1 /* 2 * Generic process-grouping system. 3 * 4 * Based originally on the cpuset system, extracted by Paul Menage 5 * Copyright (C) 2006 Google, Inc 6 * 7 * Notifications support 8 * Copyright (C) 2009 Nokia Corporation 9 * Author: Kirill A. Shutemov 10 * 11 * Copyright notices from the original cpuset code: 12 * -------------------------------------------------- 13 * Copyright (C) 2003 BULL SA. 14 * Copyright (C) 2004-2006 Silicon Graphics, Inc. 15 * 16 * Portions derived from Patrick Mochel's sysfs code. 17 * sysfs is Copyright (c) 2001-3 Patrick Mochel 18 * 19 * 2003-10-10 Written by Simon Derr. 20 * 2003-10-22 Updates by Stephen Hemminger. 21 * 2004 May-July Rework by Paul Jackson. 22 * --------------------------------------------------- 23 * 24 * This file is subject to the terms and conditions of the GNU General Public 25 * License. See the file COPYING in the main directory of the Linux 26 * distribution for more details. 27 */ 28 29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 30 31 #include "cgroup-internal.h" 32 33 #include <linux/cred.h> 34 #include <linux/errno.h> 35 #include <linux/init_task.h> 36 #include <linux/kernel.h> 37 #include <linux/magic.h> 38 #include <linux/mutex.h> 39 #include <linux/mount.h> 40 #include <linux/pagemap.h> 41 #include <linux/proc_fs.h> 42 #include <linux/rcupdate.h> 43 #include <linux/sched.h> 44 #include <linux/sched/task.h> 45 #include <linux/slab.h> 46 #include <linux/spinlock.h> 47 #include <linux/percpu-rwsem.h> 48 #include <linux/string.h> 49 #include <linux/hashtable.h> 50 #include <linux/idr.h> 51 #include <linux/kthread.h> 52 #include <linux/atomic.h> 53 #include <linux/cpuset.h> 54 #include <linux/proc_ns.h> 55 #include <linux/nsproxy.h> 56 #include <linux/file.h> 57 #include <linux/sched/cputime.h> 58 #include <net/sock.h> 59 60 #define CREATE_TRACE_POINTS 61 #include <trace/events/cgroup.h> 62 63 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \ 64 MAX_CFTYPE_NAME + 2) 65 /* let's not notify more than 100 times per second */ 66 #define CGROUP_FILE_NOTIFY_MIN_INTV DIV_ROUND_UP(HZ, 100) 67 68 /* 69 * cgroup_mutex is the master lock. Any modification to cgroup or its 70 * hierarchy must be performed while holding it. 71 * 72 * css_set_lock protects task->cgroups pointer, the list of css_set 73 * objects, and the chain of tasks off each css_set. 74 * 75 * These locks are exported if CONFIG_PROVE_RCU so that accessors in 76 * cgroup.h can use them for lockdep annotations. 77 */ 78 DEFINE_MUTEX(cgroup_mutex); 79 DEFINE_SPINLOCK(css_set_lock); 80 81 #ifdef CONFIG_PROVE_RCU 82 EXPORT_SYMBOL_GPL(cgroup_mutex); 83 EXPORT_SYMBOL_GPL(css_set_lock); 84 #endif 85 86 DEFINE_SPINLOCK(trace_cgroup_path_lock); 87 char trace_cgroup_path[TRACE_CGROUP_PATH_LEN]; 88 89 /* 90 * Protects cgroup_idr and css_idr so that IDs can be released without 91 * grabbing cgroup_mutex. 92 */ 93 static DEFINE_SPINLOCK(cgroup_idr_lock); 94 95 /* 96 * Protects cgroup_file->kn for !self csses. It synchronizes notifications 97 * against file removal/re-creation across css hiding. 98 */ 99 static DEFINE_SPINLOCK(cgroup_file_kn_lock); 100 101 struct percpu_rw_semaphore cgroup_threadgroup_rwsem; 102 103 #define cgroup_assert_mutex_or_rcu_locked() \ 104 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \ 105 !lockdep_is_held(&cgroup_mutex), \ 106 "cgroup_mutex or RCU read lock required"); 107 108 /* 109 * cgroup destruction makes heavy use of work items and there can be a lot 110 * of concurrent destructions. Use a separate workqueue so that cgroup 111 * destruction work items don't end up filling up max_active of system_wq 112 * which may lead to deadlock. 113 */ 114 static struct workqueue_struct *cgroup_destroy_wq; 115 116 /* generate an array of cgroup subsystem pointers */ 117 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys, 118 struct cgroup_subsys *cgroup_subsys[] = { 119 #include <linux/cgroup_subsys.h> 120 }; 121 #undef SUBSYS 122 123 /* array of cgroup subsystem names */ 124 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x, 125 static const char *cgroup_subsys_name[] = { 126 #include <linux/cgroup_subsys.h> 127 }; 128 #undef SUBSYS 129 130 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */ 131 #define SUBSYS(_x) \ 132 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \ 133 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \ 134 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \ 135 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key); 136 #include <linux/cgroup_subsys.h> 137 #undef SUBSYS 138 139 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key, 140 static struct static_key_true *cgroup_subsys_enabled_key[] = { 141 #include <linux/cgroup_subsys.h> 142 }; 143 #undef SUBSYS 144 145 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key, 146 static struct static_key_true *cgroup_subsys_on_dfl_key[] = { 147 #include <linux/cgroup_subsys.h> 148 }; 149 #undef SUBSYS 150 151 static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu); 152 153 /* 154 * The default hierarchy, reserved for the subsystems that are otherwise 155 * unattached - it never has more than a single cgroup, and all tasks are 156 * part of that cgroup. 157 */ 158 struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu }; 159 EXPORT_SYMBOL_GPL(cgrp_dfl_root); 160 161 /* 162 * The default hierarchy always exists but is hidden until mounted for the 163 * first time. This is for backward compatibility. 164 */ 165 static bool cgrp_dfl_visible; 166 167 /* some controllers are not supported in the default hierarchy */ 168 static u16 cgrp_dfl_inhibit_ss_mask; 169 170 /* some controllers are implicitly enabled on the default hierarchy */ 171 static u16 cgrp_dfl_implicit_ss_mask; 172 173 /* some controllers can be threaded on the default hierarchy */ 174 static u16 cgrp_dfl_threaded_ss_mask; 175 176 /* The list of hierarchy roots */ 177 LIST_HEAD(cgroup_roots); 178 static int cgroup_root_count; 179 180 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */ 181 static DEFINE_IDR(cgroup_hierarchy_idr); 182 183 /* 184 * Assign a monotonically increasing serial number to csses. It guarantees 185 * cgroups with bigger numbers are newer than those with smaller numbers. 186 * Also, as csses are always appended to the parent's ->children list, it 187 * guarantees that sibling csses are always sorted in the ascending serial 188 * number order on the list. Protected by cgroup_mutex. 189 */ 190 static u64 css_serial_nr_next = 1; 191 192 /* 193 * These bitmasks identify subsystems with specific features to avoid 194 * having to do iterative checks repeatedly. 195 */ 196 static u16 have_fork_callback __read_mostly; 197 static u16 have_exit_callback __read_mostly; 198 static u16 have_free_callback __read_mostly; 199 static u16 have_canfork_callback __read_mostly; 200 201 /* cgroup namespace for init task */ 202 struct cgroup_namespace init_cgroup_ns = { 203 .count = REFCOUNT_INIT(2), 204 .user_ns = &init_user_ns, 205 .ns.ops = &cgroupns_operations, 206 .ns.inum = PROC_CGROUP_INIT_INO, 207 .root_cset = &init_css_set, 208 }; 209 210 static struct file_system_type cgroup2_fs_type; 211 static struct cftype cgroup_base_files[]; 212 213 static int cgroup_apply_control(struct cgroup *cgrp); 214 static void cgroup_finalize_control(struct cgroup *cgrp, int ret); 215 static void css_task_iter_advance(struct css_task_iter *it); 216 static int cgroup_destroy_locked(struct cgroup *cgrp); 217 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp, 218 struct cgroup_subsys *ss); 219 static void css_release(struct percpu_ref *ref); 220 static void kill_css(struct cgroup_subsys_state *css); 221 static int cgroup_addrm_files(struct cgroup_subsys_state *css, 222 struct cgroup *cgrp, struct cftype cfts[], 223 bool is_add); 224 225 /** 226 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID 227 * @ssid: subsys ID of interest 228 * 229 * cgroup_subsys_enabled() can only be used with literal subsys names which 230 * is fine for individual subsystems but unsuitable for cgroup core. This 231 * is slower static_key_enabled() based test indexed by @ssid. 232 */ 233 bool cgroup_ssid_enabled(int ssid) 234 { 235 if (CGROUP_SUBSYS_COUNT == 0) 236 return false; 237 238 return static_key_enabled(cgroup_subsys_enabled_key[ssid]); 239 } 240 241 /** 242 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy 243 * @cgrp: the cgroup of interest 244 * 245 * The default hierarchy is the v2 interface of cgroup and this function 246 * can be used to test whether a cgroup is on the default hierarchy for 247 * cases where a subsystem should behave differnetly depending on the 248 * interface version. 249 * 250 * The set of behaviors which change on the default hierarchy are still 251 * being determined and the mount option is prefixed with __DEVEL__. 252 * 253 * List of changed behaviors: 254 * 255 * - Mount options "noprefix", "xattr", "clone_children", "release_agent" 256 * and "name" are disallowed. 257 * 258 * - When mounting an existing superblock, mount options should match. 259 * 260 * - Remount is disallowed. 261 * 262 * - rename(2) is disallowed. 263 * 264 * - "tasks" is removed. Everything should be at process granularity. Use 265 * "cgroup.procs" instead. 266 * 267 * - "cgroup.procs" is not sorted. pids will be unique unless they got 268 * recycled inbetween reads. 269 * 270 * - "release_agent" and "notify_on_release" are removed. Replacement 271 * notification mechanism will be implemented. 272 * 273 * - "cgroup.clone_children" is removed. 274 * 275 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup 276 * and its descendants contain no task; otherwise, 1. The file also 277 * generates kernfs notification which can be monitored through poll and 278 * [di]notify when the value of the file changes. 279 * 280 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and 281 * take masks of ancestors with non-empty cpus/mems, instead of being 282 * moved to an ancestor. 283 * 284 * - cpuset: a task can be moved into an empty cpuset, and again it takes 285 * masks of ancestors. 286 * 287 * - memcg: use_hierarchy is on by default and the cgroup file for the flag 288 * is not created. 289 * 290 * - blkcg: blk-throttle becomes properly hierarchical. 291 * 292 * - debug: disallowed on the default hierarchy. 293 */ 294 bool cgroup_on_dfl(const struct cgroup *cgrp) 295 { 296 return cgrp->root == &cgrp_dfl_root; 297 } 298 299 /* IDR wrappers which synchronize using cgroup_idr_lock */ 300 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end, 301 gfp_t gfp_mask) 302 { 303 int ret; 304 305 idr_preload(gfp_mask); 306 spin_lock_bh(&cgroup_idr_lock); 307 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM); 308 spin_unlock_bh(&cgroup_idr_lock); 309 idr_preload_end(); 310 return ret; 311 } 312 313 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id) 314 { 315 void *ret; 316 317 spin_lock_bh(&cgroup_idr_lock); 318 ret = idr_replace(idr, ptr, id); 319 spin_unlock_bh(&cgroup_idr_lock); 320 return ret; 321 } 322 323 static void cgroup_idr_remove(struct idr *idr, int id) 324 { 325 spin_lock_bh(&cgroup_idr_lock); 326 idr_remove(idr, id); 327 spin_unlock_bh(&cgroup_idr_lock); 328 } 329 330 static bool cgroup_has_tasks(struct cgroup *cgrp) 331 { 332 return cgrp->nr_populated_csets; 333 } 334 335 bool cgroup_is_threaded(struct cgroup *cgrp) 336 { 337 return cgrp->dom_cgrp != cgrp; 338 } 339 340 /* can @cgrp host both domain and threaded children? */ 341 static bool cgroup_is_mixable(struct cgroup *cgrp) 342 { 343 /* 344 * Root isn't under domain level resource control exempting it from 345 * the no-internal-process constraint, so it can serve as a thread 346 * root and a parent of resource domains at the same time. 347 */ 348 return !cgroup_parent(cgrp); 349 } 350 351 /* can @cgrp become a thread root? should always be true for a thread root */ 352 static bool cgroup_can_be_thread_root(struct cgroup *cgrp) 353 { 354 /* mixables don't care */ 355 if (cgroup_is_mixable(cgrp)) 356 return true; 357 358 /* domain roots can't be nested under threaded */ 359 if (cgroup_is_threaded(cgrp)) 360 return false; 361 362 /* can only have either domain or threaded children */ 363 if (cgrp->nr_populated_domain_children) 364 return false; 365 366 /* and no domain controllers can be enabled */ 367 if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask) 368 return false; 369 370 return true; 371 } 372 373 /* is @cgrp root of a threaded subtree? */ 374 bool cgroup_is_thread_root(struct cgroup *cgrp) 375 { 376 /* thread root should be a domain */ 377 if (cgroup_is_threaded(cgrp)) 378 return false; 379 380 /* a domain w/ threaded children is a thread root */ 381 if (cgrp->nr_threaded_children) 382 return true; 383 384 /* 385 * A domain which has tasks and explicit threaded controllers 386 * enabled is a thread root. 387 */ 388 if (cgroup_has_tasks(cgrp) && 389 (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask)) 390 return true; 391 392 return false; 393 } 394 395 /* a domain which isn't connected to the root w/o brekage can't be used */ 396 static bool cgroup_is_valid_domain(struct cgroup *cgrp) 397 { 398 /* the cgroup itself can be a thread root */ 399 if (cgroup_is_threaded(cgrp)) 400 return false; 401 402 /* but the ancestors can't be unless mixable */ 403 while ((cgrp = cgroup_parent(cgrp))) { 404 if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp)) 405 return false; 406 if (cgroup_is_threaded(cgrp)) 407 return false; 408 } 409 410 return true; 411 } 412 413 /* subsystems visibly enabled on a cgroup */ 414 static u16 cgroup_control(struct cgroup *cgrp) 415 { 416 struct cgroup *parent = cgroup_parent(cgrp); 417 u16 root_ss_mask = cgrp->root->subsys_mask; 418 419 if (parent) { 420 u16 ss_mask = parent->subtree_control; 421 422 /* threaded cgroups can only have threaded controllers */ 423 if (cgroup_is_threaded(cgrp)) 424 ss_mask &= cgrp_dfl_threaded_ss_mask; 425 return ss_mask; 426 } 427 428 if (cgroup_on_dfl(cgrp)) 429 root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask | 430 cgrp_dfl_implicit_ss_mask); 431 return root_ss_mask; 432 } 433 434 /* subsystems enabled on a cgroup */ 435 static u16 cgroup_ss_mask(struct cgroup *cgrp) 436 { 437 struct cgroup *parent = cgroup_parent(cgrp); 438 439 if (parent) { 440 u16 ss_mask = parent->subtree_ss_mask; 441 442 /* threaded cgroups can only have threaded controllers */ 443 if (cgroup_is_threaded(cgrp)) 444 ss_mask &= cgrp_dfl_threaded_ss_mask; 445 return ss_mask; 446 } 447 448 return cgrp->root->subsys_mask; 449 } 450 451 /** 452 * cgroup_css - obtain a cgroup's css for the specified subsystem 453 * @cgrp: the cgroup of interest 454 * @ss: the subsystem of interest (%NULL returns @cgrp->self) 455 * 456 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This 457 * function must be called either under cgroup_mutex or rcu_read_lock() and 458 * the caller is responsible for pinning the returned css if it wants to 459 * keep accessing it outside the said locks. This function may return 460 * %NULL if @cgrp doesn't have @subsys_id enabled. 461 */ 462 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp, 463 struct cgroup_subsys *ss) 464 { 465 if (ss) 466 return rcu_dereference_check(cgrp->subsys[ss->id], 467 lockdep_is_held(&cgroup_mutex)); 468 else 469 return &cgrp->self; 470 } 471 472 /** 473 * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem 474 * @cgrp: the cgroup of interest 475 * @ss: the subsystem of interest 476 * 477 * Find and get @cgrp's css assocaited with @ss. If the css doesn't exist 478 * or is offline, %NULL is returned. 479 */ 480 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp, 481 struct cgroup_subsys *ss) 482 { 483 struct cgroup_subsys_state *css; 484 485 rcu_read_lock(); 486 css = cgroup_css(cgrp, ss); 487 if (!css || !css_tryget_online(css)) 488 css = NULL; 489 rcu_read_unlock(); 490 491 return css; 492 } 493 494 /** 495 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem 496 * @cgrp: the cgroup of interest 497 * @ss: the subsystem of interest (%NULL returns @cgrp->self) 498 * 499 * Similar to cgroup_css() but returns the effective css, which is defined 500 * as the matching css of the nearest ancestor including self which has @ss 501 * enabled. If @ss is associated with the hierarchy @cgrp is on, this 502 * function is guaranteed to return non-NULL css. 503 */ 504 static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp, 505 struct cgroup_subsys *ss) 506 { 507 lockdep_assert_held(&cgroup_mutex); 508 509 if (!ss) 510 return &cgrp->self; 511 512 /* 513 * This function is used while updating css associations and thus 514 * can't test the csses directly. Test ss_mask. 515 */ 516 while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) { 517 cgrp = cgroup_parent(cgrp); 518 if (!cgrp) 519 return NULL; 520 } 521 522 return cgroup_css(cgrp, ss); 523 } 524 525 /** 526 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem 527 * @cgrp: the cgroup of interest 528 * @ss: the subsystem of interest 529 * 530 * Find and get the effective css of @cgrp for @ss. The effective css is 531 * defined as the matching css of the nearest ancestor including self which 532 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on, 533 * the root css is returned, so this function always returns a valid css. 534 * The returned css must be put using css_put(). 535 */ 536 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp, 537 struct cgroup_subsys *ss) 538 { 539 struct cgroup_subsys_state *css; 540 541 rcu_read_lock(); 542 543 do { 544 css = cgroup_css(cgrp, ss); 545 546 if (css && css_tryget_online(css)) 547 goto out_unlock; 548 cgrp = cgroup_parent(cgrp); 549 } while (cgrp); 550 551 css = init_css_set.subsys[ss->id]; 552 css_get(css); 553 out_unlock: 554 rcu_read_unlock(); 555 return css; 556 } 557 558 static void cgroup_get_live(struct cgroup *cgrp) 559 { 560 WARN_ON_ONCE(cgroup_is_dead(cgrp)); 561 css_get(&cgrp->self); 562 } 563 564 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of) 565 { 566 struct cgroup *cgrp = of->kn->parent->priv; 567 struct cftype *cft = of_cft(of); 568 569 /* 570 * This is open and unprotected implementation of cgroup_css(). 571 * seq_css() is only called from a kernfs file operation which has 572 * an active reference on the file. Because all the subsystem 573 * files are drained before a css is disassociated with a cgroup, 574 * the matching css from the cgroup's subsys table is guaranteed to 575 * be and stay valid until the enclosing operation is complete. 576 */ 577 if (cft->ss) 578 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]); 579 else 580 return &cgrp->self; 581 } 582 EXPORT_SYMBOL_GPL(of_css); 583 584 /** 585 * for_each_css - iterate all css's of a cgroup 586 * @css: the iteration cursor 587 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end 588 * @cgrp: the target cgroup to iterate css's of 589 * 590 * Should be called under cgroup_[tree_]mutex. 591 */ 592 #define for_each_css(css, ssid, cgrp) \ 593 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \ 594 if (!((css) = rcu_dereference_check( \ 595 (cgrp)->subsys[(ssid)], \ 596 lockdep_is_held(&cgroup_mutex)))) { } \ 597 else 598 599 /** 600 * for_each_e_css - iterate all effective css's of a cgroup 601 * @css: the iteration cursor 602 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end 603 * @cgrp: the target cgroup to iterate css's of 604 * 605 * Should be called under cgroup_[tree_]mutex. 606 */ 607 #define for_each_e_css(css, ssid, cgrp) \ 608 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \ 609 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \ 610 ; \ 611 else 612 613 /** 614 * do_each_subsys_mask - filter for_each_subsys with a bitmask 615 * @ss: the iteration cursor 616 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end 617 * @ss_mask: the bitmask 618 * 619 * The block will only run for cases where the ssid-th bit (1 << ssid) of 620 * @ss_mask is set. 621 */ 622 #define do_each_subsys_mask(ss, ssid, ss_mask) do { \ 623 unsigned long __ss_mask = (ss_mask); \ 624 if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */ \ 625 (ssid) = 0; \ 626 break; \ 627 } \ 628 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \ 629 (ss) = cgroup_subsys[ssid]; \ 630 { 631 632 #define while_each_subsys_mask() \ 633 } \ 634 } \ 635 } while (false) 636 637 /* iterate over child cgrps, lock should be held throughout iteration */ 638 #define cgroup_for_each_live_child(child, cgrp) \ 639 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \ 640 if (({ lockdep_assert_held(&cgroup_mutex); \ 641 cgroup_is_dead(child); })) \ 642 ; \ 643 else 644 645 /* walk live descendants in preorder */ 646 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \ 647 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \ 648 if (({ lockdep_assert_held(&cgroup_mutex); \ 649 (dsct) = (d_css)->cgroup; \ 650 cgroup_is_dead(dsct); })) \ 651 ; \ 652 else 653 654 /* walk live descendants in postorder */ 655 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \ 656 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \ 657 if (({ lockdep_assert_held(&cgroup_mutex); \ 658 (dsct) = (d_css)->cgroup; \ 659 cgroup_is_dead(dsct); })) \ 660 ; \ 661 else 662 663 /* 664 * The default css_set - used by init and its children prior to any 665 * hierarchies being mounted. It contains a pointer to the root state 666 * for each subsystem. Also used to anchor the list of css_sets. Not 667 * reference-counted, to improve performance when child cgroups 668 * haven't been created. 669 */ 670 struct css_set init_css_set = { 671 .refcount = REFCOUNT_INIT(1), 672 .dom_cset = &init_css_set, 673 .tasks = LIST_HEAD_INIT(init_css_set.tasks), 674 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks), 675 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters), 676 .threaded_csets = LIST_HEAD_INIT(init_css_set.threaded_csets), 677 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links), 678 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node), 679 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node), 680 681 /* 682 * The following field is re-initialized when this cset gets linked 683 * in cgroup_init(). However, let's initialize the field 684 * statically too so that the default cgroup can be accessed safely 685 * early during boot. 686 */ 687 .dfl_cgrp = &cgrp_dfl_root.cgrp, 688 }; 689 690 static int css_set_count = 1; /* 1 for init_css_set */ 691 692 static bool css_set_threaded(struct css_set *cset) 693 { 694 return cset->dom_cset != cset; 695 } 696 697 /** 698 * css_set_populated - does a css_set contain any tasks? 