1 /* 2 * Generic process-grouping system. 3 * 4 * Based originally on the cpuset system, extracted by Paul Menage 5 * Copyright (C) 2006 Google, Inc 6 * 7 * Notifications support 8 * Copyright (C) 2009 Nokia Corporation 9 * Author: Kirill A. Shutemov 10 * 11 * Copyright notices from the original cpuset code: 12 * -------------------------------------------------- 13 * Copyright (C) 2003 BULL SA. 14 * Copyright (C) 2004-2006 Silicon Graphics, Inc. 15 * 16 * Portions derived from Patrick Mochel's sysfs code. 17 * sysfs is Copyright (c) 2001-3 Patrick Mochel 18 * 19 * 2003-10-10 Written by Simon Derr. 20 * 2003-10-22 Updates by Stephen Hemminger. 21 * 2004 May-July Rework by Paul Jackson. 22 * --------------------------------------------------- 23 * 24 * This file is subject to the terms and conditions of the GNU General Public 25 * License. See the file COPYING in the main directory of the Linux 26 * distribution for more details. 27 */ 28 29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 30 31 #include "cgroup-internal.h" 32 33 #include <linux/bpf-cgroup.h> 34 #include <linux/cred.h> 35 #include <linux/errno.h> 36 #include <linux/init_task.h> 37 #include <linux/kernel.h> 38 #include <linux/magic.h> 39 #include <linux/mutex.h> 40 #include <linux/mount.h> 41 #include <linux/pagemap.h> 42 #include <linux/proc_fs.h> 43 #include <linux/rcupdate.h> 44 #include <linux/sched.h> 45 #include <linux/sched/task.h> 46 #include <linux/slab.h> 47 #include <linux/spinlock.h> 48 #include <linux/percpu-rwsem.h> 49 #include <linux/string.h> 50 #include <linux/hashtable.h> 51 #include <linux/idr.h> 52 #include <linux/kthread.h> 53 #include <linux/atomic.h> 54 #include <linux/cpuset.h> 55 #include <linux/proc_ns.h> 56 #include <linux/nsproxy.h> 57 #include <linux/file.h> 58 #include <linux/fs_parser.h> 59 #include <linux/sched/cputime.h> 60 #include <linux/psi.h> 61 #include <net/sock.h> 62 63 #define CREATE_TRACE_POINTS 64 #include <trace/events/cgroup.h> 65 66 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \ 67 MAX_CFTYPE_NAME + 2) 68 /* let's not notify more than 100 times per second */ 69 #define CGROUP_FILE_NOTIFY_MIN_INTV DIV_ROUND_UP(HZ, 100) 70 71 /* 72 * To avoid confusing the compiler (and generating warnings) with code 73 * that attempts to access what would be a 0-element array (i.e. sized 74 * to a potentially empty array when CGROUP_SUBSYS_COUNT == 0), this 75 * constant expression can be added. 76 */ 77 #define CGROUP_HAS_SUBSYS_CONFIG (CGROUP_SUBSYS_COUNT > 0) 78 79 /* 80 * cgroup_mutex is the master lock. Any modification to cgroup or its 81 * hierarchy must be performed while holding it. 82 * 83 * css_set_lock protects task->cgroups pointer, the list of css_set 84 * objects, and the chain of tasks off each css_set. 85 * 86 * These locks are exported if CONFIG_PROVE_RCU so that accessors in 87 * cgroup.h can use them for lockdep annotations. 88 */ 89 DEFINE_MUTEX(cgroup_mutex); 90 DEFINE_SPINLOCK(css_set_lock); 91 92 #ifdef CONFIG_PROVE_RCU 93 EXPORT_SYMBOL_GPL(cgroup_mutex); 94 EXPORT_SYMBOL_GPL(css_set_lock); 95 #endif 96 97 DEFINE_SPINLOCK(trace_cgroup_path_lock); 98 char trace_cgroup_path[TRACE_CGROUP_PATH_LEN]; 99 static bool cgroup_debug __read_mostly; 100 101 /* 102 * Protects cgroup_idr and css_idr so that IDs can be released without 103 * grabbing cgroup_mutex. 104 */ 105 static DEFINE_SPINLOCK(cgroup_idr_lock); 106 107 /* 108 * Protects cgroup_file->kn for !self csses. It synchronizes notifications 109 * against file removal/re-creation across css hiding. 110 */ 111 static DEFINE_SPINLOCK(cgroup_file_kn_lock); 112 113 DEFINE_PERCPU_RWSEM(cgroup_threadgroup_rwsem); 114 115 #define cgroup_assert_mutex_or_rcu_locked() \ 116 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \ 117 !lockdep_is_held(&cgroup_mutex), \ 118 "cgroup_mutex or RCU read lock required"); 119 120 /* 121 * cgroup destruction makes heavy use of work items and there can be a lot 122 * of concurrent destructions. Use a separate workqueue so that cgroup 123 * destruction work items don't end up filling up max_active of system_wq 124 * which may lead to deadlock. 125 */ 126 static struct workqueue_struct *cgroup_destroy_wq; 127 128 /* generate an array of cgroup subsystem pointers */ 129 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys, 130 struct cgroup_subsys *cgroup_subsys[] = { 131 #include <linux/cgroup_subsys.h> 132 }; 133 #undef SUBSYS 134 135 /* array of cgroup subsystem names */ 136 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x, 137 static const char *cgroup_subsys_name[] = { 138 #include <linux/cgroup_subsys.h> 139 }; 140 #undef SUBSYS 141 142 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */ 143 #define SUBSYS(_x) \ 144 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \ 145 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \ 146 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \ 147 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key); 148 #include <linux/cgroup_subsys.h> 149 #undef SUBSYS 150 151 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key, 152 static struct static_key_true *cgroup_subsys_enabled_key[] = { 153 #include <linux/cgroup_subsys.h> 154 }; 155 #undef SUBSYS 156 157 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key, 158 static struct static_key_true *cgroup_subsys_on_dfl_key[] = { 159 #include <linux/cgroup_subsys.h> 160 }; 161 #undef SUBSYS 162 163 static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu); 164 165 /* the default hierarchy */ 166 struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu }; 167 EXPORT_SYMBOL_GPL(cgrp_dfl_root); 168 169 /* 170 * The default hierarchy always exists but is hidden until mounted for the 171 * first time. This is for backward compatibility. 172 */ 173 static bool cgrp_dfl_visible; 174 175 /* some controllers are not supported in the default hierarchy */ 176 static u16 cgrp_dfl_inhibit_ss_mask; 177 178 /* some controllers are implicitly enabled on the default hierarchy */ 179 static u16 cgrp_dfl_implicit_ss_mask; 180 181 /* some controllers can be threaded on the default hierarchy */ 182 static u16 cgrp_dfl_threaded_ss_mask; 183 184 /* The list of hierarchy roots */ 185 LIST_HEAD(cgroup_roots); 186 static int cgroup_root_count; 187 188 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */ 189 static DEFINE_IDR(cgroup_hierarchy_idr); 190 191 /* 192 * Assign a monotonically increasing serial number to csses. It guarantees 193 * cgroups with bigger numbers are newer than those with smaller numbers. 194 * Also, as csses are always appended to the parent's ->children list, it 195 * guarantees that sibling csses are always sorted in the ascending serial 196 * number order on the list. Protected by cgroup_mutex. 197 */ 198 static u64 css_serial_nr_next = 1; 199 200 /* 201 * These bitmasks identify subsystems with specific features to avoid 202 * having to do iterative checks repeatedly. 203 */ 204 static u16 have_fork_callback __read_mostly; 205 static u16 have_exit_callback __read_mostly; 206 static u16 have_release_callback __read_mostly; 207 static u16 have_canfork_callback __read_mostly; 208 209 /* cgroup namespace for init task */ 210 struct cgroup_namespace init_cgroup_ns = { 211 .ns.count = REFCOUNT_INIT(2), 212 .user_ns = &init_user_ns, 213 .ns.ops = &cgroupns_operations, 214 .ns.inum = PROC_CGROUP_INIT_INO, 215 .root_cset = &init_css_set, 216 }; 217 218 static struct file_system_type cgroup2_fs_type; 219 static struct cftype cgroup_base_files[]; 220 221 /* cgroup optional features */ 222 enum cgroup_opt_features { 223 #ifdef CONFIG_PSI 224 OPT_FEATURE_PRESSURE, 225 #endif 226 OPT_FEATURE_COUNT 227 }; 228 229 static const char *cgroup_opt_feature_names[OPT_FEATURE_COUNT] = { 230 #ifdef CONFIG_PSI 231 "pressure", 232 #endif 233 }; 234 235 static u16 cgroup_feature_disable_mask __read_mostly; 236 237 static int cgroup_apply_control(struct cgroup *cgrp); 238 static void cgroup_finalize_control(struct cgroup *cgrp, int ret); 239 static void css_task_iter_skip(struct css_task_iter *it, 240 struct task_struct *task); 241 static int cgroup_destroy_locked(struct cgroup *cgrp); 242 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp, 243 struct cgroup_subsys *ss); 244 static void css_release(struct percpu_ref *ref); 245 static void kill_css(struct cgroup_subsys_state *css); 246 static int cgroup_addrm_files(struct cgroup_subsys_state *css, 247 struct cgroup *cgrp, struct cftype cfts[], 248 bool is_add); 249 250 /** 251 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID 252 * @ssid: subsys ID of interest 253 * 254 * cgroup_subsys_enabled() can only be used with literal subsys names which 255 * is fine for individual subsystems but unsuitable for cgroup core. This 256 * is slower static_key_enabled() based test indexed by @ssid. 257 */ 258 bool cgroup_ssid_enabled(int ssid) 259 { 260 if (!CGROUP_HAS_SUBSYS_CONFIG) 261 return false; 262 263 return static_key_enabled(cgroup_subsys_enabled_key[ssid]); 264 } 265 266 /** 267 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy 268 * @cgrp: the cgroup of interest 269 * 270 * The default hierarchy is the v2 interface of cgroup and this function 271 * can be used to test whether a cgroup is on the default hierarchy for 272 * cases where a subsystem should behave differently depending on the 273 * interface version. 274 * 275 * List of changed behaviors: 276 * 277 * - Mount options "noprefix", "xattr", "clone_children", "release_agent" 278 * and "name" are disallowed. 279 * 280 * - When mounting an existing superblock, mount options should match. 281 * 282 * - rename(2) is disallowed. 283 * 284 * - "tasks" is removed. Everything should be at process granularity. Use 285 * "cgroup.procs" instead. 286 * 287 * - "cgroup.procs" is not sorted. pids will be unique unless they got 288 * recycled in-between reads. 289 * 290 * - "release_agent" and "notify_on_release" are removed. Replacement 291 * notification mechanism will be implemented. 292 * 293 * - "cgroup.clone_children" is removed. 294 * 295 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup 296 * and its descendants contain no task; otherwise, 1. The file also 297 * generates kernfs notification which can be monitored through poll and 298 * [di]notify when the value of the file changes. 299 * 300 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and 301 * take masks of ancestors with non-empty cpus/mems, instead of being 302 * moved to an ancestor. 303 * 304 * - cpuset: a task can be moved into an empty cpuset, and again it takes 305 * masks of ancestors. 306 * 307 * - blkcg: blk-throttle becomes properly hierarchical. 308 * 309 * - debug: disallowed on the default hierarchy. 310 */ 311 bool cgroup_on_dfl(const struct cgroup *cgrp) 312 { 313 return cgrp->root == &cgrp_dfl_root; 314 } 315 316 /* IDR wrappers which synchronize using cgroup_idr_lock */ 317 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end, 318 gfp_t gfp_mask) 319 { 320 int ret; 321 322 idr_preload(gfp_mask); 323 spin_lock_bh(&cgroup_idr_lock); 324 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM); 325 spin_unlock_bh(&cgroup_idr_lock); 326 idr_preload_end(); 327 return ret; 328 } 329 330 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id) 331 { 332 void *ret; 333 334 spin_lock_bh(&cgroup_idr_lock); 335 ret = idr_replace(idr, ptr, id); 336 spin_unlock_bh(&cgroup_idr_lock); 337 return ret; 338 } 339 340 static void cgroup_idr_remove(struct idr *idr, int id) 341 { 342 spin_lock_bh(&cgroup_idr_lock); 343 idr_remove(idr, id); 344 spin_unlock_bh(&cgroup_idr_lock); 345 } 346 347 static bool cgroup_has_tasks(struct cgroup *cgrp) 348 { 349 return cgrp->nr_populated_csets; 350 } 351 352 bool cgroup_is_threaded(struct cgroup *cgrp) 353 { 354 return cgrp->dom_cgrp != cgrp; 355 } 356 357 /* can @cgrp host both domain and threaded children? */ 358 static bool cgroup_is_mixable(struct cgroup *cgrp) 359 { 360 /* 361 * Root isn't under domain level resource control exempting it from 362 * the no-internal-process constraint, so it can serve as a thread 363 * root and a parent of resource domains at the same time. 364 */ 365 return !cgroup_parent(cgrp); 366 } 367 368 /* can @cgrp become a thread root? Should always be true for a thread root */ 369 static bool cgroup_can_be_thread_root(struct cgroup *cgrp) 370 { 371 /* mixables don't care */ 372 if (cgroup_is_mixable(cgrp)) 373 return true; 374 375 /* domain roots can't be nested under threaded */ 376 if (cgroup_is_threaded(cgrp)) 377 return false; 378 379 /* can only have either domain or threaded children */ 380 if (cgrp->nr_populated_domain_children) 381 return false; 382 383 /* and no domain controllers can be enabled */ 384 if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask) 385 return false; 386 387 return true; 388 } 389 390 /* is @cgrp root of a threaded subtree? */ 391 bool cgroup_is_thread_root(struct cgroup *cgrp) 392 { 393 /* thread root should be a domain */ 394 if (cgroup_is_threaded(cgrp)) 395 return false; 396 397 /* a domain w/ threaded children is a thread root */ 398 if (cgrp->nr_threaded_children) 399 return true; 400 401 /* 402 * A domain which has tasks and explicit threaded controllers 403 * enabled is a thread root. 404 */ 405 if (cgroup_has_tasks(cgrp) && 406 (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask)) 407 return true; 408 409 return false; 410 } 411 412 /* a domain which isn't connected to the root w/o brekage can't be used */ 413 static bool cgroup_is_valid_domain(struct cgroup *cgrp) 414 { 415 /* the cgroup itself can be a thread root */ 416 if (cgroup_is_threaded(cgrp)) 417 return false; 418 419 /* but the ancestors can't be unless mixable */ 420 while ((cgrp = cgroup_parent(cgrp))) { 421 if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp)) 422 return false; 423 if (cgroup_is_threaded(cgrp)) 424 return false; 425 } 426 427 return true; 428 } 429 430 /* subsystems visibly enabled on a cgroup */ 431 static u16 cgroup_control(struct cgroup *cgrp) 432 { 433 struct cgroup *parent = cgroup_parent(cgrp); 434 u16 root_ss_mask = cgrp->root->subsys_mask; 435 436 if (parent) { 437 u16 ss_mask = parent->subtree_control; 438 439 /* threaded cgroups can only have threaded controllers */ 440 if (cgroup_is_threaded(cgrp)) 441 ss_mask &= cgrp_dfl_threaded_ss_mask; 442 return ss_mask; 443 } 444 445 if (cgroup_on_dfl(cgrp)) 446 root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask | 447 cgrp_dfl_implicit_ss_mask); 448 return root_ss_mask; 449 } 450 451 /* subsystems enabled on a cgroup */ 452 static u16 cgroup_ss_mask(struct cgroup *cgrp) 453 { 454 struct cgroup *parent = cgroup_parent(cgrp); 455 456 if (parent) { 457 u16 ss_mask = parent->subtree_ss_mask; 458 459 /* threaded cgroups can only have threaded controllers */ 460 if (cgroup_is_threaded(cgrp)) 461 ss_mask &= cgrp_dfl_threaded_ss_mask; 462 return ss_mask; 463 } 464 465 return cgrp->root->subsys_mask; 466 } 467 468 /** 469 * cgroup_css - obtain a cgroup's css for the specified subsystem 470 * @cgrp: the cgroup of interest 471 * @ss: the subsystem of interest (%NULL returns @cgrp->self) 472 * 473 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This 474 * function must be called either under cgroup_mutex or rcu_read_lock() and 475 * the caller is responsible for pinning the returned css if it wants to 476 * keep accessing it outside the said locks. This function may return 477 * %NULL if @cgrp doesn't have @subsys_id enabled. 