: zero-length name terminated array of cftypes
3864  *
3865  * Similar to cgroup_add_cftypes() but the added files are only used for
3866  * the legacy hierarchies.
3867  */
3868 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3869 {
3870 	struct cftype *cft;
3871 
3872 	for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3873 		cft->flags |= __CFTYPE_NOT_ON_DFL;
3874 	return cgroup_add_cftypes(ss, cfts);
3875 }
3876 
3877 /**
3878  * cgroup_file_notify - generate a file modified event for a cgroup_file
3879  * @cfile: target cgroup_file
3880  *
3881  * @cfile must have been obtained by setting cftype->file_offset.
3882  */
3883 void cgroup_file_notify(struct cgroup_file *cfile)
3884 {
3885 	unsigned long flags;
3886 
3887 	spin_lock_irqsave(&cgroup_file_kn_lock, flags);
3888 	if (cfile->kn) {
3889 		unsigned long last = cfile->notified_at;
3890 		unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV;
3891 
3892 		if (time_in_range(jiffies, last, next)) {
3893 			timer_reduce(&cfile->notify_timer, next);
3894 		} else {
3895 			kernfs_notify(cfile->kn);
3896 			cfile->notified_at = jiffies;
3897 		}
3898 	}
3899 	spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
3900 }
3901 
3902 /**
3903  * css_next_child - find the next child of a given css
3904  * @pos: the current position (%NULL to initiate traversal)
3905  * @parent: css whose children to walk
3906  *
3907  * This function returns the next child of @parent and should be called
3908  * under either cgroup_mutex or RCU read lock.  The only requirement is
3909  * that @parent and @pos are accessible.  The next sibling is guaranteed to
3910  * be returned regardless of their states.
3911  *
3912  * If a subsystem synchronizes ->css_online() and the start of iteration, a
3913  * css which finished ->css_online() is guaranteed to be visible in the
3914  * future iterations and will stay visible until the last reference is put.
3915  * A css which hasn't finished ->css_online() or already finished
3916  * ->css_offline() may show up during traversal.  It's each subsystem's
3917  * responsibility to synchronize against on/offlining.
3918  */
3919 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
3920 					   struct cgroup_subsys_state *parent)
3921 {
3922 	struct cgroup_subsys_state *next;
3923 
3924 	cgroup_assert_mutex_or_rcu_locked();
3925 
3926 	/*
3927 	 * @pos could already have been unlinked from the sibling list.
3928 	 * Once a cgroup is removed, its ->sibling.next is no longer
3929 	 * updated when its next sibling changes.  CSS_RELEASED is set when
3930 	 * @pos is taken off list, at which time its next pointer is valid,
3931 	 * and, as releases are serialized, the one pointed to by the next
3932 	 * pointer is guaranteed to not have started release yet.  This
3933 	 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3934 	 * critical section, the one pointed to by its next pointer is
3935 	 * guaranteed to not have finished its RCU grace period even if we
3936 	 * have dropped rcu_read_lock() inbetween iterations.
3937 	 *
3938 	 * If @pos has CSS_RELEASED set, its next pointer can't be
3939 	 * dereferenced; however, as each css is given a monotonically
3940 	 * increasing unique serial number and always appended to the
3941 	 * sibling list, the next one can be found by walking the parent's
3942 	 * children until the first css with higher serial number than
3943 	 * @pos's.  While this path can be slower, it happens iff iteration
3944 	 * races against release and the race window is very small.
3945 	 */
3946 	if (!pos) {
3947 		next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
3948 	} else if (likely(!(pos->flags & CSS_RELEASED))) {
3949 		next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
3950 	} else {
3951 		list_for_each_entry_rcu(next, &parent->children, sibling)
3952 			if (next->serial_nr > pos->serial_nr)
3953 				break;
3954 	}
3955 
3956 	/*
3957 	 * @next, if not pointing to the head, can be dereferenced and is
3958 	 * the next sibling.
3959 	 */
3960 	if (&next->sibling != &parent->children)
3961 		return next;
3962 	return NULL;
3963 }
3964 
3965 /**
3966  * css_next_descendant_pre - find the next descendant for pre-order walk
3967  * @pos: the current position (%NULL to initiate traversal)
3968  * @root: css whose descendants to walk
3969  *
3970  * To be used by css_for_each_descendant_pre().  Find the next descendant
3971  * to visit for pre-order traversal of @root's descendants.  @root is
3972  * included in the iteration and the first node to be visited.
3973  *
3974  * While this function requires cgroup_mutex or RCU read locking, it
3975  * doesn't require the whole traversal to be contained in a single critical
3976  * section.  This function will return the correct next descendant as long
3977  * as both @pos and @root are accessible and @pos is a descendant of @root.
3978  *
3979  * If a subsystem synchronizes ->css_online() and the start of iteration, a
3980  * css which finished ->css_online() is guaranteed to be visible in the
3981  * future iterations and will stay visible until the last reference is put.
3982  * A css which hasn't finished ->css_online() or already finished
3983  * ->css_offline() may show up during traversal.  It's each subsystem's
3984  * responsibility to synchronize against on/offlining.
3985  */
3986 struct cgroup_subsys_state *
3987 css_next_descendant_pre(struct cgroup_subsys_state *pos,
3988 			struct cgroup_subsys_state *root)
3989 {
3990 	struct cgroup_subsys_state *next;
3991 
3992 	cgroup_assert_mutex_or_rcu_locked();
3993 
3994 	/* if first iteration, visit @root */
3995 	if (!pos)
3996 		return root;
3997 
3998 	/* visit the first child if exists */
3999 	next = css_next_child(NULL, pos);
4000 	if (next)
4001 		return next;
4002 
4003 	/* no child, visit my or the closest ancestor's next sibling */
4004 	while (pos != root) {
4005 		next = css_next_child(pos, pos->parent);
4006 		if (next)
4007 			return next;
4008 		pos = pos->parent;
4009 	}
4010 
4011 	return NULL;
4012 }
4013 
4014 /**
4015  * css_rightmost_descendant - return the rightmost descendant of a css
4016  * @pos: css of interest
4017  *
4018  * Return the rightmost descendant of @pos.  If there's no descendant, @pos
4019  * is returned.  This can be used during pre-order traversal to skip
4020  * subtree of @pos.
4021  *
4022  * While this function requires cgroup_mutex or RCU read locking, it
4023  * doesn't require the whole traversal to be contained in a single critical
4024  * section.  This function will return the correct rightmost descendant as
4025  * long as @pos is accessible.
4026  */
4027 struct cgroup_subsys_state *
4028 css_rightmost_descendant(struct cgroup_subsys_state *pos)
4029 {
4030 	struct cgroup_subsys_state *last, *tmp;
4031 
4032 	cgroup_assert_mutex_or_rcu_locked();
4033 
4034 	do {
4035 		last = pos;
4036 		/* ->prev isn't RCU safe, walk ->next till the end */
4037 		pos = NULL;
4038 		css_for_each_child(tmp, last)
4039 			pos = tmp;
4040 	} while (pos);
4041 
4042 	return last;
4043 }
4044 
4045 static struct cgroup_subsys_state *
4046 css_leftmost_descendant(struct cgroup_subsys_state *pos)
4047 {
4048 	struct cgroup_subsys_state *last;
4049 
4050 	do {
4051 		last = pos;
4052 		pos = css_next_child(NULL, pos);
4053 	} while (pos);
4054 
4055 	return last;
4056 }
4057 
4058 /**
4059  * css_next_descendant_post - find the next descendant for post-order walk
4060  * @pos: the current position (%NULL to initiate traversal)
4061  * @root: css whose descendants to walk
4062  *
4063  * To be used by css_for_each_descendant_post().  Find the next descendant
4064  * to visit for post-order traversal of @root's descendants.  @root is
4065  * included in the iteration and the last node to be visited.
4066  *
4067  * While this function requires cgroup_mutex or RCU read locking, it
4068  * doesn't require the whole traversal to be contained in a single critical
4069  * section.  This function will return the correct next descendant as long
4070  * as both @pos and @cgroup are accessible and @pos is a descendant of
4071  * @cgroup.
4072  *
4073  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4074  * css which finished ->css_online() is guaranteed to be visible in the
4075  * future iterations and will stay visible until the last reference is put.
4076  * A css which hasn't finished ->css_online() or already finished
4077  * ->css_offline() may show up during traversal.  It's each subsystem's
4078  * responsibility to synchronize against on/offlining.
4079  */
4080 struct cgroup_subsys_state *
4081 css_next_descendant_post(struct cgroup_subsys_state *pos,
4082 			 struct cgroup_subsys_state *root)
4083 {
4084 	struct cgroup_subsys_state *next;
4085 
4086 	cgroup_assert_mutex_or_rcu_locked();
4087 
4088 	/* if first iteration, visit leftmost descendant which may be @root */
4089 	if (!pos)
4090 		return css_leftmost_descendant(root);
4091 
4092 	/* if we visited @root, we're done */
4093 	if (pos == root)
4094 		return NULL;
4095 
4096 	/* if there's an unvisited sibling, visit its leftmost descendant */
4097 	next = css_next_child(pos, pos->parent);
4098 	if (next)
4099 		return css_leftmost_descendant(next);
4100 
4101 	/* no sibling left, visit parent */
4102 	return pos->parent;
4103 }
4104 
4105 /**
4106  * css_has_online_children - does a css have online children
4107  * @css: the target css
4108  *
4109  * Returns %true if @css has any online children; otherwise, %false.  This
4110  * function can be called from any context but the caller is responsible
4111  * for synchronizing against on/offlining as necessary.
