1 /* 2 * Generic process-grouping system. 3 * 4 * Based originally on the cpuset system, extracted by Paul Menage 5 * Copyright (C) 2006 Google, Inc 6 * 7 * Notifications support 8 * Copyright (C) 2009 Nokia Corporation 9 * Author: Kirill A. Shutemov 10 * 11 * Copyright notices from the original cpuset code: 12 * -------------------------------------------------- 13 * Copyright (C) 2003 BULL SA. 14 * Copyright (C) 2004-2006 Silicon Graphics, Inc. 15 * 16 * Portions derived from Patrick Mochel's sysfs code. 17 * sysfs is Copyright (c) 2001-3 Patrick Mochel 18 * 19 * 2003-10-10 Written by Simon Derr. 20 * 2003-10-22 Updates by Stephen Hemminger. 21 * 2004 May-July Rework by Paul Jackson. 22 * --------------------------------------------------- 23 * 24 * This file is subject to the terms and conditions of the GNU General Public 25 * License. See the file COPYING in the main directory of the Linux 26 * distribution for more details. 27 */ 28 29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 30 31 #include "cgroup-internal.h" 32 33 #include <linux/cred.h> 34 #include <linux/errno.h> 35 #include <linux/init_task.h> 36 #include <linux/kernel.h> 37 #include <linux/magic.h> 38 #include <linux/mutex.h> 39 #include <linux/mount.h> 40 #include <linux/pagemap.h> 41 #include <linux/proc_fs.h> 42 #include <linux/rcupdate.h> 43 #include <linux/sched.h> 44 #include <linux/sched/task.h> 45 #include <linux/slab.h> 46 #include <linux/spinlock.h> 47 #include <linux/percpu-rwsem.h> 48 #include <linux/string.h> 49 #include <linux/hashtable.h> 50 #include <linux/idr.h> 51 #include <linux/kthread.h> 52 #include <linux/atomic.h> 53 #include <linux/cpuset.h> 54 #include <linux/proc_ns.h> 55 #include <linux/nsproxy.h> 56 #include <linux/file.h> 57 #include <linux/fs_parser.h> 58 #include <linux/sched/cputime.h> 59 #include <linux/psi.h> 60 #include <net/sock.h> 61 62 #define CREATE_TRACE_POINTS 63 #include <trace/events/cgroup.h> 64 65 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \ 66 MAX_CFTYPE_NAME + 2) 67 /* let's not notify more than 100 times per second */ 68 #define CGROUP_FILE_NOTIFY_MIN_INTV DIV_ROUND_UP(HZ, 100) 69 70 /* 71 * cgroup_mutex is the master lock. Any modification to cgroup or its 72 * hierarchy must be performed while holding it. 73 * 74 * css_set_lock protects task->cgroups pointer, the list of css_set 75 * objects, and the chain of tasks off each css_set. 76 * 77 * These locks are exported if CONFIG_PROVE_RCU so that accessors in 78 * cgroup.h can use them for lockdep annotations. 79 */ 80 DEFINE_MUTEX(cgroup_mutex); 81 DEFINE_SPINLOCK(css_set_lock); 82 83 #ifdef CONFIG_PROVE_RCU 84 EXPORT_SYMBOL_GPL(cgroup_mutex); 85 EXPORT_SYMBOL_GPL(css_set_lock); 86 #endif 87 88 DEFINE_SPINLOCK(trace_cgroup_path_lock); 89 char trace_cgroup_path[TRACE_CGROUP_PATH_LEN]; 90 bool cgroup_debug __read_mostly; 91 92 /* 93 * Protects cgroup_idr and css_idr so that IDs can be released without 94 * grabbing cgroup_mutex. 95 */ 96 static DEFINE_SPINLOCK(cgroup_idr_lock); 97 98 /* 99 * Protects cgroup_file->kn for !self csses. It synchronizes notifications 100 * against file removal/re-creation across css hiding. 101 */ 102 static DEFINE_SPINLOCK(cgroup_file_kn_lock); 103 104 DEFINE_PERCPU_RWSEM(cgroup_threadgroup_rwsem); 105 106 #define cgroup_assert_mutex_or_rcu_locked() \ 107 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \ 108 !lockdep_is_held(&cgroup_mutex), \ 109 "cgroup_mutex or RCU read lock required"); 110 111 /* 112 * cgroup destruction makes heavy use of work items and there can be a lot 113 * of concurrent destructions. Use a separate workqueue so that cgroup 114 * destruction work items don't end up filling up max_active of system_wq 115 * which may lead to deadlock. 116 */ 117 static struct workqueue_struct *cgroup_destroy_wq; 118 119 /* generate an array of cgroup subsystem pointers */ 120 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys, 121 struct cgroup_subsys *cgroup_subsys[] = { 122 #include <linux/cgroup_subsys.h> 123 }; 124 #undef SUBSYS 125 126 /* array of cgroup subsystem names */ 127 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x, 128 static const char *cgroup_subsys_name[] = { 129 #include <linux/cgroup_subsys.h> 130 }; 131 #undef SUBSYS 132 133 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */ 134 #define SUBSYS(_x) \ 135 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \ 136 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \ 137 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \ 138 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key); 139 #include <linux/cgroup_subsys.h> 140 #undef SUBSYS 141 142 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key, 143 static struct static_key_true *cgroup_subsys_enabled_key[] = { 144 #include <linux/cgroup_subsys.h> 145 }; 146 #undef SUBSYS 147 148 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key, 149 static struct static_key_true *cgroup_subsys_on_dfl_key[] = { 150 #include <linux/cgroup_subsys.h> 151 }; 152 #undef SUBSYS 153 154 static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu); 155 156 /* 157 * The default hierarchy, reserved for the subsystems that are otherwise 158 * unattached - it never has more than a single cgroup, and all tasks are 159 * part of that cgroup. 160 */ 161 struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu }; 162 EXPORT_SYMBOL_GPL(cgrp_dfl_root); 163 164 /* 165 * The default hierarchy always exists but is hidden until mounted for the 166 * first time. This is for backward compatibility. 167 */ 168 static bool cgrp_dfl_visible; 169 170 /* some controllers are not supported in the default hierarchy */ 171 static u16 cgrp_dfl_inhibit_ss_mask; 172 173 /* some controllers are implicitly enabled on the default hierarchy */ 174 static u16 cgrp_dfl_implicit_ss_mask; 175 176 /* some controllers can be threaded on the default hierarchy */ 177 static u16 cgrp_dfl_threaded_ss_mask; 178 179 /* The list of hierarchy roots */ 180 LIST_HEAD(cgroup_roots); 181 static int cgroup_root_count; 182 183 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */ 184 static DEFINE_IDR(cgroup_hierarchy_idr); 185 186 /* 187 * Assign a monotonically increasing serial number to csses. It guarantees 188 * cgroups with bigger numbers are newer than those with smaller numbers. 189 * Also, as csses are always appended to the parent's ->children list, it 190 * guarantees that sibling csses are always sorted in the ascending serial 191 * number order on the list. Protected by cgroup_mutex. 192 */ 193 static u64 css_serial_nr_next = 1; 194 195 /* 196 * These bitmasks identify subsystems with specific features to avoid 197 * having to do iterative checks repeatedly. 198 */ 199 static u16 have_fork_callback __read_mostly; 200 static u16 have_exit_callback __read_mostly; 201 static u16 have_release_callback __read_mostly; 202 static u16 have_canfork_callback __read_mostly; 203 204 /* cgroup namespace for init task */ 205 struct cgroup_namespace init_cgroup_ns = { 206 .count = REFCOUNT_INIT(2), 207 .user_ns = &init_user_ns, 208 .ns.ops = &cgroupns_operations, 209 .ns.inum = PROC_CGROUP_INIT_INO, 210 .root_cset = &init_css_set, 211 }; 212 213 static struct file_system_type cgroup2_fs_type; 214 static struct cftype cgroup_base_files[]; 215 216 static int cgroup_apply_control(struct cgroup *cgrp); 217 static void cgroup_finalize_control(struct cgroup *cgrp, int ret); 218 static void css_task_iter_skip(struct css_task_iter *it, 219 struct task_struct *task); 220 static int cgroup_destroy_locked(struct cgroup *cgrp); 221 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp, 222 struct cgroup_subsys *ss); 223 static void css_release(struct percpu_ref *ref); 224 static void kill_css(struct cgroup_subsys_state *css); 225 static int cgroup_addrm_files(struct cgroup_subsys_state *css, 226 struct cgroup *cgrp, struct cftype cfts[], 227 bool is_add); 228 229 /** 230 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID 231 * @ssid: subsys ID of interest 232 * 233 * cgroup_subsys_enabled() can only be used with literal subsys names which 234 * is fine for individual subsystems but unsuitable for cgroup core. This 235 * is slower static_key_enabled() based test indexed by @ssid. 236 */ 237 bool cgroup_ssid_enabled(int ssid) 238 { 239 if (CGROUP_SUBSYS_COUNT == 0) 240 return false; 241 242 return static_key_enabled(cgroup_subsys_enabled_key[ssid]); 243 } 244 245 /** 246 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy 247 * @cgrp: the cgroup of interest 248 * 249 * The default hierarchy is the v2 interface of cgroup and this function 250 * can be used to test whether a cgroup is on the default hierarchy for 251 * cases where a subsystem should behave differnetly depending on the 252 * interface version. 253 * 254 * The set of behaviors which change on the default hierarchy are still 255 * being determined and the mount option is prefixed with __DEVEL__. 256 * 257 * List of changed behaviors: 258 * 259 * - Mount options "noprefix", "xattr", "clone_children", "release_agent" 260 * and "name" are disallowed. 261 * 262 * - When mounting an existing superblock, mount options should match. 263 * 264 * - Remount is disallowed. 265 * 266 * - rename(2) is disallowed. 267 * 268 * - "tasks" is removed. Everything should be at process granularity. Use 269 * "cgroup.procs" instead. 270 * 271 * - "cgroup.procs" is not sorted. pids will be unique unless they got 272 * recycled inbetween reads. 273 * 274 * - "release_agent" and "notify_on_release" are removed. Replacement 275 * notification mechanism will be implemented. 276 * 277 * - "cgroup.clone_children" is removed. 278 * 279 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup 280 * and its descendants contain no task; otherwise, 1. The file also 281 * generates kernfs notification which can be monitored through poll and 282 * [di]notify when the value of the file changes. 283 * 284 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and 285 * take masks of ancestors with non-empty cpus/mems, instead of being 286 * moved to an ancestor. 287 * 288 * - cpuset: a task can be moved into an empty cpuset, and again it takes 289 * masks of ancestors. 290 * 291 * - memcg: use_hierarchy is on by default and the cgroup file for the flag 292 * is not created. 293 * 294 * - blkcg: blk-throttle becomes properly hierarchical. 295 * 296 * - debug: disallowed on the default hierarchy. 297 */ 298 bool cgroup_on_dfl(const struct cgroup *cgrp) 299 { 300 return cgrp->root == &cgrp_dfl_root; 301 } 302 303 /* IDR wrappers which synchronize using cgroup_idr_lock */ 304 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end, 305 gfp_t gfp_mask) 306 { 307 int ret; 308 309 idr_preload(gfp_mask); 310 spin_lock_bh(&cgroup_idr_lock); 311 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM); 312 spin_unlock_bh(&cgroup_idr_lock); 313 idr_preload_end(); 314 return ret; 315 } 316 317 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id) 318 { 319 void *ret; 320 321 spin_lock_bh(&cgroup_idr_lock); 322 ret = idr_replace(idr, ptr, id); 323 spin_unlock_bh(&cgroup_idr_lock); 324 return ret; 325 } 326 327 static void cgroup_idr_remove(struct idr *idr, int id) 328 { 329 spin_lock_bh(&cgroup_idr_lock); 330 idr_remove(idr, id); 331 spin_unlock_bh(&cgroup_idr_lock); 332 } 333 334 static bool cgroup_has_tasks(struct cgroup *cgrp) 335 { 336 return cgrp->nr_populated_csets; 337 } 338 339 bool cgroup_is_threaded(struct cgroup *cgrp) 340 { 341 return cgrp->dom_cgrp != cgrp; 342 } 343 344 /* can @cgrp host both domain and threaded children? */ 345 static bool cgroup_is_mixable(struct cgroup *cgrp) 346 { 347 /* 348 * Root isn't under domain level resource control exempting it from 349 * the no-internal-process constraint, so it can serve as a thread 350 * root and a parent of resource domains at the same time. 351 */ 352 return !cgroup_parent(cgrp); 353 } 354 355 /* can @cgrp become a thread root? should always be true for a thread root */ 356 static bool cgroup_can_be_thread_root(struct cgroup *cgrp) 357 { 358 /* mixables don't care */ 359 if (cgroup_is_mixable(cgrp)) 360 return true; 361 362 /* domain roots can't be nested under threaded */ 363 if (cgroup_is_threaded(cgrp)) 364 return false; 365 366 /* can only have either domain or threaded children */ 367 if (cgrp->nr_populated_domain_children) 368 return false; 369 370 /* and no domain controllers can be enabled */ 371 if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask) 372 return false; 373 374 return true; 375 } 376 377 /* is @cgrp root of a threaded subtree? */ 378 bool cgroup_is_thread_root(struct cgroup *cgrp) 379 { 380 /* thread root should be a domain */ 381 if (cgroup_is_threaded(cgrp)) 382 return false; 383 384 /* a domain w/ threaded children is a thread root */ 385 if (cgrp->nr_threaded_children) 386 return true; 387 388 /* 389 * A domain which has tasks and explicit threaded controllers 390 * enabled is a thread root. 391 */ 392 if (cgroup_has_tasks(cgrp) && 393 (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask)) 394 return true; 395 396 return false; 397 } 398 399 /* a domain which isn't connected to the root w/o brekage can't be used */ 400 static bool cgroup_is_valid_domain(struct cgroup *cgrp) 401 { 402 /* the cgroup itself can be a thread root */ 403 if (cgroup_is_threaded(cgrp)) 404 return false; 405 406 /* but the ancestors can't be unless mixable */ 407 while ((cgrp = cgroup_parent(cgrp))) { 408 if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp)) 409 return false; 410 if (cgroup_is_threaded(cgrp)) 411 return false; 412 } 413 414 return true; 415 } 416 417 /* subsystems visibly enabled on a cgroup */ 418 static u16 cgroup_control(struct cgroup *cgrp) 419 { 420 struct cgroup *parent = cgroup_parent(cgrp); 421 u16 root_ss_mask = cgrp->root->subsys_mask; 422 423 if (parent) { 424 u16 ss_mask = parent->subtree_control; 425 426 /* threaded cgroups can only have threaded controllers */ 427 if (cgroup_is_threaded(cgrp)) 428 ss_mask &= cgrp_dfl_threaded_ss_mask; 429 return ss_mask; 430 } 431 432 if (cgroup_on_dfl(cgrp)) 433 root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask | 434 cgrp_dfl_implicit_ss_mask); 435 return root_ss_mask; 436 } 437 438 /* subsystems enabled on a cgroup */ 439 static u16 cgroup_ss_mask(struct cgroup *cgrp) 440 { 441 struct cgroup *parent = cgroup_parent(cgrp); 442 443 if (parent) { 444 u16 ss_mask = parent->subtree_ss_mask; 445 446 /* threaded cgroups can only have threaded controllers */ 447 if (cgroup_is_threaded(cgrp)) 448 ss_mask &= cgrp_dfl_threaded_ss_mask; 449 return ss_mask; 450 } 451 452 return cgrp->root->subsys_mask; 453 } 454 455 /** 456 * cgroup_css - obtain a cgroup's css for the specified subsystem 457 * @cgrp: the cgroup of interest 458 * @ss: the subsystem of interest (%NULL returns @cgrp->self) 459 * 460 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This 461 * function must be called either under cgroup_mutex or rcu_read_lock() and 462 * the caller is responsible for pinning the returned css if it wants to 463 * keep accessing it outside the said locks. This function may return 464 * %NULL if @cgrp doesn't have @subsys_id enabled. 465 */ 466 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp, 467 struct cgroup_subsys *ss) 468 { 469 if (ss) 470 return rcu_dereference_check(cgrp->subsys[ss->id], 471 lockdep_is_held(&cgroup_mutex)); 472 else 473 return &cgrp->self; 474 } 475 476 /** 477 * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem 478 * @cgrp: the cgroup of interest 479 * @ss: the subsystem of interest 480 * 481 * Find and get @cgrp's css assocaited with @ss. If the css doesn't exist 482 * or is offline, %NULL is returned. 483 */ 484 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp, 485 struct cgroup_subsys *ss) 486 { 487 struct cgroup_subsys_state *css; 488 489 rcu_read_lock(); 490 css = cgroup_css(cgrp, ss); 491 if (css && !css_tryget_online(css)) 492 css = NULL; 493 rcu_read_unlock(); 494 495 return css; 496 } 497 498 /** 499 * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss 500 * @cgrp: the cgroup of interest 501 * @ss: the subsystem of interest (%NULL returns @cgrp->self) 502 * 503 * Similar to cgroup_css() but returns the effective css, which is defined 504 * as the matching css of the nearest ancestor including self which has @ss 505 * enabled. If @ss is associated with the hierarchy @cgrp is on, this 506 * function is guaranteed to return non-NULL css. 507 */ 508 static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp, 509 struct cgroup_subsys *ss) 510 { 511 lockdep_assert_held(&cgroup_mutex); 512 513 if (!ss) 514 return &cgrp->self; 515 516 /* 517 * This function is used while updating css associations and thus 518 * can't test the csses directly. Test ss_mask. 519 */ 520 while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) { 521 cgrp = cgroup_parent(cgrp); 522 if (!cgrp) 523 return NULL; 524 } 525 526 return cgroup_css(cgrp, ss); 527 } 528 529 /** 530 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem 531 * @cgrp: the cgroup of interest 532 * @ss: the subsystem of interest 533 * 534 * Find and get the effective css of @cgrp for @ss. The effective css is 535 * defined as the matching css of the nearest ancestor including self which 536 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on, 537 * the root css is returned, so this function always returns a valid css. 538 * 539 * The returned css is not guaranteed to be online, and therefore it is the 540 * callers responsiblity to tryget a reference for it. 541 */ 542 struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp, 543 struct cgroup_subsys *ss) 544 { 545 struct cgroup_subsys_state *css; 546 547 do { 548 css = cgroup_css(cgrp, ss); 549 550 if (css) 551 return css; 552 cgrp = cgroup_parent(cgrp); 553 } while (cgrp); 554 555 return init_css_set.subsys[ss->id]; 556 } 557 558 /** 559 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem 560 * @cgrp: the cgroup of interest 561 * @ss: the subsystem of interest 562 * 563 * Find and get the effective css of @cgrp for @ss. The effective css is 564 * defined as the matching css of the nearest ancestor including self which 565 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on, 566 * the root css is returned, so this function always returns a valid css. 567 * The returned css must be put using css_put(). 568 */ 569 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp, 570 struct cgroup_subsys *ss) 571 { 572 struct cgroup_subsys_state *css; 573 574 rcu_read_lock(); 575 576 do { 577 css = cgroup_css(cgrp, ss); 578 579 if (css && css_tryget_online(css)) 580 goto out_unlock; 581 cgrp = cgroup_parent(cgrp); 582 } while (cgrp); 583 584 css = init_css_set.subsys[ss->id]; 585 css_get(css); 586 out_unlock: 587 rcu_read_unlock(); 588 return css; 589 } 590 591 static void cgroup_get_live(struct cgroup *cgrp) 592 { 593 WARN_ON_ONCE(cgroup_is_dead(cgrp)); 594 css_get(&cgrp->self); 595 } 596 597 /** 598 * __cgroup_task_count - count the number of tasks in a cgroup. The caller 599 * is responsible for taking the css_set_lock. 600 * @cgrp: the cgroup in question 601 */ 602 int __cgroup_task_count(const struct cgroup *cgrp) 603 { 604 int count = 0; 605 struct cgrp_cset_link *link; 606 607 lockdep_assert_held(&css_set_lock); 608 609 list_for_each_entry(link, &cgrp->cset_links, cset_link) 610 count += link->cset->nr_tasks; 611 612 return count; 613 } 614 615 /** 616 * cgroup_task_count - count the number of tasks in a cgroup. 617 * @cgrp: the cgroup in question 618 */ 619 int cgroup_task_count(const struct cgroup *cgrp) 620 { 621 int count; 622 623 spin_lock_irq(&css_set_lock); 624 count = __cgroup_task_count(cgrp); 625 spin_unlock_irq(&css_set_lock); 626 627 return count; 628 } 629 630 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of) 631 { 632 struct cgroup *cgrp = of->kn->parent->priv; 633 struct cftype *cft = of_cft(of); 634 635 /* 636 * This is open and unprotected implementation of cgroup_css(). 637 * seq_css() is only called from a kernfs file operation which has 638 * an active reference on the file. Because all the subsystem 639 * files are drained before a css is disassociated with a cgroup, 640 * the matching css from the cgroup's subsys table is guaranteed to 641 * be and stay valid until the enclosing operation is complete. 642 */ 643 if (cft->ss) 644 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]); 645 else 646 return &cgrp->self; 647 } 648 EXPORT_SYMBOL_GPL(of_css); 649 650 /** 651 * for_each_css - iterate all css's of a cgroup 652 * @css: the iteration cursor 653 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end 654 * @cgrp: the target cgroup to iterate css's of 655 * 656 * Should be called under cgroup_[tree_]mutex. 657 */ 658 #define for_each_css(css, ssid, cgrp) \ 659 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \ 660 if (!((css) = rcu_dereference_check( \ 661 (cgrp)->subsys[(ssid)], \ 662 lockdep_is_held(&cgroup_mutex)))) { } \ 663 else 664 665 /** 666 * for_each_e_css - iterate all effective css's of a cgroup 667 * @css: the iteration cursor 668 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end 669 * @cgrp: the target cgroup to iterate css's of 670 * 671 * Should be called under cgroup_[tree_]mutex. 672 */ 673 #define for_each_e_css(css, ssid, cgrp) \ 674 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \ 675 if (!((css) = cgroup_e_css_by_mask(cgrp, \ 676 cgroup_subsys[(ssid)]))) \ 677 ; \ 678 else 679 680 /** 681 * do_each_subsys_mask - filter for_each_subsys with a bitmask 682 * @ss: the iteration cursor 683 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end 684 * @ss_mask: the bitmask 685 * 686 * The block will only run for cases where the ssid-th bit (1 << ssid) of 687 * @ss_mask is set. 688 */ 689 #define do_each_subsys_mask(ss, ssid, ss_mask) do { \ 690 unsigned long __ss_mask = (ss_mask); \ 691 if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */ \ 692 (ssid) = 0; \ 693 break; \ 694 } \ 695 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \ 696 (ss) = cgroup_subsys[ssid]; \ 697 { 698 699 #define while_each_subsys_mask() \ 700 } \ 701 } \ 702 } while (false) 703 704 /* iterate over child cgrps, lock should be held throughout iteration */ 705 #define cgroup_for_each_live_child(child, cgrp) \ 706 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \ 707 if (({ lockdep_assert_held(&cgroup_mutex); \ 708 cgroup_is_dead(child); })) \ 709 ; \ 710 else 711 712 /* walk live descendants in preorder */ 713 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \ 714 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \ 715 if (({ lockdep_assert_held(&cgroup_mutex); \ 716 (dsct) = (d_css)->cgroup; \ 717 cgroup_is_dead(dsct); })) \ 718 ; \ 719 else 720 721 /* walk live descendants in postorder */ 722 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \ 723 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \ 724 if (({ lockdep_assert_held(&cgroup_mutex); \ 725 (dsct) = (d_css)->cgroup; \ 726 cgroup_is_dead(dsct); })) \ 727 ; \ 728 else 729 730 /* 731 * The default css_set - used by init and its children prior to any 732 * hierarchies being mounted. It contains a pointer to the root state 733 * for each subsystem. Also used to anchor the list of css_sets. Not 734 * reference-counted, to improve performance when child cgroups 735 * haven't been created. 736 */ 737 struct css_set init_css_set = { 738 .refcount = REFCOUNT_INIT(1), 739 .dom_cset = &init_css_set, 740 .tasks = LIST_HEAD_INIT(init_css_set.tasks), 741 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks), 742 .dying_tasks = LIST_HEAD_INIT(init_css_set.dying_tasks), 743 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters), 744 .threaded_csets = LIST_HEAD_INIT(init_css_set.threaded_csets), 745 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links), 746 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node), 747 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node), 748 749 /* 750 * The following field is re-initialized when this cset gets linked 751 * in cgroup_init(). However, let's initialize the field 752 * statically too so that the default cgroup can be accessed safely 753 * early during boot. 754 */ 755 .dfl_cgrp = &cgrp_dfl_root.cgrp, 756 }; 757 758 static int css_set_count = 1; /* 1 for init_css_set */ 759 760 static bool css_set_threaded(struct css_set *cset) 761 { 762 return cset->dom_cset != cset; 763 } 764 765 /** 766 * css_set_populated - does a css_set contain any tasks? 