xref: /openbmc/linux/kernel/cgroup/cgroup.c (revision 710b797c)
1 /*
2  *  Generic process-grouping system.
3  *
4  *  Based originally on the cpuset system, extracted by Paul Menage
5  *  Copyright (C) 2006 Google, Inc
6  *
7  *  Notifications support
8  *  Copyright (C) 2009 Nokia Corporation
9  *  Author: Kirill A. Shutemov
10  *
11  *  Copyright notices from the original cpuset code:
12  *  --------------------------------------------------
13  *  Copyright (C) 2003 BULL SA.
14  *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
15  *
16  *  Portions derived from Patrick Mochel's sysfs code.
17  *  sysfs is Copyright (c) 2001-3 Patrick Mochel
18  *
19  *  2003-10-10 Written by Simon Derr.
20  *  2003-10-22 Updates by Stephen Hemminger.
21  *  2004 May-July Rework by Paul Jackson.
22  *  ---------------------------------------------------
23  *
24  *  This file is subject to the terms and conditions of the GNU General Public
25  *  License.  See the file COPYING in the main directory of the Linux
26  *  distribution for more details.
27  */
28 
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 
31 #include "cgroup-internal.h"
32 
33 #include <linux/cred.h>
34 #include <linux/errno.h>
35 #include <linux/init_task.h>
36 #include <linux/kernel.h>
37 #include <linux/magic.h>
38 #include <linux/mutex.h>
39 #include <linux/mount.h>
40 #include <linux/pagemap.h>
41 #include <linux/proc_fs.h>
42 #include <linux/rcupdate.h>
43 #include <linux/sched.h>
44 #include <linux/sched/task.h>
45 #include <linux/slab.h>
46 #include <linux/spinlock.h>
47 #include <linux/percpu-rwsem.h>
48 #include <linux/string.h>
49 #include <linux/hashtable.h>
50 #include <linux/idr.h>
51 #include <linux/kthread.h>
52 #include <linux/atomic.h>
53 #include <linux/cpuset.h>
54 #include <linux/proc_ns.h>
55 #include <linux/nsproxy.h>
56 #include <linux/file.h>
57 #include <linux/fs_parser.h>
58 #include <linux/sched/cputime.h>
59 #include <linux/psi.h>
60 #include <net/sock.h>
61 
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/cgroup.h>
64 
65 #define CGROUP_FILE_NAME_MAX		(MAX_CGROUP_TYPE_NAMELEN +	\
66 					 MAX_CFTYPE_NAME + 2)
67 /* let's not notify more than 100 times per second */
68 #define CGROUP_FILE_NOTIFY_MIN_INTV	DIV_ROUND_UP(HZ, 100)
69 
70 /*
71  * cgroup_mutex is the master lock.  Any modification to cgroup or its
72  * hierarchy must be performed while holding it.
73  *
74  * css_set_lock protects task->cgroups pointer, the list of css_set
75  * objects, and the chain of tasks off each css_set.
76  *
77  * These locks are exported if CONFIG_PROVE_RCU so that accessors in
78  * cgroup.h can use them for lockdep annotations.
79  */
80 DEFINE_MUTEX(cgroup_mutex);
81 DEFINE_SPINLOCK(css_set_lock);
82 
83 #ifdef CONFIG_PROVE_RCU
84 EXPORT_SYMBOL_GPL(cgroup_mutex);
85 EXPORT_SYMBOL_GPL(css_set_lock);
86 #endif
87 
88 DEFINE_SPINLOCK(trace_cgroup_path_lock);
89 char trace_cgroup_path[TRACE_CGROUP_PATH_LEN];
90 bool cgroup_debug __read_mostly;
91 
92 /*
93  * Protects cgroup_idr and css_idr so that IDs can be released without
94  * grabbing cgroup_mutex.
95  */
96 static DEFINE_SPINLOCK(cgroup_idr_lock);
97 
98 /*
99  * Protects cgroup_file->kn for !self csses.  It synchronizes notifications
100  * against file removal/re-creation across css hiding.
101  */
102 static DEFINE_SPINLOCK(cgroup_file_kn_lock);
103 
104 DEFINE_PERCPU_RWSEM(cgroup_threadgroup_rwsem);
105 
106 #define cgroup_assert_mutex_or_rcu_locked()				\
107 	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
108 			   !lockdep_is_held(&cgroup_mutex),		\
109 			   "cgroup_mutex or RCU read lock required");
110 
111 /*
112  * cgroup destruction makes heavy use of work items and there can be a lot
113  * of concurrent destructions.  Use a separate workqueue so that cgroup
114  * destruction work items don't end up filling up max_active of system_wq
115  * which may lead to deadlock.
116  */
117 static struct workqueue_struct *cgroup_destroy_wq;
118 
119 /* generate an array of cgroup subsystem pointers */
120 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
121 struct cgroup_subsys *cgroup_subsys[] = {
122 #include <linux/cgroup_subsys.h>
123 };
124 #undef SUBSYS
125 
126 /* array of cgroup subsystem names */
127 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
128 static const char *cgroup_subsys_name[] = {
129 #include <linux/cgroup_subsys.h>
130 };
131 #undef SUBSYS
132 
133 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
134 #define SUBSYS(_x)								\
135 	DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key);			\
136 	DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key);			\
137 	EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key);			\
138 	EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
139 #include <linux/cgroup_subsys.h>
140 #undef SUBSYS
141 
142 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
143 static struct static_key_true *cgroup_subsys_enabled_key[] = {
144 #include <linux/cgroup_subsys.h>
145 };
146 #undef SUBSYS
147 
148 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
149 static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
150 #include <linux/cgroup_subsys.h>
151 };
152 #undef SUBSYS
153 
154 static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu);
155 
156 /* the default hierarchy */
157 struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu };
158 EXPORT_SYMBOL_GPL(cgrp_dfl_root);
159 
160 /*
161  * The default hierarchy always exists but is hidden until mounted for the
162  * first time.  This is for backward compatibility.
163  */
164 static bool cgrp_dfl_visible;
165 
166 /* some controllers are not supported in the default hierarchy */
167 static u16 cgrp_dfl_inhibit_ss_mask;
168 
169 /* some controllers are implicitly enabled on the default hierarchy */
170 static u16 cgrp_dfl_implicit_ss_mask;
171 
172 /* some controllers can be threaded on the default hierarchy */
173 static u16 cgrp_dfl_threaded_ss_mask;
174 
175 /* The list of hierarchy roots */
176 LIST_HEAD(cgroup_roots);
177 static int cgroup_root_count;
178 
179 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
180 static DEFINE_IDR(cgroup_hierarchy_idr);
181 
182 /*
183  * Assign a monotonically increasing serial number to csses.  It guarantees
184  * cgroups with bigger numbers are newer than those with smaller numbers.
185  * Also, as csses are always appended to the parent's ->children list, it
186  * guarantees that sibling csses are always sorted in the ascending serial
187  * number order on the list.  Protected by cgroup_mutex.
188  */
189 static u64 css_serial_nr_next = 1;
190 
191 /*
192  * These bitmasks identify subsystems with specific features to avoid
193  * having to do iterative checks repeatedly.
194  */
195 static u16 have_fork_callback __read_mostly;
196 static u16 have_exit_callback __read_mostly;
197 static u16 have_release_callback __read_mostly;
198 static u16 have_canfork_callback __read_mostly;
199 
200 /* cgroup namespace for init task */
201 struct cgroup_namespace init_cgroup_ns = {
202 	.ns.count	= REFCOUNT_INIT(2),
203 	.user_ns	= &init_user_ns,
204 	.ns.ops		= &cgroupns_operations,
205 	.ns.inum	= PROC_CGROUP_INIT_INO,
206 	.root_cset	= &init_css_set,
207 };
208 
209 static struct file_system_type cgroup2_fs_type;
210 static struct cftype cgroup_base_files[];
211 
212 static int cgroup_apply_control(struct cgroup *cgrp);
213 static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
214 static void css_task_iter_skip(struct css_task_iter *it,
215 			       struct task_struct *task);
216 static int cgroup_destroy_locked(struct cgroup *cgrp);
217 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
218 					      struct cgroup_subsys *ss);
219 static void css_release(struct percpu_ref *ref);
220 static void kill_css(struct cgroup_subsys_state *css);
221 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
222 			      struct cgroup *cgrp, struct cftype cfts[],
223 			      bool is_add);
224 
225 /**
226  * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
227  * @ssid: subsys ID of interest
228  *
229  * cgroup_subsys_enabled() can only be used with literal subsys names which
230  * is fine for individual subsystems but unsuitable for cgroup core.  This
231  * is slower static_key_enabled() based test indexed by @ssid.
232  */
233 bool cgroup_ssid_enabled(int ssid)
234 {
235 	if (CGROUP_SUBSYS_COUNT == 0)
236 		return false;
237 
238 	return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
239 }
240 
241 /**
242  * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
243  * @cgrp: the cgroup of interest
244  *
245  * The default hierarchy is the v2 interface of cgroup and this function
246  * can be used to test whether a cgroup is on the default hierarchy for
247  * cases where a subsystem should behave differently depending on the
248  * interface version.
249  *
250  * List of changed behaviors:
251  *
252  * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
253  *   and "name" are disallowed.
254  *
255  * - When mounting an existing superblock, mount options should match.
256  *
257  * - Remount is disallowed.
258  *
259  * - rename(2) is disallowed.
260  *
261  * - "tasks" is removed.  Everything should be at process granularity.  Use
262  *   "cgroup.procs" instead.
263  *
264  * - "cgroup.procs" is not sorted.  pids will be unique unless they got
265  *   recycled in-between reads.
266  *
267  * - "release_agent" and "notify_on_release" are removed.  Replacement
268  *   notification mechanism will be implemented.
269  *
270  * - "cgroup.clone_children" is removed.
271  *
272  * - "cgroup.subtree_populated" is available.  Its value is 0 if the cgroup
273  *   and its descendants contain no task; otherwise, 1.  The file also
274  *   generates kernfs notification which can be monitored through poll and
275  *   [di]notify when the value of the file changes.
276  *
277  * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
278  *   take masks of ancestors with non-empty cpus/mems, instead of being
279  *   moved to an ancestor.
280  *
281  * - cpuset: a task can be moved into an empty cpuset, and again it takes
282  *   masks of ancestors.
283  *
284  * - blkcg: blk-throttle becomes properly hierarchical.
285  *
286  * - debug: disallowed on the default hierarchy.
287  */
288 bool cgroup_on_dfl(const struct cgroup *cgrp)
289 {
290 	return cgrp->root == &cgrp_dfl_root;
291 }
292 
293 /* IDR wrappers which synchronize using cgroup_idr_lock */
294 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
295 			    gfp_t gfp_mask)
296 {
297 	int ret;
298 
299 	idr_preload(gfp_mask);
300 	spin_lock_bh(&cgroup_idr_lock);
301 	ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
302 	spin_unlock_bh(&cgroup_idr_lock);
303 	idr_preload_end();
304 	return ret;
305 }
306 
307 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
308 {
309 	void *ret;
310 
311 	spin_lock_bh(&cgroup_idr_lock);
312 	ret = idr_replace(idr, ptr, id);
313 	spin_unlock_bh(&cgroup_idr_lock);
314 	return ret;
315 }
316 
317 static void cgroup_idr_remove(struct idr *idr, int id)
318 {
319 	spin_lock_bh(&cgroup_idr_lock);
320 	idr_remove(idr, id);
321 	spin_unlock_bh(&cgroup_idr_lock);
322 }
323 
324 static bool cgroup_has_tasks(struct cgroup *cgrp)
325 {
326 	return cgrp->nr_populated_csets;
327 }
328 
329 bool cgroup_is_threaded(struct cgroup *cgrp)
330 {
331 	return cgrp->dom_cgrp != cgrp;
332 }
333 
334 /* can @cgrp host both domain and threaded children? */
335 static bool cgroup_is_mixable(struct cgroup *cgrp)
336 {
337 	/*
338 	 * Root isn't under domain level resource control exempting it from
339 	 * the no-internal-process constraint, so it can serve as a thread
340 	 * root and a parent of resource domains at the same time.
341 	 */
342 	return !cgroup_parent(cgrp);
343 }
344 
345 /* can @cgrp become a thread root? Should always be true for a thread root */
346 static bool cgroup_can_be_thread_root(struct cgroup *cgrp)
347 {
348 	/* mixables don't care */
349 	if (cgroup_is_mixable(cgrp))
350 		return true;
351 
352 	/* domain roots can't be nested under threaded */
353 	if (cgroup_is_threaded(cgrp))
354 		return false;
355 
356 	/* can only have either domain or threaded children */
357 	if (cgrp->nr_populated_domain_children)
358 		return false;
359 
360 	/* and no domain controllers can be enabled */
361 	if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
362 		return false;
363 
364 	return true;
365 }
366 
367 /* is @cgrp root of a threaded subtree? */
368 bool cgroup_is_thread_root(struct cgroup *cgrp)
369 {
370 	/* thread root should be a domain */
371 	if (cgroup_is_threaded(cgrp))
372 		return false;
373 
374 	/* a domain w/ threaded children is a thread root */
375 	if (cgrp->nr_threaded_children)
376 		return true;
377 
378 	/*
379 	 * A domain which has tasks and explicit threaded controllers
380 	 * enabled is a thread root.
381 	 */
382 	if (cgroup_has_tasks(cgrp) &&
383 	    (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask))
384 		return true;
385 
386 	return false;
387 }
388 
389 /* a domain which isn't connected to the root w/o brekage can't be used */
390 static bool cgroup_is_valid_domain(struct cgroup *cgrp)
391 {
392 	/* the cgroup itself can be a thread root */
393 	if (cgroup_is_threaded(cgrp))
394 		return false;
395 
396 	/* but the ancestors can't be unless mixable */
397 	while ((cgrp = cgroup_parent(cgrp))) {
398 		if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp))
399 			return false;
400 		if (cgroup_is_threaded(cgrp))
401 			return false;
402 	}
403 
404 	return true;
405 }
406 
407 /* subsystems visibly enabled on a cgroup */
408 static u16 cgroup_control(struct cgroup *cgrp)
409 {
410 	struct cgroup *parent = cgroup_parent(cgrp);
411 	u16 root_ss_mask = cgrp->root->subsys_mask;
412 
413 	if (parent) {
414 		u16 ss_mask = parent->subtree_control;
415 
416 		/* threaded cgroups can only have threaded controllers */
417 		if (cgroup_is_threaded(cgrp))
418 			ss_mask &= cgrp_dfl_threaded_ss_mask;
419 		return ss_mask;
420 	}
421 
422 	if (cgroup_on_dfl(cgrp))
423 		root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
424 				  cgrp_dfl_implicit_ss_mask);
425 	return root_ss_mask;
426 }
427 
428 /* subsystems enabled on a cgroup */
429 static u16 cgroup_ss_mask(struct cgroup *cgrp)
430 {
431 	struct cgroup *parent = cgroup_parent(cgrp);
432 
433 	if (parent) {
434 		u16 ss_mask = parent->subtree_ss_mask;
435 
436 		/* threaded cgroups can only have threaded controllers */
437 		if (cgroup_is_threaded(cgrp))
438 			ss_mask &= cgrp_dfl_threaded_ss_mask;
439 		return ss_mask;
440 	}
441 
442 	return cgrp->root->subsys_mask;
443 }
444 
445 /**
446  * cgroup_css - obtain a cgroup's css for the specified subsystem
447  * @cgrp: the cgroup of interest
448  * @ss: the subsystem of interest (%NULL returns @cgrp->self)
449  *
450  * Return @cgrp's css (cgroup_subsys_state) associated with @ss.  This
451  * function must be called either under cgroup_mutex or rcu_read_lock() and
452  * the caller is responsible for pinning the returned css if it wants to
453  * keep accessing it outside the said locks.  This function may return
454  * %NULL if @cgrp doesn't have @subsys_id enabled.
455  */
456 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
457 					      struct cgroup_subsys *ss)
458 {
459 	if (ss)
460 		return rcu_dereference_check(cgrp->subsys[ss->id],
461 					lockdep_is_held(&cgroup_mutex));
462 	else
463 		return &cgrp->self;
464 }
465 
466 /**
467  * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem
468  * @cgrp: the cgroup of interest
469  * @ss: the subsystem of interest
470  *
471  * Find and get @cgrp's css associated with @ss.  If the css doesn't exist
472  * or is offline, %NULL is returned.
473  */
474 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp,
475 						     struct cgroup_subsys *ss)
476 {
477 	struct cgroup_subsys_state *css;
478 
479 	rcu_read_lock();
480 	css = cgroup_css(cgrp, ss);
481 	if (css && !css_tryget_online(css))
482 		css = NULL;
483 	rcu_read_unlock();
484 
485 	return css;
486 }
487 
488 /**
489  * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss
490  * @cgrp: the cgroup of interest
491  * @ss: the subsystem of interest (%NULL returns @cgrp->self)
492  *
493  * Similar to cgroup_css() but returns the effective css, which is defined
494  * as the matching css of the nearest ancestor including self which has @ss
495  * enabled.  If @ss is associated with the hierarchy @cgrp is on, this
496  * function is guaranteed to return non-NULL css.
497  */
498 static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp,
499 							struct cgroup_subsys *ss)
500 {
501 	lockdep_assert_held(&cgroup_mutex);
502 
503 	if (!ss)
504 		return &cgrp->self;
505 
506 	/*
507 	 * This function is used while updating css associations and thus
508 	 * can't test the csses directly.  Test ss_mask.
509 	 */
510 	while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
511 		cgrp = cgroup_parent(cgrp);
512 		if (!cgrp)
513 			return NULL;
514 	}
515 
516 	return cgroup_css(cgrp, ss);
517 }
518 
519 /**
520  * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
521  * @cgrp: the cgroup of interest
522  * @ss: the subsystem of interest
523  *
524  * Find and get the effective css of @cgrp for @ss.  The effective css is
525  * defined as the matching css of the nearest ancestor including self which
526  * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
527  * the root css is returned, so this function always returns a valid css.
528  *
529  * The returned css is not guaranteed to be online, and therefore it is the
530  * callers responsibility to try get a reference for it.
531  */
532 struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
533 					 struct cgroup_subsys *ss)
534 {
535 	struct cgroup_subsys_state *css;
536 
537 	do {
538 		css = cgroup_css(cgrp, ss);
539 
540 		if (css)
541 			return css;
542 		cgrp = cgroup_parent(cgrp);
543 	} while (cgrp);
544 
545 	return init_css_set.subsys[ss->id];
546 }
547 
548 /**
549  * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
550  * @cgrp: the cgroup of interest
551  * @ss: the subsystem of interest
552  *
553  * Find and get the effective css of @cgrp for @ss.  The effective css is
554  * defined as the matching css of the nearest ancestor including self which
555  * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
556  * the root css is returned, so this function always returns a valid css.
557  * The returned css must be put using css_put().
558  */
559 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
560 					     struct cgroup_subsys *ss)
561 {
562 	struct cgroup_subsys_state *css;
563 
564 	rcu_read_lock();
565 
566 	do {
567 		css = cgroup_css(cgrp, ss);
568 
569 		if (css && css_tryget_online(css))
570 			goto out_unlock;
571 		cgrp = cgroup_parent(cgrp);
572 	} while (cgrp);
573 
574 	css = init_css_set.subsys[ss->id];
575 	css_get(css);
576 out_unlock:
577 	rcu_read_unlock();
578 	return css;
579 }
580 
581 static void cgroup_get_live(struct cgroup *cgrp)
582 {
583 	WARN_ON_ONCE(cgroup_is_dead(cgrp));
584 	css_get(&cgrp->self);
585 }
586 
587 /**
588  * __cgroup_task_count - count the number of tasks in a cgroup. The caller
589  * is responsible for taking the css_set_lock.
590  * @cgrp: the cgroup in question
591  */
592 int __cgroup_task_count(const struct cgroup *cgrp)
593 {
594 	int count = 0;
595 	struct cgrp_cset_link *link;
596 
597 	lockdep_assert_held(&css_set_lock);
598 
599 	list_for_each_entry(link, &cgrp->cset_links, cset_link)
600 		count += link->cset->nr_tasks;
601 
602 	return count;
603 }
604 
605 /**
606  * cgroup_task_count - count the number of tasks in a cgroup.
607  * @cgrp: the cgroup in question
608  */
609 int cgroup_task_count(const struct cgroup *cgrp)
610 {
611 	int count;
612 
613 	spin_lock_irq(&css_set_lock);
614 	count = __cgroup_task_count(cgrp);
615 	spin_unlock_irq(&css_set_lock);
616 
617 	return count;
618 }
619 
620 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
621 {
622 	struct cgroup *cgrp = of->kn->parent->priv;
623 	struct cftype *cft = of_cft(of);
624 
625 	/*
626 	 * This is open and unprotected implementation of cgroup_css().
627 	 * seq_css() is only called from a kernfs file operation which has
628 	 * an active reference on the file.  Because all the subsystem
629 	 * files are drained before a css is disassociated with a cgroup,
630 	 * the matching css from the cgroup's subsys table is guaranteed to
631 	 * be and stay valid until the enclosing operation is complete.
632 	 */
633 	if (cft->ss)
634 		return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
635 	else
636 		return &cgrp->self;
637 }
638 EXPORT_SYMBOL_GPL(of_css);
639 
640 /**
641  * for_each_css - iterate all css's of a cgroup
642  * @css: the iteration cursor
643  * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
644  * @cgrp: the target cgroup to iterate css's of
645  *
646  * Should be called under cgroup_[tree_]mutex.
647  */
648 #define for_each_css(css, ssid, cgrp)					\
649 	for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)	\
650 		if (!((css) = rcu_dereference_check(			\
651 				(cgrp)->subsys[(ssid)],			\
652 				lockdep_is_held(&cgroup_mutex)))) { }	\
653 		else
654 
655 /**
656  * for_each_e_css - iterate all effective css's of a cgroup
657  * @css: the iteration cursor
658  * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
659  * @cgrp: the target cgroup to iterate css's of
660  *
661  * Should be called under cgroup_[tree_]mutex.
662  */
663 #define for_each_e_css(css, ssid, cgrp)					    \
664 	for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)	    \
665 		if (!((css) = cgroup_e_css_by_mask(cgrp,		    \
666 						   cgroup_subsys[(ssid)]))) \
667 			;						    \
668 		else
669 
670 /**
671  * do_each_subsys_mask - filter for_each_subsys with a bitmask
672  * @ss: the iteration cursor
673  * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
674  * @ss_mask: the bitmask
675  *
676  * The block will only run for cases where the ssid-th bit (1 << ssid) of
677  * @ss_mask is set.
678  */
679 #define do_each_subsys_mask(ss, ssid, ss_mask) do {			\
680 	unsigned long __ss_mask = (ss_mask);				\
681 	if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */	\
682 		(ssid) = 0;						\
683 		break;							\
684 	}								\
685 	for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) {	\
686 		(ss) = cgroup_subsys[ssid];				\
687 		{
688 
689 #define while_each_subsys_mask()					\
690 		}							\
691 	}								\
692 } while (false)
693 
694 /* iterate over child cgrps, lock should be held throughout iteration */
695 #define cgroup_for_each_live_child(child, cgrp)				\
696 	list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
697 		if (({ lockdep_assert_held(&cgroup_mutex);		\
698 		       cgroup_is_dead(child); }))			\
699 			;						\
700 		else
701 
702 /* walk live descendants in pre order */
703 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)		\
704 	css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL))	\
705 		if (({ lockdep_assert_held(&cgroup_mutex);		\
706 		       (dsct) = (d_css)->cgroup;			\
707 		       cgroup_is_dead(dsct); }))			\
708 			;						\
709 		else
710 
711 /* walk live descendants in postorder */
712 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp)		\
713 	css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL))	\
714 		if (({ lockdep_assert_held(&cgroup_mutex);		\
715 		       (dsct) = (d_css)->cgroup;			\
716 		       cgroup_is_dead(dsct); }))			\
717 			;						\
718 		else
719 
720 /*
721  * The default css_set - used by init and its children prior to any
722  * hierarchies being mounted. It contains a pointer to the root state
723  * for each subsystem. Also used to anchor the list of css_sets. Not
724  * reference-counted, to improve performance when child cgroups
725  * haven't been created.
726  */
727 struct css_set init_css_set = {
728 	.refcount		= REFCOUNT_INIT(1),
729 	.dom_cset		= &init_css_set,
730 	.tasks			= LIST_HEAD_INIT(init_css_set.tasks),
731 	.mg_tasks		= LIST_HEAD_INIT(init_css_set.mg_tasks),
732 	.dying_tasks		= LIST_HEAD_INIT(init_css_set.dying_tasks),
733 	.task_iters		= LIST_HEAD_INIT(init_css_set.task_iters),
734 	.threaded_csets		= LIST_HEAD_INIT(init_css_set.threaded_csets),
735 	.cgrp_links		= LIST_HEAD_INIT(init_css_set.cgrp_links),
736 	.mg_preload_node	= LIST_HEAD_INIT(init_css_set.mg_preload_node),
737 	.mg_node		= LIST_HEAD_INIT(init_css_set.mg_node),
738 
739 	/*
740 	 * The following field is re-initialized when this cset gets linked
741 	 * in cgroup_init().  However, let's initialize the field
742 	 * statically too so that the default cgroup can be accessed safely
743 	 * early during boot.
744 	 */
745 	.dfl_cgrp		= &cgrp_dfl_root.cgrp,
746 };
747 
748 static int css_set_count	= 1;	/* 1 for init_css_set */
749 
750 static bool css_set_threaded(struct css_set *cset)
751 {
752 	return cset->dom_cset != cset;
753 }
754 
755 /**
756  * css_set_populated - does a css_set contain any tasks?
757  * @cset: target css_set
758  *
759  * css_set_populated() should be the same as !!cset->nr_tasks at steady
760  * state. However, css_set_populated() can be called while a task is being
761  * added to or removed from the linked list before the nr_tasks is
762  * properly updated. Hence, we can't just look at ->nr_tasks here.
763  */
764 static bool css_set_populated(struct css_set *cset)
765 {
766 	lockdep_assert_held(&css_set_lock);
767 
768 	return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
769 }
770 
771 /**
772  * cgroup_update_populated - update the populated count of a cgroup
773  * @cgrp: the target cgroup
774  * @populated: inc or dec populated count
775  *
776  * One of the css_sets associated with @cgrp is either getting its first
777  * task or losing the last.  Update @cgrp->nr_populated_* accordingly.  The
778  * count is propagated towards root so that a given cgroup's
779  * nr_populated_children is zero iff none of its descendants contain any
780  * tasks.
781  *
782  * @cgrp's interface file "cgroup.populated" is zero if both
783  * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and
784  * 1 otherwise.  When the sum changes from or to zero, userland is notified
785  * that the content of the interface file has changed.  This can be used to
786  * detect when @cgrp and its descendants become populated or empty.
787  */
788 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
789 {
790 	struct cgroup *child = NULL;
791 	int adj = populated ? 1 : -1;
792 
793 	lockdep_assert_held(&css_set_lock);
794 
795 	do {
796 		bool was_populated = cgroup_is_populated(cgrp);
797 
798 		if (!child) {
799 			cgrp->nr_populated_csets += adj;
800 		} else {
801 			if (cgroup_is_threaded(child))
802 				cgrp->nr_populated_threaded_children += adj;
803 			else
804 				cgrp->nr_populated_domain_children += adj;
805 		}
806 
807 		if (was_populated == cgroup_is_populated(cgrp))
808 			break;
809 
810 		cgroup1_check_for_release(cgrp);
811 		TRACE_CGROUP_PATH(notify_populated, cgrp,
812 				  cgroup_is_populated(cgrp));
813 		cgroup_file_notify(&cgrp->events_file);
814 
815 		child = cgrp;
816 		cgrp = cgroup_parent(cgrp);
817 	} while (cgrp);
818 }
819 
820 /**
821  * css_set_update_populated - update populated state of a css_set
822  * @cset: target css_set
823  * @populated: whether @cset is populated or depopulated
824  *
825  * @cset is either getting the first task or losing the last.  Update the
826  * populated counters of all associated cgroups accordingly.
827  */
828 static void css_set_update_populated(struct css_set *cset, bool populated)
829 {
830 	struct cgrp_cset_link *link;
831 
832 	lockdep_assert_held(&css_set_lock);
833 
834 	list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
835 		cgroup_update_populated(link->cgrp, populated);
836 }
837 
838 /*
839  * @task is leaving, advance task iterators which are pointing to it so
840  * that they can resume at the next position.  Advancing an iterator might
841  * remove it from the list, use safe walk.  See css_task_iter_skip() for
842  * details.