478 */ 479 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp, 480 struct cgroup_subsys *ss) 481 { 482 if (CGROUP_HAS_SUBSYS_CONFIG && ss) 483 return rcu_dereference_check(cgrp->subsys[ss->id], 484 lockdep_is_held(&cgroup_mutex)); 485 else 486 return &cgrp->self; 487 } 488 489 /** 490 * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem 491 * @cgrp: the cgroup of interest 492 * @ss: the subsystem of interest 493 * 494 * Find and get @cgrp's css associated with @ss. If the css doesn't exist 495 * or is offline, %NULL is returned. 496 */ 497 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp, 498 struct cgroup_subsys *ss) 499 { 500 struct cgroup_subsys_state *css; 501 502 rcu_read_lock(); 503 css = cgroup_css(cgrp, ss); 504 if (css && !css_tryget_online(css)) 505 css = NULL; 506 rcu_read_unlock(); 507 508 return css; 509 } 510 511 /** 512 * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss 513 * @cgrp: the cgroup of interest 514 * @ss: the subsystem of interest (%NULL returns @cgrp->self) 515 * 516 * Similar to cgroup_css() but returns the effective css, which is defined 517 * as the matching css of the nearest ancestor including self which has @ss 518 * enabled. If @ss is associated with the hierarchy @cgrp is on, this 519 * function is guaranteed to return non-NULL css. 520 */ 521 static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp, 522 struct cgroup_subsys *ss) 523 { 524 lockdep_assert_held(&cgroup_mutex); 525 526 if (!ss) 527 return &cgrp->self; 528 529 /* 530 * This function is used while updating css associations and thus 531 * can't test the csses directly. Test ss_mask. 532 */ 533 while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) { 534 cgrp = cgroup_parent(cgrp); 535 if (!cgrp) 536 return NULL; 537 } 538 539 return cgroup_css(cgrp, ss); 540 } 541 542 /** 543 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem 544 * @cgrp: the cgroup of interest 545 * @ss: the subsystem of interest 546 * 547 * Find and get the effective css of @cgrp for @ss. The effective css is 548 * defined as the matching css of the nearest ancestor including self which 549 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on, 550 * the root css is returned, so this function always returns a valid css. 551 * 552 * The returned css is not guaranteed to be online, and therefore it is the 553 * callers responsibility to try get a reference for it. 554 */ 555 struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp, 556 struct cgroup_subsys *ss) 557 { 558 struct cgroup_subsys_state *css; 559 560 if (!CGROUP_HAS_SUBSYS_CONFIG) 561 return NULL; 562 563 do { 564 css = cgroup_css(cgrp, ss); 565 566 if (css) 567 return css; 568 cgrp = cgroup_parent(cgrp); 569 } while (cgrp); 570 571 return init_css_set.subsys[ss->id]; 572 } 573 574 /** 575 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem 576 * @cgrp: the cgroup of interest 577 * @ss: the subsystem of interest 578 * 579 * Find and get the effective css of @cgrp for @ss. The effective css is 580 * defined as the matching css of the nearest ancestor including self which 581 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on, 582 * the root css is returned, so this function always returns a valid css. 583 * The returned css must be put using css_put(). 584 */ 585 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp, 586 struct cgroup_subsys *ss) 587 { 588 struct cgroup_subsys_state *css; 589 590 if (!CGROUP_HAS_SUBSYS_CONFIG) 591 return NULL; 592 593 rcu_read_lock(); 594 595 do { 596 css = cgroup_css(cgrp, ss); 597 598 if (css && css_tryget_online(css)) 599 goto out_unlock; 600 cgrp = cgroup_parent(cgrp); 601 } while (cgrp); 602 603 css = init_css_set.subsys[ss->id]; 604 css_get(css); 605 out_unlock: 606 rcu_read_unlock(); 607 return css; 608 } 609 EXPORT_SYMBOL_GPL(cgroup_get_e_css); 610 611 static void cgroup_get_live(struct cgroup *cgrp) 612 { 613 WARN_ON_ONCE(cgroup_is_dead(cgrp)); 614 css_get(&cgrp->self); 615 } 616 617 /** 618 * __cgroup_task_count - count the number of tasks in a cgroup. The caller 619 * is responsible for taking the css_set_lock. 620 * @cgrp: the cgroup in question 621 */ 622 int __cgroup_task_count(const struct cgroup *cgrp) 623 { 624 int count = 0; 625 struct cgrp_cset_link *link; 626 627 lockdep_assert_held(&css_set_lock); 628 629 list_for_each_entry(link, &cgrp->cset_links, cset_link) 630 count += link->cset->nr_tasks; 631 632 return count; 633 } 634 635 /** 636 * cgroup_task_count - count the number of tasks in a cgroup. 637 * @cgrp: the cgroup in question 638 */ 639 int cgroup_task_count(const struct cgroup *cgrp) 640 { 641 int count; 642 643 spin_lock_irq(&css_set_lock); 644 count = __cgroup_task_count(cgrp); 645 spin_unlock_irq(&css_set_lock); 646 647 return count; 648 } 649 650 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of) 651 { 652 struct cgroup *cgrp = of->kn->parent->priv; 653 struct cftype *cft = of_cft(of); 654 655 /* 656 * This is open and unprotected implementation of cgroup_css(). 657 * seq_css() is only called from a kernfs file operation which has 658 * an active reference on the file. Because all the subsystem 659 * files are drained before a css is disassociated with a cgroup, 660 * the matching css from the cgroup's subsys table is guaranteed to 661 * be and stay valid until the enclosing operation is complete. 662 */ 663 if (CGROUP_HAS_SUBSYS_CONFIG && cft->ss) 664 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]); 665 else 666 return &cgrp->self; 667 } 668 EXPORT_SYMBOL_GPL(of_css); 669 670 /** 671 * for_each_css - iterate all css's of a cgroup 672 * @css: the iteration cursor 673 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end 674 * @cgrp: the target cgroup to iterate css's of 675 * 676 * Should be called under cgroup_[tree_]mutex. 677 */ 678 #define for_each_css(css, ssid, cgrp) \ 679 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \ 680 if (!((css) = rcu_dereference_check( \ 681 (cgrp)->subsys[(ssid)], \ 682 lockdep_is_held(&cgroup_mutex)))) { } \ 683 else 684 685 /** 686 * for_each_e_css - iterate all effective css's of a cgroup 687 * @css: the iteration cursor 688 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end 689 * @cgrp: the target cgroup to iterate css's of 690 * 691 * Should be called under cgroup_[tree_]mutex. 692 */ 693 #define for_each_e_css(css, ssid, cgrp) \ 694 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \ 695 if (!((css) = cgroup_e_css_by_mask(cgrp, \ 696 cgroup_subsys[(ssid)]))) \ 697 ; \ 698 else 699 700 /** 701 * do_each_subsys_mask - filter for_each_subsys with a bitmask 702 * @ss: the iteration cursor 703 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end 704 * @ss_mask: the bitmask 705 * 706 * The block will only run for cases where the ssid-th bit (1 << ssid) of 707 * @ss_mask is set. 708 */ 709 #define do_each_subsys_mask(ss, ssid, ss_mask) do { \ 710 unsigned long __ss_mask = (ss_mask); \ 711 if (!CGROUP_HAS_SUBSYS_CONFIG) { \ 712 (ssid) = 0; \ 713 break; \ 714 } \ 715 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \ 716 (ss) = cgroup_subsys[ssid]; \ 717 { 718 719 #define while_each_subsys_mask() \ 720 } \ 721 } \ 722 } while (false) 723 724 /* iterate over child cgrps, lock should be held throughout iteration */ 725 #define cgroup_for_each_live_child(child, cgrp) \ 726 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \ 727 if (({ lockdep_assert_held(&cgroup_mutex); \ 728 cgroup_is_dead(child); })) \ 729 ; \ 730 else 731 732 /* walk live descendants in pre order */ 733 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \ 734 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \ 735 if (({ lockdep_assert_held(&cgroup_mutex); \ 736 (dsct) = (d_css)->cgroup; \ 737 cgroup_is_dead(dsct); })) \ 738 ; \ 739 else 740 741 /* walk live descendants in postorder */ 742 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \ 743 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \ 744 if (({ lockdep_assert_held(&cgroup_mutex); \ 745 (dsct) = (d_css)->cgroup; \ 746 cgroup_is_dead(dsct); })) \ 747 ; \ 748 else 749 750 /* 751 * The default css_set - used by init and its children prior to any 752 * hierarchies being mounted. It contains a pointer to the root state 753 * for each subsystem. Also used to anchor the list of css_sets. Not 754 * reference-counted, to improve performance when child cgroups 755 * haven't been created. 756 */ 757 struct css_set init_css_set = { 758 .refcount = REFCOUNT_INIT(1), 759 .dom_cset = &init_css_set, 760 .tasks = LIST_HEAD_INIT(init_css_set.tasks), 761 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks), 762 .dying_tasks = LIST_HEAD_INIT(init_css_set.dying_tasks), 763 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters), 764 .threaded_csets = LIST_HEAD_INIT(init_css_set.threaded_csets), 765 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links), 766 .mg_src_preload_node = LIST_HEAD_INIT(init_css_set.mg_src_preload_node), 767 .mg_dst_preload_node = LIST_HEAD_INIT(init_css_set.mg_dst_preload_node), 768 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node), 769 770 /* 771 * The following field is re-initialized when this cset gets linked 772 * in cgroup_init(). However, let's initialize the field 773 * statically too so that the default cgroup can be accessed safely 774 * early during boot. 775 */ 776 .dfl_cgrp = &cgrp_dfl_root.cgrp, 777 }; 778 779 static int css_set_count = 1; /* 1 for init_css_set */ 780 781 static bool css_set_threaded(struct css_set *cset) 782 { 783 return cset->dom_cset != cset; 784 } 785 786 /** 787 * css_set_populated - does a css_set contain any tasks? 788 * @cset: target css_set 789 * 790 * css_set_populated() should be the same as !!cset->nr_tasks at steady 791 * state. However, css_set_populated() can be called while a task is being 792 * added to or removed from the linked list before the nr_tasks is 793 * properly updated. Hence, we can't just look at ->nr_tasks here. 794 */ 795 static bool css_set_populated(struct css_set *cset) 796 { 797 lockdep_assert_held(&css_set_lock); 798 799 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks); 800 } 801 802 /** 803 * cgroup_update_populated - update the populated count of a cgroup 804 * @cgrp: the target cgroup 805 * @populated: inc or dec populated count 806 * 807 * One of the css_sets associated with @cgrp is either getting its first 808 * task or losing the last. Update @cgrp->nr_populated_* accordingly. The 809 * count is propagated towards root so that a given cgroup's 810 * nr_populated_children is zero iff none of its descendants contain any 811 * tasks. 812 * 813 * @cgrp's interface file "cgroup.populated" is zero if both 814 * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and 815 * 1 otherwise. When the sum changes from or to zero, userland is notified 816 * that the content of the interface file has changed. This can be used to 817 * detect when @cgrp and its descendants become populated or empty. 818 */ 819 static void cgroup_update_populated(struct cgroup *cgrp, bool populated) 820 { 821 struct cgroup *child = NULL; 822 int adj = populated ? 1 : -1; 823 824 lockdep_assert_held(&css_set_lock); 825 826 do { 827 bool was_populated = cgroup_is_populated(cgrp); 828 829 if (!child) { 830 cgrp->nr_populated_csets += adj; 831 } else { 832 if (cgroup_is_threaded(child)) 833 cgrp->nr_populated_threaded_children += adj; 834 else 835 cgrp->nr_populated_domain_children += adj; 836 } 837 838 if (was_populated == cgroup_is_populated(cgrp)) 839 break; 840 841 cgroup1_check_for_release(cgrp); 842 TRACE_CGROUP_PATH(notify_populated, cgrp, 843 cgroup_is_populated(cgrp)); 844 cgroup_file_notify(&cgrp->events_file); 845 846 child = cgrp; 847 cgrp = cgroup_parent(cgrp); 848 } while (cgrp); 849 } 850 851 /** 852 * css_set_update_populated - update populated state of a css_set 853 * @cset: target css_set 854 * @populated: whether @cset is populated or depopulated 855 * 856 * @cset is either getting the first task or losing the last. Update the 857 * populated counters of all associated cgroups accordingly. 