xref: /openbmc/linux/kernel/cgroup/cgroup.c (revision 97fb5e8d)
1 /*
2  *  Generic process-grouping system.
3  *
4  *  Based originally on the cpuset system, extracted by Paul Menage
5  *  Copyright (C) 2006 Google, Inc
6  *
7  *  Notifications support
8  *  Copyright (C) 2009 Nokia Corporation
9  *  Author: Kirill A. Shutemov
10  *
11  *  Copyright notices from the original cpuset code:
12  *  --------------------------------------------------
13  *  Copyright (C) 2003 BULL SA.
14  *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
15  *
16  *  Portions derived from Patrick Mochel's sysfs code.
17  *  sysfs is Copyright (c) 2001-3 Patrick Mochel
18  *
19  *  2003-10-10 Written by Simon Derr.
20  *  2003-10-22 Updates by Stephen Hemminger.
21  *  2004 May-July Rework by Paul Jackson.
22  *  ---------------------------------------------------
23  *
24  *  This file is subject to the terms and conditions of the GNU General Public
25  *  License.  See the file COPYING in the main directory of the Linux
26  *  distribution for more details.
27  */
28 
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 
31 #include "cgroup-internal.h"
32 
33 #include <linux/cred.h>
34 #include <linux/errno.h>
35 #include <linux/init_task.h>
36 #include <linux/kernel.h>
37 #include <linux/magic.h>
38 #include <linux/mutex.h>
39 #include <linux/mount.h>
40 #include <linux/pagemap.h>
41 #include <linux/proc_fs.h>
42 #include <linux/rcupdate.h>
43 #include <linux/sched.h>
44 #include <linux/sched/task.h>
45 #include <linux/slab.h>
46 #include <linux/spinlock.h>
47 #include <linux/percpu-rwsem.h>
48 #include <linux/string.h>
49 #include <linux/hashtable.h>
50 #include <linux/idr.h>
51 #include <linux/kthread.h>
52 #include <linux/atomic.h>
53 #include <linux/cpuset.h>
54 #include <linux/proc_ns.h>
55 #include <linux/nsproxy.h>
56 #include <linux/file.h>
57 #include <linux/fs_parser.h>
58 #include <linux/sched/cputime.h>
59 #include <linux/psi.h>
60 #include <net/sock.h>
61 
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/cgroup.h>
64 
65 #define CGROUP_FILE_NAME_MAX		(MAX_CGROUP_TYPE_NAMELEN +	\
66 					 MAX_CFTYPE_NAME + 2)
67 /* let's not notify more than 100 times per second */
68 #define CGROUP_FILE_NOTIFY_MIN_INTV	DIV_ROUND_UP(HZ, 100)
69 
70 /*
71  * cgroup_mutex is the master lock.  Any modification to cgroup or its
72  * hierarchy must be performed while holding it.
73  *
74  * css_set_lock protects task->cgroups pointer, the list of css_set
75  * objects, and the chain of tasks off each css_set.
76  *
77  * These locks are exported if CONFIG_PROVE_RCU so that accessors in
78  * cgroup.h can use them for lockdep annotations.
79  */
80 DEFINE_MUTEX(cgroup_mutex);
81 DEFINE_SPINLOCK(css_set_lock);
82 
83 #ifdef CONFIG_PROVE_RCU
84 EXPORT_SYMBOL_GPL(cgroup_mutex);
85 EXPORT_SYMBOL_GPL(css_set_lock);
86 #endif
87 
88 DEFINE_SPINLOCK(trace_cgroup_path_lock);
89 char trace_cgroup_path[TRACE_CGROUP_PATH_LEN];
90 bool cgroup_debug __read_mostly;
91 
92 /*
93  * Protects cgroup_idr and css_idr so that IDs can be released without
94  * grabbing cgroup_mutex.
95  */
96 static DEFINE_SPINLOCK(cgroup_idr_lock);
97 
98 /*
99  * Protects cgroup_file->kn for !self csses.  It synchronizes notifications
100  * against file removal/re-creation across css hiding.
101  */
102 static DEFINE_SPINLOCK(cgroup_file_kn_lock);
103 
104 struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
105 
106 #define cgroup_assert_mutex_or_rcu_locked()				\
107 	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
108 			   !lockdep_is_held(&cgroup_mutex),		\
109 			   "cgroup_mutex or RCU read lock required");
110 
111 /*
112  * cgroup destruction makes heavy use of work items and there can be a lot
113  * of concurrent destructions.  Use a separate workqueue so that cgroup
114  * destruction work items don't end up filling up max_active of system_wq
115  * which may lead to deadlock.
116  */
117 static struct workqueue_struct *cgroup_destroy_wq;
118 
119 /* generate an array of cgroup subsystem pointers */
120 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
121 struct cgroup_subsys *cgroup_subsys[] = {
122 #include <linux/cgroup_subsys.h>
123 };
124 #undef SUBSYS
125 
126 /* array of cgroup subsystem names */
127 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
128 static const char *cgroup_subsys_name[] = {
129 #include <linux/cgroup_subsys.h>
130 };
131 #undef SUBSYS
132 
133 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
134 #define SUBSYS(_x)								\
135 	DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key);			\
136 	DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key);			\
137 	EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key);			\
138 	EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
139 #include <linux/cgroup_subsys.h>
140 #undef SUBSYS
141 
142 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
143 static struct static_key_true *cgroup_subsys_enabled_key[] = {
144 #include <linux/cgroup_subsys.h>
145 };
146 #undef SUBSYS
147 
148 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
149 static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
150 #include <linux/cgroup_subsys.h>
151 };
152 #undef SUBSYS
153 
154 static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu);
155 
156 /*
157  * The default hierarchy, reserved for the subsystems that are otherwise
158  * unattached - it never has more than a single cgroup, and all tasks are
159  * part of that cgroup.
160  */
161 struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu };
162 EXPORT_SYMBOL_GPL(cgrp_dfl_root);
163 
164 /*
165  * The default hierarchy always exists but is hidden until mounted for the
166  * first time.  This is for backward compatibility.
167  */
168 static bool cgrp_dfl_visible;
169 
170 /* some controllers are not supported in the default hierarchy */
171 static u16 cgrp_dfl_inhibit_ss_mask;
172 
173 /* some controllers are implicitly enabled on the default hierarchy */
174 static u16 cgrp_dfl_implicit_ss_mask;
175 
176 /* some controllers can be threaded on the default hierarchy */
177 static u16 cgrp_dfl_threaded_ss_mask;
178 
179 /* The list of hierarchy roots */
180 LIST_HEAD(cgroup_roots);
181 static int cgroup_root_count;
182 
183 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
184 static DEFINE_IDR(cgroup_hierarchy_idr);
185 
186 /*
187  * Assign a monotonically increasing serial number to csses.  It guarantees
188  * cgroups with bigger numbers are newer than those with smaller numbers.
189  * Also, as csses are always appended to the parent's ->children list, it
190  * guarantees that sibling csses are always sorted in the ascending serial
191  * number order on the list.  Protected by cgroup_mutex.
192  */
193 static u64 css_serial_nr_next = 1;
194 
195 /*
196  * These bitmasks identify subsystems with specific features to avoid
197  * having to do iterative checks repeatedly.
198  */
199 static u16 have_fork_callback __read_mostly;
200 static u16 have_exit_callback __read_mostly;
201 static u16 have_release_callback __read_mostly;
202 static u16 have_canfork_callback __read_mostly;
203 
204 /* cgroup namespace for init task */
205 struct cgroup_namespace init_cgroup_ns = {
206 	.count		= REFCOUNT_INIT(2),
207 	.user_ns	= &init_user_ns,
208 	.ns.ops		= &cgroupns_operations,
209 	.ns.inum	= PROC_CGROUP_INIT_INO,
210 	.root_cset	= &init_css_set,
211 };
212 
213 static struct file_system_type cgroup2_fs_type;
214 static struct cftype cgroup_base_files[];
215 
216 static int cgroup_apply_control(struct cgroup *cgrp);
217 static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
218 static void css_task_iter_advance(struct css_task_iter *it);
219 static int cgroup_destroy_locked(struct cgroup *cgrp);
220 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
221 					      struct cgroup_subsys *ss);
222 static void css_release(struct percpu_ref *ref);
223 static void kill_css(struct cgroup_subsys_state *css);
224 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
225 			      struct cgroup *cgrp, struct cftype cfts[],
226 			      bool is_add);
227 
228 /**
229  * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
230  * @ssid: subsys ID of interest
231  *
232  * cgroup_subsys_enabled() can only be used with literal subsys names which
233  * is fine for individual subsystems but unsuitable for cgroup core.  This
234  * is slower static_key_enabled() based test indexed by @ssid.
235  */
236 bool cgroup_ssid_enabled(int ssid)
237 {
238 	if (CGROUP_SUBSYS_COUNT == 0)
239 		return false;
240 
241 	return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
242 }
243 
244 /**
245  * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
246  * @cgrp: the cgroup of interest
247  *
248  * The default hierarchy is the v2 interface of cgroup and this function
249  * can be used to test whether a cgroup is on the default hierarchy for
250  * cases where a subsystem should behave differnetly depending on the
251  * interface version.
252  *
253  * The set of behaviors which change on the default hierarchy are still
254  * being determined and the mount option is prefixed with __DEVEL__.
255  *
256  * List of changed behaviors:
257  *
258  * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
259  *   and "name" are disallowed.
260  *
261  * - When mounting an existing superblock, mount options should match.
262  *
263  * - Remount is disallowed.
264  *
265  * - rename(2) is disallowed.
266  *
267  * - "tasks" is removed.  Everything should be at process granularity.  Use
268  *   "cgroup.procs" instead.
269  *
270  * - "cgroup.procs" is not sorted.  pids will be unique unless they got
271  *   recycled inbetween reads.
272  *
273  * - "release_agent" and "notify_on_release" are removed.  Replacement
274  *   notification mechanism will be implemented.
275  *
276  * - "cgroup.clone_children" is removed.
277  *
278  * - "cgroup.subtree_populated" is available.  Its value is 0 if the cgroup
279  *   and its descendants contain no task; otherwise, 1.  The file also
280  *   generates kernfs notification which can be monitored through poll and
281  *   [di]notify when the value of the file changes.
282  *
283  * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
284  *   take masks of ancestors with non-empty cpus/mems, instead of being
285  *   moved to an ancestor.
286  *
287  * - cpuset: a task can be moved into an empty cpuset, and again it takes
288  *   masks of ancestors.
289  *
290  * - memcg: use_hierarchy is on by default and the cgroup file for the flag
291  *   is not created.
292  *
293  * - blkcg: blk-throttle becomes properly hierarchical.
294  *
295  * - debug: disallowed on the default hierarchy.
296  */
297 bool cgroup_on_dfl(const struct cgroup *cgrp)
298 {
299 	return cgrp->root == &cgrp_dfl_root;
300 }
301 
302 /* IDR wrappers which synchronize using cgroup_idr_lock */
303 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
304 			    gfp_t gfp_mask)
305 {
306 	int ret;
307 
308 	idr_preload(gfp_mask);
309 	spin_lock_bh(&cgroup_idr_lock);
310 	ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
311 	spin_unlock_bh(&cgroup_idr_lock);
312 	idr_preload_end();
313 	return ret;
314 }
315 
316 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
317 {
318 	void *ret;
319 
320 	spin_lock_bh(&cgroup_idr_lock);
321 	ret = idr_replace(idr, ptr, id);
322 	spin_unlock_bh(&cgroup_idr_lock);
323 	return ret;
324 }
325 
326 static void cgroup_idr_remove(struct idr *idr, int id)
327 {
328 	spin_lock_bh(&cgroup_idr_lock);
329 	idr_remove(idr, id);
330 	spin_unlock_bh(&cgroup_idr_lock);
331 }
332 
333 static bool cgroup_has_tasks(struct cgroup *cgrp)
334 {
335 	return cgrp->nr_populated_csets;
336 }
337 
338 bool cgroup_is_threaded(struct cgroup *cgrp)
339 {
340 	return cgrp->dom_cgrp != cgrp;
341 }
342 
343 /* can @cgrp host both domain and threaded children? */
344 static bool cgroup_is_mixable(struct cgroup *cgrp)
345 {
346 	/*
347 	 * Root isn't under domain level resource control exempting it from
348 	 * the no-internal-process constraint, so it can serve as a thread
349 	 * root and a parent of resource domains at the same time.
350 	 */
351 	return !cgroup_parent(cgrp);
352 }
353 
354 /* can @cgrp become a thread root? should always be true for a thread root */
355 static bool cgroup_can_be_thread_root(struct cgroup *cgrp)
356 {
357 	/* mixables don't care */
358 	if (cgroup_is_mixable(cgrp))
359 		return true;
360 
361 	/* domain roots can't be nested under threaded */
362 	if (cgroup_is_threaded(cgrp))
363 		return false;
364 
365 	/* can only have either domain or threaded children */
366 	if (cgrp->nr_populated_domain_children)
367 		return false;
368 
369 	/* and no domain controllers can be enabled */
370 	if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
371 		return false;
372 
373 	return true;
374 }
375 
376 /* is @cgrp root of a threaded subtree? */
377 bool cgroup_is_thread_root(struct cgroup *cgrp)
378 {
379 	/* thread root should be a domain */
380 	if (cgroup_is_threaded(cgrp))
381 		return false;
382 
383 	/* a domain w/ threaded children is a thread root */
384 	if (cgrp->nr_threaded_children)
385 		return true;
386 
387 	/*
388 	 * A domain which has tasks and explicit threaded controllers
389 	 * enabled is a thread root.
390 	 */
391 	if (cgroup_has_tasks(cgrp) &&
392 	    (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask))
393 		return true;
394 
395 	return false;
396 }
397 
398 /* a domain which isn't connected to the root w/o brekage can't be used */
399 static bool cgroup_is_valid_domain(struct cgroup *cgrp)
400 {
401 	/* the cgroup itself can be a thread root */
402 	if (cgroup_is_threaded(cgrp))
403 		return false;
404 
405 	/* but the ancestors can't be unless mixable */
406 	while ((cgrp = cgroup_parent(cgrp))) {
407 		if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp))
408 			return false;
409 		if (cgroup_is_threaded(cgrp))
410 			return false;
411 	}
412 
413 	return true;
414 }
415 
416 /* subsystems visibly enabled on a cgroup */
417 static u16 cgroup_control(struct cgroup *cgrp)
418 {
419 	struct cgroup *parent = cgroup_parent(cgrp);
420 	u16 root_ss_mask = cgrp->root->subsys_mask;
421 
422 	if (parent) {
423 		u16 ss_mask = parent->subtree_control;
424 
425 		/* threaded cgroups can only have threaded controllers */
426 		if (cgroup_is_threaded(cgrp))
427 			ss_mask &= cgrp_dfl_threaded_ss_mask;
428 		return ss_mask;
429 	}
430 
431 	if (cgroup_on_dfl(cgrp))
432 		root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
433 				  cgrp_dfl_implicit_ss_mask);
434 	return root_ss_mask;
435 }
436 
437 /* subsystems enabled on a cgroup */
438 static u16 cgroup_ss_mask(struct cgroup *cgrp)
439 {
440 	struct cgroup *parent = cgroup_parent(cgrp);
441 
442 	if (parent) {
443 		u16 ss_mask = parent->subtree_ss_mask;
444 
445 		/* threaded cgroups can only have threaded controllers */
446 		if (cgroup_is_threaded(cgrp))
447 			ss_mask &= cgrp_dfl_threaded_ss_mask;
448 		return ss_mask;
449 	}
450 
451 	return cgrp->root->subsys_mask;
452 }
453 
454 /**
455  * cgroup_css - obtain a cgroup's css for the specified subsystem
456  * @cgrp: the cgroup of interest
457  * @ss: the subsystem of interest (%NULL returns @cgrp->self)
458  *
459  * Return @cgrp's css (cgroup_subsys_state) associated with @ss.  This
460  * function must be called either under cgroup_mutex or rcu_read_lock() and
461  * the caller is responsible for pinning the returned css if it wants to
462  * keep accessing it outside the said locks.  This function may return
463  * %NULL if @cgrp doesn't have @subsys_id enabled.
464  */
465 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
466 					      struct cgroup_subsys *ss)
467 {
468 	if (ss)
469 		return rcu_dereference_check(cgrp->subsys[ss->id],
470 					lockdep_is_held(&cgroup_mutex));
471 	else
472 		return &cgrp->self;
473 }
474 
475 /**
476  * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem
477  * @cgrp: the cgroup of interest
478  * @ss: the subsystem of interest
479  *
480  * Find and get @cgrp's css assocaited with @ss.  If the css doesn't exist
481  * or is offline, %NULL is returned.
482  */
483 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp,
484 						     struct cgroup_subsys *ss)
485 {
486 	struct cgroup_subsys_state *css;
487 
488 	rcu_read_lock();
489 	css = cgroup_css(cgrp, ss);
490 	if (!css || !css_tryget_online(css))
491 		css = NULL;
492 	rcu_read_unlock();
493 
494 	return css;
495 }
496 
497 /**
498  * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss
499  * @cgrp: the cgroup of interest
500  * @ss: the subsystem of interest (%NULL returns @cgrp->self)
501  *
502  * Similar to cgroup_css() but returns the effective css, which is defined
503  * as the matching css of the nearest ancestor including self which has @ss
504  * enabled.  If @ss is associated with the hierarchy @cgrp is on, this
505  * function is guaranteed to return non-NULL css.
506  */
507 static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp,
508 							struct cgroup_subsys *ss)
509 {
510 	lockdep_assert_held(&cgroup_mutex);
511 
512 	if (!ss)
513 		return &cgrp->self;
514 
515 	/*
516 	 * This function is used while updating css associations and thus
517 	 * can't test the csses directly.  Test ss_mask.
518 	 */
519 	while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
520 		cgrp = cgroup_parent(cgrp);
521 		if (!cgrp)
522 			return NULL;
523 	}
524 
525 	return cgroup_css(cgrp, ss);
526 }
527 
528 /**
529  * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
530  * @cgrp: the cgroup of interest
531  * @ss: the subsystem of interest
532  *
533  * Find and get the effective css of @cgrp for @ss.  The effective css is
534  * defined as the matching css of the nearest ancestor including self which
535  * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
536  * the root css is returned, so this function always returns a valid css.
537  *
538  * The returned css is not guaranteed to be online, and therefore it is the
539  * callers responsiblity to tryget a reference for it.
540  */
541 struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
542 					 struct cgroup_subsys *ss)
543 {
544 	struct cgroup_subsys_state *css;
545 
546 	do {
547 		css = cgroup_css(cgrp, ss);
548 
549 		if (css)
550 			return css;
551 		cgrp = cgroup_parent(cgrp);
552 	} while (cgrp);
553 
554 	return init_css_set.subsys[ss->id];
555 }
556 
557 /**
558  * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
559  * @cgrp: the cgroup of interest
560  * @ss: the subsystem of interest
561  *
562  * Find and get the effective css of @cgrp for @ss.  The effective css is
563  * defined as the matching css of the nearest ancestor including self which
564  * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
565  * the root css is returned, so this function always returns a valid css.
566  * The returned css must be put using css_put().
567  */
568 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
569 					     struct cgroup_subsys *ss)
570 {
571 	struct cgroup_subsys_state *css;
572 
573 	rcu_read_lock();
574 
575 	do {
576 		css = cgroup_css(cgrp, ss);
577 
578 		if (css && css_tryget_online(css))
579 			goto out_unlock;
580 		cgrp = cgroup_parent(cgrp);
581 	} while (cgrp);
582 
583 	css = init_css_set.subsys[ss->id];
584 	css_get(css);
585 out_unlock:
586 	rcu_read_unlock();
587 	return css;
588 }
589 
590 static void cgroup_get_live(struct cgroup *cgrp)
591 {
592 	WARN_ON_ONCE(cgroup_is_dead(cgrp));
593 	css_get(&cgrp->self);
594 }
595 
596 /**
597  * __cgroup_task_count - count the number of tasks in a cgroup. The caller
598  * is responsible for taking the css_set_lock.
599  * @cgrp: the cgroup in question
600  */
601 int __cgroup_task_count(const struct cgroup *cgrp)
602 {
603 	int count = 0;
604 	struct cgrp_cset_link *link;
605 
606 	lockdep_assert_held(&css_set_lock);
607 
608 	list_for_each_entry(link, &cgrp->cset_links, cset_link)
609 		count += link->cset->nr_tasks;
610 
611 	return count;
612 }
613 
614 /**
615  * cgroup_task_count - count the number of tasks in a cgroup.
616  * @cgrp: the cgroup in question
617  */
618 int cgroup_task_count(const struct cgroup *cgrp)
619 {
620 	int count;
621 
622 	spin_lock_irq(&css_set_lock);
623 	count = __cgroup_task_count(cgrp);
624 	spin_unlock_irq(&css_set_lock);
625 
626 	return count;
627 }
628 
629 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
630 {
631 	struct cgroup *cgrp = of->kn->parent->priv;
632 	struct cftype *cft = of_cft(of);
633 
634 	/*
635 	 * This is open and unprotected implementation of cgroup_css().
636 	 * seq_css() is only called from a kernfs file operation which has
637 	 * an active reference on the file.  Because all the subsystem
638 	 * files are drained before a css is disassociated with a cgroup,
639 	 * the matching css from the cgroup's subsys table is guaranteed to
640 	 * be and stay valid until the enclosing operation is complete.
641 	 */
642 	if (cft->ss)
643 		return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
644 	else
645 		return &cgrp->self;
646 }
647 EXPORT_SYMBOL_GPL(of_css);
648 
649 /**
650  * for_each_css - iterate all css's of a cgroup
651  * @css: the iteration cursor
652  * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
653  * @cgrp: the target cgroup to iterate css's of
654  *
655  * Should be called under cgroup_[tree_]mutex.
656  */
657 #define for_each_css(css, ssid, cgrp)					\
658 	for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)	\
659 		if (!((css) = rcu_dereference_check(			\
660 				(cgrp)->subsys[(ssid)],			\
661 				lockdep_is_held(&cgroup_mutex)))) { }	\
662 		else
663 
664 /**
665  * for_each_e_css - iterate all effective css's of a cgroup
666  * @css: the iteration cursor
667  * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
668  * @cgrp: the target cgroup to iterate css's of
669  *
670  * Should be called under cgroup_[tree_]mutex.
671  */
672 #define for_each_e_css(css, ssid, cgrp)					    \
673 	for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)	    \
674 		if (!((css) = cgroup_e_css_by_mask(cgrp,		    \
675 						   cgroup_subsys[(ssid)]))) \
676 			;						    \
677 		else
678 
679 /**
680  * do_each_subsys_mask - filter for_each_subsys with a bitmask
681  * @ss: the iteration cursor
682  * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
683  * @ss_mask: the bitmask
684  *
685  * The block will only run for cases where the ssid-th bit (1 << ssid) of
686  * @ss_mask is set.
687  */
688 #define do_each_subsys_mask(ss, ssid, ss_mask) do {			\
689 	unsigned long __ss_mask = (ss_mask);				\
690 	if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */	\
691 		(ssid) = 0;						\
692 		break;							\
693 	}								\
694 	for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) {	\
695 		(ss) = cgroup_subsys[ssid];				\
696 		{
697 
698 #define while_each_subsys_mask()					\
699 		}							\
700 	}								\
701 } while (false)
702 
703 /* iterate over child cgrps, lock should be held throughout iteration */
704 #define cgroup_for_each_live_child(child, cgrp)				\
705 	list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
706 		if (({ lockdep_assert_held(&cgroup_mutex);		\
707 		       cgroup_is_dead(child); }))			\
708 			;						\
709 		else
710 
711 /* walk live descendants in preorder */
712 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)		\
713 	css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL))	\
714 		if (({ lockdep_assert_held(&cgroup_mutex);		\
715 		       (dsct) = (d_css)->cgroup;			\
716 		       cgroup_is_dead(dsct); }))			\
717 			;						\
718 		else
719 
720 /* walk live descendants in postorder */
721 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp)		\
722 	css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL))	\
723 		if (({ lockdep_assert_held(&cgroup_mutex);		\
724 		       (dsct) = (d_css)->cgroup;			\
725 		       cgroup_is_dead(dsct); }))			\
726 			;						\
727 		else
728 
729 /*
730  * The default css_set - used by init and its children prior to any
731  * hierarchies being mounted. It contains a pointer to the root state
732  * for each subsystem. Also used to anchor the list of css_sets. Not
733  * reference-counted, to improve performance when child cgroups
734  * haven't been created.
735  */
736 struct css_set init_css_set = {
737 	.refcount		= REFCOUNT_INIT(1),
738 	.dom_cset		= &init_css_set,
739 	.tasks			= LIST_HEAD_INIT(init_css_set.tasks),
740 	.mg_tasks		= LIST_HEAD_INIT(init_css_set.mg_tasks),
741 	.task_iters		= LIST_HEAD_INIT(init_css_set.task_iters),
742 	.threaded_csets		= LIST_HEAD_INIT(init_css_set.threaded_csets),
743 	.cgrp_links		= LIST_HEAD_INIT(init_css_set.cgrp_links),
744 	.mg_preload_node	= LIST_HEAD_INIT(init_css_set.mg_preload_node),
745 	.mg_node		= LIST_HEAD_INIT(init_css_set.mg_node),
746 
747 	/*
748 	 * The following field is re-initialized when this cset gets linked
749 	 * in cgroup_init().  However, let's initialize the field
750 	 * statically too so that the default cgroup can be accessed safely
751 	 * early during boot.
752 	 */
753 	.dfl_cgrp		= &cgrp_dfl_root.cgrp,
754 };
755 
756 static int css_set_count	= 1;	/* 1 for init_css_set */
757 
758 static bool css_set_threaded(struct css_set *cset)
759 {
760 	return cset->dom_cset != cset;
761 }
762 
763 /**
764  * css_set_populated - does a css_set contain any tasks?
765  * @cset: target css_set
766  *
767  * css_set_populated() should be the same as !!cset->nr_tasks at steady
768  * state. However, css_set_populated() can be called while a task is being
769  * added to or removed from the linked list before the nr_tasks is
770  * properly updated. Hence, we can't just look at ->nr_tasks here.
771  */
772 static bool css_set_populated(struct css_set *cset)
773 {
774 	lockdep_assert_held(&css_set_lock);
775 
776 	return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
777 }
778 
779 /**
780  * cgroup_update_populated - update the populated count of a cgroup
781  * @cgrp: the target cgroup
782  * @populated: inc or dec populated count
783  *
784  * One of the css_sets associated with @cgrp is either getting its first
785  * task or losing the last.  Update @cgrp->nr_populated_* accordingly.  The
786  * count is propagated towards root so that a given cgroup's
787  * nr_populated_children is zero iff none of its descendants contain any
788  * tasks.
789  *
790  * @cgrp's interface file "cgroup.populated" is zero if both
791  * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and
792  * 1 otherwise.  When the sum changes from or to zero, userland is notified
793  * that the content of the interface file has changed.  This can be used to
794  * detect when @cgrp and its descendants become populated or empty.