843  */
844 static void css_set_skip_task_iters(struct css_set *cset,
845 				    struct task_struct *task)
846 {
847 	struct css_task_iter *it, *pos;
848 
849 	list_for_each_entry_safe(it, pos, &cset->task_iters, iters_node)
850 		css_task_iter_skip(it, task);
851 }
852 
853 /**
854  * css_set_move_task - move a task from one css_set to another
855  * @task: task being moved
856  * @from_cset: css_set @task currently belongs to (may be NULL)
857  * @to_cset: new css_set @task is being moved to (may be NULL)
858  * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
859  *
860  * Move @task from @from_cset to @to_cset.  If @task didn't belong to any
861  * css_set, @from_cset can be NULL.  If @task is being disassociated
862  * instead of moved, @to_cset can be NULL.
863  *
864  * This function automatically handles populated counter updates and
865  * css_task_iter adjustments but the caller is responsible for managing
866  * @from_cset and @to_cset's reference counts.
867  */
868 static void css_set_move_task(struct task_struct *task,
869 			      struct css_set *from_cset, struct css_set *to_cset,
870 			      bool use_mg_tasks)
871 {
872 	lockdep_assert_held(&css_set_lock);
873 
874 	if (to_cset && !css_set_populated(to_cset))
875 		css_set_update_populated(to_cset, true);
876 
877 	if (from_cset) {
878 		WARN_ON_ONCE(list_empty(&task->cg_list));
879 
880 		css_set_skip_task_iters(from_cset, task);
881 		list_del_init(&task->cg_list);
882 		if (!css_set_populated(from_cset))
883 			css_set_update_populated(from_cset, false);
884 	} else {
885 		WARN_ON_ONCE(!list_empty(&task->cg_list));
886 	}
887 
888 	if (to_cset) {
889 		/*
890 		 * We are synchronized through cgroup_threadgroup_rwsem
891 		 * against PF_EXITING setting such that we can't race
892 		 * against cgroup_exit()/cgroup_free() dropping the css_set.
893 		 */
894 		WARN_ON_ONCE(task->flags & PF_EXITING);
895 
896 		cgroup_move_task(task, to_cset);
897 		list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
898 							     &to_cset->tasks);
899 	}
900 }
901 
902 /*
903  * hash table for cgroup groups. This improves the performance to find
904  * an existing css_set. This hash doesn't (currently) take into
905  * account cgroups in empty hierarchies.
906  */
907 #define CSS_SET_HASH_BITS	7
908 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
909 
910 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
911 {
912 	unsigned long key = 0UL;
913 	struct cgroup_subsys *ss;
914 	int i;
915 
916 	for_each_subsys(ss, i)
917 		key += (unsigned long)css[i];
918 	key = (key >> 16) ^ key;
919 
920 	return key;
921 }
922 
923 void put_css_set_locked(struct css_set *cset)
924 {
925 	struct cgrp_cset_link *link, *tmp_link;
926 	struct cgroup_subsys *ss;
927 	int ssid;
928 
929 	lockdep_assert_held(&css_set_lock);
930 
931 	if (!refcount_dec_and_test(&cset->refcount))
932 		return;
933 
934 	WARN_ON_ONCE(!list_empty(&cset->threaded_csets));
935 
936 	/* This css_set is dead. Unlink it and release cgroup and css refs */
937 	for_each_subsys(ss, ssid) {
938 		list_del(&cset->e_cset_node[ssid]);
939 		css_put(cset->subsys[ssid]);
940 	}
941 	hash_del(&cset->hlist);
942 	css_set_count--;
943 
944 	list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
945 		list_del(&link->cset_link);
946 		list_del(&link->cgrp_link);
947 		if (cgroup_parent(link->cgrp))
948 			cgroup_put(link->cgrp);
949 		kfree(link);
950 	}
951 
952 	if (css_set_threaded(cset)) {
953 		list_del(&cset->threaded_csets_node);
954 		put_css_set_locked(cset->dom_cset);
955 	}
956 
957 	kfree_rcu(cset, rcu_head);
958 }
959 
960 /**
961  * compare_css_sets - helper function for find_existing_css_set().
962  * @cset: candidate css_set being tested
963  * @old_cset: existing css_set for a task
964  * @new_cgrp: cgroup that's being entered by the task
965  * @template: desired set of css pointers in css_set (pre-calculated)
966  *
967  * Returns true if "cset" matches "old_cset" except for the hierarchy
968  * which "new_cgrp" belongs to, for which it should match "new_cgrp".
969  */
970 static bool compare_css_sets(struct css_set *cset,
971 			     struct css_set *old_cset,
972 			     struct cgroup *new_cgrp,
973 			     struct cgroup_subsys_state *template[])
974 {
975 	struct cgroup *new_dfl_cgrp;
976 	struct list_head *l1, *l2;
977 
978 	/*
979 	 * On the default hierarchy, there can be csets which are
980 	 * associated with the same set of cgroups but different csses.
981 	 * Let's first ensure that csses match.
982 	 */
983 	if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
984 		return false;
985 
986 
987 	/* @cset's domain should match the default cgroup's */
988 	if (cgroup_on_dfl(new_cgrp))
989 		new_dfl_cgrp = new_cgrp;
990 	else
991 		new_dfl_cgrp = old_cset->dfl_cgrp;
992 
993 	if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp)
994 		return false;
995 
996 	/*
997 	 * Compare cgroup pointers in order to distinguish between
998 	 * different cgroups in hierarchies.  As different cgroups may
999 	 * share the same effective css, this comparison is always
1000 	 * necessary.
1001 	 */
1002 	l1 = &cset->cgrp_links;
1003 	l2 = &old_cset->cgrp_links;
1004 	while (1) {
1005 		struct cgrp_cset_link *link1, *link2;
1006 		struct cgroup *cgrp1, *cgrp2;
1007 
1008 		l1 = l1->next;
1009 		l2 = l2->next;
1010 		/* See if we reached the end - both lists are equal length. */
1011 		if (l1 == &cset->cgrp_links) {
1012 			BUG_ON(l2 != &old_cset->cgrp_links);
1013 			break;
1014 		} else {
1015 			BUG_ON(l2 == &old_cset->cgrp_links);
1016 		}
1017 		/* Locate the cgroups associated with these links. */
1018 		link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
1019 		link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
1020 		cgrp1 = link1->cgrp;
1021 		cgrp2 = link2->cgrp;
1022 		/* Hierarchies should be linked in the same order. */
1023 		BUG_ON(cgrp1->root != cgrp2->root);
1024 
1025 		/*
1026 		 * If this hierarchy is the hierarchy of the cgroup
1027 		 * that's changing, then we need to check that this
1028 		 * css_set points to the new cgroup; if it's any other
1029 		 * hierarchy, then this css_set should point to the
1030 		 * same cgroup as the old css_set.
1031 		 */
1032 		if (cgrp1->root == new_cgrp->root) {
1033 			if (cgrp1 != new_cgrp)
1034 				return false;
1035 		} else {
1036 			if (cgrp1 != cgrp2)
1037 				return false;
1038 		}
1039 	}
1040 	return true;
1041 }
1042 
1043 /**
1044  * find_existing_css_set - init css array and find the matching css_set
1045  * @old_cset: the css_set that we're using before the cgroup transition
1046  * @cgrp: the cgroup that we're moving into
1047  * @template: out param for the new set of csses, should be clear on entry
1048  */
1049 static struct css_set *find_existing_css_set(struct css_set *old_cset,
1050 					struct cgroup *cgrp,
1051 					struct cgroup_subsys_state *template[])
1052 {
1053 	struct cgroup_root *root = cgrp->root;
1054 	struct cgroup_subsys *ss;
1055 	struct css_set *cset;
1056 	unsigned long key;
1057 	int i;
1058 
1059 	/*
1060 	 * Build the set of subsystem state objects that we want to see in the
1061 	 * new css_set. While subsystems can change globally, the entries here
1062 	 * won't change, so no need for locking.
1063 	 */
1064 	for_each_subsys(ss, i) {
1065 		if (root->subsys_mask & (1UL << i)) {
1066 			/*
1067 			 * @ss is in this hierarchy, so we want the
1068 			 * effective css from @cgrp.
1069 			 */
1070 			template[i] = cgroup_e_css_by_mask(cgrp, ss);
1071 		} else {
1072 			/*
1073 			 * @ss is not in this hierarchy, so we don't want
1074 			 * to change the css.
1075 			 */
1076 			template[i] = old_cset->subsys[i];
1077 		}
1078 	}
1079 
1080 	key = css_set_hash(template);
1081 	hash_for_each_possible(css_set_table, cset, hlist, key) {
1082 		if (!compare_css_sets(cset, old_cset, cgrp, template))
1083 			continue;
1084 
1085 		/* This css_set matches what we need */
1086 		return cset;
1087 	}
1088 
1089 	/* No existing cgroup group matched */
1090 	return NULL;
1091 }
1092 
1093 static void free_cgrp_cset_links(struct list_head *links_to_free)
1094 {
1095 	struct cgrp_cset_link *link, *tmp_link;
1096 
1097 	list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
1098 		list_del(&link->cset_link);
1099 		kfree(link);
1100 	}
1101 }
1102 
1103 /**
1104  * allocate_cgrp_cset_links - allocate cgrp_cset_links
1105  * @count: the number of links to allocate
1106  * @tmp_links: list_head the allocated links are put on
1107  *
1108  * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1109  * through ->cset_link.  Returns 0 on success or -errno.
1110  */
1111 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
1112 {
1113 	struct cgrp_cset_link *link;
1114 	int i;
1115 
1116 	INIT_LIST_HEAD(tmp_links);
1117 
1118 	for (i = 0; i < count; i++) {
1119 		link = kzalloc(sizeof(*link), GFP_KERNEL);
1120 		if (!link) {
1121 			free_cgrp_cset_links(tmp_links);
1122 			return -ENOMEM;
1123 		}
1124 		list_add(&link->cset_link, tmp_links);
1125 	}
1126 	return 0;
1127 }
1128 
1129 /**
1130  * link_css_set - a helper function to link a css_set to a cgroup
1131  * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
1132  * @cset: the css_set to be linked
1133  * @cgrp: the destination cgroup
1134  */
1135 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1136 			 struct cgroup *cgrp)
1137 {
1138 	struct cgrp_cset_link *link;
1139 
1140 	BUG_ON(list_empty(tmp_links));
1141 
1142 	if (cgroup_on_dfl(cgrp))
1143 		cset->dfl_cgrp = cgrp;
1144 
1145 	link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1146 	link->cset = cset;
1147 	link->cgrp = cgrp;
1148 
1149 	/*
1150 	 * Always add links to the tail of the lists so that the lists are
1151 	 * in chronological order.
1152 	 */
1153 	list_move_tail(&link->cset_link, &cgrp->cset_links);
1154 	list_add_tail(&link->cgrp_link, &cset->cgrp_links);
1155 
1156 	if (cgroup_parent(cgrp))
1157 		cgroup_get_live(cgrp);
1158 }
1159 
1160 /**
1161  * find_css_set - return a new css_set with one cgroup updated
1162  * @old_cset: the baseline css_set
1163  * @cgrp: the cgroup to be updated
1164  *
1165  * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1166  * substituted into the appropriate hierarchy.
1167  */
1168 static struct css_set *find_css_set(struct css_set *old_cset,
1169 				    struct cgroup *cgrp)
1170 {
1171 	struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
1172 	struct css_set *cset;
1173 	struct list_head tmp_links;
1174 	struct cgrp_cset_link *link;
1175 	struct cgroup_subsys *ss;
1176 	unsigned long key;
1177 	int ssid;
1178 
1179 	lockdep_assert_held(&cgroup_mutex);
1180 
1181 	/* First see if we already have a cgroup group that matches
1182 	 * the desired set */
1183 	spin_lock_irq(&css_set_lock);
1184 	cset = find_existing_css_set(old_cset, cgrp, template);
1185 	if (cset)
1186 		get_css_set(cset);
1187 	spin_unlock_irq(&css_set_lock);
1188 
1189 	if (cset)
1190 		return cset;
1191 
1192 	cset = kzalloc(sizeof(*cset), GFP_KERNEL);
1193 	if (!cset)
1194 		return NULL;
1195 
1196 	/* Allocate all the cgrp_cset_link objects that we'll need */
1197 	if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1198 		kfree(cset);
1199 		return NULL;
1200 	}
1201 
1202 	refcount_set(&cset->refcount, 1);
1203 	cset->dom_cset = cset;
1204 	INIT_LIST_HEAD(&cset->tasks);
1205 	INIT_LIST_HEAD(&cset->mg_tasks);
1206 	INIT_LIST_HEAD(&cset->dying_tasks);
1207 	INIT_LIST_HEAD(&cset->task_iters);
1208 	INIT_LIST_HEAD(&cset->threaded_csets);
1209 	INIT_HLIST_NODE(&cset->hlist);
1210 	INIT_LIST_HEAD(&cset->cgrp_links);
1211 	INIT_LIST_HEAD(&cset->mg_preload_node);
1212 	INIT_LIST_HEAD(&cset->mg_node);
1213 
1214 	/* Copy the set of subsystem state objects generated in
1215 	 * find_existing_css_set() */
1216 	memcpy(cset->subsys, template, sizeof(cset->subsys));
1217 
1218 	spin_lock_irq(&css_set_lock);
1219 	/* Add reference counts and links from the new css_set. */
1220 	list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1221 		struct cgroup *c = link->cgrp;
1222 
1223 		if (c->root == cgrp->root)
1224 			c = cgrp;
1225 		link_css_set(&tmp_links, cset, c);
1226 	}
1227 
1228 	BUG_ON(!list_empty(&tmp_links));
1229 
1230 	css_set_count++;
1231 
1232 	/* Add @cset to the hash table */
1233 	key = css_set_hash(cset->subsys);
1234 	hash_add(css_set_table, &cset->hlist, key);
1235 
1236 	for_each_subsys(ss, ssid) {
1237 		struct cgroup_subsys_state *css = cset->subsys[ssid];
1238 
1239 		list_add_tail(&cset->e_cset_node[ssid],
1240 			      &css->cgroup->e_csets[ssid]);
1241 		css_get(css);
1242 	}
1243 
1244 	spin_unlock_irq(&css_set_lock);
1245 
1246 	/*
1247 	 * If @cset should be threaded, look up the matching dom_cset and
1248 	 * link them up.  We first fully initialize @cset then look for the
1249 	 * dom_cset.  It's simpler this way and safe as @cset is guaranteed
1250 	 * to stay empty until we return.
1251 	 */
1252 	if (cgroup_is_threaded(cset->dfl_cgrp)) {
1253 		struct css_set *dcset;
1254 
1255 		dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp);
1256 		if (!dcset) {
1257 			put_css_set(cset);
1258 			return NULL;
1259 		}
1260 
1261 		spin_lock_irq(&css_set_lock);
1262 		cset->dom_cset = dcset;
1263 		list_add_tail(&cset->threaded_csets_node,
1264 			      &dcset->threaded_csets);
1265 		spin_unlock_irq(&css_set_lock);
1266 	}
1267 
1268 	return cset;
1269 }
1270 
1271 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1272 {
1273 	struct cgroup *root_cgrp = kf_root->kn->priv;
1274 
1275 	return root_cgrp->root;
1276 }
1277 
1278 static int cgroup_init_root_id(struct cgroup_root *root)
1279 {
1280 	int id;
1281 
1282 	lockdep_assert_held(&cgroup_mutex);
1283 
1284 	id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1285 	if (id < 0)
1286 		return id;
1287 
1288 	root->hierarchy_id = id;
1289 	return 0;
1290 }
1291 
1292 static void cgroup_exit_root_id(struct cgroup_root *root)
1293 {
1294 	lockdep_assert_held(&cgroup_mutex);
1295 
1296 	idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1297 }
1298 
1299 void cgroup_free_root(struct cgroup_root *root)
1300 {
1301 	kfree(root);
1302 }
1303 
1304 static void cgroup_destroy_root(struct cgroup_root *root)
1305 {
1306 	struct cgroup *cgrp = &root->cgrp;
1307 	struct cgrp_cset_link *link, *tmp_link;
1308 
1309 	trace_cgroup_destroy_root(root);
1310 
1311 	cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1312 
1313 	BUG_ON(atomic_read(&root->nr_cgrps));
1314 	BUG_ON(!list_empty(&cgrp->self.children));
1315 
1316 	/* Rebind all subsystems back to the default hierarchy */
1317 	WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
1318 
1319 	/*
1320 	 * Release all the links from cset_links to this hierarchy's
1321 	 * root cgroup
1322 	 */
1323 	spin_lock_irq(&css_set_lock);
1324 
1325 	list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1326 		list_del(&link->cset_link);
1327 		list_del(&link->cgrp_link);
1328 		kfree(link);
1329 	}
1330 
1331 	spin_unlock_irq(&css_set_lock);
1332 
1333 	if (!list_empty(&root->root_list)) {
1334 		list_del(&root->root_list);
1335 		cgroup_root_count--;
1336 	}
1337 
1338 	cgroup_exit_root_id(root);
1339 
1340 	mutex_unlock(&cgroup_mutex);
1341 
1342 	cgroup_rstat_exit(cgrp);
1343 	kernfs_destroy_root(root->kf_root);
1344 	cgroup_free_root(root);
1345 }
1346 
1347 /*
1348  * look up cgroup associated with current task's cgroup namespace on the
1349  * specified hierarchy
1350  */
1351 static struct cgroup *
1352 current_cgns_cgroup_from_root(struct cgroup_root *root)
1353 {
1354 	struct cgroup *res = NULL;
1355 	struct css_set *cset;
1356 
1357 	lockdep_assert_held(&css_set_lock);
1358 
1359 	rcu_read_lock();
1360 
1361 	cset = current->nsproxy->cgroup_ns->root_cset;
1362 	if (cset == &init_css_set) {
1363 		res = &root->cgrp;
1364 	} else if (root == &cgrp_dfl_root) {
1365 		res = cset->dfl_cgrp;
1366 	} else {
1367 		struct cgrp_cset_link *link;
1368 
1369 		list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1370 			struct cgroup *c = link->cgrp;
1371 
1372 			if (c->root == root) {
1373 				res = c;
1374 				break;
1375 			}
1376 		}
1377 	}
1378 	rcu_read_unlock();
1379 
1380 	BUG_ON(!res);
1381 	return res;
1382 }
1383 
1384 /* look up cgroup associated with given css_set on the specified hierarchy */
1385 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1386 					    struct cgroup_root *root)
1387 {
1388 	struct cgroup *res = NULL;
1389 
1390 	lockdep_assert_held(&cgroup_mutex);
1391 	lockdep_assert_held(&css_set_lock);
1392 
1393 	if (cset == &init_css_set) {
1394 		res = &root->cgrp;
1395 	} else if (root == &cgrp_dfl_root) {
1396 		res = cset->dfl_cgrp;
1397 	} else {
1398 		struct cgrp_cset_link *link;
1399 
1400 		list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1401 			struct cgroup *c = link->cgrp;
1402 
1403 			if (c->root == root) {
1404 				res = c;
1405 				break;
1406 			}
1407 		}
1408 	}
1409 
1410 	BUG_ON(!res);
1411 	return res;
1412 }
1413 
1414 /*
1415  * Return the cgroup for "task" from the given hierarchy. Must be
1416  * called with cgroup_mutex and css_set_lock held.
1417  */
1418 struct cgroup *task_cgroup_from_root(struct task_struct *task,
1419 				     struct cgroup_root *root)
1420 {
1421 	/*
1422 	 * No need to lock the task - since we hold css_set_lock the
1423 	 * task can't change groups.
1424 	 */
1425 	return cset_cgroup_from_root(task_css_set(task), root);
1426 }
1427 
1428 /*
1429  * A task must hold cgroup_mutex to modify cgroups.
1430  *
1431  * Any task can increment and decrement the count field without lock.
1432  * So in general, code holding cgroup_mutex can't rely on the count
1433  * field not changing.  However, if the count goes to zero, then only
1434  * cgroup_attach_task() can increment it again.  Because a count of zero
1435  * means that no tasks are currently attached, therefore there is no
1436  * way a task attached to that cgroup can fork (the other way to
1437  * increment the count).  So code holding cgroup_mutex can safely
1438  * assume that if the count is zero, it will stay zero. Similarly, if
1439  * a task holds cgroup_mutex on a cgroup with zero count, it
1440  * knows that the cgroup won't be removed, as cgroup_rmdir()
1441  * needs that mutex.
1442  *
1443  * A cgroup can only be deleted if both its 'count' of using tasks
1444  * is zero, and its list of 'children' cgroups is empty.  Since all
1445  * tasks in the system use _some_ cgroup, and since there is always at
1446  * least one task in the system (init, pid == 1), therefore, root cgroup
1447  * always has either children cgroups and/or using tasks.  So we don't
1448  * need a special hack to ensure that root cgroup cannot be deleted.
1449  *
1450  * P.S.  One more locking exception.  RCU is used to guard the
1451  * update of a tasks cgroup pointer by cgroup_attach_task()
1452  */
1453 
1454 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1455 
1456 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1457 			      char *buf)
1458 {
1459 	struct cgroup_subsys *ss = cft->ss;
1460 
1461 	if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1462 	    !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
1463 		const char *dbg = (cft->flags & CFTYPE_DEBUG) ? ".__DEBUG__." : "";
1464 
1465 		snprintf(buf, CGROUP_FILE_NAME_MAX, "%s%s.%s",
1466 			 dbg, cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1467 			 cft->name);
1468 	} else {
1469 		strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1470 	}
1471 	return buf;
1472 }
1473 
1474 /**
1475  * cgroup_file_mode - deduce file mode of a control file
1476  * @cft: the control file in question
1477  *
1478  * S_IRUGO for read, S_IWUSR for write.
1479  */
1480 static umode_t cgroup_file_mode(const struct cftype *cft)
1481 {
1482 	umode_t mode = 0;
1483 
1484 	if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1485 		mode |= S_IRUGO;
1486 
1487 	if (cft->write_u64 || cft->write_s64 || cft->write) {
1488 		if (cft->flags & CFTYPE_WORLD_WRITABLE)
1489 			mode |= S_IWUGO;
1490 		else
1491 			mode |= S_IWUSR;
1492 	}
1493 
1494 	return mode;
1495 }
1496 
1497 /**
1498  * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1499  * @subtree_control: the new subtree_control mask to consider
1500  * @this_ss_mask: available subsystems
1501  *
1502  * On the default hierarchy, a subsystem may request other subsystems to be
1503  * enabled together through its ->depends_on mask.  In such cases, more
1504  * subsystems than specified in "cgroup.subtree_control" may be enabled.
1505  *
1506  * This function calculates which subsystems need to be enabled if
1507  * @subtree_control is to be applied while restricted to @this_ss_mask.
1508  */
1509 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
1510 {
1511 	u16 cur_ss_mask = subtree_control;
1512 	struct cgroup_subsys *ss;
1513 	int ssid;
1514 
1515 	lockdep_assert_held(&cgroup_mutex);
1516 
1517 	cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1518 
1519 	while (true) {
1520 		u16 new_ss_mask = cur_ss_mask;
1521 
1522 		do_each_subsys_mask(ss, ssid, cur_ss_mask) {
1523 			new_ss_mask |= ss->depends_on;
1524 		} while_each_subsys_mask();
1525 
1526 		/*
1527 		 * Mask out subsystems which aren't available.  This can
1528 		 * happen only if some depended-upon subsystems were bound
1529 		 * to non-default hierarchies.
1530 		 */
1531 		new_ss_mask &= this_ss_mask;
1532 
1533 		if (new_ss_mask == cur_ss_mask)
1534 			break;
1535 		cur_ss_mask = new_ss_mask;
1536 	}
1537 
1538 	return cur_ss_mask;
1539 }
1540 
1541 /**
1542  * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1543  * @kn: the kernfs_node being serviced
1544  *
1545  * This helper undoes cgroup_kn_lock_live() and should be invoked before
1546  * the method finishes if locking succeeded.  Note that once this function
1547  * returns the cgroup returned by cgroup_kn_lock_live() may become
1548  * inaccessible any time.  If the caller intends to continue to access the
1549  * cgroup, it should pin it before invoking this function.
1550  */
1551 void cgroup_kn_unlock(struct kernfs_node *kn)
1552 {
1553 	struct cgroup *cgrp;
1554 
1555 	if (kernfs_type(kn) == KERNFS_DIR)
1556 		cgrp = kn->priv;
1557 	else
1558 		cgrp = kn->parent->priv;
1559 
1560 	mutex_unlock(&cgroup_mutex);
1561 
1562 	kernfs_unbreak_active_protection(kn);
1563 	cgroup_put(cgrp);
1564 }
1565 
1566 /**
1567  * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1568  * @kn: the kernfs_node being serviced
1569  * @drain_offline: perform offline draining on the cgroup
1570  *
1571  * This helper is to be used by a cgroup kernfs method currently servicing
1572  * @kn.  It breaks the active protection, performs cgroup locking and
1573  * verifies that the associated cgroup is alive.  Returns the cgroup if
1574  * alive; otherwise, %NULL.  A successful return should be undone by a
1575  * matching cgroup_kn_unlock() invocation.  If @drain_offline is %true, the
1576  * cgroup is drained of offlining csses before return.
1577  *
1578  * Any cgroup kernfs method implementation which requires locking the
1579  * associated cgroup should use this helper.  It avoids nesting cgroup
1580  * locking under kernfs active protection and allows all kernfs operations
1581  * including self-removal.
1582  */
1583 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline)
1584 {
1585 	struct cgroup *cgrp;
1586 
1587 	if (kernfs_type(kn) == KERNFS_DIR)
1588 		cgrp = kn->priv;
1589 	else
1590 		cgrp = kn->parent->priv;
1591 
1592 	/*
1593 	 * We're gonna grab cgroup_mutex which nests outside kernfs
1594 	 * active_ref.  cgroup liveliness check alone provides enough
1595 	 * protection against removal.  Ensure @cgrp stays accessible and
1596 	 * break the active_ref protection.
1597 	 */
1598 	if (!cgroup_tryget(cgrp))
1599 		return NULL;
1600 	kernfs_break_active_protection(kn);
1601 
1602 	if (drain_offline)
1603 		cgroup_lock_and_drain_offline(cgrp);
1604 	else
1605 		mutex_lock(&cgroup_mutex);
1606 
1607 	if (!cgroup_is_dead(cgrp))
1608 		return cgrp;
1609 
1610 	cgroup_kn_unlock(kn);
1611 	return NULL;
1612 }
1613 
1614 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1615 {
1616 	char name[CGROUP_FILE_NAME_MAX];
1617 
1618 	lockdep_assert_held(&cgroup_mutex);
1619 
1620 	if (cft->file_offset) {
1621 		struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1622 		struct cgroup_file *cfile = (void *)css + cft->file_offset;
1623 
1624 		spin_lock_irq(&cgroup_file_kn_lock);
1625 		cfile->kn = NULL;
1626 		spin_unlock_irq(&cgroup_file_kn_lock);
1627 
1628 		del_timer_sync(&cfile->notify_timer);
1629 	}
1630 
1631 	kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1632 }
1633 
1634 /**
1635  * css_clear_dir - remove subsys files in a cgroup directory
1636  * @css: target css
1637  */
1638 static void css_clear_dir(struct cgroup_subsys_state *css)
1639 {
1640 	struct cgroup *cgrp = css->cgroup;
1641 	struct cftype *cfts;
1642 
1643 	if (!(css->flags & CSS_VISIBLE))
1644 		return;
1645 
1646 	css->flags &= ~CSS_VISIBLE;
1647 
1648 	if (!css->ss) {
1649 		if (cgroup_on_dfl(cgrp))
1650 			cfts = cgroup_base_files;
1651 		else
1652 			cfts = cgroup1_base_files;
1653 
1654 		cgroup_addrm_files(css, cgrp, cfts, false);
1655 	} else {
1656 		list_for_each_entry(cfts, &css->ss->cfts, node)
1657 			cgroup_addrm_files(css, cgrp, cfts, false);
1658 	}
1659 }
1660 
1661 /**
1662  * css_populate_dir - create subsys files in a cgroup directory
1663  * @css: target css
1664  *
1665  * On failure, no file is added.
