1 /* 2 * Generic process-grouping system. 3 * 4 * Based originally on the cpuset system, extracted by Paul Menage 5 * Copyright (C) 2006 Google, Inc 6 * 7 * Notifications support 8 * Copyright (C) 2009 Nokia Corporation 9 * Author: Kirill A. Shutemov 10 * 11 * Copyright notices from the original cpuset code: 12 * -------------------------------------------------- 13 * Copyright (C) 2003 BULL SA. 14 * Copyright (C) 2004-2006 Silicon Graphics, Inc. 15 * 16 * Portions derived from Patrick Mochel's sysfs code. 17 * sysfs is Copyright (c) 2001-3 Patrick Mochel 18 * 19 * 2003-10-10 Written by Simon Derr. 20 * 2003-10-22 Updates by Stephen Hemminger. 21 * 2004 May-July Rework by Paul Jackson. 22 * --------------------------------------------------- 23 * 24 * This file is subject to the terms and conditions of the GNU General Public 25 * License. See the file COPYING in the main directory of the Linux 26 * distribution for more details. 27 */ 28 29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 30 31 #include "cgroup-internal.h" 32 33 #include <linux/cred.h> 34 #include <linux/errno.h> 35 #include <linux/init_task.h> 36 #include <linux/kernel.h> 37 #include <linux/magic.h> 38 #include <linux/mutex.h> 39 #include <linux/mount.h> 40 #include <linux/pagemap.h> 41 #include <linux/proc_fs.h> 42 #include <linux/rcupdate.h> 43 #include <linux/sched.h> 44 #include <linux/sched/task.h> 45 #include <linux/slab.h> 46 #include <linux/spinlock.h> 47 #include <linux/percpu-rwsem.h> 48 #include <linux/string.h> 49 #include <linux/hashtable.h> 50 #include <linux/idr.h> 51 #include <linux/kthread.h> 52 #include <linux/atomic.h> 53 #include <linux/cpuset.h> 54 #include <linux/proc_ns.h> 55 #include <linux/nsproxy.h> 56 #include <linux/file.h> 57 #include <net/sock.h> 58 59 #define CREATE_TRACE_POINTS 60 #include <trace/events/cgroup.h> 61 62 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \ 63 MAX_CFTYPE_NAME + 2) 64 65 /* 66 * cgroup_mutex is the master lock. Any modification to cgroup or its 67 * hierarchy must be performed while holding it. 68 * 69 * css_set_lock protects task->cgroups pointer, the list of css_set 70 * objects, and the chain of tasks off each css_set. 71 * 72 * These locks are exported if CONFIG_PROVE_RCU so that accessors in 73 * cgroup.h can use them for lockdep annotations. 74 */ 75 DEFINE_MUTEX(cgroup_mutex); 76 DEFINE_SPINLOCK(css_set_lock); 77 78 #ifdef CONFIG_PROVE_RCU 79 EXPORT_SYMBOL_GPL(cgroup_mutex); 80 EXPORT_SYMBOL_GPL(css_set_lock); 81 #endif 82 83 /* 84 * Protects cgroup_idr and css_idr so that IDs can be released without 85 * grabbing cgroup_mutex. 86 */ 87 static DEFINE_SPINLOCK(cgroup_idr_lock); 88 89 /* 90 * Protects cgroup_file->kn for !self csses. It synchronizes notifications 91 * against file removal/re-creation across css hiding. 92 */ 93 static DEFINE_SPINLOCK(cgroup_file_kn_lock); 94 95 struct percpu_rw_semaphore cgroup_threadgroup_rwsem; 96 97 #define cgroup_assert_mutex_or_rcu_locked() \ 98 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \ 99 !lockdep_is_held(&cgroup_mutex), \ 100 "cgroup_mutex or RCU read lock required"); 101 102 /* 103 * cgroup destruction makes heavy use of work items and there can be a lot 104 * of concurrent destructions. Use a separate workqueue so that cgroup 105 * destruction work items don't end up filling up max_active of system_wq 106 * which may lead to deadlock. 107 */ 108 static struct workqueue_struct *cgroup_destroy_wq; 109 110 /* generate an array of cgroup subsystem pointers */ 111 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys, 112 struct cgroup_subsys *cgroup_subsys[] = { 113 #include <linux/cgroup_subsys.h> 114 }; 115 #undef SUBSYS 116 117 /* array of cgroup subsystem names */ 118 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x, 119 static const char *cgroup_subsys_name[] = { 120 #include <linux/cgroup_subsys.h> 121 }; 122 #undef SUBSYS 123 124 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */ 125 #define SUBSYS(_x) \ 126 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \ 127 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \ 128 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \ 129 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key); 130 #include <linux/cgroup_subsys.h> 131 #undef SUBSYS 132 133 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key, 134 static struct static_key_true *cgroup_subsys_enabled_key[] = { 135 #include <linux/cgroup_subsys.h> 136 }; 137 #undef SUBSYS 138 139 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key, 140 static struct static_key_true *cgroup_subsys_on_dfl_key[] = { 141 #include <linux/cgroup_subsys.h> 142 }; 143 #undef SUBSYS 144 145 /* 146 * The default hierarchy, reserved for the subsystems that are otherwise 147 * unattached - it never has more than a single cgroup, and all tasks are 148 * part of that cgroup. 149 */ 150 struct cgroup_root cgrp_dfl_root; 151 EXPORT_SYMBOL_GPL(cgrp_dfl_root); 152 153 /* 154 * The default hierarchy always exists but is hidden until mounted for the 155 * first time. This is for backward compatibility. 156 */ 157 static bool cgrp_dfl_visible; 158 159 /* some controllers are not supported in the default hierarchy */ 160 static u16 cgrp_dfl_inhibit_ss_mask; 161 162 /* some controllers are implicitly enabled on the default hierarchy */ 163 static u16 cgrp_dfl_implicit_ss_mask; 164 165 /* some controllers can be threaded on the default hierarchy */ 166 static u16 cgrp_dfl_threaded_ss_mask; 167 168 /* The list of hierarchy roots */ 169 LIST_HEAD(cgroup_roots); 170 static int cgroup_root_count; 171 172 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */ 173 static DEFINE_IDR(cgroup_hierarchy_idr); 174 175 /* 176 * Assign a monotonically increasing serial number to csses. It guarantees 177 * cgroups with bigger numbers are newer than those with smaller numbers. 178 * Also, as csses are always appended to the parent's ->children list, it 179 * guarantees that sibling csses are always sorted in the ascending serial 180 * number order on the list. Protected by cgroup_mutex. 181 */ 182 static u64 css_serial_nr_next = 1; 183 184 /* 185 * These bitmasks identify subsystems with specific features to avoid 186 * having to do iterative checks repeatedly. 187 */ 188 static u16 have_fork_callback __read_mostly; 189 static u16 have_exit_callback __read_mostly; 190 static u16 have_free_callback __read_mostly; 191 static u16 have_canfork_callback __read_mostly; 192 193 /* cgroup namespace for init task */ 194 struct cgroup_namespace init_cgroup_ns = { 195 .count = REFCOUNT_INIT(2), 196 .user_ns = &init_user_ns, 197 .ns.ops = &cgroupns_operations, 198 .ns.inum = PROC_CGROUP_INIT_INO, 199 .root_cset = &init_css_set, 200 }; 201 202 static struct file_system_type cgroup2_fs_type; 203 static struct cftype cgroup_base_files[]; 204 205 static int cgroup_apply_control(struct cgroup *cgrp); 206 static void cgroup_finalize_control(struct cgroup *cgrp, int ret); 207 static void css_task_iter_advance(struct css_task_iter *it); 208 static int cgroup_destroy_locked(struct cgroup *cgrp); 209 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp, 210 struct cgroup_subsys *ss); 211 static void css_release(struct percpu_ref *ref); 212 static void kill_css(struct cgroup_subsys_state *css); 213 static int cgroup_addrm_files(struct cgroup_subsys_state *css, 214 struct cgroup *cgrp, struct cftype cfts[], 215 bool is_add); 216 217 /** 218 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID 219 * @ssid: subsys ID of interest 220 * 221 * cgroup_subsys_enabled() can only be used with literal subsys names which 222 * is fine for individual subsystems but unsuitable for cgroup core. This 223 * is slower static_key_enabled() based test indexed by @ssid. 224 */ 225 bool cgroup_ssid_enabled(int ssid) 226 { 227 if (CGROUP_SUBSYS_COUNT == 0) 228 return false; 229 230 return static_key_enabled(cgroup_subsys_enabled_key[ssid]); 231 } 232 233 /** 234 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy 235 * @cgrp: the cgroup of interest 236 * 237 * The default hierarchy is the v2 interface of cgroup and this function 238 * can be used to test whether a cgroup is on the default hierarchy for 239 * cases where a subsystem should behave differnetly depending on the 240 * interface version. 241 * 242 * The set of behaviors which change on the default hierarchy are still 243 * being determined and the mount option is prefixed with __DEVEL__. 244 * 245 * List of changed behaviors: 246 * 247 * - Mount options "noprefix", "xattr", "clone_children", "release_agent" 248 * and "name" are disallowed. 249 * 250 * - When mounting an existing superblock, mount options should match. 251 * 252 * - Remount is disallowed. 253 * 254 * - rename(2) is disallowed. 255 * 256 * - "tasks" is removed. Everything should be at process granularity. Use 257 * "cgroup.procs" instead. 258 * 259 * - "cgroup.procs" is not sorted. pids will be unique unless they got 260 * recycled inbetween reads. 261 * 262 * - "release_agent" and "notify_on_release" are removed. Replacement 263 * notification mechanism will be implemented. 264 * 265 * - "cgroup.clone_children" is removed. 266 * 267 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup 268 * and its descendants contain no task; otherwise, 1. The file also 269 * generates kernfs notification which can be monitored through poll and 270 * [di]notify when the value of the file changes. 271 * 272 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and 273 * take masks of ancestors with non-empty cpus/mems, instead of being 274 * moved to an ancestor. 275 * 276 * - cpuset: a task can be moved into an empty cpuset, and again it takes 277 * masks of ancestors. 278 * 279 * - memcg: use_hierarchy is on by default and the cgroup file for the flag 280 * is not created. 281 * 282 * - blkcg: blk-throttle becomes properly hierarchical. 283 * 284 * - debug: disallowed on the default hierarchy. 285 */ 286 bool cgroup_on_dfl(const struct cgroup *cgrp) 287 { 288 return cgrp->root == &cgrp_dfl_root; 289 } 290 291 /* IDR wrappers which synchronize using cgroup_idr_lock */ 292 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end, 293 gfp_t gfp_mask) 294 { 295 int ret; 296 297 idr_preload(gfp_mask); 298 spin_lock_bh(&cgroup_idr_lock); 299 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM); 300 spin_unlock_bh(&cgroup_idr_lock); 301 idr_preload_end(); 302 return ret; 303 } 304 305 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id) 306 { 307 void *ret; 308 309 spin_lock_bh(&cgroup_idr_lock); 310 ret = idr_replace(idr, ptr, id); 311 spin_unlock_bh(&cgroup_idr_lock); 312 return ret; 313 } 314 315 static void cgroup_idr_remove(struct idr *idr, int id) 316 { 317 spin_lock_bh(&cgroup_idr_lock); 318 idr_remove(idr, id); 319 spin_unlock_bh(&cgroup_idr_lock); 320 } 321 322 static bool cgroup_has_tasks(struct cgroup *cgrp) 323 { 324 return cgrp->nr_populated_csets; 325 } 326 327 bool cgroup_is_threaded(struct cgroup *cgrp) 328 { 329 return cgrp->dom_cgrp != cgrp; 330 } 331 332 /* can @cgrp host both domain and threaded children? */ 333 static bool cgroup_is_mixable(struct cgroup *cgrp) 334 { 335 /* 336 * Root isn't under domain level resource control exempting it from 337 * the no-internal-process constraint, so it can serve as a thread 338 * root and a parent of resource domains at the same time. 339 */ 340 return !cgroup_parent(cgrp); 341 } 342 343 /* can @cgrp become a thread root? should always be true for a thread root */ 344 static bool cgroup_can_be_thread_root(struct cgroup *cgrp) 345 { 346 /* mixables don't care */ 347 if (cgroup_is_mixable(cgrp)) 348 return true; 349 350 /* domain roots can't be nested under threaded */ 351 if (cgroup_is_threaded(cgrp)) 352 return false; 353 354 /* can only have either domain or threaded children */ 355 if (cgrp->nr_populated_domain_children) 356 return false; 357 358 /* and no domain controllers can be enabled */ 359 if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask) 360 return false; 361 362 return true; 363 } 364 365 /* is @cgrp root of a threaded subtree? */ 366 bool cgroup_is_thread_root(struct cgroup *cgrp) 367 { 368 /* thread root should be a domain */ 369 if (cgroup_is_threaded(cgrp)) 370 return false; 371 372 /* a domain w/ threaded children is a thread root */ 373 if (cgrp->nr_threaded_children) 374 return true; 375 376 /* 377 * A domain which has tasks and explicit threaded controllers 378 * enabled is a thread root. 379 */ 380 if (cgroup_has_tasks(cgrp) && 381 (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask)) 382 return true; 383 384 return false; 385 } 386 387 /* a domain which isn't connected to the root w/o brekage can't be used */ 388 static bool cgroup_is_valid_domain(struct cgroup *cgrp) 389 { 390 /* the cgroup itself can be a thread root */ 391 if (cgroup_is_threaded(cgrp)) 392 return false; 393 394 /* but the ancestors can't be unless mixable */ 395 while ((cgrp = cgroup_parent(cgrp))) { 396 if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp)) 397 return false; 398 if (cgroup_is_threaded(cgrp)) 399 return false; 400 } 401 402 return true; 403 } 404 405 /* subsystems visibly enabled on a cgroup */ 406 static u16 cgroup_control(struct cgroup *cgrp) 407 { 408 struct cgroup *parent = cgroup_parent(cgrp); 409 u16 root_ss_mask = cgrp->root->subsys_mask; 410 411 if (parent) { 412 u16 ss_mask = parent->subtree_control; 413 414 /* threaded cgroups can only have threaded controllers */ 415 if (cgroup_is_threaded(cgrp)) 416 ss_mask &= cgrp_dfl_threaded_ss_mask; 417 return ss_mask; 418 } 419 420 if (cgroup_on_dfl(cgrp)) 421 root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask | 422 cgrp_dfl_implicit_ss_mask); 423 return root_ss_mask; 424 } 425 426 /* subsystems enabled on a cgroup */ 427 static u16 cgroup_ss_mask(struct cgroup *cgrp) 428 { 429 struct cgroup *parent = cgroup_parent(cgrp); 430 431 if (parent) { 432 u16 ss_mask = parent->subtree_ss_mask; 433 434 /* threaded cgroups can only have threaded controllers */ 435 if (cgroup_is_threaded(cgrp)) 436 ss_mask &= cgrp_dfl_threaded_ss_mask; 437 return ss_mask; 438 } 439 440 return cgrp->root->subsys_mask; 441 } 442 443 /** 444 * cgroup_css - obtain a cgroup's css for the specified subsystem 445 * @cgrp: the cgroup of interest 446 * @ss: the subsystem of interest (%NULL returns @cgrp->self) 447 * 448 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This 449 * function must be called either under cgroup_mutex or rcu_read_lock() and 450 * the caller is responsible for pinning the returned css if it wants to 451 * keep accessing it outside the said locks. This function may return 452 * %NULL if @cgrp doesn't have @subsys_id enabled. 453 */ 454 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp, 455 struct cgroup_subsys *ss) 456 { 457 if (ss) 458 return rcu_dereference_check(cgrp->subsys[ss->id], 459 lockdep_is_held(&cgroup_mutex)); 460 else 461 return &cgrp->self; 462 } 463 464 /** 465 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem 466 * @cgrp: the cgroup of interest 467 * @ss: the subsystem of interest (%NULL returns @cgrp->self) 468 * 469 * Similar to cgroup_css() but returns the effective css, which is defined 470 * as the matching css of the nearest ancestor including self which has @ss 471 * enabled. If @ss is associated with the hierarchy @cgrp is on, this 472 * function is guaranteed to return non-NULL css. 473 */ 474 static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp, 475 struct cgroup_subsys *ss) 476 { 477 lockdep_assert_held(&cgroup_mutex); 478 479 if (!ss) 480 return &cgrp->self; 481 482 /* 483 * This function is used while updating css associations and thus 484 * can't test the csses directly. Test ss_mask. 485 */ 486 while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) { 487 cgrp = cgroup_parent(cgrp); 488 if (!cgrp) 489 return NULL; 490 } 491 492 return cgroup_css(cgrp, ss); 493 } 494 495 /** 496 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem 497 * @cgrp: the cgroup of interest 498 * @ss: the subsystem of interest 499 * 500 * Find and get the effective css of @cgrp for @ss. The effective css is 501 * defined as the matching css of the nearest ancestor including self which 502 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on, 503 * the root css is returned, so this function always returns a valid css. 504 * The returned css must be put using css_put(). 505 */ 506 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp, 507 struct cgroup_subsys *ss) 508 { 509 struct cgroup_subsys_state *css; 510 511 rcu_read_lock(); 512 513 do { 514 css = cgroup_css(cgrp, ss); 515 516 if (css && css_tryget_online(css)) 517 goto out_unlock; 518 cgrp = cgroup_parent(cgrp); 519 } while (cgrp); 520 521 css = init_css_set.subsys[ss->id]; 522 css_get(css); 523 out_unlock: 524 rcu_read_unlock(); 525 return css; 526 } 527 528 static void cgroup_get_live(struct cgroup *cgrp) 529 { 530 WARN_ON_ONCE(cgroup_is_dead(cgrp)); 531 css_get(&cgrp->self); 532 } 533 534 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of) 535 { 536 struct cgroup *cgrp = of->kn->parent->priv; 537 struct cftype *cft = of_cft(of); 538 539 /* 540 * This is open and unprotected implementation of cgroup_css(). 541 * seq_css() is only called from a kernfs file operation which has 542 * an active reference on the file. Because all the subsystem 543 * files are drained before a css is disassociated with a cgroup, 544 * the matching css from the cgroup's subsys table is guaranteed to 545 * be and stay valid until the enclosing operation is complete. 546 */ 547 if (cft->ss) 548 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]); 549 else 550 return &cgrp->self; 551 } 552 EXPORT_SYMBOL_GPL(of_css); 553 554 /** 555 * for_each_css - iterate all css's of a cgroup 556 * @css: the iteration cursor 557 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end 558 * @cgrp: the target cgroup to iterate css's of 559 * 560 * Should be called under cgroup_[tree_]mutex. 561 */ 562 #define for_each_css(css, ssid, cgrp) \ 563 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \ 564 if (!((css) = rcu_dereference_check( \ 565 (cgrp)->subsys[(ssid)], \ 566 lockdep_is_held(&cgroup_mutex)))) { } \ 567 else 568 569 /** 570 * for_each_e_css - iterate all effective css's of a cgroup 571 * @css: the iteration cursor 572 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end 573 * @cgrp: the target cgroup to iterate css's of 574 * 575 * Should be called under cgroup_[tree_]mutex. 576 */ 577 #define for_each_e_css(css, ssid, cgrp) \ 578 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \ 579 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \ 580 ; \ 581 else 582 583 /** 584 * do_each_subsys_mask - filter for_each_subsys with a bitmask 585 * @ss: the iteration cursor 586 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end 587 * @ss_mask: the bitmask 588 * 589 * The block will only run for cases where the ssid-th bit (1 << ssid) of 590 * @ss_mask is set. 591 */ 592 #define do_each_subsys_mask(ss, ssid, ss_mask) do { \ 593 unsigned long __ss_mask = (ss_mask); \ 594 if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */ \ 595 (ssid) = 0; \ 596 break; \ 597 } \ 598 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \ 599 (ss) = cgroup_subsys[ssid]; \ 600 { 601 602 #define while_each_subsys_mask() \ 603 } \ 604 } \ 605 } while (false) 606 607 /* iterate over child cgrps, lock should be held throughout iteration */ 608 #define cgroup_for_each_live_child(child, cgrp) \ 609 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \ 610 if (({ lockdep_assert_held(&cgroup_mutex); \ 611 cgroup_is_dead(child); })) \ 612 ; \ 613 else 614 615 /* walk live descendants in preorder */ 616 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \ 617 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \ 618 if (({ lockdep_assert_held(&cgroup_mutex); \ 619 (dsct) = (d_css)->cgroup; \ 620 cgroup_is_dead(dsct); })) \ 621 ; \ 622 else 623 624 /* walk live descendants in postorder */ 625 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \ 626 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \ 627 if (({ lockdep_assert_held(&cgroup_mutex); \ 628 (dsct) = (d_css)->cgroup; \ 629 cgroup_is_dead(dsct); })) \ 630 ; \ 631 else 632 633 /* 634 * The default css_set - used by init and its children prior to any 635 * hierarchies being mounted. It contains a pointer to the root state 636 * for each subsystem. Also used to anchor the list of css_sets. Not 637 * reference-counted, to improve performance when child cgroups 638 * haven't been created. 639 */ 640 struct css_set init_css_set = { 641 .refcount = REFCOUNT_INIT(1), 642 .dom_cset = &init_css_set, 643 .tasks = LIST_HEAD_INIT(init_css_set.tasks), 644 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks), 645 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters), 646 .threaded_csets = LIST_HEAD_INIT(init_css_set.threaded_csets), 647 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links), 648 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node), 649 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node), 650 }; 651 652 static int css_set_count = 1; /* 1 for init_css_set */ 653 654 static bool css_set_threaded(struct css_set *cset) 655 { 656 return cset->dom_cset != cset; 657 } 658 659 /** 660 * css_set_populated - does a css_set contain any tasks? 