1 /* 2 * Generic process-grouping system. 3 * 4 * Based originally on the cpuset system, extracted by Paul Menage 5 * Copyright (C) 2006 Google, Inc 6 * 7 * Notifications support 8 * Copyright (C) 2009 Nokia Corporation 9 * Author: Kirill A. Shutemov 10 * 11 * Copyright notices from the original cpuset code: 12 * -------------------------------------------------- 13 * Copyright (C) 2003 BULL SA. 14 * Copyright (C) 2004-2006 Silicon Graphics, Inc. 15 * 16 * Portions derived from Patrick Mochel's sysfs code. 17 * sysfs is Copyright (c) 2001-3 Patrick Mochel 18 * 19 * 2003-10-10 Written by Simon Derr. 20 * 2003-10-22 Updates by Stephen Hemminger. 21 * 2004 May-July Rework by Paul Jackson. 22 * --------------------------------------------------- 23 * 24 * This file is subject to the terms and conditions of the GNU General Public 25 * License. See the file COPYING in the main directory of the Linux 26 * distribution for more details. 27 */ 28 29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 30 31 #include "cgroup-internal.h" 32 33 #include <linux/cred.h> 34 #include <linux/errno.h> 35 #include <linux/init_task.h> 36 #include <linux/kernel.h> 37 #include <linux/magic.h> 38 #include <linux/mutex.h> 39 #include <linux/mount.h> 40 #include <linux/pagemap.h> 41 #include <linux/proc_fs.h> 42 #include <linux/rcupdate.h> 43 #include <linux/sched.h> 44 #include <linux/sched/task.h> 45 #include <linux/slab.h> 46 #include <linux/spinlock.h> 47 #include <linux/percpu-rwsem.h> 48 #include <linux/string.h> 49 #include <linux/hashtable.h> 50 #include <linux/idr.h> 51 #include <linux/kthread.h> 52 #include <linux/atomic.h> 53 #include <linux/cpuset.h> 54 #include <linux/proc_ns.h> 55 #include <linux/nsproxy.h> 56 #include <linux/file.h> 57 #include <linux/fs_parser.h> 58 #include <linux/sched/cputime.h> 59 #include <linux/psi.h> 60 #include <net/sock.h> 61 62 #define CREATE_TRACE_POINTS 63 #include <trace/events/cgroup.h> 64 65 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \ 66 MAX_CFTYPE_NAME + 2) 67 /* let's not notify more than 100 times per second */ 68 #define CGROUP_FILE_NOTIFY_MIN_INTV DIV_ROUND_UP(HZ, 100) 69 70 /* 71 * cgroup_mutex is the master lock. Any modification to cgroup or its 72 * hierarchy must be performed while holding it. 73 * 74 * css_set_lock protects task->cgroups pointer, the list of css_set 75 * objects, and the chain of tasks off each css_set. 76 * 77 * These locks are exported if CONFIG_PROVE_RCU so that accessors in 78 * cgroup.h can use them for lockdep annotations. 79 */ 80 DEFINE_MUTEX(cgroup_mutex); 81 DEFINE_SPINLOCK(css_set_lock); 82 83 #ifdef CONFIG_PROVE_RCU 84 EXPORT_SYMBOL_GPL(cgroup_mutex); 85 EXPORT_SYMBOL_GPL(css_set_lock); 86 #endif 87 88 DEFINE_SPINLOCK(trace_cgroup_path_lock); 89 char trace_cgroup_path[TRACE_CGROUP_PATH_LEN]; 90 bool cgroup_debug __read_mostly; 91 92 /* 93 * Protects cgroup_idr and css_idr so that IDs can be released without 94 * grabbing cgroup_mutex. 95 */ 96 static DEFINE_SPINLOCK(cgroup_idr_lock); 97 98 /* 99 * Protects cgroup_file->kn for !self csses. It synchronizes notifications 100 * against file removal/re-creation across css hiding. 101 */ 102 static DEFINE_SPINLOCK(cgroup_file_kn_lock); 103 104 DEFINE_PERCPU_RWSEM(cgroup_threadgroup_rwsem); 105 106 #define cgroup_assert_mutex_or_rcu_locked() \ 107 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \ 108 !lockdep_is_held(&cgroup_mutex), \ 109 "cgroup_mutex or RCU read lock required"); 110 111 /* 112 * cgroup destruction makes heavy use of work items and there can be a lot 113 * of concurrent destructions. Use a separate workqueue so that cgroup 114 * destruction work items don't end up filling up max_active of system_wq 115 * which may lead to deadlock. 116 */ 117 static struct workqueue_struct *cgroup_destroy_wq; 118 119 /* generate an array of cgroup subsystem pointers */ 120 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys, 121 struct cgroup_subsys *cgroup_subsys[] = { 122 #include <linux/cgroup_subsys.h> 123 }; 124 #undef SUBSYS 125 126 /* array of cgroup subsystem names */ 127 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x, 128 static const char *cgroup_subsys_name[] = { 129 #include <linux/cgroup_subsys.h> 130 }; 131 #undef SUBSYS 132 133 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */ 134 #define SUBSYS(_x) \ 135 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \ 136 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \ 137 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \ 138 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key); 139 #include <linux/cgroup_subsys.h> 140 #undef SUBSYS 141 142 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key, 143 static struct static_key_true *cgroup_subsys_enabled_key[] = { 144 #include <linux/cgroup_subsys.h> 145 }; 146 #undef SUBSYS 147 148 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key, 149 static struct static_key_true *cgroup_subsys_on_dfl_key[] = { 150 #include <linux/cgroup_subsys.h> 151 }; 152 #undef SUBSYS 153 154 static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu); 155 156 /* 157 * The default hierarchy, reserved for the subsystems that are otherwise 158 * unattached - it never has more than a single cgroup, and all tasks are 159 * part of that cgroup. 160 */ 161 struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu }; 162 EXPORT_SYMBOL_GPL(cgrp_dfl_root); 163 164 /* 165 * The default hierarchy always exists but is hidden until mounted for the 166 * first time. This is for backward compatibility. 167 */ 168 static bool cgrp_dfl_visible; 169 170 /* some controllers are not supported in the default hierarchy */ 171 static u16 cgrp_dfl_inhibit_ss_mask; 172 173 /* some controllers are implicitly enabled on the default hierarchy */ 174 static u16 cgrp_dfl_implicit_ss_mask; 175 176 /* some controllers can be threaded on the default hierarchy */ 177 static u16 cgrp_dfl_threaded_ss_mask; 178 179 /* The list of hierarchy roots */ 180 LIST_HEAD(cgroup_roots); 181 static int cgroup_root_count; 182 183 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */ 184 static DEFINE_IDR(cgroup_hierarchy_idr); 185 186 /* 187 * Assign a monotonically increasing serial number to csses. It guarantees 188 * cgroups with bigger numbers are newer than those with smaller numbers. 189 * Also, as csses are always appended to the parent's ->children list, it 190 * guarantees that sibling csses are always sorted in the ascending serial 191 * number order on the list. Protected by cgroup_mutex. 192 */ 193 static u64 css_serial_nr_next = 1; 194 195 /* 196 * These bitmasks identify subsystems with specific features to avoid 197 * having to do iterative checks repeatedly. 198 */ 199 static u16 have_fork_callback __read_mostly; 200 static u16 have_exit_callback __read_mostly; 201 static u16 have_release_callback __read_mostly; 202 static u16 have_canfork_callback __read_mostly; 203 204 /* cgroup namespace for init task */ 205 struct cgroup_namespace init_cgroup_ns = { 206 .count = REFCOUNT_INIT(2), 207 .user_ns = &init_user_ns, 208 .ns.ops = &cgroupns_operations, 209 .ns.inum = PROC_CGROUP_INIT_INO, 210 .root_cset = &init_css_set, 211 }; 212 213 static struct file_system_type cgroup2_fs_type; 214 static struct cftype cgroup_base_files[]; 215 216 static int cgroup_apply_control(struct cgroup *cgrp); 217 static void cgroup_finalize_control(struct cgroup *cgrp, int ret); 218 static void css_task_iter_skip(struct css_task_iter *it, 219 struct task_struct *task); 220 static int cgroup_destroy_locked(struct cgroup *cgrp); 221 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp, 222 struct cgroup_subsys *ss); 223 static void css_release(struct percpu_ref *ref); 224 static void kill_css(struct cgroup_subsys_state *css); 225 static int cgroup_addrm_files(struct cgroup_subsys_state *css, 226 struct cgroup *cgrp, struct cftype cfts[], 227 bool is_add); 228 229 /** 230 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID 231 * @ssid: subsys ID of interest 232 * 233 * cgroup_subsys_enabled() can only be used with literal subsys names which 234 * is fine for individual subsystems but unsuitable for cgroup core. This 235 * is slower static_key_enabled() based test indexed by @ssid. 236 */ 237 bool cgroup_ssid_enabled(int ssid) 238 { 239 if (CGROUP_SUBSYS_COUNT == 0) 240 return false; 241 242 return static_key_enabled(cgroup_subsys_enabled_key[ssid]); 243 } 244 245 /** 246 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy 247 * @cgrp: the cgroup of interest 248 * 249 * The default hierarchy is the v2 interface of cgroup and this function 250 * can be used to test whether a cgroup is on the default hierarchy for 251 * cases where a subsystem should behave differnetly depending on the 252 * interface version. 253 * 254 * The set of behaviors which change on the default hierarchy are still 255 * being determined and the mount option is prefixed with __DEVEL__. 256 * 257 * List of changed behaviors: 258 * 259 * - Mount options "noprefix", "xattr", "clone_children", "release_agent" 260 * and "name" are disallowed. 261 * 262 * - When mounting an existing superblock, mount options should match. 263 * 264 * - Remount is disallowed. 265 * 266 * - rename(2) is disallowed. 267 * 268 * - "tasks" is removed. Everything should be at process granularity. Use 269 * "cgroup.procs" instead. 270 * 271 * - "cgroup.procs" is not sorted. pids will be unique unless they got 272 * recycled inbetween reads. 273 * 274 * - "release_agent" and "notify_on_release" are removed. Replacement 275 * notification mechanism will be implemented. 276 * 277 * - "cgroup.clone_children" is removed. 278 * 279 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup 280 * and its descendants contain no task; otherwise, 1. The file also 281 * generates kernfs notification which can be monitored through poll and 282 * [di]notify when the value of the file changes. 283 * 284 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and 285 * take masks of ancestors with non-empty cpus/mems, instead of being 286 * moved to an ancestor. 287 * 288 * - cpuset: a task can be moved into an empty cpuset, and again it takes 289 * masks of ancestors. 290 * 291 * - memcg: use_hierarchy is on by default and the cgroup file for the flag 292 * is not created. 293 * 294 * - blkcg: blk-throttle becomes properly hierarchical. 295 * 296 * - debug: disallowed on the default hierarchy. 297 */ 298 bool cgroup_on_dfl(const struct cgroup *cgrp) 299 { 300 return cgrp->root == &cgrp_dfl_root; 301 } 302 303 /* IDR wrappers which synchronize using cgroup_idr_lock */ 304 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end, 305 gfp_t gfp_mask) 306 { 307 int ret; 308 309 idr_preload(gfp_mask); 310 spin_lock_bh(&cgroup_idr_lock); 311 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM); 312 spin_unlock_bh(&cgroup_idr_lock); 313 idr_preload_end(); 314 return ret; 315 } 316 317 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id) 318 { 319 void *ret; 320 321 spin_lock_bh(&cgroup_idr_lock); 322 ret = idr_replace(idr, ptr, id); 323 spin_unlock_bh(&cgroup_idr_lock); 324 return ret; 325 } 326 327 static void cgroup_idr_remove(struct idr *idr, int id) 328 { 329 spin_lock_bh(&cgroup_idr_lock); 330 idr_remove(idr, id); 331 spin_unlock_bh(&cgroup_idr_lock); 332 } 333 334 static bool cgroup_has_tasks(struct cgroup *cgrp) 335 { 336 return cgrp->nr_populated_csets; 337 } 338 339 bool cgroup_is_threaded(struct cgroup *cgrp) 340 { 341 return cgrp->dom_cgrp != cgrp; 342 } 343 344 /* can @cgrp host both domain and threaded children? */ 345 static bool cgroup_is_mixable(struct cgroup *cgrp) 346 { 347 /* 348 * Root isn't under domain level resource control exempting it from 349 * the no-internal-process constraint, so it can serve as a thread 350 * root and a parent of resource domains at the same time. 351 */ 352 return !cgroup_parent(cgrp); 353 } 354 355 /* can @cgrp become a thread root? should always be true for a thread root */ 356 static bool cgroup_can_be_thread_root(struct cgroup *cgrp) 357 { 358 /* mixables don't care */ 359 if (cgroup_is_mixable(cgrp)) 360 return true; 361 362 /* domain roots can't be nested under threaded */ 363 if (cgroup_is_threaded(cgrp)) 364 return false; 365 366 /* can only have either domain or threaded children */ 367 if (cgrp->nr_populated_domain_children) 368 return false; 369 370 /* and no domain controllers can be enabled */ 371 if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask) 372 return false; 373 374 return true; 375 } 376 377 /* is @cgrp root of a threaded subtree? */ 378 bool cgroup_is_thread_root(struct cgroup *cgrp) 379 { 380 /* thread root should be a domain */ 381 if (cgroup_is_threaded(cgrp)) 382 return false; 383 384 /* a domain w/ threaded children is a thread root */ 385 if (cgrp->nr_threaded_children) 386 return true; 387 388 /* 389 * A domain which has tasks and explicit threaded controllers 390 * enabled is a thread root. 391 */ 392 if (cgroup_has_tasks(cgrp) && 393 (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask)) 394 return true; 395 396 return false; 397 } 398 399 /* a domain which isn't connected to the root w/o brekage can't be used */ 400 static bool cgroup_is_valid_domain(struct cgroup *cgrp) 401 { 402 /* the cgroup itself can be a thread root */ 403 if (cgroup_is_threaded(cgrp)) 404 return false; 405 406 /* but the ancestors can't be unless mixable */ 407 while ((cgrp = cgroup_parent(cgrp))) { 408 if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp)) 409 return false; 410 if (cgroup_is_threaded(cgrp)) 411 return false; 412 } 413 414 return true; 415 } 416 417 /* subsystems visibly enabled on a cgroup */ 418 static u16 cgroup_control(struct cgroup *cgrp) 419 { 420 struct cgroup *parent = cgroup_parent(cgrp); 421 u16 root_ss_mask = cgrp->root->subsys_mask; 422 423 if (parent) { 424 u16 ss_mask = parent->subtree_control; 425 426 /* threaded cgroups can only have threaded controllers */ 427 if (cgroup_is_threaded(cgrp)) 428 ss_mask &= cgrp_dfl_threaded_ss_mask; 429 return ss_mask; 430 } 431 432 if (cgroup_on_dfl(cgrp)) 433 root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask | 434 cgrp_dfl_implicit_ss_mask); 435 return root_ss_mask; 436 } 437 438 /* subsystems enabled on a cgroup */ 439 static u16 cgroup_ss_mask(struct cgroup *cgrp) 440 { 441 struct cgroup *parent = cgroup_parent(cgrp); 442 443 if (parent) { 444 u16 ss_mask = parent->subtree_ss_mask; 445 446 /* threaded cgroups can only have threaded controllers */ 447 if (cgroup_is_threaded(cgrp)) 448 ss_mask &= cgrp_dfl_threaded_ss_mask; 449 return ss_mask; 450 } 451 452 return cgrp->root->subsys_mask; 453 } 454 455 /** 456 * cgroup_css - obtain a cgroup's css for the specified subsystem 457 * @cgrp: the cgroup of interest 458 * @ss: the subsystem of interest (%NULL returns @cgrp->self) 459 * 460 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This 461 * function must be called either under cgroup_mutex or rcu_read_lock() and 462 * the caller is responsible for pinning the returned css if it wants to 463 * keep accessing it outside the said locks. This function may return 464 * %NULL if @cgrp doesn't have @subsys_id enabled. 465 */ 466 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp, 467 struct cgroup_subsys *ss) 468 { 469 if (ss) 470 return rcu_dereference_check(cgrp->subsys[ss->id], 471 lockdep_is_held(&cgroup_mutex)); 472 else 473 return &cgrp->self; 474 } 475 476 /** 477 * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem 478 * @cgrp: the cgroup of interest 479 * @ss: the subsystem of interest 480 * 481 * Find and get @cgrp's css assocaited with @ss. If the css doesn't exist 482 * or is offline, %NULL is returned. 483 */ 484 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp, 485 struct cgroup_subsys *ss) 486 { 487 struct cgroup_subsys_state *css; 488 489 rcu_read_lock(); 490 css = cgroup_css(cgrp, ss); 491 if (css && !css_tryget_online(css)) 492 css = NULL; 493 rcu_read_unlock(); 494 495 return css; 496 } 497 498 /** 499 * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss 500 * @cgrp: the cgroup of interest 501 * @ss: the subsystem of interest (%NULL returns @cgrp->self) 502 * 503 * Similar to cgroup_css() but returns the effective css, which is defined 504 * as the matching css of the nearest ancestor including self which has @ss 505 * enabled. If @ss is associated with the hierarchy @cgrp is on, this 506 * function is guaranteed to return non-NULL css. 507 */ 508 static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp, 509 struct cgroup_subsys *ss) 510 { 511 lockdep_assert_held(&cgroup_mutex); 512 513 if (!ss) 514 return &cgrp->self; 515 516 /* 517 * This function is used while updating css associations and thus 518 * can't test the csses directly. Test ss_mask. 519 */ 520 while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) { 521 cgrp = cgroup_parent(cgrp); 522 if (!cgrp) 523 return NULL; 524 } 525 526 return cgroup_css(cgrp, ss); 527 } 528 529 /** 530 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem 531 * @cgrp: the cgroup of interest 532 * @ss: the subsystem of interest 533 * 534 * Find and get the effective css of @cgrp for @ss. The effective css is 535 * defined as the matching css of the nearest ancestor including self which 536 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on, 537 * the root css is returned, so this function always returns a valid css. 538 * 539 * The returned css is not guaranteed to be online, and therefore it is the 540 * callers responsiblity to tryget a reference for it. 541 */ 542 struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp, 543 struct cgroup_subsys *ss) 544 { 545 struct cgroup_subsys_state *css; 546 547 do { 548 css = cgroup_css(cgrp, ss); 549 550 if (css) 551 return css; 552 cgrp = cgroup_parent(cgrp); 553 } while (cgrp); 554 555 return init_css_set.subsys[ss->id]; 556 } 557 558 /** 559 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem 560 * @cgrp: the cgroup of interest 561 * @ss: the subsystem of interest 562 * 563 * Find and get the effective css of @cgrp for @ss. The effective css is 564 * defined as the matching css of the nearest ancestor including self which 565 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on, 566 * the root css is returned, so this function always returns a valid css. 567 * The returned css must be put using css_put(). 568 */ 569 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp, 570 struct cgroup_subsys *ss) 571 { 572 struct cgroup_subsys_state *css; 573 574 rcu_read_lock(); 575 576 do { 577 css = cgroup_css(cgrp, ss); 578 579 if (css && css_tryget_online(css)) 580 goto out_unlock; 581 cgrp = cgroup_parent(cgrp); 582 } while (cgrp); 583 584 css = init_css_set.subsys[ss->id]; 585 css_get(css); 586 out_unlock: 587 rcu_read_unlock(); 588 return css; 589 } 590 591 static void cgroup_get_live(struct cgroup *cgrp) 592 { 593 WARN_ON_ONCE(cgroup_is_dead(cgrp)); 594 css_get(&cgrp->self); 595 } 596 597 /** 598 * __cgroup_task_count - count the number of tasks in a cgroup. The caller 599 * is responsible for taking the css_set_lock. 600 * @cgrp: the cgroup in question 601 */ 602 int __cgroup_task_count(const struct cgroup *cgrp) 603 { 604 int count = 0; 605 struct cgrp_cset_link *link; 606 607 lockdep_assert_held(&css_set_lock); 608 609 list_for_each_entry(link, &cgrp->cset_links, cset_link) 610 count += link->cset->nr_tasks; 611 612 return count; 613 } 614 615 /** 616 * cgroup_task_count - count the number of tasks in a cgroup. 617 * @cgrp: the cgroup in question 618 */ 619 int cgroup_task_count(const struct cgroup *cgrp) 620 { 621 int count; 622 623 spin_lock_irq(&css_set_lock); 624 count = __cgroup_task_count(cgrp); 625 spin_unlock_irq(&css_set_lock); 626 627 return count; 628 } 629 630 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of) 631 { 632 struct cgroup *cgrp = of->kn->parent->priv; 633 struct cftype *cft = of_cft(of); 634 635 /* 636 * This is open and unprotected implementation of cgroup_css(). 637 * seq_css() is only called from a kernfs file operation which has 638 * an active reference on the file. Because all the subsystem 639 * files are drained before a css is disassociated with a cgroup, 640 * the matching css from the cgroup's subsys table is guaranteed to 641 * be and stay valid until the enclosing operation is complete. 642 */ 643 if (cft->ss) 644 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]); 645 else 646 return &cgrp->self; 647 } 648 EXPORT_SYMBOL_GPL(of_css); 649 650 /** 651 * for_each_css - iterate all css's of a cgroup 652 * @css: the iteration cursor 653 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end 654 * @cgrp: the target cgroup to iterate css's of 655 * 656 * Should be called under cgroup_[tree_]mutex. 657 */ 658 #define for_each_css(css, ssid, cgrp) \ 659 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \ 660 if (!((css) = rcu_dereference_check( \ 661 (cgrp)->subsys[(ssid)], \ 662 lockdep_is_held(&cgroup_mutex)))) { } \ 663 else 664 665 /** 666 * for_each_e_css - iterate all effective css's of a cgroup 667 * @css: the iteration cursor 668 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end 669 * @cgrp: the target cgroup to iterate css's of 670 * 671 * Should be called under cgroup_[tree_]mutex. 672 */ 673 #define for_each_e_css(css, ssid, cgrp) \ 674 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \ 675 if (!((css) = cgroup_e_css_by_mask(cgrp, \ 676 cgroup_subsys[(ssid)]))) \ 677 ; \ 678 else 679 680 /** 681 * do_each_subsys_mask - filter for_each_subsys with a bitmask 682 * @ss: the iteration cursor 683 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end 684 * @ss_mask: the bitmask 685 * 686 * The block will only run for cases where the ssid-th bit (1 << ssid) of 687 * @ss_mask is set. 688 */ 689 #define do_each_subsys_mask(ss, ssid, ss_mask) do { \ 690 unsigned long __ss_mask = (ss_mask); \ 691 if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */ \ 692 (ssid) = 0; \ 693 break; \ 694 } \ 695 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \ 696 (ss) = cgroup_subsys[ssid]; \ 697 { 698 699 #define while_each_subsys_mask() \ 700 } \ 701 } \ 702 } while (false) 703 704 /* iterate over child cgrps, lock should be held throughout iteration */ 705 #define cgroup_for_each_live_child(child, cgrp) \ 706 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \ 707 if (({ lockdep_assert_held(&cgroup_mutex); \ 708 cgroup_is_dead(child); })) \ 709 ; \ 710 else 711 712 /* walk live descendants in preorder */ 713 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \ 714 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \ 715 if (({ lockdep_assert_held(&cgroup_mutex); \ 716 (dsct) = (d_css)->cgroup; \ 717 cgroup_is_dead(dsct); })) \ 718 ; \ 719 else 720 721 /* walk live descendants in postorder */ 722 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \ 723 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \ 724 if (({ lockdep_assert_held(&cgroup_mutex); \ 725 (dsct) = (d_css)->cgroup; \ 726 cgroup_is_dead(dsct); })) \ 727 ; \ 728 else 729 730 /* 731 * The default css_set - used by init and its children prior to any 732 * hierarchies being mounted. It contains a pointer to the root state 733 * for each subsystem. Also used to anchor the list of css_sets. Not 734 * reference-counted, to improve performance when child cgroups 735 * haven't been created. 736 */ 737 struct css_set init_css_set = { 738 .refcount = REFCOUNT_INIT(1), 739 .dom_cset = &init_css_set, 740 .tasks = LIST_HEAD_INIT(init_css_set.tasks), 741 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks), 742 .dying_tasks = LIST_HEAD_INIT(init_css_set.dying_tasks), 743 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters), 744 .threaded_csets = LIST_HEAD_INIT(init_css_set.threaded_csets), 745 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links), 746 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node), 747 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node), 748 749 /* 750 * The following field is re-initialized when this cset gets linked 751 * in cgroup_init(). However, let's initialize the field 752 * statically too so that the default cgroup can be accessed safely 753 * early during boot. 754 */ 755 .dfl_cgrp = &cgrp_dfl_root.cgrp, 756 }; 757 758 static int css_set_count = 1; /* 1 for init_css_set */ 759 760 static bool css_set_threaded(struct css_set *cset) 761 { 762 return cset->dom_cset != cset; 763 } 764 765 /** 766 * css_set_populated - does a css_set contain any tasks? 