xref: /openbmc/linux/kernel/cgroup/cgroup.c (revision 97e6ea6d)
1 /*
2  *  Generic process-grouping system.
3  *
4  *  Based originally on the cpuset system, extracted by Paul Menage
5  *  Copyright (C) 2006 Google, Inc
6  *
7  *  Notifications support
8  *  Copyright (C) 2009 Nokia Corporation
9  *  Author: Kirill A. Shutemov
10  *
11  *  Copyright notices from the original cpuset code:
12  *  --------------------------------------------------
13  *  Copyright (C) 2003 BULL SA.
14  *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
15  *
16  *  Portions derived from Patrick Mochel's sysfs code.
17  *  sysfs is Copyright (c) 2001-3 Patrick Mochel
18  *
19  *  2003-10-10 Written by Simon Derr.
20  *  2003-10-22 Updates by Stephen Hemminger.
21  *  2004 May-July Rework by Paul Jackson.
22  *  ---------------------------------------------------
23  *
24  *  This file is subject to the terms and conditions of the GNU General Public
25  *  License.  See the file COPYING in the main directory of the Linux
26  *  distribution for more details.
27  */
28 
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 
31 #include "cgroup-internal.h"
32 
33 #include <linux/cred.h>
34 #include <linux/errno.h>
35 #include <linux/init_task.h>
36 #include <linux/kernel.h>
37 #include <linux/magic.h>
38 #include <linux/mutex.h>
39 #include <linux/mount.h>
40 #include <linux/pagemap.h>
41 #include <linux/proc_fs.h>
42 #include <linux/rcupdate.h>
43 #include <linux/sched.h>
44 #include <linux/sched/task.h>
45 #include <linux/slab.h>
46 #include <linux/spinlock.h>
47 #include <linux/percpu-rwsem.h>
48 #include <linux/string.h>
49 #include <linux/hashtable.h>
50 #include <linux/idr.h>
51 #include <linux/kthread.h>
52 #include <linux/atomic.h>
53 #include <linux/cpuset.h>
54 #include <linux/proc_ns.h>
55 #include <linux/nsproxy.h>
56 #include <linux/file.h>
57 #include <linux/fs_parser.h>
58 #include <linux/sched/cputime.h>
59 #include <linux/psi.h>
60 #include <net/sock.h>
61 
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/cgroup.h>
64 
65 #define CGROUP_FILE_NAME_MAX		(MAX_CGROUP_TYPE_NAMELEN +	\
66 					 MAX_CFTYPE_NAME + 2)
67 /* let's not notify more than 100 times per second */
68 #define CGROUP_FILE_NOTIFY_MIN_INTV	DIV_ROUND_UP(HZ, 100)
69 
70 /*
71  * To avoid confusing the compiler (and generating warnings) with code
72  * that attempts to access what would be a 0-element array (i.e. sized
73  * to a potentially empty array when CGROUP_SUBSYS_COUNT == 0), this
74  * constant expression can be added.
75  */
76 #define CGROUP_HAS_SUBSYS_CONFIG	(CGROUP_SUBSYS_COUNT > 0)
77 
78 /*
79  * cgroup_mutex is the master lock.  Any modification to cgroup or its
80  * hierarchy must be performed while holding it.
81  *
82  * css_set_lock protects task->cgroups pointer, the list of css_set
83  * objects, and the chain of tasks off each css_set.
84  *
85  * These locks are exported if CONFIG_PROVE_RCU so that accessors in
86  * cgroup.h can use them for lockdep annotations.
87  */
88 DEFINE_MUTEX(cgroup_mutex);
89 DEFINE_SPINLOCK(css_set_lock);
90 
91 #ifdef CONFIG_PROVE_RCU
92 EXPORT_SYMBOL_GPL(cgroup_mutex);
93 EXPORT_SYMBOL_GPL(css_set_lock);
94 #endif
95 
96 DEFINE_SPINLOCK(trace_cgroup_path_lock);
97 char trace_cgroup_path[TRACE_CGROUP_PATH_LEN];
98 bool cgroup_debug __read_mostly;
99 
100 /*
101  * Protects cgroup_idr and css_idr so that IDs can be released without
102  * grabbing cgroup_mutex.
103  */
104 static DEFINE_SPINLOCK(cgroup_idr_lock);
105 
106 /*
107  * Protects cgroup_file->kn for !self csses.  It synchronizes notifications
108  * against file removal/re-creation across css hiding.
109  */
110 static DEFINE_SPINLOCK(cgroup_file_kn_lock);
111 
112 DEFINE_PERCPU_RWSEM(cgroup_threadgroup_rwsem);
113 
114 #define cgroup_assert_mutex_or_rcu_locked()				\
115 	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
116 			   !lockdep_is_held(&cgroup_mutex),		\
117 			   "cgroup_mutex or RCU read lock required");
118 
119 /*
120  * cgroup destruction makes heavy use of work items and there can be a lot
121  * of concurrent destructions.  Use a separate workqueue so that cgroup
122  * destruction work items don't end up filling up max_active of system_wq
123  * which may lead to deadlock.
124  */
125 static struct workqueue_struct *cgroup_destroy_wq;
126 
127 /* generate an array of cgroup subsystem pointers */
128 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
129 struct cgroup_subsys *cgroup_subsys[] = {
130 #include <linux/cgroup_subsys.h>
131 };
132 #undef SUBSYS
133 
134 /* array of cgroup subsystem names */
135 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
136 static const char *cgroup_subsys_name[] = {
137 #include <linux/cgroup_subsys.h>
138 };
139 #undef SUBSYS
140 
141 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
142 #define SUBSYS(_x)								\
143 	DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key);			\
144 	DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key);			\
145 	EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key);			\
146 	EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
147 #include <linux/cgroup_subsys.h>
148 #undef SUBSYS
149 
150 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
151 static struct static_key_true *cgroup_subsys_enabled_key[] = {
152 #include <linux/cgroup_subsys.h>
153 };
154 #undef SUBSYS
155 
156 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
157 static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
158 #include <linux/cgroup_subsys.h>
159 };
160 #undef SUBSYS
161 
162 static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu);
163 
164 /* the default hierarchy */
165 struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu };
166 EXPORT_SYMBOL_GPL(cgrp_dfl_root);
167 
168 /*
169  * The default hierarchy always exists but is hidden until mounted for the
170  * first time.  This is for backward compatibility.
171  */
172 static bool cgrp_dfl_visible;
173 
174 /* some controllers are not supported in the default hierarchy */
175 static u16 cgrp_dfl_inhibit_ss_mask;
176 
177 /* some controllers are implicitly enabled on the default hierarchy */
178 static u16 cgrp_dfl_implicit_ss_mask;
179 
180 /* some controllers can be threaded on the default hierarchy */
181 static u16 cgrp_dfl_threaded_ss_mask;
182 
183 /* The list of hierarchy roots */
184 LIST_HEAD(cgroup_roots);
185 static int cgroup_root_count;
186 
187 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
188 static DEFINE_IDR(cgroup_hierarchy_idr);
189 
190 /*
191  * Assign a monotonically increasing serial number to csses.  It guarantees
192  * cgroups with bigger numbers are newer than those with smaller numbers.
193  * Also, as csses are always appended to the parent's ->children list, it
194  * guarantees that sibling csses are always sorted in the ascending serial
195  * number order on the list.  Protected by cgroup_mutex.
196  */
197 static u64 css_serial_nr_next = 1;
198 
199 /*
200  * These bitmasks identify subsystems with specific features to avoid
201  * having to do iterative checks repeatedly.
202  */
203 static u16 have_fork_callback __read_mostly;
204 static u16 have_exit_callback __read_mostly;
205 static u16 have_release_callback __read_mostly;
206 static u16 have_canfork_callback __read_mostly;
207 
208 /* cgroup namespace for init task */
209 struct cgroup_namespace init_cgroup_ns = {
210 	.ns.count	= REFCOUNT_INIT(2),
211 	.user_ns	= &init_user_ns,
212 	.ns.ops		= &cgroupns_operations,
213 	.ns.inum	= PROC_CGROUP_INIT_INO,
214 	.root_cset	= &init_css_set,
215 };
216 
217 static struct file_system_type cgroup2_fs_type;
218 static struct cftype cgroup_base_files[];
219 
220 /* cgroup optional features */
221 enum cgroup_opt_features {
222 #ifdef CONFIG_PSI
223 	OPT_FEATURE_PRESSURE,
224 #endif
225 	OPT_FEATURE_COUNT
226 };
227 
228 static const char *cgroup_opt_feature_names[OPT_FEATURE_COUNT] = {
229 #ifdef CONFIG_PSI
230 	"pressure",
231 #endif
232 };
233 
234 static u16 cgroup_feature_disable_mask __read_mostly;
235 
236 static int cgroup_apply_control(struct cgroup *cgrp);
237 static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
238 static void css_task_iter_skip(struct css_task_iter *it,
239 			       struct task_struct *task);
240 static int cgroup_destroy_locked(struct cgroup *cgrp);
241 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
242 					      struct cgroup_subsys *ss);
243 static void css_release(struct percpu_ref *ref);
244 static void kill_css(struct cgroup_subsys_state *css);
245 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
246 			      struct cgroup *cgrp, struct cftype cfts[],
247 			      bool is_add);
248 
249 /**
250  * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
251  * @ssid: subsys ID of interest
252  *
253  * cgroup_subsys_enabled() can only be used with literal subsys names which
254  * is fine for individual subsystems but unsuitable for cgroup core.  This
255  * is slower static_key_enabled() based test indexed by @ssid.
256  */
257 bool cgroup_ssid_enabled(int ssid)
258 {
259 	if (!CGROUP_HAS_SUBSYS_CONFIG)
260 		return false;
261 
262 	return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
263 }
264 
265 /**
266  * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
267  * @cgrp: the cgroup of interest
268  *
269  * The default hierarchy is the v2 interface of cgroup and this function
270  * can be used to test whether a cgroup is on the default hierarchy for
271  * cases where a subsystem should behave differently depending on the
272  * interface version.
273  *
274  * List of changed behaviors:
275  *
276  * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
277  *   and "name" are disallowed.
278  *
279  * - When mounting an existing superblock, mount options should match.
280  *
281  * - Remount is disallowed.
282  *
283  * - rename(2) is disallowed.
284  *
285  * - "tasks" is removed.  Everything should be at process granularity.  Use
286  *   "cgroup.procs" instead.
287  *
288  * - "cgroup.procs" is not sorted.  pids will be unique unless they got
289  *   recycled in-between reads.
290  *
291  * - "release_agent" and "notify_on_release" are removed.  Replacement
292  *   notification mechanism will be implemented.
293  *
294  * - "cgroup.clone_children" is removed.
295  *
296  * - "cgroup.subtree_populated" is available.  Its value is 0 if the cgroup
297  *   and its descendants contain no task; otherwise, 1.  The file also
298  *   generates kernfs notification which can be monitored through poll and
299  *   [di]notify when the value of the file changes.
300  *
301  * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
302  *   take masks of ancestors with non-empty cpus/mems, instead of being
303  *   moved to an ancestor.
304  *
305  * - cpuset: a task can be moved into an empty cpuset, and again it takes
306  *   masks of ancestors.
307  *
308  * - blkcg: blk-throttle becomes properly hierarchical.
309  *
310  * - debug: disallowed on the default hierarchy.
311  */
312 bool cgroup_on_dfl(const struct cgroup *cgrp)
313 {
314 	return cgrp->root == &cgrp_dfl_root;
315 }
316 
317 /* IDR wrappers which synchronize using cgroup_idr_lock */
318 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
319 			    gfp_t gfp_mask)
320 {
321 	int ret;
322 
323 	idr_preload(gfp_mask);
324 	spin_lock_bh(&cgroup_idr_lock);
325 	ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
326 	spin_unlock_bh(&cgroup_idr_lock);
327 	idr_preload_end();
328 	return ret;
329 }
330 
331 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
332 {
333 	void *ret;
334 
335 	spin_lock_bh(&cgroup_idr_lock);
336 	ret = idr_replace(idr, ptr, id);
337 	spin_unlock_bh(&cgroup_idr_lock);
338 	return ret;
339 }
340 
341 static void cgroup_idr_remove(struct idr *idr, int id)
342 {
343 	spin_lock_bh(&cgroup_idr_lock);
344 	idr_remove(idr, id);
345 	spin_unlock_bh(&cgroup_idr_lock);
346 }
347 
348 static bool cgroup_has_tasks(struct cgroup *cgrp)
349 {
350 	return cgrp->nr_populated_csets;
351 }
352 
353 bool cgroup_is_threaded(struct cgroup *cgrp)
354 {
355 	return cgrp->dom_cgrp != cgrp;
356 }
357 
358 /* can @cgrp host both domain and threaded children? */
359 static bool cgroup_is_mixable(struct cgroup *cgrp)
360 {
361 	/*
362 	 * Root isn't under domain level resource control exempting it from
363 	 * the no-internal-process constraint, so it can serve as a thread
364 	 * root and a parent of resource domains at the same time.
365 	 */
366 	return !cgroup_parent(cgrp);
367 }
368 
369 /* can @cgrp become a thread root? Should always be true for a thread root */
370 static bool cgroup_can_be_thread_root(struct cgroup *cgrp)
371 {
372 	/* mixables don't care */
373 	if (cgroup_is_mixable(cgrp))
374 		return true;
375 
376 	/* domain roots can't be nested under threaded */
377 	if (cgroup_is_threaded(cgrp))
378 		return false;
379 
380 	/* can only have either domain or threaded children */
381 	if (cgrp->nr_populated_domain_children)
382 		return false;
383 
384 	/* and no domain controllers can be enabled */
385 	if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
386 		return false;
387 
388 	return true;
389 }
390 
391 /* is @cgrp root of a threaded subtree? */
392 bool cgroup_is_thread_root(struct cgroup *cgrp)
393 {
394 	/* thread root should be a domain */
395 	if (cgroup_is_threaded(cgrp))
396 		return false;
397 
398 	/* a domain w/ threaded children is a thread root */
399 	if (cgrp->nr_threaded_children)
400 		return true;
401 
402 	/*
403 	 * A domain which has tasks and explicit threaded controllers
404 	 * enabled is a thread root.
405 	 */
406 	if (cgroup_has_tasks(cgrp) &&
407 	    (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask))
408 		return true;
409 
410 	return false;
411 }
412 
413 /* a domain which isn't connected to the root w/o brekage can't be used */
414 static bool cgroup_is_valid_domain(struct cgroup *cgrp)
415 {
416 	/* the cgroup itself can be a thread root */
417 	if (cgroup_is_threaded(cgrp))
418 		return false;
419 
420 	/* but the ancestors can't be unless mixable */
421 	while ((cgrp = cgroup_parent(cgrp))) {
422 		if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp))
423 			return false;
424 		if (cgroup_is_threaded(cgrp))
425 			return false;
426 	}
427 
428 	return true;
429 }
430 
431 /* subsystems visibly enabled on a cgroup */
432 static u16 cgroup_control(struct cgroup *cgrp)
433 {
434 	struct cgroup *parent = cgroup_parent(cgrp);
435 	u16 root_ss_mask = cgrp->root->subsys_mask;
436 
437 	if (parent) {
438 		u16 ss_mask = parent->subtree_control;
439 
440 		/* threaded cgroups can only have threaded controllers */
441 		if (cgroup_is_threaded(cgrp))
442 			ss_mask &= cgrp_dfl_threaded_ss_mask;
443 		return ss_mask;
444 	}
445 
446 	if (cgroup_on_dfl(cgrp))
447 		root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
448 				  cgrp_dfl_implicit_ss_mask);
449 	return root_ss_mask;
450 }
451 
452 /* subsystems enabled on a cgroup */
453 static u16 cgroup_ss_mask(struct cgroup *cgrp)
454 {
455 	struct cgroup *parent = cgroup_parent(cgrp);
456 
457 	if (parent) {
458 		u16 ss_mask = parent->subtree_ss_mask;
459 
460 		/* threaded cgroups can only have threaded controllers */
461 		if (cgroup_is_threaded(cgrp))
462 			ss_mask &= cgrp_dfl_threaded_ss_mask;
463 		return ss_mask;
464 	}
465 
466 	return cgrp->root->subsys_mask;
467 }
468 
469 /**
470  * cgroup_css - obtain a cgroup's css for the specified subsystem
471  * @cgrp: the cgroup of interest
472  * @ss: the subsystem of interest (%NULL returns @cgrp->self)
473  *
474  * Return @cgrp's css (cgroup_subsys_state) associated with @ss.  This
475  * function must be called either under cgroup_mutex or rcu_read_lock() and
476  * the caller is responsible for pinning the returned css if it wants to
477  * keep accessing it outside the said locks.  This function may return
478  * %NULL if @cgrp doesn't have @subsys_id enabled.
479  */
480 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
481 					      struct cgroup_subsys *ss)
482 {
483 	if (CGROUP_HAS_SUBSYS_CONFIG && ss)
484 		return rcu_dereference_check(cgrp->subsys[ss->id],
485 					lockdep_is_held(&cgroup_mutex));
486 	else
487 		return &cgrp->self;
488 }
489 
490 /**
491  * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem
492  * @cgrp: the cgroup of interest
493  * @ss: the subsystem of interest
494  *
495  * Find and get @cgrp's css associated with @ss.  If the css doesn't exist
496  * or is offline, %NULL is returned.
497  */
498 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp,
499 						     struct cgroup_subsys *ss)
500 {
501 	struct cgroup_subsys_state *css;
502 
503 	rcu_read_lock();
504 	css = cgroup_css(cgrp, ss);
505 	if (css && !css_tryget_online(css))
506 		css = NULL;
507 	rcu_read_unlock();
508 
509 	return css;
510 }
511 
512 /**
513  * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss
514  * @cgrp: the cgroup of interest
515  * @ss: the subsystem of interest (%NULL returns @cgrp->self)
516  *
517  * Similar to cgroup_css() but returns the effective css, which is defined
518  * as the matching css of the nearest ancestor including self which has @ss
519  * enabled.  If @ss is associated with the hierarchy @cgrp is on, this
520  * function is guaranteed to return non-NULL css.
521  */
522 static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp,
523 							struct cgroup_subsys *ss)
524 {
525 	lockdep_assert_held(&cgroup_mutex);
526 
527 	if (!ss)
528 		return &cgrp->self;
529 
530 	/*
531 	 * This function is used while updating css associations and thus
532 	 * can't test the csses directly.  Test ss_mask.
533 	 */
534 	while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
535 		cgrp = cgroup_parent(cgrp);
536 		if (!cgrp)
537 			return NULL;
538 	}
539 
540 	return cgroup_css(cgrp, ss);
541 }
542 
543 /**
544  * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
545  * @cgrp: the cgroup of interest
546  * @ss: the subsystem of interest
547  *
548  * Find and get the effective css of @cgrp for @ss.  The effective css is
549  * defined as the matching css of the nearest ancestor including self which
550  * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
551  * the root css is returned, so this function always returns a valid css.
552  *
553  * The returned css is not guaranteed to be online, and therefore it is the
554  * callers responsibility to try get a reference for it.
555  */
556 struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
557 					 struct cgroup_subsys *ss)
558 {
559 	struct cgroup_subsys_state *css;
560 
561 	if (!CGROUP_HAS_SUBSYS_CONFIG)
562 		return NULL;
563 
564 	do {
565 		css = cgroup_css(cgrp, ss);
566 
567 		if (css)
568 			return css;
569 		cgrp = cgroup_parent(cgrp);
570 	} while (cgrp);
571 
572 	return init_css_set.subsys[ss->id];
573 }
574 
575 /**
576  * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
577  * @cgrp: the cgroup of interest
578  * @ss: the subsystem of interest
579  *
580  * Find and get the effective css of @cgrp for @ss.  The effective css is
581  * defined as the matching css of the nearest ancestor including self which
582  * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
583  * the root css is returned, so this function always returns a valid css.
584  * The returned css must be put using css_put().
585  */
586 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
587 					     struct cgroup_subsys *ss)
588 {
589 	struct cgroup_subsys_state *css;
590 
591 	if (!CGROUP_HAS_SUBSYS_CONFIG)
592 		return NULL;
593 
594 	rcu_read_lock();
595 
596 	do {
597 		css = cgroup_css(cgrp, ss);
598 
599 		if (css && css_tryget_online(css))
600 			goto out_unlock;
601 		cgrp = cgroup_parent(cgrp);
602 	} while (cgrp);
603 
604 	css = init_css_set.subsys[ss->id];
605 	css_get(css);
606 out_unlock:
607 	rcu_read_unlock();
608 	return css;
609 }
610 EXPORT_SYMBOL_GPL(cgroup_get_e_css);
611 
612 static void cgroup_get_live(struct cgroup *cgrp)
613 {
614 	WARN_ON_ONCE(cgroup_is_dead(cgrp));
615 	css_get(&cgrp->self);
616 }
617 
618 /**
619  * __cgroup_task_count - count the number of tasks in a cgroup. The caller
620  * is responsible for taking the css_set_lock.
621  * @cgrp: the cgroup in question
622  */
623 int __cgroup_task_count(const struct cgroup *cgrp)
624 {
625 	int count = 0;
626 	struct cgrp_cset_link *link;
627 
628 	lockdep_assert_held(&css_set_lock);
629 
630 	list_for_each_entry(link, &cgrp->cset_links, cset_link)
631 		count += link->cset->nr_tasks;
632 
633 	return count;
634 }
635 
636 /**
637  * cgroup_task_count - count the number of tasks in a cgroup.
638  * @cgrp: the cgroup in question
639  */
640 int cgroup_task_count(const struct cgroup *cgrp)
641 {
642 	int count;
643 
644 	spin_lock_irq(&css_set_lock);
645 	count = __cgroup_task_count(cgrp);
646 	spin_unlock_irq(&css_set_lock);
647 
648 	return count;
649 }
650 
651 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
652 {
653 	struct cgroup *cgrp = of->kn->parent->priv;
654 	struct cftype *cft = of_cft(of);
655 
656 	/*
657 	 * This is open and unprotected implementation of cgroup_css().
658 	 * seq_css() is only called from a kernfs file operation which has
659 	 * an active reference on the file.  Because all the subsystem
660 	 * files are drained before a css is disassociated with a cgroup,
661 	 * the matching css from the cgroup's subsys table is guaranteed to
662 	 * be and stay valid until the enclosing operation is complete.
663 	 */
664 	if (CGROUP_HAS_SUBSYS_CONFIG && cft->ss)
665 		return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
666 	else
667 		return &cgrp->self;
668 }
669 EXPORT_SYMBOL_GPL(of_css);
670 
671 /**
672  * for_each_css - iterate all css's of a cgroup
673  * @css: the iteration cursor
674  * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
675  * @cgrp: the target cgroup to iterate css's of
676  *
677  * Should be called under cgroup_[tree_]mutex.
678  */
679 #define for_each_css(css, ssid, cgrp)					\
680 	for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)	\
681 		if (!((css) = rcu_dereference_check(			\
682 				(cgrp)->subsys[(ssid)],			\
683 				lockdep_is_held(&cgroup_mutex)))) { }	\
684 		else
685 
686 /**
687  * for_each_e_css - iterate all effective css's of a cgroup
688  * @css: the iteration cursor
689  * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
690  * @cgrp: the target cgroup to iterate css's of
691  *
692  * Should be called under cgroup_[tree_]mutex.
693  */
694 #define for_each_e_css(css, ssid, cgrp)					    \
695 	for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)	    \
696 		if (!((css) = cgroup_e_css_by_mask(cgrp,		    \
697 						   cgroup_subsys[(ssid)]))) \
698 			;						    \
699 		else
700 
701 /**
702  * do_each_subsys_mask - filter for_each_subsys with a bitmask
703  * @ss: the iteration cursor
704  * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
705  * @ss_mask: the bitmask
706  *
707  * The block will only run for cases where the ssid-th bit (1 << ssid) of
708  * @ss_mask is set.
709  */
710 #define do_each_subsys_mask(ss, ssid, ss_mask) do {			\
711 	unsigned long __ss_mask = (ss_mask);				\
712 	if (!CGROUP_HAS_SUBSYS_CONFIG) {				\
713 		(ssid) = 0;						\
714 		break;							\
715 	}								\
716 	for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) {	\
717 		(ss) = cgroup_subsys[ssid];				\
718 		{
719 
720 #define while_each_subsys_mask()					\
721 		}							\
722 	}								\
723 } while (false)
724 
725 /* iterate over child cgrps, lock should be held throughout iteration */
726 #define cgroup_for_each_live_child(child, cgrp)				\
727 	list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
728 		if (({ lockdep_assert_held(&cgroup_mutex);		\
729 		       cgroup_is_dead(child); }))			\
730 			;						\
731 		else
732 
733 /* walk live descendants in pre order */
734 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)		\
735 	css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL))	\
736 		if (({ lockdep_assert_held(&cgroup_mutex);		\
737 		       (dsct) = (d_css)->cgroup;			\
738 		       cgroup_is_dead(dsct); }))			\
739 			;						\
740 		else
741 
742 /* walk live descendants in postorder */
743 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp)		\
744 	css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL))	\
745 		if (({ lockdep_assert_held(&cgroup_mutex);		\
746 		       (dsct) = (d_css)->cgroup;			\
747 		       cgroup_is_dead(dsct); }))			\
748 			;						\
749 		else
750 
751 /*
752  * The default css_set - used by init and its children prior to any
753  * hierarchies being mounted. It contains a pointer to the root state
754  * for each subsystem. Also used to anchor the list of css_sets. Not
755  * reference-counted, to improve performance when child cgroups
756  * haven't been created.
757  */
758 struct css_set init_css_set = {
759 	.refcount		= REFCOUNT_INIT(1),
760 	.dom_cset		= &init_css_set,
761 	.tasks			= LIST_HEAD_INIT(init_css_set.tasks),
762 	.mg_tasks		= LIST_HEAD_INIT(init_css_set.mg_tasks),
763 	.dying_tasks		= LIST_HEAD_INIT(init_css_set.dying_tasks),
764 	.task_iters		= LIST_HEAD_INIT(init_css_set.task_iters),
765 	.threaded_csets		= LIST_HEAD_INIT(init_css_set.threaded_csets),
766 	.cgrp_links		= LIST_HEAD_INIT(init_css_set.cgrp_links),
767 	.mg_preload_node	= LIST_HEAD_INIT(init_css_set.mg_preload_node),
768 	.mg_node		= LIST_HEAD_INIT(init_css_set.mg_node),
769 
770 	/*
771 	 * The following field is re-initialized when this cset gets linked
772 	 * in cgroup_init().  However, let's initialize the field
773 	 * statically too so that the default cgroup can be accessed safely
774 	 * early during boot.
775 	 */
776 	.dfl_cgrp		= &cgrp_dfl_root.cgrp,
777 };
778 
779 static int css_set_count	= 1;	/* 1 for init_css_set */
780 
781 static bool css_set_threaded(struct css_set *cset)
782 {
783 	return cset->dom_cset != cset;
784 }
785 
786 /**
787  * css_set_populated - does a css_set contain any tasks?
788  * @cset: target css_set
789  *
790  * css_set_populated() should be the same as !!cset->nr_tasks at steady
791  * state. However, css_set_populated() can be called while a task is being
792  * added to or removed from the linked list before the nr_tasks is
793  * properly updated. Hence, we can't just look at ->nr_tasks here.
794  */
795 static bool css_set_populated(struct css_set *cset)
796 {
797 	lockdep_assert_held(&css_set_lock);
798 
799 	return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
800 }
801 
802 /**
803  * cgroup_update_populated - update the populated count of a cgroup
804  * @cgrp: the target cgroup
805  * @populated: inc or dec populated count
806  *
807  * One of the css_sets associated with @cgrp is either getting its first
808  * task or losing the last.  Update @cgrp->nr_populated_* accordingly.  The
809  * count is propagated towards root so that a given cgroup's
810  * nr_populated_children is zero iff none of its descendants contain any
811  * tasks.
812  *
813  * @cgrp's interface file "cgroup.populated" is zero if both
814  * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and
815  * 1 otherwise.  When the sum changes from or to zero, userland is notified
816  * that the content of the interface file has changed.  This can be used to
817  * detect when @cgrp and its descendants become populated or empty.
818  */
819 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
820 {
821 	struct cgroup *child = NULL;
822 	int adj = populated ? 1 : -1;
823 
824 	lockdep_assert_held(&css_set_lock);
825 
826 	do {
827 		bool was_populated = cgroup_is_populated(cgrp);
828 
829 		if (!child) {
830 			cgrp->nr_populated_csets += adj;
831 		} else {
832 			if (cgroup_is_threaded(child))
833 				cgrp->nr_populated_threaded_children += adj;
834 			else
835 				cgrp->nr_populated_domain_children += adj;
836 		}
837 
838 		if (was_populated == cgroup_is_populated(cgrp))
839 			break;
840 
841 		cgroup1_check_for_release(cgrp);
842 		TRACE_CGROUP_PATH(notify_populated, cgrp,
843 				  cgroup_is_populated(cgrp));
844 		cgroup_file_notify(&cgrp->events_file);
845 
846 		child = cgrp;
847 		cgrp = cgroup_parent(cgrp);
848 	} while (cgrp);
849 }
850 
851 /**
852  * css_set_update_populated - update populated state of a css_set
853  * @cset: target css_set
854  * @populated: whether @cset is populated or depopulated
855  *
856  * @cset is either getting the first task or losing the last.  Update the
857  * populated counters of all associated cgroups accordingly.
