1 /* 2 * Generic process-grouping system. 3 * 4 * Based originally on the cpuset system, extracted by Paul Menage 5 * Copyright (C) 2006 Google, Inc 6 * 7 * Notifications support 8 * Copyright (C) 2009 Nokia Corporation 9 * Author: Kirill A. Shutemov 10 * 11 * Copyright notices from the original cpuset code: 12 * -------------------------------------------------- 13 * Copyright (C) 2003 BULL SA. 14 * Copyright (C) 2004-2006 Silicon Graphics, Inc. 15 * 16 * Portions derived from Patrick Mochel's sysfs code. 17 * sysfs is Copyright (c) 2001-3 Patrick Mochel 18 * 19 * 2003-10-10 Written by Simon Derr. 20 * 2003-10-22 Updates by Stephen Hemminger. 21 * 2004 May-July Rework by Paul Jackson. 22 * --------------------------------------------------- 23 * 24 * This file is subject to the terms and conditions of the GNU General Public 25 * License. See the file COPYING in the main directory of the Linux 26 * distribution for more details. 27 */ 28 29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 30 31 #include "cgroup-internal.h" 32 33 #include <linux/cred.h> 34 #include <linux/errno.h> 35 #include <linux/init_task.h> 36 #include <linux/kernel.h> 37 #include <linux/magic.h> 38 #include <linux/mutex.h> 39 #include <linux/mount.h> 40 #include <linux/pagemap.h> 41 #include <linux/proc_fs.h> 42 #include <linux/rcupdate.h> 43 #include <linux/sched.h> 44 #include <linux/sched/task.h> 45 #include <linux/slab.h> 46 #include <linux/spinlock.h> 47 #include <linux/percpu-rwsem.h> 48 #include <linux/string.h> 49 #include <linux/hashtable.h> 50 #include <linux/idr.h> 51 #include <linux/kthread.h> 52 #include <linux/atomic.h> 53 #include <linux/cpuset.h> 54 #include <linux/proc_ns.h> 55 #include <linux/nsproxy.h> 56 #include <linux/file.h> 57 #include <net/sock.h> 58 59 #define CREATE_TRACE_POINTS 60 #include <trace/events/cgroup.h> 61 62 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \ 63 MAX_CFTYPE_NAME + 2) 64 65 /* 66 * cgroup_mutex is the master lock. Any modification to cgroup or its 67 * hierarchy must be performed while holding it. 68 * 69 * css_set_lock protects task->cgroups pointer, the list of css_set 70 * objects, and the chain of tasks off each css_set. 71 * 72 * These locks are exported if CONFIG_PROVE_RCU so that accessors in 73 * cgroup.h can use them for lockdep annotations. 74 */ 75 DEFINE_MUTEX(cgroup_mutex); 76 DEFINE_SPINLOCK(css_set_lock); 77 78 #ifdef CONFIG_PROVE_RCU 79 EXPORT_SYMBOL_GPL(cgroup_mutex); 80 EXPORT_SYMBOL_GPL(css_set_lock); 81 #endif 82 83 /* 84 * Protects cgroup_idr and css_idr so that IDs can be released without 85 * grabbing cgroup_mutex. 86 */ 87 static DEFINE_SPINLOCK(cgroup_idr_lock); 88 89 /* 90 * Protects cgroup_file->kn for !self csses. It synchronizes notifications 91 * against file removal/re-creation across css hiding. 92 */ 93 static DEFINE_SPINLOCK(cgroup_file_kn_lock); 94 95 struct percpu_rw_semaphore cgroup_threadgroup_rwsem; 96 97 #define cgroup_assert_mutex_or_rcu_locked() \ 98 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \ 99 !lockdep_is_held(&cgroup_mutex), \ 100 "cgroup_mutex or RCU read lock required"); 101 102 /* 103 * cgroup destruction makes heavy use of work items and there can be a lot 104 * of concurrent destructions. Use a separate workqueue so that cgroup 105 * destruction work items don't end up filling up max_active of system_wq 106 * which may lead to deadlock. 107 */ 108 static struct workqueue_struct *cgroup_destroy_wq; 109 110 /* generate an array of cgroup subsystem pointers */ 111 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys, 112 struct cgroup_subsys *cgroup_subsys[] = { 113 #include <linux/cgroup_subsys.h> 114 }; 115 #undef SUBSYS 116 117 /* array of cgroup subsystem names */ 118 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x, 119 static const char *cgroup_subsys_name[] = { 120 #include <linux/cgroup_subsys.h> 121 }; 122 #undef SUBSYS 123 124 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */ 125 #define SUBSYS(_x) \ 126 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \ 127 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \ 128 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \ 129 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key); 130 #include <linux/cgroup_subsys.h> 131 #undef SUBSYS 132 133 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key, 134 static struct static_key_true *cgroup_subsys_enabled_key[] = { 135 #include <linux/cgroup_subsys.h> 136 }; 137 #undef SUBSYS 138 139 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key, 140 static struct static_key_true *cgroup_subsys_on_dfl_key[] = { 141 #include <linux/cgroup_subsys.h> 142 }; 143 #undef SUBSYS 144 145 /* 146 * The default hierarchy, reserved for the subsystems that are otherwise 147 * unattached - it never has more than a single cgroup, and all tasks are 148 * part of that cgroup. 149 */ 150 struct cgroup_root cgrp_dfl_root; 151 EXPORT_SYMBOL_GPL(cgrp_dfl_root); 152 153 /* 154 * The default hierarchy always exists but is hidden until mounted for the 155 * first time. This is for backward compatibility. 156 */ 157 static bool cgrp_dfl_visible; 158 159 /* some controllers are not supported in the default hierarchy */ 160 static u16 cgrp_dfl_inhibit_ss_mask; 161 162 /* some controllers are implicitly enabled on the default hierarchy */ 163 static u16 cgrp_dfl_implicit_ss_mask; 164 165 /* some controllers can be threaded on the default hierarchy */ 166 static u16 cgrp_dfl_threaded_ss_mask; 167 168 /* The list of hierarchy roots */ 169 LIST_HEAD(cgroup_roots); 170 static int cgroup_root_count; 171 172 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */ 173 static DEFINE_IDR(cgroup_hierarchy_idr); 174 175 /* 176 * Assign a monotonically increasing serial number to csses. It guarantees 177 * cgroups with bigger numbers are newer than those with smaller numbers. 178 * Also, as csses are always appended to the parent's ->children list, it 179 * guarantees that sibling csses are always sorted in the ascending serial 180 * number order on the list. Protected by cgroup_mutex. 181 */ 182 static u64 css_serial_nr_next = 1; 183 184 /* 185 * These bitmasks identify subsystems with specific features to avoid 186 * having to do iterative checks repeatedly. 187 */ 188 static u16 have_fork_callback __read_mostly; 189 static u16 have_exit_callback __read_mostly; 190 static u16 have_free_callback __read_mostly; 191 static u16 have_canfork_callback __read_mostly; 192 193 /* cgroup namespace for init task */ 194 struct cgroup_namespace init_cgroup_ns = { 195 .count = REFCOUNT_INIT(2), 196 .user_ns = &init_user_ns, 197 .ns.ops = &cgroupns_operations, 198 .ns.inum = PROC_CGROUP_INIT_INO, 199 .root_cset = &init_css_set, 200 }; 201 202 static struct file_system_type cgroup2_fs_type; 203 static struct cftype cgroup_base_files[]; 204 205 static int cgroup_apply_control(struct cgroup *cgrp); 206 static void cgroup_finalize_control(struct cgroup *cgrp, int ret); 207 static void css_task_iter_advance(struct css_task_iter *it); 208 static int cgroup_destroy_locked(struct cgroup *cgrp); 209 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp, 210 struct cgroup_subsys *ss); 211 static void css_release(struct percpu_ref *ref); 212 static void kill_css(struct cgroup_subsys_state *css); 213 static int cgroup_addrm_files(struct cgroup_subsys_state *css, 214 struct cgroup *cgrp, struct cftype cfts[], 215 bool is_add); 216 217 /** 218 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID 219 * @ssid: subsys ID of interest 220 * 221 * cgroup_subsys_enabled() can only be used with literal subsys names which 222 * is fine for individual subsystems but unsuitable for cgroup core. This 223 * is slower static_key_enabled() based test indexed by @ssid. 224 */ 225 bool cgroup_ssid_enabled(int ssid) 226 { 227 if (CGROUP_SUBSYS_COUNT == 0) 228 return false; 229 230 return static_key_enabled(cgroup_subsys_enabled_key[ssid]); 231 } 232 233 /** 234 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy 235 * @cgrp: the cgroup of interest 236 * 237 * The default hierarchy is the v2 interface of cgroup and this function 238 * can be used to test whether a cgroup is on the default hierarchy for 239 * cases where a subsystem should behave differnetly depending on the 240 * interface version. 241 * 242 * The set of behaviors which change on the default hierarchy are still 243 * being determined and the mount option is prefixed with __DEVEL__. 244 * 245 * List of changed behaviors: 246 * 247 * - Mount options "noprefix", "xattr", "clone_children", "release_agent" 248 * and "name" are disallowed. 249 * 250 * - When mounting an existing superblock, mount options should match. 251 * 252 * - Remount is disallowed. 253 * 254 * - rename(2) is disallowed. 255 * 256 * - "tasks" is removed. Everything should be at process granularity. Use 257 * "cgroup.procs" instead. 258 * 259 * - "cgroup.procs" is not sorted. pids will be unique unless they got 260 * recycled inbetween reads. 261 * 262 * - "release_agent" and "notify_on_release" are removed. Replacement 263 * notification mechanism will be implemented. 264 * 265 * - "cgroup.clone_children" is removed. 266 * 267 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup 268 * and its descendants contain no task; otherwise, 1. The file also 269 * generates kernfs notification which can be monitored through poll and 270 * [di]notify when the value of the file changes. 271 * 272 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and 273 * take masks of ancestors with non-empty cpus/mems, instead of being 274 * moved to an ancestor. 275 * 276 * - cpuset: a task can be moved into an empty cpuset, and again it takes 277 * masks of ancestors. 278 * 279 * - memcg: use_hierarchy is on by default and the cgroup file for the flag 280 * is not created. 281 * 282 * - blkcg: blk-throttle becomes properly hierarchical. 283 * 284 * - debug: disallowed on the default hierarchy. 285 */ 286 bool cgroup_on_dfl(const struct cgroup *cgrp) 287 { 288 return cgrp->root == &cgrp_dfl_root; 289 } 290 291 /* IDR wrappers which synchronize using cgroup_idr_lock */ 292 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end, 293 gfp_t gfp_mask) 294 { 295 int ret; 296 297 idr_preload(gfp_mask); 298 spin_lock_bh(&cgroup_idr_lock); 299 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM); 300 spin_unlock_bh(&cgroup_idr_lock); 301 idr_preload_end(); 302 return ret; 303 } 304 305 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id) 306 { 307 void *ret; 308 309 spin_lock_bh(&cgroup_idr_lock); 310 ret = idr_replace(idr, ptr, id); 311 spin_unlock_bh(&cgroup_idr_lock); 312 return ret; 313 } 314 315 static void cgroup_idr_remove(struct idr *idr, int id) 316 { 317 spin_lock_bh(&cgroup_idr_lock); 318 idr_remove(idr, id); 319 spin_unlock_bh(&cgroup_idr_lock); 320 } 321 322 static bool cgroup_has_tasks(struct cgroup *cgrp) 323 { 324 return cgrp->nr_populated_csets; 325 } 326 327 bool cgroup_is_threaded(struct cgroup *cgrp) 328 { 329 return cgrp->dom_cgrp != cgrp; 330 } 331 332 /* can @cgrp host both domain and threaded children? */ 333 static bool cgroup_is_mixable(struct cgroup *cgrp) 334 { 335 /* 336 * Root isn't under domain level resource control exempting it from 337 * the no-internal-process constraint, so it can serve as a thread 338 * root and a parent of resource domains at the same time. 339 */ 340 return !cgroup_parent(cgrp); 341 } 342 343 /* can @cgrp become a thread root? should always be true for a thread root */ 344 static bool cgroup_can_be_thread_root(struct cgroup *cgrp) 345 { 346 /* mixables don't care */ 347 if (cgroup_is_mixable(cgrp)) 348 return true; 349 350 /* domain roots can't be nested under threaded */ 351 if (cgroup_is_threaded(cgrp)) 352 return false; 353 354 /* can only have either domain or threaded children */ 355 if (cgrp->nr_populated_domain_children) 356 return false; 357 358 /* and no domain controllers can be enabled */ 359 if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask) 360 return false; 361 362 return true; 363 } 364 365 /* is @cgrp root of a threaded subtree? */ 366 bool cgroup_is_thread_root(struct cgroup *cgrp) 367 { 368 /* thread root should be a domain */ 369 if (cgroup_is_threaded(cgrp)) 370 return false; 371 372 /* a domain w/ threaded children is a thread root */ 373 if (cgrp->nr_threaded_children) 374 return true; 375 376 /* 377 * A domain which has tasks and explicit threaded controllers 378 * enabled is a thread root. 379 */ 380 if (cgroup_has_tasks(cgrp) && 381 (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask)) 382 return true; 383 384 return false; 385 } 386 387 /* a domain which isn't connected to the root w/o brekage can't be used */ 388 static bool cgroup_is_valid_domain(struct cgroup *cgrp) 389 { 390 /* the cgroup itself can be a thread root */ 391 if (cgroup_is_threaded(cgrp)) 392 return false; 393 394 /* but the ancestors can't be unless mixable */ 395 while ((cgrp = cgroup_parent(cgrp))) { 396 if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp)) 397 return false; 398 if (cgroup_is_threaded(cgrp)) 399 return false; 400 } 401 402 return true; 403 } 404 405 /* subsystems visibly enabled on a cgroup */ 406 static u16 cgroup_control(struct cgroup *cgrp) 407 { 408 struct cgroup *parent = cgroup_parent(cgrp); 409 u16 root_ss_mask = cgrp->root->subsys_mask; 410 411 if (parent) { 412 u16 ss_mask = parent->subtree_control; 413 414 /* threaded cgroups can only have threaded controllers */ 415 if (cgroup_is_threaded(cgrp)) 416 ss_mask &= cgrp_dfl_threaded_ss_mask; 417 return ss_mask; 418 } 419 420 if (cgroup_on_dfl(cgrp)) 421 root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask | 422 cgrp_dfl_implicit_ss_mask); 423 return root_ss_mask; 424 } 425 426 /* subsystems enabled on a cgroup */ 427 static u16 cgroup_ss_mask(struct cgroup *cgrp) 428 { 429 struct cgroup *parent = cgroup_parent(cgrp); 430 431 if (parent) { 432 u16 ss_mask = parent->subtree_ss_mask; 433 434 /* threaded cgroups can only have threaded controllers */ 435 if (cgroup_is_threaded(cgrp)) 436 ss_mask &= cgrp_dfl_threaded_ss_mask; 437 return ss_mask; 438 } 439 440 return cgrp->root->subsys_mask; 441 } 442 443 /** 444 * cgroup_css - obtain a cgroup's css for the specified subsystem 445 * @cgrp: the cgroup of interest 446 * @ss: the subsystem of interest (%NULL returns @cgrp->self) 447 * 448 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This 449 * function must be called either under cgroup_mutex or rcu_read_lock() and 450 * the caller is responsible for pinning the returned css if it wants to 451 * keep accessing it outside the said locks. This function may return 452 * %NULL if @cgrp doesn't have @subsys_id enabled. 453 */ 454 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp, 455 struct cgroup_subsys *ss) 456 { 457 if (ss) 458 return rcu_dereference_check(cgrp->subsys[ss->id], 459 lockdep_is_held(&cgroup_mutex)); 460 else 461 return &cgrp->self; 462 } 463 464 /** 465 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem 466 * @cgrp: the cgroup of interest 467 * @ss: the subsystem of interest (%NULL returns @cgrp->self) 468 * 469 * Similar to cgroup_css() but returns the effective css, which is defined 470 * as the matching css of the nearest ancestor including self which has @ss 471 * enabled. If @ss is associated with the hierarchy @cgrp is on, this 472 * function is guaranteed to return non-NULL css. 473 */ 474 static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp, 475 struct cgroup_subsys *ss) 476 { 477 lockdep_assert_held(&cgroup_mutex); 478 479 if (!ss) 480 return &cgrp->self; 481 482 /* 483 * This function is used while updating css associations and thus 484 * can't test the csses directly. Test ss_mask. 485 */ 486 while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) { 487 cgrp = cgroup_parent(cgrp); 488 if (!cgrp) 489 return NULL; 490 } 491 492 return cgroup_css(cgrp, ss); 493 } 494 495 /** 496 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem 497 * @cgrp: the cgroup of interest 498 * @ss: the subsystem of interest 499 * 500 * Find and get the effective css of @cgrp for @ss. The effective css is 501 * defined as the matching css of the nearest ancestor including self which 502 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on, 503 * the root css is returned, so this function always returns a valid css. 504 * The returned css must be put using css_put(). 505 */ 506 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp, 507 struct cgroup_subsys *ss) 508 { 509 struct cgroup_subsys_state *css; 510 511 rcu_read_lock(); 512 513 do { 514 css = cgroup_css(cgrp, ss); 515 516 if (css && css_tryget_online(css)) 517 goto out_unlock; 518 cgrp = cgroup_parent(cgrp); 519 } while (cgrp); 520 521 css = init_css_set.subsys[ss->id]; 522 css_get(css); 523 out_unlock: 524 rcu_read_unlock(); 525 return css; 526 } 527 528 static void cgroup_get_live(struct cgroup *cgrp) 529 { 530 WARN_ON_ONCE(cgroup_is_dead(cgrp)); 531 css_get(&cgrp->self); 532 } 533 534 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of) 535 { 536 struct cgroup *cgrp = of->kn->parent->priv; 537 struct cftype *cft = of_cft(of); 538 539 /* 540 * This is open and unprotected implementation of cgroup_css(). 541 * seq_css() is only called from a kernfs file operation which has 542 * an active reference on the file. Because all the subsystem 543 * files are drained before a css is disassociated with a cgroup, 544 * the matching css from the cgroup's subsys table is guaranteed to 545 * be and stay valid until the enclosing operation is complete. 546 */ 547 if (cft->ss) 548 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]); 549 else 550 return &cgrp->self; 551 } 552 EXPORT_SYMBOL_GPL(of_css); 553 554 /** 555 * for_each_css - iterate all css's of a cgroup 556 * @css: the iteration cursor 557 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end 558 * @cgrp: the target cgroup to iterate css's of 559 * 560 * Should be called under cgroup_[tree_]mutex. 561 */ 562 #define for_each_css(css, ssid, cgrp) \ 563 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \ 564 if (!((css) = rcu_dereference_check( \ 565 (cgrp)->subsys[(ssid)], \ 566 lockdep_is_held(&cgroup_mutex)))) { } \ 567 else 568 569 /** 570 * for_each_e_css - iterate all effective css's of a cgroup 571 * @css: the iteration cursor 572 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end 573 * @cgrp: the target cgroup to iterate css's of 574 * 575 * Should be called under cgroup_[tree_]mutex. 576 */ 577 #define for_each_e_css(css, ssid, cgrp) \ 578 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \ 579 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \ 580 ; \ 581 else 582 583 /** 584 * do_each_subsys_mask - filter for_each_subsys with a bitmask 585 * @ss: the iteration cursor 586 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end 587 * @ss_mask: the bitmask 588 * 589 * The block will only run for cases where the ssid-th bit (1 << ssid) of 590 * @ss_mask is set. 591 */ 592 #define do_each_subsys_mask(ss, ssid, ss_mask) do { \ 593 unsigned long __ss_mask = (ss_mask); \ 594 if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */ \ 595 (ssid) = 0; \ 596 break; \ 597 } \ 598 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \ 599 (ss) = cgroup_subsys[ssid]; \ 600 { 601 602 #define while_each_subsys_mask() \ 603 } \ 604 } \ 605 } while (false) 606 607 /* iterate over child cgrps, lock should be held throughout iteration */ 608 #define cgroup_for_each_live_child(child, cgrp) \ 609 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \ 610 if (({ lockdep_assert_held(&cgroup_mutex); \ 611 cgroup_is_dead(child); })) \ 612 ; \ 613 else 614 615 /* walk live descendants in preorder */ 616 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \ 617 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \ 618 if (({ lockdep_assert_held(&cgroup_mutex); \ 619 (dsct) = (d_css)->cgroup; \ 620 cgroup_is_dead(dsct); })) \ 621 ; \ 622 else 623 624 /* walk live descendants in postorder */ 625 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \ 626 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \ 627 if (({ lockdep_assert_held(&cgroup_mutex); \ 628 (dsct) = (d_css)->cgroup; \ 629 cgroup_is_dead(dsct); })) \ 630 ; \ 631 else 632 633 /* 634 * The default css_set - used by init and its children prior to any 635 * hierarchies being mounted. It contains a pointer to the root state 636 * for each subsystem. Also used to anchor the list of css_sets. Not 637 * reference-counted, to improve performance when child cgroups 638 * haven't been created. 639 */ 640 struct css_set init_css_set = { 641 .refcount = REFCOUNT_INIT(1), 642 .dom_cset = &init_css_set, 643 .tasks = LIST_HEAD_INIT(init_css_set.tasks), 644 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks), 645 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters), 646 .threaded_csets = LIST_HEAD_INIT(init_css_set.threaded_csets), 647 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links), 648 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node), 649 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node), 650 }; 651 652 static int css_set_count = 1; /* 1 for init_css_set */ 653 654 static bool css_set_threaded(struct css_set *cset) 655 { 656 return cset->dom_cset != cset; 657 } 658 659 /** 660 * css_set_populated - does a css_set contain any tasks? 