767 * @cset: target css_set 768 * 769 * css_set_populated() should be the same as !!cset->nr_tasks at steady 770 * state. However, css_set_populated() can be called while a task is being 771 * added to or removed from the linked list before the nr_tasks is 772 * properly updated. Hence, we can't just look at ->nr_tasks here. 773 */ 774 static bool css_set_populated(struct css_set *cset) 775 { 776 lockdep_assert_held(&css_set_lock); 777 778 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks); 779 } 780 781 /** 782 * cgroup_update_populated - update the populated count of a cgroup 783 * @cgrp: the target cgroup 784 * @populated: inc or dec populated count 785 * 786 * One of the css_sets associated with @cgrp is either getting its first 787 * task or losing the last. Update @cgrp->nr_populated_* accordingly. The 788 * count is propagated towards root so that a given cgroup's 789 * nr_populated_children is zero iff none of its descendants contain any 790 * tasks. 791 * 792 * @cgrp's interface file "cgroup.populated" is zero if both 793 * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and 794 * 1 otherwise. When the sum changes from or to zero, userland is notified 795 * that the content of the interface file has changed. This can be used to 796 * detect when @cgrp and its descendants become populated or empty. 797 */ 798 static void cgroup_update_populated(struct cgroup *cgrp, bool populated) 799 { 800 struct cgroup *child = NULL; 801 int adj = populated ? 1 : -1; 802 803 lockdep_assert_held(&css_set_lock); 804 805 do { 806 bool was_populated = cgroup_is_populated(cgrp); 807 808 if (!child) { 809 cgrp->nr_populated_csets += adj; 810 } else { 811 if (cgroup_is_threaded(child)) 812 cgrp->nr_populated_threaded_children += adj; 813 else 814 cgrp->nr_populated_domain_children += adj; 815 } 816 817 if (was_populated == cgroup_is_populated(cgrp)) 818 break; 819 820 cgroup1_check_for_release(cgrp); 821 TRACE_CGROUP_PATH(notify_populated, cgrp, 822 cgroup_is_populated(cgrp)); 823 cgroup_file_notify(&cgrp->events_file); 824 825 child = cgrp; 826 cgrp = cgroup_parent(cgrp); 827 } while (cgrp); 828 } 829 830 /** 831 * css_set_update_populated - update populated state of a css_set 832 * @cset: target css_set 833 * @populated: whether @cset is populated or depopulated 834 * 835 * @cset is either getting the first task or losing the last. Update the 836 * populated counters of all associated cgroups accordingly. 837 */ 838 static void css_set_update_populated(struct css_set *cset, bool populated) 839 { 840 struct cgrp_cset_link *link; 841 842 lockdep_assert_held(&css_set_lock); 843 844 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) 845 cgroup_update_populated(link->cgrp, populated); 846 } 847 848 /* 849 * @task is leaving, advance task iterators which are pointing to it so 850 * that they can resume at the next position. Advancing an iterator might 851 * remove it from the list, use safe walk. See css_task_iter_skip() for 852 * details. 853 */ 854 static void css_set_skip_task_iters(struct css_set *cset, 855 struct task_struct *task) 856 { 857 struct css_task_iter *it, *pos; 858 859 list_for_each_entry_safe(it, pos, &cset->task_iters, iters_node) 860 css_task_iter_skip(it, task); 861 } 862 863 /** 864 * css_set_move_task - move a task from one css_set to another 865 * @task: task being moved 866 * @from_cset: css_set @task currently belongs to (may be NULL) 867 * @to_cset: new css_set @task is being moved to (may be NULL) 868 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks 869 * 870 * Move @task from @from_cset to @to_cset. If @task didn't belong to any 871 * css_set, @from_cset can be NULL. If @task is being disassociated 872 * instead of moved, @to_cset can be NULL. 873 * 874 * This function automatically handles populated counter updates and 875 * css_task_iter adjustments but the caller is responsible for managing 876 * @from_cset and @to_cset's reference counts. 877 */ 878 static void css_set_move_task(struct task_struct *task, 879 struct css_set *from_cset, struct css_set *to_cset, 880 bool use_mg_tasks) 881 { 882 lockdep_assert_held(&css_set_lock); 883 884 if (to_cset && !css_set_populated(to_cset)) 885 css_set_update_populated(to_cset, true); 886 887 if (from_cset) { 888 WARN_ON_ONCE(list_empty(&task->cg_list)); 889 890 css_set_skip_task_iters(from_cset, task); 891 list_del_init(&task->cg_list); 892 if (!css_set_populated(from_cset)) 893 css_set_update_populated(from_cset, false); 894 } else { 895 WARN_ON_ONCE(!list_empty(&task->cg_list)); 896 } 897 898 if (to_cset) { 899 /* 900 * We are synchronized through cgroup_threadgroup_rwsem 901 * against PF_EXITING setting such that we can't race 902 * against cgroup_exit()/cgroup_free() dropping the css_set. 903 */ 904 WARN_ON_ONCE(task->flags & PF_EXITING); 905 906 cgroup_move_task(task, to_cset); 907 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks : 908 &to_cset->tasks); 909 } 910 } 911 912 /* 913 * hash table for cgroup groups. This improves the performance to find 914 * an existing css_set. This hash doesn't (currently) take into 915 * account cgroups in empty hierarchies. 916 */ 917 #define CSS_SET_HASH_BITS 7 918 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS); 919 920 static unsigned long css_set_hash(struct cgroup_subsys_state *css[]) 921 { 922 unsigned long key = 0UL; 923 struct cgroup_subsys *ss; 924 int i; 925 926 for_each_subsys(ss, i) 927 key += (unsigned long)css[i]; 928 key = (key >> 16) ^ key; 929 930 return key; 931 } 932 933 void put_css_set_locked(struct css_set *cset) 934 { 935 struct cgrp_cset_link *link, *tmp_link; 936 struct cgroup_subsys *ss; 937 int ssid; 938 939 lockdep_assert_held(&css_set_lock); 940 941 if (!refcount_dec_and_test(&cset->refcount)) 942 return; 943 944 WARN_ON_ONCE(!list_empty(&cset->threaded_csets)); 945 946 /* This css_set is dead. unlink it and release cgroup and css refs */ 947 for_each_subsys(ss, ssid) { 948 list_del(&cset->e_cset_node[ssid]); 949 css_put(cset->subsys[ssid]); 950 } 951 hash_del(&cset->hlist); 952 css_set_count--; 953 954 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) { 955 list_del(&link->cset_link); 956 list_del(&link->cgrp_link); 957 if (cgroup_parent(link->cgrp)) 958 cgroup_put(link->cgrp); 959 kfree(link); 960 } 961 962 if (css_set_threaded(cset)) { 963 list_del(&cset->threaded_csets_node); 964 put_css_set_locked(cset->dom_cset); 965 } 966 967 kfree_rcu(cset, rcu_head); 968 } 969 970 /** 971 * compare_css_sets - helper function for find_existing_css_set(). 972 * @cset: candidate css_set being tested 973 * @old_cset: existing css_set for a task 974 * @new_cgrp: cgroup that's being entered by the task 975 * @template: desired set of css pointers in css_set (pre-calculated) 976 * 977 * Returns true if "cset" matches "old_cset" except for the hierarchy 978 * which "new_cgrp" belongs to, for which it should match "new_cgrp". 979 */ 980 static bool compare_css_sets(struct css_set *cset, 981 struct css_set *old_cset, 982 struct cgroup *new_cgrp, 983 struct cgroup_subsys_state *template[]) 984 { 985 struct cgroup *new_dfl_cgrp; 986 struct list_head *l1, *l2; 987 988 /* 989 * On the default hierarchy, there can be csets which are 990 * associated with the same set of cgroups but different csses. 991 * Let's first ensure that csses match. 992 */ 993 if (memcmp(template, cset->subsys, sizeof(cset->subsys))) 994 return false; 995 996 997 /* @cset's domain should match the default cgroup's */ 998 if (cgroup_on_dfl(new_cgrp)) 999 new_dfl_cgrp = new_cgrp; 1000 else 1001 new_dfl_cgrp = old_cset->dfl_cgrp; 1002 1003 if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp) 1004 return false; 1005 1006 /* 1007 * Compare cgroup pointers in order to distinguish between 1008 * different cgroups in hierarchies. As different cgroups may 1009 * share the same effective css, this comparison is always 1010 * necessary. 1011 */ 1012 l1 = &cset->cgrp_links; 1013 l2 = &old_cset->cgrp_links; 1014 while (1) { 1015 struct cgrp_cset_link *link1, *link2; 1016 struct cgroup *cgrp1, *cgrp2; 1017 1018 l1 = l1->next; 1019 l2 = l2->next; 1020 /* See if we reached the end - both lists are equal length. */ 1021 if (l1 == &cset->cgrp_links) { 1022 BUG_ON(l2 != &old_cset->cgrp_links); 1023 break; 1024 } else { 1025 BUG_ON(l2 == &old_cset->cgrp_links); 1026 } 1027 /* Locate the cgroups associated with these links. */ 1028 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link); 1029 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link); 1030 cgrp1 = link1->cgrp; 1031 cgrp2 = link2->cgrp; 1032 /* Hierarchies should be linked in the same order. */ 1033 BUG_ON(cgrp1->root != cgrp2->root); 1034 1035 /* 1036 * If this hierarchy is the hierarchy of the cgroup 1037 * that's changing, then we need to check that this 1038 * css_set points to the new cgroup; if it's any other 1039 * hierarchy, then this css_set should point to the 1040 * same cgroup as the old css_set. 1041 */ 1042 if (cgrp1->root == new_cgrp->root) { 1043 if (cgrp1 != new_cgrp) 1044 return false; 1045 } else { 1046 if (cgrp1 != cgrp2) 1047 return false; 1048 } 1049 } 1050 return true; 1051 } 1052 1053 /** 1054 * find_existing_css_set - init css array and find the matching css_set 1055 * @old_cset: the css_set that we're using before the cgroup transition 1056 * @cgrp: the cgroup that we're moving into 1057 * @template: out param for the new set of csses, should be clear on entry 1058 */ 1059 static struct css_set *find_existing_css_set(struct css_set *old_cset, 1060 struct cgroup *cgrp, 1061 struct cgroup_subsys_state *template[]) 1062 { 1063 struct cgroup_root *root = cgrp->root; 1064 struct cgroup_subsys *ss; 1065 struct css_set *cset; 1066 unsigned long key; 1067 int i; 1068 1069 /* 1070 * Build the set of subsystem state objects that we want to see in the 1071 * new css_set. while subsystems can change globally, the entries here 1072 * won't change, so no need for locking. 1073 */ 1074 for_each_subsys(ss, i) { 1075 if (root->subsys_mask & (1UL << i)) { 1076 /* 1077 * @ss is in this hierarchy, so we want the 1078 * effective css from @cgrp. 1079 */ 1080 template[i] = cgroup_e_css_by_mask(cgrp, ss); 1081 } else { 1082 /* 1083 * @ss is not in this hierarchy, so we don't want 1084 * to change the css. 1085 */ 1086 template[i] = old_cset->subsys[i]; 1087 } 1088 } 1089 1090 key = css_set_hash(template); 1091 hash_for_each_possible(css_set_table, cset, hlist, key) { 1092 if (!compare_css_sets(cset, old_cset, cgrp, template)) 1093 continue; 1094 1095 /* This css_set matches what we need */ 1096 return cset; 1097 } 1098 1099 /* No existing cgroup group matched */ 1100 return NULL; 1101 } 1102 1103 static void free_cgrp_cset_links(struct list_head *links_to_free) 1104 { 1105 struct cgrp_cset_link *link, *tmp_link; 1106 1107 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) { 1108 list_del(&link->cset_link); 1109 kfree(link); 1110 } 1111 } 1112 1113 /** 1114 * allocate_cgrp_cset_links - allocate cgrp_cset_links 1115 * @count: the number of links to allocate 1116 * @tmp_links: list_head the allocated links are put on 1117 * 1118 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links 1119 * through ->cset_link. Returns 0 on success or -errno. 1120 */ 1121 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links) 1122 { 1123 struct cgrp_cset_link *link; 1124 int i; 1125 1126 INIT_LIST_HEAD(tmp_links); 1127 1128 for (i = 0; i < count; i++) { 1129 link = kzalloc(sizeof(*link), GFP_KERNEL); 1130 if (!link) { 1131 free_cgrp_cset_links(tmp_links); 1132 return -ENOMEM; 1133 } 1134 list_add(&link->cset_link, tmp_links); 1135 } 1136 return 0; 1137 } 1138 1139 /** 1140 * link_css_set - a helper function to link a css_set to a cgroup 1141 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links() 1142 * @cset: the css_set to be linked 1143 * @cgrp: the destination cgroup 1144 */ 1145 static void link_css_set(struct list_head *tmp_links, struct css_set *cset, 1146 struct cgroup *cgrp) 1147 { 1148 struct cgrp_cset_link *link; 1149 1150 BUG_ON(list_empty(tmp_links)); 1151 1152 if (cgroup_on_dfl(cgrp)) 1153 cset->dfl_cgrp = cgrp; 1154 1155 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link); 1156 link->cset = cset; 1157 link->cgrp = cgrp; 1158 1159 /* 1160 * Always add links to the tail of the lists so that the lists are 1161 * in choronological order. 1162 */ 1163 list_move_tail(&link->cset_link, &cgrp->cset_links); 1164 list_add_tail(&link->cgrp_link, &cset->cgrp_links); 1165 1166 if (cgroup_parent(cgrp)) 1167 cgroup_get_live(cgrp); 1168 } 1169 1170 /** 1171 * find_css_set - return a new css_set with one cgroup updated 1172 * @old_cset: the baseline css_set 1173 * @cgrp: the cgroup to be updated 1174 * 1175 * Return a new css_set that's equivalent to @old_cset, but with @cgrp 1176 * substituted into the appropriate hierarchy. 1177 */ 1178 static struct css_set *find_css_set(struct css_set *old_cset, 1179 struct cgroup *cgrp) 1180 { 1181 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { }; 1182 struct css_set *cset; 1183 struct list_head tmp_links; 1184 struct cgrp_cset_link *link; 1185 struct cgroup_subsys *ss; 1186 unsigned long key; 1187 int ssid; 1188 1189 lockdep_assert_held(&cgroup_mutex); 1190 1191 /* First see if we already have a cgroup group that matches 1192 * the desired set */ 1193 spin_lock_irq(&css_set_lock); 1194 cset = find_existing_css_set(old_cset, cgrp, template); 1195 if (cset) 1196 get_css_set(cset); 1197 spin_unlock_irq(&css_set_lock); 1198 1199 if (cset) 1200 return cset; 1201 1202 cset = kzalloc(sizeof(*cset), GFP_KERNEL); 1203 if (!cset) 1204 return NULL; 1205 1206 /* Allocate all the cgrp_cset_link objects that we'll need */ 1207 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) { 1208 kfree(cset); 1209 return NULL; 1210 } 1211 1212 refcount_set(&cset->refcount, 1); 1213 cset->dom_cset = cset; 1214 INIT_LIST_HEAD(&cset->tasks); 1215 INIT_LIST_HEAD(&cset->mg_tasks); 1216 INIT_LIST_HEAD(&cset->dying_tasks); 1217 INIT_LIST_HEAD(&cset->task_iters); 1218 INIT_LIST_HEAD(&cset->threaded_csets); 1219 INIT_HLIST_NODE(&cset->hlist); 1220 INIT_LIST_HEAD(&cset->cgrp_links); 1221 INIT_LIST_HEAD(&cset->mg_preload_node); 1222 INIT_LIST_HEAD(&cset->mg_node); 1223 1224 /* Copy the set of subsystem state objects generated in 1225 * find_existing_css_set() */ 1226 memcpy(cset->subsys, template, sizeof(cset->subsys)); 1227 1228 spin_lock_irq(&css_set_lock); 1229 /* Add reference counts and links from the new css_set. */ 1230 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) { 1231 struct cgroup *c = link->cgrp; 1232 1233 if (c->root == cgrp->root) 1234 c = cgrp; 1235 link_css_set(&tmp_links, cset, c); 1236 } 1237 1238 BUG_ON(!list_empty(&tmp_links)); 1239 1240 css_set_count++; 1241 1242 /* Add @cset to the hash table */ 1243 key = css_set_hash(cset->subsys); 1244 hash_add(css_set_table, &cset->hlist, key); 1245 1246 for_each_subsys(ss, ssid) { 1247 struct cgroup_subsys_state *css = cset->subsys[ssid]; 1248 1249 list_add_tail(&cset->e_cset_node[ssid], 1250 &css->cgroup->e_csets[ssid]); 1251 css_get(css); 1252 } 1253 1254 spin_unlock_irq(&css_set_lock); 1255 1256 /* 1257 * If @cset should be threaded, look up the matching dom_cset and 1258 * link them up. We first fully initialize @cset then look for the 1259 * dom_cset. It's simpler this way and safe as @cset is guaranteed 1260 * to stay empty until we return. 1261 */ 1262 if (cgroup_is_threaded(cset->dfl_cgrp)) { 1263 struct css_set *dcset; 1264 1265 dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp); 1266 if (!dcset) { 1267 put_css_set(cset); 1268 return NULL; 1269 } 1270 1271 spin_lock_irq(&css_set_lock); 1272 cset->dom_cset = dcset; 1273 list_add_tail(&cset->threaded_csets_node, 1274 &dcset->threaded_csets); 1275 spin_unlock_irq(&css_set_lock); 1276 } 1277 1278 return cset; 1279 } 1280 1281 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root) 1282 { 1283 struct cgroup *root_cgrp = kf_root->kn->priv; 1284 1285 return root_cgrp->root; 1286 } 1287 1288 static int cgroup_init_root_id(struct cgroup_root *root) 1289 { 1290 int id; 1291 1292 lockdep_assert_held(&cgroup_mutex); 1293 1294 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL); 1295 if (id < 0) 1296 return id; 1297 1298 root->hierarchy_id = id; 1299 return 0; 1300 } 1301 1302 static void cgroup_exit_root_id(struct cgroup_root *root) 1303 { 1304 lockdep_assert_held(&cgroup_mutex); 1305 1306 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id); 1307 } 1308 1309 void cgroup_free_root(struct cgroup_root *root) 1310 { 1311 kfree(root); 1312 } 1313 1314 static void cgroup_destroy_root(struct cgroup_root *root) 1315 { 1316 struct cgroup *cgrp = &root->cgrp; 1317 struct cgrp_cset_link *link, *tmp_link; 1318 1319 trace_cgroup_destroy_root(root); 1320 1321 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp); 1322 1323 BUG_ON(atomic_read(&root->nr_cgrps)); 1324 BUG_ON(!list_empty(&cgrp->self.children)); 1325 1326 /* Rebind all subsystems back to the default hierarchy */ 1327 WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask)); 1328 1329 /* 1330 * Release all the links from cset_links to this hierarchy's 1331 * root cgroup 1332 */ 1333 spin_lock_irq(&css_set_lock); 1334 1335 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) { 1336 list_del(&link->cset_link); 1337 list_del(&link->cgrp_link); 1338 kfree(link); 1339 } 1340 1341 spin_unlock_irq(&css_set_lock); 1342 1343 if (!list_empty(&root->root_list)) { 1344 list_del(&root->root_list); 1345 cgroup_root_count--; 1346 } 1347 1348 cgroup_exit_root_id(root); 1349 1350 mutex_unlock(&cgroup_mutex); 1351 1352 kernfs_destroy_root(root->kf_root); 1353 cgroup_free_root(root); 1354 } 1355 1356 /* 1357 * look up cgroup associated with current task's cgroup namespace on the 1358 * specified hierarchy 1359 */ 1360 static struct cgroup * 1361 current_cgns_cgroup_from_root(struct cgroup_root *root) 1362 { 1363 struct cgroup *res = NULL; 1364 struct css_set *cset; 1365 1366 lockdep_assert_held(&css_set_lock); 1367 1368 rcu_read_lock(); 1369 1370 cset = current->nsproxy->cgroup_ns->root_cset; 1371 if (cset == &init_css_set) { 1372 res = &root->cgrp; 1373 } else if (root == &cgrp_dfl_root) { 1374 res = cset->dfl_cgrp; 1375 } else { 1376 struct cgrp_cset_link *link; 1377 1378 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) { 1379 struct cgroup *c = link->cgrp; 1380 1381 if (c->root == root) { 1382 res = c; 1383 break; 1384 } 1385 } 1386 } 1387 rcu_read_unlock(); 1388 1389 BUG_ON(!res); 1390 return res; 1391 } 1392 1393 /* look up cgroup associated with given css_set on the specified hierarchy */ 1394 static struct cgroup *cset_cgroup_from_root(struct css_set *cset, 1395 struct cgroup_root *root) 1396 { 1397 struct cgroup *res = NULL; 1398 1399 lockdep_assert_held(&cgroup_mutex); 1400 lockdep_assert_held(&css_set_lock); 1401 1402 if (cset == &init_css_set) { 1403 res = &root->cgrp; 1404 } else if (root == &cgrp_dfl_root) { 1405 res = cset->dfl_cgrp; 1406 } else { 1407 struct cgrp_cset_link *link; 1408 1409 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) { 1410 struct cgroup *c = link->cgrp; 1411 1412 if (c->root == root) { 1413 res = c; 1414 break; 1415 } 1416 } 1417 } 1418 1419 BUG_ON(!res); 1420 return res; 1421 } 1422 1423 /* 1424 * Return the cgroup for "task" from the given hierarchy. Must be 1425 * called with cgroup_mutex and css_set_lock held. 1426 */ 1427 struct cgroup *task_cgroup_from_root(struct task_struct *task, 1428 struct cgroup_root *root) 1429 { 1430 /* 1431 * No need to lock the task - since we hold css_set_lock the 1432 * task can't change groups. 1433 */ 1434 return cset_cgroup_from_root(task_css_set(task), root); 1435 } 1436 1437 /* 1438 * A task must hold cgroup_mutex to modify cgroups. 1439 * 1440 * Any task can increment and decrement the count field without lock. 1441 * So in general, code holding cgroup_mutex can't rely on the count 1442 * field not changing. However, if the count goes to zero, then only 1443 * cgroup_attach_task() can increment it again. Because a count of zero 1444 * means that no tasks are currently attached, therefore there is no 1445 * way a task attached to that cgroup can fork (the other way to 1446 * increment the count). So code holding cgroup_mutex can safely 1447 * assume that if the count is zero, it will stay zero. Similarly, if 1448 * a task holds cgroup_mutex on a cgroup with zero count, it 1449 * knows that the cgroup won't be removed, as cgroup_rmdir() 1450 * needs that mutex. 1451 * 1452 * A cgroup can only be deleted if both its 'count' of using tasks 1453 * is zero, and its list of 'children' cgroups is empty. Since all 1454 * tasks in the system use _some_ cgroup, and since there is always at 1455 * least one task in the system (init, pid == 1), therefore, root cgroup 1456 * always has either children cgroups and/or using tasks. So we don't 1457 * need a special hack to ensure that root cgroup cannot be deleted. 1458 * 1459 * P.S. One more locking exception. RCU is used to guard the 1460 * update of a tasks cgroup pointer by cgroup_attach_task() 1461 */ 1462 1463 static struct kernfs_syscall_ops cgroup_kf_syscall_ops; 1464 1465 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft, 1466 char *buf) 1467 { 1468 struct cgroup_subsys *ss = cft->ss; 1469 1470 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) && 1471 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) { 1472 const char *dbg = (cft->flags & CFTYPE_DEBUG) ? ".__DEBUG__." : ""; 1473 1474 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s%s.%s", 1475 dbg, cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name, 1476 cft->name); 1477 } else { 1478 strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX); 1479 } 1480 return buf; 1481 } 1482 1483 /** 1484 * cgroup_file_mode - deduce file mode of a control file 1485 * @cft: the control file in question 1486 * 1487 * S_IRUGO for read, S_IWUSR for write. 1488 */ 1489 static umode_t cgroup_file_mode(const struct cftype *cft) 1490 { 1491 umode_t mode = 0; 1492 1493 if (cft->read_u64 || cft->read_s64 || cft->seq_show) 1494 mode |= S_IRUGO; 1495 1496 if (cft->write_u64 || cft->write_s64 || cft->write) { 1497 if (cft->flags & CFTYPE_WORLD_WRITABLE) 1498 mode |= S_IWUGO; 1499 else 1500 mode |= S_IWUSR; 1501 } 1502 1503 return mode; 1504 } 1505 1506 /** 1507 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask 1508 * @subtree_control: the new subtree_control mask to consider 1509 * @this_ss_mask: available subsystems 1510 * 1511 * On the default hierarchy, a subsystem may request other subsystems to be 1512 * enabled together through its ->depends_on mask. In such cases, more 1513 * subsystems than specified in "cgroup.subtree_control" may be enabled. 1514 * 1515 * This function calculates which subsystems need to be enabled if 1516 * @subtree_control is to be applied while restricted to @this_ss_mask. 1517 */ 1518 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask) 1519 { 1520 u16 cur_ss_mask = subtree_control; 1521 struct cgroup_subsys *ss; 1522 int ssid; 1523 1524 lockdep_assert_held(&cgroup_mutex); 1525 1526 cur_ss_mask |= cgrp_dfl_implicit_ss_mask; 1527 1528 while (true) { 1529 u16 new_ss_mask = cur_ss_mask; 1530 1531 do_each_subsys_mask(ss, ssid, cur_ss_mask) { 1532 new_ss_mask |= ss->depends_on; 1533 } while_each_subsys_mask(); 1534 1535 /* 1536 * Mask out subsystems which aren't available. This can 1537 * happen only if some depended-upon subsystems were bound 1538 * to non-default hierarchies. 1539 */ 1540 new_ss_mask &= this_ss_mask; 1541 1542 if (new_ss_mask == cur_ss_mask) 1543 break; 1544 cur_ss_mask = new_ss_mask; 1545 } 1546 1547 return cur_ss_mask; 1548 } 1549 1550 /** 1551 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods 1552 * @kn: the kernfs_node being serviced 1553 * 1554 * This helper undoes cgroup_kn_lock_live() and should be invoked before 1555 * the method finishes if locking succeeded. Note that once this function 1556 * returns the cgroup returned by cgroup_kn_lock_live() may become 1557 * inaccessible any time. If the caller intends to continue to access the 1558 * cgroup, it should pin it before invoking this function. 