699 * @cset: target css_set 700 * 701 * css_set_populated() should be the same as !!cset->nr_tasks at steady 702 * state. However, css_set_populated() can be called while a task is being 703 * added to or removed from the linked list before the nr_tasks is 704 * properly updated. Hence, we can't just look at ->nr_tasks here. 705 */ 706 static bool css_set_populated(struct css_set *cset) 707 { 708 lockdep_assert_held(&css_set_lock); 709 710 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks); 711 } 712 713 /** 714 * cgroup_update_populated - update the populated count of a cgroup 715 * @cgrp: the target cgroup 716 * @populated: inc or dec populated count 717 * 718 * One of the css_sets associated with @cgrp is either getting its first 719 * task or losing the last. Update @cgrp->nr_populated_* accordingly. The 720 * count is propagated towards root so that a given cgroup's 721 * nr_populated_children is zero iff none of its descendants contain any 722 * tasks. 723 * 724 * @cgrp's interface file "cgroup.populated" is zero if both 725 * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and 726 * 1 otherwise. When the sum changes from or to zero, userland is notified 727 * that the content of the interface file has changed. This can be used to 728 * detect when @cgrp and its descendants become populated or empty. 729 */ 730 static void cgroup_update_populated(struct cgroup *cgrp, bool populated) 731 { 732 struct cgroup *child = NULL; 733 int adj = populated ? 1 : -1; 734 735 lockdep_assert_held(&css_set_lock); 736 737 do { 738 bool was_populated = cgroup_is_populated(cgrp); 739 740 if (!child) { 741 cgrp->nr_populated_csets += adj; 742 } else { 743 if (cgroup_is_threaded(child)) 744 cgrp->nr_populated_threaded_children += adj; 745 else 746 cgrp->nr_populated_domain_children += adj; 747 } 748 749 if (was_populated == cgroup_is_populated(cgrp)) 750 break; 751 752 cgroup1_check_for_release(cgrp); 753 cgroup_file_notify(&cgrp->events_file); 754 755 child = cgrp; 756 cgrp = cgroup_parent(cgrp); 757 } while (cgrp); 758 } 759 760 /** 761 * css_set_update_populated - update populated state of a css_set 762 * @cset: target css_set 763 * @populated: whether @cset is populated or depopulated 764 * 765 * @cset is either getting the first task or losing the last. Update the 766 * populated counters of all associated cgroups accordingly. 767 */ 768 static void css_set_update_populated(struct css_set *cset, bool populated) 769 { 770 struct cgrp_cset_link *link; 771 772 lockdep_assert_held(&css_set_lock); 773 774 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) 775 cgroup_update_populated(link->cgrp, populated); 776 } 777 778 /** 779 * css_set_move_task - move a task from one css_set to another 780 * @task: task being moved 781 * @from_cset: css_set @task currently belongs to (may be NULL) 782 * @to_cset: new css_set @task is being moved to (may be NULL) 783 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks 784 * 785 * Move @task from @from_cset to @to_cset. If @task didn't belong to any 786 * css_set, @from_cset can be NULL. If @task is being disassociated 787 * instead of moved, @to_cset can be NULL. 788 * 789 * This function automatically handles populated counter updates and 790 * css_task_iter adjustments but the caller is responsible for managing 791 * @from_cset and @to_cset's reference counts. 792 */ 793 static void css_set_move_task(struct task_struct *task, 794 struct css_set *from_cset, struct css_set *to_cset, 795 bool use_mg_tasks) 796 { 797 lockdep_assert_held(&css_set_lock); 798 799 if (to_cset && !css_set_populated(to_cset)) 800 css_set_update_populated(to_cset, true); 801 802 if (from_cset) { 803 struct css_task_iter *it, *pos; 804 805 WARN_ON_ONCE(list_empty(&task->cg_list)); 806 807 /* 808 * @task is leaving, advance task iterators which are 809 * pointing to it so that they can resume at the next 810 * position. Advancing an iterator might remove it from 811 * the list, use safe walk. See css_task_iter_advance*() 812 * for details. 813 */ 814 list_for_each_entry_safe(it, pos, &from_cset->task_iters, 815 iters_node) 816 if (it->task_pos == &task->cg_list) 817 css_task_iter_advance(it); 818 819 list_del_init(&task->cg_list); 820 if (!css_set_populated(from_cset)) 821 css_set_update_populated(from_cset, false); 822 } else { 823 WARN_ON_ONCE(!list_empty(&task->cg_list)); 824 } 825 826 if (to_cset) { 827 /* 828 * We are synchronized through cgroup_threadgroup_rwsem 829 * against PF_EXITING setting such that we can't race 830 * against cgroup_exit() changing the css_set to 831 * init_css_set and dropping the old one. 832 */ 833 WARN_ON_ONCE(task->flags & PF_EXITING); 834 835 rcu_assign_pointer(task->cgroups, to_cset); 836 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks : 837 &to_cset->tasks); 838 } 839 } 840 841 /* 842 * hash table for cgroup groups. This improves the performance to find 843 * an existing css_set. This hash doesn't (currently) take into 844 * account cgroups in empty hierarchies. 845 */ 846 #define CSS_SET_HASH_BITS 7 847 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS); 848 849 static unsigned long css_set_hash(struct cgroup_subsys_state *css[]) 850 { 851 unsigned long key = 0UL; 852 struct cgroup_subsys *ss; 853 int i; 854 855 for_each_subsys(ss, i) 856 key += (unsigned long)css[i]; 857 key = (key >> 16) ^ key; 858 859 return key; 860 } 861 862 void put_css_set_locked(struct css_set *cset) 863 { 864 struct cgrp_cset_link *link, *tmp_link; 865 struct cgroup_subsys *ss; 866 int ssid; 867 868 lockdep_assert_held(&css_set_lock); 869 870 if (!refcount_dec_and_test(&cset->refcount)) 871 return; 872 873 WARN_ON_ONCE(!list_empty(&cset->threaded_csets)); 874 875 /* This css_set is dead. unlink it and release cgroup and css refs */ 876 for_each_subsys(ss, ssid) { 877 list_del(&cset->e_cset_node[ssid]); 878 css_put(cset->subsys[ssid]); 879 } 880 hash_del(&cset->hlist); 881 css_set_count--; 882 883 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) { 884 list_del(&link->cset_link); 885 list_del(&link->cgrp_link); 886 if (cgroup_parent(link->cgrp)) 887 cgroup_put(link->cgrp); 888 kfree(link); 889 } 890 891 if (css_set_threaded(cset)) { 892 list_del(&cset->threaded_csets_node); 893 put_css_set_locked(cset->dom_cset); 894 } 895 896 kfree_rcu(cset, rcu_head); 897 } 898 899 /** 900 * compare_css_sets - helper function for find_existing_css_set(). 901 * @cset: candidate css_set being tested 902 * @old_cset: existing css_set for a task 903 * @new_cgrp: cgroup that's being entered by the task 904 * @template: desired set of css pointers in css_set (pre-calculated) 905 * 906 * Returns true if "cset" matches "old_cset" except for the hierarchy 907 * which "new_cgrp" belongs to, for which it should match "new_cgrp". 908 */ 909 static bool compare_css_sets(struct css_set *cset, 910 struct css_set *old_cset, 911 struct cgroup *new_cgrp, 912 struct cgroup_subsys_state *template[]) 913 { 914 struct cgroup *new_dfl_cgrp; 915 struct list_head *l1, *l2; 916 917 /* 918 * On the default hierarchy, there can be csets which are 919 * associated with the same set of cgroups but different csses. 920 * Let's first ensure that csses match. 921 */ 922 if (memcmp(template, cset->subsys, sizeof(cset->subsys))) 923 return false; 924 925 926 /* @cset's domain should match the default cgroup's */ 927 if (cgroup_on_dfl(new_cgrp)) 928 new_dfl_cgrp = new_cgrp; 929 else 930 new_dfl_cgrp = old_cset->dfl_cgrp; 931 932 if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp) 933 return false; 934 935 /* 936 * Compare cgroup pointers in order to distinguish between 937 * different cgroups in hierarchies. As different cgroups may 938 * share the same effective css, this comparison is always 939 * necessary. 940 */ 941 l1 = &cset->cgrp_links; 942 l2 = &old_cset->cgrp_links; 943 while (1) { 944 struct cgrp_cset_link *link1, *link2; 945 struct cgroup *cgrp1, *cgrp2; 946 947 l1 = l1->next; 948 l2 = l2->next; 949 /* See if we reached the end - both lists are equal length. */ 950 if (l1 == &cset->cgrp_links) { 951 BUG_ON(l2 != &old_cset->cgrp_links); 952 break; 953 } else { 954 BUG_ON(l2 == &old_cset->cgrp_links); 955 } 956 /* Locate the cgroups associated with these links. */ 957 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link); 958 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link); 959 cgrp1 = link1->cgrp; 960 cgrp2 = link2->cgrp; 961 /* Hierarchies should be linked in the same order. */ 962 BUG_ON(cgrp1->root != cgrp2->root); 963 964 /* 965 * If this hierarchy is the hierarchy of the cgroup 966 * that's changing, then we need to check that this 967 * css_set points to the new cgroup; if it's any other 968 * hierarchy, then this css_set should point to the 969 * same cgroup as the old css_set. 970 */ 971 if (cgrp1->root == new_cgrp->root) { 972 if (cgrp1 != new_cgrp) 973 return false; 974 } else { 975 if (cgrp1 != cgrp2) 976 return false; 977 } 978 } 979 return true; 980 } 981 982 /** 983 * find_existing_css_set - init css array and find the matching css_set 984 * @old_cset: the css_set that we're using before the cgroup transition 985 * @cgrp: the cgroup that we're moving into 986 * @template: out param for the new set of csses, should be clear on entry 987 */ 988 static struct css_set *find_existing_css_set(struct css_set *old_cset, 989 struct cgroup *cgrp, 990 struct cgroup_subsys_state *template[]) 991 { 992 struct cgroup_root *root = cgrp->root; 993 struct cgroup_subsys *ss; 994 struct css_set *cset; 995 unsigned long key; 996 int i; 997 998 /* 999 * Build the set of subsystem state objects that we want to see in the 1000 * new css_set. while subsystems can change globally, the entries here 1001 * won't change, so no need for locking. 1002 */ 1003 for_each_subsys(ss, i) { 1004 if (root->subsys_mask & (1UL << i)) { 1005 /* 1006 * @ss is in this hierarchy, so we want the 1007 * effective css from @cgrp. 1008 */ 1009 template[i] = cgroup_e_css(cgrp, ss); 1010 } else { 1011 /* 1012 * @ss is not in this hierarchy, so we don't want 1013 * to change the css. 1014 */ 1015 template[i] = old_cset->subsys[i]; 1016 } 1017 } 1018 1019 key = css_set_hash(template); 1020 hash_for_each_possible(css_set_table, cset, hlist, key) { 1021 if (!compare_css_sets(cset, old_cset, cgrp, template)) 1022 continue; 1023 1024 /* This css_set matches what we need */ 1025 return cset; 1026 } 1027 1028 /* No existing cgroup group matched */ 1029 return NULL; 1030 } 1031 1032 static void free_cgrp_cset_links(struct list_head *links_to_free) 1033 { 1034 struct cgrp_cset_link *link, *tmp_link; 1035 1036 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) { 1037 list_del(&link->cset_link); 1038 kfree(link); 1039 } 1040 } 1041 1042 /** 1043 * allocate_cgrp_cset_links - allocate cgrp_cset_links 1044 * @count: the number of links to allocate 1045 * @tmp_links: list_head the allocated links are put on 1046 * 1047 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links 1048 * through ->cset_link. Returns 0 on success or -errno. 1049 */ 1050 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links) 1051 { 1052 struct cgrp_cset_link *link; 1053 int i; 1054 1055 INIT_LIST_HEAD(tmp_links); 1056 1057 for (i = 0; i < count; i++) { 1058 link = kzalloc(sizeof(*link), GFP_KERNEL); 1059 if (!link) { 1060 free_cgrp_cset_links(tmp_links); 1061 return -ENOMEM; 1062 } 1063 list_add(&link->cset_link, tmp_links); 1064 } 1065 return 0; 1066 } 1067 1068 /** 1069 * link_css_set - a helper function to link a css_set to a cgroup 1070 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links() 1071 * @cset: the css_set to be linked 1072 * @cgrp: the destination cgroup 1073 */ 1074 static void link_css_set(struct list_head *tmp_links, struct css_set *cset, 1075 struct cgroup *cgrp) 1076 { 1077 struct cgrp_cset_link *link; 1078 1079 BUG_ON(list_empty(tmp_links)); 1080 1081 if (cgroup_on_dfl(cgrp)) 1082 cset->dfl_cgrp = cgrp; 1083 1084 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link); 1085 link->cset = cset; 1086 link->cgrp = cgrp; 1087 1088 /* 1089 * Always add links to the tail of the lists so that the lists are 1090 * in choronological order. 1091 */ 1092 list_move_tail(&link->cset_link, &cgrp->cset_links); 1093 list_add_tail(&link->cgrp_link, &cset->cgrp_links); 1094 1095 if (cgroup_parent(cgrp)) 1096 cgroup_get_live(cgrp); 1097 } 1098 1099 /** 1100 * find_css_set - return a new css_set with one cgroup updated 1101 * @old_cset: the baseline css_set 1102 * @cgrp: the cgroup to be updated 1103 * 1104 * Return a new css_set that's equivalent to @old_cset, but with @cgrp 1105 * substituted into the appropriate hierarchy. 1106 */ 1107 static struct css_set *find_css_set(struct css_set *old_cset, 1108 struct cgroup *cgrp) 1109 { 1110 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { }; 1111 struct css_set *cset; 1112 struct list_head tmp_links; 1113 struct cgrp_cset_link *link; 1114 struct cgroup_subsys *ss; 1115 unsigned long key; 1116 int ssid; 1117 1118 lockdep_assert_held(&cgroup_mutex); 1119 1120 /* First see if we already have a cgroup group that matches 1121 * the desired set */ 1122 spin_lock_irq(&css_set_lock); 1123 cset = find_existing_css_set(old_cset, cgrp, template); 1124 if (cset) 1125 get_css_set(cset); 1126 spin_unlock_irq(&css_set_lock); 1127 1128 if (cset) 1129 return cset; 1130 1131 cset = kzalloc(sizeof(*cset), GFP_KERNEL); 1132 if (!cset) 1133 return NULL; 1134 1135 /* Allocate all the cgrp_cset_link objects that we'll need */ 1136 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) { 1137 kfree(cset); 1138 return NULL; 1139 } 1140 1141 refcount_set(&cset->refcount, 1); 1142 cset->dom_cset = cset; 1143 INIT_LIST_HEAD(&cset->tasks); 1144 INIT_LIST_HEAD(&cset->mg_tasks); 1145 INIT_LIST_HEAD(&cset->task_iters); 1146 INIT_LIST_HEAD(&cset->threaded_csets); 1147 INIT_HLIST_NODE(&cset->hlist); 1148 INIT_LIST_HEAD(&cset->cgrp_links); 1149 INIT_LIST_HEAD(&cset->mg_preload_node); 1150 INIT_LIST_HEAD(&cset->mg_node); 1151 1152 /* Copy the set of subsystem state objects generated in 1153 * find_existing_css_set() */ 1154 memcpy(cset->subsys, template, sizeof(cset->subsys)); 1155 1156 spin_lock_irq(&css_set_lock); 1157 /* Add reference counts and links from the new css_set. */ 1158 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) { 1159 struct cgroup *c = link->cgrp; 1160 1161 if (c->root == cgrp->root) 1162 c = cgrp; 1163 link_css_set(&tmp_links, cset, c); 1164 } 1165 1166 BUG_ON(!list_empty(&tmp_links)); 1167 1168 css_set_count++; 1169 1170 /* Add @cset to the hash table */ 1171 key = css_set_hash(cset->subsys); 1172 hash_add(css_set_table, &cset->hlist, key); 1173 1174 for_each_subsys(ss, ssid) { 1175 struct cgroup_subsys_state *css = cset->subsys[ssid]; 1176 1177 list_add_tail(&cset->e_cset_node[ssid], 1178 &css->cgroup->e_csets[ssid]); 1179 css_get(css); 1180 } 1181 1182 spin_unlock_irq(&css_set_lock); 1183 1184 /* 1185 * If @cset should be threaded, look up the matching dom_cset and 1186 * link them up. We first fully initialize @cset then look for the 1187 * dom_cset. It's simpler this way and safe as @cset is guaranteed 1188 * to stay empty until we return. 1189 */ 1190 if (cgroup_is_threaded(cset->dfl_cgrp)) { 1191 struct css_set *dcset; 1192 1193 dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp); 1194 if (!dcset) { 1195 put_css_set(cset); 1196 return NULL; 1197 } 1198 1199 spin_lock_irq(&css_set_lock); 1200 cset->dom_cset = dcset; 1201 list_add_tail(&cset->threaded_csets_node, 1202 &dcset->threaded_csets); 1203 spin_unlock_irq(&css_set_lock); 1204 } 1205 1206 return cset; 1207 } 1208 1209 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root) 1210 { 1211 struct cgroup *root_cgrp = kf_root->kn->priv; 1212 1213 return root_cgrp->root; 1214 } 1215 1216 static int cgroup_init_root_id(struct cgroup_root *root) 1217 { 1218 int id; 1219 1220 lockdep_assert_held(&cgroup_mutex); 1221 1222 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL); 1223 if (id < 0) 1224 return id; 1225 1226 root->hierarchy_id = id; 1227 return 0; 1228 } 1229 1230 static void cgroup_exit_root_id(struct cgroup_root *root) 1231 { 1232 lockdep_assert_held(&cgroup_mutex); 1233 1234 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id); 1235 } 1236 1237 void cgroup_free_root(struct cgroup_root *root) 1238 { 1239 if (root) { 1240 idr_destroy(&root->cgroup_idr); 1241 kfree(root); 1242 } 1243 } 1244 1245 static void cgroup_destroy_root(struct cgroup_root *root) 1246 { 1247 struct cgroup *cgrp = &root->cgrp; 1248 struct cgrp_cset_link *link, *tmp_link; 1249 1250 trace_cgroup_destroy_root(root); 1251 1252 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp); 1253 1254 BUG_ON(atomic_read(&root->nr_cgrps)); 1255 BUG_ON(!list_empty(&cgrp->self.children)); 1256 1257 /* Rebind all subsystems back to the default hierarchy */ 1258 WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask)); 1259 1260 /* 1261 * Release all the links from cset_links to this hierarchy's 1262 * root cgroup 1263 */ 1264 spin_lock_irq(&css_set_lock); 1265 1266 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) { 1267 list_del(&link->cset_link); 1268 list_del(&link->cgrp_link); 1269 kfree(link); 1270 } 1271 1272 spin_unlock_irq(&css_set_lock); 1273 1274 if (!list_empty(&root->root_list)) { 1275 list_del(&root->root_list); 1276 cgroup_root_count--; 1277 } 1278 1279 cgroup_exit_root_id(root); 1280 1281 mutex_unlock(&cgroup_mutex); 1282 1283 kernfs_destroy_root(root->kf_root); 1284 cgroup_free_root(root); 1285 } 1286 1287 /* 1288 * look up cgroup associated with current task's cgroup namespace on the 1289 * specified hierarchy 1290 */ 1291 static struct cgroup * 1292 current_cgns_cgroup_from_root(struct cgroup_root *root) 1293 { 1294 struct cgroup *res = NULL; 1295 struct css_set *cset; 1296 1297 lockdep_assert_held(&css_set_lock); 1298 1299 rcu_read_lock(); 1300 1301 cset = current->nsproxy->cgroup_ns->root_cset; 1302 if (cset == &init_css_set) { 1303 res = &root->cgrp; 1304 } else { 1305 struct cgrp_cset_link *link; 1306 1307 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) { 1308 struct cgroup *c = link->cgrp; 1309 1310 if (c->root == root) { 1311 res = c; 1312 break; 1313 } 1314 } 1315 } 1316 rcu_read_unlock(); 1317 1318 BUG_ON(!res); 1319 return res; 1320 } 1321 1322 /* look up cgroup associated with given css_set on the specified hierarchy */ 1323 static struct cgroup *cset_cgroup_from_root(struct css_set *cset, 1324 struct cgroup_root *root) 1325 { 1326 struct cgroup *res = NULL; 1327 1328 lockdep_assert_held(&cgroup_mutex); 1329 lockdep_assert_held(&css_set_lock); 1330 1331 if (cset == &init_css_set) { 1332 res = &root->cgrp; 1333 } else if (root == &cgrp_dfl_root) { 1334 res = cset->dfl_cgrp; 1335 } else { 1336 struct cgrp_cset_link *link; 1337 1338 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) { 1339 struct cgroup *c = link->cgrp; 1340 1341 if (c->root == root) { 1342 res = c; 1343 break; 1344 } 1345 } 1346 } 1347 1348 BUG_ON(!res); 1349 return res; 1350 } 1351 1352 /* 1353 * Return the cgroup for "task" from the given hierarchy. Must be 1354 * called with cgroup_mutex and css_set_lock held. 1355 */ 1356 struct cgroup *task_cgroup_from_root(struct task_struct *task, 1357 struct cgroup_root *root) 1358 { 1359 /* 1360 * No need to lock the task - since we hold cgroup_mutex the 1361 * task can't change groups, so the only thing that can happen 1362 * is that it exits and its css is set back to init_css_set. 1363 */ 1364 return cset_cgroup_from_root(task_css_set(task), root); 1365 } 1366 1367 /* 1368 * A task must hold cgroup_mutex to modify cgroups. 1369 * 1370 * Any task can increment and decrement the count field without lock. 1371 * So in general, code holding cgroup_mutex can't rely on the count 1372 * field not changing. However, if the count goes to zero, then only 1373 * cgroup_attach_task() can increment it again. Because a count of zero 1374 * means that no tasks are currently attached, therefore there is no 1375 * way a task attached to that cgroup can fork (the other way to 1376 * increment the count). So code holding cgroup_mutex can safely 1377 * assume that if the count is zero, it will stay zero. Similarly, if 1378 * a task holds cgroup_mutex on a cgroup with zero count, it 1379 * knows that the cgroup won't be removed, as cgroup_rmdir() 1380 * needs that mutex. 1381 * 1382 * A cgroup can only be deleted if both its 'count' of using tasks 1383 * is zero, and its list of 'children' cgroups is empty. Since all 1384 * tasks in the system use _some_ cgroup, and since there is always at 1385 * least one task in the system (init, pid == 1), therefore, root cgroup 1386 * always has either children cgroups and/or using tasks. So we don't 1387 * need a special hack to ensure that root cgroup cannot be deleted. 1388 * 1389 * P.S. One more locking exception. RCU is used to guard the 1390 * update of a tasks cgroup pointer by cgroup_attach_task() 1391 */ 1392 1393 static struct kernfs_syscall_ops cgroup_kf_syscall_ops; 1394 1395 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft, 1396 char *buf) 1397 { 1398 struct cgroup_subsys *ss = cft->ss; 1399 1400 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) && 1401 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) 1402 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s", 1403 cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name, 1404 cft->name); 1405 else 1406 strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX); 1407 return buf; 1408 } 1409 1410 /** 1411 * cgroup_file_mode - deduce file mode of a control file 1412 * @cft: the control file in question 1413 * 1414 * S_IRUGO for read, S_IWUSR for write. 1415 */ 1416 static umode_t cgroup_file_mode(const struct cftype *cft) 1417 { 1418 umode_t mode = 0; 1419 1420 if (cft->read_u64 || cft->read_s64 || cft->seq_show) 1421 mode |= S_IRUGO; 1422 1423 if (cft->write_u64 || cft->write_s64 || cft->write) { 1424 if (cft->flags & CFTYPE_WORLD_WRITABLE) 1425 mode |= S_IWUGO; 1426 else 1427 mode |= S_IWUSR; 1428 } 1429 1430 return mode; 1431 } 1432 1433 /** 1434 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask 1435 * @subtree_control: the new subtree_control mask to consider 1436 * @this_ss_mask: available subsystems 1437 * 1438 * On the default hierarchy, a subsystem may request other subsystems to be 1439 * enabled together through its ->depends_on mask. In such cases, more 1440 * subsystems than specified in "cgroup.subtree_control" may be enabled. 