661 * @cset: target css_set 662 * 663 * css_set_populated() should be the same as !!cset->nr_tasks at steady 664 * state. However, css_set_populated() can be called while a task is being 665 * added to or removed from the linked list before the nr_tasks is 666 * properly updated. Hence, we can't just look at ->nr_tasks here. 667 */ 668 static bool css_set_populated(struct css_set *cset) 669 { 670 lockdep_assert_held(&css_set_lock); 671 672 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks); 673 } 674 675 /** 676 * cgroup_update_populated - update the populated count of a cgroup 677 * @cgrp: the target cgroup 678 * @populated: inc or dec populated count 679 * 680 * One of the css_sets associated with @cgrp is either getting its first 681 * task or losing the last. Update @cgrp->nr_populated_* accordingly. The 682 * count is propagated towards root so that a given cgroup's 683 * nr_populated_children is zero iff none of its descendants contain any 684 * tasks. 685 * 686 * @cgrp's interface file "cgroup.populated" is zero if both 687 * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and 688 * 1 otherwise. When the sum changes from or to zero, userland is notified 689 * that the content of the interface file has changed. This can be used to 690 * detect when @cgrp and its descendants become populated or empty. 691 */ 692 static void cgroup_update_populated(struct cgroup *cgrp, bool populated) 693 { 694 struct cgroup *child = NULL; 695 int adj = populated ? 1 : -1; 696 697 lockdep_assert_held(&css_set_lock); 698 699 do { 700 bool was_populated = cgroup_is_populated(cgrp); 701 702 if (!child) { 703 cgrp->nr_populated_csets += adj; 704 } else { 705 if (cgroup_is_threaded(child)) 706 cgrp->nr_populated_threaded_children += adj; 707 else 708 cgrp->nr_populated_domain_children += adj; 709 } 710 711 if (was_populated == cgroup_is_populated(cgrp)) 712 break; 713 714 cgroup1_check_for_release(cgrp); 715 cgroup_file_notify(&cgrp->events_file); 716 717 child = cgrp; 718 cgrp = cgroup_parent(cgrp); 719 } while (cgrp); 720 } 721 722 /** 723 * css_set_update_populated - update populated state of a css_set 724 * @cset: target css_set 725 * @populated: whether @cset is populated or depopulated 726 * 727 * @cset is either getting the first task or losing the last. Update the 728 * populated counters of all associated cgroups accordingly. 729 */ 730 static void css_set_update_populated(struct css_set *cset, bool populated) 731 { 732 struct cgrp_cset_link *link; 733 734 lockdep_assert_held(&css_set_lock); 735 736 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) 737 cgroup_update_populated(link->cgrp, populated); 738 } 739 740 /** 741 * css_set_move_task - move a task from one css_set to another 742 * @task: task being moved 743 * @from_cset: css_set @task currently belongs to (may be NULL) 744 * @to_cset: new css_set @task is being moved to (may be NULL) 745 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks 746 * 747 * Move @task from @from_cset to @to_cset. If @task didn't belong to any 748 * css_set, @from_cset can be NULL. If @task is being disassociated 749 * instead of moved, @to_cset can be NULL. 750 * 751 * This function automatically handles populated counter updates and 752 * css_task_iter adjustments but the caller is responsible for managing 753 * @from_cset and @to_cset's reference counts. 754 */ 755 static void css_set_move_task(struct task_struct *task, 756 struct css_set *from_cset, struct css_set *to_cset, 757 bool use_mg_tasks) 758 { 759 lockdep_assert_held(&css_set_lock); 760 761 if (to_cset && !css_set_populated(to_cset)) 762 css_set_update_populated(to_cset, true); 763 764 if (from_cset) { 765 struct css_task_iter *it, *pos; 766 767 WARN_ON_ONCE(list_empty(&task->cg_list)); 768 769 /* 770 * @task is leaving, advance task iterators which are 771 * pointing to it so that they can resume at the next 772 * position. Advancing an iterator might remove it from 773 * the list, use safe walk. See css_task_iter_advance*() 774 * for details. 775 */ 776 list_for_each_entry_safe(it, pos, &from_cset->task_iters, 777 iters_node) 778 if (it->task_pos == &task->cg_list) 779 css_task_iter_advance(it); 780 781 list_del_init(&task->cg_list); 782 if (!css_set_populated(from_cset)) 783 css_set_update_populated(from_cset, false); 784 } else { 785 WARN_ON_ONCE(!list_empty(&task->cg_list)); 786 } 787 788 if (to_cset) { 789 /* 790 * We are synchronized through cgroup_threadgroup_rwsem 791 * against PF_EXITING setting such that we can't race 792 * against cgroup_exit() changing the css_set to 793 * init_css_set and dropping the old one. 794 */ 795 WARN_ON_ONCE(task->flags & PF_EXITING); 796 797 rcu_assign_pointer(task->cgroups, to_cset); 798 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks : 799 &to_cset->tasks); 800 } 801 } 802 803 /* 804 * hash table for cgroup groups. This improves the performance to find 805 * an existing css_set. This hash doesn't (currently) take into 806 * account cgroups in empty hierarchies. 807 */ 808 #define CSS_SET_HASH_BITS 7 809 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS); 810 811 static unsigned long css_set_hash(struct cgroup_subsys_state *css[]) 812 { 813 unsigned long key = 0UL; 814 struct cgroup_subsys *ss; 815 int i; 816 817 for_each_subsys(ss, i) 818 key += (unsigned long)css[i]; 819 key = (key >> 16) ^ key; 820 821 return key; 822 } 823 824 void put_css_set_locked(struct css_set *cset) 825 { 826 struct cgrp_cset_link *link, *tmp_link; 827 struct cgroup_subsys *ss; 828 int ssid; 829 830 lockdep_assert_held(&css_set_lock); 831 832 if (!refcount_dec_and_test(&cset->refcount)) 833 return; 834 835 WARN_ON_ONCE(!list_empty(&cset->threaded_csets)); 836 837 /* This css_set is dead. unlink it and release cgroup and css refs */ 838 for_each_subsys(ss, ssid) { 839 list_del(&cset->e_cset_node[ssid]); 840 css_put(cset->subsys[ssid]); 841 } 842 hash_del(&cset->hlist); 843 css_set_count--; 844 845 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) { 846 list_del(&link->cset_link); 847 list_del(&link->cgrp_link); 848 if (cgroup_parent(link->cgrp)) 849 cgroup_put(link->cgrp); 850 kfree(link); 851 } 852 853 if (css_set_threaded(cset)) { 854 list_del(&cset->threaded_csets_node); 855 put_css_set_locked(cset->dom_cset); 856 } 857 858 kfree_rcu(cset, rcu_head); 859 } 860 861 /** 862 * compare_css_sets - helper function for find_existing_css_set(). 863 * @cset: candidate css_set being tested 864 * @old_cset: existing css_set for a task 865 * @new_cgrp: cgroup that's being entered by the task 866 * @template: desired set of css pointers in css_set (pre-calculated) 867 * 868 * Returns true if "cset" matches "old_cset" except for the hierarchy 869 * which "new_cgrp" belongs to, for which it should match "new_cgrp". 870 */ 871 static bool compare_css_sets(struct css_set *cset, 872 struct css_set *old_cset, 873 struct cgroup *new_cgrp, 874 struct cgroup_subsys_state *template[]) 875 { 876 struct cgroup *new_dfl_cgrp; 877 struct list_head *l1, *l2; 878 879 /* 880 * On the default hierarchy, there can be csets which are 881 * associated with the same set of cgroups but different csses. 882 * Let's first ensure that csses match. 883 */ 884 if (memcmp(template, cset->subsys, sizeof(cset->subsys))) 885 return false; 886 887 888 /* @cset's domain should match the default cgroup's */ 889 if (cgroup_on_dfl(new_cgrp)) 890 new_dfl_cgrp = new_cgrp; 891 else 892 new_dfl_cgrp = old_cset->dfl_cgrp; 893 894 if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp) 895 return false; 896 897 /* 898 * Compare cgroup pointers in order to distinguish between 899 * different cgroups in hierarchies. As different cgroups may 900 * share the same effective css, this comparison is always 901 * necessary. 902 */ 903 l1 = &cset->cgrp_links; 904 l2 = &old_cset->cgrp_links; 905 while (1) { 906 struct cgrp_cset_link *link1, *link2; 907 struct cgroup *cgrp1, *cgrp2; 908 909 l1 = l1->next; 910 l2 = l2->next; 911 /* See if we reached the end - both lists are equal length. */ 912 if (l1 == &cset->cgrp_links) { 913 BUG_ON(l2 != &old_cset->cgrp_links); 914 break; 915 } else { 916 BUG_ON(l2 == &old_cset->cgrp_links); 917 } 918 /* Locate the cgroups associated with these links. */ 919 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link); 920 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link); 921 cgrp1 = link1->cgrp; 922 cgrp2 = link2->cgrp; 923 /* Hierarchies should be linked in the same order. */ 924 BUG_ON(cgrp1->root != cgrp2->root); 925 926 /* 927 * If this hierarchy is the hierarchy of the cgroup 928 * that's changing, then we need to check that this 929 * css_set points to the new cgroup; if it's any other 930 * hierarchy, then this css_set should point to the 931 * same cgroup as the old css_set. 932 */ 933 if (cgrp1->root == new_cgrp->root) { 934 if (cgrp1 != new_cgrp) 935 return false; 936 } else { 937 if (cgrp1 != cgrp2) 938 return false; 939 } 940 } 941 return true; 942 } 943 944 /** 945 * find_existing_css_set - init css array and find the matching css_set 946 * @old_cset: the css_set that we're using before the cgroup transition 947 * @cgrp: the cgroup that we're moving into 948 * @template: out param for the new set of csses, should be clear on entry 949 */ 950 static struct css_set *find_existing_css_set(struct css_set *old_cset, 951 struct cgroup *cgrp, 952 struct cgroup_subsys_state *template[]) 953 { 954 struct cgroup_root *root = cgrp->root; 955 struct cgroup_subsys *ss; 956 struct css_set *cset; 957 unsigned long key; 958 int i; 959 960 /* 961 * Build the set of subsystem state objects that we want to see in the 962 * new css_set. while subsystems can change globally, the entries here 963 * won't change, so no need for locking. 964 */ 965 for_each_subsys(ss, i) { 966 if (root->subsys_mask & (1UL << i)) { 967 /* 968 * @ss is in this hierarchy, so we want the 969 * effective css from @cgrp. 970 */ 971 template[i] = cgroup_e_css(cgrp, ss); 972 } else { 973 /* 974 * @ss is not in this hierarchy, so we don't want 975 * to change the css. 976 */ 977 template[i] = old_cset->subsys[i]; 978 } 979 } 980 981 key = css_set_hash(template); 982 hash_for_each_possible(css_set_table, cset, hlist, key) { 983 if (!compare_css_sets(cset, old_cset, cgrp, template)) 984 continue; 985 986 /* This css_set matches what we need */ 987 return cset; 988 } 989 990 /* No existing cgroup group matched */ 991 return NULL; 992 } 993 994 static void free_cgrp_cset_links(struct list_head *links_to_free) 995 { 996 struct cgrp_cset_link *link, *tmp_link; 997 998 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) { 999 list_del(&link->cset_link); 1000 kfree(link); 1001 } 1002 } 1003 1004 /** 1005 * allocate_cgrp_cset_links - allocate cgrp_cset_links 1006 * @count: the number of links to allocate 1007 * @tmp_links: list_head the allocated links are put on 1008 * 1009 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links 1010 * through ->cset_link. Returns 0 on success or -errno. 1011 */ 1012 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links) 1013 { 1014 struct cgrp_cset_link *link; 1015 int i; 1016 1017 INIT_LIST_HEAD(tmp_links); 1018 1019 for (i = 0; i < count; i++) { 1020 link = kzalloc(sizeof(*link), GFP_KERNEL); 1021 if (!link) { 1022 free_cgrp_cset_links(tmp_links); 1023 return -ENOMEM; 1024 } 1025 list_add(&link->cset_link, tmp_links); 1026 } 1027 return 0; 1028 } 1029 1030 /** 1031 * link_css_set - a helper function to link a css_set to a cgroup 1032 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links() 1033 * @cset: the css_set to be linked 1034 * @cgrp: the destination cgroup 1035 */ 1036 static void link_css_set(struct list_head *tmp_links, struct css_set *cset, 1037 struct cgroup *cgrp) 1038 { 1039 struct cgrp_cset_link *link; 1040 1041 BUG_ON(list_empty(tmp_links)); 1042 1043 if (cgroup_on_dfl(cgrp)) 1044 cset->dfl_cgrp = cgrp; 1045 1046 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link); 1047 link->cset = cset; 1048 link->cgrp = cgrp; 1049 1050 /* 1051 * Always add links to the tail of the lists so that the lists are 1052 * in choronological order. 1053 */ 1054 list_move_tail(&link->cset_link, &cgrp->cset_links); 1055 list_add_tail(&link->cgrp_link, &cset->cgrp_links); 1056 1057 if (cgroup_parent(cgrp)) 1058 cgroup_get_live(cgrp); 1059 } 1060 1061 /** 1062 * find_css_set - return a new css_set with one cgroup updated 1063 * @old_cset: the baseline css_set 1064 * @cgrp: the cgroup to be updated 1065 * 1066 * Return a new css_set that's equivalent to @old_cset, but with @cgrp 1067 * substituted into the appropriate hierarchy. 1068 */ 1069 static struct css_set *find_css_set(struct css_set *old_cset, 1070 struct cgroup *cgrp) 1071 { 1072 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { }; 1073 struct css_set *cset; 1074 struct list_head tmp_links; 1075 struct cgrp_cset_link *link; 1076 struct cgroup_subsys *ss; 1077 unsigned long key; 1078 int ssid; 1079 1080 lockdep_assert_held(&cgroup_mutex); 1081 1082 /* First see if we already have a cgroup group that matches 1083 * the desired set */ 1084 spin_lock_irq(&css_set_lock); 1085 cset = find_existing_css_set(old_cset, cgrp, template); 1086 if (cset) 1087 get_css_set(cset); 1088 spin_unlock_irq(&css_set_lock); 1089 1090 if (cset) 1091 return cset; 1092 1093 cset = kzalloc(sizeof(*cset), GFP_KERNEL); 1094 if (!cset) 1095 return NULL; 1096 1097 /* Allocate all the cgrp_cset_link objects that we'll need */ 1098 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) { 1099 kfree(cset); 1100 return NULL; 1101 } 1102 1103 refcount_set(&cset->refcount, 1); 1104 cset->dom_cset = cset; 1105 INIT_LIST_HEAD(&cset->tasks); 1106 INIT_LIST_HEAD(&cset->mg_tasks); 1107 INIT_LIST_HEAD(&cset->task_iters); 1108 INIT_LIST_HEAD(&cset->threaded_csets); 1109 INIT_HLIST_NODE(&cset->hlist); 1110 INIT_LIST_HEAD(&cset->cgrp_links); 1111 INIT_LIST_HEAD(&cset->mg_preload_node); 1112 INIT_LIST_HEAD(&cset->mg_node); 1113 1114 /* Copy the set of subsystem state objects generated in 1115 * find_existing_css_set() */ 1116 memcpy(cset->subsys, template, sizeof(cset->subsys)); 1117 1118 spin_lock_irq(&css_set_lock); 1119 /* Add reference counts and links from the new css_set. */ 1120 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) { 1121 struct cgroup *c = link->cgrp; 1122 1123 if (c->root == cgrp->root) 1124 c = cgrp; 1125 link_css_set(&tmp_links, cset, c); 1126 } 1127 1128 BUG_ON(!list_empty(&tmp_links)); 1129 1130 css_set_count++; 1131 1132 /* Add @cset to the hash table */ 1133 key = css_set_hash(cset->subsys); 1134 hash_add(css_set_table, &cset->hlist, key); 1135 1136 for_each_subsys(ss, ssid) { 1137 struct cgroup_subsys_state *css = cset->subsys[ssid]; 1138 1139 list_add_tail(&cset->e_cset_node[ssid], 1140 &css->cgroup->e_csets[ssid]); 1141 css_get(css); 1142 } 1143 1144 spin_unlock_irq(&css_set_lock); 1145 1146 /* 1147 * If @cset should be threaded, look up the matching dom_cset and 1148 * link them up. We first fully initialize @cset then look for the 1149 * dom_cset. It's simpler this way and safe as @cset is guaranteed 1150 * to stay empty until we return. 1151 */ 1152 if (cgroup_is_threaded(cset->dfl_cgrp)) { 1153 struct css_set *dcset; 1154 1155 dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp); 1156 if (!dcset) { 1157 put_css_set(cset); 1158 return NULL; 1159 } 1160 1161 spin_lock_irq(&css_set_lock); 1162 cset->dom_cset = dcset; 1163 list_add_tail(&cset->threaded_csets_node, 1164 &dcset->threaded_csets); 1165 spin_unlock_irq(&css_set_lock); 1166 } 1167 1168 return cset; 1169 } 1170 1171 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root) 1172 { 1173 struct cgroup *root_cgrp = kf_root->kn->priv; 1174 1175 return root_cgrp->root; 1176 } 1177 1178 static int cgroup_init_root_id(struct cgroup_root *root) 1179 { 1180 int id; 1181 1182 lockdep_assert_held(&cgroup_mutex); 1183 1184 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL); 1185 if (id < 0) 1186 return id; 1187 1188 root->hierarchy_id = id; 1189 return 0; 1190 } 1191 1192 static void cgroup_exit_root_id(struct cgroup_root *root) 1193 { 1194 lockdep_assert_held(&cgroup_mutex); 1195 1196 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id); 1197 } 1198 1199 void cgroup_free_root(struct cgroup_root *root) 1200 { 1201 if (root) { 1202 idr_destroy(&root->cgroup_idr); 1203 kfree(root); 1204 } 1205 } 1206 1207 static void cgroup_destroy_root(struct cgroup_root *root) 1208 { 1209 struct cgroup *cgrp = &root->cgrp; 1210 struct cgrp_cset_link *link, *tmp_link; 1211 1212 trace_cgroup_destroy_root(root); 1213 1214 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp); 1215 1216 BUG_ON(atomic_read(&root->nr_cgrps)); 1217 BUG_ON(!list_empty(&cgrp->self.children)); 1218 1219 /* Rebind all subsystems back to the default hierarchy */ 1220 WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask)); 1221 1222 /* 1223 * Release all the links from cset_links to this hierarchy's 1224 * root cgroup 1225 */ 1226 spin_lock_irq(&css_set_lock); 1227 1228 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) { 1229 list_del(&link->cset_link); 1230 list_del(&link->cgrp_link); 1231 kfree(link); 1232 } 1233 1234 spin_unlock_irq(&css_set_lock); 1235 1236 if (!list_empty(&root->root_list)) { 1237 list_del(&root->root_list); 1238 cgroup_root_count--; 1239 } 1240 1241 cgroup_exit_root_id(root); 1242 1243 mutex_unlock(&cgroup_mutex); 1244 1245 kernfs_destroy_root(root->kf_root); 1246 cgroup_free_root(root); 1247 } 1248 1249 /* 1250 * look up cgroup associated with current task's cgroup namespace on the 1251 * specified hierarchy 1252 */ 1253 static struct cgroup * 1254 current_cgns_cgroup_from_root(struct cgroup_root *root) 1255 { 1256 struct cgroup *res = NULL; 1257 struct css_set *cset; 1258 1259 lockdep_assert_held(&css_set_lock); 1260 1261 rcu_read_lock(); 1262 1263 cset = current->nsproxy->cgroup_ns->root_cset; 1264 if (cset == &init_css_set) { 1265 res = &root->cgrp; 1266 } else { 1267 struct cgrp_cset_link *link; 1268 1269 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) { 1270 struct cgroup *c = link->cgrp; 1271 1272 if (c->root == root) { 1273 res = c; 1274 break; 1275 } 1276 } 1277 } 1278 rcu_read_unlock(); 1279 1280 BUG_ON(!res); 1281 return res; 1282 } 1283 1284 /* look up cgroup associated with given css_set on the specified hierarchy */ 1285 static struct cgroup *cset_cgroup_from_root(struct css_set *cset, 1286 struct cgroup_root *root) 1287 { 1288 struct cgroup *res = NULL; 1289 1290 lockdep_assert_held(&cgroup_mutex); 1291 lockdep_assert_held(&css_set_lock); 1292 1293 if (cset == &init_css_set) { 1294 res = &root->cgrp; 1295 } else if (root == &cgrp_dfl_root) { 1296 res = cset->dfl_cgrp; 1297 } else { 1298 struct cgrp_cset_link *link; 1299 1300 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) { 1301 struct cgroup *c = link->cgrp; 1302 1303 if (c->root == root) { 1304 res = c; 1305 break; 1306 } 1307 } 1308 } 1309 1310 BUG_ON(!res); 1311 return res; 1312 } 1313 1314 /* 1315 * Return the cgroup for "task" from the given hierarchy. Must be 1316 * called with cgroup_mutex and css_set_lock held. 1317 */ 1318 struct cgroup *task_cgroup_from_root(struct task_struct *task, 1319 struct cgroup_root *root) 1320 { 1321 /* 1322 * No need to lock the task - since we hold cgroup_mutex the 1323 * task can't change groups, so the only thing that can happen 1324 * is that it exits and its css is set back to init_css_set. 1325 */ 1326 return cset_cgroup_from_root(task_css_set(task), root); 1327 } 1328 1329 /* 1330 * A task must hold cgroup_mutex to modify cgroups. 1331 * 1332 * Any task can increment and decrement the count field without lock. 1333 * So in general, code holding cgroup_mutex can't rely on the count 1334 * field not changing. However, if the count goes to zero, then only 1335 * cgroup_attach_task() can increment it again. Because a count of zero 1336 * means that no tasks are currently attached, therefore there is no 1337 * way a task attached to that cgroup can fork (the other way to 1338 * increment the count). So code holding cgroup_mutex can safely 1339 * assume that if the count is zero, it will stay zero. Similarly, if 1340 * a task holds cgroup_mutex on a cgroup with zero count, it 1341 * knows that the cgroup won't be removed, as cgroup_rmdir() 1342 * needs that mutex. 1343 * 1344 * A cgroup can only be deleted if both its 'count' of using tasks 1345 * is zero, and its list of 'children' cgroups is empty. Since all 1346 * tasks in the system use _some_ cgroup, and since there is always at 1347 * least one task in the system (init, pid == 1), therefore, root cgroup 1348 * always has either children cgroups and/or using tasks. So we don't 1349 * need a special hack to ensure that root cgroup cannot be deleted. 1350 * 1351 * P.S. One more locking exception. RCU is used to guard the 1352 * update of a tasks cgroup pointer by cgroup_attach_task() 1353 */ 1354 1355 static struct kernfs_syscall_ops cgroup_kf_syscall_ops; 1356 1357 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft, 1358 char *buf) 1359 { 1360 struct cgroup_subsys *ss = cft->ss; 1361 1362 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) && 1363 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) 1364 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s", 1365 cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name, 1366 cft->name); 1367 else 1368 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX); 1369 return buf; 1370 } 1371 1372 /** 1373 * cgroup_file_mode - deduce file mode of a control file 1374 * @cft: the control file in question 1375 * 1376 * S_IRUGO for read, S_IWUSR for write. 