1559 */ 1560 void cgroup_kn_unlock(struct kernfs_node *kn) 1561 { 1562 struct cgroup *cgrp; 1563 1564 if (kernfs_type(kn) == KERNFS_DIR) 1565 cgrp = kn->priv; 1566 else 1567 cgrp = kn->parent->priv; 1568 1569 mutex_unlock(&cgroup_mutex); 1570 1571 kernfs_unbreak_active_protection(kn); 1572 cgroup_put(cgrp); 1573 } 1574 1575 /** 1576 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods 1577 * @kn: the kernfs_node being serviced 1578 * @drain_offline: perform offline draining on the cgroup 1579 * 1580 * This helper is to be used by a cgroup kernfs method currently servicing 1581 * @kn. It breaks the active protection, performs cgroup locking and 1582 * verifies that the associated cgroup is alive. Returns the cgroup if 1583 * alive; otherwise, %NULL. A successful return should be undone by a 1584 * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the 1585 * cgroup is drained of offlining csses before return. 1586 * 1587 * Any cgroup kernfs method implementation which requires locking the 1588 * associated cgroup should use this helper. It avoids nesting cgroup 1589 * locking under kernfs active protection and allows all kernfs operations 1590 * including self-removal. 1591 */ 1592 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline) 1593 { 1594 struct cgroup *cgrp; 1595 1596 if (kernfs_type(kn) == KERNFS_DIR) 1597 cgrp = kn->priv; 1598 else 1599 cgrp = kn->parent->priv; 1600 1601 /* 1602 * We're gonna grab cgroup_mutex which nests outside kernfs 1603 * active_ref. cgroup liveliness check alone provides enough 1604 * protection against removal. Ensure @cgrp stays accessible and 1605 * break the active_ref protection. 1606 */ 1607 if (!cgroup_tryget(cgrp)) 1608 return NULL; 1609 kernfs_break_active_protection(kn); 1610 1611 if (drain_offline) 1612 cgroup_lock_and_drain_offline(cgrp); 1613 else 1614 mutex_lock(&cgroup_mutex); 1615 1616 if (!cgroup_is_dead(cgrp)) 1617 return cgrp; 1618 1619 cgroup_kn_unlock(kn); 1620 return NULL; 1621 } 1622 1623 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft) 1624 { 1625 char name[CGROUP_FILE_NAME_MAX]; 1626 1627 lockdep_assert_held(&cgroup_mutex); 1628 1629 if (cft->file_offset) { 1630 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss); 1631 struct cgroup_file *cfile = (void *)css + cft->file_offset; 1632 1633 spin_lock_irq(&cgroup_file_kn_lock); 1634 cfile->kn = NULL; 1635 spin_unlock_irq(&cgroup_file_kn_lock); 1636 1637 del_timer_sync(&cfile->notify_timer); 1638 } 1639 1640 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name)); 1641 } 1642 1643 /** 1644 * css_clear_dir - remove subsys files in a cgroup directory 1645 * @css: taget css 1646 */ 1647 static void css_clear_dir(struct cgroup_subsys_state *css) 1648 { 1649 struct cgroup *cgrp = css->cgroup; 1650 struct cftype *cfts; 1651 1652 if (!(css->flags & CSS_VISIBLE)) 1653 return; 1654 1655 css->flags &= ~CSS_VISIBLE; 1656 1657 if (!css->ss) { 1658 if (cgroup_on_dfl(cgrp)) 1659 cfts = cgroup_base_files; 1660 else 1661 cfts = cgroup1_base_files; 1662 1663 cgroup_addrm_files(css, cgrp, cfts, false); 1664 } else { 1665 list_for_each_entry(cfts, &css->ss->cfts, node) 1666 cgroup_addrm_files(css, cgrp, cfts, false); 1667 } 1668 } 1669 1670 /** 1671 * css_populate_dir - create subsys files in a cgroup directory 1672 * @css: target css 1673 * 1674 * On failure, no file is added. 1675 */ 1676 static int css_populate_dir(struct cgroup_subsys_state *css) 1677 { 1678 struct cgroup *cgrp = css->cgroup; 1679 struct cftype *cfts, *failed_cfts; 1680 int ret; 1681 1682 if ((css->flags & CSS_VISIBLE) || !cgrp->kn) 1683 return 0; 1684 1685 if (!css->ss) { 1686 if (cgroup_on_dfl(cgrp)) 1687 cfts = cgroup_base_files; 1688 else 1689 cfts = cgroup1_base_files; 1690 1691 ret = cgroup_addrm_files(&cgrp->self, cgrp, cfts, true); 1692 if (ret < 0) 1693 return ret; 1694 } else { 1695 list_for_each_entry(cfts, &css->ss->cfts, node) { 1696 ret = cgroup_addrm_files(css, cgrp, cfts, true); 1697 if (ret < 0) { 1698 failed_cfts = cfts; 1699 goto err; 1700 } 1701 } 1702 } 1703 1704 css->flags |= CSS_VISIBLE; 1705 1706 return 0; 1707 err: 1708 list_for_each_entry(cfts, &css->ss->cfts, node) { 1709 if (cfts == failed_cfts) 1710 break; 1711 cgroup_addrm_files(css, cgrp, cfts, false); 1712 } 1713 return ret; 1714 } 1715 1716 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask) 1717 { 1718 struct cgroup *dcgrp = &dst_root->cgrp; 1719 struct cgroup_subsys *ss; 1720 int ssid, i, ret; 1721 1722 lockdep_assert_held(&cgroup_mutex); 1723 1724 do_each_subsys_mask(ss, ssid, ss_mask) { 1725 /* 1726 * If @ss has non-root csses attached to it, can't move. 1727 * If @ss is an implicit controller, it is exempt from this 1728 * rule and can be stolen. 1729 */ 1730 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) && 1731 !ss->implicit_on_dfl) 1732 return -EBUSY; 1733 1734 /* can't move between two non-dummy roots either */ 1735 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root) 1736 return -EBUSY; 1737 } while_each_subsys_mask(); 1738 1739 do_each_subsys_mask(ss, ssid, ss_mask) { 1740 struct cgroup_root *src_root = ss->root; 1741 struct cgroup *scgrp = &src_root->cgrp; 1742 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss); 1743 struct css_set *cset; 1744 1745 WARN_ON(!css || cgroup_css(dcgrp, ss)); 1746 1747 /* disable from the source */ 1748 src_root->subsys_mask &= ~(1 << ssid); 1749 WARN_ON(cgroup_apply_control(scgrp)); 1750 cgroup_finalize_control(scgrp, 0); 1751 1752 /* rebind */ 1753 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL); 1754 rcu_assign_pointer(dcgrp->subsys[ssid], css); 1755 ss->root = dst_root; 1756 css->cgroup = dcgrp; 1757 1758 spin_lock_irq(&css_set_lock); 1759 hash_for_each(css_set_table, i, cset, hlist) 1760 list_move_tail(&cset->e_cset_node[ss->id], 1761 &dcgrp->e_csets[ss->id]); 1762 spin_unlock_irq(&css_set_lock); 1763 1764 /* default hierarchy doesn't enable controllers by default */ 1765 dst_root->subsys_mask |= 1 << ssid; 1766 if (dst_root == &cgrp_dfl_root) { 1767 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]); 1768 } else { 1769 dcgrp->subtree_control |= 1 << ssid; 1770 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]); 1771 } 1772 1773 ret = cgroup_apply_control(dcgrp); 1774 if (ret) 1775 pr_warn("partial failure to rebind %s controller (err=%d)\n", 1776 ss->name, ret); 1777 1778 if (ss->bind) 1779 ss->bind(css); 1780 } while_each_subsys_mask(); 1781 1782 kernfs_activate(dcgrp->kn); 1783 return 0; 1784 } 1785 1786 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node, 1787 struct kernfs_root *kf_root) 1788 { 1789 int len = 0; 1790 char *buf = NULL; 1791 struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root); 1792 struct cgroup *ns_cgroup; 1793 1794 buf = kmalloc(PATH_MAX, GFP_KERNEL); 1795 if (!buf) 1796 return -ENOMEM; 1797 1798 spin_lock_irq(&css_set_lock); 1799 ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot); 1800 len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX); 1801 spin_unlock_irq(&css_set_lock); 1802 1803 if (len >= PATH_MAX) 1804 len = -ERANGE; 1805 else if (len > 0) { 1806 seq_escape(sf, buf, " \t\n\\"); 1807 len = 0; 1808 } 1809 kfree(buf); 1810 return len; 1811 } 1812 1813 enum cgroup2_param { 1814 Opt_nsdelegate, 1815 Opt_memory_localevents, 1816 nr__cgroup2_params 1817 }; 1818 1819 static const struct fs_parameter_spec cgroup2_fs_parameters[] = { 1820 fsparam_flag("nsdelegate", Opt_nsdelegate), 1821 fsparam_flag("memory_localevents", Opt_memory_localevents), 1822 {} 1823 }; 1824 1825 static int cgroup2_parse_param(struct fs_context *fc, struct fs_parameter *param) 1826 { 1827 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 1828 struct fs_parse_result result; 1829 int opt; 1830 1831 opt = fs_parse(fc, cgroup2_fs_parameters, param, &result); 1832 if (opt < 0) 1833 return opt; 1834 1835 switch (opt) { 1836 case Opt_nsdelegate: 1837 ctx->flags |= CGRP_ROOT_NS_DELEGATE; 1838 return 0; 1839 case Opt_memory_localevents: 1840 ctx->flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS; 1841 return 0; 1842 } 1843 return -EINVAL; 1844 } 1845 1846 static void apply_cgroup_root_flags(unsigned int root_flags) 1847 { 1848 if (current->nsproxy->cgroup_ns == &init_cgroup_ns) { 1849 if (root_flags & CGRP_ROOT_NS_DELEGATE) 1850 cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE; 1851 else 1852 cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE; 1853 1854 if (root_flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS) 1855 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS; 1856 else 1857 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_LOCAL_EVENTS; 1858 } 1859 } 1860 1861 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root) 1862 { 1863 if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) 1864 seq_puts(seq, ",nsdelegate"); 1865 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS) 1866 seq_puts(seq, ",memory_localevents"); 1867 return 0; 1868 } 1869 1870 static int cgroup_reconfigure(struct fs_context *fc) 1871 { 1872 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 1873 1874 apply_cgroup_root_flags(ctx->flags); 1875 return 0; 1876 } 1877 1878 static void init_cgroup_housekeeping(struct cgroup *cgrp) 1879 { 1880 struct cgroup_subsys *ss; 1881 int ssid; 1882 1883 INIT_LIST_HEAD(&cgrp->self.sibling); 1884 INIT_LIST_HEAD(&cgrp->self.children); 1885 INIT_LIST_HEAD(&cgrp->cset_links); 1886 INIT_LIST_HEAD(&cgrp->pidlists); 1887 mutex_init(&cgrp->pidlist_mutex); 1888 cgrp->self.cgroup = cgrp; 1889 cgrp->self.flags |= CSS_ONLINE; 1890 cgrp->dom_cgrp = cgrp; 1891 cgrp->max_descendants = INT_MAX; 1892 cgrp->max_depth = INT_MAX; 1893 INIT_LIST_HEAD(&cgrp->rstat_css_list); 1894 prev_cputime_init(&cgrp->prev_cputime); 1895 1896 for_each_subsys(ss, ssid) 1897 INIT_LIST_HEAD(&cgrp->e_csets[ssid]); 1898 1899 init_waitqueue_head(&cgrp->offline_waitq); 1900 INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent); 1901 } 1902 1903 void init_cgroup_root(struct cgroup_fs_context *ctx) 1904 { 1905 struct cgroup_root *root = ctx->root; 1906 struct cgroup *cgrp = &root->cgrp; 1907 1908 INIT_LIST_HEAD(&root->root_list); 1909 atomic_set(&root->nr_cgrps, 1); 1910 cgrp->root = root; 1911 init_cgroup_housekeeping(cgrp); 1912 1913 root->flags = ctx->flags; 1914 if (ctx->release_agent) 1915 strscpy(root->release_agent_path, ctx->release_agent, PATH_MAX); 1916 if (ctx->name) 1917 strscpy(root->name, ctx->name, MAX_CGROUP_ROOT_NAMELEN); 1918 if (ctx->cpuset_clone_children) 1919 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags); 1920 } 1921 1922 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask) 1923 { 1924 LIST_HEAD(tmp_links); 1925 struct cgroup *root_cgrp = &root->cgrp; 1926 struct kernfs_syscall_ops *kf_sops; 1927 struct css_set *cset; 1928 int i, ret; 1929 1930 lockdep_assert_held(&cgroup_mutex); 1931 1932 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 1933 0, GFP_KERNEL); 1934 if (ret) 1935 goto out; 1936 1937 /* 1938 * We're accessing css_set_count without locking css_set_lock here, 1939 * but that's OK - it can only be increased by someone holding 1940 * cgroup_lock, and that's us. Later rebinding may disable 1941 * controllers on the default hierarchy and thus create new csets, 1942 * which can't be more than the existing ones. Allocate 2x. 1943 */ 1944 ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links); 1945 if (ret) 1946 goto cancel_ref; 1947 1948 ret = cgroup_init_root_id(root); 1949 if (ret) 1950 goto cancel_ref; 1951 1952 kf_sops = root == &cgrp_dfl_root ? 1953 &cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops; 1954 1955 root->kf_root = kernfs_create_root(kf_sops, 1956 KERNFS_ROOT_CREATE_DEACTIVATED | 1957 KERNFS_ROOT_SUPPORT_EXPORTOP, 1958 root_cgrp); 1959 if (IS_ERR(root->kf_root)) { 1960 ret = PTR_ERR(root->kf_root); 1961 goto exit_root_id; 1962 } 1963 root_cgrp->kn = root->kf_root->kn; 1964 WARN_ON_ONCE(cgroup_ino(root_cgrp) != 1); 1965 root_cgrp->ancestor_ids[0] = cgroup_id(root_cgrp); 1966 1967 ret = css_populate_dir(&root_cgrp->self); 1968 if (ret) 1969 goto destroy_root; 1970 1971 ret = rebind_subsystems(root, ss_mask); 1972 if (ret) 1973 goto destroy_root; 1974 1975 ret = cgroup_bpf_inherit(root_cgrp); 1976 WARN_ON_ONCE(ret); 1977 1978 trace_cgroup_setup_root(root); 1979 1980 /* 1981 * There must be no failure case after here, since rebinding takes 1982 * care of subsystems' refcounts, which are explicitly dropped in 1983 * the failure exit path. 1984 */ 1985 list_add(&root->root_list, &cgroup_roots); 1986 cgroup_root_count++; 1987 1988 /* 1989 * Link the root cgroup in this hierarchy into all the css_set 1990 * objects. 1991 */ 1992 spin_lock_irq(&css_set_lock); 1993 hash_for_each(css_set_table, i, cset, hlist) { 1994 link_css_set(&tmp_links, cset, root_cgrp); 1995 if (css_set_populated(cset)) 1996 cgroup_update_populated(root_cgrp, true); 1997 } 1998 spin_unlock_irq(&css_set_lock); 1999 2000 BUG_ON(!list_empty(&root_cgrp->self.children)); 2001 BUG_ON(atomic_read(&root->nr_cgrps) != 1); 2002 2003 kernfs_activate(root_cgrp->kn); 2004 ret = 0; 2005 goto out; 2006 2007 destroy_root: 2008 kernfs_destroy_root(root->kf_root); 2009 root->kf_root = NULL; 2010 exit_root_id: 2011 cgroup_exit_root_id(root); 2012 cancel_ref: 2013 percpu_ref_exit(&root_cgrp->self.refcnt); 2014 out: 2015 free_cgrp_cset_links(&tmp_links); 2016 return ret; 2017 } 2018 2019 int cgroup_do_get_tree(struct fs_context *fc) 2020 { 2021 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2022 int ret; 2023 2024 ctx->kfc.root = ctx->root->kf_root; 2025 if (fc->fs_type == &cgroup2_fs_type) 2026 ctx->kfc.magic = CGROUP2_SUPER_MAGIC; 2027 else 2028 ctx->kfc.magic = CGROUP_SUPER_MAGIC; 2029 ret = kernfs_get_tree(fc); 2030 2031 /* 2032 * In non-init cgroup namespace, instead of root cgroup's dentry, 2033 * we return the dentry corresponding to the cgroupns->root_cgrp. 2034 */ 2035 if (!ret && ctx->ns != &init_cgroup_ns) { 2036 struct dentry *nsdentry; 2037 struct super_block *sb = fc->root->d_sb; 2038 struct cgroup *cgrp; 2039 2040 mutex_lock(&cgroup_mutex); 2041 spin_lock_irq(&css_set_lock); 2042 2043 cgrp = cset_cgroup_from_root(ctx->ns->root_cset, ctx->root); 2044 2045 spin_unlock_irq(&css_set_lock); 2046 mutex_unlock(&cgroup_mutex); 2047 2048 nsdentry = kernfs_node_dentry(cgrp->kn, sb); 2049 dput(fc->root); 2050 if (IS_ERR(nsdentry)) { 2051 deactivate_locked_super(sb); 2052 ret = PTR_ERR(nsdentry); 2053 nsdentry = NULL; 2054 } 2055 fc->root = nsdentry; 2056 } 2057 2058 if (!ctx->kfc.new_sb_created) 2059 cgroup_put(&ctx->root->cgrp); 2060 2061 return ret; 2062 } 2063 2064 /* 2065 * Destroy a cgroup filesystem context. 2066 */ 2067 static void cgroup_fs_context_free(struct fs_context *fc) 2068 { 2069 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2070 2071 kfree(ctx->name); 2072 kfree(ctx->release_agent); 2073 put_cgroup_ns(ctx->ns); 2074 kernfs_free_fs_context(fc); 2075 kfree(ctx); 2076 } 2077 2078 static int cgroup_get_tree(struct fs_context *fc) 2079 { 2080 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2081 int ret; 2082 2083 cgrp_dfl_visible = true; 2084 cgroup_get_live(&cgrp_dfl_root.cgrp); 2085 ctx->root = &cgrp_dfl_root; 2086 2087 ret = cgroup_do_get_tree(fc); 2088 if (!ret) 2089 apply_cgroup_root_flags(ctx->flags); 2090 return ret; 2091 } 2092 2093 static const struct fs_context_operations cgroup_fs_context_ops = { 2094 .free = cgroup_fs_context_free, 2095 .parse_param = cgroup2_parse_param, 2096 .get_tree = cgroup_get_tree, 2097 .reconfigure = cgroup_reconfigure, 2098 }; 2099 2100 static const struct fs_context_operations cgroup1_fs_context_ops = { 2101 .free = cgroup_fs_context_free, 2102 .parse_param = cgroup1_parse_param, 2103 .get_tree = cgroup1_get_tree, 2104 .reconfigure = cgroup1_reconfigure, 2105 }; 2106 2107 /* 2108 * Initialise the cgroup filesystem creation/reconfiguration context. Notably, 2109 * we select the namespace we're going to use. 2110 */ 2111 static int cgroup_init_fs_context(struct fs_context *fc) 2112 { 2113 struct cgroup_fs_context *ctx; 2114 2115 ctx = kzalloc(sizeof(struct cgroup_fs_context), GFP_KERNEL); 2116 if (!ctx) 2117 return -ENOMEM; 2118 2119 ctx->ns = current->nsproxy->cgroup_ns; 2120 get_cgroup_ns(ctx->ns); 2121 fc->fs_private = &ctx->kfc; 2122 if (fc->fs_type == &cgroup2_fs_type) 2123 fc->ops = &cgroup_fs_context_ops; 2124 else 2125 fc->ops = &cgroup1_fs_context_ops; 2126 put_user_ns(fc->user_ns); 2127 fc->user_ns = get_user_ns(ctx->ns->user_ns); 2128 fc->global = true; 2129 return 0; 2130 } 2131 2132 static void cgroup_kill_sb(struct super_block *sb) 2133 { 2134 struct kernfs_root *kf_root = kernfs_root_from_sb(sb); 2135 struct cgroup_root *root = cgroup_root_from_kf(kf_root); 2136 2137 /* 2138 * If @root doesn't have any children, start killing it. 2139 * This prevents new mounts by disabling percpu_ref_tryget_live(). 2140 * cgroup_mount() may wait for @root's release. 2141 * 2142 * And don't kill the default root. 2143 */ 2144 if (list_empty(&root->cgrp.self.children) && root != &cgrp_dfl_root && 2145 !percpu_ref_is_dying(&root->cgrp.self.refcnt)) 2146 percpu_ref_kill(&root->cgrp.self.refcnt); 2147 cgroup_put(&root->cgrp); 2148 kernfs_kill_sb(sb); 2149 } 2150 2151 struct file_system_type cgroup_fs_type = { 2152 .name = "cgroup", 2153 .init_fs_context = cgroup_init_fs_context, 2154 .parameters = cgroup1_fs_parameters, 2155 .kill_sb = cgroup_kill_sb, 2156 .fs_flags = FS_USERNS_MOUNT, 2157 }; 2158 2159 static struct file_system_type cgroup2_fs_type = { 2160 .name = "cgroup2", 2161 .init_fs_context = cgroup_init_fs_context, 2162 .parameters = cgroup2_fs_parameters, 2163 .kill_sb = cgroup_kill_sb, 2164 .fs_flags = FS_USERNS_MOUNT, 2165 }; 2166 2167 #ifdef CONFIG_CPUSETS 2168 static const struct fs_context_operations cpuset_fs_context_ops = { 2169 .get_tree = cgroup1_get_tree, 2170 .free = cgroup_fs_context_free, 2171 }; 2172 2173 /* 2174 * This is ugly, but preserves the userspace API for existing cpuset 2175 * users. If someone tries to mount the "cpuset" filesystem, we 2176 * silently switch it to mount "cgroup" instead 2177 */ 2178 static int cpuset_init_fs_context(struct fs_context *fc) 2179 { 2180 char *agent = kstrdup("/sbin/cpuset_release_agent", GFP_USER); 2181 struct cgroup_fs_context *ctx; 2182 int err; 2183 2184 err = cgroup_init_fs_context(fc); 2185 if (err) { 2186 kfree(agent); 2187 return err; 2188 } 2189 2190 fc->ops = &cpuset_fs_context_ops; 2191 2192 ctx = cgroup_fc2context(fc); 2193 ctx->subsys_mask = 1 << cpuset_cgrp_id; 2194 ctx->flags |= CGRP_ROOT_NOPREFIX; 2195 ctx->release_agent = agent; 2196 2197 get_filesystem(&cgroup_fs_type); 2198 put_filesystem(fc->fs_type); 2199 fc->fs_type = &cgroup_fs_type; 2200 2201 return 0; 2202 } 2203 2204 static struct file_system_type cpuset_fs_type = { 2205 .name = "cpuset", 2206 .init_fs_context = cpuset_init_fs_context, 2207 .fs_flags = FS_USERNS_MOUNT, 2208 }; 2209 #endif 2210 2211 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen, 2212 struct cgroup_namespace *ns) 2213 { 2214 struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root); 2215 2216 return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen); 2217 } 2218 2219 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen, 2220 struct cgroup_namespace *ns) 2221 { 2222 int ret; 2223 2224 mutex_lock(&cgroup_mutex); 2225 spin_lock_irq(&css_set_lock); 2226 2227 ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns); 2228 2229 spin_unlock_irq(&css_set_lock); 2230 mutex_unlock(&cgroup_mutex); 2231 2232 return ret; 2233 } 2234 EXPORT_SYMBOL_GPL(cgroup_path_ns); 2235 2236 /** 2237 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy 2238 * @task: target task 2239 * @buf: the buffer to write the path into 2240 * @buflen: the length of the buffer 2241 * 2242 * Determine @task's cgroup on the first (the one with the lowest non-zero 2243 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This 2244 * function grabs cgroup_mutex and shouldn't be used inside locks used by 2245 * cgroup controller callbacks. 2246 * 2247 * Return value is the same as kernfs_path(). 2248 */ 2249 int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen) 2250 { 2251 struct cgroup_root *root; 2252 struct cgroup *cgrp; 2253 int hierarchy_id = 1; 2254 int ret; 2255 2256 mutex_lock(&cgroup_mutex); 2257 spin_lock_irq(&css_set_lock); 2258 2259 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id); 2260 2261 if (root) { 2262 cgrp = task_cgroup_from_root(task, root); 2263 ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns); 2264 } else { 2265 /* if no hierarchy exists, everyone is in "/" */ 2266 ret = strlcpy(buf, "/", buflen); 2267 } 2268 2269 spin_unlock_irq(&css_set_lock); 2270 mutex_unlock(&cgroup_mutex); 2271 return ret; 2272 } 2273 EXPORT_SYMBOL_GPL(task_cgroup_path); 2274 2275 /** 2276 * cgroup_migrate_add_task - add a migration target task to a migration context 2277 * @task: target task 2278 * @mgctx: target migration context 2279 * 2280 * Add @task, which is a migration target, to @mgctx->tset. This function 2281 * becomes noop if @task doesn't need to be migrated. @task's css_set 2282 * should have been added as a migration source and @task->cg_list will be 2283 * moved from the css_set's tasks list to mg_tasks one. 2284 */ 2285 static void cgroup_migrate_add_task(struct task_struct *task, 2286 struct cgroup_mgctx *mgctx) 2287 { 2288 struct css_set *cset; 2289 2290 lockdep_assert_held(&css_set_lock); 2291 2292 /* @task either already exited or can't exit until the end */ 2293 if (task->flags & PF_EXITING) 2294 return; 2295 2296 /* cgroup_threadgroup_rwsem protects racing against forks */ 2297 WARN_ON_ONCE(list_empty(&task->cg_list)); 2298 2299 cset = task_css_set(task); 2300 if (!cset->mg_src_cgrp) 2301 return; 2302 2303 mgctx->tset.nr_tasks++; 2304 2305 list_move_tail(&task->cg_list, &cset->mg_tasks); 2306 if (list_empty(&cset->mg_node)) 2307 list_add_tail(&cset->mg_node, 2308 &mgctx->tset.src_csets); 2309 if (list_empty(&cset->mg_dst_cset->mg_node)) 2310 list_add_tail(&cset->mg_dst_cset->mg_node, 2311 &mgctx->tset.dst_csets); 2312 } 2313 2314 /** 2315 * cgroup_taskset_first - reset taskset and return the first task 2316 * @tset: taskset of interest 2317 * @dst_cssp: output variable for the destination css 2318 * 2319 * @tset iteration is initialized and the first task is returned. 2320 */ 2321 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset, 2322 struct cgroup_subsys_state **dst_cssp) 2323 { 2324 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node); 2325 tset->cur_task = NULL; 2326 2327 return cgroup_taskset_next(tset, dst_cssp); 2328 } 2329 2330 /** 2331 * cgroup_taskset_next - iterate to the next task in taskset 2332 * @tset: taskset of interest 2333 * @dst_cssp: output variable for the destination css 2334 * 2335 * Return the next task in @tset. Iteration must have been initialized 2336 * with cgroup_taskset_first(). 2337 */ 2338 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset, 2339 struct cgroup_subsys_state **dst_cssp) 2340 { 2341 struct css_set *cset = tset->cur_cset; 2342 struct task_struct *task = tset->cur_task; 2343 2344 while (&cset->mg_node != tset->csets) { 2345 if (!task) 2346 task = list_first_entry(&cset->mg_tasks, 2347 struct task_struct, cg_list); 2348 else 2349 task = list_next_entry(task, cg_list); 2350 2351 if (&task->cg_list != &cset->mg_tasks) { 2352 tset->cur_cset = cset; 2353 tset->cur_task = task; 2354 2355 /* 2356 * This function may be called both before and 2357 * after cgroup_taskset_migrate(). The two cases 2358 * can be distinguished by looking at whether @cset 2359 * has its ->mg_dst_cset set. 2360 */ 2361 if (cset->mg_dst_cset) 2362 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid]; 2363 else 2364 *dst_cssp = cset->subsys[tset->ssid]; 2365 2366 return task; 2367 } 2368 2369 cset = list_next_entry(cset, mg_node); 2370 task = NULL; 2371 } 2372 2373 return NULL; 2374 } 2375 2376 /** 2377 * cgroup_taskset_migrate - migrate a taskset 2378 * @mgctx: migration context 2379 * 2380 * Migrate tasks in @mgctx as setup by migration preparation functions. 2381 * This function fails iff one of the ->can_attach callbacks fails and 2382 * guarantees that either all or none of the tasks in @mgctx are migrated. 2383 * @mgctx is consumed regardless of success. 2384 */ 2385 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx) 2386 { 2387 struct cgroup_taskset *tset = &mgctx->tset; 2388 struct cgroup_subsys *ss; 2389 struct task_struct *task, *tmp_task; 2390 struct css_set *cset, *tmp_cset; 2391 int ssid, failed_ssid, ret; 2392 2393 /* check that we can legitimately attach to the cgroup */ 2394 if (tset->nr_tasks) { 2395 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2396 if (ss->can_attach) { 2397 tset->ssid = ssid; 2398 ret = ss->can_attach(tset); 2399 if (ret) { 2400 failed_ssid = ssid; 2401 goto out_cancel_attach; 2402 } 2403 } 2404 } while_each_subsys_mask(); 2405 } 2406 2407 /* 2408 * Now that we're guaranteed success, proceed to move all tasks to 2409 * the new cgroup. There are no failure cases after here, so this 2410 * is the commit point. 