xref: /openbmc/linux/kernel/cgroup/cgroup.c (revision 9bd5910d)
1 /*
2  *  Generic process-grouping system.
3  *
4  *  Based originally on the cpuset system, extracted by Paul Menage
5  *  Copyright (C) 2006 Google, Inc
6  *
7  *  Notifications support
8  *  Copyright (C) 2009 Nokia Corporation
9  *  Author: Kirill A. Shutemov
10  *
11  *  Copyright notices from the original cpuset code:
12  *  --------------------------------------------------
13  *  Copyright (C) 2003 BULL SA.
14  *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
15  *
16  *  Portions derived from Patrick Mochel's sysfs code.
17  *  sysfs is Copyright (c) 2001-3 Patrick Mochel
18  *
19  *  2003-10-10 Written by Simon Derr.
20  *  2003-10-22 Updates by Stephen Hemminger.
21  *  2004 May-July Rework by Paul Jackson.
22  *  ---------------------------------------------------
23  *
24  *  This file is subject to the terms and conditions of the GNU General Public
25  *  License.  See the file COPYING in the main directory of the Linux
26  *  distribution for more details.
27  */
28 
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 
31 #include "cgroup-internal.h"
32 
33 #include <linux/cred.h>
34 #include <linux/errno.h>
35 #include <linux/init_task.h>
36 #include <linux/kernel.h>
37 #include <linux/magic.h>
38 #include <linux/mutex.h>
39 #include <linux/mount.h>
40 #include <linux/pagemap.h>
41 #include <linux/proc_fs.h>
42 #include <linux/rcupdate.h>
43 #include <linux/sched.h>
44 #include <linux/sched/task.h>
45 #include <linux/slab.h>
46 #include <linux/spinlock.h>
47 #include <linux/percpu-rwsem.h>
48 #include <linux/string.h>
49 #include <linux/hashtable.h>
50 #include <linux/idr.h>
51 #include <linux/kthread.h>
52 #include <linux/atomic.h>
53 #include <linux/cpuset.h>
54 #include <linux/proc_ns.h>
55 #include <linux/nsproxy.h>
56 #include <linux/file.h>
57 #include <linux/fs_parser.h>
58 #include <linux/sched/cputime.h>
59 #include <linux/psi.h>
60 #include <net/sock.h>
61 
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/cgroup.h>
64 
65 #define CGROUP_FILE_NAME_MAX		(MAX_CGROUP_TYPE_NAMELEN +	\
66 					 MAX_CFTYPE_NAME + 2)
67 /* let's not notify more than 100 times per second */
68 #define CGROUP_FILE_NOTIFY_MIN_INTV	DIV_ROUND_UP(HZ, 100)
69 
70 /*
71  * cgroup_mutex is the master lock.  Any modification to cgroup or its
72  * hierarchy must be performed while holding it.
73  *
74  * css_set_lock protects task->cgroups pointer, the list of css_set
75  * objects, and the chain of tasks off each css_set.
76  *
77  * These locks are exported if CONFIG_PROVE_RCU so that accessors in
78  * cgroup.h can use them for lockdep annotations.
79  */
80 DEFINE_MUTEX(cgroup_mutex);
81 DEFINE_SPINLOCK(css_set_lock);
82 
83 #ifdef CONFIG_PROVE_RCU
84 EXPORT_SYMBOL_GPL(cgroup_mutex);
85 EXPORT_SYMBOL_GPL(css_set_lock);
86 #endif
87 
88 DEFINE_SPINLOCK(trace_cgroup_path_lock);
89 char trace_cgroup_path[TRACE_CGROUP_PATH_LEN];
90 bool cgroup_debug __read_mostly;
91 
92 /*
93  * Protects cgroup_idr and css_idr so that IDs can be released without
94  * grabbing cgroup_mutex.
95  */
96 static DEFINE_SPINLOCK(cgroup_idr_lock);
97 
98 /*
99  * Protects cgroup_file->kn for !self csses.  It synchronizes notifications
100  * against file removal/re-creation across css hiding.
101  */
102 static DEFINE_SPINLOCK(cgroup_file_kn_lock);
103 
104 DEFINE_PERCPU_RWSEM(cgroup_threadgroup_rwsem);
105 
106 #define cgroup_assert_mutex_or_rcu_locked()				\
107 	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
108 			   !lockdep_is_held(&cgroup_mutex),		\
109 			   "cgroup_mutex or RCU read lock required");
110 
111 /*
112  * cgroup destruction makes heavy use of work items and there can be a lot
113  * of concurrent destructions.  Use a separate workqueue so that cgroup
114  * destruction work items don't end up filling up max_active of system_wq
115  * which may lead to deadlock.
116  */
117 static struct workqueue_struct *cgroup_destroy_wq;
118 
119 /* generate an array of cgroup subsystem pointers */
120 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
121 struct cgroup_subsys *cgroup_subsys[] = {
122 #include <linux/cgroup_subsys.h>
123 };
124 #undef SUBSYS
125 
126 /* array of cgroup subsystem names */
127 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
128 static const char *cgroup_subsys_name[] = {
129 #include <linux/cgroup_subsys.h>
130 };
131 #undef SUBSYS
132 
133 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
134 #define SUBSYS(_x)								\
135 	DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key);			\
136 	DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key);			\
137 	EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key);			\
138 	EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
139 #include <linux/cgroup_subsys.h>
140 #undef SUBSYS
141 
142 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
143 static struct static_key_true *cgroup_subsys_enabled_key[] = {
144 #include <linux/cgroup_subsys.h>
145 };
146 #undef SUBSYS
147 
148 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
149 static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
150 #include <linux/cgroup_subsys.h>
151 };
152 #undef SUBSYS
153 
154 static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu);
155 
156 /*
157  * The default hierarchy, reserved for the subsystems that are otherwise
158  * unattached - it never has more than a single cgroup, and all tasks are
159  * part of that cgroup.
160  */
161 struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu };
162 EXPORT_SYMBOL_GPL(cgrp_dfl_root);
163 
164 /*
165  * The default hierarchy always exists but is hidden until mounted for the
166  * first time.  This is for backward compatibility.
167  */
168 static bool cgrp_dfl_visible;
169 
170 /* some controllers are not supported in the default hierarchy */
171 static u16 cgrp_dfl_inhibit_ss_mask;
172 
173 /* some controllers are implicitly enabled on the default hierarchy */
174 static u16 cgrp_dfl_implicit_ss_mask;
175 
176 /* some controllers can be threaded on the default hierarchy */
177 static u16 cgrp_dfl_threaded_ss_mask;
178 
179 /* The list of hierarchy roots */
180 LIST_HEAD(cgroup_roots);
181 static int cgroup_root_count;
182 
183 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
184 static DEFINE_IDR(cgroup_hierarchy_idr);
185 
186 /*
187  * Assign a monotonically increasing serial number to csses.  It guarantees
188  * cgroups with bigger numbers are newer than those with smaller numbers.
189  * Also, as csses are always appended to the parent's ->children list, it
190  * guarantees that sibling csses are always sorted in the ascending serial
191  * number order on the list.  Protected by cgroup_mutex.
192  */
193 static u64 css_serial_nr_next = 1;
194 
195 /*
196  * These bitmasks identify subsystems with specific features to avoid
197  * having to do iterative checks repeatedly.
198  */
199 static u16 have_fork_callback __read_mostly;
200 static u16 have_exit_callback __read_mostly;
201 static u16 have_release_callback __read_mostly;
202 static u16 have_canfork_callback __read_mostly;
203 
204 /* cgroup namespace for init task */
205 struct cgroup_namespace init_cgroup_ns = {
206 	.count		= REFCOUNT_INIT(2),
207 	.user_ns	= &init_user_ns,
208 	.ns.ops		= &cgroupns_operations,
209 	.ns.inum	= PROC_CGROUP_INIT_INO,
210 	.root_cset	= &init_css_set,
211 };
212 
213 static struct file_system_type cgroup2_fs_type;
214 static struct cftype cgroup_base_files[];
215 
216 static int cgroup_apply_control(struct cgroup *cgrp);
217 static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
218 static void css_task_iter_skip(struct css_task_iter *it,
219 			       struct task_struct *task);
220 static int cgroup_destroy_locked(struct cgroup *cgrp);
221 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
222 					      struct cgroup_subsys *ss);
223 static void css_release(struct percpu_ref *ref);
224 static void kill_css(struct cgroup_subsys_state *css);
225 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
226 			      struct cgroup *cgrp, struct cftype cfts[],
227 			      bool is_add);
228 
229 /**
230  * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
231  * @ssid: subsys ID of interest
232  *
233  * cgroup_subsys_enabled() can only be used with literal subsys names which
234  * is fine for individual subsystems but unsuitable for cgroup core.  This
235  * is slower static_key_enabled() based test indexed by @ssid.
236  */
237 bool cgroup_ssid_enabled(int ssid)
238 {
239 	if (CGROUP_SUBSYS_COUNT == 0)
240 		return false;
241 
242 	return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
243 }
244 
245 /**
246  * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
247  * @cgrp: the cgroup of interest
248  *
249  * The default hierarchy is the v2 interface of cgroup and this function
250  * can be used to test whether a cgroup is on the default hierarchy for
251  * cases where a subsystem should behave differnetly depending on the
252  * interface version.
253  *
254  * The set of behaviors which change on the default hierarchy are still
255  * being determined and the mount option is prefixed with __DEVEL__.
256  *
257  * List of changed behaviors:
258  *
259  * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
260  *   and "name" are disallowed.
261  *
262  * - When mounting an existing superblock, mount options should match.
263  *
264  * - Remount is disallowed.
265  *
266  * - rename(2) is disallowed.
267  *
268  * - "tasks" is removed.  Everything should be at process granularity.  Use
269  *   "cgroup.procs" instead.
270  *
271  * - "cgroup.procs" is not sorted.  pids will be unique unless they got
272  *   recycled inbetween reads.
273  *
274  * - "release_agent" and "notify_on_release" are removed.  Replacement
275  *   notification mechanism will be implemented.
276  *
277  * - "cgroup.clone_children" is removed.
278  *
279  * - "cgroup.subtree_populated" is available.  Its value is 0 if the cgroup
280  *   and its descendants contain no task; otherwise, 1.  The file also
281  *   generates kernfs notification which can be monitored through poll and
282  *   [di]notify when the value of the file changes.
283  *
284  * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
285  *   take masks of ancestors with non-empty cpus/mems, instead of being
286  *   moved to an ancestor.
287  *
288  * - cpuset: a task can be moved into an empty cpuset, and again it takes
289  *   masks of ancestors.
290  *
291  * - memcg: use_hierarchy is on by default and the cgroup file for the flag
292  *   is not created.
293  *
294  * - blkcg: blk-throttle becomes properly hierarchical.
295  *
296  * - debug: disallowed on the default hierarchy.
297  */
298 bool cgroup_on_dfl(const struct cgroup *cgrp)
299 {
300 	return cgrp->root == &cgrp_dfl_root;
301 }
302 
303 /* IDR wrappers which synchronize using cgroup_idr_lock */
304 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
305 			    gfp_t gfp_mask)
306 {
307 	int ret;
308 
309 	idr_preload(gfp_mask);
310 	spin_lock_bh(&cgroup_idr_lock);
311 	ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
312 	spin_unlock_bh(&cgroup_idr_lock);
313 	idr_preload_end();
314 	return ret;
315 }
316 
317 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
318 {
319 	void *ret;
320 
321 	spin_lock_bh(&cgroup_idr_lock);
322 	ret = idr_replace(idr, ptr, id);
323 	spin_unlock_bh(&cgroup_idr_lock);
324 	return ret;
325 }
326 
327 static void cgroup_idr_remove(struct idr *idr, int id)
328 {
329 	spin_lock_bh(&cgroup_idr_lock);
330 	idr_remove(idr, id);
331 	spin_unlock_bh(&cgroup_idr_lock);
332 }
333 
334 static bool cgroup_has_tasks(struct cgroup *cgrp)
335 {
336 	return cgrp->nr_populated_csets;
337 }
338 
339 bool cgroup_is_threaded(struct cgroup *cgrp)
340 {
341 	return cgrp->dom_cgrp != cgrp;
342 }
343 
344 /* can @cgrp host both domain and threaded children? */
345 static bool cgroup_is_mixable(struct cgroup *cgrp)
346 {
347 	/*
348 	 * Root isn't under domain level resource control exempting it from
349 	 * the no-internal-process constraint, so it can serve as a thread
350 	 * root and a parent of resource domains at the same time.
351 	 */
352 	return !cgroup_parent(cgrp);
353 }
354 
355 /* can @cgrp become a thread root? should always be true for a thread root */
356 static bool cgroup_can_be_thread_root(struct cgroup *cgrp)
357 {
358 	/* mixables don't care */
359 	if (cgroup_is_mixable(cgrp))
360 		return true;
361 
362 	/* domain roots can't be nested under threaded */
363 	if (cgroup_is_threaded(cgrp))
364 		return false;
365 
366 	/* can only have either domain or threaded children */
367 	if (cgrp->nr_populated_domain_children)
368 		return false;
369 
370 	/* and no domain controllers can be enabled */
371 	if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
372 		return false;
373 
374 	return true;
375 }
376 
377 /* is @cgrp root of a threaded subtree? */
378 bool cgroup_is_thread_root(struct cgroup *cgrp)
379 {
380 	/* thread root should be a domain */
381 	if (cgroup_is_threaded(cgrp))
382 		return false;
383 
384 	/* a domain w/ threaded children is a thread root */
385 	if (cgrp->nr_threaded_children)
386 		return true;
387 
388 	/*
389 	 * A domain which has tasks and explicit threaded controllers
390 	 * enabled is a thread root.
391 	 */
392 	if (cgroup_has_tasks(cgrp) &&
393 	    (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask))
394 		return true;
395 
396 	return false;
397 }
398 
399 /* a domain which isn't connected to the root w/o brekage can't be used */
400 static bool cgroup_is_valid_domain(struct cgroup *cgrp)
401 {
402 	/* the cgroup itself can be a thread root */
403 	if (cgroup_is_threaded(cgrp))
404 		return false;
405 
406 	/* but the ancestors can't be unless mixable */
407 	while ((cgrp = cgroup_parent(cgrp))) {
408 		if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp))
409 			return false;
410 		if (cgroup_is_threaded(cgrp))
411 			return false;
412 	}
413 
414 	return true;
415 }
416 
417 /* subsystems visibly enabled on a cgroup */
418 static u16 cgroup_control(struct cgroup *cgrp)
419 {
420 	struct cgroup *parent = cgroup_parent(cgrp);
421 	u16 root_ss_mask = cgrp->root->subsys_mask;
422 
423 	if (parent) {
424 		u16 ss_mask = parent->subtree_control;
425 
426 		/* threaded cgroups can only have threaded controllers */
427 		if (cgroup_is_threaded(cgrp))
428 			ss_mask &= cgrp_dfl_threaded_ss_mask;
429 		return ss_mask;
430 	}
431 
432 	if (cgroup_on_dfl(cgrp))
433 		root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
434 				  cgrp_dfl_implicit_ss_mask);
435 	return root_ss_mask;
436 }
437 
438 /* subsystems enabled on a cgroup */
439 static u16 cgroup_ss_mask(struct cgroup *cgrp)
440 {
441 	struct cgroup *parent = cgroup_parent(cgrp);
442 
443 	if (parent) {
444 		u16 ss_mask = parent->subtree_ss_mask;
445 
446 		/* threaded cgroups can only have threaded controllers */
447 		if (cgroup_is_threaded(cgrp))
448 			ss_mask &= cgrp_dfl_threaded_ss_mask;
449 		return ss_mask;
450 	}
451 
452 	return cgrp->root->subsys_mask;
453 }
454 
455 /**
456  * cgroup_css - obtain a cgroup's css for the specified subsystem
457  * @cgrp: the cgroup of interest
458  * @ss: the subsystem of interest (%NULL returns @cgrp->self)
459  *
460  * Return @cgrp's css (cgroup_subsys_state) associated with @ss.  This
461  * function must be called either under cgroup_mutex or rcu_read_lock() and
462  * the caller is responsible for pinning the returned css if it wants to
463  * keep accessing it outside the said locks.  This function may return
464  * %NULL if @cgrp doesn't have @subsys_id enabled.
465  */
466 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
467 					      struct cgroup_subsys *ss)
468 {
469 	if (ss)
470 		return rcu_dereference_check(cgrp->subsys[ss->id],
471 					lockdep_is_held(&cgroup_mutex));
472 	else
473 		return &cgrp->self;
474 }
475 
476 /**
477  * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem
478  * @cgrp: the cgroup of interest
479  * @ss: the subsystem of interest
480  *
481  * Find and get @cgrp's css assocaited with @ss.  If the css doesn't exist
482  * or is offline, %NULL is returned.
483  */
484 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp,
485 						     struct cgroup_subsys *ss)
486 {
487 	struct cgroup_subsys_state *css;
488 
489 	rcu_read_lock();
490 	css = cgroup_css(cgrp, ss);
491 	if (css && !css_tryget_online(css))
492 		css = NULL;
493 	rcu_read_unlock();
494 
495 	return css;
496 }
497 
498 /**
499  * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss
500  * @cgrp: the cgroup of interest
501  * @ss: the subsystem of interest (%NULL returns @cgrp->self)
502  *
503  * Similar to cgroup_css() but returns the effective css, which is defined
504  * as the matching css of the nearest ancestor including self which has @ss
505  * enabled.  If @ss is associated with the hierarchy @cgrp is on, this
506  * function is guaranteed to return non-NULL css.
507  */
508 static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp,
509 							struct cgroup_subsys *ss)
510 {
511 	lockdep_assert_held(&cgroup_mutex);
512 
513 	if (!ss)
514 		return &cgrp->self;
515 
516 	/*
517 	 * This function is used while updating css associations and thus
518 	 * can't test the csses directly.  Test ss_mask.
519 	 */
520 	while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
521 		cgrp = cgroup_parent(cgrp);
522 		if (!cgrp)
523 			return NULL;
524 	}
525 
526 	return cgroup_css(cgrp, ss);
527 }
528 
529 /**
530  * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
531  * @cgrp: the cgroup of interest
532  * @ss: the subsystem of interest
533  *
534  * Find and get the effective css of @cgrp for @ss.  The effective css is
535  * defined as the matching css of the nearest ancestor including self which
536  * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
537  * the root css is returned, so this function always returns a valid css.
538  *
539  * The returned css is not guaranteed to be online, and therefore it is the
540  * callers responsiblity to tryget a reference for it.
541  */
542 struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
543 					 struct cgroup_subsys *ss)
544 {
545 	struct cgroup_subsys_state *css;
546 
547 	do {
548 		css = cgroup_css(cgrp, ss);
549 
550 		if (css)
551 			return css;
552 		cgrp = cgroup_parent(cgrp);
553 	} while (cgrp);
554 
555 	return init_css_set.subsys[ss->id];
556 }
557 
558 /**
559  * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
560  * @cgrp: the cgroup of interest
561  * @ss: the subsystem of interest
562  *
563  * Find and get the effective css of @cgrp for @ss.  The effective css is
564  * defined as the matching css of the nearest ancestor including self which
565  * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
566  * the root css is returned, so this function always returns a valid css.
567  * The returned css must be put using css_put().
568  */
569 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
570 					     struct cgroup_subsys *ss)
571 {
572 	struct cgroup_subsys_state *css;
573 
574 	rcu_read_lock();
575 
576 	do {
577 		css = cgroup_css(cgrp, ss);
578 
579 		if (css && css_tryget_online(css))
580 			goto out_unlock;
581 		cgrp = cgroup_parent(cgrp);
582 	} while (cgrp);
583 
584 	css = init_css_set.subsys[ss->id];
585 	css_get(css);
586 out_unlock:
587 	rcu_read_unlock();
588 	return css;
589 }
590 
591 static void cgroup_get_live(struct cgroup *cgrp)
592 {
593 	WARN_ON_ONCE(cgroup_is_dead(cgrp));
594 	css_get(&cgrp->self);
595 }
596 
597 /**
598  * __cgroup_task_count - count the number of tasks in a cgroup. The caller
599  * is responsible for taking the css_set_lock.
600  * @cgrp: the cgroup in question
601  */
602 int __cgroup_task_count(const struct cgroup *cgrp)
603 {
604 	int count = 0;
605 	struct cgrp_cset_link *link;
606 
607 	lockdep_assert_held(&css_set_lock);
608 
609 	list_for_each_entry(link, &cgrp->cset_links, cset_link)
610 		count += link->cset->nr_tasks;
611 
612 	return count;
613 }
614 
615 /**
616  * cgroup_task_count - count the number of tasks in a cgroup.
617  * @cgrp: the cgroup in question
618  */
619 int cgroup_task_count(const struct cgroup *cgrp)
620 {
621 	int count;
622 
623 	spin_lock_irq(&css_set_lock);
624 	count = __cgroup_task_count(cgrp);
625 	spin_unlock_irq(&css_set_lock);
626 
627 	return count;
628 }
629 
630 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
631 {
632 	struct cgroup *cgrp = of->kn->parent->priv;
633 	struct cftype *cft = of_cft(of);
634 
635 	/*
636 	 * This is open and unprotected implementation of cgroup_css().
637 	 * seq_css() is only called from a kernfs file operation which has
638 	 * an active reference on the file.  Because all the subsystem
639 	 * files are drained before a css is disassociated with a cgroup,
640 	 * the matching css from the cgroup's subsys table is guaranteed to
641 	 * be and stay valid until the enclosing operation is complete.
642 	 */
643 	if (cft->ss)
644 		return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
645 	else
646 		return &cgrp->self;
647 }
648 EXPORT_SYMBOL_GPL(of_css);
649 
650 /**
651  * for_each_css - iterate all css's of a cgroup
652  * @css: the iteration cursor
653  * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
654  * @cgrp: the target cgroup to iterate css's of
655  *
656  * Should be called under cgroup_[tree_]mutex.
657  */
658 #define for_each_css(css, ssid, cgrp)					\
659 	for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)	\
660 		if (!((css) = rcu_dereference_check(			\
661 				(cgrp)->subsys[(ssid)],			\
662 				lockdep_is_held(&cgroup_mutex)))) { }	\
663 		else
664 
665 /**
666  * for_each_e_css - iterate all effective css's of a cgroup
667  * @css: the iteration cursor
668  * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
669  * @cgrp: the target cgroup to iterate css's of
670  *
671  * Should be called under cgroup_[tree_]mutex.
672  */
673 #define for_each_e_css(css, ssid, cgrp)					    \
674 	for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)	    \
675 		if (!((css) = cgroup_e_css_by_mask(cgrp,		    \
676 						   cgroup_subsys[(ssid)]))) \
677 			;						    \
678 		else
679 
680 /**
681  * do_each_subsys_mask - filter for_each_subsys with a bitmask
682  * @ss: the iteration cursor
683  * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
684  * @ss_mask: the bitmask
685  *
686  * The block will only run for cases where the ssid-th bit (1 << ssid) of
687  * @ss_mask is set.
688  */
689 #define do_each_subsys_mask(ss, ssid, ss_mask) do {			\
690 	unsigned long __ss_mask = (ss_mask);				\
691 	if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */	\
692 		(ssid) = 0;						\
693 		break;							\
694 	}								\
695 	for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) {	\
696 		(ss) = cgroup_subsys[ssid];				\
697 		{
698 
699 #define while_each_subsys_mask()					\
700 		}							\
701 	}								\
702 } while (false)
703 
704 /* iterate over child cgrps, lock should be held throughout iteration */
705 #define cgroup_for_each_live_child(child, cgrp)				\
706 	list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
707 		if (({ lockdep_assert_held(&cgroup_mutex);		\
708 		       cgroup_is_dead(child); }))			\
709 			;						\
710 		else
711 
712 /* walk live descendants in preorder */
713 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)		\
714 	css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL))	\
715 		if (({ lockdep_assert_held(&cgroup_mutex);		\
716 		       (dsct) = (d_css)->cgroup;			\
717 		       cgroup_is_dead(dsct); }))			\
718 			;						\
719 		else
720 
721 /* walk live descendants in postorder */
722 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp)		\
723 	css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL))	\
724 		if (({ lockdep_assert_held(&cgroup_mutex);		\
725 		       (dsct) = (d_css)->cgroup;			\
726 		       cgroup_is_dead(dsct); }))			\
727 			;						\
728 		else
729 
730 /*
731  * The default css_set - used by init and its children prior to any
732  * hierarchies being mounted. It contains a pointer to the root state
733  * for each subsystem. Also used to anchor the list of css_sets. Not
734  * reference-counted, to improve performance when child cgroups
735  * haven't been created.
736  */
737 struct css_set init_css_set = {
738 	.refcount		= REFCOUNT_INIT(1),
739 	.dom_cset		= &init_css_set,
740 	.tasks			= LIST_HEAD_INIT(init_css_set.tasks),
741 	.mg_tasks		= LIST_HEAD_INIT(init_css_set.mg_tasks),
742 	.dying_tasks		= LIST_HEAD_INIT(init_css_set.dying_tasks),
743 	.task_iters		= LIST_HEAD_INIT(init_css_set.task_iters),
744 	.threaded_csets		= LIST_HEAD_INIT(init_css_set.threaded_csets),
745 	.cgrp_links		= LIST_HEAD_INIT(init_css_set.cgrp_links),
746 	.mg_preload_node	= LIST_HEAD_INIT(init_css_set.mg_preload_node),
747 	.mg_node		= LIST_HEAD_INIT(init_css_set.mg_node),
748 
749 	/*
750 	 * The following field is re-initialized when this cset gets linked
751 	 * in cgroup_init().  However, let's initialize the field
752 	 * statically too so that the default cgroup can be accessed safely
753 	 * early during boot.
754 	 */
755 	.dfl_cgrp		= &cgrp_dfl_root.cgrp,
756 };
757 
758 static int css_set_count	= 1;	/* 1 for init_css_set */
759 
760 static bool css_set_threaded(struct css_set *cset)
761 {
762 	return cset->dom_cset != cset;
763 }
764 
765 /**
766  * css_set_populated - does a css_set contain any tasks?
767  * @cset: target css_set
768  *
769  * css_set_populated() should be the same as !!cset->nr_tasks at steady
770  * state. However, css_set_populated() can be called while a task is being
771  * added to or removed from the linked list before the nr_tasks is
772  * properly updated. Hence, we can't just look at ->nr_tasks here.
773  */
774 static bool css_set_populated(struct css_set *cset)
775 {
776 	lockdep_assert_held(&css_set_lock);
777 
778 	return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
779 }
780 
781 /**
782  * cgroup_update_populated - update the populated count of a cgroup
783  * @cgrp: the target cgroup
784  * @populated: inc or dec populated count
785  *
786  * One of the css_sets associated with @cgrp is either getting its first
787  * task or losing the last.  Update @cgrp->nr_populated_* accordingly.  The
788  * count is propagated towards root so that a given cgroup's
789  * nr_populated_children is zero iff none of its descendants contain any
790  * tasks.
791  *
792  * @cgrp's interface file "cgroup.populated" is zero if both
793  * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and
794  * 1 otherwise.  When the sum changes from or to zero, userland is notified
795  * that the content of the interface file has changed.  This can be used to
796  * detect when @cgrp and its descendants become populated or empty.
797  */
798 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
799 {
800 	struct cgroup *child = NULL;
801 	int adj = populated ? 1 : -1;
802 
803 	lockdep_assert_held(&css_set_lock);
804 
805 	do {
806 		bool was_populated = cgroup_is_populated(cgrp);
807 
808 		if (!child) {
809 			cgrp->nr_populated_csets += adj;
810 		} else {
811 			if (cgroup_is_threaded(child))
812 				cgrp->nr_populated_threaded_children += adj;
813 			else
814 				cgrp->nr_populated_domain_children += adj;
815 		}
816 
817 		if (was_populated == cgroup_is_populated(cgrp))
818 			break;
819 
820 		cgroup1_check_for_release(cgrp);
821 		TRACE_CGROUP_PATH(notify_populated, cgrp,
822 				  cgroup_is_populated(cgrp));
823 		cgroup_file_notify(&cgrp->events_file);
824 
825 		child = cgrp;
826 		cgrp = cgroup_parent(cgrp);
827 	} while (cgrp);
828 }
829 
830 /**
831  * css_set_update_populated - update populated state of a css_set
832  * @cset: target css_set
833  * @populated: whether @cset is populated or depopulated
834  *
835  * @cset is either getting the first task or losing the last.  Update the
836  * populated counters of all associated cgroups accordingly.