795  */
796 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
797 {
798 	struct cgroup *child = NULL;
799 	int adj = populated ? 1 : -1;
800 
801 	lockdep_assert_held(&css_set_lock);
802 
803 	do {
804 		bool was_populated = cgroup_is_populated(cgrp);
805 
806 		if (!child) {
807 			cgrp->nr_populated_csets += adj;
808 		} else {
809 			if (cgroup_is_threaded(child))
810 				cgrp->nr_populated_threaded_children += adj;
811 			else
812 				cgrp->nr_populated_domain_children += adj;
813 		}
814 
815 		if (was_populated == cgroup_is_populated(cgrp))
816 			break;
817 
818 		cgroup1_check_for_release(cgrp);
819 		TRACE_CGROUP_PATH(notify_populated, cgrp,
820 				  cgroup_is_populated(cgrp));
821 		cgroup_file_notify(&cgrp->events_file);
822 
823 		child = cgrp;
824 		cgrp = cgroup_parent(cgrp);
825 	} while (cgrp);
826 }
827 
828 /**
829  * css_set_update_populated - update populated state of a css_set
830  * @cset: target css_set
831  * @populated: whether @cset is populated or depopulated
832  *
833  * @cset is either getting the first task or losing the last.  Update the
834  * populated counters of all associated cgroups accordingly.
835  */
836 static void css_set_update_populated(struct css_set *cset, bool populated)
837 {
838 	struct cgrp_cset_link *link;
839 
840 	lockdep_assert_held(&css_set_lock);
841 
842 	list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
843 		cgroup_update_populated(link->cgrp, populated);
844 }
845 
846 /**
847  * css_set_move_task - move a task from one css_set to another
848  * @task: task being moved
849  * @from_cset: css_set @task currently belongs to (may be NULL)
850  * @to_cset: new css_set @task is being moved to (may be NULL)
851  * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
852  *
853  * Move @task from @from_cset to @to_cset.  If @task didn't belong to any
854  * css_set, @from_cset can be NULL.  If @task is being disassociated
855  * instead of moved, @to_cset can be NULL.
856  *
857  * This function automatically handles populated counter updates and
858  * css_task_iter adjustments but the caller is responsible for managing
859  * @from_cset and @to_cset's reference counts.
860  */
861 static void css_set_move_task(struct task_struct *task,
862 			      struct css_set *from_cset, struct css_set *to_cset,
863 			      bool use_mg_tasks)
864 {
865 	lockdep_assert_held(&css_set_lock);
866 
867 	if (to_cset && !css_set_populated(to_cset))
868 		css_set_update_populated(to_cset, true);
869 
870 	if (from_cset) {
871 		struct css_task_iter *it, *pos;
872 
873 		WARN_ON_ONCE(list_empty(&task->cg_list));
874 
875 		/*
876 		 * @task is leaving, advance task iterators which are
877 		 * pointing to it so that they can resume at the next
878 		 * position.  Advancing an iterator might remove it from
879 		 * the list, use safe walk.  See css_task_iter_advance*()
880 		 * for details.
881 		 */
882 		list_for_each_entry_safe(it, pos, &from_cset->task_iters,
883 					 iters_node)
884 			if (it->task_pos == &task->cg_list)
885 				css_task_iter_advance(it);
886 
887 		list_del_init(&task->cg_list);
888 		if (!css_set_populated(from_cset))
889 			css_set_update_populated(from_cset, false);
890 	} else {
891 		WARN_ON_ONCE(!list_empty(&task->cg_list));
892 	}
893 
894 	if (to_cset) {
895 		/*
896 		 * We are synchronized through cgroup_threadgroup_rwsem
897 		 * against PF_EXITING setting such that we can't race
898 		 * against cgroup_exit() changing the css_set to
899 		 * init_css_set and dropping the old one.
900 		 */
901 		WARN_ON_ONCE(task->flags & PF_EXITING);
902 
903 		cgroup_move_task(task, to_cset);
904 		list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
905 							     &to_cset->tasks);
906 	}
907 }
908 
909 /*
910  * hash table for cgroup groups. This improves the performance to find
911  * an existing css_set. This hash doesn't (currently) take into
912  * account cgroups in empty hierarchies.
913  */
914 #define CSS_SET_HASH_BITS	7
915 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
916 
917 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
918 {
919 	unsigned long key = 0UL;
920 	struct cgroup_subsys *ss;
921 	int i;
922 
923 	for_each_subsys(ss, i)
924 		key += (unsigned long)css[i];
925 	key = (key >> 16) ^ key;
926 
927 	return key;
928 }
929 
930 void put_css_set_locked(struct css_set *cset)
931 {
932 	struct cgrp_cset_link *link, *tmp_link;
933 	struct cgroup_subsys *ss;
934 	int ssid;
935 
936 	lockdep_assert_held(&css_set_lock);
937 
938 	if (!refcount_dec_and_test(&cset->refcount))
939 		return;
940 
941 	WARN_ON_ONCE(!list_empty(&cset->threaded_csets));
942 
943 	/* This css_set is dead. unlink it and release cgroup and css refs */
944 	for_each_subsys(ss, ssid) {
945 		list_del(&cset->e_cset_node[ssid]);
946 		css_put(cset->subsys[ssid]);
947 	}
948 	hash_del(&cset->hlist);
949 	css_set_count--;
950 
951 	list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
952 		list_del(&link->cset_link);
953 		list_del(&link->cgrp_link);
954 		if (cgroup_parent(link->cgrp))
955 			cgroup_put(link->cgrp);
956 		kfree(link);
957 	}
958 
959 	if (css_set_threaded(cset)) {
960 		list_del(&cset->threaded_csets_node);
961 		put_css_set_locked(cset->dom_cset);
962 	}
963 
964 	kfree_rcu(cset, rcu_head);
965 }
966 
967 /**
968  * compare_css_sets - helper function for find_existing_css_set().
969  * @cset: candidate css_set being tested
970  * @old_cset: existing css_set for a task
971  * @new_cgrp: cgroup that's being entered by the task
972  * @template: desired set of css pointers in css_set (pre-calculated)
973  *
974  * Returns true if "cset" matches "old_cset" except for the hierarchy
975  * which "new_cgrp" belongs to, for which it should match "new_cgrp".
976  */
977 static bool compare_css_sets(struct css_set *cset,
978 			     struct css_set *old_cset,
979 			     struct cgroup *new_cgrp,
980 			     struct cgroup_subsys_state *template[])
981 {
982 	struct cgroup *new_dfl_cgrp;
983 	struct list_head *l1, *l2;
984 
985 	/*
986 	 * On the default hierarchy, there can be csets which are
987 	 * associated with the same set of cgroups but different csses.
988 	 * Let's first ensure that csses match.
989 	 */
990 	if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
991 		return false;
992 
993 
994 	/* @cset's domain should match the default cgroup's */
995 	if (cgroup_on_dfl(new_cgrp))
996 		new_dfl_cgrp = new_cgrp;
997 	else
998 		new_dfl_cgrp = old_cset->dfl_cgrp;
999 
1000 	if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp)
1001 		return false;
1002 
1003 	/*
1004 	 * Compare cgroup pointers in order to distinguish between
1005 	 * different cgroups in hierarchies.  As different cgroups may
1006 	 * share the same effective css, this comparison is always
1007 	 * necessary.
1008 	 */
1009 	l1 = &cset->cgrp_links;
1010 	l2 = &old_cset->cgrp_links;
1011 	while (1) {
1012 		struct cgrp_cset_link *link1, *link2;
1013 		struct cgroup *cgrp1, *cgrp2;
1014 
1015 		l1 = l1->next;
1016 		l2 = l2->next;
1017 		/* See if we reached the end - both lists are equal length. */
1018 		if (l1 == &cset->cgrp_links) {
1019 			BUG_ON(l2 != &old_cset->cgrp_links);
1020 			break;
1021 		} else {
1022 			BUG_ON(l2 == &old_cset->cgrp_links);
1023 		}
1024 		/* Locate the cgroups associated with these links. */
1025 		link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
1026 		link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
1027 		cgrp1 = link1->cgrp;
1028 		cgrp2 = link2->cgrp;
1029 		/* Hierarchies should be linked in the same order. */
1030 		BUG_ON(cgrp1->root != cgrp2->root);
1031 
1032 		/*
1033 		 * If this hierarchy is the hierarchy of the cgroup
1034 		 * that's changing, then we need to check that this
1035 		 * css_set points to the new cgroup; if it's any other
1036 		 * hierarchy, then this css_set should point to the
1037 		 * same cgroup as the old css_set.
1038 		 */
1039 		if (cgrp1->root == new_cgrp->root) {
1040 			if (cgrp1 != new_cgrp)
1041 				return false;
1042 		} else {
1043 			if (cgrp1 != cgrp2)
1044 				return false;
1045 		}
1046 	}
1047 	return true;
1048 }
1049 
1050 /**
1051  * find_existing_css_set - init css array and find the matching css_set
1052  * @old_cset: the css_set that we're using before the cgroup transition
1053  * @cgrp: the cgroup that we're moving into
1054  * @template: out param for the new set of csses, should be clear on entry
1055  */
1056 static struct css_set *find_existing_css_set(struct css_set *old_cset,
1057 					struct cgroup *cgrp,
1058 					struct cgroup_subsys_state *template[])
1059 {
1060 	struct cgroup_root *root = cgrp->root;
1061 	struct cgroup_subsys *ss;
1062 	struct css_set *cset;
1063 	unsigned long key;
1064 	int i;
1065 
1066 	/*
1067 	 * Build the set of subsystem state objects that we want to see in the
1068 	 * new css_set. while subsystems can change globally, the entries here
1069 	 * won't change, so no need for locking.
1070 	 */
1071 	for_each_subsys(ss, i) {
1072 		if (root->subsys_mask & (1UL << i)) {
1073 			/*
1074 			 * @ss is in this hierarchy, so we want the
1075 			 * effective css from @cgrp.
1076 			 */
1077 			template[i] = cgroup_e_css_by_mask(cgrp, ss);
1078 		} else {
1079 			/*
1080 			 * @ss is not in this hierarchy, so we don't want
1081 			 * to change the css.
1082 			 */
1083 			template[i] = old_cset->subsys[i];
1084 		}
1085 	}
1086 
1087 	key = css_set_hash(template);
1088 	hash_for_each_possible(css_set_table, cset, hlist, key) {
1089 		if (!compare_css_sets(cset, old_cset, cgrp, template))
1090 			continue;
1091 
1092 		/* This css_set matches what we need */
1093 		return cset;
1094 	}
1095 
1096 	/* No existing cgroup group matched */
1097 	return NULL;
1098 }
1099 
1100 static void free_cgrp_cset_links(struct list_head *links_to_free)
1101 {
1102 	struct cgrp_cset_link *link, *tmp_link;
1103 
1104 	list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
1105 		list_del(&link->cset_link);
1106 		kfree(link);
1107 	}
1108 }
1109 
1110 /**
1111  * allocate_cgrp_cset_links - allocate cgrp_cset_links
1112  * @count: the number of links to allocate
1113  * @tmp_links: list_head the allocated links are put on
1114  *
1115  * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1116  * through ->cset_link.  Returns 0 on success or -errno.
1117  */
1118 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
1119 {
1120 	struct cgrp_cset_link *link;
1121 	int i;
1122 
1123 	INIT_LIST_HEAD(tmp_links);
1124 
1125 	for (i = 0; i < count; i++) {
1126 		link = kzalloc(sizeof(*link), GFP_KERNEL);
1127 		if (!link) {
1128 			free_cgrp_cset_links(tmp_links);
1129 			return -ENOMEM;
1130 		}
1131 		list_add(&link->cset_link, tmp_links);
1132 	}
1133 	return 0;
1134 }
1135 
1136 /**
1137  * link_css_set - a helper function to link a css_set to a cgroup
1138  * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
1139  * @cset: the css_set to be linked
1140  * @cgrp: the destination cgroup
1141  */
1142 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1143 			 struct cgroup *cgrp)
1144 {
1145 	struct cgrp_cset_link *link;
1146 
1147 	BUG_ON(list_empty(tmp_links));
1148 
1149 	if (cgroup_on_dfl(cgrp))
1150 		cset->dfl_cgrp = cgrp;
1151 
1152 	link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1153 	link->cset = cset;
1154 	link->cgrp = cgrp;
1155 
1156 	/*
1157 	 * Always add links to the tail of the lists so that the lists are
1158 	 * in choronological order.
1159 	 */
1160 	list_move_tail(&link->cset_link, &cgrp->cset_links);
1161 	list_add_tail(&link->cgrp_link, &cset->cgrp_links);
1162 
1163 	if (cgroup_parent(cgrp))
1164 		cgroup_get_live(cgrp);
1165 }
1166 
1167 /**
1168  * find_css_set - return a new css_set with one cgroup updated
1169  * @old_cset: the baseline css_set
1170  * @cgrp: the cgroup to be updated
1171  *
1172  * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1173  * substituted into the appropriate hierarchy.
1174  */
1175 static struct css_set *find_css_set(struct css_set *old_cset,
1176 				    struct cgroup *cgrp)
1177 {
1178 	struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
1179 	struct css_set *cset;
1180 	struct list_head tmp_links;
1181 	struct cgrp_cset_link *link;
1182 	struct cgroup_subsys *ss;
1183 	unsigned long key;
1184 	int ssid;
1185 
1186 	lockdep_assert_held(&cgroup_mutex);
1187 
1188 	/* First see if we already have a cgroup group that matches
1189 	 * the desired set */
1190 	spin_lock_irq(&css_set_lock);
1191 	cset = find_existing_css_set(old_cset, cgrp, template);
1192 	if (cset)
1193 		get_css_set(cset);
1194 	spin_unlock_irq(&css_set_lock);
1195 
1196 	if (cset)
1197 		return cset;
1198 
1199 	cset = kzalloc(sizeof(*cset), GFP_KERNEL);
1200 	if (!cset)
1201 		return NULL;
1202 
1203 	/* Allocate all the cgrp_cset_link objects that we'll need */
1204 	if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1205 		kfree(cset);
1206 		return NULL;
1207 	}
1208 
1209 	refcount_set(&cset->refcount, 1);
1210 	cset->dom_cset = cset;
1211 	INIT_LIST_HEAD(&cset->tasks);
1212 	INIT_LIST_HEAD(&cset->mg_tasks);
1213 	INIT_LIST_HEAD(&cset->task_iters);
1214 	INIT_LIST_HEAD(&cset->threaded_csets);
1215 	INIT_HLIST_NODE(&cset->hlist);
1216 	INIT_LIST_HEAD(&cset->cgrp_links);
1217 	INIT_LIST_HEAD(&cset->mg_preload_node);
1218 	INIT_LIST_HEAD(&cset->mg_node);
1219 
1220 	/* Copy the set of subsystem state objects generated in
1221 	 * find_existing_css_set() */
1222 	memcpy(cset->subsys, template, sizeof(cset->subsys));
1223 
1224 	spin_lock_irq(&css_set_lock);
1225 	/* Add reference counts and links from the new css_set. */
1226 	list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1227 		struct cgroup *c = link->cgrp;
1228 
1229 		if (c->root == cgrp->root)
1230 			c = cgrp;
1231 		link_css_set(&tmp_links, cset, c);
1232 	}
1233 
1234 	BUG_ON(!list_empty(&tmp_links));
1235 
1236 	css_set_count++;
1237 
1238 	/* Add @cset to the hash table */
1239 	key = css_set_hash(cset->subsys);
1240 	hash_add(css_set_table, &cset->hlist, key);
1241 
1242 	for_each_subsys(ss, ssid) {
1243 		struct cgroup_subsys_state *css = cset->subsys[ssid];
1244 
1245 		list_add_tail(&cset->e_cset_node[ssid],
1246 			      &css->cgroup->e_csets[ssid]);
1247 		css_get(css);
1248 	}
1249 
1250 	spin_unlock_irq(&css_set_lock);
1251 
1252 	/*
1253 	 * If @cset should be threaded, look up the matching dom_cset and
1254 	 * link them up.  We first fully initialize @cset then look for the
1255 	 * dom_cset.  It's simpler this way and safe as @cset is guaranteed
1256 	 * to stay empty until we return.
1257 	 */
1258 	if (cgroup_is_threaded(cset->dfl_cgrp)) {
1259 		struct css_set *dcset;
1260 
1261 		dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp);
1262 		if (!dcset) {
1263 			put_css_set(cset);
1264 			return NULL;
1265 		}
1266 
1267 		spin_lock_irq(&css_set_lock);
1268 		cset->dom_cset = dcset;
1269 		list_add_tail(&cset->threaded_csets_node,
1270 			      &dcset->threaded_csets);
1271 		spin_unlock_irq(&css_set_lock);
1272 	}
1273 
1274 	return cset;
1275 }
1276 
1277 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1278 {
1279 	struct cgroup *root_cgrp = kf_root->kn->priv;
1280 
1281 	return root_cgrp->root;
1282 }
1283 
1284 static int cgroup_init_root_id(struct cgroup_root *root)
1285 {
1286 	int id;
1287 
1288 	lockdep_assert_held(&cgroup_mutex);
1289 
1290 	id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1291 	if (id < 0)
1292 		return id;
1293 
1294 	root->hierarchy_id = id;
1295 	return 0;
1296 }
1297 
1298 static void cgroup_exit_root_id(struct cgroup_root *root)
1299 {
1300 	lockdep_assert_held(&cgroup_mutex);
1301 
1302 	idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1303 }
1304 
1305 void cgroup_free_root(struct cgroup_root *root)
1306 {
1307 	if (root) {
1308 		idr_destroy(&root->cgroup_idr);
1309 		kfree(root);
1310 	}
1311 }
1312 
1313 static void cgroup_destroy_root(struct cgroup_root *root)
1314 {
1315 	struct cgroup *cgrp = &root->cgrp;
1316 	struct cgrp_cset_link *link, *tmp_link;
1317 
1318 	trace_cgroup_destroy_root(root);
1319 
1320 	cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1321 
1322 	BUG_ON(atomic_read(&root->nr_cgrps));
1323 	BUG_ON(!list_empty(&cgrp->self.children));
1324 
1325 	/* Rebind all subsystems back to the default hierarchy */
1326 	WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
1327 
1328 	/*
1329 	 * Release all the links from cset_links to this hierarchy's
1330 	 * root cgroup
1331 	 */
1332 	spin_lock_irq(&css_set_lock);
1333 
1334 	list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1335 		list_del(&link->cset_link);
1336 		list_del(&link->cgrp_link);
1337 		kfree(link);
1338 	}
1339 
1340 	spin_unlock_irq(&css_set_lock);
1341 
1342 	if (!list_empty(&root->root_list)) {
1343 		list_del(&root->root_list);
1344 		cgroup_root_count--;
1345 	}
1346 
1347 	cgroup_exit_root_id(root);
1348 
1349 	mutex_unlock(&cgroup_mutex);
1350 
1351 	kernfs_destroy_root(root->kf_root);
1352 	cgroup_free_root(root);
1353 }
1354 
1355 /*
1356  * look up cgroup associated with current task's cgroup namespace on the
1357  * specified hierarchy
1358  */
1359 static struct cgroup *
1360 current_cgns_cgroup_from_root(struct cgroup_root *root)
1361 {
1362 	struct cgroup *res = NULL;
1363 	struct css_set *cset;
1364 
1365 	lockdep_assert_held(&css_set_lock);
1366 
1367 	rcu_read_lock();
1368 
1369 	cset = current->nsproxy->cgroup_ns->root_cset;
1370 	if (cset == &init_css_set) {
1371 		res = &root->cgrp;
1372 	} else {
1373 		struct cgrp_cset_link *link;
1374 
1375 		list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1376 			struct cgroup *c = link->cgrp;
1377 
1378 			if (c->root == root) {
1379 				res = c;
1380 				break;
1381 			}
1382 		}
1383 	}
1384 	rcu_read_unlock();
1385 
1386 	BUG_ON(!res);
1387 	return res;
1388 }
1389 
1390 /* look up cgroup associated with given css_set on the specified hierarchy */
1391 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1392 					    struct cgroup_root *root)
1393 {
1394 	struct cgroup *res = NULL;
1395 
1396 	lockdep_assert_held(&cgroup_mutex);
1397 	lockdep_assert_held(&css_set_lock);
1398 
1399 	if (cset == &init_css_set) {
1400 		res = &root->cgrp;
1401 	} else if (root == &cgrp_dfl_root) {
1402 		res = cset->dfl_cgrp;
1403 	} else {
1404 		struct cgrp_cset_link *link;
1405 
1406 		list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1407 			struct cgroup *c = link->cgrp;
1408 
1409 			if (c->root == root) {
1410 				res = c;
1411 				break;
1412 			}
1413 		}
1414 	}
1415 
1416 	BUG_ON(!res);
1417 	return res;
1418 }
1419 
1420 /*
1421  * Return the cgroup for "task" from the given hierarchy. Must be
1422  * called with cgroup_mutex and css_set_lock held.
1423  */
1424 struct cgroup *task_cgroup_from_root(struct task_struct *task,
1425 				     struct cgroup_root *root)
1426 {
1427 	/*
1428 	 * No need to lock the task - since we hold cgroup_mutex the
1429 	 * task can't change groups, so the only thing that can happen
1430 	 * is that it exits and its css is set back to init_css_set.
1431 	 */
1432 	return cset_cgroup_from_root(task_css_set(task), root);
1433 }
1434 
1435 /*
1436  * A task must hold cgroup_mutex to modify cgroups.
1437  *
1438  * Any task can increment and decrement the count field without lock.
1439  * So in general, code holding cgroup_mutex can't rely on the count
1440  * field not changing.  However, if the count goes to zero, then only
1441  * cgroup_attach_task() can increment it again.  Because a count of zero
1442  * means that no tasks are currently attached, therefore there is no
1443  * way a task attached to that cgroup can fork (the other way to
1444  * increment the count).  So code holding cgroup_mutex can safely
1445  * assume that if the count is zero, it will stay zero. Similarly, if
1446  * a task holds cgroup_mutex on a cgroup with zero count, it
1447  * knows that the cgroup won't be removed, as cgroup_rmdir()
1448  * needs that mutex.
1449  *
1450  * A cgroup can only be deleted if both its 'count' of using tasks
1451  * is zero, and its list of 'children' cgroups is empty.  Since all
1452  * tasks in the system use _some_ cgroup, and since there is always at
1453  * least one task in the system (init, pid == 1), therefore, root cgroup
1454  * always has either children cgroups and/or using tasks.  So we don't
1455  * need a special hack to ensure that root cgroup cannot be deleted.
1456  *
1457  * P.S.  One more locking exception.  RCU is used to guard the
1458  * update of a tasks cgroup pointer by cgroup_attach_task()
1459  */
1460 
1461 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1462 
1463 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1464 			      char *buf)
1465 {
1466 	struct cgroup_subsys *ss = cft->ss;
1467 
1468 	if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1469 	    !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
1470 		const char *dbg = (cft->flags & CFTYPE_DEBUG) ? ".__DEBUG__." : "";
1471 
1472 		snprintf(buf, CGROUP_FILE_NAME_MAX, "%s%s.%s",
1473 			 dbg, cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1474 			 cft->name);
1475 	} else {
1476 		strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1477 	}
1478 	return buf;
1479 }
1480 
1481 /**
1482  * cgroup_file_mode - deduce file mode of a control file
1483  * @cft: the control file in question
1484  *
1485  * S_IRUGO for read, S_IWUSR for write.
1486  */
1487 static umode_t cgroup_file_mode(const struct cftype *cft)
1488 {
1489 	umode_t mode = 0;
1490 
1491 	if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1492 		mode |= S_IRUGO;
1493 
1494 	if (cft->write_u64 || cft->write_s64 || cft->write) {
1495 		if (cft->flags & CFTYPE_WORLD_WRITABLE)
1496 			mode |= S_IWUGO;
1497 		else
1498 			mode |= S_IWUSR;
1499 	}
1500 
1501 	return mode;
1502 }
1503 
1504 /**
1505  * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1506  * @subtree_control: the new subtree_control mask to consider
1507  * @this_ss_mask: available subsystems
1508  *
1509  * On the default hierarchy, a subsystem may request other subsystems to be
1510  * enabled together through its ->depends_on mask.  In such cases, more
1511  * subsystems than specified in "cgroup.subtree_control" may be enabled.
1512  *
1513  * This function calculates which subsystems need to be enabled if
1514  * @subtree_control is to be applied while restricted to @this_ss_mask.
1515  */
1516 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
1517 {
1518 	u16 cur_ss_mask = subtree_control;
1519 	struct cgroup_subsys *ss;
1520 	int ssid;
1521 
1522 	lockdep_assert_held(&cgroup_mutex);
1523 
1524 	cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1525 
1526 	while (true) {
1527 		u16 new_ss_mask = cur_ss_mask;
1528 
1529 		do_each_subsys_mask(ss, ssid, cur_ss_mask) {
1530 			new_ss_mask |= ss->depends_on;
1531 		} while_each_subsys_mask();
1532 
1533 		/*
1534 		 * Mask out subsystems which aren't available.  This can
1535 		 * happen only if some depended-upon subsystems were bound
1536 		 * to non-default hierarchies.
1537 		 */
1538 		new_ss_mask &= this_ss_mask;
1539 
1540 		if (new_ss_mask == cur_ss_mask)
1541 			break;
1542 		cur_ss_mask = new_ss_mask;
1543 	}
1544 
1545 	return cur_ss_mask;
1546 }
1547 
1548 /**
1549  * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1550  * @kn: the kernfs_node being serviced
1551  *
1552  * This helper undoes cgroup_kn_lock_live() and should be invoked before
1553  * the method finishes if locking succeeded.  Note that once this function
1554  * returns the cgroup returned by cgroup_kn_lock_live() may become
1555  * inaccessible any time.  If the caller intends to continue to access the
1556  * cgroup, it should pin it before invoking this function.
1557  */
1558 void cgroup_kn_unlock(struct kernfs_node *kn)
1559 {
1560 	struct cgroup *cgrp;
1561 
1562 	if (kernfs_type(kn) == KERNFS_DIR)
1563 		cgrp = kn->priv;
1564 	else
1565 		cgrp = kn->parent->priv;
1566 
1567 	mutex_unlock(&cgroup_mutex);
1568 
1569 	kernfs_unbreak_active_protection(kn);
1570 	cgroup_put(cgrp);
1571 }
1572 
1573 /**
1574  * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1575  * @kn: the kernfs_node being serviced
1576  * @drain_offline: perform offline draining on the cgroup
1577  *
1578  * This helper is to be used by a cgroup kernfs method currently servicing
1579  * @kn.  It breaks the active protection, performs cgroup locking and
1580  * verifies that the associated cgroup is alive.  Returns the cgroup if
1581  * alive; otherwise, %NULL.  A successful return should be undone by a
1582  * matching cgroup_kn_unlock() invocation.  If @drain_offline is %true, the
1583  * cgroup is drained of offlining csses before return.
1584  *
1585  * Any cgroup kernfs method implementation which requires locking the
1586  * associated cgroup should use this helper.  It avoids nesting cgroup
1587  * locking under kernfs active protection and allows all kernfs operations
1588  * including self-removal.
1589  */
1590 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline)
1591 {
1592 	struct cgroup *cgrp;
1593 
1594 	if (kernfs_type(kn) == KERNFS_DIR)
1595 		cgrp = kn->priv;
1596 	else
1597 		cgrp = kn->parent->priv;
1598 
1599 	/*
1600 	 * We're gonna grab cgroup_mutex which nests outside kernfs
1601 	 * active_ref.  cgroup liveliness check alone provides enough
1602 	 * protection against removal.  Ensure @cgrp stays accessible and
1603 	 * break the active_ref protection.