661 * @cset: target css_set 662 * 663 * css_set_populated() should be the same as !!cset->nr_tasks at steady 664 * state. However, css_set_populated() can be called while a task is being 665 * added to or removed from the linked list before the nr_tasks is 666 * properly updated. Hence, we can't just look at ->nr_tasks here. 667 */ 668 static bool css_set_populated(struct css_set *cset) 669 { 670 lockdep_assert_held(&css_set_lock); 671 672 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks); 673 } 674 675 /** 676 * cgroup_update_populated - update the populated count of a cgroup 677 * @cgrp: the target cgroup 678 * @populated: inc or dec populated count 679 * 680 * One of the css_sets associated with @cgrp is either getting its first 681 * task or losing the last. Update @cgrp->nr_populated_* accordingly. The 682 * count is propagated towards root so that a given cgroup's 683 * nr_populated_children is zero iff none of its descendants contain any 684 * tasks. 685 * 686 * @cgrp's interface file "cgroup.populated" is zero if both 687 * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and 688 * 1 otherwise. When the sum changes from or to zero, userland is notified 689 * that the content of the interface file has changed. This can be used to 690 * detect when @cgrp and its descendants become populated or empty. 691 */ 692 static void cgroup_update_populated(struct cgroup *cgrp, bool populated) 693 { 694 struct cgroup *child = NULL; 695 int adj = populated ? 1 : -1; 696 697 lockdep_assert_held(&css_set_lock); 698 699 do { 700 bool was_populated = cgroup_is_populated(cgrp); 701 702 if (!child) { 703 cgrp->nr_populated_csets += adj; 704 } else { 705 if (cgroup_is_threaded(child)) 706 cgrp->nr_populated_threaded_children += adj; 707 else 708 cgrp->nr_populated_domain_children += adj; 709 } 710 711 if (was_populated == cgroup_is_populated(cgrp)) 712 break; 713 714 cgroup1_check_for_release(cgrp); 715 cgroup_file_notify(&cgrp->events_file); 716 717 child = cgrp; 718 cgrp = cgroup_parent(cgrp); 719 } while (cgrp); 720 } 721 722 /** 723 * css_set_update_populated - update populated state of a css_set 724 * @cset: target css_set 725 * @populated: whether @cset is populated or depopulated 726 * 727 * @cset is either getting the first task or losing the last. Update the 728 * populated counters of all associated cgroups accordingly. 729 */ 730 static void css_set_update_populated(struct css_set *cset, bool populated) 731 { 732 struct cgrp_cset_link *link; 733 734 lockdep_assert_held(&css_set_lock); 735 736 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) 737 cgroup_update_populated(link->cgrp, populated); 738 } 739 740 /** 741 * css_set_move_task - move a task from one css_set to another 742 * @task: task being moved 743 * @from_cset: css_set @task currently belongs to (may be NULL) 744 * @to_cset: new css_set @task is being moved to (may be NULL) 745 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks 746 * 747 * Move @task from @from_cset to @to_cset. If @task didn't belong to any 748 * css_set, @from_cset can be NULL. If @task is being disassociated 749 * instead of moved, @to_cset can be NULL. 750 * 751 * This function automatically handles populated counter updates and 752 * css_task_iter adjustments but the caller is responsible for managing 753 * @from_cset and @to_cset's reference counts. 754 */ 755 static void css_set_move_task(struct task_struct *task, 756 struct css_set *from_cset, struct css_set *to_cset, 757 bool use_mg_tasks) 758 { 759 lockdep_assert_held(&css_set_lock); 760 761 if (to_cset && !css_set_populated(to_cset)) 762 css_set_update_populated(to_cset, true); 763 764 if (from_cset) { 765 struct css_task_iter *it, *pos; 766 767 WARN_ON_ONCE(list_empty(&task->cg_list)); 768 769 /* 770 * @task is leaving, advance task iterators which are 771 * pointing to it so that they can resume at the next 772 * position. Advancing an iterator might remove it from 773 * the list, use safe walk. See css_task_iter_advance*() 774 * for details. 775 */ 776 list_for_each_entry_safe(it, pos, &from_cset->task_iters, 777 iters_node) 778 if (it->task_pos == &task->cg_list) 779 css_task_iter_advance(it); 780 781 list_del_init(&task->cg_list); 782 if (!css_set_populated(from_cset)) 783 css_set_update_populated(from_cset, false); 784 } else { 785 WARN_ON_ONCE(!list_empty(&task->cg_list)); 786 } 787 788 if (to_cset) { 789 /* 790 * We are synchronized through cgroup_threadgroup_rwsem 791 * against PF_EXITING setting such that we can't race 792 * against cgroup_exit() changing the css_set to 793 * init_css_set and dropping the old one. 794 */ 795 WARN_ON_ONCE(task->flags & PF_EXITING); 796 797 rcu_assign_pointer(task->cgroups, to_cset); 798 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks : 799 &to_cset->tasks); 800 } 801 } 802 803 /* 804 * hash table for cgroup groups. This improves the performance to find 805 * an existing css_set. This hash doesn't (currently) take into 806 * account cgroups in empty hierarchies. 807 */ 808 #define CSS_SET_HASH_BITS 7 809 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS); 810 811 static unsigned long css_set_hash(struct cgroup_subsys_state *css[]) 812 { 813 unsigned long key = 0UL; 814 struct cgroup_subsys *ss; 815 int i; 816 817 for_each_subsys(ss, i) 818 key += (unsigned long)css[i]; 819 key = (key >> 16) ^ key; 820 821 return key; 822 } 823 824 void put_css_set_locked(struct css_set *cset) 825 { 826 struct cgrp_cset_link *link, *tmp_link; 827 struct cgroup_subsys *ss; 828 int ssid; 829 830 lockdep_assert_held(&css_set_lock); 831 832 if (!refcount_dec_and_test(&cset->refcount)) 833 return; 834 835 WARN_ON_ONCE(!list_empty(&cset->threaded_csets)); 836 837 /* This css_set is dead. unlink it and release cgroup and css refs */ 838 for_each_subsys(ss, ssid) { 839 list_del(&cset->e_cset_node[ssid]); 840 css_put(cset->subsys[ssid]); 841 } 842 hash_del(&cset->hlist); 843 css_set_count--; 844 845 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) { 846 list_del(&link->cset_link); 847 list_del(&link->cgrp_link); 848 if (cgroup_parent(link->cgrp)) 849 cgroup_put(link->cgrp); 850 kfree(link); 851 } 852 853 if (css_set_threaded(cset)) { 854 list_del(&cset->threaded_csets_node); 855 put_css_set_locked(cset->dom_cset); 856 } 857 858 kfree_rcu(cset, rcu_head); 859 } 860 861 /** 862 * compare_css_sets - helper function for find_existing_css_set(). 863 * @cset: candidate css_set being tested 864 * @old_cset: existing css_set for a task 865 * @new_cgrp: cgroup that's being entered by the task 866 * @template: desired set of css pointers in css_set (pre-calculated) 867 * 868 * Returns true if "cset" matches "old_cset" except for the hierarchy 869 * which "new_cgrp" belongs to, for which it should match "new_cgrp". 870 */ 871 static bool compare_css_sets(struct css_set *cset, 872 struct css_set *old_cset, 873 struct cgroup *new_cgrp, 874 struct cgroup_subsys_state *template[]) 875 { 876 struct cgroup *new_dfl_cgrp; 877 struct list_head *l1, *l2; 878 879 /* 880 * On the default hierarchy, there can be csets which are 881 * associated with the same set of cgroups but different csses. 882 * Let's first ensure that csses match. 883 */ 884 if (memcmp(template, cset->subsys, sizeof(cset->subsys))) 885 return false; 886 887 888 /* @cset's domain should match the default cgroup's */ 889 if (cgroup_on_dfl(new_cgrp)) 890 new_dfl_cgrp = new_cgrp; 891 else 892 new_dfl_cgrp = old_cset->dfl_cgrp; 893 894 if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp) 895 return false; 896 897 /* 898 * Compare cgroup pointers in order to distinguish between 899 * different cgroups in hierarchies. As different cgroups may 900 * share the same effective css, this comparison is always 901 * necessary. 902 */ 903 l1 = &cset->cgrp_links; 904 l2 = &old_cset->cgrp_links; 905 while (1) { 906 struct cgrp_cset_link *link1, *link2; 907 struct cgroup *cgrp1, *cgrp2; 908 909 l1 = l1->next; 910 l2 = l2->next; 911 /* See if we reached the end - both lists are equal length. */ 912 if (l1 == &cset->cgrp_links) { 913 BUG_ON(l2 != &old_cset->cgrp_links); 914 break; 915 } else { 916 BUG_ON(l2 == &old_cset->cgrp_links); 917 } 918 /* Locate the cgroups associated with these links. */ 919 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link); 920 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link); 921 cgrp1 = link1->cgrp; 922 cgrp2 = link2->cgrp; 923 /* Hierarchies should be linked in the same order. */ 924 BUG_ON(cgrp1->root != cgrp2->root); 925 926 /* 927 * If this hierarchy is the hierarchy of the cgroup 928 * that's changing, then we need to check that this 929 * css_set points to the new cgroup; if it's any other 930 * hierarchy, then this css_set should point to the 931 * same cgroup as the old css_set. 932 */ 933 if (cgrp1->root == new_cgrp->root) { 934 if (cgrp1 != new_cgrp) 935 return false; 936 } else { 937 if (cgrp1 != cgrp2) 938 return false; 939 } 940 } 941 return true; 942 } 943 944 /** 945 * find_existing_css_set - init css array and find the matching css_set 946 * @old_cset: the css_set that we're using before the cgroup transition 947 * @cgrp: the cgroup that we're moving into 948 * @template: out param for the new set of csses, should be clear on entry 949 */ 950 static struct css_set *find_existing_css_set(struct css_set *old_cset, 951 struct cgroup *cgrp, 952 struct cgroup_subsys_state *template[]) 953 { 954 struct cgroup_root *root = cgrp->root; 955 struct cgroup_subsys *ss; 956 struct css_set *cset; 957 unsigned long key; 958 int i; 959 960 /* 961 * Build the set of subsystem state objects that we want to see in the 962 * new css_set. while subsystems can change globally, the entries here 963 * won't change, so no need for locking. 964 */ 965 for_each_subsys(ss, i) { 966 if (root->subsys_mask & (1UL << i)) { 967 /* 968 * @ss is in this hierarchy, so we want the 969 * effective css from @cgrp. 970 */ 971 template[i] = cgroup_e_css(cgrp, ss); 972 } else { 973 /* 974 * @ss is not in this hierarchy, so we don't want 975 * to change the css. 976 */ 977 template[i] = old_cset->subsys[i]; 978 } 979 } 980 981 key = css_set_hash(template); 982 hash_for_each_possible(css_set_table, cset, hlist, key) { 983 if (!compare_css_sets(cset, old_cset, cgrp, template)) 984 continue; 985 986 /* This css_set matches what we need */ 987 return cset; 988 } 989 990 /* No existing cgroup group matched */ 991 return NULL; 992 } 993 994 static void free_cgrp_cset_links(struct list_head *links_to_free) 995 { 996 struct cgrp_cset_link *link, *tmp_link; 997 998 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) { 999 list_del(&link->cset_link); 1000 kfree(link); 1001 } 1002 } 1003 1004 /** 1005 * allocate_cgrp_cset_links - allocate cgrp_cset_links 1006 * @count: the number of links to allocate 1007 * @tmp_links: list_head the allocated links are put on 1008 * 1009 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links 1010 * through ->cset_link. Returns 0 on success or -errno. 1011 */ 1012 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links) 1013 { 1014 struct cgrp_cset_link *link; 1015 int i; 1016 1017 INIT_LIST_HEAD(tmp_links); 1018 1019 for (i = 0; i < count; i++) { 1020 link = kzalloc(sizeof(*link), GFP_KERNEL); 1021 if (!link) { 1022 free_cgrp_cset_links(tmp_links); 1023 return -ENOMEM; 1024 } 1025 list_add(&link->cset_link, tmp_links); 1026 } 1027 return 0; 1028 } 1029 1030 /** 1031 * link_css_set - a helper function to link a css_set to a cgroup 1032 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links() 1033 * @cset: the css_set to be linked 1034 * @cgrp: the destination cgroup 1035 */ 1036 static void link_css_set(struct list_head *tmp_links, struct css_set *cset, 1037 struct cgroup *cgrp) 1038 { 1039 struct cgrp_cset_link *link; 1040 1041 BUG_ON(list_empty(tmp_links)); 1042 1043 if (cgroup_on_dfl(cgrp)) 1044 cset->dfl_cgrp = cgrp; 1045 1046 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link); 1047 link->cset = cset; 1048 link->cgrp = cgrp; 1049 1050 /* 1051 * Always add links to the tail of the lists so that the lists are 1052 * in choronological order. 1053 */ 1054 list_move_tail(&link->cset_link, &cgrp->cset_links); 1055 list_add_tail(&link->cgrp_link, &cset->cgrp_links); 1056 1057 if (cgroup_parent(cgrp)) 1058 cgroup_get_live(cgrp); 1059 } 1060 1061 /** 1062 * find_css_set - return a new css_set with one cgroup updated 1063 * @old_cset: the baseline css_set 1064 * @cgrp: the cgroup to be updated 1065 * 1066 * Return a new css_set that's equivalent to @old_cset, but with @cgrp 1067 * substituted into the appropriate hierarchy. 1068 */ 1069 static struct css_set *find_css_set(struct css_set *old_cset, 1070 struct cgroup *cgrp) 1071 { 1072 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { }; 1073 struct css_set *cset; 1074 struct list_head tmp_links; 1075 struct cgrp_cset_link *link; 1076 struct cgroup_subsys *ss; 1077 unsigned long key; 1078 int ssid; 1079 1080 lockdep_assert_held(&cgroup_mutex); 1081 1082 /* First see if we already have a cgroup group that matches 1083 * the desired set */ 1084 spin_lock_irq(&css_set_lock); 1085 cset = find_existing_css_set(old_cset, cgrp, template); 1086 if (cset) 1087 get_css_set(cset); 1088 spin_unlock_irq(&css_set_lock); 1089 1090 if (cset) 1091 return cset; 1092 1093 cset = kzalloc(sizeof(*cset), GFP_KERNEL); 1094 if (!cset) 1095 return NULL; 1096 1097 /* Allocate all the cgrp_cset_link objects that we'll need */ 1098 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) { 1099 kfree(cset); 1100 return NULL; 1101 } 1102 1103 refcount_set(&cset->refcount, 1); 1104 cset->dom_cset = cset; 1105 INIT_LIST_HEAD(&cset->tasks); 1106 INIT_LIST_HEAD(&cset->mg_tasks); 1107 INIT_LIST_HEAD(&cset->task_iters); 1108 INIT_LIST_HEAD(&cset->threaded_csets); 1109 INIT_HLIST_NODE(&cset->hlist); 1110 INIT_LIST_HEAD(&cset->cgrp_links); 1111 INIT_LIST_HEAD(&cset->mg_preload_node); 1112 INIT_LIST_HEAD(&cset->mg_node); 1113 1114 /* Copy the set of subsystem state objects generated in 1115 * find_existing_css_set() */ 1116 memcpy(cset->subsys, template, sizeof(cset->subsys)); 1117 1118 spin_lock_irq(&css_set_lock); 1119 /* Add reference counts and links from the new css_set. */ 1120 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) { 1121 struct cgroup *c = link->cgrp; 1122 1123 if (c->root == cgrp->root) 1124 c = cgrp; 1125 link_css_set(&tmp_links, cset, c); 1126 } 1127 1128 BUG_ON(!list_empty(&tmp_links)); 1129 1130 css_set_count++; 1131 1132 /* Add @cset to the hash table */ 1133 key = css_set_hash(cset->subsys); 1134 hash_add(css_set_table, &cset->hlist, key); 1135 1136 for_each_subsys(ss, ssid) { 1137 struct cgroup_subsys_state *css = cset->subsys[ssid]; 1138 1139 list_add_tail(&cset->e_cset_node[ssid], 1140 &css->cgroup->e_csets[ssid]); 1141 css_get(css); 1142 } 1143 1144 spin_unlock_irq(&css_set_lock); 1145 1146 /* 1147 * If @cset should be threaded, look up the matching dom_cset and 1148 * link them up. We first fully initialize @cset then look for the 1149 * dom_cset. It's simpler this way and safe as @cset is guaranteed 1150 * to stay empty until we return. 1151 */ 1152 if (cgroup_is_threaded(cset->dfl_cgrp)) { 1153 struct css_set *dcset; 1154 1155 dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp); 1156 if (!dcset) { 1157 put_css_set(cset); 1158 return NULL; 1159 } 1160 1161 spin_lock_irq(&css_set_lock); 1162 cset->dom_cset = dcset; 1163 list_add_tail(&cset->threaded_csets_node, 1164 &dcset->threaded_csets); 1165 spin_unlock_irq(&css_set_lock); 1166 } 1167 1168 return cset; 1169 } 1170 1171 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root) 1172 { 1173 struct cgroup *root_cgrp = kf_root->kn->priv; 1174 1175 return root_cgrp->root; 1176 } 1177 1178 static int cgroup_init_root_id(struct cgroup_root *root) 1179 { 1180 int id; 1181 1182 lockdep_assert_held(&cgroup_mutex); 1183 1184 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL); 1185 if (id < 0) 1186 return id; 1187 1188 root->hierarchy_id = id; 1189 return 0; 1190 } 1191 1192 static void cgroup_exit_root_id(struct cgroup_root *root) 1193 { 1194 lockdep_assert_held(&cgroup_mutex); 1195 1196 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id); 1197 } 1198 1199 void cgroup_free_root(struct cgroup_root *root) 1200 { 1201 if (root) { 1202 idr_destroy(&root->cgroup_idr); 1203 kfree(root); 1204 } 1205 } 1206 1207 static void cgroup_destroy_root(struct cgroup_root *root) 1208 { 1209 struct cgroup *cgrp = &root->cgrp; 1210 struct cgrp_cset_link *link, *tmp_link; 1211 1212 trace_cgroup_destroy_root(root); 1213 1214 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp); 1215 1216 BUG_ON(atomic_read(&root->nr_cgrps)); 1217 BUG_ON(!list_empty(&cgrp->self.children)); 1218 1219 /* Rebind all subsystems back to the default hierarchy */ 1220 WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask)); 1221 1222 /* 1223 * Release all the links from cset_links to this hierarchy's 1224 * root cgroup 1225 */ 1226 spin_lock_irq(&css_set_lock); 1227 1228 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) { 1229 list_del(&link->cset_link); 1230 list_del(&link->cgrp_link); 1231 kfree(link); 1232 } 1233 1234 spin_unlock_irq(&css_set_lock); 1235 1236 if (!list_empty(&root->root_list)) { 1237 list_del(&root->root_list); 1238 cgroup_root_count--; 1239 } 1240 1241 cgroup_exit_root_id(root); 1242 1243 mutex_unlock(&cgroup_mutex); 1244 1245 kernfs_destroy_root(root->kf_root); 1246 cgroup_free_root(root); 1247 } 1248 1249 /* 1250 * look up cgroup associated with current task's cgroup namespace on the 1251 * specified hierarchy 1252 */ 1253 static struct cgroup * 1254 current_cgns_cgroup_from_root(struct cgroup_root *root) 1255 { 1256 struct cgroup *res = NULL; 1257 struct css_set *cset; 1258 1259 lockdep_assert_held(&css_set_lock); 1260 1261 rcu_read_lock(); 1262 1263 cset = current->nsproxy->cgroup_ns->root_cset; 1264 if (cset == &init_css_set) { 1265 res = &root->cgrp; 1266 } else { 1267 struct cgrp_cset_link *link; 1268 1269 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) { 1270 struct cgroup *c = link->cgrp; 1271 1272 if (c->root == root) { 1273 res = c; 1274 break; 1275 } 1276 } 1277 } 1278 rcu_read_unlock(); 1279 1280 BUG_ON(!res); 1281 return res; 1282 } 1283 1284 /* look up cgroup associated with given css_set on the specified hierarchy */ 1285 static struct cgroup *cset_cgroup_from_root(struct css_set *cset, 1286 struct cgroup_root *root) 1287 { 1288 struct cgroup *res = NULL; 1289 1290 lockdep_assert_held(&cgroup_mutex); 1291 lockdep_assert_held(&css_set_lock); 1292 1293 if (cset == &init_css_set) { 1294 res = &root->cgrp; 1295 } else if (root == &cgrp_dfl_root) { 1296 res = cset->dfl_cgrp; 1297 } else { 1298 struct cgrp_cset_link *link; 1299 1300 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) { 1301 struct cgroup *c = link->cgrp; 1302 1303 if (c->root == root) { 1304 res = c; 1305 break; 1306 } 1307 } 1308 } 1309 1310 BUG_ON(!res); 1311 return res; 1312 } 1313 1314 /* 1315 * Return the cgroup for "task" from the given hierarchy. Must be 1316 * called with cgroup_mutex and css_set_lock held. 1317 */ 1318 struct cgroup *task_cgroup_from_root(struct task_struct *task, 1319 struct cgroup_root *root) 1320 { 1321 /* 1322 * No need to lock the task - since we hold cgroup_mutex the 1323 * task can't change groups, so the only thing that can happen 1324 * is that it exits and its css is set back to init_css_set. 1325 */ 1326 return cset_cgroup_from_root(task_css_set(task), root); 1327 } 1328 1329 /* 1330 * A task must hold cgroup_mutex to modify cgroups. 1331 * 1332 * Any task can increment and decrement the count field without lock. 1333 * So in general, code holding cgroup_mutex can't rely on the count 1334 * field not changing. However, if the count goes to zero, then only 1335 * cgroup_attach_task() can increment it again. Because a count of zero 1336 * means that no tasks are currently attached, therefore there is no 1337 * way a task attached to that cgroup can fork (the other way to 1338 * increment the count). So code holding cgroup_mutex can safely 1339 * assume that if the count is zero, it will stay zero. Similarly, if 1340 * a task holds cgroup_mutex on a cgroup with zero count, it 1341 * knows that the cgroup won't be removed, as cgroup_rmdir() 1342 * needs that mutex. 1343 * 1344 * A cgroup can only be deleted if both its 'count' of using tasks 1345 * is zero, and its list of 'children' cgroups is empty. Since all 1346 * tasks in the system use _some_ cgroup, and since there is always at 1347 * least one task in the system (init, pid == 1), therefore, root cgroup 1348 * always has either children cgroups and/or using tasks. So we don't 1349 * need a special hack to ensure that root cgroup cannot be deleted. 1350 * 1351 * P.S. One more locking exception. RCU is used to guard the 1352 * update of a tasks cgroup pointer by cgroup_attach_task() 1353 */ 1354 1355 static struct kernfs_syscall_ops cgroup_kf_syscall_ops; 1356 1357 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft, 1358 char *buf) 1359 { 1360 struct cgroup_subsys *ss = cft->ss; 1361 1362 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) && 1363 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) 1364 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s", 1365 cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name, 1366 cft->name); 1367 else 1368 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX); 1369 return buf; 1370 } 1371 1372 /** 1373 * cgroup_file_mode - deduce file mode of a control file 1374 * @cft: the control file in question 1375 * 1376 * S_IRUGO for read, S_IWUSR for write. 