2411 */ 2412 spin_lock_irq(&css_set_lock); 2413 list_for_each_entry(cset, &tset->src_csets, mg_node) { 2414 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) { 2415 struct css_set *from_cset = task_css_set(task); 2416 struct css_set *to_cset = cset->mg_dst_cset; 2417 2418 get_css_set(to_cset); 2419 to_cset->nr_tasks++; 2420 css_set_move_task(task, from_cset, to_cset, true); 2421 from_cset->nr_tasks--; 2422 /* 2423 * If the source or destination cgroup is frozen, 2424 * the task might require to change its state. 2425 */ 2426 cgroup_freezer_migrate_task(task, from_cset->dfl_cgrp, 2427 to_cset->dfl_cgrp); 2428 put_css_set_locked(from_cset); 2429 2430 } 2431 } 2432 spin_unlock_irq(&css_set_lock); 2433 2434 /* 2435 * Migration is committed, all target tasks are now on dst_csets. 2436 * Nothing is sensitive to fork() after this point. Notify 2437 * controllers that migration is complete. 2438 */ 2439 tset->csets = &tset->dst_csets; 2440 2441 if (tset->nr_tasks) { 2442 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2443 if (ss->attach) { 2444 tset->ssid = ssid; 2445 ss->attach(tset); 2446 } 2447 } while_each_subsys_mask(); 2448 } 2449 2450 ret = 0; 2451 goto out_release_tset; 2452 2453 out_cancel_attach: 2454 if (tset->nr_tasks) { 2455 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2456 if (ssid == failed_ssid) 2457 break; 2458 if (ss->cancel_attach) { 2459 tset->ssid = ssid; 2460 ss->cancel_attach(tset); 2461 } 2462 } while_each_subsys_mask(); 2463 } 2464 out_release_tset: 2465 spin_lock_irq(&css_set_lock); 2466 list_splice_init(&tset->dst_csets, &tset->src_csets); 2467 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) { 2468 list_splice_tail_init(&cset->mg_tasks, &cset->tasks); 2469 list_del_init(&cset->mg_node); 2470 } 2471 spin_unlock_irq(&css_set_lock); 2472 2473 /* 2474 * Re-initialize the cgroup_taskset structure in case it is reused 2475 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute() 2476 * iteration. 2477 */ 2478 tset->nr_tasks = 0; 2479 tset->csets = &tset->src_csets; 2480 return ret; 2481 } 2482 2483 /** 2484 * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination 2485 * @dst_cgrp: destination cgroup to test 2486 * 2487 * On the default hierarchy, except for the mixable, (possible) thread root 2488 * and threaded cgroups, subtree_control must be zero for migration 2489 * destination cgroups with tasks so that child cgroups don't compete 2490 * against tasks. 2491 */ 2492 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp) 2493 { 2494 /* v1 doesn't have any restriction */ 2495 if (!cgroup_on_dfl(dst_cgrp)) 2496 return 0; 2497 2498 /* verify @dst_cgrp can host resources */ 2499 if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp)) 2500 return -EOPNOTSUPP; 2501 2502 /* mixables don't care */ 2503 if (cgroup_is_mixable(dst_cgrp)) 2504 return 0; 2505 2506 /* 2507 * If @dst_cgrp is already or can become a thread root or is 2508 * threaded, it doesn't matter. 2509 */ 2510 if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp)) 2511 return 0; 2512 2513 /* apply no-internal-process constraint */ 2514 if (dst_cgrp->subtree_control) 2515 return -EBUSY; 2516 2517 return 0; 2518 } 2519 2520 /** 2521 * cgroup_migrate_finish - cleanup after attach 2522 * @mgctx: migration context 2523 * 2524 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See 2525 * those functions for details. 2526 */ 2527 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx) 2528 { 2529 LIST_HEAD(preloaded); 2530 struct css_set *cset, *tmp_cset; 2531 2532 lockdep_assert_held(&cgroup_mutex); 2533 2534 spin_lock_irq(&css_set_lock); 2535 2536 list_splice_tail_init(&mgctx->preloaded_src_csets, &preloaded); 2537 list_splice_tail_init(&mgctx->preloaded_dst_csets, &preloaded); 2538 2539 list_for_each_entry_safe(cset, tmp_cset, &preloaded, mg_preload_node) { 2540 cset->mg_src_cgrp = NULL; 2541 cset->mg_dst_cgrp = NULL; 2542 cset->mg_dst_cset = NULL; 2543 list_del_init(&cset->mg_preload_node); 2544 put_css_set_locked(cset); 2545 } 2546 2547 spin_unlock_irq(&css_set_lock); 2548 } 2549 2550 /** 2551 * cgroup_migrate_add_src - add a migration source css_set 2552 * @src_cset: the source css_set to add 2553 * @dst_cgrp: the destination cgroup 2554 * @mgctx: migration context 2555 * 2556 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin 2557 * @src_cset and add it to @mgctx->src_csets, which should later be cleaned 2558 * up by cgroup_migrate_finish(). 2559 * 2560 * This function may be called without holding cgroup_threadgroup_rwsem 2561 * even if the target is a process. Threads may be created and destroyed 2562 * but as long as cgroup_mutex is not dropped, no new css_set can be put 2563 * into play and the preloaded css_sets are guaranteed to cover all 2564 * migrations. 2565 */ 2566 void cgroup_migrate_add_src(struct css_set *src_cset, 2567 struct cgroup *dst_cgrp, 2568 struct cgroup_mgctx *mgctx) 2569 { 2570 struct cgroup *src_cgrp; 2571 2572 lockdep_assert_held(&cgroup_mutex); 2573 lockdep_assert_held(&css_set_lock); 2574 2575 /* 2576 * If ->dead, @src_set is associated with one or more dead cgroups 2577 * and doesn't contain any migratable tasks. Ignore it early so 2578 * that the rest of migration path doesn't get confused by it. 2579 */ 2580 if (src_cset->dead) 2581 return; 2582 2583 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root); 2584 2585 if (!list_empty(&src_cset->mg_preload_node)) 2586 return; 2587 2588 WARN_ON(src_cset->mg_src_cgrp); 2589 WARN_ON(src_cset->mg_dst_cgrp); 2590 WARN_ON(!list_empty(&src_cset->mg_tasks)); 2591 WARN_ON(!list_empty(&src_cset->mg_node)); 2592 2593 src_cset->mg_src_cgrp = src_cgrp; 2594 src_cset->mg_dst_cgrp = dst_cgrp; 2595 get_css_set(src_cset); 2596 list_add_tail(&src_cset->mg_preload_node, &mgctx->preloaded_src_csets); 2597 } 2598 2599 /** 2600 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration 2601 * @mgctx: migration context 2602 * 2603 * Tasks are about to be moved and all the source css_sets have been 2604 * preloaded to @mgctx->preloaded_src_csets. This function looks up and 2605 * pins all destination css_sets, links each to its source, and append them 2606 * to @mgctx->preloaded_dst_csets. 2607 * 2608 * This function must be called after cgroup_migrate_add_src() has been 2609 * called on each migration source css_set. After migration is performed 2610 * using cgroup_migrate(), cgroup_migrate_finish() must be called on 2611 * @mgctx. 2612 */ 2613 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx) 2614 { 2615 struct css_set *src_cset, *tmp_cset; 2616 2617 lockdep_assert_held(&cgroup_mutex); 2618 2619 /* look up the dst cset for each src cset and link it to src */ 2620 list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets, 2621 mg_preload_node) { 2622 struct css_set *dst_cset; 2623 struct cgroup_subsys *ss; 2624 int ssid; 2625 2626 dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp); 2627 if (!dst_cset) 2628 return -ENOMEM; 2629 2630 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset); 2631 2632 /* 2633 * If src cset equals dst, it's noop. Drop the src. 2634 * cgroup_migrate() will skip the cset too. Note that we 2635 * can't handle src == dst as some nodes are used by both. 2636 */ 2637 if (src_cset == dst_cset) { 2638 src_cset->mg_src_cgrp = NULL; 2639 src_cset->mg_dst_cgrp = NULL; 2640 list_del_init(&src_cset->mg_preload_node); 2641 put_css_set(src_cset); 2642 put_css_set(dst_cset); 2643 continue; 2644 } 2645 2646 src_cset->mg_dst_cset = dst_cset; 2647 2648 if (list_empty(&dst_cset->mg_preload_node)) 2649 list_add_tail(&dst_cset->mg_preload_node, 2650 &mgctx->preloaded_dst_csets); 2651 else 2652 put_css_set(dst_cset); 2653 2654 for_each_subsys(ss, ssid) 2655 if (src_cset->subsys[ssid] != dst_cset->subsys[ssid]) 2656 mgctx->ss_mask |= 1 << ssid; 2657 } 2658 2659 return 0; 2660 } 2661 2662 /** 2663 * cgroup_migrate - migrate a process or task to a cgroup 2664 * @leader: the leader of the process or the task to migrate 2665 * @threadgroup: whether @leader points to the whole process or a single task 2666 * @mgctx: migration context 2667 * 2668 * Migrate a process or task denoted by @leader. If migrating a process, 2669 * the caller must be holding cgroup_threadgroup_rwsem. The caller is also 2670 * responsible for invoking cgroup_migrate_add_src() and 2671 * cgroup_migrate_prepare_dst() on the targets before invoking this 2672 * function and following up with cgroup_migrate_finish(). 2673 * 2674 * As long as a controller's ->can_attach() doesn't fail, this function is 2675 * guaranteed to succeed. This means that, excluding ->can_attach() 2676 * failure, when migrating multiple targets, the success or failure can be 2677 * decided for all targets by invoking group_migrate_prepare_dst() before 2678 * actually starting migrating. 2679 */ 2680 int cgroup_migrate(struct task_struct *leader, bool threadgroup, 2681 struct cgroup_mgctx *mgctx) 2682 { 2683 struct task_struct *task; 2684 2685 /* 2686 * Prevent freeing of tasks while we take a snapshot. Tasks that are 2687 * already PF_EXITING could be freed from underneath us unless we 2688 * take an rcu_read_lock. 2689 */ 2690 spin_lock_irq(&css_set_lock); 2691 rcu_read_lock(); 2692 task = leader; 2693 do { 2694 cgroup_migrate_add_task(task, mgctx); 2695 if (!threadgroup) 2696 break; 2697 } while_each_thread(leader, task); 2698 rcu_read_unlock(); 2699 spin_unlock_irq(&css_set_lock); 2700 2701 return cgroup_migrate_execute(mgctx); 2702 } 2703 2704 /** 2705 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup 2706 * @dst_cgrp: the cgroup to attach to 2707 * @leader: the task or the leader of the threadgroup to be attached 2708 * @threadgroup: attach the whole threadgroup? 2709 * 2710 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem. 2711 */ 2712 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader, 2713 bool threadgroup) 2714 { 2715 DEFINE_CGROUP_MGCTX(mgctx); 2716 struct task_struct *task; 2717 int ret = 0; 2718 2719 /* look up all src csets */ 2720 spin_lock_irq(&css_set_lock); 2721 rcu_read_lock(); 2722 task = leader; 2723 do { 2724 cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx); 2725 if (!threadgroup) 2726 break; 2727 } while_each_thread(leader, task); 2728 rcu_read_unlock(); 2729 spin_unlock_irq(&css_set_lock); 2730 2731 /* prepare dst csets and commit */ 2732 ret = cgroup_migrate_prepare_dst(&mgctx); 2733 if (!ret) 2734 ret = cgroup_migrate(leader, threadgroup, &mgctx); 2735 2736 cgroup_migrate_finish(&mgctx); 2737 2738 if (!ret) 2739 TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup); 2740 2741 return ret; 2742 } 2743 2744 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup, 2745 bool *locked) 2746 __acquires(&cgroup_threadgroup_rwsem) 2747 { 2748 struct task_struct *tsk; 2749 pid_t pid; 2750 2751 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0) 2752 return ERR_PTR(-EINVAL); 2753 2754 /* 2755 * If we migrate a single thread, we don't care about threadgroup 2756 * stability. If the thread is `current`, it won't exit(2) under our 2757 * hands or change PID through exec(2). We exclude 2758 * cgroup_update_dfl_csses and other cgroup_{proc,thread}s_write 2759 * callers by cgroup_mutex. 2760 * Therefore, we can skip the global lock. 2761 */ 2762 lockdep_assert_held(&cgroup_mutex); 2763 if (pid || threadgroup) { 2764 percpu_down_write(&cgroup_threadgroup_rwsem); 2765 *locked = true; 2766 } else { 2767 *locked = false; 2768 } 2769 2770 rcu_read_lock(); 2771 if (pid) { 2772 tsk = find_task_by_vpid(pid); 2773 if (!tsk) { 2774 tsk = ERR_PTR(-ESRCH); 2775 goto out_unlock_threadgroup; 2776 } 2777 } else { 2778 tsk = current; 2779 } 2780 2781 if (threadgroup) 2782 tsk = tsk->group_leader; 2783 2784 /* 2785 * kthreads may acquire PF_NO_SETAFFINITY during initialization. 2786 * If userland migrates such a kthread to a non-root cgroup, it can 2787 * become trapped in a cpuset, or RT kthread may be born in a 2788 * cgroup with no rt_runtime allocated. Just say no. 2789 */ 2790 if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) { 2791 tsk = ERR_PTR(-EINVAL); 2792 goto out_unlock_threadgroup; 2793 } 2794 2795 get_task_struct(tsk); 2796 goto out_unlock_rcu; 2797 2798 out_unlock_threadgroup: 2799 if (*locked) { 2800 percpu_up_write(&cgroup_threadgroup_rwsem); 2801 *locked = false; 2802 } 2803 out_unlock_rcu: 2804 rcu_read_unlock(); 2805 return tsk; 2806 } 2807 2808 void cgroup_procs_write_finish(struct task_struct *task, bool locked) 2809 __releases(&cgroup_threadgroup_rwsem) 2810 { 2811 struct cgroup_subsys *ss; 2812 int ssid; 2813 2814 /* release reference from cgroup_procs_write_start() */ 2815 put_task_struct(task); 2816 2817 if (locked) 2818 percpu_up_write(&cgroup_threadgroup_rwsem); 2819 for_each_subsys(ss, ssid) 2820 if (ss->post_attach) 2821 ss->post_attach(); 2822 } 2823 2824 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask) 2825 { 2826 struct cgroup_subsys *ss; 2827 bool printed = false; 2828 int ssid; 2829 2830 do_each_subsys_mask(ss, ssid, ss_mask) { 2831 if (printed) 2832 seq_putc(seq, ' '); 2833 seq_puts(seq, ss->name); 2834 printed = true; 2835 } while_each_subsys_mask(); 2836 if (printed) 2837 seq_putc(seq, '\n'); 2838 } 2839 2840 /* show controllers which are enabled from the parent */ 2841 static int cgroup_controllers_show(struct seq_file *seq, void *v) 2842 { 2843 struct cgroup *cgrp = seq_css(seq)->cgroup; 2844 2845 cgroup_print_ss_mask(seq, cgroup_control(cgrp)); 2846 return 0; 2847 } 2848 2849 /* show controllers which are enabled for a given cgroup's children */ 2850 static int cgroup_subtree_control_show(struct seq_file *seq, void *v) 2851 { 2852 struct cgroup *cgrp = seq_css(seq)->cgroup; 2853 2854 cgroup_print_ss_mask(seq, cgrp->subtree_control); 2855 return 0; 2856 } 2857 2858 /** 2859 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy 2860 * @cgrp: root of the subtree to update csses for 2861 * 2862 * @cgrp's control masks have changed and its subtree's css associations 2863 * need to be updated accordingly. This function looks up all css_sets 2864 * which are attached to the subtree, creates the matching updated css_sets 2865 * and migrates the tasks to the new ones. 2866 */ 2867 static int cgroup_update_dfl_csses(struct cgroup *cgrp) 2868 { 2869 DEFINE_CGROUP_MGCTX(mgctx); 2870 struct cgroup_subsys_state *d_css; 2871 struct cgroup *dsct; 2872 struct css_set *src_cset; 2873 int ret; 2874 2875 lockdep_assert_held(&cgroup_mutex); 2876 2877 percpu_down_write(&cgroup_threadgroup_rwsem); 2878 2879 /* look up all csses currently attached to @cgrp's subtree */ 2880 spin_lock_irq(&css_set_lock); 2881 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 2882 struct cgrp_cset_link *link; 2883 2884 list_for_each_entry(link, &dsct->cset_links, cset_link) 2885 cgroup_migrate_add_src(link->cset, dsct, &mgctx); 2886 } 2887 spin_unlock_irq(&css_set_lock); 2888 2889 /* NULL dst indicates self on default hierarchy */ 2890 ret = cgroup_migrate_prepare_dst(&mgctx); 2891 if (ret) 2892 goto out_finish; 2893 2894 spin_lock_irq(&css_set_lock); 2895 list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, mg_preload_node) { 2896 struct task_struct *task, *ntask; 2897 2898 /* all tasks in src_csets need to be migrated */ 2899 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list) 2900 cgroup_migrate_add_task(task, &mgctx); 2901 } 2902 spin_unlock_irq(&css_set_lock); 2903 2904 ret = cgroup_migrate_execute(&mgctx); 2905 out_finish: 2906 cgroup_migrate_finish(&mgctx); 2907 percpu_up_write(&cgroup_threadgroup_rwsem); 2908 return ret; 2909 } 2910 2911 /** 2912 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses 2913 * @cgrp: root of the target subtree 2914 * 2915 * Because css offlining is asynchronous, userland may try to re-enable a 2916 * controller while the previous css is still around. This function grabs 2917 * cgroup_mutex and drains the previous css instances of @cgrp's subtree. 2918 */ 2919 void cgroup_lock_and_drain_offline(struct cgroup *cgrp) 2920 __acquires(&cgroup_mutex) 2921 { 2922 struct cgroup *dsct; 2923 struct cgroup_subsys_state *d_css; 2924 struct cgroup_subsys *ss; 2925 int ssid; 2926 2927 restart: 2928 mutex_lock(&cgroup_mutex); 2929 2930 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 2931 for_each_subsys(ss, ssid) { 2932 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 2933 DEFINE_WAIT(wait); 2934 2935 if (!css || !percpu_ref_is_dying(&css->refcnt)) 2936 continue; 2937 2938 cgroup_get_live(dsct); 2939 prepare_to_wait(&dsct->offline_waitq, &wait, 2940 TASK_UNINTERRUPTIBLE); 2941 2942 mutex_unlock(&cgroup_mutex); 2943 schedule(); 2944 finish_wait(&dsct->offline_waitq, &wait); 2945 2946 cgroup_put(dsct); 2947 goto restart; 2948 } 2949 } 2950 } 2951 2952 /** 2953 * cgroup_save_control - save control masks and dom_cgrp of a subtree 2954 * @cgrp: root of the target subtree 2955 * 2956 * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the 2957 * respective old_ prefixed fields for @cgrp's subtree including @cgrp 2958 * itself. 2959 */ 2960 static void cgroup_save_control(struct cgroup *cgrp) 2961 { 2962 struct cgroup *dsct; 2963 struct cgroup_subsys_state *d_css; 2964 2965 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 2966 dsct->old_subtree_control = dsct->subtree_control; 2967 dsct->old_subtree_ss_mask = dsct->subtree_ss_mask; 2968 dsct->old_dom_cgrp = dsct->dom_cgrp; 2969 } 2970 } 2971 2972 /** 2973 * cgroup_propagate_control - refresh control masks of a subtree 2974 * @cgrp: root of the target subtree 2975 * 2976 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches 2977 * ->subtree_control and propagate controller availability through the 2978 * subtree so that descendants don't have unavailable controllers enabled. 2979 */ 2980 static void cgroup_propagate_control(struct cgroup *cgrp) 2981 { 2982 struct cgroup *dsct; 2983 struct cgroup_subsys_state *d_css; 2984 2985 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 2986 dsct->subtree_control &= cgroup_control(dsct); 2987 dsct->subtree_ss_mask = 2988 cgroup_calc_subtree_ss_mask(dsct->subtree_control, 2989 cgroup_ss_mask(dsct)); 2990 } 2991 } 2992 2993 /** 2994 * cgroup_restore_control - restore control masks and dom_cgrp of a subtree 2995 * @cgrp: root of the target subtree 2996 * 2997 * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the 2998 * respective old_ prefixed fields for @cgrp's subtree including @cgrp 2999 * itself. 3000 */ 3001 static void cgroup_restore_control(struct cgroup *cgrp) 3002 { 3003 struct cgroup *dsct; 3004 struct cgroup_subsys_state *d_css; 3005 3006 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 3007 dsct->subtree_control = dsct->old_subtree_control; 3008 dsct->subtree_ss_mask = dsct->old_subtree_ss_mask; 3009 dsct->dom_cgrp = dsct->old_dom_cgrp; 3010 } 3011 } 3012 3013 static bool css_visible(struct cgroup_subsys_state *css) 3014 { 3015 struct cgroup_subsys *ss = css->ss; 3016 struct cgroup *cgrp = css->cgroup; 3017 3018 if (cgroup_control(cgrp) & (1 << ss->id)) 3019 return true; 3020 if (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) 3021 return false; 3022 return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl; 3023 } 3024 3025 /** 3026 * cgroup_apply_control_enable - enable or show csses according to control 3027 * @cgrp: root of the target subtree 3028 * 3029 * Walk @cgrp's subtree and create new csses or make the existing ones 3030 * visible. A css is created invisible if it's being implicitly enabled 3031 * through dependency. An invisible css is made visible when the userland 3032 * explicitly enables it. 3033 * 3034 * Returns 0 on success, -errno on failure. On failure, csses which have 3035 * been processed already aren't cleaned up. The caller is responsible for 3036 * cleaning up with cgroup_apply_control_disable(). 3037 */ 3038 static int cgroup_apply_control_enable(struct cgroup *cgrp) 3039 { 3040 struct cgroup *dsct; 3041 struct cgroup_subsys_state *d_css; 3042 struct cgroup_subsys *ss; 3043 int ssid, ret; 3044 3045 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 3046 for_each_subsys(ss, ssid) { 3047 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 3048 3049 if (!(cgroup_ss_mask(dsct) & (1 << ss->id))) 3050 continue; 3051 3052 if (!css) { 3053 css = css_create(dsct, ss); 3054 if (IS_ERR(css)) 3055 return PTR_ERR(css); 3056 } 3057 3058 WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt)); 3059 3060 if (css_visible(css)) { 3061 ret = css_populate_dir(css); 3062 if (ret) 3063 return ret; 3064 } 3065 } 3066 } 3067 3068 return 0; 3069 } 3070 3071 /** 3072 * cgroup_apply_control_disable - kill or hide csses according to control 3073 * @cgrp: root of the target subtree 3074 * 3075 * Walk @cgrp's subtree and kill and hide csses so that they match 3076 * cgroup_ss_mask() and cgroup_visible_mask(). 3077 * 3078 * A css is hidden when the userland requests it to be disabled while other 3079 * subsystems are still depending on it. The css must not actively control 3080 * resources and be in the vanilla state if it's made visible again later. 3081 * Controllers which may be depended upon should provide ->css_reset() for 3082 * this purpose. 3083 */ 3084 static void cgroup_apply_control_disable(struct cgroup *cgrp) 3085 { 3086 struct cgroup *dsct; 3087 struct cgroup_subsys_state *d_css; 3088 struct cgroup_subsys *ss; 3089 int ssid; 3090 3091 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 3092 for_each_subsys(ss, ssid) { 3093 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 3094 3095 if (!css) 3096 continue; 3097 3098 WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt)); 3099 3100 if (css->parent && 3101 !(cgroup_ss_mask(dsct) & (1 << ss->id))) { 3102 kill_css(css); 3103 } else if (!css_visible(css)) { 3104 css_clear_dir(css); 3105 if (ss->css_reset) 3106 ss->css_reset(css); 3107 } 3108 } 3109 } 3110 } 3111 3112 /** 3113 * cgroup_apply_control - apply control mask updates to the subtree 3114 * @cgrp: root of the target subtree 3115 * 3116 * subsystems can be enabled and disabled in a subtree using the following 3117 * steps. 3118 * 3119 * 1. Call cgroup_save_control() to stash the current state. 3120 * 2. Update ->subtree_control masks in the subtree as desired. 3121 * 3. Call cgroup_apply_control() to apply the changes. 3122 * 4. Optionally perform other related operations. 3123 * 5. Call cgroup_finalize_control() to finish up. 3124 * 3125 * This function implements step 3 and propagates the mask changes 3126 * throughout @cgrp's subtree, updates csses accordingly and perform 3127 * process migrations. 3128 */ 3129 static int cgroup_apply_control(struct cgroup *cgrp) 3130 { 3131 int ret; 3132 3133 cgroup_propagate_control(cgrp); 3134 3135 ret = cgroup_apply_control_enable(cgrp); 3136 if (ret) 3137 return ret; 3138 3139 /* 3140 * At this point, cgroup_e_css_by_mask() results reflect the new csses 3141 * making the following cgroup_update_dfl_csses() properly update 3142 * css associations of all tasks in the subtree. 3143 */ 3144 ret = cgroup_update_dfl_csses(cgrp); 3145 if (ret) 3146 return ret; 3147 3148 return 0; 3149 } 3150 3151 /** 3152 * cgroup_finalize_control - finalize control mask update 3153 * @cgrp: root of the target subtree 3154 * @ret: the result of the update 3155 * 3156 * Finalize control mask update. See cgroup_apply_control() for more info. 3157 */ 3158 static void cgroup_finalize_control(struct cgroup *cgrp, int ret) 3159 { 3160 if (ret) { 3161 cgroup_restore_control(cgrp); 3162 cgroup_propagate_control(cgrp); 3163 } 3164 3165 cgroup_apply_control_disable(cgrp); 3166 } 3167 3168 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable) 3169 { 3170 u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask; 3171 3172 /* if nothing is getting enabled, nothing to worry about */ 3173 if (!enable) 3174 return 0; 3175 3176 /* can @cgrp host any resources? */ 3177 if (!cgroup_is_valid_domain(cgrp->dom_cgrp)) 3178 return -EOPNOTSUPP; 3179 3180 /* mixables don't care */ 3181 if (cgroup_is_mixable(cgrp)) 3182 return 0; 3183 3184 if (domain_enable) { 3185 /* can't enable domain controllers inside a thread subtree */ 3186 if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp)) 3187 return -EOPNOTSUPP; 3188 } else { 3189 /* 3190 * Threaded controllers can handle internal competitions 3191 * and are always allowed inside a (prospective) thread 3192 * subtree. 