1 /* 2 * Generic process-grouping system. 3 * 4 * Based originally on the cpuset system, extracted by Paul Menage 5 * Copyright (C) 2006 Google, Inc 6 * 7 * Notifications support 8 * Copyright (C) 2009 Nokia Corporation 9 * Author: Kirill A. Shutemov 10 * 11 * Copyright notices from the original cpuset code: 12 * -------------------------------------------------- 13 * Copyright (C) 2003 BULL SA. 14 * Copyright (C) 2004-2006 Silicon Graphics, Inc. 15 * 16 * Portions derived from Patrick Mochel's sysfs code. 17 * sysfs is Copyright (c) 2001-3 Patrick Mochel 18 * 19 * 2003-10-10 Written by Simon Derr. 20 * 2003-10-22 Updates by Stephen Hemminger. 21 * 2004 May-July Rework by Paul Jackson. 22 * --------------------------------------------------- 23 * 24 * This file is subject to the terms and conditions of the GNU General Public 25 * License. See the file COPYING in the main directory of the Linux 26 * distribution for more details. 27 */ 28 29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 30 31 #include "cgroup-internal.h" 32 33 #include <linux/bpf-cgroup.h> 34 #include <linux/cred.h> 35 #include <linux/errno.h> 36 #include <linux/init_task.h> 37 #include <linux/kernel.h> 38 #include <linux/magic.h> 39 #include <linux/mutex.h> 40 #include <linux/mount.h> 41 #include <linux/pagemap.h> 42 #include <linux/proc_fs.h> 43 #include <linux/rcupdate.h> 44 #include <linux/sched.h> 45 #include <linux/sched/task.h> 46 #include <linux/slab.h> 47 #include <linux/spinlock.h> 48 #include <linux/percpu-rwsem.h> 49 #include <linux/string.h> 50 #include <linux/hashtable.h> 51 #include <linux/idr.h> 52 #include <linux/kthread.h> 53 #include <linux/atomic.h> 54 #include <linux/cpuset.h> 55 #include <linux/proc_ns.h> 56 #include <linux/nsproxy.h> 57 #include <linux/file.h> 58 #include <linux/fs_parser.h> 59 #include <linux/sched/cputime.h> 60 #include <linux/sched/deadline.h> 61 #include <linux/psi.h> 62 #include <net/sock.h> 63 64 #define CREATE_TRACE_POINTS 65 #include <trace/events/cgroup.h> 66 67 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \ 68 MAX_CFTYPE_NAME + 2) 69 /* let's not notify more than 100 times per second */ 70 #define CGROUP_FILE_NOTIFY_MIN_INTV DIV_ROUND_UP(HZ, 100) 71 72 /* 73 * To avoid confusing the compiler (and generating warnings) with code 74 * that attempts to access what would be a 0-element array (i.e. sized 75 * to a potentially empty array when CGROUP_SUBSYS_COUNT == 0), this 76 * constant expression can be added. 77 */ 78 #define CGROUP_HAS_SUBSYS_CONFIG (CGROUP_SUBSYS_COUNT > 0) 79 80 /* 81 * cgroup_mutex is the master lock. Any modification to cgroup or its 82 * hierarchy must be performed while holding it. 83 * 84 * css_set_lock protects task->cgroups pointer, the list of css_set 85 * objects, and the chain of tasks off each css_set. 86 * 87 * These locks are exported if CONFIG_PROVE_RCU so that accessors in 88 * cgroup.h can use them for lockdep annotations. 89 */ 90 DEFINE_MUTEX(cgroup_mutex); 91 DEFINE_SPINLOCK(css_set_lock); 92 93 #ifdef CONFIG_PROVE_RCU 94 EXPORT_SYMBOL_GPL(cgroup_mutex); 95 EXPORT_SYMBOL_GPL(css_set_lock); 96 #endif 97 98 DEFINE_SPINLOCK(trace_cgroup_path_lock); 99 char trace_cgroup_path[TRACE_CGROUP_PATH_LEN]; 100 static bool cgroup_debug __read_mostly; 101 102 /* 103 * Protects cgroup_idr and css_idr so that IDs can be released without 104 * grabbing cgroup_mutex. 105 */ 106 static DEFINE_SPINLOCK(cgroup_idr_lock); 107 108 /* 109 * Protects cgroup_file->kn for !self csses. It synchronizes notifications 110 * against file removal/re-creation across css hiding. 111 */ 112 static DEFINE_SPINLOCK(cgroup_file_kn_lock); 113 114 DEFINE_PERCPU_RWSEM(cgroup_threadgroup_rwsem); 115 116 #define cgroup_assert_mutex_or_rcu_locked() \ 117 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \ 118 !lockdep_is_held(&cgroup_mutex), \ 119 "cgroup_mutex or RCU read lock required"); 120 121 /* 122 * cgroup destruction makes heavy use of work items and there can be a lot 123 * of concurrent destructions. Use a separate workqueue so that cgroup 124 * destruction work items don't end up filling up max_active of system_wq 125 * which may lead to deadlock. 126 */ 127 static struct workqueue_struct *cgroup_destroy_wq; 128 129 /* generate an array of cgroup subsystem pointers */ 130 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys, 131 struct cgroup_subsys *cgroup_subsys[] = { 132 #include <linux/cgroup_subsys.h> 133 }; 134 #undef SUBSYS 135 136 /* array of cgroup subsystem names */ 137 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x, 138 static const char *cgroup_subsys_name[] = { 139 #include <linux/cgroup_subsys.h> 140 }; 141 #undef SUBSYS 142 143 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */ 144 #define SUBSYS(_x) \ 145 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \ 146 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \ 147 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \ 148 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key); 149 #include <linux/cgroup_subsys.h> 150 #undef SUBSYS 151 152 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key, 153 static struct static_key_true *cgroup_subsys_enabled_key[] = { 154 #include <linux/cgroup_subsys.h> 155 }; 156 #undef SUBSYS 157 158 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key, 159 static struct static_key_true *cgroup_subsys_on_dfl_key[] = { 160 #include <linux/cgroup_subsys.h> 161 }; 162 #undef SUBSYS 163 164 static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu); 165 166 /* the default hierarchy */ 167 struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu }; 168 EXPORT_SYMBOL_GPL(cgrp_dfl_root); 169 170 /* 171 * The default hierarchy always exists but is hidden until mounted for the 172 * first time. This is for backward compatibility. 173 */ 174 static bool cgrp_dfl_visible; 175 176 /* some controllers are not supported in the default hierarchy */ 177 static u16 cgrp_dfl_inhibit_ss_mask; 178 179 /* some controllers are implicitly enabled on the default hierarchy */ 180 static u16 cgrp_dfl_implicit_ss_mask; 181 182 /* some controllers can be threaded on the default hierarchy */ 183 static u16 cgrp_dfl_threaded_ss_mask; 184 185 /* The list of hierarchy roots */ 186 LIST_HEAD(cgroup_roots); 187 static int cgroup_root_count; 188 189 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */ 190 static DEFINE_IDR(cgroup_hierarchy_idr); 191 192 /* 193 * Assign a monotonically increasing serial number to csses. It guarantees 194 * cgroups with bigger numbers are newer than those with smaller numbers. 195 * Also, as csses are always appended to the parent's ->children list, it 196 * guarantees that sibling csses are always sorted in the ascending serial 197 * number order on the list. Protected by cgroup_mutex. 198 */ 199 static u64 css_serial_nr_next = 1; 200 201 /* 202 * These bitmasks identify subsystems with specific features to avoid 203 * having to do iterative checks repeatedly. 204 */ 205 static u16 have_fork_callback __read_mostly; 206 static u16 have_exit_callback __read_mostly; 207 static u16 have_release_callback __read_mostly; 208 static u16 have_canfork_callback __read_mostly; 209 210 /* cgroup namespace for init task */ 211 struct cgroup_namespace init_cgroup_ns = { 212 .ns.count = REFCOUNT_INIT(2), 213 .user_ns = &init_user_ns, 214 .ns.ops = &cgroupns_operations, 215 .ns.inum = PROC_CGROUP_INIT_INO, 216 .root_cset = &init_css_set, 217 }; 218 219 static struct file_system_type cgroup2_fs_type; 220 static struct cftype cgroup_base_files[]; 221 static struct cftype cgroup_psi_files[]; 222 223 /* cgroup optional features */ 224 enum cgroup_opt_features { 225 #ifdef CONFIG_PSI 226 OPT_FEATURE_PRESSURE, 227 #endif 228 OPT_FEATURE_COUNT 229 }; 230 231 static const char *cgroup_opt_feature_names[OPT_FEATURE_COUNT] = { 232 #ifdef CONFIG_PSI 233 "pressure", 234 #endif 235 }; 236 237 static u16 cgroup_feature_disable_mask __read_mostly; 238 239 static int cgroup_apply_control(struct cgroup *cgrp); 240 static void cgroup_finalize_control(struct cgroup *cgrp, int ret); 241 static void css_task_iter_skip(struct css_task_iter *it, 242 struct task_struct *task); 243 static int cgroup_destroy_locked(struct cgroup *cgrp); 244 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp, 245 struct cgroup_subsys *ss); 246 static void css_release(struct percpu_ref *ref); 247 static void kill_css(struct cgroup_subsys_state *css); 248 static int cgroup_addrm_files(struct cgroup_subsys_state *css, 249 struct cgroup *cgrp, struct cftype cfts[], 250 bool is_add); 251 252 #ifdef CONFIG_DEBUG_CGROUP_REF 253 #define CGROUP_REF_FN_ATTRS noinline 254 #define CGROUP_REF_EXPORT(fn) EXPORT_SYMBOL_GPL(fn); 255 #include <linux/cgroup_refcnt.h> 256 #endif 257 258 /** 259 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID 260 * @ssid: subsys ID of interest 261 * 262 * cgroup_subsys_enabled() can only be used with literal subsys names which 263 * is fine for individual subsystems but unsuitable for cgroup core. This 264 * is slower static_key_enabled() based test indexed by @ssid. 265 */ 266 bool cgroup_ssid_enabled(int ssid) 267 { 268 if (!CGROUP_HAS_SUBSYS_CONFIG) 269 return false; 270 271 return static_key_enabled(cgroup_subsys_enabled_key[ssid]); 272 } 273 274 /** 275 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy 276 * @cgrp: the cgroup of interest 277 * 278 * The default hierarchy is the v2 interface of cgroup and this function 279 * can be used to test whether a cgroup is on the default hierarchy for 280 * cases where a subsystem should behave differently depending on the 281 * interface version. 282 * 283 * List of changed behaviors: 284 * 285 * - Mount options "noprefix", "xattr", "clone_children", "release_agent" 286 * and "name" are disallowed. 287 * 288 * - When mounting an existing superblock, mount options should match. 289 * 290 * - rename(2) is disallowed. 291 * 292 * - "tasks" is removed. Everything should be at process granularity. Use 293 * "cgroup.procs" instead. 294 * 295 * - "cgroup.procs" is not sorted. pids will be unique unless they got 296 * recycled in-between reads. 297 * 298 * - "release_agent" and "notify_on_release" are removed. Replacement 299 * notification mechanism will be implemented. 300 * 301 * - "cgroup.clone_children" is removed. 302 * 303 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup 304 * and its descendants contain no task; otherwise, 1. The file also 305 * generates kernfs notification which can be monitored through poll and 306 * [di]notify when the value of the file changes. 307 * 308 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and 309 * take masks of ancestors with non-empty cpus/mems, instead of being 310 * moved to an ancestor. 311 * 312 * - cpuset: a task can be moved into an empty cpuset, and again it takes 313 * masks of ancestors. 314 * 315 * - blkcg: blk-throttle becomes properly hierarchical. 316 */ 317 bool cgroup_on_dfl(const struct cgroup *cgrp) 318 { 319 return cgrp->root == &cgrp_dfl_root; 320 } 321 322 /* IDR wrappers which synchronize using cgroup_idr_lock */ 323 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end, 324 gfp_t gfp_mask) 325 { 326 int ret; 327 328 idr_preload(gfp_mask); 329 spin_lock_bh(&cgroup_idr_lock); 330 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM); 331 spin_unlock_bh(&cgroup_idr_lock); 332 idr_preload_end(); 333 return ret; 334 } 335 336 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id) 337 { 338 void *ret; 339 340 spin_lock_bh(&cgroup_idr_lock); 341 ret = idr_replace(idr, ptr, id); 342 spin_unlock_bh(&cgroup_idr_lock); 343 return ret; 344 } 345 346 static void cgroup_idr_remove(struct idr *idr, int id) 347 { 348 spin_lock_bh(&cgroup_idr_lock); 349 idr_remove(idr, id); 350 spin_unlock_bh(&cgroup_idr_lock); 351 } 352 353 static bool cgroup_has_tasks(struct cgroup *cgrp) 354 { 355 return cgrp->nr_populated_csets; 356 } 357 358 static bool cgroup_is_threaded(struct cgroup *cgrp) 359 { 360 return cgrp->dom_cgrp != cgrp; 361 } 362 363 /* can @cgrp host both domain and threaded children? */ 364 static bool cgroup_is_mixable(struct cgroup *cgrp) 365 { 366 /* 367 * Root isn't under domain level resource control exempting it from 368 * the no-internal-process constraint, so it can serve as a thread 369 * root and a parent of resource domains at the same time. 370 */ 371 return !cgroup_parent(cgrp); 372 } 373 374 /* can @cgrp become a thread root? Should always be true for a thread root */ 375 static bool cgroup_can_be_thread_root(struct cgroup *cgrp) 376 { 377 /* mixables don't care */ 378 if (cgroup_is_mixable(cgrp)) 379 return true; 380 381 /* domain roots can't be nested under threaded */ 382 if (cgroup_is_threaded(cgrp)) 383 return false; 384 385 /* can only have either domain or threaded children */ 386 if (cgrp->nr_populated_domain_children) 387 return false; 388 389 /* and no domain controllers can be enabled */ 390 if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask) 391 return false; 392 393 return true; 394 } 395 396 /* is @cgrp root of a threaded subtree? */ 397 static bool cgroup_is_thread_root(struct cgroup *cgrp) 398 { 399 /* thread root should be a domain */ 400 if (cgroup_is_threaded(cgrp)) 401 return false; 402 403 /* a domain w/ threaded children is a thread root */ 404 if (cgrp->nr_threaded_children) 405 return true; 406 407 /* 408 * A domain which has tasks and explicit threaded controllers 409 * enabled is a thread root. 410 */ 411 if (cgroup_has_tasks(cgrp) && 412 (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask)) 413 return true; 414 415 return false; 416 } 417 418 /* a domain which isn't connected to the root w/o brekage can't be used */ 419 static bool cgroup_is_valid_domain(struct cgroup *cgrp) 420 { 421 /* the cgroup itself can be a thread root */ 422 if (cgroup_is_threaded(cgrp)) 423 return false; 424 425 /* but the ancestors can't be unless mixable */ 426 while ((cgrp = cgroup_parent(cgrp))) { 427 if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp)) 428 return false; 429 if (cgroup_is_threaded(cgrp)) 430 return false; 431 } 432 433 return true; 434 } 435 436 /* subsystems visibly enabled on a cgroup */ 437 static u16 cgroup_control(struct cgroup *cgrp) 438 { 439 struct cgroup *parent = cgroup_parent(cgrp); 440 u16 root_ss_mask = cgrp->root->subsys_mask; 441 442 if (parent) { 443 u16 ss_mask = parent->subtree_control; 444 445 /* threaded cgroups can only have threaded controllers */ 446 if (cgroup_is_threaded(cgrp)) 447 ss_mask &= cgrp_dfl_threaded_ss_mask; 448 return ss_mask; 449 } 450 451 if (cgroup_on_dfl(cgrp)) 452 root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask | 453 cgrp_dfl_implicit_ss_mask); 454 return root_ss_mask; 455 } 456 457 /* subsystems enabled on a cgroup */ 458 static u16 cgroup_ss_mask(struct cgroup *cgrp) 459 { 460 struct cgroup *parent = cgroup_parent(cgrp); 461 462 if (parent) { 463 u16 ss_mask = parent->subtree_ss_mask; 464 465 /* threaded cgroups can only have threaded controllers */ 466 if (cgroup_is_threaded(cgrp)) 467 ss_mask &= cgrp_dfl_threaded_ss_mask; 468 return ss_mask; 469 } 470 471 return cgrp->root->subsys_mask; 472 } 473 474 /** 475 * cgroup_css - obtain a cgroup's css for the specified subsystem 476 * @cgrp: the cgroup of interest 477 * @ss: the subsystem of interest (%NULL returns @cgrp->self) 478 * 479 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This 480 * function must be called either under cgroup_mutex or rcu_read_lock() and 481 * the caller is responsible for pinning the returned css if it wants to 482 * keep accessing it outside the said locks. This function may return 483 * %NULL if @cgrp doesn't have @subsys_id enabled. 484 */ 485 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp, 486 struct cgroup_subsys *ss) 487 { 488 if (CGROUP_HAS_SUBSYS_CONFIG && ss) 489 return rcu_dereference_check(cgrp->subsys[ss->id], 490 lockdep_is_held(&cgroup_mutex)); 491 else 492 return &cgrp->self; 493 } 494 495 /** 496 * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem 497 * @cgrp: the cgroup of interest 498 * @ss: the subsystem of interest 499 * 500 * Find and get @cgrp's css associated with @ss. If the css doesn't exist 501 * or is offline, %NULL is returned. 502 */ 503 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp, 504 struct cgroup_subsys *ss) 505 { 506 struct cgroup_subsys_state *css; 507 508 rcu_read_lock(); 509 css = cgroup_css(cgrp, ss); 510 if (css && !css_tryget_online(css)) 511 css = NULL; 512 rcu_read_unlock(); 513 514 return css; 515 } 516 517 /** 518 * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss 519 * @cgrp: the cgroup of interest 520 * @ss: the subsystem of interest (%NULL returns @cgrp->self) 521 * 522 * Similar to cgroup_css() but returns the effective css, which is defined 523 * as the matching css of the nearest ancestor including self which has @ss 524 * enabled. If @ss is associated with the hierarchy @cgrp is on, this 525 * function is guaranteed to return non-NULL css. 526 */ 527 static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp, 528 struct cgroup_subsys *ss) 529 { 530 lockdep_assert_held(&cgroup_mutex); 531 532 if (!ss) 533 return &cgrp->self; 534 535 /* 536 * This function is used while updating css associations and thus 537 * can't test the csses directly. Test ss_mask. 538 */ 539 while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) { 540 cgrp = cgroup_parent(cgrp); 541 if (!cgrp) 542 return NULL; 543 } 544 545 return cgroup_css(cgrp, ss); 546 } 547 548 /** 549 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem 550 * @cgrp: the cgroup of interest 551 * @ss: the subsystem of interest 552 * 553 * Find and get the effective css of @cgrp for @ss. The effective css is 554 * defined as the matching css of the nearest ancestor including self which 555 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on, 556 * the root css is returned, so this function always returns a valid css. 557 * 558 * The returned css is not guaranteed to be online, and therefore it is the 559 * callers responsibility to try get a reference for it. 560 */ 561 struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp, 562 struct cgroup_subsys *ss) 563 { 564 struct cgroup_subsys_state *css; 565 566 if (!CGROUP_HAS_SUBSYS_CONFIG) 567 return NULL; 568 569 do { 570 css = cgroup_css(cgrp, ss); 571 572 if (css) 573 return css; 574 cgrp = cgroup_parent(cgrp); 575 } while (cgrp); 576 577 return init_css_set.subsys[ss->id]; 578 } 579 580 /** 581 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem 582 * @cgrp: the cgroup of interest 583 * @ss: the subsystem of interest 584 * 585 * Find and get the effective css of @cgrp for @ss. The effective css is 586 * defined as the matching css of the nearest ancestor including self which 587 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on, 588 * the root css is returned, so this function always returns a valid css. 589 * The returned css must be put using css_put(). 590 */ 591 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp, 592 struct cgroup_subsys *ss) 593 { 594 struct cgroup_subsys_state *css; 595 596 if (!CGROUP_HAS_SUBSYS_CONFIG) 597 return NULL; 598 599 rcu_read_lock(); 600 601 do { 602 css = cgroup_css(cgrp, ss); 603 604 if (css && css_tryget_online(css)) 605 goto out_unlock; 606 cgrp = cgroup_parent(cgrp); 607 } while (cgrp); 608 609 css = init_css_set.subsys[ss->id]; 610 css_get(css); 611 out_unlock: 612 rcu_read_unlock(); 613 return css; 614 } 615 EXPORT_SYMBOL_GPL(cgroup_get_e_css); 616 617 static void cgroup_get_live(struct cgroup *cgrp) 618 { 619 WARN_ON_ONCE(cgroup_is_dead(cgrp)); 620 cgroup_get(cgrp); 621 } 622 623 /** 624 * __cgroup_task_count - count the number of tasks in a cgroup. The caller 625 * is responsible for taking the css_set_lock. 626 * @cgrp: the cgroup in question 627 */ 628 int __cgroup_task_count(const struct cgroup *cgrp) 629 { 630 int count = 0; 631 struct cgrp_cset_link *link; 632 633 lockdep_assert_held(&css_set_lock); 634 635 list_for_each_entry(link, &cgrp->cset_links, cset_link) 636 count += link->cset->nr_tasks; 637 638 return count; 639 } 640 641 /** 642 * cgroup_task_count - count the number of tasks in a cgroup. 643 * @cgrp: the cgroup in question 644 */ 645 int cgroup_task_count(const struct cgroup *cgrp) 646 { 647 int count; 648 649 spin_lock_irq(&css_set_lock); 650 count = __cgroup_task_count(cgrp); 651 spin_unlock_irq(&css_set_lock); 652 653 return count; 654 } 655 656 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of) 657 { 658 struct cgroup *cgrp = of->kn->parent->priv; 659 struct cftype *cft = of_cft(of); 660 661 /* 662 * This is open and unprotected implementation of cgroup_css(). 663 * seq_css() is only called from a kernfs file operation which has 664 * an active reference on the file. Because all the subsystem 665 * files are drained before a css is disassociated with a cgroup, 666 * the matching css from the cgroup's subsys table is guaranteed to 667 * be and stay valid until the enclosing operation is complete. 668 */ 669 if (CGROUP_HAS_SUBSYS_CONFIG && cft->ss) 670 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]); 671 else 672 return &cgrp->self; 673 } 674 EXPORT_SYMBOL_GPL(of_css); 675 676 /** 677 * for_each_css - iterate all css's of a cgroup 678 * @css: the iteration cursor 679 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end 680 * @cgrp: the target cgroup to iterate css's of 681 * 682 * Should be called under cgroup_[tree_]mutex. 683 */ 684 #define for_each_css(css, ssid, cgrp) \ 685 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \ 686 if (!((css) = rcu_dereference_check( \ 687 (cgrp)->subsys[(ssid)], \ 688 lockdep_is_held(&cgroup_mutex)))) { } \ 689 else 690 691 /** 692 * do_each_subsys_mask - filter for_each_subsys with a bitmask 693 * @ss: the iteration cursor 694 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end 695 * @ss_mask: the bitmask 696 * 697 * The block will only run for cases where the ssid-th bit (1 << ssid) of 698 * @ss_mask is set. 699 */ 700 #define do_each_subsys_mask(ss, ssid, ss_mask) do { \ 701 unsigned long __ss_mask = (ss_mask); \ 702 if (!CGROUP_HAS_SUBSYS_CONFIG) { \ 703 (ssid) = 0; \ 704 break; \ 705 } \ 706 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \ 707 (ss) = cgroup_subsys[ssid]; \ 708 { 709 710 #define while_each_subsys_mask() \ 711 } \ 712 } \ 713 } while (false) 714 715 /* iterate over child cgrps, lock should be held throughout iteration */ 716 #define cgroup_for_each_live_child(child, cgrp) \ 717 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \ 718 if (({ lockdep_assert_held(&cgroup_mutex); \ 719 cgroup_is_dead(child); })) \ 720 ; \ 721 else 722 723 /* walk live descendants in pre order */ 724 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \ 725 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \ 726 if (({ lockdep_assert_held(&cgroup_mutex); \ 727 (dsct) = (d_css)->cgroup; \ 728 cgroup_is_dead(dsct); })) \ 729 ; \ 730 else 731 732 /* walk live descendants in postorder */ 733 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \ 734 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \ 735 if (({ lockdep_assert_held(&cgroup_mutex); \ 736 (dsct) = (d_css)->cgroup; \ 737 cgroup_is_dead(dsct); })) \ 738 ; \ 739 else 740 741 /* 742 * The default css_set - used by init and its children prior to any 743 * hierarchies being mounted. It contains a pointer to the root state 744 * for each subsystem. Also used to anchor the list of css_sets. Not 745 * reference-counted, to improve performance when child cgroups 746 * haven't been created. 747 */ 748 struct css_set init_css_set = { 749 .refcount = REFCOUNT_INIT(1), 750 .dom_cset = &init_css_set, 751 .tasks = LIST_HEAD_INIT(init_css_set.tasks), 752 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks), 753 .dying_tasks = LIST_HEAD_INIT(init_css_set.dying_tasks), 754 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters), 755 .threaded_csets = LIST_HEAD_INIT(init_css_set.threaded_csets), 756 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links), 757 .mg_src_preload_node = LIST_HEAD_INIT(init_css_set.mg_src_preload_node), 758 .mg_dst_preload_node = LIST_HEAD_INIT(init_css_set.mg_dst_preload_node), 759 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node), 760 761 /* 762 * The following field is re-initialized when this cset gets linked 763 * in cgroup_init(). However, let's initialize the field 764 * statically too so that the default cgroup can be accessed safely 765 * early during boot. 766 */ 767 .dfl_cgrp = &cgrp_dfl_root.cgrp, 768 }; 769 770 static int css_set_count = 1; /* 1 for init_css_set */ 771 772 static bool css_set_threaded(struct css_set *cset) 773 { 774 return cset->dom_cset != cset; 775 } 776 777 /** 778 * css_set_populated - does a css_set contain any tasks? 779 * @cset: target css_set 780 * 781 * css_set_populated() should be the same as !!cset->nr_tasks at steady 782 * state. However, css_set_populated() can be called while a task is being 783 * added to or removed from the linked list before the nr_tasks is 784 * properly updated. Hence, we can't just look at ->nr_tasks here. 785 */ 786 static bool css_set_populated(struct css_set *cset) 787 { 788 lockdep_assert_held(&css_set_lock); 789 790 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks); 791 } 792 793 /** 794 * cgroup_update_populated - update the populated count of a cgroup 795 * @cgrp: the target cgroup 796 * @populated: inc or dec populated count 797 * 798 * One of the css_sets associated with @cgrp is either getting its first 799 * task or losing the last. Update @cgrp->nr_populated_* accordingly. The 800 * count is propagated towards root so that a given cgroup's 801 * nr_populated_children is zero iff none of its descendants contain any 802 * tasks. 803 * 804 * @cgrp's interface file "cgroup.populated" is zero if both 805 * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and 806 * 1 otherwise. When the sum changes from or to zero, userland is notified 807 * that the content of the interface file has changed. This can be used to 808 * detect when @cgrp and its descendants become populated or empty. 809 */ 810 static void cgroup_update_populated(struct cgroup *cgrp, bool populated) 811 { 812 struct cgroup *child = NULL; 813 int adj = populated ? 