4112  */
4113 bool css_has_online_children(struct cgroup_subsys_state *css)
4114 {
4115 	struct cgroup_subsys_state *child;
4116 	bool ret = false;
4117 
4118 	rcu_read_lock();
4119 	css_for_each_child(child, css) {
4120 		if (child->flags & CSS_ONLINE) {
4121 			ret = true;
4122 			break;
4123 		}
4124 	}
4125 	rcu_read_unlock();
4126 	return ret;
4127 }
4128 
4129 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it)
4130 {
4131 	struct list_head *l;
4132 	struct cgrp_cset_link *link;
4133 	struct css_set *cset;
4134 
4135 	lockdep_assert_held(&css_set_lock);
4136 
4137 	/* find the next threaded cset */
4138 	if (it->tcset_pos) {
4139 		l = it->tcset_pos->next;
4140 
4141 		if (l != it->tcset_head) {
4142 			it->tcset_pos = l;
4143 			return container_of(l, struct css_set,
4144 					    threaded_csets_node);
4145 		}
4146 
4147 		it->tcset_pos = NULL;
4148 	}
4149 
4150 	/* find the next cset */
4151 	l = it->cset_pos;
4152 	l = l->next;
4153 	if (l == it->cset_head) {
4154 		it->cset_pos = NULL;
4155 		return NULL;
4156 	}
4157 
4158 	if (it->ss) {
4159 		cset = container_of(l, struct css_set, e_cset_node[it->ss->id]);
4160 	} else {
4161 		link = list_entry(l, struct cgrp_cset_link, cset_link);
4162 		cset = link->cset;
4163 	}
4164 
4165 	it->cset_pos = l;
4166 
4167 	/* initialize threaded css_set walking */
4168 	if (it->flags & CSS_TASK_ITER_THREADED) {
4169 		if (it->cur_dcset)
4170 			put_css_set_locked(it->cur_dcset);
4171 		it->cur_dcset = cset;
4172 		get_css_set(cset);
4173 
4174 		it->tcset_head = &cset->threaded_csets;
4175 		it->tcset_pos = &cset->threaded_csets;
4176 	}
4177 
4178 	return cset;
4179 }
4180 
4181 /**
4182  * css_task_iter_advance_css_set - advance a task itererator to the next css_set
4183  * @it: the iterator to advance
4184  *
4185  * Advance @it to the next css_set to walk.
4186  */
4187 static void css_task_iter_advance_css_set(struct css_task_iter *it)
4188 {
4189 	struct css_set *cset;
4190 
4191 	lockdep_assert_held(&css_set_lock);
4192 
4193 	/* Advance to the next non-empty css_set */
4194 	do {
4195 		cset = css_task_iter_next_css_set(it);
4196 		if (!cset) {
4197 			it->task_pos = NULL;
4198 			return;
4199 		}
4200 	} while (!css_set_populated(cset));
4201 
4202 	if (!list_empty(&cset->tasks))
4203 		it->task_pos = cset->tasks.next;
4204 	else
4205 		it->task_pos = cset->mg_tasks.next;
4206 
4207 	it->tasks_head = &cset->tasks;
4208 	it->mg_tasks_head = &cset->mg_tasks;
4209 
4210 	/*
4211 	 * We don't keep css_sets locked across iteration steps and thus
4212 	 * need to take steps to ensure that iteration can be resumed after
4213 	 * the lock is re-acquired.  Iteration is performed at two levels -
4214 	 * css_sets and tasks in them.
4215 	 *
4216 	 * Once created, a css_set never leaves its cgroup lists, so a
4217 	 * pinned css_set is guaranteed to stay put and we can resume
4218 	 * iteration afterwards.
4219 	 *
4220 	 * Tasks may leave @cset across iteration steps.  This is resolved
4221 	 * by registering each iterator with the css_set currently being
4222 	 * walked and making css_set_move_task() advance iterators whose
4223 	 * next task is leaving.
4224 	 */
4225 	if (it->cur_cset) {
4226 		list_del(&it->iters_node);
4227 		put_css_set_locked(it->cur_cset);
4228 	}
4229 	get_css_set(cset);
4230 	it->cur_cset = cset;
4231 	list_add(&it->iters_node, &cset->task_iters);
4232 }
4233 
4234 static void css_task_iter_advance(struct css_task_iter *it)
4235 {
4236 	struct list_head *next;
4237 
4238 	lockdep_assert_held(&css_set_lock);
4239 repeat:
4240 	if (it->task_pos) {
4241 		/*
4242 		 * Advance iterator to find next entry.  cset->tasks is
4243 		 * consumed first and then ->mg_tasks.  After ->mg_tasks,
4244 		 * we move onto the next cset.
4245 		 */
4246 		next = it->task_pos->next;
4247 
4248 		if (next == it->tasks_head)
4249 			next = it->mg_tasks_head->next;
4250 
4251 		if (next == it->mg_tasks_head)
4252 			css_task_iter_advance_css_set(it);
4253 		else
4254 			it->task_pos = next;
4255 	} else {
4256 		/* called from start, proceed to the first cset */
4257 		css_task_iter_advance_css_set(it);
4258 	}
4259 
4260 	/* if PROCS, skip over tasks which aren't group leaders */
4261 	if ((it->flags & CSS_TASK_ITER_PROCS) && it->task_pos &&
4262 	    !thread_group_leader(list_entry(it->task_pos, struct task_struct,
4263 					    cg_list)))
4264 		goto repeat;
4265 }
4266 
4267 /**
4268  * css_task_iter_start - initiate task iteration
4269  * @css: the css to walk tasks of
4270  * @flags: CSS_TASK_ITER_* flags
4271  * @it: the task iterator to use
4272  *
4273  * Initiate iteration through the tasks of @css.  The caller can call
4274  * css_task_iter_next() to walk through the tasks until the function
4275  * returns NULL.  On completion of iteration, css_task_iter_end() must be
4276  * called.
4277  */
4278 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags,
4279 			 struct css_task_iter *it)
4280 {
4281 	/* no one should try to iterate before mounting cgroups */
4282 	WARN_ON_ONCE(!use_task_css_set_links);
4283 
4284 	memset(it, 0, sizeof(*it));
4285 
4286 	spin_lock_irq(&css_set_lock);
4287 
4288 	it->ss = css->ss;
4289 	it->flags = flags;
4290 
4291 	if (it->ss)
4292 		it->cset_pos = &css->cgroup->e_csets[css->ss->id];
4293 	else
4294 		it->cset_pos = &css->cgroup->cset_links;
4295 
4296 	it->cset_head = it->cset_pos;
4297 
4298 	css_task_iter_advance(it);
4299 
4300 	spin_unlock_irq(&css_set_lock);
4301 }
4302 
4303 /**
4304  * css_task_iter_next - return the next task for the iterator
4305  * @it: the task iterator being iterated
4306  *
4307  * The "next" function for task iteration.  @it should have been
4308  * initialized via css_task_iter_start().  Returns NULL when the iteration
4309  * reaches the end.
4310  */
4311 struct task_struct *css_task_iter_next(struct css_task_iter *it)
4312 {
4313 	if (it->cur_task) {
4314 		put_task_struct(it->cur_task);
4315 		it->cur_task = NULL;
4316 	}
4317 
4318 	spin_lock_irq(&css_set_lock);
4319 
4320 	if (it->task_pos) {
4321 		it->cur_task = list_entry(it->task_pos, struct task_struct,
4322 					  cg_list);
4323 		get_task_struct(it->cur_task);
4324 		css_task_iter_advance(it);
4325 	}
4326 
4327 	spin_unlock_irq(&css_set_lock);
4328 
4329 	return it->cur_task;
4330 }
4331 
4332 /**
4333  * css_task_iter_end - finish task iteration
4334  * @it: the task iterator to finish
4335  *
4336  * Finish task iteration started by css_task_iter_start().
4337  */
4338 void css_task_iter_end(struct css_task_iter *it)
4339 {
4340 	if (it->cur_cset) {
4341 		spin_lock_irq(&css_set_lock);
4342 		list_del(&it->iters_node);
4343 		put_css_set_locked(it->cur_cset);
4344 		spin_unlock_irq(&css_set_lock);
4345 	}
4346 
4347 	if (it->cur_dcset)
4348 		put_css_set(it->cur_dcset);
4349 
4350 	if (it->cur_task)
4351 		put_task_struct(it->cur_task);
4352 }
4353 
4354 static void cgroup_procs_release(struct kernfs_open_file *of)
4355 {
4356 	if (of->priv) {
4357 		css_task_iter_end(of->priv);
4358 		kfree(of->priv);
4359 	}
4360 }
4361 
4362 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos)
4363 {
4364 	struct kernfs_open_file *of = s->private;
4365 	struct css_task_iter *it = of->priv;
4366 
4367 	return css_task_iter_next(it);
4368 }
4369 
4370 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos,
4371 				  unsigned int iter_flags)
4372 {
4373 	struct kernfs_open_file *of = s->private;
4374 	struct cgroup *cgrp = seq_css(s)->cgroup;
4375 	struct css_task_iter *it = of->priv;
4376 
4377 	/*
4378 	 * When a seq_file is seeked, it's always traversed sequentially
4379 	 * from position 0, so we can simply keep iterating on !0 *pos.
4380 	 */
4381 	if (!it) {
4382 		if (WARN_ON_ONCE((*pos)++))
4383 			return ERR_PTR(-EINVAL);
4384 
4385 		it = kzalloc(sizeof(*it), GFP_KERNEL);
4386 		if (!it)
4387 			return ERR_PTR(-ENOMEM);
4388 		of->priv = it;
4389 		css_task_iter_start(&cgrp->self, iter_flags, it);
4390 	} else if (!(*pos)++) {
4391 		css_task_iter_end(it);
4392 		css_task_iter_start(&cgrp->self, iter_flags, it);
4393 	}
4394 
4395 	return cgroup_procs_next(s, NULL, NULL);
4396 }
4397 
4398 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos)
4399 {
4400 	struct cgroup *cgrp = seq_css(s)->cgroup;
4401 
4402 	/*
4403 	 * All processes of a threaded subtree belong to the domain cgroup
4404 	 * of the subtree.  Only threads can be distributed across the
4405 	 * subtree.  Reject reads on cgroup.procs in the subtree proper.
4406 	 * They're always empty anyway.