1377 */ 1378 static umode_t cgroup_file_mode(const struct cftype *cft) 1379 { 1380 umode_t mode = 0; 1381 1382 if (cft->read_u64 || cft->read_s64 || cft->seq_show) 1383 mode |= S_IRUGO; 1384 1385 if (cft->write_u64 || cft->write_s64 || cft->write) { 1386 if (cft->flags & CFTYPE_WORLD_WRITABLE) 1387 mode |= S_IWUGO; 1388 else 1389 mode |= S_IWUSR; 1390 } 1391 1392 return mode; 1393 } 1394 1395 /** 1396 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask 1397 * @subtree_control: the new subtree_control mask to consider 1398 * @this_ss_mask: available subsystems 1399 * 1400 * On the default hierarchy, a subsystem may request other subsystems to be 1401 * enabled together through its ->depends_on mask. In such cases, more 1402 * subsystems than specified in "cgroup.subtree_control" may be enabled. 1403 * 1404 * This function calculates which subsystems need to be enabled if 1405 * @subtree_control is to be applied while restricted to @this_ss_mask. 1406 */ 1407 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask) 1408 { 1409 u16 cur_ss_mask = subtree_control; 1410 struct cgroup_subsys *ss; 1411 int ssid; 1412 1413 lockdep_assert_held(&cgroup_mutex); 1414 1415 cur_ss_mask |= cgrp_dfl_implicit_ss_mask; 1416 1417 while (true) { 1418 u16 new_ss_mask = cur_ss_mask; 1419 1420 do_each_subsys_mask(ss, ssid, cur_ss_mask) { 1421 new_ss_mask |= ss->depends_on; 1422 } while_each_subsys_mask(); 1423 1424 /* 1425 * Mask out subsystems which aren't available. This can 1426 * happen only if some depended-upon subsystems were bound 1427 * to non-default hierarchies. 1428 */ 1429 new_ss_mask &= this_ss_mask; 1430 1431 if (new_ss_mask == cur_ss_mask) 1432 break; 1433 cur_ss_mask = new_ss_mask; 1434 } 1435 1436 return cur_ss_mask; 1437 } 1438 1439 /** 1440 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods 1441 * @kn: the kernfs_node being serviced 1442 * 1443 * This helper undoes cgroup_kn_lock_live() and should be invoked before 1444 * the method finishes if locking succeeded. Note that once this function 1445 * returns the cgroup returned by cgroup_kn_lock_live() may become 1446 * inaccessible any time. If the caller intends to continue to access the 1447 * cgroup, it should pin it before invoking this function. 1448 */ 1449 void cgroup_kn_unlock(struct kernfs_node *kn) 1450 { 1451 struct cgroup *cgrp; 1452 1453 if (kernfs_type(kn) == KERNFS_DIR) 1454 cgrp = kn->priv; 1455 else 1456 cgrp = kn->parent->priv; 1457 1458 mutex_unlock(&cgroup_mutex); 1459 1460 kernfs_unbreak_active_protection(kn); 1461 cgroup_put(cgrp); 1462 } 1463 1464 /** 1465 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods 1466 * @kn: the kernfs_node being serviced 1467 * @drain_offline: perform offline draining on the cgroup 1468 * 1469 * This helper is to be used by a cgroup kernfs method currently servicing 1470 * @kn. It breaks the active protection, performs cgroup locking and 1471 * verifies that the associated cgroup is alive. Returns the cgroup if 1472 * alive; otherwise, %NULL. A successful return should be undone by a 1473 * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the 1474 * cgroup is drained of offlining csses before return. 1475 * 1476 * Any cgroup kernfs method implementation which requires locking the 1477 * associated cgroup should use this helper. It avoids nesting cgroup 1478 * locking under kernfs active protection and allows all kernfs operations 1479 * including self-removal. 1480 */ 1481 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline) 1482 { 1483 struct cgroup *cgrp; 1484 1485 if (kernfs_type(kn) == KERNFS_DIR) 1486 cgrp = kn->priv; 1487 else 1488 cgrp = kn->parent->priv; 1489 1490 /* 1491 * We're gonna grab cgroup_mutex which nests outside kernfs 1492 * active_ref. cgroup liveliness check alone provides enough 1493 * protection against removal. Ensure @cgrp stays accessible and 1494 * break the active_ref protection. 1495 */ 1496 if (!cgroup_tryget(cgrp)) 1497 return NULL; 1498 kernfs_break_active_protection(kn); 1499 1500 if (drain_offline) 1501 cgroup_lock_and_drain_offline(cgrp); 1502 else 1503 mutex_lock(&cgroup_mutex); 1504 1505 if (!cgroup_is_dead(cgrp)) 1506 return cgrp; 1507 1508 cgroup_kn_unlock(kn); 1509 return NULL; 1510 } 1511 1512 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft) 1513 { 1514 char name[CGROUP_FILE_NAME_MAX]; 1515 1516 lockdep_assert_held(&cgroup_mutex); 1517 1518 if (cft->file_offset) { 1519 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss); 1520 struct cgroup_file *cfile = (void *)css + cft->file_offset; 1521 1522 spin_lock_irq(&cgroup_file_kn_lock); 1523 cfile->kn = NULL; 1524 spin_unlock_irq(&cgroup_file_kn_lock); 1525 } 1526 1527 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name)); 1528 } 1529 1530 /** 1531 * css_clear_dir - remove subsys files in a cgroup directory 1532 * @css: taget css 1533 */ 1534 static void css_clear_dir(struct cgroup_subsys_state *css) 1535 { 1536 struct cgroup *cgrp = css->cgroup; 1537 struct cftype *cfts; 1538 1539 if (!(css->flags & CSS_VISIBLE)) 1540 return; 1541 1542 css->flags &= ~CSS_VISIBLE; 1543 1544 list_for_each_entry(cfts, &css->ss->cfts, node) 1545 cgroup_addrm_files(css, cgrp, cfts, false); 1546 } 1547 1548 /** 1549 * css_populate_dir - create subsys files in a cgroup directory 1550 * @css: target css 1551 * 1552 * On failure, no file is added. 1553 */ 1554 static int css_populate_dir(struct cgroup_subsys_state *css) 1555 { 1556 struct cgroup *cgrp = css->cgroup; 1557 struct cftype *cfts, *failed_cfts; 1558 int ret; 1559 1560 if ((css->flags & CSS_VISIBLE) || !cgrp->kn) 1561 return 0; 1562 1563 if (!css->ss) { 1564 if (cgroup_on_dfl(cgrp)) 1565 cfts = cgroup_base_files; 1566 else 1567 cfts = cgroup1_base_files; 1568 1569 return cgroup_addrm_files(&cgrp->self, cgrp, cfts, true); 1570 } 1571 1572 list_for_each_entry(cfts, &css->ss->cfts, node) { 1573 ret = cgroup_addrm_files(css, cgrp, cfts, true); 1574 if (ret < 0) { 1575 failed_cfts = cfts; 1576 goto err; 1577 } 1578 } 1579 1580 css->flags |= CSS_VISIBLE; 1581 1582 return 0; 1583 err: 1584 list_for_each_entry(cfts, &css->ss->cfts, node) { 1585 if (cfts == failed_cfts) 1586 break; 1587 cgroup_addrm_files(css, cgrp, cfts, false); 1588 } 1589 return ret; 1590 } 1591 1592 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask) 1593 { 1594 struct cgroup *dcgrp = &dst_root->cgrp; 1595 struct cgroup_subsys *ss; 1596 int ssid, i, ret; 1597 1598 lockdep_assert_held(&cgroup_mutex); 1599 1600 do_each_subsys_mask(ss, ssid, ss_mask) { 1601 /* 1602 * If @ss has non-root csses attached to it, can't move. 1603 * If @ss is an implicit controller, it is exempt from this 1604 * rule and can be stolen. 1605 */ 1606 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) && 1607 !ss->implicit_on_dfl) 1608 return -EBUSY; 1609 1610 /* can't move between two non-dummy roots either */ 1611 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root) 1612 return -EBUSY; 1613 } while_each_subsys_mask(); 1614 1615 do_each_subsys_mask(ss, ssid, ss_mask) { 1616 struct cgroup_root *src_root = ss->root; 1617 struct cgroup *scgrp = &src_root->cgrp; 1618 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss); 1619 struct css_set *cset; 1620 1621 WARN_ON(!css || cgroup_css(dcgrp, ss)); 1622 1623 /* disable from the source */ 1624 src_root->subsys_mask &= ~(1 << ssid); 1625 WARN_ON(cgroup_apply_control(scgrp)); 1626 cgroup_finalize_control(scgrp, 0); 1627 1628 /* rebind */ 1629 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL); 1630 rcu_assign_pointer(dcgrp->subsys[ssid], css); 1631 ss->root = dst_root; 1632 css->cgroup = dcgrp; 1633 1634 spin_lock_irq(&css_set_lock); 1635 hash_for_each(css_set_table, i, cset, hlist) 1636 list_move_tail(&cset->e_cset_node[ss->id], 1637 &dcgrp->e_csets[ss->id]); 1638 spin_unlock_irq(&css_set_lock); 1639 1640 /* default hierarchy doesn't enable controllers by default */ 1641 dst_root->subsys_mask |= 1 << ssid; 1642 if (dst_root == &cgrp_dfl_root) { 1643 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]); 1644 } else { 1645 dcgrp->subtree_control |= 1 << ssid; 1646 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]); 1647 } 1648 1649 ret = cgroup_apply_control(dcgrp); 1650 if (ret) 1651 pr_warn("partial failure to rebind %s controller (err=%d)\n", 1652 ss->name, ret); 1653 1654 if (ss->bind) 1655 ss->bind(css); 1656 } while_each_subsys_mask(); 1657 1658 kernfs_activate(dcgrp->kn); 1659 return 0; 1660 } 1661 1662 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node, 1663 struct kernfs_root *kf_root) 1664 { 1665 int len = 0; 1666 char *buf = NULL; 1667 struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root); 1668 struct cgroup *ns_cgroup; 1669 1670 buf = kmalloc(PATH_MAX, GFP_KERNEL); 1671 if (!buf) 1672 return -ENOMEM; 1673 1674 spin_lock_irq(&css_set_lock); 1675 ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot); 1676 len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX); 1677 spin_unlock_irq(&css_set_lock); 1678 1679 if (len >= PATH_MAX) 1680 len = -ERANGE; 1681 else if (len > 0) { 1682 seq_escape(sf, buf, " \t\n\\"); 1683 len = 0; 1684 } 1685 kfree(buf); 1686 return len; 1687 } 1688 1689 static int parse_cgroup_root_flags(char *data, unsigned int *root_flags) 1690 { 1691 char *token; 1692 1693 *root_flags = 0; 1694 1695 if (!data) 1696 return 0; 1697 1698 while ((token = strsep(&data, ",")) != NULL) { 1699 if (!strcmp(token, "nsdelegate")) { 1700 *root_flags |= CGRP_ROOT_NS_DELEGATE; 1701 continue; 1702 } 1703 1704 pr_err("cgroup2: unknown option \"%s\"\n", token); 1705 return -EINVAL; 1706 } 1707 1708 return 0; 1709 } 1710 1711 static void apply_cgroup_root_flags(unsigned int root_flags) 1712 { 1713 if (current->nsproxy->cgroup_ns == &init_cgroup_ns) { 1714 if (root_flags & CGRP_ROOT_NS_DELEGATE) 1715 cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE; 1716 else 1717 cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE; 1718 } 1719 } 1720 1721 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root) 1722 { 1723 if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) 1724 seq_puts(seq, ",nsdelegate"); 1725 return 0; 1726 } 1727 1728 static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data) 1729 { 1730 unsigned int root_flags; 1731 int ret; 1732 1733 ret = parse_cgroup_root_flags(data, &root_flags); 1734 if (ret) 1735 return ret; 1736 1737 apply_cgroup_root_flags(root_flags); 1738 return 0; 1739 } 1740 1741 /* 1742 * To reduce the fork() overhead for systems that are not actually using 1743 * their cgroups capability, we don't maintain the lists running through 1744 * each css_set to its tasks until we see the list actually used - in other 1745 * words after the first mount. 1746 */ 1747 static bool use_task_css_set_links __read_mostly; 1748 1749 static void cgroup_enable_task_cg_lists(void) 1750 { 1751 struct task_struct *p, *g; 1752 1753 spin_lock_irq(&css_set_lock); 1754 1755 if (use_task_css_set_links) 1756 goto out_unlock; 1757 1758 use_task_css_set_links = true; 1759 1760 /* 1761 * We need tasklist_lock because RCU is not safe against 1762 * while_each_thread(). Besides, a forking task that has passed 1763 * cgroup_post_fork() without seeing use_task_css_set_links = 1 1764 * is not guaranteed to have its child immediately visible in the 1765 * tasklist if we walk through it with RCU. 1766 */ 1767 read_lock(&tasklist_lock); 1768 do_each_thread(g, p) { 1769 WARN_ON_ONCE(!list_empty(&p->cg_list) || 1770 task_css_set(p) != &init_css_set); 1771 1772 /* 1773 * We should check if the process is exiting, otherwise 1774 * it will race with cgroup_exit() in that the list 1775 * entry won't be deleted though the process has exited. 1776 * Do it while holding siglock so that we don't end up 1777 * racing against cgroup_exit(). 1778 * 1779 * Interrupts were already disabled while acquiring 1780 * the css_set_lock, so we do not need to disable it 1781 * again when acquiring the sighand->siglock here. 1782 */ 1783 spin_lock(&p->sighand->siglock); 1784 if (!(p->flags & PF_EXITING)) { 1785 struct css_set *cset = task_css_set(p); 1786 1787 if (!css_set_populated(cset)) 1788 css_set_update_populated(cset, true); 1789 list_add_tail(&p->cg_list, &cset->tasks); 1790 get_css_set(cset); 1791 cset->nr_tasks++; 1792 } 1793 spin_unlock(&p->sighand->siglock); 1794 } while_each_thread(g, p); 1795 read_unlock(&tasklist_lock); 1796 out_unlock: 1797 spin_unlock_irq(&css_set_lock); 1798 } 1799 1800 static void init_cgroup_housekeeping(struct cgroup *cgrp) 1801 { 1802 struct cgroup_subsys *ss; 1803 int ssid; 1804 1805 INIT_LIST_HEAD(&cgrp->self.sibling); 1806 INIT_LIST_HEAD(&cgrp->self.children); 1807 INIT_LIST_HEAD(&cgrp->cset_links); 1808 INIT_LIST_HEAD(&cgrp->pidlists); 1809 mutex_init(&cgrp->pidlist_mutex); 1810 cgrp->self.cgroup = cgrp; 1811 cgrp->self.flags |= CSS_ONLINE; 1812 cgrp->dom_cgrp = cgrp; 1813 cgrp->max_descendants = INT_MAX; 1814 cgrp->max_depth = INT_MAX; 1815 1816 for_each_subsys(ss, ssid) 1817 INIT_LIST_HEAD(&cgrp->e_csets[ssid]); 1818 1819 init_waitqueue_head(&cgrp->offline_waitq); 1820 INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent); 1821 } 1822 1823 void init_cgroup_root(struct cgroup_root *root, struct cgroup_sb_opts *opts) 1824 { 1825 struct cgroup *cgrp = &root->cgrp; 1826 1827 INIT_LIST_HEAD(&root->root_list); 1828 atomic_set(&root->nr_cgrps, 1); 1829 cgrp->root = root; 1830 init_cgroup_housekeeping(cgrp); 1831 idr_init(&root->cgroup_idr); 1832 1833 root->flags = opts->flags; 1834 if (opts->release_agent) 1835 strcpy(root->release_agent_path, opts->release_agent); 1836 if (opts->name) 1837 strcpy(root->name, opts->name); 1838 if (opts->cpuset_clone_children) 1839 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags); 1840 } 1841 1842 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask, int ref_flags) 1843 { 1844 LIST_HEAD(tmp_links); 1845 struct cgroup *root_cgrp = &root->cgrp; 1846 struct kernfs_syscall_ops *kf_sops; 1847 struct css_set *cset; 1848 int i, ret; 1849 1850 lockdep_assert_held(&cgroup_mutex); 1851 1852 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL); 1853 if (ret < 0) 1854 goto out; 1855 root_cgrp->id = ret; 1856 root_cgrp->ancestor_ids[0] = ret; 1857 1858 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 1859 ref_flags, GFP_KERNEL); 1860 if (ret) 1861 goto out; 1862 1863 /* 1864 * We're accessing css_set_count without locking css_set_lock here, 1865 * but that's OK - it can only be increased by someone holding 1866 * cgroup_lock, and that's us. Later rebinding may disable 1867 * controllers on the default hierarchy and thus create new csets, 1868 * which can't be more than the existing ones. Allocate 2x. 1869 */ 1870 ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links); 1871 if (ret) 1872 goto cancel_ref; 1873 1874 ret = cgroup_init_root_id(root); 1875 if (ret) 1876 goto cancel_ref; 1877 1878 kf_sops = root == &cgrp_dfl_root ? 1879 &cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops; 1880 1881 root->kf_root = kernfs_create_root(kf_sops, 1882 KERNFS_ROOT_CREATE_DEACTIVATED | 1883 KERNFS_ROOT_SUPPORT_EXPORTOP, 1884 root_cgrp); 1885 if (IS_ERR(root->kf_root)) { 1886 ret = PTR_ERR(root->kf_root); 1887 goto exit_root_id; 1888 } 1889 root_cgrp->kn = root->kf_root->kn; 1890 1891 ret = css_populate_dir(&root_cgrp->self); 1892 if (ret) 1893 goto destroy_root; 1894 1895 ret = rebind_subsystems(root, ss_mask); 1896 if (ret) 1897 goto destroy_root; 1898 1899 trace_cgroup_setup_root(root); 1900 1901 /* 1902 * There must be no failure case after here, since rebinding takes 1903 * care of subsystems' refcounts, which are explicitly dropped in 1904 * the failure exit path. 1905 */ 1906 list_add(&root->root_list, &cgroup_roots); 1907 cgroup_root_count++; 1908 1909 /* 1910 * Link the root cgroup in this hierarchy into all the css_set 1911 * objects. 1912 */ 1913 spin_lock_irq(&css_set_lock); 1914 hash_for_each(css_set_table, i, cset, hlist) { 1915 link_css_set(&tmp_links, cset, root_cgrp); 1916 if (css_set_populated(cset)) 1917 cgroup_update_populated(root_cgrp, true); 1918 } 1919 spin_unlock_irq(&css_set_lock); 1920 1921 BUG_ON(!list_empty(&root_cgrp->self.children)); 1922 BUG_ON(atomic_read(&root->nr_cgrps) != 1); 1923 1924 kernfs_activate(root_cgrp->kn); 1925 ret = 0; 1926 goto out; 1927 1928 destroy_root: 1929 kernfs_destroy_root(root->kf_root); 1930 root->kf_root = NULL; 1931 exit_root_id: 1932 cgroup_exit_root_id(root); 1933 cancel_ref: 1934 percpu_ref_exit(&root_cgrp->self.refcnt); 1935 out: 1936 free_cgrp_cset_links(&tmp_links); 1937 return ret; 1938 } 1939 1940 struct dentry *cgroup_do_mount(struct file_system_type *fs_type, int flags, 1941 struct cgroup_root *root, unsigned long magic, 1942 struct cgroup_namespace *ns) 1943 { 1944 struct dentry *dentry; 1945 bool new_sb; 1946 1947 dentry = kernfs_mount(fs_type, flags, root->kf_root, magic, &new_sb); 1948 1949 /* 1950 * In non-init cgroup namespace, instead of root cgroup's dentry, 1951 * we return the dentry corresponding to the cgroupns->root_cgrp. 1952 */ 1953 if (!IS_ERR(dentry) && ns != &init_cgroup_ns) { 1954 struct dentry *nsdentry; 1955 struct cgroup *cgrp; 1956 1957 mutex_lock(&cgroup_mutex); 1958 spin_lock_irq(&css_set_lock); 1959 1960 cgrp = cset_cgroup_from_root(ns->root_cset, root); 1961 1962 spin_unlock_irq(&css_set_lock); 1963 mutex_unlock(&cgroup_mutex); 1964 1965 nsdentry = kernfs_node_dentry(cgrp->kn, dentry->d_sb); 1966 dput(dentry); 1967 dentry = nsdentry; 1968 } 1969 1970 if (IS_ERR(dentry) || !new_sb) 1971 cgroup_put(&root->cgrp); 1972 1973 return dentry; 1974 } 1975 1976 static struct dentry *cgroup_mount(struct file_system_type *fs_type, 1977 int flags, const char *unused_dev_name, 1978 void *data) 1979 { 1980 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns; 1981 struct dentry *dentry; 1982 int ret; 1983 1984 get_cgroup_ns(ns); 1985 1986 /* Check if the caller has permission to mount. */ 1987 if (!ns_capable(ns->user_ns, CAP_SYS_ADMIN)) { 1988 put_cgroup_ns(ns); 1989 return ERR_PTR(-EPERM); 1990 } 1991 1992 /* 1993 * The first time anyone tries to mount a cgroup, enable the list 1994 * linking each css_set to its tasks and fix up all existing tasks. 1995 */ 1996 if (!use_task_css_set_links) 1997 cgroup_enable_task_cg_lists(); 1998 1999 if (fs_type == &cgroup2_fs_type) { 2000 unsigned int root_flags; 2001 2002 ret = parse_cgroup_root_flags(data, &root_flags); 2003 if (ret) { 2004 put_cgroup_ns(ns); 2005 return ERR_PTR(ret); 2006 } 2007 2008 cgrp_dfl_visible = true; 2009 cgroup_get_live(&cgrp_dfl_root.cgrp); 2010 2011 dentry = cgroup_do_mount(&cgroup2_fs_type, flags, &cgrp_dfl_root, 2012 CGROUP2_SUPER_MAGIC, ns); 2013 if (!IS_ERR(dentry)) 2014 apply_cgroup_root_flags(root_flags); 2015 } else { 2016 dentry = cgroup1_mount(&cgroup_fs_type, flags, data, 2017 CGROUP_SUPER_MAGIC, ns); 2018 } 2019 2020 put_cgroup_ns(ns); 2021 return dentry; 2022 } 2023 2024 static void cgroup_kill_sb(struct super_block *sb) 2025 { 2026 struct kernfs_root *kf_root = kernfs_root_from_sb(sb); 2027 struct cgroup_root *root = cgroup_root_from_kf(kf_root); 2028 2029 /* 2030 * If @root doesn't have any mounts or children, start killing it. 2031 * This prevents new mounts by disabling percpu_ref_tryget_live(). 2032 * cgroup_mount() may wait for @root's release. 2033 * 2034 * And don't kill the default root. 2035 */ 2036 if (!list_empty(&root->cgrp.self.children) || 2037 root == &cgrp_dfl_root) 2038 cgroup_put(&root->cgrp); 2039 else 2040 percpu_ref_kill(&root->cgrp.self.refcnt); 2041 2042 kernfs_kill_sb(sb); 2043 } 2044 2045 struct file_system_type cgroup_fs_type = { 2046 .name = "cgroup", 2047 .mount = cgroup_mount, 2048 .kill_sb = cgroup_kill_sb, 2049 .fs_flags = FS_USERNS_MOUNT, 2050 }; 2051 2052 static struct file_system_type cgroup2_fs_type = { 2053 .name = "cgroup2", 2054 .mount = cgroup_mount, 2055 .kill_sb = cgroup_kill_sb, 2056 .fs_flags = FS_USERNS_MOUNT, 2057 }; 2058 2059 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen, 2060 struct cgroup_namespace *ns) 2061 { 2062 struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root); 2063 2064 return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen); 2065 } 2066 2067 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen, 2068 struct cgroup_namespace *ns) 2069 { 2070 int ret; 2071 2072 mutex_lock(&cgroup_mutex); 2073 spin_lock_irq(&css_set_lock); 2074 2075 ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns); 2076 2077 spin_unlock_irq(&css_set_lock); 2078 mutex_unlock(&cgroup_mutex); 2079 2080 return ret; 2081 } 2082 EXPORT_SYMBOL_GPL(cgroup_path_ns); 2083 2084 /** 2085 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy 2086 * @task: target task 2087 * @buf: the buffer to write the path into 2088 * @buflen: the length of the buffer 2089 * 2090 * Determine @task's cgroup on the first (the one with the lowest non-zero 2091 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This 2092 * function grabs cgroup_mutex and shouldn't be used inside locks used by 2093 * cgroup controller callbacks. 2094 * 2095 * Return value is the same as kernfs_path(). 