1441 * 1442 * This function calculates which subsystems need to be enabled if 1443 * @subtree_control is to be applied while restricted to @this_ss_mask. 1444 */ 1445 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask) 1446 { 1447 u16 cur_ss_mask = subtree_control; 1448 struct cgroup_subsys *ss; 1449 int ssid; 1450 1451 lockdep_assert_held(&cgroup_mutex); 1452 1453 cur_ss_mask |= cgrp_dfl_implicit_ss_mask; 1454 1455 while (true) { 1456 u16 new_ss_mask = cur_ss_mask; 1457 1458 do_each_subsys_mask(ss, ssid, cur_ss_mask) { 1459 new_ss_mask |= ss->depends_on; 1460 } while_each_subsys_mask(); 1461 1462 /* 1463 * Mask out subsystems which aren't available. This can 1464 * happen only if some depended-upon subsystems were bound 1465 * to non-default hierarchies. 1466 */ 1467 new_ss_mask &= this_ss_mask; 1468 1469 if (new_ss_mask == cur_ss_mask) 1470 break; 1471 cur_ss_mask = new_ss_mask; 1472 } 1473 1474 return cur_ss_mask; 1475 } 1476 1477 /** 1478 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods 1479 * @kn: the kernfs_node being serviced 1480 * 1481 * This helper undoes cgroup_kn_lock_live() and should be invoked before 1482 * the method finishes if locking succeeded. Note that once this function 1483 * returns the cgroup returned by cgroup_kn_lock_live() may become 1484 * inaccessible any time. If the caller intends to continue to access the 1485 * cgroup, it should pin it before invoking this function. 1486 */ 1487 void cgroup_kn_unlock(struct kernfs_node *kn) 1488 { 1489 struct cgroup *cgrp; 1490 1491 if (kernfs_type(kn) == KERNFS_DIR) 1492 cgrp = kn->priv; 1493 else 1494 cgrp = kn->parent->priv; 1495 1496 mutex_unlock(&cgroup_mutex); 1497 1498 kernfs_unbreak_active_protection(kn); 1499 cgroup_put(cgrp); 1500 } 1501 1502 /** 1503 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods 1504 * @kn: the kernfs_node being serviced 1505 * @drain_offline: perform offline draining on the cgroup 1506 * 1507 * This helper is to be used by a cgroup kernfs method currently servicing 1508 * @kn. It breaks the active protection, performs cgroup locking and 1509 * verifies that the associated cgroup is alive. Returns the cgroup if 1510 * alive; otherwise, %NULL. A successful return should be undone by a 1511 * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the 1512 * cgroup is drained of offlining csses before return. 1513 * 1514 * Any cgroup kernfs method implementation which requires locking the 1515 * associated cgroup should use this helper. It avoids nesting cgroup 1516 * locking under kernfs active protection and allows all kernfs operations 1517 * including self-removal. 1518 */ 1519 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline) 1520 { 1521 struct cgroup *cgrp; 1522 1523 if (kernfs_type(kn) == KERNFS_DIR) 1524 cgrp = kn->priv; 1525 else 1526 cgrp = kn->parent->priv; 1527 1528 /* 1529 * We're gonna grab cgroup_mutex which nests outside kernfs 1530 * active_ref. cgroup liveliness check alone provides enough 1531 * protection against removal. Ensure @cgrp stays accessible and 1532 * break the active_ref protection. 1533 */ 1534 if (!cgroup_tryget(cgrp)) 1535 return NULL; 1536 kernfs_break_active_protection(kn); 1537 1538 if (drain_offline) 1539 cgroup_lock_and_drain_offline(cgrp); 1540 else 1541 mutex_lock(&cgroup_mutex); 1542 1543 if (!cgroup_is_dead(cgrp)) 1544 return cgrp; 1545 1546 cgroup_kn_unlock(kn); 1547 return NULL; 1548 } 1549 1550 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft) 1551 { 1552 char name[CGROUP_FILE_NAME_MAX]; 1553 1554 lockdep_assert_held(&cgroup_mutex); 1555 1556 if (cft->file_offset) { 1557 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss); 1558 struct cgroup_file *cfile = (void *)css + cft->file_offset; 1559 1560 spin_lock_irq(&cgroup_file_kn_lock); 1561 cfile->kn = NULL; 1562 spin_unlock_irq(&cgroup_file_kn_lock); 1563 1564 del_timer_sync(&cfile->notify_timer); 1565 } 1566 1567 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name)); 1568 } 1569 1570 /** 1571 * css_clear_dir - remove subsys files in a cgroup directory 1572 * @css: taget css 1573 */ 1574 static void css_clear_dir(struct cgroup_subsys_state *css) 1575 { 1576 struct cgroup *cgrp = css->cgroup; 1577 struct cftype *cfts; 1578 1579 if (!(css->flags & CSS_VISIBLE)) 1580 return; 1581 1582 css->flags &= ~CSS_VISIBLE; 1583 1584 if (!css->ss) { 1585 if (cgroup_on_dfl(cgrp)) 1586 cfts = cgroup_base_files; 1587 else 1588 cfts = cgroup1_base_files; 1589 1590 cgroup_addrm_files(css, cgrp, cfts, false); 1591 } else { 1592 list_for_each_entry(cfts, &css->ss->cfts, node) 1593 cgroup_addrm_files(css, cgrp, cfts, false); 1594 } 1595 } 1596 1597 /** 1598 * css_populate_dir - create subsys files in a cgroup directory 1599 * @css: target css 1600 * 1601 * On failure, no file is added. 1602 */ 1603 static int css_populate_dir(struct cgroup_subsys_state *css) 1604 { 1605 struct cgroup *cgrp = css->cgroup; 1606 struct cftype *cfts, *failed_cfts; 1607 int ret; 1608 1609 if ((css->flags & CSS_VISIBLE) || !cgrp->kn) 1610 return 0; 1611 1612 if (!css->ss) { 1613 if (cgroup_on_dfl(cgrp)) 1614 cfts = cgroup_base_files; 1615 else 1616 cfts = cgroup1_base_files; 1617 1618 ret = cgroup_addrm_files(&cgrp->self, cgrp, cfts, true); 1619 if (ret < 0) 1620 return ret; 1621 } else { 1622 list_for_each_entry(cfts, &css->ss->cfts, node) { 1623 ret = cgroup_addrm_files(css, cgrp, cfts, true); 1624 if (ret < 0) { 1625 failed_cfts = cfts; 1626 goto err; 1627 } 1628 } 1629 } 1630 1631 css->flags |= CSS_VISIBLE; 1632 1633 return 0; 1634 err: 1635 list_for_each_entry(cfts, &css->ss->cfts, node) { 1636 if (cfts == failed_cfts) 1637 break; 1638 cgroup_addrm_files(css, cgrp, cfts, false); 1639 } 1640 return ret; 1641 } 1642 1643 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask) 1644 { 1645 struct cgroup *dcgrp = &dst_root->cgrp; 1646 struct cgroup_subsys *ss; 1647 int ssid, i, ret; 1648 1649 lockdep_assert_held(&cgroup_mutex); 1650 1651 do_each_subsys_mask(ss, ssid, ss_mask) { 1652 /* 1653 * If @ss has non-root csses attached to it, can't move. 1654 * If @ss is an implicit controller, it is exempt from this 1655 * rule and can be stolen. 1656 */ 1657 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) && 1658 !ss->implicit_on_dfl) 1659 return -EBUSY; 1660 1661 /* can't move between two non-dummy roots either */ 1662 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root) 1663 return -EBUSY; 1664 } while_each_subsys_mask(); 1665 1666 do_each_subsys_mask(ss, ssid, ss_mask) { 1667 struct cgroup_root *src_root = ss->root; 1668 struct cgroup *scgrp = &src_root->cgrp; 1669 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss); 1670 struct css_set *cset; 1671 1672 WARN_ON(!css || cgroup_css(dcgrp, ss)); 1673 1674 /* disable from the source */ 1675 src_root->subsys_mask &= ~(1 << ssid); 1676 WARN_ON(cgroup_apply_control(scgrp)); 1677 cgroup_finalize_control(scgrp, 0); 1678 1679 /* rebind */ 1680 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL); 1681 rcu_assign_pointer(dcgrp->subsys[ssid], css); 1682 ss->root = dst_root; 1683 css->cgroup = dcgrp; 1684 1685 spin_lock_irq(&css_set_lock); 1686 hash_for_each(css_set_table, i, cset, hlist) 1687 list_move_tail(&cset->e_cset_node[ss->id], 1688 &dcgrp->e_csets[ss->id]); 1689 spin_unlock_irq(&css_set_lock); 1690 1691 /* default hierarchy doesn't enable controllers by default */ 1692 dst_root->subsys_mask |= 1 << ssid; 1693 if (dst_root == &cgrp_dfl_root) { 1694 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]); 1695 } else { 1696 dcgrp->subtree_control |= 1 << ssid; 1697 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]); 1698 } 1699 1700 ret = cgroup_apply_control(dcgrp); 1701 if (ret) 1702 pr_warn("partial failure to rebind %s controller (err=%d)\n", 1703 ss->name, ret); 1704 1705 if (ss->bind) 1706 ss->bind(css); 1707 } while_each_subsys_mask(); 1708 1709 kernfs_activate(dcgrp->kn); 1710 return 0; 1711 } 1712 1713 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node, 1714 struct kernfs_root *kf_root) 1715 { 1716 int len = 0; 1717 char *buf = NULL; 1718 struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root); 1719 struct cgroup *ns_cgroup; 1720 1721 buf = kmalloc(PATH_MAX, GFP_KERNEL); 1722 if (!buf) 1723 return -ENOMEM; 1724 1725 spin_lock_irq(&css_set_lock); 1726 ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot); 1727 len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX); 1728 spin_unlock_irq(&css_set_lock); 1729 1730 if (len >= PATH_MAX) 1731 len = -ERANGE; 1732 else if (len > 0) { 1733 seq_escape(sf, buf, " \t\n\\"); 1734 len = 0; 1735 } 1736 kfree(buf); 1737 return len; 1738 } 1739 1740 static int parse_cgroup_root_flags(char *data, unsigned int *root_flags) 1741 { 1742 char *token; 1743 1744 *root_flags = 0; 1745 1746 if (!data) 1747 return 0; 1748 1749 while ((token = strsep(&data, ",")) != NULL) { 1750 if (!strcmp(token, "nsdelegate")) { 1751 *root_flags |= CGRP_ROOT_NS_DELEGATE; 1752 continue; 1753 } 1754 1755 pr_err("cgroup2: unknown option \"%s\"\n", token); 1756 return -EINVAL; 1757 } 1758 1759 return 0; 1760 } 1761 1762 static void apply_cgroup_root_flags(unsigned int root_flags) 1763 { 1764 if (current->nsproxy->cgroup_ns == &init_cgroup_ns) { 1765 if (root_flags & CGRP_ROOT_NS_DELEGATE) 1766 cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE; 1767 else 1768 cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE; 1769 } 1770 } 1771 1772 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root) 1773 { 1774 if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) 1775 seq_puts(seq, ",nsdelegate"); 1776 return 0; 1777 } 1778 1779 static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data) 1780 { 1781 unsigned int root_flags; 1782 int ret; 1783 1784 ret = parse_cgroup_root_flags(data, &root_flags); 1785 if (ret) 1786 return ret; 1787 1788 apply_cgroup_root_flags(root_flags); 1789 return 0; 1790 } 1791 1792 /* 1793 * To reduce the fork() overhead for systems that are not actually using 1794 * their cgroups capability, we don't maintain the lists running through 1795 * each css_set to its tasks until we see the list actually used - in other 1796 * words after the first mount. 1797 */ 1798 static bool use_task_css_set_links __read_mostly; 1799 1800 static void cgroup_enable_task_cg_lists(void) 1801 { 1802 struct task_struct *p, *g; 1803 1804 /* 1805 * We need tasklist_lock because RCU is not safe against 1806 * while_each_thread(). Besides, a forking task that has passed 1807 * cgroup_post_fork() without seeing use_task_css_set_links = 1 1808 * is not guaranteed to have its child immediately visible in the 1809 * tasklist if we walk through it with RCU. 1810 */ 1811 read_lock(&tasklist_lock); 1812 spin_lock_irq(&css_set_lock); 1813 1814 if (use_task_css_set_links) 1815 goto out_unlock; 1816 1817 use_task_css_set_links = true; 1818 1819 do_each_thread(g, p) { 1820 WARN_ON_ONCE(!list_empty(&p->cg_list) || 1821 task_css_set(p) != &init_css_set); 1822 1823 /* 1824 * We should check if the process is exiting, otherwise 1825 * it will race with cgroup_exit() in that the list 1826 * entry won't be deleted though the process has exited. 1827 * Do it while holding siglock so that we don't end up 1828 * racing against cgroup_exit(). 1829 * 1830 * Interrupts were already disabled while acquiring 1831 * the css_set_lock, so we do not need to disable it 1832 * again when acquiring the sighand->siglock here. 1833 */ 1834 spin_lock(&p->sighand->siglock); 1835 if (!(p->flags & PF_EXITING)) { 1836 struct css_set *cset = task_css_set(p); 1837 1838 if (!css_set_populated(cset)) 1839 css_set_update_populated(cset, true); 1840 list_add_tail(&p->cg_list, &cset->tasks); 1841 get_css_set(cset); 1842 cset->nr_tasks++; 1843 } 1844 spin_unlock(&p->sighand->siglock); 1845 } while_each_thread(g, p); 1846 out_unlock: 1847 spin_unlock_irq(&css_set_lock); 1848 read_unlock(&tasklist_lock); 1849 } 1850 1851 static void init_cgroup_housekeeping(struct cgroup *cgrp) 1852 { 1853 struct cgroup_subsys *ss; 1854 int ssid; 1855 1856 INIT_LIST_HEAD(&cgrp->self.sibling); 1857 INIT_LIST_HEAD(&cgrp->self.children); 1858 INIT_LIST_HEAD(&cgrp->cset_links); 1859 INIT_LIST_HEAD(&cgrp->pidlists); 1860 mutex_init(&cgrp->pidlist_mutex); 1861 cgrp->self.cgroup = cgrp; 1862 cgrp->self.flags |= CSS_ONLINE; 1863 cgrp->dom_cgrp = cgrp; 1864 cgrp->max_descendants = INT_MAX; 1865 cgrp->max_depth = INT_MAX; 1866 INIT_LIST_HEAD(&cgrp->rstat_css_list); 1867 prev_cputime_init(&cgrp->prev_cputime); 1868 1869 for_each_subsys(ss, ssid) 1870 INIT_LIST_HEAD(&cgrp->e_csets[ssid]); 1871 1872 init_waitqueue_head(&cgrp->offline_waitq); 1873 INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent); 1874 } 1875 1876 void init_cgroup_root(struct cgroup_root *root, struct cgroup_sb_opts *opts) 1877 { 1878 struct cgroup *cgrp = &root->cgrp; 1879 1880 INIT_LIST_HEAD(&root->root_list); 1881 atomic_set(&root->nr_cgrps, 1); 1882 cgrp->root = root; 1883 init_cgroup_housekeeping(cgrp); 1884 idr_init(&root->cgroup_idr); 1885 1886 root->flags = opts->flags; 1887 if (opts->release_agent) 1888 strscpy(root->release_agent_path, opts->release_agent, PATH_MAX); 1889 if (opts->name) 1890 strscpy(root->name, opts->name, MAX_CGROUP_ROOT_NAMELEN); 1891 if (opts->cpuset_clone_children) 1892 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags); 1893 } 1894 1895 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask, int ref_flags) 1896 { 1897 LIST_HEAD(tmp_links); 1898 struct cgroup *root_cgrp = &root->cgrp; 1899 struct kernfs_syscall_ops *kf_sops; 1900 struct css_set *cset; 1901 int i, ret; 1902 1903 lockdep_assert_held(&cgroup_mutex); 1904 1905 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL); 1906 if (ret < 0) 1907 goto out; 1908 root_cgrp->id = ret; 1909 root_cgrp->ancestor_ids[0] = ret; 1910 1911 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 1912 ref_flags, GFP_KERNEL); 1913 if (ret) 1914 goto out; 1915 1916 /* 1917 * We're accessing css_set_count without locking css_set_lock here, 1918 * but that's OK - it can only be increased by someone holding 1919 * cgroup_lock, and that's us. Later rebinding may disable 1920 * controllers on the default hierarchy and thus create new csets, 1921 * which can't be more than the existing ones. Allocate 2x. 1922 */ 1923 ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links); 1924 if (ret) 1925 goto cancel_ref; 1926 1927 ret = cgroup_init_root_id(root); 1928 if (ret) 1929 goto cancel_ref; 1930 1931 kf_sops = root == &cgrp_dfl_root ? 1932 &cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops; 1933 1934 root->kf_root = kernfs_create_root(kf_sops, 1935 KERNFS_ROOT_CREATE_DEACTIVATED | 1936 KERNFS_ROOT_SUPPORT_EXPORTOP, 1937 root_cgrp); 1938 if (IS_ERR(root->kf_root)) { 1939 ret = PTR_ERR(root->kf_root); 1940 goto exit_root_id; 1941 } 1942 root_cgrp->kn = root->kf_root->kn; 1943 1944 ret = css_populate_dir(&root_cgrp->self); 1945 if (ret) 1946 goto destroy_root; 1947 1948 ret = rebind_subsystems(root, ss_mask); 1949 if (ret) 1950 goto destroy_root; 1951 1952 ret = cgroup_bpf_inherit(root_cgrp); 1953 WARN_ON_ONCE(ret); 1954 1955 trace_cgroup_setup_root(root); 1956 1957 /* 1958 * There must be no failure case after here, since rebinding takes 1959 * care of subsystems' refcounts, which are explicitly dropped in 1960 * the failure exit path. 1961 */ 1962 list_add(&root->root_list, &cgroup_roots); 1963 cgroup_root_count++; 1964 1965 /* 1966 * Link the root cgroup in this hierarchy into all the css_set 1967 * objects. 1968 */ 1969 spin_lock_irq(&css_set_lock); 1970 hash_for_each(css_set_table, i, cset, hlist) { 1971 link_css_set(&tmp_links, cset, root_cgrp); 1972 if (css_set_populated(cset)) 1973 cgroup_update_populated(root_cgrp, true); 1974 } 1975 spin_unlock_irq(&css_set_lock); 1976 1977 BUG_ON(!list_empty(&root_cgrp->self.children)); 1978 BUG_ON(atomic_read(&root->nr_cgrps) != 1); 1979 1980 kernfs_activate(root_cgrp->kn); 1981 ret = 0; 1982 goto out; 1983 1984 destroy_root: 1985 kernfs_destroy_root(root->kf_root); 1986 root->kf_root = NULL; 1987 exit_root_id: 1988 cgroup_exit_root_id(root); 1989 cancel_ref: 1990 percpu_ref_exit(&root_cgrp->self.refcnt); 1991 out: 1992 free_cgrp_cset_links(&tmp_links); 1993 return ret; 1994 } 1995 1996 struct dentry *cgroup_do_mount(struct file_system_type *fs_type, int flags, 1997 struct cgroup_root *root, unsigned long magic, 1998 struct cgroup_namespace *ns) 1999 { 2000 struct dentry *dentry; 2001 bool new_sb; 2002 2003 dentry = kernfs_mount(fs_type, flags, root->kf_root, magic, &new_sb); 2004 2005 /* 2006 * In non-init cgroup namespace, instead of root cgroup's dentry, 2007 * we return the dentry corresponding to the cgroupns->root_cgrp. 2008 */ 2009 if (!IS_ERR(dentry) && ns != &init_cgroup_ns) { 2010 struct dentry *nsdentry; 2011 struct cgroup *cgrp; 2012 2013 mutex_lock(&cgroup_mutex); 2014 spin_lock_irq(&css_set_lock); 2015 2016 cgrp = cset_cgroup_from_root(ns->root_cset, root); 2017 2018 spin_unlock_irq(&css_set_lock); 2019 mutex_unlock(&cgroup_mutex); 2020 2021 nsdentry = kernfs_node_dentry(cgrp->kn, dentry->d_sb); 2022 dput(dentry); 2023 dentry = nsdentry; 2024 } 2025 2026 if (IS_ERR(dentry) || !new_sb) 2027 cgroup_put(&root->cgrp); 2028 2029 return dentry; 2030 } 2031 2032 static struct dentry *cgroup_mount(struct file_system_type *fs_type, 2033 int flags, const char *unused_dev_name, 2034 void *data) 2035 { 2036 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns; 2037 struct dentry *dentry; 2038 int ret; 2039 2040 get_cgroup_ns(ns); 2041 2042 /* Check if the caller has permission to mount. */ 2043 if (!ns_capable(ns->user_ns, CAP_SYS_ADMIN)) { 2044 put_cgroup_ns(ns); 2045 return ERR_PTR(-EPERM); 2046 } 2047 2048 /* 2049 * The first time anyone tries to mount a cgroup, enable the list 2050 * linking each css_set to its tasks and fix up all existing tasks. 2051 */ 2052 if (!use_task_css_set_links) 2053 cgroup_enable_task_cg_lists(); 2054 2055 if (fs_type == &cgroup2_fs_type) { 2056 unsigned int root_flags; 2057 2058 ret = parse_cgroup_root_flags(data, &root_flags); 2059 if (ret) { 2060 put_cgroup_ns(ns); 2061 return ERR_PTR(ret); 2062 } 2063 2064 cgrp_dfl_visible = true; 2065 cgroup_get_live(&cgrp_dfl_root.cgrp); 2066 2067 dentry = cgroup_do_mount(&cgroup2_fs_type, flags, &cgrp_dfl_root, 2068 CGROUP2_SUPER_MAGIC, ns); 2069 if (!IS_ERR(dentry)) 2070 apply_cgroup_root_flags(root_flags); 2071 } else { 2072 dentry = cgroup1_mount(&cgroup_fs_type, flags, data, 2073 CGROUP_SUPER_MAGIC, ns); 2074 } 2075 2076 put_cgroup_ns(ns); 2077 return dentry; 2078 } 2079 2080 static void cgroup_kill_sb(struct super_block *sb) 2081 { 2082 struct kernfs_root *kf_root = kernfs_root_from_sb(sb); 2083 struct cgroup_root *root = cgroup_root_from_kf(kf_root); 2084 2085 /* 2086 * If @root doesn't have any mounts or children, start killing it. 2087 * This prevents new mounts by disabling percpu_ref_tryget_live(). 2088 * cgroup_mount() may wait for @root's release. 2089 * 2090 * And don't kill the default root. 2091 */ 2092 if (!list_empty(&root->cgrp.self.children) || 2093 root == &cgrp_dfl_root) 2094 cgroup_put(&root->cgrp); 2095 else 2096 percpu_ref_kill(&root->cgrp.self.refcnt); 2097 2098 kernfs_kill_sb(sb); 2099 } 2100 2101 struct file_system_type cgroup_fs_type = { 2102 .name = "cgroup", 2103 .mount = cgroup_mount, 2104 .kill_sb = cgroup_kill_sb, 2105 .fs_flags = FS_USERNS_MOUNT, 2106 }; 2107 2108 static struct file_system_type cgroup2_fs_type = { 2109 .name = "cgroup2", 2110 .mount = cgroup_mount, 2111 .kill_sb = cgroup_kill_sb, 2112 .fs_flags = FS_USERNS_MOUNT, 2113 }; 2114 2115 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen, 2116 struct cgroup_namespace *ns) 2117 { 2118 struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root); 2119 2120 return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen); 2121 } 2122 2123 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen, 2124 struct cgroup_namespace *ns) 2125 { 2126 int ret; 2127 2128 mutex_lock(&cgroup_mutex); 2129 spin_lock_irq(&css_set_lock); 2130 2131 ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns); 2132 2133 spin_unlock_irq(&css_set_lock); 2134 mutex_unlock(&cgroup_mutex); 2135 2136 return ret; 2137 } 2138 EXPORT_SYMBOL_GPL(cgroup_path_ns); 2139 2140 /** 2141 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy 2142 * @task: target task 2143 * @buf: the buffer to write the path into 2144 * @buflen: the length of the buffer 2145 * 2146 * Determine @task's cgroup on the first (the one with the lowest non-zero 2147 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This 2148 * function grabs cgroup_mutex and shouldn't be used inside locks used by 2149 * cgroup controller callbacks. 2150 * 2151 * Return value is the same as kernfs_path(). 2152 */ 2153 int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen) 2154 { 2155 struct cgroup_root *root; 2156 struct cgroup *cgrp; 2157 int hierarchy_id = 1; 2158 int ret; 2159 2160 mutex_lock(&cgroup_mutex); 2161 spin_lock_irq(&css_set_lock); 2162 2163 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id); 2164 2165 if (root) { 2166 cgrp = task_cgroup_from_root(task, root); 2167 ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns); 2168 } else { 2169 /* if no hierarchy exists, everyone is in "/" */ 2170 ret = strlcpy(buf, "/", buflen); 2171 } 2172 2173 spin_unlock_irq(&css_set_lock); 2174 mutex_unlock(&cgroup_mutex); 2175 return ret; 2176 } 2177 EXPORT_SYMBOL_GPL(task_cgroup_path); 2178 2179 /** 2180 * cgroup_migrate_add_task - add a migration target task to a migration context 2181 * @task: target task 2182 * @mgctx: target migration context 2183 * 2184 * Add @task, which is a migration target, to @mgctx->tset. This function 2185 * becomes noop if @task doesn't need to be migrated. @task's css_set 2186 * should have been added as a migration source and @task->cg_list will be 2187 * moved from the css_set's tasks list to mg_tasks one. 2188 */ 2189 static void cgroup_migrate_add_task(struct task_struct *task, 2190 struct cgroup_mgctx *mgctx) 2191 { 2192 struct css_set *cset; 2193 2194 lockdep_assert_held(&css_set_lock); 2195 2196 /* @task either already exited or can't exit until the end */ 2197 if (task->flags & PF_EXITING) 2198 return; 2199 2200 /* leave @task alone if post_fork() hasn't linked it yet */ 2201 if (list_empty(&task->cg_list)) 2202 return; 2203 2204 cset = task_css_set(task); 2205 if (!cset->mg_src_cgrp) 2206 return; 2207 2208 mgctx->tset.nr_tasks++; 2209 2210 list_move_tail(&task->cg_list, &cset->mg_tasks); 2211 if (list_empty(&cset->mg_node)) 2212 list_add_tail(&cset->mg_node, 2213 &mgctx->tset.src_csets); 2214 if (list_empty(&cset->mg_dst_cset->mg_node)) 2215 list_add_tail(&cset->mg_dst_cset->mg_node, 2216 &mgctx->tset.dst_csets); 2217 } 2218 2219 /** 2220 * cgroup_taskset_first - reset taskset and return the first task 2221 * @tset: taskset of interest 2222 * @dst_cssp: output variable for the destination css 2223 * 2224 * @tset iteration is initialized and the first task is returned. 