858 */ 859 static void css_set_update_populated(struct css_set *cset, bool populated) 860 { 861 struct cgrp_cset_link *link; 862 863 lockdep_assert_held(&css_set_lock); 864 865 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) 866 cgroup_update_populated(link->cgrp, populated); 867 } 868 869 /* 870 * @task is leaving, advance task iterators which are pointing to it so 871 * that they can resume at the next position. Advancing an iterator might 872 * remove it from the list, use safe walk. See css_task_iter_skip() for 873 * details. 874 */ 875 static void css_set_skip_task_iters(struct css_set *cset, 876 struct task_struct *task) 877 { 878 struct css_task_iter *it, *pos; 879 880 list_for_each_entry_safe(it, pos, &cset->task_iters, iters_node) 881 css_task_iter_skip(it, task); 882 } 883 884 /** 885 * css_set_move_task - move a task from one css_set to another 886 * @task: task being moved 887 * @from_cset: css_set @task currently belongs to (may be NULL) 888 * @to_cset: new css_set @task is being moved to (may be NULL) 889 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks 890 * 891 * Move @task from @from_cset to @to_cset. If @task didn't belong to any 892 * css_set, @from_cset can be NULL. If @task is being disassociated 893 * instead of moved, @to_cset can be NULL. 894 * 895 * This function automatically handles populated counter updates and 896 * css_task_iter adjustments but the caller is responsible for managing 897 * @from_cset and @to_cset's reference counts. 898 */ 899 static void css_set_move_task(struct task_struct *task, 900 struct css_set *from_cset, struct css_set *to_cset, 901 bool use_mg_tasks) 902 { 903 lockdep_assert_held(&css_set_lock); 904 905 if (to_cset && !css_set_populated(to_cset)) 906 css_set_update_populated(to_cset, true); 907 908 if (from_cset) { 909 WARN_ON_ONCE(list_empty(&task->cg_list)); 910 911 css_set_skip_task_iters(from_cset, task); 912 list_del_init(&task->cg_list); 913 if (!css_set_populated(from_cset)) 914 css_set_update_populated(from_cset, false); 915 } else { 916 WARN_ON_ONCE(!list_empty(&task->cg_list)); 917 } 918 919 if (to_cset) { 920 /* 921 * We are synchronized through cgroup_threadgroup_rwsem 922 * against PF_EXITING setting such that we can't race 923 * against cgroup_exit()/cgroup_free() dropping the css_set. 924 */ 925 WARN_ON_ONCE(task->flags & PF_EXITING); 926 927 cgroup_move_task(task, to_cset); 928 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks : 929 &to_cset->tasks); 930 } 931 } 932 933 /* 934 * hash table for cgroup groups. This improves the performance to find 935 * an existing css_set. This hash doesn't (currently) take into 936 * account cgroups in empty hierarchies. 937 */ 938 #define CSS_SET_HASH_BITS 7 939 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS); 940 941 static unsigned long css_set_hash(struct cgroup_subsys_state *css[]) 942 { 943 unsigned long key = 0UL; 944 struct cgroup_subsys *ss; 945 int i; 946 947 for_each_subsys(ss, i) 948 key += (unsigned long)css[i]; 949 key = (key >> 16) ^ key; 950 951 return key; 952 } 953 954 void put_css_set_locked(struct css_set *cset) 955 { 956 struct cgrp_cset_link *link, *tmp_link; 957 struct cgroup_subsys *ss; 958 int ssid; 959 960 lockdep_assert_held(&css_set_lock); 961 962 if (!refcount_dec_and_test(&cset->refcount)) 963 return; 964 965 WARN_ON_ONCE(!list_empty(&cset->threaded_csets)); 966 967 /* This css_set is dead. Unlink it and release cgroup and css refs */ 968 for_each_subsys(ss, ssid) { 969 list_del(&cset->e_cset_node[ssid]); 970 css_put(cset->subsys[ssid]); 971 } 972 hash_del(&cset->hlist); 973 css_set_count--; 974 975 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) { 976 list_del(&link->cset_link); 977 list_del(&link->cgrp_link); 978 if (cgroup_parent(link->cgrp)) 979 cgroup_put(link->cgrp); 980 kfree(link); 981 } 982 983 if (css_set_threaded(cset)) { 984 list_del(&cset->threaded_csets_node); 985 put_css_set_locked(cset->dom_cset); 986 } 987 988 kfree_rcu(cset, rcu_head); 989 } 990 991 /** 992 * compare_css_sets - helper function for find_existing_css_set(). 993 * @cset: candidate css_set being tested 994 * @old_cset: existing css_set for a task 995 * @new_cgrp: cgroup that's being entered by the task 996 * @template: desired set of css pointers in css_set (pre-calculated) 997 * 998 * Returns true if "cset" matches "old_cset" except for the hierarchy 999 * which "new_cgrp" belongs to, for which it should match "new_cgrp". 1000 */ 1001 static bool compare_css_sets(struct css_set *cset, 1002 struct css_set *old_cset, 1003 struct cgroup *new_cgrp, 1004 struct cgroup_subsys_state *template[]) 1005 { 1006 struct cgroup *new_dfl_cgrp; 1007 struct list_head *l1, *l2; 1008 1009 /* 1010 * On the default hierarchy, there can be csets which are 1011 * associated with the same set of cgroups but different csses. 1012 * Let's first ensure that csses match. 1013 */ 1014 if (memcmp(template, cset->subsys, sizeof(cset->subsys))) 1015 return false; 1016 1017 1018 /* @cset's domain should match the default cgroup's */ 1019 if (cgroup_on_dfl(new_cgrp)) 1020 new_dfl_cgrp = new_cgrp; 1021 else 1022 new_dfl_cgrp = old_cset->dfl_cgrp; 1023 1024 if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp) 1025 return false; 1026 1027 /* 1028 * Compare cgroup pointers in order to distinguish between 1029 * different cgroups in hierarchies. As different cgroups may 1030 * share the same effective css, this comparison is always 1031 * necessary. 1032 */ 1033 l1 = &cset->cgrp_links; 1034 l2 = &old_cset->cgrp_links; 1035 while (1) { 1036 struct cgrp_cset_link *link1, *link2; 1037 struct cgroup *cgrp1, *cgrp2; 1038 1039 l1 = l1->next; 1040 l2 = l2->next; 1041 /* See if we reached the end - both lists are equal length. */ 1042 if (l1 == &cset->cgrp_links) { 1043 BUG_ON(l2 != &old_cset->cgrp_links); 1044 break; 1045 } else { 1046 BUG_ON(l2 == &old_cset->cgrp_links); 1047 } 1048 /* Locate the cgroups associated with these links. */ 1049 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link); 1050 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link); 1051 cgrp1 = link1->cgrp; 1052 cgrp2 = link2->cgrp; 1053 /* Hierarchies should be linked in the same order. */ 1054 BUG_ON(cgrp1->root != cgrp2->root); 1055 1056 /* 1057 * If this hierarchy is the hierarchy of the cgroup 1058 * that's changing, then we need to check that this 1059 * css_set points to the new cgroup; if it's any other 1060 * hierarchy, then this css_set should point to the 1061 * same cgroup as the old css_set. 1062 */ 1063 if (cgrp1->root == new_cgrp->root) { 1064 if (cgrp1 != new_cgrp) 1065 return false; 1066 } else { 1067 if (cgrp1 != cgrp2) 1068 return false; 1069 } 1070 } 1071 return true; 1072 } 1073 1074 /** 1075 * find_existing_css_set - init css array and find the matching css_set 1076 * @old_cset: the css_set that we're using before the cgroup transition 1077 * @cgrp: the cgroup that we're moving into 1078 * @template: out param for the new set of csses, should be clear on entry 1079 */ 1080 static struct css_set *find_existing_css_set(struct css_set *old_cset, 1081 struct cgroup *cgrp, 1082 struct cgroup_subsys_state *template[]) 1083 { 1084 struct cgroup_root *root = cgrp->root; 1085 struct cgroup_subsys *ss; 1086 struct css_set *cset; 1087 unsigned long key; 1088 int i; 1089 1090 /* 1091 * Build the set of subsystem state objects that we want to see in the 1092 * new css_set. While subsystems can change globally, the entries here 1093 * won't change, so no need for locking. 1094 */ 1095 for_each_subsys(ss, i) { 1096 if (root->subsys_mask & (1UL << i)) { 1097 /* 1098 * @ss is in this hierarchy, so we want the 1099 * effective css from @cgrp. 1100 */ 1101 template[i] = cgroup_e_css_by_mask(cgrp, ss); 1102 } else { 1103 /* 1104 * @ss is not in this hierarchy, so we don't want 1105 * to change the css. 1106 */ 1107 template[i] = old_cset->subsys[i]; 1108 } 1109 } 1110 1111 key = css_set_hash(template); 1112 hash_for_each_possible(css_set_table, cset, hlist, key) { 1113 if (!compare_css_sets(cset, old_cset, cgrp, template)) 1114 continue; 1115 1116 /* This css_set matches what we need */ 1117 return cset; 1118 } 1119 1120 /* No existing cgroup group matched */ 1121 return NULL; 1122 } 1123 1124 static void free_cgrp_cset_links(struct list_head *links_to_free) 1125 { 1126 struct cgrp_cset_link *link, *tmp_link; 1127 1128 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) { 1129 list_del(&link->cset_link); 1130 kfree(link); 1131 } 1132 } 1133 1134 /** 1135 * allocate_cgrp_cset_links - allocate cgrp_cset_links 1136 * @count: the number of links to allocate 1137 * @tmp_links: list_head the allocated links are put on 1138 * 1139 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links 1140 * through ->cset_link. Returns 0 on success or -errno. 1141 */ 1142 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links) 1143 { 1144 struct cgrp_cset_link *link; 1145 int i; 1146 1147 INIT_LIST_HEAD(tmp_links); 1148 1149 for (i = 0; i < count; i++) { 1150 link = kzalloc(sizeof(*link), GFP_KERNEL); 1151 if (!link) { 1152 free_cgrp_cset_links(tmp_links); 1153 return -ENOMEM; 1154 } 1155 list_add(&link->cset_link, tmp_links); 1156 } 1157 return 0; 1158 } 1159 1160 /** 1161 * link_css_set - a helper function to link a css_set to a cgroup 1162 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links() 1163 * @cset: the css_set to be linked 1164 * @cgrp: the destination cgroup 1165 */ 1166 static void link_css_set(struct list_head *tmp_links, struct css_set *cset, 1167 struct cgroup *cgrp) 1168 { 1169 struct cgrp_cset_link *link; 1170 1171 BUG_ON(list_empty(tmp_links)); 1172 1173 if (cgroup_on_dfl(cgrp)) 1174 cset->dfl_cgrp = cgrp; 1175 1176 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link); 1177 link->cset = cset; 1178 link->cgrp = cgrp; 1179 1180 /* 1181 * Always add links to the tail of the lists so that the lists are 1182 * in chronological order. 1183 */ 1184 list_move_tail(&link->cset_link, &cgrp->cset_links); 1185 list_add_tail(&link->cgrp_link, &cset->cgrp_links); 1186 1187 if (cgroup_parent(cgrp)) 1188 cgroup_get_live(cgrp); 1189 } 1190 1191 /** 1192 * find_css_set - return a new css_set with one cgroup updated 1193 * @old_cset: the baseline css_set 1194 * @cgrp: the cgroup to be updated 1195 * 1196 * Return a new css_set that's equivalent to @old_cset, but with @cgrp 1197 * substituted into the appropriate hierarchy. 1198 */ 1199 static struct css_set *find_css_set(struct css_set *old_cset, 1200 struct cgroup *cgrp) 1201 { 1202 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { }; 1203 struct css_set *cset; 1204 struct list_head tmp_links; 1205 struct cgrp_cset_link *link; 1206 struct cgroup_subsys *ss; 1207 unsigned long key; 1208 int ssid; 1209 1210 lockdep_assert_held(&cgroup_mutex); 1211 1212 /* First see if we already have a cgroup group that matches 1213 * the desired set */ 1214 spin_lock_irq(&css_set_lock); 1215 cset = find_existing_css_set(old_cset, cgrp, template); 1216 if (cset) 1217 get_css_set(cset); 1218 spin_unlock_irq(&css_set_lock); 1219 1220 if (cset) 1221 return cset; 1222 1223 cset = kzalloc(sizeof(*cset), GFP_KERNEL); 1224 if (!cset) 1225 return NULL; 1226 1227 /* Allocate all the cgrp_cset_link objects that we'll need */ 1228 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) { 1229 kfree(cset); 1230 return NULL; 1231 } 1232 1233 refcount_set(&cset->refcount, 1); 1234 cset->dom_cset = cset; 1235 INIT_LIST_HEAD(&cset->tasks); 1236 INIT_LIST_HEAD(&cset->mg_tasks); 1237 INIT_LIST_HEAD(&cset->dying_tasks); 1238 INIT_LIST_HEAD(&cset->task_iters); 1239 INIT_LIST_HEAD(&cset->threaded_csets); 1240 INIT_HLIST_NODE(&cset->hlist); 1241 INIT_LIST_HEAD(&cset->cgrp_links); 1242 INIT_LIST_HEAD(&cset->mg_src_preload_node); 1243 INIT_LIST_HEAD(&cset->mg_dst_preload_node); 1244 INIT_LIST_HEAD(&cset->mg_node); 1245 1246 /* Copy the set of subsystem state objects generated in 1247 * find_existing_css_set() */ 1248 memcpy(cset->subsys, template, sizeof(cset->subsys)); 1249 1250 spin_lock_irq(&css_set_lock); 1251 /* Add reference counts and links from the new css_set. */ 1252 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) { 1253 struct cgroup *c = link->cgrp; 1254 1255 if (c->root == cgrp->root) 1256 c = cgrp; 1257 link_css_set(&tmp_links, cset, c); 1258 } 1259 1260 BUG_ON(!list_empty(&tmp_links)); 1261 1262 css_set_count++; 1263 1264 /* Add @cset to the hash table */ 1265 key = css_set_hash(cset->subsys); 1266 hash_add(css_set_table, &cset->hlist, key); 1267 1268 for_each_subsys(ss, ssid) { 1269 struct cgroup_subsys_state *css = cset->subsys[ssid]; 1270 1271 list_add_tail(&cset->e_cset_node[ssid], 1272 &css->cgroup->e_csets[ssid]); 1273 css_get(css); 1274 } 1275 1276 spin_unlock_irq(&css_set_lock); 1277 1278 /* 1279 * If @cset should be threaded, look up the matching dom_cset and 1280 * link them up. We first fully initialize @cset then look for the 1281 * dom_cset. It's simpler this way and safe as @cset is guaranteed 1282 * to stay empty until we return. 