767 * @cset: target css_set 768 * 769 * css_set_populated() should be the same as !!cset->nr_tasks at steady 770 * state. However, css_set_populated() can be called while a task is being 771 * added to or removed from the linked list before the nr_tasks is 772 * properly updated. Hence, we can't just look at ->nr_tasks here. 773 */ 774 static bool css_set_populated(struct css_set *cset) 775 { 776 lockdep_assert_held(&css_set_lock); 777 778 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks); 779 } 780 781 /** 782 * cgroup_update_populated - update the populated count of a cgroup 783 * @cgrp: the target cgroup 784 * @populated: inc or dec populated count 785 * 786 * One of the css_sets associated with @cgrp is either getting its first 787 * task or losing the last. Update @cgrp->nr_populated_* accordingly. The 788 * count is propagated towards root so that a given cgroup's 789 * nr_populated_children is zero iff none of its descendants contain any 790 * tasks. 791 * 792 * @cgrp's interface file "cgroup.populated" is zero if both 793 * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and 794 * 1 otherwise. When the sum changes from or to zero, userland is notified 795 * that the content of the interface file has changed. This can be used to 796 * detect when @cgrp and its descendants become populated or empty. 797 */ 798 static void cgroup_update_populated(struct cgroup *cgrp, bool populated) 799 { 800 struct cgroup *child = NULL; 801 int adj = populated ? 1 : -1; 802 803 lockdep_assert_held(&css_set_lock); 804 805 do { 806 bool was_populated = cgroup_is_populated(cgrp); 807 808 if (!child) { 809 cgrp->nr_populated_csets += adj; 810 } else { 811 if (cgroup_is_threaded(child)) 812 cgrp->nr_populated_threaded_children += adj; 813 else 814 cgrp->nr_populated_domain_children += adj; 815 } 816 817 if (was_populated == cgroup_is_populated(cgrp)) 818 break; 819 820 cgroup1_check_for_release(cgrp); 821 TRACE_CGROUP_PATH(notify_populated, cgrp, 822 cgroup_is_populated(cgrp)); 823 cgroup_file_notify(&cgrp->events_file); 824 825 child = cgrp; 826 cgrp = cgroup_parent(cgrp); 827 } while (cgrp); 828 } 829 830 /** 831 * css_set_update_populated - update populated state of a css_set 832 * @cset: target css_set 833 * @populated: whether @cset is populated or depopulated 834 * 835 * @cset is either getting the first task or losing the last. Update the 836 * populated counters of all associated cgroups accordingly. 837 */ 838 static void css_set_update_populated(struct css_set *cset, bool populated) 839 { 840 struct cgrp_cset_link *link; 841 842 lockdep_assert_held(&css_set_lock); 843 844 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) 845 cgroup_update_populated(link->cgrp, populated); 846 } 847 848 /* 849 * @task is leaving, advance task iterators which are pointing to it so 850 * that they can resume at the next position. Advancing an iterator might 851 * remove it from the list, use safe walk. See css_task_iter_skip() for 852 * details. 853 */ 854 static void css_set_skip_task_iters(struct css_set *cset, 855 struct task_struct *task) 856 { 857 struct css_task_iter *it, *pos; 858 859 list_for_each_entry_safe(it, pos, &cset->task_iters, iters_node) 860 css_task_iter_skip(it, task); 861 } 862 863 /** 864 * css_set_move_task - move a task from one css_set to another 865 * @task: task being moved 866 * @from_cset: css_set @task currently belongs to (may be NULL) 867 * @to_cset: new css_set @task is being moved to (may be NULL) 868 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks 869 * 870 * Move @task from @from_cset to @to_cset. If @task didn't belong to any 871 * css_set, @from_cset can be NULL. If @task is being disassociated 872 * instead of moved, @to_cset can be NULL. 873 * 874 * This function automatically handles populated counter updates and 875 * css_task_iter adjustments but the caller is responsible for managing 876 * @from_cset and @to_cset's reference counts. 877 */ 878 static void css_set_move_task(struct task_struct *task, 879 struct css_set *from_cset, struct css_set *to_cset, 880 bool use_mg_tasks) 881 { 882 lockdep_assert_held(&css_set_lock); 883 884 if (to_cset && !css_set_populated(to_cset)) 885 css_set_update_populated(to_cset, true); 886 887 if (from_cset) { 888 WARN_ON_ONCE(list_empty(&task->cg_list)); 889 890 css_set_skip_task_iters(from_cset, task); 891 list_del_init(&task->cg_list); 892 if (!css_set_populated(from_cset)) 893 css_set_update_populated(from_cset, false); 894 } else { 895 WARN_ON_ONCE(!list_empty(&task->cg_list)); 896 } 897 898 if (to_cset) { 899 /* 900 * We are synchronized through cgroup_threadgroup_rwsem 901 * against PF_EXITING setting such that we can't race 902 * against cgroup_exit() changing the css_set to 903 * init_css_set and dropping the old one. 904 */ 905 WARN_ON_ONCE(task->flags & PF_EXITING); 906 907 cgroup_move_task(task, to_cset); 908 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks : 909 &to_cset->tasks); 910 } 911 } 912 913 /* 914 * hash table for cgroup groups. This improves the performance to find 915 * an existing css_set. This hash doesn't (currently) take into 916 * account cgroups in empty hierarchies. 917 */ 918 #define CSS_SET_HASH_BITS 7 919 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS); 920 921 static unsigned long css_set_hash(struct cgroup_subsys_state *css[]) 922 { 923 unsigned long key = 0UL; 924 struct cgroup_subsys *ss; 925 int i; 926 927 for_each_subsys(ss, i) 928 key += (unsigned long)css[i]; 929 key = (key >> 16) ^ key; 930 931 return key; 932 } 933 934 void put_css_set_locked(struct css_set *cset) 935 { 936 struct cgrp_cset_link *link, *tmp_link; 937 struct cgroup_subsys *ss; 938 int ssid; 939 940 lockdep_assert_held(&css_set_lock); 941 942 if (!refcount_dec_and_test(&cset->refcount)) 943 return; 944 945 WARN_ON_ONCE(!list_empty(&cset->threaded_csets)); 946 947 /* This css_set is dead. unlink it and release cgroup and css refs */ 948 for_each_subsys(ss, ssid) { 949 list_del(&cset->e_cset_node[ssid]); 950 css_put(cset->subsys[ssid]); 951 } 952 hash_del(&cset->hlist); 953 css_set_count--; 954 955 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) { 956 list_del(&link->cset_link); 957 list_del(&link->cgrp_link); 958 if (cgroup_parent(link->cgrp)) 959 cgroup_put(link->cgrp); 960 kfree(link); 961 } 962 963 if (css_set_threaded(cset)) { 964 list_del(&cset->threaded_csets_node); 965 put_css_set_locked(cset->dom_cset); 966 } 967 968 kfree_rcu(cset, rcu_head); 969 } 970 971 /** 972 * compare_css_sets - helper function for find_existing_css_set(). 973 * @cset: candidate css_set being tested 974 * @old_cset: existing css_set for a task 975 * @new_cgrp: cgroup that's being entered by the task 976 * @template: desired set of css pointers in css_set (pre-calculated) 977 * 978 * Returns true if "cset" matches "old_cset" except for the hierarchy 979 * which "new_cgrp" belongs to, for which it should match "new_cgrp". 980 */ 981 static bool compare_css_sets(struct css_set *cset, 982 struct css_set *old_cset, 983 struct cgroup *new_cgrp, 984 struct cgroup_subsys_state *template[]) 985 { 986 struct cgroup *new_dfl_cgrp; 987 struct list_head *l1, *l2; 988 989 /* 990 * On the default hierarchy, there can be csets which are 991 * associated with the same set of cgroups but different csses. 992 * Let's first ensure that csses match. 993 */ 994 if (memcmp(template, cset->subsys, sizeof(cset->subsys))) 995 return false; 996 997 998 /* @cset's domain should match the default cgroup's */ 999 if (cgroup_on_dfl(new_cgrp)) 1000 new_dfl_cgrp = new_cgrp; 1001 else 1002 new_dfl_cgrp = old_cset->dfl_cgrp; 1003 1004 if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp) 1005 return false; 1006 1007 /* 1008 * Compare cgroup pointers in order to distinguish between 1009 * different cgroups in hierarchies. As different cgroups may 1010 * share the same effective css, this comparison is always 1011 * necessary. 1012 */ 1013 l1 = &cset->cgrp_links; 1014 l2 = &old_cset->cgrp_links; 1015 while (1) { 1016 struct cgrp_cset_link *link1, *link2; 1017 struct cgroup *cgrp1, *cgrp2; 1018 1019 l1 = l1->next; 1020 l2 = l2->next; 1021 /* See if we reached the end - both lists are equal length. */ 1022 if (l1 == &cset->cgrp_links) { 1023 BUG_ON(l2 != &old_cset->cgrp_links); 1024 break; 1025 } else { 1026 BUG_ON(l2 == &old_cset->cgrp_links); 1027 } 1028 /* Locate the cgroups associated with these links. */ 1029 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link); 1030 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link); 1031 cgrp1 = link1->cgrp; 1032 cgrp2 = link2->cgrp; 1033 /* Hierarchies should be linked in the same order. */ 1034 BUG_ON(cgrp1->root != cgrp2->root); 1035 1036 /* 1037 * If this hierarchy is the hierarchy of the cgroup 1038 * that's changing, then we need to check that this 1039 * css_set points to the new cgroup; if it's any other 1040 * hierarchy, then this css_set should point to the 1041 * same cgroup as the old css_set. 1042 */ 1043 if (cgrp1->root == new_cgrp->root) { 1044 if (cgrp1 != new_cgrp) 1045 return false; 1046 } else { 1047 if (cgrp1 != cgrp2) 1048 return false; 1049 } 1050 } 1051 return true; 1052 } 1053 1054 /** 1055 * find_existing_css_set - init css array and find the matching css_set 1056 * @old_cset: the css_set that we're using before the cgroup transition 1057 * @cgrp: the cgroup that we're moving into 1058 * @template: out param for the new set of csses, should be clear on entry 1059 */ 1060 static struct css_set *find_existing_css_set(struct css_set *old_cset, 1061 struct cgroup *cgrp, 1062 struct cgroup_subsys_state *template[]) 1063 { 1064 struct cgroup_root *root = cgrp->root; 1065 struct cgroup_subsys *ss; 1066 struct css_set *cset; 1067 unsigned long key; 1068 int i; 1069 1070 /* 1071 * Build the set of subsystem state objects that we want to see in the 1072 * new css_set. while subsystems can change globally, the entries here 1073 * won't change, so no need for locking. 1074 */ 1075 for_each_subsys(ss, i) { 1076 if (root->subsys_mask & (1UL << i)) { 1077 /* 1078 * @ss is in this hierarchy, so we want the 1079 * effective css from @cgrp. 1080 */ 1081 template[i] = cgroup_e_css_by_mask(cgrp, ss); 1082 } else { 1083 /* 1084 * @ss is not in this hierarchy, so we don't want 1085 * to change the css. 1086 */ 1087 template[i] = old_cset->subsys[i]; 1088 } 1089 } 1090 1091 key = css_set_hash(template); 1092 hash_for_each_possible(css_set_table, cset, hlist, key) { 1093 if (!compare_css_sets(cset, old_cset, cgrp, template)) 1094 continue; 1095 1096 /* This css_set matches what we need */ 1097 return cset; 1098 } 1099 1100 /* No existing cgroup group matched */ 1101 return NULL; 1102 } 1103 1104 static void free_cgrp_cset_links(struct list_head *links_to_free) 1105 { 1106 struct cgrp_cset_link *link, *tmp_link; 1107 1108 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) { 1109 list_del(&link->cset_link); 1110 kfree(link); 1111 } 1112 } 1113 1114 /** 1115 * allocate_cgrp_cset_links - allocate cgrp_cset_links 1116 * @count: the number of links to allocate 1117 * @tmp_links: list_head the allocated links are put on 1118 * 1119 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links 1120 * through ->cset_link. Returns 0 on success or -errno. 1121 */ 1122 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links) 1123 { 1124 struct cgrp_cset_link *link; 1125 int i; 1126 1127 INIT_LIST_HEAD(tmp_links); 1128 1129 for (i = 0; i < count; i++) { 1130 link = kzalloc(sizeof(*link), GFP_KERNEL); 1131 if (!link) { 1132 free_cgrp_cset_links(tmp_links); 1133 return -ENOMEM; 1134 } 1135 list_add(&link->cset_link, tmp_links); 1136 } 1137 return 0; 1138 } 1139 1140 /** 1141 * link_css_set - a helper function to link a css_set to a cgroup 1142 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links() 1143 * @cset: the css_set to be linked 1144 * @cgrp: the destination cgroup 1145 */ 1146 static void link_css_set(struct list_head *tmp_links, struct css_set *cset, 1147 struct cgroup *cgrp) 1148 { 1149 struct cgrp_cset_link *link; 1150 1151 BUG_ON(list_empty(tmp_links)); 1152 1153 if (cgroup_on_dfl(cgrp)) 1154 cset->dfl_cgrp = cgrp; 1155 1156 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link); 1157 link->cset = cset; 1158 link->cgrp = cgrp; 1159 1160 /* 1161 * Always add links to the tail of the lists so that the lists are 1162 * in choronological order. 1163 */ 1164 list_move_tail(&link->cset_link, &cgrp->cset_links); 1165 list_add_tail(&link->cgrp_link, &cset->cgrp_links); 1166 1167 if (cgroup_parent(cgrp)) 1168 cgroup_get_live(cgrp); 1169 } 1170 1171 /** 1172 * find_css_set - return a new css_set with one cgroup updated 1173 * @old_cset: the baseline css_set 1174 * @cgrp: the cgroup to be updated 1175 * 1176 * Return a new css_set that's equivalent to @old_cset, but with @cgrp 1177 * substituted into the appropriate hierarchy. 1178 */ 1179 static struct css_set *find_css_set(struct css_set *old_cset, 1180 struct cgroup *cgrp) 1181 { 1182 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { }; 1183 struct css_set *cset; 1184 struct list_head tmp_links; 1185 struct cgrp_cset_link *link; 1186 struct cgroup_subsys *ss; 1187 unsigned long key; 1188 int ssid; 1189 1190 lockdep_assert_held(&cgroup_mutex); 1191 1192 /* First see if we already have a cgroup group that matches 1193 * the desired set */ 1194 spin_lock_irq(&css_set_lock); 1195 cset = find_existing_css_set(old_cset, cgrp, template); 1196 if (cset) 1197 get_css_set(cset); 1198 spin_unlock_irq(&css_set_lock); 1199 1200 if (cset) 1201 return cset; 1202 1203 cset = kzalloc(sizeof(*cset), GFP_KERNEL); 1204 if (!cset) 1205 return NULL; 1206 1207 /* Allocate all the cgrp_cset_link objects that we'll need */ 1208 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) { 1209 kfree(cset); 1210 return NULL; 1211 } 1212 1213 refcount_set(&cset->refcount, 1); 1214 cset->dom_cset = cset; 1215 INIT_LIST_HEAD(&cset->tasks); 1216 INIT_LIST_HEAD(&cset->mg_tasks); 1217 INIT_LIST_HEAD(&cset->dying_tasks); 1218 INIT_LIST_HEAD(&cset->task_iters); 1219 INIT_LIST_HEAD(&cset->threaded_csets); 1220 INIT_HLIST_NODE(&cset->hlist); 1221 INIT_LIST_HEAD(&cset->cgrp_links); 1222 INIT_LIST_HEAD(&cset->mg_preload_node); 1223 INIT_LIST_HEAD(&cset->mg_node); 1224 1225 /* Copy the set of subsystem state objects generated in 1226 * find_existing_css_set() */ 1227 memcpy(cset->subsys, template, sizeof(cset->subsys)); 1228 1229 spin_lock_irq(&css_set_lock); 1230 /* Add reference counts and links from the new css_set. */ 1231 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) { 1232 struct cgroup *c = link->cgrp; 1233 1234 if (c->root == cgrp->root) 1235 c = cgrp; 1236 link_css_set(&tmp_links, cset, c); 1237 } 1238 1239 BUG_ON(!list_empty(&tmp_links)); 1240 1241 css_set_count++; 1242 1243 /* Add @cset to the hash table */ 1244 key = css_set_hash(cset->subsys); 1245 hash_add(css_set_table, &cset->hlist, key); 1246 1247 for_each_subsys(ss, ssid) { 1248 struct cgroup_subsys_state *css = cset->subsys[ssid]; 1249 1250 list_add_tail(&cset->e_cset_node[ssid], 1251 &css->cgroup->e_csets[ssid]); 1252 css_get(css); 1253 } 1254 1255 spin_unlock_irq(&css_set_lock); 1256 1257 /* 1258 * If @cset should be threaded, look up the matching dom_cset and 1259 * link them up. We first fully initialize @cset then look for the 1260 * dom_cset. It's simpler this way and safe as @cset is guaranteed 1261 * to stay empty until we return. 1262 */ 1263 if (cgroup_is_threaded(cset->dfl_cgrp)) { 1264 struct css_set *dcset; 1265 1266 dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp); 1267 if (!dcset) { 1268 put_css_set(cset); 1269 return NULL; 1270 } 1271 1272 spin_lock_irq(&css_set_lock); 1273 cset->dom_cset = dcset; 1274 list_add_tail(&cset->threaded_csets_node, 1275 &dcset->threaded_csets); 1276 spin_unlock_irq(&css_set_lock); 1277 } 1278 1279 return cset; 1280 } 1281 1282 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root) 1283 { 1284 struct cgroup *root_cgrp = kf_root->kn->priv; 1285 1286 return root_cgrp->root; 1287 } 1288 1289 static int cgroup_init_root_id(struct cgroup_root *root) 1290 { 1291 int id; 1292 1293 lockdep_assert_held(&cgroup_mutex); 1294 1295 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL); 1296 if (id < 0) 1297 return id; 1298 1299 root->hierarchy_id = id; 1300 return 0; 1301 } 1302 1303 static void cgroup_exit_root_id(struct cgroup_root *root) 1304 { 1305 lockdep_assert_held(&cgroup_mutex); 1306 1307 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id); 1308 } 1309 1310 void cgroup_free_root(struct cgroup_root *root) 1311 { 1312 if (root) { 1313 idr_destroy(&root->cgroup_idr); 1314 kfree(root); 1315 } 1316 } 1317 1318 static void cgroup_destroy_root(struct cgroup_root *root) 1319 { 1320 struct cgroup *cgrp = &root->cgrp; 1321 struct cgrp_cset_link *link, *tmp_link; 1322 1323 trace_cgroup_destroy_root(root); 1324 1325 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp); 1326 1327 BUG_ON(atomic_read(&root->nr_cgrps)); 1328 BUG_ON(!list_empty(&cgrp->self.children)); 1329 1330 /* Rebind all subsystems back to the default hierarchy */ 1331 WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask)); 1332 1333 /* 1334 * Release all the links from cset_links to this hierarchy's 1335 * root cgroup 1336 */ 1337 spin_lock_irq(&css_set_lock); 1338 1339 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) { 1340 list_del(&link->cset_link); 1341 list_del(&link->cgrp_link); 1342 kfree(link); 1343 } 1344 1345 spin_unlock_irq(&css_set_lock); 1346 1347 if (!list_empty(&root->root_list)) { 1348 list_del(&root->root_list); 1349 cgroup_root_count--; 1350 } 1351 1352 cgroup_exit_root_id(root); 1353 1354 mutex_unlock(&cgroup_mutex); 1355 1356 kernfs_destroy_root(root->kf_root); 1357 cgroup_free_root(root); 1358 } 1359 1360 /* 1361 * look up cgroup associated with current task's cgroup namespace on the 1362 * specified hierarchy 1363 */ 1364 static struct cgroup * 1365 current_cgns_cgroup_from_root(struct cgroup_root *root) 1366 { 1367 struct cgroup *res = NULL; 1368 struct css_set *cset; 1369 1370 lockdep_assert_held(&css_set_lock); 1371 1372 rcu_read_lock(); 1373 1374 cset = current->nsproxy->cgroup_ns->root_cset; 1375 if (cset == &init_css_set) { 1376 res = &root->cgrp; 1377 } else { 1378 struct cgrp_cset_link *link; 1379 1380 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) { 1381 struct cgroup *c = link->cgrp; 1382 1383 if (c->root == root) { 1384 res = c; 1385 break; 1386 } 1387 } 1388 } 1389 rcu_read_unlock(); 1390 1391 BUG_ON(!res); 1392 return res; 1393 } 1394 1395 /* look up cgroup associated with given css_set on the specified hierarchy */ 1396 static struct cgroup *cset_cgroup_from_root(struct css_set *cset, 1397 struct cgroup_root *root) 1398 { 1399 struct cgroup *res = NULL; 1400 1401 lockdep_assert_held(&cgroup_mutex); 1402 lockdep_assert_held(&css_set_lock); 1403 1404 if (cset == &init_css_set) { 1405 res = &root->cgrp; 1406 } else if (root == &cgrp_dfl_root) { 1407 res = cset->dfl_cgrp; 1408 } else { 1409 struct cgrp_cset_link *link; 1410 1411 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) { 1412 struct cgroup *c = link->cgrp; 1413 1414 if (c->root == root) { 1415 res = c; 1416 break; 1417 } 1418 } 1419 } 1420 1421 BUG_ON(!res); 1422 return res; 1423 } 1424 1425 /* 1426 * Return the cgroup for "task" from the given hierarchy. Must be 1427 * called with cgroup_mutex and css_set_lock held. 1428 */ 1429 struct cgroup *task_cgroup_from_root(struct task_struct *task, 1430 struct cgroup_root *root) 1431 { 1432 /* 1433 * No need to lock the task - since we hold cgroup_mutex the 1434 * task can't change groups, so the only thing that can happen 1435 * is that it exits and its css is set back to init_css_set. 1436 */ 1437 return cset_cgroup_from_root(task_css_set(task), root); 1438 } 1439 1440 /* 1441 * A task must hold cgroup_mutex to modify cgroups. 1442 * 1443 * Any task can increment and decrement the count field without lock. 1444 * So in general, code holding cgroup_mutex can't rely on the count 1445 * field not changing. However, if the count goes to zero, then only 1446 * cgroup_attach_task() can increment it again. Because a count of zero 1447 * means that no tasks are currently attached, therefore there is no 1448 * way a task attached to that cgroup can fork (the other way to 1449 * increment the count). So code holding cgroup_mutex can safely 1450 * assume that if the count is zero, it will stay zero. Similarly, if 1451 * a task holds cgroup_mutex on a cgroup with zero count, it 1452 * knows that the cgroup won't be removed, as cgroup_rmdir() 1453 * needs that mutex. 1454 * 1455 * A cgroup can only be deleted if both its 'count' of using tasks 1456 * is zero, and its list of 'children' cgroups is empty. Since all 1457 * tasks in the system use _some_ cgroup, and since there is always at 1458 * least one task in the system (init, pid == 1), therefore, root cgroup 1459 * always has either children cgroups and/or using tasks. So we don't 1460 * need a special hack to ensure that root cgroup cannot be deleted. 1461 * 1462 * P.S. One more locking exception. RCU is used to guard the 1463 * update of a tasks cgroup pointer by cgroup_attach_task() 1464 */ 1465 1466 static struct kernfs_syscall_ops cgroup_kf_syscall_ops; 1467 1468 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft, 1469 char *buf) 1470 { 1471 struct cgroup_subsys *ss = cft->ss; 1472 1473 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) && 1474 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) { 1475 const char *dbg = (cft->flags & CFTYPE_DEBUG) ? ".__DEBUG__." : ""; 1476 1477 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s%s.%s", 1478 dbg, cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name, 1479 cft->name); 1480 } else { 1481 strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX); 1482 } 1483 return buf; 1484 } 1485 1486 /** 1487 * cgroup_file_mode - deduce file mode of a control file 1488 * @cft: the control file in question 1489 * 1490 * S_IRUGO for read, S_IWUSR for write. 1491 */ 1492 static umode_t cgroup_file_mode(const struct cftype *cft) 1493 { 1494 umode_t mode = 0; 1495 1496 if (cft->read_u64 || cft->read_s64 || cft->seq_show) 1497 mode |= S_IRUGO; 1498 1499 if (cft->write_u64 || cft->write_s64 || cft->write) { 1500 if (cft->flags & CFTYPE_WORLD_WRITABLE) 1501 mode |= S_IWUGO; 1502 else 1503 mode |= S_IWUSR; 1504 } 1505 1506 return mode; 1507 } 1508 1509 /** 1510 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask 1511 * @subtree_control: the new subtree_control mask to consider 1512 * @this_ss_mask: available subsystems 1513 * 1514 * On the default hierarchy, a subsystem may request other subsystems to be 1515 * enabled together through its ->depends_on mask. In such cases, more 1516 * subsystems than specified in "cgroup.subtree_control" may be enabled. 1517 * 1518 * This function calculates which subsystems need to be enabled if 1519 * @subtree_control is to be applied while restricted to @this_ss_mask. 1520 */ 1521 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask) 1522 { 1523 u16 cur_ss_mask = subtree_control; 1524 struct cgroup_subsys *ss; 1525 int ssid; 1526 1527 lockdep_assert_held(&cgroup_mutex); 1528 1529 cur_ss_mask |= cgrp_dfl_implicit_ss_mask; 1530 1531 while (true) { 1532 u16 new_ss_mask = cur_ss_mask; 1533 1534 do_each_subsys_mask(ss, ssid, cur_ss_mask) { 1535 new_ss_mask |= ss->depends_on; 1536 } while_each_subsys_mask(); 1537 1538 /* 1539 * Mask out subsystems which aren't available. This can 1540 * happen only if some depended-upon subsystems were bound 1541 * to non-default hierarchies. 1542 */ 1543 new_ss_mask &= this_ss_mask; 1544 1545 if (new_ss_mask == cur_ss_mask) 1546 break; 1547 cur_ss_mask = new_ss_mask; 1548 } 1549 1550 return cur_ss_mask; 1551 } 1552 1553 /** 1554 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods 1555 * @kn: the kernfs_node being serviced 1556 * 1557 * This helper undoes cgroup_kn_lock_live() and should be invoked before 1558 * the method finishes if locking succeeded. Note that once this function 1559 * returns the cgroup returned by cgroup_kn_lock_live() may become 1560 * inaccessible any time. If the caller intends to continue to access the 1561 * cgroup, it should pin it before invoking this function. 