858  */
859 static void css_set_update_populated(struct css_set *cset, bool populated)
860 {
861 	struct cgrp_cset_link *link;
862 
863 	lockdep_assert_held(&css_set_lock);
864 
865 	list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
866 		cgroup_update_populated(link->cgrp, populated);
867 }
868 
869 /*
870  * @task is leaving, advance task iterators which are pointing to it so
871  * that they can resume at the next position.  Advancing an iterator might
872  * remove it from the list, use safe walk.  See css_task_iter_skip() for
873  * details.
874  */
875 static void css_set_skip_task_iters(struct css_set *cset,
876 				    struct task_struct *task)
877 {
878 	struct css_task_iter *it, *pos;
879 
880 	list_for_each_entry_safe(it, pos, &cset->task_iters, iters_node)
881 		css_task_iter_skip(it, task);
882 }
883 
884 /**
885  * css_set_move_task - move a task from one css_set to another
886  * @task: task being moved
887  * @from_cset: css_set @task currently belongs to (may be NULL)
888  * @to_cset: new css_set @task is being moved to (may be NULL)
889  * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
890  *
891  * Move @task from @from_cset to @to_cset.  If @task didn't belong to any
892  * css_set, @from_cset can be NULL.  If @task is being disassociated
893  * instead of moved, @to_cset can be NULL.
894  *
895  * This function automatically handles populated counter updates and
896  * css_task_iter adjustments but the caller is responsible for managing
897  * @from_cset and @to_cset's reference counts.
898  */
899 static void css_set_move_task(struct task_struct *task,
900 			      struct css_set *from_cset, struct css_set *to_cset,
901 			      bool use_mg_tasks)
902 {
903 	lockdep_assert_held(&css_set_lock);
904 
905 	if (to_cset && !css_set_populated(to_cset))
906 		css_set_update_populated(to_cset, true);
907 
908 	if (from_cset) {
909 		WARN_ON_ONCE(list_empty(&task->cg_list));
910 
911 		css_set_skip_task_iters(from_cset, task);
912 		list_del_init(&task->cg_list);
913 		if (!css_set_populated(from_cset))
914 			css_set_update_populated(from_cset, false);
915 	} else {
916 		WARN_ON_ONCE(!list_empty(&task->cg_list));
917 	}
918 
919 	if (to_cset) {
920 		/*
921 		 * We are synchronized through cgroup_threadgroup_rwsem
922 		 * against PF_EXITING setting such that we can't race
923 		 * against cgroup_exit()/cgroup_free() dropping the css_set.
924 		 */
925 		WARN_ON_ONCE(task->flags & PF_EXITING);
926 
927 		cgroup_move_task(task, to_cset);
928 		list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
929 							     &to_cset->tasks);
930 	}
931 }
932 
933 /*
934  * hash table for cgroup groups. This improves the performance to find
935  * an existing css_set. This hash doesn't (currently) take into
936  * account cgroups in empty hierarchies.
937  */
938 #define CSS_SET_HASH_BITS	7
939 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
940 
941 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
942 {
943 	unsigned long key = 0UL;
944 	struct cgroup_subsys *ss;
945 	int i;
946 
947 	for_each_subsys(ss, i)
948 		key += (unsigned long)css[i];
949 	key = (key >> 16) ^ key;
950 
951 	return key;
952 }
953 
954 void put_css_set_locked(struct css_set *cset)
955 {
956 	struct cgrp_cset_link *link, *tmp_link;
957 	struct cgroup_subsys *ss;
958 	int ssid;
959 
960 	lockdep_assert_held(&css_set_lock);
961 
962 	if (!refcount_dec_and_test(&cset->refcount))
963 		return;
964 
965 	WARN_ON_ONCE(!list_empty(&cset->threaded_csets));
966 
967 	/* This css_set is dead. Unlink it and release cgroup and css refs */
968 	for_each_subsys(ss, ssid) {
969 		list_del(&cset->e_cset_node[ssid]);
970 		css_put(cset->subsys[ssid]);
971 	}
972 	hash_del(&cset->hlist);
973 	css_set_count--;
974 
975 	list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
976 		list_del(&link->cset_link);
977 		list_del(&link->cgrp_link);
978 		if (cgroup_parent(link->cgrp))
979 			cgroup_put(link->cgrp);
980 		kfree(link);
981 	}
982 
983 	if (css_set_threaded(cset)) {
984 		list_del(&cset->threaded_csets_node);
985 		put_css_set_locked(cset->dom_cset);
986 	}
987 
988 	kfree_rcu(cset, rcu_head);
989 }
990 
991 /**
992  * compare_css_sets - helper function for find_existing_css_set().
993  * @cset: candidate css_set being tested
994  * @old_cset: existing css_set for a task
995  * @new_cgrp: cgroup that's being entered by the task
996  * @template: desired set of css pointers in css_set (pre-calculated)
997  *
998  * Returns true if "cset" matches "old_cset" except for the hierarchy
999  * which "new_cgrp" belongs to, for which it should match "new_cgrp".
1000  */
1001 static bool compare_css_sets(struct css_set *cset,
1002 			     struct css_set *old_cset,
1003 			     struct cgroup *new_cgrp,
1004 			     struct cgroup_subsys_state *template[])
1005 {
1006 	struct cgroup *new_dfl_cgrp;
1007 	struct list_head *l1, *l2;
1008 
1009 	/*
1010 	 * On the default hierarchy, there can be csets which are
1011 	 * associated with the same set of cgroups but different csses.
1012 	 * Let's first ensure that csses match.
1013 	 */
1014 	if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
1015 		return false;
1016 
1017 
1018 	/* @cset's domain should match the default cgroup's */
1019 	if (cgroup_on_dfl(new_cgrp))
1020 		new_dfl_cgrp = new_cgrp;
1021 	else
1022 		new_dfl_cgrp = old_cset->dfl_cgrp;
1023 
1024 	if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp)
1025 		return false;
1026 
1027 	/*
1028 	 * Compare cgroup pointers in order to distinguish between
1029 	 * different cgroups in hierarchies.  As different cgroups may
1030 	 * share the same effective css, this comparison is always
1031 	 * necessary.
1032 	 */
1033 	l1 = &cset->cgrp_links;
1034 	l2 = &old_cset->cgrp_links;
1035 	while (1) {
1036 		struct cgrp_cset_link *link1, *link2;
1037 		struct cgroup *cgrp1, *cgrp2;
1038 
1039 		l1 = l1->next;
1040 		l2 = l2->next;
1041 		/* See if we reached the end - both lists are equal length. */
1042 		if (l1 == &cset->cgrp_links) {
1043 			BUG_ON(l2 != &old_cset->cgrp_links);
1044 			break;
1045 		} else {
1046 			BUG_ON(l2 == &old_cset->cgrp_links);
1047 		}
1048 		/* Locate the cgroups associated with these links. */
1049 		link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
1050 		link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
1051 		cgrp1 = link1->cgrp;
1052 		cgrp2 = link2->cgrp;
1053 		/* Hierarchies should be linked in the same order. */
1054 		BUG_ON(cgrp1->root != cgrp2->root);
1055 
1056 		/*
1057 		 * If this hierarchy is the hierarchy of the cgroup
1058 		 * that's changing, then we need to check that this
1059 		 * css_set points to the new cgroup; if it's any other
1060 		 * hierarchy, then this css_set should point to the
1061 		 * same cgroup as the old css_set.
1062 		 */
1063 		if (cgrp1->root == new_cgrp->root) {
1064 			if (cgrp1 != new_cgrp)
1065 				return false;
1066 		} else {
1067 			if (cgrp1 != cgrp2)
1068 				return false;
1069 		}
1070 	}
1071 	return true;
1072 }
1073 
1074 /**
1075  * find_existing_css_set - init css array and find the matching css_set
1076  * @old_cset: the css_set that we're using before the cgroup transition
1077  * @cgrp: the cgroup that we're moving into
1078  * @template: out param for the new set of csses, should be clear on entry
1079  */
1080 static struct css_set *find_existing_css_set(struct css_set *old_cset,
1081 					struct cgroup *cgrp,
1082 					struct cgroup_subsys_state *template[])
1083 {
1084 	struct cgroup_root *root = cgrp->root;
1085 	struct cgroup_subsys *ss;
1086 	struct css_set *cset;
1087 	unsigned long key;
1088 	int i;
1089 
1090 	/*
1091 	 * Build the set of subsystem state objects that we want to see in the
1092 	 * new css_set. While subsystems can change globally, the entries here
1093 	 * won't change, so no need for locking.
1094 	 */
1095 	for_each_subsys(ss, i) {
1096 		if (root->subsys_mask & (1UL << i)) {
1097 			/*
1098 			 * @ss is in this hierarchy, so we want the
1099 			 * effective css from @cgrp.
1100 			 */
1101 			template[i] = cgroup_e_css_by_mask(cgrp, ss);
1102 		} else {
1103 			/*
1104 			 * @ss is not in this hierarchy, so we don't want
1105 			 * to change the css.
1106 			 */
1107 			template[i] = old_cset->subsys[i];
1108 		}
1109 	}
1110 
1111 	key = css_set_hash(template);
1112 	hash_for_each_possible(css_set_table, cset, hlist, key) {
1113 		if (!compare_css_sets(cset, old_cset, cgrp, template))
1114 			continue;
1115 
1116 		/* This css_set matches what we need */
1117 		return cset;
1118 	}
1119 
1120 	/* No existing cgroup group matched */
1121 	return NULL;
1122 }
1123 
1124 static void free_cgrp_cset_links(struct list_head *links_to_free)
1125 {
1126 	struct cgrp_cset_link *link, *tmp_link;
1127 
1128 	list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
1129 		list_del(&link->cset_link);
1130 		kfree(link);
1131 	}
1132 }
1133 
1134 /**
1135  * allocate_cgrp_cset_links - allocate cgrp_cset_links
1136  * @count: the number of links to allocate
1137  * @tmp_links: list_head the allocated links are put on
1138  *
1139  * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1140  * through ->cset_link.  Returns 0 on success or -errno.
1141  */
1142 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
1143 {
1144 	struct cgrp_cset_link *link;
1145 	int i;
1146 
1147 	INIT_LIST_HEAD(tmp_links);
1148 
1149 	for (i = 0; i < count; i++) {
1150 		link = kzalloc(sizeof(*link), GFP_KERNEL);
1151 		if (!link) {
1152 			free_cgrp_cset_links(tmp_links);
1153 			return -ENOMEM;
1154 		}
1155 		list_add(&link->cset_link, tmp_links);
1156 	}
1157 	return 0;
1158 }
1159 
1160 /**
1161  * link_css_set - a helper function to link a css_set to a cgroup
1162  * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
1163  * @cset: the css_set to be linked
1164  * @cgrp: the destination cgroup
1165  */
1166 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1167 			 struct cgroup *cgrp)
1168 {
1169 	struct cgrp_cset_link *link;
1170 
1171 	BUG_ON(list_empty(tmp_links));
1172 
1173 	if (cgroup_on_dfl(cgrp))
1174 		cset->dfl_cgrp = cgrp;
1175 
1176 	link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1177 	link->cset = cset;
1178 	link->cgrp = cgrp;
1179 
1180 	/*
1181 	 * Always add links to the tail of the lists so that the lists are
1182 	 * in chronological order.
1183 	 */
1184 	list_move_tail(&link->cset_link, &cgrp->cset_links);
1185 	list_add_tail(&link->cgrp_link, &cset->cgrp_links);
1186 
1187 	if (cgroup_parent(cgrp))
1188 		cgroup_get_live(cgrp);
1189 }
1190 
1191 /**
1192  * find_css_set - return a new css_set with one cgroup updated
1193  * @old_cset: the baseline css_set
1194  * @cgrp: the cgroup to be updated
1195  *
1196  * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1197  * substituted into the appropriate hierarchy.
1198  */
1199 static struct css_set *find_css_set(struct css_set *old_cset,
1200 				    struct cgroup *cgrp)
1201 {
1202 	struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
1203 	struct css_set *cset;
1204 	struct list_head tmp_links;
1205 	struct cgrp_cset_link *link;
1206 	struct cgroup_subsys *ss;
1207 	unsigned long key;
1208 	int ssid;
1209 
1210 	lockdep_assert_held(&cgroup_mutex);
1211 
1212 	/* First see if we already have a cgroup group that matches
1213 	 * the desired set */
1214 	spin_lock_irq(&css_set_lock);
1215 	cset = find_existing_css_set(old_cset, cgrp, template);
1216 	if (cset)
1217 		get_css_set(cset);
1218 	spin_unlock_irq(&css_set_lock);
1219 
1220 	if (cset)
1221 		return cset;
1222 
1223 	cset = kzalloc(sizeof(*cset), GFP_KERNEL);
1224 	if (!cset)
1225 		return NULL;
1226 
1227 	/* Allocate all the cgrp_cset_link objects that we'll need */
1228 	if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1229 		kfree(cset);
1230 		return NULL;
1231 	}
1232 
1233 	refcount_set(&cset->refcount, 1);
1234 	cset->dom_cset = cset;
1235 	INIT_LIST_HEAD(&cset->tasks);
1236 	INIT_LIST_HEAD(&cset->mg_tasks);
1237 	INIT_LIST_HEAD(&cset->dying_tasks);
1238 	INIT_LIST_HEAD(&cset->task_iters);
1239 	INIT_LIST_HEAD(&cset->threaded_csets);
1240 	INIT_HLIST_NODE(&cset->hlist);
1241 	INIT_LIST_HEAD(&cset->cgrp_links);
1242 	INIT_LIST_HEAD(&cset->mg_preload_node);
1243 	INIT_LIST_HEAD(&cset->mg_node);
1244 
1245 	/* Copy the set of subsystem state objects generated in
1246 	 * find_existing_css_set() */
1247 	memcpy(cset->subsys, template, sizeof(cset->subsys));
1248 
1249 	spin_lock_irq(&css_set_lock);
1250 	/* Add reference counts and links from the new css_set. */
1251 	list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1252 		struct cgroup *c = link->cgrp;
1253 
1254 		if (c->root == cgrp->root)
1255 			c = cgrp;
1256 		link_css_set(&tmp_links, cset, c);
1257 	}
1258 
1259 	BUG_ON(!list_empty(&tmp_links));
1260 
1261 	css_set_count++;
1262 
1263 	/* Add @cset to the hash table */
1264 	key = css_set_hash(cset->subsys);
1265 	hash_add(css_set_table, &cset->hlist, key);
1266 
1267 	for_each_subsys(ss, ssid) {
1268 		struct cgroup_subsys_state *css = cset->subsys[ssid];
1269 
1270 		list_add_tail(&cset->e_cset_node[ssid],
1271 			      &css->cgroup->e_csets[ssid]);
1272 		css_get(css);
1273 	}
1274 
1275 	spin_unlock_irq(&css_set_lock);
1276 
1277 	/*
1278 	 * If @cset should be threaded, look up the matching dom_cset and
1279 	 * link them up.  We first fully initialize @cset then look for the
1280 	 * dom_cset.  It's simpler this way and safe as @cset is guaranteed
1281 	 * to stay empty until we return.
1282 	 */
1283 	if (cgroup_is_threaded(cset->dfl_cgrp)) {
1284 		struct css_set *dcset;
1285 
1286 		dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp);
1287 		if (!dcset) {
1288 			put_css_set(cset);
1289 			return NULL;
1290 		}
1291 
1292 		spin_lock_irq(&css_set_lock);
1293 		cset->dom_cset = dcset;
1294 		list_add_tail(&cset->threaded_csets_node,
1295 			      &dcset->threaded_csets);
1296 		spin_unlock_irq(&css_set_lock);
1297 	}
1298 
1299 	return cset;
1300 }
1301 
1302 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1303 {
1304 	struct cgroup *root_cgrp = kf_root->kn->priv;
1305 
1306 	return root_cgrp->root;
1307 }
1308 
1309 static int cgroup_init_root_id(struct cgroup_root *root)
1310 {
1311 	int id;
1312 
1313 	lockdep_assert_held(&cgroup_mutex);
1314 
1315 	id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1316 	if (id < 0)
1317 		return id;
1318 
1319 	root->hierarchy_id = id;
1320 	return 0;
1321 }
1322 
1323 static void cgroup_exit_root_id(struct cgroup_root *root)
1324 {
1325 	lockdep_assert_held(&cgroup_mutex);
1326 
1327 	idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1328 }
1329 
1330 void cgroup_free_root(struct cgroup_root *root)
1331 {
1332 	kfree(root);
1333 }
1334 
1335 static void cgroup_destroy_root(struct cgroup_root *root)
1336 {
1337 	struct cgroup *cgrp = &root->cgrp;
1338 	struct cgrp_cset_link *link, *tmp_link;
1339 
1340 	trace_cgroup_destroy_root(root);
1341 
1342 	cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1343 
1344 	BUG_ON(atomic_read(&root->nr_cgrps));
1345 	BUG_ON(!list_empty(&cgrp->self.children));
1346 
1347 	/* Rebind all subsystems back to the default hierarchy */
1348 	WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
1349 
1350 	/*
1351 	 * Release all the links from cset_links to this hierarchy's
1352 	 * root cgroup
1353 	 */
1354 	spin_lock_irq(&css_set_lock);
1355 
1356 	list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1357 		list_del(&link->cset_link);
1358 		list_del(&link->cgrp_link);
1359 		kfree(link);
1360 	}
1361 
1362 	spin_unlock_irq(&css_set_lock);
1363 
1364 	if (!list_empty(&root->root_list)) {
1365 		list_del(&root->root_list);
1366 		cgroup_root_count--;
1367 	}
1368 
1369 	cgroup_exit_root_id(root);
1370 
1371 	mutex_unlock(&cgroup_mutex);
1372 
1373 	cgroup_rstat_exit(cgrp);
1374 	kernfs_destroy_root(root->kf_root);
1375 	cgroup_free_root(root);
1376 }
1377 
1378 /*
1379  * look up cgroup associated with current task's cgroup namespace on the
1380  * specified hierarchy
1381  */
1382 static struct cgroup *
1383 current_cgns_cgroup_from_root(struct cgroup_root *root)
1384 {
1385 	struct cgroup *res = NULL;
1386 	struct css_set *cset;
1387 
1388 	lockdep_assert_held(&css_set_lock);
1389 
1390 	rcu_read_lock();
1391 
1392 	cset = current->nsproxy->cgroup_ns->root_cset;
1393 	if (cset == &init_css_set) {
1394 		res = &root->cgrp;
1395 	} else if (root == &cgrp_dfl_root) {
1396 		res = cset->dfl_cgrp;
1397 	} else {
1398 		struct cgrp_cset_link *link;
1399 
1400 		list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1401 			struct cgroup *c = link->cgrp;
1402 
1403 			if (c->root == root) {
1404 				res = c;
1405 				break;
1406 			}
1407 		}
1408 	}
1409 	rcu_read_unlock();
1410 
1411 	BUG_ON(!res);
1412 	return res;
1413 }
1414 
1415 /* look up cgroup associated with given css_set on the specified hierarchy */
1416 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1417 					    struct cgroup_root *root)
1418 {
1419 	struct cgroup *res = NULL;
1420 
1421 	lockdep_assert_held(&cgroup_mutex);
1422 	lockdep_assert_held(&css_set_lock);
1423 
1424 	if (cset == &init_css_set) {
1425 		res = &root->cgrp;
1426 	} else if (root == &cgrp_dfl_root) {
1427 		res = cset->dfl_cgrp;
1428 	} else {
1429 		struct cgrp_cset_link *link;
1430 
1431 		list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1432 			struct cgroup *c = link->cgrp;
1433 
1434 			if (c->root == root) {
1435 				res = c;
1436 				break;
1437 			}
1438 		}
1439 	}
1440 
1441 	BUG_ON(!res);
1442 	return res;
1443 }
1444 
1445 /*
1446  * Return the cgroup for "task" from the given hierarchy. Must be
1447  * called with cgroup_mutex and css_set_lock held.
1448  */
1449 struct cgroup *task_cgroup_from_root(struct task_struct *task,
1450 				     struct cgroup_root *root)
1451 {
1452 	/*
1453 	 * No need to lock the task - since we hold css_set_lock the
1454 	 * task can't change groups.
1455 	 */
1456 	return cset_cgroup_from_root(task_css_set(task), root);
1457 }
1458 
1459 /*
1460  * A task must hold cgroup_mutex to modify cgroups.
1461  *
1462  * Any task can increment and decrement the count field without lock.
1463  * So in general, code holding cgroup_mutex can't rely on the count
1464  * field not changing.  However, if the count goes to zero, then only
1465  * cgroup_attach_task() can increment it again.  Because a count of zero
1466  * means that no tasks are currently attached, therefore there is no
1467  * way a task attached to that cgroup can fork (the other way to
1468  * increment the count).  So code holding cgroup_mutex can safely
1469  * assume that if the count is zero, it will stay zero. Similarly, if
1470  * a task holds cgroup_mutex on a cgroup with zero count, it
1471  * knows that the cgroup won't be removed, as cgroup_rmdir()
1472  * needs that mutex.
1473  *
1474  * A cgroup can only be deleted if both its 'count' of using tasks
1475  * is zero, and its list of 'children' cgroups is empty.  Since all
1476  * tasks in the system use _some_ cgroup, and since there is always at
1477  * least one task in the system (init, pid == 1), therefore, root cgroup
1478  * always has either children cgroups and/or using tasks.  So we don't
1479  * need a special hack to ensure that root cgroup cannot be deleted.
1480  *
1481  * P.S.  One more locking exception.  RCU is used to guard the
1482  * update of a tasks cgroup pointer by cgroup_attach_task()
1483  */
1484 
1485 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1486 
1487 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1488 			      char *buf)
1489 {
1490 	struct cgroup_subsys *ss = cft->ss;
1491 
1492 	if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1493 	    !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
1494 		const char *dbg = (cft->flags & CFTYPE_DEBUG) ? ".__DEBUG__." : "";
1495 
1496 		snprintf(buf, CGROUP_FILE_NAME_MAX, "%s%s.%s",
1497 			 dbg, cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1498 			 cft->name);
1499 	} else {
1500 		strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1501 	}
1502 	return buf;
1503 }
1504 
1505 /**
1506  * cgroup_file_mode - deduce file mode of a control file
1507  * @cft: the control file in question
1508  *
1509  * S_IRUGO for read, S_IWUSR for write.
1510  */
1511 static umode_t cgroup_file_mode(const struct cftype *cft)
1512 {
1513 	umode_t mode = 0;
1514 
1515 	if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1516 		mode |= S_IRUGO;
1517 
1518 	if (cft->write_u64 || cft->write_s64 || cft->write) {
1519 		if (cft->flags & CFTYPE_WORLD_WRITABLE)
1520 			mode |= S_IWUGO;
1521 		else
1522 			mode |= S_IWUSR;
1523 	}
1524 
1525 	return mode;
1526 }
1527 
1528 /**
1529  * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1530  * @subtree_control: the new subtree_control mask to consider
1531  * @this_ss_mask: available subsystems
1532  *
1533  * On the default hierarchy, a subsystem may request other subsystems to be
1534  * enabled together through its ->depends_on mask.  In such cases, more
1535  * subsystems than specified in "cgroup.subtree_control" may be enabled.
1536  *
1537  * This function calculates which subsystems need to be enabled if
1538  * @subtree_control is to be applied while restricted to @this_ss_mask.
1539  */
1540 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
1541 {
1542 	u16 cur_ss_mask = subtree_control;
1543 	struct cgroup_subsys *ss;
1544 	int ssid;
1545 
1546 	lockdep_assert_held(&cgroup_mutex);
1547 
1548 	cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1549 
1550 	while (true) {
1551 		u16 new_ss_mask = cur_ss_mask;
1552 
1553 		do_each_subsys_mask(ss, ssid, cur_ss_mask) {
1554 			new_ss_mask |= ss->depends_on;
1555 		} while_each_subsys_mask();
1556 
1557 		/*
1558 		 * Mask out subsystems which aren't available.  This can
1559 		 * happen only if some depended-upon subsystems were bound
1560 		 * to non-default hierarchies.
1561 		 */
1562 		new_ss_mask &= this_ss_mask;
1563 
1564 		if (new_ss_mask == cur_ss_mask)
1565 			break;
1566 		cur_ss_mask = new_ss_mask;
1567 	}
1568 
1569 	return cur_ss_mask;
1570 }
1571 
1572 /**
1573  * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1574  * @kn: the kernfs_node being serviced
1575  *
1576  * This helper undoes cgroup_kn_lock_live() and should be invoked before
1577  * the method finishes if locking succeeded.  Note that once this function
1578  * returns the cgroup returned by cgroup_kn_lock_live() may become
1579  * inaccessible any time.  If the caller intends to continue to access the
1580  * cgroup, it should pin it before invoking this function.
1581  */
1582 void cgroup_kn_unlock(struct kernfs_node *kn)
1583 {
1584 	struct cgroup *cgrp;
1585 
1586 	if (kernfs_type(kn) == KERNFS_DIR)
1587 		cgrp = kn->priv;
1588 	else
1589 		cgrp = kn->parent->priv;
1590 
1591 	mutex_unlock(&cgroup_mutex);
1592 
1593 	kernfs_unbreak_active_protection(kn);
1594 	cgroup_put(cgrp);
1595 }
1596 
1597 /**
1598  * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1599  * @kn: the kernfs_node being serviced
1600  * @drain_offline: perform offline draining on the cgroup
1601  *
1602  * This helper is to be used by a cgroup kernfs method currently servicing
1603  * @kn.  It breaks the active protection, performs cgroup locking and
1604  * verifies that the associated cgroup is alive.  Returns the cgroup if
1605  * alive; otherwise, %NULL.  A successful return should be undone by a
1606  * matching cgroup_kn_unlock() invocation.  If @drain_offline is %true, the
1607  * cgroup is drained of offlining csses before return.
1608  *
1609  * Any cgroup kernfs method implementation which requires locking the
1610  * associated cgroup should use this helper.  It avoids nesting cgroup
1611  * locking under kernfs active protection and allows all kernfs operations
1612  * including self-removal.
1613  */
1614 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline)
1615 {
1616 	struct cgroup *cgrp;
1617 
1618 	if (kernfs_type(kn) == KERNFS_DIR)
1619 		cgrp = kn->priv;
1620 	else
1621 		cgrp = kn->parent->priv;
1622 
1623 	/*
1624 	 * We're gonna grab cgroup_mutex which nests outside kernfs
1625 	 * active_ref.  cgroup liveliness check alone provides enough
1626 	 * protection against removal.  Ensure @cgrp stays accessible and
1627 	 * break the active_ref protection.
1628 	 */
1629 	if (!cgroup_tryget(cgrp))
1630 		return NULL;
1631 	kernfs_break_active_protection(kn);
1632 
1633 	if (drain_offline)
1634 		cgroup_lock_and_drain_offline(cgrp);
1635 	else
1636 		mutex_lock(&cgroup_mutex);
1637 
1638 	if (!cgroup_is_dead(cgrp))
1639 		return cgrp;
1640 
1641 	cgroup_kn_unlock(kn);
1642 	return NULL;
1643 }
1644 
1645 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1646 {
1647 	char name[CGROUP_FILE_NAME_MAX];
1648 
1649 	lockdep_assert_held(&cgroup_mutex);
1650 
1651 	if (cft->file_offset) {
1652 		struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1653 		struct cgroup_file *cfile = (void *)css + cft->file_offset;
1654 
1655 		spin_lock_irq(&cgroup_file_kn_lock);
1656 		cfile->kn = NULL;
1657 		spin_unlock_irq(&cgroup_file_kn_lock);
1658 
1659 		del_timer_sync(&cfile->notify_timer);
1660 	}
1661 
1662 	kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1663 }
1664 
1665 /**
1666  * css_clear_dir - remove subsys files in a cgroup directory
1667  * @css: target css
1668  */
1669 static void css_clear_dir(struct cgroup_subsys_state *css)
1670 {
1671 	struct cgroup *cgrp = css->cgroup;
1672 	struct cftype *cfts;
1673 
1674 	if (!(css->flags & CSS_VISIBLE))
1675 		return;
1676 
1677 	css->flags &= ~CSS_VISIBLE;
1678 
1679 	if (!css->ss) {
1680 		if (cgroup_on_dfl(cgrp))
1681 			cfts = cgroup_base_files;
1682 		else
1683 			cfts = cgroup1_base_files;
1684 
1685 		cgroup_addrm_files(css, cgrp, cfts, false);
1686 	} else {
1687 		list_for_each_entry(cfts, &css->ss->cfts, node)
1688 			cgroup_addrm_files(css, cgrp, cfts, false);
1689 	}
1690 }
1691 
1692 /**
1693  * css_populate_dir - create subsys files in a cgroup directory
1694  * @css: target css
1695  *
1696  * On failure, no file is added.