1283 */ 1284 if (cgroup_is_threaded(cset->dfl_cgrp)) { 1285 struct css_set *dcset; 1286 1287 dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp); 1288 if (!dcset) { 1289 put_css_set(cset); 1290 return NULL; 1291 } 1292 1293 spin_lock_irq(&css_set_lock); 1294 cset->dom_cset = dcset; 1295 list_add_tail(&cset->threaded_csets_node, 1296 &dcset->threaded_csets); 1297 spin_unlock_irq(&css_set_lock); 1298 } 1299 1300 return cset; 1301 } 1302 1303 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root) 1304 { 1305 struct cgroup *root_cgrp = kernfs_root_to_node(kf_root)->priv; 1306 1307 return root_cgrp->root; 1308 } 1309 1310 void cgroup_favor_dynmods(struct cgroup_root *root, bool favor) 1311 { 1312 bool favoring = root->flags & CGRP_ROOT_FAVOR_DYNMODS; 1313 1314 /* see the comment above CGRP_ROOT_FAVOR_DYNMODS definition */ 1315 if (favor && !favoring) { 1316 rcu_sync_enter(&cgroup_threadgroup_rwsem.rss); 1317 root->flags |= CGRP_ROOT_FAVOR_DYNMODS; 1318 } else if (!favor && favoring) { 1319 rcu_sync_exit(&cgroup_threadgroup_rwsem.rss); 1320 root->flags &= ~CGRP_ROOT_FAVOR_DYNMODS; 1321 } 1322 } 1323 1324 static int cgroup_init_root_id(struct cgroup_root *root) 1325 { 1326 int id; 1327 1328 lockdep_assert_held(&cgroup_mutex); 1329 1330 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL); 1331 if (id < 0) 1332 return id; 1333 1334 root->hierarchy_id = id; 1335 return 0; 1336 } 1337 1338 static void cgroup_exit_root_id(struct cgroup_root *root) 1339 { 1340 lockdep_assert_held(&cgroup_mutex); 1341 1342 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id); 1343 } 1344 1345 void cgroup_free_root(struct cgroup_root *root) 1346 { 1347 kfree(root); 1348 } 1349 1350 static void cgroup_destroy_root(struct cgroup_root *root) 1351 { 1352 struct cgroup *cgrp = &root->cgrp; 1353 struct cgrp_cset_link *link, *tmp_link; 1354 1355 trace_cgroup_destroy_root(root); 1356 1357 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp); 1358 1359 BUG_ON(atomic_read(&root->nr_cgrps)); 1360 BUG_ON(!list_empty(&cgrp->self.children)); 1361 1362 /* Rebind all subsystems back to the default hierarchy */ 1363 WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask)); 1364 1365 /* 1366 * Release all the links from cset_links to this hierarchy's 1367 * root cgroup 1368 */ 1369 spin_lock_irq(&css_set_lock); 1370 1371 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) { 1372 list_del(&link->cset_link); 1373 list_del(&link->cgrp_link); 1374 kfree(link); 1375 } 1376 1377 spin_unlock_irq(&css_set_lock); 1378 1379 if (!list_empty(&root->root_list)) { 1380 list_del(&root->root_list); 1381 cgroup_root_count--; 1382 } 1383 1384 cgroup_favor_dynmods(root, false); 1385 cgroup_exit_root_id(root); 1386 1387 mutex_unlock(&cgroup_mutex); 1388 1389 cgroup_rstat_exit(cgrp); 1390 kernfs_destroy_root(root->kf_root); 1391 cgroup_free_root(root); 1392 } 1393 1394 static inline struct cgroup *__cset_cgroup_from_root(struct css_set *cset, 1395 struct cgroup_root *root) 1396 { 1397 struct cgroup *res_cgroup = NULL; 1398 1399 if (cset == &init_css_set) { 1400 res_cgroup = &root->cgrp; 1401 } else if (root == &cgrp_dfl_root) { 1402 res_cgroup = cset->dfl_cgrp; 1403 } else { 1404 struct cgrp_cset_link *link; 1405 1406 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) { 1407 struct cgroup *c = link->cgrp; 1408 1409 if (c->root == root) { 1410 res_cgroup = c; 1411 break; 1412 } 1413 } 1414 } 1415 1416 return res_cgroup; 1417 } 1418 1419 /* 1420 * look up cgroup associated with current task's cgroup namespace on the 1421 * specified hierarchy 1422 */ 1423 static struct cgroup * 1424 current_cgns_cgroup_from_root(struct cgroup_root *root) 1425 { 1426 struct cgroup *res = NULL; 1427 struct css_set *cset; 1428 1429 lockdep_assert_held(&css_set_lock); 1430 1431 rcu_read_lock(); 1432 1433 cset = current->nsproxy->cgroup_ns->root_cset; 1434 res = __cset_cgroup_from_root(cset, root); 1435 1436 rcu_read_unlock(); 1437 1438 BUG_ON(!res); 1439 return res; 1440 } 1441 1442 /* look up cgroup associated with given css_set on the specified hierarchy */ 1443 static struct cgroup *cset_cgroup_from_root(struct css_set *cset, 1444 struct cgroup_root *root) 1445 { 1446 struct cgroup *res = NULL; 1447 1448 lockdep_assert_held(&cgroup_mutex); 1449 lockdep_assert_held(&css_set_lock); 1450 1451 res = __cset_cgroup_from_root(cset, root); 1452 1453 BUG_ON(!res); 1454 return res; 1455 } 1456 1457 /* 1458 * Return the cgroup for "task" from the given hierarchy. Must be 1459 * called with cgroup_mutex and css_set_lock held. 1460 */ 1461 struct cgroup *task_cgroup_from_root(struct task_struct *task, 1462 struct cgroup_root *root) 1463 { 1464 /* 1465 * No need to lock the task - since we hold css_set_lock the 1466 * task can't change groups. 1467 */ 1468 return cset_cgroup_from_root(task_css_set(task), root); 1469 } 1470 1471 /* 1472 * A task must hold cgroup_mutex to modify cgroups. 1473 * 1474 * Any task can increment and decrement the count field without lock. 1475 * So in general, code holding cgroup_mutex can't rely on the count 1476 * field not changing. However, if the count goes to zero, then only 1477 * cgroup_attach_task() can increment it again. Because a count of zero 1478 * means that no tasks are currently attached, therefore there is no 1479 * way a task attached to that cgroup can fork (the other way to 1480 * increment the count). So code holding cgroup_mutex can safely 1481 * assume that if the count is zero, it will stay zero. Similarly, if 1482 * a task holds cgroup_mutex on a cgroup with zero count, it 1483 * knows that the cgroup won't be removed, as cgroup_rmdir() 1484 * needs that mutex. 1485 * 1486 * A cgroup can only be deleted if both its 'count' of using tasks 1487 * is zero, and its list of 'children' cgroups is empty. Since all 1488 * tasks in the system use _some_ cgroup, and since there is always at 1489 * least one task in the system (init, pid == 1), therefore, root cgroup 1490 * always has either children cgroups and/or using tasks. So we don't 1491 * need a special hack to ensure that root cgroup cannot be deleted. 1492 * 1493 * P.S. One more locking exception. RCU is used to guard the 1494 * update of a tasks cgroup pointer by cgroup_attach_task() 1495 */ 1496 1497 static struct kernfs_syscall_ops cgroup_kf_syscall_ops; 1498 1499 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft, 1500 char *buf) 1501 { 1502 struct cgroup_subsys *ss = cft->ss; 1503 1504 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) && 1505 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) { 1506 const char *dbg = (cft->flags & CFTYPE_DEBUG) ? ".__DEBUG__." : ""; 1507 1508 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s%s.%s", 1509 dbg, cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name, 1510 cft->name); 1511 } else { 1512 strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX); 1513 } 1514 return buf; 1515 } 1516 1517 /** 1518 * cgroup_file_mode - deduce file mode of a control file 1519 * @cft: the control file in question 1520 * 1521 * S_IRUGO for read, S_IWUSR for write. 1522 */ 1523 static umode_t cgroup_file_mode(const struct cftype *cft) 1524 { 1525 umode_t mode = 0; 1526 1527 if (cft->read_u64 || cft->read_s64 || cft->seq_show) 1528 mode |= S_IRUGO; 1529 1530 if (cft->write_u64 || cft->write_s64 || cft->write) { 1531 if (cft->flags & CFTYPE_WORLD_WRITABLE) 1532 mode |= S_IWUGO; 1533 else 1534 mode |= S_IWUSR; 1535 } 1536 1537 return mode; 1538 } 1539 1540 /** 1541 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask 1542 * @subtree_control: the new subtree_control mask to consider 1543 * @this_ss_mask: available subsystems 1544 * 1545 * On the default hierarchy, a subsystem may request other subsystems to be 1546 * enabled together through its ->depends_on mask. In such cases, more 1547 * subsystems than specified in "cgroup.subtree_control" may be enabled. 1548 * 1549 * This function calculates which subsystems need to be enabled if 1550 * @subtree_control is to be applied while restricted to @this_ss_mask. 1551 */ 1552 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask) 1553 { 1554 u16 cur_ss_mask = subtree_control; 1555 struct cgroup_subsys *ss; 1556 int ssid; 1557 1558 lockdep_assert_held(&cgroup_mutex); 1559 1560 cur_ss_mask |= cgrp_dfl_implicit_ss_mask; 1561 1562 while (true) { 1563 u16 new_ss_mask = cur_ss_mask; 1564 1565 do_each_subsys_mask(ss, ssid, cur_ss_mask) { 1566 new_ss_mask |= ss->depends_on; 1567 } while_each_subsys_mask(); 1568 1569 /* 1570 * Mask out subsystems which aren't available. This can 1571 * happen only if some depended-upon subsystems were bound 1572 * to non-default hierarchies. 1573 */ 1574 new_ss_mask &= this_ss_mask; 1575 1576 if (new_ss_mask == cur_ss_mask) 1577 break; 1578 cur_ss_mask = new_ss_mask; 1579 } 1580 1581 return cur_ss_mask; 1582 } 1583 1584 /** 1585 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods 1586 * @kn: the kernfs_node being serviced 1587 * 1588 * This helper undoes cgroup_kn_lock_live() and should be invoked before 1589 * the method finishes if locking succeeded. Note that once this function 1590 * returns the cgroup returned by cgroup_kn_lock_live() may become 1591 * inaccessible any time. If the caller intends to continue to access the 1592 * cgroup, it should pin it before invoking this function. 1593 */ 1594 void cgroup_kn_unlock(struct kernfs_node *kn) 1595 { 1596 struct cgroup *cgrp; 1597 1598 if (kernfs_type(kn) == KERNFS_DIR) 1599 cgrp = kn->priv; 1600 else 1601 cgrp = kn->parent->priv; 1602 1603 mutex_unlock(&cgroup_mutex); 1604 1605 kernfs_unbreak_active_protection(kn); 1606 cgroup_put(cgrp); 1607 } 1608 1609 /** 1610 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods 1611 * @kn: the kernfs_node being serviced 1612 * @drain_offline: perform offline draining on the cgroup 1613 * 1614 * This helper is to be used by a cgroup kernfs method currently servicing 1615 * @kn. It breaks the active protection, performs cgroup locking and 1616 * verifies that the associated cgroup is alive. Returns the cgroup if 1617 * alive; otherwise, %NULL. A successful return should be undone by a 1618 * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the 1619 * cgroup is drained of offlining csses before return. 1620 * 1621 * Any cgroup kernfs method implementation which requires locking the 1622 * associated cgroup should use this helper. It avoids nesting cgroup 1623 * locking under kernfs active protection and allows all kernfs operations 1624 * including self-removal. 1625 */ 1626 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline) 1627 { 1628 struct cgroup *cgrp; 1629 1630 if (kernfs_type(kn) == KERNFS_DIR) 1631 cgrp = kn->priv; 1632 else 1633 cgrp = kn->parent->priv; 1634 1635 /* 1636 * We're gonna grab cgroup_mutex which nests outside kernfs 1637 * active_ref. cgroup liveliness check alone provides enough 1638 * protection against removal. Ensure @cgrp stays accessible and 1639 * break the active_ref protection. 1640 */ 1641 if (!cgroup_tryget(cgrp)) 1642 return NULL; 1643 kernfs_break_active_protection(kn); 1644 1645 if (drain_offline) 1646 cgroup_lock_and_drain_offline(cgrp); 1647 else 1648 mutex_lock(&cgroup_mutex); 1649 1650 if (!cgroup_is_dead(cgrp)) 1651 return cgrp; 1652 1653 cgroup_kn_unlock(kn); 1654 return NULL; 1655 } 1656 1657 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft) 1658 { 1659 char name[CGROUP_FILE_NAME_MAX]; 1660 1661 lockdep_assert_held(&cgroup_mutex); 1662 1663 if (cft->file_offset) { 1664 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss); 1665 struct cgroup_file *cfile = (void *)css + cft->file_offset; 1666 1667 spin_lock_irq(&cgroup_file_kn_lock); 1668 cfile->kn = NULL; 1669 spin_unlock_irq(&cgroup_file_kn_lock); 1670 1671 del_timer_sync(&cfile->notify_timer); 1672 } 1673 1674 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name)); 1675 } 1676 1677 /** 1678 * css_clear_dir - remove subsys files in a cgroup directory 1679 * @css: target css 1680 */ 1681 static void css_clear_dir(struct cgroup_subsys_state *css) 1682 { 1683 struct cgroup *cgrp = css->cgroup; 1684 struct cftype *cfts; 1685 1686 if (!(css->flags & CSS_VISIBLE)) 1687 return; 1688 1689 css->flags &= ~CSS_VISIBLE; 1690 1691 if (!css->ss) { 1692 if (cgroup_on_dfl(cgrp)) 1693 cfts = cgroup_base_files; 1694 else 1695 cfts = cgroup1_base_files; 1696 1697 cgroup_addrm_files(css, cgrp, cfts, false); 1698 } else { 1699 list_for_each_entry(cfts, &css->ss->cfts, node) 1700 cgroup_addrm_files(css, cgrp, cfts, false); 1701 } 1702 } 1703 1704 /** 1705 * css_populate_dir - create subsys files in a cgroup directory 1706 * @css: target css 1707 * 1708 * On failure, no file is added. 1709 */ 1710 static int css_populate_dir(struct cgroup_subsys_state *css) 1711 { 1712 struct cgroup *cgrp = css->cgroup; 1713 struct cftype *cfts, *failed_cfts; 1714 int ret; 1715 1716 if ((css->flags & CSS_VISIBLE) || !cgrp->kn) 1717 return 0; 1718 1719 if (!css->ss) { 1720 if (cgroup_on_dfl(cgrp)) 1721 cfts = cgroup_base_files; 1722 else 1723 cfts = cgroup1_base_files; 1724 1725 ret = cgroup_addrm_files(&cgrp->self, cgrp, cfts, true); 1726 if (ret < 0) 1727 return ret; 1728 } else { 1729 list_for_each_entry(cfts, &css->ss->cfts, node) { 1730 ret = cgroup_addrm_files(css, cgrp, cfts, true); 1731 if (ret < 0) { 1732 failed_cfts = cfts; 1733 goto err; 1734 } 1735 } 1736 } 1737 1738 css->flags |= CSS_VISIBLE; 1739 1740 return 0; 1741 err: 1742 list_for_each_entry(cfts, &css->ss->cfts, node) { 1743 if (cfts == failed_cfts) 1744 break; 1745 cgroup_addrm_files(css, cgrp, cfts, false); 1746 } 1747 return ret; 1748 } 1749 1750 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask) 1751 { 1752 struct cgroup *dcgrp = &dst_root->cgrp; 1753 struct cgroup_subsys *ss; 1754 int ssid, i, ret; 1755 u16 dfl_disable_ss_mask = 0; 1756 1757 lockdep_assert_held(&cgroup_mutex); 1758 1759 do_each_subsys_mask(ss, ssid, ss_mask) { 1760 /* 1761 * If @ss has non-root csses attached to it, can't move. 1762 * If @ss is an implicit controller, it is exempt from this 1763 * rule and can be stolen. 