1 /* 2 * Generic process-grouping system. 3 * 4 * Based originally on the cpuset system, extracted by Paul Menage 5 * Copyright (C) 2006 Google, Inc 6 * 7 * Notifications support 8 * Copyright (C) 2009 Nokia Corporation 9 * Author: Kirill A. Shutemov 10 * 11 * Copyright notices from the original cpuset code: 12 * -------------------------------------------------- 13 * Copyright (C) 2003 BULL SA. 14 * Copyright (C) 2004-2006 Silicon Graphics, Inc. 15 * 16 * Portions derived from Patrick Mochel's sysfs code. 17 * sysfs is Copyright (c) 2001-3 Patrick Mochel 18 * 19 * 2003-10-10 Written by Simon Derr. 20 * 2003-10-22 Updates by Stephen Hemminger. 21 * 2004 May-July Rework by Paul Jackson. 22 * --------------------------------------------------- 23 * 24 * This file is subject to the terms and conditions of the GNU General Public 25 * License. See the file COPYING in the main directory of the Linux 26 * distribution for more details. 27 */ 28 29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 30 31 #include "cgroup-internal.h" 32 33 #include <linux/cred.h> 34 #include <linux/errno.h> 35 #include <linux/init_task.h> 36 #include <linux/kernel.h> 37 #include <linux/magic.h> 38 #include <linux/mutex.h> 39 #include <linux/mount.h> 40 #include <linux/pagemap.h> 41 #include <linux/proc_fs.h> 42 #include <linux/rcupdate.h> 43 #include <linux/sched.h> 44 #include <linux/sched/task.h> 45 #include <linux/slab.h> 46 #include <linux/spinlock.h> 47 #include <linux/percpu-rwsem.h> 48 #include <linux/string.h> 49 #include <linux/hashtable.h> 50 #include <linux/idr.h> 51 #include <linux/kthread.h> 52 #include <linux/atomic.h> 53 #include <linux/cpuset.h> 54 #include <linux/proc_ns.h> 55 #include <linux/nsproxy.h> 56 #include <linux/file.h> 57 #include <linux/fs_parser.h> 58 #include <linux/sched/cputime.h> 59 #include <linux/psi.h> 60 #include <net/sock.h> 61 62 #define CREATE_TRACE_POINTS 63 #include <trace/events/cgroup.h> 64 65 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \ 66 MAX_CFTYPE_NAME + 2) 67 /* let's not notify more than 100 times per second */ 68 #define CGROUP_FILE_NOTIFY_MIN_INTV DIV_ROUND_UP(HZ, 100) 69 70 /* 71 * cgroup_mutex is the master lock. Any modification to cgroup or its 72 * hierarchy must be performed while holding it. 73 * 74 * css_set_lock protects task->cgroups pointer, the list of css_set 75 * objects, and the chain of tasks off each css_set. 76 * 77 * These locks are exported if CONFIG_PROVE_RCU so that accessors in 78 * cgroup.h can use them for lockdep annotations. 79 */ 80 DEFINE_MUTEX(cgroup_mutex); 81 DEFINE_SPINLOCK(css_set_lock); 82 83 #ifdef CONFIG_PROVE_RCU 84 EXPORT_SYMBOL_GPL(cgroup_mutex); 85 EXPORT_SYMBOL_GPL(css_set_lock); 86 #endif 87 88 DEFINE_SPINLOCK(trace_cgroup_path_lock); 89 char trace_cgroup_path[TRACE_CGROUP_PATH_LEN]; 90 bool cgroup_debug __read_mostly; 91 92 /* 93 * Protects cgroup_idr and css_idr so that IDs can be released without 94 * grabbing cgroup_mutex. 95 */ 96 static DEFINE_SPINLOCK(cgroup_idr_lock); 97 98 /* 99 * Protects cgroup_file->kn for !self csses. It synchronizes notifications 100 * against file removal/re-creation across css hiding. 101 */ 102 static DEFINE_SPINLOCK(cgroup_file_kn_lock); 103 104 DEFINE_PERCPU_RWSEM(cgroup_threadgroup_rwsem); 105 106 #define cgroup_assert_mutex_or_rcu_locked() \ 107 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \ 108 !lockdep_is_held(&cgroup_mutex), \ 109 "cgroup_mutex or RCU read lock required"); 110 111 /* 112 * cgroup destruction makes heavy use of work items and there can be a lot 113 * of concurrent destructions. Use a separate workqueue so that cgroup 114 * destruction work items don't end up filling up max_active of system_wq 115 * which may lead to deadlock. 116 */ 117 static struct workqueue_struct *cgroup_destroy_wq; 118 119 /* generate an array of cgroup subsystem pointers */ 120 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys, 121 struct cgroup_subsys *cgroup_subsys[] = { 122 #include <linux/cgroup_subsys.h> 123 }; 124 #undef SUBSYS 125 126 /* array of cgroup subsystem names */ 127 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x, 128 static const char *cgroup_subsys_name[] = { 129 #include <linux/cgroup_subsys.h> 130 }; 131 #undef SUBSYS 132 133 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */ 134 #define SUBSYS(_x) \ 135 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \ 136 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \ 137 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \ 138 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key); 139 #include <linux/cgroup_subsys.h> 140 #undef SUBSYS 141 142 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key, 143 static struct static_key_true *cgroup_subsys_enabled_key[] = { 144 #include <linux/cgroup_subsys.h> 145 }; 146 #undef SUBSYS 147 148 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key, 149 static struct static_key_true *cgroup_subsys_on_dfl_key[] = { 150 #include <linux/cgroup_subsys.h> 151 }; 152 #undef SUBSYS 153 154 static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu); 155 156 /* the default hierarchy */ 157 struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu }; 158 EXPORT_SYMBOL_GPL(cgrp_dfl_root); 159 160 /* 161 * The default hierarchy always exists but is hidden until mounted for the 162 * first time. This is for backward compatibility. 163 */ 164 static bool cgrp_dfl_visible; 165 166 /* some controllers are not supported in the default hierarchy */ 167 static u16 cgrp_dfl_inhibit_ss_mask; 168 169 /* some controllers are implicitly enabled on the default hierarchy */ 170 static u16 cgrp_dfl_implicit_ss_mask; 171 172 /* some controllers can be threaded on the default hierarchy */ 173 static u16 cgrp_dfl_threaded_ss_mask; 174 175 /* The list of hierarchy roots */ 176 LIST_HEAD(cgroup_roots); 177 static int cgroup_root_count; 178 179 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */ 180 static DEFINE_IDR(cgroup_hierarchy_idr); 181 182 /* 183 * Assign a monotonically increasing serial number to csses. It guarantees 184 * cgroups with bigger numbers are newer than those with smaller numbers. 185 * Also, as csses are always appended to the parent's ->children list, it 186 * guarantees that sibling csses are always sorted in the ascending serial 187 * number order on the list. Protected by cgroup_mutex. 188 */ 189 static u64 css_serial_nr_next = 1; 190 191 /* 192 * These bitmasks identify subsystems with specific features to avoid 193 * having to do iterative checks repeatedly. 194 */ 195 static u16 have_fork_callback __read_mostly; 196 static u16 have_exit_callback __read_mostly; 197 static u16 have_release_callback __read_mostly; 198 static u16 have_canfork_callback __read_mostly; 199 200 /* cgroup namespace for init task */ 201 struct cgroup_namespace init_cgroup_ns = { 202 .ns.count = REFCOUNT_INIT(2), 203 .user_ns = &init_user_ns, 204 .ns.ops = &cgroupns_operations, 205 .ns.inum = PROC_CGROUP_INIT_INO, 206 .root_cset = &init_css_set, 207 }; 208 209 static struct file_system_type cgroup2_fs_type; 210 static struct cftype cgroup_base_files[]; 211 212 static int cgroup_apply_control(struct cgroup *cgrp); 213 static void cgroup_finalize_control(struct cgroup *cgrp, int ret); 214 static void css_task_iter_skip(struct css_task_iter *it, 215 struct task_struct *task); 216 static int cgroup_destroy_locked(struct cgroup *cgrp); 217 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp, 218 struct cgroup_subsys *ss); 219 static void css_release(struct percpu_ref *ref); 220 static void kill_css(struct cgroup_subsys_state *css); 221 static int cgroup_addrm_files(struct cgroup_subsys_state *css, 222 struct cgroup *cgrp, struct cftype cfts[], 223 bool is_add); 224 225 /** 226 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID 227 * @ssid: subsys ID of interest 228 * 229 * cgroup_subsys_enabled() can only be used with literal subsys names which 230 * is fine for individual subsystems but unsuitable for cgroup core. This 231 * is slower static_key_enabled() based test indexed by @ssid. 232 */ 233 bool cgroup_ssid_enabled(int ssid) 234 { 235 if (CGROUP_SUBSYS_COUNT == 0) 236 return false; 237 238 return static_key_enabled(cgroup_subsys_enabled_key[ssid]); 239 } 240 241 /** 242 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy 243 * @cgrp: the cgroup of interest 244 * 245 * The default hierarchy is the v2 interface of cgroup and this function 246 * can be used to test whether a cgroup is on the default hierarchy for 247 * cases where a subsystem should behave differently depending on the 248 * interface version. 249 * 250 * List of changed behaviors: 251 * 252 * - Mount options "noprefix", "xattr", "clone_children", "release_agent" 253 * and "name" are disallowed. 254 * 255 * - When mounting an existing superblock, mount options should match. 256 * 257 * - Remount is disallowed. 258 * 259 * - rename(2) is disallowed. 260 * 261 * - "tasks" is removed. Everything should be at process granularity. Use 262 * "cgroup.procs" instead. 263 * 264 * - "cgroup.procs" is not sorted. pids will be unique unless they got 265 * recycled in-between reads. 266 * 267 * - "release_agent" and "notify_on_release" are removed. Replacement 268 * notification mechanism will be implemented. 269 * 270 * - "cgroup.clone_children" is removed. 271 * 272 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup 273 * and its descendants contain no task; otherwise, 1. The file also 274 * generates kernfs notification which can be monitored through poll and 275 * [di]notify when the value of the file changes. 276 * 277 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and 278 * take masks of ancestors with non-empty cpus/mems, instead of being 279 * moved to an ancestor. 280 * 281 * - cpuset: a task can be moved into an empty cpuset, and again it takes 282 * masks of ancestors. 283 * 284 * - blkcg: blk-throttle becomes properly hierarchical. 285 * 286 * - debug: disallowed on the default hierarchy. 287 */ 288 bool cgroup_on_dfl(const struct cgroup *cgrp) 289 { 290 return cgrp->root == &cgrp_dfl_root; 291 } 292 293 /* IDR wrappers which synchronize using cgroup_idr_lock */ 294 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end, 295 gfp_t gfp_mask) 296 { 297 int ret; 298 299 idr_preload(gfp_mask); 300 spin_lock_bh(&cgroup_idr_lock); 301 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM); 302 spin_unlock_bh(&cgroup_idr_lock); 303 idr_preload_end(); 304 return ret; 305 } 306 307 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id) 308 { 309 void *ret; 310 311 spin_lock_bh(&cgroup_idr_lock); 312 ret = idr_replace(idr, ptr, id); 313 spin_unlock_bh(&cgroup_idr_lock); 314 return ret; 315 } 316 317 static void cgroup_idr_remove(struct idr *idr, int id) 318 { 319 spin_lock_bh(&cgroup_idr_lock); 320 idr_remove(idr, id); 321 spin_unlock_bh(&cgroup_idr_lock); 322 } 323 324 static bool cgroup_has_tasks(struct cgroup *cgrp) 325 { 326 return cgrp->nr_populated_csets; 327 } 328 329 bool cgroup_is_threaded(struct cgroup *cgrp) 330 { 331 return cgrp->dom_cgrp != cgrp; 332 } 333 334 /* can @cgrp host both domain and threaded children? */ 335 static bool cgroup_is_mixable(struct cgroup *cgrp) 336 { 337 /* 338 * Root isn't under domain level resource control exempting it from 339 * the no-internal-process constraint, so it can serve as a thread 340 * root and a parent of resource domains at the same time. 341 */ 342 return !cgroup_parent(cgrp); 343 } 344 345 /* can @cgrp become a thread root? Should always be true for a thread root */ 346 static bool cgroup_can_be_thread_root(struct cgroup *cgrp) 347 { 348 /* mixables don't care */ 349 if (cgroup_is_mixable(cgrp)) 350 return true; 351 352 /* domain roots can't be nested under threaded */ 353 if (cgroup_is_threaded(cgrp)) 354 return false; 355 356 /* can only have either domain or threaded children */ 357 if (cgrp->nr_populated_domain_children) 358 return false; 359 360 /* and no domain controllers can be enabled */ 361 if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask) 362 return false; 363 364 return true; 365 } 366 367 /* is @cgrp root of a threaded subtree? */ 368 bool cgroup_is_thread_root(struct cgroup *cgrp) 369 { 370 /* thread root should be a domain */ 371 if (cgroup_is_threaded(cgrp)) 372 return false; 373 374 /* a domain w/ threaded children is a thread root */ 375 if (cgrp->nr_threaded_children) 376 return true; 377 378 /* 379 * A domain which has tasks and explicit threaded controllers 380 * enabled is a thread root. 381 */ 382 if (cgroup_has_tasks(cgrp) && 383 (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask)) 384 return true; 385 386 return false; 387 } 388 389 /* a domain which isn't connected to the root w/o brekage can't be used */ 390 static bool cgroup_is_valid_domain(struct cgroup *cgrp) 391 { 392 /* the cgroup itself can be a thread root */ 393 if (cgroup_is_threaded(cgrp)) 394 return false; 395 396 /* but the ancestors can't be unless mixable */ 397 while ((cgrp = cgroup_parent(cgrp))) { 398 if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp)) 399 return false; 400 if (cgroup_is_threaded(cgrp)) 401 return false; 402 } 403 404 return true; 405 } 406 407 /* subsystems visibly enabled on a cgroup */ 408 static u16 cgroup_control(struct cgroup *cgrp) 409 { 410 struct cgroup *parent = cgroup_parent(cgrp); 411 u16 root_ss_mask = cgrp->root->subsys_mask; 412 413 if (parent) { 414 u16 ss_mask = parent->subtree_control; 415 416 /* threaded cgroups can only have threaded controllers */ 417 if (cgroup_is_threaded(cgrp)) 418 ss_mask &= cgrp_dfl_threaded_ss_mask; 419 return ss_mask; 420 } 421 422 if (cgroup_on_dfl(cgrp)) 423 root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask | 424 cgrp_dfl_implicit_ss_mask); 425 return root_ss_mask; 426 } 427 428 /* subsystems enabled on a cgroup */ 429 static u16 cgroup_ss_mask(struct cgroup *cgrp) 430 { 431 struct cgroup *parent = cgroup_parent(cgrp); 432 433 if (parent) { 434 u16 ss_mask = parent->subtree_ss_mask; 435 436 /* threaded cgroups can only have threaded controllers */ 437 if (cgroup_is_threaded(cgrp)) 438 ss_mask &= cgrp_dfl_threaded_ss_mask; 439 return ss_mask; 440 } 441 442 return cgrp->root->subsys_mask; 443 } 444 445 /** 446 * cgroup_css - obtain a cgroup's css for the specified subsystem 447 * @cgrp: the cgroup of interest 448 * @ss: the subsystem of interest (%NULL returns @cgrp->self) 449 * 450 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This 451 * function must be called either under cgroup_mutex or rcu_read_lock() and 452 * the caller is responsible for pinning the returned css if it wants to 453 * keep accessing it outside the said locks. This function may return 454 * %NULL if @cgrp doesn't have @subsys_id enabled. 455 */ 456 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp, 457 struct cgroup_subsys *ss) 458 { 459 if (ss) 460 return rcu_dereference_check(cgrp->subsys[ss->id], 461 lockdep_is_held(&cgroup_mutex)); 462 else 463 return &cgrp->self; 464 } 465 466 /** 467 * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem 468 * @cgrp: the cgroup of interest 469 * @ss: the subsystem of interest 470 * 471 * Find and get @cgrp's css associated with @ss. If the css doesn't exist 472 * or is offline, %NULL is returned. 473 */ 474 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp, 475 struct cgroup_subsys *ss) 476 { 477 struct cgroup_subsys_state *css; 478 479 rcu_read_lock(); 480 css = cgroup_css(cgrp, ss); 481 if (css && !css_tryget_online(css)) 482 css = NULL; 483 rcu_read_unlock(); 484 485 return css; 486 } 487 488 /** 489 * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss 490 * @cgrp: the cgroup of interest 491 * @ss: the subsystem of interest (%NULL returns @cgrp->self) 492 * 493 * Similar to cgroup_css() but returns the effective css, which is defined 494 * as the matching css of the nearest ancestor including self which has @ss 495 * enabled. If @ss is associated with the hierarchy @cgrp is on, this 496 * function is guaranteed to return non-NULL css. 497 */ 498 static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp, 499 struct cgroup_subsys *ss) 500 { 501 lockdep_assert_held(&cgroup_mutex); 502 503 if (!ss) 504 return &cgrp->self; 505 506 /* 507 * This function is used while updating css associations and thus 508 * can't test the csses directly. Test ss_mask. 509 */ 510 while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) { 511 cgrp = cgroup_parent(cgrp); 512 if (!cgrp) 513 return NULL; 514 } 515 516 return cgroup_css(cgrp, ss); 517 } 518 519 /** 520 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem 521 * @cgrp: the cgroup of interest 522 * @ss: the subsystem of interest 523 * 524 * Find and get the effective css of @cgrp for @ss. The effective css is 525 * defined as the matching css of the nearest ancestor including self which 526 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on, 527 * the root css is returned, so this function always returns a valid css. 528 * 529 * The returned css is not guaranteed to be online, and therefore it is the 530 * callers responsibility to try get a reference for it. 531 */ 532 struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp, 533 struct cgroup_subsys *ss) 534 { 535 struct cgroup_subsys_state *css; 536 537 do { 538 css = cgroup_css(cgrp, ss); 539 540 if (css) 541 return css; 542 cgrp = cgroup_parent(cgrp); 543 } while (cgrp); 544 545 return init_css_set.subsys[ss->id]; 546 } 547 548 /** 549 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem 550 * @cgrp: the cgroup of interest 551 * @ss: the subsystem of interest 552 * 553 * Find and get the effective css of @cgrp for @ss. The effective css is 554 * defined as the matching css of the nearest ancestor including self which 555 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on, 556 * the root css is returned, so this function always returns a valid css. 557 * The returned css must be put using css_put(). 558 */ 559 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp, 560 struct cgroup_subsys *ss) 561 { 562 struct cgroup_subsys_state *css; 563 564 rcu_read_lock(); 565 566 do { 567 css = cgroup_css(cgrp, ss); 568 569 if (css && css_tryget_online(css)) 570 goto out_unlock; 571 cgrp = cgroup_parent(cgrp); 572 } while (cgrp); 573 574 css = init_css_set.subsys[ss->id]; 575 css_get(css); 576 out_unlock: 577 rcu_read_unlock(); 578 return css; 579 } 580 581 static void cgroup_get_live(struct cgroup *cgrp) 582 { 583 WARN_ON_ONCE(cgroup_is_dead(cgrp)); 584 css_get(&cgrp->self); 585 } 586 587 /** 588 * __cgroup_task_count - count the number of tasks in a cgroup. The caller 589 * is responsible for taking the css_set_lock. 590 * @cgrp: the cgroup in question 591 */ 592 int __cgroup_task_count(const struct cgroup *cgrp) 593 { 594 int count = 0; 595 struct cgrp_cset_link *link; 596 597 lockdep_assert_held(&css_set_lock); 598 599 list_for_each_entry(link, &cgrp->cset_links, cset_link) 600 count += link->cset->nr_tasks; 601 602 return count; 603 } 604 605 /** 606 * cgroup_task_count - count the number of tasks in a cgroup. 607 * @cgrp: the cgroup in question 608 */ 609 int cgroup_task_count(const struct cgroup *cgrp) 610 { 611 int count; 612 613 spin_lock_irq(&css_set_lock); 614 count = __cgroup_task_count(cgrp); 615 spin_unlock_irq(&css_set_lock); 616 617 return count; 618 } 619 620 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of) 621 { 622 struct cgroup *cgrp = of->kn->parent->priv; 623 struct cftype *cft = of_cft(of); 624 625 /* 626 * This is open and unprotected implementation of cgroup_css(). 627 * seq_css() is only called from a kernfs file operation which has 628 * an active reference on the file. Because all the subsystem 629 * files are drained before a css is disassociated with a cgroup, 630 * the matching css from the cgroup's subsys table is guaranteed to 631 * be and stay valid until the enclosing operation is complete. 632 */ 633 if (cft->ss) 634 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]); 635 else 636 return &cgrp->self; 637 } 638 EXPORT_SYMBOL_GPL(of_css); 639 640 /** 641 * for_each_css - iterate all css's of a cgroup 642 * @css: the iteration cursor 643 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end 644 * @cgrp: the target cgroup to iterate css's of 645 * 646 * Should be called under cgroup_[tree_]mutex. 647 */ 648 #define for_each_css(css, ssid, cgrp) \ 649 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \ 650 if (!((css) = rcu_dereference_check( \ 651 (cgrp)->subsys[(ssid)], \ 652 lockdep_is_held(&cgroup_mutex)))) { } \ 653 else 654 655 /** 656 * for_each_e_css - iterate all effective css's of a cgroup 657 * @css: the iteration cursor 658 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end 659 * @cgrp: the target cgroup to iterate css's of 660 * 661 * Should be called under cgroup_[tree_]mutex. 662 */ 663 #define for_each_e_css(css, ssid, cgrp) \ 664 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \ 665 if (!((css) = cgroup_e_css_by_mask(cgrp, \ 666 cgroup_subsys[(ssid)]))) \ 667 ; \ 668 else 669 670 /** 671 * do_each_subsys_mask - filter for_each_subsys with a bitmask 672 * @ss: the iteration cursor 673 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end 674 * @ss_mask: the bitmask 675 * 676 * The block will only run for cases where the ssid-th bit (1 << ssid) of 677 * @ss_mask is set. 678 */ 679 #define do_each_subsys_mask(ss, ssid, ss_mask) do { \ 680 unsigned long __ss_mask = (ss_mask); \ 681 if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */ \ 682 (ssid) = 0; \ 683 break; \ 684 } \ 685 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \ 686 (ss) = cgroup_subsys[ssid]; \ 687 { 688 689 #define while_each_subsys_mask() \ 690 } \ 691 } \ 692 } while (false) 693 694 /* iterate over child cgrps, lock should be held throughout iteration */ 695 #define cgroup_for_each_live_child(child, cgrp) \ 696 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \ 697 if (({ lockdep_assert_held(&cgroup_mutex); \ 698 cgroup_is_dead(child); })) \ 699 ; \ 700 else 701 702 /* walk live descendants in pre order */ 703 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \ 704 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \ 705 if (({ lockdep_assert_held(&cgroup_mutex); \ 706 (dsct) = (d_css)->cgroup; \ 707 cgroup_is_dead(dsct); })) \ 708 ; \ 709 else 710 711 /* walk live descendants in postorder */ 712 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \ 713 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \ 714 if (({ lockdep_assert_held(&cgroup_mutex); \ 715 (dsct) = (d_css)->cgroup; \ 716 cgroup_is_dead(dsct); })) \ 717 ; \ 718 else 719 720 /* 721 * The default css_set - used by init and its children prior to any 722 * hierarchies being mounted. It contains a pointer to the root state 723 * for each subsystem. Also used to anchor the list of css_sets. Not 724 * reference-counted, to improve performance when child cgroups 725 * haven't been created. 726 */ 727 struct css_set init_css_set = { 728 .refcount = REFCOUNT_INIT(1), 729 .dom_cset = &init_css_set, 730 .tasks = LIST_HEAD_INIT(init_css_set.tasks), 731 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks), 732 .dying_tasks = LIST_HEAD_INIT(init_css_set.dying_tasks), 733 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters), 734 .threaded_csets = LIST_HEAD_INIT(init_css_set.threaded_csets), 735 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links), 736 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node), 737 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node), 738 739 /* 740 * The following field is re-initialized when this cset gets linked 741 * in cgroup_init(). However, let's initialize the field 742 * statically too so that the default cgroup can be accessed safely 743 * early during boot. 744 */ 745 .dfl_cgrp = &cgrp_dfl_root.cgrp, 746 }; 747 748 static int css_set_count = 1; /* 1 for init_css_set */ 749 750 static bool css_set_threaded(struct css_set *cset) 751 { 752 return cset->dom_cset != cset; 753 } 754 755 /** 756 * css_set_populated - does a css_set contain any tasks? 