1 /* 2 * Generic process-grouping system. 3 * 4 * Based originally on the cpuset system, extracted by Paul Menage 5 * Copyright (C) 2006 Google, Inc 6 * 7 * Notifications support 8 * Copyright (C) 2009 Nokia Corporation 9 * Author: Kirill A. Shutemov 10 * 11 * Copyright notices from the original cpuset code: 12 * -------------------------------------------------- 13 * Copyright (C) 2003 BULL SA. 14 * Copyright (C) 2004-2006 Silicon Graphics, Inc. 15 * 16 * Portions derived from Patrick Mochel's sysfs code. 17 * sysfs is Copyright (c) 2001-3 Patrick Mochel 18 * 19 * 2003-10-10 Written by Simon Derr. 20 * 2003-10-22 Updates by Stephen Hemminger. 21 * 2004 May-July Rework by Paul Jackson. 22 * --------------------------------------------------- 23 * 24 * This file is subject to the terms and conditions of the GNU General Public 25 * License. See the file COPYING in the main directory of the Linux 26 * distribution for more details. 27 */ 28 29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 30 31 #include "cgroup-internal.h" 32 33 #include <linux/bpf-cgroup.h> 34 #include <linux/cred.h> 35 #include <linux/errno.h> 36 #include <linux/init_task.h> 37 #include <linux/kernel.h> 38 #include <linux/magic.h> 39 #include <linux/mutex.h> 40 #include <linux/mount.h> 41 #include <linux/pagemap.h> 42 #include <linux/proc_fs.h> 43 #include <linux/rcupdate.h> 44 #include <linux/sched.h> 45 #include <linux/sched/task.h> 46 #include <linux/slab.h> 47 #include <linux/spinlock.h> 48 #include <linux/percpu-rwsem.h> 49 #include <linux/string.h> 50 #include <linux/hashtable.h> 51 #include <linux/idr.h> 52 #include <linux/kthread.h> 53 #include <linux/atomic.h> 54 #include <linux/cpuset.h> 55 #include <linux/proc_ns.h> 56 #include <linux/nsproxy.h> 57 #include <linux/file.h> 58 #include <linux/fs_parser.h> 59 #include <linux/sched/cputime.h> 60 #include <linux/psi.h> 61 #include <net/sock.h> 62 63 #define CREATE_TRACE_POINTS 64 #include <trace/events/cgroup.h> 65 66 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \ 67 MAX_CFTYPE_NAME + 2) 68 /* let's not notify more than 100 times per second */ 69 #define CGROUP_FILE_NOTIFY_MIN_INTV DIV_ROUND_UP(HZ, 100) 70 71 /* 72 * To avoid confusing the compiler (and generating warnings) with code 73 * that attempts to access what would be a 0-element array (i.e. sized 74 * to a potentially empty array when CGROUP_SUBSYS_COUNT == 0), this 75 * constant expression can be added. 76 */ 77 #define CGROUP_HAS_SUBSYS_CONFIG (CGROUP_SUBSYS_COUNT > 0) 78 79 /* 80 * cgroup_mutex is the master lock. Any modification to cgroup or its 81 * hierarchy must be performed while holding it. 82 * 83 * css_set_lock protects task->cgroups pointer, the list of css_set 84 * objects, and the chain of tasks off each css_set. 85 * 86 * These locks are exported if CONFIG_PROVE_RCU so that accessors in 87 * cgroup.h can use them for lockdep annotations. 88 */ 89 DEFINE_MUTEX(cgroup_mutex); 90 DEFINE_SPINLOCK(css_set_lock); 91 92 #ifdef CONFIG_PROVE_RCU 93 EXPORT_SYMBOL_GPL(cgroup_mutex); 94 EXPORT_SYMBOL_GPL(css_set_lock); 95 #endif 96 97 DEFINE_SPINLOCK(trace_cgroup_path_lock); 98 char trace_cgroup_path[TRACE_CGROUP_PATH_LEN]; 99 static bool cgroup_debug __read_mostly; 100 101 /* 102 * Protects cgroup_idr and css_idr so that IDs can be released without 103 * grabbing cgroup_mutex. 104 */ 105 static DEFINE_SPINLOCK(cgroup_idr_lock); 106 107 /* 108 * Protects cgroup_file->kn for !self csses. It synchronizes notifications 109 * against file removal/re-creation across css hiding. 110 */ 111 static DEFINE_SPINLOCK(cgroup_file_kn_lock); 112 113 DEFINE_PERCPU_RWSEM(cgroup_threadgroup_rwsem); 114 115 #define cgroup_assert_mutex_or_rcu_locked() \ 116 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \ 117 !lockdep_is_held(&cgroup_mutex), \ 118 "cgroup_mutex or RCU read lock required"); 119 120 /* 121 * cgroup destruction makes heavy use of work items and there can be a lot 122 * of concurrent destructions. Use a separate workqueue so that cgroup 123 * destruction work items don't end up filling up max_active of system_wq 124 * which may lead to deadlock. 125 */ 126 static struct workqueue_struct *cgroup_destroy_wq; 127 128 /* generate an array of cgroup subsystem pointers */ 129 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys, 130 struct cgroup_subsys *cgroup_subsys[] = { 131 #include <linux/cgroup_subsys.h> 132 }; 133 #undef SUBSYS 134 135 /* array of cgroup subsystem names */ 136 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x, 137 static const char *cgroup_subsys_name[] = { 138 #include <linux/cgroup_subsys.h> 139 }; 140 #undef SUBSYS 141 142 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */ 143 #define SUBSYS(_x) \ 144 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \ 145 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \ 146 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \ 147 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key); 148 #include <linux/cgroup_subsys.h> 149 #undef SUBSYS 150 151 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key, 152 static struct static_key_true *cgroup_subsys_enabled_key[] = { 153 #include <linux/cgroup_subsys.h> 154 }; 155 #undef SUBSYS 156 157 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key, 158 static struct static_key_true *cgroup_subsys_on_dfl_key[] = { 159 #include <linux/cgroup_subsys.h> 160 }; 161 #undef SUBSYS 162 163 static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu); 164 165 /* the default hierarchy */ 166 struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu }; 167 EXPORT_SYMBOL_GPL(cgrp_dfl_root); 168 169 /* 170 * The default hierarchy always exists but is hidden until mounted for the 171 * first time. This is for backward compatibility. 172 */ 173 static bool cgrp_dfl_visible; 174 175 /* some controllers are not supported in the default hierarchy */ 176 static u16 cgrp_dfl_inhibit_ss_mask; 177 178 /* some controllers are implicitly enabled on the default hierarchy */ 179 static u16 cgrp_dfl_implicit_ss_mask; 180 181 /* some controllers can be threaded on the default hierarchy */ 182 static u16 cgrp_dfl_threaded_ss_mask; 183 184 /* The list of hierarchy roots */ 185 LIST_HEAD(cgroup_roots); 186 static int cgroup_root_count; 187 188 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */ 189 static DEFINE_IDR(cgroup_hierarchy_idr); 190 191 /* 192 * Assign a monotonically increasing serial number to csses. It guarantees 193 * cgroups with bigger numbers are newer than those with smaller numbers. 194 * Also, as csses are always appended to the parent's ->children list, it 195 * guarantees that sibling csses are always sorted in the ascending serial 196 * number order on the list. Protected by cgroup_mutex. 197 */ 198 static u64 css_serial_nr_next = 1; 199 200 /* 201 * These bitmasks identify subsystems with specific features to avoid 202 * having to do iterative checks repeatedly. 203 */ 204 static u16 have_fork_callback __read_mostly; 205 static u16 have_exit_callback __read_mostly; 206 static u16 have_release_callback __read_mostly; 207 static u16 have_canfork_callback __read_mostly; 208 209 /* cgroup namespace for init task */ 210 struct cgroup_namespace init_cgroup_ns = { 211 .ns.count = REFCOUNT_INIT(2), 212 .user_ns = &init_user_ns, 213 .ns.ops = &cgroupns_operations, 214 .ns.inum = PROC_CGROUP_INIT_INO, 215 .root_cset = &init_css_set, 216 }; 217 218 static struct file_system_type cgroup2_fs_type; 219 static struct cftype cgroup_base_files[]; 220 static struct cftype cgroup_psi_files[]; 221 222 /* cgroup optional features */ 223 enum cgroup_opt_features { 224 #ifdef CONFIG_PSI 225 OPT_FEATURE_PRESSURE, 226 #endif 227 OPT_FEATURE_COUNT 228 }; 229 230 static const char *cgroup_opt_feature_names[OPT_FEATURE_COUNT] = { 231 #ifdef CONFIG_PSI 232 "pressure", 233 #endif 234 }; 235 236 static u16 cgroup_feature_disable_mask __read_mostly; 237 238 static int cgroup_apply_control(struct cgroup *cgrp); 239 static void cgroup_finalize_control(struct cgroup *cgrp, int ret); 240 static void css_task_iter_skip(struct css_task_iter *it, 241 struct task_struct *task); 242 static int cgroup_destroy_locked(struct cgroup *cgrp); 243 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp, 244 struct cgroup_subsys *ss); 245 static void css_release(struct percpu_ref *ref); 246 static void kill_css(struct cgroup_subsys_state *css); 247 static int cgroup_addrm_files(struct cgroup_subsys_state *css, 248 struct cgroup *cgrp, struct cftype cfts[], 249 bool is_add); 250 251 /** 252 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID 253 * @ssid: subsys ID of interest 254 * 255 * cgroup_subsys_enabled() can only be used with literal subsys names which 256 * is fine for individual subsystems but unsuitable for cgroup core. This 257 * is slower static_key_enabled() based test indexed by @ssid. 258 */ 259 bool cgroup_ssid_enabled(int ssid) 260 { 261 if (!CGROUP_HAS_SUBSYS_CONFIG) 262 return false; 263 264 return static_key_enabled(cgroup_subsys_enabled_key[ssid]); 265 } 266 267 /** 268 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy 269 * @cgrp: the cgroup of interest 270 * 271 * The default hierarchy is the v2 interface of cgroup and this function 272 * can be used to test whether a cgroup is on the default hierarchy for 273 * cases where a subsystem should behave differently depending on the 274 * interface version. 275 * 276 * List of changed behaviors: 277 * 278 * - Mount options "noprefix", "xattr", "clone_children", "release_agent" 279 * and "name" are disallowed. 280 * 281 * - When mounting an existing superblock, mount options should match. 282 * 283 * - rename(2) is disallowed. 284 * 285 * - "tasks" is removed. Everything should be at process granularity. Use 286 * "cgroup.procs" instead. 287 * 288 * - "cgroup.procs" is not sorted. pids will be unique unless they got 289 * recycled in-between reads. 290 * 291 * - "release_agent" and "notify_on_release" are removed. Replacement 292 * notification mechanism will be implemented. 293 * 294 * - "cgroup.clone_children" is removed. 295 * 296 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup 297 * and its descendants contain no task; otherwise, 1. The file also 298 * generates kernfs notification which can be monitored through poll and 299 * [di]notify when the value of the file changes. 300 * 301 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and 302 * take masks of ancestors with non-empty cpus/mems, instead of being 303 * moved to an ancestor. 304 * 305 * - cpuset: a task can be moved into an empty cpuset, and again it takes 306 * masks of ancestors. 307 * 308 * - blkcg: blk-throttle becomes properly hierarchical. 309 * 310 * - debug: disallowed on the default hierarchy. 311 */ 312 bool cgroup_on_dfl(const struct cgroup *cgrp) 313 { 314 return cgrp->root == &cgrp_dfl_root; 315 } 316 317 /* IDR wrappers which synchronize using cgroup_idr_lock */ 318 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end, 319 gfp_t gfp_mask) 320 { 321 int ret; 322 323 idr_preload(gfp_mask); 324 spin_lock_bh(&cgroup_idr_lock); 325 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM); 326 spin_unlock_bh(&cgroup_idr_lock); 327 idr_preload_end(); 328 return ret; 329 } 330 331 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id) 332 { 333 void *ret; 334 335 spin_lock_bh(&cgroup_idr_lock); 336 ret = idr_replace(idr, ptr, id); 337 spin_unlock_bh(&cgroup_idr_lock); 338 return ret; 339 } 340 341 static void cgroup_idr_remove(struct idr *idr, int id) 342 { 343 spin_lock_bh(&cgroup_idr_lock); 344 idr_remove(idr, id); 345 spin_unlock_bh(&cgroup_idr_lock); 346 } 347 348 static bool cgroup_has_tasks(struct cgroup *cgrp) 349 { 350 return cgrp->nr_populated_csets; 351 } 352 353 bool cgroup_is_threaded(struct cgroup *cgrp) 354 { 355 return cgrp->dom_cgrp != cgrp; 356 } 357 358 /* can @cgrp host both domain and threaded children? */ 359 static bool cgroup_is_mixable(struct cgroup *cgrp) 360 { 361 /* 362 * Root isn't under domain level resource control exempting it from 363 * the no-internal-process constraint, so it can serve as a thread 364 * root and a parent of resource domains at the same time. 365 */ 366 return !cgroup_parent(cgrp); 367 } 368 369 /* can @cgrp become a thread root? Should always be true for a thread root */ 370 static bool cgroup_can_be_thread_root(struct cgroup *cgrp) 371 { 372 /* mixables don't care */ 373 if (cgroup_is_mixable(cgrp)) 374 return true; 375 376 /* domain roots can't be nested under threaded */ 377 if (cgroup_is_threaded(cgrp)) 378 return false; 379 380 /* can only have either domain or threaded children */ 381 if (cgrp->nr_populated_domain_children) 382 return false; 383 384 /* and no domain controllers can be enabled */ 385 if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask) 386 return false; 387 388 return true; 389 } 390 391 /* is @cgrp root of a threaded subtree? */ 392 bool cgroup_is_thread_root(struct cgroup *cgrp) 393 { 394 /* thread root should be a domain */ 395 if (cgroup_is_threaded(cgrp)) 396 return false; 397 398 /* a domain w/ threaded children is a thread root */ 399 if (cgrp->nr_threaded_children) 400 return true; 401 402 /* 403 * A domain which has tasks and explicit threaded controllers 404 * enabled is a thread root. 405 */ 406 if (cgroup_has_tasks(cgrp) && 407 (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask)) 408 return true; 409 410 return false; 411 } 412 413 /* a domain which isn't connected to the root w/o brekage can't be used */ 414 static bool cgroup_is_valid_domain(struct cgroup *cgrp) 415 { 416 /* the cgroup itself can be a thread root */ 417 if (cgroup_is_threaded(cgrp)) 418 return false; 419 420 /* but the ancestors can't be unless mixable */ 421 while ((cgrp = cgroup_parent(cgrp))) { 422 if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp)) 423 return false; 424 if (cgroup_is_threaded(cgrp)) 425 return false; 426 } 427 428 return true; 429 } 430 431 /* subsystems visibly enabled on a cgroup */ 432 static u16 cgroup_control(struct cgroup *cgrp) 433 { 434 struct cgroup *parent = cgroup_parent(cgrp); 435 u16 root_ss_mask = cgrp->root->subsys_mask; 436 437 if (parent) { 438 u16 ss_mask = parent->subtree_control; 439 440 /* threaded cgroups can only have threaded controllers */ 441 if (cgroup_is_threaded(cgrp)) 442 ss_mask &= cgrp_dfl_threaded_ss_mask; 443 return ss_mask; 444 } 445 446 if (cgroup_on_dfl(cgrp)) 447 root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask | 448 cgrp_dfl_implicit_ss_mask); 449 return root_ss_mask; 450 } 451 452 /* subsystems enabled on a cgroup */ 453 static u16 cgroup_ss_mask(struct cgroup *cgrp) 454 { 455 struct cgroup *parent = cgroup_parent(cgrp); 456 457 if (parent) { 458 u16 ss_mask = parent->subtree_ss_mask; 459 460 /* threaded cgroups can only have threaded controllers */ 461 if (cgroup_is_threaded(cgrp)) 462 ss_mask &= cgrp_dfl_threaded_ss_mask; 463 return ss_mask; 464 } 465 466 return cgrp->root->subsys_mask; 467 } 468 469 /** 470 * cgroup_css - obtain a cgroup's css for the specified subsystem 471 * @cgrp: the cgroup of interest 472 * @ss: the subsystem of interest (%NULL returns @cgrp->self) 473 * 474 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This 475 * function must be called either under cgroup_mutex or rcu_read_lock() and 476 * the caller is responsible for pinning the returned css if it wants to 477 * keep accessing it outside the said locks. This function may return 478 * %NULL if @cgrp doesn't have @subsys_id enabled. 479 */ 480 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp, 481 struct cgroup_subsys *ss) 482 { 483 if (CGROUP_HAS_SUBSYS_CONFIG && ss) 484 return rcu_dereference_check(cgrp->subsys[ss->id], 485 lockdep_is_held(&cgroup_mutex)); 486 else 487 return &cgrp->self; 488 } 489 490 /** 491 * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem 492 * @cgrp: the cgroup of interest 493 * @ss: the subsystem of interest 494 * 495 * Find and get @cgrp's css associated with @ss. If the css doesn't exist 496 * or is offline, %NULL is returned. 497 */ 498 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp, 499 struct cgroup_subsys *ss) 500 { 501 struct cgroup_subsys_state *css; 502 503 rcu_read_lock(); 504 css = cgroup_css(cgrp, ss); 505 if (css && !css_tryget_online(css)) 506 css = NULL; 507 rcu_read_unlock(); 508 509 return css; 510 } 511 512 /** 513 * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss 514 * @cgrp: the cgroup of interest 515 * @ss: the subsystem of interest (%NULL returns @cgrp->self) 516 * 517 * Similar to cgroup_css() but returns the effective css, which is defined 518 * as the matching css of the nearest ancestor including self which has @ss 519 * enabled. If @ss is associated with the hierarchy @cgrp is on, this 520 * function is guaranteed to return non-NULL css. 521 */ 522 static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp, 523 struct cgroup_subsys *ss) 524 { 525 lockdep_assert_held(&cgroup_mutex); 526 527 if (!ss) 528 return &cgrp->self; 529 530 /* 531 * This function is used while updating css associations and thus 532 * can't test the csses directly. Test ss_mask. 533 */ 534 while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) { 535 cgrp = cgroup_parent(cgrp); 536 if (!cgrp) 537 return NULL; 538 } 539 540 return cgroup_css(cgrp, ss); 541 } 542 543 /** 544 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem 545 * @cgrp: the cgroup of interest 546 * @ss: the subsystem of interest 547 * 548 * Find and get the effective css of @cgrp for @ss. The effective css is 549 * defined as the matching css of the nearest ancestor including self which 550 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on, 551 * the root css is returned, so this function always returns a valid css. 552 * 553 * The returned css is not guaranteed to be online, and therefore it is the 554 * callers responsibility to try get a reference for it. 555 */ 556 struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp, 557 struct cgroup_subsys *ss) 558 { 559 struct cgroup_subsys_state *css; 560 561 if (!CGROUP_HAS_SUBSYS_CONFIG) 562 return NULL; 563 564 do { 565 css = cgroup_css(cgrp, ss); 566 567 if (css) 568 return css; 569 cgrp = cgroup_parent(cgrp); 570 } while (cgrp); 571 572 return init_css_set.subsys[ss->id]; 573 } 574 575 /** 576 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem 577 * @cgrp: the cgroup of interest 578 * @ss: the subsystem of interest 579 * 580 * Find and get the effective css of @cgrp for @ss. The effective css is 581 * defined as the matching css of the nearest ancestor including self which 582 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on, 583 * the root css is returned, so this function always returns a valid css. 584 * The returned css must be put using css_put(). 585 */ 586 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp, 587 struct cgroup_subsys *ss) 588 { 589 struct cgroup_subsys_state *css; 590 591 if (!CGROUP_HAS_SUBSYS_CONFIG) 592 return NULL; 593 594 rcu_read_lock(); 595 596 do { 597 css = cgroup_css(cgrp, ss); 598 599 if (css && css_tryget_online(css)) 600 goto out_unlock; 601 cgrp = cgroup_parent(cgrp); 602 } while (cgrp); 603 604 css = init_css_set.subsys[ss->id]; 605 css_get(css); 606 out_unlock: 607 rcu_read_unlock(); 608 return css; 609 } 610 EXPORT_SYMBOL_GPL(cgroup_get_e_css); 611 612 static void cgroup_get_live(struct cgroup *cgrp) 613 { 614 WARN_ON_ONCE(cgroup_is_dead(cgrp)); 615 css_get(&cgrp->self); 616 } 617 618 /** 619 * __cgroup_task_count - count the number of tasks in a cgroup. The caller 620 * is responsible for taking the css_set_lock. 621 * @cgrp: the cgroup in question 622 */ 623 int __cgroup_task_count(const struct cgroup *cgrp) 624 { 625 int count = 0; 626 struct cgrp_cset_link *link; 627 628 lockdep_assert_held(&css_set_lock); 629 630 list_for_each_entry(link, &cgrp->cset_links, cset_link) 631 count += link->cset->nr_tasks; 632 633 return count; 634 } 635 636 /** 637 * cgroup_task_count - count the number of tasks in a cgroup. 638 * @cgrp: the cgroup in question 639 */ 640 int cgroup_task_count(const struct cgroup *cgrp) 641 { 642 int count; 643 644 spin_lock_irq(&css_set_lock); 645 count = __cgroup_task_count(cgrp); 646 spin_unlock_irq(&css_set_lock); 647 648 return count; 649 } 650 651 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of) 652 { 653 struct cgroup *cgrp = of->kn->parent->priv; 654 struct cftype *cft = of_cft(of); 655 656 /* 657 * This is open and unprotected implementation of cgroup_css(). 658 * seq_css() is only called from a kernfs file operation which has 659 * an active reference on the file. Because all the subsystem 660 * files are drained before a css is disassociated with a cgroup, 661 * the matching css from the cgroup's subsys table is guaranteed to 662 * be and stay valid until the enclosing operation is complete. 663 */ 664 if (CGROUP_HAS_SUBSYS_CONFIG && cft->ss) 665 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]); 666 else 667 return &cgrp->self; 668 } 669 EXPORT_SYMBOL_GPL(of_css); 670 671 /** 672 * for_each_css - iterate all css's of a cgroup 673 * @css: the iteration cursor 674 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end 675 * @cgrp: the target cgroup to iterate css's of 676 * 677 * Should be called under cgroup_[tree_]mutex. 678 */ 679 #define for_each_css(css, ssid, cgrp) \ 680 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \ 681 if (!((css) = rcu_dereference_check( \ 682 (cgrp)->subsys[(ssid)], \ 683 lockdep_is_held(&cgroup_mutex)))) { } \ 684 else 685 686 /** 687 * for_each_e_css - iterate all effective css's of a cgroup 688 * @css: the iteration cursor 689 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end 690 * @cgrp: the target cgroup to iterate css's of 691 * 692 * Should be called under cgroup_[tree_]mutex. 693 */ 694 #define for_each_e_css(css, ssid, cgrp) \ 695 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \ 696 if (!((css) = cgroup_e_css_by_mask(cgrp, \ 697 cgroup_subsys[(ssid)]))) \ 698 ; \ 699 else 700 701 /** 702 * do_each_subsys_mask - filter for_each_subsys with a bitmask 703 * @ss: the iteration cursor 704 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end 705 * @ss_mask: the bitmask 706 * 707 * The block will only run for cases where the ssid-th bit (1 << ssid) of 708 * @ss_mask is set. 709 */ 710 #define do_each_subsys_mask(ss, ssid, ss_mask) do { \ 711 unsigned long __ss_mask = (ss_mask); \ 712 if (!CGROUP_HAS_SUBSYS_CONFIG) { \ 713 (ssid) = 0; \ 714 break; \ 715 } \ 716 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \ 717 (ss) = cgroup_subsys[ssid]; \ 718 { 719 720 #define while_each_subsys_mask() \ 721 } \ 722 } \ 723 } while (false) 724 725 /* iterate over child cgrps, lock should be held throughout iteration */ 726 #define cgroup_for_each_live_child(child, cgrp) \ 727 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \ 728 if (({ lockdep_assert_held(&cgroup_mutex); \ 729 cgroup_is_dead(child); })) \ 730 ; \ 731 else 732 733 /* walk live descendants in pre order */ 734 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \ 735 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \ 736 if (({ lockdep_assert_held(&cgroup_mutex); \ 737 (dsct) = (d_css)->cgroup; \ 738 cgroup_is_dead(dsct); })) \ 739 ; \ 740 else 741 742 /* walk live descendants in postorder */ 743 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \ 744 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \ 745 if (({ lockdep_assert_held(&cgroup_mutex); \ 746 (dsct) = (d_css)->cgroup; \ 747 cgroup_is_dead(dsct); })) \ 748 ; \ 749 else 750 751 /* 752 * The default css_set - used by init and its children prior to any 753 * hierarchies being mounted. It contains a pointer to the root state 754 * for each subsystem. Also used to anchor the list of css_sets. Not 755 * reference-counted, to improve performance when child cgroups 756 * haven't been created. 757 */ 758 struct css_set init_css_set = { 759 .refcount = REFCOUNT_INIT(1), 760 .dom_cset = &init_css_set, 761 .tasks = LIST_HEAD_INIT(init_css_set.tasks), 762 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks), 763 .dying_tasks = LIST_HEAD_INIT(init_css_set.dying_tasks), 764 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters), 765 .threaded_csets = LIST_HEAD_INIT(init_css_set.threaded_csets), 766 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links), 767 .mg_src_preload_node = LIST_HEAD_INIT(init_css_set.mg_src_preload_node), 768 .mg_dst_preload_node = LIST_HEAD_INIT(init_css_set.mg_dst_preload_node), 769 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node), 770 771 /* 772 * The following field is re-initialized when this cset gets linked 773 * in cgroup_init(). However, let's initialize the field 774 * statically too so that the default cgroup can be accessed safely 775 * early during boot. 776 */ 777 .dfl_cgrp = &cgrp_dfl_root.cgrp, 778 }; 779 780 static int css_set_count = 1; /* 1 for init_css_set */ 781 782 static bool css_set_threaded(struct css_set *cset) 783 { 784 return cset->dom_cset != cset; 785 } 786 787 /** 788 * css_set_populated - does a css_set contain any tasks? 789 * @cset: target css_set 790 * 791 * css_set_populated() should be the same as !!cset->nr_tasks at steady 792 * state. However, css_set_populated() can be called while a task is being 793 * added to or removed from the linked list before the nr_tasks is 794 * properly updated. Hence, we can't just look at ->nr_tasks here. 795 */ 796 static bool css_set_populated(struct css_set *cset) 797 { 798 lockdep_assert_held(&css_set_lock); 799 800 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks); 801 } 802 803 /** 804 * cgroup_update_populated - update the populated count of a cgroup 805 * @cgrp: the target cgroup 806 * @populated: inc or dec populated count 807 * 808 * One of the css_sets associated with @cgrp is either getting its first 809 * task or losing the last. Update @cgrp->nr_populated_* accordingly. The 810 * count is propagated towards root so that a given cgroup's 811 * nr_populated_children is zero iff none of its descendants contain any 812 * tasks. 