1 /* 2 * Generic process-grouping system. 3 * 4 * Based originally on the cpuset system, extracted by Paul Menage 5 * Copyright (C) 2006 Google, Inc 6 * 7 * Notifications support 8 * Copyright (C) 2009 Nokia Corporation 9 * Author: Kirill A. Shutemov 10 * 11 * Copyright notices from the original cpuset code: 12 * -------------------------------------------------- 13 * Copyright (C) 2003 BULL SA. 14 * Copyright (C) 2004-2006 Silicon Graphics, Inc. 15 * 16 * Portions derived from Patrick Mochel's sysfs code. 17 * sysfs is Copyright (c) 2001-3 Patrick Mochel 18 * 19 * 2003-10-10 Written by Simon Derr. 20 * 2003-10-22 Updates by Stephen Hemminger. 21 * 2004 May-July Rework by Paul Jackson. 22 * --------------------------------------------------- 23 * 24 * This file is subject to the terms and conditions of the GNU General Public 25 * License. See the file COPYING in the main directory of the Linux 26 * distribution for more details. 27 */ 28 29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 30 31 #include "cgroup-internal.h" 32 33 #include <linux/cred.h> 34 #include <linux/errno.h> 35 #include <linux/init_task.h> 36 #include <linux/kernel.h> 37 #include <linux/magic.h> 38 #include <linux/mutex.h> 39 #include <linux/mount.h> 40 #include <linux/pagemap.h> 41 #include <linux/proc_fs.h> 42 #include <linux/rcupdate.h> 43 #include <linux/sched.h> 44 #include <linux/sched/task.h> 45 #include <linux/slab.h> 46 #include <linux/spinlock.h> 47 #include <linux/percpu-rwsem.h> 48 #include <linux/string.h> 49 #include <linux/hashtable.h> 50 #include <linux/idr.h> 51 #include <linux/kthread.h> 52 #include <linux/atomic.h> 53 #include <linux/cpuset.h> 54 #include <linux/proc_ns.h> 55 #include <linux/nsproxy.h> 56 #include <linux/file.h> 57 #include <linux/fs_parser.h> 58 #include <linux/sched/cputime.h> 59 #include <linux/psi.h> 60 #include <net/sock.h> 61 62 #define CREATE_TRACE_POINTS 63 #include <trace/events/cgroup.h> 64 65 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \ 66 MAX_CFTYPE_NAME + 2) 67 /* let's not notify more than 100 times per second */ 68 #define CGROUP_FILE_NOTIFY_MIN_INTV DIV_ROUND_UP(HZ, 100) 69 70 /* 71 * To avoid confusing the compiler (and generating warnings) with code 72 * that attempts to access what would be a 0-element array (i.e. sized 73 * to a potentially empty array when CGROUP_SUBSYS_COUNT == 0), this 74 * constant expression can be added. 75 */ 76 #define CGROUP_HAS_SUBSYS_CONFIG (CGROUP_SUBSYS_COUNT > 0) 77 78 /* 79 * cgroup_mutex is the master lock. Any modification to cgroup or its 80 * hierarchy must be performed while holding it. 81 * 82 * css_set_lock protects task->cgroups pointer, the list of css_set 83 * objects, and the chain of tasks off each css_set. 84 * 85 * These locks are exported if CONFIG_PROVE_RCU so that accessors in 86 * cgroup.h can use them for lockdep annotations. 87 */ 88 DEFINE_MUTEX(cgroup_mutex); 89 DEFINE_SPINLOCK(css_set_lock); 90 91 #ifdef CONFIG_PROVE_RCU 92 EXPORT_SYMBOL_GPL(cgroup_mutex); 93 EXPORT_SYMBOL_GPL(css_set_lock); 94 #endif 95 96 DEFINE_SPINLOCK(trace_cgroup_path_lock); 97 char trace_cgroup_path[TRACE_CGROUP_PATH_LEN]; 98 bool cgroup_debug __read_mostly; 99 100 /* 101 * Protects cgroup_idr and css_idr so that IDs can be released without 102 * grabbing cgroup_mutex. 103 */ 104 static DEFINE_SPINLOCK(cgroup_idr_lock); 105 106 /* 107 * Protects cgroup_file->kn for !self csses. It synchronizes notifications 108 * against file removal/re-creation across css hiding. 109 */ 110 static DEFINE_SPINLOCK(cgroup_file_kn_lock); 111 112 DEFINE_PERCPU_RWSEM(cgroup_threadgroup_rwsem); 113 114 #define cgroup_assert_mutex_or_rcu_locked() \ 115 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \ 116 !lockdep_is_held(&cgroup_mutex), \ 117 "cgroup_mutex or RCU read lock required"); 118 119 /* 120 * cgroup destruction makes heavy use of work items and there can be a lot 121 * of concurrent destructions. Use a separate workqueue so that cgroup 122 * destruction work items don't end up filling up max_active of system_wq 123 * which may lead to deadlock. 124 */ 125 static struct workqueue_struct *cgroup_destroy_wq; 126 127 /* generate an array of cgroup subsystem pointers */ 128 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys, 129 struct cgroup_subsys *cgroup_subsys[] = { 130 #include <linux/cgroup_subsys.h> 131 }; 132 #undef SUBSYS 133 134 /* array of cgroup subsystem names */ 135 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x, 136 static const char *cgroup_subsys_name[] = { 137 #include <linux/cgroup_subsys.h> 138 }; 139 #undef SUBSYS 140 141 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */ 142 #define SUBSYS(_x) \ 143 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \ 144 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \ 145 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \ 146 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key); 147 #include <linux/cgroup_subsys.h> 148 #undef SUBSYS 149 150 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key, 151 static struct static_key_true *cgroup_subsys_enabled_key[] = { 152 #include <linux/cgroup_subsys.h> 153 }; 154 #undef SUBSYS 155 156 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key, 157 static struct static_key_true *cgroup_subsys_on_dfl_key[] = { 158 #include <linux/cgroup_subsys.h> 159 }; 160 #undef SUBSYS 161 162 static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu); 163 164 /* the default hierarchy */ 165 struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu }; 166 EXPORT_SYMBOL_GPL(cgrp_dfl_root); 167 168 /* 169 * The default hierarchy always exists but is hidden until mounted for the 170 * first time. This is for backward compatibility. 171 */ 172 static bool cgrp_dfl_visible; 173 174 /* some controllers are not supported in the default hierarchy */ 175 static u16 cgrp_dfl_inhibit_ss_mask; 176 177 /* some controllers are implicitly enabled on the default hierarchy */ 178 static u16 cgrp_dfl_implicit_ss_mask; 179 180 /* some controllers can be threaded on the default hierarchy */ 181 static u16 cgrp_dfl_threaded_ss_mask; 182 183 /* The list of hierarchy roots */ 184 LIST_HEAD(cgroup_roots); 185 static int cgroup_root_count; 186 187 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */ 188 static DEFINE_IDR(cgroup_hierarchy_idr); 189 190 /* 191 * Assign a monotonically increasing serial number to csses. It guarantees 192 * cgroups with bigger numbers are newer than those with smaller numbers. 193 * Also, as csses are always appended to the parent's ->children list, it 194 * guarantees that sibling csses are always sorted in the ascending serial 195 * number order on the list. Protected by cgroup_mutex. 196 */ 197 static u64 css_serial_nr_next = 1; 198 199 /* 200 * These bitmasks identify subsystems with specific features to avoid 201 * having to do iterative checks repeatedly. 202 */ 203 static u16 have_fork_callback __read_mostly; 204 static u16 have_exit_callback __read_mostly; 205 static u16 have_release_callback __read_mostly; 206 static u16 have_canfork_callback __read_mostly; 207 208 /* cgroup namespace for init task */ 209 struct cgroup_namespace init_cgroup_ns = { 210 .ns.count = REFCOUNT_INIT(2), 211 .user_ns = &init_user_ns, 212 .ns.ops = &cgroupns_operations, 213 .ns.inum = PROC_CGROUP_INIT_INO, 214 .root_cset = &init_css_set, 215 }; 216 217 static struct file_system_type cgroup2_fs_type; 218 static struct cftype cgroup_base_files[]; 219 220 /* cgroup optional features */ 221 enum cgroup_opt_features { 222 #ifdef CONFIG_PSI 223 OPT_FEATURE_PRESSURE, 224 #endif 225 OPT_FEATURE_COUNT 226 }; 227 228 static const char *cgroup_opt_feature_names[OPT_FEATURE_COUNT] = { 229 #ifdef CONFIG_PSI 230 "pressure", 231 #endif 232 }; 233 234 static u16 cgroup_feature_disable_mask __read_mostly; 235 236 static int cgroup_apply_control(struct cgroup *cgrp); 237 static void cgroup_finalize_control(struct cgroup *cgrp, int ret); 238 static void css_task_iter_skip(struct css_task_iter *it, 239 struct task_struct *task); 240 static int cgroup_destroy_locked(struct cgroup *cgrp); 241 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp, 242 struct cgroup_subsys *ss); 243 static void css_release(struct percpu_ref *ref); 244 static void kill_css(struct cgroup_subsys_state *css); 245 static int cgroup_addrm_files(struct cgroup_subsys_state *css, 246 struct cgroup *cgrp, struct cftype cfts[], 247 bool is_add); 248 249 /** 250 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID 251 * @ssid: subsys ID of interest 252 * 253 * cgroup_subsys_enabled() can only be used with literal subsys names which 254 * is fine for individual subsystems but unsuitable for cgroup core. This 255 * is slower static_key_enabled() based test indexed by @ssid. 256 */ 257 bool cgroup_ssid_enabled(int ssid) 258 { 259 if (!CGROUP_HAS_SUBSYS_CONFIG) 260 return false; 261 262 return static_key_enabled(cgroup_subsys_enabled_key[ssid]); 263 } 264 265 /** 266 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy 267 * @cgrp: the cgroup of interest 268 * 269 * The default hierarchy is the v2 interface of cgroup and this function 270 * can be used to test whether a cgroup is on the default hierarchy for 271 * cases where a subsystem should behave differently depending on the 272 * interface version. 273 * 274 * List of changed behaviors: 275 * 276 * - Mount options "noprefix", "xattr", "clone_children", "release_agent" 277 * and "name" are disallowed. 278 * 279 * - When mounting an existing superblock, mount options should match. 280 * 281 * - Remount is disallowed. 282 * 283 * - rename(2) is disallowed. 284 * 285 * - "tasks" is removed. Everything should be at process granularity. Use 286 * "cgroup.procs" instead. 287 * 288 * - "cgroup.procs" is not sorted. pids will be unique unless they got 289 * recycled in-between reads. 290 * 291 * - "release_agent" and "notify_on_release" are removed. Replacement 292 * notification mechanism will be implemented. 293 * 294 * - "cgroup.clone_children" is removed. 295 * 296 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup 297 * and its descendants contain no task; otherwise, 1. The file also 298 * generates kernfs notification which can be monitored through poll and 299 * [di]notify when the value of the file changes. 300 * 301 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and 302 * take masks of ancestors with non-empty cpus/mems, instead of being 303 * moved to an ancestor. 304 * 305 * - cpuset: a task can be moved into an empty cpuset, and again it takes 306 * masks of ancestors. 307 * 308 * - blkcg: blk-throttle becomes properly hierarchical. 309 * 310 * - debug: disallowed on the default hierarchy. 311 */ 312 bool cgroup_on_dfl(const struct cgroup *cgrp) 313 { 314 return cgrp->root == &cgrp_dfl_root; 315 } 316 317 /* IDR wrappers which synchronize using cgroup_idr_lock */ 318 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end, 319 gfp_t gfp_mask) 320 { 321 int ret; 322 323 idr_preload(gfp_mask); 324 spin_lock_bh(&cgroup_idr_lock); 325 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM); 326 spin_unlock_bh(&cgroup_idr_lock); 327 idr_preload_end(); 328 return ret; 329 } 330 331 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id) 332 { 333 void *ret; 334 335 spin_lock_bh(&cgroup_idr_lock); 336 ret = idr_replace(idr, ptr, id); 337 spin_unlock_bh(&cgroup_idr_lock); 338 return ret; 339 } 340 341 static void cgroup_idr_remove(struct idr *idr, int id) 342 { 343 spin_lock_bh(&cgroup_idr_lock); 344 idr_remove(idr, id); 345 spin_unlock_bh(&cgroup_idr_lock); 346 } 347 348 static bool cgroup_has_tasks(struct cgroup *cgrp) 349 { 350 return cgrp->nr_populated_csets; 351 } 352 353 bool cgroup_is_threaded(struct cgroup *cgrp) 354 { 355 return cgrp->dom_cgrp != cgrp; 356 } 357 358 /* can @cgrp host both domain and threaded children? */ 359 static bool cgroup_is_mixable(struct cgroup *cgrp) 360 { 361 /* 362 * Root isn't under domain level resource control exempting it from 363 * the no-internal-process constraint, so it can serve as a thread 364 * root and a parent of resource domains at the same time. 365 */ 366 return !cgroup_parent(cgrp); 367 } 368 369 /* can @cgrp become a thread root? Should always be true for a thread root */ 370 static bool cgroup_can_be_thread_root(struct cgroup *cgrp) 371 { 372 /* mixables don't care */ 373 if (cgroup_is_mixable(cgrp)) 374 return true; 375 376 /* domain roots can't be nested under threaded */ 377 if (cgroup_is_threaded(cgrp)) 378 return false; 379 380 /* can only have either domain or threaded children */ 381 if (cgrp->nr_populated_domain_children) 382 return false; 383 384 /* and no domain controllers can be enabled */ 385 if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask) 386 return false; 387 388 return true; 389 } 390 391 /* is @cgrp root of a threaded subtree? */ 392 bool cgroup_is_thread_root(struct cgroup *cgrp) 393 { 394 /* thread root should be a domain */ 395 if (cgroup_is_threaded(cgrp)) 396 return false; 397 398 /* a domain w/ threaded children is a thread root */ 399 if (cgrp->nr_threaded_children) 400 return true; 401 402 /* 403 * A domain which has tasks and explicit threaded controllers 404 * enabled is a thread root. 405 */ 406 if (cgroup_has_tasks(cgrp) && 407 (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask)) 408 return true; 409 410 return false; 411 } 412 413 /* a domain which isn't connected to the root w/o brekage can't be used */ 414 static bool cgroup_is_valid_domain(struct cgroup *cgrp) 415 { 416 /* the cgroup itself can be a thread root */ 417 if (cgroup_is_threaded(cgrp)) 418 return false; 419 420 /* but the ancestors can't be unless mixable */ 421 while ((cgrp = cgroup_parent(cgrp))) { 422 if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp)) 423 return false; 424 if (cgroup_is_threaded(cgrp)) 425 return false; 426 } 427 428 return true; 429 } 430 431 /* subsystems visibly enabled on a cgroup */ 432 static u16 cgroup_control(struct cgroup *cgrp) 433 { 434 struct cgroup *parent = cgroup_parent(cgrp); 435 u16 root_ss_mask = cgrp->root->subsys_mask; 436 437 if (parent) { 438 u16 ss_mask = parent->subtree_control; 439 440 /* threaded cgroups can only have threaded controllers */ 441 if (cgroup_is_threaded(cgrp)) 442 ss_mask &= cgrp_dfl_threaded_ss_mask; 443 return ss_mask; 444 } 445 446 if (cgroup_on_dfl(cgrp)) 447 root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask | 448 cgrp_dfl_implicit_ss_mask); 449 return root_ss_mask; 450 } 451 452 /* subsystems enabled on a cgroup */ 453 static u16 cgroup_ss_mask(struct cgroup *cgrp) 454 { 455 struct cgroup *parent = cgroup_parent(cgrp); 456 457 if (parent) { 458 u16 ss_mask = parent->subtree_ss_mask; 459 460 /* threaded cgroups can only have threaded controllers */ 461 if (cgroup_is_threaded(cgrp)) 462 ss_mask &= cgrp_dfl_threaded_ss_mask; 463 return ss_mask; 464 } 465 466 return cgrp->root->subsys_mask; 467 } 468 469 /** 470 * cgroup_css - obtain a cgroup's css for the specified subsystem 471 * @cgrp: the cgroup of interest 472 * @ss: the subsystem of interest (%NULL returns @cgrp->self) 473 * 474 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This 475 * function must be called either under cgroup_mutex or rcu_read_lock() and 476 * the caller is responsible for pinning the returned css if it wants to 477 * keep accessing it outside the said locks. This function may return 478 * %NULL if @cgrp doesn't have @subsys_id enabled. 479 */ 480 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp, 481 struct cgroup_subsys *ss) 482 { 483 if (CGROUP_HAS_SUBSYS_CONFIG && ss) 484 return rcu_dereference_check(cgrp->subsys[ss->id], 485 lockdep_is_held(&cgroup_mutex)); 486 else 487 return &cgrp->self; 488 } 489 490 /** 491 * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem 492 * @cgrp: the cgroup of interest 493 * @ss: the subsystem of interest 494 * 495 * Find and get @cgrp's css associated with @ss. If the css doesn't exist 496 * or is offline, %NULL is returned. 497 */ 498 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp, 499 struct cgroup_subsys *ss) 500 { 501 struct cgroup_subsys_state *css; 502 503 rcu_read_lock(); 504 css = cgroup_css(cgrp, ss); 505 if (css && !css_tryget_online(css)) 506 css = NULL; 507 rcu_read_unlock(); 508 509 return css; 510 } 511 512 /** 513 * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss 514 * @cgrp: the cgroup of interest 515 * @ss: the subsystem of interest (%NULL returns @cgrp->self) 516 * 517 * Similar to cgroup_css() but returns the effective css, which is defined 518 * as the matching css of the nearest ancestor including self which has @ss 519 * enabled. If @ss is associated with the hierarchy @cgrp is on, this 520 * function is guaranteed to return non-NULL css. 521 */ 522 static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp, 523 struct cgroup_subsys *ss) 524 { 525 lockdep_assert_held(&cgroup_mutex); 526 527 if (!ss) 528 return &cgrp->self; 529 530 /* 531 * This function is used while updating css associations and thus 532 * can't test the csses directly. Test ss_mask. 533 */ 534 while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) { 535 cgrp = cgroup_parent(cgrp); 536 if (!cgrp) 537 return NULL; 538 } 539 540 return cgroup_css(cgrp, ss); 541 } 542 543 /** 544 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem 545 * @cgrp: the cgroup of interest 546 * @ss: the subsystem of interest 547 * 548 * Find and get the effective css of @cgrp for @ss. The effective css is 549 * defined as the matching css of the nearest ancestor including self which 550 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on, 551 * the root css is returned, so this function always returns a valid css. 552 * 553 * The returned css is not guaranteed to be online, and therefore it is the 554 * callers responsibility to try get a reference for it. 555 */ 556 struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp, 557 struct cgroup_subsys *ss) 558 { 559 struct cgroup_subsys_state *css; 560 561 if (!CGROUP_HAS_SUBSYS_CONFIG) 562 return NULL; 563 564 do { 565 css = cgroup_css(cgrp, ss); 566 567 if (css) 568 return css; 569 cgrp = cgroup_parent(cgrp); 570 } while (cgrp); 571 572 return init_css_set.subsys[ss->id]; 573 } 574 575 /** 576 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem 577 * @cgrp: the cgroup of interest 578 * @ss: the subsystem of interest 579 * 580 * Find and get the effective css of @cgrp for @ss. The effective css is 581 * defined as the matching css of the nearest ancestor including self which 582 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on, 583 * the root css is returned, so this function always returns a valid css. 584 * The returned css must be put using css_put(). 585 */ 586 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp, 587 struct cgroup_subsys *ss) 588 { 589 struct cgroup_subsys_state *css; 590 591 if (!CGROUP_HAS_SUBSYS_CONFIG) 592 return NULL; 593 594 rcu_read_lock(); 595 596 do { 597 css = cgroup_css(cgrp, ss); 598 599 if (css && css_tryget_online(css)) 600 goto out_unlock; 601 cgrp = cgroup_parent(cgrp); 602 } while (cgrp); 603 604 css = init_css_set.subsys[ss->id]; 605 css_get(css); 606 out_unlock: 607 rcu_read_unlock(); 608 return css; 609 } 610 EXPORT_SYMBOL_GPL(cgroup_get_e_css); 611 612 static void cgroup_get_live(struct cgroup *cgrp) 613 { 614 WARN_ON_ONCE(cgroup_is_dead(cgrp)); 615 css_get(&cgrp->self); 616 } 617 618 /** 619 * __cgroup_task_count - count the number of tasks in a cgroup. The caller 620 * is responsible for taking the css_set_lock. 621 * @cgrp: the cgroup in question 622 */ 623 int __cgroup_task_count(const struct cgroup *cgrp) 624 { 625 int count = 0; 626 struct cgrp_cset_link *link; 627 628 lockdep_assert_held(&css_set_lock); 629 630 list_for_each_entry(link, &cgrp->cset_links, cset_link) 631 count += link->cset->nr_tasks; 632 633 return count; 634 } 635 636 /** 637 * cgroup_task_count - count the number of tasks in a cgroup. 638 * @cgrp: the cgroup in question 639 */ 640 int cgroup_task_count(const struct cgroup *cgrp) 641 { 642 int count; 643 644 spin_lock_irq(&css_set_lock); 645 count = __cgroup_task_count(cgrp); 646 spin_unlock_irq(&css_set_lock); 647 648 return count; 649 } 650 651 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of) 652 { 653 struct cgroup *cgrp = of->kn->parent->priv; 654 struct cftype *cft = of_cft(of); 655 656 /* 657 * This is open and unprotected implementation of cgroup_css(). 658 * seq_css() is only called from a kernfs file operation which has 659 * an active reference on the file. Because all the subsystem 660 * files are drained before a css is disassociated with a cgroup, 661 * the matching css from the cgroup's subsys table is guaranteed to 662 * be and stay valid until the enclosing operation is complete. 663 */ 664 if (CGROUP_HAS_SUBSYS_CONFIG && cft->ss) 665 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]); 666 else 667 return &cgrp->self; 668 } 669 EXPORT_SYMBOL_GPL(of_css); 670 671 /** 672 * for_each_css - iterate all css's of a cgroup 673 * @css: the iteration cursor 674 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end 675 * @cgrp: the target cgroup to iterate css's of 676 * 677 * Should be called under cgroup_[tree_]mutex. 678 */ 679 #define for_each_css(css, ssid, cgrp) \ 680 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \ 681 if (!((css) = rcu_dereference_check( \ 682 (cgrp)->subsys[(ssid)], \ 683 lockdep_is_held(&cgroup_mutex)))) { } \ 684 else 685 686 /** 687 * for_each_e_css - iterate all effective css's of a cgroup 688 * @css: the iteration cursor 689 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end 690 * @cgrp: the target cgroup to iterate css's of 691 * 692 * Should be called under cgroup_[tree_]mutex. 693 */ 694 #define for_each_e_css(css, ssid, cgrp) \ 695 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \ 696 if (!((css) = cgroup_e_css_by_mask(cgrp, \ 697 cgroup_subsys[(ssid)]))) \ 698 ; \ 699 else 700 701 /** 702 * do_each_subsys_mask - filter for_each_subsys with a bitmask 703 * @ss: the iteration cursor 704 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end 705 * @ss_mask: the bitmask 706 * 707 * The block will only run for cases where the ssid-th bit (1 << ssid) of 708 * @ss_mask is set. 709 */ 710 #define do_each_subsys_mask(ss, ssid, ss_mask) do { \ 711 unsigned long __ss_mask = (ss_mask); \ 712 if (!CGROUP_HAS_SUBSYS_CONFIG) { \ 713 (ssid) = 0; \ 714 break; \ 715 } \ 716 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \ 717 (ss) = cgroup_subsys[ssid]; \ 718 { 719 720 #define while_each_subsys_mask() \ 721 } \ 722 } \ 723 } while (false) 724 725 /* iterate over child cgrps, lock should be held throughout iteration */ 726 #define cgroup_for_each_live_child(child, cgrp) \ 727 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \ 728 if (({ lockdep_assert_held(&cgroup_mutex); \ 729 cgroup_is_dead(child); })) \ 730 ; \ 731 else 732 733 /* walk live descendants in pre order */ 734 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \ 735 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \ 736 if (({ lockdep_assert_held(&cgroup_mutex); \ 737 (dsct) = (d_css)->cgroup; \ 738 cgroup_is_dead(dsct); })) \ 739 ; \ 740 else 741 742 /* walk live descendants in postorder */ 743 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \ 744 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \ 745 if (({ lockdep_assert_held(&cgroup_mutex); \ 746 (dsct) = (d_css)->cgroup; \ 747 cgroup_is_dead(dsct); })) \ 748 ; \ 749 else 750 751 /* 752 * The default css_set - used by init and its children prior to any 753 * hierarchies being mounted. It contains a pointer to the root state 754 * for each subsystem. Also used to anchor the list of css_sets. Not 755 * reference-counted, to improve performance when child cgroups 756 * haven't been created. 757 */ 758 struct css_set init_css_set = { 759 .refcount = REFCOUNT_INIT(1), 760 .dom_cset = &init_css_set, 761 .tasks = LIST_HEAD_INIT(init_css_set.tasks), 762 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks), 763 .dying_tasks = LIST_HEAD_INIT(init_css_set.dying_tasks), 764 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters), 765 .threaded_csets = LIST_HEAD_INIT(init_css_set.threaded_csets), 766 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links), 767 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node), 768 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node), 769 770 /* 771 * The following field is re-initialized when this cset gets linked 772 * in cgroup_init(). However, let's initialize the field 773 * statically too so that the default cgroup can be accessed safely 774 * early during boot. 775 */ 776 .dfl_cgrp = &cgrp_dfl_root.cgrp, 777 }; 778 779 static int css_set_count = 1; /* 1 for init_css_set */ 780 781 static bool css_set_threaded(struct css_set *cset) 782 { 783 return cset->dom_cset != cset; 784 } 785 786 /** 787 * css_set_populated - does a css_set contain any tasks? 