4407 	 */
4408 	if (cgroup_is_threaded(cgrp))
4409 		return ERR_PTR(-EOPNOTSUPP);
4410 
4411 	return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS |
4412 					    CSS_TASK_ITER_THREADED);
4413 }
4414 
4415 static int cgroup_procs_show(struct seq_file *s, void *v)
4416 {
4417 	seq_printf(s, "%d\n", task_pid_vnr(v));
4418 	return 0;
4419 }
4420 
4421 static int cgroup_procs_write_permission(struct cgroup *src_cgrp,
4422 					 struct cgroup *dst_cgrp,
4423 					 struct super_block *sb)
4424 {
4425 	struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
4426 	struct cgroup *com_cgrp = src_cgrp;
4427 	struct inode *inode;
4428 	int ret;
4429 
4430 	lockdep_assert_held(&cgroup_mutex);
4431 
4432 	/* find the common ancestor */
4433 	while (!cgroup_is_descendant(dst_cgrp, com_cgrp))
4434 		com_cgrp = cgroup_parent(com_cgrp);
4435 
4436 	/* %current should be authorized to migrate to the common ancestor */
4437 	inode = kernfs_get_inode(sb, com_cgrp->procs_file.kn);
4438 	if (!inode)
4439 		return -ENOMEM;
4440 
4441 	ret = inode_permission(inode, MAY_WRITE);
4442 	iput(inode);
4443 	if (ret)
4444 		return ret;
4445 
4446 	/*
4447 	 * If namespaces are delegation boundaries, %current must be able
4448 	 * to see both source and destination cgroups from its namespace.
4449 	 */
4450 	if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) &&
4451 	    (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) ||
4452 	     !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp)))
4453 		return -ENOENT;
4454 
4455 	return 0;
4456 }
4457 
4458 static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
4459 				  char *buf, size_t nbytes, loff_t off)
4460 {
4461 	struct cgroup *src_cgrp, *dst_cgrp;
4462 	struct task_struct *task;
4463 	ssize_t ret;
4464 
4465 	dst_cgrp = cgroup_kn_lock_live(of->kn, false);
4466 	if (!dst_cgrp)
4467 		return -ENODEV;
4468 
4469 	task = cgroup_procs_write_start(buf, true);
4470 	ret = PTR_ERR_OR_ZERO(task);
4471 	if (ret)
4472 		goto out_unlock;
4473 
4474 	/* find the source cgroup */
4475 	spin_lock_irq(&css_set_lock);
4476 	src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
4477 	spin_unlock_irq(&css_set_lock);
4478 
4479 	ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp,
4480 					    of->file->f_path.dentry->d_sb);
4481 	if (ret)
4482 		goto out_finish;
4483 
4484 	ret = cgroup_attach_task(dst_cgrp, task, true);
4485 
4486 out_finish:
4487 	cgroup_procs_write_finish(task);
4488 out_unlock:
4489 	cgroup_kn_unlock(of->kn);
4490 
4491 	return ret ?: nbytes;
4492 }
4493 
4494 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos)
4495 {
4496 	return __cgroup_procs_start(s, pos, 0);
4497 }
4498 
4499 static ssize_t cgroup_threads_write(struct kernfs_open_file *of,
4500 				    char *buf, size_t nbytes, loff_t off)
4501 {
4502 	struct cgroup *src_cgrp, *dst_cgrp;
4503 	struct task_struct *task;
4504 	ssize_t ret;
4505 
4506 	buf = strstrip(buf);
4507 
4508 	dst_cgrp = cgroup_kn_lock_live(of->kn, false);
4509 	if (!dst_cgrp)
4510 		return -ENODEV;
4511 
4512 	task = cgroup_procs_write_start(buf, false);
4513 	ret = PTR_ERR_OR_ZERO(task);
4514 	if (ret)
4515 		goto out_unlock;
4516 
4517 	/* find the source cgroup */
4518 	spin_lock_irq(&css_set_lock);
4519 	src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
4520 	spin_unlock_irq(&css_set_lock);
4521 
4522 	/* thread migrations follow the cgroup.procs delegation rule */
4523 	ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp,
4524 					    of->file->f_path.dentry->d_sb);
4525 	if (ret)
4526 		goto out_finish;
4527 
4528 	/* and must be contained in the same domain */
4529 	ret = -EOPNOTSUPP;
4530 	if (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp)
4531 		goto out_finish;
4532 
4533 	ret = cgroup_attach_task(dst_cgrp, task, false);
4534 
4535 out_finish:
4536 	cgroup_procs_write_finish(task);
4537 out_unlock:
4538 	cgroup_kn_unlock(of->kn);
4539 
4540 	return ret ?: nbytes;
4541 }
4542 
4543 /* cgroup core interface files for the default hierarchy */
4544 static struct cftype cgroup_base_files[] = {
4545 	{
4546 		.name = "cgroup.type",
4547 		.flags = CFTYPE_NOT_ON_ROOT,
4548 		.seq_show = cgroup_type_show,
4549 		.write = cgroup_type_write,
4550 	},
4551 	{
4552 		.name = "cgroup.procs",
4553 		.flags = CFTYPE_NS_DELEGATABLE,
4554 		.file_offset = offsetof(struct cgroup, procs_file),
4555 		.release = cgroup_procs_release,
4556 		.seq_start = cgroup_procs_start,
4557 		.seq_next = cgroup_procs_next,
4558 		.seq_show = cgroup_procs_show,
4559 		.write = cgroup_procs_write,
4560 	},
4561 	{
4562 		.name = "cgroup.threads",
4563 		.flags = CFTYPE_NS_DELEGATABLE,
4564 		.release = cgroup_procs_release,
4565 		.seq_start = cgroup_threads_start,
4566 		.seq_next = cgroup_procs_next,
4567 		.seq_show = cgroup_procs_show,
4568 		.write = cgroup_threads_write,
4569 	},
4570 	{
4571 		.name = "cgroup.controllers",
4572 		.seq_show = cgroup_controllers_show,
4573 	},
4574 	{
4575 		.name = "cgroup.subtree_control",
4576 		.flags = CFTYPE_NS_DELEGATABLE,
4577 		.seq_show = cgroup_subtree_control_show,
4578 		.write = cgroup_subtree_control_write,
4579 	},
4580 	{
4581 		.name = "cgroup.events",
4582 		.flags = CFTYPE_NOT_ON_ROOT,
4583 		.file_offset = offsetof(struct cgroup, events_file),
4584 		.seq_show = cgroup_events_show,
4585 	},
4586 	{
4587 		.name = "cgroup.max.descendants",
4588 		.seq_show = cgroup_max_descendants_show,
4589 		.write = cgroup_max_descendants_write,
4590 	},
4591 	{
4592 		.name = "cgroup.max.depth",
4593 		.seq_show = cgroup_max_depth_show,
4594 		.write = cgroup_max_depth_write,
4595 	},
4596 	{
4597 		.name = "cgroup.stat",
4598 		.seq_show = cgroup_stat_show,
4599 	},
4600 	{
4601 		.name = "cpu.stat",
4602 		.flags = CFTYPE_NOT_ON_ROOT,
4603 		.seq_show = cpu_stat_show,
4604 	},
4605 #ifdef CONFIG_PSI
4606 	{
4607 		.name = "io.pressure",
4608 		.flags = CFTYPE_NOT_ON_ROOT,
4609 		.seq_show = cgroup_io_pressure_show,
4610 	},
4611 	{
4612 		.name = "memory.pressure",
4613 		.flags = CFTYPE_NOT_ON_ROOT,
4614 		.seq_show = cgroup_memory_pressure_show,
4615 	},
4616 	{
4617 		.name = "cpu.pressure",
4618 		.flags = CFTYPE_NOT_ON_ROOT,
4619 		.seq_show = cgroup_cpu_pressure_show,
4620 	},
4621 #endif
4622 	{ }	/* terminate */
4623 };
4624 
4625 /*
4626  * css destruction is four-stage process.
4627  *
4628  * 1. Destruction starts.  Killing of the percpu_ref is initiated.
4629  *    Implemented in kill_css().
4630  *
4631  * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
4632  *    and thus css_tryget_online() is guaranteed to fail, the css can be
4633  *    offlined by invoking offline_css().  After offlining, the base ref is
4634  *    put.  Implemented in css_killed_work_fn().
4635  *
4636  * 3. When the percpu_ref reaches zero, the only possible remaining
4637  *    accessors are inside RCU read sections.  css_release() schedules the
4638  *    RCU callback.
4639  *
4640  * 4. After the grace period, the css can be freed.  Implemented in
4641  *    css_free_work_fn().
4642  *
4643  * It is actually hairier because both step 2 and 4 require process context
4644  * and thus involve punting to css->destroy_work adding two additional
4645  * steps to the already complex sequence.
4646  */
4647 static void css_free_rwork_fn(struct work_struct *work)
4648 {
4649 	struct cgroup_subsys_state *css = container_of(to_rcu_work(work),
4650 				struct cgroup_subsys_state, destroy_rwork);
4651 	struct cgroup_subsys *ss = css->ss;
4652 	struct cgroup *cgrp = css->cgroup;
4653 
4654 	percpu_ref_exit(&css->refcnt);
4655 
4656 	if (ss) {
4657 		/* css free path */
4658 		struct cgroup_subsys_state *parent = css->parent;
4659 		int id = css->id;
4660 
4661 		ss->css_free(css);
4662 		cgroup_idr_remove(&ss->css_idr, id);
4663 		cgroup_put(cgrp);
4664 
4665 		if (parent)
4666 			css_put(parent);
4667 	} else {
4668 		/* cgroup free path */
4669 		atomic_dec(&cgrp->root->nr_cgrps);
4670 		cgroup1_pidlist_destroy_all(cgrp);
4671 		cancel_work_sync(&cgrp->release_agent_work);
4672 
4673 		if (cgroup_parent(cgrp)) {
4674 			/*
4675 			 * We get a ref to the parent, and put the ref when
4676 			 * this cgroup is being freed, so it's guaranteed
4677 			 * that the parent won't be destroyed before its
4678 			 * children.