813 * 814 * @cgrp's interface file "cgroup.populated" is zero if both 815 * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and 816 * 1 otherwise. When the sum changes from or to zero, userland is notified 817 * that the content of the interface file has changed. This can be used to 818 * detect when @cgrp and its descendants become populated or empty. 819 */ 820 static void cgroup_update_populated(struct cgroup *cgrp, bool populated) 821 { 822 struct cgroup *child = NULL; 823 int adj = populated ? 1 : -1; 824 825 lockdep_assert_held(&css_set_lock); 826 827 do { 828 bool was_populated = cgroup_is_populated(cgrp); 829 830 if (!child) { 831 cgrp->nr_populated_csets += adj; 832 } else { 833 if (cgroup_is_threaded(child)) 834 cgrp->nr_populated_threaded_children += adj; 835 else 836 cgrp->nr_populated_domain_children += adj; 837 } 838 839 if (was_populated == cgroup_is_populated(cgrp)) 840 break; 841 842 cgroup1_check_for_release(cgrp); 843 TRACE_CGROUP_PATH(notify_populated, cgrp, 844 cgroup_is_populated(cgrp)); 845 cgroup_file_notify(&cgrp->events_file); 846 847 child = cgrp; 848 cgrp = cgroup_parent(cgrp); 849 } while (cgrp); 850 } 851 852 /** 853 * css_set_update_populated - update populated state of a css_set 854 * @cset: target css_set 855 * @populated: whether @cset is populated or depopulated 856 * 857 * @cset is either getting the first task or losing the last. Update the 858 * populated counters of all associated cgroups accordingly. 859 */ 860 static void css_set_update_populated(struct css_set *cset, bool populated) 861 { 862 struct cgrp_cset_link *link; 863 864 lockdep_assert_held(&css_set_lock); 865 866 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) 867 cgroup_update_populated(link->cgrp, populated); 868 } 869 870 /* 871 * @task is leaving, advance task iterators which are pointing to it so 872 * that they can resume at the next position. Advancing an iterator might 873 * remove it from the list, use safe walk. See css_task_iter_skip() for 874 * details. 875 */ 876 static void css_set_skip_task_iters(struct css_set *cset, 877 struct task_struct *task) 878 { 879 struct css_task_iter *it, *pos; 880 881 list_for_each_entry_safe(it, pos, &cset->task_iters, iters_node) 882 css_task_iter_skip(it, task); 883 } 884 885 /** 886 * css_set_move_task - move a task from one css_set to another 887 * @task: task being moved 888 * @from_cset: css_set @task currently belongs to (may be NULL) 889 * @to_cset: new css_set @task is being moved to (may be NULL) 890 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks 891 * 892 * Move @task from @from_cset to @to_cset. If @task didn't belong to any 893 * css_set, @from_cset can be NULL. If @task is being disassociated 894 * instead of moved, @to_cset can be NULL. 895 * 896 * This function automatically handles populated counter updates and 897 * css_task_iter adjustments but the caller is responsible for managing 898 * @from_cset and @to_cset's reference counts. 899 */ 900 static void css_set_move_task(struct task_struct *task, 901 struct css_set *from_cset, struct css_set *to_cset, 902 bool use_mg_tasks) 903 { 904 lockdep_assert_held(&css_set_lock); 905 906 if (to_cset && !css_set_populated(to_cset)) 907 css_set_update_populated(to_cset, true); 908 909 if (from_cset) { 910 WARN_ON_ONCE(list_empty(&task->cg_list)); 911 912 css_set_skip_task_iters(from_cset, task); 913 list_del_init(&task->cg_list); 914 if (!css_set_populated(from_cset)) 915 css_set_update_populated(from_cset, false); 916 } else { 917 WARN_ON_ONCE(!list_empty(&task->cg_list)); 918 } 919 920 if (to_cset) { 921 /* 922 * We are synchronized through cgroup_threadgroup_rwsem 923 * against PF_EXITING setting such that we can't race 924 * against cgroup_exit()/cgroup_free() dropping the css_set. 925 */ 926 WARN_ON_ONCE(task->flags & PF_EXITING); 927 928 cgroup_move_task(task, to_cset); 929 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks : 930 &to_cset->tasks); 931 } 932 } 933 934 /* 935 * hash table for cgroup groups. This improves the performance to find 936 * an existing css_set. This hash doesn't (currently) take into 937 * account cgroups in empty hierarchies. 938 */ 939 #define CSS_SET_HASH_BITS 7 940 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS); 941 942 static unsigned long css_set_hash(struct cgroup_subsys_state *css[]) 943 { 944 unsigned long key = 0UL; 945 struct cgroup_subsys *ss; 946 int i; 947 948 for_each_subsys(ss, i) 949 key += (unsigned long)css[i]; 950 key = (key >> 16) ^ key; 951 952 return key; 953 } 954 955 void put_css_set_locked(struct css_set *cset) 956 { 957 struct cgrp_cset_link *link, *tmp_link; 958 struct cgroup_subsys *ss; 959 int ssid; 960 961 lockdep_assert_held(&css_set_lock); 962 963 if (!refcount_dec_and_test(&cset->refcount)) 964 return; 965 966 WARN_ON_ONCE(!list_empty(&cset->threaded_csets)); 967 968 /* This css_set is dead. Unlink it and release cgroup and css refs */ 969 for_each_subsys(ss, ssid) { 970 list_del(&cset->e_cset_node[ssid]); 971 css_put(cset->subsys[ssid]); 972 } 973 hash_del(&cset->hlist); 974 css_set_count--; 975 976 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) { 977 list_del(&link->cset_link); 978 list_del(&link->cgrp_link); 979 if (cgroup_parent(link->cgrp)) 980 cgroup_put(link->cgrp); 981 kfree(link); 982 } 983 984 if (css_set_threaded(cset)) { 985 list_del(&cset->threaded_csets_node); 986 put_css_set_locked(cset->dom_cset); 987 } 988 989 kfree_rcu(cset, rcu_head); 990 } 991 992 /** 993 * compare_css_sets - helper function for find_existing_css_set(). 994 * @cset: candidate css_set being tested 995 * @old_cset: existing css_set for a task 996 * @new_cgrp: cgroup that's being entered by the task 997 * @template: desired set of css pointers in css_set (pre-calculated) 998 * 999 * Returns true if "cset" matches "old_cset" except for the hierarchy 1000 * which "new_cgrp" belongs to, for which it should match "new_cgrp". 1001 */ 1002 static bool compare_css_sets(struct css_set *cset, 1003 struct css_set *old_cset, 1004 struct cgroup *new_cgrp, 1005 struct cgroup_subsys_state *template[]) 1006 { 1007 struct cgroup *new_dfl_cgrp; 1008 struct list_head *l1, *l2; 1009 1010 /* 1011 * On the default hierarchy, there can be csets which are 1012 * associated with the same set of cgroups but different csses. 1013 * Let's first ensure that csses match. 1014 */ 1015 if (memcmp(template, cset->subsys, sizeof(cset->subsys))) 1016 return false; 1017 1018 1019 /* @cset's domain should match the default cgroup's */ 1020 if (cgroup_on_dfl(new_cgrp)) 1021 new_dfl_cgrp = new_cgrp; 1022 else 1023 new_dfl_cgrp = old_cset->dfl_cgrp; 1024 1025 if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp) 1026 return false; 1027 1028 /* 1029 * Compare cgroup pointers in order to distinguish between 1030 * different cgroups in hierarchies. As different cgroups may 1031 * share the same effective css, this comparison is always 1032 * necessary. 1033 */ 1034 l1 = &cset->cgrp_links; 1035 l2 = &old_cset->cgrp_links; 1036 while (1) { 1037 struct cgrp_cset_link *link1, *link2; 1038 struct cgroup *cgrp1, *cgrp2; 1039 1040 l1 = l1->next; 1041 l2 = l2->next; 1042 /* See if we reached the end - both lists are equal length. */ 1043 if (l1 == &cset->cgrp_links) { 1044 BUG_ON(l2 != &old_cset->cgrp_links); 1045 break; 1046 } else { 1047 BUG_ON(l2 == &old_cset->cgrp_links); 1048 } 1049 /* Locate the cgroups associated with these links. */ 1050 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link); 1051 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link); 1052 cgrp1 = link1->cgrp; 1053 cgrp2 = link2->cgrp; 1054 /* Hierarchies should be linked in the same order. */ 1055 BUG_ON(cgrp1->root != cgrp2->root); 1056 1057 /* 1058 * If this hierarchy is the hierarchy of the cgroup 1059 * that's changing, then we need to check that this 1060 * css_set points to the new cgroup; if it's any other 1061 * hierarchy, then this css_set should point to the 1062 * same cgroup as the old css_set. 1063 */ 1064 if (cgrp1->root == new_cgrp->root) { 1065 if (cgrp1 != new_cgrp) 1066 return false; 1067 } else { 1068 if (cgrp1 != cgrp2) 1069 return false; 1070 } 1071 } 1072 return true; 1073 } 1074 1075 /** 1076 * find_existing_css_set - init css array and find the matching css_set 1077 * @old_cset: the css_set that we're using before the cgroup transition 1078 * @cgrp: the cgroup that we're moving into 1079 * @template: out param for the new set of csses, should be clear on entry 1080 */ 1081 static struct css_set *find_existing_css_set(struct css_set *old_cset, 1082 struct cgroup *cgrp, 1083 struct cgroup_subsys_state *template[]) 1084 { 1085 struct cgroup_root *root = cgrp->root; 1086 struct cgroup_subsys *ss; 1087 struct css_set *cset; 1088 unsigned long key; 1089 int i; 1090 1091 /* 1092 * Build the set of subsystem state objects that we want to see in the 1093 * new css_set. While subsystems can change globally, the entries here 1094 * won't change, so no need for locking. 1095 */ 1096 for_each_subsys(ss, i) { 1097 if (root->subsys_mask & (1UL << i)) { 1098 /* 1099 * @ss is in this hierarchy, so we want the 1100 * effective css from @cgrp. 1101 */ 1102 template[i] = cgroup_e_css_by_mask(cgrp, ss); 1103 } else { 1104 /* 1105 * @ss is not in this hierarchy, so we don't want 1106 * to change the css. 1107 */ 1108 template[i] = old_cset->subsys[i]; 1109 } 1110 } 1111 1112 key = css_set_hash(template); 1113 hash_for_each_possible(css_set_table, cset, hlist, key) { 1114 if (!compare_css_sets(cset, old_cset, cgrp, template)) 1115 continue; 1116 1117 /* This css_set matches what we need */ 1118 return cset; 1119 } 1120 1121 /* No existing cgroup group matched */ 1122 return NULL; 1123 } 1124 1125 static void free_cgrp_cset_links(struct list_head *links_to_free) 1126 { 1127 struct cgrp_cset_link *link, *tmp_link; 1128 1129 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) { 1130 list_del(&link->cset_link); 1131 kfree(link); 1132 } 1133 } 1134 1135 /** 1136 * allocate_cgrp_cset_links - allocate cgrp_cset_links 1137 * @count: the number of links to allocate 1138 * @tmp_links: list_head the allocated links are put on 1139 * 1140 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links 1141 * through ->cset_link. Returns 0 on success or -errno. 1142 */ 1143 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links) 1144 { 1145 struct cgrp_cset_link *link; 1146 int i; 1147 1148 INIT_LIST_HEAD(tmp_links); 1149 1150 for (i = 0; i < count; i++) { 1151 link = kzalloc(sizeof(*link), GFP_KERNEL); 1152 if (!link) { 1153 free_cgrp_cset_links(tmp_links); 1154 return -ENOMEM; 1155 } 1156 list_add(&link->cset_link, tmp_links); 1157 } 1158 return 0; 1159 } 1160 1161 /** 1162 * link_css_set - a helper function to link a css_set to a cgroup 1163 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links() 1164 * @cset: the css_set to be linked 1165 * @cgrp: the destination cgroup 1166 */ 1167 static void link_css_set(struct list_head *tmp_links, struct css_set *cset, 1168 struct cgroup *cgrp) 1169 { 1170 struct cgrp_cset_link *link; 1171 1172 BUG_ON(list_empty(tmp_links)); 1173 1174 if (cgroup_on_dfl(cgrp)) 1175 cset->dfl_cgrp = cgrp; 1176 1177 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link); 1178 link->cset = cset; 1179 link->cgrp = cgrp; 1180 1181 /* 1182 * Always add links to the tail of the lists so that the lists are 1183 * in chronological order. 1184 */ 1185 list_move_tail(&link->cset_link, &cgrp->cset_links); 1186 list_add_tail(&link->cgrp_link, &cset->cgrp_links); 1187 1188 if (cgroup_parent(cgrp)) 1189 cgroup_get_live(cgrp); 1190 } 1191 1192 /** 1193 * find_css_set - return a new css_set with one cgroup updated 1194 * @old_cset: the baseline css_set 1195 * @cgrp: the cgroup to be updated 1196 * 1197 * Return a new css_set that's equivalent to @old_cset, but with @cgrp 1198 * substituted into the appropriate hierarchy. 1199 */ 1200 static struct css_set *find_css_set(struct css_set *old_cset, 1201 struct cgroup *cgrp) 1202 { 1203 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { }; 1204 struct css_set *cset; 1205 struct list_head tmp_links; 1206 struct cgrp_cset_link *link; 1207 struct cgroup_subsys *ss; 1208 unsigned long key; 1209 int ssid; 1210 1211 lockdep_assert_held(&cgroup_mutex); 1212 1213 /* First see if we already have a cgroup group that matches 1214 * the desired set */ 1215 spin_lock_irq(&css_set_lock); 1216 cset = find_existing_css_set(old_cset, cgrp, template); 1217 if (cset) 1218 get_css_set(cset); 1219 spin_unlock_irq(&css_set_lock); 1220 1221 if (cset) 1222 return cset; 1223 1224 cset = kzalloc(sizeof(*cset), GFP_KERNEL); 1225 if (!cset) 1226 return NULL; 1227 1228 /* Allocate all the cgrp_cset_link objects that we'll need */ 1229 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) { 1230 kfree(cset); 1231 return NULL; 1232 } 1233 1234 refcount_set(&cset->refcount, 1); 1235 cset->dom_cset = cset; 1236 INIT_LIST_HEAD(&cset->tasks); 1237 INIT_LIST_HEAD(&cset->mg_tasks); 1238 INIT_LIST_HEAD(&cset->dying_tasks); 1239 INIT_LIST_HEAD(&cset->task_iters); 1240 INIT_LIST_HEAD(&cset->threaded_csets); 1241 INIT_HLIST_NODE(&cset->hlist); 1242 INIT_LIST_HEAD(&cset->cgrp_links); 1243 INIT_LIST_HEAD(&cset->mg_src_preload_node); 1244 INIT_LIST_HEAD(&cset->mg_dst_preload_node); 1245 INIT_LIST_HEAD(&cset->mg_node); 1246 1247 /* Copy the set of subsystem state objects generated in 1248 * find_existing_css_set() */ 1249 memcpy(cset->subsys, template, sizeof(cset->subsys)); 1250 1251 spin_lock_irq(&css_set_lock); 1252 /* Add reference counts and links from the new css_set. */ 1253 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) { 1254 struct cgroup *c = link->cgrp; 1255 1256 if (c->root == cgrp->root) 1257 c = cgrp; 1258 link_css_set(&tmp_links, cset, c); 1259 } 1260 1261 BUG_ON(!list_empty(&tmp_links)); 1262 1263 css_set_count++; 1264 1265 /* Add @cset to the hash table */ 1266 key = css_set_hash(cset->subsys); 1267 hash_add(css_set_table, &cset->hlist, key); 1268 1269 for_each_subsys(ss, ssid) { 1270 struct cgroup_subsys_state *css = cset->subsys[ssid]; 1271 1272 list_add_tail(&cset->e_cset_node[ssid], 1273 &css->cgroup->e_csets[ssid]); 1274 css_get(css); 1275 } 1276 1277 spin_unlock_irq(&css_set_lock); 1278 1279 /* 1280 * If @cset should be threaded, look up the matching dom_cset and 1281 * link them up. We first fully initialize @cset then look for the 1282 * dom_cset. It's simpler this way and safe as @cset is guaranteed 1283 * to stay empty until we return. 1284 */ 1285 if (cgroup_is_threaded(cset->dfl_cgrp)) { 1286 struct css_set *dcset; 1287 1288 dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp); 1289 if (!dcset) { 1290 put_css_set(cset); 1291 return NULL; 1292 } 1293 1294 spin_lock_irq(&css_set_lock); 1295 cset->dom_cset = dcset; 1296 list_add_tail(&cset->threaded_csets_node, 1297 &dcset->threaded_csets); 1298 spin_unlock_irq(&css_set_lock); 1299 } 1300 1301 return cset; 1302 } 1303 1304 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root) 1305 { 1306 struct cgroup *root_cgrp = kernfs_root_to_node(kf_root)->priv; 1307 1308 return root_cgrp->root; 1309 } 1310 1311 void cgroup_favor_dynmods(struct cgroup_root *root, bool favor) 1312 { 1313 bool favoring = root->flags & CGRP_ROOT_FAVOR_DYNMODS; 1314 1315 /* see the comment above CGRP_ROOT_FAVOR_DYNMODS definition */ 1316 if (favor && !favoring) { 1317 rcu_sync_enter(&cgroup_threadgroup_rwsem.rss); 1318 root->flags |= CGRP_ROOT_FAVOR_DYNMODS; 1319 } else if (!favor && favoring) { 1320 rcu_sync_exit(&cgroup_threadgroup_rwsem.rss); 1321 root->flags &= ~CGRP_ROOT_FAVOR_DYNMODS; 1322 } 1323 } 1324 1325 static int cgroup_init_root_id(struct cgroup_root *root) 1326 { 1327 int id; 1328 1329 lockdep_assert_held(&cgroup_mutex); 1330 1331 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL); 1332 if (id < 0) 1333 return id; 1334 1335 root->hierarchy_id = id; 1336 return 0; 1337 } 1338 1339 static void cgroup_exit_root_id(struct cgroup_root *root) 1340 { 1341 lockdep_assert_held(&cgroup_mutex); 1342 1343 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id); 1344 } 1345 1346 void cgroup_free_root(struct cgroup_root *root) 1347 { 1348 kfree(root); 1349 } 1350 1351 static void cgroup_destroy_root(struct cgroup_root *root) 1352 { 1353 struct cgroup *cgrp = &root->cgrp; 1354 struct cgrp_cset_link *link, *tmp_link; 1355 1356 trace_cgroup_destroy_root(root); 1357 1358 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp); 1359 1360 BUG_ON(atomic_read(&root->nr_cgrps)); 1361 BUG_ON(!list_empty(&cgrp->self.children)); 1362 1363 /* Rebind all subsystems back to the default hierarchy */ 1364 WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask)); 1365 1366 /* 1367 * Release all the links from cset_links to this hierarchy's 1368 * root cgroup 1369 */ 1370 spin_lock_irq(&css_set_lock); 1371 1372 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) { 1373 list_del(&link->cset_link); 1374 list_del(&link->cgrp_link); 1375 kfree(link); 1376 } 1377 1378 spin_unlock_irq(&css_set_lock); 1379 1380 if (!list_empty(&root->root_list)) { 1381 list_del(&root->root_list); 1382 cgroup_root_count--; 1383 } 1384 1385 cgroup_favor_dynmods(root, false); 1386 cgroup_exit_root_id(root); 1387 1388 mutex_unlock(&cgroup_mutex); 1389 1390 cgroup_rstat_exit(cgrp); 1391 kernfs_destroy_root(root->kf_root); 1392 cgroup_free_root(root); 1393 } 1394 1395 static inline struct cgroup *__cset_cgroup_from_root(struct css_set *cset, 1396 struct cgroup_root *root) 1397 { 1398 struct cgroup *res_cgroup = NULL; 1399 1400 if (cset == &init_css_set) { 1401 res_cgroup = &root->cgrp; 1402 } else if (root == &cgrp_dfl_root) { 1403 res_cgroup = cset->dfl_cgrp; 1404 } else { 1405 struct cgrp_cset_link *link; 1406 1407 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) { 1408 struct cgroup *c = link->cgrp; 1409 1410 if (c->root == root) { 1411 res_cgroup = c; 1412 break; 1413 } 1414 } 1415 } 1416 1417 return res_cgroup; 1418 } 1419 1420 /* 1421 * look up cgroup associated with current task's cgroup namespace on the 1422 * specified hierarchy 1423 */ 1424 static struct cgroup * 1425 current_cgns_cgroup_from_root(struct cgroup_root *root) 1426 { 1427 struct cgroup *res = NULL; 1428 struct css_set *cset; 1429 1430 lockdep_assert_held(&css_set_lock); 1431 1432 rcu_read_lock(); 1433 1434 cset = current->nsproxy->cgroup_ns->root_cset; 1435 res = __cset_cgroup_from_root(cset, root); 1436 1437 rcu_read_unlock(); 1438 1439 BUG_ON(!res); 1440 return res; 1441 } 1442 1443 /* look up cgroup associated with given css_set on the specified hierarchy */ 1444 static struct cgroup *cset_cgroup_from_root(struct css_set *cset, 1445 struct cgroup_root *root) 1446 { 1447 struct cgroup *res = NULL; 1448 1449 lockdep_assert_held(&cgroup_mutex); 1450 lockdep_assert_held(&css_set_lock); 1451 1452 res = __cset_cgroup_from_root(cset, root); 1453 1454 BUG_ON(!res); 1455 return res; 1456 } 1457 1458 /* 1459 * Return the cgroup for "task" from the given hierarchy. Must be 1460 * called with cgroup_mutex and css_set_lock held. 1461 */ 1462 struct cgroup *task_cgroup_from_root(struct task_struct *task, 1463 struct cgroup_root *root) 1464 { 1465 /* 1466 * No need to lock the task - since we hold css_set_lock the 1467 * task can't change groups. 1468 */ 1469 return cset_cgroup_from_root(task_css_set(task), root); 1470 } 1471 1472 /* 1473 * A task must hold cgroup_mutex to modify cgroups. 1474 * 1475 * Any task can increment and decrement the count field without lock. 1476 * So in general, code holding cgroup_mutex can't rely on the count 1477 * field not changing. However, if the count goes to zero, then only 1478 * cgroup_attach_task() can increment it again. Because a count of zero 1479 * means that no tasks are currently attached, therefore there is no 1480 * way a task attached to that cgroup can fork (the other way to 1481 * increment the count). So code holding cgroup_mutex can safely 1482 * assume that if the count is zero, it will stay zero. Similarly, if 1483 * a task holds cgroup_mutex on a cgroup with zero count, it 1484 * knows that the cgroup won't be removed, as cgroup_rmdir() 1485 * needs that mutex. 1486 * 1487 * A cgroup can only be deleted if both its 'count' of using tasks 1488 * is zero, and its list of 'children' cgroups is empty. Since all 1489 * tasks in the system use _some_ cgroup, and since there is always at 1490 * least one task in the system (init, pid == 1), therefore, root cgroup 1491 * always has either children cgroups and/or using tasks. So we don't 1492 * need a special hack to ensure that root cgroup cannot be deleted. 1493 * 1494 * P.S. One more locking exception. RCU is used to guard the 1495 * update of a tasks cgroup pointer by cgroup_attach_task() 1496 */ 1497 1498 static struct kernfs_syscall_ops cgroup_kf_syscall_ops; 1499 1500 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft, 1501 char *buf) 1502 { 1503 struct cgroup_subsys *ss = cft->ss; 1504 1505 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) && 1506 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) { 1507 const char *dbg = (cft->flags & CFTYPE_DEBUG) ? ".__DEBUG__." : ""; 1508 1509 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s%s.%s", 1510 dbg, cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name, 1511 cft->name); 1512 } else { 1513 strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX); 1514 } 1515 return buf; 1516 } 1517 1518 /** 1519 * cgroup_file_mode - deduce file mode of a control file 1520 * @cft: the control file in question 1521 * 1522 * S_IRUGO for read, S_IWUSR for write. 1523 */ 1524 static umode_t cgroup_file_mode(const struct cftype *cft) 1525 { 1526 umode_t mode = 0; 1527 1528 if (cft->read_u64 || cft->read_s64 || cft->seq_show) 1529 mode |= S_IRUGO; 1530 1531 if (cft->write_u64 || cft->write_s64 || cft->write) { 1532 if (cft->flags & CFTYPE_WORLD_WRITABLE) 1533 mode |= S_IWUGO; 1534 else 1535 mode |= S_IWUSR; 1536 } 1537 1538 return mode; 1539 } 1540 1541 /** 1542 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask 1543 * @subtree_control: the new subtree_control mask to consider 1544 * @this_ss_mask: available subsystems 1545 * 1546 * On the default hierarchy, a subsystem may request other subsystems to be 1547 * enabled together through its ->depends_on mask. In such cases, more 1548 * subsystems than specified in "cgroup.subtree_control" may be enabled. 1549 * 1550 * This function calculates which subsystems need to be enabled if 1551 * @subtree_control is to be applied while restricted to @this_ss_mask. 1552 */ 1553 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask) 1554 { 1555 u16 cur_ss_mask = subtree_control; 1556 struct cgroup_subsys *ss; 1557 int ssid; 1558 1559 lockdep_assert_held(&cgroup_mutex); 1560 1561 cur_ss_mask |= cgrp_dfl_implicit_ss_mask; 1562 1563 while (true) { 1564 u16 new_ss_mask = cur_ss_mask; 1565 1566 do_each_subsys_mask(ss, ssid, cur_ss_mask) { 1567 new_ss_mask |= ss->depends_on; 1568 } while_each_subsys_mask(); 1569 1570 /* 1571 * Mask out subsystems which aren't available. This can 1572 * happen only if some depended-upon subsystems were bound 1573 * to non-default hierarchies. 1574 */ 1575 new_ss_mask &= this_ss_mask; 1576 1577 if (new_ss_mask == cur_ss_mask) 1578 break; 1579 cur_ss_mask = new_ss_mask; 1580 } 1581 1582 return cur_ss_mask; 1583 } 1584 1585 /** 1586 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods 1587 * @kn: the kernfs_node being serviced 1588 * 1589 * This helper undoes cgroup_kn_lock_live() and should be invoked before 1590 * the method finishes if locking succeeded. Note that once this function 1591 * returns the cgroup returned by cgroup_kn_lock_live() may become 1592 * inaccessible any time. If the caller intends to continue to access the 1593 * cgroup, it should pin it before invoking this function. 1594 */ 1595 void cgroup_kn_unlock(struct kernfs_node *kn) 1596 { 1597 struct cgroup *cgrp; 1598 1599 if (kernfs_type(kn) == KERNFS_DIR) 1600 cgrp = kn->priv; 1601 else 1602 cgrp = kn->parent->priv; 1603 1604 mutex_unlock(&cgroup_mutex); 1605 1606 kernfs_unbreak_active_protection(kn); 1607 cgroup_put(cgrp); 1608 } 1609 1610 /** 1611 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods 1612 * @kn: the kernfs_node being serviced 1613 * @drain_offline: perform offline draining on the cgroup 1614 * 1615 * This helper is to be used by a cgroup kernfs method currently servicing 1616 * @kn. It breaks the active protection, performs cgroup locking and 1617 * verifies that the associated cgroup is alive. Returns the cgroup if 1618 * alive; otherwise, %NULL. A successful return should be undone by a 1619 * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the 1620 * cgroup is drained of offlining csses before return. 1621 * 1622 * Any cgroup kernfs method implementation which requires locking the 1623 * associated cgroup should use this helper. It avoids nesting cgroup 1624 * locking under kernfs active protection and allows all kernfs operations 1625 * including self-removal. 1626 */ 1627 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline) 1628 { 1629 struct cgroup *cgrp; 1630 1631 if (kernfs_type(kn) == KERNFS_DIR) 1632 cgrp = kn->priv; 1633 else 1634 cgrp = kn->parent->priv; 1635 1636 /* 1637 * We're gonna grab cgroup_mutex which nests outside kernfs 1638 * active_ref. cgroup liveliness check alone provides enough 1639 * protection against removal. Ensure @cgrp stays accessible and 1640 * break the active_ref protection. 1641 */ 1642 if (!cgroup_tryget(cgrp)) 1643 return NULL; 1644 kernfs_break_active_protection(kn); 1645 1646 if (drain_offline) 1647 cgroup_lock_and_drain_offline(cgrp); 1648 else 1649 mutex_lock(&cgroup_mutex); 1650 1651 if (!cgroup_is_dead(cgrp)) 1652 return cgrp; 1653 1654 cgroup_kn_unlock(kn); 1655 return NULL; 1656 } 1657 1658 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft) 1659 { 1660 char name[CGROUP_FILE_NAME_MAX]; 1661 1662 lockdep_assert_held(&cgroup_mutex); 1663 1664 if (cft->file_offset) { 1665 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss); 1666 struct cgroup_file *cfile = (void *)css + cft->file_offset; 1667 1668 spin_lock_irq(&cgroup_file_kn_lock); 1669 cfile->kn = NULL; 1670 spin_unlock_irq(&cgroup_file_kn_lock); 1671 1672 del_timer_sync(&cfile->notify_timer); 1673 } 1674 1675 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name)); 1676 } 1677 1678 /** 1679 * css_clear_dir - remove subsys files in a cgroup directory 1680 * @css: target css 1681 */ 1682 static void css_clear_dir(struct cgroup_subsys_state *css) 1683 { 1684 struct cgroup *cgrp = css->cgroup; 1685 struct cftype *cfts; 1686 1687 if (!