788 * @cset: target css_set 789 * 790 * css_set_populated() should be the same as !!cset->nr_tasks at steady 791 * state. However, css_set_populated() can be called while a task is being 792 * added to or removed from the linked list before the nr_tasks is 793 * properly updated. Hence, we can't just look at ->nr_tasks here. 794 */ 795 static bool css_set_populated(struct css_set *cset) 796 { 797 lockdep_assert_held(&css_set_lock); 798 799 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks); 800 } 801 802 /** 803 * cgroup_update_populated - update the populated count of a cgroup 804 * @cgrp: the target cgroup 805 * @populated: inc or dec populated count 806 * 807 * One of the css_sets associated with @cgrp is either getting its first 808 * task or losing the last. Update @cgrp->nr_populated_* accordingly. The 809 * count is propagated towards root so that a given cgroup's 810 * nr_populated_children is zero iff none of its descendants contain any 811 * tasks. 812 * 813 * @cgrp's interface file "cgroup.populated" is zero if both 814 * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and 815 * 1 otherwise. When the sum changes from or to zero, userland is notified 816 * that the content of the interface file has changed. This can be used to 817 * detect when @cgrp and its descendants become populated or empty. 818 */ 819 static void cgroup_update_populated(struct cgroup *cgrp, bool populated) 820 { 821 struct cgroup *child = NULL; 822 int adj = populated ? 1 : -1; 823 824 lockdep_assert_held(&css_set_lock); 825 826 do { 827 bool was_populated = cgroup_is_populated(cgrp); 828 829 if (!child) { 830 cgrp->nr_populated_csets += adj; 831 } else { 832 if (cgroup_is_threaded(child)) 833 cgrp->nr_populated_threaded_children += adj; 834 else 835 cgrp->nr_populated_domain_children += adj; 836 } 837 838 if (was_populated == cgroup_is_populated(cgrp)) 839 break; 840 841 cgroup1_check_for_release(cgrp); 842 TRACE_CGROUP_PATH(notify_populated, cgrp, 843 cgroup_is_populated(cgrp)); 844 cgroup_file_notify(&cgrp->events_file); 845 846 child = cgrp; 847 cgrp = cgroup_parent(cgrp); 848 } while (cgrp); 849 } 850 851 /** 852 * css_set_update_populated - update populated state of a css_set 853 * @cset: target css_set 854 * @populated: whether @cset is populated or depopulated 855 * 856 * @cset is either getting the first task or losing the last. Update the 857 * populated counters of all associated cgroups accordingly. 858 */ 859 static void css_set_update_populated(struct css_set *cset, bool populated) 860 { 861 struct cgrp_cset_link *link; 862 863 lockdep_assert_held(&css_set_lock); 864 865 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) 866 cgroup_update_populated(link->cgrp, populated); 867 } 868 869 /* 870 * @task is leaving, advance task iterators which are pointing to it so 871 * that they can resume at the next position. Advancing an iterator might 872 * remove it from the list, use safe walk. See css_task_iter_skip() for 873 * details. 874 */ 875 static void css_set_skip_task_iters(struct css_set *cset, 876 struct task_struct *task) 877 { 878 struct css_task_iter *it, *pos; 879 880 list_for_each_entry_safe(it, pos, &cset->task_iters, iters_node) 881 css_task_iter_skip(it, task); 882 } 883 884 /** 885 * css_set_move_task - move a task from one css_set to another 886 * @task: task being moved 887 * @from_cset: css_set @task currently belongs to (may be NULL) 888 * @to_cset: new css_set @task is being moved to (may be NULL) 889 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks 890 * 891 * Move @task from @from_cset to @to_cset. If @task didn't belong to any 892 * css_set, @from_cset can be NULL. If @task is being disassociated 893 * instead of moved, @to_cset can be NULL. 894 * 895 * This function automatically handles populated counter updates and 896 * css_task_iter adjustments but the caller is responsible for managing 897 * @from_cset and @to_cset's reference counts. 898 */ 899 static void css_set_move_task(struct task_struct *task, 900 struct css_set *from_cset, struct css_set *to_cset, 901 bool use_mg_tasks) 902 { 903 lockdep_assert_held(&css_set_lock); 904 905 if (to_cset && !css_set_populated(to_cset)) 906 css_set_update_populated(to_cset, true); 907 908 if (from_cset) { 909 WARN_ON_ONCE(list_empty(&task->cg_list)); 910 911 css_set_skip_task_iters(from_cset, task); 912 list_del_init(&task->cg_list); 913 if (!css_set_populated(from_cset)) 914 css_set_update_populated(from_cset, false); 915 } else { 916 WARN_ON_ONCE(!list_empty(&task->cg_list)); 917 } 918 919 if (to_cset) { 920 /* 921 * We are synchronized through cgroup_threadgroup_rwsem 922 * against PF_EXITING setting such that we can't race 923 * against cgroup_exit()/cgroup_free() dropping the css_set. 924 */ 925 WARN_ON_ONCE(task->flags & PF_EXITING); 926 927 cgroup_move_task(task, to_cset); 928 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks : 929 &to_cset->tasks); 930 } 931 } 932 933 /* 934 * hash table for cgroup groups. This improves the performance to find 935 * an existing css_set. This hash doesn't (currently) take into 936 * account cgroups in empty hierarchies. 937 */ 938 #define CSS_SET_HASH_BITS 7 939 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS); 940 941 static unsigned long css_set_hash(struct cgroup_subsys_state *css[]) 942 { 943 unsigned long key = 0UL; 944 struct cgroup_subsys *ss; 945 int i; 946 947 for_each_subsys(ss, i) 948 key += (unsigned long)css[i]; 949 key = (key >> 16) ^ key; 950 951 return key; 952 } 953 954 void put_css_set_locked(struct css_set *cset) 955 { 956 struct cgrp_cset_link *link, *tmp_link; 957 struct cgroup_subsys *ss; 958 int ssid; 959 960 lockdep_assert_held(&css_set_lock); 961 962 if (!refcount_dec_and_test(&cset->refcount)) 963 return; 964 965 WARN_ON_ONCE(!list_empty(&cset->threaded_csets)); 966 967 /* This css_set is dead. Unlink it and release cgroup and css refs */ 968 for_each_subsys(ss, ssid) { 969 list_del(&cset->e_cset_node[ssid]); 970 css_put(cset->subsys[ssid]); 971 } 972 hash_del(&cset->hlist); 973 css_set_count--; 974 975 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) { 976 list_del(&link->cset_link); 977 list_del(&link->cgrp_link); 978 if (cgroup_parent(link->cgrp)) 979 cgroup_put(link->cgrp); 980 kfree(link); 981 } 982 983 if (css_set_threaded(cset)) { 984 list_del(&cset->threaded_csets_node); 985 put_css_set_locked(cset->dom_cset); 986 } 987 988 kfree_rcu(cset, rcu_head); 989 } 990 991 /** 992 * compare_css_sets - helper function for find_existing_css_set(). 993 * @cset: candidate css_set being tested 994 * @old_cset: existing css_set for a task 995 * @new_cgrp: cgroup that's being entered by the task 996 * @template: desired set of css pointers in css_set (pre-calculated) 997 * 998 * Returns true if "cset" matches "old_cset" except for the hierarchy 999 * which "new_cgrp" belongs to, for which it should match "new_cgrp". 1000 */ 1001 static bool compare_css_sets(struct css_set *cset, 1002 struct css_set *old_cset, 1003 struct cgroup *new_cgrp, 1004 struct cgroup_subsys_state *template[]) 1005 { 1006 struct cgroup *new_dfl_cgrp; 1007 struct list_head *l1, *l2; 1008 1009 /* 1010 * On the default hierarchy, there can be csets which are 1011 * associated with the same set of cgroups but different csses. 1012 * Let's first ensure that csses match. 1013 */ 1014 if (memcmp(template, cset->subsys, sizeof(cset->subsys))) 1015 return false; 1016 1017 1018 /* @cset's domain should match the default cgroup's */ 1019 if (cgroup_on_dfl(new_cgrp)) 1020 new_dfl_cgrp = new_cgrp; 1021 else 1022 new_dfl_cgrp = old_cset->dfl_cgrp; 1023 1024 if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp) 1025 return false; 1026 1027 /* 1028 * Compare cgroup pointers in order to distinguish between 1029 * different cgroups in hierarchies. As different cgroups may 1030 * share the same effective css, this comparison is always 1031 * necessary. 1032 */ 1033 l1 = &cset->cgrp_links; 1034 l2 = &old_cset->cgrp_links; 1035 while (1) { 1036 struct cgrp_cset_link *link1, *link2; 1037 struct cgroup *cgrp1, *cgrp2; 1038 1039 l1 = l1->next; 1040 l2 = l2->next; 1041 /* See if we reached the end - both lists are equal length. */ 1042 if (l1 == &cset->cgrp_links) { 1043 BUG_ON(l2 != &old_cset->cgrp_links); 1044 break; 1045 } else { 1046 BUG_ON(l2 == &old_cset->cgrp_links); 1047 } 1048 /* Locate the cgroups associated with these links. */ 1049 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link); 1050 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link); 1051 cgrp1 = link1->cgrp; 1052 cgrp2 = link2->cgrp; 1053 /* Hierarchies should be linked in the same order. */ 1054 BUG_ON(cgrp1->root != cgrp2->root); 1055 1056 /* 1057 * If this hierarchy is the hierarchy of the cgroup 1058 * that's changing, then we need to check that this 1059 * css_set points to the new cgroup; if it's any other 1060 * hierarchy, then this css_set should point to the 1061 * same cgroup as the old css_set. 1062 */ 1063 if (cgrp1->root == new_cgrp->root) { 1064 if (cgrp1 != new_cgrp) 1065 return false; 1066 } else { 1067 if (cgrp1 != cgrp2) 1068 return false; 1069 } 1070 } 1071 return true; 1072 } 1073 1074 /** 1075 * find_existing_css_set - init css array and find the matching css_set 1076 * @old_cset: the css_set that we're using before the cgroup transition 1077 * @cgrp: the cgroup that we're moving into 1078 * @template: out param for the new set of csses, should be clear on entry 1079 */ 1080 static struct css_set *find_existing_css_set(struct css_set *old_cset, 1081 struct cgroup *cgrp, 1082 struct cgroup_subsys_state *template[]) 1083 { 1084 struct cgroup_root *root = cgrp->root; 1085 struct cgroup_subsys *ss; 1086 struct css_set *cset; 1087 unsigned long key; 1088 int i; 1089 1090 /* 1091 * Build the set of subsystem state objects that we want to see in the 1092 * new css_set. While subsystems can change globally, the entries here 1093 * won't change, so no need for locking. 1094 */ 1095 for_each_subsys(ss, i) { 1096 if (root->subsys_mask & (1UL << i)) { 1097 /* 1098 * @ss is in this hierarchy, so we want the 1099 * effective css from @cgrp. 1100 */ 1101 template[i] = cgroup_e_css_by_mask(cgrp, ss); 1102 } else { 1103 /* 1104 * @ss is not in this hierarchy, so we don't want 1105 * to change the css. 1106 */ 1107 template[i] = old_cset->subsys[i]; 1108 } 1109 } 1110 1111 key = css_set_hash(template); 1112 hash_for_each_possible(css_set_table, cset, hlist, key) { 1113 if (!compare_css_sets(cset, old_cset, cgrp, template)) 1114 continue; 1115 1116 /* This css_set matches what we need */ 1117 return cset; 1118 } 1119 1120 /* No existing cgroup group matched */ 1121 return NULL; 1122 } 1123 1124 static void free_cgrp_cset_links(struct list_head *links_to_free) 1125 { 1126 struct cgrp_cset_link *link, *tmp_link; 1127 1128 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) { 1129 list_del(&link->cset_link); 1130 kfree(link); 1131 } 1132 } 1133 1134 /** 1135 * allocate_cgrp_cset_links - allocate cgrp_cset_links 1136 * @count: the number of links to allocate 1137 * @tmp_links: list_head the allocated links are put on 1138 * 1139 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links 1140 * through ->cset_link. Returns 0 on success or -errno. 1141 */ 1142 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links) 1143 { 1144 struct cgrp_cset_link *link; 1145 int i; 1146 1147 INIT_LIST_HEAD(tmp_links); 1148 1149 for (i = 0; i < count; i++) { 1150 link = kzalloc(sizeof(*link), GFP_KERNEL); 1151 if (!link) { 1152 free_cgrp_cset_links(tmp_links); 1153 return -ENOMEM; 1154 } 1155 list_add(&link->cset_link, tmp_links); 1156 } 1157 return 0; 1158 } 1159 1160 /** 1161 * link_css_set - a helper function to link a css_set to a cgroup 1162 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links() 1163 * @cset: the css_set to be linked 1164 * @cgrp: the destination cgroup 1165 */ 1166 static void link_css_set(struct list_head *tmp_links, struct css_set *cset, 1167 struct cgroup *cgrp) 1168 { 1169 struct cgrp_cset_link *link; 1170 1171 BUG_ON(list_empty(tmp_links)); 1172 1173 if (cgroup_on_dfl(cgrp)) 1174 cset->dfl_cgrp = cgrp; 1175 1176 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link); 1177 link->cset = cset; 1178 link->cgrp = cgrp; 1179 1180 /* 1181 * Always add links to the tail of the lists so that the lists are 1182 * in chronological order. 1183 */ 1184 list_move_tail(&link->cset_link, &cgrp->cset_links); 1185 list_add_tail(&link->cgrp_link, &cset->cgrp_links); 1186 1187 if (cgroup_parent(cgrp)) 1188 cgroup_get_live(cgrp); 1189 } 1190 1191 /** 1192 * find_css_set - return a new css_set with one cgroup updated 1193 * @old_cset: the baseline css_set 1194 * @cgrp: the cgroup to be updated 1195 * 1196 * Return a new css_set that's equivalent to @old_cset, but with @cgrp 1197 * substituted into the appropriate hierarchy. 1198 */ 1199 static struct css_set *find_css_set(struct css_set *old_cset, 1200 struct cgroup *cgrp) 1201 { 1202 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { }; 1203 struct css_set *cset; 1204 struct list_head tmp_links; 1205 struct cgrp_cset_link *link; 1206 struct cgroup_subsys *ss; 1207 unsigned long key; 1208 int ssid; 1209 1210 lockdep_assert_held(&cgroup_mutex); 1211 1212 /* First see if we already have a cgroup group that matches 1213 * the desired set */ 1214 spin_lock_irq(&css_set_lock); 1215 cset = find_existing_css_set(old_cset, cgrp, template); 1216 if (cset) 1217 get_css_set(cset); 1218 spin_unlock_irq(&css_set_lock); 1219 1220 if (cset) 1221 return cset; 1222 1223 cset = kzalloc(sizeof(*cset), GFP_KERNEL); 1224 if (!cset) 1225 return NULL; 1226 1227 /* Allocate all the cgrp_cset_link objects that we'll need */ 1228 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) { 1229 kfree(cset); 1230 return NULL; 1231 } 1232 1233 refcount_set(&cset->refcount, 1); 1234 cset->dom_cset = cset; 1235 INIT_LIST_HEAD(&cset->tasks); 1236 INIT_LIST_HEAD(&cset->mg_tasks); 1237 INIT_LIST_HEAD(&cset->dying_tasks); 1238 INIT_LIST_HEAD(&cset->task_iters); 1239 INIT_LIST_HEAD(&cset->threaded_csets); 1240 INIT_HLIST_NODE(&cset->hlist); 1241 INIT_LIST_HEAD(&cset->cgrp_links); 1242 INIT_LIST_HEAD(&cset->mg_preload_node); 1243 INIT_LIST_HEAD(&cset->mg_node); 1244 1245 /* Copy the set of subsystem state objects generated in 1246 * find_existing_css_set() */ 1247 memcpy(cset->subsys, template, sizeof(cset->subsys)); 1248 1249 spin_lock_irq(&css_set_lock); 1250 /* Add reference counts and links from the new css_set. */ 1251 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) { 1252 struct cgroup *c = link->cgrp; 1253 1254 if (c->root == cgrp->root) 1255 c = cgrp; 1256 link_css_set(&tmp_links, cset, c); 1257 } 1258 1259 BUG_ON(!list_empty(&tmp_links)); 1260 1261 css_set_count++; 1262 1263 /* Add @cset to the hash table */ 1264 key = css_set_hash(cset->subsys); 1265 hash_add(css_set_table, &cset->hlist, key); 1266 1267 for_each_subsys(ss, ssid) { 1268 struct cgroup_subsys_state *css = cset->subsys[ssid]; 1269 1270 list_add_tail(&cset->e_cset_node[ssid], 1271 &css->cgroup->e_csets[ssid]); 1272 css_get(css); 1273 } 1274 1275 spin_unlock_irq(&css_set_lock); 1276 1277 /* 1278 * If @cset should be threaded, look up the matching dom_cset and 1279 * link them up. We first fully initialize @cset then look for the 1280 * dom_cset. It's simpler this way and safe as @cset is guaranteed 1281 * to stay empty until we return. 1282 */ 1283 if (cgroup_is_threaded(cset->dfl_cgrp)) { 1284 struct css_set *dcset; 1285 1286 dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp); 1287 if (!dcset) { 1288 put_css_set(cset); 1289 return NULL; 1290 } 1291 1292 spin_lock_irq(&css_set_lock); 1293 cset->dom_cset = dcset; 1294 list_add_tail(&cset->threaded_csets_node, 1295 &dcset->threaded_csets); 1296 spin_unlock_irq(&css_set_lock); 1297 } 1298 1299 return cset; 1300 } 1301 1302 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root) 1303 { 1304 struct cgroup *root_cgrp = kf_root->kn->priv; 1305 1306 return root_cgrp->root; 1307 } 1308 1309 static int cgroup_init_root_id(struct cgroup_root *root) 1310 { 1311 int id; 1312 1313 lockdep_assert_held(&cgroup_mutex); 1314 1315 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL); 1316 if (id < 0) 1317 return id; 1318 1319 root->hierarchy_id = id; 1320 return 0; 1321 } 1322 1323 static void cgroup_exit_root_id(struct cgroup_root *root) 1324 { 1325 lockdep_assert_held(&cgroup_mutex); 1326 1327 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id); 1328 } 1329 1330 void cgroup_free_root(struct cgroup_root *root) 1331 { 1332 kfree(root); 1333 } 1334 1335 static void cgroup_destroy_root(struct cgroup_root *root) 1336 { 1337 struct cgroup *cgrp = &root->cgrp; 1338 struct cgrp_cset_link *link, *tmp_link; 1339 1340 trace_cgroup_destroy_root(root); 1341 1342 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp); 1343 1344 BUG_ON(atomic_read(&root->nr_cgrps)); 1345 BUG_ON(!list_empty(&cgrp->self.children)); 1346 1347 /* Rebind all subsystems back to the default hierarchy */ 1348 WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask)); 1349 1350 /* 1351 * Release all the links from cset_links to this hierarchy's 1352 * root cgroup 1353 */ 1354 spin_lock_irq(&css_set_lock); 1355 1356 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) { 1357 list_del(&link->cset_link); 1358 list_del(&link->cgrp_link); 1359 kfree(link); 1360 } 1361 1362 spin_unlock_irq(&css_set_lock); 1363 1364 if (!list_empty(&root->root_list)) { 1365 list_del(&root->root_list); 1366 cgroup_root_count--; 1367 } 1368 1369 cgroup_exit_root_id(root); 1370 1371 mutex_unlock(&cgroup_mutex); 1372 1373 cgroup_rstat_exit(cgrp); 1374 kernfs_destroy_root(root->kf_root); 1375 cgroup_free_root(root); 1376 } 1377 1378 /* 1379 * look up cgroup associated with current task's cgroup namespace on the 1380 * specified hierarchy 1381 */ 1382 static struct cgroup * 1383 current_cgns_cgroup_from_root(struct cgroup_root *root) 1384 { 1385 struct cgroup *res = NULL; 1386 struct css_set *cset; 1387 1388 lockdep_assert_held(&css_set_lock); 1389 1390 rcu_read_lock(); 1391 1392 cset = current->nsproxy->cgroup_ns->root_cset; 1393 if (cset == &init_css_set) { 1394 res = &root->cgrp; 1395 } else if (root == &cgrp_dfl_root) { 1396 res = cset->dfl_cgrp; 1397 } else { 1398 struct cgrp_cset_link *link; 1399 1400 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) { 1401 struct cgroup *c = link->cgrp; 1402 1403 if (c->root == root) { 1404 res = c; 1405 break; 1406 } 1407 } 1408 } 1409 rcu_read_unlock(); 1410 1411 BUG_ON(!res); 1412 return res; 1413 } 1414 1415 /* look up cgroup associated with given css_set on the specified hierarchy */ 1416 static struct cgroup *cset_cgroup_from_root(struct css_set *cset, 1417 struct cgroup_root *root) 1418 { 1419 struct cgroup *res = NULL; 1420 1421 lockdep_assert_held(&cgroup_mutex); 1422 lockdep_assert_held(&css_set_lock); 1423 1424 if (cset == &init_css_set) { 1425 res = &root->cgrp; 1426 } else if (root == &cgrp_dfl_root) { 1427 res = cset->dfl_cgrp; 1428 } else { 1429 struct cgrp_cset_link *link; 1430 1431 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) { 1432 struct cgroup *c = link->cgrp; 1433 1434 if (c->root == root) { 1435 res = c; 1436 break; 1437 } 1438 } 1439 } 1440 1441 BUG_ON(!res); 1442 return res; 1443 } 1444 1445 /* 1446 * Return the cgroup for "task" from the given hierarchy. Must be 1447 * called with cgroup_mutex and css_set_lock held. 1448 */ 1449 struct cgroup *task_cgroup_from_root(struct task_struct *task, 1450 struct cgroup_root *root) 1451 { 1452 /* 1453 * No need to lock the task - since we hold css_set_lock the 1454 * task can't change groups. 1455 */ 1456 return cset_cgroup_from_root(task_css_set(task), root); 1457 } 1458 1459 /* 1460 * A task must hold cgroup_mutex to modify cgroups. 1461 * 1462 * Any task can increment and decrement the count field without lock. 1463 * So in general, code holding cgroup_mutex can't rely on the count 1464 * field not changing. However, if the count goes to zero, then only 1465 * cgroup_attach_task() can increment it again. Because a count of zero 1466 * means that no tasks are currently attached, therefore there is no 1467 * way a task attached to that cgroup can fork (the other way to 1468 * increment the count). So code holding cgroup_mutex can safely 1469 * assume that if the count is zero, it will stay zero. Similarly, if 1470 * a task holds cgroup_mutex on a cgroup with zero count, it 1471 * knows that the cgroup won't be removed, as cgroup_rmdir() 1472 * needs that mutex. 1473 * 1474 * A cgroup can only be deleted if both its 'count' of using tasks 1475 * is zero, and its list of 'children' cgroups is empty. Since all 1476 * tasks in the system use _some_ cgroup, and since there is always at 1477 * least one task in the system (init, pid == 1), therefore, root cgroup 1478 * always has either children cgroups and/or using tasks. So we don't 1479 * need a special hack to ensure that root cgroup cannot be deleted. 1480 * 1481 * P.S. One more locking exception. RCU is used to guard the 1482 * update of a tasks cgroup pointer by cgroup_attach_task() 1483 */ 1484 1485 static struct kernfs_syscall_ops cgroup_kf_syscall_ops; 1486 1487 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft, 1488 char *buf) 1489 { 1490 struct cgroup_subsys *ss = cft->ss; 1491 1492 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) && 1493 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) { 1494 const char *dbg = (cft->flags & CFTYPE_DEBUG) ? ".__DEBUG__." : ""; 1495 1496 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s%s.%s", 1497 dbg, cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name, 1498 cft->name); 1499 } else { 1500 strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX); 1501 } 1502 return buf; 1503 } 1504 1505 /** 1506 * cgroup_file_mode - deduce file mode of a control file 1507 * @cft: the control file in question 1508 * 1509 * S_IRUGO for read, S_IWUSR for write. 1510 */ 1511 static umode_t cgroup_file_mode(const struct cftype *cft) 1512 { 1513 umode_t mode = 0; 1514 1515 if (cft->read_u64 || cft->read_s64 || cft->seq_show) 1516 mode |= S_IRUGO; 1517 1518 if (cft->write_u64 || cft->write_s64 || cft->write) { 1519 if (cft->flags & CFTYPE_WORLD_WRITABLE) 1520 mode |= S_IWUGO; 1521 else 1522 mode |= S_IWUSR; 1523 } 1524 1525 return mode; 1526 } 1527 1528 /** 1529 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask 1530 * @subtree_control: the new subtree_control mask to consider 1531 * @this_ss_mask: available subsystems 1532 * 1533 * On the default hierarchy, a subsystem may request other subsystems to be 1534 * enabled together through its ->depends_on mask. In such cases, more 1535 * subsystems than specified in "cgroup.subtree_control" may be enabled. 1536 * 1537 * This function calculates which subsystems need to be enabled if 1538 * @subtree_control is to be applied while restricted to @this_ss_mask. 1539 */ 1540 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask) 1541 { 1542 u16 cur_ss_mask = subtree_control; 1543 struct cgroup_subsys *ss; 1544 int ssid; 1545 1546 lockdep_assert_held(&cgroup_mutex); 1547 1548 cur_ss_mask |= cgrp_dfl_implicit_ss_mask; 1549 1550 while (true) { 1551 u16 new_ss_mask = cur_ss_mask; 1552 1553 do_each_subsys_mask(ss, ssid, cur_ss_mask) { 1554 new_ss_mask |= ss->depends_on; 1555 } while_each_subsys_mask(); 1556 1557 /* 1558 * Mask out subsystems which aren't available. This can 1559 * happen only if some depended-upon subsystems were bound 1560 * to non-default hierarchies. 1561 */ 1562 new_ss_mask &= this_ss_mask; 1563 1564 if (new_ss_mask == cur_ss_mask) 1565 break; 1566 cur_ss_mask = new_ss_mask; 1567 } 1568 1569 return cur_ss_mask; 1570 } 1571 1572 /** 1573 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods 1574 * @kn: the kernfs_node being serviced 1575 * 1576 * This helper undoes cgroup_kn_lock_live() and should be invoked before 1577 * the method finishes if locking succeeded. Note that once this function 1578 * returns the cgroup returned by cgroup_kn_lock_live() may become 1579 * inaccessible any time. If the caller intends to continue to access the 1580 * cgroup, it should pin it before invoking this function. 1581 */ 1582 void cgroup_kn_unlock(struct kernfs_node *kn) 1583 { 1584 struct cgroup *cgrp; 1585 1586 if (kernfs_type(kn) == KERNFS_DIR) 1587 cgrp = kn->priv; 1588 else 1589 cgrp = kn->parent->priv; 1590 1591 mutex_unlock(&cgroup_mutex); 1592 1593 kernfs_unbreak_active_protection(kn); 1594 cgroup_put(cgrp); 1595 } 1596 1597 /** 1598 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods 1599 * @kn: the kernfs_node being serviced 1600 * @drain_offline: perform offline draining on the cgroup 1601 * 1602 * This helper is to be used by a cgroup kernfs method currently servicing 1603 * @kn. It breaks the active protection, performs cgroup locking and 1604 * verifies that the associated cgroup is alive. Returns the cgroup if 1605 * alive; otherwise, %NULL. A successful return should be undone by a 1606 * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the 1607 * cgroup is drained of offlining csses before return. 