757 * @cset: target css_set 758 * 759 * css_set_populated() should be the same as !!cset->nr_tasks at steady 760 * state. However, css_set_populated() can be called while a task is being 761 * added to or removed from the linked list before the nr_tasks is 762 * properly updated. Hence, we can't just look at ->nr_tasks here. 763 */ 764 static bool css_set_populated(struct css_set *cset) 765 { 766 lockdep_assert_held(&css_set_lock); 767 768 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks); 769 } 770 771 /** 772 * cgroup_update_populated - update the populated count of a cgroup 773 * @cgrp: the target cgroup 774 * @populated: inc or dec populated count 775 * 776 * One of the css_sets associated with @cgrp is either getting its first 777 * task or losing the last. Update @cgrp->nr_populated_* accordingly. The 778 * count is propagated towards root so that a given cgroup's 779 * nr_populated_children is zero iff none of its descendants contain any 780 * tasks. 781 * 782 * @cgrp's interface file "cgroup.populated" is zero if both 783 * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and 784 * 1 otherwise. When the sum changes from or to zero, userland is notified 785 * that the content of the interface file has changed. This can be used to 786 * detect when @cgrp and its descendants become populated or empty. 787 */ 788 static void cgroup_update_populated(struct cgroup *cgrp, bool populated) 789 { 790 struct cgroup *child = NULL; 791 int adj = populated ? 1 : -1; 792 793 lockdep_assert_held(&css_set_lock); 794 795 do { 796 bool was_populated = cgroup_is_populated(cgrp); 797 798 if (!child) { 799 cgrp->nr_populated_csets += adj; 800 } else { 801 if (cgroup_is_threaded(child)) 802 cgrp->nr_populated_threaded_children += adj; 803 else 804 cgrp->nr_populated_domain_children += adj; 805 } 806 807 if (was_populated == cgroup_is_populated(cgrp)) 808 break; 809 810 cgroup1_check_for_release(cgrp); 811 TRACE_CGROUP_PATH(notify_populated, cgrp, 812 cgroup_is_populated(cgrp)); 813 cgroup_file_notify(&cgrp->events_file); 814 815 child = cgrp; 816 cgrp = cgroup_parent(cgrp); 817 } while (cgrp); 818 } 819 820 /** 821 * css_set_update_populated - update populated state of a css_set 822 * @cset: target css_set 823 * @populated: whether @cset is populated or depopulated 824 * 825 * @cset is either getting the first task or losing the last. Update the 826 * populated counters of all associated cgroups accordingly. 827 */ 828 static void css_set_update_populated(struct css_set *cset, bool populated) 829 { 830 struct cgrp_cset_link *link; 831 832 lockdep_assert_held(&css_set_lock); 833 834 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) 835 cgroup_update_populated(link->cgrp, populated); 836 } 837 838 /* 839 * @task is leaving, advance task iterators which are pointing to it so 840 * that they can resume at the next position. Advancing an iterator might 841 * remove it from the list, use safe walk. See css_task_iter_skip() for 842 * details. 843 */ 844 static void css_set_skip_task_iters(struct css_set *cset, 845 struct task_struct *task) 846 { 847 struct css_task_iter *it, *pos; 848 849 list_for_each_entry_safe(it, pos, &cset->task_iters, iters_node) 850 css_task_iter_skip(it, task); 851 } 852 853 /** 854 * css_set_move_task - move a task from one css_set to another 855 * @task: task being moved 856 * @from_cset: css_set @task currently belongs to (may be NULL) 857 * @to_cset: new css_set @task is being moved to (may be NULL) 858 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks 859 * 860 * Move @task from @from_cset to @to_cset. If @task didn't belong to any 861 * css_set, @from_cset can be NULL. If @task is being disassociated 862 * instead of moved, @to_cset can be NULL. 863 * 864 * This function automatically handles populated counter updates and 865 * css_task_iter adjustments but the caller is responsible for managing 866 * @from_cset and @to_cset's reference counts. 867 */ 868 static void css_set_move_task(struct task_struct *task, 869 struct css_set *from_cset, struct css_set *to_cset, 870 bool use_mg_tasks) 871 { 872 lockdep_assert_held(&css_set_lock); 873 874 if (to_cset && !css_set_populated(to_cset)) 875 css_set_update_populated(to_cset, true); 876 877 if (from_cset) { 878 WARN_ON_ONCE(list_empty(&task->cg_list)); 879 880 css_set_skip_task_iters(from_cset, task); 881 list_del_init(&task->cg_list); 882 if (!css_set_populated(from_cset)) 883 css_set_update_populated(from_cset, false); 884 } else { 885 WARN_ON_ONCE(!list_empty(&task->cg_list)); 886 } 887 888 if (to_cset) { 889 /* 890 * We are synchronized through cgroup_threadgroup_rwsem 891 * against PF_EXITING setting such that we can't race 892 * against cgroup_exit()/cgroup_free() dropping the css_set. 893 */ 894 WARN_ON_ONCE(task->flags & PF_EXITING); 895 896 cgroup_move_task(task, to_cset); 897 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks : 898 &to_cset->tasks); 899 } 900 } 901 902 /* 903 * hash table for cgroup groups. This improves the performance to find 904 * an existing css_set. This hash doesn't (currently) take into 905 * account cgroups in empty hierarchies. 906 */ 907 #define CSS_SET_HASH_BITS 7 908 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS); 909 910 static unsigned long css_set_hash(struct cgroup_subsys_state *css[]) 911 { 912 unsigned long key = 0UL; 913 struct cgroup_subsys *ss; 914 int i; 915 916 for_each_subsys(ss, i) 917 key += (unsigned long)css[i]; 918 key = (key >> 16) ^ key; 919 920 return key; 921 } 922 923 void put_css_set_locked(struct css_set *cset) 924 { 925 struct cgrp_cset_link *link, *tmp_link; 926 struct cgroup_subsys *ss; 927 int ssid; 928 929 lockdep_assert_held(&css_set_lock); 930 931 if (!refcount_dec_and_test(&cset->refcount)) 932 return; 933 934 WARN_ON_ONCE(!list_empty(&cset->threaded_csets)); 935 936 /* This css_set is dead. Unlink it and release cgroup and css refs */ 937 for_each_subsys(ss, ssid) { 938 list_del(&cset->e_cset_node[ssid]); 939 css_put(cset->subsys[ssid]); 940 } 941 hash_del(&cset->hlist); 942 css_set_count--; 943 944 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) { 945 list_del(&link->cset_link); 946 list_del(&link->cgrp_link); 947 if (cgroup_parent(link->cgrp)) 948 cgroup_put(link->cgrp); 949 kfree(link); 950 } 951 952 if (css_set_threaded(cset)) { 953 list_del(&cset->threaded_csets_node); 954 put_css_set_locked(cset->dom_cset); 955 } 956 957 kfree_rcu(cset, rcu_head); 958 } 959 960 /** 961 * compare_css_sets - helper function for find_existing_css_set(). 962 * @cset: candidate css_set being tested 963 * @old_cset: existing css_set for a task 964 * @new_cgrp: cgroup that's being entered by the task 965 * @template: desired set of css pointers in css_set (pre-calculated) 966 * 967 * Returns true if "cset" matches "old_cset" except for the hierarchy 968 * which "new_cgrp" belongs to, for which it should match "new_cgrp". 969 */ 970 static bool compare_css_sets(struct css_set *cset, 971 struct css_set *old_cset, 972 struct cgroup *new_cgrp, 973 struct cgroup_subsys_state *template[]) 974 { 975 struct cgroup *new_dfl_cgrp; 976 struct list_head *l1, *l2; 977 978 /* 979 * On the default hierarchy, there can be csets which are 980 * associated with the same set of cgroups but different csses. 981 * Let's first ensure that csses match. 982 */ 983 if (memcmp(template, cset->subsys, sizeof(cset->subsys))) 984 return false; 985 986 987 /* @cset's domain should match the default cgroup's */ 988 if (cgroup_on_dfl(new_cgrp)) 989 new_dfl_cgrp = new_cgrp; 990 else 991 new_dfl_cgrp = old_cset->dfl_cgrp; 992 993 if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp) 994 return false; 995 996 /* 997 * Compare cgroup pointers in order to distinguish between 998 * different cgroups in hierarchies. As different cgroups may 999 * share the same effective css, this comparison is always 1000 * necessary. 1001 */ 1002 l1 = &cset->cgrp_links; 1003 l2 = &old_cset->cgrp_links; 1004 while (1) { 1005 struct cgrp_cset_link *link1, *link2; 1006 struct cgroup *cgrp1, *cgrp2; 1007 1008 l1 = l1->next; 1009 l2 = l2->next; 1010 /* See if we reached the end - both lists are equal length. */ 1011 if (l1 == &cset->cgrp_links) { 1012 BUG_ON(l2 != &old_cset->cgrp_links); 1013 break; 1014 } else { 1015 BUG_ON(l2 == &old_cset->cgrp_links); 1016 } 1017 /* Locate the cgroups associated with these links. */ 1018 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link); 1019 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link); 1020 cgrp1 = link1->cgrp; 1021 cgrp2 = link2->cgrp; 1022 /* Hierarchies should be linked in the same order. */ 1023 BUG_ON(cgrp1->root != cgrp2->root); 1024 1025 /* 1026 * If this hierarchy is the hierarchy of the cgroup 1027 * that's changing, then we need to check that this 1028 * css_set points to the new cgroup; if it's any other 1029 * hierarchy, then this css_set should point to the 1030 * same cgroup as the old css_set. 1031 */ 1032 if (cgrp1->root == new_cgrp->root) { 1033 if (cgrp1 != new_cgrp) 1034 return false; 1035 } else { 1036 if (cgrp1 != cgrp2) 1037 return false; 1038 } 1039 } 1040 return true; 1041 } 1042 1043 /** 1044 * find_existing_css_set - init css array and find the matching css_set 1045 * @old_cset: the css_set that we're using before the cgroup transition 1046 * @cgrp: the cgroup that we're moving into 1047 * @template: out param for the new set of csses, should be clear on entry 1048 */ 1049 static struct css_set *find_existing_css_set(struct css_set *old_cset, 1050 struct cgroup *cgrp, 1051 struct cgroup_subsys_state *template[]) 1052 { 1053 struct cgroup_root *root = cgrp->root; 1054 struct cgroup_subsys *ss; 1055 struct css_set *cset; 1056 unsigned long key; 1057 int i; 1058 1059 /* 1060 * Build the set of subsystem state objects that we want to see in the 1061 * new css_set. While subsystems can change globally, the entries here 1062 * won't change, so no need for locking. 1063 */ 1064 for_each_subsys(ss, i) { 1065 if (root->subsys_mask & (1UL << i)) { 1066 /* 1067 * @ss is in this hierarchy, so we want the 1068 * effective css from @cgrp. 1069 */ 1070 template[i] = cgroup_e_css_by_mask(cgrp, ss); 1071 } else { 1072 /* 1073 * @ss is not in this hierarchy, so we don't want 1074 * to change the css. 1075 */ 1076 template[i] = old_cset->subsys[i]; 1077 } 1078 } 1079 1080 key = css_set_hash(template); 1081 hash_for_each_possible(css_set_table, cset, hlist, key) { 1082 if (!compare_css_sets(cset, old_cset, cgrp, template)) 1083 continue; 1084 1085 /* This css_set matches what we need */ 1086 return cset; 1087 } 1088 1089 /* No existing cgroup group matched */ 1090 return NULL; 1091 } 1092 1093 static void free_cgrp_cset_links(struct list_head *links_to_free) 1094 { 1095 struct cgrp_cset_link *link, *tmp_link; 1096 1097 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) { 1098 list_del(&link->cset_link); 1099 kfree(link); 1100 } 1101 } 1102 1103 /** 1104 * allocate_cgrp_cset_links - allocate cgrp_cset_links 1105 * @count: the number of links to allocate 1106 * @tmp_links: list_head the allocated links are put on 1107 * 1108 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links 1109 * through ->cset_link. Returns 0 on success or -errno. 1110 */ 1111 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links) 1112 { 1113 struct cgrp_cset_link *link; 1114 int i; 1115 1116 INIT_LIST_HEAD(tmp_links); 1117 1118 for (i = 0; i < count; i++) { 1119 link = kzalloc(sizeof(*link), GFP_KERNEL); 1120 if (!link) { 1121 free_cgrp_cset_links(tmp_links); 1122 return -ENOMEM; 1123 } 1124 list_add(&link->cset_link, tmp_links); 1125 } 1126 return 0; 1127 } 1128 1129 /** 1130 * link_css_set - a helper function to link a css_set to a cgroup 1131 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links() 1132 * @cset: the css_set to be linked 1133 * @cgrp: the destination cgroup 1134 */ 1135 static void link_css_set(struct list_head *tmp_links, struct css_set *cset, 1136 struct cgroup *cgrp) 1137 { 1138 struct cgrp_cset_link *link; 1139 1140 BUG_ON(list_empty(tmp_links)); 1141 1142 if (cgroup_on_dfl(cgrp)) 1143 cset->dfl_cgrp = cgrp; 1144 1145 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link); 1146 link->cset = cset; 1147 link->cgrp = cgrp; 1148 1149 /* 1150 * Always add links to the tail of the lists so that the lists are 1151 * in chronological order. 1152 */ 1153 list_move_tail(&link->cset_link, &cgrp->cset_links); 1154 list_add_tail(&link->cgrp_link, &cset->cgrp_links); 1155 1156 if (cgroup_parent(cgrp)) 1157 cgroup_get_live(cgrp); 1158 } 1159 1160 /** 1161 * find_css_set - return a new css_set with one cgroup updated 1162 * @old_cset: the baseline css_set 1163 * @cgrp: the cgroup to be updated 1164 * 1165 * Return a new css_set that's equivalent to @old_cset, but with @cgrp 1166 * substituted into the appropriate hierarchy. 1167 */ 1168 static struct css_set *find_css_set(struct css_set *old_cset, 1169 struct cgroup *cgrp) 1170 { 1171 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { }; 1172 struct css_set *cset; 1173 struct list_head tmp_links; 1174 struct cgrp_cset_link *link; 1175 struct cgroup_subsys *ss; 1176 unsigned long key; 1177 int ssid; 1178 1179 lockdep_assert_held(&cgroup_mutex); 1180 1181 /* First see if we already have a cgroup group that matches 1182 * the desired set */ 1183 spin_lock_irq(&css_set_lock); 1184 cset = find_existing_css_set(old_cset, cgrp, template); 1185 if (cset) 1186 get_css_set(cset); 1187 spin_unlock_irq(&css_set_lock); 1188 1189 if (cset) 1190 return cset; 1191 1192 cset = kzalloc(sizeof(*cset), GFP_KERNEL); 1193 if (!cset) 1194 return NULL; 1195 1196 /* Allocate all the cgrp_cset_link objects that we'll need */ 1197 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) { 1198 kfree(cset); 1199 return NULL; 1200 } 1201 1202 refcount_set(&cset->refcount, 1); 1203 cset->dom_cset = cset; 1204 INIT_LIST_HEAD(&cset->tasks); 1205 INIT_LIST_HEAD(&cset->mg_tasks); 1206 INIT_LIST_HEAD(&cset->dying_tasks); 1207 INIT_LIST_HEAD(&cset->task_iters); 1208 INIT_LIST_HEAD(&cset->threaded_csets); 1209 INIT_HLIST_NODE(&cset->hlist); 1210 INIT_LIST_HEAD(&cset->cgrp_links); 1211 INIT_LIST_HEAD(&cset->mg_preload_node); 1212 INIT_LIST_HEAD(&cset->mg_node); 1213 1214 /* Copy the set of subsystem state objects generated in 1215 * find_existing_css_set() */ 1216 memcpy(cset->subsys, template, sizeof(cset->subsys)); 1217 1218 spin_lock_irq(&css_set_lock); 1219 /* Add reference counts and links from the new css_set. */ 1220 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) { 1221 struct cgroup *c = link->cgrp; 1222 1223 if (c->root == cgrp->root) 1224 c = cgrp; 1225 link_css_set(&tmp_links, cset, c); 1226 } 1227 1228 BUG_ON(!list_empty(&tmp_links)); 1229 1230 css_set_count++; 1231 1232 /* Add @cset to the hash table */ 1233 key = css_set_hash(cset->subsys); 1234 hash_add(css_set_table, &cset->hlist, key); 1235 1236 for_each_subsys(ss, ssid) { 1237 struct cgroup_subsys_state *css = cset->subsys[ssid]; 1238 1239 list_add_tail(&cset->e_cset_node[ssid], 1240 &css->cgroup->e_csets[ssid]); 1241 css_get(css); 1242 } 1243 1244 spin_unlock_irq(&css_set_lock); 1245 1246 /* 1247 * If @cset should be threaded, look up the matching dom_cset and 1248 * link them up. We first fully initialize @cset then look for the 1249 * dom_cset. It's simpler this way and safe as @cset is guaranteed 1250 * to stay empty until we return. 1251 */ 1252 if (cgroup_is_threaded(cset->dfl_cgrp)) { 1253 struct css_set *dcset; 1254 1255 dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp); 1256 if (!dcset) { 1257 put_css_set(cset); 1258 return NULL; 1259 } 1260 1261 spin_lock_irq(&css_set_lock); 1262 cset->dom_cset = dcset; 1263 list_add_tail(&cset->threaded_csets_node, 1264 &dcset->threaded_csets); 1265 spin_unlock_irq(&css_set_lock); 1266 } 1267 1268 return cset; 1269 } 1270 1271 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root) 1272 { 1273 struct cgroup *root_cgrp = kf_root->kn->priv; 1274 1275 return root_cgrp->root; 1276 } 1277 1278 static int cgroup_init_root_id(struct cgroup_root *root) 1279 { 1280 int id; 1281 1282 lockdep_assert_held(&cgroup_mutex); 1283 1284 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL); 1285 if (id < 0) 1286 return id; 1287 1288 root->hierarchy_id = id; 1289 return 0; 1290 } 1291 1292 static void cgroup_exit_root_id(struct cgroup_root *root) 1293 { 1294 lockdep_assert_held(&cgroup_mutex); 1295 1296 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id); 1297 } 1298 1299 void cgroup_free_root(struct cgroup_root *root) 1300 { 1301 kfree(root); 1302 } 1303 1304 static void cgroup_destroy_root(struct cgroup_root *root) 1305 { 1306 struct cgroup *cgrp = &root->cgrp; 1307 struct cgrp_cset_link *link, *tmp_link; 1308 1309 trace_cgroup_destroy_root(root); 1310 1311 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp); 1312 1313 BUG_ON(atomic_read(&root->nr_cgrps)); 1314 BUG_ON(!list_empty(&cgrp->self.children)); 1315 1316 /* Rebind all subsystems back to the default hierarchy */ 1317 WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask)); 1318 1319 /* 1320 * Release all the links from cset_links to this hierarchy's 1321 * root cgroup 1322 */ 1323 spin_lock_irq(&css_set_lock); 1324 1325 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) { 1326 list_del(&link->cset_link); 1327 list_del(&link->cgrp_link); 1328 kfree(link); 1329 } 1330 1331 spin_unlock_irq(&css_set_lock); 1332 1333 if (!list_empty(&root->root_list)) { 1334 list_del(&root->root_list); 1335 cgroup_root_count--; 1336 } 1337 1338 cgroup_exit_root_id(root); 1339 1340 mutex_unlock(&cgroup_mutex); 1341 1342 cgroup_rstat_exit(cgrp); 1343 kernfs_destroy_root(root->kf_root); 1344 cgroup_free_root(root); 1345 } 1346 1347 /* 1348 * look up cgroup associated with current task's cgroup namespace on the 1349 * specified hierarchy 1350 */ 1351 static struct cgroup * 1352 current_cgns_cgroup_from_root(struct cgroup_root *root) 1353 { 1354 struct cgroup *res = NULL; 1355 struct css_set *cset; 1356 1357 lockdep_assert_held(&css_set_lock); 1358 1359 rcu_read_lock(); 1360 1361 cset = current->nsproxy->cgroup_ns->root_cset; 1362 if (cset == &init_css_set) { 1363 res = &root->cgrp; 1364 } else if (root == &cgrp_dfl_root) { 1365 res = cset->dfl_cgrp; 1366 } else { 1367 struct cgrp_cset_link *link; 1368 1369 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) { 1370 struct cgroup *c = link->cgrp; 1371 1372 if (c->root == root) { 1373 res = c; 1374 break; 1375 } 1376 } 1377 } 1378 rcu_read_unlock(); 1379 1380 BUG_ON(!res); 1381 return res; 1382 } 1383 1384 /* look up cgroup associated with given css_set on the specified hierarchy */ 1385 static struct cgroup *cset_cgroup_from_root(struct css_set *cset, 1386 struct cgroup_root *root) 1387 { 1388 struct cgroup *res = NULL; 1389 1390 lockdep_assert_held(&cgroup_mutex); 1391 lockdep_assert_held(&css_set_lock); 1392 1393 if (cset == &init_css_set) { 1394 res = &root->cgrp; 1395 } else if (root == &cgrp_dfl_root) { 1396 res = cset->dfl_cgrp; 1397 } else { 1398 struct cgrp_cset_link *link; 1399 1400 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) { 1401 struct cgroup *c = link->cgrp; 1402 1403 if (c->root == root) { 1404 res = c; 1405 break; 1406 } 1407 } 1408 } 1409 1410 BUG_ON(!res); 1411 return res; 1412 } 1413 1414 /* 1415 * Return the cgroup for "task" from the given hierarchy. Must be 1416 * called with cgroup_mutex and css_set_lock held. 1417 */ 1418 struct cgroup *task_cgroup_from_root(struct task_struct *task, 1419 struct cgroup_root *root) 1420 { 1421 /* 1422 * No need to lock the task - since we hold css_set_lock the 1423 * task can't change groups. 1424 */ 1425 return cset_cgroup_from_root(task_css_set(task), root); 1426 } 1427 1428 /* 1429 * A task must hold cgroup_mutex to modify cgroups. 1430 * 1431 * Any task can increment and decrement the count field without lock. 1432 * So in general, code holding cgroup_mutex can't rely on the count 1433 * field not changing. However, if the count goes to zero, then only 1434 * cgroup_attach_task() can increment it again. Because a count of zero 1435 * means that no tasks are currently attached, therefore there is no 1436 * way a task attached to that cgroup can fork (the other way to 1437 * increment the count). So code holding cgroup_mutex can safely 1438 * assume that if the count is zero, it will stay zero. Similarly, if 1439 * a task holds cgroup_mutex on a cgroup with zero count, it 1440 * knows that the cgroup won't be removed, as cgroup_rmdir() 1441 * needs that mutex. 1442 * 1443 * A cgroup can only be deleted if both its 'count' of using tasks 1444 * is zero, and its list of 'children' cgroups is empty. Since all 1445 * tasks in the system use _some_ cgroup, and since there is always at 1446 * least one task in the system (init, pid == 1), therefore, root cgroup 1447 * always has either children cgroups and/or using tasks. So we don't 1448 * need a special hack to ensure that root cgroup cannot be deleted. 1449 * 1450 * P.S. One more locking exception. RCU is used to guard the 1451 * update of a tasks cgroup pointer by cgroup_attach_task() 1452 */ 1453 1454 static struct kernfs_syscall_ops cgroup_kf_syscall_ops; 1455 1456 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft, 1457 char *buf) 1458 { 1459 struct cgroup_subsys *ss = cft->ss; 1460 1461 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) && 1462 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) { 1463 const char *dbg = (cft->flags & CFTYPE_DEBUG) ? ".__DEBUG__." : ""; 1464 1465 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s%s.%s", 1466 dbg, cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name, 1467 cft->name); 1468 } else { 1469 strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX); 1470 } 1471 return buf; 1472 } 1473 1474 /** 1475 * cgroup_file_mode - deduce file mode of a control file 1476 * @cft: the control file in question 1477 * 1478 * S_IRUGO for read, S_IWUSR for write. 1479 */ 1480 static umode_t cgroup_file_mode(const struct cftype *cft) 1481 { 1482 umode_t mode = 0; 1483 1484 if (cft->read_u64 || cft->read_s64 || cft->seq_show) 1485 mode |= S_IRUGO; 1486 1487 if (cft->write_u64 || cft->write_s64 || cft->write) { 1488 if (cft->flags & CFTYPE_WORLD_WRITABLE) 1489 mode |= S_IWUGO; 1490 else 1491 mode |= S_IWUSR; 1492 } 1493 1494 return mode; 1495 } 1496 1497 /** 1498 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask 1499 * @subtree_control: the new subtree_control mask to consider 1500 * @this_ss_mask: available subsystems 1501 * 1502 * On the default hierarchy, a subsystem may request other subsystems to be 1503 * enabled together through its ->depends_on mask. In such cases, more 1504 * subsystems than specified in "cgroup.subtree_control" may be enabled. 1505 * 1506 * This function calculates which subsystems need to be enabled if 1507 * @subtree_control is to be applied while restricted to @this_ss_mask. 1508 */ 1509 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask) 1510 { 1511 u16 cur_ss_mask = subtree_control; 1512 struct cgroup_subsys *ss; 1513 int ssid; 1514 1515 lockdep_assert_held(&cgroup_mutex); 1516 1517 cur_ss_mask |= cgrp_dfl_implicit_ss_mask; 1518 1519 while (true) { 1520 u16 new_ss_mask = cur_ss_mask; 1521 1522 do_each_subsys_mask(ss, ssid, cur_ss_mask) { 1523 new_ss_mask |= ss->depends_on; 1524 } while_each_subsys_mask(); 1525 1526 /* 1527 * Mask out subsystems which aren't available. This can 1528 * happen only if some depended-upon subsystems were bound 1529 * to non-default hierarchies. 1530 */ 1531 new_ss_mask &= this_ss_mask; 1532 1533 if (new_ss_mask == cur_ss_mask) 1534 break; 1535 cur_ss_mask = new_ss_mask; 1536 } 1537 1538 return cur_ss_mask; 1539 } 1540 1541 /** 1542 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods 1543 * @kn: the kernfs_node being serviced 1544 * 1545 * This helper undoes cgroup_kn_lock_live() and should be invoked before 1546 * the method finishes if locking succeeded. Note that once this function 1547 * returns the cgroup returned by cgroup_kn_lock_live() may become 1548 * inaccessible any time. If the caller intends to continue to access the 1549 * cgroup, it should pin it before invoking this function. 1550 */ 1551 void cgroup_kn_unlock(struct kernfs_node *kn) 1552 { 1553 struct cgroup *cgrp; 1554 1555 if (kernfs_type(kn) == KERNFS_DIR) 1556 cgrp = kn->priv; 1557 else 1558 cgrp = kn->parent->priv; 1559 1560 mutex_unlock(&cgroup_mutex); 1561 1562 kernfs_unbreak_active_protection(kn); 1563 cgroup_put(cgrp); 1564 } 1565 1566 /** 1567 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods 1568 * @kn: the kernfs_node being serviced 1569 * @drain_offline: perform offline draining on the cgroup 1570 * 1571 * This helper is to be used by a cgroup kernfs method currently servicing 1572 * @kn. It breaks the active protection, performs cgroup locking and 1573 * verifies that the associated cgroup is alive. Returns the cgroup if 1574 * alive; otherwise, %NULL. A successful return should be undone by a 1575 * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the 1576 * cgroup is drained of offlining csses before return. 