1562 */ 1563 void cgroup_kn_unlock(struct kernfs_node *kn) 1564 { 1565 struct cgroup *cgrp; 1566 1567 if (kernfs_type(kn) == KERNFS_DIR) 1568 cgrp = kn->priv; 1569 else 1570 cgrp = kn->parent->priv; 1571 1572 mutex_unlock(&cgroup_mutex); 1573 1574 kernfs_unbreak_active_protection(kn); 1575 cgroup_put(cgrp); 1576 } 1577 1578 /** 1579 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods 1580 * @kn: the kernfs_node being serviced 1581 * @drain_offline: perform offline draining on the cgroup 1582 * 1583 * This helper is to be used by a cgroup kernfs method currently servicing 1584 * @kn. It breaks the active protection, performs cgroup locking and 1585 * verifies that the associated cgroup is alive. Returns the cgroup if 1586 * alive; otherwise, %NULL. A successful return should be undone by a 1587 * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the 1588 * cgroup is drained of offlining csses before return. 1589 * 1590 * Any cgroup kernfs method implementation which requires locking the 1591 * associated cgroup should use this helper. It avoids nesting cgroup 1592 * locking under kernfs active protection and allows all kernfs operations 1593 * including self-removal. 1594 */ 1595 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline) 1596 { 1597 struct cgroup *cgrp; 1598 1599 if (kernfs_type(kn) == KERNFS_DIR) 1600 cgrp = kn->priv; 1601 else 1602 cgrp = kn->parent->priv; 1603 1604 /* 1605 * We're gonna grab cgroup_mutex which nests outside kernfs 1606 * active_ref. cgroup liveliness check alone provides enough 1607 * protection against removal. Ensure @cgrp stays accessible and 1608 * break the active_ref protection. 1609 */ 1610 if (!cgroup_tryget(cgrp)) 1611 return NULL; 1612 kernfs_break_active_protection(kn); 1613 1614 if (drain_offline) 1615 cgroup_lock_and_drain_offline(cgrp); 1616 else 1617 mutex_lock(&cgroup_mutex); 1618 1619 if (!cgroup_is_dead(cgrp)) 1620 return cgrp; 1621 1622 cgroup_kn_unlock(kn); 1623 return NULL; 1624 } 1625 1626 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft) 1627 { 1628 char name[CGROUP_FILE_NAME_MAX]; 1629 1630 lockdep_assert_held(&cgroup_mutex); 1631 1632 if (cft->file_offset) { 1633 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss); 1634 struct cgroup_file *cfile = (void *)css + cft->file_offset; 1635 1636 spin_lock_irq(&cgroup_file_kn_lock); 1637 cfile->kn = NULL; 1638 spin_unlock_irq(&cgroup_file_kn_lock); 1639 1640 del_timer_sync(&cfile->notify_timer); 1641 } 1642 1643 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name)); 1644 } 1645 1646 /** 1647 * css_clear_dir - remove subsys files in a cgroup directory 1648 * @css: taget css 1649 */ 1650 static void css_clear_dir(struct cgroup_subsys_state *css) 1651 { 1652 struct cgroup *cgrp = css->cgroup; 1653 struct cftype *cfts; 1654 1655 if (!(css->flags & CSS_VISIBLE)) 1656 return; 1657 1658 css->flags &= ~CSS_VISIBLE; 1659 1660 if (!css->ss) { 1661 if (cgroup_on_dfl(cgrp)) 1662 cfts = cgroup_base_files; 1663 else 1664 cfts = cgroup1_base_files; 1665 1666 cgroup_addrm_files(css, cgrp, cfts, false); 1667 } else { 1668 list_for_each_entry(cfts, &css->ss->cfts, node) 1669 cgroup_addrm_files(css, cgrp, cfts, false); 1670 } 1671 } 1672 1673 /** 1674 * css_populate_dir - create subsys files in a cgroup directory 1675 * @css: target css 1676 * 1677 * On failure, no file is added. 1678 */ 1679 static int css_populate_dir(struct cgroup_subsys_state *css) 1680 { 1681 struct cgroup *cgrp = css->cgroup; 1682 struct cftype *cfts, *failed_cfts; 1683 int ret; 1684 1685 if ((css->flags & CSS_VISIBLE) || !cgrp->kn) 1686 return 0; 1687 1688 if (!css->ss) { 1689 if (cgroup_on_dfl(cgrp)) 1690 cfts = cgroup_base_files; 1691 else 1692 cfts = cgroup1_base_files; 1693 1694 ret = cgroup_addrm_files(&cgrp->self, cgrp, cfts, true); 1695 if (ret < 0) 1696 return ret; 1697 } else { 1698 list_for_each_entry(cfts, &css->ss->cfts, node) { 1699 ret = cgroup_addrm_files(css, cgrp, cfts, true); 1700 if (ret < 0) { 1701 failed_cfts = cfts; 1702 goto err; 1703 } 1704 } 1705 } 1706 1707 css->flags |= CSS_VISIBLE; 1708 1709 return 0; 1710 err: 1711 list_for_each_entry(cfts, &css->ss->cfts, node) { 1712 if (cfts == failed_cfts) 1713 break; 1714 cgroup_addrm_files(css, cgrp, cfts, false); 1715 } 1716 return ret; 1717 } 1718 1719 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask) 1720 { 1721 struct cgroup *dcgrp = &dst_root->cgrp; 1722 struct cgroup_subsys *ss; 1723 int ssid, i, ret; 1724 1725 lockdep_assert_held(&cgroup_mutex); 1726 1727 do_each_subsys_mask(ss, ssid, ss_mask) { 1728 /* 1729 * If @ss has non-root csses attached to it, can't move. 1730 * If @ss is an implicit controller, it is exempt from this 1731 * rule and can be stolen. 1732 */ 1733 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) && 1734 !ss->implicit_on_dfl) 1735 return -EBUSY; 1736 1737 /* can't move between two non-dummy roots either */ 1738 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root) 1739 return -EBUSY; 1740 } while_each_subsys_mask(); 1741 1742 do_each_subsys_mask(ss, ssid, ss_mask) { 1743 struct cgroup_root *src_root = ss->root; 1744 struct cgroup *scgrp = &src_root->cgrp; 1745 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss); 1746 struct css_set *cset; 1747 1748 WARN_ON(!css || cgroup_css(dcgrp, ss)); 1749 1750 /* disable from the source */ 1751 src_root->subsys_mask &= ~(1 << ssid); 1752 WARN_ON(cgroup_apply_control(scgrp)); 1753 cgroup_finalize_control(scgrp, 0); 1754 1755 /* rebind */ 1756 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL); 1757 rcu_assign_pointer(dcgrp->subsys[ssid], css); 1758 ss->root = dst_root; 1759 css->cgroup = dcgrp; 1760 1761 spin_lock_irq(&css_set_lock); 1762 hash_for_each(css_set_table, i, cset, hlist) 1763 list_move_tail(&cset->e_cset_node[ss->id], 1764 &dcgrp->e_csets[ss->id]); 1765 spin_unlock_irq(&css_set_lock); 1766 1767 /* default hierarchy doesn't enable controllers by default */ 1768 dst_root->subsys_mask |= 1 << ssid; 1769 if (dst_root == &cgrp_dfl_root) { 1770 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]); 1771 } else { 1772 dcgrp->subtree_control |= 1 << ssid; 1773 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]); 1774 } 1775 1776 ret = cgroup_apply_control(dcgrp); 1777 if (ret) 1778 pr_warn("partial failure to rebind %s controller (err=%d)\n", 1779 ss->name, ret); 1780 1781 if (ss->bind) 1782 ss->bind(css); 1783 } while_each_subsys_mask(); 1784 1785 kernfs_activate(dcgrp->kn); 1786 return 0; 1787 } 1788 1789 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node, 1790 struct kernfs_root *kf_root) 1791 { 1792 int len = 0; 1793 char *buf = NULL; 1794 struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root); 1795 struct cgroup *ns_cgroup; 1796 1797 buf = kmalloc(PATH_MAX, GFP_KERNEL); 1798 if (!buf) 1799 return -ENOMEM; 1800 1801 spin_lock_irq(&css_set_lock); 1802 ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot); 1803 len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX); 1804 spin_unlock_irq(&css_set_lock); 1805 1806 if (len >= PATH_MAX) 1807 len = -ERANGE; 1808 else if (len > 0) { 1809 seq_escape(sf, buf, " \t\n\\"); 1810 len = 0; 1811 } 1812 kfree(buf); 1813 return len; 1814 } 1815 1816 enum cgroup2_param { 1817 Opt_nsdelegate, 1818 Opt_memory_localevents, 1819 nr__cgroup2_params 1820 }; 1821 1822 static const struct fs_parameter_spec cgroup2_param_specs[] = { 1823 fsparam_flag("nsdelegate", Opt_nsdelegate), 1824 fsparam_flag("memory_localevents", Opt_memory_localevents), 1825 {} 1826 }; 1827 1828 static const struct fs_parameter_description cgroup2_fs_parameters = { 1829 .name = "cgroup2", 1830 .specs = cgroup2_param_specs, 1831 }; 1832 1833 static int cgroup2_parse_param(struct fs_context *fc, struct fs_parameter *param) 1834 { 1835 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 1836 struct fs_parse_result result; 1837 int opt; 1838 1839 opt = fs_parse(fc, &cgroup2_fs_parameters, param, &result); 1840 if (opt < 0) 1841 return opt; 1842 1843 switch (opt) { 1844 case Opt_nsdelegate: 1845 ctx->flags |= CGRP_ROOT_NS_DELEGATE; 1846 return 0; 1847 case Opt_memory_localevents: 1848 ctx->flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS; 1849 return 0; 1850 } 1851 return -EINVAL; 1852 } 1853 1854 static void apply_cgroup_root_flags(unsigned int root_flags) 1855 { 1856 if (current->nsproxy->cgroup_ns == &init_cgroup_ns) { 1857 if (root_flags & CGRP_ROOT_NS_DELEGATE) 1858 cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE; 1859 else 1860 cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE; 1861 1862 if (root_flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS) 1863 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS; 1864 else 1865 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_LOCAL_EVENTS; 1866 } 1867 } 1868 1869 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root) 1870 { 1871 if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) 1872 seq_puts(seq, ",nsdelegate"); 1873 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS) 1874 seq_puts(seq, ",memory_localevents"); 1875 return 0; 1876 } 1877 1878 static int cgroup_reconfigure(struct fs_context *fc) 1879 { 1880 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 1881 1882 apply_cgroup_root_flags(ctx->flags); 1883 return 0; 1884 } 1885 1886 /* 1887 * To reduce the fork() overhead for systems that are not actually using 1888 * their cgroups capability, we don't maintain the lists running through 1889 * each css_set to its tasks until we see the list actually used - in other 1890 * words after the first mount. 1891 */ 1892 static bool use_task_css_set_links __read_mostly; 1893 1894 void cgroup_enable_task_cg_lists(void) 1895 { 1896 struct task_struct *p, *g; 1897 1898 /* 1899 * We need tasklist_lock because RCU is not safe against 1900 * while_each_thread(). Besides, a forking task that has passed 1901 * cgroup_post_fork() without seeing use_task_css_set_links = 1 1902 * is not guaranteed to have its child immediately visible in the 1903 * tasklist if we walk through it with RCU. 1904 */ 1905 read_lock(&tasklist_lock); 1906 spin_lock_irq(&css_set_lock); 1907 1908 if (use_task_css_set_links) 1909 goto out_unlock; 1910 1911 use_task_css_set_links = true; 1912 1913 do_each_thread(g, p) { 1914 WARN_ON_ONCE(!list_empty(&p->cg_list) || 1915 task_css_set(p) != &init_css_set); 1916 1917 /* 1918 * We should check if the process is exiting, otherwise 1919 * it will race with cgroup_exit() in that the list 1920 * entry won't be deleted though the process has exited. 1921 * Do it while holding siglock so that we don't end up 1922 * racing against cgroup_exit(). 1923 * 1924 * Interrupts were already disabled while acquiring 1925 * the css_set_lock, so we do not need to disable it 1926 * again when acquiring the sighand->siglock here. 1927 */ 1928 spin_lock(&p->sighand->siglock); 1929 if (!(p->flags & PF_EXITING)) { 1930 struct css_set *cset = task_css_set(p); 1931 1932 if (!css_set_populated(cset)) 1933 css_set_update_populated(cset, true); 1934 list_add_tail(&p->cg_list, &cset->tasks); 1935 get_css_set(cset); 1936 cset->nr_tasks++; 1937 } 1938 spin_unlock(&p->sighand->siglock); 1939 } while_each_thread(g, p); 1940 out_unlock: 1941 spin_unlock_irq(&css_set_lock); 1942 read_unlock(&tasklist_lock); 1943 } 1944 1945 static void init_cgroup_housekeeping(struct cgroup *cgrp) 1946 { 1947 struct cgroup_subsys *ss; 1948 int ssid; 1949 1950 INIT_LIST_HEAD(&cgrp->self.sibling); 1951 INIT_LIST_HEAD(&cgrp->self.children); 1952 INIT_LIST_HEAD(&cgrp->cset_links); 1953 INIT_LIST_HEAD(&cgrp->pidlists); 1954 mutex_init(&cgrp->pidlist_mutex); 1955 cgrp->self.cgroup = cgrp; 1956 cgrp->self.flags |= CSS_ONLINE; 1957 cgrp->dom_cgrp = cgrp; 1958 cgrp->max_descendants = INT_MAX; 1959 cgrp->max_depth = INT_MAX; 1960 INIT_LIST_HEAD(&cgrp->rstat_css_list); 1961 prev_cputime_init(&cgrp->prev_cputime); 1962 1963 for_each_subsys(ss, ssid) 1964 INIT_LIST_HEAD(&cgrp->e_csets[ssid]); 1965 1966 init_waitqueue_head(&cgrp->offline_waitq); 1967 INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent); 1968 } 1969 1970 void init_cgroup_root(struct cgroup_fs_context *ctx) 1971 { 1972 struct cgroup_root *root = ctx->root; 1973 struct cgroup *cgrp = &root->cgrp; 1974 1975 INIT_LIST_HEAD(&root->root_list); 1976 atomic_set(&root->nr_cgrps, 1); 1977 cgrp->root = root; 1978 init_cgroup_housekeeping(cgrp); 1979 idr_init(&root->cgroup_idr); 1980 1981 root->flags = ctx->flags; 1982 if (ctx->release_agent) 1983 strscpy(root->release_agent_path, ctx->release_agent, PATH_MAX); 1984 if (ctx->name) 1985 strscpy(root->name, ctx->name, MAX_CGROUP_ROOT_NAMELEN); 1986 if (ctx->cpuset_clone_children) 1987 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags); 1988 } 1989 1990 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask) 1991 { 1992 LIST_HEAD(tmp_links); 1993 struct cgroup *root_cgrp = &root->cgrp; 1994 struct kernfs_syscall_ops *kf_sops; 1995 struct css_set *cset; 1996 int i, ret; 1997 1998 lockdep_assert_held(&cgroup_mutex); 1999 2000 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL); 2001 if (ret < 0) 2002 goto out; 2003 root_cgrp->id = ret; 2004 root_cgrp->ancestor_ids[0] = ret; 2005 2006 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 2007 0, GFP_KERNEL); 2008 if (ret) 2009 goto out; 2010 2011 /* 2012 * We're accessing css_set_count without locking css_set_lock here, 2013 * but that's OK - it can only be increased by someone holding 2014 * cgroup_lock, and that's us. Later rebinding may disable 2015 * controllers on the default hierarchy and thus create new csets, 2016 * which can't be more than the existing ones. Allocate 2x. 2017 */ 2018 ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links); 2019 if (ret) 2020 goto cancel_ref; 2021 2022 ret = cgroup_init_root_id(root); 2023 if (ret) 2024 goto cancel_ref; 2025 2026 kf_sops = root == &cgrp_dfl_root ? 2027 &cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops; 2028 2029 root->kf_root = kernfs_create_root(kf_sops, 2030 KERNFS_ROOT_CREATE_DEACTIVATED | 2031 KERNFS_ROOT_SUPPORT_EXPORTOP, 2032 root_cgrp); 2033 if (IS_ERR(root->kf_root)) { 2034 ret = PTR_ERR(root->kf_root); 2035 goto exit_root_id; 2036 } 2037 root_cgrp->kn = root->kf_root->kn; 2038 2039 ret = css_populate_dir(&root_cgrp->self); 2040 if (ret) 2041 goto destroy_root; 2042 2043 ret = rebind_subsystems(root, ss_mask); 2044 if (ret) 2045 goto destroy_root; 2046 2047 ret = cgroup_bpf_inherit(root_cgrp); 2048 WARN_ON_ONCE(ret); 2049 2050 trace_cgroup_setup_root(root); 2051 2052 /* 2053 * There must be no failure case after here, since rebinding takes 2054 * care of subsystems' refcounts, which are explicitly dropped in 2055 * the failure exit path. 2056 */ 2057 list_add(&root->root_list, &cgroup_roots); 2058 cgroup_root_count++; 2059 2060 /* 2061 * Link the root cgroup in this hierarchy into all the css_set 2062 * objects. 2063 */ 2064 spin_lock_irq(&css_set_lock); 2065 hash_for_each(css_set_table, i, cset, hlist) { 2066 link_css_set(&tmp_links, cset, root_cgrp); 2067 if (css_set_populated(cset)) 2068 cgroup_update_populated(root_cgrp, true); 2069 } 2070 spin_unlock_irq(&css_set_lock); 2071 2072 BUG_ON(!list_empty(&root_cgrp->self.children)); 2073 BUG_ON(atomic_read(&root->nr_cgrps) != 1); 2074 2075 kernfs_activate(root_cgrp->kn); 2076 ret = 0; 2077 goto out; 2078 2079 destroy_root: 2080 kernfs_destroy_root(root->kf_root); 2081 root->kf_root = NULL; 2082 exit_root_id: 2083 cgroup_exit_root_id(root); 2084 cancel_ref: 2085 percpu_ref_exit(&root_cgrp->self.refcnt); 2086 out: 2087 free_cgrp_cset_links(&tmp_links); 2088 return ret; 2089 } 2090 2091 int cgroup_do_get_tree(struct fs_context *fc) 2092 { 2093 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2094 int ret; 2095 2096 ctx->kfc.root = ctx->root->kf_root; 2097 if (fc->fs_type == &cgroup2_fs_type) 2098 ctx->kfc.magic = CGROUP2_SUPER_MAGIC; 2099 else 2100 ctx->kfc.magic = CGROUP_SUPER_MAGIC; 2101 ret = kernfs_get_tree(fc); 2102 2103 /* 2104 * In non-init cgroup namespace, instead of root cgroup's dentry, 2105 * we return the dentry corresponding to the cgroupns->root_cgrp. 2106 */ 2107 if (!ret && ctx->ns != &init_cgroup_ns) { 2108 struct dentry *nsdentry; 2109 struct super_block *sb = fc->root->d_sb; 2110 struct cgroup *cgrp; 2111 2112 mutex_lock(&cgroup_mutex); 2113 spin_lock_irq(&css_set_lock); 2114 2115 cgrp = cset_cgroup_from_root(ctx->ns->root_cset, ctx->root); 2116 2117 spin_unlock_irq(&css_set_lock); 2118 mutex_unlock(&cgroup_mutex); 2119 2120 nsdentry = kernfs_node_dentry(cgrp->kn, sb); 2121 dput(fc->root); 2122 fc->root = nsdentry; 2123 if (IS_ERR(nsdentry)) { 2124 ret = PTR_ERR(nsdentry); 2125 deactivate_locked_super(sb); 2126 } 2127 } 2128 2129 if (!ctx->kfc.new_sb_created) 2130 cgroup_put(&ctx->root->cgrp); 2131 2132 return ret; 2133 } 2134 2135 /* 2136 * Destroy a cgroup filesystem context. 2137 */ 2138 static void cgroup_fs_context_free(struct fs_context *fc) 2139 { 2140 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2141 2142 kfree(ctx->name); 2143 kfree(ctx->release_agent); 2144 put_cgroup_ns(ctx->ns); 2145 kernfs_free_fs_context(fc); 2146 kfree(ctx); 2147 } 2148 2149 static int cgroup_get_tree(struct fs_context *fc) 2150 { 2151 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2152 int ret; 2153 2154 cgrp_dfl_visible = true; 2155 cgroup_get_live(&cgrp_dfl_root.cgrp); 2156 ctx->root = &cgrp_dfl_root; 2157 2158 ret = cgroup_do_get_tree(fc); 2159 if (!ret) 2160 apply_cgroup_root_flags(ctx->flags); 2161 return ret; 2162 } 2163 2164 static const struct fs_context_operations cgroup_fs_context_ops = { 2165 .free = cgroup_fs_context_free, 2166 .parse_param = cgroup2_parse_param, 2167 .get_tree = cgroup_get_tree, 2168 .reconfigure = cgroup_reconfigure, 2169 }; 2170 2171 static const struct fs_context_operations cgroup1_fs_context_ops = { 2172 .free = cgroup_fs_context_free, 2173 .parse_param = cgroup1_parse_param, 2174 .get_tree = cgroup1_get_tree, 2175 .reconfigure = cgroup1_reconfigure, 2176 }; 2177 2178 /* 2179 * Initialise the cgroup filesystem creation/reconfiguration context. Notably, 2180 * we select the namespace we're going to use. 2181 */ 2182 static int cgroup_init_fs_context(struct fs_context *fc) 2183 { 2184 struct cgroup_fs_context *ctx; 2185 2186 ctx = kzalloc(sizeof(struct cgroup_fs_context), GFP_KERNEL); 2187 if (!ctx) 2188 return -ENOMEM; 2189 2190 /* 2191 * The first time anyone tries to mount a cgroup, enable the list 2192 * linking each css_set to its tasks and fix up all existing tasks. 2193 */ 2194 if (!use_task_css_set_links) 2195 cgroup_enable_task_cg_lists(); 2196 2197 ctx->ns = current->nsproxy->cgroup_ns; 2198 get_cgroup_ns(ctx->ns); 2199 fc->fs_private = &ctx->kfc; 2200 if (fc->fs_type == &cgroup2_fs_type) 2201 fc->ops = &cgroup_fs_context_ops; 2202 else 2203 fc->ops = &cgroup1_fs_context_ops; 2204 put_user_ns(fc->user_ns); 2205 fc->user_ns = get_user_ns(ctx->ns->user_ns); 2206 fc->global = true; 2207 return 0; 2208 } 2209 2210 static void cgroup_kill_sb(struct super_block *sb) 2211 { 2212 struct kernfs_root *kf_root = kernfs_root_from_sb(sb); 2213 struct cgroup_root *root = cgroup_root_from_kf(kf_root); 2214 2215 /* 2216 * If @root doesn't have any children, start killing it. 2217 * This prevents new mounts by disabling percpu_ref_tryget_live(). 2218 * cgroup_mount() may wait for @root's release. 2219 * 2220 * And don't kill the default root. 2221 */ 2222 if (list_empty(&root->cgrp.self.children) && root != &cgrp_dfl_root && 2223 !percpu_ref_is_dying(&root->cgrp.self.refcnt)) 2224 percpu_ref_kill(&root->cgrp.self.refcnt); 2225 cgroup_put(&root->cgrp); 2226 kernfs_kill_sb(sb); 2227 } 2228 2229 struct file_system_type cgroup_fs_type = { 2230 .name = "cgroup", 2231 .init_fs_context = cgroup_init_fs_context, 2232 .parameters = &cgroup1_fs_parameters, 2233 .kill_sb = cgroup_kill_sb, 2234 .fs_flags = FS_USERNS_MOUNT, 2235 }; 2236 2237 static struct file_system_type cgroup2_fs_type = { 2238 .name = "cgroup2", 2239 .init_fs_context = cgroup_init_fs_context, 2240 .parameters = &cgroup2_fs_parameters, 2241 .kill_sb = cgroup_kill_sb, 2242 .fs_flags = FS_USERNS_MOUNT, 2243 }; 2244 2245 #ifdef CONFIG_CPUSETS 2246 static const struct fs_context_operations cpuset_fs_context_ops = { 2247 .get_tree = cgroup1_get_tree, 2248 .free = cgroup_fs_context_free, 2249 }; 2250 2251 /* 2252 * This is ugly, but preserves the userspace API for existing cpuset 2253 * users. If someone tries to mount the "cpuset" filesystem, we 2254 * silently switch it to mount "cgroup" instead 2255 */ 2256 static int cpuset_init_fs_context(struct fs_context *fc) 2257 { 2258 char *agent = kstrdup("/sbin/cpuset_release_agent", GFP_USER); 2259 struct cgroup_fs_context *ctx; 2260 int err; 2261 2262 err = cgroup_init_fs_context(fc); 2263 if (err) { 2264 kfree(agent); 2265 return err; 2266 } 2267 2268 fc->ops = &cpuset_fs_context_ops; 2269 2270 ctx = cgroup_fc2context(fc); 2271 ctx->subsys_mask = 1 << cpuset_cgrp_id; 2272 ctx->flags |= CGRP_ROOT_NOPREFIX; 2273 ctx->release_agent = agent; 2274 2275 get_filesystem(&cgroup_fs_type); 2276 put_filesystem(fc->fs_type); 2277 fc->fs_type = &cgroup_fs_type; 2278 2279 return 0; 2280 } 2281 2282 static struct file_system_type cpuset_fs_type = { 2283 .name = "cpuset", 2284 .init_fs_context = cpuset_init_fs_context, 2285 .fs_flags = FS_USERNS_MOUNT, 2286 }; 2287 #endif 2288 2289 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen, 2290 struct cgroup_namespace *ns) 2291 { 2292 struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root); 2293 2294 return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen); 2295 } 2296 2297 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen, 2298 struct cgroup_namespace *ns) 2299 { 2300 int ret; 2301 2302 mutex_lock(&cgroup_mutex); 2303 spin_lock_irq(&css_set_lock); 2304 2305 ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns); 2306 2307 spin_unlock_irq(&css_set_lock); 2308 mutex_unlock(&cgroup_mutex); 2309 2310 return ret; 2311 } 2312 EXPORT_SYMBOL_GPL(cgroup_path_ns); 2313 2314 /** 2315 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy 2316 * @task: target task 2317 * @buf: the buffer to write the path into 2318 * @buflen: the length of the buffer 2319 * 2320 * Determine @task's cgroup on the first (the one with the lowest non-zero 2321 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This 2322 * function grabs cgroup_mutex and shouldn't be used inside locks used by 2323 * cgroup controller callbacks. 2324 * 2325 * Return value is the same as kernfs_path(). 2326 */ 2327 int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen) 2328 { 2329 struct cgroup_root *root; 2330 struct cgroup *cgrp; 2331 int hierarchy_id = 1; 2332 int ret; 2333 2334 mutex_lock(&cgroup_mutex); 2335 spin_lock_irq(&css_set_lock); 2336 2337 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id); 2338 2339 if (root) { 2340 cgrp = task_cgroup_from_root(task, root); 2341 ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns); 2342 } else { 2343 /* if no hierarchy exists, everyone is in "/" */ 2344 ret = strlcpy(buf, "/", buflen); 2345 } 2346 2347 spin_unlock_irq(&css_set_lock); 2348 mutex_unlock(&cgroup_mutex); 2349 return ret; 2350 } 2351 EXPORT_SYMBOL_GPL(task_cgroup_path); 2352 2353 /** 2354 * cgroup_migrate_add_task - add a migration target task to a migration context 2355 * @task: target task 2356 * @mgctx: target migration context 2357 * 2358 * Add @task, which is a migration target, to @mgctx->tset. This function 2359 * becomes noop if @task doesn't need to be migrated. @task's css_set 2360 * should have been added as a migration source and @task->cg_list will be 2361 * moved from the css_set's tasks list to mg_tasks one. 2362 */ 2363 static void cgroup_migrate_add_task(struct task_struct *task, 2364 struct cgroup_mgctx *mgctx) 2365 { 2366 struct css_set *cset; 2367 2368 lockdep_assert_held(&css_set_lock); 2369 2370 /* @task either already exited or can't exit until the end */ 2371 if (task->flags & PF_EXITING) 2372 return; 2373 2374 /* leave @task alone if post_fork() hasn't linked it yet */ 2375 if (list_empty(&task->cg_list)) 2376 return; 2377 2378 cset = task_css_set(task); 2379 if (!cset->mg_src_cgrp) 2380 return; 2381 2382 mgctx->tset.nr_tasks++; 2383 2384 list_move_tail(&task->cg_list, &cset->mg_tasks); 2385 if (list_empty(&cset->mg_node)) 2386 list_add_tail(&cset->mg_node, 2387 &mgctx->tset.src_csets); 2388 if (list_empty(&cset->mg_dst_cset->mg_node)) 2389 list_add_tail(&cset->mg_dst_cset->mg_node, 2390 &mgctx->tset.dst_csets); 2391 } 2392 2393 /** 2394 * cgroup_taskset_first - reset taskset and return the first task 2395 * @tset: taskset of interest 2396 * @dst_cssp: output variable for the destination css 2397 * 2398 * @tset iteration is initialized and the first task is returned. 