2096 */ 2097 int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen) 2098 { 2099 struct cgroup_root *root; 2100 struct cgroup *cgrp; 2101 int hierarchy_id = 1; 2102 int ret; 2103 2104 mutex_lock(&cgroup_mutex); 2105 spin_lock_irq(&css_set_lock); 2106 2107 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id); 2108 2109 if (root) { 2110 cgrp = task_cgroup_from_root(task, root); 2111 ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns); 2112 } else { 2113 /* if no hierarchy exists, everyone is in "/" */ 2114 ret = strlcpy(buf, "/", buflen); 2115 } 2116 2117 spin_unlock_irq(&css_set_lock); 2118 mutex_unlock(&cgroup_mutex); 2119 return ret; 2120 } 2121 EXPORT_SYMBOL_GPL(task_cgroup_path); 2122 2123 /** 2124 * cgroup_migrate_add_task - add a migration target task to a migration context 2125 * @task: target task 2126 * @mgctx: target migration context 2127 * 2128 * Add @task, which is a migration target, to @mgctx->tset. This function 2129 * becomes noop if @task doesn't need to be migrated. @task's css_set 2130 * should have been added as a migration source and @task->cg_list will be 2131 * moved from the css_set's tasks list to mg_tasks one. 2132 */ 2133 static void cgroup_migrate_add_task(struct task_struct *task, 2134 struct cgroup_mgctx *mgctx) 2135 { 2136 struct css_set *cset; 2137 2138 lockdep_assert_held(&css_set_lock); 2139 2140 /* @task either already exited or can't exit until the end */ 2141 if (task->flags & PF_EXITING) 2142 return; 2143 2144 /* leave @task alone if post_fork() hasn't linked it yet */ 2145 if (list_empty(&task->cg_list)) 2146 return; 2147 2148 cset = task_css_set(task); 2149 if (!cset->mg_src_cgrp) 2150 return; 2151 2152 mgctx->tset.nr_tasks++; 2153 2154 list_move_tail(&task->cg_list, &cset->mg_tasks); 2155 if (list_empty(&cset->mg_node)) 2156 list_add_tail(&cset->mg_node, 2157 &mgctx->tset.src_csets); 2158 if (list_empty(&cset->mg_dst_cset->mg_node)) 2159 list_add_tail(&cset->mg_dst_cset->mg_node, 2160 &mgctx->tset.dst_csets); 2161 } 2162 2163 /** 2164 * cgroup_taskset_first - reset taskset and return the first task 2165 * @tset: taskset of interest 2166 * @dst_cssp: output variable for the destination css 2167 * 2168 * @tset iteration is initialized and the first task is returned. 2169 */ 2170 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset, 2171 struct cgroup_subsys_state **dst_cssp) 2172 { 2173 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node); 2174 tset->cur_task = NULL; 2175 2176 return cgroup_taskset_next(tset, dst_cssp); 2177 } 2178 2179 /** 2180 * cgroup_taskset_next - iterate to the next task in taskset 2181 * @tset: taskset of interest 2182 * @dst_cssp: output variable for the destination css 2183 * 2184 * Return the next task in @tset. Iteration must have been initialized 2185 * with cgroup_taskset_first(). 2186 */ 2187 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset, 2188 struct cgroup_subsys_state **dst_cssp) 2189 { 2190 struct css_set *cset = tset->cur_cset; 2191 struct task_struct *task = tset->cur_task; 2192 2193 while (&cset->mg_node != tset->csets) { 2194 if (!task) 2195 task = list_first_entry(&cset->mg_tasks, 2196 struct task_struct, cg_list); 2197 else 2198 task = list_next_entry(task, cg_list); 2199 2200 if (&task->cg_list != &cset->mg_tasks) { 2201 tset->cur_cset = cset; 2202 tset->cur_task = task; 2203 2204 /* 2205 * This function may be called both before and 2206 * after cgroup_taskset_migrate(). The two cases 2207 * can be distinguished by looking at whether @cset 2208 * has its ->mg_dst_cset set. 2209 */ 2210 if (cset->mg_dst_cset) 2211 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid]; 2212 else 2213 *dst_cssp = cset->subsys[tset->ssid]; 2214 2215 return task; 2216 } 2217 2218 cset = list_next_entry(cset, mg_node); 2219 task = NULL; 2220 } 2221 2222 return NULL; 2223 } 2224 2225 /** 2226 * cgroup_taskset_migrate - migrate a taskset 2227 * @mgctx: migration context 2228 * 2229 * Migrate tasks in @mgctx as setup by migration preparation functions. 2230 * This function fails iff one of the ->can_attach callbacks fails and 2231 * guarantees that either all or none of the tasks in @mgctx are migrated. 2232 * @mgctx is consumed regardless of success. 2233 */ 2234 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx) 2235 { 2236 struct cgroup_taskset *tset = &mgctx->tset; 2237 struct cgroup_subsys *ss; 2238 struct task_struct *task, *tmp_task; 2239 struct css_set *cset, *tmp_cset; 2240 int ssid, failed_ssid, ret; 2241 2242 /* check that we can legitimately attach to the cgroup */ 2243 if (tset->nr_tasks) { 2244 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2245 if (ss->can_attach) { 2246 tset->ssid = ssid; 2247 ret = ss->can_attach(tset); 2248 if (ret) { 2249 failed_ssid = ssid; 2250 goto out_cancel_attach; 2251 } 2252 } 2253 } while_each_subsys_mask(); 2254 } 2255 2256 /* 2257 * Now that we're guaranteed success, proceed to move all tasks to 2258 * the new cgroup. There are no failure cases after here, so this 2259 * is the commit point. 2260 */ 2261 spin_lock_irq(&css_set_lock); 2262 list_for_each_entry(cset, &tset->src_csets, mg_node) { 2263 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) { 2264 struct css_set *from_cset = task_css_set(task); 2265 struct css_set *to_cset = cset->mg_dst_cset; 2266 2267 get_css_set(to_cset); 2268 to_cset->nr_tasks++; 2269 css_set_move_task(task, from_cset, to_cset, true); 2270 put_css_set_locked(from_cset); 2271 from_cset->nr_tasks--; 2272 } 2273 } 2274 spin_unlock_irq(&css_set_lock); 2275 2276 /* 2277 * Migration is committed, all target tasks are now on dst_csets. 2278 * Nothing is sensitive to fork() after this point. Notify 2279 * controllers that migration is complete. 2280 */ 2281 tset->csets = &tset->dst_csets; 2282 2283 if (tset->nr_tasks) { 2284 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2285 if (ss->attach) { 2286 tset->ssid = ssid; 2287 ss->attach(tset); 2288 } 2289 } while_each_subsys_mask(); 2290 } 2291 2292 ret = 0; 2293 goto out_release_tset; 2294 2295 out_cancel_attach: 2296 if (tset->nr_tasks) { 2297 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2298 if (ssid == failed_ssid) 2299 break; 2300 if (ss->cancel_attach) { 2301 tset->ssid = ssid; 2302 ss->cancel_attach(tset); 2303 } 2304 } while_each_subsys_mask(); 2305 } 2306 out_release_tset: 2307 spin_lock_irq(&css_set_lock); 2308 list_splice_init(&tset->dst_csets, &tset->src_csets); 2309 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) { 2310 list_splice_tail_init(&cset->mg_tasks, &cset->tasks); 2311 list_del_init(&cset->mg_node); 2312 } 2313 spin_unlock_irq(&css_set_lock); 2314 return ret; 2315 } 2316 2317 /** 2318 * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination 2319 * @dst_cgrp: destination cgroup to test 2320 * 2321 * On the default hierarchy, except for the mixable, (possible) thread root 2322 * and threaded cgroups, subtree_control must be zero for migration 2323 * destination cgroups with tasks so that child cgroups don't compete 2324 * against tasks. 2325 */ 2326 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp) 2327 { 2328 /* v1 doesn't have any restriction */ 2329 if (!cgroup_on_dfl(dst_cgrp)) 2330 return 0; 2331 2332 /* verify @dst_cgrp can host resources */ 2333 if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp)) 2334 return -EOPNOTSUPP; 2335 2336 /* mixables don't care */ 2337 if (cgroup_is_mixable(dst_cgrp)) 2338 return 0; 2339 2340 /* 2341 * If @dst_cgrp is already or can become a thread root or is 2342 * threaded, it doesn't matter. 2343 */ 2344 if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp)) 2345 return 0; 2346 2347 /* apply no-internal-process constraint */ 2348 if (dst_cgrp->subtree_control) 2349 return -EBUSY; 2350 2351 return 0; 2352 } 2353 2354 /** 2355 * cgroup_migrate_finish - cleanup after attach 2356 * @mgctx: migration context 2357 * 2358 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See 2359 * those functions for details. 2360 */ 2361 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx) 2362 { 2363 LIST_HEAD(preloaded); 2364 struct css_set *cset, *tmp_cset; 2365 2366 lockdep_assert_held(&cgroup_mutex); 2367 2368 spin_lock_irq(&css_set_lock); 2369 2370 list_splice_tail_init(&mgctx->preloaded_src_csets, &preloaded); 2371 list_splice_tail_init(&mgctx->preloaded_dst_csets, &preloaded); 2372 2373 list_for_each_entry_safe(cset, tmp_cset, &preloaded, mg_preload_node) { 2374 cset->mg_src_cgrp = NULL; 2375 cset->mg_dst_cgrp = NULL; 2376 cset->mg_dst_cset = NULL; 2377 list_del_init(&cset->mg_preload_node); 2378 put_css_set_locked(cset); 2379 } 2380 2381 spin_unlock_irq(&css_set_lock); 2382 } 2383 2384 /** 2385 * cgroup_migrate_add_src - add a migration source css_set 2386 * @src_cset: the source css_set to add 2387 * @dst_cgrp: the destination cgroup 2388 * @mgctx: migration context 2389 * 2390 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin 2391 * @src_cset and add it to @mgctx->src_csets, which should later be cleaned 2392 * up by cgroup_migrate_finish(). 2393 * 2394 * This function may be called without holding cgroup_threadgroup_rwsem 2395 * even if the target is a process. Threads may be created and destroyed 2396 * but as long as cgroup_mutex is not dropped, no new css_set can be put 2397 * into play and the preloaded css_sets are guaranteed to cover all 2398 * migrations. 2399 */ 2400 void cgroup_migrate_add_src(struct css_set *src_cset, 2401 struct cgroup *dst_cgrp, 2402 struct cgroup_mgctx *mgctx) 2403 { 2404 struct cgroup *src_cgrp; 2405 2406 lockdep_assert_held(&cgroup_mutex); 2407 lockdep_assert_held(&css_set_lock); 2408 2409 /* 2410 * If ->dead, @src_set is associated with one or more dead cgroups 2411 * and doesn't contain any migratable tasks. Ignore it early so 2412 * that the rest of migration path doesn't get confused by it. 2413 */ 2414 if (src_cset->dead) 2415 return; 2416 2417 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root); 2418 2419 if (!list_empty(&src_cset->mg_preload_node)) 2420 return; 2421 2422 WARN_ON(src_cset->mg_src_cgrp); 2423 WARN_ON(src_cset->mg_dst_cgrp); 2424 WARN_ON(!list_empty(&src_cset->mg_tasks)); 2425 WARN_ON(!list_empty(&src_cset->mg_node)); 2426 2427 src_cset->mg_src_cgrp = src_cgrp; 2428 src_cset->mg_dst_cgrp = dst_cgrp; 2429 get_css_set(src_cset); 2430 list_add_tail(&src_cset->mg_preload_node, &mgctx->preloaded_src_csets); 2431 } 2432 2433 /** 2434 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration 2435 * @mgctx: migration context 2436 * 2437 * Tasks are about to be moved and all the source css_sets have been 2438 * preloaded to @mgctx->preloaded_src_csets. This function looks up and 2439 * pins all destination css_sets, links each to its source, and append them 2440 * to @mgctx->preloaded_dst_csets. 2441 * 2442 * This function must be called after cgroup_migrate_add_src() has been 2443 * called on each migration source css_set. After migration is performed 2444 * using cgroup_migrate(), cgroup_migrate_finish() must be called on 2445 * @mgctx. 2446 */ 2447 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx) 2448 { 2449 struct css_set *src_cset, *tmp_cset; 2450 2451 lockdep_assert_held(&cgroup_mutex); 2452 2453 /* look up the dst cset for each src cset and link it to src */ 2454 list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets, 2455 mg_preload_node) { 2456 struct css_set *dst_cset; 2457 struct cgroup_subsys *ss; 2458 int ssid; 2459 2460 dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp); 2461 if (!dst_cset) 2462 goto err; 2463 2464 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset); 2465 2466 /* 2467 * If src cset equals dst, it's noop. Drop the src. 2468 * cgroup_migrate() will skip the cset too. Note that we 2469 * can't handle src == dst as some nodes are used by both. 2470 */ 2471 if (src_cset == dst_cset) { 2472 src_cset->mg_src_cgrp = NULL; 2473 src_cset->mg_dst_cgrp = NULL; 2474 list_del_init(&src_cset->mg_preload_node); 2475 put_css_set(src_cset); 2476 put_css_set(dst_cset); 2477 continue; 2478 } 2479 2480 src_cset->mg_dst_cset = dst_cset; 2481 2482 if (list_empty(&dst_cset->mg_preload_node)) 2483 list_add_tail(&dst_cset->mg_preload_node, 2484 &mgctx->preloaded_dst_csets); 2485 else 2486 put_css_set(dst_cset); 2487 2488 for_each_subsys(ss, ssid) 2489 if (src_cset->subsys[ssid] != dst_cset->subsys[ssid]) 2490 mgctx->ss_mask |= 1 << ssid; 2491 } 2492 2493 return 0; 2494 err: 2495 cgroup_migrate_finish(mgctx); 2496 return -ENOMEM; 2497 } 2498 2499 /** 2500 * cgroup_migrate - migrate a process or task to a cgroup 2501 * @leader: the leader of the process or the task to migrate 2502 * @threadgroup: whether @leader points to the whole process or a single task 2503 * @mgctx: migration context 2504 * 2505 * Migrate a process or task denoted by @leader. If migrating a process, 2506 * the caller must be holding cgroup_threadgroup_rwsem. The caller is also 2507 * responsible for invoking cgroup_migrate_add_src() and 2508 * cgroup_migrate_prepare_dst() on the targets before invoking this 2509 * function and following up with cgroup_migrate_finish(). 2510 * 2511 * As long as a controller's ->can_attach() doesn't fail, this function is 2512 * guaranteed to succeed. This means that, excluding ->can_attach() 2513 * failure, when migrating multiple targets, the success or failure can be 2514 * decided for all targets by invoking group_migrate_prepare_dst() before 2515 * actually starting migrating. 2516 */ 2517 int cgroup_migrate(struct task_struct *leader, bool threadgroup, 2518 struct cgroup_mgctx *mgctx) 2519 { 2520 struct task_struct *task; 2521 2522 /* 2523 * Prevent freeing of tasks while we take a snapshot. Tasks that are 2524 * already PF_EXITING could be freed from underneath us unless we 2525 * take an rcu_read_lock. 2526 */ 2527 spin_lock_irq(&css_set_lock); 2528 rcu_read_lock(); 2529 task = leader; 2530 do { 2531 cgroup_migrate_add_task(task, mgctx); 2532 if (!threadgroup) 2533 break; 2534 } while_each_thread(leader, task); 2535 rcu_read_unlock(); 2536 spin_unlock_irq(&css_set_lock); 2537 2538 return cgroup_migrate_execute(mgctx); 2539 } 2540 2541 /** 2542 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup 2543 * @dst_cgrp: the cgroup to attach to 2544 * @leader: the task or the leader of the threadgroup to be attached 2545 * @threadgroup: attach the whole threadgroup? 2546 * 2547 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem. 2548 */ 2549 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader, 2550 bool threadgroup) 2551 { 2552 DEFINE_CGROUP_MGCTX(mgctx); 2553 struct task_struct *task; 2554 int ret; 2555 2556 ret = cgroup_migrate_vet_dst(dst_cgrp); 2557 if (ret) 2558 return ret; 2559 2560 /* look up all src csets */ 2561 spin_lock_irq(&css_set_lock); 2562 rcu_read_lock(); 2563 task = leader; 2564 do { 2565 cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx); 2566 if (!threadgroup) 2567 break; 2568 } while_each_thread(leader, task); 2569 rcu_read_unlock(); 2570 spin_unlock_irq(&css_set_lock); 2571 2572 /* prepare dst csets and commit */ 2573 ret = cgroup_migrate_prepare_dst(&mgctx); 2574 if (!ret) 2575 ret = cgroup_migrate(leader, threadgroup, &mgctx); 2576 2577 cgroup_migrate_finish(&mgctx); 2578 2579 if (!ret) 2580 trace_cgroup_attach_task(dst_cgrp, leader, threadgroup); 2581 2582 return ret; 2583 } 2584 2585 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup) 2586 __acquires(&cgroup_threadgroup_rwsem) 2587 { 2588 struct task_struct *tsk; 2589 pid_t pid; 2590 2591 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0) 2592 return ERR_PTR(-EINVAL); 2593 2594 percpu_down_write(&cgroup_threadgroup_rwsem); 2595 2596 rcu_read_lock(); 2597 if (pid) { 2598 tsk = find_task_by_vpid(pid); 2599 if (!tsk) { 2600 tsk = ERR_PTR(-ESRCH); 2601 goto out_unlock_threadgroup; 2602 } 2603 } else { 2604 tsk = current; 2605 } 2606 2607 if (threadgroup) 2608 tsk = tsk->group_leader; 2609 2610 /* 2611 * kthreads may acquire PF_NO_SETAFFINITY during initialization. 2612 * If userland migrates such a kthread to a non-root cgroup, it can 2613 * become trapped in a cpuset, or RT kthread may be born in a 2614 * cgroup with no rt_runtime allocated. Just say no. 2615 */ 2616 if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) { 2617 tsk = ERR_PTR(-EINVAL); 2618 goto out_unlock_threadgroup; 2619 } 2620 2621 get_task_struct(tsk); 2622 goto out_unlock_rcu; 2623 2624 out_unlock_threadgroup: 2625 percpu_up_write(&cgroup_threadgroup_rwsem); 2626 out_unlock_rcu: 2627 rcu_read_unlock(); 2628 return tsk; 2629 } 2630 2631 void cgroup_procs_write_finish(struct task_struct *task) 2632 __releases(&cgroup_threadgroup_rwsem) 2633 { 2634 struct cgroup_subsys *ss; 2635 int ssid; 2636 2637 /* release reference from cgroup_procs_write_start() */ 2638 put_task_struct(task); 2639 2640 percpu_up_write(&cgroup_threadgroup_rwsem); 2641 for_each_subsys(ss, ssid) 2642 if (ss->post_attach) 2643 ss->post_attach(); 2644 } 2645 2646 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask) 2647 { 2648 struct cgroup_subsys *ss; 2649 bool printed = false; 2650 int ssid; 2651 2652 do_each_subsys_mask(ss, ssid, ss_mask) { 2653 if (printed) 2654 seq_putc(seq, ' '); 2655 seq_printf(seq, "%s", ss->name); 2656 printed = true; 2657 } while_each_subsys_mask(); 2658 if (printed) 2659 seq_putc(seq, '\n'); 2660 } 2661 2662 /* show controllers which are enabled from the parent */ 2663 static int cgroup_controllers_show(struct seq_file *seq, void *v) 2664 { 2665 struct cgroup *cgrp = seq_css(seq)->cgroup; 2666 2667 cgroup_print_ss_mask(seq, cgroup_control(cgrp)); 2668 return 0; 2669 } 2670 2671 /* show controllers which are enabled for a given cgroup's children */ 2672 static int cgroup_subtree_control_show(struct seq_file *seq, void *v) 2673 { 2674 struct cgroup *cgrp = seq_css(seq)->cgroup; 2675 2676 cgroup_print_ss_mask(seq, cgrp->subtree_control); 2677 return 0; 2678 } 2679 2680 /** 2681 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy 2682 * @cgrp: root of the subtree to update csses for 2683 * 2684 * @cgrp's control masks have changed and its subtree's css associations 2685 * need to be updated accordingly. This function looks up all css_sets 2686 * which are attached to the subtree, creates the matching updated css_sets 2687 * and migrates the tasks to the new ones. 2688 */ 2689 static int cgroup_update_dfl_csses(struct cgroup *cgrp) 2690 { 2691 DEFINE_CGROUP_MGCTX(mgctx); 2692 struct cgroup_subsys_state *d_css; 2693 struct cgroup *dsct; 2694 struct css_set *src_cset; 2695 int ret; 2696 2697 lockdep_assert_held(&cgroup_mutex); 2698 2699 percpu_down_write(&cgroup_threadgroup_rwsem); 2700 2701 /* look up all csses currently attached to @cgrp's subtree */ 2702 spin_lock_irq(&css_set_lock); 2703 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 2704 struct cgrp_cset_link *link; 2705 2706 list_for_each_entry(link, &dsct->cset_links, cset_link) 2707 cgroup_migrate_add_src(link->cset, dsct, &mgctx); 2708 } 2709 spin_unlock_irq(&css_set_lock); 2710 2711 /* NULL dst indicates self on default hierarchy */ 2712 ret = cgroup_migrate_prepare_dst(&mgctx); 2713 if (ret) 2714 goto out_finish; 2715 2716 spin_lock_irq(&css_set_lock); 2717 list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, mg_preload_node) { 2718 struct task_struct *task, *ntask; 2719 2720 /* all tasks in src_csets need to be migrated */ 2721 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list) 2722 cgroup_migrate_add_task(task, &mgctx); 2723 } 2724 spin_unlock_irq(&css_set_lock); 2725 2726 ret = cgroup_migrate_execute(&mgctx); 2727 out_finish: 2728 cgroup_migrate_finish(&mgctx); 2729 percpu_up_write(&cgroup_threadgroup_rwsem); 2730 return ret; 2731 } 2732 2733 /** 2734 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses 2735 * @cgrp: root of the target subtree 2736 * 2737 * Because css offlining is asynchronous, userland may try to re-enable a 2738 * controller while the previous css is still around. This function grabs 2739 * cgroup_mutex and drains the previous css instances of @cgrp's subtree. 2740 */ 2741 void cgroup_lock_and_drain_offline(struct cgroup *cgrp) 2742 __acquires(&cgroup_mutex) 2743 { 2744 struct cgroup *dsct; 2745 struct cgroup_subsys_state *d_css; 2746 struct cgroup_subsys *ss; 2747 int ssid; 2748 2749 restart: 2750 mutex_lock(&cgroup_mutex); 2751 2752 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 2753 for_each_subsys(ss, ssid) { 2754 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 2755 DEFINE_WAIT(wait); 2756 2757 if (!css || !percpu_ref_is_dying(&css->refcnt)) 2758 continue; 2759 2760 cgroup_get_live(dsct); 2761 prepare_to_wait(&dsct->offline_waitq, &wait, 2762 TASK_UNINTERRUPTIBLE); 2763 2764 mutex_unlock(&cgroup_mutex); 2765 schedule(); 2766 finish_wait(&dsct->offline_waitq, &wait); 2767 2768 cgroup_put(dsct); 2769 goto restart; 2770 } 2771 } 2772 } 2773 2774 /** 2775 * cgroup_save_control - save control masks of a subtree 2776 * @cgrp: root of the target subtree 2777 * 2778 * Save ->subtree_control and ->subtree_ss_mask to the respective old_ 2779 * prefixed fields for @cgrp's subtree including @cgrp itself. 2780 */ 2781 static void cgroup_save_control(struct cgroup *cgrp) 2782 { 2783 struct cgroup *dsct; 2784 struct cgroup_subsys_state *d_css; 2785 2786 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 2787 dsct->old_subtree_control = dsct->subtree_control; 2788 dsct->old_subtree_ss_mask = dsct->subtree_ss_mask; 2789 } 2790 } 2791 2792 /** 2793 * cgroup_propagate_control - refresh control masks of a subtree 2794 * @cgrp: root of the target subtree 2795 * 2796 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches 2797 * ->subtree_control and propagate controller availability through the 2798 * subtree so that descendants don't have unavailable controllers enabled. 2799 */ 2800 static void cgroup_propagate_control(struct cgroup *cgrp) 2801 { 2802 struct cgroup *dsct; 2803 struct cgroup_subsys_state *d_css; 2804 2805 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 2806 dsct->subtree_control &= cgroup_control(dsct); 2807 dsct->subtree_ss_mask = 2808 cgroup_calc_subtree_ss_mask(dsct->subtree_control, 2809 cgroup_ss_mask(dsct)); 2810 } 2811 } 2812 2813 /** 2814 * cgroup_restore_control - restore control masks of a subtree 2815 * @cgrp: root of the target subtree 2816 * 2817 * Restore ->subtree_control and ->subtree_ss_mask from the respective old_ 2818 * prefixed fields for @cgrp's subtree including @cgrp itself. 