(css->flags & CSS_VISIBLE)) 1688 return; 1689 1690 css->flags &= ~CSS_VISIBLE; 1691 1692 if (!css->ss) { 1693 if (cgroup_on_dfl(cgrp)) { 1694 cgroup_addrm_files(css, cgrp, 1695 cgroup_base_files, false); 1696 if (cgroup_psi_enabled()) 1697 cgroup_addrm_files(css, cgrp, 1698 cgroup_psi_files, false); 1699 } else { 1700 cgroup_addrm_files(css, cgrp, 1701 cgroup1_base_files, false); 1702 } 1703 } else { 1704 list_for_each_entry(cfts, &css->ss->cfts, node) 1705 cgroup_addrm_files(css, cgrp, cfts, false); 1706 } 1707 } 1708 1709 /** 1710 * css_populate_dir - create subsys files in a cgroup directory 1711 * @css: target css 1712 * 1713 * On failure, no file is added. 1714 */ 1715 static int css_populate_dir(struct cgroup_subsys_state *css) 1716 { 1717 struct cgroup *cgrp = css->cgroup; 1718 struct cftype *cfts, *failed_cfts; 1719 int ret; 1720 1721 if ((css->flags & CSS_VISIBLE) || !cgrp->kn) 1722 return 0; 1723 1724 if (!css->ss) { 1725 if (cgroup_on_dfl(cgrp)) { 1726 ret = cgroup_addrm_files(&cgrp->self, cgrp, 1727 cgroup_base_files, true); 1728 if (ret < 0) 1729 return ret; 1730 1731 if (cgroup_psi_enabled()) { 1732 ret = cgroup_addrm_files(&cgrp->self, cgrp, 1733 cgroup_psi_files, true); 1734 if (ret < 0) 1735 return ret; 1736 } 1737 } else { 1738 cgroup_addrm_files(css, cgrp, 1739 cgroup1_base_files, true); 1740 } 1741 } else { 1742 list_for_each_entry(cfts, &css->ss->cfts, node) { 1743 ret = cgroup_addrm_files(css, cgrp, cfts, true); 1744 if (ret < 0) { 1745 failed_cfts = cfts; 1746 goto err; 1747 } 1748 } 1749 } 1750 1751 css->flags |= CSS_VISIBLE; 1752 1753 return 0; 1754 err: 1755 list_for_each_entry(cfts, &css->ss->cfts, node) { 1756 if (cfts == failed_cfts) 1757 break; 1758 cgroup_addrm_files(css, cgrp, cfts, false); 1759 } 1760 return ret; 1761 } 1762 1763 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask) 1764 { 1765 struct cgroup *dcgrp = &dst_root->cgrp; 1766 struct cgroup_subsys *ss; 1767 int ssid, i, ret; 1768 u16 dfl_disable_ss_mask = 0; 1769 1770 lockdep_assert_held(&cgroup_mutex); 1771 1772 do_each_subsys_mask(ss, ssid, ss_mask) { 1773 /* 1774 * If @ss has non-root csses attached to it, can't move. 1775 * If @ss is an implicit controller, it is exempt from this 1776 * rule and can be stolen. 1777 */ 1778 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) && 1779 !ss->implicit_on_dfl) 1780 return -EBUSY; 1781 1782 /* can't move between two non-dummy roots either */ 1783 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root) 1784 return -EBUSY; 1785 1786 /* 1787 * Collect ssid's that need to be disabled from default 1788 * hierarchy. 1789 */ 1790 if (ss->root == &cgrp_dfl_root) 1791 dfl_disable_ss_mask |= 1 << ssid; 1792 1793 } while_each_subsys_mask(); 1794 1795 if (dfl_disable_ss_mask) { 1796 struct cgroup *scgrp = &cgrp_dfl_root.cgrp; 1797 1798 /* 1799 * Controllers from default hierarchy that need to be rebound 1800 * are all disabled together in one go. 1801 */ 1802 cgrp_dfl_root.subsys_mask &= ~dfl_disable_ss_mask; 1803 WARN_ON(cgroup_apply_control(scgrp)); 1804 cgroup_finalize_control(scgrp, 0); 1805 } 1806 1807 do_each_subsys_mask(ss, ssid, ss_mask) { 1808 struct cgroup_root *src_root = ss->root; 1809 struct cgroup *scgrp = &src_root->cgrp; 1810 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss); 1811 struct css_set *cset; 1812 1813 WARN_ON(!css || cgroup_css(dcgrp, ss)); 1814 1815 if (src_root != &cgrp_dfl_root) { 1816 /* disable from the source */ 1817 src_root->subsys_mask &= ~(1 << ssid); 1818 WARN_ON(cgroup_apply_control(scgrp)); 1819 cgroup_finalize_control(scgrp, 0); 1820 } 1821 1822 /* rebind */ 1823 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL); 1824 rcu_assign_pointer(dcgrp->subsys[ssid], css); 1825 ss->root = dst_root; 1826 css->cgroup = dcgrp; 1827 1828 spin_lock_irq(&css_set_lock); 1829 hash_for_each(css_set_table, i, cset, hlist) 1830 list_move_tail(&cset->e_cset_node[ss->id], 1831 &dcgrp->e_csets[ss->id]); 1832 spin_unlock_irq(&css_set_lock); 1833 1834 if (ss->css_rstat_flush) { 1835 list_del_rcu(&css->rstat_css_node); 1836 synchronize_rcu(); 1837 list_add_rcu(&css->rstat_css_node, 1838 &dcgrp->rstat_css_list); 1839 } 1840 1841 /* default hierarchy doesn't enable controllers by default */ 1842 dst_root->subsys_mask |= 1 << ssid; 1843 if (dst_root == &cgrp_dfl_root) { 1844 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]); 1845 } else { 1846 dcgrp->subtree_control |= 1 << ssid; 1847 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]); 1848 } 1849 1850 ret = cgroup_apply_control(dcgrp); 1851 if (ret) 1852 pr_warn("partial failure to rebind %s controller (err=%d)\n", 1853 ss->name, ret); 1854 1855 if (ss->bind) 1856 ss->bind(css); 1857 } while_each_subsys_mask(); 1858 1859 kernfs_activate(dcgrp->kn); 1860 return 0; 1861 } 1862 1863 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node, 1864 struct kernfs_root *kf_root) 1865 { 1866 int len = 0; 1867 char *buf = NULL; 1868 struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root); 1869 struct cgroup *ns_cgroup; 1870 1871 buf = kmalloc(PATH_MAX, GFP_KERNEL); 1872 if (!buf) 1873 return -ENOMEM; 1874 1875 spin_lock_irq(&css_set_lock); 1876 ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot); 1877 len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX); 1878 spin_unlock_irq(&css_set_lock); 1879 1880 if (len >= PATH_MAX) 1881 len = -ERANGE; 1882 else if (len > 0) { 1883 seq_escape(sf, buf, " \t\n\\"); 1884 len = 0; 1885 } 1886 kfree(buf); 1887 return len; 1888 } 1889 1890 enum cgroup2_param { 1891 Opt_nsdelegate, 1892 Opt_favordynmods, 1893 Opt_memory_localevents, 1894 Opt_memory_recursiveprot, 1895 nr__cgroup2_params 1896 }; 1897 1898 static const struct fs_parameter_spec cgroup2_fs_parameters[] = { 1899 fsparam_flag("nsdelegate", Opt_nsdelegate), 1900 fsparam_flag("favordynmods", Opt_favordynmods), 1901 fsparam_flag("memory_localevents", Opt_memory_localevents), 1902 fsparam_flag("memory_recursiveprot", Opt_memory_recursiveprot), 1903 {} 1904 }; 1905 1906 static int cgroup2_parse_param(struct fs_context *fc, struct fs_parameter *param) 1907 { 1908 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 1909 struct fs_parse_result result; 1910 int opt; 1911 1912 opt = fs_parse(fc, cgroup2_fs_parameters, param, &result); 1913 if (opt < 0) 1914 return opt; 1915 1916 switch (opt) { 1917 case Opt_nsdelegate: 1918 ctx->flags |= CGRP_ROOT_NS_DELEGATE; 1919 return 0; 1920 case Opt_favordynmods: 1921 ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS; 1922 return 0; 1923 case Opt_memory_localevents: 1924 ctx->flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS; 1925 return 0; 1926 case Opt_memory_recursiveprot: 1927 ctx->flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT; 1928 return 0; 1929 } 1930 return -EINVAL; 1931 } 1932 1933 static void apply_cgroup_root_flags(unsigned int root_flags) 1934 { 1935 if (current->nsproxy->cgroup_ns == &init_cgroup_ns) { 1936 if (root_flags & CGRP_ROOT_NS_DELEGATE) 1937 cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE; 1938 else 1939 cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE; 1940 1941 cgroup_favor_dynmods(&cgrp_dfl_root, 1942 root_flags & CGRP_ROOT_FAVOR_DYNMODS); 1943 1944 if (root_flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS) 1945 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS; 1946 else 1947 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_LOCAL_EVENTS; 1948 1949 if (root_flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT) 1950 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT; 1951 else 1952 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_RECURSIVE_PROT; 1953 } 1954 } 1955 1956 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root) 1957 { 1958 if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) 1959 seq_puts(seq, ",nsdelegate"); 1960 if (cgrp_dfl_root.flags & CGRP_ROOT_FAVOR_DYNMODS) 1961 seq_puts(seq, ",favordynmods"); 1962 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS) 1963 seq_puts(seq, ",memory_localevents"); 1964 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT) 1965 seq_puts(seq, ",memory_recursiveprot"); 1966 return 0; 1967 } 1968 1969 static int cgroup_reconfigure(struct fs_context *fc) 1970 { 1971 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 1972 1973 apply_cgroup_root_flags(ctx->flags); 1974 return 0; 1975 } 1976 1977 static void init_cgroup_housekeeping(struct cgroup *cgrp) 1978 { 1979 struct cgroup_subsys *ss; 1980 int ssid; 1981 1982 INIT_LIST_HEAD(&cgrp->self.sibling); 1983 INIT_LIST_HEAD(&cgrp->self.children); 1984 INIT_LIST_HEAD(&cgrp->cset_links); 1985 INIT_LIST_HEAD(&cgrp->pidlists); 1986 mutex_init(&cgrp->pidlist_mutex); 1987 cgrp->self.cgroup = cgrp; 1988 cgrp->self.flags |= CSS_ONLINE; 1989 cgrp->dom_cgrp = cgrp; 1990 cgrp->max_descendants = INT_MAX; 1991 cgrp->max_depth = INT_MAX; 1992 INIT_LIST_HEAD(&cgrp->rstat_css_list); 1993 prev_cputime_init(&cgrp->prev_cputime); 1994 1995 for_each_subsys(ss, ssid) 1996 INIT_LIST_HEAD(&cgrp->e_csets[ssid]); 1997 1998 init_waitqueue_head(&cgrp->offline_waitq); 1999 INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent); 2000 } 2001 2002 void init_cgroup_root(struct cgroup_fs_context *ctx) 2003 { 2004 struct cgroup_root *root = ctx->root; 2005 struct cgroup *cgrp = &root->cgrp; 2006 2007 INIT_LIST_HEAD(&root->root_list); 2008 atomic_set(&root->nr_cgrps, 1); 2009 cgrp->root = root; 2010 init_cgroup_housekeeping(cgrp); 2011 2012 /* DYNMODS must be modified through cgroup_favor_dynmods() */ 2013 root->flags = ctx->flags & ~CGRP_ROOT_FAVOR_DYNMODS; 2014 if (ctx->release_agent) 2015 strscpy(root->release_agent_path, ctx->release_agent, PATH_MAX); 2016 if (ctx->name) 2017 strscpy(root->name, ctx->name, MAX_CGROUP_ROOT_NAMELEN); 2018 if (ctx->cpuset_clone_children) 2019 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags); 2020 } 2021 2022 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask) 2023 { 2024 LIST_HEAD(tmp_links); 2025 struct cgroup *root_cgrp = &root->cgrp; 2026 struct kernfs_syscall_ops *kf_sops; 2027 struct css_set *cset; 2028 int i, ret; 2029 2030 lockdep_assert_held(&cgroup_mutex); 2031 2032 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 2033 0, GFP_KERNEL); 2034 if (ret) 2035 goto out; 2036 2037 /* 2038 * We're accessing css_set_count without locking css_set_lock here, 2039 * but that's OK - it can only be increased by someone holding 2040 * cgroup_lock, and that's us. Later rebinding may disable 2041 * controllers on the default hierarchy and thus create new csets, 2042 * which can't be more than the existing ones. Allocate 2x. 2043 */ 2044 ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links); 2045 if (ret) 2046 goto cancel_ref; 2047 2048 ret = cgroup_init_root_id(root); 2049 if (ret) 2050 goto cancel_ref; 2051 2052 kf_sops = root == &cgrp_dfl_root ? 2053 &cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops; 2054 2055 root->kf_root = kernfs_create_root(kf_sops, 2056 KERNFS_ROOT_CREATE_DEACTIVATED | 2057 KERNFS_ROOT_SUPPORT_EXPORTOP | 2058 KERNFS_ROOT_SUPPORT_USER_XATTR, 2059 root_cgrp); 2060 if (IS_ERR(root->kf_root)) { 2061 ret = PTR_ERR(root->kf_root); 2062 goto exit_root_id; 2063 } 2064 root_cgrp->kn = kernfs_root_to_node(root->kf_root); 2065 WARN_ON_ONCE(cgroup_ino(root_cgrp) != 1); 2066 root_cgrp->ancestors[0] = root_cgrp; 2067 2068 ret = css_populate_dir(&root_cgrp->self); 2069 if (ret) 2070 goto destroy_root; 2071 2072 ret = cgroup_rstat_init(root_cgrp); 2073 if (ret) 2074 goto destroy_root; 2075 2076 ret = rebind_subsystems(root, ss_mask); 2077 if (ret) 2078 goto exit_stats; 2079 2080 ret = cgroup_bpf_inherit(root_cgrp); 2081 WARN_ON_ONCE(ret); 2082 2083 trace_cgroup_setup_root(root); 2084 2085 /* 2086 * There must be no failure case after here, since rebinding takes 2087 * care of subsystems' refcounts, which are explicitly dropped in 2088 * the failure exit path. 2089 */ 2090 list_add(&root->root_list, &cgroup_roots); 2091 cgroup_root_count++; 2092 2093 /* 2094 * Link the root cgroup in this hierarchy into all the css_set 2095 * objects. 2096 */ 2097 spin_lock_irq(&css_set_lock); 2098 hash_for_each(css_set_table, i, cset, hlist) { 2099 link_css_set(&tmp_links, cset, root_cgrp); 2100 if (css_set_populated(cset)) 2101 cgroup_update_populated(root_cgrp, true); 2102 } 2103 spin_unlock_irq(&css_set_lock); 2104 2105 BUG_ON(!list_empty(&root_cgrp->self.children)); 2106 BUG_ON(atomic_read(&root->nr_cgrps) != 1); 2107 2108 ret = 0; 2109 goto out; 2110 2111 exit_stats: 2112 cgroup_rstat_exit(root_cgrp); 2113 destroy_root: 2114 kernfs_destroy_root(root->kf_root); 2115 root->kf_root = NULL; 2116 exit_root_id: 2117 cgroup_exit_root_id(root); 2118 cancel_ref: 2119 percpu_ref_exit(&root_cgrp->self.refcnt); 2120 out: 2121 free_cgrp_cset_links(&tmp_links); 2122 return ret; 2123 } 2124 2125 int cgroup_do_get_tree(struct fs_context *fc) 2126 { 2127 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2128 int ret; 2129 2130 ctx->kfc.root = ctx->root->kf_root; 2131 if (fc->fs_type == &cgroup2_fs_type) 2132 ctx->kfc.magic = CGROUP2_SUPER_MAGIC; 2133 else 2134 ctx->kfc.magic = CGROUP_SUPER_MAGIC; 2135 ret = kernfs_get_tree(fc); 2136 2137 /* 2138 * In non-init cgroup namespace, instead of root cgroup's dentry, 2139 * we return the dentry corresponding to the cgroupns->root_cgrp. 2140 */ 2141 if (!ret && ctx->ns != &init_cgroup_ns) { 2142 struct dentry *nsdentry; 2143 struct super_block *sb = fc->root->d_sb; 2144 struct cgroup *cgrp; 2145 2146 mutex_lock(&cgroup_mutex); 2147 spin_lock_irq(&css_set_lock); 2148 2149 cgrp = cset_cgroup_from_root(ctx->ns->root_cset, ctx->root); 2150 2151 spin_unlock_irq(&css_set_lock); 2152 mutex_unlock(&cgroup_mutex); 2153 2154 nsdentry = kernfs_node_dentry(cgrp->kn, sb); 2155 dput(fc->root); 2156 if (IS_ERR(nsdentry)) { 2157 deactivate_locked_super(sb); 2158 ret = PTR_ERR(nsdentry); 2159 nsdentry = NULL; 2160 } 2161 fc->root = nsdentry; 2162 } 2163 2164 if (!ctx->kfc.new_sb_created) 2165 cgroup_put(&ctx->root->cgrp); 2166 2167 return ret; 2168 } 2169 2170 /* 2171 * Destroy a cgroup filesystem context. 2172 */ 2173 static void cgroup_fs_context_free(struct fs_context *fc) 2174 { 2175 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2176 2177 kfree(ctx->name); 2178 kfree(ctx->release_agent); 2179 put_cgroup_ns(ctx->ns); 2180 kernfs_free_fs_context(fc); 2181 kfree(ctx); 2182 } 2183 2184 static int cgroup_get_tree(struct fs_context *fc) 2185 { 2186 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2187 int ret; 2188 2189 WRITE_ONCE(cgrp_dfl_visible, true); 2190 cgroup_get_live(&cgrp_dfl_root.cgrp); 2191 ctx->root = &cgrp_dfl_root; 2192 2193 ret = cgroup_do_get_tree(fc); 2194 if (!ret) 2195 apply_cgroup_root_flags(ctx->flags); 2196 return ret; 2197 } 2198 2199 static const struct fs_context_operations cgroup_fs_context_ops = { 2200 .free = cgroup_fs_context_free, 2201 .parse_param = cgroup2_parse_param, 2202 .get_tree = cgroup_get_tree, 2203 .reconfigure = cgroup_reconfigure, 2204 }; 2205 2206 static const struct fs_context_operations cgroup1_fs_context_ops = { 2207 .free = cgroup_fs_context_free, 2208 .parse_param = cgroup1_parse_param, 2209 .get_tree = cgroup1_get_tree, 2210 .reconfigure = cgroup1_reconfigure, 2211 }; 2212 2213 /* 2214 * Initialise the cgroup filesystem creation/reconfiguration context. Notably, 2215 * we select the namespace we're going to use. 2216 */ 2217 static int cgroup_init_fs_context(struct fs_context *fc) 2218 { 2219 struct cgroup_fs_context *ctx; 2220 2221 ctx = kzalloc(sizeof(struct cgroup_fs_context), GFP_KERNEL); 2222 if (!ctx) 2223 return -ENOMEM; 2224 2225 ctx->ns = current->nsproxy->cgroup_ns; 2226 get_cgroup_ns(ctx->ns); 2227 fc->fs_private = &ctx->kfc; 2228 if (fc->fs_type == &cgroup2_fs_type) 2229 fc->ops = &cgroup_fs_context_ops; 2230 else 2231 fc->ops = &cgroup1_fs_context_ops; 2232 put_user_ns(fc->user_ns); 2233 fc->user_ns = get_user_ns(ctx->ns->user_ns); 2234 fc->global = true; 2235 2236 #ifdef CONFIG_CGROUP_FAVOR_DYNMODS 2237 ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS; 2238 #endif 2239 return 0; 2240 } 2241 2242 static void cgroup_kill_sb(struct super_block *sb) 2243 { 2244 struct kernfs_root *kf_root = kernfs_root_from_sb(sb); 2245 struct cgroup_root *root = cgroup_root_from_kf(kf_root); 2246 2247 /* 2248 * If @root doesn't have any children, start killing it. 2249 * This prevents new mounts by disabling percpu_ref_tryget_live(). 2250 * 2251 * And don't kill the default root. 2252 */ 2253 if (list_empty(&root->cgrp.self.children) && root != &cgrp_dfl_root && 2254 !percpu_ref_is_dying(&root->cgrp.self.refcnt)) { 2255 cgroup_bpf_offline(&root->cgrp); 2256 percpu_ref_kill(&root->cgrp.self.refcnt); 2257 } 2258 cgroup_put(&root->cgrp); 2259 kernfs_kill_sb(sb); 2260 } 2261 2262 struct file_system_type cgroup_fs_type = { 2263 .name = "cgroup", 2264 .init_fs_context = cgroup_init_fs_context, 2265 .parameters = cgroup1_fs_parameters, 2266 .kill_sb = cgroup_kill_sb, 2267 .fs_flags = FS_USERNS_MOUNT, 2268 }; 2269 2270 static struct file_system_type cgroup2_fs_type = { 2271 .name = "cgroup2", 2272 .init_fs_context = cgroup_init_fs_context, 2273 .parameters = cgroup2_fs_parameters, 2274 .kill_sb = cgroup_kill_sb, 2275 .fs_flags = FS_USERNS_MOUNT, 2276 }; 2277 2278 #ifdef CONFIG_CPUSETS 2279 static const struct fs_context_operations cpuset_fs_context_ops = { 2280 .get_tree = cgroup1_get_tree, 2281 .free = cgroup_fs_context_free, 2282 }; 2283 2284 /* 2285 * This is ugly, but preserves the userspace API for existing cpuset 2286 * users. If someone tries to mount the "cpuset" filesystem, we 2287 * silently switch it to mount "cgroup" instead 2288 */ 2289 static int cpuset_init_fs_context(struct fs_context *fc) 2290 { 2291 char *agent = kstrdup("/sbin/cpuset_release_agent", GFP_USER); 2292 struct cgroup_fs_context *ctx; 2293 int err; 2294 2295 err = cgroup_init_fs_context(fc); 2296 if (err) { 2297 kfree(agent); 2298 return err; 2299 } 2300 2301 fc->ops = &cpuset_fs_context_ops; 2302 2303 ctx = cgroup_fc2context(fc); 2304 ctx->subsys_mask = 1 << cpuset_cgrp_id; 2305 ctx->flags |= CGRP_ROOT_NOPREFIX; 2306 ctx->release_agent = agent; 2307 2308 get_filesystem(&cgroup_fs_type); 2309 put_filesystem(fc->fs_type); 2310 fc->fs_type = &cgroup_fs_type; 2311 2312 return 0; 2313 } 2314 2315 static struct file_system_type cpuset_fs_type = { 2316 .name = "cpuset", 2317 .init_fs_context = cpuset_init_fs_context, 2318 .fs_flags = FS_USERNS_MOUNT, 2319 }; 2320 #endif 2321 2322 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen, 2323 struct cgroup_namespace *ns) 2324 { 2325 struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root); 2326 2327 return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen); 2328 } 2329 2330 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen, 2331 struct cgroup_namespace *ns) 2332 { 2333 int ret; 2334 2335 mutex_lock(&cgroup_mutex); 2336 spin_lock_irq(&css_set_lock); 2337 2338 ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns); 2339 2340 spin_unlock_irq(&css_set_lock); 2341 mutex_unlock(&cgroup_mutex); 2342 2343 return ret; 2344 } 2345 EXPORT_SYMBOL_GPL(cgroup_path_ns); 2346 2347 /** 2348 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy 2349 * @task: target task 2350 * @buf: the buffer to write the path into 2351 * @buflen: the length of the buffer 2352 * 2353 * Determine @task's cgroup on the first (the one with the lowest non-zero 2354 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This 2355 * function grabs cgroup_mutex and shouldn't be used inside locks used by 2356 * cgroup controller callbacks. 2357 * 2358 * Return value is the same as kernfs_path(). 2359 */ 2360 int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen) 2361 { 2362 struct cgroup_root *root; 2363 struct cgroup *cgrp; 2364 int hierarchy_id = 1; 2365 int ret; 2366 2367 mutex_lock(&cgroup_mutex); 2368 spin_lock_irq(&css_set_lock); 2369 2370 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id); 2371 2372 if (root) { 2373 cgrp = task_cgroup_from_root(task, root); 2374 ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns); 2375 } else { 2376 /* if no hierarchy exists, everyone is in "/" */ 2377 ret = strscpy(buf, "/", buflen); 2378 } 2379 2380 spin_unlock_irq(&css_set_lock); 2381 mutex_unlock(&cgroup_mutex); 2382 return ret; 2383 } 2384 EXPORT_SYMBOL_GPL(task_cgroup_path); 2385 2386 /** 2387 * cgroup_attach_lock - Lock for ->attach() 2388 * @lock_threadgroup: whether to down_write cgroup_threadgroup_rwsem 2389 * 2390 * cgroup migration sometimes needs to stabilize threadgroups against forks and 2391 * exits by write-locking cgroup_threadgroup_rwsem. However, some ->attach() 2392 * implementations (e.g. cpuset), also need to disable CPU hotplug. 2393 * Unfortunately, letting ->attach() operations acquire cpus_read_lock() can 2394 * lead to deadlocks. 2395 * 2396 * Bringing up a CPU may involve creating and destroying tasks which requires 2397 * read-locking threadgroup_rwsem, so threadgroup_rwsem nests inside 2398 * cpus_read_lock(). If we call an ->attach() which acquires the cpus lock while 2399 * write-locking threadgroup_rwsem, the locking order is reversed and we end up 2400 * waiting for an on-going CPU hotplug operation which in turn is waiting for 2401 * the threadgroup_rwsem to be released to create new tasks. For more details: 2402 * 2403 * http://lkml.kernel.org/r/20220711174629.uehfmqegcwn2lqzu@wubuntu 2404 * 2405 * Resolve the situation by always acquiring cpus_read_lock() before optionally 2406 * write-locking cgroup_threadgroup_rwsem. This allows ->attach() to assume that 2407 * CPU hotplug is disabled on entry. 2408 */ 2409 void cgroup_attach_lock(bool lock_threadgroup) 2410 { 2411 cpus_read_lock(); 2412 if (lock_threadgroup) 2413 percpu_down_write(&cgroup_threadgroup_rwsem); 2414 } 2415 2416 /** 2417 * cgroup_attach_unlock - Undo cgroup_attach_lock() 2418 * @lock_threadgroup: whether to up_write cgroup_threadgroup_rwsem 2419 */ 2420 void cgroup_attach_unlock(bool lock_threadgroup) 2421 { 2422 if (lock_threadgroup) 2423 percpu_up_write(&cgroup_threadgroup_rwsem); 2424 cpus_read_unlock(); 2425 } 2426 2427 /** 2428 * cgroup_migrate_add_task - add a migration target task to a migration context 2429 * @task: target task 2430 * @mgctx: target migration context 2431 * 2432 * Add @task, which is a migration target, to @mgctx->tset. This function 2433 * becomes noop if @task doesn't need to be migrated. @task's css_set 2434 * should have been added as a migration source and @task->cg_list will be 2435 * moved from the css_set's tasks list to mg_tasks one. 2436 */ 2437 static void cgroup_migrate_add_task(struct task_struct *task, 2438 struct cgroup_mgctx *mgctx) 2439 { 2440 struct css_set *cset; 2441 2442 lockdep_assert_held(&css_set_lock); 2443 2444 /* @task either already exited or can't exit until the end */ 2445 if (task->flags & PF_EXITING) 2446 return; 2447 2448 /* cgroup_threadgroup_rwsem protects racing against forks */ 2449 WARN_ON_ONCE(list_empty(&task->cg_list)); 2450 2451 cset = task_css_set(task); 2452 if (!cset->mg_src_cgrp) 2453 return; 2454 2455 mgctx->tset.nr_tasks++; 2456 2457 list_move_tail(&task->cg_list, &cset->mg_tasks); 2458 if (list_empty(&cset->mg_node)) 2459 list_add_tail(&cset->mg_node, 2460 &mgctx->tset.src_csets); 2461 if (list_empty(&cset->mg_dst_cset->mg_node)) 2462 list_add_tail(&cset->mg_dst_cset->mg_node, 2463 &mgctx->tset.dst_csets); 2464 } 2465 2466 /** 2467 * cgroup_taskset_first - reset taskset and return the first task 2468 * @tset: taskset of interest 2469 * @dst_cssp: output variable for the destination css 2470 * 2471 * @tset iteration is initialized and the first task is returned. 2472 */ 2473 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset, 2474 struct cgroup_subsys_state **dst_cssp) 2475 { 2476 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node); 2477 tset->cur_task = NULL; 2478 2479 return cgroup_taskset_next(tset, dst_cssp); 2480 } 2481 2482 /** 2483 * cgroup_taskset_next - iterate to the next task in taskset 2484 * @tset: taskset of interest 2485 * @dst_cssp: output variable for the destination css 2486 * 2487 * Return the next task in @tset. Iteration must have been initialized 2488 * with cgroup_taskset_first(). 2489 */ 2490 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset, 2491 struct cgroup_subsys_state **dst_cssp) 2492 { 2493 struct css_set *cset = tset->cur_cset; 2494 struct task_struct *task = tset->cur_task; 2495 2496 while (CGROUP_HAS_SUBSYS_CONFIG && &cset->mg_node != tset->csets) { 2497 if (!task) 2498 task = list_first_entry(&cset->mg_tasks, 2499 struct task_struct, cg_list); 2500 else 2501 task = list_next_entry(task, cg_list); 2502 2503 if (&task->cg_list != &cset->mg_tasks) { 2504 tset->cur_cset = cset; 2505 tset->cur_task = task; 2506 2507 /* 2508 * This function may be called both before and 2509 * after cgroup_taskset_migrate(). The two cases 2510 * can be distinguished by looking at whether @cset 2511 * has its ->mg_dst_cset set. 2512 */ 2513 if (cset->mg_dst_cset) 2514 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid]; 2515 else 2516 *dst_cssp = cset->subsys[tset->ssid]; 2517 2518 return task; 2519 } 2520 2521 cset = list_next_entry(cset, mg_node); 2522 task = NULL; 2523 } 2524 2525 return NULL; 2526 } 2527 2528 /** 2529 * cgroup_migrate_execute - migrate a taskset 2530 * @mgctx: migration context 2531 * 2532 * Migrate tasks in @mgctx as setup by migration preparation functions. 2533 * This function fails iff one of the ->can_attach callbacks fails and 2534 * guarantees that either all or none of the tasks in @mgctx are migrated. 2535 * @mgctx is consumed regardless of success. 