837  */
838 static void css_set_update_populated(struct css_set *cset, bool populated)
839 {
840 	struct cgrp_cset_link *link;
841 
842 	lockdep_assert_held(&css_set_lock);
843 
844 	list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
845 		cgroup_update_populated(link->cgrp, populated);
846 }
847 
848 /*
849  * @task is leaving, advance task iterators which are pointing to it so
850  * that they can resume at the next position.  Advancing an iterator might
851  * remove it from the list, use safe walk.  See css_task_iter_skip() for
852  * details.
853  */
854 static void css_set_skip_task_iters(struct css_set *cset,
855 				    struct task_struct *task)
856 {
857 	struct css_task_iter *it, *pos;
858 
859 	list_for_each_entry_safe(it, pos, &cset->task_iters, iters_node)
860 		css_task_iter_skip(it, task);
861 }
862 
863 /**
864  * css_set_move_task - move a task from one css_set to another
865  * @task: task being moved
866  * @from_cset: css_set @task currently belongs to (may be NULL)
867  * @to_cset: new css_set @task is being moved to (may be NULL)
868  * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
869  *
870  * Move @task from @from_cset to @to_cset.  If @task didn't belong to any
871  * css_set, @from_cset can be NULL.  If @task is being disassociated
872  * instead of moved, @to_cset can be NULL.
873  *
874  * This function automatically handles populated counter updates and
875  * css_task_iter adjustments but the caller is responsible for managing
876  * @from_cset and @to_cset's reference counts.
877  */
878 static void css_set_move_task(struct task_struct *task,
879 			      struct css_set *from_cset, struct css_set *to_cset,
880 			      bool use_mg_tasks)
881 {
882 	lockdep_assert_held(&css_set_lock);
883 
884 	if (to_cset && !css_set_populated(to_cset))
885 		css_set_update_populated(to_cset, true);
886 
887 	if (from_cset) {
888 		WARN_ON_ONCE(list_empty(&task->cg_list));
889 
890 		css_set_skip_task_iters(from_cset, task);
891 		list_del_init(&task->cg_list);
892 		if (!css_set_populated(from_cset))
893 			css_set_update_populated(from_cset, false);
894 	} else {
895 		WARN_ON_ONCE(!list_empty(&task->cg_list));
896 	}
897 
898 	if (to_cset) {
899 		/*
900 		 * We are synchronized through cgroup_threadgroup_rwsem
901 		 * against PF_EXITING setting such that we can't race
902 		 * against cgroup_exit()/cgroup_free() dropping the css_set.
903 		 */
904 		WARN_ON_ONCE(task->flags & PF_EXITING);
905 
906 		cgroup_move_task(task, to_cset);
907 		list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
908 							     &to_cset->tasks);
909 	}
910 }
911 
912 /*
913  * hash table for cgroup groups. This improves the performance to find
914  * an existing css_set. This hash doesn't (currently) take into
915  * account cgroups in empty hierarchies.
916  */
917 #define CSS_SET_HASH_BITS	7
918 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
919 
920 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
921 {
922 	unsigned long key = 0UL;
923 	struct cgroup_subsys *ss;
924 	int i;
925 
926 	for_each_subsys(ss, i)
927 		key += (unsigned long)css[i];
928 	key = (key >> 16) ^ key;
929 
930 	return key;
931 }
932 
933 void put_css_set_locked(struct css_set *cset)
934 {
935 	struct cgrp_cset_link *link, *tmp_link;
936 	struct cgroup_subsys *ss;
937 	int ssid;
938 
939 	lockdep_assert_held(&css_set_lock);
940 
941 	if (!refcount_dec_and_test(&cset->refcount))
942 		return;
943 
944 	WARN_ON_ONCE(!list_empty(&cset->threaded_csets));
945 
946 	/* This css_set is dead. unlink it and release cgroup and css refs */
947 	for_each_subsys(ss, ssid) {
948 		list_del(&cset->e_cset_node[ssid]);
949 		css_put(cset->subsys[ssid]);
950 	}
951 	hash_del(&cset->hlist);
952 	css_set_count--;
953 
954 	list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
955 		list_del(&link->cset_link);
956 		list_del(&link->cgrp_link);
957 		if (cgroup_parent(link->cgrp))
958 			cgroup_put(link->cgrp);
959 		kfree(link);
960 	}
961 
962 	if (css_set_threaded(cset)) {
963 		list_del(&cset->threaded_csets_node);
964 		put_css_set_locked(cset->dom_cset);
965 	}
966 
967 	kfree_rcu(cset, rcu_head);
968 }
969 
970 /**
971  * compare_css_sets - helper function for find_existing_css_set().
972  * @cset: candidate css_set being tested
973  * @old_cset: existing css_set for a task
974  * @new_cgrp: cgroup that's being entered by the task
975  * @template: desired set of css pointers in css_set (pre-calculated)
976  *
977  * Returns true if "cset" matches "old_cset" except for the hierarchy
978  * which "new_cgrp" belongs to, for which it should match "new_cgrp".
979  */
980 static bool compare_css_sets(struct css_set *cset,
981 			     struct css_set *old_cset,
982 			     struct cgroup *new_cgrp,
983 			     struct cgroup_subsys_state *template[])
984 {
985 	struct cgroup *new_dfl_cgrp;
986 	struct list_head *l1, *l2;
987 
988 	/*
989 	 * On the default hierarchy, there can be csets which are
990 	 * associated with the same set of cgroups but different csses.
991 	 * Let's first ensure that csses match.
992 	 */
993 	if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
994 		return false;
995 
996 
997 	/* @cset's domain should match the default cgroup's */
998 	if (cgroup_on_dfl(new_cgrp))
999 		new_dfl_cgrp = new_cgrp;
1000 	else
1001 		new_dfl_cgrp = old_cset->dfl_cgrp;
1002 
1003 	if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp)
1004 		return false;
1005 
1006 	/*
1007 	 * Compare cgroup pointers in order to distinguish between
1008 	 * different cgroups in hierarchies.  As different cgroups may
1009 	 * share the same effective css, this comparison is always
1010 	 * necessary.
1011 	 */
1012 	l1 = &cset->cgrp_links;
1013 	l2 = &old_cset->cgrp_links;
1014 	while (1) {
1015 		struct cgrp_cset_link *link1, *link2;
1016 		struct cgroup *cgrp1, *cgrp2;
1017 
1018 		l1 = l1->next;
1019 		l2 = l2->next;
1020 		/* See if we reached the end - both lists are equal length. */
1021 		if (l1 == &cset->cgrp_links) {
1022 			BUG_ON(l2 != &old_cset->cgrp_links);
1023 			break;
1024 		} else {
1025 			BUG_ON(l2 == &old_cset->cgrp_links);
1026 		}
1027 		/* Locate the cgroups associated with these links. */
1028 		link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
1029 		link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
1030 		cgrp1 = link1->cgrp;
1031 		cgrp2 = link2->cgrp;
1032 		/* Hierarchies should be linked in the same order. */
1033 		BUG_ON(cgrp1->root != cgrp2->root);
1034 
1035 		/*
1036 		 * If this hierarchy is the hierarchy of the cgroup
1037 		 * that's changing, then we need to check that this
1038 		 * css_set points to the new cgroup; if it's any other
1039 		 * hierarchy, then this css_set should point to the
1040 		 * same cgroup as the old css_set.
1041 		 */
1042 		if (cgrp1->root == new_cgrp->root) {
1043 			if (cgrp1 != new_cgrp)
1044 				return false;
1045 		} else {
1046 			if (cgrp1 != cgrp2)
1047 				return false;
1048 		}
1049 	}
1050 	return true;
1051 }
1052 
1053 /**
1054  * find_existing_css_set - init css array and find the matching css_set
1055  * @old_cset: the css_set that we're using before the cgroup transition
1056  * @cgrp: the cgroup that we're moving into
1057  * @template: out param for the new set of csses, should be clear on entry
1058  */
1059 static struct css_set *find_existing_css_set(struct css_set *old_cset,
1060 					struct cgroup *cgrp,
1061 					struct cgroup_subsys_state *template[])
1062 {
1063 	struct cgroup_root *root = cgrp->root;
1064 	struct cgroup_subsys *ss;
1065 	struct css_set *cset;
1066 	unsigned long key;
1067 	int i;
1068 
1069 	/*
1070 	 * Build the set of subsystem state objects that we want to see in the
1071 	 * new css_set. while subsystems can change globally, the entries here
1072 	 * won't change, so no need for locking.
1073 	 */
1074 	for_each_subsys(ss, i) {
1075 		if (root->subsys_mask & (1UL << i)) {
1076 			/*
1077 			 * @ss is in this hierarchy, so we want the
1078 			 * effective css from @cgrp.
1079 			 */
1080 			template[i] = cgroup_e_css_by_mask(cgrp, ss);
1081 		} else {
1082 			/*
1083 			 * @ss is not in this hierarchy, so we don't want
1084 			 * to change the css.
1085 			 */
1086 			template[i] = old_cset->subsys[i];
1087 		}
1088 	}
1089 
1090 	key = css_set_hash(template);
1091 	hash_for_each_possible(css_set_table, cset, hlist, key) {
1092 		if (!compare_css_sets(cset, old_cset, cgrp, template))
1093 			continue;
1094 
1095 		/* This css_set matches what we need */
1096 		return cset;
1097 	}
1098 
1099 	/* No existing cgroup group matched */
1100 	return NULL;
1101 }
1102 
1103 static void free_cgrp_cset_links(struct list_head *links_to_free)
1104 {
1105 	struct cgrp_cset_link *link, *tmp_link;
1106 
1107 	list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
1108 		list_del(&link->cset_link);
1109 		kfree(link);
1110 	}
1111 }
1112 
1113 /**
1114  * allocate_cgrp_cset_links - allocate cgrp_cset_links
1115  * @count: the number of links to allocate
1116  * @tmp_links: list_head the allocated links are put on
1117  *
1118  * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1119  * through ->cset_link.  Returns 0 on success or -errno.
1120  */
1121 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
1122 {
1123 	struct cgrp_cset_link *link;
1124 	int i;
1125 
1126 	INIT_LIST_HEAD(tmp_links);
1127 
1128 	for (i = 0; i < count; i++) {
1129 		link = kzalloc(sizeof(*link), GFP_KERNEL);
1130 		if (!link) {
1131 			free_cgrp_cset_links(tmp_links);
1132 			return -ENOMEM;
1133 		}
1134 		list_add(&link->cset_link, tmp_links);
1135 	}
1136 	return 0;
1137 }
1138 
1139 /**
1140  * link_css_set - a helper function to link a css_set to a cgroup
1141  * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
1142  * @cset: the css_set to be linked
1143  * @cgrp: the destination cgroup
1144  */
1145 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1146 			 struct cgroup *cgrp)
1147 {
1148 	struct cgrp_cset_link *link;
1149 
1150 	BUG_ON(list_empty(tmp_links));
1151 
1152 	if (cgroup_on_dfl(cgrp))
1153 		cset->dfl_cgrp = cgrp;
1154 
1155 	link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1156 	link->cset = cset;
1157 	link->cgrp = cgrp;
1158 
1159 	/*
1160 	 * Always add links to the tail of the lists so that the lists are
1161 	 * in choronological order.
1162 	 */
1163 	list_move_tail(&link->cset_link, &cgrp->cset_links);
1164 	list_add_tail(&link->cgrp_link, &cset->cgrp_links);
1165 
1166 	if (cgroup_parent(cgrp))
1167 		cgroup_get_live(cgrp);
1168 }
1169 
1170 /**
1171  * find_css_set - return a new css_set with one cgroup updated
1172  * @old_cset: the baseline css_set
1173  * @cgrp: the cgroup to be updated
1174  *
1175  * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1176  * substituted into the appropriate hierarchy.
1177  */
1178 static struct css_set *find_css_set(struct css_set *old_cset,
1179 				    struct cgroup *cgrp)
1180 {
1181 	struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
1182 	struct css_set *cset;
1183 	struct list_head tmp_links;
1184 	struct cgrp_cset_link *link;
1185 	struct cgroup_subsys *ss;
1186 	unsigned long key;
1187 	int ssid;
1188 
1189 	lockdep_assert_held(&cgroup_mutex);
1190 
1191 	/* First see if we already have a cgroup group that matches
1192 	 * the desired set */
1193 	spin_lock_irq(&css_set_lock);
1194 	cset = find_existing_css_set(old_cset, cgrp, template);
1195 	if (cset)
1196 		get_css_set(cset);
1197 	spin_unlock_irq(&css_set_lock);
1198 
1199 	if (cset)
1200 		return cset;
1201 
1202 	cset = kzalloc(sizeof(*cset), GFP_KERNEL);
1203 	if (!cset)
1204 		return NULL;
1205 
1206 	/* Allocate all the cgrp_cset_link objects that we'll need */
1207 	if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1208 		kfree(cset);
1209 		return NULL;
1210 	}
1211 
1212 	refcount_set(&cset->refcount, 1);
1213 	cset->dom_cset = cset;
1214 	INIT_LIST_HEAD(&cset->tasks);
1215 	INIT_LIST_HEAD(&cset->mg_tasks);
1216 	INIT_LIST_HEAD(&cset->dying_tasks);
1217 	INIT_LIST_HEAD(&cset->task_iters);
1218 	INIT_LIST_HEAD(&cset->threaded_csets);
1219 	INIT_HLIST_NODE(&cset->hlist);
1220 	INIT_LIST_HEAD(&cset->cgrp_links);
1221 	INIT_LIST_HEAD(&cset->mg_preload_node);
1222 	INIT_LIST_HEAD(&cset->mg_node);
1223 
1224 	/* Copy the set of subsystem state objects generated in
1225 	 * find_existing_css_set() */
1226 	memcpy(cset->subsys, template, sizeof(cset->subsys));
1227 
1228 	spin_lock_irq(&css_set_lock);
1229 	/* Add reference counts and links from the new css_set. */
1230 	list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1231 		struct cgroup *c = link->cgrp;
1232 
1233 		if (c->root == cgrp->root)
1234 			c = cgrp;
1235 		link_css_set(&tmp_links, cset, c);
1236 	}
1237 
1238 	BUG_ON(!list_empty(&tmp_links));
1239 
1240 	css_set_count++;
1241 
1242 	/* Add @cset to the hash table */
1243 	key = css_set_hash(cset->subsys);
1244 	hash_add(css_set_table, &cset->hlist, key);
1245 
1246 	for_each_subsys(ss, ssid) {
1247 		struct cgroup_subsys_state *css = cset->subsys[ssid];
1248 
1249 		list_add_tail(&cset->e_cset_node[ssid],
1250 			      &css->cgroup->e_csets[ssid]);
1251 		css_get(css);
1252 	}
1253 
1254 	spin_unlock_irq(&css_set_lock);
1255 
1256 	/*
1257 	 * If @cset should be threaded, look up the matching dom_cset and
1258 	 * link them up.  We first fully initialize @cset then look for the
1259 	 * dom_cset.  It's simpler this way and safe as @cset is guaranteed
1260 	 * to stay empty until we return.
1261 	 */
1262 	if (cgroup_is_threaded(cset->dfl_cgrp)) {
1263 		struct css_set *dcset;
1264 
1265 		dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp);
1266 		if (!dcset) {
1267 			put_css_set(cset);
1268 			return NULL;
1269 		}
1270 
1271 		spin_lock_irq(&css_set_lock);
1272 		cset->dom_cset = dcset;
1273 		list_add_tail(&cset->threaded_csets_node,
1274 			      &dcset->threaded_csets);
1275 		spin_unlock_irq(&css_set_lock);
1276 	}
1277 
1278 	return cset;
1279 }
1280 
1281 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1282 {
1283 	struct cgroup *root_cgrp = kf_root->kn->priv;
1284 
1285 	return root_cgrp->root;
1286 }
1287 
1288 static int cgroup_init_root_id(struct cgroup_root *root)
1289 {
1290 	int id;
1291 
1292 	lockdep_assert_held(&cgroup_mutex);
1293 
1294 	id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1295 	if (id < 0)
1296 		return id;
1297 
1298 	root->hierarchy_id = id;
1299 	return 0;
1300 }
1301 
1302 static void cgroup_exit_root_id(struct cgroup_root *root)
1303 {
1304 	lockdep_assert_held(&cgroup_mutex);
1305 
1306 	idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1307 }
1308 
1309 void cgroup_free_root(struct cgroup_root *root)
1310 {
1311 	kfree(root);
1312 }
1313 
1314 static void cgroup_destroy_root(struct cgroup_root *root)
1315 {
1316 	struct cgroup *cgrp = &root->cgrp;
1317 	struct cgrp_cset_link *link, *tmp_link;
1318 
1319 	trace_cgroup_destroy_root(root);
1320 
1321 	cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1322 
1323 	BUG_ON(atomic_read(&root->nr_cgrps));
1324 	BUG_ON(!list_empty(&cgrp->self.children));
1325 
1326 	/* Rebind all subsystems back to the default hierarchy */
1327 	WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
1328 
1329 	/*
1330 	 * Release all the links from cset_links to this hierarchy's
1331 	 * root cgroup
1332 	 */
1333 	spin_lock_irq(&css_set_lock);
1334 
1335 	list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1336 		list_del(&link->cset_link);
1337 		list_del(&link->cgrp_link);
1338 		kfree(link);
1339 	}
1340 
1341 	spin_unlock_irq(&css_set_lock);
1342 
1343 	if (!list_empty(&root->root_list)) {
1344 		list_del(&root->root_list);
1345 		cgroup_root_count--;
1346 	}
1347 
1348 	cgroup_exit_root_id(root);
1349 
1350 	mutex_unlock(&cgroup_mutex);
1351 
1352 	kernfs_destroy_root(root->kf_root);
1353 	cgroup_free_root(root);
1354 }
1355 
1356 /*
1357  * look up cgroup associated with current task's cgroup namespace on the
1358  * specified hierarchy
1359  */
1360 static struct cgroup *
1361 current_cgns_cgroup_from_root(struct cgroup_root *root)
1362 {
1363 	struct cgroup *res = NULL;
1364 	struct css_set *cset;
1365 
1366 	lockdep_assert_held(&css_set_lock);
1367 
1368 	rcu_read_lock();
1369 
1370 	cset = current->nsproxy->cgroup_ns->root_cset;
1371 	if (cset == &init_css_set) {
1372 		res = &root->cgrp;
1373 	} else if (root == &cgrp_dfl_root) {
1374 		res = cset->dfl_cgrp;
1375 	} else {
1376 		struct cgrp_cset_link *link;
1377 
1378 		list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1379 			struct cgroup *c = link->cgrp;
1380 
1381 			if (c->root == root) {
1382 				res = c;
1383 				break;
1384 			}
1385 		}
1386 	}
1387 	rcu_read_unlock();
1388 
1389 	BUG_ON(!res);
1390 	return res;
1391 }
1392 
1393 /* look up cgroup associated with given css_set on the specified hierarchy */
1394 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1395 					    struct cgroup_root *root)
1396 {
1397 	struct cgroup *res = NULL;
1398 
1399 	lockdep_assert_held(&cgroup_mutex);
1400 	lockdep_assert_held(&css_set_lock);
1401 
1402 	if (cset == &init_css_set) {
1403 		res = &root->cgrp;
1404 	} else if (root == &cgrp_dfl_root) {
1405 		res = cset->dfl_cgrp;
1406 	} else {
1407 		struct cgrp_cset_link *link;
1408 
1409 		list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1410 			struct cgroup *c = link->cgrp;
1411 
1412 			if (c->root == root) {
1413 				res = c;
1414 				break;
1415 			}
1416 		}
1417 	}
1418 
1419 	BUG_ON(!res);
1420 	return res;
1421 }
1422 
1423 /*
1424  * Return the cgroup for "task" from the given hierarchy. Must be
1425  * called with cgroup_mutex and css_set_lock held.
1426  */
1427 struct cgroup *task_cgroup_from_root(struct task_struct *task,
1428 				     struct cgroup_root *root)
1429 {
1430 	/*
1431 	 * No need to lock the task - since we hold css_set_lock the
1432 	 * task can't change groups.
1433 	 */
1434 	return cset_cgroup_from_root(task_css_set(task), root);
1435 }
1436 
1437 /*
1438  * A task must hold cgroup_mutex to modify cgroups.
1439  *
1440  * Any task can increment and decrement the count field without lock.
1441  * So in general, code holding cgroup_mutex can't rely on the count
1442  * field not changing.  However, if the count goes to zero, then only
1443  * cgroup_attach_task() can increment it again.  Because a count of zero
1444  * means that no tasks are currently attached, therefore there is no
1445  * way a task attached to that cgroup can fork (the other way to
1446  * increment the count).  So code holding cgroup_mutex can safely
1447  * assume that if the count is zero, it will stay zero. Similarly, if
1448  * a task holds cgroup_mutex on a cgroup with zero count, it
1449  * knows that the cgroup won't be removed, as cgroup_rmdir()
1450  * needs that mutex.
1451  *
1452  * A cgroup can only be deleted if both its 'count' of using tasks
1453  * is zero, and its list of 'children' cgroups is empty.  Since all
1454  * tasks in the system use _some_ cgroup, and since there is always at
1455  * least one task in the system (init, pid == 1), therefore, root cgroup
1456  * always has either children cgroups and/or using tasks.  So we don't
1457  * need a special hack to ensure that root cgroup cannot be deleted.
1458  *
1459  * P.S.  One more locking exception.  RCU is used to guard the
1460  * update of a tasks cgroup pointer by cgroup_attach_task()
1461  */
1462 
1463 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1464 
1465 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1466 			      char *buf)
1467 {
1468 	struct cgroup_subsys *ss = cft->ss;
1469 
1470 	if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1471 	    !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
1472 		const char *dbg = (cft->flags & CFTYPE_DEBUG) ? ".__DEBUG__." : "";
1473 
1474 		snprintf(buf, CGROUP_FILE_NAME_MAX, "%s%s.%s",
1475 			 dbg, cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1476 			 cft->name);
1477 	} else {
1478 		strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1479 	}
1480 	return buf;
1481 }
1482 
1483 /**
1484  * cgroup_file_mode - deduce file mode of a control file
1485  * @cft: the control file in question
1486  *
1487  * S_IRUGO for read, S_IWUSR for write.
1488  */
1489 static umode_t cgroup_file_mode(const struct cftype *cft)
1490 {
1491 	umode_t mode = 0;
1492 
1493 	if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1494 		mode |= S_IRUGO;
1495 
1496 	if (cft->write_u64 || cft->write_s64 || cft->write) {
1497 		if (cft->flags & CFTYPE_WORLD_WRITABLE)
1498 			mode |= S_IWUGO;
1499 		else
1500 			mode |= S_IWUSR;
1501 	}
1502 
1503 	return mode;
1504 }
1505 
1506 /**
1507  * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1508  * @subtree_control: the new subtree_control mask to consider
1509  * @this_ss_mask: available subsystems
1510  *
1511  * On the default hierarchy, a subsystem may request other subsystems to be
1512  * enabled together through its ->depends_on mask.  In such cases, more
1513  * subsystems than specified in "cgroup.subtree_control" may be enabled.
1514  *
1515  * This function calculates which subsystems need to be enabled if
1516  * @subtree_control is to be applied while restricted to @this_ss_mask.
1517  */
1518 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
1519 {
1520 	u16 cur_ss_mask = subtree_control;
1521 	struct cgroup_subsys *ss;
1522 	int ssid;
1523 
1524 	lockdep_assert_held(&cgroup_mutex);
1525 
1526 	cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1527 
1528 	while (true) {
1529 		u16 new_ss_mask = cur_ss_mask;
1530 
1531 		do_each_subsys_mask(ss, ssid, cur_ss_mask) {
1532 			new_ss_mask |= ss->depends_on;
1533 		} while_each_subsys_mask();
1534 
1535 		/*
1536 		 * Mask out subsystems which aren't available.  This can
1537 		 * happen only if some depended-upon subsystems were bound
1538 		 * to non-default hierarchies.
1539 		 */
1540 		new_ss_mask &= this_ss_mask;
1541 
1542 		if (new_ss_mask == cur_ss_mask)
1543 			break;
1544 		cur_ss_mask = new_ss_mask;
1545 	}
1546 
1547 	return cur_ss_mask;
1548 }
1549 
1550 /**
1551  * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1552  * @kn: the kernfs_node being serviced
1553  *
1554  * This helper undoes cgroup_kn_lock_live() and should be invoked before
1555  * the method finishes if locking succeeded.  Note that once this function
1556  * returns the cgroup returned by cgroup_kn_lock_live() may become
1557  * inaccessible any time.  If the caller intends to continue to access the
1558  * cgroup, it should pin it before invoking this function.
1559  */
1560 void cgroup_kn_unlock(struct kernfs_node *kn)
1561 {
1562 	struct cgroup *cgrp;
1563 
1564 	if (kernfs_type(kn) == KERNFS_DIR)
1565 		cgrp = kn->priv;
1566 	else
1567 		cgrp = kn->parent->priv;
1568 
1569 	mutex_unlock(&cgroup_mutex);
1570 
1571 	kernfs_unbreak_active_protection(kn);
1572 	cgroup_put(cgrp);
1573 }
1574 
1575 /**
1576  * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1577  * @kn: the kernfs_node being serviced
1578  * @drain_offline: perform offline draining on the cgroup
1579  *
1580  * This helper is to be used by a cgroup kernfs method currently servicing
1581  * @kn.  It breaks the active protection, performs cgroup locking and
1582  * verifies that the associated cgroup is alive.  Returns the cgroup if
1583  * alive; otherwise, %NULL.  A successful return should be undone by a
1584  * matching cgroup_kn_unlock() invocation.  If @drain_offline is %true, the
1585  * cgroup is drained of offlining csses before return.
1586  *
1587  * Any cgroup kernfs method implementation which requires locking the
1588  * associated cgroup should use this helper.  It avoids nesting cgroup
1589  * locking under kernfs active protection and allows all kernfs operations
1590  * including self-removal.
1591  */
1592 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline)
1593 {
1594 	struct cgroup *cgrp;
1595 
1596 	if (kernfs_type(kn) == KERNFS_DIR)
1597 		cgrp = kn->priv;
1598 	else
1599 		cgrp = kn->parent->priv;
1600 
1601 	/*
1602 	 * We're gonna grab cgroup_mutex which nests outside kernfs
1603 	 * active_ref.  cgroup liveliness check alone provides enough
1604 	 * protection against removal.  Ensure @cgrp stays accessible and
1605 	 * break the active_ref protection.
1606 	 */
1607 	if (!cgroup_tryget(cgrp))
1608 		return NULL;
1609 	kernfs_break_active_protection(kn);
1610 
1611 	if (drain_offline)
1612 		cgroup_lock_and_drain_offline(cgrp);
1613 	else
1614 		mutex_lock(&cgroup_mutex);
1615 
1616 	if (!cgroup_is_dead(cgrp))
1617 		return cgrp;
1618 
1619 	cgroup_kn_unlock(kn);
1620 	return NULL;
1621 }
1622 
1623 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1624 {
1625 	char name[CGROUP_FILE_NAME_MAX];
1626 
1627 	lockdep_assert_held(&cgroup_mutex);
1628 
1629 	if (cft->file_offset) {
1630 		struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1631 		struct cgroup_file *cfile = (void *)css + cft->file_offset;
1632 
1633 		spin_lock_irq(&cgroup_file_kn_lock);
1634 		cfile->kn = NULL;
1635 		spin_unlock_irq(&cgroup_file_kn_lock);
1636 
1637 		del_timer_sync(&cfile->notify_timer);
1638 	}
1639 
1640 	kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1641 }
1642 
1643 /**
1644  * css_clear_dir - remove subsys files in a cgroup directory
1645  * @css: taget css
1646  */
1647 static void css_clear_dir(struct cgroup_subsys_state *css)
1648 {
1649 	struct cgroup *cgrp = css->cgroup;
1650 	struct cftype *cfts;
1651 
1652 	if (!(css->flags & CSS_VISIBLE))
1653 		return;
1654 
1655 	css->flags &= ~CSS_VISIBLE;
1656 
1657 	if (!css->ss) {
1658 		if (cgroup_on_dfl(cgrp))
1659 			cfts = cgroup_base_files;
1660 		else
1661 			cfts = cgroup1_base_files;
1662 
1663 		cgroup_addrm_files(css, cgrp, cfts, false);
1664 	} else {
1665 		list_for_each_entry(cfts, &css->ss->cfts, node)
1666 			cgroup_addrm_files(css, cgrp, cfts, false);
1667 	}
1668 }
1669 
1670 /**
1671  * css_populate_dir - create subsys files in a cgroup directory
1672  * @css: target css
1673  *
1674  * On failure, no file is added.