2225 */ 2226 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset, 2227 struct cgroup_subsys_state **dst_cssp) 2228 { 2229 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node); 2230 tset->cur_task = NULL; 2231 2232 return cgroup_taskset_next(tset, dst_cssp); 2233 } 2234 2235 /** 2236 * cgroup_taskset_next - iterate to the next task in taskset 2237 * @tset: taskset of interest 2238 * @dst_cssp: output variable for the destination css 2239 * 2240 * Return the next task in @tset. Iteration must have been initialized 2241 * with cgroup_taskset_first(). 2242 */ 2243 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset, 2244 struct cgroup_subsys_state **dst_cssp) 2245 { 2246 struct css_set *cset = tset->cur_cset; 2247 struct task_struct *task = tset->cur_task; 2248 2249 while (&cset->mg_node != tset->csets) { 2250 if (!task) 2251 task = list_first_entry(&cset->mg_tasks, 2252 struct task_struct, cg_list); 2253 else 2254 task = list_next_entry(task, cg_list); 2255 2256 if (&task->cg_list != &cset->mg_tasks) { 2257 tset->cur_cset = cset; 2258 tset->cur_task = task; 2259 2260 /* 2261 * This function may be called both before and 2262 * after cgroup_taskset_migrate(). The two cases 2263 * can be distinguished by looking at whether @cset 2264 * has its ->mg_dst_cset set. 2265 */ 2266 if (cset->mg_dst_cset) 2267 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid]; 2268 else 2269 *dst_cssp = cset->subsys[tset->ssid]; 2270 2271 return task; 2272 } 2273 2274 cset = list_next_entry(cset, mg_node); 2275 task = NULL; 2276 } 2277 2278 return NULL; 2279 } 2280 2281 /** 2282 * cgroup_taskset_migrate - migrate a taskset 2283 * @mgctx: migration context 2284 * 2285 * Migrate tasks in @mgctx as setup by migration preparation functions. 2286 * This function fails iff one of the ->can_attach callbacks fails and 2287 * guarantees that either all or none of the tasks in @mgctx are migrated. 2288 * @mgctx is consumed regardless of success. 2289 */ 2290 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx) 2291 { 2292 struct cgroup_taskset *tset = &mgctx->tset; 2293 struct cgroup_subsys *ss; 2294 struct task_struct *task, *tmp_task; 2295 struct css_set *cset, *tmp_cset; 2296 int ssid, failed_ssid, ret; 2297 2298 /* check that we can legitimately attach to the cgroup */ 2299 if (tset->nr_tasks) { 2300 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2301 if (ss->can_attach) { 2302 tset->ssid = ssid; 2303 ret = ss->can_attach(tset); 2304 if (ret) { 2305 failed_ssid = ssid; 2306 goto out_cancel_attach; 2307 } 2308 } 2309 } while_each_subsys_mask(); 2310 } 2311 2312 /* 2313 * Now that we're guaranteed success, proceed to move all tasks to 2314 * the new cgroup. There are no failure cases after here, so this 2315 * is the commit point. 2316 */ 2317 spin_lock_irq(&css_set_lock); 2318 list_for_each_entry(cset, &tset->src_csets, mg_node) { 2319 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) { 2320 struct css_set *from_cset = task_css_set(task); 2321 struct css_set *to_cset = cset->mg_dst_cset; 2322 2323 get_css_set(to_cset); 2324 to_cset->nr_tasks++; 2325 css_set_move_task(task, from_cset, to_cset, true); 2326 put_css_set_locked(from_cset); 2327 from_cset->nr_tasks--; 2328 } 2329 } 2330 spin_unlock_irq(&css_set_lock); 2331 2332 /* 2333 * Migration is committed, all target tasks are now on dst_csets. 2334 * Nothing is sensitive to fork() after this point. Notify 2335 * controllers that migration is complete. 2336 */ 2337 tset->csets = &tset->dst_csets; 2338 2339 if (tset->nr_tasks) { 2340 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2341 if (ss->attach) { 2342 tset->ssid = ssid; 2343 ss->attach(tset); 2344 } 2345 } while_each_subsys_mask(); 2346 } 2347 2348 ret = 0; 2349 goto out_release_tset; 2350 2351 out_cancel_attach: 2352 if (tset->nr_tasks) { 2353 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2354 if (ssid == failed_ssid) 2355 break; 2356 if (ss->cancel_attach) { 2357 tset->ssid = ssid; 2358 ss->cancel_attach(tset); 2359 } 2360 } while_each_subsys_mask(); 2361 } 2362 out_release_tset: 2363 spin_lock_irq(&css_set_lock); 2364 list_splice_init(&tset->dst_csets, &tset->src_csets); 2365 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) { 2366 list_splice_tail_init(&cset->mg_tasks, &cset->tasks); 2367 list_del_init(&cset->mg_node); 2368 } 2369 spin_unlock_irq(&css_set_lock); 2370 2371 /* 2372 * Re-initialize the cgroup_taskset structure in case it is reused 2373 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute() 2374 * iteration. 2375 */ 2376 tset->nr_tasks = 0; 2377 tset->csets = &tset->src_csets; 2378 return ret; 2379 } 2380 2381 /** 2382 * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination 2383 * @dst_cgrp: destination cgroup to test 2384 * 2385 * On the default hierarchy, except for the mixable, (possible) thread root 2386 * and threaded cgroups, subtree_control must be zero for migration 2387 * destination cgroups with tasks so that child cgroups don't compete 2388 * against tasks. 2389 */ 2390 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp) 2391 { 2392 /* v1 doesn't have any restriction */ 2393 if (!cgroup_on_dfl(dst_cgrp)) 2394 return 0; 2395 2396 /* verify @dst_cgrp can host resources */ 2397 if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp)) 2398 return -EOPNOTSUPP; 2399 2400 /* mixables don't care */ 2401 if (cgroup_is_mixable(dst_cgrp)) 2402 return 0; 2403 2404 /* 2405 * If @dst_cgrp is already or can become a thread root or is 2406 * threaded, it doesn't matter. 2407 */ 2408 if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp)) 2409 return 0; 2410 2411 /* apply no-internal-process constraint */ 2412 if (dst_cgrp->subtree_control) 2413 return -EBUSY; 2414 2415 return 0; 2416 } 2417 2418 /** 2419 * cgroup_migrate_finish - cleanup after attach 2420 * @mgctx: migration context 2421 * 2422 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See 2423 * those functions for details. 2424 */ 2425 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx) 2426 { 2427 LIST_HEAD(preloaded); 2428 struct css_set *cset, *tmp_cset; 2429 2430 lockdep_assert_held(&cgroup_mutex); 2431 2432 spin_lock_irq(&css_set_lock); 2433 2434 list_splice_tail_init(&mgctx->preloaded_src_csets, &preloaded); 2435 list_splice_tail_init(&mgctx->preloaded_dst_csets, &preloaded); 2436 2437 list_for_each_entry_safe(cset, tmp_cset, &preloaded, mg_preload_node) { 2438 cset->mg_src_cgrp = NULL; 2439 cset->mg_dst_cgrp = NULL; 2440 cset->mg_dst_cset = NULL; 2441 list_del_init(&cset->mg_preload_node); 2442 put_css_set_locked(cset); 2443 } 2444 2445 spin_unlock_irq(&css_set_lock); 2446 } 2447 2448 /** 2449 * cgroup_migrate_add_src - add a migration source css_set 2450 * @src_cset: the source css_set to add 2451 * @dst_cgrp: the destination cgroup 2452 * @mgctx: migration context 2453 * 2454 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin 2455 * @src_cset and add it to @mgctx->src_csets, which should later be cleaned 2456 * up by cgroup_migrate_finish(). 2457 * 2458 * This function may be called without holding cgroup_threadgroup_rwsem 2459 * even if the target is a process. Threads may be created and destroyed 2460 * but as long as cgroup_mutex is not dropped, no new css_set can be put 2461 * into play and the preloaded css_sets are guaranteed to cover all 2462 * migrations. 2463 */ 2464 void cgroup_migrate_add_src(struct css_set *src_cset, 2465 struct cgroup *dst_cgrp, 2466 struct cgroup_mgctx *mgctx) 2467 { 2468 struct cgroup *src_cgrp; 2469 2470 lockdep_assert_held(&cgroup_mutex); 2471 lockdep_assert_held(&css_set_lock); 2472 2473 /* 2474 * If ->dead, @src_set is associated with one or more dead cgroups 2475 * and doesn't contain any migratable tasks. Ignore it early so 2476 * that the rest of migration path doesn't get confused by it. 2477 */ 2478 if (src_cset->dead) 2479 return; 2480 2481 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root); 2482 2483 if (!list_empty(&src_cset->mg_preload_node)) 2484 return; 2485 2486 WARN_ON(src_cset->mg_src_cgrp); 2487 WARN_ON(src_cset->mg_dst_cgrp); 2488 WARN_ON(!list_empty(&src_cset->mg_tasks)); 2489 WARN_ON(!list_empty(&src_cset->mg_node)); 2490 2491 src_cset->mg_src_cgrp = src_cgrp; 2492 src_cset->mg_dst_cgrp = dst_cgrp; 2493 get_css_set(src_cset); 2494 list_add_tail(&src_cset->mg_preload_node, &mgctx->preloaded_src_csets); 2495 } 2496 2497 /** 2498 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration 2499 * @mgctx: migration context 2500 * 2501 * Tasks are about to be moved and all the source css_sets have been 2502 * preloaded to @mgctx->preloaded_src_csets. This function looks up and 2503 * pins all destination css_sets, links each to its source, and append them 2504 * to @mgctx->preloaded_dst_csets. 2505 * 2506 * This function must be called after cgroup_migrate_add_src() has been 2507 * called on each migration source css_set. After migration is performed 2508 * using cgroup_migrate(), cgroup_migrate_finish() must be called on 2509 * @mgctx. 2510 */ 2511 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx) 2512 { 2513 struct css_set *src_cset, *tmp_cset; 2514 2515 lockdep_assert_held(&cgroup_mutex); 2516 2517 /* look up the dst cset for each src cset and link it to src */ 2518 list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets, 2519 mg_preload_node) { 2520 struct css_set *dst_cset; 2521 struct cgroup_subsys *ss; 2522 int ssid; 2523 2524 dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp); 2525 if (!dst_cset) 2526 goto err; 2527 2528 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset); 2529 2530 /* 2531 * If src cset equals dst, it's noop. Drop the src. 2532 * cgroup_migrate() will skip the cset too. Note that we 2533 * can't handle src == dst as some nodes are used by both. 2534 */ 2535 if (src_cset == dst_cset) { 2536 src_cset->mg_src_cgrp = NULL; 2537 src_cset->mg_dst_cgrp = NULL; 2538 list_del_init(&src_cset->mg_preload_node); 2539 put_css_set(src_cset); 2540 put_css_set(dst_cset); 2541 continue; 2542 } 2543 2544 src_cset->mg_dst_cset = dst_cset; 2545 2546 if (list_empty(&dst_cset->mg_preload_node)) 2547 list_add_tail(&dst_cset->mg_preload_node, 2548 &mgctx->preloaded_dst_csets); 2549 else 2550 put_css_set(dst_cset); 2551 2552 for_each_subsys(ss, ssid) 2553 if (src_cset->subsys[ssid] != dst_cset->subsys[ssid]) 2554 mgctx->ss_mask |= 1 << ssid; 2555 } 2556 2557 return 0; 2558 err: 2559 cgroup_migrate_finish(mgctx); 2560 return -ENOMEM; 2561 } 2562 2563 /** 2564 * cgroup_migrate - migrate a process or task to a cgroup 2565 * @leader: the leader of the process or the task to migrate 2566 * @threadgroup: whether @leader points to the whole process or a single task 2567 * @mgctx: migration context 2568 * 2569 * Migrate a process or task denoted by @leader. If migrating a process, 2570 * the caller must be holding cgroup_threadgroup_rwsem. The caller is also 2571 * responsible for invoking cgroup_migrate_add_src() and 2572 * cgroup_migrate_prepare_dst() on the targets before invoking this 2573 * function and following up with cgroup_migrate_finish(). 2574 * 2575 * As long as a controller's ->can_attach() doesn't fail, this function is 2576 * guaranteed to succeed. This means that, excluding ->can_attach() 2577 * failure, when migrating multiple targets, the success or failure can be 2578 * decided for all targets by invoking group_migrate_prepare_dst() before 2579 * actually starting migrating. 2580 */ 2581 int cgroup_migrate(struct task_struct *leader, bool threadgroup, 2582 struct cgroup_mgctx *mgctx) 2583 { 2584 struct task_struct *task; 2585 2586 /* 2587 * Prevent freeing of tasks while we take a snapshot. Tasks that are 2588 * already PF_EXITING could be freed from underneath us unless we 2589 * take an rcu_read_lock. 2590 */ 2591 spin_lock_irq(&css_set_lock); 2592 rcu_read_lock(); 2593 task = leader; 2594 do { 2595 cgroup_migrate_add_task(task, mgctx); 2596 if (!threadgroup) 2597 break; 2598 } while_each_thread(leader, task); 2599 rcu_read_unlock(); 2600 spin_unlock_irq(&css_set_lock); 2601 2602 return cgroup_migrate_execute(mgctx); 2603 } 2604 2605 /** 2606 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup 2607 * @dst_cgrp: the cgroup to attach to 2608 * @leader: the task or the leader of the threadgroup to be attached 2609 * @threadgroup: attach the whole threadgroup? 2610 * 2611 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem. 2612 */ 2613 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader, 2614 bool threadgroup) 2615 { 2616 DEFINE_CGROUP_MGCTX(mgctx); 2617 struct task_struct *task; 2618 int ret; 2619 2620 ret = cgroup_migrate_vet_dst(dst_cgrp); 2621 if (ret) 2622 return ret; 2623 2624 /* look up all src csets */ 2625 spin_lock_irq(&css_set_lock); 2626 rcu_read_lock(); 2627 task = leader; 2628 do { 2629 cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx); 2630 if (!threadgroup) 2631 break; 2632 } while_each_thread(leader, task); 2633 rcu_read_unlock(); 2634 spin_unlock_irq(&css_set_lock); 2635 2636 /* prepare dst csets and commit */ 2637 ret = cgroup_migrate_prepare_dst(&mgctx); 2638 if (!ret) 2639 ret = cgroup_migrate(leader, threadgroup, &mgctx); 2640 2641 cgroup_migrate_finish(&mgctx); 2642 2643 if (!ret) 2644 TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup); 2645 2646 return ret; 2647 } 2648 2649 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup) 2650 __acquires(&cgroup_threadgroup_rwsem) 2651 { 2652 struct task_struct *tsk; 2653 pid_t pid; 2654 2655 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0) 2656 return ERR_PTR(-EINVAL); 2657 2658 percpu_down_write(&cgroup_threadgroup_rwsem); 2659 2660 rcu_read_lock(); 2661 if (pid) { 2662 tsk = find_task_by_vpid(pid); 2663 if (!tsk) { 2664 tsk = ERR_PTR(-ESRCH); 2665 goto out_unlock_threadgroup; 2666 } 2667 } else { 2668 tsk = current; 2669 } 2670 2671 if (threadgroup) 2672 tsk = tsk->group_leader; 2673 2674 /* 2675 * kthreads may acquire PF_NO_SETAFFINITY during initialization. 2676 * If userland migrates such a kthread to a non-root cgroup, it can 2677 * become trapped in a cpuset, or RT kthread may be born in a 2678 * cgroup with no rt_runtime allocated. Just say no. 2679 */ 2680 if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) { 2681 tsk = ERR_PTR(-EINVAL); 2682 goto out_unlock_threadgroup; 2683 } 2684 2685 get_task_struct(tsk); 2686 goto out_unlock_rcu; 2687 2688 out_unlock_threadgroup: 2689 percpu_up_write(&cgroup_threadgroup_rwsem); 2690 out_unlock_rcu: 2691 rcu_read_unlock(); 2692 return tsk; 2693 } 2694 2695 void cgroup_procs_write_finish(struct task_struct *task) 2696 __releases(&cgroup_threadgroup_rwsem) 2697 { 2698 struct cgroup_subsys *ss; 2699 int ssid; 2700 2701 /* release reference from cgroup_procs_write_start() */ 2702 put_task_struct(task); 2703 2704 percpu_up_write(&cgroup_threadgroup_rwsem); 2705 for_each_subsys(ss, ssid) 2706 if (ss->post_attach) 2707 ss->post_attach(); 2708 } 2709 2710 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask) 2711 { 2712 struct cgroup_subsys *ss; 2713 bool printed = false; 2714 int ssid; 2715 2716 do_each_subsys_mask(ss, ssid, ss_mask) { 2717 if (printed) 2718 seq_putc(seq, ' '); 2719 seq_printf(seq, "%s", ss->name); 2720 printed = true; 2721 } while_each_subsys_mask(); 2722 if (printed) 2723 seq_putc(seq, '\n'); 2724 } 2725 2726 /* show controllers which are enabled from the parent */ 2727 static int cgroup_controllers_show(struct seq_file *seq, void *v) 2728 { 2729 struct cgroup *cgrp = seq_css(seq)->cgroup; 2730 2731 cgroup_print_ss_mask(seq, cgroup_control(cgrp)); 2732 return 0; 2733 } 2734 2735 /* show controllers which are enabled for a given cgroup's children */ 2736 static int cgroup_subtree_control_show(struct seq_file *seq, void *v) 2737 { 2738 struct cgroup *cgrp = seq_css(seq)->cgroup; 2739 2740 cgroup_print_ss_mask(seq, cgrp->subtree_control); 2741 return 0; 2742 } 2743 2744 /** 2745 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy 2746 * @cgrp: root of the subtree to update csses for 2747 * 2748 * @cgrp's control masks have changed and its subtree's css associations 2749 * need to be updated accordingly. This function looks up all css_sets 2750 * which are attached to the subtree, creates the matching updated css_sets 2751 * and migrates the tasks to the new ones. 2752 */ 2753 static int cgroup_update_dfl_csses(struct cgroup *cgrp) 2754 { 2755 DEFINE_CGROUP_MGCTX(mgctx); 2756 struct cgroup_subsys_state *d_css; 2757 struct cgroup *dsct; 2758 struct css_set *src_cset; 2759 int ret; 2760 2761 lockdep_assert_held(&cgroup_mutex); 2762 2763 percpu_down_write(&cgroup_threadgroup_rwsem); 2764 2765 /* look up all csses currently attached to @cgrp's subtree */ 2766 spin_lock_irq(&css_set_lock); 2767 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 2768 struct cgrp_cset_link *link; 2769 2770 list_for_each_entry(link, &dsct->cset_links, cset_link) 2771 cgroup_migrate_add_src(link->cset, dsct, &mgctx); 2772 } 2773 spin_unlock_irq(&css_set_lock); 2774 2775 /* NULL dst indicates self on default hierarchy */ 2776 ret = cgroup_migrate_prepare_dst(&mgctx); 2777 if (ret) 2778 goto out_finish; 2779 2780 spin_lock_irq(&css_set_lock); 2781 list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, mg_preload_node) { 2782 struct task_struct *task, *ntask; 2783 2784 /* all tasks in src_csets need to be migrated */ 2785 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list) 2786 cgroup_migrate_add_task(task, &mgctx); 2787 } 2788 spin_unlock_irq(&css_set_lock); 2789 2790 ret = cgroup_migrate_execute(&mgctx); 2791 out_finish: 2792 cgroup_migrate_finish(&mgctx); 2793 percpu_up_write(&cgroup_threadgroup_rwsem); 2794 return ret; 2795 } 2796 2797 /** 2798 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses 2799 * @cgrp: root of the target subtree 2800 * 2801 * Because css offlining is asynchronous, userland may try to re-enable a 2802 * controller while the previous css is still around. This function grabs 2803 * cgroup_mutex and drains the previous css instances of @cgrp's subtree. 2804 */ 2805 void cgroup_lock_and_drain_offline(struct cgroup *cgrp) 2806 __acquires(&cgroup_mutex) 2807 { 2808 struct cgroup *dsct; 2809 struct cgroup_subsys_state *d_css; 2810 struct cgroup_subsys *ss; 2811 int ssid; 2812 2813 restart: 2814 mutex_lock(&cgroup_mutex); 2815 2816 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 2817 for_each_subsys(ss, ssid) { 2818 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 2819 DEFINE_WAIT(wait); 2820 2821 if (!css || !percpu_ref_is_dying(&css->refcnt)) 2822 continue; 2823 2824 cgroup_get_live(dsct); 2825 prepare_to_wait(&dsct->offline_waitq, &wait, 2826 TASK_UNINTERRUPTIBLE); 2827 2828 mutex_unlock(&cgroup_mutex); 2829 schedule(); 2830 finish_wait(&dsct->offline_waitq, &wait); 2831 2832 cgroup_put(dsct); 2833 goto restart; 2834 } 2835 } 2836 } 2837 2838 /** 2839 * cgroup_save_control - save control masks of a subtree 2840 * @cgrp: root of the target subtree 2841 * 2842 * Save ->subtree_control and ->subtree_ss_mask to the respective old_ 2843 * prefixed fields for @cgrp's subtree including @cgrp itself. 2844 */ 2845 static void cgroup_save_control(struct cgroup *cgrp) 2846 { 2847 struct cgroup *dsct; 2848 struct cgroup_subsys_state *d_css; 2849 2850 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 2851 dsct->old_subtree_control = dsct->subtree_control; 2852 dsct->old_subtree_ss_mask = dsct->subtree_ss_mask; 2853 } 2854 } 2855 2856 /** 2857 * cgroup_propagate_control - refresh control masks of a subtree 2858 * @cgrp: root of the target subtree 2859 * 2860 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches 2861 * ->subtree_control and propagate controller availability through the 2862 * subtree so that descendants don't have unavailable controllers enabled. 2863 */ 2864 static void cgroup_propagate_control(struct cgroup *cgrp) 2865 { 2866 struct cgroup *dsct; 2867 struct cgroup_subsys_state *d_css; 2868 2869 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 2870 dsct->subtree_control &= cgroup_control(dsct); 2871 dsct->subtree_ss_mask = 2872 cgroup_calc_subtree_ss_mask(dsct->subtree_control, 2873 cgroup_ss_mask(dsct)); 2874 } 2875 } 2876 2877 /** 2878 * cgroup_restore_control - restore control masks of a subtree 2879 * @cgrp: root of the target subtree 2880 * 2881 * Restore ->subtree_control and ->subtree_ss_mask from the respective old_ 2882 * prefixed fields for @cgrp's subtree including @cgrp itself. 2883 */ 2884 static void cgroup_restore_control(struct cgroup *cgrp) 2885 { 2886 struct cgroup *dsct; 2887 struct cgroup_subsys_state *d_css; 2888 2889 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 2890 dsct->subtree_control = dsct->old_subtree_control; 2891 dsct->subtree_ss_mask = dsct->old_subtree_ss_mask; 2892 } 2893 } 2894 2895 static bool css_visible(struct cgroup_subsys_state *css) 2896 { 2897 struct cgroup_subsys *ss = css->ss; 2898 struct cgroup *cgrp = css->cgroup; 2899 2900 if (cgroup_control(cgrp) & (1 << ss->id)) 2901 return true; 2902 if (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) 2903 return false; 2904 return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl; 2905 } 2906 2907 /** 2908 * cgroup_apply_control_enable - enable or show csses according to control 2909 * @cgrp: root of the target subtree 2910 * 2911 * Walk @cgrp's subtree and create new csses or make the existing ones 2912 * visible. A css is created invisible if it's being implicitly enabled 2913 * through dependency. An invisible css is made visible when the userland 2914 * explicitly enables it. 2915 * 2916 * Returns 0 on success, -errno on failure. On failure, csses which have 2917 * been processed already aren't cleaned up. The caller is responsible for 2918 * cleaning up with cgroup_apply_control_disable(). 