1604 	 */
1605 	if (!cgroup_tryget(cgrp))
1606 		return NULL;
1607 	kernfs_break_active_protection(kn);
1608 
1609 	if (drain_offline)
1610 		cgroup_lock_and_drain_offline(cgrp);
1611 	else
1612 		mutex_lock(&cgroup_mutex);
1613 
1614 	if (!cgroup_is_dead(cgrp))
1615 		return cgrp;
1616 
1617 	cgroup_kn_unlock(kn);
1618 	return NULL;
1619 }
1620 
1621 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1622 {
1623 	char name[CGROUP_FILE_NAME_MAX];
1624 
1625 	lockdep_assert_held(&cgroup_mutex);
1626 
1627 	if (cft->file_offset) {
1628 		struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1629 		struct cgroup_file *cfile = (void *)css + cft->file_offset;
1630 
1631 		spin_lock_irq(&cgroup_file_kn_lock);
1632 		cfile->kn = NULL;
1633 		spin_unlock_irq(&cgroup_file_kn_lock);
1634 
1635 		del_timer_sync(&cfile->notify_timer);
1636 	}
1637 
1638 	kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1639 }
1640 
1641 /**
1642  * css_clear_dir - remove subsys files in a cgroup directory
1643  * @css: taget css
1644  */
1645 static void css_clear_dir(struct cgroup_subsys_state *css)
1646 {
1647 	struct cgroup *cgrp = css->cgroup;
1648 	struct cftype *cfts;
1649 
1650 	if (!(css->flags & CSS_VISIBLE))
1651 		return;
1652 
1653 	css->flags &= ~CSS_VISIBLE;
1654 
1655 	if (!css->ss) {
1656 		if (cgroup_on_dfl(cgrp))
1657 			cfts = cgroup_base_files;
1658 		else
1659 			cfts = cgroup1_base_files;
1660 
1661 		cgroup_addrm_files(css, cgrp, cfts, false);
1662 	} else {
1663 		list_for_each_entry(cfts, &css->ss->cfts, node)
1664 			cgroup_addrm_files(css, cgrp, cfts, false);
1665 	}
1666 }
1667 
1668 /**
1669  * css_populate_dir - create subsys files in a cgroup directory
1670  * @css: target css
1671  *
1672  * On failure, no file is added.
1673  */
1674 static int css_populate_dir(struct cgroup_subsys_state *css)
1675 {
1676 	struct cgroup *cgrp = css->cgroup;
1677 	struct cftype *cfts, *failed_cfts;
1678 	int ret;
1679 
1680 	if ((css->flags & CSS_VISIBLE) || !cgrp->kn)
1681 		return 0;
1682 
1683 	if (!css->ss) {
1684 		if (cgroup_on_dfl(cgrp))
1685 			cfts = cgroup_base_files;
1686 		else
1687 			cfts = cgroup1_base_files;
1688 
1689 		ret = cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1690 		if (ret < 0)
1691 			return ret;
1692 	} else {
1693 		list_for_each_entry(cfts, &css->ss->cfts, node) {
1694 			ret = cgroup_addrm_files(css, cgrp, cfts, true);
1695 			if (ret < 0) {
1696 				failed_cfts = cfts;
1697 				goto err;
1698 			}
1699 		}
1700 	}
1701 
1702 	css->flags |= CSS_VISIBLE;
1703 
1704 	return 0;
1705 err:
1706 	list_for_each_entry(cfts, &css->ss->cfts, node) {
1707 		if (cfts == failed_cfts)
1708 			break;
1709 		cgroup_addrm_files(css, cgrp, cfts, false);
1710 	}
1711 	return ret;
1712 }
1713 
1714 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
1715 {
1716 	struct cgroup *dcgrp = &dst_root->cgrp;
1717 	struct cgroup_subsys *ss;
1718 	int ssid, i, ret;
1719 
1720 	lockdep_assert_held(&cgroup_mutex);
1721 
1722 	do_each_subsys_mask(ss, ssid, ss_mask) {
1723 		/*
1724 		 * If @ss has non-root csses attached to it, can't move.
1725 		 * If @ss is an implicit controller, it is exempt from this
1726 		 * rule and can be stolen.
1727 		 */
1728 		if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1729 		    !ss->implicit_on_dfl)
1730 			return -EBUSY;
1731 
1732 		/* can't move between two non-dummy roots either */
1733 		if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1734 			return -EBUSY;
1735 	} while_each_subsys_mask();
1736 
1737 	do_each_subsys_mask(ss, ssid, ss_mask) {
1738 		struct cgroup_root *src_root = ss->root;
1739 		struct cgroup *scgrp = &src_root->cgrp;
1740 		struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1741 		struct css_set *cset;
1742 
1743 		WARN_ON(!css || cgroup_css(dcgrp, ss));
1744 
1745 		/* disable from the source */
1746 		src_root->subsys_mask &= ~(1 << ssid);
1747 		WARN_ON(cgroup_apply_control(scgrp));
1748 		cgroup_finalize_control(scgrp, 0);
1749 
1750 		/* rebind */
1751 		RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1752 		rcu_assign_pointer(dcgrp->subsys[ssid], css);
1753 		ss->root = dst_root;
1754 		css->cgroup = dcgrp;
1755 
1756 		spin_lock_irq(&css_set_lock);
1757 		hash_for_each(css_set_table, i, cset, hlist)
1758 			list_move_tail(&cset->e_cset_node[ss->id],
1759 				       &dcgrp->e_csets[ss->id]);
1760 		spin_unlock_irq(&css_set_lock);
1761 
1762 		/* default hierarchy doesn't enable controllers by default */
1763 		dst_root->subsys_mask |= 1 << ssid;
1764 		if (dst_root == &cgrp_dfl_root) {
1765 			static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1766 		} else {
1767 			dcgrp->subtree_control |= 1 << ssid;
1768 			static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1769 		}
1770 
1771 		ret = cgroup_apply_control(dcgrp);
1772 		if (ret)
1773 			pr_warn("partial failure to rebind %s controller (err=%d)\n",
1774 				ss->name, ret);
1775 
1776 		if (ss->bind)
1777 			ss->bind(css);
1778 	} while_each_subsys_mask();
1779 
1780 	kernfs_activate(dcgrp->kn);
1781 	return 0;
1782 }
1783 
1784 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
1785 		     struct kernfs_root *kf_root)
1786 {
1787 	int len = 0;
1788 	char *buf = NULL;
1789 	struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
1790 	struct cgroup *ns_cgroup;
1791 
1792 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
1793 	if (!buf)
1794 		return -ENOMEM;
1795 
1796 	spin_lock_irq(&css_set_lock);
1797 	ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
1798 	len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
1799 	spin_unlock_irq(&css_set_lock);
1800 
1801 	if (len >= PATH_MAX)
1802 		len = -ERANGE;
1803 	else if (len > 0) {
1804 		seq_escape(sf, buf, " \t\n\\");
1805 		len = 0;
1806 	}
1807 	kfree(buf);
1808 	return len;
1809 }
1810 
1811 enum cgroup2_param {
1812 	Opt_nsdelegate,
1813 	Opt_memory_localevents,
1814 	nr__cgroup2_params
1815 };
1816 
1817 static const struct fs_parameter_spec cgroup2_param_specs[] = {
1818 	fsparam_flag("nsdelegate",		Opt_nsdelegate),
1819 	fsparam_flag("memory_localevents",	Opt_memory_localevents),
1820 	{}
1821 };
1822 
1823 static const struct fs_parameter_description cgroup2_fs_parameters = {
1824 	.name		= "cgroup2",
1825 	.specs		= cgroup2_param_specs,
1826 };
1827 
1828 static int cgroup2_parse_param(struct fs_context *fc, struct fs_parameter *param)
1829 {
1830 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1831 	struct fs_parse_result result;
1832 	int opt;
1833 
1834 	opt = fs_parse(fc, &cgroup2_fs_parameters, param, &result);
1835 	if (opt < 0)
1836 		return opt;
1837 
1838 	switch (opt) {
1839 	case Opt_nsdelegate:
1840 		ctx->flags |= CGRP_ROOT_NS_DELEGATE;
1841 		return 0;
1842 	case Opt_memory_localevents:
1843 		ctx->flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1844 		return 0;
1845 	}
1846 	return -EINVAL;
1847 }
1848 
1849 static void apply_cgroup_root_flags(unsigned int root_flags)
1850 {
1851 	if (current->nsproxy->cgroup_ns == &init_cgroup_ns) {
1852 		if (root_flags & CGRP_ROOT_NS_DELEGATE)
1853 			cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE;
1854 		else
1855 			cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE;
1856 
1857 		if (root_flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1858 			cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1859 		else
1860 			cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1861 	}
1862 }
1863 
1864 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
1865 {
1866 	if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE)
1867 		seq_puts(seq, ",nsdelegate");
1868 	if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1869 		seq_puts(seq, ",memory_localevents");
1870 	return 0;
1871 }
1872 
1873 static int cgroup_reconfigure(struct fs_context *fc)
1874 {
1875 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1876 
1877 	apply_cgroup_root_flags(ctx->flags);
1878 	return 0;
1879 }
1880 
1881 /*
1882  * To reduce the fork() overhead for systems that are not actually using
1883  * their cgroups capability, we don't maintain the lists running through
1884  * each css_set to its tasks until we see the list actually used - in other
1885  * words after the first mount.
1886  */
1887 static bool use_task_css_set_links __read_mostly;
1888 
1889 static void cgroup_enable_task_cg_lists(void)
1890 {
1891 	struct task_struct *p, *g;
1892 
1893 	/*
1894 	 * We need tasklist_lock because RCU is not safe against
1895 	 * while_each_thread(). Besides, a forking task that has passed
1896 	 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1897 	 * is not guaranteed to have its child immediately visible in the
1898 	 * tasklist if we walk through it with RCU.
1899 	 */
1900 	read_lock(&tasklist_lock);
1901 	spin_lock_irq(&css_set_lock);
1902 
1903 	if (use_task_css_set_links)
1904 		goto out_unlock;
1905 
1906 	use_task_css_set_links = true;
1907 
1908 	do_each_thread(g, p) {
1909 		WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1910 			     task_css_set(p) != &init_css_set);
1911 
1912 		/*
1913 		 * We should check if the process is exiting, otherwise
1914 		 * it will race with cgroup_exit() in that the list
1915 		 * entry won't be deleted though the process has exited.
1916 		 * Do it while holding siglock so that we don't end up
1917 		 * racing against cgroup_exit().
1918 		 *
1919 		 * Interrupts were already disabled while acquiring
1920 		 * the css_set_lock, so we do not need to disable it
1921 		 * again when acquiring the sighand->siglock here.
1922 		 */
1923 		spin_lock(&p->sighand->siglock);
1924 		if (!(p->flags & PF_EXITING)) {
1925 			struct css_set *cset = task_css_set(p);
1926 
1927 			if (!css_set_populated(cset))
1928 				css_set_update_populated(cset, true);
1929 			list_add_tail(&p->cg_list, &cset->tasks);
1930 			get_css_set(cset);
1931 			cset->nr_tasks++;
1932 		}
1933 		spin_unlock(&p->sighand->siglock);
1934 	} while_each_thread(g, p);
1935 out_unlock:
1936 	spin_unlock_irq(&css_set_lock);
1937 	read_unlock(&tasklist_lock);
1938 }
1939 
1940 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1941 {
1942 	struct cgroup_subsys *ss;
1943 	int ssid;
1944 
1945 	INIT_LIST_HEAD(&cgrp->self.sibling);
1946 	INIT_LIST_HEAD(&cgrp->self.children);
1947 	INIT_LIST_HEAD(&cgrp->cset_links);
1948 	INIT_LIST_HEAD(&cgrp->pidlists);
1949 	mutex_init(&cgrp->pidlist_mutex);
1950 	cgrp->self.cgroup = cgrp;
1951 	cgrp->self.flags |= CSS_ONLINE;
1952 	cgrp->dom_cgrp = cgrp;
1953 	cgrp->max_descendants = INT_MAX;
1954 	cgrp->max_depth = INT_MAX;
1955 	INIT_LIST_HEAD(&cgrp->rstat_css_list);
1956 	prev_cputime_init(&cgrp->prev_cputime);
1957 
1958 	for_each_subsys(ss, ssid)
1959 		INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
1960 
1961 	init_waitqueue_head(&cgrp->offline_waitq);
1962 	INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent);
1963 }
1964 
1965 void init_cgroup_root(struct cgroup_fs_context *ctx)
1966 {
1967 	struct cgroup_root *root = ctx->root;
1968 	struct cgroup *cgrp = &root->cgrp;
1969 
1970 	INIT_LIST_HEAD(&root->root_list);
1971 	atomic_set(&root->nr_cgrps, 1);
1972 	cgrp->root = root;
1973 	init_cgroup_housekeeping(cgrp);
1974 	idr_init(&root->cgroup_idr);
1975 
1976 	root->flags = ctx->flags;
1977 	if (ctx->release_agent)
1978 		strscpy(root->release_agent_path, ctx->release_agent, PATH_MAX);
1979 	if (ctx->name)
1980 		strscpy(root->name, ctx->name, MAX_CGROUP_ROOT_NAMELEN);
1981 	if (ctx->cpuset_clone_children)
1982 		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
1983 }
1984 
1985 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask)
1986 {
1987 	LIST_HEAD(tmp_links);
1988 	struct cgroup *root_cgrp = &root->cgrp;
1989 	struct kernfs_syscall_ops *kf_sops;
1990 	struct css_set *cset;
1991 	int i, ret;
1992 
1993 	lockdep_assert_held(&cgroup_mutex);
1994 
1995 	ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL);
1996 	if (ret < 0)
1997 		goto out;
1998 	root_cgrp->id = ret;
1999 	root_cgrp->ancestor_ids[0] = ret;
2000 
2001 	ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release,
2002 			      0, GFP_KERNEL);
2003 	if (ret)
2004 		goto out;
2005 
2006 	/*
2007 	 * We're accessing css_set_count without locking css_set_lock here,
2008 	 * but that's OK - it can only be increased by someone holding
2009 	 * cgroup_lock, and that's us.  Later rebinding may disable
2010 	 * controllers on the default hierarchy and thus create new csets,
2011 	 * which can't be more than the existing ones.  Allocate 2x.
2012 	 */
2013 	ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
2014 	if (ret)
2015 		goto cancel_ref;
2016 
2017 	ret = cgroup_init_root_id(root);
2018 	if (ret)
2019 		goto cancel_ref;
2020 
2021 	kf_sops = root == &cgrp_dfl_root ?
2022 		&cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops;
2023 
2024 	root->kf_root = kernfs_create_root(kf_sops,
2025 					   KERNFS_ROOT_CREATE_DEACTIVATED |
2026 					   KERNFS_ROOT_SUPPORT_EXPORTOP,
2027 					   root_cgrp);
2028 	if (IS_ERR(root->kf_root)) {
2029 		ret = PTR_ERR(root->kf_root);
2030 		goto exit_root_id;
2031 	}
2032 	root_cgrp->kn = root->kf_root->kn;
2033 
2034 	ret = css_populate_dir(&root_cgrp->self);
2035 	if (ret)
2036 		goto destroy_root;
2037 
2038 	ret = rebind_subsystems(root, ss_mask);
2039 	if (ret)
2040 		goto destroy_root;
2041 
2042 	ret = cgroup_bpf_inherit(root_cgrp);
2043 	WARN_ON_ONCE(ret);
2044 
2045 	trace_cgroup_setup_root(root);
2046 
2047 	/*
2048 	 * There must be no failure case after here, since rebinding takes
2049 	 * care of subsystems' refcounts, which are explicitly dropped in
2050 	 * the failure exit path.
2051 	 */
2052 	list_add(&root->root_list, &cgroup_roots);
2053 	cgroup_root_count++;
2054 
2055 	/*
2056 	 * Link the root cgroup in this hierarchy into all the css_set
2057 	 * objects.
2058 	 */
2059 	spin_lock_irq(&css_set_lock);
2060 	hash_for_each(css_set_table, i, cset, hlist) {
2061 		link_css_set(&tmp_links, cset, root_cgrp);
2062 		if (css_set_populated(cset))
2063 			cgroup_update_populated(root_cgrp, true);
2064 	}
2065 	spin_unlock_irq(&css_set_lock);
2066 
2067 	BUG_ON(!list_empty(&root_cgrp->self.children));
2068 	BUG_ON(atomic_read(&root->nr_cgrps) != 1);
2069 
2070 	kernfs_activate(root_cgrp->kn);
2071 	ret = 0;
2072 	goto out;
2073 
2074 destroy_root:
2075 	kernfs_destroy_root(root->kf_root);
2076 	root->kf_root = NULL;
2077 exit_root_id:
2078 	cgroup_exit_root_id(root);
2079 cancel_ref:
2080 	percpu_ref_exit(&root_cgrp->self.refcnt);
2081 out:
2082 	free_cgrp_cset_links(&tmp_links);
2083 	return ret;
2084 }
2085 
2086 int cgroup_do_get_tree(struct fs_context *fc)
2087 {
2088 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2089 	int ret;
2090 
2091 	ctx->kfc.root = ctx->root->kf_root;
2092 	if (fc->fs_type == &cgroup2_fs_type)
2093 		ctx->kfc.magic = CGROUP2_SUPER_MAGIC;
2094 	else
2095 		ctx->kfc.magic = CGROUP_SUPER_MAGIC;
2096 	ret = kernfs_get_tree(fc);
2097 
2098 	/*
2099 	 * In non-init cgroup namespace, instead of root cgroup's dentry,
2100 	 * we return the dentry corresponding to the cgroupns->root_cgrp.
2101 	 */
2102 	if (!ret && ctx->ns != &init_cgroup_ns) {
2103 		struct dentry *nsdentry;
2104 		struct super_block *sb = fc->root->d_sb;
2105 		struct cgroup *cgrp;
2106 
2107 		mutex_lock(&cgroup_mutex);
2108 		spin_lock_irq(&css_set_lock);
2109 
2110 		cgrp = cset_cgroup_from_root(ctx->ns->root_cset, ctx->root);
2111 
2112 		spin_unlock_irq(&css_set_lock);
2113 		mutex_unlock(&cgroup_mutex);
2114 
2115 		nsdentry = kernfs_node_dentry(cgrp->kn, sb);
2116 		dput(fc->root);
2117 		fc->root = nsdentry;
2118 		if (IS_ERR(nsdentry)) {
2119 			ret = PTR_ERR(nsdentry);
2120 			deactivate_locked_super(sb);
2121 		}
2122 	}
2123 
2124 	if (!ctx->kfc.new_sb_created)
2125 		cgroup_put(&ctx->root->cgrp);
2126 
2127 	return ret;
2128 }
2129 
2130 /*
2131  * Destroy a cgroup filesystem context.
2132  */
2133 static void cgroup_fs_context_free(struct fs_context *fc)
2134 {
2135 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2136 
2137 	kfree(ctx->name);
2138 	kfree(ctx->release_agent);
2139 	put_cgroup_ns(ctx->ns);
2140 	kernfs_free_fs_context(fc);
2141 	kfree(ctx);
2142 }
2143 
2144 static int cgroup_get_tree(struct fs_context *fc)
2145 {
2146 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2147 	int ret;
2148 
2149 	cgrp_dfl_visible = true;
2150 	cgroup_get_live(&cgrp_dfl_root.cgrp);
2151 	ctx->root = &cgrp_dfl_root;
2152 
2153 	ret = cgroup_do_get_tree(fc);
2154 	if (!ret)
2155 		apply_cgroup_root_flags(ctx->flags);
2156 	return ret;
2157 }
2158 
2159 static const struct fs_context_operations cgroup_fs_context_ops = {
2160 	.free		= cgroup_fs_context_free,
2161 	.parse_param	= cgroup2_parse_param,
2162 	.get_tree	= cgroup_get_tree,
2163 	.reconfigure	= cgroup_reconfigure,
2164 };
2165 
2166 static const struct fs_context_operations cgroup1_fs_context_ops = {
2167 	.free		= cgroup_fs_context_free,
2168 	.parse_param	= cgroup1_parse_param,
2169 	.get_tree	= cgroup1_get_tree,
2170 	.reconfigure	= cgroup1_reconfigure,
2171 };
2172 
2173 /*
2174  * Initialise the cgroup filesystem creation/reconfiguration context.  Notably,
2175  * we select the namespace we're going to use.
2176  */
2177 static int cgroup_init_fs_context(struct fs_context *fc)
2178 {
2179 	struct cgroup_fs_context *ctx;
2180 
2181 	ctx = kzalloc(sizeof(struct cgroup_fs_context), GFP_KERNEL);
2182 	if (!ctx)
2183 		return -ENOMEM;
2184 
2185 	/*
2186 	 * The first time anyone tries to mount a cgroup, enable the list
2187 	 * linking each css_set to its tasks and fix up all existing tasks.
2188 	 */
2189 	if (!use_task_css_set_links)
2190 		cgroup_enable_task_cg_lists();
2191 
2192 	ctx->ns = current->nsproxy->cgroup_ns;
2193 	get_cgroup_ns(ctx->ns);
2194 	fc->fs_private = &ctx->kfc;
2195 	if (fc->fs_type == &cgroup2_fs_type)
2196 		fc->ops = &cgroup_fs_context_ops;
2197 	else
2198 		fc->ops = &cgroup1_fs_context_ops;
2199 	if (fc->user_ns)
2200 		put_user_ns(fc->user_ns);
2201 	fc->user_ns = get_user_ns(ctx->ns->user_ns);
2202 	fc->global = true;
2203 	return 0;
2204 }
2205 
2206 static void cgroup_kill_sb(struct super_block *sb)
2207 {
2208 	struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2209 	struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2210 
2211 	/*
2212 	 * If @root doesn't have any children, start killing it.
2213 	 * This prevents new mounts by disabling percpu_ref_tryget_live().
2214 	 * cgroup_mount() may wait for @root's release.
2215 	 *
2216 	 * And don't kill the default root.
2217 	 */
2218 	if (list_empty(&root->cgrp.self.children) && root != &cgrp_dfl_root &&
2219 	    !percpu_ref_is_dying(&root->cgrp.self.refcnt))
2220 		percpu_ref_kill(&root->cgrp.self.refcnt);
2221 	cgroup_put(&root->cgrp);
2222 	kernfs_kill_sb(sb);
2223 }
2224 
2225 struct file_system_type cgroup_fs_type = {
2226 	.name			= "cgroup",
2227 	.init_fs_context	= cgroup_init_fs_context,
2228 	.parameters		= &cgroup1_fs_parameters,
2229 	.kill_sb		= cgroup_kill_sb,
2230 	.fs_flags		= FS_USERNS_MOUNT,
2231 };
2232 
2233 static struct file_system_type cgroup2_fs_type = {
2234 	.name			= "cgroup2",
2235 	.init_fs_context	= cgroup_init_fs_context,
2236 	.parameters		= &cgroup2_fs_parameters,
2237 	.kill_sb		= cgroup_kill_sb,
2238 	.fs_flags		= FS_USERNS_MOUNT,
2239 };
2240 
2241 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
2242 			  struct cgroup_namespace *ns)
2243 {
2244 	struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
2245 
2246 	return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
2247 }
2248 
2249 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
2250 		   struct cgroup_namespace *ns)
2251 {
2252 	int ret;
2253 
2254 	mutex_lock(&cgroup_mutex);
2255 	spin_lock_irq(&css_set_lock);
2256 
2257 	ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
2258 
2259 	spin_unlock_irq(&css_set_lock);
2260 	mutex_unlock(&cgroup_mutex);
2261 
2262 	return ret;
2263 }
2264 EXPORT_SYMBOL_GPL(cgroup_path_ns);
2265 
2266 /**
2267  * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
2268  * @task: target task
2269  * @buf: the buffer to write the path into
2270  * @buflen: the length of the buffer
2271  *
2272  * Determine @task's cgroup on the first (the one with the lowest non-zero
2273  * hierarchy_id) cgroup hierarchy and copy its path into @buf.  This
2274  * function grabs cgroup_mutex and shouldn't be used inside locks used by
2275  * cgroup controller callbacks.
2276  *
2277  * Return value is the same as kernfs_path().
2278  */
2279 int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
2280 {
2281 	struct cgroup_root *root;
2282 	struct cgroup *cgrp;
2283 	int hierarchy_id = 1;
2284 	int ret;
2285 
2286 	mutex_lock(&cgroup_mutex);
2287 	spin_lock_irq(&css_set_lock);
2288 
2289 	root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2290 
2291 	if (root) {
2292 		cgrp = task_cgroup_from_root(task, root);
2293 		ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns);
2294 	} else {
2295 		/* if no hierarchy exists, everyone is in "/" */
2296 		ret = strlcpy(buf, "/", buflen);
2297 	}
2298 
2299 	spin_unlock_irq(&css_set_lock);
2300 	mutex_unlock(&cgroup_mutex);
2301 	return ret;
2302 }
2303 EXPORT_SYMBOL_GPL(task_cgroup_path);
2304 
2305 /**
2306  * cgroup_migrate_add_task - add a migration target task to a migration context
2307  * @task: target task
2308  * @mgctx: target migration context
2309  *
2310  * Add @task, which is a migration target, to @mgctx->tset.  This function
2311  * becomes noop if @task doesn't need to be migrated.  @task's css_set
2312  * should have been added as a migration source and @task->cg_list will be
2313  * moved from the css_set's tasks list to mg_tasks one.
2314  */
2315 static void cgroup_migrate_add_task(struct task_struct *task,
2316 				    struct cgroup_mgctx *mgctx)
2317 {
2318 	struct css_set *cset;
2319 
2320 	lockdep_assert_held(&css_set_lock);
2321 
2322 	/* @task either already exited or can't exit until the end */
2323 	if (task->flags & PF_EXITING)
2324 		return;
2325 
2326 	/* leave @task alone if post_fork() hasn't linked it yet */
2327 	if (list_empty(&task->cg_list))
2328 		return;
2329 
2330 	cset = task_css_set(task);
2331 	if (!cset->mg_src_cgrp)
2332 		return;
2333 
2334 	mgctx->tset.nr_tasks++;
2335 
2336 	list_move_tail(&task->cg_list, &cset->mg_tasks);
2337 	if (list_empty(&cset->mg_node))
2338 		list_add_tail(&cset->mg_node,
2339 			      &mgctx->tset.src_csets);
2340 	if (list_empty(&cset->mg_dst_cset->mg_node))
2341 		list_add_tail(&cset->mg_dst_cset->mg_node,
2342 			      &mgctx->tset.dst_csets);
2343 }
2344 
2345 /**
2346  * cgroup_taskset_first - reset taskset and return the first task
2347  * @tset: taskset of interest
2348  * @dst_cssp: output variable for the destination css
2349  *
2350  * @tset iteration is initialized and the first task is returned.
2351  */
2352 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2353 					 struct cgroup_subsys_state **dst_cssp)
2354 {
2355 	tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2356 	tset->cur_task = NULL;
2357 
2358 	return cgroup_taskset_next(tset, dst_cssp);
2359 }
2360 
2361 /**
2362  * cgroup_taskset_next - iterate to the next task in taskset
2363  * @tset: taskset of interest
2364  * @dst_cssp: output variable for the destination css
2365  *
2366  * Return the next task in @tset.  Iteration must have been initialized
2367  * with cgroup_taskset_first().
2368  */
2369 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2370 					struct cgroup_subsys_state **dst_cssp)
2371 {
2372 	struct css_set *cset = tset->cur_cset;
2373 	struct task_struct *task = tset->cur_task;
2374 
2375 	while (&cset->mg_node != tset->csets) {
2376 		if (!task)
2377 			task = list_first_entry(&cset->mg_tasks,
2378 						struct task_struct, cg_list);
2379 		else
2380 			task = list_next_entry(task, cg_list);
2381 
2382 		if (&task->cg_list != &cset->mg_tasks) {
2383 			tset->cur_cset = cset;
2384 			tset->cur_task = task;
2385 
2386 			/*
2387 			 * This function may be called both before and
2388 			 * after cgroup_taskset_migrate().  The two cases
2389 			 * can be distinguished by looking at whether @cset
2390 			 * has its ->mg_dst_cset set.