1697  */
1698 static int css_populate_dir(struct cgroup_subsys_state *css)
1699 {
1700 	struct cgroup *cgrp = css->cgroup;
1701 	struct cftype *cfts, *failed_cfts;
1702 	int ret;
1703 
1704 	if ((css->flags & CSS_VISIBLE) || !cgrp->kn)
1705 		return 0;
1706 
1707 	if (!css->ss) {
1708 		if (cgroup_on_dfl(cgrp))
1709 			cfts = cgroup_base_files;
1710 		else
1711 			cfts = cgroup1_base_files;
1712 
1713 		ret = cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1714 		if (ret < 0)
1715 			return ret;
1716 	} else {
1717 		list_for_each_entry(cfts, &css->ss->cfts, node) {
1718 			ret = cgroup_addrm_files(css, cgrp, cfts, true);
1719 			if (ret < 0) {
1720 				failed_cfts = cfts;
1721 				goto err;
1722 			}
1723 		}
1724 	}
1725 
1726 	css->flags |= CSS_VISIBLE;
1727 
1728 	return 0;
1729 err:
1730 	list_for_each_entry(cfts, &css->ss->cfts, node) {
1731 		if (cfts == failed_cfts)
1732 			break;
1733 		cgroup_addrm_files(css, cgrp, cfts, false);
1734 	}
1735 	return ret;
1736 }
1737 
1738 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
1739 {
1740 	struct cgroup *dcgrp = &dst_root->cgrp;
1741 	struct cgroup_subsys *ss;
1742 	int ssid, i, ret;
1743 
1744 	lockdep_assert_held(&cgroup_mutex);
1745 
1746 	do_each_subsys_mask(ss, ssid, ss_mask) {
1747 		/*
1748 		 * If @ss has non-root csses attached to it, can't move.
1749 		 * If @ss is an implicit controller, it is exempt from this
1750 		 * rule and can be stolen.
1751 		 */
1752 		if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1753 		    !ss->implicit_on_dfl)
1754 			return -EBUSY;
1755 
1756 		/* can't move between two non-dummy roots either */
1757 		if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1758 			return -EBUSY;
1759 	} while_each_subsys_mask();
1760 
1761 	do_each_subsys_mask(ss, ssid, ss_mask) {
1762 		struct cgroup_root *src_root = ss->root;
1763 		struct cgroup *scgrp = &src_root->cgrp;
1764 		struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1765 		struct css_set *cset;
1766 
1767 		WARN_ON(!css || cgroup_css(dcgrp, ss));
1768 
1769 		/* disable from the source */
1770 		src_root->subsys_mask &= ~(1 << ssid);
1771 		WARN_ON(cgroup_apply_control(scgrp));
1772 		cgroup_finalize_control(scgrp, 0);
1773 
1774 		/* rebind */
1775 		RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1776 		rcu_assign_pointer(dcgrp->subsys[ssid], css);
1777 		ss->root = dst_root;
1778 		css->cgroup = dcgrp;
1779 
1780 		spin_lock_irq(&css_set_lock);
1781 		hash_for_each(css_set_table, i, cset, hlist)
1782 			list_move_tail(&cset->e_cset_node[ss->id],
1783 				       &dcgrp->e_csets[ss->id]);
1784 		spin_unlock_irq(&css_set_lock);
1785 
1786 		if (ss->css_rstat_flush) {
1787 			list_del_rcu(&css->rstat_css_node);
1788 			list_add_rcu(&css->rstat_css_node,
1789 				     &dcgrp->rstat_css_list);
1790 		}
1791 
1792 		/* default hierarchy doesn't enable controllers by default */
1793 		dst_root->subsys_mask |= 1 << ssid;
1794 		if (dst_root == &cgrp_dfl_root) {
1795 			static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1796 		} else {
1797 			dcgrp->subtree_control |= 1 << ssid;
1798 			static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1799 		}
1800 
1801 		ret = cgroup_apply_control(dcgrp);
1802 		if (ret)
1803 			pr_warn("partial failure to rebind %s controller (err=%d)\n",
1804 				ss->name, ret);
1805 
1806 		if (ss->bind)
1807 			ss->bind(css);
1808 	} while_each_subsys_mask();
1809 
1810 	kernfs_activate(dcgrp->kn);
1811 	return 0;
1812 }
1813 
1814 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
1815 		     struct kernfs_root *kf_root)
1816 {
1817 	int len = 0;
1818 	char *buf = NULL;
1819 	struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
1820 	struct cgroup *ns_cgroup;
1821 
1822 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
1823 	if (!buf)
1824 		return -ENOMEM;
1825 
1826 	spin_lock_irq(&css_set_lock);
1827 	ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
1828 	len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
1829 	spin_unlock_irq(&css_set_lock);
1830 
1831 	if (len >= PATH_MAX)
1832 		len = -ERANGE;
1833 	else if (len > 0) {
1834 		seq_escape(sf, buf, " \t\n\\");
1835 		len = 0;
1836 	}
1837 	kfree(buf);
1838 	return len;
1839 }
1840 
1841 enum cgroup2_param {
1842 	Opt_nsdelegate,
1843 	Opt_memory_localevents,
1844 	Opt_memory_recursiveprot,
1845 	nr__cgroup2_params
1846 };
1847 
1848 static const struct fs_parameter_spec cgroup2_fs_parameters[] = {
1849 	fsparam_flag("nsdelegate",		Opt_nsdelegate),
1850 	fsparam_flag("memory_localevents",	Opt_memory_localevents),
1851 	fsparam_flag("memory_recursiveprot",	Opt_memory_recursiveprot),
1852 	{}
1853 };
1854 
1855 static int cgroup2_parse_param(struct fs_context *fc, struct fs_parameter *param)
1856 {
1857 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1858 	struct fs_parse_result result;
1859 	int opt;
1860 
1861 	opt = fs_parse(fc, cgroup2_fs_parameters, param, &result);
1862 	if (opt < 0)
1863 		return opt;
1864 
1865 	switch (opt) {
1866 	case Opt_nsdelegate:
1867 		ctx->flags |= CGRP_ROOT_NS_DELEGATE;
1868 		return 0;
1869 	case Opt_memory_localevents:
1870 		ctx->flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1871 		return 0;
1872 	case Opt_memory_recursiveprot:
1873 		ctx->flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1874 		return 0;
1875 	}
1876 	return -EINVAL;
1877 }
1878 
1879 static void apply_cgroup_root_flags(unsigned int root_flags)
1880 {
1881 	if (current->nsproxy->cgroup_ns == &init_cgroup_ns) {
1882 		if (root_flags & CGRP_ROOT_NS_DELEGATE)
1883 			cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE;
1884 		else
1885 			cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE;
1886 
1887 		if (root_flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1888 			cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1889 		else
1890 			cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1891 
1892 		if (root_flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
1893 			cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1894 		else
1895 			cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1896 	}
1897 }
1898 
1899 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
1900 {
1901 	if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE)
1902 		seq_puts(seq, ",nsdelegate");
1903 	if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1904 		seq_puts(seq, ",memory_localevents");
1905 	if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
1906 		seq_puts(seq, ",memory_recursiveprot");
1907 	return 0;
1908 }
1909 
1910 static int cgroup_reconfigure(struct fs_context *fc)
1911 {
1912 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1913 
1914 	apply_cgroup_root_flags(ctx->flags);
1915 	return 0;
1916 }
1917 
1918 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1919 {
1920 	struct cgroup_subsys *ss;
1921 	int ssid;
1922 
1923 	INIT_LIST_HEAD(&cgrp->self.sibling);
1924 	INIT_LIST_HEAD(&cgrp->self.children);
1925 	INIT_LIST_HEAD(&cgrp->cset_links);
1926 	INIT_LIST_HEAD(&cgrp->pidlists);
1927 	mutex_init(&cgrp->pidlist_mutex);
1928 	cgrp->self.cgroup = cgrp;
1929 	cgrp->self.flags |= CSS_ONLINE;
1930 	cgrp->dom_cgrp = cgrp;
1931 	cgrp->max_descendants = INT_MAX;
1932 	cgrp->max_depth = INT_MAX;
1933 	INIT_LIST_HEAD(&cgrp->rstat_css_list);
1934 	prev_cputime_init(&cgrp->prev_cputime);
1935 
1936 	for_each_subsys(ss, ssid)
1937 		INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
1938 
1939 	init_waitqueue_head(&cgrp->offline_waitq);
1940 	INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent);
1941 }
1942 
1943 void init_cgroup_root(struct cgroup_fs_context *ctx)
1944 {
1945 	struct cgroup_root *root = ctx->root;
1946 	struct cgroup *cgrp = &root->cgrp;
1947 
1948 	INIT_LIST_HEAD(&root->root_list);
1949 	atomic_set(&root->nr_cgrps, 1);
1950 	cgrp->root = root;
1951 	init_cgroup_housekeeping(cgrp);
1952 
1953 	root->flags = ctx->flags;
1954 	if (ctx->release_agent)
1955 		strscpy(root->release_agent_path, ctx->release_agent, PATH_MAX);
1956 	if (ctx->name)
1957 		strscpy(root->name, ctx->name, MAX_CGROUP_ROOT_NAMELEN);
1958 	if (ctx->cpuset_clone_children)
1959 		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
1960 }
1961 
1962 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask)
1963 {
1964 	LIST_HEAD(tmp_links);
1965 	struct cgroup *root_cgrp = &root->cgrp;
1966 	struct kernfs_syscall_ops *kf_sops;
1967 	struct css_set *cset;
1968 	int i, ret;
1969 
1970 	lockdep_assert_held(&cgroup_mutex);
1971 
1972 	ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release,
1973 			      0, GFP_KERNEL);
1974 	if (ret)
1975 		goto out;
1976 
1977 	/*
1978 	 * We're accessing css_set_count without locking css_set_lock here,
1979 	 * but that's OK - it can only be increased by someone holding
1980 	 * cgroup_lock, and that's us.  Later rebinding may disable
1981 	 * controllers on the default hierarchy and thus create new csets,
1982 	 * which can't be more than the existing ones.  Allocate 2x.
1983 	 */
1984 	ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
1985 	if (ret)
1986 		goto cancel_ref;
1987 
1988 	ret = cgroup_init_root_id(root);
1989 	if (ret)
1990 		goto cancel_ref;
1991 
1992 	kf_sops = root == &cgrp_dfl_root ?
1993 		&cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops;
1994 
1995 	root->kf_root = kernfs_create_root(kf_sops,
1996 					   KERNFS_ROOT_CREATE_DEACTIVATED |
1997 					   KERNFS_ROOT_SUPPORT_EXPORTOP |
1998 					   KERNFS_ROOT_SUPPORT_USER_XATTR,
1999 					   root_cgrp);
2000 	if (IS_ERR(root->kf_root)) {
2001 		ret = PTR_ERR(root->kf_root);
2002 		goto exit_root_id;
2003 	}
2004 	root_cgrp->kn = root->kf_root->kn;
2005 	WARN_ON_ONCE(cgroup_ino(root_cgrp) != 1);
2006 	root_cgrp->ancestor_ids[0] = cgroup_id(root_cgrp);
2007 
2008 	ret = css_populate_dir(&root_cgrp->self);
2009 	if (ret)
2010 		goto destroy_root;
2011 
2012 	ret = cgroup_rstat_init(root_cgrp);
2013 	if (ret)
2014 		goto destroy_root;
2015 
2016 	ret = rebind_subsystems(root, ss_mask);
2017 	if (ret)
2018 		goto exit_stats;
2019 
2020 	ret = cgroup_bpf_inherit(root_cgrp);
2021 	WARN_ON_ONCE(ret);
2022 
2023 	trace_cgroup_setup_root(root);
2024 
2025 	/*
2026 	 * There must be no failure case after here, since rebinding takes
2027 	 * care of subsystems' refcounts, which are explicitly dropped in
2028 	 * the failure exit path.
2029 	 */
2030 	list_add(&root->root_list, &cgroup_roots);
2031 	cgroup_root_count++;
2032 
2033 	/*
2034 	 * Link the root cgroup in this hierarchy into all the css_set
2035 	 * objects.
2036 	 */
2037 	spin_lock_irq(&css_set_lock);
2038 	hash_for_each(css_set_table, i, cset, hlist) {
2039 		link_css_set(&tmp_links, cset, root_cgrp);
2040 		if (css_set_populated(cset))
2041 			cgroup_update_populated(root_cgrp, true);
2042 	}
2043 	spin_unlock_irq(&css_set_lock);
2044 
2045 	BUG_ON(!list_empty(&root_cgrp->self.children));
2046 	BUG_ON(atomic_read(&root->nr_cgrps) != 1);
2047 
2048 	ret = 0;
2049 	goto out;
2050 
2051 exit_stats:
2052 	cgroup_rstat_exit(root_cgrp);
2053 destroy_root:
2054 	kernfs_destroy_root(root->kf_root);
2055 	root->kf_root = NULL;
2056 exit_root_id:
2057 	cgroup_exit_root_id(root);
2058 cancel_ref:
2059 	percpu_ref_exit(&root_cgrp->self.refcnt);
2060 out:
2061 	free_cgrp_cset_links(&tmp_links);
2062 	return ret;
2063 }
2064 
2065 int cgroup_do_get_tree(struct fs_context *fc)
2066 {
2067 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2068 	int ret;
2069 
2070 	ctx->kfc.root = ctx->root->kf_root;
2071 	if (fc->fs_type == &cgroup2_fs_type)
2072 		ctx->kfc.magic = CGROUP2_SUPER_MAGIC;
2073 	else
2074 		ctx->kfc.magic = CGROUP_SUPER_MAGIC;
2075 	ret = kernfs_get_tree(fc);
2076 
2077 	/*
2078 	 * In non-init cgroup namespace, instead of root cgroup's dentry,
2079 	 * we return the dentry corresponding to the cgroupns->root_cgrp.
2080 	 */
2081 	if (!ret && ctx->ns != &init_cgroup_ns) {
2082 		struct dentry *nsdentry;
2083 		struct super_block *sb = fc->root->d_sb;
2084 		struct cgroup *cgrp;
2085 
2086 		mutex_lock(&cgroup_mutex);
2087 		spin_lock_irq(&css_set_lock);
2088 
2089 		cgrp = cset_cgroup_from_root(ctx->ns->root_cset, ctx->root);
2090 
2091 		spin_unlock_irq(&css_set_lock);
2092 		mutex_unlock(&cgroup_mutex);
2093 
2094 		nsdentry = kernfs_node_dentry(cgrp->kn, sb);
2095 		dput(fc->root);
2096 		if (IS_ERR(nsdentry)) {
2097 			deactivate_locked_super(sb);
2098 			ret = PTR_ERR(nsdentry);
2099 			nsdentry = NULL;
2100 		}
2101 		fc->root = nsdentry;
2102 	}
2103 
2104 	if (!ctx->kfc.new_sb_created)
2105 		cgroup_put(&ctx->root->cgrp);
2106 
2107 	return ret;
2108 }
2109 
2110 /*
2111  * Destroy a cgroup filesystem context.
2112  */
2113 static void cgroup_fs_context_free(struct fs_context *fc)
2114 {
2115 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2116 
2117 	kfree(ctx->name);
2118 	kfree(ctx->release_agent);
2119 	put_cgroup_ns(ctx->ns);
2120 	kernfs_free_fs_context(fc);
2121 	kfree(ctx);
2122 }
2123 
2124 static int cgroup_get_tree(struct fs_context *fc)
2125 {
2126 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2127 	int ret;
2128 
2129 	cgrp_dfl_visible = true;
2130 	cgroup_get_live(&cgrp_dfl_root.cgrp);
2131 	ctx->root = &cgrp_dfl_root;
2132 
2133 	ret = cgroup_do_get_tree(fc);
2134 	if (!ret)
2135 		apply_cgroup_root_flags(ctx->flags);
2136 	return ret;
2137 }
2138 
2139 static const struct fs_context_operations cgroup_fs_context_ops = {
2140 	.free		= cgroup_fs_context_free,
2141 	.parse_param	= cgroup2_parse_param,
2142 	.get_tree	= cgroup_get_tree,
2143 	.reconfigure	= cgroup_reconfigure,
2144 };
2145 
2146 static const struct fs_context_operations cgroup1_fs_context_ops = {
2147 	.free		= cgroup_fs_context_free,
2148 	.parse_param	= cgroup1_parse_param,
2149 	.get_tree	= cgroup1_get_tree,
2150 	.reconfigure	= cgroup1_reconfigure,
2151 };
2152 
2153 /*
2154  * Initialise the cgroup filesystem creation/reconfiguration context.  Notably,
2155  * we select the namespace we're going to use.
2156  */
2157 static int cgroup_init_fs_context(struct fs_context *fc)
2158 {
2159 	struct cgroup_fs_context *ctx;
2160 
2161 	ctx = kzalloc(sizeof(struct cgroup_fs_context), GFP_KERNEL);
2162 	if (!ctx)
2163 		return -ENOMEM;
2164 
2165 	ctx->ns = current->nsproxy->cgroup_ns;
2166 	get_cgroup_ns(ctx->ns);
2167 	fc->fs_private = &ctx->kfc;
2168 	if (fc->fs_type == &cgroup2_fs_type)
2169 		fc->ops = &cgroup_fs_context_ops;
2170 	else
2171 		fc->ops = &cgroup1_fs_context_ops;
2172 	put_user_ns(fc->user_ns);
2173 	fc->user_ns = get_user_ns(ctx->ns->user_ns);
2174 	fc->global = true;
2175 	return 0;
2176 }
2177 
2178 static void cgroup_kill_sb(struct super_block *sb)
2179 {
2180 	struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2181 	struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2182 
2183 	/*
2184 	 * If @root doesn't have any children, start killing it.
2185 	 * This prevents new mounts by disabling percpu_ref_tryget_live().
2186 	 *
2187 	 * And don't kill the default root.
2188 	 */
2189 	if (list_empty(&root->cgrp.self.children) && root != &cgrp_dfl_root &&
2190 	    !percpu_ref_is_dying(&root->cgrp.self.refcnt))
2191 		percpu_ref_kill(&root->cgrp.self.refcnt);
2192 	cgroup_put(&root->cgrp);
2193 	kernfs_kill_sb(sb);
2194 }
2195 
2196 struct file_system_type cgroup_fs_type = {
2197 	.name			= "cgroup",
2198 	.init_fs_context	= cgroup_init_fs_context,
2199 	.parameters		= cgroup1_fs_parameters,
2200 	.kill_sb		= cgroup_kill_sb,
2201 	.fs_flags		= FS_USERNS_MOUNT,
2202 };
2203 
2204 static struct file_system_type cgroup2_fs_type = {
2205 	.name			= "cgroup2",
2206 	.init_fs_context	= cgroup_init_fs_context,
2207 	.parameters		= cgroup2_fs_parameters,
2208 	.kill_sb		= cgroup_kill_sb,
2209 	.fs_flags		= FS_USERNS_MOUNT,
2210 };
2211 
2212 #ifdef CONFIG_CPUSETS
2213 static const struct fs_context_operations cpuset_fs_context_ops = {
2214 	.get_tree	= cgroup1_get_tree,
2215 	.free		= cgroup_fs_context_free,
2216 };
2217 
2218 /*
2219  * This is ugly, but preserves the userspace API for existing cpuset
2220  * users. If someone tries to mount the "cpuset" filesystem, we
2221  * silently switch it to mount "cgroup" instead
2222  */
2223 static int cpuset_init_fs_context(struct fs_context *fc)
2224 {
2225 	char *agent = kstrdup("/sbin/cpuset_release_agent", GFP_USER);
2226 	struct cgroup_fs_context *ctx;
2227 	int err;
2228 
2229 	err = cgroup_init_fs_context(fc);
2230 	if (err) {
2231 		kfree(agent);
2232 		return err;
2233 	}
2234 
2235 	fc->ops = &cpuset_fs_context_ops;
2236 
2237 	ctx = cgroup_fc2context(fc);
2238 	ctx->subsys_mask = 1 << cpuset_cgrp_id;
2239 	ctx->flags |= CGRP_ROOT_NOPREFIX;
2240 	ctx->release_agent = agent;
2241 
2242 	get_filesystem(&cgroup_fs_type);
2243 	put_filesystem(fc->fs_type);
2244 	fc->fs_type = &cgroup_fs_type;
2245 
2246 	return 0;
2247 }
2248 
2249 static struct file_system_type cpuset_fs_type = {
2250 	.name			= "cpuset",
2251 	.init_fs_context	= cpuset_init_fs_context,
2252 	.fs_flags		= FS_USERNS_MOUNT,
2253 };
2254 #endif
2255 
2256 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
2257 			  struct cgroup_namespace *ns)
2258 {
2259 	struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
2260 
2261 	return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
2262 }
2263 
2264 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
2265 		   struct cgroup_namespace *ns)
2266 {
2267 	int ret;
2268 
2269 	mutex_lock(&cgroup_mutex);
2270 	spin_lock_irq(&css_set_lock);
2271 
2272 	ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
2273 
2274 	spin_unlock_irq(&css_set_lock);
2275 	mutex_unlock(&cgroup_mutex);
2276 
2277 	return ret;
2278 }
2279 EXPORT_SYMBOL_GPL(cgroup_path_ns);
2280 
2281 /**
2282  * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
2283  * @task: target task
2284  * @buf: the buffer to write the path into
2285  * @buflen: the length of the buffer
2286  *
2287  * Determine @task's cgroup on the first (the one with the lowest non-zero
2288  * hierarchy_id) cgroup hierarchy and copy its path into @buf.  This
2289  * function grabs cgroup_mutex and shouldn't be used inside locks used by
2290  * cgroup controller callbacks.
2291  *
2292  * Return value is the same as kernfs_path().
2293  */
2294 int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
2295 {
2296 	struct cgroup_root *root;
2297 	struct cgroup *cgrp;
2298 	int hierarchy_id = 1;
2299 	int ret;
2300 
2301 	mutex_lock(&cgroup_mutex);
2302 	spin_lock_irq(&css_set_lock);
2303 
2304 	root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2305 
2306 	if (root) {
2307 		cgrp = task_cgroup_from_root(task, root);
2308 		ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns);
2309 	} else {
2310 		/* if no hierarchy exists, everyone is in "/" */
2311 		ret = strlcpy(buf, "/", buflen);
2312 	}
2313 
2314 	spin_unlock_irq(&css_set_lock);
2315 	mutex_unlock(&cgroup_mutex);
2316 	return ret;
2317 }
2318 EXPORT_SYMBOL_GPL(task_cgroup_path);
2319 
2320 /**
2321  * cgroup_migrate_add_task - add a migration target task to a migration context
2322  * @task: target task
2323  * @mgctx: target migration context
2324  *
2325  * Add @task, which is a migration target, to @mgctx->tset.  This function
2326  * becomes noop if @task doesn't need to be migrated.  @task's css_set
2327  * should have been added as a migration source and @task->cg_list will be
2328  * moved from the css_set's tasks list to mg_tasks one.
2329  */
2330 static void cgroup_migrate_add_task(struct task_struct *task,
2331 				    struct cgroup_mgctx *mgctx)
2332 {
2333 	struct css_set *cset;
2334 
2335 	lockdep_assert_held(&css_set_lock);
2336 
2337 	/* @task either already exited or can't exit until the end */
2338 	if (task->flags & PF_EXITING)
2339 		return;
2340 
2341 	/* cgroup_threadgroup_rwsem protects racing against forks */
2342 	WARN_ON_ONCE(list_empty(&task->cg_list));
2343 
2344 	cset = task_css_set(task);
2345 	if (!cset->mg_src_cgrp)
2346 		return;
2347 
2348 	mgctx->tset.nr_tasks++;
2349 
2350 	list_move_tail(&task->cg_list, &cset->mg_tasks);
2351 	if (list_empty(&cset->mg_node))
2352 		list_add_tail(&cset->mg_node,
2353 			      &mgctx->tset.src_csets);
2354 	if (list_empty(&cset->mg_dst_cset->mg_node))
2355 		list_add_tail(&cset->mg_dst_cset->mg_node,
2356 			      &mgctx->tset.dst_csets);
2357 }
2358 
2359 /**
2360  * cgroup_taskset_first - reset taskset and return the first task
2361  * @tset: taskset of interest
2362  * @dst_cssp: output variable for the destination css
2363  *
2364  * @tset iteration is initialized and the first task is returned.
2365  */
2366 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2367 					 struct cgroup_subsys_state **dst_cssp)
2368 {
2369 	tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2370 	tset->cur_task = NULL;
2371 
2372 	return cgroup_taskset_next(tset, dst_cssp);
2373 }
2374 
2375 /**
2376  * cgroup_taskset_next - iterate to the next task in taskset
2377  * @tset: taskset of interest
2378  * @dst_cssp: output variable for the destination css
2379  *
2380  * Return the next task in @tset.  Iteration must have been initialized
2381  * with cgroup_taskset_first().
2382  */
2383 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2384 					struct cgroup_subsys_state **dst_cssp)
2385 {
2386 	struct css_set *cset = tset->cur_cset;
2387 	struct task_struct *task = tset->cur_task;
2388 
2389 	while (CGROUP_HAS_SUBSYS_CONFIG && &cset->mg_node != tset->csets) {
2390 		if (!task)
2391 			task = list_first_entry(&cset->mg_tasks,
2392 						struct task_struct, cg_list);
2393 		else
2394 			task = list_next_entry(task, cg_list);
2395 
2396 		if (&task->cg_list != &cset->mg_tasks) {
2397 			tset->cur_cset = cset;
2398 			tset->cur_task = task;
2399 
2400 			/*
2401 			 * This function may be called both before and
2402 			 * after cgroup_taskset_migrate().  The two cases
2403 			 * can be distinguished by looking at whether @cset
2404 			 * has its ->mg_dst_cset set.
2405 			 */
2406 			if (cset->mg_dst_cset)
2407 				*dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2408 			else
2409 				*dst_cssp = cset->subsys[tset->ssid];
2410 
2411 			return task;
2412 		}
2413 
2414 		cset = list_next_entry(cset, mg_node);
2415 		task = NULL;
2416 	}
2417 
2418 	return NULL;
2419 }
2420 
2421 /**
2422  * cgroup_migrate_execute - migrate a taskset
2423  * @mgctx: migration context
2424  *
2425  * Migrate tasks in @mgctx as setup by migration preparation functions.
2426  * This function fails iff one of the ->can_attach callbacks fails and
2427  * guarantees that either all or none of the tasks in @mgctx are migrated.
2428  * @mgctx is consumed regardless of success.
2429  */
2430 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx)
2431 {
2432 	struct cgroup_taskset *tset = &mgctx->tset;
2433 	struct cgroup_subsys *ss;
2434 	struct task_struct *task, *tmp_task;
2435 	struct css_set *cset, *tmp_cset;
2436 	int ssid, failed_ssid, ret;
2437 
2438 	/* check that we can legitimately attach to the cgroup */
2439 	if (tset->nr_tasks) {
2440 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2441 			if (ss->can_attach) {
2442 				tset->ssid = ssid;
2443 				ret = ss->can_attach(tset);
2444 				if (ret) {
2445 					failed_ssid = ssid;
2446 					goto out_cancel_attach;
2447 				}
2448 			}
2449 		} while_each_subsys_mask();
2450 	}
2451 
2452 	/*
2453 	 * Now that we're guaranteed success, proceed to move all tasks to
2454 	 * the new cgroup.  There are no failure cases after here, so this
2455 	 * is the commit point.
2456 	 */
2457 	spin_lock_irq(&css_set_lock);
2458 	list_for_each_entry(cset, &tset->src_csets, mg_node) {
2459 		list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2460 			struct css_set *from_cset = task_css_set(task);
2461 			struct css_set *to_cset = cset->mg_dst_cset;
2462 
2463 			get_css_set(to_cset);
2464 			to_cset->nr_tasks++;
2465 			css_set_move_task(task, from_cset, to_cset, true);
2466 			from_cset->nr_tasks--;
2467 			/*
2468 			 * If the source or destination cgroup is frozen,
2469 			 * the task might require to change its state.
2470 			 */
2471 			cgroup_freezer_migrate_task(task, from_cset->dfl_cgrp,
2472 						    to_cset->dfl_cgrp);
2473 			put_css_set_locked(from_cset);
2474 
2475 		}
2476 	}
2477 	spin_unlock_irq(&css_set_lock);
2478 
2479 	/*
2480 	 * Migration is committed, all target tasks are now on dst_csets.
2481 	 * Nothing is sensitive to fork() after this point.  Notify
2482 	 * controllers that migration is complete.
2483 	 */
2484 	tset->csets = &tset->dst_csets;
2485 
2486 	if (tset->nr_tasks) {
2487 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2488 			if (ss->attach) {
2489 				tset->ssid = ssid;
2490 				ss->attach(tset);
2491 			}
2492 		} while_each_subsys_mask();
2493 	}
2494 
2495 	ret = 0;
2496 	goto out_release_tset;
2497 
2498 out_cancel_attach:
2499 	if (tset->nr_tasks) {
2500 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2501 			if (ssid == failed_ssid)
2502 				break;
2503 			if (ss->cancel_attach) {
2504 				tset->ssid = ssid;
2505 				ss->cancel_attach(tset);
2506 			}
2507 		} while_each_subsys_mask();
2508 	}
2509 out_release_tset:
2510 	spin_lock_irq(&css_set_lock);
2511 	list_splice_init(&tset->dst_csets, &tset->src_csets);
2512 	list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2513 		list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2514 		list_del_init(&cset->mg_node);
2515 	}
2516 	spin_unlock_irq(&css_set_lock);
2517 
2518 	/*
2519 	 * Re-initialize the cgroup_taskset structure in case it is reused
2520 	 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute()
2521 	 * iteration.
2522 	 */
2523 	tset->nr_tasks = 0;
2524 	tset->csets    = &tset->src_csets;
2525 	return ret;
2526 }
2527 
2528 /**
2529  * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination
2530  * @dst_cgrp: destination cgroup to test
2531  *
2532  * On the default hierarchy, except for the mixable, (possible) thread root
2533  * and threaded cgroups, subtree_control must be zero for migration
2534  * destination cgroups with tasks so that child cgroups don't compete
2535  * against tasks.