1 : -1; 814 815 lockdep_assert_held(&css_set_lock); 816 817 do { 818 bool was_populated = cgroup_is_populated(cgrp); 819 820 if (!child) { 821 cgrp->nr_populated_csets += adj; 822 } else { 823 if (cgroup_is_threaded(child)) 824 cgrp->nr_populated_threaded_children += adj; 825 else 826 cgrp->nr_populated_domain_children += adj; 827 } 828 829 if (was_populated == cgroup_is_populated(cgrp)) 830 break; 831 832 cgroup1_check_for_release(cgrp); 833 TRACE_CGROUP_PATH(notify_populated, cgrp, 834 cgroup_is_populated(cgrp)); 835 cgroup_file_notify(&cgrp->events_file); 836 837 child = cgrp; 838 cgrp = cgroup_parent(cgrp); 839 } while (cgrp); 840 } 841 842 /** 843 * css_set_update_populated - update populated state of a css_set 844 * @cset: target css_set 845 * @populated: whether @cset is populated or depopulated 846 * 847 * @cset is either getting the first task or losing the last. Update the 848 * populated counters of all associated cgroups accordingly. 849 */ 850 static void css_set_update_populated(struct css_set *cset, bool populated) 851 { 852 struct cgrp_cset_link *link; 853 854 lockdep_assert_held(&css_set_lock); 855 856 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) 857 cgroup_update_populated(link->cgrp, populated); 858 } 859 860 /* 861 * @task is leaving, advance task iterators which are pointing to it so 862 * that they can resume at the next position. Advancing an iterator might 863 * remove it from the list, use safe walk. See css_task_iter_skip() for 864 * details. 865 */ 866 static void css_set_skip_task_iters(struct css_set *cset, 867 struct task_struct *task) 868 { 869 struct css_task_iter *it, *pos; 870 871 list_for_each_entry_safe(it, pos, &cset->task_iters, iters_node) 872 css_task_iter_skip(it, task); 873 } 874 875 /** 876 * css_set_move_task - move a task from one css_set to another 877 * @task: task being moved 878 * @from_cset: css_set @task currently belongs to (may be NULL) 879 * @to_cset: new css_set @task is being moved to (may be NULL) 880 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks 881 * 882 * Move @task from @from_cset to @to_cset. If @task didn't belong to any 883 * css_set, @from_cset can be NULL. If @task is being disassociated 884 * instead of moved, @to_cset can be NULL. 885 * 886 * This function automatically handles populated counter updates and 887 * css_task_iter adjustments but the caller is responsible for managing 888 * @from_cset and @to_cset's reference counts. 889 */ 890 static void css_set_move_task(struct task_struct *task, 891 struct css_set *from_cset, struct css_set *to_cset, 892 bool use_mg_tasks) 893 { 894 lockdep_assert_held(&css_set_lock); 895 896 if (to_cset && !css_set_populated(to_cset)) 897 css_set_update_populated(to_cset, true); 898 899 if (from_cset) { 900 WARN_ON_ONCE(list_empty(&task->cg_list)); 901 902 css_set_skip_task_iters(from_cset, task); 903 list_del_init(&task->cg_list); 904 if (!css_set_populated(from_cset)) 905 css_set_update_populated(from_cset, false); 906 } else { 907 WARN_ON_ONCE(!list_empty(&task->cg_list)); 908 } 909 910 if (to_cset) { 911 /* 912 * We are synchronized through cgroup_threadgroup_rwsem 913 * against PF_EXITING setting such that we can't race 914 * against cgroup_exit()/cgroup_free() dropping the css_set. 915 */ 916 WARN_ON_ONCE(task->flags & PF_EXITING); 917 918 cgroup_move_task(task, to_cset); 919 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks : 920 &to_cset->tasks); 921 } 922 } 923 924 /* 925 * hash table for cgroup groups. This improves the performance to find 926 * an existing css_set. This hash doesn't (currently) take into 927 * account cgroups in empty hierarchies. 928 */ 929 #define CSS_SET_HASH_BITS 7 930 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS); 931 932 static unsigned long css_set_hash(struct cgroup_subsys_state *css[]) 933 { 934 unsigned long key = 0UL; 935 struct cgroup_subsys *ss; 936 int i; 937 938 for_each_subsys(ss, i) 939 key += (unsigned long)css[i]; 940 key = (key >> 16) ^ key; 941 942 return key; 943 } 944 945 void put_css_set_locked(struct css_set *cset) 946 { 947 struct cgrp_cset_link *link, *tmp_link; 948 struct cgroup_subsys *ss; 949 int ssid; 950 951 lockdep_assert_held(&css_set_lock); 952 953 if (!refcount_dec_and_test(&cset->refcount)) 954 return; 955 956 WARN_ON_ONCE(!list_empty(&cset->threaded_csets)); 957 958 /* This css_set is dead. Unlink it and release cgroup and css refs */ 959 for_each_subsys(ss, ssid) { 960 list_del(&cset->e_cset_node[ssid]); 961 css_put(cset->subsys[ssid]); 962 } 963 hash_del(&cset->hlist); 964 css_set_count--; 965 966 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) { 967 list_del(&link->cset_link); 968 list_del(&link->cgrp_link); 969 if (cgroup_parent(link->cgrp)) 970 cgroup_put(link->cgrp); 971 kfree(link); 972 } 973 974 if (css_set_threaded(cset)) { 975 list_del(&cset->threaded_csets_node); 976 put_css_set_locked(cset->dom_cset); 977 } 978 979 kfree_rcu(cset, rcu_head); 980 } 981 982 /** 983 * compare_css_sets - helper function for find_existing_css_set(). 984 * @cset: candidate css_set being tested 985 * @old_cset: existing css_set for a task 986 * @new_cgrp: cgroup that's being entered by the task 987 * @template: desired set of css pointers in css_set (pre-calculated) 988 * 989 * Returns true if "cset" matches "old_cset" except for the hierarchy 990 * which "new_cgrp" belongs to, for which it should match "new_cgrp". 991 */ 992 static bool compare_css_sets(struct css_set *cset, 993 struct css_set *old_cset, 994 struct cgroup *new_cgrp, 995 struct cgroup_subsys_state *template[]) 996 { 997 struct cgroup *new_dfl_cgrp; 998 struct list_head *l1, *l2; 999 1000 /* 1001 * On the default hierarchy, there can be csets which are 1002 * associated with the same set of cgroups but different csses. 1003 * Let's first ensure that csses match. 1004 */ 1005 if (memcmp(template, cset->subsys, sizeof(cset->subsys))) 1006 return false; 1007 1008 1009 /* @cset's domain should match the default cgroup's */ 1010 if (cgroup_on_dfl(new_cgrp)) 1011 new_dfl_cgrp = new_cgrp; 1012 else 1013 new_dfl_cgrp = old_cset->dfl_cgrp; 1014 1015 if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp) 1016 return false; 1017 1018 /* 1019 * Compare cgroup pointers in order to distinguish between 1020 * different cgroups in hierarchies. As different cgroups may 1021 * share the same effective css, this comparison is always 1022 * necessary. 1023 */ 1024 l1 = &cset->cgrp_links; 1025 l2 = &old_cset->cgrp_links; 1026 while (1) { 1027 struct cgrp_cset_link *link1, *link2; 1028 struct cgroup *cgrp1, *cgrp2; 1029 1030 l1 = l1->next; 1031 l2 = l2->next; 1032 /* See if we reached the end - both lists are equal length. */ 1033 if (l1 == &cset->cgrp_links) { 1034 BUG_ON(l2 != &old_cset->cgrp_links); 1035 break; 1036 } else { 1037 BUG_ON(l2 == &old_cset->cgrp_links); 1038 } 1039 /* Locate the cgroups associated with these links. */ 1040 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link); 1041 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link); 1042 cgrp1 = link1->cgrp; 1043 cgrp2 = link2->cgrp; 1044 /* Hierarchies should be linked in the same order. */ 1045 BUG_ON(cgrp1->root != cgrp2->root); 1046 1047 /* 1048 * If this hierarchy is the hierarchy of the cgroup 1049 * that's changing, then we need to check that this 1050 * css_set points to the new cgroup; if it's any other 1051 * hierarchy, then this css_set should point to the 1052 * same cgroup as the old css_set. 1053 */ 1054 if (cgrp1->root == new_cgrp->root) { 1055 if (cgrp1 != new_cgrp) 1056 return false; 1057 } else { 1058 if (cgrp1 != cgrp2) 1059 return false; 1060 } 1061 } 1062 return true; 1063 } 1064 1065 /** 1066 * find_existing_css_set - init css array and find the matching css_set 1067 * @old_cset: the css_set that we're using before the cgroup transition 1068 * @cgrp: the cgroup that we're moving into 1069 * @template: out param for the new set of csses, should be clear on entry 1070 */ 1071 static struct css_set *find_existing_css_set(struct css_set *old_cset, 1072 struct cgroup *cgrp, 1073 struct cgroup_subsys_state *template[]) 1074 { 1075 struct cgroup_root *root = cgrp->root; 1076 struct cgroup_subsys *ss; 1077 struct css_set *cset; 1078 unsigned long key; 1079 int i; 1080 1081 /* 1082 * Build the set of subsystem state objects that we want to see in the 1083 * new css_set. While subsystems can change globally, the entries here 1084 * won't change, so no need for locking. 1085 */ 1086 for_each_subsys(ss, i) { 1087 if (root->subsys_mask & (1UL << i)) { 1088 /* 1089 * @ss is in this hierarchy, so we want the 1090 * effective css from @cgrp. 1091 */ 1092 template[i] = cgroup_e_css_by_mask(cgrp, ss); 1093 } else { 1094 /* 1095 * @ss is not in this hierarchy, so we don't want 1096 * to change the css. 1097 */ 1098 template[i] = old_cset->subsys[i]; 1099 } 1100 } 1101 1102 key = css_set_hash(template); 1103 hash_for_each_possible(css_set_table, cset, hlist, key) { 1104 if (!compare_css_sets(cset, old_cset, cgrp, template)) 1105 continue; 1106 1107 /* This css_set matches what we need */ 1108 return cset; 1109 } 1110 1111 /* No existing cgroup group matched */ 1112 return NULL; 1113 } 1114 1115 static void free_cgrp_cset_links(struct list_head *links_to_free) 1116 { 1117 struct cgrp_cset_link *link, *tmp_link; 1118 1119 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) { 1120 list_del(&link->cset_link); 1121 kfree(link); 1122 } 1123 } 1124 1125 /** 1126 * allocate_cgrp_cset_links - allocate cgrp_cset_links 1127 * @count: the number of links to allocate 1128 * @tmp_links: list_head the allocated links are put on 1129 * 1130 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links 1131 * through ->cset_link. Returns 0 on success or -errno. 1132 */ 1133 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links) 1134 { 1135 struct cgrp_cset_link *link; 1136 int i; 1137 1138 INIT_LIST_HEAD(tmp_links); 1139 1140 for (i = 0; i < count; i++) { 1141 link = kzalloc(sizeof(*link), GFP_KERNEL); 1142 if (!link) { 1143 free_cgrp_cset_links(tmp_links); 1144 return -ENOMEM; 1145 } 1146 list_add(&link->cset_link, tmp_links); 1147 } 1148 return 0; 1149 } 1150 1151 /** 1152 * link_css_set - a helper function to link a css_set to a cgroup 1153 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links() 1154 * @cset: the css_set to be linked 1155 * @cgrp: the destination cgroup 1156 */ 1157 static void link_css_set(struct list_head *tmp_links, struct css_set *cset, 1158 struct cgroup *cgrp) 1159 { 1160 struct cgrp_cset_link *link; 1161 1162 BUG_ON(list_empty(tmp_links)); 1163 1164 if (cgroup_on_dfl(cgrp)) 1165 cset->dfl_cgrp = cgrp; 1166 1167 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link); 1168 link->cset = cset; 1169 link->cgrp = cgrp; 1170 1171 /* 1172 * Always add links to the tail of the lists so that the lists are 1173 * in chronological order. 1174 */ 1175 list_move_tail(&link->cset_link, &cgrp->cset_links); 1176 list_add_tail(&link->cgrp_link, &cset->cgrp_links); 1177 1178 if (cgroup_parent(cgrp)) 1179 cgroup_get_live(cgrp); 1180 } 1181 1182 /** 1183 * find_css_set - return a new css_set with one cgroup updated 1184 * @old_cset: the baseline css_set 1185 * @cgrp: the cgroup to be updated 1186 * 1187 * Return a new css_set that's equivalent to @old_cset, but with @cgrp 1188 * substituted into the appropriate hierarchy. 1189 */ 1190 static struct css_set *find_css_set(struct css_set *old_cset, 1191 struct cgroup *cgrp) 1192 { 1193 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { }; 1194 struct css_set *cset; 1195 struct list_head tmp_links; 1196 struct cgrp_cset_link *link; 1197 struct cgroup_subsys *ss; 1198 unsigned long key; 1199 int ssid; 1200 1201 lockdep_assert_held(&cgroup_mutex); 1202 1203 /* First see if we already have a cgroup group that matches 1204 * the desired set */ 1205 spin_lock_irq(&css_set_lock); 1206 cset = find_existing_css_set(old_cset, cgrp, template); 1207 if (cset) 1208 get_css_set(cset); 1209 spin_unlock_irq(&css_set_lock); 1210 1211 if (cset) 1212 return cset; 1213 1214 cset = kzalloc(sizeof(*cset), GFP_KERNEL); 1215 if (!cset) 1216 return NULL; 1217 1218 /* Allocate all the cgrp_cset_link objects that we'll need */ 1219 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) { 1220 kfree(cset); 1221 return NULL; 1222 } 1223 1224 refcount_set(&cset->refcount, 1); 1225 cset->dom_cset = cset; 1226 INIT_LIST_HEAD(&cset->tasks); 1227 INIT_LIST_HEAD(&cset->mg_tasks); 1228 INIT_LIST_HEAD(&cset->dying_tasks); 1229 INIT_LIST_HEAD(&cset->task_iters); 1230 INIT_LIST_HEAD(&cset->threaded_csets); 1231 INIT_HLIST_NODE(&cset->hlist); 1232 INIT_LIST_HEAD(&cset->cgrp_links); 1233 INIT_LIST_HEAD(&cset->mg_src_preload_node); 1234 INIT_LIST_HEAD(&cset->mg_dst_preload_node); 1235 INIT_LIST_HEAD(&cset->mg_node); 1236 1237 /* Copy the set of subsystem state objects generated in 1238 * find_existing_css_set() */ 1239 memcpy(cset->subsys, template, sizeof(cset->subsys)); 1240 1241 spin_lock_irq(&css_set_lock); 1242 /* Add reference counts and links from the new css_set. */ 1243 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) { 1244 struct cgroup *c = link->cgrp; 1245 1246 if (c->root == cgrp->root) 1247 c = cgrp; 1248 link_css_set(&tmp_links, cset, c); 1249 } 1250 1251 BUG_ON(!list_empty(&tmp_links)); 1252 1253 css_set_count++; 1254 1255 /* Add @cset to the hash table */ 1256 key = css_set_hash(cset->subsys); 1257 hash_add(css_set_table, &cset->hlist, key); 1258 1259 for_each_subsys(ss, ssid) { 1260 struct cgroup_subsys_state *css = cset->subsys[ssid]; 1261 1262 list_add_tail(&cset->e_cset_node[ssid], 1263 &css->cgroup->e_csets[ssid]); 1264 css_get(css); 1265 } 1266 1267 spin_unlock_irq(&css_set_lock); 1268 1269 /* 1270 * If @cset should be threaded, look up the matching dom_cset and 1271 * link them up. We first fully initialize @cset then look for the 1272 * dom_cset. It's simpler this way and safe as @cset is guaranteed 1273 * to stay empty until we return. 1274 */ 1275 if (cgroup_is_threaded(cset->dfl_cgrp)) { 1276 struct css_set *dcset; 1277 1278 dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp); 1279 if (!dcset) { 1280 put_css_set(cset); 1281 return NULL; 1282 } 1283 1284 spin_lock_irq(&css_set_lock); 1285 cset->dom_cset = dcset; 1286 list_add_tail(&cset->threaded_csets_node, 1287 &dcset->threaded_csets); 1288 spin_unlock_irq(&css_set_lock); 1289 } 1290 1291 return cset; 1292 } 1293 1294 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root) 1295 { 1296 struct cgroup *root_cgrp = kernfs_root_to_node(kf_root)->priv; 1297 1298 return root_cgrp->root; 1299 } 1300 1301 void cgroup_favor_dynmods(struct cgroup_root *root, bool favor) 1302 { 1303 bool favoring = root->flags & CGRP_ROOT_FAVOR_DYNMODS; 1304 1305 /* see the comment above CGRP_ROOT_FAVOR_DYNMODS definition */ 1306 if (favor && !favoring) { 1307 rcu_sync_enter(&cgroup_threadgroup_rwsem.rss); 1308 root->flags |= CGRP_ROOT_FAVOR_DYNMODS; 1309 } else if (!favor && favoring) { 1310 rcu_sync_exit(&cgroup_threadgroup_rwsem.rss); 1311 root->flags &= ~CGRP_ROOT_FAVOR_DYNMODS; 1312 } 1313 } 1314 1315 static int cgroup_init_root_id(struct cgroup_root *root) 1316 { 1317 int id; 1318 1319 lockdep_assert_held(&cgroup_mutex); 1320 1321 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL); 1322 if (id < 0) 1323 return id; 1324 1325 root->hierarchy_id = id; 1326 return 0; 1327 } 1328 1329 static void cgroup_exit_root_id(struct cgroup_root *root) 1330 { 1331 lockdep_assert_held(&cgroup_mutex); 1332 1333 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id); 1334 } 1335 1336 void cgroup_free_root(struct cgroup_root *root) 1337 { 1338 kfree(root); 1339 } 1340 1341 static void cgroup_destroy_root(struct cgroup_root *root) 1342 { 1343 struct cgroup *cgrp = &root->cgrp; 1344 struct cgrp_cset_link *link, *tmp_link; 1345 1346 trace_cgroup_destroy_root(root); 1347 1348 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp); 1349 1350 BUG_ON(atomic_read(&root->nr_cgrps)); 1351 BUG_ON(!list_empty(&cgrp->self.children)); 1352 1353 /* Rebind all subsystems back to the default hierarchy */ 1354 WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask)); 1355 1356 /* 1357 * Release all the links from cset_links to this hierarchy's 1358 * root cgroup 1359 */ 1360 spin_lock_irq(&css_set_lock); 1361 1362 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) { 1363 list_del(&link->cset_link); 1364 list_del(&link->cgrp_link); 1365 kfree(link); 1366 } 1367 1368 spin_unlock_irq(&css_set_lock); 1369 1370 if (!list_empty(&root->root_list)) { 1371 list_del(&root->root_list); 1372 cgroup_root_count--; 1373 } 1374 1375 cgroup_favor_dynmods(root, false); 1376 cgroup_exit_root_id(root); 1377 1378 cgroup_unlock(); 1379 1380 cgroup_rstat_exit(cgrp); 1381 kernfs_destroy_root(root->kf_root); 1382 cgroup_free_root(root); 1383 } 1384 1385 /* 1386 * Returned cgroup is without refcount but it's valid as long as cset pins it. 1387 */ 1388 static inline struct cgroup *__cset_cgroup_from_root(struct css_set *cset, 1389 struct cgroup_root *root) 1390 { 1391 struct cgroup *res_cgroup = NULL; 1392 1393 if (cset == &init_css_set) { 1394 res_cgroup = &root->cgrp; 1395 } else if (root == &cgrp_dfl_root) { 1396 res_cgroup = cset->dfl_cgrp; 1397 } else { 1398 struct cgrp_cset_link *link; 1399 lockdep_assert_held(&css_set_lock); 1400 1401 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) { 1402 struct cgroup *c = link->cgrp; 1403 1404 if (c->root == root) { 1405 res_cgroup = c; 1406 break; 1407 } 1408 } 1409 } 1410 1411 BUG_ON(!res_cgroup); 1412 return res_cgroup; 1413 } 1414 1415 /* 1416 * look up cgroup associated with current task's cgroup namespace on the 1417 * specified hierarchy 1418 */ 1419 static struct cgroup * 1420 current_cgns_cgroup_from_root(struct cgroup_root *root) 1421 { 1422 struct cgroup *res = NULL; 1423 struct css_set *cset; 1424 1425 lockdep_assert_held(&css_set_lock); 1426 1427 rcu_read_lock(); 1428 1429 cset = current->nsproxy->cgroup_ns->root_cset; 1430 res = __cset_cgroup_from_root(cset, root); 1431 1432 rcu_read_unlock(); 1433 1434 return res; 1435 } 1436 1437 /* 1438 * Look up cgroup associated with current task's cgroup namespace on the default 1439 * hierarchy. 1440 * 1441 * Unlike current_cgns_cgroup_from_root(), this doesn't need locks: 1442 * - Internal rcu_read_lock is unnecessary because we don't dereference any rcu 1443 * pointers. 1444 * - css_set_lock is not needed because we just read cset->dfl_cgrp. 1445 * - As a bonus returned cgrp is pinned with the current because it cannot 1446 * switch cgroup_ns asynchronously. 1447 */ 1448 static struct cgroup *current_cgns_cgroup_dfl(void) 1449 { 1450 struct css_set *cset; 1451 1452 if (current->nsproxy) { 1453 cset = current->nsproxy->cgroup_ns->root_cset; 1454 return __cset_cgroup_from_root(cset, &cgrp_dfl_root); 1455 } else { 1456 /* 1457 * NOTE: This function may be called from bpf_cgroup_from_id() 1458 * on a task which has already passed exit_task_namespaces() and 1459 * nsproxy == NULL. Fall back to cgrp_dfl_root which will make all 1460 * cgroups visible for lookups. 1461 */ 1462 return &cgrp_dfl_root.cgrp; 1463 } 1464 } 1465 1466 /* look up cgroup associated with given css_set on the specified hierarchy */ 1467 static struct cgroup *cset_cgroup_from_root(struct css_set *cset, 1468 struct cgroup_root *root) 1469 { 1470 lockdep_assert_held(&cgroup_mutex); 1471 lockdep_assert_held(&css_set_lock); 1472 1473 return __cset_cgroup_from_root(cset, root); 1474 } 1475 1476 /* 1477 * Return the cgroup for "task" from the given hierarchy. Must be 1478 * called with cgroup_mutex and css_set_lock held. 1479 */ 1480 struct cgroup *task_cgroup_from_root(struct task_struct *task, 1481 struct cgroup_root *root) 1482 { 1483 /* 1484 * No need to lock the task - since we hold css_set_lock the 1485 * task can't change groups. 1486 */ 1487 return cset_cgroup_from_root(task_css_set(task), root); 1488 } 1489 1490 /* 1491 * A task must hold cgroup_mutex to modify cgroups. 1492 * 1493 * Any task can increment and decrement the count field without lock. 1494 * So in general, code holding cgroup_mutex can't rely on the count 1495 * field not changing. However, if the count goes to zero, then only 1496 * cgroup_attach_task() can increment it again. Because a count of zero 1497 * means that no tasks are currently attached, therefore there is no 1498 * way a task attached to that cgroup can fork (the other way to 1499 * increment the count). So code holding cgroup_mutex can safely 1500 * assume that if the count is zero, it will stay zero. Similarly, if 1501 * a task holds cgroup_mutex on a cgroup with zero count, it 1502 * knows that the cgroup won't be removed, as cgroup_rmdir() 1503 * needs that mutex. 1504 * 1505 * A cgroup can only be deleted if both its 'count' of using tasks 1506 * is zero, and its list of 'children' cgroups is empty. Since all 1507 * tasks in the system use _some_ cgroup, and since there is always at 1508 * least one task in the system (init, pid == 1), therefore, root cgroup 1509 * always has either children cgroups and/or using tasks. So we don't 1510 * need a special hack to ensure that root cgroup cannot be deleted. 1511 * 1512 * P.S. One more locking exception. RCU is used to guard the 1513 * update of a tasks cgroup pointer by cgroup_attach_task() 1514 */ 1515 1516 static struct kernfs_syscall_ops cgroup_kf_syscall_ops; 1517 1518 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft, 1519 char *buf) 1520 { 1521 struct cgroup_subsys *ss = cft->ss; 1522 1523 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) && 1524 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) { 1525 const char *dbg = (cft->flags & CFTYPE_DEBUG) ? ".__DEBUG__." : ""; 1526 1527 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s%s.%s", 1528 dbg, cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name, 1529 cft->name); 1530 } else { 1531 strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX); 1532 } 1533 return buf; 1534 } 1535 1536 /** 1537 * cgroup_file_mode - deduce file mode of a control file 1538 * @cft: the control file in question 1539 * 1540 * S_IRUGO for read, S_IWUSR for write. 1541 */ 1542 static umode_t cgroup_file_mode(const struct cftype *cft) 1543 { 1544 umode_t mode = 0; 1545 1546 if (cft->read_u64 || cft->read_s64 || cft->seq_show) 1547 mode |= S_IRUGO; 1548 1549 if (cft->write_u64 || cft->write_s64 || cft->write) { 1550 if (cft->flags & CFTYPE_WORLD_WRITABLE) 1551 mode |= S_IWUGO; 1552 else 1553 mode |= S_IWUSR; 1554 } 1555 1556 return mode; 1557 } 1558 1559 /** 1560 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask 1561 * @subtree_control: the new subtree_control mask to consider 1562 * @this_ss_mask: available subsystems 1563 * 1564 * On the default hierarchy, a subsystem may request other subsystems to be 1565 * enabled together through its ->depends_on mask. In such cases, more 1566 * subsystems than specified in "cgroup.subtree_control" may be enabled. 1567 * 1568 * This function calculates which subsystems need to be enabled if 1569 * @subtree_control is to be applied while restricted to @this_ss_mask. 1570 */ 1571 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask) 1572 { 1573 u16 cur_ss_mask = subtree_control; 1574 struct cgroup_subsys *ss; 1575 int ssid; 1576 1577 lockdep_assert_held(&cgroup_mutex); 1578 1579 cur_ss_mask |= cgrp_dfl_implicit_ss_mask; 1580 1581 while (true) { 1582 u16 new_ss_mask = cur_ss_mask; 1583 1584 do_each_subsys_mask(ss, ssid, cur_ss_mask) { 1585 new_ss_mask |= ss->depends_on; 1586 } while_each_subsys_mask(); 1587 1588 /* 1589 * Mask out subsystems which aren't available. This can 1590 * happen only if some depended-upon subsystems were bound 1591 * to non-default hierarchies. 1592 */ 1593 new_ss_mask &= this_ss_mask; 1594 1595 if (new_ss_mask == cur_ss_mask) 1596 break; 1597 cur_ss_mask = new_ss_mask; 1598 } 1599 1600 return cur_ss_mask; 1601 } 1602 1603 /** 1604 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods 1605 * @kn: the kernfs_node being serviced 1606 * 1607 * This helper undoes cgroup_kn_lock_live() and should be invoked before 1608 * the method finishes if locking succeeded. Note that once this function 1609 * returns the cgroup returned by cgroup_kn_lock_live() may become 1610 * inaccessible any time. If the caller intends to continue to access the 1611 * cgroup, it should pin it before invoking this function. 1612 */ 1613 void cgroup_kn_unlock(struct kernfs_node *kn) 1614 { 1615 struct cgroup *cgrp; 1616 1617 if (kernfs_type(kn) == KERNFS_DIR) 1618 cgrp = kn->priv; 1619 else 1620 cgrp = kn->parent->priv; 1621 1622 cgroup_unlock(); 1623 1624 kernfs_unbreak_active_protection(kn); 1625 cgroup_put(cgrp); 1626 } 1627 1628 /** 1629 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods 1630 * @kn: the kernfs_node being serviced 1631 * @drain_offline: perform offline draining on the cgroup 1632 * 1633 * This helper is to be used by a cgroup kernfs method currently servicing 1634 * @kn. It breaks the active protection, performs cgroup locking and 1635 * verifies that the associated cgroup is alive. Returns the cgroup if 1636 * alive; otherwise, %NULL. A successful return should be undone by a 1637 * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the 1638 * cgroup is drained of offlining csses before return. 1639 * 1640 * Any cgroup kernfs method implementation which requires locking the 1641 * associated cgroup should use this helper. It avoids nesting cgroup 1642 * locking under kernfs active protection and allows all kernfs operations 1643 * including self-removal. 1644 */ 1645 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline) 1646 { 1647 struct cgroup *cgrp; 1648 1649 if (kernfs_type(kn) == KERNFS_DIR) 1650 cgrp = kn->priv; 1651 else 1652 cgrp = kn->parent->priv; 1653 1654 /* 1655 * We're gonna grab cgroup_mutex which nests outside kernfs 1656 * active_ref. cgroup liveliness check alone provides enough 1657 * protection against removal. Ensure @cgrp stays accessible and 1658 * break the active_ref protection. 