4679 			 */
4680 			cgroup_put(cgroup_parent(cgrp));
4681 			kernfs_put(cgrp->kn);
4682 			psi_cgroup_free(cgrp);
4683 			if (cgroup_on_dfl(cgrp))
4684 				cgroup_rstat_exit(cgrp);
4685 			kfree(cgrp);
4686 		} else {
4687 			/*
4688 			 * This is root cgroup's refcnt reaching zero,
4689 			 * which indicates that the root should be
4690 			 * released.
4691 			 */
4692 			cgroup_destroy_root(cgrp->root);
4693 		}
4694 	}
4695 }
4696 
4697 static void css_release_work_fn(struct work_struct *work)
4698 {
4699 	struct cgroup_subsys_state *css =
4700 		container_of(work, struct cgroup_subsys_state, destroy_work);
4701 	struct cgroup_subsys *ss = css->ss;
4702 	struct cgroup *cgrp = css->cgroup;
4703 
4704 	mutex_lock(&cgroup_mutex);
4705 
4706 	css->flags |= CSS_RELEASED;
4707 	list_del_rcu(&css->sibling);
4708 
4709 	if (ss) {
4710 		/* css release path */
4711 		if (!list_empty(&css->rstat_css_node)) {
4712 			cgroup_rstat_flush(cgrp);
4713 			list_del_rcu(&css->rstat_css_node);
4714 		}
4715 
4716 		cgroup_idr_replace(&ss->css_idr, NULL, css->id);
4717 		if (ss->css_released)
4718 			ss->css_released(css);
4719 	} else {
4720 		struct cgroup *tcgrp;
4721 
4722 		/* cgroup release path */
4723 		TRACE_CGROUP_PATH(release, cgrp);
4724 
4725 		if (cgroup_on_dfl(cgrp))
4726 			cgroup_rstat_flush(cgrp);
4727 
4728 		for (tcgrp = cgroup_parent(cgrp); tcgrp;
4729 		     tcgrp = cgroup_parent(tcgrp))
4730 			tcgrp->nr_dying_descendants--;
4731 
4732 		cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4733 		cgrp->id = -1;
4734 
4735 		/*
4736 		 * There are two control paths which try to determine
4737 		 * cgroup from dentry without going through kernfs -
4738 		 * cgroupstats_build() and css_tryget_online_from_dir().
4739 		 * Those are supported by RCU protecting clearing of
4740 		 * cgrp->kn->priv backpointer.
4741 		 */
4742 		if (cgrp->kn)
4743 			RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
4744 					 NULL);
4745 
4746 		cgroup_bpf_put(cgrp);
4747 	}
4748 
4749 	mutex_unlock(&cgroup_mutex);
4750 
4751 	INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
4752 	queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
4753 }
4754 
4755 static void css_release(struct percpu_ref *ref)
4756 {
4757 	struct cgroup_subsys_state *css =
4758 		container_of(ref, struct cgroup_subsys_state, refcnt);
4759 
4760 	INIT_WORK(&css->destroy_work, css_release_work_fn);
4761 	queue_work(cgroup_destroy_wq, &css->destroy_work);
4762 }
4763 
4764 static void init_and_link_css(struct cgroup_subsys_state *css,
4765 			      struct cgroup_subsys *ss, struct cgroup *cgrp)
4766 {
4767 	lockdep_assert_held(&cgroup_mutex);
4768 
4769 	cgroup_get_live(cgrp);
4770 
4771 	memset(css, 0, sizeof(*css));
4772 	css->cgroup = cgrp;
4773 	css->ss = ss;
4774 	css->id = -1;
4775 	INIT_LIST_HEAD(&css->sibling);
4776 	INIT_LIST_HEAD(&css->children);
4777 	INIT_LIST_HEAD(&css->rstat_css_node);
4778 	css->serial_nr = css_serial_nr_next++;
4779 	atomic_set(&css->online_cnt, 0);
4780 
4781 	if (cgroup_parent(cgrp)) {
4782 		css->parent = cgroup_css(cgroup_parent(cgrp), ss);
4783 		css_get(css->parent);
4784 	}
4785 
4786 	if (cgroup_on_dfl(cgrp) && ss->css_rstat_flush)
4787 		list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list);
4788 
4789 	BUG_ON(cgroup_css(cgrp, ss));
4790 }
4791 
4792 /* invoke ->css_online() on a new CSS and mark it online if successful */
4793 static int online_css(struct cgroup_subsys_state *css)
4794 {
4795 	struct cgroup_subsys *ss = css->ss;
4796 	int ret = 0;
4797 
4798 	lockdep_assert_held(&cgroup_mutex);
4799 
4800 	if (ss->css_online)
4801 		ret = ss->css_online(css);
4802 	if (!ret) {
4803 		css->flags |= CSS_ONLINE;
4804 		rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
4805 
4806 		atomic_inc(&css->online_cnt);
4807 		if (css->parent)
4808 			atomic_inc(&css->parent->online_cnt);
4809 	}
4810 	return ret;
4811 }
4812 
4813 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
4814 static void offline_css(struct cgroup_subsys_state *css)
4815 {
4816 	struct cgroup_subsys *ss = css->ss;
4817 
4818 	lockdep_assert_held(&cgroup_mutex);
4819 
4820 	if (!(css->flags & CSS_ONLINE))
4821 		return;
4822 
4823 	if (ss->css_offline)
4824 		ss->css_offline(css);
4825 
4826 	css->flags &= ~CSS_ONLINE;
4827 	RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
4828 
4829 	wake_up_all(&css->cgroup->offline_waitq);
4830 }
4831 
4832 /**
4833  * css_create - create a cgroup_subsys_state
4834  * @cgrp: the cgroup new css will be associated with
4835  * @ss: the subsys of new css
4836  *
4837  * Create a new css associated with @cgrp - @ss pair.  On success, the new
4838  * css is online and installed in @cgrp.  This function doesn't create the
4839  * interface files.  Returns 0 on success, -errno on failure.
4840  */
4841 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
4842 					      struct cgroup_subsys *ss)
4843 {
4844 	struct cgroup *parent = cgroup_parent(cgrp);
4845 	struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
4846 	struct cgroup_subsys_state *css;
4847 	int err;
4848 
4849 	lockdep_assert_held(&cgroup_mutex);
4850 
4851 	css = ss->css_alloc(parent_css);
4852 	if (!css)
4853 		css = ERR_PTR(-ENOMEM);
4854 	if (IS_ERR(css))
4855 		return css;
4856 
4857 	init_and_link_css(css, ss, cgrp);
4858 
4859 	err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
4860 	if (err)
4861 		goto err_free_css;
4862 
4863 	err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
4864 	if (err < 0)
4865 		goto err_free_css;
4866 	css->id = err;
4867 
4868 	/* @css is ready to be brought online now, make it visible */
4869 	list_add_tail_rcu(&css->sibling, &parent_css->children);
4870 	cgroup_idr_replace(&ss->css_idr, css, css->id);
4871 
4872 	err = online_css(css);
4873 	if (err)
4874 		goto err_list_del;
4875 
4876 	if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
4877 	    cgroup_parent(parent)) {
4878 		pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4879 			current->comm, current->pid, ss->name);
4880 		if (!strcmp(ss->name, "memory"))
4881 			pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
4882 		ss->warned_broken_hierarchy = true;
4883 	}
4884 
4885 	return css;
4886 
4887 err_list_del:
4888 	list_del_rcu(&css->sibling);
4889 err_free_css:
4890 	list_del_rcu(&css->rstat_css_node);
4891 	INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
4892 	queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
4893 	return ERR_PTR(err);
4894 }
4895 
4896 /*
4897  * The returned cgroup is fully initialized including its control mask, but
4898  * it isn't associated with its kernfs_node and doesn't have the control
4899  * mask applied.
4900  */
4901 static struct cgroup *cgroup_create(struct cgroup *parent)
4902 {
4903 	struct cgroup_root *root = parent->root;
4904 	struct cgroup *cgrp, *tcgrp;
4905 	int level = parent->level + 1;
4906 	int ret;
4907 
4908 	/* allocate the cgroup and its ID, 0 is reserved for the root */
4909 	cgrp = kzalloc(struct_size(cgrp, ancestor_ids, (level + 1)),
4910 		       GFP_KERNEL);
4911 	if (!cgrp)
4912 		return ERR_PTR(-ENOMEM);
4913 
4914 	ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
4915 	if (ret)
4916 		goto out_free_cgrp;
4917 
4918 	if (cgroup_on_dfl(parent)) {
4919 		ret = cgroup_rstat_init(cgrp);
4920 		if (ret)
4921 			goto out_cancel_ref;
4922 	}
4923 
4924 	/*
4925 	 * Temporarily set the pointer to NULL, so idr_find() won't return
4926 	 * a half-baked cgroup.
4927 	 */
4928 	cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL);
4929 	if (cgrp->id < 0) {
4930 		ret = -ENOMEM;
4931 		goto out_stat_exit;
4932 	}
4933 
4934 	init_cgroup_housekeeping(cgrp);
4935 
4936 	cgrp->self.parent = &parent->self;
4937 	cgrp->root = root;
4938 	cgrp->level = level;
4939 
4940 	ret = psi_cgroup_alloc(cgrp);
4941 	if (ret)
4942 		goto out_idr_free;
4943 
4944 	ret = cgroup_bpf_inherit(cgrp);
4945 	if (ret)
4946 		goto out_psi_free;
4947 
4948 	for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) {
4949 		cgrp->ancestor_ids[tcgrp->level] = tcgrp->id;
4950 
4951 		if (tcgrp != cgrp)
4952 			tcgrp->nr_descendants++;
4953 	}
4954 
4955 	if (notify_on_release(parent))
4956 		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4957 
4958 	if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4959 		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
4960 
4961 	cgrp->self.serial_nr = css_serial_nr_next++;
4962 
4963 	/* allocation complete, commit to creation */
4964 	list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
4965 	atomic_inc(&root->nr_cgrps);
4966 	cgroup_get_live(parent);
4967 
4968 	/*
4969 	 * @cgrp is now fully operational.  If something fails after this
4970 	 * point, it'll be released via the normal destruction path.