1666  */
1667 static int css_populate_dir(struct cgroup_subsys_state *css)
1668 {
1669 	struct cgroup *cgrp = css->cgroup;
1670 	struct cftype *cfts, *failed_cfts;
1671 	int ret;
1672 
1673 	if ((css->flags & CSS_VISIBLE) || !cgrp->kn)
1674 		return 0;
1675 
1676 	if (!css->ss) {
1677 		if (cgroup_on_dfl(cgrp))
1678 			cfts = cgroup_base_files;
1679 		else
1680 			cfts = cgroup1_base_files;
1681 
1682 		ret = cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1683 		if (ret < 0)
1684 			return ret;
1685 	} else {
1686 		list_for_each_entry(cfts, &css->ss->cfts, node) {
1687 			ret = cgroup_addrm_files(css, cgrp, cfts, true);
1688 			if (ret < 0) {
1689 				failed_cfts = cfts;
1690 				goto err;
1691 			}
1692 		}
1693 	}
1694 
1695 	css->flags |= CSS_VISIBLE;
1696 
1697 	return 0;
1698 err:
1699 	list_for_each_entry(cfts, &css->ss->cfts, node) {
1700 		if (cfts == failed_cfts)
1701 			break;
1702 		cgroup_addrm_files(css, cgrp, cfts, false);
1703 	}
1704 	return ret;
1705 }
1706 
1707 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
1708 {
1709 	struct cgroup *dcgrp = &dst_root->cgrp;
1710 	struct cgroup_subsys *ss;
1711 	int ssid, i, ret;
1712 
1713 	lockdep_assert_held(&cgroup_mutex);
1714 
1715 	do_each_subsys_mask(ss, ssid, ss_mask) {
1716 		/*
1717 		 * If @ss has non-root csses attached to it, can't move.
1718 		 * If @ss is an implicit controller, it is exempt from this
1719 		 * rule and can be stolen.
1720 		 */
1721 		if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1722 		    !ss->implicit_on_dfl)
1723 			return -EBUSY;
1724 
1725 		/* can't move between two non-dummy roots either */
1726 		if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1727 			return -EBUSY;
1728 	} while_each_subsys_mask();
1729 
1730 	do_each_subsys_mask(ss, ssid, ss_mask) {
1731 		struct cgroup_root *src_root = ss->root;
1732 		struct cgroup *scgrp = &src_root->cgrp;
1733 		struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1734 		struct css_set *cset;
1735 
1736 		WARN_ON(!css || cgroup_css(dcgrp, ss));
1737 
1738 		/* disable from the source */
1739 		src_root->subsys_mask &= ~(1 << ssid);
1740 		WARN_ON(cgroup_apply_control(scgrp));
1741 		cgroup_finalize_control(scgrp, 0);
1742 
1743 		/* rebind */
1744 		RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1745 		rcu_assign_pointer(dcgrp->subsys[ssid], css);
1746 		ss->root = dst_root;
1747 		css->cgroup = dcgrp;
1748 
1749 		spin_lock_irq(&css_set_lock);
1750 		hash_for_each(css_set_table, i, cset, hlist)
1751 			list_move_tail(&cset->e_cset_node[ss->id],
1752 				       &dcgrp->e_csets[ss->id]);
1753 		spin_unlock_irq(&css_set_lock);
1754 
1755 		if (ss->css_rstat_flush) {
1756 			list_del_rcu(&css->rstat_css_node);
1757 			list_add_rcu(&css->rstat_css_node,
1758 				     &dcgrp->rstat_css_list);
1759 		}
1760 
1761 		/* default hierarchy doesn't enable controllers by default */
1762 		dst_root->subsys_mask |= 1 << ssid;
1763 		if (dst_root == &cgrp_dfl_root) {
1764 			static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1765 		} else {
1766 			dcgrp->subtree_control |= 1 << ssid;
1767 			static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1768 		}
1769 
1770 		ret = cgroup_apply_control(dcgrp);
1771 		if (ret)
1772 			pr_warn("partial failure to rebind %s controller (err=%d)\n",
1773 				ss->name, ret);
1774 
1775 		if (ss->bind)
1776 			ss->bind(css);
1777 	} while_each_subsys_mask();
1778 
1779 	kernfs_activate(dcgrp->kn);
1780 	return 0;
1781 }
1782 
1783 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
1784 		     struct kernfs_root *kf_root)
1785 {
1786 	int len = 0;
1787 	char *buf = NULL;
1788 	struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
1789 	struct cgroup *ns_cgroup;
1790 
1791 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
1792 	if (!buf)
1793 		return -ENOMEM;
1794 
1795 	spin_lock_irq(&css_set_lock);
1796 	ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
1797 	len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
1798 	spin_unlock_irq(&css_set_lock);
1799 
1800 	if (len >= PATH_MAX)
1801 		len = -ERANGE;
1802 	else if (len > 0) {
1803 		seq_escape(sf, buf, " \t\n\\");
1804 		len = 0;
1805 	}
1806 	kfree(buf);
1807 	return len;
1808 }
1809 
1810 enum cgroup2_param {
1811 	Opt_nsdelegate,
1812 	Opt_memory_localevents,
1813 	Opt_memory_recursiveprot,
1814 	nr__cgroup2_params
1815 };
1816 
1817 static const struct fs_parameter_spec cgroup2_fs_parameters[] = {
1818 	fsparam_flag("nsdelegate",		Opt_nsdelegate),
1819 	fsparam_flag("memory_localevents",	Opt_memory_localevents),
1820 	fsparam_flag("memory_recursiveprot",	Opt_memory_recursiveprot),
1821 	{}
1822 };
1823 
1824 static int cgroup2_parse_param(struct fs_context *fc, struct fs_parameter *param)
1825 {
1826 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1827 	struct fs_parse_result result;
1828 	int opt;
1829 
1830 	opt = fs_parse(fc, cgroup2_fs_parameters, param, &result);
1831 	if (opt < 0)
1832 		return opt;
1833 
1834 	switch (opt) {
1835 	case Opt_nsdelegate:
1836 		ctx->flags |= CGRP_ROOT_NS_DELEGATE;
1837 		return 0;
1838 	case Opt_memory_localevents:
1839 		ctx->flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1840 		return 0;
1841 	case Opt_memory_recursiveprot:
1842 		ctx->flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1843 		return 0;
1844 	}
1845 	return -EINVAL;
1846 }
1847 
1848 static void apply_cgroup_root_flags(unsigned int root_flags)
1849 {
1850 	if (current->nsproxy->cgroup_ns == &init_cgroup_ns) {
1851 		if (root_flags & CGRP_ROOT_NS_DELEGATE)
1852 			cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE;
1853 		else
1854 			cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE;
1855 
1856 		if (root_flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1857 			cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1858 		else
1859 			cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1860 
1861 		if (root_flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
1862 			cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1863 		else
1864 			cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1865 	}
1866 }
1867 
1868 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
1869 {
1870 	if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE)
1871 		seq_puts(seq, ",nsdelegate");
1872 	if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1873 		seq_puts(seq, ",memory_localevents");
1874 	if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
1875 		seq_puts(seq, ",memory_recursiveprot");
1876 	return 0;
1877 }
1878 
1879 static int cgroup_reconfigure(struct fs_context *fc)
1880 {
1881 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1882 
1883 	apply_cgroup_root_flags(ctx->flags);
1884 	return 0;
1885 }
1886 
1887 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1888 {
1889 	struct cgroup_subsys *ss;
1890 	int ssid;
1891 
1892 	INIT_LIST_HEAD(&cgrp->self.sibling);
1893 	INIT_LIST_HEAD(&cgrp->self.children);
1894 	INIT_LIST_HEAD(&cgrp->cset_links);
1895 	INIT_LIST_HEAD(&cgrp->pidlists);
1896 	mutex_init(&cgrp->pidlist_mutex);
1897 	cgrp->self.cgroup = cgrp;
1898 	cgrp->self.flags |= CSS_ONLINE;
1899 	cgrp->dom_cgrp = cgrp;
1900 	cgrp->max_descendants = INT_MAX;
1901 	cgrp->max_depth = INT_MAX;
1902 	INIT_LIST_HEAD(&cgrp->rstat_css_list);
1903 	prev_cputime_init(&cgrp->prev_cputime);
1904 
1905 	for_each_subsys(ss, ssid)
1906 		INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
1907 
1908 	init_waitqueue_head(&cgrp->offline_waitq);
1909 	INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent);
1910 }
1911 
1912 void init_cgroup_root(struct cgroup_fs_context *ctx)
1913 {
1914 	struct cgroup_root *root = ctx->root;
1915 	struct cgroup *cgrp = &root->cgrp;
1916 
1917 	INIT_LIST_HEAD(&root->root_list);
1918 	atomic_set(&root->nr_cgrps, 1);
1919 	cgrp->root = root;
1920 	init_cgroup_housekeeping(cgrp);
1921 
1922 	root->flags = ctx->flags;
1923 	if (ctx->release_agent)
1924 		strscpy(root->release_agent_path, ctx->release_agent, PATH_MAX);
1925 	if (ctx->name)
1926 		strscpy(root->name, ctx->name, MAX_CGROUP_ROOT_NAMELEN);
1927 	if (ctx->cpuset_clone_children)
1928 		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
1929 }
1930 
1931 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask)
1932 {
1933 	LIST_HEAD(tmp_links);
1934 	struct cgroup *root_cgrp = &root->cgrp;
1935 	struct kernfs_syscall_ops *kf_sops;
1936 	struct css_set *cset;
1937 	int i, ret;
1938 
1939 	lockdep_assert_held(&cgroup_mutex);
1940 
1941 	ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release,
1942 			      0, GFP_KERNEL);
1943 	if (ret)
1944 		goto out;
1945 
1946 	/*
1947 	 * We're accessing css_set_count without locking css_set_lock here,
1948 	 * but that's OK - it can only be increased by someone holding
1949 	 * cgroup_lock, and that's us.  Later rebinding may disable
1950 	 * controllers on the default hierarchy and thus create new csets,
1951 	 * which can't be more than the existing ones.  Allocate 2x.
1952 	 */
1953 	ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
1954 	if (ret)
1955 		goto cancel_ref;
1956 
1957 	ret = cgroup_init_root_id(root);
1958 	if (ret)
1959 		goto cancel_ref;
1960 
1961 	kf_sops = root == &cgrp_dfl_root ?
1962 		&cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops;
1963 
1964 	root->kf_root = kernfs_create_root(kf_sops,
1965 					   KERNFS_ROOT_CREATE_DEACTIVATED |
1966 					   KERNFS_ROOT_SUPPORT_EXPORTOP |
1967 					   KERNFS_ROOT_SUPPORT_USER_XATTR,
1968 					   root_cgrp);
1969 	if (IS_ERR(root->kf_root)) {
1970 		ret = PTR_ERR(root->kf_root);
1971 		goto exit_root_id;
1972 	}
1973 	root_cgrp->kn = root->kf_root->kn;
1974 	WARN_ON_ONCE(cgroup_ino(root_cgrp) != 1);
1975 	root_cgrp->ancestor_ids[0] = cgroup_id(root_cgrp);
1976 
1977 	ret = css_populate_dir(&root_cgrp->self);
1978 	if (ret)
1979 		goto destroy_root;
1980 
1981 	ret = cgroup_rstat_init(root_cgrp);
1982 	if (ret)
1983 		goto destroy_root;
1984 
1985 	ret = rebind_subsystems(root, ss_mask);
1986 	if (ret)
1987 		goto exit_stats;
1988 
1989 	ret = cgroup_bpf_inherit(root_cgrp);
1990 	WARN_ON_ONCE(ret);
1991 
1992 	trace_cgroup_setup_root(root);
1993 
1994 	/*
1995 	 * There must be no failure case after here, since rebinding takes
1996 	 * care of subsystems' refcounts, which are explicitly dropped in
1997 	 * the failure exit path.
1998 	 */
1999 	list_add(&root->root_list, &cgroup_roots);
2000 	cgroup_root_count++;
2001 
2002 	/*
2003 	 * Link the root cgroup in this hierarchy into all the css_set
2004 	 * objects.
2005 	 */
2006 	spin_lock_irq(&css_set_lock);
2007 	hash_for_each(css_set_table, i, cset, hlist) {
2008 		link_css_set(&tmp_links, cset, root_cgrp);
2009 		if (css_set_populated(cset))
2010 			cgroup_update_populated(root_cgrp, true);
2011 	}
2012 	spin_unlock_irq(&css_set_lock);
2013 
2014 	BUG_ON(!list_empty(&root_cgrp->self.children));
2015 	BUG_ON(atomic_read(&root->nr_cgrps) != 1);
2016 
2017 	ret = 0;
2018 	goto out;
2019 
2020 exit_stats:
2021 	cgroup_rstat_exit(root_cgrp);
2022 destroy_root:
2023 	kernfs_destroy_root(root->kf_root);
2024 	root->kf_root = NULL;
2025 exit_root_id:
2026 	cgroup_exit_root_id(root);
2027 cancel_ref:
2028 	percpu_ref_exit(&root_cgrp->self.refcnt);
2029 out:
2030 	free_cgrp_cset_links(&tmp_links);
2031 	return ret;
2032 }
2033 
2034 int cgroup_do_get_tree(struct fs_context *fc)
2035 {
2036 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2037 	int ret;
2038 
2039 	ctx->kfc.root = ctx->root->kf_root;
2040 	if (fc->fs_type == &cgroup2_fs_type)
2041 		ctx->kfc.magic = CGROUP2_SUPER_MAGIC;
2042 	else
2043 		ctx->kfc.magic = CGROUP_SUPER_MAGIC;
2044 	ret = kernfs_get_tree(fc);
2045 
2046 	/*
2047 	 * In non-init cgroup namespace, instead of root cgroup's dentry,
2048 	 * we return the dentry corresponding to the cgroupns->root_cgrp.
2049 	 */
2050 	if (!ret && ctx->ns != &init_cgroup_ns) {
2051 		struct dentry *nsdentry;
2052 		struct super_block *sb = fc->root->d_sb;
2053 		struct cgroup *cgrp;
2054 
2055 		mutex_lock(&cgroup_mutex);
2056 		spin_lock_irq(&css_set_lock);
2057 
2058 		cgrp = cset_cgroup_from_root(ctx->ns->root_cset, ctx->root);
2059 
2060 		spin_unlock_irq(&css_set_lock);
2061 		mutex_unlock(&cgroup_mutex);
2062 
2063 		nsdentry = kernfs_node_dentry(cgrp->kn, sb);
2064 		dput(fc->root);
2065 		if (IS_ERR(nsdentry)) {
2066 			deactivate_locked_super(sb);
2067 			ret = PTR_ERR(nsdentry);
2068 			nsdentry = NULL;
2069 		}
2070 		fc->root = nsdentry;
2071 	}
2072 
2073 	if (!ctx->kfc.new_sb_created)
2074 		cgroup_put(&ctx->root->cgrp);
2075 
2076 	return ret;
2077 }
2078 
2079 /*
2080  * Destroy a cgroup filesystem context.
2081  */
2082 static void cgroup_fs_context_free(struct fs_context *fc)
2083 {
2084 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2085 
2086 	kfree(ctx->name);
2087 	kfree(ctx->release_agent);
2088 	put_cgroup_ns(ctx->ns);
2089 	kernfs_free_fs_context(fc);
2090 	kfree(ctx);
2091 }
2092 
2093 static int cgroup_get_tree(struct fs_context *fc)
2094 {
2095 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2096 	int ret;
2097 
2098 	cgrp_dfl_visible = true;
2099 	cgroup_get_live(&cgrp_dfl_root.cgrp);
2100 	ctx->root = &cgrp_dfl_root;
2101 
2102 	ret = cgroup_do_get_tree(fc);
2103 	if (!ret)
2104 		apply_cgroup_root_flags(ctx->flags);
2105 	return ret;
2106 }
2107 
2108 static const struct fs_context_operations cgroup_fs_context_ops = {
2109 	.free		= cgroup_fs_context_free,
2110 	.parse_param	= cgroup2_parse_param,
2111 	.get_tree	= cgroup_get_tree,
2112 	.reconfigure	= cgroup_reconfigure,
2113 };
2114 
2115 static const struct fs_context_operations cgroup1_fs_context_ops = {
2116 	.free		= cgroup_fs_context_free,
2117 	.parse_param	= cgroup1_parse_param,
2118 	.get_tree	= cgroup1_get_tree,
2119 	.reconfigure	= cgroup1_reconfigure,
2120 };
2121 
2122 /*
2123  * Initialise the cgroup filesystem creation/reconfiguration context.  Notably,
2124  * we select the namespace we're going to use.
2125  */
2126 static int cgroup_init_fs_context(struct fs_context *fc)
2127 {
2128 	struct cgroup_fs_context *ctx;
2129 
2130 	ctx = kzalloc(sizeof(struct cgroup_fs_context), GFP_KERNEL);
2131 	if (!ctx)
2132 		return -ENOMEM;
2133 
2134 	ctx->ns = current->nsproxy->cgroup_ns;
2135 	get_cgroup_ns(ctx->ns);
2136 	fc->fs_private = &ctx->kfc;
2137 	if (fc->fs_type == &cgroup2_fs_type)
2138 		fc->ops = &cgroup_fs_context_ops;
2139 	else
2140 		fc->ops = &cgroup1_fs_context_ops;
2141 	put_user_ns(fc->user_ns);
2142 	fc->user_ns = get_user_ns(ctx->ns->user_ns);
2143 	fc->global = true;
2144 	return 0;
2145 }
2146 
2147 static void cgroup_kill_sb(struct super_block *sb)
2148 {
2149 	struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2150 	struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2151 
2152 	/*
2153 	 * If @root doesn't have any children, start killing it.
2154 	 * This prevents new mounts by disabling percpu_ref_tryget_live().
2155 	 * cgroup_mount() may wait for @root's release.
2156 	 *
2157 	 * And don't kill the default root.
2158 	 */
2159 	if (list_empty(&root->cgrp.self.children) && root != &cgrp_dfl_root &&
2160 	    !percpu_ref_is_dying(&root->cgrp.self.refcnt))
2161 		percpu_ref_kill(&root->cgrp.self.refcnt);
2162 	cgroup_put(&root->cgrp);
2163 	kernfs_kill_sb(sb);
2164 }
2165 
2166 struct file_system_type cgroup_fs_type = {
2167 	.name			= "cgroup",
2168 	.init_fs_context	= cgroup_init_fs_context,
2169 	.parameters		= cgroup1_fs_parameters,
2170 	.kill_sb		= cgroup_kill_sb,
2171 	.fs_flags		= FS_USERNS_MOUNT,
2172 };
2173 
2174 static struct file_system_type cgroup2_fs_type = {
2175 	.name			= "cgroup2",
2176 	.init_fs_context	= cgroup_init_fs_context,
2177 	.parameters		= cgroup2_fs_parameters,
2178 	.kill_sb		= cgroup_kill_sb,
2179 	.fs_flags		= FS_USERNS_MOUNT,
2180 };
2181 
2182 #ifdef CONFIG_CPUSETS
2183 static const struct fs_context_operations cpuset_fs_context_ops = {
2184 	.get_tree	= cgroup1_get_tree,
2185 	.free		= cgroup_fs_context_free,
2186 };
2187 
2188 /*
2189  * This is ugly, but preserves the userspace API for existing cpuset
2190  * users. If someone tries to mount the "cpuset" filesystem, we
2191  * silently switch it to mount "cgroup" instead
2192  */
2193 static int cpuset_init_fs_context(struct fs_context *fc)
2194 {
2195 	char *agent = kstrdup("/sbin/cpuset_release_agent", GFP_USER);
2196 	struct cgroup_fs_context *ctx;
2197 	int err;
2198 
2199 	err = cgroup_init_fs_context(fc);
2200 	if (err) {
2201 		kfree(agent);
2202 		return err;
2203 	}
2204 
2205 	fc->ops = &cpuset_fs_context_ops;
2206 
2207 	ctx = cgroup_fc2context(fc);
2208 	ctx->subsys_mask = 1 << cpuset_cgrp_id;
2209 	ctx->flags |= CGRP_ROOT_NOPREFIX;
2210 	ctx->release_agent = agent;
2211 
2212 	get_filesystem(&cgroup_fs_type);
2213 	put_filesystem(fc->fs_type);
2214 	fc->fs_type = &cgroup_fs_type;
2215 
2216 	return 0;
2217 }
2218 
2219 static struct file_system_type cpuset_fs_type = {
2220 	.name			= "cpuset",
2221 	.init_fs_context	= cpuset_init_fs_context,
2222 	.fs_flags		= FS_USERNS_MOUNT,
2223 };
2224 #endif
2225 
2226 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
2227 			  struct cgroup_namespace *ns)
2228 {
2229 	struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
2230 
2231 	return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
2232 }
2233 
2234 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
2235 		   struct cgroup_namespace *ns)
2236 {
2237 	int ret;
2238 
2239 	mutex_lock(&cgroup_mutex);
2240 	spin_lock_irq(&css_set_lock);
2241 
2242 	ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
2243 
2244 	spin_unlock_irq(&css_set_lock);
2245 	mutex_unlock(&cgroup_mutex);
2246 
2247 	return ret;
2248 }
2249 EXPORT_SYMBOL_GPL(cgroup_path_ns);
2250 
2251 /**
2252  * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
2253  * @task: target task
2254  * @buf: the buffer to write the path into
2255  * @buflen: the length of the buffer
2256  *
2257  * Determine @task's cgroup on the first (the one with the lowest non-zero
2258  * hierarchy_id) cgroup hierarchy and copy its path into @buf.  This
2259  * function grabs cgroup_mutex and shouldn't be used inside locks used by
2260  * cgroup controller callbacks.
2261  *
2262  * Return value is the same as kernfs_path().
2263  */
2264 int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
2265 {
2266 	struct cgroup_root *root;
2267 	struct cgroup *cgrp;
2268 	int hierarchy_id = 1;
2269 	int ret;
2270 
2271 	mutex_lock(&cgroup_mutex);
2272 	spin_lock_irq(&css_set_lock);
2273 
2274 	root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2275 
2276 	if (root) {
2277 		cgrp = task_cgroup_from_root(task, root);
2278 		ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns);
2279 	} else {
2280 		/* if no hierarchy exists, everyone is in "/" */
2281 		ret = strlcpy(buf, "/", buflen);
2282 	}
2283 
2284 	spin_unlock_irq(&css_set_lock);
2285 	mutex_unlock(&cgroup_mutex);
2286 	return ret;
2287 }
2288 EXPORT_SYMBOL_GPL(task_cgroup_path);
2289 
2290 /**
2291  * cgroup_migrate_add_task - add a migration target task to a migration context
2292  * @task: target task
2293  * @mgctx: target migration context
2294  *
2295  * Add @task, which is a migration target, to @mgctx->tset.  This function
2296  * becomes noop if @task doesn't need to be migrated.  @task's css_set
2297  * should have been added as a migration source and @task->cg_list will be
2298  * moved from the css_set's tasks list to mg_tasks one.
2299  */
2300 static void cgroup_migrate_add_task(struct task_struct *task,
2301 				    struct cgroup_mgctx *mgctx)
2302 {
2303 	struct css_set *cset;
2304 
2305 	lockdep_assert_held(&css_set_lock);
2306 
2307 	/* @task either already exited or can't exit until the end */
2308 	if (task->flags & PF_EXITING)
2309 		return;
2310 
2311 	/* cgroup_threadgroup_rwsem protects racing against forks */
2312 	WARN_ON_ONCE(list_empty(&task->cg_list));
2313 
2314 	cset = task_css_set(task);
2315 	if (!cset->mg_src_cgrp)
2316 		return;
2317 
2318 	mgctx->tset.nr_tasks++;
2319 
2320 	list_move_tail(&task->cg_list, &cset->mg_tasks);
2321 	if (list_empty(&cset->mg_node))
2322 		list_add_tail(&cset->mg_node,
2323 			      &mgctx->tset.src_csets);
2324 	if (list_empty(&cset->mg_dst_cset->mg_node))
2325 		list_add_tail(&cset->mg_dst_cset->mg_node,
2326 			      &mgctx->tset.dst_csets);
2327 }
2328 
2329 /**
2330  * cgroup_taskset_first - reset taskset and return the first task
2331  * @tset: taskset of interest
2332  * @dst_cssp: output variable for the destination css
2333  *
2334  * @tset iteration is initialized and the first task is returned.
2335  */
2336 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2337 					 struct cgroup_subsys_state **dst_cssp)
2338 {
2339 	tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2340 	tset->cur_task = NULL;
2341 
2342 	return cgroup_taskset_next(tset, dst_cssp);
2343 }
2344 
2345 /**
2346  * cgroup_taskset_next - iterate to the next task in taskset
2347  * @tset: taskset of interest
2348  * @dst_cssp: output variable for the destination css
2349  *
2350  * Return the next task in @tset.  Iteration must have been initialized
2351  * with cgroup_taskset_first().
2352  */
2353 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2354 					struct cgroup_subsys_state **dst_cssp)
2355 {
2356 	struct css_set *cset = tset->cur_cset;
2357 	struct task_struct *task = tset->cur_task;
2358 
2359 	while (&cset->mg_node != tset->csets) {
2360 		if (!task)
2361 			task = list_first_entry(&cset->mg_tasks,
2362 						struct task_struct, cg_list);
2363 		else
2364 			task = list_next_entry(task, cg_list);
2365 
2366 		if (&task->cg_list != &cset->mg_tasks) {
2367 			tset->cur_cset = cset;
2368 			tset->cur_task = task;
2369 
2370 			/*
2371 			 * This function may be called both before and
2372 			 * after cgroup_taskset_migrate().  The two cases
2373 			 * can be distinguished by looking at whether @cset
2374 			 * has its ->mg_dst_cset set.
2375 			 */
2376 			if (cset->mg_dst_cset)
2377 				*dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2378 			else
2379 				*dst_cssp = cset->subsys[tset->ssid];
2380 
2381 			return task;
2382 		}
2383 
2384 		cset = list_next_entry(cset, mg_node);
2385 		task = NULL;
2386 	}
2387 
2388 	return NULL;
2389 }
2390 
2391 /**
2392  * cgroup_taskset_migrate - migrate a taskset
2393  * @mgctx: migration context
2394  *
2395  * Migrate tasks in @mgctx as setup by migration preparation functions.
2396  * This function fails iff one of the ->can_attach callbacks fails and
2397  * guarantees that either all or none of the tasks in @mgctx are migrated.
2398  * @mgctx is consumed regardless of success.
2399  */
2400 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx)
2401 {
2402 	struct cgroup_taskset *tset = &mgctx->tset;
2403 	struct cgroup_subsys *ss;
2404 	struct task_struct *task, *tmp_task;
2405 	struct css_set *cset, *tmp_cset;
2406 	int ssid, failed_ssid, ret;
2407 
2408 	/* check that we can legitimately attach to the cgroup */
2409 	if (tset->nr_tasks) {
2410 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2411 			if (ss->can_attach) {
2412 				tset->ssid = ssid;
2413 				ret = ss->can_attach(tset);
2414 				if (ret) {
2415 					failed_ssid = ssid;
2416 					goto out_cancel_attach;
2417 				}
2418 			}
2419 		} while_each_subsys_mask();
2420 	}
2421 
2422 	/*
2423 	 * Now that we're guaranteed success, proceed to move all tasks to
2424 	 * the new cgroup.  There are no failure cases after here, so this
2425 	 * is the commit point.
2426 	 */
2427 	spin_lock_irq(&css_set_lock);
2428 	list_for_each_entry(cset, &tset->src_csets, mg_node) {
2429 		list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2430 			struct css_set *from_cset = task_css_set(task);
2431 			struct css_set *to_cset = cset->mg_dst_cset;
2432 
2433 			get_css_set(to_cset);
2434 			to_cset->nr_tasks++;
2435 			css_set_move_task(task, from_cset, to_cset, true);
2436 			from_cset->nr_tasks--;
2437 			/*
2438 			 * If the source or destination cgroup is frozen,
2439 			 * the task might require to change its state.
2440 			 */
2441 			cgroup_freezer_migrate_task(task, from_cset->dfl_cgrp,
2442 						    to_cset->dfl_cgrp);
2443 			put_css_set_locked(from_cset);
2444 
2445 		}
2446 	}
2447 	spin_unlock_irq(&css_set_lock);
2448 
2449 	/*
2450 	 * Migration is committed, all target tasks are now on dst_csets.
2451 	 * Nothing is sensitive to fork() after this point.  Notify
2452 	 * controllers that migration is complete.