1577 * 1578 * Any cgroup kernfs method implementation which requires locking the 1579 * associated cgroup should use this helper. It avoids nesting cgroup 1580 * locking under kernfs active protection and allows all kernfs operations 1581 * including self-removal. 1582 */ 1583 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline) 1584 { 1585 struct cgroup *cgrp; 1586 1587 if (kernfs_type(kn) == KERNFS_DIR) 1588 cgrp = kn->priv; 1589 else 1590 cgrp = kn->parent->priv; 1591 1592 /* 1593 * We're gonna grab cgroup_mutex which nests outside kernfs 1594 * active_ref. cgroup liveliness check alone provides enough 1595 * protection against removal. Ensure @cgrp stays accessible and 1596 * break the active_ref protection. 1597 */ 1598 if (!cgroup_tryget(cgrp)) 1599 return NULL; 1600 kernfs_break_active_protection(kn); 1601 1602 if (drain_offline) 1603 cgroup_lock_and_drain_offline(cgrp); 1604 else 1605 mutex_lock(&cgroup_mutex); 1606 1607 if (!cgroup_is_dead(cgrp)) 1608 return cgrp; 1609 1610 cgroup_kn_unlock(kn); 1611 return NULL; 1612 } 1613 1614 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft) 1615 { 1616 char name[CGROUP_FILE_NAME_MAX]; 1617 1618 lockdep_assert_held(&cgroup_mutex); 1619 1620 if (cft->file_offset) { 1621 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss); 1622 struct cgroup_file *cfile = (void *)css + cft->file_offset; 1623 1624 spin_lock_irq(&cgroup_file_kn_lock); 1625 cfile->kn = NULL; 1626 spin_unlock_irq(&cgroup_file_kn_lock); 1627 1628 del_timer_sync(&cfile->notify_timer); 1629 } 1630 1631 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name)); 1632 } 1633 1634 /** 1635 * css_clear_dir - remove subsys files in a cgroup directory 1636 * @css: target css 1637 */ 1638 static void css_clear_dir(struct cgroup_subsys_state *css) 1639 { 1640 struct cgroup *cgrp = css->cgroup; 1641 struct cftype *cfts; 1642 1643 if (!(css->flags & CSS_VISIBLE)) 1644 return; 1645 1646 css->flags &= ~CSS_VISIBLE; 1647 1648 if (!css->ss) { 1649 if (cgroup_on_dfl(cgrp)) 1650 cfts = cgroup_base_files; 1651 else 1652 cfts = cgroup1_base_files; 1653 1654 cgroup_addrm_files(css, cgrp, cfts, false); 1655 } else { 1656 list_for_each_entry(cfts, &css->ss->cfts, node) 1657 cgroup_addrm_files(css, cgrp, cfts, false); 1658 } 1659 } 1660 1661 /** 1662 * css_populate_dir - create subsys files in a cgroup directory 1663 * @css: target css 1664 * 1665 * On failure, no file is added. 1666 */ 1667 static int css_populate_dir(struct cgroup_subsys_state *css) 1668 { 1669 struct cgroup *cgrp = css->cgroup; 1670 struct cftype *cfts, *failed_cfts; 1671 int ret; 1672 1673 if ((css->flags & CSS_VISIBLE) || !cgrp->kn) 1674 return 0; 1675 1676 if (!css->ss) { 1677 if (cgroup_on_dfl(cgrp)) 1678 cfts = cgroup_base_files; 1679 else 1680 cfts = cgroup1_base_files; 1681 1682 ret = cgroup_addrm_files(&cgrp->self, cgrp, cfts, true); 1683 if (ret < 0) 1684 return ret; 1685 } else { 1686 list_for_each_entry(cfts, &css->ss->cfts, node) { 1687 ret = cgroup_addrm_files(css, cgrp, cfts, true); 1688 if (ret < 0) { 1689 failed_cfts = cfts; 1690 goto err; 1691 } 1692 } 1693 } 1694 1695 css->flags |= CSS_VISIBLE; 1696 1697 return 0; 1698 err: 1699 list_for_each_entry(cfts, &css->ss->cfts, node) { 1700 if (cfts == failed_cfts) 1701 break; 1702 cgroup_addrm_files(css, cgrp, cfts, false); 1703 } 1704 return ret; 1705 } 1706 1707 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask) 1708 { 1709 struct cgroup *dcgrp = &dst_root->cgrp; 1710 struct cgroup_subsys *ss; 1711 int ssid, i, ret; 1712 1713 lockdep_assert_held(&cgroup_mutex); 1714 1715 do_each_subsys_mask(ss, ssid, ss_mask) { 1716 /* 1717 * If @ss has non-root csses attached to it, can't move. 1718 * If @ss is an implicit controller, it is exempt from this 1719 * rule and can be stolen. 1720 */ 1721 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) && 1722 !ss->implicit_on_dfl) 1723 return -EBUSY; 1724 1725 /* can't move between two non-dummy roots either */ 1726 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root) 1727 return -EBUSY; 1728 } while_each_subsys_mask(); 1729 1730 do_each_subsys_mask(ss, ssid, ss_mask) { 1731 struct cgroup_root *src_root = ss->root; 1732 struct cgroup *scgrp = &src_root->cgrp; 1733 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss); 1734 struct css_set *cset; 1735 1736 WARN_ON(!css || cgroup_css(dcgrp, ss)); 1737 1738 /* disable from the source */ 1739 src_root->subsys_mask &= ~(1 << ssid); 1740 WARN_ON(cgroup_apply_control(scgrp)); 1741 cgroup_finalize_control(scgrp, 0); 1742 1743 /* rebind */ 1744 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL); 1745 rcu_assign_pointer(dcgrp->subsys[ssid], css); 1746 ss->root = dst_root; 1747 css->cgroup = dcgrp; 1748 1749 spin_lock_irq(&css_set_lock); 1750 hash_for_each(css_set_table, i, cset, hlist) 1751 list_move_tail(&cset->e_cset_node[ss->id], 1752 &dcgrp->e_csets[ss->id]); 1753 spin_unlock_irq(&css_set_lock); 1754 1755 if (ss->css_rstat_flush) { 1756 list_del_rcu(&css->rstat_css_node); 1757 list_add_rcu(&css->rstat_css_node, 1758 &dcgrp->rstat_css_list); 1759 } 1760 1761 /* default hierarchy doesn't enable controllers by default */ 1762 dst_root->subsys_mask |= 1 << ssid; 1763 if (dst_root == &cgrp_dfl_root) { 1764 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]); 1765 } else { 1766 dcgrp->subtree_control |= 1 << ssid; 1767 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]); 1768 } 1769 1770 ret = cgroup_apply_control(dcgrp); 1771 if (ret) 1772 pr_warn("partial failure to rebind %s controller (err=%d)\n", 1773 ss->name, ret); 1774 1775 if (ss->bind) 1776 ss->bind(css); 1777 } while_each_subsys_mask(); 1778 1779 kernfs_activate(dcgrp->kn); 1780 return 0; 1781 } 1782 1783 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node, 1784 struct kernfs_root *kf_root) 1785 { 1786 int len = 0; 1787 char *buf = NULL; 1788 struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root); 1789 struct cgroup *ns_cgroup; 1790 1791 buf = kmalloc(PATH_MAX, GFP_KERNEL); 1792 if (!buf) 1793 return -ENOMEM; 1794 1795 spin_lock_irq(&css_set_lock); 1796 ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot); 1797 len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX); 1798 spin_unlock_irq(&css_set_lock); 1799 1800 if (len >= PATH_MAX) 1801 len = -ERANGE; 1802 else if (len > 0) { 1803 seq_escape(sf, buf, " \t\n\\"); 1804 len = 0; 1805 } 1806 kfree(buf); 1807 return len; 1808 } 1809 1810 enum cgroup2_param { 1811 Opt_nsdelegate, 1812 Opt_memory_localevents, 1813 Opt_memory_recursiveprot, 1814 nr__cgroup2_params 1815 }; 1816 1817 static const struct fs_parameter_spec cgroup2_fs_parameters[] = { 1818 fsparam_flag("nsdelegate", Opt_nsdelegate), 1819 fsparam_flag("memory_localevents", Opt_memory_localevents), 1820 fsparam_flag("memory_recursiveprot", Opt_memory_recursiveprot), 1821 {} 1822 }; 1823 1824 static int cgroup2_parse_param(struct fs_context *fc, struct fs_parameter *param) 1825 { 1826 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 1827 struct fs_parse_result result; 1828 int opt; 1829 1830 opt = fs_parse(fc, cgroup2_fs_parameters, param, &result); 1831 if (opt < 0) 1832 return opt; 1833 1834 switch (opt) { 1835 case Opt_nsdelegate: 1836 ctx->flags |= CGRP_ROOT_NS_DELEGATE; 1837 return 0; 1838 case Opt_memory_localevents: 1839 ctx->flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS; 1840 return 0; 1841 case Opt_memory_recursiveprot: 1842 ctx->flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT; 1843 return 0; 1844 } 1845 return -EINVAL; 1846 } 1847 1848 static void apply_cgroup_root_flags(unsigned int root_flags) 1849 { 1850 if (current->nsproxy->cgroup_ns == &init_cgroup_ns) { 1851 if (root_flags & CGRP_ROOT_NS_DELEGATE) 1852 cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE; 1853 else 1854 cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE; 1855 1856 if (root_flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS) 1857 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS; 1858 else 1859 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_LOCAL_EVENTS; 1860 1861 if (root_flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT) 1862 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT; 1863 else 1864 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_RECURSIVE_PROT; 1865 } 1866 } 1867 1868 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root) 1869 { 1870 if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) 1871 seq_puts(seq, ",nsdelegate"); 1872 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS) 1873 seq_puts(seq, ",memory_localevents"); 1874 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT) 1875 seq_puts(seq, ",memory_recursiveprot"); 1876 return 0; 1877 } 1878 1879 static int cgroup_reconfigure(struct fs_context *fc) 1880 { 1881 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 1882 1883 apply_cgroup_root_flags(ctx->flags); 1884 return 0; 1885 } 1886 1887 static void init_cgroup_housekeeping(struct cgroup *cgrp) 1888 { 1889 struct cgroup_subsys *ss; 1890 int ssid; 1891 1892 INIT_LIST_HEAD(&cgrp->self.sibling); 1893 INIT_LIST_HEAD(&cgrp->self.children); 1894 INIT_LIST_HEAD(&cgrp->cset_links); 1895 INIT_LIST_HEAD(&cgrp->pidlists); 1896 mutex_init(&cgrp->pidlist_mutex); 1897 cgrp->self.cgroup = cgrp; 1898 cgrp->self.flags |= CSS_ONLINE; 1899 cgrp->dom_cgrp = cgrp; 1900 cgrp->max_descendants = INT_MAX; 1901 cgrp->max_depth = INT_MAX; 1902 INIT_LIST_HEAD(&cgrp->rstat_css_list); 1903 prev_cputime_init(&cgrp->prev_cputime); 1904 1905 for_each_subsys(ss, ssid) 1906 INIT_LIST_HEAD(&cgrp->e_csets[ssid]); 1907 1908 init_waitqueue_head(&cgrp->offline_waitq); 1909 INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent); 1910 } 1911 1912 void init_cgroup_root(struct cgroup_fs_context *ctx) 1913 { 1914 struct cgroup_root *root = ctx->root; 1915 struct cgroup *cgrp = &root->cgrp; 1916 1917 INIT_LIST_HEAD(&root->root_list); 1918 atomic_set(&root->nr_cgrps, 1); 1919 cgrp->root = root; 1920 init_cgroup_housekeeping(cgrp); 1921 1922 root->flags = ctx->flags; 1923 if (ctx->release_agent) 1924 strscpy(root->release_agent_path, ctx->release_agent, PATH_MAX); 1925 if (ctx->name) 1926 strscpy(root->name, ctx->name, MAX_CGROUP_ROOT_NAMELEN); 1927 if (ctx->cpuset_clone_children) 1928 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags); 1929 } 1930 1931 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask) 1932 { 1933 LIST_HEAD(tmp_links); 1934 struct cgroup *root_cgrp = &root->cgrp; 1935 struct kernfs_syscall_ops *kf_sops; 1936 struct css_set *cset; 1937 int i, ret; 1938 1939 lockdep_assert_held(&cgroup_mutex); 1940 1941 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 1942 0, GFP_KERNEL); 1943 if (ret) 1944 goto out; 1945 1946 /* 1947 * We're accessing css_set_count without locking css_set_lock here, 1948 * but that's OK - it can only be increased by someone holding 1949 * cgroup_lock, and that's us. Later rebinding may disable 1950 * controllers on the default hierarchy and thus create new csets, 1951 * which can't be more than the existing ones. Allocate 2x. 1952 */ 1953 ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links); 1954 if (ret) 1955 goto cancel_ref; 1956 1957 ret = cgroup_init_root_id(root); 1958 if (ret) 1959 goto cancel_ref; 1960 1961 kf_sops = root == &cgrp_dfl_root ? 1962 &cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops; 1963 1964 root->kf_root = kernfs_create_root(kf_sops, 1965 KERNFS_ROOT_CREATE_DEACTIVATED | 1966 KERNFS_ROOT_SUPPORT_EXPORTOP | 1967 KERNFS_ROOT_SUPPORT_USER_XATTR, 1968 root_cgrp); 1969 if (IS_ERR(root->kf_root)) { 1970 ret = PTR_ERR(root->kf_root); 1971 goto exit_root_id; 1972 } 1973 root_cgrp->kn = root->kf_root->kn; 1974 WARN_ON_ONCE(cgroup_ino(root_cgrp) != 1); 1975 root_cgrp->ancestor_ids[0] = cgroup_id(root_cgrp); 1976 1977 ret = css_populate_dir(&root_cgrp->self); 1978 if (ret) 1979 goto destroy_root; 1980 1981 ret = cgroup_rstat_init(root_cgrp); 1982 if (ret) 1983 goto destroy_root; 1984 1985 ret = rebind_subsystems(root, ss_mask); 1986 if (ret) 1987 goto exit_stats; 1988 1989 ret = cgroup_bpf_inherit(root_cgrp); 1990 WARN_ON_ONCE(ret); 1991 1992 trace_cgroup_setup_root(root); 1993 1994 /* 1995 * There must be no failure case after here, since rebinding takes 1996 * care of subsystems' refcounts, which are explicitly dropped in 1997 * the failure exit path. 1998 */ 1999 list_add(&root->root_list, &cgroup_roots); 2000 cgroup_root_count++; 2001 2002 /* 2003 * Link the root cgroup in this hierarchy into all the css_set 2004 * objects. 2005 */ 2006 spin_lock_irq(&css_set_lock); 2007 hash_for_each(css_set_table, i, cset, hlist) { 2008 link_css_set(&tmp_links, cset, root_cgrp); 2009 if (css_set_populated(cset)) 2010 cgroup_update_populated(root_cgrp, true); 2011 } 2012 spin_unlock_irq(&css_set_lock); 2013 2014 BUG_ON(!list_empty(&root_cgrp->self.children)); 2015 BUG_ON(atomic_read(&root->nr_cgrps) != 1); 2016 2017 ret = 0; 2018 goto out; 2019 2020 exit_stats: 2021 cgroup_rstat_exit(root_cgrp); 2022 destroy_root: 2023 kernfs_destroy_root(root->kf_root); 2024 root->kf_root = NULL; 2025 exit_root_id: 2026 cgroup_exit_root_id(root); 2027 cancel_ref: 2028 percpu_ref_exit(&root_cgrp->self.refcnt); 2029 out: 2030 free_cgrp_cset_links(&tmp_links); 2031 return ret; 2032 } 2033 2034 int cgroup_do_get_tree(struct fs_context *fc) 2035 { 2036 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2037 int ret; 2038 2039 ctx->kfc.root = ctx->root->kf_root; 2040 if (fc->fs_type == &cgroup2_fs_type) 2041 ctx->kfc.magic = CGROUP2_SUPER_MAGIC; 2042 else 2043 ctx->kfc.magic = CGROUP_SUPER_MAGIC; 2044 ret = kernfs_get_tree(fc); 2045 2046 /* 2047 * In non-init cgroup namespace, instead of root cgroup's dentry, 2048 * we return the dentry corresponding to the cgroupns->root_cgrp. 2049 */ 2050 if (!ret && ctx->ns != &init_cgroup_ns) { 2051 struct dentry *nsdentry; 2052 struct super_block *sb = fc->root->d_sb; 2053 struct cgroup *cgrp; 2054 2055 mutex_lock(&cgroup_mutex); 2056 spin_lock_irq(&css_set_lock); 2057 2058 cgrp = cset_cgroup_from_root(ctx->ns->root_cset, ctx->root); 2059 2060 spin_unlock_irq(&css_set_lock); 2061 mutex_unlock(&cgroup_mutex); 2062 2063 nsdentry = kernfs_node_dentry(cgrp->kn, sb); 2064 dput(fc->root); 2065 if (IS_ERR(nsdentry)) { 2066 deactivate_locked_super(sb); 2067 ret = PTR_ERR(nsdentry); 2068 nsdentry = NULL; 2069 } 2070 fc->root = nsdentry; 2071 } 2072 2073 if (!ctx->kfc.new_sb_created) 2074 cgroup_put(&ctx->root->cgrp); 2075 2076 return ret; 2077 } 2078 2079 /* 2080 * Destroy a cgroup filesystem context. 2081 */ 2082 static void cgroup_fs_context_free(struct fs_context *fc) 2083 { 2084 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2085 2086 kfree(ctx->name); 2087 kfree(ctx->release_agent); 2088 put_cgroup_ns(ctx->ns); 2089 kernfs_free_fs_context(fc); 2090 kfree(ctx); 2091 } 2092 2093 static int cgroup_get_tree(struct fs_context *fc) 2094 { 2095 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2096 int ret; 2097 2098 cgrp_dfl_visible = true; 2099 cgroup_get_live(&cgrp_dfl_root.cgrp); 2100 ctx->root = &cgrp_dfl_root; 2101 2102 ret = cgroup_do_get_tree(fc); 2103 if (!ret) 2104 apply_cgroup_root_flags(ctx->flags); 2105 return ret; 2106 } 2107 2108 static const struct fs_context_operations cgroup_fs_context_ops = { 2109 .free = cgroup_fs_context_free, 2110 .parse_param = cgroup2_parse_param, 2111 .get_tree = cgroup_get_tree, 2112 .reconfigure = cgroup_reconfigure, 2113 }; 2114 2115 static const struct fs_context_operations cgroup1_fs_context_ops = { 2116 .free = cgroup_fs_context_free, 2117 .parse_param = cgroup1_parse_param, 2118 .get_tree = cgroup1_get_tree, 2119 .reconfigure = cgroup1_reconfigure, 2120 }; 2121 2122 /* 2123 * Initialise the cgroup filesystem creation/reconfiguration context. Notably, 2124 * we select the namespace we're going to use. 2125 */ 2126 static int cgroup_init_fs_context(struct fs_context *fc) 2127 { 2128 struct cgroup_fs_context *ctx; 2129 2130 ctx = kzalloc(sizeof(struct cgroup_fs_context), GFP_KERNEL); 2131 if (!ctx) 2132 return -ENOMEM; 2133 2134 ctx->ns = current->nsproxy->cgroup_ns; 2135 get_cgroup_ns(ctx->ns); 2136 fc->fs_private = &ctx->kfc; 2137 if (fc->fs_type == &cgroup2_fs_type) 2138 fc->ops = &cgroup_fs_context_ops; 2139 else 2140 fc->ops = &cgroup1_fs_context_ops; 2141 put_user_ns(fc->user_ns); 2142 fc->user_ns = get_user_ns(ctx->ns->user_ns); 2143 fc->global = true; 2144 return 0; 2145 } 2146 2147 static void cgroup_kill_sb(struct super_block *sb) 2148 { 2149 struct kernfs_root *kf_root = kernfs_root_from_sb(sb); 2150 struct cgroup_root *root = cgroup_root_from_kf(kf_root); 2151 2152 /* 2153 * If @root doesn't have any children, start killing it. 2154 * This prevents new mounts by disabling percpu_ref_tryget_live(). 2155 * cgroup_mount() may wait for @root's release. 2156 * 2157 * And don't kill the default root. 2158 */ 2159 if (list_empty(&root->cgrp.self.children) && root != &cgrp_dfl_root && 2160 !percpu_ref_is_dying(&root->cgrp.self.refcnt)) 2161 percpu_ref_kill(&root->cgrp.self.refcnt); 2162 cgroup_put(&root->cgrp); 2163 kernfs_kill_sb(sb); 2164 } 2165 2166 struct file_system_type cgroup_fs_type = { 2167 .name = "cgroup", 2168 .init_fs_context = cgroup_init_fs_context, 2169 .parameters = cgroup1_fs_parameters, 2170 .kill_sb = cgroup_kill_sb, 2171 .fs_flags = FS_USERNS_MOUNT, 2172 }; 2173 2174 static struct file_system_type cgroup2_fs_type = { 2175 .name = "cgroup2", 2176 .init_fs_context = cgroup_init_fs_context, 2177 .parameters = cgroup2_fs_parameters, 2178 .kill_sb = cgroup_kill_sb, 2179 .fs_flags = FS_USERNS_MOUNT, 2180 }; 2181 2182 #ifdef CONFIG_CPUSETS 2183 static const struct fs_context_operations cpuset_fs_context_ops = { 2184 .get_tree = cgroup1_get_tree, 2185 .free = cgroup_fs_context_free, 2186 }; 2187 2188 /* 2189 * This is ugly, but preserves the userspace API for existing cpuset 2190 * users. If someone tries to mount the "cpuset" filesystem, we 2191 * silently switch it to mount "cgroup" instead 2192 */ 2193 static int cpuset_init_fs_context(struct fs_context *fc) 2194 { 2195 char *agent = kstrdup("/sbin/cpuset_release_agent", GFP_USER); 2196 struct cgroup_fs_context *ctx; 2197 int err; 2198 2199 err = cgroup_init_fs_context(fc); 2200 if (err) { 2201 kfree(agent); 2202 return err; 2203 } 2204 2205 fc->ops = &cpuset_fs_context_ops; 2206 2207 ctx = cgroup_fc2context(fc); 2208 ctx->subsys_mask = 1 << cpuset_cgrp_id; 2209 ctx->flags |= CGRP_ROOT_NOPREFIX; 2210 ctx->release_agent = agent; 2211 2212 get_filesystem(&cgroup_fs_type); 2213 put_filesystem(fc->fs_type); 2214 fc->fs_type = &cgroup_fs_type; 2215 2216 return 0; 2217 } 2218 2219 static struct file_system_type cpuset_fs_type = { 2220 .name = "cpuset", 2221 .init_fs_context = cpuset_init_fs_context, 2222 .fs_flags = FS_USERNS_MOUNT, 2223 }; 2224 #endif 2225 2226 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen, 2227 struct cgroup_namespace *ns) 2228 { 2229 struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root); 2230 2231 return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen); 2232 } 2233 2234 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen, 2235 struct cgroup_namespace *ns) 2236 { 2237 int ret; 2238 2239 mutex_lock(&cgroup_mutex); 2240 spin_lock_irq(&css_set_lock); 2241 2242 ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns); 2243 2244 spin_unlock_irq(&css_set_lock); 2245 mutex_unlock(&cgroup_mutex); 2246 2247 return ret; 2248 } 2249 EXPORT_SYMBOL_GPL(cgroup_path_ns); 2250 2251 /** 2252 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy 2253 * @task: target task 2254 * @buf: the buffer to write the path into 2255 * @buflen: the length of the buffer 2256 * 2257 * Determine @task's cgroup on the first (the one with the lowest non-zero 2258 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This 2259 * function grabs cgroup_mutex and shouldn't be used inside locks used by 2260 * cgroup controller callbacks. 2261 * 2262 * Return value is the same as kernfs_path(). 2263 */ 2264 int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen) 2265 { 2266 struct cgroup_root *root; 2267 struct cgroup *cgrp; 2268 int hierarchy_id = 1; 2269 int ret; 2270 2271 mutex_lock(&cgroup_mutex); 2272 spin_lock_irq(&css_set_lock); 2273 2274 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id); 2275 2276 if (root) { 2277 cgrp = task_cgroup_from_root(task, root); 2278 ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns); 2279 } else { 2280 /* if no hierarchy exists, everyone is in "/" */ 2281 ret = strlcpy(buf, "/", buflen); 2282 } 2283 2284 spin_unlock_irq(&css_set_lock); 2285 mutex_unlock(&cgroup_mutex); 2286 return ret; 2287 } 2288 EXPORT_SYMBOL_GPL(task_cgroup_path); 2289 2290 /** 2291 * cgroup_migrate_add_task - add a migration target task to a migration context 2292 * @task: target task 2293 * @mgctx: target migration context 2294 * 2295 * Add @task, which is a migration target, to @mgctx->tset. This function 2296 * becomes noop if @task doesn't need to be migrated. @task's css_set 2297 * should have been added as a migration source and @task->cg_list will be 2298 * moved from the css_set's tasks list to mg_tasks one. 2299 */ 2300 static void cgroup_migrate_add_task(struct task_struct *task, 2301 struct cgroup_mgctx *mgctx) 2302 { 2303 struct css_set *cset; 2304 2305 lockdep_assert_held(&css_set_lock); 2306 2307 /* @task either already exited or can't exit until the end */ 2308 if (task->flags & PF_EXITING) 2309 return; 2310 2311 /* cgroup_threadgroup_rwsem protects racing against forks */ 2312 WARN_ON_ONCE(list_empty(&task->cg_list)); 2313 2314 cset = task_css_set(task); 2315 if (!cset->mg_src_cgrp) 2316 return; 2317 2318 mgctx->tset.nr_tasks++; 2319 2320 list_move_tail(&task->cg_list, &cset->mg_tasks); 2321 if (list_empty(&cset->mg_node)) 2322 list_add_tail(&cset->mg_node, 2323 &mgctx->tset.src_csets); 2324 if (list_empty(&cset->mg_dst_cset->mg_node)) 2325 list_add_tail(&cset->mg_dst_cset->mg_node, 2326 &mgctx->tset.dst_csets); 2327 } 2328 2329 /** 2330 * cgroup_taskset_first - reset taskset and return the first task 2331 * @tset: taskset of interest 2332 * @dst_cssp: output variable for the destination css 2333 * 2334 * @tset iteration is initialized and the first task is returned. 2335 */ 2336 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset, 2337 struct cgroup_subsys_state **dst_cssp) 2338 { 2339 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node); 2340 tset->cur_task = NULL; 2341 2342 return cgroup_taskset_next(tset, dst_cssp); 2343 } 2344 2345 /** 2346 * cgroup_taskset_next - iterate to the next task in taskset 2347 * @tset: taskset of interest 2348 * @dst_cssp: output variable for the destination css 2349 * 2350 * Return the next task in @tset. Iteration must have been initialized 2351 * with cgroup_taskset_first(). 2352 */ 2353 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset, 2354 struct cgroup_subsys_state **dst_cssp) 2355 { 2356 struct css_set *cset = tset->cur_cset; 2357 struct task_struct *task = tset->cur_task; 2358 2359 while (&cset->mg_node != tset->csets) { 2360 if (!task) 2361 task = list_first_entry(&cset->mg_tasks, 2362 struct task_struct, cg_list); 2363 else 2364 task = list_next_entry(task, cg_list); 2365 2366 if (&task->cg_list != &cset->mg_tasks) { 2367 tset->cur_cset = cset; 2368 tset->cur_task = task; 2369 2370 /* 2371 * This function may be called both before and 2372 * after cgroup_taskset_migrate(). The two cases 2373 * can be distinguished by looking at whether @cset 2374 * has its ->mg_dst_cset set. 2375 */ 2376 if (cset->mg_dst_cset) 2377 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid]; 2378 else 2379 *dst_cssp = cset->subsys[tset->ssid]; 2380 2381 return task; 2382 } 2383 2384 cset = list_next_entry(cset, mg_node); 2385 task = NULL; 2386 } 2387 2388 return NULL; 2389 } 2390 2391 /** 2392 * cgroup_taskset_migrate - migrate a taskset 2393 * @mgctx: migration context 2394 * 2395 * Migrate tasks in @mgctx as setup by migration preparation functions. 2396 * This function fails iff one of the ->can_attach callbacks fails and 2397 * guarantees that either all or none of the tasks in @mgctx are migrated. 2398 * @mgctx is consumed regardless of success. 