1377 */ 1378 static umode_t cgroup_file_mode(const struct cftype *cft) 1379 { 1380 umode_t mode = 0; 1381 1382 if (cft->read_u64 || cft->read_s64 || cft->seq_show) 1383 mode |= S_IRUGO; 1384 1385 if (cft->write_u64 || cft->write_s64 || cft->write) { 1386 if (cft->flags & CFTYPE_WORLD_WRITABLE) 1387 mode |= S_IWUGO; 1388 else 1389 mode |= S_IWUSR; 1390 } 1391 1392 return mode; 1393 } 1394 1395 /** 1396 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask 1397 * @subtree_control: the new subtree_control mask to consider 1398 * @this_ss_mask: available subsystems 1399 * 1400 * On the default hierarchy, a subsystem may request other subsystems to be 1401 * enabled together through its ->depends_on mask. In such cases, more 1402 * subsystems than specified in "cgroup.subtree_control" may be enabled. 1403 * 1404 * This function calculates which subsystems need to be enabled if 1405 * @subtree_control is to be applied while restricted to @this_ss_mask. 1406 */ 1407 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask) 1408 { 1409 u16 cur_ss_mask = subtree_control; 1410 struct cgroup_subsys *ss; 1411 int ssid; 1412 1413 lockdep_assert_held(&cgroup_mutex); 1414 1415 cur_ss_mask |= cgrp_dfl_implicit_ss_mask; 1416 1417 while (true) { 1418 u16 new_ss_mask = cur_ss_mask; 1419 1420 do_each_subsys_mask(ss, ssid, cur_ss_mask) { 1421 new_ss_mask |= ss->depends_on; 1422 } while_each_subsys_mask(); 1423 1424 /* 1425 * Mask out subsystems which aren't available. This can 1426 * happen only if some depended-upon subsystems were bound 1427 * to non-default hierarchies. 1428 */ 1429 new_ss_mask &= this_ss_mask; 1430 1431 if (new_ss_mask == cur_ss_mask) 1432 break; 1433 cur_ss_mask = new_ss_mask; 1434 } 1435 1436 return cur_ss_mask; 1437 } 1438 1439 /** 1440 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods 1441 * @kn: the kernfs_node being serviced 1442 * 1443 * This helper undoes cgroup_kn_lock_live() and should be invoked before 1444 * the method finishes if locking succeeded. Note that once this function 1445 * returns the cgroup returned by cgroup_kn_lock_live() may become 1446 * inaccessible any time. If the caller intends to continue to access the 1447 * cgroup, it should pin it before invoking this function. 1448 */ 1449 void cgroup_kn_unlock(struct kernfs_node *kn) 1450 { 1451 struct cgroup *cgrp; 1452 1453 if (kernfs_type(kn) == KERNFS_DIR) 1454 cgrp = kn->priv; 1455 else 1456 cgrp = kn->parent->priv; 1457 1458 mutex_unlock(&cgroup_mutex); 1459 1460 kernfs_unbreak_active_protection(kn); 1461 cgroup_put(cgrp); 1462 } 1463 1464 /** 1465 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods 1466 * @kn: the kernfs_node being serviced 1467 * @drain_offline: perform offline draining on the cgroup 1468 * 1469 * This helper is to be used by a cgroup kernfs method currently servicing 1470 * @kn. It breaks the active protection, performs cgroup locking and 1471 * verifies that the associated cgroup is alive. Returns the cgroup if 1472 * alive; otherwise, %NULL. A successful return should be undone by a 1473 * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the 1474 * cgroup is drained of offlining csses before return. 1475 * 1476 * Any cgroup kernfs method implementation which requires locking the 1477 * associated cgroup should use this helper. It avoids nesting cgroup 1478 * locking under kernfs active protection and allows all kernfs operations 1479 * including self-removal. 1480 */ 1481 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline) 1482 { 1483 struct cgroup *cgrp; 1484 1485 if (kernfs_type(kn) == KERNFS_DIR) 1486 cgrp = kn->priv; 1487 else 1488 cgrp = kn->parent->priv; 1489 1490 /* 1491 * We're gonna grab cgroup_mutex which nests outside kernfs 1492 * active_ref. cgroup liveliness check alone provides enough 1493 * protection against removal. Ensure @cgrp stays accessible and 1494 * break the active_ref protection. 1495 */ 1496 if (!cgroup_tryget(cgrp)) 1497 return NULL; 1498 kernfs_break_active_protection(kn); 1499 1500 if (drain_offline) 1501 cgroup_lock_and_drain_offline(cgrp); 1502 else 1503 mutex_lock(&cgroup_mutex); 1504 1505 if (!cgroup_is_dead(cgrp)) 1506 return cgrp; 1507 1508 cgroup_kn_unlock(kn); 1509 return NULL; 1510 } 1511 1512 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft) 1513 { 1514 char name[CGROUP_FILE_NAME_MAX]; 1515 1516 lockdep_assert_held(&cgroup_mutex); 1517 1518 if (cft->file_offset) { 1519 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss); 1520 struct cgroup_file *cfile = (void *)css + cft->file_offset; 1521 1522 spin_lock_irq(&cgroup_file_kn_lock); 1523 cfile->kn = NULL; 1524 spin_unlock_irq(&cgroup_file_kn_lock); 1525 } 1526 1527 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name)); 1528 } 1529 1530 /** 1531 * css_clear_dir - remove subsys files in a cgroup directory 1532 * @css: taget css 1533 */ 1534 static void css_clear_dir(struct cgroup_subsys_state *css) 1535 { 1536 struct cgroup *cgrp = css->cgroup; 1537 struct cftype *cfts; 1538 1539 if (!(css->flags & CSS_VISIBLE)) 1540 return; 1541 1542 css->flags &= ~CSS_VISIBLE; 1543 1544 list_for_each_entry(cfts, &css->ss->cfts, node) 1545 cgroup_addrm_files(css, cgrp, cfts, false); 1546 } 1547 1548 /** 1549 * css_populate_dir - create subsys files in a cgroup directory 1550 * @css: target css 1551 * 1552 * On failure, no file is added. 1553 */ 1554 static int css_populate_dir(struct cgroup_subsys_state *css) 1555 { 1556 struct cgroup *cgrp = css->cgroup; 1557 struct cftype *cfts, *failed_cfts; 1558 int ret; 1559 1560 if ((css->flags & CSS_VISIBLE) || !cgrp->kn) 1561 return 0; 1562 1563 if (!css->ss) { 1564 if (cgroup_on_dfl(cgrp)) 1565 cfts = cgroup_base_files; 1566 else 1567 cfts = cgroup1_base_files; 1568 1569 return cgroup_addrm_files(&cgrp->self, cgrp, cfts, true); 1570 } 1571 1572 list_for_each_entry(cfts, &css->ss->cfts, node) { 1573 ret = cgroup_addrm_files(css, cgrp, cfts, true); 1574 if (ret < 0) { 1575 failed_cfts = cfts; 1576 goto err; 1577 } 1578 } 1579 1580 css->flags |= CSS_VISIBLE; 1581 1582 return 0; 1583 err: 1584 list_for_each_entry(cfts, &css->ss->cfts, node) { 1585 if (cfts == failed_cfts) 1586 break; 1587 cgroup_addrm_files(css, cgrp, cfts, false); 1588 } 1589 return ret; 1590 } 1591 1592 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask) 1593 { 1594 struct cgroup *dcgrp = &dst_root->cgrp; 1595 struct cgroup_subsys *ss; 1596 int ssid, i, ret; 1597 1598 lockdep_assert_held(&cgroup_mutex); 1599 1600 do_each_subsys_mask(ss, ssid, ss_mask) { 1601 /* 1602 * If @ss has non-root csses attached to it, can't move. 1603 * If @ss is an implicit controller, it is exempt from this 1604 * rule and can be stolen. 1605 */ 1606 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) && 1607 !ss->implicit_on_dfl) 1608 return -EBUSY; 1609 1610 /* can't move between two non-dummy roots either */ 1611 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root) 1612 return -EBUSY; 1613 } while_each_subsys_mask(); 1614 1615 do_each_subsys_mask(ss, ssid, ss_mask) { 1616 struct cgroup_root *src_root = ss->root; 1617 struct cgroup *scgrp = &src_root->cgrp; 1618 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss); 1619 struct css_set *cset; 1620 1621 WARN_ON(!css || cgroup_css(dcgrp, ss)); 1622 1623 /* disable from the source */ 1624 src_root->subsys_mask &= ~(1 << ssid); 1625 WARN_ON(cgroup_apply_control(scgrp)); 1626 cgroup_finalize_control(scgrp, 0); 1627 1628 /* rebind */ 1629 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL); 1630 rcu_assign_pointer(dcgrp->subsys[ssid], css); 1631 ss->root = dst_root; 1632 css->cgroup = dcgrp; 1633 1634 spin_lock_irq(&css_set_lock); 1635 hash_for_each(css_set_table, i, cset, hlist) 1636 list_move_tail(&cset->e_cset_node[ss->id], 1637 &dcgrp->e_csets[ss->id]); 1638 spin_unlock_irq(&css_set_lock); 1639 1640 /* default hierarchy doesn't enable controllers by default */ 1641 dst_root->subsys_mask |= 1 << ssid; 1642 if (dst_root == &cgrp_dfl_root) { 1643 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]); 1644 } else { 1645 dcgrp->subtree_control |= 1 << ssid; 1646 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]); 1647 } 1648 1649 ret = cgroup_apply_control(dcgrp); 1650 if (ret) 1651 pr_warn("partial failure to rebind %s controller (err=%d)\n", 1652 ss->name, ret); 1653 1654 if (ss->bind) 1655 ss->bind(css); 1656 } while_each_subsys_mask(); 1657 1658 kernfs_activate(dcgrp->kn); 1659 return 0; 1660 } 1661 1662 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node, 1663 struct kernfs_root *kf_root) 1664 { 1665 int len = 0; 1666 char *buf = NULL; 1667 struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root); 1668 struct cgroup *ns_cgroup; 1669 1670 buf = kmalloc(PATH_MAX, GFP_KERNEL); 1671 if (!buf) 1672 return -ENOMEM; 1673 1674 spin_lock_irq(&css_set_lock); 1675 ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot); 1676 len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX); 1677 spin_unlock_irq(&css_set_lock); 1678 1679 if (len >= PATH_MAX) 1680 len = -ERANGE; 1681 else if (len > 0) { 1682 seq_escape(sf, buf, " \t\n\\"); 1683 len = 0; 1684 } 1685 kfree(buf); 1686 return len; 1687 } 1688 1689 static int parse_cgroup_root_flags(char *data, unsigned int *root_flags) 1690 { 1691 char *token; 1692 1693 *root_flags = 0; 1694 1695 if (!data) 1696 return 0; 1697 1698 while ((token = strsep(&data, ",")) != NULL) { 1699 if (!strcmp(token, "nsdelegate")) { 1700 *root_flags |= CGRP_ROOT_NS_DELEGATE; 1701 continue; 1702 } 1703 1704 pr_err("cgroup2: unknown option \"%s\"\n", token); 1705 return -EINVAL; 1706 } 1707 1708 return 0; 1709 } 1710 1711 static void apply_cgroup_root_flags(unsigned int root_flags) 1712 { 1713 if (current->nsproxy->cgroup_ns == &init_cgroup_ns) { 1714 if (root_flags & CGRP_ROOT_NS_DELEGATE) 1715 cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE; 1716 else 1717 cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE; 1718 } 1719 } 1720 1721 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root) 1722 { 1723 if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) 1724 seq_puts(seq, ",nsdelegate"); 1725 return 0; 1726 } 1727 1728 static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data) 1729 { 1730 unsigned int root_flags; 1731 int ret; 1732 1733 ret = parse_cgroup_root_flags(data, &root_flags); 1734 if (ret) 1735 return ret; 1736 1737 apply_cgroup_root_flags(root_flags); 1738 return 0; 1739 } 1740 1741 /* 1742 * To reduce the fork() overhead for systems that are not actually using 1743 * their cgroups capability, we don't maintain the lists running through 1744 * each css_set to its tasks until we see the list actually used - in other 1745 * words after the first mount. 1746 */ 1747 static bool use_task_css_set_links __read_mostly; 1748 1749 static void cgroup_enable_task_cg_lists(void) 1750 { 1751 struct task_struct *p, *g; 1752 1753 spin_lock_irq(&css_set_lock); 1754 1755 if (use_task_css_set_links) 1756 goto out_unlock; 1757 1758 use_task_css_set_links = true; 1759 1760 /* 1761 * We need tasklist_lock because RCU is not safe against 1762 * while_each_thread(). Besides, a forking task that has passed 1763 * cgroup_post_fork() without seeing use_task_css_set_links = 1 1764 * is not guaranteed to have its child immediately visible in the 1765 * tasklist if we walk through it with RCU. 1766 */ 1767 read_lock(&tasklist_lock); 1768 do_each_thread(g, p) { 1769 WARN_ON_ONCE(!list_empty(&p->cg_list) || 1770 task_css_set(p) != &init_css_set); 1771 1772 /* 1773 * We should check if the process is exiting, otherwise 1774 * it will race with cgroup_exit() in that the list 1775 * entry won't be deleted though the process has exited. 1776 * Do it while holding siglock so that we don't end up 1777 * racing against cgroup_exit(). 1778 * 1779 * Interrupts were already disabled while acquiring 1780 * the css_set_lock, so we do not need to disable it 1781 * again when acquiring the sighand->siglock here. 1782 */ 1783 spin_lock(&p->sighand->siglock); 1784 if (!(p->flags & PF_EXITING)) { 1785 struct css_set *cset = task_css_set(p); 1786 1787 if (!css_set_populated(cset)) 1788 css_set_update_populated(cset, true); 1789 list_add_tail(&p->cg_list, &cset->tasks); 1790 get_css_set(cset); 1791 cset->nr_tasks++; 1792 } 1793 spin_unlock(&p->sighand->siglock); 1794 } while_each_thread(g, p); 1795 read_unlock(&tasklist_lock); 1796 out_unlock: 1797 spin_unlock_irq(&css_set_lock); 1798 } 1799 1800 static void init_cgroup_housekeeping(struct cgroup *cgrp) 1801 { 1802 struct cgroup_subsys *ss; 1803 int ssid; 1804 1805 INIT_LIST_HEAD(&cgrp->self.sibling); 1806 INIT_LIST_HEAD(&cgrp->self.children); 1807 INIT_LIST_HEAD(&cgrp->cset_links); 1808 INIT_LIST_HEAD(&cgrp->pidlists); 1809 mutex_init(&cgrp->pidlist_mutex); 1810 cgrp->self.cgroup = cgrp; 1811 cgrp->self.flags |= CSS_ONLINE; 1812 cgrp->dom_cgrp = cgrp; 1813 cgrp->max_descendants = INT_MAX; 1814 cgrp->max_depth = INT_MAX; 1815 1816 for_each_subsys(ss, ssid) 1817 INIT_LIST_HEAD(&cgrp->e_csets[ssid]); 1818 1819 init_waitqueue_head(&cgrp->offline_waitq); 1820 INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent); 1821 } 1822 1823 void init_cgroup_root(struct cgroup_root *root, struct cgroup_sb_opts *opts) 1824 { 1825 struct cgroup *cgrp = &root->cgrp; 1826 1827 INIT_LIST_HEAD(&root->root_list); 1828 atomic_set(&root->nr_cgrps, 1); 1829 cgrp->root = root; 1830 init_cgroup_housekeeping(cgrp); 1831 idr_init(&root->cgroup_idr); 1832 1833 root->flags = opts->flags; 1834 if (opts->release_agent) 1835 strcpy(root->release_agent_path, opts->release_agent); 1836 if (opts->name) 1837 strcpy(root->name, opts->name); 1838 if (opts->cpuset_clone_children) 1839 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags); 1840 } 1841 1842 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask, int ref_flags) 1843 { 1844 LIST_HEAD(tmp_links); 1845 struct cgroup *root_cgrp = &root->cgrp; 1846 struct kernfs_syscall_ops *kf_sops; 1847 struct css_set *cset; 1848 int i, ret; 1849 1850 lockdep_assert_held(&cgroup_mutex); 1851 1852 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL); 1853 if (ret < 0) 1854 goto out; 1855 root_cgrp->id = ret; 1856 root_cgrp->ancestor_ids[0] = ret; 1857 1858 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 1859 ref_flags, GFP_KERNEL); 1860 if (ret) 1861 goto out; 1862 1863 /* 1864 * We're accessing css_set_count without locking css_set_lock here, 1865 * but that's OK - it can only be increased by someone holding 1866 * cgroup_lock, and that's us. Later rebinding may disable 1867 * controllers on the default hierarchy and thus create new csets, 1868 * which can't be more than the existing ones. Allocate 2x. 1869 */ 1870 ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links); 1871 if (ret) 1872 goto cancel_ref; 1873 1874 ret = cgroup_init_root_id(root); 1875 if (ret) 1876 goto cancel_ref; 1877 1878 kf_sops = root == &cgrp_dfl_root ? 1879 &cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops; 1880 1881 root->kf_root = kernfs_create_root(kf_sops, 1882 KERNFS_ROOT_CREATE_DEACTIVATED | 1883 KERNFS_ROOT_SUPPORT_EXPORTOP, 1884 root_cgrp); 1885 if (IS_ERR(root->kf_root)) { 1886 ret = PTR_ERR(root->kf_root); 1887 goto exit_root_id; 1888 } 1889 root_cgrp->kn = root->kf_root->kn; 1890 1891 ret = css_populate_dir(&root_cgrp->self); 1892 if (ret) 1893 goto destroy_root; 1894 1895 ret = rebind_subsystems(root, ss_mask); 1896 if (ret) 1897 goto destroy_root; 1898 1899 trace_cgroup_setup_root(root); 1900 1901 /* 1902 * There must be no failure case after here, since rebinding takes 1903 * care of subsystems' refcounts, which are explicitly dropped in 1904 * the failure exit path. 1905 */ 1906 list_add(&root->root_list, &cgroup_roots); 1907 cgroup_root_count++; 1908 1909 /* 1910 * Link the root cgroup in this hierarchy into all the css_set 1911 * objects. 1912 */ 1913 spin_lock_irq(&css_set_lock); 1914 hash_for_each(css_set_table, i, cset, hlist) { 1915 link_css_set(&tmp_links, cset, root_cgrp); 1916 if (css_set_populated(cset)) 1917 cgroup_update_populated(root_cgrp, true); 1918 } 1919 spin_unlock_irq(&css_set_lock); 1920 1921 BUG_ON(!list_empty(&root_cgrp->self.children)); 1922 BUG_ON(atomic_read(&root->nr_cgrps) != 1); 1923 1924 kernfs_activate(root_cgrp->kn); 1925 ret = 0; 1926 goto out; 1927 1928 destroy_root: 1929 kernfs_destroy_root(root->kf_root); 1930 root->kf_root = NULL; 1931 exit_root_id: 1932 cgroup_exit_root_id(root); 1933 cancel_ref: 1934 percpu_ref_exit(&root_cgrp->self.refcnt); 1935 out: 1936 free_cgrp_cset_links(&tmp_links); 1937 return ret; 1938 } 1939 1940 struct dentry *cgroup_do_mount(struct file_system_type *fs_type, int flags, 1941 struct cgroup_root *root, unsigned long magic, 1942 struct cgroup_namespace *ns) 1943 { 1944 struct dentry *dentry; 1945 bool new_sb; 1946 1947 dentry = kernfs_mount(fs_type, flags, root->kf_root, magic, &new_sb); 1948 1949 /* 1950 * In non-init cgroup namespace, instead of root cgroup's dentry, 1951 * we return the dentry corresponding to the cgroupns->root_cgrp. 1952 */ 1953 if (!IS_ERR(dentry) && ns != &init_cgroup_ns) { 1954 struct dentry *nsdentry; 1955 struct cgroup *cgrp; 1956 1957 mutex_lock(&cgroup_mutex); 1958 spin_lock_irq(&css_set_lock); 1959 1960 cgrp = cset_cgroup_from_root(ns->root_cset, root); 1961 1962 spin_unlock_irq(&css_set_lock); 1963 mutex_unlock(&cgroup_mutex); 1964 1965 nsdentry = kernfs_node_dentry(cgrp->kn, dentry->d_sb); 1966 dput(dentry); 1967 dentry = nsdentry; 1968 } 1969 1970 if (IS_ERR(dentry) || !new_sb) 1971 cgroup_put(&root->cgrp); 1972 1973 return dentry; 1974 } 1975 1976 static struct dentry *cgroup_mount(struct file_system_type *fs_type, 1977 int flags, const char *unused_dev_name, 1978 void *data) 1979 { 1980 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns; 1981 struct dentry *dentry; 1982 int ret; 1983 1984 get_cgroup_ns(ns); 1985 1986 /* Check if the caller has permission to mount. */ 1987 if (!ns_capable(ns->user_ns, CAP_SYS_ADMIN)) { 1988 put_cgroup_ns(ns); 1989 return ERR_PTR(-EPERM); 1990 } 1991 1992 /* 1993 * The first time anyone tries to mount a cgroup, enable the list 1994 * linking each css_set to its tasks and fix up all existing tasks. 1995 */ 1996 if (!use_task_css_set_links) 1997 cgroup_enable_task_cg_lists(); 1998 1999 if (fs_type == &cgroup2_fs_type) { 2000 unsigned int root_flags; 2001 2002 ret = parse_cgroup_root_flags(data, &root_flags); 2003 if (ret) { 2004 put_cgroup_ns(ns); 2005 return ERR_PTR(ret); 2006 } 2007 2008 cgrp_dfl_visible = true; 2009 cgroup_get_live(&cgrp_dfl_root.cgrp); 2010 2011 dentry = cgroup_do_mount(&cgroup2_fs_type, flags, &cgrp_dfl_root, 2012 CGROUP2_SUPER_MAGIC, ns); 2013 if (!IS_ERR(dentry)) 2014 apply_cgroup_root_flags(root_flags); 2015 } else { 2016 dentry = cgroup1_mount(&cgroup_fs_type, flags, data, 2017 CGROUP_SUPER_MAGIC, ns); 2018 } 2019 2020 put_cgroup_ns(ns); 2021 return dentry; 2022 } 2023 2024 static void cgroup_kill_sb(struct super_block *sb) 2025 { 2026 struct kernfs_root *kf_root = kernfs_root_from_sb(sb); 2027 struct cgroup_root *root = cgroup_root_from_kf(kf_root); 2028 2029 /* 2030 * If @root doesn't have any mounts or children, start killing it. 2031 * This prevents new mounts by disabling percpu_ref_tryget_live(). 2032 * cgroup_mount() may wait for @root's release. 2033 * 2034 * And don't kill the default root. 2035 */ 2036 if (!list_empty(&root->cgrp.self.children) || 2037 root == &cgrp_dfl_root) 2038 cgroup_put(&root->cgrp); 2039 else 2040 percpu_ref_kill(&root->cgrp.self.refcnt); 2041 2042 kernfs_kill_sb(sb); 2043 } 2044 2045 struct file_system_type cgroup_fs_type = { 2046 .name = "cgroup", 2047 .mount = cgroup_mount, 2048 .kill_sb = cgroup_kill_sb, 2049 .fs_flags = FS_USERNS_MOUNT, 2050 }; 2051 2052 static struct file_system_type cgroup2_fs_type = { 2053 .name = "cgroup2", 2054 .mount = cgroup_mount, 2055 .kill_sb = cgroup_kill_sb, 2056 .fs_flags = FS_USERNS_MOUNT, 2057 }; 2058 2059 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen, 2060 struct cgroup_namespace *ns) 2061 { 2062 struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root); 2063 2064 return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen); 2065 } 2066 2067 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen, 2068 struct cgroup_namespace *ns) 2069 { 2070 int ret; 2071 2072 mutex_lock(&cgroup_mutex); 2073 spin_lock_irq(&css_set_lock); 2074 2075 ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns); 2076 2077 spin_unlock_irq(&css_set_lock); 2078 mutex_unlock(&cgroup_mutex); 2079 2080 return ret; 2081 } 2082 EXPORT_SYMBOL_GPL(cgroup_path_ns); 2083 2084 /** 2085 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy 2086 * @task: target task 2087 * @buf: the buffer to write the path into 2088 * @buflen: the length of the buffer 2089 * 2090 * Determine @task's cgroup on the first (the one with the lowest non-zero 2091 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This 2092 * function grabs cgroup_mutex and shouldn't be used inside locks used by 2093 * cgroup controller callbacks. 2094 * 2095 * Return value is the same as kernfs_path(). 