1608 * 1609 * Any cgroup kernfs method implementation which requires locking the 1610 * associated cgroup should use this helper. It avoids nesting cgroup 1611 * locking under kernfs active protection and allows all kernfs operations 1612 * including self-removal. 1613 */ 1614 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline) 1615 { 1616 struct cgroup *cgrp; 1617 1618 if (kernfs_type(kn) == KERNFS_DIR) 1619 cgrp = kn->priv; 1620 else 1621 cgrp = kn->parent->priv; 1622 1623 /* 1624 * We're gonna grab cgroup_mutex which nests outside kernfs 1625 * active_ref. cgroup liveliness check alone provides enough 1626 * protection against removal. Ensure @cgrp stays accessible and 1627 * break the active_ref protection. 1628 */ 1629 if (!cgroup_tryget(cgrp)) 1630 return NULL; 1631 kernfs_break_active_protection(kn); 1632 1633 if (drain_offline) 1634 cgroup_lock_and_drain_offline(cgrp); 1635 else 1636 mutex_lock(&cgroup_mutex); 1637 1638 if (!cgroup_is_dead(cgrp)) 1639 return cgrp; 1640 1641 cgroup_kn_unlock(kn); 1642 return NULL; 1643 } 1644 1645 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft) 1646 { 1647 char name[CGROUP_FILE_NAME_MAX]; 1648 1649 lockdep_assert_held(&cgroup_mutex); 1650 1651 if (cft->file_offset) { 1652 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss); 1653 struct cgroup_file *cfile = (void *)css + cft->file_offset; 1654 1655 spin_lock_irq(&cgroup_file_kn_lock); 1656 cfile->kn = NULL; 1657 spin_unlock_irq(&cgroup_file_kn_lock); 1658 1659 del_timer_sync(&cfile->notify_timer); 1660 } 1661 1662 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name)); 1663 } 1664 1665 /** 1666 * css_clear_dir - remove subsys files in a cgroup directory 1667 * @css: target css 1668 */ 1669 static void css_clear_dir(struct cgroup_subsys_state *css) 1670 { 1671 struct cgroup *cgrp = css->cgroup; 1672 struct cftype *cfts; 1673 1674 if (!(css->flags & CSS_VISIBLE)) 1675 return; 1676 1677 css->flags &= ~CSS_VISIBLE; 1678 1679 if (!css->ss) { 1680 if (cgroup_on_dfl(cgrp)) 1681 cfts = cgroup_base_files; 1682 else 1683 cfts = cgroup1_base_files; 1684 1685 cgroup_addrm_files(css, cgrp, cfts, false); 1686 } else { 1687 list_for_each_entry(cfts, &css->ss->cfts, node) 1688 cgroup_addrm_files(css, cgrp, cfts, false); 1689 } 1690 } 1691 1692 /** 1693 * css_populate_dir - create subsys files in a cgroup directory 1694 * @css: target css 1695 * 1696 * On failure, no file is added. 1697 */ 1698 static int css_populate_dir(struct cgroup_subsys_state *css) 1699 { 1700 struct cgroup *cgrp = css->cgroup; 1701 struct cftype *cfts, *failed_cfts; 1702 int ret; 1703 1704 if ((css->flags & CSS_VISIBLE) || !cgrp->kn) 1705 return 0; 1706 1707 if (!css->ss) { 1708 if (cgroup_on_dfl(cgrp)) 1709 cfts = cgroup_base_files; 1710 else 1711 cfts = cgroup1_base_files; 1712 1713 ret = cgroup_addrm_files(&cgrp->self, cgrp, cfts, true); 1714 if (ret < 0) 1715 return ret; 1716 } else { 1717 list_for_each_entry(cfts, &css->ss->cfts, node) { 1718 ret = cgroup_addrm_files(css, cgrp, cfts, true); 1719 if (ret < 0) { 1720 failed_cfts = cfts; 1721 goto err; 1722 } 1723 } 1724 } 1725 1726 css->flags |= CSS_VISIBLE; 1727 1728 return 0; 1729 err: 1730 list_for_each_entry(cfts, &css->ss->cfts, node) { 1731 if (cfts == failed_cfts) 1732 break; 1733 cgroup_addrm_files(css, cgrp, cfts, false); 1734 } 1735 return ret; 1736 } 1737 1738 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask) 1739 { 1740 struct cgroup *dcgrp = &dst_root->cgrp; 1741 struct cgroup_subsys *ss; 1742 int ssid, i, ret; 1743 1744 lockdep_assert_held(&cgroup_mutex); 1745 1746 do_each_subsys_mask(ss, ssid, ss_mask) { 1747 /* 1748 * If @ss has non-root csses attached to it, can't move. 1749 * If @ss is an implicit controller, it is exempt from this 1750 * rule and can be stolen. 1751 */ 1752 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) && 1753 !ss->implicit_on_dfl) 1754 return -EBUSY; 1755 1756 /* can't move between two non-dummy roots either */ 1757 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root) 1758 return -EBUSY; 1759 } while_each_subsys_mask(); 1760 1761 do_each_subsys_mask(ss, ssid, ss_mask) { 1762 struct cgroup_root *src_root = ss->root; 1763 struct cgroup *scgrp = &src_root->cgrp; 1764 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss); 1765 struct css_set *cset; 1766 1767 WARN_ON(!css || cgroup_css(dcgrp, ss)); 1768 1769 /* disable from the source */ 1770 src_root->subsys_mask &= ~(1 << ssid); 1771 WARN_ON(cgroup_apply_control(scgrp)); 1772 cgroup_finalize_control(scgrp, 0); 1773 1774 /* rebind */ 1775 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL); 1776 rcu_assign_pointer(dcgrp->subsys[ssid], css); 1777 ss->root = dst_root; 1778 css->cgroup = dcgrp; 1779 1780 spin_lock_irq(&css_set_lock); 1781 hash_for_each(css_set_table, i, cset, hlist) 1782 list_move_tail(&cset->e_cset_node[ss->id], 1783 &dcgrp->e_csets[ss->id]); 1784 spin_unlock_irq(&css_set_lock); 1785 1786 if (ss->css_rstat_flush) { 1787 list_del_rcu(&css->rstat_css_node); 1788 list_add_rcu(&css->rstat_css_node, 1789 &dcgrp->rstat_css_list); 1790 } 1791 1792 /* default hierarchy doesn't enable controllers by default */ 1793 dst_root->subsys_mask |= 1 << ssid; 1794 if (dst_root == &cgrp_dfl_root) { 1795 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]); 1796 } else { 1797 dcgrp->subtree_control |= 1 << ssid; 1798 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]); 1799 } 1800 1801 ret = cgroup_apply_control(dcgrp); 1802 if (ret) 1803 pr_warn("partial failure to rebind %s controller (err=%d)\n", 1804 ss->name, ret); 1805 1806 if (ss->bind) 1807 ss->bind(css); 1808 } while_each_subsys_mask(); 1809 1810 kernfs_activate(dcgrp->kn); 1811 return 0; 1812 } 1813 1814 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node, 1815 struct kernfs_root *kf_root) 1816 { 1817 int len = 0; 1818 char *buf = NULL; 1819 struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root); 1820 struct cgroup *ns_cgroup; 1821 1822 buf = kmalloc(PATH_MAX, GFP_KERNEL); 1823 if (!buf) 1824 return -ENOMEM; 1825 1826 spin_lock_irq(&css_set_lock); 1827 ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot); 1828 len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX); 1829 spin_unlock_irq(&css_set_lock); 1830 1831 if (len >= PATH_MAX) 1832 len = -ERANGE; 1833 else if (len > 0) { 1834 seq_escape(sf, buf, " \t\n\\"); 1835 len = 0; 1836 } 1837 kfree(buf); 1838 return len; 1839 } 1840 1841 enum cgroup2_param { 1842 Opt_nsdelegate, 1843 Opt_memory_localevents, 1844 Opt_memory_recursiveprot, 1845 nr__cgroup2_params 1846 }; 1847 1848 static const struct fs_parameter_spec cgroup2_fs_parameters[] = { 1849 fsparam_flag("nsdelegate", Opt_nsdelegate), 1850 fsparam_flag("memory_localevents", Opt_memory_localevents), 1851 fsparam_flag("memory_recursiveprot", Opt_memory_recursiveprot), 1852 {} 1853 }; 1854 1855 static int cgroup2_parse_param(struct fs_context *fc, struct fs_parameter *param) 1856 { 1857 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 1858 struct fs_parse_result result; 1859 int opt; 1860 1861 opt = fs_parse(fc, cgroup2_fs_parameters, param, &result); 1862 if (opt < 0) 1863 return opt; 1864 1865 switch (opt) { 1866 case Opt_nsdelegate: 1867 ctx->flags |= CGRP_ROOT_NS_DELEGATE; 1868 return 0; 1869 case Opt_memory_localevents: 1870 ctx->flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS; 1871 return 0; 1872 case Opt_memory_recursiveprot: 1873 ctx->flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT; 1874 return 0; 1875 } 1876 return -EINVAL; 1877 } 1878 1879 static void apply_cgroup_root_flags(unsigned int root_flags) 1880 { 1881 if (current->nsproxy->cgroup_ns == &init_cgroup_ns) { 1882 if (root_flags & CGRP_ROOT_NS_DELEGATE) 1883 cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE; 1884 else 1885 cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE; 1886 1887 if (root_flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS) 1888 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS; 1889 else 1890 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_LOCAL_EVENTS; 1891 1892 if (root_flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT) 1893 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT; 1894 else 1895 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_RECURSIVE_PROT; 1896 } 1897 } 1898 1899 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root) 1900 { 1901 if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) 1902 seq_puts(seq, ",nsdelegate"); 1903 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS) 1904 seq_puts(seq, ",memory_localevents"); 1905 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT) 1906 seq_puts(seq, ",memory_recursiveprot"); 1907 return 0; 1908 } 1909 1910 static int cgroup_reconfigure(struct fs_context *fc) 1911 { 1912 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 1913 1914 apply_cgroup_root_flags(ctx->flags); 1915 return 0; 1916 } 1917 1918 static void init_cgroup_housekeeping(struct cgroup *cgrp) 1919 { 1920 struct cgroup_subsys *ss; 1921 int ssid; 1922 1923 INIT_LIST_HEAD(&cgrp->self.sibling); 1924 INIT_LIST_HEAD(&cgrp->self.children); 1925 INIT_LIST_HEAD(&cgrp->cset_links); 1926 INIT_LIST_HEAD(&cgrp->pidlists); 1927 mutex_init(&cgrp->pidlist_mutex); 1928 cgrp->self.cgroup = cgrp; 1929 cgrp->self.flags |= CSS_ONLINE; 1930 cgrp->dom_cgrp = cgrp; 1931 cgrp->max_descendants = INT_MAX; 1932 cgrp->max_depth = INT_MAX; 1933 INIT_LIST_HEAD(&cgrp->rstat_css_list); 1934 prev_cputime_init(&cgrp->prev_cputime); 1935 1936 for_each_subsys(ss, ssid) 1937 INIT_LIST_HEAD(&cgrp->e_csets[ssid]); 1938 1939 init_waitqueue_head(&cgrp->offline_waitq); 1940 INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent); 1941 } 1942 1943 void init_cgroup_root(struct cgroup_fs_context *ctx) 1944 { 1945 struct cgroup_root *root = ctx->root; 1946 struct cgroup *cgrp = &root->cgrp; 1947 1948 INIT_LIST_HEAD(&root->root_list); 1949 atomic_set(&root->nr_cgrps, 1); 1950 cgrp->root = root; 1951 init_cgroup_housekeeping(cgrp); 1952 1953 root->flags = ctx->flags; 1954 if (ctx->release_agent) 1955 strscpy(root->release_agent_path, ctx->release_agent, PATH_MAX); 1956 if (ctx->name) 1957 strscpy(root->name, ctx->name, MAX_CGROUP_ROOT_NAMELEN); 1958 if (ctx->cpuset_clone_children) 1959 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags); 1960 } 1961 1962 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask) 1963 { 1964 LIST_HEAD(tmp_links); 1965 struct cgroup *root_cgrp = &root->cgrp; 1966 struct kernfs_syscall_ops *kf_sops; 1967 struct css_set *cset; 1968 int i, ret; 1969 1970 lockdep_assert_held(&cgroup_mutex); 1971 1972 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 1973 0, GFP_KERNEL); 1974 if (ret) 1975 goto out; 1976 1977 /* 1978 * We're accessing css_set_count without locking css_set_lock here, 1979 * but that's OK - it can only be increased by someone holding 1980 * cgroup_lock, and that's us. Later rebinding may disable 1981 * controllers on the default hierarchy and thus create new csets, 1982 * which can't be more than the existing ones. Allocate 2x. 1983 */ 1984 ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links); 1985 if (ret) 1986 goto cancel_ref; 1987 1988 ret = cgroup_init_root_id(root); 1989 if (ret) 1990 goto cancel_ref; 1991 1992 kf_sops = root == &cgrp_dfl_root ? 1993 &cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops; 1994 1995 root->kf_root = kernfs_create_root(kf_sops, 1996 KERNFS_ROOT_CREATE_DEACTIVATED | 1997 KERNFS_ROOT_SUPPORT_EXPORTOP | 1998 KERNFS_ROOT_SUPPORT_USER_XATTR, 1999 root_cgrp); 2000 if (IS_ERR(root->kf_root)) { 2001 ret = PTR_ERR(root->kf_root); 2002 goto exit_root_id; 2003 } 2004 root_cgrp->kn = root->kf_root->kn; 2005 WARN_ON_ONCE(cgroup_ino(root_cgrp) != 1); 2006 root_cgrp->ancestor_ids[0] = cgroup_id(root_cgrp); 2007 2008 ret = css_populate_dir(&root_cgrp->self); 2009 if (ret) 2010 goto destroy_root; 2011 2012 ret = cgroup_rstat_init(root_cgrp); 2013 if (ret) 2014 goto destroy_root; 2015 2016 ret = rebind_subsystems(root, ss_mask); 2017 if (ret) 2018 goto exit_stats; 2019 2020 ret = cgroup_bpf_inherit(root_cgrp); 2021 WARN_ON_ONCE(ret); 2022 2023 trace_cgroup_setup_root(root); 2024 2025 /* 2026 * There must be no failure case after here, since rebinding takes 2027 * care of subsystems' refcounts, which are explicitly dropped in 2028 * the failure exit path. 2029 */ 2030 list_add(&root->root_list, &cgroup_roots); 2031 cgroup_root_count++; 2032 2033 /* 2034 * Link the root cgroup in this hierarchy into all the css_set 2035 * objects. 2036 */ 2037 spin_lock_irq(&css_set_lock); 2038 hash_for_each(css_set_table, i, cset, hlist) { 2039 link_css_set(&tmp_links, cset, root_cgrp); 2040 if (css_set_populated(cset)) 2041 cgroup_update_populated(root_cgrp, true); 2042 } 2043 spin_unlock_irq(&css_set_lock); 2044 2045 BUG_ON(!list_empty(&root_cgrp->self.children)); 2046 BUG_ON(atomic_read(&root->nr_cgrps) != 1); 2047 2048 ret = 0; 2049 goto out; 2050 2051 exit_stats: 2052 cgroup_rstat_exit(root_cgrp); 2053 destroy_root: 2054 kernfs_destroy_root(root->kf_root); 2055 root->kf_root = NULL; 2056 exit_root_id: 2057 cgroup_exit_root_id(root); 2058 cancel_ref: 2059 percpu_ref_exit(&root_cgrp->self.refcnt); 2060 out: 2061 free_cgrp_cset_links(&tmp_links); 2062 return ret; 2063 } 2064 2065 int cgroup_do_get_tree(struct fs_context *fc) 2066 { 2067 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2068 int ret; 2069 2070 ctx->kfc.root = ctx->root->kf_root; 2071 if (fc->fs_type == &cgroup2_fs_type) 2072 ctx->kfc.magic = CGROUP2_SUPER_MAGIC; 2073 else 2074 ctx->kfc.magic = CGROUP_SUPER_MAGIC; 2075 ret = kernfs_get_tree(fc); 2076 2077 /* 2078 * In non-init cgroup namespace, instead of root cgroup's dentry, 2079 * we return the dentry corresponding to the cgroupns->root_cgrp. 2080 */ 2081 if (!ret && ctx->ns != &init_cgroup_ns) { 2082 struct dentry *nsdentry; 2083 struct super_block *sb = fc->root->d_sb; 2084 struct cgroup *cgrp; 2085 2086 mutex_lock(&cgroup_mutex); 2087 spin_lock_irq(&css_set_lock); 2088 2089 cgrp = cset_cgroup_from_root(ctx->ns->root_cset, ctx->root); 2090 2091 spin_unlock_irq(&css_set_lock); 2092 mutex_unlock(&cgroup_mutex); 2093 2094 nsdentry = kernfs_node_dentry(cgrp->kn, sb); 2095 dput(fc->root); 2096 if (IS_ERR(nsdentry)) { 2097 deactivate_locked_super(sb); 2098 ret = PTR_ERR(nsdentry); 2099 nsdentry = NULL; 2100 } 2101 fc->root = nsdentry; 2102 } 2103 2104 if (!ctx->kfc.new_sb_created) 2105 cgroup_put(&ctx->root->cgrp); 2106 2107 return ret; 2108 } 2109 2110 /* 2111 * Destroy a cgroup filesystem context. 2112 */ 2113 static void cgroup_fs_context_free(struct fs_context *fc) 2114 { 2115 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2116 2117 kfree(ctx->name); 2118 kfree(ctx->release_agent); 2119 put_cgroup_ns(ctx->ns); 2120 kernfs_free_fs_context(fc); 2121 kfree(ctx); 2122 } 2123 2124 static int cgroup_get_tree(struct fs_context *fc) 2125 { 2126 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2127 int ret; 2128 2129 cgrp_dfl_visible = true; 2130 cgroup_get_live(&cgrp_dfl_root.cgrp); 2131 ctx->root = &cgrp_dfl_root; 2132 2133 ret = cgroup_do_get_tree(fc); 2134 if (!ret) 2135 apply_cgroup_root_flags(ctx->flags); 2136 return ret; 2137 } 2138 2139 static const struct fs_context_operations cgroup_fs_context_ops = { 2140 .free = cgroup_fs_context_free, 2141 .parse_param = cgroup2_parse_param, 2142 .get_tree = cgroup_get_tree, 2143 .reconfigure = cgroup_reconfigure, 2144 }; 2145 2146 static const struct fs_context_operations cgroup1_fs_context_ops = { 2147 .free = cgroup_fs_context_free, 2148 .parse_param = cgroup1_parse_param, 2149 .get_tree = cgroup1_get_tree, 2150 .reconfigure = cgroup1_reconfigure, 2151 }; 2152 2153 /* 2154 * Initialise the cgroup filesystem creation/reconfiguration context. Notably, 2155 * we select the namespace we're going to use. 2156 */ 2157 static int cgroup_init_fs_context(struct fs_context *fc) 2158 { 2159 struct cgroup_fs_context *ctx; 2160 2161 ctx = kzalloc(sizeof(struct cgroup_fs_context), GFP_KERNEL); 2162 if (!ctx) 2163 return -ENOMEM; 2164 2165 ctx->ns = current->nsproxy->cgroup_ns; 2166 get_cgroup_ns(ctx->ns); 2167 fc->fs_private = &ctx->kfc; 2168 if (fc->fs_type == &cgroup2_fs_type) 2169 fc->ops = &cgroup_fs_context_ops; 2170 else 2171 fc->ops = &cgroup1_fs_context_ops; 2172 put_user_ns(fc->user_ns); 2173 fc->user_ns = get_user_ns(ctx->ns->user_ns); 2174 fc->global = true; 2175 return 0; 2176 } 2177 2178 static void cgroup_kill_sb(struct super_block *sb) 2179 { 2180 struct kernfs_root *kf_root = kernfs_root_from_sb(sb); 2181 struct cgroup_root *root = cgroup_root_from_kf(kf_root); 2182 2183 /* 2184 * If @root doesn't have any children, start killing it. 2185 * This prevents new mounts by disabling percpu_ref_tryget_live(). 2186 * 2187 * And don't kill the default root. 2188 */ 2189 if (list_empty(&root->cgrp.self.children) && root != &cgrp_dfl_root && 2190 !percpu_ref_is_dying(&root->cgrp.self.refcnt)) 2191 percpu_ref_kill(&root->cgrp.self.refcnt); 2192 cgroup_put(&root->cgrp); 2193 kernfs_kill_sb(sb); 2194 } 2195 2196 struct file_system_type cgroup_fs_type = { 2197 .name = "cgroup", 2198 .init_fs_context = cgroup_init_fs_context, 2199 .parameters = cgroup1_fs_parameters, 2200 .kill_sb = cgroup_kill_sb, 2201 .fs_flags = FS_USERNS_MOUNT, 2202 }; 2203 2204 static struct file_system_type cgroup2_fs_type = { 2205 .name = "cgroup2", 2206 .init_fs_context = cgroup_init_fs_context, 2207 .parameters = cgroup2_fs_parameters, 2208 .kill_sb = cgroup_kill_sb, 2209 .fs_flags = FS_USERNS_MOUNT, 2210 }; 2211 2212 #ifdef CONFIG_CPUSETS 2213 static const struct fs_context_operations cpuset_fs_context_ops = { 2214 .get_tree = cgroup1_get_tree, 2215 .free = cgroup_fs_context_free, 2216 }; 2217 2218 /* 2219 * This is ugly, but preserves the userspace API for existing cpuset 2220 * users. If someone tries to mount the "cpuset" filesystem, we 2221 * silently switch it to mount "cgroup" instead 2222 */ 2223 static int cpuset_init_fs_context(struct fs_context *fc) 2224 { 2225 char *agent = kstrdup("/sbin/cpuset_release_agent", GFP_USER); 2226 struct cgroup_fs_context *ctx; 2227 int err; 2228 2229 err = cgroup_init_fs_context(fc); 2230 if (err) { 2231 kfree(agent); 2232 return err; 2233 } 2234 2235 fc->ops = &cpuset_fs_context_ops; 2236 2237 ctx = cgroup_fc2context(fc); 2238 ctx->subsys_mask = 1 << cpuset_cgrp_id; 2239 ctx->flags |= CGRP_ROOT_NOPREFIX; 2240 ctx->release_agent = agent; 2241 2242 get_filesystem(&cgroup_fs_type); 2243 put_filesystem(fc->fs_type); 2244 fc->fs_type = &cgroup_fs_type; 2245 2246 return 0; 2247 } 2248 2249 static struct file_system_type cpuset_fs_type = { 2250 .name = "cpuset", 2251 .init_fs_context = cpuset_init_fs_context, 2252 .fs_flags = FS_USERNS_MOUNT, 2253 }; 2254 #endif 2255 2256 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen, 2257 struct cgroup_namespace *ns) 2258 { 2259 struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root); 2260 2261 return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen); 2262 } 2263 2264 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen, 2265 struct cgroup_namespace *ns) 2266 { 2267 int ret; 2268 2269 mutex_lock(&cgroup_mutex); 2270 spin_lock_irq(&css_set_lock); 2271 2272 ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns); 2273 2274 spin_unlock_irq(&css_set_lock); 2275 mutex_unlock(&cgroup_mutex); 2276 2277 return ret; 2278 } 2279 EXPORT_SYMBOL_GPL(cgroup_path_ns); 2280 2281 /** 2282 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy 2283 * @task: target task 2284 * @buf: the buffer to write the path into 2285 * @buflen: the length of the buffer 2286 * 2287 * Determine @task's cgroup on the first (the one with the lowest non-zero 2288 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This 2289 * function grabs cgroup_mutex and shouldn't be used inside locks used by 2290 * cgroup controller callbacks. 2291 * 2292 * Return value is the same as kernfs_path(). 2293 */ 2294 int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen) 2295 { 2296 struct cgroup_root *root; 2297 struct cgroup *cgrp; 2298 int hierarchy_id = 1; 2299 int ret; 2300 2301 mutex_lock(&cgroup_mutex); 2302 spin_lock_irq(&css_set_lock); 2303 2304 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id); 2305 2306 if (root) { 2307 cgrp = task_cgroup_from_root(task, root); 2308 ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns); 2309 } else { 2310 /* if no hierarchy exists, everyone is in "/" */ 2311 ret = strlcpy(buf, "/", buflen); 2312 } 2313 2314 spin_unlock_irq(&css_set_lock); 2315 mutex_unlock(&cgroup_mutex); 2316 return ret; 2317 } 2318 EXPORT_SYMBOL_GPL(task_cgroup_path); 2319 2320 /** 2321 * cgroup_migrate_add_task - add a migration target task to a migration context 2322 * @task: target task 2323 * @mgctx: target migration context 2324 * 2325 * Add @task, which is a migration target, to @mgctx->tset. This function 2326 * becomes noop if @task doesn't need to be migrated. @task's css_set 2327 * should have been added as a migration source and @task->cg_list will be 2328 * moved from the css_set's tasks list to mg_tasks one. 2329 */ 2330 static void cgroup_migrate_add_task(struct task_struct *task, 2331 struct cgroup_mgctx *mgctx) 2332 { 2333 struct css_set *cset; 2334 2335 lockdep_assert_held(&css_set_lock); 2336 2337 /* @task either already exited or can't exit until the end */ 2338 if (task->flags & PF_EXITING) 2339 return; 2340 2341 /* cgroup_threadgroup_rwsem protects racing against forks */ 2342 WARN_ON_ONCE(list_empty(&task->cg_list)); 2343 2344 cset = task_css_set(task); 2345 if (!cset->mg_src_cgrp) 2346 return; 2347 2348 mgctx->tset.nr_tasks++; 2349 2350 list_move_tail(&task->cg_list, &cset->mg_tasks); 2351 if (list_empty(&cset->mg_node)) 2352 list_add_tail(&cset->mg_node, 2353 &mgctx->tset.src_csets); 2354 if (list_empty(&cset->mg_dst_cset->mg_node)) 2355 list_add_tail(&cset->mg_dst_cset->mg_node, 2356 &mgctx->tset.dst_csets); 2357 } 2358 2359 /** 2360 * cgroup_taskset_first - reset taskset and return the first task 2361 * @tset: taskset of interest 2362 * @dst_cssp: output variable for the destination css 2363 * 2364 * @tset iteration is initialized and the first task is returned. 2365 */ 2366 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset, 2367 struct cgroup_subsys_state **dst_cssp) 2368 { 2369 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node); 2370 tset->cur_task = NULL; 2371 2372 return cgroup_taskset_next(tset, dst_cssp); 2373 } 2374 2375 /** 2376 * cgroup_taskset_next - iterate to the next task in taskset 2377 * @tset: taskset of interest 2378 * @dst_cssp: output variable for the destination css 2379 * 2380 * Return the next task in @tset. Iteration must have been initialized 2381 * with cgroup_taskset_first(). 2382 */ 2383 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset, 2384 struct cgroup_subsys_state **dst_cssp) 2385 { 2386 struct css_set *cset = tset->cur_cset; 2387 struct task_struct *task = tset->cur_task; 2388 2389 while (CGROUP_HAS_SUBSYS_CONFIG && &cset->mg_node != tset->csets) { 2390 if (!task) 2391 task = list_first_entry(&cset->mg_tasks, 2392 struct task_struct, cg_list); 2393 else 2394 task = list_next_entry(task, cg_list); 2395 2396 if (&task->cg_list != &cset->mg_tasks) { 2397 tset->cur_cset = cset; 2398 tset->cur_task = task; 2399 2400 /* 2401 * This function may be called both before and 2402 * after cgroup_taskset_migrate(). The two cases 2403 * can be distinguished by looking at whether @cset 2404 * has its ->mg_dst_cset set. 2405 */ 2406 if (cset->mg_dst_cset) 2407 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid]; 2408 else 2409 *dst_cssp = cset->subsys[tset->ssid]; 2410 2411 return task; 2412 } 2413 2414 cset = list_next_entry(cset, mg_node); 2415 task = NULL; 2416 } 2417 2418 return NULL; 2419 } 2420 2421 /** 2422 * cgroup_migrate_execute - migrate a taskset 2423 * @mgctx: migration context 2424 * 2425 * Migrate tasks in @mgctx as setup by migration preparation functions. 2426 * This function fails iff one of the ->can_attach callbacks fails and 2427 * guarantees that either all or none of the tasks in @mgctx are migrated. 2428 * @mgctx is consumed regardless of success. 2429 */ 2430 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx) 2431 { 2432 struct cgroup_taskset *tset = &mgctx->tset; 2433 struct cgroup_subsys *ss; 2434 struct task_struct *task, *tmp_task; 2435 struct css_set *cset, *tmp_cset; 2436 int ssid, failed_ssid, ret; 2437 2438 /* check that we can legitimately attach to the cgroup */ 2439 if (tset->nr_tasks) { 2440 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2441 if (ss->can_attach) { 2442 tset->ssid = ssid; 2443 ret = ss->can_attach(tset); 2444 if (ret) { 2445 failed_ssid = ssid; 2446 goto out_cancel_attach; 2447 } 2448 } 2449 } while_each_subsys_mask(); 2450 } 2451 2452 /* 2453 * Now that we're guaranteed success, proceed to move all tasks to 2454 * the new cgroup. There are no failure cases after here, so this 2455 * is the commit point. 