2536 */ 2537 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx) 2538 { 2539 struct cgroup_taskset *tset = &mgctx->tset; 2540 struct cgroup_subsys *ss; 2541 struct task_struct *task, *tmp_task; 2542 struct css_set *cset, *tmp_cset; 2543 int ssid, failed_ssid, ret; 2544 2545 /* check that we can legitimately attach to the cgroup */ 2546 if (tset->nr_tasks) { 2547 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2548 if (ss->can_attach) { 2549 tset->ssid = ssid; 2550 ret = ss->can_attach(tset); 2551 if (ret) { 2552 failed_ssid = ssid; 2553 goto out_cancel_attach; 2554 } 2555 } 2556 } while_each_subsys_mask(); 2557 } 2558 2559 /* 2560 * Now that we're guaranteed success, proceed to move all tasks to 2561 * the new cgroup. There are no failure cases after here, so this 2562 * is the commit point. 2563 */ 2564 spin_lock_irq(&css_set_lock); 2565 list_for_each_entry(cset, &tset->src_csets, mg_node) { 2566 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) { 2567 struct css_set *from_cset = task_css_set(task); 2568 struct css_set *to_cset = cset->mg_dst_cset; 2569 2570 get_css_set(to_cset); 2571 to_cset->nr_tasks++; 2572 css_set_move_task(task, from_cset, to_cset, true); 2573 from_cset->nr_tasks--; 2574 /* 2575 * If the source or destination cgroup is frozen, 2576 * the task might require to change its state. 2577 */ 2578 cgroup_freezer_migrate_task(task, from_cset->dfl_cgrp, 2579 to_cset->dfl_cgrp); 2580 put_css_set_locked(from_cset); 2581 2582 } 2583 } 2584 spin_unlock_irq(&css_set_lock); 2585 2586 /* 2587 * Migration is committed, all target tasks are now on dst_csets. 2588 * Nothing is sensitive to fork() after this point. Notify 2589 * controllers that migration is complete. 2590 */ 2591 tset->csets = &tset->dst_csets; 2592 2593 if (tset->nr_tasks) { 2594 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2595 if (ss->attach) { 2596 tset->ssid = ssid; 2597 ss->attach(tset); 2598 } 2599 } while_each_subsys_mask(); 2600 } 2601 2602 ret = 0; 2603 goto out_release_tset; 2604 2605 out_cancel_attach: 2606 if (tset->nr_tasks) { 2607 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2608 if (ssid == failed_ssid) 2609 break; 2610 if (ss->cancel_attach) { 2611 tset->ssid = ssid; 2612 ss->cancel_attach(tset); 2613 } 2614 } while_each_subsys_mask(); 2615 } 2616 out_release_tset: 2617 spin_lock_irq(&css_set_lock); 2618 list_splice_init(&tset->dst_csets, &tset->src_csets); 2619 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) { 2620 list_splice_tail_init(&cset->mg_tasks, &cset->tasks); 2621 list_del_init(&cset->mg_node); 2622 } 2623 spin_unlock_irq(&css_set_lock); 2624 2625 /* 2626 * Re-initialize the cgroup_taskset structure in case it is reused 2627 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute() 2628 * iteration. 2629 */ 2630 tset->nr_tasks = 0; 2631 tset->csets = &tset->src_csets; 2632 return ret; 2633 } 2634 2635 /** 2636 * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination 2637 * @dst_cgrp: destination cgroup to test 2638 * 2639 * On the default hierarchy, except for the mixable, (possible) thread root 2640 * and threaded cgroups, subtree_control must be zero for migration 2641 * destination cgroups with tasks so that child cgroups don't compete 2642 * against tasks. 2643 */ 2644 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp) 2645 { 2646 /* v1 doesn't have any restriction */ 2647 if (!cgroup_on_dfl(dst_cgrp)) 2648 return 0; 2649 2650 /* verify @dst_cgrp can host resources */ 2651 if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp)) 2652 return -EOPNOTSUPP; 2653 2654 /* 2655 * If @dst_cgrp is already or can become a thread root or is 2656 * threaded, it doesn't matter. 2657 */ 2658 if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp)) 2659 return 0; 2660 2661 /* apply no-internal-process constraint */ 2662 if (dst_cgrp->subtree_control) 2663 return -EBUSY; 2664 2665 return 0; 2666 } 2667 2668 /** 2669 * cgroup_migrate_finish - cleanup after attach 2670 * @mgctx: migration context 2671 * 2672 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See 2673 * those functions for details. 2674 */ 2675 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx) 2676 { 2677 struct css_set *cset, *tmp_cset; 2678 2679 lockdep_assert_held(&cgroup_mutex); 2680 2681 spin_lock_irq(&css_set_lock); 2682 2683 list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_src_csets, 2684 mg_src_preload_node) { 2685 cset->mg_src_cgrp = NULL; 2686 cset->mg_dst_cgrp = NULL; 2687 cset->mg_dst_cset = NULL; 2688 list_del_init(&cset->mg_src_preload_node); 2689 put_css_set_locked(cset); 2690 } 2691 2692 list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_dst_csets, 2693 mg_dst_preload_node) { 2694 cset->mg_src_cgrp = NULL; 2695 cset->mg_dst_cgrp = NULL; 2696 cset->mg_dst_cset = NULL; 2697 list_del_init(&cset->mg_dst_preload_node); 2698 put_css_set_locked(cset); 2699 } 2700 2701 spin_unlock_irq(&css_set_lock); 2702 } 2703 2704 /** 2705 * cgroup_migrate_add_src - add a migration source css_set 2706 * @src_cset: the source css_set to add 2707 * @dst_cgrp: the destination cgroup 2708 * @mgctx: migration context 2709 * 2710 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin 2711 * @src_cset and add it to @mgctx->src_csets, which should later be cleaned 2712 * up by cgroup_migrate_finish(). 2713 * 2714 * This function may be called without holding cgroup_threadgroup_rwsem 2715 * even if the target is a process. Threads may be created and destroyed 2716 * but as long as cgroup_mutex is not dropped, no new css_set can be put 2717 * into play and the preloaded css_sets are guaranteed to cover all 2718 * migrations. 2719 */ 2720 void cgroup_migrate_add_src(struct css_set *src_cset, 2721 struct cgroup *dst_cgrp, 2722 struct cgroup_mgctx *mgctx) 2723 { 2724 struct cgroup *src_cgrp; 2725 2726 lockdep_assert_held(&cgroup_mutex); 2727 lockdep_assert_held(&css_set_lock); 2728 2729 /* 2730 * If ->dead, @src_set is associated with one or more dead cgroups 2731 * and doesn't contain any migratable tasks. Ignore it early so 2732 * that the rest of migration path doesn't get confused by it. 2733 */ 2734 if (src_cset->dead) 2735 return; 2736 2737 if (!list_empty(&src_cset->mg_src_preload_node)) 2738 return; 2739 2740 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root); 2741 2742 WARN_ON(src_cset->mg_src_cgrp); 2743 WARN_ON(src_cset->mg_dst_cgrp); 2744 WARN_ON(!list_empty(&src_cset->mg_tasks)); 2745 WARN_ON(!list_empty(&src_cset->mg_node)); 2746 2747 src_cset->mg_src_cgrp = src_cgrp; 2748 src_cset->mg_dst_cgrp = dst_cgrp; 2749 get_css_set(src_cset); 2750 list_add_tail(&src_cset->mg_src_preload_node, &mgctx->preloaded_src_csets); 2751 } 2752 2753 /** 2754 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration 2755 * @mgctx: migration context 2756 * 2757 * Tasks are about to be moved and all the source css_sets have been 2758 * preloaded to @mgctx->preloaded_src_csets. This function looks up and 2759 * pins all destination css_sets, links each to its source, and append them 2760 * to @mgctx->preloaded_dst_csets. 2761 * 2762 * This function must be called after cgroup_migrate_add_src() has been 2763 * called on each migration source css_set. After migration is performed 2764 * using cgroup_migrate(), cgroup_migrate_finish() must be called on 2765 * @mgctx. 2766 */ 2767 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx) 2768 { 2769 struct css_set *src_cset, *tmp_cset; 2770 2771 lockdep_assert_held(&cgroup_mutex); 2772 2773 /* look up the dst cset for each src cset and link it to src */ 2774 list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets, 2775 mg_src_preload_node) { 2776 struct css_set *dst_cset; 2777 struct cgroup_subsys *ss; 2778 int ssid; 2779 2780 dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp); 2781 if (!dst_cset) 2782 return -ENOMEM; 2783 2784 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset); 2785 2786 /* 2787 * If src cset equals dst, it's noop. Drop the src. 2788 * cgroup_migrate() will skip the cset too. Note that we 2789 * can't handle src == dst as some nodes are used by both. 2790 */ 2791 if (src_cset == dst_cset) { 2792 src_cset->mg_src_cgrp = NULL; 2793 src_cset->mg_dst_cgrp = NULL; 2794 list_del_init(&src_cset->mg_src_preload_node); 2795 put_css_set(src_cset); 2796 put_css_set(dst_cset); 2797 continue; 2798 } 2799 2800 src_cset->mg_dst_cset = dst_cset; 2801 2802 if (list_empty(&dst_cset->mg_dst_preload_node)) 2803 list_add_tail(&dst_cset->mg_dst_preload_node, 2804 &mgctx->preloaded_dst_csets); 2805 else 2806 put_css_set(dst_cset); 2807 2808 for_each_subsys(ss, ssid) 2809 if (src_cset->subsys[ssid] != dst_cset->subsys[ssid]) 2810 mgctx->ss_mask |= 1 << ssid; 2811 } 2812 2813 return 0; 2814 } 2815 2816 /** 2817 * cgroup_migrate - migrate a process or task to a cgroup 2818 * @leader: the leader of the process or the task to migrate 2819 * @threadgroup: whether @leader points to the whole process or a single task 2820 * @mgctx: migration context 2821 * 2822 * Migrate a process or task denoted by @leader. If migrating a process, 2823 * the caller must be holding cgroup_threadgroup_rwsem. The caller is also 2824 * responsible for invoking cgroup_migrate_add_src() and 2825 * cgroup_migrate_prepare_dst() on the targets before invoking this 2826 * function and following up with cgroup_migrate_finish(). 2827 * 2828 * As long as a controller's ->can_attach() doesn't fail, this function is 2829 * guaranteed to succeed. This means that, excluding ->can_attach() 2830 * failure, when migrating multiple targets, the success or failure can be 2831 * decided for all targets by invoking group_migrate_prepare_dst() before 2832 * actually starting migrating. 2833 */ 2834 int cgroup_migrate(struct task_struct *leader, bool threadgroup, 2835 struct cgroup_mgctx *mgctx) 2836 { 2837 struct task_struct *task; 2838 2839 /* 2840 * Prevent freeing of tasks while we take a snapshot. Tasks that are 2841 * already PF_EXITING could be freed from underneath us unless we 2842 * take an rcu_read_lock. 2843 */ 2844 spin_lock_irq(&css_set_lock); 2845 rcu_read_lock(); 2846 task = leader; 2847 do { 2848 cgroup_migrate_add_task(task, mgctx); 2849 if (!threadgroup) 2850 break; 2851 } while_each_thread(leader, task); 2852 rcu_read_unlock(); 2853 spin_unlock_irq(&css_set_lock); 2854 2855 return cgroup_migrate_execute(mgctx); 2856 } 2857 2858 /** 2859 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup 2860 * @dst_cgrp: the cgroup to attach to 2861 * @leader: the task or the leader of the threadgroup to be attached 2862 * @threadgroup: attach the whole threadgroup? 2863 * 2864 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem. 2865 */ 2866 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader, 2867 bool threadgroup) 2868 { 2869 DEFINE_CGROUP_MGCTX(mgctx); 2870 struct task_struct *task; 2871 int ret = 0; 2872 2873 /* look up all src csets */ 2874 spin_lock_irq(&css_set_lock); 2875 rcu_read_lock(); 2876 task = leader; 2877 do { 2878 cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx); 2879 if (!threadgroup) 2880 break; 2881 } while_each_thread(leader, task); 2882 rcu_read_unlock(); 2883 spin_unlock_irq(&css_set_lock); 2884 2885 /* prepare dst csets and commit */ 2886 ret = cgroup_migrate_prepare_dst(&mgctx); 2887 if (!ret) 2888 ret = cgroup_migrate(leader, threadgroup, &mgctx); 2889 2890 cgroup_migrate_finish(&mgctx); 2891 2892 if (!ret) 2893 TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup); 2894 2895 return ret; 2896 } 2897 2898 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup, 2899 bool *threadgroup_locked) 2900 { 2901 struct task_struct *tsk; 2902 pid_t pid; 2903 2904 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0) 2905 return ERR_PTR(-EINVAL); 2906 2907 /* 2908 * If we migrate a single thread, we don't care about threadgroup 2909 * stability. If the thread is `current`, it won't exit(2) under our 2910 * hands or change PID through exec(2). We exclude 2911 * cgroup_update_dfl_csses and other cgroup_{proc,thread}s_write 2912 * callers by cgroup_mutex. 2913 * Therefore, we can skip the global lock. 2914 */ 2915 lockdep_assert_held(&cgroup_mutex); 2916 *threadgroup_locked = pid || threadgroup; 2917 cgroup_attach_lock(*threadgroup_locked); 2918 2919 rcu_read_lock(); 2920 if (pid) { 2921 tsk = find_task_by_vpid(pid); 2922 if (!tsk) { 2923 tsk = ERR_PTR(-ESRCH); 2924 goto out_unlock_threadgroup; 2925 } 2926 } else { 2927 tsk = current; 2928 } 2929 2930 if (threadgroup) 2931 tsk = tsk->group_leader; 2932 2933 /* 2934 * kthreads may acquire PF_NO_SETAFFINITY during initialization. 2935 * If userland migrates such a kthread to a non-root cgroup, it can 2936 * become trapped in a cpuset, or RT kthread may be born in a 2937 * cgroup with no rt_runtime allocated. Just say no. 2938 */ 2939 if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) { 2940 tsk = ERR_PTR(-EINVAL); 2941 goto out_unlock_threadgroup; 2942 } 2943 2944 get_task_struct(tsk); 2945 goto out_unlock_rcu; 2946 2947 out_unlock_threadgroup: 2948 cgroup_attach_unlock(*threadgroup_locked); 2949 *threadgroup_locked = false; 2950 out_unlock_rcu: 2951 rcu_read_unlock(); 2952 return tsk; 2953 } 2954 2955 void cgroup_procs_write_finish(struct task_struct *task, bool threadgroup_locked) 2956 { 2957 struct cgroup_subsys *ss; 2958 int ssid; 2959 2960 /* release reference from cgroup_procs_write_start() */ 2961 put_task_struct(task); 2962 2963 cgroup_attach_unlock(threadgroup_locked); 2964 2965 for_each_subsys(ss, ssid) 2966 if (ss->post_attach) 2967 ss->post_attach(); 2968 } 2969 2970 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask) 2971 { 2972 struct cgroup_subsys *ss; 2973 bool printed = false; 2974 int ssid; 2975 2976 do_each_subsys_mask(ss, ssid, ss_mask) { 2977 if (printed) 2978 seq_putc(seq, ' '); 2979 seq_puts(seq, ss->name); 2980 printed = true; 2981 } while_each_subsys_mask(); 2982 if (printed) 2983 seq_putc(seq, '\n'); 2984 } 2985 2986 /* show controllers which are enabled from the parent */ 2987 static int cgroup_controllers_show(struct seq_file *seq, void *v) 2988 { 2989 struct cgroup *cgrp = seq_css(seq)->cgroup; 2990 2991 cgroup_print_ss_mask(seq, cgroup_control(cgrp)); 2992 return 0; 2993 } 2994 2995 /* show controllers which are enabled for a given cgroup's children */ 2996 static int cgroup_subtree_control_show(struct seq_file *seq, void *v) 2997 { 2998 struct cgroup *cgrp = seq_css(seq)->cgroup; 2999 3000 cgroup_print_ss_mask(seq, cgrp->subtree_control); 3001 return 0; 3002 } 3003 3004 /** 3005 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy 3006 * @cgrp: root of the subtree to update csses for 3007 * 3008 * @cgrp's control masks have changed and its subtree's css associations 3009 * need to be updated accordingly. This function looks up all css_sets 3010 * which are attached to the subtree, creates the matching updated css_sets 3011 * and migrates the tasks to the new ones. 3012 */ 3013 static int cgroup_update_dfl_csses(struct cgroup *cgrp) 3014 { 3015 DEFINE_CGROUP_MGCTX(mgctx); 3016 struct cgroup_subsys_state *d_css; 3017 struct cgroup *dsct; 3018 struct css_set *src_cset; 3019 bool has_tasks; 3020 int ret; 3021 3022 lockdep_assert_held(&cgroup_mutex); 3023 3024 /* look up all csses currently attached to @cgrp's subtree */ 3025 spin_lock_irq(&css_set_lock); 3026 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 3027 struct cgrp_cset_link *link; 3028 3029 /* 3030 * As cgroup_update_dfl_csses() is only called by 3031 * cgroup_apply_control(). The csses associated with the 3032 * given cgrp will not be affected by changes made to 3033 * its subtree_control file. We can skip them. 3034 */ 3035 if (dsct == cgrp) 3036 continue; 3037 3038 list_for_each_entry(link, &dsct->cset_links, cset_link) 3039 cgroup_migrate_add_src(link->cset, dsct, &mgctx); 3040 } 3041 spin_unlock_irq(&css_set_lock); 3042 3043 /* 3044 * We need to write-lock threadgroup_rwsem while migrating tasks. 3045 * However, if there are no source csets for @cgrp, changing its 3046 * controllers isn't gonna produce any task migrations and the 3047 * write-locking can be skipped safely. 3048 */ 3049 has_tasks = !list_empty(&mgctx.preloaded_src_csets); 3050 cgroup_attach_lock(has_tasks); 3051 3052 /* NULL dst indicates self on default hierarchy */ 3053 ret = cgroup_migrate_prepare_dst(&mgctx); 3054 if (ret) 3055 goto out_finish; 3056 3057 spin_lock_irq(&css_set_lock); 3058 list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, 3059 mg_src_preload_node) { 3060 struct task_struct *task, *ntask; 3061 3062 /* all tasks in src_csets need to be migrated */ 3063 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list) 3064 cgroup_migrate_add_task(task, &mgctx); 3065 } 3066 spin_unlock_irq(&css_set_lock); 3067 3068 ret = cgroup_migrate_execute(&mgctx); 3069 out_finish: 3070 cgroup_migrate_finish(&mgctx); 3071 cgroup_attach_unlock(has_tasks); 3072 return ret; 3073 } 3074 3075 /** 3076 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses 3077 * @cgrp: root of the target subtree 3078 * 3079 * Because css offlining is asynchronous, userland may try to re-enable a 3080 * controller while the previous css is still around. This function grabs 3081 * cgroup_mutex and drains the previous css instances of @cgrp's subtree. 3082 */ 3083 void cgroup_lock_and_drain_offline(struct cgroup *cgrp) 3084 __acquires(&cgroup_mutex) 3085 { 3086 struct cgroup *dsct; 3087 struct cgroup_subsys_state *d_css; 3088 struct cgroup_subsys *ss; 3089 int ssid; 3090 3091 restart: 3092 mutex_lock(&cgroup_mutex); 3093 3094 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 3095 for_each_subsys(ss, ssid) { 3096 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 3097 DEFINE_WAIT(wait); 3098 3099 if (!css || !percpu_ref_is_dying(&css->refcnt)) 3100 continue; 3101 3102 cgroup_get_live(dsct); 3103 prepare_to_wait(&dsct->offline_waitq, &wait, 3104 TASK_UNINTERRUPTIBLE); 3105 3106 mutex_unlock(&cgroup_mutex); 3107 schedule(); 3108 finish_wait(&dsct->offline_waitq, &wait); 3109 3110 cgroup_put(dsct); 3111 goto restart; 3112 } 3113 } 3114 } 3115 3116 /** 3117 * cgroup_save_control - save control masks and dom_cgrp of a subtree 3118 * @cgrp: root of the target subtree 3119 * 3120 * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the 3121 * respective old_ prefixed fields for @cgrp's subtree including @cgrp 3122 * itself. 3123 */ 3124 static void cgroup_save_control(struct cgroup *cgrp) 3125 { 3126 struct cgroup *dsct; 3127 struct cgroup_subsys_state *d_css; 3128 3129 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 3130 dsct->old_subtree_control = dsct->subtree_control; 3131 dsct->old_subtree_ss_mask = dsct->subtree_ss_mask; 3132 dsct->old_dom_cgrp = dsct->dom_cgrp; 3133 } 3134 } 3135 3136 /** 3137 * cgroup_propagate_control - refresh control masks of a subtree 3138 * @cgrp: root of the target subtree 3139 * 3140 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches 3141 * ->subtree_control and propagate controller availability through the 3142 * subtree so that descendants don't have unavailable controllers enabled. 3143 */ 3144 static void cgroup_propagate_control(struct cgroup *cgrp) 3145 { 3146 struct cgroup *dsct; 3147 struct cgroup_subsys_state *d_css; 3148 3149 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 3150 dsct->subtree_control &= cgroup_control(dsct); 3151 dsct->subtree_ss_mask = 3152 cgroup_calc_subtree_ss_mask(dsct->subtree_control, 3153 cgroup_ss_mask(dsct)); 3154 } 3155 } 3156 3157 /** 3158 * cgroup_restore_control - restore control masks and dom_cgrp of a subtree 3159 * @cgrp: root of the target subtree 3160 * 3161 * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the 3162 * respective old_ prefixed fields for @cgrp's subtree including @cgrp 3163 * itself. 3164 */ 3165 static void cgroup_restore_control(struct cgroup *cgrp) 3166 { 3167 struct cgroup *dsct; 3168 struct cgroup_subsys_state *d_css; 3169 3170 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 3171 dsct->subtree_control = dsct->old_subtree_control; 3172 dsct->subtree_ss_mask = dsct->old_subtree_ss_mask; 3173 dsct->dom_cgrp = dsct->old_dom_cgrp; 3174 } 3175 } 3176 3177 static bool css_visible(struct cgroup_subsys_state *css) 3178 { 3179 struct cgroup_subsys *ss = css->ss; 3180 struct cgroup *cgrp = css->cgroup; 3181 3182 if (cgroup_control(cgrp) & (1 << ss->id)) 3183 return true; 3184 if (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) 3185 return false; 3186 return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl; 3187 } 3188 3189 /** 3190 * cgroup_apply_control_enable - enable or show csses according to control 3191 * @cgrp: root of the target subtree 3192 * 3193 * Walk @cgrp's subtree and create new csses or make the existing ones 3194 * visible. A css is created invisible if it's being implicitly enabled 3195 * through dependency. An invisible css is made visible when the userland 3196 * explicitly enables it. 3197 * 3198 * Returns 0 on success, -errno on failure. On failure, csses which have 3199 * been processed already aren't cleaned up. The caller is responsible for 3200 * cleaning up with cgroup_apply_control_disable(). 3201 */ 3202 static int cgroup_apply_control_enable(struct cgroup *cgrp) 3203 { 3204 struct cgroup *dsct; 3205 struct cgroup_subsys_state *d_css; 3206 struct cgroup_subsys *ss; 3207 int ssid, ret; 3208 3209 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 3210 for_each_subsys(ss, ssid) { 3211 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 3212 3213 if (!(cgroup_ss_mask(dsct) & (1 << ss->id))) 3214 continue; 3215 3216 if (!css) { 3217 css = css_create(dsct, ss); 3218 if (IS_ERR(css)) 3219 return PTR_ERR(css); 3220 } 3221 3222 WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt)); 3223 3224 if (css_visible(css)) { 3225 ret = css_populate_dir(css); 3226 if (ret) 3227 return ret; 3228 } 3229 } 3230 } 3231 3232 return 0; 3233 } 3234 3235 /** 3236 * cgroup_apply_control_disable - kill or hide csses according to control 3237 * @cgrp: root of the target subtree 3238 * 3239 * Walk @cgrp's subtree and kill and hide csses so that they match 3240 * cgroup_ss_mask() and cgroup_visible_mask(). 3241 * 3242 * A css is hidden when the userland requests it to be disabled while other 3243 * subsystems are still depending on it. The css must not actively control 3244 * resources and be in the vanilla state if it's made visible again later. 3245 * Controllers which may be depended upon should provide ->css_reset() for 3246 * this purpose. 3247 */ 3248 static void cgroup_apply_control_disable(struct cgroup *cgrp) 3249 { 3250 struct cgroup *dsct; 3251 struct cgroup_subsys_state *d_css; 3252 struct cgroup_subsys *ss; 3253 int ssid; 3254 3255 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 3256 for_each_subsys(ss, ssid) { 3257 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 3258 3259 if (!css) 3260 continue; 3261 3262 WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt)); 3263 3264 if (css->parent && 3265 !(cgroup_ss_mask(dsct) & (1 << ss->id))) { 3266 kill_css(css); 3267 } else if (!css_visible(css)) { 3268 css_clear_dir(css); 3269 if (ss->css_reset) 3270 ss->css_reset(css); 3271 } 3272 } 3273 } 3274 } 3275 3276 /** 3277 * cgroup_apply_control - apply control mask updates to the subtree 3278 * @cgrp: root of the target subtree 3279 * 3280 * subsystems can be enabled and disabled in a subtree using the following 3281 * steps. 3282 * 3283 * 1. Call cgroup_save_control() to stash the current state. 3284 * 2. Update ->subtree_control masks in the subtree as desired. 3285 * 3. Call cgroup_apply_control() to apply the changes. 3286 * 4. Optionally perform other related operations. 3287 * 5. Call cgroup_finalize_control() to finish up. 3288 * 3289 * This function implements step 3 and propagates the mask changes 3290 * throughout @cgrp's subtree, updates csses accordingly and perform 3291 * process migrations. 3292 */ 3293 static int cgroup_apply_control(struct cgroup *cgrp) 3294 { 3295 int ret; 3296 3297 cgroup_propagate_control(cgrp); 3298 3299 ret = cgroup_apply_control_enable(cgrp); 3300 if (ret) 3301 return ret; 3302 3303 /* 3304 * At this point, cgroup_e_css_by_mask() results reflect the new csses 3305 * making the following cgroup_update_dfl_csses() properly update 3306 * css associations of all tasks in the subtree. 3307 */ 3308 return cgroup_update_dfl_csses(cgrp); 3309 } 3310 3311 /** 3312 * cgroup_finalize_control - finalize control mask update 3313 * @cgrp: root of the target subtree 3314 * @ret: the result of the update 3315 * 3316 * Finalize control mask update. See cgroup_apply_control() for more info. 3317 */ 3318 static void cgroup_finalize_control(struct cgroup *cgrp, int ret) 3319 { 3320 if (ret) { 3321 cgroup_restore_control(cgrp); 3322 cgroup_propagate_control(cgrp); 3323 } 3324 3325 cgroup_apply_control_disable(cgrp); 3326 } 3327 3328 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable) 3329 { 3330 u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask; 3331 3332 /* if nothing is getting enabled, nothing to worry about */ 3333 if (!enable) 3334 return 0; 3335 3336 /* can @cgrp host any resources? */ 3337 if (!cgroup_is_valid_domain(cgrp->dom_cgrp)) 3338 return -EOPNOTSUPP; 3339 3340 /* mixables don't care */ 3341 if (cgroup_is_mixable(cgrp)) 3342 return 0; 3343 3344 if (domain_enable) { 3345 /* can't enable domain controllers inside a thread subtree */ 3346 if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp)) 3347 return -EOPNOTSUPP; 3348 } else { 3349 /* 3350 * Threaded controllers can handle internal competitions 3351 * and are always allowed inside a (prospective) thread 3352 * subtree. 3353 */ 3354 if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp)) 3355 return 0; 3356 } 3357 3358 /* 3359 * Controllers can't be enabled for a cgroup with tasks to avoid 3360 * child cgroups competing against tasks. 3361 */ 3362 if (cgroup_has_tasks(cgrp)) 3363 return -EBUSY; 3364 3365 return 0; 3366 } 3367 3368 /* change the enabled child controllers for a cgroup in the default hierarchy */ 3369 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of, 3370 char *buf, size_t nbytes, 3371 loff_t off) 3372 { 3373 u16 enable = 0, disable = 0; 3374 struct cgroup *cgrp, *child; 3375 struct cgroup_subsys *ss; 3376 char *tok; 3377 int ssid, ret; 3378 3379 /* 3380 * Parse input - space separated list of subsystem names prefixed 3381 * with either + or -. 