2096 */ 2097 int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen) 2098 { 2099 struct cgroup_root *root; 2100 struct cgroup *cgrp; 2101 int hierarchy_id = 1; 2102 int ret; 2103 2104 mutex_lock(&cgroup_mutex); 2105 spin_lock_irq(&css_set_lock); 2106 2107 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id); 2108 2109 if (root) { 2110 cgrp = task_cgroup_from_root(task, root); 2111 ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns); 2112 } else { 2113 /* if no hierarchy exists, everyone is in "/" */ 2114 ret = strlcpy(buf, "/", buflen); 2115 } 2116 2117 spin_unlock_irq(&css_set_lock); 2118 mutex_unlock(&cgroup_mutex); 2119 return ret; 2120 } 2121 EXPORT_SYMBOL_GPL(task_cgroup_path); 2122 2123 /** 2124 * cgroup_migrate_add_task - add a migration target task to a migration context 2125 * @task: target task 2126 * @mgctx: target migration context 2127 * 2128 * Add @task, which is a migration target, to @mgctx->tset. This function 2129 * becomes noop if @task doesn't need to be migrated. @task's css_set 2130 * should have been added as a migration source and @task->cg_list will be 2131 * moved from the css_set's tasks list to mg_tasks one. 2132 */ 2133 static void cgroup_migrate_add_task(struct task_struct *task, 2134 struct cgroup_mgctx *mgctx) 2135 { 2136 struct css_set *cset; 2137 2138 lockdep_assert_held(&css_set_lock); 2139 2140 /* @task either already exited or can't exit until the end */ 2141 if (task->flags & PF_EXITING) 2142 return; 2143 2144 /* leave @task alone if post_fork() hasn't linked it yet */ 2145 if (list_empty(&task->cg_list)) 2146 return; 2147 2148 cset = task_css_set(task); 2149 if (!cset->mg_src_cgrp) 2150 return; 2151 2152 mgctx->tset.nr_tasks++; 2153 2154 list_move_tail(&task->cg_list, &cset->mg_tasks); 2155 if (list_empty(&cset->mg_node)) 2156 list_add_tail(&cset->mg_node, 2157 &mgctx->tset.src_csets); 2158 if (list_empty(&cset->mg_dst_cset->mg_node)) 2159 list_add_tail(&cset->mg_dst_cset->mg_node, 2160 &mgctx->tset.dst_csets); 2161 } 2162 2163 /** 2164 * cgroup_taskset_first - reset taskset and return the first task 2165 * @tset: taskset of interest 2166 * @dst_cssp: output variable for the destination css 2167 * 2168 * @tset iteration is initialized and the first task is returned. 2169 */ 2170 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset, 2171 struct cgroup_subsys_state **dst_cssp) 2172 { 2173 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node); 2174 tset->cur_task = NULL; 2175 2176 return cgroup_taskset_next(tset, dst_cssp); 2177 } 2178 2179 /** 2180 * cgroup_taskset_next - iterate to the next task in taskset 2181 * @tset: taskset of interest 2182 * @dst_cssp: output variable for the destination css 2183 * 2184 * Return the next task in @tset. Iteration must have been initialized 2185 * with cgroup_taskset_first(). 2186 */ 2187 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset, 2188 struct cgroup_subsys_state **dst_cssp) 2189 { 2190 struct css_set *cset = tset->cur_cset; 2191 struct task_struct *task = tset->cur_task; 2192 2193 while (&cset->mg_node != tset->csets) { 2194 if (!task) 2195 task = list_first_entry(&cset->mg_tasks, 2196 struct task_struct, cg_list); 2197 else 2198 task = list_next_entry(task, cg_list); 2199 2200 if (&task->cg_list != &cset->mg_tasks) { 2201 tset->cur_cset = cset; 2202 tset->cur_task = task; 2203 2204 /* 2205 * This function may be called both before and 2206 * after cgroup_taskset_migrate(). The two cases 2207 * can be distinguished by looking at whether @cset 2208 * has its ->mg_dst_cset set. 2209 */ 2210 if (cset->mg_dst_cset) 2211 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid]; 2212 else 2213 *dst_cssp = cset->subsys[tset->ssid]; 2214 2215 return task; 2216 } 2217 2218 cset = list_next_entry(cset, mg_node); 2219 task = NULL; 2220 } 2221 2222 return NULL; 2223 } 2224 2225 /** 2226 * cgroup_taskset_migrate - migrate a taskset 2227 * @mgctx: migration context 2228 * 2229 * Migrate tasks in @mgctx as setup by migration preparation functions. 2230 * This function fails iff one of the ->can_attach callbacks fails and 2231 * guarantees that either all or none of the tasks in @mgctx are migrated. 2232 * @mgctx is consumed regardless of success. 2233 */ 2234 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx) 2235 { 2236 struct cgroup_taskset *tset = &mgctx->tset; 2237 struct cgroup_subsys *ss; 2238 struct task_struct *task, *tmp_task; 2239 struct css_set *cset, *tmp_cset; 2240 int ssid, failed_ssid, ret; 2241 2242 /* check that we can legitimately attach to the cgroup */ 2243 if (tset->nr_tasks) { 2244 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2245 if (ss->can_attach) { 2246 tset->ssid = ssid; 2247 ret = ss->can_attach(tset); 2248 if (ret) { 2249 failed_ssid = ssid; 2250 goto out_cancel_attach; 2251 } 2252 } 2253 } while_each_subsys_mask(); 2254 } 2255 2256 /* 2257 * Now that we're guaranteed success, proceed to move all tasks to 2258 * the new cgroup. There are no failure cases after here, so this 2259 * is the commit point. 2260 */ 2261 spin_lock_irq(&css_set_lock); 2262 list_for_each_entry(cset, &tset->src_csets, mg_node) { 2263 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) { 2264 struct css_set *from_cset = task_css_set(task); 2265 struct css_set *to_cset = cset->mg_dst_cset; 2266 2267 get_css_set(to_cset); 2268 to_cset->nr_tasks++; 2269 css_set_move_task(task, from_cset, to_cset, true); 2270 put_css_set_locked(from_cset); 2271 from_cset->nr_tasks--; 2272 } 2273 } 2274 spin_unlock_irq(&css_set_lock); 2275 2276 /* 2277 * Migration is committed, all target tasks are now on dst_csets. 2278 * Nothing is sensitive to fork() after this point. Notify 2279 * controllers that migration is complete. 2280 */ 2281 tset->csets = &tset->dst_csets; 2282 2283 if (tset->nr_tasks) { 2284 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2285 if (ss->attach) { 2286 tset->ssid = ssid; 2287 ss->attach(tset); 2288 } 2289 } while_each_subsys_mask(); 2290 } 2291 2292 ret = 0; 2293 goto out_release_tset; 2294 2295 out_cancel_attach: 2296 if (tset->nr_tasks) { 2297 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2298 if (ssid == failed_ssid) 2299 break; 2300 if (ss->cancel_attach) { 2301 tset->ssid = ssid; 2302 ss->cancel_attach(tset); 2303 } 2304 } while_each_subsys_mask(); 2305 } 2306 out_release_tset: 2307 spin_lock_irq(&css_set_lock); 2308 list_splice_init(&tset->dst_csets, &tset->src_csets); 2309 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) { 2310 list_splice_tail_init(&cset->mg_tasks, &cset->tasks); 2311 list_del_init(&cset->mg_node); 2312 } 2313 spin_unlock_irq(&css_set_lock); 2314 2315 /* 2316 * Re-initialize the cgroup_taskset structure in case it is reused 2317 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute() 2318 * iteration. 2319 */ 2320 tset->nr_tasks = 0; 2321 tset->csets = &tset->src_csets; 2322 return ret; 2323 } 2324 2325 /** 2326 * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination 2327 * @dst_cgrp: destination cgroup to test 2328 * 2329 * On the default hierarchy, except for the mixable, (possible) thread root 2330 * and threaded cgroups, subtree_control must be zero for migration 2331 * destination cgroups with tasks so that child cgroups don't compete 2332 * against tasks. 2333 */ 2334 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp) 2335 { 2336 /* v1 doesn't have any restriction */ 2337 if (!cgroup_on_dfl(dst_cgrp)) 2338 return 0; 2339 2340 /* verify @dst_cgrp can host resources */ 2341 if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp)) 2342 return -EOPNOTSUPP; 2343 2344 /* mixables don't care */ 2345 if (cgroup_is_mixable(dst_cgrp)) 2346 return 0; 2347 2348 /* 2349 * If @dst_cgrp is already or can become a thread root or is 2350 * threaded, it doesn't matter. 2351 */ 2352 if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp)) 2353 return 0; 2354 2355 /* apply no-internal-process constraint */ 2356 if (dst_cgrp->subtree_control) 2357 return -EBUSY; 2358 2359 return 0; 2360 } 2361 2362 /** 2363 * cgroup_migrate_finish - cleanup after attach 2364 * @mgctx: migration context 2365 * 2366 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See 2367 * those functions for details. 2368 */ 2369 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx) 2370 { 2371 LIST_HEAD(preloaded); 2372 struct css_set *cset, *tmp_cset; 2373 2374 lockdep_assert_held(&cgroup_mutex); 2375 2376 spin_lock_irq(&css_set_lock); 2377 2378 list_splice_tail_init(&mgctx->preloaded_src_csets, &preloaded); 2379 list_splice_tail_init(&mgctx->preloaded_dst_csets, &preloaded); 2380 2381 list_for_each_entry_safe(cset, tmp_cset, &preloaded, mg_preload_node) { 2382 cset->mg_src_cgrp = NULL; 2383 cset->mg_dst_cgrp = NULL; 2384 cset->mg_dst_cset = NULL; 2385 list_del_init(&cset->mg_preload_node); 2386 put_css_set_locked(cset); 2387 } 2388 2389 spin_unlock_irq(&css_set_lock); 2390 } 2391 2392 /** 2393 * cgroup_migrate_add_src - add a migration source css_set 2394 * @src_cset: the source css_set to add 2395 * @dst_cgrp: the destination cgroup 2396 * @mgctx: migration context 2397 * 2398 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin 2399 * @src_cset and add it to @mgctx->src_csets, which should later be cleaned 2400 * up by cgroup_migrate_finish(). 2401 * 2402 * This function may be called without holding cgroup_threadgroup_rwsem 2403 * even if the target is a process. Threads may be created and destroyed 2404 * but as long as cgroup_mutex is not dropped, no new css_set can be put 2405 * into play and the preloaded css_sets are guaranteed to cover all 2406 * migrations. 2407 */ 2408 void cgroup_migrate_add_src(struct css_set *src_cset, 2409 struct cgroup *dst_cgrp, 2410 struct cgroup_mgctx *mgctx) 2411 { 2412 struct cgroup *src_cgrp; 2413 2414 lockdep_assert_held(&cgroup_mutex); 2415 lockdep_assert_held(&css_set_lock); 2416 2417 /* 2418 * If ->dead, @src_set is associated with one or more dead cgroups 2419 * and doesn't contain any migratable tasks. Ignore it early so 2420 * that the rest of migration path doesn't get confused by it. 2421 */ 2422 if (src_cset->dead) 2423 return; 2424 2425 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root); 2426 2427 if (!list_empty(&src_cset->mg_preload_node)) 2428 return; 2429 2430 WARN_ON(src_cset->mg_src_cgrp); 2431 WARN_ON(src_cset->mg_dst_cgrp); 2432 WARN_ON(!list_empty(&src_cset->mg_tasks)); 2433 WARN_ON(!list_empty(&src_cset->mg_node)); 2434 2435 src_cset->mg_src_cgrp = src_cgrp; 2436 src_cset->mg_dst_cgrp = dst_cgrp; 2437 get_css_set(src_cset); 2438 list_add_tail(&src_cset->mg_preload_node, &mgctx->preloaded_src_csets); 2439 } 2440 2441 /** 2442 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration 2443 * @mgctx: migration context 2444 * 2445 * Tasks are about to be moved and all the source css_sets have been 2446 * preloaded to @mgctx->preloaded_src_csets. This function looks up and 2447 * pins all destination css_sets, links each to its source, and append them 2448 * to @mgctx->preloaded_dst_csets. 2449 * 2450 * This function must be called after cgroup_migrate_add_src() has been 2451 * called on each migration source css_set. After migration is performed 2452 * using cgroup_migrate(), cgroup_migrate_finish() must be called on 2453 * @mgctx. 2454 */ 2455 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx) 2456 { 2457 struct css_set *src_cset, *tmp_cset; 2458 2459 lockdep_assert_held(&cgroup_mutex); 2460 2461 /* look up the dst cset for each src cset and link it to src */ 2462 list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets, 2463 mg_preload_node) { 2464 struct css_set *dst_cset; 2465 struct cgroup_subsys *ss; 2466 int ssid; 2467 2468 dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp); 2469 if (!dst_cset) 2470 goto err; 2471 2472 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset); 2473 2474 /* 2475 * If src cset equals dst, it's noop. Drop the src. 2476 * cgroup_migrate() will skip the cset too. Note that we 2477 * can't handle src == dst as some nodes are used by both. 2478 */ 2479 if (src_cset == dst_cset) { 2480 src_cset->mg_src_cgrp = NULL; 2481 src_cset->mg_dst_cgrp = NULL; 2482 list_del_init(&src_cset->mg_preload_node); 2483 put_css_set(src_cset); 2484 put_css_set(dst_cset); 2485 continue; 2486 } 2487 2488 src_cset->mg_dst_cset = dst_cset; 2489 2490 if (list_empty(&dst_cset->mg_preload_node)) 2491 list_add_tail(&dst_cset->mg_preload_node, 2492 &mgctx->preloaded_dst_csets); 2493 else 2494 put_css_set(dst_cset); 2495 2496 for_each_subsys(ss, ssid) 2497 if (src_cset->subsys[ssid] != dst_cset->subsys[ssid]) 2498 mgctx->ss_mask |= 1 << ssid; 2499 } 2500 2501 return 0; 2502 err: 2503 cgroup_migrate_finish(mgctx); 2504 return -ENOMEM; 2505 } 2506 2507 /** 2508 * cgroup_migrate - migrate a process or task to a cgroup 2509 * @leader: the leader of the process or the task to migrate 2510 * @threadgroup: whether @leader points to the whole process or a single task 2511 * @mgctx: migration context 2512 * 2513 * Migrate a process or task denoted by @leader. If migrating a process, 2514 * the caller must be holding cgroup_threadgroup_rwsem. The caller is also 2515 * responsible for invoking cgroup_migrate_add_src() and 2516 * cgroup_migrate_prepare_dst() on the targets before invoking this 2517 * function and following up with cgroup_migrate_finish(). 2518 * 2519 * As long as a controller's ->can_attach() doesn't fail, this function is 2520 * guaranteed to succeed. This means that, excluding ->can_attach() 2521 * failure, when migrating multiple targets, the success or failure can be 2522 * decided for all targets by invoking group_migrate_prepare_dst() before 2523 * actually starting migrating. 2524 */ 2525 int cgroup_migrate(struct task_struct *leader, bool threadgroup, 2526 struct cgroup_mgctx *mgctx) 2527 { 2528 struct task_struct *task; 2529 2530 /* 2531 * Prevent freeing of tasks while we take a snapshot. Tasks that are 2532 * already PF_EXITING could be freed from underneath us unless we 2533 * take an rcu_read_lock. 2534 */ 2535 spin_lock_irq(&css_set_lock); 2536 rcu_read_lock(); 2537 task = leader; 2538 do { 2539 cgroup_migrate_add_task(task, mgctx); 2540 if (!threadgroup) 2541 break; 2542 } while_each_thread(leader, task); 2543 rcu_read_unlock(); 2544 spin_unlock_irq(&css_set_lock); 2545 2546 return cgroup_migrate_execute(mgctx); 2547 } 2548 2549 /** 2550 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup 2551 * @dst_cgrp: the cgroup to attach to 2552 * @leader: the task or the leader of the threadgroup to be attached 2553 * @threadgroup: attach the whole threadgroup? 2554 * 2555 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem. 2556 */ 2557 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader, 2558 bool threadgroup) 2559 { 2560 DEFINE_CGROUP_MGCTX(mgctx); 2561 struct task_struct *task; 2562 int ret; 2563 2564 ret = cgroup_migrate_vet_dst(dst_cgrp); 2565 if (ret) 2566 return ret; 2567 2568 /* look up all src csets */ 2569 spin_lock_irq(&css_set_lock); 2570 rcu_read_lock(); 2571 task = leader; 2572 do { 2573 cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx); 2574 if (!threadgroup) 2575 break; 2576 } while_each_thread(leader, task); 2577 rcu_read_unlock(); 2578 spin_unlock_irq(&css_set_lock); 2579 2580 /* prepare dst csets and commit */ 2581 ret = cgroup_migrate_prepare_dst(&mgctx); 2582 if (!ret) 2583 ret = cgroup_migrate(leader, threadgroup, &mgctx); 2584 2585 cgroup_migrate_finish(&mgctx); 2586 2587 if (!ret) 2588 trace_cgroup_attach_task(dst_cgrp, leader, threadgroup); 2589 2590 return ret; 2591 } 2592 2593 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup) 2594 __acquires(&cgroup_threadgroup_rwsem) 2595 { 2596 struct task_struct *tsk; 2597 pid_t pid; 2598 2599 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0) 2600 return ERR_PTR(-EINVAL); 2601 2602 percpu_down_write(&cgroup_threadgroup_rwsem); 2603 2604 rcu_read_lock(); 2605 if (pid) { 2606 tsk = find_task_by_vpid(pid); 2607 if (!tsk) { 2608 tsk = ERR_PTR(-ESRCH); 2609 goto out_unlock_threadgroup; 2610 } 2611 } else { 2612 tsk = current; 2613 } 2614 2615 if (threadgroup) 2616 tsk = tsk->group_leader; 2617 2618 /* 2619 * kthreads may acquire PF_NO_SETAFFINITY during initialization. 2620 * If userland migrates such a kthread to a non-root cgroup, it can 2621 * become trapped in a cpuset, or RT kthread may be born in a 2622 * cgroup with no rt_runtime allocated. Just say no. 2623 */ 2624 if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) { 2625 tsk = ERR_PTR(-EINVAL); 2626 goto out_unlock_threadgroup; 2627 } 2628 2629 get_task_struct(tsk); 2630 goto out_unlock_rcu; 2631 2632 out_unlock_threadgroup: 2633 percpu_up_write(&cgroup_threadgroup_rwsem); 2634 out_unlock_rcu: 2635 rcu_read_unlock(); 2636 return tsk; 2637 } 2638 2639 void cgroup_procs_write_finish(struct task_struct *task) 2640 __releases(&cgroup_threadgroup_rwsem) 2641 { 2642 struct cgroup_subsys *ss; 2643 int ssid; 2644 2645 /* release reference from cgroup_procs_write_start() */ 2646 put_task_struct(task); 2647 2648 percpu_up_write(&cgroup_threadgroup_rwsem); 2649 for_each_subsys(ss, ssid) 2650 if (ss->post_attach) 2651 ss->post_attach(); 2652 } 2653 2654 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask) 2655 { 2656 struct cgroup_subsys *ss; 2657 bool printed = false; 2658 int ssid; 2659 2660 do_each_subsys_mask(ss, ssid, ss_mask) { 2661 if (printed) 2662 seq_putc(seq, ' '); 2663 seq_printf(seq, "%s", ss->name); 2664 printed = true; 2665 } while_each_subsys_mask(); 2666 if (printed) 2667 seq_putc(seq, '\n'); 2668 } 2669 2670 /* show controllers which are enabled from the parent */ 2671 static int cgroup_controllers_show(struct seq_file *seq, void *v) 2672 { 2673 struct cgroup *cgrp = seq_css(seq)->cgroup; 2674 2675 cgroup_print_ss_mask(seq, cgroup_control(cgrp)); 2676 return 0; 2677 } 2678 2679 /* show controllers which are enabled for a given cgroup's children */ 2680 static int cgroup_subtree_control_show(struct seq_file *seq, void *v) 2681 { 2682 struct cgroup *cgrp = seq_css(seq)->cgroup; 2683 2684 cgroup_print_ss_mask(seq, cgrp->subtree_control); 2685 return 0; 2686 } 2687 2688 /** 2689 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy 2690 * @cgrp: root of the subtree to update csses for 2691 * 2692 * @cgrp's control masks have changed and its subtree's css associations 2693 * need to be updated accordingly. This function looks up all css_sets 2694 * which are attached to the subtree, creates the matching updated css_sets 2695 * and migrates the tasks to the new ones. 2696 */ 2697 static int cgroup_update_dfl_csses(struct cgroup *cgrp) 2698 { 2699 DEFINE_CGROUP_MGCTX(mgctx); 2700 struct cgroup_subsys_state *d_css; 2701 struct cgroup *dsct; 2702 struct css_set *src_cset; 2703 int ret; 2704 2705 lockdep_assert_held(&cgroup_mutex); 2706 2707 percpu_down_write(&cgroup_threadgroup_rwsem); 2708 2709 /* look up all csses currently attached to @cgrp's subtree */ 2710 spin_lock_irq(&css_set_lock); 2711 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 2712 struct cgrp_cset_link *link; 2713 2714 list_for_each_entry(link, &dsct->cset_links, cset_link) 2715 cgroup_migrate_add_src(link->cset, dsct, &mgctx); 2716 } 2717 spin_unlock_irq(&css_set_lock); 2718 2719 /* NULL dst indicates self on default hierarchy */ 2720 ret = cgroup_migrate_prepare_dst(&mgctx); 2721 if (ret) 2722 goto out_finish; 2723 2724 spin_lock_irq(&css_set_lock); 2725 list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, mg_preload_node) { 2726 struct task_struct *task, *ntask; 2727 2728 /* all tasks in src_csets need to be migrated */ 2729 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list) 2730 cgroup_migrate_add_task(task, &mgctx); 2731 } 2732 spin_unlock_irq(&css_set_lock); 2733 2734 ret = cgroup_migrate_execute(&mgctx); 2735 out_finish: 2736 cgroup_migrate_finish(&mgctx); 2737 percpu_up_write(&cgroup_threadgroup_rwsem); 2738 return ret; 2739 } 2740 2741 /** 2742 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses 2743 * @cgrp: root of the target subtree 2744 * 2745 * Because css offlining is asynchronous, userland may try to re-enable a 2746 * controller while the previous css is still around. This function grabs 2747 * cgroup_mutex and drains the previous css instances of @cgrp's subtree. 2748 */ 2749 void cgroup_lock_and_drain_offline(struct cgroup *cgrp) 2750 __acquires(&cgroup_mutex) 2751 { 2752 struct cgroup *dsct; 2753 struct cgroup_subsys_state *d_css; 2754 struct cgroup_subsys *ss; 2755 int ssid; 2756 2757 restart: 2758 mutex_lock(&cgroup_mutex); 2759 2760 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 2761 for_each_subsys(ss, ssid) { 2762 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 2763 DEFINE_WAIT(wait); 2764 2765 if (!css || !percpu_ref_is_dying(&css->refcnt)) 2766 continue; 2767 2768 cgroup_get_live(dsct); 2769 prepare_to_wait(&dsct->offline_waitq, &wait, 2770 TASK_UNINTERRUPTIBLE); 2771 2772 mutex_unlock(&cgroup_mutex); 2773 schedule(); 2774 finish_wait(&dsct->offline_waitq, &wait); 2775 2776 cgroup_put(dsct); 2777 goto restart; 2778 } 2779 } 2780 } 2781 2782 /** 2783 * cgroup_save_control - save control masks of a subtree 2784 * @cgrp: root of the target subtree 2785 * 2786 * Save ->subtree_control and ->subtree_ss_mask to the respective old_ 2787 * prefixed fields for @cgrp's subtree including @cgrp itself. 2788 */ 2789 static void cgroup_save_control(struct cgroup *cgrp) 2790 { 2791 struct cgroup *dsct; 2792 struct cgroup_subsys_state *d_css; 2793 2794 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 2795 dsct->old_subtree_control = dsct->subtree_control; 2796 dsct->old_subtree_ss_mask = dsct->subtree_ss_mask; 2797 } 2798 } 2799 2800 /** 2801 * cgroup_propagate_control - refresh control masks of a subtree 2802 * @cgrp: root of the target subtree 2803 * 2804 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches 2805 * ->subtree_control and propagate controller availability through the 2806 * subtree so that descendants don't have unavailable controllers enabled. 2807 */ 2808 static void cgroup_propagate_control(struct cgroup *cgrp) 2809 { 2810 struct cgroup *dsct; 2811 struct cgroup_subsys_state *d_css; 2812 2813 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 2814 dsct->subtree_control &= cgroup_control(dsct); 2815 dsct->subtree_ss_mask = 2816 cgroup_calc_subtree_ss_mask(dsct->subtree_control, 2817 cgroup_ss_mask(dsct)); 2818 } 2819 } 2820 2821 /** 2822 * cgroup_restore_control - restore control masks of a subtree 2823 * @cgrp: root of the target subtree 2824 * 2825 * Restore ->subtree_control and ->subtree_ss_mask from the respective old_ 2826 * prefixed fields for @cgrp's subtree including @cgrp itself. 