2456 */ 2457 spin_lock_irq(&css_set_lock); 2458 list_for_each_entry(cset, &tset->src_csets, mg_node) { 2459 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) { 2460 struct css_set *from_cset = task_css_set(task); 2461 struct css_set *to_cset = cset->mg_dst_cset; 2462 2463 get_css_set(to_cset); 2464 to_cset->nr_tasks++; 2465 css_set_move_task(task, from_cset, to_cset, true); 2466 from_cset->nr_tasks--; 2467 /* 2468 * If the source or destination cgroup is frozen, 2469 * the task might require to change its state. 2470 */ 2471 cgroup_freezer_migrate_task(task, from_cset->dfl_cgrp, 2472 to_cset->dfl_cgrp); 2473 put_css_set_locked(from_cset); 2474 2475 } 2476 } 2477 spin_unlock_irq(&css_set_lock); 2478 2479 /* 2480 * Migration is committed, all target tasks are now on dst_csets. 2481 * Nothing is sensitive to fork() after this point. Notify 2482 * controllers that migration is complete. 2483 */ 2484 tset->csets = &tset->dst_csets; 2485 2486 if (tset->nr_tasks) { 2487 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2488 if (ss->attach) { 2489 tset->ssid = ssid; 2490 ss->attach(tset); 2491 } 2492 } while_each_subsys_mask(); 2493 } 2494 2495 ret = 0; 2496 goto out_release_tset; 2497 2498 out_cancel_attach: 2499 if (tset->nr_tasks) { 2500 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2501 if (ssid == failed_ssid) 2502 break; 2503 if (ss->cancel_attach) { 2504 tset->ssid = ssid; 2505 ss->cancel_attach(tset); 2506 } 2507 } while_each_subsys_mask(); 2508 } 2509 out_release_tset: 2510 spin_lock_irq(&css_set_lock); 2511 list_splice_init(&tset->dst_csets, &tset->src_csets); 2512 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) { 2513 list_splice_tail_init(&cset->mg_tasks, &cset->tasks); 2514 list_del_init(&cset->mg_node); 2515 } 2516 spin_unlock_irq(&css_set_lock); 2517 2518 /* 2519 * Re-initialize the cgroup_taskset structure in case it is reused 2520 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute() 2521 * iteration. 2522 */ 2523 tset->nr_tasks = 0; 2524 tset->csets = &tset->src_csets; 2525 return ret; 2526 } 2527 2528 /** 2529 * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination 2530 * @dst_cgrp: destination cgroup to test 2531 * 2532 * On the default hierarchy, except for the mixable, (possible) thread root 2533 * and threaded cgroups, subtree_control must be zero for migration 2534 * destination cgroups with tasks so that child cgroups don't compete 2535 * against tasks. 2536 */ 2537 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp) 2538 { 2539 /* v1 doesn't have any restriction */ 2540 if (!cgroup_on_dfl(dst_cgrp)) 2541 return 0; 2542 2543 /* verify @dst_cgrp can host resources */ 2544 if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp)) 2545 return -EOPNOTSUPP; 2546 2547 /* mixables don't care */ 2548 if (cgroup_is_mixable(dst_cgrp)) 2549 return 0; 2550 2551 /* 2552 * If @dst_cgrp is already or can become a thread root or is 2553 * threaded, it doesn't matter. 2554 */ 2555 if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp)) 2556 return 0; 2557 2558 /* apply no-internal-process constraint */ 2559 if (dst_cgrp->subtree_control) 2560 return -EBUSY; 2561 2562 return 0; 2563 } 2564 2565 /** 2566 * cgroup_migrate_finish - cleanup after attach 2567 * @mgctx: migration context 2568 * 2569 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See 2570 * those functions for details. 2571 */ 2572 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx) 2573 { 2574 LIST_HEAD(preloaded); 2575 struct css_set *cset, *tmp_cset; 2576 2577 lockdep_assert_held(&cgroup_mutex); 2578 2579 spin_lock_irq(&css_set_lock); 2580 2581 list_splice_tail_init(&mgctx->preloaded_src_csets, &preloaded); 2582 list_splice_tail_init(&mgctx->preloaded_dst_csets, &preloaded); 2583 2584 list_for_each_entry_safe(cset, tmp_cset, &preloaded, mg_preload_node) { 2585 cset->mg_src_cgrp = NULL; 2586 cset->mg_dst_cgrp = NULL; 2587 cset->mg_dst_cset = NULL; 2588 list_del_init(&cset->mg_preload_node); 2589 put_css_set_locked(cset); 2590 } 2591 2592 spin_unlock_irq(&css_set_lock); 2593 } 2594 2595 /** 2596 * cgroup_migrate_add_src - add a migration source css_set 2597 * @src_cset: the source css_set to add 2598 * @dst_cgrp: the destination cgroup 2599 * @mgctx: migration context 2600 * 2601 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin 2602 * @src_cset and add it to @mgctx->src_csets, which should later be cleaned 2603 * up by cgroup_migrate_finish(). 2604 * 2605 * This function may be called without holding cgroup_threadgroup_rwsem 2606 * even if the target is a process. Threads may be created and destroyed 2607 * but as long as cgroup_mutex is not dropped, no new css_set can be put 2608 * into play and the preloaded css_sets are guaranteed to cover all 2609 * migrations. 2610 */ 2611 void cgroup_migrate_add_src(struct css_set *src_cset, 2612 struct cgroup *dst_cgrp, 2613 struct cgroup_mgctx *mgctx) 2614 { 2615 struct cgroup *src_cgrp; 2616 2617 lockdep_assert_held(&cgroup_mutex); 2618 lockdep_assert_held(&css_set_lock); 2619 2620 /* 2621 * If ->dead, @src_set is associated with one or more dead cgroups 2622 * and doesn't contain any migratable tasks. Ignore it early so 2623 * that the rest of migration path doesn't get confused by it. 2624 */ 2625 if (src_cset->dead) 2626 return; 2627 2628 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root); 2629 2630 if (!list_empty(&src_cset->mg_preload_node)) 2631 return; 2632 2633 WARN_ON(src_cset->mg_src_cgrp); 2634 WARN_ON(src_cset->mg_dst_cgrp); 2635 WARN_ON(!list_empty(&src_cset->mg_tasks)); 2636 WARN_ON(!list_empty(&src_cset->mg_node)); 2637 2638 src_cset->mg_src_cgrp = src_cgrp; 2639 src_cset->mg_dst_cgrp = dst_cgrp; 2640 get_css_set(src_cset); 2641 list_add_tail(&src_cset->mg_preload_node, &mgctx->preloaded_src_csets); 2642 } 2643 2644 /** 2645 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration 2646 * @mgctx: migration context 2647 * 2648 * Tasks are about to be moved and all the source css_sets have been 2649 * preloaded to @mgctx->preloaded_src_csets. This function looks up and 2650 * pins all destination css_sets, links each to its source, and append them 2651 * to @mgctx->preloaded_dst_csets. 2652 * 2653 * This function must be called after cgroup_migrate_add_src() has been 2654 * called on each migration source css_set. After migration is performed 2655 * using cgroup_migrate(), cgroup_migrate_finish() must be called on 2656 * @mgctx. 2657 */ 2658 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx) 2659 { 2660 struct css_set *src_cset, *tmp_cset; 2661 2662 lockdep_assert_held(&cgroup_mutex); 2663 2664 /* look up the dst cset for each src cset and link it to src */ 2665 list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets, 2666 mg_preload_node) { 2667 struct css_set *dst_cset; 2668 struct cgroup_subsys *ss; 2669 int ssid; 2670 2671 dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp); 2672 if (!dst_cset) 2673 return -ENOMEM; 2674 2675 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset); 2676 2677 /* 2678 * If src cset equals dst, it's noop. Drop the src. 2679 * cgroup_migrate() will skip the cset too. Note that we 2680 * can't handle src == dst as some nodes are used by both. 2681 */ 2682 if (src_cset == dst_cset) { 2683 src_cset->mg_src_cgrp = NULL; 2684 src_cset->mg_dst_cgrp = NULL; 2685 list_del_init(&src_cset->mg_preload_node); 2686 put_css_set(src_cset); 2687 put_css_set(dst_cset); 2688 continue; 2689 } 2690 2691 src_cset->mg_dst_cset = dst_cset; 2692 2693 if (list_empty(&dst_cset->mg_preload_node)) 2694 list_add_tail(&dst_cset->mg_preload_node, 2695 &mgctx->preloaded_dst_csets); 2696 else 2697 put_css_set(dst_cset); 2698 2699 for_each_subsys(ss, ssid) 2700 if (src_cset->subsys[ssid] != dst_cset->subsys[ssid]) 2701 mgctx->ss_mask |= 1 << ssid; 2702 } 2703 2704 return 0; 2705 } 2706 2707 /** 2708 * cgroup_migrate - migrate a process or task to a cgroup 2709 * @leader: the leader of the process or the task to migrate 2710 * @threadgroup: whether @leader points to the whole process or a single task 2711 * @mgctx: migration context 2712 * 2713 * Migrate a process or task denoted by @leader. If migrating a process, 2714 * the caller must be holding cgroup_threadgroup_rwsem. The caller is also 2715 * responsible for invoking cgroup_migrate_add_src() and 2716 * cgroup_migrate_prepare_dst() on the targets before invoking this 2717 * function and following up with cgroup_migrate_finish(). 2718 * 2719 * As long as a controller's ->can_attach() doesn't fail, this function is 2720 * guaranteed to succeed. This means that, excluding ->can_attach() 2721 * failure, when migrating multiple targets, the success or failure can be 2722 * decided for all targets by invoking group_migrate_prepare_dst() before 2723 * actually starting migrating. 2724 */ 2725 int cgroup_migrate(struct task_struct *leader, bool threadgroup, 2726 struct cgroup_mgctx *mgctx) 2727 { 2728 struct task_struct *task; 2729 2730 /* 2731 * Prevent freeing of tasks while we take a snapshot. Tasks that are 2732 * already PF_EXITING could be freed from underneath us unless we 2733 * take an rcu_read_lock. 2734 */ 2735 spin_lock_irq(&css_set_lock); 2736 rcu_read_lock(); 2737 task = leader; 2738 do { 2739 cgroup_migrate_add_task(task, mgctx); 2740 if (!threadgroup) 2741 break; 2742 } while_each_thread(leader, task); 2743 rcu_read_unlock(); 2744 spin_unlock_irq(&css_set_lock); 2745 2746 return cgroup_migrate_execute(mgctx); 2747 } 2748 2749 /** 2750 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup 2751 * @dst_cgrp: the cgroup to attach to 2752 * @leader: the task or the leader of the threadgroup to be attached 2753 * @threadgroup: attach the whole threadgroup? 2754 * 2755 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem. 2756 */ 2757 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader, 2758 bool threadgroup) 2759 { 2760 DEFINE_CGROUP_MGCTX(mgctx); 2761 struct task_struct *task; 2762 int ret = 0; 2763 2764 /* look up all src csets */ 2765 spin_lock_irq(&css_set_lock); 2766 rcu_read_lock(); 2767 task = leader; 2768 do { 2769 cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx); 2770 if (!threadgroup) 2771 break; 2772 } while_each_thread(leader, task); 2773 rcu_read_unlock(); 2774 spin_unlock_irq(&css_set_lock); 2775 2776 /* prepare dst csets and commit */ 2777 ret = cgroup_migrate_prepare_dst(&mgctx); 2778 if (!ret) 2779 ret = cgroup_migrate(leader, threadgroup, &mgctx); 2780 2781 cgroup_migrate_finish(&mgctx); 2782 2783 if (!ret) 2784 TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup); 2785 2786 return ret; 2787 } 2788 2789 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup, 2790 bool *locked) 2791 __acquires(&cgroup_threadgroup_rwsem) 2792 { 2793 struct task_struct *tsk; 2794 pid_t pid; 2795 2796 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0) 2797 return ERR_PTR(-EINVAL); 2798 2799 /* 2800 * If we migrate a single thread, we don't care about threadgroup 2801 * stability. If the thread is `current`, it won't exit(2) under our 2802 * hands or change PID through exec(2). We exclude 2803 * cgroup_update_dfl_csses and other cgroup_{proc,thread}s_write 2804 * callers by cgroup_mutex. 2805 * Therefore, we can skip the global lock. 2806 */ 2807 lockdep_assert_held(&cgroup_mutex); 2808 if (pid || threadgroup) { 2809 percpu_down_write(&cgroup_threadgroup_rwsem); 2810 *locked = true; 2811 } else { 2812 *locked = false; 2813 } 2814 2815 rcu_read_lock(); 2816 if (pid) { 2817 tsk = find_task_by_vpid(pid); 2818 if (!tsk) { 2819 tsk = ERR_PTR(-ESRCH); 2820 goto out_unlock_threadgroup; 2821 } 2822 } else { 2823 tsk = current; 2824 } 2825 2826 if (threadgroup) 2827 tsk = tsk->group_leader; 2828 2829 /* 2830 * kthreads may acquire PF_NO_SETAFFINITY during initialization. 2831 * If userland migrates such a kthread to a non-root cgroup, it can 2832 * become trapped in a cpuset, or RT kthread may be born in a 2833 * cgroup with no rt_runtime allocated. Just say no. 2834 */ 2835 if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) { 2836 tsk = ERR_PTR(-EINVAL); 2837 goto out_unlock_threadgroup; 2838 } 2839 2840 get_task_struct(tsk); 2841 goto out_unlock_rcu; 2842 2843 out_unlock_threadgroup: 2844 if (*locked) { 2845 percpu_up_write(&cgroup_threadgroup_rwsem); 2846 *locked = false; 2847 } 2848 out_unlock_rcu: 2849 rcu_read_unlock(); 2850 return tsk; 2851 } 2852 2853 void cgroup_procs_write_finish(struct task_struct *task, bool locked) 2854 __releases(&cgroup_threadgroup_rwsem) 2855 { 2856 struct cgroup_subsys *ss; 2857 int ssid; 2858 2859 /* release reference from cgroup_procs_write_start() */ 2860 put_task_struct(task); 2861 2862 if (locked) 2863 percpu_up_write(&cgroup_threadgroup_rwsem); 2864 for_each_subsys(ss, ssid) 2865 if (ss->post_attach) 2866 ss->post_attach(); 2867 } 2868 2869 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask) 2870 { 2871 struct cgroup_subsys *ss; 2872 bool printed = false; 2873 int ssid; 2874 2875 do_each_subsys_mask(ss, ssid, ss_mask) { 2876 if (printed) 2877 seq_putc(seq, ' '); 2878 seq_puts(seq, ss->name); 2879 printed = true; 2880 } while_each_subsys_mask(); 2881 if (printed) 2882 seq_putc(seq, '\n'); 2883 } 2884 2885 /* show controllers which are enabled from the parent */ 2886 static int cgroup_controllers_show(struct seq_file *seq, void *v) 2887 { 2888 struct cgroup *cgrp = seq_css(seq)->cgroup; 2889 2890 cgroup_print_ss_mask(seq, cgroup_control(cgrp)); 2891 return 0; 2892 } 2893 2894 /* show controllers which are enabled for a given cgroup's children */ 2895 static int cgroup_subtree_control_show(struct seq_file *seq, void *v) 2896 { 2897 struct cgroup *cgrp = seq_css(seq)->cgroup; 2898 2899 cgroup_print_ss_mask(seq, cgrp->subtree_control); 2900 return 0; 2901 } 2902 2903 /** 2904 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy 2905 * @cgrp: root of the subtree to update csses for 2906 * 2907 * @cgrp's control masks have changed and its subtree's css associations 2908 * need to be updated accordingly. This function looks up all css_sets 2909 * which are attached to the subtree, creates the matching updated css_sets 2910 * and migrates the tasks to the new ones. 2911 */ 2912 static int cgroup_update_dfl_csses(struct cgroup *cgrp) 2913 { 2914 DEFINE_CGROUP_MGCTX(mgctx); 2915 struct cgroup_subsys_state *d_css; 2916 struct cgroup *dsct; 2917 struct css_set *src_cset; 2918 int ret; 2919 2920 lockdep_assert_held(&cgroup_mutex); 2921 2922 percpu_down_write(&cgroup_threadgroup_rwsem); 2923 2924 /* look up all csses currently attached to @cgrp's subtree */ 2925 spin_lock_irq(&css_set_lock); 2926 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 2927 struct cgrp_cset_link *link; 2928 2929 list_for_each_entry(link, &dsct->cset_links, cset_link) 2930 cgroup_migrate_add_src(link->cset, dsct, &mgctx); 2931 } 2932 spin_unlock_irq(&css_set_lock); 2933 2934 /* NULL dst indicates self on default hierarchy */ 2935 ret = cgroup_migrate_prepare_dst(&mgctx); 2936 if (ret) 2937 goto out_finish; 2938 2939 spin_lock_irq(&css_set_lock); 2940 list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, mg_preload_node) { 2941 struct task_struct *task, *ntask; 2942 2943 /* all tasks in src_csets need to be migrated */ 2944 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list) 2945 cgroup_migrate_add_task(task, &mgctx); 2946 } 2947 spin_unlock_irq(&css_set_lock); 2948 2949 ret = cgroup_migrate_execute(&mgctx); 2950 out_finish: 2951 cgroup_migrate_finish(&mgctx); 2952 percpu_up_write(&cgroup_threadgroup_rwsem); 2953 return ret; 2954 } 2955 2956 /** 2957 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses 2958 * @cgrp: root of the target subtree 2959 * 2960 * Because css offlining is asynchronous, userland may try to re-enable a 2961 * controller while the previous css is still around. This function grabs 2962 * cgroup_mutex and drains the previous css instances of @cgrp's subtree. 2963 */ 2964 void cgroup_lock_and_drain_offline(struct cgroup *cgrp) 2965 __acquires(&cgroup_mutex) 2966 { 2967 struct cgroup *dsct; 2968 struct cgroup_subsys_state *d_css; 2969 struct cgroup_subsys *ss; 2970 int ssid; 2971 2972 restart: 2973 mutex_lock(&cgroup_mutex); 2974 2975 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 2976 for_each_subsys(ss, ssid) { 2977 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 2978 DEFINE_WAIT(wait); 2979 2980 if (!css || !percpu_ref_is_dying(&css->refcnt)) 2981 continue; 2982 2983 cgroup_get_live(dsct); 2984 prepare_to_wait(&dsct->offline_waitq, &wait, 2985 TASK_UNINTERRUPTIBLE); 2986 2987 mutex_unlock(&cgroup_mutex); 2988 schedule(); 2989 finish_wait(&dsct->offline_waitq, &wait); 2990 2991 cgroup_put(dsct); 2992 goto restart; 2993 } 2994 } 2995 } 2996 2997 /** 2998 * cgroup_save_control - save control masks and dom_cgrp of a subtree 2999 * @cgrp: root of the target subtree 3000 * 3001 * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the 3002 * respective old_ prefixed fields for @cgrp's subtree including @cgrp 3003 * itself. 3004 */ 3005 static void cgroup_save_control(struct cgroup *cgrp) 3006 { 3007 struct cgroup *dsct; 3008 struct cgroup_subsys_state *d_css; 3009 3010 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 3011 dsct->old_subtree_control = dsct->subtree_control; 3012 dsct->old_subtree_ss_mask = dsct->subtree_ss_mask; 3013 dsct->old_dom_cgrp = dsct->dom_cgrp; 3014 } 3015 } 3016 3017 /** 3018 * cgroup_propagate_control - refresh control masks of a subtree 3019 * @cgrp: root of the target subtree 3020 * 3021 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches 3022 * ->subtree_control and propagate controller availability through the 3023 * subtree so that descendants don't have unavailable controllers enabled. 3024 */ 3025 static void cgroup_propagate_control(struct cgroup *cgrp) 3026 { 3027 struct cgroup *dsct; 3028 struct cgroup_subsys_state *d_css; 3029 3030 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 3031 dsct->subtree_control &= cgroup_control(dsct); 3032 dsct->subtree_ss_mask = 3033 cgroup_calc_subtree_ss_mask(dsct->subtree_control, 3034 cgroup_ss_mask(dsct)); 3035 } 3036 } 3037 3038 /** 3039 * cgroup_restore_control - restore control masks and dom_cgrp of a subtree 3040 * @cgrp: root of the target subtree 3041 * 3042 * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the 3043 * respective old_ prefixed fields for @cgrp's subtree including @cgrp 3044 * itself. 3045 */ 3046 static void cgroup_restore_control(struct cgroup *cgrp) 3047 { 3048 struct cgroup *dsct; 3049 struct cgroup_subsys_state *d_css; 3050 3051 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 3052 dsct->subtree_control = dsct->old_subtree_control; 3053 dsct->subtree_ss_mask = dsct->old_subtree_ss_mask; 3054 dsct->dom_cgrp = dsct->old_dom_cgrp; 3055 } 3056 } 3057 3058 static bool css_visible(struct cgroup_subsys_state *css) 3059 { 3060 struct cgroup_subsys *ss = css->ss; 3061 struct cgroup *cgrp = css->cgroup; 3062 3063 if (cgroup_control(cgrp) & (1 << ss->id)) 3064 return true; 3065 if (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) 3066 return false; 3067 return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl; 3068 } 3069 3070 /** 3071 * cgroup_apply_control_enable - enable or show csses according to control 3072 * @cgrp: root of the target subtree 3073 * 3074 * Walk @cgrp's subtree and create new csses or make the existing ones 3075 * visible. A css is created invisible if it's being implicitly enabled 3076 * through dependency. An invisible css is made visible when the userland 3077 * explicitly enables it. 3078 * 3079 * Returns 0 on success, -errno on failure. On failure, csses which have 3080 * been processed already aren't cleaned up. The caller is responsible for 3081 * cleaning up with cgroup_apply_control_disable(). 3082 */ 3083 static int cgroup_apply_control_enable(struct cgroup *cgrp) 3084 { 3085 struct cgroup *dsct; 3086 struct cgroup_subsys_state *d_css; 3087 struct cgroup_subsys *ss; 3088 int ssid, ret; 3089 3090 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 3091 for_each_subsys(ss, ssid) { 3092 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 3093 3094 if (!(cgroup_ss_mask(dsct) & (1 << ss->id))) 3095 continue; 3096 3097 if (!css) { 3098 css = css_create(dsct, ss); 3099 if (IS_ERR(css)) 3100 return PTR_ERR(css); 3101 } 3102 3103 WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt)); 3104 3105 if (css_visible(css)) { 3106 ret = css_populate_dir(css); 3107 if (ret) 3108 return ret; 3109 } 3110 } 3111 } 3112 3113 return 0; 3114 } 3115 3116 /** 3117 * cgroup_apply_control_disable - kill or hide csses according to control 3118 * @cgrp: root of the target subtree 3119 * 3120 * Walk @cgrp's subtree and kill and hide csses so that they match 3121 * cgroup_ss_mask() and cgroup_visible_mask(). 3122 * 3123 * A css is hidden when the userland requests it to be disabled while other 3124 * subsystems are still depending on it. The css must not actively control 3125 * resources and be in the vanilla state if it's made visible again later. 3126 * Controllers which may be depended upon should provide ->css_reset() for 3127 * this purpose. 3128 */ 3129 static void cgroup_apply_control_disable(struct cgroup *cgrp) 3130 { 3131 struct cgroup *dsct; 3132 struct cgroup_subsys_state *d_css; 3133 struct cgroup_subsys *ss; 3134 int ssid; 3135 3136 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 3137 for_each_subsys(ss, ssid) { 3138 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 3139 3140 if (!css) 3141 continue; 3142 3143 WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt)); 3144 3145 if (css->parent && 3146 !(cgroup_ss_mask(dsct) & (1 << ss->id))) { 3147 kill_css(css); 3148 } else if (!css_visible(css)) { 3149 css_clear_dir(css); 3150 if (ss->css_reset) 3151 ss->css_reset(css); 3152 } 3153 } 3154 } 3155 } 3156 3157 /** 3158 * cgroup_apply_control - apply control mask updates to the subtree 3159 * @cgrp: root of the target subtree 3160 * 3161 * subsystems can be enabled and disabled in a subtree using the following 3162 * steps. 3163 * 3164 * 1. Call cgroup_save_control() to stash the current state. 3165 * 2. Update ->subtree_control masks in the subtree as desired. 3166 * 3. Call cgroup_apply_control() to apply the changes. 3167 * 4. Optionally perform other related operations. 3168 * 5. Call cgroup_finalize_control() to finish up. 3169 * 3170 * This function implements step 3 and propagates the mask changes 3171 * throughout @cgrp's subtree, updates csses accordingly and perform 3172 * process migrations. 3173 */ 3174 static int cgroup_apply_control(struct cgroup *cgrp) 3175 { 3176 int ret; 3177 3178 cgroup_propagate_control(cgrp); 3179 3180 ret = cgroup_apply_control_enable(cgrp); 3181 if (ret) 3182 return ret; 3183 3184 /* 3185 * At this point, cgroup_e_css_by_mask() results reflect the new csses 3186 * making the following cgroup_update_dfl_csses() properly update 3187 * css associations of all tasks in the subtree. 3188 */ 3189 ret = cgroup_update_dfl_csses(cgrp); 3190 if (ret) 3191 return ret; 3192 3193 return 0; 3194 } 3195 3196 /** 3197 * cgroup_finalize_control - finalize control mask update 3198 * @cgrp: root of the target subtree 3199 * @ret: the result of the update 3200 * 3201 * Finalize control mask update. See cgroup_apply_control() for more info. 3202 */ 3203 static void cgroup_finalize_control(struct cgroup *cgrp, int ret) 3204 { 3205 if (ret) { 3206 cgroup_restore_control(cgrp); 3207 cgroup_propagate_control(cgrp); 3208 } 3209 3210 cgroup_apply_control_disable(cgrp); 3211 } 3212 3213 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable) 3214 { 3215 u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask; 3216 3217 /* if nothing is getting enabled, nothing to worry about */ 3218 if (!enable) 3219 return 0; 3220 3221 /* can @cgrp host any resources? */ 3222 if (!cgroup_is_valid_domain(cgrp->dom_cgrp)) 3223 return -EOPNOTSUPP; 3224 3225 /* mixables don't care */ 3226 if (cgroup_is_mixable(cgrp)) 3227 return 0; 3228 3229 if (domain_enable) { 3230 /* can't enable domain controllers inside a thread subtree */ 3231 if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp)) 3232 return -EOPNOTSUPP; 3233 } else { 3234 /* 3235 * Threaded controllers can handle internal competitions 3236 * and are always allowed inside a (prospective) thread 3237 * subtree. 3238 */ 3239 if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp)) 3240 return 0; 3241 } 3242 3243 /* 3244 * Controllers can't be enabled for a cgroup with tasks to avoid 3245 * child cgroups competing against tasks. 3246 */ 3247 if (cgroup_has_tasks(cgrp)) 3248 return -EBUSY; 3249 3250 return 0; 3251 } 3252 3253 /* change the enabled child controllers for a cgroup in the default hierarchy */ 3254 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of, 3255 char *buf, size_t nbytes, 3256 loff_t off) 3257 { 3258 u16 enable = 0, disable = 0; 3259 struct cgroup *cgrp, *child; 3260 struct cgroup_subsys *ss; 3261 char *tok; 3262 int ssid, ret; 3263 3264 /* 3265 * Parse input - space separated list of subsystem names prefixed 3266 * with either + or -. 