2399 */ 2400 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx) 2401 { 2402 struct cgroup_taskset *tset = &mgctx->tset; 2403 struct cgroup_subsys *ss; 2404 struct task_struct *task, *tmp_task; 2405 struct css_set *cset, *tmp_cset; 2406 int ssid, failed_ssid, ret; 2407 2408 /* check that we can legitimately attach to the cgroup */ 2409 if (tset->nr_tasks) { 2410 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2411 if (ss->can_attach) { 2412 tset->ssid = ssid; 2413 ret = ss->can_attach(tset); 2414 if (ret) { 2415 failed_ssid = ssid; 2416 goto out_cancel_attach; 2417 } 2418 } 2419 } while_each_subsys_mask(); 2420 } 2421 2422 /* 2423 * Now that we're guaranteed success, proceed to move all tasks to 2424 * the new cgroup. There are no failure cases after here, so this 2425 * is the commit point. 2426 */ 2427 spin_lock_irq(&css_set_lock); 2428 list_for_each_entry(cset, &tset->src_csets, mg_node) { 2429 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) { 2430 struct css_set *from_cset = task_css_set(task); 2431 struct css_set *to_cset = cset->mg_dst_cset; 2432 2433 get_css_set(to_cset); 2434 to_cset->nr_tasks++; 2435 css_set_move_task(task, from_cset, to_cset, true); 2436 from_cset->nr_tasks--; 2437 /* 2438 * If the source or destination cgroup is frozen, 2439 * the task might require to change its state. 2440 */ 2441 cgroup_freezer_migrate_task(task, from_cset->dfl_cgrp, 2442 to_cset->dfl_cgrp); 2443 put_css_set_locked(from_cset); 2444 2445 } 2446 } 2447 spin_unlock_irq(&css_set_lock); 2448 2449 /* 2450 * Migration is committed, all target tasks are now on dst_csets. 2451 * Nothing is sensitive to fork() after this point. Notify 2452 * controllers that migration is complete. 2453 */ 2454 tset->csets = &tset->dst_csets; 2455 2456 if (tset->nr_tasks) { 2457 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2458 if (ss->attach) { 2459 tset->ssid = ssid; 2460 ss->attach(tset); 2461 } 2462 } while_each_subsys_mask(); 2463 } 2464 2465 ret = 0; 2466 goto out_release_tset; 2467 2468 out_cancel_attach: 2469 if (tset->nr_tasks) { 2470 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2471 if (ssid == failed_ssid) 2472 break; 2473 if (ss->cancel_attach) { 2474 tset->ssid = ssid; 2475 ss->cancel_attach(tset); 2476 } 2477 } while_each_subsys_mask(); 2478 } 2479 out_release_tset: 2480 spin_lock_irq(&css_set_lock); 2481 list_splice_init(&tset->dst_csets, &tset->src_csets); 2482 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) { 2483 list_splice_tail_init(&cset->mg_tasks, &cset->tasks); 2484 list_del_init(&cset->mg_node); 2485 } 2486 spin_unlock_irq(&css_set_lock); 2487 2488 /* 2489 * Re-initialize the cgroup_taskset structure in case it is reused 2490 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute() 2491 * iteration. 2492 */ 2493 tset->nr_tasks = 0; 2494 tset->csets = &tset->src_csets; 2495 return ret; 2496 } 2497 2498 /** 2499 * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination 2500 * @dst_cgrp: destination cgroup to test 2501 * 2502 * On the default hierarchy, except for the mixable, (possible) thread root 2503 * and threaded cgroups, subtree_control must be zero for migration 2504 * destination cgroups with tasks so that child cgroups don't compete 2505 * against tasks. 2506 */ 2507 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp) 2508 { 2509 /* v1 doesn't have any restriction */ 2510 if (!cgroup_on_dfl(dst_cgrp)) 2511 return 0; 2512 2513 /* verify @dst_cgrp can host resources */ 2514 if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp)) 2515 return -EOPNOTSUPP; 2516 2517 /* mixables don't care */ 2518 if (cgroup_is_mixable(dst_cgrp)) 2519 return 0; 2520 2521 /* 2522 * If @dst_cgrp is already or can become a thread root or is 2523 * threaded, it doesn't matter. 2524 */ 2525 if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp)) 2526 return 0; 2527 2528 /* apply no-internal-process constraint */ 2529 if (dst_cgrp->subtree_control) 2530 return -EBUSY; 2531 2532 return 0; 2533 } 2534 2535 /** 2536 * cgroup_migrate_finish - cleanup after attach 2537 * @mgctx: migration context 2538 * 2539 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See 2540 * those functions for details. 2541 */ 2542 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx) 2543 { 2544 LIST_HEAD(preloaded); 2545 struct css_set *cset, *tmp_cset; 2546 2547 lockdep_assert_held(&cgroup_mutex); 2548 2549 spin_lock_irq(&css_set_lock); 2550 2551 list_splice_tail_init(&mgctx->preloaded_src_csets, &preloaded); 2552 list_splice_tail_init(&mgctx->preloaded_dst_csets, &preloaded); 2553 2554 list_for_each_entry_safe(cset, tmp_cset, &preloaded, mg_preload_node) { 2555 cset->mg_src_cgrp = NULL; 2556 cset->mg_dst_cgrp = NULL; 2557 cset->mg_dst_cset = NULL; 2558 list_del_init(&cset->mg_preload_node); 2559 put_css_set_locked(cset); 2560 } 2561 2562 spin_unlock_irq(&css_set_lock); 2563 } 2564 2565 /** 2566 * cgroup_migrate_add_src - add a migration source css_set 2567 * @src_cset: the source css_set to add 2568 * @dst_cgrp: the destination cgroup 2569 * @mgctx: migration context 2570 * 2571 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin 2572 * @src_cset and add it to @mgctx->src_csets, which should later be cleaned 2573 * up by cgroup_migrate_finish(). 2574 * 2575 * This function may be called without holding cgroup_threadgroup_rwsem 2576 * even if the target is a process. Threads may be created and destroyed 2577 * but as long as cgroup_mutex is not dropped, no new css_set can be put 2578 * into play and the preloaded css_sets are guaranteed to cover all 2579 * migrations. 2580 */ 2581 void cgroup_migrate_add_src(struct css_set *src_cset, 2582 struct cgroup *dst_cgrp, 2583 struct cgroup_mgctx *mgctx) 2584 { 2585 struct cgroup *src_cgrp; 2586 2587 lockdep_assert_held(&cgroup_mutex); 2588 lockdep_assert_held(&css_set_lock); 2589 2590 /* 2591 * If ->dead, @src_set is associated with one or more dead cgroups 2592 * and doesn't contain any migratable tasks. Ignore it early so 2593 * that the rest of migration path doesn't get confused by it. 2594 */ 2595 if (src_cset->dead) 2596 return; 2597 2598 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root); 2599 2600 if (!list_empty(&src_cset->mg_preload_node)) 2601 return; 2602 2603 WARN_ON(src_cset->mg_src_cgrp); 2604 WARN_ON(src_cset->mg_dst_cgrp); 2605 WARN_ON(!list_empty(&src_cset->mg_tasks)); 2606 WARN_ON(!list_empty(&src_cset->mg_node)); 2607 2608 src_cset->mg_src_cgrp = src_cgrp; 2609 src_cset->mg_dst_cgrp = dst_cgrp; 2610 get_css_set(src_cset); 2611 list_add_tail(&src_cset->mg_preload_node, &mgctx->preloaded_src_csets); 2612 } 2613 2614 /** 2615 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration 2616 * @mgctx: migration context 2617 * 2618 * Tasks are about to be moved and all the source css_sets have been 2619 * preloaded to @mgctx->preloaded_src_csets. This function looks up and 2620 * pins all destination css_sets, links each to its source, and append them 2621 * to @mgctx->preloaded_dst_csets. 2622 * 2623 * This function must be called after cgroup_migrate_add_src() has been 2624 * called on each migration source css_set. After migration is performed 2625 * using cgroup_migrate(), cgroup_migrate_finish() must be called on 2626 * @mgctx. 2627 */ 2628 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx) 2629 { 2630 struct css_set *src_cset, *tmp_cset; 2631 2632 lockdep_assert_held(&cgroup_mutex); 2633 2634 /* look up the dst cset for each src cset and link it to src */ 2635 list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets, 2636 mg_preload_node) { 2637 struct css_set *dst_cset; 2638 struct cgroup_subsys *ss; 2639 int ssid; 2640 2641 dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp); 2642 if (!dst_cset) 2643 return -ENOMEM; 2644 2645 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset); 2646 2647 /* 2648 * If src cset equals dst, it's noop. Drop the src. 2649 * cgroup_migrate() will skip the cset too. Note that we 2650 * can't handle src == dst as some nodes are used by both. 2651 */ 2652 if (src_cset == dst_cset) { 2653 src_cset->mg_src_cgrp = NULL; 2654 src_cset->mg_dst_cgrp = NULL; 2655 list_del_init(&src_cset->mg_preload_node); 2656 put_css_set(src_cset); 2657 put_css_set(dst_cset); 2658 continue; 2659 } 2660 2661 src_cset->mg_dst_cset = dst_cset; 2662 2663 if (list_empty(&dst_cset->mg_preload_node)) 2664 list_add_tail(&dst_cset->mg_preload_node, 2665 &mgctx->preloaded_dst_csets); 2666 else 2667 put_css_set(dst_cset); 2668 2669 for_each_subsys(ss, ssid) 2670 if (src_cset->subsys[ssid] != dst_cset->subsys[ssid]) 2671 mgctx->ss_mask |= 1 << ssid; 2672 } 2673 2674 return 0; 2675 } 2676 2677 /** 2678 * cgroup_migrate - migrate a process or task to a cgroup 2679 * @leader: the leader of the process or the task to migrate 2680 * @threadgroup: whether @leader points to the whole process or a single task 2681 * @mgctx: migration context 2682 * 2683 * Migrate a process or task denoted by @leader. If migrating a process, 2684 * the caller must be holding cgroup_threadgroup_rwsem. The caller is also 2685 * responsible for invoking cgroup_migrate_add_src() and 2686 * cgroup_migrate_prepare_dst() on the targets before invoking this 2687 * function and following up with cgroup_migrate_finish(). 2688 * 2689 * As long as a controller's ->can_attach() doesn't fail, this function is 2690 * guaranteed to succeed. This means that, excluding ->can_attach() 2691 * failure, when migrating multiple targets, the success or failure can be 2692 * decided for all targets by invoking group_migrate_prepare_dst() before 2693 * actually starting migrating. 2694 */ 2695 int cgroup_migrate(struct task_struct *leader, bool threadgroup, 2696 struct cgroup_mgctx *mgctx) 2697 { 2698 struct task_struct *task; 2699 2700 /* 2701 * Prevent freeing of tasks while we take a snapshot. Tasks that are 2702 * already PF_EXITING could be freed from underneath us unless we 2703 * take an rcu_read_lock. 2704 */ 2705 spin_lock_irq(&css_set_lock); 2706 rcu_read_lock(); 2707 task = leader; 2708 do { 2709 cgroup_migrate_add_task(task, mgctx); 2710 if (!threadgroup) 2711 break; 2712 } while_each_thread(leader, task); 2713 rcu_read_unlock(); 2714 spin_unlock_irq(&css_set_lock); 2715 2716 return cgroup_migrate_execute(mgctx); 2717 } 2718 2719 /** 2720 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup 2721 * @dst_cgrp: the cgroup to attach to 2722 * @leader: the task or the leader of the threadgroup to be attached 2723 * @threadgroup: attach the whole threadgroup? 2724 * 2725 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem. 2726 */ 2727 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader, 2728 bool threadgroup) 2729 { 2730 DEFINE_CGROUP_MGCTX(mgctx); 2731 struct task_struct *task; 2732 int ret = 0; 2733 2734 /* look up all src csets */ 2735 spin_lock_irq(&css_set_lock); 2736 rcu_read_lock(); 2737 task = leader; 2738 do { 2739 cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx); 2740 if (!threadgroup) 2741 break; 2742 } while_each_thread(leader, task); 2743 rcu_read_unlock(); 2744 spin_unlock_irq(&css_set_lock); 2745 2746 /* prepare dst csets and commit */ 2747 ret = cgroup_migrate_prepare_dst(&mgctx); 2748 if (!ret) 2749 ret = cgroup_migrate(leader, threadgroup, &mgctx); 2750 2751 cgroup_migrate_finish(&mgctx); 2752 2753 if (!ret) 2754 TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup); 2755 2756 return ret; 2757 } 2758 2759 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup, 2760 bool *locked) 2761 __acquires(&cgroup_threadgroup_rwsem) 2762 { 2763 struct task_struct *tsk; 2764 pid_t pid; 2765 2766 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0) 2767 return ERR_PTR(-EINVAL); 2768 2769 /* 2770 * If we migrate a single thread, we don't care about threadgroup 2771 * stability. If the thread is `current`, it won't exit(2) under our 2772 * hands or change PID through exec(2). We exclude 2773 * cgroup_update_dfl_csses and other cgroup_{proc,thread}s_write 2774 * callers by cgroup_mutex. 2775 * Therefore, we can skip the global lock. 2776 */ 2777 lockdep_assert_held(&cgroup_mutex); 2778 if (pid || threadgroup) { 2779 percpu_down_write(&cgroup_threadgroup_rwsem); 2780 *locked = true; 2781 } else { 2782 *locked = false; 2783 } 2784 2785 rcu_read_lock(); 2786 if (pid) { 2787 tsk = find_task_by_vpid(pid); 2788 if (!tsk) { 2789 tsk = ERR_PTR(-ESRCH); 2790 goto out_unlock_threadgroup; 2791 } 2792 } else { 2793 tsk = current; 2794 } 2795 2796 if (threadgroup) 2797 tsk = tsk->group_leader; 2798 2799 /* 2800 * kthreads may acquire PF_NO_SETAFFINITY during initialization. 2801 * If userland migrates such a kthread to a non-root cgroup, it can 2802 * become trapped in a cpuset, or RT kthread may be born in a 2803 * cgroup with no rt_runtime allocated. Just say no. 2804 */ 2805 if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) { 2806 tsk = ERR_PTR(-EINVAL); 2807 goto out_unlock_threadgroup; 2808 } 2809 2810 get_task_struct(tsk); 2811 goto out_unlock_rcu; 2812 2813 out_unlock_threadgroup: 2814 if (*locked) { 2815 percpu_up_write(&cgroup_threadgroup_rwsem); 2816 *locked = false; 2817 } 2818 out_unlock_rcu: 2819 rcu_read_unlock(); 2820 return tsk; 2821 } 2822 2823 void cgroup_procs_write_finish(struct task_struct *task, bool locked) 2824 __releases(&cgroup_threadgroup_rwsem) 2825 { 2826 struct cgroup_subsys *ss; 2827 int ssid; 2828 2829 /* release reference from cgroup_procs_write_start() */ 2830 put_task_struct(task); 2831 2832 if (locked) 2833 percpu_up_write(&cgroup_threadgroup_rwsem); 2834 for_each_subsys(ss, ssid) 2835 if (ss->post_attach) 2836 ss->post_attach(); 2837 } 2838 2839 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask) 2840 { 2841 struct cgroup_subsys *ss; 2842 bool printed = false; 2843 int ssid; 2844 2845 do_each_subsys_mask(ss, ssid, ss_mask) { 2846 if (printed) 2847 seq_putc(seq, ' '); 2848 seq_puts(seq, ss->name); 2849 printed = true; 2850 } while_each_subsys_mask(); 2851 if (printed) 2852 seq_putc(seq, '\n'); 2853 } 2854 2855 /* show controllers which are enabled from the parent */ 2856 static int cgroup_controllers_show(struct seq_file *seq, void *v) 2857 { 2858 struct cgroup *cgrp = seq_css(seq)->cgroup; 2859 2860 cgroup_print_ss_mask(seq, cgroup_control(cgrp)); 2861 return 0; 2862 } 2863 2864 /* show controllers which are enabled for a given cgroup's children */ 2865 static int cgroup_subtree_control_show(struct seq_file *seq, void *v) 2866 { 2867 struct cgroup *cgrp = seq_css(seq)->cgroup; 2868 2869 cgroup_print_ss_mask(seq, cgrp->subtree_control); 2870 return 0; 2871 } 2872 2873 /** 2874 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy 2875 * @cgrp: root of the subtree to update csses for 2876 * 2877 * @cgrp's control masks have changed and its subtree's css associations 2878 * need to be updated accordingly. This function looks up all css_sets 2879 * which are attached to the subtree, creates the matching updated css_sets 2880 * and migrates the tasks to the new ones. 2881 */ 2882 static int cgroup_update_dfl_csses(struct cgroup *cgrp) 2883 { 2884 DEFINE_CGROUP_MGCTX(mgctx); 2885 struct cgroup_subsys_state *d_css; 2886 struct cgroup *dsct; 2887 struct css_set *src_cset; 2888 int ret; 2889 2890 lockdep_assert_held(&cgroup_mutex); 2891 2892 percpu_down_write(&cgroup_threadgroup_rwsem); 2893 2894 /* look up all csses currently attached to @cgrp's subtree */ 2895 spin_lock_irq(&css_set_lock); 2896 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 2897 struct cgrp_cset_link *link; 2898 2899 list_for_each_entry(link, &dsct->cset_links, cset_link) 2900 cgroup_migrate_add_src(link->cset, dsct, &mgctx); 2901 } 2902 spin_unlock_irq(&css_set_lock); 2903 2904 /* NULL dst indicates self on default hierarchy */ 2905 ret = cgroup_migrate_prepare_dst(&mgctx); 2906 if (ret) 2907 goto out_finish; 2908 2909 spin_lock_irq(&css_set_lock); 2910 list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, mg_preload_node) { 2911 struct task_struct *task, *ntask; 2912 2913 /* all tasks in src_csets need to be migrated */ 2914 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list) 2915 cgroup_migrate_add_task(task, &mgctx); 2916 } 2917 spin_unlock_irq(&css_set_lock); 2918 2919 ret = cgroup_migrate_execute(&mgctx); 2920 out_finish: 2921 cgroup_migrate_finish(&mgctx); 2922 percpu_up_write(&cgroup_threadgroup_rwsem); 2923 return ret; 2924 } 2925 2926 /** 2927 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses 2928 * @cgrp: root of the target subtree 2929 * 2930 * Because css offlining is asynchronous, userland may try to re-enable a 2931 * controller while the previous css is still around. This function grabs 2932 * cgroup_mutex and drains the previous css instances of @cgrp's subtree. 2933 */ 2934 void cgroup_lock_and_drain_offline(struct cgroup *cgrp) 2935 __acquires(&cgroup_mutex) 2936 { 2937 struct cgroup *dsct; 2938 struct cgroup_subsys_state *d_css; 2939 struct cgroup_subsys *ss; 2940 int ssid; 2941 2942 restart: 2943 mutex_lock(&cgroup_mutex); 2944 2945 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 2946 for_each_subsys(ss, ssid) { 2947 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 2948 DEFINE_WAIT(wait); 2949 2950 if (!css || !percpu_ref_is_dying(&css->refcnt)) 2951 continue; 2952 2953 cgroup_get_live(dsct); 2954 prepare_to_wait(&dsct->offline_waitq, &wait, 2955 TASK_UNINTERRUPTIBLE); 2956 2957 mutex_unlock(&cgroup_mutex); 2958 schedule(); 2959 finish_wait(&dsct->offline_waitq, &wait); 2960 2961 cgroup_put(dsct); 2962 goto restart; 2963 } 2964 } 2965 } 2966 2967 /** 2968 * cgroup_save_control - save control masks and dom_cgrp of a subtree 2969 * @cgrp: root of the target subtree 2970 * 2971 * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the 2972 * respective old_ prefixed fields for @cgrp's subtree including @cgrp 2973 * itself. 2974 */ 2975 static void cgroup_save_control(struct cgroup *cgrp) 2976 { 2977 struct cgroup *dsct; 2978 struct cgroup_subsys_state *d_css; 2979 2980 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 2981 dsct->old_subtree_control = dsct->subtree_control; 2982 dsct->old_subtree_ss_mask = dsct->subtree_ss_mask; 2983 dsct->old_dom_cgrp = dsct->dom_cgrp; 2984 } 2985 } 2986 2987 /** 2988 * cgroup_propagate_control - refresh control masks of a subtree 2989 * @cgrp: root of the target subtree 2990 * 2991 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches 2992 * ->subtree_control and propagate controller availability through the 2993 * subtree so that descendants don't have unavailable controllers enabled. 2994 */ 2995 static void cgroup_propagate_control(struct cgroup *cgrp) 2996 { 2997 struct cgroup *dsct; 2998 struct cgroup_subsys_state *d_css; 2999 3000 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 3001 dsct->subtree_control &= cgroup_control(dsct); 3002 dsct->subtree_ss_mask = 3003 cgroup_calc_subtree_ss_mask(dsct->subtree_control, 3004 cgroup_ss_mask(dsct)); 3005 } 3006 } 3007 3008 /** 3009 * cgroup_restore_control - restore control masks and dom_cgrp of a subtree 3010 * @cgrp: root of the target subtree 3011 * 3012 * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the 3013 * respective old_ prefixed fields for @cgrp's subtree including @cgrp 3014 * itself. 3015 */ 3016 static void cgroup_restore_control(struct cgroup *cgrp) 3017 { 3018 struct cgroup *dsct; 3019 struct cgroup_subsys_state *d_css; 3020 3021 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 3022 dsct->subtree_control = dsct->old_subtree_control; 3023 dsct->subtree_ss_mask = dsct->old_subtree_ss_mask; 3024 dsct->dom_cgrp = dsct->old_dom_cgrp; 3025 } 3026 } 3027 3028 static bool css_visible(struct cgroup_subsys_state *css) 3029 { 3030 struct cgroup_subsys *ss = css->ss; 3031 struct cgroup *cgrp = css->cgroup; 3032 3033 if (cgroup_control(cgrp) & (1 << ss->id)) 3034 return true; 3035 if (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) 3036 return false; 3037 return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl; 3038 } 3039 3040 /** 3041 * cgroup_apply_control_enable - enable or show csses according to control 3042 * @cgrp: root of the target subtree 3043 * 3044 * Walk @cgrp's subtree and create new csses or make the existing ones 3045 * visible. A css is created invisible if it's being implicitly enabled 3046 * through dependency. An invisible css is made visible when the userland 3047 * explicitly enables it. 3048 * 3049 * Returns 0 on success, -errno on failure. On failure, csses which have 3050 * been processed already aren't cleaned up. The caller is responsible for 3051 * cleaning up with cgroup_apply_control_disable(). 3052 */ 3053 static int cgroup_apply_control_enable(struct cgroup *cgrp) 3054 { 3055 struct cgroup *dsct; 3056 struct cgroup_subsys_state *d_css; 3057 struct cgroup_subsys *ss; 3058 int ssid, ret; 3059 3060 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 3061 for_each_subsys(ss, ssid) { 3062 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 3063 3064 if (!(cgroup_ss_mask(dsct) & (1 << ss->id))) 3065 continue; 3066 3067 if (!css) { 3068 css = css_create(dsct, ss); 3069 if (IS_ERR(css)) 3070 return PTR_ERR(css); 3071 } 3072 3073 WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt)); 3074 3075 if (css_visible(css)) { 3076 ret = css_populate_dir(css); 3077 if (ret) 3078 return ret; 3079 } 3080 } 3081 } 3082 3083 return 0; 3084 } 3085 3086 /** 3087 * cgroup_apply_control_disable - kill or hide csses according to control 3088 * @cgrp: root of the target subtree 3089 * 3090 * Walk @cgrp's subtree and kill and hide csses so that they match 3091 * cgroup_ss_mask() and cgroup_visible_mask(). 3092 * 3093 * A css is hidden when the userland requests it to be disabled while other 3094 * subsystems are still depending on it. The css must not actively control 3095 * resources and be in the vanilla state if it's made visible again later. 3096 * Controllers which may be depended upon should provide ->css_reset() for 3097 * this purpose. 3098 */ 3099 static void cgroup_apply_control_disable(struct cgroup *cgrp) 3100 { 3101 struct cgroup *dsct; 3102 struct cgroup_subsys_state *d_css; 3103 struct cgroup_subsys *ss; 3104 int ssid; 3105 3106 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 3107 for_each_subsys(ss, ssid) { 3108 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 3109 3110 if (!css) 3111 continue; 3112 3113 WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt)); 3114 3115 if (css->parent && 3116 !(cgroup_ss_mask(dsct) & (1 << ss->id))) { 3117 kill_css(css); 3118 } else if (!css_visible(css)) { 3119 css_clear_dir(css); 3120 if (ss->css_reset) 3121 ss->css_reset(css); 3122 } 3123 } 3124 } 3125 } 3126 3127 /** 3128 * cgroup_apply_control - apply control mask updates to the subtree 3129 * @cgrp: root of the target subtree 3130 * 3131 * subsystems can be enabled and disabled in a subtree using the following 3132 * steps. 3133 * 3134 * 1. Call cgroup_save_control() to stash the current state. 3135 * 2. Update ->subtree_control masks in the subtree as desired. 3136 * 3. Call cgroup_apply_control() to apply the changes. 3137 * 4. Optionally perform other related operations. 3138 * 5. Call cgroup_finalize_control() to finish up. 3139 * 3140 * This function implements step 3 and propagates the mask changes 3141 * throughout @cgrp's subtree, updates csses accordingly and perform 3142 * process migrations. 3143 */ 3144 static int cgroup_apply_control(struct cgroup *cgrp) 3145 { 3146 int ret; 3147 3148 cgroup_propagate_control(cgrp); 3149 3150 ret = cgroup_apply_control_enable(cgrp); 3151 if (ret) 3152 return ret; 3153 3154 /* 3155 * At this point, cgroup_e_css_by_mask() results reflect the new csses 3156 * making the following cgroup_update_dfl_csses() properly update 3157 * css associations of all tasks in the subtree. 3158 */ 3159 ret = cgroup_update_dfl_csses(cgrp); 3160 if (ret) 3161 return ret; 3162 3163 return 0; 3164 } 3165 3166 /** 3167 * cgroup_finalize_control - finalize control mask update 3168 * @cgrp: root of the target subtree 3169 * @ret: the result of the update 3170 * 3171 * Finalize control mask update. See cgroup_apply_control() for more info. 3172 */ 3173 static void cgroup_finalize_control(struct cgroup *cgrp, int ret) 3174 { 3175 if (ret) { 3176 cgroup_restore_control(cgrp); 3177 cgroup_propagate_control(cgrp); 3178 } 3179 3180 cgroup_apply_control_disable(cgrp); 3181 } 3182 3183 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable) 3184 { 3185 u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask; 3186 3187 /* if nothing is getting enabled, nothing to worry about */ 3188 if (!enable) 3189 return 0; 3190 3191 /* can @cgrp host any resources? */ 3192 if (!cgroup_is_valid_domain(cgrp->dom_cgrp)) 3193 return -EOPNOTSUPP; 3194 3195 /* mixables don't care */ 3196 if (cgroup_is_mixable(cgrp)) 3197 return 0; 3198 3199 if (domain_enable) { 3200 /* can't enable domain controllers inside a thread subtree */ 3201 if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp)) 3202 return -EOPNOTSUPP; 3203 } else { 3204 /* 3205 * Threaded controllers can handle internal competitions 3206 * and are always allowed inside a (prospective) thread 3207 * subtree. 