1659 */ 1660 if (!cgroup_tryget(cgrp)) 1661 return NULL; 1662 kernfs_break_active_protection(kn); 1663 1664 if (drain_offline) 1665 cgroup_lock_and_drain_offline(cgrp); 1666 else 1667 cgroup_lock(); 1668 1669 if (!cgroup_is_dead(cgrp)) 1670 return cgrp; 1671 1672 cgroup_kn_unlock(kn); 1673 return NULL; 1674 } 1675 1676 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft) 1677 { 1678 char name[CGROUP_FILE_NAME_MAX]; 1679 1680 lockdep_assert_held(&cgroup_mutex); 1681 1682 if (cft->file_offset) { 1683 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss); 1684 struct cgroup_file *cfile = (void *)css + cft->file_offset; 1685 1686 spin_lock_irq(&cgroup_file_kn_lock); 1687 cfile->kn = NULL; 1688 spin_unlock_irq(&cgroup_file_kn_lock); 1689 1690 del_timer_sync(&cfile->notify_timer); 1691 } 1692 1693 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name)); 1694 } 1695 1696 /** 1697 * css_clear_dir - remove subsys files in a cgroup directory 1698 * @css: target css 1699 */ 1700 static void css_clear_dir(struct cgroup_subsys_state *css) 1701 { 1702 struct cgroup *cgrp = css->cgroup; 1703 struct cftype *cfts; 1704 1705 if (!(css->flags & CSS_VISIBLE)) 1706 return; 1707 1708 css->flags &= ~CSS_VISIBLE; 1709 1710 if (!css->ss) { 1711 if (cgroup_on_dfl(cgrp)) { 1712 cgroup_addrm_files(css, cgrp, 1713 cgroup_base_files, false); 1714 if (cgroup_psi_enabled()) 1715 cgroup_addrm_files(css, cgrp, 1716 cgroup_psi_files, false); 1717 } else { 1718 cgroup_addrm_files(css, cgrp, 1719 cgroup1_base_files, false); 1720 } 1721 } else { 1722 list_for_each_entry(cfts, &css->ss->cfts, node) 1723 cgroup_addrm_files(css, cgrp, cfts, false); 1724 } 1725 } 1726 1727 /** 1728 * css_populate_dir - create subsys files in a cgroup directory 1729 * @css: target css 1730 * 1731 * On failure, no file is added. 1732 */ 1733 static int css_populate_dir(struct cgroup_subsys_state *css) 1734 { 1735 struct cgroup *cgrp = css->cgroup; 1736 struct cftype *cfts, *failed_cfts; 1737 int ret; 1738 1739 if ((css->flags & CSS_VISIBLE) || !cgrp->kn) 1740 return 0; 1741 1742 if (!css->ss) { 1743 if (cgroup_on_dfl(cgrp)) { 1744 ret = cgroup_addrm_files(&cgrp->self, cgrp, 1745 cgroup_base_files, true); 1746 if (ret < 0) 1747 return ret; 1748 1749 if (cgroup_psi_enabled()) { 1750 ret = cgroup_addrm_files(&cgrp->self, cgrp, 1751 cgroup_psi_files, true); 1752 if (ret < 0) 1753 return ret; 1754 } 1755 } else { 1756 cgroup_addrm_files(css, cgrp, 1757 cgroup1_base_files, true); 1758 } 1759 } else { 1760 list_for_each_entry(cfts, &css->ss->cfts, node) { 1761 ret = cgroup_addrm_files(css, cgrp, cfts, true); 1762 if (ret < 0) { 1763 failed_cfts = cfts; 1764 goto err; 1765 } 1766 } 1767 } 1768 1769 css->flags |= CSS_VISIBLE; 1770 1771 return 0; 1772 err: 1773 list_for_each_entry(cfts, &css->ss->cfts, node) { 1774 if (cfts == failed_cfts) 1775 break; 1776 cgroup_addrm_files(css, cgrp, cfts, false); 1777 } 1778 return ret; 1779 } 1780 1781 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask) 1782 { 1783 struct cgroup *dcgrp = &dst_root->cgrp; 1784 struct cgroup_subsys *ss; 1785 int ssid, ret; 1786 u16 dfl_disable_ss_mask = 0; 1787 1788 lockdep_assert_held(&cgroup_mutex); 1789 1790 do_each_subsys_mask(ss, ssid, ss_mask) { 1791 /* 1792 * If @ss has non-root csses attached to it, can't move. 1793 * If @ss is an implicit controller, it is exempt from this 1794 * rule and can be stolen. 1795 */ 1796 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) && 1797 !ss->implicit_on_dfl) 1798 return -EBUSY; 1799 1800 /* can't move between two non-dummy roots either */ 1801 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root) 1802 return -EBUSY; 1803 1804 /* 1805 * Collect ssid's that need to be disabled from default 1806 * hierarchy. 1807 */ 1808 if (ss->root == &cgrp_dfl_root) 1809 dfl_disable_ss_mask |= 1 << ssid; 1810 1811 } while_each_subsys_mask(); 1812 1813 if (dfl_disable_ss_mask) { 1814 struct cgroup *scgrp = &cgrp_dfl_root.cgrp; 1815 1816 /* 1817 * Controllers from default hierarchy that need to be rebound 1818 * are all disabled together in one go. 1819 */ 1820 cgrp_dfl_root.subsys_mask &= ~dfl_disable_ss_mask; 1821 WARN_ON(cgroup_apply_control(scgrp)); 1822 cgroup_finalize_control(scgrp, 0); 1823 } 1824 1825 do_each_subsys_mask(ss, ssid, ss_mask) { 1826 struct cgroup_root *src_root = ss->root; 1827 struct cgroup *scgrp = &src_root->cgrp; 1828 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss); 1829 struct css_set *cset, *cset_pos; 1830 struct css_task_iter *it; 1831 1832 WARN_ON(!css || cgroup_css(dcgrp, ss)); 1833 1834 if (src_root != &cgrp_dfl_root) { 1835 /* disable from the source */ 1836 src_root->subsys_mask &= ~(1 << ssid); 1837 WARN_ON(cgroup_apply_control(scgrp)); 1838 cgroup_finalize_control(scgrp, 0); 1839 } 1840 1841 /* rebind */ 1842 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL); 1843 rcu_assign_pointer(dcgrp->subsys[ssid], css); 1844 ss->root = dst_root; 1845 css->cgroup = dcgrp; 1846 1847 spin_lock_irq(&css_set_lock); 1848 WARN_ON(!list_empty(&dcgrp->e_csets[ss->id])); 1849 list_for_each_entry_safe(cset, cset_pos, &scgrp->e_csets[ss->id], 1850 e_cset_node[ss->id]) { 1851 list_move_tail(&cset->e_cset_node[ss->id], 1852 &dcgrp->e_csets[ss->id]); 1853 /* 1854 * all css_sets of scgrp together in same order to dcgrp, 1855 * patch in-flight iterators to preserve correct iteration. 1856 * since the iterator is always advanced right away and 1857 * finished when it->cset_pos meets it->cset_head, so only 1858 * update it->cset_head is enough here. 1859 */ 1860 list_for_each_entry(it, &cset->task_iters, iters_node) 1861 if (it->cset_head == &scgrp->e_csets[ss->id]) 1862 it->cset_head = &dcgrp->e_csets[ss->id]; 1863 } 1864 spin_unlock_irq(&css_set_lock); 1865 1866 if (ss->css_rstat_flush) { 1867 list_del_rcu(&css->rstat_css_node); 1868 synchronize_rcu(); 1869 list_add_rcu(&css->rstat_css_node, 1870 &dcgrp->rstat_css_list); 1871 } 1872 1873 /* default hierarchy doesn't enable controllers by default */ 1874 dst_root->subsys_mask |= 1 << ssid; 1875 if (dst_root == &cgrp_dfl_root) { 1876 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]); 1877 } else { 1878 dcgrp->subtree_control |= 1 << ssid; 1879 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]); 1880 } 1881 1882 ret = cgroup_apply_control(dcgrp); 1883 if (ret) 1884 pr_warn("partial failure to rebind %s controller (err=%d)\n", 1885 ss->name, ret); 1886 1887 if (ss->bind) 1888 ss->bind(css); 1889 } while_each_subsys_mask(); 1890 1891 kernfs_activate(dcgrp->kn); 1892 return 0; 1893 } 1894 1895 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node, 1896 struct kernfs_root *kf_root) 1897 { 1898 int len = 0; 1899 char *buf = NULL; 1900 struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root); 1901 struct cgroup *ns_cgroup; 1902 1903 buf = kmalloc(PATH_MAX, GFP_KERNEL); 1904 if (!buf) 1905 return -ENOMEM; 1906 1907 spin_lock_irq(&css_set_lock); 1908 ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot); 1909 len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX); 1910 spin_unlock_irq(&css_set_lock); 1911 1912 if (len >= PATH_MAX) 1913 len = -ERANGE; 1914 else if (len > 0) { 1915 seq_escape(sf, buf, " \t\n\\"); 1916 len = 0; 1917 } 1918 kfree(buf); 1919 return len; 1920 } 1921 1922 enum cgroup2_param { 1923 Opt_nsdelegate, 1924 Opt_favordynmods, 1925 Opt_memory_localevents, 1926 Opt_memory_recursiveprot, 1927 nr__cgroup2_params 1928 }; 1929 1930 static const struct fs_parameter_spec cgroup2_fs_parameters[] = { 1931 fsparam_flag("nsdelegate", Opt_nsdelegate), 1932 fsparam_flag("favordynmods", Opt_favordynmods), 1933 fsparam_flag("memory_localevents", Opt_memory_localevents), 1934 fsparam_flag("memory_recursiveprot", Opt_memory_recursiveprot), 1935 {} 1936 }; 1937 1938 static int cgroup2_parse_param(struct fs_context *fc, struct fs_parameter *param) 1939 { 1940 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 1941 struct fs_parse_result result; 1942 int opt; 1943 1944 opt = fs_parse(fc, cgroup2_fs_parameters, param, &result); 1945 if (opt < 0) 1946 return opt; 1947 1948 switch (opt) { 1949 case Opt_nsdelegate: 1950 ctx->flags |= CGRP_ROOT_NS_DELEGATE; 1951 return 0; 1952 case Opt_favordynmods: 1953 ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS; 1954 return 0; 1955 case Opt_memory_localevents: 1956 ctx->flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS; 1957 return 0; 1958 case Opt_memory_recursiveprot: 1959 ctx->flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT; 1960 return 0; 1961 } 1962 return -EINVAL; 1963 } 1964 1965 static void apply_cgroup_root_flags(unsigned int root_flags) 1966 { 1967 if (current->nsproxy->cgroup_ns == &init_cgroup_ns) { 1968 if (root_flags & CGRP_ROOT_NS_DELEGATE) 1969 cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE; 1970 else 1971 cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE; 1972 1973 cgroup_favor_dynmods(&cgrp_dfl_root, 1974 root_flags & CGRP_ROOT_FAVOR_DYNMODS); 1975 1976 if (root_flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS) 1977 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS; 1978 else 1979 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_LOCAL_EVENTS; 1980 1981 if (root_flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT) 1982 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT; 1983 else 1984 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_RECURSIVE_PROT; 1985 } 1986 } 1987 1988 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root) 1989 { 1990 if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) 1991 seq_puts(seq, ",nsdelegate"); 1992 if (cgrp_dfl_root.flags & CGRP_ROOT_FAVOR_DYNMODS) 1993 seq_puts(seq, ",favordynmods"); 1994 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS) 1995 seq_puts(seq, ",memory_localevents"); 1996 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT) 1997 seq_puts(seq, ",memory_recursiveprot"); 1998 return 0; 1999 } 2000 2001 static int cgroup_reconfigure(struct fs_context *fc) 2002 { 2003 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2004 2005 apply_cgroup_root_flags(ctx->flags); 2006 return 0; 2007 } 2008 2009 static void init_cgroup_housekeeping(struct cgroup *cgrp) 2010 { 2011 struct cgroup_subsys *ss; 2012 int ssid; 2013 2014 INIT_LIST_HEAD(&cgrp->self.sibling); 2015 INIT_LIST_HEAD(&cgrp->self.children); 2016 INIT_LIST_HEAD(&cgrp->cset_links); 2017 INIT_LIST_HEAD(&cgrp->pidlists); 2018 mutex_init(&cgrp->pidlist_mutex); 2019 cgrp->self.cgroup = cgrp; 2020 cgrp->self.flags |= CSS_ONLINE; 2021 cgrp->dom_cgrp = cgrp; 2022 cgrp->max_descendants = INT_MAX; 2023 cgrp->max_depth = INT_MAX; 2024 INIT_LIST_HEAD(&cgrp->rstat_css_list); 2025 prev_cputime_init(&cgrp->prev_cputime); 2026 2027 for_each_subsys(ss, ssid) 2028 INIT_LIST_HEAD(&cgrp->e_csets[ssid]); 2029 2030 init_waitqueue_head(&cgrp->offline_waitq); 2031 INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent); 2032 } 2033 2034 void init_cgroup_root(struct cgroup_fs_context *ctx) 2035 { 2036 struct cgroup_root *root = ctx->root; 2037 struct cgroup *cgrp = &root->cgrp; 2038 2039 INIT_LIST_HEAD(&root->root_list); 2040 atomic_set(&root->nr_cgrps, 1); 2041 cgrp->root = root; 2042 init_cgroup_housekeeping(cgrp); 2043 2044 /* DYNMODS must be modified through cgroup_favor_dynmods() */ 2045 root->flags = ctx->flags & ~CGRP_ROOT_FAVOR_DYNMODS; 2046 if (ctx->release_agent) 2047 strscpy(root->release_agent_path, ctx->release_agent, PATH_MAX); 2048 if (ctx->name) 2049 strscpy(root->name, ctx->name, MAX_CGROUP_ROOT_NAMELEN); 2050 if (ctx->cpuset_clone_children) 2051 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags); 2052 } 2053 2054 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask) 2055 { 2056 LIST_HEAD(tmp_links); 2057 struct cgroup *root_cgrp = &root->cgrp; 2058 struct kernfs_syscall_ops *kf_sops; 2059 struct css_set *cset; 2060 int i, ret; 2061 2062 lockdep_assert_held(&cgroup_mutex); 2063 2064 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 2065 0, GFP_KERNEL); 2066 if (ret) 2067 goto out; 2068 2069 /* 2070 * We're accessing css_set_count without locking css_set_lock here, 2071 * but that's OK - it can only be increased by someone holding 2072 * cgroup_lock, and that's us. Later rebinding may disable 2073 * controllers on the default hierarchy and thus create new csets, 2074 * which can't be more than the existing ones. Allocate 2x. 2075 */ 2076 ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links); 2077 if (ret) 2078 goto cancel_ref; 2079 2080 ret = cgroup_init_root_id(root); 2081 if (ret) 2082 goto cancel_ref; 2083 2084 kf_sops = root == &cgrp_dfl_root ? 2085 &cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops; 2086 2087 root->kf_root = kernfs_create_root(kf_sops, 2088 KERNFS_ROOT_CREATE_DEACTIVATED | 2089 KERNFS_ROOT_SUPPORT_EXPORTOP | 2090 KERNFS_ROOT_SUPPORT_USER_XATTR, 2091 root_cgrp); 2092 if (IS_ERR(root->kf_root)) { 2093 ret = PTR_ERR(root->kf_root); 2094 goto exit_root_id; 2095 } 2096 root_cgrp->kn = kernfs_root_to_node(root->kf_root); 2097 WARN_ON_ONCE(cgroup_ino(root_cgrp) != 1); 2098 root_cgrp->ancestors[0] = root_cgrp; 2099 2100 ret = css_populate_dir(&root_cgrp->self); 2101 if (ret) 2102 goto destroy_root; 2103 2104 ret = cgroup_rstat_init(root_cgrp); 2105 if (ret) 2106 goto destroy_root; 2107 2108 ret = rebind_subsystems(root, ss_mask); 2109 if (ret) 2110 goto exit_stats; 2111 2112 ret = cgroup_bpf_inherit(root_cgrp); 2113 WARN_ON_ONCE(ret); 2114 2115 trace_cgroup_setup_root(root); 2116 2117 /* 2118 * There must be no failure case after here, since rebinding takes 2119 * care of subsystems' refcounts, which are explicitly dropped in 2120 * the failure exit path. 2121 */ 2122 list_add(&root->root_list, &cgroup_roots); 2123 cgroup_root_count++; 2124 2125 /* 2126 * Link the root cgroup in this hierarchy into all the css_set 2127 * objects. 2128 */ 2129 spin_lock_irq(&css_set_lock); 2130 hash_for_each(css_set_table, i, cset, hlist) { 2131 link_css_set(&tmp_links, cset, root_cgrp); 2132 if (css_set_populated(cset)) 2133 cgroup_update_populated(root_cgrp, true); 2134 } 2135 spin_unlock_irq(&css_set_lock); 2136 2137 BUG_ON(!list_empty(&root_cgrp->self.children)); 2138 BUG_ON(atomic_read(&root->nr_cgrps) != 1); 2139 2140 ret = 0; 2141 goto out; 2142 2143 exit_stats: 2144 cgroup_rstat_exit(root_cgrp); 2145 destroy_root: 2146 kernfs_destroy_root(root->kf_root); 2147 root->kf_root = NULL; 2148 exit_root_id: 2149 cgroup_exit_root_id(root); 2150 cancel_ref: 2151 percpu_ref_exit(&root_cgrp->self.refcnt); 2152 out: 2153 free_cgrp_cset_links(&tmp_links); 2154 return ret; 2155 } 2156 2157 int cgroup_do_get_tree(struct fs_context *fc) 2158 { 2159 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2160 int ret; 2161 2162 ctx->kfc.root = ctx->root->kf_root; 2163 if (fc->fs_type == &cgroup2_fs_type) 2164 ctx->kfc.magic = CGROUP2_SUPER_MAGIC; 2165 else 2166 ctx->kfc.magic = CGROUP_SUPER_MAGIC; 2167 ret = kernfs_get_tree(fc); 2168 2169 /* 2170 * In non-init cgroup namespace, instead of root cgroup's dentry, 2171 * we return the dentry corresponding to the cgroupns->root_cgrp. 2172 */ 2173 if (!ret && ctx->ns != &init_cgroup_ns) { 2174 struct dentry *nsdentry; 2175 struct super_block *sb = fc->root->d_sb; 2176 struct cgroup *cgrp; 2177 2178 cgroup_lock(); 2179 spin_lock_irq(&css_set_lock); 2180 2181 cgrp = cset_cgroup_from_root(ctx->ns->root_cset, ctx->root); 2182 2183 spin_unlock_irq(&css_set_lock); 2184 cgroup_unlock(); 2185 2186 nsdentry = kernfs_node_dentry(cgrp->kn, sb); 2187 dput(fc->root); 2188 if (IS_ERR(nsdentry)) { 2189 deactivate_locked_super(sb); 2190 ret = PTR_ERR(nsdentry); 2191 nsdentry = NULL; 2192 } 2193 fc->root = nsdentry; 2194 } 2195 2196 if (!ctx->kfc.new_sb_created) 2197 cgroup_put(&ctx->root->cgrp); 2198 2199 return ret; 2200 } 2201 2202 /* 2203 * Destroy a cgroup filesystem context. 2204 */ 2205 static void cgroup_fs_context_free(struct fs_context *fc) 2206 { 2207 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2208 2209 kfree(ctx->name); 2210 kfree(ctx->release_agent); 2211 put_cgroup_ns(ctx->ns); 2212 kernfs_free_fs_context(fc); 2213 kfree(ctx); 2214 } 2215 2216 static int cgroup_get_tree(struct fs_context *fc) 2217 { 2218 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2219 int ret; 2220 2221 WRITE_ONCE(cgrp_dfl_visible, true); 2222 cgroup_get_live(&cgrp_dfl_root.cgrp); 2223 ctx->root = &cgrp_dfl_root; 2224 2225 ret = cgroup_do_get_tree(fc); 2226 if (!ret) 2227 apply_cgroup_root_flags(ctx->flags); 2228 return ret; 2229 } 2230 2231 static const struct fs_context_operations cgroup_fs_context_ops = { 2232 .free = cgroup_fs_context_free, 2233 .parse_param = cgroup2_parse_param, 2234 .get_tree = cgroup_get_tree, 2235 .reconfigure = cgroup_reconfigure, 2236 }; 2237 2238 static const struct fs_context_operations cgroup1_fs_context_ops = { 2239 .free = cgroup_fs_context_free, 2240 .parse_param = cgroup1_parse_param, 2241 .get_tree = cgroup1_get_tree, 2242 .reconfigure = cgroup1_reconfigure, 2243 }; 2244 2245 /* 2246 * Initialise the cgroup filesystem creation/reconfiguration context. Notably, 2247 * we select the namespace we're going to use. 2248 */ 2249 static int cgroup_init_fs_context(struct fs_context *fc) 2250 { 2251 struct cgroup_fs_context *ctx; 2252 2253 ctx = kzalloc(sizeof(struct cgroup_fs_context), GFP_KERNEL); 2254 if (!ctx) 2255 return -ENOMEM; 2256 2257 ctx->ns = current->nsproxy->cgroup_ns; 2258 get_cgroup_ns(ctx->ns); 2259 fc->fs_private = &ctx->kfc; 2260 if (fc->fs_type == &cgroup2_fs_type) 2261 fc->ops = &cgroup_fs_context_ops; 2262 else 2263 fc->ops = &cgroup1_fs_context_ops; 2264 put_user_ns(fc->user_ns); 2265 fc->user_ns = get_user_ns(ctx->ns->user_ns); 2266 fc->global = true; 2267 2268 #ifdef CONFIG_CGROUP_FAVOR_DYNMODS 2269 ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS; 2270 #endif 2271 return 0; 2272 } 2273 2274 static void cgroup_kill_sb(struct super_block *sb) 2275 { 2276 struct kernfs_root *kf_root = kernfs_root_from_sb(sb); 2277 struct cgroup_root *root = cgroup_root_from_kf(kf_root); 2278 2279 /* 2280 * If @root doesn't have any children, start killing it. 2281 * This prevents new mounts by disabling percpu_ref_tryget_live(). 2282 * 2283 * And don't kill the default root. 2284 */ 2285 if (list_empty(&root->cgrp.self.children) && root != &cgrp_dfl_root && 2286 !percpu_ref_is_dying(&root->cgrp.self.refcnt)) { 2287 cgroup_bpf_offline(&root->cgrp); 2288 percpu_ref_kill(&root->cgrp.self.refcnt); 2289 } 2290 cgroup_put(&root->cgrp); 2291 kernfs_kill_sb(sb); 2292 } 2293 2294 struct file_system_type cgroup_fs_type = { 2295 .name = "cgroup", 2296 .init_fs_context = cgroup_init_fs_context, 2297 .parameters = cgroup1_fs_parameters, 2298 .kill_sb = cgroup_kill_sb, 2299 .fs_flags = FS_USERNS_MOUNT, 2300 }; 2301 2302 static struct file_system_type cgroup2_fs_type = { 2303 .name = "cgroup2", 2304 .init_fs_context = cgroup_init_fs_context, 2305 .parameters = cgroup2_fs_parameters, 2306 .kill_sb = cgroup_kill_sb, 2307 .fs_flags = FS_USERNS_MOUNT, 2308 }; 2309 2310 #ifdef CONFIG_CPUSETS 2311 static const struct fs_context_operations cpuset_fs_context_ops = { 2312 .get_tree = cgroup1_get_tree, 2313 .free = cgroup_fs_context_free, 2314 }; 2315 2316 /* 2317 * This is ugly, but preserves the userspace API for existing cpuset 2318 * users. If someone tries to mount the "cpuset" filesystem, we 2319 * silently switch it to mount "cgroup" instead 2320 */ 2321 static int cpuset_init_fs_context(struct fs_context *fc) 2322 { 2323 char *agent = kstrdup("/sbin/cpuset_release_agent", GFP_USER); 2324 struct cgroup_fs_context *ctx; 2325 int err; 2326 2327 err = cgroup_init_fs_context(fc); 2328 if (err) { 2329 kfree(agent); 2330 return err; 2331 } 2332 2333 fc->ops = &cpuset_fs_context_ops; 2334 2335 ctx = cgroup_fc2context(fc); 2336 ctx->subsys_mask = 1 << cpuset_cgrp_id; 2337 ctx->flags |= CGRP_ROOT_NOPREFIX; 2338 ctx->release_agent = agent; 2339 2340 get_filesystem(&cgroup_fs_type); 2341 put_filesystem(fc->fs_type); 2342 fc->fs_type = &cgroup_fs_type; 2343 2344 return 0; 2345 } 2346 2347 static struct file_system_type cpuset_fs_type = { 2348 .name = "cpuset", 2349 .init_fs_context = cpuset_init_fs_context, 2350 .fs_flags = FS_USERNS_MOUNT, 2351 }; 2352 #endif 2353 2354 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen, 2355 struct cgroup_namespace *ns) 2356 { 2357 struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root); 2358 2359 return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen); 2360 } 2361 2362 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen, 2363 struct cgroup_namespace *ns) 2364 { 2365 int ret; 2366 2367 cgroup_lock(); 2368 spin_lock_irq(&css_set_lock); 2369 2370 ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns); 2371 2372 spin_unlock_irq(&css_set_lock); 2373 cgroup_unlock(); 2374 2375 return ret; 2376 } 2377 EXPORT_SYMBOL_GPL(cgroup_path_ns); 2378 2379 /** 2380 * cgroup_attach_lock - Lock for ->attach() 2381 * @lock_threadgroup: whether to down_write cgroup_threadgroup_rwsem 2382 * 2383 * cgroup migration sometimes needs to stabilize threadgroups against forks and 2384 * exits by write-locking cgroup_threadgroup_rwsem. However, some ->attach() 2385 * implementations (e.g. cpuset), also need to disable CPU hotplug. 2386 * Unfortunately, letting ->attach() operations acquire cpus_read_lock() can 2387 * lead to deadlocks. 2388 * 2389 * Bringing up a CPU may involve creating and destroying tasks which requires 2390 * read-locking threadgroup_rwsem, so threadgroup_rwsem nests inside 2391 * cpus_read_lock(). If we call an ->attach() which acquires the cpus lock while 2392 * write-locking threadgroup_rwsem, the locking order is reversed and we end up 2393 * waiting for an on-going CPU hotplug operation which in turn is waiting for 2394 * the threadgroup_rwsem to be released to create new tasks. For more details: 2395 * 2396 * http://lkml.kernel.org/r/20220711174629.uehfmqegcwn2lqzu@wubuntu 2397 * 2398 * Resolve the situation by always acquiring cpus_read_lock() before optionally 2399 * write-locking cgroup_threadgroup_rwsem. This allows ->attach() to assume that 2400 * CPU hotplug is disabled on entry. 2401 */ 2402 void cgroup_attach_lock(bool lock_threadgroup) 2403 { 2404 cpus_read_lock(); 2405 if (lock_threadgroup) 2406 percpu_down_write(&cgroup_threadgroup_rwsem); 2407 } 2408 2409 /** 2410 * cgroup_attach_unlock - Undo cgroup_attach_lock() 2411 * @lock_threadgroup: whether to up_write cgroup_threadgroup_rwsem 2412 */ 2413 void cgroup_attach_unlock(bool lock_threadgroup) 2414 { 2415 if (lock_threadgroup) 2416 percpu_up_write(&cgroup_threadgroup_rwsem); 2417 cpus_read_unlock(); 2418 } 2419 2420 /** 2421 * cgroup_migrate_add_task - add a migration target task to a migration context 2422 * @task: target task 2423 * @mgctx: target migration context 2424 * 2425 * Add @task, which is a migration target, to @mgctx->tset. This function 2426 * becomes noop if @task doesn't need to be migrated. @task's css_set 2427 * should have been added as a migration source and @task->cg_list will be 2428 * moved from the css_set's tasks list to mg_tasks one. 2429 */ 2430 static void cgroup_migrate_add_task(struct task_struct *task, 2431 struct cgroup_mgctx *mgctx) 2432 { 2433 struct css_set *cset; 2434 2435 lockdep_assert_held(&css_set_lock); 2436 2437 /* @task either already exited or can't exit until the end */ 2438 if (task->flags & PF_EXITING) 2439 return; 2440 2441 /* cgroup_threadgroup_rwsem protects racing against forks */ 2442 WARN_ON_ONCE(list_empty(&task->cg_list)); 2443 2444 cset = task_css_set(task); 2445 if (!cset->mg_src_cgrp) 2446 return; 2447 2448 mgctx->tset.nr_tasks++; 2449 2450 list_move_tail(&task->cg_list, &cset->mg_tasks); 2451 if (list_empty(&cset->mg_node)) 2452 list_add_tail(&cset->mg_node, 2453 &mgctx->tset.src_csets); 2454 if (list_empty(&cset->mg_dst_cset->mg_node)) 2455 list_add_tail(&cset->mg_dst_cset->mg_node, 2456 &mgctx->tset.dst_csets); 2457 } 2458 2459 /** 2460 * cgroup_taskset_first - reset taskset and return the first task 2461 * @tset: taskset of interest 2462 * @dst_cssp: output variable for the destination css 2463 * 2464 * @tset iteration is initialized and the first task is returned. 2465 */ 2466 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset, 2467 struct cgroup_subsys_state **dst_cssp) 2468 { 2469 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node); 2470 tset->cur_task = NULL; 2471 2472 return cgroup_taskset_next(tset, dst_cssp); 2473 } 2474 2475 /** 2476 * cgroup_taskset_next - iterate to the next task in taskset 2477 * @tset: taskset of interest 2478 * @dst_cssp: output variable for the destination css 2479 * 2480 * Return the next task in @tset. Iteration must have been initialized 2481 * with cgroup_taskset_first(). 2482 */ 2483 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset, 2484 struct cgroup_subsys_state **dst_cssp) 2485 { 2486 struct css_set *cset = tset->cur_cset; 2487 struct task_struct *task = tset->cur_task; 2488 2489 while (CGROUP_HAS_SUBSYS_CONFIG && &cset->mg_node != tset->csets) { 2490 if (!task) 2491 task = list_first_entry(&cset->mg_tasks, 2492 struct task_struct, cg_list); 2493 else 2494 task = list_next_entry(task, cg_list); 2495 2496 if (&task->cg_list != &cset->mg_tasks) { 2497 tset->cur_cset = cset; 2498 tset->cur_task = task; 2499 2500 /* 2501 * This function may be called both before and 2502 * after cgroup_taskset_migrate(). The two cases 2503 * can be distinguished by looking at whether @cset 2504 * has its ->mg_dst_cset set. 2505 */ 2506 if (cset->mg_dst_cset) 2507 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid]; 2508 else 2509 *dst_cssp = cset->subsys[tset->ssid]; 2510 2511 return task; 2512 } 2513 2514 cset = list_next_entry(cset, mg_node); 2515 task = NULL; 2516 } 2517 2518 return NULL; 2519 } 2520 2521 /** 2522 * cgroup_migrate_execute - migrate a taskset 2523 * @mgctx: migration context 2524 * 2525 * Migrate tasks in @mgctx as setup by migration preparation functions. 2526 * This function fails iff one of the ->can_attach callbacks fails and 2527 * guarantees that either all or none of the tasks in @mgctx are migrated. 2528 * @mgctx is consumed regardless of success. 2529 */ 2530 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx) 2531 { 2532 struct cgroup_taskset *tset = &mgctx->tset; 2533 struct cgroup_subsys *ss; 2534 struct task_struct *task, *tmp_task; 2535 struct css_set *cset, *tmp_cset; 2536 int ssid, failed_ssid, ret; 2537 2538 /* check that we can legitimately attach to the cgroup */ 2539 if (tset->nr_tasks) { 2540 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2541 if (ss->can_attach) { 2542 tset->ssid = ssid; 2543 ret = ss->can_attach(tset); 2544 if (ret) { 2545 failed_ssid = ssid; 2546 goto out_cancel_attach; 2547 } 2548 } 2549 } while_each_subsys_mask(); 2550 } 2551 2552 /* 2553 * Now that we're guaranteed success, proceed to move all tasks to 2554 * the new cgroup. There are no failure cases after here, so this 2555 * is the commit point. 