3267 */ 3268 buf = strstrip(buf); 3269 while ((tok = strsep(&buf, " "))) { 3270 if (tok[0] == '\0') 3271 continue; 3272 do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) { 3273 if (!cgroup_ssid_enabled(ssid) || 3274 strcmp(tok + 1, ss->name)) 3275 continue; 3276 3277 if (*tok == '+') { 3278 enable |= 1 << ssid; 3279 disable &= ~(1 << ssid); 3280 } else if (*tok == '-') { 3281 disable |= 1 << ssid; 3282 enable &= ~(1 << ssid); 3283 } else { 3284 return -EINVAL; 3285 } 3286 break; 3287 } while_each_subsys_mask(); 3288 if (ssid == CGROUP_SUBSYS_COUNT) 3289 return -EINVAL; 3290 } 3291 3292 cgrp = cgroup_kn_lock_live(of->kn, true); 3293 if (!cgrp) 3294 return -ENODEV; 3295 3296 for_each_subsys(ss, ssid) { 3297 if (enable & (1 << ssid)) { 3298 if (cgrp->subtree_control & (1 << ssid)) { 3299 enable &= ~(1 << ssid); 3300 continue; 3301 } 3302 3303 if (!(cgroup_control(cgrp) & (1 << ssid))) { 3304 ret = -ENOENT; 3305 goto out_unlock; 3306 } 3307 } else if (disable & (1 << ssid)) { 3308 if (!(cgrp->subtree_control & (1 << ssid))) { 3309 disable &= ~(1 << ssid); 3310 continue; 3311 } 3312 3313 /* a child has it enabled? */ 3314 cgroup_for_each_live_child(child, cgrp) { 3315 if (child->subtree_control & (1 << ssid)) { 3316 ret = -EBUSY; 3317 goto out_unlock; 3318 } 3319 } 3320 } 3321 } 3322 3323 if (!enable && !disable) { 3324 ret = 0; 3325 goto out_unlock; 3326 } 3327 3328 ret = cgroup_vet_subtree_control_enable(cgrp, enable); 3329 if (ret) 3330 goto out_unlock; 3331 3332 /* save and update control masks and prepare csses */ 3333 cgroup_save_control(cgrp); 3334 3335 cgrp->subtree_control |= enable; 3336 cgrp->subtree_control &= ~disable; 3337 3338 ret = cgroup_apply_control(cgrp); 3339 cgroup_finalize_control(cgrp, ret); 3340 if (ret) 3341 goto out_unlock; 3342 3343 kernfs_activate(cgrp->kn); 3344 out_unlock: 3345 cgroup_kn_unlock(of->kn); 3346 return ret ?: nbytes; 3347 } 3348 3349 /** 3350 * cgroup_enable_threaded - make @cgrp threaded 3351 * @cgrp: the target cgroup 3352 * 3353 * Called when "threaded" is written to the cgroup.type interface file and 3354 * tries to make @cgrp threaded and join the parent's resource domain. 3355 * This function is never called on the root cgroup as cgroup.type doesn't 3356 * exist on it. 3357 */ 3358 static int cgroup_enable_threaded(struct cgroup *cgrp) 3359 { 3360 struct cgroup *parent = cgroup_parent(cgrp); 3361 struct cgroup *dom_cgrp = parent->dom_cgrp; 3362 struct cgroup *dsct; 3363 struct cgroup_subsys_state *d_css; 3364 int ret; 3365 3366 lockdep_assert_held(&cgroup_mutex); 3367 3368 /* noop if already threaded */ 3369 if (cgroup_is_threaded(cgrp)) 3370 return 0; 3371 3372 /* 3373 * If @cgroup is populated or has domain controllers enabled, it 3374 * can't be switched. While the below cgroup_can_be_thread_root() 3375 * test can catch the same conditions, that's only when @parent is 3376 * not mixable, so let's check it explicitly. 3377 */ 3378 if (cgroup_is_populated(cgrp) || 3379 cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask) 3380 return -EOPNOTSUPP; 3381 3382 /* we're joining the parent's domain, ensure its validity */ 3383 if (!cgroup_is_valid_domain(dom_cgrp) || 3384 !cgroup_can_be_thread_root(dom_cgrp)) 3385 return -EOPNOTSUPP; 3386 3387 /* 3388 * The following shouldn't cause actual migrations and should 3389 * always succeed. 3390 */ 3391 cgroup_save_control(cgrp); 3392 3393 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) 3394 if (dsct == cgrp || cgroup_is_threaded(dsct)) 3395 dsct->dom_cgrp = dom_cgrp; 3396 3397 ret = cgroup_apply_control(cgrp); 3398 if (!ret) 3399 parent->nr_threaded_children++; 3400 3401 cgroup_finalize_control(cgrp, ret); 3402 return ret; 3403 } 3404 3405 static int cgroup_type_show(struct seq_file *seq, void *v) 3406 { 3407 struct cgroup *cgrp = seq_css(seq)->cgroup; 3408 3409 if (cgroup_is_threaded(cgrp)) 3410 seq_puts(seq, "threaded\n"); 3411 else if (!cgroup_is_valid_domain(cgrp)) 3412 seq_puts(seq, "domain invalid\n"); 3413 else if (cgroup_is_thread_root(cgrp)) 3414 seq_puts(seq, "domain threaded\n"); 3415 else 3416 seq_puts(seq, "domain\n"); 3417 3418 return 0; 3419 } 3420 3421 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf, 3422 size_t nbytes, loff_t off) 3423 { 3424 struct cgroup *cgrp; 3425 int ret; 3426 3427 /* only switching to threaded mode is supported */ 3428 if (strcmp(strstrip(buf), "threaded")) 3429 return -EINVAL; 3430 3431 /* drain dying csses before we re-apply (threaded) subtree control */ 3432 cgrp = cgroup_kn_lock_live(of->kn, true); 3433 if (!cgrp) 3434 return -ENOENT; 3435 3436 /* threaded can only be enabled */ 3437 ret = cgroup_enable_threaded(cgrp); 3438 3439 cgroup_kn_unlock(of->kn); 3440 return ret ?: nbytes; 3441 } 3442 3443 static int cgroup_max_descendants_show(struct seq_file *seq, void *v) 3444 { 3445 struct cgroup *cgrp = seq_css(seq)->cgroup; 3446 int descendants = READ_ONCE(cgrp->max_descendants); 3447 3448 if (descendants == INT_MAX) 3449 seq_puts(seq, "max\n"); 3450 else 3451 seq_printf(seq, "%d\n", descendants); 3452 3453 return 0; 3454 } 3455 3456 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of, 3457 char *buf, size_t nbytes, loff_t off) 3458 { 3459 struct cgroup *cgrp; 3460 int descendants; 3461 ssize_t ret; 3462 3463 buf = strstrip(buf); 3464 if (!strcmp(buf, "max")) { 3465 descendants = INT_MAX; 3466 } else { 3467 ret = kstrtoint(buf, 0, &descendants); 3468 if (ret) 3469 return ret; 3470 } 3471 3472 if (descendants < 0) 3473 return -ERANGE; 3474 3475 cgrp = cgroup_kn_lock_live(of->kn, false); 3476 if (!cgrp) 3477 return -ENOENT; 3478 3479 cgrp->max_descendants = descendants; 3480 3481 cgroup_kn_unlock(of->kn); 3482 3483 return nbytes; 3484 } 3485 3486 static int cgroup_max_depth_show(struct seq_file *seq, void *v) 3487 { 3488 struct cgroup *cgrp = seq_css(seq)->cgroup; 3489 int depth = READ_ONCE(cgrp->max_depth); 3490 3491 if (depth == INT_MAX) 3492 seq_puts(seq, "max\n"); 3493 else 3494 seq_printf(seq, "%d\n", depth); 3495 3496 return 0; 3497 } 3498 3499 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of, 3500 char *buf, size_t nbytes, loff_t off) 3501 { 3502 struct cgroup *cgrp; 3503 ssize_t ret; 3504 int depth; 3505 3506 buf = strstrip(buf); 3507 if (!strcmp(buf, "max")) { 3508 depth = INT_MAX; 3509 } else { 3510 ret = kstrtoint(buf, 0, &depth); 3511 if (ret) 3512 return ret; 3513 } 3514 3515 if (depth < 0) 3516 return -ERANGE; 3517 3518 cgrp = cgroup_kn_lock_live(of->kn, false); 3519 if (!cgrp) 3520 return -ENOENT; 3521 3522 cgrp->max_depth = depth; 3523 3524 cgroup_kn_unlock(of->kn); 3525 3526 return nbytes; 3527 } 3528 3529 static int cgroup_events_show(struct seq_file *seq, void *v) 3530 { 3531 struct cgroup *cgrp = seq_css(seq)->cgroup; 3532 3533 seq_printf(seq, "populated %d\n", cgroup_is_populated(cgrp)); 3534 seq_printf(seq, "frozen %d\n", test_bit(CGRP_FROZEN, &cgrp->flags)); 3535 3536 return 0; 3537 } 3538 3539 static int cgroup_stat_show(struct seq_file *seq, void *v) 3540 { 3541 struct cgroup *cgroup = seq_css(seq)->cgroup; 3542 3543 seq_printf(seq, "nr_descendants %d\n", 3544 cgroup->nr_descendants); 3545 seq_printf(seq, "nr_dying_descendants %d\n", 3546 cgroup->nr_dying_descendants); 3547 3548 return 0; 3549 } 3550 3551 static int __maybe_unused cgroup_extra_stat_show(struct seq_file *seq, 3552 struct cgroup *cgrp, int ssid) 3553 { 3554 struct cgroup_subsys *ss = cgroup_subsys[ssid]; 3555 struct cgroup_subsys_state *css; 3556 int ret; 3557 3558 if (!ss->css_extra_stat_show) 3559 return 0; 3560 3561 css = cgroup_tryget_css(cgrp, ss); 3562 if (!css) 3563 return 0; 3564 3565 ret = ss->css_extra_stat_show(seq, css); 3566 css_put(css); 3567 return ret; 3568 } 3569 3570 static int cpu_stat_show(struct seq_file *seq, void *v) 3571 { 3572 struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup; 3573 int ret = 0; 3574 3575 cgroup_base_stat_cputime_show(seq); 3576 #ifdef CONFIG_CGROUP_SCHED 3577 ret = cgroup_extra_stat_show(seq, cgrp, cpu_cgrp_id); 3578 #endif 3579 return ret; 3580 } 3581 3582 #ifdef CONFIG_PSI 3583 static int cgroup_io_pressure_show(struct seq_file *seq, void *v) 3584 { 3585 struct cgroup *cgrp = seq_css(seq)->cgroup; 3586 struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi; 3587 3588 return psi_show(seq, psi, PSI_IO); 3589 } 3590 static int cgroup_memory_pressure_show(struct seq_file *seq, void *v) 3591 { 3592 struct cgroup *cgrp = seq_css(seq)->cgroup; 3593 struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi; 3594 3595 return psi_show(seq, psi, PSI_MEM); 3596 } 3597 static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v) 3598 { 3599 struct cgroup *cgrp = seq_css(seq)->cgroup; 3600 struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi; 3601 3602 return psi_show(seq, psi, PSI_CPU); 3603 } 3604 3605 static ssize_t cgroup_pressure_write(struct kernfs_open_file *of, char *buf, 3606 size_t nbytes, enum psi_res res) 3607 { 3608 struct psi_trigger *new; 3609 struct cgroup *cgrp; 3610 struct psi_group *psi; 3611 3612 cgrp = cgroup_kn_lock_live(of->kn, false); 3613 if (!cgrp) 3614 return -ENODEV; 3615 3616 cgroup_get(cgrp); 3617 cgroup_kn_unlock(of->kn); 3618 3619 psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi; 3620 new = psi_trigger_create(psi, buf, nbytes, res); 3621 if (IS_ERR(new)) { 3622 cgroup_put(cgrp); 3623 return PTR_ERR(new); 3624 } 3625 3626 psi_trigger_replace(&of->priv, new); 3627 3628 cgroup_put(cgrp); 3629 3630 return nbytes; 3631 } 3632 3633 static ssize_t cgroup_io_pressure_write(struct kernfs_open_file *of, 3634 char *buf, size_t nbytes, 3635 loff_t off) 3636 { 3637 return cgroup_pressure_write(of, buf, nbytes, PSI_IO); 3638 } 3639 3640 static ssize_t cgroup_memory_pressure_write(struct kernfs_open_file *of, 3641 char *buf, size_t nbytes, 3642 loff_t off) 3643 { 3644 return cgroup_pressure_write(of, buf, nbytes, PSI_MEM); 3645 } 3646 3647 static ssize_t cgroup_cpu_pressure_write(struct kernfs_open_file *of, 3648 char *buf, size_t nbytes, 3649 loff_t off) 3650 { 3651 return cgroup_pressure_write(of, buf, nbytes, PSI_CPU); 3652 } 3653 3654 static __poll_t cgroup_pressure_poll(struct kernfs_open_file *of, 3655 poll_table *pt) 3656 { 3657 return psi_trigger_poll(&of->priv, of->file, pt); 3658 } 3659 3660 static void cgroup_pressure_release(struct kernfs_open_file *of) 3661 { 3662 psi_trigger_replace(&of->priv, NULL); 3663 } 3664 3665 bool cgroup_psi_enabled(void) 3666 { 3667 return (cgroup_feature_disable_mask & (1 << OPT_FEATURE_PRESSURE)) == 0; 3668 } 3669 3670 #else /* CONFIG_PSI */ 3671 bool cgroup_psi_enabled(void) 3672 { 3673 return false; 3674 } 3675 3676 #endif /* CONFIG_PSI */ 3677 3678 static int cgroup_freeze_show(struct seq_file *seq, void *v) 3679 { 3680 struct cgroup *cgrp = seq_css(seq)->cgroup; 3681 3682 seq_printf(seq, "%d\n", cgrp->freezer.freeze); 3683 3684 return 0; 3685 } 3686 3687 static ssize_t cgroup_freeze_write(struct kernfs_open_file *of, 3688 char *buf, size_t nbytes, loff_t off) 3689 { 3690 struct cgroup *cgrp; 3691 ssize_t ret; 3692 int freeze; 3693 3694 ret = kstrtoint(strstrip(buf), 0, &freeze); 3695 if (ret) 3696 return ret; 3697 3698 if (freeze < 0 || freeze > 1) 3699 return -ERANGE; 3700 3701 cgrp = cgroup_kn_lock_live(of->kn, false); 3702 if (!cgrp) 3703 return -ENOENT; 3704 3705 cgroup_freeze(cgrp, freeze); 3706 3707 cgroup_kn_unlock(of->kn); 3708 3709 return nbytes; 3710 } 3711 3712 static void __cgroup_kill(struct cgroup *cgrp) 3713 { 3714 struct css_task_iter it; 3715 struct task_struct *task; 3716 3717 lockdep_assert_held(&cgroup_mutex); 3718 3719 spin_lock_irq(&css_set_lock); 3720 set_bit(CGRP_KILL, &cgrp->flags); 3721 spin_unlock_irq(&css_set_lock); 3722 3723 css_task_iter_start(&cgrp->self, CSS_TASK_ITER_PROCS | CSS_TASK_ITER_THREADED, &it); 3724 while ((task = css_task_iter_next(&it))) { 3725 /* Ignore kernel threads here. */ 3726 if (task->flags & PF_KTHREAD) 3727 continue; 3728 3729 /* Skip tasks that are already dying. */ 3730 if (__fatal_signal_pending(task)) 3731 continue; 3732 3733 send_sig(SIGKILL, task, 0); 3734 } 3735 css_task_iter_end(&it); 3736 3737 spin_lock_irq(&css_set_lock); 3738 clear_bit(CGRP_KILL, &cgrp->flags); 3739 spin_unlock_irq(&css_set_lock); 3740 } 3741 3742 static void cgroup_kill(struct cgroup *cgrp) 3743 { 3744 struct cgroup_subsys_state *css; 3745 struct cgroup *dsct; 3746 3747 lockdep_assert_held(&cgroup_mutex); 3748 3749 cgroup_for_each_live_descendant_pre(dsct, css, cgrp) 3750 __cgroup_kill(dsct); 3751 } 3752 3753 static ssize_t cgroup_kill_write(struct kernfs_open_file *of, char *buf, 3754 size_t nbytes, loff_t off) 3755 { 3756 ssize_t ret = 0; 3757 int kill; 3758 struct cgroup *cgrp; 3759 3760 ret = kstrtoint(strstrip(buf), 0, &kill); 3761 if (ret) 3762 return ret; 3763 3764 if (kill != 1) 3765 return -ERANGE; 3766 3767 cgrp = cgroup_kn_lock_live(of->kn, false); 3768 if (!cgrp) 3769 return -ENOENT; 3770 3771 /* 3772 * Killing is a process directed operation, i.e. the whole thread-group 3773 * is taken down so act like we do for cgroup.procs and only make this 3774 * writable in non-threaded cgroups. 3775 */ 3776 if (cgroup_is_threaded(cgrp)) 3777 ret = -EOPNOTSUPP; 3778 else 3779 cgroup_kill(cgrp); 3780 3781 cgroup_kn_unlock(of->kn); 3782 3783 return ret ?: nbytes; 3784 } 3785 3786 static int cgroup_file_open(struct kernfs_open_file *of) 3787 { 3788 struct cftype *cft = of_cft(of); 3789 3790 if (cft->open) 3791 return cft->open(of); 3792 return 0; 3793 } 3794 3795 static void cgroup_file_release(struct kernfs_open_file *of) 3796 { 3797 struct cftype *cft = of_cft(of); 3798 3799 if (cft->release) 3800 cft->release(of); 3801 } 3802 3803 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf, 3804 size_t nbytes, loff_t off) 3805 { 3806 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns; 3807 struct cgroup *cgrp = of->kn->parent->priv; 3808 struct cftype *cft = of_cft(of); 3809 struct cgroup_subsys_state *css; 3810 int ret; 3811 3812 if (!nbytes) 3813 return 0; 3814 3815 /* 3816 * If namespaces are delegation boundaries, disallow writes to 3817 * files in an non-init namespace root from inside the namespace 3818 * except for the files explicitly marked delegatable - 3819 * cgroup.procs and cgroup.subtree_control. 3820 */ 3821 if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) && 3822 !(cft->flags & CFTYPE_NS_DELEGATABLE) && 3823 ns != &init_cgroup_ns && ns->root_cset->dfl_cgrp == cgrp) 3824 return -EPERM; 3825 3826 if (cft->write) 3827 return cft->write(of, buf, nbytes, off); 3828 3829 /* 3830 * kernfs guarantees that a file isn't deleted with operations in 3831 * flight, which means that the matching css is and stays alive and 3832 * doesn't need to be pinned. The RCU locking is not necessary 3833 * either. It's just for the convenience of using cgroup_css(). 3834 */ 3835 rcu_read_lock(); 3836 css = cgroup_css(cgrp, cft->ss); 3837 rcu_read_unlock(); 3838 3839 if (cft->write_u64) { 3840 unsigned long long v; 3841 ret = kstrtoull(buf, 0, &v); 3842 if (!ret) 3843 ret = cft->write_u64(css, cft, v); 3844 } else if (cft->write_s64) { 3845 long long v; 3846 ret = kstrtoll(buf, 0, &v); 3847 if (!ret) 3848 ret = cft->write_s64(css, cft, v); 3849 } else { 3850 ret = -EINVAL; 3851 } 3852 3853 return ret ?: nbytes; 3854 } 3855 3856 static __poll_t cgroup_file_poll(struct kernfs_open_file *of, poll_table *pt) 3857 { 3858 struct cftype *cft = of_cft(of); 3859 3860 if (cft->poll) 3861 return cft->poll(of, pt); 3862 3863 return kernfs_generic_poll(of, pt); 3864 } 3865 3866 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos) 3867 { 3868 return seq_cft(seq)->seq_start(seq, ppos); 3869 } 3870 3871 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos) 3872 { 3873 return seq_cft(seq)->seq_next(seq, v, ppos); 3874 } 3875 3876 static void cgroup_seqfile_stop(struct seq_file *seq, void *v) 3877 { 3878 if (seq_cft(seq)->seq_stop) 3879 seq_cft(seq)->seq_stop(seq, v); 3880 } 3881 3882 static int cgroup_seqfile_show(struct seq_file *m, void *arg) 3883 { 3884 struct cftype *cft = seq_cft(m); 3885 struct cgroup_subsys_state *css = seq_css(m); 3886 3887 if (cft->seq_show) 3888 return cft->seq_show(m, arg); 3889 3890 if (cft->read_u64) 3891 seq_printf(m, "%llu\n", cft->read_u64(css, cft)); 3892 else if (cft->read_s64) 3893 seq_printf(m, "%lld\n", cft->read_s64(css, cft)); 3894 else 3895 return -EINVAL; 3896 return 0; 3897 } 3898 3899 static struct kernfs_ops cgroup_kf_single_ops = { 3900 .atomic_write_len = PAGE_SIZE, 3901 .open = cgroup_file_open, 3902 .release = cgroup_file_release, 3903 .write = cgroup_file_write, 3904 .poll = cgroup_file_poll, 3905 .seq_show = cgroup_seqfile_show, 3906 }; 3907 3908 static struct kernfs_ops cgroup_kf_ops = { 3909 .atomic_write_len = PAGE_SIZE, 3910 .open = cgroup_file_open, 3911 .release = cgroup_file_release, 3912 .write = cgroup_file_write, 3913 .poll = cgroup_file_poll, 3914 .seq_start = cgroup_seqfile_start, 3915 .seq_next = cgroup_seqfile_next, 3916 .seq_stop = cgroup_seqfile_stop, 3917 .seq_show = cgroup_seqfile_show, 3918 }; 3919 3920 /* set uid and gid of cgroup dirs and files to that of the creator */ 3921 static int cgroup_kn_set_ugid(struct kernfs_node *kn) 3922 { 3923 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID, 3924 .ia_uid = current_fsuid(), 3925 .ia_gid = current_fsgid(), }; 3926 3927 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) && 3928 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID)) 3929 return 0; 3930 3931 return kernfs_setattr(kn, &iattr); 3932 } 3933 3934 static void cgroup_file_notify_timer(struct timer_list *timer) 3935 { 3936 cgroup_file_notify(container_of(timer, struct cgroup_file, 3937 notify_timer)); 3938 } 3939 3940 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp, 3941 struct cftype *cft) 3942 { 3943 char name[CGROUP_FILE_NAME_MAX]; 3944 struct kernfs_node *kn; 3945 struct lock_class_key *key = NULL; 3946 int ret; 3947 3948 #ifdef CONFIG_DEBUG_LOCK_ALLOC 3949 key = &cft->lockdep_key; 3950 #endif 3951 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name), 3952 cgroup_file_mode(cft), 3953 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 3954 0, cft->kf_ops, cft, 3955 NULL, key); 3956 if (IS_ERR(kn)) 3957 return PTR_ERR(kn); 3958 3959 ret = cgroup_kn_set_ugid(kn); 3960 if (ret) { 3961 kernfs_remove(kn); 3962 return ret; 3963 } 3964 3965 if (cft->file_offset) { 3966 struct cgroup_file *cfile = (void *)css + cft->file_offset; 3967 3968 timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0); 3969 3970 spin_lock_irq(&cgroup_file_kn_lock); 3971 cfile->kn = kn; 3972 spin_unlock_irq(&cgroup_file_kn_lock); 3973 } 3974 3975 return 0; 3976 } 3977 3978 /** 3979 * cgroup_addrm_files - add or remove files to a cgroup directory 3980 * @css: the target css 3981 * @cgrp: the target cgroup (usually css->cgroup) 3982 * @cfts: array of cftypes to be added 3983 * @is_add: whether to add or remove 3984 * 3985 * Depending on @is_add, add or remove files defined by @cfts on @cgrp. 3986 * For removals, this function never fails. 3987 */ 3988 static int cgroup_addrm_files(struct cgroup_subsys_state *css, 3989 struct cgroup *cgrp, struct cftype cfts[], 3990 bool is_add) 3991 { 3992 struct cftype *cft, *cft_end = NULL; 3993 int ret = 0; 3994 3995 lockdep_assert_held(&cgroup_mutex); 3996 3997 restart: 3998 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) { 3999 /* does cft->flags tell us to skip this file on @cgrp? */ 4000 if ((cft->flags & CFTYPE_PRESSURE) && !cgroup_psi_enabled()) 4001 continue; 4002 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp)) 4003 continue; 4004 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp)) 4005 continue; 4006 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp)) 4007 continue; 4008 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp)) 4009 continue; 4010 if ((cft->flags & CFTYPE_DEBUG) && !cgroup_debug) 4011 continue; 4012 if (is_add) { 4013 ret = cgroup_add_file(css, cgrp, cft); 4014 if (ret) { 4015 pr_warn("%s: failed to add %s, err=%d\n", 4016 __func__, cft->name, ret); 4017 cft_end = cft; 4018 is_add = false; 4019 goto restart; 4020 } 4021 } else { 4022 cgroup_rm_file(cgrp, cft); 4023 } 4024 } 4025 return ret; 4026 } 4027 4028 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add) 4029 { 4030 struct cgroup_subsys *ss = cfts[0].ss; 4031 struct cgroup *root = &ss->root->cgrp; 4032 struct cgroup_subsys_state *css; 4033 int ret = 0; 4034 4035 lockdep_assert_held(&cgroup_mutex); 4036 4037 /* add/rm files for all cgroups created before */ 4038 css_for_each_descendant_pre(css, cgroup_css(root, ss)) { 4039 struct cgroup *cgrp = css->cgroup; 4040 4041 if (!(css->flags & CSS_VISIBLE)) 4042 continue; 4043 4044 ret = cgroup_addrm_files(css, cgrp, cfts, is_add); 4045 if (ret) 4046 break; 4047 } 4048 4049 if (is_add && !ret) 4050 kernfs_activate(root->kn); 4051 return ret; 4052 } 4053 4054 static void cgroup_exit_cftypes(struct cftype *cfts) 4055 { 4056 struct cftype *cft; 4057 4058 for (cft = cfts; cft->name[0] != '\0'; cft++) { 4059 /* free copy for custom atomic_write_len, see init_cftypes() */ 4060 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) 4061 kfree(cft->kf_ops); 4062 cft->kf_ops = NULL; 4063 cft->ss = NULL; 4064 4065 /* revert flags set by cgroup core while adding @cfts */ 4066 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL); 4067 } 4068 } 4069 4070 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4071 { 4072 struct cftype *cft; 4073 4074 for (cft = cfts; cft->name[0] != '\0'; cft++) { 4075 struct kernfs_ops *kf_ops; 4076 4077 WARN_ON(cft->ss || cft->kf_ops); 4078 4079 if ((cft->flags & CFTYPE_PRESSURE) && !cgroup_psi_enabled()) 4080 continue; 4081 4082 if (cft->seq_start) 4083 kf_ops = &cgroup_kf_ops; 4084 else 4085 kf_ops = &cgroup_kf_single_ops; 4086 4087 /* 4088 * Ugh... if @cft wants a custom max_write_len, we need to 4089 * make a copy of kf_ops to set its atomic_write_len. 4090 */ 4091 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) { 4092 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL); 4093 if (!kf_ops) { 4094 cgroup_exit_cftypes(cfts); 4095 return -ENOMEM; 4096 } 4097 kf_ops->atomic_write_len = cft->max_write_len; 4098 } 4099 4100 cft->kf_ops = kf_ops; 4101 cft->ss = ss; 4102 } 4103 4104 return 0; 4105 } 4106 4107 static int cgroup_rm_cftypes_locked(struct cftype *cfts) 4108 { 4109 lockdep_assert_held(&cgroup_mutex); 4110 4111 if (!cfts || !cfts[0].ss) 4112 return -ENOENT; 4113 4114 list_del(&cfts->node); 4115 cgroup_apply_cftypes(cfts, false); 4116 cgroup_exit_cftypes(cfts); 4117 return 0; 4118 } 4119 4120 /** 4121 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem 4122 * @cfts: zero-length name terminated array of cftypes 4123 * 4124 * Unregister @cfts. Files described by @cfts are removed from all 4125 * existing cgroups and all future cgroups won't have them either. This 4126 * function can be called anytime whether @cfts' subsys is attached or not. 4127 * 4128 * Returns 0 on successful unregistration, -ENOENT if @cfts is not 4129 * registered. 4130 */ 4131 int cgroup_rm_cftypes(struct cftype *cfts) 4132 { 4133 int ret; 4134 4135 mutex_lock(&cgroup_mutex); 4136 ret = cgroup_rm_cftypes_locked(cfts); 4137 mutex_unlock(&cgroup_mutex); 4138 return ret; 4139 } 4140 4141 /** 4142 * cgroup_add_cftypes - add an array of cftypes to a subsystem 4143 * @ss: target cgroup subsystem 4144 * @cfts: zero-length name terminated array of cftypes 4145 * 4146 * Register @cfts to @ss. Files described by @cfts are created for all 4147 * existing cgroups to which @ss is attached and all future cgroups will 4148 * have them too. This function can be called anytime whether @ss is 4149 * attached or not. 4150 * 4151 * Returns 0 on successful registration, -errno on failure. Note that this 4152 * function currently returns 0 as long as @cfts registration is successful 4153 * even if some file creation attempts on existing cgroups fail. 4154 */ 4155 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4156 { 4157 int ret; 4158 4159 if (!cgroup_ssid_enabled(ss->id)) 4160 return 0; 4161 4162 if (!cfts || cfts[0].name[0] == '\0') 4163 return 0; 4164 4165 ret = cgroup_init_cftypes(ss, cfts); 4166 if (ret) 4167 return ret; 4168 4169 mutex_lock(&cgroup_mutex); 4170 4171 list_add_tail(&cfts->node, &ss->cfts); 4172 ret = cgroup_apply_cftypes(cfts, true); 4173 if (ret) 4174 cgroup_rm_cftypes_locked(cfts); 4175 4176 mutex_unlock(&cgroup_mutex); 4177 return ret; 4178 } 4179 4180 /** 4181 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy 4182 * @ss: target cgroup subsystem 4183 * @cfts: zero-length name terminated array of cftypes 4184 * 4185 * Similar to cgroup_add_cftypes() but the added files are only used for 4186 * the default hierarchy. 4187 */ 4188 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4189 { 4190 struct cftype *cft; 4191 4192 for (cft = cfts; cft && cft->name[0] != '\0'; cft++) 4193 cft->flags |= __CFTYPE_ONLY_ON_DFL; 4194 return cgroup_add_cftypes(ss, cfts); 4195 } 4196 4197 /** 4198 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies 4199 * @ss: target cgroup subsystem 4200 * @cfts: zero-length name terminated array of cftypes 4201 * 4202 * Similar to cgroup_add_cftypes() but the added files are only used for 4203 * the legacy hierarchies. 