1675  */
1676 static int css_populate_dir(struct cgroup_subsys_state *css)
1677 {
1678 	struct cgroup *cgrp = css->cgroup;
1679 	struct cftype *cfts, *failed_cfts;
1680 	int ret;
1681 
1682 	if ((css->flags & CSS_VISIBLE) || !cgrp->kn)
1683 		return 0;
1684 
1685 	if (!css->ss) {
1686 		if (cgroup_on_dfl(cgrp))
1687 			cfts = cgroup_base_files;
1688 		else
1689 			cfts = cgroup1_base_files;
1690 
1691 		ret = cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1692 		if (ret < 0)
1693 			return ret;
1694 	} else {
1695 		list_for_each_entry(cfts, &css->ss->cfts, node) {
1696 			ret = cgroup_addrm_files(css, cgrp, cfts, true);
1697 			if (ret < 0) {
1698 				failed_cfts = cfts;
1699 				goto err;
1700 			}
1701 		}
1702 	}
1703 
1704 	css->flags |= CSS_VISIBLE;
1705 
1706 	return 0;
1707 err:
1708 	list_for_each_entry(cfts, &css->ss->cfts, node) {
1709 		if (cfts == failed_cfts)
1710 			break;
1711 		cgroup_addrm_files(css, cgrp, cfts, false);
1712 	}
1713 	return ret;
1714 }
1715 
1716 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
1717 {
1718 	struct cgroup *dcgrp = &dst_root->cgrp;
1719 	struct cgroup_subsys *ss;
1720 	int ssid, i, ret;
1721 
1722 	lockdep_assert_held(&cgroup_mutex);
1723 
1724 	do_each_subsys_mask(ss, ssid, ss_mask) {
1725 		/*
1726 		 * If @ss has non-root csses attached to it, can't move.
1727 		 * If @ss is an implicit controller, it is exempt from this
1728 		 * rule and can be stolen.
1729 		 */
1730 		if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1731 		    !ss->implicit_on_dfl)
1732 			return -EBUSY;
1733 
1734 		/* can't move between two non-dummy roots either */
1735 		if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1736 			return -EBUSY;
1737 	} while_each_subsys_mask();
1738 
1739 	do_each_subsys_mask(ss, ssid, ss_mask) {
1740 		struct cgroup_root *src_root = ss->root;
1741 		struct cgroup *scgrp = &src_root->cgrp;
1742 		struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1743 		struct css_set *cset;
1744 
1745 		WARN_ON(!css || cgroup_css(dcgrp, ss));
1746 
1747 		/* disable from the source */
1748 		src_root->subsys_mask &= ~(1 << ssid);
1749 		WARN_ON(cgroup_apply_control(scgrp));
1750 		cgroup_finalize_control(scgrp, 0);
1751 
1752 		/* rebind */
1753 		RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1754 		rcu_assign_pointer(dcgrp->subsys[ssid], css);
1755 		ss->root = dst_root;
1756 		css->cgroup = dcgrp;
1757 
1758 		spin_lock_irq(&css_set_lock);
1759 		hash_for_each(css_set_table, i, cset, hlist)
1760 			list_move_tail(&cset->e_cset_node[ss->id],
1761 				       &dcgrp->e_csets[ss->id]);
1762 		spin_unlock_irq(&css_set_lock);
1763 
1764 		/* default hierarchy doesn't enable controllers by default */
1765 		dst_root->subsys_mask |= 1 << ssid;
1766 		if (dst_root == &cgrp_dfl_root) {
1767 			static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1768 		} else {
1769 			dcgrp->subtree_control |= 1 << ssid;
1770 			static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1771 		}
1772 
1773 		ret = cgroup_apply_control(dcgrp);
1774 		if (ret)
1775 			pr_warn("partial failure to rebind %s controller (err=%d)\n",
1776 				ss->name, ret);
1777 
1778 		if (ss->bind)
1779 			ss->bind(css);
1780 	} while_each_subsys_mask();
1781 
1782 	kernfs_activate(dcgrp->kn);
1783 	return 0;
1784 }
1785 
1786 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
1787 		     struct kernfs_root *kf_root)
1788 {
1789 	int len = 0;
1790 	char *buf = NULL;
1791 	struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
1792 	struct cgroup *ns_cgroup;
1793 
1794 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
1795 	if (!buf)
1796 		return -ENOMEM;
1797 
1798 	spin_lock_irq(&css_set_lock);
1799 	ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
1800 	len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
1801 	spin_unlock_irq(&css_set_lock);
1802 
1803 	if (len >= PATH_MAX)
1804 		len = -ERANGE;
1805 	else if (len > 0) {
1806 		seq_escape(sf, buf, " \t\n\\");
1807 		len = 0;
1808 	}
1809 	kfree(buf);
1810 	return len;
1811 }
1812 
1813 enum cgroup2_param {
1814 	Opt_nsdelegate,
1815 	Opt_memory_localevents,
1816 	nr__cgroup2_params
1817 };
1818 
1819 static const struct fs_parameter_spec cgroup2_fs_parameters[] = {
1820 	fsparam_flag("nsdelegate",		Opt_nsdelegate),
1821 	fsparam_flag("memory_localevents",	Opt_memory_localevents),
1822 	{}
1823 };
1824 
1825 static int cgroup2_parse_param(struct fs_context *fc, struct fs_parameter *param)
1826 {
1827 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1828 	struct fs_parse_result result;
1829 	int opt;
1830 
1831 	opt = fs_parse(fc, cgroup2_fs_parameters, param, &result);
1832 	if (opt < 0)
1833 		return opt;
1834 
1835 	switch (opt) {
1836 	case Opt_nsdelegate:
1837 		ctx->flags |= CGRP_ROOT_NS_DELEGATE;
1838 		return 0;
1839 	case Opt_memory_localevents:
1840 		ctx->flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1841 		return 0;
1842 	}
1843 	return -EINVAL;
1844 }
1845 
1846 static void apply_cgroup_root_flags(unsigned int root_flags)
1847 {
1848 	if (current->nsproxy->cgroup_ns == &init_cgroup_ns) {
1849 		if (root_flags & CGRP_ROOT_NS_DELEGATE)
1850 			cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE;
1851 		else
1852 			cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE;
1853 
1854 		if (root_flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1855 			cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1856 		else
1857 			cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1858 	}
1859 }
1860 
1861 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
1862 {
1863 	if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE)
1864 		seq_puts(seq, ",nsdelegate");
1865 	if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1866 		seq_puts(seq, ",memory_localevents");
1867 	return 0;
1868 }
1869 
1870 static int cgroup_reconfigure(struct fs_context *fc)
1871 {
1872 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1873 
1874 	apply_cgroup_root_flags(ctx->flags);
1875 	return 0;
1876 }
1877 
1878 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1879 {
1880 	struct cgroup_subsys *ss;
1881 	int ssid;
1882 
1883 	INIT_LIST_HEAD(&cgrp->self.sibling);
1884 	INIT_LIST_HEAD(&cgrp->self.children);
1885 	INIT_LIST_HEAD(&cgrp->cset_links);
1886 	INIT_LIST_HEAD(&cgrp->pidlists);
1887 	mutex_init(&cgrp->pidlist_mutex);
1888 	cgrp->self.cgroup = cgrp;
1889 	cgrp->self.flags |= CSS_ONLINE;
1890 	cgrp->dom_cgrp = cgrp;
1891 	cgrp->max_descendants = INT_MAX;
1892 	cgrp->max_depth = INT_MAX;
1893 	INIT_LIST_HEAD(&cgrp->rstat_css_list);
1894 	prev_cputime_init(&cgrp->prev_cputime);
1895 
1896 	for_each_subsys(ss, ssid)
1897 		INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
1898 
1899 	init_waitqueue_head(&cgrp->offline_waitq);
1900 	INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent);
1901 }
1902 
1903 void init_cgroup_root(struct cgroup_fs_context *ctx)
1904 {
1905 	struct cgroup_root *root = ctx->root;
1906 	struct cgroup *cgrp = &root->cgrp;
1907 
1908 	INIT_LIST_HEAD(&root->root_list);
1909 	atomic_set(&root->nr_cgrps, 1);
1910 	cgrp->root = root;
1911 	init_cgroup_housekeeping(cgrp);
1912 
1913 	root->flags = ctx->flags;
1914 	if (ctx->release_agent)
1915 		strscpy(root->release_agent_path, ctx->release_agent, PATH_MAX);
1916 	if (ctx->name)
1917 		strscpy(root->name, ctx->name, MAX_CGROUP_ROOT_NAMELEN);
1918 	if (ctx->cpuset_clone_children)
1919 		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
1920 }
1921 
1922 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask)
1923 {
1924 	LIST_HEAD(tmp_links);
1925 	struct cgroup *root_cgrp = &root->cgrp;
1926 	struct kernfs_syscall_ops *kf_sops;
1927 	struct css_set *cset;
1928 	int i, ret;
1929 
1930 	lockdep_assert_held(&cgroup_mutex);
1931 
1932 	ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release,
1933 			      0, GFP_KERNEL);
1934 	if (ret)
1935 		goto out;
1936 
1937 	/*
1938 	 * We're accessing css_set_count without locking css_set_lock here,
1939 	 * but that's OK - it can only be increased by someone holding
1940 	 * cgroup_lock, and that's us.  Later rebinding may disable
1941 	 * controllers on the default hierarchy and thus create new csets,
1942 	 * which can't be more than the existing ones.  Allocate 2x.
1943 	 */
1944 	ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
1945 	if (ret)
1946 		goto cancel_ref;
1947 
1948 	ret = cgroup_init_root_id(root);
1949 	if (ret)
1950 		goto cancel_ref;
1951 
1952 	kf_sops = root == &cgrp_dfl_root ?
1953 		&cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops;
1954 
1955 	root->kf_root = kernfs_create_root(kf_sops,
1956 					   KERNFS_ROOT_CREATE_DEACTIVATED |
1957 					   KERNFS_ROOT_SUPPORT_EXPORTOP,
1958 					   root_cgrp);
1959 	if (IS_ERR(root->kf_root)) {
1960 		ret = PTR_ERR(root->kf_root);
1961 		goto exit_root_id;
1962 	}
1963 	root_cgrp->kn = root->kf_root->kn;
1964 	WARN_ON_ONCE(cgroup_ino(root_cgrp) != 1);
1965 	root_cgrp->ancestor_ids[0] = cgroup_id(root_cgrp);
1966 
1967 	ret = css_populate_dir(&root_cgrp->self);
1968 	if (ret)
1969 		goto destroy_root;
1970 
1971 	ret = rebind_subsystems(root, ss_mask);
1972 	if (ret)
1973 		goto destroy_root;
1974 
1975 	ret = cgroup_bpf_inherit(root_cgrp);
1976 	WARN_ON_ONCE(ret);
1977 
1978 	trace_cgroup_setup_root(root);
1979 
1980 	/*
1981 	 * There must be no failure case after here, since rebinding takes
1982 	 * care of subsystems' refcounts, which are explicitly dropped in
1983 	 * the failure exit path.
1984 	 */
1985 	list_add(&root->root_list, &cgroup_roots);
1986 	cgroup_root_count++;
1987 
1988 	/*
1989 	 * Link the root cgroup in this hierarchy into all the css_set
1990 	 * objects.
1991 	 */
1992 	spin_lock_irq(&css_set_lock);
1993 	hash_for_each(css_set_table, i, cset, hlist) {
1994 		link_css_set(&tmp_links, cset, root_cgrp);
1995 		if (css_set_populated(cset))
1996 			cgroup_update_populated(root_cgrp, true);
1997 	}
1998 	spin_unlock_irq(&css_set_lock);
1999 
2000 	BUG_ON(!list_empty(&root_cgrp->self.children));
2001 	BUG_ON(atomic_read(&root->nr_cgrps) != 1);
2002 
2003 	kernfs_activate(root_cgrp->kn);
2004 	ret = 0;
2005 	goto out;
2006 
2007 destroy_root:
2008 	kernfs_destroy_root(root->kf_root);
2009 	root->kf_root = NULL;
2010 exit_root_id:
2011 	cgroup_exit_root_id(root);
2012 cancel_ref:
2013 	percpu_ref_exit(&root_cgrp->self.refcnt);
2014 out:
2015 	free_cgrp_cset_links(&tmp_links);
2016 	return ret;
2017 }
2018 
2019 int cgroup_do_get_tree(struct fs_context *fc)
2020 {
2021 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2022 	int ret;
2023 
2024 	ctx->kfc.root = ctx->root->kf_root;
2025 	if (fc->fs_type == &cgroup2_fs_type)
2026 		ctx->kfc.magic = CGROUP2_SUPER_MAGIC;
2027 	else
2028 		ctx->kfc.magic = CGROUP_SUPER_MAGIC;
2029 	ret = kernfs_get_tree(fc);
2030 
2031 	/*
2032 	 * In non-init cgroup namespace, instead of root cgroup's dentry,
2033 	 * we return the dentry corresponding to the cgroupns->root_cgrp.
2034 	 */
2035 	if (!ret && ctx->ns != &init_cgroup_ns) {
2036 		struct dentry *nsdentry;
2037 		struct super_block *sb = fc->root->d_sb;
2038 		struct cgroup *cgrp;
2039 
2040 		mutex_lock(&cgroup_mutex);
2041 		spin_lock_irq(&css_set_lock);
2042 
2043 		cgrp = cset_cgroup_from_root(ctx->ns->root_cset, ctx->root);
2044 
2045 		spin_unlock_irq(&css_set_lock);
2046 		mutex_unlock(&cgroup_mutex);
2047 
2048 		nsdentry = kernfs_node_dentry(cgrp->kn, sb);
2049 		dput(fc->root);
2050 		if (IS_ERR(nsdentry)) {
2051 			deactivate_locked_super(sb);
2052 			ret = PTR_ERR(nsdentry);
2053 			nsdentry = NULL;
2054 		}
2055 		fc->root = nsdentry;
2056 	}
2057 
2058 	if (!ctx->kfc.new_sb_created)
2059 		cgroup_put(&ctx->root->cgrp);
2060 
2061 	return ret;
2062 }
2063 
2064 /*
2065  * Destroy a cgroup filesystem context.
2066  */
2067 static void cgroup_fs_context_free(struct fs_context *fc)
2068 {
2069 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2070 
2071 	kfree(ctx->name);
2072 	kfree(ctx->release_agent);
2073 	put_cgroup_ns(ctx->ns);
2074 	kernfs_free_fs_context(fc);
2075 	kfree(ctx);
2076 }
2077 
2078 static int cgroup_get_tree(struct fs_context *fc)
2079 {
2080 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2081 	int ret;
2082 
2083 	cgrp_dfl_visible = true;
2084 	cgroup_get_live(&cgrp_dfl_root.cgrp);
2085 	ctx->root = &cgrp_dfl_root;
2086 
2087 	ret = cgroup_do_get_tree(fc);
2088 	if (!ret)
2089 		apply_cgroup_root_flags(ctx->flags);
2090 	return ret;
2091 }
2092 
2093 static const struct fs_context_operations cgroup_fs_context_ops = {
2094 	.free		= cgroup_fs_context_free,
2095 	.parse_param	= cgroup2_parse_param,
2096 	.get_tree	= cgroup_get_tree,
2097 	.reconfigure	= cgroup_reconfigure,
2098 };
2099 
2100 static const struct fs_context_operations cgroup1_fs_context_ops = {
2101 	.free		= cgroup_fs_context_free,
2102 	.parse_param	= cgroup1_parse_param,
2103 	.get_tree	= cgroup1_get_tree,
2104 	.reconfigure	= cgroup1_reconfigure,
2105 };
2106 
2107 /*
2108  * Initialise the cgroup filesystem creation/reconfiguration context.  Notably,
2109  * we select the namespace we're going to use.
2110  */
2111 static int cgroup_init_fs_context(struct fs_context *fc)
2112 {
2113 	struct cgroup_fs_context *ctx;
2114 
2115 	ctx = kzalloc(sizeof(struct cgroup_fs_context), GFP_KERNEL);
2116 	if (!ctx)
2117 		return -ENOMEM;
2118 
2119 	ctx->ns = current->nsproxy->cgroup_ns;
2120 	get_cgroup_ns(ctx->ns);
2121 	fc->fs_private = &ctx->kfc;
2122 	if (fc->fs_type == &cgroup2_fs_type)
2123 		fc->ops = &cgroup_fs_context_ops;
2124 	else
2125 		fc->ops = &cgroup1_fs_context_ops;
2126 	put_user_ns(fc->user_ns);
2127 	fc->user_ns = get_user_ns(ctx->ns->user_ns);
2128 	fc->global = true;
2129 	return 0;
2130 }
2131 
2132 static void cgroup_kill_sb(struct super_block *sb)
2133 {
2134 	struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2135 	struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2136 
2137 	/*
2138 	 * If @root doesn't have any children, start killing it.
2139 	 * This prevents new mounts by disabling percpu_ref_tryget_live().
2140 	 * cgroup_mount() may wait for @root's release.
2141 	 *
2142 	 * And don't kill the default root.
2143 	 */
2144 	if (list_empty(&root->cgrp.self.children) && root != &cgrp_dfl_root &&
2145 	    !percpu_ref_is_dying(&root->cgrp.self.refcnt))
2146 		percpu_ref_kill(&root->cgrp.self.refcnt);
2147 	cgroup_put(&root->cgrp);
2148 	kernfs_kill_sb(sb);
2149 }
2150 
2151 struct file_system_type cgroup_fs_type = {
2152 	.name			= "cgroup",
2153 	.init_fs_context	= cgroup_init_fs_context,
2154 	.parameters		= cgroup1_fs_parameters,
2155 	.kill_sb		= cgroup_kill_sb,
2156 	.fs_flags		= FS_USERNS_MOUNT,
2157 };
2158 
2159 static struct file_system_type cgroup2_fs_type = {
2160 	.name			= "cgroup2",
2161 	.init_fs_context	= cgroup_init_fs_context,
2162 	.parameters		= cgroup2_fs_parameters,
2163 	.kill_sb		= cgroup_kill_sb,
2164 	.fs_flags		= FS_USERNS_MOUNT,
2165 };
2166 
2167 #ifdef CONFIG_CPUSETS
2168 static const struct fs_context_operations cpuset_fs_context_ops = {
2169 	.get_tree	= cgroup1_get_tree,
2170 	.free		= cgroup_fs_context_free,
2171 };
2172 
2173 /*
2174  * This is ugly, but preserves the userspace API for existing cpuset
2175  * users. If someone tries to mount the "cpuset" filesystem, we
2176  * silently switch it to mount "cgroup" instead
2177  */
2178 static int cpuset_init_fs_context(struct fs_context *fc)
2179 {
2180 	char *agent = kstrdup("/sbin/cpuset_release_agent", GFP_USER);
2181 	struct cgroup_fs_context *ctx;
2182 	int err;
2183 
2184 	err = cgroup_init_fs_context(fc);
2185 	if (err) {
2186 		kfree(agent);
2187 		return err;
2188 	}
2189 
2190 	fc->ops = &cpuset_fs_context_ops;
2191 
2192 	ctx = cgroup_fc2context(fc);
2193 	ctx->subsys_mask = 1 << cpuset_cgrp_id;
2194 	ctx->flags |= CGRP_ROOT_NOPREFIX;
2195 	ctx->release_agent = agent;
2196 
2197 	get_filesystem(&cgroup_fs_type);
2198 	put_filesystem(fc->fs_type);
2199 	fc->fs_type = &cgroup_fs_type;
2200 
2201 	return 0;
2202 }
2203 
2204 static struct file_system_type cpuset_fs_type = {
2205 	.name			= "cpuset",
2206 	.init_fs_context	= cpuset_init_fs_context,
2207 	.fs_flags		= FS_USERNS_MOUNT,
2208 };
2209 #endif
2210 
2211 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
2212 			  struct cgroup_namespace *ns)
2213 {
2214 	struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
2215 
2216 	return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
2217 }
2218 
2219 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
2220 		   struct cgroup_namespace *ns)
2221 {
2222 	int ret;
2223 
2224 	mutex_lock(&cgroup_mutex);
2225 	spin_lock_irq(&css_set_lock);
2226 
2227 	ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
2228 
2229 	spin_unlock_irq(&css_set_lock);
2230 	mutex_unlock(&cgroup_mutex);
2231 
2232 	return ret;
2233 }
2234 EXPORT_SYMBOL_GPL(cgroup_path_ns);
2235 
2236 /**
2237  * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
2238  * @task: target task
2239  * @buf: the buffer to write the path into
2240  * @buflen: the length of the buffer
2241  *
2242  * Determine @task's cgroup on the first (the one with the lowest non-zero
2243  * hierarchy_id) cgroup hierarchy and copy its path into @buf.  This
2244  * function grabs cgroup_mutex and shouldn't be used inside locks used by
2245  * cgroup controller callbacks.
2246  *
2247  * Return value is the same as kernfs_path().
2248  */
2249 int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
2250 {
2251 	struct cgroup_root *root;
2252 	struct cgroup *cgrp;
2253 	int hierarchy_id = 1;
2254 	int ret;
2255 
2256 	mutex_lock(&cgroup_mutex);
2257 	spin_lock_irq(&css_set_lock);
2258 
2259 	root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2260 
2261 	if (root) {
2262 		cgrp = task_cgroup_from_root(task, root);
2263 		ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns);
2264 	} else {
2265 		/* if no hierarchy exists, everyone is in "/" */
2266 		ret = strlcpy(buf, "/", buflen);
2267 	}
2268 
2269 	spin_unlock_irq(&css_set_lock);
2270 	mutex_unlock(&cgroup_mutex);
2271 	return ret;
2272 }
2273 EXPORT_SYMBOL_GPL(task_cgroup_path);
2274 
2275 /**
2276  * cgroup_migrate_add_task - add a migration target task to a migration context
2277  * @task: target task
2278  * @mgctx: target migration context
2279  *
2280  * Add @task, which is a migration target, to @mgctx->tset.  This function
2281  * becomes noop if @task doesn't need to be migrated.  @task's css_set
2282  * should have been added as a migration source and @task->cg_list will be
2283  * moved from the css_set's tasks list to mg_tasks one.
2284  */
2285 static void cgroup_migrate_add_task(struct task_struct *task,
2286 				    struct cgroup_mgctx *mgctx)
2287 {
2288 	struct css_set *cset;
2289 
2290 	lockdep_assert_held(&css_set_lock);
2291 
2292 	/* @task either already exited or can't exit until the end */
2293 	if (task->flags & PF_EXITING)
2294 		return;
2295 
2296 	/* cgroup_threadgroup_rwsem protects racing against forks */
2297 	WARN_ON_ONCE(list_empty(&task->cg_list));
2298 
2299 	cset = task_css_set(task);
2300 	if (!cset->mg_src_cgrp)
2301 		return;
2302 
2303 	mgctx->tset.nr_tasks++;
2304 
2305 	list_move_tail(&task->cg_list, &cset->mg_tasks);
2306 	if (list_empty(&cset->mg_node))
2307 		list_add_tail(&cset->mg_node,
2308 			      &mgctx->tset.src_csets);
2309 	if (list_empty(&cset->mg_dst_cset->mg_node))
2310 		list_add_tail(&cset->mg_dst_cset->mg_node,
2311 			      &mgctx->tset.dst_csets);
2312 }
2313 
2314 /**
2315  * cgroup_taskset_first - reset taskset and return the first task
2316  * @tset: taskset of interest
2317  * @dst_cssp: output variable for the destination css
2318  *
2319  * @tset iteration is initialized and the first task is returned.
2320  */
2321 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2322 					 struct cgroup_subsys_state **dst_cssp)
2323 {
2324 	tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2325 	tset->cur_task = NULL;
2326 
2327 	return cgroup_taskset_next(tset, dst_cssp);
2328 }
2329 
2330 /**
2331  * cgroup_taskset_next - iterate to the next task in taskset
2332  * @tset: taskset of interest
2333  * @dst_cssp: output variable for the destination css
2334  *
2335  * Return the next task in @tset.  Iteration must have been initialized
2336  * with cgroup_taskset_first().
2337  */
2338 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2339 					struct cgroup_subsys_state **dst_cssp)
2340 {
2341 	struct css_set *cset = tset->cur_cset;
2342 	struct task_struct *task = tset->cur_task;
2343 
2344 	while (&cset->mg_node != tset->csets) {
2345 		if (!task)
2346 			task = list_first_entry(&cset->mg_tasks,
2347 						struct task_struct, cg_list);
2348 		else
2349 			task = list_next_entry(task, cg_list);
2350 
2351 		if (&task->cg_list != &cset->mg_tasks) {
2352 			tset->cur_cset = cset;
2353 			tset->cur_task = task;
2354 
2355 			/*
2356 			 * This function may be called both before and
2357 			 * after cgroup_taskset_migrate().  The two cases
2358 			 * can be distinguished by looking at whether @cset
2359 			 * has its ->mg_dst_cset set.
2360 			 */
2361 			if (cset->mg_dst_cset)
2362 				*dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2363 			else
2364 				*dst_cssp = cset->subsys[tset->ssid];
2365 
2366 			return task;
2367 		}
2368 
2369 		cset = list_next_entry(cset, mg_node);
2370 		task = NULL;
2371 	}
2372 
2373 	return NULL;
2374 }
2375 
2376 /**
2377  * cgroup_taskset_migrate - migrate a taskset
2378  * @mgctx: migration context
2379  *
2380  * Migrate tasks in @mgctx as setup by migration preparation functions.
2381  * This function fails iff one of the ->can_attach callbacks fails and
2382  * guarantees that either all or none of the tasks in @mgctx are migrated.
2383  * @mgctx is consumed regardless of success.
2384  */
2385 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx)
2386 {
2387 	struct cgroup_taskset *tset = &mgctx->tset;
2388 	struct cgroup_subsys *ss;
2389 	struct task_struct *task, *tmp_task;
2390 	struct css_set *cset, *tmp_cset;
2391 	int ssid, failed_ssid, ret;
2392 
2393 	/* check that we can legitimately attach to the cgroup */
2394 	if (tset->nr_tasks) {
2395 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2396 			if (ss->can_attach) {
2397 				tset->ssid = ssid;
2398 				ret = ss->can_attach(tset);
2399 				if (ret) {
2400 					failed_ssid = ssid;
2401 					goto out_cancel_attach;
2402 				}
2403 			}
2404 		} while_each_subsys_mask();
2405 	}
2406 
2407 	/*
2408 	 * Now that we're guaranteed success, proceed to move all tasks to
2409 	 * the new cgroup.  There are no failure cases after here, so this
2410 	 * is the commit point.
2411 	 */
2412 	spin_lock_irq(&css_set_lock);
2413 	list_for_each_entry(cset, &tset->src_csets, mg_node) {
2414 		list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2415 			struct css_set *from_cset = task_css_set(task);
2416 			struct css_set *to_cset = cset->mg_dst_cset;
2417 
2418 			get_css_set(to_cset);
2419 			to_cset->nr_tasks++;
2420 			css_set_move_task(task, from_cset, to_cset, true);
2421 			from_cset->nr_tasks--;
2422 			/*
2423 			 * If the source or destination cgroup is frozen,
2424 			 * the task might require to change its state.
2425 			 */
2426 			cgroup_freezer_migrate_task(task, from_cset->dfl_cgrp,
2427 						    to_cset->dfl_cgrp);
2428 			put_css_set_locked(from_cset);
2429 
2430 		}
2431 	}
2432 	spin_unlock_irq(&css_set_lock);
2433 
2434 	/*
2435 	 * Migration is committed, all target tasks are now on dst_csets.
2436 	 * Nothing is sensitive to fork() after this point.  Notify
2437 	 * controllers that migration is complete.
2438 	 */
2439 	tset->csets = &tset->dst_csets;
2440 
2441 	if (tset->nr_tasks) {
2442 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2443 			if (ss->attach) {
2444 				tset->ssid = ssid;
2445 				ss->attach(tset);
2446 			}
2447 		} while_each_subsys_mask();
2448 	}
2449 
2450 	ret = 0;
2451 	goto out_release_tset;
2452 
2453 out_cancel_attach:
2454 	if (tset->nr_tasks) {
2455 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2456 			if (ssid == failed_ssid)
2457 				break;
2458 			if (ss->cancel_attach) {
2459 				tset->ssid = ssid;
2460 				ss->cancel_attach(tset);
2461 			}
2462 		} while_each_subsys_mask();
2463 	}
2464 out_release_tset:
2465 	spin_lock_irq(&css_set_lock);
2466 	list_splice_init(&tset->dst_csets, &tset->src_csets);
2467 	list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2468 		list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2469 		list_del_init(&cset->mg_node);
2470 	}
2471 	spin_unlock_irq(&css_set_lock);
2472 
2473 	/*
2474 	 * Re-initialize the cgroup_taskset structure in case it is reused
2475 	 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute()
2476 	 * iteration.