2391 			 */
2392 			if (cset->mg_dst_cset)
2393 				*dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2394 			else
2395 				*dst_cssp = cset->subsys[tset->ssid];
2396 
2397 			return task;
2398 		}
2399 
2400 		cset = list_next_entry(cset, mg_node);
2401 		task = NULL;
2402 	}
2403 
2404 	return NULL;
2405 }
2406 
2407 /**
2408  * cgroup_taskset_migrate - migrate a taskset
2409  * @mgctx: migration context
2410  *
2411  * Migrate tasks in @mgctx as setup by migration preparation functions.
2412  * This function fails iff one of the ->can_attach callbacks fails and
2413  * guarantees that either all or none of the tasks in @mgctx are migrated.
2414  * @mgctx is consumed regardless of success.
2415  */
2416 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx)
2417 {
2418 	struct cgroup_taskset *tset = &mgctx->tset;
2419 	struct cgroup_subsys *ss;
2420 	struct task_struct *task, *tmp_task;
2421 	struct css_set *cset, *tmp_cset;
2422 	int ssid, failed_ssid, ret;
2423 
2424 	/* check that we can legitimately attach to the cgroup */
2425 	if (tset->nr_tasks) {
2426 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2427 			if (ss->can_attach) {
2428 				tset->ssid = ssid;
2429 				ret = ss->can_attach(tset);
2430 				if (ret) {
2431 					failed_ssid = ssid;
2432 					goto out_cancel_attach;
2433 				}
2434 			}
2435 		} while_each_subsys_mask();
2436 	}
2437 
2438 	/*
2439 	 * Now that we're guaranteed success, proceed to move all tasks to
2440 	 * the new cgroup.  There are no failure cases after here, so this
2441 	 * is the commit point.
2442 	 */
2443 	spin_lock_irq(&css_set_lock);
2444 	list_for_each_entry(cset, &tset->src_csets, mg_node) {
2445 		list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2446 			struct css_set *from_cset = task_css_set(task);
2447 			struct css_set *to_cset = cset->mg_dst_cset;
2448 
2449 			get_css_set(to_cset);
2450 			to_cset->nr_tasks++;
2451 			css_set_move_task(task, from_cset, to_cset, true);
2452 			from_cset->nr_tasks--;
2453 			/*
2454 			 * If the source or destination cgroup is frozen,
2455 			 * the task might require to change its state.
2456 			 */
2457 			cgroup_freezer_migrate_task(task, from_cset->dfl_cgrp,
2458 						    to_cset->dfl_cgrp);
2459 			put_css_set_locked(from_cset);
2460 
2461 		}
2462 	}
2463 	spin_unlock_irq(&css_set_lock);
2464 
2465 	/*
2466 	 * Migration is committed, all target tasks are now on dst_csets.
2467 	 * Nothing is sensitive to fork() after this point.  Notify
2468 	 * controllers that migration is complete.
2469 	 */
2470 	tset->csets = &tset->dst_csets;
2471 
2472 	if (tset->nr_tasks) {
2473 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2474 			if (ss->attach) {
2475 				tset->ssid = ssid;
2476 				ss->attach(tset);
2477 			}
2478 		} while_each_subsys_mask();
2479 	}
2480 
2481 	ret = 0;
2482 	goto out_release_tset;
2483 
2484 out_cancel_attach:
2485 	if (tset->nr_tasks) {
2486 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2487 			if (ssid == failed_ssid)
2488 				break;
2489 			if (ss->cancel_attach) {
2490 				tset->ssid = ssid;
2491 				ss->cancel_attach(tset);
2492 			}
2493 		} while_each_subsys_mask();
2494 	}
2495 out_release_tset:
2496 	spin_lock_irq(&css_set_lock);
2497 	list_splice_init(&tset->dst_csets, &tset->src_csets);
2498 	list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2499 		list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2500 		list_del_init(&cset->mg_node);
2501 	}
2502 	spin_unlock_irq(&css_set_lock);
2503 
2504 	/*
2505 	 * Re-initialize the cgroup_taskset structure in case it is reused
2506 	 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute()
2507 	 * iteration.
2508 	 */
2509 	tset->nr_tasks = 0;
2510 	tset->csets    = &tset->src_csets;
2511 	return ret;
2512 }
2513 
2514 /**
2515  * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination
2516  * @dst_cgrp: destination cgroup to test
2517  *
2518  * On the default hierarchy, except for the mixable, (possible) thread root
2519  * and threaded cgroups, subtree_control must be zero for migration
2520  * destination cgroups with tasks so that child cgroups don't compete
2521  * against tasks.
2522  */
2523 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp)
2524 {
2525 	/* v1 doesn't have any restriction */
2526 	if (!cgroup_on_dfl(dst_cgrp))
2527 		return 0;
2528 
2529 	/* verify @dst_cgrp can host resources */
2530 	if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp))
2531 		return -EOPNOTSUPP;
2532 
2533 	/* mixables don't care */
2534 	if (cgroup_is_mixable(dst_cgrp))
2535 		return 0;
2536 
2537 	/*
2538 	 * If @dst_cgrp is already or can become a thread root or is
2539 	 * threaded, it doesn't matter.
2540 	 */
2541 	if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp))
2542 		return 0;
2543 
2544 	/* apply no-internal-process constraint */
2545 	if (dst_cgrp->subtree_control)
2546 		return -EBUSY;
2547 
2548 	return 0;
2549 }
2550 
2551 /**
2552  * cgroup_migrate_finish - cleanup after attach
2553  * @mgctx: migration context
2554  *
2555  * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst().  See
2556  * those functions for details.
2557  */
2558 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx)
2559 {
2560 	LIST_HEAD(preloaded);
2561 	struct css_set *cset, *tmp_cset;
2562 
2563 	lockdep_assert_held(&cgroup_mutex);
2564 
2565 	spin_lock_irq(&css_set_lock);
2566 
2567 	list_splice_tail_init(&mgctx->preloaded_src_csets, &preloaded);
2568 	list_splice_tail_init(&mgctx->preloaded_dst_csets, &preloaded);
2569 
2570 	list_for_each_entry_safe(cset, tmp_cset, &preloaded, mg_preload_node) {
2571 		cset->mg_src_cgrp = NULL;
2572 		cset->mg_dst_cgrp = NULL;
2573 		cset->mg_dst_cset = NULL;
2574 		list_del_init(&cset->mg_preload_node);
2575 		put_css_set_locked(cset);
2576 	}
2577 
2578 	spin_unlock_irq(&css_set_lock);
2579 }
2580 
2581 /**
2582  * cgroup_migrate_add_src - add a migration source css_set
2583  * @src_cset: the source css_set to add
2584  * @dst_cgrp: the destination cgroup
2585  * @mgctx: migration context
2586  *
2587  * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp.  Pin
2588  * @src_cset and add it to @mgctx->src_csets, which should later be cleaned
2589  * up by cgroup_migrate_finish().
2590  *
2591  * This function may be called without holding cgroup_threadgroup_rwsem
2592  * even if the target is a process.  Threads may be created and destroyed
2593  * but as long as cgroup_mutex is not dropped, no new css_set can be put
2594  * into play and the preloaded css_sets are guaranteed to cover all
2595  * migrations.
2596  */
2597 void cgroup_migrate_add_src(struct css_set *src_cset,
2598 			    struct cgroup *dst_cgrp,
2599 			    struct cgroup_mgctx *mgctx)
2600 {
2601 	struct cgroup *src_cgrp;
2602 
2603 	lockdep_assert_held(&cgroup_mutex);
2604 	lockdep_assert_held(&css_set_lock);
2605 
2606 	/*
2607 	 * If ->dead, @src_set is associated with one or more dead cgroups
2608 	 * and doesn't contain any migratable tasks.  Ignore it early so
2609 	 * that the rest of migration path doesn't get confused by it.
2610 	 */
2611 	if (src_cset->dead)
2612 		return;
2613 
2614 	src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2615 
2616 	if (!list_empty(&src_cset->mg_preload_node))
2617 		return;
2618 
2619 	WARN_ON(src_cset->mg_src_cgrp);
2620 	WARN_ON(src_cset->mg_dst_cgrp);
2621 	WARN_ON(!list_empty(&src_cset->mg_tasks));
2622 	WARN_ON(!list_empty(&src_cset->mg_node));
2623 
2624 	src_cset->mg_src_cgrp = src_cgrp;
2625 	src_cset->mg_dst_cgrp = dst_cgrp;
2626 	get_css_set(src_cset);
2627 	list_add_tail(&src_cset->mg_preload_node, &mgctx->preloaded_src_csets);
2628 }
2629 
2630 /**
2631  * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2632  * @mgctx: migration context
2633  *
2634  * Tasks are about to be moved and all the source css_sets have been
2635  * preloaded to @mgctx->preloaded_src_csets.  This function looks up and
2636  * pins all destination css_sets, links each to its source, and append them
2637  * to @mgctx->preloaded_dst_csets.
2638  *
2639  * This function must be called after cgroup_migrate_add_src() has been
2640  * called on each migration source css_set.  After migration is performed
2641  * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2642  * @mgctx.
2643  */
2644 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx)
2645 {
2646 	struct css_set *src_cset, *tmp_cset;
2647 
2648 	lockdep_assert_held(&cgroup_mutex);
2649 
2650 	/* look up the dst cset for each src cset and link it to src */
2651 	list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets,
2652 				 mg_preload_node) {
2653 		struct css_set *dst_cset;
2654 		struct cgroup_subsys *ss;
2655 		int ssid;
2656 
2657 		dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
2658 		if (!dst_cset)
2659 			return -ENOMEM;
2660 
2661 		WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2662 
2663 		/*
2664 		 * If src cset equals dst, it's noop.  Drop the src.
2665 		 * cgroup_migrate() will skip the cset too.  Note that we
2666 		 * can't handle src == dst as some nodes are used by both.
2667 		 */
2668 		if (src_cset == dst_cset) {
2669 			src_cset->mg_src_cgrp = NULL;
2670 			src_cset->mg_dst_cgrp = NULL;
2671 			list_del_init(&src_cset->mg_preload_node);
2672 			put_css_set(src_cset);
2673 			put_css_set(dst_cset);
2674 			continue;
2675 		}
2676 
2677 		src_cset->mg_dst_cset = dst_cset;
2678 
2679 		if (list_empty(&dst_cset->mg_preload_node))
2680 			list_add_tail(&dst_cset->mg_preload_node,
2681 				      &mgctx->preloaded_dst_csets);
2682 		else
2683 			put_css_set(dst_cset);
2684 
2685 		for_each_subsys(ss, ssid)
2686 			if (src_cset->subsys[ssid] != dst_cset->subsys[ssid])
2687 				mgctx->ss_mask |= 1 << ssid;
2688 	}
2689 
2690 	return 0;
2691 }
2692 
2693 /**
2694  * cgroup_migrate - migrate a process or task to a cgroup
2695  * @leader: the leader of the process or the task to migrate
2696  * @threadgroup: whether @leader points to the whole process or a single task
2697  * @mgctx: migration context
2698  *
2699  * Migrate a process or task denoted by @leader.  If migrating a process,
2700  * the caller must be holding cgroup_threadgroup_rwsem.  The caller is also
2701  * responsible for invoking cgroup_migrate_add_src() and
2702  * cgroup_migrate_prepare_dst() on the targets before invoking this
2703  * function and following up with cgroup_migrate_finish().
2704  *
2705  * As long as a controller's ->can_attach() doesn't fail, this function is
2706  * guaranteed to succeed.  This means that, excluding ->can_attach()
2707  * failure, when migrating multiple targets, the success or failure can be
2708  * decided for all targets by invoking group_migrate_prepare_dst() before
2709  * actually starting migrating.
2710  */
2711 int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2712 		   struct cgroup_mgctx *mgctx)
2713 {
2714 	struct task_struct *task;
2715 
2716 	/*
2717 	 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2718 	 * already PF_EXITING could be freed from underneath us unless we
2719 	 * take an rcu_read_lock.
2720 	 */
2721 	spin_lock_irq(&css_set_lock);
2722 	rcu_read_lock();
2723 	task = leader;
2724 	do {
2725 		cgroup_migrate_add_task(task, mgctx);
2726 		if (!threadgroup)
2727 			break;
2728 	} while_each_thread(leader, task);
2729 	rcu_read_unlock();
2730 	spin_unlock_irq(&css_set_lock);
2731 
2732 	return cgroup_migrate_execute(mgctx);
2733 }
2734 
2735 /**
2736  * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2737  * @dst_cgrp: the cgroup to attach to
2738  * @leader: the task or the leader of the threadgroup to be attached
2739  * @threadgroup: attach the whole threadgroup?
2740  *
2741  * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2742  */
2743 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader,
2744 		       bool threadgroup)
2745 {
2746 	DEFINE_CGROUP_MGCTX(mgctx);
2747 	struct task_struct *task;
2748 	int ret;
2749 
2750 	ret = cgroup_migrate_vet_dst(dst_cgrp);
2751 	if (ret)
2752 		return ret;
2753 
2754 	/* look up all src csets */
2755 	spin_lock_irq(&css_set_lock);
2756 	rcu_read_lock();
2757 	task = leader;
2758 	do {
2759 		cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx);
2760 		if (!threadgroup)
2761 			break;
2762 	} while_each_thread(leader, task);
2763 	rcu_read_unlock();
2764 	spin_unlock_irq(&css_set_lock);
2765 
2766 	/* prepare dst csets and commit */
2767 	ret = cgroup_migrate_prepare_dst(&mgctx);
2768 	if (!ret)
2769 		ret = cgroup_migrate(leader, threadgroup, &mgctx);
2770 
2771 	cgroup_migrate_finish(&mgctx);
2772 
2773 	if (!ret)
2774 		TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup);
2775 
2776 	return ret;
2777 }
2778 
2779 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup)
2780 	__acquires(&cgroup_threadgroup_rwsem)
2781 {
2782 	struct task_struct *tsk;
2783 	pid_t pid;
2784 
2785 	if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2786 		return ERR_PTR(-EINVAL);
2787 
2788 	percpu_down_write(&cgroup_threadgroup_rwsem);
2789 
2790 	rcu_read_lock();
2791 	if (pid) {
2792 		tsk = find_task_by_vpid(pid);
2793 		if (!tsk) {
2794 			tsk = ERR_PTR(-ESRCH);
2795 			goto out_unlock_threadgroup;
2796 		}
2797 	} else {
2798 		tsk = current;
2799 	}
2800 
2801 	if (threadgroup)
2802 		tsk = tsk->group_leader;
2803 
2804 	/*
2805 	 * kthreads may acquire PF_NO_SETAFFINITY during initialization.
2806 	 * If userland migrates such a kthread to a non-root cgroup, it can
2807 	 * become trapped in a cpuset, or RT kthread may be born in a
2808 	 * cgroup with no rt_runtime allocated.  Just say no.
2809 	 */
2810 	if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) {
2811 		tsk = ERR_PTR(-EINVAL);
2812 		goto out_unlock_threadgroup;
2813 	}
2814 
2815 	get_task_struct(tsk);
2816 	goto out_unlock_rcu;
2817 
2818 out_unlock_threadgroup:
2819 	percpu_up_write(&cgroup_threadgroup_rwsem);
2820 out_unlock_rcu:
2821 	rcu_read_unlock();
2822 	return tsk;
2823 }
2824 
2825 void cgroup_procs_write_finish(struct task_struct *task)
2826 	__releases(&cgroup_threadgroup_rwsem)
2827 {
2828 	struct cgroup_subsys *ss;
2829 	int ssid;
2830 
2831 	/* release reference from cgroup_procs_write_start() */
2832 	put_task_struct(task);
2833 
2834 	percpu_up_write(&cgroup_threadgroup_rwsem);
2835 	for_each_subsys(ss, ssid)
2836 		if (ss->post_attach)
2837 			ss->post_attach();
2838 }
2839 
2840 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
2841 {
2842 	struct cgroup_subsys *ss;
2843 	bool printed = false;
2844 	int ssid;
2845 
2846 	do_each_subsys_mask(ss, ssid, ss_mask) {
2847 		if (printed)
2848 			seq_putc(seq, ' ');
2849 		seq_printf(seq, "%s", ss->name);
2850 		printed = true;
2851 	} while_each_subsys_mask();
2852 	if (printed)
2853 		seq_putc(seq, '\n');
2854 }
2855 
2856 /* show controllers which are enabled from the parent */
2857 static int cgroup_controllers_show(struct seq_file *seq, void *v)
2858 {
2859 	struct cgroup *cgrp = seq_css(seq)->cgroup;
2860 
2861 	cgroup_print_ss_mask(seq, cgroup_control(cgrp));
2862 	return 0;
2863 }
2864 
2865 /* show controllers which are enabled for a given cgroup's children */
2866 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
2867 {
2868 	struct cgroup *cgrp = seq_css(seq)->cgroup;
2869 
2870 	cgroup_print_ss_mask(seq, cgrp->subtree_control);
2871 	return 0;
2872 }
2873 
2874 /**
2875  * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2876  * @cgrp: root of the subtree to update csses for
2877  *
2878  * @cgrp's control masks have changed and its subtree's css associations
2879  * need to be updated accordingly.  This function looks up all css_sets
2880  * which are attached to the subtree, creates the matching updated css_sets
2881  * and migrates the tasks to the new ones.
2882  */
2883 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2884 {
2885 	DEFINE_CGROUP_MGCTX(mgctx);
2886 	struct cgroup_subsys_state *d_css;
2887 	struct cgroup *dsct;
2888 	struct css_set *src_cset;
2889 	int ret;
2890 
2891 	lockdep_assert_held(&cgroup_mutex);
2892 
2893 	percpu_down_write(&cgroup_threadgroup_rwsem);
2894 
2895 	/* look up all csses currently attached to @cgrp's subtree */
2896 	spin_lock_irq(&css_set_lock);
2897 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2898 		struct cgrp_cset_link *link;
2899 
2900 		list_for_each_entry(link, &dsct->cset_links, cset_link)
2901 			cgroup_migrate_add_src(link->cset, dsct, &mgctx);
2902 	}
2903 	spin_unlock_irq(&css_set_lock);
2904 
2905 	/* NULL dst indicates self on default hierarchy */
2906 	ret = cgroup_migrate_prepare_dst(&mgctx);
2907 	if (ret)
2908 		goto out_finish;
2909 
2910 	spin_lock_irq(&css_set_lock);
2911 	list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, mg_preload_node) {
2912 		struct task_struct *task, *ntask;
2913 
2914 		/* all tasks in src_csets need to be migrated */
2915 		list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
2916 			cgroup_migrate_add_task(task, &mgctx);
2917 	}
2918 	spin_unlock_irq(&css_set_lock);
2919 
2920 	ret = cgroup_migrate_execute(&mgctx);
2921 out_finish:
2922 	cgroup_migrate_finish(&mgctx);
2923 	percpu_up_write(&cgroup_threadgroup_rwsem);
2924 	return ret;
2925 }
2926 
2927 /**
2928  * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
2929  * @cgrp: root of the target subtree
2930  *
2931  * Because css offlining is asynchronous, userland may try to re-enable a
2932  * controller while the previous css is still around.  This function grabs
2933  * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
2934  */
2935 void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
2936 	__acquires(&cgroup_mutex)
2937 {
2938 	struct cgroup *dsct;
2939 	struct cgroup_subsys_state *d_css;
2940 	struct cgroup_subsys *ss;
2941 	int ssid;
2942 
2943 restart:
2944 	mutex_lock(&cgroup_mutex);
2945 
2946 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
2947 		for_each_subsys(ss, ssid) {
2948 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
2949 			DEFINE_WAIT(wait);
2950 
2951 			if (!css || !percpu_ref_is_dying(&css->refcnt))
2952 				continue;
2953 
2954 			cgroup_get_live(dsct);
2955 			prepare_to_wait(&dsct->offline_waitq, &wait,
2956 					TASK_UNINTERRUPTIBLE);
2957 
2958 			mutex_unlock(&cgroup_mutex);
2959 			schedule();
2960 			finish_wait(&dsct->offline_waitq, &wait);
2961 
2962 			cgroup_put(dsct);
2963 			goto restart;
2964 		}
2965 	}
2966 }
2967 
2968 /**
2969  * cgroup_save_control - save control masks and dom_cgrp of a subtree
2970  * @cgrp: root of the target subtree
2971  *
2972  * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the
2973  * respective old_ prefixed fields for @cgrp's subtree including @cgrp
2974  * itself.
2975  */
2976 static void cgroup_save_control(struct cgroup *cgrp)
2977 {
2978 	struct cgroup *dsct;
2979 	struct cgroup_subsys_state *d_css;
2980 
2981 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2982 		dsct->old_subtree_control = dsct->subtree_control;
2983 		dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
2984 		dsct->old_dom_cgrp = dsct->dom_cgrp;
2985 	}
2986 }
2987 
2988 /**
2989  * cgroup_propagate_control - refresh control masks of a subtree
2990  * @cgrp: root of the target subtree
2991  *
2992  * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
2993  * ->subtree_control and propagate controller availability through the
2994  * subtree so that descendants don't have unavailable controllers enabled.
2995  */
2996 static void cgroup_propagate_control(struct cgroup *cgrp)
2997 {
2998 	struct cgroup *dsct;
2999 	struct cgroup_subsys_state *d_css;
3000 
3001 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3002 		dsct->subtree_control &= cgroup_control(dsct);
3003 		dsct->subtree_ss_mask =
3004 			cgroup_calc_subtree_ss_mask(dsct->subtree_control,
3005 						    cgroup_ss_mask(dsct));
3006 	}
3007 }
3008 
3009 /**
3010  * cgroup_restore_control - restore control masks and dom_cgrp of a subtree
3011  * @cgrp: root of the target subtree
3012  *
3013  * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the
3014  * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3015  * itself.
3016  */
3017 static void cgroup_restore_control(struct cgroup *cgrp)
3018 {
3019 	struct cgroup *dsct;
3020 	struct cgroup_subsys_state *d_css;
3021 
3022 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3023 		dsct->subtree_control = dsct->old_subtree_control;
3024 		dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
3025 		dsct->dom_cgrp = dsct->old_dom_cgrp;
3026 	}
3027 }
3028 
3029 static bool css_visible(struct cgroup_subsys_state *css)
3030 {
3031 	struct cgroup_subsys *ss = css->ss;
3032 	struct cgroup *cgrp = css->cgroup;
3033 
3034 	if (cgroup_control(cgrp) & (1 << ss->id))
3035 		return true;
3036 	if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
3037 		return false;
3038 	return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
3039 }
3040 
3041 /**
3042  * cgroup_apply_control_enable - enable or show csses according to control
3043  * @cgrp: root of the target subtree
3044  *
3045  * Walk @cgrp's subtree and create new csses or make the existing ones
3046  * visible.  A css is created invisible if it's being implicitly enabled
3047  * through dependency.  An invisible css is made visible when the userland
3048  * explicitly enables it.
3049  *
3050  * Returns 0 on success, -errno on failure.  On failure, csses which have
3051  * been processed already aren't cleaned up.  The caller is responsible for
3052  * cleaning up with cgroup_apply_control_disable().
3053  */
3054 static int cgroup_apply_control_enable(struct cgroup *cgrp)
3055 {
3056 	struct cgroup *dsct;
3057 	struct cgroup_subsys_state *d_css;
3058 	struct cgroup_subsys *ss;
3059 	int ssid, ret;
3060 
3061 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3062 		for_each_subsys(ss, ssid) {
3063 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3064 
3065 			WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
3066 
3067 			if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
3068 				continue;
3069 
3070 			if (!css) {
3071 				css = css_create(dsct, ss);
3072 				if (IS_ERR(css))
3073 					return PTR_ERR(css);
3074 			}
3075 
3076 			if (css_visible(css)) {
3077 				ret = css_populate_dir(css);
3078 				if (ret)
3079 					return ret;
3080 			}
3081 		}
3082 	}
3083 
3084 	return 0;
3085 }
3086 
3087 /**
3088  * cgroup_apply_control_disable - kill or hide csses according to control
3089  * @cgrp: root of the target subtree
3090  *
3091  * Walk @cgrp's subtree and kill and hide csses so that they match
3092  * cgroup_ss_mask() and cgroup_visible_mask().
3093  *
3094  * A css is hidden when the userland requests it to be disabled while other
3095  * subsystems are still depending on it.  The css must not actively control
3096  * resources and be in the vanilla state if it's made visible again later.
3097  * Controllers which may be depended upon should provide ->css_reset() for
3098  * this purpose.
3099  */
3100 static void cgroup_apply_control_disable(struct cgroup *cgrp)
3101 {
3102 	struct cgroup *dsct;
3103 	struct cgroup_subsys_state *d_css;
3104 	struct cgroup_subsys *ss;
3105 	int ssid;
3106 
3107 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3108 		for_each_subsys(ss, ssid) {
3109 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3110 
3111 			WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
3112 
3113 			if (!css)
3114 				continue;
3115 
3116 			if (css->parent &&
3117 			    !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
3118 				kill_css(css);
3119 			} else if (!css_visible(css)) {
3120 				css_clear_dir(css);
3121 				if (ss->css_reset)
3122 					ss->css_reset(css);
3123 			}
3124 		}
3125 	}
3126 }
3127 
3128 /**
3129  * cgroup_apply_control - apply control mask updates to the subtree
3130  * @cgrp: root of the target subtree
3131  *
3132  * subsystems can be enabled and disabled in a subtree using the following
3133  * steps.
3134  *
3135  * 1. Call cgroup_save_control() to stash the current state.
3136  * 2. Update ->subtree_control masks in the subtree as desired.
3137  * 3. Call cgroup_apply_control() to apply the changes.
3138  * 4. Optionally perform other related operations.
3139  * 5. Call cgroup_finalize_control() to finish up.
3140  *
3141  * This function implements step 3 and propagates the mask changes
3142  * throughout @cgrp's subtree, updates csses accordingly and perform
3143  * process migrations.
3144  */
3145 static int cgroup_apply_control(struct cgroup *cgrp)
3146 {
3147 	int ret;
3148 
3149 	cgroup_propagate_control(cgrp);
3150 
3151 	ret = cgroup_apply_control_enable(cgrp);
3152 	if (ret)
3153 		return ret;
3154 
3155 	/*
3156 	 * At this point, cgroup_e_css_by_mask() results reflect the new csses
3157 	 * making the following cgroup_update_dfl_csses() properly update
3158 	 * css associations of all tasks in the subtree.
3159 	 */
3160 	ret = cgroup_update_dfl_csses(cgrp);
3161 	if (ret)
3162 		return ret;
3163 
3164 	return 0;
3165 }
3166 
3167 /**
3168  * cgroup_finalize_control - finalize control mask update
3169  * @cgrp: root of the target subtree
3170  * @ret: the result of the update
3171  *
3172  * Finalize control mask update.  See cgroup_apply_control() for more info.
3173  */
3174 static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
3175 {
3176 	if (ret) {
3177 		cgroup_restore_control(cgrp);
3178 		cgroup_propagate_control(cgrp);
3179 	}
3180 
3181 	cgroup_apply_control_disable(cgrp);
3182 }
3183 
3184 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable)
3185 {
3186 	u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask;
3187 
3188 	/* if nothing is getting enabled, nothing to worry about */
3189 	if (!enable)
3190 		return 0;
3191 
3192 	/* can @cgrp host any resources? */
3193 	if (!cgroup_is_valid_domain(cgrp->dom_cgrp))
3194 		return -EOPNOTSUPP;
3195 
3196 	/* mixables don't care */
3197 	if (cgroup_is_mixable(cgrp))
3198 		return 0;
3199 
3200 	if (domain_enable) {
3201 		/* can't enable domain controllers inside a thread subtree */
3202 		if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3203 			return -EOPNOTSUPP;
3204 	} else {
3205 		/*
3206 		 * Threaded controllers can handle internal competitions
3207 		 * and are always allowed inside a (prospective) thread
3208 		 * subtree.