2536  */
2537 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp)
2538 {
2539 	/* v1 doesn't have any restriction */
2540 	if (!cgroup_on_dfl(dst_cgrp))
2541 		return 0;
2542 
2543 	/* verify @dst_cgrp can host resources */
2544 	if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp))
2545 		return -EOPNOTSUPP;
2546 
2547 	/* mixables don't care */
2548 	if (cgroup_is_mixable(dst_cgrp))
2549 		return 0;
2550 
2551 	/*
2552 	 * If @dst_cgrp is already or can become a thread root or is
2553 	 * threaded, it doesn't matter.
2554 	 */
2555 	if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp))
2556 		return 0;
2557 
2558 	/* apply no-internal-process constraint */
2559 	if (dst_cgrp->subtree_control)
2560 		return -EBUSY;
2561 
2562 	return 0;
2563 }
2564 
2565 /**
2566  * cgroup_migrate_finish - cleanup after attach
2567  * @mgctx: migration context
2568  *
2569  * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst().  See
2570  * those functions for details.
2571  */
2572 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx)
2573 {
2574 	LIST_HEAD(preloaded);
2575 	struct css_set *cset, *tmp_cset;
2576 
2577 	lockdep_assert_held(&cgroup_mutex);
2578 
2579 	spin_lock_irq(&css_set_lock);
2580 
2581 	list_splice_tail_init(&mgctx->preloaded_src_csets, &preloaded);
2582 	list_splice_tail_init(&mgctx->preloaded_dst_csets, &preloaded);
2583 
2584 	list_for_each_entry_safe(cset, tmp_cset, &preloaded, mg_preload_node) {
2585 		cset->mg_src_cgrp = NULL;
2586 		cset->mg_dst_cgrp = NULL;
2587 		cset->mg_dst_cset = NULL;
2588 		list_del_init(&cset->mg_preload_node);
2589 		put_css_set_locked(cset);
2590 	}
2591 
2592 	spin_unlock_irq(&css_set_lock);
2593 }
2594 
2595 /**
2596  * cgroup_migrate_add_src - add a migration source css_set
2597  * @src_cset: the source css_set to add
2598  * @dst_cgrp: the destination cgroup
2599  * @mgctx: migration context
2600  *
2601  * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp.  Pin
2602  * @src_cset and add it to @mgctx->src_csets, which should later be cleaned
2603  * up by cgroup_migrate_finish().
2604  *
2605  * This function may be called without holding cgroup_threadgroup_rwsem
2606  * even if the target is a process.  Threads may be created and destroyed
2607  * but as long as cgroup_mutex is not dropped, no new css_set can be put
2608  * into play and the preloaded css_sets are guaranteed to cover all
2609  * migrations.
2610  */
2611 void cgroup_migrate_add_src(struct css_set *src_cset,
2612 			    struct cgroup *dst_cgrp,
2613 			    struct cgroup_mgctx *mgctx)
2614 {
2615 	struct cgroup *src_cgrp;
2616 
2617 	lockdep_assert_held(&cgroup_mutex);
2618 	lockdep_assert_held(&css_set_lock);
2619 
2620 	/*
2621 	 * If ->dead, @src_set is associated with one or more dead cgroups
2622 	 * and doesn't contain any migratable tasks.  Ignore it early so
2623 	 * that the rest of migration path doesn't get confused by it.
2624 	 */
2625 	if (src_cset->dead)
2626 		return;
2627 
2628 	src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2629 
2630 	if (!list_empty(&src_cset->mg_preload_node))
2631 		return;
2632 
2633 	WARN_ON(src_cset->mg_src_cgrp);
2634 	WARN_ON(src_cset->mg_dst_cgrp);
2635 	WARN_ON(!list_empty(&src_cset->mg_tasks));
2636 	WARN_ON(!list_empty(&src_cset->mg_node));
2637 
2638 	src_cset->mg_src_cgrp = src_cgrp;
2639 	src_cset->mg_dst_cgrp = dst_cgrp;
2640 	get_css_set(src_cset);
2641 	list_add_tail(&src_cset->mg_preload_node, &mgctx->preloaded_src_csets);
2642 }
2643 
2644 /**
2645  * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2646  * @mgctx: migration context
2647  *
2648  * Tasks are about to be moved and all the source css_sets have been
2649  * preloaded to @mgctx->preloaded_src_csets.  This function looks up and
2650  * pins all destination css_sets, links each to its source, and append them
2651  * to @mgctx->preloaded_dst_csets.
2652  *
2653  * This function must be called after cgroup_migrate_add_src() has been
2654  * called on each migration source css_set.  After migration is performed
2655  * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2656  * @mgctx.
2657  */
2658 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx)
2659 {
2660 	struct css_set *src_cset, *tmp_cset;
2661 
2662 	lockdep_assert_held(&cgroup_mutex);
2663 
2664 	/* look up the dst cset for each src cset and link it to src */
2665 	list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets,
2666 				 mg_preload_node) {
2667 		struct css_set *dst_cset;
2668 		struct cgroup_subsys *ss;
2669 		int ssid;
2670 
2671 		dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
2672 		if (!dst_cset)
2673 			return -ENOMEM;
2674 
2675 		WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2676 
2677 		/*
2678 		 * If src cset equals dst, it's noop.  Drop the src.
2679 		 * cgroup_migrate() will skip the cset too.  Note that we
2680 		 * can't handle src == dst as some nodes are used by both.
2681 		 */
2682 		if (src_cset == dst_cset) {
2683 			src_cset->mg_src_cgrp = NULL;
2684 			src_cset->mg_dst_cgrp = NULL;
2685 			list_del_init(&src_cset->mg_preload_node);
2686 			put_css_set(src_cset);
2687 			put_css_set(dst_cset);
2688 			continue;
2689 		}
2690 
2691 		src_cset->mg_dst_cset = dst_cset;
2692 
2693 		if (list_empty(&dst_cset->mg_preload_node))
2694 			list_add_tail(&dst_cset->mg_preload_node,
2695 				      &mgctx->preloaded_dst_csets);
2696 		else
2697 			put_css_set(dst_cset);
2698 
2699 		for_each_subsys(ss, ssid)
2700 			if (src_cset->subsys[ssid] != dst_cset->subsys[ssid])
2701 				mgctx->ss_mask |= 1 << ssid;
2702 	}
2703 
2704 	return 0;
2705 }
2706 
2707 /**
2708  * cgroup_migrate - migrate a process or task to a cgroup
2709  * @leader: the leader of the process or the task to migrate
2710  * @threadgroup: whether @leader points to the whole process or a single task
2711  * @mgctx: migration context
2712  *
2713  * Migrate a process or task denoted by @leader.  If migrating a process,
2714  * the caller must be holding cgroup_threadgroup_rwsem.  The caller is also
2715  * responsible for invoking cgroup_migrate_add_src() and
2716  * cgroup_migrate_prepare_dst() on the targets before invoking this
2717  * function and following up with cgroup_migrate_finish().
2718  *
2719  * As long as a controller's ->can_attach() doesn't fail, this function is
2720  * guaranteed to succeed.  This means that, excluding ->can_attach()
2721  * failure, when migrating multiple targets, the success or failure can be
2722  * decided for all targets by invoking group_migrate_prepare_dst() before
2723  * actually starting migrating.
2724  */
2725 int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2726 		   struct cgroup_mgctx *mgctx)
2727 {
2728 	struct task_struct *task;
2729 
2730 	/*
2731 	 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2732 	 * already PF_EXITING could be freed from underneath us unless we
2733 	 * take an rcu_read_lock.
2734 	 */
2735 	spin_lock_irq(&css_set_lock);
2736 	rcu_read_lock();
2737 	task = leader;
2738 	do {
2739 		cgroup_migrate_add_task(task, mgctx);
2740 		if (!threadgroup)
2741 			break;
2742 	} while_each_thread(leader, task);
2743 	rcu_read_unlock();
2744 	spin_unlock_irq(&css_set_lock);
2745 
2746 	return cgroup_migrate_execute(mgctx);
2747 }
2748 
2749 /**
2750  * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2751  * @dst_cgrp: the cgroup to attach to
2752  * @leader: the task or the leader of the threadgroup to be attached
2753  * @threadgroup: attach the whole threadgroup?
2754  *
2755  * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2756  */
2757 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader,
2758 		       bool threadgroup)
2759 {
2760 	DEFINE_CGROUP_MGCTX(mgctx);
2761 	struct task_struct *task;
2762 	int ret = 0;
2763 
2764 	/* look up all src csets */
2765 	spin_lock_irq(&css_set_lock);
2766 	rcu_read_lock();
2767 	task = leader;
2768 	do {
2769 		cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx);
2770 		if (!threadgroup)
2771 			break;
2772 	} while_each_thread(leader, task);
2773 	rcu_read_unlock();
2774 	spin_unlock_irq(&css_set_lock);
2775 
2776 	/* prepare dst csets and commit */
2777 	ret = cgroup_migrate_prepare_dst(&mgctx);
2778 	if (!ret)
2779 		ret = cgroup_migrate(leader, threadgroup, &mgctx);
2780 
2781 	cgroup_migrate_finish(&mgctx);
2782 
2783 	if (!ret)
2784 		TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup);
2785 
2786 	return ret;
2787 }
2788 
2789 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup,
2790 					     bool *locked)
2791 	__acquires(&cgroup_threadgroup_rwsem)
2792 {
2793 	struct task_struct *tsk;
2794 	pid_t pid;
2795 
2796 	if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2797 		return ERR_PTR(-EINVAL);
2798 
2799 	/*
2800 	 * If we migrate a single thread, we don't care about threadgroup
2801 	 * stability. If the thread is `current`, it won't exit(2) under our
2802 	 * hands or change PID through exec(2). We exclude
2803 	 * cgroup_update_dfl_csses and other cgroup_{proc,thread}s_write
2804 	 * callers by cgroup_mutex.
2805 	 * Therefore, we can skip the global lock.
2806 	 */
2807 	lockdep_assert_held(&cgroup_mutex);
2808 	if (pid || threadgroup) {
2809 		percpu_down_write(&cgroup_threadgroup_rwsem);
2810 		*locked = true;
2811 	} else {
2812 		*locked = false;
2813 	}
2814 
2815 	rcu_read_lock();
2816 	if (pid) {
2817 		tsk = find_task_by_vpid(pid);
2818 		if (!tsk) {
2819 			tsk = ERR_PTR(-ESRCH);
2820 			goto out_unlock_threadgroup;
2821 		}
2822 	} else {
2823 		tsk = current;
2824 	}
2825 
2826 	if (threadgroup)
2827 		tsk = tsk->group_leader;
2828 
2829 	/*
2830 	 * kthreads may acquire PF_NO_SETAFFINITY during initialization.
2831 	 * If userland migrates such a kthread to a non-root cgroup, it can
2832 	 * become trapped in a cpuset, or RT kthread may be born in a
2833 	 * cgroup with no rt_runtime allocated.  Just say no.
2834 	 */
2835 	if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) {
2836 		tsk = ERR_PTR(-EINVAL);
2837 		goto out_unlock_threadgroup;
2838 	}
2839 
2840 	get_task_struct(tsk);
2841 	goto out_unlock_rcu;
2842 
2843 out_unlock_threadgroup:
2844 	if (*locked) {
2845 		percpu_up_write(&cgroup_threadgroup_rwsem);
2846 		*locked = false;
2847 	}
2848 out_unlock_rcu:
2849 	rcu_read_unlock();
2850 	return tsk;
2851 }
2852 
2853 void cgroup_procs_write_finish(struct task_struct *task, bool locked)
2854 	__releases(&cgroup_threadgroup_rwsem)
2855 {
2856 	struct cgroup_subsys *ss;
2857 	int ssid;
2858 
2859 	/* release reference from cgroup_procs_write_start() */
2860 	put_task_struct(task);
2861 
2862 	if (locked)
2863 		percpu_up_write(&cgroup_threadgroup_rwsem);
2864 	for_each_subsys(ss, ssid)
2865 		if (ss->post_attach)
2866 			ss->post_attach();
2867 }
2868 
2869 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
2870 {
2871 	struct cgroup_subsys *ss;
2872 	bool printed = false;
2873 	int ssid;
2874 
2875 	do_each_subsys_mask(ss, ssid, ss_mask) {
2876 		if (printed)
2877 			seq_putc(seq, ' ');
2878 		seq_puts(seq, ss->name);
2879 		printed = true;
2880 	} while_each_subsys_mask();
2881 	if (printed)
2882 		seq_putc(seq, '\n');
2883 }
2884 
2885 /* show controllers which are enabled from the parent */
2886 static int cgroup_controllers_show(struct seq_file *seq, void *v)
2887 {
2888 	struct cgroup *cgrp = seq_css(seq)->cgroup;
2889 
2890 	cgroup_print_ss_mask(seq, cgroup_control(cgrp));
2891 	return 0;
2892 }
2893 
2894 /* show controllers which are enabled for a given cgroup's children */
2895 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
2896 {
2897 	struct cgroup *cgrp = seq_css(seq)->cgroup;
2898 
2899 	cgroup_print_ss_mask(seq, cgrp->subtree_control);
2900 	return 0;
2901 }
2902 
2903 /**
2904  * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2905  * @cgrp: root of the subtree to update csses for
2906  *
2907  * @cgrp's control masks have changed and its subtree's css associations
2908  * need to be updated accordingly.  This function looks up all css_sets
2909  * which are attached to the subtree, creates the matching updated css_sets
2910  * and migrates the tasks to the new ones.
2911  */
2912 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2913 {
2914 	DEFINE_CGROUP_MGCTX(mgctx);
2915 	struct cgroup_subsys_state *d_css;
2916 	struct cgroup *dsct;
2917 	struct css_set *src_cset;
2918 	int ret;
2919 
2920 	lockdep_assert_held(&cgroup_mutex);
2921 
2922 	percpu_down_write(&cgroup_threadgroup_rwsem);
2923 
2924 	/* look up all csses currently attached to @cgrp's subtree */
2925 	spin_lock_irq(&css_set_lock);
2926 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2927 		struct cgrp_cset_link *link;
2928 
2929 		list_for_each_entry(link, &dsct->cset_links, cset_link)
2930 			cgroup_migrate_add_src(link->cset, dsct, &mgctx);
2931 	}
2932 	spin_unlock_irq(&css_set_lock);
2933 
2934 	/* NULL dst indicates self on default hierarchy */
2935 	ret = cgroup_migrate_prepare_dst(&mgctx);
2936 	if (ret)
2937 		goto out_finish;
2938 
2939 	spin_lock_irq(&css_set_lock);
2940 	list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, mg_preload_node) {
2941 		struct task_struct *task, *ntask;
2942 
2943 		/* all tasks in src_csets need to be migrated */
2944 		list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
2945 			cgroup_migrate_add_task(task, &mgctx);
2946 	}
2947 	spin_unlock_irq(&css_set_lock);
2948 
2949 	ret = cgroup_migrate_execute(&mgctx);
2950 out_finish:
2951 	cgroup_migrate_finish(&mgctx);
2952 	percpu_up_write(&cgroup_threadgroup_rwsem);
2953 	return ret;
2954 }
2955 
2956 /**
2957  * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
2958  * @cgrp: root of the target subtree
2959  *
2960  * Because css offlining is asynchronous, userland may try to re-enable a
2961  * controller while the previous css is still around.  This function grabs
2962  * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
2963  */
2964 void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
2965 	__acquires(&cgroup_mutex)
2966 {
2967 	struct cgroup *dsct;
2968 	struct cgroup_subsys_state *d_css;
2969 	struct cgroup_subsys *ss;
2970 	int ssid;
2971 
2972 restart:
2973 	mutex_lock(&cgroup_mutex);
2974 
2975 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
2976 		for_each_subsys(ss, ssid) {
2977 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
2978 			DEFINE_WAIT(wait);
2979 
2980 			if (!css || !percpu_ref_is_dying(&css->refcnt))
2981 				continue;
2982 
2983 			cgroup_get_live(dsct);
2984 			prepare_to_wait(&dsct->offline_waitq, &wait,
2985 					TASK_UNINTERRUPTIBLE);
2986 
2987 			mutex_unlock(&cgroup_mutex);
2988 			schedule();
2989 			finish_wait(&dsct->offline_waitq, &wait);
2990 
2991 			cgroup_put(dsct);
2992 			goto restart;
2993 		}
2994 	}
2995 }
2996 
2997 /**
2998  * cgroup_save_control - save control masks and dom_cgrp of a subtree
2999  * @cgrp: root of the target subtree
3000  *
3001  * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the
3002  * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3003  * itself.
3004  */
3005 static void cgroup_save_control(struct cgroup *cgrp)
3006 {
3007 	struct cgroup *dsct;
3008 	struct cgroup_subsys_state *d_css;
3009 
3010 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3011 		dsct->old_subtree_control = dsct->subtree_control;
3012 		dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
3013 		dsct->old_dom_cgrp = dsct->dom_cgrp;
3014 	}
3015 }
3016 
3017 /**
3018  * cgroup_propagate_control - refresh control masks of a subtree
3019  * @cgrp: root of the target subtree
3020  *
3021  * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
3022  * ->subtree_control and propagate controller availability through the
3023  * subtree so that descendants don't have unavailable controllers enabled.
3024  */
3025 static void cgroup_propagate_control(struct cgroup *cgrp)
3026 {
3027 	struct cgroup *dsct;
3028 	struct cgroup_subsys_state *d_css;
3029 
3030 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3031 		dsct->subtree_control &= cgroup_control(dsct);
3032 		dsct->subtree_ss_mask =
3033 			cgroup_calc_subtree_ss_mask(dsct->subtree_control,
3034 						    cgroup_ss_mask(dsct));
3035 	}
3036 }
3037 
3038 /**
3039  * cgroup_restore_control - restore control masks and dom_cgrp of a subtree
3040  * @cgrp: root of the target subtree
3041  *
3042  * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the
3043  * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3044  * itself.
3045  */
3046 static void cgroup_restore_control(struct cgroup *cgrp)
3047 {
3048 	struct cgroup *dsct;
3049 	struct cgroup_subsys_state *d_css;
3050 
3051 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3052 		dsct->subtree_control = dsct->old_subtree_control;
3053 		dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
3054 		dsct->dom_cgrp = dsct->old_dom_cgrp;
3055 	}
3056 }
3057 
3058 static bool css_visible(struct cgroup_subsys_state *css)
3059 {
3060 	struct cgroup_subsys *ss = css->ss;
3061 	struct cgroup *cgrp = css->cgroup;
3062 
3063 	if (cgroup_control(cgrp) & (1 << ss->id))
3064 		return true;
3065 	if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
3066 		return false;
3067 	return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
3068 }
3069 
3070 /**
3071  * cgroup_apply_control_enable - enable or show csses according to control
3072  * @cgrp: root of the target subtree
3073  *
3074  * Walk @cgrp's subtree and create new csses or make the existing ones
3075  * visible.  A css is created invisible if it's being implicitly enabled
3076  * through dependency.  An invisible css is made visible when the userland
3077  * explicitly enables it.
3078  *
3079  * Returns 0 on success, -errno on failure.  On failure, csses which have
3080  * been processed already aren't cleaned up.  The caller is responsible for
3081  * cleaning up with cgroup_apply_control_disable().
3082  */
3083 static int cgroup_apply_control_enable(struct cgroup *cgrp)
3084 {
3085 	struct cgroup *dsct;
3086 	struct cgroup_subsys_state *d_css;
3087 	struct cgroup_subsys *ss;
3088 	int ssid, ret;
3089 
3090 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3091 		for_each_subsys(ss, ssid) {
3092 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3093 
3094 			if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
3095 				continue;
3096 
3097 			if (!css) {
3098 				css = css_create(dsct, ss);
3099 				if (IS_ERR(css))
3100 					return PTR_ERR(css);
3101 			}
3102 
3103 			WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3104 
3105 			if (css_visible(css)) {
3106 				ret = css_populate_dir(css);
3107 				if (ret)
3108 					return ret;
3109 			}
3110 		}
3111 	}
3112 
3113 	return 0;
3114 }
3115 
3116 /**
3117  * cgroup_apply_control_disable - kill or hide csses according to control
3118  * @cgrp: root of the target subtree
3119  *
3120  * Walk @cgrp's subtree and kill and hide csses so that they match
3121  * cgroup_ss_mask() and cgroup_visible_mask().
3122  *
3123  * A css is hidden when the userland requests it to be disabled while other
3124  * subsystems are still depending on it.  The css must not actively control
3125  * resources and be in the vanilla state if it's made visible again later.
3126  * Controllers which may be depended upon should provide ->css_reset() for
3127  * this purpose.
3128  */
3129 static void cgroup_apply_control_disable(struct cgroup *cgrp)
3130 {
3131 	struct cgroup *dsct;
3132 	struct cgroup_subsys_state *d_css;
3133 	struct cgroup_subsys *ss;
3134 	int ssid;
3135 
3136 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3137 		for_each_subsys(ss, ssid) {
3138 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3139 
3140 			if (!css)
3141 				continue;
3142 
3143 			WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3144 
3145 			if (css->parent &&
3146 			    !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
3147 				kill_css(css);
3148 			} else if (!css_visible(css)) {
3149 				css_clear_dir(css);
3150 				if (ss->css_reset)
3151 					ss->css_reset(css);
3152 			}
3153 		}
3154 	}
3155 }
3156 
3157 /**
3158  * cgroup_apply_control - apply control mask updates to the subtree
3159  * @cgrp: root of the target subtree
3160  *
3161  * subsystems can be enabled and disabled in a subtree using the following
3162  * steps.
3163  *
3164  * 1. Call cgroup_save_control() to stash the current state.
3165  * 2. Update ->subtree_control masks in the subtree as desired.
3166  * 3. Call cgroup_apply_control() to apply the changes.
3167  * 4. Optionally perform other related operations.
3168  * 5. Call cgroup_finalize_control() to finish up.
3169  *
3170  * This function implements step 3 and propagates the mask changes
3171  * throughout @cgrp's subtree, updates csses accordingly and perform
3172  * process migrations.
3173  */
3174 static int cgroup_apply_control(struct cgroup *cgrp)
3175 {
3176 	int ret;
3177 
3178 	cgroup_propagate_control(cgrp);
3179 
3180 	ret = cgroup_apply_control_enable(cgrp);
3181 	if (ret)
3182 		return ret;
3183 
3184 	/*
3185 	 * At this point, cgroup_e_css_by_mask() results reflect the new csses
3186 	 * making the following cgroup_update_dfl_csses() properly update
3187 	 * css associations of all tasks in the subtree.
3188 	 */
3189 	ret = cgroup_update_dfl_csses(cgrp);
3190 	if (ret)
3191 		return ret;
3192 
3193 	return 0;
3194 }
3195 
3196 /**
3197  * cgroup_finalize_control - finalize control mask update
3198  * @cgrp: root of the target subtree
3199  * @ret: the result of the update
3200  *
3201  * Finalize control mask update.  See cgroup_apply_control() for more info.
3202  */
3203 static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
3204 {
3205 	if (ret) {
3206 		cgroup_restore_control(cgrp);
3207 		cgroup_propagate_control(cgrp);
3208 	}
3209 
3210 	cgroup_apply_control_disable(cgrp);
3211 }
3212 
3213 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable)
3214 {
3215 	u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask;
3216 
3217 	/* if nothing is getting enabled, nothing to worry about */
3218 	if (!enable)
3219 		return 0;
3220 
3221 	/* can @cgrp host any resources? */
3222 	if (!cgroup_is_valid_domain(cgrp->dom_cgrp))
3223 		return -EOPNOTSUPP;
3224 
3225 	/* mixables don't care */
3226 	if (cgroup_is_mixable(cgrp))
3227 		return 0;
3228 
3229 	if (domain_enable) {
3230 		/* can't enable domain controllers inside a thread subtree */
3231 		if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3232 			return -EOPNOTSUPP;
3233 	} else {
3234 		/*
3235 		 * Threaded controllers can handle internal competitions
3236 		 * and are always allowed inside a (prospective) thread
3237 		 * subtree.
3238 		 */
3239 		if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3240 			return 0;
3241 	}
3242 
3243 	/*
3244 	 * Controllers can't be enabled for a cgroup with tasks to avoid
3245 	 * child cgroups competing against tasks.
3246 	 */
3247 	if (cgroup_has_tasks(cgrp))
3248 		return -EBUSY;
3249 
3250 	return 0;
3251 }
3252 
3253 /* change the enabled child controllers for a cgroup in the default hierarchy */
3254 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3255 					    char *buf, size_t nbytes,
3256 					    loff_t off)
3257 {
3258 	u16 enable = 0, disable = 0;
3259 	struct cgroup *cgrp, *child;
3260 	struct cgroup_subsys *ss;
3261 	char *tok;
3262 	int ssid, ret;
3263 
3264 	/*
3265 	 * Parse input - space separated list of subsystem names prefixed
3266 	 * with either + or -.
3267 	 */
3268 	buf = strstrip(buf);
3269 	while ((tok = strsep(&buf, " "))) {
3270 		if (tok[0] == '\0')
3271 			continue;
3272 		do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
3273 			if (!cgroup_ssid_enabled(ssid) ||
3274 			    strcmp(tok + 1, ss->name))
3275 				continue;
3276 
3277 			if (*tok == '+') {
3278 				enable |= 1 << ssid;
3279 				disable &= ~(1 << ssid);
3280 			} else if (*tok == '-') {
3281 				disable |= 1 << ssid;
3282 				enable &= ~(1 << ssid);
3283 			} else {
3284 				return -EINVAL;
3285 			}
3286 			break;
3287 		} while_each_subsys_mask();
3288 		if (ssid == CGROUP_SUBSYS_COUNT)
3289 			return -EINVAL;
3290 	}
3291 
3292 	cgrp = cgroup_kn_lock_live(of->kn, true);
3293 	if (!cgrp)
3294 		return -ENODEV;
3295 
3296 	for_each_subsys(ss, ssid) {
3297 		if (enable & (1 << ssid)) {
3298 			if (cgrp->subtree_control & (1 << ssid)) {
3299 				enable &= ~(1 << ssid);
3300 				continue;
3301 			}
3302 
3303 			if (!(cgroup_control(cgrp) & (1 << ssid))) {
3304 				ret = -ENOENT;
3305 				goto out_unlock;
3306 			}
3307 		} else if (disable & (1 << ssid)) {
3308 			if (!(cgrp->subtree_control & (1 << ssid))) {
3309 				disable &= ~(1 << ssid);
3310 				continue;
3311 			}
3312 
3313 			/* a child has it enabled? */
3314 			cgroup_for_each_live_child(child, cgrp) {
3315 				if (child->subtree_control & (1 << ssid)) {
3316 					ret = -EBUSY;
3317 					goto out_unlock;
3318 				}
3319 			}
3320 		}
3321 	}
3322 
3323 	if (!enable && !disable) {
3324 		ret = 0;
3325 		goto out_unlock;
3326 	}
3327 
3328 	ret = cgroup_vet_subtree_control_enable(cgrp, enable);
3329 	if (ret)
3330 		goto out_unlock;
3331 
3332 	/* save and update control masks and prepare csses */
3333 	cgroup_save_control(cgrp);
3334 
3335 	cgrp->subtree_control |= enable;
3336 	cgrp->subtree_control &= ~disable;
3337 
3338 	ret = cgroup_apply_control(cgrp);
3339 	cgroup_finalize_control(cgrp, ret);
3340 	if (ret)
3341 		goto out_unlock;
3342 
3343 	kernfs_activate(cgrp->kn);
3344 out_unlock:
3345 	cgroup_kn_unlock(of->kn);
3346 	return ret ?: nbytes;
3347 }
3348 
3349 /**
3350  * cgroup_enable_threaded - make @cgrp threaded
3351  * @cgrp: the target cgroup
3352  *
3353  * Called when "threaded" is written to the cgroup.type interface file and
3354  * tries to make @cgrp threaded and join the parent's resource domain.
3355  * This function is never called on the root cgroup as cgroup.type doesn't
3356  * exist on it.
3357  */
3358 static int cgroup_enable_threaded(struct cgroup *cgrp)
3359 {
3360 	struct cgroup *parent = cgroup_parent(cgrp);
3361 	struct cgroup *dom_cgrp = parent->dom_cgrp;
3362 	struct cgroup *dsct;
3363 	struct cgroup_subsys_state *d_css;
3364 	int ret;
3365 
3366 	lockdep_assert_held(&cgroup_mutex);
3367 
3368 	/* noop if already threaded */
3369 	if (cgroup_is_threaded(cgrp))
3370 		return 0;
3371 
3372 	/*
3373 	 * If @cgroup is populated or has domain controllers enabled, it
3374 	 * can't be switched.  While the below cgroup_can_be_thread_root()
3375 	 * test can catch the same conditions, that's only when @parent is
3376 	 * not mixable, so let's check it explicitly.
3377 	 */
3378 	if (cgroup_is_populated(cgrp) ||
3379 	    cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
3380 		return -EOPNOTSUPP;
3381 
3382 	/* we're joining the parent's domain, ensure its validity */
3383 	if (!cgroup_is_valid_domain(dom_cgrp) ||
3384 	    !cgroup_can_be_thread_root(dom_cgrp))
3385 		return -EOPNOTSUPP;
3386 
3387 	/*
3388 	 * The following shouldn't cause actual migrations and should
3389 	 * always succeed.