2556 */ 2557 spin_lock_irq(&css_set_lock); 2558 list_for_each_entry(cset, &tset->src_csets, mg_node) { 2559 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) { 2560 struct css_set *from_cset = task_css_set(task); 2561 struct css_set *to_cset = cset->mg_dst_cset; 2562 2563 get_css_set(to_cset); 2564 to_cset->nr_tasks++; 2565 css_set_move_task(task, from_cset, to_cset, true); 2566 from_cset->nr_tasks--; 2567 /* 2568 * If the source or destination cgroup is frozen, 2569 * the task might require to change its state. 2570 */ 2571 cgroup_freezer_migrate_task(task, from_cset->dfl_cgrp, 2572 to_cset->dfl_cgrp); 2573 put_css_set_locked(from_cset); 2574 2575 } 2576 } 2577 spin_unlock_irq(&css_set_lock); 2578 2579 /* 2580 * Migration is committed, all target tasks are now on dst_csets. 2581 * Nothing is sensitive to fork() after this point. Notify 2582 * controllers that migration is complete. 2583 */ 2584 tset->csets = &tset->dst_csets; 2585 2586 if (tset->nr_tasks) { 2587 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2588 if (ss->attach) { 2589 tset->ssid = ssid; 2590 ss->attach(tset); 2591 } 2592 } while_each_subsys_mask(); 2593 } 2594 2595 ret = 0; 2596 goto out_release_tset; 2597 2598 out_cancel_attach: 2599 if (tset->nr_tasks) { 2600 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2601 if (ssid == failed_ssid) 2602 break; 2603 if (ss->cancel_attach) { 2604 tset->ssid = ssid; 2605 ss->cancel_attach(tset); 2606 } 2607 } while_each_subsys_mask(); 2608 } 2609 out_release_tset: 2610 spin_lock_irq(&css_set_lock); 2611 list_splice_init(&tset->dst_csets, &tset->src_csets); 2612 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) { 2613 list_splice_tail_init(&cset->mg_tasks, &cset->tasks); 2614 list_del_init(&cset->mg_node); 2615 } 2616 spin_unlock_irq(&css_set_lock); 2617 2618 /* 2619 * Re-initialize the cgroup_taskset structure in case it is reused 2620 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute() 2621 * iteration. 2622 */ 2623 tset->nr_tasks = 0; 2624 tset->csets = &tset->src_csets; 2625 return ret; 2626 } 2627 2628 /** 2629 * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination 2630 * @dst_cgrp: destination cgroup to test 2631 * 2632 * On the default hierarchy, except for the mixable, (possible) thread root 2633 * and threaded cgroups, subtree_control must be zero for migration 2634 * destination cgroups with tasks so that child cgroups don't compete 2635 * against tasks. 2636 */ 2637 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp) 2638 { 2639 /* v1 doesn't have any restriction */ 2640 if (!cgroup_on_dfl(dst_cgrp)) 2641 return 0; 2642 2643 /* verify @dst_cgrp can host resources */ 2644 if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp)) 2645 return -EOPNOTSUPP; 2646 2647 /* 2648 * If @dst_cgrp is already or can become a thread root or is 2649 * threaded, it doesn't matter. 2650 */ 2651 if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp)) 2652 return 0; 2653 2654 /* apply no-internal-process constraint */ 2655 if (dst_cgrp->subtree_control) 2656 return -EBUSY; 2657 2658 return 0; 2659 } 2660 2661 /** 2662 * cgroup_migrate_finish - cleanup after attach 2663 * @mgctx: migration context 2664 * 2665 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See 2666 * those functions for details. 2667 */ 2668 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx) 2669 { 2670 struct css_set *cset, *tmp_cset; 2671 2672 lockdep_assert_held(&cgroup_mutex); 2673 2674 spin_lock_irq(&css_set_lock); 2675 2676 list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_src_csets, 2677 mg_src_preload_node) { 2678 cset->mg_src_cgrp = NULL; 2679 cset->mg_dst_cgrp = NULL; 2680 cset->mg_dst_cset = NULL; 2681 list_del_init(&cset->mg_src_preload_node); 2682 put_css_set_locked(cset); 2683 } 2684 2685 list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_dst_csets, 2686 mg_dst_preload_node) { 2687 cset->mg_src_cgrp = NULL; 2688 cset->mg_dst_cgrp = NULL; 2689 cset->mg_dst_cset = NULL; 2690 list_del_init(&cset->mg_dst_preload_node); 2691 put_css_set_locked(cset); 2692 } 2693 2694 spin_unlock_irq(&css_set_lock); 2695 } 2696 2697 /** 2698 * cgroup_migrate_add_src - add a migration source css_set 2699 * @src_cset: the source css_set to add 2700 * @dst_cgrp: the destination cgroup 2701 * @mgctx: migration context 2702 * 2703 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin 2704 * @src_cset and add it to @mgctx->src_csets, which should later be cleaned 2705 * up by cgroup_migrate_finish(). 2706 * 2707 * This function may be called without holding cgroup_threadgroup_rwsem 2708 * even if the target is a process. Threads may be created and destroyed 2709 * but as long as cgroup_mutex is not dropped, no new css_set can be put 2710 * into play and the preloaded css_sets are guaranteed to cover all 2711 * migrations. 2712 */ 2713 void cgroup_migrate_add_src(struct css_set *src_cset, 2714 struct cgroup *dst_cgrp, 2715 struct cgroup_mgctx *mgctx) 2716 { 2717 struct cgroup *src_cgrp; 2718 2719 lockdep_assert_held(&cgroup_mutex); 2720 lockdep_assert_held(&css_set_lock); 2721 2722 /* 2723 * If ->dead, @src_set is associated with one or more dead cgroups 2724 * and doesn't contain any migratable tasks. Ignore it early so 2725 * that the rest of migration path doesn't get confused by it. 2726 */ 2727 if (src_cset->dead) 2728 return; 2729 2730 if (!list_empty(&src_cset->mg_src_preload_node)) 2731 return; 2732 2733 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root); 2734 2735 WARN_ON(src_cset->mg_src_cgrp); 2736 WARN_ON(src_cset->mg_dst_cgrp); 2737 WARN_ON(!list_empty(&src_cset->mg_tasks)); 2738 WARN_ON(!list_empty(&src_cset->mg_node)); 2739 2740 src_cset->mg_src_cgrp = src_cgrp; 2741 src_cset->mg_dst_cgrp = dst_cgrp; 2742 get_css_set(src_cset); 2743 list_add_tail(&src_cset->mg_src_preload_node, &mgctx->preloaded_src_csets); 2744 } 2745 2746 /** 2747 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration 2748 * @mgctx: migration context 2749 * 2750 * Tasks are about to be moved and all the source css_sets have been 2751 * preloaded to @mgctx->preloaded_src_csets. This function looks up and 2752 * pins all destination css_sets, links each to its source, and append them 2753 * to @mgctx->preloaded_dst_csets. 2754 * 2755 * This function must be called after cgroup_migrate_add_src() has been 2756 * called on each migration source css_set. After migration is performed 2757 * using cgroup_migrate(), cgroup_migrate_finish() must be called on 2758 * @mgctx. 2759 */ 2760 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx) 2761 { 2762 struct css_set *src_cset, *tmp_cset; 2763 2764 lockdep_assert_held(&cgroup_mutex); 2765 2766 /* look up the dst cset for each src cset and link it to src */ 2767 list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets, 2768 mg_src_preload_node) { 2769 struct css_set *dst_cset; 2770 struct cgroup_subsys *ss; 2771 int ssid; 2772 2773 dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp); 2774 if (!dst_cset) 2775 return -ENOMEM; 2776 2777 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset); 2778 2779 /* 2780 * If src cset equals dst, it's noop. Drop the src. 2781 * cgroup_migrate() will skip the cset too. Note that we 2782 * can't handle src == dst as some nodes are used by both. 2783 */ 2784 if (src_cset == dst_cset) { 2785 src_cset->mg_src_cgrp = NULL; 2786 src_cset->mg_dst_cgrp = NULL; 2787 list_del_init(&src_cset->mg_src_preload_node); 2788 put_css_set(src_cset); 2789 put_css_set(dst_cset); 2790 continue; 2791 } 2792 2793 src_cset->mg_dst_cset = dst_cset; 2794 2795 if (list_empty(&dst_cset->mg_dst_preload_node)) 2796 list_add_tail(&dst_cset->mg_dst_preload_node, 2797 &mgctx->preloaded_dst_csets); 2798 else 2799 put_css_set(dst_cset); 2800 2801 for_each_subsys(ss, ssid) 2802 if (src_cset->subsys[ssid] != dst_cset->subsys[ssid]) 2803 mgctx->ss_mask |= 1 << ssid; 2804 } 2805 2806 return 0; 2807 } 2808 2809 /** 2810 * cgroup_migrate - migrate a process or task to a cgroup 2811 * @leader: the leader of the process or the task to migrate 2812 * @threadgroup: whether @leader points to the whole process or a single task 2813 * @mgctx: migration context 2814 * 2815 * Migrate a process or task denoted by @leader. If migrating a process, 2816 * the caller must be holding cgroup_threadgroup_rwsem. The caller is also 2817 * responsible for invoking cgroup_migrate_add_src() and 2818 * cgroup_migrate_prepare_dst() on the targets before invoking this 2819 * function and following up with cgroup_migrate_finish(). 2820 * 2821 * As long as a controller's ->can_attach() doesn't fail, this function is 2822 * guaranteed to succeed. This means that, excluding ->can_attach() 2823 * failure, when migrating multiple targets, the success or failure can be 2824 * decided for all targets by invoking group_migrate_prepare_dst() before 2825 * actually starting migrating. 2826 */ 2827 int cgroup_migrate(struct task_struct *leader, bool threadgroup, 2828 struct cgroup_mgctx *mgctx) 2829 { 2830 struct task_struct *task; 2831 2832 /* 2833 * The following thread iteration should be inside an RCU critical 2834 * section to prevent tasks from being freed while taking the snapshot. 2835 * spin_lock_irq() implies RCU critical section here. 2836 */ 2837 spin_lock_irq(&css_set_lock); 2838 task = leader; 2839 do { 2840 cgroup_migrate_add_task(task, mgctx); 2841 if (!threadgroup) 2842 break; 2843 } while_each_thread(leader, task); 2844 spin_unlock_irq(&css_set_lock); 2845 2846 return cgroup_migrate_execute(mgctx); 2847 } 2848 2849 /** 2850 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup 2851 * @dst_cgrp: the cgroup to attach to 2852 * @leader: the task or the leader of the threadgroup to be attached 2853 * @threadgroup: attach the whole threadgroup? 2854 * 2855 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem. 2856 */ 2857 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader, 2858 bool threadgroup) 2859 { 2860 DEFINE_CGROUP_MGCTX(mgctx); 2861 struct task_struct *task; 2862 int ret = 0; 2863 2864 /* look up all src csets */ 2865 spin_lock_irq(&css_set_lock); 2866 rcu_read_lock(); 2867 task = leader; 2868 do { 2869 cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx); 2870 if (!threadgroup) 2871 break; 2872 } while_each_thread(leader, task); 2873 rcu_read_unlock(); 2874 spin_unlock_irq(&css_set_lock); 2875 2876 /* prepare dst csets and commit */ 2877 ret = cgroup_migrate_prepare_dst(&mgctx); 2878 if (!ret) 2879 ret = cgroup_migrate(leader, threadgroup, &mgctx); 2880 2881 cgroup_migrate_finish(&mgctx); 2882 2883 if (!ret) 2884 TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup); 2885 2886 return ret; 2887 } 2888 2889 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup, 2890 bool *threadgroup_locked) 2891 { 2892 struct task_struct *tsk; 2893 pid_t pid; 2894 2895 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0) 2896 return ERR_PTR(-EINVAL); 2897 2898 /* 2899 * If we migrate a single thread, we don't care about threadgroup 2900 * stability. If the thread is `current`, it won't exit(2) under our 2901 * hands or change PID through exec(2). We exclude 2902 * cgroup_update_dfl_csses and other cgroup_{proc,thread}s_write 2903 * callers by cgroup_mutex. 2904 * Therefore, we can skip the global lock. 2905 */ 2906 lockdep_assert_held(&cgroup_mutex); 2907 *threadgroup_locked = pid || threadgroup; 2908 cgroup_attach_lock(*threadgroup_locked); 2909 2910 rcu_read_lock(); 2911 if (pid) { 2912 tsk = find_task_by_vpid(pid); 2913 if (!tsk) { 2914 tsk = ERR_PTR(-ESRCH); 2915 goto out_unlock_threadgroup; 2916 } 2917 } else { 2918 tsk = current; 2919 } 2920 2921 if (threadgroup) 2922 tsk = tsk->group_leader; 2923 2924 /* 2925 * kthreads may acquire PF_NO_SETAFFINITY during initialization. 2926 * If userland migrates such a kthread to a non-root cgroup, it can 2927 * become trapped in a cpuset, or RT kthread may be born in a 2928 * cgroup with no rt_runtime allocated. Just say no. 2929 */ 2930 if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) { 2931 tsk = ERR_PTR(-EINVAL); 2932 goto out_unlock_threadgroup; 2933 } 2934 2935 get_task_struct(tsk); 2936 goto out_unlock_rcu; 2937 2938 out_unlock_threadgroup: 2939 cgroup_attach_unlock(*threadgroup_locked); 2940 *threadgroup_locked = false; 2941 out_unlock_rcu: 2942 rcu_read_unlock(); 2943 return tsk; 2944 } 2945 2946 void cgroup_procs_write_finish(struct task_struct *task, bool threadgroup_locked) 2947 { 2948 struct cgroup_subsys *ss; 2949 int ssid; 2950 2951 /* release reference from cgroup_procs_write_start() */ 2952 put_task_struct(task); 2953 2954 cgroup_attach_unlock(threadgroup_locked); 2955 2956 for_each_subsys(ss, ssid) 2957 if (ss->post_attach) 2958 ss->post_attach(); 2959 } 2960 2961 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask) 2962 { 2963 struct cgroup_subsys *ss; 2964 bool printed = false; 2965 int ssid; 2966 2967 do_each_subsys_mask(ss, ssid, ss_mask) { 2968 if (printed) 2969 seq_putc(seq, ' '); 2970 seq_puts(seq, ss->name); 2971 printed = true; 2972 } while_each_subsys_mask(); 2973 if (printed) 2974 seq_putc(seq, '\n'); 2975 } 2976 2977 /* show controllers which are enabled from the parent */ 2978 static int cgroup_controllers_show(struct seq_file *seq, void *v) 2979 { 2980 struct cgroup *cgrp = seq_css(seq)->cgroup; 2981 2982 cgroup_print_ss_mask(seq, cgroup_control(cgrp)); 2983 return 0; 2984 } 2985 2986 /* show controllers which are enabled for a given cgroup's children */ 2987 static int cgroup_subtree_control_show(struct seq_file *seq, void *v) 2988 { 2989 struct cgroup *cgrp = seq_css(seq)->cgroup; 2990 2991 cgroup_print_ss_mask(seq, cgrp->subtree_control); 2992 return 0; 2993 } 2994 2995 /** 2996 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy 2997 * @cgrp: root of the subtree to update csses for 2998 * 2999 * @cgrp's control masks have changed and its subtree's css associations 3000 * need to be updated accordingly. This function looks up all css_sets 3001 * which are attached to the subtree, creates the matching updated css_sets 3002 * and migrates the tasks to the new ones. 3003 */ 3004 static int cgroup_update_dfl_csses(struct cgroup *cgrp) 3005 { 3006 DEFINE_CGROUP_MGCTX(mgctx); 3007 struct cgroup_subsys_state *d_css; 3008 struct cgroup *dsct; 3009 struct css_set *src_cset; 3010 bool has_tasks; 3011 int ret; 3012 3013 lockdep_assert_held(&cgroup_mutex); 3014 3015 /* look up all csses currently attached to @cgrp's subtree */ 3016 spin_lock_irq(&css_set_lock); 3017 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 3018 struct cgrp_cset_link *link; 3019 3020 /* 3021 * As cgroup_update_dfl_csses() is only called by 3022 * cgroup_apply_control(). The csses associated with the 3023 * given cgrp will not be affected by changes made to 3024 * its subtree_control file. We can skip them. 3025 */ 3026 if (dsct == cgrp) 3027 continue; 3028 3029 list_for_each_entry(link, &dsct->cset_links, cset_link) 3030 cgroup_migrate_add_src(link->cset, dsct, &mgctx); 3031 } 3032 spin_unlock_irq(&css_set_lock); 3033 3034 /* 3035 * We need to write-lock threadgroup_rwsem while migrating tasks. 3036 * However, if there are no source csets for @cgrp, changing its 3037 * controllers isn't gonna produce any task migrations and the 3038 * write-locking can be skipped safely. 3039 */ 3040 has_tasks = !list_empty(&mgctx.preloaded_src_csets); 3041 cgroup_attach_lock(has_tasks); 3042 3043 /* NULL dst indicates self on default hierarchy */ 3044 ret = cgroup_migrate_prepare_dst(&mgctx); 3045 if (ret) 3046 goto out_finish; 3047 3048 spin_lock_irq(&css_set_lock); 3049 list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, 3050 mg_src_preload_node) { 3051 struct task_struct *task, *ntask; 3052 3053 /* all tasks in src_csets need to be migrated */ 3054 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list) 3055 cgroup_migrate_add_task(task, &mgctx); 3056 } 3057 spin_unlock_irq(&css_set_lock); 3058 3059 ret = cgroup_migrate_execute(&mgctx); 3060 out_finish: 3061 cgroup_migrate_finish(&mgctx); 3062 cgroup_attach_unlock(has_tasks); 3063 return ret; 3064 } 3065 3066 /** 3067 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses 3068 * @cgrp: root of the target subtree 3069 * 3070 * Because css offlining is asynchronous, userland may try to re-enable a 3071 * controller while the previous css is still around. This function grabs 3072 * cgroup_mutex and drains the previous css instances of @cgrp's subtree. 3073 */ 3074 void cgroup_lock_and_drain_offline(struct cgroup *cgrp) 3075 __acquires(&cgroup_mutex) 3076 { 3077 struct cgroup *dsct; 3078 struct cgroup_subsys_state *d_css; 3079 struct cgroup_subsys *ss; 3080 int ssid; 3081 3082 restart: 3083 cgroup_lock(); 3084 3085 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 3086 for_each_subsys(ss, ssid) { 3087 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 3088 DEFINE_WAIT(wait); 3089 3090 if (!css || !percpu_ref_is_dying(&css->refcnt)) 3091 continue; 3092 3093 cgroup_get_live(dsct); 3094 prepare_to_wait(&dsct->offline_waitq, &wait, 3095 TASK_UNINTERRUPTIBLE); 3096 3097 cgroup_unlock(); 3098 schedule(); 3099 finish_wait(&dsct->offline_waitq, &wait); 3100 3101 cgroup_put(dsct); 3102 goto restart; 3103 } 3104 } 3105 } 3106 3107 /** 3108 * cgroup_save_control - save control masks and dom_cgrp of a subtree 3109 * @cgrp: root of the target subtree 3110 * 3111 * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the 3112 * respective old_ prefixed fields for @cgrp's subtree including @cgrp 3113 * itself. 3114 */ 3115 static void cgroup_save_control(struct cgroup *cgrp) 3116 { 3117 struct cgroup *dsct; 3118 struct cgroup_subsys_state *d_css; 3119 3120 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 3121 dsct->old_subtree_control = dsct->subtree_control; 3122 dsct->old_subtree_ss_mask = dsct->subtree_ss_mask; 3123 dsct->old_dom_cgrp = dsct->dom_cgrp; 3124 } 3125 } 3126 3127 /** 3128 * cgroup_propagate_control - refresh control masks of a subtree 3129 * @cgrp: root of the target subtree 3130 * 3131 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches 3132 * ->subtree_control and propagate controller availability through the 3133 * subtree so that descendants don't have unavailable controllers enabled. 3134 */ 3135 static void cgroup_propagate_control(struct cgroup *cgrp) 3136 { 3137 struct cgroup *dsct; 3138 struct cgroup_subsys_state *d_css; 3139 3140 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 3141 dsct->subtree_control &= cgroup_control(dsct); 3142 dsct->subtree_ss_mask = 3143 cgroup_calc_subtree_ss_mask(dsct->subtree_control, 3144 cgroup_ss_mask(dsct)); 3145 } 3146 } 3147 3148 /** 3149 * cgroup_restore_control - restore control masks and dom_cgrp of a subtree 3150 * @cgrp: root of the target subtree 3151 * 3152 * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the 3153 * respective old_ prefixed fields for @cgrp's subtree including @cgrp 3154 * itself. 3155 */ 3156 static void cgroup_restore_control(struct cgroup *cgrp) 3157 { 3158 struct cgroup *dsct; 3159 struct cgroup_subsys_state *d_css; 3160 3161 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 3162 dsct->subtree_control = dsct->old_subtree_control; 3163 dsct->subtree_ss_mask = dsct->old_subtree_ss_mask; 3164 dsct->dom_cgrp = dsct->old_dom_cgrp; 3165 } 3166 } 3167 3168 static bool css_visible(struct cgroup_subsys_state *css) 3169 { 3170 struct cgroup_subsys *ss = css->ss; 3171 struct cgroup *cgrp = css->cgroup; 3172 3173 if (cgroup_control(cgrp) & (1 << ss->id)) 3174 return true; 3175 if (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) 3176 return false; 3177 return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl; 3178 } 3179 3180 /** 3181 * cgroup_apply_control_enable - enable or show csses according to control 3182 * @cgrp: root of the target subtree 3183 * 3184 * Walk @cgrp's subtree and create new csses or make the existing ones 3185 * visible. A css is created invisible if it's being implicitly enabled 3186 * through dependency. An invisible css is made visible when the userland 3187 * explicitly enables it. 3188 * 3189 * Returns 0 on success, -errno on failure. On failure, csses which have 3190 * been processed already aren't cleaned up. The caller is responsible for 3191 * cleaning up with cgroup_apply_control_disable(). 3192 */ 3193 static int cgroup_apply_control_enable(struct cgroup *cgrp) 3194 { 3195 struct cgroup *dsct; 3196 struct cgroup_subsys_state *d_css; 3197 struct cgroup_subsys *ss; 3198 int ssid, ret; 3199 3200 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 3201 for_each_subsys(ss, ssid) { 3202 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 3203 3204 if (!(cgroup_ss_mask(dsct) & (1 << ss->id))) 3205 continue; 3206 3207 if (!css) { 3208 css = css_create(dsct, ss); 3209 if (IS_ERR(css)) 3210 return PTR_ERR(css); 3211 } 3212 3213 WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt)); 3214 3215 if (css_visible(css)) { 3216 ret = css_populate_dir(css); 3217 if (ret) 3218 return ret; 3219 } 3220 } 3221 } 3222 3223 return 0; 3224 } 3225 3226 /** 3227 * cgroup_apply_control_disable - kill or hide csses according to control 3228 * @cgrp: root of the target subtree 3229 * 3230 * Walk @cgrp's subtree and kill and hide csses so that they match 3231 * cgroup_ss_mask() and cgroup_visible_mask(). 3232 * 3233 * A css is hidden when the userland requests it to be disabled while other 3234 * subsystems are still depending on it. The css must not actively control 3235 * resources and be in the vanilla state if it's made visible again later. 3236 * Controllers which may be depended upon should provide ->css_reset() for 3237 * this purpose. 3238 */ 3239 static void cgroup_apply_control_disable(struct cgroup *cgrp) 3240 { 3241 struct cgroup *dsct; 3242 struct cgroup_subsys_state *d_css; 3243 struct cgroup_subsys *ss; 3244 int ssid; 3245 3246 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 3247 for_each_subsys(ss, ssid) { 3248 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 3249 3250 if (!css) 3251 continue; 3252 3253 WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt)); 3254 3255 if (css->parent && 3256 !(cgroup_ss_mask(dsct) & (1 << ss->id))) { 3257 kill_css(css); 3258 } else if (!css_visible(css)) { 3259 css_clear_dir(css); 3260 if (ss->css_reset) 3261 ss->css_reset(css); 3262 } 3263 } 3264 } 3265 } 3266 3267 /** 3268 * cgroup_apply_control - apply control mask updates to the subtree 3269 * @cgrp: root of the target subtree 3270 * 3271 * subsystems can be enabled and disabled in a subtree using the following 3272 * steps. 3273 * 3274 * 1. Call cgroup_save_control() to stash the current state. 3275 * 2. Update ->subtree_control masks in the subtree as desired. 3276 * 3. Call cgroup_apply_control() to apply the changes. 3277 * 4. Optionally perform other related operations. 3278 * 5. Call cgroup_finalize_control() to finish up. 3279 * 3280 * This function implements step 3 and propagates the mask changes 3281 * throughout @cgrp's subtree, updates csses accordingly and perform 3282 * process migrations. 3283 */ 3284 static int cgroup_apply_control(struct cgroup *cgrp) 3285 { 3286 int ret; 3287 3288 cgroup_propagate_control(cgrp); 3289 3290 ret = cgroup_apply_control_enable(cgrp); 3291 if (ret) 3292 return ret; 3293 3294 /* 3295 * At this point, cgroup_e_css_by_mask() results reflect the new csses 3296 * making the following cgroup_update_dfl_csses() properly update 3297 * css associations of all tasks in the subtree. 3298 */ 3299 return cgroup_update_dfl_csses(cgrp); 3300 } 3301 3302 /** 3303 * cgroup_finalize_control - finalize control mask update 3304 * @cgrp: root of the target subtree 3305 * @ret: the result of the update 3306 * 3307 * Finalize control mask update. See cgroup_apply_control() for more info. 3308 */ 3309 static void cgroup_finalize_control(struct cgroup *cgrp, int ret) 3310 { 3311 if (ret) { 3312 cgroup_restore_control(cgrp); 3313 cgroup_propagate_control(cgrp); 3314 } 3315 3316 cgroup_apply_control_disable(cgrp); 3317 } 3318 3319 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable) 3320 { 3321 u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask; 3322 3323 /* if nothing is getting enabled, nothing to worry about */ 3324 if (!enable) 3325 return 0; 3326 3327 /* can @cgrp host any resources? */ 3328 if (!cgroup_is_valid_domain(cgrp->dom_cgrp)) 3329 return -EOPNOTSUPP; 3330 3331 /* mixables don't care */ 3332 if (cgroup_is_mixable(cgrp)) 3333 return 0; 3334 3335 if (domain_enable) { 3336 /* can't enable domain controllers inside a thread subtree */ 3337 if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp)) 3338 return -EOPNOTSUPP; 3339 } else { 3340 /* 3341 * Threaded controllers can handle internal competitions 3342 * and are always allowed inside a (prospective) thread 3343 * subtree. 3344 */ 3345 if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp)) 3346 return 0; 3347 } 3348 3349 /* 3350 * Controllers can't be enabled for a cgroup with tasks to avoid 3351 * child cgroups competing against tasks. 3352 */ 3353 if (cgroup_has_tasks(cgrp)) 3354 return -EBUSY; 3355 3356 return 0; 3357 } 3358 3359 /* change the enabled child controllers for a cgroup in the default hierarchy */ 3360 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of, 3361 char *buf, size_t nbytes, 3362 loff_t off) 3363 { 3364 u16 enable = 0, disable = 0; 3365 struct cgroup *cgrp, *child; 3366 struct cgroup_subsys *ss; 3367 char *tok; 3368 int ssid, ret; 3369 3370 /* 3371 * Parse input - space separated list of subsystem names prefixed 3372 * with either + or -. 