3209 		 */
3210 		if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3211 			return 0;
3212 	}
3213 
3214 	/*
3215 	 * Controllers can't be enabled for a cgroup with tasks to avoid
3216 	 * child cgroups competing against tasks.
3217 	 */
3218 	if (cgroup_has_tasks(cgrp))
3219 		return -EBUSY;
3220 
3221 	return 0;
3222 }
3223 
3224 /* change the enabled child controllers for a cgroup in the default hierarchy */
3225 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3226 					    char *buf, size_t nbytes,
3227 					    loff_t off)
3228 {
3229 	u16 enable = 0, disable = 0;
3230 	struct cgroup *cgrp, *child;
3231 	struct cgroup_subsys *ss;
3232 	char *tok;
3233 	int ssid, ret;
3234 
3235 	/*
3236 	 * Parse input - space separated list of subsystem names prefixed
3237 	 * with either + or -.
3238 	 */
3239 	buf = strstrip(buf);
3240 	while ((tok = strsep(&buf, " "))) {
3241 		if (tok[0] == '\0')
3242 			continue;
3243 		do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
3244 			if (!cgroup_ssid_enabled(ssid) ||
3245 			    strcmp(tok + 1, ss->name))
3246 				continue;
3247 
3248 			if (*tok == '+') {
3249 				enable |= 1 << ssid;
3250 				disable &= ~(1 << ssid);
3251 			} else if (*tok == '-') {
3252 				disable |= 1 << ssid;
3253 				enable &= ~(1 << ssid);
3254 			} else {
3255 				return -EINVAL;
3256 			}
3257 			break;
3258 		} while_each_subsys_mask();
3259 		if (ssid == CGROUP_SUBSYS_COUNT)
3260 			return -EINVAL;
3261 	}
3262 
3263 	cgrp = cgroup_kn_lock_live(of->kn, true);
3264 	if (!cgrp)
3265 		return -ENODEV;
3266 
3267 	for_each_subsys(ss, ssid) {
3268 		if (enable & (1 << ssid)) {
3269 			if (cgrp->subtree_control & (1 << ssid)) {
3270 				enable &= ~(1 << ssid);
3271 				continue;
3272 			}
3273 
3274 			if (!(cgroup_control(cgrp) & (1 << ssid))) {
3275 				ret = -ENOENT;
3276 				goto out_unlock;
3277 			}
3278 		} else if (disable & (1 << ssid)) {
3279 			if (!(cgrp->subtree_control & (1 << ssid))) {
3280 				disable &= ~(1 << ssid);
3281 				continue;
3282 			}
3283 
3284 			/* a child has it enabled? */
3285 			cgroup_for_each_live_child(child, cgrp) {
3286 				if (child->subtree_control & (1 << ssid)) {
3287 					ret = -EBUSY;
3288 					goto out_unlock;
3289 				}
3290 			}
3291 		}
3292 	}
3293 
3294 	if (!enable && !disable) {
3295 		ret = 0;
3296 		goto out_unlock;
3297 	}
3298 
3299 	ret = cgroup_vet_subtree_control_enable(cgrp, enable);
3300 	if (ret)
3301 		goto out_unlock;
3302 
3303 	/* save and update control masks and prepare csses */
3304 	cgroup_save_control(cgrp);
3305 
3306 	cgrp->subtree_control |= enable;
3307 	cgrp->subtree_control &= ~disable;
3308 
3309 	ret = cgroup_apply_control(cgrp);
3310 	cgroup_finalize_control(cgrp, ret);
3311 	if (ret)
3312 		goto out_unlock;
3313 
3314 	kernfs_activate(cgrp->kn);
3315 out_unlock:
3316 	cgroup_kn_unlock(of->kn);
3317 	return ret ?: nbytes;
3318 }
3319 
3320 /**
3321  * cgroup_enable_threaded - make @cgrp threaded
3322  * @cgrp: the target cgroup
3323  *
3324  * Called when "threaded" is written to the cgroup.type interface file and
3325  * tries to make @cgrp threaded and join the parent's resource domain.
3326  * This function is never called on the root cgroup as cgroup.type doesn't
3327  * exist on it.
3328  */
3329 static int cgroup_enable_threaded(struct cgroup *cgrp)
3330 {
3331 	struct cgroup *parent = cgroup_parent(cgrp);
3332 	struct cgroup *dom_cgrp = parent->dom_cgrp;
3333 	struct cgroup *dsct;
3334 	struct cgroup_subsys_state *d_css;
3335 	int ret;
3336 
3337 	lockdep_assert_held(&cgroup_mutex);
3338 
3339 	/* noop if already threaded */
3340 	if (cgroup_is_threaded(cgrp))
3341 		return 0;
3342 
3343 	/*
3344 	 * If @cgroup is populated or has domain controllers enabled, it
3345 	 * can't be switched.  While the below cgroup_can_be_thread_root()
3346 	 * test can catch the same conditions, that's only when @parent is
3347 	 * not mixable, so let's check it explicitly.
3348 	 */
3349 	if (cgroup_is_populated(cgrp) ||
3350 	    cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
3351 		return -EOPNOTSUPP;
3352 
3353 	/* we're joining the parent's domain, ensure its validity */
3354 	if (!cgroup_is_valid_domain(dom_cgrp) ||
3355 	    !cgroup_can_be_thread_root(dom_cgrp))
3356 		return -EOPNOTSUPP;
3357 
3358 	/*
3359 	 * The following shouldn't cause actual migrations and should
3360 	 * always succeed.
3361 	 */
3362 	cgroup_save_control(cgrp);
3363 
3364 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)
3365 		if (dsct == cgrp || cgroup_is_threaded(dsct))
3366 			dsct->dom_cgrp = dom_cgrp;
3367 
3368 	ret = cgroup_apply_control(cgrp);
3369 	if (!ret)
3370 		parent->nr_threaded_children++;
3371 
3372 	cgroup_finalize_control(cgrp, ret);
3373 	return ret;
3374 }
3375 
3376 static int cgroup_type_show(struct seq_file *seq, void *v)
3377 {
3378 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3379 
3380 	if (cgroup_is_threaded(cgrp))
3381 		seq_puts(seq, "threaded\n");
3382 	else if (!cgroup_is_valid_domain(cgrp))
3383 		seq_puts(seq, "domain invalid\n");
3384 	else if (cgroup_is_thread_root(cgrp))
3385 		seq_puts(seq, "domain threaded\n");
3386 	else
3387 		seq_puts(seq, "domain\n");
3388 
3389 	return 0;
3390 }
3391 
3392 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf,
3393 				 size_t nbytes, loff_t off)
3394 {
3395 	struct cgroup *cgrp;
3396 	int ret;
3397 
3398 	/* only switching to threaded mode is supported */
3399 	if (strcmp(strstrip(buf), "threaded"))
3400 		return -EINVAL;
3401 
3402 	cgrp = cgroup_kn_lock_live(of->kn, false);
3403 	if (!cgrp)
3404 		return -ENOENT;
3405 
3406 	/* threaded can only be enabled */
3407 	ret = cgroup_enable_threaded(cgrp);
3408 
3409 	cgroup_kn_unlock(of->kn);
3410 	return ret ?: nbytes;
3411 }
3412 
3413 static int cgroup_max_descendants_show(struct seq_file *seq, void *v)
3414 {
3415 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3416 	int descendants = READ_ONCE(cgrp->max_descendants);
3417 
3418 	if (descendants == INT_MAX)
3419 		seq_puts(seq, "max\n");
3420 	else
3421 		seq_printf(seq, "%d\n", descendants);
3422 
3423 	return 0;
3424 }
3425 
3426 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of,
3427 					   char *buf, size_t nbytes, loff_t off)
3428 {
3429 	struct cgroup *cgrp;
3430 	int descendants;
3431 	ssize_t ret;
3432 
3433 	buf = strstrip(buf);
3434 	if (!strcmp(buf, "max")) {
3435 		descendants = INT_MAX;
3436 	} else {
3437 		ret = kstrtoint(buf, 0, &descendants);
3438 		if (ret)
3439 			return ret;
3440 	}
3441 
3442 	if (descendants < 0)
3443 		return -ERANGE;
3444 
3445 	cgrp = cgroup_kn_lock_live(of->kn, false);
3446 	if (!cgrp)
3447 		return -ENOENT;
3448 
3449 	cgrp->max_descendants = descendants;
3450 
3451 	cgroup_kn_unlock(of->kn);
3452 
3453 	return nbytes;
3454 }
3455 
3456 static int cgroup_max_depth_show(struct seq_file *seq, void *v)
3457 {
3458 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3459 	int depth = READ_ONCE(cgrp->max_depth);
3460 
3461 	if (depth == INT_MAX)
3462 		seq_puts(seq, "max\n");
3463 	else
3464 		seq_printf(seq, "%d\n", depth);
3465 
3466 	return 0;
3467 }
3468 
3469 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of,
3470 				      char *buf, size_t nbytes, loff_t off)
3471 {
3472 	struct cgroup *cgrp;
3473 	ssize_t ret;
3474 	int depth;
3475 
3476 	buf = strstrip(buf);
3477 	if (!strcmp(buf, "max")) {
3478 		depth = INT_MAX;
3479 	} else {
3480 		ret = kstrtoint(buf, 0, &depth);
3481 		if (ret)
3482 			return ret;
3483 	}
3484 
3485 	if (depth < 0)
3486 		return -ERANGE;
3487 
3488 	cgrp = cgroup_kn_lock_live(of->kn, false);
3489 	if (!cgrp)
3490 		return -ENOENT;
3491 
3492 	cgrp->max_depth = depth;
3493 
3494 	cgroup_kn_unlock(of->kn);
3495 
3496 	return nbytes;
3497 }
3498 
3499 static int cgroup_events_show(struct seq_file *seq, void *v)
3500 {
3501 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3502 
3503 	seq_printf(seq, "populated %d\n", cgroup_is_populated(cgrp));
3504 	seq_printf(seq, "frozen %d\n", test_bit(CGRP_FROZEN, &cgrp->flags));
3505 
3506 	return 0;
3507 }
3508 
3509 static int cgroup_stat_show(struct seq_file *seq, void *v)
3510 {
3511 	struct cgroup *cgroup = seq_css(seq)->cgroup;
3512 
3513 	seq_printf(seq, "nr_descendants %d\n",
3514 		   cgroup->nr_descendants);
3515 	seq_printf(seq, "nr_dying_descendants %d\n",
3516 		   cgroup->nr_dying_descendants);
3517 
3518 	return 0;
3519 }
3520 
3521 static int __maybe_unused cgroup_extra_stat_show(struct seq_file *seq,
3522 						 struct cgroup *cgrp, int ssid)
3523 {
3524 	struct cgroup_subsys *ss = cgroup_subsys[ssid];
3525 	struct cgroup_subsys_state *css;
3526 	int ret;
3527 
3528 	if (!ss->css_extra_stat_show)
3529 		return 0;
3530 
3531 	css = cgroup_tryget_css(cgrp, ss);
3532 	if (!css)
3533 		return 0;
3534 
3535 	ret = ss->css_extra_stat_show(seq, css);
3536 	css_put(css);
3537 	return ret;
3538 }
3539 
3540 static int cpu_stat_show(struct seq_file *seq, void *v)
3541 {
3542 	struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup;
3543 	int ret = 0;
3544 
3545 	cgroup_base_stat_cputime_show(seq);
3546 #ifdef CONFIG_CGROUP_SCHED
3547 	ret = cgroup_extra_stat_show(seq, cgrp, cpu_cgrp_id);
3548 #endif
3549 	return ret;
3550 }
3551 
3552 #ifdef CONFIG_PSI
3553 static int cgroup_io_pressure_show(struct seq_file *seq, void *v)
3554 {
3555 	struct cgroup *cgroup = seq_css(seq)->cgroup;
3556 	struct psi_group *psi = cgroup->id == 1 ? &psi_system : &cgroup->psi;
3557 
3558 	return psi_show(seq, psi, PSI_IO);
3559 }
3560 static int cgroup_memory_pressure_show(struct seq_file *seq, void *v)
3561 {
3562 	struct cgroup *cgroup = seq_css(seq)->cgroup;
3563 	struct psi_group *psi = cgroup->id == 1 ? &psi_system : &cgroup->psi;
3564 
3565 	return psi_show(seq, psi, PSI_MEM);
3566 }
3567 static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v)
3568 {
3569 	struct cgroup *cgroup = seq_css(seq)->cgroup;
3570 	struct psi_group *psi = cgroup->id == 1 ? &psi_system : &cgroup->psi;
3571 
3572 	return psi_show(seq, psi, PSI_CPU);
3573 }
3574 
3575 static ssize_t cgroup_pressure_write(struct kernfs_open_file *of, char *buf,
3576 					  size_t nbytes, enum psi_res res)
3577 {
3578 	struct psi_trigger *new;
3579 	struct cgroup *cgrp;
3580 
3581 	cgrp = cgroup_kn_lock_live(of->kn, false);
3582 	if (!cgrp)
3583 		return -ENODEV;
3584 
3585 	cgroup_get(cgrp);
3586 	cgroup_kn_unlock(of->kn);
3587 
3588 	new = psi_trigger_create(&cgrp->psi, buf, nbytes, res);
3589 	if (IS_ERR(new)) {
3590 		cgroup_put(cgrp);
3591 		return PTR_ERR(new);
3592 	}
3593 
3594 	psi_trigger_replace(&of->priv, new);
3595 
3596 	cgroup_put(cgrp);
3597 
3598 	return nbytes;
3599 }
3600 
3601 static ssize_t cgroup_io_pressure_write(struct kernfs_open_file *of,
3602 					  char *buf, size_t nbytes,
3603 					  loff_t off)
3604 {
3605 	return cgroup_pressure_write(of, buf, nbytes, PSI_IO);
3606 }
3607 
3608 static ssize_t cgroup_memory_pressure_write(struct kernfs_open_file *of,
3609 					  char *buf, size_t nbytes,
3610 					  loff_t off)
3611 {
3612 	return cgroup_pressure_write(of, buf, nbytes, PSI_MEM);
3613 }
3614 
3615 static ssize_t cgroup_cpu_pressure_write(struct kernfs_open_file *of,
3616 					  char *buf, size_t nbytes,
3617 					  loff_t off)
3618 {
3619 	return cgroup_pressure_write(of, buf, nbytes, PSI_CPU);
3620 }
3621 
3622 static __poll_t cgroup_pressure_poll(struct kernfs_open_file *of,
3623 					  poll_table *pt)
3624 {
3625 	return psi_trigger_poll(&of->priv, of->file, pt);
3626 }
3627 
3628 static void cgroup_pressure_release(struct kernfs_open_file *of)
3629 {
3630 	psi_trigger_replace(&of->priv, NULL);
3631 }
3632 #endif /* CONFIG_PSI */
3633 
3634 static int cgroup_freeze_show(struct seq_file *seq, void *v)
3635 {
3636 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3637 
3638 	seq_printf(seq, "%d\n", cgrp->freezer.freeze);
3639 
3640 	return 0;
3641 }
3642 
3643 static ssize_t cgroup_freeze_write(struct kernfs_open_file *of,
3644 				   char *buf, size_t nbytes, loff_t off)
3645 {
3646 	struct cgroup *cgrp;
3647 	ssize_t ret;
3648 	int freeze;
3649 
3650 	ret = kstrtoint(strstrip(buf), 0, &freeze);
3651 	if (ret)
3652 		return ret;
3653 
3654 	if (freeze < 0 || freeze > 1)
3655 		return -ERANGE;
3656 
3657 	cgrp = cgroup_kn_lock_live(of->kn, false);
3658 	if (!cgrp)
3659 		return -ENOENT;
3660 
3661 	cgroup_freeze(cgrp, freeze);
3662 
3663 	cgroup_kn_unlock(of->kn);
3664 
3665 	return nbytes;
3666 }
3667 
3668 static int cgroup_file_open(struct kernfs_open_file *of)
3669 {
3670 	struct cftype *cft = of->kn->priv;
3671 
3672 	if (cft->open)
3673 		return cft->open(of);
3674 	return 0;
3675 }
3676 
3677 static void cgroup_file_release(struct kernfs_open_file *of)
3678 {
3679 	struct cftype *cft = of->kn->priv;
3680 
3681 	if (cft->release)
3682 		cft->release(of);
3683 }
3684 
3685 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3686 				 size_t nbytes, loff_t off)
3687 {
3688 	struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
3689 	struct cgroup *cgrp = of->kn->parent->priv;
3690 	struct cftype *cft = of->kn->priv;
3691 	struct cgroup_subsys_state *css;
3692 	int ret;
3693 
3694 	/*
3695 	 * If namespaces are delegation boundaries, disallow writes to
3696 	 * files in an non-init namespace root from inside the namespace
3697 	 * except for the files explicitly marked delegatable -
3698 	 * cgroup.procs and cgroup.subtree_control.
3699 	 */
3700 	if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) &&
3701 	    !(cft->flags & CFTYPE_NS_DELEGATABLE) &&
3702 	    ns != &init_cgroup_ns && ns->root_cset->dfl_cgrp == cgrp)
3703 		return -EPERM;
3704 
3705 	if (cft->write)
3706 		return cft->write(of, buf, nbytes, off);
3707 
3708 	/*
3709 	 * kernfs guarantees that a file isn't deleted with operations in
3710 	 * flight, which means that the matching css is and stays alive and
3711 	 * doesn't need to be pinned.  The RCU locking is not necessary
3712 	 * either.  It's just for the convenience of using cgroup_css().
3713 	 */
3714 	rcu_read_lock();
3715 	css = cgroup_css(cgrp, cft->ss);
3716 	rcu_read_unlock();
3717 
3718 	if (cft->write_u64) {
3719 		unsigned long long v;
3720 		ret = kstrtoull(buf, 0, &v);
3721 		if (!ret)
3722 			ret = cft->write_u64(css, cft, v);
3723 	} else if (cft->write_s64) {
3724 		long long v;
3725 		ret = kstrtoll(buf, 0, &v);
3726 		if (!ret)
3727 			ret = cft->write_s64(css, cft, v);
3728 	} else {
3729 		ret = -EINVAL;
3730 	}
3731 
3732 	return ret ?: nbytes;
3733 }
3734 
3735 static __poll_t cgroup_file_poll(struct kernfs_open_file *of, poll_table *pt)
3736 {
3737 	struct cftype *cft = of->kn->priv;
3738 
3739 	if (cft->poll)
3740 		return cft->poll(of, pt);
3741 
3742 	return kernfs_generic_poll(of, pt);
3743 }
3744 
3745 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
3746 {
3747 	return seq_cft(seq)->seq_start(seq, ppos);
3748 }
3749 
3750 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
3751 {
3752 	return seq_cft(seq)->seq_next(seq, v, ppos);
3753 }
3754 
3755 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
3756 {
3757 	if (seq_cft(seq)->seq_stop)
3758 		seq_cft(seq)->seq_stop(seq, v);
3759 }
3760 
3761 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
3762 {
3763 	struct cftype *cft = seq_cft(m);
3764 	struct cgroup_subsys_state *css = seq_css(m);
3765 
3766 	if (cft->seq_show)
3767 		return cft->seq_show(m, arg);
3768 
3769 	if (cft->read_u64)
3770 		seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3771 	else if (cft->read_s64)
3772 		seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3773 	else
3774 		return -EINVAL;
3775 	return 0;
3776 }
3777 
3778 static struct kernfs_ops cgroup_kf_single_ops = {
3779 	.atomic_write_len	= PAGE_SIZE,
3780 	.open			= cgroup_file_open,
3781 	.release		= cgroup_file_release,
3782 	.write			= cgroup_file_write,
3783 	.poll			= cgroup_file_poll,
3784 	.seq_show		= cgroup_seqfile_show,
3785 };
3786 
3787 static struct kernfs_ops cgroup_kf_ops = {
3788 	.atomic_write_len	= PAGE_SIZE,
3789 	.open			= cgroup_file_open,
3790 	.release		= cgroup_file_release,
3791 	.write			= cgroup_file_write,
3792 	.poll			= cgroup_file_poll,
3793 	.seq_start		= cgroup_seqfile_start,
3794 	.seq_next		= cgroup_seqfile_next,
3795 	.seq_stop		= cgroup_seqfile_stop,
3796 	.seq_show		= cgroup_seqfile_show,
3797 };
3798 
3799 /* set uid and gid of cgroup dirs and files to that of the creator */
3800 static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3801 {
3802 	struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3803 			       .ia_uid = current_fsuid(),
3804 			       .ia_gid = current_fsgid(), };
3805 
3806 	if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3807 	    gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3808 		return 0;
3809 
3810 	return kernfs_setattr(kn, &iattr);
3811 }
3812 
3813 static void cgroup_file_notify_timer(struct timer_list *timer)
3814 {
3815 	cgroup_file_notify(container_of(timer, struct cgroup_file,
3816 					notify_timer));
3817 }
3818 
3819 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3820 			   struct cftype *cft)
3821 {
3822 	char name[CGROUP_FILE_NAME_MAX];
3823 	struct kernfs_node *kn;
3824 	struct lock_class_key *key = NULL;
3825 	int ret;
3826 
3827 #ifdef CONFIG_DEBUG_LOCK_ALLOC
3828 	key = &cft->lockdep_key;
3829 #endif
3830 	kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3831 				  cgroup_file_mode(cft),
3832 				  GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
3833 				  0, cft->kf_ops, cft,
3834 				  NULL, key);
3835 	if (IS_ERR(kn))
3836 		return PTR_ERR(kn);
3837 
3838 	ret = cgroup_kn_set_ugid(kn);
3839 	if (ret) {
3840 		kernfs_remove(kn);
3841 		return ret;
3842 	}
3843 
3844 	if (cft->file_offset) {
3845 		struct cgroup_file *cfile = (void *)css + cft->file_offset;
3846 
3847 		timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0);
3848 
3849 		spin_lock_irq(&cgroup_file_kn_lock);
3850 		cfile->kn = kn;
3851 		spin_unlock_irq(&cgroup_file_kn_lock);
3852 	}
3853 
3854 	return 0;
3855 }
3856 
3857 /**
3858  * cgroup_addrm_files - add or remove files to a cgroup directory
3859  * @css: the target css
3860  * @cgrp: the target cgroup (usually css->cgroup)
3861  * @cfts: array of cftypes to be added
3862  * @is_add: whether to add or remove
3863  *
3864  * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3865  * For removals, this function never fails.
3866  */
3867 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3868 			      struct cgroup *cgrp, struct cftype cfts[],
3869 			      bool is_add)
3870 {
3871 	struct cftype *cft, *cft_end = NULL;
3872 	int ret = 0;
3873 
3874 	lockdep_assert_held(&cgroup_mutex);
3875 
3876 restart:
3877 	for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
3878 		/* does cft->flags tell us to skip this file on @cgrp? */
3879 		if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
3880 			continue;
3881 		if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
3882 			continue;
3883 		if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
3884 			continue;
3885 		if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
3886 			continue;
3887 		if ((cft->flags & CFTYPE_DEBUG) && !cgroup_debug)
3888 			continue;
3889 		if (is_add) {
3890 			ret = cgroup_add_file(css, cgrp, cft);
3891 			if (ret) {
3892 				pr_warn("%s: failed to add %s, err=%d\n",
3893 					__func__, cft->name, ret);
3894 				cft_end = cft;
3895 				is_add = false;
3896 				goto restart;
3897 			}
3898 		} else {
3899 			cgroup_rm_file(cgrp, cft);
3900 		}
3901 	}
3902 	return ret;
3903 }
3904 
3905 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
3906 {
3907 	struct cgroup_subsys *ss = cfts[0].ss;
3908 	struct cgroup *root = &ss->root->cgrp;
3909 	struct cgroup_subsys_state *css;
3910 	int ret = 0;
3911 
3912 	lockdep_assert_held(&cgroup_mutex);
3913 
3914 	/* add/rm files for all cgroups created before */
3915 	css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
3916 		struct cgroup *cgrp = css->cgroup;
3917 
3918 		if (!(css->flags & CSS_VISIBLE))
3919 			continue;
3920 
3921 		ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
3922 		if (ret)
3923 			break;
3924 	}
3925 
3926 	if (is_add && !ret)
3927 		kernfs_activate(root->kn);
3928 	return ret;
3929 }
3930 
3931 static void cgroup_exit_cftypes(struct cftype *cfts)
3932 {
3933 	struct cftype *cft;
3934 
3935 	for (cft = cfts; cft->name[0] != '\0'; cft++) {
3936 		/* free copy for custom atomic_write_len, see init_cftypes() */
3937 		if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3938 			kfree(cft->kf_ops);
3939 		cft->kf_ops = NULL;
3940 		cft->ss = NULL;
3941 
3942 		/* revert flags set by cgroup core while adding @cfts */
3943 		cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
3944 	}
3945 }
3946 
3947 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3948 {
3949 	struct cftype *cft;
3950 
3951 	for (cft = cfts; cft->name[0] != '\0'; cft++) {
3952 		struct kernfs_ops *kf_ops;
3953 
3954 		WARN_ON(cft->ss || cft->kf_ops);
3955 
3956 		if (cft->seq_start)
3957 			kf_ops = &cgroup_kf_ops;
3958 		else
3959 			kf_ops = &cgroup_kf_single_ops;
3960 
3961 		/*
3962 		 * Ugh... if @cft wants a custom max_write_len, we need to
3963 		 * make a copy of kf_ops to set its atomic_write_len.
3964 		 */
3965 		if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3966 			kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3967 			if (!kf_ops) {
3968 				cgroup_exit_cftypes(cfts);
3969 				return -ENOMEM;
3970 			}
3971 			kf_ops->atomic_write_len = cft->max_write_len;
3972 		}
3973 
3974 		cft->kf_ops = kf_ops;
3975 		cft->ss = ss;
3976 	}
3977 
3978 	return 0;
3979 }
3980 
3981 static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3982 {
3983 	lockdep_assert_held(&cgroup_mutex);
3984 
3985 	if (!cfts || !cfts[0].ss)
3986 		return -ENOENT;
3987 
3988 	list_del(&cfts->node);
3989 	cgroup_apply_cftypes(cfts, false);
3990 	cgroup_exit_cftypes(cfts);
3991 	return 0;
3992 }
3993 
3994 /**
3995  * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
3996  * @cfts: zero-length name terminated array of cftypes
3997  *
3998  * Unregister @cfts.  Files described by @cfts are removed from all
3999  * existing cgroups and all future cgroups won't have them either.  This
4000  * function can be called anytime whether @cfts' subsys is attached or not.
4001  *
4002  * Returns 0 on successful unregistration, -ENOENT if @cfts is not
4003  * registered.
4004  */
4005 int cgroup_rm_cftypes(struct cftype *cfts)
4006 {
4007 	int ret;
4008 
4009 	mutex_lock(&cgroup_mutex);
4010 	ret = cgroup_rm_cftypes_locked(cfts);
4011 	mutex_unlock(&cgroup_mutex);
4012 	return ret;
4013 }
4014 
4015 /**
4016  * cgroup_add_cftypes - add an array of cftypes to a subsystem
4017  * @ss: target cgroup subsystem
4018  * @cfts: zero-length name terminated array of cftypes
4019  *
4020  * Register @cfts to @ss.  Files described by @cfts are created for all
4021  * existing cgroups to which @ss is attached and all future cgroups will
4022  * have them too.  This function can be called anytime whether @ss is
4023  * attached or not.