2919 */ 2920 static int cgroup_apply_control_enable(struct cgroup *cgrp) 2921 { 2922 struct cgroup *dsct; 2923 struct cgroup_subsys_state *d_css; 2924 struct cgroup_subsys *ss; 2925 int ssid, ret; 2926 2927 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 2928 for_each_subsys(ss, ssid) { 2929 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 2930 2931 WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt)); 2932 2933 if (!(cgroup_ss_mask(dsct) & (1 << ss->id))) 2934 continue; 2935 2936 if (!css) { 2937 css = css_create(dsct, ss); 2938 if (IS_ERR(css)) 2939 return PTR_ERR(css); 2940 } 2941 2942 if (css_visible(css)) { 2943 ret = css_populate_dir(css); 2944 if (ret) 2945 return ret; 2946 } 2947 } 2948 } 2949 2950 return 0; 2951 } 2952 2953 /** 2954 * cgroup_apply_control_disable - kill or hide csses according to control 2955 * @cgrp: root of the target subtree 2956 * 2957 * Walk @cgrp's subtree and kill and hide csses so that they match 2958 * cgroup_ss_mask() and cgroup_visible_mask(). 2959 * 2960 * A css is hidden when the userland requests it to be disabled while other 2961 * subsystems are still depending on it. The css must not actively control 2962 * resources and be in the vanilla state if it's made visible again later. 2963 * Controllers which may be depended upon should provide ->css_reset() for 2964 * this purpose. 2965 */ 2966 static void cgroup_apply_control_disable(struct cgroup *cgrp) 2967 { 2968 struct cgroup *dsct; 2969 struct cgroup_subsys_state *d_css; 2970 struct cgroup_subsys *ss; 2971 int ssid; 2972 2973 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 2974 for_each_subsys(ss, ssid) { 2975 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 2976 2977 WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt)); 2978 2979 if (!css) 2980 continue; 2981 2982 if (css->parent && 2983 !(cgroup_ss_mask(dsct) & (1 << ss->id))) { 2984 kill_css(css); 2985 } else if (!css_visible(css)) { 2986 css_clear_dir(css); 2987 if (ss->css_reset) 2988 ss->css_reset(css); 2989 } 2990 } 2991 } 2992 } 2993 2994 /** 2995 * cgroup_apply_control - apply control mask updates to the subtree 2996 * @cgrp: root of the target subtree 2997 * 2998 * subsystems can be enabled and disabled in a subtree using the following 2999 * steps. 3000 * 3001 * 1. Call cgroup_save_control() to stash the current state. 3002 * 2. Update ->subtree_control masks in the subtree as desired. 3003 * 3. Call cgroup_apply_control() to apply the changes. 3004 * 4. Optionally perform other related operations. 3005 * 5. Call cgroup_finalize_control() to finish up. 3006 * 3007 * This function implements step 3 and propagates the mask changes 3008 * throughout @cgrp's subtree, updates csses accordingly and perform 3009 * process migrations. 3010 */ 3011 static int cgroup_apply_control(struct cgroup *cgrp) 3012 { 3013 int ret; 3014 3015 cgroup_propagate_control(cgrp); 3016 3017 ret = cgroup_apply_control_enable(cgrp); 3018 if (ret) 3019 return ret; 3020 3021 /* 3022 * At this point, cgroup_e_css() results reflect the new csses 3023 * making the following cgroup_update_dfl_csses() properly update 3024 * css associations of all tasks in the subtree. 3025 */ 3026 ret = cgroup_update_dfl_csses(cgrp); 3027 if (ret) 3028 return ret; 3029 3030 return 0; 3031 } 3032 3033 /** 3034 * cgroup_finalize_control - finalize control mask update 3035 * @cgrp: root of the target subtree 3036 * @ret: the result of the update 3037 * 3038 * Finalize control mask update. See cgroup_apply_control() for more info. 3039 */ 3040 static void cgroup_finalize_control(struct cgroup *cgrp, int ret) 3041 { 3042 if (ret) { 3043 cgroup_restore_control(cgrp); 3044 cgroup_propagate_control(cgrp); 3045 } 3046 3047 cgroup_apply_control_disable(cgrp); 3048 } 3049 3050 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable) 3051 { 3052 u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask; 3053 3054 /* if nothing is getting enabled, nothing to worry about */ 3055 if (!enable) 3056 return 0; 3057 3058 /* can @cgrp host any resources? */ 3059 if (!cgroup_is_valid_domain(cgrp->dom_cgrp)) 3060 return -EOPNOTSUPP; 3061 3062 /* mixables don't care */ 3063 if (cgroup_is_mixable(cgrp)) 3064 return 0; 3065 3066 if (domain_enable) { 3067 /* can't enable domain controllers inside a thread subtree */ 3068 if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp)) 3069 return -EOPNOTSUPP; 3070 } else { 3071 /* 3072 * Threaded controllers can handle internal competitions 3073 * and are always allowed inside a (prospective) thread 3074 * subtree. 3075 */ 3076 if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp)) 3077 return 0; 3078 } 3079 3080 /* 3081 * Controllers can't be enabled for a cgroup with tasks to avoid 3082 * child cgroups competing against tasks. 3083 */ 3084 if (cgroup_has_tasks(cgrp)) 3085 return -EBUSY; 3086 3087 return 0; 3088 } 3089 3090 /* change the enabled child controllers for a cgroup in the default hierarchy */ 3091 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of, 3092 char *buf, size_t nbytes, 3093 loff_t off) 3094 { 3095 u16 enable = 0, disable = 0; 3096 struct cgroup *cgrp, *child; 3097 struct cgroup_subsys *ss; 3098 char *tok; 3099 int ssid, ret; 3100 3101 /* 3102 * Parse input - space separated list of subsystem names prefixed 3103 * with either + or -. 3104 */ 3105 buf = strstrip(buf); 3106 while ((tok = strsep(&buf, " "))) { 3107 if (tok[0] == '\0') 3108 continue; 3109 do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) { 3110 if (!cgroup_ssid_enabled(ssid) || 3111 strcmp(tok + 1, ss->name)) 3112 continue; 3113 3114 if (*tok == '+') { 3115 enable |= 1 << ssid; 3116 disable &= ~(1 << ssid); 3117 } else if (*tok == '-') { 3118 disable |= 1 << ssid; 3119 enable &= ~(1 << ssid); 3120 } else { 3121 return -EINVAL; 3122 } 3123 break; 3124 } while_each_subsys_mask(); 3125 if (ssid == CGROUP_SUBSYS_COUNT) 3126 return -EINVAL; 3127 } 3128 3129 cgrp = cgroup_kn_lock_live(of->kn, true); 3130 if (!cgrp) 3131 return -ENODEV; 3132 3133 for_each_subsys(ss, ssid) { 3134 if (enable & (1 << ssid)) { 3135 if (cgrp->subtree_control & (1 << ssid)) { 3136 enable &= ~(1 << ssid); 3137 continue; 3138 } 3139 3140 if (!(cgroup_control(cgrp) & (1 << ssid))) { 3141 ret = -ENOENT; 3142 goto out_unlock; 3143 } 3144 } else if (disable & (1 << ssid)) { 3145 if (!(cgrp->subtree_control & (1 << ssid))) { 3146 disable &= ~(1 << ssid); 3147 continue; 3148 } 3149 3150 /* a child has it enabled? */ 3151 cgroup_for_each_live_child(child, cgrp) { 3152 if (child->subtree_control & (1 << ssid)) { 3153 ret = -EBUSY; 3154 goto out_unlock; 3155 } 3156 } 3157 } 3158 } 3159 3160 if (!enable && !disable) { 3161 ret = 0; 3162 goto out_unlock; 3163 } 3164 3165 ret = cgroup_vet_subtree_control_enable(cgrp, enable); 3166 if (ret) 3167 goto out_unlock; 3168 3169 /* save and update control masks and prepare csses */ 3170 cgroup_save_control(cgrp); 3171 3172 cgrp->subtree_control |= enable; 3173 cgrp->subtree_control &= ~disable; 3174 3175 ret = cgroup_apply_control(cgrp); 3176 cgroup_finalize_control(cgrp, ret); 3177 if (ret) 3178 goto out_unlock; 3179 3180 kernfs_activate(cgrp->kn); 3181 out_unlock: 3182 cgroup_kn_unlock(of->kn); 3183 return ret ?: nbytes; 3184 } 3185 3186 /** 3187 * cgroup_enable_threaded - make @cgrp threaded 3188 * @cgrp: the target cgroup 3189 * 3190 * Called when "threaded" is written to the cgroup.type interface file and 3191 * tries to make @cgrp threaded and join the parent's resource domain. 3192 * This function is never called on the root cgroup as cgroup.type doesn't 3193 * exist on it. 3194 */ 3195 static int cgroup_enable_threaded(struct cgroup *cgrp) 3196 { 3197 struct cgroup *parent = cgroup_parent(cgrp); 3198 struct cgroup *dom_cgrp = parent->dom_cgrp; 3199 int ret; 3200 3201 lockdep_assert_held(&cgroup_mutex); 3202 3203 /* noop if already threaded */ 3204 if (cgroup_is_threaded(cgrp)) 3205 return 0; 3206 3207 /* 3208 * If @cgroup is populated or has domain controllers enabled, it 3209 * can't be switched. While the below cgroup_can_be_thread_root() 3210 * test can catch the same conditions, that's only when @parent is 3211 * not mixable, so let's check it explicitly. 3212 */ 3213 if (cgroup_is_populated(cgrp) || 3214 cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask) 3215 return -EOPNOTSUPP; 3216 3217 /* we're joining the parent's domain, ensure its validity */ 3218 if (!cgroup_is_valid_domain(dom_cgrp) || 3219 !cgroup_can_be_thread_root(dom_cgrp)) 3220 return -EOPNOTSUPP; 3221 3222 /* 3223 * The following shouldn't cause actual migrations and should 3224 * always succeed. 3225 */ 3226 cgroup_save_control(cgrp); 3227 3228 cgrp->dom_cgrp = dom_cgrp; 3229 ret = cgroup_apply_control(cgrp); 3230 if (!ret) 3231 parent->nr_threaded_children++; 3232 else 3233 cgrp->dom_cgrp = cgrp; 3234 3235 cgroup_finalize_control(cgrp, ret); 3236 return ret; 3237 } 3238 3239 static int cgroup_type_show(struct seq_file *seq, void *v) 3240 { 3241 struct cgroup *cgrp = seq_css(seq)->cgroup; 3242 3243 if (cgroup_is_threaded(cgrp)) 3244 seq_puts(seq, "threaded\n"); 3245 else if (!cgroup_is_valid_domain(cgrp)) 3246 seq_puts(seq, "domain invalid\n"); 3247 else if (cgroup_is_thread_root(cgrp)) 3248 seq_puts(seq, "domain threaded\n"); 3249 else 3250 seq_puts(seq, "domain\n"); 3251 3252 return 0; 3253 } 3254 3255 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf, 3256 size_t nbytes, loff_t off) 3257 { 3258 struct cgroup *cgrp; 3259 int ret; 3260 3261 /* only switching to threaded mode is supported */ 3262 if (strcmp(strstrip(buf), "threaded")) 3263 return -EINVAL; 3264 3265 cgrp = cgroup_kn_lock_live(of->kn, false); 3266 if (!cgrp) 3267 return -ENOENT; 3268 3269 /* threaded can only be enabled */ 3270 ret = cgroup_enable_threaded(cgrp); 3271 3272 cgroup_kn_unlock(of->kn); 3273 return ret ?: nbytes; 3274 } 3275 3276 static int cgroup_max_descendants_show(struct seq_file *seq, void *v) 3277 { 3278 struct cgroup *cgrp = seq_css(seq)->cgroup; 3279 int descendants = READ_ONCE(cgrp->max_descendants); 3280 3281 if (descendants == INT_MAX) 3282 seq_puts(seq, "max\n"); 3283 else 3284 seq_printf(seq, "%d\n", descendants); 3285 3286 return 0; 3287 } 3288 3289 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of, 3290 char *buf, size_t nbytes, loff_t off) 3291 { 3292 struct cgroup *cgrp; 3293 int descendants; 3294 ssize_t ret; 3295 3296 buf = strstrip(buf); 3297 if (!strcmp(buf, "max")) { 3298 descendants = INT_MAX; 3299 } else { 3300 ret = kstrtoint(buf, 0, &descendants); 3301 if (ret) 3302 return ret; 3303 } 3304 3305 if (descendants < 0) 3306 return -ERANGE; 3307 3308 cgrp = cgroup_kn_lock_live(of->kn, false); 3309 if (!cgrp) 3310 return -ENOENT; 3311 3312 cgrp->max_descendants = descendants; 3313 3314 cgroup_kn_unlock(of->kn); 3315 3316 return nbytes; 3317 } 3318 3319 static int cgroup_max_depth_show(struct seq_file *seq, void *v) 3320 { 3321 struct cgroup *cgrp = seq_css(seq)->cgroup; 3322 int depth = READ_ONCE(cgrp->max_depth); 3323 3324 if (depth == INT_MAX) 3325 seq_puts(seq, "max\n"); 3326 else 3327 seq_printf(seq, "%d\n", depth); 3328 3329 return 0; 3330 } 3331 3332 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of, 3333 char *buf, size_t nbytes, loff_t off) 3334 { 3335 struct cgroup *cgrp; 3336 ssize_t ret; 3337 int depth; 3338 3339 buf = strstrip(buf); 3340 if (!strcmp(buf, "max")) { 3341 depth = INT_MAX; 3342 } else { 3343 ret = kstrtoint(buf, 0, &depth); 3344 if (ret) 3345 return ret; 3346 } 3347 3348 if (depth < 0) 3349 return -ERANGE; 3350 3351 cgrp = cgroup_kn_lock_live(of->kn, false); 3352 if (!cgrp) 3353 return -ENOENT; 3354 3355 cgrp->max_depth = depth; 3356 3357 cgroup_kn_unlock(of->kn); 3358 3359 return nbytes; 3360 } 3361 3362 static int cgroup_events_show(struct seq_file *seq, void *v) 3363 { 3364 seq_printf(seq, "populated %d\n", 3365 cgroup_is_populated(seq_css(seq)->cgroup)); 3366 return 0; 3367 } 3368 3369 static int cgroup_stat_show(struct seq_file *seq, void *v) 3370 { 3371 struct cgroup *cgroup = seq_css(seq)->cgroup; 3372 3373 seq_printf(seq, "nr_descendants %d\n", 3374 cgroup->nr_descendants); 3375 seq_printf(seq, "nr_dying_descendants %d\n", 3376 cgroup->nr_dying_descendants); 3377 3378 return 0; 3379 } 3380 3381 static int __maybe_unused cgroup_extra_stat_show(struct seq_file *seq, 3382 struct cgroup *cgrp, int ssid) 3383 { 3384 struct cgroup_subsys *ss = cgroup_subsys[ssid]; 3385 struct cgroup_subsys_state *css; 3386 int ret; 3387 3388 if (!ss->css_extra_stat_show) 3389 return 0; 3390 3391 css = cgroup_tryget_css(cgrp, ss); 3392 if (!css) 3393 return 0; 3394 3395 ret = ss->css_extra_stat_show(seq, css); 3396 css_put(css); 3397 return ret; 3398 } 3399 3400 static int cpu_stat_show(struct seq_file *seq, void *v) 3401 { 3402 struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup; 3403 int ret = 0; 3404 3405 cgroup_base_stat_cputime_show(seq); 3406 #ifdef CONFIG_CGROUP_SCHED 3407 ret = cgroup_extra_stat_show(seq, cgrp, cpu_cgrp_id); 3408 #endif 3409 return ret; 3410 } 3411 3412 static int cgroup_file_open(struct kernfs_open_file *of) 3413 { 3414 struct cftype *cft = of->kn->priv; 3415 3416 if (cft->open) 3417 return cft->open(of); 3418 return 0; 3419 } 3420 3421 static void cgroup_file_release(struct kernfs_open_file *of) 3422 { 3423 struct cftype *cft = of->kn->priv; 3424 3425 if (cft->release) 3426 cft->release(of); 3427 } 3428 3429 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf, 3430 size_t nbytes, loff_t off) 3431 { 3432 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns; 3433 struct cgroup *cgrp = of->kn->parent->priv; 3434 struct cftype *cft = of->kn->priv; 3435 struct cgroup_subsys_state *css; 3436 int ret; 3437 3438 /* 3439 * If namespaces are delegation boundaries, disallow writes to 3440 * files in an non-init namespace root from inside the namespace 3441 * except for the files explicitly marked delegatable - 3442 * cgroup.procs and cgroup.subtree_control. 3443 */ 3444 if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) && 3445 !(cft->flags & CFTYPE_NS_DELEGATABLE) && 3446 ns != &init_cgroup_ns && ns->root_cset->dfl_cgrp == cgrp) 3447 return -EPERM; 3448 3449 if (cft->write) 3450 return cft->write(of, buf, nbytes, off); 3451 3452 /* 3453 * kernfs guarantees that a file isn't deleted with operations in 3454 * flight, which means that the matching css is and stays alive and 3455 * doesn't need to be pinned. The RCU locking is not necessary 3456 * either. It's just for the convenience of using cgroup_css(). 3457 */ 3458 rcu_read_lock(); 3459 css = cgroup_css(cgrp, cft->ss); 3460 rcu_read_unlock(); 3461 3462 if (cft->write_u64) { 3463 unsigned long long v; 3464 ret = kstrtoull(buf, 0, &v); 3465 if (!ret) 3466 ret = cft->write_u64(css, cft, v); 3467 } else if (cft->write_s64) { 3468 long long v; 3469 ret = kstrtoll(buf, 0, &v); 3470 if (!ret) 3471 ret = cft->write_s64(css, cft, v); 3472 } else { 3473 ret = -EINVAL; 3474 } 3475 3476 return ret ?: nbytes; 3477 } 3478 3479 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos) 3480 { 3481 return seq_cft(seq)->seq_start(seq, ppos); 3482 } 3483 3484 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos) 3485 { 3486 return seq_cft(seq)->seq_next(seq, v, ppos); 3487 } 3488 3489 static void cgroup_seqfile_stop(struct seq_file *seq, void *v) 3490 { 3491 if (seq_cft(seq)->seq_stop) 3492 seq_cft(seq)->seq_stop(seq, v); 3493 } 3494 3495 static int cgroup_seqfile_show(struct seq_file *m, void *arg) 3496 { 3497 struct cftype *cft = seq_cft(m); 3498 struct cgroup_subsys_state *css = seq_css(m); 3499 3500 if (cft->seq_show) 3501 return cft->seq_show(m, arg); 3502 3503 if (cft->read_u64) 3504 seq_printf(m, "%llu\n", cft->read_u64(css, cft)); 3505 else if (cft->read_s64) 3506 seq_printf(m, "%lld\n", cft->read_s64(css, cft)); 3507 else 3508 return -EINVAL; 3509 return 0; 3510 } 3511 3512 static struct kernfs_ops cgroup_kf_single_ops = { 3513 .atomic_write_len = PAGE_SIZE, 3514 .open = cgroup_file_open, 3515 .release = cgroup_file_release, 3516 .write = cgroup_file_write, 3517 .seq_show = cgroup_seqfile_show, 3518 }; 3519 3520 static struct kernfs_ops cgroup_kf_ops = { 3521 .atomic_write_len = PAGE_SIZE, 3522 .open = cgroup_file_open, 3523 .release = cgroup_file_release, 3524 .write = cgroup_file_write, 3525 .seq_start = cgroup_seqfile_start, 3526 .seq_next = cgroup_seqfile_next, 3527 .seq_stop = cgroup_seqfile_stop, 3528 .seq_show = cgroup_seqfile_show, 3529 }; 3530 3531 /* set uid and gid of cgroup dirs and files to that of the creator */ 3532 static int cgroup_kn_set_ugid(struct kernfs_node *kn) 3533 { 3534 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID, 3535 .ia_uid = current_fsuid(), 3536 .ia_gid = current_fsgid(), }; 3537 3538 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) && 3539 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID)) 3540 return 0; 3541 3542 return kernfs_setattr(kn, &iattr); 3543 } 3544 3545 static void cgroup_file_notify_timer(struct timer_list *timer) 3546 { 3547 cgroup_file_notify(container_of(timer, struct cgroup_file, 3548 notify_timer)); 3549 } 3550 3551 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp, 3552 struct cftype *cft) 3553 { 3554 char name[CGROUP_FILE_NAME_MAX]; 3555 struct kernfs_node *kn; 3556 struct lock_class_key *key = NULL; 3557 int ret; 3558 3559 #ifdef CONFIG_DEBUG_LOCK_ALLOC 3560 key = &cft->lockdep_key; 3561 #endif 3562 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name), 3563 cgroup_file_mode(cft), 3564 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 3565 0, cft->kf_ops, cft, 3566 NULL, key); 3567 if (IS_ERR(kn)) 3568 return PTR_ERR(kn); 3569 3570 ret = cgroup_kn_set_ugid(kn); 3571 if (ret) { 3572 kernfs_remove(kn); 3573 return ret; 3574 } 3575 3576 if (cft->file_offset) { 3577 struct cgroup_file *cfile = (void *)css + cft->file_offset; 3578 3579 timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0); 3580 3581 spin_lock_irq(&cgroup_file_kn_lock); 3582 cfile->kn = kn; 3583 spin_unlock_irq(&cgroup_file_kn_lock); 3584 } 3585 3586 return 0; 3587 } 3588 3589 /** 3590 * cgroup_addrm_files - add or remove files to a cgroup directory 3591 * @css: the target css 3592 * @cgrp: the target cgroup (usually css->cgroup) 3593 * @cfts: array of cftypes to be added 3594 * @is_add: whether to add or remove 3595 * 3596 * Depending on @is_add, add or remove files defined by @cfts on @cgrp. 3597 * For removals, this function never fails. 3598 */ 3599 static int cgroup_addrm_files(struct cgroup_subsys_state *css, 3600 struct cgroup *cgrp, struct cftype cfts[], 3601 bool is_add) 3602 { 3603 struct cftype *cft, *cft_end = NULL; 3604 int ret = 0; 3605 3606 lockdep_assert_held(&cgroup_mutex); 3607 3608 restart: 3609 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) { 3610 /* does cft->flags tell us to skip this file on @cgrp? */ 3611 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp)) 3612 continue; 3613 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp)) 3614 continue; 3615 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp)) 3616 continue; 3617 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp)) 3618 continue; 3619 3620 if (is_add) { 3621 ret = cgroup_add_file(css, cgrp, cft); 3622 if (ret) { 3623 pr_warn("%s: failed to add %s, err=%d\n", 3624 __func__, cft->name, ret); 3625 cft_end = cft; 3626 is_add = false; 3627 goto restart; 3628 } 3629 } else { 3630 cgroup_rm_file(cgrp, cft); 3631 } 3632 } 3633 return ret; 3634 } 3635 3636 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add) 3637 { 3638 struct cgroup_subsys *ss = cfts[0].ss; 3639 struct cgroup *root = &ss->root->cgrp; 3640 struct cgroup_subsys_state *css; 3641 int ret = 0; 3642 3643 lockdep_assert_held(&cgroup_mutex); 3644 3645 /* add/rm files for all cgroups created before */ 3646 css_for_each_descendant_pre(css, cgroup_css(root, ss)) { 3647 struct cgroup *cgrp = css->cgroup; 3648 3649 if (!(css->flags & CSS_VISIBLE)) 3650 continue; 3651 3652 ret = cgroup_addrm_files(css, cgrp, cfts, is_add); 3653 if (ret) 3654 break; 3655 } 3656 3657 if (is_add && !ret) 3658 kernfs_activate(root->kn); 3659 return ret; 3660 } 3661 3662 static void cgroup_exit_cftypes(struct cftype *cfts) 3663 { 3664 struct cftype *cft; 3665 3666 for (cft = cfts; cft->name[0] != '\0'; cft++) { 3667 /* free copy for custom atomic_write_len, see init_cftypes() */ 3668 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) 3669 kfree(cft->kf_ops); 3670 cft->kf_ops = NULL; 3671 cft->ss = NULL; 3672 3673 /* revert flags set by cgroup core while adding @cfts */ 3674 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL); 3675 } 3676 } 3677 3678 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 3679 { 3680 struct cftype *cft; 3681 3682 for (cft = cfts; cft->name[0] != '\0'; cft++) { 3683 struct kernfs_ops *kf_ops; 3684 3685 WARN_ON(cft->ss || cft->kf_ops); 3686 3687 if (cft->seq_start) 3688 kf_ops = &cgroup_kf_ops; 3689 else 3690 kf_ops = &cgroup_kf_single_ops; 3691 3692 /* 3693 * Ugh... if @cft wants a custom max_write_len, we need to 3694 * make a copy of kf_ops to set its atomic_write_len. 3695 */ 3696 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) { 3697 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL); 3698 if (!kf_ops) { 3699 cgroup_exit_cftypes(cfts); 3700 return -ENOMEM; 3701 } 3702 kf_ops->atomic_write_len = cft->max_write_len; 3703 } 3704 3705 cft->kf_ops = kf_ops; 3706 cft->ss = ss; 3707 } 3708 3709 return 0; 3710 } 3711 3712 static int cgroup_rm_cftypes_locked(struct cftype *cfts) 3713 { 3714 lockdep_assert_held(&cgroup_mutex); 3715 3716 if (!cfts || !cfts[0].ss) 3717 return -ENOENT; 3718 3719 list_del(&cfts->node); 3720 cgroup_apply_cftypes(cfts, false); 3721 cgroup_exit_cftypes(cfts); 3722 return 0; 3723 } 3724 3725 /** 3726 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem 3727 * @cfts: zero-length name terminated array of cftypes 3728 * 3729 * Unregister @cfts. Files described by @cfts are removed from all 3730 * existing cgroups and all future cgroups won't have them either. This 3731 * function can be called anytime whether @cfts' subsys is attached or not. 3732 * 3733 * Returns 0 on successful unregistration, -ENOENT if @cfts is not 3734 * registered. 