4971 	 */
4972 	cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4973 
4974 	/*
4975 	 * On the default hierarchy, a child doesn't automatically inherit
4976 	 * subtree_control from the parent.  Each is configured manually.
4977 	 */
4978 	if (!cgroup_on_dfl(cgrp))
4979 		cgrp->subtree_control = cgroup_control(cgrp);
4980 
4981 	cgroup_propagate_control(cgrp);
4982 
4983 	return cgrp;
4984 
4985 out_psi_free:
4986 	psi_cgroup_free(cgrp);
4987 out_idr_free:
4988 	cgroup_idr_remove(&root->cgroup_idr, cgrp->id);
4989 out_stat_exit:
4990 	if (cgroup_on_dfl(parent))
4991 		cgroup_rstat_exit(cgrp);
4992 out_cancel_ref:
4993 	percpu_ref_exit(&cgrp->self.refcnt);
4994 out_free_cgrp:
4995 	kfree(cgrp);
4996 	return ERR_PTR(ret);
4997 }
4998 
4999 static bool cgroup_check_hierarchy_limits(struct cgroup *parent)
5000 {
5001 	struct cgroup *cgroup;
5002 	int ret = false;
5003 	int level = 1;
5004 
5005 	lockdep_assert_held(&cgroup_mutex);
5006 
5007 	for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) {
5008 		if (cgroup->nr_descendants >= cgroup->max_descendants)
5009 			goto fail;
5010 
5011 		if (level > cgroup->max_depth)
5012 			goto fail;
5013 
5014 		level++;
5015 	}
5016 
5017 	ret = true;
5018 fail:
5019 	return ret;
5020 }
5021 
5022 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode)
5023 {
5024 	struct cgroup *parent, *cgrp;
5025 	struct kernfs_node *kn;
5026 	int ret;
5027 
5028 	/* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
5029 	if (strchr(name, '\n'))
5030 		return -EINVAL;
5031 
5032 	parent = cgroup_kn_lock_live(parent_kn, false);
5033 	if (!parent)
5034 		return -ENODEV;
5035 
5036 	if (!cgroup_check_hierarchy_limits(parent)) {
5037 		ret = -EAGAIN;
5038 		goto out_unlock;
5039 	}
5040 
5041 	cgrp = cgroup_create(parent);
5042 	if (IS_ERR(cgrp)) {
5043 		ret = PTR_ERR(cgrp);
5044 		goto out_unlock;
5045 	}
5046 
5047 	/* create the directory */
5048 	kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
5049 	if (IS_ERR(kn)) {
5050 		ret = PTR_ERR(kn);
5051 		goto out_destroy;
5052 	}
5053 	cgrp->kn = kn;
5054 
5055 	/*
5056 	 * This extra ref will be put in cgroup_free_fn() and guarantees
5057 	 * that @cgrp->kn is always accessible.
5058 	 */
5059 	kernfs_get(kn);
5060 
5061 	ret = cgroup_kn_set_ugid(kn);
5062 	if (ret)
5063 		goto out_destroy;
5064 
5065 	ret = css_populate_dir(&cgrp->self);
5066 	if (ret)
5067 		goto out_destroy;
5068 
5069 	ret = cgroup_apply_control_enable(cgrp);
5070 	if (ret)
5071 		goto out_destroy;
5072 
5073 	TRACE_CGROUP_PATH(mkdir, cgrp);
5074 
5075 	/* let's create and online css's */
5076 	kernfs_activate(kn);
5077 
5078 	ret = 0;
5079 	goto out_unlock;
5080 
5081 out_destroy:
5082 	cgroup_destroy_locked(cgrp);
5083 out_unlock:
5084 	cgroup_kn_unlock(parent_kn);
5085 	return ret;
5086 }
5087 
5088 /*
5089  * This is called when the refcnt of a css is confirmed to be killed.
5090  * css_tryget_online() is now guaranteed to fail.  Tell the subsystem to
5091  * initate destruction and put the css ref from kill_css().
5092  */
5093 static void css_killed_work_fn(struct work_struct *work)
5094 {
5095 	struct cgroup_subsys_state *css =
5096 		container_of(work, struct cgroup_subsys_state, destroy_work);
5097 
5098 	mutex_lock(&cgroup_mutex);
5099 
5100 	do {
5101 		offline_css(css);
5102 		css_put(css);
5103 		/* @css can't go away while we're holding cgroup_mutex */
5104 		css = css->parent;
5105 	} while (css && atomic_dec_and_test(&css->online_cnt));
5106 
5107 	mutex_unlock(&cgroup_mutex);
5108 }
5109 
5110 /* css kill confirmation processing requires process context, bounce */
5111 static void css_killed_ref_fn(struct percpu_ref *ref)
5112 {
5113 	struct cgroup_subsys_state *css =
5114 		container_of(ref, struct cgroup_subsys_state, refcnt);
5115 
5116 	if (atomic_dec_and_test(&css->online_cnt)) {
5117 		INIT_WORK(&css->destroy_work, css_killed_work_fn);
5118 		queue_work(cgroup_destroy_wq, &css->destroy_work);
5119 	}
5120 }
5121 
5122 /**
5123  * kill_css - destroy a css
5124  * @css: css to destroy
5125  *
5126  * This function initiates destruction of @css by removing cgroup interface
5127  * files and putting its base reference.  ->css_offline() will be invoked
5128  * asynchronously once css_tryget_online() is guaranteed to fail and when
5129  * the reference count reaches zero, @css will be released.
5130  */
5131 static void kill_css(struct cgroup_subsys_state *css)
5132 {
5133 	lockdep_assert_held(&cgroup_mutex);
5134 
5135 	if (css->flags & CSS_DYING)
5136 		return;
5137 
5138 	css->flags |= CSS_DYING;
5139 
5140 	/*
5141 	 * This must happen before css is disassociated with its cgroup.
5142 	 * See seq_css() for details.
5143 	 */
5144 	css_clear_dir(css);
5145 
5146 	/*
5147 	 * Killing would put the base ref, but we need to keep it alive
5148 	 * until after ->css_offline().
5149 	 */
5150 	css_get(css);
5151 
5152 	/*
5153 	 * cgroup core guarantees that, by the time ->css_offline() is
5154 	 * invoked, no new css reference will be given out via
5155 	 * css_tryget_online().  We can't simply call percpu_ref_kill() and
5156 	 * proceed to offlining css's because percpu_ref_kill() doesn't
5157 	 * guarantee that the ref is seen as killed on all CPUs on return.
5158 	 *
5159 	 * Use percpu_ref_kill_and_confirm() to get notifications as each
5160 	 * css is confirmed to be seen as killed on all CPUs.
5161 	 */
5162 	percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
5163 }
5164 
5165 /**
5166  * cgroup_destroy_locked - the first stage of cgroup destruction
5167  * @cgrp: cgroup to be destroyed
5168  *
5169  * css's make use of percpu refcnts whose killing latency shouldn't be
5170  * exposed to userland and are RCU protected.  Also, cgroup core needs to
5171  * guarantee that css_tryget_online() won't succeed by the time
5172  * ->css_offline() is invoked.  To satisfy all the requirements,
5173  * destruction is implemented in the following two steps.
5174  *
5175  * s1. Verify @cgrp can be destroyed and mark it dying.  Remove all
5176  *     userland visible parts and start killing the percpu refcnts of
5177  *     css's.  Set up so that the next stage will be kicked off once all
5178  *     the percpu refcnts are confirmed to be killed.
5179  *
5180  * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5181  *     rest of destruction.  Once all cgroup references are gone, the
5182  *     cgroup is RCU-freed.
5183  *
5184  * This function implements s1.  After this step, @cgrp is gone as far as
5185  * the userland is concerned and a new cgroup with the same name may be
5186  * created.  As cgroup doesn't care about the names internally, this
5187  * doesn't cause any problem.
5188  */
5189 static int cgroup_destroy_locked(struct cgroup *cgrp)
5190 	__releases(&cgroup_mutex) __acquires(&cgroup_mutex)
5191 {
5192 	struct cgroup *tcgrp, *parent = cgroup_parent(cgrp);
5193 	struct cgroup_subsys_state *css;
5194 	struct cgrp_cset_link *link;
5195 	int ssid;
5196 
5197 	lockdep_assert_held(&cgroup_mutex);
5198 
5199 	/*
5200 	 * Only migration can raise populated from zero and we're already
5201 	 * holding cgroup_mutex.
5202 	 */
5203 	if (cgroup_is_populated(cgrp))
5204 		return -EBUSY;
5205 
5206 	/*
5207 	 * Make sure there's no live children.  We can't test emptiness of
5208 	 * ->self.children as dead children linger on it while being
5209 	 * drained; otherwise, "rmdir parent/child parent" may fail.
5210 	 */
5211 	if (css_has_online_children(&cgrp->self))
5212 		return -EBUSY;
5213 
5214 	/*
5215 	 * Mark @cgrp and the associated csets dead.  The former prevents
5216 	 * further task migration and child creation by disabling
5217 	 * cgroup_lock_live_group().  The latter makes the csets ignored by
5218 	 * the migration path.