2399 */ 2400 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset, 2401 struct cgroup_subsys_state **dst_cssp) 2402 { 2403 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node); 2404 tset->cur_task = NULL; 2405 2406 return cgroup_taskset_next(tset, dst_cssp); 2407 } 2408 2409 /** 2410 * cgroup_taskset_next - iterate to the next task in taskset 2411 * @tset: taskset of interest 2412 * @dst_cssp: output variable for the destination css 2413 * 2414 * Return the next task in @tset. Iteration must have been initialized 2415 * with cgroup_taskset_first(). 2416 */ 2417 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset, 2418 struct cgroup_subsys_state **dst_cssp) 2419 { 2420 struct css_set *cset = tset->cur_cset; 2421 struct task_struct *task = tset->cur_task; 2422 2423 while (&cset->mg_node != tset->csets) { 2424 if (!task) 2425 task = list_first_entry(&cset->mg_tasks, 2426 struct task_struct, cg_list); 2427 else 2428 task = list_next_entry(task, cg_list); 2429 2430 if (&task->cg_list != &cset->mg_tasks) { 2431 tset->cur_cset = cset; 2432 tset->cur_task = task; 2433 2434 /* 2435 * This function may be called both before and 2436 * after cgroup_taskset_migrate(). The two cases 2437 * can be distinguished by looking at whether @cset 2438 * has its ->mg_dst_cset set. 2439 */ 2440 if (cset->mg_dst_cset) 2441 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid]; 2442 else 2443 *dst_cssp = cset->subsys[tset->ssid]; 2444 2445 return task; 2446 } 2447 2448 cset = list_next_entry(cset, mg_node); 2449 task = NULL; 2450 } 2451 2452 return NULL; 2453 } 2454 2455 /** 2456 * cgroup_taskset_migrate - migrate a taskset 2457 * @mgctx: migration context 2458 * 2459 * Migrate tasks in @mgctx as setup by migration preparation functions. 2460 * This function fails iff one of the ->can_attach callbacks fails and 2461 * guarantees that either all or none of the tasks in @mgctx are migrated. 2462 * @mgctx is consumed regardless of success. 2463 */ 2464 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx) 2465 { 2466 struct cgroup_taskset *tset = &mgctx->tset; 2467 struct cgroup_subsys *ss; 2468 struct task_struct *task, *tmp_task; 2469 struct css_set *cset, *tmp_cset; 2470 int ssid, failed_ssid, ret; 2471 2472 /* check that we can legitimately attach to the cgroup */ 2473 if (tset->nr_tasks) { 2474 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2475 if (ss->can_attach) { 2476 tset->ssid = ssid; 2477 ret = ss->can_attach(tset); 2478 if (ret) { 2479 failed_ssid = ssid; 2480 goto out_cancel_attach; 2481 } 2482 } 2483 } while_each_subsys_mask(); 2484 } 2485 2486 /* 2487 * Now that we're guaranteed success, proceed to move all tasks to 2488 * the new cgroup. There are no failure cases after here, so this 2489 * is the commit point. 2490 */ 2491 spin_lock_irq(&css_set_lock); 2492 list_for_each_entry(cset, &tset->src_csets, mg_node) { 2493 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) { 2494 struct css_set *from_cset = task_css_set(task); 2495 struct css_set *to_cset = cset->mg_dst_cset; 2496 2497 get_css_set(to_cset); 2498 to_cset->nr_tasks++; 2499 css_set_move_task(task, from_cset, to_cset, true); 2500 from_cset->nr_tasks--; 2501 /* 2502 * If the source or destination cgroup is frozen, 2503 * the task might require to change its state. 2504 */ 2505 cgroup_freezer_migrate_task(task, from_cset->dfl_cgrp, 2506 to_cset->dfl_cgrp); 2507 put_css_set_locked(from_cset); 2508 2509 } 2510 } 2511 spin_unlock_irq(&css_set_lock); 2512 2513 /* 2514 * Migration is committed, all target tasks are now on dst_csets. 2515 * Nothing is sensitive to fork() after this point. Notify 2516 * controllers that migration is complete. 2517 */ 2518 tset->csets = &tset->dst_csets; 2519 2520 if (tset->nr_tasks) { 2521 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2522 if (ss->attach) { 2523 tset->ssid = ssid; 2524 ss->attach(tset); 2525 } 2526 } while_each_subsys_mask(); 2527 } 2528 2529 ret = 0; 2530 goto out_release_tset; 2531 2532 out_cancel_attach: 2533 if (tset->nr_tasks) { 2534 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2535 if (ssid == failed_ssid) 2536 break; 2537 if (ss->cancel_attach) { 2538 tset->ssid = ssid; 2539 ss->cancel_attach(tset); 2540 } 2541 } while_each_subsys_mask(); 2542 } 2543 out_release_tset: 2544 spin_lock_irq(&css_set_lock); 2545 list_splice_init(&tset->dst_csets, &tset->src_csets); 2546 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) { 2547 list_splice_tail_init(&cset->mg_tasks, &cset->tasks); 2548 list_del_init(&cset->mg_node); 2549 } 2550 spin_unlock_irq(&css_set_lock); 2551 2552 /* 2553 * Re-initialize the cgroup_taskset structure in case it is reused 2554 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute() 2555 * iteration. 2556 */ 2557 tset->nr_tasks = 0; 2558 tset->csets = &tset->src_csets; 2559 return ret; 2560 } 2561 2562 /** 2563 * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination 2564 * @dst_cgrp: destination cgroup to test 2565 * 2566 * On the default hierarchy, except for the mixable, (possible) thread root 2567 * and threaded cgroups, subtree_control must be zero for migration 2568 * destination cgroups with tasks so that child cgroups don't compete 2569 * against tasks. 2570 */ 2571 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp) 2572 { 2573 /* v1 doesn't have any restriction */ 2574 if (!cgroup_on_dfl(dst_cgrp)) 2575 return 0; 2576 2577 /* verify @dst_cgrp can host resources */ 2578 if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp)) 2579 return -EOPNOTSUPP; 2580 2581 /* mixables don't care */ 2582 if (cgroup_is_mixable(dst_cgrp)) 2583 return 0; 2584 2585 /* 2586 * If @dst_cgrp is already or can become a thread root or is 2587 * threaded, it doesn't matter. 2588 */ 2589 if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp)) 2590 return 0; 2591 2592 /* apply no-internal-process constraint */ 2593 if (dst_cgrp->subtree_control) 2594 return -EBUSY; 2595 2596 return 0; 2597 } 2598 2599 /** 2600 * cgroup_migrate_finish - cleanup after attach 2601 * @mgctx: migration context 2602 * 2603 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See 2604 * those functions for details. 2605 */ 2606 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx) 2607 { 2608 LIST_HEAD(preloaded); 2609 struct css_set *cset, *tmp_cset; 2610 2611 lockdep_assert_held(&cgroup_mutex); 2612 2613 spin_lock_irq(&css_set_lock); 2614 2615 list_splice_tail_init(&mgctx->preloaded_src_csets, &preloaded); 2616 list_splice_tail_init(&mgctx->preloaded_dst_csets, &preloaded); 2617 2618 list_for_each_entry_safe(cset, tmp_cset, &preloaded, mg_preload_node) { 2619 cset->mg_src_cgrp = NULL; 2620 cset->mg_dst_cgrp = NULL; 2621 cset->mg_dst_cset = NULL; 2622 list_del_init(&cset->mg_preload_node); 2623 put_css_set_locked(cset); 2624 } 2625 2626 spin_unlock_irq(&css_set_lock); 2627 } 2628 2629 /** 2630 * cgroup_migrate_add_src - add a migration source css_set 2631 * @src_cset: the source css_set to add 2632 * @dst_cgrp: the destination cgroup 2633 * @mgctx: migration context 2634 * 2635 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin 2636 * @src_cset and add it to @mgctx->src_csets, which should later be cleaned 2637 * up by cgroup_migrate_finish(). 2638 * 2639 * This function may be called without holding cgroup_threadgroup_rwsem 2640 * even if the target is a process. Threads may be created and destroyed 2641 * but as long as cgroup_mutex is not dropped, no new css_set can be put 2642 * into play and the preloaded css_sets are guaranteed to cover all 2643 * migrations. 2644 */ 2645 void cgroup_migrate_add_src(struct css_set *src_cset, 2646 struct cgroup *dst_cgrp, 2647 struct cgroup_mgctx *mgctx) 2648 { 2649 struct cgroup *src_cgrp; 2650 2651 lockdep_assert_held(&cgroup_mutex); 2652 lockdep_assert_held(&css_set_lock); 2653 2654 /* 2655 * If ->dead, @src_set is associated with one or more dead cgroups 2656 * and doesn't contain any migratable tasks. Ignore it early so 2657 * that the rest of migration path doesn't get confused by it. 2658 */ 2659 if (src_cset->dead) 2660 return; 2661 2662 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root); 2663 2664 if (!list_empty(&src_cset->mg_preload_node)) 2665 return; 2666 2667 WARN_ON(src_cset->mg_src_cgrp); 2668 WARN_ON(src_cset->mg_dst_cgrp); 2669 WARN_ON(!list_empty(&src_cset->mg_tasks)); 2670 WARN_ON(!list_empty(&src_cset->mg_node)); 2671 2672 src_cset->mg_src_cgrp = src_cgrp; 2673 src_cset->mg_dst_cgrp = dst_cgrp; 2674 get_css_set(src_cset); 2675 list_add_tail(&src_cset->mg_preload_node, &mgctx->preloaded_src_csets); 2676 } 2677 2678 /** 2679 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration 2680 * @mgctx: migration context 2681 * 2682 * Tasks are about to be moved and all the source css_sets have been 2683 * preloaded to @mgctx->preloaded_src_csets. This function looks up and 2684 * pins all destination css_sets, links each to its source, and append them 2685 * to @mgctx->preloaded_dst_csets. 2686 * 2687 * This function must be called after cgroup_migrate_add_src() has been 2688 * called on each migration source css_set. After migration is performed 2689 * using cgroup_migrate(), cgroup_migrate_finish() must be called on 2690 * @mgctx. 2691 */ 2692 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx) 2693 { 2694 struct css_set *src_cset, *tmp_cset; 2695 2696 lockdep_assert_held(&cgroup_mutex); 2697 2698 /* look up the dst cset for each src cset and link it to src */ 2699 list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets, 2700 mg_preload_node) { 2701 struct css_set *dst_cset; 2702 struct cgroup_subsys *ss; 2703 int ssid; 2704 2705 dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp); 2706 if (!dst_cset) 2707 return -ENOMEM; 2708 2709 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset); 2710 2711 /* 2712 * If src cset equals dst, it's noop. Drop the src. 2713 * cgroup_migrate() will skip the cset too. Note that we 2714 * can't handle src == dst as some nodes are used by both. 2715 */ 2716 if (src_cset == dst_cset) { 2717 src_cset->mg_src_cgrp = NULL; 2718 src_cset->mg_dst_cgrp = NULL; 2719 list_del_init(&src_cset->mg_preload_node); 2720 put_css_set(src_cset); 2721 put_css_set(dst_cset); 2722 continue; 2723 } 2724 2725 src_cset->mg_dst_cset = dst_cset; 2726 2727 if (list_empty(&dst_cset->mg_preload_node)) 2728 list_add_tail(&dst_cset->mg_preload_node, 2729 &mgctx->preloaded_dst_csets); 2730 else 2731 put_css_set(dst_cset); 2732 2733 for_each_subsys(ss, ssid) 2734 if (src_cset->subsys[ssid] != dst_cset->subsys[ssid]) 2735 mgctx->ss_mask |= 1 << ssid; 2736 } 2737 2738 return 0; 2739 } 2740 2741 /** 2742 * cgroup_migrate - migrate a process or task to a cgroup 2743 * @leader: the leader of the process or the task to migrate 2744 * @threadgroup: whether @leader points to the whole process or a single task 2745 * @mgctx: migration context 2746 * 2747 * Migrate a process or task denoted by @leader. If migrating a process, 2748 * the caller must be holding cgroup_threadgroup_rwsem. The caller is also 2749 * responsible for invoking cgroup_migrate_add_src() and 2750 * cgroup_migrate_prepare_dst() on the targets before invoking this 2751 * function and following up with cgroup_migrate_finish(). 2752 * 2753 * As long as a controller's ->can_attach() doesn't fail, this function is 2754 * guaranteed to succeed. This means that, excluding ->can_attach() 2755 * failure, when migrating multiple targets, the success or failure can be 2756 * decided for all targets by invoking group_migrate_prepare_dst() before 2757 * actually starting migrating. 2758 */ 2759 int cgroup_migrate(struct task_struct *leader, bool threadgroup, 2760 struct cgroup_mgctx *mgctx) 2761 { 2762 struct task_struct *task; 2763 2764 /* 2765 * Prevent freeing of tasks while we take a snapshot. Tasks that are 2766 * already PF_EXITING could be freed from underneath us unless we 2767 * take an rcu_read_lock. 2768 */ 2769 spin_lock_irq(&css_set_lock); 2770 rcu_read_lock(); 2771 task = leader; 2772 do { 2773 cgroup_migrate_add_task(task, mgctx); 2774 if (!threadgroup) 2775 break; 2776 } while_each_thread(leader, task); 2777 rcu_read_unlock(); 2778 spin_unlock_irq(&css_set_lock); 2779 2780 return cgroup_migrate_execute(mgctx); 2781 } 2782 2783 /** 2784 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup 2785 * @dst_cgrp: the cgroup to attach to 2786 * @leader: the task or the leader of the threadgroup to be attached 2787 * @threadgroup: attach the whole threadgroup? 2788 * 2789 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem. 2790 */ 2791 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader, 2792 bool threadgroup) 2793 { 2794 DEFINE_CGROUP_MGCTX(mgctx); 2795 struct task_struct *task; 2796 int ret; 2797 2798 ret = cgroup_migrate_vet_dst(dst_cgrp); 2799 if (ret) 2800 return ret; 2801 2802 /* look up all src csets */ 2803 spin_lock_irq(&css_set_lock); 2804 rcu_read_lock(); 2805 task = leader; 2806 do { 2807 cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx); 2808 if (!threadgroup) 2809 break; 2810 } while_each_thread(leader, task); 2811 rcu_read_unlock(); 2812 spin_unlock_irq(&css_set_lock); 2813 2814 /* prepare dst csets and commit */ 2815 ret = cgroup_migrate_prepare_dst(&mgctx); 2816 if (!ret) 2817 ret = cgroup_migrate(leader, threadgroup, &mgctx); 2818 2819 cgroup_migrate_finish(&mgctx); 2820 2821 if (!ret) 2822 TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup); 2823 2824 return ret; 2825 } 2826 2827 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup) 2828 __acquires(&cgroup_threadgroup_rwsem) 2829 { 2830 struct task_struct *tsk; 2831 pid_t pid; 2832 2833 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0) 2834 return ERR_PTR(-EINVAL); 2835 2836 percpu_down_write(&cgroup_threadgroup_rwsem); 2837 2838 rcu_read_lock(); 2839 if (pid) { 2840 tsk = find_task_by_vpid(pid); 2841 if (!tsk) { 2842 tsk = ERR_PTR(-ESRCH); 2843 goto out_unlock_threadgroup; 2844 } 2845 } else { 2846 tsk = current; 2847 } 2848 2849 if (threadgroup) 2850 tsk = tsk->group_leader; 2851 2852 /* 2853 * kthreads may acquire PF_NO_SETAFFINITY during initialization. 2854 * If userland migrates such a kthread to a non-root cgroup, it can 2855 * become trapped in a cpuset, or RT kthread may be born in a 2856 * cgroup with no rt_runtime allocated. Just say no. 2857 */ 2858 if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) { 2859 tsk = ERR_PTR(-EINVAL); 2860 goto out_unlock_threadgroup; 2861 } 2862 2863 get_task_struct(tsk); 2864 goto out_unlock_rcu; 2865 2866 out_unlock_threadgroup: 2867 percpu_up_write(&cgroup_threadgroup_rwsem); 2868 out_unlock_rcu: 2869 rcu_read_unlock(); 2870 return tsk; 2871 } 2872 2873 void cgroup_procs_write_finish(struct task_struct *task) 2874 __releases(&cgroup_threadgroup_rwsem) 2875 { 2876 struct cgroup_subsys *ss; 2877 int ssid; 2878 2879 /* release reference from cgroup_procs_write_start() */ 2880 put_task_struct(task); 2881 2882 percpu_up_write(&cgroup_threadgroup_rwsem); 2883 for_each_subsys(ss, ssid) 2884 if (ss->post_attach) 2885 ss->post_attach(); 2886 } 2887 2888 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask) 2889 { 2890 struct cgroup_subsys *ss; 2891 bool printed = false; 2892 int ssid; 2893 2894 do_each_subsys_mask(ss, ssid, ss_mask) { 2895 if (printed) 2896 seq_putc(seq, ' '); 2897 seq_puts(seq, ss->name); 2898 printed = true; 2899 } while_each_subsys_mask(); 2900 if (printed) 2901 seq_putc(seq, '\n'); 2902 } 2903 2904 /* show controllers which are enabled from the parent */ 2905 static int cgroup_controllers_show(struct seq_file *seq, void *v) 2906 { 2907 struct cgroup *cgrp = seq_css(seq)->cgroup; 2908 2909 cgroup_print_ss_mask(seq, cgroup_control(cgrp)); 2910 return 0; 2911 } 2912 2913 /* show controllers which are enabled for a given cgroup's children */ 2914 static int cgroup_subtree_control_show(struct seq_file *seq, void *v) 2915 { 2916 struct cgroup *cgrp = seq_css(seq)->cgroup; 2917 2918 cgroup_print_ss_mask(seq, cgrp->subtree_control); 2919 return 0; 2920 } 2921 2922 /** 2923 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy 2924 * @cgrp: root of the subtree to update csses for 2925 * 2926 * @cgrp's control masks have changed and its subtree's css associations 2927 * need to be updated accordingly. This function looks up all css_sets 2928 * which are attached to the subtree, creates the matching updated css_sets 2929 * and migrates the tasks to the new ones. 2930 */ 2931 static int cgroup_update_dfl_csses(struct cgroup *cgrp) 2932 { 2933 DEFINE_CGROUP_MGCTX(mgctx); 2934 struct cgroup_subsys_state *d_css; 2935 struct cgroup *dsct; 2936 struct css_set *src_cset; 2937 int ret; 2938 2939 lockdep_assert_held(&cgroup_mutex); 2940 2941 percpu_down_write(&cgroup_threadgroup_rwsem); 2942 2943 /* look up all csses currently attached to @cgrp's subtree */ 2944 spin_lock_irq(&css_set_lock); 2945 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 2946 struct cgrp_cset_link *link; 2947 2948 list_for_each_entry(link, &dsct->cset_links, cset_link) 2949 cgroup_migrate_add_src(link->cset, dsct, &mgctx); 2950 } 2951 spin_unlock_irq(&css_set_lock); 2952 2953 /* NULL dst indicates self on default hierarchy */ 2954 ret = cgroup_migrate_prepare_dst(&mgctx); 2955 if (ret) 2956 goto out_finish; 2957 2958 spin_lock_irq(&css_set_lock); 2959 list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, mg_preload_node) { 2960 struct task_struct *task, *ntask; 2961 2962 /* all tasks in src_csets need to be migrated */ 2963 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list) 2964 cgroup_migrate_add_task(task, &mgctx); 2965 } 2966 spin_unlock_irq(&css_set_lock); 2967 2968 ret = cgroup_migrate_execute(&mgctx); 2969 out_finish: 2970 cgroup_migrate_finish(&mgctx); 2971 percpu_up_write(&cgroup_threadgroup_rwsem); 2972 return ret; 2973 } 2974 2975 /** 2976 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses 2977 * @cgrp: root of the target subtree 2978 * 2979 * Because css offlining is asynchronous, userland may try to re-enable a 2980 * controller while the previous css is still around. This function grabs 2981 * cgroup_mutex and drains the previous css instances of @cgrp's subtree. 2982 */ 2983 void cgroup_lock_and_drain_offline(struct cgroup *cgrp) 2984 __acquires(&cgroup_mutex) 2985 { 2986 struct cgroup *dsct; 2987 struct cgroup_subsys_state *d_css; 2988 struct cgroup_subsys *ss; 2989 int ssid; 2990 2991 restart: 2992 mutex_lock(&cgroup_mutex); 2993 2994 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 2995 for_each_subsys(ss, ssid) { 2996 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 2997 DEFINE_WAIT(wait); 2998 2999 if (!css || !percpu_ref_is_dying(&css->refcnt)) 3000 continue; 3001 3002 cgroup_get_live(dsct); 3003 prepare_to_wait(&dsct->offline_waitq, &wait, 3004 TASK_UNINTERRUPTIBLE); 3005 3006 mutex_unlock(&cgroup_mutex); 3007 schedule(); 3008 finish_wait(&dsct->offline_waitq, &wait); 3009 3010 cgroup_put(dsct); 3011 goto restart; 3012 } 3013 } 3014 } 3015 3016 /** 3017 * cgroup_save_control - save control masks and dom_cgrp of a subtree 3018 * @cgrp: root of the target subtree 3019 * 3020 * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the 3021 * respective old_ prefixed fields for @cgrp's subtree including @cgrp 3022 * itself. 3023 */ 3024 static void cgroup_save_control(struct cgroup *cgrp) 3025 { 3026 struct cgroup *dsct; 3027 struct cgroup_subsys_state *d_css; 3028 3029 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 3030 dsct->old_subtree_control = dsct->subtree_control; 3031 dsct->old_subtree_ss_mask = dsct->subtree_ss_mask; 3032 dsct->old_dom_cgrp = dsct->dom_cgrp; 3033 } 3034 } 3035 3036 /** 3037 * cgroup_propagate_control - refresh control masks of a subtree 3038 * @cgrp: root of the target subtree 3039 * 3040 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches 3041 * ->subtree_control and propagate controller availability through the 3042 * subtree so that descendants don't have unavailable controllers enabled. 3043 */ 3044 static void cgroup_propagate_control(struct cgroup *cgrp) 3045 { 3046 struct cgroup *dsct; 3047 struct cgroup_subsys_state *d_css; 3048 3049 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 3050 dsct->subtree_control &= cgroup_control(dsct); 3051 dsct->subtree_ss_mask = 3052 cgroup_calc_subtree_ss_mask(dsct->subtree_control, 3053 cgroup_ss_mask(dsct)); 3054 } 3055 } 3056 3057 /** 3058 * cgroup_restore_control - restore control masks and dom_cgrp of a subtree 3059 * @cgrp: root of the target subtree 3060 * 3061 * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the 3062 * respective old_ prefixed fields for @cgrp's subtree including @cgrp 3063 * itself. 3064 */ 3065 static void cgroup_restore_control(struct cgroup *cgrp) 3066 { 3067 struct cgroup *dsct; 3068 struct cgroup_subsys_state *d_css; 3069 3070 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 3071 dsct->subtree_control = dsct->old_subtree_control; 3072 dsct->subtree_ss_mask = dsct->old_subtree_ss_mask; 3073 dsct->dom_cgrp = dsct->old_dom_cgrp; 3074 } 3075 } 3076 3077 static bool css_visible(struct cgroup_subsys_state *css) 3078 { 3079 struct cgroup_subsys *ss = css->ss; 3080 struct cgroup *cgrp = css->cgroup; 3081 3082 if (cgroup_control(cgrp) & (1 << ss->id)) 3083 return true; 3084 if (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) 3085 return false; 3086 return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl; 3087 } 3088 3089 /** 3090 * cgroup_apply_control_enable - enable or show csses according to control 3091 * @cgrp: root of the target subtree 3092 * 3093 * Walk @cgrp's subtree and create new csses or make the existing ones 3094 * visible. A css is created invisible if it's being implicitly enabled 3095 * through dependency. An invisible css is made visible when the userland 3096 * explicitly enables it. 3097 * 3098 * Returns 0 on success, -errno on failure. On failure, csses which have 3099 * been processed already aren't cleaned up. The caller is responsible for 3100 * cleaning up with cgroup_apply_control_disable(). 3101 */ 3102 static int cgroup_apply_control_enable(struct cgroup *cgrp) 3103 { 3104 struct cgroup *dsct; 3105 struct cgroup_subsys_state *d_css; 3106 struct cgroup_subsys *ss; 3107 int ssid, ret; 3108 3109 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 3110 for_each_subsys(ss, ssid) { 3111 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 3112 3113 WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt)); 3114 3115 if (!(cgroup_ss_mask(dsct) & (1 << ss->id))) 3116 continue; 3117 3118 if (!css) { 3119 css = css_create(dsct, ss); 3120 if (IS_ERR(css)) 3121 return PTR_ERR(css); 3122 } 3123 3124 if (css_visible(css)) { 3125 ret = css_populate_dir(css); 3126 if (ret) 3127 return ret; 3128 } 3129 } 3130 } 3131 3132 return 0; 3133 } 3134 3135 /** 3136 * cgroup_apply_control_disable - kill or hide csses according to control 3137 * @cgrp: root of the target subtree 3138 * 3139 * Walk @cgrp's subtree and kill and hide csses so that they match 3140 * cgroup_ss_mask() and cgroup_visible_mask(). 3141 * 3142 * A css is hidden when the userland requests it to be disabled while other 3143 * subsystems are still depending on it. The css must not actively control 3144 * resources and be in the vanilla state if it's made visible again later. 3145 * Controllers which may be depended upon should provide ->css_reset() for 3146 * this purpose. 3147 */ 3148 static void cgroup_apply_control_disable(struct cgroup *cgrp) 3149 { 3150 struct cgroup *dsct; 3151 struct cgroup_subsys_state *d_css; 3152 struct cgroup_subsys *ss; 3153 int ssid; 3154 3155 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 3156 for_each_subsys(ss, ssid) { 3157 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 3158 3159 WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt)); 3160 3161 if (!css) 3162 continue; 3163 3164 if (css->parent && 3165 !(cgroup_ss_mask(dsct) & (1 << ss->id))) { 3166 kill_css(css); 3167 } else if (!css_visible(css)) { 3168 css_clear_dir(css); 3169 if (ss->css_reset) 3170 ss->css_reset(css); 3171 } 3172 } 3173 } 3174 } 3175 3176 /** 3177 * cgroup_apply_control - apply control mask updates to the subtree 3178 * @cgrp: root of the target subtree 3179 * 3180 * subsystems can be enabled and disabled in a subtree using the following 3181 * steps. 