3193 */ 3194 if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp)) 3195 return 0; 3196 } 3197 3198 /* 3199 * Controllers can't be enabled for a cgroup with tasks to avoid 3200 * child cgroups competing against tasks. 3201 */ 3202 if (cgroup_has_tasks(cgrp)) 3203 return -EBUSY; 3204 3205 return 0; 3206 } 3207 3208 /* change the enabled child controllers for a cgroup in the default hierarchy */ 3209 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of, 3210 char *buf, size_t nbytes, 3211 loff_t off) 3212 { 3213 u16 enable = 0, disable = 0; 3214 struct cgroup *cgrp, *child; 3215 struct cgroup_subsys *ss; 3216 char *tok; 3217 int ssid, ret; 3218 3219 /* 3220 * Parse input - space separated list of subsystem names prefixed 3221 * with either + or -. 3222 */ 3223 buf = strstrip(buf); 3224 while ((tok = strsep(&buf, " "))) { 3225 if (tok[0] == '\0') 3226 continue; 3227 do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) { 3228 if (!cgroup_ssid_enabled(ssid) || 3229 strcmp(tok + 1, ss->name)) 3230 continue; 3231 3232 if (*tok == '+') { 3233 enable |= 1 << ssid; 3234 disable &= ~(1 << ssid); 3235 } else if (*tok == '-') { 3236 disable |= 1 << ssid; 3237 enable &= ~(1 << ssid); 3238 } else { 3239 return -EINVAL; 3240 } 3241 break; 3242 } while_each_subsys_mask(); 3243 if (ssid == CGROUP_SUBSYS_COUNT) 3244 return -EINVAL; 3245 } 3246 3247 cgrp = cgroup_kn_lock_live(of->kn, true); 3248 if (!cgrp) 3249 return -ENODEV; 3250 3251 for_each_subsys(ss, ssid) { 3252 if (enable & (1 << ssid)) { 3253 if (cgrp->subtree_control & (1 << ssid)) { 3254 enable &= ~(1 << ssid); 3255 continue; 3256 } 3257 3258 if (!(cgroup_control(cgrp) & (1 << ssid))) { 3259 ret = -ENOENT; 3260 goto out_unlock; 3261 } 3262 } else if (disable & (1 << ssid)) { 3263 if (!(cgrp->subtree_control & (1 << ssid))) { 3264 disable &= ~(1 << ssid); 3265 continue; 3266 } 3267 3268 /* a child has it enabled? */ 3269 cgroup_for_each_live_child(child, cgrp) { 3270 if (child->subtree_control & (1 << ssid)) { 3271 ret = -EBUSY; 3272 goto out_unlock; 3273 } 3274 } 3275 } 3276 } 3277 3278 if (!enable && !disable) { 3279 ret = 0; 3280 goto out_unlock; 3281 } 3282 3283 ret = cgroup_vet_subtree_control_enable(cgrp, enable); 3284 if (ret) 3285 goto out_unlock; 3286 3287 /* save and update control masks and prepare csses */ 3288 cgroup_save_control(cgrp); 3289 3290 cgrp->subtree_control |= enable; 3291 cgrp->subtree_control &= ~disable; 3292 3293 ret = cgroup_apply_control(cgrp); 3294 cgroup_finalize_control(cgrp, ret); 3295 if (ret) 3296 goto out_unlock; 3297 3298 kernfs_activate(cgrp->kn); 3299 out_unlock: 3300 cgroup_kn_unlock(of->kn); 3301 return ret ?: nbytes; 3302 } 3303 3304 /** 3305 * cgroup_enable_threaded - make @cgrp threaded 3306 * @cgrp: the target cgroup 3307 * 3308 * Called when "threaded" is written to the cgroup.type interface file and 3309 * tries to make @cgrp threaded and join the parent's resource domain. 3310 * This function is never called on the root cgroup as cgroup.type doesn't 3311 * exist on it. 3312 */ 3313 static int cgroup_enable_threaded(struct cgroup *cgrp) 3314 { 3315 struct cgroup *parent = cgroup_parent(cgrp); 3316 struct cgroup *dom_cgrp = parent->dom_cgrp; 3317 struct cgroup *dsct; 3318 struct cgroup_subsys_state *d_css; 3319 int ret; 3320 3321 lockdep_assert_held(&cgroup_mutex); 3322 3323 /* noop if already threaded */ 3324 if (cgroup_is_threaded(cgrp)) 3325 return 0; 3326 3327 /* 3328 * If @cgroup is populated or has domain controllers enabled, it 3329 * can't be switched. While the below cgroup_can_be_thread_root() 3330 * test can catch the same conditions, that's only when @parent is 3331 * not mixable, so let's check it explicitly. 3332 */ 3333 if (cgroup_is_populated(cgrp) || 3334 cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask) 3335 return -EOPNOTSUPP; 3336 3337 /* we're joining the parent's domain, ensure its validity */ 3338 if (!cgroup_is_valid_domain(dom_cgrp) || 3339 !cgroup_can_be_thread_root(dom_cgrp)) 3340 return -EOPNOTSUPP; 3341 3342 /* 3343 * The following shouldn't cause actual migrations and should 3344 * always succeed. 3345 */ 3346 cgroup_save_control(cgrp); 3347 3348 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) 3349 if (dsct == cgrp || cgroup_is_threaded(dsct)) 3350 dsct->dom_cgrp = dom_cgrp; 3351 3352 ret = cgroup_apply_control(cgrp); 3353 if (!ret) 3354 parent->nr_threaded_children++; 3355 3356 cgroup_finalize_control(cgrp, ret); 3357 return ret; 3358 } 3359 3360 static int cgroup_type_show(struct seq_file *seq, void *v) 3361 { 3362 struct cgroup *cgrp = seq_css(seq)->cgroup; 3363 3364 if (cgroup_is_threaded(cgrp)) 3365 seq_puts(seq, "threaded\n"); 3366 else if (!cgroup_is_valid_domain(cgrp)) 3367 seq_puts(seq, "domain invalid\n"); 3368 else if (cgroup_is_thread_root(cgrp)) 3369 seq_puts(seq, "domain threaded\n"); 3370 else 3371 seq_puts(seq, "domain\n"); 3372 3373 return 0; 3374 } 3375 3376 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf, 3377 size_t nbytes, loff_t off) 3378 { 3379 struct cgroup *cgrp; 3380 int ret; 3381 3382 /* only switching to threaded mode is supported */ 3383 if (strcmp(strstrip(buf), "threaded")) 3384 return -EINVAL; 3385 3386 /* drain dying csses before we re-apply (threaded) subtree control */ 3387 cgrp = cgroup_kn_lock_live(of->kn, true); 3388 if (!cgrp) 3389 return -ENOENT; 3390 3391 /* threaded can only be enabled */ 3392 ret = cgroup_enable_threaded(cgrp); 3393 3394 cgroup_kn_unlock(of->kn); 3395 return ret ?: nbytes; 3396 } 3397 3398 static int cgroup_max_descendants_show(struct seq_file *seq, void *v) 3399 { 3400 struct cgroup *cgrp = seq_css(seq)->cgroup; 3401 int descendants = READ_ONCE(cgrp->max_descendants); 3402 3403 if (descendants == INT_MAX) 3404 seq_puts(seq, "max\n"); 3405 else 3406 seq_printf(seq, "%d\n", descendants); 3407 3408 return 0; 3409 } 3410 3411 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of, 3412 char *buf, size_t nbytes, loff_t off) 3413 { 3414 struct cgroup *cgrp; 3415 int descendants; 3416 ssize_t ret; 3417 3418 buf = strstrip(buf); 3419 if (!strcmp(buf, "max")) { 3420 descendants = INT_MAX; 3421 } else { 3422 ret = kstrtoint(buf, 0, &descendants); 3423 if (ret) 3424 return ret; 3425 } 3426 3427 if (descendants < 0) 3428 return -ERANGE; 3429 3430 cgrp = cgroup_kn_lock_live(of->kn, false); 3431 if (!cgrp) 3432 return -ENOENT; 3433 3434 cgrp->max_descendants = descendants; 3435 3436 cgroup_kn_unlock(of->kn); 3437 3438 return nbytes; 3439 } 3440 3441 static int cgroup_max_depth_show(struct seq_file *seq, void *v) 3442 { 3443 struct cgroup *cgrp = seq_css(seq)->cgroup; 3444 int depth = READ_ONCE(cgrp->max_depth); 3445 3446 if (depth == INT_MAX) 3447 seq_puts(seq, "max\n"); 3448 else 3449 seq_printf(seq, "%d\n", depth); 3450 3451 return 0; 3452 } 3453 3454 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of, 3455 char *buf, size_t nbytes, loff_t off) 3456 { 3457 struct cgroup *cgrp; 3458 ssize_t ret; 3459 int depth; 3460 3461 buf = strstrip(buf); 3462 if (!strcmp(buf, "max")) { 3463 depth = INT_MAX; 3464 } else { 3465 ret = kstrtoint(buf, 0, &depth); 3466 if (ret) 3467 return ret; 3468 } 3469 3470 if (depth < 0) 3471 return -ERANGE; 3472 3473 cgrp = cgroup_kn_lock_live(of->kn, false); 3474 if (!cgrp) 3475 return -ENOENT; 3476 3477 cgrp->max_depth = depth; 3478 3479 cgroup_kn_unlock(of->kn); 3480 3481 return nbytes; 3482 } 3483 3484 static int cgroup_events_show(struct seq_file *seq, void *v) 3485 { 3486 struct cgroup *cgrp = seq_css(seq)->cgroup; 3487 3488 seq_printf(seq, "populated %d\n", cgroup_is_populated(cgrp)); 3489 seq_printf(seq, "frozen %d\n", test_bit(CGRP_FROZEN, &cgrp->flags)); 3490 3491 return 0; 3492 } 3493 3494 static int cgroup_stat_show(struct seq_file *seq, void *v) 3495 { 3496 struct cgroup *cgroup = seq_css(seq)->cgroup; 3497 3498 seq_printf(seq, "nr_descendants %d\n", 3499 cgroup->nr_descendants); 3500 seq_printf(seq, "nr_dying_descendants %d\n", 3501 cgroup->nr_dying_descendants); 3502 3503 return 0; 3504 } 3505 3506 static int __maybe_unused cgroup_extra_stat_show(struct seq_file *seq, 3507 struct cgroup *cgrp, int ssid) 3508 { 3509 struct cgroup_subsys *ss = cgroup_subsys[ssid]; 3510 struct cgroup_subsys_state *css; 3511 int ret; 3512 3513 if (!ss->css_extra_stat_show) 3514 return 0; 3515 3516 css = cgroup_tryget_css(cgrp, ss); 3517 if (!css) 3518 return 0; 3519 3520 ret = ss->css_extra_stat_show(seq, css); 3521 css_put(css); 3522 return ret; 3523 } 3524 3525 static int cpu_stat_show(struct seq_file *seq, void *v) 3526 { 3527 struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup; 3528 int ret = 0; 3529 3530 cgroup_base_stat_cputime_show(seq); 3531 #ifdef CONFIG_CGROUP_SCHED 3532 ret = cgroup_extra_stat_show(seq, cgrp, cpu_cgrp_id); 3533 #endif 3534 return ret; 3535 } 3536 3537 #ifdef CONFIG_PSI 3538 static int cgroup_io_pressure_show(struct seq_file *seq, void *v) 3539 { 3540 struct cgroup *cgrp = seq_css(seq)->cgroup; 3541 struct psi_group *psi = cgroup_id(cgrp) == 1 ? &psi_system : &cgrp->psi; 3542 3543 return psi_show(seq, psi, PSI_IO); 3544 } 3545 static int cgroup_memory_pressure_show(struct seq_file *seq, void *v) 3546 { 3547 struct cgroup *cgrp = seq_css(seq)->cgroup; 3548 struct psi_group *psi = cgroup_id(cgrp) == 1 ? &psi_system : &cgrp->psi; 3549 3550 return psi_show(seq, psi, PSI_MEM); 3551 } 3552 static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v) 3553 { 3554 struct cgroup *cgrp = seq_css(seq)->cgroup; 3555 struct psi_group *psi = cgroup_id(cgrp) == 1 ? &psi_system : &cgrp->psi; 3556 3557 return psi_show(seq, psi, PSI_CPU); 3558 } 3559 3560 static ssize_t cgroup_pressure_write(struct kernfs_open_file *of, char *buf, 3561 size_t nbytes, enum psi_res res) 3562 { 3563 struct psi_trigger *new; 3564 struct cgroup *cgrp; 3565 3566 cgrp = cgroup_kn_lock_live(of->kn, false); 3567 if (!cgrp) 3568 return -ENODEV; 3569 3570 cgroup_get(cgrp); 3571 cgroup_kn_unlock(of->kn); 3572 3573 new = psi_trigger_create(&cgrp->psi, buf, nbytes, res); 3574 if (IS_ERR(new)) { 3575 cgroup_put(cgrp); 3576 return PTR_ERR(new); 3577 } 3578 3579 psi_trigger_replace(&of->priv, new); 3580 3581 cgroup_put(cgrp); 3582 3583 return nbytes; 3584 } 3585 3586 static ssize_t cgroup_io_pressure_write(struct kernfs_open_file *of, 3587 char *buf, size_t nbytes, 3588 loff_t off) 3589 { 3590 return cgroup_pressure_write(of, buf, nbytes, PSI_IO); 3591 } 3592 3593 static ssize_t cgroup_memory_pressure_write(struct kernfs_open_file *of, 3594 char *buf, size_t nbytes, 3595 loff_t off) 3596 { 3597 return cgroup_pressure_write(of, buf, nbytes, PSI_MEM); 3598 } 3599 3600 static ssize_t cgroup_cpu_pressure_write(struct kernfs_open_file *of, 3601 char *buf, size_t nbytes, 3602 loff_t off) 3603 { 3604 return cgroup_pressure_write(of, buf, nbytes, PSI_CPU); 3605 } 3606 3607 static __poll_t cgroup_pressure_poll(struct kernfs_open_file *of, 3608 poll_table *pt) 3609 { 3610 return psi_trigger_poll(&of->priv, of->file, pt); 3611 } 3612 3613 static void cgroup_pressure_release(struct kernfs_open_file *of) 3614 { 3615 psi_trigger_replace(&of->priv, NULL); 3616 } 3617 #endif /* CONFIG_PSI */ 3618 3619 static int cgroup_freeze_show(struct seq_file *seq, void *v) 3620 { 3621 struct cgroup *cgrp = seq_css(seq)->cgroup; 3622 3623 seq_printf(seq, "%d\n", cgrp->freezer.freeze); 3624 3625 return 0; 3626 } 3627 3628 static ssize_t cgroup_freeze_write(struct kernfs_open_file *of, 3629 char *buf, size_t nbytes, loff_t off) 3630 { 3631 struct cgroup *cgrp; 3632 ssize_t ret; 3633 int freeze; 3634 3635 ret = kstrtoint(strstrip(buf), 0, &freeze); 3636 if (ret) 3637 return ret; 3638 3639 if (freeze < 0 || freeze > 1) 3640 return -ERANGE; 3641 3642 cgrp = cgroup_kn_lock_live(of->kn, false); 3643 if (!cgrp) 3644 return -ENOENT; 3645 3646 cgroup_freeze(cgrp, freeze); 3647 3648 cgroup_kn_unlock(of->kn); 3649 3650 return nbytes; 3651 } 3652 3653 static int cgroup_file_open(struct kernfs_open_file *of) 3654 { 3655 struct cftype *cft = of->kn->priv; 3656 3657 if (cft->open) 3658 return cft->open(of); 3659 return 0; 3660 } 3661 3662 static void cgroup_file_release(struct kernfs_open_file *of) 3663 { 3664 struct cftype *cft = of->kn->priv; 3665 3666 if (cft->release) 3667 cft->release(of); 3668 } 3669 3670 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf, 3671 size_t nbytes, loff_t off) 3672 { 3673 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns; 3674 struct cgroup *cgrp = of->kn->parent->priv; 3675 struct cftype *cft = of->kn->priv; 3676 struct cgroup_subsys_state *css; 3677 int ret; 3678 3679 /* 3680 * If namespaces are delegation boundaries, disallow writes to 3681 * files in an non-init namespace root from inside the namespace 3682 * except for the files explicitly marked delegatable - 3683 * cgroup.procs and cgroup.subtree_control. 3684 */ 3685 if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) && 3686 !(cft->flags & CFTYPE_NS_DELEGATABLE) && 3687 ns != &init_cgroup_ns && ns->root_cset->dfl_cgrp == cgrp) 3688 return -EPERM; 3689 3690 if (cft->write) 3691 return cft->write(of, buf, nbytes, off); 3692 3693 /* 3694 * kernfs guarantees that a file isn't deleted with operations in 3695 * flight, which means that the matching css is and stays alive and 3696 * doesn't need to be pinned. The RCU locking is not necessary 3697 * either. It's just for the convenience of using cgroup_css(). 3698 */ 3699 rcu_read_lock(); 3700 css = cgroup_css(cgrp, cft->ss); 3701 rcu_read_unlock(); 3702 3703 if (cft->write_u64) { 3704 unsigned long long v; 3705 ret = kstrtoull(buf, 0, &v); 3706 if (!ret) 3707 ret = cft->write_u64(css, cft, v); 3708 } else if (cft->write_s64) { 3709 long long v; 3710 ret = kstrtoll(buf, 0, &v); 3711 if (!ret) 3712 ret = cft->write_s64(css, cft, v); 3713 } else { 3714 ret = -EINVAL; 3715 } 3716 3717 return ret ?: nbytes; 3718 } 3719 3720 static __poll_t cgroup_file_poll(struct kernfs_open_file *of, poll_table *pt) 3721 { 3722 struct cftype *cft = of->kn->priv; 3723 3724 if (cft->poll) 3725 return cft->poll(of, pt); 3726 3727 return kernfs_generic_poll(of, pt); 3728 } 3729 3730 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos) 3731 { 3732 return seq_cft(seq)->seq_start(seq, ppos); 3733 } 3734 3735 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos) 3736 { 3737 return seq_cft(seq)->seq_next(seq, v, ppos); 3738 } 3739 3740 static void cgroup_seqfile_stop(struct seq_file *seq, void *v) 3741 { 3742 if (seq_cft(seq)->seq_stop) 3743 seq_cft(seq)->seq_stop(seq, v); 3744 } 3745 3746 static int cgroup_seqfile_show(struct seq_file *m, void *arg) 3747 { 3748 struct cftype *cft = seq_cft(m); 3749 struct cgroup_subsys_state *css = seq_css(m); 3750 3751 if (cft->seq_show) 3752 return cft->seq_show(m, arg); 3753 3754 if (cft->read_u64) 3755 seq_printf(m, "%llu\n", cft->read_u64(css, cft)); 3756 else if (cft->read_s64) 3757 seq_printf(m, "%lld\n", cft->read_s64(css, cft)); 3758 else 3759 return -EINVAL; 3760 return 0; 3761 } 3762 3763 static struct kernfs_ops cgroup_kf_single_ops = { 3764 .atomic_write_len = PAGE_SIZE, 3765 .open = cgroup_file_open, 3766 .release = cgroup_file_release, 3767 .write = cgroup_file_write, 3768 .poll = cgroup_file_poll, 3769 .seq_show = cgroup_seqfile_show, 3770 }; 3771 3772 static struct kernfs_ops cgroup_kf_ops = { 3773 .atomic_write_len = PAGE_SIZE, 3774 .open = cgroup_file_open, 3775 .release = cgroup_file_release, 3776 .write = cgroup_file_write, 3777 .poll = cgroup_file_poll, 3778 .seq_start = cgroup_seqfile_start, 3779 .seq_next = cgroup_seqfile_next, 3780 .seq_stop = cgroup_seqfile_stop, 3781 .seq_show = cgroup_seqfile_show, 3782 }; 3783 3784 /* set uid and gid of cgroup dirs and files to that of the creator */ 3785 static int cgroup_kn_set_ugid(struct kernfs_node *kn) 3786 { 3787 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID, 3788 .ia_uid = current_fsuid(), 3789 .ia_gid = current_fsgid(), }; 3790 3791 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) && 3792 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID)) 3793 return 0; 3794 3795 return kernfs_setattr(kn, &iattr); 3796 } 3797 3798 static void cgroup_file_notify_timer(struct timer_list *timer) 3799 { 3800 cgroup_file_notify(container_of(timer, struct cgroup_file, 3801 notify_timer)); 3802 } 3803 3804 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp, 3805 struct cftype *cft) 3806 { 3807 char name[CGROUP_FILE_NAME_MAX]; 3808 struct kernfs_node *kn; 3809 struct lock_class_key *key = NULL; 3810 int ret; 3811 3812 #ifdef CONFIG_DEBUG_LOCK_ALLOC 3813 key = &cft->lockdep_key; 3814 #endif 3815 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name), 3816 cgroup_file_mode(cft), 3817 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 3818 0, cft->kf_ops, cft, 3819 NULL, key); 3820 if (IS_ERR(kn)) 3821 return PTR_ERR(kn); 3822 3823 ret = cgroup_kn_set_ugid(kn); 3824 if (ret) { 3825 kernfs_remove(kn); 3826 return ret; 3827 } 3828 3829 if (cft->file_offset) { 3830 struct cgroup_file *cfile = (void *)css + cft->file_offset; 3831 3832 timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0); 3833 3834 spin_lock_irq(&cgroup_file_kn_lock); 3835 cfile->kn = kn; 3836 spin_unlock_irq(&cgroup_file_kn_lock); 3837 } 3838 3839 return 0; 3840 } 3841 3842 /** 3843 * cgroup_addrm_files - add or remove files to a cgroup directory 3844 * @css: the target css 3845 * @cgrp: the target cgroup (usually css->cgroup) 3846 * @cfts: array of cftypes to be added 3847 * @is_add: whether to add or remove 3848 * 3849 * Depending on @is_add, add or remove files defined by @cfts on @cgrp. 3850 * For removals, this function never fails. 3851 */ 3852 static int cgroup_addrm_files(struct cgroup_subsys_state *css, 3853 struct cgroup *cgrp, struct cftype cfts[], 3854 bool is_add) 3855 { 3856 struct cftype *cft, *cft_end = NULL; 3857 int ret = 0; 3858 3859 lockdep_assert_held(&cgroup_mutex); 3860 3861 restart: 3862 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) { 3863 /* does cft->flags tell us to skip this file on @cgrp? */ 3864 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp)) 3865 continue; 3866 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp)) 3867 continue; 3868 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp)) 3869 continue; 3870 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp)) 3871 continue; 3872 if ((cft->flags & CFTYPE_DEBUG) && !cgroup_debug) 3873 continue; 3874 if (is_add) { 3875 ret = cgroup_add_file(css, cgrp, cft); 3876 if (ret) { 3877 pr_warn("%s: failed to add %s, err=%d\n", 3878 __func__, cft->name, ret); 3879 cft_end = cft; 3880 is_add = false; 3881 goto restart; 3882 } 3883 } else { 3884 cgroup_rm_file(cgrp, cft); 3885 } 3886 } 3887 return ret; 3888 } 3889 3890 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add) 3891 { 3892 struct cgroup_subsys *ss = cfts[0].ss; 3893 struct cgroup *root = &ss->root->cgrp; 3894 struct cgroup_subsys_state *css; 3895 int ret = 0; 3896 3897 lockdep_assert_held(&cgroup_mutex); 3898 3899 /* add/rm files for all cgroups created before */ 3900 css_for_each_descendant_pre(css, cgroup_css(root, ss)) { 3901 struct cgroup *cgrp = css->cgroup; 3902 3903 if (!(css->flags & CSS_VISIBLE)) 3904 continue; 3905 3906 ret = cgroup_addrm_files(css, cgrp, cfts, is_add); 3907 if (ret) 3908 break; 3909 } 3910 3911 if (is_add && !ret) 3912 kernfs_activate(root->kn); 3913 return ret; 3914 } 3915 3916 static void cgroup_exit_cftypes(struct cftype *cfts) 3917 { 3918 struct cftype *cft; 3919 3920 for (cft = cfts; cft->name[0] != '\0'; cft++) { 3921 /* free copy for custom atomic_write_len, see init_cftypes() */ 3922 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) 3923 kfree(cft->kf_ops); 3924 cft->kf_ops = NULL; 3925 cft->ss = NULL; 3926 3927 /* revert flags set by cgroup core while adding @cfts */ 3928 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL); 3929 } 3930 } 3931 3932 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 3933 { 3934 struct cftype *cft; 3935 3936 for (cft = cfts; cft->name[0] != '\0'; cft++) { 3937 struct kernfs_ops *kf_ops; 3938 3939 WARN_ON(cft->ss || cft->kf_ops); 3940 3941 if (cft->seq_start) 3942 kf_ops = &cgroup_kf_ops; 3943 else 3944 kf_ops = &cgroup_kf_single_ops; 3945 3946 /* 3947 * Ugh... if @cft wants a custom max_write_len, we need to 3948 * make a copy of kf_ops to set its atomic_write_len. 3949 */ 3950 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) { 3951 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL); 3952 if (!kf_ops) { 3953 cgroup_exit_cftypes(cfts); 3954 return -ENOMEM; 3955 } 3956 kf_ops->atomic_write_len = cft->max_write_len; 3957 } 3958 3959 cft->kf_ops = kf_ops; 3960 cft->ss = ss; 3961 } 3962 3963 return 0; 3964 } 3965 3966 static int cgroup_rm_cftypes_locked(struct cftype *cfts) 3967 { 3968 lockdep_assert_held(&cgroup_mutex); 3969 3970 if (!cfts || !cfts[0].ss) 3971 return -ENOENT; 3972 3973 list_del(&cfts->node); 3974 cgroup_apply_cftypes(cfts, false); 3975 cgroup_exit_cftypes(cfts); 3976 return 0; 3977 } 3978 3979 /** 3980 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem 3981 * @cfts: zero-length name terminated array of cftypes 3982 * 3983 * Unregister @cfts. Files described by @cfts are removed from all 3984 * existing cgroups and all future cgroups won't have them either. This 3985 * function can be called anytime whether @cfts' subsys is attached or not. 3986 * 3987 * Returns 0 on successful unregistration, -ENOENT if @cfts is not 3988 * registered. 3989 */ 3990 int cgroup_rm_cftypes(struct cftype *cfts) 3991 { 3992 int ret; 3993 3994 mutex_lock(&cgroup_mutex); 3995 ret = cgroup_rm_cftypes_locked(cfts); 3996 mutex_unlock(&cgroup_mutex); 3997 return ret; 3998 } 3999 4000 /** 4001 * cgroup_add_cftypes - add an array of cftypes to a subsystem 4002 * @ss: target cgroup subsystem 4003 * @cfts: zero-length name terminated array of cftypes 4004 * 4005 * Register @cfts to @ss. Files described by @cfts are created for all 4006 * existing cgroups to which @ss is attached and all future cgroups will 4007 * have them too. This function can be called anytime whether @ss is 4008 * attached or not. 4009 * 4010 * Returns 0 on successful registration, -errno on failure. Note that this 4011 * function currently returns 0 as long as @cfts registration is successful 4012 * even if some file creation attempts on existing cgroups fail. 4013 */ 4014 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4015 { 4016 int ret; 4017 4018 if (!cgroup_ssid_enabled(ss->id)) 4019 return 0; 4020 4021 if (!cfts || cfts[0].name[0] == '\0') 4022 return 0; 4023 4024 ret = cgroup_init_cftypes(ss, cfts); 4025 if (ret) 4026 return ret; 4027 4028 mutex_lock(&cgroup_mutex); 4029 4030 list_add_tail(&cfts->node, &ss->cfts); 4031 ret = cgroup_apply_cftypes(cfts, true); 4032 if (ret) 4033 cgroup_rm_cftypes_locked(cfts); 4034 4035 mutex_unlock(&cgroup_mutex); 4036 return ret; 4037 } 4038 4039 /** 4040 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy 4041 * @ss: target cgroup subsystem 4042 * @cfts: zero-length name terminated array of cftypes 4043 * 4044 * Similar to cgroup_add_cftypes() but the added files are only used for 4045 * the default hierarchy. 4046 */ 4047 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4048 { 4049 struct cftype *cft; 4050 4051 for (cft = cfts; cft && cft->name[0] != '\0'; cft++) 4052 cft->flags |= __CFTYPE_ONLY_ON_DFL; 4053 return cgroup_add_cftypes(ss, cfts); 4054 } 4055 4056 /** 4057 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies 4058 * @ss: target cgroup subsystem 4059 * @cfts: zero-length name terminated array of cftypes 4060 * 4061 * Similar to cgroup_add_cftypes() but the added files are only used for 4062 * the legacy hierarchies. 4063 */ 4064 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4065 { 4066 struct cftype *cft; 4067 4068 for (cft = cfts; cft && cft->name[0] != '\0'; cft++) 4069 cft->flags |= __CFTYPE_NOT_ON_DFL; 4070 return cgroup_add_cftypes(ss, cfts); 4071 } 4072 4073 /** 4074 * cgroup_file_notify - generate a file modified event for a cgroup_file 4075 * @cfile: target cgroup_file 4076 * 4077 * @cfile must have been obtained by setting cftype->file_offset. 