2827 */ 2828 static void cgroup_restore_control(struct cgroup *cgrp) 2829 { 2830 struct cgroup *dsct; 2831 struct cgroup_subsys_state *d_css; 2832 2833 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 2834 dsct->subtree_control = dsct->old_subtree_control; 2835 dsct->subtree_ss_mask = dsct->old_subtree_ss_mask; 2836 } 2837 } 2838 2839 static bool css_visible(struct cgroup_subsys_state *css) 2840 { 2841 struct cgroup_subsys *ss = css->ss; 2842 struct cgroup *cgrp = css->cgroup; 2843 2844 if (cgroup_control(cgrp) & (1 << ss->id)) 2845 return true; 2846 if (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) 2847 return false; 2848 return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl; 2849 } 2850 2851 /** 2852 * cgroup_apply_control_enable - enable or show csses according to control 2853 * @cgrp: root of the target subtree 2854 * 2855 * Walk @cgrp's subtree and create new csses or make the existing ones 2856 * visible. A css is created invisible if it's being implicitly enabled 2857 * through dependency. An invisible css is made visible when the userland 2858 * explicitly enables it. 2859 * 2860 * Returns 0 on success, -errno on failure. On failure, csses which have 2861 * been processed already aren't cleaned up. The caller is responsible for 2862 * cleaning up with cgroup_apply_control_disable(). 2863 */ 2864 static int cgroup_apply_control_enable(struct cgroup *cgrp) 2865 { 2866 struct cgroup *dsct; 2867 struct cgroup_subsys_state *d_css; 2868 struct cgroup_subsys *ss; 2869 int ssid, ret; 2870 2871 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 2872 for_each_subsys(ss, ssid) { 2873 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 2874 2875 WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt)); 2876 2877 if (!(cgroup_ss_mask(dsct) & (1 << ss->id))) 2878 continue; 2879 2880 if (!css) { 2881 css = css_create(dsct, ss); 2882 if (IS_ERR(css)) 2883 return PTR_ERR(css); 2884 } 2885 2886 if (css_visible(css)) { 2887 ret = css_populate_dir(css); 2888 if (ret) 2889 return ret; 2890 } 2891 } 2892 } 2893 2894 return 0; 2895 } 2896 2897 /** 2898 * cgroup_apply_control_disable - kill or hide csses according to control 2899 * @cgrp: root of the target subtree 2900 * 2901 * Walk @cgrp's subtree and kill and hide csses so that they match 2902 * cgroup_ss_mask() and cgroup_visible_mask(). 2903 * 2904 * A css is hidden when the userland requests it to be disabled while other 2905 * subsystems are still depending on it. The css must not actively control 2906 * resources and be in the vanilla state if it's made visible again later. 2907 * Controllers which may be depended upon should provide ->css_reset() for 2908 * this purpose. 2909 */ 2910 static void cgroup_apply_control_disable(struct cgroup *cgrp) 2911 { 2912 struct cgroup *dsct; 2913 struct cgroup_subsys_state *d_css; 2914 struct cgroup_subsys *ss; 2915 int ssid; 2916 2917 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 2918 for_each_subsys(ss, ssid) { 2919 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 2920 2921 WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt)); 2922 2923 if (!css) 2924 continue; 2925 2926 if (css->parent && 2927 !(cgroup_ss_mask(dsct) & (1 << ss->id))) { 2928 kill_css(css); 2929 } else if (!css_visible(css)) { 2930 css_clear_dir(css); 2931 if (ss->css_reset) 2932 ss->css_reset(css); 2933 } 2934 } 2935 } 2936 } 2937 2938 /** 2939 * cgroup_apply_control - apply control mask updates to the subtree 2940 * @cgrp: root of the target subtree 2941 * 2942 * subsystems can be enabled and disabled in a subtree using the following 2943 * steps. 2944 * 2945 * 1. Call cgroup_save_control() to stash the current state. 2946 * 2. Update ->subtree_control masks in the subtree as desired. 2947 * 3. Call cgroup_apply_control() to apply the changes. 2948 * 4. Optionally perform other related operations. 2949 * 5. Call cgroup_finalize_control() to finish up. 2950 * 2951 * This function implements step 3 and propagates the mask changes 2952 * throughout @cgrp's subtree, updates csses accordingly and perform 2953 * process migrations. 2954 */ 2955 static int cgroup_apply_control(struct cgroup *cgrp) 2956 { 2957 int ret; 2958 2959 cgroup_propagate_control(cgrp); 2960 2961 ret = cgroup_apply_control_enable(cgrp); 2962 if (ret) 2963 return ret; 2964 2965 /* 2966 * At this point, cgroup_e_css() results reflect the new csses 2967 * making the following cgroup_update_dfl_csses() properly update 2968 * css associations of all tasks in the subtree. 2969 */ 2970 ret = cgroup_update_dfl_csses(cgrp); 2971 if (ret) 2972 return ret; 2973 2974 return 0; 2975 } 2976 2977 /** 2978 * cgroup_finalize_control - finalize control mask update 2979 * @cgrp: root of the target subtree 2980 * @ret: the result of the update 2981 * 2982 * Finalize control mask update. See cgroup_apply_control() for more info. 2983 */ 2984 static void cgroup_finalize_control(struct cgroup *cgrp, int ret) 2985 { 2986 if (ret) { 2987 cgroup_restore_control(cgrp); 2988 cgroup_propagate_control(cgrp); 2989 } 2990 2991 cgroup_apply_control_disable(cgrp); 2992 } 2993 2994 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable) 2995 { 2996 u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask; 2997 2998 /* if nothing is getting enabled, nothing to worry about */ 2999 if (!enable) 3000 return 0; 3001 3002 /* can @cgrp host any resources? */ 3003 if (!cgroup_is_valid_domain(cgrp->dom_cgrp)) 3004 return -EOPNOTSUPP; 3005 3006 /* mixables don't care */ 3007 if (cgroup_is_mixable(cgrp)) 3008 return 0; 3009 3010 if (domain_enable) { 3011 /* can't enable domain controllers inside a thread subtree */ 3012 if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp)) 3013 return -EOPNOTSUPP; 3014 } else { 3015 /* 3016 * Threaded controllers can handle internal competitions 3017 * and are always allowed inside a (prospective) thread 3018 * subtree. 3019 */ 3020 if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp)) 3021 return 0; 3022 } 3023 3024 /* 3025 * Controllers can't be enabled for a cgroup with tasks to avoid 3026 * child cgroups competing against tasks. 3027 */ 3028 if (cgroup_has_tasks(cgrp)) 3029 return -EBUSY; 3030 3031 return 0; 3032 } 3033 3034 /* change the enabled child controllers for a cgroup in the default hierarchy */ 3035 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of, 3036 char *buf, size_t nbytes, 3037 loff_t off) 3038 { 3039 u16 enable = 0, disable = 0; 3040 struct cgroup *cgrp, *child; 3041 struct cgroup_subsys *ss; 3042 char *tok; 3043 int ssid, ret; 3044 3045 /* 3046 * Parse input - space separated list of subsystem names prefixed 3047 * with either + or -. 3048 */ 3049 buf = strstrip(buf); 3050 while ((tok = strsep(&buf, " "))) { 3051 if (tok[0] == '\0') 3052 continue; 3053 do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) { 3054 if (!cgroup_ssid_enabled(ssid) || 3055 strcmp(tok + 1, ss->name)) 3056 continue; 3057 3058 if (*tok == '+') { 3059 enable |= 1 << ssid; 3060 disable &= ~(1 << ssid); 3061 } else if (*tok == '-') { 3062 disable |= 1 << ssid; 3063 enable &= ~(1 << ssid); 3064 } else { 3065 return -EINVAL; 3066 } 3067 break; 3068 } while_each_subsys_mask(); 3069 if (ssid == CGROUP_SUBSYS_COUNT) 3070 return -EINVAL; 3071 } 3072 3073 cgrp = cgroup_kn_lock_live(of->kn, true); 3074 if (!cgrp) 3075 return -ENODEV; 3076 3077 for_each_subsys(ss, ssid) { 3078 if (enable & (1 << ssid)) { 3079 if (cgrp->subtree_control & (1 << ssid)) { 3080 enable &= ~(1 << ssid); 3081 continue; 3082 } 3083 3084 if (!(cgroup_control(cgrp) & (1 << ssid))) { 3085 ret = -ENOENT; 3086 goto out_unlock; 3087 } 3088 } else if (disable & (1 << ssid)) { 3089 if (!(cgrp->subtree_control & (1 << ssid))) { 3090 disable &= ~(1 << ssid); 3091 continue; 3092 } 3093 3094 /* a child has it enabled? */ 3095 cgroup_for_each_live_child(child, cgrp) { 3096 if (child->subtree_control & (1 << ssid)) { 3097 ret = -EBUSY; 3098 goto out_unlock; 3099 } 3100 } 3101 } 3102 } 3103 3104 if (!enable && !disable) { 3105 ret = 0; 3106 goto out_unlock; 3107 } 3108 3109 ret = cgroup_vet_subtree_control_enable(cgrp, enable); 3110 if (ret) 3111 goto out_unlock; 3112 3113 /* save and update control masks and prepare csses */ 3114 cgroup_save_control(cgrp); 3115 3116 cgrp->subtree_control |= enable; 3117 cgrp->subtree_control &= ~disable; 3118 3119 ret = cgroup_apply_control(cgrp); 3120 cgroup_finalize_control(cgrp, ret); 3121 if (ret) 3122 goto out_unlock; 3123 3124 kernfs_activate(cgrp->kn); 3125 out_unlock: 3126 cgroup_kn_unlock(of->kn); 3127 return ret ?: nbytes; 3128 } 3129 3130 /** 3131 * cgroup_enable_threaded - make @cgrp threaded 3132 * @cgrp: the target cgroup 3133 * 3134 * Called when "threaded" is written to the cgroup.type interface file and 3135 * tries to make @cgrp threaded and join the parent's resource domain. 3136 * This function is never called on the root cgroup as cgroup.type doesn't 3137 * exist on it. 3138 */ 3139 static int cgroup_enable_threaded(struct cgroup *cgrp) 3140 { 3141 struct cgroup *parent = cgroup_parent(cgrp); 3142 struct cgroup *dom_cgrp = parent->dom_cgrp; 3143 int ret; 3144 3145 lockdep_assert_held(&cgroup_mutex); 3146 3147 /* noop if already threaded */ 3148 if (cgroup_is_threaded(cgrp)) 3149 return 0; 3150 3151 /* we're joining the parent's domain, ensure its validity */ 3152 if (!cgroup_is_valid_domain(dom_cgrp) || 3153 !cgroup_can_be_thread_root(dom_cgrp)) 3154 return -EOPNOTSUPP; 3155 3156 /* 3157 * The following shouldn't cause actual migrations and should 3158 * always succeed. 3159 */ 3160 cgroup_save_control(cgrp); 3161 3162 cgrp->dom_cgrp = dom_cgrp; 3163 ret = cgroup_apply_control(cgrp); 3164 if (!ret) 3165 parent->nr_threaded_children++; 3166 else 3167 cgrp->dom_cgrp = cgrp; 3168 3169 cgroup_finalize_control(cgrp, ret); 3170 return ret; 3171 } 3172 3173 static int cgroup_type_show(struct seq_file *seq, void *v) 3174 { 3175 struct cgroup *cgrp = seq_css(seq)->cgroup; 3176 3177 if (cgroup_is_threaded(cgrp)) 3178 seq_puts(seq, "threaded\n"); 3179 else if (!cgroup_is_valid_domain(cgrp)) 3180 seq_puts(seq, "domain invalid\n"); 3181 else if (cgroup_is_thread_root(cgrp)) 3182 seq_puts(seq, "domain threaded\n"); 3183 else 3184 seq_puts(seq, "domain\n"); 3185 3186 return 0; 3187 } 3188 3189 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf, 3190 size_t nbytes, loff_t off) 3191 { 3192 struct cgroup *cgrp; 3193 int ret; 3194 3195 /* only switching to threaded mode is supported */ 3196 if (strcmp(strstrip(buf), "threaded")) 3197 return -EINVAL; 3198 3199 cgrp = cgroup_kn_lock_live(of->kn, false); 3200 if (!cgrp) 3201 return -ENOENT; 3202 3203 /* threaded can only be enabled */ 3204 ret = cgroup_enable_threaded(cgrp); 3205 3206 cgroup_kn_unlock(of->kn); 3207 return ret ?: nbytes; 3208 } 3209 3210 static int cgroup_max_descendants_show(struct seq_file *seq, void *v) 3211 { 3212 struct cgroup *cgrp = seq_css(seq)->cgroup; 3213 int descendants = READ_ONCE(cgrp->max_descendants); 3214 3215 if (descendants == INT_MAX) 3216 seq_puts(seq, "max\n"); 3217 else 3218 seq_printf(seq, "%d\n", descendants); 3219 3220 return 0; 3221 } 3222 3223 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of, 3224 char *buf, size_t nbytes, loff_t off) 3225 { 3226 struct cgroup *cgrp; 3227 int descendants; 3228 ssize_t ret; 3229 3230 buf = strstrip(buf); 3231 if (!strcmp(buf, "max")) { 3232 descendants = INT_MAX; 3233 } else { 3234 ret = kstrtoint(buf, 0, &descendants); 3235 if (ret) 3236 return ret; 3237 } 3238 3239 if (descendants < 0) 3240 return -ERANGE; 3241 3242 cgrp = cgroup_kn_lock_live(of->kn, false); 3243 if (!cgrp) 3244 return -ENOENT; 3245 3246 cgrp->max_descendants = descendants; 3247 3248 cgroup_kn_unlock(of->kn); 3249 3250 return nbytes; 3251 } 3252 3253 static int cgroup_max_depth_show(struct seq_file *seq, void *v) 3254 { 3255 struct cgroup *cgrp = seq_css(seq)->cgroup; 3256 int depth = READ_ONCE(cgrp->max_depth); 3257 3258 if (depth == INT_MAX) 3259 seq_puts(seq, "max\n"); 3260 else 3261 seq_printf(seq, "%d\n", depth); 3262 3263 return 0; 3264 } 3265 3266 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of, 3267 char *buf, size_t nbytes, loff_t off) 3268 { 3269 struct cgroup *cgrp; 3270 ssize_t ret; 3271 int depth; 3272 3273 buf = strstrip(buf); 3274 if (!strcmp(buf, "max")) { 3275 depth = INT_MAX; 3276 } else { 3277 ret = kstrtoint(buf, 0, &depth); 3278 if (ret) 3279 return ret; 3280 } 3281 3282 if (depth < 0) 3283 return -ERANGE; 3284 3285 cgrp = cgroup_kn_lock_live(of->kn, false); 3286 if (!cgrp) 3287 return -ENOENT; 3288 3289 cgrp->max_depth = depth; 3290 3291 cgroup_kn_unlock(of->kn); 3292 3293 return nbytes; 3294 } 3295 3296 static int cgroup_events_show(struct seq_file *seq, void *v) 3297 { 3298 seq_printf(seq, "populated %d\n", 3299 cgroup_is_populated(seq_css(seq)->cgroup)); 3300 return 0; 3301 } 3302 3303 static int cgroup_stat_show(struct seq_file *seq, void *v) 3304 { 3305 struct cgroup *cgroup = seq_css(seq)->cgroup; 3306 3307 seq_printf(seq, "nr_descendants %d\n", 3308 cgroup->nr_descendants); 3309 seq_printf(seq, "nr_dying_descendants %d\n", 3310 cgroup->nr_dying_descendants); 3311 3312 return 0; 3313 } 3314 3315 static int cgroup_file_open(struct kernfs_open_file *of) 3316 { 3317 struct cftype *cft = of->kn->priv; 3318 3319 if (cft->open) 3320 return cft->open(of); 3321 return 0; 3322 } 3323 3324 static void cgroup_file_release(struct kernfs_open_file *of) 3325 { 3326 struct cftype *cft = of->kn->priv; 3327 3328 if (cft->release) 3329 cft->release(of); 3330 } 3331 3332 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf, 3333 size_t nbytes, loff_t off) 3334 { 3335 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns; 3336 struct cgroup *cgrp = of->kn->parent->priv; 3337 struct cftype *cft = of->kn->priv; 3338 struct cgroup_subsys_state *css; 3339 int ret; 3340 3341 /* 3342 * If namespaces are delegation boundaries, disallow writes to 3343 * files in an non-init namespace root from inside the namespace 3344 * except for the files explicitly marked delegatable - 3345 * cgroup.procs and cgroup.subtree_control. 3346 */ 3347 if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) && 3348 !(cft->flags & CFTYPE_NS_DELEGATABLE) && 3349 ns != &init_cgroup_ns && ns->root_cset->dfl_cgrp == cgrp) 3350 return -EPERM; 3351 3352 if (cft->write) 3353 return cft->write(of, buf, nbytes, off); 3354 3355 /* 3356 * kernfs guarantees that a file isn't deleted with operations in 3357 * flight, which means that the matching css is and stays alive and 3358 * doesn't need to be pinned. The RCU locking is not necessary 3359 * either. It's just for the convenience of using cgroup_css(). 3360 */ 3361 rcu_read_lock(); 3362 css = cgroup_css(cgrp, cft->ss); 3363 rcu_read_unlock(); 3364 3365 if (cft->write_u64) { 3366 unsigned long long v; 3367 ret = kstrtoull(buf, 0, &v); 3368 if (!ret) 3369 ret = cft->write_u64(css, cft, v); 3370 } else if (cft->write_s64) { 3371 long long v; 3372 ret = kstrtoll(buf, 0, &v); 3373 if (!ret) 3374 ret = cft->write_s64(css, cft, v); 3375 } else { 3376 ret = -EINVAL; 3377 } 3378 3379 return ret ?: nbytes; 3380 } 3381 3382 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos) 3383 { 3384 return seq_cft(seq)->seq_start(seq, ppos); 3385 } 3386 3387 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos) 3388 { 3389 return seq_cft(seq)->seq_next(seq, v, ppos); 3390 } 3391 3392 static void cgroup_seqfile_stop(struct seq_file *seq, void *v) 3393 { 3394 if (seq_cft(seq)->seq_stop) 3395 seq_cft(seq)->seq_stop(seq, v); 3396 } 3397 3398 static int cgroup_seqfile_show(struct seq_file *m, void *arg) 3399 { 3400 struct cftype *cft = seq_cft(m); 3401 struct cgroup_subsys_state *css = seq_css(m); 3402 3403 if (cft->seq_show) 3404 return cft->seq_show(m, arg); 3405 3406 if (cft->read_u64) 3407 seq_printf(m, "%llu\n", cft->read_u64(css, cft)); 3408 else if (cft->read_s64) 3409 seq_printf(m, "%lld\n", cft->read_s64(css, cft)); 3410 else 3411 return -EINVAL; 3412 return 0; 3413 } 3414 3415 static struct kernfs_ops cgroup_kf_single_ops = { 3416 .atomic_write_len = PAGE_SIZE, 3417 .open = cgroup_file_open, 3418 .release = cgroup_file_release, 3419 .write = cgroup_file_write, 3420 .seq_show = cgroup_seqfile_show, 3421 }; 3422 3423 static struct kernfs_ops cgroup_kf_ops = { 3424 .atomic_write_len = PAGE_SIZE, 3425 .open = cgroup_file_open, 3426 .release = cgroup_file_release, 3427 .write = cgroup_file_write, 3428 .seq_start = cgroup_seqfile_start, 3429 .seq_next = cgroup_seqfile_next, 3430 .seq_stop = cgroup_seqfile_stop, 3431 .seq_show = cgroup_seqfile_show, 3432 }; 3433 3434 /* set uid and gid of cgroup dirs and files to that of the creator */ 3435 static int cgroup_kn_set_ugid(struct kernfs_node *kn) 3436 { 3437 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID, 3438 .ia_uid = current_fsuid(), 3439 .ia_gid = current_fsgid(), }; 3440 3441 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) && 3442 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID)) 3443 return 0; 3444 3445 return kernfs_setattr(kn, &iattr); 3446 } 3447 3448 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp, 3449 struct cftype *cft) 3450 { 3451 char name[CGROUP_FILE_NAME_MAX]; 3452 struct kernfs_node *kn; 3453 struct lock_class_key *key = NULL; 3454 int ret; 3455 3456 #ifdef CONFIG_DEBUG_LOCK_ALLOC 3457 key = &cft->lockdep_key; 3458 #endif 3459 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name), 3460 cgroup_file_mode(cft), 0, cft->kf_ops, cft, 3461 NULL, key); 3462 if (IS_ERR(kn)) 3463 return PTR_ERR(kn); 3464 3465 ret = cgroup_kn_set_ugid(kn); 3466 if (ret) { 3467 kernfs_remove(kn); 3468 return ret; 3469 } 3470 3471 if (cft->file_offset) { 3472 struct cgroup_file *cfile = (void *)css + cft->file_offset; 3473 3474 spin_lock_irq(&cgroup_file_kn_lock); 3475 cfile->kn = kn; 3476 spin_unlock_irq(&cgroup_file_kn_lock); 3477 } 3478 3479 return 0; 3480 } 3481 3482 /** 3483 * cgroup_addrm_files - add or remove files to a cgroup directory 3484 * @css: the target css 3485 * @cgrp: the target cgroup (usually css->cgroup) 3486 * @cfts: array of cftypes to be added 3487 * @is_add: whether to add or remove 3488 * 3489 * Depending on @is_add, add or remove files defined by @cfts on @cgrp. 3490 * For removals, this function never fails. 3491 */ 3492 static int cgroup_addrm_files(struct cgroup_subsys_state *css, 3493 struct cgroup *cgrp, struct cftype cfts[], 3494 bool is_add) 3495 { 3496 struct cftype *cft, *cft_end = NULL; 3497 int ret = 0; 3498 3499 lockdep_assert_held(&cgroup_mutex); 3500 3501 restart: 3502 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) { 3503 /* does cft->flags tell us to skip this file on @cgrp? */ 3504 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp)) 3505 continue; 3506 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp)) 3507 continue; 3508 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp)) 3509 continue; 3510 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp)) 3511 continue; 3512 3513 if (is_add) { 3514 ret = cgroup_add_file(css, cgrp, cft); 3515 if (ret) { 3516 pr_warn("%s: failed to add %s, err=%d\n", 3517 __func__, cft->name, ret); 3518 cft_end = cft; 3519 is_add = false; 3520 goto restart; 3521 } 3522 } else { 3523 cgroup_rm_file(cgrp, cft); 3524 } 3525 } 3526 return ret; 3527 } 3528 3529 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add) 3530 { 3531 struct cgroup_subsys *ss = cfts[0].ss; 3532 struct cgroup *root = &ss->root->cgrp; 3533 struct cgroup_subsys_state *css; 3534 int ret = 0; 3535 3536 lockdep_assert_held(&cgroup_mutex); 3537 3538 /* add/rm files for all cgroups created before */ 3539 css_for_each_descendant_pre(css, cgroup_css(root, ss)) { 3540 struct cgroup *cgrp = css->cgroup; 3541 3542 if (!(css->flags & CSS_VISIBLE)) 3543 continue; 3544 3545 ret = cgroup_addrm_files(css, cgrp, cfts, is_add); 3546 if (ret) 3547 break; 3548 } 3549 3550 if (is_add && !ret) 3551 kernfs_activate(root->kn); 3552 return ret; 3553 } 3554 3555 static void cgroup_exit_cftypes(struct cftype *cfts) 3556 { 3557 struct cftype *cft; 3558 3559 for (cft = cfts; cft->name[0] != '\0'; cft++) { 3560 /* free copy for custom atomic_write_len, see init_cftypes() */ 3561 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) 3562 kfree(cft->kf_ops); 3563 cft->kf_ops = NULL; 3564 cft->ss = NULL; 3565 3566 /* revert flags set by cgroup core while adding @cfts */ 3567 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL); 3568 } 3569 } 3570 3571 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 3572 { 3573 struct cftype *cft; 3574 3575 for (cft = cfts; cft->name[0] != '\0'; cft++) { 3576 struct kernfs_ops *kf_ops; 3577 3578 WARN_ON(cft->ss || cft->kf_ops); 3579 3580 if (cft->seq_start) 3581 kf_ops = &cgroup_kf_ops; 3582 else 3583 kf_ops = &cgroup_kf_single_ops; 3584 3585 /* 3586 * Ugh... if @cft wants a custom max_write_len, we need to 3587 * make a copy of kf_ops to set its atomic_write_len. 3588 */ 3589 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) { 3590 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL); 3591 if (!kf_ops) { 3592 cgroup_exit_cftypes(cfts); 3593 return -ENOMEM; 3594 } 3595 kf_ops->atomic_write_len = cft->max_write_len; 3596 } 3597 3598 cft->kf_ops = kf_ops; 3599 cft->ss = ss; 3600 } 3601 3602 return 0; 3603 } 3604 3605 static int cgroup_rm_cftypes_locked(struct cftype *cfts) 3606 { 3607 lockdep_assert_held(&cgroup_mutex); 3608 3609 if (!cfts || !cfts[0].ss) 3610 return -ENOENT; 3611 3612 list_del(&cfts->node); 3613 cgroup_apply_cftypes(cfts, false); 3614 cgroup_exit_cftypes(cfts); 3615 return 0; 3616 } 3617 3618 /** 3619 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem 3620 * @cfts: zero-length name terminated array of cftypes 3621 * 3622 * Unregister @cfts. Files described by @cfts are removed from all 3623 * existing cgroups and all future cgroups won't have them either. This 3624 * function can be called anytime whether @cfts' subsys is attached or not. 3625 * 3626 * Returns 0 on successful unregistration, -ENOENT if @cfts is not 3627 * registered. 