3182 * 3183 * 1. Call cgroup_save_control() to stash the current state. 3184 * 2. Update ->subtree_control masks in the subtree as desired. 3185 * 3. Call cgroup_apply_control() to apply the changes. 3186 * 4. Optionally perform other related operations. 3187 * 5. Call cgroup_finalize_control() to finish up. 3188 * 3189 * This function implements step 3 and propagates the mask changes 3190 * throughout @cgrp's subtree, updates csses accordingly and perform 3191 * process migrations. 3192 */ 3193 static int cgroup_apply_control(struct cgroup *cgrp) 3194 { 3195 int ret; 3196 3197 cgroup_propagate_control(cgrp); 3198 3199 ret = cgroup_apply_control_enable(cgrp); 3200 if (ret) 3201 return ret; 3202 3203 /* 3204 * At this point, cgroup_e_css_by_mask() results reflect the new csses 3205 * making the following cgroup_update_dfl_csses() properly update 3206 * css associations of all tasks in the subtree. 3207 */ 3208 ret = cgroup_update_dfl_csses(cgrp); 3209 if (ret) 3210 return ret; 3211 3212 return 0; 3213 } 3214 3215 /** 3216 * cgroup_finalize_control - finalize control mask update 3217 * @cgrp: root of the target subtree 3218 * @ret: the result of the update 3219 * 3220 * Finalize control mask update. See cgroup_apply_control() for more info. 3221 */ 3222 static void cgroup_finalize_control(struct cgroup *cgrp, int ret) 3223 { 3224 if (ret) { 3225 cgroup_restore_control(cgrp); 3226 cgroup_propagate_control(cgrp); 3227 } 3228 3229 cgroup_apply_control_disable(cgrp); 3230 } 3231 3232 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable) 3233 { 3234 u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask; 3235 3236 /* if nothing is getting enabled, nothing to worry about */ 3237 if (!enable) 3238 return 0; 3239 3240 /* can @cgrp host any resources? */ 3241 if (!cgroup_is_valid_domain(cgrp->dom_cgrp)) 3242 return -EOPNOTSUPP; 3243 3244 /* mixables don't care */ 3245 if (cgroup_is_mixable(cgrp)) 3246 return 0; 3247 3248 if (domain_enable) { 3249 /* can't enable domain controllers inside a thread subtree */ 3250 if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp)) 3251 return -EOPNOTSUPP; 3252 } else { 3253 /* 3254 * Threaded controllers can handle internal competitions 3255 * and are always allowed inside a (prospective) thread 3256 * subtree. 3257 */ 3258 if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp)) 3259 return 0; 3260 } 3261 3262 /* 3263 * Controllers can't be enabled for a cgroup with tasks to avoid 3264 * child cgroups competing against tasks. 3265 */ 3266 if (cgroup_has_tasks(cgrp)) 3267 return -EBUSY; 3268 3269 return 0; 3270 } 3271 3272 /* change the enabled child controllers for a cgroup in the default hierarchy */ 3273 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of, 3274 char *buf, size_t nbytes, 3275 loff_t off) 3276 { 3277 u16 enable = 0, disable = 0; 3278 struct cgroup *cgrp, *child; 3279 struct cgroup_subsys *ss; 3280 char *tok; 3281 int ssid, ret; 3282 3283 /* 3284 * Parse input - space separated list of subsystem names prefixed 3285 * with either + or -. 3286 */ 3287 buf = strstrip(buf); 3288 while ((tok = strsep(&buf, " "))) { 3289 if (tok[0] == '\0') 3290 continue; 3291 do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) { 3292 if (!cgroup_ssid_enabled(ssid) || 3293 strcmp(tok + 1, ss->name)) 3294 continue; 3295 3296 if (*tok == '+') { 3297 enable |= 1 << ssid; 3298 disable &= ~(1 << ssid); 3299 } else if (*tok == '-') { 3300 disable |= 1 << ssid; 3301 enable &= ~(1 << ssid); 3302 } else { 3303 return -EINVAL; 3304 } 3305 break; 3306 } while_each_subsys_mask(); 3307 if (ssid == CGROUP_SUBSYS_COUNT) 3308 return -EINVAL; 3309 } 3310 3311 cgrp = cgroup_kn_lock_live(of->kn, true); 3312 if (!cgrp) 3313 return -ENODEV; 3314 3315 for_each_subsys(ss, ssid) { 3316 if (enable & (1 << ssid)) { 3317 if (cgrp->subtree_control & (1 << ssid)) { 3318 enable &= ~(1 << ssid); 3319 continue; 3320 } 3321 3322 if (!(cgroup_control(cgrp) & (1 << ssid))) { 3323 ret = -ENOENT; 3324 goto out_unlock; 3325 } 3326 } else if (disable & (1 << ssid)) { 3327 if (!(cgrp->subtree_control & (1 << ssid))) { 3328 disable &= ~(1 << ssid); 3329 continue; 3330 } 3331 3332 /* a child has it enabled? */ 3333 cgroup_for_each_live_child(child, cgrp) { 3334 if (child->subtree_control & (1 << ssid)) { 3335 ret = -EBUSY; 3336 goto out_unlock; 3337 } 3338 } 3339 } 3340 } 3341 3342 if (!enable && !disable) { 3343 ret = 0; 3344 goto out_unlock; 3345 } 3346 3347 ret = cgroup_vet_subtree_control_enable(cgrp, enable); 3348 if (ret) 3349 goto out_unlock; 3350 3351 /* save and update control masks and prepare csses */ 3352 cgroup_save_control(cgrp); 3353 3354 cgrp->subtree_control |= enable; 3355 cgrp->subtree_control &= ~disable; 3356 3357 ret = cgroup_apply_control(cgrp); 3358 cgroup_finalize_control(cgrp, ret); 3359 if (ret) 3360 goto out_unlock; 3361 3362 kernfs_activate(cgrp->kn); 3363 out_unlock: 3364 cgroup_kn_unlock(of->kn); 3365 return ret ?: nbytes; 3366 } 3367 3368 /** 3369 * cgroup_enable_threaded - make @cgrp threaded 3370 * @cgrp: the target cgroup 3371 * 3372 * Called when "threaded" is written to the cgroup.type interface file and 3373 * tries to make @cgrp threaded and join the parent's resource domain. 3374 * This function is never called on the root cgroup as cgroup.type doesn't 3375 * exist on it. 3376 */ 3377 static int cgroup_enable_threaded(struct cgroup *cgrp) 3378 { 3379 struct cgroup *parent = cgroup_parent(cgrp); 3380 struct cgroup *dom_cgrp = parent->dom_cgrp; 3381 struct cgroup *dsct; 3382 struct cgroup_subsys_state *d_css; 3383 int ret; 3384 3385 lockdep_assert_held(&cgroup_mutex); 3386 3387 /* noop if already threaded */ 3388 if (cgroup_is_threaded(cgrp)) 3389 return 0; 3390 3391 /* 3392 * If @cgroup is populated or has domain controllers enabled, it 3393 * can't be switched. While the below cgroup_can_be_thread_root() 3394 * test can catch the same conditions, that's only when @parent is 3395 * not mixable, so let's check it explicitly. 3396 */ 3397 if (cgroup_is_populated(cgrp) || 3398 cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask) 3399 return -EOPNOTSUPP; 3400 3401 /* we're joining the parent's domain, ensure its validity */ 3402 if (!cgroup_is_valid_domain(dom_cgrp) || 3403 !cgroup_can_be_thread_root(dom_cgrp)) 3404 return -EOPNOTSUPP; 3405 3406 /* 3407 * The following shouldn't cause actual migrations and should 3408 * always succeed. 3409 */ 3410 cgroup_save_control(cgrp); 3411 3412 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) 3413 if (dsct == cgrp || cgroup_is_threaded(dsct)) 3414 dsct->dom_cgrp = dom_cgrp; 3415 3416 ret = cgroup_apply_control(cgrp); 3417 if (!ret) 3418 parent->nr_threaded_children++; 3419 3420 cgroup_finalize_control(cgrp, ret); 3421 return ret; 3422 } 3423 3424 static int cgroup_type_show(struct seq_file *seq, void *v) 3425 { 3426 struct cgroup *cgrp = seq_css(seq)->cgroup; 3427 3428 if (cgroup_is_threaded(cgrp)) 3429 seq_puts(seq, "threaded\n"); 3430 else if (!cgroup_is_valid_domain(cgrp)) 3431 seq_puts(seq, "domain invalid\n"); 3432 else if (cgroup_is_thread_root(cgrp)) 3433 seq_puts(seq, "domain threaded\n"); 3434 else 3435 seq_puts(seq, "domain\n"); 3436 3437 return 0; 3438 } 3439 3440 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf, 3441 size_t nbytes, loff_t off) 3442 { 3443 struct cgroup *cgrp; 3444 int ret; 3445 3446 /* only switching to threaded mode is supported */ 3447 if (strcmp(strstrip(buf), "threaded")) 3448 return -EINVAL; 3449 3450 cgrp = cgroup_kn_lock_live(of->kn, false); 3451 if (!cgrp) 3452 return -ENOENT; 3453 3454 /* threaded can only be enabled */ 3455 ret = cgroup_enable_threaded(cgrp); 3456 3457 cgroup_kn_unlock(of->kn); 3458 return ret ?: nbytes; 3459 } 3460 3461 static int cgroup_max_descendants_show(struct seq_file *seq, void *v) 3462 { 3463 struct cgroup *cgrp = seq_css(seq)->cgroup; 3464 int descendants = READ_ONCE(cgrp->max_descendants); 3465 3466 if (descendants == INT_MAX) 3467 seq_puts(seq, "max\n"); 3468 else 3469 seq_printf(seq, "%d\n", descendants); 3470 3471 return 0; 3472 } 3473 3474 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of, 3475 char *buf, size_t nbytes, loff_t off) 3476 { 3477 struct cgroup *cgrp; 3478 int descendants; 3479 ssize_t ret; 3480 3481 buf = strstrip(buf); 3482 if (!strcmp(buf, "max")) { 3483 descendants = INT_MAX; 3484 } else { 3485 ret = kstrtoint(buf, 0, &descendants); 3486 if (ret) 3487 return ret; 3488 } 3489 3490 if (descendants < 0) 3491 return -ERANGE; 3492 3493 cgrp = cgroup_kn_lock_live(of->kn, false); 3494 if (!cgrp) 3495 return -ENOENT; 3496 3497 cgrp->max_descendants = descendants; 3498 3499 cgroup_kn_unlock(of->kn); 3500 3501 return nbytes; 3502 } 3503 3504 static int cgroup_max_depth_show(struct seq_file *seq, void *v) 3505 { 3506 struct cgroup *cgrp = seq_css(seq)->cgroup; 3507 int depth = READ_ONCE(cgrp->max_depth); 3508 3509 if (depth == INT_MAX) 3510 seq_puts(seq, "max\n"); 3511 else 3512 seq_printf(seq, "%d\n", depth); 3513 3514 return 0; 3515 } 3516 3517 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of, 3518 char *buf, size_t nbytes, loff_t off) 3519 { 3520 struct cgroup *cgrp; 3521 ssize_t ret; 3522 int depth; 3523 3524 buf = strstrip(buf); 3525 if (!strcmp(buf, "max")) { 3526 depth = INT_MAX; 3527 } else { 3528 ret = kstrtoint(buf, 0, &depth); 3529 if (ret) 3530 return ret; 3531 } 3532 3533 if (depth < 0) 3534 return -ERANGE; 3535 3536 cgrp = cgroup_kn_lock_live(of->kn, false); 3537 if (!cgrp) 3538 return -ENOENT; 3539 3540 cgrp->max_depth = depth; 3541 3542 cgroup_kn_unlock(of->kn); 3543 3544 return nbytes; 3545 } 3546 3547 static int cgroup_events_show(struct seq_file *seq, void *v) 3548 { 3549 struct cgroup *cgrp = seq_css(seq)->cgroup; 3550 3551 seq_printf(seq, "populated %d\n", cgroup_is_populated(cgrp)); 3552 seq_printf(seq, "frozen %d\n", test_bit(CGRP_FROZEN, &cgrp->flags)); 3553 3554 return 0; 3555 } 3556 3557 static int cgroup_stat_show(struct seq_file *seq, void *v) 3558 { 3559 struct cgroup *cgroup = seq_css(seq)->cgroup; 3560 3561 seq_printf(seq, "nr_descendants %d\n", 3562 cgroup->nr_descendants); 3563 seq_printf(seq, "nr_dying_descendants %d\n", 3564 cgroup->nr_dying_descendants); 3565 3566 return 0; 3567 } 3568 3569 static int __maybe_unused cgroup_extra_stat_show(struct seq_file *seq, 3570 struct cgroup *cgrp, int ssid) 3571 { 3572 struct cgroup_subsys *ss = cgroup_subsys[ssid]; 3573 struct cgroup_subsys_state *css; 3574 int ret; 3575 3576 if (!ss->css_extra_stat_show) 3577 return 0; 3578 3579 css = cgroup_tryget_css(cgrp, ss); 3580 if (!css) 3581 return 0; 3582 3583 ret = ss->css_extra_stat_show(seq, css); 3584 css_put(css); 3585 return ret; 3586 } 3587 3588 static int cpu_stat_show(struct seq_file *seq, void *v) 3589 { 3590 struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup; 3591 int ret = 0; 3592 3593 cgroup_base_stat_cputime_show(seq); 3594 #ifdef CONFIG_CGROUP_SCHED 3595 ret = cgroup_extra_stat_show(seq, cgrp, cpu_cgrp_id); 3596 #endif 3597 return ret; 3598 } 3599 3600 #ifdef CONFIG_PSI 3601 static int cgroup_io_pressure_show(struct seq_file *seq, void *v) 3602 { 3603 struct cgroup *cgroup = seq_css(seq)->cgroup; 3604 struct psi_group *psi = cgroup->id == 1 ? &psi_system : &cgroup->psi; 3605 3606 return psi_show(seq, psi, PSI_IO); 3607 } 3608 static int cgroup_memory_pressure_show(struct seq_file *seq, void *v) 3609 { 3610 struct cgroup *cgroup = seq_css(seq)->cgroup; 3611 struct psi_group *psi = cgroup->id == 1 ? &psi_system : &cgroup->psi; 3612 3613 return psi_show(seq, psi, PSI_MEM); 3614 } 3615 static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v) 3616 { 3617 struct cgroup *cgroup = seq_css(seq)->cgroup; 3618 struct psi_group *psi = cgroup->id == 1 ? &psi_system : &cgroup->psi; 3619 3620 return psi_show(seq, psi, PSI_CPU); 3621 } 3622 3623 static ssize_t cgroup_pressure_write(struct kernfs_open_file *of, char *buf, 3624 size_t nbytes, enum psi_res res) 3625 { 3626 struct psi_trigger *new; 3627 struct cgroup *cgrp; 3628 3629 cgrp = cgroup_kn_lock_live(of->kn, false); 3630 if (!cgrp) 3631 return -ENODEV; 3632 3633 cgroup_get(cgrp); 3634 cgroup_kn_unlock(of->kn); 3635 3636 new = psi_trigger_create(&cgrp->psi, buf, nbytes, res); 3637 if (IS_ERR(new)) { 3638 cgroup_put(cgrp); 3639 return PTR_ERR(new); 3640 } 3641 3642 psi_trigger_replace(&of->priv, new); 3643 3644 cgroup_put(cgrp); 3645 3646 return nbytes; 3647 } 3648 3649 static ssize_t cgroup_io_pressure_write(struct kernfs_open_file *of, 3650 char *buf, size_t nbytes, 3651 loff_t off) 3652 { 3653 return cgroup_pressure_write(of, buf, nbytes, PSI_IO); 3654 } 3655 3656 static ssize_t cgroup_memory_pressure_write(struct kernfs_open_file *of, 3657 char *buf, size_t nbytes, 3658 loff_t off) 3659 { 3660 return cgroup_pressure_write(of, buf, nbytes, PSI_MEM); 3661 } 3662 3663 static ssize_t cgroup_cpu_pressure_write(struct kernfs_open_file *of, 3664 char *buf, size_t nbytes, 3665 loff_t off) 3666 { 3667 return cgroup_pressure_write(of, buf, nbytes, PSI_CPU); 3668 } 3669 3670 static __poll_t cgroup_pressure_poll(struct kernfs_open_file *of, 3671 poll_table *pt) 3672 { 3673 return psi_trigger_poll(&of->priv, of->file, pt); 3674 } 3675 3676 static void cgroup_pressure_release(struct kernfs_open_file *of) 3677 { 3678 psi_trigger_replace(&of->priv, NULL); 3679 } 3680 #endif /* CONFIG_PSI */ 3681 3682 static int cgroup_freeze_show(struct seq_file *seq, void *v) 3683 { 3684 struct cgroup *cgrp = seq_css(seq)->cgroup; 3685 3686 seq_printf(seq, "%d\n", cgrp->freezer.freeze); 3687 3688 return 0; 3689 } 3690 3691 static ssize_t cgroup_freeze_write(struct kernfs_open_file *of, 3692 char *buf, size_t nbytes, loff_t off) 3693 { 3694 struct cgroup *cgrp; 3695 ssize_t ret; 3696 int freeze; 3697 3698 ret = kstrtoint(strstrip(buf), 0, &freeze); 3699 if (ret) 3700 return ret; 3701 3702 if (freeze < 0 || freeze > 1) 3703 return -ERANGE; 3704 3705 cgrp = cgroup_kn_lock_live(of->kn, false); 3706 if (!cgrp) 3707 return -ENOENT; 3708 3709 cgroup_freeze(cgrp, freeze); 3710 3711 cgroup_kn_unlock(of->kn); 3712 3713 return nbytes; 3714 } 3715 3716 static int cgroup_file_open(struct kernfs_open_file *of) 3717 { 3718 struct cftype *cft = of->kn->priv; 3719 3720 if (cft->open) 3721 return cft->open(of); 3722 return 0; 3723 } 3724 3725 static void cgroup_file_release(struct kernfs_open_file *of) 3726 { 3727 struct cftype *cft = of->kn->priv; 3728 3729 if (cft->release) 3730 cft->release(of); 3731 } 3732 3733 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf, 3734 size_t nbytes, loff_t off) 3735 { 3736 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns; 3737 struct cgroup *cgrp = of->kn->parent->priv; 3738 struct cftype *cft = of->kn->priv; 3739 struct cgroup_subsys_state *css; 3740 int ret; 3741 3742 /* 3743 * If namespaces are delegation boundaries, disallow writes to 3744 * files in an non-init namespace root from inside the namespace 3745 * except for the files explicitly marked delegatable - 3746 * cgroup.procs and cgroup.subtree_control. 3747 */ 3748 if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) && 3749 !(cft->flags & CFTYPE_NS_DELEGATABLE) && 3750 ns != &init_cgroup_ns && ns->root_cset->dfl_cgrp == cgrp) 3751 return -EPERM; 3752 3753 if (cft->write) 3754 return cft->write(of, buf, nbytes, off); 3755 3756 /* 3757 * kernfs guarantees that a file isn't deleted with operations in 3758 * flight, which means that the matching css is and stays alive and 3759 * doesn't need to be pinned. The RCU locking is not necessary 3760 * either. It's just for the convenience of using cgroup_css(). 3761 */ 3762 rcu_read_lock(); 3763 css = cgroup_css(cgrp, cft->ss); 3764 rcu_read_unlock(); 3765 3766 if (cft->write_u64) { 3767 unsigned long long v; 3768 ret = kstrtoull(buf, 0, &v); 3769 if (!ret) 3770 ret = cft->write_u64(css, cft, v); 3771 } else if (cft->write_s64) { 3772 long long v; 3773 ret = kstrtoll(buf, 0, &v); 3774 if (!ret) 3775 ret = cft->write_s64(css, cft, v); 3776 } else { 3777 ret = -EINVAL; 3778 } 3779 3780 return ret ?: nbytes; 3781 } 3782 3783 static __poll_t cgroup_file_poll(struct kernfs_open_file *of, poll_table *pt) 3784 { 3785 struct cftype *cft = of->kn->priv; 3786 3787 if (cft->poll) 3788 return cft->poll(of, pt); 3789 3790 return kernfs_generic_poll(of, pt); 3791 } 3792 3793 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos) 3794 { 3795 return seq_cft(seq)->seq_start(seq, ppos); 3796 } 3797 3798 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos) 3799 { 3800 return seq_cft(seq)->seq_next(seq, v, ppos); 3801 } 3802 3803 static void cgroup_seqfile_stop(struct seq_file *seq, void *v) 3804 { 3805 if (seq_cft(seq)->seq_stop) 3806 seq_cft(seq)->seq_stop(seq, v); 3807 } 3808 3809 static int cgroup_seqfile_show(struct seq_file *m, void *arg) 3810 { 3811 struct cftype *cft = seq_cft(m); 3812 struct cgroup_subsys_state *css = seq_css(m); 3813 3814 if (cft->seq_show) 3815 return cft->seq_show(m, arg); 3816 3817 if (cft->read_u64) 3818 seq_printf(m, "%llu\n", cft->read_u64(css, cft)); 3819 else if (cft->read_s64) 3820 seq_printf(m, "%lld\n", cft->read_s64(css, cft)); 3821 else 3822 return -EINVAL; 3823 return 0; 3824 } 3825 3826 static struct kernfs_ops cgroup_kf_single_ops = { 3827 .atomic_write_len = PAGE_SIZE, 3828 .open = cgroup_file_open, 3829 .release = cgroup_file_release, 3830 .write = cgroup_file_write, 3831 .poll = cgroup_file_poll, 3832 .seq_show = cgroup_seqfile_show, 3833 }; 3834 3835 static struct kernfs_ops cgroup_kf_ops = { 3836 .atomic_write_len = PAGE_SIZE, 3837 .open = cgroup_file_open, 3838 .release = cgroup_file_release, 3839 .write = cgroup_file_write, 3840 .poll = cgroup_file_poll, 3841 .seq_start = cgroup_seqfile_start, 3842 .seq_next = cgroup_seqfile_next, 3843 .seq_stop = cgroup_seqfile_stop, 3844 .seq_show = cgroup_seqfile_show, 3845 }; 3846 3847 /* set uid and gid of cgroup dirs and files to that of the creator */ 3848 static int cgroup_kn_set_ugid(struct kernfs_node *kn) 3849 { 3850 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID, 3851 .ia_uid = current_fsuid(), 3852 .ia_gid = current_fsgid(), }; 3853 3854 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) && 3855 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID)) 3856 return 0; 3857 3858 return kernfs_setattr(kn, &iattr); 3859 } 3860 3861 static void cgroup_file_notify_timer(struct timer_list *timer) 3862 { 3863 cgroup_file_notify(container_of(timer, struct cgroup_file, 3864 notify_timer)); 3865 } 3866 3867 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp, 3868 struct cftype *cft) 3869 { 3870 char name[CGROUP_FILE_NAME_MAX]; 3871 struct kernfs_node *kn; 3872 struct lock_class_key *key = NULL; 3873 int ret; 3874 3875 #ifdef CONFIG_DEBUG_LOCK_ALLOC 3876 key = &cft->lockdep_key; 3877 #endif 3878 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name), 3879 cgroup_file_mode(cft), 3880 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 3881 0, cft->kf_ops, cft, 3882 NULL, key); 3883 if (IS_ERR(kn)) 3884 return PTR_ERR(kn); 3885 3886 ret = cgroup_kn_set_ugid(kn); 3887 if (ret) { 3888 kernfs_remove(kn); 3889 return ret; 3890 } 3891 3892 if (cft->file_offset) { 3893 struct cgroup_file *cfile = (void *)css + cft->file_offset; 3894 3895 timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0); 3896 3897 spin_lock_irq(&cgroup_file_kn_lock); 3898 cfile->kn = kn; 3899 spin_unlock_irq(&cgroup_file_kn_lock); 3900 } 3901 3902 return 0; 3903 } 3904 3905 /** 3906 * cgroup_addrm_files - add or remove files to a cgroup directory 3907 * @css: the target css 3908 * @cgrp: the target cgroup (usually css->cgroup) 3909 * @cfts: array of cftypes to be added 3910 * @is_add: whether to add or remove 3911 * 3912 * Depending on @is_add, add or remove files defined by @cfts on @cgrp. 3913 * For removals, this function never fails. 3914 */ 3915 static int cgroup_addrm_files(struct cgroup_subsys_state *css, 3916 struct cgroup *cgrp, struct cftype cfts[], 3917 bool is_add) 3918 { 3919 struct cftype *cft, *cft_end = NULL; 3920 int ret = 0; 3921 3922 lockdep_assert_held(&cgroup_mutex); 3923 3924 restart: 3925 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) { 3926 /* does cft->flags tell us to skip this file on @cgrp? */ 3927 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp)) 3928 continue; 3929 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp)) 3930 continue; 3931 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp)) 3932 continue; 3933 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp)) 3934 continue; 3935 if ((cft->flags & CFTYPE_DEBUG) && !cgroup_debug) 3936 continue; 3937 if (is_add) { 3938 ret = cgroup_add_file(css, cgrp, cft); 3939 if (ret) { 3940 pr_warn("%s: failed to add %s, err=%d\n", 3941 __func__, cft->name, ret); 3942 cft_end = cft; 3943 is_add = false; 3944 goto restart; 3945 } 3946 } else { 3947 cgroup_rm_file(cgrp, cft); 3948 } 3949 } 3950 return ret; 3951 } 3952 3953 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add) 3954 { 3955 struct cgroup_subsys *ss = cfts[0].ss; 3956 struct cgroup *root = &ss->root->cgrp; 3957 struct cgroup_subsys_state *css; 3958 int ret = 0; 3959 3960 lockdep_assert_held(&cgroup_mutex); 3961 3962 /* add/rm files for all cgroups created before */ 3963 css_for_each_descendant_pre(css, cgroup_css(root, ss)) { 3964 struct cgroup *cgrp = css->cgroup; 3965 3966 if (!(css->flags & CSS_VISIBLE)) 3967 continue; 3968 3969 ret = cgroup_addrm_files(css, cgrp, cfts, is_add); 3970 if (ret) 3971 break; 3972 } 3973 3974 if (is_add && !ret) 3975 kernfs_activate(root->kn); 3976 return ret; 3977 } 3978 3979 static void cgroup_exit_cftypes(struct cftype *cfts) 3980 { 3981 struct cftype *cft; 3982 3983 for (cft = cfts; cft->name[0] != '\0'; cft++) { 3984 /* free copy for custom atomic_write_len, see init_cftypes() */ 3985 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) 3986 kfree(cft->kf_ops); 3987 cft->kf_ops = NULL; 3988 cft->ss = NULL; 3989 3990 /* revert flags set by cgroup core while adding @cfts */ 3991 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL); 3992 } 3993 } 3994 3995 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 3996 { 3997 struct cftype *cft; 3998 3999 for (cft = cfts; cft->name[0] != '\0'; cft++) { 4000 struct kernfs_ops *kf_ops; 4001 4002 WARN_ON(cft->ss || cft->kf_ops); 4003 4004 if (cft->seq_start) 4005 kf_ops = &cgroup_kf_ops; 4006 else 4007 kf_ops = &cgroup_kf_single_ops; 4008 4009 /* 4010 * Ugh... if @cft wants a custom max_write_len, we need to 4011 * make a copy of kf_ops to set its atomic_write_len. 4012 */ 4013 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) { 4014 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL); 4015 if (!kf_ops) { 4016 cgroup_exit_cftypes(cfts); 4017 return -ENOMEM; 4018 } 4019 kf_ops->atomic_write_len = cft->max_write_len; 4020 } 4021 4022 cft->kf_ops = kf_ops; 4023 cft->ss = ss; 4024 } 4025 4026 return 0; 4027 } 4028 4029 static int cgroup_rm_cftypes_locked(struct cftype *cfts) 4030 { 4031 lockdep_assert_held(&cgroup_mutex); 4032 4033 if (!cfts || !cfts[0].ss) 4034 return -ENOENT; 4035 4036 list_del(&cfts->node); 4037 cgroup_apply_cftypes(cfts, false); 4038 cgroup_exit_cftypes(cfts); 4039 return 0; 4040 } 4041 4042 /** 4043 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem 4044 * @cfts: zero-length name terminated array of cftypes 4045 * 4046 * Unregister @cfts. Files described by @cfts are removed from all 4047 * existing cgroups and all future cgroups won't have them either. This 4048 * function can be called anytime whether @cfts' subsys is attached or not. 4049 * 4050 * Returns 0 on successful unregistration, -ENOENT if @cfts is not 4051 * registered. 