4078 */ 4079 void cgroup_file_notify(struct cgroup_file *cfile) 4080 { 4081 unsigned long flags; 4082 4083 spin_lock_irqsave(&cgroup_file_kn_lock, flags); 4084 if (cfile->kn) { 4085 unsigned long last = cfile->notified_at; 4086 unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV; 4087 4088 if (time_in_range(jiffies, last, next)) { 4089 timer_reduce(&cfile->notify_timer, next); 4090 } else { 4091 kernfs_notify(cfile->kn); 4092 cfile->notified_at = jiffies; 4093 } 4094 } 4095 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags); 4096 } 4097 4098 /** 4099 * css_next_child - find the next child of a given css 4100 * @pos: the current position (%NULL to initiate traversal) 4101 * @parent: css whose children to walk 4102 * 4103 * This function returns the next child of @parent and should be called 4104 * under either cgroup_mutex or RCU read lock. The only requirement is 4105 * that @parent and @pos are accessible. The next sibling is guaranteed to 4106 * be returned regardless of their states. 4107 * 4108 * If a subsystem synchronizes ->css_online() and the start of iteration, a 4109 * css which finished ->css_online() is guaranteed to be visible in the 4110 * future iterations and will stay visible until the last reference is put. 4111 * A css which hasn't finished ->css_online() or already finished 4112 * ->css_offline() may show up during traversal. It's each subsystem's 4113 * responsibility to synchronize against on/offlining. 4114 */ 4115 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos, 4116 struct cgroup_subsys_state *parent) 4117 { 4118 struct cgroup_subsys_state *next; 4119 4120 cgroup_assert_mutex_or_rcu_locked(); 4121 4122 /* 4123 * @pos could already have been unlinked from the sibling list. 4124 * Once a cgroup is removed, its ->sibling.next is no longer 4125 * updated when its next sibling changes. CSS_RELEASED is set when 4126 * @pos is taken off list, at which time its next pointer is valid, 4127 * and, as releases are serialized, the one pointed to by the next 4128 * pointer is guaranteed to not have started release yet. This 4129 * implies that if we observe !CSS_RELEASED on @pos in this RCU 4130 * critical section, the one pointed to by its next pointer is 4131 * guaranteed to not have finished its RCU grace period even if we 4132 * have dropped rcu_read_lock() inbetween iterations. 4133 * 4134 * If @pos has CSS_RELEASED set, its next pointer can't be 4135 * dereferenced; however, as each css is given a monotonically 4136 * increasing unique serial number and always appended to the 4137 * sibling list, the next one can be found by walking the parent's 4138 * children until the first css with higher serial number than 4139 * @pos's. While this path can be slower, it happens iff iteration 4140 * races against release and the race window is very small. 4141 */ 4142 if (!pos) { 4143 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling); 4144 } else if (likely(!(pos->flags & CSS_RELEASED))) { 4145 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling); 4146 } else { 4147 list_for_each_entry_rcu(next, &parent->children, sibling, 4148 lockdep_is_held(&cgroup_mutex)) 4149 if (next->serial_nr > pos->serial_nr) 4150 break; 4151 } 4152 4153 /* 4154 * @next, if not pointing to the head, can be dereferenced and is 4155 * the next sibling. 4156 */ 4157 if (&next->sibling != &parent->children) 4158 return next; 4159 return NULL; 4160 } 4161 4162 /** 4163 * css_next_descendant_pre - find the next descendant for pre-order walk 4164 * @pos: the current position (%NULL to initiate traversal) 4165 * @root: css whose descendants to walk 4166 * 4167 * To be used by css_for_each_descendant_pre(). Find the next descendant 4168 * to visit for pre-order traversal of @root's descendants. @root is 4169 * included in the iteration and the first node to be visited. 4170 * 4171 * While this function requires cgroup_mutex or RCU read locking, it 4172 * doesn't require the whole traversal to be contained in a single critical 4173 * section. This function will return the correct next descendant as long 4174 * as both @pos and @root are accessible and @pos is a descendant of @root. 4175 * 4176 * If a subsystem synchronizes ->css_online() and the start of iteration, a 4177 * css which finished ->css_online() is guaranteed to be visible in the 4178 * future iterations and will stay visible until the last reference is put. 4179 * A css which hasn't finished ->css_online() or already finished 4180 * ->css_offline() may show up during traversal. It's each subsystem's 4181 * responsibility to synchronize against on/offlining. 4182 */ 4183 struct cgroup_subsys_state * 4184 css_next_descendant_pre(struct cgroup_subsys_state *pos, 4185 struct cgroup_subsys_state *root) 4186 { 4187 struct cgroup_subsys_state *next; 4188 4189 cgroup_assert_mutex_or_rcu_locked(); 4190 4191 /* if first iteration, visit @root */ 4192 if (!pos) 4193 return root; 4194 4195 /* visit the first child if exists */ 4196 next = css_next_child(NULL, pos); 4197 if (next) 4198 return next; 4199 4200 /* no child, visit my or the closest ancestor's next sibling */ 4201 while (pos != root) { 4202 next = css_next_child(pos, pos->parent); 4203 if (next) 4204 return next; 4205 pos = pos->parent; 4206 } 4207 4208 return NULL; 4209 } 4210 EXPORT_SYMBOL_GPL(css_next_descendant_pre); 4211 4212 /** 4213 * css_rightmost_descendant - return the rightmost descendant of a css 4214 * @pos: css of interest 4215 * 4216 * Return the rightmost descendant of @pos. If there's no descendant, @pos 4217 * is returned. This can be used during pre-order traversal to skip 4218 * subtree of @pos. 4219 * 4220 * While this function requires cgroup_mutex or RCU read locking, it 4221 * doesn't require the whole traversal to be contained in a single critical 4222 * section. This function will return the correct rightmost descendant as 4223 * long as @pos is accessible. 4224 */ 4225 struct cgroup_subsys_state * 4226 css_rightmost_descendant(struct cgroup_subsys_state *pos) 4227 { 4228 struct cgroup_subsys_state *last, *tmp; 4229 4230 cgroup_assert_mutex_or_rcu_locked(); 4231 4232 do { 4233 last = pos; 4234 /* ->prev isn't RCU safe, walk ->next till the end */ 4235 pos = NULL; 4236 css_for_each_child(tmp, last) 4237 pos = tmp; 4238 } while (pos); 4239 4240 return last; 4241 } 4242 4243 static struct cgroup_subsys_state * 4244 css_leftmost_descendant(struct cgroup_subsys_state *pos) 4245 { 4246 struct cgroup_subsys_state *last; 4247 4248 do { 4249 last = pos; 4250 pos = css_next_child(NULL, pos); 4251 } while (pos); 4252 4253 return last; 4254 } 4255 4256 /** 4257 * css_next_descendant_post - find the next descendant for post-order walk 4258 * @pos: the current position (%NULL to initiate traversal) 4259 * @root: css whose descendants to walk 4260 * 4261 * To be used by css_for_each_descendant_post(). Find the next descendant 4262 * to visit for post-order traversal of @root's descendants. @root is 4263 * included in the iteration and the last node to be visited. 4264 * 4265 * While this function requires cgroup_mutex or RCU read locking, it 4266 * doesn't require the whole traversal to be contained in a single critical 4267 * section. This function will return the correct next descendant as long 4268 * as both @pos and @cgroup are accessible and @pos is a descendant of 4269 * @cgroup. 4270 * 4271 * If a subsystem synchronizes ->css_online() and the start of iteration, a 4272 * css which finished ->css_online() is guaranteed to be visible in the 4273 * future iterations and will stay visible until the last reference is put. 4274 * A css which hasn't finished ->css_online() or already finished 4275 * ->css_offline() may show up during traversal. It's each subsystem's 4276 * responsibility to synchronize against on/offlining. 4277 */ 4278 struct cgroup_subsys_state * 4279 css_next_descendant_post(struct cgroup_subsys_state *pos, 4280 struct cgroup_subsys_state *root) 4281 { 4282 struct cgroup_subsys_state *next; 4283 4284 cgroup_assert_mutex_or_rcu_locked(); 4285 4286 /* if first iteration, visit leftmost descendant which may be @root */ 4287 if (!pos) 4288 return css_leftmost_descendant(root); 4289 4290 /* if we visited @root, we're done */ 4291 if (pos == root) 4292 return NULL; 4293 4294 /* if there's an unvisited sibling, visit its leftmost descendant */ 4295 next = css_next_child(pos, pos->parent); 4296 if (next) 4297 return css_leftmost_descendant(next); 4298 4299 /* no sibling left, visit parent */ 4300 return pos->parent; 4301 } 4302 4303 /** 4304 * css_has_online_children - does a css have online children 4305 * @css: the target css 4306 * 4307 * Returns %true if @css has any online children; otherwise, %false. This 4308 * function can be called from any context but the caller is responsible 4309 * for synchronizing against on/offlining as necessary. 4310 */ 4311 bool css_has_online_children(struct cgroup_subsys_state *css) 4312 { 4313 struct cgroup_subsys_state *child; 4314 bool ret = false; 4315 4316 rcu_read_lock(); 4317 css_for_each_child(child, css) { 4318 if (child->flags & CSS_ONLINE) { 4319 ret = true; 4320 break; 4321 } 4322 } 4323 rcu_read_unlock(); 4324 return ret; 4325 } 4326 4327 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it) 4328 { 4329 struct list_head *l; 4330 struct cgrp_cset_link *link; 4331 struct css_set *cset; 4332 4333 lockdep_assert_held(&css_set_lock); 4334 4335 /* find the next threaded cset */ 4336 if (it->tcset_pos) { 4337 l = it->tcset_pos->next; 4338 4339 if (l != it->tcset_head) { 4340 it->tcset_pos = l; 4341 return container_of(l, struct css_set, 4342 threaded_csets_node); 4343 } 4344 4345 it->tcset_pos = NULL; 4346 } 4347 4348 /* find the next cset */ 4349 l = it->cset_pos; 4350 l = l->next; 4351 if (l == it->cset_head) { 4352 it->cset_pos = NULL; 4353 return NULL; 4354 } 4355 4356 if (it->ss) { 4357 cset = container_of(l, struct css_set, e_cset_node[it->ss->id]); 4358 } else { 4359 link = list_entry(l, struct cgrp_cset_link, cset_link); 4360 cset = link->cset; 4361 } 4362 4363 it->cset_pos = l; 4364 4365 /* initialize threaded css_set walking */ 4366 if (it->flags & CSS_TASK_ITER_THREADED) { 4367 if (it->cur_dcset) 4368 put_css_set_locked(it->cur_dcset); 4369 it->cur_dcset = cset; 4370 get_css_set(cset); 4371 4372 it->tcset_head = &cset->threaded_csets; 4373 it->tcset_pos = &cset->threaded_csets; 4374 } 4375 4376 return cset; 4377 } 4378 4379 /** 4380 * css_task_iter_advance_css_set - advance a task itererator to the next css_set 4381 * @it: the iterator to advance 4382 * 4383 * Advance @it to the next css_set to walk. 4384 */ 4385 static void css_task_iter_advance_css_set(struct css_task_iter *it) 4386 { 4387 struct css_set *cset; 4388 4389 lockdep_assert_held(&css_set_lock); 4390 4391 /* Advance to the next non-empty css_set and find first non-empty tasks list*/ 4392 while ((cset = css_task_iter_next_css_set(it))) { 4393 if (!list_empty(&cset->tasks)) { 4394 it->cur_tasks_head = &cset->tasks; 4395 break; 4396 } else if (!list_empty(&cset->mg_tasks)) { 4397 it->cur_tasks_head = &cset->mg_tasks; 4398 break; 4399 } else if (!list_empty(&cset->dying_tasks)) { 4400 it->cur_tasks_head = &cset->dying_tasks; 4401 break; 4402 } 4403 } 4404 if (!cset) { 4405 it->task_pos = NULL; 4406 return; 4407 } 4408 it->task_pos = it->cur_tasks_head->next; 4409 4410 /* 4411 * We don't keep css_sets locked across iteration steps and thus 4412 * need to take steps to ensure that iteration can be resumed after 4413 * the lock is re-acquired. Iteration is performed at two levels - 4414 * css_sets and tasks in them. 4415 * 4416 * Once created, a css_set never leaves its cgroup lists, so a 4417 * pinned css_set is guaranteed to stay put and we can resume 4418 * iteration afterwards. 4419 * 4420 * Tasks may leave @cset across iteration steps. This is resolved 4421 * by registering each iterator with the css_set currently being 4422 * walked and making css_set_move_task() advance iterators whose 4423 * next task is leaving. 4424 */ 4425 if (it->cur_cset) { 4426 list_del(&it->iters_node); 4427 put_css_set_locked(it->cur_cset); 4428 } 4429 get_css_set(cset); 4430 it->cur_cset = cset; 4431 list_add(&it->iters_node, &cset->task_iters); 4432 } 4433 4434 static void css_task_iter_skip(struct css_task_iter *it, 4435 struct task_struct *task) 4436 { 4437 lockdep_assert_held(&css_set_lock); 4438 4439 if (it->task_pos == &task->cg_list) { 4440 it->task_pos = it->task_pos->next; 4441 it->flags |= CSS_TASK_ITER_SKIPPED; 4442 } 4443 } 4444 4445 static void css_task_iter_advance(struct css_task_iter *it) 4446 { 4447 struct task_struct *task; 4448 4449 lockdep_assert_held(&css_set_lock); 4450 repeat: 4451 if (it->task_pos) { 4452 /* 4453 * Advance iterator to find next entry. We go through cset 4454 * tasks, mg_tasks and dying_tasks, when consumed we move onto 4455 * the next cset. 4456 */ 4457 if (it->flags & CSS_TASK_ITER_SKIPPED) 4458 it->flags &= ~CSS_TASK_ITER_SKIPPED; 4459 else 4460 it->task_pos = it->task_pos->next; 4461 4462 if (it->task_pos == &it->cur_cset->tasks) { 4463 it->cur_tasks_head = &it->cur_cset->mg_tasks; 4464 it->task_pos = it->cur_tasks_head->next; 4465 } 4466 if (it->task_pos == &it->cur_cset->mg_tasks) { 4467 it->cur_tasks_head = &it->cur_cset->dying_tasks; 4468 it->task_pos = it->cur_tasks_head->next; 4469 } 4470 if (it->task_pos == &it->cur_cset->dying_tasks) 4471 css_task_iter_advance_css_set(it); 4472 } else { 4473 /* called from start, proceed to the first cset */ 4474 css_task_iter_advance_css_set(it); 4475 } 4476 4477 if (!it->task_pos) 4478 return; 4479 4480 task = list_entry(it->task_pos, struct task_struct, cg_list); 4481 4482 if (it->flags & CSS_TASK_ITER_PROCS) { 4483 /* if PROCS, skip over tasks which aren't group leaders */ 4484 if (!thread_group_leader(task)) 4485 goto repeat; 4486 4487 /* and dying leaders w/o live member threads */ 4488 if (it->cur_tasks_head == &it->cur_cset->dying_tasks && 4489 !atomic_read(&task->signal->live)) 4490 goto repeat; 4491 } else { 4492 /* skip all dying ones */ 4493 if (it->cur_tasks_head == &it->cur_cset->dying_tasks) 4494 goto repeat; 4495 } 4496 } 4497 4498 /** 4499 * css_task_iter_start - initiate task iteration 4500 * @css: the css to walk tasks of 4501 * @flags: CSS_TASK_ITER_* flags 4502 * @it: the task iterator to use 4503 * 4504 * Initiate iteration through the tasks of @css. The caller can call 4505 * css_task_iter_next() to walk through the tasks until the function 4506 * returns NULL. On completion of iteration, css_task_iter_end() must be 4507 * called. 4508 */ 4509 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags, 4510 struct css_task_iter *it) 4511 { 4512 memset(it, 0, sizeof(*it)); 4513 4514 spin_lock_irq(&css_set_lock); 4515 4516 it->ss = css->ss; 4517 it->flags = flags; 4518 4519 if (it->ss) 4520 it->cset_pos = &css->cgroup->e_csets[css->ss->id]; 4521 else 4522 it->cset_pos = &css->cgroup->cset_links; 4523 4524 it->cset_head = it->cset_pos; 4525 4526 css_task_iter_advance(it); 4527 4528 spin_unlock_irq(&css_set_lock); 4529 } 4530 4531 /** 4532 * css_task_iter_next - return the next task for the iterator 4533 * @it: the task iterator being iterated 4534 * 4535 * The "next" function for task iteration. @it should have been 4536 * initialized via css_task_iter_start(). Returns NULL when the iteration 4537 * reaches the end. 4538 */ 4539 struct task_struct *css_task_iter_next(struct css_task_iter *it) 4540 { 4541 if (it->cur_task) { 4542 put_task_struct(it->cur_task); 4543 it->cur_task = NULL; 4544 } 4545 4546 spin_lock_irq(&css_set_lock); 4547 4548 /* @it may be half-advanced by skips, finish advancing */ 4549 if (it->flags & CSS_TASK_ITER_SKIPPED) 4550 css_task_iter_advance(it); 4551 4552 if (it->task_pos) { 4553 it->cur_task = list_entry(it->task_pos, struct task_struct, 4554 cg_list); 4555 get_task_struct(it->cur_task); 4556 css_task_iter_advance(it); 4557 } 4558 4559 spin_unlock_irq(&css_set_lock); 4560 4561 return it->cur_task; 4562 } 4563 4564 /** 4565 * css_task_iter_end - finish task iteration 4566 * @it: the task iterator to finish 4567 * 4568 * Finish task iteration started by css_task_iter_start(). 4569 */ 4570 void css_task_iter_end(struct css_task_iter *it) 4571 { 4572 if (it->cur_cset) { 4573 spin_lock_irq(&css_set_lock); 4574 list_del(&it->iters_node); 4575 put_css_set_locked(it->cur_cset); 4576 spin_unlock_irq(&css_set_lock); 4577 } 4578 4579 if (it->cur_dcset) 4580 put_css_set(it->cur_dcset); 4581 4582 if (it->cur_task) 4583 put_task_struct(it->cur_task); 4584 } 4585 4586 static void cgroup_procs_release(struct kernfs_open_file *of) 4587 { 4588 if (of->priv) { 4589 css_task_iter_end(of->priv); 4590 kfree(of->priv); 4591 } 4592 } 4593 4594 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos) 4595 { 4596 struct kernfs_open_file *of = s->private; 4597 struct css_task_iter *it = of->priv; 4598 4599 if (pos) 4600 (*pos)++; 4601 4602 return css_task_iter_next(it); 4603 } 4604 4605 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos, 4606 unsigned int iter_flags) 4607 { 4608 struct kernfs_open_file *of = s->private; 4609 struct cgroup *cgrp = seq_css(s)->cgroup; 4610 struct css_task_iter *it = of->priv; 4611 4612 /* 4613 * When a seq_file is seeked, it's always traversed sequentially 4614 * from position 0, so we can simply keep iterating on !0 *pos. 4615 */ 4616 if (!it) { 4617 if (WARN_ON_ONCE((*pos))) 4618 return ERR_PTR(-EINVAL); 4619 4620 it = kzalloc(sizeof(*it), GFP_KERNEL); 4621 if (!it) 4622 return ERR_PTR(-ENOMEM); 4623 of->priv = it; 4624 css_task_iter_start(&cgrp->self, iter_flags, it); 4625 } else if (!(*pos)) { 4626 css_task_iter_end(it); 4627 css_task_iter_start(&cgrp->self, iter_flags, it); 4628 } else 4629 return it->cur_task; 4630 4631 return cgroup_procs_next(s, NULL, NULL); 4632 } 4633 4634 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos) 4635 { 4636 struct cgroup *cgrp = seq_css(s)->cgroup; 4637 4638 /* 4639 * All processes of a threaded subtree belong to the domain cgroup 4640 * of the subtree. Only threads can be distributed across the 4641 * subtree. Reject reads on cgroup.procs in the subtree proper. 4642 * They're always empty anyway. 4643 */ 4644 if (cgroup_is_threaded(cgrp)) 4645 return ERR_PTR(-EOPNOTSUPP); 4646 4647 return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS | 4648 CSS_TASK_ITER_THREADED); 4649 } 4650 4651 static int cgroup_procs_show(struct seq_file *s, void *v) 4652 { 4653 seq_printf(s, "%d\n", task_pid_vnr(v)); 4654 return 0; 4655 } 4656 4657 static int cgroup_may_write(const struct cgroup *cgrp, struct super_block *sb) 4658 { 4659 int ret; 4660 struct inode *inode; 4661 4662 lockdep_assert_held(&cgroup_mutex); 4663 4664 inode = kernfs_get_inode(sb, cgrp->procs_file.kn); 4665 if (!inode) 4666 return -ENOMEM; 4667 4668 ret = inode_permission(inode, MAY_WRITE); 4669 iput(inode); 4670 return ret; 4671 } 4672 4673 static int cgroup_procs_write_permission(struct cgroup *src_cgrp, 4674 struct cgroup *dst_cgrp, 4675 struct super_block *sb) 4676 { 4677 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns; 4678 struct cgroup *com_cgrp = src_cgrp; 4679 int ret; 4680 4681 lockdep_assert_held(&cgroup_mutex); 4682 4683 /* find the common ancestor */ 4684 while (!cgroup_is_descendant(dst_cgrp, com_cgrp)) 4685 com_cgrp = cgroup_parent(com_cgrp); 4686 4687 /* %current should be authorized to migrate to the common ancestor */ 4688 ret = cgroup_may_write(com_cgrp, sb); 4689 if (ret) 4690 return ret; 4691 4692 /* 4693 * If namespaces are delegation boundaries, %current must be able 4694 * to see both source and destination cgroups from its namespace. 4695 */ 4696 if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) && 4697 (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) || 4698 !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp))) 4699 return -ENOENT; 4700 4701 return 0; 4702 } 4703 4704 static int cgroup_attach_permissions(struct cgroup *src_cgrp, 4705 struct cgroup *dst_cgrp, 4706 struct super_block *sb, bool threadgroup) 4707 { 4708 int ret = 0; 4709 4710 ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, sb); 4711 if (ret) 4712 return ret; 4713 4714 ret = cgroup_migrate_vet_dst(dst_cgrp); 4715 if (ret) 4716 return ret; 4717 4718 if (!threadgroup && (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp)) 4719 ret = -EOPNOTSUPP; 4720 4721 return ret; 4722 } 4723 4724 static ssize_t cgroup_procs_write(struct kernfs_open_file *of, 4725 char *buf, size_t nbytes, loff_t off) 4726 { 4727 struct cgroup *src_cgrp, *dst_cgrp; 4728 struct task_struct *task; 4729 ssize_t ret; 4730 bool locked; 4731 4732 dst_cgrp = cgroup_kn_lock_live(of->kn, false); 4733 if (!dst_cgrp) 4734 return -ENODEV; 4735 4736 task = cgroup_procs_write_start(buf, true, &locked); 4737 ret = PTR_ERR_OR_ZERO(task); 4738 if (ret) 4739 goto out_unlock; 4740 4741 /* find the source cgroup */ 4742 spin_lock_irq(&css_set_lock); 4743 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root); 4744 spin_unlock_irq(&css_set_lock); 4745 4746 ret = cgroup_attach_permissions(src_cgrp, dst_cgrp, 4747 of->file->f_path.dentry->d_sb, true); 4748 if (ret) 4749 goto out_finish; 4750 4751 ret = cgroup_attach_task(dst_cgrp, task, true); 4752 4753 out_finish: 4754 cgroup_procs_write_finish(task, locked); 4755 out_unlock: 4756 cgroup_kn_unlock(of->kn); 4757 4758 return ret ?: nbytes; 4759 } 4760 4761 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos) 4762 { 4763 return __cgroup_procs_start(s, pos, 0); 4764 } 4765 4766 static ssize_t cgroup_threads_write(struct kernfs_open_file *of, 4767 char *buf, size_t nbytes, loff_t off) 4768 { 4769 struct cgroup *src_cgrp, *dst_cgrp; 4770 struct task_struct *task; 4771 ssize_t ret; 4772 bool locked; 4773 4774 buf = strstrip(buf); 4775 4776 dst_cgrp = cgroup_kn_lock_live(of->kn, false); 4777 if (!dst_cgrp) 4778 return -ENODEV; 4779 4780 task = cgroup_procs_write_start(buf, false, &locked); 4781 ret = PTR_ERR_OR_ZERO(task); 4782 if (ret) 4783 goto out_unlock; 4784 4785 /* find the source cgroup */ 4786 spin_lock_irq(&css_set_lock); 4787 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root); 4788 spin_unlock_irq(&css_set_lock); 4789 4790 /* thread migrations follow the cgroup.procs delegation rule */ 4791 ret = cgroup_attach_permissions(src_cgrp, dst_cgrp, 4792 of->file->f_path.dentry->d_sb, false); 4793 if (ret) 4794 goto out_finish; 4795 4796 ret = cgroup_attach_task(dst_cgrp, task, false); 4797 4798 out_finish: 4799 cgroup_procs_write_finish(task, locked); 4800 out_unlock: 4801 cgroup_kn_unlock(of->kn); 4802 4803 return ret ?: nbytes; 4804 } 4805 4806 /* cgroup core interface files for the default hierarchy */ 4807 static struct cftype cgroup_base_files[] = { 4808 { 4809 .name = "cgroup.type", 4810 .flags = CFTYPE_NOT_ON_ROOT, 4811 .seq_show = cgroup_type_show, 4812 .write = cgroup_type_write, 4813 }, 4814 { 4815 .name = "cgroup.procs", 4816 .flags = CFTYPE_NS_DELEGATABLE, 4817 .file_offset = offsetof(struct cgroup, procs_file), 4818 .release = cgroup_procs_release, 4819 .seq_start = cgroup_procs_start, 4820 .seq_next = cgroup_procs_next, 4821 .seq_show = cgroup_procs_show, 4822 .write = cgroup_procs_write, 4823 }, 4824 { 4825 .name = "cgroup.threads", 4826 .flags = CFTYPE_NS_DELEGATABLE, 4827 .release = cgroup_procs_release, 4828 .seq_start = cgroup_threads_start, 4829 .seq_next = cgroup_procs_next, 4830 .seq_show = cgroup_procs_show, 4831 .write = cgroup_threads_write, 4832 }, 4833 { 4834 .name = "cgroup.controllers", 4835 .seq_show = cgroup_controllers_show, 4836 }, 4837 { 4838 .name = "cgroup.subtree_control", 4839 .flags = CFTYPE_NS_DELEGATABLE, 4840 .seq_show = cgroup_subtree_control_show, 4841 .write = cgroup_subtree_control_write, 4842 }, 4843 { 4844 .name = "cgroup.events", 4845 .flags = CFTYPE_NOT_ON_ROOT, 4846 .file_offset = offsetof(struct cgroup, events_file), 4847 .seq_show = cgroup_events_show, 4848 }, 4849 { 4850 .name = "cgroup.max.descendants", 4851 .seq_show = cgroup_max_descendants_show, 4852 .write = cgroup_max_descendants_write, 4853 }, 4854 { 4855 .name = "cgroup.max.depth", 4856 .seq_show = cgroup_max_depth_show, 4857 .write = cgroup_max_depth_write, 4858 }, 4859 { 4860 .name = "cgroup.stat", 4861 .seq_show = cgroup_stat_show, 4862 }, 4863 { 4864 .name = "cgroup.freeze", 4865 .flags = CFTYPE_NOT_ON_ROOT, 4866 .seq_show = cgroup_freeze_show, 4867 .write = cgroup_freeze_write, 4868 }, 4869 { 4870 .name = "cpu.stat", 4871 .flags = CFTYPE_NOT_ON_ROOT, 4872 .seq_show = cpu_stat_show, 4873 }, 4874 #ifdef CONFIG_PSI 4875 { 4876 .name = "io.pressure", 4877 .seq_show = cgroup_io_pressure_show, 4878 .write = cgroup_io_pressure_write, 4879 .poll = cgroup_pressure_poll, 4880 .release = cgroup_pressure_release, 4881 }, 4882 { 4883 .name = "memory.pressure", 4884 .seq_show = cgroup_memory_pressure_show, 4885 .write = cgroup_memory_pressure_write, 4886 .poll = cgroup_pressure_poll, 4887 .release = cgroup_pressure_release, 4888 }, 4889 { 4890 .name = "cpu.pressure", 4891 .seq_show = cgroup_cpu_pressure_show, 4892 .write = cgroup_cpu_pressure_write, 4893 .poll = cgroup_pressure_poll, 4894 .release = cgroup_pressure_release, 4895 }, 4896 #endif /* CONFIG_PSI */ 4897 { } /* terminate */ 4898 }; 4899 4900 /* 4901 * css destruction is four-stage process. 