3735 */ 3736 int cgroup_rm_cftypes(struct cftype *cfts) 3737 { 3738 int ret; 3739 3740 mutex_lock(&cgroup_mutex); 3741 ret = cgroup_rm_cftypes_locked(cfts); 3742 mutex_unlock(&cgroup_mutex); 3743 return ret; 3744 } 3745 3746 /** 3747 * cgroup_add_cftypes - add an array of cftypes to a subsystem 3748 * @ss: target cgroup subsystem 3749 * @cfts: zero-length name terminated array of cftypes 3750 * 3751 * Register @cfts to @ss. Files described by @cfts are created for all 3752 * existing cgroups to which @ss is attached and all future cgroups will 3753 * have them too. This function can be called anytime whether @ss is 3754 * attached or not. 3755 * 3756 * Returns 0 on successful registration, -errno on failure. Note that this 3757 * function currently returns 0 as long as @cfts registration is successful 3758 * even if some file creation attempts on existing cgroups fail. 3759 */ 3760 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 3761 { 3762 int ret; 3763 3764 if (!cgroup_ssid_enabled(ss->id)) 3765 return 0; 3766 3767 if (!cfts || cfts[0].name[0] == '\0') 3768 return 0; 3769 3770 ret = cgroup_init_cftypes(ss, cfts); 3771 if (ret) 3772 return ret; 3773 3774 mutex_lock(&cgroup_mutex); 3775 3776 list_add_tail(&cfts->node, &ss->cfts); 3777 ret = cgroup_apply_cftypes(cfts, true); 3778 if (ret) 3779 cgroup_rm_cftypes_locked(cfts); 3780 3781 mutex_unlock(&cgroup_mutex); 3782 return ret; 3783 } 3784 3785 /** 3786 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy 3787 * @ss: target cgroup subsystem 3788 * @cfts: zero-length name terminated array of cftypes 3789 * 3790 * Similar to cgroup_add_cftypes() but the added files are only used for 3791 * the default hierarchy. 3792 */ 3793 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 3794 { 3795 struct cftype *cft; 3796 3797 for (cft = cfts; cft && cft->name[0] != '\0'; cft++) 3798 cft->flags |= __CFTYPE_ONLY_ON_DFL; 3799 return cgroup_add_cftypes(ss, cfts); 3800 } 3801 3802 /** 3803 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies 3804 * @ss: target cgroup subsystem 3805 * @cfts: zero-length name terminated array of cftypes 3806 * 3807 * Similar to cgroup_add_cftypes() but the added files are only used for 3808 * the legacy hierarchies. 3809 */ 3810 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 3811 { 3812 struct cftype *cft; 3813 3814 for (cft = cfts; cft && cft->name[0] != '\0'; cft++) 3815 cft->flags |= __CFTYPE_NOT_ON_DFL; 3816 return cgroup_add_cftypes(ss, cfts); 3817 } 3818 3819 /** 3820 * cgroup_file_notify - generate a file modified event for a cgroup_file 3821 * @cfile: target cgroup_file 3822 * 3823 * @cfile must have been obtained by setting cftype->file_offset. 3824 */ 3825 void cgroup_file_notify(struct cgroup_file *cfile) 3826 { 3827 unsigned long flags; 3828 3829 spin_lock_irqsave(&cgroup_file_kn_lock, flags); 3830 if (cfile->kn) { 3831 unsigned long last = cfile->notified_at; 3832 unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV; 3833 3834 if (time_in_range(jiffies, last, next)) { 3835 timer_reduce(&cfile->notify_timer, next); 3836 } else { 3837 kernfs_notify(cfile->kn); 3838 cfile->notified_at = jiffies; 3839 } 3840 } 3841 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags); 3842 } 3843 3844 /** 3845 * css_next_child - find the next child of a given css 3846 * @pos: the current position (%NULL to initiate traversal) 3847 * @parent: css whose children to walk 3848 * 3849 * This function returns the next child of @parent and should be called 3850 * under either cgroup_mutex or RCU read lock. The only requirement is 3851 * that @parent and @pos are accessible. The next sibling is guaranteed to 3852 * be returned regardless of their states. 3853 * 3854 * If a subsystem synchronizes ->css_online() and the start of iteration, a 3855 * css which finished ->css_online() is guaranteed to be visible in the 3856 * future iterations and will stay visible until the last reference is put. 3857 * A css which hasn't finished ->css_online() or already finished 3858 * ->css_offline() may show up during traversal. It's each subsystem's 3859 * responsibility to synchronize against on/offlining. 3860 */ 3861 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos, 3862 struct cgroup_subsys_state *parent) 3863 { 3864 struct cgroup_subsys_state *next; 3865 3866 cgroup_assert_mutex_or_rcu_locked(); 3867 3868 /* 3869 * @pos could already have been unlinked from the sibling list. 3870 * Once a cgroup is removed, its ->sibling.next is no longer 3871 * updated when its next sibling changes. CSS_RELEASED is set when 3872 * @pos is taken off list, at which time its next pointer is valid, 3873 * and, as releases are serialized, the one pointed to by the next 3874 * pointer is guaranteed to not have started release yet. This 3875 * implies that if we observe !CSS_RELEASED on @pos in this RCU 3876 * critical section, the one pointed to by its next pointer is 3877 * guaranteed to not have finished its RCU grace period even if we 3878 * have dropped rcu_read_lock() inbetween iterations. 3879 * 3880 * If @pos has CSS_RELEASED set, its next pointer can't be 3881 * dereferenced; however, as each css is given a monotonically 3882 * increasing unique serial number and always appended to the 3883 * sibling list, the next one can be found by walking the parent's 3884 * children until the first css with higher serial number than 3885 * @pos's. While this path can be slower, it happens iff iteration 3886 * races against release and the race window is very small. 3887 */ 3888 if (!pos) { 3889 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling); 3890 } else if (likely(!(pos->flags & CSS_RELEASED))) { 3891 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling); 3892 } else { 3893 list_for_each_entry_rcu(next, &parent->children, sibling) 3894 if (next->serial_nr > pos->serial_nr) 3895 break; 3896 } 3897 3898 /* 3899 * @next, if not pointing to the head, can be dereferenced and is 3900 * the next sibling. 3901 */ 3902 if (&next->sibling != &parent->children) 3903 return next; 3904 return NULL; 3905 } 3906 3907 /** 3908 * css_next_descendant_pre - find the next descendant for pre-order walk 3909 * @pos: the current position (%NULL to initiate traversal) 3910 * @root: css whose descendants to walk 3911 * 3912 * To be used by css_for_each_descendant_pre(). Find the next descendant 3913 * to visit for pre-order traversal of @root's descendants. @root is 3914 * included in the iteration and the first node to be visited. 3915 * 3916 * While this function requires cgroup_mutex or RCU read locking, it 3917 * doesn't require the whole traversal to be contained in a single critical 3918 * section. This function will return the correct next descendant as long 3919 * as both @pos and @root are accessible and @pos is a descendant of @root. 3920 * 3921 * If a subsystem synchronizes ->css_online() and the start of iteration, a 3922 * css which finished ->css_online() is guaranteed to be visible in the 3923 * future iterations and will stay visible until the last reference is put. 3924 * A css which hasn't finished ->css_online() or already finished 3925 * ->css_offline() may show up during traversal. It's each subsystem's 3926 * responsibility to synchronize against on/offlining. 3927 */ 3928 struct cgroup_subsys_state * 3929 css_next_descendant_pre(struct cgroup_subsys_state *pos, 3930 struct cgroup_subsys_state *root) 3931 { 3932 struct cgroup_subsys_state *next; 3933 3934 cgroup_assert_mutex_or_rcu_locked(); 3935 3936 /* if first iteration, visit @root */ 3937 if (!pos) 3938 return root; 3939 3940 /* visit the first child if exists */ 3941 next = css_next_child(NULL, pos); 3942 if (next) 3943 return next; 3944 3945 /* no child, visit my or the closest ancestor's next sibling */ 3946 while (pos != root) { 3947 next = css_next_child(pos, pos->parent); 3948 if (next) 3949 return next; 3950 pos = pos->parent; 3951 } 3952 3953 return NULL; 3954 } 3955 3956 /** 3957 * css_rightmost_descendant - return the rightmost descendant of a css 3958 * @pos: css of interest 3959 * 3960 * Return the rightmost descendant of @pos. If there's no descendant, @pos 3961 * is returned. This can be used during pre-order traversal to skip 3962 * subtree of @pos. 3963 * 3964 * While this function requires cgroup_mutex or RCU read locking, it 3965 * doesn't require the whole traversal to be contained in a single critical 3966 * section. This function will return the correct rightmost descendant as 3967 * long as @pos is accessible. 3968 */ 3969 struct cgroup_subsys_state * 3970 css_rightmost_descendant(struct cgroup_subsys_state *pos) 3971 { 3972 struct cgroup_subsys_state *last, *tmp; 3973 3974 cgroup_assert_mutex_or_rcu_locked(); 3975 3976 do { 3977 last = pos; 3978 /* ->prev isn't RCU safe, walk ->next till the end */ 3979 pos = NULL; 3980 css_for_each_child(tmp, last) 3981 pos = tmp; 3982 } while (pos); 3983 3984 return last; 3985 } 3986 3987 static struct cgroup_subsys_state * 3988 css_leftmost_descendant(struct cgroup_subsys_state *pos) 3989 { 3990 struct cgroup_subsys_state *last; 3991 3992 do { 3993 last = pos; 3994 pos = css_next_child(NULL, pos); 3995 } while (pos); 3996 3997 return last; 3998 } 3999 4000 /** 4001 * css_next_descendant_post - find the next descendant for post-order walk 4002 * @pos: the current position (%NULL to initiate traversal) 4003 * @root: css whose descendants to walk 4004 * 4005 * To be used by css_for_each_descendant_post(). Find the next descendant 4006 * to visit for post-order traversal of @root's descendants. @root is 4007 * included in the iteration and the last node to be visited. 4008 * 4009 * While this function requires cgroup_mutex or RCU read locking, it 4010 * doesn't require the whole traversal to be contained in a single critical 4011 * section. This function will return the correct next descendant as long 4012 * as both @pos and @cgroup are accessible and @pos is a descendant of 4013 * @cgroup. 4014 * 4015 * If a subsystem synchronizes ->css_online() and the start of iteration, a 4016 * css which finished ->css_online() is guaranteed to be visible in the 4017 * future iterations and will stay visible until the last reference is put. 4018 * A css which hasn't finished ->css_online() or already finished 4019 * ->css_offline() may show up during traversal. It's each subsystem's 4020 * responsibility to synchronize against on/offlining. 4021 */ 4022 struct cgroup_subsys_state * 4023 css_next_descendant_post(struct cgroup_subsys_state *pos, 4024 struct cgroup_subsys_state *root) 4025 { 4026 struct cgroup_subsys_state *next; 4027 4028 cgroup_assert_mutex_or_rcu_locked(); 4029 4030 /* if first iteration, visit leftmost descendant which may be @root */ 4031 if (!pos) 4032 return css_leftmost_descendant(root); 4033 4034 /* if we visited @root, we're done */ 4035 if (pos == root) 4036 return NULL; 4037 4038 /* if there's an unvisited sibling, visit its leftmost descendant */ 4039 next = css_next_child(pos, pos->parent); 4040 if (next) 4041 return css_leftmost_descendant(next); 4042 4043 /* no sibling left, visit parent */ 4044 return pos->parent; 4045 } 4046 4047 /** 4048 * css_has_online_children - does a css have online children 4049 * @css: the target css 4050 * 4051 * Returns %true if @css has any online children; otherwise, %false. This 4052 * function can be called from any context but the caller is responsible 4053 * for synchronizing against on/offlining as necessary. 4054 */ 4055 bool css_has_online_children(struct cgroup_subsys_state *css) 4056 { 4057 struct cgroup_subsys_state *child; 4058 bool ret = false; 4059 4060 rcu_read_lock(); 4061 css_for_each_child(child, css) { 4062 if (child->flags & CSS_ONLINE) { 4063 ret = true; 4064 break; 4065 } 4066 } 4067 rcu_read_unlock(); 4068 return ret; 4069 } 4070 4071 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it) 4072 { 4073 struct list_head *l; 4074 struct cgrp_cset_link *link; 4075 struct css_set *cset; 4076 4077 lockdep_assert_held(&css_set_lock); 4078 4079 /* find the next threaded cset */ 4080 if (it->tcset_pos) { 4081 l = it->tcset_pos->next; 4082 4083 if (l != it->tcset_head) { 4084 it->tcset_pos = l; 4085 return container_of(l, struct css_set, 4086 threaded_csets_node); 4087 } 4088 4089 it->tcset_pos = NULL; 4090 } 4091 4092 /* find the next cset */ 4093 l = it->cset_pos; 4094 l = l->next; 4095 if (l == it->cset_head) { 4096 it->cset_pos = NULL; 4097 return NULL; 4098 } 4099 4100 if (it->ss) { 4101 cset = container_of(l, struct css_set, e_cset_node[it->ss->id]); 4102 } else { 4103 link = list_entry(l, struct cgrp_cset_link, cset_link); 4104 cset = link->cset; 4105 } 4106 4107 it->cset_pos = l; 4108 4109 /* initialize threaded css_set walking */ 4110 if (it->flags & CSS_TASK_ITER_THREADED) { 4111 if (it->cur_dcset) 4112 put_css_set_locked(it->cur_dcset); 4113 it->cur_dcset = cset; 4114 get_css_set(cset); 4115 4116 it->tcset_head = &cset->threaded_csets; 4117 it->tcset_pos = &cset->threaded_csets; 4118 } 4119 4120 return cset; 4121 } 4122 4123 /** 4124 * css_task_iter_advance_css_set - advance a task itererator to the next css_set 4125 * @it: the iterator to advance 4126 * 4127 * Advance @it to the next css_set to walk. 4128 */ 4129 static void css_task_iter_advance_css_set(struct css_task_iter *it) 4130 { 4131 struct css_set *cset; 4132 4133 lockdep_assert_held(&css_set_lock); 4134 4135 /* Advance to the next non-empty css_set */ 4136 do { 4137 cset = css_task_iter_next_css_set(it); 4138 if (!cset) { 4139 it->task_pos = NULL; 4140 return; 4141 } 4142 } while (!css_set_populated(cset)); 4143 4144 if (!list_empty(&cset->tasks)) 4145 it->task_pos = cset->tasks.next; 4146 else 4147 it->task_pos = cset->mg_tasks.next; 4148 4149 it->tasks_head = &cset->tasks; 4150 it->mg_tasks_head = &cset->mg_tasks; 4151 4152 /* 4153 * We don't keep css_sets locked across iteration steps and thus 4154 * need to take steps to ensure that iteration can be resumed after 4155 * the lock is re-acquired. Iteration is performed at two levels - 4156 * css_sets and tasks in them. 4157 * 4158 * Once created, a css_set never leaves its cgroup lists, so a 4159 * pinned css_set is guaranteed to stay put and we can resume 4160 * iteration afterwards. 4161 * 4162 * Tasks may leave @cset across iteration steps. This is resolved 4163 * by registering each iterator with the css_set currently being 4164 * walked and making css_set_move_task() advance iterators whose 4165 * next task is leaving. 4166 */ 4167 if (it->cur_cset) { 4168 list_del(&it->iters_node); 4169 put_css_set_locked(it->cur_cset); 4170 } 4171 get_css_set(cset); 4172 it->cur_cset = cset; 4173 list_add(&it->iters_node, &cset->task_iters); 4174 } 4175 4176 static void css_task_iter_advance(struct css_task_iter *it) 4177 { 4178 struct list_head *next; 4179 4180 lockdep_assert_held(&css_set_lock); 4181 repeat: 4182 /* 4183 * Advance iterator to find next entry. cset->tasks is consumed 4184 * first and then ->mg_tasks. After ->mg_tasks, we move onto the 4185 * next cset. 4186 */ 4187 next = it->task_pos->next; 4188 4189 if (next == it->tasks_head) 4190 next = it->mg_tasks_head->next; 4191 4192 if (next == it->mg_tasks_head) 4193 css_task_iter_advance_css_set(it); 4194 else 4195 it->task_pos = next; 4196 4197 /* if PROCS, skip over tasks which aren't group leaders */ 4198 if ((it->flags & CSS_TASK_ITER_PROCS) && it->task_pos && 4199 !thread_group_leader(list_entry(it->task_pos, struct task_struct, 4200 cg_list))) 4201 goto repeat; 4202 } 4203 4204 /** 4205 * css_task_iter_start - initiate task iteration 4206 * @css: the css to walk tasks of 4207 * @flags: CSS_TASK_ITER_* flags 4208 * @it: the task iterator to use 4209 * 4210 * Initiate iteration through the tasks of @css. The caller can call 4211 * css_task_iter_next() to walk through the tasks until the function 4212 * returns NULL. On completion of iteration, css_task_iter_end() must be 4213 * called. 4214 */ 4215 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags, 4216 struct css_task_iter *it) 4217 { 4218 /* no one should try to iterate before mounting cgroups */ 4219 WARN_ON_ONCE(!use_task_css_set_links); 4220 4221 memset(it, 0, sizeof(*it)); 4222 4223 spin_lock_irq(&css_set_lock); 4224 4225 it->ss = css->ss; 4226 it->flags = flags; 4227 4228 if (it->ss) 4229 it->cset_pos = &css->cgroup->e_csets[css->ss->id]; 4230 else 4231 it->cset_pos = &css->cgroup->cset_links; 4232 4233 it->cset_head = it->cset_pos; 4234 4235 css_task_iter_advance_css_set(it); 4236 4237 spin_unlock_irq(&css_set_lock); 4238 } 4239 4240 /** 4241 * css_task_iter_next - return the next task for the iterator 4242 * @it: the task iterator being iterated 4243 * 4244 * The "next" function for task iteration. @it should have been 4245 * initialized via css_task_iter_start(). Returns NULL when the iteration 4246 * reaches the end. 4247 */ 4248 struct task_struct *css_task_iter_next(struct css_task_iter *it) 4249 { 4250 if (it->cur_task) { 4251 put_task_struct(it->cur_task); 4252 it->cur_task = NULL; 4253 } 4254 4255 spin_lock_irq(&css_set_lock); 4256 4257 if (it->task_pos) { 4258 it->cur_task = list_entry(it->task_pos, struct task_struct, 4259 cg_list); 4260 get_task_struct(it->cur_task); 4261 css_task_iter_advance(it); 4262 } 4263 4264 spin_unlock_irq(&css_set_lock); 4265 4266 return it->cur_task; 4267 } 4268 4269 /** 4270 * css_task_iter_end - finish task iteration 4271 * @it: the task iterator to finish 4272 * 4273 * Finish task iteration started by css_task_iter_start(). 4274 */ 4275 void css_task_iter_end(struct css_task_iter *it) 4276 { 4277 if (it->cur_cset) { 4278 spin_lock_irq(&css_set_lock); 4279 list_del(&it->iters_node); 4280 put_css_set_locked(it->cur_cset); 4281 spin_unlock_irq(&css_set_lock); 4282 } 4283 4284 if (it->cur_dcset) 4285 put_css_set(it->cur_dcset); 4286 4287 if (it->cur_task) 4288 put_task_struct(it->cur_task); 4289 } 4290 4291 static void cgroup_procs_release(struct kernfs_open_file *of) 4292 { 4293 if (of->priv) { 4294 css_task_iter_end(of->priv); 4295 kfree(of->priv); 4296 } 4297 } 4298 4299 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos) 4300 { 4301 struct kernfs_open_file *of = s->private; 4302 struct css_task_iter *it = of->priv; 4303 4304 return css_task_iter_next(it); 4305 } 4306 4307 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos, 4308 unsigned int iter_flags) 4309 { 4310 struct kernfs_open_file *of = s->private; 4311 struct cgroup *cgrp = seq_css(s)->cgroup; 4312 struct css_task_iter *it = of->priv; 4313 4314 /* 4315 * When a seq_file is seeked, it's always traversed sequentially 4316 * from position 0, so we can simply keep iterating on !0 *pos. 4317 */ 4318 if (!it) { 4319 if (WARN_ON_ONCE((*pos)++)) 4320 return ERR_PTR(-EINVAL); 4321 4322 it = kzalloc(sizeof(*it), GFP_KERNEL); 4323 if (!it) 4324 return ERR_PTR(-ENOMEM); 4325 of->priv = it; 4326 css_task_iter_start(&cgrp->self, iter_flags, it); 4327 } else if (!(*pos)++) { 4328 css_task_iter_end(it); 4329 css_task_iter_start(&cgrp->self, iter_flags, it); 4330 } 4331 4332 return cgroup_procs_next(s, NULL, NULL); 4333 } 4334 4335 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos) 4336 { 4337 struct cgroup *cgrp = seq_css(s)->cgroup; 4338 4339 /* 4340 * All processes of a threaded subtree belong to the domain cgroup 4341 * of the subtree. Only threads can be distributed across the 4342 * subtree. Reject reads on cgroup.procs in the subtree proper. 4343 * They're always empty anyway. 4344 */ 4345 if (cgroup_is_threaded(cgrp)) 4346 return ERR_PTR(-EOPNOTSUPP); 4347 4348 return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS | 4349 CSS_TASK_ITER_THREADED); 4350 } 4351 4352 static int cgroup_procs_show(struct seq_file *s, void *v) 4353 { 4354 seq_printf(s, "%d\n", task_pid_vnr(v)); 4355 return 0; 4356 } 4357 4358 static int cgroup_procs_write_permission(struct cgroup *src_cgrp, 4359 struct cgroup *dst_cgrp, 4360 struct super_block *sb) 4361 { 4362 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns; 4363 struct cgroup *com_cgrp = src_cgrp; 4364 struct inode *inode; 4365 int ret; 4366 4367 lockdep_assert_held(&cgroup_mutex); 4368 4369 /* find the common ancestor */ 4370 while (!cgroup_is_descendant(dst_cgrp, com_cgrp)) 4371 com_cgrp = cgroup_parent(com_cgrp); 4372 4373 /* %current should be authorized to migrate to the common ancestor */ 4374 inode = kernfs_get_inode(sb, com_cgrp->procs_file.kn); 4375 if (!inode) 4376 return -ENOMEM; 4377 4378 ret = inode_permission(inode, MAY_WRITE); 4379 iput(inode); 4380 if (ret) 4381 return ret; 4382 4383 /* 4384 * If namespaces are delegation boundaries, %current must be able 4385 * to see both source and destination cgroups from its namespace. 4386 */ 4387 if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) && 4388 (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) || 4389 !