3390 	 */
3391 	cgroup_save_control(cgrp);
3392 
3393 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)
3394 		if (dsct == cgrp || cgroup_is_threaded(dsct))
3395 			dsct->dom_cgrp = dom_cgrp;
3396 
3397 	ret = cgroup_apply_control(cgrp);
3398 	if (!ret)
3399 		parent->nr_threaded_children++;
3400 
3401 	cgroup_finalize_control(cgrp, ret);
3402 	return ret;
3403 }
3404 
3405 static int cgroup_type_show(struct seq_file *seq, void *v)
3406 {
3407 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3408 
3409 	if (cgroup_is_threaded(cgrp))
3410 		seq_puts(seq, "threaded\n");
3411 	else if (!cgroup_is_valid_domain(cgrp))
3412 		seq_puts(seq, "domain invalid\n");
3413 	else if (cgroup_is_thread_root(cgrp))
3414 		seq_puts(seq, "domain threaded\n");
3415 	else
3416 		seq_puts(seq, "domain\n");
3417 
3418 	return 0;
3419 }
3420 
3421 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf,
3422 				 size_t nbytes, loff_t off)
3423 {
3424 	struct cgroup *cgrp;
3425 	int ret;
3426 
3427 	/* only switching to threaded mode is supported */
3428 	if (strcmp(strstrip(buf), "threaded"))
3429 		return -EINVAL;
3430 
3431 	/* drain dying csses before we re-apply (threaded) subtree control */
3432 	cgrp = cgroup_kn_lock_live(of->kn, true);
3433 	if (!cgrp)
3434 		return -ENOENT;
3435 
3436 	/* threaded can only be enabled */
3437 	ret = cgroup_enable_threaded(cgrp);
3438 
3439 	cgroup_kn_unlock(of->kn);
3440 	return ret ?: nbytes;
3441 }
3442 
3443 static int cgroup_max_descendants_show(struct seq_file *seq, void *v)
3444 {
3445 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3446 	int descendants = READ_ONCE(cgrp->max_descendants);
3447 
3448 	if (descendants == INT_MAX)
3449 		seq_puts(seq, "max\n");
3450 	else
3451 		seq_printf(seq, "%d\n", descendants);
3452 
3453 	return 0;
3454 }
3455 
3456 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of,
3457 					   char *buf, size_t nbytes, loff_t off)
3458 {
3459 	struct cgroup *cgrp;
3460 	int descendants;
3461 	ssize_t ret;
3462 
3463 	buf = strstrip(buf);
3464 	if (!strcmp(buf, "max")) {
3465 		descendants = INT_MAX;
3466 	} else {
3467 		ret = kstrtoint(buf, 0, &descendants);
3468 		if (ret)
3469 			return ret;
3470 	}
3471 
3472 	if (descendants < 0)
3473 		return -ERANGE;
3474 
3475 	cgrp = cgroup_kn_lock_live(of->kn, false);
3476 	if (!cgrp)
3477 		return -ENOENT;
3478 
3479 	cgrp->max_descendants = descendants;
3480 
3481 	cgroup_kn_unlock(of->kn);
3482 
3483 	return nbytes;
3484 }
3485 
3486 static int cgroup_max_depth_show(struct seq_file *seq, void *v)
3487 {
3488 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3489 	int depth = READ_ONCE(cgrp->max_depth);
3490 
3491 	if (depth == INT_MAX)
3492 		seq_puts(seq, "max\n");
3493 	else
3494 		seq_printf(seq, "%d\n", depth);
3495 
3496 	return 0;
3497 }
3498 
3499 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of,
3500 				      char *buf, size_t nbytes, loff_t off)
3501 {
3502 	struct cgroup *cgrp;
3503 	ssize_t ret;
3504 	int depth;
3505 
3506 	buf = strstrip(buf);
3507 	if (!strcmp(buf, "max")) {
3508 		depth = INT_MAX;
3509 	} else {
3510 		ret = kstrtoint(buf, 0, &depth);
3511 		if (ret)
3512 			return ret;
3513 	}
3514 
3515 	if (depth < 0)
3516 		return -ERANGE;
3517 
3518 	cgrp = cgroup_kn_lock_live(of->kn, false);
3519 	if (!cgrp)
3520 		return -ENOENT;
3521 
3522 	cgrp->max_depth = depth;
3523 
3524 	cgroup_kn_unlock(of->kn);
3525 
3526 	return nbytes;
3527 }
3528 
3529 static int cgroup_events_show(struct seq_file *seq, void *v)
3530 {
3531 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3532 
3533 	seq_printf(seq, "populated %d\n", cgroup_is_populated(cgrp));
3534 	seq_printf(seq, "frozen %d\n", test_bit(CGRP_FROZEN, &cgrp->flags));
3535 
3536 	return 0;
3537 }
3538 
3539 static int cgroup_stat_show(struct seq_file *seq, void *v)
3540 {
3541 	struct cgroup *cgroup = seq_css(seq)->cgroup;
3542 
3543 	seq_printf(seq, "nr_descendants %d\n",
3544 		   cgroup->nr_descendants);
3545 	seq_printf(seq, "nr_dying_descendants %d\n",
3546 		   cgroup->nr_dying_descendants);
3547 
3548 	return 0;
3549 }
3550 
3551 static int __maybe_unused cgroup_extra_stat_show(struct seq_file *seq,
3552 						 struct cgroup *cgrp, int ssid)
3553 {
3554 	struct cgroup_subsys *ss = cgroup_subsys[ssid];
3555 	struct cgroup_subsys_state *css;
3556 	int ret;
3557 
3558 	if (!ss->css_extra_stat_show)
3559 		return 0;
3560 
3561 	css = cgroup_tryget_css(cgrp, ss);
3562 	if (!css)
3563 		return 0;
3564 
3565 	ret = ss->css_extra_stat_show(seq, css);
3566 	css_put(css);
3567 	return ret;
3568 }
3569 
3570 static int cpu_stat_show(struct seq_file *seq, void *v)
3571 {
3572 	struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup;
3573 	int ret = 0;
3574 
3575 	cgroup_base_stat_cputime_show(seq);
3576 #ifdef CONFIG_CGROUP_SCHED
3577 	ret = cgroup_extra_stat_show(seq, cgrp, cpu_cgrp_id);
3578 #endif
3579 	return ret;
3580 }
3581 
3582 #ifdef CONFIG_PSI
3583 static int cgroup_io_pressure_show(struct seq_file *seq, void *v)
3584 {
3585 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3586 	struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi;
3587 
3588 	return psi_show(seq, psi, PSI_IO);
3589 }
3590 static int cgroup_memory_pressure_show(struct seq_file *seq, void *v)
3591 {
3592 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3593 	struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi;
3594 
3595 	return psi_show(seq, psi, PSI_MEM);
3596 }
3597 static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v)
3598 {
3599 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3600 	struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi;
3601 
3602 	return psi_show(seq, psi, PSI_CPU);
3603 }
3604 
3605 static ssize_t cgroup_pressure_write(struct kernfs_open_file *of, char *buf,
3606 					  size_t nbytes, enum psi_res res)
3607 {
3608 	struct psi_trigger *new;
3609 	struct cgroup *cgrp;
3610 	struct psi_group *psi;
3611 
3612 	cgrp = cgroup_kn_lock_live(of->kn, false);
3613 	if (!cgrp)
3614 		return -ENODEV;
3615 
3616 	cgroup_get(cgrp);
3617 	cgroup_kn_unlock(of->kn);
3618 
3619 	psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi;
3620 	new = psi_trigger_create(psi, buf, nbytes, res);
3621 	if (IS_ERR(new)) {
3622 		cgroup_put(cgrp);
3623 		return PTR_ERR(new);
3624 	}
3625 
3626 	psi_trigger_replace(&of->priv, new);
3627 
3628 	cgroup_put(cgrp);
3629 
3630 	return nbytes;
3631 }
3632 
3633 static ssize_t cgroup_io_pressure_write(struct kernfs_open_file *of,
3634 					  char *buf, size_t nbytes,
3635 					  loff_t off)
3636 {
3637 	return cgroup_pressure_write(of, buf, nbytes, PSI_IO);
3638 }
3639 
3640 static ssize_t cgroup_memory_pressure_write(struct kernfs_open_file *of,
3641 					  char *buf, size_t nbytes,
3642 					  loff_t off)
3643 {
3644 	return cgroup_pressure_write(of, buf, nbytes, PSI_MEM);
3645 }
3646 
3647 static ssize_t cgroup_cpu_pressure_write(struct kernfs_open_file *of,
3648 					  char *buf, size_t nbytes,
3649 					  loff_t off)
3650 {
3651 	return cgroup_pressure_write(of, buf, nbytes, PSI_CPU);
3652 }
3653 
3654 static __poll_t cgroup_pressure_poll(struct kernfs_open_file *of,
3655 					  poll_table *pt)
3656 {
3657 	return psi_trigger_poll(&of->priv, of->file, pt);
3658 }
3659 
3660 static void cgroup_pressure_release(struct kernfs_open_file *of)
3661 {
3662 	psi_trigger_replace(&of->priv, NULL);
3663 }
3664 
3665 bool cgroup_psi_enabled(void)
3666 {
3667 	return (cgroup_feature_disable_mask & (1 << OPT_FEATURE_PRESSURE)) == 0;
3668 }
3669 
3670 #else /* CONFIG_PSI */
3671 bool cgroup_psi_enabled(void)
3672 {
3673 	return false;
3674 }
3675 
3676 #endif /* CONFIG_PSI */
3677 
3678 static int cgroup_freeze_show(struct seq_file *seq, void *v)
3679 {
3680 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3681 
3682 	seq_printf(seq, "%d\n", cgrp->freezer.freeze);
3683 
3684 	return 0;
3685 }
3686 
3687 static ssize_t cgroup_freeze_write(struct kernfs_open_file *of,
3688 				   char *buf, size_t nbytes, loff_t off)
3689 {
3690 	struct cgroup *cgrp;
3691 	ssize_t ret;
3692 	int freeze;
3693 
3694 	ret = kstrtoint(strstrip(buf), 0, &freeze);
3695 	if (ret)
3696 		return ret;
3697 
3698 	if (freeze < 0 || freeze > 1)
3699 		return -ERANGE;
3700 
3701 	cgrp = cgroup_kn_lock_live(of->kn, false);
3702 	if (!cgrp)
3703 		return -ENOENT;
3704 
3705 	cgroup_freeze(cgrp, freeze);
3706 
3707 	cgroup_kn_unlock(of->kn);
3708 
3709 	return nbytes;
3710 }
3711 
3712 static void __cgroup_kill(struct cgroup *cgrp)
3713 {
3714 	struct css_task_iter it;
3715 	struct task_struct *task;
3716 
3717 	lockdep_assert_held(&cgroup_mutex);
3718 
3719 	spin_lock_irq(&css_set_lock);
3720 	set_bit(CGRP_KILL, &cgrp->flags);
3721 	spin_unlock_irq(&css_set_lock);
3722 
3723 	css_task_iter_start(&cgrp->self, CSS_TASK_ITER_PROCS | CSS_TASK_ITER_THREADED, &it);
3724 	while ((task = css_task_iter_next(&it))) {
3725 		/* Ignore kernel threads here. */
3726 		if (task->flags & PF_KTHREAD)
3727 			continue;
3728 
3729 		/* Skip tasks that are already dying. */
3730 		if (__fatal_signal_pending(task))
3731 			continue;
3732 
3733 		send_sig(SIGKILL, task, 0);
3734 	}
3735 	css_task_iter_end(&it);
3736 
3737 	spin_lock_irq(&css_set_lock);
3738 	clear_bit(CGRP_KILL, &cgrp->flags);
3739 	spin_unlock_irq(&css_set_lock);
3740 }
3741 
3742 static void cgroup_kill(struct cgroup *cgrp)
3743 {
3744 	struct cgroup_subsys_state *css;
3745 	struct cgroup *dsct;
3746 
3747 	lockdep_assert_held(&cgroup_mutex);
3748 
3749 	cgroup_for_each_live_descendant_pre(dsct, css, cgrp)
3750 		__cgroup_kill(dsct);
3751 }
3752 
3753 static ssize_t cgroup_kill_write(struct kernfs_open_file *of, char *buf,
3754 				 size_t nbytes, loff_t off)
3755 {
3756 	ssize_t ret = 0;
3757 	int kill;
3758 	struct cgroup *cgrp;
3759 
3760 	ret = kstrtoint(strstrip(buf), 0, &kill);
3761 	if (ret)
3762 		return ret;
3763 
3764 	if (kill != 1)
3765 		return -ERANGE;
3766 
3767 	cgrp = cgroup_kn_lock_live(of->kn, false);
3768 	if (!cgrp)
3769 		return -ENOENT;
3770 
3771 	/*
3772 	 * Killing is a process directed operation, i.e. the whole thread-group
3773 	 * is taken down so act like we do for cgroup.procs and only make this
3774 	 * writable in non-threaded cgroups.
3775 	 */
3776 	if (cgroup_is_threaded(cgrp))
3777 		ret = -EOPNOTSUPP;
3778 	else
3779 		cgroup_kill(cgrp);
3780 
3781 	cgroup_kn_unlock(of->kn);
3782 
3783 	return ret ?: nbytes;
3784 }
3785 
3786 static int cgroup_file_open(struct kernfs_open_file *of)
3787 {
3788 	struct cftype *cft = of_cft(of);
3789 
3790 	if (cft->open)
3791 		return cft->open(of);
3792 	return 0;
3793 }
3794 
3795 static void cgroup_file_release(struct kernfs_open_file *of)
3796 {
3797 	struct cftype *cft = of_cft(of);
3798 
3799 	if (cft->release)
3800 		cft->release(of);
3801 }
3802 
3803 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3804 				 size_t nbytes, loff_t off)
3805 {
3806 	struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
3807 	struct cgroup *cgrp = of->kn->parent->priv;
3808 	struct cftype *cft = of_cft(of);
3809 	struct cgroup_subsys_state *css;
3810 	int ret;
3811 
3812 	if (!nbytes)
3813 		return 0;
3814 
3815 	/*
3816 	 * If namespaces are delegation boundaries, disallow writes to
3817 	 * files in an non-init namespace root from inside the namespace
3818 	 * except for the files explicitly marked delegatable -
3819 	 * cgroup.procs and cgroup.subtree_control.
3820 	 */
3821 	if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) &&
3822 	    !(cft->flags & CFTYPE_NS_DELEGATABLE) &&
3823 	    ns != &init_cgroup_ns && ns->root_cset->dfl_cgrp == cgrp)
3824 		return -EPERM;
3825 
3826 	if (cft->write)
3827 		return cft->write(of, buf, nbytes, off);
3828 
3829 	/*
3830 	 * kernfs guarantees that a file isn't deleted with operations in
3831 	 * flight, which means that the matching css is and stays alive and
3832 	 * doesn't need to be pinned.  The RCU locking is not necessary
3833 	 * either.  It's just for the convenience of using cgroup_css().
3834 	 */
3835 	rcu_read_lock();
3836 	css = cgroup_css(cgrp, cft->ss);
3837 	rcu_read_unlock();
3838 
3839 	if (cft->write_u64) {
3840 		unsigned long long v;
3841 		ret = kstrtoull(buf, 0, &v);
3842 		if (!ret)
3843 			ret = cft->write_u64(css, cft, v);
3844 	} else if (cft->write_s64) {
3845 		long long v;
3846 		ret = kstrtoll(buf, 0, &v);
3847 		if (!ret)
3848 			ret = cft->write_s64(css, cft, v);
3849 	} else {
3850 		ret = -EINVAL;
3851 	}
3852 
3853 	return ret ?: nbytes;
3854 }
3855 
3856 static __poll_t cgroup_file_poll(struct kernfs_open_file *of, poll_table *pt)
3857 {
3858 	struct cftype *cft = of_cft(of);
3859 
3860 	if (cft->poll)
3861 		return cft->poll(of, pt);
3862 
3863 	return kernfs_generic_poll(of, pt);
3864 }
3865 
3866 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
3867 {
3868 	return seq_cft(seq)->seq_start(seq, ppos);
3869 }
3870 
3871 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
3872 {
3873 	return seq_cft(seq)->seq_next(seq, v, ppos);
3874 }
3875 
3876 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
3877 {
3878 	if (seq_cft(seq)->seq_stop)
3879 		seq_cft(seq)->seq_stop(seq, v);
3880 }
3881 
3882 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
3883 {
3884 	struct cftype *cft = seq_cft(m);
3885 	struct cgroup_subsys_state *css = seq_css(m);
3886 
3887 	if (cft->seq_show)
3888 		return cft->seq_show(m, arg);
3889 
3890 	if (cft->read_u64)
3891 		seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3892 	else if (cft->read_s64)
3893 		seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3894 	else
3895 		return -EINVAL;
3896 	return 0;
3897 }
3898 
3899 static struct kernfs_ops cgroup_kf_single_ops = {
3900 	.atomic_write_len	= PAGE_SIZE,
3901 	.open			= cgroup_file_open,
3902 	.release		= cgroup_file_release,
3903 	.write			= cgroup_file_write,
3904 	.poll			= cgroup_file_poll,
3905 	.seq_show		= cgroup_seqfile_show,
3906 };
3907 
3908 static struct kernfs_ops cgroup_kf_ops = {
3909 	.atomic_write_len	= PAGE_SIZE,
3910 	.open			= cgroup_file_open,
3911 	.release		= cgroup_file_release,
3912 	.write			= cgroup_file_write,
3913 	.poll			= cgroup_file_poll,
3914 	.seq_start		= cgroup_seqfile_start,
3915 	.seq_next		= cgroup_seqfile_next,
3916 	.seq_stop		= cgroup_seqfile_stop,
3917 	.seq_show		= cgroup_seqfile_show,
3918 };
3919 
3920 /* set uid and gid of cgroup dirs and files to that of the creator */
3921 static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3922 {
3923 	struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3924 			       .ia_uid = current_fsuid(),
3925 			       .ia_gid = current_fsgid(), };
3926 
3927 	if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3928 	    gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3929 		return 0;
3930 
3931 	return kernfs_setattr(kn, &iattr);
3932 }
3933 
3934 static void cgroup_file_notify_timer(struct timer_list *timer)
3935 {
3936 	cgroup_file_notify(container_of(timer, struct cgroup_file,
3937 					notify_timer));
3938 }
3939 
3940 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3941 			   struct cftype *cft)
3942 {
3943 	char name[CGROUP_FILE_NAME_MAX];
3944 	struct kernfs_node *kn;
3945 	struct lock_class_key *key = NULL;
3946 	int ret;
3947 
3948 #ifdef CONFIG_DEBUG_LOCK_ALLOC
3949 	key = &cft->lockdep_key;
3950 #endif
3951 	kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3952 				  cgroup_file_mode(cft),
3953 				  GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
3954 				  0, cft->kf_ops, cft,
3955 				  NULL, key);
3956 	if (IS_ERR(kn))
3957 		return PTR_ERR(kn);
3958 
3959 	ret = cgroup_kn_set_ugid(kn);
3960 	if (ret) {
3961 		kernfs_remove(kn);
3962 		return ret;
3963 	}
3964 
3965 	if (cft->file_offset) {
3966 		struct cgroup_file *cfile = (void *)css + cft->file_offset;
3967 
3968 		timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0);
3969 
3970 		spin_lock_irq(&cgroup_file_kn_lock);
3971 		cfile->kn = kn;
3972 		spin_unlock_irq(&cgroup_file_kn_lock);
3973 	}
3974 
3975 	return 0;
3976 }
3977 
3978 /**
3979  * cgroup_addrm_files - add or remove files to a cgroup directory
3980  * @css: the target css
3981  * @cgrp: the target cgroup (usually css->cgroup)
3982  * @cfts: array of cftypes to be added
3983  * @is_add: whether to add or remove
3984  *
3985  * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3986  * For removals, this function never fails.
3987  */
3988 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3989 			      struct cgroup *cgrp, struct cftype cfts[],
3990 			      bool is_add)
3991 {
3992 	struct cftype *cft, *cft_end = NULL;
3993 	int ret = 0;
3994 
3995 	lockdep_assert_held(&cgroup_mutex);
3996 
3997 restart:
3998 	for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
3999 		/* does cft->flags tell us to skip this file on @cgrp? */
4000 		if ((cft->flags & CFTYPE_PRESSURE) && !cgroup_psi_enabled())
4001 			continue;
4002 		if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
4003 			continue;
4004 		if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
4005 			continue;
4006 		if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
4007 			continue;
4008 		if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
4009 			continue;
4010 		if ((cft->flags & CFTYPE_DEBUG) && !cgroup_debug)
4011 			continue;
4012 		if (is_add) {
4013 			ret = cgroup_add_file(css, cgrp, cft);
4014 			if (ret) {
4015 				pr_warn("%s: failed to add %s, err=%d\n",
4016 					__func__, cft->name, ret);
4017 				cft_end = cft;
4018 				is_add = false;
4019 				goto restart;
4020 			}
4021 		} else {
4022 			cgroup_rm_file(cgrp, cft);
4023 		}
4024 	}
4025 	return ret;
4026 }
4027 
4028 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
4029 {
4030 	struct cgroup_subsys *ss = cfts[0].ss;
4031 	struct cgroup *root = &ss->root->cgrp;
4032 	struct cgroup_subsys_state *css;
4033 	int ret = 0;
4034 
4035 	lockdep_assert_held(&cgroup_mutex);
4036 
4037 	/* add/rm files for all cgroups created before */
4038 	css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
4039 		struct cgroup *cgrp = css->cgroup;
4040 
4041 		if (!(css->flags & CSS_VISIBLE))
4042 			continue;
4043 
4044 		ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
4045 		if (ret)
4046 			break;
4047 	}
4048 
4049 	if (is_add && !ret)
4050 		kernfs_activate(root->kn);
4051 	return ret;
4052 }
4053 
4054 static void cgroup_exit_cftypes(struct cftype *cfts)
4055 {
4056 	struct cftype *cft;
4057 
4058 	for (cft = cfts; cft->name[0] != '\0'; cft++) {
4059 		/* free copy for custom atomic_write_len, see init_cftypes() */
4060 		if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
4061 			kfree(cft->kf_ops);
4062 		cft->kf_ops = NULL;
4063 		cft->ss = NULL;
4064 
4065 		/* revert flags set by cgroup core while adding @cfts */
4066 		cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
4067 	}
4068 }
4069 
4070 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4071 {
4072 	struct cftype *cft;
4073 
4074 	for (cft = cfts; cft->name[0] != '\0'; cft++) {
4075 		struct kernfs_ops *kf_ops;
4076 
4077 		WARN_ON(cft->ss || cft->kf_ops);
4078 
4079 		if ((cft->flags & CFTYPE_PRESSURE) && !cgroup_psi_enabled())
4080 			continue;
4081 
4082 		if (cft->seq_start)
4083 			kf_ops = &cgroup_kf_ops;
4084 		else
4085 			kf_ops = &cgroup_kf_single_ops;
4086 
4087 		/*
4088 		 * Ugh... if @cft wants a custom max_write_len, we need to
4089 		 * make a copy of kf_ops to set its atomic_write_len.
4090 		 */
4091 		if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
4092 			kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
4093 			if (!kf_ops) {
4094 				cgroup_exit_cftypes(cfts);
4095 				return -ENOMEM;
4096 			}
4097 			kf_ops->atomic_write_len = cft->max_write_len;
4098 		}
4099 
4100 		cft->kf_ops = kf_ops;
4101 		cft->ss = ss;
4102 	}
4103 
4104 	return 0;
4105 }
4106 
4107 static int cgroup_rm_cftypes_locked(struct cftype *cfts)
4108 {
4109 	lockdep_assert_held(&cgroup_mutex);
4110 
4111 	if (!cfts || !cfts[0].ss)
4112 		return -ENOENT;
4113 
4114 	list_del(&cfts->node);
4115 	cgroup_apply_cftypes(cfts, false);
4116 	cgroup_exit_cftypes(cfts);
4117 	return 0;
4118 }
4119 
4120 /**
4121  * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
4122  * @cfts: zero-length name terminated array of cftypes
4123  *
4124  * Unregister @cfts.  Files described by @cfts are removed from all
4125  * existing cgroups and all future cgroups won't have them either.  This
4126  * function can be called anytime whether @cfts' subsys is attached or not.
4127  *
4128  * Returns 0 on successful unregistration, -ENOENT if @cfts is not
4129  * registered.
4130  */
4131 int cgroup_rm_cftypes(struct cftype *cfts)
4132 {
4133 	int ret;
4134 
4135 	mutex_lock(&cgroup_mutex);
4136 	ret = cgroup_rm_cftypes_locked(cfts);
4137 	mutex_unlock(&cgroup_mutex);
4138 	return ret;
4139 }
4140 
4141 /**
4142  * cgroup_add_cftypes - add an array of cftypes to a subsystem
4143  * @ss: target cgroup subsystem
4144  * @cfts: zero-length name terminated array of cftypes
4145  *
4146  * Register @cfts to @ss.  Files described by @cfts are created for all
4147  * existing cgroups to which @ss is attached and all future cgroups will
4148  * have them too.  This function can be called anytime whether @ss is
4149  * attached or not.
4150  *
4151  * Returns 0 on successful registration, -errno on failure.  Note that this
4152  * function currently returns 0 as long as @cfts registration is successful
4153  * even if some file creation attempts on existing cgroups fail.
4154  */
4155 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4156 {
4157 	int ret;
4158 
4159 	if (!cgroup_ssid_enabled(ss->id))
4160 		return 0;
4161 
4162 	if (!cfts || cfts[0].name[0] == '\0')
4163 		return 0;
4164 
4165 	ret = cgroup_init_cftypes(ss, cfts);
4166 	if (ret)
4167 		return ret;
4168 
4169 	mutex_lock(&cgroup_mutex);
4170 
4171 	list_add_tail(&cfts->node, &ss->cfts);
4172 	ret = cgroup_apply_cftypes(cfts, true);
4173 	if (ret)
4174 		cgroup_rm_cftypes_locked(cfts);
4175 
4176 	mutex_unlock(&cgroup_mutex);
4177 	return ret;
4178 }
4179 
4180 /**
4181  * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
4182  * @ss: target cgroup subsystem
4183  * @cfts: zero-length name terminated array of cftypes
4184  *
4185  * Similar to cgroup_add_cftypes() but the added files are only used for
4186  * the default hierarchy.
4187  */
4188 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4189 {
4190 	struct cftype *cft;
4191 
4192 	for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4193 		cft->flags |= __CFTYPE_ONLY_ON_DFL;
4194 	return cgroup_add_cftypes(ss, cfts);
4195 }
4196 
4197 /**
4198  * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
4199  * @ss: target cgroup subsystem
4200  * @cfts: zero-length name terminated array of cftypes
4201  *
4202  * Similar to cgroup_add_cftypes() but the added files are only used for
4203  * the legacy hierarchies.
4204  */
4205 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4206 {
4207 	struct cftype *cft;
4208 
4209 	for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4210 		cft->flags |= __CFTYPE_NOT_ON_DFL;
4211 	return cgroup_add_cftypes(ss, cfts);
4212 }
4213 
4214 /**
4215  * cgroup_file_notify - generate a file modified event for a cgroup_file
4216  * @cfile: target cgroup_file
4217  *
4218  * @cfile must have been obtained by setting cftype->file_offset.
4219  */
4220 void cgroup_file_notify(struct cgroup_file *cfile)
4221 {
4222 	unsigned long flags;
4223 
4224 	spin_lock_irqsave(&cgroup_file_kn_lock, flags);
4225 	if (cfile->kn) {
4226 		unsigned long last = cfile->notified_at;
4227 		unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV;
4228 
4229 		if (time_in_range(jiffies, last, next)) {
4230 			timer_reduce(&cfile->notify_timer, next);
4231 		} else {
4232 			kernfs_notify(cfile->kn);
4233 			cfile->notified_at = jiffies;
4234 		}
4235 	}
4236 	spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
4237 }
4238 
4239 /**
4240  * css_next_child - find the next child of a given css
4241  * @pos: the current position (%NULL to initiate traversal)
4242  * @parent: css whose children to walk
4243  *
4244  * This function returns the next child of @parent and should be called
4245  * under either cgroup_mutex or RCU read lock.  The only requirement is
4246  * that @parent and @pos are accessible.  The next sibling is guaranteed to
4247  * be returned regardless of their states.
4248  *
4249  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4250  * css which finished ->css_online() is guaranteed to be visible in the
4251  * future iterations and will stay visible until the last reference is put.
4252  * A css which hasn't finished ->css_online() or already finished
4253  * ->css_offline() may show up during traversal.  It's each subsystem's
4254  * responsibility to synchronize against on/offlining.
4255  */
4256 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
4257 					   struct cgroup_subsys_state *parent)
4258 {
4259 	struct cgroup_subsys_state *next;
4260 
4261 	cgroup_assert_mutex_or_rcu_locked();
4262 
4263 	/*
4264 	 * @pos could already have been unlinked from the sibling list.
4265 	 * Once a cgroup is removed, its ->sibling.next is no longer
4266 	 * updated when its next sibling changes.  CSS_RELEASED is set when
4267 	 * @pos is taken off list, at which time its next pointer is valid,
4268 	 * and, as releases are serialized, the one pointed to by the next
4269 	 * pointer is guaranteed to not have started release yet.  This
4270 	 * implies that if we observe !CSS_RELEASED on @pos in this RCU
4271 	 * critical section, the one pointed to by its next pointer is
4272 	 * guaranteed to not have finished its RCU grace period even if we
4273 	 * have dropped rcu_read_lock() in-between iterations.
4274 	 *
4275 	 * If @pos has CSS_RELEASED set, its next pointer can't be
4276 	 * dereferenced; however, as each css is given a monotonically
4277 	 * increasing unique serial number and always appended to the
4278 	 * sibling list, the next one can be found by walking the parent's
4279 	 * children until the first css with higher serial number than
4280 	 * @pos's.  While this path can be slower, it happens iff iteration
4281 	 * races against release and the race window is very small.