3628 */ 3629 int cgroup_rm_cftypes(struct cftype *cfts) 3630 { 3631 int ret; 3632 3633 mutex_lock(&cgroup_mutex); 3634 ret = cgroup_rm_cftypes_locked(cfts); 3635 mutex_unlock(&cgroup_mutex); 3636 return ret; 3637 } 3638 3639 /** 3640 * cgroup_add_cftypes - add an array of cftypes to a subsystem 3641 * @ss: target cgroup subsystem 3642 * @cfts: zero-length name terminated array of cftypes 3643 * 3644 * Register @cfts to @ss. Files described by @cfts are created for all 3645 * existing cgroups to which @ss is attached and all future cgroups will 3646 * have them too. This function can be called anytime whether @ss is 3647 * attached or not. 3648 * 3649 * Returns 0 on successful registration, -errno on failure. Note that this 3650 * function currently returns 0 as long as @cfts registration is successful 3651 * even if some file creation attempts on existing cgroups fail. 3652 */ 3653 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 3654 { 3655 int ret; 3656 3657 if (!cgroup_ssid_enabled(ss->id)) 3658 return 0; 3659 3660 if (!cfts || cfts[0].name[0] == '\0') 3661 return 0; 3662 3663 ret = cgroup_init_cftypes(ss, cfts); 3664 if (ret) 3665 return ret; 3666 3667 mutex_lock(&cgroup_mutex); 3668 3669 list_add_tail(&cfts->node, &ss->cfts); 3670 ret = cgroup_apply_cftypes(cfts, true); 3671 if (ret) 3672 cgroup_rm_cftypes_locked(cfts); 3673 3674 mutex_unlock(&cgroup_mutex); 3675 return ret; 3676 } 3677 3678 /** 3679 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy 3680 * @ss: target cgroup subsystem 3681 * @cfts: zero-length name terminated array of cftypes 3682 * 3683 * Similar to cgroup_add_cftypes() but the added files are only used for 3684 * the default hierarchy. 3685 */ 3686 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 3687 { 3688 struct cftype *cft; 3689 3690 for (cft = cfts; cft && cft->name[0] != '\0'; cft++) 3691 cft->flags |= __CFTYPE_ONLY_ON_DFL; 3692 return cgroup_add_cftypes(ss, cfts); 3693 } 3694 3695 /** 3696 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies 3697 * @ss: target cgroup subsystem 3698 * @cfts: zero-length name terminated array of cftypes 3699 * 3700 * Similar to cgroup_add_cftypes() but the added files are only used for 3701 * the legacy hierarchies. 3702 */ 3703 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 3704 { 3705 struct cftype *cft; 3706 3707 for (cft = cfts; cft && cft->name[0] != '\0'; cft++) 3708 cft->flags |= __CFTYPE_NOT_ON_DFL; 3709 return cgroup_add_cftypes(ss, cfts); 3710 } 3711 3712 /** 3713 * cgroup_file_notify - generate a file modified event for a cgroup_file 3714 * @cfile: target cgroup_file 3715 * 3716 * @cfile must have been obtained by setting cftype->file_offset. 3717 */ 3718 void cgroup_file_notify(struct cgroup_file *cfile) 3719 { 3720 unsigned long flags; 3721 3722 spin_lock_irqsave(&cgroup_file_kn_lock, flags); 3723 if (cfile->kn) 3724 kernfs_notify(cfile->kn); 3725 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags); 3726 } 3727 3728 /** 3729 * css_next_child - find the next child of a given css 3730 * @pos: the current position (%NULL to initiate traversal) 3731 * @parent: css whose children to walk 3732 * 3733 * This function returns the next child of @parent and should be called 3734 * under either cgroup_mutex or RCU read lock. The only requirement is 3735 * that @parent and @pos are accessible. The next sibling is guaranteed to 3736 * be returned regardless of their states. 3737 * 3738 * If a subsystem synchronizes ->css_online() and the start of iteration, a 3739 * css which finished ->css_online() is guaranteed to be visible in the 3740 * future iterations and will stay visible until the last reference is put. 3741 * A css which hasn't finished ->css_online() or already finished 3742 * ->css_offline() may show up during traversal. It's each subsystem's 3743 * responsibility to synchronize against on/offlining. 3744 */ 3745 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos, 3746 struct cgroup_subsys_state *parent) 3747 { 3748 struct cgroup_subsys_state *next; 3749 3750 cgroup_assert_mutex_or_rcu_locked(); 3751 3752 /* 3753 * @pos could already have been unlinked from the sibling list. 3754 * Once a cgroup is removed, its ->sibling.next is no longer 3755 * updated when its next sibling changes. CSS_RELEASED is set when 3756 * @pos is taken off list, at which time its next pointer is valid, 3757 * and, as releases are serialized, the one pointed to by the next 3758 * pointer is guaranteed to not have started release yet. This 3759 * implies that if we observe !CSS_RELEASED on @pos in this RCU 3760 * critical section, the one pointed to by its next pointer is 3761 * guaranteed to not have finished its RCU grace period even if we 3762 * have dropped rcu_read_lock() inbetween iterations. 3763 * 3764 * If @pos has CSS_RELEASED set, its next pointer can't be 3765 * dereferenced; however, as each css is given a monotonically 3766 * increasing unique serial number and always appended to the 3767 * sibling list, the next one can be found by walking the parent's 3768 * children until the first css with higher serial number than 3769 * @pos's. While this path can be slower, it happens iff iteration 3770 * races against release and the race window is very small. 3771 */ 3772 if (!pos) { 3773 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling); 3774 } else if (likely(!(pos->flags & CSS_RELEASED))) { 3775 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling); 3776 } else { 3777 list_for_each_entry_rcu(next, &parent->children, sibling) 3778 if (next->serial_nr > pos->serial_nr) 3779 break; 3780 } 3781 3782 /* 3783 * @next, if not pointing to the head, can be dereferenced and is 3784 * the next sibling. 3785 */ 3786 if (&next->sibling != &parent->children) 3787 return next; 3788 return NULL; 3789 } 3790 3791 /** 3792 * css_next_descendant_pre - find the next descendant for pre-order walk 3793 * @pos: the current position (%NULL to initiate traversal) 3794 * @root: css whose descendants to walk 3795 * 3796 * To be used by css_for_each_descendant_pre(). Find the next descendant 3797 * to visit for pre-order traversal of @root's descendants. @root is 3798 * included in the iteration and the first node to be visited. 3799 * 3800 * While this function requires cgroup_mutex or RCU read locking, it 3801 * doesn't require the whole traversal to be contained in a single critical 3802 * section. This function will return the correct next descendant as long 3803 * as both @pos and @root are accessible and @pos is a descendant of @root. 3804 * 3805 * If a subsystem synchronizes ->css_online() and the start of iteration, a 3806 * css which finished ->css_online() is guaranteed to be visible in the 3807 * future iterations and will stay visible until the last reference is put. 3808 * A css which hasn't finished ->css_online() or already finished 3809 * ->css_offline() may show up during traversal. It's each subsystem's 3810 * responsibility to synchronize against on/offlining. 3811 */ 3812 struct cgroup_subsys_state * 3813 css_next_descendant_pre(struct cgroup_subsys_state *pos, 3814 struct cgroup_subsys_state *root) 3815 { 3816 struct cgroup_subsys_state *next; 3817 3818 cgroup_assert_mutex_or_rcu_locked(); 3819 3820 /* if first iteration, visit @root */ 3821 if (!pos) 3822 return root; 3823 3824 /* visit the first child if exists */ 3825 next = css_next_child(NULL, pos); 3826 if (next) 3827 return next; 3828 3829 /* no child, visit my or the closest ancestor's next sibling */ 3830 while (pos != root) { 3831 next = css_next_child(pos, pos->parent); 3832 if (next) 3833 return next; 3834 pos = pos->parent; 3835 } 3836 3837 return NULL; 3838 } 3839 3840 /** 3841 * css_rightmost_descendant - return the rightmost descendant of a css 3842 * @pos: css of interest 3843 * 3844 * Return the rightmost descendant of @pos. If there's no descendant, @pos 3845 * is returned. This can be used during pre-order traversal to skip 3846 * subtree of @pos. 3847 * 3848 * While this function requires cgroup_mutex or RCU read locking, it 3849 * doesn't require the whole traversal to be contained in a single critical 3850 * section. This function will return the correct rightmost descendant as 3851 * long as @pos is accessible. 3852 */ 3853 struct cgroup_subsys_state * 3854 css_rightmost_descendant(struct cgroup_subsys_state *pos) 3855 { 3856 struct cgroup_subsys_state *last, *tmp; 3857 3858 cgroup_assert_mutex_or_rcu_locked(); 3859 3860 do { 3861 last = pos; 3862 /* ->prev isn't RCU safe, walk ->next till the end */ 3863 pos = NULL; 3864 css_for_each_child(tmp, last) 3865 pos = tmp; 3866 } while (pos); 3867 3868 return last; 3869 } 3870 3871 static struct cgroup_subsys_state * 3872 css_leftmost_descendant(struct cgroup_subsys_state *pos) 3873 { 3874 struct cgroup_subsys_state *last; 3875 3876 do { 3877 last = pos; 3878 pos = css_next_child(NULL, pos); 3879 } while (pos); 3880 3881 return last; 3882 } 3883 3884 /** 3885 * css_next_descendant_post - find the next descendant for post-order walk 3886 * @pos: the current position (%NULL to initiate traversal) 3887 * @root: css whose descendants to walk 3888 * 3889 * To be used by css_for_each_descendant_post(). Find the next descendant 3890 * to visit for post-order traversal of @root's descendants. @root is 3891 * included in the iteration and the last node to be visited. 3892 * 3893 * While this function requires cgroup_mutex or RCU read locking, it 3894 * doesn't require the whole traversal to be contained in a single critical 3895 * section. This function will return the correct next descendant as long 3896 * as both @pos and @cgroup are accessible and @pos is a descendant of 3897 * @cgroup. 3898 * 3899 * If a subsystem synchronizes ->css_online() and the start of iteration, a 3900 * css which finished ->css_online() is guaranteed to be visible in the 3901 * future iterations and will stay visible until the last reference is put. 3902 * A css which hasn't finished ->css_online() or already finished 3903 * ->css_offline() may show up during traversal. It's each subsystem's 3904 * responsibility to synchronize against on/offlining. 3905 */ 3906 struct cgroup_subsys_state * 3907 css_next_descendant_post(struct cgroup_subsys_state *pos, 3908 struct cgroup_subsys_state *root) 3909 { 3910 struct cgroup_subsys_state *next; 3911 3912 cgroup_assert_mutex_or_rcu_locked(); 3913 3914 /* if first iteration, visit leftmost descendant which may be @root */ 3915 if (!pos) 3916 return css_leftmost_descendant(root); 3917 3918 /* if we visited @root, we're done */ 3919 if (pos == root) 3920 return NULL; 3921 3922 /* if there's an unvisited sibling, visit its leftmost descendant */ 3923 next = css_next_child(pos, pos->parent); 3924 if (next) 3925 return css_leftmost_descendant(next); 3926 3927 /* no sibling left, visit parent */ 3928 return pos->parent; 3929 } 3930 3931 /** 3932 * css_has_online_children - does a css have online children 3933 * @css: the target css 3934 * 3935 * Returns %true if @css has any online children; otherwise, %false. This 3936 * function can be called from any context but the caller is responsible 3937 * for synchronizing against on/offlining as necessary. 3938 */ 3939 bool css_has_online_children(struct cgroup_subsys_state *css) 3940 { 3941 struct cgroup_subsys_state *child; 3942 bool ret = false; 3943 3944 rcu_read_lock(); 3945 css_for_each_child(child, css) { 3946 if (child->flags & CSS_ONLINE) { 3947 ret = true; 3948 break; 3949 } 3950 } 3951 rcu_read_unlock(); 3952 return ret; 3953 } 3954 3955 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it) 3956 { 3957 struct list_head *l; 3958 struct cgrp_cset_link *link; 3959 struct css_set *cset; 3960 3961 lockdep_assert_held(&css_set_lock); 3962 3963 /* find the next threaded cset */ 3964 if (it->tcset_pos) { 3965 l = it->tcset_pos->next; 3966 3967 if (l != it->tcset_head) { 3968 it->tcset_pos = l; 3969 return container_of(l, struct css_set, 3970 threaded_csets_node); 3971 } 3972 3973 it->tcset_pos = NULL; 3974 } 3975 3976 /* find the next cset */ 3977 l = it->cset_pos; 3978 l = l->next; 3979 if (l == it->cset_head) { 3980 it->cset_pos = NULL; 3981 return NULL; 3982 } 3983 3984 if (it->ss) { 3985 cset = container_of(l, struct css_set, e_cset_node[it->ss->id]); 3986 } else { 3987 link = list_entry(l, struct cgrp_cset_link, cset_link); 3988 cset = link->cset; 3989 } 3990 3991 it->cset_pos = l; 3992 3993 /* initialize threaded css_set walking */ 3994 if (it->flags & CSS_TASK_ITER_THREADED) { 3995 if (it->cur_dcset) 3996 put_css_set_locked(it->cur_dcset); 3997 it->cur_dcset = cset; 3998 get_css_set(cset); 3999 4000 it->tcset_head = &cset->threaded_csets; 4001 it->tcset_pos = &cset->threaded_csets; 4002 } 4003 4004 return cset; 4005 } 4006 4007 /** 4008 * css_task_iter_advance_css_set - advance a task itererator to the next css_set 4009 * @it: the iterator to advance 4010 * 4011 * Advance @it to the next css_set to walk. 4012 */ 4013 static void css_task_iter_advance_css_set(struct css_task_iter *it) 4014 { 4015 struct css_set *cset; 4016 4017 lockdep_assert_held(&css_set_lock); 4018 4019 /* Advance to the next non-empty css_set */ 4020 do { 4021 cset = css_task_iter_next_css_set(it); 4022 if (!cset) { 4023 it->task_pos = NULL; 4024 return; 4025 } 4026 } while (!css_set_populated(cset)); 4027 4028 if (!list_empty(&cset->tasks)) 4029 it->task_pos = cset->tasks.next; 4030 else 4031 it->task_pos = cset->mg_tasks.next; 4032 4033 it->tasks_head = &cset->tasks; 4034 it->mg_tasks_head = &cset->mg_tasks; 4035 4036 /* 4037 * We don't keep css_sets locked across iteration steps and thus 4038 * need to take steps to ensure that iteration can be resumed after 4039 * the lock is re-acquired. Iteration is performed at two levels - 4040 * css_sets and tasks in them. 4041 * 4042 * Once created, a css_set never leaves its cgroup lists, so a 4043 * pinned css_set is guaranteed to stay put and we can resume 4044 * iteration afterwards. 4045 * 4046 * Tasks may leave @cset across iteration steps. This is resolved 4047 * by registering each iterator with the css_set currently being 4048 * walked and making css_set_move_task() advance iterators whose 4049 * next task is leaving. 4050 */ 4051 if (it->cur_cset) { 4052 list_del(&it->iters_node); 4053 put_css_set_locked(it->cur_cset); 4054 } 4055 get_css_set(cset); 4056 it->cur_cset = cset; 4057 list_add(&it->iters_node, &cset->task_iters); 4058 } 4059 4060 static void css_task_iter_advance(struct css_task_iter *it) 4061 { 4062 struct list_head *l = it->task_pos; 4063 4064 lockdep_assert_held(&css_set_lock); 4065 WARN_ON_ONCE(!l); 4066 4067 repeat: 4068 /* 4069 * Advance iterator to find next entry. cset->tasks is consumed 4070 * first and then ->mg_tasks. After ->mg_tasks, we move onto the 4071 * next cset. 4072 */ 4073 l = l->next; 4074 4075 if (l == it->tasks_head) 4076 l = it->mg_tasks_head->next; 4077 4078 if (l == it->mg_tasks_head) 4079 css_task_iter_advance_css_set(it); 4080 else 4081 it->task_pos = l; 4082 4083 /* if PROCS, skip over tasks which aren't group leaders */ 4084 if ((it->flags & CSS_TASK_ITER_PROCS) && it->task_pos && 4085 !thread_group_leader(list_entry(it->task_pos, struct task_struct, 4086 cg_list))) 4087 goto repeat; 4088 } 4089 4090 /** 4091 * css_task_iter_start - initiate task iteration 4092 * @css: the css to walk tasks of 4093 * @flags: CSS_TASK_ITER_* flags 4094 * @it: the task iterator to use 4095 * 4096 * Initiate iteration through the tasks of @css. The caller can call 4097 * css_task_iter_next() to walk through the tasks until the function 4098 * returns NULL. On completion of iteration, css_task_iter_end() must be 4099 * called. 4100 */ 4101 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags, 4102 struct css_task_iter *it) 4103 { 4104 /* no one should try to iterate before mounting cgroups */ 4105 WARN_ON_ONCE(!use_task_css_set_links); 4106 4107 memset(it, 0, sizeof(*it)); 4108 4109 spin_lock_irq(&css_set_lock); 4110 4111 it->ss = css->ss; 4112 it->flags = flags; 4113 4114 if (it->ss) 4115 it->cset_pos = &css->cgroup->e_csets[css->ss->id]; 4116 else 4117 it->cset_pos = &css->cgroup->cset_links; 4118 4119 it->cset_head = it->cset_pos; 4120 4121 css_task_iter_advance_css_set(it); 4122 4123 spin_unlock_irq(&css_set_lock); 4124 } 4125 4126 /** 4127 * css_task_iter_next - return the next task for the iterator 4128 * @it: the task iterator being iterated 4129 * 4130 * The "next" function for task iteration. @it should have been 4131 * initialized via css_task_iter_start(). Returns NULL when the iteration 4132 * reaches the end. 4133 */ 4134 struct task_struct *css_task_iter_next(struct css_task_iter *it) 4135 { 4136 if (it->cur_task) { 4137 put_task_struct(it->cur_task); 4138 it->cur_task = NULL; 4139 } 4140 4141 spin_lock_irq(&css_set_lock); 4142 4143 if (it->task_pos) { 4144 it->cur_task = list_entry(it->task_pos, struct task_struct, 4145 cg_list); 4146 get_task_struct(it->cur_task); 4147 css_task_iter_advance(it); 4148 } 4149 4150 spin_unlock_irq(&css_set_lock); 4151 4152 return it->cur_task; 4153 } 4154 4155 /** 4156 * css_task_iter_end - finish task iteration 4157 * @it: the task iterator to finish 4158 * 4159 * Finish task iteration started by css_task_iter_start(). 4160 */ 4161 void css_task_iter_end(struct css_task_iter *it) 4162 { 4163 if (it->cur_cset) { 4164 spin_lock_irq(&css_set_lock); 4165 list_del(&it->iters_node); 4166 put_css_set_locked(it->cur_cset); 4167 spin_unlock_irq(&css_set_lock); 4168 } 4169 4170 if (it->cur_dcset) 4171 put_css_set(it->cur_dcset); 4172 4173 if (it->cur_task) 4174 put_task_struct(it->cur_task); 4175 } 4176 4177 static void cgroup_procs_release(struct kernfs_open_file *of) 4178 { 4179 if (of->priv) { 4180 css_task_iter_end(of->priv); 4181 kfree(of->priv); 4182 } 4183 } 4184 4185 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos) 4186 { 4187 struct kernfs_open_file *of = s->private; 4188 struct css_task_iter *it = of->priv; 4189 4190 return css_task_iter_next(it); 4191 } 4192 4193 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos, 4194 unsigned int iter_flags) 4195 { 4196 struct kernfs_open_file *of = s->private; 4197 struct cgroup *cgrp = seq_css(s)->cgroup; 4198 struct css_task_iter *it = of->priv; 4199 4200 /* 4201 * When a seq_file is seeked, it's always traversed sequentially 4202 * from position 0, so we can simply keep iterating on !0 *pos. 4203 */ 4204 if (!it) { 4205 if (WARN_ON_ONCE((*pos)++)) 4206 return ERR_PTR(-EINVAL); 4207 4208 it = kzalloc(sizeof(*it), GFP_KERNEL); 4209 if (!it) 4210 return ERR_PTR(-ENOMEM); 4211 of->priv = it; 4212 css_task_iter_start(&cgrp->self, iter_flags, it); 4213 } else if (!(*pos)++) { 4214 css_task_iter_end(it); 4215 css_task_iter_start(&cgrp->self, iter_flags, it); 4216 } 4217 4218 return cgroup_procs_next(s, NULL, NULL); 4219 } 4220 4221 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos) 4222 { 4223 struct cgroup *cgrp = seq_css(s)->cgroup; 4224 4225 /* 4226 * All processes of a threaded subtree belong to the domain cgroup 4227 * of the subtree. Only threads can be distributed across the 4228 * subtree. Reject reads on cgroup.procs in the subtree proper. 4229 * They're always empty anyway. 4230 */ 4231 if (cgroup_is_threaded(cgrp)) 4232 return ERR_PTR(-EOPNOTSUPP); 4233 4234 return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS | 4235 CSS_TASK_ITER_THREADED); 4236 } 4237 4238 static int cgroup_procs_show(struct seq_file *s, void *v) 4239 { 4240 seq_printf(s, "%d\n", task_pid_vnr(v)); 4241 return 0; 4242 } 4243 4244 static int cgroup_procs_write_permission(struct cgroup *src_cgrp, 4245 struct cgroup *dst_cgrp, 4246 struct super_block *sb) 4247 { 4248 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns; 4249 struct cgroup *com_cgrp = src_cgrp; 4250 struct inode *inode; 4251 int ret; 4252 4253 lockdep_assert_held(&cgroup_mutex); 4254 4255 /* find the common ancestor */ 4256 while (!cgroup_is_descendant(dst_cgrp, com_cgrp)) 4257 com_cgrp = cgroup_parent(com_cgrp); 4258 4259 /* %current should be authorized to migrate to the common ancestor */ 4260 inode = kernfs_get_inode(sb, com_cgrp->procs_file.kn); 4261 if (!inode) 4262 return -ENOMEM; 4263 4264 ret = inode_permission(inode, MAY_WRITE); 4265 iput(inode); 4266 if (ret) 4267 return ret; 4268 4269 /* 4270 * If namespaces are delegation boundaries, %current must be able 4271 * to see both source and destination cgroups from its namespace. 4272 */ 4273 if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) && 4274 (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) || 4275 !