3208 */ 3209 if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp)) 3210 return 0; 3211 } 3212 3213 /* 3214 * Controllers can't be enabled for a cgroup with tasks to avoid 3215 * child cgroups competing against tasks. 3216 */ 3217 if (cgroup_has_tasks(cgrp)) 3218 return -EBUSY; 3219 3220 return 0; 3221 } 3222 3223 /* change the enabled child controllers for a cgroup in the default hierarchy */ 3224 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of, 3225 char *buf, size_t nbytes, 3226 loff_t off) 3227 { 3228 u16 enable = 0, disable = 0; 3229 struct cgroup *cgrp, *child; 3230 struct cgroup_subsys *ss; 3231 char *tok; 3232 int ssid, ret; 3233 3234 /* 3235 * Parse input - space separated list of subsystem names prefixed 3236 * with either + or -. 3237 */ 3238 buf = strstrip(buf); 3239 while ((tok = strsep(&buf, " "))) { 3240 if (tok[0] == '\0') 3241 continue; 3242 do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) { 3243 if (!cgroup_ssid_enabled(ssid) || 3244 strcmp(tok + 1, ss->name)) 3245 continue; 3246 3247 if (*tok == '+') { 3248 enable |= 1 << ssid; 3249 disable &= ~(1 << ssid); 3250 } else if (*tok == '-') { 3251 disable |= 1 << ssid; 3252 enable &= ~(1 << ssid); 3253 } else { 3254 return -EINVAL; 3255 } 3256 break; 3257 } while_each_subsys_mask(); 3258 if (ssid == CGROUP_SUBSYS_COUNT) 3259 return -EINVAL; 3260 } 3261 3262 cgrp = cgroup_kn_lock_live(of->kn, true); 3263 if (!cgrp) 3264 return -ENODEV; 3265 3266 for_each_subsys(ss, ssid) { 3267 if (enable & (1 << ssid)) { 3268 if (cgrp->subtree_control & (1 << ssid)) { 3269 enable &= ~(1 << ssid); 3270 continue; 3271 } 3272 3273 if (!(cgroup_control(cgrp) & (1 << ssid))) { 3274 ret = -ENOENT; 3275 goto out_unlock; 3276 } 3277 } else if (disable & (1 << ssid)) { 3278 if (!(cgrp->subtree_control & (1 << ssid))) { 3279 disable &= ~(1 << ssid); 3280 continue; 3281 } 3282 3283 /* a child has it enabled? */ 3284 cgroup_for_each_live_child(child, cgrp) { 3285 if (child->subtree_control & (1 << ssid)) { 3286 ret = -EBUSY; 3287 goto out_unlock; 3288 } 3289 } 3290 } 3291 } 3292 3293 if (!enable && !disable) { 3294 ret = 0; 3295 goto out_unlock; 3296 } 3297 3298 ret = cgroup_vet_subtree_control_enable(cgrp, enable); 3299 if (ret) 3300 goto out_unlock; 3301 3302 /* save and update control masks and prepare csses */ 3303 cgroup_save_control(cgrp); 3304 3305 cgrp->subtree_control |= enable; 3306 cgrp->subtree_control &= ~disable; 3307 3308 ret = cgroup_apply_control(cgrp); 3309 cgroup_finalize_control(cgrp, ret); 3310 if (ret) 3311 goto out_unlock; 3312 3313 kernfs_activate(cgrp->kn); 3314 out_unlock: 3315 cgroup_kn_unlock(of->kn); 3316 return ret ?: nbytes; 3317 } 3318 3319 /** 3320 * cgroup_enable_threaded - make @cgrp threaded 3321 * @cgrp: the target cgroup 3322 * 3323 * Called when "threaded" is written to the cgroup.type interface file and 3324 * tries to make @cgrp threaded and join the parent's resource domain. 3325 * This function is never called on the root cgroup as cgroup.type doesn't 3326 * exist on it. 3327 */ 3328 static int cgroup_enable_threaded(struct cgroup *cgrp) 3329 { 3330 struct cgroup *parent = cgroup_parent(cgrp); 3331 struct cgroup *dom_cgrp = parent->dom_cgrp; 3332 struct cgroup *dsct; 3333 struct cgroup_subsys_state *d_css; 3334 int ret; 3335 3336 lockdep_assert_held(&cgroup_mutex); 3337 3338 /* noop if already threaded */ 3339 if (cgroup_is_threaded(cgrp)) 3340 return 0; 3341 3342 /* 3343 * If @cgroup is populated or has domain controllers enabled, it 3344 * can't be switched. While the below cgroup_can_be_thread_root() 3345 * test can catch the same conditions, that's only when @parent is 3346 * not mixable, so let's check it explicitly. 3347 */ 3348 if (cgroup_is_populated(cgrp) || 3349 cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask) 3350 return -EOPNOTSUPP; 3351 3352 /* we're joining the parent's domain, ensure its validity */ 3353 if (!cgroup_is_valid_domain(dom_cgrp) || 3354 !cgroup_can_be_thread_root(dom_cgrp)) 3355 return -EOPNOTSUPP; 3356 3357 /* 3358 * The following shouldn't cause actual migrations and should 3359 * always succeed. 3360 */ 3361 cgroup_save_control(cgrp); 3362 3363 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) 3364 if (dsct == cgrp || cgroup_is_threaded(dsct)) 3365 dsct->dom_cgrp = dom_cgrp; 3366 3367 ret = cgroup_apply_control(cgrp); 3368 if (!ret) 3369 parent->nr_threaded_children++; 3370 3371 cgroup_finalize_control(cgrp, ret); 3372 return ret; 3373 } 3374 3375 static int cgroup_type_show(struct seq_file *seq, void *v) 3376 { 3377 struct cgroup *cgrp = seq_css(seq)->cgroup; 3378 3379 if (cgroup_is_threaded(cgrp)) 3380 seq_puts(seq, "threaded\n"); 3381 else if (!cgroup_is_valid_domain(cgrp)) 3382 seq_puts(seq, "domain invalid\n"); 3383 else if (cgroup_is_thread_root(cgrp)) 3384 seq_puts(seq, "domain threaded\n"); 3385 else 3386 seq_puts(seq, "domain\n"); 3387 3388 return 0; 3389 } 3390 3391 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf, 3392 size_t nbytes, loff_t off) 3393 { 3394 struct cgroup *cgrp; 3395 int ret; 3396 3397 /* only switching to threaded mode is supported */ 3398 if (strcmp(strstrip(buf), "threaded")) 3399 return -EINVAL; 3400 3401 /* drain dying csses before we re-apply (threaded) subtree control */ 3402 cgrp = cgroup_kn_lock_live(of->kn, true); 3403 if (!cgrp) 3404 return -ENOENT; 3405 3406 /* threaded can only be enabled */ 3407 ret = cgroup_enable_threaded(cgrp); 3408 3409 cgroup_kn_unlock(of->kn); 3410 return ret ?: nbytes; 3411 } 3412 3413 static int cgroup_max_descendants_show(struct seq_file *seq, void *v) 3414 { 3415 struct cgroup *cgrp = seq_css(seq)->cgroup; 3416 int descendants = READ_ONCE(cgrp->max_descendants); 3417 3418 if (descendants == INT_MAX) 3419 seq_puts(seq, "max\n"); 3420 else 3421 seq_printf(seq, "%d\n", descendants); 3422 3423 return 0; 3424 } 3425 3426 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of, 3427 char *buf, size_t nbytes, loff_t off) 3428 { 3429 struct cgroup *cgrp; 3430 int descendants; 3431 ssize_t ret; 3432 3433 buf = strstrip(buf); 3434 if (!strcmp(buf, "max")) { 3435 descendants = INT_MAX; 3436 } else { 3437 ret = kstrtoint(buf, 0, &descendants); 3438 if (ret) 3439 return ret; 3440 } 3441 3442 if (descendants < 0) 3443 return -ERANGE; 3444 3445 cgrp = cgroup_kn_lock_live(of->kn, false); 3446 if (!cgrp) 3447 return -ENOENT; 3448 3449 cgrp->max_descendants = descendants; 3450 3451 cgroup_kn_unlock(of->kn); 3452 3453 return nbytes; 3454 } 3455 3456 static int cgroup_max_depth_show(struct seq_file *seq, void *v) 3457 { 3458 struct cgroup *cgrp = seq_css(seq)->cgroup; 3459 int depth = READ_ONCE(cgrp->max_depth); 3460 3461 if (depth == INT_MAX) 3462 seq_puts(seq, "max\n"); 3463 else 3464 seq_printf(seq, "%d\n", depth); 3465 3466 return 0; 3467 } 3468 3469 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of, 3470 char *buf, size_t nbytes, loff_t off) 3471 { 3472 struct cgroup *cgrp; 3473 ssize_t ret; 3474 int depth; 3475 3476 buf = strstrip(buf); 3477 if (!strcmp(buf, "max")) { 3478 depth = INT_MAX; 3479 } else { 3480 ret = kstrtoint(buf, 0, &depth); 3481 if (ret) 3482 return ret; 3483 } 3484 3485 if (depth < 0) 3486 return -ERANGE; 3487 3488 cgrp = cgroup_kn_lock_live(of->kn, false); 3489 if (!cgrp) 3490 return -ENOENT; 3491 3492 cgrp->max_depth = depth; 3493 3494 cgroup_kn_unlock(of->kn); 3495 3496 return nbytes; 3497 } 3498 3499 static int cgroup_events_show(struct seq_file *seq, void *v) 3500 { 3501 struct cgroup *cgrp = seq_css(seq)->cgroup; 3502 3503 seq_printf(seq, "populated %d\n", cgroup_is_populated(cgrp)); 3504 seq_printf(seq, "frozen %d\n", test_bit(CGRP_FROZEN, &cgrp->flags)); 3505 3506 return 0; 3507 } 3508 3509 static int cgroup_stat_show(struct seq_file *seq, void *v) 3510 { 3511 struct cgroup *cgroup = seq_css(seq)->cgroup; 3512 3513 seq_printf(seq, "nr_descendants %d\n", 3514 cgroup->nr_descendants); 3515 seq_printf(seq, "nr_dying_descendants %d\n", 3516 cgroup->nr_dying_descendants); 3517 3518 return 0; 3519 } 3520 3521 static int __maybe_unused cgroup_extra_stat_show(struct seq_file *seq, 3522 struct cgroup *cgrp, int ssid) 3523 { 3524 struct cgroup_subsys *ss = cgroup_subsys[ssid]; 3525 struct cgroup_subsys_state *css; 3526 int ret; 3527 3528 if (!ss->css_extra_stat_show) 3529 return 0; 3530 3531 css = cgroup_tryget_css(cgrp, ss); 3532 if (!css) 3533 return 0; 3534 3535 ret = ss->css_extra_stat_show(seq, css); 3536 css_put(css); 3537 return ret; 3538 } 3539 3540 static int cpu_stat_show(struct seq_file *seq, void *v) 3541 { 3542 struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup; 3543 int ret = 0; 3544 3545 cgroup_base_stat_cputime_show(seq); 3546 #ifdef CONFIG_CGROUP_SCHED 3547 ret = cgroup_extra_stat_show(seq, cgrp, cpu_cgrp_id); 3548 #endif 3549 return ret; 3550 } 3551 3552 #ifdef CONFIG_PSI 3553 static int cgroup_io_pressure_show(struct seq_file *seq, void *v) 3554 { 3555 struct cgroup *cgrp = seq_css(seq)->cgroup; 3556 struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi; 3557 3558 return psi_show(seq, psi, PSI_IO); 3559 } 3560 static int cgroup_memory_pressure_show(struct seq_file *seq, void *v) 3561 { 3562 struct cgroup *cgrp = seq_css(seq)->cgroup; 3563 struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi; 3564 3565 return psi_show(seq, psi, PSI_MEM); 3566 } 3567 static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v) 3568 { 3569 struct cgroup *cgrp = seq_css(seq)->cgroup; 3570 struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi; 3571 3572 return psi_show(seq, psi, PSI_CPU); 3573 } 3574 3575 static ssize_t cgroup_pressure_write(struct kernfs_open_file *of, char *buf, 3576 size_t nbytes, enum psi_res res) 3577 { 3578 struct psi_trigger *new; 3579 struct cgroup *cgrp; 3580 struct psi_group *psi; 3581 3582 cgrp = cgroup_kn_lock_live(of->kn, false); 3583 if (!cgrp) 3584 return -ENODEV; 3585 3586 cgroup_get(cgrp); 3587 cgroup_kn_unlock(of->kn); 3588 3589 psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi; 3590 new = psi_trigger_create(psi, buf, nbytes, res); 3591 if (IS_ERR(new)) { 3592 cgroup_put(cgrp); 3593 return PTR_ERR(new); 3594 } 3595 3596 psi_trigger_replace(&of->priv, new); 3597 3598 cgroup_put(cgrp); 3599 3600 return nbytes; 3601 } 3602 3603 static ssize_t cgroup_io_pressure_write(struct kernfs_open_file *of, 3604 char *buf, size_t nbytes, 3605 loff_t off) 3606 { 3607 return cgroup_pressure_write(of, buf, nbytes, PSI_IO); 3608 } 3609 3610 static ssize_t cgroup_memory_pressure_write(struct kernfs_open_file *of, 3611 char *buf, size_t nbytes, 3612 loff_t off) 3613 { 3614 return cgroup_pressure_write(of, buf, nbytes, PSI_MEM); 3615 } 3616 3617 static ssize_t cgroup_cpu_pressure_write(struct kernfs_open_file *of, 3618 char *buf, size_t nbytes, 3619 loff_t off) 3620 { 3621 return cgroup_pressure_write(of, buf, nbytes, PSI_CPU); 3622 } 3623 3624 static __poll_t cgroup_pressure_poll(struct kernfs_open_file *of, 3625 poll_table *pt) 3626 { 3627 return psi_trigger_poll(&of->priv, of->file, pt); 3628 } 3629 3630 static void cgroup_pressure_release(struct kernfs_open_file *of) 3631 { 3632 psi_trigger_replace(&of->priv, NULL); 3633 } 3634 #endif /* CONFIG_PSI */ 3635 3636 static int cgroup_freeze_show(struct seq_file *seq, void *v) 3637 { 3638 struct cgroup *cgrp = seq_css(seq)->cgroup; 3639 3640 seq_printf(seq, "%d\n", cgrp->freezer.freeze); 3641 3642 return 0; 3643 } 3644 3645 static ssize_t cgroup_freeze_write(struct kernfs_open_file *of, 3646 char *buf, size_t nbytes, loff_t off) 3647 { 3648 struct cgroup *cgrp; 3649 ssize_t ret; 3650 int freeze; 3651 3652 ret = kstrtoint(strstrip(buf), 0, &freeze); 3653 if (ret) 3654 return ret; 3655 3656 if (freeze < 0 || freeze > 1) 3657 return -ERANGE; 3658 3659 cgrp = cgroup_kn_lock_live(of->kn, false); 3660 if (!cgrp) 3661 return -ENOENT; 3662 3663 cgroup_freeze(cgrp, freeze); 3664 3665 cgroup_kn_unlock(of->kn); 3666 3667 return nbytes; 3668 } 3669 3670 static int cgroup_file_open(struct kernfs_open_file *of) 3671 { 3672 struct cftype *cft = of_cft(of); 3673 3674 if (cft->open) 3675 return cft->open(of); 3676 return 0; 3677 } 3678 3679 static void cgroup_file_release(struct kernfs_open_file *of) 3680 { 3681 struct cftype *cft = of_cft(of); 3682 3683 if (cft->release) 3684 cft->release(of); 3685 } 3686 3687 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf, 3688 size_t nbytes, loff_t off) 3689 { 3690 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns; 3691 struct cgroup *cgrp = of->kn->parent->priv; 3692 struct cftype *cft = of_cft(of); 3693 struct cgroup_subsys_state *css; 3694 int ret; 3695 3696 if (!nbytes) 3697 return 0; 3698 3699 /* 3700 * If namespaces are delegation boundaries, disallow writes to 3701 * files in an non-init namespace root from inside the namespace 3702 * except for the files explicitly marked delegatable - 3703 * cgroup.procs and cgroup.subtree_control. 3704 */ 3705 if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) && 3706 !(cft->flags & CFTYPE_NS_DELEGATABLE) && 3707 ns != &init_cgroup_ns && ns->root_cset->dfl_cgrp == cgrp) 3708 return -EPERM; 3709 3710 if (cft->write) 3711 return cft->write(of, buf, nbytes, off); 3712 3713 /* 3714 * kernfs guarantees that a file isn't deleted with operations in 3715 * flight, which means that the matching css is and stays alive and 3716 * doesn't need to be pinned. The RCU locking is not necessary 3717 * either. It's just for the convenience of using cgroup_css(). 3718 */ 3719 rcu_read_lock(); 3720 css = cgroup_css(cgrp, cft->ss); 3721 rcu_read_unlock(); 3722 3723 if (cft->write_u64) { 3724 unsigned long long v; 3725 ret = kstrtoull(buf, 0, &v); 3726 if (!ret) 3727 ret = cft->write_u64(css, cft, v); 3728 } else if (cft->write_s64) { 3729 long long v; 3730 ret = kstrtoll(buf, 0, &v); 3731 if (!ret) 3732 ret = cft->write_s64(css, cft, v); 3733 } else { 3734 ret = -EINVAL; 3735 } 3736 3737 return ret ?: nbytes; 3738 } 3739 3740 static __poll_t cgroup_file_poll(struct kernfs_open_file *of, poll_table *pt) 3741 { 3742 struct cftype *cft = of_cft(of); 3743 3744 if (cft->poll) 3745 return cft->poll(of, pt); 3746 3747 return kernfs_generic_poll(of, pt); 3748 } 3749 3750 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos) 3751 { 3752 return seq_cft(seq)->seq_start(seq, ppos); 3753 } 3754 3755 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos) 3756 { 3757 return seq_cft(seq)->seq_next(seq, v, ppos); 3758 } 3759 3760 static void cgroup_seqfile_stop(struct seq_file *seq, void *v) 3761 { 3762 if (seq_cft(seq)->seq_stop) 3763 seq_cft(seq)->seq_stop(seq, v); 3764 } 3765 3766 static int cgroup_seqfile_show(struct seq_file *m, void *arg) 3767 { 3768 struct cftype *cft = seq_cft(m); 3769 struct cgroup_subsys_state *css = seq_css(m); 3770 3771 if (cft->seq_show) 3772 return cft->seq_show(m, arg); 3773 3774 if (cft->read_u64) 3775 seq_printf(m, "%llu\n", cft->read_u64(css, cft)); 3776 else if (cft->read_s64) 3777 seq_printf(m, "%lld\n", cft->read_s64(css, cft)); 3778 else 3779 return -EINVAL; 3780 return 0; 3781 } 3782 3783 static struct kernfs_ops cgroup_kf_single_ops = { 3784 .atomic_write_len = PAGE_SIZE, 3785 .open = cgroup_file_open, 3786 .release = cgroup_file_release, 3787 .write = cgroup_file_write, 3788 .poll = cgroup_file_poll, 3789 .seq_show = cgroup_seqfile_show, 3790 }; 3791 3792 static struct kernfs_ops cgroup_kf_ops = { 3793 .atomic_write_len = PAGE_SIZE, 3794 .open = cgroup_file_open, 3795 .release = cgroup_file_release, 3796 .write = cgroup_file_write, 3797 .poll = cgroup_file_poll, 3798 .seq_start = cgroup_seqfile_start, 3799 .seq_next = cgroup_seqfile_next, 3800 .seq_stop = cgroup_seqfile_stop, 3801 .seq_show = cgroup_seqfile_show, 3802 }; 3803 3804 /* set uid and gid of cgroup dirs and files to that of the creator */ 3805 static int cgroup_kn_set_ugid(struct kernfs_node *kn) 3806 { 3807 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID, 3808 .ia_uid = current_fsuid(), 3809 .ia_gid = current_fsgid(), }; 3810 3811 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) && 3812 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID)) 3813 return 0; 3814 3815 return kernfs_setattr(kn, &iattr); 3816 } 3817 3818 static void cgroup_file_notify_timer(struct timer_list *timer) 3819 { 3820 cgroup_file_notify(container_of(timer, struct cgroup_file, 3821 notify_timer)); 3822 } 3823 3824 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp, 3825 struct cftype *cft) 3826 { 3827 char name[CGROUP_FILE_NAME_MAX]; 3828 struct kernfs_node *kn; 3829 struct lock_class_key *key = NULL; 3830 int ret; 3831 3832 #ifdef CONFIG_DEBUG_LOCK_ALLOC 3833 key = &cft->lockdep_key; 3834 #endif 3835 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name), 3836 cgroup_file_mode(cft), 3837 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 3838 0, cft->kf_ops, cft, 3839 NULL, key); 3840 if (IS_ERR(kn)) 3841 return PTR_ERR(kn); 3842 3843 ret = cgroup_kn_set_ugid(kn); 3844 if (ret) { 3845 kernfs_remove(kn); 3846 return ret; 3847 } 3848 3849 if (cft->file_offset) { 3850 struct cgroup_file *cfile = (void *)css + cft->file_offset; 3851 3852 timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0); 3853 3854 spin_lock_irq(&cgroup_file_kn_lock); 3855 cfile->kn = kn; 3856 spin_unlock_irq(&cgroup_file_kn_lock); 3857 } 3858 3859 return 0; 3860 } 3861 3862 /** 3863 * cgroup_addrm_files - add or remove files to a cgroup directory 3864 * @css: the target css 3865 * @cgrp: the target cgroup (usually css->cgroup) 3866 * @cfts: array of cftypes to be added 3867 * @is_add: whether to add or remove 3868 * 3869 * Depending on @is_add, add or remove files defined by @cfts on @cgrp. 3870 * For removals, this function never fails. 3871 */ 3872 static int cgroup_addrm_files(struct cgroup_subsys_state *css, 3873 struct cgroup *cgrp, struct cftype cfts[], 3874 bool is_add) 3875 { 3876 struct cftype *cft, *cft_end = NULL; 3877 int ret = 0; 3878 3879 lockdep_assert_held(&cgroup_mutex); 3880 3881 restart: 3882 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) { 3883 /* does cft->flags tell us to skip this file on @cgrp? */ 3884 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp)) 3885 continue; 3886 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp)) 3887 continue; 3888 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp)) 3889 continue; 3890 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp)) 3891 continue; 3892 if ((cft->flags & CFTYPE_DEBUG) && !cgroup_debug) 3893 continue; 3894 if (is_add) { 3895 ret = cgroup_add_file(css, cgrp, cft); 3896 if (ret) { 3897 pr_warn("%s: failed to add %s, err=%d\n", 3898 __func__, cft->name, ret); 3899 cft_end = cft; 3900 is_add = false; 3901 goto restart; 3902 } 3903 } else { 3904 cgroup_rm_file(cgrp, cft); 3905 } 3906 } 3907 return ret; 3908 } 3909 3910 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add) 3911 { 3912 struct cgroup_subsys *ss = cfts[0].ss; 3913 struct cgroup *root = &ss->root->cgrp; 3914 struct cgroup_subsys_state *css; 3915 int ret = 0; 3916 3917 lockdep_assert_held(&cgroup_mutex); 3918 3919 /* add/rm files for all cgroups created before */ 3920 css_for_each_descendant_pre(css, cgroup_css(root, ss)) { 3921 struct cgroup *cgrp = css->cgroup; 3922 3923 if (!(css->flags & CSS_VISIBLE)) 3924 continue; 3925 3926 ret = cgroup_addrm_files(css, cgrp, cfts, is_add); 3927 if (ret) 3928 break; 3929 } 3930 3931 if (is_add && !ret) 3932 kernfs_activate(root->kn); 3933 return ret; 3934 } 3935 3936 static void cgroup_exit_cftypes(struct cftype *cfts) 3937 { 3938 struct cftype *cft; 3939 3940 for (cft = cfts; cft->name[0] != '\0'; cft++) { 3941 /* free copy for custom atomic_write_len, see init_cftypes() */ 3942 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) 3943 kfree(cft->kf_ops); 3944 cft->kf_ops = NULL; 3945 cft->ss = NULL; 3946 3947 /* revert flags set by cgroup core while adding @cfts */ 3948 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL); 3949 } 3950 } 3951 3952 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 3953 { 3954 struct cftype *cft; 3955 3956 for (cft = cfts; cft->name[0] != '\0'; cft++) { 3957 struct kernfs_ops *kf_ops; 3958 3959 WARN_ON(cft->ss || cft->kf_ops); 3960 3961 if (cft->seq_start) 3962 kf_ops = &cgroup_kf_ops; 3963 else 3964 kf_ops = &cgroup_kf_single_ops; 3965 3966 /* 3967 * Ugh... if @cft wants a custom max_write_len, we need to 3968 * make a copy of kf_ops to set its atomic_write_len. 3969 */ 3970 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) { 3971 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL); 3972 if (!kf_ops) { 3973 cgroup_exit_cftypes(cfts); 3974 return -ENOMEM; 3975 } 3976 kf_ops->atomic_write_len = cft->max_write_len; 3977 } 3978 3979 cft->kf_ops = kf_ops; 3980 cft->ss = ss; 3981 } 3982 3983 return 0; 3984 } 3985 3986 static int cgroup_rm_cftypes_locked(struct cftype *cfts) 3987 { 3988 lockdep_assert_held(&cgroup_mutex); 3989 3990 if (!cfts || !cfts[0].ss) 3991 return -ENOENT; 3992 3993 list_del(&cfts->node); 3994 cgroup_apply_cftypes(cfts, false); 3995 cgroup_exit_cftypes(cfts); 3996 return 0; 3997 } 3998 3999 /** 4000 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem 4001 * @cfts: zero-length name terminated array of cftypes 4002 * 4003 * Unregister @cfts. Files described by @cfts are removed from all 4004 * existing cgroups and all future cgroups won't have them either. This 4005 * function can be called anytime whether @cfts' subsys is attached or not. 4006 * 4007 * Returns 0 on successful unregistration, -ENOENT if @cfts is not 4008 * registered. 4009 */ 4010 int cgroup_rm_cftypes(struct cftype *cfts) 4011 { 4012 int ret; 4013 4014 mutex_lock(&cgroup_mutex); 4015 ret = cgroup_rm_cftypes_locked(cfts); 4016 mutex_unlock(&cgroup_mutex); 4017 return ret; 4018 } 4019 4020 /** 4021 * cgroup_add_cftypes - add an array of cftypes to a subsystem 4022 * @ss: target cgroup subsystem 4023 * @cfts: zero-length name terminated array of cftypes 4024 * 4025 * Register @cfts to @ss. Files described by @cfts are created for all 4026 * existing cgroups to which @ss is attached and all future cgroups will 4027 * have them too. This function can be called anytime whether @ss is 4028 * attached or not. 4029 * 4030 * Returns 0 on successful registration, -errno on failure. Note that this 4031 * function currently returns 0 as long as @cfts registration is successful 4032 * even if some file creation attempts on existing cgroups fail. 4033 */ 4034 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4035 { 4036 int ret; 4037 4038 if (!cgroup_ssid_enabled(ss->id)) 4039 return 0; 4040 4041 if (!cfts || cfts[0].name[0] == '\0') 4042 return 0; 4043 4044 ret = cgroup_init_cftypes(ss, cfts); 4045 if (ret) 4046 return ret; 4047 4048 mutex_lock(&cgroup_mutex); 4049 4050 list_add_tail(&cfts->node, &ss->cfts); 4051 ret = cgroup_apply_cftypes(cfts, true); 4052 if (ret) 4053 cgroup_rm_cftypes_locked(cfts); 4054 4055 mutex_unlock(&cgroup_mutex); 4056 return ret; 4057 } 4058 4059 /** 4060 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy 4061 * @ss: target cgroup subsystem 4062 * @cfts: zero-length name terminated array of cftypes 4063 * 4064 * Similar to cgroup_add_cftypes() but the added files are only used for 4065 * the default hierarchy. 4066 */ 4067 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4068 { 4069 struct cftype *cft; 4070 4071 for (cft = cfts; cft && cft->name[0] != '\0'; cft++) 4072 cft->flags |= __CFTYPE_ONLY_ON_DFL; 4073 return cgroup_add_cftypes(ss, cfts); 4074 } 4075 4076 /** 4077 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies 4078 * @ss: target cgroup subsystem 4079 * @cfts: zero-length name terminated array of cftypes 4080 * 4081 * Similar to cgroup_add_cftypes() but the added files are only used for 4082 * the legacy hierarchies. 