4282 	 */
4283 	if (!pos) {
4284 		next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
4285 	} else if (likely(!(pos->flags & CSS_RELEASED))) {
4286 		next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
4287 	} else {
4288 		list_for_each_entry_rcu(next, &parent->children, sibling,
4289 					lockdep_is_held(&cgroup_mutex))
4290 			if (next->serial_nr > pos->serial_nr)
4291 				break;
4292 	}
4293 
4294 	/*
4295 	 * @next, if not pointing to the head, can be dereferenced and is
4296 	 * the next sibling.
4297 	 */
4298 	if (&next->sibling != &parent->children)
4299 		return next;
4300 	return NULL;
4301 }
4302 
4303 /**
4304  * css_next_descendant_pre - find the next descendant for pre-order walk
4305  * @pos: the current position (%NULL to initiate traversal)
4306  * @root: css whose descendants to walk
4307  *
4308  * To be used by css_for_each_descendant_pre().  Find the next descendant
4309  * to visit for pre-order traversal of @root's descendants.  @root is
4310  * included in the iteration and the first node to be visited.
4311  *
4312  * While this function requires cgroup_mutex or RCU read locking, it
4313  * doesn't require the whole traversal to be contained in a single critical
4314  * section.  This function will return the correct next descendant as long
4315  * as both @pos and @root are accessible and @pos is a descendant of @root.
4316  *
4317  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4318  * css which finished ->css_online() is guaranteed to be visible in the
4319  * future iterations and will stay visible until the last reference is put.
4320  * A css which hasn't finished ->css_online() or already finished
4321  * ->css_offline() may show up during traversal.  It's each subsystem's
4322  * responsibility to synchronize against on/offlining.
4323  */
4324 struct cgroup_subsys_state *
4325 css_next_descendant_pre(struct cgroup_subsys_state *pos,
4326 			struct cgroup_subsys_state *root)
4327 {
4328 	struct cgroup_subsys_state *next;
4329 
4330 	cgroup_assert_mutex_or_rcu_locked();
4331 
4332 	/* if first iteration, visit @root */
4333 	if (!pos)
4334 		return root;
4335 
4336 	/* visit the first child if exists */
4337 	next = css_next_child(NULL, pos);
4338 	if (next)
4339 		return next;
4340 
4341 	/* no child, visit my or the closest ancestor's next sibling */
4342 	while (pos != root) {
4343 		next = css_next_child(pos, pos->parent);
4344 		if (next)
4345 			return next;
4346 		pos = pos->parent;
4347 	}
4348 
4349 	return NULL;
4350 }
4351 EXPORT_SYMBOL_GPL(css_next_descendant_pre);
4352 
4353 /**
4354  * css_rightmost_descendant - return the rightmost descendant of a css
4355  * @pos: css of interest
4356  *
4357  * Return the rightmost descendant of @pos.  If there's no descendant, @pos
4358  * is returned.  This can be used during pre-order traversal to skip
4359  * subtree of @pos.
4360  *
4361  * While this function requires cgroup_mutex or RCU read locking, it
4362  * doesn't require the whole traversal to be contained in a single critical
4363  * section.  This function will return the correct rightmost descendant as
4364  * long as @pos is accessible.
4365  */
4366 struct cgroup_subsys_state *
4367 css_rightmost_descendant(struct cgroup_subsys_state *pos)
4368 {
4369 	struct cgroup_subsys_state *last, *tmp;
4370 
4371 	cgroup_assert_mutex_or_rcu_locked();
4372 
4373 	do {
4374 		last = pos;
4375 		/* ->prev isn't RCU safe, walk ->next till the end */
4376 		pos = NULL;
4377 		css_for_each_child(tmp, last)
4378 			pos = tmp;
4379 	} while (pos);
4380 
4381 	return last;
4382 }
4383 
4384 static struct cgroup_subsys_state *
4385 css_leftmost_descendant(struct cgroup_subsys_state *pos)
4386 {
4387 	struct cgroup_subsys_state *last;
4388 
4389 	do {
4390 		last = pos;
4391 		pos = css_next_child(NULL, pos);
4392 	} while (pos);
4393 
4394 	return last;
4395 }
4396 
4397 /**
4398  * css_next_descendant_post - find the next descendant for post-order walk
4399  * @pos: the current position (%NULL to initiate traversal)
4400  * @root: css whose descendants to walk
4401  *
4402  * To be used by css_for_each_descendant_post().  Find the next descendant
4403  * to visit for post-order traversal of @root's descendants.  @root is
4404  * included in the iteration and the last node to be visited.
4405  *
4406  * While this function requires cgroup_mutex or RCU read locking, it
4407  * doesn't require the whole traversal to be contained in a single critical
4408  * section.  This function will return the correct next descendant as long
4409  * as both @pos and @cgroup are accessible and @pos is a descendant of
4410  * @cgroup.
4411  *
4412  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4413  * css which finished ->css_online() is guaranteed to be visible in the
4414  * future iterations and will stay visible until the last reference is put.
4415  * A css which hasn't finished ->css_online() or already finished
4416  * ->css_offline() may show up during traversal.  It's each subsystem's
4417  * responsibility to synchronize against on/offlining.
4418  */
4419 struct cgroup_subsys_state *
4420 css_next_descendant_post(struct cgroup_subsys_state *pos,
4421 			 struct cgroup_subsys_state *root)
4422 {
4423 	struct cgroup_subsys_state *next;
4424 
4425 	cgroup_assert_mutex_or_rcu_locked();
4426 
4427 	/* if first iteration, visit leftmost descendant which may be @root */
4428 	if (!pos)
4429 		return css_leftmost_descendant(root);
4430 
4431 	/* if we visited @root, we're done */
4432 	if (pos == root)
4433 		return NULL;
4434 
4435 	/* if there's an unvisited sibling, visit its leftmost descendant */
4436 	next = css_next_child(pos, pos->parent);
4437 	if (next)
4438 		return css_leftmost_descendant(next);
4439 
4440 	/* no sibling left, visit parent */
4441 	return pos->parent;
4442 }
4443 
4444 /**
4445  * css_has_online_children - does a css have online children
4446  * @css: the target css
4447  *
4448  * Returns %true if @css has any online children; otherwise, %false.  This
4449  * function can be called from any context but the caller is responsible
4450  * for synchronizing against on/offlining as necessary.
4451  */
4452 bool css_has_online_children(struct cgroup_subsys_state *css)
4453 {
4454 	struct cgroup_subsys_state *child;
4455 	bool ret = false;
4456 
4457 	rcu_read_lock();
4458 	css_for_each_child(child, css) {
4459 		if (child->flags & CSS_ONLINE) {
4460 			ret = true;
4461 			break;
4462 		}
4463 	}
4464 	rcu_read_unlock();
4465 	return ret;
4466 }
4467 
4468 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it)
4469 {
4470 	struct list_head *l;
4471 	struct cgrp_cset_link *link;
4472 	struct css_set *cset;
4473 
4474 	lockdep_assert_held(&css_set_lock);
4475 
4476 	/* find the next threaded cset */
4477 	if (it->tcset_pos) {
4478 		l = it->tcset_pos->next;
4479 
4480 		if (l != it->tcset_head) {
4481 			it->tcset_pos = l;
4482 			return container_of(l, struct css_set,
4483 					    threaded_csets_node);
4484 		}
4485 
4486 		it->tcset_pos = NULL;
4487 	}
4488 
4489 	/* find the next cset */
4490 	l = it->cset_pos;
4491 	l = l->next;
4492 	if (l == it->cset_head) {
4493 		it->cset_pos = NULL;
4494 		return NULL;
4495 	}
4496 
4497 	if (it->ss) {
4498 		cset = container_of(l, struct css_set, e_cset_node[it->ss->id]);
4499 	} else {
4500 		link = list_entry(l, struct cgrp_cset_link, cset_link);
4501 		cset = link->cset;
4502 	}
4503 
4504 	it->cset_pos = l;
4505 
4506 	/* initialize threaded css_set walking */
4507 	if (it->flags & CSS_TASK_ITER_THREADED) {
4508 		if (it->cur_dcset)
4509 			put_css_set_locked(it->cur_dcset);
4510 		it->cur_dcset = cset;
4511 		get_css_set(cset);
4512 
4513 		it->tcset_head = &cset->threaded_csets;
4514 		it->tcset_pos = &cset->threaded_csets;
4515 	}
4516 
4517 	return cset;
4518 }
4519 
4520 /**
4521  * css_task_iter_advance_css_set - advance a task iterator to the next css_set
4522  * @it: the iterator to advance
4523  *
4524  * Advance @it to the next css_set to walk.
4525  */
4526 static void css_task_iter_advance_css_set(struct css_task_iter *it)
4527 {
4528 	struct css_set *cset;
4529 
4530 	lockdep_assert_held(&css_set_lock);
4531 
4532 	/* Advance to the next non-empty css_set and find first non-empty tasks list*/
4533 	while ((cset = css_task_iter_next_css_set(it))) {
4534 		if (!list_empty(&cset->tasks)) {
4535 			it->cur_tasks_head = &cset->tasks;
4536 			break;
4537 		} else if (!list_empty(&cset->mg_tasks)) {
4538 			it->cur_tasks_head = &cset->mg_tasks;
4539 			break;
4540 		} else if (!list_empty(&cset->dying_tasks)) {
4541 			it->cur_tasks_head = &cset->dying_tasks;
4542 			break;
4543 		}
4544 	}
4545 	if (!cset) {
4546 		it->task_pos = NULL;
4547 		return;
4548 	}
4549 	it->task_pos = it->cur_tasks_head->next;
4550 
4551 	/*
4552 	 * We don't keep css_sets locked across iteration steps and thus
4553 	 * need to take steps to ensure that iteration can be resumed after
4554 	 * the lock is re-acquired.  Iteration is performed at two levels -
4555 	 * css_sets and tasks in them.
4556 	 *
4557 	 * Once created, a css_set never leaves its cgroup lists, so a
4558 	 * pinned css_set is guaranteed to stay put and we can resume
4559 	 * iteration afterwards.
4560 	 *
4561 	 * Tasks may leave @cset across iteration steps.  This is resolved
4562 	 * by registering each iterator with the css_set currently being
4563 	 * walked and making css_set_move_task() advance iterators whose
4564 	 * next task is leaving.
4565 	 */
4566 	if (it->cur_cset) {
4567 		list_del(&it->iters_node);
4568 		put_css_set_locked(it->cur_cset);
4569 	}
4570 	get_css_set(cset);
4571 	it->cur_cset = cset;
4572 	list_add(&it->iters_node, &cset->task_iters);
4573 }
4574 
4575 static void css_task_iter_skip(struct css_task_iter *it,
4576 			       struct task_struct *task)
4577 {
4578 	lockdep_assert_held(&css_set_lock);
4579 
4580 	if (it->task_pos == &task->cg_list) {
4581 		it->task_pos = it->task_pos->next;
4582 		it->flags |= CSS_TASK_ITER_SKIPPED;
4583 	}
4584 }
4585 
4586 static void css_task_iter_advance(struct css_task_iter *it)
4587 {
4588 	struct task_struct *task;
4589 
4590 	lockdep_assert_held(&css_set_lock);
4591 repeat:
4592 	if (it->task_pos) {
4593 		/*
4594 		 * Advance iterator to find next entry. We go through cset
4595 		 * tasks, mg_tasks and dying_tasks, when consumed we move onto
4596 		 * the next cset.
4597 		 */
4598 		if (it->flags & CSS_TASK_ITER_SKIPPED)
4599 			it->flags &= ~CSS_TASK_ITER_SKIPPED;
4600 		else
4601 			it->task_pos = it->task_pos->next;
4602 
4603 		if (it->task_pos == &it->cur_cset->tasks) {
4604 			it->cur_tasks_head = &it->cur_cset->mg_tasks;
4605 			it->task_pos = it->cur_tasks_head->next;
4606 		}
4607 		if (it->task_pos == &it->cur_cset->mg_tasks) {
4608 			it->cur_tasks_head = &it->cur_cset->dying_tasks;
4609 			it->task_pos = it->cur_tasks_head->next;
4610 		}
4611 		if (it->task_pos == &it->cur_cset->dying_tasks)
4612 			css_task_iter_advance_css_set(it);
4613 	} else {
4614 		/* called from start, proceed to the first cset */
4615 		css_task_iter_advance_css_set(it);
4616 	}
4617 
4618 	if (!it->task_pos)
4619 		return;
4620 
4621 	task = list_entry(it->task_pos, struct task_struct, cg_list);
4622 
4623 	if (it->flags & CSS_TASK_ITER_PROCS) {
4624 		/* if PROCS, skip over tasks which aren't group leaders */
4625 		if (!thread_group_leader(task))
4626 			goto repeat;
4627 
4628 		/* and dying leaders w/o live member threads */
4629 		if (it->cur_tasks_head == &it->cur_cset->dying_tasks &&
4630 		    !atomic_read(&task->signal->live))
4631 			goto repeat;
4632 	} else {
4633 		/* skip all dying ones */
4634 		if (it->cur_tasks_head == &it->cur_cset->dying_tasks)
4635 			goto repeat;
4636 	}
4637 }
4638 
4639 /**
4640  * css_task_iter_start - initiate task iteration
4641  * @css: the css to walk tasks of
4642  * @flags: CSS_TASK_ITER_* flags
4643  * @it: the task iterator to use
4644  *
4645  * Initiate iteration through the tasks of @css.  The caller can call
4646  * css_task_iter_next() to walk through the tasks until the function
4647  * returns NULL.  On completion of iteration, css_task_iter_end() must be
4648  * called.
4649  */
4650 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags,
4651 			 struct css_task_iter *it)
4652 {
4653 	memset(it, 0, sizeof(*it));
4654 
4655 	spin_lock_irq(&css_set_lock);
4656 
4657 	it->ss = css->ss;
4658 	it->flags = flags;
4659 
4660 	if (CGROUP_HAS_SUBSYS_CONFIG && it->ss)
4661 		it->cset_pos = &css->cgroup->e_csets[css->ss->id];
4662 	else
4663 		it->cset_pos = &css->cgroup->cset_links;
4664 
4665 	it->cset_head = it->cset_pos;
4666 
4667 	css_task_iter_advance(it);
4668 
4669 	spin_unlock_irq(&css_set_lock);
4670 }
4671 
4672 /**
4673  * css_task_iter_next - return the next task for the iterator
4674  * @it: the task iterator being iterated
4675  *
4676  * The "next" function for task iteration.  @it should have been
4677  * initialized via css_task_iter_start().  Returns NULL when the iteration
4678  * reaches the end.
4679  */
4680 struct task_struct *css_task_iter_next(struct css_task_iter *it)
4681 {
4682 	if (it->cur_task) {
4683 		put_task_struct(it->cur_task);
4684 		it->cur_task = NULL;
4685 	}
4686 
4687 	spin_lock_irq(&css_set_lock);
4688 
4689 	/* @it may be half-advanced by skips, finish advancing */
4690 	if (it->flags & CSS_TASK_ITER_SKIPPED)
4691 		css_task_iter_advance(it);
4692 
4693 	if (it->task_pos) {
4694 		it->cur_task = list_entry(it->task_pos, struct task_struct,
4695 					  cg_list);
4696 		get_task_struct(it->cur_task);
4697 		css_task_iter_advance(it);
4698 	}
4699 
4700 	spin_unlock_irq(&css_set_lock);
4701 
4702 	return it->cur_task;
4703 }
4704 
4705 /**
4706  * css_task_iter_end - finish task iteration
4707  * @it: the task iterator to finish
4708  *
4709  * Finish task iteration started by css_task_iter_start().
4710  */
4711 void css_task_iter_end(struct css_task_iter *it)
4712 {
4713 	if (it->cur_cset) {
4714 		spin_lock_irq(&css_set_lock);
4715 		list_del(&it->iters_node);
4716 		put_css_set_locked(it->cur_cset);
4717 		spin_unlock_irq(&css_set_lock);
4718 	}
4719 
4720 	if (it->cur_dcset)
4721 		put_css_set(it->cur_dcset);
4722 
4723 	if (it->cur_task)
4724 		put_task_struct(it->cur_task);
4725 }
4726 
4727 static void cgroup_procs_release(struct kernfs_open_file *of)
4728 {
4729 	if (of->priv) {
4730 		css_task_iter_end(of->priv);
4731 		kfree(of->priv);
4732 	}
4733 }
4734 
4735 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos)
4736 {
4737 	struct kernfs_open_file *of = s->private;
4738 	struct css_task_iter *it = of->priv;
4739 
4740 	if (pos)
4741 		(*pos)++;
4742 
4743 	return css_task_iter_next(it);
4744 }
4745 
4746 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos,
4747 				  unsigned int iter_flags)
4748 {
4749 	struct kernfs_open_file *of = s->private;
4750 	struct cgroup *cgrp = seq_css(s)->cgroup;
4751 	struct css_task_iter *it = of->priv;
4752 
4753 	/*
4754 	 * When a seq_file is seeked, it's always traversed sequentially
4755 	 * from position 0, so we can simply keep iterating on !0 *pos.
4756 	 */
4757 	if (!it) {
4758 		if (WARN_ON_ONCE((*pos)))
4759 			return ERR_PTR(-EINVAL);
4760 
4761 		it = kzalloc(sizeof(*it), GFP_KERNEL);
4762 		if (!it)
4763 			return ERR_PTR(-ENOMEM);
4764 		of->priv = it;
4765 		css_task_iter_start(&cgrp->self, iter_flags, it);
4766 	} else if (!(*pos)) {
4767 		css_task_iter_end(it);
4768 		css_task_iter_start(&cgrp->self, iter_flags, it);
4769 	} else
4770 		return it->cur_task;
4771 
4772 	return cgroup_procs_next(s, NULL, NULL);
4773 }
4774 
4775 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos)
4776 {
4777 	struct cgroup *cgrp = seq_css(s)->cgroup;
4778 
4779 	/*
4780 	 * All processes of a threaded subtree belong to the domain cgroup
4781 	 * of the subtree.  Only threads can be distributed across the
4782 	 * subtree.  Reject reads on cgroup.procs in the subtree proper.
4783 	 * They're always empty anyway.
4784 	 */
4785 	if (cgroup_is_threaded(cgrp))
4786 		return ERR_PTR(-EOPNOTSUPP);
4787 
4788 	return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS |
4789 					    CSS_TASK_ITER_THREADED);
4790 }
4791 
4792 static int cgroup_procs_show(struct seq_file *s, void *v)
4793 {
4794 	seq_printf(s, "%d\n", task_pid_vnr(v));
4795 	return 0;
4796 }
4797 
4798 static int cgroup_may_write(const struct cgroup *cgrp, struct super_block *sb)
4799 {
4800 	int ret;
4801 	struct inode *inode;
4802 
4803 	lockdep_assert_held(&cgroup_mutex);
4804 
4805 	inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
4806 	if (!inode)
4807 		return -ENOMEM;
4808 
4809 	ret = inode_permission(&init_user_ns, inode, MAY_WRITE);
4810 	iput(inode);
4811 	return ret;
4812 }
4813 
4814 static int cgroup_procs_write_permission(struct cgroup *src_cgrp,
4815 					 struct cgroup *dst_cgrp,
4816 					 struct super_block *sb)
4817 {
4818 	struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
4819 	struct cgroup *com_cgrp = src_cgrp;
4820 	int ret;
4821 
4822 	lockdep_assert_held(&cgroup_mutex);
4823 
4824 	/* find the common ancestor */
4825 	while (!cgroup_is_descendant(dst_cgrp, com_cgrp))
4826 		com_cgrp = cgroup_parent(com_cgrp);
4827 
4828 	/* %current should be authorized to migrate to the common ancestor */
4829 	ret = cgroup_may_write(com_cgrp, sb);
4830 	if (ret)
4831 		return ret;
4832 
4833 	/*
4834 	 * If namespaces are delegation boundaries, %current must be able
4835 	 * to see both source and destination cgroups from its namespace.
4836 	 */
4837 	if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) &&
4838 	    (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) ||
4839 	     !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp)))
4840 		return -ENOENT;
4841 
4842 	return 0;
4843 }
4844 
4845 static int cgroup_attach_permissions(struct cgroup *src_cgrp,
4846 				     struct cgroup *dst_cgrp,
4847 				     struct super_block *sb, bool threadgroup)
4848 {
4849 	int ret = 0;
4850 
4851 	ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, sb);
4852 	if (ret)
4853 		return ret;
4854 
4855 	ret = cgroup_migrate_vet_dst(dst_cgrp);
4856 	if (ret)
4857 		return ret;
4858 
4859 	if (!threadgroup && (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp))
4860 		ret = -EOPNOTSUPP;
4861 
4862 	return ret;
4863 }
4864 
4865 static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
4866 				    bool threadgroup)
4867 {
4868 	struct cgroup *src_cgrp, *dst_cgrp;
4869 	struct task_struct *task;
4870 	ssize_t ret;
4871 	bool locked;
4872 
4873 	dst_cgrp = cgroup_kn_lock_live(of->kn, false);
4874 	if (!dst_cgrp)
4875 		return -ENODEV;
4876 
4877 	task = cgroup_procs_write_start(buf, threadgroup, &locked);
4878 	ret = PTR_ERR_OR_ZERO(task);
4879 	if (ret)
4880 		goto out_unlock;
4881 
4882 	/* find the source cgroup */
4883 	spin_lock_irq(&css_set_lock);
4884 	src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
4885 	spin_unlock_irq(&css_set_lock);
4886 
4887 	/* process and thread migrations follow same delegation rule */
4888 	ret = cgroup_attach_permissions(src_cgrp, dst_cgrp,
4889 					of->file->f_path.dentry->d_sb, threadgroup);
4890 	if (ret)
4891 		goto out_finish;
4892 
4893 	ret = cgroup_attach_task(dst_cgrp, task, threadgroup);
4894 
4895 out_finish:
4896 	cgroup_procs_write_finish(task, locked);
4897 out_unlock:
4898 	cgroup_kn_unlock(of->kn);
4899 
4900 	return ret;
4901 }
4902 
4903 static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
4904 				  char *buf, size_t nbytes, loff_t off)
4905 {
4906 	return __cgroup_procs_write(of, buf, true) ?: nbytes;
4907 }
4908 
4909 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos)
4910 {
4911 	return __cgroup_procs_start(s, pos, 0);
4912 }
4913 
4914 static ssize_t cgroup_threads_write(struct kernfs_open_file *of,
4915 				    char *buf, size_t nbytes, loff_t off)
4916 {
4917 	return __cgroup_procs_write(of, buf, false) ?: nbytes;
4918 }
4919 
4920 /* cgroup core interface files for the default hierarchy */
4921 static struct cftype cgroup_base_files[] = {
4922 	{
4923 		.name = "cgroup.type",
4924 		.flags = CFTYPE_NOT_ON_ROOT,
4925 		.seq_show = cgroup_type_show,
4926 		.write = cgroup_type_write,
4927 	},
4928 	{
4929 		.name = "cgroup.procs",
4930 		.flags = CFTYPE_NS_DELEGATABLE,
4931 		.file_offset = offsetof(struct cgroup, procs_file),
4932 		.release = cgroup_procs_release,
4933 		.seq_start = cgroup_procs_start,
4934 		.seq_next = cgroup_procs_next,
4935 		.seq_show = cgroup_procs_show,
4936 		.write = cgroup_procs_write,
4937 	},
4938 	{
4939 		.name = "cgroup.threads",
4940 		.flags = CFTYPE_NS_DELEGATABLE,
4941 		.release = cgroup_procs_release,
4942 		.seq_start = cgroup_threads_start,
4943 		.seq_next = cgroup_procs_next,
4944 		.seq_show = cgroup_procs_show,
4945 		.write = cgroup_threads_write,
4946 	},
4947 	{
4948 		.name = "cgroup.controllers",
4949 		.seq_show = cgroup_controllers_show,
4950 	},
4951 	{
4952 		.name = "cgroup.subtree_control",
4953 		.flags = CFTYPE_NS_DELEGATABLE,
4954 		.seq_show = cgroup_subtree_control_show,
4955 		.write = cgroup_subtree_control_write,
4956 	},
4957 	{
4958 		.name = "cgroup.events",
4959 		.flags = CFTYPE_NOT_ON_ROOT,
4960 		.file_offset = offsetof(struct cgroup, events_file),
4961 		.seq_show = cgroup_events_show,
4962 	},
4963 	{
4964 		.name = "cgroup.max.descendants",
4965 		.seq_show = cgroup_max_descendants_show,
4966 		.write = cgroup_max_descendants_write,
4967 	},
4968 	{
4969 		.name = "cgroup.max.depth",
4970 		.seq_show = cgroup_max_depth_show,
4971 		.write = cgroup_max_depth_write,
4972 	},
4973 	{
4974 		.name = "cgroup.stat",
4975 		.seq_show = cgroup_stat_show,
4976 	},
4977 	{
4978 		.name = "cgroup.freeze",
4979 		.flags = CFTYPE_NOT_ON_ROOT,
4980 		.seq_show = cgroup_freeze_show,
4981 		.write = cgroup_freeze_write,
4982 	},
4983 	{
4984 		.name = "cgroup.kill",
4985 		.flags = CFTYPE_NOT_ON_ROOT,
4986 		.write = cgroup_kill_write,
4987 	},
4988 	{
4989 		.name = "cpu.stat",
4990 		.seq_show = cpu_stat_show,
4991 	},
4992 #ifdef CONFIG_PSI
4993 	{
4994 		.name = "io.pressure",
4995 		.flags = CFTYPE_PRESSURE,
4996 		.seq_show = cgroup_io_pressure_show,
4997 		.write = cgroup_io_pressure_write,
4998 		.poll = cgroup_pressure_poll,
4999 		.release = cgroup_pressure_release,
5000 	},
5001 	{
5002 		.name = "memory.pressure",
5003 		.flags = CFTYPE_PRESSURE,
5004 		.seq_show = cgroup_memory_pressure_show,
5005 		.write = cgroup_memory_pressure_write,
5006 		.poll = cgroup_pressure_poll,
5007 		.release = cgroup_pressure_release,
5008 	},
5009 	{
5010 		.name = "cpu.pressure",
5011 		.flags = CFTYPE_PRESSURE,
5012 		.seq_show = cgroup_cpu_pressure_show,
5013 		.write = cgroup_cpu_pressure_write,
5014 		.poll = cgroup_pressure_poll,
5015 		.release = cgroup_pressure_release,
5016 	},
5017 #endif /* CONFIG_PSI */
5018 	{ }	/* terminate */
5019 };
5020 
5021 /*
5022  * css destruction is four-stage process.
5023  *
5024  * 1. Destruction starts.  Killing of the percpu_ref is initiated.
5025  *    Implemented in kill_css().
5026  *
5027  * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
5028  *    and thus css_tryget_online() is guaranteed to fail, the css can be
5029  *    offlined by invoking offline_css().  After offlining, the base ref is
5030  *    put.  Implemented in css_killed_work_fn().
5031  *
5032  * 3. When the percpu_ref reaches zero, the only possible remaining
5033  *    accessors are inside RCU read sections.  css_release() schedules the
5034  *    RCU callback.
5035  *
5036  * 4. After the grace period, the css can be freed.  Implemented in
5037  *    css_free_work_fn().
5038  *
5039  * It is actually hairier because both step 2 and 4 require process context
5040  * and thus involve punting to css->destroy_work adding two additional
5041  * steps to the already complex sequence.
5042  */
5043 static void css_free_rwork_fn(struct work_struct *work)
5044 {
5045 	struct cgroup_subsys_state *css = container_of(to_rcu_work(work),
5046 				struct cgroup_subsys_state, destroy_rwork);
5047 	struct cgroup_subsys *ss = css->ss;
5048 	struct cgroup *cgrp = css->cgroup;
5049 
5050 	percpu_ref_exit(&css->refcnt);
5051 
5052 	if (ss) {
5053 		/* css free path */
5054 		struct cgroup_subsys_state *parent = css->parent;
5055 		int id = css->id;
5056 
5057 		ss->css_free(css);
5058 		cgroup_idr_remove(&ss->css_idr, id);
5059 		cgroup_put(cgrp);
5060 
5061 		if (parent)
5062 			css_put(parent);
5063 	} else {
5064 		/* cgroup free path */
5065 		atomic_dec(&cgrp->root->nr_cgrps);
5066 		cgroup1_pidlist_destroy_all(cgrp);
5067 		cancel_work_sync(&cgrp->release_agent_work);
5068 
5069 		if (cgroup_parent(cgrp)) {
5070 			/*
5071 			 * We get a ref to the parent, and put the ref when
5072 			 * this cgroup is being freed, so it's guaranteed
5073 			 * that the parent won't be destroyed before its
5074 			 * children.
5075 			 */
5076 			cgroup_put(cgroup_parent(cgrp));
5077 			kernfs_put(cgrp->kn);
5078 			psi_cgroup_free(cgrp);
5079 			cgroup_rstat_exit(cgrp);
5080 			kfree(cgrp);
5081 		} else {
5082 			/*
5083 			 * This is root cgroup's refcnt reaching zero,
5084 			 * which indicates that the root should be
5085 			 * released.