3382 */ 3383 buf = strstrip(buf); 3384 while ((tok = strsep(&buf, " "))) { 3385 if (tok[0] == '\0') 3386 continue; 3387 do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) { 3388 if (!cgroup_ssid_enabled(ssid) || 3389 strcmp(tok + 1, ss->name)) 3390 continue; 3391 3392 if (*tok == '+') { 3393 enable |= 1 << ssid; 3394 disable &= ~(1 << ssid); 3395 } else if (*tok == '-') { 3396 disable |= 1 << ssid; 3397 enable &= ~(1 << ssid); 3398 } else { 3399 return -EINVAL; 3400 } 3401 break; 3402 } while_each_subsys_mask(); 3403 if (ssid == CGROUP_SUBSYS_COUNT) 3404 return -EINVAL; 3405 } 3406 3407 cgrp = cgroup_kn_lock_live(of->kn, true); 3408 if (!cgrp) 3409 return -ENODEV; 3410 3411 for_each_subsys(ss, ssid) { 3412 if (enable & (1 << ssid)) { 3413 if (cgrp->subtree_control & (1 << ssid)) { 3414 enable &= ~(1 << ssid); 3415 continue; 3416 } 3417 3418 if (!(cgroup_control(cgrp) & (1 << ssid))) { 3419 ret = -ENOENT; 3420 goto out_unlock; 3421 } 3422 } else if (disable & (1 << ssid)) { 3423 if (!(cgrp->subtree_control & (1 << ssid))) { 3424 disable &= ~(1 << ssid); 3425 continue; 3426 } 3427 3428 /* a child has it enabled? */ 3429 cgroup_for_each_live_child(child, cgrp) { 3430 if (child->subtree_control & (1 << ssid)) { 3431 ret = -EBUSY; 3432 goto out_unlock; 3433 } 3434 } 3435 } 3436 } 3437 3438 if (!enable && !disable) { 3439 ret = 0; 3440 goto out_unlock; 3441 } 3442 3443 ret = cgroup_vet_subtree_control_enable(cgrp, enable); 3444 if (ret) 3445 goto out_unlock; 3446 3447 /* save and update control masks and prepare csses */ 3448 cgroup_save_control(cgrp); 3449 3450 cgrp->subtree_control |= enable; 3451 cgrp->subtree_control &= ~disable; 3452 3453 ret = cgroup_apply_control(cgrp); 3454 cgroup_finalize_control(cgrp, ret); 3455 if (ret) 3456 goto out_unlock; 3457 3458 kernfs_activate(cgrp->kn); 3459 out_unlock: 3460 cgroup_kn_unlock(of->kn); 3461 return ret ?: nbytes; 3462 } 3463 3464 /** 3465 * cgroup_enable_threaded - make @cgrp threaded 3466 * @cgrp: the target cgroup 3467 * 3468 * Called when "threaded" is written to the cgroup.type interface file and 3469 * tries to make @cgrp threaded and join the parent's resource domain. 3470 * This function is never called on the root cgroup as cgroup.type doesn't 3471 * exist on it. 3472 */ 3473 static int cgroup_enable_threaded(struct cgroup *cgrp) 3474 { 3475 struct cgroup *parent = cgroup_parent(cgrp); 3476 struct cgroup *dom_cgrp = parent->dom_cgrp; 3477 struct cgroup *dsct; 3478 struct cgroup_subsys_state *d_css; 3479 int ret; 3480 3481 lockdep_assert_held(&cgroup_mutex); 3482 3483 /* noop if already threaded */ 3484 if (cgroup_is_threaded(cgrp)) 3485 return 0; 3486 3487 /* 3488 * If @cgroup is populated or has domain controllers enabled, it 3489 * can't be switched. While the below cgroup_can_be_thread_root() 3490 * test can catch the same conditions, that's only when @parent is 3491 * not mixable, so let's check it explicitly. 3492 */ 3493 if (cgroup_is_populated(cgrp) || 3494 cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask) 3495 return -EOPNOTSUPP; 3496 3497 /* we're joining the parent's domain, ensure its validity */ 3498 if (!cgroup_is_valid_domain(dom_cgrp) || 3499 !cgroup_can_be_thread_root(dom_cgrp)) 3500 return -EOPNOTSUPP; 3501 3502 /* 3503 * The following shouldn't cause actual migrations and should 3504 * always succeed. 3505 */ 3506 cgroup_save_control(cgrp); 3507 3508 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) 3509 if (dsct == cgrp || cgroup_is_threaded(dsct)) 3510 dsct->dom_cgrp = dom_cgrp; 3511 3512 ret = cgroup_apply_control(cgrp); 3513 if (!ret) 3514 parent->nr_threaded_children++; 3515 3516 cgroup_finalize_control(cgrp, ret); 3517 return ret; 3518 } 3519 3520 static int cgroup_type_show(struct seq_file *seq, void *v) 3521 { 3522 struct cgroup *cgrp = seq_css(seq)->cgroup; 3523 3524 if (cgroup_is_threaded(cgrp)) 3525 seq_puts(seq, "threaded\n"); 3526 else if (!cgroup_is_valid_domain(cgrp)) 3527 seq_puts(seq, "domain invalid\n"); 3528 else if (cgroup_is_thread_root(cgrp)) 3529 seq_puts(seq, "domain threaded\n"); 3530 else 3531 seq_puts(seq, "domain\n"); 3532 3533 return 0; 3534 } 3535 3536 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf, 3537 size_t nbytes, loff_t off) 3538 { 3539 struct cgroup *cgrp; 3540 int ret; 3541 3542 /* only switching to threaded mode is supported */ 3543 if (strcmp(strstrip(buf), "threaded")) 3544 return -EINVAL; 3545 3546 /* drain dying csses before we re-apply (threaded) subtree control */ 3547 cgrp = cgroup_kn_lock_live(of->kn, true); 3548 if (!cgrp) 3549 return -ENOENT; 3550 3551 /* threaded can only be enabled */ 3552 ret = cgroup_enable_threaded(cgrp); 3553 3554 cgroup_kn_unlock(of->kn); 3555 return ret ?: nbytes; 3556 } 3557 3558 static int cgroup_max_descendants_show(struct seq_file *seq, void *v) 3559 { 3560 struct cgroup *cgrp = seq_css(seq)->cgroup; 3561 int descendants = READ_ONCE(cgrp->max_descendants); 3562 3563 if (descendants == INT_MAX) 3564 seq_puts(seq, "max\n"); 3565 else 3566 seq_printf(seq, "%d\n", descendants); 3567 3568 return 0; 3569 } 3570 3571 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of, 3572 char *buf, size_t nbytes, loff_t off) 3573 { 3574 struct cgroup *cgrp; 3575 int descendants; 3576 ssize_t ret; 3577 3578 buf = strstrip(buf); 3579 if (!strcmp(buf, "max")) { 3580 descendants = INT_MAX; 3581 } else { 3582 ret = kstrtoint(buf, 0, &descendants); 3583 if (ret) 3584 return ret; 3585 } 3586 3587 if (descendants < 0) 3588 return -ERANGE; 3589 3590 cgrp = cgroup_kn_lock_live(of->kn, false); 3591 if (!cgrp) 3592 return -ENOENT; 3593 3594 cgrp->max_descendants = descendants; 3595 3596 cgroup_kn_unlock(of->kn); 3597 3598 return nbytes; 3599 } 3600 3601 static int cgroup_max_depth_show(struct seq_file *seq, void *v) 3602 { 3603 struct cgroup *cgrp = seq_css(seq)->cgroup; 3604 int depth = READ_ONCE(cgrp->max_depth); 3605 3606 if (depth == INT_MAX) 3607 seq_puts(seq, "max\n"); 3608 else 3609 seq_printf(seq, "%d\n", depth); 3610 3611 return 0; 3612 } 3613 3614 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of, 3615 char *buf, size_t nbytes, loff_t off) 3616 { 3617 struct cgroup *cgrp; 3618 ssize_t ret; 3619 int depth; 3620 3621 buf = strstrip(buf); 3622 if (!strcmp(buf, "max")) { 3623 depth = INT_MAX; 3624 } else { 3625 ret = kstrtoint(buf, 0, &depth); 3626 if (ret) 3627 return ret; 3628 } 3629 3630 if (depth < 0) 3631 return -ERANGE; 3632 3633 cgrp = cgroup_kn_lock_live(of->kn, false); 3634 if (!cgrp) 3635 return -ENOENT; 3636 3637 cgrp->max_depth = depth; 3638 3639 cgroup_kn_unlock(of->kn); 3640 3641 return nbytes; 3642 } 3643 3644 static int cgroup_events_show(struct seq_file *seq, void *v) 3645 { 3646 struct cgroup *cgrp = seq_css(seq)->cgroup; 3647 3648 seq_printf(seq, "populated %d\n", cgroup_is_populated(cgrp)); 3649 seq_printf(seq, "frozen %d\n", test_bit(CGRP_FROZEN, &cgrp->flags)); 3650 3651 return 0; 3652 } 3653 3654 static int cgroup_stat_show(struct seq_file *seq, void *v) 3655 { 3656 struct cgroup *cgroup = seq_css(seq)->cgroup; 3657 3658 seq_printf(seq, "nr_descendants %d\n", 3659 cgroup->nr_descendants); 3660 seq_printf(seq, "nr_dying_descendants %d\n", 3661 cgroup->nr_dying_descendants); 3662 3663 return 0; 3664 } 3665 3666 static int __maybe_unused cgroup_extra_stat_show(struct seq_file *seq, 3667 struct cgroup *cgrp, int ssid) 3668 { 3669 struct cgroup_subsys *ss = cgroup_subsys[ssid]; 3670 struct cgroup_subsys_state *css; 3671 int ret; 3672 3673 if (!ss->css_extra_stat_show) 3674 return 0; 3675 3676 css = cgroup_tryget_css(cgrp, ss); 3677 if (!css) 3678 return 0; 3679 3680 ret = ss->css_extra_stat_show(seq, css); 3681 css_put(css); 3682 return ret; 3683 } 3684 3685 static int cpu_stat_show(struct seq_file *seq, void *v) 3686 { 3687 struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup; 3688 int ret = 0; 3689 3690 cgroup_base_stat_cputime_show(seq); 3691 #ifdef CONFIG_CGROUP_SCHED 3692 ret = cgroup_extra_stat_show(seq, cgrp, cpu_cgrp_id); 3693 #endif 3694 return ret; 3695 } 3696 3697 #ifdef CONFIG_PSI 3698 static int cgroup_io_pressure_show(struct seq_file *seq, void *v) 3699 { 3700 struct cgroup *cgrp = seq_css(seq)->cgroup; 3701 struct psi_group *psi = cgroup_psi(cgrp); 3702 3703 return psi_show(seq, psi, PSI_IO); 3704 } 3705 static int cgroup_memory_pressure_show(struct seq_file *seq, void *v) 3706 { 3707 struct cgroup *cgrp = seq_css(seq)->cgroup; 3708 struct psi_group *psi = cgroup_psi(cgrp); 3709 3710 return psi_show(seq, psi, PSI_MEM); 3711 } 3712 static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v) 3713 { 3714 struct cgroup *cgrp = seq_css(seq)->cgroup; 3715 struct psi_group *psi = cgroup_psi(cgrp); 3716 3717 return psi_show(seq, psi, PSI_CPU); 3718 } 3719 3720 static ssize_t pressure_write(struct kernfs_open_file *of, char *buf, 3721 size_t nbytes, enum psi_res res) 3722 { 3723 struct cgroup_file_ctx *ctx = of->priv; 3724 struct psi_trigger *new; 3725 struct cgroup *cgrp; 3726 struct psi_group *psi; 3727 3728 cgrp = cgroup_kn_lock_live(of->kn, false); 3729 if (!cgrp) 3730 return -ENODEV; 3731 3732 cgroup_get(cgrp); 3733 cgroup_kn_unlock(of->kn); 3734 3735 /* Allow only one trigger per file descriptor */ 3736 if (ctx->psi.trigger) { 3737 cgroup_put(cgrp); 3738 return -EBUSY; 3739 } 3740 3741 psi = cgroup_psi(cgrp); 3742 new = psi_trigger_create(psi, buf, res); 3743 if (IS_ERR(new)) { 3744 cgroup_put(cgrp); 3745 return PTR_ERR(new); 3746 } 3747 3748 smp_store_release(&ctx->psi.trigger, new); 3749 cgroup_put(cgrp); 3750 3751 return nbytes; 3752 } 3753 3754 static ssize_t cgroup_io_pressure_write(struct kernfs_open_file *of, 3755 char *buf, size_t nbytes, 3756 loff_t off) 3757 { 3758 return pressure_write(of, buf, nbytes, PSI_IO); 3759 } 3760 3761 static ssize_t cgroup_memory_pressure_write(struct kernfs_open_file *of, 3762 char *buf, size_t nbytes, 3763 loff_t off) 3764 { 3765 return pressure_write(of, buf, nbytes, PSI_MEM); 3766 } 3767 3768 static ssize_t cgroup_cpu_pressure_write(struct kernfs_open_file *of, 3769 char *buf, size_t nbytes, 3770 loff_t off) 3771 { 3772 return pressure_write(of, buf, nbytes, PSI_CPU); 3773 } 3774 3775 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 3776 static int cgroup_irq_pressure_show(struct seq_file *seq, void *v) 3777 { 3778 struct cgroup *cgrp = seq_css(seq)->cgroup; 3779 struct psi_group *psi = cgroup_psi(cgrp); 3780 3781 return psi_show(seq, psi, PSI_IRQ); 3782 } 3783 3784 static ssize_t cgroup_irq_pressure_write(struct kernfs_open_file *of, 3785 char *buf, size_t nbytes, 3786 loff_t off) 3787 { 3788 return pressure_write(of, buf, nbytes, PSI_IRQ); 3789 } 3790 #endif 3791 3792 static int cgroup_pressure_show(struct seq_file *seq, void *v) 3793 { 3794 struct cgroup *cgrp = seq_css(seq)->cgroup; 3795 struct psi_group *psi = cgroup_psi(cgrp); 3796 3797 seq_printf(seq, "%d\n", psi->enabled); 3798 3799 return 0; 3800 } 3801 3802 static ssize_t cgroup_pressure_write(struct kernfs_open_file *of, 3803 char *buf, size_t nbytes, 3804 loff_t off) 3805 { 3806 ssize_t ret; 3807 int enable; 3808 struct cgroup *cgrp; 3809 struct psi_group *psi; 3810 3811 ret = kstrtoint(strstrip(buf), 0, &enable); 3812 if (ret) 3813 return ret; 3814 3815 if (enable < 0 || enable > 1) 3816 return -ERANGE; 3817 3818 cgrp = cgroup_kn_lock_live(of->kn, false); 3819 if (!cgrp) 3820 return -ENOENT; 3821 3822 psi = cgroup_psi(cgrp); 3823 if (psi->enabled != enable) { 3824 int i; 3825 3826 /* show or hide {cpu,memory,io,irq}.pressure files */ 3827 for (i = 0; i < NR_PSI_RESOURCES; i++) 3828 cgroup_file_show(&cgrp->psi_files[i], enable); 3829 3830 psi->enabled = enable; 3831 if (enable) 3832 psi_cgroup_restart(psi); 3833 } 3834 3835 cgroup_kn_unlock(of->kn); 3836 3837 return nbytes; 3838 } 3839 3840 static __poll_t cgroup_pressure_poll(struct kernfs_open_file *of, 3841 poll_table *pt) 3842 { 3843 struct cgroup_file_ctx *ctx = of->priv; 3844 3845 return psi_trigger_poll(&ctx->psi.trigger, of->file, pt); 3846 } 3847 3848 static void cgroup_pressure_release(struct kernfs_open_file *of) 3849 { 3850 struct cgroup_file_ctx *ctx = of->priv; 3851 3852 psi_trigger_destroy(ctx->psi.trigger); 3853 } 3854 3855 bool cgroup_psi_enabled(void) 3856 { 3857 if (static_branch_likely(&psi_disabled)) 3858 return false; 3859 3860 return (cgroup_feature_disable_mask & (1 << OPT_FEATURE_PRESSURE)) == 0; 3861 } 3862 3863 #else /* CONFIG_PSI */ 3864 bool cgroup_psi_enabled(void) 3865 { 3866 return false; 3867 } 3868 3869 #endif /* CONFIG_PSI */ 3870 3871 static int cgroup_freeze_show(struct seq_file *seq, void *v) 3872 { 3873 struct cgroup *cgrp = seq_css(seq)->cgroup; 3874 3875 seq_printf(seq, "%d\n", cgrp->freezer.freeze); 3876 3877 return 0; 3878 } 3879 3880 static ssize_t cgroup_freeze_write(struct kernfs_open_file *of, 3881 char *buf, size_t nbytes, loff_t off) 3882 { 3883 struct cgroup *cgrp; 3884 ssize_t ret; 3885 int freeze; 3886 3887 ret = kstrtoint(strstrip(buf), 0, &freeze); 3888 if (ret) 3889 return ret; 3890 3891 if (freeze < 0 || freeze > 1) 3892 return -ERANGE; 3893 3894 cgrp = cgroup_kn_lock_live(of->kn, false); 3895 if (!cgrp) 3896 return -ENOENT; 3897 3898 cgroup_freeze(cgrp, freeze); 3899 3900 cgroup_kn_unlock(of->kn); 3901 3902 return nbytes; 3903 } 3904 3905 static void __cgroup_kill(struct cgroup *cgrp) 3906 { 3907 struct css_task_iter it; 3908 struct task_struct *task; 3909 3910 lockdep_assert_held(&cgroup_mutex); 3911 3912 spin_lock_irq(&css_set_lock); 3913 set_bit(CGRP_KILL, &cgrp->flags); 3914 spin_unlock_irq(&css_set_lock); 3915 3916 css_task_iter_start(&cgrp->self, CSS_TASK_ITER_PROCS | CSS_TASK_ITER_THREADED, &it); 3917 while ((task = css_task_iter_next(&it))) { 3918 /* Ignore kernel threads here. */ 3919 if (task->flags & PF_KTHREAD) 3920 continue; 3921 3922 /* Skip tasks that are already dying. */ 3923 if (__fatal_signal_pending(task)) 3924 continue; 3925 3926 send_sig(SIGKILL, task, 0); 3927 } 3928 css_task_iter_end(&it); 3929 3930 spin_lock_irq(&css_set_lock); 3931 clear_bit(CGRP_KILL, &cgrp->flags); 3932 spin_unlock_irq(&css_set_lock); 3933 } 3934 3935 static void cgroup_kill(struct cgroup *cgrp) 3936 { 3937 struct cgroup_subsys_state *css; 3938 struct cgroup *dsct; 3939 3940 lockdep_assert_held(&cgroup_mutex); 3941 3942 cgroup_for_each_live_descendant_pre(dsct, css, cgrp) 3943 __cgroup_kill(dsct); 3944 } 3945 3946 static ssize_t cgroup_kill_write(struct kernfs_open_file *of, char *buf, 3947 size_t nbytes, loff_t off) 3948 { 3949 ssize_t ret = 0; 3950 int kill; 3951 struct cgroup *cgrp; 3952 3953 ret = kstrtoint(strstrip(buf), 0, &kill); 3954 if (ret) 3955 return ret; 3956 3957 if (kill != 1) 3958 return -ERANGE; 3959 3960 cgrp = cgroup_kn_lock_live(of->kn, false); 3961 if (!cgrp) 3962 return -ENOENT; 3963 3964 /* 3965 * Killing is a process directed operation, i.e. the whole thread-group 3966 * is taken down so act like we do for cgroup.procs and only make this 3967 * writable in non-threaded cgroups. 3968 */ 3969 if (cgroup_is_threaded(cgrp)) 3970 ret = -EOPNOTSUPP; 3971 else 3972 cgroup_kill(cgrp); 3973 3974 cgroup_kn_unlock(of->kn); 3975 3976 return ret ?: nbytes; 3977 } 3978 3979 static int cgroup_file_open(struct kernfs_open_file *of) 3980 { 3981 struct cftype *cft = of_cft(of); 3982 struct cgroup_file_ctx *ctx; 3983 int ret; 3984 3985 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 3986 if (!ctx) 3987 return -ENOMEM; 3988 3989 ctx->ns = current->nsproxy->cgroup_ns; 3990 get_cgroup_ns(ctx->ns); 3991 of->priv = ctx; 3992 3993 if (!cft->open) 3994 return 0; 3995 3996 ret = cft->open(of); 3997 if (ret) { 3998 put_cgroup_ns(ctx->ns); 3999 kfree(ctx); 4000 } 4001 return ret; 4002 } 4003 4004 static void cgroup_file_release(struct kernfs_open_file *of) 4005 { 4006 struct cftype *cft = of_cft(of); 4007 struct cgroup_file_ctx *ctx = of->priv; 4008 4009 if (cft->release) 4010 cft->release(of); 4011 put_cgroup_ns(ctx->ns); 4012 kfree(ctx); 4013 } 4014 4015 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf, 4016 size_t nbytes, loff_t off) 4017 { 4018 struct cgroup_file_ctx *ctx = of->priv; 4019 struct cgroup *cgrp = of->kn->parent->priv; 4020 struct cftype *cft = of_cft(of); 4021 struct cgroup_subsys_state *css; 4022 int ret; 4023 4024 if (!nbytes) 4025 return 0; 4026 4027 /* 4028 * If namespaces are delegation boundaries, disallow writes to 4029 * files in an non-init namespace root from inside the namespace 4030 * except for the files explicitly marked delegatable - 4031 * cgroup.procs and cgroup.subtree_control. 4032 */ 4033 if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) && 4034 !(cft->flags & CFTYPE_NS_DELEGATABLE) && 4035 ctx->ns != &init_cgroup_ns && ctx->ns->root_cset->dfl_cgrp == cgrp) 4036 return -EPERM; 4037 4038 if (cft->write) 4039 return cft->write(of, buf, nbytes, off); 4040 4041 /* 4042 * kernfs guarantees that a file isn't deleted with operations in 4043 * flight, which means that the matching css is and stays alive and 4044 * doesn't need to be pinned. The RCU locking is not necessary 4045 * either. It's just for the convenience of using cgroup_css(). 4046 */ 4047 rcu_read_lock(); 4048 css = cgroup_css(cgrp, cft->ss); 4049 rcu_read_unlock(); 4050 4051 if (cft->write_u64) { 4052 unsigned long long v; 4053 ret = kstrtoull(buf, 0, &v); 4054 if (!ret) 4055 ret = cft->write_u64(css, cft, v); 4056 } else if (cft->write_s64) { 4057 long long v; 4058 ret = kstrtoll(buf, 0, &v); 4059 if (!ret) 4060 ret = cft->write_s64(css, cft, v); 4061 } else { 4062 ret = -EINVAL; 4063 } 4064 4065 return ret ?: nbytes; 4066 } 4067 4068 static __poll_t cgroup_file_poll(struct kernfs_open_file *of, poll_table *pt) 4069 { 4070 struct cftype *cft = of_cft(of); 4071 4072 if (cft->poll) 4073 return cft->poll(of, pt); 4074 4075 return kernfs_generic_poll(of, pt); 4076 } 4077 4078 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos) 4079 { 4080 return seq_cft(seq)->seq_start(seq, ppos); 4081 } 4082 4083 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos) 4084 { 4085 return seq_cft(seq)->seq_next(seq, v, ppos); 4086 } 4087 4088 static void cgroup_seqfile_stop(struct seq_file *seq, void *v) 4089 { 4090 if (seq_cft(seq)->seq_stop) 4091 seq_cft(seq)->seq_stop(seq, v); 4092 } 4093 4094 static int cgroup_seqfile_show(struct seq_file *m, void *arg) 4095 { 4096 struct cftype *cft = seq_cft(m); 4097 struct cgroup_subsys_state *css = seq_css(m); 4098 4099 if (cft->seq_show) 4100 return cft->seq_show(m, arg); 4101 4102 if (cft->read_u64) 4103 seq_printf(m, "%llu\n", cft->read_u64(css, cft)); 4104 else if (cft->read_s64) 4105 seq_printf(m, "%lld\n", cft->read_s64(css, cft)); 4106 else 4107 return -EINVAL; 4108 return 0; 4109 } 4110 4111 static struct kernfs_ops cgroup_kf_single_ops = { 4112 .atomic_write_len = PAGE_SIZE, 4113 .open = cgroup_file_open, 4114 .release = cgroup_file_release, 4115 .write = cgroup_file_write, 4116 .poll = cgroup_file_poll, 4117 .seq_show = cgroup_seqfile_show, 4118 }; 4119 4120 static struct kernfs_ops cgroup_kf_ops = { 4121 .atomic_write_len = PAGE_SIZE, 4122 .open = cgroup_file_open, 4123 .release = cgroup_file_release, 4124 .write = cgroup_file_write, 4125 .poll = cgroup_file_poll, 4126 .seq_start = cgroup_seqfile_start, 4127 .seq_next = cgroup_seqfile_next, 4128 .seq_stop = cgroup_seqfile_stop, 4129 .seq_show = cgroup_seqfile_show, 4130 }; 4131 4132 /* set uid and gid of cgroup dirs and files to that of the creator */ 4133 static int cgroup_kn_set_ugid(struct kernfs_node *kn) 4134 { 4135 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID, 4136 .ia_uid = current_fsuid(), 4137 .ia_gid = current_fsgid(), }; 4138 4139 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) && 4140 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID)) 4141 return 0; 4142 4143 return kernfs_setattr(kn, &iattr); 4144 } 4145 4146 static void cgroup_file_notify_timer(struct timer_list *timer) 4147 { 4148 cgroup_file_notify(container_of(timer, struct cgroup_file, 4149 notify_timer)); 4150 } 4151 4152 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp, 4153 struct cftype *cft) 4154 { 4155 char name[CGROUP_FILE_NAME_MAX]; 4156 struct kernfs_node *kn; 4157 struct lock_class_key *key = NULL; 4158 int ret; 4159 4160 #ifdef CONFIG_DEBUG_LOCK_ALLOC 4161 key = &cft->lockdep_key; 4162 #endif 4163 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name), 4164 cgroup_file_mode(cft), 4165 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 4166 0, cft->kf_ops, cft, 4167 NULL, key); 4168 if (IS_ERR(kn)) 4169 return PTR_ERR(kn); 4170 4171 ret = cgroup_kn_set_ugid(kn); 4172 if (ret) { 4173 kernfs_remove(kn); 4174 return ret; 4175 } 4176 4177 if (cft->file_offset) { 4178 struct cgroup_file *cfile = (void *)css + cft->file_offset; 4179 4180 timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0); 4181 4182 spin_lock_irq(&cgroup_file_kn_lock); 4183 cfile->kn = kn; 4184 spin_unlock_irq(&cgroup_file_kn_lock); 4185 } 4186 4187 return 0; 4188 } 4189 4190 /** 4191 * cgroup_addrm_files - add or remove files to a cgroup directory 4192 * @css: the target css 4193 * @cgrp: the target cgroup (usually css->cgroup) 4194 * @cfts: array of cftypes to be added 4195 * @is_add: whether to add or remove 4196 * 4197 * Depending on @is_add, add or remove files defined by @cfts on @cgrp. 4198 * For removals, this function never fails. 4199 */ 4200 static int cgroup_addrm_files(struct cgroup_subsys_state *css, 4201 struct cgroup *cgrp, struct cftype cfts[], 4202 bool is_add) 4203 { 4204 struct cftype *cft, *cft_end = NULL; 4205 int ret = 0; 4206 4207 lockdep_assert_held(&cgroup_mutex); 4208 4209 restart: 4210 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) { 4211 /* does cft->flags tell us to skip this file on @cgrp? */ 4212 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp)) 4213 continue; 4214 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp)) 4215 continue; 4216 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp)) 4217 continue; 4218 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp)) 4219 continue; 4220 if ((cft->flags & CFTYPE_DEBUG) && !cgroup_debug) 4221 continue; 4222 if (is_add) { 4223 ret = cgroup_add_file(css, cgrp, cft); 4224 if (ret) { 4225 pr_warn("%s: failed to add %s, err=%d\n", 4226 __func__, cft->name, ret); 4227 cft_end = cft; 4228 is_add = false; 4229 goto restart; 4230 } 4231 } else { 4232 cgroup_rm_file(cgrp, cft); 4233 } 4234 } 4235 return ret; 4236 } 4237 4238 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add) 4239 { 4240 struct cgroup_subsys *ss = cfts[0].ss; 4241 struct cgroup *root = &ss->root->cgrp; 4242 struct cgroup_subsys_state *css; 4243 int ret = 0; 4244 4245 lockdep_assert_held(&cgroup_mutex); 4246 4247 /* add/rm files for all cgroups created before */ 4248 css_for_each_descendant_pre(css, cgroup_css(root, ss)) { 4249 struct cgroup *cgrp = css->cgroup; 4250 4251 if (!(css->flags & CSS_VISIBLE)) 4252 continue; 4253 4254 ret = cgroup_addrm_files(css, cgrp, cfts, is_add); 4255 if (ret) 4256 break; 4257 } 4258 4259 if (is_add && !ret) 4260 kernfs_activate(root->kn); 4261 return ret; 4262 } 4263 4264 static void cgroup_exit_cftypes(struct cftype *cfts) 4265 { 4266 struct cftype *cft; 4267 4268 for (cft = cfts; cft->name[0] != '\0'; cft++) { 4269 /* free copy for custom atomic_write_len, see init_cftypes() */ 4270 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) 4271 kfree(cft->kf_ops); 4272 cft->kf_ops = NULL; 4273 cft->ss = NULL; 4274 4275 /* revert flags set by cgroup core while adding @cfts */ 4276 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL | 4277 __CFTYPE_ADDED); 4278 } 4279 } 4280 4281 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4282 { 4283 struct cftype *cft; 4284 int ret = 0; 4285 4286 for (cft = cfts; cft->name[0] != '\0'; cft++) { 4287 struct kernfs_ops *kf_ops; 4288 4289 WARN_ON(cft->ss || cft->kf_ops); 4290 4291 if (cft->flags & __CFTYPE_ADDED) { 4292 ret = -EBUSY; 4293 break; 4294 } 4295 4296 if (cft->seq_start) 4297 kf_ops = &cgroup_kf_ops; 4298 else 4299 kf_ops = &cgroup_kf_single_ops; 4300 4301 /* 4302 * Ugh... if @cft wants a custom max_write_len, we need to 4303 * make a copy of kf_ops to set its atomic_write_len. 4304 */ 4305 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) { 4306 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL); 4307 if (!kf_ops) { 4308 ret = -ENOMEM; 4309 break; 4310 } 4311 kf_ops->atomic_write_len = cft->max_write_len; 4312 } 4313 4314 cft->kf_ops = kf_ops; 4315 cft->ss = ss; 4316 cft->flags |= __CFTYPE_ADDED; 4317 } 4318 4319 if (ret) 4320 cgroup_exit_cftypes(cfts); 4321 return ret; 4322 } 4323 4324 static int cgroup_rm_cftypes_locked(struct cftype *cfts) 4325 { 4326 lockdep_assert_held(&cgroup_mutex); 4327 4328 list_del(&cfts->node); 4329 cgroup_apply_cftypes(cfts, false); 4330 cgroup_exit_cftypes(cfts); 4331 return 0; 4332 } 4333 4334 /** 4335 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem 4336 * @cfts: zero-length name terminated array of cftypes 4337 * 4338 * Unregister @cfts. Files described by @cfts are removed from all 4339 * existing cgroups and all future cgroups won't have them either. This 4340 * function can be called anytime whether @cfts' subsys is attached or not. 4341 * 4342 * Returns 0 on successful unregistration, -ENOENT if @cfts is not 4343 * registered. 4344 */ 4345 int cgroup_rm_cftypes(struct cftype *cfts) 4346 { 4347 int ret; 4348 4349 if (!cfts || cfts[0].name[0] == '\0') 4350 return 0; 4351 4352 if (!