3373 */ 3374 buf = strstrip(buf); 3375 while ((tok = strsep(&buf, " "))) { 3376 if (tok[0] == '\0') 3377 continue; 3378 do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) { 3379 if (!cgroup_ssid_enabled(ssid) || 3380 strcmp(tok + 1, ss->name)) 3381 continue; 3382 3383 if (*tok == '+') { 3384 enable |= 1 << ssid; 3385 disable &= ~(1 << ssid); 3386 } else if (*tok == '-') { 3387 disable |= 1 << ssid; 3388 enable &= ~(1 << ssid); 3389 } else { 3390 return -EINVAL; 3391 } 3392 break; 3393 } while_each_subsys_mask(); 3394 if (ssid == CGROUP_SUBSYS_COUNT) 3395 return -EINVAL; 3396 } 3397 3398 cgrp = cgroup_kn_lock_live(of->kn, true); 3399 if (!cgrp) 3400 return -ENODEV; 3401 3402 for_each_subsys(ss, ssid) { 3403 if (enable & (1 << ssid)) { 3404 if (cgrp->subtree_control & (1 << ssid)) { 3405 enable &= ~(1 << ssid); 3406 continue; 3407 } 3408 3409 if (!(cgroup_control(cgrp) & (1 << ssid))) { 3410 ret = -ENOENT; 3411 goto out_unlock; 3412 } 3413 } else if (disable & (1 << ssid)) { 3414 if (!(cgrp->subtree_control & (1 << ssid))) { 3415 disable &= ~(1 << ssid); 3416 continue; 3417 } 3418 3419 /* a child has it enabled? */ 3420 cgroup_for_each_live_child(child, cgrp) { 3421 if (child->subtree_control & (1 << ssid)) { 3422 ret = -EBUSY; 3423 goto out_unlock; 3424 } 3425 } 3426 } 3427 } 3428 3429 if (!enable && !disable) { 3430 ret = 0; 3431 goto out_unlock; 3432 } 3433 3434 ret = cgroup_vet_subtree_control_enable(cgrp, enable); 3435 if (ret) 3436 goto out_unlock; 3437 3438 /* save and update control masks and prepare csses */ 3439 cgroup_save_control(cgrp); 3440 3441 cgrp->subtree_control |= enable; 3442 cgrp->subtree_control &= ~disable; 3443 3444 ret = cgroup_apply_control(cgrp); 3445 cgroup_finalize_control(cgrp, ret); 3446 if (ret) 3447 goto out_unlock; 3448 3449 kernfs_activate(cgrp->kn); 3450 out_unlock: 3451 cgroup_kn_unlock(of->kn); 3452 return ret ?: nbytes; 3453 } 3454 3455 /** 3456 * cgroup_enable_threaded - make @cgrp threaded 3457 * @cgrp: the target cgroup 3458 * 3459 * Called when "threaded" is written to the cgroup.type interface file and 3460 * tries to make @cgrp threaded and join the parent's resource domain. 3461 * This function is never called on the root cgroup as cgroup.type doesn't 3462 * exist on it. 3463 */ 3464 static int cgroup_enable_threaded(struct cgroup *cgrp) 3465 { 3466 struct cgroup *parent = cgroup_parent(cgrp); 3467 struct cgroup *dom_cgrp = parent->dom_cgrp; 3468 struct cgroup *dsct; 3469 struct cgroup_subsys_state *d_css; 3470 int ret; 3471 3472 lockdep_assert_held(&cgroup_mutex); 3473 3474 /* noop if already threaded */ 3475 if (cgroup_is_threaded(cgrp)) 3476 return 0; 3477 3478 /* 3479 * If @cgroup is populated or has domain controllers enabled, it 3480 * can't be switched. While the below cgroup_can_be_thread_root() 3481 * test can catch the same conditions, that's only when @parent is 3482 * not mixable, so let's check it explicitly. 3483 */ 3484 if (cgroup_is_populated(cgrp) || 3485 cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask) 3486 return -EOPNOTSUPP; 3487 3488 /* we're joining the parent's domain, ensure its validity */ 3489 if (!cgroup_is_valid_domain(dom_cgrp) || 3490 !cgroup_can_be_thread_root(dom_cgrp)) 3491 return -EOPNOTSUPP; 3492 3493 /* 3494 * The following shouldn't cause actual migrations and should 3495 * always succeed. 3496 */ 3497 cgroup_save_control(cgrp); 3498 3499 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) 3500 if (dsct == cgrp || cgroup_is_threaded(dsct)) 3501 dsct->dom_cgrp = dom_cgrp; 3502 3503 ret = cgroup_apply_control(cgrp); 3504 if (!ret) 3505 parent->nr_threaded_children++; 3506 3507 cgroup_finalize_control(cgrp, ret); 3508 return ret; 3509 } 3510 3511 static int cgroup_type_show(struct seq_file *seq, void *v) 3512 { 3513 struct cgroup *cgrp = seq_css(seq)->cgroup; 3514 3515 if (cgroup_is_threaded(cgrp)) 3516 seq_puts(seq, "threaded\n"); 3517 else if (!cgroup_is_valid_domain(cgrp)) 3518 seq_puts(seq, "domain invalid\n"); 3519 else if (cgroup_is_thread_root(cgrp)) 3520 seq_puts(seq, "domain threaded\n"); 3521 else 3522 seq_puts(seq, "domain\n"); 3523 3524 return 0; 3525 } 3526 3527 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf, 3528 size_t nbytes, loff_t off) 3529 { 3530 struct cgroup *cgrp; 3531 int ret; 3532 3533 /* only switching to threaded mode is supported */ 3534 if (strcmp(strstrip(buf), "threaded")) 3535 return -EINVAL; 3536 3537 /* drain dying csses before we re-apply (threaded) subtree control */ 3538 cgrp = cgroup_kn_lock_live(of->kn, true); 3539 if (!cgrp) 3540 return -ENOENT; 3541 3542 /* threaded can only be enabled */ 3543 ret = cgroup_enable_threaded(cgrp); 3544 3545 cgroup_kn_unlock(of->kn); 3546 return ret ?: nbytes; 3547 } 3548 3549 static int cgroup_max_descendants_show(struct seq_file *seq, void *v) 3550 { 3551 struct cgroup *cgrp = seq_css(seq)->cgroup; 3552 int descendants = READ_ONCE(cgrp->max_descendants); 3553 3554 if (descendants == INT_MAX) 3555 seq_puts(seq, "max\n"); 3556 else 3557 seq_printf(seq, "%d\n", descendants); 3558 3559 return 0; 3560 } 3561 3562 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of, 3563 char *buf, size_t nbytes, loff_t off) 3564 { 3565 struct cgroup *cgrp; 3566 int descendants; 3567 ssize_t ret; 3568 3569 buf = strstrip(buf); 3570 if (!strcmp(buf, "max")) { 3571 descendants = INT_MAX; 3572 } else { 3573 ret = kstrtoint(buf, 0, &descendants); 3574 if (ret) 3575 return ret; 3576 } 3577 3578 if (descendants < 0) 3579 return -ERANGE; 3580 3581 cgrp = cgroup_kn_lock_live(of->kn, false); 3582 if (!cgrp) 3583 return -ENOENT; 3584 3585 cgrp->max_descendants = descendants; 3586 3587 cgroup_kn_unlock(of->kn); 3588 3589 return nbytes; 3590 } 3591 3592 static int cgroup_max_depth_show(struct seq_file *seq, void *v) 3593 { 3594 struct cgroup *cgrp = seq_css(seq)->cgroup; 3595 int depth = READ_ONCE(cgrp->max_depth); 3596 3597 if (depth == INT_MAX) 3598 seq_puts(seq, "max\n"); 3599 else 3600 seq_printf(seq, "%d\n", depth); 3601 3602 return 0; 3603 } 3604 3605 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of, 3606 char *buf, size_t nbytes, loff_t off) 3607 { 3608 struct cgroup *cgrp; 3609 ssize_t ret; 3610 int depth; 3611 3612 buf = strstrip(buf); 3613 if (!strcmp(buf, "max")) { 3614 depth = INT_MAX; 3615 } else { 3616 ret = kstrtoint(buf, 0, &depth); 3617 if (ret) 3618 return ret; 3619 } 3620 3621 if (depth < 0) 3622 return -ERANGE; 3623 3624 cgrp = cgroup_kn_lock_live(of->kn, false); 3625 if (!cgrp) 3626 return -ENOENT; 3627 3628 cgrp->max_depth = depth; 3629 3630 cgroup_kn_unlock(of->kn); 3631 3632 return nbytes; 3633 } 3634 3635 static int cgroup_events_show(struct seq_file *seq, void *v) 3636 { 3637 struct cgroup *cgrp = seq_css(seq)->cgroup; 3638 3639 seq_printf(seq, "populated %d\n", cgroup_is_populated(cgrp)); 3640 seq_printf(seq, "frozen %d\n", test_bit(CGRP_FROZEN, &cgrp->flags)); 3641 3642 return 0; 3643 } 3644 3645 static int cgroup_stat_show(struct seq_file *seq, void *v) 3646 { 3647 struct cgroup *cgroup = seq_css(seq)->cgroup; 3648 3649 seq_printf(seq, "nr_descendants %d\n", 3650 cgroup->nr_descendants); 3651 seq_printf(seq, "nr_dying_descendants %d\n", 3652 cgroup->nr_dying_descendants); 3653 3654 return 0; 3655 } 3656 3657 static int __maybe_unused cgroup_extra_stat_show(struct seq_file *seq, 3658 struct cgroup *cgrp, int ssid) 3659 { 3660 struct cgroup_subsys *ss = cgroup_subsys[ssid]; 3661 struct cgroup_subsys_state *css; 3662 int ret; 3663 3664 if (!ss->css_extra_stat_show) 3665 return 0; 3666 3667 css = cgroup_tryget_css(cgrp, ss); 3668 if (!css) 3669 return 0; 3670 3671 ret = ss->css_extra_stat_show(seq, css); 3672 css_put(css); 3673 return ret; 3674 } 3675 3676 static int cpu_stat_show(struct seq_file *seq, void *v) 3677 { 3678 struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup; 3679 int ret = 0; 3680 3681 cgroup_base_stat_cputime_show(seq); 3682 #ifdef CONFIG_CGROUP_SCHED 3683 ret = cgroup_extra_stat_show(seq, cgrp, cpu_cgrp_id); 3684 #endif 3685 return ret; 3686 } 3687 3688 #ifdef CONFIG_PSI 3689 static int cgroup_io_pressure_show(struct seq_file *seq, void *v) 3690 { 3691 struct cgroup *cgrp = seq_css(seq)->cgroup; 3692 struct psi_group *psi = cgroup_psi(cgrp); 3693 3694 return psi_show(seq, psi, PSI_IO); 3695 } 3696 static int cgroup_memory_pressure_show(struct seq_file *seq, void *v) 3697 { 3698 struct cgroup *cgrp = seq_css(seq)->cgroup; 3699 struct psi_group *psi = cgroup_psi(cgrp); 3700 3701 return psi_show(seq, psi, PSI_MEM); 3702 } 3703 static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v) 3704 { 3705 struct cgroup *cgrp = seq_css(seq)->cgroup; 3706 struct psi_group *psi = cgroup_psi(cgrp); 3707 3708 return psi_show(seq, psi, PSI_CPU); 3709 } 3710 3711 static ssize_t pressure_write(struct kernfs_open_file *of, char *buf, 3712 size_t nbytes, enum psi_res res) 3713 { 3714 struct cgroup_file_ctx *ctx = of->priv; 3715 struct psi_trigger *new; 3716 struct cgroup *cgrp; 3717 struct psi_group *psi; 3718 3719 cgrp = cgroup_kn_lock_live(of->kn, false); 3720 if (!cgrp) 3721 return -ENODEV; 3722 3723 cgroup_get(cgrp); 3724 cgroup_kn_unlock(of->kn); 3725 3726 /* Allow only one trigger per file descriptor */ 3727 if (ctx->psi.trigger) { 3728 cgroup_put(cgrp); 3729 return -EBUSY; 3730 } 3731 3732 psi = cgroup_psi(cgrp); 3733 new = psi_trigger_create(psi, buf, res, of->file, of); 3734 if (IS_ERR(new)) { 3735 cgroup_put(cgrp); 3736 return PTR_ERR(new); 3737 } 3738 3739 smp_store_release(&ctx->psi.trigger, new); 3740 cgroup_put(cgrp); 3741 3742 return nbytes; 3743 } 3744 3745 static ssize_t cgroup_io_pressure_write(struct kernfs_open_file *of, 3746 char *buf, size_t nbytes, 3747 loff_t off) 3748 { 3749 return pressure_write(of, buf, nbytes, PSI_IO); 3750 } 3751 3752 static ssize_t cgroup_memory_pressure_write(struct kernfs_open_file *of, 3753 char *buf, size_t nbytes, 3754 loff_t off) 3755 { 3756 return pressure_write(of, buf, nbytes, PSI_MEM); 3757 } 3758 3759 static ssize_t cgroup_cpu_pressure_write(struct kernfs_open_file *of, 3760 char *buf, size_t nbytes, 3761 loff_t off) 3762 { 3763 return pressure_write(of, buf, nbytes, PSI_CPU); 3764 } 3765 3766 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 3767 static int cgroup_irq_pressure_show(struct seq_file *seq, void *v) 3768 { 3769 struct cgroup *cgrp = seq_css(seq)->cgroup; 3770 struct psi_group *psi = cgroup_psi(cgrp); 3771 3772 return psi_show(seq, psi, PSI_IRQ); 3773 } 3774 3775 static ssize_t cgroup_irq_pressure_write(struct kernfs_open_file *of, 3776 char *buf, size_t nbytes, 3777 loff_t off) 3778 { 3779 return pressure_write(of, buf, nbytes, PSI_IRQ); 3780 } 3781 #endif 3782 3783 static int cgroup_pressure_show(struct seq_file *seq, void *v) 3784 { 3785 struct cgroup *cgrp = seq_css(seq)->cgroup; 3786 struct psi_group *psi = cgroup_psi(cgrp); 3787 3788 seq_printf(seq, "%d\n", psi->enabled); 3789 3790 return 0; 3791 } 3792 3793 static ssize_t cgroup_pressure_write(struct kernfs_open_file *of, 3794 char *buf, size_t nbytes, 3795 loff_t off) 3796 { 3797 ssize_t ret; 3798 int enable; 3799 struct cgroup *cgrp; 3800 struct psi_group *psi; 3801 3802 ret = kstrtoint(strstrip(buf), 0, &enable); 3803 if (ret) 3804 return ret; 3805 3806 if (enable < 0 || enable > 1) 3807 return -ERANGE; 3808 3809 cgrp = cgroup_kn_lock_live(of->kn, false); 3810 if (!cgrp) 3811 return -ENOENT; 3812 3813 psi = cgroup_psi(cgrp); 3814 if (psi->enabled != enable) { 3815 int i; 3816 3817 /* show or hide {cpu,memory,io,irq}.pressure files */ 3818 for (i = 0; i < NR_PSI_RESOURCES; i++) 3819 cgroup_file_show(&cgrp->psi_files[i], enable); 3820 3821 psi->enabled = enable; 3822 if (enable) 3823 psi_cgroup_restart(psi); 3824 } 3825 3826 cgroup_kn_unlock(of->kn); 3827 3828 return nbytes; 3829 } 3830 3831 static __poll_t cgroup_pressure_poll(struct kernfs_open_file *of, 3832 poll_table *pt) 3833 { 3834 struct cgroup_file_ctx *ctx = of->priv; 3835 3836 return psi_trigger_poll(&ctx->psi.trigger, of->file, pt); 3837 } 3838 3839 static int cgroup_pressure_open(struct kernfs_open_file *of) 3840 { 3841 if (of->file->f_mode & FMODE_WRITE && !capable(CAP_SYS_RESOURCE)) 3842 return -EPERM; 3843 3844 return 0; 3845 } 3846 3847 static void cgroup_pressure_release(struct kernfs_open_file *of) 3848 { 3849 struct cgroup_file_ctx *ctx = of->priv; 3850 3851 psi_trigger_destroy(ctx->psi.trigger); 3852 } 3853 3854 bool cgroup_psi_enabled(void) 3855 { 3856 if (static_branch_likely(&psi_disabled)) 3857 return false; 3858 3859 return (cgroup_feature_disable_mask & (1 << OPT_FEATURE_PRESSURE)) == 0; 3860 } 3861 3862 #else /* CONFIG_PSI */ 3863 bool cgroup_psi_enabled(void) 3864 { 3865 return false; 3866 } 3867 3868 #endif /* CONFIG_PSI */ 3869 3870 static int cgroup_freeze_show(struct seq_file *seq, void *v) 3871 { 3872 struct cgroup *cgrp = seq_css(seq)->cgroup; 3873 3874 seq_printf(seq, "%d\n", cgrp->freezer.freeze); 3875 3876 return 0; 3877 } 3878 3879 static ssize_t cgroup_freeze_write(struct kernfs_open_file *of, 3880 char *buf, size_t nbytes, loff_t off) 3881 { 3882 struct cgroup *cgrp; 3883 ssize_t ret; 3884 int freeze; 3885 3886 ret = kstrtoint(strstrip(buf), 0, &freeze); 3887 if (ret) 3888 return ret; 3889 3890 if (freeze < 0 || freeze > 1) 3891 return -ERANGE; 3892 3893 cgrp = cgroup_kn_lock_live(of->kn, false); 3894 if (!cgrp) 3895 return -ENOENT; 3896 3897 cgroup_freeze(cgrp, freeze); 3898 3899 cgroup_kn_unlock(of->kn); 3900 3901 return nbytes; 3902 } 3903 3904 static void __cgroup_kill(struct cgroup *cgrp) 3905 { 3906 struct css_task_iter it; 3907 struct task_struct *task; 3908 3909 lockdep_assert_held(&cgroup_mutex); 3910 3911 spin_lock_irq(&css_set_lock); 3912 set_bit(CGRP_KILL, &cgrp->flags); 3913 spin_unlock_irq(&css_set_lock); 3914 3915 css_task_iter_start(&cgrp->self, CSS_TASK_ITER_PROCS | CSS_TASK_ITER_THREADED, &it); 3916 while ((task = css_task_iter_next(&it))) { 3917 /* Ignore kernel threads here. */ 3918 if (task->flags & PF_KTHREAD) 3919 continue; 3920 3921 /* Skip tasks that are already dying. */ 3922 if (__fatal_signal_pending(task)) 3923 continue; 3924 3925 send_sig(SIGKILL, task, 0); 3926 } 3927 css_task_iter_end(&it); 3928 3929 spin_lock_irq(&css_set_lock); 3930 clear_bit(CGRP_KILL, &cgrp->flags); 3931 spin_unlock_irq(&css_set_lock); 3932 } 3933 3934 static void cgroup_kill(struct cgroup *cgrp) 3935 { 3936 struct cgroup_subsys_state *css; 3937 struct cgroup *dsct; 3938 3939 lockdep_assert_held(&cgroup_mutex); 3940 3941 cgroup_for_each_live_descendant_pre(dsct, css, cgrp) 3942 __cgroup_kill(dsct); 3943 } 3944 3945 static ssize_t cgroup_kill_write(struct kernfs_open_file *of, char *buf, 3946 size_t nbytes, loff_t off) 3947 { 3948 ssize_t ret = 0; 3949 int kill; 3950 struct cgroup *cgrp; 3951 3952 ret = kstrtoint(strstrip(buf), 0, &kill); 3953 if (ret) 3954 return ret; 3955 3956 if (kill != 1) 3957 return -ERANGE; 3958 3959 cgrp = cgroup_kn_lock_live(of->kn, false); 3960 if (!cgrp) 3961 return -ENOENT; 3962 3963 /* 3964 * Killing is a process directed operation, i.e. the whole thread-group 3965 * is taken down so act like we do for cgroup.procs and only make this 3966 * writable in non-threaded cgroups. 3967 */ 3968 if (cgroup_is_threaded(cgrp)) 3969 ret = -EOPNOTSUPP; 3970 else 3971 cgroup_kill(cgrp); 3972 3973 cgroup_kn_unlock(of->kn); 3974 3975 return ret ?: nbytes; 3976 } 3977 3978 static int cgroup_file_open(struct kernfs_open_file *of) 3979 { 3980 struct cftype *cft = of_cft(of); 3981 struct cgroup_file_ctx *ctx; 3982 int ret; 3983 3984 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 3985 if (!ctx) 3986 return -ENOMEM; 3987 3988 ctx->ns = current->nsproxy->cgroup_ns; 3989 get_cgroup_ns(ctx->ns); 3990 of->priv = ctx; 3991 3992 if (!cft->open) 3993 return 0; 3994 3995 ret = cft->open(of); 3996 if (ret) { 3997 put_cgroup_ns(ctx->ns); 3998 kfree(ctx); 3999 } 4000 return ret; 4001 } 4002 4003 static void cgroup_file_release(struct kernfs_open_file *of) 4004 { 4005 struct cftype *cft = of_cft(of); 4006 struct cgroup_file_ctx *ctx = of->priv; 4007 4008 if (cft->release) 4009 cft->release(of); 4010 put_cgroup_ns(ctx->ns); 4011 kfree(ctx); 4012 } 4013 4014 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf, 4015 size_t nbytes, loff_t off) 4016 { 4017 struct cgroup_file_ctx *ctx = of->priv; 4018 struct cgroup *cgrp = of->kn->parent->priv; 4019 struct cftype *cft = of_cft(of); 4020 struct cgroup_subsys_state *css; 4021 int ret; 4022 4023 if (!nbytes) 4024 return 0; 4025 4026 /* 4027 * If namespaces are delegation boundaries, disallow writes to 4028 * files in an non-init namespace root from inside the namespace 4029 * except for the files explicitly marked delegatable - 4030 * cgroup.procs and cgroup.subtree_control. 4031 */ 4032 if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) && 4033 !(cft->flags & CFTYPE_NS_DELEGATABLE) && 4034 ctx->ns != &init_cgroup_ns && ctx->ns->root_cset->dfl_cgrp == cgrp) 4035 return -EPERM; 4036 4037 if (cft->write) 4038 return cft->write(of, buf, nbytes, off); 4039 4040 /* 4041 * kernfs guarantees that a file isn't deleted with operations in 4042 * flight, which means that the matching css is and stays alive and 4043 * doesn't need to be pinned. The RCU locking is not necessary 4044 * either. It's just for the convenience of using cgroup_css(). 4045 */ 4046 rcu_read_lock(); 4047 css = cgroup_css(cgrp, cft->ss); 4048 rcu_read_unlock(); 4049 4050 if (cft->write_u64) { 4051 unsigned long long v; 4052 ret = kstrtoull(buf, 0, &v); 4053 if (!ret) 4054 ret = cft->write_u64(css, cft, v); 4055 } else if (cft->write_s64) { 4056 long long v; 4057 ret = kstrtoll(buf, 0, &v); 4058 if (!ret) 4059 ret = cft->write_s64(css, cft, v); 4060 } else { 4061 ret = -EINVAL; 4062 } 4063 4064 return ret ?: nbytes; 4065 } 4066 4067 static __poll_t cgroup_file_poll(struct kernfs_open_file *of, poll_table *pt) 4068 { 4069 struct cftype *cft = of_cft(of); 4070 4071 if (cft->poll) 4072 return cft->poll(of, pt); 4073 4074 return kernfs_generic_poll(of, pt); 4075 } 4076 4077 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos) 4078 { 4079 return seq_cft(seq)->seq_start(seq, ppos); 4080 } 4081 4082 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos) 4083 { 4084 return seq_cft(seq)->seq_next(seq, v, ppos); 4085 } 4086 4087 static void cgroup_seqfile_stop(struct seq_file *seq, void *v) 4088 { 4089 if (seq_cft(seq)->seq_stop) 4090 seq_cft(seq)->seq_stop(seq, v); 4091 } 4092 4093 static int cgroup_seqfile_show(struct seq_file *m, void *arg) 4094 { 4095 struct cftype *cft = seq_cft(m); 4096 struct cgroup_subsys_state *css = seq_css(m); 4097 4098 if (cft->seq_show) 4099 return cft->seq_show(m, arg); 4100 4101 if (cft->read_u64) 4102 seq_printf(m, "%llu\n", cft->read_u64(css, cft)); 4103 else if (cft->read_s64) 4104 seq_printf(m, "%lld\n", cft->read_s64(css, cft)); 4105 else 4106 return -EINVAL; 4107 return 0; 4108 } 4109 4110 static struct kernfs_ops cgroup_kf_single_ops = { 4111 .atomic_write_len = PAGE_SIZE, 4112 .open = cgroup_file_open, 4113 .release = cgroup_file_release, 4114 .write = cgroup_file_write, 4115 .poll = cgroup_file_poll, 4116 .seq_show = cgroup_seqfile_show, 4117 }; 4118 4119 static struct kernfs_ops cgroup_kf_ops = { 4120 .atomic_write_len = PAGE_SIZE, 4121 .open = cgroup_file_open, 4122 .release = cgroup_file_release, 4123 .write = cgroup_file_write, 4124 .poll = cgroup_file_poll, 4125 .seq_start = cgroup_seqfile_start, 4126 .seq_next = cgroup_seqfile_next, 4127 .seq_stop = cgroup_seqfile_stop, 4128 .seq_show = cgroup_seqfile_show, 4129 }; 4130 4131 /* set uid and gid of cgroup dirs and files to that of the creator */ 4132 static int cgroup_kn_set_ugid(struct kernfs_node *kn) 4133 { 4134 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID, 4135 .ia_uid = current_fsuid(), 4136 .ia_gid = current_fsgid(), }; 4137 4138 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) && 4139 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID)) 4140 return 0; 4141 4142 return kernfs_setattr(kn, &iattr); 4143 } 4144 4145 static void cgroup_file_notify_timer(struct timer_list *timer) 4146 { 4147 cgroup_file_notify(container_of(timer, struct cgroup_file, 4148 notify_timer)); 4149 } 4150 4151 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp, 4152 struct cftype *cft) 4153 { 4154 char name[CGROUP_FILE_NAME_MAX]; 4155 struct kernfs_node *kn; 4156 struct lock_class_key *key = NULL; 4157 int ret; 4158 4159 #ifdef CONFIG_DEBUG_LOCK_ALLOC 4160 key = &cft->lockdep_key; 4161 #endif 4162 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name), 4163 cgroup_file_mode(cft), 4164 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 4165 0, cft->kf_ops, cft, 4166 NULL, key); 4167 if (IS_ERR(kn)) 4168 return PTR_ERR(kn); 4169 4170 ret = cgroup_kn_set_ugid(kn); 4171 if (ret) { 4172 kernfs_remove(kn); 4173 return ret; 4174 } 4175 4176 if (cft->file_offset) { 4177 struct cgroup_file *cfile = (void *)css + cft->file_offset; 4178 4179 timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0); 4180 4181 spin_lock_irq(&cgroup_file_kn_lock); 4182 cfile->kn = kn; 4183 spin_unlock_irq(&cgroup_file_kn_lock); 4184 } 4185 4186 return 0; 4187 } 4188 4189 /** 4190 * cgroup_addrm_files - add or remove files to a cgroup directory 4191 * @css: the target css 4192 * @cgrp: the target cgroup (usually css->cgroup) 4193 * @cfts: array of cftypes to be added 4194 * @is_add: whether to add or remove 4195 * 4196 * Depending on @is_add, add or remove files defined by @cfts on @cgrp. 4197 * For removals, this function never fails. 4198 */ 4199 static int cgroup_addrm_files(struct cgroup_subsys_state *css, 4200 struct cgroup *cgrp, struct cftype cfts[], 4201 bool is_add) 4202 { 4203 struct cftype *cft, *cft_end = NULL; 4204 int ret = 0; 4205 4206 lockdep_assert_held(&cgroup_mutex); 4207 4208 restart: 4209 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) { 4210 /* does cft->flags tell us to skip this file on @cgrp? */ 4211 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp)) 4212 continue; 4213 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp)) 4214 continue; 4215 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp)) 4216 continue; 4217 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp)) 4218 continue; 4219 if ((cft->flags & CFTYPE_DEBUG) && !cgroup_debug) 4220 continue; 4221 if (is_add) { 4222 ret = cgroup_add_file(css, cgrp, cft); 4223 if (ret) { 4224 pr_warn("%s: failed to add %s, err=%d\n", 4225 __func__, cft->name, ret); 4226 cft_end = cft; 4227 is_add = false; 4228 goto restart; 4229 } 4230 } else { 4231 cgroup_rm_file(cgrp, cft); 4232 } 4233 } 4234 return ret; 4235 } 4236 4237 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add) 4238 { 4239 struct cgroup_subsys *ss = cfts[0].ss; 4240 struct cgroup *root = &ss->root->cgrp; 4241 struct cgroup_subsys_state *css; 4242 int ret = 0; 4243 4244 lockdep_assert_held(&cgroup_mutex); 4245 4246 /* add/rm files for all cgroups created before */ 4247 css_for_each_descendant_pre(css, cgroup_css(root, ss)) { 4248 struct cgroup *cgrp = css->cgroup; 4249 4250 if (!(css->flags & CSS_VISIBLE)) 4251 continue; 4252 4253 ret = cgroup_addrm_files(css, cgrp, cfts, is_add); 4254 if (ret) 4255 break; 4256 } 4257 4258 if (is_add && !ret) 4259 kernfs_activate(root->kn); 4260 return ret; 4261 } 4262 4263 static void cgroup_exit_cftypes(struct cftype *cfts) 4264 { 4265 struct cftype *cft; 4266 4267 for (cft = cfts; cft->name[0] != '\0'; cft++) { 4268 /* free copy for custom atomic_write_len, see init_cftypes() */ 4269 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) 4270 kfree(cft->kf_ops); 4271 cft->kf_ops = NULL; 4272 cft->ss = NULL; 4273 4274 /* revert flags set by cgroup core while adding @cfts */ 4275 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL | 4276 __CFTYPE_ADDED); 4277 } 4278 } 4279 4280 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4281 { 4282 struct cftype *cft; 4283 int ret = 0; 4284 4285 for (cft = cfts; cft->name[0] != '\0'; cft++) { 4286 struct kernfs_ops *kf_ops; 4287 4288 WARN_ON(cft->ss || cft->kf_ops); 4289 4290 if (cft->flags & __CFTYPE_ADDED) { 4291 ret = -EBUSY; 4292 break; 4293 } 4294 4295 if (cft->seq_start) 4296 kf_ops = &cgroup_kf_ops; 4297 else 4298 kf_ops = &cgroup_kf_single_ops; 4299 4300 /* 4301 * Ugh... if @cft wants a custom max_write_len, we need to 4302 * make a copy of kf_ops to set its atomic_write_len. 4303 */ 4304 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) { 4305 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL); 4306 if (!kf_ops) { 4307 ret = -ENOMEM; 4308 break; 4309 } 4310 kf_ops->atomic_write_len = cft->max_write_len; 4311 } 4312 4313 cft->kf_ops = kf_ops; 4314 cft->ss = ss; 4315 cft->flags |= __CFTYPE_ADDED; 4316 } 4317 4318 if (ret) 4319 cgroup_exit_cftypes(cfts); 4320 return ret; 4321 } 4322 4323 static int cgroup_rm_cftypes_locked(struct cftype *cfts) 4324 { 4325 lockdep_assert_held(&cgroup_mutex); 4326 4327 list_del(&cfts->node); 4328 cgroup_apply_cftypes(cfts, false); 4329 cgroup_exit_cftypes(cfts); 4330 return 0; 4331 } 4332 4333 /** 4334 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem 4335 * @cfts: zero-length name terminated array of cftypes 4336 * 4337 * Unregister @cfts. Files described by @cfts are removed from all 4338 * existing cgroups and all future cgroups won't have them either. This 4339 * function can be called anytime whether @cfts' subsys is attached or not. 4340 * 4341 * Returns 0 on successful unregistration, -ENOENT if @cfts is not 4342 * registered. 4343 */ 4344 int cgroup_rm_cftypes(struct cftype *cfts) 4345 { 4346 int ret; 4347 4348 if (!cfts || cfts[0].name[0] == '\0') 4349 return 0; 4350 4351 if (!(cfts[0].flags & __CFTYPE_ADDED)) 4352 return -ENOENT; 4353 4354 cgroup_lock(); 4355 ret = cgroup_rm_cftypes_locked(cfts); 4356 cgroup_unlock(); 4357 return ret; 4358 } 4359 4360 /** 4361 * cgroup_add_cftypes - add an array of cftypes to a subsystem 4362 * @ss: target cgroup subsystem 4363 * @cfts: zero-length name terminated array of cftypes 4364 * 4365 * Register @cfts to @ss. Files described by @cfts are created for all 4366 * existing cgroups to which @ss is attached and all future cgroups will 4367 * have them too. This function can be called anytime whether @ss is 4368 * attached or not. 4369 * 4370 * Returns 0 on successful registration, -errno on failure. Note that this 4371 * function currently returns 0 as long as @cfts registration is successful 4372 * even if some file creation attempts on existing cgroups fail. 4373 */ 4374 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4375 { 4376 int ret; 4377 4378 if (!cgroup_ssid_enabled(ss->id)) 4379 return 0; 4380 4381 if (!cfts || cfts[0].name[0] == '\0') 4382 return 0; 4383 4384 ret = cgroup_init_cftypes(ss, cfts); 4385 if (ret) 4386 return ret; 4387 4388 cgroup_lock(); 4389 4390 list_add_tail(&cfts->node, &ss->cfts); 4391 ret = cgroup_apply_cftypes(cfts, true); 4392 if (ret) 4393 cgroup_rm_cftypes_locked(cfts); 4394 4395 cgroup_unlock(); 4396 return ret; 4397 } 4398 4399 /** 4400 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy 4401 * @ss: target cgroup subsystem 4402 * @cfts: zero-length name terminated array of cftypes 4403 * 4404 * Similar to cgroup_add_cftypes() but the added files are only used for 4405 * the default hierarchy. 