4083 */ 4084 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4085 { 4086 struct cftype *cft; 4087 4088 for (cft = cfts; cft && cft->name[0] != '\0'; cft++) 4089 cft->flags |= __CFTYPE_NOT_ON_DFL; 4090 return cgroup_add_cftypes(ss, cfts); 4091 } 4092 4093 /** 4094 * cgroup_file_notify - generate a file modified event for a cgroup_file 4095 * @cfile: target cgroup_file 4096 * 4097 * @cfile must have been obtained by setting cftype->file_offset. 4098 */ 4099 void cgroup_file_notify(struct cgroup_file *cfile) 4100 { 4101 unsigned long flags; 4102 4103 spin_lock_irqsave(&cgroup_file_kn_lock, flags); 4104 if (cfile->kn) { 4105 unsigned long last = cfile->notified_at; 4106 unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV; 4107 4108 if (time_in_range(jiffies, last, next)) { 4109 timer_reduce(&cfile->notify_timer, next); 4110 } else { 4111 kernfs_notify(cfile->kn); 4112 cfile->notified_at = jiffies; 4113 } 4114 } 4115 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags); 4116 } 4117 4118 /** 4119 * css_next_child - find the next child of a given css 4120 * @pos: the current position (%NULL to initiate traversal) 4121 * @parent: css whose children to walk 4122 * 4123 * This function returns the next child of @parent and should be called 4124 * under either cgroup_mutex or RCU read lock. The only requirement is 4125 * that @parent and @pos are accessible. The next sibling is guaranteed to 4126 * be returned regardless of their states. 4127 * 4128 * If a subsystem synchronizes ->css_online() and the start of iteration, a 4129 * css which finished ->css_online() is guaranteed to be visible in the 4130 * future iterations and will stay visible until the last reference is put. 4131 * A css which hasn't finished ->css_online() or already finished 4132 * ->css_offline() may show up during traversal. It's each subsystem's 4133 * responsibility to synchronize against on/offlining. 4134 */ 4135 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos, 4136 struct cgroup_subsys_state *parent) 4137 { 4138 struct cgroup_subsys_state *next; 4139 4140 cgroup_assert_mutex_or_rcu_locked(); 4141 4142 /* 4143 * @pos could already have been unlinked from the sibling list. 4144 * Once a cgroup is removed, its ->sibling.next is no longer 4145 * updated when its next sibling changes. CSS_RELEASED is set when 4146 * @pos is taken off list, at which time its next pointer is valid, 4147 * and, as releases are serialized, the one pointed to by the next 4148 * pointer is guaranteed to not have started release yet. This 4149 * implies that if we observe !CSS_RELEASED on @pos in this RCU 4150 * critical section, the one pointed to by its next pointer is 4151 * guaranteed to not have finished its RCU grace period even if we 4152 * have dropped rcu_read_lock() in-between iterations. 4153 * 4154 * If @pos has CSS_RELEASED set, its next pointer can't be 4155 * dereferenced; however, as each css is given a monotonically 4156 * increasing unique serial number and always appended to the 4157 * sibling list, the next one can be found by walking the parent's 4158 * children until the first css with higher serial number than 4159 * @pos's. While this path can be slower, it happens iff iteration 4160 * races against release and the race window is very small. 4161 */ 4162 if (!pos) { 4163 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling); 4164 } else if (likely(!(pos->flags & CSS_RELEASED))) { 4165 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling); 4166 } else { 4167 list_for_each_entry_rcu(next, &parent->children, sibling, 4168 lockdep_is_held(&cgroup_mutex)) 4169 if (next->serial_nr > pos->serial_nr) 4170 break; 4171 } 4172 4173 /* 4174 * @next, if not pointing to the head, can be dereferenced and is 4175 * the next sibling. 4176 */ 4177 if (&next->sibling != &parent->children) 4178 return next; 4179 return NULL; 4180 } 4181 4182 /** 4183 * css_next_descendant_pre - find the next descendant for pre-order walk 4184 * @pos: the current position (%NULL to initiate traversal) 4185 * @root: css whose descendants to walk 4186 * 4187 * To be used by css_for_each_descendant_pre(). Find the next descendant 4188 * to visit for pre-order traversal of @root's descendants. @root is 4189 * included in the iteration and the first node to be visited. 4190 * 4191 * While this function requires cgroup_mutex or RCU read locking, it 4192 * doesn't require the whole traversal to be contained in a single critical 4193 * section. This function will return the correct next descendant as long 4194 * as both @pos and @root are accessible and @pos is a descendant of @root. 4195 * 4196 * If a subsystem synchronizes ->css_online() and the start of iteration, a 4197 * css which finished ->css_online() is guaranteed to be visible in the 4198 * future iterations and will stay visible until the last reference is put. 4199 * A css which hasn't finished ->css_online() or already finished 4200 * ->css_offline() may show up during traversal. It's each subsystem's 4201 * responsibility to synchronize against on/offlining. 4202 */ 4203 struct cgroup_subsys_state * 4204 css_next_descendant_pre(struct cgroup_subsys_state *pos, 4205 struct cgroup_subsys_state *root) 4206 { 4207 struct cgroup_subsys_state *next; 4208 4209 cgroup_assert_mutex_or_rcu_locked(); 4210 4211 /* if first iteration, visit @root */ 4212 if (!pos) 4213 return root; 4214 4215 /* visit the first child if exists */ 4216 next = css_next_child(NULL, pos); 4217 if (next) 4218 return next; 4219 4220 /* no child, visit my or the closest ancestor's next sibling */ 4221 while (pos != root) { 4222 next = css_next_child(pos, pos->parent); 4223 if (next) 4224 return next; 4225 pos = pos->parent; 4226 } 4227 4228 return NULL; 4229 } 4230 EXPORT_SYMBOL_GPL(css_next_descendant_pre); 4231 4232 /** 4233 * css_rightmost_descendant - return the rightmost descendant of a css 4234 * @pos: css of interest 4235 * 4236 * Return the rightmost descendant of @pos. If there's no descendant, @pos 4237 * is returned. This can be used during pre-order traversal to skip 4238 * subtree of @pos. 4239 * 4240 * While this function requires cgroup_mutex or RCU read locking, it 4241 * doesn't require the whole traversal to be contained in a single critical 4242 * section. This function will return the correct rightmost descendant as 4243 * long as @pos is accessible. 4244 */ 4245 struct cgroup_subsys_state * 4246 css_rightmost_descendant(struct cgroup_subsys_state *pos) 4247 { 4248 struct cgroup_subsys_state *last, *tmp; 4249 4250 cgroup_assert_mutex_or_rcu_locked(); 4251 4252 do { 4253 last = pos; 4254 /* ->prev isn't RCU safe, walk ->next till the end */ 4255 pos = NULL; 4256 css_for_each_child(tmp, last) 4257 pos = tmp; 4258 } while (pos); 4259 4260 return last; 4261 } 4262 4263 static struct cgroup_subsys_state * 4264 css_leftmost_descendant(struct cgroup_subsys_state *pos) 4265 { 4266 struct cgroup_subsys_state *last; 4267 4268 do { 4269 last = pos; 4270 pos = css_next_child(NULL, pos); 4271 } while (pos); 4272 4273 return last; 4274 } 4275 4276 /** 4277 * css_next_descendant_post - find the next descendant for post-order walk 4278 * @pos: the current position (%NULL to initiate traversal) 4279 * @root: css whose descendants to walk 4280 * 4281 * To be used by css_for_each_descendant_post(). Find the next descendant 4282 * to visit for post-order traversal of @root's descendants. @root is 4283 * included in the iteration and the last node to be visited. 4284 * 4285 * While this function requires cgroup_mutex or RCU read locking, it 4286 * doesn't require the whole traversal to be contained in a single critical 4287 * section. This function will return the correct next descendant as long 4288 * as both @pos and @cgroup are accessible and @pos is a descendant of 4289 * @cgroup. 4290 * 4291 * If a subsystem synchronizes ->css_online() and the start of iteration, a 4292 * css which finished ->css_online() is guaranteed to be visible in the 4293 * future iterations and will stay visible until the last reference is put. 4294 * A css which hasn't finished ->css_online() or already finished 4295 * ->css_offline() may show up during traversal. It's each subsystem's 4296 * responsibility to synchronize against on/offlining. 4297 */ 4298 struct cgroup_subsys_state * 4299 css_next_descendant_post(struct cgroup_subsys_state *pos, 4300 struct cgroup_subsys_state *root) 4301 { 4302 struct cgroup_subsys_state *next; 4303 4304 cgroup_assert_mutex_or_rcu_locked(); 4305 4306 /* if first iteration, visit leftmost descendant which may be @root */ 4307 if (!pos) 4308 return css_leftmost_descendant(root); 4309 4310 /* if we visited @root, we're done */ 4311 if (pos == root) 4312 return NULL; 4313 4314 /* if there's an unvisited sibling, visit its leftmost descendant */ 4315 next = css_next_child(pos, pos->parent); 4316 if (next) 4317 return css_leftmost_descendant(next); 4318 4319 /* no sibling left, visit parent */ 4320 return pos->parent; 4321 } 4322 4323 /** 4324 * css_has_online_children - does a css have online children 4325 * @css: the target css 4326 * 4327 * Returns %true if @css has any online children; otherwise, %false. This 4328 * function can be called from any context but the caller is responsible 4329 * for synchronizing against on/offlining as necessary. 4330 */ 4331 bool css_has_online_children(struct cgroup_subsys_state *css) 4332 { 4333 struct cgroup_subsys_state *child; 4334 bool ret = false; 4335 4336 rcu_read_lock(); 4337 css_for_each_child(child, css) { 4338 if (child->flags & CSS_ONLINE) { 4339 ret = true; 4340 break; 4341 } 4342 } 4343 rcu_read_unlock(); 4344 return ret; 4345 } 4346 4347 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it) 4348 { 4349 struct list_head *l; 4350 struct cgrp_cset_link *link; 4351 struct css_set *cset; 4352 4353 lockdep_assert_held(&css_set_lock); 4354 4355 /* find the next threaded cset */ 4356 if (it->tcset_pos) { 4357 l = it->tcset_pos->next; 4358 4359 if (l != it->tcset_head) { 4360 it->tcset_pos = l; 4361 return container_of(l, struct css_set, 4362 threaded_csets_node); 4363 } 4364 4365 it->tcset_pos = NULL; 4366 } 4367 4368 /* find the next cset */ 4369 l = it->cset_pos; 4370 l = l->next; 4371 if (l == it->cset_head) { 4372 it->cset_pos = NULL; 4373 return NULL; 4374 } 4375 4376 if (it->ss) { 4377 cset = container_of(l, struct css_set, e_cset_node[it->ss->id]); 4378 } else { 4379 link = list_entry(l, struct cgrp_cset_link, cset_link); 4380 cset = link->cset; 4381 } 4382 4383 it->cset_pos = l; 4384 4385 /* initialize threaded css_set walking */ 4386 if (it->flags & CSS_TASK_ITER_THREADED) { 4387 if (it->cur_dcset) 4388 put_css_set_locked(it->cur_dcset); 4389 it->cur_dcset = cset; 4390 get_css_set(cset); 4391 4392 it->tcset_head = &cset->threaded_csets; 4393 it->tcset_pos = &cset->threaded_csets; 4394 } 4395 4396 return cset; 4397 } 4398 4399 /** 4400 * css_task_iter_advance_css_set - advance a task iterator to the next css_set 4401 * @it: the iterator to advance 4402 * 4403 * Advance @it to the next css_set to walk. 4404 */ 4405 static void css_task_iter_advance_css_set(struct css_task_iter *it) 4406 { 4407 struct css_set *cset; 4408 4409 lockdep_assert_held(&css_set_lock); 4410 4411 /* Advance to the next non-empty css_set and find first non-empty tasks list*/ 4412 while ((cset = css_task_iter_next_css_set(it))) { 4413 if (!list_empty(&cset->tasks)) { 4414 it->cur_tasks_head = &cset->tasks; 4415 break; 4416 } else if (!list_empty(&cset->mg_tasks)) { 4417 it->cur_tasks_head = &cset->mg_tasks; 4418 break; 4419 } else if (!list_empty(&cset->dying_tasks)) { 4420 it->cur_tasks_head = &cset->dying_tasks; 4421 break; 4422 } 4423 } 4424 if (!cset) { 4425 it->task_pos = NULL; 4426 return; 4427 } 4428 it->task_pos = it->cur_tasks_head->next; 4429 4430 /* 4431 * We don't keep css_sets locked across iteration steps and thus 4432 * need to take steps to ensure that iteration can be resumed after 4433 * the lock is re-acquired. Iteration is performed at two levels - 4434 * css_sets and tasks in them. 4435 * 4436 * Once created, a css_set never leaves its cgroup lists, so a 4437 * pinned css_set is guaranteed to stay put and we can resume 4438 * iteration afterwards. 4439 * 4440 * Tasks may leave @cset across iteration steps. This is resolved 4441 * by registering each iterator with the css_set currently being 4442 * walked and making css_set_move_task() advance iterators whose 4443 * next task is leaving. 4444 */ 4445 if (it->cur_cset) { 4446 list_del(&it->iters_node); 4447 put_css_set_locked(it->cur_cset); 4448 } 4449 get_css_set(cset); 4450 it->cur_cset = cset; 4451 list_add(&it->iters_node, &cset->task_iters); 4452 } 4453 4454 static void css_task_iter_skip(struct css_task_iter *it, 4455 struct task_struct *task) 4456 { 4457 lockdep_assert_held(&css_set_lock); 4458 4459 if (it->task_pos == &task->cg_list) { 4460 it->task_pos = it->task_pos->next; 4461 it->flags |= CSS_TASK_ITER_SKIPPED; 4462 } 4463 } 4464 4465 static void css_task_iter_advance(struct css_task_iter *it) 4466 { 4467 struct task_struct *task; 4468 4469 lockdep_assert_held(&css_set_lock); 4470 repeat: 4471 if (it->task_pos) { 4472 /* 4473 * Advance iterator to find next entry. We go through cset 4474 * tasks, mg_tasks and dying_tasks, when consumed we move onto 4475 * the next cset. 4476 */ 4477 if (it->flags & CSS_TASK_ITER_SKIPPED) 4478 it->flags &= ~CSS_TASK_ITER_SKIPPED; 4479 else 4480 it->task_pos = it->task_pos->next; 4481 4482 if (it->task_pos == &it->cur_cset->tasks) { 4483 it->cur_tasks_head = &it->cur_cset->mg_tasks; 4484 it->task_pos = it->cur_tasks_head->next; 4485 } 4486 if (it->task_pos == &it->cur_cset->mg_tasks) { 4487 it->cur_tasks_head = &it->cur_cset->dying_tasks; 4488 it->task_pos = it->cur_tasks_head->next; 4489 } 4490 if (it->task_pos == &it->cur_cset->dying_tasks) 4491 css_task_iter_advance_css_set(it); 4492 } else { 4493 /* called from start, proceed to the first cset */ 4494 css_task_iter_advance_css_set(it); 4495 } 4496 4497 if (!it->task_pos) 4498 return; 4499 4500 task = list_entry(it->task_pos, struct task_struct, cg_list); 4501 4502 if (it->flags & CSS_TASK_ITER_PROCS) { 4503 /* if PROCS, skip over tasks which aren't group leaders */ 4504 if (!thread_group_leader(task)) 4505 goto repeat; 4506 4507 /* and dying leaders w/o live member threads */ 4508 if (it->cur_tasks_head == &it->cur_cset->dying_tasks && 4509 !atomic_read(&task->signal->live)) 4510 goto repeat; 4511 } else { 4512 /* skip all dying ones */ 4513 if (it->cur_tasks_head == &it->cur_cset->dying_tasks) 4514 goto repeat; 4515 } 4516 } 4517 4518 /** 4519 * css_task_iter_start - initiate task iteration 4520 * @css: the css to walk tasks of 4521 * @flags: CSS_TASK_ITER_* flags 4522 * @it: the task iterator to use 4523 * 4524 * Initiate iteration through the tasks of @css. The caller can call 4525 * css_task_iter_next() to walk through the tasks until the function 4526 * returns NULL. On completion of iteration, css_task_iter_end() must be 4527 * called. 4528 */ 4529 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags, 4530 struct css_task_iter *it) 4531 { 4532 memset(it, 0, sizeof(*it)); 4533 4534 spin_lock_irq(&css_set_lock); 4535 4536 it->ss = css->ss; 4537 it->flags = flags; 4538 4539 if (it->ss) 4540 it->cset_pos = &css->cgroup->e_csets[css->ss->id]; 4541 else 4542 it->cset_pos = &css->cgroup->cset_links; 4543 4544 it->cset_head = it->cset_pos; 4545 4546 css_task_iter_advance(it); 4547 4548 spin_unlock_irq(&css_set_lock); 4549 } 4550 4551 /** 4552 * css_task_iter_next - return the next task for the iterator 4553 * @it: the task iterator being iterated 4554 * 4555 * The "next" function for task iteration. @it should have been 4556 * initialized via css_task_iter_start(). Returns NULL when the iteration 4557 * reaches the end. 4558 */ 4559 struct task_struct *css_task_iter_next(struct css_task_iter *it) 4560 { 4561 if (it->cur_task) { 4562 put_task_struct(it->cur_task); 4563 it->cur_task = NULL; 4564 } 4565 4566 spin_lock_irq(&css_set_lock); 4567 4568 /* @it may be half-advanced by skips, finish advancing */ 4569 if (it->flags & CSS_TASK_ITER_SKIPPED) 4570 css_task_iter_advance(it); 4571 4572 if (it->task_pos) { 4573 it->cur_task = list_entry(it->task_pos, struct task_struct, 4574 cg_list); 4575 get_task_struct(it->cur_task); 4576 css_task_iter_advance(it); 4577 } 4578 4579 spin_unlock_irq(&css_set_lock); 4580 4581 return it->cur_task; 4582 } 4583 4584 /** 4585 * css_task_iter_end - finish task iteration 4586 * @it: the task iterator to finish 4587 * 4588 * Finish task iteration started by css_task_iter_start(). 4589 */ 4590 void css_task_iter_end(struct css_task_iter *it) 4591 { 4592 if (it->cur_cset) { 4593 spin_lock_irq(&css_set_lock); 4594 list_del(&it->iters_node); 4595 put_css_set_locked(it->cur_cset); 4596 spin_unlock_irq(&css_set_lock); 4597 } 4598 4599 if (it->cur_dcset) 4600 put_css_set(it->cur_dcset); 4601 4602 if (it->cur_task) 4603 put_task_struct(it->cur_task); 4604 } 4605 4606 static void cgroup_procs_release(struct kernfs_open_file *of) 4607 { 4608 if (of->priv) { 4609 css_task_iter_end(of->priv); 4610 kfree(of->priv); 4611 } 4612 } 4613 4614 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos) 4615 { 4616 struct kernfs_open_file *of = s->private; 4617 struct css_task_iter *it = of->priv; 4618 4619 if (pos) 4620 (*pos)++; 4621 4622 return css_task_iter_next(it); 4623 } 4624 4625 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos, 4626 unsigned int iter_flags) 4627 { 4628 struct kernfs_open_file *of = s->private; 4629 struct cgroup *cgrp = seq_css(s)->cgroup; 4630 struct css_task_iter *it = of->priv; 4631 4632 /* 4633 * When a seq_file is seeked, it's always traversed sequentially 4634 * from position 0, so we can simply keep iterating on !0 *pos. 4635 */ 4636 if (!it) { 4637 if (WARN_ON_ONCE((*pos))) 4638 return ERR_PTR(-EINVAL); 4639 4640 it = kzalloc(sizeof(*it), GFP_KERNEL); 4641 if (!it) 4642 return ERR_PTR(-ENOMEM); 4643 of->priv = it; 4644 css_task_iter_start(&cgrp->self, iter_flags, it); 4645 } else if (!(*pos)) { 4646 css_task_iter_end(it); 4647 css_task_iter_start(&cgrp->self, iter_flags, it); 4648 } else 4649 return it->cur_task; 4650 4651 return cgroup_procs_next(s, NULL, NULL); 4652 } 4653 4654 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos) 4655 { 4656 struct cgroup *cgrp = seq_css(s)->cgroup; 4657 4658 /* 4659 * All processes of a threaded subtree belong to the domain cgroup 4660 * of the subtree. Only threads can be distributed across the 4661 * subtree. Reject reads on cgroup.procs in the subtree proper. 4662 * They're always empty anyway. 4663 */ 4664 if (cgroup_is_threaded(cgrp)) 4665 return ERR_PTR(-EOPNOTSUPP); 4666 4667 return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS | 4668 CSS_TASK_ITER_THREADED); 4669 } 4670 4671 static int cgroup_procs_show(struct seq_file *s, void *v) 4672 { 4673 seq_printf(s, "%d\n", task_pid_vnr(v)); 4674 return 0; 4675 } 4676 4677 static int cgroup_may_write(const struct cgroup *cgrp, struct super_block *sb) 4678 { 4679 int ret; 4680 struct inode *inode; 4681 4682 lockdep_assert_held(&cgroup_mutex); 4683 4684 inode = kernfs_get_inode(sb, cgrp->procs_file.kn); 4685 if (!inode) 4686 return -ENOMEM; 4687 4688 ret = inode_permission(&init_user_ns, inode, MAY_WRITE); 4689 iput(inode); 4690 return ret; 4691 } 4692 4693 static int cgroup_procs_write_permission(struct cgroup *src_cgrp, 4694 struct cgroup *dst_cgrp, 4695 struct super_block *sb) 4696 { 4697 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns; 4698 struct cgroup *com_cgrp = src_cgrp; 4699 int ret; 4700 4701 lockdep_assert_held(&cgroup_mutex); 4702 4703 /* find the common ancestor */ 4704 while (!cgroup_is_descendant(dst_cgrp, com_cgrp)) 4705 com_cgrp = cgroup_parent(com_cgrp); 4706 4707 /* %current should be authorized to migrate to the common ancestor */ 4708 ret = cgroup_may_write(com_cgrp, sb); 4709 if (ret) 4710 return ret; 4711 4712 /* 4713 * If namespaces are delegation boundaries, %current must be able 4714 * to see both source and destination cgroups from its namespace. 4715 */ 4716 if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) && 4717 (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) || 4718 !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp))) 4719 return -ENOENT; 4720 4721 return 0; 4722 } 4723 4724 static int cgroup_attach_permissions(struct cgroup *src_cgrp, 4725 struct cgroup *dst_cgrp, 4726 struct super_block *sb, bool threadgroup) 4727 { 4728 int ret = 0; 4729 4730 ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, sb); 4731 if (ret) 4732 return ret; 4733 4734 ret = cgroup_migrate_vet_dst(dst_cgrp); 4735 if (ret) 4736 return ret; 4737 4738 if (!threadgroup && (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp)) 4739 ret = -EOPNOTSUPP; 4740 4741 return ret; 4742 } 4743 4744 static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf, 4745 bool threadgroup) 4746 { 4747 struct cgroup *src_cgrp, *dst_cgrp; 4748 struct task_struct *task; 4749 ssize_t ret; 4750 bool locked; 4751 4752 dst_cgrp = cgroup_kn_lock_live(of->kn, false); 4753 if (!dst_cgrp) 4754 return -ENODEV; 4755 4756 task = cgroup_procs_write_start(buf, threadgroup, &locked); 4757 ret = PTR_ERR_OR_ZERO(task); 4758 if (ret) 4759 goto out_unlock; 4760 4761 /* find the source cgroup */ 4762 spin_lock_irq(&css_set_lock); 4763 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root); 4764 spin_unlock_irq(&css_set_lock); 4765 4766 /* process and thread migrations follow same delegation rule */ 4767 ret = cgroup_attach_permissions(src_cgrp, dst_cgrp, 4768 of->file->f_path.dentry->d_sb, threadgroup); 4769 if (ret) 4770 goto out_finish; 4771 4772 ret = cgroup_attach_task(dst_cgrp, task, threadgroup); 4773 4774 out_finish: 4775 cgroup_procs_write_finish(task, locked); 4776 out_unlock: 4777 cgroup_kn_unlock(of->kn); 4778 4779 return ret; 4780 } 4781 4782 static ssize_t cgroup_procs_write(struct kernfs_open_file *of, 4783 char *buf, size_t nbytes, loff_t off) 4784 { 4785 return __cgroup_procs_write(of, buf, true) ?: nbytes; 4786 } 4787 4788 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos) 4789 { 4790 return __cgroup_procs_start(s, pos, 0); 4791 } 4792 4793 static ssize_t cgroup_threads_write(struct kernfs_open_file *of, 4794 char *buf, size_t nbytes, loff_t off) 4795 { 4796 return __cgroup_procs_write(of, buf, false) ?: nbytes; 4797 } 4798 4799 /* cgroup core interface files for the default hierarchy */ 4800 static struct cftype cgroup_base_files[] = { 4801 { 4802 .name = "cgroup.type", 4803 .flags = CFTYPE_NOT_ON_ROOT, 4804 .seq_show = cgroup_type_show, 4805 .write = cgroup_type_write, 4806 }, 4807 { 4808 .name = "cgroup.procs", 4809 .flags = CFTYPE_NS_DELEGATABLE, 4810 .file_offset = offsetof(struct cgroup, procs_file), 4811 .release = cgroup_procs_release, 4812 .seq_start = cgroup_procs_start, 4813 .seq_next = cgroup_procs_next, 4814 .seq_show = cgroup_procs_show, 4815 .write = cgroup_procs_write, 4816 }, 4817 { 4818 .name = "cgroup.threads", 4819 .flags = CFTYPE_NS_DELEGATABLE, 4820 .release = cgroup_procs_release, 4821 .seq_start = cgroup_threads_start, 4822 .seq_next = cgroup_procs_next, 4823 .seq_show = cgroup_procs_show, 4824 .write = cgroup_threads_write, 4825 }, 4826 { 4827 .name = "cgroup.controllers", 4828 .seq_show = cgroup_controllers_show, 4829 }, 4830 { 4831 .name = "cgroup.subtree_control", 4832 .flags = CFTYPE_NS_DELEGATABLE, 4833 .seq_show = cgroup_subtree_control_show, 4834 .write = cgroup_subtree_control_write, 4835 }, 4836 { 4837 .name = "cgroup.events", 4838 .flags = CFTYPE_NOT_ON_ROOT, 4839 .file_offset = offsetof(struct cgroup, events_file), 4840 .seq_show = cgroup_events_show, 4841 }, 4842 { 4843 .name = "cgroup.max.descendants", 4844 .seq_show = cgroup_max_descendants_show, 4845 .write = cgroup_max_descendants_write, 4846 }, 4847 { 4848 .name = "cgroup.max.depth", 4849 .seq_show = cgroup_max_depth_show, 4850 .write = cgroup_max_depth_write, 4851 }, 4852 { 4853 .name = "cgroup.stat", 4854 .seq_show = cgroup_stat_show, 4855 }, 4856 { 4857 .name = "cgroup.freeze", 4858 .flags = CFTYPE_NOT_ON_ROOT, 4859 .seq_show = cgroup_freeze_show, 4860 .write = cgroup_freeze_write, 4861 }, 4862 { 4863 .name = "cpu.stat", 4864 .seq_show = cpu_stat_show, 4865 }, 4866 #ifdef CONFIG_PSI 4867 { 4868 .name = "io.pressure", 4869 .seq_show = cgroup_io_pressure_show, 4870 .write = cgroup_io_pressure_write, 4871 .poll = cgroup_pressure_poll, 4872 .release = cgroup_pressure_release, 4873 }, 4874 { 4875 .name = "memory.pressure", 4876 .seq_show = cgroup_memory_pressure_show, 4877 .write = cgroup_memory_pressure_write, 4878 .poll = cgroup_pressure_poll, 4879 .release = cgroup_pressure_release, 4880 }, 4881 { 4882 .name = "cpu.pressure", 4883 .seq_show = cgroup_cpu_pressure_show, 4884 .write = cgroup_cpu_pressure_write, 4885 .poll = cgroup_pressure_poll, 4886 .release = cgroup_pressure_release, 4887 }, 4888 #endif /* CONFIG_PSI */ 4889 { } /* terminate */ 4890 }; 4891 4892 /* 4893 * css destruction is four-stage process. 