2819 */ 2820 static void cgroup_restore_control(struct cgroup *cgrp) 2821 { 2822 struct cgroup *dsct; 2823 struct cgroup_subsys_state *d_css; 2824 2825 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 2826 dsct->subtree_control = dsct->old_subtree_control; 2827 dsct->subtree_ss_mask = dsct->old_subtree_ss_mask; 2828 } 2829 } 2830 2831 static bool css_visible(struct cgroup_subsys_state *css) 2832 { 2833 struct cgroup_subsys *ss = css->ss; 2834 struct cgroup *cgrp = css->cgroup; 2835 2836 if (cgroup_control(cgrp) & (1 << ss->id)) 2837 return true; 2838 if (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) 2839 return false; 2840 return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl; 2841 } 2842 2843 /** 2844 * cgroup_apply_control_enable - enable or show csses according to control 2845 * @cgrp: root of the target subtree 2846 * 2847 * Walk @cgrp's subtree and create new csses or make the existing ones 2848 * visible. A css is created invisible if it's being implicitly enabled 2849 * through dependency. An invisible css is made visible when the userland 2850 * explicitly enables it. 2851 * 2852 * Returns 0 on success, -errno on failure. On failure, csses which have 2853 * been processed already aren't cleaned up. The caller is responsible for 2854 * cleaning up with cgroup_apply_control_disable(). 2855 */ 2856 static int cgroup_apply_control_enable(struct cgroup *cgrp) 2857 { 2858 struct cgroup *dsct; 2859 struct cgroup_subsys_state *d_css; 2860 struct cgroup_subsys *ss; 2861 int ssid, ret; 2862 2863 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 2864 for_each_subsys(ss, ssid) { 2865 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 2866 2867 WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt)); 2868 2869 if (!(cgroup_ss_mask(dsct) & (1 << ss->id))) 2870 continue; 2871 2872 if (!css) { 2873 css = css_create(dsct, ss); 2874 if (IS_ERR(css)) 2875 return PTR_ERR(css); 2876 } 2877 2878 if (css_visible(css)) { 2879 ret = css_populate_dir(css); 2880 if (ret) 2881 return ret; 2882 } 2883 } 2884 } 2885 2886 return 0; 2887 } 2888 2889 /** 2890 * cgroup_apply_control_disable - kill or hide csses according to control 2891 * @cgrp: root of the target subtree 2892 * 2893 * Walk @cgrp's subtree and kill and hide csses so that they match 2894 * cgroup_ss_mask() and cgroup_visible_mask(). 2895 * 2896 * A css is hidden when the userland requests it to be disabled while other 2897 * subsystems are still depending on it. The css must not actively control 2898 * resources and be in the vanilla state if it's made visible again later. 2899 * Controllers which may be depended upon should provide ->css_reset() for 2900 * this purpose. 2901 */ 2902 static void cgroup_apply_control_disable(struct cgroup *cgrp) 2903 { 2904 struct cgroup *dsct; 2905 struct cgroup_subsys_state *d_css; 2906 struct cgroup_subsys *ss; 2907 int ssid; 2908 2909 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 2910 for_each_subsys(ss, ssid) { 2911 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 2912 2913 WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt)); 2914 2915 if (!css) 2916 continue; 2917 2918 if (css->parent && 2919 !(cgroup_ss_mask(dsct) & (1 << ss->id))) { 2920 kill_css(css); 2921 } else if (!css_visible(css)) { 2922 css_clear_dir(css); 2923 if (ss->css_reset) 2924 ss->css_reset(css); 2925 } 2926 } 2927 } 2928 } 2929 2930 /** 2931 * cgroup_apply_control - apply control mask updates to the subtree 2932 * @cgrp: root of the target subtree 2933 * 2934 * subsystems can be enabled and disabled in a subtree using the following 2935 * steps. 2936 * 2937 * 1. Call cgroup_save_control() to stash the current state. 2938 * 2. Update ->subtree_control masks in the subtree as desired. 2939 * 3. Call cgroup_apply_control() to apply the changes. 2940 * 4. Optionally perform other related operations. 2941 * 5. Call cgroup_finalize_control() to finish up. 2942 * 2943 * This function implements step 3 and propagates the mask changes 2944 * throughout @cgrp's subtree, updates csses accordingly and perform 2945 * process migrations. 2946 */ 2947 static int cgroup_apply_control(struct cgroup *cgrp) 2948 { 2949 int ret; 2950 2951 cgroup_propagate_control(cgrp); 2952 2953 ret = cgroup_apply_control_enable(cgrp); 2954 if (ret) 2955 return ret; 2956 2957 /* 2958 * At this point, cgroup_e_css() results reflect the new csses 2959 * making the following cgroup_update_dfl_csses() properly update 2960 * css associations of all tasks in the subtree. 2961 */ 2962 ret = cgroup_update_dfl_csses(cgrp); 2963 if (ret) 2964 return ret; 2965 2966 return 0; 2967 } 2968 2969 /** 2970 * cgroup_finalize_control - finalize control mask update 2971 * @cgrp: root of the target subtree 2972 * @ret: the result of the update 2973 * 2974 * Finalize control mask update. See cgroup_apply_control() for more info. 2975 */ 2976 static void cgroup_finalize_control(struct cgroup *cgrp, int ret) 2977 { 2978 if (ret) { 2979 cgroup_restore_control(cgrp); 2980 cgroup_propagate_control(cgrp); 2981 } 2982 2983 cgroup_apply_control_disable(cgrp); 2984 } 2985 2986 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable) 2987 { 2988 u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask; 2989 2990 /* if nothing is getting enabled, nothing to worry about */ 2991 if (!enable) 2992 return 0; 2993 2994 /* can @cgrp host any resources? */ 2995 if (!cgroup_is_valid_domain(cgrp->dom_cgrp)) 2996 return -EOPNOTSUPP; 2997 2998 /* mixables don't care */ 2999 if (cgroup_is_mixable(cgrp)) 3000 return 0; 3001 3002 if (domain_enable) { 3003 /* can't enable domain controllers inside a thread subtree */ 3004 if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp)) 3005 return -EOPNOTSUPP; 3006 } else { 3007 /* 3008 * Threaded controllers can handle internal competitions 3009 * and are always allowed inside a (prospective) thread 3010 * subtree. 3011 */ 3012 if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp)) 3013 return 0; 3014 } 3015 3016 /* 3017 * Controllers can't be enabled for a cgroup with tasks to avoid 3018 * child cgroups competing against tasks. 3019 */ 3020 if (cgroup_has_tasks(cgrp)) 3021 return -EBUSY; 3022 3023 return 0; 3024 } 3025 3026 /* change the enabled child controllers for a cgroup in the default hierarchy */ 3027 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of, 3028 char *buf, size_t nbytes, 3029 loff_t off) 3030 { 3031 u16 enable = 0, disable = 0; 3032 struct cgroup *cgrp, *child; 3033 struct cgroup_subsys *ss; 3034 char *tok; 3035 int ssid, ret; 3036 3037 /* 3038 * Parse input - space separated list of subsystem names prefixed 3039 * with either + or -. 3040 */ 3041 buf = strstrip(buf); 3042 while ((tok = strsep(&buf, " "))) { 3043 if (tok[0] == '\0') 3044 continue; 3045 do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) { 3046 if (!cgroup_ssid_enabled(ssid) || 3047 strcmp(tok + 1, ss->name)) 3048 continue; 3049 3050 if (*tok == '+') { 3051 enable |= 1 << ssid; 3052 disable &= ~(1 << ssid); 3053 } else if (*tok == '-') { 3054 disable |= 1 << ssid; 3055 enable &= ~(1 << ssid); 3056 } else { 3057 return -EINVAL; 3058 } 3059 break; 3060 } while_each_subsys_mask(); 3061 if (ssid == CGROUP_SUBSYS_COUNT) 3062 return -EINVAL; 3063 } 3064 3065 cgrp = cgroup_kn_lock_live(of->kn, true); 3066 if (!cgrp) 3067 return -ENODEV; 3068 3069 for_each_subsys(ss, ssid) { 3070 if (enable & (1 << ssid)) { 3071 if (cgrp->subtree_control & (1 << ssid)) { 3072 enable &= ~(1 << ssid); 3073 continue; 3074 } 3075 3076 if (!(cgroup_control(cgrp) & (1 << ssid))) { 3077 ret = -ENOENT; 3078 goto out_unlock; 3079 } 3080 } else if (disable & (1 << ssid)) { 3081 if (!(cgrp->subtree_control & (1 << ssid))) { 3082 disable &= ~(1 << ssid); 3083 continue; 3084 } 3085 3086 /* a child has it enabled? */ 3087 cgroup_for_each_live_child(child, cgrp) { 3088 if (child->subtree_control & (1 << ssid)) { 3089 ret = -EBUSY; 3090 goto out_unlock; 3091 } 3092 } 3093 } 3094 } 3095 3096 if (!enable && !disable) { 3097 ret = 0; 3098 goto out_unlock; 3099 } 3100 3101 ret = cgroup_vet_subtree_control_enable(cgrp, enable); 3102 if (ret) 3103 goto out_unlock; 3104 3105 /* save and update control masks and prepare csses */ 3106 cgroup_save_control(cgrp); 3107 3108 cgrp->subtree_control |= enable; 3109 cgrp->subtree_control &= ~disable; 3110 3111 ret = cgroup_apply_control(cgrp); 3112 cgroup_finalize_control(cgrp, ret); 3113 if (ret) 3114 goto out_unlock; 3115 3116 kernfs_activate(cgrp->kn); 3117 out_unlock: 3118 cgroup_kn_unlock(of->kn); 3119 return ret ?: nbytes; 3120 } 3121 3122 /** 3123 * cgroup_enable_threaded - make @cgrp threaded 3124 * @cgrp: the target cgroup 3125 * 3126 * Called when "threaded" is written to the cgroup.type interface file and 3127 * tries to make @cgrp threaded and join the parent's resource domain. 3128 * This function is never called on the root cgroup as cgroup.type doesn't 3129 * exist on it. 3130 */ 3131 static int cgroup_enable_threaded(struct cgroup *cgrp) 3132 { 3133 struct cgroup *parent = cgroup_parent(cgrp); 3134 struct cgroup *dom_cgrp = parent->dom_cgrp; 3135 int ret; 3136 3137 lockdep_assert_held(&cgroup_mutex); 3138 3139 /* noop if already threaded */ 3140 if (cgroup_is_threaded(cgrp)) 3141 return 0; 3142 3143 /* we're joining the parent's domain, ensure its validity */ 3144 if (!cgroup_is_valid_domain(dom_cgrp) || 3145 !cgroup_can_be_thread_root(dom_cgrp)) 3146 return -EOPNOTSUPP; 3147 3148 /* 3149 * The following shouldn't cause actual migrations and should 3150 * always succeed. 3151 */ 3152 cgroup_save_control(cgrp); 3153 3154 cgrp->dom_cgrp = dom_cgrp; 3155 ret = cgroup_apply_control(cgrp); 3156 if (!ret) 3157 parent->nr_threaded_children++; 3158 else 3159 cgrp->dom_cgrp = cgrp; 3160 3161 cgroup_finalize_control(cgrp, ret); 3162 return ret; 3163 } 3164 3165 static int cgroup_type_show(struct seq_file *seq, void *v) 3166 { 3167 struct cgroup *cgrp = seq_css(seq)->cgroup; 3168 3169 if (cgroup_is_threaded(cgrp)) 3170 seq_puts(seq, "threaded\n"); 3171 else if (!cgroup_is_valid_domain(cgrp)) 3172 seq_puts(seq, "domain invalid\n"); 3173 else if (cgroup_is_thread_root(cgrp)) 3174 seq_puts(seq, "domain threaded\n"); 3175 else 3176 seq_puts(seq, "domain\n"); 3177 3178 return 0; 3179 } 3180 3181 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf, 3182 size_t nbytes, loff_t off) 3183 { 3184 struct cgroup *cgrp; 3185 int ret; 3186 3187 /* only switching to threaded mode is supported */ 3188 if (strcmp(strstrip(buf), "threaded")) 3189 return -EINVAL; 3190 3191 cgrp = cgroup_kn_lock_live(of->kn, false); 3192 if (!cgrp) 3193 return -ENOENT; 3194 3195 /* threaded can only be enabled */ 3196 ret = cgroup_enable_threaded(cgrp); 3197 3198 cgroup_kn_unlock(of->kn); 3199 return ret ?: nbytes; 3200 } 3201 3202 static int cgroup_max_descendants_show(struct seq_file *seq, void *v) 3203 { 3204 struct cgroup *cgrp = seq_css(seq)->cgroup; 3205 int descendants = READ_ONCE(cgrp->max_descendants); 3206 3207 if (descendants == INT_MAX) 3208 seq_puts(seq, "max\n"); 3209 else 3210 seq_printf(seq, "%d\n", descendants); 3211 3212 return 0; 3213 } 3214 3215 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of, 3216 char *buf, size_t nbytes, loff_t off) 3217 { 3218 struct cgroup *cgrp; 3219 int descendants; 3220 ssize_t ret; 3221 3222 buf = strstrip(buf); 3223 if (!strcmp(buf, "max")) { 3224 descendants = INT_MAX; 3225 } else { 3226 ret = kstrtoint(buf, 0, &descendants); 3227 if (ret) 3228 return ret; 3229 } 3230 3231 if (descendants < 0) 3232 return -ERANGE; 3233 3234 cgrp = cgroup_kn_lock_live(of->kn, false); 3235 if (!cgrp) 3236 return -ENOENT; 3237 3238 cgrp->max_descendants = descendants; 3239 3240 cgroup_kn_unlock(of->kn); 3241 3242 return nbytes; 3243 } 3244 3245 static int cgroup_max_depth_show(struct seq_file *seq, void *v) 3246 { 3247 struct cgroup *cgrp = seq_css(seq)->cgroup; 3248 int depth = READ_ONCE(cgrp->max_depth); 3249 3250 if (depth == INT_MAX) 3251 seq_puts(seq, "max\n"); 3252 else 3253 seq_printf(seq, "%d\n", depth); 3254 3255 return 0; 3256 } 3257 3258 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of, 3259 char *buf, size_t nbytes, loff_t off) 3260 { 3261 struct cgroup *cgrp; 3262 ssize_t ret; 3263 int depth; 3264 3265 buf = strstrip(buf); 3266 if (!strcmp(buf, "max")) { 3267 depth = INT_MAX; 3268 } else { 3269 ret = kstrtoint(buf, 0, &depth); 3270 if (ret) 3271 return ret; 3272 } 3273 3274 if (depth < 0) 3275 return -ERANGE; 3276 3277 cgrp = cgroup_kn_lock_live(of->kn, false); 3278 if (!cgrp) 3279 return -ENOENT; 3280 3281 cgrp->max_depth = depth; 3282 3283 cgroup_kn_unlock(of->kn); 3284 3285 return nbytes; 3286 } 3287 3288 static int cgroup_events_show(struct seq_file *seq, void *v) 3289 { 3290 seq_printf(seq, "populated %d\n", 3291 cgroup_is_populated(seq_css(seq)->cgroup)); 3292 return 0; 3293 } 3294 3295 static int cgroup_stat_show(struct seq_file *seq, void *v) 3296 { 3297 struct cgroup *cgroup = seq_css(seq)->cgroup; 3298 3299 seq_printf(seq, "nr_descendants %d\n", 3300 cgroup->nr_descendants); 3301 seq_printf(seq, "nr_dying_descendants %d\n", 3302 cgroup->nr_dying_descendants); 3303 3304 return 0; 3305 } 3306 3307 static int cgroup_file_open(struct kernfs_open_file *of) 3308 { 3309 struct cftype *cft = of->kn->priv; 3310 3311 if (cft->open) 3312 return cft->open(of); 3313 return 0; 3314 } 3315 3316 static void cgroup_file_release(struct kernfs_open_file *of) 3317 { 3318 struct cftype *cft = of->kn->priv; 3319 3320 if (cft->release) 3321 cft->release(of); 3322 } 3323 3324 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf, 3325 size_t nbytes, loff_t off) 3326 { 3327 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns; 3328 struct cgroup *cgrp = of->kn->parent->priv; 3329 struct cftype *cft = of->kn->priv; 3330 struct cgroup_subsys_state *css; 3331 int ret; 3332 3333 /* 3334 * If namespaces are delegation boundaries, disallow writes to 3335 * files in an non-init namespace root from inside the namespace 3336 * except for the files explicitly marked delegatable - 3337 * cgroup.procs and cgroup.subtree_control. 3338 */ 3339 if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) && 3340 !(cft->flags & CFTYPE_NS_DELEGATABLE) && 3341 ns != &init_cgroup_ns && ns->root_cset->dfl_cgrp == cgrp) 3342 return -EPERM; 3343 3344 if (cft->write) 3345 return cft->write(of, buf, nbytes, off); 3346 3347 /* 3348 * kernfs guarantees that a file isn't deleted with operations in 3349 * flight, which means that the matching css is and stays alive and 3350 * doesn't need to be pinned. The RCU locking is not necessary 3351 * either. It's just for the convenience of using cgroup_css(). 3352 */ 3353 rcu_read_lock(); 3354 css = cgroup_css(cgrp, cft->ss); 3355 rcu_read_unlock(); 3356 3357 if (cft->write_u64) { 3358 unsigned long long v; 3359 ret = kstrtoull(buf, 0, &v); 3360 if (!ret) 3361 ret = cft->write_u64(css, cft, v); 3362 } else if (cft->write_s64) { 3363 long long v; 3364 ret = kstrtoll(buf, 0, &v); 3365 if (!ret) 3366 ret = cft->write_s64(css, cft, v); 3367 } else { 3368 ret = -EINVAL; 3369 } 3370 3371 return ret ?: nbytes; 3372 } 3373 3374 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos) 3375 { 3376 return seq_cft(seq)->seq_start(seq, ppos); 3377 } 3378 3379 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos) 3380 { 3381 return seq_cft(seq)->seq_next(seq, v, ppos); 3382 } 3383 3384 static void cgroup_seqfile_stop(struct seq_file *seq, void *v) 3385 { 3386 if (seq_cft(seq)->seq_stop) 3387 seq_cft(seq)->seq_stop(seq, v); 3388 } 3389 3390 static int cgroup_seqfile_show(struct seq_file *m, void *arg) 3391 { 3392 struct cftype *cft = seq_cft(m); 3393 struct cgroup_subsys_state *css = seq_css(m); 3394 3395 if (cft->seq_show) 3396 return cft->seq_show(m, arg); 3397 3398 if (cft->read_u64) 3399 seq_printf(m, "%llu\n", cft->read_u64(css, cft)); 3400 else if (cft->read_s64) 3401 seq_printf(m, "%lld\n", cft->read_s64(css, cft)); 3402 else 3403 return -EINVAL; 3404 return 0; 3405 } 3406 3407 static struct kernfs_ops cgroup_kf_single_ops = { 3408 .atomic_write_len = PAGE_SIZE, 3409 .open = cgroup_file_open, 3410 .release = cgroup_file_release, 3411 .write = cgroup_file_write, 3412 .seq_show = cgroup_seqfile_show, 3413 }; 3414 3415 static struct kernfs_ops cgroup_kf_ops = { 3416 .atomic_write_len = PAGE_SIZE, 3417 .open = cgroup_file_open, 3418 .release = cgroup_file_release, 3419 .write = cgroup_file_write, 3420 .seq_start = cgroup_seqfile_start, 3421 .seq_next = cgroup_seqfile_next, 3422 .seq_stop = cgroup_seqfile_stop, 3423 .seq_show = cgroup_seqfile_show, 3424 }; 3425 3426 /* set uid and gid of cgroup dirs and files to that of the creator */ 3427 static int cgroup_kn_set_ugid(struct kernfs_node *kn) 3428 { 3429 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID, 3430 .ia_uid = current_fsuid(), 3431 .ia_gid = current_fsgid(), }; 3432 3433 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) && 3434 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID)) 3435 return 0; 3436 3437 return kernfs_setattr(kn, &iattr); 3438 } 3439 3440 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp, 3441 struct cftype *cft) 3442 { 3443 char name[CGROUP_FILE_NAME_MAX]; 3444 struct kernfs_node *kn; 3445 struct lock_class_key *key = NULL; 3446 int ret; 3447 3448 #ifdef CONFIG_DEBUG_LOCK_ALLOC 3449 key = &cft->lockdep_key; 3450 #endif 3451 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name), 3452 cgroup_file_mode(cft), 0, cft->kf_ops, cft, 3453 NULL, key); 3454 if (IS_ERR(kn)) 3455 return PTR_ERR(kn); 3456 3457 ret = cgroup_kn_set_ugid(kn); 3458 if (ret) { 3459 kernfs_remove(kn); 3460 return ret; 3461 } 3462 3463 if (cft->file_offset) { 3464 struct cgroup_file *cfile = (void *)css + cft->file_offset; 3465 3466 spin_lock_irq(&cgroup_file_kn_lock); 3467 cfile->kn = kn; 3468 spin_unlock_irq(&cgroup_file_kn_lock); 3469 } 3470 3471 return 0; 3472 } 3473 3474 /** 3475 * cgroup_addrm_files - add or remove files to a cgroup directory 3476 * @css: the target css 3477 * @cgrp: the target cgroup (usually css->cgroup) 3478 * @cfts: array of cftypes to be added 3479 * @is_add: whether to add or remove 3480 * 3481 * Depending on @is_add, add or remove files defined by @cfts on @cgrp. 3482 * For removals, this function never fails. 3483 */ 3484 static int cgroup_addrm_files(struct cgroup_subsys_state *css, 3485 struct cgroup *cgrp, struct cftype cfts[], 3486 bool is_add) 3487 { 3488 struct cftype *cft, *cft_end = NULL; 3489 int ret = 0; 3490 3491 lockdep_assert_held(&cgroup_mutex); 3492 3493 restart: 3494 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) { 3495 /* does cft->flags tell us to skip this file on @cgrp? */ 3496 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp)) 3497 continue; 3498 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp)) 3499 continue; 3500 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp)) 3501 continue; 3502 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp)) 3503 continue; 3504 3505 if (is_add) { 3506 ret = cgroup_add_file(css, cgrp, cft); 3507 if (ret) { 3508 pr_warn("%s: failed to add %s, err=%d\n", 3509 __func__, cft->name, ret); 3510 cft_end = cft; 3511 is_add = false; 3512 goto restart; 3513 } 3514 } else { 3515 cgroup_rm_file(cgrp, cft); 3516 } 3517 } 3518 return ret; 3519 } 3520 3521 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add) 3522 { 3523 struct cgroup_subsys *ss = cfts[0].ss; 3524 struct cgroup *root = &ss->root->cgrp; 3525 struct cgroup_subsys_state *css; 3526 int ret = 0; 3527 3528 lockdep_assert_held(&cgroup_mutex); 3529 3530 /* add/rm files for all cgroups created before */ 3531 css_for_each_descendant_pre(css, cgroup_css(root, ss)) { 3532 struct cgroup *cgrp = css->cgroup; 3533 3534 if (!(css->flags & CSS_VISIBLE)) 3535 continue; 3536 3537 ret = cgroup_addrm_files(css, cgrp, cfts, is_add); 3538 if (ret) 3539 break; 3540 } 3541 3542 if (is_add && !ret) 3543 kernfs_activate(root->kn); 3544 return ret; 3545 } 3546 3547 static void cgroup_exit_cftypes(struct cftype *cfts) 3548 { 3549 struct cftype *cft; 3550 3551 for (cft = cfts; cft->name[0] != '\0'; cft++) { 3552 /* free copy for custom atomic_write_len, see init_cftypes() */ 3553 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) 3554 kfree(cft->kf_ops); 3555 cft->kf_ops = NULL; 3556 cft->ss = NULL; 3557 3558 /* revert flags set by cgroup core while adding @cfts */ 3559 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL); 3560 } 3561 } 3562 3563 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 3564 { 3565 struct cftype *cft; 3566 3567 for (cft = cfts; cft->name[0] != '\0'; cft++) { 3568 struct kernfs_ops *kf_ops; 3569 3570 WARN_ON(cft->ss || cft->kf_ops); 3571 3572 if (cft->seq_start) 3573 kf_ops = &cgroup_kf_ops; 3574 else 3575 kf_ops = &cgroup_kf_single_ops; 3576 3577 /* 3578 * Ugh... if @cft wants a custom max_write_len, we need to 3579 * make a copy of kf_ops to set its atomic_write_len. 3580 */ 3581 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) { 3582 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL); 3583 if (!kf_ops) { 3584 cgroup_exit_cftypes(cfts); 3585 return -ENOMEM; 3586 } 3587 kf_ops->atomic_write_len = cft->max_write_len; 3588 } 3589 3590 cft->kf_ops = kf_ops; 3591 cft->ss = ss; 3592 } 3593 3594 return 0; 3595 } 3596 3597 static int cgroup_rm_cftypes_locked(struct cftype *cfts) 3598 { 3599 lockdep_assert_held(&cgroup_mutex); 3600 3601 if (!cfts || !cfts[0].ss) 3602 return -ENOENT; 3603 3604 list_del(&cfts->node); 3605 cgroup_apply_cftypes(cfts, false); 3606 cgroup_exit_cftypes(cfts); 3607 return 0; 3608 } 3609 3610 /** 3611 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem 3612 * @cfts: zero-length name terminated array of cftypes 3613 * 3614 * Unregister @cfts. Files described by @cfts are removed from all 3615 * existing cgroups and all future cgroups won't have them either. This 3616 * function can be called anytime whether @cfts' subsys is attached or not. 3617 * 3618 * Returns 0 on successful unregistration, -ENOENT if @cfts is not 3619 * registered. 