2453 	 */
2454 	tset->csets = &tset->dst_csets;
2455 
2456 	if (tset->nr_tasks) {
2457 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2458 			if (ss->attach) {
2459 				tset->ssid = ssid;
2460 				ss->attach(tset);
2461 			}
2462 		} while_each_subsys_mask();
2463 	}
2464 
2465 	ret = 0;
2466 	goto out_release_tset;
2467 
2468 out_cancel_attach:
2469 	if (tset->nr_tasks) {
2470 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2471 			if (ssid == failed_ssid)
2472 				break;
2473 			if (ss->cancel_attach) {
2474 				tset->ssid = ssid;
2475 				ss->cancel_attach(tset);
2476 			}
2477 		} while_each_subsys_mask();
2478 	}
2479 out_release_tset:
2480 	spin_lock_irq(&css_set_lock);
2481 	list_splice_init(&tset->dst_csets, &tset->src_csets);
2482 	list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2483 		list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2484 		list_del_init(&cset->mg_node);
2485 	}
2486 	spin_unlock_irq(&css_set_lock);
2487 
2488 	/*
2489 	 * Re-initialize the cgroup_taskset structure in case it is reused
2490 	 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute()
2491 	 * iteration.
2492 	 */
2493 	tset->nr_tasks = 0;
2494 	tset->csets    = &tset->src_csets;
2495 	return ret;
2496 }
2497 
2498 /**
2499  * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination
2500  * @dst_cgrp: destination cgroup to test
2501  *
2502  * On the default hierarchy, except for the mixable, (possible) thread root
2503  * and threaded cgroups, subtree_control must be zero for migration
2504  * destination cgroups with tasks so that child cgroups don't compete
2505  * against tasks.
2506  */
2507 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp)
2508 {
2509 	/* v1 doesn't have any restriction */
2510 	if (!cgroup_on_dfl(dst_cgrp))
2511 		return 0;
2512 
2513 	/* verify @dst_cgrp can host resources */
2514 	if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp))
2515 		return -EOPNOTSUPP;
2516 
2517 	/* mixables don't care */
2518 	if (cgroup_is_mixable(dst_cgrp))
2519 		return 0;
2520 
2521 	/*
2522 	 * If @dst_cgrp is already or can become a thread root or is
2523 	 * threaded, it doesn't matter.
2524 	 */
2525 	if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp))
2526 		return 0;
2527 
2528 	/* apply no-internal-process constraint */
2529 	if (dst_cgrp->subtree_control)
2530 		return -EBUSY;
2531 
2532 	return 0;
2533 }
2534 
2535 /**
2536  * cgroup_migrate_finish - cleanup after attach
2537  * @mgctx: migration context
2538  *
2539  * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst().  See
2540  * those functions for details.
2541  */
2542 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx)
2543 {
2544 	LIST_HEAD(preloaded);
2545 	struct css_set *cset, *tmp_cset;
2546 
2547 	lockdep_assert_held(&cgroup_mutex);
2548 
2549 	spin_lock_irq(&css_set_lock);
2550 
2551 	list_splice_tail_init(&mgctx->preloaded_src_csets, &preloaded);
2552 	list_splice_tail_init(&mgctx->preloaded_dst_csets, &preloaded);
2553 
2554 	list_for_each_entry_safe(cset, tmp_cset, &preloaded, mg_preload_node) {
2555 		cset->mg_src_cgrp = NULL;
2556 		cset->mg_dst_cgrp = NULL;
2557 		cset->mg_dst_cset = NULL;
2558 		list_del_init(&cset->mg_preload_node);
2559 		put_css_set_locked(cset);
2560 	}
2561 
2562 	spin_unlock_irq(&css_set_lock);
2563 }
2564 
2565 /**
2566  * cgroup_migrate_add_src - add a migration source css_set
2567  * @src_cset: the source css_set to add
2568  * @dst_cgrp: the destination cgroup
2569  * @mgctx: migration context
2570  *
2571  * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp.  Pin
2572  * @src_cset and add it to @mgctx->src_csets, which should later be cleaned
2573  * up by cgroup_migrate_finish().
2574  *
2575  * This function may be called without holding cgroup_threadgroup_rwsem
2576  * even if the target is a process.  Threads may be created and destroyed
2577  * but as long as cgroup_mutex is not dropped, no new css_set can be put
2578  * into play and the preloaded css_sets are guaranteed to cover all
2579  * migrations.
2580  */
2581 void cgroup_migrate_add_src(struct css_set *src_cset,
2582 			    struct cgroup *dst_cgrp,
2583 			    struct cgroup_mgctx *mgctx)
2584 {
2585 	struct cgroup *src_cgrp;
2586 
2587 	lockdep_assert_held(&cgroup_mutex);
2588 	lockdep_assert_held(&css_set_lock);
2589 
2590 	/*
2591 	 * If ->dead, @src_set is associated with one or more dead cgroups
2592 	 * and doesn't contain any migratable tasks.  Ignore it early so
2593 	 * that the rest of migration path doesn't get confused by it.
2594 	 */
2595 	if (src_cset->dead)
2596 		return;
2597 
2598 	src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2599 
2600 	if (!list_empty(&src_cset->mg_preload_node))
2601 		return;
2602 
2603 	WARN_ON(src_cset->mg_src_cgrp);
2604 	WARN_ON(src_cset->mg_dst_cgrp);
2605 	WARN_ON(!list_empty(&src_cset->mg_tasks));
2606 	WARN_ON(!list_empty(&src_cset->mg_node));
2607 
2608 	src_cset->mg_src_cgrp = src_cgrp;
2609 	src_cset->mg_dst_cgrp = dst_cgrp;
2610 	get_css_set(src_cset);
2611 	list_add_tail(&src_cset->mg_preload_node, &mgctx->preloaded_src_csets);
2612 }
2613 
2614 /**
2615  * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2616  * @mgctx: migration context
2617  *
2618  * Tasks are about to be moved and all the source css_sets have been
2619  * preloaded to @mgctx->preloaded_src_csets.  This function looks up and
2620  * pins all destination css_sets, links each to its source, and append them
2621  * to @mgctx->preloaded_dst_csets.
2622  *
2623  * This function must be called after cgroup_migrate_add_src() has been
2624  * called on each migration source css_set.  After migration is performed
2625  * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2626  * @mgctx.
2627  */
2628 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx)
2629 {
2630 	struct css_set *src_cset, *tmp_cset;
2631 
2632 	lockdep_assert_held(&cgroup_mutex);
2633 
2634 	/* look up the dst cset for each src cset and link it to src */
2635 	list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets,
2636 				 mg_preload_node) {
2637 		struct css_set *dst_cset;
2638 		struct cgroup_subsys *ss;
2639 		int ssid;
2640 
2641 		dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
2642 		if (!dst_cset)
2643 			return -ENOMEM;
2644 
2645 		WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2646 
2647 		/*
2648 		 * If src cset equals dst, it's noop.  Drop the src.
2649 		 * cgroup_migrate() will skip the cset too.  Note that we
2650 		 * can't handle src == dst as some nodes are used by both.
2651 		 */
2652 		if (src_cset == dst_cset) {
2653 			src_cset->mg_src_cgrp = NULL;
2654 			src_cset->mg_dst_cgrp = NULL;
2655 			list_del_init(&src_cset->mg_preload_node);
2656 			put_css_set(src_cset);
2657 			put_css_set(dst_cset);
2658 			continue;
2659 		}
2660 
2661 		src_cset->mg_dst_cset = dst_cset;
2662 
2663 		if (list_empty(&dst_cset->mg_preload_node))
2664 			list_add_tail(&dst_cset->mg_preload_node,
2665 				      &mgctx->preloaded_dst_csets);
2666 		else
2667 			put_css_set(dst_cset);
2668 
2669 		for_each_subsys(ss, ssid)
2670 			if (src_cset->subsys[ssid] != dst_cset->subsys[ssid])
2671 				mgctx->ss_mask |= 1 << ssid;
2672 	}
2673 
2674 	return 0;
2675 }
2676 
2677 /**
2678  * cgroup_migrate - migrate a process or task to a cgroup
2679  * @leader: the leader of the process or the task to migrate
2680  * @threadgroup: whether @leader points to the whole process or a single task
2681  * @mgctx: migration context
2682  *
2683  * Migrate a process or task denoted by @leader.  If migrating a process,
2684  * the caller must be holding cgroup_threadgroup_rwsem.  The caller is also
2685  * responsible for invoking cgroup_migrate_add_src() and
2686  * cgroup_migrate_prepare_dst() on the targets before invoking this
2687  * function and following up with cgroup_migrate_finish().
2688  *
2689  * As long as a controller's ->can_attach() doesn't fail, this function is
2690  * guaranteed to succeed.  This means that, excluding ->can_attach()
2691  * failure, when migrating multiple targets, the success or failure can be
2692  * decided for all targets by invoking group_migrate_prepare_dst() before
2693  * actually starting migrating.
2694  */
2695 int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2696 		   struct cgroup_mgctx *mgctx)
2697 {
2698 	struct task_struct *task;
2699 
2700 	/*
2701 	 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2702 	 * already PF_EXITING could be freed from underneath us unless we
2703 	 * take an rcu_read_lock.
2704 	 */
2705 	spin_lock_irq(&css_set_lock);
2706 	rcu_read_lock();
2707 	task = leader;
2708 	do {
2709 		cgroup_migrate_add_task(task, mgctx);
2710 		if (!threadgroup)
2711 			break;
2712 	} while_each_thread(leader, task);
2713 	rcu_read_unlock();
2714 	spin_unlock_irq(&css_set_lock);
2715 
2716 	return cgroup_migrate_execute(mgctx);
2717 }
2718 
2719 /**
2720  * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2721  * @dst_cgrp: the cgroup to attach to
2722  * @leader: the task or the leader of the threadgroup to be attached
2723  * @threadgroup: attach the whole threadgroup?
2724  *
2725  * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2726  */
2727 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader,
2728 		       bool threadgroup)
2729 {
2730 	DEFINE_CGROUP_MGCTX(mgctx);
2731 	struct task_struct *task;
2732 	int ret = 0;
2733 
2734 	/* look up all src csets */
2735 	spin_lock_irq(&css_set_lock);
2736 	rcu_read_lock();
2737 	task = leader;
2738 	do {
2739 		cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx);
2740 		if (!threadgroup)
2741 			break;
2742 	} while_each_thread(leader, task);
2743 	rcu_read_unlock();
2744 	spin_unlock_irq(&css_set_lock);
2745 
2746 	/* prepare dst csets and commit */
2747 	ret = cgroup_migrate_prepare_dst(&mgctx);
2748 	if (!ret)
2749 		ret = cgroup_migrate(leader, threadgroup, &mgctx);
2750 
2751 	cgroup_migrate_finish(&mgctx);
2752 
2753 	if (!ret)
2754 		TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup);
2755 
2756 	return ret;
2757 }
2758 
2759 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup,
2760 					     bool *locked)
2761 	__acquires(&cgroup_threadgroup_rwsem)
2762 {
2763 	struct task_struct *tsk;
2764 	pid_t pid;
2765 
2766 	if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2767 		return ERR_PTR(-EINVAL);
2768 
2769 	/*
2770 	 * If we migrate a single thread, we don't care about threadgroup
2771 	 * stability. If the thread is `current`, it won't exit(2) under our
2772 	 * hands or change PID through exec(2). We exclude
2773 	 * cgroup_update_dfl_csses and other cgroup_{proc,thread}s_write
2774 	 * callers by cgroup_mutex.
2775 	 * Therefore, we can skip the global lock.
2776 	 */
2777 	lockdep_assert_held(&cgroup_mutex);
2778 	if (pid || threadgroup) {
2779 		percpu_down_write(&cgroup_threadgroup_rwsem);
2780 		*locked = true;
2781 	} else {
2782 		*locked = false;
2783 	}
2784 
2785 	rcu_read_lock();
2786 	if (pid) {
2787 		tsk = find_task_by_vpid(pid);
2788 		if (!tsk) {
2789 			tsk = ERR_PTR(-ESRCH);
2790 			goto out_unlock_threadgroup;
2791 		}
2792 	} else {
2793 		tsk = current;
2794 	}
2795 
2796 	if (threadgroup)
2797 		tsk = tsk->group_leader;
2798 
2799 	/*
2800 	 * kthreads may acquire PF_NO_SETAFFINITY during initialization.
2801 	 * If userland migrates such a kthread to a non-root cgroup, it can
2802 	 * become trapped in a cpuset, or RT kthread may be born in a
2803 	 * cgroup with no rt_runtime allocated.  Just say no.
2804 	 */
2805 	if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) {
2806 		tsk = ERR_PTR(-EINVAL);
2807 		goto out_unlock_threadgroup;
2808 	}
2809 
2810 	get_task_struct(tsk);
2811 	goto out_unlock_rcu;
2812 
2813 out_unlock_threadgroup:
2814 	if (*locked) {
2815 		percpu_up_write(&cgroup_threadgroup_rwsem);
2816 		*locked = false;
2817 	}
2818 out_unlock_rcu:
2819 	rcu_read_unlock();
2820 	return tsk;
2821 }
2822 
2823 void cgroup_procs_write_finish(struct task_struct *task, bool locked)
2824 	__releases(&cgroup_threadgroup_rwsem)
2825 {
2826 	struct cgroup_subsys *ss;
2827 	int ssid;
2828 
2829 	/* release reference from cgroup_procs_write_start() */
2830 	put_task_struct(task);
2831 
2832 	if (locked)
2833 		percpu_up_write(&cgroup_threadgroup_rwsem);
2834 	for_each_subsys(ss, ssid)
2835 		if (ss->post_attach)
2836 			ss->post_attach();
2837 }
2838 
2839 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
2840 {
2841 	struct cgroup_subsys *ss;
2842 	bool printed = false;
2843 	int ssid;
2844 
2845 	do_each_subsys_mask(ss, ssid, ss_mask) {
2846 		if (printed)
2847 			seq_putc(seq, ' ');
2848 		seq_puts(seq, ss->name);
2849 		printed = true;
2850 	} while_each_subsys_mask();
2851 	if (printed)
2852 		seq_putc(seq, '\n');
2853 }
2854 
2855 /* show controllers which are enabled from the parent */
2856 static int cgroup_controllers_show(struct seq_file *seq, void *v)
2857 {
2858 	struct cgroup *cgrp = seq_css(seq)->cgroup;
2859 
2860 	cgroup_print_ss_mask(seq, cgroup_control(cgrp));
2861 	return 0;
2862 }
2863 
2864 /* show controllers which are enabled for a given cgroup's children */
2865 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
2866 {
2867 	struct cgroup *cgrp = seq_css(seq)->cgroup;
2868 
2869 	cgroup_print_ss_mask(seq, cgrp->subtree_control);
2870 	return 0;
2871 }
2872 
2873 /**
2874  * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2875  * @cgrp: root of the subtree to update csses for
2876  *
2877  * @cgrp's control masks have changed and its subtree's css associations
2878  * need to be updated accordingly.  This function looks up all css_sets
2879  * which are attached to the subtree, creates the matching updated css_sets
2880  * and migrates the tasks to the new ones.
2881  */
2882 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2883 {
2884 	DEFINE_CGROUP_MGCTX(mgctx);
2885 	struct cgroup_subsys_state *d_css;
2886 	struct cgroup *dsct;
2887 	struct css_set *src_cset;
2888 	int ret;
2889 
2890 	lockdep_assert_held(&cgroup_mutex);
2891 
2892 	percpu_down_write(&cgroup_threadgroup_rwsem);
2893 
2894 	/* look up all csses currently attached to @cgrp's subtree */
2895 	spin_lock_irq(&css_set_lock);
2896 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2897 		struct cgrp_cset_link *link;
2898 
2899 		list_for_each_entry(link, &dsct->cset_links, cset_link)
2900 			cgroup_migrate_add_src(link->cset, dsct, &mgctx);
2901 	}
2902 	spin_unlock_irq(&css_set_lock);
2903 
2904 	/* NULL dst indicates self on default hierarchy */
2905 	ret = cgroup_migrate_prepare_dst(&mgctx);
2906 	if (ret)
2907 		goto out_finish;
2908 
2909 	spin_lock_irq(&css_set_lock);
2910 	list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, mg_preload_node) {
2911 		struct task_struct *task, *ntask;
2912 
2913 		/* all tasks in src_csets need to be migrated */
2914 		list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
2915 			cgroup_migrate_add_task(task, &mgctx);
2916 	}
2917 	spin_unlock_irq(&css_set_lock);
2918 
2919 	ret = cgroup_migrate_execute(&mgctx);
2920 out_finish:
2921 	cgroup_migrate_finish(&mgctx);
2922 	percpu_up_write(&cgroup_threadgroup_rwsem);
2923 	return ret;
2924 }
2925 
2926 /**
2927  * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
2928  * @cgrp: root of the target subtree
2929  *
2930  * Because css offlining is asynchronous, userland may try to re-enable a
2931  * controller while the previous css is still around.  This function grabs
2932  * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
2933  */
2934 void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
2935 	__acquires(&cgroup_mutex)
2936 {
2937 	struct cgroup *dsct;
2938 	struct cgroup_subsys_state *d_css;
2939 	struct cgroup_subsys *ss;
2940 	int ssid;
2941 
2942 restart:
2943 	mutex_lock(&cgroup_mutex);
2944 
2945 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
2946 		for_each_subsys(ss, ssid) {
2947 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
2948 			DEFINE_WAIT(wait);
2949 
2950 			if (!css || !percpu_ref_is_dying(&css->refcnt))
2951 				continue;
2952 
2953 			cgroup_get_live(dsct);
2954 			prepare_to_wait(&dsct->offline_waitq, &wait,
2955 					TASK_UNINTERRUPTIBLE);
2956 
2957 			mutex_unlock(&cgroup_mutex);
2958 			schedule();
2959 			finish_wait(&dsct->offline_waitq, &wait);
2960 
2961 			cgroup_put(dsct);
2962 			goto restart;
2963 		}
2964 	}
2965 }
2966 
2967 /**
2968  * cgroup_save_control - save control masks and dom_cgrp of a subtree
2969  * @cgrp: root of the target subtree
2970  *
2971  * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the
2972  * respective old_ prefixed fields for @cgrp's subtree including @cgrp
2973  * itself.
2974  */
2975 static void cgroup_save_control(struct cgroup *cgrp)
2976 {
2977 	struct cgroup *dsct;
2978 	struct cgroup_subsys_state *d_css;
2979 
2980 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2981 		dsct->old_subtree_control = dsct->subtree_control;
2982 		dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
2983 		dsct->old_dom_cgrp = dsct->dom_cgrp;
2984 	}
2985 }
2986 
2987 /**
2988  * cgroup_propagate_control - refresh control masks of a subtree
2989  * @cgrp: root of the target subtree
2990  *
2991  * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
2992  * ->subtree_control and propagate controller availability through the
2993  * subtree so that descendants don't have unavailable controllers enabled.
2994  */
2995 static void cgroup_propagate_control(struct cgroup *cgrp)
2996 {
2997 	struct cgroup *dsct;
2998 	struct cgroup_subsys_state *d_css;
2999 
3000 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3001 		dsct->subtree_control &= cgroup_control(dsct);
3002 		dsct->subtree_ss_mask =
3003 			cgroup_calc_subtree_ss_mask(dsct->subtree_control,
3004 						    cgroup_ss_mask(dsct));
3005 	}
3006 }
3007 
3008 /**
3009  * cgroup_restore_control - restore control masks and dom_cgrp of a subtree
3010  * @cgrp: root of the target subtree
3011  *
3012  * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the
3013  * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3014  * itself.
3015  */
3016 static void cgroup_restore_control(struct cgroup *cgrp)
3017 {
3018 	struct cgroup *dsct;
3019 	struct cgroup_subsys_state *d_css;
3020 
3021 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3022 		dsct->subtree_control = dsct->old_subtree_control;
3023 		dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
3024 		dsct->dom_cgrp = dsct->old_dom_cgrp;
3025 	}
3026 }
3027 
3028 static bool css_visible(struct cgroup_subsys_state *css)
3029 {
3030 	struct cgroup_subsys *ss = css->ss;
3031 	struct cgroup *cgrp = css->cgroup;
3032 
3033 	if (cgroup_control(cgrp) & (1 << ss->id))
3034 		return true;
3035 	if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
3036 		return false;
3037 	return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
3038 }
3039 
3040 /**
3041  * cgroup_apply_control_enable - enable or show csses according to control
3042  * @cgrp: root of the target subtree
3043  *
3044  * Walk @cgrp's subtree and create new csses or make the existing ones
3045  * visible.  A css is created invisible if it's being implicitly enabled
3046  * through dependency.  An invisible css is made visible when the userland
3047  * explicitly enables it.
3048  *
3049  * Returns 0 on success, -errno on failure.  On failure, csses which have
3050  * been processed already aren't cleaned up.  The caller is responsible for
3051  * cleaning up with cgroup_apply_control_disable().
3052  */
3053 static int cgroup_apply_control_enable(struct cgroup *cgrp)
3054 {
3055 	struct cgroup *dsct;
3056 	struct cgroup_subsys_state *d_css;
3057 	struct cgroup_subsys *ss;
3058 	int ssid, ret;
3059 
3060 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3061 		for_each_subsys(ss, ssid) {
3062 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3063 
3064 			if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
3065 				continue;
3066 
3067 			if (!css) {
3068 				css = css_create(dsct, ss);
3069 				if (IS_ERR(css))
3070 					return PTR_ERR(css);
3071 			}
3072 
3073 			WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3074 
3075 			if (css_visible(css)) {
3076 				ret = css_populate_dir(css);
3077 				if (ret)
3078 					return ret;
3079 			}
3080 		}
3081 	}
3082 
3083 	return 0;
3084 }
3085 
3086 /**
3087  * cgroup_apply_control_disable - kill or hide csses according to control
3088  * @cgrp: root of the target subtree
3089  *
3090  * Walk @cgrp's subtree and kill and hide csses so that they match
3091  * cgroup_ss_mask() and cgroup_visible_mask().
3092  *
3093  * A css is hidden when the userland requests it to be disabled while other
3094  * subsystems are still depending on it.  The css must not actively control
3095  * resources and be in the vanilla state if it's made visible again later.
3096  * Controllers which may be depended upon should provide ->css_reset() for
3097  * this purpose.
3098  */
3099 static void cgroup_apply_control_disable(struct cgroup *cgrp)
3100 {
3101 	struct cgroup *dsct;
3102 	struct cgroup_subsys_state *d_css;
3103 	struct cgroup_subsys *ss;
3104 	int ssid;
3105 
3106 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3107 		for_each_subsys(ss, ssid) {
3108 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3109 
3110 			if (!css)
3111 				continue;
3112 
3113 			WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3114 
3115 			if (css->parent &&
3116 			    !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
3117 				kill_css(css);
3118 			} else if (!css_visible(css)) {
3119 				css_clear_dir(css);
3120 				if (ss->css_reset)
3121 					ss->css_reset(css);
3122 			}
3123 		}
3124 	}
3125 }
3126 
3127 /**
3128  * cgroup_apply_control - apply control mask updates to the subtree
3129  * @cgrp: root of the target subtree
3130  *
3131  * subsystems can be enabled and disabled in a subtree using the following
3132  * steps.
3133  *
3134  * 1. Call cgroup_save_control() to stash the current state.
3135  * 2. Update ->subtree_control masks in the subtree as desired.
3136  * 3. Call cgroup_apply_control() to apply the changes.
3137  * 4. Optionally perform other related operations.
3138  * 5. Call cgroup_finalize_control() to finish up.
3139  *
3140  * This function implements step 3 and propagates the mask changes
3141  * throughout @cgrp's subtree, updates csses accordingly and perform
3142  * process migrations.
3143  */
3144 static int cgroup_apply_control(struct cgroup *cgrp)
3145 {
3146 	int ret;
3147 
3148 	cgroup_propagate_control(cgrp);
3149 
3150 	ret = cgroup_apply_control_enable(cgrp);
3151 	if (ret)
3152 		return ret;
3153 
3154 	/*
3155 	 * At this point, cgroup_e_css_by_mask() results reflect the new csses
3156 	 * making the following cgroup_update_dfl_csses() properly update
3157 	 * css associations of all tasks in the subtree.
3158 	 */
3159 	ret = cgroup_update_dfl_csses(cgrp);
3160 	if (ret)
3161 		return ret;
3162 
3163 	return 0;
3164 }
3165 
3166 /**
3167  * cgroup_finalize_control - finalize control mask update
3168  * @cgrp: root of the target subtree
3169  * @ret: the result of the update
3170  *
3171  * Finalize control mask update.  See cgroup_apply_control() for more info.
3172  */
3173 static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
3174 {
3175 	if (ret) {
3176 		cgroup_restore_control(cgrp);
3177 		cgroup_propagate_control(cgrp);
3178 	}
3179 
3180 	cgroup_apply_control_disable(cgrp);
3181 }
3182 
3183 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable)
3184 {
3185 	u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask;
3186 
3187 	/* if nothing is getting enabled, nothing to worry about */
3188 	if (!enable)
3189 		return 0;
3190 
3191 	/* can @cgrp host any resources? */
3192 	if (!cgroup_is_valid_domain(cgrp->dom_cgrp))
3193 		return -EOPNOTSUPP;
3194 
3195 	/* mixables don't care */
3196 	if (cgroup_is_mixable(cgrp))
3197 		return 0;
3198 
3199 	if (domain_enable) {
3200 		/* can't enable domain controllers inside a thread subtree */
3201 		if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3202 			return -EOPNOTSUPP;
3203 	} else {
3204 		/*
3205 		 * Threaded controllers can handle internal competitions
3206 		 * and are always allowed inside a (prospective) thread
3207 		 * subtree.
3208 		 */
3209 		if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3210 			return 0;
3211 	}
3212 
3213 	/*
3214 	 * Controllers can't be enabled for a cgroup with tasks to avoid
3215 	 * child cgroups competing against tasks.
3216 	 */
3217 	if (cgroup_has_tasks(cgrp))
3218 		return -EBUSY;
3219 
3220 	return 0;
3221 }
3222 
3223 /* change the enabled child controllers for a cgroup in the default hierarchy */
3224 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3225 					    char *buf, size_t nbytes,
3226 					    loff_t off)
3227 {
3228 	u16 enable = 0, disable = 0;
3229 	struct cgroup *cgrp, *child;
3230 	struct cgroup_subsys *ss;
3231 	char *tok;
3232 	int ssid, ret;
3233 
3234 	/*
3235 	 * Parse input - space separated list of subsystem names prefixed
3236 	 * with either + or -.
3237 	 */
3238 	buf = strstrip(buf);
3239 	while ((tok = strsep(&buf, " "))) {
3240 		if (tok[0] == '\0')
3241 			continue;
3242 		do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
3243 			if (!cgroup_ssid_enabled(ssid) ||
3244 			    strcmp(tok + 1, ss->name))
3245 				continue;
3246 
3247 			if (*tok == '+') {
3248 				enable |= 1 << ssid;
3249 				disable &= ~(1 << ssid);
3250 			} else if (*tok == '-') {
3251 				disable |= 1 << ssid;
3252 				enable &= ~(1 << ssid);
3253 			} else {
3254 				return -EINVAL;
3255 			}
3256 			break;
3257 		} while_each_subsys_mask();
3258 		if (ssid == CGROUP_SUBSYS_COUNT)
3259 			return -EINVAL;
3260 	}
3261 
3262 	cgrp = cgroup_kn_lock_live(of->kn, true);
3263 	if (!cgrp)
3264 		return -ENODEV;
3265 
3266 	for_each_subsys(ss, ssid) {
3267 		if (enable & (1 << ssid)) {
3268 			if (cgrp->subtree_control & (1 << ssid)) {
3269 				enable &= ~(1 << ssid);
3270 				continue;
3271 			}
3272 
3273 			if (!(cgroup_control(cgrp) & (1 << ssid))) {
3274 				ret = -ENOENT;
3275 				goto out_unlock;
3276 			}
3277 		} else if (disable & (1 << ssid)) {
3278 			if (!(cgrp->subtree_control & (1 << ssid))) {
3279 				disable &= ~(1 << ssid);
3280 				continue;
3281 			}
3282 
3283 			/* a child has it enabled? */
3284 			cgroup_for_each_live_child(child, cgrp) {
3285 				if (child->subtree_control & (1 << ssid)) {
3286 					ret = -EBUSY;
3287 					goto out_unlock;
3288 				}
3289 			}
3290 		}
3291 	}
3292 
3293 	if (!enable && !disable) {
3294 		ret = 0;
3295 		goto out_unlock;
3296 	}
3297 
3298 	ret = cgroup_vet_subtree_control_enable(cgrp, enable);
3299 	if (ret)
3300 		goto out_unlock;
3301 
3302 	/* save and update control masks and prepare csses */
3303 	cgroup_save_control(cgrp);
3304 
3305 	cgrp->subtree_control |= enable;
3306 	cgrp->subtree_control &= ~disable;
3307 
3308 	ret = cgroup_apply_control(cgrp);
3309 	cgroup_finalize_control(cgrp, ret);
3310 	if (ret)
3311 		goto out_unlock;
3312 
3313 	kernfs_activate(cgrp->kn);
3314 out_unlock:
3315 	cgroup_kn_unlock(of->kn);
3316 	return ret ?: nbytes;
3317 }
3318 
3319 /**
3320  * cgroup_enable_threaded - make @cgrp threaded
3321  * @cgrp: the target cgroup
3322  *
3323  * Called when "threaded" is written to the cgroup.type interface file and
3324  * tries to make @cgrp threaded and join the parent's resource domain.