5219 	 */
5220 	cgrp->self.flags &= ~CSS_ONLINE;
5221 
5222 	spin_lock_irq(&css_set_lock);
5223 	list_for_each_entry(link, &cgrp->cset_links, cset_link)
5224 		link->cset->dead = true;
5225 	spin_unlock_irq(&css_set_lock);
5226 
5227 	/* initiate massacre of all css's */
5228 	for_each_css(css, ssid, cgrp)
5229 		kill_css(css);
5230 
5231 	/* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */
5232 	css_clear_dir(&cgrp->self);
5233 	kernfs_remove(cgrp->kn);
5234 
5235 	if (parent && cgroup_is_threaded(cgrp))
5236 		parent->nr_threaded_children--;
5237 
5238 	for (tcgrp = cgroup_parent(cgrp); tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5239 		tcgrp->nr_descendants--;
5240 		tcgrp->nr_dying_descendants++;
5241 	}
5242 
5243 	cgroup1_check_for_release(parent);
5244 
5245 	/* put the base reference */
5246 	percpu_ref_kill(&cgrp->self.refcnt);
5247 
5248 	return 0;
5249 };
5250 
5251 int cgroup_rmdir(struct kernfs_node *kn)
5252 {
5253 	struct cgroup *cgrp;
5254 	int ret = 0;
5255 
5256 	cgrp = cgroup_kn_lock_live(kn, false);
5257 	if (!cgrp)
5258 		return 0;
5259 
5260 	ret = cgroup_destroy_locked(cgrp);
5261 	if (!ret)
5262 		TRACE_CGROUP_PATH(rmdir, cgrp);
5263 
5264 	cgroup_kn_unlock(kn);
5265 	return ret;
5266 }
5267 
5268 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5269 	.show_options		= cgroup_show_options,
5270 	.remount_fs		= cgroup_remount,
5271 	.mkdir			= cgroup_mkdir,
5272 	.rmdir			= cgroup_rmdir,
5273 	.show_path		= cgroup_show_path,
5274 };
5275 
5276 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
5277 {
5278 	struct cgroup_subsys_state *css;
5279 
5280 	pr_debug("Initializing cgroup subsys %s\n", ss->name);
5281 
5282 	mutex_lock(&cgroup_mutex);
5283 
5284 	idr_init(&ss->css_idr);
5285 	INIT_LIST_HEAD(&ss->cfts);
5286 
5287 	/* Create the root cgroup state for this subsystem */
5288 	ss->root = &cgrp_dfl_root;
5289 	css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
5290 	/* We don't handle early failures gracefully */
5291 	BUG_ON(IS_ERR(css));
5292 	init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
5293 
5294 	/*
5295 	 * Root csses are never destroyed and we can't initialize
5296 	 * percpu_ref during early init.  Disable refcnting.
5297 	 */
5298 	css->flags |= CSS_NO_REF;
5299 
5300 	if (early) {
5301 		/* allocation can't be done safely during early init */
5302 		css->id = 1;
5303 	} else {
5304 		css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5305 		BUG_ON(css->id < 0);
5306 	}
5307 
5308 	/* Update the init_css_set to contain a subsys
5309 	 * pointer to this state - since the subsystem is
5310 	 * newly registered, all tasks and hence the
5311 	 * init_css_set is in the subsystem's root cgroup. */
5312 	init_css_set.subsys[ss->id] = css;
5313 
5314 	have_fork_callback |= (bool)ss->fork << ss->id;
5315 	have_exit_callback |= (bool)ss->exit << ss->id;
5316 	have_free_callback |= (bool)ss->free << ss->id;
5317 	have_canfork_callback |= (bool)ss->can_fork << ss->id;
5318 
5319 	/* At system boot, before all subsystems have been
5320 	 * registered, no tasks have been forked, so we don't
5321 	 * need to invoke fork callbacks here. */
5322 	BUG_ON(!list_empty(&init_task.tasks));
5323 
5324 	BUG_ON(online_css(css));
5325 
5326 	mutex_unlock(&cgroup_mutex);
5327 }
5328 
5329 /**
5330  * cgroup_init_early - cgroup initialization at system boot
5331  *
5332  * Initialize cgroups at system boot, and initialize any
5333  * subsystems that request early init.
5334  */
5335 int __init cgroup_init_early(void)
5336 {
5337 	static struct cgroup_sb_opts __initdata opts;
5338 	struct cgroup_subsys *ss;
5339 	int i;
5340 
5341 	init_cgroup_root(&cgrp_dfl_root, &opts);
5342 	cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5343 
5344 	RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
5345 
5346 	for_each_subsys(ss, i) {
5347 		WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
5348 		     "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
5349 		     i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
5350 		     ss->id, ss->name);
5351 		WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5352 		     "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5353 
5354 		ss->id = i;
5355 		ss->name = cgroup_subsys_name[i];
5356 		if (!ss->legacy_name)
5357 			ss->legacy_name = cgroup_subsys_name[i];
5358 
5359 		if (ss->early_init)
5360 			cgroup_init_subsys(ss, true);
5361 	}
5362 	return 0;
5363 }
5364 
5365 static u16 cgroup_disable_mask __initdata;
5366 
5367 /**
5368  * cgroup_init - cgroup initialization
5369  *
5370  * Register cgroup filesystem and /proc file, and initialize
5371  * any subsystems that didn't request early init.
5372  */
5373 int __init cgroup_init(void)
5374 {
5375 	struct cgroup_subsys *ss;
5376 	int ssid;
5377 
5378 	BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
5379 	BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem));
5380 	BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
5381 	BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files));
5382 
5383 	cgroup_rstat_boot();
5384 
5385 	/*
5386 	 * The latency of the synchronize_rcu() is too high for cgroups,
5387 	 * avoid it at the cost of forcing all readers into the slow path.
5388 	 */
5389 	rcu_sync_enter_start(&cgroup_threadgroup_rwsem.rss);
5390 
5391 	get_user_ns(init_cgroup_ns.user_ns);
5392 
5393 	mutex_lock(&cgroup_mutex);
5394 
5395 	/*
5396 	 * Add init_css_set to the hash table so that dfl_root can link to
5397 	 * it during init.
5398 	 */
5399 	hash_add(css_set_table, &init_css_set.hlist,
5400 		 css_set_hash(init_css_set.subsys));
5401 
5402 	BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0, 0));
5403 
5404 	mutex_unlock(&cgroup_mutex);
5405 
5406 	for_each_subsys(ss, ssid) {
5407 		if (ss->early_init) {
5408 			struct cgroup_subsys_state *css =
5409 				init_css_set.subsys[ss->id];
5410 
5411 			css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5412 						   GFP_KERNEL);
5413 			BUG_ON(css->id < 0);
5414 		} else {
5415 			cgroup_init_subsys(ss, false);
5416 		}
5417 
5418 		list_add_tail(&init_css_set.e_cset_node[ssid],
5419 			      &cgrp_dfl_root.cgrp.e_csets[ssid]);
5420 
5421 		/*
5422 		 * Setting dfl_root subsys_mask needs to consider the
5423 		 * disabled flag and cftype registration needs kmalloc,
5424 		 * both of which aren't available during early_init.
5425 		 */
5426 		if (cgroup_disable_mask & (1 << ssid)) {
5427 			static_branch_disable(cgroup_subsys_enabled_key[ssid]);
5428 			printk(KERN_INFO "Disabling %s control group subsystem\n",
5429 			       ss->name);
5430 			continue;
5431 		}
5432 
5433 		if (cgroup1_ssid_disabled(ssid))
5434 			printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n",
5435 			       ss->name);
5436 
5437 		cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5438 
5439 		/* implicit controllers must be threaded too */
5440 		WARN_ON(ss->implicit_on_dfl && !ss->threaded);
5441 
5442 		if (ss->implicit_on_dfl)
5443 			cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
5444 		else if (!ss->dfl_cftypes)
5445 			cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
5446 
5447 		if (ss->threaded)
5448 			cgrp_dfl_threaded_ss_mask |= 1 << ss->id;
5449 
5450 		if (ss->dfl_cftypes == ss->legacy_cftypes) {
5451 			WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5452 		} else {
5453 			WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5454 			WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
5455 		}
5456 
5457 		if (ss->bind)
5458 			ss->bind(init_css_set.subsys[ssid]);
5459 
5460 		mutex_lock(&cgroup_mutex);
5461 		css_populate_dir(init_css_set.subsys[ssid]);
5462 		mutex_unlock(&cgroup_mutex);
5463 	}
5464 
5465 	/* init_css_set.subsys[] has been updated, re-hash */
5466 	hash_del(&init_css_set.hlist);
5467 	hash_add(css_set_table, &init_css_set.hlist,
5468 		 css_set_hash(init_css_set.subsys));
5469 
5470 	WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
5471 	WARN_ON(register_filesystem(&cgroup_fs_type));
5472 	WARN_ON(register_filesystem(&cgroup2_fs_type));
5473 	WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show));
5474 
5475 	return 0;
5476 }
5477 
5478 static int __init cgroup_wq_init(void)
5479 {
5480 	/*
5481 	 * There isn't much point in executing destruction path in
5482 	 * parallel.  Good chunk is serialized with cgroup_mutex anyway.
5483 	 * Use 1 for @max_active.
5484 	 *
5485 	 * We would prefer to do this in cgroup_init() above, but that
5486 	 * is called before init_workqueues(): so leave this until after.
5487 	 */
5488 	cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
5489 	BUG_ON(!cgroup_destroy_wq);
5490 	return 0;
5491 }
5492 core_initcall(cgroup_wq_init);
5493 
5494 void cgroup_path_from_kernfs_id(const union kernfs_node_id *id,
5495 					char *buf, size_t buflen)
5496 {
5497 	struct kernfs_node *kn;
5498 
5499 	kn = kernfs_get_node_by_id(cgrp_dfl_root.kf_root, id);
5500 	if (!kn)
5501 		return;
5502 	kernfs_path(kn, buf, buflen);
5503 	kernfs_put(kn);
5504 }
5505 
5506 /*
5507  * proc_cgroup_show()
5508  *  - Print task's cgroup paths into seq_file, one line for each hierarchy
5509  *  - Used for /proc/<pid>/cgroup.