4204 */ 4205 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4206 { 4207 struct cftype *cft; 4208 4209 for (cft = cfts; cft && cft->name[0] != '\0'; cft++) 4210 cft->flags |= __CFTYPE_NOT_ON_DFL; 4211 return cgroup_add_cftypes(ss, cfts); 4212 } 4213 4214 /** 4215 * cgroup_file_notify - generate a file modified event for a cgroup_file 4216 * @cfile: target cgroup_file 4217 * 4218 * @cfile must have been obtained by setting cftype->file_offset. 4219 */ 4220 void cgroup_file_notify(struct cgroup_file *cfile) 4221 { 4222 unsigned long flags; 4223 4224 spin_lock_irqsave(&cgroup_file_kn_lock, flags); 4225 if (cfile->kn) { 4226 unsigned long last = cfile->notified_at; 4227 unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV; 4228 4229 if (time_in_range(jiffies, last, next)) { 4230 timer_reduce(&cfile->notify_timer, next); 4231 } else { 4232 kernfs_notify(cfile->kn); 4233 cfile->notified_at = jiffies; 4234 } 4235 } 4236 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags); 4237 } 4238 4239 /** 4240 * css_next_child - find the next child of a given css 4241 * @pos: the current position (%NULL to initiate traversal) 4242 * @parent: css whose children to walk 4243 * 4244 * This function returns the next child of @parent and should be called 4245 * under either cgroup_mutex or RCU read lock. The only requirement is 4246 * that @parent and @pos are accessible. The next sibling is guaranteed to 4247 * be returned regardless of their states. 4248 * 4249 * If a subsystem synchronizes ->css_online() and the start of iteration, a 4250 * css which finished ->css_online() is guaranteed to be visible in the 4251 * future iterations and will stay visible until the last reference is put. 4252 * A css which hasn't finished ->css_online() or already finished 4253 * ->css_offline() may show up during traversal. It's each subsystem's 4254 * responsibility to synchronize against on/offlining. 4255 */ 4256 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos, 4257 struct cgroup_subsys_state *parent) 4258 { 4259 struct cgroup_subsys_state *next; 4260 4261 cgroup_assert_mutex_or_rcu_locked(); 4262 4263 /* 4264 * @pos could already have been unlinked from the sibling list. 4265 * Once a cgroup is removed, its ->sibling.next is no longer 4266 * updated when its next sibling changes. CSS_RELEASED is set when 4267 * @pos is taken off list, at which time its next pointer is valid, 4268 * and, as releases are serialized, the one pointed to by the next 4269 * pointer is guaranteed to not have started release yet. This 4270 * implies that if we observe !CSS_RELEASED on @pos in this RCU 4271 * critical section, the one pointed to by its next pointer is 4272 * guaranteed to not have finished its RCU grace period even if we 4273 * have dropped rcu_read_lock() in-between iterations. 4274 * 4275 * If @pos has CSS_RELEASED set, its next pointer can't be 4276 * dereferenced; however, as each css is given a monotonically 4277 * increasing unique serial number and always appended to the 4278 * sibling list, the next one can be found by walking the parent's 4279 * children until the first css with higher serial number than 4280 * @pos's. While this path can be slower, it happens iff iteration 4281 * races against release and the race window is very small. 4282 */ 4283 if (!pos) { 4284 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling); 4285 } else if (likely(!(pos->flags & CSS_RELEASED))) { 4286 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling); 4287 } else { 4288 list_for_each_entry_rcu(next, &parent->children, sibling, 4289 lockdep_is_held(&cgroup_mutex)) 4290 if (next->serial_nr > pos->serial_nr) 4291 break; 4292 } 4293 4294 /* 4295 * @next, if not pointing to the head, can be dereferenced and is 4296 * the next sibling. 4297 */ 4298 if (&next->sibling != &parent->children) 4299 return next; 4300 return NULL; 4301 } 4302 4303 /** 4304 * css_next_descendant_pre - find the next descendant for pre-order walk 4305 * @pos: the current position (%NULL to initiate traversal) 4306 * @root: css whose descendants to walk 4307 * 4308 * To be used by css_for_each_descendant_pre(). Find the next descendant 4309 * to visit for pre-order traversal of @root's descendants. @root is 4310 * included in the iteration and the first node to be visited. 4311 * 4312 * While this function requires cgroup_mutex or RCU read locking, it 4313 * doesn't require the whole traversal to be contained in a single critical 4314 * section. This function will return the correct next descendant as long 4315 * as both @pos and @root are accessible and @pos is a descendant of @root. 4316 * 4317 * If a subsystem synchronizes ->css_online() and the start of iteration, a 4318 * css which finished ->css_online() is guaranteed to be visible in the 4319 * future iterations and will stay visible until the last reference is put. 4320 * A css which hasn't finished ->css_online() or already finished 4321 * ->css_offline() may show up during traversal. It's each subsystem's 4322 * responsibility to synchronize against on/offlining. 4323 */ 4324 struct cgroup_subsys_state * 4325 css_next_descendant_pre(struct cgroup_subsys_state *pos, 4326 struct cgroup_subsys_state *root) 4327 { 4328 struct cgroup_subsys_state *next; 4329 4330 cgroup_assert_mutex_or_rcu_locked(); 4331 4332 /* if first iteration, visit @root */ 4333 if (!pos) 4334 return root; 4335 4336 /* visit the first child if exists */ 4337 next = css_next_child(NULL, pos); 4338 if (next) 4339 return next; 4340 4341 /* no child, visit my or the closest ancestor's next sibling */ 4342 while (pos != root) { 4343 next = css_next_child(pos, pos->parent); 4344 if (next) 4345 return next; 4346 pos = pos->parent; 4347 } 4348 4349 return NULL; 4350 } 4351 EXPORT_SYMBOL_GPL(css_next_descendant_pre); 4352 4353 /** 4354 * css_rightmost_descendant - return the rightmost descendant of a css 4355 * @pos: css of interest 4356 * 4357 * Return the rightmost descendant of @pos. If there's no descendant, @pos 4358 * is returned. This can be used during pre-order traversal to skip 4359 * subtree of @pos. 4360 * 4361 * While this function requires cgroup_mutex or RCU read locking, it 4362 * doesn't require the whole traversal to be contained in a single critical 4363 * section. This function will return the correct rightmost descendant as 4364 * long as @pos is accessible. 4365 */ 4366 struct cgroup_subsys_state * 4367 css_rightmost_descendant(struct cgroup_subsys_state *pos) 4368 { 4369 struct cgroup_subsys_state *last, *tmp; 4370 4371 cgroup_assert_mutex_or_rcu_locked(); 4372 4373 do { 4374 last = pos; 4375 /* ->prev isn't RCU safe, walk ->next till the end */ 4376 pos = NULL; 4377 css_for_each_child(tmp, last) 4378 pos = tmp; 4379 } while (pos); 4380 4381 return last; 4382 } 4383 4384 static struct cgroup_subsys_state * 4385 css_leftmost_descendant(struct cgroup_subsys_state *pos) 4386 { 4387 struct cgroup_subsys_state *last; 4388 4389 do { 4390 last = pos; 4391 pos = css_next_child(NULL, pos); 4392 } while (pos); 4393 4394 return last; 4395 } 4396 4397 /** 4398 * css_next_descendant_post - find the next descendant for post-order walk 4399 * @pos: the current position (%NULL to initiate traversal) 4400 * @root: css whose descendants to walk 4401 * 4402 * To be used by css_for_each_descendant_post(). Find the next descendant 4403 * to visit for post-order traversal of @root's descendants. @root is 4404 * included in the iteration and the last node to be visited. 4405 * 4406 * While this function requires cgroup_mutex or RCU read locking, it 4407 * doesn't require the whole traversal to be contained in a single critical 4408 * section. This function will return the correct next descendant as long 4409 * as both @pos and @cgroup are accessible and @pos is a descendant of 4410 * @cgroup. 4411 * 4412 * If a subsystem synchronizes ->css_online() and the start of iteration, a 4413 * css which finished ->css_online() is guaranteed to be visible in the 4414 * future iterations and will stay visible until the last reference is put. 4415 * A css which hasn't finished ->css_online() or already finished 4416 * ->css_offline() may show up during traversal. It's each subsystem's 4417 * responsibility to synchronize against on/offlining. 4418 */ 4419 struct cgroup_subsys_state * 4420 css_next_descendant_post(struct cgroup_subsys_state *pos, 4421 struct cgroup_subsys_state *root) 4422 { 4423 struct cgroup_subsys_state *next; 4424 4425 cgroup_assert_mutex_or_rcu_locked(); 4426 4427 /* if first iteration, visit leftmost descendant which may be @root */ 4428 if (!pos) 4429 return css_leftmost_descendant(root); 4430 4431 /* if we visited @root, we're done */ 4432 if (pos == root) 4433 return NULL; 4434 4435 /* if there's an unvisited sibling, visit its leftmost descendant */ 4436 next = css_next_child(pos, pos->parent); 4437 if (next) 4438 return css_leftmost_descendant(next); 4439 4440 /* no sibling left, visit parent */ 4441 return pos->parent; 4442 } 4443 4444 /** 4445 * css_has_online_children - does a css have online children 4446 * @css: the target css 4447 * 4448 * Returns %true if @css has any online children; otherwise, %false. This 4449 * function can be called from any context but the caller is responsible 4450 * for synchronizing against on/offlining as necessary. 4451 */ 4452 bool css_has_online_children(struct cgroup_subsys_state *css) 4453 { 4454 struct cgroup_subsys_state *child; 4455 bool ret = false; 4456 4457 rcu_read_lock(); 4458 css_for_each_child(child, css) { 4459 if (child->flags & CSS_ONLINE) { 4460 ret = true; 4461 break; 4462 } 4463 } 4464 rcu_read_unlock(); 4465 return ret; 4466 } 4467 4468 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it) 4469 { 4470 struct list_head *l; 4471 struct cgrp_cset_link *link; 4472 struct css_set *cset; 4473 4474 lockdep_assert_held(&css_set_lock); 4475 4476 /* find the next threaded cset */ 4477 if (it->tcset_pos) { 4478 l = it->tcset_pos->next; 4479 4480 if (l != it->tcset_head) { 4481 it->tcset_pos = l; 4482 return container_of(l, struct css_set, 4483 threaded_csets_node); 4484 } 4485 4486 it->tcset_pos = NULL; 4487 } 4488 4489 /* find the next cset */ 4490 l = it->cset_pos; 4491 l = l->next; 4492 if (l == it->cset_head) { 4493 it->cset_pos = NULL; 4494 return NULL; 4495 } 4496 4497 if (it->ss) { 4498 cset = container_of(l, struct css_set, e_cset_node[it->ss->id]); 4499 } else { 4500 link = list_entry(l, struct cgrp_cset_link, cset_link); 4501 cset = link->cset; 4502 } 4503 4504 it->cset_pos = l; 4505 4506 /* initialize threaded css_set walking */ 4507 if (it->flags & CSS_TASK_ITER_THREADED) { 4508 if (it->cur_dcset) 4509 put_css_set_locked(it->cur_dcset); 4510 it->cur_dcset = cset; 4511 get_css_set(cset); 4512 4513 it->tcset_head = &cset->threaded_csets; 4514 it->tcset_pos = &cset->threaded_csets; 4515 } 4516 4517 return cset; 4518 } 4519 4520 /** 4521 * css_task_iter_advance_css_set - advance a task iterator to the next css_set 4522 * @it: the iterator to advance 4523 * 4524 * Advance @it to the next css_set to walk. 4525 */ 4526 static void css_task_iter_advance_css_set(struct css_task_iter *it) 4527 { 4528 struct css_set *cset; 4529 4530 lockdep_assert_held(&css_set_lock); 4531 4532 /* Advance to the next non-empty css_set and find first non-empty tasks list*/ 4533 while ((cset = css_task_iter_next_css_set(it))) { 4534 if (!list_empty(&cset->tasks)) { 4535 it->cur_tasks_head = &cset->tasks; 4536 break; 4537 } else if (!list_empty(&cset->mg_tasks)) { 4538 it->cur_tasks_head = &cset->mg_tasks; 4539 break; 4540 } else if (!list_empty(&cset->dying_tasks)) { 4541 it->cur_tasks_head = &cset->dying_tasks; 4542 break; 4543 } 4544 } 4545 if (!cset) { 4546 it->task_pos = NULL; 4547 return; 4548 } 4549 it->task_pos = it->cur_tasks_head->next; 4550 4551 /* 4552 * We don't keep css_sets locked across iteration steps and thus 4553 * need to take steps to ensure that iteration can be resumed after 4554 * the lock is re-acquired. Iteration is performed at two levels - 4555 * css_sets and tasks in them. 4556 * 4557 * Once created, a css_set never leaves its cgroup lists, so a 4558 * pinned css_set is guaranteed to stay put and we can resume 4559 * iteration afterwards. 4560 * 4561 * Tasks may leave @cset across iteration steps. This is resolved 4562 * by registering each iterator with the css_set currently being 4563 * walked and making css_set_move_task() advance iterators whose 4564 * next task is leaving. 4565 */ 4566 if (it->cur_cset) { 4567 list_del(&it->iters_node); 4568 put_css_set_locked(it->cur_cset); 4569 } 4570 get_css_set(cset); 4571 it->cur_cset = cset; 4572 list_add(&it->iters_node, &cset->task_iters); 4573 } 4574 4575 static void css_task_iter_skip(struct css_task_iter *it, 4576 struct task_struct *task) 4577 { 4578 lockdep_assert_held(&css_set_lock); 4579 4580 if (it->task_pos == &task->cg_list) { 4581 it->task_pos = it->task_pos->next; 4582 it->flags |= CSS_TASK_ITER_SKIPPED; 4583 } 4584 } 4585 4586 static void css_task_iter_advance(struct css_task_iter *it) 4587 { 4588 struct task_struct *task; 4589 4590 lockdep_assert_held(&css_set_lock); 4591 repeat: 4592 if (it->task_pos) { 4593 /* 4594 * Advance iterator to find next entry. We go through cset 4595 * tasks, mg_tasks and dying_tasks, when consumed we move onto 4596 * the next cset. 4597 */ 4598 if (it->flags & CSS_TASK_ITER_SKIPPED) 4599 it->flags &= ~CSS_TASK_ITER_SKIPPED; 4600 else 4601 it->task_pos = it->task_pos->next; 4602 4603 if (it->task_pos == &it->cur_cset->tasks) { 4604 it->cur_tasks_head = &it->cur_cset->mg_tasks; 4605 it->task_pos = it->cur_tasks_head->next; 4606 } 4607 if (it->task_pos == &it->cur_cset->mg_tasks) { 4608 it->cur_tasks_head = &it->cur_cset->dying_tasks; 4609 it->task_pos = it->cur_tasks_head->next; 4610 } 4611 if (it->task_pos == &it->cur_cset->dying_tasks) 4612 css_task_iter_advance_css_set(it); 4613 } else { 4614 /* called from start, proceed to the first cset */ 4615 css_task_iter_advance_css_set(it); 4616 } 4617 4618 if (!it->task_pos) 4619 return; 4620 4621 task = list_entry(it->task_pos, struct task_struct, cg_list); 4622 4623 if (it->flags & CSS_TASK_ITER_PROCS) { 4624 /* if PROCS, skip over tasks which aren't group leaders */ 4625 if (!thread_group_leader(task)) 4626 goto repeat; 4627 4628 /* and dying leaders w/o live member threads */ 4629 if (it->cur_tasks_head == &it->cur_cset->dying_tasks && 4630 !atomic_read(&task->signal->live)) 4631 goto repeat; 4632 } else { 4633 /* skip all dying ones */ 4634 if (it->cur_tasks_head == &it->cur_cset->dying_tasks) 4635 goto repeat; 4636 } 4637 } 4638 4639 /** 4640 * css_task_iter_start - initiate task iteration 4641 * @css: the css to walk tasks of 4642 * @flags: CSS_TASK_ITER_* flags 4643 * @it: the task iterator to use 4644 * 4645 * Initiate iteration through the tasks of @css. The caller can call 4646 * css_task_iter_next() to walk through the tasks until the function 4647 * returns NULL. On completion of iteration, css_task_iter_end() must be 4648 * called. 4649 */ 4650 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags, 4651 struct css_task_iter *it) 4652 { 4653 memset(it, 0, sizeof(*it)); 4654 4655 spin_lock_irq(&css_set_lock); 4656 4657 it->ss = css->ss; 4658 it->flags = flags; 4659 4660 if (CGROUP_HAS_SUBSYS_CONFIG && it->ss) 4661 it->cset_pos = &css->cgroup->e_csets[css->ss->id]; 4662 else 4663 it->cset_pos = &css->cgroup->cset_links; 4664 4665 it->cset_head = it->cset_pos; 4666 4667 css_task_iter_advance(it); 4668 4669 spin_unlock_irq(&css_set_lock); 4670 } 4671 4672 /** 4673 * css_task_iter_next - return the next task for the iterator 4674 * @it: the task iterator being iterated 4675 * 4676 * The "next" function for task iteration. @it should have been 4677 * initialized via css_task_iter_start(). Returns NULL when the iteration 4678 * reaches the end. 4679 */ 4680 struct task_struct *css_task_iter_next(struct css_task_iter *it) 4681 { 4682 if (it->cur_task) { 4683 put_task_struct(it->cur_task); 4684 it->cur_task = NULL; 4685 } 4686 4687 spin_lock_irq(&css_set_lock); 4688 4689 /* @it may be half-advanced by skips, finish advancing */ 4690 if (it->flags & CSS_TASK_ITER_SKIPPED) 4691 css_task_iter_advance(it); 4692 4693 if (it->task_pos) { 4694 it->cur_task = list_entry(it->task_pos, struct task_struct, 4695 cg_list); 4696 get_task_struct(it->cur_task); 4697 css_task_iter_advance(it); 4698 } 4699 4700 spin_unlock_irq(&css_set_lock); 4701 4702 return it->cur_task; 4703 } 4704 4705 /** 4706 * css_task_iter_end - finish task iteration 4707 * @it: the task iterator to finish 4708 * 4709 * Finish task iteration started by css_task_iter_start(). 4710 */ 4711 void css_task_iter_end(struct css_task_iter *it) 4712 { 4713 if (it->cur_cset) { 4714 spin_lock_irq(&css_set_lock); 4715 list_del(&it->iters_node); 4716 put_css_set_locked(it->cur_cset); 4717 spin_unlock_irq(&css_set_lock); 4718 } 4719 4720 if (it->cur_dcset) 4721 put_css_set(it->cur_dcset); 4722 4723 if (it->cur_task) 4724 put_task_struct(it->cur_task); 4725 } 4726 4727 static void cgroup_procs_release(struct kernfs_open_file *of) 4728 { 4729 if (of->priv) { 4730 css_task_iter_end(of->priv); 4731 kfree(of->priv); 4732 } 4733 } 4734 4735 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos) 4736 { 4737 struct kernfs_open_file *of = s->private; 4738 struct css_task_iter *it = of->priv; 4739 4740 if (pos) 4741 (*pos)++; 4742 4743 return css_task_iter_next(it); 4744 } 4745 4746 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos, 4747 unsigned int iter_flags) 4748 { 4749 struct kernfs_open_file *of = s->private; 4750 struct cgroup *cgrp = seq_css(s)->cgroup; 4751 struct css_task_iter *it = of->priv; 4752 4753 /* 4754 * When a seq_file is seeked, it's always traversed sequentially 4755 * from position 0, so we can simply keep iterating on !0 *pos. 4756 */ 4757 if (!it) { 4758 if (WARN_ON_ONCE((*pos))) 4759 return ERR_PTR(-EINVAL); 4760 4761 it = kzalloc(sizeof(*it), GFP_KERNEL); 4762 if (!it) 4763 return ERR_PTR(-ENOMEM); 4764 of->priv = it; 4765 css_task_iter_start(&cgrp->self, iter_flags, it); 4766 } else if (!(*pos)) { 4767 css_task_iter_end(it); 4768 css_task_iter_start(&cgrp->self, iter_flags, it); 4769 } else 4770 return it->cur_task; 4771 4772 return cgroup_procs_next(s, NULL, NULL); 4773 } 4774 4775 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos) 4776 { 4777 struct cgroup *cgrp = seq_css(s)->cgroup; 4778 4779 /* 4780 * All processes of a threaded subtree belong to the domain cgroup 4781 * of the subtree. Only threads can be distributed across the 4782 * subtree. Reject reads on cgroup.procs in the subtree proper. 4783 * They're always empty anyway. 4784 */ 4785 if (cgroup_is_threaded(cgrp)) 4786 return ERR_PTR(-EOPNOTSUPP); 4787 4788 return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS | 4789 CSS_TASK_ITER_THREADED); 4790 } 4791 4792 static int cgroup_procs_show(struct seq_file *s, void *v) 4793 { 4794 seq_printf(s, "%d\n", task_pid_vnr(v)); 4795 return 0; 4796 } 4797 4798 static int cgroup_may_write(const struct cgroup *cgrp, struct super_block *sb) 4799 { 4800 int ret; 4801 struct inode *inode; 4802 4803 lockdep_assert_held(&cgroup_mutex); 4804 4805 inode = kernfs_get_inode(sb, cgrp->procs_file.kn); 4806 if (!inode) 4807 return -ENOMEM; 4808 4809 ret = inode_permission(&init_user_ns, inode, MAY_WRITE); 4810 iput(inode); 4811 return ret; 4812 } 4813 4814 static int cgroup_procs_write_permission(struct cgroup *src_cgrp, 4815 struct cgroup *dst_cgrp, 4816 struct super_block *sb) 4817 { 4818 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns; 4819 struct cgroup *com_cgrp = src_cgrp; 4820 int ret; 4821 4822 lockdep_assert_held(&cgroup_mutex); 4823 4824 /* find the common ancestor */ 4825 while (!cgroup_is_descendant(dst_cgrp, com_cgrp)) 4826 com_cgrp = cgroup_parent(com_cgrp); 4827 4828 /* %current should be authorized to migrate to the common ancestor */ 4829 ret = cgroup_may_write(com_cgrp, sb); 4830 if (ret) 4831 return ret; 4832 4833 /* 4834 * If namespaces are delegation boundaries, %current must be able 4835 * to see both source and destination cgroups from its namespace. 4836 */ 4837 if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) && 4838 (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) || 4839 !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp))) 4840 return -ENOENT; 4841 4842 return 0; 4843 } 4844 4845 static int cgroup_attach_permissions(struct cgroup *src_cgrp, 4846 struct cgroup *dst_cgrp, 4847 struct super_block *sb, bool threadgroup) 4848 { 4849 int ret = 0; 4850 4851 ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, sb); 4852 if (ret) 4853 return ret; 4854 4855 ret = cgroup_migrate_vet_dst(dst_cgrp); 4856 if (ret) 4857 return ret; 4858 4859 if (!threadgroup && (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp)) 4860 ret = -EOPNOTSUPP; 4861 4862 return ret; 4863 } 4864 4865 static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf, 4866 bool threadgroup) 4867 { 4868 struct cgroup *src_cgrp, *dst_cgrp; 4869 struct task_struct *task; 4870 ssize_t ret; 4871 bool locked; 4872 4873 dst_cgrp = cgroup_kn_lock_live(of->kn, false); 4874 if (!dst_cgrp) 4875 return -ENODEV; 4876 4877 task = cgroup_procs_write_start(buf, threadgroup, &locked); 4878 ret = PTR_ERR_OR_ZERO(task); 4879 if (ret) 4880 goto out_unlock; 4881 4882 /* find the source cgroup */ 4883 spin_lock_irq(&css_set_lock); 4884 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root); 4885 spin_unlock_irq(&css_set_lock); 4886 4887 /* process and thread migrations follow same delegation rule */ 4888 ret = cgroup_attach_permissions(src_cgrp, dst_cgrp, 4889 of->file->f_path.dentry->d_sb, threadgroup); 4890 if (ret) 4891 goto out_finish; 4892 4893 ret = cgroup_attach_task(dst_cgrp, task, threadgroup); 4894 4895 out_finish: 4896 cgroup_procs_write_finish(task, locked); 4897 out_unlock: 4898 cgroup_kn_unlock(of->kn); 4899 4900 return ret; 4901 } 4902 4903 static ssize_t cgroup_procs_write(struct kernfs_open_file *of, 4904 char *buf, size_t nbytes, loff_t off) 4905 { 4906 return __cgroup_procs_write(of, buf, true) ?: nbytes; 4907 } 4908 4909 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos) 4910 { 4911 return __cgroup_procs_start(s, pos, 0); 4912 } 4913 4914 static ssize_t cgroup_threads_write(struct kernfs_open_file *of, 4915 char *buf, size_t nbytes, loff_t off) 4916 { 4917 return __cgroup_procs_write(of, buf, false) ?: nbytes; 4918 } 4919 4920 /* cgroup core interface files for the default hierarchy */ 4921 static struct cftype cgroup_base_files[] = { 4922 { 4923 .name = "cgroup.type", 4924 .flags = CFTYPE_NOT_ON_ROOT, 4925 .seq_show = cgroup_type_show, 4926 .write = cgroup_type_write, 4927 }, 4928 { 4929 .name = "cgroup.procs", 4930 .flags = CFTYPE_NS_DELEGATABLE, 4931 .file_offset = offsetof(struct cgroup, procs_file), 4932 .release = cgroup_procs_release, 4933 .seq_start = cgroup_procs_start, 4934 .seq_next = cgroup_procs_next, 4935 .seq_show = cgroup_procs_show, 4936 .write = cgroup_procs_write, 4937 }, 4938 { 4939 .name = "cgroup.threads", 4940 .flags = CFTYPE_NS_DELEGATABLE, 4941 .release = cgroup_procs_release, 4942 .seq_start = cgroup_threads_start, 4943 .seq_next = cgroup_procs_next, 4944 .seq_show = cgroup_procs_show, 4945 .write = cgroup_threads_write, 4946 }, 4947 { 4948 .name = "cgroup.controllers", 4949 .seq_show = cgroup_controllers_show, 4950 }, 4951 { 4952 .name = "cgroup.subtree_control", 4953 .flags = CFTYPE_NS_DELEGATABLE, 4954 .seq_show = cgroup_subtree_control_show, 4955 .write = cgroup_subtree_control_write, 4956 }, 4957 { 4958 .name = "cgroup.events", 4959 .flags = CFTYPE_NOT_ON_ROOT, 4960 .file_offset = offsetof(struct cgroup, events_file), 4961 .seq_show = cgroup_events_show, 4962 }, 4963 { 4964 .name = "cgroup.max.descendants", 4965 .seq_show = cgroup_max_descendants_show, 4966 .write = cgroup_max_descendants_write, 4967 }, 4968 { 4969 .name = "cgroup.max.depth", 4970 .seq_show = cgroup_max_depth_show, 4971 .write = cgroup_max_depth_write, 4972 }, 4973 { 4974 .name = "cgroup.stat", 4975 .seq_show = cgroup_stat_show, 4976 }, 4977 { 4978 .name = "cgroup.freeze", 4979 .flags = CFTYPE_NOT_ON_ROOT, 4980 .seq_show = cgroup_freeze_show, 4981 .write = cgroup_freeze_write, 4982 }, 4983 { 4984 .name = "cgroup.kill", 4985 .flags = CFTYPE_NOT_ON_ROOT, 4986 .write = cgroup_kill_write, 4987 }, 4988 { 4989 .name = "cpu.stat", 4990 .seq_show = cpu_stat_show, 4991 }, 4992 #ifdef CONFIG_PSI 4993 { 4994 .name = "io.pressure", 4995 .flags = CFTYPE_PRESSURE, 4996 .seq_show = cgroup_io_pressure_show, 4997 .write = cgroup_io_pressure_write, 4998 .poll = cgroup_pressure_poll, 4999 .release = cgroup_pressure_release, 5000 }, 5001 { 5002 .name = "memory.pressure", 5003 .flags = CFTYPE_PRESSURE, 5004 .seq_show = cgroup_memory_pressure_show, 5005 .write = cgroup_memory_pressure_write, 5006 .poll = cgroup_pressure_poll, 5007 .release = cgroup_pressure_release, 5008 }, 5009 { 5010 .name = "cpu.pressure", 5011 .flags = CFTYPE_PRESSURE, 5012 .seq_show = cgroup_cpu_pressure_show, 5013 .write = cgroup_cpu_pressure_write, 5014 .poll = cgroup_pressure_poll, 5015 .release = cgroup_pressure_release, 5016 }, 5017 #endif /* CONFIG_PSI */ 5018 { } /* terminate */ 5019 }; 5020 5021 /* 5022 * css destruction is four-stage process. 