4894 * 4895 * 1. Destruction starts. Killing of the percpu_ref is initiated. 4896 * Implemented in kill_css(). 4897 * 4898 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs 4899 * and thus css_tryget_online() is guaranteed to fail, the css can be 4900 * offlined by invoking offline_css(). After offlining, the base ref is 4901 * put. Implemented in css_killed_work_fn(). 4902 * 4903 * 3. When the percpu_ref reaches zero, the only possible remaining 4904 * accessors are inside RCU read sections. css_release() schedules the 4905 * RCU callback. 4906 * 4907 * 4. After the grace period, the css can be freed. Implemented in 4908 * css_free_work_fn(). 4909 * 4910 * It is actually hairier because both step 2 and 4 require process context 4911 * and thus involve punting to css->destroy_work adding two additional 4912 * steps to the already complex sequence. 4913 */ 4914 static void css_free_rwork_fn(struct work_struct *work) 4915 { 4916 struct cgroup_subsys_state *css = container_of(to_rcu_work(work), 4917 struct cgroup_subsys_state, destroy_rwork); 4918 struct cgroup_subsys *ss = css->ss; 4919 struct cgroup *cgrp = css->cgroup; 4920 4921 percpu_ref_exit(&css->refcnt); 4922 4923 if (ss) { 4924 /* css free path */ 4925 struct cgroup_subsys_state *parent = css->parent; 4926 int id = css->id; 4927 4928 ss->css_free(css); 4929 cgroup_idr_remove(&ss->css_idr, id); 4930 cgroup_put(cgrp); 4931 4932 if (parent) 4933 css_put(parent); 4934 } else { 4935 /* cgroup free path */ 4936 atomic_dec(&cgrp->root->nr_cgrps); 4937 cgroup1_pidlist_destroy_all(cgrp); 4938 cancel_work_sync(&cgrp->release_agent_work); 4939 4940 if (cgroup_parent(cgrp)) { 4941 /* 4942 * We get a ref to the parent, and put the ref when 4943 * this cgroup is being freed, so it's guaranteed 4944 * that the parent won't be destroyed before its 4945 * children. 4946 */ 4947 cgroup_put(cgroup_parent(cgrp)); 4948 kernfs_put(cgrp->kn); 4949 psi_cgroup_free(cgrp); 4950 cgroup_rstat_exit(cgrp); 4951 kfree(cgrp); 4952 } else { 4953 /* 4954 * This is root cgroup's refcnt reaching zero, 4955 * which indicates that the root should be 4956 * released. 4957 */ 4958 cgroup_destroy_root(cgrp->root); 4959 } 4960 } 4961 } 4962 4963 static void css_release_work_fn(struct work_struct *work) 4964 { 4965 struct cgroup_subsys_state *css = 4966 container_of(work, struct cgroup_subsys_state, destroy_work); 4967 struct cgroup_subsys *ss = css->ss; 4968 struct cgroup *cgrp = css->cgroup; 4969 4970 mutex_lock(&cgroup_mutex); 4971 4972 css->flags |= CSS_RELEASED; 4973 list_del_rcu(&css->sibling); 4974 4975 if (ss) { 4976 /* css release path */ 4977 if (!list_empty(&css->rstat_css_node)) { 4978 cgroup_rstat_flush(cgrp); 4979 list_del_rcu(&css->rstat_css_node); 4980 } 4981 4982 cgroup_idr_replace(&ss->css_idr, NULL, css->id); 4983 if (ss->css_released) 4984 ss->css_released(css); 4985 } else { 4986 struct cgroup *tcgrp; 4987 4988 /* cgroup release path */ 4989 TRACE_CGROUP_PATH(release, cgrp); 4990 4991 cgroup_rstat_flush(cgrp); 4992 4993 spin_lock_irq(&css_set_lock); 4994 for (tcgrp = cgroup_parent(cgrp); tcgrp; 4995 tcgrp = cgroup_parent(tcgrp)) 4996 tcgrp->nr_dying_descendants--; 4997 spin_unlock_irq(&css_set_lock); 4998 4999 /* 5000 * There are two control paths which try to determine 5001 * cgroup from dentry without going through kernfs - 5002 * cgroupstats_build() and css_tryget_online_from_dir(). 5003 * Those are supported by RCU protecting clearing of 5004 * cgrp->kn->priv backpointer. 5005 */ 5006 if (cgrp->kn) 5007 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, 5008 NULL); 5009 } 5010 5011 mutex_unlock(&cgroup_mutex); 5012 5013 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn); 5014 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork); 5015 } 5016 5017 static void css_release(struct percpu_ref *ref) 5018 { 5019 struct cgroup_subsys_state *css = 5020 container_of(ref, struct cgroup_subsys_state, refcnt); 5021 5022 INIT_WORK(&css->destroy_work, css_release_work_fn); 5023 queue_work(cgroup_destroy_wq, &css->destroy_work); 5024 } 5025 5026 static void init_and_link_css(struct cgroup_subsys_state *css, 5027 struct cgroup_subsys *ss, struct cgroup *cgrp) 5028 { 5029 lockdep_assert_held(&cgroup_mutex); 5030 5031 cgroup_get_live(cgrp); 5032 5033 memset(css, 0, sizeof(*css)); 5034 css->cgroup = cgrp; 5035 css->ss = ss; 5036 css->id = -1; 5037 INIT_LIST_HEAD(&css->sibling); 5038 INIT_LIST_HEAD(&css->children); 5039 INIT_LIST_HEAD(&css->rstat_css_node); 5040 css->serial_nr = css_serial_nr_next++; 5041 atomic_set(&css->online_cnt, 0); 5042 5043 if (cgroup_parent(cgrp)) { 5044 css->parent = cgroup_css(cgroup_parent(cgrp), ss); 5045 css_get(css->parent); 5046 } 5047 5048 if (ss->css_rstat_flush) 5049 list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list); 5050 5051 BUG_ON(cgroup_css(cgrp, ss)); 5052 } 5053 5054 /* invoke ->css_online() on a new CSS and mark it online if successful */ 5055 static int online_css(struct cgroup_subsys_state *css) 5056 { 5057 struct cgroup_subsys *ss = css->ss; 5058 int ret = 0; 5059 5060 lockdep_assert_held(&cgroup_mutex); 5061 5062 if (ss->css_online) 5063 ret = ss->css_online(css); 5064 if (!ret) { 5065 css->flags |= CSS_ONLINE; 5066 rcu_assign_pointer(css->cgroup->subsys[ss->id], css); 5067 5068 atomic_inc(&css->online_cnt); 5069 if (css->parent) 5070 atomic_inc(&css->parent->online_cnt); 5071 } 5072 return ret; 5073 } 5074 5075 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */ 5076 static void offline_css(struct cgroup_subsys_state *css) 5077 { 5078 struct cgroup_subsys *ss = css->ss; 5079 5080 lockdep_assert_held(&cgroup_mutex); 5081 5082 if (!(css->flags & CSS_ONLINE)) 5083 return; 5084 5085 if (ss->css_offline) 5086 ss->css_offline(css); 5087 5088 css->flags &= ~CSS_ONLINE; 5089 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL); 5090 5091 wake_up_all(&css->cgroup->offline_waitq); 5092 } 5093 5094 /** 5095 * css_create - create a cgroup_subsys_state 5096 * @cgrp: the cgroup new css will be associated with 5097 * @ss: the subsys of new css 5098 * 5099 * Create a new css associated with @cgrp - @ss pair. On success, the new 5100 * css is online and installed in @cgrp. This function doesn't create the 5101 * interface files. Returns 0 on success, -errno on failure. 5102 */ 5103 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp, 5104 struct cgroup_subsys *ss) 5105 { 5106 struct cgroup *parent = cgroup_parent(cgrp); 5107 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss); 5108 struct cgroup_subsys_state *css; 5109 int err; 5110 5111 lockdep_assert_held(&cgroup_mutex); 5112 5113 css = ss->css_alloc(parent_css); 5114 if (!css) 5115 css = ERR_PTR(-ENOMEM); 5116 if (IS_ERR(css)) 5117 return css; 5118 5119 init_and_link_css(css, ss, cgrp); 5120 5121 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL); 5122 if (err) 5123 goto err_free_css; 5124 5125 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL); 5126 if (err < 0) 5127 goto err_free_css; 5128 css->id = err; 5129 5130 /* @css is ready to be brought online now, make it visible */ 5131 list_add_tail_rcu(&css->sibling, &parent_css->children); 5132 cgroup_idr_replace(&ss->css_idr, css, css->id); 5133 5134 err = online_css(css); 5135 if (err) 5136 goto err_list_del; 5137 5138 return css; 5139 5140 err_list_del: 5141 list_del_rcu(&css->sibling); 5142 err_free_css: 5143 list_del_rcu(&css->rstat_css_node); 5144 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn); 5145 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork); 5146 return ERR_PTR(err); 5147 } 5148 5149 /* 5150 * The returned cgroup is fully initialized including its control mask, but 5151 * it isn't associated with its kernfs_node and doesn't have the control 5152 * mask applied. 5153 */ 5154 static struct cgroup *cgroup_create(struct cgroup *parent, const char *name, 5155 umode_t mode) 5156 { 5157 struct cgroup_root *root = parent->root; 5158 struct cgroup *cgrp, *tcgrp; 5159 struct kernfs_node *kn; 5160 int level = parent->level + 1; 5161 int ret; 5162 5163 /* allocate the cgroup and its ID, 0 is reserved for the root */ 5164 cgrp = kzalloc(struct_size(cgrp, ancestor_ids, (level + 1)), 5165 GFP_KERNEL); 5166 if (!cgrp) 5167 return ERR_PTR(-ENOMEM); 5168 5169 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL); 5170 if (ret) 5171 goto out_free_cgrp; 5172 5173 ret = cgroup_rstat_init(cgrp); 5174 if (ret) 5175 goto out_cancel_ref; 5176 5177 /* create the directory */ 5178 kn = kernfs_create_dir(parent->kn, name, mode, cgrp); 5179 if (IS_ERR(kn)) { 5180 ret = PTR_ERR(kn); 5181 goto out_stat_exit; 5182 } 5183 cgrp->kn = kn; 5184 5185 init_cgroup_housekeeping(cgrp); 5186 5187 cgrp->self.parent = &parent->self; 5188 cgrp->root = root; 5189 cgrp->level = level; 5190 5191 ret = psi_cgroup_alloc(cgrp); 5192 if (ret) 5193 goto out_kernfs_remove; 5194 5195 ret = cgroup_bpf_inherit(cgrp); 5196 if (ret) 5197 goto out_psi_free; 5198 5199 /* 5200 * New cgroup inherits effective freeze counter, and 5201 * if the parent has to be frozen, the child has too. 5202 */ 5203 cgrp->freezer.e_freeze = parent->freezer.e_freeze; 5204 if (cgrp->freezer.e_freeze) { 5205 /* 5206 * Set the CGRP_FREEZE flag, so when a process will be 5207 * attached to the child cgroup, it will become frozen. 5208 * At this point the new cgroup is unpopulated, so we can 5209 * consider it frozen immediately. 5210 */ 5211 set_bit(CGRP_FREEZE, &cgrp->flags); 5212 set_bit(CGRP_FROZEN, &cgrp->flags); 5213 } 5214 5215 spin_lock_irq(&css_set_lock); 5216 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) { 5217 cgrp->ancestor_ids[tcgrp->level] = cgroup_id(tcgrp); 5218 5219 if (tcgrp != cgrp) { 5220 tcgrp->nr_descendants++; 5221 5222 /* 5223 * If the new cgroup is frozen, all ancestor cgroups 5224 * get a new frozen descendant, but their state can't 5225 * change because of this. 5226 */ 5227 if (cgrp->freezer.e_freeze) 5228 tcgrp->freezer.nr_frozen_descendants++; 5229 } 5230 } 5231 spin_unlock_irq(&css_set_lock); 5232 5233 if (notify_on_release(parent)) 5234 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags); 5235 5236 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags)) 5237 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags); 5238 5239 cgrp->self.serial_nr = css_serial_nr_next++; 5240 5241 /* allocation complete, commit to creation */ 5242 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children); 5243 atomic_inc(&root->nr_cgrps); 5244 cgroup_get_live(parent); 5245 5246 /* 5247 * On the default hierarchy, a child doesn't automatically inherit 5248 * subtree_control from the parent. Each is configured manually. 5249 */ 5250 if (!cgroup_on_dfl(cgrp)) 5251 cgrp->subtree_control = cgroup_control(cgrp); 5252 5253 cgroup_propagate_control(cgrp); 5254 5255 return cgrp; 5256 5257 out_psi_free: 5258 psi_cgroup_free(cgrp); 5259 out_kernfs_remove: 5260 kernfs_remove(cgrp->kn); 5261 out_stat_exit: 5262 cgroup_rstat_exit(cgrp); 5263 out_cancel_ref: 5264 percpu_ref_exit(&cgrp->self.refcnt); 5265 out_free_cgrp: 5266 kfree(cgrp); 5267 return ERR_PTR(ret); 5268 } 5269 5270 static bool cgroup_check_hierarchy_limits(struct cgroup *parent) 5271 { 5272 struct cgroup *cgroup; 5273 int ret = false; 5274 int level = 1; 5275 5276 lockdep_assert_held(&cgroup_mutex); 5277 5278 for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) { 5279 if (cgroup->nr_descendants >= cgroup->max_descendants) 5280 goto fail; 5281 5282 if (level > cgroup->max_depth) 5283 goto fail; 5284 5285 level++; 5286 } 5287 5288 ret = true; 5289 fail: 5290 return ret; 5291 } 5292 5293 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode) 5294 { 5295 struct cgroup *parent, *cgrp; 5296 int ret; 5297 5298 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */ 5299 if (strchr(name, '\n')) 5300 return -EINVAL; 5301 5302 parent = cgroup_kn_lock_live(parent_kn, false); 5303 if (!parent) 5304 return -ENODEV; 5305 5306 if (!cgroup_check_hierarchy_limits(parent)) { 5307 ret = -EAGAIN; 5308 goto out_unlock; 5309 } 5310 5311 cgrp = cgroup_create(parent, name, mode); 5312 if (IS_ERR(cgrp)) { 5313 ret = PTR_ERR(cgrp); 5314 goto out_unlock; 5315 } 5316 5317 /* 5318 * This extra ref will be put in cgroup_free_fn() and guarantees 5319 * that @cgrp->kn is always accessible. 5320 */ 5321 kernfs_get(cgrp->kn); 5322 5323 ret = cgroup_kn_set_ugid(cgrp->kn); 5324 if (ret) 5325 goto out_destroy; 5326 5327 ret = css_populate_dir(&cgrp->self); 5328 if (ret) 5329 goto out_destroy; 5330 5331 ret = cgroup_apply_control_enable(cgrp); 5332 if (ret) 5333 goto out_destroy; 5334 5335 TRACE_CGROUP_PATH(mkdir, cgrp); 5336 5337 /* let's create and online css's */ 5338 kernfs_activate(cgrp->kn); 5339 5340 ret = 0; 5341 goto out_unlock; 5342 5343 out_destroy: 5344 cgroup_destroy_locked(cgrp); 5345 out_unlock: 5346 cgroup_kn_unlock(parent_kn); 5347 return ret; 5348 } 5349 5350 /* 5351 * This is called when the refcnt of a css is confirmed to be killed. 5352 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to 5353 * initiate destruction and put the css ref from kill_css(). 5354 */ 5355 static void css_killed_work_fn(struct work_struct *work) 5356 { 5357 struct cgroup_subsys_state *css = 5358 container_of(work, struct cgroup_subsys_state, destroy_work); 5359 5360 mutex_lock(&cgroup_mutex); 5361 5362 do { 5363 offline_css(css); 5364 css_put(css); 5365 /* @css can't go away while we're holding cgroup_mutex */ 5366 css = css->parent; 5367 } while (css && atomic_dec_and_test(&css->online_cnt)); 5368 5369 mutex_unlock(&cgroup_mutex); 5370 } 5371 5372 /* css kill confirmation processing requires process context, bounce */ 5373 static void css_killed_ref_fn(struct percpu_ref *ref) 5374 { 5375 struct cgroup_subsys_state *css = 5376 container_of(ref, struct cgroup_subsys_state, refcnt); 5377 5378 if (atomic_dec_and_test(&css->online_cnt)) { 5379 INIT_WORK(&css->destroy_work, css_killed_work_fn); 5380 queue_work(cgroup_destroy_wq, &css->destroy_work); 5381 } 5382 } 5383 5384 /** 5385 * kill_css - destroy a css 5386 * @css: css to destroy 5387 * 5388 * This function initiates destruction of @css by removing cgroup interface 5389 * files and putting its base reference. ->css_offline() will be invoked 5390 * asynchronously once css_tryget_online() is guaranteed to fail and when 5391 * the reference count reaches zero, @css will be released. 5392 */ 5393 static void kill_css(struct cgroup_subsys_state *css) 5394 { 5395 lockdep_assert_held(&cgroup_mutex); 5396 5397 if (css->flags & CSS_DYING) 5398 return; 5399 5400 css->flags |= CSS_DYING; 5401 5402 /* 5403 * This must happen before css is disassociated with its cgroup. 5404 * See seq_css() for details. 5405 */ 5406 css_clear_dir(css); 5407 5408 /* 5409 * Killing would put the base ref, but we need to keep it alive 5410 * until after ->css_offline(). 5411 */ 5412 css_get(css); 5413 5414 /* 5415 * cgroup core guarantees that, by the time ->css_offline() is 5416 * invoked, no new css reference will be given out via 5417 * css_tryget_online(). We can't simply call percpu_ref_kill() and 5418 * proceed to offlining css's because percpu_ref_kill() doesn't 5419 * guarantee that the ref is seen as killed on all CPUs on return. 5420 * 5421 * Use percpu_ref_kill_and_confirm() to get notifications as each 5422 * css is confirmed to be seen as killed on all CPUs. 5423 */ 5424 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn); 5425 } 5426 5427 /** 5428 * cgroup_destroy_locked - the first stage of cgroup destruction 5429 * @cgrp: cgroup to be destroyed 5430 * 5431 * css's make use of percpu refcnts whose killing latency shouldn't be 5432 * exposed to userland and are RCU protected. Also, cgroup core needs to 5433 * guarantee that css_tryget_online() won't succeed by the time 5434 * ->css_offline() is invoked. To satisfy all the requirements, 5435 * destruction is implemented in the following two steps. 5436 * 5437 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all 5438 * userland visible parts and start killing the percpu refcnts of 5439 * css's. Set up so that the next stage will be kicked off once all 5440 * the percpu refcnts are confirmed to be killed. 5441 * 5442 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the 5443 * rest of destruction. Once all cgroup references are gone, the 5444 * cgroup is RCU-freed. 5445 * 5446 * This function implements s1. After this step, @cgrp is gone as far as 5447 * the userland is concerned and a new cgroup with the same name may be 5448 * created. As cgroup doesn't care about the names internally, this 5449 * doesn't cause any problem. 5450 */ 5451 static int cgroup_destroy_locked(struct cgroup *cgrp) 5452 __releases(&cgroup_mutex) __acquires(&cgroup_mutex) 5453 { 5454 struct cgroup *tcgrp, *parent = cgroup_parent(cgrp); 5455 struct cgroup_subsys_state *css; 5456 struct cgrp_cset_link *link; 5457 int ssid; 5458 5459 lockdep_assert_held(&cgroup_mutex); 5460 5461 /* 5462 * Only migration can raise populated from zero and we're already 5463 * holding cgroup_mutex. 5464 */ 5465 if (cgroup_is_populated(cgrp)) 5466 return -EBUSY; 5467 5468 /* 5469 * Make sure there's no live children. We can't test emptiness of 5470 * ->self.children as dead children linger on it while being 5471 * drained; otherwise, "rmdir parent/child parent" may fail. 5472 */ 5473 if (css_has_online_children(&cgrp->self)) 5474 return -EBUSY; 5475 5476 /* 5477 * Mark @cgrp and the associated csets dead. The former prevents 5478 * further task migration and child creation by disabling 5479 * cgroup_lock_live_group(). The latter makes the csets ignored by 5480 * the migration path. 5481 */ 5482 cgrp->self.flags &= ~CSS_ONLINE; 5483 5484 spin_lock_irq(&css_set_lock); 5485 list_for_each_entry(link, &cgrp->cset_links, cset_link) 5486 link->cset->dead = true; 5487 spin_unlock_irq(&css_set_lock); 5488 5489 /* initiate massacre of all css's */ 5490 for_each_css(css, ssid, cgrp) 5491 kill_css(css); 5492 5493 /* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */ 5494 css_clear_dir(&cgrp->self); 5495 kernfs_remove(cgrp->kn); 5496 5497 if (parent && cgroup_is_threaded(cgrp)) 5498 parent->nr_threaded_children--; 5499 5500 spin_lock_irq(&css_set_lock); 5501 for (tcgrp = cgroup_parent(cgrp); tcgrp; tcgrp = cgroup_parent(tcgrp)) { 5502 tcgrp->nr_descendants--; 5503 tcgrp->nr_dying_descendants++; 5504 /* 5505 * If the dying cgroup is frozen, decrease frozen descendants 5506 * counters of ancestor cgroups. 5507 */ 5508 if (test_bit(CGRP_FROZEN, &cgrp->flags)) 5509 tcgrp->freezer.nr_frozen_descendants--; 5510 } 5511 spin_unlock_irq(&css_set_lock); 5512 5513 cgroup1_check_for_release(parent); 5514 5515 cgroup_bpf_offline(cgrp); 5516 5517 /* put the base reference */ 5518 percpu_ref_kill(&cgrp->self.refcnt); 5519 5520 return 0; 5521 }; 5522 5523 int cgroup_rmdir(struct kernfs_node *kn) 5524 { 5525 struct cgroup *cgrp; 5526 int ret = 0; 5527 5528 cgrp = cgroup_kn_lock_live(kn, false); 5529 if (!cgrp) 5530 return 0; 5531 5532 ret = cgroup_destroy_locked(cgrp); 5533 if (!ret) 5534 TRACE_CGROUP_PATH(rmdir, cgrp); 5535 5536 cgroup_kn_unlock(kn); 5537 return ret; 5538 } 5539 5540 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = { 5541 .show_options = cgroup_show_options, 5542 .mkdir = cgroup_mkdir, 5543 .rmdir = cgroup_rmdir, 5544 .show_path = cgroup_show_path, 5545 }; 5546 5547 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early) 5548 { 5549 struct cgroup_subsys_state *css; 5550 5551 pr_debug("Initializing cgroup subsys %s\n", ss->name); 5552 5553 mutex_lock(&cgroup_mutex); 5554 5555 idr_init(&ss->css_idr); 5556 INIT_LIST_HEAD(&ss->cfts); 5557 5558 /* Create the root cgroup state for this subsystem */ 5559 ss->root = &cgrp_dfl_root; 5560 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss)); 5561 /* We don't handle early failures gracefully */ 5562 BUG_ON(IS_ERR(css)); 5563 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp); 5564 5565 /* 5566 * Root csses are never destroyed and we can't initialize 5567 * percpu_ref during early init. Disable refcnting. 5568 */ 5569 css->flags |= CSS_NO_REF; 5570 5571 if (early) { 5572 /* allocation can't be done safely during early init */ 5573 css->id = 1; 5574 } else { 5575 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL); 5576 BUG_ON(css->id < 0); 5577 } 5578 5579 /* Update the init_css_set to contain a subsys 5580 * pointer to this state - since the subsystem is 5581 * newly registered, all tasks and hence the 5582 * init_css_set is in the subsystem's root cgroup. */ 5583 init_css_set.subsys[ss->id] = css; 5584 5585 have_fork_callback |= (bool)ss->fork << ss->id; 5586 have_exit_callback |= (bool)ss->exit << ss->id; 5587 have_release_callback |= (bool)ss->release << ss->id; 5588 have_canfork_callback |= (bool)ss->can_fork << ss->id; 5589 5590 /* At system boot, before all subsystems have been 5591 * registered, no tasks have been forked, so we don't 5592 * need to invoke fork callbacks here. */ 5593 BUG_ON(!list_empty(&init_task.tasks)); 5594 5595 BUG_ON(online_css(css)); 5596 5597 mutex_unlock(&cgroup_mutex); 5598 } 5599 5600 /** 5601 * cgroup_init_early - cgroup initialization at system boot 5602 * 5603 * Initialize cgroups at system boot, and initialize any 5604 * subsystems that request early init. 5605 */ 5606 int __init cgroup_init_early(void) 5607 { 5608 static struct cgroup_fs_context __initdata ctx; 5609 struct cgroup_subsys *ss; 5610 int i; 5611 5612 ctx.root = &cgrp_dfl_root; 5613 init_cgroup_root(&ctx); 5614 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF; 5615 5616 RCU_INIT_POINTER(init_task.cgroups, &init_css_set); 5617 5618 for_each_subsys(ss, i) { 5619 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id, 5620 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n", 5621 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free, 5622 ss->id, ss->name); 5623 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN, 5624 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]); 5625 5626 ss->id = i; 5627 ss->name = cgroup_subsys_name[i]; 5628 if (!ss->legacy_name) 5629 ss->legacy_name = cgroup_subsys_name[i]; 5630 5631 if (ss->early_init) 5632 cgroup_init_subsys(ss, true); 5633 } 5634 return 0; 5635 } 5636 5637 /** 5638 * cgroup_init - cgroup initialization 5639 * 5640 * Register cgroup filesystem and /proc file, and initialize 5641 * any subsystems that didn't request early init. 5642 */ 5643 int __init cgroup_init(void) 5644 { 5645 struct cgroup_subsys *ss; 5646 int ssid; 5647 5648 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16); 5649 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files)); 5650 BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files)); 5651 5652 cgroup_rstat_boot(); 5653 5654 /* 5655 * The latency of the synchronize_rcu() is too high for cgroups, 5656 * avoid it at the cost of forcing all readers into the slow path. 5657 */ 5658 rcu_sync_enter_start(&cgroup_threadgroup_rwsem.rss); 5659 5660 get_user_ns(init_cgroup_ns.user_ns); 5661 5662 mutex_lock(&cgroup_mutex); 5663 5664 /* 5665 * Add init_css_set to the hash table so that dfl_root can link to 5666 * it during init. 5667 */ 5668 hash_add(css_set_table, &init_css_set.hlist, 5669 css_set_hash(init_css_set.subsys)); 5670 5671 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0)); 5672 5673 mutex_unlock(&cgroup_mutex); 5674 5675 for_each_subsys(ss, ssid) { 5676 if (ss->early_init) { 5677 struct cgroup_subsys_state *css = 5678 init_css_set.subsys[ss->id]; 5679 5680 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, 5681 GFP_KERNEL); 5682 BUG_ON(css->id < 0); 5683 } else { 5684 cgroup_init_subsys(ss, false); 5685 } 5686 5687 list_add_tail(&init_css_set.e_cset_node[ssid], 5688 &cgrp_dfl_root.cgrp.e_csets[ssid]); 5689 5690 /* 5691 * Setting dfl_root subsys_mask needs to consider the 5692 * disabled flag and cftype registration needs kmalloc, 5693 * both of which aren't available during early_init. 5694 */ 5695 if (!cgroup_ssid_enabled(ssid)) 5696 continue; 5697 5698 if (cgroup1_ssid_disabled(ssid)) 5699 printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n", 5700 ss->name); 5701 5702 cgrp_dfl_root.subsys_mask |= 1 << ss->id; 5703 5704 /* implicit controllers must be threaded too */ 5705 WARN_ON(ss->implicit_on_dfl && !ss->threaded); 5706 5707 if (ss->implicit_on_dfl) 5708 cgrp_dfl_implicit_ss_mask |= 1 << ss->id; 5709 else if (!ss->dfl_cftypes) 5710 cgrp_dfl_inhibit_ss_mask |= 1 << ss->id; 5711 5712 if (ss->threaded) 5713 cgrp_dfl_threaded_ss_mask |= 1 << ss->id; 5714 5715 if (ss->dfl_cftypes == ss->legacy_cftypes) { 5716 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes)); 5717 } else { 5718 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes)); 5719 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes)); 5720 } 5721 5722 if (ss->bind) 5723 ss->bind(init_css_set.subsys[ssid]); 5724 5725 mutex_lock(&cgroup_mutex); 5726 css_populate_dir(init_css_set.subsys[ssid]); 5727 mutex_unlock(&cgroup_mutex); 5728 } 5729 5730 /* init_css_set.subsys[] has been updated, re-hash */ 5731 hash_del(&init_css_set.hlist); 5732 hash_add(css_set_table, &init_css_set.hlist, 5733 css_set_hash(init_css_set.subsys)); 5734 5735 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup")); 5736 WARN_ON(register_filesystem(&cgroup_fs_type)); 5737 WARN_ON(register_filesystem(&cgroup2_fs_type)); 5738 WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show)); 5739 #ifdef CONFIG_CPUSETS 5740 WARN_ON(register_filesystem(&cpuset_fs_type)); 5741 #endif 5742 5743 return 0; 5744 } 5745 5746 static int __init cgroup_wq_init(void) 5747 { 5748 /* 5749 * There isn't much point in executing destruction path in 5750 * parallel. Good chunk is serialized with cgroup_mutex anyway. 