1764 */ 1765 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) && 1766 !ss->implicit_on_dfl) 1767 return -EBUSY; 1768 1769 /* can't move between two non-dummy roots either */ 1770 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root) 1771 return -EBUSY; 1772 1773 /* 1774 * Collect ssid's that need to be disabled from default 1775 * hierarchy. 1776 */ 1777 if (ss->root == &cgrp_dfl_root) 1778 dfl_disable_ss_mask |= 1 << ssid; 1779 1780 } while_each_subsys_mask(); 1781 1782 if (dfl_disable_ss_mask) { 1783 struct cgroup *scgrp = &cgrp_dfl_root.cgrp; 1784 1785 /* 1786 * Controllers from default hierarchy that need to be rebound 1787 * are all disabled together in one go. 1788 */ 1789 cgrp_dfl_root.subsys_mask &= ~dfl_disable_ss_mask; 1790 WARN_ON(cgroup_apply_control(scgrp)); 1791 cgroup_finalize_control(scgrp, 0); 1792 } 1793 1794 do_each_subsys_mask(ss, ssid, ss_mask) { 1795 struct cgroup_root *src_root = ss->root; 1796 struct cgroup *scgrp = &src_root->cgrp; 1797 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss); 1798 struct css_set *cset; 1799 1800 WARN_ON(!css || cgroup_css(dcgrp, ss)); 1801 1802 if (src_root != &cgrp_dfl_root) { 1803 /* disable from the source */ 1804 src_root->subsys_mask &= ~(1 << ssid); 1805 WARN_ON(cgroup_apply_control(scgrp)); 1806 cgroup_finalize_control(scgrp, 0); 1807 } 1808 1809 /* rebind */ 1810 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL); 1811 rcu_assign_pointer(dcgrp->subsys[ssid], css); 1812 ss->root = dst_root; 1813 css->cgroup = dcgrp; 1814 1815 spin_lock_irq(&css_set_lock); 1816 hash_for_each(css_set_table, i, cset, hlist) 1817 list_move_tail(&cset->e_cset_node[ss->id], 1818 &dcgrp->e_csets[ss->id]); 1819 spin_unlock_irq(&css_set_lock); 1820 1821 if (ss->css_rstat_flush) { 1822 list_del_rcu(&css->rstat_css_node); 1823 list_add_rcu(&css->rstat_css_node, 1824 &dcgrp->rstat_css_list); 1825 } 1826 1827 /* default hierarchy doesn't enable controllers by default */ 1828 dst_root->subsys_mask |= 1 << ssid; 1829 if (dst_root == &cgrp_dfl_root) { 1830 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]); 1831 } else { 1832 dcgrp->subtree_control |= 1 << ssid; 1833 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]); 1834 } 1835 1836 ret = cgroup_apply_control(dcgrp); 1837 if (ret) 1838 pr_warn("partial failure to rebind %s controller (err=%d)\n", 1839 ss->name, ret); 1840 1841 if (ss->bind) 1842 ss->bind(css); 1843 } while_each_subsys_mask(); 1844 1845 kernfs_activate(dcgrp->kn); 1846 return 0; 1847 } 1848 1849 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node, 1850 struct kernfs_root *kf_root) 1851 { 1852 int len = 0; 1853 char *buf = NULL; 1854 struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root); 1855 struct cgroup *ns_cgroup; 1856 1857 buf = kmalloc(PATH_MAX, GFP_KERNEL); 1858 if (!buf) 1859 return -ENOMEM; 1860 1861 spin_lock_irq(&css_set_lock); 1862 ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot); 1863 len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX); 1864 spin_unlock_irq(&css_set_lock); 1865 1866 if (len >= PATH_MAX) 1867 len = -ERANGE; 1868 else if (len > 0) { 1869 seq_escape(sf, buf, " \t\n\\"); 1870 len = 0; 1871 } 1872 kfree(buf); 1873 return len; 1874 } 1875 1876 enum cgroup2_param { 1877 Opt_nsdelegate, 1878 Opt_favordynmods, 1879 Opt_memory_localevents, 1880 Opt_memory_recursiveprot, 1881 nr__cgroup2_params 1882 }; 1883 1884 static const struct fs_parameter_spec cgroup2_fs_parameters[] = { 1885 fsparam_flag("nsdelegate", Opt_nsdelegate), 1886 fsparam_flag("favordynmods", Opt_favordynmods), 1887 fsparam_flag("memory_localevents", Opt_memory_localevents), 1888 fsparam_flag("memory_recursiveprot", Opt_memory_recursiveprot), 1889 {} 1890 }; 1891 1892 static int cgroup2_parse_param(struct fs_context *fc, struct fs_parameter *param) 1893 { 1894 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 1895 struct fs_parse_result result; 1896 int opt; 1897 1898 opt = fs_parse(fc, cgroup2_fs_parameters, param, &result); 1899 if (opt < 0) 1900 return opt; 1901 1902 switch (opt) { 1903 case Opt_nsdelegate: 1904 ctx->flags |= CGRP_ROOT_NS_DELEGATE; 1905 return 0; 1906 case Opt_favordynmods: 1907 ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS; 1908 return 0; 1909 case Opt_memory_localevents: 1910 ctx->flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS; 1911 return 0; 1912 case Opt_memory_recursiveprot: 1913 ctx->flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT; 1914 return 0; 1915 } 1916 return -EINVAL; 1917 } 1918 1919 static void apply_cgroup_root_flags(unsigned int root_flags) 1920 { 1921 if (current->nsproxy->cgroup_ns == &init_cgroup_ns) { 1922 if (root_flags & CGRP_ROOT_NS_DELEGATE) 1923 cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE; 1924 else 1925 cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE; 1926 1927 cgroup_favor_dynmods(&cgrp_dfl_root, 1928 root_flags & CGRP_ROOT_FAVOR_DYNMODS); 1929 1930 if (root_flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS) 1931 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS; 1932 else 1933 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_LOCAL_EVENTS; 1934 1935 if (root_flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT) 1936 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT; 1937 else 1938 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_RECURSIVE_PROT; 1939 } 1940 } 1941 1942 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root) 1943 { 1944 if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) 1945 seq_puts(seq, ",nsdelegate"); 1946 if (cgrp_dfl_root.flags & CGRP_ROOT_FAVOR_DYNMODS) 1947 seq_puts(seq, ",favordynmods"); 1948 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS) 1949 seq_puts(seq, ",memory_localevents"); 1950 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT) 1951 seq_puts(seq, ",memory_recursiveprot"); 1952 return 0; 1953 } 1954 1955 static int cgroup_reconfigure(struct fs_context *fc) 1956 { 1957 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 1958 1959 apply_cgroup_root_flags(ctx->flags); 1960 return 0; 1961 } 1962 1963 static void init_cgroup_housekeeping(struct cgroup *cgrp) 1964 { 1965 struct cgroup_subsys *ss; 1966 int ssid; 1967 1968 INIT_LIST_HEAD(&cgrp->self.sibling); 1969 INIT_LIST_HEAD(&cgrp->self.children); 1970 INIT_LIST_HEAD(&cgrp->cset_links); 1971 INIT_LIST_HEAD(&cgrp->pidlists); 1972 mutex_init(&cgrp->pidlist_mutex); 1973 cgrp->self.cgroup = cgrp; 1974 cgrp->self.flags |= CSS_ONLINE; 1975 cgrp->dom_cgrp = cgrp; 1976 cgrp->max_descendants = INT_MAX; 1977 cgrp->max_depth = INT_MAX; 1978 INIT_LIST_HEAD(&cgrp->rstat_css_list); 1979 prev_cputime_init(&cgrp->prev_cputime); 1980 1981 for_each_subsys(ss, ssid) 1982 INIT_LIST_HEAD(&cgrp->e_csets[ssid]); 1983 1984 init_waitqueue_head(&cgrp->offline_waitq); 1985 INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent); 1986 } 1987 1988 void init_cgroup_root(struct cgroup_fs_context *ctx) 1989 { 1990 struct cgroup_root *root = ctx->root; 1991 struct cgroup *cgrp = &root->cgrp; 1992 1993 INIT_LIST_HEAD(&root->root_list); 1994 atomic_set(&root->nr_cgrps, 1); 1995 cgrp->root = root; 1996 init_cgroup_housekeeping(cgrp); 1997 1998 /* DYNMODS must be modified through cgroup_favor_dynmods() */ 1999 root->flags = ctx->flags & ~CGRP_ROOT_FAVOR_DYNMODS; 2000 if (ctx->release_agent) 2001 strscpy(root->release_agent_path, ctx->release_agent, PATH_MAX); 2002 if (ctx->name) 2003 strscpy(root->name, ctx->name, MAX_CGROUP_ROOT_NAMELEN); 2004 if (ctx->cpuset_clone_children) 2005 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags); 2006 } 2007 2008 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask) 2009 { 2010 LIST_HEAD(tmp_links); 2011 struct cgroup *root_cgrp = &root->cgrp; 2012 struct kernfs_syscall_ops *kf_sops; 2013 struct css_set *cset; 2014 int i, ret; 2015 2016 lockdep_assert_held(&cgroup_mutex); 2017 2018 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 2019 0, GFP_KERNEL); 2020 if (ret) 2021 goto out; 2022 2023 /* 2024 * We're accessing css_set_count without locking css_set_lock here, 2025 * but that's OK - it can only be increased by someone holding 2026 * cgroup_lock, and that's us. Later rebinding may disable 2027 * controllers on the default hierarchy and thus create new csets, 2028 * which can't be more than the existing ones. Allocate 2x. 2029 */ 2030 ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links); 2031 if (ret) 2032 goto cancel_ref; 2033 2034 ret = cgroup_init_root_id(root); 2035 if (ret) 2036 goto cancel_ref; 2037 2038 kf_sops = root == &cgrp_dfl_root ? 2039 &cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops; 2040 2041 root->kf_root = kernfs_create_root(kf_sops, 2042 KERNFS_ROOT_CREATE_DEACTIVATED | 2043 KERNFS_ROOT_SUPPORT_EXPORTOP | 2044 KERNFS_ROOT_SUPPORT_USER_XATTR, 2045 root_cgrp); 2046 if (IS_ERR(root->kf_root)) { 2047 ret = PTR_ERR(root->kf_root); 2048 goto exit_root_id; 2049 } 2050 root_cgrp->kn = kernfs_root_to_node(root->kf_root); 2051 WARN_ON_ONCE(cgroup_ino(root_cgrp) != 1); 2052 root_cgrp->ancestor_ids[0] = cgroup_id(root_cgrp); 2053 2054 ret = css_populate_dir(&root_cgrp->self); 2055 if (ret) 2056 goto destroy_root; 2057 2058 ret = cgroup_rstat_init(root_cgrp); 2059 if (ret) 2060 goto destroy_root; 2061 2062 ret = rebind_subsystems(root, ss_mask); 2063 if (ret) 2064 goto exit_stats; 2065 2066 ret = cgroup_bpf_inherit(root_cgrp); 2067 WARN_ON_ONCE(ret); 2068 2069 trace_cgroup_setup_root(root); 2070 2071 /* 2072 * There must be no failure case after here, since rebinding takes 2073 * care of subsystems' refcounts, which are explicitly dropped in 2074 * the failure exit path. 2075 */ 2076 list_add(&root->root_list, &cgroup_roots); 2077 cgroup_root_count++; 2078 2079 /* 2080 * Link the root cgroup in this hierarchy into all the css_set 2081 * objects. 2082 */ 2083 spin_lock_irq(&css_set_lock); 2084 hash_for_each(css_set_table, i, cset, hlist) { 2085 link_css_set(&tmp_links, cset, root_cgrp); 2086 if (css_set_populated(cset)) 2087 cgroup_update_populated(root_cgrp, true); 2088 } 2089 spin_unlock_irq(&css_set_lock); 2090 2091 BUG_ON(!list_empty(&root_cgrp->self.children)); 2092 BUG_ON(atomic_read(&root->nr_cgrps) != 1); 2093 2094 ret = 0; 2095 goto out; 2096 2097 exit_stats: 2098 cgroup_rstat_exit(root_cgrp); 2099 destroy_root: 2100 kernfs_destroy_root(root->kf_root); 2101 root->kf_root = NULL; 2102 exit_root_id: 2103 cgroup_exit_root_id(root); 2104 cancel_ref: 2105 percpu_ref_exit(&root_cgrp->self.refcnt); 2106 out: 2107 free_cgrp_cset_links(&tmp_links); 2108 return ret; 2109 } 2110 2111 int cgroup_do_get_tree(struct fs_context *fc) 2112 { 2113 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2114 int ret; 2115 2116 ctx->kfc.root = ctx->root->kf_root; 2117 if (fc->fs_type == &cgroup2_fs_type) 2118 ctx->kfc.magic = CGROUP2_SUPER_MAGIC; 2119 else 2120 ctx->kfc.magic = CGROUP_SUPER_MAGIC; 2121 ret = kernfs_get_tree(fc); 2122 2123 /* 2124 * In non-init cgroup namespace, instead of root cgroup's dentry, 2125 * we return the dentry corresponding to the cgroupns->root_cgrp. 2126 */ 2127 if (!ret && ctx->ns != &init_cgroup_ns) { 2128 struct dentry *nsdentry; 2129 struct super_block *sb = fc->root->d_sb; 2130 struct cgroup *cgrp; 2131 2132 mutex_lock(&cgroup_mutex); 2133 spin_lock_irq(&css_set_lock); 2134 2135 cgrp = cset_cgroup_from_root(ctx->ns->root_cset, ctx->root); 2136 2137 spin_unlock_irq(&css_set_lock); 2138 mutex_unlock(&cgroup_mutex); 2139 2140 nsdentry = kernfs_node_dentry(cgrp->kn, sb); 2141 dput(fc->root); 2142 if (IS_ERR(nsdentry)) { 2143 deactivate_locked_super(sb); 2144 ret = PTR_ERR(nsdentry); 2145 nsdentry = NULL; 2146 } 2147 fc->root = nsdentry; 2148 } 2149 2150 if (!ctx->kfc.new_sb_created) 2151 cgroup_put(&ctx->root->cgrp); 2152 2153 return ret; 2154 } 2155 2156 /* 2157 * Destroy a cgroup filesystem context. 2158 */ 2159 static void cgroup_fs_context_free(struct fs_context *fc) 2160 { 2161 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2162 2163 kfree(ctx->name); 2164 kfree(ctx->release_agent); 2165 put_cgroup_ns(ctx->ns); 2166 kernfs_free_fs_context(fc); 2167 kfree(ctx); 2168 } 2169 2170 static int cgroup_get_tree(struct fs_context *fc) 2171 { 2172 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2173 int ret; 2174 2175 cgrp_dfl_visible = true; 2176 cgroup_get_live(&cgrp_dfl_root.cgrp); 2177 ctx->root = &cgrp_dfl_root; 2178 2179 ret = cgroup_do_get_tree(fc); 2180 if (!ret) 2181 apply_cgroup_root_flags(ctx->flags); 2182 return ret; 2183 } 2184 2185 static const struct fs_context_operations cgroup_fs_context_ops = { 2186 .free = cgroup_fs_context_free, 2187 .parse_param = cgroup2_parse_param, 2188 .get_tree = cgroup_get_tree, 2189 .reconfigure = cgroup_reconfigure, 2190 }; 2191 2192 static const struct fs_context_operations cgroup1_fs_context_ops = { 2193 .free = cgroup_fs_context_free, 2194 .parse_param = cgroup1_parse_param, 2195 .get_tree = cgroup1_get_tree, 2196 .reconfigure = cgroup1_reconfigure, 2197 }; 2198 2199 /* 2200 * Initialise the cgroup filesystem creation/reconfiguration context. Notably, 2201 * we select the namespace we're going to use. 2202 */ 2203 static int cgroup_init_fs_context(struct fs_context *fc) 2204 { 2205 struct cgroup_fs_context *ctx; 2206 2207 ctx = kzalloc(sizeof(struct cgroup_fs_context), GFP_KERNEL); 2208 if (!ctx) 2209 return -ENOMEM; 2210 2211 ctx->ns = current->nsproxy->cgroup_ns; 2212 get_cgroup_ns(ctx->ns); 2213 fc->fs_private = &ctx->kfc; 2214 if (fc->fs_type == &cgroup2_fs_type) 2215 fc->ops = &cgroup_fs_context_ops; 2216 else 2217 fc->ops = &cgroup1_fs_context_ops; 2218 put_user_ns(fc->user_ns); 2219 fc->user_ns = get_user_ns(ctx->ns->user_ns); 2220 fc->global = true; 2221 2222 #ifdef CONFIG_CGROUP_FAVOR_DYNMODS 2223 ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS; 2224 #endif 2225 return 0; 2226 } 2227 2228 static void cgroup_kill_sb(struct super_block *sb) 2229 { 2230 struct kernfs_root *kf_root = kernfs_root_from_sb(sb); 2231 struct cgroup_root *root = cgroup_root_from_kf(kf_root); 2232 2233 /* 2234 * If @root doesn't have any children, start killing it. 2235 * This prevents new mounts by disabling percpu_ref_tryget_live(). 