5023 * 5024 * 1. Destruction starts. Killing of the percpu_ref is initiated. 5025 * Implemented in kill_css(). 5026 * 5027 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs 5028 * and thus css_tryget_online() is guaranteed to fail, the css can be 5029 * offlined by invoking offline_css(). After offlining, the base ref is 5030 * put. Implemented in css_killed_work_fn(). 5031 * 5032 * 3. When the percpu_ref reaches zero, the only possible remaining 5033 * accessors are inside RCU read sections. css_release() schedules the 5034 * RCU callback. 5035 * 5036 * 4. After the grace period, the css can be freed. Implemented in 5037 * css_free_work_fn(). 5038 * 5039 * It is actually hairier because both step 2 and 4 require process context 5040 * and thus involve punting to css->destroy_work adding two additional 5041 * steps to the already complex sequence. 5042 */ 5043 static void css_free_rwork_fn(struct work_struct *work) 5044 { 5045 struct cgroup_subsys_state *css = container_of(to_rcu_work(work), 5046 struct cgroup_subsys_state, destroy_rwork); 5047 struct cgroup_subsys *ss = css->ss; 5048 struct cgroup *cgrp = css->cgroup; 5049 5050 percpu_ref_exit(&css->refcnt); 5051 5052 if (ss) { 5053 /* css free path */ 5054 struct cgroup_subsys_state *parent = css->parent; 5055 int id = css->id; 5056 5057 ss->css_free(css); 5058 cgroup_idr_remove(&ss->css_idr, id); 5059 cgroup_put(cgrp); 5060 5061 if (parent) 5062 css_put(parent); 5063 } else { 5064 /* cgroup free path */ 5065 atomic_dec(&cgrp->root->nr_cgrps); 5066 cgroup1_pidlist_destroy_all(cgrp); 5067 cancel_work_sync(&cgrp->release_agent_work); 5068 5069 if (cgroup_parent(cgrp)) { 5070 /* 5071 * We get a ref to the parent, and put the ref when 5072 * this cgroup is being freed, so it's guaranteed 5073 * that the parent won't be destroyed before its 5074 * children. 5075 */ 5076 cgroup_put(cgroup_parent(cgrp)); 5077 kernfs_put(cgrp->kn); 5078 psi_cgroup_free(cgrp); 5079 cgroup_rstat_exit(cgrp); 5080 kfree(cgrp); 5081 } else { 5082 /* 5083 * This is root cgroup's refcnt reaching zero, 5084 * which indicates that the root should be 5085 * released. 5086 */ 5087 cgroup_destroy_root(cgrp->root); 5088 } 5089 } 5090 } 5091 5092 static void css_release_work_fn(struct work_struct *work) 5093 { 5094 struct cgroup_subsys_state *css = 5095 container_of(work, struct cgroup_subsys_state, destroy_work); 5096 struct cgroup_subsys *ss = css->ss; 5097 struct cgroup *cgrp = css->cgroup; 5098 5099 mutex_lock(&cgroup_mutex); 5100 5101 css->flags |= CSS_RELEASED; 5102 list_del_rcu(&css->sibling); 5103 5104 if (ss) { 5105 /* css release path */ 5106 if (!list_empty(&css->rstat_css_node)) { 5107 cgroup_rstat_flush(cgrp); 5108 list_del_rcu(&css->rstat_css_node); 5109 } 5110 5111 cgroup_idr_replace(&ss->css_idr, NULL, css->id); 5112 if (ss->css_released) 5113 ss->css_released(css); 5114 } else { 5115 struct cgroup *tcgrp; 5116 5117 /* cgroup release path */ 5118 TRACE_CGROUP_PATH(release, cgrp); 5119 5120 cgroup_rstat_flush(cgrp); 5121 5122 spin_lock_irq(&css_set_lock); 5123 for (tcgrp = cgroup_parent(cgrp); tcgrp; 5124 tcgrp = cgroup_parent(tcgrp)) 5125 tcgrp->nr_dying_descendants--; 5126 spin_unlock_irq(&css_set_lock); 5127 5128 /* 5129 * There are two control paths which try to determine 5130 * cgroup from dentry without going through kernfs - 5131 * cgroupstats_build() and css_tryget_online_from_dir(). 5132 * Those are supported by RCU protecting clearing of 5133 * cgrp->kn->priv backpointer. 5134 */ 5135 if (cgrp->kn) 5136 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, 5137 NULL); 5138 } 5139 5140 mutex_unlock(&cgroup_mutex); 5141 5142 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn); 5143 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork); 5144 } 5145 5146 static void css_release(struct percpu_ref *ref) 5147 { 5148 struct cgroup_subsys_state *css = 5149 container_of(ref, struct cgroup_subsys_state, refcnt); 5150 5151 INIT_WORK(&css->destroy_work, css_release_work_fn); 5152 queue_work(cgroup_destroy_wq, &css->destroy_work); 5153 } 5154 5155 static void init_and_link_css(struct cgroup_subsys_state *css, 5156 struct cgroup_subsys *ss, struct cgroup *cgrp) 5157 { 5158 lockdep_assert_held(&cgroup_mutex); 5159 5160 cgroup_get_live(cgrp); 5161 5162 memset(css, 0, sizeof(*css)); 5163 css->cgroup = cgrp; 5164 css->ss = ss; 5165 css->id = -1; 5166 INIT_LIST_HEAD(&css->sibling); 5167 INIT_LIST_HEAD(&css->children); 5168 INIT_LIST_HEAD(&css->rstat_css_node); 5169 css->serial_nr = css_serial_nr_next++; 5170 atomic_set(&css->online_cnt, 0); 5171 5172 if (cgroup_parent(cgrp)) { 5173 css->parent = cgroup_css(cgroup_parent(cgrp), ss); 5174 css_get(css->parent); 5175 } 5176 5177 if (ss->css_rstat_flush) 5178 list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list); 5179 5180 BUG_ON(cgroup_css(cgrp, ss)); 5181 } 5182 5183 /* invoke ->css_online() on a new CSS and mark it online if successful */ 5184 static int online_css(struct cgroup_subsys_state *css) 5185 { 5186 struct cgroup_subsys *ss = css->ss; 5187 int ret = 0; 5188 5189 lockdep_assert_held(&cgroup_mutex); 5190 5191 if (ss->css_online) 5192 ret = ss->css_online(css); 5193 if (!ret) { 5194 css->flags |= CSS_ONLINE; 5195 rcu_assign_pointer(css->cgroup->subsys[ss->id], css); 5196 5197 atomic_inc(&css->online_cnt); 5198 if (css->parent) 5199 atomic_inc(&css->parent->online_cnt); 5200 } 5201 return ret; 5202 } 5203 5204 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */ 5205 static void offline_css(struct cgroup_subsys_state *css) 5206 { 5207 struct cgroup_subsys *ss = css->ss; 5208 5209 lockdep_assert_held(&cgroup_mutex); 5210 5211 if (!(css->flags & CSS_ONLINE)) 5212 return; 5213 5214 if (ss->css_offline) 5215 ss->css_offline(css); 5216 5217 css->flags &= ~CSS_ONLINE; 5218 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL); 5219 5220 wake_up_all(&css->cgroup->offline_waitq); 5221 } 5222 5223 /** 5224 * css_create - create a cgroup_subsys_state 5225 * @cgrp: the cgroup new css will be associated with 5226 * @ss: the subsys of new css 5227 * 5228 * Create a new css associated with @cgrp - @ss pair. On success, the new 5229 * css is online and installed in @cgrp. This function doesn't create the 5230 * interface files. Returns 0 on success, -errno on failure. 5231 */ 5232 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp, 5233 struct cgroup_subsys *ss) 5234 { 5235 struct cgroup *parent = cgroup_parent(cgrp); 5236 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss); 5237 struct cgroup_subsys_state *css; 5238 int err; 5239 5240 lockdep_assert_held(&cgroup_mutex); 5241 5242 css = ss->css_alloc(parent_css); 5243 if (!css) 5244 css = ERR_PTR(-ENOMEM); 5245 if (IS_ERR(css)) 5246 return css; 5247 5248 init_and_link_css(css, ss, cgrp); 5249 5250 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL); 5251 if (err) 5252 goto err_free_css; 5253 5254 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL); 5255 if (err < 0) 5256 goto err_free_css; 5257 css->id = err; 5258 5259 /* @css is ready to be brought online now, make it visible */ 5260 list_add_tail_rcu(&css->sibling, &parent_css->children); 5261 cgroup_idr_replace(&ss->css_idr, css, css->id); 5262 5263 err = online_css(css); 5264 if (err) 5265 goto err_list_del; 5266 5267 return css; 5268 5269 err_list_del: 5270 list_del_rcu(&css->sibling); 5271 err_free_css: 5272 list_del_rcu(&css->rstat_css_node); 5273 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn); 5274 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork); 5275 return ERR_PTR(err); 5276 } 5277 5278 /* 5279 * The returned cgroup is fully initialized including its control mask, but 5280 * it isn't associated with its kernfs_node and doesn't have the control 5281 * mask applied. 5282 */ 5283 static struct cgroup *cgroup_create(struct cgroup *parent, const char *name, 5284 umode_t mode) 5285 { 5286 struct cgroup_root *root = parent->root; 5287 struct cgroup *cgrp, *tcgrp; 5288 struct kernfs_node *kn; 5289 int level = parent->level + 1; 5290 int ret; 5291 5292 /* allocate the cgroup and its ID, 0 is reserved for the root */ 5293 cgrp = kzalloc(struct_size(cgrp, ancestor_ids, (level + 1)), 5294 GFP_KERNEL); 5295 if (!cgrp) 5296 return ERR_PTR(-ENOMEM); 5297 5298 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL); 5299 if (ret) 5300 goto out_free_cgrp; 5301 5302 ret = cgroup_rstat_init(cgrp); 5303 if (ret) 5304 goto out_cancel_ref; 5305 5306 /* create the directory */ 5307 kn = kernfs_create_dir(parent->kn, name, mode, cgrp); 5308 if (IS_ERR(kn)) { 5309 ret = PTR_ERR(kn); 5310 goto out_stat_exit; 5311 } 5312 cgrp->kn = kn; 5313 5314 init_cgroup_housekeeping(cgrp); 5315 5316 cgrp->self.parent = &parent->self; 5317 cgrp->root = root; 5318 cgrp->level = level; 5319 5320 ret = psi_cgroup_alloc(cgrp); 5321 if (ret) 5322 goto out_kernfs_remove; 5323 5324 ret = cgroup_bpf_inherit(cgrp); 5325 if (ret) 5326 goto out_psi_free; 5327 5328 /* 5329 * New cgroup inherits effective freeze counter, and 5330 * if the parent has to be frozen, the child has too. 5331 */ 5332 cgrp->freezer.e_freeze = parent->freezer.e_freeze; 5333 if (cgrp->freezer.e_freeze) { 5334 /* 5335 * Set the CGRP_FREEZE flag, so when a process will be 5336 * attached to the child cgroup, it will become frozen. 5337 * At this point the new cgroup is unpopulated, so we can 5338 * consider it frozen immediately. 5339 */ 5340 set_bit(CGRP_FREEZE, &cgrp->flags); 5341 set_bit(CGRP_FROZEN, &cgrp->flags); 5342 } 5343 5344 spin_lock_irq(&css_set_lock); 5345 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) { 5346 cgrp->ancestor_ids[tcgrp->level] = cgroup_id(tcgrp); 5347 5348 if (tcgrp != cgrp) { 5349 tcgrp->nr_descendants++; 5350 5351 /* 5352 * If the new cgroup is frozen, all ancestor cgroups 5353 * get a new frozen descendant, but their state can't 5354 * change because of this. 5355 */ 5356 if (cgrp->freezer.e_freeze) 5357 tcgrp->freezer.nr_frozen_descendants++; 5358 } 5359 } 5360 spin_unlock_irq(&css_set_lock); 5361 5362 if (notify_on_release(parent)) 5363 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags); 5364 5365 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags)) 5366 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags); 5367 5368 cgrp->self.serial_nr = css_serial_nr_next++; 5369 5370 /* allocation complete, commit to creation */ 5371 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children); 5372 atomic_inc(&root->nr_cgrps); 5373 cgroup_get_live(parent); 5374 5375 /* 5376 * On the default hierarchy, a child doesn't automatically inherit 5377 * subtree_control from the parent. Each is configured manually. 5378 */ 5379 if (!cgroup_on_dfl(cgrp)) 5380 cgrp->subtree_control = cgroup_control(cgrp); 5381 5382 cgroup_propagate_control(cgrp); 5383 5384 return cgrp; 5385 5386 out_psi_free: 5387 psi_cgroup_free(cgrp); 5388 out_kernfs_remove: 5389 kernfs_remove(cgrp->kn); 5390 out_stat_exit: 5391 cgroup_rstat_exit(cgrp); 5392 out_cancel_ref: 5393 percpu_ref_exit(&cgrp->self.refcnt); 5394 out_free_cgrp: 5395 kfree(cgrp); 5396 return ERR_PTR(ret); 5397 } 5398 5399 static bool cgroup_check_hierarchy_limits(struct cgroup *parent) 5400 { 5401 struct cgroup *cgroup; 5402 int ret = false; 5403 int level = 1; 5404 5405 lockdep_assert_held(&cgroup_mutex); 5406 5407 for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) { 5408 if (cgroup->nr_descendants >= cgroup->max_descendants) 5409 goto fail; 5410 5411 if (level > cgroup->max_depth) 5412 goto fail; 5413 5414 level++; 5415 } 5416 5417 ret = true; 5418 fail: 5419 return ret; 5420 } 5421 5422 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode) 5423 { 5424 struct cgroup *parent, *cgrp; 5425 int ret; 5426 5427 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */ 5428 if (strchr(name, '\n')) 5429 return -EINVAL; 5430 5431 parent = cgroup_kn_lock_live(parent_kn, false); 5432 if (!parent) 5433 return -ENODEV; 5434 5435 if (!cgroup_check_hierarchy_limits(parent)) { 5436 ret = -EAGAIN; 5437 goto out_unlock; 5438 } 5439 5440 cgrp = cgroup_create(parent, name, mode); 5441 if (IS_ERR(cgrp)) { 5442 ret = PTR_ERR(cgrp); 5443 goto out_unlock; 5444 } 5445 5446 /* 5447 * This extra ref will be put in cgroup_free_fn() and guarantees 5448 * that @cgrp->kn is always accessible. 5449 */ 5450 kernfs_get(cgrp->kn); 5451 5452 ret = cgroup_kn_set_ugid(cgrp->kn); 5453 if (ret) 5454 goto out_destroy; 5455 5456 ret = css_populate_dir(&cgrp->self); 5457 if (ret) 5458 goto out_destroy; 5459 5460 ret = cgroup_apply_control_enable(cgrp); 5461 if (ret) 5462 goto out_destroy; 5463 5464 TRACE_CGROUP_PATH(mkdir, cgrp); 5465 5466 /* let's create and online css's */ 5467 kernfs_activate(cgrp->kn); 5468 5469 ret = 0; 5470 goto out_unlock; 5471 5472 out_destroy: 5473 cgroup_destroy_locked(cgrp); 5474 out_unlock: 5475 cgroup_kn_unlock(parent_kn); 5476 return ret; 5477 } 5478 5479 /* 5480 * This is called when the refcnt of a css is confirmed to be killed. 5481 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to 5482 * initiate destruction and put the css ref from kill_css(). 5483 */ 5484 static void css_killed_work_fn(struct work_struct *work) 5485 { 5486 struct cgroup_subsys_state *css = 5487 container_of(work, struct cgroup_subsys_state, destroy_work); 5488 5489 mutex_lock(&cgroup_mutex); 5490 5491 do { 5492 offline_css(css); 5493 css_put(css); 5494 /* @css can't go away while we're holding cgroup_mutex */ 5495 css = css->parent; 5496 } while (css && atomic_dec_and_test(&css->online_cnt)); 5497 5498 mutex_unlock(&cgroup_mutex); 5499 } 5500 5501 /* css kill confirmation processing requires process context, bounce */ 5502 static void css_killed_ref_fn(struct percpu_ref *ref) 5503 { 5504 struct cgroup_subsys_state *css = 5505 container_of(ref, struct cgroup_subsys_state, refcnt); 5506 5507 if (atomic_dec_and_test(&css->online_cnt)) { 5508 INIT_WORK(&css->destroy_work, css_killed_work_fn); 5509 queue_work(cgroup_destroy_wq, &css->destroy_work); 5510 } 5511 } 5512 5513 /** 5514 * kill_css - destroy a css 5515 * @css: css to destroy 5516 * 5517 * This function initiates destruction of @css by removing cgroup interface 5518 * files and putting its base reference. ->css_offline() will be invoked 5519 * asynchronously once css_tryget_online() is guaranteed to fail and when 5520 * the reference count reaches zero, @css will be released. 5521 */ 5522 static void kill_css(struct cgroup_subsys_state *css) 5523 { 5524 lockdep_assert_held(&cgroup_mutex); 5525 5526 if (css->flags & CSS_DYING) 5527 return; 5528 5529 css->flags |= CSS_DYING; 5530 5531 /* 5532 * This must happen before css is disassociated with its cgroup. 5533 * See seq_css() for details. 5534 */ 5535 css_clear_dir(css); 5536 5537 /* 5538 * Killing would put the base ref, but we need to keep it alive 5539 * until after ->css_offline(). 5540 */ 5541 css_get(css); 5542 5543 /* 5544 * cgroup core guarantees that, by the time ->css_offline() is 5545 * invoked, no new css reference will be given out via 5546 * css_tryget_online(). We can't simply call percpu_ref_kill() and 5547 * proceed to offlining css's because percpu_ref_kill() doesn't 5548 * guarantee that the ref is seen as killed on all CPUs on return. 5549 * 5550 * Use percpu_ref_kill_and_confirm() to get notifications as each 5551 * css is confirmed to be seen as killed on all CPUs. 5552 */ 5553 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn); 5554 } 5555 5556 /** 5557 * cgroup_destroy_locked - the first stage of cgroup destruction 5558 * @cgrp: cgroup to be destroyed 5559 * 5560 * css's make use of percpu refcnts whose killing latency shouldn't be 5561 * exposed to userland and are RCU protected. Also, cgroup core needs to 5562 * guarantee that css_tryget_online() won't succeed by the time 5563 * ->css_offline() is invoked. To satisfy all the requirements, 5564 * destruction is implemented in the following two steps. 5565 * 5566 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all 5567 * userland visible parts and start killing the percpu refcnts of 5568 * css's. Set up so that the next stage will be kicked off once all 5569 * the percpu refcnts are confirmed to be killed. 5570 * 5571 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the 5572 * rest of destruction. Once all cgroup references are gone, the 5573 * cgroup is RCU-freed. 5574 * 5575 * This function implements s1. After this step, @cgrp is gone as far as 5576 * the userland is concerned and a new cgroup with the same name may be 5577 * created. As cgroup doesn't care about the names internally, this 5578 * doesn't cause any problem. 5579 */ 5580 static int cgroup_destroy_locked(struct cgroup *cgrp) 5581 __releases(&cgroup_mutex) __acquires(&cgroup_mutex) 5582 { 5583 struct cgroup *tcgrp, *parent = cgroup_parent(cgrp); 5584 struct cgroup_subsys_state *css; 5585 struct cgrp_cset_link *link; 5586 int ssid; 5587 5588 lockdep_assert_held(&cgroup_mutex); 5589 5590 /* 5591 * Only migration can raise populated from zero and we're already 5592 * holding cgroup_mutex. 5593 */ 5594 if (cgroup_is_populated(cgrp)) 5595 return -EBUSY; 5596 5597 /* 5598 * Make sure there's no live children. We can't test emptiness of 5599 * ->self.children as dead children linger on it while being 5600 * drained; otherwise, "rmdir parent/child parent" may fail. 5601 */ 5602 if (css_has_online_children(&cgrp->self)) 5603 return -EBUSY; 5604 5605 /* 5606 * Mark @cgrp and the associated csets dead. The former prevents 5607 * further task migration and child creation by disabling 5608 * cgroup_lock_live_group(). The latter makes the csets ignored by 5609 * the migration path. 5610 */ 5611 cgrp->self.flags &= ~CSS_ONLINE; 5612 5613 spin_lock_irq(&css_set_lock); 5614 list_for_each_entry(link, &cgrp->cset_links, cset_link) 5615 link->cset->dead = true; 5616 spin_unlock_irq(&css_set_lock); 5617 5618 /* initiate massacre of all css's */ 5619 for_each_css(css, ssid, cgrp) 5620 kill_css(css); 5621 5622 /* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */ 5623 css_clear_dir(&cgrp->self); 5624 kernfs_remove(cgrp->kn); 5625 5626 if (parent && cgroup_is_threaded(cgrp)) 5627 parent->nr_threaded_children--; 5628 5629 spin_lock_irq(&css_set_lock); 5630 for (tcgrp = cgroup_parent(cgrp); tcgrp; tcgrp = cgroup_parent(tcgrp)) { 5631 tcgrp->nr_descendants--; 5632 tcgrp->nr_dying_descendants++; 5633 /* 5634 * If the dying cgroup is frozen, decrease frozen descendants 5635 * counters of ancestor cgroups. 5636 */ 5637 if (test_bit(CGRP_FROZEN, &cgrp->flags)) 5638 tcgrp->freezer.nr_frozen_descendants--; 5639 } 5640 spin_unlock_irq(&css_set_lock); 5641 5642 cgroup1_check_for_release(parent); 5643 5644 cgroup_bpf_offline(cgrp); 5645 5646 /* put the base reference */ 5647 percpu_ref_kill(&cgrp->self.refcnt); 5648 5649 return 0; 5650 }; 5651 5652 int cgroup_rmdir(struct kernfs_node *kn) 5653 { 5654 struct cgroup *cgrp; 5655 int ret = 0; 5656 5657 cgrp = cgroup_kn_lock_live(kn, false); 5658 if (!cgrp) 5659 return 0; 5660 5661 ret = cgroup_destroy_locked(cgrp); 5662 if (!ret) 5663 TRACE_CGROUP_PATH(rmdir, cgrp); 5664 5665 cgroup_kn_unlock(kn); 5666 return ret; 5667 } 5668 5669 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = { 5670 .show_options = cgroup_show_options, 5671 .mkdir = cgroup_mkdir, 5672 .rmdir = cgroup_rmdir, 5673 .show_path = cgroup_show_path, 5674 }; 5675 5676 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early) 5677 { 5678 struct cgroup_subsys_state *css; 5679 5680 pr_debug("Initializing cgroup subsys %s\n", ss->name); 5681 5682 mutex_lock(&cgroup_mutex); 5683 5684 idr_init(&ss->css_idr); 5685 INIT_LIST_HEAD(&ss->cfts); 5686 5687 /* Create the root cgroup state for this subsystem */ 5688 ss->root = &cgrp_dfl_root; 5689 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss)); 5690 /* We don't handle early failures gracefully */ 5691 BUG_ON(IS_ERR(css)); 5692 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp); 5693 5694 /* 5695 * Root csses are never destroyed and we can't initialize 5696 * percpu_ref during early init. Disable refcnting. 5697 */ 5698 css->flags |= CSS_NO_REF; 5699 5700 if (early) { 5701 /* allocation can't be done safely during early init */ 5702 css->id = 1; 5703 } else { 5704 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL); 5705 BUG_ON(css->id < 0); 5706 } 5707 5708 /* Update the init_css_set to contain a subsys 5709 * pointer to this state - since the subsystem is 5710 * newly registered, all tasks and hence the 5711 * init_css_set is in the subsystem's root cgroup. */ 5712 init_css_set.subsys[ss->id] = css; 5713 5714 have_fork_callback |= (bool)ss->fork << ss->id; 5715 have_exit_callback |= (bool)ss->exit << ss->id; 5716 have_release_callback |= (bool)ss->release << ss->id; 5717 have_canfork_callback |= (bool)ss->can_fork << ss->id; 5718 5719 /* At system boot, before all subsystems have been 5720 * registered, no tasks have been forked, so we don't 5721 * need to invoke fork callbacks here. */ 5722 BUG_ON(!list_empty(&init_task.tasks)); 5723 5724 BUG_ON(online_css(css)); 5725 5726 mutex_unlock(&cgroup_mutex); 5727 } 5728 5729 /** 5730 * cgroup_init_early - cgroup initialization at system boot 5731 * 5732 * Initialize cgroups at system boot, and initialize any 5733 * subsystems that request early init. 5734 */ 5735 int __init cgroup_init_early(void) 5736 { 5737 static struct cgroup_fs_context __initdata ctx; 5738 struct cgroup_subsys *ss; 5739 int i; 5740 5741 ctx.root = &cgrp_dfl_root; 5742 init_cgroup_root(&ctx); 5743 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF; 5744 5745 RCU_INIT_POINTER(init_task.cgroups, &init_css_set); 5746 5747 for_each_subsys(ss, i) { 5748 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id, 5749 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n", 5750 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free, 5751 ss->id, ss->name); 5752 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN, 5753 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]); 5754 5755 ss->id = i; 5756 ss->name = cgroup_subsys_name[i]; 5757 if (!ss->legacy_name) 5758 ss->legacy_name = cgroup_subsys_name[i]; 5759 5760 if (ss->early_init) 5761 cgroup_init_subsys(ss, true); 5762 } 5763 return 0; 5764 } 5765 5766 /** 5767 * cgroup_init - cgroup initialization 5768 * 5769 * Register cgroup filesystem and /proc file, and initialize 5770 * any subsystems that didn't request early init. 5771 */ 5772 int __init cgroup_init(void) 5773 { 5774 struct cgroup_subsys *ss; 5775 int ssid; 5776 5777 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16); 5778 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files)); 5779 BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files)); 5780 5781 cgroup_rstat_boot(); 5782 5783 /* 5784 * The latency of the synchronize_rcu() is too high for cgroups, 5785 * avoid it at the cost of forcing all readers into the slow path. 5786 */ 5787 rcu_sync_enter_start(&cgroup_threadgroup_rwsem.rss); 5788 5789 get_user_ns(init_cgroup_ns.user_ns); 5790 5791 mutex_lock(&cgroup_mutex); 5792 5793 /* 5794 * Add init_css_set to the hash table so that dfl_root can link to 5795 * it during init. 5796 */ 5797 hash_add(css_set_table, &init_css_set.hlist, 5798 css_set_hash(init_css_set.subsys)); 5799 5800 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0)); 5801 5802 mutex_unlock(&cgroup_mutex); 5803 5804 for_each_subsys(ss, ssid) { 5805 if (ss->early_init) { 5806 struct cgroup_subsys_state *css = 5807 init_css_set.subsys[ss->id]; 5808 5809 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, 5810 GFP_KERNEL); 5811 BUG_ON(css->id < 0); 5812 } else { 5813 cgroup_init_subsys(ss, false); 5814 } 5815 5816 list_add_tail(&init_css_set.e_cset_node[ssid], 5817 &cgrp_dfl_root.cgrp.e_csets[ssid]); 5818 5819 /* 5820 * Setting dfl_root subsys_mask needs to consider the 5821 * disabled flag and cftype registration needs kmalloc, 5822 * both of which aren't available during early_init. 5823 */ 5824 if (!cgroup_ssid_enabled(ssid)) 5825 continue; 5826 5827 if (cgroup1_ssid_disabled(ssid)) 5828 printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n", 5829 ss->name); 5830 5831 cgrp_dfl_root.subsys_mask |= 1 << ss->id; 5832 5833 /* implicit controllers must be threaded too */ 5834 WARN_ON(ss->implicit_on_dfl && !ss->threaded); 5835 5836 if (ss->implicit_on_dfl) 5837 cgrp_dfl_implicit_ss_mask |= 1 << ss->id; 5838 else if (!ss->dfl_cftypes) 5839 cgrp_dfl_inhibit_ss_mask |= 1 << ss->id; 5840 5841 if (ss->threaded) 5842 cgrp_dfl_threaded_ss_mask |= 1 << ss->id; 5843 5844 if (ss->dfl_cftypes == ss->legacy_cftypes) { 5845 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes)); 5846 } else { 5847 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes)); 5848 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes)); 5849 } 5850 5851 if (ss->bind) 5852 ss->bind(init_css_set.subsys[ssid]); 5853 5854 mutex_lock(&cgroup_mutex); 5855 css_populate_dir(init_css_set.subsys[ssid]); 5856 mutex_unlock(&cgroup_mutex); 5857 } 5858 5859 /* init_css_set.subsys[] has been updated, re-hash */ 5860 hash_del(&init_css_set.hlist); 5861 hash_add(css_set_table, &init_css_set.hlist, 5862 css_set_hash(init_css_set.subsys)); 5863 5864 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup")); 5865 WARN_ON(register_filesystem(&cgroup_fs_type)); 5866 WARN_ON(register_filesystem(&cgroup2_fs_type)); 5867 WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show)); 5868 #ifdef CONFIG_CPUSETS 5869 WARN_ON(register_filesystem(&cpuset_fs_type)); 5870 #endif 5871 5872 return 0; 5873 } 5874 5875 static int __init cgroup_wq_init(void) 5876 { 5877 /* 5878 * There isn't much point in executing destruction path in 5879 * parallel. Good chunk is serialized with cgroup_mutex anyway. 