5751 * Use 1 for @max_active. 5752 * 5753 * We would prefer to do this in cgroup_init() above, but that 5754 * is called before init_workqueues(): so leave this until after. 5755 */ 5756 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1); 5757 BUG_ON(!cgroup_destroy_wq); 5758 return 0; 5759 } 5760 core_initcall(cgroup_wq_init); 5761 5762 void cgroup_path_from_kernfs_id(u64 id, char *buf, size_t buflen) 5763 { 5764 struct kernfs_node *kn; 5765 5766 kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id); 5767 if (!kn) 5768 return; 5769 kernfs_path(kn, buf, buflen); 5770 kernfs_put(kn); 5771 } 5772 5773 /* 5774 * proc_cgroup_show() 5775 * - Print task's cgroup paths into seq_file, one line for each hierarchy 5776 * - Used for /proc/<pid>/cgroup. 5777 */ 5778 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns, 5779 struct pid *pid, struct task_struct *tsk) 5780 { 5781 char *buf; 5782 int retval; 5783 struct cgroup_root *root; 5784 5785 retval = -ENOMEM; 5786 buf = kmalloc(PATH_MAX, GFP_KERNEL); 5787 if (!buf) 5788 goto out; 5789 5790 mutex_lock(&cgroup_mutex); 5791 spin_lock_irq(&css_set_lock); 5792 5793 for_each_root(root) { 5794 struct cgroup_subsys *ss; 5795 struct cgroup *cgrp; 5796 int ssid, count = 0; 5797 5798 if (root == &cgrp_dfl_root && !cgrp_dfl_visible) 5799 continue; 5800 5801 seq_printf(m, "%d:", root->hierarchy_id); 5802 if (root != &cgrp_dfl_root) 5803 for_each_subsys(ss, ssid) 5804 if (root->subsys_mask & (1 << ssid)) 5805 seq_printf(m, "%s%s", count++ ? "," : "", 5806 ss->legacy_name); 5807 if (strlen(root->name)) 5808 seq_printf(m, "%sname=%s", count ? "," : "", 5809 root->name); 5810 seq_putc(m, ':'); 5811 5812 cgrp = task_cgroup_from_root(tsk, root); 5813 5814 /* 5815 * On traditional hierarchies, all zombie tasks show up as 5816 * belonging to the root cgroup. On the default hierarchy, 5817 * while a zombie doesn't show up in "cgroup.procs" and 5818 * thus can't be migrated, its /proc/PID/cgroup keeps 5819 * reporting the cgroup it belonged to before exiting. If 5820 * the cgroup is removed before the zombie is reaped, 5821 * " (deleted)" is appended to the cgroup path. 5822 */ 5823 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) { 5824 retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX, 5825 current->nsproxy->cgroup_ns); 5826 if (retval >= PATH_MAX) 5827 retval = -ENAMETOOLONG; 5828 if (retval < 0) 5829 goto out_unlock; 5830 5831 seq_puts(m, buf); 5832 } else { 5833 seq_puts(m, "/"); 5834 } 5835 5836 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp)) 5837 seq_puts(m, " (deleted)\n"); 5838 else 5839 seq_putc(m, '\n'); 5840 } 5841 5842 retval = 0; 5843 out_unlock: 5844 spin_unlock_irq(&css_set_lock); 5845 mutex_unlock(&cgroup_mutex); 5846 kfree(buf); 5847 out: 5848 return retval; 5849 } 5850 5851 /** 5852 * cgroup_fork - initialize cgroup related fields during copy_process() 5853 * @child: pointer to task_struct of forking parent process. 5854 * 5855 * A task is associated with the init_css_set until cgroup_post_fork() 5856 * attaches it to the target css_set. 5857 */ 5858 void cgroup_fork(struct task_struct *child) 5859 { 5860 RCU_INIT_POINTER(child->cgroups, &init_css_set); 5861 INIT_LIST_HEAD(&child->cg_list); 5862 } 5863 5864 static struct cgroup *cgroup_get_from_file(struct file *f) 5865 { 5866 struct cgroup_subsys_state *css; 5867 struct cgroup *cgrp; 5868 5869 css = css_tryget_online_from_dir(f->f_path.dentry, NULL); 5870 if (IS_ERR(css)) 5871 return ERR_CAST(css); 5872 5873 cgrp = css->cgroup; 5874 if (!cgroup_on_dfl(cgrp)) { 5875 cgroup_put(cgrp); 5876 return ERR_PTR(-EBADF); 5877 } 5878 5879 return cgrp; 5880 } 5881 5882 /** 5883 * cgroup_css_set_fork - find or create a css_set for a child process 5884 * @kargs: the arguments passed to create the child process 5885 * 5886 * This functions finds or creates a new css_set which the child 5887 * process will be attached to in cgroup_post_fork(). By default, 5888 * the child process will be given the same css_set as its parent. 5889 * 5890 * If CLONE_INTO_CGROUP is specified this function will try to find an 5891 * existing css_set which includes the requested cgroup and if not create 5892 * a new css_set that the child will be attached to later. If this function 5893 * succeeds it will hold cgroup_threadgroup_rwsem on return. If 5894 * CLONE_INTO_CGROUP is requested this function will grab cgroup mutex 5895 * before grabbing cgroup_threadgroup_rwsem and will hold a reference 5896 * to the target cgroup. 5897 */ 5898 static int cgroup_css_set_fork(struct kernel_clone_args *kargs) 5899 __acquires(&cgroup_mutex) __acquires(&cgroup_threadgroup_rwsem) 5900 { 5901 int ret; 5902 struct cgroup *dst_cgrp = NULL; 5903 struct css_set *cset; 5904 struct super_block *sb; 5905 struct file *f; 5906 5907 if (kargs->flags & CLONE_INTO_CGROUP) 5908 mutex_lock(&cgroup_mutex); 5909 5910 cgroup_threadgroup_change_begin(current); 5911 5912 spin_lock_irq(&css_set_lock); 5913 cset = task_css_set(current); 5914 get_css_set(cset); 5915 spin_unlock_irq(&css_set_lock); 5916 5917 if (!(kargs->flags & CLONE_INTO_CGROUP)) { 5918 kargs->cset = cset; 5919 return 0; 5920 } 5921 5922 f = fget_raw(kargs->cgroup); 5923 if (!f) { 5924 ret = -EBADF; 5925 goto err; 5926 } 5927 sb = f->f_path.dentry->d_sb; 5928 5929 dst_cgrp = cgroup_get_from_file(f); 5930 if (IS_ERR(dst_cgrp)) { 5931 ret = PTR_ERR(dst_cgrp); 5932 dst_cgrp = NULL; 5933 goto err; 5934 } 5935 5936 if (cgroup_is_dead(dst_cgrp)) { 5937 ret = -ENODEV; 5938 goto err; 5939 } 5940 5941 /* 5942 * Verify that we the target cgroup is writable for us. This is 5943 * usually done by the vfs layer but since we're not going through 5944 * the vfs layer here we need to do it "manually". 5945 */ 5946 ret = cgroup_may_write(dst_cgrp, sb); 5947 if (ret) 5948 goto err; 5949 5950 ret = cgroup_attach_permissions(cset->dfl_cgrp, dst_cgrp, sb, 5951 !(kargs->flags & CLONE_THREAD)); 5952 if (ret) 5953 goto err; 5954 5955 kargs->cset = find_css_set(cset, dst_cgrp); 5956 if (!kargs->cset) { 5957 ret = -ENOMEM; 5958 goto err; 5959 } 5960 5961 put_css_set(cset); 5962 fput(f); 5963 kargs->cgrp = dst_cgrp; 5964 return ret; 5965 5966 err: 5967 cgroup_threadgroup_change_end(current); 5968 mutex_unlock(&cgroup_mutex); 5969 if (f) 5970 fput(f); 5971 if (dst_cgrp) 5972 cgroup_put(dst_cgrp); 5973 put_css_set(cset); 5974 if (kargs->cset) 5975 put_css_set(kargs->cset); 5976 return ret; 5977 } 5978 5979 /** 5980 * cgroup_css_set_put_fork - drop references we took during fork 5981 * @kargs: the arguments passed to create the child process 5982 * 5983 * Drop references to the prepared css_set and target cgroup if 5984 * CLONE_INTO_CGROUP was requested. 5985 */ 5986 static void cgroup_css_set_put_fork(struct kernel_clone_args *kargs) 5987 __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex) 5988 { 5989 cgroup_threadgroup_change_end(current); 5990 5991 if (kargs->flags & CLONE_INTO_CGROUP) { 5992 struct cgroup *cgrp = kargs->cgrp; 5993 struct css_set *cset = kargs->cset; 5994 5995 mutex_unlock(&cgroup_mutex); 5996 5997 if (cset) { 5998 put_css_set(cset); 5999 kargs->cset = NULL; 6000 } 6001 6002 if (cgrp) { 6003 cgroup_put(cgrp); 6004 kargs->cgrp = NULL; 6005 } 6006 } 6007 } 6008 6009 /** 6010 * cgroup_can_fork - called on a new task before the process is exposed 6011 * @child: the child process 6012 * 6013 * This prepares a new css_set for the child process which the child will 6014 * be attached to in cgroup_post_fork(). 6015 * This calls the subsystem can_fork() callbacks. If the cgroup_can_fork() 6016 * callback returns an error, the fork aborts with that error code. This 6017 * allows for a cgroup subsystem to conditionally allow or deny new forks. 6018 */ 6019 int cgroup_can_fork(struct task_struct *child, struct kernel_clone_args *kargs) 6020 { 6021 struct cgroup_subsys *ss; 6022 int i, j, ret; 6023 6024 ret = cgroup_css_set_fork(kargs); 6025 if (ret) 6026 return ret; 6027 6028 do_each_subsys_mask(ss, i, have_canfork_callback) { 6029 ret = ss->can_fork(child, kargs->cset); 6030 if (ret) 6031 goto out_revert; 6032 } while_each_subsys_mask(); 6033 6034 return 0; 6035 6036 out_revert: 6037 for_each_subsys(ss, j) { 6038 if (j >= i) 6039 break; 6040 if (ss->cancel_fork) 6041 ss->cancel_fork(child, kargs->cset); 6042 } 6043 6044 cgroup_css_set_put_fork(kargs); 6045 6046 return ret; 6047 } 6048 6049 /** 6050 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork() 6051 * @child: the child process 6052 * @kargs: the arguments passed to create the child process 6053 * 6054 * This calls the cancel_fork() callbacks if a fork failed *after* 6055 * cgroup_can_fork() succeeded and cleans up references we took to 6056 * prepare a new css_set for the child process in cgroup_can_fork(). 6057 */ 6058 void cgroup_cancel_fork(struct task_struct *child, 6059 struct kernel_clone_args *kargs) 6060 { 6061 struct cgroup_subsys *ss; 6062 int i; 6063 6064 for_each_subsys(ss, i) 6065 if (ss->cancel_fork) 6066 ss->cancel_fork(child, kargs->cset); 6067 6068 cgroup_css_set_put_fork(kargs); 6069 } 6070 6071 /** 6072 * cgroup_post_fork - finalize cgroup setup for the child process 6073 * @child: the child process 6074 * 6075 * Attach the child process to its css_set calling the subsystem fork() 6076 * callbacks. 6077 */ 6078 void cgroup_post_fork(struct task_struct *child, 6079 struct kernel_clone_args *kargs) 6080 __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex) 6081 { 6082 struct cgroup_subsys *ss; 6083 struct css_set *cset; 6084 int i; 6085 6086 cset = kargs->cset; 6087 kargs->cset = NULL; 6088 6089 spin_lock_irq(&css_set_lock); 6090 6091 /* init tasks are special, only link regular threads */ 6092 if (likely(child->pid)) { 6093 WARN_ON_ONCE(!list_empty(&child->cg_list)); 6094 cset->nr_tasks++; 6095 css_set_move_task(child, NULL, cset, false); 6096 } else { 6097 put_css_set(cset); 6098 cset = NULL; 6099 } 6100 6101 /* 6102 * If the cgroup has to be frozen, the new task has too. Let's set 6103 * the JOBCTL_TRAP_FREEZE jobctl bit to get the task into the 6104 * frozen state. 6105 */ 6106 if (unlikely(cgroup_task_freeze(child))) { 6107 spin_lock(&child->sighand->siglock); 6108 WARN_ON_ONCE(child->frozen); 6109 child->jobctl |= JOBCTL_TRAP_FREEZE; 6110 spin_unlock(&child->sighand->siglock); 6111 6112 /* 6113 * Calling cgroup_update_frozen() isn't required here, 6114 * because it will be called anyway a bit later from 6115 * do_freezer_trap(). So we avoid cgroup's transient switch 6116 * from the frozen state and back. 6117 */ 6118 } 6119 6120 spin_unlock_irq(&css_set_lock); 6121 6122 /* 6123 * Call ss->fork(). This must happen after @child is linked on 6124 * css_set; otherwise, @child might change state between ->fork() 6125 * and addition to css_set. 6126 */ 6127 do_each_subsys_mask(ss, i, have_fork_callback) { 6128 ss->fork(child); 6129 } while_each_subsys_mask(); 6130 6131 /* Make the new cset the root_cset of the new cgroup namespace. */ 6132 if (kargs->flags & CLONE_NEWCGROUP) { 6133 struct css_set *rcset = child->nsproxy->cgroup_ns->root_cset; 6134 6135 get_css_set(cset); 6136 child->nsproxy->cgroup_ns->root_cset = cset; 6137 put_css_set(rcset); 6138 } 6139 6140 cgroup_css_set_put_fork(kargs); 6141 } 6142 6143 /** 6144 * cgroup_exit - detach cgroup from exiting task 6145 * @tsk: pointer to task_struct of exiting process 6146 * 6147 * Description: Detach cgroup from @tsk. 6148 * 6149 */ 6150 void cgroup_exit(struct task_struct *tsk) 6151 { 6152 struct cgroup_subsys *ss; 6153 struct css_set *cset; 6154 int i; 6155 6156 spin_lock_irq(&css_set_lock); 6157 6158 WARN_ON_ONCE(list_empty(&tsk->cg_list)); 6159 cset = task_css_set(tsk); 6160 css_set_move_task(tsk, cset, NULL, false); 6161 list_add_tail(&tsk->cg_list, &cset->dying_tasks); 6162 cset->nr_tasks--; 6163 6164 WARN_ON_ONCE(cgroup_task_frozen(tsk)); 6165 if (unlikely(cgroup_task_freeze(tsk))) 6166 cgroup_update_frozen(task_dfl_cgroup(tsk)); 6167 6168 spin_unlock_irq(&css_set_lock); 6169 6170 /* see cgroup_post_fork() for details */ 6171 do_each_subsys_mask(ss, i, have_exit_callback) { 6172 ss->exit(tsk); 6173 } while_each_subsys_mask(); 6174 } 6175 6176 void cgroup_release(struct task_struct *task) 6177 { 6178 struct cgroup_subsys *ss; 6179 int ssid; 6180 6181 do_each_subsys_mask(ss, ssid, have_release_callback) { 6182 ss->release(task); 6183 } while_each_subsys_mask(); 6184 6185 spin_lock_irq(&css_set_lock); 6186 css_set_skip_task_iters(task_css_set(task), task); 6187 list_del_init(&task->cg_list); 6188 spin_unlock_irq(&css_set_lock); 6189 } 6190 6191 void cgroup_free(struct task_struct *task) 6192 { 6193 struct css_set *cset = task_css_set(task); 6194 put_css_set(cset); 6195 } 6196 6197 static int __init cgroup_disable(char *str) 6198 { 6199 struct cgroup_subsys *ss; 6200 char *token; 6201 int i; 6202 6203 while ((token = strsep(&str, ",")) != NULL) { 6204 if (!*token) 6205 continue; 6206 6207 for_each_subsys(ss, i) { 6208 if (strcmp(token, ss->name) && 6209 strcmp(token, ss->legacy_name)) 6210 continue; 6211 6212 static_branch_disable(cgroup_subsys_enabled_key[i]); 6213 pr_info("Disabling %s control group subsystem\n", 6214 ss->name); 6215 } 6216 } 6217 return 1; 6218 } 6219 __setup("cgroup_disable=", cgroup_disable); 6220 6221 void __init __weak enable_debug_cgroup(void) { } 6222 6223 static int __init enable_cgroup_debug(char *str) 6224 { 6225 cgroup_debug = true; 6226 enable_debug_cgroup(); 6227 return 1; 6228 } 6229 __setup("cgroup_debug", enable_cgroup_debug); 6230 6231 /** 6232 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry 6233 * @dentry: directory dentry of interest 6234 * @ss: subsystem of interest 6235 * 6236 * If @dentry is a directory for a cgroup which has @ss enabled on it, try 6237 * to get the corresponding css and return it. If such css doesn't exist 6238 * or can't be pinned, an ERR_PTR value is returned. 6239 */ 6240 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry, 6241 struct cgroup_subsys *ss) 6242 { 6243 struct kernfs_node *kn = kernfs_node_from_dentry(dentry); 6244 struct file_system_type *s_type = dentry->d_sb->s_type; 6245 struct cgroup_subsys_state *css = NULL; 6246 struct cgroup *cgrp; 6247 6248 /* is @dentry a cgroup dir? */ 6249 if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) || 6250 !kn || kernfs_type(kn) != KERNFS_DIR) 6251 return ERR_PTR(-EBADF); 6252 6253 rcu_read_lock(); 6254 6255 /* 6256 * This path doesn't originate from kernfs and @kn could already 6257 * have been or be removed at any point. @kn->priv is RCU 6258 * protected for this access. See css_release_work_fn() for details. 6259 */ 6260 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); 6261 if (cgrp) 6262 css = cgroup_css(cgrp, ss); 6263 6264 if (!css || !css_tryget_online(css)) 6265 css = ERR_PTR(-ENOENT); 6266 6267 rcu_read_unlock(); 6268 return css; 6269 } 6270 6271 /** 6272 * css_from_id - lookup css by id 6273 * @id: the cgroup id 6274 * @ss: cgroup subsys to be looked into 6275 * 6276 * Returns the css if there's valid one with @id, otherwise returns NULL. 6277 * Should be called under rcu_read_lock(). 6278 */ 6279 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss) 6280 { 6281 WARN_ON_ONCE(!rcu_read_lock_held()); 6282 return idr_find(&ss->css_idr, id); 6283 } 6284 6285 /** 6286 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path 6287 * @path: path on the default hierarchy 6288 * 6289 * Find the cgroup at @path on the default hierarchy, increment its 6290 * reference count and return it. Returns pointer to the found cgroup on 6291 * success, ERR_PTR(-ENOENT) if @path doesn't exist and ERR_PTR(-ENOTDIR) 6292 * if @path points to a non-directory. 6293 */ 6294 struct cgroup *cgroup_get_from_path(const char *path) 6295 { 6296 struct kernfs_node *kn; 6297 struct cgroup *cgrp; 6298 6299 mutex_lock(&cgroup_mutex); 6300 6301 kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path); 6302 if (kn) { 6303 if (kernfs_type(kn) == KERNFS_DIR) { 6304 cgrp = kn->priv; 6305 cgroup_get_live(cgrp); 6306 } else { 6307 cgrp = ERR_PTR(-ENOTDIR); 6308 } 6309 kernfs_put(kn); 6310 } else { 6311 cgrp = ERR_PTR(-ENOENT); 6312 } 6313 6314 mutex_unlock(&cgroup_mutex); 6315 return cgrp; 6316 } 6317 EXPORT_SYMBOL_GPL(cgroup_get_from_path); 6318 6319 /** 6320 * cgroup_get_from_fd - get a cgroup pointer from a fd 6321 * @fd: fd obtained by open(cgroup2_dir) 6322 * 6323 * Find the cgroup from a fd which should be obtained 6324 * by opening a cgroup directory. Returns a pointer to the 6325 * cgroup on success. ERR_PTR is returned if the cgroup 6326 * cannot be found. 6327 */ 6328 struct cgroup *cgroup_get_from_fd(int fd) 6329 { 6330 struct cgroup *cgrp; 6331 struct file *f; 6332 6333 f = fget_raw(fd); 6334 if (!f) 6335 return ERR_PTR(-EBADF); 6336 6337 cgrp = cgroup_get_from_file(f); 6338 fput(f); 6339 return cgrp; 6340 } 6341 EXPORT_SYMBOL_GPL(cgroup_get_from_fd); 6342 6343 static u64 power_of_ten(int power) 6344 { 6345 u64 v = 1; 6346 while (power--) 6347 v *= 10; 6348 return v; 6349 } 6350 6351 /** 6352 * cgroup_parse_float - parse a floating number 6353 * @input: input string 6354 * @dec_shift: number of decimal digits to shift 6355 * @v: output 6356 * 6357 * Parse a decimal floating point number in @input and store the result in 6358 * @v with decimal point right shifted @dec_shift times. For example, if 6359 * @input is "12.3456" and @dec_shift is 3, *@v will be set to 12345. 6360 * Returns 0 on success, -errno otherwise. 6361 * 6362 * There's nothing cgroup specific about this function except that it's 6363 * currently the only user. 6364 */ 6365 int cgroup_parse_float(const char *input, unsigned dec_shift, s64 *v) 6366 { 6367 s64 whole, frac = 0; 6368 int fstart = 0, fend = 0, flen; 6369 6370 if (!sscanf(input, "%lld.%n%lld%n", &whole, &fstart, &frac, &fend)) 6371 return -EINVAL; 6372 if (frac < 0) 6373 return -EINVAL; 6374 6375 flen = fend > fstart ? fend - fstart : 0; 6376 if (flen < dec_shift) 6377 frac *= power_of_ten(dec_shift - flen); 6378 else 6379 frac = DIV_ROUND_CLOSEST_ULL(frac, power_of_ten(flen - dec_shift)); 6380 6381 *v = whole * power_of_ten(dec_shift) + frac; 6382 return 0; 6383 } 6384 6385 /* 6386 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data 6387 * definition in cgroup-defs.h. 6388 */ 6389 #ifdef CONFIG_SOCK_CGROUP_DATA 6390 6391 #if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID) 6392 6393 DEFINE_SPINLOCK(cgroup_sk_update_lock); 6394 static bool cgroup_sk_alloc_disabled __read_mostly; 6395 6396 void cgroup_sk_alloc_disable(void) 6397 { 6398 if (cgroup_sk_alloc_disabled) 6399 return; 6400 pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n"); 6401 cgroup_sk_alloc_disabled = true; 6402 } 6403 6404 #else 6405 6406 #define cgroup_sk_alloc_disabled false 6407 6408 #endif 6409 6410 void cgroup_sk_alloc(struct sock_cgroup_data *skcd) 6411 { 6412 if (cgroup_sk_alloc_disabled) { 6413 skcd->no_refcnt = 1; 6414 return; 6415 } 6416 6417 /* Don't associate the sock with unrelated interrupted task's cgroup. */ 6418 if (in_interrupt()) 6419 return; 6420 6421 rcu_read_lock(); 6422 6423 while (true) { 6424 struct css_set *cset; 6425 6426 cset = task_css_set(current); 6427 if (likely(cgroup_tryget(cset->dfl_cgrp))) { 6428 skcd->val = (unsigned long)cset->dfl_cgrp; 6429 cgroup_bpf_get(cset->dfl_cgrp); 6430 break; 6431 } 6432 cpu_relax(); 6433 } 6434 6435 rcu_read_unlock(); 6436 } 6437 6438 void cgroup_sk_clone(struct sock_cgroup_data *skcd) 6439 { 6440 if (skcd->val) { 6441 if (skcd->no_refcnt) 6442 return; 6443 /* 6444 * We might be cloning a socket which is left in an empty 6445 * cgroup and the cgroup might have already been rmdir'd. 6446 * Don't use cgroup_get_live(). 6447 */ 6448 cgroup_get(sock_cgroup_ptr(skcd)); 6449 cgroup_bpf_get(sock_cgroup_ptr(skcd)); 6450 } 6451 } 6452 6453 void cgroup_sk_free(struct sock_cgroup_data *skcd) 6454 { 6455 struct cgroup *cgrp = sock_cgroup_ptr(skcd); 6456 6457 if (skcd->no_refcnt) 6458 return; 6459 cgroup_bpf_put(cgrp); 6460 cgroup_put(cgrp); 6461 } 6462 6463 #endif /* CONFIG_SOCK_CGROUP_DATA */ 6464 6465 #ifdef CONFIG_CGROUP_BPF 6466 int cgroup_bpf_attach(struct cgroup *cgrp, 6467 struct bpf_prog *prog, struct bpf_prog *replace_prog, 6468 struct bpf_cgroup_link *link, 6469 enum bpf_attach_type type, 6470 u32 flags) 6471 { 6472 int ret; 6473 6474 mutex_lock(&cgroup_mutex); 6475 ret = __cgroup_bpf_attach(cgrp, prog, replace_prog, link, type, flags); 6476 mutex_unlock(&cgroup_mutex); 6477 return ret; 6478 } 6479 6480 int cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog, 6481 enum bpf_attach_type type) 6482 { 6483 int ret; 6484 6485 mutex_lock(&cgroup_mutex); 6486 ret = __cgroup_bpf_detach(cgrp, prog, NULL, type); 6487 mutex_unlock(&cgroup_mutex); 6488 return ret; 6489 } 6490 6491 int cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr, 6492 union bpf_attr __user *uattr) 6493 { 6494 int ret; 6495 6496 mutex_lock(&cgroup_mutex); 6497 ret = __cgroup_bpf_query(cgrp, attr, uattr); 6498 mutex_unlock(&cgroup_mutex); 6499 return ret; 6500 } 6501 #endif /* CONFIG_CGROUP_BPF */ 6502 6503 #ifdef CONFIG_SYSFS 6504 static ssize_t show_delegatable_files(struct cftype *files, char *buf, 6505 ssize_t size, const char *prefix) 6506 { 6507 struct cftype *cft; 6508 ssize_t ret = 0; 6509 6510 for (cft = files; cft && cft->name[0] != '\0'; cft++) { 6511 if (!(cft->flags & CFTYPE_NS_DELEGATABLE)) 6512 continue; 6513 6514 if (prefix) 6515 ret += snprintf(buf + ret, size - ret, "%s.", prefix); 6516 6517 ret += snprintf(buf + ret, size - ret, "%s\n", cft->name); 6518 6519 if (WARN_ON(ret >= size)) 6520 break; 6521 } 6522 6523 return ret; 6524 } 6525 6526 static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr, 6527 char *buf) 6528 { 6529 struct cgroup_subsys *ss; 6530 int ssid; 6531 ssize_t ret = 0; 6532 6533 ret = show_delegatable_files(cgroup_base_files, buf, PAGE_SIZE - ret, 6534 NULL); 6535 6536 for_each_subsys(ss, ssid) 6537 ret += show_delegatable_files(ss->dfl_cftypes, buf + ret, 6538 PAGE_SIZE - ret, 6539 cgroup_subsys_name[ssid]); 6540 6541 return ret; 6542 } 6543 static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate); 6544 6545 static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr, 6546 char *buf) 6547 { 6548 return snprintf(buf, PAGE_SIZE, 6549 "nsdelegate\n" 6550 "memory_localevents\n" 6551 "memory_recursiveprot\n"); 6552 } 6553 static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features); 6554 6555 static struct attribute *cgroup_sysfs_attrs[] = { 6556 &cgroup_delegate_attr.attr, 6557 &cgroup_features_attr.attr, 6558 NULL, 6559 }; 6560 6561 static const struct attribute_group cgroup_sysfs_attr_group = { 6562 .attrs = cgroup_sysfs_attrs, 6563 .name = "cgroup", 6564 }; 6565 6566 static int __init cgroup_sysfs_init(void) 6567 { 6568 return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group); 6569 } 6570 subsys_initcall(cgroup_sysfs_init); 6571 6572 #endif /* CONFIG_SYSFS */ 6573