2477 	 */
2478 	tset->nr_tasks = 0;
2479 	tset->csets    = &tset->src_csets;
2480 	return ret;
2481 }
2482 
2483 /**
2484  * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination
2485  * @dst_cgrp: destination cgroup to test
2486  *
2487  * On the default hierarchy, except for the mixable, (possible) thread root
2488  * and threaded cgroups, subtree_control must be zero for migration
2489  * destination cgroups with tasks so that child cgroups don't compete
2490  * against tasks.
2491  */
2492 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp)
2493 {
2494 	/* v1 doesn't have any restriction */
2495 	if (!cgroup_on_dfl(dst_cgrp))
2496 		return 0;
2497 
2498 	/* verify @dst_cgrp can host resources */
2499 	if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp))
2500 		return -EOPNOTSUPP;
2501 
2502 	/* mixables don't care */
2503 	if (cgroup_is_mixable(dst_cgrp))
2504 		return 0;
2505 
2506 	/*
2507 	 * If @dst_cgrp is already or can become a thread root or is
2508 	 * threaded, it doesn't matter.
2509 	 */
2510 	if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp))
2511 		return 0;
2512 
2513 	/* apply no-internal-process constraint */
2514 	if (dst_cgrp->subtree_control)
2515 		return -EBUSY;
2516 
2517 	return 0;
2518 }
2519 
2520 /**
2521  * cgroup_migrate_finish - cleanup after attach
2522  * @mgctx: migration context
2523  *
2524  * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst().  See
2525  * those functions for details.
2526  */
2527 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx)
2528 {
2529 	LIST_HEAD(preloaded);
2530 	struct css_set *cset, *tmp_cset;
2531 
2532 	lockdep_assert_held(&cgroup_mutex);
2533 
2534 	spin_lock_irq(&css_set_lock);
2535 
2536 	list_splice_tail_init(&mgctx->preloaded_src_csets, &preloaded);
2537 	list_splice_tail_init(&mgctx->preloaded_dst_csets, &preloaded);
2538 
2539 	list_for_each_entry_safe(cset, tmp_cset, &preloaded, mg_preload_node) {
2540 		cset->mg_src_cgrp = NULL;
2541 		cset->mg_dst_cgrp = NULL;
2542 		cset->mg_dst_cset = NULL;
2543 		list_del_init(&cset->mg_preload_node);
2544 		put_css_set_locked(cset);
2545 	}
2546 
2547 	spin_unlock_irq(&css_set_lock);
2548 }
2549 
2550 /**
2551  * cgroup_migrate_add_src - add a migration source css_set
2552  * @src_cset: the source css_set to add
2553  * @dst_cgrp: the destination cgroup
2554  * @mgctx: migration context
2555  *
2556  * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp.  Pin
2557  * @src_cset and add it to @mgctx->src_csets, which should later be cleaned
2558  * up by cgroup_migrate_finish().
2559  *
2560  * This function may be called without holding cgroup_threadgroup_rwsem
2561  * even if the target is a process.  Threads may be created and destroyed
2562  * but as long as cgroup_mutex is not dropped, no new css_set can be put
2563  * into play and the preloaded css_sets are guaranteed to cover all
2564  * migrations.
2565  */
2566 void cgroup_migrate_add_src(struct css_set *src_cset,
2567 			    struct cgroup *dst_cgrp,
2568 			    struct cgroup_mgctx *mgctx)
2569 {
2570 	struct cgroup *src_cgrp;
2571 
2572 	lockdep_assert_held(&cgroup_mutex);
2573 	lockdep_assert_held(&css_set_lock);
2574 
2575 	/*
2576 	 * If ->dead, @src_set is associated with one or more dead cgroups
2577 	 * and doesn't contain any migratable tasks.  Ignore it early so
2578 	 * that the rest of migration path doesn't get confused by it.
2579 	 */
2580 	if (src_cset->dead)
2581 		return;
2582 
2583 	src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2584 
2585 	if (!list_empty(&src_cset->mg_preload_node))
2586 		return;
2587 
2588 	WARN_ON(src_cset->mg_src_cgrp);
2589 	WARN_ON(src_cset->mg_dst_cgrp);
2590 	WARN_ON(!list_empty(&src_cset->mg_tasks));
2591 	WARN_ON(!list_empty(&src_cset->mg_node));
2592 
2593 	src_cset->mg_src_cgrp = src_cgrp;
2594 	src_cset->mg_dst_cgrp = dst_cgrp;
2595 	get_css_set(src_cset);
2596 	list_add_tail(&src_cset->mg_preload_node, &mgctx->preloaded_src_csets);
2597 }
2598 
2599 /**
2600  * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2601  * @mgctx: migration context
2602  *
2603  * Tasks are about to be moved and all the source css_sets have been
2604  * preloaded to @mgctx->preloaded_src_csets.  This function looks up and
2605  * pins all destination css_sets, links each to its source, and append them
2606  * to @mgctx->preloaded_dst_csets.
2607  *
2608  * This function must be called after cgroup_migrate_add_src() has been
2609  * called on each migration source css_set.  After migration is performed
2610  * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2611  * @mgctx.
2612  */
2613 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx)
2614 {
2615 	struct css_set *src_cset, *tmp_cset;
2616 
2617 	lockdep_assert_held(&cgroup_mutex);
2618 
2619 	/* look up the dst cset for each src cset and link it to src */
2620 	list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets,
2621 				 mg_preload_node) {
2622 		struct css_set *dst_cset;
2623 		struct cgroup_subsys *ss;
2624 		int ssid;
2625 
2626 		dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
2627 		if (!dst_cset)
2628 			return -ENOMEM;
2629 
2630 		WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2631 
2632 		/*
2633 		 * If src cset equals dst, it's noop.  Drop the src.
2634 		 * cgroup_migrate() will skip the cset too.  Note that we
2635 		 * can't handle src == dst as some nodes are used by both.
2636 		 */
2637 		if (src_cset == dst_cset) {
2638 			src_cset->mg_src_cgrp = NULL;
2639 			src_cset->mg_dst_cgrp = NULL;
2640 			list_del_init(&src_cset->mg_preload_node);
2641 			put_css_set(src_cset);
2642 			put_css_set(dst_cset);
2643 			continue;
2644 		}
2645 
2646 		src_cset->mg_dst_cset = dst_cset;
2647 
2648 		if (list_empty(&dst_cset->mg_preload_node))
2649 			list_add_tail(&dst_cset->mg_preload_node,
2650 				      &mgctx->preloaded_dst_csets);
2651 		else
2652 			put_css_set(dst_cset);
2653 
2654 		for_each_subsys(ss, ssid)
2655 			if (src_cset->subsys[ssid] != dst_cset->subsys[ssid])
2656 				mgctx->ss_mask |= 1 << ssid;
2657 	}
2658 
2659 	return 0;
2660 }
2661 
2662 /**
2663  * cgroup_migrate - migrate a process or task to a cgroup
2664  * @leader: the leader of the process or the task to migrate
2665  * @threadgroup: whether @leader points to the whole process or a single task
2666  * @mgctx: migration context
2667  *
2668  * Migrate a process or task denoted by @leader.  If migrating a process,
2669  * the caller must be holding cgroup_threadgroup_rwsem.  The caller is also
2670  * responsible for invoking cgroup_migrate_add_src() and
2671  * cgroup_migrate_prepare_dst() on the targets before invoking this
2672  * function and following up with cgroup_migrate_finish().
2673  *
2674  * As long as a controller's ->can_attach() doesn't fail, this function is
2675  * guaranteed to succeed.  This means that, excluding ->can_attach()
2676  * failure, when migrating multiple targets, the success or failure can be
2677  * decided for all targets by invoking group_migrate_prepare_dst() before
2678  * actually starting migrating.
2679  */
2680 int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2681 		   struct cgroup_mgctx *mgctx)
2682 {
2683 	struct task_struct *task;
2684 
2685 	/*
2686 	 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2687 	 * already PF_EXITING could be freed from underneath us unless we
2688 	 * take an rcu_read_lock.
2689 	 */
2690 	spin_lock_irq(&css_set_lock);
2691 	rcu_read_lock();
2692 	task = leader;
2693 	do {
2694 		cgroup_migrate_add_task(task, mgctx);
2695 		if (!threadgroup)
2696 			break;
2697 	} while_each_thread(leader, task);
2698 	rcu_read_unlock();
2699 	spin_unlock_irq(&css_set_lock);
2700 
2701 	return cgroup_migrate_execute(mgctx);
2702 }
2703 
2704 /**
2705  * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2706  * @dst_cgrp: the cgroup to attach to
2707  * @leader: the task or the leader of the threadgroup to be attached
2708  * @threadgroup: attach the whole threadgroup?
2709  *
2710  * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2711  */
2712 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader,
2713 		       bool threadgroup)
2714 {
2715 	DEFINE_CGROUP_MGCTX(mgctx);
2716 	struct task_struct *task;
2717 	int ret = 0;
2718 
2719 	/* look up all src csets */
2720 	spin_lock_irq(&css_set_lock);
2721 	rcu_read_lock();
2722 	task = leader;
2723 	do {
2724 		cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx);
2725 		if (!threadgroup)
2726 			break;
2727 	} while_each_thread(leader, task);
2728 	rcu_read_unlock();
2729 	spin_unlock_irq(&css_set_lock);
2730 
2731 	/* prepare dst csets and commit */
2732 	ret = cgroup_migrate_prepare_dst(&mgctx);
2733 	if (!ret)
2734 		ret = cgroup_migrate(leader, threadgroup, &mgctx);
2735 
2736 	cgroup_migrate_finish(&mgctx);
2737 
2738 	if (!ret)
2739 		TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup);
2740 
2741 	return ret;
2742 }
2743 
2744 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup,
2745 					     bool *locked)
2746 	__acquires(&cgroup_threadgroup_rwsem)
2747 {
2748 	struct task_struct *tsk;
2749 	pid_t pid;
2750 
2751 	if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2752 		return ERR_PTR(-EINVAL);
2753 
2754 	/*
2755 	 * If we migrate a single thread, we don't care about threadgroup
2756 	 * stability. If the thread is `current`, it won't exit(2) under our
2757 	 * hands or change PID through exec(2). We exclude
2758 	 * cgroup_update_dfl_csses and other cgroup_{proc,thread}s_write
2759 	 * callers by cgroup_mutex.
2760 	 * Therefore, we can skip the global lock.
2761 	 */
2762 	lockdep_assert_held(&cgroup_mutex);
2763 	if (pid || threadgroup) {
2764 		percpu_down_write(&cgroup_threadgroup_rwsem);
2765 		*locked = true;
2766 	} else {
2767 		*locked = false;
2768 	}
2769 
2770 	rcu_read_lock();
2771 	if (pid) {
2772 		tsk = find_task_by_vpid(pid);
2773 		if (!tsk) {
2774 			tsk = ERR_PTR(-ESRCH);
2775 			goto out_unlock_threadgroup;
2776 		}
2777 	} else {
2778 		tsk = current;
2779 	}
2780 
2781 	if (threadgroup)
2782 		tsk = tsk->group_leader;
2783 
2784 	/*
2785 	 * kthreads may acquire PF_NO_SETAFFINITY during initialization.
2786 	 * If userland migrates such a kthread to a non-root cgroup, it can
2787 	 * become trapped in a cpuset, or RT kthread may be born in a
2788 	 * cgroup with no rt_runtime allocated.  Just say no.
2789 	 */
2790 	if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) {
2791 		tsk = ERR_PTR(-EINVAL);
2792 		goto out_unlock_threadgroup;
2793 	}
2794 
2795 	get_task_struct(tsk);
2796 	goto out_unlock_rcu;
2797 
2798 out_unlock_threadgroup:
2799 	if (*locked) {
2800 		percpu_up_write(&cgroup_threadgroup_rwsem);
2801 		*locked = false;
2802 	}
2803 out_unlock_rcu:
2804 	rcu_read_unlock();
2805 	return tsk;
2806 }
2807 
2808 void cgroup_procs_write_finish(struct task_struct *task, bool locked)
2809 	__releases(&cgroup_threadgroup_rwsem)
2810 {
2811 	struct cgroup_subsys *ss;
2812 	int ssid;
2813 
2814 	/* release reference from cgroup_procs_write_start() */
2815 	put_task_struct(task);
2816 
2817 	if (locked)
2818 		percpu_up_write(&cgroup_threadgroup_rwsem);
2819 	for_each_subsys(ss, ssid)
2820 		if (ss->post_attach)
2821 			ss->post_attach();
2822 }
2823 
2824 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
2825 {
2826 	struct cgroup_subsys *ss;
2827 	bool printed = false;
2828 	int ssid;
2829 
2830 	do_each_subsys_mask(ss, ssid, ss_mask) {
2831 		if (printed)
2832 			seq_putc(seq, ' ');
2833 		seq_puts(seq, ss->name);
2834 		printed = true;
2835 	} while_each_subsys_mask();
2836 	if (printed)
2837 		seq_putc(seq, '\n');
2838 }
2839 
2840 /* show controllers which are enabled from the parent */
2841 static int cgroup_controllers_show(struct seq_file *seq, void *v)
2842 {
2843 	struct cgroup *cgrp = seq_css(seq)->cgroup;
2844 
2845 	cgroup_print_ss_mask(seq, cgroup_control(cgrp));
2846 	return 0;
2847 }
2848 
2849 /* show controllers which are enabled for a given cgroup's children */
2850 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
2851 {
2852 	struct cgroup *cgrp = seq_css(seq)->cgroup;
2853 
2854 	cgroup_print_ss_mask(seq, cgrp->subtree_control);
2855 	return 0;
2856 }
2857 
2858 /**
2859  * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2860  * @cgrp: root of the subtree to update csses for
2861  *
2862  * @cgrp's control masks have changed and its subtree's css associations
2863  * need to be updated accordingly.  This function looks up all css_sets
2864  * which are attached to the subtree, creates the matching updated css_sets
2865  * and migrates the tasks to the new ones.
2866  */
2867 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2868 {
2869 	DEFINE_CGROUP_MGCTX(mgctx);
2870 	struct cgroup_subsys_state *d_css;
2871 	struct cgroup *dsct;
2872 	struct css_set *src_cset;
2873 	int ret;
2874 
2875 	lockdep_assert_held(&cgroup_mutex);
2876 
2877 	percpu_down_write(&cgroup_threadgroup_rwsem);
2878 
2879 	/* look up all csses currently attached to @cgrp's subtree */
2880 	spin_lock_irq(&css_set_lock);
2881 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2882 		struct cgrp_cset_link *link;
2883 
2884 		list_for_each_entry(link, &dsct->cset_links, cset_link)
2885 			cgroup_migrate_add_src(link->cset, dsct, &mgctx);
2886 	}
2887 	spin_unlock_irq(&css_set_lock);
2888 
2889 	/* NULL dst indicates self on default hierarchy */
2890 	ret = cgroup_migrate_prepare_dst(&mgctx);
2891 	if (ret)
2892 		goto out_finish;
2893 
2894 	spin_lock_irq(&css_set_lock);
2895 	list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, mg_preload_node) {
2896 		struct task_struct *task, *ntask;
2897 
2898 		/* all tasks in src_csets need to be migrated */
2899 		list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
2900 			cgroup_migrate_add_task(task, &mgctx);
2901 	}
2902 	spin_unlock_irq(&css_set_lock);
2903 
2904 	ret = cgroup_migrate_execute(&mgctx);
2905 out_finish:
2906 	cgroup_migrate_finish(&mgctx);
2907 	percpu_up_write(&cgroup_threadgroup_rwsem);
2908 	return ret;
2909 }
2910 
2911 /**
2912  * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
2913  * @cgrp: root of the target subtree
2914  *
2915  * Because css offlining is asynchronous, userland may try to re-enable a
2916  * controller while the previous css is still around.  This function grabs
2917  * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
2918  */
2919 void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
2920 	__acquires(&cgroup_mutex)
2921 {
2922 	struct cgroup *dsct;
2923 	struct cgroup_subsys_state *d_css;
2924 	struct cgroup_subsys *ss;
2925 	int ssid;
2926 
2927 restart:
2928 	mutex_lock(&cgroup_mutex);
2929 
2930 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
2931 		for_each_subsys(ss, ssid) {
2932 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
2933 			DEFINE_WAIT(wait);
2934 
2935 			if (!css || !percpu_ref_is_dying(&css->refcnt))
2936 				continue;
2937 
2938 			cgroup_get_live(dsct);
2939 			prepare_to_wait(&dsct->offline_waitq, &wait,
2940 					TASK_UNINTERRUPTIBLE);
2941 
2942 			mutex_unlock(&cgroup_mutex);
2943 			schedule();
2944 			finish_wait(&dsct->offline_waitq, &wait);
2945 
2946 			cgroup_put(dsct);
2947 			goto restart;
2948 		}
2949 	}
2950 }
2951 
2952 /**
2953  * cgroup_save_control - save control masks and dom_cgrp of a subtree
2954  * @cgrp: root of the target subtree
2955  *
2956  * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the
2957  * respective old_ prefixed fields for @cgrp's subtree including @cgrp
2958  * itself.
2959  */
2960 static void cgroup_save_control(struct cgroup *cgrp)
2961 {
2962 	struct cgroup *dsct;
2963 	struct cgroup_subsys_state *d_css;
2964 
2965 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2966 		dsct->old_subtree_control = dsct->subtree_control;
2967 		dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
2968 		dsct->old_dom_cgrp = dsct->dom_cgrp;
2969 	}
2970 }
2971 
2972 /**
2973  * cgroup_propagate_control - refresh control masks of a subtree
2974  * @cgrp: root of the target subtree
2975  *
2976  * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
2977  * ->subtree_control and propagate controller availability through the
2978  * subtree so that descendants don't have unavailable controllers enabled.
2979  */
2980 static void cgroup_propagate_control(struct cgroup *cgrp)
2981 {
2982 	struct cgroup *dsct;
2983 	struct cgroup_subsys_state *d_css;
2984 
2985 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2986 		dsct->subtree_control &= cgroup_control(dsct);
2987 		dsct->subtree_ss_mask =
2988 			cgroup_calc_subtree_ss_mask(dsct->subtree_control,
2989 						    cgroup_ss_mask(dsct));
2990 	}
2991 }
2992 
2993 /**
2994  * cgroup_restore_control - restore control masks and dom_cgrp of a subtree
2995  * @cgrp: root of the target subtree
2996  *
2997  * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the
2998  * respective old_ prefixed fields for @cgrp's subtree including @cgrp
2999  * itself.
3000  */
3001 static void cgroup_restore_control(struct cgroup *cgrp)
3002 {
3003 	struct cgroup *dsct;
3004 	struct cgroup_subsys_state *d_css;
3005 
3006 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3007 		dsct->subtree_control = dsct->old_subtree_control;
3008 		dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
3009 		dsct->dom_cgrp = dsct->old_dom_cgrp;
3010 	}
3011 }
3012 
3013 static bool css_visible(struct cgroup_subsys_state *css)
3014 {
3015 	struct cgroup_subsys *ss = css->ss;
3016 	struct cgroup *cgrp = css->cgroup;
3017 
3018 	if (cgroup_control(cgrp) & (1 << ss->id))
3019 		return true;
3020 	if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
3021 		return false;
3022 	return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
3023 }
3024 
3025 /**
3026  * cgroup_apply_control_enable - enable or show csses according to control
3027  * @cgrp: root of the target subtree
3028  *
3029  * Walk @cgrp's subtree and create new csses or make the existing ones
3030  * visible.  A css is created invisible if it's being implicitly enabled
3031  * through dependency.  An invisible css is made visible when the userland
3032  * explicitly enables it.
3033  *
3034  * Returns 0 on success, -errno on failure.  On failure, csses which have
3035  * been processed already aren't cleaned up.  The caller is responsible for
3036  * cleaning up with cgroup_apply_control_disable().
3037  */
3038 static int cgroup_apply_control_enable(struct cgroup *cgrp)
3039 {
3040 	struct cgroup *dsct;
3041 	struct cgroup_subsys_state *d_css;
3042 	struct cgroup_subsys *ss;
3043 	int ssid, ret;
3044 
3045 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3046 		for_each_subsys(ss, ssid) {
3047 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3048 
3049 			if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
3050 				continue;
3051 
3052 			if (!css) {
3053 				css = css_create(dsct, ss);
3054 				if (IS_ERR(css))
3055 					return PTR_ERR(css);
3056 			}
3057 
3058 			WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3059 
3060 			if (css_visible(css)) {
3061 				ret = css_populate_dir(css);
3062 				if (ret)
3063 					return ret;
3064 			}
3065 		}
3066 	}
3067 
3068 	return 0;
3069 }
3070 
3071 /**
3072  * cgroup_apply_control_disable - kill or hide csses according to control
3073  * @cgrp: root of the target subtree
3074  *
3075  * Walk @cgrp's subtree and kill and hide csses so that they match
3076  * cgroup_ss_mask() and cgroup_visible_mask().
3077  *
3078  * A css is hidden when the userland requests it to be disabled while other
3079  * subsystems are still depending on it.  The css must not actively control
3080  * resources and be in the vanilla state if it's made visible again later.
3081  * Controllers which may be depended upon should provide ->css_reset() for
3082  * this purpose.
3083  */
3084 static void cgroup_apply_control_disable(struct cgroup *cgrp)
3085 {
3086 	struct cgroup *dsct;
3087 	struct cgroup_subsys_state *d_css;
3088 	struct cgroup_subsys *ss;
3089 	int ssid;
3090 
3091 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3092 		for_each_subsys(ss, ssid) {
3093 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3094 
3095 			if (!css)
3096 				continue;
3097 
3098 			WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3099 
3100 			if (css->parent &&
3101 			    !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
3102 				kill_css(css);
3103 			} else if (!css_visible(css)) {
3104 				css_clear_dir(css);
3105 				if (ss->css_reset)
3106 					ss->css_reset(css);
3107 			}
3108 		}
3109 	}
3110 }
3111 
3112 /**
3113  * cgroup_apply_control - apply control mask updates to the subtree
3114  * @cgrp: root of the target subtree
3115  *
3116  * subsystems can be enabled and disabled in a subtree using the following
3117  * steps.
3118  *
3119  * 1. Call cgroup_save_control() to stash the current state.
3120  * 2. Update ->subtree_control masks in the subtree as desired.
3121  * 3. Call cgroup_apply_control() to apply the changes.
3122  * 4. Optionally perform other related operations.
3123  * 5. Call cgroup_finalize_control() to finish up.
3124  *
3125  * This function implements step 3 and propagates the mask changes
3126  * throughout @cgrp's subtree, updates csses accordingly and perform
3127  * process migrations.
3128  */
3129 static int cgroup_apply_control(struct cgroup *cgrp)
3130 {
3131 	int ret;
3132 
3133 	cgroup_propagate_control(cgrp);
3134 
3135 	ret = cgroup_apply_control_enable(cgrp);
3136 	if (ret)
3137 		return ret;
3138 
3139 	/*
3140 	 * At this point, cgroup_e_css_by_mask() results reflect the new csses
3141 	 * making the following cgroup_update_dfl_csses() properly update
3142 	 * css associations of all tasks in the subtree.
3143 	 */
3144 	ret = cgroup_update_dfl_csses(cgrp);
3145 	if (ret)
3146 		return ret;
3147 
3148 	return 0;
3149 }
3150 
3151 /**
3152  * cgroup_finalize_control - finalize control mask update
3153  * @cgrp: root of the target subtree
3154  * @ret: the result of the update
3155  *
3156  * Finalize control mask update.  See cgroup_apply_control() for more info.
3157  */
3158 static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
3159 {
3160 	if (ret) {
3161 		cgroup_restore_control(cgrp);
3162 		cgroup_propagate_control(cgrp);
3163 	}
3164 
3165 	cgroup_apply_control_disable(cgrp);
3166 }
3167 
3168 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable)
3169 {
3170 	u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask;
3171 
3172 	/* if nothing is getting enabled, nothing to worry about */
3173 	if (!enable)
3174 		return 0;
3175 
3176 	/* can @cgrp host any resources? */
3177 	if (!cgroup_is_valid_domain(cgrp->dom_cgrp))
3178 		return -EOPNOTSUPP;
3179 
3180 	/* mixables don't care */
3181 	if (cgroup_is_mixable(cgrp))
3182 		return 0;
3183 
3184 	if (domain_enable) {
3185 		/* can't enable domain controllers inside a thread subtree */
3186 		if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3187 			return -EOPNOTSUPP;
3188 	} else {
3189 		/*
3190 		 * Threaded controllers can handle internal competitions
3191 		 * and are always allowed inside a (prospective) thread
3192 		 * subtree.
3193 		 */
3194 		if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3195 			return 0;
3196 	}
3197 
3198 	/*
3199 	 * Controllers can't be enabled for a cgroup with tasks to avoid
3200 	 * child cgroups competing against tasks.
3201 	 */
3202 	if (cgroup_has_tasks(cgrp))
3203 		return -EBUSY;
3204 
3205 	return 0;
3206 }
3207 
3208 /* change the enabled child controllers for a cgroup in the default hierarchy */
3209 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3210 					    char *buf, size_t nbytes,
3211 					    loff_t off)
3212 {
3213 	u16 enable = 0, disable = 0;
3214 	struct cgroup *cgrp, *child;
3215 	struct cgroup_subsys *ss;
3216 	char *tok;
3217 	int ssid, ret;
3218 
3219 	/*
3220 	 * Parse input - space separated list of subsystem names prefixed
3221 	 * with either + or -.
3222 	 */
3223 	buf = strstrip(buf);
3224 	while ((tok = strsep(&buf, " "))) {
3225 		if (tok[0] == '\0')
3226 			continue;
3227 		do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
3228 			if (!cgroup_ssid_enabled(ssid) ||
3229 			    strcmp(tok + 1, ss->name))
3230 				continue;
3231 
3232 			if (*tok == '+') {
3233 				enable |= 1 << ssid;
3234 				disable &= ~(1 << ssid);
3235 			} else if (*tok == '-') {
3236 				disable |= 1 << ssid;
3237 				enable &= ~(1 << ssid);
3238 			} else {
3239 				return -EINVAL;
3240 			}
3241 			break;
3242 		} while_each_subsys_mask();
3243 		if (ssid == CGROUP_SUBSYS_COUNT)
3244 			return -EINVAL;
3245 	}
3246 
3247 	cgrp = cgroup_kn_lock_live(of->kn, true);
3248 	if (!cgrp)
3249 		return -ENODEV;
3250 
3251 	for_each_subsys(ss, ssid) {
3252 		if (enable & (1 << ssid)) {
3253 			if (cgrp->subtree_control & (1 << ssid)) {
3254 				enable &= ~(1 << ssid);
3255 				continue;
3256 			}
3257 
3258 			if (!(cgroup_control(cgrp) & (1 << ssid))) {
3259 				ret = -ENOENT;
3260 				goto out_unlock;
3261 			}
3262 		} else if (disable & (1 << ssid)) {
3263 			if (!(cgrp->subtree_control & (1 << ssid))) {
3264 				disable &= ~(1 << ssid);
3265 				continue;
3266 			}
3267 
3268 			/* a child has it enabled? */
3269 			cgroup_for_each_live_child(child, cgrp) {
3270 				if (child->subtree_control & (1 << ssid)) {
3271 					ret = -EBUSY;
3272 					goto out_unlock;
3273 				}
3274 			}
3275 		}
3276 	}
3277 
3278 	if (!enable && !disable) {
3279 		ret = 0;
3280 		goto out_unlock;
3281 	}
3282 
3283 	ret = cgroup_vet_subtree_control_enable(cgrp, enable);
3284 	if (ret)
3285 		goto out_unlock;
3286 
3287 	/* save and update control masks and prepare csses */
3288 	cgroup_save_control(cgrp);
3289 
3290 	cgrp->subtree_control |= enable;
3291 	cgrp->subtree_control &= ~disable;
3292 
3293 	ret = cgroup_apply_control(cgrp);
3294 	cgroup_finalize_control(cgrp, ret);
3295 	if (ret)
3296 		goto out_unlock;
3297 
3298 	kernfs_activate(cgrp->kn);
3299 out_unlock:
3300 	cgroup_kn_unlock(of->kn);
3301 	return ret ?: nbytes;
3302 }
3303 
3304 /**
3305  * cgroup_enable_threaded - make @cgrp threaded
3306  * @cgrp: the target cgroup
3307  *
3308  * Called when "threaded" is written to the cgroup.type interface file and
3309  * tries to make @cgrp threaded and join the parent's resource domain.
3310  * This function is never called on the root cgroup as cgroup.type doesn't
3311  * exist on it.