5880 * Use 1 for @max_active. 5881 * 5882 * We would prefer to do this in cgroup_init() above, but that 5883 * is called before init_workqueues(): so leave this until after. 5884 */ 5885 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1); 5886 BUG_ON(!cgroup_destroy_wq); 5887 return 0; 5888 } 5889 core_initcall(cgroup_wq_init); 5890 5891 void cgroup_path_from_kernfs_id(u64 id, char *buf, size_t buflen) 5892 { 5893 struct kernfs_node *kn; 5894 5895 kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id); 5896 if (!kn) 5897 return; 5898 kernfs_path(kn, buf, buflen); 5899 kernfs_put(kn); 5900 } 5901 5902 /* 5903 * cgroup_get_from_id : get the cgroup associated with cgroup id 5904 * @id: cgroup id 5905 * On success return the cgrp, on failure return NULL 5906 */ 5907 struct cgroup *cgroup_get_from_id(u64 id) 5908 { 5909 struct kernfs_node *kn; 5910 struct cgroup *cgrp = NULL; 5911 5912 mutex_lock(&cgroup_mutex); 5913 kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id); 5914 if (!kn) 5915 goto out_unlock; 5916 5917 cgrp = kn->priv; 5918 if (cgroup_is_dead(cgrp) || !cgroup_tryget(cgrp)) 5919 cgrp = NULL; 5920 kernfs_put(kn); 5921 out_unlock: 5922 mutex_unlock(&cgroup_mutex); 5923 return cgrp; 5924 } 5925 EXPORT_SYMBOL_GPL(cgroup_get_from_id); 5926 5927 /* 5928 * proc_cgroup_show() 5929 * - Print task's cgroup paths into seq_file, one line for each hierarchy 5930 * - Used for /proc/<pid>/cgroup. 5931 */ 5932 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns, 5933 struct pid *pid, struct task_struct *tsk) 5934 { 5935 char *buf; 5936 int retval; 5937 struct cgroup_root *root; 5938 5939 retval = -ENOMEM; 5940 buf = kmalloc(PATH_MAX, GFP_KERNEL); 5941 if (!buf) 5942 goto out; 5943 5944 mutex_lock(&cgroup_mutex); 5945 spin_lock_irq(&css_set_lock); 5946 5947 for_each_root(root) { 5948 struct cgroup_subsys *ss; 5949 struct cgroup *cgrp; 5950 int ssid, count = 0; 5951 5952 if (root == &cgrp_dfl_root && !cgrp_dfl_visible) 5953 continue; 5954 5955 seq_printf(m, "%d:", root->hierarchy_id); 5956 if (root != &cgrp_dfl_root) 5957 for_each_subsys(ss, ssid) 5958 if (root->subsys_mask & (1 << ssid)) 5959 seq_printf(m, "%s%s", count++ ? "," : "", 5960 ss->legacy_name); 5961 if (strlen(root->name)) 5962 seq_printf(m, "%sname=%s", count ? "," : "", 5963 root->name); 5964 seq_putc(m, ':'); 5965 5966 cgrp = task_cgroup_from_root(tsk, root); 5967 5968 /* 5969 * On traditional hierarchies, all zombie tasks show up as 5970 * belonging to the root cgroup. On the default hierarchy, 5971 * while a zombie doesn't show up in "cgroup.procs" and 5972 * thus can't be migrated, its /proc/PID/cgroup keeps 5973 * reporting the cgroup it belonged to before exiting. If 5974 * the cgroup is removed before the zombie is reaped, 5975 * " (deleted)" is appended to the cgroup path. 5976 */ 5977 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) { 5978 retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX, 5979 current->nsproxy->cgroup_ns); 5980 if (retval >= PATH_MAX) 5981 retval = -ENAMETOOLONG; 5982 if (retval < 0) 5983 goto out_unlock; 5984 5985 seq_puts(m, buf); 5986 } else { 5987 seq_puts(m, "/"); 5988 } 5989 5990 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp)) 5991 seq_puts(m, " (deleted)\n"); 5992 else 5993 seq_putc(m, '\n'); 5994 } 5995 5996 retval = 0; 5997 out_unlock: 5998 spin_unlock_irq(&css_set_lock); 5999 mutex_unlock(&cgroup_mutex); 6000 kfree(buf); 6001 out: 6002 return retval; 6003 } 6004 6005 /** 6006 * cgroup_fork - initialize cgroup related fields during copy_process() 6007 * @child: pointer to task_struct of forking parent process. 6008 * 6009 * A task is associated with the init_css_set until cgroup_post_fork() 6010 * attaches it to the target css_set. 6011 */ 6012 void cgroup_fork(struct task_struct *child) 6013 { 6014 RCU_INIT_POINTER(child->cgroups, &init_css_set); 6015 INIT_LIST_HEAD(&child->cg_list); 6016 } 6017 6018 static struct cgroup *cgroup_get_from_file(struct file *f) 6019 { 6020 struct cgroup_subsys_state *css; 6021 struct cgroup *cgrp; 6022 6023 css = css_tryget_online_from_dir(f->f_path.dentry, NULL); 6024 if (IS_ERR(css)) 6025 return ERR_CAST(css); 6026 6027 cgrp = css->cgroup; 6028 if (!cgroup_on_dfl(cgrp)) { 6029 cgroup_put(cgrp); 6030 return ERR_PTR(-EBADF); 6031 } 6032 6033 return cgrp; 6034 } 6035 6036 /** 6037 * cgroup_css_set_fork - find or create a css_set for a child process 6038 * @kargs: the arguments passed to create the child process 6039 * 6040 * This functions finds or creates a new css_set which the child 6041 * process will be attached to in cgroup_post_fork(). By default, 6042 * the child process will be given the same css_set as its parent. 6043 * 6044 * If CLONE_INTO_CGROUP is specified this function will try to find an 6045 * existing css_set which includes the requested cgroup and if not create 6046 * a new css_set that the child will be attached to later. If this function 6047 * succeeds it will hold cgroup_threadgroup_rwsem on return. If 6048 * CLONE_INTO_CGROUP is requested this function will grab cgroup mutex 6049 * before grabbing cgroup_threadgroup_rwsem and will hold a reference 6050 * to the target cgroup. 6051 */ 6052 static int cgroup_css_set_fork(struct kernel_clone_args *kargs) 6053 __acquires(&cgroup_mutex) __acquires(&cgroup_threadgroup_rwsem) 6054 { 6055 int ret; 6056 struct cgroup *dst_cgrp = NULL; 6057 struct css_set *cset; 6058 struct super_block *sb; 6059 struct file *f; 6060 6061 if (kargs->flags & CLONE_INTO_CGROUP) 6062 mutex_lock(&cgroup_mutex); 6063 6064 cgroup_threadgroup_change_begin(current); 6065 6066 spin_lock_irq(&css_set_lock); 6067 cset = task_css_set(current); 6068 get_css_set(cset); 6069 spin_unlock_irq(&css_set_lock); 6070 6071 if (!(kargs->flags & CLONE_INTO_CGROUP)) { 6072 kargs->cset = cset; 6073 return 0; 6074 } 6075 6076 f = fget_raw(kargs->cgroup); 6077 if (!f) { 6078 ret = -EBADF; 6079 goto err; 6080 } 6081 sb = f->f_path.dentry->d_sb; 6082 6083 dst_cgrp = cgroup_get_from_file(f); 6084 if (IS_ERR(dst_cgrp)) { 6085 ret = PTR_ERR(dst_cgrp); 6086 dst_cgrp = NULL; 6087 goto err; 6088 } 6089 6090 if (cgroup_is_dead(dst_cgrp)) { 6091 ret = -ENODEV; 6092 goto err; 6093 } 6094 6095 /* 6096 * Verify that we the target cgroup is writable for us. This is 6097 * usually done by the vfs layer but since we're not going through 6098 * the vfs layer here we need to do it "manually". 6099 */ 6100 ret = cgroup_may_write(dst_cgrp, sb); 6101 if (ret) 6102 goto err; 6103 6104 ret = cgroup_attach_permissions(cset->dfl_cgrp, dst_cgrp, sb, 6105 !(kargs->flags & CLONE_THREAD)); 6106 if (ret) 6107 goto err; 6108 6109 kargs->cset = find_css_set(cset, dst_cgrp); 6110 if (!kargs->cset) { 6111 ret = -ENOMEM; 6112 goto err; 6113 } 6114 6115 put_css_set(cset); 6116 fput(f); 6117 kargs->cgrp = dst_cgrp; 6118 return ret; 6119 6120 err: 6121 cgroup_threadgroup_change_end(current); 6122 mutex_unlock(&cgroup_mutex); 6123 if (f) 6124 fput(f); 6125 if (dst_cgrp) 6126 cgroup_put(dst_cgrp); 6127 put_css_set(cset); 6128 if (kargs->cset) 6129 put_css_set(kargs->cset); 6130 return ret; 6131 } 6132 6133 /** 6134 * cgroup_css_set_put_fork - drop references we took during fork 6135 * @kargs: the arguments passed to create the child process 6136 * 6137 * Drop references to the prepared css_set and target cgroup if 6138 * CLONE_INTO_CGROUP was requested. 6139 */ 6140 static void cgroup_css_set_put_fork(struct kernel_clone_args *kargs) 6141 __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex) 6142 { 6143 cgroup_threadgroup_change_end(current); 6144 6145 if (kargs->flags & CLONE_INTO_CGROUP) { 6146 struct cgroup *cgrp = kargs->cgrp; 6147 struct css_set *cset = kargs->cset; 6148 6149 mutex_unlock(&cgroup_mutex); 6150 6151 if (cset) { 6152 put_css_set(cset); 6153 kargs->cset = NULL; 6154 } 6155 6156 if (cgrp) { 6157 cgroup_put(cgrp); 6158 kargs->cgrp = NULL; 6159 } 6160 } 6161 } 6162 6163 /** 6164 * cgroup_can_fork - called on a new task before the process is exposed 6165 * @child: the child process 6166 * 6167 * This prepares a new css_set for the child process which the child will 6168 * be attached to in cgroup_post_fork(). 6169 * This calls the subsystem can_fork() callbacks. If the cgroup_can_fork() 6170 * callback returns an error, the fork aborts with that error code. This 6171 * allows for a cgroup subsystem to conditionally allow or deny new forks. 6172 */ 6173 int cgroup_can_fork(struct task_struct *child, struct kernel_clone_args *kargs) 6174 { 6175 struct cgroup_subsys *ss; 6176 int i, j, ret; 6177 6178 ret = cgroup_css_set_fork(kargs); 6179 if (ret) 6180 return ret; 6181 6182 do_each_subsys_mask(ss, i, have_canfork_callback) { 6183 ret = ss->can_fork(child, kargs->cset); 6184 if (ret) 6185 goto out_revert; 6186 } while_each_subsys_mask(); 6187 6188 return 0; 6189 6190 out_revert: 6191 for_each_subsys(ss, j) { 6192 if (j >= i) 6193 break; 6194 if (ss->cancel_fork) 6195 ss->cancel_fork(child, kargs->cset); 6196 } 6197 6198 cgroup_css_set_put_fork(kargs); 6199 6200 return ret; 6201 } 6202 6203 /** 6204 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork() 6205 * @child: the child process 6206 * @kargs: the arguments passed to create the child process 6207 * 6208 * This calls the cancel_fork() callbacks if a fork failed *after* 6209 * cgroup_can_fork() succeeded and cleans up references we took to 6210 * prepare a new css_set for the child process in cgroup_can_fork(). 6211 */ 6212 void cgroup_cancel_fork(struct task_struct *child, 6213 struct kernel_clone_args *kargs) 6214 { 6215 struct cgroup_subsys *ss; 6216 int i; 6217 6218 for_each_subsys(ss, i) 6219 if (ss->cancel_fork) 6220 ss->cancel_fork(child, kargs->cset); 6221 6222 cgroup_css_set_put_fork(kargs); 6223 } 6224 6225 /** 6226 * cgroup_post_fork - finalize cgroup setup for the child process 6227 * @child: the child process 6228 * 6229 * Attach the child process to its css_set calling the subsystem fork() 6230 * callbacks. 6231 */ 6232 void cgroup_post_fork(struct task_struct *child, 6233 struct kernel_clone_args *kargs) 6234 __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex) 6235 { 6236 unsigned long cgrp_flags = 0; 6237 bool kill = false; 6238 struct cgroup_subsys *ss; 6239 struct css_set *cset; 6240 int i; 6241 6242 cset = kargs->cset; 6243 kargs->cset = NULL; 6244 6245 spin_lock_irq(&css_set_lock); 6246 6247 /* init tasks are special, only link regular threads */ 6248 if (likely(child->pid)) { 6249 if (kargs->cgrp) 6250 cgrp_flags = kargs->cgrp->flags; 6251 else 6252 cgrp_flags = cset->dfl_cgrp->flags; 6253 6254 WARN_ON_ONCE(!list_empty(&child->cg_list)); 6255 cset->nr_tasks++; 6256 css_set_move_task(child, NULL, cset, false); 6257 } else { 6258 put_css_set(cset); 6259 cset = NULL; 6260 } 6261 6262 if (!(child->flags & PF_KTHREAD)) { 6263 if (unlikely(test_bit(CGRP_FREEZE, &cgrp_flags))) { 6264 /* 6265 * If the cgroup has to be frozen, the new task has 6266 * too. Let's set the JOBCTL_TRAP_FREEZE jobctl bit to 6267 * get the task into the frozen state. 6268 */ 6269 spin_lock(&child->sighand->siglock); 6270 WARN_ON_ONCE(child->frozen); 6271 child->jobctl |= JOBCTL_TRAP_FREEZE; 6272 spin_unlock(&child->sighand->siglock); 6273 6274 /* 6275 * Calling cgroup_update_frozen() isn't required here, 6276 * because it will be called anyway a bit later from 6277 * do_freezer_trap(). So we avoid cgroup's transient 6278 * switch from the frozen state and back. 6279 */ 6280 } 6281 6282 /* 6283 * If the cgroup is to be killed notice it now and take the 6284 * child down right after we finished preparing it for 6285 * userspace. 6286 */ 6287 kill = test_bit(CGRP_KILL, &cgrp_flags); 6288 } 6289 6290 spin_unlock_irq(&css_set_lock); 6291 6292 /* 6293 * Call ss->fork(). This must happen after @child is linked on 6294 * css_set; otherwise, @child might change state between ->fork() 6295 * and addition to css_set. 6296 */ 6297 do_each_subsys_mask(ss, i, have_fork_callback) { 6298 ss->fork(child); 6299 } while_each_subsys_mask(); 6300 6301 /* Make the new cset the root_cset of the new cgroup namespace. */ 6302 if (kargs->flags & CLONE_NEWCGROUP) { 6303 struct css_set *rcset = child->nsproxy->cgroup_ns->root_cset; 6304 6305 get_css_set(cset); 6306 child->nsproxy->cgroup_ns->root_cset = cset; 6307 put_css_set(rcset); 6308 } 6309 6310 /* Cgroup has to be killed so take down child immediately. */ 6311 if (unlikely(kill)) 6312 do_send_sig_info(SIGKILL, SEND_SIG_NOINFO, child, PIDTYPE_TGID); 6313 6314 cgroup_css_set_put_fork(kargs); 6315 } 6316 6317 /** 6318 * cgroup_exit - detach cgroup from exiting task 6319 * @tsk: pointer to task_struct of exiting process 6320 * 6321 * Description: Detach cgroup from @tsk. 6322 * 6323 */ 6324 void cgroup_exit(struct task_struct *tsk) 6325 { 6326 struct cgroup_subsys *ss; 6327 struct css_set *cset; 6328 int i; 6329 6330 spin_lock_irq(&css_set_lock); 6331 6332 WARN_ON_ONCE(list_empty(&tsk->cg_list)); 6333 cset = task_css_set(tsk); 6334 css_set_move_task(tsk, cset, NULL, false); 6335 list_add_tail(&tsk->cg_list, &cset->dying_tasks); 6336 cset->nr_tasks--; 6337 6338 WARN_ON_ONCE(cgroup_task_frozen(tsk)); 6339 if (unlikely(!(tsk->flags & PF_KTHREAD) && 6340 test_bit(CGRP_FREEZE, &task_dfl_cgroup(tsk)->flags))) 6341 cgroup_update_frozen(task_dfl_cgroup(tsk)); 6342 6343 spin_unlock_irq(&css_set_lock); 6344 6345 /* see cgroup_post_fork() for details */ 6346 do_each_subsys_mask(ss, i, have_exit_callback) { 6347 ss->exit(tsk); 6348 } while_each_subsys_mask(); 6349 } 6350 6351 void cgroup_release(struct task_struct *task) 6352 { 6353 struct cgroup_subsys *ss; 6354 int ssid; 6355 6356 do_each_subsys_mask(ss, ssid, have_release_callback) { 6357 ss->release(task); 6358 } while_each_subsys_mask(); 6359 6360 spin_lock_irq(&css_set_lock); 6361 css_set_skip_task_iters(task_css_set(task), task); 6362 list_del_init(&task->cg_list); 6363 spin_unlock_irq(&css_set_lock); 6364 } 6365 6366 void cgroup_free(struct task_struct *task) 6367 { 6368 struct css_set *cset = task_css_set(task); 6369 put_css_set(cset); 6370 } 6371 6372 static int __init cgroup_disable(char *str) 6373 { 6374 struct cgroup_subsys *ss; 6375 char *token; 6376 int i; 6377 6378 while ((token = strsep(&str, ",")) != NULL) { 6379 if (!*token) 6380 continue; 6381 6382 for_each_subsys(ss, i) { 6383 if (strcmp(token, ss->name) && 6384 strcmp(token, ss->legacy_name)) 6385 continue; 6386 6387 static_branch_disable(cgroup_subsys_enabled_key[i]); 6388 pr_info("Disabling %s control group subsystem\n", 6389 ss->name); 6390 } 6391 6392 for (i = 0; i < OPT_FEATURE_COUNT; i++) { 6393 if (strcmp(token, cgroup_opt_feature_names[i])) 6394 continue; 6395 cgroup_feature_disable_mask |= 1 << i; 6396 pr_info("Disabling %s control group feature\n", 6397 cgroup_opt_feature_names[i]); 6398 break; 6399 } 6400 } 6401 return 1; 6402 } 6403 __setup("cgroup_disable=", cgroup_disable); 6404 6405 void __init __weak enable_debug_cgroup(void) { } 6406 6407 static int __init enable_cgroup_debug(char *str) 6408 { 6409 cgroup_debug = true; 6410 enable_debug_cgroup(); 6411 return 1; 6412 } 6413 __setup("cgroup_debug", enable_cgroup_debug); 6414 6415 /** 6416 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry 6417 * @dentry: directory dentry of interest 6418 * @ss: subsystem of interest 6419 * 6420 * If @dentry is a directory for a cgroup which has @ss enabled on it, try 6421 * to get the corresponding css and return it. If such css doesn't exist 6422 * or can't be pinned, an ERR_PTR value is returned. 6423 */ 6424 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry, 6425 struct cgroup_subsys *ss) 6426 { 6427 struct kernfs_node *kn = kernfs_node_from_dentry(dentry); 6428 struct file_system_type *s_type = dentry->d_sb->s_type; 6429 struct cgroup_subsys_state *css = NULL; 6430 struct cgroup *cgrp; 6431 6432 /* is @dentry a cgroup dir? */ 6433 if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) || 6434 !kn || kernfs_type(kn) != KERNFS_DIR) 6435 return ERR_PTR(-EBADF); 6436 6437 rcu_read_lock(); 6438 6439 /* 6440 * This path doesn't originate from kernfs and @kn could already 6441 * have been or be removed at any point. @kn->priv is RCU 6442 * protected for this access. See css_release_work_fn() for details. 6443 */ 6444 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); 6445 if (cgrp) 6446 css = cgroup_css(cgrp, ss); 6447 6448 if (!css || !css_tryget_online(css)) 6449 css = ERR_PTR(-ENOENT); 6450 6451 rcu_read_unlock(); 6452 return css; 6453 } 6454 6455 /** 6456 * css_from_id - lookup css by id 6457 * @id: the cgroup id 6458 * @ss: cgroup subsys to be looked into 6459 * 6460 * Returns the css if there's valid one with @id, otherwise returns NULL. 6461 * Should be called under rcu_read_lock(). 6462 */ 6463 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss) 6464 { 6465 WARN_ON_ONCE(!rcu_read_lock_held()); 6466 return idr_find(&ss->css_idr, id); 6467 } 6468 6469 /** 6470 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path 6471 * @path: path on the default hierarchy 6472 * 6473 * Find the cgroup at @path on the default hierarchy, increment its 6474 * reference count and return it. Returns pointer to the found cgroup on 6475 * success, ERR_PTR(-ENOENT) if @path doesn't exist and ERR_PTR(-ENOTDIR) 6476 * if @path points to a non-directory. 6477 */ 6478 struct cgroup *cgroup_get_from_path(const char *path) 6479 { 6480 struct kernfs_node *kn; 6481 struct cgroup *cgrp; 6482 6483 mutex_lock(&cgroup_mutex); 6484 6485 kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path); 6486 if (kn) { 6487 if (kernfs_type(kn) == KERNFS_DIR) { 6488 cgrp = kn->priv; 6489 cgroup_get_live(cgrp); 6490 } else { 6491 cgrp = ERR_PTR(-ENOTDIR); 6492 } 6493 kernfs_put(kn); 6494 } else { 6495 cgrp = ERR_PTR(-ENOENT); 6496 } 6497 6498 mutex_unlock(&cgroup_mutex); 6499 return cgrp; 6500 } 6501 EXPORT_SYMBOL_GPL(cgroup_get_from_path); 6502 6503 /** 6504 * cgroup_get_from_fd - get a cgroup pointer from a fd 6505 * @fd: fd obtained by open(cgroup2_dir) 6506 * 6507 * Find the cgroup from a fd which should be obtained 6508 * by opening a cgroup directory. Returns a pointer to the 6509 * cgroup on success. ERR_PTR is returned if the cgroup 6510 * cannot be found. 6511 */ 6512 struct cgroup *cgroup_get_from_fd(int fd) 6513 { 6514 struct cgroup *cgrp; 6515 struct file *f; 6516 6517 f = fget_raw(fd); 6518 if (!f) 6519 return ERR_PTR(-EBADF); 6520 6521 cgrp = cgroup_get_from_file(f); 6522 fput(f); 6523 return cgrp; 6524 } 6525 EXPORT_SYMBOL_GPL(cgroup_get_from_fd); 6526 6527 static u64 power_of_ten(int power) 6528 { 6529 u64 v = 1; 6530 while (power--) 6531 v *= 10; 6532 return v; 6533 } 6534 6535 /** 6536 * cgroup_parse_float - parse a floating number 6537 * @input: input string 6538 * @dec_shift: number of decimal digits to shift 6539 * @v: output 6540 * 6541 * Parse a decimal floating point number in @input and store the result in 6542 * @v with decimal point right shifted @dec_shift times. For example, if 6543 * @input is "12.3456" and @dec_shift is 3, *@v will be set to 12345. 6544 * Returns 0 on success, -errno otherwise. 6545 * 6546 * There's nothing cgroup specific about this function except that it's 6547 * currently the only user. 6548 */ 6549 int cgroup_parse_float(const char *input, unsigned dec_shift, s64 *v) 6550 { 6551 s64 whole, frac = 0; 6552 int fstart = 0, fend = 0, flen; 6553 6554 if (!sscanf(input, "%lld.%n%lld%n", &whole, &fstart, &frac, &fend)) 6555 return -EINVAL; 6556 if (frac < 0) 6557 return -EINVAL; 6558 6559 flen = fend > fstart ? fend - fstart : 0; 6560 if (flen < dec_shift) 6561 frac *= power_of_ten(dec_shift - flen); 6562 else 6563 frac = DIV_ROUND_CLOSEST_ULL(frac, power_of_ten(flen - dec_shift)); 6564 6565 *v = whole * power_of_ten(dec_shift) + frac; 6566 return 0; 6567 } 6568 6569 /* 6570 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data 6571 * definition in cgroup-defs.h. 6572 */ 6573 #ifdef CONFIG_SOCK_CGROUP_DATA 6574 6575 #if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID) 6576 6577 DEFINE_SPINLOCK(cgroup_sk_update_lock); 6578 static bool cgroup_sk_alloc_disabled __read_mostly; 6579 6580 void cgroup_sk_alloc_disable(void) 6581 { 6582 if (cgroup_sk_alloc_disabled) 6583 return; 6584 pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n"); 6585 cgroup_sk_alloc_disabled = true; 6586 } 6587 6588 #else 6589 6590 #define cgroup_sk_alloc_disabled false 6591 6592 #endif 6593 6594 void cgroup_sk_alloc(struct sock_cgroup_data *skcd) 6595 { 6596 if (cgroup_sk_alloc_disabled) { 6597 skcd->no_refcnt = 1; 6598 return; 6599 } 6600 6601 /* Don't associate the sock with unrelated interrupted task's cgroup. */ 6602 if (in_interrupt()) 6603 return; 6604 6605 rcu_read_lock(); 6606 6607 while (true) { 6608 struct css_set *cset; 6609 6610 cset = task_css_set(current); 6611 if (likely(cgroup_tryget(cset->dfl_cgrp))) { 6612 skcd->val = (unsigned long)cset->dfl_cgrp; 6613 cgroup_bpf_get(cset->dfl_cgrp); 6614 break; 6615 } 6616 cpu_relax(); 6617 } 6618 6619 rcu_read_unlock(); 6620 } 6621 6622 void cgroup_sk_clone(struct sock_cgroup_data *skcd) 6623 { 6624 if (skcd->val) { 6625 if (skcd->no_refcnt) 6626 return; 6627 /* 6628 * We might be cloning a socket which is left in an empty 6629 * cgroup and the cgroup might have already been rmdir'd. 6630 * Don't use cgroup_get_live(). 6631 */ 6632 cgroup_get(sock_cgroup_ptr(skcd)); 6633 cgroup_bpf_get(sock_cgroup_ptr(skcd)); 6634 } 6635 } 6636 6637 void cgroup_sk_free(struct sock_cgroup_data *skcd) 6638 { 6639 struct cgroup *cgrp = sock_cgroup_ptr(skcd); 6640 6641 if (skcd->no_refcnt) 6642 return; 6643 cgroup_bpf_put(cgrp); 6644 cgroup_put(cgrp); 6645 } 6646 6647 #endif /* CONFIG_SOCK_CGROUP_DATA */ 6648 6649 #ifdef CONFIG_CGROUP_BPF 6650 int cgroup_bpf_attach(struct cgroup *cgrp, 6651 struct bpf_prog *prog, struct bpf_prog *replace_prog, 6652 struct bpf_cgroup_link *link, 6653 enum bpf_attach_type type, 6654 u32 flags) 6655 { 6656 int ret; 6657 6658 mutex_lock(&cgroup_mutex); 6659 ret = __cgroup_bpf_attach(cgrp, prog, replace_prog, link, type, flags); 6660 mutex_unlock(&cgroup_mutex); 6661 return ret; 6662 } 6663 6664 int cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog, 6665 enum bpf_attach_type type) 6666 { 6667 int ret; 6668 6669 mutex_lock(&cgroup_mutex); 6670 ret = __cgroup_bpf_detach(cgrp, prog, NULL, type); 6671 mutex_unlock(&cgroup_mutex); 6672 return ret; 6673 } 6674 6675 int cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr, 6676 union bpf_attr __user *uattr) 6677 { 6678 int ret; 6679 6680 mutex_lock(&cgroup_mutex); 6681 ret = __cgroup_bpf_query(cgrp, attr, uattr); 6682 mutex_unlock(&cgroup_mutex); 6683 return ret; 6684 } 6685 #endif /* CONFIG_CGROUP_BPF */ 6686 6687 #ifdef CONFIG_SYSFS 6688 static ssize_t show_delegatable_files(struct cftype *files, char *buf, 6689 ssize_t size, const char *prefix) 6690 { 6691 struct cftype *cft; 6692 ssize_t ret = 0; 6693 6694 for (cft = files; cft && cft->name[0] != '\0'; cft++) { 6695 if (!(cft->flags & CFTYPE_NS_DELEGATABLE)) 6696 continue; 6697 6698 if ((cft->flags & CFTYPE_PRESSURE) && !cgroup_psi_enabled()) 6699 continue; 6700 6701 if (prefix) 6702 ret += snprintf(buf + ret, size - ret, "%s.", prefix); 6703 6704 ret += snprintf(buf + ret, size - ret, "%s\n", cft->name); 6705 6706 if (WARN_ON(ret >= size)) 6707 break; 6708 } 6709 6710 return ret; 6711 } 6712 6713 static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr, 6714 char *buf) 6715 { 6716 struct cgroup_subsys *ss; 6717 int ssid; 6718 ssize_t ret = 0; 6719 6720 ret = show_delegatable_files(cgroup_base_files, buf, PAGE_SIZE - ret, 6721 NULL); 6722 6723 for_each_subsys(ss, ssid) 6724 ret += show_delegatable_files(ss->dfl_cftypes, buf + ret, 6725 PAGE_SIZE - ret, 6726 cgroup_subsys_name[ssid]); 6727 6728 return ret; 6729 } 6730 static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate); 6731 6732 static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr, 6733 char *buf) 6734 { 6735 return snprintf(buf, PAGE_SIZE, 6736 "nsdelegate\n" 6737 "memory_localevents\n" 6738 "memory_recursiveprot\n"); 6739 } 6740 static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features); 6741 6742 static struct attribute *cgroup_sysfs_attrs[] = { 6743 &cgroup_delegate_attr.attr, 6744 &cgroup_features_attr.attr, 6745 NULL, 6746 }; 6747 6748 static const struct attribute_group cgroup_sysfs_attr_group = { 6749 .attrs = cgroup_sysfs_attrs, 6750 .name = "cgroup", 6751 }; 6752 6753 static int __init cgroup_sysfs_init(void) 6754 { 6755 return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group); 6756 } 6757 subsys_initcall(cgroup_sysfs_init); 6758 6759 #endif /* CONFIG_SYSFS */ 6760