4406 */ 4407 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4408 { 4409 struct cftype *cft; 4410 4411 for (cft = cfts; cft && cft->name[0] != '\0'; cft++) 4412 cft->flags |= __CFTYPE_ONLY_ON_DFL; 4413 return cgroup_add_cftypes(ss, cfts); 4414 } 4415 4416 /** 4417 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies 4418 * @ss: target cgroup subsystem 4419 * @cfts: zero-length name terminated array of cftypes 4420 * 4421 * Similar to cgroup_add_cftypes() but the added files are only used for 4422 * the legacy hierarchies. 4423 */ 4424 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4425 { 4426 struct cftype *cft; 4427 4428 for (cft = cfts; cft && cft->name[0] != '\0'; cft++) 4429 cft->flags |= __CFTYPE_NOT_ON_DFL; 4430 return cgroup_add_cftypes(ss, cfts); 4431 } 4432 4433 /** 4434 * cgroup_file_notify - generate a file modified event for a cgroup_file 4435 * @cfile: target cgroup_file 4436 * 4437 * @cfile must have been obtained by setting cftype->file_offset. 4438 */ 4439 void cgroup_file_notify(struct cgroup_file *cfile) 4440 { 4441 unsigned long flags; 4442 4443 spin_lock_irqsave(&cgroup_file_kn_lock, flags); 4444 if (cfile->kn) { 4445 unsigned long last = cfile->notified_at; 4446 unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV; 4447 4448 if (time_in_range(jiffies, last, next)) { 4449 timer_reduce(&cfile->notify_timer, next); 4450 } else { 4451 kernfs_notify(cfile->kn); 4452 cfile->notified_at = jiffies; 4453 } 4454 } 4455 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags); 4456 } 4457 4458 /** 4459 * cgroup_file_show - show or hide a hidden cgroup file 4460 * @cfile: target cgroup_file obtained by setting cftype->file_offset 4461 * @show: whether to show or hide 4462 */ 4463 void cgroup_file_show(struct cgroup_file *cfile, bool show) 4464 { 4465 struct kernfs_node *kn; 4466 4467 spin_lock_irq(&cgroup_file_kn_lock); 4468 kn = cfile->kn; 4469 kernfs_get(kn); 4470 spin_unlock_irq(&cgroup_file_kn_lock); 4471 4472 if (kn) 4473 kernfs_show(kn, show); 4474 4475 kernfs_put(kn); 4476 } 4477 4478 /** 4479 * css_next_child - find the next child of a given css 4480 * @pos: the current position (%NULL to initiate traversal) 4481 * @parent: css whose children to walk 4482 * 4483 * This function returns the next child of @parent and should be called 4484 * under either cgroup_mutex or RCU read lock. The only requirement is 4485 * that @parent and @pos are accessible. The next sibling is guaranteed to 4486 * be returned regardless of their states. 4487 * 4488 * If a subsystem synchronizes ->css_online() and the start of iteration, a 4489 * css which finished ->css_online() is guaranteed to be visible in the 4490 * future iterations and will stay visible until the last reference is put. 4491 * A css which hasn't finished ->css_online() or already finished 4492 * ->css_offline() may show up during traversal. It's each subsystem's 4493 * responsibility to synchronize against on/offlining. 4494 */ 4495 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos, 4496 struct cgroup_subsys_state *parent) 4497 { 4498 struct cgroup_subsys_state *next; 4499 4500 cgroup_assert_mutex_or_rcu_locked(); 4501 4502 /* 4503 * @pos could already have been unlinked from the sibling list. 4504 * Once a cgroup is removed, its ->sibling.next is no longer 4505 * updated when its next sibling changes. CSS_RELEASED is set when 4506 * @pos is taken off list, at which time its next pointer is valid, 4507 * and, as releases are serialized, the one pointed to by the next 4508 * pointer is guaranteed to not have started release yet. This 4509 * implies that if we observe !CSS_RELEASED on @pos in this RCU 4510 * critical section, the one pointed to by its next pointer is 4511 * guaranteed to not have finished its RCU grace period even if we 4512 * have dropped rcu_read_lock() in-between iterations. 4513 * 4514 * If @pos has CSS_RELEASED set, its next pointer can't be 4515 * dereferenced; however, as each css is given a monotonically 4516 * increasing unique serial number and always appended to the 4517 * sibling list, the next one can be found by walking the parent's 4518 * children until the first css with higher serial number than 4519 * @pos's. While this path can be slower, it happens iff iteration 4520 * races against release and the race window is very small. 4521 */ 4522 if (!pos) { 4523 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling); 4524 } else if (likely(!(pos->flags & CSS_RELEASED))) { 4525 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling); 4526 } else { 4527 list_for_each_entry_rcu(next, &parent->children, sibling, 4528 lockdep_is_held(&cgroup_mutex)) 4529 if (next->serial_nr > pos->serial_nr) 4530 break; 4531 } 4532 4533 /* 4534 * @next, if not pointing to the head, can be dereferenced and is 4535 * the next sibling. 4536 */ 4537 if (&next->sibling != &parent->children) 4538 return next; 4539 return NULL; 4540 } 4541 4542 /** 4543 * css_next_descendant_pre - find the next descendant for pre-order walk 4544 * @pos: the current position (%NULL to initiate traversal) 4545 * @root: css whose descendants to walk 4546 * 4547 * To be used by css_for_each_descendant_pre(). Find the next descendant 4548 * to visit for pre-order traversal of @root's descendants. @root is 4549 * included in the iteration and the first node to be visited. 4550 * 4551 * While this function requires cgroup_mutex or RCU read locking, it 4552 * doesn't require the whole traversal to be contained in a single critical 4553 * section. This function will return the correct next descendant as long 4554 * as both @pos and @root are accessible and @pos is a descendant of @root. 4555 * 4556 * If a subsystem synchronizes ->css_online() and the start of iteration, a 4557 * css which finished ->css_online() is guaranteed to be visible in the 4558 * future iterations and will stay visible until the last reference is put. 4559 * A css which hasn't finished ->css_online() or already finished 4560 * ->css_offline() may show up during traversal. It's each subsystem's 4561 * responsibility to synchronize against on/offlining. 4562 */ 4563 struct cgroup_subsys_state * 4564 css_next_descendant_pre(struct cgroup_subsys_state *pos, 4565 struct cgroup_subsys_state *root) 4566 { 4567 struct cgroup_subsys_state *next; 4568 4569 cgroup_assert_mutex_or_rcu_locked(); 4570 4571 /* if first iteration, visit @root */ 4572 if (!pos) 4573 return root; 4574 4575 /* visit the first child if exists */ 4576 next = css_next_child(NULL, pos); 4577 if (next) 4578 return next; 4579 4580 /* no child, visit my or the closest ancestor's next sibling */ 4581 while (pos != root) { 4582 next = css_next_child(pos, pos->parent); 4583 if (next) 4584 return next; 4585 pos = pos->parent; 4586 } 4587 4588 return NULL; 4589 } 4590 EXPORT_SYMBOL_GPL(css_next_descendant_pre); 4591 4592 /** 4593 * css_rightmost_descendant - return the rightmost descendant of a css 4594 * @pos: css of interest 4595 * 4596 * Return the rightmost descendant of @pos. If there's no descendant, @pos 4597 * is returned. This can be used during pre-order traversal to skip 4598 * subtree of @pos. 4599 * 4600 * While this function requires cgroup_mutex or RCU read locking, it 4601 * doesn't require the whole traversal to be contained in a single critical 4602 * section. This function will return the correct rightmost descendant as 4603 * long as @pos is accessible. 4604 */ 4605 struct cgroup_subsys_state * 4606 css_rightmost_descendant(struct cgroup_subsys_state *pos) 4607 { 4608 struct cgroup_subsys_state *last, *tmp; 4609 4610 cgroup_assert_mutex_or_rcu_locked(); 4611 4612 do { 4613 last = pos; 4614 /* ->prev isn't RCU safe, walk ->next till the end */ 4615 pos = NULL; 4616 css_for_each_child(tmp, last) 4617 pos = tmp; 4618 } while (pos); 4619 4620 return last; 4621 } 4622 4623 static struct cgroup_subsys_state * 4624 css_leftmost_descendant(struct cgroup_subsys_state *pos) 4625 { 4626 struct cgroup_subsys_state *last; 4627 4628 do { 4629 last = pos; 4630 pos = css_next_child(NULL, pos); 4631 } while (pos); 4632 4633 return last; 4634 } 4635 4636 /** 4637 * css_next_descendant_post - find the next descendant for post-order walk 4638 * @pos: the current position (%NULL to initiate traversal) 4639 * @root: css whose descendants to walk 4640 * 4641 * To be used by css_for_each_descendant_post(). Find the next descendant 4642 * to visit for post-order traversal of @root's descendants. @root is 4643 * included in the iteration and the last node to be visited. 4644 * 4645 * While this function requires cgroup_mutex or RCU read locking, it 4646 * doesn't require the whole traversal to be contained in a single critical 4647 * section. This function will return the correct next descendant as long 4648 * as both @pos and @cgroup are accessible and @pos is a descendant of 4649 * @cgroup. 4650 * 4651 * If a subsystem synchronizes ->css_online() and the start of iteration, a 4652 * css which finished ->css_online() is guaranteed to be visible in the 4653 * future iterations and will stay visible until the last reference is put. 4654 * A css which hasn't finished ->css_online() or already finished 4655 * ->css_offline() may show up during traversal. It's each subsystem's 4656 * responsibility to synchronize against on/offlining. 4657 */ 4658 struct cgroup_subsys_state * 4659 css_next_descendant_post(struct cgroup_subsys_state *pos, 4660 struct cgroup_subsys_state *root) 4661 { 4662 struct cgroup_subsys_state *next; 4663 4664 cgroup_assert_mutex_or_rcu_locked(); 4665 4666 /* if first iteration, visit leftmost descendant which may be @root */ 4667 if (!pos) 4668 return css_leftmost_descendant(root); 4669 4670 /* if we visited @root, we're done */ 4671 if (pos == root) 4672 return NULL; 4673 4674 /* if there's an unvisited sibling, visit its leftmost descendant */ 4675 next = css_next_child(pos, pos->parent); 4676 if (next) 4677 return css_leftmost_descendant(next); 4678 4679 /* no sibling left, visit parent */ 4680 return pos->parent; 4681 } 4682 4683 /** 4684 * css_has_online_children - does a css have online children 4685 * @css: the target css 4686 * 4687 * Returns %true if @css has any online children; otherwise, %false. This 4688 * function can be called from any context but the caller is responsible 4689 * for synchronizing against on/offlining as necessary. 4690 */ 4691 bool css_has_online_children(struct cgroup_subsys_state *css) 4692 { 4693 struct cgroup_subsys_state *child; 4694 bool ret = false; 4695 4696 rcu_read_lock(); 4697 css_for_each_child(child, css) { 4698 if (child->flags & CSS_ONLINE) { 4699 ret = true; 4700 break; 4701 } 4702 } 4703 rcu_read_unlock(); 4704 return ret; 4705 } 4706 4707 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it) 4708 { 4709 struct list_head *l; 4710 struct cgrp_cset_link *link; 4711 struct css_set *cset; 4712 4713 lockdep_assert_held(&css_set_lock); 4714 4715 /* find the next threaded cset */ 4716 if (it->tcset_pos) { 4717 l = it->tcset_pos->next; 4718 4719 if (l != it->tcset_head) { 4720 it->tcset_pos = l; 4721 return container_of(l, struct css_set, 4722 threaded_csets_node); 4723 } 4724 4725 it->tcset_pos = NULL; 4726 } 4727 4728 /* find the next cset */ 4729 l = it->cset_pos; 4730 l = l->next; 4731 if (l == it->cset_head) { 4732 it->cset_pos = NULL; 4733 return NULL; 4734 } 4735 4736 if (it->ss) { 4737 cset = container_of(l, struct css_set, e_cset_node[it->ss->id]); 4738 } else { 4739 link = list_entry(l, struct cgrp_cset_link, cset_link); 4740 cset = link->cset; 4741 } 4742 4743 it->cset_pos = l; 4744 4745 /* initialize threaded css_set walking */ 4746 if (it->flags & CSS_TASK_ITER_THREADED) { 4747 if (it->cur_dcset) 4748 put_css_set_locked(it->cur_dcset); 4749 it->cur_dcset = cset; 4750 get_css_set(cset); 4751 4752 it->tcset_head = &cset->threaded_csets; 4753 it->tcset_pos = &cset->threaded_csets; 4754 } 4755 4756 return cset; 4757 } 4758 4759 /** 4760 * css_task_iter_advance_css_set - advance a task iterator to the next css_set 4761 * @it: the iterator to advance 4762 * 4763 * Advance @it to the next css_set to walk. 4764 */ 4765 static void css_task_iter_advance_css_set(struct css_task_iter *it) 4766 { 4767 struct css_set *cset; 4768 4769 lockdep_assert_held(&css_set_lock); 4770 4771 /* Advance to the next non-empty css_set and find first non-empty tasks list*/ 4772 while ((cset = css_task_iter_next_css_set(it))) { 4773 if (!list_empty(&cset->tasks)) { 4774 it->cur_tasks_head = &cset->tasks; 4775 break; 4776 } else if (!list_empty(&cset->mg_tasks)) { 4777 it->cur_tasks_head = &cset->mg_tasks; 4778 break; 4779 } else if (!list_empty(&cset->dying_tasks)) { 4780 it->cur_tasks_head = &cset->dying_tasks; 4781 break; 4782 } 4783 } 4784 if (!cset) { 4785 it->task_pos = NULL; 4786 return; 4787 } 4788 it->task_pos = it->cur_tasks_head->next; 4789 4790 /* 4791 * We don't keep css_sets locked across iteration steps and thus 4792 * need to take steps to ensure that iteration can be resumed after 4793 * the lock is re-acquired. Iteration is performed at two levels - 4794 * css_sets and tasks in them. 4795 * 4796 * Once created, a css_set never leaves its cgroup lists, so a 4797 * pinned css_set is guaranteed to stay put and we can resume 4798 * iteration afterwards. 4799 * 4800 * Tasks may leave @cset across iteration steps. This is resolved 4801 * by registering each iterator with the css_set currently being 4802 * walked and making css_set_move_task() advance iterators whose 4803 * next task is leaving. 4804 */ 4805 if (it->cur_cset) { 4806 list_del(&it->iters_node); 4807 put_css_set_locked(it->cur_cset); 4808 } 4809 get_css_set(cset); 4810 it->cur_cset = cset; 4811 list_add(&it->iters_node, &cset->task_iters); 4812 } 4813 4814 static void css_task_iter_skip(struct css_task_iter *it, 4815 struct task_struct *task) 4816 { 4817 lockdep_assert_held(&css_set_lock); 4818 4819 if (it->task_pos == &task->cg_list) { 4820 it->task_pos = it->task_pos->next; 4821 it->flags |= CSS_TASK_ITER_SKIPPED; 4822 } 4823 } 4824 4825 static void css_task_iter_advance(struct css_task_iter *it) 4826 { 4827 struct task_struct *task; 4828 4829 lockdep_assert_held(&css_set_lock); 4830 repeat: 4831 if (it->task_pos) { 4832 /* 4833 * Advance iterator to find next entry. We go through cset 4834 * tasks, mg_tasks and dying_tasks, when consumed we move onto 4835 * the next cset. 4836 */ 4837 if (it->flags & CSS_TASK_ITER_SKIPPED) 4838 it->flags &= ~CSS_TASK_ITER_SKIPPED; 4839 else 4840 it->task_pos = it->task_pos->next; 4841 4842 if (it->task_pos == &it->cur_cset->tasks) { 4843 it->cur_tasks_head = &it->cur_cset->mg_tasks; 4844 it->task_pos = it->cur_tasks_head->next; 4845 } 4846 if (it->task_pos == &it->cur_cset->mg_tasks) { 4847 it->cur_tasks_head = &it->cur_cset->dying_tasks; 4848 it->task_pos = it->cur_tasks_head->next; 4849 } 4850 if (it->task_pos == &it->cur_cset->dying_tasks) 4851 css_task_iter_advance_css_set(it); 4852 } else { 4853 /* called from start, proceed to the first cset */ 4854 css_task_iter_advance_css_set(it); 4855 } 4856 4857 if (!it->task_pos) 4858 return; 4859 4860 task = list_entry(it->task_pos, struct task_struct, cg_list); 4861 4862 if (it->flags & CSS_TASK_ITER_PROCS) { 4863 /* if PROCS, skip over tasks which aren't group leaders */ 4864 if (!thread_group_leader(task)) 4865 goto repeat; 4866 4867 /* and dying leaders w/o live member threads */ 4868 if (it->cur_tasks_head == &it->cur_cset->dying_tasks && 4869 !atomic_read(&task->signal->live)) 4870 goto repeat; 4871 } else { 4872 /* skip all dying ones */ 4873 if (it->cur_tasks_head == &it->cur_cset->dying_tasks) 4874 goto repeat; 4875 } 4876 } 4877 4878 /** 4879 * css_task_iter_start - initiate task iteration 4880 * @css: the css to walk tasks of 4881 * @flags: CSS_TASK_ITER_* flags 4882 * @it: the task iterator to use 4883 * 4884 * Initiate iteration through the tasks of @css. The caller can call 4885 * css_task_iter_next() to walk through the tasks until the function 4886 * returns NULL. On completion of iteration, css_task_iter_end() must be 4887 * called. 4888 */ 4889 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags, 4890 struct css_task_iter *it) 4891 { 4892 memset(it, 0, sizeof(*it)); 4893 4894 spin_lock_irq(&css_set_lock); 4895 4896 it->ss = css->ss; 4897 it->flags = flags; 4898 4899 if (CGROUP_HAS_SUBSYS_CONFIG && it->ss) 4900 it->cset_pos = &css->cgroup->e_csets[css->ss->id]; 4901 else 4902 it->cset_pos = &css->cgroup->cset_links; 4903 4904 it->cset_head = it->cset_pos; 4905 4906 css_task_iter_advance(it); 4907 4908 spin_unlock_irq(&css_set_lock); 4909 } 4910 4911 /** 4912 * css_task_iter_next - return the next task for the iterator 4913 * @it: the task iterator being iterated 4914 * 4915 * The "next" function for task iteration. @it should have been 4916 * initialized via css_task_iter_start(). Returns NULL when the iteration 4917 * reaches the end. 4918 */ 4919 struct task_struct *css_task_iter_next(struct css_task_iter *it) 4920 { 4921 if (it->cur_task) { 4922 put_task_struct(it->cur_task); 4923 it->cur_task = NULL; 4924 } 4925 4926 spin_lock_irq(&css_set_lock); 4927 4928 /* @it may be half-advanced by skips, finish advancing */ 4929 if (it->flags & CSS_TASK_ITER_SKIPPED) 4930 css_task_iter_advance(it); 4931 4932 if (it->task_pos) { 4933 it->cur_task = list_entry(it->task_pos, struct task_struct, 4934 cg_list); 4935 get_task_struct(it->cur_task); 4936 css_task_iter_advance(it); 4937 } 4938 4939 spin_unlock_irq(&css_set_lock); 4940 4941 return it->cur_task; 4942 } 4943 4944 /** 4945 * css_task_iter_end - finish task iteration 4946 * @it: the task iterator to finish 4947 * 4948 * Finish task iteration started by css_task_iter_start(). 4949 */ 4950 void css_task_iter_end(struct css_task_iter *it) 4951 { 4952 if (it->cur_cset) { 4953 spin_lock_irq(&css_set_lock); 4954 list_del(&it->iters_node); 4955 put_css_set_locked(it->cur_cset); 4956 spin_unlock_irq(&css_set_lock); 4957 } 4958 4959 if (it->cur_dcset) 4960 put_css_set(it->cur_dcset); 4961 4962 if (it->cur_task) 4963 put_task_struct(it->cur_task); 4964 } 4965 4966 static void cgroup_procs_release(struct kernfs_open_file *of) 4967 { 4968 struct cgroup_file_ctx *ctx = of->priv; 4969 4970 if (ctx->procs.started) 4971 css_task_iter_end(&ctx->procs.iter); 4972 } 4973 4974 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos) 4975 { 4976 struct kernfs_open_file *of = s->private; 4977 struct cgroup_file_ctx *ctx = of->priv; 4978 4979 if (pos) 4980 (*pos)++; 4981 4982 return css_task_iter_next(&ctx->procs.iter); 4983 } 4984 4985 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos, 4986 unsigned int iter_flags) 4987 { 4988 struct kernfs_open_file *of = s->private; 4989 struct cgroup *cgrp = seq_css(s)->cgroup; 4990 struct cgroup_file_ctx *ctx = of->priv; 4991 struct css_task_iter *it = &ctx->procs.iter; 4992 4993 /* 4994 * When a seq_file is seeked, it's always traversed sequentially 4995 * from position 0, so we can simply keep iterating on !0 *pos. 4996 */ 4997 if (!ctx->procs.started) { 4998 if (WARN_ON_ONCE((*pos))) 4999 return ERR_PTR(-EINVAL); 5000 css_task_iter_start(&cgrp->self, iter_flags, it); 5001 ctx->procs.started = true; 5002 } else if (!(*pos)) { 5003 css_task_iter_end(it); 5004 css_task_iter_start(&cgrp->self, iter_flags, it); 5005 } else 5006 return it->cur_task; 5007 5008 return cgroup_procs_next(s, NULL, NULL); 5009 } 5010 5011 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos) 5012 { 5013 struct cgroup *cgrp = seq_css(s)->cgroup; 5014 5015 /* 5016 * All processes of a threaded subtree belong to the domain cgroup 5017 * of the subtree. Only threads can be distributed across the 5018 * subtree. Reject reads on cgroup.procs in the subtree proper. 5019 * They're always empty anyway. 5020 */ 5021 if (cgroup_is_threaded(cgrp)) 5022 return ERR_PTR(-EOPNOTSUPP); 5023 5024 return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS | 5025 CSS_TASK_ITER_THREADED); 5026 } 5027 5028 static int cgroup_procs_show(struct seq_file *s, void *v) 5029 { 5030 seq_printf(s, "%d\n", task_pid_vnr(v)); 5031 return 0; 5032 } 5033 5034 static int cgroup_may_write(const struct cgroup *cgrp, struct super_block *sb) 5035 { 5036 int ret; 5037 struct inode *inode; 5038 5039 lockdep_assert_held(&cgroup_mutex); 5040 5041 inode = kernfs_get_inode(sb, cgrp->procs_file.kn); 5042 if (!inode) 5043 return -ENOMEM; 5044 5045 ret = inode_permission(&nop_mnt_idmap, inode, MAY_WRITE); 5046 iput(inode); 5047 return ret; 5048 } 5049 5050 static int cgroup_procs_write_permission(struct cgroup *src_cgrp, 5051 struct cgroup *dst_cgrp, 5052 struct super_block *sb, 5053 struct cgroup_namespace *ns) 5054 { 5055 struct cgroup *com_cgrp = src_cgrp; 5056 int ret; 5057 5058 lockdep_assert_held(&cgroup_mutex); 5059 5060 /* find the common ancestor */ 5061 while (!cgroup_is_descendant(dst_cgrp, com_cgrp)) 5062 com_cgrp = cgroup_parent(com_cgrp); 5063 5064 /* %current should be authorized to migrate to the common ancestor */ 5065 ret = cgroup_may_write(com_cgrp, sb); 5066 if (ret) 5067 return ret; 5068 5069 /* 5070 * If namespaces are delegation boundaries, %current must be able 5071 * to see both source and destination cgroups from its namespace. 5072 */ 5073 if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) && 5074 (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) || 5075 !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp))) 5076 return -ENOENT; 5077 5078 return 0; 5079 } 5080 5081 static int cgroup_attach_permissions(struct cgroup *src_cgrp, 5082 struct cgroup *dst_cgrp, 5083 struct super_block *sb, bool threadgroup, 5084 struct cgroup_namespace *ns) 5085 { 5086 int ret = 0; 5087 5088 ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, sb, ns); 5089 if (ret) 5090 return ret; 5091 5092 ret = cgroup_migrate_vet_dst(dst_cgrp); 5093 if (ret) 5094 return ret; 5095 5096 if (!threadgroup && (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp)) 5097 ret = -EOPNOTSUPP; 5098 5099 return ret; 5100 } 5101 5102 static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf, 5103 bool threadgroup) 5104 { 5105 struct cgroup_file_ctx *ctx = of->priv; 5106 struct cgroup *src_cgrp, *dst_cgrp; 5107 struct task_struct *task; 5108 const struct cred *saved_cred; 5109 ssize_t ret; 5110 bool threadgroup_locked; 5111 5112 dst_cgrp = cgroup_kn_lock_live(of->kn, false); 5113 if (!dst_cgrp) 5114 return -ENODEV; 5115 5116 task = cgroup_procs_write_start(buf, threadgroup, &threadgroup_locked); 5117 ret = PTR_ERR_OR_ZERO(task); 5118 if (ret) 5119 goto out_unlock; 5120 5121 /* find the source cgroup */ 5122 spin_lock_irq(&css_set_lock); 5123 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root); 5124 spin_unlock_irq(&css_set_lock); 5125 5126 /* 5127 * Process and thread migrations follow same delegation rule. Check 5128 * permissions using the credentials from file open to protect against 5129 * inherited fd attacks. 5130 */ 5131 saved_cred = override_creds(of->file->f_cred); 5132 ret = cgroup_attach_permissions(src_cgrp, dst_cgrp, 5133 of->file->f_path.dentry->d_sb, 5134 threadgroup, ctx->ns); 5135 revert_creds(saved_cred); 5136 if (ret) 5137 goto out_finish; 5138 5139 ret = cgroup_attach_task(dst_cgrp, task, threadgroup); 5140 5141 out_finish: 5142 cgroup_procs_write_finish(task, threadgroup_locked); 5143 out_unlock: 5144 cgroup_kn_unlock(of->kn); 5145 5146 return ret; 5147 } 5148 5149 static ssize_t cgroup_procs_write(struct kernfs_open_file *of, 5150 char *buf, size_t nbytes, loff_t off) 5151 { 5152 return __cgroup_procs_write(of, buf, true) ?: nbytes; 5153 } 5154 5155 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos) 5156 { 5157 return __cgroup_procs_start(s, pos, 0); 5158 } 5159 5160 static ssize_t cgroup_threads_write(struct kernfs_open_file *of, 5161 char *buf, size_t nbytes, loff_t off) 5162 { 5163 return __cgroup_procs_write(of, buf, false) ?: nbytes; 5164 } 5165 5166 /* cgroup core interface files for the default hierarchy */ 5167 static struct cftype cgroup_base_files[] = { 5168 { 5169 .name = "cgroup.type", 5170 .flags = CFTYPE_NOT_ON_ROOT, 5171 .seq_show = cgroup_type_show, 5172 .write = cgroup_type_write, 5173 }, 5174 { 5175 .name = "cgroup.procs", 5176 .flags = CFTYPE_NS_DELEGATABLE, 5177 .file_offset = offsetof(struct cgroup, procs_file), 5178 .release = cgroup_procs_release, 5179 .seq_start = cgroup_procs_start, 5180 .seq_next = cgroup_procs_next, 5181 .seq_show = cgroup_procs_show, 5182 .write = cgroup_procs_write, 5183 }, 5184 { 5185 .name = "cgroup.threads", 5186 .flags = CFTYPE_NS_DELEGATABLE, 5187 .release = cgroup_procs_release, 5188 .seq_start = cgroup_threads_start, 5189 .seq_next = cgroup_procs_next, 5190 .seq_show = cgroup_procs_show, 5191 .write = cgroup_threads_write, 5192 }, 5193 { 5194 .name = "cgroup.controllers", 5195 .seq_show = cgroup_controllers_show, 5196 }, 5197 { 5198 .name = "cgroup.subtree_control", 5199 .flags = CFTYPE_NS_DELEGATABLE, 5200 .seq_show = cgroup_subtree_control_show, 5201 .write = cgroup_subtree_control_write, 5202 }, 5203 { 5204 .name = "cgroup.events", 5205 .flags = CFTYPE_NOT_ON_ROOT, 5206 .file_offset = offsetof(struct cgroup, events_file), 5207 .seq_show = cgroup_events_show, 5208 }, 5209 { 5210 .name = "cgroup.max.descendants", 5211 .seq_show = cgroup_max_descendants_show, 5212 .write = cgroup_max_descendants_write, 5213 }, 5214 { 5215 .name = "cgroup.max.depth", 5216 .seq_show = cgroup_max_depth_show, 5217 .write = cgroup_max_depth_write, 5218 }, 5219 { 5220 .name = "cgroup.stat", 5221 .seq_show = cgroup_stat_show, 5222 }, 5223 { 5224 .name = "cgroup.freeze", 5225 .flags = CFTYPE_NOT_ON_ROOT, 5226 .seq_show = cgroup_freeze_show, 5227 .write = cgroup_freeze_write, 5228 }, 5229 { 5230 .name = "cgroup.kill", 5231 .flags = CFTYPE_NOT_ON_ROOT, 5232 .write = cgroup_kill_write, 5233 }, 5234 { 5235 .name = "cpu.stat", 5236 .seq_show = cpu_stat_show, 5237 }, 5238 { } /* terminate */ 5239 }; 5240 5241 static struct cftype cgroup_psi_files[] = { 5242 #ifdef CONFIG_PSI 5243 { 5244 .name = "io.pressure", 5245 .file_offset = offsetof(struct cgroup, psi_files[PSI_IO]), 5246 .open = cgroup_pressure_open, 5247 .seq_show = cgroup_io_pressure_show, 5248 .write = cgroup_io_pressure_write, 5249 .poll = cgroup_pressure_poll, 5250 .release = cgroup_pressure_release, 5251 }, 5252 { 5253 .name = "memory.pressure", 5254 .file_offset = offsetof(struct cgroup, psi_files[PSI_MEM]), 5255 .open = cgroup_pressure_open, 5256 .seq_show = cgroup_memory_pressure_show, 5257 .write = cgroup_memory_pressure_write, 5258 .poll = cgroup_pressure_poll, 5259 .release = cgroup_pressure_release, 5260 }, 5261 { 5262 .name = "cpu.pressure", 5263 .file_offset = offsetof(struct cgroup, psi_files[PSI_CPU]), 5264 .open = cgroup_pressure_open, 5265 .seq_show = cgroup_cpu_pressure_show, 5266 .write = cgroup_cpu_pressure_write, 5267 .poll = cgroup_pressure_poll, 5268 .release = cgroup_pressure_release, 5269 }, 5270 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 5271 { 5272 .name = "irq.pressure", 5273 .file_offset = offsetof(struct cgroup, psi_files[PSI_IRQ]), 5274 .open = cgroup_pressure_open, 5275 .seq_show = cgroup_irq_pressure_show, 5276 .write = cgroup_irq_pressure_write, 5277 .poll = cgroup_pressure_poll, 5278 .release = cgroup_pressure_release, 5279 }, 5280 #endif 5281 { 5282 .name = "cgroup.pressure", 5283 .seq_show = cgroup_pressure_show, 5284 .write = cgroup_pressure_write, 5285 }, 5286 #endif /* CONFIG_PSI */ 5287 { } /* terminate */ 5288 }; 5289 5290 /* 5291 * css destruction is four-stage process. 