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp))) 4276 return -ENOENT; 4277 4278 return 0; 4279 } 4280 4281 static ssize_t cgroup_procs_write(struct kernfs_open_file *of, 4282 char *buf, size_t nbytes, loff_t off) 4283 { 4284 struct cgroup *src_cgrp, *dst_cgrp; 4285 struct task_struct *task; 4286 ssize_t ret; 4287 4288 dst_cgrp = cgroup_kn_lock_live(of->kn, false); 4289 if (!dst_cgrp) 4290 return -ENODEV; 4291 4292 task = cgroup_procs_write_start(buf, true); 4293 ret = PTR_ERR_OR_ZERO(task); 4294 if (ret) 4295 goto out_unlock; 4296 4297 /* find the source cgroup */ 4298 spin_lock_irq(&css_set_lock); 4299 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root); 4300 spin_unlock_irq(&css_set_lock); 4301 4302 ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, 4303 of->file->f_path.dentry->d_sb); 4304 if (ret) 4305 goto out_finish; 4306 4307 ret = cgroup_attach_task(dst_cgrp, task, true); 4308 4309 out_finish: 4310 cgroup_procs_write_finish(task); 4311 out_unlock: 4312 cgroup_kn_unlock(of->kn); 4313 4314 return ret ?: nbytes; 4315 } 4316 4317 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos) 4318 { 4319 return __cgroup_procs_start(s, pos, 0); 4320 } 4321 4322 static ssize_t cgroup_threads_write(struct kernfs_open_file *of, 4323 char *buf, size_t nbytes, loff_t off) 4324 { 4325 struct cgroup *src_cgrp, *dst_cgrp; 4326 struct task_struct *task; 4327 ssize_t ret; 4328 4329 buf = strstrip(buf); 4330 4331 dst_cgrp = cgroup_kn_lock_live(of->kn, false); 4332 if (!dst_cgrp) 4333 return -ENODEV; 4334 4335 task = cgroup_procs_write_start(buf, false); 4336 ret = PTR_ERR_OR_ZERO(task); 4337 if (ret) 4338 goto out_unlock; 4339 4340 /* find the source cgroup */ 4341 spin_lock_irq(&css_set_lock); 4342 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root); 4343 spin_unlock_irq(&css_set_lock); 4344 4345 /* thread migrations follow the cgroup.procs delegation rule */ 4346 ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, 4347 of->file->f_path.dentry->d_sb); 4348 if (ret) 4349 goto out_finish; 4350 4351 /* and must be contained in the same domain */ 4352 ret = -EOPNOTSUPP; 4353 if (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp) 4354 goto out_finish; 4355 4356 ret = cgroup_attach_task(dst_cgrp, task, false); 4357 4358 out_finish: 4359 cgroup_procs_write_finish(task); 4360 out_unlock: 4361 cgroup_kn_unlock(of->kn); 4362 4363 return ret ?: nbytes; 4364 } 4365 4366 /* cgroup core interface files for the default hierarchy */ 4367 static struct cftype cgroup_base_files[] = { 4368 { 4369 .name = "cgroup.type", 4370 .flags = CFTYPE_NOT_ON_ROOT, 4371 .seq_show = cgroup_type_show, 4372 .write = cgroup_type_write, 4373 }, 4374 { 4375 .name = "cgroup.procs", 4376 .flags = CFTYPE_NS_DELEGATABLE, 4377 .file_offset = offsetof(struct cgroup, procs_file), 4378 .release = cgroup_procs_release, 4379 .seq_start = cgroup_procs_start, 4380 .seq_next = cgroup_procs_next, 4381 .seq_show = cgroup_procs_show, 4382 .write = cgroup_procs_write, 4383 }, 4384 { 4385 .name = "cgroup.threads", 4386 .release = cgroup_procs_release, 4387 .seq_start = cgroup_threads_start, 4388 .seq_next = cgroup_procs_next, 4389 .seq_show = cgroup_procs_show, 4390 .write = cgroup_threads_write, 4391 }, 4392 { 4393 .name = "cgroup.controllers", 4394 .seq_show = cgroup_controllers_show, 4395 }, 4396 { 4397 .name = "cgroup.subtree_control", 4398 .flags = CFTYPE_NS_DELEGATABLE, 4399 .seq_show = cgroup_subtree_control_show, 4400 .write = cgroup_subtree_control_write, 4401 }, 4402 { 4403 .name = "cgroup.events", 4404 .flags = CFTYPE_NOT_ON_ROOT, 4405 .file_offset = offsetof(struct cgroup, events_file), 4406 .seq_show = cgroup_events_show, 4407 }, 4408 { 4409 .name = "cgroup.max.descendants", 4410 .seq_show = cgroup_max_descendants_show, 4411 .write = cgroup_max_descendants_write, 4412 }, 4413 { 4414 .name = "cgroup.max.depth", 4415 .seq_show = cgroup_max_depth_show, 4416 .write = cgroup_max_depth_write, 4417 }, 4418 { 4419 .name = "cgroup.stat", 4420 .seq_show = cgroup_stat_show, 4421 }, 4422 { } /* terminate */ 4423 }; 4424 4425 /* 4426 * css destruction is four-stage process. 4427 * 4428 * 1. Destruction starts. Killing of the percpu_ref is initiated. 4429 * Implemented in kill_css(). 4430 * 4431 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs 4432 * and thus css_tryget_online() is guaranteed to fail, the css can be 4433 * offlined by invoking offline_css(). After offlining, the base ref is 4434 * put. Implemented in css_killed_work_fn(). 4435 * 4436 * 3. When the percpu_ref reaches zero, the only possible remaining 4437 * accessors are inside RCU read sections. css_release() schedules the 4438 * RCU callback. 4439 * 4440 * 4. After the grace period, the css can be freed. Implemented in 4441 * css_free_work_fn(). 4442 * 4443 * It is actually hairier because both step 2 and 4 require process context 4444 * and thus involve punting to css->destroy_work adding two additional 4445 * steps to the already complex sequence. 4446 */ 4447 static void css_free_work_fn(struct work_struct *work) 4448 { 4449 struct cgroup_subsys_state *css = 4450 container_of(work, struct cgroup_subsys_state, destroy_work); 4451 struct cgroup_subsys *ss = css->ss; 4452 struct cgroup *cgrp = css->cgroup; 4453 4454 percpu_ref_exit(&css->refcnt); 4455 4456 if (ss) { 4457 /* css free path */ 4458 struct cgroup_subsys_state *parent = css->parent; 4459 int id = css->id; 4460 4461 ss->css_free(css); 4462 cgroup_idr_remove(&ss->css_idr, id); 4463 cgroup_put(cgrp); 4464 4465 if (parent) 4466 css_put(parent); 4467 } else { 4468 /* cgroup free path */ 4469 atomic_dec(&cgrp->root->nr_cgrps); 4470 cgroup1_pidlist_destroy_all(cgrp); 4471 cancel_work_sync(&cgrp->release_agent_work); 4472 4473 if (cgroup_parent(cgrp)) { 4474 /* 4475 * We get a ref to the parent, and put the ref when 4476 * this cgroup is being freed, so it's guaranteed 4477 * that the parent won't be destroyed before its 4478 * children. 4479 */ 4480 cgroup_put(cgroup_parent(cgrp)); 4481 kernfs_put(cgrp->kn); 4482 kfree(cgrp); 4483 } else { 4484 /* 4485 * This is root cgroup's refcnt reaching zero, 4486 * which indicates that the root should be 4487 * released. 4488 */ 4489 cgroup_destroy_root(cgrp->root); 4490 } 4491 } 4492 } 4493 4494 static void css_free_rcu_fn(struct rcu_head *rcu_head) 4495 { 4496 struct cgroup_subsys_state *css = 4497 container_of(rcu_head, struct cgroup_subsys_state, rcu_head); 4498 4499 INIT_WORK(&css->destroy_work, css_free_work_fn); 4500 queue_work(cgroup_destroy_wq, &css->destroy_work); 4501 } 4502 4503 static void css_release_work_fn(struct work_struct *work) 4504 { 4505 struct cgroup_subsys_state *css = 4506 container_of(work, struct cgroup_subsys_state, destroy_work); 4507 struct cgroup_subsys *ss = css->ss; 4508 struct cgroup *cgrp = css->cgroup; 4509 4510 mutex_lock(&cgroup_mutex); 4511 4512 css->flags |= CSS_RELEASED; 4513 list_del_rcu(&css->sibling); 4514 4515 if (ss) { 4516 /* css release path */ 4517 cgroup_idr_replace(&ss->css_idr, NULL, css->id); 4518 if (ss->css_released) 4519 ss->css_released(css); 4520 } else { 4521 struct cgroup *tcgrp; 4522 4523 /* cgroup release path */ 4524 trace_cgroup_release(cgrp); 4525 4526 for (tcgrp = cgroup_parent(cgrp); tcgrp; 4527 tcgrp = cgroup_parent(tcgrp)) 4528 tcgrp->nr_dying_descendants--; 4529 4530 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id); 4531 cgrp->id = -1; 4532 4533 /* 4534 * There are two control paths which try to determine 4535 * cgroup from dentry without going through kernfs - 4536 * cgroupstats_build() and css_tryget_online_from_dir(). 4537 * Those are supported by RCU protecting clearing of 4538 * cgrp->kn->priv backpointer. 4539 */ 4540 if (cgrp->kn) 4541 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, 4542 NULL); 4543 4544 cgroup_bpf_put(cgrp); 4545 } 4546 4547 mutex_unlock(&cgroup_mutex); 4548 4549 call_rcu(&css->rcu_head, css_free_rcu_fn); 4550 } 4551 4552 static void css_release(struct percpu_ref *ref) 4553 { 4554 struct cgroup_subsys_state *css = 4555 container_of(ref, struct cgroup_subsys_state, refcnt); 4556 4557 INIT_WORK(&css->destroy_work, css_release_work_fn); 4558 queue_work(cgroup_destroy_wq, &css->destroy_work); 4559 } 4560 4561 static void init_and_link_css(struct cgroup_subsys_state *css, 4562 struct cgroup_subsys *ss, struct cgroup *cgrp) 4563 { 4564 lockdep_assert_held(&cgroup_mutex); 4565 4566 cgroup_get_live(cgrp); 4567 4568 memset(css, 0, sizeof(*css)); 4569 css->cgroup = cgrp; 4570 css->ss = ss; 4571 css->id = -1; 4572 INIT_LIST_HEAD(&css->sibling); 4573 INIT_LIST_HEAD(&css->children); 4574 css->serial_nr = css_serial_nr_next++; 4575 atomic_set(&css->online_cnt, 0); 4576 4577 if (cgroup_parent(cgrp)) { 4578 css->parent = cgroup_css(cgroup_parent(cgrp), ss); 4579 css_get(css->parent); 4580 } 4581 4582 BUG_ON(cgroup_css(cgrp, ss)); 4583 } 4584 4585 /* invoke ->css_online() on a new CSS and mark it online if successful */ 4586 static int online_css(struct cgroup_subsys_state *css) 4587 { 4588 struct cgroup_subsys *ss = css->ss; 4589 int ret = 0; 4590 4591 lockdep_assert_held(&cgroup_mutex); 4592 4593 if (ss->css_online) 4594 ret = ss->css_online(css); 4595 if (!ret) { 4596 css->flags |= CSS_ONLINE; 4597 rcu_assign_pointer(css->cgroup->subsys[ss->id], css); 4598 4599 atomic_inc(&css->online_cnt); 4600 if (css->parent) 4601 atomic_inc(&css->parent->online_cnt); 4602 } 4603 return ret; 4604 } 4605 4606 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */ 4607 static void offline_css(struct cgroup_subsys_state *css) 4608 { 4609 struct cgroup_subsys *ss = css->ss; 4610 4611 lockdep_assert_held(&cgroup_mutex); 4612 4613 if (!(css->flags & CSS_ONLINE)) 4614 return; 4615 4616 if (ss->css_offline) 4617 ss->css_offline(css); 4618 4619 css->flags &= ~CSS_ONLINE; 4620 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL); 4621 4622 wake_up_all(&css->cgroup->offline_waitq); 4623 } 4624 4625 /** 4626 * css_create - create a cgroup_subsys_state 4627 * @cgrp: the cgroup new css will be associated with 4628 * @ss: the subsys of new css 4629 * 4630 * Create a new css associated with @cgrp - @ss pair. On success, the new 4631 * css is online and installed in @cgrp. This function doesn't create the 4632 * interface files. Returns 0 on success, -errno on failure. 4633 */ 4634 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp, 4635 struct cgroup_subsys *ss) 4636 { 4637 struct cgroup *parent = cgroup_parent(cgrp); 4638 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss); 4639 struct cgroup_subsys_state *css; 4640 int err; 4641 4642 lockdep_assert_held(&cgroup_mutex); 4643 4644 css = ss->css_alloc(parent_css); 4645 if (!css) 4646 css = ERR_PTR(-ENOMEM); 4647 if (IS_ERR(css)) 4648 return css; 4649 4650 init_and_link_css(css, ss, cgrp); 4651 4652 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL); 4653 if (err) 4654 goto err_free_css; 4655 4656 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL); 4657 if (err < 0) 4658 goto err_free_css; 4659 css->id = err; 4660 4661 /* @css is ready to be brought online now, make it visible */ 4662 list_add_tail_rcu(&css->sibling, &parent_css->children); 4663 cgroup_idr_replace(&ss->css_idr, css, css->id); 4664 4665 err = online_css(css); 4666 if (err) 4667 goto err_list_del; 4668 4669 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy && 4670 cgroup_parent(parent)) { 4671 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n", 4672 current->comm, current->pid, ss->name); 4673 if (!strcmp(ss->name, "memory")) 4674 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n"); 4675 ss->warned_broken_hierarchy = true; 4676 } 4677 4678 return css; 4679 4680 err_list_del: 4681 list_del_rcu(&css->sibling); 4682 err_free_css: 4683 call_rcu(&css->rcu_head, css_free_rcu_fn); 4684 return ERR_PTR(err); 4685 } 4686 4687 /* 4688 * The returned cgroup is fully initialized including its control mask, but 4689 * it isn't associated with its kernfs_node and doesn't have the control 4690 * mask applied. 4691 */ 4692 static struct cgroup *cgroup_create(struct cgroup *parent) 4693 { 4694 struct cgroup_root *root = parent->root; 4695 struct cgroup *cgrp, *tcgrp; 4696 int level = parent->level + 1; 4697 int ret; 4698 4699 /* allocate the cgroup and its ID, 0 is reserved for the root */ 4700 cgrp = kzalloc(sizeof(*cgrp) + 4701 sizeof(cgrp->ancestor_ids[0]) * (level + 1), GFP_KERNEL); 4702 if (!cgrp) 4703 return ERR_PTR(-ENOMEM); 4704 4705 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL); 4706 if (ret) 4707 goto out_free_cgrp; 4708 4709 /* 4710 * Temporarily set the pointer to NULL, so idr_find() won't return 4711 * a half-baked cgroup. 4712 */ 4713 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL); 4714 if (cgrp->id < 0) { 4715 ret = -ENOMEM; 4716 goto out_cancel_ref; 4717 } 4718 4719 init_cgroup_housekeeping(cgrp); 4720 4721 cgrp->self.parent = &parent->self; 4722 cgrp->root = root; 4723 cgrp->level = level; 4724 4725 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) { 4726 cgrp->ancestor_ids[tcgrp->level] = tcgrp->id; 4727 4728 if (tcgrp != cgrp) 4729 tcgrp->nr_descendants++; 4730 } 4731 4732 if (notify_on_release(parent)) 4733 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags); 4734 4735 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags)) 4736 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags); 4737 4738 cgrp->self.serial_nr = css_serial_nr_next++; 4739 4740 /* allocation complete, commit to creation */ 4741 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children); 4742 atomic_inc(&root->nr_cgrps); 4743 cgroup_get_live(parent); 4744 4745 /* 4746 * @cgrp is now fully operational. If something fails after this 4747 * point, it'll be released via the normal destruction path. 4748 */ 4749 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id); 4750 4751 /* 4752 * On the default hierarchy, a child doesn't automatically inherit 4753 * subtree_control from the parent. Each is configured manually. 4754 */ 4755 if (!cgroup_on_dfl(cgrp)) 4756 cgrp->subtree_control = cgroup_control(cgrp); 4757 4758 if (parent) 4759 cgroup_bpf_inherit(cgrp, parent); 4760 4761 cgroup_propagate_control(cgrp); 4762 4763 return cgrp; 4764 4765 out_cancel_ref: 4766 percpu_ref_exit(&cgrp->self.refcnt); 4767 out_free_cgrp: 4768 kfree(cgrp); 4769 return ERR_PTR(ret); 4770 } 4771 4772 static bool cgroup_check_hierarchy_limits(struct cgroup *parent) 4773 { 4774 struct cgroup *cgroup; 4775 int ret = false; 4776 int level = 1; 4777 4778 lockdep_assert_held(&cgroup_mutex); 4779 4780 for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) { 4781 if (cgroup->nr_descendants >= cgroup->max_descendants) 4782 goto fail; 4783 4784 if (level > cgroup->max_depth) 4785 goto fail; 4786 4787 level++; 4788 } 4789 4790 ret = true; 4791 fail: 4792 return ret; 4793 } 4794 4795 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode) 4796 { 4797 struct cgroup *parent, *cgrp; 4798 struct kernfs_node *kn; 4799 int ret; 4800 4801 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */ 4802 if (strchr(name, '\n')) 4803 return -EINVAL; 4804 4805 parent = cgroup_kn_lock_live(parent_kn, false); 4806 if (!parent) 4807 return -ENODEV; 4808 4809 if (!cgroup_check_hierarchy_limits(parent)) { 4810 ret = -EAGAIN; 4811 goto out_unlock; 4812 } 4813 4814 cgrp = cgroup_create(parent); 4815 if (IS_ERR(cgrp)) { 4816 ret = PTR_ERR(cgrp); 4817 goto out_unlock; 4818 } 4819 4820 /* create the directory */ 4821 kn = kernfs_create_dir(parent->kn, name, mode, cgrp); 4822 if (IS_ERR(kn)) { 4823 ret = PTR_ERR(kn); 4824 goto out_destroy; 4825 } 4826 cgrp->kn = kn; 4827 4828 /* 4829 * This extra ref will be put in cgroup_free_fn() and guarantees 4830 * that @cgrp->kn is always accessible. 4831 */ 4832 kernfs_get(kn); 4833 4834 ret = cgroup_kn_set_ugid(kn); 4835 if (ret) 4836 goto out_destroy; 4837 4838 ret = css_populate_dir(&cgrp->self); 4839 if (ret) 4840 goto out_destroy; 4841 4842 ret = cgroup_apply_control_enable(cgrp); 4843 if (ret) 4844 goto out_destroy; 4845 4846 trace_cgroup_mkdir(cgrp); 4847 4848 /* let's create and online css's */ 4849 kernfs_activate(kn); 4850 4851 ret = 0; 4852 goto out_unlock; 4853 4854 out_destroy: 4855 cgroup_destroy_locked(cgrp); 4856 out_unlock: 4857 cgroup_kn_unlock(parent_kn); 4858 return ret; 4859 } 4860 4861 /* 4862 * This is called when the refcnt of a css is confirmed to be killed. 4863 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to 4864 * initate destruction and put the css ref from kill_css(). 4865 */ 4866 static void css_killed_work_fn(struct work_struct *work) 4867 { 4868 struct cgroup_subsys_state *css = 4869 container_of(work, struct cgroup_subsys_state, destroy_work); 4870 4871 mutex_lock(&cgroup_mutex); 4872 4873 do { 4874 offline_css(css); 4875 css_put(css); 4876 /* @css can't go away while we're holding cgroup_mutex */ 4877 css = css->parent; 4878 } while (css && atomic_dec_and_test(&css->online_cnt)); 4879 4880 mutex_unlock(&cgroup_mutex); 4881 } 4882 4883 /* css kill confirmation processing requires process context, bounce */ 4884 static void css_killed_ref_fn(struct percpu_ref *ref) 4885 { 4886 struct cgroup_subsys_state *css = 4887 container_of(ref, struct cgroup_subsys_state, refcnt); 4888 4889 if (atomic_dec_and_test(&css->online_cnt)) { 4890 INIT_WORK(&css->destroy_work, css_killed_work_fn); 4891 queue_work(cgroup_destroy_wq, &css->destroy_work); 4892 } 4893 } 4894 4895 /** 4896 * kill_css - destroy a css 4897 * @css: css to destroy 4898 * 4899 * This function initiates destruction of @css by removing cgroup interface 4900 * files and putting its base reference. ->css_offline() will be invoked 4901 * asynchronously once css_tryget_online() is guaranteed to fail and when 4902 * the reference count reaches zero, @css will be released. 4903 */ 4904 static void kill_css(struct cgroup_subsys_state *css) 4905 { 4906 lockdep_assert_held(&cgroup_mutex); 4907 4908 if (css->flags & CSS_DYING) 4909 return; 4910 4911 css->flags |= CSS_DYING; 4912 4913 /* 4914 * This must happen before css is disassociated with its cgroup. 4915 * See seq_css() for details. 4916 */ 4917 css_clear_dir(css); 4918 4919 /* 4920 * Killing would put the base ref, but we need to keep it alive 4921 * until after ->css_offline(). 4922 */ 4923 css_get(css); 4924 4925 /* 4926 * cgroup core guarantees that, by the time ->css_offline() is 4927 * invoked, no new css reference will be given out via 4928 * css_tryget_online(). We can't simply call percpu_ref_kill() and 4929 * proceed to offlining css's because percpu_ref_kill() doesn't 4930 * guarantee that the ref is seen as killed on all CPUs on return. 4931 * 4932 * Use percpu_ref_kill_and_confirm() to get notifications as each 4933 * css is confirmed to be seen as killed on all CPUs. 4934 */ 4935 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn); 4936 } 4937 4938 /** 4939 * cgroup_destroy_locked - the first stage of cgroup destruction 4940 * @cgrp: cgroup to be destroyed 4941 * 4942 * css's make use of percpu refcnts whose killing latency shouldn't be 4943 * exposed to userland and are RCU protected. Also, cgroup core needs to 4944 * guarantee that css_tryget_online() won't succeed by the time 4945 * ->css_offline() is invoked. To satisfy all the requirements, 4946 * destruction is implemented in the following two steps. 4947 * 4948 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all 4949 * userland visible parts and start killing the percpu refcnts of 4950 * css's. Set up so that the next stage will be kicked off once all 4951 * the percpu refcnts are confirmed to be killed. 4952 * 4953 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the 4954 * rest of destruction. Once all cgroup references are gone, the 4955 * cgroup is RCU-freed. 4956 * 4957 * This function implements s1. After this step, @cgrp is gone as far as 4958 * the userland is concerned and a new cgroup with the same name may be 4959 * created. As cgroup doesn't care about the names internally, this 4960 * doesn't cause any problem. 4961 */ 4962 static int cgroup_destroy_locked(struct cgroup *cgrp) 4963 __releases(&cgroup_mutex) __acquires(&cgroup_mutex) 4964 { 4965 struct cgroup *tcgrp, *parent = cgroup_parent(cgrp); 4966 struct cgroup_subsys_state *css; 4967 struct cgrp_cset_link *link; 4968 int ssid; 4969 4970 lockdep_assert_held(&cgroup_mutex); 4971 4972 /* 4973 * Only migration can raise populated from zero and we're already 4974 * holding cgroup_mutex. 4975 */ 4976 if (cgroup_is_populated(cgrp)) 4977 return -EBUSY; 4978 4979 /* 4980 * Make sure there's no live children. We can't test emptiness of 4981 * ->self.children as dead children linger on it while being 4982 * drained; otherwise, "rmdir parent/child parent" may fail. 4983 */ 4984 if (css_has_online_children(&cgrp->self)) 4985 return -EBUSY; 4986 4987 /* 4988 * Mark @cgrp and the associated csets dead. The former prevents 4989 * further task migration and child creation by disabling 4990 * cgroup_lock_live_group(). The latter makes the csets ignored by 4991 * the migration path. 4992 */ 4993 cgrp->self.flags &= ~CSS_ONLINE; 4994 4995 spin_lock_irq(&css_set_lock); 4996 list_for_each_entry(link, &cgrp->cset_links, cset_link) 4997 link->cset->dead = true; 4998 spin_unlock_irq(&css_set_lock); 4999 5000 /* initiate massacre of all css's */ 5001 for_each_css(css, ssid, cgrp) 5002 kill_css(css); 5003 5004 /* 5005 * Remove @cgrp directory along with the base files. @cgrp has an 5006 * extra ref on its kn. 5007 */ 5008 kernfs_remove(cgrp->kn); 5009 5010 if (parent && cgroup_is_threaded(cgrp)) 5011 parent->nr_threaded_children--; 5012 5013 for (tcgrp = cgroup_parent(cgrp); tcgrp; tcgrp = cgroup_parent(tcgrp)) { 5014 tcgrp->nr_descendants--; 5015 tcgrp->nr_dying_descendants++; 5016 } 5017 5018 cgroup1_check_for_release(parent); 5019 5020 /* put the base reference */ 5021 percpu_ref_kill(&cgrp->self.refcnt); 5022 5023 return 0; 5024 }; 5025 5026 int cgroup_rmdir(struct kernfs_node *kn) 5027 { 5028 struct cgroup *cgrp; 5029 int ret = 0; 5030 5031 cgrp = cgroup_kn_lock_live(kn, false); 5032 if (!cgrp) 5033 return 0; 5034 5035 ret = cgroup_destroy_locked(cgrp); 5036 5037 if (!ret) 5038 trace_cgroup_rmdir(cgrp); 5039 5040 cgroup_kn_unlock(kn); 5041 return ret; 5042 } 5043 5044 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = { 5045 .show_options = cgroup_show_options, 5046 .remount_fs = cgroup_remount, 5047 .mkdir = cgroup_mkdir, 5048 .rmdir = cgroup_rmdir, 5049 .show_path = cgroup_show_path, 5050 }; 5051 5052 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early) 5053 { 5054 struct cgroup_subsys_state *css; 5055 5056 pr_debug("Initializing cgroup subsys %s\n", ss->name); 5057 5058 mutex_lock(&cgroup_mutex); 5059 5060 idr_init(&ss->css_idr); 5061 INIT_LIST_HEAD(&ss->cfts); 5062 5063 /* Create the root cgroup state for this subsystem */ 5064 ss->root = &cgrp_dfl_root; 5065 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss)); 5066 /* We don't handle early failures gracefully */ 5067 BUG_ON(IS_ERR(css)); 5068 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp); 5069 5070 /* 5071 * Root csses are never destroyed and we can't initialize 5072 * percpu_ref during early init. Disable refcnting. 