3325  * This function is never called on the root cgroup as cgroup.type doesn't
3326  * exist on it.
3327  */
3328 static int cgroup_enable_threaded(struct cgroup *cgrp)
3329 {
3330 	struct cgroup *parent = cgroup_parent(cgrp);
3331 	struct cgroup *dom_cgrp = parent->dom_cgrp;
3332 	struct cgroup *dsct;
3333 	struct cgroup_subsys_state *d_css;
3334 	int ret;
3335 
3336 	lockdep_assert_held(&cgroup_mutex);
3337 
3338 	/* noop if already threaded */
3339 	if (cgroup_is_threaded(cgrp))
3340 		return 0;
3341 
3342 	/*
3343 	 * If @cgroup is populated or has domain controllers enabled, it
3344 	 * can't be switched.  While the below cgroup_can_be_thread_root()
3345 	 * test can catch the same conditions, that's only when @parent is
3346 	 * not mixable, so let's check it explicitly.
3347 	 */
3348 	if (cgroup_is_populated(cgrp) ||
3349 	    cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
3350 		return -EOPNOTSUPP;
3351 
3352 	/* we're joining the parent's domain, ensure its validity */
3353 	if (!cgroup_is_valid_domain(dom_cgrp) ||
3354 	    !cgroup_can_be_thread_root(dom_cgrp))
3355 		return -EOPNOTSUPP;
3356 
3357 	/*
3358 	 * The following shouldn't cause actual migrations and should
3359 	 * always succeed.
3360 	 */
3361 	cgroup_save_control(cgrp);
3362 
3363 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)
3364 		if (dsct == cgrp || cgroup_is_threaded(dsct))
3365 			dsct->dom_cgrp = dom_cgrp;
3366 
3367 	ret = cgroup_apply_control(cgrp);
3368 	if (!ret)
3369 		parent->nr_threaded_children++;
3370 
3371 	cgroup_finalize_control(cgrp, ret);
3372 	return ret;
3373 }
3374 
3375 static int cgroup_type_show(struct seq_file *seq, void *v)
3376 {
3377 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3378 
3379 	if (cgroup_is_threaded(cgrp))
3380 		seq_puts(seq, "threaded\n");
3381 	else if (!cgroup_is_valid_domain(cgrp))
3382 		seq_puts(seq, "domain invalid\n");
3383 	else if (cgroup_is_thread_root(cgrp))
3384 		seq_puts(seq, "domain threaded\n");
3385 	else
3386 		seq_puts(seq, "domain\n");
3387 
3388 	return 0;
3389 }
3390 
3391 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf,
3392 				 size_t nbytes, loff_t off)
3393 {
3394 	struct cgroup *cgrp;
3395 	int ret;
3396 
3397 	/* only switching to threaded mode is supported */
3398 	if (strcmp(strstrip(buf), "threaded"))
3399 		return -EINVAL;
3400 
3401 	/* drain dying csses before we re-apply (threaded) subtree control */
3402 	cgrp = cgroup_kn_lock_live(of->kn, true);
3403 	if (!cgrp)
3404 		return -ENOENT;
3405 
3406 	/* threaded can only be enabled */
3407 	ret = cgroup_enable_threaded(cgrp);
3408 
3409 	cgroup_kn_unlock(of->kn);
3410 	return ret ?: nbytes;
3411 }
3412 
3413 static int cgroup_max_descendants_show(struct seq_file *seq, void *v)
3414 {
3415 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3416 	int descendants = READ_ONCE(cgrp->max_descendants);
3417 
3418 	if (descendants == INT_MAX)
3419 		seq_puts(seq, "max\n");
3420 	else
3421 		seq_printf(seq, "%d\n", descendants);
3422 
3423 	return 0;
3424 }
3425 
3426 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of,
3427 					   char *buf, size_t nbytes, loff_t off)
3428 {
3429 	struct cgroup *cgrp;
3430 	int descendants;
3431 	ssize_t ret;
3432 
3433 	buf = strstrip(buf);
3434 	if (!strcmp(buf, "max")) {
3435 		descendants = INT_MAX;
3436 	} else {
3437 		ret = kstrtoint(buf, 0, &descendants);
3438 		if (ret)
3439 			return ret;
3440 	}
3441 
3442 	if (descendants < 0)
3443 		return -ERANGE;
3444 
3445 	cgrp = cgroup_kn_lock_live(of->kn, false);
3446 	if (!cgrp)
3447 		return -ENOENT;
3448 
3449 	cgrp->max_descendants = descendants;
3450 
3451 	cgroup_kn_unlock(of->kn);
3452 
3453 	return nbytes;
3454 }
3455 
3456 static int cgroup_max_depth_show(struct seq_file *seq, void *v)
3457 {
3458 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3459 	int depth = READ_ONCE(cgrp->max_depth);
3460 
3461 	if (depth == INT_MAX)
3462 		seq_puts(seq, "max\n");
3463 	else
3464 		seq_printf(seq, "%d\n", depth);
3465 
3466 	return 0;
3467 }
3468 
3469 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of,
3470 				      char *buf, size_t nbytes, loff_t off)
3471 {
3472 	struct cgroup *cgrp;
3473 	ssize_t ret;
3474 	int depth;
3475 
3476 	buf = strstrip(buf);
3477 	if (!strcmp(buf, "max")) {
3478 		depth = INT_MAX;
3479 	} else {
3480 		ret = kstrtoint(buf, 0, &depth);
3481 		if (ret)
3482 			return ret;
3483 	}
3484 
3485 	if (depth < 0)
3486 		return -ERANGE;
3487 
3488 	cgrp = cgroup_kn_lock_live(of->kn, false);
3489 	if (!cgrp)
3490 		return -ENOENT;
3491 
3492 	cgrp->max_depth = depth;
3493 
3494 	cgroup_kn_unlock(of->kn);
3495 
3496 	return nbytes;
3497 }
3498 
3499 static int cgroup_events_show(struct seq_file *seq, void *v)
3500 {
3501 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3502 
3503 	seq_printf(seq, "populated %d\n", cgroup_is_populated(cgrp));
3504 	seq_printf(seq, "frozen %d\n", test_bit(CGRP_FROZEN, &cgrp->flags));
3505 
3506 	return 0;
3507 }
3508 
3509 static int cgroup_stat_show(struct seq_file *seq, void *v)
3510 {
3511 	struct cgroup *cgroup = seq_css(seq)->cgroup;
3512 
3513 	seq_printf(seq, "nr_descendants %d\n",
3514 		   cgroup->nr_descendants);
3515 	seq_printf(seq, "nr_dying_descendants %d\n",
3516 		   cgroup->nr_dying_descendants);
3517 
3518 	return 0;
3519 }
3520 
3521 static int __maybe_unused cgroup_extra_stat_show(struct seq_file *seq,
3522 						 struct cgroup *cgrp, int ssid)
3523 {
3524 	struct cgroup_subsys *ss = cgroup_subsys[ssid];
3525 	struct cgroup_subsys_state *css;
3526 	int ret;
3527 
3528 	if (!ss->css_extra_stat_show)
3529 		return 0;
3530 
3531 	css = cgroup_tryget_css(cgrp, ss);
3532 	if (!css)
3533 		return 0;
3534 
3535 	ret = ss->css_extra_stat_show(seq, css);
3536 	css_put(css);
3537 	return ret;
3538 }
3539 
3540 static int cpu_stat_show(struct seq_file *seq, void *v)
3541 {
3542 	struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup;
3543 	int ret = 0;
3544 
3545 	cgroup_base_stat_cputime_show(seq);
3546 #ifdef CONFIG_CGROUP_SCHED
3547 	ret = cgroup_extra_stat_show(seq, cgrp, cpu_cgrp_id);
3548 #endif
3549 	return ret;
3550 }
3551 
3552 #ifdef CONFIG_PSI
3553 static int cgroup_io_pressure_show(struct seq_file *seq, void *v)
3554 {
3555 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3556 	struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi;
3557 
3558 	return psi_show(seq, psi, PSI_IO);
3559 }
3560 static int cgroup_memory_pressure_show(struct seq_file *seq, void *v)
3561 {
3562 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3563 	struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi;
3564 
3565 	return psi_show(seq, psi, PSI_MEM);
3566 }
3567 static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v)
3568 {
3569 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3570 	struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi;
3571 
3572 	return psi_show(seq, psi, PSI_CPU);
3573 }
3574 
3575 static ssize_t cgroup_pressure_write(struct kernfs_open_file *of, char *buf,
3576 					  size_t nbytes, enum psi_res res)
3577 {
3578 	struct psi_trigger *new;
3579 	struct cgroup *cgrp;
3580 	struct psi_group *psi;
3581 
3582 	cgrp = cgroup_kn_lock_live(of->kn, false);
3583 	if (!cgrp)
3584 		return -ENODEV;
3585 
3586 	cgroup_get(cgrp);
3587 	cgroup_kn_unlock(of->kn);
3588 
3589 	psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi;
3590 	new = psi_trigger_create(psi, buf, nbytes, res);
3591 	if (IS_ERR(new)) {
3592 		cgroup_put(cgrp);
3593 		return PTR_ERR(new);
3594 	}
3595 
3596 	psi_trigger_replace(&of->priv, new);
3597 
3598 	cgroup_put(cgrp);
3599 
3600 	return nbytes;
3601 }
3602 
3603 static ssize_t cgroup_io_pressure_write(struct kernfs_open_file *of,
3604 					  char *buf, size_t nbytes,
3605 					  loff_t off)
3606 {
3607 	return cgroup_pressure_write(of, buf, nbytes, PSI_IO);
3608 }
3609 
3610 static ssize_t cgroup_memory_pressure_write(struct kernfs_open_file *of,
3611 					  char *buf, size_t nbytes,
3612 					  loff_t off)
3613 {
3614 	return cgroup_pressure_write(of, buf, nbytes, PSI_MEM);
3615 }
3616 
3617 static ssize_t cgroup_cpu_pressure_write(struct kernfs_open_file *of,
3618 					  char *buf, size_t nbytes,
3619 					  loff_t off)
3620 {
3621 	return cgroup_pressure_write(of, buf, nbytes, PSI_CPU);
3622 }
3623 
3624 static __poll_t cgroup_pressure_poll(struct kernfs_open_file *of,
3625 					  poll_table *pt)
3626 {
3627 	return psi_trigger_poll(&of->priv, of->file, pt);
3628 }
3629 
3630 static void cgroup_pressure_release(struct kernfs_open_file *of)
3631 {
3632 	psi_trigger_replace(&of->priv, NULL);
3633 }
3634 #endif /* CONFIG_PSI */
3635 
3636 static int cgroup_freeze_show(struct seq_file *seq, void *v)
3637 {
3638 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3639 
3640 	seq_printf(seq, "%d\n", cgrp->freezer.freeze);
3641 
3642 	return 0;
3643 }
3644 
3645 static ssize_t cgroup_freeze_write(struct kernfs_open_file *of,
3646 				   char *buf, size_t nbytes, loff_t off)
3647 {
3648 	struct cgroup *cgrp;
3649 	ssize_t ret;
3650 	int freeze;
3651 
3652 	ret = kstrtoint(strstrip(buf), 0, &freeze);
3653 	if (ret)
3654 		return ret;
3655 
3656 	if (freeze < 0 || freeze > 1)
3657 		return -ERANGE;
3658 
3659 	cgrp = cgroup_kn_lock_live(of->kn, false);
3660 	if (!cgrp)
3661 		return -ENOENT;
3662 
3663 	cgroup_freeze(cgrp, freeze);
3664 
3665 	cgroup_kn_unlock(of->kn);
3666 
3667 	return nbytes;
3668 }
3669 
3670 static int cgroup_file_open(struct kernfs_open_file *of)
3671 {
3672 	struct cftype *cft = of_cft(of);
3673 
3674 	if (cft->open)
3675 		return cft->open(of);
3676 	return 0;
3677 }
3678 
3679 static void cgroup_file_release(struct kernfs_open_file *of)
3680 {
3681 	struct cftype *cft = of_cft(of);
3682 
3683 	if (cft->release)
3684 		cft->release(of);
3685 }
3686 
3687 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3688 				 size_t nbytes, loff_t off)
3689 {
3690 	struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
3691 	struct cgroup *cgrp = of->kn->parent->priv;
3692 	struct cftype *cft = of_cft(of);
3693 	struct cgroup_subsys_state *css;
3694 	int ret;
3695 
3696 	if (!nbytes)
3697 		return 0;
3698 
3699 	/*
3700 	 * If namespaces are delegation boundaries, disallow writes to
3701 	 * files in an non-init namespace root from inside the namespace
3702 	 * except for the files explicitly marked delegatable -
3703 	 * cgroup.procs and cgroup.subtree_control.
3704 	 */
3705 	if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) &&
3706 	    !(cft->flags & CFTYPE_NS_DELEGATABLE) &&
3707 	    ns != &init_cgroup_ns && ns->root_cset->dfl_cgrp == cgrp)
3708 		return -EPERM;
3709 
3710 	if (cft->write)
3711 		return cft->write(of, buf, nbytes, off);
3712 
3713 	/*
3714 	 * kernfs guarantees that a file isn't deleted with operations in
3715 	 * flight, which means that the matching css is and stays alive and
3716 	 * doesn't need to be pinned.  The RCU locking is not necessary
3717 	 * either.  It's just for the convenience of using cgroup_css().
3718 	 */
3719 	rcu_read_lock();
3720 	css = cgroup_css(cgrp, cft->ss);
3721 	rcu_read_unlock();
3722 
3723 	if (cft->write_u64) {
3724 		unsigned long long v;
3725 		ret = kstrtoull(buf, 0, &v);
3726 		if (!ret)
3727 			ret = cft->write_u64(css, cft, v);
3728 	} else if (cft->write_s64) {
3729 		long long v;
3730 		ret = kstrtoll(buf, 0, &v);
3731 		if (!ret)
3732 			ret = cft->write_s64(css, cft, v);
3733 	} else {
3734 		ret = -EINVAL;
3735 	}
3736 
3737 	return ret ?: nbytes;
3738 }
3739 
3740 static __poll_t cgroup_file_poll(struct kernfs_open_file *of, poll_table *pt)
3741 {
3742 	struct cftype *cft = of_cft(of);
3743 
3744 	if (cft->poll)
3745 		return cft->poll(of, pt);
3746 
3747 	return kernfs_generic_poll(of, pt);
3748 }
3749 
3750 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
3751 {
3752 	return seq_cft(seq)->seq_start(seq, ppos);
3753 }
3754 
3755 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
3756 {
3757 	return seq_cft(seq)->seq_next(seq, v, ppos);
3758 }
3759 
3760 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
3761 {
3762 	if (seq_cft(seq)->seq_stop)
3763 		seq_cft(seq)->seq_stop(seq, v);
3764 }
3765 
3766 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
3767 {
3768 	struct cftype *cft = seq_cft(m);
3769 	struct cgroup_subsys_state *css = seq_css(m);
3770 
3771 	if (cft->seq_show)
3772 		return cft->seq_show(m, arg);
3773 
3774 	if (cft->read_u64)
3775 		seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3776 	else if (cft->read_s64)
3777 		seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3778 	else
3779 		return -EINVAL;
3780 	return 0;
3781 }
3782 
3783 static struct kernfs_ops cgroup_kf_single_ops = {
3784 	.atomic_write_len	= PAGE_SIZE,
3785 	.open			= cgroup_file_open,
3786 	.release		= cgroup_file_release,
3787 	.write			= cgroup_file_write,
3788 	.poll			= cgroup_file_poll,
3789 	.seq_show		= cgroup_seqfile_show,
3790 };
3791 
3792 static struct kernfs_ops cgroup_kf_ops = {
3793 	.atomic_write_len	= PAGE_SIZE,
3794 	.open			= cgroup_file_open,
3795 	.release		= cgroup_file_release,
3796 	.write			= cgroup_file_write,
3797 	.poll			= cgroup_file_poll,
3798 	.seq_start		= cgroup_seqfile_start,
3799 	.seq_next		= cgroup_seqfile_next,
3800 	.seq_stop		= cgroup_seqfile_stop,
3801 	.seq_show		= cgroup_seqfile_show,
3802 };
3803 
3804 /* set uid and gid of cgroup dirs and files to that of the creator */
3805 static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3806 {
3807 	struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3808 			       .ia_uid = current_fsuid(),
3809 			       .ia_gid = current_fsgid(), };
3810 
3811 	if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3812 	    gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3813 		return 0;
3814 
3815 	return kernfs_setattr(kn, &iattr);
3816 }
3817 
3818 static void cgroup_file_notify_timer(struct timer_list *timer)
3819 {
3820 	cgroup_file_notify(container_of(timer, struct cgroup_file,
3821 					notify_timer));
3822 }
3823 
3824 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3825 			   struct cftype *cft)
3826 {
3827 	char name[CGROUP_FILE_NAME_MAX];
3828 	struct kernfs_node *kn;
3829 	struct lock_class_key *key = NULL;
3830 	int ret;
3831 
3832 #ifdef CONFIG_DEBUG_LOCK_ALLOC
3833 	key = &cft->lockdep_key;
3834 #endif
3835 	kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3836 				  cgroup_file_mode(cft),
3837 				  GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
3838 				  0, cft->kf_ops, cft,
3839 				  NULL, key);
3840 	if (IS_ERR(kn))
3841 		return PTR_ERR(kn);
3842 
3843 	ret = cgroup_kn_set_ugid(kn);
3844 	if (ret) {
3845 		kernfs_remove(kn);
3846 		return ret;
3847 	}
3848 
3849 	if (cft->file_offset) {
3850 		struct cgroup_file *cfile = (void *)css + cft->file_offset;
3851 
3852 		timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0);
3853 
3854 		spin_lock_irq(&cgroup_file_kn_lock);
3855 		cfile->kn = kn;
3856 		spin_unlock_irq(&cgroup_file_kn_lock);
3857 	}
3858 
3859 	return 0;
3860 }
3861 
3862 /**
3863  * cgroup_addrm_files - add or remove files to a cgroup directory
3864  * @css: the target css
3865  * @cgrp: the target cgroup (usually css->cgroup)
3866  * @cfts: array of cftypes to be added
3867  * @is_add: whether to add or remove
3868  *
3869  * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3870  * For removals, this function never fails.
3871  */
3872 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3873 			      struct cgroup *cgrp, struct cftype cfts[],
3874 			      bool is_add)
3875 {
3876 	struct cftype *cft, *cft_end = NULL;
3877 	int ret = 0;
3878 
3879 	lockdep_assert_held(&cgroup_mutex);
3880 
3881 restart:
3882 	for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
3883 		/* does cft->flags tell us to skip this file on @cgrp? */
3884 		if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
3885 			continue;
3886 		if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
3887 			continue;
3888 		if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
3889 			continue;
3890 		if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
3891 			continue;
3892 		if ((cft->flags & CFTYPE_DEBUG) && !cgroup_debug)
3893 			continue;
3894 		if (is_add) {
3895 			ret = cgroup_add_file(css, cgrp, cft);
3896 			if (ret) {
3897 				pr_warn("%s: failed to add %s, err=%d\n",
3898 					__func__, cft->name, ret);
3899 				cft_end = cft;
3900 				is_add = false;
3901 				goto restart;
3902 			}
3903 		} else {
3904 			cgroup_rm_file(cgrp, cft);
3905 		}
3906 	}
3907 	return ret;
3908 }
3909 
3910 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
3911 {
3912 	struct cgroup_subsys *ss = cfts[0].ss;
3913 	struct cgroup *root = &ss->root->cgrp;
3914 	struct cgroup_subsys_state *css;
3915 	int ret = 0;
3916 
3917 	lockdep_assert_held(&cgroup_mutex);
3918 
3919 	/* add/rm files for all cgroups created before */
3920 	css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
3921 		struct cgroup *cgrp = css->cgroup;
3922 
3923 		if (!(css->flags & CSS_VISIBLE))
3924 			continue;
3925 
3926 		ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
3927 		if (ret)
3928 			break;
3929 	}
3930 
3931 	if (is_add && !ret)
3932 		kernfs_activate(root->kn);
3933 	return ret;
3934 }
3935 
3936 static void cgroup_exit_cftypes(struct cftype *cfts)
3937 {
3938 	struct cftype *cft;
3939 
3940 	for (cft = cfts; cft->name[0] != '\0'; cft++) {
3941 		/* free copy for custom atomic_write_len, see init_cftypes() */
3942 		if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3943 			kfree(cft->kf_ops);
3944 		cft->kf_ops = NULL;
3945 		cft->ss = NULL;
3946 
3947 		/* revert flags set by cgroup core while adding @cfts */
3948 		cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
3949 	}
3950 }
3951 
3952 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3953 {
3954 	struct cftype *cft;
3955 
3956 	for (cft = cfts; cft->name[0] != '\0'; cft++) {
3957 		struct kernfs_ops *kf_ops;
3958 
3959 		WARN_ON(cft->ss || cft->kf_ops);
3960 
3961 		if (cft->seq_start)
3962 			kf_ops = &cgroup_kf_ops;
3963 		else
3964 			kf_ops = &cgroup_kf_single_ops;
3965 
3966 		/*
3967 		 * Ugh... if @cft wants a custom max_write_len, we need to
3968 		 * make a copy of kf_ops to set its atomic_write_len.
3969 		 */
3970 		if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3971 			kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3972 			if (!kf_ops) {
3973 				cgroup_exit_cftypes(cfts);
3974 				return -ENOMEM;
3975 			}
3976 			kf_ops->atomic_write_len = cft->max_write_len;
3977 		}
3978 
3979 		cft->kf_ops = kf_ops;
3980 		cft->ss = ss;
3981 	}
3982 
3983 	return 0;
3984 }
3985 
3986 static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3987 {
3988 	lockdep_assert_held(&cgroup_mutex);
3989 
3990 	if (!cfts || !cfts[0].ss)
3991 		return -ENOENT;
3992 
3993 	list_del(&cfts->node);
3994 	cgroup_apply_cftypes(cfts, false);
3995 	cgroup_exit_cftypes(cfts);
3996 	return 0;
3997 }
3998 
3999 /**
4000  * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
4001  * @cfts: zero-length name terminated array of cftypes
4002  *
4003  * Unregister @cfts.  Files described by @cfts are removed from all
4004  * existing cgroups and all future cgroups won't have them either.  This
4005  * function can be called anytime whether @cfts' subsys is attached or not.
4006  *
4007  * Returns 0 on successful unregistration, -ENOENT if @cfts is not
4008  * registered.
4009  */
4010 int cgroup_rm_cftypes(struct cftype *cfts)
4011 {
4012 	int ret;
4013 
4014 	mutex_lock(&cgroup_mutex);
4015 	ret = cgroup_rm_cftypes_locked(cfts);
4016 	mutex_unlock(&cgroup_mutex);
4017 	return ret;
4018 }
4019 
4020 /**
4021  * cgroup_add_cftypes - add an array of cftypes to a subsystem
4022  * @ss: target cgroup subsystem
4023  * @cfts: zero-length name terminated array of cftypes
4024  *
4025  * Register @cfts to @ss.  Files described by @cfts are created for all
4026  * existing cgroups to which @ss is attached and all future cgroups will
4027  * have them too.  This function can be called anytime whether @ss is
4028  * attached or not.
4029  *
4030  * Returns 0 on successful registration, -errno on failure.  Note that this
4031  * function currently returns 0 as long as @cfts registration is successful
4032  * even if some file creation attempts on existing cgroups fail.
4033  */
4034 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4035 {
4036 	int ret;
4037 
4038 	if (!cgroup_ssid_enabled(ss->id))
4039 		return 0;
4040 
4041 	if (!cfts || cfts[0].name[0] == '\0')
4042 		return 0;
4043 
4044 	ret = cgroup_init_cftypes(ss, cfts);
4045 	if (ret)
4046 		return ret;
4047 
4048 	mutex_lock(&cgroup_mutex);
4049 
4050 	list_add_tail(&cfts->node, &ss->cfts);
4051 	ret = cgroup_apply_cftypes(cfts, true);
4052 	if (ret)
4053 		cgroup_rm_cftypes_locked(cfts);
4054 
4055 	mutex_unlock(&cgroup_mutex);
4056 	return ret;
4057 }
4058 
4059 /**
4060  * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
4061  * @ss: target cgroup subsystem
4062  * @cfts: zero-length name terminated array of cftypes
4063  *
4064  * Similar to cgroup_add_cftypes() but the added files are only used for
4065  * the default hierarchy.
4066  */
4067 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4068 {
4069 	struct cftype *cft;
4070 
4071 	for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4072 		cft->flags |= __CFTYPE_ONLY_ON_DFL;
4073 	return cgroup_add_cftypes(ss, cfts);
4074 }
4075 
4076 /**
4077  * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
4078  * @ss: target cgroup subsystem
4079  * @cfts: zero-length name terminated array of cftypes
4080  *
4081  * Similar to cgroup_add_cftypes() but the added files are only used for
4082  * the legacy hierarchies.
4083  */
4084 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4085 {
4086 	struct cftype *cft;
4087 
4088 	for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4089 		cft->flags |= __CFTYPE_NOT_ON_DFL;
4090 	return cgroup_add_cftypes(ss, cfts);
4091 }
4092 
4093 /**
4094  * cgroup_file_notify - generate a file modified event for a cgroup_file
4095  * @cfile: target cgroup_file
4096  *
4097  * @cfile must have been obtained by setting cftype->file_offset.
4098  */
4099 void cgroup_file_notify(struct cgroup_file *cfile)
4100 {
4101 	unsigned long flags;
4102 
4103 	spin_lock_irqsave(&cgroup_file_kn_lock, flags);
4104 	if (cfile->kn) {
4105 		unsigned long last = cfile->notified_at;
4106 		unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV;
4107 
4108 		if (time_in_range(jiffies, last, next)) {
4109 			timer_reduce(&cfile->notify_timer, next);
4110 		} else {
4111 			kernfs_notify(cfile->kn);
4112 			cfile->notified_at = jiffies;
4113 		}
4114 	}
4115 	spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
4116 }
4117 
4118 /**
4119  * css_next_child - find the next child of a given css
4120  * @pos: the current position (%NULL to initiate traversal)
4121  * @parent: css whose children to walk
4122  *
4123  * This function returns the next child of @parent and should be called
4124  * under either cgroup_mutex or RCU read lock.  The only requirement is
4125  * that @parent and @pos are accessible.  The next sibling is guaranteed to
4126  * be returned regardless of their states.
4127  *
4128  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4129  * css which finished ->css_online() is guaranteed to be visible in the
4130  * future iterations and will stay visible until the last reference is put.
4131  * A css which hasn't finished ->css_online() or already finished
4132  * ->css_offline() may show up during traversal.  It's each subsystem's
4133  * responsibility to synchronize against on/offlining.
4134  */
4135 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
4136 					   struct cgroup_subsys_state *parent)
4137 {
4138 	struct cgroup_subsys_state *next;
4139 
4140 	cgroup_assert_mutex_or_rcu_locked();
4141 
4142 	/*
4143 	 * @pos could already have been unlinked from the sibling list.
4144 	 * Once a cgroup is removed, its ->sibling.next is no longer
4145 	 * updated when its next sibling changes.  CSS_RELEASED is set when
4146 	 * @pos is taken off list, at which time its next pointer is valid,
4147 	 * and, as releases are serialized, the one pointed to by the next
4148 	 * pointer is guaranteed to not have started release yet.  This
4149 	 * implies that if we observe !CSS_RELEASED on @pos in this RCU
4150 	 * critical section, the one pointed to by its next pointer is
4151 	 * guaranteed to not have finished its RCU grace period even if we
4152 	 * have dropped rcu_read_lock() in-between iterations.
4153 	 *
4154 	 * If @pos has CSS_RELEASED set, its next pointer can't be
4155 	 * dereferenced; however, as each css is given a monotonically
4156 	 * increasing unique serial number and always appended to the
4157 	 * sibling list, the next one can be found by walking the parent's
4158 	 * children until the first css with higher serial number than
4159 	 * @pos's.  While this path can be slower, it happens iff iteration
4160 	 * races against release and the race window is very small.