5292 * 5293 * 1. Destruction starts. Killing of the percpu_ref is initiated. 5294 * Implemented in kill_css(). 5295 * 5296 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs 5297 * and thus css_tryget_online() is guaranteed to fail, the css can be 5298 * offlined by invoking offline_css(). After offlining, the base ref is 5299 * put. Implemented in css_killed_work_fn(). 5300 * 5301 * 3. When the percpu_ref reaches zero, the only possible remaining 5302 * accessors are inside RCU read sections. css_release() schedules the 5303 * RCU callback. 5304 * 5305 * 4. After the grace period, the css can be freed. Implemented in 5306 * css_free_work_fn(). 5307 * 5308 * It is actually hairier because both step 2 and 4 require process context 5309 * and thus involve punting to css->destroy_work adding two additional 5310 * steps to the already complex sequence. 5311 */ 5312 static void css_free_rwork_fn(struct work_struct *work) 5313 { 5314 struct cgroup_subsys_state *css = container_of(to_rcu_work(work), 5315 struct cgroup_subsys_state, destroy_rwork); 5316 struct cgroup_subsys *ss = css->ss; 5317 struct cgroup *cgrp = css->cgroup; 5318 5319 percpu_ref_exit(&css->refcnt); 5320 5321 if (ss) { 5322 /* css free path */ 5323 struct cgroup_subsys_state *parent = css->parent; 5324 int id = css->id; 5325 5326 ss->css_free(css); 5327 cgroup_idr_remove(&ss->css_idr, id); 5328 cgroup_put(cgrp); 5329 5330 if (parent) 5331 css_put(parent); 5332 } else { 5333 /* cgroup free path */ 5334 atomic_dec(&cgrp->root->nr_cgrps); 5335 cgroup1_pidlist_destroy_all(cgrp); 5336 cancel_work_sync(&cgrp->release_agent_work); 5337 bpf_cgrp_storage_free(cgrp); 5338 5339 if (cgroup_parent(cgrp)) { 5340 /* 5341 * We get a ref to the parent, and put the ref when 5342 * this cgroup is being freed, so it's guaranteed 5343 * that the parent won't be destroyed before its 5344 * children. 5345 */ 5346 cgroup_put(cgroup_parent(cgrp)); 5347 kernfs_put(cgrp->kn); 5348 psi_cgroup_free(cgrp); 5349 cgroup_rstat_exit(cgrp); 5350 kfree(cgrp); 5351 } else { 5352 /* 5353 * This is root cgroup's refcnt reaching zero, 5354 * which indicates that the root should be 5355 * released. 5356 */ 5357 cgroup_destroy_root(cgrp->root); 5358 } 5359 } 5360 } 5361 5362 static void css_release_work_fn(struct work_struct *work) 5363 { 5364 struct cgroup_subsys_state *css = 5365 container_of(work, struct cgroup_subsys_state, destroy_work); 5366 struct cgroup_subsys *ss = css->ss; 5367 struct cgroup *cgrp = css->cgroup; 5368 5369 cgroup_lock(); 5370 5371 css->flags |= CSS_RELEASED; 5372 list_del_rcu(&css->sibling); 5373 5374 if (ss) { 5375 /* css release path */ 5376 if (!list_empty(&css->rstat_css_node)) { 5377 cgroup_rstat_flush(cgrp); 5378 list_del_rcu(&css->rstat_css_node); 5379 } 5380 5381 cgroup_idr_replace(&ss->css_idr, NULL, css->id); 5382 if (ss->css_released) 5383 ss->css_released(css); 5384 } else { 5385 struct cgroup *tcgrp; 5386 5387 /* cgroup release path */ 5388 TRACE_CGROUP_PATH(release, cgrp); 5389 5390 cgroup_rstat_flush(cgrp); 5391 5392 spin_lock_irq(&css_set_lock); 5393 for (tcgrp = cgroup_parent(cgrp); tcgrp; 5394 tcgrp = cgroup_parent(tcgrp)) 5395 tcgrp->nr_dying_descendants--; 5396 spin_unlock_irq(&css_set_lock); 5397 5398 /* 5399 * There are two control paths which try to determine 5400 * cgroup from dentry without going through kernfs - 5401 * cgroupstats_build() and css_tryget_online_from_dir(). 5402 * Those are supported by RCU protecting clearing of 5403 * cgrp->kn->priv backpointer. 5404 */ 5405 if (cgrp->kn) 5406 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, 5407 NULL); 5408 } 5409 5410 cgroup_unlock(); 5411 5412 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn); 5413 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork); 5414 } 5415 5416 static void css_release(struct percpu_ref *ref) 5417 { 5418 struct cgroup_subsys_state *css = 5419 container_of(ref, struct cgroup_subsys_state, refcnt); 5420 5421 INIT_WORK(&css->destroy_work, css_release_work_fn); 5422 queue_work(cgroup_destroy_wq, &css->destroy_work); 5423 } 5424 5425 static void init_and_link_css(struct cgroup_subsys_state *css, 5426 struct cgroup_subsys *ss, struct cgroup *cgrp) 5427 { 5428 lockdep_assert_held(&cgroup_mutex); 5429 5430 cgroup_get_live(cgrp); 5431 5432 memset(css, 0, sizeof(*css)); 5433 css->cgroup = cgrp; 5434 css->ss = ss; 5435 css->id = -1; 5436 INIT_LIST_HEAD(&css->sibling); 5437 INIT_LIST_HEAD(&css->children); 5438 INIT_LIST_HEAD(&css->rstat_css_node); 5439 css->serial_nr = css_serial_nr_next++; 5440 atomic_set(&css->online_cnt, 0); 5441 5442 if (cgroup_parent(cgrp)) { 5443 css->parent = cgroup_css(cgroup_parent(cgrp), ss); 5444 css_get(css->parent); 5445 } 5446 5447 if (ss->css_rstat_flush) 5448 list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list); 5449 5450 BUG_ON(cgroup_css(cgrp, ss)); 5451 } 5452 5453 /* invoke ->css_online() on a new CSS and mark it online if successful */ 5454 static int online_css(struct cgroup_subsys_state *css) 5455 { 5456 struct cgroup_subsys *ss = css->ss; 5457 int ret = 0; 5458 5459 lockdep_assert_held(&cgroup_mutex); 5460 5461 if (ss->css_online) 5462 ret = ss->css_online(css); 5463 if (!ret) { 5464 css->flags |= CSS_ONLINE; 5465 rcu_assign_pointer(css->cgroup->subsys[ss->id], css); 5466 5467 atomic_inc(&css->online_cnt); 5468 if (css->parent) 5469 atomic_inc(&css->parent->online_cnt); 5470 } 5471 return ret; 5472 } 5473 5474 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */ 5475 static void offline_css(struct cgroup_subsys_state *css) 5476 { 5477 struct cgroup_subsys *ss = css->ss; 5478 5479 lockdep_assert_held(&cgroup_mutex); 5480 5481 if (!(css->flags & CSS_ONLINE)) 5482 return; 5483 5484 if (ss->css_offline) 5485 ss->css_offline(css); 5486 5487 css->flags &= ~CSS_ONLINE; 5488 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL); 5489 5490 wake_up_all(&css->cgroup->offline_waitq); 5491 } 5492 5493 /** 5494 * css_create - create a cgroup_subsys_state 5495 * @cgrp: the cgroup new css will be associated with 5496 * @ss: the subsys of new css 5497 * 5498 * Create a new css associated with @cgrp - @ss pair. On success, the new 5499 * css is online and installed in @cgrp. This function doesn't create the 5500 * interface files. Returns 0 on success, -errno on failure. 5501 */ 5502 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp, 5503 struct cgroup_subsys *ss) 5504 { 5505 struct cgroup *parent = cgroup_parent(cgrp); 5506 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss); 5507 struct cgroup_subsys_state *css; 5508 int err; 5509 5510 lockdep_assert_held(&cgroup_mutex); 5511 5512 css = ss->css_alloc(parent_css); 5513 if (!css) 5514 css = ERR_PTR(-ENOMEM); 5515 if (IS_ERR(css)) 5516 return css; 5517 5518 init_and_link_css(css, ss, cgrp); 5519 5520 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL); 5521 if (err) 5522 goto err_free_css; 5523 5524 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL); 5525 if (err < 0) 5526 goto err_free_css; 5527 css->id = err; 5528 5529 /* @css is ready to be brought online now, make it visible */ 5530 list_add_tail_rcu(&css->sibling, &parent_css->children); 5531 cgroup_idr_replace(&ss->css_idr, css, css->id); 5532 5533 err = online_css(css); 5534 if (err) 5535 goto err_list_del; 5536 5537 return css; 5538 5539 err_list_del: 5540 list_del_rcu(&css->sibling); 5541 err_free_css: 5542 list_del_rcu(&css->rstat_css_node); 5543 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn); 5544 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork); 5545 return ERR_PTR(err); 5546 } 5547 5548 /* 5549 * The returned cgroup is fully initialized including its control mask, but 5550 * it isn't associated with its kernfs_node and doesn't have the control 5551 * mask applied. 5552 */ 5553 static struct cgroup *cgroup_create(struct cgroup *parent, const char *name, 5554 umode_t mode) 5555 { 5556 struct cgroup_root *root = parent->root; 5557 struct cgroup *cgrp, *tcgrp; 5558 struct kernfs_node *kn; 5559 int level = parent->level + 1; 5560 int ret; 5561 5562 /* allocate the cgroup and its ID, 0 is reserved for the root */ 5563 cgrp = kzalloc(struct_size(cgrp, ancestors, (level + 1)), GFP_KERNEL); 5564 if (!cgrp) 5565 return ERR_PTR(-ENOMEM); 5566 5567 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL); 5568 if (ret) 5569 goto out_free_cgrp; 5570 5571 ret = cgroup_rstat_init(cgrp); 5572 if (ret) 5573 goto out_cancel_ref; 5574 5575 /* create the directory */ 5576 kn = kernfs_create_dir(parent->kn, name, mode, cgrp); 5577 if (IS_ERR(kn)) { 5578 ret = PTR_ERR(kn); 5579 goto out_stat_exit; 5580 } 5581 cgrp->kn = kn; 5582 5583 init_cgroup_housekeeping(cgrp); 5584 5585 cgrp->self.parent = &parent->self; 5586 cgrp->root = root; 5587 cgrp->level = level; 5588 5589 ret = psi_cgroup_alloc(cgrp); 5590 if (ret) 5591 goto out_kernfs_remove; 5592 5593 ret = cgroup_bpf_inherit(cgrp); 5594 if (ret) 5595 goto out_psi_free; 5596 5597 /* 5598 * New cgroup inherits effective freeze counter, and 5599 * if the parent has to be frozen, the child has too. 5600 */ 5601 cgrp->freezer.e_freeze = parent->freezer.e_freeze; 5602 if (cgrp->freezer.e_freeze) { 5603 /* 5604 * Set the CGRP_FREEZE flag, so when a process will be 5605 * attached to the child cgroup, it will become frozen. 5606 * At this point the new cgroup is unpopulated, so we can 5607 * consider it frozen immediately. 5608 */ 5609 set_bit(CGRP_FREEZE, &cgrp->flags); 5610 set_bit(CGRP_FROZEN, &cgrp->flags); 5611 } 5612 5613 spin_lock_irq(&css_set_lock); 5614 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) { 5615 cgrp->ancestors[tcgrp->level] = tcgrp; 5616 5617 if (tcgrp != cgrp) { 5618 tcgrp->nr_descendants++; 5619 5620 /* 5621 * If the new cgroup is frozen, all ancestor cgroups 5622 * get a new frozen descendant, but their state can't 5623 * change because of this. 5624 */ 5625 if (cgrp->freezer.e_freeze) 5626 tcgrp->freezer.nr_frozen_descendants++; 5627 } 5628 } 5629 spin_unlock_irq(&css_set_lock); 5630 5631 if (notify_on_release(parent)) 5632 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags); 5633 5634 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags)) 5635 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags); 5636 5637 cgrp->self.serial_nr = css_serial_nr_next++; 5638 5639 /* allocation complete, commit to creation */ 5640 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children); 5641 atomic_inc(&root->nr_cgrps); 5642 cgroup_get_live(parent); 5643 5644 /* 5645 * On the default hierarchy, a child doesn't automatically inherit 5646 * subtree_control from the parent. Each is configured manually. 5647 */ 5648 if (!cgroup_on_dfl(cgrp)) 5649 cgrp->subtree_control = cgroup_control(cgrp); 5650 5651 cgroup_propagate_control(cgrp); 5652 5653 return cgrp; 5654 5655 out_psi_free: 5656 psi_cgroup_free(cgrp); 5657 out_kernfs_remove: 5658 kernfs_remove(cgrp->kn); 5659 out_stat_exit: 5660 cgroup_rstat_exit(cgrp); 5661 out_cancel_ref: 5662 percpu_ref_exit(&cgrp->self.refcnt); 5663 out_free_cgrp: 5664 kfree(cgrp); 5665 return ERR_PTR(ret); 5666 } 5667 5668 static bool cgroup_check_hierarchy_limits(struct cgroup *parent) 5669 { 5670 struct cgroup *cgroup; 5671 int ret = false; 5672 int level = 1; 5673 5674 lockdep_assert_held(&cgroup_mutex); 5675 5676 for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) { 5677 if (cgroup->nr_descendants >= cgroup->max_descendants) 5678 goto fail; 5679 5680 if (level > cgroup->max_depth) 5681 goto fail; 5682 5683 level++; 5684 } 5685 5686 ret = true; 5687 fail: 5688 return ret; 5689 } 5690 5691 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode) 5692 { 5693 struct cgroup *parent, *cgrp; 5694 int ret; 5695 5696 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */ 5697 if (strchr(name, '\n')) 5698 return -EINVAL; 5699 5700 parent = cgroup_kn_lock_live(parent_kn, false); 5701 if (!parent) 5702 return -ENODEV; 5703 5704 if (!cgroup_check_hierarchy_limits(parent)) { 5705 ret = -EAGAIN; 5706 goto out_unlock; 5707 } 5708 5709 cgrp = cgroup_create(parent, name, mode); 5710 if (IS_ERR(cgrp)) { 5711 ret = PTR_ERR(cgrp); 5712 goto out_unlock; 5713 } 5714 5715 /* 5716 * This extra ref will be put in cgroup_free_fn() and guarantees 5717 * that @cgrp->kn is always accessible. 5718 */ 5719 kernfs_get(cgrp->kn); 5720 5721 ret = cgroup_kn_set_ugid(cgrp->kn); 5722 if (ret) 5723 goto out_destroy; 5724 5725 ret = css_populate_dir(&cgrp->self); 5726 if (ret) 5727 goto out_destroy; 5728 5729 ret = cgroup_apply_control_enable(cgrp); 5730 if (ret) 5731 goto out_destroy; 5732 5733 TRACE_CGROUP_PATH(mkdir, cgrp); 5734 5735 /* let's create and online css's */ 5736 kernfs_activate(cgrp->kn); 5737 5738 ret = 0; 5739 goto out_unlock; 5740 5741 out_destroy: 5742 cgroup_destroy_locked(cgrp); 5743 out_unlock: 5744 cgroup_kn_unlock(parent_kn); 5745 return ret; 5746 } 5747 5748 /* 5749 * This is called when the refcnt of a css is confirmed to be killed. 5750 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to 5751 * initiate destruction and put the css ref from kill_css(). 5752 */ 5753 static void css_killed_work_fn(struct work_struct *work) 5754 { 5755 struct cgroup_subsys_state *css = 5756 container_of(work, struct cgroup_subsys_state, destroy_work); 5757 5758 cgroup_lock(); 5759 5760 do { 5761 offline_css(css); 5762 css_put(css); 5763 /* @css can't go away while we're holding cgroup_mutex */ 5764 css = css->parent; 5765 } while (css && atomic_dec_and_test(&css->online_cnt)); 5766 5767 cgroup_unlock(); 5768 } 5769 5770 /* css kill confirmation processing requires process context, bounce */ 5771 static void css_killed_ref_fn(struct percpu_ref *ref) 5772 { 5773 struct cgroup_subsys_state *css = 5774 container_of(ref, struct cgroup_subsys_state, refcnt); 5775 5776 if (atomic_dec_and_test(&css->online_cnt)) { 5777 INIT_WORK(&css->destroy_work, css_killed_work_fn); 5778 queue_work(cgroup_destroy_wq, &css->destroy_work); 5779 } 5780 } 5781 5782 /** 5783 * kill_css - destroy a css 5784 * @css: css to destroy 5785 * 5786 * This function initiates destruction of @css by removing cgroup interface 5787 * files and putting its base reference. ->css_offline() will be invoked 5788 * asynchronously once css_tryget_online() is guaranteed to fail and when 5789 * the reference count reaches zero, @css will be released. 5790 */ 5791 static void kill_css(struct cgroup_subsys_state *css) 5792 { 5793 lockdep_assert_held(&cgroup_mutex); 5794 5795 if (css->flags & CSS_DYING) 5796 return; 5797 5798 css->flags |= CSS_DYING; 5799 5800 /* 5801 * This must happen before css is disassociated with its cgroup. 5802 * See seq_css() for details. 5803 */ 5804 css_clear_dir(css); 5805 5806 /* 5807 * Killing would put the base ref, but we need to keep it alive 5808 * until after ->css_offline(). 5809 */ 5810 css_get(css); 5811 5812 /* 5813 * cgroup core guarantees that, by the time ->css_offline() is 5814 * invoked, no new css reference will be given out via 5815 * css_tryget_online(). We can't simply call percpu_ref_kill() and 5816 * proceed to offlining css's because percpu_ref_kill() doesn't 5817 * guarantee that the ref is seen as killed on all CPUs on return. 5818 * 5819 * Use percpu_ref_kill_and_confirm() to get notifications as each 5820 * css is confirmed to be seen as killed on all CPUs. 5821 */ 5822 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn); 5823 } 5824 5825 /** 5826 * cgroup_destroy_locked - the first stage of cgroup destruction 5827 * @cgrp: cgroup to be destroyed 5828 * 5829 * css's make use of percpu refcnts whose killing latency shouldn't be 5830 * exposed to userland and are RCU protected. Also, cgroup core needs to 5831 * guarantee that css_tryget_online() won't succeed by the time 5832 * ->css_offline() is invoked. To satisfy all the requirements, 5833 * destruction is implemented in the following two steps. 5834 * 5835 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all 5836 * userland visible parts and start killing the percpu refcnts of 5837 * css's. Set up so that the next stage will be kicked off once all 5838 * the percpu refcnts are confirmed to be killed. 5839 * 5840 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the 5841 * rest of destruction. Once all cgroup references are gone, the 5842 * cgroup is RCU-freed. 5843 * 5844 * This function implements s1. After this step, @cgrp is gone as far as 5845 * the userland is concerned and a new cgroup with the same name may be 5846 * created. As cgroup doesn't care about the names internally, this 5847 * doesn't cause any problem. 5848 */ 5849 static int cgroup_destroy_locked(struct cgroup *cgrp) 5850 __releases(&cgroup_mutex) __acquires(&cgroup_mutex) 5851 { 5852 struct cgroup *tcgrp, *parent = cgroup_parent(cgrp); 5853 struct cgroup_subsys_state *css; 5854 struct cgrp_cset_link *link; 5855 int ssid; 5856 5857 lockdep_assert_held(&cgroup_mutex); 5858 5859 /* 5860 * Only migration can raise populated from zero and we're already 5861 * holding cgroup_mutex. 5862 */ 5863 if (cgroup_is_populated(cgrp)) 5864 return -EBUSY; 5865 5866 /* 5867 * Make sure there's no live children. We can't test emptiness of 5868 * ->self.children as dead children linger on it while being 5869 * drained; otherwise, "rmdir parent/child parent" may fail. 5870 */ 5871 if (css_has_online_children(&cgrp->self)) 5872 return -EBUSY; 5873 5874 /* 5875 * Mark @cgrp and the associated csets dead. The former prevents 5876 * further task migration and child creation by disabling 5877 * cgroup_lock_live_group(). The latter makes the csets ignored by 5878 * the migration path. 5879 */ 5880 cgrp->self.flags &= ~CSS_ONLINE; 5881 5882 spin_lock_irq(&css_set_lock); 5883 list_for_each_entry(link, &cgrp->cset_links, cset_link) 5884 link->cset->dead = true; 5885 spin_unlock_irq(&css_set_lock); 5886 5887 /* initiate massacre of all css's */ 5888 for_each_css(css, ssid, cgrp) 5889 kill_css(css); 5890 5891 /* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */ 5892 css_clear_dir(&cgrp->self); 5893 kernfs_remove(cgrp->kn); 5894 5895 if (cgroup_is_threaded(cgrp)) 5896 parent->nr_threaded_children--; 5897 5898 spin_lock_irq(&css_set_lock); 5899 for (tcgrp = cgroup_parent(cgrp); tcgrp; tcgrp = cgroup_parent(tcgrp)) { 5900 tcgrp->nr_descendants--; 5901 tcgrp->nr_dying_descendants++; 5902 /* 5903 * If the dying cgroup is frozen, decrease frozen descendants 5904 * counters of ancestor cgroups. 5905 */ 5906 if (test_bit(CGRP_FROZEN, &cgrp->flags)) 5907 tcgrp->freezer.nr_frozen_descendants--; 5908 } 5909 spin_unlock_irq(&css_set_lock); 5910 5911 cgroup1_check_for_release(parent); 5912 5913 cgroup_bpf_offline(cgrp); 5914 5915 /* put the base reference */ 5916 percpu_ref_kill(&cgrp->self.refcnt); 5917 5918 return 0; 5919 }; 5920 5921 int cgroup_rmdir(struct kernfs_node *kn) 5922 { 5923 struct cgroup *cgrp; 5924 int ret = 0; 5925 5926 cgrp = cgroup_kn_lock_live(kn, false); 5927 if (!cgrp) 5928 return 0; 5929 5930 ret = cgroup_destroy_locked(cgrp); 5931 if (!ret) 5932 TRACE_CGROUP_PATH(rmdir, cgrp); 5933 5934 cgroup_kn_unlock(kn); 5935 return ret; 5936 } 5937 5938 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = { 5939 .show_options = cgroup_show_options, 5940 .mkdir = cgroup_mkdir, 5941 .rmdir = cgroup_rmdir, 5942 .show_path = cgroup_show_path, 5943 }; 5944 5945 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early) 5946 { 5947 struct cgroup_subsys_state *css; 5948 5949 pr_debug("Initializing cgroup subsys %s\n", ss->name); 5950 5951 cgroup_lock(); 5952 5953 idr_init(&ss->css_idr); 5954 INIT_LIST_HEAD(&ss->cfts); 5955 5956 /* Create the root cgroup state for this subsystem */ 5957 ss->root = &cgrp_dfl_root; 5958 css = ss->css_alloc(NULL); 5959 /* We don't handle early failures gracefully */ 5960 BUG_ON(IS_ERR(css)); 5961 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp); 5962 5963 /* 5964 * Root csses are never destroyed and we can't initialize 5965 * percpu_ref during early init. Disable refcnting. 5966 */ 5967 css->flags |= CSS_NO_REF; 5968 5969 if (early) { 5970 /* allocation can't be done safely during early init */ 5971 css->id = 1; 5972 } else { 5973 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL); 5974 BUG_ON(css->id < 0); 5975 } 5976 5977 /* Update the init_css_set to contain a subsys 5978 * pointer to this state - since the subsystem is 5979 * newly registered, all tasks and hence the 5980 * init_css_set is in the subsystem's root cgroup. */ 5981 init_css_set.subsys[ss->id] = css; 5982 5983 have_fork_callback |= (bool)ss->fork << ss->id; 5984 have_exit_callback |= (bool)ss->exit << ss->id; 5985 have_release_callback |= (bool)ss->release << ss->id; 5986 have_canfork_callback |= (bool)ss->can_fork << ss->id; 5987 5988 /* At system boot, before all subsystems have been 5989 * registered, no tasks have been forked, so we don't 5990 * need to invoke fork callbacks here. */ 5991 BUG_ON(!list_empty(&init_task.tasks)); 5992 5993 BUG_ON(online_css(css)); 5994 5995 cgroup_unlock(); 5996 } 5997 5998 /** 5999 * cgroup_init_early - cgroup initialization at system boot 6000 * 6001 * Initialize cgroups at system boot, and initialize any 6002 * subsystems that request early init. 6003 */ 6004 int __init cgroup_init_early(void) 6005 { 6006 static struct cgroup_fs_context __initdata ctx; 6007 struct cgroup_subsys *ss; 6008 int i; 6009 6010 ctx.root = &cgrp_dfl_root; 6011 init_cgroup_root(&ctx); 6012 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF; 6013 6014 RCU_INIT_POINTER(init_task.cgroups, &init_css_set); 6015 6016 for_each_subsys(ss, i) { 6017 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id, 6018 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n", 6019 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free, 6020 ss->id, ss->name); 6021 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN, 6022 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]); 6023 6024 ss->id = i; 6025 ss->name = cgroup_subsys_name[i]; 6026 if (!ss->legacy_name) 6027 ss->legacy_name = cgroup_subsys_name[i]; 6028 6029 if (ss->early_init) 6030 cgroup_init_subsys(ss, true); 6031 } 6032 return 0; 6033 } 6034 6035 /** 6036 * cgroup_init - cgroup initialization 6037 * 6038 * Register cgroup filesystem and /proc file, and initialize 6039 * any subsystems that didn't request early init. 6040 */ 6041 int __init cgroup_init(void) 6042 { 6043 struct cgroup_subsys *ss; 6044 int ssid; 6045 6046 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16); 6047 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files)); 6048 BUG_ON(cgroup_init_cftypes(NULL, cgroup_psi_files)); 6049 BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files)); 6050 6051 cgroup_rstat_boot(); 6052 6053 get_user_ns(init_cgroup_ns.user_ns); 6054 6055 cgroup_lock(); 6056 6057 /* 6058 * Add init_css_set to the hash table so that dfl_root can link to 6059 * it during init. 6060 */ 6061 hash_add(css_set_table, &init_css_set.hlist, 6062 css_set_hash(init_css_set.subsys)); 6063 6064 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0)); 6065 6066 cgroup_unlock(); 6067 6068 for_each_subsys(ss, ssid) { 6069 if (ss->early_init) { 6070 struct cgroup_subsys_state *css = 6071 init_css_set.subsys[ss->id]; 6072 6073 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, 6074 GFP_KERNEL); 6075 BUG_ON(css->id < 0); 6076 } else { 6077 cgroup_init_subsys(ss, false); 6078 } 6079 6080 list_add_tail(&init_css_set.e_cset_node[ssid], 6081 &cgrp_dfl_root.cgrp.e_csets[ssid]); 6082 6083 /* 6084 * Setting dfl_root subsys_mask needs to consider the 6085 * disabled flag and cftype registration needs kmalloc, 6086 * both of which aren't available during early_init. 6087 */ 6088 if (!cgroup_ssid_enabled(ssid)) 6089 continue; 6090 6091 if (cgroup1_ssid_disabled(ssid)) 6092 printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n", 6093 ss->name); 6094 6095 cgrp_dfl_root.subsys_mask |= 1 << ss->id; 6096 6097 /* implicit controllers must be threaded too */ 6098 WARN_ON(ss->implicit_on_dfl && !ss->threaded); 6099 6100 if (ss->implicit_on_dfl) 6101 cgrp_dfl_implicit_ss_mask |= 1 << ss->id; 6102 else if (!ss->dfl_cftypes) 6103 cgrp_dfl_inhibit_ss_mask |= 1 << ss->id; 6104 6105 if (ss->threaded) 6106 cgrp_dfl_threaded_ss_mask |= 1 << ss->id; 6107 6108 if (ss->dfl_cftypes == ss->legacy_cftypes) { 6109 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes)); 6110 } else { 6111 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes)); 6112 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes)); 6113 } 6114 6115 if (ss->bind) 6116 ss->bind(init_css_set.subsys[ssid]); 6117 6118 cgroup_lock(); 6119 css_populate_dir(init_css_set.subsys[ssid]); 6120 cgroup_unlock(); 6121 } 6122 6123 /* init_css_set.subsys[] has been updated, re-hash */ 6124 hash_del(&init_css_set.hlist); 6125 hash_add(css_set_table, &init_css_set.hlist, 6126 css_set_hash(init_css_set.subsys)); 6127 6128 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup")); 6129 WARN_ON(register_filesystem(&cgroup_fs_type)); 6130 WARN_ON(register_filesystem(&cgroup2_fs_type)); 6131 WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show)); 6132 #ifdef CONFIG_CPUSETS 6133 WARN_ON(register_filesystem(&cpuset_fs_type)); 6134 #endif 6135 6136 return 0; 6137 } 6138 6139 static int __init cgroup_wq_init(void) 6140 { 6141 /* 6142 * There isn't much point in executing destruction path in 6143 * parallel. Good chunk is serialized with cgroup_mutex anyway. 