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp))) 4390 return -ENOENT; 4391 4392 return 0; 4393 } 4394 4395 static ssize_t cgroup_procs_write(struct kernfs_open_file *of, 4396 char *buf, size_t nbytes, loff_t off) 4397 { 4398 struct cgroup *src_cgrp, *dst_cgrp; 4399 struct task_struct *task; 4400 ssize_t ret; 4401 4402 dst_cgrp = cgroup_kn_lock_live(of->kn, false); 4403 if (!dst_cgrp) 4404 return -ENODEV; 4405 4406 task = cgroup_procs_write_start(buf, true); 4407 ret = PTR_ERR_OR_ZERO(task); 4408 if (ret) 4409 goto out_unlock; 4410 4411 /* find the source cgroup */ 4412 spin_lock_irq(&css_set_lock); 4413 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root); 4414 spin_unlock_irq(&css_set_lock); 4415 4416 ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, 4417 of->file->f_path.dentry->d_sb); 4418 if (ret) 4419 goto out_finish; 4420 4421 ret = cgroup_attach_task(dst_cgrp, task, true); 4422 4423 out_finish: 4424 cgroup_procs_write_finish(task); 4425 out_unlock: 4426 cgroup_kn_unlock(of->kn); 4427 4428 return ret ?: nbytes; 4429 } 4430 4431 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos) 4432 { 4433 return __cgroup_procs_start(s, pos, 0); 4434 } 4435 4436 static ssize_t cgroup_threads_write(struct kernfs_open_file *of, 4437 char *buf, size_t nbytes, loff_t off) 4438 { 4439 struct cgroup *src_cgrp, *dst_cgrp; 4440 struct task_struct *task; 4441 ssize_t ret; 4442 4443 buf = strstrip(buf); 4444 4445 dst_cgrp = cgroup_kn_lock_live(of->kn, false); 4446 if (!dst_cgrp) 4447 return -ENODEV; 4448 4449 task = cgroup_procs_write_start(buf, false); 4450 ret = PTR_ERR_OR_ZERO(task); 4451 if (ret) 4452 goto out_unlock; 4453 4454 /* find the source cgroup */ 4455 spin_lock_irq(&css_set_lock); 4456 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root); 4457 spin_unlock_irq(&css_set_lock); 4458 4459 /* thread migrations follow the cgroup.procs delegation rule */ 4460 ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, 4461 of->file->f_path.dentry->d_sb); 4462 if (ret) 4463 goto out_finish; 4464 4465 /* and must be contained in the same domain */ 4466 ret = -EOPNOTSUPP; 4467 if (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp) 4468 goto out_finish; 4469 4470 ret = cgroup_attach_task(dst_cgrp, task, false); 4471 4472 out_finish: 4473 cgroup_procs_write_finish(task); 4474 out_unlock: 4475 cgroup_kn_unlock(of->kn); 4476 4477 return ret ?: nbytes; 4478 } 4479 4480 /* cgroup core interface files for the default hierarchy */ 4481 static struct cftype cgroup_base_files[] = { 4482 { 4483 .name = "cgroup.type", 4484 .flags = CFTYPE_NOT_ON_ROOT, 4485 .seq_show = cgroup_type_show, 4486 .write = cgroup_type_write, 4487 }, 4488 { 4489 .name = "cgroup.procs", 4490 .flags = CFTYPE_NS_DELEGATABLE, 4491 .file_offset = offsetof(struct cgroup, procs_file), 4492 .release = cgroup_procs_release, 4493 .seq_start = cgroup_procs_start, 4494 .seq_next = cgroup_procs_next, 4495 .seq_show = cgroup_procs_show, 4496 .write = cgroup_procs_write, 4497 }, 4498 { 4499 .name = "cgroup.threads", 4500 .flags = CFTYPE_NS_DELEGATABLE, 4501 .release = cgroup_procs_release, 4502 .seq_start = cgroup_threads_start, 4503 .seq_next = cgroup_procs_next, 4504 .seq_show = cgroup_procs_show, 4505 .write = cgroup_threads_write, 4506 }, 4507 { 4508 .name = "cgroup.controllers", 4509 .seq_show = cgroup_controllers_show, 4510 }, 4511 { 4512 .name = "cgroup.subtree_control", 4513 .flags = CFTYPE_NS_DELEGATABLE, 4514 .seq_show = cgroup_subtree_control_show, 4515 .write = cgroup_subtree_control_write, 4516 }, 4517 { 4518 .name = "cgroup.events", 4519 .flags = CFTYPE_NOT_ON_ROOT, 4520 .file_offset = offsetof(struct cgroup, events_file), 4521 .seq_show = cgroup_events_show, 4522 }, 4523 { 4524 .name = "cgroup.max.descendants", 4525 .seq_show = cgroup_max_descendants_show, 4526 .write = cgroup_max_descendants_write, 4527 }, 4528 { 4529 .name = "cgroup.max.depth", 4530 .seq_show = cgroup_max_depth_show, 4531 .write = cgroup_max_depth_write, 4532 }, 4533 { 4534 .name = "cgroup.stat", 4535 .seq_show = cgroup_stat_show, 4536 }, 4537 { 4538 .name = "cpu.stat", 4539 .flags = CFTYPE_NOT_ON_ROOT, 4540 .seq_show = cpu_stat_show, 4541 }, 4542 { } /* terminate */ 4543 }; 4544 4545 /* 4546 * css destruction is four-stage process. 4547 * 4548 * 1. Destruction starts. Killing of the percpu_ref is initiated. 4549 * Implemented in kill_css(). 4550 * 4551 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs 4552 * and thus css_tryget_online() is guaranteed to fail, the css can be 4553 * offlined by invoking offline_css(). After offlining, the base ref is 4554 * put. Implemented in css_killed_work_fn(). 4555 * 4556 * 3. When the percpu_ref reaches zero, the only possible remaining 4557 * accessors are inside RCU read sections. css_release() schedules the 4558 * RCU callback. 4559 * 4560 * 4. After the grace period, the css can be freed. Implemented in 4561 * css_free_work_fn(). 4562 * 4563 * It is actually hairier because both step 2 and 4 require process context 4564 * and thus involve punting to css->destroy_work adding two additional 4565 * steps to the already complex sequence. 4566 */ 4567 static void css_free_rwork_fn(struct work_struct *work) 4568 { 4569 struct cgroup_subsys_state *css = container_of(to_rcu_work(work), 4570 struct cgroup_subsys_state, destroy_rwork); 4571 struct cgroup_subsys *ss = css->ss; 4572 struct cgroup *cgrp = css->cgroup; 4573 4574 percpu_ref_exit(&css->refcnt); 4575 4576 if (ss) { 4577 /* css free path */ 4578 struct cgroup_subsys_state *parent = css->parent; 4579 int id = css->id; 4580 4581 ss->css_free(css); 4582 cgroup_idr_remove(&ss->css_idr, id); 4583 cgroup_put(cgrp); 4584 4585 if (parent) 4586 css_put(parent); 4587 } else { 4588 /* cgroup free path */ 4589 atomic_dec(&cgrp->root->nr_cgrps); 4590 cgroup1_pidlist_destroy_all(cgrp); 4591 cancel_work_sync(&cgrp->release_agent_work); 4592 4593 if (cgroup_parent(cgrp)) { 4594 /* 4595 * We get a ref to the parent, and put the ref when 4596 * this cgroup is being freed, so it's guaranteed 4597 * that the parent won't be destroyed before its 4598 * children. 4599 */ 4600 cgroup_put(cgroup_parent(cgrp)); 4601 kernfs_put(cgrp->kn); 4602 if (cgroup_on_dfl(cgrp)) 4603 cgroup_rstat_exit(cgrp); 4604 kfree(cgrp); 4605 } else { 4606 /* 4607 * This is root cgroup's refcnt reaching zero, 4608 * which indicates that the root should be 4609 * released. 4610 */ 4611 cgroup_destroy_root(cgrp->root); 4612 } 4613 } 4614 } 4615 4616 static void css_release_work_fn(struct work_struct *work) 4617 { 4618 struct cgroup_subsys_state *css = 4619 container_of(work, struct cgroup_subsys_state, destroy_work); 4620 struct cgroup_subsys *ss = css->ss; 4621 struct cgroup *cgrp = css->cgroup; 4622 4623 mutex_lock(&cgroup_mutex); 4624 4625 css->flags |= CSS_RELEASED; 4626 list_del_rcu(&css->sibling); 4627 4628 if (ss) { 4629 /* css release path */ 4630 if (!list_empty(&css->rstat_css_node)) { 4631 cgroup_rstat_flush(cgrp); 4632 list_del_rcu(&css->rstat_css_node); 4633 } 4634 4635 cgroup_idr_replace(&ss->css_idr, NULL, css->id); 4636 if (ss->css_released) 4637 ss->css_released(css); 4638 } else { 4639 struct cgroup *tcgrp; 4640 4641 /* cgroup release path */ 4642 TRACE_CGROUP_PATH(release, cgrp); 4643 4644 if (cgroup_on_dfl(cgrp)) 4645 cgroup_rstat_flush(cgrp); 4646 4647 for (tcgrp = cgroup_parent(cgrp); tcgrp; 4648 tcgrp = cgroup_parent(tcgrp)) 4649 tcgrp->nr_dying_descendants--; 4650 4651 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id); 4652 cgrp->id = -1; 4653 4654 /* 4655 * There are two control paths which try to determine 4656 * cgroup from dentry without going through kernfs - 4657 * cgroupstats_build() and css_tryget_online_from_dir(). 4658 * Those are supported by RCU protecting clearing of 4659 * cgrp->kn->priv backpointer. 4660 */ 4661 if (cgrp->kn) 4662 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, 4663 NULL); 4664 4665 cgroup_bpf_put(cgrp); 4666 } 4667 4668 mutex_unlock(&cgroup_mutex); 4669 4670 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn); 4671 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork); 4672 } 4673 4674 static void css_release(struct percpu_ref *ref) 4675 { 4676 struct cgroup_subsys_state *css = 4677 container_of(ref, struct cgroup_subsys_state, refcnt); 4678 4679 INIT_WORK(&css->destroy_work, css_release_work_fn); 4680 queue_work(cgroup_destroy_wq, &css->destroy_work); 4681 } 4682 4683 static void init_and_link_css(struct cgroup_subsys_state *css, 4684 struct cgroup_subsys *ss, struct cgroup *cgrp) 4685 { 4686 lockdep_assert_held(&cgroup_mutex); 4687 4688 cgroup_get_live(cgrp); 4689 4690 memset(css, 0, sizeof(*css)); 4691 css->cgroup = cgrp; 4692 css->ss = ss; 4693 css->id = -1; 4694 INIT_LIST_HEAD(&css->sibling); 4695 INIT_LIST_HEAD(&css->children); 4696 INIT_LIST_HEAD(&css->rstat_css_node); 4697 css->serial_nr = css_serial_nr_next++; 4698 atomic_set(&css->online_cnt, 0); 4699 4700 if (cgroup_parent(cgrp)) { 4701 css->parent = cgroup_css(cgroup_parent(cgrp), ss); 4702 css_get(css->parent); 4703 } 4704 4705 if (cgroup_on_dfl(cgrp) && ss->css_rstat_flush) 4706 list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list); 4707 4708 BUG_ON(cgroup_css(cgrp, ss)); 4709 } 4710 4711 /* invoke ->css_online() on a new CSS and mark it online if successful */ 4712 static int online_css(struct cgroup_subsys_state *css) 4713 { 4714 struct cgroup_subsys *ss = css->ss; 4715 int ret = 0; 4716 4717 lockdep_assert_held(&cgroup_mutex); 4718 4719 if (ss->css_online) 4720 ret = ss->css_online(css); 4721 if (!ret) { 4722 css->flags |= CSS_ONLINE; 4723 rcu_assign_pointer(css->cgroup->subsys[ss->id], css); 4724 4725 atomic_inc(&css->online_cnt); 4726 if (css->parent) 4727 atomic_inc(&css->parent->online_cnt); 4728 } 4729 return ret; 4730 } 4731 4732 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */ 4733 static void offline_css(struct cgroup_subsys_state *css) 4734 { 4735 struct cgroup_subsys *ss = css->ss; 4736 4737 lockdep_assert_held(&cgroup_mutex); 4738 4739 if (!(css->flags & CSS_ONLINE)) 4740 return; 4741 4742 if (ss->css_offline) 4743 ss->css_offline(css); 4744 4745 css->flags &= ~CSS_ONLINE; 4746 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL); 4747 4748 wake_up_all(&css->cgroup->offline_waitq); 4749 } 4750 4751 /** 4752 * css_create - create a cgroup_subsys_state 4753 * @cgrp: the cgroup new css will be associated with 4754 * @ss: the subsys of new css 4755 * 4756 * Create a new css associated with @cgrp - @ss pair. On success, the new 4757 * css is online and installed in @cgrp. This function doesn't create the 4758 * interface files. Returns 0 on success, -errno on failure. 4759 */ 4760 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp, 4761 struct cgroup_subsys *ss) 4762 { 4763 struct cgroup *parent = cgroup_parent(cgrp); 4764 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss); 4765 struct cgroup_subsys_state *css; 4766 int err; 4767 4768 lockdep_assert_held(&cgroup_mutex); 4769 4770 css = ss->css_alloc(parent_css); 4771 if (!css) 4772 css = ERR_PTR(-ENOMEM); 4773 if (IS_ERR(css)) 4774 return css; 4775 4776 init_and_link_css(css, ss, cgrp); 4777 4778 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL); 4779 if (err) 4780 goto err_free_css; 4781 4782 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL); 4783 if (err < 0) 4784 goto err_free_css; 4785 css->id = err; 4786 4787 /* @css is ready to be brought online now, make it visible */ 4788 list_add_tail_rcu(&css->sibling, &parent_css->children); 4789 cgroup_idr_replace(&ss->css_idr, css, css->id); 4790 4791 err = online_css(css); 4792 if (err) 4793 goto err_list_del; 4794 4795 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy && 4796 cgroup_parent(parent)) { 4797 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n", 4798 current->comm, current->pid, ss->name); 4799 if (!strcmp(ss->name, "memory")) 4800 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n"); 4801 ss->warned_broken_hierarchy = true; 4802 } 4803 4804 return css; 4805 4806 err_list_del: 4807 list_del_rcu(&css->sibling); 4808 err_free_css: 4809 list_del_rcu(&css->rstat_css_node); 4810 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn); 4811 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork); 4812 return ERR_PTR(err); 4813 } 4814 4815 /* 4816 * The returned cgroup is fully initialized including its control mask, but 4817 * it isn't associated with its kernfs_node and doesn't have the control 4818 * mask applied. 4819 */ 4820 static struct cgroup *cgroup_create(struct cgroup *parent) 4821 { 4822 struct cgroup_root *root = parent->root; 4823 struct cgroup *cgrp, *tcgrp; 4824 int level = parent->level + 1; 4825 int ret; 4826 4827 /* allocate the cgroup and its ID, 0 is reserved for the root */ 4828 cgrp = kzalloc(struct_size(cgrp, ancestor_ids, (level + 1)), 4829 GFP_KERNEL); 4830 if (!cgrp) 4831 return ERR_PTR(-ENOMEM); 4832 4833 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL); 4834 if (ret) 4835 goto out_free_cgrp; 4836 4837 if (cgroup_on_dfl(parent)) { 4838 ret = cgroup_rstat_init(cgrp); 4839 if (ret) 4840 goto out_cancel_ref; 4841 } 4842 4843 /* 4844 * Temporarily set the pointer to NULL, so idr_find() won't return 4845 * a half-baked cgroup. 4846 */ 4847 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL); 4848 if (cgrp->id < 0) { 4849 ret = -ENOMEM; 4850 goto out_stat_exit; 4851 } 4852 4853 init_cgroup_housekeeping(cgrp); 4854 4855 cgrp->self.parent = &parent->self; 4856 cgrp->root = root; 4857 cgrp->level = level; 4858 ret = cgroup_bpf_inherit(cgrp); 4859 if (ret) 4860 goto out_idr_free; 4861 4862 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) { 4863 cgrp->ancestor_ids[tcgrp->level] = tcgrp->id; 4864 4865 if (tcgrp != cgrp) 4866 tcgrp->nr_descendants++; 4867 } 4868 4869 if (notify_on_release(parent)) 4870 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags); 4871 4872 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags)) 4873 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags); 4874 4875 cgrp->self.serial_nr = css_serial_nr_next++; 4876 4877 /* allocation complete, commit to creation */ 4878 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children); 4879 atomic_inc(&root->nr_cgrps); 4880 cgroup_get_live(parent); 4881 4882 /* 4883 * @cgrp is now fully operational. If something fails after this 4884 * point, it'll be released via the normal destruction path. 4885 */ 4886 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id); 4887 4888 /* 4889 * On the default hierarchy, a child doesn't automatically inherit 4890 * subtree_control from the parent. Each is configured manually. 4891 */ 4892 if (!cgroup_on_dfl(cgrp)) 4893 cgrp->subtree_control = cgroup_control(cgrp); 4894 4895 cgroup_propagate_control(cgrp); 4896 4897 return cgrp; 4898 4899 out_idr_free: 4900 cgroup_idr_remove(&root->cgroup_idr, cgrp->id); 4901 out_stat_exit: 4902 if (cgroup_on_dfl(parent)) 4903 cgroup_rstat_exit(cgrp); 4904 out_cancel_ref: 4905 percpu_ref_exit(&cgrp->self.refcnt); 4906 out_free_cgrp: 4907 kfree(cgrp); 4908 return ERR_PTR(ret); 4909 } 4910 4911 static bool cgroup_check_hierarchy_limits(struct cgroup *parent) 4912 { 4913 struct cgroup *cgroup; 4914 int ret = false; 4915 int level = 1; 4916 4917 lockdep_assert_held(&cgroup_mutex); 4918 4919 for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) { 4920 if (cgroup->nr_descendants >= cgroup->max_descendants) 4921 goto fail; 4922 4923 if (level > cgroup->max_depth) 4924 goto fail; 4925 4926 level++; 4927 } 4928 4929 ret = true; 4930 fail: 4931 return ret; 4932 } 4933 4934 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode) 4935 { 4936 struct cgroup *parent, *cgrp; 4937 struct kernfs_node *kn; 4938 int ret; 4939 4940 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */ 4941 if (strchr(name, '\n')) 4942 return -EINVAL; 4943 4944 parent = cgroup_kn_lock_live(parent_kn, false); 4945 if (!parent) 4946 return -ENODEV; 4947 4948 if (!cgroup_check_hierarchy_limits(parent)) { 4949 ret = -EAGAIN; 4950 goto out_unlock; 4951 } 4952 4953 cgrp = cgroup_create(parent); 4954 if (IS_ERR(cgrp)) { 4955 ret = PTR_ERR(cgrp); 4956 goto out_unlock; 4957 } 4958 4959 /* create the directory */ 4960 kn = kernfs_create_dir(parent->kn, name, mode, cgrp); 4961 if (IS_ERR(kn)) { 4962 ret = PTR_ERR(kn); 4963 goto out_destroy; 4964 } 4965 cgrp->kn = kn; 4966 4967 /* 4968 * This extra ref will be put in cgroup_free_fn() and guarantees 4969 * that @cgrp->kn is always accessible. 4970 */ 4971 kernfs_get(kn); 4972 4973 ret = cgroup_kn_set_ugid(kn); 4974 if (ret) 4975 goto out_destroy; 4976 4977 ret = css_populate_dir(&cgrp->self); 4978 if (ret) 4979 goto out_destroy; 4980 4981 ret = cgroup_apply_control_enable(cgrp); 4982 if (ret) 4983 goto out_destroy; 4984 4985 TRACE_CGROUP_PATH(mkdir, cgrp); 4986 4987 /* let's create and online css's */ 4988 kernfs_activate(kn); 4989 4990 ret = 0; 4991 goto out_unlock; 4992 4993 out_destroy: 4994 cgroup_destroy_locked(cgrp); 4995 out_unlock: 4996 cgroup_kn_unlock(parent_kn); 4997 return ret; 4998 } 4999 5000 /* 5001 * This is called when the refcnt of a css is confirmed to be killed. 5002 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to 5003 * initate destruction and put the css ref from kill_css(). 5004 */ 5005 static void css_killed_work_fn(struct work_struct *work) 5006 { 5007 struct cgroup_subsys_state *css = 5008 container_of(work, struct cgroup_subsys_state, destroy_work); 5009 5010 mutex_lock(&cgroup_mutex); 5011 5012 do { 5013 offline_css(css); 5014 css_put(css); 5015 /* @css can't go away while we're holding cgroup_mutex */ 5016 css = css->parent; 5017 } while (css && atomic_dec_and_test(&css->online_cnt)); 5018 5019 mutex_unlock(&cgroup_mutex); 5020 } 5021 5022 /* css kill confirmation processing requires process context, bounce */ 5023 static void css_killed_ref_fn(struct percpu_ref *ref) 5024 { 5025 struct cgroup_subsys_state *css = 5026 container_of(ref, struct cgroup_subsys_state, refcnt); 5027 5028 if (atomic_dec_and_test(&css->online_cnt)) { 5029 INIT_WORK(&css->destroy_work, css_killed_work_fn); 5030 queue_work(cgroup_destroy_wq, &css->destroy_work); 5031 } 5032 } 5033 5034 /** 5035 * kill_css - destroy a css 5036 * @css: css to destroy 5037 * 5038 * This function initiates destruction of @css by removing cgroup interface 5039 * files and putting its base reference. ->css_offline() will be invoked 5040 * asynchronously once css_tryget_online() is guaranteed to fail and when 5041 * the reference count reaches zero, @css will be released. 5042 */ 5043 static void kill_css(struct cgroup_subsys_state *css) 5044 { 5045 lockdep_assert_held(&cgroup_mutex); 5046 5047 if (css->flags & CSS_DYING) 5048 return; 5049 5050 css->flags |= CSS_DYING; 5051 5052 /* 5053 * This must happen before css is disassociated with its cgroup. 5054 * See seq_css() for details. 5055 */ 5056 css_clear_dir(css); 5057 5058 /* 5059 * Killing would put the base ref, but we need to keep it alive 5060 * until after ->css_offline(). 5061 */ 5062 css_get(css); 5063 5064 /* 5065 * cgroup core guarantees that, by the time ->css_offline() is 5066 * invoked, no new css reference will be given out via 5067 * css_tryget_online(). We can't simply call percpu_ref_kill() and 5068 * proceed to offlining css's because percpu_ref_kill() doesn't 5069 * guarantee that the ref is seen as killed on all CPUs on return. 5070 * 5071 * Use percpu_ref_kill_and_confirm() to get notifications as each 5072 * css is confirmed to be seen as killed on all CPUs. 5073 */ 5074 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn); 5075 } 5076 5077 /** 5078 * cgroup_destroy_locked - the first stage of cgroup destruction 5079 * @cgrp: cgroup to be destroyed 5080 * 5081 * css's make use of percpu refcnts whose killing latency shouldn't be 5082 * exposed to userland and are RCU protected. Also, cgroup core needs to 5083 * guarantee that css_tryget_online() won't succeed by the time 5084 * ->css_offline() is invoked. To satisfy all the requirements, 5085 * destruction is implemented in the following two steps. 5086 * 5087 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all 5088 * userland visible parts and start killing the percpu refcnts of 5089 * css's. Set up so that the next stage will be kicked off once all 5090 * the percpu refcnts are confirmed to be killed. 5091 * 5092 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the 5093 * rest of destruction. Once all cgroup references are gone, the 5094 * cgroup is RCU-freed. 5095 * 5096 * This function implements s1. After this step, @cgrp is gone as far as 5097 * the userland is concerned and a new cgroup with the same name may be 5098 * created. As cgroup doesn't care about the names internally, this 5099 * doesn't cause any problem. 5100 */ 5101 static int cgroup_destroy_locked(struct cgroup *cgrp) 5102 __releases(&cgroup_mutex) __acquires(&cgroup_mutex) 5103 { 5104 struct cgroup *tcgrp, *parent = cgroup_parent(cgrp); 5105 struct cgroup_subsys_state *css; 5106 struct cgrp_cset_link *link; 5107 int ssid; 5108 5109 lockdep_assert_held(&cgroup_mutex); 5110 5111 /* 5112 * Only migration can raise populated from zero and we're already 5113 * holding cgroup_mutex. 5114 */ 5115 if (cgroup_is_populated(cgrp)) 5116 return -EBUSY; 5117 5118 /* 5119 * Make sure there's no live children. We can't test emptiness of 5120 * ->self.children as dead children linger on it while being 5121 * drained; otherwise, "rmdir parent/child parent" may fail. 5122 */ 5123 if (css_has_online_children(&cgrp->self)) 5124 return -EBUSY; 5125 5126 /* 5127 * Mark @cgrp and the associated csets dead. The former prevents 5128 * further task migration and child creation by disabling 5129 * cgroup_lock_live_group(). The latter makes the csets ignored by 5130 * the migration path. 5131 */ 5132 cgrp->self.flags &= ~CSS_ONLINE; 5133 5134 spin_lock_irq(&css_set_lock); 5135 list_for_each_entry(link, &cgrp->cset_links, cset_link) 5136 link->cset->dead = true; 5137 spin_unlock_irq(&css_set_lock); 5138 5139 /* initiate massacre of all css's */ 5140 for_each_css(css, ssid, cgrp) 5141 kill_css(css); 5142 5143 /* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */ 5144 css_clear_dir(&cgrp->self); 5145 kernfs_remove(cgrp->kn); 5146 5147 if (parent && cgroup_is_threaded(cgrp)) 5148 parent->nr_threaded_children--; 5149 5150 for (tcgrp = cgroup_parent(cgrp); tcgrp; tcgrp = cgroup_parent(tcgrp)) { 5151 tcgrp->nr_descendants--; 5152 tcgrp->nr_dying_descendants++; 5153 } 5154 5155 cgroup1_check_for_release(parent); 5156 5157 /* put the base reference */ 5158 percpu_ref_kill(&cgrp->self.refcnt); 5159 5160 return 0; 5161 }; 5162 5163 int cgroup_rmdir(struct kernfs_node *kn) 5164 { 5165 struct cgroup *cgrp; 5166 int ret = 0; 5167 5168 cgrp = cgroup_kn_lock_live(kn, false); 5169 if (!cgrp) 5170 return 0; 5171 5172 ret = cgroup_destroy_locked(cgrp); 5173 if (!ret) 5174 TRACE_CGROUP_PATH(rmdir, cgrp); 5175 5176 cgroup_kn_unlock(kn); 5177 return ret; 5178 } 5179 5180 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = { 5181 .show_options = cgroup_show_options, 5182 .remount_fs = cgroup_remount, 5183 .mkdir = cgroup_mkdir, 5184 .rmdir = cgroup_rmdir, 5185 .show_path = cgroup_show_path, 5186 }; 5187 5188 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early) 5189 { 5190 struct cgroup_subsys_state *css; 5191 5192 pr_debug("Initializing cgroup subsys %s\n", ss->name); 5193 5194 mutex_lock(&cgroup_mutex); 5195 5196 idr_init(&ss->css_idr); 5197 INIT_LIST_HEAD(&ss->cfts); 5198 5199 /* Create the root cgroup state for this subsystem */ 5200 ss->root = &cgrp_dfl_root; 5201 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss)); 5202 /* We don't handle early failures gracefully */ 5203 BUG_ON(IS_ERR(css)); 5204 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp); 5205 5206 /* 5207 * Root csses are never destroyed and we can't initialize 5208 * percpu_ref during early init. Disable refcnting. 