4902 * 4903 * 1. Destruction starts. Killing of the percpu_ref is initiated. 4904 * Implemented in kill_css(). 4905 * 4906 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs 4907 * and thus css_tryget_online() is guaranteed to fail, the css can be 4908 * offlined by invoking offline_css(). After offlining, the base ref is 4909 * put. Implemented in css_killed_work_fn(). 4910 * 4911 * 3. When the percpu_ref reaches zero, the only possible remaining 4912 * accessors are inside RCU read sections. css_release() schedules the 4913 * RCU callback. 4914 * 4915 * 4. After the grace period, the css can be freed. Implemented in 4916 * css_free_work_fn(). 4917 * 4918 * It is actually hairier because both step 2 and 4 require process context 4919 * and thus involve punting to css->destroy_work adding two additional 4920 * steps to the already complex sequence. 4921 */ 4922 static void css_free_rwork_fn(struct work_struct *work) 4923 { 4924 struct cgroup_subsys_state *css = container_of(to_rcu_work(work), 4925 struct cgroup_subsys_state, destroy_rwork); 4926 struct cgroup_subsys *ss = css->ss; 4927 struct cgroup *cgrp = css->cgroup; 4928 4929 percpu_ref_exit(&css->refcnt); 4930 4931 if (ss) { 4932 /* css free path */ 4933 struct cgroup_subsys_state *parent = css->parent; 4934 int id = css->id; 4935 4936 ss->css_free(css); 4937 cgroup_idr_remove(&ss->css_idr, id); 4938 cgroup_put(cgrp); 4939 4940 if (parent) 4941 css_put(parent); 4942 } else { 4943 /* cgroup free path */ 4944 atomic_dec(&cgrp->root->nr_cgrps); 4945 cgroup1_pidlist_destroy_all(cgrp); 4946 cancel_work_sync(&cgrp->release_agent_work); 4947 4948 if (cgroup_parent(cgrp)) { 4949 /* 4950 * We get a ref to the parent, and put the ref when 4951 * this cgroup is being freed, so it's guaranteed 4952 * that the parent won't be destroyed before its 4953 * children. 4954 */ 4955 cgroup_put(cgroup_parent(cgrp)); 4956 kernfs_put(cgrp->kn); 4957 psi_cgroup_free(cgrp); 4958 if (cgroup_on_dfl(cgrp)) 4959 cgroup_rstat_exit(cgrp); 4960 kfree(cgrp); 4961 } else { 4962 /* 4963 * This is root cgroup's refcnt reaching zero, 4964 * which indicates that the root should be 4965 * released. 4966 */ 4967 cgroup_destroy_root(cgrp->root); 4968 } 4969 } 4970 } 4971 4972 static void css_release_work_fn(struct work_struct *work) 4973 { 4974 struct cgroup_subsys_state *css = 4975 container_of(work, struct cgroup_subsys_state, destroy_work); 4976 struct cgroup_subsys *ss = css->ss; 4977 struct cgroup *cgrp = css->cgroup; 4978 4979 mutex_lock(&cgroup_mutex); 4980 4981 css->flags |= CSS_RELEASED; 4982 list_del_rcu(&css->sibling); 4983 4984 if (ss) { 4985 /* css release path */ 4986 if (!list_empty(&css->rstat_css_node)) { 4987 cgroup_rstat_flush(cgrp); 4988 list_del_rcu(&css->rstat_css_node); 4989 } 4990 4991 cgroup_idr_replace(&ss->css_idr, NULL, css->id); 4992 if (ss->css_released) 4993 ss->css_released(css); 4994 } else { 4995 struct cgroup *tcgrp; 4996 4997 /* cgroup release path */ 4998 TRACE_CGROUP_PATH(release, cgrp); 4999 5000 if (cgroup_on_dfl(cgrp)) 5001 cgroup_rstat_flush(cgrp); 5002 5003 spin_lock_irq(&css_set_lock); 5004 for (tcgrp = cgroup_parent(cgrp); tcgrp; 5005 tcgrp = cgroup_parent(tcgrp)) 5006 tcgrp->nr_dying_descendants--; 5007 spin_unlock_irq(&css_set_lock); 5008 5009 /* 5010 * There are two control paths which try to determine 5011 * cgroup from dentry without going through kernfs - 5012 * cgroupstats_build() and css_tryget_online_from_dir(). 5013 * Those are supported by RCU protecting clearing of 5014 * cgrp->kn->priv backpointer. 5015 */ 5016 if (cgrp->kn) 5017 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, 5018 NULL); 5019 } 5020 5021 mutex_unlock(&cgroup_mutex); 5022 5023 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn); 5024 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork); 5025 } 5026 5027 static void css_release(struct percpu_ref *ref) 5028 { 5029 struct cgroup_subsys_state *css = 5030 container_of(ref, struct cgroup_subsys_state, refcnt); 5031 5032 INIT_WORK(&css->destroy_work, css_release_work_fn); 5033 queue_work(cgroup_destroy_wq, &css->destroy_work); 5034 } 5035 5036 static void init_and_link_css(struct cgroup_subsys_state *css, 5037 struct cgroup_subsys *ss, struct cgroup *cgrp) 5038 { 5039 lockdep_assert_held(&cgroup_mutex); 5040 5041 cgroup_get_live(cgrp); 5042 5043 memset(css, 0, sizeof(*css)); 5044 css->cgroup = cgrp; 5045 css->ss = ss; 5046 css->id = -1; 5047 INIT_LIST_HEAD(&css->sibling); 5048 INIT_LIST_HEAD(&css->children); 5049 INIT_LIST_HEAD(&css->rstat_css_node); 5050 css->serial_nr = css_serial_nr_next++; 5051 atomic_set(&css->online_cnt, 0); 5052 5053 if (cgroup_parent(cgrp)) { 5054 css->parent = cgroup_css(cgroup_parent(cgrp), ss); 5055 css_get(css->parent); 5056 } 5057 5058 if (cgroup_on_dfl(cgrp) && ss->css_rstat_flush) 5059 list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list); 5060 5061 BUG_ON(cgroup_css(cgrp, ss)); 5062 } 5063 5064 /* invoke ->css_online() on a new CSS and mark it online if successful */ 5065 static int online_css(struct cgroup_subsys_state *css) 5066 { 5067 struct cgroup_subsys *ss = css->ss; 5068 int ret = 0; 5069 5070 lockdep_assert_held(&cgroup_mutex); 5071 5072 if (ss->css_online) 5073 ret = ss->css_online(css); 5074 if (!ret) { 5075 css->flags |= CSS_ONLINE; 5076 rcu_assign_pointer(css->cgroup->subsys[ss->id], css); 5077 5078 atomic_inc(&css->online_cnt); 5079 if (css->parent) 5080 atomic_inc(&css->parent->online_cnt); 5081 } 5082 return ret; 5083 } 5084 5085 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */ 5086 static void offline_css(struct cgroup_subsys_state *css) 5087 { 5088 struct cgroup_subsys *ss = css->ss; 5089 5090 lockdep_assert_held(&cgroup_mutex); 5091 5092 if (!(css->flags & CSS_ONLINE)) 5093 return; 5094 5095 if (ss->css_offline) 5096 ss->css_offline(css); 5097 5098 css->flags &= ~CSS_ONLINE; 5099 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL); 5100 5101 wake_up_all(&css->cgroup->offline_waitq); 5102 } 5103 5104 /** 5105 * css_create - create a cgroup_subsys_state 5106 * @cgrp: the cgroup new css will be associated with 5107 * @ss: the subsys of new css 5108 * 5109 * Create a new css associated with @cgrp - @ss pair. On success, the new 5110 * css is online and installed in @cgrp. This function doesn't create the 5111 * interface files. Returns 0 on success, -errno on failure. 5112 */ 5113 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp, 5114 struct cgroup_subsys *ss) 5115 { 5116 struct cgroup *parent = cgroup_parent(cgrp); 5117 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss); 5118 struct cgroup_subsys_state *css; 5119 int err; 5120 5121 lockdep_assert_held(&cgroup_mutex); 5122 5123 css = ss->css_alloc(parent_css); 5124 if (!css) 5125 css = ERR_PTR(-ENOMEM); 5126 if (IS_ERR(css)) 5127 return css; 5128 5129 init_and_link_css(css, ss, cgrp); 5130 5131 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL); 5132 if (err) 5133 goto err_free_css; 5134 5135 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL); 5136 if (err < 0) 5137 goto err_free_css; 5138 css->id = err; 5139 5140 /* @css is ready to be brought online now, make it visible */ 5141 list_add_tail_rcu(&css->sibling, &parent_css->children); 5142 cgroup_idr_replace(&ss->css_idr, css, css->id); 5143 5144 err = online_css(css); 5145 if (err) 5146 goto err_list_del; 5147 5148 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy && 5149 cgroup_parent(parent)) { 5150 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n", 5151 current->comm, current->pid, ss->name); 5152 if (!strcmp(ss->name, "memory")) 5153 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n"); 5154 ss->warned_broken_hierarchy = true; 5155 } 5156 5157 return css; 5158 5159 err_list_del: 5160 list_del_rcu(&css->sibling); 5161 err_free_css: 5162 list_del_rcu(&css->rstat_css_node); 5163 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn); 5164 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork); 5165 return ERR_PTR(err); 5166 } 5167 5168 /* 5169 * The returned cgroup is fully initialized including its control mask, but 5170 * it isn't associated with its kernfs_node and doesn't have the control 5171 * mask applied. 5172 */ 5173 static struct cgroup *cgroup_create(struct cgroup *parent, const char *name, 5174 umode_t mode) 5175 { 5176 struct cgroup_root *root = parent->root; 5177 struct cgroup *cgrp, *tcgrp; 5178 struct kernfs_node *kn; 5179 int level = parent->level + 1; 5180 int ret; 5181 5182 /* allocate the cgroup and its ID, 0 is reserved for the root */ 5183 cgrp = kzalloc(struct_size(cgrp, ancestor_ids, (level + 1)), 5184 GFP_KERNEL); 5185 if (!cgrp) 5186 return ERR_PTR(-ENOMEM); 5187 5188 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL); 5189 if (ret) 5190 goto out_free_cgrp; 5191 5192 if (cgroup_on_dfl(parent)) { 5193 ret = cgroup_rstat_init(cgrp); 5194 if (ret) 5195 goto out_cancel_ref; 5196 } 5197 5198 /* create the directory */ 5199 kn = kernfs_create_dir(parent->kn, name, mode, cgrp); 5200 if (IS_ERR(kn)) { 5201 ret = PTR_ERR(kn); 5202 goto out_stat_exit; 5203 } 5204 cgrp->kn = kn; 5205 5206 init_cgroup_housekeeping(cgrp); 5207 5208 cgrp->self.parent = &parent->self; 5209 cgrp->root = root; 5210 cgrp->level = level; 5211 5212 ret = psi_cgroup_alloc(cgrp); 5213 if (ret) 5214 goto out_kernfs_remove; 5215 5216 ret = cgroup_bpf_inherit(cgrp); 5217 if (ret) 5218 goto out_psi_free; 5219 5220 /* 5221 * New cgroup inherits effective freeze counter, and 5222 * if the parent has to be frozen, the child has too. 5223 */ 5224 cgrp->freezer.e_freeze = parent->freezer.e_freeze; 5225 if (cgrp->freezer.e_freeze) { 5226 /* 5227 * Set the CGRP_FREEZE flag, so when a process will be 5228 * attached to the child cgroup, it will become frozen. 5229 * At this point the new cgroup is unpopulated, so we can 5230 * consider it frozen immediately. 5231 */ 5232 set_bit(CGRP_FREEZE, &cgrp->flags); 5233 set_bit(CGRP_FROZEN, &cgrp->flags); 5234 } 5235 5236 spin_lock_irq(&css_set_lock); 5237 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) { 5238 cgrp->ancestor_ids[tcgrp->level] = cgroup_id(tcgrp); 5239 5240 if (tcgrp != cgrp) { 5241 tcgrp->nr_descendants++; 5242 5243 /* 5244 * If the new cgroup is frozen, all ancestor cgroups 5245 * get a new frozen descendant, but their state can't 5246 * change because of this. 5247 */ 5248 if (cgrp->freezer.e_freeze) 5249 tcgrp->freezer.nr_frozen_descendants++; 5250 } 5251 } 5252 spin_unlock_irq(&css_set_lock); 5253 5254 if (notify_on_release(parent)) 5255 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags); 5256 5257 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags)) 5258 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags); 5259 5260 cgrp->self.serial_nr = css_serial_nr_next++; 5261 5262 /* allocation complete, commit to creation */ 5263 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children); 5264 atomic_inc(&root->nr_cgrps); 5265 cgroup_get_live(parent); 5266 5267 /* 5268 * On the default hierarchy, a child doesn't automatically inherit 5269 * subtree_control from the parent. Each is configured manually. 5270 */ 5271 if (!cgroup_on_dfl(cgrp)) 5272 cgrp->subtree_control = cgroup_control(cgrp); 5273 5274 cgroup_propagate_control(cgrp); 5275 5276 return cgrp; 5277 5278 out_psi_free: 5279 psi_cgroup_free(cgrp); 5280 out_kernfs_remove: 5281 kernfs_remove(cgrp->kn); 5282 out_stat_exit: 5283 if (cgroup_on_dfl(parent)) 5284 cgroup_rstat_exit(cgrp); 5285 out_cancel_ref: 5286 percpu_ref_exit(&cgrp->self.refcnt); 5287 out_free_cgrp: 5288 kfree(cgrp); 5289 return ERR_PTR(ret); 5290 } 5291 5292 static bool cgroup_check_hierarchy_limits(struct cgroup *parent) 5293 { 5294 struct cgroup *cgroup; 5295 int ret = false; 5296 int level = 1; 5297 5298 lockdep_assert_held(&cgroup_mutex); 5299 5300 for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) { 5301 if (cgroup->nr_descendants >= cgroup->max_descendants) 5302 goto fail; 5303 5304 if (level > cgroup->max_depth) 5305 goto fail; 5306 5307 level++; 5308 } 5309 5310 ret = true; 5311 fail: 5312 return ret; 5313 } 5314 5315 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode) 5316 { 5317 struct cgroup *parent, *cgrp; 5318 int ret; 5319 5320 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */ 5321 if (strchr(name, '\n')) 5322 return -EINVAL; 5323 5324 parent = cgroup_kn_lock_live(parent_kn, false); 5325 if (!parent) 5326 return -ENODEV; 5327 5328 if (!cgroup_check_hierarchy_limits(parent)) { 5329 ret = -EAGAIN; 5330 goto out_unlock; 5331 } 5332 5333 cgrp = cgroup_create(parent, name, mode); 5334 if (IS_ERR(cgrp)) { 5335 ret = PTR_ERR(cgrp); 5336 goto out_unlock; 5337 } 5338 5339 /* 5340 * This extra ref will be put in cgroup_free_fn() and guarantees 5341 * that @cgrp->kn is always accessible. 5342 */ 5343 kernfs_get(cgrp->kn); 5344 5345 ret = cgroup_kn_set_ugid(cgrp->kn); 5346 if (ret) 5347 goto out_destroy; 5348 5349 ret = css_populate_dir(&cgrp->self); 5350 if (ret) 5351 goto out_destroy; 5352 5353 ret = cgroup_apply_control_enable(cgrp); 5354 if (ret) 5355 goto out_destroy; 5356 5357 TRACE_CGROUP_PATH(mkdir, cgrp); 5358 5359 /* let's create and online css's */ 5360 kernfs_activate(cgrp->kn); 5361 5362 ret = 0; 5363 goto out_unlock; 5364 5365 out_destroy: 5366 cgroup_destroy_locked(cgrp); 5367 out_unlock: 5368 cgroup_kn_unlock(parent_kn); 5369 return ret; 5370 } 5371 5372 /* 5373 * This is called when the refcnt of a css is confirmed to be killed. 5374 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to 5375 * initate destruction and put the css ref from kill_css(). 5376 */ 5377 static void css_killed_work_fn(struct work_struct *work) 5378 { 5379 struct cgroup_subsys_state *css = 5380 container_of(work, struct cgroup_subsys_state, destroy_work); 5381 5382 mutex_lock(&cgroup_mutex); 5383 5384 do { 5385 offline_css(css); 5386 css_put(css); 5387 /* @css can't go away while we're holding cgroup_mutex */ 5388 css = css->parent; 5389 } while (css && atomic_dec_and_test(&css->online_cnt)); 5390 5391 mutex_unlock(&cgroup_mutex); 5392 } 5393 5394 /* css kill confirmation processing requires process context, bounce */ 5395 static void css_killed_ref_fn(struct percpu_ref *ref) 5396 { 5397 struct cgroup_subsys_state *css = 5398 container_of(ref, struct cgroup_subsys_state, refcnt); 5399 5400 if (atomic_dec_and_test(&css->online_cnt)) { 5401 INIT_WORK(&css->destroy_work, css_killed_work_fn); 5402 queue_work(cgroup_destroy_wq, &css->destroy_work); 5403 } 5404 } 5405 5406 /** 5407 * kill_css - destroy a css 5408 * @css: css to destroy 5409 * 5410 * This function initiates destruction of @css by removing cgroup interface 5411 * files and putting its base reference. ->css_offline() will be invoked 5412 * asynchronously once css_tryget_online() is guaranteed to fail and when 5413 * the reference count reaches zero, @css will be released. 5414 */ 5415 static void kill_css(struct cgroup_subsys_state *css) 5416 { 5417 lockdep_assert_held(&cgroup_mutex); 5418 5419 if (css->flags & CSS_DYING) 5420 return; 5421 5422 css->flags |= CSS_DYING; 5423 5424 /* 5425 * This must happen before css is disassociated with its cgroup. 5426 * See seq_css() for details. 5427 */ 5428 css_clear_dir(css); 5429 5430 /* 5431 * Killing would put the base ref, but we need to keep it alive 5432 * until after ->css_offline(). 5433 */ 5434 css_get(css); 5435 5436 /* 5437 * cgroup core guarantees that, by the time ->css_offline() is 5438 * invoked, no new css reference will be given out via 5439 * css_tryget_online(). We can't simply call percpu_ref_kill() and 5440 * proceed to offlining css's because percpu_ref_kill() doesn't 5441 * guarantee that the ref is seen as killed on all CPUs on return. 5442 * 5443 * Use percpu_ref_kill_and_confirm() to get notifications as each 5444 * css is confirmed to be seen as killed on all CPUs. 5445 */ 5446 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn); 5447 } 5448 5449 /** 5450 * cgroup_destroy_locked - the first stage of cgroup destruction 5451 * @cgrp: cgroup to be destroyed 5452 * 5453 * css's make use of percpu refcnts whose killing latency shouldn't be 5454 * exposed to userland and are RCU protected. Also, cgroup core needs to 5455 * guarantee that css_tryget_online() won't succeed by the time 5456 * ->css_offline() is invoked. To satisfy all the requirements, 5457 * destruction is implemented in the following two steps. 5458 * 5459 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all 5460 * userland visible parts and start killing the percpu refcnts of 5461 * css's. Set up so that the next stage will be kicked off once all 5462 * the percpu refcnts are confirmed to be killed. 5463 * 5464 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the 5465 * rest of destruction. Once all cgroup references are gone, the 5466 * cgroup is RCU-freed. 5467 * 5468 * This function implements s1. After this step, @cgrp is gone as far as 5469 * the userland is concerned and a new cgroup with the same name may be 5470 * created. As cgroup doesn't care about the names internally, this 5471 * doesn't cause any problem. 5472 */ 5473 static int cgroup_destroy_locked(struct cgroup *cgrp) 5474 __releases(&cgroup_mutex) __acquires(&cgroup_mutex) 5475 { 5476 struct cgroup *tcgrp, *parent = cgroup_parent(cgrp); 5477 struct cgroup_subsys_state *css; 5478 struct cgrp_cset_link *link; 5479 int ssid; 5480 5481 lockdep_assert_held(&cgroup_mutex); 5482 5483 /* 5484 * Only migration can raise populated from zero and we're already 5485 * holding cgroup_mutex. 5486 */ 5487 if (cgroup_is_populated(cgrp)) 5488 return -EBUSY; 5489 5490 /* 5491 * Make sure there's no live children. We can't test emptiness of 5492 * ->self.children as dead children linger on it while being 5493 * drained; otherwise, "rmdir parent/child parent" may fail. 5494 */ 5495 if (css_has_online_children(&cgrp->self)) 5496 return -EBUSY; 5497 5498 /* 5499 * Mark @cgrp and the associated csets dead. The former prevents 5500 * further task migration and child creation by disabling 5501 * cgroup_lock_live_group(). The latter makes the csets ignored by 5502 * the migration path. 5503 */ 5504 cgrp->self.flags &= ~CSS_ONLINE; 5505 5506 spin_lock_irq(&css_set_lock); 5507 list_for_each_entry(link, &cgrp->cset_links, cset_link) 5508 link->cset->dead = true; 5509 spin_unlock_irq(&css_set_lock); 5510 5511 /* initiate massacre of all css's */ 5512 for_each_css(css, ssid, cgrp) 5513 kill_css(css); 5514 5515 /* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */ 5516 css_clear_dir(&cgrp->self); 5517 kernfs_remove(cgrp->kn); 5518 5519 if (parent && cgroup_is_threaded(cgrp)) 5520 parent->nr_threaded_children--; 5521 5522 spin_lock_irq(&css_set_lock); 5523 for (tcgrp = cgroup_parent(cgrp); tcgrp; tcgrp = cgroup_parent(tcgrp)) { 5524 tcgrp->nr_descendants--; 5525 tcgrp->nr_dying_descendants++; 5526 /* 5527 * If the dying cgroup is frozen, decrease frozen descendants 5528 * counters of ancestor cgroups. 5529 */ 5530 if (test_bit(CGRP_FROZEN, &cgrp->flags)) 5531 tcgrp->freezer.nr_frozen_descendants--; 5532 } 5533 spin_unlock_irq(&css_set_lock); 5534 5535 cgroup1_check_for_release(parent); 5536 5537 cgroup_bpf_offline(cgrp); 5538 5539 /* put the base reference */ 5540 percpu_ref_kill(&cgrp->self.refcnt); 5541 5542 return 0; 5543 }; 5544 5545 int cgroup_rmdir(struct kernfs_node *kn) 5546 { 5547 struct cgroup *cgrp; 5548 int ret = 0; 5549 5550 cgrp = cgroup_kn_lock_live(kn, false); 5551 if (!cgrp) 5552 return 0; 5553 5554 ret = cgroup_destroy_locked(cgrp); 5555 if (!ret) 5556 TRACE_CGROUP_PATH(rmdir, cgrp); 5557 5558 cgroup_kn_unlock(kn); 5559 return ret; 5560 } 5561 5562 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = { 5563 .show_options = cgroup_show_options, 5564 .mkdir = cgroup_mkdir, 5565 .rmdir = cgroup_rmdir, 5566 .show_path = cgroup_show_path, 5567 }; 5568 5569 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early) 5570 { 5571 struct cgroup_subsys_state *css; 5572 5573 pr_debug("Initializing cgroup subsys %s\n", ss->name); 5574 5575 mutex_lock(&cgroup_mutex); 5576 5577 idr_init(&ss->css_idr); 5578 INIT_LIST_HEAD(&ss->cfts); 5579 5580 /* Create the root cgroup state for this subsystem */ 5581 ss->root = &cgrp_dfl_root; 5582 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss)); 5583 /* We don't handle early failures gracefully */ 5584 BUG_ON(IS_ERR(css)); 5585 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp); 5586 5587 /* 5588 * Root csses are never destroyed and we can't initialize 5589 * percpu_ref during early init. Disable refcnting. 5590 */ 5591 css->flags |= CSS_NO_REF; 5592 5593 if (early) { 5594 /* allocation can't be done safely during early init */ 5595 css->id = 1; 5596 } else { 5597 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL); 5598 BUG_ON(css->id < 0); 5599 } 5600 5601 /* Update the init_css_set to contain a subsys 5602 * pointer to this state - since the subsystem is 5603 * newly registered, all tasks and hence the 5604 * init_css_set is in the subsystem's root cgroup. */ 5605 init_css_set.subsys[ss->id] = css; 5606 5607 have_fork_callback |= (bool)ss->fork << ss->id; 5608 have_exit_callback |= (bool)ss->exit << ss->id; 5609 have_release_callback |= (bool)ss->release << ss->id; 5610 have_canfork_callback |= (bool)ss->can_fork << ss->id; 5611 5612 /* At system boot, before all subsystems have been 5613 * registered, no tasks have been forked, so we don't 5614 * need to invoke fork callbacks here. */ 5615 BUG_ON(!list_empty(&init_task.tasks)); 5616 5617 BUG_ON(online_css(css)); 5618 5619 mutex_unlock(&cgroup_mutex); 5620 } 5621 5622 /** 5623 * cgroup_init_early - cgroup initialization at system boot 5624 * 5625 * Initialize cgroups at system boot, and initialize any 5626 * subsystems that request early init. 5627 */ 5628 int __init cgroup_init_early(void) 5629 { 5630 static struct cgroup_fs_context __initdata ctx; 5631 struct cgroup_subsys *ss; 5632 int i; 5633 5634 ctx.root = &cgrp_dfl_root; 5635 init_cgroup_root(&ctx); 5636 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF; 5637 5638 RCU_INIT_POINTER(init_task.cgroups, &init_css_set); 5639 5640 for_each_subsys(ss, i) { 5641 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id, 5642 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n", 5643 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free, 5644 ss->id, ss->name); 5645 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN, 5646 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]); 5647 5648 ss->id = i; 5649 ss->name = cgroup_subsys_name[i]; 5650 if (!ss->legacy_name) 5651 ss->legacy_name = cgroup_subsys_name[i]; 5652 5653 if (ss->early_init) 5654 cgroup_init_subsys(ss, true); 5655 } 5656 return 0; 5657 } 5658 5659 static u16 cgroup_disable_mask __initdata; 5660 5661 /** 5662 * cgroup_init - cgroup initialization 5663 * 5664 * Register cgroup filesystem and /proc file, and initialize 5665 * any subsystems that didn't request early init. 5666 */ 5667 int __init cgroup_init(void) 5668 { 5669 struct cgroup_subsys *ss; 5670 int ssid; 5671 5672 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16); 5673 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files)); 5674 BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files)); 5675 5676 cgroup_rstat_boot(); 5677 5678 /* 5679 * The latency of the synchronize_rcu() is too high for cgroups, 5680 * avoid it at the cost of forcing all readers into the slow path. 5681 */ 5682 rcu_sync_enter_start(&cgroup_threadgroup_rwsem.rss); 5683 5684 get_user_ns(init_cgroup_ns.user_ns); 5685 5686 mutex_lock(&cgroup_mutex); 5687 5688 /* 5689 * Add init_css_set to the hash table so that dfl_root can link to 5690 * it during init. 5691 */ 5692 hash_add(css_set_table, &init_css_set.hlist, 5693 css_set_hash(init_css_set.subsys)); 5694 5695 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0)); 5696 5697 mutex_unlock(&cgroup_mutex); 5698 5699 for_each_subsys(ss, ssid) { 5700 if (ss->early_init) { 5701 struct cgroup_subsys_state *css = 5702 init_css_set.subsys[ss->id]; 5703 5704 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, 5705 GFP_KERNEL); 5706 BUG_ON(css->id < 0); 5707 } else { 5708 cgroup_init_subsys(ss, false); 5709 } 5710 5711 list_add_tail(&init_css_set.e_cset_node[ssid], 5712 &cgrp_dfl_root.cgrp.e_csets[ssid]); 5713 5714 /* 5715 * Setting dfl_root subsys_mask needs to consider the 5716 * disabled flag and cftype registration needs kmalloc, 5717 * both of which aren't available during early_init. 5718 */ 5719 if (cgroup_disable_mask & (1 << ssid)) { 5720 static_branch_disable(cgroup_subsys_enabled_key[ssid]); 5721 printk(KERN_INFO "Disabling %s control group subsystem\n", 5722 ss->name); 5723 continue; 5724 } 5725 5726 if (cgroup1_ssid_disabled(ssid)) 5727 printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n", 5728 ss->name); 5729 5730 cgrp_dfl_root.subsys_mask |= 1 << ss->id; 5731 5732 /* implicit controllers must be threaded too */ 5733 WARN_ON(ss->implicit_on_dfl && !ss->threaded); 5734 5735 if (ss->implicit_on_dfl) 5736 cgrp_dfl_implicit_ss_mask |= 1 << ss->id; 5737 else if (!ss->dfl_cftypes) 5738 cgrp_dfl_inhibit_ss_mask |= 1 << ss->id; 5739 5740 if (ss->threaded) 5741 cgrp_dfl_threaded_ss_mask |= 1 << ss->id; 5742 5743 if (ss->dfl_cftypes == ss->legacy_cftypes) { 5744 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes)); 5745 } else { 5746 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes)); 5747 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes)); 5748 } 5749 5750 if (ss->bind) 5751 ss->bind(init_css_set.subsys[ssid]); 5752 5753 mutex_lock(&cgroup_mutex); 5754 css_populate_dir(init_css_set.subsys[ssid]); 5755 mutex_unlock(&cgroup_mutex); 5756 } 5757 5758 /* init_css_set.subsys[] has been updated, re-hash */ 5759 hash_del(&init_css_set.hlist); 5760 hash_add(css_set_table, &init_css_set.hlist, 5761 css_set_hash(init_css_set.subsys)); 5762 5763 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup")); 5764 WARN_ON(register_filesystem(&cgroup_fs_type)); 5765 WARN_ON(register_filesystem(&cgroup2_fs_type)); 5766 WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show)); 5767 #ifdef CONFIG_CPUSETS 5768 WARN_ON(register_filesystem(&cpuset_fs_type)); 5769 #endif 5770 5771 return 0; 5772 } 5773 5774 static int __init cgroup_wq_init(void) 5775 { 5776 /* 5777 * There isn't much point in executing destruction path in 5778 * parallel. Good chunk is serialized with cgroup_mutex anyway. 