5086 			 */
5087 			cgroup_destroy_root(cgrp->root);
5088 		}
5089 	}
5090 }
5091 
5092 static void css_release_work_fn(struct work_struct *work)
5093 {
5094 	struct cgroup_subsys_state *css =
5095 		container_of(work, struct cgroup_subsys_state, destroy_work);
5096 	struct cgroup_subsys *ss = css->ss;
5097 	struct cgroup *cgrp = css->cgroup;
5098 
5099 	mutex_lock(&cgroup_mutex);
5100 
5101 	css->flags |= CSS_RELEASED;
5102 	list_del_rcu(&css->sibling);
5103 
5104 	if (ss) {
5105 		/* css release path */
5106 		if (!list_empty(&css->rstat_css_node)) {
5107 			cgroup_rstat_flush(cgrp);
5108 			list_del_rcu(&css->rstat_css_node);
5109 		}
5110 
5111 		cgroup_idr_replace(&ss->css_idr, NULL, css->id);
5112 		if (ss->css_released)
5113 			ss->css_released(css);
5114 	} else {
5115 		struct cgroup *tcgrp;
5116 
5117 		/* cgroup release path */
5118 		TRACE_CGROUP_PATH(release, cgrp);
5119 
5120 		cgroup_rstat_flush(cgrp);
5121 
5122 		spin_lock_irq(&css_set_lock);
5123 		for (tcgrp = cgroup_parent(cgrp); tcgrp;
5124 		     tcgrp = cgroup_parent(tcgrp))
5125 			tcgrp->nr_dying_descendants--;
5126 		spin_unlock_irq(&css_set_lock);
5127 
5128 		/*
5129 		 * There are two control paths which try to determine
5130 		 * cgroup from dentry without going through kernfs -
5131 		 * cgroupstats_build() and css_tryget_online_from_dir().
5132 		 * Those are supported by RCU protecting clearing of
5133 		 * cgrp->kn->priv backpointer.
5134 		 */
5135 		if (cgrp->kn)
5136 			RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
5137 					 NULL);
5138 	}
5139 
5140 	mutex_unlock(&cgroup_mutex);
5141 
5142 	INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5143 	queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5144 }
5145 
5146 static void css_release(struct percpu_ref *ref)
5147 {
5148 	struct cgroup_subsys_state *css =
5149 		container_of(ref, struct cgroup_subsys_state, refcnt);
5150 
5151 	INIT_WORK(&css->destroy_work, css_release_work_fn);
5152 	queue_work(cgroup_destroy_wq, &css->destroy_work);
5153 }
5154 
5155 static void init_and_link_css(struct cgroup_subsys_state *css,
5156 			      struct cgroup_subsys *ss, struct cgroup *cgrp)
5157 {
5158 	lockdep_assert_held(&cgroup_mutex);
5159 
5160 	cgroup_get_live(cgrp);
5161 
5162 	memset(css, 0, sizeof(*css));
5163 	css->cgroup = cgrp;
5164 	css->ss = ss;
5165 	css->id = -1;
5166 	INIT_LIST_HEAD(&css->sibling);
5167 	INIT_LIST_HEAD(&css->children);
5168 	INIT_LIST_HEAD(&css->rstat_css_node);
5169 	css->serial_nr = css_serial_nr_next++;
5170 	atomic_set(&css->online_cnt, 0);
5171 
5172 	if (cgroup_parent(cgrp)) {
5173 		css->parent = cgroup_css(cgroup_parent(cgrp), ss);
5174 		css_get(css->parent);
5175 	}
5176 
5177 	if (ss->css_rstat_flush)
5178 		list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list);
5179 
5180 	BUG_ON(cgroup_css(cgrp, ss));
5181 }
5182 
5183 /* invoke ->css_online() on a new CSS and mark it online if successful */
5184 static int online_css(struct cgroup_subsys_state *css)
5185 {
5186 	struct cgroup_subsys *ss = css->ss;
5187 	int ret = 0;
5188 
5189 	lockdep_assert_held(&cgroup_mutex);
5190 
5191 	if (ss->css_online)
5192 		ret = ss->css_online(css);
5193 	if (!ret) {
5194 		css->flags |= CSS_ONLINE;
5195 		rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
5196 
5197 		atomic_inc(&css->online_cnt);
5198 		if (css->parent)
5199 			atomic_inc(&css->parent->online_cnt);
5200 	}
5201 	return ret;
5202 }
5203 
5204 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
5205 static void offline_css(struct cgroup_subsys_state *css)
5206 {
5207 	struct cgroup_subsys *ss = css->ss;
5208 
5209 	lockdep_assert_held(&cgroup_mutex);
5210 
5211 	if (!(css->flags & CSS_ONLINE))
5212 		return;
5213 
5214 	if (ss->css_offline)
5215 		ss->css_offline(css);
5216 
5217 	css->flags &= ~CSS_ONLINE;
5218 	RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
5219 
5220 	wake_up_all(&css->cgroup->offline_waitq);
5221 }
5222 
5223 /**
5224  * css_create - create a cgroup_subsys_state
5225  * @cgrp: the cgroup new css will be associated with
5226  * @ss: the subsys of new css
5227  *
5228  * Create a new css associated with @cgrp - @ss pair.  On success, the new
5229  * css is online and installed in @cgrp.  This function doesn't create the
5230  * interface files.  Returns 0 on success, -errno on failure.
5231  */
5232 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
5233 					      struct cgroup_subsys *ss)
5234 {
5235 	struct cgroup *parent = cgroup_parent(cgrp);
5236 	struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
5237 	struct cgroup_subsys_state *css;
5238 	int err;
5239 
5240 	lockdep_assert_held(&cgroup_mutex);
5241 
5242 	css = ss->css_alloc(parent_css);
5243 	if (!css)
5244 		css = ERR_PTR(-ENOMEM);
5245 	if (IS_ERR(css))
5246 		return css;
5247 
5248 	init_and_link_css(css, ss, cgrp);
5249 
5250 	err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
5251 	if (err)
5252 		goto err_free_css;
5253 
5254 	err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
5255 	if (err < 0)
5256 		goto err_free_css;
5257 	css->id = err;
5258 
5259 	/* @css is ready to be brought online now, make it visible */
5260 	list_add_tail_rcu(&css->sibling, &parent_css->children);
5261 	cgroup_idr_replace(&ss->css_idr, css, css->id);
5262 
5263 	err = online_css(css);
5264 	if (err)
5265 		goto err_list_del;
5266 
5267 	return css;
5268 
5269 err_list_del:
5270 	list_del_rcu(&css->sibling);
5271 err_free_css:
5272 	list_del_rcu(&css->rstat_css_node);
5273 	INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5274 	queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5275 	return ERR_PTR(err);
5276 }
5277 
5278 /*
5279  * The returned cgroup is fully initialized including its control mask, but
5280  * it isn't associated with its kernfs_node and doesn't have the control
5281  * mask applied.
5282  */
5283 static struct cgroup *cgroup_create(struct cgroup *parent, const char *name,
5284 				    umode_t mode)
5285 {
5286 	struct cgroup_root *root = parent->root;
5287 	struct cgroup *cgrp, *tcgrp;
5288 	struct kernfs_node *kn;
5289 	int level = parent->level + 1;
5290 	int ret;
5291 
5292 	/* allocate the cgroup and its ID, 0 is reserved for the root */
5293 	cgrp = kzalloc(struct_size(cgrp, ancestor_ids, (level + 1)),
5294 		       GFP_KERNEL);
5295 	if (!cgrp)
5296 		return ERR_PTR(-ENOMEM);
5297 
5298 	ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
5299 	if (ret)
5300 		goto out_free_cgrp;
5301 
5302 	ret = cgroup_rstat_init(cgrp);
5303 	if (ret)
5304 		goto out_cancel_ref;
5305 
5306 	/* create the directory */
5307 	kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
5308 	if (IS_ERR(kn)) {
5309 		ret = PTR_ERR(kn);
5310 		goto out_stat_exit;
5311 	}
5312 	cgrp->kn = kn;
5313 
5314 	init_cgroup_housekeeping(cgrp);
5315 
5316 	cgrp->self.parent = &parent->self;
5317 	cgrp->root = root;
5318 	cgrp->level = level;
5319 
5320 	ret = psi_cgroup_alloc(cgrp);
5321 	if (ret)
5322 		goto out_kernfs_remove;
5323 
5324 	ret = cgroup_bpf_inherit(cgrp);
5325 	if (ret)
5326 		goto out_psi_free;
5327 
5328 	/*
5329 	 * New cgroup inherits effective freeze counter, and
5330 	 * if the parent has to be frozen, the child has too.
5331 	 */
5332 	cgrp->freezer.e_freeze = parent->freezer.e_freeze;
5333 	if (cgrp->freezer.e_freeze) {
5334 		/*
5335 		 * Set the CGRP_FREEZE flag, so when a process will be
5336 		 * attached to the child cgroup, it will become frozen.
5337 		 * At this point the new cgroup is unpopulated, so we can
5338 		 * consider it frozen immediately.
5339 		 */
5340 		set_bit(CGRP_FREEZE, &cgrp->flags);
5341 		set_bit(CGRP_FROZEN, &cgrp->flags);
5342 	}
5343 
5344 	spin_lock_irq(&css_set_lock);
5345 	for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5346 		cgrp->ancestor_ids[tcgrp->level] = cgroup_id(tcgrp);
5347 
5348 		if (tcgrp != cgrp) {
5349 			tcgrp->nr_descendants++;
5350 
5351 			/*
5352 			 * If the new cgroup is frozen, all ancestor cgroups
5353 			 * get a new frozen descendant, but their state can't
5354 			 * change because of this.
5355 			 */
5356 			if (cgrp->freezer.e_freeze)
5357 				tcgrp->freezer.nr_frozen_descendants++;
5358 		}
5359 	}
5360 	spin_unlock_irq(&css_set_lock);
5361 
5362 	if (notify_on_release(parent))
5363 		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
5364 
5365 	if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
5366 		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
5367 
5368 	cgrp->self.serial_nr = css_serial_nr_next++;
5369 
5370 	/* allocation complete, commit to creation */
5371 	list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
5372 	atomic_inc(&root->nr_cgrps);
5373 	cgroup_get_live(parent);
5374 
5375 	/*
5376 	 * On the default hierarchy, a child doesn't automatically inherit
5377 	 * subtree_control from the parent.  Each is configured manually.
5378 	 */
5379 	if (!cgroup_on_dfl(cgrp))
5380 		cgrp->subtree_control = cgroup_control(cgrp);
5381 
5382 	cgroup_propagate_control(cgrp);
5383 
5384 	return cgrp;
5385 
5386 out_psi_free:
5387 	psi_cgroup_free(cgrp);
5388 out_kernfs_remove:
5389 	kernfs_remove(cgrp->kn);
5390 out_stat_exit:
5391 	cgroup_rstat_exit(cgrp);
5392 out_cancel_ref:
5393 	percpu_ref_exit(&cgrp->self.refcnt);
5394 out_free_cgrp:
5395 	kfree(cgrp);
5396 	return ERR_PTR(ret);
5397 }
5398 
5399 static bool cgroup_check_hierarchy_limits(struct cgroup *parent)
5400 {
5401 	struct cgroup *cgroup;
5402 	int ret = false;
5403 	int level = 1;
5404 
5405 	lockdep_assert_held(&cgroup_mutex);
5406 
5407 	for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) {
5408 		if (cgroup->nr_descendants >= cgroup->max_descendants)
5409 			goto fail;
5410 
5411 		if (level > cgroup->max_depth)
5412 			goto fail;
5413 
5414 		level++;
5415 	}
5416 
5417 	ret = true;
5418 fail:
5419 	return ret;
5420 }
5421 
5422 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode)
5423 {
5424 	struct cgroup *parent, *cgrp;
5425 	int ret;
5426 
5427 	/* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
5428 	if (strchr(name, '\n'))
5429 		return -EINVAL;
5430 
5431 	parent = cgroup_kn_lock_live(parent_kn, false);
5432 	if (!parent)
5433 		return -ENODEV;
5434 
5435 	if (!cgroup_check_hierarchy_limits(parent)) {
5436 		ret = -EAGAIN;
5437 		goto out_unlock;
5438 	}
5439 
5440 	cgrp = cgroup_create(parent, name, mode);
5441 	if (IS_ERR(cgrp)) {
5442 		ret = PTR_ERR(cgrp);
5443 		goto out_unlock;
5444 	}
5445 
5446 	/*
5447 	 * This extra ref will be put in cgroup_free_fn() and guarantees
5448 	 * that @cgrp->kn is always accessible.
5449 	 */
5450 	kernfs_get(cgrp->kn);
5451 
5452 	ret = cgroup_kn_set_ugid(cgrp->kn);
5453 	if (ret)
5454 		goto out_destroy;
5455 
5456 	ret = css_populate_dir(&cgrp->self);
5457 	if (ret)
5458 		goto out_destroy;
5459 
5460 	ret = cgroup_apply_control_enable(cgrp);
5461 	if (ret)
5462 		goto out_destroy;
5463 
5464 	TRACE_CGROUP_PATH(mkdir, cgrp);
5465 
5466 	/* let's create and online css's */
5467 	kernfs_activate(cgrp->kn);
5468 
5469 	ret = 0;
5470 	goto out_unlock;
5471 
5472 out_destroy:
5473 	cgroup_destroy_locked(cgrp);
5474 out_unlock:
5475 	cgroup_kn_unlock(parent_kn);
5476 	return ret;
5477 }
5478 
5479 /*
5480  * This is called when the refcnt of a css is confirmed to be killed.
5481  * css_tryget_online() is now guaranteed to fail.  Tell the subsystem to
5482  * initiate destruction and put the css ref from kill_css().
5483  */
5484 static void css_killed_work_fn(struct work_struct *work)
5485 {
5486 	struct cgroup_subsys_state *css =
5487 		container_of(work, struct cgroup_subsys_state, destroy_work);
5488 
5489 	mutex_lock(&cgroup_mutex);
5490 
5491 	do {
5492 		offline_css(css);
5493 		css_put(css);
5494 		/* @css can't go away while we're holding cgroup_mutex */
5495 		css = css->parent;
5496 	} while (css && atomic_dec_and_test(&css->online_cnt));
5497 
5498 	mutex_unlock(&cgroup_mutex);
5499 }
5500 
5501 /* css kill confirmation processing requires process context, bounce */
5502 static void css_killed_ref_fn(struct percpu_ref *ref)
5503 {
5504 	struct cgroup_subsys_state *css =
5505 		container_of(ref, struct cgroup_subsys_state, refcnt);
5506 
5507 	if (atomic_dec_and_test(&css->online_cnt)) {
5508 		INIT_WORK(&css->destroy_work, css_killed_work_fn);
5509 		queue_work(cgroup_destroy_wq, &css->destroy_work);
5510 	}
5511 }
5512 
5513 /**
5514  * kill_css - destroy a css
5515  * @css: css to destroy
5516  *
5517  * This function initiates destruction of @css by removing cgroup interface
5518  * files and putting its base reference.  ->css_offline() will be invoked
5519  * asynchronously once css_tryget_online() is guaranteed to fail and when
5520  * the reference count reaches zero, @css will be released.
5521  */
5522 static void kill_css(struct cgroup_subsys_state *css)
5523 {
5524 	lockdep_assert_held(&cgroup_mutex);
5525 
5526 	if (css->flags & CSS_DYING)
5527 		return;
5528 
5529 	css->flags |= CSS_DYING;
5530 
5531 	/*
5532 	 * This must happen before css is disassociated with its cgroup.
5533 	 * See seq_css() for details.
5534 	 */
5535 	css_clear_dir(css);
5536 
5537 	/*
5538 	 * Killing would put the base ref, but we need to keep it alive
5539 	 * until after ->css_offline().
5540 	 */
5541 	css_get(css);
5542 
5543 	/*
5544 	 * cgroup core guarantees that, by the time ->css_offline() is
5545 	 * invoked, no new css reference will be given out via
5546 	 * css_tryget_online().  We can't simply call percpu_ref_kill() and
5547 	 * proceed to offlining css's because percpu_ref_kill() doesn't
5548 	 * guarantee that the ref is seen as killed on all CPUs on return.
5549 	 *
5550 	 * Use percpu_ref_kill_and_confirm() to get notifications as each
5551 	 * css is confirmed to be seen as killed on all CPUs.
5552 	 */
5553 	percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
5554 }
5555 
5556 /**
5557  * cgroup_destroy_locked - the first stage of cgroup destruction
5558  * @cgrp: cgroup to be destroyed
5559  *
5560  * css's make use of percpu refcnts whose killing latency shouldn't be
5561  * exposed to userland and are RCU protected.  Also, cgroup core needs to
5562  * guarantee that css_tryget_online() won't succeed by the time
5563  * ->css_offline() is invoked.  To satisfy all the requirements,
5564  * destruction is implemented in the following two steps.
5565  *
5566  * s1. Verify @cgrp can be destroyed and mark it dying.  Remove all
5567  *     userland visible parts and start killing the percpu refcnts of
5568  *     css's.  Set up so that the next stage will be kicked off once all
5569  *     the percpu refcnts are confirmed to be killed.
5570  *
5571  * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5572  *     rest of destruction.  Once all cgroup references are gone, the
5573  *     cgroup is RCU-freed.
5574  *
5575  * This function implements s1.  After this step, @cgrp is gone as far as
5576  * the userland is concerned and a new cgroup with the same name may be
5577  * created.  As cgroup doesn't care about the names internally, this
5578  * doesn't cause any problem.
5579  */
5580 static int cgroup_destroy_locked(struct cgroup *cgrp)
5581 	__releases(&cgroup_mutex) __acquires(&cgroup_mutex)
5582 {
5583 	struct cgroup *tcgrp, *parent = cgroup_parent(cgrp);
5584 	struct cgroup_subsys_state *css;
5585 	struct cgrp_cset_link *link;
5586 	int ssid;
5587 
5588 	lockdep_assert_held(&cgroup_mutex);
5589 
5590 	/*
5591 	 * Only migration can raise populated from zero and we're already
5592 	 * holding cgroup_mutex.
5593 	 */
5594 	if (cgroup_is_populated(cgrp))
5595 		return -EBUSY;
5596 
5597 	/*
5598 	 * Make sure there's no live children.  We can't test emptiness of
5599 	 * ->self.children as dead children linger on it while being
5600 	 * drained; otherwise, "rmdir parent/child parent" may fail.
5601 	 */
5602 	if (css_has_online_children(&cgrp->self))
5603 		return -EBUSY;
5604 
5605 	/*
5606 	 * Mark @cgrp and the associated csets dead.  The former prevents
5607 	 * further task migration and child creation by disabling
5608 	 * cgroup_lock_live_group().  The latter makes the csets ignored by
5609 	 * the migration path.
5610 	 */
5611 	cgrp->self.flags &= ~CSS_ONLINE;
5612 
5613 	spin_lock_irq(&css_set_lock);
5614 	list_for_each_entry(link, &cgrp->cset_links, cset_link)
5615 		link->cset->dead = true;
5616 	spin_unlock_irq(&css_set_lock);
5617 
5618 	/* initiate massacre of all css's */
5619 	for_each_css(css, ssid, cgrp)
5620 		kill_css(css);
5621 
5622 	/* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */
5623 	css_clear_dir(&cgrp->self);
5624 	kernfs_remove(cgrp->kn);
5625 
5626 	if (parent && cgroup_is_threaded(cgrp))
5627 		parent->nr_threaded_children--;
5628 
5629 	spin_lock_irq(&css_set_lock);
5630 	for (tcgrp = cgroup_parent(cgrp); tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5631 		tcgrp->nr_descendants--;
5632 		tcgrp->nr_dying_descendants++;
5633 		/*
5634 		 * If the dying cgroup is frozen, decrease frozen descendants
5635 		 * counters of ancestor cgroups.
5636 		 */
5637 		if (test_bit(CGRP_FROZEN, &cgrp->flags))
5638 			tcgrp->freezer.nr_frozen_descendants--;
5639 	}
5640 	spin_unlock_irq(&css_set_lock);
5641 
5642 	cgroup1_check_for_release(parent);
5643 
5644 	cgroup_bpf_offline(cgrp);
5645 
5646 	/* put the base reference */
5647 	percpu_ref_kill(&cgrp->self.refcnt);
5648 
5649 	return 0;
5650 };
5651 
5652 int cgroup_rmdir(struct kernfs_node *kn)
5653 {
5654 	struct cgroup *cgrp;
5655 	int ret = 0;
5656 
5657 	cgrp = cgroup_kn_lock_live(kn, false);
5658 	if (!cgrp)
5659 		return 0;
5660 
5661 	ret = cgroup_destroy_locked(cgrp);
5662 	if (!ret)
5663 		TRACE_CGROUP_PATH(rmdir, cgrp);
5664 
5665 	cgroup_kn_unlock(kn);
5666 	return ret;
5667 }
5668 
5669 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5670 	.show_options		= cgroup_show_options,
5671 	.mkdir			= cgroup_mkdir,
5672 	.rmdir			= cgroup_rmdir,
5673 	.show_path		= cgroup_show_path,
5674 };
5675 
5676 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
5677 {
5678 	struct cgroup_subsys_state *css;
5679 
5680 	pr_debug("Initializing cgroup subsys %s\n", ss->name);
5681 
5682 	mutex_lock(&cgroup_mutex);
5683 
5684 	idr_init(&ss->css_idr);
5685 	INIT_LIST_HEAD(&ss->cfts);
5686 
5687 	/* Create the root cgroup state for this subsystem */
5688 	ss->root = &cgrp_dfl_root;
5689 	css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
5690 	/* We don't handle early failures gracefully */
5691 	BUG_ON(IS_ERR(css));
5692 	init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
5693 
5694 	/*
5695 	 * Root csses are never destroyed and we can't initialize
5696 	 * percpu_ref during early init.  Disable refcnting.
5697 	 */
5698 	css->flags |= CSS_NO_REF;
5699 
5700 	if (early) {
5701 		/* allocation can't be done safely during early init */
5702 		css->id = 1;
5703 	} else {
5704 		css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5705 		BUG_ON(css->id < 0);
5706 	}
5707 
5708 	/* Update the init_css_set to contain a subsys
5709 	 * pointer to this state - since the subsystem is
5710 	 * newly registered, all tasks and hence the
5711 	 * init_css_set is in the subsystem's root cgroup. */
5712 	init_css_set.subsys[ss->id] = css;
5713 
5714 	have_fork_callback |= (bool)ss->fork << ss->id;
5715 	have_exit_callback |= (bool)ss->exit << ss->id;
5716 	have_release_callback |= (bool)ss->release << ss->id;
5717 	have_canfork_callback |= (bool)ss->can_fork << ss->id;
5718 
5719 	/* At system boot, before all subsystems have been
5720 	 * registered, no tasks have been forked, so we don't
5721 	 * need to invoke fork callbacks here. */
5722 	BUG_ON(!list_empty(&init_task.tasks));
5723 
5724 	BUG_ON(online_css(css));
5725 
5726 	mutex_unlock(&cgroup_mutex);
5727 }
5728 
5729 /**
5730  * cgroup_init_early - cgroup initialization at system boot
5731  *
5732  * Initialize cgroups at system boot, and initialize any
5733  * subsystems that request early init.
5734  */
5735 int __init cgroup_init_early(void)
5736 {
5737 	static struct cgroup_fs_context __initdata ctx;
5738 	struct cgroup_subsys *ss;
5739 	int i;
5740 
5741 	ctx.root = &cgrp_dfl_root;
5742 	init_cgroup_root(&ctx);
5743 	cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5744 
5745 	RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
5746 
5747 	for_each_subsys(ss, i) {
5748 		WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
5749 		     "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
5750 		     i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
5751 		     ss->id, ss->name);
5752 		WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5753 		     "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5754 
5755 		ss->id = i;
5756 		ss->name = cgroup_subsys_name[i];
5757 		if (!ss->legacy_name)
5758 			ss->legacy_name = cgroup_subsys_name[i];
5759 
5760 		if (ss->early_init)
5761 			cgroup_init_subsys(ss, true);
5762 	}
5763 	return 0;
5764 }
5765 
5766 /**
5767  * cgroup_init - cgroup initialization
5768  *
5769  * Register cgroup filesystem and /proc file, and initialize
5770  * any subsystems that didn't request early init.
5771  */
5772 int __init cgroup_init(void)
5773 {
5774 	struct cgroup_subsys *ss;
5775 	int ssid;
5776 
5777 	BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
5778 	BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
5779 	BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files));
5780 
5781 	cgroup_rstat_boot();
5782 
5783 	/*
5784 	 * The latency of the synchronize_rcu() is too high for cgroups,
5785 	 * avoid it at the cost of forcing all readers into the slow path.
5786 	 */
5787 	rcu_sync_enter_start(&cgroup_threadgroup_rwsem.rss);
5788 
5789 	get_user_ns(init_cgroup_ns.user_ns);
5790 
5791 	mutex_lock(&cgroup_mutex);
5792 
5793 	/*
5794 	 * Add init_css_set to the hash table so that dfl_root can link to
5795 	 * it during init.
5796 	 */
5797 	hash_add(css_set_table, &init_css_set.hlist,
5798 		 css_set_hash(init_css_set.subsys));
5799 
5800 	BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
5801 
5802 	mutex_unlock(&cgroup_mutex);
5803 
5804 	for_each_subsys(ss, ssid) {
5805 		if (ss->early_init) {
5806 			struct cgroup_subsys_state *css =
5807 				init_css_set.subsys[ss->id];
5808 
5809 			css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5810 						   GFP_KERNEL);
5811 			BUG_ON(css->id < 0);
5812 		} else {
5813 			cgroup_init_subsys(ss, false);
5814 		}
5815 
5816 		list_add_tail(&init_css_set.e_cset_node[ssid],
5817 			      &cgrp_dfl_root.cgrp.e_csets[ssid]);
5818 
5819 		/*
5820 		 * Setting dfl_root subsys_mask needs to consider the
5821 		 * disabled flag and cftype registration needs kmalloc,
5822 		 * both of which aren't available during early_init.
5823 		 */
5824 		if (!cgroup_ssid_enabled(ssid))
5825 			continue;
5826 
5827 		if (cgroup1_ssid_disabled(ssid))
5828 			printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n",
5829 			       ss->name);
5830 
5831 		cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5832 
5833 		/* implicit controllers must be threaded too */
5834 		WARN_ON(ss->implicit_on_dfl && !ss->threaded);
5835 
5836 		if (ss->implicit_on_dfl)
5837 			cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
5838 		else if (!ss->dfl_cftypes)
5839 			cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
5840 
5841 		if (ss->threaded)
5842 			cgrp_dfl_threaded_ss_mask |= 1 << ss->id;
5843 
5844 		if (ss->dfl_cftypes == ss->legacy_cftypes) {
5845 			WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5846 		} else {
5847 			WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5848 			WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
5849 		}
5850 
5851 		if (ss->bind)
5852 			ss->bind(init_css_set.subsys[ssid]);
5853 
5854 		mutex_lock(&cgroup_mutex);
5855 		css_populate_dir(init_css_set.subsys[ssid]);
5856 		mutex_unlock(&cgroup_mutex);
5857 	}
5858 
5859 	/* init_css_set.subsys[] has been updated, re-hash */
5860 	hash_del(&init_css_set.hlist);
5861 	hash_add(css_set_table, &init_css_set.hlist,
5862 		 css_set_hash(init_css_set.subsys));
5863 
5864 	WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
5865 	WARN_ON(register_filesystem(&cgroup_fs_type));
5866 	WARN_ON(register_filesystem(&cgroup2_fs_type));
5867 	WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show));
5868 #ifdef CONFIG_CPUSETS
5869 	WARN_ON(register_filesystem(&cpuset_fs_type));
5870 #endif
5871 
5872 	return 0;
5873 }
5874 
5875 static int __init cgroup_wq_init(void)
5876 {
5877 	/*
5878 	 * There isn't much point in executing destruction path in
5879 	 * parallel.  Good chunk is serialized with cgroup_mutex anyway.
5880 	 * Use 1 for @max_active.
5881 	 *
5882 	 * We would prefer to do this in cgroup_init() above, but that
5883 	 * is called before init_workqueues(): so leave this until after.
5884 	 */
5885 	cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
5886 	BUG_ON(!cgroup_destroy_wq);
5887 	return 0;
5888 }
5889 core_initcall(cgroup_wq_init);
5890 
5891 void cgroup_path_from_kernfs_id(u64 id, char *buf, size_t buflen)
5892 {
5893 	struct kernfs_node *kn;
5894 
5895 	kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id);
5896 	if (!kn)
5897 		return;
5898 	kernfs_path(kn, buf, buflen);
5899 	kernfs_put(kn);
5900 }
5901 
5902 /*
5903  * cgroup_get_from_id : get the cgroup associated with cgroup id
5904  * @id: cgroup id
5905  * On success return the cgrp, on failure return NULL
5906  */
5907 struct cgroup *cgroup_get_from_id(u64 id)
5908 {
5909 	struct kernfs_node *kn;
5910 	struct cgroup *cgrp = NULL;
5911 
5912 	mutex_lock(&cgroup_mutex);
5913 	kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id);
5914 	if (!kn)
5915 		goto out_unlock;
5916 
5917 	cgrp = kn->priv;
5918 	if (cgroup_is_dead(cgrp) || !cgroup_tryget(cgrp))
5919 		cgrp = NULL;
5920 	kernfs_put(kn);
5921 out_unlock:
5922 	mutex_unlock(&cgroup_mutex);
5923 	return cgrp;
5924 }
5925 EXPORT_SYMBOL_GPL(cgroup_get_from_id);
5926 
5927 /*
5928  * proc_cgroup_show()
5929  *  - Print task's cgroup paths into seq_file, one line for each hierarchy
5930  *  - Used for /proc/<pid>/cgroup.