3620 */ 3621 int cgroup_rm_cftypes(struct cftype *cfts) 3622 { 3623 int ret; 3624 3625 mutex_lock(&cgroup_mutex); 3626 ret = cgroup_rm_cftypes_locked(cfts); 3627 mutex_unlock(&cgroup_mutex); 3628 return ret; 3629 } 3630 3631 /** 3632 * cgroup_add_cftypes - add an array of cftypes to a subsystem 3633 * @ss: target cgroup subsystem 3634 * @cfts: zero-length name terminated array of cftypes 3635 * 3636 * Register @cfts to @ss. Files described by @cfts are created for all 3637 * existing cgroups to which @ss is attached and all future cgroups will 3638 * have them too. This function can be called anytime whether @ss is 3639 * attached or not. 3640 * 3641 * Returns 0 on successful registration, -errno on failure. Note that this 3642 * function currently returns 0 as long as @cfts registration is successful 3643 * even if some file creation attempts on existing cgroups fail. 3644 */ 3645 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 3646 { 3647 int ret; 3648 3649 if (!cgroup_ssid_enabled(ss->id)) 3650 return 0; 3651 3652 if (!cfts || cfts[0].name[0] == '\0') 3653 return 0; 3654 3655 ret = cgroup_init_cftypes(ss, cfts); 3656 if (ret) 3657 return ret; 3658 3659 mutex_lock(&cgroup_mutex); 3660 3661 list_add_tail(&cfts->node, &ss->cfts); 3662 ret = cgroup_apply_cftypes(cfts, true); 3663 if (ret) 3664 cgroup_rm_cftypes_locked(cfts); 3665 3666 mutex_unlock(&cgroup_mutex); 3667 return ret; 3668 } 3669 3670 /** 3671 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy 3672 * @ss: target cgroup subsystem 3673 * @cfts: zero-length name terminated array of cftypes 3674 * 3675 * Similar to cgroup_add_cftypes() but the added files are only used for 3676 * the default hierarchy. 3677 */ 3678 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 3679 { 3680 struct cftype *cft; 3681 3682 for (cft = cfts; cft && cft->name[0] != '\0'; cft++) 3683 cft->flags |= __CFTYPE_ONLY_ON_DFL; 3684 return cgroup_add_cftypes(ss, cfts); 3685 } 3686 3687 /** 3688 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies 3689 * @ss: target cgroup subsystem 3690 * @cfts: zero-length name terminated array of cftypes 3691 * 3692 * Similar to cgroup_add_cftypes() but the added files are only used for 3693 * the legacy hierarchies. 3694 */ 3695 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 3696 { 3697 struct cftype *cft; 3698 3699 for (cft = cfts; cft && cft->name[0] != '\0'; cft++) 3700 cft->flags |= __CFTYPE_NOT_ON_DFL; 3701 return cgroup_add_cftypes(ss, cfts); 3702 } 3703 3704 /** 3705 * cgroup_file_notify - generate a file modified event for a cgroup_file 3706 * @cfile: target cgroup_file 3707 * 3708 * @cfile must have been obtained by setting cftype->file_offset. 3709 */ 3710 void cgroup_file_notify(struct cgroup_file *cfile) 3711 { 3712 unsigned long flags; 3713 3714 spin_lock_irqsave(&cgroup_file_kn_lock, flags); 3715 if (cfile->kn) 3716 kernfs_notify(cfile->kn); 3717 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags); 3718 } 3719 3720 /** 3721 * css_next_child - find the next child of a given css 3722 * @pos: the current position (%NULL to initiate traversal) 3723 * @parent: css whose children to walk 3724 * 3725 * This function returns the next child of @parent and should be called 3726 * under either cgroup_mutex or RCU read lock. The only requirement is 3727 * that @parent and @pos are accessible. The next sibling is guaranteed to 3728 * be returned regardless of their states. 3729 * 3730 * If a subsystem synchronizes ->css_online() and the start of iteration, a 3731 * css which finished ->css_online() is guaranteed to be visible in the 3732 * future iterations and will stay visible until the last reference is put. 3733 * A css which hasn't finished ->css_online() or already finished 3734 * ->css_offline() may show up during traversal. It's each subsystem's 3735 * responsibility to synchronize against on/offlining. 3736 */ 3737 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos, 3738 struct cgroup_subsys_state *parent) 3739 { 3740 struct cgroup_subsys_state *next; 3741 3742 cgroup_assert_mutex_or_rcu_locked(); 3743 3744 /* 3745 * @pos could already have been unlinked from the sibling list. 3746 * Once a cgroup is removed, its ->sibling.next is no longer 3747 * updated when its next sibling changes. CSS_RELEASED is set when 3748 * @pos is taken off list, at which time its next pointer is valid, 3749 * and, as releases are serialized, the one pointed to by the next 3750 * pointer is guaranteed to not have started release yet. This 3751 * implies that if we observe !CSS_RELEASED on @pos in this RCU 3752 * critical section, the one pointed to by its next pointer is 3753 * guaranteed to not have finished its RCU grace period even if we 3754 * have dropped rcu_read_lock() inbetween iterations. 3755 * 3756 * If @pos has CSS_RELEASED set, its next pointer can't be 3757 * dereferenced; however, as each css is given a monotonically 3758 * increasing unique serial number and always appended to the 3759 * sibling list, the next one can be found by walking the parent's 3760 * children until the first css with higher serial number than 3761 * @pos's. While this path can be slower, it happens iff iteration 3762 * races against release and the race window is very small. 3763 */ 3764 if (!pos) { 3765 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling); 3766 } else if (likely(!(pos->flags & CSS_RELEASED))) { 3767 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling); 3768 } else { 3769 list_for_each_entry_rcu(next, &parent->children, sibling) 3770 if (next->serial_nr > pos->serial_nr) 3771 break; 3772 } 3773 3774 /* 3775 * @next, if not pointing to the head, can be dereferenced and is 3776 * the next sibling. 3777 */ 3778 if (&next->sibling != &parent->children) 3779 return next; 3780 return NULL; 3781 } 3782 3783 /** 3784 * css_next_descendant_pre - find the next descendant for pre-order walk 3785 * @pos: the current position (%NULL to initiate traversal) 3786 * @root: css whose descendants to walk 3787 * 3788 * To be used by css_for_each_descendant_pre(). Find the next descendant 3789 * to visit for pre-order traversal of @root's descendants. @root is 3790 * included in the iteration and the first node to be visited. 3791 * 3792 * While this function requires cgroup_mutex or RCU read locking, it 3793 * doesn't require the whole traversal to be contained in a single critical 3794 * section. This function will return the correct next descendant as long 3795 * as both @pos and @root are accessible and @pos is a descendant of @root. 3796 * 3797 * If a subsystem synchronizes ->css_online() and the start of iteration, a 3798 * css which finished ->css_online() is guaranteed to be visible in the 3799 * future iterations and will stay visible until the last reference is put. 3800 * A css which hasn't finished ->css_online() or already finished 3801 * ->css_offline() may show up during traversal. It's each subsystem's 3802 * responsibility to synchronize against on/offlining. 3803 */ 3804 struct cgroup_subsys_state * 3805 css_next_descendant_pre(struct cgroup_subsys_state *pos, 3806 struct cgroup_subsys_state *root) 3807 { 3808 struct cgroup_subsys_state *next; 3809 3810 cgroup_assert_mutex_or_rcu_locked(); 3811 3812 /* if first iteration, visit @root */ 3813 if (!pos) 3814 return root; 3815 3816 /* visit the first child if exists */ 3817 next = css_next_child(NULL, pos); 3818 if (next) 3819 return next; 3820 3821 /* no child, visit my or the closest ancestor's next sibling */ 3822 while (pos != root) { 3823 next = css_next_child(pos, pos->parent); 3824 if (next) 3825 return next; 3826 pos = pos->parent; 3827 } 3828 3829 return NULL; 3830 } 3831 3832 /** 3833 * css_rightmost_descendant - return the rightmost descendant of a css 3834 * @pos: css of interest 3835 * 3836 * Return the rightmost descendant of @pos. If there's no descendant, @pos 3837 * is returned. This can be used during pre-order traversal to skip 3838 * subtree of @pos. 3839 * 3840 * While this function requires cgroup_mutex or RCU read locking, it 3841 * doesn't require the whole traversal to be contained in a single critical 3842 * section. This function will return the correct rightmost descendant as 3843 * long as @pos is accessible. 3844 */ 3845 struct cgroup_subsys_state * 3846 css_rightmost_descendant(struct cgroup_subsys_state *pos) 3847 { 3848 struct cgroup_subsys_state *last, *tmp; 3849 3850 cgroup_assert_mutex_or_rcu_locked(); 3851 3852 do { 3853 last = pos; 3854 /* ->prev isn't RCU safe, walk ->next till the end */ 3855 pos = NULL; 3856 css_for_each_child(tmp, last) 3857 pos = tmp; 3858 } while (pos); 3859 3860 return last; 3861 } 3862 3863 static struct cgroup_subsys_state * 3864 css_leftmost_descendant(struct cgroup_subsys_state *pos) 3865 { 3866 struct cgroup_subsys_state *last; 3867 3868 do { 3869 last = pos; 3870 pos = css_next_child(NULL, pos); 3871 } while (pos); 3872 3873 return last; 3874 } 3875 3876 /** 3877 * css_next_descendant_post - find the next descendant for post-order walk 3878 * @pos: the current position (%NULL to initiate traversal) 3879 * @root: css whose descendants to walk 3880 * 3881 * To be used by css_for_each_descendant_post(). Find the next descendant 3882 * to visit for post-order traversal of @root's descendants. @root is 3883 * included in the iteration and the last node to be visited. 3884 * 3885 * While this function requires cgroup_mutex or RCU read locking, it 3886 * doesn't require the whole traversal to be contained in a single critical 3887 * section. This function will return the correct next descendant as long 3888 * as both @pos and @cgroup are accessible and @pos is a descendant of 3889 * @cgroup. 3890 * 3891 * If a subsystem synchronizes ->css_online() and the start of iteration, a 3892 * css which finished ->css_online() is guaranteed to be visible in the 3893 * future iterations and will stay visible until the last reference is put. 3894 * A css which hasn't finished ->css_online() or already finished 3895 * ->css_offline() may show up during traversal. It's each subsystem's 3896 * responsibility to synchronize against on/offlining. 3897 */ 3898 struct cgroup_subsys_state * 3899 css_next_descendant_post(struct cgroup_subsys_state *pos, 3900 struct cgroup_subsys_state *root) 3901 { 3902 struct cgroup_subsys_state *next; 3903 3904 cgroup_assert_mutex_or_rcu_locked(); 3905 3906 /* if first iteration, visit leftmost descendant which may be @root */ 3907 if (!pos) 3908 return css_leftmost_descendant(root); 3909 3910 /* if we visited @root, we're done */ 3911 if (pos == root) 3912 return NULL; 3913 3914 /* if there's an unvisited sibling, visit its leftmost descendant */ 3915 next = css_next_child(pos, pos->parent); 3916 if (next) 3917 return css_leftmost_descendant(next); 3918 3919 /* no sibling left, visit parent */ 3920 return pos->parent; 3921 } 3922 3923 /** 3924 * css_has_online_children - does a css have online children 3925 * @css: the target css 3926 * 3927 * Returns %true if @css has any online children; otherwise, %false. This 3928 * function can be called from any context but the caller is responsible 3929 * for synchronizing against on/offlining as necessary. 3930 */ 3931 bool css_has_online_children(struct cgroup_subsys_state *css) 3932 { 3933 struct cgroup_subsys_state *child; 3934 bool ret = false; 3935 3936 rcu_read_lock(); 3937 css_for_each_child(child, css) { 3938 if (child->flags & CSS_ONLINE) { 3939 ret = true; 3940 break; 3941 } 3942 } 3943 rcu_read_unlock(); 3944 return ret; 3945 } 3946 3947 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it) 3948 { 3949 struct list_head *l; 3950 struct cgrp_cset_link *link; 3951 struct css_set *cset; 3952 3953 lockdep_assert_held(&css_set_lock); 3954 3955 /* find the next threaded cset */ 3956 if (it->tcset_pos) { 3957 l = it->tcset_pos->next; 3958 3959 if (l != it->tcset_head) { 3960 it->tcset_pos = l; 3961 return container_of(l, struct css_set, 3962 threaded_csets_node); 3963 } 3964 3965 it->tcset_pos = NULL; 3966 } 3967 3968 /* find the next cset */ 3969 l = it->cset_pos; 3970 l = l->next; 3971 if (l == it->cset_head) { 3972 it->cset_pos = NULL; 3973 return NULL; 3974 } 3975 3976 if (it->ss) { 3977 cset = container_of(l, struct css_set, e_cset_node[it->ss->id]); 3978 } else { 3979 link = list_entry(l, struct cgrp_cset_link, cset_link); 3980 cset = link->cset; 3981 } 3982 3983 it->cset_pos = l; 3984 3985 /* initialize threaded css_set walking */ 3986 if (it->flags & CSS_TASK_ITER_THREADED) { 3987 if (it->cur_dcset) 3988 put_css_set_locked(it->cur_dcset); 3989 it->cur_dcset = cset; 3990 get_css_set(cset); 3991 3992 it->tcset_head = &cset->threaded_csets; 3993 it->tcset_pos = &cset->threaded_csets; 3994 } 3995 3996 return cset; 3997 } 3998 3999 /** 4000 * css_task_iter_advance_css_set - advance a task itererator to the next css_set 4001 * @it: the iterator to advance 4002 * 4003 * Advance @it to the next css_set to walk. 4004 */ 4005 static void css_task_iter_advance_css_set(struct css_task_iter *it) 4006 { 4007 struct css_set *cset; 4008 4009 lockdep_assert_held(&css_set_lock); 4010 4011 /* Advance to the next non-empty css_set */ 4012 do { 4013 cset = css_task_iter_next_css_set(it); 4014 if (!cset) { 4015 it->task_pos = NULL; 4016 return; 4017 } 4018 } while (!css_set_populated(cset)); 4019 4020 if (!list_empty(&cset->tasks)) 4021 it->task_pos = cset->tasks.next; 4022 else 4023 it->task_pos = cset->mg_tasks.next; 4024 4025 it->tasks_head = &cset->tasks; 4026 it->mg_tasks_head = &cset->mg_tasks; 4027 4028 /* 4029 * We don't keep css_sets locked across iteration steps and thus 4030 * need to take steps to ensure that iteration can be resumed after 4031 * the lock is re-acquired. Iteration is performed at two levels - 4032 * css_sets and tasks in them. 4033 * 4034 * Once created, a css_set never leaves its cgroup lists, so a 4035 * pinned css_set is guaranteed to stay put and we can resume 4036 * iteration afterwards. 4037 * 4038 * Tasks may leave @cset across iteration steps. This is resolved 4039 * by registering each iterator with the css_set currently being 4040 * walked and making css_set_move_task() advance iterators whose 4041 * next task is leaving. 4042 */ 4043 if (it->cur_cset) { 4044 list_del(&it->iters_node); 4045 put_css_set_locked(it->cur_cset); 4046 } 4047 get_css_set(cset); 4048 it->cur_cset = cset; 4049 list_add(&it->iters_node, &cset->task_iters); 4050 } 4051 4052 static void css_task_iter_advance(struct css_task_iter *it) 4053 { 4054 struct list_head *l = it->task_pos; 4055 4056 lockdep_assert_held(&css_set_lock); 4057 WARN_ON_ONCE(!l); 4058 4059 repeat: 4060 /* 4061 * Advance iterator to find next entry. cset->tasks is consumed 4062 * first and then ->mg_tasks. After ->mg_tasks, we move onto the 4063 * next cset. 4064 */ 4065 l = l->next; 4066 4067 if (l == it->tasks_head) 4068 l = it->mg_tasks_head->next; 4069 4070 if (l == it->mg_tasks_head) 4071 css_task_iter_advance_css_set(it); 4072 else 4073 it->task_pos = l; 4074 4075 /* if PROCS, skip over tasks which aren't group leaders */ 4076 if ((it->flags & CSS_TASK_ITER_PROCS) && it->task_pos && 4077 !thread_group_leader(list_entry(it->task_pos, struct task_struct, 4078 cg_list))) 4079 goto repeat; 4080 } 4081 4082 /** 4083 * css_task_iter_start - initiate task iteration 4084 * @css: the css to walk tasks of 4085 * @flags: CSS_TASK_ITER_* flags 4086 * @it: the task iterator to use 4087 * 4088 * Initiate iteration through the tasks of @css. The caller can call 4089 * css_task_iter_next() to walk through the tasks until the function 4090 * returns NULL. On completion of iteration, css_task_iter_end() must be 4091 * called. 4092 */ 4093 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags, 4094 struct css_task_iter *it) 4095 { 4096 /* no one should try to iterate before mounting cgroups */ 4097 WARN_ON_ONCE(!use_task_css_set_links); 4098 4099 memset(it, 0, sizeof(*it)); 4100 4101 spin_lock_irq(&css_set_lock); 4102 4103 it->ss = css->ss; 4104 it->flags = flags; 4105 4106 if (it->ss) 4107 it->cset_pos = &css->cgroup->e_csets[css->ss->id]; 4108 else 4109 it->cset_pos = &css->cgroup->cset_links; 4110 4111 it->cset_head = it->cset_pos; 4112 4113 css_task_iter_advance_css_set(it); 4114 4115 spin_unlock_irq(&css_set_lock); 4116 } 4117 4118 /** 4119 * css_task_iter_next - return the next task for the iterator 4120 * @it: the task iterator being iterated 4121 * 4122 * The "next" function for task iteration. @it should have been 4123 * initialized via css_task_iter_start(). Returns NULL when the iteration 4124 * reaches the end. 4125 */ 4126 struct task_struct *css_task_iter_next(struct css_task_iter *it) 4127 { 4128 if (it->cur_task) { 4129 put_task_struct(it->cur_task); 4130 it->cur_task = NULL; 4131 } 4132 4133 spin_lock_irq(&css_set_lock); 4134 4135 if (it->task_pos) { 4136 it->cur_task = list_entry(it->task_pos, struct task_struct, 4137 cg_list); 4138 get_task_struct(it->cur_task); 4139 css_task_iter_advance(it); 4140 } 4141 4142 spin_unlock_irq(&css_set_lock); 4143 4144 return it->cur_task; 4145 } 4146 4147 /** 4148 * css_task_iter_end - finish task iteration 4149 * @it: the task iterator to finish 4150 * 4151 * Finish task iteration started by css_task_iter_start(). 4152 */ 4153 void css_task_iter_end(struct css_task_iter *it) 4154 { 4155 if (it->cur_cset) { 4156 spin_lock_irq(&css_set_lock); 4157 list_del(&it->iters_node); 4158 put_css_set_locked(it->cur_cset); 4159 spin_unlock_irq(&css_set_lock); 4160 } 4161 4162 if (it->cur_dcset) 4163 put_css_set(it->cur_dcset); 4164 4165 if (it->cur_task) 4166 put_task_struct(it->cur_task); 4167 } 4168 4169 static void cgroup_procs_release(struct kernfs_open_file *of) 4170 { 4171 if (of->priv) { 4172 css_task_iter_end(of->priv); 4173 kfree(of->priv); 4174 } 4175 } 4176 4177 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos) 4178 { 4179 struct kernfs_open_file *of = s->private; 4180 struct css_task_iter *it = of->priv; 4181 4182 return css_task_iter_next(it); 4183 } 4184 4185 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos, 4186 unsigned int iter_flags) 4187 { 4188 struct kernfs_open_file *of = s->private; 4189 struct cgroup *cgrp = seq_css(s)->cgroup; 4190 struct css_task_iter *it = of->priv; 4191 4192 /* 4193 * When a seq_file is seeked, it's always traversed sequentially 4194 * from position 0, so we can simply keep iterating on !0 *pos. 4195 */ 4196 if (!it) { 4197 if (WARN_ON_ONCE((*pos)++)) 4198 return ERR_PTR(-EINVAL); 4199 4200 it = kzalloc(sizeof(*it), GFP_KERNEL); 4201 if (!it) 4202 return ERR_PTR(-ENOMEM); 4203 of->priv = it; 4204 css_task_iter_start(&cgrp->self, iter_flags, it); 4205 } else if (!(*pos)++) { 4206 css_task_iter_end(it); 4207 css_task_iter_start(&cgrp->self, iter_flags, it); 4208 } 4209 4210 return cgroup_procs_next(s, NULL, NULL); 4211 } 4212 4213 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos) 4214 { 4215 struct cgroup *cgrp = seq_css(s)->cgroup; 4216 4217 /* 4218 * All processes of a threaded subtree belong to the domain cgroup 4219 * of the subtree. Only threads can be distributed across the 4220 * subtree. Reject reads on cgroup.procs in the subtree proper. 4221 * They're always empty anyway. 4222 */ 4223 if (cgroup_is_threaded(cgrp)) 4224 return ERR_PTR(-EOPNOTSUPP); 4225 4226 return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS | 4227 CSS_TASK_ITER_THREADED); 4228 } 4229 4230 static int cgroup_procs_show(struct seq_file *s, void *v) 4231 { 4232 seq_printf(s, "%d\n", task_pid_vnr(v)); 4233 return 0; 4234 } 4235 4236 static int cgroup_procs_write_permission(struct cgroup *src_cgrp, 4237 struct cgroup *dst_cgrp, 4238 struct super_block *sb) 4239 { 4240 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns; 4241 struct cgroup *com_cgrp = src_cgrp; 4242 struct inode *inode; 4243 int ret; 4244 4245 lockdep_assert_held(&cgroup_mutex); 4246 4247 /* find the common ancestor */ 4248 while (!cgroup_is_descendant(dst_cgrp, com_cgrp)) 4249 com_cgrp = cgroup_parent(com_cgrp); 4250 4251 /* %current should be authorized to migrate to the common ancestor */ 4252 inode = kernfs_get_inode(sb, com_cgrp->procs_file.kn); 4253 if (!inode) 4254 return -ENOMEM; 4255 4256 ret = inode_permission(inode, MAY_WRITE); 4257 iput(inode); 4258 if (ret) 4259 return ret; 4260 4261 /* 4262 * If namespaces are delegation boundaries, %current must be able 4263 * to see both source and destination cgroups from its namespace. 4264 */ 4265 if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) && 4266 (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) || 4267 !