3312  */
3313 static int cgroup_enable_threaded(struct cgroup *cgrp)
3314 {
3315 	struct cgroup *parent = cgroup_parent(cgrp);
3316 	struct cgroup *dom_cgrp = parent->dom_cgrp;
3317 	struct cgroup *dsct;
3318 	struct cgroup_subsys_state *d_css;
3319 	int ret;
3320 
3321 	lockdep_assert_held(&cgroup_mutex);
3322 
3323 	/* noop if already threaded */
3324 	if (cgroup_is_threaded(cgrp))
3325 		return 0;
3326 
3327 	/*
3328 	 * If @cgroup is populated or has domain controllers enabled, it
3329 	 * can't be switched.  While the below cgroup_can_be_thread_root()
3330 	 * test can catch the same conditions, that's only when @parent is
3331 	 * not mixable, so let's check it explicitly.
3332 	 */
3333 	if (cgroup_is_populated(cgrp) ||
3334 	    cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
3335 		return -EOPNOTSUPP;
3336 
3337 	/* we're joining the parent's domain, ensure its validity */
3338 	if (!cgroup_is_valid_domain(dom_cgrp) ||
3339 	    !cgroup_can_be_thread_root(dom_cgrp))
3340 		return -EOPNOTSUPP;
3341 
3342 	/*
3343 	 * The following shouldn't cause actual migrations and should
3344 	 * always succeed.
3345 	 */
3346 	cgroup_save_control(cgrp);
3347 
3348 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)
3349 		if (dsct == cgrp || cgroup_is_threaded(dsct))
3350 			dsct->dom_cgrp = dom_cgrp;
3351 
3352 	ret = cgroup_apply_control(cgrp);
3353 	if (!ret)
3354 		parent->nr_threaded_children++;
3355 
3356 	cgroup_finalize_control(cgrp, ret);
3357 	return ret;
3358 }
3359 
3360 static int cgroup_type_show(struct seq_file *seq, void *v)
3361 {
3362 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3363 
3364 	if (cgroup_is_threaded(cgrp))
3365 		seq_puts(seq, "threaded\n");
3366 	else if (!cgroup_is_valid_domain(cgrp))
3367 		seq_puts(seq, "domain invalid\n");
3368 	else if (cgroup_is_thread_root(cgrp))
3369 		seq_puts(seq, "domain threaded\n");
3370 	else
3371 		seq_puts(seq, "domain\n");
3372 
3373 	return 0;
3374 }
3375 
3376 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf,
3377 				 size_t nbytes, loff_t off)
3378 {
3379 	struct cgroup *cgrp;
3380 	int ret;
3381 
3382 	/* only switching to threaded mode is supported */
3383 	if (strcmp(strstrip(buf), "threaded"))
3384 		return -EINVAL;
3385 
3386 	/* drain dying csses before we re-apply (threaded) subtree control */
3387 	cgrp = cgroup_kn_lock_live(of->kn, true);
3388 	if (!cgrp)
3389 		return -ENOENT;
3390 
3391 	/* threaded can only be enabled */
3392 	ret = cgroup_enable_threaded(cgrp);
3393 
3394 	cgroup_kn_unlock(of->kn);
3395 	return ret ?: nbytes;
3396 }
3397 
3398 static int cgroup_max_descendants_show(struct seq_file *seq, void *v)
3399 {
3400 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3401 	int descendants = READ_ONCE(cgrp->max_descendants);
3402 
3403 	if (descendants == INT_MAX)
3404 		seq_puts(seq, "max\n");
3405 	else
3406 		seq_printf(seq, "%d\n", descendants);
3407 
3408 	return 0;
3409 }
3410 
3411 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of,
3412 					   char *buf, size_t nbytes, loff_t off)
3413 {
3414 	struct cgroup *cgrp;
3415 	int descendants;
3416 	ssize_t ret;
3417 
3418 	buf = strstrip(buf);
3419 	if (!strcmp(buf, "max")) {
3420 		descendants = INT_MAX;
3421 	} else {
3422 		ret = kstrtoint(buf, 0, &descendants);
3423 		if (ret)
3424 			return ret;
3425 	}
3426 
3427 	if (descendants < 0)
3428 		return -ERANGE;
3429 
3430 	cgrp = cgroup_kn_lock_live(of->kn, false);
3431 	if (!cgrp)
3432 		return -ENOENT;
3433 
3434 	cgrp->max_descendants = descendants;
3435 
3436 	cgroup_kn_unlock(of->kn);
3437 
3438 	return nbytes;
3439 }
3440 
3441 static int cgroup_max_depth_show(struct seq_file *seq, void *v)
3442 {
3443 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3444 	int depth = READ_ONCE(cgrp->max_depth);
3445 
3446 	if (depth == INT_MAX)
3447 		seq_puts(seq, "max\n");
3448 	else
3449 		seq_printf(seq, "%d\n", depth);
3450 
3451 	return 0;
3452 }
3453 
3454 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of,
3455 				      char *buf, size_t nbytes, loff_t off)
3456 {
3457 	struct cgroup *cgrp;
3458 	ssize_t ret;
3459 	int depth;
3460 
3461 	buf = strstrip(buf);
3462 	if (!strcmp(buf, "max")) {
3463 		depth = INT_MAX;
3464 	} else {
3465 		ret = kstrtoint(buf, 0, &depth);
3466 		if (ret)
3467 			return ret;
3468 	}
3469 
3470 	if (depth < 0)
3471 		return -ERANGE;
3472 
3473 	cgrp = cgroup_kn_lock_live(of->kn, false);
3474 	if (!cgrp)
3475 		return -ENOENT;
3476 
3477 	cgrp->max_depth = depth;
3478 
3479 	cgroup_kn_unlock(of->kn);
3480 
3481 	return nbytes;
3482 }
3483 
3484 static int cgroup_events_show(struct seq_file *seq, void *v)
3485 {
3486 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3487 
3488 	seq_printf(seq, "populated %d\n", cgroup_is_populated(cgrp));
3489 	seq_printf(seq, "frozen %d\n", test_bit(CGRP_FROZEN, &cgrp->flags));
3490 
3491 	return 0;
3492 }
3493 
3494 static int cgroup_stat_show(struct seq_file *seq, void *v)
3495 {
3496 	struct cgroup *cgroup = seq_css(seq)->cgroup;
3497 
3498 	seq_printf(seq, "nr_descendants %d\n",
3499 		   cgroup->nr_descendants);
3500 	seq_printf(seq, "nr_dying_descendants %d\n",
3501 		   cgroup->nr_dying_descendants);
3502 
3503 	return 0;
3504 }
3505 
3506 static int __maybe_unused cgroup_extra_stat_show(struct seq_file *seq,
3507 						 struct cgroup *cgrp, int ssid)
3508 {
3509 	struct cgroup_subsys *ss = cgroup_subsys[ssid];
3510 	struct cgroup_subsys_state *css;
3511 	int ret;
3512 
3513 	if (!ss->css_extra_stat_show)
3514 		return 0;
3515 
3516 	css = cgroup_tryget_css(cgrp, ss);
3517 	if (!css)
3518 		return 0;
3519 
3520 	ret = ss->css_extra_stat_show(seq, css);
3521 	css_put(css);
3522 	return ret;
3523 }
3524 
3525 static int cpu_stat_show(struct seq_file *seq, void *v)
3526 {
3527 	struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup;
3528 	int ret = 0;
3529 
3530 	cgroup_base_stat_cputime_show(seq);
3531 #ifdef CONFIG_CGROUP_SCHED
3532 	ret = cgroup_extra_stat_show(seq, cgrp, cpu_cgrp_id);
3533 #endif
3534 	return ret;
3535 }
3536 
3537 #ifdef CONFIG_PSI
3538 static int cgroup_io_pressure_show(struct seq_file *seq, void *v)
3539 {
3540 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3541 	struct psi_group *psi = cgroup_id(cgrp) == 1 ? &psi_system : &cgrp->psi;
3542 
3543 	return psi_show(seq, psi, PSI_IO);
3544 }
3545 static int cgroup_memory_pressure_show(struct seq_file *seq, void *v)
3546 {
3547 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3548 	struct psi_group *psi = cgroup_id(cgrp) == 1 ? &psi_system : &cgrp->psi;
3549 
3550 	return psi_show(seq, psi, PSI_MEM);
3551 }
3552 static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v)
3553 {
3554 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3555 	struct psi_group *psi = cgroup_id(cgrp) == 1 ? &psi_system : &cgrp->psi;
3556 
3557 	return psi_show(seq, psi, PSI_CPU);
3558 }
3559 
3560 static ssize_t cgroup_pressure_write(struct kernfs_open_file *of, char *buf,
3561 					  size_t nbytes, enum psi_res res)
3562 {
3563 	struct psi_trigger *new;
3564 	struct cgroup *cgrp;
3565 
3566 	cgrp = cgroup_kn_lock_live(of->kn, false);
3567 	if (!cgrp)
3568 		return -ENODEV;
3569 
3570 	cgroup_get(cgrp);
3571 	cgroup_kn_unlock(of->kn);
3572 
3573 	new = psi_trigger_create(&cgrp->psi, buf, nbytes, res);
3574 	if (IS_ERR(new)) {
3575 		cgroup_put(cgrp);
3576 		return PTR_ERR(new);
3577 	}
3578 
3579 	psi_trigger_replace(&of->priv, new);
3580 
3581 	cgroup_put(cgrp);
3582 
3583 	return nbytes;
3584 }
3585 
3586 static ssize_t cgroup_io_pressure_write(struct kernfs_open_file *of,
3587 					  char *buf, size_t nbytes,
3588 					  loff_t off)
3589 {
3590 	return cgroup_pressure_write(of, buf, nbytes, PSI_IO);
3591 }
3592 
3593 static ssize_t cgroup_memory_pressure_write(struct kernfs_open_file *of,
3594 					  char *buf, size_t nbytes,
3595 					  loff_t off)
3596 {
3597 	return cgroup_pressure_write(of, buf, nbytes, PSI_MEM);
3598 }
3599 
3600 static ssize_t cgroup_cpu_pressure_write(struct kernfs_open_file *of,
3601 					  char *buf, size_t nbytes,
3602 					  loff_t off)
3603 {
3604 	return cgroup_pressure_write(of, buf, nbytes, PSI_CPU);
3605 }
3606 
3607 static __poll_t cgroup_pressure_poll(struct kernfs_open_file *of,
3608 					  poll_table *pt)
3609 {
3610 	return psi_trigger_poll(&of->priv, of->file, pt);
3611 }
3612 
3613 static void cgroup_pressure_release(struct kernfs_open_file *of)
3614 {
3615 	psi_trigger_replace(&of->priv, NULL);
3616 }
3617 #endif /* CONFIG_PSI */
3618 
3619 static int cgroup_freeze_show(struct seq_file *seq, void *v)
3620 {
3621 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3622 
3623 	seq_printf(seq, "%d\n", cgrp->freezer.freeze);
3624 
3625 	return 0;
3626 }
3627 
3628 static ssize_t cgroup_freeze_write(struct kernfs_open_file *of,
3629 				   char *buf, size_t nbytes, loff_t off)
3630 {
3631 	struct cgroup *cgrp;
3632 	ssize_t ret;
3633 	int freeze;
3634 
3635 	ret = kstrtoint(strstrip(buf), 0, &freeze);
3636 	if (ret)
3637 		return ret;
3638 
3639 	if (freeze < 0 || freeze > 1)
3640 		return -ERANGE;
3641 
3642 	cgrp = cgroup_kn_lock_live(of->kn, false);
3643 	if (!cgrp)
3644 		return -ENOENT;
3645 
3646 	cgroup_freeze(cgrp, freeze);
3647 
3648 	cgroup_kn_unlock(of->kn);
3649 
3650 	return nbytes;
3651 }
3652 
3653 static int cgroup_file_open(struct kernfs_open_file *of)
3654 {
3655 	struct cftype *cft = of->kn->priv;
3656 
3657 	if (cft->open)
3658 		return cft->open(of);
3659 	return 0;
3660 }
3661 
3662 static void cgroup_file_release(struct kernfs_open_file *of)
3663 {
3664 	struct cftype *cft = of->kn->priv;
3665 
3666 	if (cft->release)
3667 		cft->release(of);
3668 }
3669 
3670 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3671 				 size_t nbytes, loff_t off)
3672 {
3673 	struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
3674 	struct cgroup *cgrp = of->kn->parent->priv;
3675 	struct cftype *cft = of->kn->priv;
3676 	struct cgroup_subsys_state *css;
3677 	int ret;
3678 
3679 	/*
3680 	 * If namespaces are delegation boundaries, disallow writes to
3681 	 * files in an non-init namespace root from inside the namespace
3682 	 * except for the files explicitly marked delegatable -
3683 	 * cgroup.procs and cgroup.subtree_control.
3684 	 */
3685 	if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) &&
3686 	    !(cft->flags & CFTYPE_NS_DELEGATABLE) &&
3687 	    ns != &init_cgroup_ns && ns->root_cset->dfl_cgrp == cgrp)
3688 		return -EPERM;
3689 
3690 	if (cft->write)
3691 		return cft->write(of, buf, nbytes, off);
3692 
3693 	/*
3694 	 * kernfs guarantees that a file isn't deleted with operations in
3695 	 * flight, which means that the matching css is and stays alive and
3696 	 * doesn't need to be pinned.  The RCU locking is not necessary
3697 	 * either.  It's just for the convenience of using cgroup_css().
3698 	 */
3699 	rcu_read_lock();
3700 	css = cgroup_css(cgrp, cft->ss);
3701 	rcu_read_unlock();
3702 
3703 	if (cft->write_u64) {
3704 		unsigned long long v;
3705 		ret = kstrtoull(buf, 0, &v);
3706 		if (!ret)
3707 			ret = cft->write_u64(css, cft, v);
3708 	} else if (cft->write_s64) {
3709 		long long v;
3710 		ret = kstrtoll(buf, 0, &v);
3711 		if (!ret)
3712 			ret = cft->write_s64(css, cft, v);
3713 	} else {
3714 		ret = -EINVAL;
3715 	}
3716 
3717 	return ret ?: nbytes;
3718 }
3719 
3720 static __poll_t cgroup_file_poll(struct kernfs_open_file *of, poll_table *pt)
3721 {
3722 	struct cftype *cft = of->kn->priv;
3723 
3724 	if (cft->poll)
3725 		return cft->poll(of, pt);
3726 
3727 	return kernfs_generic_poll(of, pt);
3728 }
3729 
3730 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
3731 {
3732 	return seq_cft(seq)->seq_start(seq, ppos);
3733 }
3734 
3735 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
3736 {
3737 	return seq_cft(seq)->seq_next(seq, v, ppos);
3738 }
3739 
3740 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
3741 {
3742 	if (seq_cft(seq)->seq_stop)
3743 		seq_cft(seq)->seq_stop(seq, v);
3744 }
3745 
3746 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
3747 {
3748 	struct cftype *cft = seq_cft(m);
3749 	struct cgroup_subsys_state *css = seq_css(m);
3750 
3751 	if (cft->seq_show)
3752 		return cft->seq_show(m, arg);
3753 
3754 	if (cft->read_u64)
3755 		seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3756 	else if (cft->read_s64)
3757 		seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3758 	else
3759 		return -EINVAL;
3760 	return 0;
3761 }
3762 
3763 static struct kernfs_ops cgroup_kf_single_ops = {
3764 	.atomic_write_len	= PAGE_SIZE,
3765 	.open			= cgroup_file_open,
3766 	.release		= cgroup_file_release,
3767 	.write			= cgroup_file_write,
3768 	.poll			= cgroup_file_poll,
3769 	.seq_show		= cgroup_seqfile_show,
3770 };
3771 
3772 static struct kernfs_ops cgroup_kf_ops = {
3773 	.atomic_write_len	= PAGE_SIZE,
3774 	.open			= cgroup_file_open,
3775 	.release		= cgroup_file_release,
3776 	.write			= cgroup_file_write,
3777 	.poll			= cgroup_file_poll,
3778 	.seq_start		= cgroup_seqfile_start,
3779 	.seq_next		= cgroup_seqfile_next,
3780 	.seq_stop		= cgroup_seqfile_stop,
3781 	.seq_show		= cgroup_seqfile_show,
3782 };
3783 
3784 /* set uid and gid of cgroup dirs and files to that of the creator */
3785 static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3786 {
3787 	struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3788 			       .ia_uid = current_fsuid(),
3789 			       .ia_gid = current_fsgid(), };
3790 
3791 	if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3792 	    gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3793 		return 0;
3794 
3795 	return kernfs_setattr(kn, &iattr);
3796 }
3797 
3798 static void cgroup_file_notify_timer(struct timer_list *timer)
3799 {
3800 	cgroup_file_notify(container_of(timer, struct cgroup_file,
3801 					notify_timer));
3802 }
3803 
3804 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3805 			   struct cftype *cft)
3806 {
3807 	char name[CGROUP_FILE_NAME_MAX];
3808 	struct kernfs_node *kn;
3809 	struct lock_class_key *key = NULL;
3810 	int ret;
3811 
3812 #ifdef CONFIG_DEBUG_LOCK_ALLOC
3813 	key = &cft->lockdep_key;
3814 #endif
3815 	kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3816 				  cgroup_file_mode(cft),
3817 				  GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
3818 				  0, cft->kf_ops, cft,
3819 				  NULL, key);
3820 	if (IS_ERR(kn))
3821 		return PTR_ERR(kn);
3822 
3823 	ret = cgroup_kn_set_ugid(kn);
3824 	if (ret) {
3825 		kernfs_remove(kn);
3826 		return ret;
3827 	}
3828 
3829 	if (cft->file_offset) {
3830 		struct cgroup_file *cfile = (void *)css + cft->file_offset;
3831 
3832 		timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0);
3833 
3834 		spin_lock_irq(&cgroup_file_kn_lock);
3835 		cfile->kn = kn;
3836 		spin_unlock_irq(&cgroup_file_kn_lock);
3837 	}
3838 
3839 	return 0;
3840 }
3841 
3842 /**
3843  * cgroup_addrm_files - add or remove files to a cgroup directory
3844  * @css: the target css
3845  * @cgrp: the target cgroup (usually css->cgroup)
3846  * @cfts: array of cftypes to be added
3847  * @is_add: whether to add or remove
3848  *
3849  * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3850  * For removals, this function never fails.
3851  */
3852 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3853 			      struct cgroup *cgrp, struct cftype cfts[],
3854 			      bool is_add)
3855 {
3856 	struct cftype *cft, *cft_end = NULL;
3857 	int ret = 0;
3858 
3859 	lockdep_assert_held(&cgroup_mutex);
3860 
3861 restart:
3862 	for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
3863 		/* does cft->flags tell us to skip this file on @cgrp? */
3864 		if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
3865 			continue;
3866 		if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
3867 			continue;
3868 		if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
3869 			continue;
3870 		if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
3871 			continue;
3872 		if ((cft->flags & CFTYPE_DEBUG) && !cgroup_debug)
3873 			continue;
3874 		if (is_add) {
3875 			ret = cgroup_add_file(css, cgrp, cft);
3876 			if (ret) {
3877 				pr_warn("%s: failed to add %s, err=%d\n",
3878 					__func__, cft->name, ret);
3879 				cft_end = cft;
3880 				is_add = false;
3881 				goto restart;
3882 			}
3883 		} else {
3884 			cgroup_rm_file(cgrp, cft);
3885 		}
3886 	}
3887 	return ret;
3888 }
3889 
3890 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
3891 {
3892 	struct cgroup_subsys *ss = cfts[0].ss;
3893 	struct cgroup *root = &ss->root->cgrp;
3894 	struct cgroup_subsys_state *css;
3895 	int ret = 0;
3896 
3897 	lockdep_assert_held(&cgroup_mutex);
3898 
3899 	/* add/rm files for all cgroups created before */
3900 	css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
3901 		struct cgroup *cgrp = css->cgroup;
3902 
3903 		if (!(css->flags & CSS_VISIBLE))
3904 			continue;
3905 
3906 		ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
3907 		if (ret)
3908 			break;
3909 	}
3910 
3911 	if (is_add && !ret)
3912 		kernfs_activate(root->kn);
3913 	return ret;
3914 }
3915 
3916 static void cgroup_exit_cftypes(struct cftype *cfts)
3917 {
3918 	struct cftype *cft;
3919 
3920 	for (cft = cfts; cft->name[0] != '\0'; cft++) {
3921 		/* free copy for custom atomic_write_len, see init_cftypes() */
3922 		if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3923 			kfree(cft->kf_ops);
3924 		cft->kf_ops = NULL;
3925 		cft->ss = NULL;
3926 
3927 		/* revert flags set by cgroup core while adding @cfts */
3928 		cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
3929 	}
3930 }
3931 
3932 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3933 {
3934 	struct cftype *cft;
3935 
3936 	for (cft = cfts; cft->name[0] != '\0'; cft++) {
3937 		struct kernfs_ops *kf_ops;
3938 
3939 		WARN_ON(cft->ss || cft->kf_ops);
3940 
3941 		if (cft->seq_start)
3942 			kf_ops = &cgroup_kf_ops;
3943 		else
3944 			kf_ops = &cgroup_kf_single_ops;
3945 
3946 		/*
3947 		 * Ugh... if @cft wants a custom max_write_len, we need to
3948 		 * make a copy of kf_ops to set its atomic_write_len.
3949 		 */
3950 		if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3951 			kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3952 			if (!kf_ops) {
3953 				cgroup_exit_cftypes(cfts);
3954 				return -ENOMEM;
3955 			}
3956 			kf_ops->atomic_write_len = cft->max_write_len;
3957 		}
3958 
3959 		cft->kf_ops = kf_ops;
3960 		cft->ss = ss;
3961 	}
3962 
3963 	return 0;
3964 }
3965 
3966 static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3967 {
3968 	lockdep_assert_held(&cgroup_mutex);
3969 
3970 	if (!cfts || !cfts[0].ss)
3971 		return -ENOENT;
3972 
3973 	list_del(&cfts->node);
3974 	cgroup_apply_cftypes(cfts, false);
3975 	cgroup_exit_cftypes(cfts);
3976 	return 0;
3977 }
3978 
3979 /**
3980  * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
3981  * @cfts: zero-length name terminated array of cftypes
3982  *
3983  * Unregister @cfts.  Files described by @cfts are removed from all
3984  * existing cgroups and all future cgroups won't have them either.  This
3985  * function can be called anytime whether @cfts' subsys is attached or not.
3986  *
3987  * Returns 0 on successful unregistration, -ENOENT if @cfts is not
3988  * registered.
3989  */
3990 int cgroup_rm_cftypes(struct cftype *cfts)
3991 {
3992 	int ret;
3993 
3994 	mutex_lock(&cgroup_mutex);
3995 	ret = cgroup_rm_cftypes_locked(cfts);
3996 	mutex_unlock(&cgroup_mutex);
3997 	return ret;
3998 }
3999 
4000 /**
4001  * cgroup_add_cftypes - add an array of cftypes to a subsystem
4002  * @ss: target cgroup subsystem
4003  * @cfts: zero-length name terminated array of cftypes
4004  *
4005  * Register @cfts to @ss.  Files described by @cfts are created for all
4006  * existing cgroups to which @ss is attached and all future cgroups will
4007  * have them too.  This function can be called anytime whether @ss is
4008  * attached or not.
4009  *
4010  * Returns 0 on successful registration, -errno on failure.  Note that this
4011  * function currently returns 0 as long as @cfts registration is successful
4012  * even if some file creation attempts on existing cgroups fail.
4013  */
4014 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4015 {
4016 	int ret;
4017 
4018 	if (!cgroup_ssid_enabled(ss->id))
4019 		return 0;
4020 
4021 	if (!cfts || cfts[0].name[0] == '\0')
4022 		return 0;
4023 
4024 	ret = cgroup_init_cftypes(ss, cfts);
4025 	if (ret)
4026 		return ret;
4027 
4028 	mutex_lock(&cgroup_mutex);
4029 
4030 	list_add_tail(&cfts->node, &ss->cfts);
4031 	ret = cgroup_apply_cftypes(cfts, true);
4032 	if (ret)
4033 		cgroup_rm_cftypes_locked(cfts);
4034 
4035 	mutex_unlock(&cgroup_mutex);
4036 	return ret;
4037 }
4038 
4039 /**
4040  * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
4041  * @ss: target cgroup subsystem
4042  * @cfts: zero-length name terminated array of cftypes
4043  *
4044  * Similar to cgroup_add_cftypes() but the added files are only used for
4045  * the default hierarchy.
4046  */
4047 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4048 {
4049 	struct cftype *cft;
4050 
4051 	for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4052 		cft->flags |= __CFTYPE_ONLY_ON_DFL;
4053 	return cgroup_add_cftypes(ss, cfts);
4054 }
4055 
4056 /**
4057  * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
4058  * @ss: target cgroup subsystem
4059  * @cfts: zero-length name terminated array of cftypes
4060  *
4061  * Similar to cgroup_add_cftypes() but the added files are only used for
4062  * the legacy hierarchies.
4063  */
4064 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4065 {
4066 	struct cftype *cft;
4067 
4068 	for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4069 		cft->flags |= __CFTYPE_NOT_ON_DFL;
4070 	return cgroup_add_cftypes(ss, cfts);
4071 }
4072 
4073 /**
4074  * cgroup_file_notify - generate a file modified event for a cgroup_file
4075  * @cfile: target cgroup_file
4076  *
4077  * @cfile must have been obtained by setting cftype->file_offset.
4078  */
4079 void cgroup_file_notify(struct cgroup_file *cfile)
4080 {
4081 	unsigned long flags;
4082 
4083 	spin_lock_irqsave(&cgroup_file_kn_lock, flags);
4084 	if (cfile->kn) {
4085 		unsigned long last = cfile->notified_at;
4086 		unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV;
4087 
4088 		if (time_in_range(jiffies, last, next)) {
4089 			timer_reduce(&cfile->notify_timer, next);
4090 		} else {
4091 			kernfs_notify(cfile->kn);
4092 			cfile->notified_at = jiffies;
4093 		}
4094 	}
4095 	spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
4096 }
4097 
4098 /**
4099  * css_next_child - find the next child of a given css
4100  * @pos: the current position (%NULL to initiate traversal)
4101  * @parent: css whose children to walk
4102  *
4103  * This function returns the next child of @parent and should be called
4104  * under either cgroup_mutex or RCU read lock.  The only requirement is
4105  * that @parent and @pos are accessible.  The next sibling is guaranteed to
4106  * be returned regardless of their states.
4107  *
4108  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4109  * css which finished ->css_online() is guaranteed to be visible in the
4110  * future iterations and will stay visible until the last reference is put.
4111  * A css which hasn't finished ->css_online() or already finished
4112  * ->css_offline() may show up during traversal.  It's each subsystem's
4113  * responsibility to synchronize against on/offlining.
4114  */
4115 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
4116 					   struct cgroup_subsys_state *parent)
4117 {
4118 	struct cgroup_subsys_state *next;
4119 
4120 	cgroup_assert_mutex_or_rcu_locked();
4121 
4122 	/*
4123 	 * @pos could already have been unlinked from the sibling list.
4124 	 * Once a cgroup is removed, its ->sibling.next is no longer
4125 	 * updated when its next sibling changes.  CSS_RELEASED is set when
4126 	 * @pos is taken off list, at which time its next pointer is valid,
4127 	 * and, as releases are serialized, the one pointed to by the next
4128 	 * pointer is guaranteed to not have started release yet.  This
4129 	 * implies that if we observe !CSS_RELEASED on @pos in this RCU
4130 	 * critical section, the one pointed to by its next pointer is
4131 	 * guaranteed to not have finished its RCU grace period even if we
4132 	 * have dropped rcu_read_lock() inbetween iterations.
4133 	 *
4134 	 * If @pos has CSS_RELEASED set, its next pointer can't be
4135 	 * dereferenced; however, as each css is given a monotonically
4136 	 * increasing unique serial number and always appended to the
4137 	 * sibling list, the next one can be found by walking the parent's
4138 	 * children until the first css with higher serial number than
4139 	 * @pos's.  While this path can be slower, it happens iff iteration
4140 	 * races against release and the race window is very small.
4141 	 */
4142 	if (!pos) {
4143 		next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
4144 	} else if (likely(!(pos->flags & CSS_RELEASED))) {
4145 		next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
4146 	} else {
4147 		list_for_each_entry_rcu(next, &parent->children, sibling,
4148 					lockdep_is_held(&cgroup_mutex))
4149 			if (next->serial_nr > pos->serial_nr)
4150 				break;
4151 	}
4152 
4153 	/*
4154 	 * @next, if not pointing to the head, can be dereferenced and is
4155 	 * the next sibling.