(cfts[0].flags & __CFTYPE_ADDED)) 4353 return -ENOENT; 4354 4355 mutex_lock(&cgroup_mutex); 4356 ret = cgroup_rm_cftypes_locked(cfts); 4357 mutex_unlock(&cgroup_mutex); 4358 return ret; 4359 } 4360 4361 /** 4362 * cgroup_add_cftypes - add an array of cftypes to a subsystem 4363 * @ss: target cgroup subsystem 4364 * @cfts: zero-length name terminated array of cftypes 4365 * 4366 * Register @cfts to @ss. Files described by @cfts are created for all 4367 * existing cgroups to which @ss is attached and all future cgroups will 4368 * have them too. This function can be called anytime whether @ss is 4369 * attached or not. 4370 * 4371 * Returns 0 on successful registration, -errno on failure. Note that this 4372 * function currently returns 0 as long as @cfts registration is successful 4373 * even if some file creation attempts on existing cgroups fail. 4374 */ 4375 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4376 { 4377 int ret; 4378 4379 if (!cgroup_ssid_enabled(ss->id)) 4380 return 0; 4381 4382 if (!cfts || cfts[0].name[0] == '\0') 4383 return 0; 4384 4385 ret = cgroup_init_cftypes(ss, cfts); 4386 if (ret) 4387 return ret; 4388 4389 mutex_lock(&cgroup_mutex); 4390 4391 list_add_tail(&cfts->node, &ss->cfts); 4392 ret = cgroup_apply_cftypes(cfts, true); 4393 if (ret) 4394 cgroup_rm_cftypes_locked(cfts); 4395 4396 mutex_unlock(&cgroup_mutex); 4397 return ret; 4398 } 4399 4400 /** 4401 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy 4402 * @ss: target cgroup subsystem 4403 * @cfts: zero-length name terminated array of cftypes 4404 * 4405 * Similar to cgroup_add_cftypes() but the added files are only used for 4406 * the default hierarchy. 4407 */ 4408 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4409 { 4410 struct cftype *cft; 4411 4412 for (cft = cfts; cft && cft->name[0] != '\0'; cft++) 4413 cft->flags |= __CFTYPE_ONLY_ON_DFL; 4414 return cgroup_add_cftypes(ss, cfts); 4415 } 4416 4417 /** 4418 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies 4419 * @ss: target cgroup subsystem 4420 * @cfts: zero-length name terminated array of cftypes 4421 * 4422 * Similar to cgroup_add_cftypes() but the added files are only used for 4423 * the legacy hierarchies. 4424 */ 4425 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4426 { 4427 struct cftype *cft; 4428 4429 for (cft = cfts; cft && cft->name[0] != '\0'; cft++) 4430 cft->flags |= __CFTYPE_NOT_ON_DFL; 4431 return cgroup_add_cftypes(ss, cfts); 4432 } 4433 4434 /** 4435 * cgroup_file_notify - generate a file modified event for a cgroup_file 4436 * @cfile: target cgroup_file 4437 * 4438 * @cfile must have been obtained by setting cftype->file_offset. 4439 */ 4440 void cgroup_file_notify(struct cgroup_file *cfile) 4441 { 4442 unsigned long flags; 4443 4444 spin_lock_irqsave(&cgroup_file_kn_lock, flags); 4445 if (cfile->kn) { 4446 unsigned long last = cfile->notified_at; 4447 unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV; 4448 4449 if (time_in_range(jiffies, last, next)) { 4450 timer_reduce(&cfile->notify_timer, next); 4451 } else { 4452 kernfs_notify(cfile->kn); 4453 cfile->notified_at = jiffies; 4454 } 4455 } 4456 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags); 4457 } 4458 4459 /** 4460 * cgroup_file_show - show or hide a hidden cgroup file 4461 * @cfile: target cgroup_file obtained by setting cftype->file_offset 4462 * @show: whether to show or hide 4463 */ 4464 void cgroup_file_show(struct cgroup_file *cfile, bool show) 4465 { 4466 struct kernfs_node *kn; 4467 4468 spin_lock_irq(&cgroup_file_kn_lock); 4469 kn = cfile->kn; 4470 kernfs_get(kn); 4471 spin_unlock_irq(&cgroup_file_kn_lock); 4472 4473 if (kn) 4474 kernfs_show(kn, show); 4475 4476 kernfs_put(kn); 4477 } 4478 4479 /** 4480 * css_next_child - find the next child of a given css 4481 * @pos: the current position (%NULL to initiate traversal) 4482 * @parent: css whose children to walk 4483 * 4484 * This function returns the next child of @parent and should be called 4485 * under either cgroup_mutex or RCU read lock. The only requirement is 4486 * that @parent and @pos are accessible. The next sibling is guaranteed to 4487 * be returned regardless of their states. 4488 * 4489 * If a subsystem synchronizes ->css_online() and the start of iteration, a 4490 * css which finished ->css_online() is guaranteed to be visible in the 4491 * future iterations and will stay visible until the last reference is put. 4492 * A css which hasn't finished ->css_online() or already finished 4493 * ->css_offline() may show up during traversal. It's each subsystem's 4494 * responsibility to synchronize against on/offlining. 4495 */ 4496 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos, 4497 struct cgroup_subsys_state *parent) 4498 { 4499 struct cgroup_subsys_state *next; 4500 4501 cgroup_assert_mutex_or_rcu_locked(); 4502 4503 /* 4504 * @pos could already have been unlinked from the sibling list. 4505 * Once a cgroup is removed, its ->sibling.next is no longer 4506 * updated when its next sibling changes. CSS_RELEASED is set when 4507 * @pos is taken off list, at which time its next pointer is valid, 4508 * and, as releases are serialized, the one pointed to by the next 4509 * pointer is guaranteed to not have started release yet. This 4510 * implies that if we observe !CSS_RELEASED on @pos in this RCU 4511 * critical section, the one pointed to by its next pointer is 4512 * guaranteed to not have finished its RCU grace period even if we 4513 * have dropped rcu_read_lock() in-between iterations. 4514 * 4515 * If @pos has CSS_RELEASED set, its next pointer can't be 4516 * dereferenced; however, as each css is given a monotonically 4517 * increasing unique serial number and always appended to the 4518 * sibling list, the next one can be found by walking the parent's 4519 * children until the first css with higher serial number than 4520 * @pos's. While this path can be slower, it happens iff iteration 4521 * races against release and the race window is very small. 4522 */ 4523 if (!pos) { 4524 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling); 4525 } else if (likely(!(pos->flags & CSS_RELEASED))) { 4526 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling); 4527 } else { 4528 list_for_each_entry_rcu(next, &parent->children, sibling, 4529 lockdep_is_held(&cgroup_mutex)) 4530 if (next->serial_nr > pos->serial_nr) 4531 break; 4532 } 4533 4534 /* 4535 * @next, if not pointing to the head, can be dereferenced and is 4536 * the next sibling. 4537 */ 4538 if (&next->sibling != &parent->children) 4539 return next; 4540 return NULL; 4541 } 4542 4543 /** 4544 * css_next_descendant_pre - find the next descendant for pre-order walk 4545 * @pos: the current position (%NULL to initiate traversal) 4546 * @root: css whose descendants to walk 4547 * 4548 * To be used by css_for_each_descendant_pre(). Find the next descendant 4549 * to visit for pre-order traversal of @root's descendants. @root is 4550 * included in the iteration and the first node to be visited. 4551 * 4552 * While this function requires cgroup_mutex or RCU read locking, it 4553 * doesn't require the whole traversal to be contained in a single critical 4554 * section. This function will return the correct next descendant as long 4555 * as both @pos and @root are accessible and @pos is a descendant of @root. 4556 * 4557 * If a subsystem synchronizes ->css_online() and the start of iteration, a 4558 * css which finished ->css_online() is guaranteed to be visible in the 4559 * future iterations and will stay visible until the last reference is put. 4560 * A css which hasn't finished ->css_online() or already finished 4561 * ->css_offline() may show up during traversal. It's each subsystem's 4562 * responsibility to synchronize against on/offlining. 4563 */ 4564 struct cgroup_subsys_state * 4565 css_next_descendant_pre(struct cgroup_subsys_state *pos, 4566 struct cgroup_subsys_state *root) 4567 { 4568 struct cgroup_subsys_state *next; 4569 4570 cgroup_assert_mutex_or_rcu_locked(); 4571 4572 /* if first iteration, visit @root */ 4573 if (!pos) 4574 return root; 4575 4576 /* visit the first child if exists */ 4577 next = css_next_child(NULL, pos); 4578 if (next) 4579 return next; 4580 4581 /* no child, visit my or the closest ancestor's next sibling */ 4582 while (pos != root) { 4583 next = css_next_child(pos, pos->parent); 4584 if (next) 4585 return next; 4586 pos = pos->parent; 4587 } 4588 4589 return NULL; 4590 } 4591 EXPORT_SYMBOL_GPL(css_next_descendant_pre); 4592 4593 /** 4594 * css_rightmost_descendant - return the rightmost descendant of a css 4595 * @pos: css of interest 4596 * 4597 * Return the rightmost descendant of @pos. If there's no descendant, @pos 4598 * is returned. This can be used during pre-order traversal to skip 4599 * subtree of @pos. 4600 * 4601 * While this function requires cgroup_mutex or RCU read locking, it 4602 * doesn't require the whole traversal to be contained in a single critical 4603 * section. This function will return the correct rightmost descendant as 4604 * long as @pos is accessible. 4605 */ 4606 struct cgroup_subsys_state * 4607 css_rightmost_descendant(struct cgroup_subsys_state *pos) 4608 { 4609 struct cgroup_subsys_state *last, *tmp; 4610 4611 cgroup_assert_mutex_or_rcu_locked(); 4612 4613 do { 4614 last = pos; 4615 /* ->prev isn't RCU safe, walk ->next till the end */ 4616 pos = NULL; 4617 css_for_each_child(tmp, last) 4618 pos = tmp; 4619 } while (pos); 4620 4621 return last; 4622 } 4623 4624 static struct cgroup_subsys_state * 4625 css_leftmost_descendant(struct cgroup_subsys_state *pos) 4626 { 4627 struct cgroup_subsys_state *last; 4628 4629 do { 4630 last = pos; 4631 pos = css_next_child(NULL, pos); 4632 } while (pos); 4633 4634 return last; 4635 } 4636 4637 /** 4638 * css_next_descendant_post - find the next descendant for post-order walk 4639 * @pos: the current position (%NULL to initiate traversal) 4640 * @root: css whose descendants to walk 4641 * 4642 * To be used by css_for_each_descendant_post(). Find the next descendant 4643 * to visit for post-order traversal of @root's descendants. @root is 4644 * included in the iteration and the last node to be visited. 4645 * 4646 * While this function requires cgroup_mutex or RCU read locking, it 4647 * doesn't require the whole traversal to be contained in a single critical 4648 * section. This function will return the correct next descendant as long 4649 * as both @pos and @cgroup are accessible and @pos is a descendant of 4650 * @cgroup. 4651 * 4652 * If a subsystem synchronizes ->css_online() and the start of iteration, a 4653 * css which finished ->css_online() is guaranteed to be visible in the 4654 * future iterations and will stay visible until the last reference is put. 4655 * A css which hasn't finished ->css_online() or already finished 4656 * ->css_offline() may show up during traversal. It's each subsystem's 4657 * responsibility to synchronize against on/offlining. 4658 */ 4659 struct cgroup_subsys_state * 4660 css_next_descendant_post(struct cgroup_subsys_state *pos, 4661 struct cgroup_subsys_state *root) 4662 { 4663 struct cgroup_subsys_state *next; 4664 4665 cgroup_assert_mutex_or_rcu_locked(); 4666 4667 /* if first iteration, visit leftmost descendant which may be @root */ 4668 if (!pos) 4669 return css_leftmost_descendant(root); 4670 4671 /* if we visited @root, we're done */ 4672 if (pos == root) 4673 return NULL; 4674 4675 /* if there's an unvisited sibling, visit its leftmost descendant */ 4676 next = css_next_child(pos, pos->parent); 4677 if (next) 4678 return css_leftmost_descendant(next); 4679 4680 /* no sibling left, visit parent */ 4681 return pos->parent; 4682 } 4683 4684 /** 4685 * css_has_online_children - does a css have online children 4686 * @css: the target css 4687 * 4688 * Returns %true if @css has any online children; otherwise, %false. This 4689 * function can be called from any context but the caller is responsible 4690 * for synchronizing against on/offlining as necessary. 4691 */ 4692 bool css_has_online_children(struct cgroup_subsys_state *css) 4693 { 4694 struct cgroup_subsys_state *child; 4695 bool ret = false; 4696 4697 rcu_read_lock(); 4698 css_for_each_child(child, css) { 4699 if (child->flags & CSS_ONLINE) { 4700 ret = true; 4701 break; 4702 } 4703 } 4704 rcu_read_unlock(); 4705 return ret; 4706 } 4707 4708 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it) 4709 { 4710 struct list_head *l; 4711 struct cgrp_cset_link *link; 4712 struct css_set *cset; 4713 4714 lockdep_assert_held(&css_set_lock); 4715 4716 /* find the next threaded cset */ 4717 if (it->tcset_pos) { 4718 l = it->tcset_pos->next; 4719 4720 if (l != it->tcset_head) { 4721 it->tcset_pos = l; 4722 return container_of(l, struct css_set, 4723 threaded_csets_node); 4724 } 4725 4726 it->tcset_pos = NULL; 4727 } 4728 4729 /* find the next cset */ 4730 l = it->cset_pos; 4731 l = l->next; 4732 if (l == it->cset_head) { 4733 it->cset_pos = NULL; 4734 return NULL; 4735 } 4736 4737 if (it->ss) { 4738 cset = container_of(l, struct css_set, e_cset_node[it->ss->id]); 4739 } else { 4740 link = list_entry(l, struct cgrp_cset_link, cset_link); 4741 cset = link->cset; 4742 } 4743 4744 it->cset_pos = l; 4745 4746 /* initialize threaded css_set walking */ 4747 if (it->flags & CSS_TASK_ITER_THREADED) { 4748 if (it->cur_dcset) 4749 put_css_set_locked(it->cur_dcset); 4750 it->cur_dcset = cset; 4751 get_css_set(cset); 4752 4753 it->tcset_head = &cset->threaded_csets; 4754 it->tcset_pos = &cset->threaded_csets; 4755 } 4756 4757 return cset; 4758 } 4759 4760 /** 4761 * css_task_iter_advance_css_set - advance a task iterator to the next css_set 4762 * @it: the iterator to advance 4763 * 4764 * Advance @it to the next css_set to walk. 4765 */ 4766 static void css_task_iter_advance_css_set(struct css_task_iter *it) 4767 { 4768 struct css_set *cset; 4769 4770 lockdep_assert_held(&css_set_lock); 4771 4772 /* Advance to the next non-empty css_set and find first non-empty tasks list*/ 4773 while ((cset = css_task_iter_next_css_set(it))) { 4774 if (!list_empty(&cset->tasks)) { 4775 it->cur_tasks_head = &cset->tasks; 4776 break; 4777 } else if (!list_empty(&cset->mg_tasks)) { 4778 it->cur_tasks_head = &cset->mg_tasks; 4779 break; 4780 } else if (!list_empty(&cset->dying_tasks)) { 4781 it->cur_tasks_head = &cset->dying_tasks; 4782 break; 4783 } 4784 } 4785 if (!cset) { 4786 it->task_pos = NULL; 4787 return; 4788 } 4789 it->task_pos = it->cur_tasks_head->next; 4790 4791 /* 4792 * We don't keep css_sets locked across iteration steps and thus 4793 * need to take steps to ensure that iteration can be resumed after 4794 * the lock is re-acquired. Iteration is performed at two levels - 4795 * css_sets and tasks in them. 4796 * 4797 * Once created, a css_set never leaves its cgroup lists, so a 4798 * pinned css_set is guaranteed to stay put and we can resume 4799 * iteration afterwards. 4800 * 4801 * Tasks may leave @cset across iteration steps. This is resolved 4802 * by registering each iterator with the css_set currently being 4803 * walked and making css_set_move_task() advance iterators whose 4804 * next task is leaving. 4805 */ 4806 if (it->cur_cset) { 4807 list_del(&it->iters_node); 4808 put_css_set_locked(it->cur_cset); 4809 } 4810 get_css_set(cset); 4811 it->cur_cset = cset; 4812 list_add(&it->iters_node, &cset->task_iters); 4813 } 4814 4815 static void css_task_iter_skip(struct css_task_iter *it, 4816 struct task_struct *task) 4817 { 4818 lockdep_assert_held(&css_set_lock); 4819 4820 if (it->task_pos == &task->cg_list) { 4821 it->task_pos = it->task_pos->next; 4822 it->flags |= CSS_TASK_ITER_SKIPPED; 4823 } 4824 } 4825 4826 static void css_task_iter_advance(struct css_task_iter *it) 4827 { 4828 struct task_struct *task; 4829 4830 lockdep_assert_held(&css_set_lock); 4831 repeat: 4832 if (it->task_pos) { 4833 /* 4834 * Advance iterator to find next entry. We go through cset 4835 * tasks, mg_tasks and dying_tasks, when consumed we move onto 4836 * the next cset. 4837 */ 4838 if (it->flags & CSS_TASK_ITER_SKIPPED) 4839 it->flags &= ~CSS_TASK_ITER_SKIPPED; 4840 else 4841 it->task_pos = it->task_pos->next; 4842 4843 if (it->task_pos == &it->cur_cset->tasks) { 4844 it->cur_tasks_head = &it->cur_cset->mg_tasks; 4845 it->task_pos = it->cur_tasks_head->next; 4846 } 4847 if (it->task_pos == &it->cur_cset->mg_tasks) { 4848 it->cur_tasks_head = &it->cur_cset->dying_tasks; 4849 it->task_pos = it->cur_tasks_head->next; 4850 } 4851 if (it->task_pos == &it->cur_cset->dying_tasks) 4852 css_task_iter_advance_css_set(it); 4853 } else { 4854 /* called from start, proceed to the first cset */ 4855 css_task_iter_advance_css_set(it); 4856 } 4857 4858 if (!it->task_pos) 4859 return; 4860 4861 task = list_entry(it->task_pos, struct task_struct, cg_list); 4862 4863 if (it->flags & CSS_TASK_ITER_PROCS) { 4864 /* if PROCS, skip over tasks which aren't group leaders */ 4865 if (!thread_group_leader(task)) 4866 goto repeat; 4867 4868 /* and dying leaders w/o live member threads */ 4869 if (it->cur_tasks_head == &it->cur_cset->dying_tasks && 4870 !atomic_read(&task->signal->live)) 4871 goto repeat; 4872 } else { 4873 /* skip all dying ones */ 4874 if (it->cur_tasks_head == &it->cur_cset->dying_tasks) 4875 goto repeat; 4876 } 4877 } 4878 4879 /** 4880 * css_task_iter_start - initiate task iteration 4881 * @css: the css to walk tasks of 4882 * @flags: CSS_TASK_ITER_* flags 4883 * @it: the task iterator to use 4884 * 4885 * Initiate iteration through the tasks of @css. The caller can call 4886 * css_task_iter_next() to walk through the tasks until the function 4887 * returns NULL. On completion of iteration, css_task_iter_end() must be 4888 * called. 4889 */ 4890 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags, 4891 struct css_task_iter *it) 4892 { 4893 memset(it, 0, sizeof(*it)); 4894 4895 spin_lock_irq(&css_set_lock); 4896 4897 it->ss = css->ss; 4898 it->flags = flags; 4899 4900 if (CGROUP_HAS_SUBSYS_CONFIG && it->ss) 4901 it->cset_pos = &css->cgroup->e_csets[css->ss->id]; 4902 else 4903 it->cset_pos = &css->cgroup->cset_links; 4904 4905 it->cset_head = it->cset_pos; 4906 4907 css_task_iter_advance(it); 4908 4909 spin_unlock_irq(&css_set_lock); 4910 } 4911 4912 /** 4913 * css_task_iter_next - return the next task for the iterator 4914 * @it: the task iterator being iterated 4915 * 4916 * The "next" function for task iteration. @it should have been 4917 * initialized via css_task_iter_start(). Returns NULL when the iteration 4918 * reaches the end. 4919 */ 4920 struct task_struct *css_task_iter_next(struct css_task_iter *it) 4921 { 4922 if (it->cur_task) { 4923 put_task_struct(it->cur_task); 4924 it->cur_task = NULL; 4925 } 4926 4927 spin_lock_irq(&css_set_lock); 4928 4929 /* @it may be half-advanced by skips, finish advancing */ 4930 if (it->flags & CSS_TASK_ITER_SKIPPED) 4931 css_task_iter_advance(it); 4932 4933 if (it->task_pos) { 4934 it->cur_task = list_entry(it->task_pos, struct task_struct, 4935 cg_list); 4936 get_task_struct(it->cur_task); 4937 css_task_iter_advance(it); 4938 } 4939 4940 spin_unlock_irq(&css_set_lock); 4941 4942 return it->cur_task; 4943 } 4944 4945 /** 4946 * css_task_iter_end - finish task iteration 4947 * @it: the task iterator to finish 4948 * 4949 * Finish task iteration started by css_task_iter_start(). 4950 */ 4951 void css_task_iter_end(struct css_task_iter *it) 4952 { 4953 if (it->cur_cset) { 4954 spin_lock_irq(&css_set_lock); 4955 list_del(&it->iters_node); 4956 put_css_set_locked(it->cur_cset); 4957 spin_unlock_irq(&css_set_lock); 4958 } 4959 4960 if (it->cur_dcset) 4961 put_css_set(it->cur_dcset); 4962 4963 if (it->cur_task) 4964 put_task_struct(it->cur_task); 4965 } 4966 4967 static void cgroup_procs_release(struct kernfs_open_file *of) 4968 { 4969 struct cgroup_file_ctx *ctx = of->priv; 4970 4971 if (ctx->procs.started) 4972 css_task_iter_end(&ctx->procs.iter); 4973 } 4974 4975 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos) 4976 { 4977 struct kernfs_open_file *of = s->private; 4978 struct cgroup_file_ctx *ctx = of->priv; 4979 4980 if (pos) 4981 (*pos)++; 4982 4983 return css_task_iter_next(&ctx->procs.iter); 4984 } 4985 4986 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos, 4987 unsigned int iter_flags) 4988 { 4989 struct kernfs_open_file *of = s->private; 4990 struct cgroup *cgrp = seq_css(s)->cgroup; 4991 struct cgroup_file_ctx *ctx = of->priv; 4992 struct css_task_iter *it = &ctx->procs.iter; 4993 4994 /* 4995 * When a seq_file is seeked, it's always traversed sequentially 4996 * from position 0, so we can simply keep iterating on !0 *pos. 4997 */ 4998 if (!ctx->procs.started) { 4999 if (WARN_ON_ONCE((*pos))) 5000 return ERR_PTR(-EINVAL); 5001 css_task_iter_start(&cgrp->self, iter_flags, it); 5002 ctx->procs.started = true; 5003 } else if (!(*pos)) { 5004 css_task_iter_end(it); 5005 css_task_iter_start(&cgrp->self, iter_flags, it); 5006 } else 5007 return it->cur_task; 5008 5009 return cgroup_procs_next(s, NULL, NULL); 5010 } 5011 5012 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos) 5013 { 5014 struct cgroup *cgrp = seq_css(s)->cgroup; 5015 5016 /* 5017 * All processes of a threaded subtree belong to the domain cgroup 5018 * of the subtree. Only threads can be distributed across the 5019 * subtree. Reject reads on cgroup.procs in the subtree proper. 5020 * They're always empty anyway. 5021 */ 5022 if (cgroup_is_threaded(cgrp)) 5023 return ERR_PTR(-EOPNOTSUPP); 5024 5025 return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS | 5026 CSS_TASK_ITER_THREADED); 5027 } 5028 5029 static int cgroup_procs_show(struct seq_file *s, void *v) 5030 { 5031 seq_printf(s, "%d\n", task_pid_vnr(v)); 5032 return 0; 5033 } 5034 5035 static int cgroup_may_write(const struct cgroup *cgrp, struct super_block *sb) 5036 { 5037 int ret; 5038 struct inode *inode; 5039 5040 lockdep_assert_held(&cgroup_mutex); 5041 5042 inode = kernfs_get_inode(sb, cgrp->procs_file.kn); 5043 if (!inode) 5044 return -ENOMEM; 5045 5046 ret = inode_permission(&init_user_ns, inode, MAY_WRITE); 5047 iput(inode); 5048 return ret; 5049 } 5050 5051 static int cgroup_procs_write_permission(struct cgroup *src_cgrp, 5052 struct cgroup *dst_cgrp, 5053 struct super_block *sb, 5054 struct cgroup_namespace *ns) 5055 { 5056 struct cgroup *com_cgrp = src_cgrp; 5057 int ret; 5058 5059 lockdep_assert_held(&cgroup_mutex); 5060 5061 /* find the common ancestor */ 5062 while (!cgroup_is_descendant(dst_cgrp, com_cgrp)) 5063 com_cgrp = cgroup_parent(com_cgrp); 5064 5065 /* %current should be authorized to migrate to the common ancestor */ 5066 ret = cgroup_may_write(com_cgrp, sb); 5067 if (ret) 5068 return ret; 5069 5070 /* 5071 * If namespaces are delegation boundaries, %current must be able 5072 * to see both source and destination cgroups from its namespace. 5073 */ 5074 if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) && 5075 (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) || 5076 !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp))) 5077 return -ENOENT; 5078 5079 return 0; 5080 } 5081 5082 static int cgroup_attach_permissions(struct cgroup *src_cgrp, 5083 struct cgroup *dst_cgrp, 5084 struct super_block *sb, bool threadgroup, 5085 struct cgroup_namespace *ns) 5086 { 5087 int ret = 0; 5088 5089 ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, sb, ns); 5090 if (ret) 5091 return ret; 5092 5093 ret = cgroup_migrate_vet_dst(dst_cgrp); 5094 if (ret) 5095 return ret; 5096 5097 if (!threadgroup && (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp)) 5098 ret = -EOPNOTSUPP; 5099 5100 return ret; 5101 } 5102 5103 static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf, 5104 bool threadgroup) 5105 { 5106 struct cgroup_file_ctx *ctx = of->priv; 5107 struct cgroup *src_cgrp, *dst_cgrp; 5108 struct task_struct *task; 5109 const struct cred *saved_cred; 5110 ssize_t ret; 5111 bool threadgroup_locked; 5112 5113 dst_cgrp = cgroup_kn_lock_live(of->kn, false); 5114 if (!dst_cgrp) 5115 return -ENODEV; 5116 5117 task = cgroup_procs_write_start(buf, threadgroup, &threadgroup_locked); 5118 ret = PTR_ERR_OR_ZERO(task); 5119 if (ret) 5120 goto out_unlock; 5121 5122 /* find the source cgroup */ 5123 spin_lock_irq(&css_set_lock); 5124 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root); 5125 spin_unlock_irq(&css_set_lock); 5126 5127 /* 5128 * Process and thread migrations follow same delegation rule. Check 5129 * permissions using the credentials from file open to protect against 5130 * inherited fd attacks. 