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp))) 4268 return -ENOENT; 4269 4270 return 0; 4271 } 4272 4273 static ssize_t cgroup_procs_write(struct kernfs_open_file *of, 4274 char *buf, size_t nbytes, loff_t off) 4275 { 4276 struct cgroup *src_cgrp, *dst_cgrp; 4277 struct task_struct *task; 4278 ssize_t ret; 4279 4280 dst_cgrp = cgroup_kn_lock_live(of->kn, false); 4281 if (!dst_cgrp) 4282 return -ENODEV; 4283 4284 task = cgroup_procs_write_start(buf, true); 4285 ret = PTR_ERR_OR_ZERO(task); 4286 if (ret) 4287 goto out_unlock; 4288 4289 /* find the source cgroup */ 4290 spin_lock_irq(&css_set_lock); 4291 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root); 4292 spin_unlock_irq(&css_set_lock); 4293 4294 ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, 4295 of->file->f_path.dentry->d_sb); 4296 if (ret) 4297 goto out_finish; 4298 4299 ret = cgroup_attach_task(dst_cgrp, task, true); 4300 4301 out_finish: 4302 cgroup_procs_write_finish(task); 4303 out_unlock: 4304 cgroup_kn_unlock(of->kn); 4305 4306 return ret ?: nbytes; 4307 } 4308 4309 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos) 4310 { 4311 return __cgroup_procs_start(s, pos, 0); 4312 } 4313 4314 static ssize_t cgroup_threads_write(struct kernfs_open_file *of, 4315 char *buf, size_t nbytes, loff_t off) 4316 { 4317 struct cgroup *src_cgrp, *dst_cgrp; 4318 struct task_struct *task; 4319 ssize_t ret; 4320 4321 buf = strstrip(buf); 4322 4323 dst_cgrp = cgroup_kn_lock_live(of->kn, false); 4324 if (!dst_cgrp) 4325 return -ENODEV; 4326 4327 task = cgroup_procs_write_start(buf, false); 4328 ret = PTR_ERR_OR_ZERO(task); 4329 if (ret) 4330 goto out_unlock; 4331 4332 /* find the source cgroup */ 4333 spin_lock_irq(&css_set_lock); 4334 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root); 4335 spin_unlock_irq(&css_set_lock); 4336 4337 /* thread migrations follow the cgroup.procs delegation rule */ 4338 ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, 4339 of->file->f_path.dentry->d_sb); 4340 if (ret) 4341 goto out_finish; 4342 4343 /* and must be contained in the same domain */ 4344 ret = -EOPNOTSUPP; 4345 if (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp) 4346 goto out_finish; 4347 4348 ret = cgroup_attach_task(dst_cgrp, task, false); 4349 4350 out_finish: 4351 cgroup_procs_write_finish(task); 4352 out_unlock: 4353 cgroup_kn_unlock(of->kn); 4354 4355 return ret ?: nbytes; 4356 } 4357 4358 /* cgroup core interface files for the default hierarchy */ 4359 static struct cftype cgroup_base_files[] = { 4360 { 4361 .name = "cgroup.type", 4362 .flags = CFTYPE_NOT_ON_ROOT, 4363 .seq_show = cgroup_type_show, 4364 .write = cgroup_type_write, 4365 }, 4366 { 4367 .name = "cgroup.procs", 4368 .flags = CFTYPE_NS_DELEGATABLE, 4369 .file_offset = offsetof(struct cgroup, procs_file), 4370 .release = cgroup_procs_release, 4371 .seq_start = cgroup_procs_start, 4372 .seq_next = cgroup_procs_next, 4373 .seq_show = cgroup_procs_show, 4374 .write = cgroup_procs_write, 4375 }, 4376 { 4377 .name = "cgroup.threads", 4378 .release = cgroup_procs_release, 4379 .seq_start = cgroup_threads_start, 4380 .seq_next = cgroup_procs_next, 4381 .seq_show = cgroup_procs_show, 4382 .write = cgroup_threads_write, 4383 }, 4384 { 4385 .name = "cgroup.controllers", 4386 .seq_show = cgroup_controllers_show, 4387 }, 4388 { 4389 .name = "cgroup.subtree_control", 4390 .flags = CFTYPE_NS_DELEGATABLE, 4391 .seq_show = cgroup_subtree_control_show, 4392 .write = cgroup_subtree_control_write, 4393 }, 4394 { 4395 .name = "cgroup.events", 4396 .flags = CFTYPE_NOT_ON_ROOT, 4397 .file_offset = offsetof(struct cgroup, events_file), 4398 .seq_show = cgroup_events_show, 4399 }, 4400 { 4401 .name = "cgroup.max.descendants", 4402 .seq_show = cgroup_max_descendants_show, 4403 .write = cgroup_max_descendants_write, 4404 }, 4405 { 4406 .name = "cgroup.max.depth", 4407 .seq_show = cgroup_max_depth_show, 4408 .write = cgroup_max_depth_write, 4409 }, 4410 { 4411 .name = "cgroup.stat", 4412 .seq_show = cgroup_stat_show, 4413 }, 4414 { } /* terminate */ 4415 }; 4416 4417 /* 4418 * css destruction is four-stage process. 4419 * 4420 * 1. Destruction starts. Killing of the percpu_ref is initiated. 4421 * Implemented in kill_css(). 4422 * 4423 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs 4424 * and thus css_tryget_online() is guaranteed to fail, the css can be 4425 * offlined by invoking offline_css(). After offlining, the base ref is 4426 * put. Implemented in css_killed_work_fn(). 4427 * 4428 * 3. When the percpu_ref reaches zero, the only possible remaining 4429 * accessors are inside RCU read sections. css_release() schedules the 4430 * RCU callback. 4431 * 4432 * 4. After the grace period, the css can be freed. Implemented in 4433 * css_free_work_fn(). 4434 * 4435 * It is actually hairier because both step 2 and 4 require process context 4436 * and thus involve punting to css->destroy_work adding two additional 4437 * steps to the already complex sequence. 4438 */ 4439 static void css_free_work_fn(struct work_struct *work) 4440 { 4441 struct cgroup_subsys_state *css = 4442 container_of(work, struct cgroup_subsys_state, destroy_work); 4443 struct cgroup_subsys *ss = css->ss; 4444 struct cgroup *cgrp = css->cgroup; 4445 4446 percpu_ref_exit(&css->refcnt); 4447 4448 if (ss) { 4449 /* css free path */ 4450 struct cgroup_subsys_state *parent = css->parent; 4451 int id = css->id; 4452 4453 ss->css_free(css); 4454 cgroup_idr_remove(&ss->css_idr, id); 4455 cgroup_put(cgrp); 4456 4457 if (parent) 4458 css_put(parent); 4459 } else { 4460 /* cgroup free path */ 4461 atomic_dec(&cgrp->root->nr_cgrps); 4462 cgroup1_pidlist_destroy_all(cgrp); 4463 cancel_work_sync(&cgrp->release_agent_work); 4464 4465 if (cgroup_parent(cgrp)) { 4466 /* 4467 * We get a ref to the parent, and put the ref when 4468 * this cgroup is being freed, so it's guaranteed 4469 * that the parent won't be destroyed before its 4470 * children. 4471 */ 4472 cgroup_put(cgroup_parent(cgrp)); 4473 kernfs_put(cgrp->kn); 4474 kfree(cgrp); 4475 } else { 4476 /* 4477 * This is root cgroup's refcnt reaching zero, 4478 * which indicates that the root should be 4479 * released. 4480 */ 4481 cgroup_destroy_root(cgrp->root); 4482 } 4483 } 4484 } 4485 4486 static void css_free_rcu_fn(struct rcu_head *rcu_head) 4487 { 4488 struct cgroup_subsys_state *css = 4489 container_of(rcu_head, struct cgroup_subsys_state, rcu_head); 4490 4491 INIT_WORK(&css->destroy_work, css_free_work_fn); 4492 queue_work(cgroup_destroy_wq, &css->destroy_work); 4493 } 4494 4495 static void css_release_work_fn(struct work_struct *work) 4496 { 4497 struct cgroup_subsys_state *css = 4498 container_of(work, struct cgroup_subsys_state, destroy_work); 4499 struct cgroup_subsys *ss = css->ss; 4500 struct cgroup *cgrp = css->cgroup; 4501 4502 mutex_lock(&cgroup_mutex); 4503 4504 css->flags |= CSS_RELEASED; 4505 list_del_rcu(&css->sibling); 4506 4507 if (ss) { 4508 /* css release path */ 4509 cgroup_idr_replace(&ss->css_idr, NULL, css->id); 4510 if (ss->css_released) 4511 ss->css_released(css); 4512 } else { 4513 struct cgroup *tcgrp; 4514 4515 /* cgroup release path */ 4516 trace_cgroup_release(cgrp); 4517 4518 for (tcgrp = cgroup_parent(cgrp); tcgrp; 4519 tcgrp = cgroup_parent(tcgrp)) 4520 tcgrp->nr_dying_descendants--; 4521 4522 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id); 4523 cgrp->id = -1; 4524 4525 /* 4526 * There are two control paths which try to determine 4527 * cgroup from dentry without going through kernfs - 4528 * cgroupstats_build() and css_tryget_online_from_dir(). 4529 * Those are supported by RCU protecting clearing of 4530 * cgrp->kn->priv backpointer. 4531 */ 4532 if (cgrp->kn) 4533 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, 4534 NULL); 4535 4536 cgroup_bpf_put(cgrp); 4537 } 4538 4539 mutex_unlock(&cgroup_mutex); 4540 4541 call_rcu(&css->rcu_head, css_free_rcu_fn); 4542 } 4543 4544 static void css_release(struct percpu_ref *ref) 4545 { 4546 struct cgroup_subsys_state *css = 4547 container_of(ref, struct cgroup_subsys_state, refcnt); 4548 4549 INIT_WORK(&css->destroy_work, css_release_work_fn); 4550 queue_work(cgroup_destroy_wq, &css->destroy_work); 4551 } 4552 4553 static void init_and_link_css(struct cgroup_subsys_state *css, 4554 struct cgroup_subsys *ss, struct cgroup *cgrp) 4555 { 4556 lockdep_assert_held(&cgroup_mutex); 4557 4558 cgroup_get_live(cgrp); 4559 4560 memset(css, 0, sizeof(*css)); 4561 css->cgroup = cgrp; 4562 css->ss = ss; 4563 css->id = -1; 4564 INIT_LIST_HEAD(&css->sibling); 4565 INIT_LIST_HEAD(&css->children); 4566 css->serial_nr = css_serial_nr_next++; 4567 atomic_set(&css->online_cnt, 0); 4568 4569 if (cgroup_parent(cgrp)) { 4570 css->parent = cgroup_css(cgroup_parent(cgrp), ss); 4571 css_get(css->parent); 4572 } 4573 4574 BUG_ON(cgroup_css(cgrp, ss)); 4575 } 4576 4577 /* invoke ->css_online() on a new CSS and mark it online if successful */ 4578 static int online_css(struct cgroup_subsys_state *css) 4579 { 4580 struct cgroup_subsys *ss = css->ss; 4581 int ret = 0; 4582 4583 lockdep_assert_held(&cgroup_mutex); 4584 4585 if (ss->css_online) 4586 ret = ss->css_online(css); 4587 if (!ret) { 4588 css->flags |= CSS_ONLINE; 4589 rcu_assign_pointer(css->cgroup->subsys[ss->id], css); 4590 4591 atomic_inc(&css->online_cnt); 4592 if (css->parent) 4593 atomic_inc(&css->parent->online_cnt); 4594 } 4595 return ret; 4596 } 4597 4598 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */ 4599 static void offline_css(struct cgroup_subsys_state *css) 4600 { 4601 struct cgroup_subsys *ss = css->ss; 4602 4603 lockdep_assert_held(&cgroup_mutex); 4604 4605 if (!(css->flags & CSS_ONLINE)) 4606 return; 4607 4608 if (ss->css_offline) 4609 ss->css_offline(css); 4610 4611 css->flags &= ~CSS_ONLINE; 4612 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL); 4613 4614 wake_up_all(&css->cgroup->offline_waitq); 4615 } 4616 4617 /** 4618 * css_create - create a cgroup_subsys_state 4619 * @cgrp: the cgroup new css will be associated with 4620 * @ss: the subsys of new css 4621 * 4622 * Create a new css associated with @cgrp - @ss pair. On success, the new 4623 * css is online and installed in @cgrp. This function doesn't create the 4624 * interface files. Returns 0 on success, -errno on failure. 4625 */ 4626 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp, 4627 struct cgroup_subsys *ss) 4628 { 4629 struct cgroup *parent = cgroup_parent(cgrp); 4630 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss); 4631 struct cgroup_subsys_state *css; 4632 int err; 4633 4634 lockdep_assert_held(&cgroup_mutex); 4635 4636 css = ss->css_alloc(parent_css); 4637 if (!css) 4638 css = ERR_PTR(-ENOMEM); 4639 if (IS_ERR(css)) 4640 return css; 4641 4642 init_and_link_css(css, ss, cgrp); 4643 4644 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL); 4645 if (err) 4646 goto err_free_css; 4647 4648 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL); 4649 if (err < 0) 4650 goto err_free_css; 4651 css->id = err; 4652 4653 /* @css is ready to be brought online now, make it visible */ 4654 list_add_tail_rcu(&css->sibling, &parent_css->children); 4655 cgroup_idr_replace(&ss->css_idr, css, css->id); 4656 4657 err = online_css(css); 4658 if (err) 4659 goto err_list_del; 4660 4661 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy && 4662 cgroup_parent(parent)) { 4663 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n", 4664 current->comm, current->pid, ss->name); 4665 if (!strcmp(ss->name, "memory")) 4666 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n"); 4667 ss->warned_broken_hierarchy = true; 4668 } 4669 4670 return css; 4671 4672 err_list_del: 4673 list_del_rcu(&css->sibling); 4674 err_free_css: 4675 call_rcu(&css->rcu_head, css_free_rcu_fn); 4676 return ERR_PTR(err); 4677 } 4678 4679 /* 4680 * The returned cgroup is fully initialized including its control mask, but 4681 * it isn't associated with its kernfs_node and doesn't have the control 4682 * mask applied. 4683 */ 4684 static struct cgroup *cgroup_create(struct cgroup *parent) 4685 { 4686 struct cgroup_root *root = parent->root; 4687 struct cgroup *cgrp, *tcgrp; 4688 int level = parent->level + 1; 4689 int ret; 4690 4691 /* allocate the cgroup and its ID, 0 is reserved for the root */ 4692 cgrp = kzalloc(sizeof(*cgrp) + 4693 sizeof(cgrp->ancestor_ids[0]) * (level + 1), GFP_KERNEL); 4694 if (!cgrp) 4695 return ERR_PTR(-ENOMEM); 4696 4697 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL); 4698 if (ret) 4699 goto out_free_cgrp; 4700 4701 /* 4702 * Temporarily set the pointer to NULL, so idr_find() won't return 4703 * a half-baked cgroup. 4704 */ 4705 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL); 4706 if (cgrp->id < 0) { 4707 ret = -ENOMEM; 4708 goto out_cancel_ref; 4709 } 4710 4711 init_cgroup_housekeeping(cgrp); 4712 4713 cgrp->self.parent = &parent->self; 4714 cgrp->root = root; 4715 cgrp->level = level; 4716 4717 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) { 4718 cgrp->ancestor_ids[tcgrp->level] = tcgrp->id; 4719 4720 if (tcgrp != cgrp) 4721 tcgrp->nr_descendants++; 4722 } 4723 4724 if (notify_on_release(parent)) 4725 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags); 4726 4727 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags)) 4728 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags); 4729 4730 cgrp->self.serial_nr = css_serial_nr_next++; 4731 4732 /* allocation complete, commit to creation */ 4733 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children); 4734 atomic_inc(&root->nr_cgrps); 4735 cgroup_get_live(parent); 4736 4737 /* 4738 * @cgrp is now fully operational. If something fails after this 4739 * point, it'll be released via the normal destruction path. 4740 */ 4741 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id); 4742 4743 /* 4744 * On the default hierarchy, a child doesn't automatically inherit 4745 * subtree_control from the parent. Each is configured manually. 4746 */ 4747 if (!cgroup_on_dfl(cgrp)) 4748 cgrp->subtree_control = cgroup_control(cgrp); 4749 4750 if (parent) 4751 cgroup_bpf_inherit(cgrp, parent); 4752 4753 cgroup_propagate_control(cgrp); 4754 4755 return cgrp; 4756 4757 out_cancel_ref: 4758 percpu_ref_exit(&cgrp->self.refcnt); 4759 out_free_cgrp: 4760 kfree(cgrp); 4761 return ERR_PTR(ret); 4762 } 4763 4764 static bool cgroup_check_hierarchy_limits(struct cgroup *parent) 4765 { 4766 struct cgroup *cgroup; 4767 int ret = false; 4768 int level = 1; 4769 4770 lockdep_assert_held(&cgroup_mutex); 4771 4772 for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) { 4773 if (cgroup->nr_descendants >= cgroup->max_descendants) 4774 goto fail; 4775 4776 if (level > cgroup->max_depth) 4777 goto fail; 4778 4779 level++; 4780 } 4781 4782 ret = true; 4783 fail: 4784 return ret; 4785 } 4786 4787 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode) 4788 { 4789 struct cgroup *parent, *cgrp; 4790 struct kernfs_node *kn; 4791 int ret; 4792 4793 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */ 4794 if (strchr(name, '\n')) 4795 return -EINVAL; 4796 4797 parent = cgroup_kn_lock_live(parent_kn, false); 4798 if (!parent) 4799 return -ENODEV; 4800 4801 if (!cgroup_check_hierarchy_limits(parent)) { 4802 ret = -EAGAIN; 4803 goto out_unlock; 4804 } 4805 4806 cgrp = cgroup_create(parent); 4807 if (IS_ERR(cgrp)) { 4808 ret = PTR_ERR(cgrp); 4809 goto out_unlock; 4810 } 4811 4812 /* create the directory */ 4813 kn = kernfs_create_dir(parent->kn, name, mode, cgrp); 4814 if (IS_ERR(kn)) { 4815 ret = PTR_ERR(kn); 4816 goto out_destroy; 4817 } 4818 cgrp->kn = kn; 4819 4820 /* 4821 * This extra ref will be put in cgroup_free_fn() and guarantees 4822 * that @cgrp->kn is always accessible. 4823 */ 4824 kernfs_get(kn); 4825 4826 ret = cgroup_kn_set_ugid(kn); 4827 if (ret) 4828 goto out_destroy; 4829 4830 ret = css_populate_dir(&cgrp->self); 4831 if (ret) 4832 goto out_destroy; 4833 4834 ret = cgroup_apply_control_enable(cgrp); 4835 if (ret) 4836 goto out_destroy; 4837 4838 trace_cgroup_mkdir(cgrp); 4839 4840 /* let's create and online css's */ 4841 kernfs_activate(kn); 4842 4843 ret = 0; 4844 goto out_unlock; 4845 4846 out_destroy: 4847 cgroup_destroy_locked(cgrp); 4848 out_unlock: 4849 cgroup_kn_unlock(parent_kn); 4850 return ret; 4851 } 4852 4853 /* 4854 * This is called when the refcnt of a css is confirmed to be killed. 4855 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to 4856 * initate destruction and put the css ref from kill_css(). 4857 */ 4858 static void css_killed_work_fn(struct work_struct *work) 4859 { 4860 struct cgroup_subsys_state *css = 4861 container_of(work, struct cgroup_subsys_state, destroy_work); 4862 4863 mutex_lock(&cgroup_mutex); 4864 4865 do { 4866 offline_css(css); 4867 css_put(css); 4868 /* @css can't go away while we're holding cgroup_mutex */ 4869 css = css->parent; 4870 } while (css && atomic_dec_and_test(&css->online_cnt)); 4871 4872 mutex_unlock(&cgroup_mutex); 4873 } 4874 4875 /* css kill confirmation processing requires process context, bounce */ 4876 static void css_killed_ref_fn(struct percpu_ref *ref) 4877 { 4878 struct cgroup_subsys_state *css = 4879 container_of(ref, struct cgroup_subsys_state, refcnt); 4880 4881 if (atomic_dec_and_test(&css->online_cnt)) { 4882 INIT_WORK(&css->destroy_work, css_killed_work_fn); 4883 queue_work(cgroup_destroy_wq, &css->destroy_work); 4884 } 4885 } 4886 4887 /** 4888 * kill_css - destroy a css 4889 * @css: css to destroy 4890 * 4891 * This function initiates destruction of @css by removing cgroup interface 4892 * files and putting its base reference. ->css_offline() will be invoked 4893 * asynchronously once css_tryget_online() is guaranteed to fail and when 4894 * the reference count reaches zero, @css will be released. 4895 */ 4896 static void kill_css(struct cgroup_subsys_state *css) 4897 { 4898 lockdep_assert_held(&cgroup_mutex); 4899 4900 if (css->flags & CSS_DYING) 4901 return; 4902 4903 css->flags |= CSS_DYING; 4904 4905 /* 4906 * This must happen before css is disassociated with its cgroup. 4907 * See seq_css() for details. 4908 */ 4909 css_clear_dir(css); 4910 4911 /* 4912 * Killing would put the base ref, but we need to keep it alive 4913 * until after ->css_offline(). 4914 */ 4915 css_get(css); 4916 4917 /* 4918 * cgroup core guarantees that, by the time ->css_offline() is 4919 * invoked, no new css reference will be given out via 4920 * css_tryget_online(). We can't simply call percpu_ref_kill() and 4921 * proceed to offlining css's because percpu_ref_kill() doesn't 4922 * guarantee that the ref is seen as killed on all CPUs on return. 4923 * 4924 * Use percpu_ref_kill_and_confirm() to get notifications as each 4925 * css is confirmed to be seen as killed on all CPUs. 4926 */ 4927 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn); 4928 } 4929 4930 /** 4931 * cgroup_destroy_locked - the first stage of cgroup destruction 4932 * @cgrp: cgroup to be destroyed 4933 * 4934 * css's make use of percpu refcnts whose killing latency shouldn't be 4935 * exposed to userland and are RCU protected. Also, cgroup core needs to 4936 * guarantee that css_tryget_online() won't succeed by the time 4937 * ->css_offline() is invoked. To satisfy all the requirements, 4938 * destruction is implemented in the following two steps. 4939 * 4940 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all 4941 * userland visible parts and start killing the percpu refcnts of 4942 * css's. Set up so that the next stage will be kicked off once all 4943 * the percpu refcnts are confirmed to be killed. 4944 * 4945 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the 4946 * rest of destruction. Once all cgroup references are gone, the 4947 * cgroup is RCU-freed. 4948 * 4949 * This function implements s1. After this step, @cgrp is gone as far as 4950 * the userland is concerned and a new cgroup with the same name may be 4951 * created. As cgroup doesn't care about the names internally, this 4952 * doesn't cause any problem. 4953 */ 4954 static int cgroup_destroy_locked(struct cgroup *cgrp) 4955 __releases(&cgroup_mutex) __acquires(&cgroup_mutex) 4956 { 4957 struct cgroup *tcgrp, *parent = cgroup_parent(cgrp); 4958 struct cgroup_subsys_state *css; 4959 struct cgrp_cset_link *link; 4960 int ssid; 4961 4962 lockdep_assert_held(&cgroup_mutex); 4963 4964 /* 4965 * Only migration can raise populated from zero and we're already 4966 * holding cgroup_mutex. 4967 */ 4968 if (cgroup_is_populated(cgrp)) 4969 return -EBUSY; 4970 4971 /* 4972 * Make sure there's no live children. We can't test emptiness of 4973 * ->self.children as dead children linger on it while being 4974 * drained; otherwise, "rmdir parent/child parent" may fail. 4975 */ 4976 if (css_has_online_children(&cgrp->self)) 4977 return -EBUSY; 4978 4979 /* 4980 * Mark @cgrp and the associated csets dead. The former prevents 4981 * further task migration and child creation by disabling 4982 * cgroup_lock_live_group(). The latter makes the csets ignored by 4983 * the migration path. 4984 */ 4985 cgrp->self.flags &= ~CSS_ONLINE; 4986 4987 spin_lock_irq(&css_set_lock); 4988 list_for_each_entry(link, &cgrp->cset_links, cset_link) 4989 link->cset->dead = true; 4990 spin_unlock_irq(&css_set_lock); 4991 4992 /* initiate massacre of all css's */ 4993 for_each_css(css, ssid, cgrp) 4994 kill_css(css); 4995 4996 /* 4997 * Remove @cgrp directory along with the base files. @cgrp has an 4998 * extra ref on its kn. 4999 */ 5000 kernfs_remove(cgrp->kn); 5001 5002 if (parent && cgroup_is_threaded(cgrp)) 5003 parent->nr_threaded_children--; 5004 5005 for (tcgrp = cgroup_parent(cgrp); tcgrp; tcgrp = cgroup_parent(tcgrp)) { 5006 tcgrp->nr_descendants--; 5007 tcgrp->nr_dying_descendants++; 5008 } 5009 5010 cgroup1_check_for_release(parent); 5011 5012 /* put the base reference */ 5013 percpu_ref_kill(&cgrp->self.refcnt); 5014 5015 return 0; 5016 }; 5017 5018 int cgroup_rmdir(struct kernfs_node *kn) 5019 { 5020 struct cgroup *cgrp; 5021 int ret = 0; 5022 5023 cgrp = cgroup_kn_lock_live(kn, false); 5024 if (!cgrp) 5025 return 0; 5026 5027 ret = cgroup_destroy_locked(cgrp); 5028 5029 if (!ret) 5030 trace_cgroup_rmdir(cgrp); 5031 5032 cgroup_kn_unlock(kn); 5033 return ret; 5034 } 5035 5036 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = { 5037 .show_options = cgroup_show_options, 5038 .remount_fs = cgroup_remount, 5039 .mkdir = cgroup_mkdir, 5040 .rmdir = cgroup_rmdir, 5041 .show_path = cgroup_show_path, 5042 }; 5043 5044 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early) 5045 { 5046 struct cgroup_subsys_state *css; 5047 5048 pr_debug("Initializing cgroup subsys %s\n", ss->name); 5049 5050 mutex_lock(&cgroup_mutex); 5051 5052 idr_init(&ss->css_idr); 5053 INIT_LIST_HEAD(&ss->cfts); 5054 5055 /* Create the root cgroup state for this subsystem */ 5056 ss->root = &cgrp_dfl_root; 5057 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss)); 5058 /* We don't handle early failures gracefully */ 5059 BUG_ON(IS_ERR(css)); 5060 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp); 5061 5062 /* 5063 * Root csses are never destroyed and we can't initialize 5064 * percpu_ref during early init. Disable refcnting. 