4024  *
4025  * Returns 0 on successful registration, -errno on failure.  Note that this
4026  * function currently returns 0 as long as @cfts registration is successful
4027  * even if some file creation attempts on existing cgroups fail.
4028  */
4029 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4030 {
4031 	int ret;
4032 
4033 	if (!cgroup_ssid_enabled(ss->id))
4034 		return 0;
4035 
4036 	if (!cfts || cfts[0].name[0] == '\0')
4037 		return 0;
4038 
4039 	ret = cgroup_init_cftypes(ss, cfts);
4040 	if (ret)
4041 		return ret;
4042 
4043 	mutex_lock(&cgroup_mutex);
4044 
4045 	list_add_tail(&cfts->node, &ss->cfts);
4046 	ret = cgroup_apply_cftypes(cfts, true);
4047 	if (ret)
4048 		cgroup_rm_cftypes_locked(cfts);
4049 
4050 	mutex_unlock(&cgroup_mutex);
4051 	return ret;
4052 }
4053 
4054 /**
4055  * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
4056  * @ss: target cgroup subsystem
4057  * @cfts: zero-length name terminated array of cftypes
4058  *
4059  * Similar to cgroup_add_cftypes() but the added files are only used for
4060  * the default hierarchy.
4061  */
4062 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4063 {
4064 	struct cftype *cft;
4065 
4066 	for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4067 		cft->flags |= __CFTYPE_ONLY_ON_DFL;
4068 	return cgroup_add_cftypes(ss, cfts);
4069 }
4070 
4071 /**
4072  * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
4073  * @ss: target cgroup subsystem
4074  * @cfts: zero-length name terminated array of cftypes
4075  *
4076  * Similar to cgroup_add_cftypes() but the added files are only used for
4077  * the legacy hierarchies.
4078  */
4079 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4080 {
4081 	struct cftype *cft;
4082 
4083 	for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4084 		cft->flags |= __CFTYPE_NOT_ON_DFL;
4085 	return cgroup_add_cftypes(ss, cfts);
4086 }
4087 
4088 /**
4089  * cgroup_file_notify - generate a file modified event for a cgroup_file
4090  * @cfile: target cgroup_file
4091  *
4092  * @cfile must have been obtained by setting cftype->file_offset.
4093  */
4094 void cgroup_file_notify(struct cgroup_file *cfile)
4095 {
4096 	unsigned long flags;
4097 
4098 	spin_lock_irqsave(&cgroup_file_kn_lock, flags);
4099 	if (cfile->kn) {
4100 		unsigned long last = cfile->notified_at;
4101 		unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV;
4102 
4103 		if (time_in_range(jiffies, last, next)) {
4104 			timer_reduce(&cfile->notify_timer, next);
4105 		} else {
4106 			kernfs_notify(cfile->kn);
4107 			cfile->notified_at = jiffies;
4108 		}
4109 	}
4110 	spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
4111 }
4112 
4113 /**
4114  * css_next_child - find the next child of a given css
4115  * @pos: the current position (%NULL to initiate traversal)
4116  * @parent: css whose children to walk
4117  *
4118  * This function returns the next child of @parent and should be called
4119  * under either cgroup_mutex or RCU read lock.  The only requirement is
4120  * that @parent and @pos are accessible.  The next sibling is guaranteed to
4121  * be returned regardless of their states.
4122  *
4123  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4124  * css which finished ->css_online() is guaranteed to be visible in the
4125  * future iterations and will stay visible until the last reference is put.
4126  * A css which hasn't finished ->css_online() or already finished
4127  * ->css_offline() may show up during traversal.  It's each subsystem's
4128  * responsibility to synchronize against on/offlining.
4129  */
4130 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
4131 					   struct cgroup_subsys_state *parent)
4132 {
4133 	struct cgroup_subsys_state *next;
4134 
4135 	cgroup_assert_mutex_or_rcu_locked();
4136 
4137 	/*
4138 	 * @pos could already have been unlinked from the sibling list.
4139 	 * Once a cgroup is removed, its ->sibling.next is no longer
4140 	 * updated when its next sibling changes.  CSS_RELEASED is set when
4141 	 * @pos is taken off list, at which time its next pointer is valid,
4142 	 * and, as releases are serialized, the one pointed to by the next
4143 	 * pointer is guaranteed to not have started release yet.  This
4144 	 * implies that if we observe !CSS_RELEASED on @pos in this RCU
4145 	 * critical section, the one pointed to by its next pointer is
4146 	 * guaranteed to not have finished its RCU grace period even if we
4147 	 * have dropped rcu_read_lock() inbetween iterations.
4148 	 *
4149 	 * If @pos has CSS_RELEASED set, its next pointer can't be
4150 	 * dereferenced; however, as each css is given a monotonically
4151 	 * increasing unique serial number and always appended to the
4152 	 * sibling list, the next one can be found by walking the parent's
4153 	 * children until the first css with higher serial number than
4154 	 * @pos's.  While this path can be slower, it happens iff iteration
4155 	 * races against release and the race window is very small.
4156 	 */
4157 	if (!pos) {
4158 		next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
4159 	} else if (likely(!(pos->flags & CSS_RELEASED))) {
4160 		next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
4161 	} else {
4162 		list_for_each_entry_rcu(next, &parent->children, sibling)
4163 			if (next->serial_nr > pos->serial_nr)
4164 				break;
4165 	}
4166 
4167 	/*
4168 	 * @next, if not pointing to the head, can be dereferenced and is
4169 	 * the next sibling.
4170 	 */
4171 	if (&next->sibling != &parent->children)
4172 		return next;
4173 	return NULL;
4174 }
4175 
4176 /**
4177  * css_next_descendant_pre - find the next descendant for pre-order walk
4178  * @pos: the current position (%NULL to initiate traversal)
4179  * @root: css whose descendants to walk
4180  *
4181  * To be used by css_for_each_descendant_pre().  Find the next descendant
4182  * to visit for pre-order traversal of @root's descendants.  @root is
4183  * included in the iteration and the first node to be visited.
4184  *
4185  * While this function requires cgroup_mutex or RCU read locking, it
4186  * doesn't require the whole traversal to be contained in a single critical
4187  * section.  This function will return the correct next descendant as long
4188  * as both @pos and @root are accessible and @pos is a descendant of @root.
4189  *
4190  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4191  * css which finished ->css_online() is guaranteed to be visible in the
4192  * future iterations and will stay visible until the last reference is put.
4193  * A css which hasn't finished ->css_online() or already finished
4194  * ->css_offline() may show up during traversal.  It's each subsystem's
4195  * responsibility to synchronize against on/offlining.
4196  */
4197 struct cgroup_subsys_state *
4198 css_next_descendant_pre(struct cgroup_subsys_state *pos,
4199 			struct cgroup_subsys_state *root)
4200 {
4201 	struct cgroup_subsys_state *next;
4202 
4203 	cgroup_assert_mutex_or_rcu_locked();
4204 
4205 	/* if first iteration, visit @root */
4206 	if (!pos)
4207 		return root;
4208 
4209 	/* visit the first child if exists */
4210 	next = css_next_child(NULL, pos);
4211 	if (next)
4212 		return next;
4213 
4214 	/* no child, visit my or the closest ancestor's next sibling */
4215 	while (pos != root) {
4216 		next = css_next_child(pos, pos->parent);
4217 		if (next)
4218 			return next;
4219 		pos = pos->parent;
4220 	}
4221 
4222 	return NULL;
4223 }
4224 
4225 /**
4226  * css_rightmost_descendant - return the rightmost descendant of a css
4227  * @pos: css of interest
4228  *
4229  * Return the rightmost descendant of @pos.  If there's no descendant, @pos
4230  * is returned.  This can be used during pre-order traversal to skip
4231  * subtree of @pos.
4232  *
4233  * While this function requires cgroup_mutex or RCU read locking, it
4234  * doesn't require the whole traversal to be contained in a single critical
4235  * section.  This function will return the correct rightmost descendant as
4236  * long as @pos is accessible.
4237  */
4238 struct cgroup_subsys_state *
4239 css_rightmost_descendant(struct cgroup_subsys_state *pos)
4240 {
4241 	struct cgroup_subsys_state *last, *tmp;
4242 
4243 	cgroup_assert_mutex_or_rcu_locked();
4244 
4245 	do {
4246 		last = pos;
4247 		/* ->prev isn't RCU safe, walk ->next till the end */
4248 		pos = NULL;
4249 		css_for_each_child(tmp, last)
4250 			pos = tmp;
4251 	} while (pos);
4252 
4253 	return last;
4254 }
4255 
4256 static struct cgroup_subsys_state *
4257 css_leftmost_descendant(struct cgroup_subsys_state *pos)
4258 {
4259 	struct cgroup_subsys_state *last;
4260 
4261 	do {
4262 		last = pos;
4263 		pos = css_next_child(NULL, pos);
4264 	} while (pos);
4265 
4266 	return last;
4267 }
4268 
4269 /**
4270  * css_next_descendant_post - find the next descendant for post-order walk
4271  * @pos: the current position (%NULL to initiate traversal)
4272  * @root: css whose descendants to walk
4273  *
4274  * To be used by css_for_each_descendant_post().  Find the next descendant
4275  * to visit for post-order traversal of @root's descendants.  @root is
4276  * included in the iteration and the last node to be visited.
4277  *
4278  * While this function requires cgroup_mutex or RCU read locking, it
4279  * doesn't require the whole traversal to be contained in a single critical
4280  * section.  This function will return the correct next descendant as long
4281  * as both @pos and @cgroup are accessible and @pos is a descendant of
4282  * @cgroup.
4283  *
4284  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4285  * css which finished ->css_online() is guaranteed to be visible in the
4286  * future iterations and will stay visible until the last reference is put.
4287  * A css which hasn't finished ->css_online() or already finished
4288  * ->css_offline() may show up during traversal.  It's each subsystem's
4289  * responsibility to synchronize against on/offlining.
4290  */
4291 struct cgroup_subsys_state *
4292 css_next_descendant_post(struct cgroup_subsys_state *pos,
4293 			 struct cgroup_subsys_state *root)
4294 {
4295 	struct cgroup_subsys_state *next;
4296 
4297 	cgroup_assert_mutex_or_rcu_locked();
4298 
4299 	/* if first iteration, visit leftmost descendant which may be @root */
4300 	if (!pos)
4301 		return css_leftmost_descendant(root);
4302 
4303 	/* if we visited @root, we're done */
4304 	if (pos == root)
4305 		return NULL;
4306 
4307 	/* if there's an unvisited sibling, visit its leftmost descendant */
4308 	next = css_next_child(pos, pos->parent);
4309 	if (next)
4310 		return css_leftmost_descendant(next);
4311 
4312 	/* no sibling left, visit parent */
4313 	return pos->parent;
4314 }
4315 
4316 /**
4317  * css_has_online_children - does a css have online children
4318  * @css: the target css
4319  *
4320  * Returns %true if @css has any online children; otherwise, %false.  This
4321  * function can be called from any context but the caller is responsible
4322  * for synchronizing against on/offlining as necessary.
4323  */
4324 bool css_has_online_children(struct cgroup_subsys_state *css)
4325 {
4326 	struct cgroup_subsys_state *child;
4327 	bool ret = false;
4328 
4329 	rcu_read_lock();
4330 	css_for_each_child(child, css) {
4331 		if (child->flags & CSS_ONLINE) {
4332 			ret = true;
4333 			break;
4334 		}
4335 	}
4336 	rcu_read_unlock();
4337 	return ret;
4338 }
4339 
4340 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it)
4341 {
4342 	struct list_head *l;
4343 	struct cgrp_cset_link *link;
4344 	struct css_set *cset;
4345 
4346 	lockdep_assert_held(&css_set_lock);
4347 
4348 	/* find the next threaded cset */
4349 	if (it->tcset_pos) {
4350 		l = it->tcset_pos->next;
4351 
4352 		if (l != it->tcset_head) {
4353 			it->tcset_pos = l;
4354 			return container_of(l, struct css_set,
4355 					    threaded_csets_node);
4356 		}
4357 
4358 		it->tcset_pos = NULL;
4359 	}
4360 
4361 	/* find the next cset */
4362 	l = it->cset_pos;
4363 	l = l->next;
4364 	if (l == it->cset_head) {
4365 		it->cset_pos = NULL;
4366 		return NULL;
4367 	}
4368 
4369 	if (it->ss) {
4370 		cset = container_of(l, struct css_set, e_cset_node[it->ss->id]);
4371 	} else {
4372 		link = list_entry(l, struct cgrp_cset_link, cset_link);
4373 		cset = link->cset;
4374 	}
4375 
4376 	it->cset_pos = l;
4377 
4378 	/* initialize threaded css_set walking */
4379 	if (it->flags & CSS_TASK_ITER_THREADED) {
4380 		if (it->cur_dcset)
4381 			put_css_set_locked(it->cur_dcset);
4382 		it->cur_dcset = cset;
4383 		get_css_set(cset);
4384 
4385 		it->tcset_head = &cset->threaded_csets;
4386 		it->tcset_pos = &cset->threaded_csets;
4387 	}
4388 
4389 	return cset;
4390 }
4391 
4392 /**
4393  * css_task_iter_advance_css_set - advance a task itererator to the next css_set
4394  * @it: the iterator to advance
4395  *
4396  * Advance @it to the next css_set to walk.
4397  */
4398 static void css_task_iter_advance_css_set(struct css_task_iter *it)
4399 {
4400 	struct css_set *cset;
4401 
4402 	lockdep_assert_held(&css_set_lock);
4403 
4404 	/* Advance to the next non-empty css_set */
4405 	do {
4406 		cset = css_task_iter_next_css_set(it);
4407 		if (!cset) {
4408 			it->task_pos = NULL;
4409 			return;
4410 		}
4411 	} while (!css_set_populated(cset));
4412 
4413 	if (!list_empty(&cset->tasks))
4414 		it->task_pos = cset->tasks.next;
4415 	else
4416 		it->task_pos = cset->mg_tasks.next;
4417 
4418 	it->tasks_head = &cset->tasks;
4419 	it->mg_tasks_head = &cset->mg_tasks;
4420 
4421 	/*
4422 	 * We don't keep css_sets locked across iteration steps and thus
4423 	 * need to take steps to ensure that iteration can be resumed after
4424 	 * the lock is re-acquired.  Iteration is performed at two levels -
4425 	 * css_sets and tasks in them.
4426 	 *
4427 	 * Once created, a css_set never leaves its cgroup lists, so a
4428 	 * pinned css_set is guaranteed to stay put and we can resume
4429 	 * iteration afterwards.
4430 	 *
4431 	 * Tasks may leave @cset across iteration steps.  This is resolved
4432 	 * by registering each iterator with the css_set currently being
4433 	 * walked and making css_set_move_task() advance iterators whose
4434 	 * next task is leaving.
4435 	 */
4436 	if (it->cur_cset) {
4437 		list_del(&it->iters_node);
4438 		put_css_set_locked(it->cur_cset);
4439 	}
4440 	get_css_set(cset);
4441 	it->cur_cset = cset;
4442 	list_add(&it->iters_node, &cset->task_iters);
4443 }
4444 
4445 static void css_task_iter_advance(struct css_task_iter *it)
4446 {
4447 	struct list_head *next;
4448 
4449 	lockdep_assert_held(&css_set_lock);
4450 repeat:
4451 	if (it->task_pos) {
4452 		/*
4453 		 * Advance iterator to find next entry.  cset->tasks is
4454 		 * consumed first and then ->mg_tasks.  After ->mg_tasks,
4455 		 * we move onto the next cset.
4456 		 */
4457 		next = it->task_pos->next;
4458 
4459 		if (next == it->tasks_head)
4460 			next = it->mg_tasks_head->next;
4461 
4462 		if (next == it->mg_tasks_head)
4463 			css_task_iter_advance_css_set(it);
4464 		else
4465 			it->task_pos = next;
4466 	} else {
4467 		/* called from start, proceed to the first cset */
4468 		css_task_iter_advance_css_set(it);
4469 	}
4470 
4471 	/* if PROCS, skip over tasks which aren't group leaders */
4472 	if ((it->flags & CSS_TASK_ITER_PROCS) && it->task_pos &&
4473 	    !thread_group_leader(list_entry(it->task_pos, struct task_struct,
4474 					    cg_list)))
4475 		goto repeat;
4476 }
4477 
4478 /**
4479  * css_task_iter_start - initiate task iteration
4480  * @css: the css to walk tasks of
4481  * @flags: CSS_TASK_ITER_* flags
4482  * @it: the task iterator to use
4483  *
4484  * Initiate iteration through the tasks of @css.  The caller can call
4485  * css_task_iter_next() to walk through the tasks until the function
4486  * returns NULL.  On completion of iteration, css_task_iter_end() must be
4487  * called.
4488  */
4489 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags,
4490 			 struct css_task_iter *it)
4491 {
4492 	/* no one should try to iterate before mounting cgroups */
4493 	WARN_ON_ONCE(!use_task_css_set_links);
4494 
4495 	memset(it, 0, sizeof(*it));
4496 
4497 	spin_lock_irq(&css_set_lock);
4498 
4499 	it->ss = css->ss;
4500 	it->flags = flags;
4501 
4502 	if (it->ss)
4503 		it->cset_pos = &css->cgroup->e_csets[css->ss->id];
4504 	else
4505 		it->cset_pos = &css->cgroup->cset_links;
4506 
4507 	it->cset_head = it->cset_pos;
4508 
4509 	css_task_iter_advance(it);
4510 
4511 	spin_unlock_irq(&css_set_lock);
4512 }
4513 
4514 /**
4515  * css_task_iter_next - return the next task for the iterator
4516  * @it: the task iterator being iterated
4517  *
4518  * The "next" function for task iteration.  @it should have been
4519  * initialized via css_task_iter_start().  Returns NULL when the iteration
4520  * reaches the end.
4521  */
4522 struct task_struct *css_task_iter_next(struct css_task_iter *it)
4523 {
4524 	if (it->cur_task) {
4525 		put_task_struct(it->cur_task);
4526 		it->cur_task = NULL;
4527 	}
4528 
4529 	spin_lock_irq(&css_set_lock);
4530 
4531 	if (it->task_pos) {
4532 		it->cur_task = list_entry(it->task_pos, struct task_struct,
4533 					  cg_list);
4534 		get_task_struct(it->cur_task);
4535 		css_task_iter_advance(it);
4536 	}
4537 
4538 	spin_unlock_irq(&css_set_lock);
4539 
4540 	return it->cur_task;
4541 }
4542 
4543 /**
4544  * css_task_iter_end - finish task iteration
4545  * @it: the task iterator to finish
4546  *
4547  * Finish task iteration started by css_task_iter_start().
4548  */
4549 void css_task_iter_end(struct css_task_iter *it)
4550 {
4551 	if (it->cur_cset) {
4552 		spin_lock_irq(&css_set_lock);
4553 		list_del(&it->iters_node);
4554 		put_css_set_locked(it->cur_cset);
4555 		spin_unlock_irq(&css_set_lock);
4556 	}
4557 
4558 	if (it->cur_dcset)
4559 		put_css_set(it->cur_dcset);
4560 
4561 	if (it->cur_task)
4562 		put_task_struct(it->cur_task);
4563 }
4564 
4565 static void cgroup_procs_release(struct kernfs_open_file *of)
4566 {
4567 	if (of->priv) {
4568 		css_task_iter_end(of->priv);
4569 		kfree(of->priv);
4570 	}
4571 }
4572 
4573 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos)
4574 {
4575 	struct kernfs_open_file *of = s->private;
4576 	struct css_task_iter *it = of->priv;
4577 
4578 	return css_task_iter_next(it);
4579 }
4580 
4581 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos,
4582 				  unsigned int iter_flags)
4583 {
4584 	struct kernfs_open_file *of = s->private;
4585 	struct cgroup *cgrp = seq_css(s)->cgroup;
4586 	struct css_task_iter *it = of->priv;
4587 
4588 	/*
4589 	 * When a seq_file is seeked, it's always traversed sequentially
4590 	 * from position 0, so we can simply keep iterating on !0 *pos.
4591 	 */
4592 	if (!it) {
4593 		if (WARN_ON_ONCE((*pos)++))
4594 			return ERR_PTR(-EINVAL);
4595 
4596 		it = kzalloc(sizeof(*it), GFP_KERNEL);
4597 		if (!it)
4598 			return ERR_PTR(-ENOMEM);
4599 		of->priv = it;
4600 		css_task_iter_start(&cgrp->self, iter_flags, it);
4601 	} else if (!(*pos)++) {
4602 		css_task_iter_end(it);
4603 		css_task_iter_start(&cgrp->self, iter_flags, it);
4604 	}
4605 
4606 	return cgroup_procs_next(s, NULL, NULL);
4607 }
4608 
4609 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos)
4610 {
4611 	struct cgroup *cgrp = seq_css(s)->cgroup;
4612 
4613 	/*
4614 	 * All processes of a threaded subtree belong to the domain cgroup
4615 	 * of the subtree.  Only threads can be distributed across the
4616 	 * subtree.  Reject reads on cgroup.procs in the subtree proper.
4617 	 * They're always empty anyway.
4618 	 */
4619 	if (cgroup_is_threaded(cgrp))
4620 		return ERR_PTR(-EOPNOTSUPP);
4621 
4622 	return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS |
4623 					    CSS_TASK_ITER_THREADED);
4624 }
4625 
4626 static int cgroup_procs_show(struct seq_file *s, void *v)
4627 {
4628 	seq_printf(s, "%d\n", task_pid_vnr(v));
4629 	return 0;
4630 }
4631 
4632 static int cgroup_procs_write_permission(struct cgroup *src_cgrp,
4633 					 struct cgroup *dst_cgrp,
4634 					 struct super_block *sb)
4635 {
4636 	struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
4637 	struct cgroup *com_cgrp = src_cgrp;
4638 	struct inode *inode;
4639 	int ret;
4640 
4641 	lockdep_assert_held(&cgroup_mutex);
4642 
4643 	/* find the common ancestor */
4644 	while (!cgroup_is_descendant(dst_cgrp, com_cgrp))
4645 		com_cgrp = cgroup_parent(com_cgrp);
4646 
4647 	/* %current should be authorized to migrate to the common ancestor */
4648 	inode = kernfs_get_inode(sb, com_cgrp->procs_file.kn);
4649 	if (!inode)
4650 		return -ENOMEM;
4651 
4652 	ret = inode_permission(inode, MAY_WRITE);
4653 	iput(inode);
4654 	if (ret)
4655 		return ret;
4656 
4657 	/*
4658 	 * If namespaces are delegation boundaries, %current must be able
4659 	 * to see both source and destination cgroups from its namespace.
4660 	 */
4661 	if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) &&
4662 	    (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) ||
4663 	     !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp)))
4664 		return -ENOENT;
4665 
4666 	return 0;
4667 }
4668 
4669 static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
4670 				  char *buf, size_t nbytes, loff_t off)
4671 {
4672 	struct cgroup *src_cgrp, *dst_cgrp;
4673 	struct task_struct *task;
4674 	ssize_t ret;
4675 
4676 	dst_cgrp = cgroup_kn_lock_live(of->kn, false);
4677 	if (!dst_cgrp)
4678 		return -ENODEV;
4679 
4680 	task = cgroup_procs_write_start(buf, true);
4681 	ret = PTR_ERR_OR_ZERO(task);
4682 	if (ret)
4683 		goto out_unlock;
4684 
4685 	/* find the source cgroup */
4686 	spin_lock_irq(&css_set_lock);
4687 	src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
4688 	spin_unlock_irq(&css_set_lock);
4689 
4690 	ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp,
4691 					    of->file->f_path.dentry->d_sb);
4692 	if (ret)
4693 		goto out_finish;
4694 
4695 	ret = cgroup_attach_task(dst_cgrp, task, true);
4696 
4697 out_finish:
4698 	cgroup_procs_write_finish(task);
4699 out_unlock:
4700 	cgroup_kn_unlock(of->kn);
4701 
4702 	return ret ?: nbytes;
4703 }
4704 
4705 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos)
4706 {
4707 	return __cgroup_procs_start(s, pos, 0);
4708 }
4709 
4710 static ssize_t cgroup_threads_write(struct kernfs_open_file *of,
4711 				    char *buf, size_t nbytes, loff_t off)
4712 {
4713 	struct cgroup *src_cgrp, *dst_cgrp;
4714 	struct task_struct *task;
4715 	ssize_t ret;
4716 
4717 	buf = strstrip(buf);
4718 
4719 	dst_cgrp = cgroup_kn_lock_live(of->kn, false);
4720 	if (!dst_cgrp)
4721 		return -ENODEV;
4722 
4723 	task = cgroup_procs_write_start(buf, false);
4724 	ret = PTR_ERR_OR_ZERO(task);
4725 	if (ret)
4726 		goto out_unlock;
4727 
4728 	/* find the source cgroup */
4729 	spin_lock_irq(&css_set_lock);
4730 	src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
4731 	spin_unlock_irq(&css_set_lock);
4732 
4733 	/* thread migrations follow the cgroup.procs delegation rule */
4734 	ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp,
4735 					    of->file->f_path.dentry->d_sb);
4736 	if (ret)
4737 		goto out_finish;
4738 
4739 	/* and must be contained in the same domain */
4740 	ret = -EOPNOTSUPP;
4741 	if (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp)
4742 		goto out_finish;
4743 
4744 	ret = cgroup_attach_task(dst_cgrp, task, false);
4745 
4746 out_finish:
4747 	cgroup_procs_write_finish(task);
4748 out_unlock:
4749 	cgroup_kn_unlock(of->kn);
4750 
4751 	return ret ?: nbytes;
4752 }
4753 
4754 /* cgroup core interface files for the default hierarchy */
4755 static struct cftype cgroup_base_files[] = {
4756 	{
4757 		.name = "cgroup.type",
4758 		.flags = CFTYPE_NOT_ON_ROOT,
4759 		.seq_show = cgroup_type_show,
4760 		.write = cgroup_type_write,
4761 	},
4762 	{
4763 		.name = "cgroup.procs",
4764 		.flags = CFTYPE_NS_DELEGATABLE,
4765 		.file_offset = offsetof(struct cgroup, procs_file),
4766 		.release = cgroup_procs_release,
4767 		.seq_start = cgroup_procs_start,
4768 		.seq_next = cgroup_procs_next,
4769 		.seq_show = cgroup_procs_show,
4770 		.write = cgroup_procs_write,
4771 	},
4772 	{
4773 		.name = "cgroup.threads",
4774 		.flags = CFTYPE_NS_DELEGATABLE,
4775 		.release = cgroup_procs_release,
4776 		.seq_start = cgroup_threads_start,
4777 		.seq_next = cgroup_procs_next,
4778 		.seq_show = cgroup_procs_show,
4779 		.write = cgroup_threads_write,
4780 	},
4781 	{
4782 		.name = "cgroup.controllers",
4783 		.seq_show = cgroup_controllers_show,
4784 	},
4785 	{
4786 		.name = "cgroup.subtree_control",
4787 		.flags = CFTYPE_NS_DELEGATABLE,
4788 		.seq_show = cgroup_subtree_control_show,
4789 		.write = cgroup_subtree_control_write,
4790 	},
4791 	{
4792 		.name = "cgroup.events",
4793 		.flags = CFTYPE_NOT_ON_ROOT,
4794 		.file_offset = offsetof(struct cgroup, events_file),
4795 		.seq_show = cgroup_events_show,
4796 	},
4797 	{
4798 		.name = "cgroup.max.descendants",
4799 		.seq_show = cgroup_max_descendants_show,
4800 		.write = cgroup_max_descendants_write,
4801 	},
4802 	{
4803 		.name = "cgroup.max.depth",
4804 		.seq_show = cgroup_max_depth_show,
4805 		.write = cgroup_max_depth_write,
4806 	},
4807 	{
4808 		.name = "cgroup.stat",
4809 		.seq_show = cgroup_stat_show,
4810 	},
4811 	{
4812 		.name = "cgroup.freeze",
4813 		.flags = CFTYPE_NOT_ON_ROOT,
4814 		.seq_show = cgroup_freeze_show,
4815 		.write = cgroup_freeze_write,
4816 	},
4817 	{
4818 		.name = "cpu.stat",
4819 		.flags = CFTYPE_NOT_ON_ROOT,
4820 		.seq_show = cpu_stat_show,
4821 	},
4822 #ifdef CONFIG_PSI
4823 	{
4824 		.name = "io.pressure",
4825 		.seq_show = cgroup_io_pressure_show,
4826 		.write = cgroup_io_pressure_write,
4827 		.poll = cgroup_pressure_poll,
4828 		.release = cgroup_pressure_release,
4829 	},
4830 	{
4831 		.name = "memory.pressure",
4832 		.seq_show = cgroup_memory_pressure_show,
4833 		.write = cgroup_memory_pressure_write,
4834 		.poll = cgroup_pressure_poll,
4835 		.release = cgroup_pressure_release,
4836 	},
4837 	{
4838 		.name = "cpu.pressure",
4839 		.seq_show = cgroup_cpu_pressure_show,
4840 		.write = cgroup_cpu_pressure_write,
4841 		.poll = cgroup_pressure_poll,
4842 		.release = cgroup_pressure_release,
4843 	},
4844 #endif /* CONFIG_PSI */
4845 	{ }	/* terminate */
4846 };
4847 
4848 /*
4849  * css destruction is four-stage process.