2236 * 2237 * And don't kill the default root. 2238 */ 2239 if (list_empty(&root->cgrp.self.children) && root != &cgrp_dfl_root && 2240 !percpu_ref_is_dying(&root->cgrp.self.refcnt)) { 2241 cgroup_bpf_offline(&root->cgrp); 2242 percpu_ref_kill(&root->cgrp.self.refcnt); 2243 } 2244 cgroup_put(&root->cgrp); 2245 kernfs_kill_sb(sb); 2246 } 2247 2248 struct file_system_type cgroup_fs_type = { 2249 .name = "cgroup", 2250 .init_fs_context = cgroup_init_fs_context, 2251 .parameters = cgroup1_fs_parameters, 2252 .kill_sb = cgroup_kill_sb, 2253 .fs_flags = FS_USERNS_MOUNT, 2254 }; 2255 2256 static struct file_system_type cgroup2_fs_type = { 2257 .name = "cgroup2", 2258 .init_fs_context = cgroup_init_fs_context, 2259 .parameters = cgroup2_fs_parameters, 2260 .kill_sb = cgroup_kill_sb, 2261 .fs_flags = FS_USERNS_MOUNT, 2262 }; 2263 2264 #ifdef CONFIG_CPUSETS 2265 static const struct fs_context_operations cpuset_fs_context_ops = { 2266 .get_tree = cgroup1_get_tree, 2267 .free = cgroup_fs_context_free, 2268 }; 2269 2270 /* 2271 * This is ugly, but preserves the userspace API for existing cpuset 2272 * users. If someone tries to mount the "cpuset" filesystem, we 2273 * silently switch it to mount "cgroup" instead 2274 */ 2275 static int cpuset_init_fs_context(struct fs_context *fc) 2276 { 2277 char *agent = kstrdup("/sbin/cpuset_release_agent", GFP_USER); 2278 struct cgroup_fs_context *ctx; 2279 int err; 2280 2281 err = cgroup_init_fs_context(fc); 2282 if (err) { 2283 kfree(agent); 2284 return err; 2285 } 2286 2287 fc->ops = &cpuset_fs_context_ops; 2288 2289 ctx = cgroup_fc2context(fc); 2290 ctx->subsys_mask = 1 << cpuset_cgrp_id; 2291 ctx->flags |= CGRP_ROOT_NOPREFIX; 2292 ctx->release_agent = agent; 2293 2294 get_filesystem(&cgroup_fs_type); 2295 put_filesystem(fc->fs_type); 2296 fc->fs_type = &cgroup_fs_type; 2297 2298 return 0; 2299 } 2300 2301 static struct file_system_type cpuset_fs_type = { 2302 .name = "cpuset", 2303 .init_fs_context = cpuset_init_fs_context, 2304 .fs_flags = FS_USERNS_MOUNT, 2305 }; 2306 #endif 2307 2308 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen, 2309 struct cgroup_namespace *ns) 2310 { 2311 struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root); 2312 2313 return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen); 2314 } 2315 2316 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen, 2317 struct cgroup_namespace *ns) 2318 { 2319 int ret; 2320 2321 mutex_lock(&cgroup_mutex); 2322 spin_lock_irq(&css_set_lock); 2323 2324 ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns); 2325 2326 spin_unlock_irq(&css_set_lock); 2327 mutex_unlock(&cgroup_mutex); 2328 2329 return ret; 2330 } 2331 EXPORT_SYMBOL_GPL(cgroup_path_ns); 2332 2333 /** 2334 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy 2335 * @task: target task 2336 * @buf: the buffer to write the path into 2337 * @buflen: the length of the buffer 2338 * 2339 * Determine @task's cgroup on the first (the one with the lowest non-zero 2340 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This 2341 * function grabs cgroup_mutex and shouldn't be used inside locks used by 2342 * cgroup controller callbacks. 2343 * 2344 * Return value is the same as kernfs_path(). 2345 */ 2346 int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen) 2347 { 2348 struct cgroup_root *root; 2349 struct cgroup *cgrp; 2350 int hierarchy_id = 1; 2351 int ret; 2352 2353 mutex_lock(&cgroup_mutex); 2354 spin_lock_irq(&css_set_lock); 2355 2356 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id); 2357 2358 if (root) { 2359 cgrp = task_cgroup_from_root(task, root); 2360 ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns); 2361 } else { 2362 /* if no hierarchy exists, everyone is in "/" */ 2363 ret = strlcpy(buf, "/", buflen); 2364 } 2365 2366 spin_unlock_irq(&css_set_lock); 2367 mutex_unlock(&cgroup_mutex); 2368 return ret; 2369 } 2370 EXPORT_SYMBOL_GPL(task_cgroup_path); 2371 2372 /** 2373 * cgroup_migrate_add_task - add a migration target task to a migration context 2374 * @task: target task 2375 * @mgctx: target migration context 2376 * 2377 * Add @task, which is a migration target, to @mgctx->tset. This function 2378 * becomes noop if @task doesn't need to be migrated. @task's css_set 2379 * should have been added as a migration source and @task->cg_list will be 2380 * moved from the css_set's tasks list to mg_tasks one. 2381 */ 2382 static void cgroup_migrate_add_task(struct task_struct *task, 2383 struct cgroup_mgctx *mgctx) 2384 { 2385 struct css_set *cset; 2386 2387 lockdep_assert_held(&css_set_lock); 2388 2389 /* @task either already exited or can't exit until the end */ 2390 if (task->flags & PF_EXITING) 2391 return; 2392 2393 /* cgroup_threadgroup_rwsem protects racing against forks */ 2394 WARN_ON_ONCE(list_empty(&task->cg_list)); 2395 2396 cset = task_css_set(task); 2397 if (!cset->mg_src_cgrp) 2398 return; 2399 2400 mgctx->tset.nr_tasks++; 2401 2402 list_move_tail(&task->cg_list, &cset->mg_tasks); 2403 if (list_empty(&cset->mg_node)) 2404 list_add_tail(&cset->mg_node, 2405 &mgctx->tset.src_csets); 2406 if (list_empty(&cset->mg_dst_cset->mg_node)) 2407 list_add_tail(&cset->mg_dst_cset->mg_node, 2408 &mgctx->tset.dst_csets); 2409 } 2410 2411 /** 2412 * cgroup_taskset_first - reset taskset and return the first task 2413 * @tset: taskset of interest 2414 * @dst_cssp: output variable for the destination css 2415 * 2416 * @tset iteration is initialized and the first task is returned. 2417 */ 2418 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset, 2419 struct cgroup_subsys_state **dst_cssp) 2420 { 2421 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node); 2422 tset->cur_task = NULL; 2423 2424 return cgroup_taskset_next(tset, dst_cssp); 2425 } 2426 2427 /** 2428 * cgroup_taskset_next - iterate to the next task in taskset 2429 * @tset: taskset of interest 2430 * @dst_cssp: output variable for the destination css 2431 * 2432 * Return the next task in @tset. Iteration must have been initialized 2433 * with cgroup_taskset_first(). 2434 */ 2435 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset, 2436 struct cgroup_subsys_state **dst_cssp) 2437 { 2438 struct css_set *cset = tset->cur_cset; 2439 struct task_struct *task = tset->cur_task; 2440 2441 while (CGROUP_HAS_SUBSYS_CONFIG && &cset->mg_node != tset->csets) { 2442 if (!task) 2443 task = list_first_entry(&cset->mg_tasks, 2444 struct task_struct, cg_list); 2445 else 2446 task = list_next_entry(task, cg_list); 2447 2448 if (&task->cg_list != &cset->mg_tasks) { 2449 tset->cur_cset = cset; 2450 tset->cur_task = task; 2451 2452 /* 2453 * This function may be called both before and 2454 * after cgroup_taskset_migrate(). The two cases 2455 * can be distinguished by looking at whether @cset 2456 * has its ->mg_dst_cset set. 2457 */ 2458 if (cset->mg_dst_cset) 2459 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid]; 2460 else 2461 *dst_cssp = cset->subsys[tset->ssid]; 2462 2463 return task; 2464 } 2465 2466 cset = list_next_entry(cset, mg_node); 2467 task = NULL; 2468 } 2469 2470 return NULL; 2471 } 2472 2473 /** 2474 * cgroup_migrate_execute - migrate a taskset 2475 * @mgctx: migration context 2476 * 2477 * Migrate tasks in @mgctx as setup by migration preparation functions. 2478 * This function fails iff one of the ->can_attach callbacks fails and 2479 * guarantees that either all or none of the tasks in @mgctx are migrated. 2480 * @mgctx is consumed regardless of success. 2481 */ 2482 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx) 2483 { 2484 struct cgroup_taskset *tset = &mgctx->tset; 2485 struct cgroup_subsys *ss; 2486 struct task_struct *task, *tmp_task; 2487 struct css_set *cset, *tmp_cset; 2488 int ssid, failed_ssid, ret; 2489 2490 /* check that we can legitimately attach to the cgroup */ 2491 if (tset->nr_tasks) { 2492 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2493 if (ss->can_attach) { 2494 tset->ssid = ssid; 2495 ret = ss->can_attach(tset); 2496 if (ret) { 2497 failed_ssid = ssid; 2498 goto out_cancel_attach; 2499 } 2500 } 2501 } while_each_subsys_mask(); 2502 } 2503 2504 /* 2505 * Now that we're guaranteed success, proceed to move all tasks to 2506 * the new cgroup. There are no failure cases after here, so this 2507 * is the commit point. 2508 */ 2509 spin_lock_irq(&css_set_lock); 2510 list_for_each_entry(cset, &tset->src_csets, mg_node) { 2511 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) { 2512 struct css_set *from_cset = task_css_set(task); 2513 struct css_set *to_cset = cset->mg_dst_cset; 2514 2515 get_css_set(to_cset); 2516 to_cset->nr_tasks++; 2517 css_set_move_task(task, from_cset, to_cset, true); 2518 from_cset->nr_tasks--; 2519 /* 2520 * If the source or destination cgroup is frozen, 2521 * the task might require to change its state. 2522 */ 2523 cgroup_freezer_migrate_task(task, from_cset->dfl_cgrp, 2524 to_cset->dfl_cgrp); 2525 put_css_set_locked(from_cset); 2526 2527 } 2528 } 2529 spin_unlock_irq(&css_set_lock); 2530 2531 /* 2532 * Migration is committed, all target tasks are now on dst_csets. 2533 * Nothing is sensitive to fork() after this point. Notify 2534 * controllers that migration is complete. 2535 */ 2536 tset->csets = &tset->dst_csets; 2537 2538 if (tset->nr_tasks) { 2539 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2540 if (ss->attach) { 2541 tset->ssid = ssid; 2542 ss->attach(tset); 2543 } 2544 } while_each_subsys_mask(); 2545 } 2546 2547 ret = 0; 2548 goto out_release_tset; 2549 2550 out_cancel_attach: 2551 if (tset->nr_tasks) { 2552 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2553 if (ssid == failed_ssid) 2554 break; 2555 if (ss->cancel_attach) { 2556 tset->ssid = ssid; 2557 ss->cancel_attach(tset); 2558 } 2559 } while_each_subsys_mask(); 2560 } 2561 out_release_tset: 2562 spin_lock_irq(&css_set_lock); 2563 list_splice_init(&tset->dst_csets, &tset->src_csets); 2564 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) { 2565 list_splice_tail_init(&cset->mg_tasks, &cset->tasks); 2566 list_del_init(&cset->mg_node); 2567 } 2568 spin_unlock_irq(&css_set_lock); 2569 2570 /* 2571 * Re-initialize the cgroup_taskset structure in case it is reused 2572 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute() 2573 * iteration. 2574 */ 2575 tset->nr_tasks = 0; 2576 tset->csets = &tset->src_csets; 2577 return ret; 2578 } 2579 2580 /** 2581 * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination 2582 * @dst_cgrp: destination cgroup to test 2583 * 2584 * On the default hierarchy, except for the mixable, (possible) thread root 2585 * and threaded cgroups, subtree_control must be zero for migration 2586 * destination cgroups with tasks so that child cgroups don't compete 2587 * against tasks. 2588 */ 2589 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp) 2590 { 2591 /* v1 doesn't have any restriction */ 2592 if (!cgroup_on_dfl(dst_cgrp)) 2593 return 0; 2594 2595 /* verify @dst_cgrp can host resources */ 2596 if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp)) 2597 return -EOPNOTSUPP; 2598 2599 /* 2600 * If @dst_cgrp is already or can become a thread root or is 2601 * threaded, it doesn't matter. 2602 */ 2603 if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp)) 2604 return 0; 2605 2606 /* apply no-internal-process constraint */ 2607 if (dst_cgrp->subtree_control) 2608 return -EBUSY; 2609 2610 return 0; 2611 } 2612 2613 /** 2614 * cgroup_migrate_finish - cleanup after attach 2615 * @mgctx: migration context 2616 * 2617 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See 2618 * those functions for details. 2619 */ 2620 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx) 2621 { 2622 struct css_set *cset, *tmp_cset; 2623 2624 lockdep_assert_held(&cgroup_mutex); 2625 2626 spin_lock_irq(&css_set_lock); 2627 2628 list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_src_csets, 2629 mg_src_preload_node) { 2630 cset->mg_src_cgrp = NULL; 2631 cset->mg_dst_cgrp = NULL; 2632 cset->mg_dst_cset = NULL; 2633 list_del_init(&cset->mg_src_preload_node); 2634 put_css_set_locked(cset); 2635 } 2636 2637 list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_dst_csets, 2638 mg_dst_preload_node) { 2639 cset->mg_src_cgrp = NULL; 2640 cset->mg_dst_cgrp = NULL; 2641 cset->mg_dst_cset = NULL; 2642 list_del_init(&cset->mg_dst_preload_node); 2643 put_css_set_locked(cset); 2644 } 2645 2646 spin_unlock_irq(&css_set_lock); 2647 } 2648 2649 /** 2650 * cgroup_migrate_add_src - add a migration source css_set 2651 * @src_cset: the source css_set to add 2652 * @dst_cgrp: the destination cgroup 2653 * @mgctx: migration context 2654 * 2655 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin 2656 * @src_cset and add it to @mgctx->src_csets, which should later be cleaned 2657 * up by cgroup_migrate_finish(). 