4052 */ 4053 int cgroup_rm_cftypes(struct cftype *cfts) 4054 { 4055 int ret; 4056 4057 mutex_lock(&cgroup_mutex); 4058 ret = cgroup_rm_cftypes_locked(cfts); 4059 mutex_unlock(&cgroup_mutex); 4060 return ret; 4061 } 4062 4063 /** 4064 * cgroup_add_cftypes - add an array of cftypes to a subsystem 4065 * @ss: target cgroup subsystem 4066 * @cfts: zero-length name terminated array of cftypes 4067 * 4068 * Register @cfts to @ss. Files described by @cfts are created for all 4069 * existing cgroups to which @ss is attached and all future cgroups will 4070 * have them too. This function can be called anytime whether @ss is 4071 * attached or not. 4072 * 4073 * Returns 0 on successful registration, -errno on failure. Note that this 4074 * function currently returns 0 as long as @cfts registration is successful 4075 * even if some file creation attempts on existing cgroups fail. 4076 */ 4077 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4078 { 4079 int ret; 4080 4081 if (!cgroup_ssid_enabled(ss->id)) 4082 return 0; 4083 4084 if (!cfts || cfts[0].name[0] == '\0') 4085 return 0; 4086 4087 ret = cgroup_init_cftypes(ss, cfts); 4088 if (ret) 4089 return ret; 4090 4091 mutex_lock(&cgroup_mutex); 4092 4093 list_add_tail(&cfts->node, &ss->cfts); 4094 ret = cgroup_apply_cftypes(cfts, true); 4095 if (ret) 4096 cgroup_rm_cftypes_locked(cfts); 4097 4098 mutex_unlock(&cgroup_mutex); 4099 return ret; 4100 } 4101 4102 /** 4103 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy 4104 * @ss: target cgroup subsystem 4105 * @cfts: zero-length name terminated array of cftypes 4106 * 4107 * Similar to cgroup_add_cftypes() but the added files are only used for 4108 * the default hierarchy. 4109 */ 4110 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4111 { 4112 struct cftype *cft; 4113 4114 for (cft = cfts; cft && cft->name[0] != '\0'; cft++) 4115 cft->flags |= __CFTYPE_ONLY_ON_DFL; 4116 return cgroup_add_cftypes(ss, cfts); 4117 } 4118 4119 /** 4120 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies 4121 * @ss: target cgroup subsystem 4122 * @cfts: zero-length name terminated array of cftypes 4123 * 4124 * Similar to cgroup_add_cftypes() but the added files are only used for 4125 * the legacy hierarchies. 4126 */ 4127 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4128 { 4129 struct cftype *cft; 4130 4131 for (cft = cfts; cft && cft->name[0] != '\0'; cft++) 4132 cft->flags |= __CFTYPE_NOT_ON_DFL; 4133 return cgroup_add_cftypes(ss, cfts); 4134 } 4135 4136 /** 4137 * cgroup_file_notify - generate a file modified event for a cgroup_file 4138 * @cfile: target cgroup_file 4139 * 4140 * @cfile must have been obtained by setting cftype->file_offset. 4141 */ 4142 void cgroup_file_notify(struct cgroup_file *cfile) 4143 { 4144 unsigned long flags; 4145 4146 spin_lock_irqsave(&cgroup_file_kn_lock, flags); 4147 if (cfile->kn) { 4148 unsigned long last = cfile->notified_at; 4149 unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV; 4150 4151 if (time_in_range(jiffies, last, next)) { 4152 timer_reduce(&cfile->notify_timer, next); 4153 } else { 4154 kernfs_notify(cfile->kn); 4155 cfile->notified_at = jiffies; 4156 } 4157 } 4158 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags); 4159 } 4160 4161 /** 4162 * css_next_child - find the next child of a given css 4163 * @pos: the current position (%NULL to initiate traversal) 4164 * @parent: css whose children to walk 4165 * 4166 * This function returns the next child of @parent and should be called 4167 * under either cgroup_mutex or RCU read lock. The only requirement is 4168 * that @parent and @pos are accessible. The next sibling is guaranteed to 4169 * be returned regardless of their states. 4170 * 4171 * If a subsystem synchronizes ->css_online() and the start of iteration, a 4172 * css which finished ->css_online() is guaranteed to be visible in the 4173 * future iterations and will stay visible until the last reference is put. 4174 * A css which hasn't finished ->css_online() or already finished 4175 * ->css_offline() may show up during traversal. It's each subsystem's 4176 * responsibility to synchronize against on/offlining. 4177 */ 4178 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos, 4179 struct cgroup_subsys_state *parent) 4180 { 4181 struct cgroup_subsys_state *next; 4182 4183 cgroup_assert_mutex_or_rcu_locked(); 4184 4185 /* 4186 * @pos could already have been unlinked from the sibling list. 4187 * Once a cgroup is removed, its ->sibling.next is no longer 4188 * updated when its next sibling changes. CSS_RELEASED is set when 4189 * @pos is taken off list, at which time its next pointer is valid, 4190 * and, as releases are serialized, the one pointed to by the next 4191 * pointer is guaranteed to not have started release yet. This 4192 * implies that if we observe !CSS_RELEASED on @pos in this RCU 4193 * critical section, the one pointed to by its next pointer is 4194 * guaranteed to not have finished its RCU grace period even if we 4195 * have dropped rcu_read_lock() inbetween iterations. 4196 * 4197 * If @pos has CSS_RELEASED set, its next pointer can't be 4198 * dereferenced; however, as each css is given a monotonically 4199 * increasing unique serial number and always appended to the 4200 * sibling list, the next one can be found by walking the parent's 4201 * children until the first css with higher serial number than 4202 * @pos's. While this path can be slower, it happens iff iteration 4203 * races against release and the race window is very small. 4204 */ 4205 if (!pos) { 4206 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling); 4207 } else if (likely(!(pos->flags & CSS_RELEASED))) { 4208 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling); 4209 } else { 4210 list_for_each_entry_rcu(next, &parent->children, sibling) 4211 if (next->serial_nr > pos->serial_nr) 4212 break; 4213 } 4214 4215 /* 4216 * @next, if not pointing to the head, can be dereferenced and is 4217 * the next sibling. 4218 */ 4219 if (&next->sibling != &parent->children) 4220 return next; 4221 return NULL; 4222 } 4223 4224 /** 4225 * css_next_descendant_pre - find the next descendant for pre-order walk 4226 * @pos: the current position (%NULL to initiate traversal) 4227 * @root: css whose descendants to walk 4228 * 4229 * To be used by css_for_each_descendant_pre(). Find the next descendant 4230 * to visit for pre-order traversal of @root's descendants. @root is 4231 * included in the iteration and the first node to be visited. 4232 * 4233 * While this function requires cgroup_mutex or RCU read locking, it 4234 * doesn't require the whole traversal to be contained in a single critical 4235 * section. This function will return the correct next descendant as long 4236 * as both @pos and @root are accessible and @pos is a descendant of @root. 4237 * 4238 * If a subsystem synchronizes ->css_online() and the start of iteration, a 4239 * css which finished ->css_online() is guaranteed to be visible in the 4240 * future iterations and will stay visible until the last reference is put. 4241 * A css which hasn't finished ->css_online() or already finished 4242 * ->css_offline() may show up during traversal. It's each subsystem's 4243 * responsibility to synchronize against on/offlining. 4244 */ 4245 struct cgroup_subsys_state * 4246 css_next_descendant_pre(struct cgroup_subsys_state *pos, 4247 struct cgroup_subsys_state *root) 4248 { 4249 struct cgroup_subsys_state *next; 4250 4251 cgroup_assert_mutex_or_rcu_locked(); 4252 4253 /* if first iteration, visit @root */ 4254 if (!pos) 4255 return root; 4256 4257 /* visit the first child if exists */ 4258 next = css_next_child(NULL, pos); 4259 if (next) 4260 return next; 4261 4262 /* no child, visit my or the closest ancestor's next sibling */ 4263 while (pos != root) { 4264 next = css_next_child(pos, pos->parent); 4265 if (next) 4266 return next; 4267 pos = pos->parent; 4268 } 4269 4270 return NULL; 4271 } 4272 EXPORT_SYMBOL_GPL(css_next_descendant_pre); 4273 4274 /** 4275 * css_rightmost_descendant - return the rightmost descendant of a css 4276 * @pos: css of interest 4277 * 4278 * Return the rightmost descendant of @pos. If there's no descendant, @pos 4279 * is returned. This can be used during pre-order traversal to skip 4280 * subtree of @pos. 4281 * 4282 * While this function requires cgroup_mutex or RCU read locking, it 4283 * doesn't require the whole traversal to be contained in a single critical 4284 * section. This function will return the correct rightmost descendant as 4285 * long as @pos is accessible. 4286 */ 4287 struct cgroup_subsys_state * 4288 css_rightmost_descendant(struct cgroup_subsys_state *pos) 4289 { 4290 struct cgroup_subsys_state *last, *tmp; 4291 4292 cgroup_assert_mutex_or_rcu_locked(); 4293 4294 do { 4295 last = pos; 4296 /* ->prev isn't RCU safe, walk ->next till the end */ 4297 pos = NULL; 4298 css_for_each_child(tmp, last) 4299 pos = tmp; 4300 } while (pos); 4301 4302 return last; 4303 } 4304 4305 static struct cgroup_subsys_state * 4306 css_leftmost_descendant(struct cgroup_subsys_state *pos) 4307 { 4308 struct cgroup_subsys_state *last; 4309 4310 do { 4311 last = pos; 4312 pos = css_next_child(NULL, pos); 4313 } while (pos); 4314 4315 return last; 4316 } 4317 4318 /** 4319 * css_next_descendant_post - find the next descendant for post-order walk 4320 * @pos: the current position (%NULL to initiate traversal) 4321 * @root: css whose descendants to walk 4322 * 4323 * To be used by css_for_each_descendant_post(). Find the next descendant 4324 * to visit for post-order traversal of @root's descendants. @root is 4325 * included in the iteration and the last node to be visited. 4326 * 4327 * While this function requires cgroup_mutex or RCU read locking, it 4328 * doesn't require the whole traversal to be contained in a single critical 4329 * section. This function will return the correct next descendant as long 4330 * as both @pos and @cgroup are accessible and @pos is a descendant of 4331 * @cgroup. 4332 * 4333 * If a subsystem synchronizes ->css_online() and the start of iteration, a 4334 * css which finished ->css_online() is guaranteed to be visible in the 4335 * future iterations and will stay visible until the last reference is put. 4336 * A css which hasn't finished ->css_online() or already finished 4337 * ->css_offline() may show up during traversal. It's each subsystem's 4338 * responsibility to synchronize against on/offlining. 4339 */ 4340 struct cgroup_subsys_state * 4341 css_next_descendant_post(struct cgroup_subsys_state *pos, 4342 struct cgroup_subsys_state *root) 4343 { 4344 struct cgroup_subsys_state *next; 4345 4346 cgroup_assert_mutex_or_rcu_locked(); 4347 4348 /* if first iteration, visit leftmost descendant which may be @root */ 4349 if (!pos) 4350 return css_leftmost_descendant(root); 4351 4352 /* if we visited @root, we're done */ 4353 if (pos == root) 4354 return NULL; 4355 4356 /* if there's an unvisited sibling, visit its leftmost descendant */ 4357 next = css_next_child(pos, pos->parent); 4358 if (next) 4359 return css_leftmost_descendant(next); 4360 4361 /* no sibling left, visit parent */ 4362 return pos->parent; 4363 } 4364 4365 /** 4366 * css_has_online_children - does a css have online children 4367 * @css: the target css 4368 * 4369 * Returns %true if @css has any online children; otherwise, %false. This 4370 * function can be called from any context but the caller is responsible 4371 * for synchronizing against on/offlining as necessary. 4372 */ 4373 bool css_has_online_children(struct cgroup_subsys_state *css) 4374 { 4375 struct cgroup_subsys_state *child; 4376 bool ret = false; 4377 4378 rcu_read_lock(); 4379 css_for_each_child(child, css) { 4380 if (child->flags & CSS_ONLINE) { 4381 ret = true; 4382 break; 4383 } 4384 } 4385 rcu_read_unlock(); 4386 return ret; 4387 } 4388 4389 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it) 4390 { 4391 struct list_head *l; 4392 struct cgrp_cset_link *link; 4393 struct css_set *cset; 4394 4395 lockdep_assert_held(&css_set_lock); 4396 4397 /* find the next threaded cset */ 4398 if (it->tcset_pos) { 4399 l = it->tcset_pos->next; 4400 4401 if (l != it->tcset_head) { 4402 it->tcset_pos = l; 4403 return container_of(l, struct css_set, 4404 threaded_csets_node); 4405 } 4406 4407 it->tcset_pos = NULL; 4408 } 4409 4410 /* find the next cset */ 4411 l = it->cset_pos; 4412 l = l->next; 4413 if (l == it->cset_head) { 4414 it->cset_pos = NULL; 4415 return NULL; 4416 } 4417 4418 if (it->ss) { 4419 cset = container_of(l, struct css_set, e_cset_node[it->ss->id]); 4420 } else { 4421 link = list_entry(l, struct cgrp_cset_link, cset_link); 4422 cset = link->cset; 4423 } 4424 4425 it->cset_pos = l; 4426 4427 /* initialize threaded css_set walking */ 4428 if (it->flags & CSS_TASK_ITER_THREADED) { 4429 if (it->cur_dcset) 4430 put_css_set_locked(it->cur_dcset); 4431 it->cur_dcset = cset; 4432 get_css_set(cset); 4433 4434 it->tcset_head = &cset->threaded_csets; 4435 it->tcset_pos = &cset->threaded_csets; 4436 } 4437 4438 return cset; 4439 } 4440 4441 /** 4442 * css_task_iter_advance_css_set - advance a task itererator to the next css_set 4443 * @it: the iterator to advance 4444 * 4445 * Advance @it to the next css_set to walk. 4446 */ 4447 static void css_task_iter_advance_css_set(struct css_task_iter *it) 4448 { 4449 struct css_set *cset; 4450 4451 lockdep_assert_held(&css_set_lock); 4452 4453 /* Advance to the next non-empty css_set */ 4454 do { 4455 cset = css_task_iter_next_css_set(it); 4456 if (!cset) { 4457 it->task_pos = NULL; 4458 return; 4459 } 4460 } while (!css_set_populated(cset) && list_empty(&cset->dying_tasks)); 4461 4462 if (!list_empty(&cset->tasks)) 4463 it->task_pos = cset->tasks.next; 4464 else if (!list_empty(&cset->mg_tasks)) 4465 it->task_pos = cset->mg_tasks.next; 4466 else 4467 it->task_pos = cset->dying_tasks.next; 4468 4469 it->tasks_head = &cset->tasks; 4470 it->mg_tasks_head = &cset->mg_tasks; 4471 it->dying_tasks_head = &cset->dying_tasks; 4472 4473 /* 4474 * We don't keep css_sets locked across iteration steps and thus 4475 * need to take steps to ensure that iteration can be resumed after 4476 * the lock is re-acquired. Iteration is performed at two levels - 4477 * css_sets and tasks in them. 4478 * 4479 * Once created, a css_set never leaves its cgroup lists, so a 4480 * pinned css_set is guaranteed to stay put and we can resume 4481 * iteration afterwards. 4482 * 4483 * Tasks may leave @cset across iteration steps. This is resolved 4484 * by registering each iterator with the css_set currently being 4485 * walked and making css_set_move_task() advance iterators whose 4486 * next task is leaving. 4487 */ 4488 if (it->cur_cset) { 4489 list_del(&it->iters_node); 4490 put_css_set_locked(it->cur_cset); 4491 } 4492 get_css_set(cset); 4493 it->cur_cset = cset; 4494 list_add(&it->iters_node, &cset->task_iters); 4495 } 4496 4497 static void css_task_iter_skip(struct css_task_iter *it, 4498 struct task_struct *task) 4499 { 4500 lockdep_assert_held(&css_set_lock); 4501 4502 if (it->task_pos == &task->cg_list) { 4503 it->task_pos = it->task_pos->next; 4504 it->flags |= CSS_TASK_ITER_SKIPPED; 4505 } 4506 } 4507 4508 static void css_task_iter_advance(struct css_task_iter *it) 4509 { 4510 struct task_struct *task; 4511 4512 lockdep_assert_held(&css_set_lock); 4513 repeat: 4514 if (it->task_pos) { 4515 /* 4516 * Advance iterator to find next entry. cset->tasks is 4517 * consumed first and then ->mg_tasks. After ->mg_tasks, 4518 * we move onto the next cset. 4519 */ 4520 if (it->flags & CSS_TASK_ITER_SKIPPED) 4521 it->flags &= ~CSS_TASK_ITER_SKIPPED; 4522 else 4523 it->task_pos = it->task_pos->next; 4524 4525 if (it->task_pos == it->tasks_head) 4526 it->task_pos = it->mg_tasks_head->next; 4527 if (it->task_pos == it->mg_tasks_head) 4528 it->task_pos = it->dying_tasks_head->next; 4529 if (it->task_pos == it->dying_tasks_head) 4530 css_task_iter_advance_css_set(it); 4531 } else { 4532 /* called from start, proceed to the first cset */ 4533 css_task_iter_advance_css_set(it); 4534 } 4535 4536 if (!it->task_pos) 4537 return; 4538 4539 task = list_entry(it->task_pos, struct task_struct, cg_list); 4540 4541 if (it->flags & CSS_TASK_ITER_PROCS) { 4542 /* if PROCS, skip over tasks which aren't group leaders */ 4543 if (!thread_group_leader(task)) 4544 goto repeat; 4545 4546 /* and dying leaders w/o live member threads */ 4547 if (!atomic_read(&task->signal->live)) 4548 goto repeat; 4549 } else { 4550 /* skip all dying ones */ 4551 if (task->flags & PF_EXITING) 4552 goto repeat; 4553 } 4554 } 4555 4556 /** 4557 * css_task_iter_start - initiate task iteration 4558 * @css: the css to walk tasks of 4559 * @flags: CSS_TASK_ITER_* flags 4560 * @it: the task iterator to use 4561 * 4562 * Initiate iteration through the tasks of @css. The caller can call 4563 * css_task_iter_next() to walk through the tasks until the function 4564 * returns NULL. On completion of iteration, css_task_iter_end() must be 4565 * called. 4566 */ 4567 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags, 4568 struct css_task_iter *it) 4569 { 4570 /* no one should try to iterate before mounting cgroups */ 4571 WARN_ON_ONCE(!use_task_css_set_links); 4572 4573 memset(it, 0, sizeof(*it)); 4574 4575 spin_lock_irq(&css_set_lock); 4576 4577 it->ss = css->ss; 4578 it->flags = flags; 4579 4580 if (it->ss) 4581 it->cset_pos = &css->cgroup->e_csets[css->ss->id]; 4582 else 4583 it->cset_pos = &css->cgroup->cset_links; 4584 4585 it->cset_head = it->cset_pos; 4586 4587 css_task_iter_advance(it); 4588 4589 spin_unlock_irq(&css_set_lock); 4590 } 4591 4592 /** 4593 * css_task_iter_next - return the next task for the iterator 4594 * @it: the task iterator being iterated 4595 * 4596 * The "next" function for task iteration. @it should have been 4597 * initialized via css_task_iter_start(). Returns NULL when the iteration 4598 * reaches the end. 4599 */ 4600 struct task_struct *css_task_iter_next(struct css_task_iter *it) 4601 { 4602 if (it->cur_task) { 4603 put_task_struct(it->cur_task); 4604 it->cur_task = NULL; 4605 } 4606 4607 spin_lock_irq(&css_set_lock); 4608 4609 /* @it may be half-advanced by skips, finish advancing */ 4610 if (it->flags & CSS_TASK_ITER_SKIPPED) 4611 css_task_iter_advance(it); 4612 4613 if (it->task_pos) { 4614 it->cur_task = list_entry(it->task_pos, struct task_struct, 4615 cg_list); 4616 get_task_struct(it->cur_task); 4617 css_task_iter_advance(it); 4618 } 4619 4620 spin_unlock_irq(&css_set_lock); 4621 4622 return it->cur_task; 4623 } 4624 4625 /** 4626 * css_task_iter_end - finish task iteration 4627 * @it: the task iterator to finish 4628 * 4629 * Finish task iteration started by css_task_iter_start(). 4630 */ 4631 void css_task_iter_end(struct css_task_iter *it) 4632 { 4633 if (it->cur_cset) { 4634 spin_lock_irq(&css_set_lock); 4635 list_del(&it->iters_node); 4636 put_css_set_locked(it->cur_cset); 4637 spin_unlock_irq(&css_set_lock); 4638 } 4639 4640 if (it->cur_dcset) 4641 put_css_set(it->cur_dcset); 4642 4643 if (it->cur_task) 4644 put_task_struct(it->cur_task); 4645 } 4646 4647 static void cgroup_procs_release(struct kernfs_open_file *of) 4648 { 4649 if (of->priv) { 4650 css_task_iter_end(of->priv); 4651 kfree(of->priv); 4652 } 4653 } 4654 4655 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos) 4656 { 4657 struct kernfs_open_file *of = s->private; 4658 struct css_task_iter *it = of->priv; 4659 4660 return css_task_iter_next(it); 4661 } 4662 4663 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos, 4664 unsigned int iter_flags) 4665 { 4666 struct kernfs_open_file *of = s->private; 4667 struct cgroup *cgrp = seq_css(s)->cgroup; 4668 struct css_task_iter *it = of->priv; 4669 4670 /* 4671 * When a seq_file is seeked, it's always traversed sequentially 4672 * from position 0, so we can simply keep iterating on !0 *pos. 4673 */ 4674 if (!it) { 4675 if (WARN_ON_ONCE((*pos)++)) 4676 return ERR_PTR(-EINVAL); 4677 4678 it = kzalloc(sizeof(*it), GFP_KERNEL); 4679 if (!it) 4680 return ERR_PTR(-ENOMEM); 4681 of->priv = it; 4682 css_task_iter_start(&cgrp->self, iter_flags, it); 4683 } else if (!(*pos)++) { 4684 css_task_iter_end(it); 4685 css_task_iter_start(&cgrp->self, iter_flags, it); 4686 } 4687 4688 return cgroup_procs_next(s, NULL, NULL); 4689 } 4690 4691 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos) 4692 { 4693 struct cgroup *cgrp = seq_css(s)->cgroup; 4694 4695 /* 4696 * All processes of a threaded subtree belong to the domain cgroup 4697 * of the subtree. Only threads can be distributed across the 4698 * subtree. Reject reads on cgroup.procs in the subtree proper. 4699 * They're always empty anyway. 4700 */ 4701 if (cgroup_is_threaded(cgrp)) 4702 return ERR_PTR(-EOPNOTSUPP); 4703 4704 return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS | 4705 CSS_TASK_ITER_THREADED); 4706 } 4707 4708 static int cgroup_procs_show(struct seq_file *s, void *v) 4709 { 4710 seq_printf(s, "%d\n", task_pid_vnr(v)); 4711 return 0; 4712 } 4713 4714 static int cgroup_procs_write_permission(struct cgroup *src_cgrp, 4715 struct cgroup *dst_cgrp, 4716 struct super_block *sb) 4717 { 4718 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns; 4719 struct cgroup *com_cgrp = src_cgrp; 4720 struct inode *inode; 4721 int ret; 4722 4723 lockdep_assert_held(&cgroup_mutex); 4724 4725 /* find the common ancestor */ 4726 while (!cgroup_is_descendant(dst_cgrp, com_cgrp)) 4727 com_cgrp = cgroup_parent(com_cgrp); 4728 4729 /* %current should be authorized to migrate to the common ancestor */ 4730 inode = kernfs_get_inode(sb, com_cgrp->procs_file.kn); 4731 if (!inode) 4732 return -ENOMEM; 4733 4734 ret = inode_permission(inode, MAY_WRITE); 4735 iput(inode); 4736 if (ret) 4737 return ret; 4738 4739 /* 4740 * If namespaces are delegation boundaries, %current must be able 4741 * to see both source and destination cgroups from its namespace. 4742 */ 4743 if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) && 4744 (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) || 4745 !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp))) 4746 return -ENOENT; 4747 4748 return 0; 4749 } 4750 4751 static ssize_t cgroup_procs_write(struct kernfs_open_file *of, 4752 char *buf, size_t nbytes, loff_t off) 4753 { 4754 struct cgroup *src_cgrp, *dst_cgrp; 4755 struct task_struct *task; 4756 ssize_t ret; 4757 4758 dst_cgrp = cgroup_kn_lock_live(of->kn, false); 4759 if (!dst_cgrp) 4760 return -ENODEV; 4761 4762 task = cgroup_procs_write_start(buf, true); 4763 ret = PTR_ERR_OR_ZERO(task); 4764 if (ret) 4765 goto out_unlock; 4766 4767 /* find the source cgroup */ 4768 spin_lock_irq(&css_set_lock); 4769 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root); 4770 spin_unlock_irq(&css_set_lock); 4771 4772 ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, 4773 of->file->f_path.dentry->d_sb); 4774 if (ret) 4775 goto out_finish; 4776 4777 ret = cgroup_attach_task(dst_cgrp, task, true); 4778 4779 out_finish: 4780 cgroup_procs_write_finish(task); 4781 out_unlock: 4782 cgroup_kn_unlock(of->kn); 4783 4784 return ret ?: nbytes; 4785 } 4786 4787 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos) 4788 { 4789 return __cgroup_procs_start(s, pos, 0); 4790 } 4791 4792 static ssize_t cgroup_threads_write(struct kernfs_open_file *of, 4793 char *buf, size_t nbytes, loff_t off) 4794 { 4795 struct cgroup *src_cgrp, *dst_cgrp; 4796 struct task_struct *task; 4797 ssize_t ret; 4798 4799 buf = strstrip(buf); 4800 4801 dst_cgrp = cgroup_kn_lock_live(of->kn, false); 4802 if (!dst_cgrp) 4803 return -ENODEV; 4804 4805 task = cgroup_procs_write_start(buf, false); 4806 ret = PTR_ERR_OR_ZERO(task); 4807 if (ret) 4808 goto out_unlock; 4809 4810 /* find the source cgroup */ 4811 spin_lock_irq(&css_set_lock); 4812 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root); 4813 spin_unlock_irq(&css_set_lock); 4814 4815 /* thread migrations follow the cgroup.procs delegation rule */ 4816 ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, 4817 of->file->f_path.dentry->d_sb); 4818 if (ret) 4819 goto out_finish; 4820 4821 /* and must be contained in the same domain */ 4822 ret = -EOPNOTSUPP; 4823 if (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp) 4824 goto out_finish; 4825 4826 ret = cgroup_attach_task(dst_cgrp, task, false); 4827 4828 out_finish: 4829 cgroup_procs_write_finish(task); 4830 out_unlock: 4831 cgroup_kn_unlock(of->kn); 4832 4833 return ret ?: nbytes; 4834 } 4835 4836 /* cgroup core interface files for the default hierarchy */ 4837 static struct cftype cgroup_base_files[] = { 4838 { 4839 .name = "cgroup.type", 4840 .flags = CFTYPE_NOT_ON_ROOT, 4841 .seq_show = cgroup_type_show, 4842 .write = cgroup_type_write, 4843 }, 4844 { 4845 .name = "cgroup.procs", 4846 .flags = CFTYPE_NS_DELEGATABLE, 4847 .file_offset = offsetof(struct cgroup, procs_file), 4848 .release = cgroup_procs_release, 4849 .seq_start = cgroup_procs_start, 4850 .seq_next = cgroup_procs_next, 4851 .seq_show = cgroup_procs_show, 4852 .write = cgroup_procs_write, 4853 }, 4854 { 4855 .name = "cgroup.threads", 4856 .flags = CFTYPE_NS_DELEGATABLE, 4857 .release = cgroup_procs_release, 4858 .seq_start = cgroup_threads_start, 4859 .seq_next = cgroup_procs_next, 4860 .seq_show = cgroup_procs_show, 4861 .write = cgroup_threads_write, 4862 }, 4863 { 4864 .name = "cgroup.controllers", 4865 .seq_show = cgroup_controllers_show, 4866 }, 4867 { 4868 .name = "cgroup.subtree_control", 4869 .flags = CFTYPE_NS_DELEGATABLE, 4870 .seq_show = cgroup_subtree_control_show, 4871 .write = cgroup_subtree_control_write, 4872 }, 4873 { 4874 .name = "cgroup.events", 4875 .flags = CFTYPE_NOT_ON_ROOT, 4876 .file_offset = offsetof(struct cgroup, events_file), 4877 .seq_show = cgroup_events_show, 4878 }, 4879 { 4880 .name = "cgroup.max.descendants", 4881 .seq_show = cgroup_max_descendants_show, 4882 .write = cgroup_max_descendants_write, 4883 }, 4884 { 4885 .name = "cgroup.max.depth", 4886 .seq_show = cgroup_max_depth_show, 4887 .write = cgroup_max_depth_write, 4888 }, 4889 { 4890 .name = "cgroup.stat", 4891 .seq_show = cgroup_stat_show, 4892 }, 4893 { 4894 .name = "cgroup.freeze", 4895 .flags = CFTYPE_NOT_ON_ROOT, 4896 .seq_show = cgroup_freeze_show, 4897 .write = cgroup_freeze_write, 4898 }, 4899 { 4900 .name = "cpu.stat", 4901 .flags = CFTYPE_NOT_ON_ROOT, 4902 .seq_show = cpu_stat_show, 4903 }, 4904 #ifdef CONFIG_PSI 4905 { 4906 .name = "io.pressure", 4907 .seq_show = cgroup_io_pressure_show, 4908 .write = cgroup_io_pressure_write, 4909 .poll = cgroup_pressure_poll, 4910 .release = cgroup_pressure_release, 4911 }, 4912 { 4913 .name = "memory.pressure", 4914 .seq_show = cgroup_memory_pressure_show, 4915 .write = cgroup_memory_pressure_write, 4916 .poll = cgroup_pressure_poll, 4917 .release = cgroup_pressure_release, 4918 }, 4919 { 4920 .name = "cpu.pressure", 4921 .seq_show = cgroup_cpu_pressure_show, 4922 .write = cgroup_cpu_pressure_write, 4923 .poll = cgroup_pressure_poll, 4924 .release = cgroup_pressure_release, 4925 }, 4926 #endif /* CONFIG_PSI */ 4927 { } /* terminate */ 4928 }; 4929 4930 /* 4931 * css destruction is four-stage process. 