4161 	 */
4162 	if (!pos) {
4163 		next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
4164 	} else if (likely(!(pos->flags & CSS_RELEASED))) {
4165 		next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
4166 	} else {
4167 		list_for_each_entry_rcu(next, &parent->children, sibling,
4168 					lockdep_is_held(&cgroup_mutex))
4169 			if (next->serial_nr > pos->serial_nr)
4170 				break;
4171 	}
4172 
4173 	/*
4174 	 * @next, if not pointing to the head, can be dereferenced and is
4175 	 * the next sibling.
4176 	 */
4177 	if (&next->sibling != &parent->children)
4178 		return next;
4179 	return NULL;
4180 }
4181 
4182 /**
4183  * css_next_descendant_pre - find the next descendant for pre-order walk
4184  * @pos: the current position (%NULL to initiate traversal)
4185  * @root: css whose descendants to walk
4186  *
4187  * To be used by css_for_each_descendant_pre().  Find the next descendant
4188  * to visit for pre-order traversal of @root's descendants.  @root is
4189  * included in the iteration and the first node to be visited.
4190  *
4191  * While this function requires cgroup_mutex or RCU read locking, it
4192  * doesn't require the whole traversal to be contained in a single critical
4193  * section.  This function will return the correct next descendant as long
4194  * as both @pos and @root are accessible and @pos is a descendant of @root.
4195  *
4196  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4197  * css which finished ->css_online() is guaranteed to be visible in the
4198  * future iterations and will stay visible until the last reference is put.
4199  * A css which hasn't finished ->css_online() or already finished
4200  * ->css_offline() may show up during traversal.  It's each subsystem's
4201  * responsibility to synchronize against on/offlining.
4202  */
4203 struct cgroup_subsys_state *
4204 css_next_descendant_pre(struct cgroup_subsys_state *pos,
4205 			struct cgroup_subsys_state *root)
4206 {
4207 	struct cgroup_subsys_state *next;
4208 
4209 	cgroup_assert_mutex_or_rcu_locked();
4210 
4211 	/* if first iteration, visit @root */
4212 	if (!pos)
4213 		return root;
4214 
4215 	/* visit the first child if exists */
4216 	next = css_next_child(NULL, pos);
4217 	if (next)
4218 		return next;
4219 
4220 	/* no child, visit my or the closest ancestor's next sibling */
4221 	while (pos != root) {
4222 		next = css_next_child(pos, pos->parent);
4223 		if (next)
4224 			return next;
4225 		pos = pos->parent;
4226 	}
4227 
4228 	return NULL;
4229 }
4230 EXPORT_SYMBOL_GPL(css_next_descendant_pre);
4231 
4232 /**
4233  * css_rightmost_descendant - return the rightmost descendant of a css
4234  * @pos: css of interest
4235  *
4236  * Return the rightmost descendant of @pos.  If there's no descendant, @pos
4237  * is returned.  This can be used during pre-order traversal to skip
4238  * subtree of @pos.
4239  *
4240  * While this function requires cgroup_mutex or RCU read locking, it
4241  * doesn't require the whole traversal to be contained in a single critical
4242  * section.  This function will return the correct rightmost descendant as
4243  * long as @pos is accessible.
4244  */
4245 struct cgroup_subsys_state *
4246 css_rightmost_descendant(struct cgroup_subsys_state *pos)
4247 {
4248 	struct cgroup_subsys_state *last, *tmp;
4249 
4250 	cgroup_assert_mutex_or_rcu_locked();
4251 
4252 	do {
4253 		last = pos;
4254 		/* ->prev isn't RCU safe, walk ->next till the end */
4255 		pos = NULL;
4256 		css_for_each_child(tmp, last)
4257 			pos = tmp;
4258 	} while (pos);
4259 
4260 	return last;
4261 }
4262 
4263 static struct cgroup_subsys_state *
4264 css_leftmost_descendant(struct cgroup_subsys_state *pos)
4265 {
4266 	struct cgroup_subsys_state *last;
4267 
4268 	do {
4269 		last = pos;
4270 		pos = css_next_child(NULL, pos);
4271 	} while (pos);
4272 
4273 	return last;
4274 }
4275 
4276 /**
4277  * css_next_descendant_post - find the next descendant for post-order walk
4278  * @pos: the current position (%NULL to initiate traversal)
4279  * @root: css whose descendants to walk
4280  *
4281  * To be used by css_for_each_descendant_post().  Find the next descendant
4282  * to visit for post-order traversal of @root's descendants.  @root is
4283  * included in the iteration and the last node to be visited.
4284  *
4285  * While this function requires cgroup_mutex or RCU read locking, it
4286  * doesn't require the whole traversal to be contained in a single critical
4287  * section.  This function will return the correct next descendant as long
4288  * as both @pos and @cgroup are accessible and @pos is a descendant of
4289  * @cgroup.
4290  *
4291  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4292  * css which finished ->css_online() is guaranteed to be visible in the
4293  * future iterations and will stay visible until the last reference is put.
4294  * A css which hasn't finished ->css_online() or already finished
4295  * ->css_offline() may show up during traversal.  It's each subsystem's
4296  * responsibility to synchronize against on/offlining.
4297  */
4298 struct cgroup_subsys_state *
4299 css_next_descendant_post(struct cgroup_subsys_state *pos,
4300 			 struct cgroup_subsys_state *root)
4301 {
4302 	struct cgroup_subsys_state *next;
4303 
4304 	cgroup_assert_mutex_or_rcu_locked();
4305 
4306 	/* if first iteration, visit leftmost descendant which may be @root */
4307 	if (!pos)
4308 		return css_leftmost_descendant(root);
4309 
4310 	/* if we visited @root, we're done */
4311 	if (pos == root)
4312 		return NULL;
4313 
4314 	/* if there's an unvisited sibling, visit its leftmost descendant */
4315 	next = css_next_child(pos, pos->parent);
4316 	if (next)
4317 		return css_leftmost_descendant(next);
4318 
4319 	/* no sibling left, visit parent */
4320 	return pos->parent;
4321 }
4322 
4323 /**
4324  * css_has_online_children - does a css have online children
4325  * @css: the target css
4326  *
4327  * Returns %true if @css has any online children; otherwise, %false.  This
4328  * function can be called from any context but the caller is responsible
4329  * for synchronizing against on/offlining as necessary.
4330  */
4331 bool css_has_online_children(struct cgroup_subsys_state *css)
4332 {
4333 	struct cgroup_subsys_state *child;
4334 	bool ret = false;
4335 
4336 	rcu_read_lock();
4337 	css_for_each_child(child, css) {
4338 		if (child->flags & CSS_ONLINE) {
4339 			ret = true;
4340 			break;
4341 		}
4342 	}
4343 	rcu_read_unlock();
4344 	return ret;
4345 }
4346 
4347 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it)
4348 {
4349 	struct list_head *l;
4350 	struct cgrp_cset_link *link;
4351 	struct css_set *cset;
4352 
4353 	lockdep_assert_held(&css_set_lock);
4354 
4355 	/* find the next threaded cset */
4356 	if (it->tcset_pos) {
4357 		l = it->tcset_pos->next;
4358 
4359 		if (l != it->tcset_head) {
4360 			it->tcset_pos = l;
4361 			return container_of(l, struct css_set,
4362 					    threaded_csets_node);
4363 		}
4364 
4365 		it->tcset_pos = NULL;
4366 	}
4367 
4368 	/* find the next cset */
4369 	l = it->cset_pos;
4370 	l = l->next;
4371 	if (l == it->cset_head) {
4372 		it->cset_pos = NULL;
4373 		return NULL;
4374 	}
4375 
4376 	if (it->ss) {
4377 		cset = container_of(l, struct css_set, e_cset_node[it->ss->id]);
4378 	} else {
4379 		link = list_entry(l, struct cgrp_cset_link, cset_link);
4380 		cset = link->cset;
4381 	}
4382 
4383 	it->cset_pos = l;
4384 
4385 	/* initialize threaded css_set walking */
4386 	if (it->flags & CSS_TASK_ITER_THREADED) {
4387 		if (it->cur_dcset)
4388 			put_css_set_locked(it->cur_dcset);
4389 		it->cur_dcset = cset;
4390 		get_css_set(cset);
4391 
4392 		it->tcset_head = &cset->threaded_csets;
4393 		it->tcset_pos = &cset->threaded_csets;
4394 	}
4395 
4396 	return cset;
4397 }
4398 
4399 /**
4400  * css_task_iter_advance_css_set - advance a task iterator to the next css_set
4401  * @it: the iterator to advance
4402  *
4403  * Advance @it to the next css_set to walk.
4404  */
4405 static void css_task_iter_advance_css_set(struct css_task_iter *it)
4406 {
4407 	struct css_set *cset;
4408 
4409 	lockdep_assert_held(&css_set_lock);
4410 
4411 	/* Advance to the next non-empty css_set and find first non-empty tasks list*/
4412 	while ((cset = css_task_iter_next_css_set(it))) {
4413 		if (!list_empty(&cset->tasks)) {
4414 			it->cur_tasks_head = &cset->tasks;
4415 			break;
4416 		} else if (!list_empty(&cset->mg_tasks)) {
4417 			it->cur_tasks_head = &cset->mg_tasks;
4418 			break;
4419 		} else if (!list_empty(&cset->dying_tasks)) {
4420 			it->cur_tasks_head = &cset->dying_tasks;
4421 			break;
4422 		}
4423 	}
4424 	if (!cset) {
4425 		it->task_pos = NULL;
4426 		return;
4427 	}
4428 	it->task_pos = it->cur_tasks_head->next;
4429 
4430 	/*
4431 	 * We don't keep css_sets locked across iteration steps and thus
4432 	 * need to take steps to ensure that iteration can be resumed after
4433 	 * the lock is re-acquired.  Iteration is performed at two levels -
4434 	 * css_sets and tasks in them.
4435 	 *
4436 	 * Once created, a css_set never leaves its cgroup lists, so a
4437 	 * pinned css_set is guaranteed to stay put and we can resume
4438 	 * iteration afterwards.
4439 	 *
4440 	 * Tasks may leave @cset across iteration steps.  This is resolved
4441 	 * by registering each iterator with the css_set currently being
4442 	 * walked and making css_set_move_task() advance iterators whose
4443 	 * next task is leaving.
4444 	 */
4445 	if (it->cur_cset) {
4446 		list_del(&it->iters_node);
4447 		put_css_set_locked(it->cur_cset);
4448 	}
4449 	get_css_set(cset);
4450 	it->cur_cset = cset;
4451 	list_add(&it->iters_node, &cset->task_iters);
4452 }
4453 
4454 static void css_task_iter_skip(struct css_task_iter *it,
4455 			       struct task_struct *task)
4456 {
4457 	lockdep_assert_held(&css_set_lock);
4458 
4459 	if (it->task_pos == &task->cg_list) {
4460 		it->task_pos = it->task_pos->next;
4461 		it->flags |= CSS_TASK_ITER_SKIPPED;
4462 	}
4463 }
4464 
4465 static void css_task_iter_advance(struct css_task_iter *it)
4466 {
4467 	struct task_struct *task;
4468 
4469 	lockdep_assert_held(&css_set_lock);
4470 repeat:
4471 	if (it->task_pos) {
4472 		/*
4473 		 * Advance iterator to find next entry. We go through cset
4474 		 * tasks, mg_tasks and dying_tasks, when consumed we move onto
4475 		 * the next cset.
4476 		 */
4477 		if (it->flags & CSS_TASK_ITER_SKIPPED)
4478 			it->flags &= ~CSS_TASK_ITER_SKIPPED;
4479 		else
4480 			it->task_pos = it->task_pos->next;
4481 
4482 		if (it->task_pos == &it->cur_cset->tasks) {
4483 			it->cur_tasks_head = &it->cur_cset->mg_tasks;
4484 			it->task_pos = it->cur_tasks_head->next;
4485 		}
4486 		if (it->task_pos == &it->cur_cset->mg_tasks) {
4487 			it->cur_tasks_head = &it->cur_cset->dying_tasks;
4488 			it->task_pos = it->cur_tasks_head->next;
4489 		}
4490 		if (it->task_pos == &it->cur_cset->dying_tasks)
4491 			css_task_iter_advance_css_set(it);
4492 	} else {
4493 		/* called from start, proceed to the first cset */
4494 		css_task_iter_advance_css_set(it);
4495 	}
4496 
4497 	if (!it->task_pos)
4498 		return;
4499 
4500 	task = list_entry(it->task_pos, struct task_struct, cg_list);
4501 
4502 	if (it->flags & CSS_TASK_ITER_PROCS) {
4503 		/* if PROCS, skip over tasks which aren't group leaders */
4504 		if (!thread_group_leader(task))
4505 			goto repeat;
4506 
4507 		/* and dying leaders w/o live member threads */
4508 		if (it->cur_tasks_head == &it->cur_cset->dying_tasks &&
4509 		    !atomic_read(&task->signal->live))
4510 			goto repeat;
4511 	} else {
4512 		/* skip all dying ones */
4513 		if (it->cur_tasks_head == &it->cur_cset->dying_tasks)
4514 			goto repeat;
4515 	}
4516 }
4517 
4518 /**
4519  * css_task_iter_start - initiate task iteration
4520  * @css: the css to walk tasks of
4521  * @flags: CSS_TASK_ITER_* flags
4522  * @it: the task iterator to use
4523  *
4524  * Initiate iteration through the tasks of @css.  The caller can call
4525  * css_task_iter_next() to walk through the tasks until the function
4526  * returns NULL.  On completion of iteration, css_task_iter_end() must be
4527  * called.
4528  */
4529 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags,
4530 			 struct css_task_iter *it)
4531 {
4532 	memset(it, 0, sizeof(*it));
4533 
4534 	spin_lock_irq(&css_set_lock);
4535 
4536 	it->ss = css->ss;
4537 	it->flags = flags;
4538 
4539 	if (it->ss)
4540 		it->cset_pos = &css->cgroup->e_csets[css->ss->id];
4541 	else
4542 		it->cset_pos = &css->cgroup->cset_links;
4543 
4544 	it->cset_head = it->cset_pos;
4545 
4546 	css_task_iter_advance(it);
4547 
4548 	spin_unlock_irq(&css_set_lock);
4549 }
4550 
4551 /**
4552  * css_task_iter_next - return the next task for the iterator
4553  * @it: the task iterator being iterated
4554  *
4555  * The "next" function for task iteration.  @it should have been
4556  * initialized via css_task_iter_start().  Returns NULL when the iteration
4557  * reaches the end.
4558  */
4559 struct task_struct *css_task_iter_next(struct css_task_iter *it)
4560 {
4561 	if (it->cur_task) {
4562 		put_task_struct(it->cur_task);
4563 		it->cur_task = NULL;
4564 	}
4565 
4566 	spin_lock_irq(&css_set_lock);
4567 
4568 	/* @it may be half-advanced by skips, finish advancing */
4569 	if (it->flags & CSS_TASK_ITER_SKIPPED)
4570 		css_task_iter_advance(it);
4571 
4572 	if (it->task_pos) {
4573 		it->cur_task = list_entry(it->task_pos, struct task_struct,
4574 					  cg_list);
4575 		get_task_struct(it->cur_task);
4576 		css_task_iter_advance(it);
4577 	}
4578 
4579 	spin_unlock_irq(&css_set_lock);
4580 
4581 	return it->cur_task;
4582 }
4583 
4584 /**
4585  * css_task_iter_end - finish task iteration
4586  * @it: the task iterator to finish
4587  *
4588  * Finish task iteration started by css_task_iter_start().
4589  */
4590 void css_task_iter_end(struct css_task_iter *it)
4591 {
4592 	if (it->cur_cset) {
4593 		spin_lock_irq(&css_set_lock);
4594 		list_del(&it->iters_node);
4595 		put_css_set_locked(it->cur_cset);
4596 		spin_unlock_irq(&css_set_lock);
4597 	}
4598 
4599 	if (it->cur_dcset)
4600 		put_css_set(it->cur_dcset);
4601 
4602 	if (it->cur_task)
4603 		put_task_struct(it->cur_task);
4604 }
4605 
4606 static void cgroup_procs_release(struct kernfs_open_file *of)
4607 {
4608 	if (of->priv) {
4609 		css_task_iter_end(of->priv);
4610 		kfree(of->priv);
4611 	}
4612 }
4613 
4614 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos)
4615 {
4616 	struct kernfs_open_file *of = s->private;
4617 	struct css_task_iter *it = of->priv;
4618 
4619 	if (pos)
4620 		(*pos)++;
4621 
4622 	return css_task_iter_next(it);
4623 }
4624 
4625 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos,
4626 				  unsigned int iter_flags)
4627 {
4628 	struct kernfs_open_file *of = s->private;
4629 	struct cgroup *cgrp = seq_css(s)->cgroup;
4630 	struct css_task_iter *it = of->priv;
4631 
4632 	/*
4633 	 * When a seq_file is seeked, it's always traversed sequentially
4634 	 * from position 0, so we can simply keep iterating on !0 *pos.
4635 	 */
4636 	if (!it) {
4637 		if (WARN_ON_ONCE((*pos)))
4638 			return ERR_PTR(-EINVAL);
4639 
4640 		it = kzalloc(sizeof(*it), GFP_KERNEL);
4641 		if (!it)
4642 			return ERR_PTR(-ENOMEM);
4643 		of->priv = it;
4644 		css_task_iter_start(&cgrp->self, iter_flags, it);
4645 	} else if (!(*pos)) {
4646 		css_task_iter_end(it);
4647 		css_task_iter_start(&cgrp->self, iter_flags, it);
4648 	} else
4649 		return it->cur_task;
4650 
4651 	return cgroup_procs_next(s, NULL, NULL);
4652 }
4653 
4654 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos)
4655 {
4656 	struct cgroup *cgrp = seq_css(s)->cgroup;
4657 
4658 	/*
4659 	 * All processes of a threaded subtree belong to the domain cgroup
4660 	 * of the subtree.  Only threads can be distributed across the
4661 	 * subtree.  Reject reads on cgroup.procs in the subtree proper.
4662 	 * They're always empty anyway.
4663 	 */
4664 	if (cgroup_is_threaded(cgrp))
4665 		return ERR_PTR(-EOPNOTSUPP);
4666 
4667 	return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS |
4668 					    CSS_TASK_ITER_THREADED);
4669 }
4670 
4671 static int cgroup_procs_show(struct seq_file *s, void *v)
4672 {
4673 	seq_printf(s, "%d\n", task_pid_vnr(v));
4674 	return 0;
4675 }
4676 
4677 static int cgroup_may_write(const struct cgroup *cgrp, struct super_block *sb)
4678 {
4679 	int ret;
4680 	struct inode *inode;
4681 
4682 	lockdep_assert_held(&cgroup_mutex);
4683 
4684 	inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
4685 	if (!inode)
4686 		return -ENOMEM;
4687 
4688 	ret = inode_permission(&init_user_ns, inode, MAY_WRITE);
4689 	iput(inode);
4690 	return ret;
4691 }
4692 
4693 static int cgroup_procs_write_permission(struct cgroup *src_cgrp,
4694 					 struct cgroup *dst_cgrp,
4695 					 struct super_block *sb)
4696 {
4697 	struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
4698 	struct cgroup *com_cgrp = src_cgrp;
4699 	int ret;
4700 
4701 	lockdep_assert_held(&cgroup_mutex);
4702 
4703 	/* find the common ancestor */
4704 	while (!cgroup_is_descendant(dst_cgrp, com_cgrp))
4705 		com_cgrp = cgroup_parent(com_cgrp);
4706 
4707 	/* %current should be authorized to migrate to the common ancestor */
4708 	ret = cgroup_may_write(com_cgrp, sb);
4709 	if (ret)
4710 		return ret;
4711 
4712 	/*
4713 	 * If namespaces are delegation boundaries, %current must be able
4714 	 * to see both source and destination cgroups from its namespace.
4715 	 */
4716 	if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) &&
4717 	    (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) ||
4718 	     !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp)))
4719 		return -ENOENT;
4720 
4721 	return 0;
4722 }
4723 
4724 static int cgroup_attach_permissions(struct cgroup *src_cgrp,
4725 				     struct cgroup *dst_cgrp,
4726 				     struct super_block *sb, bool threadgroup)
4727 {
4728 	int ret = 0;
4729 
4730 	ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, sb);
4731 	if (ret)
4732 		return ret;
4733 
4734 	ret = cgroup_migrate_vet_dst(dst_cgrp);
4735 	if (ret)
4736 		return ret;
4737 
4738 	if (!threadgroup && (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp))
4739 		ret = -EOPNOTSUPP;
4740 
4741 	return ret;
4742 }
4743 
4744 static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
4745 				    bool threadgroup)
4746 {
4747 	struct cgroup *src_cgrp, *dst_cgrp;
4748 	struct task_struct *task;
4749 	ssize_t ret;
4750 	bool locked;
4751 
4752 	dst_cgrp = cgroup_kn_lock_live(of->kn, false);
4753 	if (!dst_cgrp)
4754 		return -ENODEV;
4755 
4756 	task = cgroup_procs_write_start(buf, threadgroup, &locked);
4757 	ret = PTR_ERR_OR_ZERO(task);
4758 	if (ret)
4759 		goto out_unlock;
4760 
4761 	/* find the source cgroup */
4762 	spin_lock_irq(&css_set_lock);
4763 	src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
4764 	spin_unlock_irq(&css_set_lock);
4765 
4766 	/* process and thread migrations follow same delegation rule */
4767 	ret = cgroup_attach_permissions(src_cgrp, dst_cgrp,
4768 					of->file->f_path.dentry->d_sb, threadgroup);
4769 	if (ret)
4770 		goto out_finish;
4771 
4772 	ret = cgroup_attach_task(dst_cgrp, task, threadgroup);
4773 
4774 out_finish:
4775 	cgroup_procs_write_finish(task, locked);
4776 out_unlock:
4777 	cgroup_kn_unlock(of->kn);
4778 
4779 	return ret;
4780 }
4781 
4782 static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
4783 				  char *buf, size_t nbytes, loff_t off)
4784 {
4785 	return __cgroup_procs_write(of, buf, true) ?: nbytes;
4786 }
4787 
4788 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos)
4789 {
4790 	return __cgroup_procs_start(s, pos, 0);
4791 }
4792 
4793 static ssize_t cgroup_threads_write(struct kernfs_open_file *of,
4794 				    char *buf, size_t nbytes, loff_t off)
4795 {
4796 	return __cgroup_procs_write(of, buf, false) ?: nbytes;
4797 }
4798 
4799 /* cgroup core interface files for the default hierarchy */
4800 static struct cftype cgroup_base_files[] = {
4801 	{
4802 		.name = "cgroup.type",
4803 		.flags = CFTYPE_NOT_ON_ROOT,
4804 		.seq_show = cgroup_type_show,
4805 		.write = cgroup_type_write,
4806 	},
4807 	{
4808 		.name = "cgroup.procs",
4809 		.flags = CFTYPE_NS_DELEGATABLE,
4810 		.file_offset = offsetof(struct cgroup, procs_file),
4811 		.release = cgroup_procs_release,
4812 		.seq_start = cgroup_procs_start,
4813 		.seq_next = cgroup_procs_next,
4814 		.seq_show = cgroup_procs_show,
4815 		.write = cgroup_procs_write,
4816 	},
4817 	{
4818 		.name = "cgroup.threads",
4819 		.flags = CFTYPE_NS_DELEGATABLE,
4820 		.release = cgroup_procs_release,
4821 		.seq_start = cgroup_threads_start,
4822 		.seq_next = cgroup_procs_next,
4823 		.seq_show = cgroup_procs_show,
4824 		.write = cgroup_threads_write,
4825 	},
4826 	{
4827 		.name = "cgroup.controllers",
4828 		.seq_show = cgroup_controllers_show,
4829 	},
4830 	{
4831 		.name = "cgroup.subtree_control",
4832 		.flags = CFTYPE_NS_DELEGATABLE,
4833 		.seq_show = cgroup_subtree_control_show,
4834 		.write = cgroup_subtree_control_write,
4835 	},
4836 	{
4837 		.name = "cgroup.events",
4838 		.flags = CFTYPE_NOT_ON_ROOT,
4839 		.file_offset = offsetof(struct cgroup, events_file),
4840 		.seq_show = cgroup_events_show,
4841 	},
4842 	{
4843 		.name = "cgroup.max.descendants",
4844 		.seq_show = cgroup_max_descendants_show,
4845 		.write = cgroup_max_descendants_write,
4846 	},
4847 	{
4848 		.name = "cgroup.max.depth",
4849 		.seq_show = cgroup_max_depth_show,
4850 		.write = cgroup_max_depth_write,
4851 	},
4852 	{
4853 		.name = "cgroup.stat",
4854 		.seq_show = cgroup_stat_show,
4855 	},
4856 	{
4857 		.name = "cgroup.freeze",
4858 		.flags = CFTYPE_NOT_ON_ROOT,
4859 		.seq_show = cgroup_freeze_show,
4860 		.write = cgroup_freeze_write,
4861 	},
4862 	{
4863 		.name = "cpu.stat",
4864 		.seq_show = cpu_stat_show,
4865 	},
4866 #ifdef CONFIG_PSI
4867 	{
4868 		.name = "io.pressure",
4869 		.seq_show = cgroup_io_pressure_show,
4870 		.write = cgroup_io_pressure_write,
4871 		.poll = cgroup_pressure_poll,
4872 		.release = cgroup_pressure_release,
4873 	},
4874 	{
4875 		.name = "memory.pressure",
4876 		.seq_show = cgroup_memory_pressure_show,
4877 		.write = cgroup_memory_pressure_write,
4878 		.poll = cgroup_pressure_poll,
4879 		.release = cgroup_pressure_release,
4880 	},
4881 	{
4882 		.name = "cpu.pressure",
4883 		.seq_show = cgroup_cpu_pressure_show,
4884 		.write = cgroup_cpu_pressure_write,
4885 		.poll = cgroup_pressure_poll,
4886 		.release = cgroup_pressure_release,
4887 	},
4888 #endif /* CONFIG_PSI */
4889 	{ }	/* terminate */
4890 };
4891 
4892 /*
4893  * css destruction is four-stage process.
4894  *
4895  * 1. Destruction starts.  Killing of the percpu_ref is initiated.
4896  *    Implemented in kill_css().
4897  *
4898  * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
4899  *    and thus css_tryget_online() is guaranteed to fail, the css can be
4900  *    offlined by invoking offline_css().  After offlining, the base ref is
4901  *    put.  Implemented in css_killed_work_fn().
4902  *
4903  * 3. When the percpu_ref reaches zero, the only possible remaining
4904  *    accessors are inside RCU read sections.  css_release() schedules the
4905  *    RCU callback.
4906  *
4907  * 4. After the grace period, the css can be freed.  Implemented in
4908  *    css_free_work_fn().
4909  *
4910  * It is actually hairier because both step 2 and 4 require process context
4911  * and thus involve punting to css->destroy_work adding two additional
4912  * steps to the already complex sequence.
4913  */
4914 static void css_free_rwork_fn(struct work_struct *work)
4915 {
4916 	struct cgroup_subsys_state *css = container_of(to_rcu_work(work),
4917 				struct cgroup_subsys_state, destroy_rwork);
4918 	struct cgroup_subsys *ss = css->ss;
4919 	struct cgroup *cgrp = css->cgroup;
4920 
4921 	percpu_ref_exit(&css->refcnt);
4922 
4923 	if (ss) {
4924 		/* css free path */
4925 		struct cgroup_subsys_state *parent = css->parent;
4926 		int id = css->id;
4927 
4928 		ss->css_free(css);
4929 		cgroup_idr_remove(&ss->css_idr, id);
4930 		cgroup_put(cgrp);
4931 
4932 		if (parent)
4933 			css_put(parent);
4934 	} else {
4935 		/* cgroup free path */
4936 		atomic_dec(&cgrp->root->nr_cgrps);
4937 		cgroup1_pidlist_destroy_all(cgrp);
4938 		cancel_work_sync(&cgrp->release_agent_work);
4939 
4940 		if (cgroup_parent(cgrp)) {
4941 			/*
4942 			 * We get a ref to the parent, and put the ref when
4943 			 * this cgroup is being freed, so it's guaranteed
4944 			 * that the parent won't be destroyed before its
4945 			 * children.
4946 			 */
4947 			cgroup_put(cgroup_parent(cgrp));
4948 			kernfs_put(cgrp->kn);
4949 			psi_cgroup_free(cgrp);
4950 			cgroup_rstat_exit(cgrp);
4951 			kfree(cgrp);
4952 		} else {
4953 			/*
4954 			 * This is root cgroup's refcnt reaching zero,
4955 			 * which indicates that the root should be
4956 			 * released.