5779 * Use 1 for @max_active. 5780 * 5781 * We would prefer to do this in cgroup_init() above, but that 5782 * is called before init_workqueues(): so leave this until after. 5783 */ 5784 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1); 5785 BUG_ON(!cgroup_destroy_wq); 5786 return 0; 5787 } 5788 core_initcall(cgroup_wq_init); 5789 5790 void cgroup_path_from_kernfs_id(u64 id, char *buf, size_t buflen) 5791 { 5792 struct kernfs_node *kn; 5793 5794 kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id); 5795 if (!kn) 5796 return; 5797 kernfs_path(kn, buf, buflen); 5798 kernfs_put(kn); 5799 } 5800 5801 /* 5802 * proc_cgroup_show() 5803 * - Print task's cgroup paths into seq_file, one line for each hierarchy 5804 * - Used for /proc/<pid>/cgroup. 5805 */ 5806 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns, 5807 struct pid *pid, struct task_struct *tsk) 5808 { 5809 char *buf; 5810 int retval; 5811 struct cgroup_root *root; 5812 5813 retval = -ENOMEM; 5814 buf = kmalloc(PATH_MAX, GFP_KERNEL); 5815 if (!buf) 5816 goto out; 5817 5818 mutex_lock(&cgroup_mutex); 5819 spin_lock_irq(&css_set_lock); 5820 5821 for_each_root(root) { 5822 struct cgroup_subsys *ss; 5823 struct cgroup *cgrp; 5824 int ssid, count = 0; 5825 5826 if (root == &cgrp_dfl_root && !cgrp_dfl_visible) 5827 continue; 5828 5829 seq_printf(m, "%d:", root->hierarchy_id); 5830 if (root != &cgrp_dfl_root) 5831 for_each_subsys(ss, ssid) 5832 if (root->subsys_mask & (1 << ssid)) 5833 seq_printf(m, "%s%s", count++ ? "," : "", 5834 ss->legacy_name); 5835 if (strlen(root->name)) 5836 seq_printf(m, "%sname=%s", count ? "," : "", 5837 root->name); 5838 seq_putc(m, ':'); 5839 5840 cgrp = task_cgroup_from_root(tsk, root); 5841 5842 /* 5843 * On traditional hierarchies, all zombie tasks show up as 5844 * belonging to the root cgroup. On the default hierarchy, 5845 * while a zombie doesn't show up in "cgroup.procs" and 5846 * thus can't be migrated, its /proc/PID/cgroup keeps 5847 * reporting the cgroup it belonged to before exiting. If 5848 * the cgroup is removed before the zombie is reaped, 5849 * " (deleted)" is appended to the cgroup path. 5850 */ 5851 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) { 5852 retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX, 5853 current->nsproxy->cgroup_ns); 5854 if (retval >= PATH_MAX) 5855 retval = -ENAMETOOLONG; 5856 if (retval < 0) 5857 goto out_unlock; 5858 5859 seq_puts(m, buf); 5860 } else { 5861 seq_puts(m, "/"); 5862 } 5863 5864 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp)) 5865 seq_puts(m, " (deleted)\n"); 5866 else 5867 seq_putc(m, '\n'); 5868 } 5869 5870 retval = 0; 5871 out_unlock: 5872 spin_unlock_irq(&css_set_lock); 5873 mutex_unlock(&cgroup_mutex); 5874 kfree(buf); 5875 out: 5876 return retval; 5877 } 5878 5879 /** 5880 * cgroup_fork - initialize cgroup related fields during copy_process() 5881 * @child: pointer to task_struct of forking parent process. 5882 * 5883 * A task is associated with the init_css_set until cgroup_post_fork() 5884 * attaches it to the target css_set. 5885 */ 5886 void cgroup_fork(struct task_struct *child) 5887 { 5888 RCU_INIT_POINTER(child->cgroups, &init_css_set); 5889 INIT_LIST_HEAD(&child->cg_list); 5890 } 5891 5892 static struct cgroup *cgroup_get_from_file(struct file *f) 5893 { 5894 struct cgroup_subsys_state *css; 5895 struct cgroup *cgrp; 5896 5897 css = css_tryget_online_from_dir(f->f_path.dentry, NULL); 5898 if (IS_ERR(css)) 5899 return ERR_CAST(css); 5900 5901 cgrp = css->cgroup; 5902 if (!cgroup_on_dfl(cgrp)) { 5903 cgroup_put(cgrp); 5904 return ERR_PTR(-EBADF); 5905 } 5906 5907 return cgrp; 5908 } 5909 5910 /** 5911 * cgroup_css_set_fork - find or create a css_set for a child process 5912 * @kargs: the arguments passed to create the child process 5913 * 5914 * This functions finds or creates a new css_set which the child 5915 * process will be attached to in cgroup_post_fork(). By default, 5916 * the child process will be given the same css_set as its parent. 5917 * 5918 * If CLONE_INTO_CGROUP is specified this function will try to find an 5919 * existing css_set which includes the requested cgroup and if not create 5920 * a new css_set that the child will be attached to later. If this function 5921 * succeeds it will hold cgroup_threadgroup_rwsem on return. If 5922 * CLONE_INTO_CGROUP is requested this function will grab cgroup mutex 5923 * before grabbing cgroup_threadgroup_rwsem and will hold a reference 5924 * to the target cgroup. 5925 */ 5926 static int cgroup_css_set_fork(struct kernel_clone_args *kargs) 5927 __acquires(&cgroup_mutex) __acquires(&cgroup_threadgroup_rwsem) 5928 { 5929 int ret; 5930 struct cgroup *dst_cgrp = NULL; 5931 struct css_set *cset; 5932 struct super_block *sb; 5933 struct file *f; 5934 5935 if (kargs->flags & CLONE_INTO_CGROUP) 5936 mutex_lock(&cgroup_mutex); 5937 5938 cgroup_threadgroup_change_begin(current); 5939 5940 spin_lock_irq(&css_set_lock); 5941 cset = task_css_set(current); 5942 get_css_set(cset); 5943 spin_unlock_irq(&css_set_lock); 5944 5945 if (!(kargs->flags & CLONE_INTO_CGROUP)) { 5946 kargs->cset = cset; 5947 return 0; 5948 } 5949 5950 f = fget_raw(kargs->cgroup); 5951 if (!f) { 5952 ret = -EBADF; 5953 goto err; 5954 } 5955 sb = f->f_path.dentry->d_sb; 5956 5957 dst_cgrp = cgroup_get_from_file(f); 5958 if (IS_ERR(dst_cgrp)) { 5959 ret = PTR_ERR(dst_cgrp); 5960 dst_cgrp = NULL; 5961 goto err; 5962 } 5963 5964 if (cgroup_is_dead(dst_cgrp)) { 5965 ret = -ENODEV; 5966 goto err; 5967 } 5968 5969 /* 5970 * Verify that we the target cgroup is writable for us. This is 5971 * usually done by the vfs layer but since we're not going through 5972 * the vfs layer here we need to do it "manually". 5973 */ 5974 ret = cgroup_may_write(dst_cgrp, sb); 5975 if (ret) 5976 goto err; 5977 5978 ret = cgroup_attach_permissions(cset->dfl_cgrp, dst_cgrp, sb, 5979 !(kargs->flags & CLONE_THREAD)); 5980 if (ret) 5981 goto err; 5982 5983 kargs->cset = find_css_set(cset, dst_cgrp); 5984 if (!kargs->cset) { 5985 ret = -ENOMEM; 5986 goto err; 5987 } 5988 5989 put_css_set(cset); 5990 fput(f); 5991 kargs->cgrp = dst_cgrp; 5992 return ret; 5993 5994 err: 5995 cgroup_threadgroup_change_end(current); 5996 mutex_unlock(&cgroup_mutex); 5997 if (f) 5998 fput(f); 5999 if (dst_cgrp) 6000 cgroup_put(dst_cgrp); 6001 put_css_set(cset); 6002 if (kargs->cset) 6003 put_css_set(kargs->cset); 6004 return ret; 6005 } 6006 6007 /** 6008 * cgroup_css_set_put_fork - drop references we took during fork 6009 * @kargs: the arguments passed to create the child process 6010 * 6011 * Drop references to the prepared css_set and target cgroup if 6012 * CLONE_INTO_CGROUP was requested. 6013 */ 6014 static void cgroup_css_set_put_fork(struct kernel_clone_args *kargs) 6015 __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex) 6016 { 6017 cgroup_threadgroup_change_end(current); 6018 6019 if (kargs->flags & CLONE_INTO_CGROUP) { 6020 struct cgroup *cgrp = kargs->cgrp; 6021 struct css_set *cset = kargs->cset; 6022 6023 mutex_unlock(&cgroup_mutex); 6024 6025 if (cset) { 6026 put_css_set(cset); 6027 kargs->cset = NULL; 6028 } 6029 6030 if (cgrp) { 6031 cgroup_put(cgrp); 6032 kargs->cgrp = NULL; 6033 } 6034 } 6035 } 6036 6037 /** 6038 * cgroup_can_fork - called on a new task before the process is exposed 6039 * @child: the child process 6040 * 6041 * This prepares a new css_set for the child process which the child will 6042 * be attached to in cgroup_post_fork(). 6043 * This calls the subsystem can_fork() callbacks. If the cgroup_can_fork() 6044 * callback returns an error, the fork aborts with that error code. This 6045 * allows for a cgroup subsystem to conditionally allow or deny new forks. 6046 */ 6047 int cgroup_can_fork(struct task_struct *child, struct kernel_clone_args *kargs) 6048 { 6049 struct cgroup_subsys *ss; 6050 int i, j, ret; 6051 6052 ret = cgroup_css_set_fork(kargs); 6053 if (ret) 6054 return ret; 6055 6056 do_each_subsys_mask(ss, i, have_canfork_callback) { 6057 ret = ss->can_fork(child, kargs->cset); 6058 if (ret) 6059 goto out_revert; 6060 } while_each_subsys_mask(); 6061 6062 return 0; 6063 6064 out_revert: 6065 for_each_subsys(ss, j) { 6066 if (j >= i) 6067 break; 6068 if (ss->cancel_fork) 6069 ss->cancel_fork(child, kargs->cset); 6070 } 6071 6072 cgroup_css_set_put_fork(kargs); 6073 6074 return ret; 6075 } 6076 6077 /** 6078 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork() 6079 * @child: the child process 6080 * @kargs: the arguments passed to create the child process 6081 * 6082 * This calls the cancel_fork() callbacks if a fork failed *after* 6083 * cgroup_can_fork() succeded and cleans up references we took to 6084 * prepare a new css_set for the child process in cgroup_can_fork(). 6085 */ 6086 void cgroup_cancel_fork(struct task_struct *child, 6087 struct kernel_clone_args *kargs) 6088 { 6089 struct cgroup_subsys *ss; 6090 int i; 6091 6092 for_each_subsys(ss, i) 6093 if (ss->cancel_fork) 6094 ss->cancel_fork(child, kargs->cset); 6095 6096 cgroup_css_set_put_fork(kargs); 6097 } 6098 6099 /** 6100 * cgroup_post_fork - finalize cgroup setup for the child process 6101 * @child: the child process 6102 * 6103 * Attach the child process to its css_set calling the subsystem fork() 6104 * callbacks. 6105 */ 6106 void cgroup_post_fork(struct task_struct *child, 6107 struct kernel_clone_args *kargs) 6108 __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex) 6109 { 6110 struct cgroup_subsys *ss; 6111 struct css_set *cset; 6112 int i; 6113 6114 cset = kargs->cset; 6115 kargs->cset = NULL; 6116 6117 spin_lock_irq(&css_set_lock); 6118 6119 /* init tasks are special, only link regular threads */ 6120 if (likely(child->pid)) { 6121 WARN_ON_ONCE(!list_empty(&child->cg_list)); 6122 cset->nr_tasks++; 6123 css_set_move_task(child, NULL, cset, false); 6124 } else { 6125 put_css_set(cset); 6126 cset = NULL; 6127 } 6128 6129 /* 6130 * If the cgroup has to be frozen, the new task has too. Let's set 6131 * the JOBCTL_TRAP_FREEZE jobctl bit to get the task into the 6132 * frozen state. 6133 */ 6134 if (unlikely(cgroup_task_freeze(child))) { 6135 spin_lock(&child->sighand->siglock); 6136 WARN_ON_ONCE(child->frozen); 6137 child->jobctl |= JOBCTL_TRAP_FREEZE; 6138 spin_unlock(&child->sighand->siglock); 6139 6140 /* 6141 * Calling cgroup_update_frozen() isn't required here, 6142 * because it will be called anyway a bit later from 6143 * do_freezer_trap(). So we avoid cgroup's transient switch 6144 * from the frozen state and back. 6145 */ 6146 } 6147 6148 spin_unlock_irq(&css_set_lock); 6149 6150 /* 6151 * Call ss->fork(). This must happen after @child is linked on 6152 * css_set; otherwise, @child might change state between ->fork() 6153 * and addition to css_set. 6154 */ 6155 do_each_subsys_mask(ss, i, have_fork_callback) { 6156 ss->fork(child); 6157 } while_each_subsys_mask(); 6158 6159 /* Make the new cset the root_cset of the new cgroup namespace. */ 6160 if (kargs->flags & CLONE_NEWCGROUP) { 6161 struct css_set *rcset = child->nsproxy->cgroup_ns->root_cset; 6162 6163 get_css_set(cset); 6164 child->nsproxy->cgroup_ns->root_cset = cset; 6165 put_css_set(rcset); 6166 } 6167 6168 cgroup_css_set_put_fork(kargs); 6169 } 6170 6171 /** 6172 * cgroup_exit - detach cgroup from exiting task 6173 * @tsk: pointer to task_struct of exiting process 6174 * 6175 * Description: Detach cgroup from @tsk. 6176 * 6177 */ 6178 void cgroup_exit(struct task_struct *tsk) 6179 { 6180 struct cgroup_subsys *ss; 6181 struct css_set *cset; 6182 int i; 6183 6184 spin_lock_irq(&css_set_lock); 6185 6186 WARN_ON_ONCE(list_empty(&tsk->cg_list)); 6187 cset = task_css_set(tsk); 6188 css_set_move_task(tsk, cset, NULL, false); 6189 list_add_tail(&tsk->cg_list, &cset->dying_tasks); 6190 cset->nr_tasks--; 6191 6192 WARN_ON_ONCE(cgroup_task_frozen(tsk)); 6193 if (unlikely(cgroup_task_freeze(tsk))) 6194 cgroup_update_frozen(task_dfl_cgroup(tsk)); 6195 6196 spin_unlock_irq(&css_set_lock); 6197 6198 /* see cgroup_post_fork() for details */ 6199 do_each_subsys_mask(ss, i, have_exit_callback) { 6200 ss->exit(tsk); 6201 } while_each_subsys_mask(); 6202 } 6203 6204 void cgroup_release(struct task_struct *task) 6205 { 6206 struct cgroup_subsys *ss; 6207 int ssid; 6208 6209 do_each_subsys_mask(ss, ssid, have_release_callback) { 6210 ss->release(task); 6211 } while_each_subsys_mask(); 6212 6213 spin_lock_irq(&css_set_lock); 6214 css_set_skip_task_iters(task_css_set(task), task); 6215 list_del_init(&task->cg_list); 6216 spin_unlock_irq(&css_set_lock); 6217 } 6218 6219 void cgroup_free(struct task_struct *task) 6220 { 6221 struct css_set *cset = task_css_set(task); 6222 put_css_set(cset); 6223 } 6224 6225 static int __init cgroup_disable(char *str) 6226 { 6227 struct cgroup_subsys *ss; 6228 char *token; 6229 int i; 6230 6231 while ((token = strsep(&str, ",")) != NULL) { 6232 if (!*token) 6233 continue; 6234 6235 for_each_subsys(ss, i) { 6236 if (strcmp(token, ss->name) && 6237 strcmp(token, ss->legacy_name)) 6238 continue; 6239 cgroup_disable_mask |= 1 << i; 6240 } 6241 } 6242 return 1; 6243 } 6244 __setup("cgroup_disable=", cgroup_disable); 6245 6246 void __init __weak enable_debug_cgroup(void) { } 6247 6248 static int __init enable_cgroup_debug(char *str) 6249 { 6250 cgroup_debug = true; 6251 enable_debug_cgroup(); 6252 return 1; 6253 } 6254 __setup("cgroup_debug", enable_cgroup_debug); 6255 6256 /** 6257 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry 6258 * @dentry: directory dentry of interest 6259 * @ss: subsystem of interest 6260 * 6261 * If @dentry is a directory for a cgroup which has @ss enabled on it, try 6262 * to get the corresponding css and return it. If such css doesn't exist 6263 * or can't be pinned, an ERR_PTR value is returned. 6264 */ 6265 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry, 6266 struct cgroup_subsys *ss) 6267 { 6268 struct kernfs_node *kn = kernfs_node_from_dentry(dentry); 6269 struct file_system_type *s_type = dentry->d_sb->s_type; 6270 struct cgroup_subsys_state *css = NULL; 6271 struct cgroup *cgrp; 6272 6273 /* is @dentry a cgroup dir? */ 6274 if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) || 6275 !kn || kernfs_type(kn) != KERNFS_DIR) 6276 return ERR_PTR(-EBADF); 6277 6278 rcu_read_lock(); 6279 6280 /* 6281 * This path doesn't originate from kernfs and @kn could already 6282 * have been or be removed at any point. @kn->priv is RCU 6283 * protected for this access. See css_release_work_fn() for details. 6284 */ 6285 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); 6286 if (cgrp) 6287 css = cgroup_css(cgrp, ss); 6288 6289 if (!css || !css_tryget_online(css)) 6290 css = ERR_PTR(-ENOENT); 6291 6292 rcu_read_unlock(); 6293 return css; 6294 } 6295 6296 /** 6297 * css_from_id - lookup css by id 6298 * @id: the cgroup id 6299 * @ss: cgroup subsys to be looked into 6300 * 6301 * Returns the css if there's valid one with @id, otherwise returns NULL. 6302 * Should be called under rcu_read_lock(). 6303 */ 6304 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss) 6305 { 6306 WARN_ON_ONCE(!rcu_read_lock_held()); 6307 return idr_find(&ss->css_idr, id); 6308 } 6309 6310 /** 6311 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path 6312 * @path: path on the default hierarchy 6313 * 6314 * Find the cgroup at @path on the default hierarchy, increment its 6315 * reference count and return it. Returns pointer to the found cgroup on 6316 * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR) 6317 * if @path points to a non-directory. 6318 */ 6319 struct cgroup *cgroup_get_from_path(const char *path) 6320 { 6321 struct kernfs_node *kn; 6322 struct cgroup *cgrp; 6323 6324 mutex_lock(&cgroup_mutex); 6325 6326 kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path); 6327 if (kn) { 6328 if (kernfs_type(kn) == KERNFS_DIR) { 6329 cgrp = kn->priv; 6330 cgroup_get_live(cgrp); 6331 } else { 6332 cgrp = ERR_PTR(-ENOTDIR); 6333 } 6334 kernfs_put(kn); 6335 } else { 6336 cgrp = ERR_PTR(-ENOENT); 6337 } 6338 6339 mutex_unlock(&cgroup_mutex); 6340 return cgrp; 6341 } 6342 EXPORT_SYMBOL_GPL(cgroup_get_from_path); 6343 6344 /** 6345 * cgroup_get_from_fd - get a cgroup pointer from a fd 6346 * @fd: fd obtained by open(cgroup2_dir) 6347 * 6348 * Find the cgroup from a fd which should be obtained 6349 * by opening a cgroup directory. Returns a pointer to the 6350 * cgroup on success. ERR_PTR is returned if the cgroup 6351 * cannot be found. 6352 */ 6353 struct cgroup *cgroup_get_from_fd(int fd) 6354 { 6355 struct cgroup *cgrp; 6356 struct file *f; 6357 6358 f = fget_raw(fd); 6359 if (!f) 6360 return ERR_PTR(-EBADF); 6361 6362 cgrp = cgroup_get_from_file(f); 6363 fput(f); 6364 return cgrp; 6365 } 6366 EXPORT_SYMBOL_GPL(cgroup_get_from_fd); 6367 6368 static u64 power_of_ten(int power) 6369 { 6370 u64 v = 1; 6371 while (power--) 6372 v *= 10; 6373 return v; 6374 } 6375 6376 /** 6377 * cgroup_parse_float - parse a floating number 6378 * @input: input string 6379 * @dec_shift: number of decimal digits to shift 6380 * @v: output 6381 * 6382 * Parse a decimal floating point number in @input and store the result in 6383 * @v with decimal point right shifted @dec_shift times. For example, if 6384 * @input is "12.3456" and @dec_shift is 3, *@v will be set to 12345. 6385 * Returns 0 on success, -errno otherwise. 6386 * 6387 * There's nothing cgroup specific about this function except that it's 6388 * currently the only user. 6389 */ 6390 int cgroup_parse_float(const char *input, unsigned dec_shift, s64 *v) 6391 { 6392 s64 whole, frac = 0; 6393 int fstart = 0, fend = 0, flen; 6394 6395 if (!sscanf(input, "%lld.%n%lld%n", &whole, &fstart, &frac, &fend)) 6396 return -EINVAL; 6397 if (frac < 0) 6398 return -EINVAL; 6399 6400 flen = fend > fstart ? fend - fstart : 0; 6401 if (flen < dec_shift) 6402 frac *= power_of_ten(dec_shift - flen); 6403 else 6404 frac = DIV_ROUND_CLOSEST_ULL(frac, power_of_ten(flen - dec_shift)); 6405 6406 *v = whole * power_of_ten(dec_shift) + frac; 6407 return 0; 6408 } 6409 6410 /* 6411 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data 6412 * definition in cgroup-defs.h. 6413 */ 6414 #ifdef CONFIG_SOCK_CGROUP_DATA 6415 6416 #if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID) 6417 6418 DEFINE_SPINLOCK(cgroup_sk_update_lock); 6419 static bool cgroup_sk_alloc_disabled __read_mostly; 6420 6421 void cgroup_sk_alloc_disable(void) 6422 { 6423 if (cgroup_sk_alloc_disabled) 6424 return; 6425 pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n"); 6426 cgroup_sk_alloc_disabled = true; 6427 } 6428 6429 #else 6430 6431 #define cgroup_sk_alloc_disabled false 6432 6433 #endif 6434 6435 void cgroup_sk_alloc(struct sock_cgroup_data *skcd) 6436 { 6437 if (cgroup_sk_alloc_disabled) 6438 return; 6439 6440 /* Socket clone path */ 6441 if (skcd->val) { 6442 /* 6443 * We might be cloning a socket which is left in an empty 6444 * cgroup and the cgroup might have already been rmdir'd. 6445 * Don't use cgroup_get_live(). 6446 */ 6447 cgroup_get(sock_cgroup_ptr(skcd)); 6448 cgroup_bpf_get(sock_cgroup_ptr(skcd)); 6449 return; 6450 } 6451 6452 rcu_read_lock(); 6453 6454 while (true) { 6455 struct css_set *cset; 6456 6457 cset = task_css_set(current); 6458 if (likely(cgroup_tryget(cset->dfl_cgrp))) { 6459 skcd->val = (unsigned long)cset->dfl_cgrp; 6460 cgroup_bpf_get(cset->dfl_cgrp); 6461 break; 6462 } 6463 cpu_relax(); 6464 } 6465 6466 rcu_read_unlock(); 6467 } 6468 6469 void cgroup_sk_free(struct sock_cgroup_data *skcd) 6470 { 6471 struct cgroup *cgrp = sock_cgroup_ptr(skcd); 6472 6473 cgroup_bpf_put(cgrp); 6474 cgroup_put(cgrp); 6475 } 6476 6477 #endif /* CONFIG_SOCK_CGROUP_DATA */ 6478 6479 #ifdef CONFIG_CGROUP_BPF 6480 int cgroup_bpf_attach(struct cgroup *cgrp, struct bpf_prog *prog, 6481 struct bpf_prog *replace_prog, enum bpf_attach_type type, 6482 u32 flags) 6483 { 6484 int ret; 6485 6486 mutex_lock(&cgroup_mutex); 6487 ret = __cgroup_bpf_attach(cgrp, prog, replace_prog, type, flags); 6488 mutex_unlock(&cgroup_mutex); 6489 return ret; 6490 } 6491 int cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog, 6492 enum bpf_attach_type type, u32 flags) 6493 { 6494 int ret; 6495 6496 mutex_lock(&cgroup_mutex); 6497 ret = __cgroup_bpf_detach(cgrp, prog, type); 6498 mutex_unlock(&cgroup_mutex); 6499 return ret; 6500 } 6501 int cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr, 6502 union bpf_attr __user *uattr) 6503 { 6504 int ret; 6505 6506 mutex_lock(&cgroup_mutex); 6507 ret = __cgroup_bpf_query(cgrp, attr, uattr); 6508 mutex_unlock(&cgroup_mutex); 6509 return ret; 6510 } 6511 #endif /* CONFIG_CGROUP_BPF */ 6512 6513 #ifdef CONFIG_SYSFS 6514 static ssize_t show_delegatable_files(struct cftype *files, char *buf, 6515 ssize_t size, const char *prefix) 6516 { 6517 struct cftype *cft; 6518 ssize_t ret = 0; 6519 6520 for (cft = files; cft && cft->name[0] != '\0'; cft++) { 6521 if (!(cft->flags & CFTYPE_NS_DELEGATABLE)) 6522 continue; 6523 6524 if (prefix) 6525 ret += snprintf(buf + ret, size - ret, "%s.", prefix); 6526 6527 ret += snprintf(buf + ret, size - ret, "%s\n", cft->name); 6528 6529 if (WARN_ON(ret >= size)) 6530 break; 6531 } 6532 6533 return ret; 6534 } 6535 6536 static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr, 6537 char *buf) 6538 { 6539 struct cgroup_subsys *ss; 6540 int ssid; 6541 ssize_t ret = 0; 6542 6543 ret = show_delegatable_files(cgroup_base_files, buf, PAGE_SIZE - ret, 6544 NULL); 6545 6546 for_each_subsys(ss, ssid) 6547 ret += show_delegatable_files(ss->dfl_cftypes, buf + ret, 6548 PAGE_SIZE - ret, 6549 cgroup_subsys_name[ssid]); 6550 6551 return ret; 6552 } 6553 static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate); 6554 6555 static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr, 6556 char *buf) 6557 { 6558 return snprintf(buf, PAGE_SIZE, "nsdelegate\nmemory_localevents\n"); 6559 } 6560 static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features); 6561 6562 static struct attribute *cgroup_sysfs_attrs[] = { 6563 &cgroup_delegate_attr.attr, 6564 &cgroup_features_attr.attr, 6565 NULL, 6566 }; 6567 6568 static const struct attribute_group cgroup_sysfs_attr_group = { 6569 .attrs = cgroup_sysfs_attrs, 6570 .name = "cgroup", 6571 }; 6572 6573 static int __init cgroup_sysfs_init(void) 6574 { 6575 return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group); 6576 } 6577 subsys_initcall(cgroup_sysfs_init); 6578 6579 #endif /* CONFIG_SYSFS */ 6580