4932 * 4933 * 1. Destruction starts. Killing of the percpu_ref is initiated. 4934 * Implemented in kill_css(). 4935 * 4936 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs 4937 * and thus css_tryget_online() is guaranteed to fail, the css can be 4938 * offlined by invoking offline_css(). After offlining, the base ref is 4939 * put. Implemented in css_killed_work_fn(). 4940 * 4941 * 3. When the percpu_ref reaches zero, the only possible remaining 4942 * accessors are inside RCU read sections. css_release() schedules the 4943 * RCU callback. 4944 * 4945 * 4. After the grace period, the css can be freed. Implemented in 4946 * css_free_work_fn(). 4947 * 4948 * It is actually hairier because both step 2 and 4 require process context 4949 * and thus involve punting to css->destroy_work adding two additional 4950 * steps to the already complex sequence. 4951 */ 4952 static void css_free_rwork_fn(struct work_struct *work) 4953 { 4954 struct cgroup_subsys_state *css = container_of(to_rcu_work(work), 4955 struct cgroup_subsys_state, destroy_rwork); 4956 struct cgroup_subsys *ss = css->ss; 4957 struct cgroup *cgrp = css->cgroup; 4958 4959 percpu_ref_exit(&css->refcnt); 4960 4961 if (ss) { 4962 /* css free path */ 4963 struct cgroup_subsys_state *parent = css->parent; 4964 int id = css->id; 4965 4966 ss->css_free(css); 4967 cgroup_idr_remove(&ss->css_idr, id); 4968 cgroup_put(cgrp); 4969 4970 if (parent) 4971 css_put(parent); 4972 } else { 4973 /* cgroup free path */ 4974 atomic_dec(&cgrp->root->nr_cgrps); 4975 cgroup1_pidlist_destroy_all(cgrp); 4976 cancel_work_sync(&cgrp->release_agent_work); 4977 4978 if (cgroup_parent(cgrp)) { 4979 /* 4980 * We get a ref to the parent, and put the ref when 4981 * this cgroup is being freed, so it's guaranteed 4982 * that the parent won't be destroyed before its 4983 * children. 4984 */ 4985 cgroup_put(cgroup_parent(cgrp)); 4986 kernfs_put(cgrp->kn); 4987 psi_cgroup_free(cgrp); 4988 if (cgroup_on_dfl(cgrp)) 4989 cgroup_rstat_exit(cgrp); 4990 kfree(cgrp); 4991 } else { 4992 /* 4993 * This is root cgroup's refcnt reaching zero, 4994 * which indicates that the root should be 4995 * released. 4996 */ 4997 cgroup_destroy_root(cgrp->root); 4998 } 4999 } 5000 } 5001 5002 static void css_release_work_fn(struct work_struct *work) 5003 { 5004 struct cgroup_subsys_state *css = 5005 container_of(work, struct cgroup_subsys_state, destroy_work); 5006 struct cgroup_subsys *ss = css->ss; 5007 struct cgroup *cgrp = css->cgroup; 5008 5009 mutex_lock(&cgroup_mutex); 5010 5011 css->flags |= CSS_RELEASED; 5012 list_del_rcu(&css->sibling); 5013 5014 if (ss) { 5015 /* css release path */ 5016 if (!list_empty(&css->rstat_css_node)) { 5017 cgroup_rstat_flush(cgrp); 5018 list_del_rcu(&css->rstat_css_node); 5019 } 5020 5021 cgroup_idr_replace(&ss->css_idr, NULL, css->id); 5022 if (ss->css_released) 5023 ss->css_released(css); 5024 } else { 5025 struct cgroup *tcgrp; 5026 5027 /* cgroup release path */ 5028 TRACE_CGROUP_PATH(release, cgrp); 5029 5030 if (cgroup_on_dfl(cgrp)) 5031 cgroup_rstat_flush(cgrp); 5032 5033 spin_lock_irq(&css_set_lock); 5034 for (tcgrp = cgroup_parent(cgrp); tcgrp; 5035 tcgrp = cgroup_parent(tcgrp)) 5036 tcgrp->nr_dying_descendants--; 5037 spin_unlock_irq(&css_set_lock); 5038 5039 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id); 5040 cgrp->id = -1; 5041 5042 /* 5043 * There are two control paths which try to determine 5044 * cgroup from dentry without going through kernfs - 5045 * cgroupstats_build() and css_tryget_online_from_dir(). 5046 * Those are supported by RCU protecting clearing of 5047 * cgrp->kn->priv backpointer. 5048 */ 5049 if (cgrp->kn) 5050 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, 5051 NULL); 5052 } 5053 5054 mutex_unlock(&cgroup_mutex); 5055 5056 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn); 5057 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork); 5058 } 5059 5060 static void css_release(struct percpu_ref *ref) 5061 { 5062 struct cgroup_subsys_state *css = 5063 container_of(ref, struct cgroup_subsys_state, refcnt); 5064 5065 INIT_WORK(&css->destroy_work, css_release_work_fn); 5066 queue_work(cgroup_destroy_wq, &css->destroy_work); 5067 } 5068 5069 static void init_and_link_css(struct cgroup_subsys_state *css, 5070 struct cgroup_subsys *ss, struct cgroup *cgrp) 5071 { 5072 lockdep_assert_held(&cgroup_mutex); 5073 5074 cgroup_get_live(cgrp); 5075 5076 memset(css, 0, sizeof(*css)); 5077 css->cgroup = cgrp; 5078 css->ss = ss; 5079 css->id = -1; 5080 INIT_LIST_HEAD(&css->sibling); 5081 INIT_LIST_HEAD(&css->children); 5082 INIT_LIST_HEAD(&css->rstat_css_node); 5083 css->serial_nr = css_serial_nr_next++; 5084 atomic_set(&css->online_cnt, 0); 5085 5086 if (cgroup_parent(cgrp)) { 5087 css->parent = cgroup_css(cgroup_parent(cgrp), ss); 5088 css_get(css->parent); 5089 } 5090 5091 if (cgroup_on_dfl(cgrp) && ss->css_rstat_flush) 5092 list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list); 5093 5094 BUG_ON(cgroup_css(cgrp, ss)); 5095 } 5096 5097 /* invoke ->css_online() on a new CSS and mark it online if successful */ 5098 static int online_css(struct cgroup_subsys_state *css) 5099 { 5100 struct cgroup_subsys *ss = css->ss; 5101 int ret = 0; 5102 5103 lockdep_assert_held(&cgroup_mutex); 5104 5105 if (ss->css_online) 5106 ret = ss->css_online(css); 5107 if (!ret) { 5108 css->flags |= CSS_ONLINE; 5109 rcu_assign_pointer(css->cgroup->subsys[ss->id], css); 5110 5111 atomic_inc(&css->online_cnt); 5112 if (css->parent) 5113 atomic_inc(&css->parent->online_cnt); 5114 } 5115 return ret; 5116 } 5117 5118 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */ 5119 static void offline_css(struct cgroup_subsys_state *css) 5120 { 5121 struct cgroup_subsys *ss = css->ss; 5122 5123 lockdep_assert_held(&cgroup_mutex); 5124 5125 if (!(css->flags & CSS_ONLINE)) 5126 return; 5127 5128 if (ss->css_offline) 5129 ss->css_offline(css); 5130 5131 css->flags &= ~CSS_ONLINE; 5132 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL); 5133 5134 wake_up_all(&css->cgroup->offline_waitq); 5135 } 5136 5137 /** 5138 * css_create - create a cgroup_subsys_state 5139 * @cgrp: the cgroup new css will be associated with 5140 * @ss: the subsys of new css 5141 * 5142 * Create a new css associated with @cgrp - @ss pair. On success, the new 5143 * css is online and installed in @cgrp. This function doesn't create the 5144 * interface files. Returns 0 on success, -errno on failure. 5145 */ 5146 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp, 5147 struct cgroup_subsys *ss) 5148 { 5149 struct cgroup *parent = cgroup_parent(cgrp); 5150 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss); 5151 struct cgroup_subsys_state *css; 5152 int err; 5153 5154 lockdep_assert_held(&cgroup_mutex); 5155 5156 css = ss->css_alloc(parent_css); 5157 if (!css) 5158 css = ERR_PTR(-ENOMEM); 5159 if (IS_ERR(css)) 5160 return css; 5161 5162 init_and_link_css(css, ss, cgrp); 5163 5164 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL); 5165 if (err) 5166 goto err_free_css; 5167 5168 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL); 5169 if (err < 0) 5170 goto err_free_css; 5171 css->id = err; 5172 5173 /* @css is ready to be brought online now, make it visible */ 5174 list_add_tail_rcu(&css->sibling, &parent_css->children); 5175 cgroup_idr_replace(&ss->css_idr, css, css->id); 5176 5177 err = online_css(css); 5178 if (err) 5179 goto err_list_del; 5180 5181 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy && 5182 cgroup_parent(parent)) { 5183 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n", 5184 current->comm, current->pid, ss->name); 5185 if (!strcmp(ss->name, "memory")) 5186 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n"); 5187 ss->warned_broken_hierarchy = true; 5188 } 5189 5190 return css; 5191 5192 err_list_del: 5193 list_del_rcu(&css->sibling); 5194 err_free_css: 5195 list_del_rcu(&css->rstat_css_node); 5196 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn); 5197 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork); 5198 return ERR_PTR(err); 5199 } 5200 5201 /* 5202 * The returned cgroup is fully initialized including its control mask, but 5203 * it isn't associated with its kernfs_node and doesn't have the control 5204 * mask applied. 5205 */ 5206 static struct cgroup *cgroup_create(struct cgroup *parent) 5207 { 5208 struct cgroup_root *root = parent->root; 5209 struct cgroup *cgrp, *tcgrp; 5210 int level = parent->level + 1; 5211 int ret; 5212 5213 /* allocate the cgroup and its ID, 0 is reserved for the root */ 5214 cgrp = kzalloc(struct_size(cgrp, ancestor_ids, (level + 1)), 5215 GFP_KERNEL); 5216 if (!cgrp) 5217 return ERR_PTR(-ENOMEM); 5218 5219 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL); 5220 if (ret) 5221 goto out_free_cgrp; 5222 5223 if (cgroup_on_dfl(parent)) { 5224 ret = cgroup_rstat_init(cgrp); 5225 if (ret) 5226 goto out_cancel_ref; 5227 } 5228 5229 /* 5230 * Temporarily set the pointer to NULL, so idr_find() won't return 5231 * a half-baked cgroup. 5232 */ 5233 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL); 5234 if (cgrp->id < 0) { 5235 ret = -ENOMEM; 5236 goto out_stat_exit; 5237 } 5238 5239 init_cgroup_housekeeping(cgrp); 5240 5241 cgrp->self.parent = &parent->self; 5242 cgrp->root = root; 5243 cgrp->level = level; 5244 5245 ret = psi_cgroup_alloc(cgrp); 5246 if (ret) 5247 goto out_idr_free; 5248 5249 ret = cgroup_bpf_inherit(cgrp); 5250 if (ret) 5251 goto out_psi_free; 5252 5253 /* 5254 * New cgroup inherits effective freeze counter, and 5255 * if the parent has to be frozen, the child has too. 5256 */ 5257 cgrp->freezer.e_freeze = parent->freezer.e_freeze; 5258 if (cgrp->freezer.e_freeze) { 5259 /* 5260 * Set the CGRP_FREEZE flag, so when a process will be 5261 * attached to the child cgroup, it will become frozen. 5262 * At this point the new cgroup is unpopulated, so we can 5263 * consider it frozen immediately. 5264 */ 5265 set_bit(CGRP_FREEZE, &cgrp->flags); 5266 set_bit(CGRP_FROZEN, &cgrp->flags); 5267 } 5268 5269 spin_lock_irq(&css_set_lock); 5270 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) { 5271 cgrp->ancestor_ids[tcgrp->level] = tcgrp->id; 5272 5273 if (tcgrp != cgrp) { 5274 tcgrp->nr_descendants++; 5275 5276 /* 5277 * If the new cgroup is frozen, all ancestor cgroups 5278 * get a new frozen descendant, but their state can't 5279 * change because of this. 5280 */ 5281 if (cgrp->freezer.e_freeze) 5282 tcgrp->freezer.nr_frozen_descendants++; 5283 } 5284 } 5285 spin_unlock_irq(&css_set_lock); 5286 5287 if (notify_on_release(parent)) 5288 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags); 5289 5290 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags)) 5291 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags); 5292 5293 cgrp->self.serial_nr = css_serial_nr_next++; 5294 5295 /* allocation complete, commit to creation */ 5296 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children); 5297 atomic_inc(&root->nr_cgrps); 5298 cgroup_get_live(parent); 5299 5300 /* 5301 * @cgrp is now fully operational. If something fails after this 5302 * point, it'll be released via the normal destruction path. 5303 */ 5304 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id); 5305 5306 /* 5307 * On the default hierarchy, a child doesn't automatically inherit 5308 * subtree_control from the parent. Each is configured manually. 5309 */ 5310 if (!cgroup_on_dfl(cgrp)) 5311 cgrp->subtree_control = cgroup_control(cgrp); 5312 5313 cgroup_propagate_control(cgrp); 5314 5315 return cgrp; 5316 5317 out_psi_free: 5318 psi_cgroup_free(cgrp); 5319 out_idr_free: 5320 cgroup_idr_remove(&root->cgroup_idr, cgrp->id); 5321 out_stat_exit: 5322 if (cgroup_on_dfl(parent)) 5323 cgroup_rstat_exit(cgrp); 5324 out_cancel_ref: 5325 percpu_ref_exit(&cgrp->self.refcnt); 5326 out_free_cgrp: 5327 kfree(cgrp); 5328 return ERR_PTR(ret); 5329 } 5330 5331 static bool cgroup_check_hierarchy_limits(struct cgroup *parent) 5332 { 5333 struct cgroup *cgroup; 5334 int ret = false; 5335 int level = 1; 5336 5337 lockdep_assert_held(&cgroup_mutex); 5338 5339 for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) { 5340 if (cgroup->nr_descendants >= cgroup->max_descendants) 5341 goto fail; 5342 5343 if (level > cgroup->max_depth) 5344 goto fail; 5345 5346 level++; 5347 } 5348 5349 ret = true; 5350 fail: 5351 return ret; 5352 } 5353 5354 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode) 5355 { 5356 struct cgroup *parent, *cgrp; 5357 struct kernfs_node *kn; 5358 int ret; 5359 5360 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */ 5361 if (strchr(name, '\n')) 5362 return -EINVAL; 5363 5364 parent = cgroup_kn_lock_live(parent_kn, false); 5365 if (!parent) 5366 return -ENODEV; 5367 5368 if (!cgroup_check_hierarchy_limits(parent)) { 5369 ret = -EAGAIN; 5370 goto out_unlock; 5371 } 5372 5373 cgrp = cgroup_create(parent); 5374 if (IS_ERR(cgrp)) { 5375 ret = PTR_ERR(cgrp); 5376 goto out_unlock; 5377 } 5378 5379 /* create the directory */ 5380 kn = kernfs_create_dir(parent->kn, name, mode, cgrp); 5381 if (IS_ERR(kn)) { 5382 ret = PTR_ERR(kn); 5383 goto out_destroy; 5384 } 5385 cgrp->kn = kn; 5386 5387 /* 5388 * This extra ref will be put in cgroup_free_fn() and guarantees 5389 * that @cgrp->kn is always accessible. 5390 */ 5391 kernfs_get(kn); 5392 5393 ret = cgroup_kn_set_ugid(kn); 5394 if (ret) 5395 goto out_destroy; 5396 5397 ret = css_populate_dir(&cgrp->self); 5398 if (ret) 5399 goto out_destroy; 5400 5401 ret = cgroup_apply_control_enable(cgrp); 5402 if (ret) 5403 goto out_destroy; 5404 5405 TRACE_CGROUP_PATH(mkdir, cgrp); 5406 5407 /* let's create and online css's */ 5408 kernfs_activate(kn); 5409 5410 ret = 0; 5411 goto out_unlock; 5412 5413 out_destroy: 5414 cgroup_destroy_locked(cgrp); 5415 out_unlock: 5416 cgroup_kn_unlock(parent_kn); 5417 return ret; 5418 } 5419 5420 /* 5421 * This is called when the refcnt of a css is confirmed to be killed. 5422 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to 5423 * initate destruction and put the css ref from kill_css(). 5424 */ 5425 static void css_killed_work_fn(struct work_struct *work) 5426 { 5427 struct cgroup_subsys_state *css = 5428 container_of(work, struct cgroup_subsys_state, destroy_work); 5429 5430 mutex_lock(&cgroup_mutex); 5431 5432 do { 5433 offline_css(css); 5434 css_put(css); 5435 /* @css can't go away while we're holding cgroup_mutex */ 5436 css = css->parent; 5437 } while (css && atomic_dec_and_test(&css->online_cnt)); 5438 5439 mutex_unlock(&cgroup_mutex); 5440 } 5441 5442 /* css kill confirmation processing requires process context, bounce */ 5443 static void css_killed_ref_fn(struct percpu_ref *ref) 5444 { 5445 struct cgroup_subsys_state *css = 5446 container_of(ref, struct cgroup_subsys_state, refcnt); 5447 5448 if (atomic_dec_and_test(&css->online_cnt)) { 5449 INIT_WORK(&css->destroy_work, css_killed_work_fn); 5450 queue_work(cgroup_destroy_wq, &css->destroy_work); 5451 } 5452 } 5453 5454 /** 5455 * kill_css - destroy a css 5456 * @css: css to destroy 5457 * 5458 * This function initiates destruction of @css by removing cgroup interface 5459 * files and putting its base reference. ->css_offline() will be invoked 5460 * asynchronously once css_tryget_online() is guaranteed to fail and when 5461 * the reference count reaches zero, @css will be released. 5462 */ 5463 static void kill_css(struct cgroup_subsys_state *css) 5464 { 5465 lockdep_assert_held(&cgroup_mutex); 5466 5467 if (css->flags & CSS_DYING) 5468 return; 5469 5470 css->flags |= CSS_DYING; 5471 5472 /* 5473 * This must happen before css is disassociated with its cgroup. 5474 * See seq_css() for details. 5475 */ 5476 css_clear_dir(css); 5477 5478 /* 5479 * Killing would put the base ref, but we need to keep it alive 5480 * until after ->css_offline(). 5481 */ 5482 css_get(css); 5483 5484 /* 5485 * cgroup core guarantees that, by the time ->css_offline() is 5486 * invoked, no new css reference will be given out via 5487 * css_tryget_online(). We can't simply call percpu_ref_kill() and 5488 * proceed to offlining css's because percpu_ref_kill() doesn't 5489 * guarantee that the ref is seen as killed on all CPUs on return. 5490 * 5491 * Use percpu_ref_kill_and_confirm() to get notifications as each 5492 * css is confirmed to be seen as killed on all CPUs. 5493 */ 5494 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn); 5495 } 5496 5497 /** 5498 * cgroup_destroy_locked - the first stage of cgroup destruction 5499 * @cgrp: cgroup to be destroyed 5500 * 5501 * css's make use of percpu refcnts whose killing latency shouldn't be 5502 * exposed to userland and are RCU protected. Also, cgroup core needs to 5503 * guarantee that css_tryget_online() won't succeed by the time 5504 * ->css_offline() is invoked. To satisfy all the requirements, 5505 * destruction is implemented in the following two steps. 5506 * 5507 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all 5508 * userland visible parts and start killing the percpu refcnts of 5509 * css's. Set up so that the next stage will be kicked off once all 5510 * the percpu refcnts are confirmed to be killed. 5511 * 5512 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the 5513 * rest of destruction. Once all cgroup references are gone, the 5514 * cgroup is RCU-freed. 5515 * 5516 * This function implements s1. After this step, @cgrp is gone as far as 5517 * the userland is concerned and a new cgroup with the same name may be 5518 * created. As cgroup doesn't care about the names internally, this 5519 * doesn't cause any problem. 5520 */ 5521 static int cgroup_destroy_locked(struct cgroup *cgrp) 5522 __releases(&cgroup_mutex) __acquires(&cgroup_mutex) 5523 { 5524 struct cgroup *tcgrp, *parent = cgroup_parent(cgrp); 5525 struct cgroup_subsys_state *css; 5526 struct cgrp_cset_link *link; 5527 int ssid; 5528 5529 lockdep_assert_held(&cgroup_mutex); 5530 5531 /* 5532 * Only migration can raise populated from zero and we're already 5533 * holding cgroup_mutex. 5534 */ 5535 if (cgroup_is_populated(cgrp)) 5536 return -EBUSY; 5537 5538 /* 5539 * Make sure there's no live children. We can't test emptiness of 5540 * ->self.children as dead children linger on it while being 5541 * drained; otherwise, "rmdir parent/child parent" may fail. 5542 */ 5543 if (css_has_online_children(&cgrp->self)) 5544 return -EBUSY; 5545 5546 /* 5547 * Mark @cgrp and the associated csets dead. The former prevents 5548 * further task migration and child creation by disabling 5549 * cgroup_lock_live_group(). The latter makes the csets ignored by 5550 * the migration path. 5551 */ 5552 cgrp->self.flags &= ~CSS_ONLINE; 5553 5554 spin_lock_irq(&css_set_lock); 5555 list_for_each_entry(link, &cgrp->cset_links, cset_link) 5556 link->cset->dead = true; 5557 spin_unlock_irq(&css_set_lock); 5558 5559 /* initiate massacre of all css's */ 5560 for_each_css(css, ssid, cgrp) 5561 kill_css(css); 5562 5563 /* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */ 5564 css_clear_dir(&cgrp->self); 5565 kernfs_remove(cgrp->kn); 5566 5567 if (parent && cgroup_is_threaded(cgrp)) 5568 parent->nr_threaded_children--; 5569 5570 spin_lock_irq(&css_set_lock); 5571 for (tcgrp = cgroup_parent(cgrp); tcgrp; tcgrp = cgroup_parent(tcgrp)) { 5572 tcgrp->nr_descendants--; 5573 tcgrp->nr_dying_descendants++; 5574 /* 5575 * If the dying cgroup is frozen, decrease frozen descendants 5576 * counters of ancestor cgroups. 5577 */ 5578 if (test_bit(CGRP_FROZEN, &cgrp->flags)) 5579 tcgrp->freezer.nr_frozen_descendants--; 5580 } 5581 spin_unlock_irq(&css_set_lock); 5582 5583 cgroup1_check_for_release(parent); 5584 5585 cgroup_bpf_offline(cgrp); 5586 5587 /* put the base reference */ 5588 percpu_ref_kill(&cgrp->self.refcnt); 5589 5590 return 0; 5591 }; 5592 5593 int cgroup_rmdir(struct kernfs_node *kn) 5594 { 5595 struct cgroup *cgrp; 5596 int ret = 0; 5597 5598 cgrp = cgroup_kn_lock_live(kn, false); 5599 if (!cgrp) 5600 return 0; 5601 5602 ret = cgroup_destroy_locked(cgrp); 5603 if (!ret) 5604 TRACE_CGROUP_PATH(rmdir, cgrp); 5605 5606 cgroup_kn_unlock(kn); 5607 return ret; 5608 } 5609 5610 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = { 5611 .show_options = cgroup_show_options, 5612 .mkdir = cgroup_mkdir, 5613 .rmdir = cgroup_rmdir, 5614 .show_path = cgroup_show_path, 5615 }; 5616 5617 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early) 5618 { 5619 struct cgroup_subsys_state *css; 5620 5621 pr_debug("Initializing cgroup subsys %s\n", ss->name); 5622 5623 mutex_lock(&cgroup_mutex); 5624 5625 idr_init(&ss->css_idr); 5626 INIT_LIST_HEAD(&ss->cfts); 5627 5628 /* Create the root cgroup state for this subsystem */ 5629 ss->root = &cgrp_dfl_root; 5630 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss)); 5631 /* We don't handle early failures gracefully */ 5632 BUG_ON(IS_ERR(css)); 5633 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp); 5634 5635 /* 5636 * Root csses are never destroyed and we can't initialize 5637 * percpu_ref during early init. Disable refcnting. 