5931  */
5932 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5933 		     struct pid *pid, struct task_struct *tsk)
5934 {
5935 	char *buf;
5936 	int retval;
5937 	struct cgroup_root *root;
5938 
5939 	retval = -ENOMEM;
5940 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
5941 	if (!buf)
5942 		goto out;
5943 
5944 	mutex_lock(&cgroup_mutex);
5945 	spin_lock_irq(&css_set_lock);
5946 
5947 	for_each_root(root) {
5948 		struct cgroup_subsys *ss;
5949 		struct cgroup *cgrp;
5950 		int ssid, count = 0;
5951 
5952 		if (root == &cgrp_dfl_root && !cgrp_dfl_visible)
5953 			continue;
5954 
5955 		seq_printf(m, "%d:", root->hierarchy_id);
5956 		if (root != &cgrp_dfl_root)
5957 			for_each_subsys(ss, ssid)
5958 				if (root->subsys_mask & (1 << ssid))
5959 					seq_printf(m, "%s%s", count++ ? "," : "",
5960 						   ss->legacy_name);
5961 		if (strlen(root->name))
5962 			seq_printf(m, "%sname=%s", count ? "," : "",
5963 				   root->name);
5964 		seq_putc(m, ':');
5965 
5966 		cgrp = task_cgroup_from_root(tsk, root);
5967 
5968 		/*
5969 		 * On traditional hierarchies, all zombie tasks show up as
5970 		 * belonging to the root cgroup.  On the default hierarchy,
5971 		 * while a zombie doesn't show up in "cgroup.procs" and
5972 		 * thus can't be migrated, its /proc/PID/cgroup keeps
5973 		 * reporting the cgroup it belonged to before exiting.  If
5974 		 * the cgroup is removed before the zombie is reaped,
5975 		 * " (deleted)" is appended to the cgroup path.
5976 		 */
5977 		if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
5978 			retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
5979 						current->nsproxy->cgroup_ns);
5980 			if (retval >= PATH_MAX)
5981 				retval = -ENAMETOOLONG;
5982 			if (retval < 0)
5983 				goto out_unlock;
5984 
5985 			seq_puts(m, buf);
5986 		} else {
5987 			seq_puts(m, "/");
5988 		}
5989 
5990 		if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
5991 			seq_puts(m, " (deleted)\n");
5992 		else
5993 			seq_putc(m, '\n');
5994 	}
5995 
5996 	retval = 0;
5997 out_unlock:
5998 	spin_unlock_irq(&css_set_lock);
5999 	mutex_unlock(&cgroup_mutex);
6000 	kfree(buf);
6001 out:
6002 	return retval;
6003 }
6004 
6005 /**
6006  * cgroup_fork - initialize cgroup related fields during copy_process()
6007  * @child: pointer to task_struct of forking parent process.
6008  *
6009  * A task is associated with the init_css_set until cgroup_post_fork()
6010  * attaches it to the target css_set.
6011  */
6012 void cgroup_fork(struct task_struct *child)
6013 {
6014 	RCU_INIT_POINTER(child->cgroups, &init_css_set);
6015 	INIT_LIST_HEAD(&child->cg_list);
6016 }
6017 
6018 static struct cgroup *cgroup_get_from_file(struct file *f)
6019 {
6020 	struct cgroup_subsys_state *css;
6021 	struct cgroup *cgrp;
6022 
6023 	css = css_tryget_online_from_dir(f->f_path.dentry, NULL);
6024 	if (IS_ERR(css))
6025 		return ERR_CAST(css);
6026 
6027 	cgrp = css->cgroup;
6028 	if (!cgroup_on_dfl(cgrp)) {
6029 		cgroup_put(cgrp);
6030 		return ERR_PTR(-EBADF);
6031 	}
6032 
6033 	return cgrp;
6034 }
6035 
6036 /**
6037  * cgroup_css_set_fork - find or create a css_set for a child process
6038  * @kargs: the arguments passed to create the child process
6039  *
6040  * This functions finds or creates a new css_set which the child
6041  * process will be attached to in cgroup_post_fork(). By default,
6042  * the child process will be given the same css_set as its parent.
6043  *
6044  * If CLONE_INTO_CGROUP is specified this function will try to find an
6045  * existing css_set which includes the requested cgroup and if not create
6046  * a new css_set that the child will be attached to later. If this function
6047  * succeeds it will hold cgroup_threadgroup_rwsem on return. If
6048  * CLONE_INTO_CGROUP is requested this function will grab cgroup mutex
6049  * before grabbing cgroup_threadgroup_rwsem and will hold a reference
6050  * to the target cgroup.
6051  */
6052 static int cgroup_css_set_fork(struct kernel_clone_args *kargs)
6053 	__acquires(&cgroup_mutex) __acquires(&cgroup_threadgroup_rwsem)
6054 {
6055 	int ret;
6056 	struct cgroup *dst_cgrp = NULL;
6057 	struct css_set *cset;
6058 	struct super_block *sb;
6059 	struct file *f;
6060 
6061 	if (kargs->flags & CLONE_INTO_CGROUP)
6062 		mutex_lock(&cgroup_mutex);
6063 
6064 	cgroup_threadgroup_change_begin(current);
6065 
6066 	spin_lock_irq(&css_set_lock);
6067 	cset = task_css_set(current);
6068 	get_css_set(cset);
6069 	spin_unlock_irq(&css_set_lock);
6070 
6071 	if (!(kargs->flags & CLONE_INTO_CGROUP)) {
6072 		kargs->cset = cset;
6073 		return 0;
6074 	}
6075 
6076 	f = fget_raw(kargs->cgroup);
6077 	if (!f) {
6078 		ret = -EBADF;
6079 		goto err;
6080 	}
6081 	sb = f->f_path.dentry->d_sb;
6082 
6083 	dst_cgrp = cgroup_get_from_file(f);
6084 	if (IS_ERR(dst_cgrp)) {
6085 		ret = PTR_ERR(dst_cgrp);
6086 		dst_cgrp = NULL;
6087 		goto err;
6088 	}
6089 
6090 	if (cgroup_is_dead(dst_cgrp)) {
6091 		ret = -ENODEV;
6092 		goto err;
6093 	}
6094 
6095 	/*
6096 	 * Verify that we the target cgroup is writable for us. This is
6097 	 * usually done by the vfs layer but since we're not going through
6098 	 * the vfs layer here we need to do it "manually".
6099 	 */
6100 	ret = cgroup_may_write(dst_cgrp, sb);
6101 	if (ret)
6102 		goto err;
6103 
6104 	ret = cgroup_attach_permissions(cset->dfl_cgrp, dst_cgrp, sb,
6105 					!(kargs->flags & CLONE_THREAD));
6106 	if (ret)
6107 		goto err;
6108 
6109 	kargs->cset = find_css_set(cset, dst_cgrp);
6110 	if (!kargs->cset) {
6111 		ret = -ENOMEM;
6112 		goto err;
6113 	}
6114 
6115 	put_css_set(cset);
6116 	fput(f);
6117 	kargs->cgrp = dst_cgrp;
6118 	return ret;
6119 
6120 err:
6121 	cgroup_threadgroup_change_end(current);
6122 	mutex_unlock(&cgroup_mutex);
6123 	if (f)
6124 		fput(f);
6125 	if (dst_cgrp)
6126 		cgroup_put(dst_cgrp);
6127 	put_css_set(cset);
6128 	if (kargs->cset)
6129 		put_css_set(kargs->cset);
6130 	return ret;
6131 }
6132 
6133 /**
6134  * cgroup_css_set_put_fork - drop references we took during fork
6135  * @kargs: the arguments passed to create the child process
6136  *
6137  * Drop references to the prepared css_set and target cgroup if
6138  * CLONE_INTO_CGROUP was requested.
6139  */
6140 static void cgroup_css_set_put_fork(struct kernel_clone_args *kargs)
6141 	__releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
6142 {
6143 	cgroup_threadgroup_change_end(current);
6144 
6145 	if (kargs->flags & CLONE_INTO_CGROUP) {
6146 		struct cgroup *cgrp = kargs->cgrp;
6147 		struct css_set *cset = kargs->cset;
6148 
6149 		mutex_unlock(&cgroup_mutex);
6150 
6151 		if (cset) {
6152 			put_css_set(cset);
6153 			kargs->cset = NULL;
6154 		}
6155 
6156 		if (cgrp) {
6157 			cgroup_put(cgrp);
6158 			kargs->cgrp = NULL;
6159 		}
6160 	}
6161 }
6162 
6163 /**
6164  * cgroup_can_fork - called on a new task before the process is exposed
6165  * @child: the child process
6166  *
6167  * This prepares a new css_set for the child process which the child will
6168  * be attached to in cgroup_post_fork().
6169  * This calls the subsystem can_fork() callbacks. If the cgroup_can_fork()
6170  * callback returns an error, the fork aborts with that error code. This
6171  * allows for a cgroup subsystem to conditionally allow or deny new forks.
6172  */
6173 int cgroup_can_fork(struct task_struct *child, struct kernel_clone_args *kargs)
6174 {
6175 	struct cgroup_subsys *ss;
6176 	int i, j, ret;
6177 
6178 	ret = cgroup_css_set_fork(kargs);
6179 	if (ret)
6180 		return ret;
6181 
6182 	do_each_subsys_mask(ss, i, have_canfork_callback) {
6183 		ret = ss->can_fork(child, kargs->cset);
6184 		if (ret)
6185 			goto out_revert;
6186 	} while_each_subsys_mask();
6187 
6188 	return 0;
6189 
6190 out_revert:
6191 	for_each_subsys(ss, j) {
6192 		if (j >= i)
6193 			break;
6194 		if (ss->cancel_fork)
6195 			ss->cancel_fork(child, kargs->cset);
6196 	}
6197 
6198 	cgroup_css_set_put_fork(kargs);
6199 
6200 	return ret;
6201 }
6202 
6203 /**
6204  * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
6205  * @child: the child process
6206  * @kargs: the arguments passed to create the child process
6207  *
6208  * This calls the cancel_fork() callbacks if a fork failed *after*
6209  * cgroup_can_fork() succeeded and cleans up references we took to
6210  * prepare a new css_set for the child process in cgroup_can_fork().
6211  */
6212 void cgroup_cancel_fork(struct task_struct *child,
6213 			struct kernel_clone_args *kargs)
6214 {
6215 	struct cgroup_subsys *ss;
6216 	int i;
6217 
6218 	for_each_subsys(ss, i)
6219 		if (ss->cancel_fork)
6220 			ss->cancel_fork(child, kargs->cset);
6221 
6222 	cgroup_css_set_put_fork(kargs);
6223 }
6224 
6225 /**
6226  * cgroup_post_fork - finalize cgroup setup for the child process
6227  * @child: the child process
6228  *
6229  * Attach the child process to its css_set calling the subsystem fork()
6230  * callbacks.
6231  */
6232 void cgroup_post_fork(struct task_struct *child,
6233 		      struct kernel_clone_args *kargs)
6234 	__releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
6235 {
6236 	unsigned long cgrp_flags = 0;
6237 	bool kill = false;
6238 	struct cgroup_subsys *ss;
6239 	struct css_set *cset;
6240 	int i;
6241 
6242 	cset = kargs->cset;
6243 	kargs->cset = NULL;
6244 
6245 	spin_lock_irq(&css_set_lock);
6246 
6247 	/* init tasks are special, only link regular threads */
6248 	if (likely(child->pid)) {
6249 		if (kargs->cgrp)
6250 			cgrp_flags = kargs->cgrp->flags;
6251 		else
6252 			cgrp_flags = cset->dfl_cgrp->flags;
6253 
6254 		WARN_ON_ONCE(!list_empty(&child->cg_list));
6255 		cset->nr_tasks++;
6256 		css_set_move_task(child, NULL, cset, false);
6257 	} else {
6258 		put_css_set(cset);
6259 		cset = NULL;
6260 	}
6261 
6262 	if (!(child->flags & PF_KTHREAD)) {
6263 		if (unlikely(test_bit(CGRP_FREEZE, &cgrp_flags))) {
6264 			/*
6265 			 * If the cgroup has to be frozen, the new task has
6266 			 * too. Let's set the JOBCTL_TRAP_FREEZE jobctl bit to
6267 			 * get the task into the frozen state.
6268 			 */
6269 			spin_lock(&child->sighand->siglock);
6270 			WARN_ON_ONCE(child->frozen);
6271 			child->jobctl |= JOBCTL_TRAP_FREEZE;
6272 			spin_unlock(&child->sighand->siglock);
6273 
6274 			/*
6275 			 * Calling cgroup_update_frozen() isn't required here,
6276 			 * because it will be called anyway a bit later from
6277 			 * do_freezer_trap(). So we avoid cgroup's transient
6278 			 * switch from the frozen state and back.
6279 			 */
6280 		}
6281 
6282 		/*
6283 		 * If the cgroup is to be killed notice it now and take the
6284 		 * child down right after we finished preparing it for
6285 		 * userspace.
6286 		 */
6287 		kill = test_bit(CGRP_KILL, &cgrp_flags);
6288 	}
6289 
6290 	spin_unlock_irq(&css_set_lock);
6291 
6292 	/*
6293 	 * Call ss->fork().  This must happen after @child is linked on
6294 	 * css_set; otherwise, @child might change state between ->fork()
6295 	 * and addition to css_set.
6296 	 */
6297 	do_each_subsys_mask(ss, i, have_fork_callback) {
6298 		ss->fork(child);
6299 	} while_each_subsys_mask();
6300 
6301 	/* Make the new cset the root_cset of the new cgroup namespace. */
6302 	if (kargs->flags & CLONE_NEWCGROUP) {
6303 		struct css_set *rcset = child->nsproxy->cgroup_ns->root_cset;
6304 
6305 		get_css_set(cset);
6306 		child->nsproxy->cgroup_ns->root_cset = cset;
6307 		put_css_set(rcset);
6308 	}
6309 
6310 	/* Cgroup has to be killed so take down child immediately. */
6311 	if (unlikely(kill))
6312 		do_send_sig_info(SIGKILL, SEND_SIG_NOINFO, child, PIDTYPE_TGID);
6313 
6314 	cgroup_css_set_put_fork(kargs);
6315 }
6316 
6317 /**
6318  * cgroup_exit - detach cgroup from exiting task
6319  * @tsk: pointer to task_struct of exiting process
6320  *
6321  * Description: Detach cgroup from @tsk.
6322  *
6323  */
6324 void cgroup_exit(struct task_struct *tsk)
6325 {
6326 	struct cgroup_subsys *ss;
6327 	struct css_set *cset;
6328 	int i;
6329 
6330 	spin_lock_irq(&css_set_lock);
6331 
6332 	WARN_ON_ONCE(list_empty(&tsk->cg_list));
6333 	cset = task_css_set(tsk);
6334 	css_set_move_task(tsk, cset, NULL, false);
6335 	list_add_tail(&tsk->cg_list, &cset->dying_tasks);
6336 	cset->nr_tasks--;
6337 
6338 	WARN_ON_ONCE(cgroup_task_frozen(tsk));
6339 	if (unlikely(!(tsk->flags & PF_KTHREAD) &&
6340 		     test_bit(CGRP_FREEZE, &task_dfl_cgroup(tsk)->flags)))
6341 		cgroup_update_frozen(task_dfl_cgroup(tsk));
6342 
6343 	spin_unlock_irq(&css_set_lock);
6344 
6345 	/* see cgroup_post_fork() for details */
6346 	do_each_subsys_mask(ss, i, have_exit_callback) {
6347 		ss->exit(tsk);
6348 	} while_each_subsys_mask();
6349 }
6350 
6351 void cgroup_release(struct task_struct *task)
6352 {
6353 	struct cgroup_subsys *ss;
6354 	int ssid;
6355 
6356 	do_each_subsys_mask(ss, ssid, have_release_callback) {
6357 		ss->release(task);
6358 	} while_each_subsys_mask();
6359 
6360 	spin_lock_irq(&css_set_lock);
6361 	css_set_skip_task_iters(task_css_set(task), task);
6362 	list_del_init(&task->cg_list);
6363 	spin_unlock_irq(&css_set_lock);
6364 }
6365 
6366 void cgroup_free(struct task_struct *task)
6367 {
6368 	struct css_set *cset = task_css_set(task);
6369 	put_css_set(cset);
6370 }
6371 
6372 static int __init cgroup_disable(char *str)
6373 {
6374 	struct cgroup_subsys *ss;
6375 	char *token;
6376 	int i;
6377 
6378 	while ((token = strsep(&str, ",")) != NULL) {
6379 		if (!*token)
6380 			continue;
6381 
6382 		for_each_subsys(ss, i) {
6383 			if (strcmp(token, ss->name) &&
6384 			    strcmp(token, ss->legacy_name))
6385 				continue;
6386 
6387 			static_branch_disable(cgroup_subsys_enabled_key[i]);
6388 			pr_info("Disabling %s control group subsystem\n",
6389 				ss->name);
6390 		}
6391 
6392 		for (i = 0; i < OPT_FEATURE_COUNT; i++) {
6393 			if (strcmp(token, cgroup_opt_feature_names[i]))
6394 				continue;
6395 			cgroup_feature_disable_mask |= 1 << i;
6396 			pr_info("Disabling %s control group feature\n",
6397 				cgroup_opt_feature_names[i]);
6398 			break;
6399 		}
6400 	}
6401 	return 1;
6402 }
6403 __setup("cgroup_disable=", cgroup_disable);
6404 
6405 void __init __weak enable_debug_cgroup(void) { }
6406 
6407 static int __init enable_cgroup_debug(char *str)
6408 {
6409 	cgroup_debug = true;
6410 	enable_debug_cgroup();
6411 	return 1;
6412 }
6413 __setup("cgroup_debug", enable_cgroup_debug);
6414 
6415 /**
6416  * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
6417  * @dentry: directory dentry of interest
6418  * @ss: subsystem of interest
6419  *
6420  * If @dentry is a directory for a cgroup which has @ss enabled on it, try
6421  * to get the corresponding css and return it.  If such css doesn't exist
6422  * or can't be pinned, an ERR_PTR value is returned.
6423  */
6424 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
6425 						       struct cgroup_subsys *ss)
6426 {
6427 	struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
6428 	struct file_system_type *s_type = dentry->d_sb->s_type;
6429 	struct cgroup_subsys_state *css = NULL;
6430 	struct cgroup *cgrp;
6431 
6432 	/* is @dentry a cgroup dir? */
6433 	if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
6434 	    !kn || kernfs_type(kn) != KERNFS_DIR)
6435 		return ERR_PTR(-EBADF);
6436 
6437 	rcu_read_lock();
6438 
6439 	/*
6440 	 * This path doesn't originate from kernfs and @kn could already
6441 	 * have been or be removed at any point.  @kn->priv is RCU
6442 	 * protected for this access.  See css_release_work_fn() for details.
6443 	 */
6444 	cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6445 	if (cgrp)
6446 		css = cgroup_css(cgrp, ss);
6447 
6448 	if (!css || !css_tryget_online(css))
6449 		css = ERR_PTR(-ENOENT);
6450 
6451 	rcu_read_unlock();
6452 	return css;
6453 }
6454 
6455 /**
6456  * css_from_id - lookup css by id
6457  * @id: the cgroup id
6458  * @ss: cgroup subsys to be looked into
6459  *
6460  * Returns the css if there's valid one with @id, otherwise returns NULL.
6461  * Should be called under rcu_read_lock().
6462  */
6463 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
6464 {
6465 	WARN_ON_ONCE(!rcu_read_lock_held());
6466 	return idr_find(&ss->css_idr, id);
6467 }
6468 
6469 /**
6470  * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
6471  * @path: path on the default hierarchy
6472  *
6473  * Find the cgroup at @path on the default hierarchy, increment its
6474  * reference count and return it.  Returns pointer to the found cgroup on
6475  * success, ERR_PTR(-ENOENT) if @path doesn't exist and ERR_PTR(-ENOTDIR)
6476  * if @path points to a non-directory.
6477  */
6478 struct cgroup *cgroup_get_from_path(const char *path)
6479 {
6480 	struct kernfs_node *kn;
6481 	struct cgroup *cgrp;
6482 
6483 	mutex_lock(&cgroup_mutex);
6484 
6485 	kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path);
6486 	if (kn) {
6487 		if (kernfs_type(kn) == KERNFS_DIR) {
6488 			cgrp = kn->priv;
6489 			cgroup_get_live(cgrp);
6490 		} else {
6491 			cgrp = ERR_PTR(-ENOTDIR);
6492 		}
6493 		kernfs_put(kn);
6494 	} else {
6495 		cgrp = ERR_PTR(-ENOENT);
6496 	}
6497 
6498 	mutex_unlock(&cgroup_mutex);
6499 	return cgrp;
6500 }
6501 EXPORT_SYMBOL_GPL(cgroup_get_from_path);
6502 
6503 /**
6504  * cgroup_get_from_fd - get a cgroup pointer from a fd
6505  * @fd: fd obtained by open(cgroup2_dir)
6506  *
6507  * Find the cgroup from a fd which should be obtained
6508  * by opening a cgroup directory.  Returns a pointer to the
6509  * cgroup on success. ERR_PTR is returned if the cgroup
6510  * cannot be found.
6511  */
6512 struct cgroup *cgroup_get_from_fd(int fd)
6513 {
6514 	struct cgroup *cgrp;
6515 	struct file *f;
6516 
6517 	f = fget_raw(fd);
6518 	if (!f)
6519 		return ERR_PTR(-EBADF);
6520 
6521 	cgrp = cgroup_get_from_file(f);
6522 	fput(f);
6523 	return cgrp;
6524 }
6525 EXPORT_SYMBOL_GPL(cgroup_get_from_fd);
6526 
6527 static u64 power_of_ten(int power)
6528 {
6529 	u64 v = 1;
6530 	while (power--)
6531 		v *= 10;
6532 	return v;
6533 }
6534 
6535 /**
6536  * cgroup_parse_float - parse a floating number
6537  * @input: input string
6538  * @dec_shift: number of decimal digits to shift
6539  * @v: output
6540  *
6541  * Parse a decimal floating point number in @input and store the result in
6542  * @v with decimal point right shifted @dec_shift times.  For example, if
6543  * @input is "12.3456" and @dec_shift is 3, *@v will be set to 12345.
6544  * Returns 0 on success, -errno otherwise.
6545  *
6546  * There's nothing cgroup specific about this function except that it's
6547  * currently the only user.
6548  */
6549 int cgroup_parse_float(const char *input, unsigned dec_shift, s64 *v)
6550 {
6551 	s64 whole, frac = 0;
6552 	int fstart = 0, fend = 0, flen;
6553 
6554 	if (!sscanf(input, "%lld.%n%lld%n", &whole, &fstart, &frac, &fend))
6555 		return -EINVAL;
6556 	if (frac < 0)
6557 		return -EINVAL;
6558 
6559 	flen = fend > fstart ? fend - fstart : 0;
6560 	if (flen < dec_shift)
6561 		frac *= power_of_ten(dec_shift - flen);
6562 	else
6563 		frac = DIV_ROUND_CLOSEST_ULL(frac, power_of_ten(flen - dec_shift));
6564 
6565 	*v = whole * power_of_ten(dec_shift) + frac;
6566 	return 0;
6567 }
6568 
6569 /*
6570  * sock->sk_cgrp_data handling.  For more info, see sock_cgroup_data
6571  * definition in cgroup-defs.h.
6572  */
6573 #ifdef CONFIG_SOCK_CGROUP_DATA
6574 
6575 #if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID)
6576 
6577 DEFINE_SPINLOCK(cgroup_sk_update_lock);
6578 static bool cgroup_sk_alloc_disabled __read_mostly;
6579 
6580 void cgroup_sk_alloc_disable(void)
6581 {
6582 	if (cgroup_sk_alloc_disabled)
6583 		return;
6584 	pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n");
6585 	cgroup_sk_alloc_disabled = true;
6586 }
6587 
6588 #else
6589 
6590 #define cgroup_sk_alloc_disabled	false
6591 
6592 #endif
6593 
6594 void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
6595 {
6596 	if (cgroup_sk_alloc_disabled) {
6597 		skcd->no_refcnt = 1;
6598 		return;
6599 	}
6600 
6601 	/* Don't associate the sock with unrelated interrupted task's cgroup. */
6602 	if (in_interrupt())
6603 		return;
6604 
6605 	rcu_read_lock();
6606 
6607 	while (true) {
6608 		struct css_set *cset;
6609 
6610 		cset = task_css_set(current);
6611 		if (likely(cgroup_tryget(cset->dfl_cgrp))) {
6612 			skcd->val = (unsigned long)cset->dfl_cgrp;
6613 			cgroup_bpf_get(cset->dfl_cgrp);
6614 			break;
6615 		}
6616 		cpu_relax();
6617 	}
6618 
6619 	rcu_read_unlock();
6620 }
6621 
6622 void cgroup_sk_clone(struct sock_cgroup_data *skcd)
6623 {
6624 	if (skcd->val) {
6625 		if (skcd->no_refcnt)
6626 			return;
6627 		/*
6628 		 * We might be cloning a socket which is left in an empty
6629 		 * cgroup and the cgroup might have already been rmdir'd.
6630 		 * Don't use cgroup_get_live().
6631 		 */
6632 		cgroup_get(sock_cgroup_ptr(skcd));
6633 		cgroup_bpf_get(sock_cgroup_ptr(skcd));
6634 	}
6635 }
6636 
6637 void cgroup_sk_free(struct sock_cgroup_data *skcd)
6638 {
6639 	struct cgroup *cgrp = sock_cgroup_ptr(skcd);
6640 
6641 	if (skcd->no_refcnt)
6642 		return;
6643 	cgroup_bpf_put(cgrp);
6644 	cgroup_put(cgrp);
6645 }
6646 
6647 #endif	/* CONFIG_SOCK_CGROUP_DATA */
6648 
6649 #ifdef CONFIG_CGROUP_BPF
6650 int cgroup_bpf_attach(struct cgroup *cgrp,
6651 		      struct bpf_prog *prog, struct bpf_prog *replace_prog,
6652 		      struct bpf_cgroup_link *link,
6653 		      enum bpf_attach_type type,
6654 		      u32 flags)
6655 {
6656 	int ret;
6657 
6658 	mutex_lock(&cgroup_mutex);
6659 	ret = __cgroup_bpf_attach(cgrp, prog, replace_prog, link, type, flags);
6660 	mutex_unlock(&cgroup_mutex);
6661 	return ret;
6662 }
6663 
6664 int cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog,
6665 		      enum bpf_attach_type type)
6666 {
6667 	int ret;
6668 
6669 	mutex_lock(&cgroup_mutex);
6670 	ret = __cgroup_bpf_detach(cgrp, prog, NULL, type);
6671 	mutex_unlock(&cgroup_mutex);
6672 	return ret;
6673 }
6674 
6675 int cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr,
6676 		     union bpf_attr __user *uattr)
6677 {
6678 	int ret;
6679 
6680 	mutex_lock(&cgroup_mutex);
6681 	ret = __cgroup_bpf_query(cgrp, attr, uattr);
6682 	mutex_unlock(&cgroup_mutex);
6683 	return ret;
6684 }
6685 #endif /* CONFIG_CGROUP_BPF */
6686 
6687 #ifdef CONFIG_SYSFS
6688 static ssize_t show_delegatable_files(struct cftype *files, char *buf,
6689 				      ssize_t size, const char *prefix)
6690 {
6691 	struct cftype *cft;
6692 	ssize_t ret = 0;
6693 
6694 	for (cft = files; cft && cft->name[0] != '\0'; cft++) {
6695 		if (!(cft->flags & CFTYPE_NS_DELEGATABLE))
6696 			continue;
6697 
6698 		if ((cft->flags & CFTYPE_PRESSURE) && !cgroup_psi_enabled())
6699 			continue;
6700 
6701 		if (prefix)
6702 			ret += snprintf(buf + ret, size - ret, "%s.", prefix);
6703 
6704 		ret += snprintf(buf + ret, size - ret, "%s\n", cft->name);
6705 
6706 		if (WARN_ON(ret >= size))
6707 			break;
6708 	}
6709 
6710 	return ret;
6711 }
6712 
6713 static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr,
6714 			      char *buf)
6715 {
6716 	struct cgroup_subsys *ss;
6717 	int ssid;
6718 	ssize_t ret = 0;
6719 
6720 	ret = show_delegatable_files(cgroup_base_files, buf, PAGE_SIZE - ret,
6721 				     NULL);
6722 
6723 	for_each_subsys(ss, ssid)
6724 		ret += show_delegatable_files(ss->dfl_cftypes, buf + ret,
6725 					      PAGE_SIZE - ret,
6726 					      cgroup_subsys_name[ssid]);
6727 
6728 	return ret;
6729 }
6730 static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate);
6731 
6732 static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr,
6733 			     char *buf)
6734 {
6735 	return snprintf(buf, PAGE_SIZE,
6736 			"nsdelegate\n"
6737 			"memory_localevents\n"
6738 			"memory_recursiveprot\n");
6739 }
6740 static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features);
6741 
6742 static struct attribute *cgroup_sysfs_attrs[] = {
6743 	&cgroup_delegate_attr.attr,
6744 	&cgroup_features_attr.attr,
6745 	NULL,
6746 };
6747 
6748 static const struct attribute_group cgroup_sysfs_attr_group = {
6749 	.attrs = cgroup_sysfs_attrs,
6750 	.name = "cgroup",
6751 };
6752 
6753 static int __init cgroup_sysfs_init(void)
6754 {
6755 	return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group);
6756 }
6757 subsys_initcall(cgroup_sysfs_init);
6758 
6759 #endif /* CONFIG_SYSFS */
6760