2658 * 2659 * This function may be called without holding cgroup_threadgroup_rwsem 2660 * even if the target is a process. Threads may be created and destroyed 2661 * but as long as cgroup_mutex is not dropped, no new css_set can be put 2662 * into play and the preloaded css_sets are guaranteed to cover all 2663 * migrations. 2664 */ 2665 void cgroup_migrate_add_src(struct css_set *src_cset, 2666 struct cgroup *dst_cgrp, 2667 struct cgroup_mgctx *mgctx) 2668 { 2669 struct cgroup *src_cgrp; 2670 2671 lockdep_assert_held(&cgroup_mutex); 2672 lockdep_assert_held(&css_set_lock); 2673 2674 /* 2675 * If ->dead, @src_set is associated with one or more dead cgroups 2676 * and doesn't contain any migratable tasks. Ignore it early so 2677 * that the rest of migration path doesn't get confused by it. 2678 */ 2679 if (src_cset->dead) 2680 return; 2681 2682 if (!list_empty(&src_cset->mg_src_preload_node)) 2683 return; 2684 2685 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root); 2686 2687 WARN_ON(src_cset->mg_src_cgrp); 2688 WARN_ON(src_cset->mg_dst_cgrp); 2689 WARN_ON(!list_empty(&src_cset->mg_tasks)); 2690 WARN_ON(!list_empty(&src_cset->mg_node)); 2691 2692 src_cset->mg_src_cgrp = src_cgrp; 2693 src_cset->mg_dst_cgrp = dst_cgrp; 2694 get_css_set(src_cset); 2695 list_add_tail(&src_cset->mg_src_preload_node, &mgctx->preloaded_src_csets); 2696 } 2697 2698 /** 2699 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration 2700 * @mgctx: migration context 2701 * 2702 * Tasks are about to be moved and all the source css_sets have been 2703 * preloaded to @mgctx->preloaded_src_csets. This function looks up and 2704 * pins all destination css_sets, links each to its source, and append them 2705 * to @mgctx->preloaded_dst_csets. 2706 * 2707 * This function must be called after cgroup_migrate_add_src() has been 2708 * called on each migration source css_set. After migration is performed 2709 * using cgroup_migrate(), cgroup_migrate_finish() must be called on 2710 * @mgctx. 2711 */ 2712 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx) 2713 { 2714 struct css_set *src_cset, *tmp_cset; 2715 2716 lockdep_assert_held(&cgroup_mutex); 2717 2718 /* look up the dst cset for each src cset and link it to src */ 2719 list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets, 2720 mg_src_preload_node) { 2721 struct css_set *dst_cset; 2722 struct cgroup_subsys *ss; 2723 int ssid; 2724 2725 dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp); 2726 if (!dst_cset) 2727 return -ENOMEM; 2728 2729 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset); 2730 2731 /* 2732 * If src cset equals dst, it's noop. Drop the src. 2733 * cgroup_migrate() will skip the cset too. Note that we 2734 * can't handle src == dst as some nodes are used by both. 2735 */ 2736 if (src_cset == dst_cset) { 2737 src_cset->mg_src_cgrp = NULL; 2738 src_cset->mg_dst_cgrp = NULL; 2739 list_del_init(&src_cset->mg_src_preload_node); 2740 put_css_set(src_cset); 2741 put_css_set(dst_cset); 2742 continue; 2743 } 2744 2745 src_cset->mg_dst_cset = dst_cset; 2746 2747 if (list_empty(&dst_cset->mg_dst_preload_node)) 2748 list_add_tail(&dst_cset->mg_dst_preload_node, 2749 &mgctx->preloaded_dst_csets); 2750 else 2751 put_css_set(dst_cset); 2752 2753 for_each_subsys(ss, ssid) 2754 if (src_cset->subsys[ssid] != dst_cset->subsys[ssid]) 2755 mgctx->ss_mask |= 1 << ssid; 2756 } 2757 2758 return 0; 2759 } 2760 2761 /** 2762 * cgroup_migrate - migrate a process or task to a cgroup 2763 * @leader: the leader of the process or the task to migrate 2764 * @threadgroup: whether @leader points to the whole process or a single task 2765 * @mgctx: migration context 2766 * 2767 * Migrate a process or task denoted by @leader. If migrating a process, 2768 * the caller must be holding cgroup_threadgroup_rwsem. The caller is also 2769 * responsible for invoking cgroup_migrate_add_src() and 2770 * cgroup_migrate_prepare_dst() on the targets before invoking this 2771 * function and following up with cgroup_migrate_finish(). 2772 * 2773 * As long as a controller's ->can_attach() doesn't fail, this function is 2774 * guaranteed to succeed. This means that, excluding ->can_attach() 2775 * failure, when migrating multiple targets, the success or failure can be 2776 * decided for all targets by invoking group_migrate_prepare_dst() before 2777 * actually starting migrating. 2778 */ 2779 int cgroup_migrate(struct task_struct *leader, bool threadgroup, 2780 struct cgroup_mgctx *mgctx) 2781 { 2782 struct task_struct *task; 2783 2784 /* 2785 * Prevent freeing of tasks while we take a snapshot. Tasks that are 2786 * already PF_EXITING could be freed from underneath us unless we 2787 * take an rcu_read_lock. 2788 */ 2789 spin_lock_irq(&css_set_lock); 2790 rcu_read_lock(); 2791 task = leader; 2792 do { 2793 cgroup_migrate_add_task(task, mgctx); 2794 if (!threadgroup) 2795 break; 2796 } while_each_thread(leader, task); 2797 rcu_read_unlock(); 2798 spin_unlock_irq(&css_set_lock); 2799 2800 return cgroup_migrate_execute(mgctx); 2801 } 2802 2803 /** 2804 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup 2805 * @dst_cgrp: the cgroup to attach to 2806 * @leader: the task or the leader of the threadgroup to be attached 2807 * @threadgroup: attach the whole threadgroup? 2808 * 2809 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem. 2810 */ 2811 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader, 2812 bool threadgroup) 2813 { 2814 DEFINE_CGROUP_MGCTX(mgctx); 2815 struct task_struct *task; 2816 int ret = 0; 2817 2818 /* look up all src csets */ 2819 spin_lock_irq(&css_set_lock); 2820 rcu_read_lock(); 2821 task = leader; 2822 do { 2823 cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx); 2824 if (!threadgroup) 2825 break; 2826 } while_each_thread(leader, task); 2827 rcu_read_unlock(); 2828 spin_unlock_irq(&css_set_lock); 2829 2830 /* prepare dst csets and commit */ 2831 ret = cgroup_migrate_prepare_dst(&mgctx); 2832 if (!ret) 2833 ret = cgroup_migrate(leader, threadgroup, &mgctx); 2834 2835 cgroup_migrate_finish(&mgctx); 2836 2837 if (!ret) 2838 TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup); 2839 2840 return ret; 2841 } 2842 2843 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup, 2844 bool *locked) 2845 __acquires(&cgroup_threadgroup_rwsem) 2846 { 2847 struct task_struct *tsk; 2848 pid_t pid; 2849 2850 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0) 2851 return ERR_PTR(-EINVAL); 2852 2853 /* 2854 * If we migrate a single thread, we don't care about threadgroup 2855 * stability. If the thread is `current`, it won't exit(2) under our 2856 * hands or change PID through exec(2). We exclude 2857 * cgroup_update_dfl_csses and other cgroup_{proc,thread}s_write 2858 * callers by cgroup_mutex. 2859 * Therefore, we can skip the global lock. 2860 */ 2861 lockdep_assert_held(&cgroup_mutex); 2862 if (pid || threadgroup) { 2863 percpu_down_write(&cgroup_threadgroup_rwsem); 2864 *locked = true; 2865 } else { 2866 *locked = false; 2867 } 2868 2869 rcu_read_lock(); 2870 if (pid) { 2871 tsk = find_task_by_vpid(pid); 2872 if (!tsk) { 2873 tsk = ERR_PTR(-ESRCH); 2874 goto out_unlock_threadgroup; 2875 } 2876 } else { 2877 tsk = current; 2878 } 2879 2880 if (threadgroup) 2881 tsk = tsk->group_leader; 2882 2883 /* 2884 * kthreads may acquire PF_NO_SETAFFINITY during initialization. 2885 * If userland migrates such a kthread to a non-root cgroup, it can 2886 * become trapped in a cpuset, or RT kthread may be born in a 2887 * cgroup with no rt_runtime allocated. Just say no. 2888 */ 2889 if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) { 2890 tsk = ERR_PTR(-EINVAL); 2891 goto out_unlock_threadgroup; 2892 } 2893 2894 get_task_struct(tsk); 2895 goto out_unlock_rcu; 2896 2897 out_unlock_threadgroup: 2898 if (*locked) { 2899 percpu_up_write(&cgroup_threadgroup_rwsem); 2900 *locked = false; 2901 } 2902 out_unlock_rcu: 2903 rcu_read_unlock(); 2904 return tsk; 2905 } 2906 2907 void cgroup_procs_write_finish(struct task_struct *task, bool locked) 2908 __releases(&cgroup_threadgroup_rwsem) 2909 { 2910 struct cgroup_subsys *ss; 2911 int ssid; 2912 2913 /* release reference from cgroup_procs_write_start() */ 2914 put_task_struct(task); 2915 2916 if (locked) 2917 percpu_up_write(&cgroup_threadgroup_rwsem); 2918 for_each_subsys(ss, ssid) 2919 if (ss->post_attach) 2920 ss->post_attach(); 2921 } 2922 2923 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask) 2924 { 2925 struct cgroup_subsys *ss; 2926 bool printed = false; 2927 int ssid; 2928 2929 do_each_subsys_mask(ss, ssid, ss_mask) { 2930 if (printed) 2931 seq_putc(seq, ' '); 2932 seq_puts(seq, ss->name); 2933 printed = true; 2934 } while_each_subsys_mask(); 2935 if (printed) 2936 seq_putc(seq, '\n'); 2937 } 2938 2939 /* show controllers which are enabled from the parent */ 2940 static int cgroup_controllers_show(struct seq_file *seq, void *v) 2941 { 2942 struct cgroup *cgrp = seq_css(seq)->cgroup; 2943 2944 cgroup_print_ss_mask(seq, cgroup_control(cgrp)); 2945 return 0; 2946 } 2947 2948 /* show controllers which are enabled for a given cgroup's children */ 2949 static int cgroup_subtree_control_show(struct seq_file *seq, void *v) 2950 { 2951 struct cgroup *cgrp = seq_css(seq)->cgroup; 2952 2953 cgroup_print_ss_mask(seq, cgrp->subtree_control); 2954 return 0; 2955 } 2956 2957 /** 2958 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy 2959 * @cgrp: root of the subtree to update csses for 2960 * 2961 * @cgrp's control masks have changed and its subtree's css associations 2962 * need to be updated accordingly. This function looks up all css_sets 2963 * which are attached to the subtree, creates the matching updated css_sets 2964 * and migrates the tasks to the new ones. 2965 */ 2966 static int cgroup_update_dfl_csses(struct cgroup *cgrp) 2967 { 2968 DEFINE_CGROUP_MGCTX(mgctx); 2969 struct cgroup_subsys_state *d_css; 2970 struct cgroup *dsct; 2971 struct css_set *src_cset; 2972 bool has_tasks; 2973 int ret; 2974 2975 lockdep_assert_held(&cgroup_mutex); 2976 2977 /* look up all csses currently attached to @cgrp's subtree */ 2978 spin_lock_irq(&css_set_lock); 2979 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 2980 struct cgrp_cset_link *link; 2981 2982 /* 2983 * As cgroup_update_dfl_csses() is only called by 2984 * cgroup_apply_control(). The csses associated with the 2985 * given cgrp will not be affected by changes made to 2986 * its subtree_control file. We can skip them. 2987 */ 2988 if (dsct == cgrp) 2989 continue; 2990 2991 list_for_each_entry(link, &dsct->cset_links, cset_link) 2992 cgroup_migrate_add_src(link->cset, dsct, &mgctx); 2993 } 2994 spin_unlock_irq(&css_set_lock); 2995 2996 /* 2997 * We need to write-lock threadgroup_rwsem while migrating tasks. 2998 * However, if there are no source csets for @cgrp, changing its 2999 * controllers isn't gonna produce any task migrations and the 3000 * write-locking can be skipped safely. 3001 */ 3002 has_tasks = !list_empty(&mgctx.preloaded_src_csets); 3003 if (has_tasks) 3004 percpu_down_write(&cgroup_threadgroup_rwsem); 3005 3006 /* NULL dst indicates self on default hierarchy */ 3007 ret = cgroup_migrate_prepare_dst(&mgctx); 3008 if (ret) 3009 goto out_finish; 3010 3011 spin_lock_irq(&css_set_lock); 3012 list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, 3013 mg_src_preload_node) { 3014 struct task_struct *task, *ntask; 3015 3016 /* all tasks in src_csets need to be migrated */ 3017 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list) 3018 cgroup_migrate_add_task(task, &mgctx); 3019 } 3020 spin_unlock_irq(&css_set_lock); 3021 3022 ret = cgroup_migrate_execute(&mgctx); 3023 out_finish: 3024 cgroup_migrate_finish(&mgctx); 3025 if (has_tasks) 3026 percpu_up_write(&cgroup_threadgroup_rwsem); 3027 return ret; 3028 } 3029 3030 /** 3031 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses 3032 * @cgrp: root of the target subtree 3033 * 3034 * Because css offlining is asynchronous, userland may try to re-enable a 3035 * controller while the previous css is still around. This function grabs 3036 * cgroup_mutex and drains the previous css instances of @cgrp's subtree. 3037 */ 3038 void cgroup_lock_and_drain_offline(struct cgroup *cgrp) 3039 __acquires(&cgroup_mutex) 3040 { 3041 struct cgroup *dsct; 3042 struct cgroup_subsys_state *d_css; 3043 struct cgroup_subsys *ss; 3044 int ssid; 3045 3046 restart: 3047 mutex_lock(&cgroup_mutex); 3048 3049 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 3050 for_each_subsys(ss, ssid) { 3051 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 3052 DEFINE_WAIT(wait); 3053 3054 if (!css || !percpu_ref_is_dying(&css->refcnt)) 3055 continue; 3056 3057 cgroup_get_live(dsct); 3058 prepare_to_wait(&dsct->offline_waitq, &wait, 3059 TASK_UNINTERRUPTIBLE); 3060 3061 mutex_unlock(&cgroup_mutex); 3062 schedule(); 3063 finish_wait(&dsct->offline_waitq, &wait); 3064 3065 cgroup_put(dsct); 3066 goto restart; 3067 } 3068 } 3069 } 3070 3071 /** 3072 * cgroup_save_control - save control masks and dom_cgrp of a subtree 3073 * @cgrp: root of the target subtree 3074 * 3075 * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the 3076 * respective old_ prefixed fields for @cgrp's subtree including @cgrp 3077 * itself. 