4850  *
4851  * 1. Destruction starts.  Killing of the percpu_ref is initiated.
4852  *    Implemented in kill_css().
4853  *
4854  * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
4855  *    and thus css_tryget_online() is guaranteed to fail, the css can be
4856  *    offlined by invoking offline_css().  After offlining, the base ref is
4857  *    put.  Implemented in css_killed_work_fn().
4858  *
4859  * 3. When the percpu_ref reaches zero, the only possible remaining
4860  *    accessors are inside RCU read sections.  css_release() schedules the
4861  *    RCU callback.
4862  *
4863  * 4. After the grace period, the css can be freed.  Implemented in
4864  *    css_free_work_fn().
4865  *
4866  * It is actually hairier because both step 2 and 4 require process context
4867  * and thus involve punting to css->destroy_work adding two additional
4868  * steps to the already complex sequence.
4869  */
4870 static void css_free_rwork_fn(struct work_struct *work)
4871 {
4872 	struct cgroup_subsys_state *css = container_of(to_rcu_work(work),
4873 				struct cgroup_subsys_state, destroy_rwork);
4874 	struct cgroup_subsys *ss = css->ss;
4875 	struct cgroup *cgrp = css->cgroup;
4876 
4877 	percpu_ref_exit(&css->refcnt);
4878 
4879 	if (ss) {
4880 		/* css free path */
4881 		struct cgroup_subsys_state *parent = css->parent;
4882 		int id = css->id;
4883 
4884 		ss->css_free(css);
4885 		cgroup_idr_remove(&ss->css_idr, id);
4886 		cgroup_put(cgrp);
4887 
4888 		if (parent)
4889 			css_put(parent);
4890 	} else {
4891 		/* cgroup free path */
4892 		atomic_dec(&cgrp->root->nr_cgrps);
4893 		cgroup1_pidlist_destroy_all(cgrp);
4894 		cancel_work_sync(&cgrp->release_agent_work);
4895 
4896 		if (cgroup_parent(cgrp)) {
4897 			/*
4898 			 * We get a ref to the parent, and put the ref when
4899 			 * this cgroup is being freed, so it's guaranteed
4900 			 * that the parent won't be destroyed before its
4901 			 * children.
4902 			 */
4903 			cgroup_put(cgroup_parent(cgrp));
4904 			kernfs_put(cgrp->kn);
4905 			psi_cgroup_free(cgrp);
4906 			if (cgroup_on_dfl(cgrp))
4907 				cgroup_rstat_exit(cgrp);
4908 			kfree(cgrp);
4909 		} else {
4910 			/*
4911 			 * This is root cgroup's refcnt reaching zero,
4912 			 * which indicates that the root should be
4913 			 * released.
4914 			 */
4915 			cgroup_destroy_root(cgrp->root);
4916 		}
4917 	}
4918 }
4919 
4920 static void css_release_work_fn(struct work_struct *work)
4921 {
4922 	struct cgroup_subsys_state *css =
4923 		container_of(work, struct cgroup_subsys_state, destroy_work);
4924 	struct cgroup_subsys *ss = css->ss;
4925 	struct cgroup *cgrp = css->cgroup;
4926 
4927 	mutex_lock(&cgroup_mutex);
4928 
4929 	css->flags |= CSS_RELEASED;
4930 	list_del_rcu(&css->sibling);
4931 
4932 	if (ss) {
4933 		/* css release path */
4934 		if (!list_empty(&css->rstat_css_node)) {
4935 			cgroup_rstat_flush(cgrp);
4936 			list_del_rcu(&css->rstat_css_node);
4937 		}
4938 
4939 		cgroup_idr_replace(&ss->css_idr, NULL, css->id);
4940 		if (ss->css_released)
4941 			ss->css_released(css);
4942 	} else {
4943 		struct cgroup *tcgrp;
4944 
4945 		/* cgroup release path */
4946 		TRACE_CGROUP_PATH(release, cgrp);
4947 
4948 		if (cgroup_on_dfl(cgrp))
4949 			cgroup_rstat_flush(cgrp);
4950 
4951 		spin_lock_irq(&css_set_lock);
4952 		for (tcgrp = cgroup_parent(cgrp); tcgrp;
4953 		     tcgrp = cgroup_parent(tcgrp))
4954 			tcgrp->nr_dying_descendants--;
4955 		spin_unlock_irq(&css_set_lock);
4956 
4957 		cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4958 		cgrp->id = -1;
4959 
4960 		/*
4961 		 * There are two control paths which try to determine
4962 		 * cgroup from dentry without going through kernfs -
4963 		 * cgroupstats_build() and css_tryget_online_from_dir().
4964 		 * Those are supported by RCU protecting clearing of
4965 		 * cgrp->kn->priv backpointer.
4966 		 */
4967 		if (cgrp->kn)
4968 			RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
4969 					 NULL);
4970 
4971 		cgroup_bpf_put(cgrp);
4972 	}
4973 
4974 	mutex_unlock(&cgroup_mutex);
4975 
4976 	INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
4977 	queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
4978 }
4979 
4980 static void css_release(struct percpu_ref *ref)
4981 {
4982 	struct cgroup_subsys_state *css =
4983 		container_of(ref, struct cgroup_subsys_state, refcnt);
4984 
4985 	INIT_WORK(&css->destroy_work, css_release_work_fn);
4986 	queue_work(cgroup_destroy_wq, &css->destroy_work);
4987 }
4988 
4989 static void init_and_link_css(struct cgroup_subsys_state *css,
4990 			      struct cgroup_subsys *ss, struct cgroup *cgrp)
4991 {
4992 	lockdep_assert_held(&cgroup_mutex);
4993 
4994 	cgroup_get_live(cgrp);
4995 
4996 	memset(css, 0, sizeof(*css));
4997 	css->cgroup = cgrp;
4998 	css->ss = ss;
4999 	css->id = -1;
5000 	INIT_LIST_HEAD(&css->sibling);
5001 	INIT_LIST_HEAD(&css->children);
5002 	INIT_LIST_HEAD(&css->rstat_css_node);
5003 	css->serial_nr = css_serial_nr_next++;
5004 	atomic_set(&css->online_cnt, 0);
5005 
5006 	if (cgroup_parent(cgrp)) {
5007 		css->parent = cgroup_css(cgroup_parent(cgrp), ss);
5008 		css_get(css->parent);
5009 	}
5010 
5011 	if (cgroup_on_dfl(cgrp) && ss->css_rstat_flush)
5012 		list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list);
5013 
5014 	BUG_ON(cgroup_css(cgrp, ss));
5015 }
5016 
5017 /* invoke ->css_online() on a new CSS and mark it online if successful */
5018 static int online_css(struct cgroup_subsys_state *css)
5019 {
5020 	struct cgroup_subsys *ss = css->ss;
5021 	int ret = 0;
5022 
5023 	lockdep_assert_held(&cgroup_mutex);
5024 
5025 	if (ss->css_online)
5026 		ret = ss->css_online(css);
5027 	if (!ret) {
5028 		css->flags |= CSS_ONLINE;
5029 		rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
5030 
5031 		atomic_inc(&css->online_cnt);
5032 		if (css->parent)
5033 			atomic_inc(&css->parent->online_cnt);
5034 	}
5035 	return ret;
5036 }
5037 
5038 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
5039 static void offline_css(struct cgroup_subsys_state *css)
5040 {
5041 	struct cgroup_subsys *ss = css->ss;
5042 
5043 	lockdep_assert_held(&cgroup_mutex);
5044 
5045 	if (!(css->flags & CSS_ONLINE))
5046 		return;
5047 
5048 	if (ss->css_offline)
5049 		ss->css_offline(css);
5050 
5051 	css->flags &= ~CSS_ONLINE;
5052 	RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
5053 
5054 	wake_up_all(&css->cgroup->offline_waitq);
5055 }
5056 
5057 /**
5058  * css_create - create a cgroup_subsys_state
5059  * @cgrp: the cgroup new css will be associated with
5060  * @ss: the subsys of new css
5061  *
5062  * Create a new css associated with @cgrp - @ss pair.  On success, the new
5063  * css is online and installed in @cgrp.  This function doesn't create the
5064  * interface files.  Returns 0 on success, -errno on failure.
5065  */
5066 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
5067 					      struct cgroup_subsys *ss)
5068 {
5069 	struct cgroup *parent = cgroup_parent(cgrp);
5070 	struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
5071 	struct cgroup_subsys_state *css;
5072 	int err;
5073 
5074 	lockdep_assert_held(&cgroup_mutex);
5075 
5076 	css = ss->css_alloc(parent_css);
5077 	if (!css)
5078 		css = ERR_PTR(-ENOMEM);
5079 	if (IS_ERR(css))
5080 		return css;
5081 
5082 	init_and_link_css(css, ss, cgrp);
5083 
5084 	err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
5085 	if (err)
5086 		goto err_free_css;
5087 
5088 	err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
5089 	if (err < 0)
5090 		goto err_free_css;
5091 	css->id = err;
5092 
5093 	/* @css is ready to be brought online now, make it visible */
5094 	list_add_tail_rcu(&css->sibling, &parent_css->children);
5095 	cgroup_idr_replace(&ss->css_idr, css, css->id);
5096 
5097 	err = online_css(css);
5098 	if (err)
5099 		goto err_list_del;
5100 
5101 	if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
5102 	    cgroup_parent(parent)) {
5103 		pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
5104 			current->comm, current->pid, ss->name);
5105 		if (!strcmp(ss->name, "memory"))
5106 			pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
5107 		ss->warned_broken_hierarchy = true;
5108 	}
5109 
5110 	return css;
5111 
5112 err_list_del:
5113 	list_del_rcu(&css->sibling);
5114 err_free_css:
5115 	list_del_rcu(&css->rstat_css_node);
5116 	INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5117 	queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5118 	return ERR_PTR(err);
5119 }
5120 
5121 /*
5122  * The returned cgroup is fully initialized including its control mask, but
5123  * it isn't associated with its kernfs_node and doesn't have the control
5124  * mask applied.
5125  */
5126 static struct cgroup *cgroup_create(struct cgroup *parent)
5127 {
5128 	struct cgroup_root *root = parent->root;
5129 	struct cgroup *cgrp, *tcgrp;
5130 	int level = parent->level + 1;
5131 	int ret;
5132 
5133 	/* allocate the cgroup and its ID, 0 is reserved for the root */
5134 	cgrp = kzalloc(struct_size(cgrp, ancestor_ids, (level + 1)),
5135 		       GFP_KERNEL);
5136 	if (!cgrp)
5137 		return ERR_PTR(-ENOMEM);
5138 
5139 	ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
5140 	if (ret)
5141 		goto out_free_cgrp;
5142 
5143 	if (cgroup_on_dfl(parent)) {
5144 		ret = cgroup_rstat_init(cgrp);
5145 		if (ret)
5146 			goto out_cancel_ref;
5147 	}
5148 
5149 	/*
5150 	 * Temporarily set the pointer to NULL, so idr_find() won't return
5151 	 * a half-baked cgroup.
5152 	 */
5153 	cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL);
5154 	if (cgrp->id < 0) {
5155 		ret = -ENOMEM;
5156 		goto out_stat_exit;
5157 	}
5158 
5159 	init_cgroup_housekeeping(cgrp);
5160 
5161 	cgrp->self.parent = &parent->self;
5162 	cgrp->root = root;
5163 	cgrp->level = level;
5164 
5165 	ret = psi_cgroup_alloc(cgrp);
5166 	if (ret)
5167 		goto out_idr_free;
5168 
5169 	ret = cgroup_bpf_inherit(cgrp);
5170 	if (ret)
5171 		goto out_psi_free;
5172 
5173 	/*
5174 	 * New cgroup inherits effective freeze counter, and
5175 	 * if the parent has to be frozen, the child has too.
5176 	 */
5177 	cgrp->freezer.e_freeze = parent->freezer.e_freeze;
5178 	if (cgrp->freezer.e_freeze)
5179 		set_bit(CGRP_FROZEN, &cgrp->flags);
5180 
5181 	spin_lock_irq(&css_set_lock);
5182 	for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5183 		cgrp->ancestor_ids[tcgrp->level] = tcgrp->id;
5184 
5185 		if (tcgrp != cgrp) {
5186 			tcgrp->nr_descendants++;
5187 
5188 			/*
5189 			 * If the new cgroup is frozen, all ancestor cgroups
5190 			 * get a new frozen descendant, but their state can't
5191 			 * change because of this.
5192 			 */
5193 			if (cgrp->freezer.e_freeze)
5194 				tcgrp->freezer.nr_frozen_descendants++;
5195 		}
5196 	}
5197 	spin_unlock_irq(&css_set_lock);
5198 
5199 	if (notify_on_release(parent))
5200 		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
5201 
5202 	if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
5203 		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
5204 
5205 	cgrp->self.serial_nr = css_serial_nr_next++;
5206 
5207 	/* allocation complete, commit to creation */
5208 	list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
5209 	atomic_inc(&root->nr_cgrps);
5210 	cgroup_get_live(parent);
5211 
5212 	/*
5213 	 * @cgrp is now fully operational.  If something fails after this
5214 	 * point, it'll be released via the normal destruction path.
5215 	 */
5216 	cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
5217 
5218 	/*
5219 	 * On the default hierarchy, a child doesn't automatically inherit
5220 	 * subtree_control from the parent.  Each is configured manually.
5221 	 */
5222 	if (!cgroup_on_dfl(cgrp))
5223 		cgrp->subtree_control = cgroup_control(cgrp);
5224 
5225 	cgroup_propagate_control(cgrp);
5226 
5227 	return cgrp;
5228 
5229 out_psi_free:
5230 	psi_cgroup_free(cgrp);
5231 out_idr_free:
5232 	cgroup_idr_remove(&root->cgroup_idr, cgrp->id);
5233 out_stat_exit:
5234 	if (cgroup_on_dfl(parent))
5235 		cgroup_rstat_exit(cgrp);
5236 out_cancel_ref:
5237 	percpu_ref_exit(&cgrp->self.refcnt);
5238 out_free_cgrp:
5239 	kfree(cgrp);
5240 	return ERR_PTR(ret);
5241 }
5242 
5243 static bool cgroup_check_hierarchy_limits(struct cgroup *parent)
5244 {
5245 	struct cgroup *cgroup;
5246 	int ret = false;
5247 	int level = 1;
5248 
5249 	lockdep_assert_held(&cgroup_mutex);
5250 
5251 	for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) {
5252 		if (cgroup->nr_descendants >= cgroup->max_descendants)
5253 			goto fail;
5254 
5255 		if (level > cgroup->max_depth)
5256 			goto fail;
5257 
5258 		level++;
5259 	}
5260 
5261 	ret = true;
5262 fail:
5263 	return ret;
5264 }
5265 
5266 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode)
5267 {
5268 	struct cgroup *parent, *cgrp;
5269 	struct kernfs_node *kn;
5270 	int ret;
5271 
5272 	/* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
5273 	if (strchr(name, '\n'))
5274 		return -EINVAL;
5275 
5276 	parent = cgroup_kn_lock_live(parent_kn, false);
5277 	if (!parent)
5278 		return -ENODEV;
5279 
5280 	if (!cgroup_check_hierarchy_limits(parent)) {
5281 		ret = -EAGAIN;
5282 		goto out_unlock;
5283 	}
5284 
5285 	cgrp = cgroup_create(parent);
5286 	if (IS_ERR(cgrp)) {
5287 		ret = PTR_ERR(cgrp);
5288 		goto out_unlock;
5289 	}
5290 
5291 	/* create the directory */
5292 	kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
5293 	if (IS_ERR(kn)) {
5294 		ret = PTR_ERR(kn);
5295 		goto out_destroy;
5296 	}
5297 	cgrp->kn = kn;
5298 
5299 	/*
5300 	 * This extra ref will be put in cgroup_free_fn() and guarantees
5301 	 * that @cgrp->kn is always accessible.
5302 	 */
5303 	kernfs_get(kn);
5304 
5305 	ret = cgroup_kn_set_ugid(kn);
5306 	if (ret)
5307 		goto out_destroy;
5308 
5309 	ret = css_populate_dir(&cgrp->self);
5310 	if (ret)
5311 		goto out_destroy;
5312 
5313 	ret = cgroup_apply_control_enable(cgrp);
5314 	if (ret)
5315 		goto out_destroy;
5316 
5317 	TRACE_CGROUP_PATH(mkdir, cgrp);
5318 
5319 	/* let's create and online css's */
5320 	kernfs_activate(kn);
5321 
5322 	ret = 0;
5323 	goto out_unlock;
5324 
5325 out_destroy:
5326 	cgroup_destroy_locked(cgrp);
5327 out_unlock:
5328 	cgroup_kn_unlock(parent_kn);
5329 	return ret;
5330 }
5331 
5332 /*
5333  * This is called when the refcnt of a css is confirmed to be killed.
5334  * css_tryget_online() is now guaranteed to fail.  Tell the subsystem to
5335  * initate destruction and put the css ref from kill_css().
5336  */
5337 static void css_killed_work_fn(struct work_struct *work)
5338 {
5339 	struct cgroup_subsys_state *css =
5340 		container_of(work, struct cgroup_subsys_state, destroy_work);
5341 
5342 	mutex_lock(&cgroup_mutex);
5343 
5344 	do {
5345 		offline_css(css);
5346 		css_put(css);
5347 		/* @css can't go away while we're holding cgroup_mutex */
5348 		css = css->parent;
5349 	} while (css && atomic_dec_and_test(&css->online_cnt));
5350 
5351 	mutex_unlock(&cgroup_mutex);
5352 }
5353 
5354 /* css kill confirmation processing requires process context, bounce */
5355 static void css_killed_ref_fn(struct percpu_ref *ref)
5356 {
5357 	struct cgroup_subsys_state *css =
5358 		container_of(ref, struct cgroup_subsys_state, refcnt);
5359 
5360 	if (atomic_dec_and_test(&css->online_cnt)) {
5361 		INIT_WORK(&css->destroy_work, css_killed_work_fn);
5362 		queue_work(cgroup_destroy_wq, &css->destroy_work);
5363 	}
5364 }
5365 
5366 /**
5367  * kill_css - destroy a css
5368  * @css: css to destroy
5369  *
5370  * This function initiates destruction of @css by removing cgroup interface
5371  * files and putting its base reference.  ->css_offline() will be invoked
5372  * asynchronously once css_tryget_online() is guaranteed to fail and when
5373  * the reference count reaches zero, @css will be released.
5374  */
5375 static void kill_css(struct cgroup_subsys_state *css)
5376 {
5377 	lockdep_assert_held(&cgroup_mutex);
5378 
5379 	if (css->flags & CSS_DYING)
5380 		return;
5381 
5382 	css->flags |= CSS_DYING;
5383 
5384 	/*
5385 	 * This must happen before css is disassociated with its cgroup.
5386 	 * See seq_css() for details.
5387 	 */
5388 	css_clear_dir(css);
5389 
5390 	/*
5391 	 * Killing would put the base ref, but we need to keep it alive
5392 	 * until after ->css_offline().
5393 	 */
5394 	css_get(css);
5395 
5396 	/*
5397 	 * cgroup core guarantees that, by the time ->css_offline() is
5398 	 * invoked, no new css reference will be given out via
5399 	 * css_tryget_online().  We can't simply call percpu_ref_kill() and
5400 	 * proceed to offlining css's because percpu_ref_kill() doesn't
5401 	 * guarantee that the ref is seen as killed on all CPUs on return.
5402 	 *
5403 	 * Use percpu_ref_kill_and_confirm() to get notifications as each
5404 	 * css is confirmed to be seen as killed on all CPUs.
5405 	 */
5406 	percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
5407 }
5408 
5409 /**
5410  * cgroup_destroy_locked - the first stage of cgroup destruction
5411  * @cgrp: cgroup to be destroyed
5412  *
5413  * css's make use of percpu refcnts whose killing latency shouldn't be
5414  * exposed to userland and are RCU protected.  Also, cgroup core needs to
5415  * guarantee that css_tryget_online() won't succeed by the time
5416  * ->css_offline() is invoked.  To satisfy all the requirements,
5417  * destruction is implemented in the following two steps.
5418  *
5419  * s1. Verify @cgrp can be destroyed and mark it dying.  Remove all
5420  *     userland visible parts and start killing the percpu refcnts of
5421  *     css's.  Set up so that the next stage will be kicked off once all
5422  *     the percpu refcnts are confirmed to be killed.
5423  *
5424  * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5425  *     rest of destruction.  Once all cgroup references are gone, the
5426  *     cgroup is RCU-freed.
5427  *
5428  * This function implements s1.  After this step, @cgrp is gone as far as
5429  * the userland is concerned and a new cgroup with the same name may be
5430  * created.  As cgroup doesn't care about the names internally, this
5431  * doesn't cause any problem.
5432  */
5433 static int cgroup_destroy_locked(struct cgroup *cgrp)
5434 	__releases(&cgroup_mutex) __acquires(&cgroup_mutex)
5435 {
5436 	struct cgroup *tcgrp, *parent = cgroup_parent(cgrp);
5437 	struct cgroup_subsys_state *css;
5438 	struct cgrp_cset_link *link;
5439 	int ssid;
5440 
5441 	lockdep_assert_held(&cgroup_mutex);
5442 
5443 	/*
5444 	 * Only migration can raise populated from zero and we're already
5445 	 * holding cgroup_mutex.
5446 	 */
5447 	if (cgroup_is_populated(cgrp))
5448 		return -EBUSY;
5449 
5450 	/*
5451 	 * Make sure there's no live children.  We can't test emptiness of
5452 	 * ->self.children as dead children linger on it while being
5453 	 * drained; otherwise, "rmdir parent/child parent" may fail.
5454 	 */
5455 	if (css_has_online_children(&cgrp->self))
5456 		return -EBUSY;
5457 
5458 	/*
5459 	 * Mark @cgrp and the associated csets dead.  The former prevents
5460 	 * further task migration and child creation by disabling
5461 	 * cgroup_lock_live_group().  The latter makes the csets ignored by
5462 	 * the migration path.
5463 	 */
5464 	cgrp->self.flags &= ~CSS_ONLINE;
5465 
5466 	spin_lock_irq(&css_set_lock);
5467 	list_for_each_entry(link, &cgrp->cset_links, cset_link)
5468 		link->cset->dead = true;
5469 	spin_unlock_irq(&css_set_lock);
5470 
5471 	/* initiate massacre of all css's */
5472 	for_each_css(css, ssid, cgrp)
5473 		kill_css(css);
5474 
5475 	/* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */
5476 	css_clear_dir(&cgrp->self);
5477 	kernfs_remove(cgrp->kn);
5478 
5479 	if (parent && cgroup_is_threaded(cgrp))
5480 		parent->nr_threaded_children--;
5481 
5482 	spin_lock_irq(&css_set_lock);
5483 	for (tcgrp = cgroup_parent(cgrp); tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5484 		tcgrp->nr_descendants--;
5485 		tcgrp->nr_dying_descendants++;
5486 		/*
5487 		 * If the dying cgroup is frozen, decrease frozen descendants
5488 		 * counters of ancestor cgroups.
5489 		 */
5490 		if (test_bit(CGRP_FROZEN, &cgrp->flags))
5491 			tcgrp->freezer.nr_frozen_descendants--;
5492 	}
5493 	spin_unlock_irq(&css_set_lock);
5494 
5495 	cgroup1_check_for_release(parent);
5496 
5497 	/* put the base reference */
5498 	percpu_ref_kill(&cgrp->self.refcnt);
5499 
5500 	return 0;
5501 };
5502 
5503 int cgroup_rmdir(struct kernfs_node *kn)
5504 {
5505 	struct cgroup *cgrp;
5506 	int ret = 0;
5507 
5508 	cgrp = cgroup_kn_lock_live(kn, false);
5509 	if (!cgrp)
5510 		return 0;
5511 
5512 	ret = cgroup_destroy_locked(cgrp);
5513 	if (!ret)
5514 		TRACE_CGROUP_PATH(rmdir, cgrp);
5515 
5516 	cgroup_kn_unlock(kn);
5517 	return ret;
5518 }
5519 
5520 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5521 	.show_options		= cgroup_show_options,
5522 	.mkdir			= cgroup_mkdir,
5523 	.rmdir			= cgroup_rmdir,
5524 	.show_path		= cgroup_show_path,
5525 };
5526 
5527 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
5528 {
5529 	struct cgroup_subsys_state *css;
5530 
5531 	pr_debug("Initializing cgroup subsys %s\n", ss->name);
5532 
5533 	mutex_lock(&cgroup_mutex);
5534 
5535 	idr_init(&ss->css_idr);
5536 	INIT_LIST_HEAD(&ss->cfts);
5537 
5538 	/* Create the root cgroup state for this subsystem */
5539 	ss->root = &cgrp_dfl_root;
5540 	css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
5541 	/* We don't handle early failures gracefully */
5542 	BUG_ON(IS_ERR(css));
5543 	init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
5544 
5545 	/*
5546 	 * Root csses are never destroyed and we can't initialize
5547 	 * percpu_ref during early init.  Disable refcnting.
5548 	 */
5549 	css->flags |= CSS_NO_REF;
5550 
5551 	if (early) {
5552 		/* allocation can't be done safely during early init */
5553 		css->id = 1;
5554 	} else {
5555 		css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5556 		BUG_ON(css->id < 0);
5557 	}
5558 
5559 	/* Update the init_css_set to contain a subsys
5560 	 * pointer to this state - since the subsystem is
5561 	 * newly registered, all tasks and hence the
5562 	 * init_css_set is in the subsystem's root cgroup. */
5563 	init_css_set.subsys[ss->id] = css;
5564 
5565 	have_fork_callback |= (bool)ss->fork << ss->id;
5566 	have_exit_callback |= (bool)ss->exit << ss->id;
5567 	have_release_callback |= (bool)ss->release << ss->id;
5568 	have_canfork_callback |= (bool)ss->can_fork << ss->id;
5569 
5570 	/* At system boot, before all subsystems have been
5571 	 * registered, no tasks have been forked, so we don't
5572 	 * need to invoke fork callbacks here. */
5573 	BUG_ON(!list_empty(&init_task.tasks));
5574 
5575 	BUG_ON(online_css(css));
5576 
5577 	mutex_unlock(&cgroup_mutex);
5578 }
5579 
5580 /**
5581  * cgroup_init_early - cgroup initialization at system boot
5582  *
5583  * Initialize cgroups at system boot, and initialize any
5584  * subsystems that request early init.