5510  */
5511 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5512 		     struct pid *pid, struct task_struct *tsk)
5513 {
5514 	char *buf;
5515 	int retval;
5516 	struct cgroup_root *root;
5517 
5518 	retval = -ENOMEM;
5519 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
5520 	if (!buf)
5521 		goto out;
5522 
5523 	mutex_lock(&cgroup_mutex);
5524 	spin_lock_irq(&css_set_lock);
5525 
5526 	for_each_root(root) {
5527 		struct cgroup_subsys *ss;
5528 		struct cgroup *cgrp;
5529 		int ssid, count = 0;
5530 
5531 		if (root == &cgrp_dfl_root && !cgrp_dfl_visible)
5532 			continue;
5533 
5534 		seq_printf(m, "%d:", root->hierarchy_id);
5535 		if (root != &cgrp_dfl_root)
5536 			for_each_subsys(ss, ssid)
5537 				if (root->subsys_mask & (1 << ssid))
5538 					seq_printf(m, "%s%s", count++ ? "," : "",
5539 						   ss->legacy_name);
5540 		if (strlen(root->name))
5541 			seq_printf(m, "%sname=%s", count ? "," : "",
5542 				   root->name);
5543 		seq_putc(m, ':');
5544 
5545 		cgrp = task_cgroup_from_root(tsk, root);
5546 
5547 		/*
5548 		 * On traditional hierarchies, all zombie tasks show up as
5549 		 * belonging to the root cgroup.  On the default hierarchy,
5550 		 * while a zombie doesn't show up in "cgroup.procs" and
5551 		 * thus can't be migrated, its /proc/PID/cgroup keeps
5552 		 * reporting the cgroup it belonged to before exiting.  If
5553 		 * the cgroup is removed before the zombie is reaped,
5554 		 * " (deleted)" is appended to the cgroup path.
5555 		 */
5556 		if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
5557 			retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
5558 						current->nsproxy->cgroup_ns);
5559 			if (retval >= PATH_MAX)
5560 				retval = -ENAMETOOLONG;
5561 			if (retval < 0)
5562 				goto out_unlock;
5563 
5564 			seq_puts(m, buf);
5565 		} else {
5566 			seq_puts(m, "/");
5567 		}
5568 
5569 		if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
5570 			seq_puts(m, " (deleted)\n");
5571 		else
5572 			seq_putc(m, '\n');
5573 	}
5574 
5575 	retval = 0;
5576 out_unlock:
5577 	spin_unlock_irq(&css_set_lock);
5578 	mutex_unlock(&cgroup_mutex);
5579 	kfree(buf);
5580 out:
5581 	return retval;
5582 }
5583 
5584 /**
5585  * cgroup_fork - initialize cgroup related fields during copy_process()
5586  * @child: pointer to task_struct of forking parent process.
5587  *
5588  * A task is associated with the init_css_set until cgroup_post_fork()
5589  * attaches it to the parent's css_set.  Empty cg_list indicates that
5590  * @child isn't holding reference to its css_set.
5591  */
5592 void cgroup_fork(struct task_struct *child)
5593 {
5594 	RCU_INIT_POINTER(child->cgroups, &init_css_set);
5595 	INIT_LIST_HEAD(&child->cg_list);
5596 }
5597 
5598 /**
5599  * cgroup_can_fork - called on a new task before the process is exposed
5600  * @child: the task in question.
5601  *
5602  * This calls the subsystem can_fork() callbacks. If the can_fork() callback
5603  * returns an error, the fork aborts with that error code. This allows for
5604  * a cgroup subsystem to conditionally allow or deny new forks.
5605  */
5606 int cgroup_can_fork(struct task_struct *child)
5607 {
5608 	struct cgroup_subsys *ss;
5609 	int i, j, ret;
5610 
5611 	do_each_subsys_mask(ss, i, have_canfork_callback) {
5612 		ret = ss->can_fork(child);
5613 		if (ret)
5614 			goto out_revert;
5615 	} while_each_subsys_mask();
5616 
5617 	return 0;
5618 
5619 out_revert:
5620 	for_each_subsys(ss, j) {
5621 		if (j >= i)
5622 			break;
5623 		if (ss->cancel_fork)
5624 			ss->cancel_fork(child);
5625 	}
5626 
5627 	return ret;
5628 }
5629 
5630 /**
5631  * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
5632  * @child: the task in question
5633  *
5634  * This calls the cancel_fork() callbacks if a fork failed *after*
5635  * cgroup_can_fork() succeded.
5636  */
5637 void cgroup_cancel_fork(struct task_struct *child)
5638 {
5639 	struct cgroup_subsys *ss;
5640 	int i;
5641 
5642 	for_each_subsys(ss, i)
5643 		if (ss->cancel_fork)
5644 			ss->cancel_fork(child);
5645 }
5646 
5647 /**
5648  * cgroup_post_fork - called on a new task after adding it to the task list
5649  * @child: the task in question
5650  *
5651  * Adds the task to the list running through its css_set if necessary and
5652  * call the subsystem fork() callbacks.  Has to be after the task is
5653  * visible on the task list in case we race with the first call to
5654  * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5655  * list.
5656  */
5657 void cgroup_post_fork(struct task_struct *child)
5658 {
5659 	struct cgroup_subsys *ss;
5660 	int i;
5661 
5662 	/*
5663 	 * This may race against cgroup_enable_task_cg_lists().  As that
5664 	 * function sets use_task_css_set_links before grabbing
5665 	 * tasklist_lock and we just went through tasklist_lock to add
5666 	 * @child, it's guaranteed that either we see the set
5667 	 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5668 	 * @child during its iteration.
5669 	 *
5670 	 * If we won the race, @child is associated with %current's
5671 	 * css_set.  Grabbing css_set_lock guarantees both that the
5672 	 * association is stable, and, on completion of the parent's
5673 	 * migration, @child is visible in the source of migration or
5674 	 * already in the destination cgroup.  This guarantee is necessary
5675 	 * when implementing operations which need to migrate all tasks of
5676 	 * a cgroup to another.
5677 	 *
5678 	 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
5679 	 * will remain in init_css_set.  This is safe because all tasks are
5680 	 * in the init_css_set before cg_links is enabled and there's no
5681 	 * operation which transfers all tasks out of init_css_set.
5682 	 */
5683 	if (use_task_css_set_links) {
5684 		struct css_set *cset;
5685 
5686 		spin_lock_irq(&css_set_lock);
5687 		cset = task_css_set(current);
5688 		if (list_empty(&child->cg_list)) {
5689 			get_css_set(cset);
5690 			cset->nr_tasks++;
5691 			css_set_move_task(child, NULL, cset, false);
5692 		}
5693 		spin_unlock_irq(&css_set_lock);
5694 	}
5695 
5696 	/*
5697 	 * Call ss->fork().  This must happen after @child is linked on
5698 	 * css_set; otherwise, @child might change state between ->fork()
5699 	 * and addition to css_set.
5700 	 */
5701 	do_each_subsys_mask(ss, i, have_fork_callback) {
5702 		ss->fork(child);
5703 	} while_each_subsys_mask();
5704 }
5705 
5706 /**
5707  * cgroup_exit - detach cgroup from exiting task
5708  * @tsk: pointer to task_struct of exiting process
5709  *
5710  * Description: Detach cgroup from @tsk and release it.
5711  *
5712  * Note that cgroups marked notify_on_release force every task in
5713  * them to take the global cgroup_mutex mutex when exiting.
5714  * This could impact scaling on very large systems.  Be reluctant to
5715  * use notify_on_release cgroups where very high task exit scaling
5716  * is required on large systems.
5717  *
5718  * We set the exiting tasks cgroup to the root cgroup (top_cgroup).  We
5719  * call cgroup_exit() while the task is still competent to handle
5720  * notify_on_release(), then leave the task attached to the root cgroup in
5721  * each hierarchy for the remainder of its exit.  No need to bother with
5722  * init_css_set refcnting.  init_css_set never goes away and we can't race
5723  * with migration path - PF_EXITING is visible to migration path.
5724  */
5725 void cgroup_exit(struct task_struct *tsk)
5726 {
5727 	struct cgroup_subsys *ss;
5728 	struct css_set *cset;
5729 	int i;
5730 
5731 	/*
5732 	 * Unlink from @tsk from its css_set.  As migration path can't race
5733 	 * with us, we can check css_set and cg_list without synchronization.
5734 	 */
5735 	cset = task_css_set(tsk);
5736 
5737 	if (!list_empty(&tsk->cg_list)) {
5738 		spin_lock_irq(&css_set_lock);
5739 		css_set_move_task(tsk, cset, NULL, false);
5740 		cset->nr_tasks--;
5741 		spin_unlock_irq(&css_set_lock);
5742 	} else {
5743 		get_css_set(cset);
5744 	}
5745 
5746 	/* see cgroup_post_fork() for details */
5747 	do_each_subsys_mask(ss, i, have_exit_callback) {
5748 		ss->exit(tsk);
5749 	} while_each_subsys_mask();
5750 }
5751 
5752 void cgroup_free(struct task_struct *task)
5753 {
5754 	struct css_set *cset = task_css_set(task);
5755 	struct cgroup_subsys *ss;
5756 	int ssid;
5757 
5758 	do_each_subsys_mask(ss, ssid, have_free_callback) {
5759 		ss->free(task);
5760 	} while_each_subsys_mask();
5761 
5762 	put_css_set(cset);
5763 }
5764 
5765 static int __init cgroup_disable(char *str)
5766 {
5767 	struct cgroup_subsys *ss;
5768 	char *token;
5769 	int i;
5770 
5771 	while ((token = strsep(&str, ",")) != NULL) {
5772 		if (!*token)
5773 			continue;
5774 
5775 		for_each_subsys(ss, i) {
5776 			if (strcmp(token, ss->name) &&
5777 			    strcmp(token, ss->legacy_name))
5778 				continue;
5779 			cgroup_disable_mask |= 1 << i;
5780 		}
5781 	}
5782 	return 1;
5783 }
5784 __setup("cgroup_disable=", cgroup_disable);
5785 
5786 void __init __weak enable_debug_cgroup(void) { }
5787 
5788 static int __init enable_cgroup_debug(char *str)
5789 {
5790 	cgroup_debug = true;
5791 	enable_debug_cgroup();
5792 	return 1;
5793 }
5794 __setup("cgroup_debug", enable_cgroup_debug);
5795 
5796 /**
5797  * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
5798  * @dentry: directory dentry of interest
5799  * @ss: subsystem of interest
5800  *
5801  * If @dentry is a directory for a cgroup which has @ss enabled on it, try
5802  * to get the corresponding css and return it.  If such css doesn't exist
5803  * or can't be pinned, an ERR_PTR value is returned.