6144 * Use 1 for @max_active. 6145 * 6146 * We would prefer to do this in cgroup_init() above, but that 6147 * is called before init_workqueues(): so leave this until after. 6148 */ 6149 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1); 6150 BUG_ON(!cgroup_destroy_wq); 6151 return 0; 6152 } 6153 core_initcall(cgroup_wq_init); 6154 6155 void cgroup_path_from_kernfs_id(u64 id, char *buf, size_t buflen) 6156 { 6157 struct kernfs_node *kn; 6158 6159 kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id); 6160 if (!kn) 6161 return; 6162 kernfs_path(kn, buf, buflen); 6163 kernfs_put(kn); 6164 } 6165 6166 /* 6167 * cgroup_get_from_id : get the cgroup associated with cgroup id 6168 * @id: cgroup id 6169 * On success return the cgrp or ERR_PTR on failure 6170 * Only cgroups within current task's cgroup NS are valid. 6171 */ 6172 struct cgroup *cgroup_get_from_id(u64 id) 6173 { 6174 struct kernfs_node *kn; 6175 struct cgroup *cgrp, *root_cgrp; 6176 6177 kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id); 6178 if (!kn) 6179 return ERR_PTR(-ENOENT); 6180 6181 if (kernfs_type(kn) != KERNFS_DIR) { 6182 kernfs_put(kn); 6183 return ERR_PTR(-ENOENT); 6184 } 6185 6186 rcu_read_lock(); 6187 6188 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); 6189 if (cgrp && !cgroup_tryget(cgrp)) 6190 cgrp = NULL; 6191 6192 rcu_read_unlock(); 6193 kernfs_put(kn); 6194 6195 if (!cgrp) 6196 return ERR_PTR(-ENOENT); 6197 6198 root_cgrp = current_cgns_cgroup_dfl(); 6199 if (!cgroup_is_descendant(cgrp, root_cgrp)) { 6200 cgroup_put(cgrp); 6201 return ERR_PTR(-ENOENT); 6202 } 6203 6204 return cgrp; 6205 } 6206 EXPORT_SYMBOL_GPL(cgroup_get_from_id); 6207 6208 /* 6209 * proc_cgroup_show() 6210 * - Print task's cgroup paths into seq_file, one line for each hierarchy 6211 * - Used for /proc/<pid>/cgroup. 6212 */ 6213 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns, 6214 struct pid *pid, struct task_struct *tsk) 6215 { 6216 char *buf; 6217 int retval; 6218 struct cgroup_root *root; 6219 6220 retval = -ENOMEM; 6221 buf = kmalloc(PATH_MAX, GFP_KERNEL); 6222 if (!buf) 6223 goto out; 6224 6225 cgroup_lock(); 6226 spin_lock_irq(&css_set_lock); 6227 6228 for_each_root(root) { 6229 struct cgroup_subsys *ss; 6230 struct cgroup *cgrp; 6231 int ssid, count = 0; 6232 6233 if (root == &cgrp_dfl_root && !READ_ONCE(cgrp_dfl_visible)) 6234 continue; 6235 6236 seq_printf(m, "%d:", root->hierarchy_id); 6237 if (root != &cgrp_dfl_root) 6238 for_each_subsys(ss, ssid) 6239 if (root->subsys_mask & (1 << ssid)) 6240 seq_printf(m, "%s%s", count++ ? "," : "", 6241 ss->legacy_name); 6242 if (strlen(root->name)) 6243 seq_printf(m, "%sname=%s", count ? "," : "", 6244 root->name); 6245 seq_putc(m, ':'); 6246 6247 cgrp = task_cgroup_from_root(tsk, root); 6248 6249 /* 6250 * On traditional hierarchies, all zombie tasks show up as 6251 * belonging to the root cgroup. On the default hierarchy, 6252 * while a zombie doesn't show up in "cgroup.procs" and 6253 * thus can't be migrated, its /proc/PID/cgroup keeps 6254 * reporting the cgroup it belonged to before exiting. If 6255 * the cgroup is removed before the zombie is reaped, 6256 * " (deleted)" is appended to the cgroup path. 6257 */ 6258 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) { 6259 retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX, 6260 current->nsproxy->cgroup_ns); 6261 if (retval >= PATH_MAX) 6262 retval = -ENAMETOOLONG; 6263 if (retval < 0) 6264 goto out_unlock; 6265 6266 seq_puts(m, buf); 6267 } else { 6268 seq_puts(m, "/"); 6269 } 6270 6271 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp)) 6272 seq_puts(m, " (deleted)\n"); 6273 else 6274 seq_putc(m, '\n'); 6275 } 6276 6277 retval = 0; 6278 out_unlock: 6279 spin_unlock_irq(&css_set_lock); 6280 cgroup_unlock(); 6281 kfree(buf); 6282 out: 6283 return retval; 6284 } 6285 6286 /** 6287 * cgroup_fork - initialize cgroup related fields during copy_process() 6288 * @child: pointer to task_struct of forking parent process. 6289 * 6290 * A task is associated with the init_css_set until cgroup_post_fork() 6291 * attaches it to the target css_set. 6292 */ 6293 void cgroup_fork(struct task_struct *child) 6294 { 6295 RCU_INIT_POINTER(child->cgroups, &init_css_set); 6296 INIT_LIST_HEAD(&child->cg_list); 6297 } 6298 6299 /** 6300 * cgroup_v1v2_get_from_file - get a cgroup pointer from a file pointer 6301 * @f: file corresponding to cgroup_dir 6302 * 6303 * Find the cgroup from a file pointer associated with a cgroup directory. 6304 * Returns a pointer to the cgroup on success. ERR_PTR is returned if the 6305 * cgroup cannot be found. 6306 */ 6307 static struct cgroup *cgroup_v1v2_get_from_file(struct file *f) 6308 { 6309 struct cgroup_subsys_state *css; 6310 6311 css = css_tryget_online_from_dir(f->f_path.dentry, NULL); 6312 if (IS_ERR(css)) 6313 return ERR_CAST(css); 6314 6315 return css->cgroup; 6316 } 6317 6318 /** 6319 * cgroup_get_from_file - same as cgroup_v1v2_get_from_file, but only supports 6320 * cgroup2. 6321 * @f: file corresponding to cgroup2_dir 6322 */ 6323 static struct cgroup *cgroup_get_from_file(struct file *f) 6324 { 6325 struct cgroup *cgrp = cgroup_v1v2_get_from_file(f); 6326 6327 if (IS_ERR(cgrp)) 6328 return ERR_CAST(cgrp); 6329 6330 if (!cgroup_on_dfl(cgrp)) { 6331 cgroup_put(cgrp); 6332 return ERR_PTR(-EBADF); 6333 } 6334 6335 return cgrp; 6336 } 6337 6338 /** 6339 * cgroup_css_set_fork - find or create a css_set for a child process 6340 * @kargs: the arguments passed to create the child process 6341 * 6342 * This functions finds or creates a new css_set which the child 6343 * process will be attached to in cgroup_post_fork(). By default, 6344 * the child process will be given the same css_set as its parent. 6345 * 6346 * If CLONE_INTO_CGROUP is specified this function will try to find an 6347 * existing css_set which includes the requested cgroup and if not create 6348 * a new css_set that the child will be attached to later. If this function 6349 * succeeds it will hold cgroup_threadgroup_rwsem on return. If 6350 * CLONE_INTO_CGROUP is requested this function will grab cgroup mutex 6351 * before grabbing cgroup_threadgroup_rwsem and will hold a reference 6352 * to the target cgroup. 6353 */ 6354 static int cgroup_css_set_fork(struct kernel_clone_args *kargs) 6355 __acquires(&cgroup_mutex) __acquires(&cgroup_threadgroup_rwsem) 6356 { 6357 int ret; 6358 struct cgroup *dst_cgrp = NULL; 6359 struct css_set *cset; 6360 struct super_block *sb; 6361 struct file *f; 6362 6363 if (kargs->flags & CLONE_INTO_CGROUP) 6364 cgroup_lock(); 6365 6366 cgroup_threadgroup_change_begin(current); 6367 6368 spin_lock_irq(&css_set_lock); 6369 cset = task_css_set(current); 6370 get_css_set(cset); 6371 spin_unlock_irq(&css_set_lock); 6372 6373 if (!(kargs->flags & CLONE_INTO_CGROUP)) { 6374 kargs->cset = cset; 6375 return 0; 6376 } 6377 6378 f = fget_raw(kargs->cgroup); 6379 if (!f) { 6380 ret = -EBADF; 6381 goto err; 6382 } 6383 sb = f->f_path.dentry->d_sb; 6384 6385 dst_cgrp = cgroup_get_from_file(f); 6386 if (IS_ERR(dst_cgrp)) { 6387 ret = PTR_ERR(dst_cgrp); 6388 dst_cgrp = NULL; 6389 goto err; 6390 } 6391 6392 if (cgroup_is_dead(dst_cgrp)) { 6393 ret = -ENODEV; 6394 goto err; 6395 } 6396 6397 /* 6398 * Verify that we the target cgroup is writable for us. This is 6399 * usually done by the vfs layer but since we're not going through 6400 * the vfs layer here we need to do it "manually". 6401 */ 6402 ret = cgroup_may_write(dst_cgrp, sb); 6403 if (ret) 6404 goto err; 6405 6406 /* 6407 * Spawning a task directly into a cgroup works by passing a file 6408 * descriptor to the target cgroup directory. This can even be an O_PATH 6409 * file descriptor. But it can never be a cgroup.procs file descriptor. 6410 * This was done on purpose so spawning into a cgroup could be 6411 * conceptualized as an atomic 6412 * 6413 * fd = openat(dfd_cgroup, "cgroup.procs", ...); 6414 * write(fd, <child-pid>, ...); 6415 * 6416 * sequence, i.e. it's a shorthand for the caller opening and writing 6417 * cgroup.procs of the cgroup indicated by @dfd_cgroup. This allows us 6418 * to always use the caller's credentials. 6419 */ 6420 ret = cgroup_attach_permissions(cset->dfl_cgrp, dst_cgrp, sb, 6421 !(kargs->flags & CLONE_THREAD), 6422 current->nsproxy->cgroup_ns); 6423 if (ret) 6424 goto err; 6425 6426 kargs->cset = find_css_set(cset, dst_cgrp); 6427 if (!kargs->cset) { 6428 ret = -ENOMEM; 6429 goto err; 6430 } 6431 6432 put_css_set(cset); 6433 fput(f); 6434 kargs->cgrp = dst_cgrp; 6435 return ret; 6436 6437 err: 6438 cgroup_threadgroup_change_end(current); 6439 cgroup_unlock(); 6440 if (f) 6441 fput(f); 6442 if (dst_cgrp) 6443 cgroup_put(dst_cgrp); 6444 put_css_set(cset); 6445 if (kargs->cset) 6446 put_css_set(kargs->cset); 6447 return ret; 6448 } 6449 6450 /** 6451 * cgroup_css_set_put_fork - drop references we took during fork 6452 * @kargs: the arguments passed to create the child process 6453 * 6454 * Drop references to the prepared css_set and target cgroup if 6455 * CLONE_INTO_CGROUP was requested. 6456 */ 6457 static void cgroup_css_set_put_fork(struct kernel_clone_args *kargs) 6458 __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex) 6459 { 6460 struct cgroup *cgrp = kargs->cgrp; 6461 struct css_set *cset = kargs->cset; 6462 6463 cgroup_threadgroup_change_end(current); 6464 6465 if (cset) { 6466 put_css_set(cset); 6467 kargs->cset = NULL; 6468 } 6469 6470 if (kargs->flags & CLONE_INTO_CGROUP) { 6471 cgroup_unlock(); 6472 if (cgrp) { 6473 cgroup_put(cgrp); 6474 kargs->cgrp = NULL; 6475 } 6476 } 6477 } 6478 6479 /** 6480 * cgroup_can_fork - called on a new task before the process is exposed 6481 * @child: the child process 6482 * @kargs: the arguments passed to create the child process 6483 * 6484 * This prepares a new css_set for the child process which the child will 6485 * be attached to in cgroup_post_fork(). 6486 * This calls the subsystem can_fork() callbacks. If the cgroup_can_fork() 6487 * callback returns an error, the fork aborts with that error code. This 6488 * allows for a cgroup subsystem to conditionally allow or deny new forks. 6489 */ 6490 int cgroup_can_fork(struct task_struct *child, struct kernel_clone_args *kargs) 6491 { 6492 struct cgroup_subsys *ss; 6493 int i, j, ret; 6494 6495 ret = cgroup_css_set_fork(kargs); 6496 if (ret) 6497 return ret; 6498 6499 do_each_subsys_mask(ss, i, have_canfork_callback) { 6500 ret = ss->can_fork(child, kargs->cset); 6501 if (ret) 6502 goto out_revert; 6503 } while_each_subsys_mask(); 6504 6505 return 0; 6506 6507 out_revert: 6508 for_each_subsys(ss, j) { 6509 if (j >= i) 6510 break; 6511 if (ss->cancel_fork) 6512 ss->cancel_fork(child, kargs->cset); 6513 } 6514 6515 cgroup_css_set_put_fork(kargs); 6516 6517 return ret; 6518 } 6519 6520 /** 6521 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork() 6522 * @child: the child process 6523 * @kargs: the arguments passed to create the child process 6524 * 6525 * This calls the cancel_fork() callbacks if a fork failed *after* 6526 * cgroup_can_fork() succeeded and cleans up references we took to 6527 * prepare a new css_set for the child process in cgroup_can_fork(). 6528 */ 6529 void cgroup_cancel_fork(struct task_struct *child, 6530 struct kernel_clone_args *kargs) 6531 { 6532 struct cgroup_subsys *ss; 6533 int i; 6534 6535 for_each_subsys(ss, i) 6536 if (ss->cancel_fork) 6537 ss->cancel_fork(child, kargs->cset); 6538 6539 cgroup_css_set_put_fork(kargs); 6540 } 6541 6542 /** 6543 * cgroup_post_fork - finalize cgroup setup for the child process 6544 * @child: the child process 6545 * @kargs: the arguments passed to create the child process 6546 * 6547 * Attach the child process to its css_set calling the subsystem fork() 6548 * callbacks. 6549 */ 6550 void cgroup_post_fork(struct task_struct *child, 6551 struct kernel_clone_args *kargs) 6552 __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex) 6553 { 6554 unsigned long cgrp_flags = 0; 6555 bool kill = false; 6556 struct cgroup_subsys *ss; 6557 struct css_set *cset; 6558 int i; 6559 6560 cset = kargs->cset; 6561 kargs->cset = NULL; 6562 6563 spin_lock_irq(&css_set_lock); 6564 6565 /* init tasks are special, only link regular threads */ 6566 if (likely(child->pid)) { 6567 if (kargs->cgrp) 6568 cgrp_flags = kargs->cgrp->flags; 6569 else 6570 cgrp_flags = cset->dfl_cgrp->flags; 6571 6572 WARN_ON_ONCE(!list_empty(&child->cg_list)); 6573 cset->nr_tasks++; 6574 css_set_move_task(child, NULL, cset, false); 6575 } else { 6576 put_css_set(cset); 6577 cset = NULL; 6578 } 6579 6580 if (!(child->flags & PF_KTHREAD)) { 6581 if (unlikely(test_bit(CGRP_FREEZE, &cgrp_flags))) { 6582 /* 6583 * If the cgroup has to be frozen, the new task has 6584 * too. Let's set the JOBCTL_TRAP_FREEZE jobctl bit to 6585 * get the task into the frozen state. 6586 */ 6587 spin_lock(&child->sighand->siglock); 6588 WARN_ON_ONCE(child->frozen); 6589 child->jobctl |= JOBCTL_TRAP_FREEZE; 6590 spin_unlock(&child->sighand->siglock); 6591 6592 /* 6593 * Calling cgroup_update_frozen() isn't required here, 6594 * because it will be called anyway a bit later from 6595 * do_freezer_trap(). So we avoid cgroup's transient 6596 * switch from the frozen state and back. 6597 */ 6598 } 6599 6600 /* 6601 * If the cgroup is to be killed notice it now and take the 6602 * child down right after we finished preparing it for 6603 * userspace. 6604 */ 6605 kill = test_bit(CGRP_KILL, &cgrp_flags); 6606 } 6607 6608 spin_unlock_irq(&css_set_lock); 6609 6610 /* 6611 * Call ss->fork(). This must happen after @child is linked on 6612 * css_set; otherwise, @child might change state between ->fork() 6613 * and addition to css_set. 6614 */ 6615 do_each_subsys_mask(ss, i, have_fork_callback) { 6616 ss->fork(child); 6617 } while_each_subsys_mask(); 6618 6619 /* Make the new cset the root_cset of the new cgroup namespace. */ 6620 if (kargs->flags & CLONE_NEWCGROUP) { 6621 struct css_set *rcset = child->nsproxy->cgroup_ns->root_cset; 6622 6623 get_css_set(cset); 6624 child->nsproxy->cgroup_ns->root_cset = cset; 6625 put_css_set(rcset); 6626 } 6627 6628 /* Cgroup has to be killed so take down child immediately. */ 6629 if (unlikely(kill)) 6630 do_send_sig_info(SIGKILL, SEND_SIG_NOINFO, child, PIDTYPE_TGID); 6631 6632 cgroup_css_set_put_fork(kargs); 6633 } 6634 6635 /** 6636 * cgroup_exit - detach cgroup from exiting task 6637 * @tsk: pointer to task_struct of exiting process 6638 * 6639 * Description: Detach cgroup from @tsk. 6640 * 6641 */ 6642 void cgroup_exit(struct task_struct *tsk) 6643 { 6644 struct cgroup_subsys *ss; 6645 struct css_set *cset; 6646 int i; 6647 6648 spin_lock_irq(&css_set_lock); 6649 6650 WARN_ON_ONCE(list_empty(&tsk->cg_list)); 6651 cset = task_css_set(tsk); 6652 css_set_move_task(tsk, cset, NULL, false); 6653 list_add_tail(&tsk->cg_list, &cset->dying_tasks); 6654 cset->nr_tasks--; 6655 6656 if (dl_task(tsk)) 6657 dec_dl_tasks_cs(tsk); 6658 6659 WARN_ON_ONCE(cgroup_task_frozen(tsk)); 6660 if (unlikely(!(tsk->flags & PF_KTHREAD) && 6661 test_bit(CGRP_FREEZE, &task_dfl_cgroup(tsk)->flags))) 6662 cgroup_update_frozen(task_dfl_cgroup(tsk)); 6663 6664 spin_unlock_irq(&css_set_lock); 6665 6666 /* see cgroup_post_fork() for details */ 6667 do_each_subsys_mask(ss, i, have_exit_callback) { 6668 ss->exit(tsk); 6669 } while_each_subsys_mask(); 6670 } 6671 6672 void cgroup_release(struct task_struct *task) 6673 { 6674 struct cgroup_subsys *ss; 6675 int ssid; 6676 6677 do_each_subsys_mask(ss, ssid, have_release_callback) { 6678 ss->release(task); 6679 } while_each_subsys_mask(); 6680 6681 spin_lock_irq(&css_set_lock); 6682 css_set_skip_task_iters(task_css_set(task), task); 6683 list_del_init(&task->cg_list); 6684 spin_unlock_irq(&css_set_lock); 6685 } 6686 6687 void cgroup_free(struct task_struct *task) 6688 { 6689 struct css_set *cset = task_css_set(task); 6690 put_css_set(cset); 6691 } 6692 6693 static int __init cgroup_disable(char *str) 6694 { 6695 struct cgroup_subsys *ss; 6696 char *token; 6697 int i; 6698 6699 while ((token = strsep(&str, ",")) != NULL) { 6700 if (!*token) 6701 continue; 6702 6703 for_each_subsys(ss, i) { 6704 if (strcmp(token, ss->name) && 6705 strcmp(token, ss->legacy_name)) 6706 continue; 6707 6708 static_branch_disable(cgroup_subsys_enabled_key[i]); 6709 pr_info("Disabling %s control group subsystem\n", 6710 ss->name); 6711 } 6712 6713 for (i = 0; i < OPT_FEATURE_COUNT; i++) { 6714 if (strcmp(token, cgroup_opt_feature_names[i])) 6715 continue; 6716 cgroup_feature_disable_mask |= 1 << i; 6717 pr_info("Disabling %s control group feature\n", 6718 cgroup_opt_feature_names[i]); 6719 break; 6720 } 6721 } 6722 return 1; 6723 } 6724 __setup("cgroup_disable=", cgroup_disable); 6725 6726 void __init __weak enable_debug_cgroup(void) { } 6727 6728 static int __init enable_cgroup_debug(char *str) 6729 { 6730 cgroup_debug = true; 6731 enable_debug_cgroup(); 6732 return 1; 6733 } 6734 __setup("cgroup_debug", enable_cgroup_debug); 6735 6736 /** 6737 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry 6738 * @dentry: directory dentry of interest 6739 * @ss: subsystem of interest 6740 * 6741 * If @dentry is a directory for a cgroup which has @ss enabled on it, try 6742 * to get the corresponding css and return it. If such css doesn't exist 6743 * or can't be pinned, an ERR_PTR value is returned. 6744 */ 6745 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry, 6746 struct cgroup_subsys *ss) 6747 { 6748 struct kernfs_node *kn = kernfs_node_from_dentry(dentry); 6749 struct file_system_type *s_type = dentry->d_sb->s_type; 6750 struct cgroup_subsys_state *css = NULL; 6751 struct cgroup *cgrp; 6752 6753 /* is @dentry a cgroup dir? */ 6754 if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) || 6755 !kn || kernfs_type(kn) != KERNFS_DIR) 6756 return ERR_PTR(-EBADF); 6757 6758 rcu_read_lock(); 6759 6760 /* 6761 * This path doesn't originate from kernfs and @kn could already 6762 * have been or be removed at any point. @kn->priv is RCU 6763 * protected for this access. See css_release_work_fn() for details. 6764 */ 6765 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); 6766 if (cgrp) 6767 css = cgroup_css(cgrp, ss); 6768 6769 if (!css || !css_tryget_online(css)) 6770 css = ERR_PTR(-ENOENT); 6771 6772 rcu_read_unlock(); 6773 return css; 6774 } 6775 6776 /** 6777 * css_from_id - lookup css by id 6778 * @id: the cgroup id 6779 * @ss: cgroup subsys to be looked into 6780 * 6781 * Returns the css if there's valid one with @id, otherwise returns NULL. 6782 * Should be called under rcu_read_lock(). 6783 */ 6784 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss) 6785 { 6786 WARN_ON_ONCE(!rcu_read_lock_held()); 6787 return idr_find(&ss->css_idr, id); 6788 } 6789 6790 /** 6791 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path 6792 * @path: path on the default hierarchy 6793 * 6794 * Find the cgroup at @path on the default hierarchy, increment its 6795 * reference count and return it. Returns pointer to the found cgroup on 6796 * success, ERR_PTR(-ENOENT) if @path doesn't exist or if the cgroup has already 6797 * been released and ERR_PTR(-ENOTDIR) if @path points to a non-directory. 6798 */ 6799 struct cgroup *cgroup_get_from_path(const char *path) 6800 { 6801 struct kernfs_node *kn; 6802 struct cgroup *cgrp = ERR_PTR(-ENOENT); 6803 struct cgroup *root_cgrp; 6804 6805 root_cgrp = current_cgns_cgroup_dfl(); 6806 kn = kernfs_walk_and_get(root_cgrp->kn, path); 6807 if (!kn) 6808 goto out; 6809 6810 if (kernfs_type(kn) != KERNFS_DIR) { 6811 cgrp = ERR_PTR(-ENOTDIR); 6812 goto out_kernfs; 6813 } 6814 6815 rcu_read_lock(); 6816 6817 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); 6818 if (!cgrp || !cgroup_tryget(cgrp)) 6819 cgrp = ERR_PTR(-ENOENT); 6820 6821 rcu_read_unlock(); 6822 6823 out_kernfs: 6824 kernfs_put(kn); 6825 out: 6826 return cgrp; 6827 } 6828 EXPORT_SYMBOL_GPL(cgroup_get_from_path); 6829 6830 /** 6831 * cgroup_v1v2_get_from_fd - get a cgroup pointer from a fd 6832 * @fd: fd obtained by open(cgroup_dir) 6833 * 6834 * Find the cgroup from a fd which should be obtained 6835 * by opening a cgroup directory. Returns a pointer to the 6836 * cgroup on success. ERR_PTR is returned if the cgroup 6837 * cannot be found. 6838 */ 6839 struct cgroup *cgroup_v1v2_get_from_fd(int fd) 6840 { 6841 struct cgroup *cgrp; 6842 struct fd f = fdget_raw(fd); 6843 if (!f.file) 6844 return ERR_PTR(-EBADF); 6845 6846 cgrp = cgroup_v1v2_get_from_file(f.file); 6847 fdput(f); 6848 return cgrp; 6849 } 6850 6851 /** 6852 * cgroup_get_from_fd - same as cgroup_v1v2_get_from_fd, but only supports 6853 * cgroup2. 6854 * @fd: fd obtained by open(cgroup2_dir) 6855 */ 6856 struct cgroup *cgroup_get_from_fd(int fd) 6857 { 6858 struct cgroup *cgrp = cgroup_v1v2_get_from_fd(fd); 6859 6860 if (IS_ERR(cgrp)) 6861 return ERR_CAST(cgrp); 6862 6863 if (!cgroup_on_dfl(cgrp)) { 6864 cgroup_put(cgrp); 6865 return ERR_PTR(-EBADF); 6866 } 6867 return cgrp; 6868 } 6869 EXPORT_SYMBOL_GPL(cgroup_get_from_fd); 6870 6871 static u64 power_of_ten(int power) 6872 { 6873 u64 v = 1; 6874 while (power--) 6875 v *= 10; 6876 return v; 6877 } 6878 6879 /** 6880 * cgroup_parse_float - parse a floating number 6881 * @input: input string 6882 * @dec_shift: number of decimal digits to shift 6883 * @v: output 6884 * 6885 * Parse a decimal floating point number in @input and store the result in 6886 * @v with decimal point right shifted @dec_shift times. For example, if 6887 * @input is "12.3456" and @dec_shift is 3, *@v will be set to 12345. 6888 * Returns 0 on success, -errno otherwise. 6889 * 6890 * There's nothing cgroup specific about this function except that it's 6891 * currently the only user. 6892 */ 6893 int cgroup_parse_float(const char *input, unsigned dec_shift, s64 *v) 6894 { 6895 s64 whole, frac = 0; 6896 int fstart = 0, fend = 0, flen; 6897 6898 if (!sscanf(input, "%lld.%n%lld%n", &whole, &fstart, &frac, &fend)) 6899 return -EINVAL; 6900 if (frac < 0) 6901 return -EINVAL; 6902 6903 flen = fend > fstart ? fend - fstart : 0; 6904 if (flen < dec_shift) 6905 frac *= power_of_ten(dec_shift - flen); 6906 else 6907 frac = DIV_ROUND_CLOSEST_ULL(frac, power_of_ten(flen - dec_shift)); 6908 6909 *v = whole * power_of_ten(dec_shift) + frac; 6910 return 0; 6911 } 6912 6913 /* 6914 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data 6915 * definition in cgroup-defs.h. 6916 */ 6917 #ifdef CONFIG_SOCK_CGROUP_DATA 6918 6919 void cgroup_sk_alloc(struct sock_cgroup_data *skcd) 6920 { 6921 struct cgroup *cgroup; 6922 6923 rcu_read_lock(); 6924 /* Don't associate the sock with unrelated interrupted task's cgroup. */ 6925 if (in_interrupt()) { 6926 cgroup = &cgrp_dfl_root.cgrp; 6927 cgroup_get(cgroup); 6928 goto out; 6929 } 6930 6931 while (true) { 6932 struct css_set *cset; 6933 6934 cset = task_css_set(current); 6935 if (likely(cgroup_tryget(cset->dfl_cgrp))) { 6936 cgroup = cset->dfl_cgrp; 6937 break; 6938 } 6939 cpu_relax(); 6940 } 6941 out: 6942 skcd->cgroup = cgroup; 6943 cgroup_bpf_get(cgroup); 6944 rcu_read_unlock(); 6945 } 6946 6947 void cgroup_sk_clone(struct sock_cgroup_data *skcd) 6948 { 6949 struct cgroup *cgrp = sock_cgroup_ptr(skcd); 6950 6951 /* 6952 * We might be cloning a socket which is left in an empty 6953 * cgroup and the cgroup might have already been rmdir'd. 6954 * Don't use cgroup_get_live(). 6955 */ 6956 cgroup_get(cgrp); 6957 cgroup_bpf_get(cgrp); 6958 } 6959 6960 void cgroup_sk_free(struct sock_cgroup_data *skcd) 6961 { 6962 struct cgroup *cgrp = sock_cgroup_ptr(skcd); 6963 6964 cgroup_bpf_put(cgrp); 6965 cgroup_put(cgrp); 6966 } 6967 6968 #endif /* CONFIG_SOCK_CGROUP_DATA */ 6969 6970 #ifdef CONFIG_SYSFS 6971 static ssize_t show_delegatable_files(struct cftype *files, char *buf, 6972 ssize_t size, const char *prefix) 6973 { 6974 struct cftype *cft; 6975 ssize_t ret = 0; 6976 6977 for (cft = files; cft && cft->name[0] != '\0'; cft++) { 6978 if (!(cft->flags & CFTYPE_NS_DELEGATABLE)) 6979 continue; 6980 6981 if (prefix) 6982 ret += snprintf(buf + ret, size - ret, "%s.", prefix); 6983 6984 ret += snprintf(buf + ret, size - ret, "%s\n", cft->name); 6985 6986 if (WARN_ON(ret >= size)) 6987 break; 6988 } 6989 6990 return ret; 6991 } 6992 6993 static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr, 6994 char *buf) 6995 { 6996 struct cgroup_subsys *ss; 6997 int ssid; 6998 ssize_t ret = 0; 6999 7000 ret = show_delegatable_files(cgroup_base_files, buf + ret, 7001 PAGE_SIZE - ret, NULL); 7002 if (cgroup_psi_enabled()) 7003 ret += show_delegatable_files(cgroup_psi_files, buf + ret, 7004 PAGE_SIZE - ret, NULL); 7005 7006 for_each_subsys(ss, ssid) 7007 ret += show_delegatable_files(ss->dfl_cftypes, buf + ret, 7008 PAGE_SIZE - ret, 7009 cgroup_subsys_name[ssid]); 7010 7011 return ret; 7012 } 7013 static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate); 7014 7015 static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr, 7016 char *buf) 7017 { 7018 return snprintf(buf, PAGE_SIZE, 7019 "nsdelegate\n" 7020 "favordynmods\n" 7021 "memory_localevents\n" 7022 "memory_recursiveprot\n"); 7023 } 7024 static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features); 7025 7026 static struct attribute *cgroup_sysfs_attrs[] = { 7027 &cgroup_delegate_attr.attr, 7028 &cgroup_features_attr.attr, 7029 NULL, 7030 }; 7031 7032 static const struct attribute_group cgroup_sysfs_attr_group = { 7033 .attrs = cgroup_sysfs_attrs, 7034 .name = "cgroup", 7035 }; 7036 7037 static int __init cgroup_sysfs_init(void) 7038 { 7039 return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group); 7040 } 7041 subsys_initcall(cgroup_sysfs_init); 7042 7043 #endif /* CONFIG_SYSFS */ 7044