5065 */ 5066 css->flags |= CSS_NO_REF; 5067 5068 if (early) { 5069 /* allocation can't be done safely during early init */ 5070 css->id = 1; 5071 } else { 5072 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL); 5073 BUG_ON(css->id < 0); 5074 } 5075 5076 /* Update the init_css_set to contain a subsys 5077 * pointer to this state - since the subsystem is 5078 * newly registered, all tasks and hence the 5079 * init_css_set is in the subsystem's root cgroup. */ 5080 init_css_set.subsys[ss->id] = css; 5081 5082 have_fork_callback |= (bool)ss->fork << ss->id; 5083 have_exit_callback |= (bool)ss->exit << ss->id; 5084 have_free_callback |= (bool)ss->free << ss->id; 5085 have_canfork_callback |= (bool)ss->can_fork << ss->id; 5086 5087 /* At system boot, before all subsystems have been 5088 * registered, no tasks have been forked, so we don't 5089 * need to invoke fork callbacks here. */ 5090 BUG_ON(!list_empty(&init_task.tasks)); 5091 5092 BUG_ON(online_css(css)); 5093 5094 mutex_unlock(&cgroup_mutex); 5095 } 5096 5097 /** 5098 * cgroup_init_early - cgroup initialization at system boot 5099 * 5100 * Initialize cgroups at system boot, and initialize any 5101 * subsystems that request early init. 5102 */ 5103 int __init cgroup_init_early(void) 5104 { 5105 static struct cgroup_sb_opts __initdata opts; 5106 struct cgroup_subsys *ss; 5107 int i; 5108 5109 init_cgroup_root(&cgrp_dfl_root, &opts); 5110 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF; 5111 5112 RCU_INIT_POINTER(init_task.cgroups, &init_css_set); 5113 5114 for_each_subsys(ss, i) { 5115 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id, 5116 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n", 5117 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free, 5118 ss->id, ss->name); 5119 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN, 5120 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]); 5121 5122 ss->id = i; 5123 ss->name = cgroup_subsys_name[i]; 5124 if (!ss->legacy_name) 5125 ss->legacy_name = cgroup_subsys_name[i]; 5126 5127 if (ss->early_init) 5128 cgroup_init_subsys(ss, true); 5129 } 5130 return 0; 5131 } 5132 5133 static u16 cgroup_disable_mask __initdata; 5134 5135 /** 5136 * cgroup_init - cgroup initialization 5137 * 5138 * Register cgroup filesystem and /proc file, and initialize 5139 * any subsystems that didn't request early init. 5140 */ 5141 int __init cgroup_init(void) 5142 { 5143 struct cgroup_subsys *ss; 5144 int ssid; 5145 5146 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16); 5147 BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem)); 5148 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files)); 5149 BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files)); 5150 5151 /* 5152 * The latency of the synchronize_sched() is too high for cgroups, 5153 * avoid it at the cost of forcing all readers into the slow path. 5154 */ 5155 rcu_sync_enter_start(&cgroup_threadgroup_rwsem.rss); 5156 5157 get_user_ns(init_cgroup_ns.user_ns); 5158 5159 mutex_lock(&cgroup_mutex); 5160 5161 /* 5162 * Add init_css_set to the hash table so that dfl_root can link to 5163 * it during init. 5164 */ 5165 hash_add(css_set_table, &init_css_set.hlist, 5166 css_set_hash(init_css_set.subsys)); 5167 5168 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0, 0)); 5169 5170 mutex_unlock(&cgroup_mutex); 5171 5172 for_each_subsys(ss, ssid) { 5173 if (ss->early_init) { 5174 struct cgroup_subsys_state *css = 5175 init_css_set.subsys[ss->id]; 5176 5177 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, 5178 GFP_KERNEL); 5179 BUG_ON(css->id < 0); 5180 } else { 5181 cgroup_init_subsys(ss, false); 5182 } 5183 5184 list_add_tail(&init_css_set.e_cset_node[ssid], 5185 &cgrp_dfl_root.cgrp.e_csets[ssid]); 5186 5187 /* 5188 * Setting dfl_root subsys_mask needs to consider the 5189 * disabled flag and cftype registration needs kmalloc, 5190 * both of which aren't available during early_init. 5191 */ 5192 if (cgroup_disable_mask & (1 << ssid)) { 5193 static_branch_disable(cgroup_subsys_enabled_key[ssid]); 5194 printk(KERN_INFO "Disabling %s control group subsystem\n", 5195 ss->name); 5196 continue; 5197 } 5198 5199 if (cgroup1_ssid_disabled(ssid)) 5200 printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n", 5201 ss->name); 5202 5203 cgrp_dfl_root.subsys_mask |= 1 << ss->id; 5204 5205 /* implicit controllers must be threaded too */ 5206 WARN_ON(ss->implicit_on_dfl && !ss->threaded); 5207 5208 if (ss->implicit_on_dfl) 5209 cgrp_dfl_implicit_ss_mask |= 1 << ss->id; 5210 else if (!ss->dfl_cftypes) 5211 cgrp_dfl_inhibit_ss_mask |= 1 << ss->id; 5212 5213 if (ss->threaded) 5214 cgrp_dfl_threaded_ss_mask |= 1 << ss->id; 5215 5216 if (ss->dfl_cftypes == ss->legacy_cftypes) { 5217 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes)); 5218 } else { 5219 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes)); 5220 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes)); 5221 } 5222 5223 if (ss->bind) 5224 ss->bind(init_css_set.subsys[ssid]); 5225 5226 mutex_lock(&cgroup_mutex); 5227 css_populate_dir(init_css_set.subsys[ssid]); 5228 mutex_unlock(&cgroup_mutex); 5229 } 5230 5231 /* init_css_set.subsys[] has been updated, re-hash */ 5232 hash_del(&init_css_set.hlist); 5233 hash_add(css_set_table, &init_css_set.hlist, 5234 css_set_hash(init_css_set.subsys)); 5235 5236 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup")); 5237 WARN_ON(register_filesystem(&cgroup_fs_type)); 5238 WARN_ON(register_filesystem(&cgroup2_fs_type)); 5239 WARN_ON(!proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations)); 5240 5241 return 0; 5242 } 5243 5244 static int __init cgroup_wq_init(void) 5245 { 5246 /* 5247 * There isn't much point in executing destruction path in 5248 * parallel. Good chunk is serialized with cgroup_mutex anyway. 5249 * Use 1 for @max_active. 5250 * 5251 * We would prefer to do this in cgroup_init() above, but that 5252 * is called before init_workqueues(): so leave this until after. 5253 */ 5254 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1); 5255 BUG_ON(!cgroup_destroy_wq); 5256 return 0; 5257 } 5258 core_initcall(cgroup_wq_init); 5259 5260 void cgroup_path_from_kernfs_id(const union kernfs_node_id *id, 5261 char *buf, size_t buflen) 5262 { 5263 struct kernfs_node *kn; 5264 5265 kn = kernfs_get_node_by_id(cgrp_dfl_root.kf_root, id); 5266 if (!kn) 5267 return; 5268 kernfs_path(kn, buf, buflen); 5269 kernfs_put(kn); 5270 } 5271 5272 /* 5273 * proc_cgroup_show() 5274 * - Print task's cgroup paths into seq_file, one line for each hierarchy 5275 * - Used for /proc/<pid>/cgroup. 5276 */ 5277 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns, 5278 struct pid *pid, struct task_struct *tsk) 5279 { 5280 char *buf; 5281 int retval; 5282 struct cgroup_root *root; 5283 5284 retval = -ENOMEM; 5285 buf = kmalloc(PATH_MAX, GFP_KERNEL); 5286 if (!buf) 5287 goto out; 5288 5289 mutex_lock(&cgroup_mutex); 5290 spin_lock_irq(&css_set_lock); 5291 5292 for_each_root(root) { 5293 struct cgroup_subsys *ss; 5294 struct cgroup *cgrp; 5295 int ssid, count = 0; 5296 5297 if (root == &cgrp_dfl_root && !cgrp_dfl_visible) 5298 continue; 5299 5300 seq_printf(m, "%d:", root->hierarchy_id); 5301 if (root != &cgrp_dfl_root) 5302 for_each_subsys(ss, ssid) 5303 if (root->subsys_mask & (1 << ssid)) 5304 seq_printf(m, "%s%s", count++ ? "," : "", 5305 ss->legacy_name); 5306 if (strlen(root->name)) 5307 seq_printf(m, "%sname=%s", count ? "," : "", 5308 root->name); 5309 seq_putc(m, ':'); 5310 5311 cgrp = task_cgroup_from_root(tsk, root); 5312 5313 /* 5314 * On traditional hierarchies, all zombie tasks show up as 5315 * belonging to the root cgroup. On the default hierarchy, 5316 * while a zombie doesn't show up in "cgroup.procs" and 5317 * thus can't be migrated, its /proc/PID/cgroup keeps 5318 * reporting the cgroup it belonged to before exiting. If 5319 * the cgroup is removed before the zombie is reaped, 5320 * " (deleted)" is appended to the cgroup path. 5321 */ 5322 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) { 5323 retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX, 5324 current->nsproxy->cgroup_ns); 5325 if (retval >= PATH_MAX) 5326 retval = -ENAMETOOLONG; 5327 if (retval < 0) 5328 goto out_unlock; 5329 5330 seq_puts(m, buf); 5331 } else { 5332 seq_puts(m, "/"); 5333 } 5334 5335 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp)) 5336 seq_puts(m, " (deleted)\n"); 5337 else 5338 seq_putc(m, '\n'); 5339 } 5340 5341 retval = 0; 5342 out_unlock: 5343 spin_unlock_irq(&css_set_lock); 5344 mutex_unlock(&cgroup_mutex); 5345 kfree(buf); 5346 out: 5347 return retval; 5348 } 5349 5350 /** 5351 * cgroup_fork - initialize cgroup related fields during copy_process() 5352 * @child: pointer to task_struct of forking parent process. 5353 * 5354 * A task is associated with the init_css_set until cgroup_post_fork() 5355 * attaches it to the parent's css_set. Empty cg_list indicates that 5356 * @child isn't holding reference to its css_set. 5357 */ 5358 void cgroup_fork(struct task_struct *child) 5359 { 5360 RCU_INIT_POINTER(child->cgroups, &init_css_set); 5361 INIT_LIST_HEAD(&child->cg_list); 5362 } 5363 5364 /** 5365 * cgroup_can_fork - called on a new task before the process is exposed 5366 * @child: the task in question. 5367 * 5368 * This calls the subsystem can_fork() callbacks. If the can_fork() callback 5369 * returns an error, the fork aborts with that error code. This allows for 5370 * a cgroup subsystem to conditionally allow or deny new forks. 5371 */ 5372 int cgroup_can_fork(struct task_struct *child) 5373 { 5374 struct cgroup_subsys *ss; 5375 int i, j, ret; 5376 5377 do_each_subsys_mask(ss, i, have_canfork_callback) { 5378 ret = ss->can_fork(child); 5379 if (ret) 5380 goto out_revert; 5381 } while_each_subsys_mask(); 5382 5383 return 0; 5384 5385 out_revert: 5386 for_each_subsys(ss, j) { 5387 if (j >= i) 5388 break; 5389 if (ss->cancel_fork) 5390 ss->cancel_fork(child); 5391 } 5392 5393 return ret; 5394 } 5395 5396 /** 5397 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork() 5398 * @child: the task in question 5399 * 5400 * This calls the cancel_fork() callbacks if a fork failed *after* 5401 * cgroup_can_fork() succeded. 5402 */ 5403 void cgroup_cancel_fork(struct task_struct *child) 5404 { 5405 struct cgroup_subsys *ss; 5406 int i; 5407 5408 for_each_subsys(ss, i) 5409 if (ss->cancel_fork) 5410 ss->cancel_fork(child); 5411 } 5412 5413 /** 5414 * cgroup_post_fork - called on a new task after adding it to the task list 5415 * @child: the task in question 5416 * 5417 * Adds the task to the list running through its css_set if necessary and 5418 * call the subsystem fork() callbacks. Has to be after the task is 5419 * visible on the task list in case we race with the first call to 5420 * cgroup_task_iter_start() - to guarantee that the new task ends up on its 5421 * list. 5422 */ 5423 void cgroup_post_fork(struct task_struct *child) 5424 { 5425 struct cgroup_subsys *ss; 5426 int i; 5427 5428 /* 5429 * This may race against cgroup_enable_task_cg_lists(). As that 5430 * function sets use_task_css_set_links before grabbing 5431 * tasklist_lock and we just went through tasklist_lock to add 5432 * @child, it's guaranteed that either we see the set 5433 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees 5434 * @child during its iteration. 5435 * 5436 * If we won the race, @child is associated with %current's 5437 * css_set. Grabbing css_set_lock guarantees both that the 5438 * association is stable, and, on completion of the parent's 5439 * migration, @child is visible in the source of migration or 5440 * already in the destination cgroup. This guarantee is necessary 5441 * when implementing operations which need to migrate all tasks of 5442 * a cgroup to another. 5443 * 5444 * Note that if we lose to cgroup_enable_task_cg_lists(), @child 5445 * will remain in init_css_set. This is safe because all tasks are 5446 * in the init_css_set before cg_links is enabled and there's no 5447 * operation which transfers all tasks out of init_css_set. 5448 */ 5449 if (use_task_css_set_links) { 5450 struct css_set *cset; 5451 5452 spin_lock_irq(&css_set_lock); 5453 cset = task_css_set(current); 5454 if (list_empty(&child->cg_list)) { 5455 get_css_set(cset); 5456 cset->nr_tasks++; 5457 css_set_move_task(child, NULL, cset, false); 5458 } 5459 spin_unlock_irq(&css_set_lock); 5460 } 5461 5462 /* 5463 * Call ss->fork(). This must happen after @child is linked on 5464 * css_set; otherwise, @child might change state between ->fork() 5465 * and addition to css_set. 5466 */ 5467 do_each_subsys_mask(ss, i, have_fork_callback) { 5468 ss->fork(child); 5469 } while_each_subsys_mask(); 5470 } 5471 5472 /** 5473 * cgroup_exit - detach cgroup from exiting task 5474 * @tsk: pointer to task_struct of exiting process 5475 * 5476 * Description: Detach cgroup from @tsk and release it. 5477 * 5478 * Note that cgroups marked notify_on_release force every task in 5479 * them to take the global cgroup_mutex mutex when exiting. 5480 * This could impact scaling on very large systems. Be reluctant to 5481 * use notify_on_release cgroups where very high task exit scaling 5482 * is required on large systems. 5483 * 5484 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We 5485 * call cgroup_exit() while the task is still competent to handle 5486 * notify_on_release(), then leave the task attached to the root cgroup in 5487 * each hierarchy for the remainder of its exit. No need to bother with 5488 * init_css_set refcnting. init_css_set never goes away and we can't race 5489 * with migration path - PF_EXITING is visible to migration path. 5490 */ 5491 void cgroup_exit(struct task_struct *tsk) 5492 { 5493 struct cgroup_subsys *ss; 5494 struct css_set *cset; 5495 int i; 5496 5497 /* 5498 * Unlink from @tsk from its css_set. As migration path can't race 5499 * with us, we can check css_set and cg_list without synchronization. 5500 */ 5501 cset = task_css_set(tsk); 5502 5503 if (!list_empty(&tsk->cg_list)) { 5504 spin_lock_irq(&css_set_lock); 5505 css_set_move_task(tsk, cset, NULL, false); 5506 cset->nr_tasks--; 5507 spin_unlock_irq(&css_set_lock); 5508 } else { 5509 get_css_set(cset); 5510 } 5511 5512 /* see cgroup_post_fork() for details */ 5513 do_each_subsys_mask(ss, i, have_exit_callback) { 5514 ss->exit(tsk); 5515 } while_each_subsys_mask(); 5516 } 5517 5518 void cgroup_free(struct task_struct *task) 5519 { 5520 struct css_set *cset = task_css_set(task); 5521 struct cgroup_subsys *ss; 5522 int ssid; 5523 5524 do_each_subsys_mask(ss, ssid, have_free_callback) { 5525 ss->free(task); 5526 } while_each_subsys_mask(); 5527 5528 put_css_set(cset); 5529 } 5530 5531 static int __init cgroup_disable(char *str) 5532 { 5533 struct cgroup_subsys *ss; 5534 char *token; 5535 int i; 5536 5537 while ((token = strsep(&str, ",")) != NULL) { 5538 if (!*token) 5539 continue; 5540 5541 for_each_subsys(ss, i) { 5542 if (strcmp(token, ss->name) && 5543 strcmp(token, ss->legacy_name)) 5544 continue; 5545 cgroup_disable_mask |= 1 << i; 5546 } 5547 } 5548 return 1; 5549 } 5550 __setup("cgroup_disable=", cgroup_disable); 5551 5552 /** 5553 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry 5554 * @dentry: directory dentry of interest 5555 * @ss: subsystem of interest 5556 * 5557 * If @dentry is a directory for a cgroup which has @ss enabled on it, try 5558 * to get the corresponding css and return it. If such css doesn't exist 5559 * or can't be pinned, an ERR_PTR value is returned. 5560 */ 5561 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry, 5562 struct cgroup_subsys *ss) 5563 { 5564 struct kernfs_node *kn = kernfs_node_from_dentry(dentry); 5565 struct file_system_type *s_type = dentry->d_sb->s_type; 5566 struct cgroup_subsys_state *css = NULL; 5567 struct cgroup *cgrp; 5568 5569 /* is @dentry a cgroup dir? */ 5570 if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) || 5571 !kn || kernfs_type(kn) != KERNFS_DIR) 5572 return ERR_PTR(-EBADF); 5573 5574 rcu_read_lock(); 5575 5576 /* 5577 * This path doesn't originate from kernfs and @kn could already 5578 * have been or be removed at any point. @kn->priv is RCU 5579 * protected for this access. See css_release_work_fn() for details. 5580 */ 5581 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); 5582 if (cgrp) 5583 css = cgroup_css(cgrp, ss); 5584 5585 if (!css || !css_tryget_online(css)) 5586 css = ERR_PTR(-ENOENT); 5587 5588 rcu_read_unlock(); 5589 return css; 5590 } 5591 5592 /** 5593 * css_from_id - lookup css by id 5594 * @id: the cgroup id 5595 * @ss: cgroup subsys to be looked into 5596 * 5597 * Returns the css if there's valid one with @id, otherwise returns NULL. 5598 * Should be called under rcu_read_lock(). 5599 */ 5600 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss) 5601 { 5602 WARN_ON_ONCE(!rcu_read_lock_held()); 5603 return idr_find(&ss->css_idr, id); 5604 } 5605 5606 /** 5607 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path 5608 * @path: path on the default hierarchy 5609 * 5610 * Find the cgroup at @path on the default hierarchy, increment its 5611 * reference count and return it. Returns pointer to the found cgroup on 5612 * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR) 5613 * if @path points to a non-directory. 5614 */ 5615 struct cgroup *cgroup_get_from_path(const char *path) 5616 { 5617 struct kernfs_node *kn; 5618 struct cgroup *cgrp; 5619 5620 mutex_lock(&cgroup_mutex); 5621 5622 kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path); 5623 if (kn) { 5624 if (kernfs_type(kn) == KERNFS_DIR) { 5625 cgrp = kn->priv; 5626 cgroup_get_live(cgrp); 5627 } else { 5628 cgrp = ERR_PTR(-ENOTDIR); 5629 } 5630 kernfs_put(kn); 5631 } else { 5632 cgrp = ERR_PTR(-ENOENT); 5633 } 5634 5635 mutex_unlock(&cgroup_mutex); 5636 return cgrp; 5637 } 5638 EXPORT_SYMBOL_GPL(cgroup_get_from_path); 5639 5640 /** 5641 * cgroup_get_from_fd - get a cgroup pointer from a fd 5642 * @fd: fd obtained by open(cgroup2_dir) 5643 * 5644 * Find the cgroup from a fd which should be obtained 5645 * by opening a cgroup directory. Returns a pointer to the 5646 * cgroup on success. ERR_PTR is returned if the cgroup 5647 * cannot be found. 5648 */ 5649 struct cgroup *cgroup_get_from_fd(int fd) 5650 { 5651 struct cgroup_subsys_state *css; 5652 struct cgroup *cgrp; 5653 struct file *f; 5654 5655 f = fget_raw(fd); 5656 if (!f) 5657 return ERR_PTR(-EBADF); 5658 5659 css = css_tryget_online_from_dir(f->f_path.dentry, NULL); 5660 fput(f); 5661 if (IS_ERR(css)) 5662 return ERR_CAST(css); 5663 5664 cgrp = css->cgroup; 5665 if (!cgroup_on_dfl(cgrp)) { 5666 cgroup_put(cgrp); 5667 return ERR_PTR(-EBADF); 5668 } 5669 5670 return cgrp; 5671 } 5672 EXPORT_SYMBOL_GPL(cgroup_get_from_fd); 5673 5674 /* 5675 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data 5676 * definition in cgroup-defs.h. 5677 */ 5678 #ifdef CONFIG_SOCK_CGROUP_DATA 5679 5680 #if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID) 5681 5682 DEFINE_SPINLOCK(cgroup_sk_update_lock); 5683 static bool cgroup_sk_alloc_disabled __read_mostly; 5684 5685 void cgroup_sk_alloc_disable(void) 5686 { 5687 if (cgroup_sk_alloc_disabled) 5688 return; 5689 pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n"); 5690 cgroup_sk_alloc_disabled = true; 5691 } 5692 5693 #else 5694 5695 #define cgroup_sk_alloc_disabled false 5696 5697 #endif 5698 5699 void cgroup_sk_alloc(struct sock_cgroup_data *skcd) 5700 { 5701 if (cgroup_sk_alloc_disabled) 5702 return; 5703 5704 /* Socket clone path */ 5705 if (skcd->val) { 5706 /* 5707 * We might be cloning a socket which is left in an empty 5708 * cgroup and the cgroup might have already been rmdir'd. 5709 * Don't use cgroup_get_live(). 5710 */ 5711 cgroup_get(sock_cgroup_ptr(skcd)); 5712 return; 5713 } 5714 5715 rcu_read_lock(); 5716 5717 while (true) { 5718 struct css_set *cset; 5719 5720 cset = task_css_set(current); 5721 if (likely(cgroup_tryget(cset->dfl_cgrp))) { 5722 skcd->val = (unsigned long)cset->dfl_cgrp; 5723 break; 5724 } 5725 cpu_relax(); 5726 } 5727 5728 rcu_read_unlock(); 5729 } 5730 5731 void cgroup_sk_free(struct sock_cgroup_data *skcd) 5732 { 5733 cgroup_put(sock_cgroup_ptr(skcd)); 5734 } 5735 5736 #endif /* CONFIG_SOCK_CGROUP_DATA */ 5737 5738 #ifdef CONFIG_CGROUP_BPF 5739 int cgroup_bpf_update(struct cgroup *cgrp, struct bpf_prog *prog, 5740 enum bpf_attach_type type, bool overridable) 5741 { 5742 struct cgroup *parent = cgroup_parent(cgrp); 5743 int ret; 5744 5745 mutex_lock(&cgroup_mutex); 5746 ret = __cgroup_bpf_update(cgrp, parent, prog, type, overridable); 5747 mutex_unlock(&cgroup_mutex); 5748 return ret; 5749 } 5750 #endif /* CONFIG_CGROUP_BPF */ 5751