4156 	 */
4157 	if (&next->sibling != &parent->children)
4158 		return next;
4159 	return NULL;
4160 }
4161 
4162 /**
4163  * css_next_descendant_pre - find the next descendant for pre-order walk
4164  * @pos: the current position (%NULL to initiate traversal)
4165  * @root: css whose descendants to walk
4166  *
4167  * To be used by css_for_each_descendant_pre().  Find the next descendant
4168  * to visit for pre-order traversal of @root's descendants.  @root is
4169  * included in the iteration and the first node to be visited.
4170  *
4171  * While this function requires cgroup_mutex or RCU read locking, it
4172  * doesn't require the whole traversal to be contained in a single critical
4173  * section.  This function will return the correct next descendant as long
4174  * as both @pos and @root are accessible and @pos is a descendant of @root.
4175  *
4176  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4177  * css which finished ->css_online() is guaranteed to be visible in the
4178  * future iterations and will stay visible until the last reference is put.
4179  * A css which hasn't finished ->css_online() or already finished
4180  * ->css_offline() may show up during traversal.  It's each subsystem's
4181  * responsibility to synchronize against on/offlining.
4182  */
4183 struct cgroup_subsys_state *
4184 css_next_descendant_pre(struct cgroup_subsys_state *pos,
4185 			struct cgroup_subsys_state *root)
4186 {
4187 	struct cgroup_subsys_state *next;
4188 
4189 	cgroup_assert_mutex_or_rcu_locked();
4190 
4191 	/* if first iteration, visit @root */
4192 	if (!pos)
4193 		return root;
4194 
4195 	/* visit the first child if exists */
4196 	next = css_next_child(NULL, pos);
4197 	if (next)
4198 		return next;
4199 
4200 	/* no child, visit my or the closest ancestor's next sibling */
4201 	while (pos != root) {
4202 		next = css_next_child(pos, pos->parent);
4203 		if (next)
4204 			return next;
4205 		pos = pos->parent;
4206 	}
4207 
4208 	return NULL;
4209 }
4210 EXPORT_SYMBOL_GPL(css_next_descendant_pre);
4211 
4212 /**
4213  * css_rightmost_descendant - return the rightmost descendant of a css
4214  * @pos: css of interest
4215  *
4216  * Return the rightmost descendant of @pos.  If there's no descendant, @pos
4217  * is returned.  This can be used during pre-order traversal to skip
4218  * subtree of @pos.
4219  *
4220  * While this function requires cgroup_mutex or RCU read locking, it
4221  * doesn't require the whole traversal to be contained in a single critical
4222  * section.  This function will return the correct rightmost descendant as
4223  * long as @pos is accessible.
4224  */
4225 struct cgroup_subsys_state *
4226 css_rightmost_descendant(struct cgroup_subsys_state *pos)
4227 {
4228 	struct cgroup_subsys_state *last, *tmp;
4229 
4230 	cgroup_assert_mutex_or_rcu_locked();
4231 
4232 	do {
4233 		last = pos;
4234 		/* ->prev isn't RCU safe, walk ->next till the end */
4235 		pos = NULL;
4236 		css_for_each_child(tmp, last)
4237 			pos = tmp;
4238 	} while (pos);
4239 
4240 	return last;
4241 }
4242 
4243 static struct cgroup_subsys_state *
4244 css_leftmost_descendant(struct cgroup_subsys_state *pos)
4245 {
4246 	struct cgroup_subsys_state *last;
4247 
4248 	do {
4249 		last = pos;
4250 		pos = css_next_child(NULL, pos);
4251 	} while (pos);
4252 
4253 	return last;
4254 }
4255 
4256 /**
4257  * css_next_descendant_post - find the next descendant for post-order walk
4258  * @pos: the current position (%NULL to initiate traversal)
4259  * @root: css whose descendants to walk
4260  *
4261  * To be used by css_for_each_descendant_post().  Find the next descendant
4262  * to visit for post-order traversal of @root's descendants.  @root is
4263  * included in the iteration and the last node to be visited.
4264  *
4265  * While this function requires cgroup_mutex or RCU read locking, it
4266  * doesn't require the whole traversal to be contained in a single critical
4267  * section.  This function will return the correct next descendant as long
4268  * as both @pos and @cgroup are accessible and @pos is a descendant of
4269  * @cgroup.
4270  *
4271  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4272  * css which finished ->css_online() is guaranteed to be visible in the
4273  * future iterations and will stay visible until the last reference is put.
4274  * A css which hasn't finished ->css_online() or already finished
4275  * ->css_offline() may show up during traversal.  It's each subsystem's
4276  * responsibility to synchronize against on/offlining.
4277  */
4278 struct cgroup_subsys_state *
4279 css_next_descendant_post(struct cgroup_subsys_state *pos,
4280 			 struct cgroup_subsys_state *root)
4281 {
4282 	struct cgroup_subsys_state *next;
4283 
4284 	cgroup_assert_mutex_or_rcu_locked();
4285 
4286 	/* if first iteration, visit leftmost descendant which may be @root */
4287 	if (!pos)
4288 		return css_leftmost_descendant(root);
4289 
4290 	/* if we visited @root, we're done */
4291 	if (pos == root)
4292 		return NULL;
4293 
4294 	/* if there's an unvisited sibling, visit its leftmost descendant */
4295 	next = css_next_child(pos, pos->parent);
4296 	if (next)
4297 		return css_leftmost_descendant(next);
4298 
4299 	/* no sibling left, visit parent */
4300 	return pos->parent;
4301 }
4302 
4303 /**
4304  * css_has_online_children - does a css have online children
4305  * @css: the target css
4306  *
4307  * Returns %true if @css has any online children; otherwise, %false.  This
4308  * function can be called from any context but the caller is responsible
4309  * for synchronizing against on/offlining as necessary.
4310  */
4311 bool css_has_online_children(struct cgroup_subsys_state *css)
4312 {
4313 	struct cgroup_subsys_state *child;
4314 	bool ret = false;
4315 
4316 	rcu_read_lock();
4317 	css_for_each_child(child, css) {
4318 		if (child->flags & CSS_ONLINE) {
4319 			ret = true;
4320 			break;
4321 		}
4322 	}
4323 	rcu_read_unlock();
4324 	return ret;
4325 }
4326 
4327 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it)
4328 {
4329 	struct list_head *l;
4330 	struct cgrp_cset_link *link;
4331 	struct css_set *cset;
4332 
4333 	lockdep_assert_held(&css_set_lock);
4334 
4335 	/* find the next threaded cset */
4336 	if (it->tcset_pos) {
4337 		l = it->tcset_pos->next;
4338 
4339 		if (l != it->tcset_head) {
4340 			it->tcset_pos = l;
4341 			return container_of(l, struct css_set,
4342 					    threaded_csets_node);
4343 		}
4344 
4345 		it->tcset_pos = NULL;
4346 	}
4347 
4348 	/* find the next cset */
4349 	l = it->cset_pos;
4350 	l = l->next;
4351 	if (l == it->cset_head) {
4352 		it->cset_pos = NULL;
4353 		return NULL;
4354 	}
4355 
4356 	if (it->ss) {
4357 		cset = container_of(l, struct css_set, e_cset_node[it->ss->id]);
4358 	} else {
4359 		link = list_entry(l, struct cgrp_cset_link, cset_link);
4360 		cset = link->cset;
4361 	}
4362 
4363 	it->cset_pos = l;
4364 
4365 	/* initialize threaded css_set walking */
4366 	if (it->flags & CSS_TASK_ITER_THREADED) {
4367 		if (it->cur_dcset)
4368 			put_css_set_locked(it->cur_dcset);
4369 		it->cur_dcset = cset;
4370 		get_css_set(cset);
4371 
4372 		it->tcset_head = &cset->threaded_csets;
4373 		it->tcset_pos = &cset->threaded_csets;
4374 	}
4375 
4376 	return cset;
4377 }
4378 
4379 /**
4380  * css_task_iter_advance_css_set - advance a task itererator to the next css_set
4381  * @it: the iterator to advance
4382  *
4383  * Advance @it to the next css_set to walk.
4384  */
4385 static void css_task_iter_advance_css_set(struct css_task_iter *it)
4386 {
4387 	struct css_set *cset;
4388 
4389 	lockdep_assert_held(&css_set_lock);
4390 
4391 	/* Advance to the next non-empty css_set and find first non-empty tasks list*/
4392 	while ((cset = css_task_iter_next_css_set(it))) {
4393 		if (!list_empty(&cset->tasks)) {
4394 			it->cur_tasks_head = &cset->tasks;
4395 			break;
4396 		} else if (!list_empty(&cset->mg_tasks)) {
4397 			it->cur_tasks_head = &cset->mg_tasks;
4398 			break;
4399 		} else if (!list_empty(&cset->dying_tasks)) {
4400 			it->cur_tasks_head = &cset->dying_tasks;
4401 			break;
4402 		}
4403 	}
4404 	if (!cset) {
4405 		it->task_pos = NULL;
4406 		return;
4407 	}
4408 	it->task_pos = it->cur_tasks_head->next;
4409 
4410 	/*
4411 	 * We don't keep css_sets locked across iteration steps and thus
4412 	 * need to take steps to ensure that iteration can be resumed after
4413 	 * the lock is re-acquired.  Iteration is performed at two levels -
4414 	 * css_sets and tasks in them.
4415 	 *
4416 	 * Once created, a css_set never leaves its cgroup lists, so a
4417 	 * pinned css_set is guaranteed to stay put and we can resume
4418 	 * iteration afterwards.
4419 	 *
4420 	 * Tasks may leave @cset across iteration steps.  This is resolved
4421 	 * by registering each iterator with the css_set currently being
4422 	 * walked and making css_set_move_task() advance iterators whose
4423 	 * next task is leaving.
4424 	 */
4425 	if (it->cur_cset) {
4426 		list_del(&it->iters_node);
4427 		put_css_set_locked(it->cur_cset);
4428 	}
4429 	get_css_set(cset);
4430 	it->cur_cset = cset;
4431 	list_add(&it->iters_node, &cset->task_iters);
4432 }
4433 
4434 static void css_task_iter_skip(struct css_task_iter *it,
4435 			       struct task_struct *task)
4436 {
4437 	lockdep_assert_held(&css_set_lock);
4438 
4439 	if (it->task_pos == &task->cg_list) {
4440 		it->task_pos = it->task_pos->next;
4441 		it->flags |= CSS_TASK_ITER_SKIPPED;
4442 	}
4443 }
4444 
4445 static void css_task_iter_advance(struct css_task_iter *it)
4446 {
4447 	struct task_struct *task;
4448 
4449 	lockdep_assert_held(&css_set_lock);
4450 repeat:
4451 	if (it->task_pos) {
4452 		/*
4453 		 * Advance iterator to find next entry. We go through cset
4454 		 * tasks, mg_tasks and dying_tasks, when consumed we move onto
4455 		 * the next cset.
4456 		 */
4457 		if (it->flags & CSS_TASK_ITER_SKIPPED)
4458 			it->flags &= ~CSS_TASK_ITER_SKIPPED;
4459 		else
4460 			it->task_pos = it->task_pos->next;
4461 
4462 		if (it->task_pos == &it->cur_cset->tasks) {
4463 			it->cur_tasks_head = &it->cur_cset->mg_tasks;
4464 			it->task_pos = it->cur_tasks_head->next;
4465 		}
4466 		if (it->task_pos == &it->cur_cset->mg_tasks) {
4467 			it->cur_tasks_head = &it->cur_cset->dying_tasks;
4468 			it->task_pos = it->cur_tasks_head->next;
4469 		}
4470 		if (it->task_pos == &it->cur_cset->dying_tasks)
4471 			css_task_iter_advance_css_set(it);
4472 	} else {
4473 		/* called from start, proceed to the first cset */
4474 		css_task_iter_advance_css_set(it);
4475 	}
4476 
4477 	if (!it->task_pos)
4478 		return;
4479 
4480 	task = list_entry(it->task_pos, struct task_struct, cg_list);
4481 
4482 	if (it->flags & CSS_TASK_ITER_PROCS) {
4483 		/* if PROCS, skip over tasks which aren't group leaders */
4484 		if (!thread_group_leader(task))
4485 			goto repeat;
4486 
4487 		/* and dying leaders w/o live member threads */
4488 		if (it->cur_tasks_head == &it->cur_cset->dying_tasks &&
4489 		    !atomic_read(&task->signal->live))
4490 			goto repeat;
4491 	} else {
4492 		/* skip all dying ones */
4493 		if (it->cur_tasks_head == &it->cur_cset->dying_tasks)
4494 			goto repeat;
4495 	}
4496 }
4497 
4498 /**
4499  * css_task_iter_start - initiate task iteration
4500  * @css: the css to walk tasks of
4501  * @flags: CSS_TASK_ITER_* flags
4502  * @it: the task iterator to use
4503  *
4504  * Initiate iteration through the tasks of @css.  The caller can call
4505  * css_task_iter_next() to walk through the tasks until the function
4506  * returns NULL.  On completion of iteration, css_task_iter_end() must be
4507  * called.
4508  */
4509 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags,
4510 			 struct css_task_iter *it)
4511 {
4512 	memset(it, 0, sizeof(*it));
4513 
4514 	spin_lock_irq(&css_set_lock);
4515 
4516 	it->ss = css->ss;
4517 	it->flags = flags;
4518 
4519 	if (it->ss)
4520 		it->cset_pos = &css->cgroup->e_csets[css->ss->id];
4521 	else
4522 		it->cset_pos = &css->cgroup->cset_links;
4523 
4524 	it->cset_head = it->cset_pos;
4525 
4526 	css_task_iter_advance(it);
4527 
4528 	spin_unlock_irq(&css_set_lock);
4529 }
4530 
4531 /**
4532  * css_task_iter_next - return the next task for the iterator
4533  * @it: the task iterator being iterated
4534  *
4535  * The "next" function for task iteration.  @it should have been
4536  * initialized via css_task_iter_start().  Returns NULL when the iteration
4537  * reaches the end.
4538  */
4539 struct task_struct *css_task_iter_next(struct css_task_iter *it)
4540 {
4541 	if (it->cur_task) {
4542 		put_task_struct(it->cur_task);
4543 		it->cur_task = NULL;
4544 	}
4545 
4546 	spin_lock_irq(&css_set_lock);
4547 
4548 	/* @it may be half-advanced by skips, finish advancing */
4549 	if (it->flags & CSS_TASK_ITER_SKIPPED)
4550 		css_task_iter_advance(it);
4551 
4552 	if (it->task_pos) {
4553 		it->cur_task = list_entry(it->task_pos, struct task_struct,
4554 					  cg_list);
4555 		get_task_struct(it->cur_task);
4556 		css_task_iter_advance(it);
4557 	}
4558 
4559 	spin_unlock_irq(&css_set_lock);
4560 
4561 	return it->cur_task;
4562 }
4563 
4564 /**
4565  * css_task_iter_end - finish task iteration
4566  * @it: the task iterator to finish
4567  *
4568  * Finish task iteration started by css_task_iter_start().
4569  */
4570 void css_task_iter_end(struct css_task_iter *it)
4571 {
4572 	if (it->cur_cset) {
4573 		spin_lock_irq(&css_set_lock);
4574 		list_del(&it->iters_node);
4575 		put_css_set_locked(it->cur_cset);
4576 		spin_unlock_irq(&css_set_lock);
4577 	}
4578 
4579 	if (it->cur_dcset)
4580 		put_css_set(it->cur_dcset);
4581 
4582 	if (it->cur_task)
4583 		put_task_struct(it->cur_task);
4584 }
4585 
4586 static void cgroup_procs_release(struct kernfs_open_file *of)
4587 {
4588 	if (of->priv) {
4589 		css_task_iter_end(of->priv);
4590 		kfree(of->priv);
4591 	}
4592 }
4593 
4594 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos)
4595 {
4596 	struct kernfs_open_file *of = s->private;
4597 	struct css_task_iter *it = of->priv;
4598 
4599 	if (pos)
4600 		(*pos)++;
4601 
4602 	return css_task_iter_next(it);
4603 }
4604 
4605 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos,
4606 				  unsigned int iter_flags)
4607 {
4608 	struct kernfs_open_file *of = s->private;
4609 	struct cgroup *cgrp = seq_css(s)->cgroup;
4610 	struct css_task_iter *it = of->priv;
4611 
4612 	/*
4613 	 * When a seq_file is seeked, it's always traversed sequentially
4614 	 * from position 0, so we can simply keep iterating on !0 *pos.
4615 	 */
4616 	if (!it) {
4617 		if (WARN_ON_ONCE((*pos)))
4618 			return ERR_PTR(-EINVAL);
4619 
4620 		it = kzalloc(sizeof(*it), GFP_KERNEL);
4621 		if (!it)
4622 			return ERR_PTR(-ENOMEM);
4623 		of->priv = it;
4624 		css_task_iter_start(&cgrp->self, iter_flags, it);
4625 	} else if (!(*pos)) {
4626 		css_task_iter_end(it);
4627 		css_task_iter_start(&cgrp->self, iter_flags, it);
4628 	} else
4629 		return it->cur_task;
4630 
4631 	return cgroup_procs_next(s, NULL, NULL);
4632 }
4633 
4634 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos)
4635 {
4636 	struct cgroup *cgrp = seq_css(s)->cgroup;
4637 
4638 	/*
4639 	 * All processes of a threaded subtree belong to the domain cgroup
4640 	 * of the subtree.  Only threads can be distributed across the
4641 	 * subtree.  Reject reads on cgroup.procs in the subtree proper.
4642 	 * They're always empty anyway.
4643 	 */
4644 	if (cgroup_is_threaded(cgrp))
4645 		return ERR_PTR(-EOPNOTSUPP);
4646 
4647 	return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS |
4648 					    CSS_TASK_ITER_THREADED);
4649 }
4650 
4651 static int cgroup_procs_show(struct seq_file *s, void *v)
4652 {
4653 	seq_printf(s, "%d\n", task_pid_vnr(v));
4654 	return 0;
4655 }
4656 
4657 static int cgroup_may_write(const struct cgroup *cgrp, struct super_block *sb)
4658 {
4659 	int ret;
4660 	struct inode *inode;
4661 
4662 	lockdep_assert_held(&cgroup_mutex);
4663 
4664 	inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
4665 	if (!inode)
4666 		return -ENOMEM;
4667 
4668 	ret = inode_permission(inode, MAY_WRITE);
4669 	iput(inode);
4670 	return ret;
4671 }
4672 
4673 static int cgroup_procs_write_permission(struct cgroup *src_cgrp,
4674 					 struct cgroup *dst_cgrp,
4675 					 struct super_block *sb)
4676 {
4677 	struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
4678 	struct cgroup *com_cgrp = src_cgrp;
4679 	int ret;
4680 
4681 	lockdep_assert_held(&cgroup_mutex);
4682 
4683 	/* find the common ancestor */
4684 	while (!cgroup_is_descendant(dst_cgrp, com_cgrp))
4685 		com_cgrp = cgroup_parent(com_cgrp);
4686 
4687 	/* %current should be authorized to migrate to the common ancestor */
4688 	ret = cgroup_may_write(com_cgrp, sb);
4689 	if (ret)
4690 		return ret;
4691 
4692 	/*
4693 	 * If namespaces are delegation boundaries, %current must be able
4694 	 * to see both source and destination cgroups from its namespace.
4695 	 */
4696 	if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) &&
4697 	    (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) ||
4698 	     !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp)))
4699 		return -ENOENT;
4700 
4701 	return 0;
4702 }
4703 
4704 static int cgroup_attach_permissions(struct cgroup *src_cgrp,
4705 				     struct cgroup *dst_cgrp,
4706 				     struct super_block *sb, bool threadgroup)
4707 {
4708 	int ret = 0;
4709 
4710 	ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, sb);
4711 	if (ret)
4712 		return ret;
4713 
4714 	ret = cgroup_migrate_vet_dst(dst_cgrp);
4715 	if (ret)
4716 		return ret;
4717 
4718 	if (!threadgroup && (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp))
4719 		ret = -EOPNOTSUPP;
4720 
4721 	return ret;
4722 }
4723 
4724 static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
4725 				  char *buf, size_t nbytes, loff_t off)
4726 {
4727 	struct cgroup *src_cgrp, *dst_cgrp;
4728 	struct task_struct *task;
4729 	ssize_t ret;
4730 	bool locked;
4731 
4732 	dst_cgrp = cgroup_kn_lock_live(of->kn, false);
4733 	if (!dst_cgrp)
4734 		return -ENODEV;
4735 
4736 	task = cgroup_procs_write_start(buf, true, &locked);
4737 	ret = PTR_ERR_OR_ZERO(task);
4738 	if (ret)
4739 		goto out_unlock;
4740 
4741 	/* find the source cgroup */
4742 	spin_lock_irq(&css_set_lock);
4743 	src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
4744 	spin_unlock_irq(&css_set_lock);
4745 
4746 	ret = cgroup_attach_permissions(src_cgrp, dst_cgrp,
4747 					of->file->f_path.dentry->d_sb, true);
4748 	if (ret)
4749 		goto out_finish;
4750 
4751 	ret = cgroup_attach_task(dst_cgrp, task, true);
4752 
4753 out_finish:
4754 	cgroup_procs_write_finish(task, locked);
4755 out_unlock:
4756 	cgroup_kn_unlock(of->kn);
4757 
4758 	return ret ?: nbytes;
4759 }
4760 
4761 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos)
4762 {
4763 	return __cgroup_procs_start(s, pos, 0);
4764 }
4765 
4766 static ssize_t cgroup_threads_write(struct kernfs_open_file *of,
4767 				    char *buf, size_t nbytes, loff_t off)
4768 {
4769 	struct cgroup *src_cgrp, *dst_cgrp;
4770 	struct task_struct *task;
4771 	ssize_t ret;
4772 	bool locked;
4773 
4774 	buf = strstrip(buf);
4775 
4776 	dst_cgrp = cgroup_kn_lock_live(of->kn, false);
4777 	if (!dst_cgrp)
4778 		return -ENODEV;
4779 
4780 	task = cgroup_procs_write_start(buf, false, &locked);
4781 	ret = PTR_ERR_OR_ZERO(task);
4782 	if (ret)
4783 		goto out_unlock;
4784 
4785 	/* find the source cgroup */
4786 	spin_lock_irq(&css_set_lock);
4787 	src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
4788 	spin_unlock_irq(&css_set_lock);
4789 
4790 	/* thread migrations follow the cgroup.procs delegation rule */
4791 	ret = cgroup_attach_permissions(src_cgrp, dst_cgrp,
4792 					of->file->f_path.dentry->d_sb, false);
4793 	if (ret)
4794 		goto out_finish;
4795 
4796 	ret = cgroup_attach_task(dst_cgrp, task, false);
4797 
4798 out_finish:
4799 	cgroup_procs_write_finish(task, locked);
4800 out_unlock:
4801 	cgroup_kn_unlock(of->kn);
4802 
4803 	return ret ?: nbytes;
4804 }
4805 
4806 /* cgroup core interface files for the default hierarchy */
4807 static struct cftype cgroup_base_files[] = {
4808 	{
4809 		.name = "cgroup.type",
4810 		.flags = CFTYPE_NOT_ON_ROOT,
4811 		.seq_show = cgroup_type_show,
4812 		.write = cgroup_type_write,
4813 	},
4814 	{
4815 		.name = "cgroup.procs",
4816 		.flags = CFTYPE_NS_DELEGATABLE,
4817 		.file_offset = offsetof(struct cgroup, procs_file),
4818 		.release = cgroup_procs_release,
4819 		.seq_start = cgroup_procs_start,
4820 		.seq_next = cgroup_procs_next,
4821 		.seq_show = cgroup_procs_show,
4822 		.write = cgroup_procs_write,
4823 	},
4824 	{
4825 		.name = "cgroup.threads",
4826 		.flags = CFTYPE_NS_DELEGATABLE,
4827 		.release = cgroup_procs_release,
4828 		.seq_start = cgroup_threads_start,
4829 		.seq_next = cgroup_procs_next,
4830 		.seq_show = cgroup_procs_show,
4831 		.write = cgroup_threads_write,
4832 	},
4833 	{
4834 		.name = "cgroup.controllers",
4835 		.seq_show = cgroup_controllers_show,
4836 	},
4837 	{
4838 		.name = "cgroup.subtree_control",
4839 		.flags = CFTYPE_NS_DELEGATABLE,
4840 		.seq_show = cgroup_subtree_control_show,
4841 		.write = cgroup_subtree_control_write,
4842 	},
4843 	{
4844 		.name = "cgroup.events",
4845 		.flags = CFTYPE_NOT_ON_ROOT,
4846 		.file_offset = offsetof(struct cgroup, events_file),
4847 		.seq_show = cgroup_events_show,
4848 	},
4849 	{
4850 		.name = "cgroup.max.descendants",
4851 		.seq_show = cgroup_max_descendants_show,
4852 		.write = cgroup_max_descendants_write,
4853 	},
4854 	{
4855 		.name = "cgroup.max.depth",
4856 		.seq_show = cgroup_max_depth_show,
4857 		.write = cgroup_max_depth_write,
4858 	},
4859 	{
4860 		.name = "cgroup.stat",
4861 		.seq_show = cgroup_stat_show,
4862 	},
4863 	{
4864 		.name = "cgroup.freeze",
4865 		.flags = CFTYPE_NOT_ON_ROOT,
4866 		.seq_show = cgroup_freeze_show,
4867 		.write = cgroup_freeze_write,
4868 	},
4869 	{
4870 		.name = "cpu.stat",
4871 		.flags = CFTYPE_NOT_ON_ROOT,
4872 		.seq_show = cpu_stat_show,
4873 	},
4874 #ifdef CONFIG_PSI
4875 	{
4876 		.name = "io.pressure",
4877 		.seq_show = cgroup_io_pressure_show,
4878 		.write = cgroup_io_pressure_write,
4879 		.poll = cgroup_pressure_poll,
4880 		.release = cgroup_pressure_release,
4881 	},
4882 	{
4883 		.name = "memory.pressure",
4884 		.seq_show = cgroup_memory_pressure_show,
4885 		.write = cgroup_memory_pressure_write,
4886 		.poll = cgroup_pressure_poll,
4887 		.release = cgroup_pressure_release,
4888 	},
4889 	{
4890 		.name = "cpu.pressure",
4891 		.seq_show = cgroup_cpu_pressure_show,
4892 		.write = cgroup_cpu_pressure_write,
4893 		.poll = cgroup_pressure_poll,
4894 		.release = cgroup_pressure_release,
4895 	},
4896 #endif /* CONFIG_PSI */
4897 	{ }	/* terminate */
4898 };
4899 
4900 /*
4901  * css destruction is four-stage process.
4902  *
4903  * 1. Destruction starts.  Killing of the percpu_ref is initiated.
4904  *    Implemented in kill_css().
4905  *
4906  * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
4907  *    and thus css_tryget_online() is guaranteed to fail, the css can be
4908  *    offlined by invoking offline_css().  After offlining, the base ref is
4909  *    put.  Implemented in css_killed_work_fn().
4910  *
4911  * 3. When the percpu_ref reaches zero, the only possible remaining
4912  *    accessors are inside RCU read sections.  css_release() schedules the
4913  *    RCU callback.
4914  *
4915  * 4. After the grace period, the css can be freed.  Implemented in
4916  *    css_free_work_fn().
4917  *
4918  * It is actually hairier because both step 2 and 4 require process context
4919  * and thus involve punting to css->destroy_work adding two additional
4920  * steps to the already complex sequence.
4921  */
4922 static void css_free_rwork_fn(struct work_struct *work)
4923 {
4924 	struct cgroup_subsys_state *css = container_of(to_rcu_work(work),
4925 				struct cgroup_subsys_state, destroy_rwork);
4926 	struct cgroup_subsys *ss = css->ss;
4927 	struct cgroup *cgrp = css->cgroup;
4928 
4929 	percpu_ref_exit(&css->refcnt);
4930 
4931 	if (ss) {
4932 		/* css free path */
4933 		struct cgroup_subsys_state *parent = css->parent;
4934 		int id = css->id;
4935 
4936 		ss->css_free(css);
4937 		cgroup_idr_remove(&ss->css_idr, id);
4938 		cgroup_put(cgrp);
4939 
4940 		if (parent)
4941 			css_put(parent);
4942 	} else {
4943 		/* cgroup free path */
4944 		atomic_dec(&cgrp->root->nr_cgrps);
4945 		cgroup1_pidlist_destroy_all(cgrp);
4946 		cancel_work_sync(&cgrp->release_agent_work);
4947 
4948 		if (cgroup_parent(cgrp)) {
4949 			/*
4950 			 * We get a ref to the parent, and put the ref when
4951 			 * this cgroup is being freed, so it's guaranteed
4952 			 * that the parent won't be destroyed before its
4953 			 * children.