5073 */ 5074 css->flags |= CSS_NO_REF; 5075 5076 if (early) { 5077 /* allocation can't be done safely during early init */ 5078 css->id = 1; 5079 } else { 5080 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL); 5081 BUG_ON(css->id < 0); 5082 } 5083 5084 /* Update the init_css_set to contain a subsys 5085 * pointer to this state - since the subsystem is 5086 * newly registered, all tasks and hence the 5087 * init_css_set is in the subsystem's root cgroup. */ 5088 init_css_set.subsys[ss->id] = css; 5089 5090 have_fork_callback |= (bool)ss->fork << ss->id; 5091 have_exit_callback |= (bool)ss->exit << ss->id; 5092 have_free_callback |= (bool)ss->free << ss->id; 5093 have_canfork_callback |= (bool)ss->can_fork << ss->id; 5094 5095 /* At system boot, before all subsystems have been 5096 * registered, no tasks have been forked, so we don't 5097 * need to invoke fork callbacks here. */ 5098 BUG_ON(!list_empty(&init_task.tasks)); 5099 5100 BUG_ON(online_css(css)); 5101 5102 mutex_unlock(&cgroup_mutex); 5103 } 5104 5105 /** 5106 * cgroup_init_early - cgroup initialization at system boot 5107 * 5108 * Initialize cgroups at system boot, and initialize any 5109 * subsystems that request early init. 5110 */ 5111 int __init cgroup_init_early(void) 5112 { 5113 static struct cgroup_sb_opts __initdata opts; 5114 struct cgroup_subsys *ss; 5115 int i; 5116 5117 init_cgroup_root(&cgrp_dfl_root, &opts); 5118 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF; 5119 5120 RCU_INIT_POINTER(init_task.cgroups, &init_css_set); 5121 5122 for_each_subsys(ss, i) { 5123 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id, 5124 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n", 5125 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free, 5126 ss->id, ss->name); 5127 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN, 5128 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]); 5129 5130 ss->id = i; 5131 ss->name = cgroup_subsys_name[i]; 5132 if (!ss->legacy_name) 5133 ss->legacy_name = cgroup_subsys_name[i]; 5134 5135 if (ss->early_init) 5136 cgroup_init_subsys(ss, true); 5137 } 5138 return 0; 5139 } 5140 5141 static u16 cgroup_disable_mask __initdata; 5142 5143 /** 5144 * cgroup_init - cgroup initialization 5145 * 5146 * Register cgroup filesystem and /proc file, and initialize 5147 * any subsystems that didn't request early init. 5148 */ 5149 int __init cgroup_init(void) 5150 { 5151 struct cgroup_subsys *ss; 5152 int ssid; 5153 5154 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16); 5155 BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem)); 5156 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files)); 5157 BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files)); 5158 5159 /* 5160 * The latency of the synchronize_sched() is too high for cgroups, 5161 * avoid it at the cost of forcing all readers into the slow path. 5162 */ 5163 rcu_sync_enter_start(&cgroup_threadgroup_rwsem.rss); 5164 5165 get_user_ns(init_cgroup_ns.user_ns); 5166 5167 mutex_lock(&cgroup_mutex); 5168 5169 /* 5170 * Add init_css_set to the hash table so that dfl_root can link to 5171 * it during init. 5172 */ 5173 hash_add(css_set_table, &init_css_set.hlist, 5174 css_set_hash(init_css_set.subsys)); 5175 5176 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0, 0)); 5177 5178 mutex_unlock(&cgroup_mutex); 5179 5180 for_each_subsys(ss, ssid) { 5181 if (ss->early_init) { 5182 struct cgroup_subsys_state *css = 5183 init_css_set.subsys[ss->id]; 5184 5185 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, 5186 GFP_KERNEL); 5187 BUG_ON(css->id < 0); 5188 } else { 5189 cgroup_init_subsys(ss, false); 5190 } 5191 5192 list_add_tail(&init_css_set.e_cset_node[ssid], 5193 &cgrp_dfl_root.cgrp.e_csets[ssid]); 5194 5195 /* 5196 * Setting dfl_root subsys_mask needs to consider the 5197 * disabled flag and cftype registration needs kmalloc, 5198 * both of which aren't available during early_init. 5199 */ 5200 if (cgroup_disable_mask & (1 << ssid)) { 5201 static_branch_disable(cgroup_subsys_enabled_key[ssid]); 5202 printk(KERN_INFO "Disabling %s control group subsystem\n", 5203 ss->name); 5204 continue; 5205 } 5206 5207 if (cgroup1_ssid_disabled(ssid)) 5208 printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n", 5209 ss->name); 5210 5211 cgrp_dfl_root.subsys_mask |= 1 << ss->id; 5212 5213 /* implicit controllers must be threaded too */ 5214 WARN_ON(ss->implicit_on_dfl && !ss->threaded); 5215 5216 if (ss->implicit_on_dfl) 5217 cgrp_dfl_implicit_ss_mask |= 1 << ss->id; 5218 else if (!ss->dfl_cftypes) 5219 cgrp_dfl_inhibit_ss_mask |= 1 << ss->id; 5220 5221 if (ss->threaded) 5222 cgrp_dfl_threaded_ss_mask |= 1 << ss->id; 5223 5224 if (ss->dfl_cftypes == ss->legacy_cftypes) { 5225 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes)); 5226 } else { 5227 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes)); 5228 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes)); 5229 } 5230 5231 if (ss->bind) 5232 ss->bind(init_css_set.subsys[ssid]); 5233 5234 mutex_lock(&cgroup_mutex); 5235 css_populate_dir(init_css_set.subsys[ssid]); 5236 mutex_unlock(&cgroup_mutex); 5237 } 5238 5239 /* init_css_set.subsys[] has been updated, re-hash */ 5240 hash_del(&init_css_set.hlist); 5241 hash_add(css_set_table, &init_css_set.hlist, 5242 css_set_hash(init_css_set.subsys)); 5243 5244 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup")); 5245 WARN_ON(register_filesystem(&cgroup_fs_type)); 5246 WARN_ON(register_filesystem(&cgroup2_fs_type)); 5247 WARN_ON(!proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations)); 5248 5249 return 0; 5250 } 5251 5252 static int __init cgroup_wq_init(void) 5253 { 5254 /* 5255 * There isn't much point in executing destruction path in 5256 * parallel. Good chunk is serialized with cgroup_mutex anyway. 5257 * Use 1 for @max_active. 5258 * 5259 * We would prefer to do this in cgroup_init() above, but that 5260 * is called before init_workqueues(): so leave this until after. 5261 */ 5262 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1); 5263 BUG_ON(!cgroup_destroy_wq); 5264 return 0; 5265 } 5266 core_initcall(cgroup_wq_init); 5267 5268 void cgroup_path_from_kernfs_id(const union kernfs_node_id *id, 5269 char *buf, size_t buflen) 5270 { 5271 struct kernfs_node *kn; 5272 5273 kn = kernfs_get_node_by_id(cgrp_dfl_root.kf_root, id); 5274 if (!kn) 5275 return; 5276 kernfs_path(kn, buf, buflen); 5277 kernfs_put(kn); 5278 } 5279 5280 /* 5281 * proc_cgroup_show() 5282 * - Print task's cgroup paths into seq_file, one line for each hierarchy 5283 * - Used for /proc/<pid>/cgroup. 5284 */ 5285 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns, 5286 struct pid *pid, struct task_struct *tsk) 5287 { 5288 char *buf; 5289 int retval; 5290 struct cgroup_root *root; 5291 5292 retval = -ENOMEM; 5293 buf = kmalloc(PATH_MAX, GFP_KERNEL); 5294 if (!buf) 5295 goto out; 5296 5297 mutex_lock(&cgroup_mutex); 5298 spin_lock_irq(&css_set_lock); 5299 5300 for_each_root(root) { 5301 struct cgroup_subsys *ss; 5302 struct cgroup *cgrp; 5303 int ssid, count = 0; 5304 5305 if (root == &cgrp_dfl_root && !cgrp_dfl_visible) 5306 continue; 5307 5308 seq_printf(m, "%d:", root->hierarchy_id); 5309 if (root != &cgrp_dfl_root) 5310 for_each_subsys(ss, ssid) 5311 if (root->subsys_mask & (1 << ssid)) 5312 seq_printf(m, "%s%s", count++ ? "," : "", 5313 ss->legacy_name); 5314 if (strlen(root->name)) 5315 seq_printf(m, "%sname=%s", count ? "," : "", 5316 root->name); 5317 seq_putc(m, ':'); 5318 5319 cgrp = task_cgroup_from_root(tsk, root); 5320 5321 /* 5322 * On traditional hierarchies, all zombie tasks show up as 5323 * belonging to the root cgroup. On the default hierarchy, 5324 * while a zombie doesn't show up in "cgroup.procs" and 5325 * thus can't be migrated, its /proc/PID/cgroup keeps 5326 * reporting the cgroup it belonged to before exiting. If 5327 * the cgroup is removed before the zombie is reaped, 5328 * " (deleted)" is appended to the cgroup path. 5329 */ 5330 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) { 5331 retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX, 5332 current->nsproxy->cgroup_ns); 5333 if (retval >= PATH_MAX) 5334 retval = -ENAMETOOLONG; 5335 if (retval < 0) 5336 goto out_unlock; 5337 5338 seq_puts(m, buf); 5339 } else { 5340 seq_puts(m, "/"); 5341 } 5342 5343 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp)) 5344 seq_puts(m, " (deleted)\n"); 5345 else 5346 seq_putc(m, '\n'); 5347 } 5348 5349 retval = 0; 5350 out_unlock: 5351 spin_unlock_irq(&css_set_lock); 5352 mutex_unlock(&cgroup_mutex); 5353 kfree(buf); 5354 out: 5355 return retval; 5356 } 5357 5358 /** 5359 * cgroup_fork - initialize cgroup related fields during copy_process() 5360 * @child: pointer to task_struct of forking parent process. 5361 * 5362 * A task is associated with the init_css_set until cgroup_post_fork() 5363 * attaches it to the parent's css_set. Empty cg_list indicates that 5364 * @child isn't holding reference to its css_set. 5365 */ 5366 void cgroup_fork(struct task_struct *child) 5367 { 5368 RCU_INIT_POINTER(child->cgroups, &init_css_set); 5369 INIT_LIST_HEAD(&child->cg_list); 5370 } 5371 5372 /** 5373 * cgroup_can_fork - called on a new task before the process is exposed 5374 * @child: the task in question. 5375 * 5376 * This calls the subsystem can_fork() callbacks. If the can_fork() callback 5377 * returns an error, the fork aborts with that error code. This allows for 5378 * a cgroup subsystem to conditionally allow or deny new forks. 5379 */ 5380 int cgroup_can_fork(struct task_struct *child) 5381 { 5382 struct cgroup_subsys *ss; 5383 int i, j, ret; 5384 5385 do_each_subsys_mask(ss, i, have_canfork_callback) { 5386 ret = ss->can_fork(child); 5387 if (ret) 5388 goto out_revert; 5389 } while_each_subsys_mask(); 5390 5391 return 0; 5392 5393 out_revert: 5394 for_each_subsys(ss, j) { 5395 if (j >= i) 5396 break; 5397 if (ss->cancel_fork) 5398 ss->cancel_fork(child); 5399 } 5400 5401 return ret; 5402 } 5403 5404 /** 5405 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork() 5406 * @child: the task in question 5407 * 5408 * This calls the cancel_fork() callbacks if a fork failed *after* 5409 * cgroup_can_fork() succeded. 5410 */ 5411 void cgroup_cancel_fork(struct task_struct *child) 5412 { 5413 struct cgroup_subsys *ss; 5414 int i; 5415 5416 for_each_subsys(ss, i) 5417 if (ss->cancel_fork) 5418 ss->cancel_fork(child); 5419 } 5420 5421 /** 5422 * cgroup_post_fork - called on a new task after adding it to the task list 5423 * @child: the task in question 5424 * 5425 * Adds the task to the list running through its css_set if necessary and 5426 * call the subsystem fork() callbacks. Has to be after the task is 5427 * visible on the task list in case we race with the first call to 5428 * cgroup_task_iter_start() - to guarantee that the new task ends up on its 5429 * list. 5430 */ 5431 void cgroup_post_fork(struct task_struct *child) 5432 { 5433 struct cgroup_subsys *ss; 5434 int i; 5435 5436 /* 5437 * This may race against cgroup_enable_task_cg_lists(). As that 5438 * function sets use_task_css_set_links before grabbing 5439 * tasklist_lock and we just went through tasklist_lock to add 5440 * @child, it's guaranteed that either we see the set 5441 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees 5442 * @child during its iteration. 5443 * 5444 * If we won the race, @child is associated with %current's 5445 * css_set. Grabbing css_set_lock guarantees both that the 5446 * association is stable, and, on completion of the parent's 5447 * migration, @child is visible in the source of migration or 5448 * already in the destination cgroup. This guarantee is necessary 5449 * when implementing operations which need to migrate all tasks of 5450 * a cgroup to another. 5451 * 5452 * Note that if we lose to cgroup_enable_task_cg_lists(), @child 5453 * will remain in init_css_set. This is safe because all tasks are 5454 * in the init_css_set before cg_links is enabled and there's no 5455 * operation which transfers all tasks out of init_css_set. 5456 */ 5457 if (use_task_css_set_links) { 5458 struct css_set *cset; 5459 5460 spin_lock_irq(&css_set_lock); 5461 cset = task_css_set(current); 5462 if (list_empty(&child->cg_list)) { 5463 get_css_set(cset); 5464 cset->nr_tasks++; 5465 css_set_move_task(child, NULL, cset, false); 5466 } 5467 spin_unlock_irq(&css_set_lock); 5468 } 5469 5470 /* 5471 * Call ss->fork(). This must happen after @child is linked on 5472 * css_set; otherwise, @child might change state between ->fork() 5473 * and addition to css_set. 5474 */ 5475 do_each_subsys_mask(ss, i, have_fork_callback) { 5476 ss->fork(child); 5477 } while_each_subsys_mask(); 5478 } 5479 5480 /** 5481 * cgroup_exit - detach cgroup from exiting task 5482 * @tsk: pointer to task_struct of exiting process 5483 * 5484 * Description: Detach cgroup from @tsk and release it. 5485 * 5486 * Note that cgroups marked notify_on_release force every task in 5487 * them to take the global cgroup_mutex mutex when exiting. 5488 * This could impact scaling on very large systems. Be reluctant to 5489 * use notify_on_release cgroups where very high task exit scaling 5490 * is required on large systems. 5491 * 5492 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We 5493 * call cgroup_exit() while the task is still competent to handle 5494 * notify_on_release(), then leave the task attached to the root cgroup in 5495 * each hierarchy for the remainder of its exit. No need to bother with 5496 * init_css_set refcnting. init_css_set never goes away and we can't race 5497 * with migration path - PF_EXITING is visible to migration path. 5498 */ 5499 void cgroup_exit(struct task_struct *tsk) 5500 { 5501 struct cgroup_subsys *ss; 5502 struct css_set *cset; 5503 int i; 5504 5505 /* 5506 * Unlink from @tsk from its css_set. As migration path can't race 5507 * with us, we can check css_set and cg_list without synchronization. 5508 */ 5509 cset = task_css_set(tsk); 5510 5511 if (!list_empty(&tsk->cg_list)) { 5512 spin_lock_irq(&css_set_lock); 5513 css_set_move_task(tsk, cset, NULL, false); 5514 cset->nr_tasks--; 5515 spin_unlock_irq(&css_set_lock); 5516 } else { 5517 get_css_set(cset); 5518 } 5519 5520 /* see cgroup_post_fork() for details */ 5521 do_each_subsys_mask(ss, i, have_exit_callback) { 5522 ss->exit(tsk); 5523 } while_each_subsys_mask(); 5524 } 5525 5526 void cgroup_free(struct task_struct *task) 5527 { 5528 struct css_set *cset = task_css_set(task); 5529 struct cgroup_subsys *ss; 5530 int ssid; 5531 5532 do_each_subsys_mask(ss, ssid, have_free_callback) { 5533 ss->free(task); 5534 } while_each_subsys_mask(); 5535 5536 put_css_set(cset); 5537 } 5538 5539 static int __init cgroup_disable(char *str) 5540 { 5541 struct cgroup_subsys *ss; 5542 char *token; 5543 int i; 5544 5545 while ((token = strsep(&str, ",")) != NULL) { 5546 if (!*token) 5547 continue; 5548 5549 for_each_subsys(ss, i) { 5550 if (strcmp(token, ss->name) && 5551 strcmp(token, ss->legacy_name)) 5552 continue; 5553 cgroup_disable_mask |= 1 << i; 5554 } 5555 } 5556 return 1; 5557 } 5558 __setup("cgroup_disable=", cgroup_disable); 5559 5560 /** 5561 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry 5562 * @dentry: directory dentry of interest 5563 * @ss: subsystem of interest 5564 * 5565 * If @dentry is a directory for a cgroup which has @ss enabled on it, try 5566 * to get the corresponding css and return it. If such css doesn't exist 5567 * or can't be pinned, an ERR_PTR value is returned. 5568 */ 5569 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry, 5570 struct cgroup_subsys *ss) 5571 { 5572 struct kernfs_node *kn = kernfs_node_from_dentry(dentry); 5573 struct file_system_type *s_type = dentry->d_sb->s_type; 5574 struct cgroup_subsys_state *css = NULL; 5575 struct cgroup *cgrp; 5576 5577 /* is @dentry a cgroup dir? */ 5578 if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) || 5579 !kn || kernfs_type(kn) != KERNFS_DIR) 5580 return ERR_PTR(-EBADF); 5581 5582 rcu_read_lock(); 5583 5584 /* 5585 * This path doesn't originate from kernfs and @kn could already 5586 * have been or be removed at any point. @kn->priv is RCU 5587 * protected for this access. See css_release_work_fn() for details. 5588 */ 5589 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); 5590 if (cgrp) 5591 css = cgroup_css(cgrp, ss); 5592 5593 if (!css || !css_tryget_online(css)) 5594 css = ERR_PTR(-ENOENT); 5595 5596 rcu_read_unlock(); 5597 return css; 5598 } 5599 5600 /** 5601 * css_from_id - lookup css by id 5602 * @id: the cgroup id 5603 * @ss: cgroup subsys to be looked into 5604 * 5605 * Returns the css if there's valid one with @id, otherwise returns NULL. 5606 * Should be called under rcu_read_lock(). 5607 */ 5608 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss) 5609 { 5610 WARN_ON_ONCE(!rcu_read_lock_held()); 5611 return idr_find(&ss->css_idr, id); 5612 } 5613 5614 /** 5615 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path 5616 * @path: path on the default hierarchy 5617 * 5618 * Find the cgroup at @path on the default hierarchy, increment its 5619 * reference count and return it. Returns pointer to the found cgroup on 5620 * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR) 5621 * if @path points to a non-directory. 5622 */ 5623 struct cgroup *cgroup_get_from_path(const char *path) 5624 { 5625 struct kernfs_node *kn; 5626 struct cgroup *cgrp; 5627 5628 mutex_lock(&cgroup_mutex); 5629 5630 kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path); 5631 if (kn) { 5632 if (kernfs_type(kn) == KERNFS_DIR) { 5633 cgrp = kn->priv; 5634 cgroup_get_live(cgrp); 5635 } else { 5636 cgrp = ERR_PTR(-ENOTDIR); 5637 } 5638 kernfs_put(kn); 5639 } else { 5640 cgrp = ERR_PTR(-ENOENT); 5641 } 5642 5643 mutex_unlock(&cgroup_mutex); 5644 return cgrp; 5645 } 5646 EXPORT_SYMBOL_GPL(cgroup_get_from_path); 5647 5648 /** 5649 * cgroup_get_from_fd - get a cgroup pointer from a fd 5650 * @fd: fd obtained by open(cgroup2_dir) 5651 * 5652 * Find the cgroup from a fd which should be obtained 5653 * by opening a cgroup directory. Returns a pointer to the 5654 * cgroup on success. ERR_PTR is returned if the cgroup 5655 * cannot be found. 5656 */ 5657 struct cgroup *cgroup_get_from_fd(int fd) 5658 { 5659 struct cgroup_subsys_state *css; 5660 struct cgroup *cgrp; 5661 struct file *f; 5662 5663 f = fget_raw(fd); 5664 if (!f) 5665 return ERR_PTR(-EBADF); 5666 5667 css = css_tryget_online_from_dir(f->f_path.dentry, NULL); 5668 fput(f); 5669 if (IS_ERR(css)) 5670 return ERR_CAST(css); 5671 5672 cgrp = css->cgroup; 5673 if (!cgroup_on_dfl(cgrp)) { 5674 cgroup_put(cgrp); 5675 return ERR_PTR(-EBADF); 5676 } 5677 5678 return cgrp; 5679 } 5680 EXPORT_SYMBOL_GPL(cgroup_get_from_fd); 5681 5682 /* 5683 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data 5684 * definition in cgroup-defs.h. 5685 */ 5686 #ifdef CONFIG_SOCK_CGROUP_DATA 5687 5688 #if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID) 5689 5690 DEFINE_SPINLOCK(cgroup_sk_update_lock); 5691 static bool cgroup_sk_alloc_disabled __read_mostly; 5692 5693 void cgroup_sk_alloc_disable(void) 5694 { 5695 if (cgroup_sk_alloc_disabled) 5696 return; 5697 pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n"); 5698 cgroup_sk_alloc_disabled = true; 5699 } 5700 5701 #else 5702 5703 #define cgroup_sk_alloc_disabled false 5704 5705 #endif 5706 5707 void cgroup_sk_alloc(struct sock_cgroup_data *skcd) 5708 { 5709 if (cgroup_sk_alloc_disabled) 5710 return; 5711 5712 /* Socket clone path */ 5713 if (skcd->val) { 5714 /* 5715 * We might be cloning a socket which is left in an empty 5716 * cgroup and the cgroup might have already been rmdir'd. 5717 * Don't use cgroup_get_live(). 5718 */ 5719 cgroup_get(sock_cgroup_ptr(skcd)); 5720 return; 5721 } 5722 5723 rcu_read_lock(); 5724 5725 while (true) { 5726 struct css_set *cset; 5727 5728 cset = task_css_set(current); 5729 if (likely(cgroup_tryget(cset->dfl_cgrp))) { 5730 skcd->val = (unsigned long)cset->dfl_cgrp; 5731 break; 5732 } 5733 cpu_relax(); 5734 } 5735 5736 rcu_read_unlock(); 5737 } 5738 5739 void cgroup_sk_free(struct sock_cgroup_data *skcd) 5740 { 5741 cgroup_put(sock_cgroup_ptr(skcd)); 5742 } 5743 5744 #endif /* CONFIG_SOCK_CGROUP_DATA */ 5745 5746 #ifdef CONFIG_CGROUP_BPF 5747 int cgroup_bpf_update(struct cgroup *cgrp, struct bpf_prog *prog, 5748 enum bpf_attach_type type, bool overridable) 5749 { 5750 struct cgroup *parent = cgroup_parent(cgrp); 5751 int ret; 5752 5753 mutex_lock(&cgroup_mutex); 5754 ret = __cgroup_bpf_update(cgrp, parent, prog, type, overridable); 5755 mutex_unlock(&cgroup_mutex); 5756 return ret; 5757 } 5758 #endif /* CONFIG_CGROUP_BPF */ 5759