5638 */ 5639 css->flags |= CSS_NO_REF; 5640 5641 if (early) { 5642 /* allocation can't be done safely during early init */ 5643 css->id = 1; 5644 } else { 5645 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL); 5646 BUG_ON(css->id < 0); 5647 } 5648 5649 /* Update the init_css_set to contain a subsys 5650 * pointer to this state - since the subsystem is 5651 * newly registered, all tasks and hence the 5652 * init_css_set is in the subsystem's root cgroup. */ 5653 init_css_set.subsys[ss->id] = css; 5654 5655 have_fork_callback |= (bool)ss->fork << ss->id; 5656 have_exit_callback |= (bool)ss->exit << ss->id; 5657 have_release_callback |= (bool)ss->release << ss->id; 5658 have_canfork_callback |= (bool)ss->can_fork << ss->id; 5659 5660 /* At system boot, before all subsystems have been 5661 * registered, no tasks have been forked, so we don't 5662 * need to invoke fork callbacks here. */ 5663 BUG_ON(!list_empty(&init_task.tasks)); 5664 5665 BUG_ON(online_css(css)); 5666 5667 mutex_unlock(&cgroup_mutex); 5668 } 5669 5670 /** 5671 * cgroup_init_early - cgroup initialization at system boot 5672 * 5673 * Initialize cgroups at system boot, and initialize any 5674 * subsystems that request early init. 5675 */ 5676 int __init cgroup_init_early(void) 5677 { 5678 static struct cgroup_fs_context __initdata ctx; 5679 struct cgroup_subsys *ss; 5680 int i; 5681 5682 ctx.root = &cgrp_dfl_root; 5683 init_cgroup_root(&ctx); 5684 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF; 5685 5686 RCU_INIT_POINTER(init_task.cgroups, &init_css_set); 5687 5688 for_each_subsys(ss, i) { 5689 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id, 5690 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n", 5691 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free, 5692 ss->id, ss->name); 5693 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN, 5694 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]); 5695 5696 ss->id = i; 5697 ss->name = cgroup_subsys_name[i]; 5698 if (!ss->legacy_name) 5699 ss->legacy_name = cgroup_subsys_name[i]; 5700 5701 if (ss->early_init) 5702 cgroup_init_subsys(ss, true); 5703 } 5704 return 0; 5705 } 5706 5707 static u16 cgroup_disable_mask __initdata; 5708 5709 /** 5710 * cgroup_init - cgroup initialization 5711 * 5712 * Register cgroup filesystem and /proc file, and initialize 5713 * any subsystems that didn't request early init. 5714 */ 5715 int __init cgroup_init(void) 5716 { 5717 struct cgroup_subsys *ss; 5718 int ssid; 5719 5720 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16); 5721 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files)); 5722 BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files)); 5723 5724 cgroup_rstat_boot(); 5725 5726 /* 5727 * The latency of the synchronize_rcu() is too high for cgroups, 5728 * avoid it at the cost of forcing all readers into the slow path. 5729 */ 5730 rcu_sync_enter_start(&cgroup_threadgroup_rwsem.rss); 5731 5732 get_user_ns(init_cgroup_ns.user_ns); 5733 5734 mutex_lock(&cgroup_mutex); 5735 5736 /* 5737 * Add init_css_set to the hash table so that dfl_root can link to 5738 * it during init. 5739 */ 5740 hash_add(css_set_table, &init_css_set.hlist, 5741 css_set_hash(init_css_set.subsys)); 5742 5743 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0)); 5744 5745 mutex_unlock(&cgroup_mutex); 5746 5747 for_each_subsys(ss, ssid) { 5748 if (ss->early_init) { 5749 struct cgroup_subsys_state *css = 5750 init_css_set.subsys[ss->id]; 5751 5752 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, 5753 GFP_KERNEL); 5754 BUG_ON(css->id < 0); 5755 } else { 5756 cgroup_init_subsys(ss, false); 5757 } 5758 5759 list_add_tail(&init_css_set.e_cset_node[ssid], 5760 &cgrp_dfl_root.cgrp.e_csets[ssid]); 5761 5762 /* 5763 * Setting dfl_root subsys_mask needs to consider the 5764 * disabled flag and cftype registration needs kmalloc, 5765 * both of which aren't available during early_init. 5766 */ 5767 if (cgroup_disable_mask & (1 << ssid)) { 5768 static_branch_disable(cgroup_subsys_enabled_key[ssid]); 5769 printk(KERN_INFO "Disabling %s control group subsystem\n", 5770 ss->name); 5771 continue; 5772 } 5773 5774 if (cgroup1_ssid_disabled(ssid)) 5775 printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n", 5776 ss->name); 5777 5778 cgrp_dfl_root.subsys_mask |= 1 << ss->id; 5779 5780 /* implicit controllers must be threaded too */ 5781 WARN_ON(ss->implicit_on_dfl && !ss->threaded); 5782 5783 if (ss->implicit_on_dfl) 5784 cgrp_dfl_implicit_ss_mask |= 1 << ss->id; 5785 else if (!ss->dfl_cftypes) 5786 cgrp_dfl_inhibit_ss_mask |= 1 << ss->id; 5787 5788 if (ss->threaded) 5789 cgrp_dfl_threaded_ss_mask |= 1 << ss->id; 5790 5791 if (ss->dfl_cftypes == ss->legacy_cftypes) { 5792 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes)); 5793 } else { 5794 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes)); 5795 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes)); 5796 } 5797 5798 if (ss->bind) 5799 ss->bind(init_css_set.subsys[ssid]); 5800 5801 mutex_lock(&cgroup_mutex); 5802 css_populate_dir(init_css_set.subsys[ssid]); 5803 mutex_unlock(&cgroup_mutex); 5804 } 5805 5806 /* init_css_set.subsys[] has been updated, re-hash */ 5807 hash_del(&init_css_set.hlist); 5808 hash_add(css_set_table, &init_css_set.hlist, 5809 css_set_hash(init_css_set.subsys)); 5810 5811 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup")); 5812 WARN_ON(register_filesystem(&cgroup_fs_type)); 5813 WARN_ON(register_filesystem(&cgroup2_fs_type)); 5814 WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show)); 5815 #ifdef CONFIG_CPUSETS 5816 WARN_ON(register_filesystem(&cpuset_fs_type)); 5817 #endif 5818 5819 return 0; 5820 } 5821 5822 static int __init cgroup_wq_init(void) 5823 { 5824 /* 5825 * There isn't much point in executing destruction path in 5826 * parallel. Good chunk is serialized with cgroup_mutex anyway. 5827 * Use 1 for @max_active. 5828 * 5829 * We would prefer to do this in cgroup_init() above, but that 5830 * is called before init_workqueues(): so leave this until after. 5831 */ 5832 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1); 5833 BUG_ON(!cgroup_destroy_wq); 5834 return 0; 5835 } 5836 core_initcall(cgroup_wq_init); 5837 5838 void cgroup_path_from_kernfs_id(const union kernfs_node_id *id, 5839 char *buf, size_t buflen) 5840 { 5841 struct kernfs_node *kn; 5842 5843 kn = kernfs_get_node_by_id(cgrp_dfl_root.kf_root, id); 5844 if (!kn) 5845 return; 5846 kernfs_path(kn, buf, buflen); 5847 kernfs_put(kn); 5848 } 5849 5850 /* 5851 * proc_cgroup_show() 5852 * - Print task's cgroup paths into seq_file, one line for each hierarchy 5853 * - Used for /proc/<pid>/cgroup. 5854 */ 5855 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns, 5856 struct pid *pid, struct task_struct *tsk) 5857 { 5858 char *buf; 5859 int retval; 5860 struct cgroup_root *root; 5861 5862 retval = -ENOMEM; 5863 buf = kmalloc(PATH_MAX, GFP_KERNEL); 5864 if (!buf) 5865 goto out; 5866 5867 mutex_lock(&cgroup_mutex); 5868 spin_lock_irq(&css_set_lock); 5869 5870 for_each_root(root) { 5871 struct cgroup_subsys *ss; 5872 struct cgroup *cgrp; 5873 int ssid, count = 0; 5874 5875 if (root == &cgrp_dfl_root && !cgrp_dfl_visible) 5876 continue; 5877 5878 seq_printf(m, "%d:", root->hierarchy_id); 5879 if (root != &cgrp_dfl_root) 5880 for_each_subsys(ss, ssid) 5881 if (root->subsys_mask & (1 << ssid)) 5882 seq_printf(m, "%s%s", count++ ? "," : "", 5883 ss->legacy_name); 5884 if (strlen(root->name)) 5885 seq_printf(m, "%sname=%s", count ? "," : "", 5886 root->name); 5887 seq_putc(m, ':'); 5888 5889 cgrp = task_cgroup_from_root(tsk, root); 5890 5891 /* 5892 * On traditional hierarchies, all zombie tasks show up as 5893 * belonging to the root cgroup. On the default hierarchy, 5894 * while a zombie doesn't show up in "cgroup.procs" and 5895 * thus can't be migrated, its /proc/PID/cgroup keeps 5896 * reporting the cgroup it belonged to before exiting. If 5897 * the cgroup is removed before the zombie is reaped, 5898 * " (deleted)" is appended to the cgroup path. 5899 */ 5900 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) { 5901 retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX, 5902 current->nsproxy->cgroup_ns); 5903 if (retval >= PATH_MAX) 5904 retval = -ENAMETOOLONG; 5905 if (retval < 0) 5906 goto out_unlock; 5907 5908 seq_puts(m, buf); 5909 } else { 5910 seq_puts(m, "/"); 5911 } 5912 5913 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp)) 5914 seq_puts(m, " (deleted)\n"); 5915 else 5916 seq_putc(m, '\n'); 5917 } 5918 5919 retval = 0; 5920 out_unlock: 5921 spin_unlock_irq(&css_set_lock); 5922 mutex_unlock(&cgroup_mutex); 5923 kfree(buf); 5924 out: 5925 return retval; 5926 } 5927 5928 /** 5929 * cgroup_fork - initialize cgroup related fields during copy_process() 5930 * @child: pointer to task_struct of forking parent process. 5931 * 5932 * A task is associated with the init_css_set until cgroup_post_fork() 5933 * attaches it to the parent's css_set. Empty cg_list indicates that 5934 * @child isn't holding reference to its css_set. 5935 */ 5936 void cgroup_fork(struct task_struct *child) 5937 { 5938 RCU_INIT_POINTER(child->cgroups, &init_css_set); 5939 INIT_LIST_HEAD(&child->cg_list); 5940 } 5941 5942 /** 5943 * cgroup_can_fork - called on a new task before the process is exposed 5944 * @child: the task in question. 5945 * 5946 * This calls the subsystem can_fork() callbacks. If the can_fork() callback 5947 * returns an error, the fork aborts with that error code. This allows for 5948 * a cgroup subsystem to conditionally allow or deny new forks. 5949 */ 5950 int cgroup_can_fork(struct task_struct *child) 5951 { 5952 struct cgroup_subsys *ss; 5953 int i, j, ret; 5954 5955 do_each_subsys_mask(ss, i, have_canfork_callback) { 5956 ret = ss->can_fork(child); 5957 if (ret) 5958 goto out_revert; 5959 } while_each_subsys_mask(); 5960 5961 return 0; 5962 5963 out_revert: 5964 for_each_subsys(ss, j) { 5965 if (j >= i) 5966 break; 5967 if (ss->cancel_fork) 5968 ss->cancel_fork(child); 5969 } 5970 5971 return ret; 5972 } 5973 5974 /** 5975 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork() 5976 * @child: the task in question 5977 * 5978 * This calls the cancel_fork() callbacks if a fork failed *after* 5979 * cgroup_can_fork() succeded. 5980 */ 5981 void cgroup_cancel_fork(struct task_struct *child) 5982 { 5983 struct cgroup_subsys *ss; 5984 int i; 5985 5986 for_each_subsys(ss, i) 5987 if (ss->cancel_fork) 5988 ss->cancel_fork(child); 5989 } 5990 5991 /** 5992 * cgroup_post_fork - called on a new task after adding it to the task list 5993 * @child: the task in question 5994 * 5995 * Adds the task to the list running through its css_set if necessary and 5996 * call the subsystem fork() callbacks. Has to be after the task is 5997 * visible on the task list in case we race with the first call to 5998 * cgroup_task_iter_start() - to guarantee that the new task ends up on its 5999 * list. 6000 */ 6001 void cgroup_post_fork(struct task_struct *child) 6002 { 6003 struct cgroup_subsys *ss; 6004 int i; 6005 6006 /* 6007 * This may race against cgroup_enable_task_cg_lists(). As that 6008 * function sets use_task_css_set_links before grabbing 6009 * tasklist_lock and we just went through tasklist_lock to add 6010 * @child, it's guaranteed that either we see the set 6011 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees 6012 * @child during its iteration. 6013 * 6014 * If we won the race, @child is associated with %current's 6015 * css_set. Grabbing css_set_lock guarantees both that the 6016 * association is stable, and, on completion of the parent's 6017 * migration, @child is visible in the source of migration or 6018 * already in the destination cgroup. This guarantee is necessary 6019 * when implementing operations which need to migrate all tasks of 6020 * a cgroup to another. 6021 * 6022 * Note that if we lose to cgroup_enable_task_cg_lists(), @child 6023 * will remain in init_css_set. This is safe because all tasks are 6024 * in the init_css_set before cg_links is enabled and there's no 6025 * operation which transfers all tasks out of init_css_set. 6026 */ 6027 if (use_task_css_set_links) { 6028 struct css_set *cset; 6029 6030 spin_lock_irq(&css_set_lock); 6031 cset = task_css_set(current); 6032 if (list_empty(&child->cg_list)) { 6033 get_css_set(cset); 6034 cset->nr_tasks++; 6035 css_set_move_task(child, NULL, cset, false); 6036 } 6037 6038 /* 6039 * If the cgroup has to be frozen, the new task has too. 6040 * Let's set the JOBCTL_TRAP_FREEZE jobctl bit to get 6041 * the task into the frozen state. 6042 */ 6043 if (unlikely(cgroup_task_freeze(child))) { 6044 spin_lock(&child->sighand->siglock); 6045 WARN_ON_ONCE(child->frozen); 6046 child->jobctl |= JOBCTL_TRAP_FREEZE; 6047 spin_unlock(&child->sighand->siglock); 6048 6049 /* 6050 * Calling cgroup_update_frozen() isn't required here, 6051 * because it will be called anyway a bit later 6052 * from do_freezer_trap(). So we avoid cgroup's 6053 * transient switch from the frozen state and back. 6054 */ 6055 } 6056 6057 spin_unlock_irq(&css_set_lock); 6058 } 6059 6060 /* 6061 * Call ss->fork(). This must happen after @child is linked on 6062 * css_set; otherwise, @child might change state between ->fork() 6063 * and addition to css_set. 6064 */ 6065 do_each_subsys_mask(ss, i, have_fork_callback) { 6066 ss->fork(child); 6067 } while_each_subsys_mask(); 6068 } 6069 6070 /** 6071 * cgroup_exit - detach cgroup from exiting task 6072 * @tsk: pointer to task_struct of exiting process 6073 * 6074 * Description: Detach cgroup from @tsk and release it. 6075 * 6076 * Note that cgroups marked notify_on_release force every task in 6077 * them to take the global cgroup_mutex mutex when exiting. 6078 * This could impact scaling on very large systems. Be reluctant to 6079 * use notify_on_release cgroups where very high task exit scaling 6080 * is required on large systems. 6081 * 6082 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We 6083 * call cgroup_exit() while the task is still competent to handle 6084 * notify_on_release(), then leave the task attached to the root cgroup in 6085 * each hierarchy for the remainder of its exit. No need to bother with 6086 * init_css_set refcnting. init_css_set never goes away and we can't race 6087 * with migration path - PF_EXITING is visible to migration path. 6088 */ 6089 void cgroup_exit(struct task_struct *tsk) 6090 { 6091 struct cgroup_subsys *ss; 6092 struct css_set *cset; 6093 int i; 6094 6095 /* 6096 * Unlink from @tsk from its css_set. As migration path can't race 6097 * with us, we can check css_set and cg_list without synchronization. 6098 */ 6099 cset = task_css_set(tsk); 6100 6101 if (!list_empty(&tsk->cg_list)) { 6102 spin_lock_irq(&css_set_lock); 6103 css_set_move_task(tsk, cset, NULL, false); 6104 list_add_tail(&tsk->cg_list, &cset->dying_tasks); 6105 cset->nr_tasks--; 6106 6107 WARN_ON_ONCE(cgroup_task_frozen(tsk)); 6108 if (unlikely(cgroup_task_freeze(tsk))) 6109 cgroup_update_frozen(task_dfl_cgroup(tsk)); 6110 6111 spin_unlock_irq(&css_set_lock); 6112 } else { 6113 get_css_set(cset); 6114 } 6115 6116 /* see cgroup_post_fork() for details */ 6117 do_each_subsys_mask(ss, i, have_exit_callback) { 6118 ss->exit(tsk); 6119 } while_each_subsys_mask(); 6120 } 6121 6122 void cgroup_release(struct task_struct *task) 6123 { 6124 struct cgroup_subsys *ss; 6125 int ssid; 6126 6127 do_each_subsys_mask(ss, ssid, have_release_callback) { 6128 ss->release(task); 6129 } while_each_subsys_mask(); 6130 6131 if (use_task_css_set_links) { 6132 spin_lock_irq(&css_set_lock); 6133 css_set_skip_task_iters(task_css_set(task), task); 6134 list_del_init(&task->cg_list); 6135 spin_unlock_irq(&css_set_lock); 6136 } 6137 } 6138 6139 void cgroup_free(struct task_struct *task) 6140 { 6141 struct css_set *cset = task_css_set(task); 6142 put_css_set(cset); 6143 } 6144 6145 static int __init cgroup_disable(char *str) 6146 { 6147 struct cgroup_subsys *ss; 6148 char *token; 6149 int i; 6150 6151 while ((token = strsep(&str, ",")) != NULL) { 6152 if (!*token) 6153 continue; 6154 6155 for_each_subsys(ss, i) { 6156 if (strcmp(token, ss->name) && 6157 strcmp(token, ss->legacy_name)) 6158 continue; 6159 cgroup_disable_mask |= 1 << i; 6160 } 6161 } 6162 return 1; 6163 } 6164 __setup("cgroup_disable=", cgroup_disable); 6165 6166 void __init __weak enable_debug_cgroup(void) { } 6167 6168 static int __init enable_cgroup_debug(char *str) 6169 { 6170 cgroup_debug = true; 6171 enable_debug_cgroup(); 6172 return 1; 6173 } 6174 __setup("cgroup_debug", enable_cgroup_debug); 6175 6176 /** 6177 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry 6178 * @dentry: directory dentry of interest 6179 * @ss: subsystem of interest 6180 * 6181 * If @dentry is a directory for a cgroup which has @ss enabled on it, try 6182 * to get the corresponding css and return it. If such css doesn't exist 6183 * or can't be pinned, an ERR_PTR value is returned. 6184 */ 6185 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry, 6186 struct cgroup_subsys *ss) 6187 { 6188 struct kernfs_node *kn = kernfs_node_from_dentry(dentry); 6189 struct file_system_type *s_type = dentry->d_sb->s_type; 6190 struct cgroup_subsys_state *css = NULL; 6191 struct cgroup *cgrp; 6192 6193 /* is @dentry a cgroup dir? */ 6194 if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) || 6195 !kn || kernfs_type(kn) != KERNFS_DIR) 6196 return ERR_PTR(-EBADF); 6197 6198 rcu_read_lock(); 6199 6200 /* 6201 * This path doesn't originate from kernfs and @kn could already 6202 * have been or be removed at any point. @kn->priv is RCU 6203 * protected for this access. See css_release_work_fn() for details. 6204 */ 6205 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); 6206 if (cgrp) 6207 css = cgroup_css(cgrp, ss); 6208 6209 if (!css || !css_tryget_online(css)) 6210 css = ERR_PTR(-ENOENT); 6211 6212 rcu_read_unlock(); 6213 return css; 6214 } 6215 6216 /** 6217 * css_from_id - lookup css by id 6218 * @id: the cgroup id 6219 * @ss: cgroup subsys to be looked into 6220 * 6221 * Returns the css if there's valid one with @id, otherwise returns NULL. 6222 * Should be called under rcu_read_lock(). 6223 */ 6224 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss) 6225 { 6226 WARN_ON_ONCE(!rcu_read_lock_held()); 6227 return idr_find(&ss->css_idr, id); 6228 } 6229 6230 /** 6231 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path 6232 * @path: path on the default hierarchy 6233 * 6234 * Find the cgroup at @path on the default hierarchy, increment its 6235 * reference count and return it. Returns pointer to the found cgroup on 6236 * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR) 6237 * if @path points to a non-directory. 6238 */ 6239 struct cgroup *cgroup_get_from_path(const char *path) 6240 { 6241 struct kernfs_node *kn; 6242 struct cgroup *cgrp; 6243 6244 mutex_lock(&cgroup_mutex); 6245 6246 kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path); 6247 if (kn) { 6248 if (kernfs_type(kn) == KERNFS_DIR) { 6249 cgrp = kn->priv; 6250 cgroup_get_live(cgrp); 6251 } else { 6252 cgrp = ERR_PTR(-ENOTDIR); 6253 } 6254 kernfs_put(kn); 6255 } else { 6256 cgrp = ERR_PTR(-ENOENT); 6257 } 6258 6259 mutex_unlock(&cgroup_mutex); 6260 return cgrp; 6261 } 6262 EXPORT_SYMBOL_GPL(cgroup_get_from_path); 6263 6264 /** 6265 * cgroup_get_from_fd - get a cgroup pointer from a fd 6266 * @fd: fd obtained by open(cgroup2_dir) 6267 * 6268 * Find the cgroup from a fd which should be obtained 6269 * by opening a cgroup directory. Returns a pointer to the 6270 * cgroup on success. ERR_PTR is returned if the cgroup 6271 * cannot be found. 6272 */ 6273 struct cgroup *cgroup_get_from_fd(int fd) 6274 { 6275 struct cgroup_subsys_state *css; 6276 struct cgroup *cgrp; 6277 struct file *f; 6278 6279 f = fget_raw(fd); 6280 if (!f) 6281 return ERR_PTR(-EBADF); 6282 6283 css = css_tryget_online_from_dir(f->f_path.dentry, NULL); 6284 fput(f); 6285 if (IS_ERR(css)) 6286 return ERR_CAST(css); 6287 6288 cgrp = css->cgroup; 6289 if (!cgroup_on_dfl(cgrp)) { 6290 cgroup_put(cgrp); 6291 return ERR_PTR(-EBADF); 6292 } 6293 6294 return cgrp; 6295 } 6296 EXPORT_SYMBOL_GPL(cgroup_get_from_fd); 6297 6298 static u64 power_of_ten(int power) 6299 { 6300 u64 v = 1; 6301 while (power--) 6302 v *= 10; 6303 return v; 6304 } 6305 6306 /** 6307 * cgroup_parse_float - parse a floating number 6308 * @input: input string 6309 * @dec_shift: number of decimal digits to shift 6310 * @v: output 6311 * 6312 * Parse a decimal floating point number in @input and store the result in 6313 * @v with decimal point right shifted @dec_shift times. For example, if 6314 * @input is "12.3456" and @dec_shift is 3, *@v will be set to 12345. 6315 * Returns 0 on success, -errno otherwise. 6316 * 6317 * There's nothing cgroup specific about this function except that it's 6318 * currently the only user. 6319 */ 6320 int cgroup_parse_float(const char *input, unsigned dec_shift, s64 *v) 6321 { 6322 s64 whole, frac = 0; 6323 int fstart = 0, fend = 0, flen; 6324 6325 if (!sscanf(input, "%lld.%n%lld%n", &whole, &fstart, &frac, &fend)) 6326 return -EINVAL; 6327 if (frac < 0) 6328 return -EINVAL; 6329 6330 flen = fend > fstart ? fend - fstart : 0; 6331 if (flen < dec_shift) 6332 frac *= power_of_ten(dec_shift - flen); 6333 else 6334 frac = DIV_ROUND_CLOSEST_ULL(frac, power_of_ten(flen - dec_shift)); 6335 6336 *v = whole * power_of_ten(dec_shift) + frac; 6337 return 0; 6338 } 6339 6340 /* 6341 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data 6342 * definition in cgroup-defs.h. 6343 */ 6344 #ifdef CONFIG_SOCK_CGROUP_DATA 6345 6346 #if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID) 6347 6348 DEFINE_SPINLOCK(cgroup_sk_update_lock); 6349 static bool cgroup_sk_alloc_disabled __read_mostly; 6350 6351 void cgroup_sk_alloc_disable(void) 6352 { 6353 if (cgroup_sk_alloc_disabled) 6354 return; 6355 pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n"); 6356 cgroup_sk_alloc_disabled = true; 6357 } 6358 6359 #else 6360 6361 #define cgroup_sk_alloc_disabled false 6362 6363 #endif 6364 6365 void cgroup_sk_alloc(struct sock_cgroup_data *skcd) 6366 { 6367 if (cgroup_sk_alloc_disabled) 6368 return; 6369 6370 /* Socket clone path */ 6371 if (skcd->val) { 6372 /* 6373 * We might be cloning a socket which is left in an empty 6374 * cgroup and the cgroup might have already been rmdir'd. 6375 * Don't use cgroup_get_live(). 6376 */ 6377 cgroup_get(sock_cgroup_ptr(skcd)); 6378 cgroup_bpf_get(sock_cgroup_ptr(skcd)); 6379 return; 6380 } 6381 6382 rcu_read_lock(); 6383 6384 while (true) { 6385 struct css_set *cset; 6386 6387 cset = task_css_set(current); 6388 if (likely(cgroup_tryget(cset->dfl_cgrp))) { 6389 skcd->val = (unsigned long)cset->dfl_cgrp; 6390 cgroup_bpf_get(cset->dfl_cgrp); 6391 break; 6392 } 6393 cpu_relax(); 6394 } 6395 6396 rcu_read_unlock(); 6397 } 6398 6399 void cgroup_sk_free(struct sock_cgroup_data *skcd) 6400 { 6401 struct cgroup *cgrp = sock_cgroup_ptr(skcd); 6402 6403 cgroup_bpf_put(cgrp); 6404 cgroup_put(cgrp); 6405 } 6406 6407 #endif /* CONFIG_SOCK_CGROUP_DATA */ 6408 6409 #ifdef CONFIG_CGROUP_BPF 6410 int cgroup_bpf_attach(struct cgroup *cgrp, struct bpf_prog *prog, 6411 enum bpf_attach_type type, u32 flags) 6412 { 6413 int ret; 6414 6415 mutex_lock(&cgroup_mutex); 6416 ret = __cgroup_bpf_attach(cgrp, prog, type, flags); 6417 mutex_unlock(&cgroup_mutex); 6418 return ret; 6419 } 6420 int cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog, 6421 enum bpf_attach_type type, u32 flags) 6422 { 6423 int ret; 6424 6425 mutex_lock(&cgroup_mutex); 6426 ret = __cgroup_bpf_detach(cgrp, prog, type); 6427 mutex_unlock(&cgroup_mutex); 6428 return ret; 6429 } 6430 int cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr, 6431 union bpf_attr __user *uattr) 6432 { 6433 int ret; 6434 6435 mutex_lock(&cgroup_mutex); 6436 ret = __cgroup_bpf_query(cgrp, attr, uattr); 6437 mutex_unlock(&cgroup_mutex); 6438 return ret; 6439 } 6440 #endif /* CONFIG_CGROUP_BPF */ 6441 6442 #ifdef CONFIG_SYSFS 6443 static ssize_t show_delegatable_files(struct cftype *files, char *buf, 6444 ssize_t size, const char *prefix) 6445 { 6446 struct cftype *cft; 6447 ssize_t ret = 0; 6448 6449 for (cft = files; cft && cft->name[0] != '\0'; cft++) { 6450 if (!(cft->flags & CFTYPE_NS_DELEGATABLE)) 6451 continue; 6452 6453 if (prefix) 6454 ret += snprintf(buf + ret, size - ret, "%s.", prefix); 6455 6456 ret += snprintf(buf + ret, size - ret, "%s\n", cft->name); 6457 6458 if (WARN_ON(ret >= size)) 6459 break; 6460 } 6461 6462 return ret; 6463 } 6464 6465 static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr, 6466 char *buf) 6467 { 6468 struct cgroup_subsys *ss; 6469 int ssid; 6470 ssize_t ret = 0; 6471 6472 ret = show_delegatable_files(cgroup_base_files, buf, PAGE_SIZE - ret, 6473 NULL); 6474 6475 for_each_subsys(ss, ssid) 6476 ret += show_delegatable_files(ss->dfl_cftypes, buf + ret, 6477 PAGE_SIZE - ret, 6478 cgroup_subsys_name[ssid]); 6479 6480 return ret; 6481 } 6482 static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate); 6483 6484 static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr, 6485 char *buf) 6486 { 6487 return snprintf(buf, PAGE_SIZE, "nsdelegate\nmemory_localevents\n"); 6488 } 6489 static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features); 6490 6491 static struct attribute *cgroup_sysfs_attrs[] = { 6492 &cgroup_delegate_attr.attr, 6493 &cgroup_features_attr.attr, 6494 NULL, 6495 }; 6496 6497 static const struct attribute_group cgroup_sysfs_attr_group = { 6498 .attrs = cgroup_sysfs_attrs, 6499 .name = "cgroup", 6500 }; 6501 6502 static int __init cgroup_sysfs_init(void) 6503 { 6504 return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group); 6505 } 6506 subsys_initcall(cgroup_sysfs_init); 6507 6508 #endif /* CONFIG_SYSFS */ 6509