5585  */
5586 int __init cgroup_init_early(void)
5587 {
5588 	static struct cgroup_fs_context __initdata ctx;
5589 	struct cgroup_subsys *ss;
5590 	int i;
5591 
5592 	ctx.root = &cgrp_dfl_root;
5593 	init_cgroup_root(&ctx);
5594 	cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5595 
5596 	RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
5597 
5598 	for_each_subsys(ss, i) {
5599 		WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
5600 		     "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
5601 		     i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
5602 		     ss->id, ss->name);
5603 		WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5604 		     "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5605 
5606 		ss->id = i;
5607 		ss->name = cgroup_subsys_name[i];
5608 		if (!ss->legacy_name)
5609 			ss->legacy_name = cgroup_subsys_name[i];
5610 
5611 		if (ss->early_init)
5612 			cgroup_init_subsys(ss, true);
5613 	}
5614 	return 0;
5615 }
5616 
5617 static u16 cgroup_disable_mask __initdata;
5618 
5619 /**
5620  * cgroup_init - cgroup initialization
5621  *
5622  * Register cgroup filesystem and /proc file, and initialize
5623  * any subsystems that didn't request early init.
5624  */
5625 int __init cgroup_init(void)
5626 {
5627 	struct cgroup_subsys *ss;
5628 	int ssid;
5629 
5630 	BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
5631 	BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem));
5632 	BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
5633 	BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files));
5634 
5635 	cgroup_rstat_boot();
5636 
5637 	/*
5638 	 * The latency of the synchronize_rcu() is too high for cgroups,
5639 	 * avoid it at the cost of forcing all readers into the slow path.
5640 	 */
5641 	rcu_sync_enter_start(&cgroup_threadgroup_rwsem.rss);
5642 
5643 	get_user_ns(init_cgroup_ns.user_ns);
5644 
5645 	mutex_lock(&cgroup_mutex);
5646 
5647 	/*
5648 	 * Add init_css_set to the hash table so that dfl_root can link to
5649 	 * it during init.
5650 	 */
5651 	hash_add(css_set_table, &init_css_set.hlist,
5652 		 css_set_hash(init_css_set.subsys));
5653 
5654 	BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
5655 
5656 	mutex_unlock(&cgroup_mutex);
5657 
5658 	for_each_subsys(ss, ssid) {
5659 		if (ss->early_init) {
5660 			struct cgroup_subsys_state *css =
5661 				init_css_set.subsys[ss->id];
5662 
5663 			css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5664 						   GFP_KERNEL);
5665 			BUG_ON(css->id < 0);
5666 		} else {
5667 			cgroup_init_subsys(ss, false);
5668 		}
5669 
5670 		list_add_tail(&init_css_set.e_cset_node[ssid],
5671 			      &cgrp_dfl_root.cgrp.e_csets[ssid]);
5672 
5673 		/*
5674 		 * Setting dfl_root subsys_mask needs to consider the
5675 		 * disabled flag and cftype registration needs kmalloc,
5676 		 * both of which aren't available during early_init.
5677 		 */
5678 		if (cgroup_disable_mask & (1 << ssid)) {
5679 			static_branch_disable(cgroup_subsys_enabled_key[ssid]);
5680 			printk(KERN_INFO "Disabling %s control group subsystem\n",
5681 			       ss->name);
5682 			continue;
5683 		}
5684 
5685 		if (cgroup1_ssid_disabled(ssid))
5686 			printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n",
5687 			       ss->name);
5688 
5689 		cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5690 
5691 		/* implicit controllers must be threaded too */
5692 		WARN_ON(ss->implicit_on_dfl && !ss->threaded);
5693 
5694 		if (ss->implicit_on_dfl)
5695 			cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
5696 		else if (!ss->dfl_cftypes)
5697 			cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
5698 
5699 		if (ss->threaded)
5700 			cgrp_dfl_threaded_ss_mask |= 1 << ss->id;
5701 
5702 		if (ss->dfl_cftypes == ss->legacy_cftypes) {
5703 			WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5704 		} else {
5705 			WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5706 			WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
5707 		}
5708 
5709 		if (ss->bind)
5710 			ss->bind(init_css_set.subsys[ssid]);
5711 
5712 		mutex_lock(&cgroup_mutex);
5713 		css_populate_dir(init_css_set.subsys[ssid]);
5714 		mutex_unlock(&cgroup_mutex);
5715 	}
5716 
5717 	/* init_css_set.subsys[] has been updated, re-hash */
5718 	hash_del(&init_css_set.hlist);
5719 	hash_add(css_set_table, &init_css_set.hlist,
5720 		 css_set_hash(init_css_set.subsys));
5721 
5722 	WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
5723 	WARN_ON(register_filesystem(&cgroup_fs_type));
5724 	WARN_ON(register_filesystem(&cgroup2_fs_type));
5725 	WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show));
5726 
5727 	return 0;
5728 }
5729 
5730 static int __init cgroup_wq_init(void)
5731 {
5732 	/*
5733 	 * There isn't much point in executing destruction path in
5734 	 * parallel.  Good chunk is serialized with cgroup_mutex anyway.
5735 	 * Use 1 for @max_active.
5736 	 *
5737 	 * We would prefer to do this in cgroup_init() above, but that
5738 	 * is called before init_workqueues(): so leave this until after.
5739 	 */
5740 	cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
5741 	BUG_ON(!cgroup_destroy_wq);
5742 	return 0;
5743 }
5744 core_initcall(cgroup_wq_init);
5745 
5746 void cgroup_path_from_kernfs_id(const union kernfs_node_id *id,
5747 					char *buf, size_t buflen)
5748 {
5749 	struct kernfs_node *kn;
5750 
5751 	kn = kernfs_get_node_by_id(cgrp_dfl_root.kf_root, id);
5752 	if (!kn)
5753 		return;
5754 	kernfs_path(kn, buf, buflen);
5755 	kernfs_put(kn);
5756 }
5757 
5758 /*
5759  * proc_cgroup_show()
5760  *  - Print task's cgroup paths into seq_file, one line for each hierarchy
5761  *  - Used for /proc/<pid>/cgroup.
5762  */
5763 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5764 		     struct pid *pid, struct task_struct *tsk)
5765 {
5766 	char *buf;
5767 	int retval;
5768 	struct cgroup_root *root;
5769 
5770 	retval = -ENOMEM;
5771 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
5772 	if (!buf)
5773 		goto out;
5774 
5775 	mutex_lock(&cgroup_mutex);
5776 	spin_lock_irq(&css_set_lock);
5777 
5778 	for_each_root(root) {
5779 		struct cgroup_subsys *ss;
5780 		struct cgroup *cgrp;
5781 		int ssid, count = 0;
5782 
5783 		if (root == &cgrp_dfl_root && !cgrp_dfl_visible)
5784 			continue;
5785 
5786 		seq_printf(m, "%d:", root->hierarchy_id);
5787 		if (root != &cgrp_dfl_root)
5788 			for_each_subsys(ss, ssid)
5789 				if (root->subsys_mask & (1 << ssid))
5790 					seq_printf(m, "%s%s", count++ ? "," : "",
5791 						   ss->legacy_name);
5792 		if (strlen(root->name))
5793 			seq_printf(m, "%sname=%s", count ? "," : "",
5794 				   root->name);
5795 		seq_putc(m, ':');
5796 
5797 		cgrp = task_cgroup_from_root(tsk, root);
5798 
5799 		/*
5800 		 * On traditional hierarchies, all zombie tasks show up as
5801 		 * belonging to the root cgroup.  On the default hierarchy,
5802 		 * while a zombie doesn't show up in "cgroup.procs" and
5803 		 * thus can't be migrated, its /proc/PID/cgroup keeps
5804 		 * reporting the cgroup it belonged to before exiting.  If
5805 		 * the cgroup is removed before the zombie is reaped,
5806 		 * " (deleted)" is appended to the cgroup path.
5807 		 */
5808 		if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
5809 			retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
5810 						current->nsproxy->cgroup_ns);
5811 			if (retval >= PATH_MAX)
5812 				retval = -ENAMETOOLONG;
5813 			if (retval < 0)
5814 				goto out_unlock;
5815 
5816 			seq_puts(m, buf);
5817 		} else {
5818 			seq_puts(m, "/");
5819 		}
5820 
5821 		if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
5822 			seq_puts(m, " (deleted)\n");
5823 		else
5824 			seq_putc(m, '\n');
5825 	}
5826 
5827 	retval = 0;
5828 out_unlock:
5829 	spin_unlock_irq(&css_set_lock);
5830 	mutex_unlock(&cgroup_mutex);
5831 	kfree(buf);
5832 out:
5833 	return retval;
5834 }
5835 
5836 /**
5837  * cgroup_fork - initialize cgroup related fields during copy_process()
5838  * @child: pointer to task_struct of forking parent process.
5839  *
5840  * A task is associated with the init_css_set until cgroup_post_fork()
5841  * attaches it to the parent's css_set.  Empty cg_list indicates that
5842  * @child isn't holding reference to its css_set.
5843  */
5844 void cgroup_fork(struct task_struct *child)
5845 {
5846 	RCU_INIT_POINTER(child->cgroups, &init_css_set);
5847 	INIT_LIST_HEAD(&child->cg_list);
5848 }
5849 
5850 /**
5851  * cgroup_can_fork - called on a new task before the process is exposed
5852  * @child: the task in question.
5853  *
5854  * This calls the subsystem can_fork() callbacks. If the can_fork() callback
5855  * returns an error, the fork aborts with that error code. This allows for
5856  * a cgroup subsystem to conditionally allow or deny new forks.
5857  */
5858 int cgroup_can_fork(struct task_struct *child)
5859 {
5860 	struct cgroup_subsys *ss;
5861 	int i, j, ret;
5862 
5863 	do_each_subsys_mask(ss, i, have_canfork_callback) {
5864 		ret = ss->can_fork(child);
5865 		if (ret)
5866 			goto out_revert;
5867 	} while_each_subsys_mask();
5868 
5869 	return 0;
5870 
5871 out_revert:
5872 	for_each_subsys(ss, j) {
5873 		if (j >= i)
5874 			break;
5875 		if (ss->cancel_fork)
5876 			ss->cancel_fork(child);
5877 	}
5878 
5879 	return ret;
5880 }
5881 
5882 /**
5883  * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
5884  * @child: the task in question
5885  *
5886  * This calls the cancel_fork() callbacks if a fork failed *after*
5887  * cgroup_can_fork() succeded.
5888  */
5889 void cgroup_cancel_fork(struct task_struct *child)
5890 {
5891 	struct cgroup_subsys *ss;
5892 	int i;
5893 
5894 	for_each_subsys(ss, i)
5895 		if (ss->cancel_fork)
5896 			ss->cancel_fork(child);
5897 }
5898 
5899 /**
5900  * cgroup_post_fork - called on a new task after adding it to the task list
5901  * @child: the task in question
5902  *
5903  * Adds the task to the list running through its css_set if necessary and
5904  * call the subsystem fork() callbacks.  Has to be after the task is
5905  * visible on the task list in case we race with the first call to
5906  * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5907  * list.
5908  */
5909 void cgroup_post_fork(struct task_struct *child)
5910 {
5911 	struct cgroup_subsys *ss;
5912 	int i;
5913 
5914 	/*
5915 	 * This may race against cgroup_enable_task_cg_lists().  As that
5916 	 * function sets use_task_css_set_links before grabbing
5917 	 * tasklist_lock and we just went through tasklist_lock to add
5918 	 * @child, it's guaranteed that either we see the set
5919 	 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5920 	 * @child during its iteration.
5921 	 *
5922 	 * If we won the race, @child is associated with %current's
5923 	 * css_set.  Grabbing css_set_lock guarantees both that the
5924 	 * association is stable, and, on completion of the parent's
5925 	 * migration, @child is visible in the source of migration or
5926 	 * already in the destination cgroup.  This guarantee is necessary
5927 	 * when implementing operations which need to migrate all tasks of
5928 	 * a cgroup to another.
5929 	 *
5930 	 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
5931 	 * will remain in init_css_set.  This is safe because all tasks are
5932 	 * in the init_css_set before cg_links is enabled and there's no
5933 	 * operation which transfers all tasks out of init_css_set.
5934 	 */
5935 	if (use_task_css_set_links) {
5936 		struct css_set *cset;
5937 
5938 		spin_lock_irq(&css_set_lock);
5939 		cset = task_css_set(current);
5940 		if (list_empty(&child->cg_list)) {
5941 			get_css_set(cset);
5942 			cset->nr_tasks++;
5943 			css_set_move_task(child, NULL, cset, false);
5944 		}
5945 
5946 		/*
5947 		 * If the cgroup has to be frozen, the new task has too.
5948 		 * Let's set the JOBCTL_TRAP_FREEZE jobctl bit to get
5949 		 * the task into the frozen state.
5950 		 */
5951 		if (unlikely(cgroup_task_freeze(child))) {
5952 			spin_lock(&child->sighand->siglock);
5953 			WARN_ON_ONCE(child->frozen);
5954 			child->jobctl |= JOBCTL_TRAP_FREEZE;
5955 			spin_unlock(&child->sighand->siglock);
5956 
5957 			/*
5958 			 * Calling cgroup_update_frozen() isn't required here,
5959 			 * because it will be called anyway a bit later
5960 			 * from do_freezer_trap(). So we avoid cgroup's
5961 			 * transient switch from the frozen state and back.
5962 			 */
5963 		}
5964 
5965 		spin_unlock_irq(&css_set_lock);
5966 	}
5967 
5968 	/*
5969 	 * Call ss->fork().  This must happen after @child is linked on
5970 	 * css_set; otherwise, @child might change state between ->fork()
5971 	 * and addition to css_set.
5972 	 */
5973 	do_each_subsys_mask(ss, i, have_fork_callback) {
5974 		ss->fork(child);
5975 	} while_each_subsys_mask();
5976 }
5977 
5978 /**
5979  * cgroup_exit - detach cgroup from exiting task
5980  * @tsk: pointer to task_struct of exiting process
5981  *
5982  * Description: Detach cgroup from @tsk and release it.
5983  *
5984  * Note that cgroups marked notify_on_release force every task in
5985  * them to take the global cgroup_mutex mutex when exiting.
5986  * This could impact scaling on very large systems.  Be reluctant to
5987  * use notify_on_release cgroups where very high task exit scaling
5988  * is required on large systems.
5989  *
5990  * We set the exiting tasks cgroup to the root cgroup (top_cgroup).  We
5991  * call cgroup_exit() while the task is still competent to handle
5992  * notify_on_release(), then leave the task attached to the root cgroup in
5993  * each hierarchy for the remainder of its exit.  No need to bother with
5994  * init_css_set refcnting.  init_css_set never goes away and we can't race
5995  * with migration path - PF_EXITING is visible to migration path.
5996  */
5997 void cgroup_exit(struct task_struct *tsk)
5998 {
5999 	struct cgroup_subsys *ss;
6000 	struct css_set *cset;
6001 	int i;
6002 
6003 	/*
6004 	 * Unlink from @tsk from its css_set.  As migration path can't race
6005 	 * with us, we can check css_set and cg_list without synchronization.
6006 	 */
6007 	cset = task_css_set(tsk);
6008 
6009 	if (!list_empty(&tsk->cg_list)) {
6010 		spin_lock_irq(&css_set_lock);
6011 		css_set_move_task(tsk, cset, NULL, false);
6012 		cset->nr_tasks--;
6013 
6014 		WARN_ON_ONCE(cgroup_task_frozen(tsk));
6015 		if (unlikely(cgroup_task_freeze(tsk)))
6016 			cgroup_update_frozen(task_dfl_cgroup(tsk));
6017 
6018 		spin_unlock_irq(&css_set_lock);
6019 	} else {
6020 		get_css_set(cset);
6021 	}
6022 
6023 	/* see cgroup_post_fork() for details */
6024 	do_each_subsys_mask(ss, i, have_exit_callback) {
6025 		ss->exit(tsk);
6026 	} while_each_subsys_mask();
6027 }
6028 
6029 void cgroup_release(struct task_struct *task)
6030 {
6031 	struct cgroup_subsys *ss;
6032 	int ssid;
6033 
6034 	do_each_subsys_mask(ss, ssid, have_release_callback) {
6035 		ss->release(task);
6036 	} while_each_subsys_mask();
6037 }
6038 
6039 void cgroup_free(struct task_struct *task)
6040 {
6041 	struct css_set *cset = task_css_set(task);
6042 	put_css_set(cset);
6043 }
6044 
6045 static int __init cgroup_disable(char *str)
6046 {
6047 	struct cgroup_subsys *ss;
6048 	char *token;
6049 	int i;
6050 
6051 	while ((token = strsep(&str, ",")) != NULL) {
6052 		if (!*token)
6053 			continue;
6054 
6055 		for_each_subsys(ss, i) {
6056 			if (strcmp(token, ss->name) &&
6057 			    strcmp(token, ss->legacy_name))
6058 				continue;
6059 			cgroup_disable_mask |= 1 << i;
6060 		}
6061 	}
6062 	return 1;
6063 }
6064 __setup("cgroup_disable=", cgroup_disable);
6065 
6066 void __init __weak enable_debug_cgroup(void) { }
6067 
6068 static int __init enable_cgroup_debug(char *str)
6069 {
6070 	cgroup_debug = true;
6071 	enable_debug_cgroup();
6072 	return 1;
6073 }
6074 __setup("cgroup_debug", enable_cgroup_debug);
6075 
6076 /**
6077  * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
6078  * @dentry: directory dentry of interest
6079  * @ss: subsystem of interest
6080  *
6081  * If @dentry is a directory for a cgroup which has @ss enabled on it, try
6082  * to get the corresponding css and return it.  If such css doesn't exist
6083  * or can't be pinned, an ERR_PTR value is returned.
6084  */
6085 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
6086 						       struct cgroup_subsys *ss)
6087 {
6088 	struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
6089 	struct file_system_type *s_type = dentry->d_sb->s_type;
6090 	struct cgroup_subsys_state *css = NULL;
6091 	struct cgroup *cgrp;
6092 
6093 	/* is @dentry a cgroup dir? */
6094 	if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
6095 	    !kn || kernfs_type(kn) != KERNFS_DIR)
6096 		return ERR_PTR(-EBADF);
6097 
6098 	rcu_read_lock();
6099 
6100 	/*
6101 	 * This path doesn't originate from kernfs and @kn could already
6102 	 * have been or be removed at any point.  @kn->priv is RCU
6103 	 * protected for this access.  See css_release_work_fn() for details.
6104 	 */
6105 	cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6106 	if (cgrp)
6107 		css = cgroup_css(cgrp, ss);
6108 
6109 	if (!css || !css_tryget_online(css))
6110 		css = ERR_PTR(-ENOENT);
6111 
6112 	rcu_read_unlock();
6113 	return css;
6114 }
6115 
6116 /**
6117  * css_from_id - lookup css by id
6118  * @id: the cgroup id
6119  * @ss: cgroup subsys to be looked into
6120  *
6121  * Returns the css if there's valid one with @id, otherwise returns NULL.
6122  * Should be called under rcu_read_lock().
6123  */
6124 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
6125 {
6126 	WARN_ON_ONCE(!rcu_read_lock_held());
6127 	return idr_find(&ss->css_idr, id);
6128 }
6129 
6130 /**
6131  * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
6132  * @path: path on the default hierarchy
6133  *
6134  * Find the cgroup at @path on the default hierarchy, increment its
6135  * reference count and return it.  Returns pointer to the found cgroup on
6136  * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR)
6137  * if @path points to a non-directory.
6138  */
6139 struct cgroup *cgroup_get_from_path(const char *path)
6140 {
6141 	struct kernfs_node *kn;
6142 	struct cgroup *cgrp;
6143 
6144 	mutex_lock(&cgroup_mutex);
6145 
6146 	kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path);
6147 	if (kn) {
6148 		if (kernfs_type(kn) == KERNFS_DIR) {
6149 			cgrp = kn->priv;
6150 			cgroup_get_live(cgrp);
6151 		} else {
6152 			cgrp = ERR_PTR(-ENOTDIR);
6153 		}
6154 		kernfs_put(kn);
6155 	} else {
6156 		cgrp = ERR_PTR(-ENOENT);
6157 	}
6158 
6159 	mutex_unlock(&cgroup_mutex);
6160 	return cgrp;
6161 }
6162 EXPORT_SYMBOL_GPL(cgroup_get_from_path);
6163 
6164 /**
6165  * cgroup_get_from_fd - get a cgroup pointer from a fd
6166  * @fd: fd obtained by open(cgroup2_dir)
6167  *
6168  * Find the cgroup from a fd which should be obtained
6169  * by opening a cgroup directory.  Returns a pointer to the
6170  * cgroup on success. ERR_PTR is returned if the cgroup
6171  * cannot be found.
6172  */
6173 struct cgroup *cgroup_get_from_fd(int fd)
6174 {
6175 	struct cgroup_subsys_state *css;
6176 	struct cgroup *cgrp;
6177 	struct file *f;
6178 
6179 	f = fget_raw(fd);
6180 	if (!f)
6181 		return ERR_PTR(-EBADF);
6182 
6183 	css = css_tryget_online_from_dir(f->f_path.dentry, NULL);
6184 	fput(f);
6185 	if (IS_ERR(css))
6186 		return ERR_CAST(css);
6187 
6188 	cgrp = css->cgroup;
6189 	if (!cgroup_on_dfl(cgrp)) {
6190 		cgroup_put(cgrp);
6191 		return ERR_PTR(-EBADF);
6192 	}
6193 
6194 	return cgrp;
6195 }
6196 EXPORT_SYMBOL_GPL(cgroup_get_from_fd);
6197 
6198 /*
6199  * sock->sk_cgrp_data handling.  For more info, see sock_cgroup_data
6200  * definition in cgroup-defs.h.
6201  */
6202 #ifdef CONFIG_SOCK_CGROUP_DATA
6203 
6204 #if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID)
6205 
6206 DEFINE_SPINLOCK(cgroup_sk_update_lock);
6207 static bool cgroup_sk_alloc_disabled __read_mostly;
6208 
6209 void cgroup_sk_alloc_disable(void)
6210 {
6211 	if (cgroup_sk_alloc_disabled)
6212 		return;
6213 	pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n");
6214 	cgroup_sk_alloc_disabled = true;
6215 }
6216 
6217 #else
6218 
6219 #define cgroup_sk_alloc_disabled	false
6220 
6221 #endif
6222 
6223 void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
6224 {
6225 	if (cgroup_sk_alloc_disabled)
6226 		return;
6227 
6228 	/* Socket clone path */
6229 	if (skcd->val) {
6230 		/*
6231 		 * We might be cloning a socket which is left in an empty
6232 		 * cgroup and the cgroup might have already been rmdir'd.
6233 		 * Don't use cgroup_get_live().
6234 		 */
6235 		cgroup_get(sock_cgroup_ptr(skcd));
6236 		return;
6237 	}
6238 
6239 	rcu_read_lock();
6240 
6241 	while (true) {
6242 		struct css_set *cset;
6243 
6244 		cset = task_css_set(current);
6245 		if (likely(cgroup_tryget(cset->dfl_cgrp))) {
6246 			skcd->val = (unsigned long)cset->dfl_cgrp;
6247 			break;
6248 		}
6249 		cpu_relax();
6250 	}
6251 
6252 	rcu_read_unlock();
6253 }
6254 
6255 void cgroup_sk_free(struct sock_cgroup_data *skcd)
6256 {
6257 	cgroup_put(sock_cgroup_ptr(skcd));
6258 }
6259 
6260 #endif	/* CONFIG_SOCK_CGROUP_DATA */
6261 
6262 #ifdef CONFIG_CGROUP_BPF
6263 int cgroup_bpf_attach(struct cgroup *cgrp, struct bpf_prog *prog,
6264 		      enum bpf_attach_type type, u32 flags)
6265 {
6266 	int ret;
6267 
6268 	mutex_lock(&cgroup_mutex);
6269 	ret = __cgroup_bpf_attach(cgrp, prog, type, flags);
6270 	mutex_unlock(&cgroup_mutex);
6271 	return ret;
6272 }
6273 int cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog,
6274 		      enum bpf_attach_type type, u32 flags)
6275 {
6276 	int ret;
6277 
6278 	mutex_lock(&cgroup_mutex);
6279 	ret = __cgroup_bpf_detach(cgrp, prog, type);
6280 	mutex_unlock(&cgroup_mutex);
6281 	return ret;
6282 }
6283 int cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr,
6284 		     union bpf_attr __user *uattr)
6285 {
6286 	int ret;
6287 
6288 	mutex_lock(&cgroup_mutex);
6289 	ret = __cgroup_bpf_query(cgrp, attr, uattr);
6290 	mutex_unlock(&cgroup_mutex);
6291 	return ret;
6292 }
6293 #endif /* CONFIG_CGROUP_BPF */
6294 
6295 #ifdef CONFIG_SYSFS
6296 static ssize_t show_delegatable_files(struct cftype *files, char *buf,
6297 				      ssize_t size, const char *prefix)
6298 {
6299 	struct cftype *cft;
6300 	ssize_t ret = 0;
6301 
6302 	for (cft = files; cft && cft->name[0] != '\0'; cft++) {
6303 		if (!(cft->flags & CFTYPE_NS_DELEGATABLE))
6304 			continue;
6305 
6306 		if (prefix)
6307 			ret += snprintf(buf + ret, size - ret, "%s.", prefix);
6308 
6309 		ret += snprintf(buf + ret, size - ret, "%s\n", cft->name);
6310 
6311 		if (WARN_ON(ret >= size))
6312 			break;
6313 	}
6314 
6315 	return ret;
6316 }
6317 
6318 static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr,
6319 			      char *buf)
6320 {
6321 	struct cgroup_subsys *ss;
6322 	int ssid;
6323 	ssize_t ret = 0;
6324 
6325 	ret = show_delegatable_files(cgroup_base_files, buf, PAGE_SIZE - ret,
6326 				     NULL);
6327 
6328 	for_each_subsys(ss, ssid)
6329 		ret += show_delegatable_files(ss->dfl_cftypes, buf + ret,
6330 					      PAGE_SIZE - ret,
6331 					      cgroup_subsys_name[ssid]);
6332 
6333 	return ret;
6334 }
6335 static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate);
6336 
6337 static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr,
6338 			     char *buf)
6339 {
6340 	return snprintf(buf, PAGE_SIZE, "nsdelegate\nmemory_localevents\n");
6341 }
6342 static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features);
6343 
6344 static struct attribute *cgroup_sysfs_attrs[] = {
6345 	&cgroup_delegate_attr.attr,
6346 	&cgroup_features_attr.attr,
6347 	NULL,
6348 };
6349 
6350 static const struct attribute_group cgroup_sysfs_attr_group = {
6351 	.attrs = cgroup_sysfs_attrs,
6352 	.name = "cgroup",
6353 };
6354 
6355 static int __init cgroup_sysfs_init(void)
6356 {
6357 	return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group);
6358 }
6359 subsys_initcall(cgroup_sysfs_init);
6360 #endif /* CONFIG_SYSFS */
6361