4957 			 */
4958 			cgroup_destroy_root(cgrp->root);
4959 		}
4960 	}
4961 }
4962 
4963 static void css_release_work_fn(struct work_struct *work)
4964 {
4965 	struct cgroup_subsys_state *css =
4966 		container_of(work, struct cgroup_subsys_state, destroy_work);
4967 	struct cgroup_subsys *ss = css->ss;
4968 	struct cgroup *cgrp = css->cgroup;
4969 
4970 	mutex_lock(&cgroup_mutex);
4971 
4972 	css->flags |= CSS_RELEASED;
4973 	list_del_rcu(&css->sibling);
4974 
4975 	if (ss) {
4976 		/* css release path */
4977 		if (!list_empty(&css->rstat_css_node)) {
4978 			cgroup_rstat_flush(cgrp);
4979 			list_del_rcu(&css->rstat_css_node);
4980 		}
4981 
4982 		cgroup_idr_replace(&ss->css_idr, NULL, css->id);
4983 		if (ss->css_released)
4984 			ss->css_released(css);
4985 	} else {
4986 		struct cgroup *tcgrp;
4987 
4988 		/* cgroup release path */
4989 		TRACE_CGROUP_PATH(release, cgrp);
4990 
4991 		cgroup_rstat_flush(cgrp);
4992 
4993 		spin_lock_irq(&css_set_lock);
4994 		for (tcgrp = cgroup_parent(cgrp); tcgrp;
4995 		     tcgrp = cgroup_parent(tcgrp))
4996 			tcgrp->nr_dying_descendants--;
4997 		spin_unlock_irq(&css_set_lock);
4998 
4999 		/*
5000 		 * There are two control paths which try to determine
5001 		 * cgroup from dentry without going through kernfs -
5002 		 * cgroupstats_build() and css_tryget_online_from_dir().
5003 		 * Those are supported by RCU protecting clearing of
5004 		 * cgrp->kn->priv backpointer.
5005 		 */
5006 		if (cgrp->kn)
5007 			RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
5008 					 NULL);
5009 	}
5010 
5011 	mutex_unlock(&cgroup_mutex);
5012 
5013 	INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5014 	queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5015 }
5016 
5017 static void css_release(struct percpu_ref *ref)
5018 {
5019 	struct cgroup_subsys_state *css =
5020 		container_of(ref, struct cgroup_subsys_state, refcnt);
5021 
5022 	INIT_WORK(&css->destroy_work, css_release_work_fn);
5023 	queue_work(cgroup_destroy_wq, &css->destroy_work);
5024 }
5025 
5026 static void init_and_link_css(struct cgroup_subsys_state *css,
5027 			      struct cgroup_subsys *ss, struct cgroup *cgrp)
5028 {
5029 	lockdep_assert_held(&cgroup_mutex);
5030 
5031 	cgroup_get_live(cgrp);
5032 
5033 	memset(css, 0, sizeof(*css));
5034 	css->cgroup = cgrp;
5035 	css->ss = ss;
5036 	css->id = -1;
5037 	INIT_LIST_HEAD(&css->sibling);
5038 	INIT_LIST_HEAD(&css->children);
5039 	INIT_LIST_HEAD(&css->rstat_css_node);
5040 	css->serial_nr = css_serial_nr_next++;
5041 	atomic_set(&css->online_cnt, 0);
5042 
5043 	if (cgroup_parent(cgrp)) {
5044 		css->parent = cgroup_css(cgroup_parent(cgrp), ss);
5045 		css_get(css->parent);
5046 	}
5047 
5048 	if (ss->css_rstat_flush)
5049 		list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list);
5050 
5051 	BUG_ON(cgroup_css(cgrp, ss));
5052 }
5053 
5054 /* invoke ->css_online() on a new CSS and mark it online if successful */
5055 static int online_css(struct cgroup_subsys_state *css)
5056 {
5057 	struct cgroup_subsys *ss = css->ss;
5058 	int ret = 0;
5059 
5060 	lockdep_assert_held(&cgroup_mutex);
5061 
5062 	if (ss->css_online)
5063 		ret = ss->css_online(css);
5064 	if (!ret) {
5065 		css->flags |= CSS_ONLINE;
5066 		rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
5067 
5068 		atomic_inc(&css->online_cnt);
5069 		if (css->parent)
5070 			atomic_inc(&css->parent->online_cnt);
5071 	}
5072 	return ret;
5073 }
5074 
5075 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
5076 static void offline_css(struct cgroup_subsys_state *css)
5077 {
5078 	struct cgroup_subsys *ss = css->ss;
5079 
5080 	lockdep_assert_held(&cgroup_mutex);
5081 
5082 	if (!(css->flags & CSS_ONLINE))
5083 		return;
5084 
5085 	if (ss->css_offline)
5086 		ss->css_offline(css);
5087 
5088 	css->flags &= ~CSS_ONLINE;
5089 	RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
5090 
5091 	wake_up_all(&css->cgroup->offline_waitq);
5092 }
5093 
5094 /**
5095  * css_create - create a cgroup_subsys_state
5096  * @cgrp: the cgroup new css will be associated with
5097  * @ss: the subsys of new css
5098  *
5099  * Create a new css associated with @cgrp - @ss pair.  On success, the new
5100  * css is online and installed in @cgrp.  This function doesn't create the
5101  * interface files.  Returns 0 on success, -errno on failure.
5102  */
5103 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
5104 					      struct cgroup_subsys *ss)
5105 {
5106 	struct cgroup *parent = cgroup_parent(cgrp);
5107 	struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
5108 	struct cgroup_subsys_state *css;
5109 	int err;
5110 
5111 	lockdep_assert_held(&cgroup_mutex);
5112 
5113 	css = ss->css_alloc(parent_css);
5114 	if (!css)
5115 		css = ERR_PTR(-ENOMEM);
5116 	if (IS_ERR(css))
5117 		return css;
5118 
5119 	init_and_link_css(css, ss, cgrp);
5120 
5121 	err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
5122 	if (err)
5123 		goto err_free_css;
5124 
5125 	err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
5126 	if (err < 0)
5127 		goto err_free_css;
5128 	css->id = err;
5129 
5130 	/* @css is ready to be brought online now, make it visible */
5131 	list_add_tail_rcu(&css->sibling, &parent_css->children);
5132 	cgroup_idr_replace(&ss->css_idr, css, css->id);
5133 
5134 	err = online_css(css);
5135 	if (err)
5136 		goto err_list_del;
5137 
5138 	return css;
5139 
5140 err_list_del:
5141 	list_del_rcu(&css->sibling);
5142 err_free_css:
5143 	list_del_rcu(&css->rstat_css_node);
5144 	INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5145 	queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5146 	return ERR_PTR(err);
5147 }
5148 
5149 /*
5150  * The returned cgroup is fully initialized including its control mask, but
5151  * it isn't associated with its kernfs_node and doesn't have the control
5152  * mask applied.
5153  */
5154 static struct cgroup *cgroup_create(struct cgroup *parent, const char *name,
5155 				    umode_t mode)
5156 {
5157 	struct cgroup_root *root = parent->root;
5158 	struct cgroup *cgrp, *tcgrp;
5159 	struct kernfs_node *kn;
5160 	int level = parent->level + 1;
5161 	int ret;
5162 
5163 	/* allocate the cgroup and its ID, 0 is reserved for the root */
5164 	cgrp = kzalloc(struct_size(cgrp, ancestor_ids, (level + 1)),
5165 		       GFP_KERNEL);
5166 	if (!cgrp)
5167 		return ERR_PTR(-ENOMEM);
5168 
5169 	ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
5170 	if (ret)
5171 		goto out_free_cgrp;
5172 
5173 	ret = cgroup_rstat_init(cgrp);
5174 	if (ret)
5175 		goto out_cancel_ref;
5176 
5177 	/* create the directory */
5178 	kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
5179 	if (IS_ERR(kn)) {
5180 		ret = PTR_ERR(kn);
5181 		goto out_stat_exit;
5182 	}
5183 	cgrp->kn = kn;
5184 
5185 	init_cgroup_housekeeping(cgrp);
5186 
5187 	cgrp->self.parent = &parent->self;
5188 	cgrp->root = root;
5189 	cgrp->level = level;
5190 
5191 	ret = psi_cgroup_alloc(cgrp);
5192 	if (ret)
5193 		goto out_kernfs_remove;
5194 
5195 	ret = cgroup_bpf_inherit(cgrp);
5196 	if (ret)
5197 		goto out_psi_free;
5198 
5199 	/*
5200 	 * New cgroup inherits effective freeze counter, and
5201 	 * if the parent has to be frozen, the child has too.
5202 	 */
5203 	cgrp->freezer.e_freeze = parent->freezer.e_freeze;
5204 	if (cgrp->freezer.e_freeze) {
5205 		/*
5206 		 * Set the CGRP_FREEZE flag, so when a process will be
5207 		 * attached to the child cgroup, it will become frozen.
5208 		 * At this point the new cgroup is unpopulated, so we can
5209 		 * consider it frozen immediately.
5210 		 */
5211 		set_bit(CGRP_FREEZE, &cgrp->flags);
5212 		set_bit(CGRP_FROZEN, &cgrp->flags);
5213 	}
5214 
5215 	spin_lock_irq(&css_set_lock);
5216 	for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5217 		cgrp->ancestor_ids[tcgrp->level] = cgroup_id(tcgrp);
5218 
5219 		if (tcgrp != cgrp) {
5220 			tcgrp->nr_descendants++;
5221 
5222 			/*
5223 			 * If the new cgroup is frozen, all ancestor cgroups
5224 			 * get a new frozen descendant, but their state can't
5225 			 * change because of this.
5226 			 */
5227 			if (cgrp->freezer.e_freeze)
5228 				tcgrp->freezer.nr_frozen_descendants++;
5229 		}
5230 	}
5231 	spin_unlock_irq(&css_set_lock);
5232 
5233 	if (notify_on_release(parent))
5234 		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
5235 
5236 	if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
5237 		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
5238 
5239 	cgrp->self.serial_nr = css_serial_nr_next++;
5240 
5241 	/* allocation complete, commit to creation */
5242 	list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
5243 	atomic_inc(&root->nr_cgrps);
5244 	cgroup_get_live(parent);
5245 
5246 	/*
5247 	 * On the default hierarchy, a child doesn't automatically inherit
5248 	 * subtree_control from the parent.  Each is configured manually.
5249 	 */
5250 	if (!cgroup_on_dfl(cgrp))
5251 		cgrp->subtree_control = cgroup_control(cgrp);
5252 
5253 	cgroup_propagate_control(cgrp);
5254 
5255 	return cgrp;
5256 
5257 out_psi_free:
5258 	psi_cgroup_free(cgrp);
5259 out_kernfs_remove:
5260 	kernfs_remove(cgrp->kn);
5261 out_stat_exit:
5262 	cgroup_rstat_exit(cgrp);
5263 out_cancel_ref:
5264 	percpu_ref_exit(&cgrp->self.refcnt);
5265 out_free_cgrp:
5266 	kfree(cgrp);
5267 	return ERR_PTR(ret);
5268 }
5269 
5270 static bool cgroup_check_hierarchy_limits(struct cgroup *parent)
5271 {
5272 	struct cgroup *cgroup;
5273 	int ret = false;
5274 	int level = 1;
5275 
5276 	lockdep_assert_held(&cgroup_mutex);
5277 
5278 	for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) {
5279 		if (cgroup->nr_descendants >= cgroup->max_descendants)
5280 			goto fail;
5281 
5282 		if (level > cgroup->max_depth)
5283 			goto fail;
5284 
5285 		level++;
5286 	}
5287 
5288 	ret = true;
5289 fail:
5290 	return ret;
5291 }
5292 
5293 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode)
5294 {
5295 	struct cgroup *parent, *cgrp;
5296 	int ret;
5297 
5298 	/* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
5299 	if (strchr(name, '\n'))
5300 		return -EINVAL;
5301 
5302 	parent = cgroup_kn_lock_live(parent_kn, false);
5303 	if (!parent)
5304 		return -ENODEV;
5305 
5306 	if (!cgroup_check_hierarchy_limits(parent)) {
5307 		ret = -EAGAIN;
5308 		goto out_unlock;
5309 	}
5310 
5311 	cgrp = cgroup_create(parent, name, mode);
5312 	if (IS_ERR(cgrp)) {
5313 		ret = PTR_ERR(cgrp);
5314 		goto out_unlock;
5315 	}
5316 
5317 	/*
5318 	 * This extra ref will be put in cgroup_free_fn() and guarantees
5319 	 * that @cgrp->kn is always accessible.
5320 	 */
5321 	kernfs_get(cgrp->kn);
5322 
5323 	ret = cgroup_kn_set_ugid(cgrp->kn);
5324 	if (ret)
5325 		goto out_destroy;
5326 
5327 	ret = css_populate_dir(&cgrp->self);
5328 	if (ret)
5329 		goto out_destroy;
5330 
5331 	ret = cgroup_apply_control_enable(cgrp);
5332 	if (ret)
5333 		goto out_destroy;
5334 
5335 	TRACE_CGROUP_PATH(mkdir, cgrp);
5336 
5337 	/* let's create and online css's */
5338 	kernfs_activate(cgrp->kn);
5339 
5340 	ret = 0;
5341 	goto out_unlock;
5342 
5343 out_destroy:
5344 	cgroup_destroy_locked(cgrp);
5345 out_unlock:
5346 	cgroup_kn_unlock(parent_kn);
5347 	return ret;
5348 }
5349 
5350 /*
5351  * This is called when the refcnt of a css is confirmed to be killed.
5352  * css_tryget_online() is now guaranteed to fail.  Tell the subsystem to
5353  * initiate destruction and put the css ref from kill_css().
5354  */
5355 static void css_killed_work_fn(struct work_struct *work)
5356 {
5357 	struct cgroup_subsys_state *css =
5358 		container_of(work, struct cgroup_subsys_state, destroy_work);
5359 
5360 	mutex_lock(&cgroup_mutex);
5361 
5362 	do {
5363 		offline_css(css);
5364 		css_put(css);
5365 		/* @css can't go away while we're holding cgroup_mutex */
5366 		css = css->parent;
5367 	} while (css && atomic_dec_and_test(&css->online_cnt));
5368 
5369 	mutex_unlock(&cgroup_mutex);
5370 }
5371 
5372 /* css kill confirmation processing requires process context, bounce */
5373 static void css_killed_ref_fn(struct percpu_ref *ref)
5374 {
5375 	struct cgroup_subsys_state *css =
5376 		container_of(ref, struct cgroup_subsys_state, refcnt);
5377 
5378 	if (atomic_dec_and_test(&css->online_cnt)) {
5379 		INIT_WORK(&css->destroy_work, css_killed_work_fn);
5380 		queue_work(cgroup_destroy_wq, &css->destroy_work);
5381 	}
5382 }
5383 
5384 /**
5385  * kill_css - destroy a css
5386  * @css: css to destroy
5387  *
5388  * This function initiates destruction of @css by removing cgroup interface
5389  * files and putting its base reference.  ->css_offline() will be invoked
5390  * asynchronously once css_tryget_online() is guaranteed to fail and when
5391  * the reference count reaches zero, @css will be released.
5392  */
5393 static void kill_css(struct cgroup_subsys_state *css)
5394 {
5395 	lockdep_assert_held(&cgroup_mutex);
5396 
5397 	if (css->flags & CSS_DYING)
5398 		return;
5399 
5400 	css->flags |= CSS_DYING;
5401 
5402 	/*
5403 	 * This must happen before css is disassociated with its cgroup.
5404 	 * See seq_css() for details.
5405 	 */
5406 	css_clear_dir(css);
5407 
5408 	/*
5409 	 * Killing would put the base ref, but we need to keep it alive
5410 	 * until after ->css_offline().
5411 	 */
5412 	css_get(css);
5413 
5414 	/*
5415 	 * cgroup core guarantees that, by the time ->css_offline() is
5416 	 * invoked, no new css reference will be given out via
5417 	 * css_tryget_online().  We can't simply call percpu_ref_kill() and
5418 	 * proceed to offlining css's because percpu_ref_kill() doesn't
5419 	 * guarantee that the ref is seen as killed on all CPUs on return.
5420 	 *
5421 	 * Use percpu_ref_kill_and_confirm() to get notifications as each
5422 	 * css is confirmed to be seen as killed on all CPUs.
5423 	 */
5424 	percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
5425 }
5426 
5427 /**
5428  * cgroup_destroy_locked - the first stage of cgroup destruction
5429  * @cgrp: cgroup to be destroyed
5430  *
5431  * css's make use of percpu refcnts whose killing latency shouldn't be
5432  * exposed to userland and are RCU protected.  Also, cgroup core needs to
5433  * guarantee that css_tryget_online() won't succeed by the time
5434  * ->css_offline() is invoked.  To satisfy all the requirements,
5435  * destruction is implemented in the following two steps.
5436  *
5437  * s1. Verify @cgrp can be destroyed and mark it dying.  Remove all
5438  *     userland visible parts and start killing the percpu refcnts of
5439  *     css's.  Set up so that the next stage will be kicked off once all
5440  *     the percpu refcnts are confirmed to be killed.
5441  *
5442  * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5443  *     rest of destruction.  Once all cgroup references are gone, the
5444  *     cgroup is RCU-freed.
5445  *
5446  * This function implements s1.  After this step, @cgrp is gone as far as
5447  * the userland is concerned and a new cgroup with the same name may be
5448  * created.  As cgroup doesn't care about the names internally, this
5449  * doesn't cause any problem.
5450  */
5451 static int cgroup_destroy_locked(struct cgroup *cgrp)
5452 	__releases(&cgroup_mutex) __acquires(&cgroup_mutex)
5453 {
5454 	struct cgroup *tcgrp, *parent = cgroup_parent(cgrp);
5455 	struct cgroup_subsys_state *css;
5456 	struct cgrp_cset_link *link;
5457 	int ssid;
5458 
5459 	lockdep_assert_held(&cgroup_mutex);
5460 
5461 	/*
5462 	 * Only migration can raise populated from zero and we're already
5463 	 * holding cgroup_mutex.
5464 	 */
5465 	if (cgroup_is_populated(cgrp))
5466 		return -EBUSY;
5467 
5468 	/*
5469 	 * Make sure there's no live children.  We can't test emptiness of
5470 	 * ->self.children as dead children linger on it while being
5471 	 * drained; otherwise, "rmdir parent/child parent" may fail.
5472 	 */
5473 	if (css_has_online_children(&cgrp->self))
5474 		return -EBUSY;
5475 
5476 	/*
5477 	 * Mark @cgrp and the associated csets dead.  The former prevents
5478 	 * further task migration and child creation by disabling
5479 	 * cgroup_lock_live_group().  The latter makes the csets ignored by
5480 	 * the migration path.
5481 	 */
5482 	cgrp->self.flags &= ~CSS_ONLINE;
5483 
5484 	spin_lock_irq(&css_set_lock);
5485 	list_for_each_entry(link, &cgrp->cset_links, cset_link)
5486 		link->cset->dead = true;
5487 	spin_unlock_irq(&css_set_lock);
5488 
5489 	/* initiate massacre of all css's */
5490 	for_each_css(css, ssid, cgrp)
5491 		kill_css(css);
5492 
5493 	/* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */
5494 	css_clear_dir(&cgrp->self);
5495 	kernfs_remove(cgrp->kn);
5496 
5497 	if (parent && cgroup_is_threaded(cgrp))
5498 		parent->nr_threaded_children--;
5499 
5500 	spin_lock_irq(&css_set_lock);
5501 	for (tcgrp = cgroup_parent(cgrp); tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5502 		tcgrp->nr_descendants--;
5503 		tcgrp->nr_dying_descendants++;
5504 		/*
5505 		 * If the dying cgroup is frozen, decrease frozen descendants
5506 		 * counters of ancestor cgroups.
5507 		 */
5508 		if (test_bit(CGRP_FROZEN, &cgrp->flags))
5509 			tcgrp->freezer.nr_frozen_descendants--;
5510 	}
5511 	spin_unlock_irq(&css_set_lock);
5512 
5513 	cgroup1_check_for_release(parent);
5514 
5515 	cgroup_bpf_offline(cgrp);
5516 
5517 	/* put the base reference */
5518 	percpu_ref_kill(&cgrp->self.refcnt);
5519 
5520 	return 0;
5521 };
5522 
5523 int cgroup_rmdir(struct kernfs_node *kn)
5524 {
5525 	struct cgroup *cgrp;
5526 	int ret = 0;
5527 
5528 	cgrp = cgroup_kn_lock_live(kn, false);
5529 	if (!cgrp)
5530 		return 0;
5531 
5532 	ret = cgroup_destroy_locked(cgrp);
5533 	if (!ret)
5534 		TRACE_CGROUP_PATH(rmdir, cgrp);
5535 
5536 	cgroup_kn_unlock(kn);
5537 	return ret;
5538 }
5539 
5540 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5541 	.show_options		= cgroup_show_options,
5542 	.mkdir			= cgroup_mkdir,
5543 	.rmdir			= cgroup_rmdir,
5544 	.show_path		= cgroup_show_path,
5545 };
5546 
5547 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
5548 {
5549 	struct cgroup_subsys_state *css;
5550 
5551 	pr_debug("Initializing cgroup subsys %s\n", ss->name);
5552 
5553 	mutex_lock(&cgroup_mutex);
5554 
5555 	idr_init(&ss->css_idr);
5556 	INIT_LIST_HEAD(&ss->cfts);
5557 
5558 	/* Create the root cgroup state for this subsystem */
5559 	ss->root = &cgrp_dfl_root;
5560 	css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
5561 	/* We don't handle early failures gracefully */
5562 	BUG_ON(IS_ERR(css));
5563 	init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
5564 
5565 	/*
5566 	 * Root csses are never destroyed and we can't initialize
5567 	 * percpu_ref during early init.  Disable refcnting.
5568 	 */
5569 	css->flags |= CSS_NO_REF;
5570 
5571 	if (early) {
5572 		/* allocation can't be done safely during early init */
5573 		css->id = 1;
5574 	} else {
5575 		css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5576 		BUG_ON(css->id < 0);
5577 	}
5578 
5579 	/* Update the init_css_set to contain a subsys
5580 	 * pointer to this state - since the subsystem is
5581 	 * newly registered, all tasks and hence the
5582 	 * init_css_set is in the subsystem's root cgroup. */
5583 	init_css_set.subsys[ss->id] = css;
5584 
5585 	have_fork_callback |= (bool)ss->fork << ss->id;
5586 	have_exit_callback |= (bool)ss->exit << ss->id;
5587 	have_release_callback |= (bool)ss->release << ss->id;
5588 	have_canfork_callback |= (bool)ss->can_fork << ss->id;
5589 
5590 	/* At system boot, before all subsystems have been
5591 	 * registered, no tasks have been forked, so we don't
5592 	 * need to invoke fork callbacks here. */
5593 	BUG_ON(!list_empty(&init_task.tasks));
5594 
5595 	BUG_ON(online_css(css));
5596 
5597 	mutex_unlock(&cgroup_mutex);
5598 }
5599 
5600 /**
5601  * cgroup_init_early - cgroup initialization at system boot
5602  *
5603  * Initialize cgroups at system boot, and initialize any
5604  * subsystems that request early init.
5605  */
5606 int __init cgroup_init_early(void)
5607 {
5608 	static struct cgroup_fs_context __initdata ctx;
5609 	struct cgroup_subsys *ss;
5610 	int i;
5611 
5612 	ctx.root = &cgrp_dfl_root;
5613 	init_cgroup_root(&ctx);
5614 	cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5615 
5616 	RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
5617 
5618 	for_each_subsys(ss, i) {
5619 		WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
5620 		     "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
5621 		     i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
5622 		     ss->id, ss->name);
5623 		WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5624 		     "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5625 
5626 		ss->id = i;
5627 		ss->name = cgroup_subsys_name[i];
5628 		if (!ss->legacy_name)
5629 			ss->legacy_name = cgroup_subsys_name[i];
5630 
5631 		if (ss->early_init)
5632 			cgroup_init_subsys(ss, true);
5633 	}
5634 	return 0;
5635 }
5636 
5637 /**
5638  * cgroup_init - cgroup initialization
5639  *
5640  * Register cgroup filesystem and /proc file, and initialize
5641  * any subsystems that didn't request early init.
5642  */
5643 int __init cgroup_init(void)
5644 {
5645 	struct cgroup_subsys *ss;
5646 	int ssid;
5647 
5648 	BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
5649 	BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
5650 	BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files));
5651 
5652 	cgroup_rstat_boot();
5653 
5654 	/*
5655 	 * The latency of the synchronize_rcu() is too high for cgroups,
5656 	 * avoid it at the cost of forcing all readers into the slow path.
5657 	 */
5658 	rcu_sync_enter_start(&cgroup_threadgroup_rwsem.rss);
5659 
5660 	get_user_ns(init_cgroup_ns.user_ns);
5661 
5662 	mutex_lock(&cgroup_mutex);
5663 
5664 	/*
5665 	 * Add init_css_set to the hash table so that dfl_root can link to
5666 	 * it during init.
5667 	 */
5668 	hash_add(css_set_table, &init_css_set.hlist,
5669 		 css_set_hash(init_css_set.subsys));
5670 
5671 	BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
5672 
5673 	mutex_unlock(&cgroup_mutex);
5674 
5675 	for_each_subsys(ss, ssid) {
5676 		if (ss->early_init) {
5677 			struct cgroup_subsys_state *css =
5678 				init_css_set.subsys[ss->id];
5679 
5680 			css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5681 						   GFP_KERNEL);
5682 			BUG_ON(css->id < 0);
5683 		} else {
5684 			cgroup_init_subsys(ss, false);
5685 		}
5686 
5687 		list_add_tail(&init_css_set.e_cset_node[ssid],
5688 			      &cgrp_dfl_root.cgrp.e_csets[ssid]);
5689 
5690 		/*
5691 		 * Setting dfl_root subsys_mask needs to consider the
5692 		 * disabled flag and cftype registration needs kmalloc,
5693 		 * both of which aren't available during early_init.
5694 		 */
5695 		if (!cgroup_ssid_enabled(ssid))
5696 			continue;
5697 
5698 		if (cgroup1_ssid_disabled(ssid))
5699 			printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n",
5700 			       ss->name);
5701 
5702 		cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5703 
5704 		/* implicit controllers must be threaded too */
5705 		WARN_ON(ss->implicit_on_dfl && !ss->threaded);
5706 
5707 		if (ss->implicit_on_dfl)
5708 			cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
5709 		else if (!ss->dfl_cftypes)
5710 			cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
5711 
5712 		if (ss->threaded)
5713 			cgrp_dfl_threaded_ss_mask |= 1 << ss->id;
5714 
5715 		if (ss->dfl_cftypes == ss->legacy_cftypes) {
5716 			WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5717 		} else {
5718 			WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5719 			WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
5720 		}
5721 
5722 		if (ss->bind)
5723 			ss->bind(init_css_set.subsys[ssid]);
5724 
5725 		mutex_lock(&cgroup_mutex);
5726 		css_populate_dir(init_css_set.subsys[ssid]);
5727 		mutex_unlock(&cgroup_mutex);
5728 	}
5729 
5730 	/* init_css_set.subsys[] has been updated, re-hash */
5731 	hash_del(&init_css_set.hlist);
5732 	hash_add(css_set_table, &init_css_set.hlist,
5733 		 css_set_hash(init_css_set.subsys));
5734 
5735 	WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
5736 	WARN_ON(register_filesystem(&cgroup_fs_type));
5737 	WARN_ON(register_filesystem(&cgroup2_fs_type));
5738 	WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show));
5739 #ifdef CONFIG_CPUSETS
5740 	WARN_ON(register_filesystem(&cpuset_fs_type));
5741 #endif
5742 
5743 	return 0;
5744 }
5745 
5746 static int __init cgroup_wq_init(void)
5747 {
5748 	/*
5749 	 * There isn't much point in executing destruction path in
5750 	 * parallel.  Good chunk is serialized with cgroup_mutex anyway.
5751 	 * Use 1 for @max_active.
5752 	 *
5753 	 * We would prefer to do this in cgroup_init() above, but that
5754 	 * is called before init_workqueues(): so leave this until after.