5131 */ 5132 saved_cred = override_creds(of->file->f_cred); 5133 ret = cgroup_attach_permissions(src_cgrp, dst_cgrp, 5134 of->file->f_path.dentry->d_sb, 5135 threadgroup, ctx->ns); 5136 revert_creds(saved_cred); 5137 if (ret) 5138 goto out_finish; 5139 5140 ret = cgroup_attach_task(dst_cgrp, task, threadgroup); 5141 5142 out_finish: 5143 cgroup_procs_write_finish(task, threadgroup_locked); 5144 out_unlock: 5145 cgroup_kn_unlock(of->kn); 5146 5147 return ret; 5148 } 5149 5150 static ssize_t cgroup_procs_write(struct kernfs_open_file *of, 5151 char *buf, size_t nbytes, loff_t off) 5152 { 5153 return __cgroup_procs_write(of, buf, true) ?: nbytes; 5154 } 5155 5156 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos) 5157 { 5158 return __cgroup_procs_start(s, pos, 0); 5159 } 5160 5161 static ssize_t cgroup_threads_write(struct kernfs_open_file *of, 5162 char *buf, size_t nbytes, loff_t off) 5163 { 5164 return __cgroup_procs_write(of, buf, false) ?: nbytes; 5165 } 5166 5167 /* cgroup core interface files for the default hierarchy */ 5168 static struct cftype cgroup_base_files[] = { 5169 { 5170 .name = "cgroup.type", 5171 .flags = CFTYPE_NOT_ON_ROOT, 5172 .seq_show = cgroup_type_show, 5173 .write = cgroup_type_write, 5174 }, 5175 { 5176 .name = "cgroup.procs", 5177 .flags = CFTYPE_NS_DELEGATABLE, 5178 .file_offset = offsetof(struct cgroup, procs_file), 5179 .release = cgroup_procs_release, 5180 .seq_start = cgroup_procs_start, 5181 .seq_next = cgroup_procs_next, 5182 .seq_show = cgroup_procs_show, 5183 .write = cgroup_procs_write, 5184 }, 5185 { 5186 .name = "cgroup.threads", 5187 .flags = CFTYPE_NS_DELEGATABLE, 5188 .release = cgroup_procs_release, 5189 .seq_start = cgroup_threads_start, 5190 .seq_next = cgroup_procs_next, 5191 .seq_show = cgroup_procs_show, 5192 .write = cgroup_threads_write, 5193 }, 5194 { 5195 .name = "cgroup.controllers", 5196 .seq_show = cgroup_controllers_show, 5197 }, 5198 { 5199 .name = "cgroup.subtree_control", 5200 .flags = CFTYPE_NS_DELEGATABLE, 5201 .seq_show = cgroup_subtree_control_show, 5202 .write = cgroup_subtree_control_write, 5203 }, 5204 { 5205 .name = "cgroup.events", 5206 .flags = CFTYPE_NOT_ON_ROOT, 5207 .file_offset = offsetof(struct cgroup, events_file), 5208 .seq_show = cgroup_events_show, 5209 }, 5210 { 5211 .name = "cgroup.max.descendants", 5212 .seq_show = cgroup_max_descendants_show, 5213 .write = cgroup_max_descendants_write, 5214 }, 5215 { 5216 .name = "cgroup.max.depth", 5217 .seq_show = cgroup_max_depth_show, 5218 .write = cgroup_max_depth_write, 5219 }, 5220 { 5221 .name = "cgroup.stat", 5222 .seq_show = cgroup_stat_show, 5223 }, 5224 { 5225 .name = "cgroup.freeze", 5226 .flags = CFTYPE_NOT_ON_ROOT, 5227 .seq_show = cgroup_freeze_show, 5228 .write = cgroup_freeze_write, 5229 }, 5230 { 5231 .name = "cgroup.kill", 5232 .flags = CFTYPE_NOT_ON_ROOT, 5233 .write = cgroup_kill_write, 5234 }, 5235 { 5236 .name = "cpu.stat", 5237 .seq_show = cpu_stat_show, 5238 }, 5239 { } /* terminate */ 5240 }; 5241 5242 static struct cftype cgroup_psi_files[] = { 5243 #ifdef CONFIG_PSI 5244 { 5245 .name = "io.pressure", 5246 .file_offset = offsetof(struct cgroup, psi_files[PSI_IO]), 5247 .seq_show = cgroup_io_pressure_show, 5248 .write = cgroup_io_pressure_write, 5249 .poll = cgroup_pressure_poll, 5250 .release = cgroup_pressure_release, 5251 }, 5252 { 5253 .name = "memory.pressure", 5254 .file_offset = offsetof(struct cgroup, psi_files[PSI_MEM]), 5255 .seq_show = cgroup_memory_pressure_show, 5256 .write = cgroup_memory_pressure_write, 5257 .poll = cgroup_pressure_poll, 5258 .release = cgroup_pressure_release, 5259 }, 5260 { 5261 .name = "cpu.pressure", 5262 .file_offset = offsetof(struct cgroup, psi_files[PSI_CPU]), 5263 .seq_show = cgroup_cpu_pressure_show, 5264 .write = cgroup_cpu_pressure_write, 5265 .poll = cgroup_pressure_poll, 5266 .release = cgroup_pressure_release, 5267 }, 5268 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 5269 { 5270 .name = "irq.pressure", 5271 .file_offset = offsetof(struct cgroup, psi_files[PSI_IRQ]), 5272 .seq_show = cgroup_irq_pressure_show, 5273 .write = cgroup_irq_pressure_write, 5274 .poll = cgroup_pressure_poll, 5275 .release = cgroup_pressure_release, 5276 }, 5277 #endif 5278 { 5279 .name = "cgroup.pressure", 5280 .seq_show = cgroup_pressure_show, 5281 .write = cgroup_pressure_write, 5282 }, 5283 #endif /* CONFIG_PSI */ 5284 { } /* terminate */ 5285 }; 5286 5287 /* 5288 * css destruction is four-stage process. 5289 * 5290 * 1. Destruction starts. Killing of the percpu_ref is initiated. 5291 * Implemented in kill_css(). 5292 * 5293 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs 5294 * and thus css_tryget_online() is guaranteed to fail, the css can be 5295 * offlined by invoking offline_css(). After offlining, the base ref is 5296 * put. Implemented in css_killed_work_fn(). 5297 * 5298 * 3. When the percpu_ref reaches zero, the only possible remaining 5299 * accessors are inside RCU read sections. css_release() schedules the 5300 * RCU callback. 5301 * 5302 * 4. After the grace period, the css can be freed. Implemented in 5303 * css_free_work_fn(). 5304 * 5305 * It is actually hairier because both step 2 and 4 require process context 5306 * and thus involve punting to css->destroy_work adding two additional 5307 * steps to the already complex sequence. 5308 */ 5309 static void css_free_rwork_fn(struct work_struct *work) 5310 { 5311 struct cgroup_subsys_state *css = container_of(to_rcu_work(work), 5312 struct cgroup_subsys_state, destroy_rwork); 5313 struct cgroup_subsys *ss = css->ss; 5314 struct cgroup *cgrp = css->cgroup; 5315 5316 percpu_ref_exit(&css->refcnt); 5317 5318 if (ss) { 5319 /* css free path */ 5320 struct cgroup_subsys_state *parent = css->parent; 5321 int id = css->id; 5322 5323 ss->css_free(css); 5324 cgroup_idr_remove(&ss->css_idr, id); 5325 cgroup_put(cgrp); 5326 5327 if (parent) 5328 css_put(parent); 5329 } else { 5330 /* cgroup free path */ 5331 atomic_dec(&cgrp->root->nr_cgrps); 5332 cgroup1_pidlist_destroy_all(cgrp); 5333 cancel_work_sync(&cgrp->release_agent_work); 5334 5335 if (cgroup_parent(cgrp)) { 5336 /* 5337 * We get a ref to the parent, and put the ref when 5338 * this cgroup is being freed, so it's guaranteed 5339 * that the parent won't be destroyed before its 5340 * children. 5341 */ 5342 cgroup_put(cgroup_parent(cgrp)); 5343 kernfs_put(cgrp->kn); 5344 psi_cgroup_free(cgrp); 5345 cgroup_rstat_exit(cgrp); 5346 kfree(cgrp); 5347 } else { 5348 /* 5349 * This is root cgroup's refcnt reaching zero, 5350 * which indicates that the root should be 5351 * released. 5352 */ 5353 cgroup_destroy_root(cgrp->root); 5354 } 5355 } 5356 } 5357 5358 static void css_release_work_fn(struct work_struct *work) 5359 { 5360 struct cgroup_subsys_state *css = 5361 container_of(work, struct cgroup_subsys_state, destroy_work); 5362 struct cgroup_subsys *ss = css->ss; 5363 struct cgroup *cgrp = css->cgroup; 5364 5365 mutex_lock(&cgroup_mutex); 5366 5367 css->flags |= CSS_RELEASED; 5368 list_del_rcu(&css->sibling); 5369 5370 if (ss) { 5371 /* css release path */ 5372 if (!list_empty(&css->rstat_css_node)) { 5373 cgroup_rstat_flush(cgrp); 5374 list_del_rcu(&css->rstat_css_node); 5375 } 5376 5377 cgroup_idr_replace(&ss->css_idr, NULL, css->id); 5378 if (ss->css_released) 5379 ss->css_released(css); 5380 } else { 5381 struct cgroup *tcgrp; 5382 5383 /* cgroup release path */ 5384 TRACE_CGROUP_PATH(release, cgrp); 5385 5386 cgroup_rstat_flush(cgrp); 5387 5388 spin_lock_irq(&css_set_lock); 5389 for (tcgrp = cgroup_parent(cgrp); tcgrp; 5390 tcgrp = cgroup_parent(tcgrp)) 5391 tcgrp->nr_dying_descendants--; 5392 spin_unlock_irq(&css_set_lock); 5393 5394 /* 5395 * There are two control paths which try to determine 5396 * cgroup from dentry without going through kernfs - 5397 * cgroupstats_build() and css_tryget_online_from_dir(). 5398 * Those are supported by RCU protecting clearing of 5399 * cgrp->kn->priv backpointer. 5400 */ 5401 if (cgrp->kn) 5402 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, 5403 NULL); 5404 } 5405 5406 mutex_unlock(&cgroup_mutex); 5407 5408 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn); 5409 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork); 5410 } 5411 5412 static void css_release(struct percpu_ref *ref) 5413 { 5414 struct cgroup_subsys_state *css = 5415 container_of(ref, struct cgroup_subsys_state, refcnt); 5416 5417 INIT_WORK(&css->destroy_work, css_release_work_fn); 5418 queue_work(cgroup_destroy_wq, &css->destroy_work); 5419 } 5420 5421 static void init_and_link_css(struct cgroup_subsys_state *css, 5422 struct cgroup_subsys *ss, struct cgroup *cgrp) 5423 { 5424 lockdep_assert_held(&cgroup_mutex); 5425 5426 cgroup_get_live(cgrp); 5427 5428 memset(css, 0, sizeof(*css)); 5429 css->cgroup = cgrp; 5430 css->ss = ss; 5431 css->id = -1; 5432 INIT_LIST_HEAD(&css->sibling); 5433 INIT_LIST_HEAD(&css->children); 5434 INIT_LIST_HEAD(&css->rstat_css_node); 5435 css->serial_nr = css_serial_nr_next++; 5436 atomic_set(&css->online_cnt, 0); 5437 5438 if (cgroup_parent(cgrp)) { 5439 css->parent = cgroup_css(cgroup_parent(cgrp), ss); 5440 css_get(css->parent); 5441 } 5442 5443 if (ss->css_rstat_flush) 5444 list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list); 5445 5446 BUG_ON(cgroup_css(cgrp, ss)); 5447 } 5448 5449 /* invoke ->css_online() on a new CSS and mark it online if successful */ 5450 static int online_css(struct cgroup_subsys_state *css) 5451 { 5452 struct cgroup_subsys *ss = css->ss; 5453 int ret = 0; 5454 5455 lockdep_assert_held(&cgroup_mutex); 5456 5457 if (ss->css_online) 5458 ret = ss->css_online(css); 5459 if (!ret) { 5460 css->flags |= CSS_ONLINE; 5461 rcu_assign_pointer(css->cgroup->subsys[ss->id], css); 5462 5463 atomic_inc(&css->online_cnt); 5464 if (css->parent) 5465 atomic_inc(&css->parent->online_cnt); 5466 } 5467 return ret; 5468 } 5469 5470 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */ 5471 static void offline_css(struct cgroup_subsys_state *css) 5472 { 5473 struct cgroup_subsys *ss = css->ss; 5474 5475 lockdep_assert_held(&cgroup_mutex); 5476 5477 if (!(css->flags & CSS_ONLINE)) 5478 return; 5479 5480 if (ss->css_offline) 5481 ss->css_offline(css); 5482 5483 css->flags &= ~CSS_ONLINE; 5484 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL); 5485 5486 wake_up_all(&css->cgroup->offline_waitq); 5487 } 5488 5489 /** 5490 * css_create - create a cgroup_subsys_state 5491 * @cgrp: the cgroup new css will be associated with 5492 * @ss: the subsys of new css 5493 * 5494 * Create a new css associated with @cgrp - @ss pair. On success, the new 5495 * css is online and installed in @cgrp. This function doesn't create the 5496 * interface files. Returns 0 on success, -errno on failure. 5497 */ 5498 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp, 5499 struct cgroup_subsys *ss) 5500 { 5501 struct cgroup *parent = cgroup_parent(cgrp); 5502 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss); 5503 struct cgroup_subsys_state *css; 5504 int err; 5505 5506 lockdep_assert_held(&cgroup_mutex); 5507 5508 css = ss->css_alloc(parent_css); 5509 if (!css) 5510 css = ERR_PTR(-ENOMEM); 5511 if (IS_ERR(css)) 5512 return css; 5513 5514 init_and_link_css(css, ss, cgrp); 5515 5516 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL); 5517 if (err) 5518 goto err_free_css; 5519 5520 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL); 5521 if (err < 0) 5522 goto err_free_css; 5523 css->id = err; 5524 5525 /* @css is ready to be brought online now, make it visible */ 5526 list_add_tail_rcu(&css->sibling, &parent_css->children); 5527 cgroup_idr_replace(&ss->css_idr, css, css->id); 5528 5529 err = online_css(css); 5530 if (err) 5531 goto err_list_del; 5532 5533 return css; 5534 5535 err_list_del: 5536 list_del_rcu(&css->sibling); 5537 err_free_css: 5538 list_del_rcu(&css->rstat_css_node); 5539 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn); 5540 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork); 5541 return ERR_PTR(err); 5542 } 5543 5544 /* 5545 * The returned cgroup is fully initialized including its control mask, but 5546 * it isn't associated with its kernfs_node and doesn't have the control 5547 * mask applied. 5548 */ 5549 static struct cgroup *cgroup_create(struct cgroup *parent, const char *name, 5550 umode_t mode) 5551 { 5552 struct cgroup_root *root = parent->root; 5553 struct cgroup *cgrp, *tcgrp; 5554 struct kernfs_node *kn; 5555 int level = parent->level + 1; 5556 int ret; 5557 5558 /* allocate the cgroup and its ID, 0 is reserved for the root */ 5559 cgrp = kzalloc(struct_size(cgrp, ancestors, (level + 1)), GFP_KERNEL); 5560 if (!cgrp) 5561 return ERR_PTR(-ENOMEM); 5562 5563 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL); 5564 if (ret) 5565 goto out_free_cgrp; 5566 5567 ret = cgroup_rstat_init(cgrp); 5568 if (ret) 5569 goto out_cancel_ref; 5570 5571 /* create the directory */ 5572 kn = kernfs_create_dir(parent->kn, name, mode, cgrp); 5573 if (IS_ERR(kn)) { 5574 ret = PTR_ERR(kn); 5575 goto out_stat_exit; 5576 } 5577 cgrp->kn = kn; 5578 5579 init_cgroup_housekeeping(cgrp); 5580 5581 cgrp->self.parent = &parent->self; 5582 cgrp->root = root; 5583 cgrp->level = level; 5584 5585 ret = psi_cgroup_alloc(cgrp); 5586 if (ret) 5587 goto out_kernfs_remove; 5588 5589 ret = cgroup_bpf_inherit(cgrp); 5590 if (ret) 5591 goto out_psi_free; 5592 5593 /* 5594 * New cgroup inherits effective freeze counter, and 5595 * if the parent has to be frozen, the child has too. 5596 */ 5597 cgrp->freezer.e_freeze = parent->freezer.e_freeze; 5598 if (cgrp->freezer.e_freeze) { 5599 /* 5600 * Set the CGRP_FREEZE flag, so when a process will be 5601 * attached to the child cgroup, it will become frozen. 5602 * At this point the new cgroup is unpopulated, so we can 5603 * consider it frozen immediately. 5604 */ 5605 set_bit(CGRP_FREEZE, &cgrp->flags); 5606 set_bit(CGRP_FROZEN, &cgrp->flags); 5607 } 5608 5609 spin_lock_irq(&css_set_lock); 5610 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) { 5611 cgrp->ancestors[tcgrp->level] = tcgrp; 5612 5613 if (tcgrp != cgrp) { 5614 tcgrp->nr_descendants++; 5615 5616 /* 5617 * If the new cgroup is frozen, all ancestor cgroups 5618 * get a new frozen descendant, but their state can't 5619 * change because of this. 5620 */ 5621 if (cgrp->freezer.e_freeze) 5622 tcgrp->freezer.nr_frozen_descendants++; 5623 } 5624 } 5625 spin_unlock_irq(&css_set_lock); 5626 5627 if (notify_on_release(parent)) 5628 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags); 5629 5630 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags)) 5631 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags); 5632 5633 cgrp->self.serial_nr = css_serial_nr_next++; 5634 5635 /* allocation complete, commit to creation */ 5636 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children); 5637 atomic_inc(&root->nr_cgrps); 5638 cgroup_get_live(parent); 5639 5640 /* 5641 * On the default hierarchy, a child doesn't automatically inherit 5642 * subtree_control from the parent. Each is configured manually. 5643 */ 5644 if (!cgroup_on_dfl(cgrp)) 5645 cgrp->subtree_control = cgroup_control(cgrp); 5646 5647 cgroup_propagate_control(cgrp); 5648 5649 return cgrp; 5650 5651 out_psi_free: 5652 psi_cgroup_free(cgrp); 5653 out_kernfs_remove: 5654 kernfs_remove(cgrp->kn); 5655 out_stat_exit: 5656 cgroup_rstat_exit(cgrp); 5657 out_cancel_ref: 5658 percpu_ref_exit(&cgrp->self.refcnt); 5659 out_free_cgrp: 5660 kfree(cgrp); 5661 return ERR_PTR(ret); 5662 } 5663 5664 static bool cgroup_check_hierarchy_limits(struct cgroup *parent) 5665 { 5666 struct cgroup *cgroup; 5667 int ret = false; 5668 int level = 1; 5669 5670 lockdep_assert_held(&cgroup_mutex); 5671 5672 for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) { 5673 if (cgroup->nr_descendants >= cgroup->max_descendants) 5674 goto fail; 5675 5676 if (level > cgroup->max_depth) 5677 goto fail; 5678 5679 level++; 5680 } 5681 5682 ret = true; 5683 fail: 5684 return ret; 5685 } 5686 5687 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode) 5688 { 5689 struct cgroup *parent, *cgrp; 5690 int ret; 5691 5692 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */ 5693 if (strchr(name, '\n')) 5694 return -EINVAL; 5695 5696 parent = cgroup_kn_lock_live(parent_kn, false); 5697 if (!parent) 5698 return -ENODEV; 5699 5700 if (!cgroup_check_hierarchy_limits(parent)) { 5701 ret = -EAGAIN; 5702 goto out_unlock; 5703 } 5704 5705 cgrp = cgroup_create(parent, name, mode); 5706 if (IS_ERR(cgrp)) { 5707 ret = PTR_ERR(cgrp); 5708 goto out_unlock; 5709 } 5710 5711 /* 5712 * This extra ref will be put in cgroup_free_fn() and guarantees 5713 * that @cgrp->kn is always accessible. 5714 */ 5715 kernfs_get(cgrp->kn); 5716 5717 ret = cgroup_kn_set_ugid(cgrp->kn); 5718 if (ret) 5719 goto out_destroy; 5720 5721 ret = css_populate_dir(&cgrp->self); 5722 if (ret) 5723 goto out_destroy; 5724 5725 ret = cgroup_apply_control_enable(cgrp); 5726 if (ret) 5727 goto out_destroy; 5728 5729 TRACE_CGROUP_PATH(mkdir, cgrp); 5730 5731 /* let's create and online css's */ 5732 kernfs_activate(cgrp->kn); 5733 5734 ret = 0; 5735 goto out_unlock; 5736 5737 out_destroy: 5738 cgroup_destroy_locked(cgrp); 5739 out_unlock: 5740 cgroup_kn_unlock(parent_kn); 5741 return ret; 5742 } 5743 5744 /* 5745 * This is called when the refcnt of a css is confirmed to be killed. 5746 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to 5747 * initiate destruction and put the css ref from kill_css(). 5748 */ 5749 static void css_killed_work_fn(struct work_struct *work) 5750 { 5751 struct cgroup_subsys_state *css = 5752 container_of(work, struct cgroup_subsys_state, destroy_work); 5753 5754 mutex_lock(&cgroup_mutex); 5755 5756 do { 5757 offline_css(css); 5758 css_put(css); 5759 /* @css can't go away while we're holding cgroup_mutex */ 5760 css = css->parent; 5761 } while (css && atomic_dec_and_test(&css->online_cnt)); 5762 5763 mutex_unlock(&cgroup_mutex); 5764 } 5765 5766 /* css kill confirmation processing requires process context, bounce */ 5767 static void css_killed_ref_fn(struct percpu_ref *ref) 5768 { 5769 struct cgroup_subsys_state *css = 5770 container_of(ref, struct cgroup_subsys_state, refcnt); 5771 5772 if (atomic_dec_and_test(&css->online_cnt)) { 5773 INIT_WORK(&css->destroy_work, css_killed_work_fn); 5774 queue_work(cgroup_destroy_wq, &css->destroy_work); 5775 } 5776 } 5777 5778 /** 5779 * kill_css - destroy a css 5780 * @css: css to destroy 5781 * 5782 * This function initiates destruction of @css by removing cgroup interface 5783 * files and putting its base reference. ->css_offline() will be invoked 5784 * asynchronously once css_tryget_online() is guaranteed to fail and when 5785 * the reference count reaches zero, @css will be released. 5786 */ 5787 static void kill_css(struct cgroup_subsys_state *css) 5788 { 5789 lockdep_assert_held(&cgroup_mutex); 5790 5791 if (css->flags & CSS_DYING) 5792 return; 5793 5794 css->flags |= CSS_DYING; 5795 5796 /* 5797 * This must happen before css is disassociated with its cgroup. 5798 * See seq_css() for details. 5799 */ 5800 css_clear_dir(css); 5801 5802 /* 5803 * Killing would put the base ref, but we need to keep it alive 5804 * until after ->css_offline(). 5805 */ 5806 css_get(css); 5807 5808 /* 5809 * cgroup core guarantees that, by the time ->css_offline() is 5810 * invoked, no new css reference will be given out via 5811 * css_tryget_online(). We can't simply call percpu_ref_kill() and 5812 * proceed to offlining css's because percpu_ref_kill() doesn't 5813 * guarantee that the ref is seen as killed on all CPUs on return. 5814 * 5815 * Use percpu_ref_kill_and_confirm() to get notifications as each 5816 * css is confirmed to be seen as killed on all CPUs. 5817 */ 5818 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn); 5819 } 5820 5821 /** 5822 * cgroup_destroy_locked - the first stage of cgroup destruction 5823 * @cgrp: cgroup to be destroyed 5824 * 5825 * css's make use of percpu refcnts whose killing latency shouldn't be 5826 * exposed to userland and are RCU protected. Also, cgroup core needs to 5827 * guarantee that css_tryget_online() won't succeed by the time 5828 * ->css_offline() is invoked. To satisfy all the requirements, 5829 * destruction is implemented in the following two steps. 5830 * 5831 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all 5832 * userland visible parts and start killing the percpu refcnts of 5833 * css's. Set up so that the next stage will be kicked off once all 5834 * the percpu refcnts are confirmed to be killed. 5835 * 5836 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the 5837 * rest of destruction. Once all cgroup references are gone, the 5838 * cgroup is RCU-freed. 5839 * 5840 * This function implements s1. After this step, @cgrp is gone as far as 5841 * the userland is concerned and a new cgroup with the same name may be 5842 * created. As cgroup doesn't care about the names internally, this 5843 * doesn't cause any problem. 5844 */ 5845 static int cgroup_destroy_locked(struct cgroup *cgrp) 5846 __releases(&cgroup_mutex) __acquires(&cgroup_mutex) 5847 { 5848 struct cgroup *tcgrp, *parent = cgroup_parent(cgrp); 5849 struct cgroup_subsys_state *css; 5850 struct cgrp_cset_link *link; 5851 int ssid; 5852 5853 lockdep_assert_held(&cgroup_mutex); 5854 5855 /* 5856 * Only migration can raise populated from zero and we're already 5857 * holding cgroup_mutex. 5858 */ 5859 if (cgroup_is_populated(cgrp)) 5860 return -EBUSY; 5861 5862 /* 5863 * Make sure there's no live children. We can't test emptiness of 5864 * ->self.children as dead children linger on it while being 5865 * drained; otherwise, "rmdir parent/child parent" may fail. 5866 */ 5867 if (css_has_online_children(&cgrp->self)) 5868 return -EBUSY; 5869 5870 /* 5871 * Mark @cgrp and the associated csets dead. The former prevents 5872 * further task migration and child creation by disabling 5873 * cgroup_lock_live_group(). The latter makes the csets ignored by 5874 * the migration path. 5875 */ 5876 cgrp->self.flags &= ~CSS_ONLINE; 5877 5878 spin_lock_irq(&css_set_lock); 5879 list_for_each_entry(link, &cgrp->cset_links, cset_link) 5880 link->cset->dead = true; 5881 spin_unlock_irq(&css_set_lock); 5882 5883 /* initiate massacre of all css's */ 5884 for_each_css(css, ssid, cgrp) 5885 kill_css(css); 5886 5887 /* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */ 5888 css_clear_dir(&cgrp->self); 5889 kernfs_remove(cgrp->kn); 5890 5891 if (cgroup_is_threaded(cgrp)) 5892 parent->nr_threaded_children--; 5893 5894 spin_lock_irq(&css_set_lock); 5895 for (tcgrp = cgroup_parent(cgrp); tcgrp; tcgrp = cgroup_parent(tcgrp)) { 5896 tcgrp->nr_descendants--; 5897 tcgrp->nr_dying_descendants++; 5898 /* 5899 * If the dying cgroup is frozen, decrease frozen descendants 5900 * counters of ancestor cgroups. 5901 */ 5902 if (test_bit(CGRP_FROZEN, &cgrp->flags)) 5903 tcgrp->freezer.nr_frozen_descendants--; 5904 } 5905 spin_unlock_irq(&css_set_lock); 5906 5907 cgroup1_check_for_release(parent); 5908 5909 cgroup_bpf_offline(cgrp); 5910 5911 /* put the base reference */ 5912 percpu_ref_kill(&cgrp->self.refcnt); 5913 5914 return 0; 5915 }; 5916 5917 int cgroup_rmdir(struct kernfs_node *kn) 5918 { 5919 struct cgroup *cgrp; 5920 int ret = 0; 5921 5922 cgrp = cgroup_kn_lock_live(kn, false); 5923 if (!cgrp) 5924 return 0; 5925 5926 ret = cgroup_destroy_locked(cgrp); 5927 if (!ret) 5928 TRACE_CGROUP_PATH(rmdir, cgrp); 5929 5930 cgroup_kn_unlock(kn); 5931 return ret; 5932 } 5933 5934 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = { 5935 .show_options = cgroup_show_options, 5936 .mkdir = cgroup_mkdir, 5937 .rmdir = cgroup_rmdir, 5938 .show_path = cgroup_show_path, 5939 }; 5940 5941 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early) 5942 { 5943 struct cgroup_subsys_state *css; 5944 5945 pr_debug("Initializing cgroup subsys %s\n", ss->name); 5946 5947 mutex_lock(&cgroup_mutex); 5948 5949 idr_init(&ss->css_idr); 5950 INIT_LIST_HEAD(&ss->cfts); 5951 5952 /* Create the root cgroup state for this subsystem */ 5953 ss->root = &cgrp_dfl_root; 5954 css = ss->css_alloc(NULL); 5955 /* We don't handle early failures gracefully */ 5956 BUG_ON(IS_ERR(css)); 5957 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp); 5958 5959 /* 5960 * Root csses are never destroyed and we can't initialize 5961 * percpu_ref during early init. Disable refcnting. 5962 */ 5963 css->flags |= CSS_NO_REF; 5964 5965 if (early) { 5966 /* allocation can't be done safely during early init */ 5967 css->id = 1; 5968 } else { 5969 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL); 5970 BUG_ON(css->id < 0); 5971 } 5972 5973 /* Update the init_css_set to contain a subsys 5974 * pointer to this state - since the subsystem is 5975 * newly registered, all tasks and hence the 5976 * init_css_set is in the subsystem's root cgroup. */ 5977 init_css_set.subsys[ss->id] = css; 5978 5979 have_fork_callback |= (bool)ss->fork << ss->id; 5980 have_exit_callback |= (bool)ss->exit << ss->id; 5981 have_release_callback |= (bool)ss->release << ss->id; 5982 have_canfork_callback |= (bool)ss->can_fork << ss->id; 5983 5984 /* At system boot, before all subsystems have been 5985 * registered, no tasks have been forked, so we don't 5986 * need to invoke fork callbacks here. */ 5987 BUG_ON(!list_empty(&init_task.tasks)); 5988 5989 BUG_ON(online_css(css)); 5990 5991 mutex_unlock(&cgroup_mutex); 5992 } 5993 5994 /** 5995 * cgroup_init_early - cgroup initialization at system boot 5996 * 5997 * Initialize cgroups at system boot, and initialize any 5998 * subsystems that request early init. 5999 */ 6000 int __init cgroup_init_early(void) 6001 { 6002 static struct cgroup_fs_context __initdata ctx; 6003 struct cgroup_subsys *ss; 6004 int i; 6005 6006 ctx.root = &cgrp_dfl_root; 6007 init_cgroup_root(&ctx); 6008 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF; 6009 6010 RCU_INIT_POINTER(init_task.cgroups, &init_css_set); 6011 6012 for_each_subsys(ss, i) { 6013 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id, 6014 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n", 6015 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free, 6016 ss->id, ss->name); 6017 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN, 6018 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]); 6019 6020 ss->id = i; 6021 ss->name = cgroup_subsys_name[i]; 6022 if (!ss->legacy_name) 6023 ss->legacy_name = cgroup_subsys_name[i]; 6024 6025 if (ss->early_init) 6026 cgroup_init_subsys(ss, true); 6027 } 6028 return 0; 6029 } 6030 6031 /** 6032 * cgroup_init - cgroup initialization 6033 * 6034 * Register cgroup filesystem and /proc file, and initialize 6035 * any subsystems that didn't request early init. 6036 */ 6037 int __init cgroup_init(void) 6038 { 6039 struct cgroup_subsys *ss; 6040 int ssid; 6041 6042 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16); 6043 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files)); 6044 BUG_ON(cgroup_init_cftypes(NULL, cgroup_psi_files)); 6045 BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files)); 6046 6047 cgroup_rstat_boot(); 6048 6049 get_user_ns(init_cgroup_ns.user_ns); 6050 6051 mutex_lock(&cgroup_mutex); 6052 6053 /* 6054 * Add init_css_set to the hash table so that dfl_root can link to 6055 * it during init. 6056 */ 6057 hash_add(css_set_table, &init_css_set.hlist, 6058 css_set_hash(init_css_set.subsys)); 6059 6060 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0)); 6061 6062 mutex_unlock(&cgroup_mutex); 6063 6064 for_each_subsys(ss, ssid) { 6065 if (ss->early_init) { 6066 struct cgroup_subsys_state *css = 6067 init_css_set.subsys[ss->id]; 6068 6069 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, 6070 GFP_KERNEL); 6071 BUG_ON(css->id < 0); 6072 } else { 6073 cgroup_init_subsys(ss, false); 6074 } 6075 6076 list_add_tail(&init_css_set.e_cset_node[ssid], 6077 &cgrp_dfl_root.cgrp.e_csets[ssid]); 6078 6079 /* 6080 * Setting dfl_root subsys_mask needs to consider the 6081 * disabled flag and cftype registration needs kmalloc, 6082 * both of which aren't available during early_init. 6083 */ 6084 if (!cgroup_ssid_enabled(ssid)) 6085 continue; 6086 6087 if (cgroup1_ssid_disabled(ssid)) 6088 printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n", 6089 ss->name); 6090 6091 cgrp_dfl_root.subsys_mask |= 1 << ss->id; 6092 6093 /* implicit controllers must be threaded too */ 6094 WARN_ON(ss->implicit_on_dfl && !ss->threaded); 6095 6096 if (ss->implicit_on_dfl) 6097 cgrp_dfl_implicit_ss_mask |= 1 << ss->id; 6098 else if (!ss->dfl_cftypes) 6099 cgrp_dfl_inhibit_ss_mask |= 1 << ss->id; 6100 6101 if (ss->threaded) 6102 cgrp_dfl_threaded_ss_mask |= 1 << ss->id; 6103 6104 if (ss->dfl_cftypes == ss->legacy_cftypes) { 6105 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes)); 6106 } else { 6107 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes)); 6108 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes)); 6109 } 6110 6111 if (ss->bind) 6112 ss->bind(init_css_set.subsys[ssid]); 6113 6114 mutex_lock(&cgroup_mutex); 6115 css_populate_dir(init_css_set.subsys[ssid]); 6116 mutex_unlock(&cgroup_mutex); 6117 } 6118 6119 /* init_css_set.subsys[] has been updated, re-hash */ 6120 hash_del(&init_css_set.hlist); 6121 hash_add(css_set_table, &init_css_set.hlist, 6122 css_set_hash(init_css_set.subsys)); 6123 6124 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup")); 6125 WARN_ON(register_filesystem(&cgroup_fs_type)); 6126 WARN_ON(register_filesystem(&cgroup2_fs_type)); 6127 WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show)); 6128 #ifdef CONFIG_CPUSETS 6129 WARN_ON(register_filesystem(&cpuset_fs_type)); 6130 #endif 6131 6132 return 0; 6133 } 6134 6135 static int __init cgroup_wq_init(void) 6136 { 6137 /* 6138 * There isn't much point in executing destruction path in 6139 * parallel. Good chunk is serialized with cgroup_mutex anyway. 