4954 			 */
4955 			cgroup_put(cgroup_parent(cgrp));
4956 			kernfs_put(cgrp->kn);
4957 			psi_cgroup_free(cgrp);
4958 			if (cgroup_on_dfl(cgrp))
4959 				cgroup_rstat_exit(cgrp);
4960 			kfree(cgrp);
4961 		} else {
4962 			/*
4963 			 * This is root cgroup's refcnt reaching zero,
4964 			 * which indicates that the root should be
4965 			 * released.
4966 			 */
4967 			cgroup_destroy_root(cgrp->root);
4968 		}
4969 	}
4970 }
4971 
4972 static void css_release_work_fn(struct work_struct *work)
4973 {
4974 	struct cgroup_subsys_state *css =
4975 		container_of(work, struct cgroup_subsys_state, destroy_work);
4976 	struct cgroup_subsys *ss = css->ss;
4977 	struct cgroup *cgrp = css->cgroup;
4978 
4979 	mutex_lock(&cgroup_mutex);
4980 
4981 	css->flags |= CSS_RELEASED;
4982 	list_del_rcu(&css->sibling);
4983 
4984 	if (ss) {
4985 		/* css release path */
4986 		if (!list_empty(&css->rstat_css_node)) {
4987 			cgroup_rstat_flush(cgrp);
4988 			list_del_rcu(&css->rstat_css_node);
4989 		}
4990 
4991 		cgroup_idr_replace(&ss->css_idr, NULL, css->id);
4992 		if (ss->css_released)
4993 			ss->css_released(css);
4994 	} else {
4995 		struct cgroup *tcgrp;
4996 
4997 		/* cgroup release path */
4998 		TRACE_CGROUP_PATH(release, cgrp);
4999 
5000 		if (cgroup_on_dfl(cgrp))
5001 			cgroup_rstat_flush(cgrp);
5002 
5003 		spin_lock_irq(&css_set_lock);
5004 		for (tcgrp = cgroup_parent(cgrp); tcgrp;
5005 		     tcgrp = cgroup_parent(tcgrp))
5006 			tcgrp->nr_dying_descendants--;
5007 		spin_unlock_irq(&css_set_lock);
5008 
5009 		/*
5010 		 * There are two control paths which try to determine
5011 		 * cgroup from dentry without going through kernfs -
5012 		 * cgroupstats_build() and css_tryget_online_from_dir().
5013 		 * Those are supported by RCU protecting clearing of
5014 		 * cgrp->kn->priv backpointer.
5015 		 */
5016 		if (cgrp->kn)
5017 			RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
5018 					 NULL);
5019 	}
5020 
5021 	mutex_unlock(&cgroup_mutex);
5022 
5023 	INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5024 	queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5025 }
5026 
5027 static void css_release(struct percpu_ref *ref)
5028 {
5029 	struct cgroup_subsys_state *css =
5030 		container_of(ref, struct cgroup_subsys_state, refcnt);
5031 
5032 	INIT_WORK(&css->destroy_work, css_release_work_fn);
5033 	queue_work(cgroup_destroy_wq, &css->destroy_work);
5034 }
5035 
5036 static void init_and_link_css(struct cgroup_subsys_state *css,
5037 			      struct cgroup_subsys *ss, struct cgroup *cgrp)
5038 {
5039 	lockdep_assert_held(&cgroup_mutex);
5040 
5041 	cgroup_get_live(cgrp);
5042 
5043 	memset(css, 0, sizeof(*css));
5044 	css->cgroup = cgrp;
5045 	css->ss = ss;
5046 	css->id = -1;
5047 	INIT_LIST_HEAD(&css->sibling);
5048 	INIT_LIST_HEAD(&css->children);
5049 	INIT_LIST_HEAD(&css->rstat_css_node);
5050 	css->serial_nr = css_serial_nr_next++;
5051 	atomic_set(&css->online_cnt, 0);
5052 
5053 	if (cgroup_parent(cgrp)) {
5054 		css->parent = cgroup_css(cgroup_parent(cgrp), ss);
5055 		css_get(css->parent);
5056 	}
5057 
5058 	if (cgroup_on_dfl(cgrp) && ss->css_rstat_flush)
5059 		list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list);
5060 
5061 	BUG_ON(cgroup_css(cgrp, ss));
5062 }
5063 
5064 /* invoke ->css_online() on a new CSS and mark it online if successful */
5065 static int online_css(struct cgroup_subsys_state *css)
5066 {
5067 	struct cgroup_subsys *ss = css->ss;
5068 	int ret = 0;
5069 
5070 	lockdep_assert_held(&cgroup_mutex);
5071 
5072 	if (ss->css_online)
5073 		ret = ss->css_online(css);
5074 	if (!ret) {
5075 		css->flags |= CSS_ONLINE;
5076 		rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
5077 
5078 		atomic_inc(&css->online_cnt);
5079 		if (css->parent)
5080 			atomic_inc(&css->parent->online_cnt);
5081 	}
5082 	return ret;
5083 }
5084 
5085 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
5086 static void offline_css(struct cgroup_subsys_state *css)
5087 {
5088 	struct cgroup_subsys *ss = css->ss;
5089 
5090 	lockdep_assert_held(&cgroup_mutex);
5091 
5092 	if (!(css->flags & CSS_ONLINE))
5093 		return;
5094 
5095 	if (ss->css_offline)
5096 		ss->css_offline(css);
5097 
5098 	css->flags &= ~CSS_ONLINE;
5099 	RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
5100 
5101 	wake_up_all(&css->cgroup->offline_waitq);
5102 }
5103 
5104 /**
5105  * css_create - create a cgroup_subsys_state
5106  * @cgrp: the cgroup new css will be associated with
5107  * @ss: the subsys of new css
5108  *
5109  * Create a new css associated with @cgrp - @ss pair.  On success, the new
5110  * css is online and installed in @cgrp.  This function doesn't create the
5111  * interface files.  Returns 0 on success, -errno on failure.
5112  */
5113 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
5114 					      struct cgroup_subsys *ss)
5115 {
5116 	struct cgroup *parent = cgroup_parent(cgrp);
5117 	struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
5118 	struct cgroup_subsys_state *css;
5119 	int err;
5120 
5121 	lockdep_assert_held(&cgroup_mutex);
5122 
5123 	css = ss->css_alloc(parent_css);
5124 	if (!css)
5125 		css = ERR_PTR(-ENOMEM);
5126 	if (IS_ERR(css))
5127 		return css;
5128 
5129 	init_and_link_css(css, ss, cgrp);
5130 
5131 	err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
5132 	if (err)
5133 		goto err_free_css;
5134 
5135 	err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
5136 	if (err < 0)
5137 		goto err_free_css;
5138 	css->id = err;
5139 
5140 	/* @css is ready to be brought online now, make it visible */
5141 	list_add_tail_rcu(&css->sibling, &parent_css->children);
5142 	cgroup_idr_replace(&ss->css_idr, css, css->id);
5143 
5144 	err = online_css(css);
5145 	if (err)
5146 		goto err_list_del;
5147 
5148 	if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
5149 	    cgroup_parent(parent)) {
5150 		pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
5151 			current->comm, current->pid, ss->name);
5152 		if (!strcmp(ss->name, "memory"))
5153 			pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
5154 		ss->warned_broken_hierarchy = true;
5155 	}
5156 
5157 	return css;
5158 
5159 err_list_del:
5160 	list_del_rcu(&css->sibling);
5161 err_free_css:
5162 	list_del_rcu(&css->rstat_css_node);
5163 	INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5164 	queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5165 	return ERR_PTR(err);
5166 }
5167 
5168 /*
5169  * The returned cgroup is fully initialized including its control mask, but
5170  * it isn't associated with its kernfs_node and doesn't have the control
5171  * mask applied.
5172  */
5173 static struct cgroup *cgroup_create(struct cgroup *parent, const char *name,
5174 				    umode_t mode)
5175 {
5176 	struct cgroup_root *root = parent->root;
5177 	struct cgroup *cgrp, *tcgrp;
5178 	struct kernfs_node *kn;
5179 	int level = parent->level + 1;
5180 	int ret;
5181 
5182 	/* allocate the cgroup and its ID, 0 is reserved for the root */
5183 	cgrp = kzalloc(struct_size(cgrp, ancestor_ids, (level + 1)),
5184 		       GFP_KERNEL);
5185 	if (!cgrp)
5186 		return ERR_PTR(-ENOMEM);
5187 
5188 	ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
5189 	if (ret)
5190 		goto out_free_cgrp;
5191 
5192 	if (cgroup_on_dfl(parent)) {
5193 		ret = cgroup_rstat_init(cgrp);
5194 		if (ret)
5195 			goto out_cancel_ref;
5196 	}
5197 
5198 	/* create the directory */
5199 	kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
5200 	if (IS_ERR(kn)) {
5201 		ret = PTR_ERR(kn);
5202 		goto out_stat_exit;
5203 	}
5204 	cgrp->kn = kn;
5205 
5206 	init_cgroup_housekeeping(cgrp);
5207 
5208 	cgrp->self.parent = &parent->self;
5209 	cgrp->root = root;
5210 	cgrp->level = level;
5211 
5212 	ret = psi_cgroup_alloc(cgrp);
5213 	if (ret)
5214 		goto out_kernfs_remove;
5215 
5216 	ret = cgroup_bpf_inherit(cgrp);
5217 	if (ret)
5218 		goto out_psi_free;
5219 
5220 	/*
5221 	 * New cgroup inherits effective freeze counter, and
5222 	 * if the parent has to be frozen, the child has too.
5223 	 */
5224 	cgrp->freezer.e_freeze = parent->freezer.e_freeze;
5225 	if (cgrp->freezer.e_freeze) {
5226 		/*
5227 		 * Set the CGRP_FREEZE flag, so when a process will be
5228 		 * attached to the child cgroup, it will become frozen.
5229 		 * At this point the new cgroup is unpopulated, so we can
5230 		 * consider it frozen immediately.
5231 		 */
5232 		set_bit(CGRP_FREEZE, &cgrp->flags);
5233 		set_bit(CGRP_FROZEN, &cgrp->flags);
5234 	}
5235 
5236 	spin_lock_irq(&css_set_lock);
5237 	for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5238 		cgrp->ancestor_ids[tcgrp->level] = cgroup_id(tcgrp);
5239 
5240 		if (tcgrp != cgrp) {
5241 			tcgrp->nr_descendants++;
5242 
5243 			/*
5244 			 * If the new cgroup is frozen, all ancestor cgroups
5245 			 * get a new frozen descendant, but their state can't
5246 			 * change because of this.
5247 			 */
5248 			if (cgrp->freezer.e_freeze)
5249 				tcgrp->freezer.nr_frozen_descendants++;
5250 		}
5251 	}
5252 	spin_unlock_irq(&css_set_lock);
5253 
5254 	if (notify_on_release(parent))
5255 		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
5256 
5257 	if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
5258 		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
5259 
5260 	cgrp->self.serial_nr = css_serial_nr_next++;
5261 
5262 	/* allocation complete, commit to creation */
5263 	list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
5264 	atomic_inc(&root->nr_cgrps);
5265 	cgroup_get_live(parent);
5266 
5267 	/*
5268 	 * On the default hierarchy, a child doesn't automatically inherit
5269 	 * subtree_control from the parent.  Each is configured manually.
5270 	 */
5271 	if (!cgroup_on_dfl(cgrp))
5272 		cgrp->subtree_control = cgroup_control(cgrp);
5273 
5274 	cgroup_propagate_control(cgrp);
5275 
5276 	return cgrp;
5277 
5278 out_psi_free:
5279 	psi_cgroup_free(cgrp);
5280 out_kernfs_remove:
5281 	kernfs_remove(cgrp->kn);
5282 out_stat_exit:
5283 	if (cgroup_on_dfl(parent))
5284 		cgroup_rstat_exit(cgrp);
5285 out_cancel_ref:
5286 	percpu_ref_exit(&cgrp->self.refcnt);
5287 out_free_cgrp:
5288 	kfree(cgrp);
5289 	return ERR_PTR(ret);
5290 }
5291 
5292 static bool cgroup_check_hierarchy_limits(struct cgroup *parent)
5293 {
5294 	struct cgroup *cgroup;
5295 	int ret = false;
5296 	int level = 1;
5297 
5298 	lockdep_assert_held(&cgroup_mutex);
5299 
5300 	for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) {
5301 		if (cgroup->nr_descendants >= cgroup->max_descendants)
5302 			goto fail;
5303 
5304 		if (level > cgroup->max_depth)
5305 			goto fail;
5306 
5307 		level++;
5308 	}
5309 
5310 	ret = true;
5311 fail:
5312 	return ret;
5313 }
5314 
5315 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode)
5316 {
5317 	struct cgroup *parent, *cgrp;
5318 	int ret;
5319 
5320 	/* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
5321 	if (strchr(name, '\n'))
5322 		return -EINVAL;
5323 
5324 	parent = cgroup_kn_lock_live(parent_kn, false);
5325 	if (!parent)
5326 		return -ENODEV;
5327 
5328 	if (!cgroup_check_hierarchy_limits(parent)) {
5329 		ret = -EAGAIN;
5330 		goto out_unlock;
5331 	}
5332 
5333 	cgrp = cgroup_create(parent, name, mode);
5334 	if (IS_ERR(cgrp)) {
5335 		ret = PTR_ERR(cgrp);
5336 		goto out_unlock;
5337 	}
5338 
5339 	/*
5340 	 * This extra ref will be put in cgroup_free_fn() and guarantees
5341 	 * that @cgrp->kn is always accessible.
5342 	 */
5343 	kernfs_get(cgrp->kn);
5344 
5345 	ret = cgroup_kn_set_ugid(cgrp->kn);
5346 	if (ret)
5347 		goto out_destroy;
5348 
5349 	ret = css_populate_dir(&cgrp->self);
5350 	if (ret)
5351 		goto out_destroy;
5352 
5353 	ret = cgroup_apply_control_enable(cgrp);
5354 	if (ret)
5355 		goto out_destroy;
5356 
5357 	TRACE_CGROUP_PATH(mkdir, cgrp);
5358 
5359 	/* let's create and online css's */
5360 	kernfs_activate(cgrp->kn);
5361 
5362 	ret = 0;
5363 	goto out_unlock;
5364 
5365 out_destroy:
5366 	cgroup_destroy_locked(cgrp);
5367 out_unlock:
5368 	cgroup_kn_unlock(parent_kn);
5369 	return ret;
5370 }
5371 
5372 /*
5373  * This is called when the refcnt of a css is confirmed to be killed.
5374  * css_tryget_online() is now guaranteed to fail.  Tell the subsystem to
5375  * initate destruction and put the css ref from kill_css().
5376  */
5377 static void css_killed_work_fn(struct work_struct *work)
5378 {
5379 	struct cgroup_subsys_state *css =
5380 		container_of(work, struct cgroup_subsys_state, destroy_work);
5381 
5382 	mutex_lock(&cgroup_mutex);
5383 
5384 	do {
5385 		offline_css(css);
5386 		css_put(css);
5387 		/* @css can't go away while we're holding cgroup_mutex */
5388 		css = css->parent;
5389 	} while (css && atomic_dec_and_test(&css->online_cnt));
5390 
5391 	mutex_unlock(&cgroup_mutex);
5392 }
5393 
5394 /* css kill confirmation processing requires process context, bounce */
5395 static void css_killed_ref_fn(struct percpu_ref *ref)
5396 {
5397 	struct cgroup_subsys_state *css =
5398 		container_of(ref, struct cgroup_subsys_state, refcnt);
5399 
5400 	if (atomic_dec_and_test(&css->online_cnt)) {
5401 		INIT_WORK(&css->destroy_work, css_killed_work_fn);
5402 		queue_work(cgroup_destroy_wq, &css->destroy_work);
5403 	}
5404 }
5405 
5406 /**
5407  * kill_css - destroy a css
5408  * @css: css to destroy
5409  *
5410  * This function initiates destruction of @css by removing cgroup interface
5411  * files and putting its base reference.  ->css_offline() will be invoked
5412  * asynchronously once css_tryget_online() is guaranteed to fail and when
5413  * the reference count reaches zero, @css will be released.
5414  */
5415 static void kill_css(struct cgroup_subsys_state *css)
5416 {
5417 	lockdep_assert_held(&cgroup_mutex);
5418 
5419 	if (css->flags & CSS_DYING)
5420 		return;
5421 
5422 	css->flags |= CSS_DYING;
5423 
5424 	/*
5425 	 * This must happen before css is disassociated with its cgroup.
5426 	 * See seq_css() for details.
5427 	 */
5428 	css_clear_dir(css);
5429 
5430 	/*
5431 	 * Killing would put the base ref, but we need to keep it alive
5432 	 * until after ->css_offline().
5433 	 */
5434 	css_get(css);
5435 
5436 	/*
5437 	 * cgroup core guarantees that, by the time ->css_offline() is
5438 	 * invoked, no new css reference will be given out via
5439 	 * css_tryget_online().  We can't simply call percpu_ref_kill() and
5440 	 * proceed to offlining css's because percpu_ref_kill() doesn't
5441 	 * guarantee that the ref is seen as killed on all CPUs on return.
5442 	 *
5443 	 * Use percpu_ref_kill_and_confirm() to get notifications as each
5444 	 * css is confirmed to be seen as killed on all CPUs.
5445 	 */
5446 	percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
5447 }
5448 
5449 /**
5450  * cgroup_destroy_locked - the first stage of cgroup destruction
5451  * @cgrp: cgroup to be destroyed
5452  *
5453  * css's make use of percpu refcnts whose killing latency shouldn't be
5454  * exposed to userland and are RCU protected.  Also, cgroup core needs to
5455  * guarantee that css_tryget_online() won't succeed by the time
5456  * ->css_offline() is invoked.  To satisfy all the requirements,
5457  * destruction is implemented in the following two steps.
5458  *
5459  * s1. Verify @cgrp can be destroyed and mark it dying.  Remove all
5460  *     userland visible parts and start killing the percpu refcnts of
5461  *     css's.  Set up so that the next stage will be kicked off once all
5462  *     the percpu refcnts are confirmed to be killed.
5463  *
5464  * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5465  *     rest of destruction.  Once all cgroup references are gone, the
5466  *     cgroup is RCU-freed.
5467  *
5468  * This function implements s1.  After this step, @cgrp is gone as far as
5469  * the userland is concerned and a new cgroup with the same name may be
5470  * created.  As cgroup doesn't care about the names internally, this
5471  * doesn't cause any problem.
5472  */
5473 static int cgroup_destroy_locked(struct cgroup *cgrp)
5474 	__releases(&cgroup_mutex) __acquires(&cgroup_mutex)
5475 {
5476 	struct cgroup *tcgrp, *parent = cgroup_parent(cgrp);
5477 	struct cgroup_subsys_state *css;
5478 	struct cgrp_cset_link *link;
5479 	int ssid;
5480 
5481 	lockdep_assert_held(&cgroup_mutex);
5482 
5483 	/*
5484 	 * Only migration can raise populated from zero and we're already
5485 	 * holding cgroup_mutex.
5486 	 */
5487 	if (cgroup_is_populated(cgrp))
5488 		return -EBUSY;
5489 
5490 	/*
5491 	 * Make sure there's no live children.  We can't test emptiness of
5492 	 * ->self.children as dead children linger on it while being
5493 	 * drained; otherwise, "rmdir parent/child parent" may fail.
5494 	 */
5495 	if (css_has_online_children(&cgrp->self))
5496 		return -EBUSY;
5497 
5498 	/*
5499 	 * Mark @cgrp and the associated csets dead.  The former prevents
5500 	 * further task migration and child creation by disabling
5501 	 * cgroup_lock_live_group().  The latter makes the csets ignored by
5502 	 * the migration path.
5503 	 */
5504 	cgrp->self.flags &= ~CSS_ONLINE;
5505 
5506 	spin_lock_irq(&css_set_lock);
5507 	list_for_each_entry(link, &cgrp->cset_links, cset_link)
5508 		link->cset->dead = true;
5509 	spin_unlock_irq(&css_set_lock);
5510 
5511 	/* initiate massacre of all css's */
5512 	for_each_css(css, ssid, cgrp)
5513 		kill_css(css);
5514 
5515 	/* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */
5516 	css_clear_dir(&cgrp->self);
5517 	kernfs_remove(cgrp->kn);
5518 
5519 	if (parent && cgroup_is_threaded(cgrp))
5520 		parent->nr_threaded_children--;
5521 
5522 	spin_lock_irq(&css_set_lock);
5523 	for (tcgrp = cgroup_parent(cgrp); tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5524 		tcgrp->nr_descendants--;
5525 		tcgrp->nr_dying_descendants++;
5526 		/*
5527 		 * If the dying cgroup is frozen, decrease frozen descendants
5528 		 * counters of ancestor cgroups.
5529 		 */
5530 		if (test_bit(CGRP_FROZEN, &cgrp->flags))
5531 			tcgrp->freezer.nr_frozen_descendants--;
5532 	}
5533 	spin_unlock_irq(&css_set_lock);
5534 
5535 	cgroup1_check_for_release(parent);
5536 
5537 	cgroup_bpf_offline(cgrp);
5538 
5539 	/* put the base reference */
5540 	percpu_ref_kill(&cgrp->self.refcnt);
5541 
5542 	return 0;
5543 };
5544 
5545 int cgroup_rmdir(struct kernfs_node *kn)
5546 {
5547 	struct cgroup *cgrp;
5548 	int ret = 0;
5549 
5550 	cgrp = cgroup_kn_lock_live(kn, false);
5551 	if (!cgrp)
5552 		return 0;
5553 
5554 	ret = cgroup_destroy_locked(cgrp);
5555 	if (!ret)
5556 		TRACE_CGROUP_PATH(rmdir, cgrp);
5557 
5558 	cgroup_kn_unlock(kn);
5559 	return ret;
5560 }
5561 
5562 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5563 	.show_options		= cgroup_show_options,
5564 	.mkdir			= cgroup_mkdir,
5565 	.rmdir			= cgroup_rmdir,
5566 	.show_path		= cgroup_show_path,
5567 };
5568 
5569 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
5570 {
5571 	struct cgroup_subsys_state *css;
5572 
5573 	pr_debug("Initializing cgroup subsys %s\n", ss->name);
5574 
5575 	mutex_lock(&cgroup_mutex);
5576 
5577 	idr_init(&ss->css_idr);
5578 	INIT_LIST_HEAD(&ss->cfts);
5579 
5580 	/* Create the root cgroup state for this subsystem */
5581 	ss->root = &cgrp_dfl_root;
5582 	css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
5583 	/* We don't handle early failures gracefully */
5584 	BUG_ON(IS_ERR(css));
5585 	init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
5586 
5587 	/*
5588 	 * Root csses are never destroyed and we can't initialize
5589 	 * percpu_ref during early init.  Disable refcnting.
5590 	 */
5591 	css->flags |= CSS_NO_REF;
5592 
5593 	if (early) {
5594 		/* allocation can't be done safely during early init */
5595 		css->id = 1;
5596 	} else {
5597 		css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5598 		BUG_ON(css->id < 0);
5599 	}
5600 
5601 	/* Update the init_css_set to contain a subsys
5602 	 * pointer to this state - since the subsystem is
5603 	 * newly registered, all tasks and hence the
5604 	 * init_css_set is in the subsystem's root cgroup. */
5605 	init_css_set.subsys[ss->id] = css;
5606 
5607 	have_fork_callback |= (bool)ss->fork << ss->id;
5608 	have_exit_callback |= (bool)ss->exit << ss->id;
5609 	have_release_callback |= (bool)ss->release << ss->id;
5610 	have_canfork_callback |= (bool)ss->can_fork << ss->id;
5611 
5612 	/* At system boot, before all subsystems have been
5613 	 * registered, no tasks have been forked, so we don't
5614 	 * need to invoke fork callbacks here. */
5615 	BUG_ON(!list_empty(&init_task.tasks));
5616 
5617 	BUG_ON(online_css(css));
5618 
5619 	mutex_unlock(&cgroup_mutex);
5620 }
5621 
5622 /**
5623  * cgroup_init_early - cgroup initialization at system boot
5624  *
5625  * Initialize cgroups at system boot, and initialize any
5626  * subsystems that request early init.
5627  */
5628 int __init cgroup_init_early(void)
5629 {
5630 	static struct cgroup_fs_context __initdata ctx;
5631 	struct cgroup_subsys *ss;
5632 	int i;
5633 
5634 	ctx.root = &cgrp_dfl_root;
5635 	init_cgroup_root(&ctx);
5636 	cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5637 
5638 	RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
5639 
5640 	for_each_subsys(ss, i) {
5641 		WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
5642 		     "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
5643 		     i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
5644 		     ss->id, ss->name);
5645 		WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5646 		     "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5647 
5648 		ss->id = i;
5649 		ss->name = cgroup_subsys_name[i];
5650 		if (!ss->legacy_name)
5651 			ss->legacy_name = cgroup_subsys_name[i];
5652 
5653 		if (ss->early_init)
5654 			cgroup_init_subsys(ss, true);
5655 	}
5656 	return 0;
5657 }
5658 
5659 static u16 cgroup_disable_mask __initdata;
5660 
5661 /**
5662  * cgroup_init - cgroup initialization
5663  *
5664  * Register cgroup filesystem and /proc file, and initialize
5665  * any subsystems that didn't request early init.
5666  */
5667 int __init cgroup_init(void)
5668 {
5669 	struct cgroup_subsys *ss;
5670 	int ssid;
5671 
5672 	BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
5673 	BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
5674 	BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files));
5675 
5676 	cgroup_rstat_boot();
5677 
5678 	/*
5679 	 * The latency of the synchronize_rcu() is too high for cgroups,
5680 	 * avoid it at the cost of forcing all readers into the slow path.
5681 	 */
5682 	rcu_sync_enter_start(&cgroup_threadgroup_rwsem.rss);
5683 
5684 	get_user_ns(init_cgroup_ns.user_ns);
5685 
5686 	mutex_lock(&cgroup_mutex);
5687 
5688 	/*
5689 	 * Add init_css_set to the hash table so that dfl_root can link to
5690 	 * it during init.
5691 	 */
5692 	hash_add(css_set_table, &init_css_set.hlist,
5693 		 css_set_hash(init_css_set.subsys));
5694 
5695 	BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
5696 
5697 	mutex_unlock(&cgroup_mutex);
5698 
5699 	for_each_subsys(ss, ssid) {
5700 		if (ss->early_init) {
5701 			struct cgroup_subsys_state *css =
5702 				init_css_set.subsys[ss->id];
5703 
5704 			css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5705 						   GFP_KERNEL);
5706 			BUG_ON(css->id < 0);
5707 		} else {
5708 			cgroup_init_subsys(ss, false);
5709 		}
5710 
5711 		list_add_tail(&init_css_set.e_cset_node[ssid],
5712 			      &cgrp_dfl_root.cgrp.e_csets[ssid]);
5713 
5714 		/*
5715 		 * Setting dfl_root subsys_mask needs to consider the
5716 		 * disabled flag and cftype registration needs kmalloc,
5717 		 * both of which aren't available during early_init.
5718 		 */
5719 		if (cgroup_disable_mask & (1 << ssid)) {
5720 			static_branch_disable(cgroup_subsys_enabled_key[ssid]);
5721 			printk(KERN_INFO "Disabling %s control group subsystem\n",
5722 			       ss->name);
5723 			continue;
5724 		}
5725 
5726 		if (cgroup1_ssid_disabled(ssid))
5727 			printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n",
5728 			       ss->name);
5729 
5730 		cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5731 
5732 		/* implicit controllers must be threaded too */
5733 		WARN_ON(ss->implicit_on_dfl && !ss->threaded);
5734 
5735 		if (ss->implicit_on_dfl)
5736 			cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
5737 		else if (!ss->dfl_cftypes)
5738 			cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
5739 
5740 		if (ss->threaded)
5741 			cgrp_dfl_threaded_ss_mask |= 1 << ss->id;
5742 
5743 		if (ss->dfl_cftypes == ss->legacy_cftypes) {
5744 			WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5745 		} else {
5746 			WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5747 			WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
5748 		}
5749 
5750 		if (ss->bind)
5751 			ss->bind(init_css_set.subsys[ssid]);
5752 
5753 		mutex_lock(&cgroup_mutex);
5754 		css_populate_dir(init_css_set.subsys[ssid]);
5755 		mutex_unlock(&cgroup_mutex);
5756 	}
5757 
5758 	/* init_css_set.subsys[] has been updated, re-hash */
5759 	hash_del(&init_css_set.hlist);
5760 	hash_add(css_set_table, &init_css_set.hlist,
5761 		 css_set_hash(init_css_set.subsys));
5762 
5763 	WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
5764 	WARN_ON(register_filesystem(&cgroup_fs_type));
5765 	WARN_ON(register_filesystem(&cgroup2_fs_type));
5766 	WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show));
5767 #ifdef CONFIG_CPUSETS
5768 	WARN_ON(register_filesystem(&cpuset_fs_type));
5769 #endif
5770 
5771 	return 0;
5772 }
5773 
5774 static int __init cgroup_wq_init(void)
5775 {
5776 	/*
5777 	 * There isn't much point in executing destruction path in
5778 	 * parallel.  Good chunk is serialized with cgroup_mutex anyway.