5755 	 */
5756 	cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
5757 	BUG_ON(!cgroup_destroy_wq);
5758 	return 0;
5759 }
5760 core_initcall(cgroup_wq_init);
5761 
5762 void cgroup_path_from_kernfs_id(u64 id, char *buf, size_t buflen)
5763 {
5764 	struct kernfs_node *kn;
5765 
5766 	kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id);
5767 	if (!kn)
5768 		return;
5769 	kernfs_path(kn, buf, buflen);
5770 	kernfs_put(kn);
5771 }
5772 
5773 /*
5774  * proc_cgroup_show()
5775  *  - Print task's cgroup paths into seq_file, one line for each hierarchy
5776  *  - Used for /proc/<pid>/cgroup.
5777  */
5778 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5779 		     struct pid *pid, struct task_struct *tsk)
5780 {
5781 	char *buf;
5782 	int retval;
5783 	struct cgroup_root *root;
5784 
5785 	retval = -ENOMEM;
5786 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
5787 	if (!buf)
5788 		goto out;
5789 
5790 	mutex_lock(&cgroup_mutex);
5791 	spin_lock_irq(&css_set_lock);
5792 
5793 	for_each_root(root) {
5794 		struct cgroup_subsys *ss;
5795 		struct cgroup *cgrp;
5796 		int ssid, count = 0;
5797 
5798 		if (root == &cgrp_dfl_root && !cgrp_dfl_visible)
5799 			continue;
5800 
5801 		seq_printf(m, "%d:", root->hierarchy_id);
5802 		if (root != &cgrp_dfl_root)
5803 			for_each_subsys(ss, ssid)
5804 				if (root->subsys_mask & (1 << ssid))
5805 					seq_printf(m, "%s%s", count++ ? "," : "",
5806 						   ss->legacy_name);
5807 		if (strlen(root->name))
5808 			seq_printf(m, "%sname=%s", count ? "," : "",
5809 				   root->name);
5810 		seq_putc(m, ':');
5811 
5812 		cgrp = task_cgroup_from_root(tsk, root);
5813 
5814 		/*
5815 		 * On traditional hierarchies, all zombie tasks show up as
5816 		 * belonging to the root cgroup.  On the default hierarchy,
5817 		 * while a zombie doesn't show up in "cgroup.procs" and
5818 		 * thus can't be migrated, its /proc/PID/cgroup keeps
5819 		 * reporting the cgroup it belonged to before exiting.  If
5820 		 * the cgroup is removed before the zombie is reaped,
5821 		 * " (deleted)" is appended to the cgroup path.
5822 		 */
5823 		if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
5824 			retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
5825 						current->nsproxy->cgroup_ns);
5826 			if (retval >= PATH_MAX)
5827 				retval = -ENAMETOOLONG;
5828 			if (retval < 0)
5829 				goto out_unlock;
5830 
5831 			seq_puts(m, buf);
5832 		} else {
5833 			seq_puts(m, "/");
5834 		}
5835 
5836 		if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
5837 			seq_puts(m, " (deleted)\n");
5838 		else
5839 			seq_putc(m, '\n');
5840 	}
5841 
5842 	retval = 0;
5843 out_unlock:
5844 	spin_unlock_irq(&css_set_lock);
5845 	mutex_unlock(&cgroup_mutex);
5846 	kfree(buf);
5847 out:
5848 	return retval;
5849 }
5850 
5851 /**
5852  * cgroup_fork - initialize cgroup related fields during copy_process()
5853  * @child: pointer to task_struct of forking parent process.
5854  *
5855  * A task is associated with the init_css_set until cgroup_post_fork()
5856  * attaches it to the target css_set.
5857  */
5858 void cgroup_fork(struct task_struct *child)
5859 {
5860 	RCU_INIT_POINTER(child->cgroups, &init_css_set);
5861 	INIT_LIST_HEAD(&child->cg_list);
5862 }
5863 
5864 static struct cgroup *cgroup_get_from_file(struct file *f)
5865 {
5866 	struct cgroup_subsys_state *css;
5867 	struct cgroup *cgrp;
5868 
5869 	css = css_tryget_online_from_dir(f->f_path.dentry, NULL);
5870 	if (IS_ERR(css))
5871 		return ERR_CAST(css);
5872 
5873 	cgrp = css->cgroup;
5874 	if (!cgroup_on_dfl(cgrp)) {
5875 		cgroup_put(cgrp);
5876 		return ERR_PTR(-EBADF);
5877 	}
5878 
5879 	return cgrp;
5880 }
5881 
5882 /**
5883  * cgroup_css_set_fork - find or create a css_set for a child process
5884  * @kargs: the arguments passed to create the child process
5885  *
5886  * This functions finds or creates a new css_set which the child
5887  * process will be attached to in cgroup_post_fork(). By default,
5888  * the child process will be given the same css_set as its parent.
5889  *
5890  * If CLONE_INTO_CGROUP is specified this function will try to find an
5891  * existing css_set which includes the requested cgroup and if not create
5892  * a new css_set that the child will be attached to later. If this function
5893  * succeeds it will hold cgroup_threadgroup_rwsem on return. If
5894  * CLONE_INTO_CGROUP is requested this function will grab cgroup mutex
5895  * before grabbing cgroup_threadgroup_rwsem and will hold a reference
5896  * to the target cgroup.
5897  */
5898 static int cgroup_css_set_fork(struct kernel_clone_args *kargs)
5899 	__acquires(&cgroup_mutex) __acquires(&cgroup_threadgroup_rwsem)
5900 {
5901 	int ret;
5902 	struct cgroup *dst_cgrp = NULL;
5903 	struct css_set *cset;
5904 	struct super_block *sb;
5905 	struct file *f;
5906 
5907 	if (kargs->flags & CLONE_INTO_CGROUP)
5908 		mutex_lock(&cgroup_mutex);
5909 
5910 	cgroup_threadgroup_change_begin(current);
5911 
5912 	spin_lock_irq(&css_set_lock);
5913 	cset = task_css_set(current);
5914 	get_css_set(cset);
5915 	spin_unlock_irq(&css_set_lock);
5916 
5917 	if (!(kargs->flags & CLONE_INTO_CGROUP)) {
5918 		kargs->cset = cset;
5919 		return 0;
5920 	}
5921 
5922 	f = fget_raw(kargs->cgroup);
5923 	if (!f) {
5924 		ret = -EBADF;
5925 		goto err;
5926 	}
5927 	sb = f->f_path.dentry->d_sb;
5928 
5929 	dst_cgrp = cgroup_get_from_file(f);
5930 	if (IS_ERR(dst_cgrp)) {
5931 		ret = PTR_ERR(dst_cgrp);
5932 		dst_cgrp = NULL;
5933 		goto err;
5934 	}
5935 
5936 	if (cgroup_is_dead(dst_cgrp)) {
5937 		ret = -ENODEV;
5938 		goto err;
5939 	}
5940 
5941 	/*
5942 	 * Verify that we the target cgroup is writable for us. This is
5943 	 * usually done by the vfs layer but since we're not going through
5944 	 * the vfs layer here we need to do it "manually".
5945 	 */
5946 	ret = cgroup_may_write(dst_cgrp, sb);
5947 	if (ret)
5948 		goto err;
5949 
5950 	ret = cgroup_attach_permissions(cset->dfl_cgrp, dst_cgrp, sb,
5951 					!(kargs->flags & CLONE_THREAD));
5952 	if (ret)
5953 		goto err;
5954 
5955 	kargs->cset = find_css_set(cset, dst_cgrp);
5956 	if (!kargs->cset) {
5957 		ret = -ENOMEM;
5958 		goto err;
5959 	}
5960 
5961 	put_css_set(cset);
5962 	fput(f);
5963 	kargs->cgrp = dst_cgrp;
5964 	return ret;
5965 
5966 err:
5967 	cgroup_threadgroup_change_end(current);
5968 	mutex_unlock(&cgroup_mutex);
5969 	if (f)
5970 		fput(f);
5971 	if (dst_cgrp)
5972 		cgroup_put(dst_cgrp);
5973 	put_css_set(cset);
5974 	if (kargs->cset)
5975 		put_css_set(kargs->cset);
5976 	return ret;
5977 }
5978 
5979 /**
5980  * cgroup_css_set_put_fork - drop references we took during fork
5981  * @kargs: the arguments passed to create the child process
5982  *
5983  * Drop references to the prepared css_set and target cgroup if
5984  * CLONE_INTO_CGROUP was requested.
5985  */
5986 static void cgroup_css_set_put_fork(struct kernel_clone_args *kargs)
5987 	__releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
5988 {
5989 	cgroup_threadgroup_change_end(current);
5990 
5991 	if (kargs->flags & CLONE_INTO_CGROUP) {
5992 		struct cgroup *cgrp = kargs->cgrp;
5993 		struct css_set *cset = kargs->cset;
5994 
5995 		mutex_unlock(&cgroup_mutex);
5996 
5997 		if (cset) {
5998 			put_css_set(cset);
5999 			kargs->cset = NULL;
6000 		}
6001 
6002 		if (cgrp) {
6003 			cgroup_put(cgrp);
6004 			kargs->cgrp = NULL;
6005 		}
6006 	}
6007 }
6008 
6009 /**
6010  * cgroup_can_fork - called on a new task before the process is exposed
6011  * @child: the child process
6012  *
6013  * This prepares a new css_set for the child process which the child will
6014  * be attached to in cgroup_post_fork().
6015  * This calls the subsystem can_fork() callbacks. If the cgroup_can_fork()
6016  * callback returns an error, the fork aborts with that error code. This
6017  * allows for a cgroup subsystem to conditionally allow or deny new forks.
6018  */
6019 int cgroup_can_fork(struct task_struct *child, struct kernel_clone_args *kargs)
6020 {
6021 	struct cgroup_subsys *ss;
6022 	int i, j, ret;
6023 
6024 	ret = cgroup_css_set_fork(kargs);
6025 	if (ret)
6026 		return ret;
6027 
6028 	do_each_subsys_mask(ss, i, have_canfork_callback) {
6029 		ret = ss->can_fork(child, kargs->cset);
6030 		if (ret)
6031 			goto out_revert;
6032 	} while_each_subsys_mask();
6033 
6034 	return 0;
6035 
6036 out_revert:
6037 	for_each_subsys(ss, j) {
6038 		if (j >= i)
6039 			break;
6040 		if (ss->cancel_fork)
6041 			ss->cancel_fork(child, kargs->cset);
6042 	}
6043 
6044 	cgroup_css_set_put_fork(kargs);
6045 
6046 	return ret;
6047 }
6048 
6049 /**
6050  * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
6051  * @child: the child process
6052  * @kargs: the arguments passed to create the child process
6053  *
6054  * This calls the cancel_fork() callbacks if a fork failed *after*
6055  * cgroup_can_fork() succeeded and cleans up references we took to
6056  * prepare a new css_set for the child process in cgroup_can_fork().
6057  */
6058 void cgroup_cancel_fork(struct task_struct *child,
6059 			struct kernel_clone_args *kargs)
6060 {
6061 	struct cgroup_subsys *ss;
6062 	int i;
6063 
6064 	for_each_subsys(ss, i)
6065 		if (ss->cancel_fork)
6066 			ss->cancel_fork(child, kargs->cset);
6067 
6068 	cgroup_css_set_put_fork(kargs);
6069 }
6070 
6071 /**
6072  * cgroup_post_fork - finalize cgroup setup for the child process
6073  * @child: the child process
6074  *
6075  * Attach the child process to its css_set calling the subsystem fork()
6076  * callbacks.
6077  */
6078 void cgroup_post_fork(struct task_struct *child,
6079 		      struct kernel_clone_args *kargs)
6080 	__releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
6081 {
6082 	struct cgroup_subsys *ss;
6083 	struct css_set *cset;
6084 	int i;
6085 
6086 	cset = kargs->cset;
6087 	kargs->cset = NULL;
6088 
6089 	spin_lock_irq(&css_set_lock);
6090 
6091 	/* init tasks are special, only link regular threads */
6092 	if (likely(child->pid)) {
6093 		WARN_ON_ONCE(!list_empty(&child->cg_list));
6094 		cset->nr_tasks++;
6095 		css_set_move_task(child, NULL, cset, false);
6096 	} else {
6097 		put_css_set(cset);
6098 		cset = NULL;
6099 	}
6100 
6101 	/*
6102 	 * If the cgroup has to be frozen, the new task has too.  Let's set
6103 	 * the JOBCTL_TRAP_FREEZE jobctl bit to get the task into the
6104 	 * frozen state.
6105 	 */
6106 	if (unlikely(cgroup_task_freeze(child))) {
6107 		spin_lock(&child->sighand->siglock);
6108 		WARN_ON_ONCE(child->frozen);
6109 		child->jobctl |= JOBCTL_TRAP_FREEZE;
6110 		spin_unlock(&child->sighand->siglock);
6111 
6112 		/*
6113 		 * Calling cgroup_update_frozen() isn't required here,
6114 		 * because it will be called anyway a bit later from
6115 		 * do_freezer_trap(). So we avoid cgroup's transient switch
6116 		 * from the frozen state and back.
6117 		 */
6118 	}
6119 
6120 	spin_unlock_irq(&css_set_lock);
6121 
6122 	/*
6123 	 * Call ss->fork().  This must happen after @child is linked on
6124 	 * css_set; otherwise, @child might change state between ->fork()
6125 	 * and addition to css_set.
6126 	 */
6127 	do_each_subsys_mask(ss, i, have_fork_callback) {
6128 		ss->fork(child);
6129 	} while_each_subsys_mask();
6130 
6131 	/* Make the new cset the root_cset of the new cgroup namespace. */
6132 	if (kargs->flags & CLONE_NEWCGROUP) {
6133 		struct css_set *rcset = child->nsproxy->cgroup_ns->root_cset;
6134 
6135 		get_css_set(cset);
6136 		child->nsproxy->cgroup_ns->root_cset = cset;
6137 		put_css_set(rcset);
6138 	}
6139 
6140 	cgroup_css_set_put_fork(kargs);
6141 }
6142 
6143 /**
6144  * cgroup_exit - detach cgroup from exiting task
6145  * @tsk: pointer to task_struct of exiting process
6146  *
6147  * Description: Detach cgroup from @tsk.
6148  *
6149  */
6150 void cgroup_exit(struct task_struct *tsk)
6151 {
6152 	struct cgroup_subsys *ss;
6153 	struct css_set *cset;
6154 	int i;
6155 
6156 	spin_lock_irq(&css_set_lock);
6157 
6158 	WARN_ON_ONCE(list_empty(&tsk->cg_list));
6159 	cset = task_css_set(tsk);
6160 	css_set_move_task(tsk, cset, NULL, false);
6161 	list_add_tail(&tsk->cg_list, &cset->dying_tasks);
6162 	cset->nr_tasks--;
6163 
6164 	WARN_ON_ONCE(cgroup_task_frozen(tsk));
6165 	if (unlikely(cgroup_task_freeze(tsk)))
6166 		cgroup_update_frozen(task_dfl_cgroup(tsk));
6167 
6168 	spin_unlock_irq(&css_set_lock);
6169 
6170 	/* see cgroup_post_fork() for details */
6171 	do_each_subsys_mask(ss, i, have_exit_callback) {
6172 		ss->exit(tsk);
6173 	} while_each_subsys_mask();
6174 }
6175 
6176 void cgroup_release(struct task_struct *task)
6177 {
6178 	struct cgroup_subsys *ss;
6179 	int ssid;
6180 
6181 	do_each_subsys_mask(ss, ssid, have_release_callback) {
6182 		ss->release(task);
6183 	} while_each_subsys_mask();
6184 
6185 	spin_lock_irq(&css_set_lock);
6186 	css_set_skip_task_iters(task_css_set(task), task);
6187 	list_del_init(&task->cg_list);
6188 	spin_unlock_irq(&css_set_lock);
6189 }
6190 
6191 void cgroup_free(struct task_struct *task)
6192 {
6193 	struct css_set *cset = task_css_set(task);
6194 	put_css_set(cset);
6195 }
6196 
6197 static int __init cgroup_disable(char *str)
6198 {
6199 	struct cgroup_subsys *ss;
6200 	char *token;
6201 	int i;
6202 
6203 	while ((token = strsep(&str, ",")) != NULL) {
6204 		if (!*token)
6205 			continue;
6206 
6207 		for_each_subsys(ss, i) {
6208 			if (strcmp(token, ss->name) &&
6209 			    strcmp(token, ss->legacy_name))
6210 				continue;
6211 
6212 			static_branch_disable(cgroup_subsys_enabled_key[i]);
6213 			pr_info("Disabling %s control group subsystem\n",
6214 				ss->name);
6215 		}
6216 	}
6217 	return 1;
6218 }
6219 __setup("cgroup_disable=", cgroup_disable);
6220 
6221 void __init __weak enable_debug_cgroup(void) { }
6222 
6223 static int __init enable_cgroup_debug(char *str)
6224 {
6225 	cgroup_debug = true;
6226 	enable_debug_cgroup();
6227 	return 1;
6228 }
6229 __setup("cgroup_debug", enable_cgroup_debug);
6230 
6231 /**
6232  * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
6233  * @dentry: directory dentry of interest
6234  * @ss: subsystem of interest
6235  *
6236  * If @dentry is a directory for a cgroup which has @ss enabled on it, try
6237  * to get the corresponding css and return it.  If such css doesn't exist
6238  * or can't be pinned, an ERR_PTR value is returned.
6239  */
6240 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
6241 						       struct cgroup_subsys *ss)
6242 {
6243 	struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
6244 	struct file_system_type *s_type = dentry->d_sb->s_type;
6245 	struct cgroup_subsys_state *css = NULL;
6246 	struct cgroup *cgrp;
6247 
6248 	/* is @dentry a cgroup dir? */
6249 	if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
6250 	    !kn || kernfs_type(kn) != KERNFS_DIR)
6251 		return ERR_PTR(-EBADF);
6252 
6253 	rcu_read_lock();
6254 
6255 	/*
6256 	 * This path doesn't originate from kernfs and @kn could already
6257 	 * have been or be removed at any point.  @kn->priv is RCU
6258 	 * protected for this access.  See css_release_work_fn() for details.
6259 	 */
6260 	cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6261 	if (cgrp)
6262 		css = cgroup_css(cgrp, ss);
6263 
6264 	if (!css || !css_tryget_online(css))
6265 		css = ERR_PTR(-ENOENT);
6266 
6267 	rcu_read_unlock();
6268 	return css;
6269 }
6270 
6271 /**
6272  * css_from_id - lookup css by id
6273  * @id: the cgroup id
6274  * @ss: cgroup subsys to be looked into
6275  *
6276  * Returns the css if there's valid one with @id, otherwise returns NULL.
6277  * Should be called under rcu_read_lock().
6278  */
6279 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
6280 {
6281 	WARN_ON_ONCE(!rcu_read_lock_held());
6282 	return idr_find(&ss->css_idr, id);
6283 }
6284 
6285 /**
6286  * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
6287  * @path: path on the default hierarchy
6288  *
6289  * Find the cgroup at @path on the default hierarchy, increment its
6290  * reference count and return it.  Returns pointer to the found cgroup on
6291  * success, ERR_PTR(-ENOENT) if @path doesn't exist and ERR_PTR(-ENOTDIR)
6292  * if @path points to a non-directory.
6293  */
6294 struct cgroup *cgroup_get_from_path(const char *path)
6295 {
6296 	struct kernfs_node *kn;
6297 	struct cgroup *cgrp;
6298 
6299 	mutex_lock(&cgroup_mutex);
6300 
6301 	kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path);
6302 	if (kn) {
6303 		if (kernfs_type(kn) == KERNFS_DIR) {
6304 			cgrp = kn->priv;
6305 			cgroup_get_live(cgrp);
6306 		} else {
6307 			cgrp = ERR_PTR(-ENOTDIR);
6308 		}
6309 		kernfs_put(kn);
6310 	} else {
6311 		cgrp = ERR_PTR(-ENOENT);
6312 	}
6313 
6314 	mutex_unlock(&cgroup_mutex);
6315 	return cgrp;
6316 }
6317 EXPORT_SYMBOL_GPL(cgroup_get_from_path);
6318 
6319 /**
6320  * cgroup_get_from_fd - get a cgroup pointer from a fd
6321  * @fd: fd obtained by open(cgroup2_dir)
6322  *
6323  * Find the cgroup from a fd which should be obtained
6324  * by opening a cgroup directory.  Returns a pointer to the
6325  * cgroup on success. ERR_PTR is returned if the cgroup
6326  * cannot be found.
6327  */
6328 struct cgroup *cgroup_get_from_fd(int fd)
6329 {
6330 	struct cgroup *cgrp;
6331 	struct file *f;
6332 
6333 	f = fget_raw(fd);
6334 	if (!f)
6335 		return ERR_PTR(-EBADF);
6336 
6337 	cgrp = cgroup_get_from_file(f);
6338 	fput(f);
6339 	return cgrp;
6340 }
6341 EXPORT_SYMBOL_GPL(cgroup_get_from_fd);
6342 
6343 static u64 power_of_ten(int power)
6344 {
6345 	u64 v = 1;
6346 	while (power--)
6347 		v *= 10;
6348 	return v;
6349 }
6350 
6351 /**
6352  * cgroup_parse_float - parse a floating number
6353  * @input: input string
6354  * @dec_shift: number of decimal digits to shift
6355  * @v: output
6356  *
6357  * Parse a decimal floating point number in @input and store the result in
6358  * @v with decimal point right shifted @dec_shift times.  For example, if
6359  * @input is "12.3456" and @dec_shift is 3, *@v will be set to 12345.
6360  * Returns 0 on success, -errno otherwise.
6361  *
6362  * There's nothing cgroup specific about this function except that it's
6363  * currently the only user.
6364  */
6365 int cgroup_parse_float(const char *input, unsigned dec_shift, s64 *v)
6366 {
6367 	s64 whole, frac = 0;
6368 	int fstart = 0, fend = 0, flen;
6369 
6370 	if (!sscanf(input, "%lld.%n%lld%n", &whole, &fstart, &frac, &fend))
6371 		return -EINVAL;
6372 	if (frac < 0)
6373 		return -EINVAL;
6374 
6375 	flen = fend > fstart ? fend - fstart : 0;
6376 	if (flen < dec_shift)
6377 		frac *= power_of_ten(dec_shift - flen);
6378 	else
6379 		frac = DIV_ROUND_CLOSEST_ULL(frac, power_of_ten(flen - dec_shift));
6380 
6381 	*v = whole * power_of_ten(dec_shift) + frac;
6382 	return 0;
6383 }
6384 
6385 /*
6386  * sock->sk_cgrp_data handling.  For more info, see sock_cgroup_data
6387  * definition in cgroup-defs.h.
6388  */
6389 #ifdef CONFIG_SOCK_CGROUP_DATA
6390 
6391 #if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID)
6392 
6393 DEFINE_SPINLOCK(cgroup_sk_update_lock);
6394 static bool cgroup_sk_alloc_disabled __read_mostly;
6395 
6396 void cgroup_sk_alloc_disable(void)
6397 {
6398 	if (cgroup_sk_alloc_disabled)
6399 		return;
6400 	pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n");
6401 	cgroup_sk_alloc_disabled = true;
6402 }
6403 
6404 #else
6405 
6406 #define cgroup_sk_alloc_disabled	false
6407 
6408 #endif
6409 
6410 void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
6411 {
6412 	if (cgroup_sk_alloc_disabled) {
6413 		skcd->no_refcnt = 1;
6414 		return;
6415 	}
6416 
6417 	/* Don't associate the sock with unrelated interrupted task's cgroup. */
6418 	if (in_interrupt())
6419 		return;
6420 
6421 	rcu_read_lock();
6422 
6423 	while (true) {
6424 		struct css_set *cset;
6425 
6426 		cset = task_css_set(current);
6427 		if (likely(cgroup_tryget(cset->dfl_cgrp))) {
6428 			skcd->val = (unsigned long)cset->dfl_cgrp;
6429 			cgroup_bpf_get(cset->dfl_cgrp);
6430 			break;
6431 		}
6432 		cpu_relax();
6433 	}
6434 
6435 	rcu_read_unlock();
6436 }
6437 
6438 void cgroup_sk_clone(struct sock_cgroup_data *skcd)
6439 {
6440 	if (skcd->val) {
6441 		if (skcd->no_refcnt)
6442 			return;
6443 		/*
6444 		 * We might be cloning a socket which is left in an empty
6445 		 * cgroup and the cgroup might have already been rmdir'd.
6446 		 * Don't use cgroup_get_live().
6447 		 */
6448 		cgroup_get(sock_cgroup_ptr(skcd));
6449 		cgroup_bpf_get(sock_cgroup_ptr(skcd));
6450 	}
6451 }
6452 
6453 void cgroup_sk_free(struct sock_cgroup_data *skcd)
6454 {
6455 	struct cgroup *cgrp = sock_cgroup_ptr(skcd);
6456 
6457 	if (skcd->no_refcnt)
6458 		return;
6459 	cgroup_bpf_put(cgrp);
6460 	cgroup_put(cgrp);
6461 }
6462 
6463 #endif	/* CONFIG_SOCK_CGROUP_DATA */
6464 
6465 #ifdef CONFIG_CGROUP_BPF
6466 int cgroup_bpf_attach(struct cgroup *cgrp,
6467 		      struct bpf_prog *prog, struct bpf_prog *replace_prog,
6468 		      struct bpf_cgroup_link *link,
6469 		      enum bpf_attach_type type,
6470 		      u32 flags)
6471 {
6472 	int ret;
6473 
6474 	mutex_lock(&cgroup_mutex);
6475 	ret = __cgroup_bpf_attach(cgrp, prog, replace_prog, link, type, flags);
6476 	mutex_unlock(&cgroup_mutex);
6477 	return ret;
6478 }
6479 
6480 int cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog,
6481 		      enum bpf_attach_type type)
6482 {
6483 	int ret;
6484 
6485 	mutex_lock(&cgroup_mutex);
6486 	ret = __cgroup_bpf_detach(cgrp, prog, NULL, type);
6487 	mutex_unlock(&cgroup_mutex);
6488 	return ret;
6489 }
6490 
6491 int cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr,
6492 		     union bpf_attr __user *uattr)
6493 {
6494 	int ret;
6495 
6496 	mutex_lock(&cgroup_mutex);
6497 	ret = __cgroup_bpf_query(cgrp, attr, uattr);
6498 	mutex_unlock(&cgroup_mutex);
6499 	return ret;
6500 }
6501 #endif /* CONFIG_CGROUP_BPF */
6502 
6503 #ifdef CONFIG_SYSFS
6504 static ssize_t show_delegatable_files(struct cftype *files, char *buf,
6505 				      ssize_t size, const char *prefix)
6506 {
6507 	struct cftype *cft;
6508 	ssize_t ret = 0;
6509 
6510 	for (cft = files; cft && cft->name[0] != '\0'; cft++) {
6511 		if (!(cft->flags & CFTYPE_NS_DELEGATABLE))
6512 			continue;
6513 
6514 		if (prefix)
6515 			ret += snprintf(buf + ret, size - ret, "%s.", prefix);
6516 
6517 		ret += snprintf(buf + ret, size - ret, "%s\n", cft->name);
6518 
6519 		if (WARN_ON(ret >= size))
6520 			break;
6521 	}
6522 
6523 	return ret;
6524 }
6525 
6526 static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr,
6527 			      char *buf)
6528 {
6529 	struct cgroup_subsys *ss;
6530 	int ssid;
6531 	ssize_t ret = 0;
6532 
6533 	ret = show_delegatable_files(cgroup_base_files, buf, PAGE_SIZE - ret,
6534 				     NULL);
6535 
6536 	for_each_subsys(ss, ssid)
6537 		ret += show_delegatable_files(ss->dfl_cftypes, buf + ret,
6538 					      PAGE_SIZE - ret,
6539 					      cgroup_subsys_name[ssid]);
6540 
6541 	return ret;
6542 }
6543 static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate);
6544 
6545 static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr,
6546 			     char *buf)
6547 {
6548 	return snprintf(buf, PAGE_SIZE,
6549 			"nsdelegate\n"
6550 			"memory_localevents\n"
6551 			"memory_recursiveprot\n");
6552 }
6553 static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features);
6554 
6555 static struct attribute *cgroup_sysfs_attrs[] = {
6556 	&cgroup_delegate_attr.attr,
6557 	&cgroup_features_attr.attr,
6558 	NULL,
6559 };
6560 
6561 static const struct attribute_group cgroup_sysfs_attr_group = {
6562 	.attrs = cgroup_sysfs_attrs,
6563 	.name = "cgroup",
6564 };
6565 
6566 static int __init cgroup_sysfs_init(void)
6567 {
6568 	return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group);
6569 }
6570 subsys_initcall(cgroup_sysfs_init);
6571 
6572 #endif /* CONFIG_SYSFS */
6573