5209 */ 5210 css->flags |= CSS_NO_REF; 5211 5212 if (early) { 5213 /* allocation can't be done safely during early init */ 5214 css->id = 1; 5215 } else { 5216 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL); 5217 BUG_ON(css->id < 0); 5218 } 5219 5220 /* Update the init_css_set to contain a subsys 5221 * pointer to this state - since the subsystem is 5222 * newly registered, all tasks and hence the 5223 * init_css_set is in the subsystem's root cgroup. */ 5224 init_css_set.subsys[ss->id] = css; 5225 5226 have_fork_callback |= (bool)ss->fork << ss->id; 5227 have_exit_callback |= (bool)ss->exit << ss->id; 5228 have_free_callback |= (bool)ss->free << ss->id; 5229 have_canfork_callback |= (bool)ss->can_fork << ss->id; 5230 5231 /* At system boot, before all subsystems have been 5232 * registered, no tasks have been forked, so we don't 5233 * need to invoke fork callbacks here. */ 5234 BUG_ON(!list_empty(&init_task.tasks)); 5235 5236 BUG_ON(online_css(css)); 5237 5238 mutex_unlock(&cgroup_mutex); 5239 } 5240 5241 /** 5242 * cgroup_init_early - cgroup initialization at system boot 5243 * 5244 * Initialize cgroups at system boot, and initialize any 5245 * subsystems that request early init. 5246 */ 5247 int __init cgroup_init_early(void) 5248 { 5249 static struct cgroup_sb_opts __initdata opts; 5250 struct cgroup_subsys *ss; 5251 int i; 5252 5253 init_cgroup_root(&cgrp_dfl_root, &opts); 5254 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF; 5255 5256 RCU_INIT_POINTER(init_task.cgroups, &init_css_set); 5257 5258 for_each_subsys(ss, i) { 5259 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id, 5260 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n", 5261 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free, 5262 ss->id, ss->name); 5263 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN, 5264 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]); 5265 5266 ss->id = i; 5267 ss->name = cgroup_subsys_name[i]; 5268 if (!ss->legacy_name) 5269 ss->legacy_name = cgroup_subsys_name[i]; 5270 5271 if (ss->early_init) 5272 cgroup_init_subsys(ss, true); 5273 } 5274 return 0; 5275 } 5276 5277 static u16 cgroup_disable_mask __initdata; 5278 5279 /** 5280 * cgroup_init - cgroup initialization 5281 * 5282 * Register cgroup filesystem and /proc file, and initialize 5283 * any subsystems that didn't request early init. 5284 */ 5285 int __init cgroup_init(void) 5286 { 5287 struct cgroup_subsys *ss; 5288 int ssid; 5289 5290 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16); 5291 BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem)); 5292 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files)); 5293 BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files)); 5294 5295 cgroup_rstat_boot(); 5296 5297 /* 5298 * The latency of the synchronize_sched() is too high for cgroups, 5299 * avoid it at the cost of forcing all readers into the slow path. 5300 */ 5301 rcu_sync_enter_start(&cgroup_threadgroup_rwsem.rss); 5302 5303 get_user_ns(init_cgroup_ns.user_ns); 5304 5305 mutex_lock(&cgroup_mutex); 5306 5307 /* 5308 * Add init_css_set to the hash table so that dfl_root can link to 5309 * it during init. 5310 */ 5311 hash_add(css_set_table, &init_css_set.hlist, 5312 css_set_hash(init_css_set.subsys)); 5313 5314 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0, 0)); 5315 5316 mutex_unlock(&cgroup_mutex); 5317 5318 for_each_subsys(ss, ssid) { 5319 if (ss->early_init) { 5320 struct cgroup_subsys_state *css = 5321 init_css_set.subsys[ss->id]; 5322 5323 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, 5324 GFP_KERNEL); 5325 BUG_ON(css->id < 0); 5326 } else { 5327 cgroup_init_subsys(ss, false); 5328 } 5329 5330 list_add_tail(&init_css_set.e_cset_node[ssid], 5331 &cgrp_dfl_root.cgrp.e_csets[ssid]); 5332 5333 /* 5334 * Setting dfl_root subsys_mask needs to consider the 5335 * disabled flag and cftype registration needs kmalloc, 5336 * both of which aren't available during early_init. 5337 */ 5338 if (cgroup_disable_mask & (1 << ssid)) { 5339 static_branch_disable(cgroup_subsys_enabled_key[ssid]); 5340 printk(KERN_INFO "Disabling %s control group subsystem\n", 5341 ss->name); 5342 continue; 5343 } 5344 5345 if (cgroup1_ssid_disabled(ssid)) 5346 printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n", 5347 ss->name); 5348 5349 cgrp_dfl_root.subsys_mask |= 1 << ss->id; 5350 5351 /* implicit controllers must be threaded too */ 5352 WARN_ON(ss->implicit_on_dfl && !ss->threaded); 5353 5354 if (ss->implicit_on_dfl) 5355 cgrp_dfl_implicit_ss_mask |= 1 << ss->id; 5356 else if (!ss->dfl_cftypes) 5357 cgrp_dfl_inhibit_ss_mask |= 1 << ss->id; 5358 5359 if (ss->threaded) 5360 cgrp_dfl_threaded_ss_mask |= 1 << ss->id; 5361 5362 if (ss->dfl_cftypes == ss->legacy_cftypes) { 5363 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes)); 5364 } else { 5365 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes)); 5366 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes)); 5367 } 5368 5369 if (ss->bind) 5370 ss->bind(init_css_set.subsys[ssid]); 5371 5372 mutex_lock(&cgroup_mutex); 5373 css_populate_dir(init_css_set.subsys[ssid]); 5374 mutex_unlock(&cgroup_mutex); 5375 } 5376 5377 /* init_css_set.subsys[] has been updated, re-hash */ 5378 hash_del(&init_css_set.hlist); 5379 hash_add(css_set_table, &init_css_set.hlist, 5380 css_set_hash(init_css_set.subsys)); 5381 5382 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup")); 5383 WARN_ON(register_filesystem(&cgroup_fs_type)); 5384 WARN_ON(register_filesystem(&cgroup2_fs_type)); 5385 WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show)); 5386 5387 return 0; 5388 } 5389 5390 static int __init cgroup_wq_init(void) 5391 { 5392 /* 5393 * There isn't much point in executing destruction path in 5394 * parallel. Good chunk is serialized with cgroup_mutex anyway. 5395 * Use 1 for @max_active. 5396 * 5397 * We would prefer to do this in cgroup_init() above, but that 5398 * is called before init_workqueues(): so leave this until after. 5399 */ 5400 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1); 5401 BUG_ON(!cgroup_destroy_wq); 5402 return 0; 5403 } 5404 core_initcall(cgroup_wq_init); 5405 5406 void cgroup_path_from_kernfs_id(const union kernfs_node_id *id, 5407 char *buf, size_t buflen) 5408 { 5409 struct kernfs_node *kn; 5410 5411 kn = kernfs_get_node_by_id(cgrp_dfl_root.kf_root, id); 5412 if (!kn) 5413 return; 5414 kernfs_path(kn, buf, buflen); 5415 kernfs_put(kn); 5416 } 5417 5418 /* 5419 * proc_cgroup_show() 5420 * - Print task's cgroup paths into seq_file, one line for each hierarchy 5421 * - Used for /proc/<pid>/cgroup. 5422 */ 5423 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns, 5424 struct pid *pid, struct task_struct *tsk) 5425 { 5426 char *buf; 5427 int retval; 5428 struct cgroup_root *root; 5429 5430 retval = -ENOMEM; 5431 buf = kmalloc(PATH_MAX, GFP_KERNEL); 5432 if (!buf) 5433 goto out; 5434 5435 mutex_lock(&cgroup_mutex); 5436 spin_lock_irq(&css_set_lock); 5437 5438 for_each_root(root) { 5439 struct cgroup_subsys *ss; 5440 struct cgroup *cgrp; 5441 int ssid, count = 0; 5442 5443 if (root == &cgrp_dfl_root && !cgrp_dfl_visible) 5444 continue; 5445 5446 seq_printf(m, "%d:", root->hierarchy_id); 5447 if (root != &cgrp_dfl_root) 5448 for_each_subsys(ss, ssid) 5449 if (root->subsys_mask & (1 << ssid)) 5450 seq_printf(m, "%s%s", count++ ? "," : "", 5451 ss->legacy_name); 5452 if (strlen(root->name)) 5453 seq_printf(m, "%sname=%s", count ? "," : "", 5454 root->name); 5455 seq_putc(m, ':'); 5456 5457 cgrp = task_cgroup_from_root(tsk, root); 5458 5459 /* 5460 * On traditional hierarchies, all zombie tasks show up as 5461 * belonging to the root cgroup. On the default hierarchy, 5462 * while a zombie doesn't show up in "cgroup.procs" and 5463 * thus can't be migrated, its /proc/PID/cgroup keeps 5464 * reporting the cgroup it belonged to before exiting. If 5465 * the cgroup is removed before the zombie is reaped, 5466 * " (deleted)" is appended to the cgroup path. 5467 */ 5468 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) { 5469 retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX, 5470 current->nsproxy->cgroup_ns); 5471 if (retval >= PATH_MAX) 5472 retval = -ENAMETOOLONG; 5473 if (retval < 0) 5474 goto out_unlock; 5475 5476 seq_puts(m, buf); 5477 } else { 5478 seq_puts(m, "/"); 5479 } 5480 5481 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp)) 5482 seq_puts(m, " (deleted)\n"); 5483 else 5484 seq_putc(m, '\n'); 5485 } 5486 5487 retval = 0; 5488 out_unlock: 5489 spin_unlock_irq(&css_set_lock); 5490 mutex_unlock(&cgroup_mutex); 5491 kfree(buf); 5492 out: 5493 return retval; 5494 } 5495 5496 /** 5497 * cgroup_fork - initialize cgroup related fields during copy_process() 5498 * @child: pointer to task_struct of forking parent process. 5499 * 5500 * A task is associated with the init_css_set until cgroup_post_fork() 5501 * attaches it to the parent's css_set. Empty cg_list indicates that 5502 * @child isn't holding reference to its css_set. 5503 */ 5504 void cgroup_fork(struct task_struct *child) 5505 { 5506 RCU_INIT_POINTER(child->cgroups, &init_css_set); 5507 INIT_LIST_HEAD(&child->cg_list); 5508 } 5509 5510 /** 5511 * cgroup_can_fork - called on a new task before the process is exposed 5512 * @child: the task in question. 5513 * 5514 * This calls the subsystem can_fork() callbacks. If the can_fork() callback 5515 * returns an error, the fork aborts with that error code. This allows for 5516 * a cgroup subsystem to conditionally allow or deny new forks. 5517 */ 5518 int cgroup_can_fork(struct task_struct *child) 5519 { 5520 struct cgroup_subsys *ss; 5521 int i, j, ret; 5522 5523 do_each_subsys_mask(ss, i, have_canfork_callback) { 5524 ret = ss->can_fork(child); 5525 if (ret) 5526 goto out_revert; 5527 } while_each_subsys_mask(); 5528 5529 return 0; 5530 5531 out_revert: 5532 for_each_subsys(ss, j) { 5533 if (j >= i) 5534 break; 5535 if (ss->cancel_fork) 5536 ss->cancel_fork(child); 5537 } 5538 5539 return ret; 5540 } 5541 5542 /** 5543 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork() 5544 * @child: the task in question 5545 * 5546 * This calls the cancel_fork() callbacks if a fork failed *after* 5547 * cgroup_can_fork() succeded. 5548 */ 5549 void cgroup_cancel_fork(struct task_struct *child) 5550 { 5551 struct cgroup_subsys *ss; 5552 int i; 5553 5554 for_each_subsys(ss, i) 5555 if (ss->cancel_fork) 5556 ss->cancel_fork(child); 5557 } 5558 5559 /** 5560 * cgroup_post_fork - called on a new task after adding it to the task list 5561 * @child: the task in question 5562 * 5563 * Adds the task to the list running through its css_set if necessary and 5564 * call the subsystem fork() callbacks. Has to be after the task is 5565 * visible on the task list in case we race with the first call to 5566 * cgroup_task_iter_start() - to guarantee that the new task ends up on its 5567 * list. 5568 */ 5569 void cgroup_post_fork(struct task_struct *child) 5570 { 5571 struct cgroup_subsys *ss; 5572 int i; 5573 5574 /* 5575 * This may race against cgroup_enable_task_cg_lists(). As that 5576 * function sets use_task_css_set_links before grabbing 5577 * tasklist_lock and we just went through tasklist_lock to add 5578 * @child, it's guaranteed that either we see the set 5579 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees 5580 * @child during its iteration. 5581 * 5582 * If we won the race, @child is associated with %current's 5583 * css_set. Grabbing css_set_lock guarantees both that the 5584 * association is stable, and, on completion of the parent's 5585 * migration, @child is visible in the source of migration or 5586 * already in the destination cgroup. This guarantee is necessary 5587 * when implementing operations which need to migrate all tasks of 5588 * a cgroup to another. 5589 * 5590 * Note that if we lose to cgroup_enable_task_cg_lists(), @child 5591 * will remain in init_css_set. This is safe because all tasks are 5592 * in the init_css_set before cg_links is enabled and there's no 5593 * operation which transfers all tasks out of init_css_set. 5594 */ 5595 if (use_task_css_set_links) { 5596 struct css_set *cset; 5597 5598 spin_lock_irq(&css_set_lock); 5599 cset = task_css_set(current); 5600 if (list_empty(&child->cg_list)) { 5601 get_css_set(cset); 5602 cset->nr_tasks++; 5603 css_set_move_task(child, NULL, cset, false); 5604 } 5605 spin_unlock_irq(&css_set_lock); 5606 } 5607 5608 /* 5609 * Call ss->fork(). This must happen after @child is linked on 5610 * css_set; otherwise, @child might change state between ->fork() 5611 * and addition to css_set. 5612 */ 5613 do_each_subsys_mask(ss, i, have_fork_callback) { 5614 ss->fork(child); 5615 } while_each_subsys_mask(); 5616 } 5617 5618 /** 5619 * cgroup_exit - detach cgroup from exiting task 5620 * @tsk: pointer to task_struct of exiting process 5621 * 5622 * Description: Detach cgroup from @tsk and release it. 5623 * 5624 * Note that cgroups marked notify_on_release force every task in 5625 * them to take the global cgroup_mutex mutex when exiting. 5626 * This could impact scaling on very large systems. Be reluctant to 5627 * use notify_on_release cgroups where very high task exit scaling 5628 * is required on large systems. 5629 * 5630 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We 5631 * call cgroup_exit() while the task is still competent to handle 5632 * notify_on_release(), then leave the task attached to the root cgroup in 5633 * each hierarchy for the remainder of its exit. No need to bother with 5634 * init_css_set refcnting. init_css_set never goes away and we can't race 5635 * with migration path - PF_EXITING is visible to migration path. 5636 */ 5637 void cgroup_exit(struct task_struct *tsk) 5638 { 5639 struct cgroup_subsys *ss; 5640 struct css_set *cset; 5641 int i; 5642 5643 /* 5644 * Unlink from @tsk from its css_set. As migration path can't race 5645 * with us, we can check css_set and cg_list without synchronization. 5646 */ 5647 cset = task_css_set(tsk); 5648 5649 if (!list_empty(&tsk->cg_list)) { 5650 spin_lock_irq(&css_set_lock); 5651 css_set_move_task(tsk, cset, NULL, false); 5652 cset->nr_tasks--; 5653 spin_unlock_irq(&css_set_lock); 5654 } else { 5655 get_css_set(cset); 5656 } 5657 5658 /* see cgroup_post_fork() for details */ 5659 do_each_subsys_mask(ss, i, have_exit_callback) { 5660 ss->exit(tsk); 5661 } while_each_subsys_mask(); 5662 } 5663 5664 void cgroup_free(struct task_struct *task) 5665 { 5666 struct css_set *cset = task_css_set(task); 5667 struct cgroup_subsys *ss; 5668 int ssid; 5669 5670 do_each_subsys_mask(ss, ssid, have_free_callback) { 5671 ss->free(task); 5672 } while_each_subsys_mask(); 5673 5674 put_css_set(cset); 5675 } 5676 5677 static int __init cgroup_disable(char *str) 5678 { 5679 struct cgroup_subsys *ss; 5680 char *token; 5681 int i; 5682 5683 while ((token = strsep(&str, ",")) != NULL) { 5684 if (!*token) 5685 continue; 5686 5687 for_each_subsys(ss, i) { 5688 if (strcmp(token, ss->name) && 5689 strcmp(token, ss->legacy_name)) 5690 continue; 5691 cgroup_disable_mask |= 1 << i; 5692 } 5693 } 5694 return 1; 5695 } 5696 __setup("cgroup_disable=", cgroup_disable); 5697 5698 /** 5699 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry 5700 * @dentry: directory dentry of interest 5701 * @ss: subsystem of interest 5702 * 5703 * If @dentry is a directory for a cgroup which has @ss enabled on it, try 5704 * to get the corresponding css and return it. If such css doesn't exist 5705 * or can't be pinned, an ERR_PTR value is returned. 5706 */ 5707 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry, 5708 struct cgroup_subsys *ss) 5709 { 5710 struct kernfs_node *kn = kernfs_node_from_dentry(dentry); 5711 struct file_system_type *s_type = dentry->d_sb->s_type; 5712 struct cgroup_subsys_state *css = NULL; 5713 struct cgroup *cgrp; 5714 5715 /* is @dentry a cgroup dir? */ 5716 if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) || 5717 !kn || kernfs_type(kn) != KERNFS_DIR) 5718 return ERR_PTR(-EBADF); 5719 5720 rcu_read_lock(); 5721 5722 /* 5723 * This path doesn't originate from kernfs and @kn could already 5724 * have been or be removed at any point. @kn->priv is RCU 5725 * protected for this access. See css_release_work_fn() for details. 5726 */ 5727 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); 5728 if (cgrp) 5729 css = cgroup_css(cgrp, ss); 5730 5731 if (!css || !css_tryget_online(css)) 5732 css = ERR_PTR(-ENOENT); 5733 5734 rcu_read_unlock(); 5735 return css; 5736 } 5737 5738 /** 5739 * css_from_id - lookup css by id 5740 * @id: the cgroup id 5741 * @ss: cgroup subsys to be looked into 5742 * 5743 * Returns the css if there's valid one with @id, otherwise returns NULL. 5744 * Should be called under rcu_read_lock(). 5745 */ 5746 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss) 5747 { 5748 WARN_ON_ONCE(!rcu_read_lock_held()); 5749 return idr_find(&ss->css_idr, id); 5750 } 5751 5752 /** 5753 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path 5754 * @path: path on the default hierarchy 5755 * 5756 * Find the cgroup at @path on the default hierarchy, increment its 5757 * reference count and return it. Returns pointer to the found cgroup on 5758 * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR) 5759 * if @path points to a non-directory. 5760 */ 5761 struct cgroup *cgroup_get_from_path(const char *path) 5762 { 5763 struct kernfs_node *kn; 5764 struct cgroup *cgrp; 5765 5766 mutex_lock(&cgroup_mutex); 5767 5768 kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path); 5769 if (kn) { 5770 if (kernfs_type(kn) == KERNFS_DIR) { 5771 cgrp = kn->priv; 5772 cgroup_get_live(cgrp); 5773 } else { 5774 cgrp = ERR_PTR(-ENOTDIR); 5775 } 5776 kernfs_put(kn); 5777 } else { 5778 cgrp = ERR_PTR(-ENOENT); 5779 } 5780 5781 mutex_unlock(&cgroup_mutex); 5782 return cgrp; 5783 } 5784 EXPORT_SYMBOL_GPL(cgroup_get_from_path); 5785 5786 /** 5787 * cgroup_get_from_fd - get a cgroup pointer from a fd 5788 * @fd: fd obtained by open(cgroup2_dir) 5789 * 5790 * Find the cgroup from a fd which should be obtained 5791 * by opening a cgroup directory. Returns a pointer to the 5792 * cgroup on success. ERR_PTR is returned if the cgroup 5793 * cannot be found. 5794 */ 5795 struct cgroup *cgroup_get_from_fd(int fd) 5796 { 5797 struct cgroup_subsys_state *css; 5798 struct cgroup *cgrp; 5799 struct file *f; 5800 5801 f = fget_raw(fd); 5802 if (!f) 5803 return ERR_PTR(-EBADF); 5804 5805 css = css_tryget_online_from_dir(f->f_path.dentry, NULL); 5806 fput(f); 5807 if (IS_ERR(css)) 5808 return ERR_CAST(css); 5809 5810 cgrp = css->cgroup; 5811 if (!cgroup_on_dfl(cgrp)) { 5812 cgroup_put(cgrp); 5813 return ERR_PTR(-EBADF); 5814 } 5815 5816 return cgrp; 5817 } 5818 EXPORT_SYMBOL_GPL(cgroup_get_from_fd); 5819 5820 /* 5821 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data 5822 * definition in cgroup-defs.h. 5823 */ 5824 #ifdef CONFIG_SOCK_CGROUP_DATA 5825 5826 #if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID) 5827 5828 DEFINE_SPINLOCK(cgroup_sk_update_lock); 5829 static bool cgroup_sk_alloc_disabled __read_mostly; 5830 5831 void cgroup_sk_alloc_disable(void) 5832 { 5833 if (cgroup_sk_alloc_disabled) 5834 return; 5835 pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n"); 5836 cgroup_sk_alloc_disabled = true; 5837 } 5838 5839 #else 5840 5841 #define cgroup_sk_alloc_disabled false 5842 5843 #endif 5844 5845 void cgroup_sk_alloc(struct sock_cgroup_data *skcd) 5846 { 5847 if (cgroup_sk_alloc_disabled) 5848 return; 5849 5850 /* Socket clone path */ 5851 if (skcd->val) { 5852 /* 5853 * We might be cloning a socket which is left in an empty 5854 * cgroup and the cgroup might have already been rmdir'd. 5855 * Don't use cgroup_get_live(). 5856 */ 5857 cgroup_get(sock_cgroup_ptr(skcd)); 5858 return; 5859 } 5860 5861 rcu_read_lock(); 5862 5863 while (true) { 5864 struct css_set *cset; 5865 5866 cset = task_css_set(current); 5867 if (likely(cgroup_tryget(cset->dfl_cgrp))) { 5868 skcd->val = (unsigned long)cset->dfl_cgrp; 5869 break; 5870 } 5871 cpu_relax(); 5872 } 5873 5874 rcu_read_unlock(); 5875 } 5876 5877 void cgroup_sk_free(struct sock_cgroup_data *skcd) 5878 { 5879 cgroup_put(sock_cgroup_ptr(skcd)); 5880 } 5881 5882 #endif /* CONFIG_SOCK_CGROUP_DATA */ 5883 5884 #ifdef CONFIG_CGROUP_BPF 5885 int cgroup_bpf_attach(struct cgroup *cgrp, struct bpf_prog *prog, 5886 enum bpf_attach_type type, u32 flags) 5887 { 5888 int ret; 5889 5890 mutex_lock(&cgroup_mutex); 5891 ret = __cgroup_bpf_attach(cgrp, prog, type, flags); 5892 mutex_unlock(&cgroup_mutex); 5893 return ret; 5894 } 5895 int cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog, 5896 enum bpf_attach_type type, u32 flags) 5897 { 5898 int ret; 5899 5900 mutex_lock(&cgroup_mutex); 5901 ret = __cgroup_bpf_detach(cgrp, prog, type, flags); 5902 mutex_unlock(&cgroup_mutex); 5903 return ret; 5904 } 5905 int cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr, 5906 union bpf_attr __user *uattr) 5907 { 5908 int ret; 5909 5910 mutex_lock(&cgroup_mutex); 5911 ret = __cgroup_bpf_query(cgrp, attr, uattr); 5912 mutex_unlock(&cgroup_mutex); 5913 return ret; 5914 } 5915 #endif /* CONFIG_CGROUP_BPF */ 5916 5917 #ifdef CONFIG_SYSFS 5918 static ssize_t show_delegatable_files(struct cftype *files, char *buf, 5919 ssize_t size, const char *prefix) 5920 { 5921 struct cftype *cft; 5922 ssize_t ret = 0; 5923 5924 for (cft = files; cft && cft->name[0] != '\0'; cft++) { 5925 if (!(cft->flags & CFTYPE_NS_DELEGATABLE)) 5926 continue; 5927 5928 if (prefix) 5929 ret += snprintf(buf + ret, size - ret, "%s.", prefix); 5930 5931 ret += snprintf(buf + ret, size - ret, "%s\n", cft->name); 5932 5933 if (unlikely(ret >= size)) { 5934 WARN_ON(1); 5935 break; 5936 } 5937 } 5938 5939 return ret; 5940 } 5941 5942 static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr, 5943 char *buf) 5944 { 5945 struct cgroup_subsys *ss; 5946 int ssid; 5947 ssize_t ret = 0; 5948 5949 ret = show_delegatable_files(cgroup_base_files, buf, PAGE_SIZE - ret, 5950 NULL); 5951 5952 for_each_subsys(ss, ssid) 5953 ret += show_delegatable_files(ss->dfl_cftypes, buf + ret, 5954 PAGE_SIZE - ret, 5955 cgroup_subsys_name[ssid]); 5956 5957 return ret; 5958 } 5959 static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate); 5960 5961 static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr, 5962 char *buf) 5963 { 5964 return snprintf(buf, PAGE_SIZE, "nsdelegate\n"); 5965 } 5966 static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features); 5967 5968 static struct attribute *cgroup_sysfs_attrs[] = { 5969 &cgroup_delegate_attr.attr, 5970 &cgroup_features_attr.attr, 5971 NULL, 5972 }; 5973 5974 static const struct attribute_group cgroup_sysfs_attr_group = { 5975 .attrs = cgroup_sysfs_attrs, 5976 .name = "cgroup", 5977 }; 5978 5979 static int __init cgroup_sysfs_init(void) 5980 { 5981 return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group); 5982 } 5983 subsys_initcall(cgroup_sysfs_init); 5984 #endif /* CONFIG_SYSFS */ 5985