6140 * Use 1 for @max_active. 6141 * 6142 * We would prefer to do this in cgroup_init() above, but that 6143 * is called before init_workqueues(): so leave this until after. 6144 */ 6145 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1); 6146 BUG_ON(!cgroup_destroy_wq); 6147 return 0; 6148 } 6149 core_initcall(cgroup_wq_init); 6150 6151 void cgroup_path_from_kernfs_id(u64 id, char *buf, size_t buflen) 6152 { 6153 struct kernfs_node *kn; 6154 6155 kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id); 6156 if (!kn) 6157 return; 6158 kernfs_path(kn, buf, buflen); 6159 kernfs_put(kn); 6160 } 6161 6162 /* 6163 * cgroup_get_from_id : get the cgroup associated with cgroup id 6164 * @id: cgroup id 6165 * On success return the cgrp or ERR_PTR on failure 6166 * Only cgroups within current task's cgroup NS are valid. 6167 */ 6168 struct cgroup *cgroup_get_from_id(u64 id) 6169 { 6170 struct kernfs_node *kn; 6171 struct cgroup *cgrp, *root_cgrp; 6172 6173 kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id); 6174 if (!kn) 6175 return ERR_PTR(-ENOENT); 6176 6177 if (kernfs_type(kn) != KERNFS_DIR) { 6178 kernfs_put(kn); 6179 return ERR_PTR(-ENOENT); 6180 } 6181 6182 rcu_read_lock(); 6183 6184 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); 6185 if (cgrp && !cgroup_tryget(cgrp)) 6186 cgrp = NULL; 6187 6188 rcu_read_unlock(); 6189 kernfs_put(kn); 6190 6191 if (!cgrp) 6192 return ERR_PTR(-ENOENT); 6193 6194 spin_lock_irq(&css_set_lock); 6195 root_cgrp = current_cgns_cgroup_from_root(&cgrp_dfl_root); 6196 spin_unlock_irq(&css_set_lock); 6197 if (!cgroup_is_descendant(cgrp, root_cgrp)) { 6198 cgroup_put(cgrp); 6199 return ERR_PTR(-ENOENT); 6200 } 6201 6202 return cgrp; 6203 } 6204 EXPORT_SYMBOL_GPL(cgroup_get_from_id); 6205 6206 /* 6207 * proc_cgroup_show() 6208 * - Print task's cgroup paths into seq_file, one line for each hierarchy 6209 * - Used for /proc/<pid>/cgroup. 6210 */ 6211 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns, 6212 struct pid *pid, struct task_struct *tsk) 6213 { 6214 char *buf; 6215 int retval; 6216 struct cgroup_root *root; 6217 6218 retval = -ENOMEM; 6219 buf = kmalloc(PATH_MAX, GFP_KERNEL); 6220 if (!buf) 6221 goto out; 6222 6223 mutex_lock(&cgroup_mutex); 6224 spin_lock_irq(&css_set_lock); 6225 6226 for_each_root(root) { 6227 struct cgroup_subsys *ss; 6228 struct cgroup *cgrp; 6229 int ssid, count = 0; 6230 6231 if (root == &cgrp_dfl_root && !READ_ONCE(cgrp_dfl_visible)) 6232 continue; 6233 6234 seq_printf(m, "%d:", root->hierarchy_id); 6235 if (root != &cgrp_dfl_root) 6236 for_each_subsys(ss, ssid) 6237 if (root->subsys_mask & (1 << ssid)) 6238 seq_printf(m, "%s%s", count++ ? "," : "", 6239 ss->legacy_name); 6240 if (strlen(root->name)) 6241 seq_printf(m, "%sname=%s", count ? "," : "", 6242 root->name); 6243 seq_putc(m, ':'); 6244 6245 cgrp = task_cgroup_from_root(tsk, root); 6246 6247 /* 6248 * On traditional hierarchies, all zombie tasks show up as 6249 * belonging to the root cgroup. On the default hierarchy, 6250 * while a zombie doesn't show up in "cgroup.procs" and 6251 * thus can't be migrated, its /proc/PID/cgroup keeps 6252 * reporting the cgroup it belonged to before exiting. If 6253 * the cgroup is removed before the zombie is reaped, 6254 * " (deleted)" is appended to the cgroup path. 6255 */ 6256 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) { 6257 retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX, 6258 current->nsproxy->cgroup_ns); 6259 if (retval >= PATH_MAX) 6260 retval = -ENAMETOOLONG; 6261 if (retval < 0) 6262 goto out_unlock; 6263 6264 seq_puts(m, buf); 6265 } else { 6266 seq_puts(m, "/"); 6267 } 6268 6269 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp)) 6270 seq_puts(m, " (deleted)\n"); 6271 else 6272 seq_putc(m, '\n'); 6273 } 6274 6275 retval = 0; 6276 out_unlock: 6277 spin_unlock_irq(&css_set_lock); 6278 mutex_unlock(&cgroup_mutex); 6279 kfree(buf); 6280 out: 6281 return retval; 6282 } 6283 6284 /** 6285 * cgroup_fork - initialize cgroup related fields during copy_process() 6286 * @child: pointer to task_struct of forking parent process. 6287 * 6288 * A task is associated with the init_css_set until cgroup_post_fork() 6289 * attaches it to the target css_set. 6290 */ 6291 void cgroup_fork(struct task_struct *child) 6292 { 6293 RCU_INIT_POINTER(child->cgroups, &init_css_set); 6294 INIT_LIST_HEAD(&child->cg_list); 6295 } 6296 6297 static struct cgroup *cgroup_get_from_file(struct file *f) 6298 { 6299 struct cgroup_subsys_state *css; 6300 struct cgroup *cgrp; 6301 6302 css = css_tryget_online_from_dir(f->f_path.dentry, NULL); 6303 if (IS_ERR(css)) 6304 return ERR_CAST(css); 6305 6306 cgrp = css->cgroup; 6307 return cgrp; 6308 } 6309 6310 /** 6311 * cgroup_css_set_fork - find or create a css_set for a child process 6312 * @kargs: the arguments passed to create the child process 6313 * 6314 * This functions finds or creates a new css_set which the child 6315 * process will be attached to in cgroup_post_fork(). By default, 6316 * the child process will be given the same css_set as its parent. 6317 * 6318 * If CLONE_INTO_CGROUP is specified this function will try to find an 6319 * existing css_set which includes the requested cgroup and if not create 6320 * a new css_set that the child will be attached to later. If this function 6321 * succeeds it will hold cgroup_threadgroup_rwsem on return. If 6322 * CLONE_INTO_CGROUP is requested this function will grab cgroup mutex 6323 * before grabbing cgroup_threadgroup_rwsem and will hold a reference 6324 * to the target cgroup. 6325 */ 6326 static int cgroup_css_set_fork(struct kernel_clone_args *kargs) 6327 __acquires(&cgroup_mutex) __acquires(&cgroup_threadgroup_rwsem) 6328 { 6329 int ret; 6330 struct cgroup *dst_cgrp = NULL; 6331 struct css_set *cset; 6332 struct super_block *sb; 6333 struct file *f; 6334 6335 if (kargs->flags & CLONE_INTO_CGROUP) 6336 mutex_lock(&cgroup_mutex); 6337 6338 cgroup_threadgroup_change_begin(current); 6339 6340 spin_lock_irq(&css_set_lock); 6341 cset = task_css_set(current); 6342 get_css_set(cset); 6343 spin_unlock_irq(&css_set_lock); 6344 6345 if (!(kargs->flags & CLONE_INTO_CGROUP)) { 6346 kargs->cset = cset; 6347 return 0; 6348 } 6349 6350 f = fget_raw(kargs->cgroup); 6351 if (!f) { 6352 ret = -EBADF; 6353 goto err; 6354 } 6355 sb = f->f_path.dentry->d_sb; 6356 6357 dst_cgrp = cgroup_get_from_file(f); 6358 if (IS_ERR(dst_cgrp)) { 6359 ret = PTR_ERR(dst_cgrp); 6360 dst_cgrp = NULL; 6361 goto err; 6362 } 6363 6364 if (cgroup_is_dead(dst_cgrp)) { 6365 ret = -ENODEV; 6366 goto err; 6367 } 6368 6369 /* 6370 * Verify that we the target cgroup is writable for us. This is 6371 * usually done by the vfs layer but since we're not going through 6372 * the vfs layer here we need to do it "manually". 6373 */ 6374 ret = cgroup_may_write(dst_cgrp, sb); 6375 if (ret) 6376 goto err; 6377 6378 /* 6379 * Spawning a task directly into a cgroup works by passing a file 6380 * descriptor to the target cgroup directory. This can even be an O_PATH 6381 * file descriptor. But it can never be a cgroup.procs file descriptor. 6382 * This was done on purpose so spawning into a cgroup could be 6383 * conceptualized as an atomic 6384 * 6385 * fd = openat(dfd_cgroup, "cgroup.procs", ...); 6386 * write(fd, <child-pid>, ...); 6387 * 6388 * sequence, i.e. it's a shorthand for the caller opening and writing 6389 * cgroup.procs of the cgroup indicated by @dfd_cgroup. This allows us 6390 * to always use the caller's credentials. 6391 */ 6392 ret = cgroup_attach_permissions(cset->dfl_cgrp, dst_cgrp, sb, 6393 !(kargs->flags & CLONE_THREAD), 6394 current->nsproxy->cgroup_ns); 6395 if (ret) 6396 goto err; 6397 6398 kargs->cset = find_css_set(cset, dst_cgrp); 6399 if (!kargs->cset) { 6400 ret = -ENOMEM; 6401 goto err; 6402 } 6403 6404 put_css_set(cset); 6405 fput(f); 6406 kargs->cgrp = dst_cgrp; 6407 return ret; 6408 6409 err: 6410 cgroup_threadgroup_change_end(current); 6411 mutex_unlock(&cgroup_mutex); 6412 if (f) 6413 fput(f); 6414 if (dst_cgrp) 6415 cgroup_put(dst_cgrp); 6416 put_css_set(cset); 6417 if (kargs->cset) 6418 put_css_set(kargs->cset); 6419 return ret; 6420 } 6421 6422 /** 6423 * cgroup_css_set_put_fork - drop references we took during fork 6424 * @kargs: the arguments passed to create the child process 6425 * 6426 * Drop references to the prepared css_set and target cgroup if 6427 * CLONE_INTO_CGROUP was requested. 6428 */ 6429 static void cgroup_css_set_put_fork(struct kernel_clone_args *kargs) 6430 __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex) 6431 { 6432 cgroup_threadgroup_change_end(current); 6433 6434 if (kargs->flags & CLONE_INTO_CGROUP) { 6435 struct cgroup *cgrp = kargs->cgrp; 6436 struct css_set *cset = kargs->cset; 6437 6438 mutex_unlock(&cgroup_mutex); 6439 6440 if (cset) { 6441 put_css_set(cset); 6442 kargs->cset = NULL; 6443 } 6444 6445 if (cgrp) { 6446 cgroup_put(cgrp); 6447 kargs->cgrp = NULL; 6448 } 6449 } 6450 } 6451 6452 /** 6453 * cgroup_can_fork - called on a new task before the process is exposed 6454 * @child: the child process 6455 * @kargs: the arguments passed to create the child process 6456 * 6457 * This prepares a new css_set for the child process which the child will 6458 * be attached to in cgroup_post_fork(). 6459 * This calls the subsystem can_fork() callbacks. If the cgroup_can_fork() 6460 * callback returns an error, the fork aborts with that error code. This 6461 * allows for a cgroup subsystem to conditionally allow or deny new forks. 6462 */ 6463 int cgroup_can_fork(struct task_struct *child, struct kernel_clone_args *kargs) 6464 { 6465 struct cgroup_subsys *ss; 6466 int i, j, ret; 6467 6468 ret = cgroup_css_set_fork(kargs); 6469 if (ret) 6470 return ret; 6471 6472 do_each_subsys_mask(ss, i, have_canfork_callback) { 6473 ret = ss->can_fork(child, kargs->cset); 6474 if (ret) 6475 goto out_revert; 6476 } while_each_subsys_mask(); 6477 6478 return 0; 6479 6480 out_revert: 6481 for_each_subsys(ss, j) { 6482 if (j >= i) 6483 break; 6484 if (ss->cancel_fork) 6485 ss->cancel_fork(child, kargs->cset); 6486 } 6487 6488 cgroup_css_set_put_fork(kargs); 6489 6490 return ret; 6491 } 6492 6493 /** 6494 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork() 6495 * @child: the child process 6496 * @kargs: the arguments passed to create the child process 6497 * 6498 * This calls the cancel_fork() callbacks if a fork failed *after* 6499 * cgroup_can_fork() succeeded and cleans up references we took to 6500 * prepare a new css_set for the child process in cgroup_can_fork(). 6501 */ 6502 void cgroup_cancel_fork(struct task_struct *child, 6503 struct kernel_clone_args *kargs) 6504 { 6505 struct cgroup_subsys *ss; 6506 int i; 6507 6508 for_each_subsys(ss, i) 6509 if (ss->cancel_fork) 6510 ss->cancel_fork(child, kargs->cset); 6511 6512 cgroup_css_set_put_fork(kargs); 6513 } 6514 6515 /** 6516 * cgroup_post_fork - finalize cgroup setup for the child process 6517 * @child: the child process 6518 * @kargs: the arguments passed to create the child process 6519 * 6520 * Attach the child process to its css_set calling the subsystem fork() 6521 * callbacks. 6522 */ 6523 void cgroup_post_fork(struct task_struct *child, 6524 struct kernel_clone_args *kargs) 6525 __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex) 6526 { 6527 unsigned long cgrp_flags = 0; 6528 bool kill = false; 6529 struct cgroup_subsys *ss; 6530 struct css_set *cset; 6531 int i; 6532 6533 cset = kargs->cset; 6534 kargs->cset = NULL; 6535 6536 spin_lock_irq(&css_set_lock); 6537 6538 /* init tasks are special, only link regular threads */ 6539 if (likely(child->pid)) { 6540 if (kargs->cgrp) 6541 cgrp_flags = kargs->cgrp->flags; 6542 else 6543 cgrp_flags = cset->dfl_cgrp->flags; 6544 6545 WARN_ON_ONCE(!list_empty(&child->cg_list)); 6546 cset->nr_tasks++; 6547 css_set_move_task(child, NULL, cset, false); 6548 } else { 6549 put_css_set(cset); 6550 cset = NULL; 6551 } 6552 6553 if (!(child->flags & PF_KTHREAD)) { 6554 if (unlikely(test_bit(CGRP_FREEZE, &cgrp_flags))) { 6555 /* 6556 * If the cgroup has to be frozen, the new task has 6557 * too. Let's set the JOBCTL_TRAP_FREEZE jobctl bit to 6558 * get the task into the frozen state. 6559 */ 6560 spin_lock(&child->sighand->siglock); 6561 WARN_ON_ONCE(child->frozen); 6562 child->jobctl |= JOBCTL_TRAP_FREEZE; 6563 spin_unlock(&child->sighand->siglock); 6564 6565 /* 6566 * Calling cgroup_update_frozen() isn't required here, 6567 * because it will be called anyway a bit later from 6568 * do_freezer_trap(). So we avoid cgroup's transient 6569 * switch from the frozen state and back. 6570 */ 6571 } 6572 6573 /* 6574 * If the cgroup is to be killed notice it now and take the 6575 * child down right after we finished preparing it for 6576 * userspace. 6577 */ 6578 kill = test_bit(CGRP_KILL, &cgrp_flags); 6579 } 6580 6581 spin_unlock_irq(&css_set_lock); 6582 6583 /* 6584 * Call ss->fork(). This must happen after @child is linked on 6585 * css_set; otherwise, @child might change state between ->fork() 6586 * and addition to css_set. 6587 */ 6588 do_each_subsys_mask(ss, i, have_fork_callback) { 6589 ss->fork(child); 6590 } while_each_subsys_mask(); 6591 6592 /* Make the new cset the root_cset of the new cgroup namespace. */ 6593 if (kargs->flags & CLONE_NEWCGROUP) { 6594 struct css_set *rcset = child->nsproxy->cgroup_ns->root_cset; 6595 6596 get_css_set(cset); 6597 child->nsproxy->cgroup_ns->root_cset = cset; 6598 put_css_set(rcset); 6599 } 6600 6601 /* Cgroup has to be killed so take down child immediately. */ 6602 if (unlikely(kill)) 6603 do_send_sig_info(SIGKILL, SEND_SIG_NOINFO, child, PIDTYPE_TGID); 6604 6605 cgroup_css_set_put_fork(kargs); 6606 } 6607 6608 /** 6609 * cgroup_exit - detach cgroup from exiting task 6610 * @tsk: pointer to task_struct of exiting process 6611 * 6612 * Description: Detach cgroup from @tsk. 6613 * 6614 */ 6615 void cgroup_exit(struct task_struct *tsk) 6616 { 6617 struct cgroup_subsys *ss; 6618 struct css_set *cset; 6619 int i; 6620 6621 spin_lock_irq(&css_set_lock); 6622 6623 WARN_ON_ONCE(list_empty(&tsk->cg_list)); 6624 cset = task_css_set(tsk); 6625 css_set_move_task(tsk, cset, NULL, false); 6626 list_add_tail(&tsk->cg_list, &cset->dying_tasks); 6627 cset->nr_tasks--; 6628 6629 WARN_ON_ONCE(cgroup_task_frozen(tsk)); 6630 if (unlikely(!(tsk->flags & PF_KTHREAD) && 6631 test_bit(CGRP_FREEZE, &task_dfl_cgroup(tsk)->flags))) 6632 cgroup_update_frozen(task_dfl_cgroup(tsk)); 6633 6634 spin_unlock_irq(&css_set_lock); 6635 6636 /* see cgroup_post_fork() for details */ 6637 do_each_subsys_mask(ss, i, have_exit_callback) { 6638 ss->exit(tsk); 6639 } while_each_subsys_mask(); 6640 } 6641 6642 void cgroup_release(struct task_struct *task) 6643 { 6644 struct cgroup_subsys *ss; 6645 int ssid; 6646 6647 do_each_subsys_mask(ss, ssid, have_release_callback) { 6648 ss->release(task); 6649 } while_each_subsys_mask(); 6650 6651 spin_lock_irq(&css_set_lock); 6652 css_set_skip_task_iters(task_css_set(task), task); 6653 list_del_init(&task->cg_list); 6654 spin_unlock_irq(&css_set_lock); 6655 } 6656 6657 void cgroup_free(struct task_struct *task) 6658 { 6659 struct css_set *cset = task_css_set(task); 6660 put_css_set(cset); 6661 } 6662 6663 static int __init cgroup_disable(char *str) 6664 { 6665 struct cgroup_subsys *ss; 6666 char *token; 6667 int i; 6668 6669 while ((token = strsep(&str, ",")) != NULL) { 6670 if (!*token) 6671 continue; 6672 6673 for_each_subsys(ss, i) { 6674 if (strcmp(token, ss->name) && 6675 strcmp(token, ss->legacy_name)) 6676 continue; 6677 6678 static_branch_disable(cgroup_subsys_enabled_key[i]); 6679 pr_info("Disabling %s control group subsystem\n", 6680 ss->name); 6681 } 6682 6683 for (i = 0; i < OPT_FEATURE_COUNT; i++) { 6684 if (strcmp(token, cgroup_opt_feature_names[i])) 6685 continue; 6686 cgroup_feature_disable_mask |= 1 << i; 6687 pr_info("Disabling %s control group feature\n", 6688 cgroup_opt_feature_names[i]); 6689 break; 6690 } 6691 } 6692 return 1; 6693 } 6694 __setup("cgroup_disable=", cgroup_disable); 6695 6696 void __init __weak enable_debug_cgroup(void) { } 6697 6698 static int __init enable_cgroup_debug(char *str) 6699 { 6700 cgroup_debug = true; 6701 enable_debug_cgroup(); 6702 return 1; 6703 } 6704 __setup("cgroup_debug", enable_cgroup_debug); 6705 6706 /** 6707 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry 6708 * @dentry: directory dentry of interest 6709 * @ss: subsystem of interest 6710 * 6711 * If @dentry is a directory for a cgroup which has @ss enabled on it, try 6712 * to get the corresponding css and return it. If such css doesn't exist 6713 * or can't be pinned, an ERR_PTR value is returned. 6714 */ 6715 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry, 6716 struct cgroup_subsys *ss) 6717 { 6718 struct kernfs_node *kn = kernfs_node_from_dentry(dentry); 6719 struct file_system_type *s_type = dentry->d_sb->s_type; 6720 struct cgroup_subsys_state *css = NULL; 6721 struct cgroup *cgrp; 6722 6723 /* is @dentry a cgroup dir? */ 6724 if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) || 6725 !kn || kernfs_type(kn) != KERNFS_DIR) 6726 return ERR_PTR(-EBADF); 6727 6728 rcu_read_lock(); 6729 6730 /* 6731 * This path doesn't originate from kernfs and @kn could already 6732 * have been or be removed at any point. @kn->priv is RCU 6733 * protected for this access. See css_release_work_fn() for details. 6734 */ 6735 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); 6736 if (cgrp) 6737 css = cgroup_css(cgrp, ss); 6738 6739 if (!css || !css_tryget_online(css)) 6740 css = ERR_PTR(-ENOENT); 6741 6742 rcu_read_unlock(); 6743 return css; 6744 } 6745 6746 /** 6747 * css_from_id - lookup css by id 6748 * @id: the cgroup id 6749 * @ss: cgroup subsys to be looked into 6750 * 6751 * Returns the css if there's valid one with @id, otherwise returns NULL. 6752 * Should be called under rcu_read_lock(). 6753 */ 6754 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss) 6755 { 6756 WARN_ON_ONCE(!rcu_read_lock_held()); 6757 return idr_find(&ss->css_idr, id); 6758 } 6759 6760 /** 6761 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path 6762 * @path: path on the default hierarchy 6763 * 6764 * Find the cgroup at @path on the default hierarchy, increment its 6765 * reference count and return it. Returns pointer to the found cgroup on 6766 * success, ERR_PTR(-ENOENT) if @path doesn't exist or if the cgroup has already 6767 * been released and ERR_PTR(-ENOTDIR) if @path points to a non-directory. 6768 */ 6769 struct cgroup *cgroup_get_from_path(const char *path) 6770 { 6771 struct kernfs_node *kn; 6772 struct cgroup *cgrp = ERR_PTR(-ENOENT); 6773 struct cgroup *root_cgrp; 6774 6775 spin_lock_irq(&css_set_lock); 6776 root_cgrp = current_cgns_cgroup_from_root(&cgrp_dfl_root); 6777 kn = kernfs_walk_and_get(root_cgrp->kn, path); 6778 spin_unlock_irq(&css_set_lock); 6779 if (!kn) 6780 goto out; 6781 6782 if (kernfs_type(kn) != KERNFS_DIR) { 6783 cgrp = ERR_PTR(-ENOTDIR); 6784 goto out_kernfs; 6785 } 6786 6787 rcu_read_lock(); 6788 6789 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); 6790 if (!cgrp || !cgroup_tryget(cgrp)) 6791 cgrp = ERR_PTR(-ENOENT); 6792 6793 rcu_read_unlock(); 6794 6795 out_kernfs: 6796 kernfs_put(kn); 6797 out: 6798 return cgrp; 6799 } 6800 EXPORT_SYMBOL_GPL(cgroup_get_from_path); 6801 6802 /** 6803 * cgroup_get_from_fd - get a cgroup pointer from a fd 6804 * @fd: fd obtained by open(cgroup2_dir) 6805 * 6806 * Find the cgroup from a fd which should be obtained 6807 * by opening a cgroup directory. Returns a pointer to the 6808 * cgroup on success. ERR_PTR is returned if the cgroup 6809 * cannot be found. 6810 */ 6811 struct cgroup *cgroup_get_from_fd(int fd) 6812 { 6813 struct cgroup *cgrp; 6814 struct file *f; 6815 6816 f = fget_raw(fd); 6817 if (!f) 6818 return ERR_PTR(-EBADF); 6819 6820 cgrp = cgroup_get_from_file(f); 6821 fput(f); 6822 return cgrp; 6823 } 6824 EXPORT_SYMBOL_GPL(cgroup_get_from_fd); 6825 6826 static u64 power_of_ten(int power) 6827 { 6828 u64 v = 1; 6829 while (power--) 6830 v *= 10; 6831 return v; 6832 } 6833 6834 /** 6835 * cgroup_parse_float - parse a floating number 6836 * @input: input string 6837 * @dec_shift: number of decimal digits to shift 6838 * @v: output 6839 * 6840 * Parse a decimal floating point number in @input and store the result in 6841 * @v with decimal point right shifted @dec_shift times. For example, if 6842 * @input is "12.3456" and @dec_shift is 3, *@v will be set to 12345. 6843 * Returns 0 on success, -errno otherwise. 6844 * 6845 * There's nothing cgroup specific about this function except that it's 6846 * currently the only user. 6847 */ 6848 int cgroup_parse_float(const char *input, unsigned dec_shift, s64 *v) 6849 { 6850 s64 whole, frac = 0; 6851 int fstart = 0, fend = 0, flen; 6852 6853 if (!sscanf(input, "%lld.%n%lld%n", &whole, &fstart, &frac, &fend)) 6854 return -EINVAL; 6855 if (frac < 0) 6856 return -EINVAL; 6857 6858 flen = fend > fstart ? fend - fstart : 0; 6859 if (flen < dec_shift) 6860 frac *= power_of_ten(dec_shift - flen); 6861 else 6862 frac = DIV_ROUND_CLOSEST_ULL(frac, power_of_ten(flen - dec_shift)); 6863 6864 *v = whole * power_of_ten(dec_shift) + frac; 6865 return 0; 6866 } 6867 6868 /* 6869 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data 6870 * definition in cgroup-defs.h. 6871 */ 6872 #ifdef CONFIG_SOCK_CGROUP_DATA 6873 6874 void cgroup_sk_alloc(struct sock_cgroup_data *skcd) 6875 { 6876 struct cgroup *cgroup; 6877 6878 rcu_read_lock(); 6879 /* Don't associate the sock with unrelated interrupted task's cgroup. */ 6880 if (in_interrupt()) { 6881 cgroup = &cgrp_dfl_root.cgrp; 6882 cgroup_get(cgroup); 6883 goto out; 6884 } 6885 6886 while (true) { 6887 struct css_set *cset; 6888 6889 cset = task_css_set(current); 6890 if (likely(cgroup_tryget(cset->dfl_cgrp))) { 6891 cgroup = cset->dfl_cgrp; 6892 break; 6893 } 6894 cpu_relax(); 6895 } 6896 out: 6897 skcd->cgroup = cgroup; 6898 cgroup_bpf_get(cgroup); 6899 rcu_read_unlock(); 6900 } 6901 6902 void cgroup_sk_clone(struct sock_cgroup_data *skcd) 6903 { 6904 struct cgroup *cgrp = sock_cgroup_ptr(skcd); 6905 6906 /* 6907 * We might be cloning a socket which is left in an empty 6908 * cgroup and the cgroup might have already been rmdir'd. 6909 * Don't use cgroup_get_live(). 6910 */ 6911 cgroup_get(cgrp); 6912 cgroup_bpf_get(cgrp); 6913 } 6914 6915 void cgroup_sk_free(struct sock_cgroup_data *skcd) 6916 { 6917 struct cgroup *cgrp = sock_cgroup_ptr(skcd); 6918 6919 cgroup_bpf_put(cgrp); 6920 cgroup_put(cgrp); 6921 } 6922 6923 #endif /* CONFIG_SOCK_CGROUP_DATA */ 6924 6925 #ifdef CONFIG_SYSFS 6926 static ssize_t show_delegatable_files(struct cftype *files, char *buf, 6927 ssize_t size, const char *prefix) 6928 { 6929 struct cftype *cft; 6930 ssize_t ret = 0; 6931 6932 for (cft = files; cft && cft->name[0] != '\0'; cft++) { 6933 if (!(cft->flags & CFTYPE_NS_DELEGATABLE)) 6934 continue; 6935 6936 if (prefix) 6937 ret += snprintf(buf + ret, size - ret, "%s.", prefix); 6938 6939 ret += snprintf(buf + ret, size - ret, "%s\n", cft->name); 6940 6941 if (WARN_ON(ret >= size)) 6942 break; 6943 } 6944 6945 return ret; 6946 } 6947 6948 static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr, 6949 char *buf) 6950 { 6951 struct cgroup_subsys *ss; 6952 int ssid; 6953 ssize_t ret = 0; 6954 6955 ret = show_delegatable_files(cgroup_base_files, buf + ret, 6956 PAGE_SIZE - ret, NULL); 6957 if (cgroup_psi_enabled()) 6958 ret += show_delegatable_files(cgroup_psi_files, buf + ret, 6959 PAGE_SIZE - ret, NULL); 6960 6961 for_each_subsys(ss, ssid) 6962 ret += show_delegatable_files(ss->dfl_cftypes, buf + ret, 6963 PAGE_SIZE - ret, 6964 cgroup_subsys_name[ssid]); 6965 6966 return ret; 6967 } 6968 static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate); 6969 6970 static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr, 6971 char *buf) 6972 { 6973 return snprintf(buf, PAGE_SIZE, 6974 "nsdelegate\n" 6975 "favordynmods\n" 6976 "memory_localevents\n" 6977 "memory_recursiveprot\n"); 6978 } 6979 static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features); 6980 6981 static struct attribute *cgroup_sysfs_attrs[] = { 6982 &cgroup_delegate_attr.attr, 6983 &cgroup_features_attr.attr, 6984 NULL, 6985 }; 6986 6987 static const struct attribute_group cgroup_sysfs_attr_group = { 6988 .attrs = cgroup_sysfs_attrs, 6989 .name = "cgroup", 6990 }; 6991 6992 static int __init cgroup_sysfs_init(void) 6993 { 6994 return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group); 6995 } 6996 subsys_initcall(cgroup_sysfs_init); 6997 6998 #endif /* CONFIG_SYSFS */ 6999