5779 	 * Use 1 for @max_active.
5780 	 *
5781 	 * We would prefer to do this in cgroup_init() above, but that
5782 	 * is called before init_workqueues(): so leave this until after.
5783 	 */
5784 	cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
5785 	BUG_ON(!cgroup_destroy_wq);
5786 	return 0;
5787 }
5788 core_initcall(cgroup_wq_init);
5789 
5790 void cgroup_path_from_kernfs_id(u64 id, char *buf, size_t buflen)
5791 {
5792 	struct kernfs_node *kn;
5793 
5794 	kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id);
5795 	if (!kn)
5796 		return;
5797 	kernfs_path(kn, buf, buflen);
5798 	kernfs_put(kn);
5799 }
5800 
5801 /*
5802  * proc_cgroup_show()
5803  *  - Print task's cgroup paths into seq_file, one line for each hierarchy
5804  *  - Used for /proc/<pid>/cgroup.
5805  */
5806 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5807 		     struct pid *pid, struct task_struct *tsk)
5808 {
5809 	char *buf;
5810 	int retval;
5811 	struct cgroup_root *root;
5812 
5813 	retval = -ENOMEM;
5814 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
5815 	if (!buf)
5816 		goto out;
5817 
5818 	mutex_lock(&cgroup_mutex);
5819 	spin_lock_irq(&css_set_lock);
5820 
5821 	for_each_root(root) {
5822 		struct cgroup_subsys *ss;
5823 		struct cgroup *cgrp;
5824 		int ssid, count = 0;
5825 
5826 		if (root == &cgrp_dfl_root && !cgrp_dfl_visible)
5827 			continue;
5828 
5829 		seq_printf(m, "%d:", root->hierarchy_id);
5830 		if (root != &cgrp_dfl_root)
5831 			for_each_subsys(ss, ssid)
5832 				if (root->subsys_mask & (1 << ssid))
5833 					seq_printf(m, "%s%s", count++ ? "," : "",
5834 						   ss->legacy_name);
5835 		if (strlen(root->name))
5836 			seq_printf(m, "%sname=%s", count ? "," : "",
5837 				   root->name);
5838 		seq_putc(m, ':');
5839 
5840 		cgrp = task_cgroup_from_root(tsk, root);
5841 
5842 		/*
5843 		 * On traditional hierarchies, all zombie tasks show up as
5844 		 * belonging to the root cgroup.  On the default hierarchy,
5845 		 * while a zombie doesn't show up in "cgroup.procs" and
5846 		 * thus can't be migrated, its /proc/PID/cgroup keeps
5847 		 * reporting the cgroup it belonged to before exiting.  If
5848 		 * the cgroup is removed before the zombie is reaped,
5849 		 * " (deleted)" is appended to the cgroup path.
5850 		 */
5851 		if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
5852 			retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
5853 						current->nsproxy->cgroup_ns);
5854 			if (retval >= PATH_MAX)
5855 				retval = -ENAMETOOLONG;
5856 			if (retval < 0)
5857 				goto out_unlock;
5858 
5859 			seq_puts(m, buf);
5860 		} else {
5861 			seq_puts(m, "/");
5862 		}
5863 
5864 		if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
5865 			seq_puts(m, " (deleted)\n");
5866 		else
5867 			seq_putc(m, '\n');
5868 	}
5869 
5870 	retval = 0;
5871 out_unlock:
5872 	spin_unlock_irq(&css_set_lock);
5873 	mutex_unlock(&cgroup_mutex);
5874 	kfree(buf);
5875 out:
5876 	return retval;
5877 }
5878 
5879 /**
5880  * cgroup_fork - initialize cgroup related fields during copy_process()
5881  * @child: pointer to task_struct of forking parent process.
5882  *
5883  * A task is associated with the init_css_set until cgroup_post_fork()
5884  * attaches it to the target css_set.
5885  */
5886 void cgroup_fork(struct task_struct *child)
5887 {
5888 	RCU_INIT_POINTER(child->cgroups, &init_css_set);
5889 	INIT_LIST_HEAD(&child->cg_list);
5890 }
5891 
5892 static struct cgroup *cgroup_get_from_file(struct file *f)
5893 {
5894 	struct cgroup_subsys_state *css;
5895 	struct cgroup *cgrp;
5896 
5897 	css = css_tryget_online_from_dir(f->f_path.dentry, NULL);
5898 	if (IS_ERR(css))
5899 		return ERR_CAST(css);
5900 
5901 	cgrp = css->cgroup;
5902 	if (!cgroup_on_dfl(cgrp)) {
5903 		cgroup_put(cgrp);
5904 		return ERR_PTR(-EBADF);
5905 	}
5906 
5907 	return cgrp;
5908 }
5909 
5910 /**
5911  * cgroup_css_set_fork - find or create a css_set for a child process
5912  * @kargs: the arguments passed to create the child process
5913  *
5914  * This functions finds or creates a new css_set which the child
5915  * process will be attached to in cgroup_post_fork(). By default,
5916  * the child process will be given the same css_set as its parent.
5917  *
5918  * If CLONE_INTO_CGROUP is specified this function will try to find an
5919  * existing css_set which includes the requested cgroup and if not create
5920  * a new css_set that the child will be attached to later. If this function
5921  * succeeds it will hold cgroup_threadgroup_rwsem on return. If
5922  * CLONE_INTO_CGROUP is requested this function will grab cgroup mutex
5923  * before grabbing cgroup_threadgroup_rwsem and will hold a reference
5924  * to the target cgroup.
5925  */
5926 static int cgroup_css_set_fork(struct kernel_clone_args *kargs)
5927 	__acquires(&cgroup_mutex) __acquires(&cgroup_threadgroup_rwsem)
5928 {
5929 	int ret;
5930 	struct cgroup *dst_cgrp = NULL;
5931 	struct css_set *cset;
5932 	struct super_block *sb;
5933 	struct file *f;
5934 
5935 	if (kargs->flags & CLONE_INTO_CGROUP)
5936 		mutex_lock(&cgroup_mutex);
5937 
5938 	cgroup_threadgroup_change_begin(current);
5939 
5940 	spin_lock_irq(&css_set_lock);
5941 	cset = task_css_set(current);
5942 	get_css_set(cset);
5943 	spin_unlock_irq(&css_set_lock);
5944 
5945 	if (!(kargs->flags & CLONE_INTO_CGROUP)) {
5946 		kargs->cset = cset;
5947 		return 0;
5948 	}
5949 
5950 	f = fget_raw(kargs->cgroup);
5951 	if (!f) {
5952 		ret = -EBADF;
5953 		goto err;
5954 	}
5955 	sb = f->f_path.dentry->d_sb;
5956 
5957 	dst_cgrp = cgroup_get_from_file(f);
5958 	if (IS_ERR(dst_cgrp)) {
5959 		ret = PTR_ERR(dst_cgrp);
5960 		dst_cgrp = NULL;
5961 		goto err;
5962 	}
5963 
5964 	if (cgroup_is_dead(dst_cgrp)) {
5965 		ret = -ENODEV;
5966 		goto err;
5967 	}
5968 
5969 	/*
5970 	 * Verify that we the target cgroup is writable for us. This is
5971 	 * usually done by the vfs layer but since we're not going through
5972 	 * the vfs layer here we need to do it "manually".
5973 	 */
5974 	ret = cgroup_may_write(dst_cgrp, sb);
5975 	if (ret)
5976 		goto err;
5977 
5978 	ret = cgroup_attach_permissions(cset->dfl_cgrp, dst_cgrp, sb,
5979 					!(kargs->flags & CLONE_THREAD));
5980 	if (ret)
5981 		goto err;
5982 
5983 	kargs->cset = find_css_set(cset, dst_cgrp);
5984 	if (!kargs->cset) {
5985 		ret = -ENOMEM;
5986 		goto err;
5987 	}
5988 
5989 	put_css_set(cset);
5990 	fput(f);
5991 	kargs->cgrp = dst_cgrp;
5992 	return ret;
5993 
5994 err:
5995 	cgroup_threadgroup_change_end(current);
5996 	mutex_unlock(&cgroup_mutex);
5997 	if (f)
5998 		fput(f);
5999 	if (dst_cgrp)
6000 		cgroup_put(dst_cgrp);
6001 	put_css_set(cset);
6002 	if (kargs->cset)
6003 		put_css_set(kargs->cset);
6004 	return ret;
6005 }
6006 
6007 /**
6008  * cgroup_css_set_put_fork - drop references we took during fork
6009  * @kargs: the arguments passed to create the child process
6010  *
6011  * Drop references to the prepared css_set and target cgroup if
6012  * CLONE_INTO_CGROUP was requested.
6013  */
6014 static void cgroup_css_set_put_fork(struct kernel_clone_args *kargs)
6015 	__releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
6016 {
6017 	cgroup_threadgroup_change_end(current);
6018 
6019 	if (kargs->flags & CLONE_INTO_CGROUP) {
6020 		struct cgroup *cgrp = kargs->cgrp;
6021 		struct css_set *cset = kargs->cset;
6022 
6023 		mutex_unlock(&cgroup_mutex);
6024 
6025 		if (cset) {
6026 			put_css_set(cset);
6027 			kargs->cset = NULL;
6028 		}
6029 
6030 		if (cgrp) {
6031 			cgroup_put(cgrp);
6032 			kargs->cgrp = NULL;
6033 		}
6034 	}
6035 }
6036 
6037 /**
6038  * cgroup_can_fork - called on a new task before the process is exposed
6039  * @child: the child process
6040  *
6041  * This prepares a new css_set for the child process which the child will
6042  * be attached to in cgroup_post_fork().
6043  * This calls the subsystem can_fork() callbacks. If the cgroup_can_fork()
6044  * callback returns an error, the fork aborts with that error code. This
6045  * allows for a cgroup subsystem to conditionally allow or deny new forks.
6046  */
6047 int cgroup_can_fork(struct task_struct *child, struct kernel_clone_args *kargs)
6048 {
6049 	struct cgroup_subsys *ss;
6050 	int i, j, ret;
6051 
6052 	ret = cgroup_css_set_fork(kargs);
6053 	if (ret)
6054 		return ret;
6055 
6056 	do_each_subsys_mask(ss, i, have_canfork_callback) {
6057 		ret = ss->can_fork(child, kargs->cset);
6058 		if (ret)
6059 			goto out_revert;
6060 	} while_each_subsys_mask();
6061 
6062 	return 0;
6063 
6064 out_revert:
6065 	for_each_subsys(ss, j) {
6066 		if (j >= i)
6067 			break;
6068 		if (ss->cancel_fork)
6069 			ss->cancel_fork(child, kargs->cset);
6070 	}
6071 
6072 	cgroup_css_set_put_fork(kargs);
6073 
6074 	return ret;
6075 }
6076 
6077 /**
6078  * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
6079  * @child: the child process
6080  * @kargs: the arguments passed to create the child process
6081  *
6082  * This calls the cancel_fork() callbacks if a fork failed *after*
6083  * cgroup_can_fork() succeded and cleans up references we took to
6084  * prepare a new css_set for the child process in cgroup_can_fork().
6085  */
6086 void cgroup_cancel_fork(struct task_struct *child,
6087 			struct kernel_clone_args *kargs)
6088 {
6089 	struct cgroup_subsys *ss;
6090 	int i;
6091 
6092 	for_each_subsys(ss, i)
6093 		if (ss->cancel_fork)
6094 			ss->cancel_fork(child, kargs->cset);
6095 
6096 	cgroup_css_set_put_fork(kargs);
6097 }
6098 
6099 /**
6100  * cgroup_post_fork - finalize cgroup setup for the child process
6101  * @child: the child process
6102  *
6103  * Attach the child process to its css_set calling the subsystem fork()
6104  * callbacks.
6105  */
6106 void cgroup_post_fork(struct task_struct *child,
6107 		      struct kernel_clone_args *kargs)
6108 	__releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
6109 {
6110 	struct cgroup_subsys *ss;
6111 	struct css_set *cset;
6112 	int i;
6113 
6114 	cset = kargs->cset;
6115 	kargs->cset = NULL;
6116 
6117 	spin_lock_irq(&css_set_lock);
6118 
6119 	/* init tasks are special, only link regular threads */
6120 	if (likely(child->pid)) {
6121 		WARN_ON_ONCE(!list_empty(&child->cg_list));
6122 		cset->nr_tasks++;
6123 		css_set_move_task(child, NULL, cset, false);
6124 	} else {
6125 		put_css_set(cset);
6126 		cset = NULL;
6127 	}
6128 
6129 	/*
6130 	 * If the cgroup has to be frozen, the new task has too.  Let's set
6131 	 * the JOBCTL_TRAP_FREEZE jobctl bit to get the task into the
6132 	 * frozen state.
6133 	 */
6134 	if (unlikely(cgroup_task_freeze(child))) {
6135 		spin_lock(&child->sighand->siglock);
6136 		WARN_ON_ONCE(child->frozen);
6137 		child->jobctl |= JOBCTL_TRAP_FREEZE;
6138 		spin_unlock(&child->sighand->siglock);
6139 
6140 		/*
6141 		 * Calling cgroup_update_frozen() isn't required here,
6142 		 * because it will be called anyway a bit later from
6143 		 * do_freezer_trap(). So we avoid cgroup's transient switch
6144 		 * from the frozen state and back.
6145 		 */
6146 	}
6147 
6148 	spin_unlock_irq(&css_set_lock);
6149 
6150 	/*
6151 	 * Call ss->fork().  This must happen after @child is linked on
6152 	 * css_set; otherwise, @child might change state between ->fork()
6153 	 * and addition to css_set.
6154 	 */
6155 	do_each_subsys_mask(ss, i, have_fork_callback) {
6156 		ss->fork(child);
6157 	} while_each_subsys_mask();
6158 
6159 	/* Make the new cset the root_cset of the new cgroup namespace. */
6160 	if (kargs->flags & CLONE_NEWCGROUP) {
6161 		struct css_set *rcset = child->nsproxy->cgroup_ns->root_cset;
6162 
6163 		get_css_set(cset);
6164 		child->nsproxy->cgroup_ns->root_cset = cset;
6165 		put_css_set(rcset);
6166 	}
6167 
6168 	cgroup_css_set_put_fork(kargs);
6169 }
6170 
6171 /**
6172  * cgroup_exit - detach cgroup from exiting task
6173  * @tsk: pointer to task_struct of exiting process
6174  *
6175  * Description: Detach cgroup from @tsk.
6176  *
6177  */
6178 void cgroup_exit(struct task_struct *tsk)
6179 {
6180 	struct cgroup_subsys *ss;
6181 	struct css_set *cset;
6182 	int i;
6183 
6184 	spin_lock_irq(&css_set_lock);
6185 
6186 	WARN_ON_ONCE(list_empty(&tsk->cg_list));
6187 	cset = task_css_set(tsk);
6188 	css_set_move_task(tsk, cset, NULL, false);
6189 	list_add_tail(&tsk->cg_list, &cset->dying_tasks);
6190 	cset->nr_tasks--;
6191 
6192 	WARN_ON_ONCE(cgroup_task_frozen(tsk));
6193 	if (unlikely(cgroup_task_freeze(tsk)))
6194 		cgroup_update_frozen(task_dfl_cgroup(tsk));
6195 
6196 	spin_unlock_irq(&css_set_lock);
6197 
6198 	/* see cgroup_post_fork() for details */
6199 	do_each_subsys_mask(ss, i, have_exit_callback) {
6200 		ss->exit(tsk);
6201 	} while_each_subsys_mask();
6202 }
6203 
6204 void cgroup_release(struct task_struct *task)
6205 {
6206 	struct cgroup_subsys *ss;
6207 	int ssid;
6208 
6209 	do_each_subsys_mask(ss, ssid, have_release_callback) {
6210 		ss->release(task);
6211 	} while_each_subsys_mask();
6212 
6213 	spin_lock_irq(&css_set_lock);
6214 	css_set_skip_task_iters(task_css_set(task), task);
6215 	list_del_init(&task->cg_list);
6216 	spin_unlock_irq(&css_set_lock);
6217 }
6218 
6219 void cgroup_free(struct task_struct *task)
6220 {
6221 	struct css_set *cset = task_css_set(task);
6222 	put_css_set(cset);
6223 }
6224 
6225 static int __init cgroup_disable(char *str)
6226 {
6227 	struct cgroup_subsys *ss;
6228 	char *token;
6229 	int i;
6230 
6231 	while ((token = strsep(&str, ",")) != NULL) {
6232 		if (!*token)
6233 			continue;
6234 
6235 		for_each_subsys(ss, i) {
6236 			if (strcmp(token, ss->name) &&
6237 			    strcmp(token, ss->legacy_name))
6238 				continue;
6239 			cgroup_disable_mask |= 1 << i;
6240 		}
6241 	}
6242 	return 1;
6243 }
6244 __setup("cgroup_disable=", cgroup_disable);
6245 
6246 void __init __weak enable_debug_cgroup(void) { }
6247 
6248 static int __init enable_cgroup_debug(char *str)
6249 {
6250 	cgroup_debug = true;
6251 	enable_debug_cgroup();
6252 	return 1;
6253 }
6254 __setup("cgroup_debug", enable_cgroup_debug);
6255 
6256 /**
6257  * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
6258  * @dentry: directory dentry of interest
6259  * @ss: subsystem of interest
6260  *
6261  * If @dentry is a directory for a cgroup which has @ss enabled on it, try
6262  * to get the corresponding css and return it.  If such css doesn't exist
6263  * or can't be pinned, an ERR_PTR value is returned.
6264  */
6265 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
6266 						       struct cgroup_subsys *ss)
6267 {
6268 	struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
6269 	struct file_system_type *s_type = dentry->d_sb->s_type;
6270 	struct cgroup_subsys_state *css = NULL;
6271 	struct cgroup *cgrp;
6272 
6273 	/* is @dentry a cgroup dir? */
6274 	if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
6275 	    !kn || kernfs_type(kn) != KERNFS_DIR)
6276 		return ERR_PTR(-EBADF);
6277 
6278 	rcu_read_lock();
6279 
6280 	/*
6281 	 * This path doesn't originate from kernfs and @kn could already
6282 	 * have been or be removed at any point.  @kn->priv is RCU
6283 	 * protected for this access.  See css_release_work_fn() for details.
6284 	 */
6285 	cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6286 	if (cgrp)
6287 		css = cgroup_css(cgrp, ss);
6288 
6289 	if (!css || !css_tryget_online(css))
6290 		css = ERR_PTR(-ENOENT);
6291 
6292 	rcu_read_unlock();
6293 	return css;
6294 }
6295 
6296 /**
6297  * css_from_id - lookup css by id
6298  * @id: the cgroup id
6299  * @ss: cgroup subsys to be looked into
6300  *
6301  * Returns the css if there's valid one with @id, otherwise returns NULL.
6302  * Should be called under rcu_read_lock().
6303  */
6304 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
6305 {
6306 	WARN_ON_ONCE(!rcu_read_lock_held());
6307 	return idr_find(&ss->css_idr, id);
6308 }
6309 
6310 /**
6311  * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
6312  * @path: path on the default hierarchy
6313  *
6314  * Find the cgroup at @path on the default hierarchy, increment its
6315  * reference count and return it.  Returns pointer to the found cgroup on
6316  * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR)
6317  * if @path points to a non-directory.
6318  */
6319 struct cgroup *cgroup_get_from_path(const char *path)
6320 {
6321 	struct kernfs_node *kn;
6322 	struct cgroup *cgrp;
6323 
6324 	mutex_lock(&cgroup_mutex);
6325 
6326 	kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path);
6327 	if (kn) {
6328 		if (kernfs_type(kn) == KERNFS_DIR) {
6329 			cgrp = kn->priv;
6330 			cgroup_get_live(cgrp);
6331 		} else {
6332 			cgrp = ERR_PTR(-ENOTDIR);
6333 		}
6334 		kernfs_put(kn);
6335 	} else {
6336 		cgrp = ERR_PTR(-ENOENT);
6337 	}
6338 
6339 	mutex_unlock(&cgroup_mutex);
6340 	return cgrp;
6341 }
6342 EXPORT_SYMBOL_GPL(cgroup_get_from_path);
6343 
6344 /**
6345  * cgroup_get_from_fd - get a cgroup pointer from a fd
6346  * @fd: fd obtained by open(cgroup2_dir)
6347  *
6348  * Find the cgroup from a fd which should be obtained
6349  * by opening a cgroup directory.  Returns a pointer to the
6350  * cgroup on success. ERR_PTR is returned if the cgroup
6351  * cannot be found.
6352  */
6353 struct cgroup *cgroup_get_from_fd(int fd)
6354 {
6355 	struct cgroup *cgrp;
6356 	struct file *f;
6357 
6358 	f = fget_raw(fd);
6359 	if (!f)
6360 		return ERR_PTR(-EBADF);
6361 
6362 	cgrp = cgroup_get_from_file(f);
6363 	fput(f);
6364 	return cgrp;
6365 }
6366 EXPORT_SYMBOL_GPL(cgroup_get_from_fd);
6367 
6368 static u64 power_of_ten(int power)
6369 {
6370 	u64 v = 1;
6371 	while (power--)
6372 		v *= 10;
6373 	return v;
6374 }
6375 
6376 /**
6377  * cgroup_parse_float - parse a floating number
6378  * @input: input string
6379  * @dec_shift: number of decimal digits to shift
6380  * @v: output
6381  *
6382  * Parse a decimal floating point number in @input and store the result in
6383  * @v with decimal point right shifted @dec_shift times.  For example, if
6384  * @input is "12.3456" and @dec_shift is 3, *@v will be set to 12345.
6385  * Returns 0 on success, -errno otherwise.
6386  *
6387  * There's nothing cgroup specific about this function except that it's
6388  * currently the only user.
6389  */
6390 int cgroup_parse_float(const char *input, unsigned dec_shift, s64 *v)
6391 {
6392 	s64 whole, frac = 0;
6393 	int fstart = 0, fend = 0, flen;
6394 
6395 	if (!sscanf(input, "%lld.%n%lld%n", &whole, &fstart, &frac, &fend))
6396 		return -EINVAL;
6397 	if (frac < 0)
6398 		return -EINVAL;
6399 
6400 	flen = fend > fstart ? fend - fstart : 0;
6401 	if (flen < dec_shift)
6402 		frac *= power_of_ten(dec_shift - flen);
6403 	else
6404 		frac = DIV_ROUND_CLOSEST_ULL(frac, power_of_ten(flen - dec_shift));
6405 
6406 	*v = whole * power_of_ten(dec_shift) + frac;
6407 	return 0;
6408 }
6409 
6410 /*
6411  * sock->sk_cgrp_data handling.  For more info, see sock_cgroup_data
6412  * definition in cgroup-defs.h.
6413  */
6414 #ifdef CONFIG_SOCK_CGROUP_DATA
6415 
6416 #if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID)
6417 
6418 DEFINE_SPINLOCK(cgroup_sk_update_lock);
6419 static bool cgroup_sk_alloc_disabled __read_mostly;
6420 
6421 void cgroup_sk_alloc_disable(void)
6422 {
6423 	if (cgroup_sk_alloc_disabled)
6424 		return;
6425 	pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n");
6426 	cgroup_sk_alloc_disabled = true;
6427 }
6428 
6429 #else
6430 
6431 #define cgroup_sk_alloc_disabled	false
6432 
6433 #endif
6434 
6435 void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
6436 {
6437 	if (cgroup_sk_alloc_disabled)
6438 		return;
6439 
6440 	/* Socket clone path */
6441 	if (skcd->val) {
6442 		/*
6443 		 * We might be cloning a socket which is left in an empty
6444 		 * cgroup and the cgroup might have already been rmdir'd.
6445 		 * Don't use cgroup_get_live().
6446 		 */
6447 		cgroup_get(sock_cgroup_ptr(skcd));
6448 		cgroup_bpf_get(sock_cgroup_ptr(skcd));
6449 		return;
6450 	}
6451 
6452 	rcu_read_lock();
6453 
6454 	while (true) {
6455 		struct css_set *cset;
6456 
6457 		cset = task_css_set(current);
6458 		if (likely(cgroup_tryget(cset->dfl_cgrp))) {
6459 			skcd->val = (unsigned long)cset->dfl_cgrp;
6460 			cgroup_bpf_get(cset->dfl_cgrp);
6461 			break;
6462 		}
6463 		cpu_relax();
6464 	}
6465 
6466 	rcu_read_unlock();
6467 }
6468 
6469 void cgroup_sk_free(struct sock_cgroup_data *skcd)
6470 {
6471 	struct cgroup *cgrp = sock_cgroup_ptr(skcd);
6472 
6473 	cgroup_bpf_put(cgrp);
6474 	cgroup_put(cgrp);
6475 }
6476 
6477 #endif	/* CONFIG_SOCK_CGROUP_DATA */
6478 
6479 #ifdef CONFIG_CGROUP_BPF
6480 int cgroup_bpf_attach(struct cgroup *cgrp, struct bpf_prog *prog,
6481 		      struct bpf_prog *replace_prog, enum bpf_attach_type type,
6482 		      u32 flags)
6483 {
6484 	int ret;
6485 
6486 	mutex_lock(&cgroup_mutex);
6487 	ret = __cgroup_bpf_attach(cgrp, prog, replace_prog, type, flags);
6488 	mutex_unlock(&cgroup_mutex);
6489 	return ret;
6490 }
6491 int cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog,
6492 		      enum bpf_attach_type type, u32 flags)
6493 {
6494 	int ret;
6495 
6496 	mutex_lock(&cgroup_mutex);
6497 	ret = __cgroup_bpf_detach(cgrp, prog, type);
6498 	mutex_unlock(&cgroup_mutex);
6499 	return ret;
6500 }
6501 int cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr,
6502 		     union bpf_attr __user *uattr)
6503 {
6504 	int ret;
6505 
6506 	mutex_lock(&cgroup_mutex);
6507 	ret = __cgroup_bpf_query(cgrp, attr, uattr);
6508 	mutex_unlock(&cgroup_mutex);
6509 	return ret;
6510 }
6511 #endif /* CONFIG_CGROUP_BPF */
6512 
6513 #ifdef CONFIG_SYSFS
6514 static ssize_t show_delegatable_files(struct cftype *files, char *buf,
6515 				      ssize_t size, const char *prefix)
6516 {
6517 	struct cftype *cft;
6518 	ssize_t ret = 0;
6519 
6520 	for (cft = files; cft && cft->name[0] != '\0'; cft++) {
6521 		if (!(cft->flags & CFTYPE_NS_DELEGATABLE))
6522 			continue;
6523 
6524 		if (prefix)
6525 			ret += snprintf(buf + ret, size - ret, "%s.", prefix);
6526 
6527 		ret += snprintf(buf + ret, size - ret, "%s\n", cft->name);
6528 
6529 		if (WARN_ON(ret >= size))
6530 			break;
6531 	}
6532 
6533 	return ret;
6534 }
6535 
6536 static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr,
6537 			      char *buf)
6538 {
6539 	struct cgroup_subsys *ss;
6540 	int ssid;
6541 	ssize_t ret = 0;
6542 
6543 	ret = show_delegatable_files(cgroup_base_files, buf, PAGE_SIZE - ret,
6544 				     NULL);
6545 
6546 	for_each_subsys(ss, ssid)
6547 		ret += show_delegatable_files(ss->dfl_cftypes, buf + ret,
6548 					      PAGE_SIZE - ret,
6549 					      cgroup_subsys_name[ssid]);
6550 
6551 	return ret;
6552 }
6553 static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate);
6554 
6555 static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr,
6556 			     char *buf)
6557 {
6558 	return snprintf(buf, PAGE_SIZE, "nsdelegate\nmemory_localevents\n");
6559 }
6560 static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features);
6561 
6562 static struct attribute *cgroup_sysfs_attrs[] = {
6563 	&cgroup_delegate_attr.attr,
6564 	&cgroup_features_attr.attr,
6565 	NULL,
6566 };
6567 
6568 static const struct attribute_group cgroup_sysfs_attr_group = {
6569 	.attrs = cgroup_sysfs_attrs,
6570 	.name = "cgroup",
6571 };
6572 
6573 static int __init cgroup_sysfs_init(void)
6574 {
6575 	return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group);
6576 }
6577 subsys_initcall(cgroup_sysfs_init);
6578 
6579 #endif /* CONFIG_SYSFS */
6580