5804  */
5805 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
5806 						       struct cgroup_subsys *ss)
5807 {
5808 	struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
5809 	struct file_system_type *s_type = dentry->d_sb->s_type;
5810 	struct cgroup_subsys_state *css = NULL;
5811 	struct cgroup *cgrp;
5812 
5813 	/* is @dentry a cgroup dir? */
5814 	if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
5815 	    !kn || kernfs_type(kn) != KERNFS_DIR)
5816 		return ERR_PTR(-EBADF);
5817 
5818 	rcu_read_lock();
5819 
5820 	/*
5821 	 * This path doesn't originate from kernfs and @kn could already
5822 	 * have been or be removed at any point.  @kn->priv is RCU
5823 	 * protected for this access.  See css_release_work_fn() for details.
5824 	 */
5825 	cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
5826 	if (cgrp)
5827 		css = cgroup_css(cgrp, ss);
5828 
5829 	if (!css || !css_tryget_online(css))
5830 		css = ERR_PTR(-ENOENT);
5831 
5832 	rcu_read_unlock();
5833 	return css;
5834 }
5835 
5836 /**
5837  * css_from_id - lookup css by id
5838  * @id: the cgroup id
5839  * @ss: cgroup subsys to be looked into
5840  *
5841  * Returns the css if there's valid one with @id, otherwise returns NULL.
5842  * Should be called under rcu_read_lock().
5843  */
5844 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
5845 {
5846 	WARN_ON_ONCE(!rcu_read_lock_held());
5847 	return idr_find(&ss->css_idr, id);
5848 }
5849 
5850 /**
5851  * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
5852  * @path: path on the default hierarchy
5853  *
5854  * Find the cgroup at @path on the default hierarchy, increment its
5855  * reference count and return it.  Returns pointer to the found cgroup on
5856  * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR)
5857  * if @path points to a non-directory.
5858  */
5859 struct cgroup *cgroup_get_from_path(const char *path)
5860 {
5861 	struct kernfs_node *kn;
5862 	struct cgroup *cgrp;
5863 
5864 	mutex_lock(&cgroup_mutex);
5865 
5866 	kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path);
5867 	if (kn) {
5868 		if (kernfs_type(kn) == KERNFS_DIR) {
5869 			cgrp = kn->priv;
5870 			cgroup_get_live(cgrp);
5871 		} else {
5872 			cgrp = ERR_PTR(-ENOTDIR);
5873 		}
5874 		kernfs_put(kn);
5875 	} else {
5876 		cgrp = ERR_PTR(-ENOENT);
5877 	}
5878 
5879 	mutex_unlock(&cgroup_mutex);
5880 	return cgrp;
5881 }
5882 EXPORT_SYMBOL_GPL(cgroup_get_from_path);
5883 
5884 /**
5885  * cgroup_get_from_fd - get a cgroup pointer from a fd
5886  * @fd: fd obtained by open(cgroup2_dir)
5887  *
5888  * Find the cgroup from a fd which should be obtained
5889  * by opening a cgroup directory.  Returns a pointer to the
5890  * cgroup on success. ERR_PTR is returned if the cgroup
5891  * cannot be found.
5892  */
5893 struct cgroup *cgroup_get_from_fd(int fd)
5894 {
5895 	struct cgroup_subsys_state *css;
5896 	struct cgroup *cgrp;
5897 	struct file *f;
5898 
5899 	f = fget_raw(fd);
5900 	if (!f)
5901 		return ERR_PTR(-EBADF);
5902 
5903 	css = css_tryget_online_from_dir(f->f_path.dentry, NULL);
5904 	fput(f);
5905 	if (IS_ERR(css))
5906 		return ERR_CAST(css);
5907 
5908 	cgrp = css->cgroup;
5909 	if (!cgroup_on_dfl(cgrp)) {
5910 		cgroup_put(cgrp);
5911 		return ERR_PTR(-EBADF);
5912 	}
5913 
5914 	return cgrp;
5915 }
5916 EXPORT_SYMBOL_GPL(cgroup_get_from_fd);
5917 
5918 /*
5919  * sock->sk_cgrp_data handling.  For more info, see sock_cgroup_data
5920  * definition in cgroup-defs.h.
5921  */
5922 #ifdef CONFIG_SOCK_CGROUP_DATA
5923 
5924 #if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID)
5925 
5926 DEFINE_SPINLOCK(cgroup_sk_update_lock);
5927 static bool cgroup_sk_alloc_disabled __read_mostly;
5928 
5929 void cgroup_sk_alloc_disable(void)
5930 {
5931 	if (cgroup_sk_alloc_disabled)
5932 		return;
5933 	pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n");
5934 	cgroup_sk_alloc_disabled = true;
5935 }
5936 
5937 #else
5938 
5939 #define cgroup_sk_alloc_disabled	false
5940 
5941 #endif
5942 
5943 void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
5944 {
5945 	if (cgroup_sk_alloc_disabled)
5946 		return;
5947 
5948 	/* Socket clone path */
5949 	if (skcd->val) {
5950 		/*
5951 		 * We might be cloning a socket which is left in an empty
5952 		 * cgroup and the cgroup might have already been rmdir'd.
5953 		 * Don't use cgroup_get_live().
5954 		 */
5955 		cgroup_get(sock_cgroup_ptr(skcd));
5956 		return;
5957 	}
5958 
5959 	rcu_read_lock();
5960 
5961 	while (true) {
5962 		struct css_set *cset;
5963 
5964 		cset = task_css_set(current);
5965 		if (likely(cgroup_tryget(cset->dfl_cgrp))) {
5966 			skcd->val = (unsigned long)cset->dfl_cgrp;
5967 			break;
5968 		}
5969 		cpu_relax();
5970 	}
5971 
5972 	rcu_read_unlock();
5973 }
5974 
5975 void cgroup_sk_free(struct sock_cgroup_data *skcd)
5976 {
5977 	cgroup_put(sock_cgroup_ptr(skcd));
5978 }
5979 
5980 #endif	/* CONFIG_SOCK_CGROUP_DATA */
5981 
5982 #ifdef CONFIG_CGROUP_BPF
5983 int cgroup_bpf_attach(struct cgroup *cgrp, struct bpf_prog *prog,
5984 		      enum bpf_attach_type type, u32 flags)
5985 {
5986 	int ret;
5987 
5988 	mutex_lock(&cgroup_mutex);
5989 	ret = __cgroup_bpf_attach(cgrp, prog, type, flags);
5990 	mutex_unlock(&cgroup_mutex);
5991 	return ret;
5992 }
5993 int cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog,
5994 		      enum bpf_attach_type type, u32 flags)
5995 {
5996 	int ret;
5997 
5998 	mutex_lock(&cgroup_mutex);
5999 	ret = __cgroup_bpf_detach(cgrp, prog, type, flags);
6000 	mutex_unlock(&cgroup_mutex);
6001 	return ret;
6002 }
6003 int cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr,
6004 		     union bpf_attr __user *uattr)
6005 {
6006 	int ret;
6007 
6008 	mutex_lock(&cgroup_mutex);
6009 	ret = __cgroup_bpf_query(cgrp, attr, uattr);
6010 	mutex_unlock(&cgroup_mutex);
6011 	return ret;
6012 }
6013 #endif /* CONFIG_CGROUP_BPF */
6014 
6015 #ifdef CONFIG_SYSFS
6016 static ssize_t show_delegatable_files(struct cftype *files, char *buf,
6017 				      ssize_t size, const char *prefix)
6018 {
6019 	struct cftype *cft;
6020 	ssize_t ret = 0;
6021 
6022 	for (cft = files; cft && cft->name[0] != '\0'; cft++) {
6023 		if (!(cft->flags & CFTYPE_NS_DELEGATABLE))
6024 			continue;
6025 
6026 		if (prefix)
6027 			ret += snprintf(buf + ret, size - ret, "%s.", prefix);
6028 
6029 		ret += snprintf(buf + ret, size - ret, "%s\n", cft->name);
6030 
6031 		if (WARN_ON(ret >= size))
6032 			break;
6033 	}
6034 
6035 	return ret;
6036 }
6037 
6038 static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr,
6039 			      char *buf)
6040 {
6041 	struct cgroup_subsys *ss;
6042 	int ssid;
6043 	ssize_t ret = 0;
6044 
6045 	ret = show_delegatable_files(cgroup_base_files, buf, PAGE_SIZE - ret,
6046 				     NULL);
6047 
6048 	for_each_subsys(ss, ssid)
6049 		ret += show_delegatable_files(ss->dfl_cftypes, buf + ret,
6050 					      PAGE_SIZE - ret,
6051 					      cgroup_subsys_name[ssid]);
6052 
6053 	return ret;
6054 }
6055 static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate);
6056 
6057 static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr,
6058 			     char *buf)
6059 {
6060 	return snprintf(buf, PAGE_SIZE, "nsdelegate\n");
6061 }
6062 static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features);
6063 
6064 static struct attribute *cgroup_sysfs_attrs[] = {
6065 	&cgroup_delegate_attr.attr,
6066 	&cgroup_features_attr.attr,
6067 	NULL,
6068 };
6069 
6070 static const struct attribute_group cgroup_sysfs_attr_group = {
6071 	.attrs = cgroup_sysfs_attrs,
6072 	.name = "cgroup",
6073 };
6074 
6075 static int __init cgroup_sysfs_init(void)
6076 {
6077 	return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group);
6078 }
6079 subsys_initcall(cgroup_sysfs_init);
6080 #endif /* CONFIG_SYSFS */
6081