3078 */ 3079 static void cgroup_save_control(struct cgroup *cgrp) 3080 { 3081 struct cgroup *dsct; 3082 struct cgroup_subsys_state *d_css; 3083 3084 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 3085 dsct->old_subtree_control = dsct->subtree_control; 3086 dsct->old_subtree_ss_mask = dsct->subtree_ss_mask; 3087 dsct->old_dom_cgrp = dsct->dom_cgrp; 3088 } 3089 } 3090 3091 /** 3092 * cgroup_propagate_control - refresh control masks of a subtree 3093 * @cgrp: root of the target subtree 3094 * 3095 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches 3096 * ->subtree_control and propagate controller availability through the 3097 * subtree so that descendants don't have unavailable controllers enabled. 3098 */ 3099 static void cgroup_propagate_control(struct cgroup *cgrp) 3100 { 3101 struct cgroup *dsct; 3102 struct cgroup_subsys_state *d_css; 3103 3104 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 3105 dsct->subtree_control &= cgroup_control(dsct); 3106 dsct->subtree_ss_mask = 3107 cgroup_calc_subtree_ss_mask(dsct->subtree_control, 3108 cgroup_ss_mask(dsct)); 3109 } 3110 } 3111 3112 /** 3113 * cgroup_restore_control - restore control masks and dom_cgrp of a subtree 3114 * @cgrp: root of the target subtree 3115 * 3116 * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the 3117 * respective old_ prefixed fields for @cgrp's subtree including @cgrp 3118 * itself. 3119 */ 3120 static void cgroup_restore_control(struct cgroup *cgrp) 3121 { 3122 struct cgroup *dsct; 3123 struct cgroup_subsys_state *d_css; 3124 3125 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 3126 dsct->subtree_control = dsct->old_subtree_control; 3127 dsct->subtree_ss_mask = dsct->old_subtree_ss_mask; 3128 dsct->dom_cgrp = dsct->old_dom_cgrp; 3129 } 3130 } 3131 3132 static bool css_visible(struct cgroup_subsys_state *css) 3133 { 3134 struct cgroup_subsys *ss = css->ss; 3135 struct cgroup *cgrp = css->cgroup; 3136 3137 if (cgroup_control(cgrp) & (1 << ss->id)) 3138 return true; 3139 if (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) 3140 return false; 3141 return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl; 3142 } 3143 3144 /** 3145 * cgroup_apply_control_enable - enable or show csses according to control 3146 * @cgrp: root of the target subtree 3147 * 3148 * Walk @cgrp's subtree and create new csses or make the existing ones 3149 * visible. A css is created invisible if it's being implicitly enabled 3150 * through dependency. An invisible css is made visible when the userland 3151 * explicitly enables it. 3152 * 3153 * Returns 0 on success, -errno on failure. On failure, csses which have 3154 * been processed already aren't cleaned up. The caller is responsible for 3155 * cleaning up with cgroup_apply_control_disable(). 3156 */ 3157 static int cgroup_apply_control_enable(struct cgroup *cgrp) 3158 { 3159 struct cgroup *dsct; 3160 struct cgroup_subsys_state *d_css; 3161 struct cgroup_subsys *ss; 3162 int ssid, ret; 3163 3164 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 3165 for_each_subsys(ss, ssid) { 3166 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 3167 3168 if (!(cgroup_ss_mask(dsct) & (1 << ss->id))) 3169 continue; 3170 3171 if (!css) { 3172 css = css_create(dsct, ss); 3173 if (IS_ERR(css)) 3174 return PTR_ERR(css); 3175 } 3176 3177 WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt)); 3178 3179 if (css_visible(css)) { 3180 ret = css_populate_dir(css); 3181 if (ret) 3182 return ret; 3183 } 3184 } 3185 } 3186 3187 return 0; 3188 } 3189 3190 /** 3191 * cgroup_apply_control_disable - kill or hide csses according to control 3192 * @cgrp: root of the target subtree 3193 * 3194 * Walk @cgrp's subtree and kill and hide csses so that they match 3195 * cgroup_ss_mask() and cgroup_visible_mask(). 3196 * 3197 * A css is hidden when the userland requests it to be disabled while other 3198 * subsystems are still depending on it. The css must not actively control 3199 * resources and be in the vanilla state if it's made visible again later. 3200 * Controllers which may be depended upon should provide ->css_reset() for 3201 * this purpose. 3202 */ 3203 static void cgroup_apply_control_disable(struct cgroup *cgrp) 3204 { 3205 struct cgroup *dsct; 3206 struct cgroup_subsys_state *d_css; 3207 struct cgroup_subsys *ss; 3208 int ssid; 3209 3210 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 3211 for_each_subsys(ss, ssid) { 3212 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 3213 3214 if (!css) 3215 continue; 3216 3217 WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt)); 3218 3219 if (css->parent && 3220 !(cgroup_ss_mask(dsct) & (1 << ss->id))) { 3221 kill_css(css); 3222 } else if (!css_visible(css)) { 3223 css_clear_dir(css); 3224 if (ss->css_reset) 3225 ss->css_reset(css); 3226 } 3227 } 3228 } 3229 } 3230 3231 /** 3232 * cgroup_apply_control - apply control mask updates to the subtree 3233 * @cgrp: root of the target subtree 3234 * 3235 * subsystems can be enabled and disabled in a subtree using the following 3236 * steps. 3237 * 3238 * 1. Call cgroup_save_control() to stash the current state. 3239 * 2. Update ->subtree_control masks in the subtree as desired. 3240 * 3. Call cgroup_apply_control() to apply the changes. 3241 * 4. Optionally perform other related operations. 3242 * 5. Call cgroup_finalize_control() to finish up. 3243 * 3244 * This function implements step 3 and propagates the mask changes 3245 * throughout @cgrp's subtree, updates csses accordingly and perform 3246 * process migrations. 3247 */ 3248 static int cgroup_apply_control(struct cgroup *cgrp) 3249 { 3250 int ret; 3251 3252 cgroup_propagate_control(cgrp); 3253 3254 ret = cgroup_apply_control_enable(cgrp); 3255 if (ret) 3256 return ret; 3257 3258 /* 3259 * At this point, cgroup_e_css_by_mask() results reflect the new csses 3260 * making the following cgroup_update_dfl_csses() properly update 3261 * css associations of all tasks in the subtree. 3262 */ 3263 ret = cgroup_update_dfl_csses(cgrp); 3264 if (ret) 3265 return ret; 3266 3267 return 0; 3268 } 3269 3270 /** 3271 * cgroup_finalize_control - finalize control mask update 3272 * @cgrp: root of the target subtree 3273 * @ret: the result of the update 3274 * 3275 * Finalize control mask update. See cgroup_apply_control() for more info. 3276 */ 3277 static void cgroup_finalize_control(struct cgroup *cgrp, int ret) 3278 { 3279 if (ret) { 3280 cgroup_restore_control(cgrp); 3281 cgroup_propagate_control(cgrp); 3282 } 3283 3284 cgroup_apply_control_disable(cgrp); 3285 } 3286 3287 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable) 3288 { 3289 u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask; 3290 3291 /* if nothing is getting enabled, nothing to worry about */ 3292 if (!enable) 3293 return 0; 3294 3295 /* can @cgrp host any resources? */ 3296 if (!cgroup_is_valid_domain(cgrp->dom_cgrp)) 3297 return -EOPNOTSUPP; 3298 3299 /* mixables don't care */ 3300 if (cgroup_is_mixable(cgrp)) 3301 return 0; 3302 3303 if (domain_enable) { 3304 /* can't enable domain controllers inside a thread subtree */ 3305 if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp)) 3306 return -EOPNOTSUPP; 3307 } else { 3308 /* 3309 * Threaded controllers can handle internal competitions 3310 * and are always allowed inside a (prospective) thread 3311 * subtree. 3312 */ 3313 if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp)) 3314 return 0; 3315 } 3316 3317 /* 3318 * Controllers can't be enabled for a cgroup with tasks to avoid 3319 * child cgroups competing against tasks. 3320 */ 3321 if (cgroup_has_tasks(cgrp)) 3322 return -EBUSY; 3323 3324 return 0; 3325 } 3326 3327 /* change the enabled child controllers for a cgroup in the default hierarchy */ 3328 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of, 3329 char *buf, size_t nbytes, 3330 loff_t off) 3331 { 3332 u16 enable = 0, disable = 0; 3333 struct cgroup *cgrp, *child; 3334 struct cgroup_subsys *ss; 3335 char *tok; 3336 int ssid, ret; 3337 3338 /* 3339 * Parse input - space separated list of subsystem names prefixed 3340 * with either + or -. 3341 */ 3342 buf = strstrip(buf); 3343 while ((tok = strsep(&buf, " "))) { 3344 if (tok[0] == '\0') 3345 continue; 3346 do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) { 3347 if (!cgroup_ssid_enabled(ssid) || 3348 strcmp(tok + 1, ss->name)) 3349 continue; 3350 3351 if (*tok == '+') { 3352 enable |= 1 << ssid; 3353 disable &= ~(1 << ssid); 3354 } else if (*tok == '-') { 3355 disable |= 1 << ssid; 3356 enable &= ~(1 << ssid); 3357 } else { 3358 return -EINVAL; 3359 } 3360 break; 3361 } while_each_subsys_mask(); 3362 if (ssid == CGROUP_SUBSYS_COUNT) 3363 return -EINVAL; 3364 } 3365 3366 cgrp = cgroup_kn_lock_live(of->kn, true); 3367 if (!cgrp) 3368 return -ENODEV; 3369 3370 for_each_subsys(ss, ssid) { 3371 if (enable & (1 << ssid)) { 3372 if (cgrp->subtree_control & (1 << ssid)) { 3373 enable &= ~(1 << ssid); 3374 continue; 3375 } 3376 3377 if (!(cgroup_control(cgrp) & (1 << ssid))) { 3378 ret = -ENOENT; 3379 goto out_unlock; 3380 } 3381 } else if (disable & (1 << ssid)) { 3382 if (!(cgrp->subtree_control & (1 << ssid))) { 3383 disable &= ~(1 << ssid); 3384 continue; 3385 } 3386 3387 /* a child has it enabled? */ 3388 cgroup_for_each_live_child(child, cgrp) { 3389 if (child->subtree_control & (1 << ssid)) { 3390 ret = -EBUSY; 3391 goto out_unlock; 3392 } 3393 } 3394 } 3395 } 3396 3397 if (!enable && !disable) { 3398 ret = 0; 3399 goto out_unlock; 3400 } 3401 3402 ret = cgroup_vet_subtree_control_enable(cgrp, enable); 3403 if (ret) 3404 goto out_unlock; 3405 3406 /* save and update control masks and prepare csses */ 3407 cgroup_save_control(cgrp); 3408 3409 cgrp->subtree_control |= enable; 3410 cgrp->subtree_control &= ~disable; 3411 3412 ret = cgroup_apply_control(cgrp); 3413 cgroup_finalize_control(cgrp, ret); 3414 if (ret) 3415 goto out_unlock; 3416 3417 kernfs_activate(cgrp->kn); 3418 out_unlock: 3419 cgroup_kn_unlock(of->kn); 3420 return ret ?: nbytes; 3421 } 3422 3423 /** 3424 * cgroup_enable_threaded - make @cgrp threaded 3425 * @cgrp: the target cgroup 3426 * 3427 * Called when "threaded" is written to the cgroup.type interface file and 3428 * tries to make @cgrp threaded and join the parent's resource domain. 3429 * This function is never called on the root cgroup as cgroup.type doesn't 3430 * exist on it. 3431 */ 3432 static int cgroup_enable_threaded(struct cgroup *cgrp) 3433 { 3434 struct cgroup *parent = cgroup_parent(cgrp); 3435 struct cgroup *dom_cgrp = parent->dom_cgrp; 3436 struct cgroup *dsct; 3437 struct cgroup_subsys_state *d_css; 3438 int ret; 3439 3440 lockdep_assert_held(&cgroup_mutex); 3441 3442 /* noop if already threaded */ 3443 if (cgroup_is_threaded(cgrp)) 3444 return 0; 3445 3446 /* 3447 * If @cgroup is populated or has domain controllers enabled, it 3448 * can't be switched. While the below cgroup_can_be_thread_root() 3449 * test can catch the same conditions, that's only when @parent is 3450 * not mixable, so let's check it explicitly. 3451 */ 3452 if (cgroup_is_populated(cgrp) || 3453 cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask) 3454 return -EOPNOTSUPP; 3455 3456 /* we're joining the parent's domain, ensure its validity */ 3457 if (!cgroup_is_valid_domain(dom_cgrp) || 3458 !cgroup_can_be_thread_root(dom_cgrp)) 3459 return -EOPNOTSUPP; 3460 3461 /* 3462 * The following shouldn't cause actual migrations and should 3463 * always succeed. 3464 */ 3465 cgroup_save_control(cgrp); 3466 3467 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) 3468 if (dsct == cgrp || cgroup_is_threaded(dsct)) 3469 dsct->dom_cgrp = dom_cgrp; 3470 3471 ret = cgroup_apply_control(cgrp); 3472 if (!ret) 3473 parent->nr_threaded_children++; 3474 3475 cgroup_finalize_control(cgrp, ret); 3476 return ret; 3477 } 3478 3479 static int cgroup_type_show(struct seq_file *seq, void *v) 3480 { 3481 struct cgroup *cgrp = seq_css(seq)->cgroup; 3482 3483 if (cgroup_is_threaded(cgrp)) 3484 seq_puts(seq, "threaded\n"); 3485 else if (!cgroup_is_valid_domain(cgrp)) 3486 seq_puts(seq, "domain invalid\n"); 3487 else if (cgroup_is_thread_root(cgrp)) 3488 seq_puts(seq, "domain threaded\n"); 3489 else 3490 seq_puts(seq, "domain\n"); 3491 3492 return 0; 3493 } 3494 3495 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf, 3496 size_t nbytes, loff_t off) 3497 { 3498 struct cgroup *cgrp; 3499 int ret; 3500 3501 /* only switching to threaded mode is supported */ 3502 if (strcmp(strstrip(buf), "threaded")) 3503 return -EINVAL; 3504 3505 /* drain dying csses before we re-apply (threaded) subtree control */ 3506 cgrp = cgroup_kn_lock_live(of->kn, true); 3507 if (!cgrp) 3508 return -ENOENT; 3509 3510 /* threaded can only be enabled */ 3511 ret = cgroup_enable_threaded(cgrp); 3512 3513 cgroup_kn_unlock(of->kn); 3514 return ret ?: nbytes; 3515 } 3516 3517 static int cgroup_max_descendants_show(struct seq_file *seq, void *v) 3518 { 3519 struct cgroup *cgrp = seq_css(seq)->cgroup; 3520 int descendants = READ_ONCE(cgrp->max_descendants); 3521 3522 if (descendants == INT_MAX) 3523 seq_puts(seq, "max\n"); 3524 else 3525 seq_printf(seq, "%d\n", descendants); 3526 3527 return 0; 3528 } 3529 3530 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of, 3531 char *buf, size_t nbytes, loff_t off) 3532 { 3533 struct cgroup *cgrp; 3534 int descendants; 3535 ssize_t ret; 3536 3537 buf = strstrip(buf); 3538 if (!strcmp(buf, "max")) { 3539 descendants = INT_MAX; 3540 } else { 3541 ret = kstrtoint(buf, 0, &descendants); 3542 if (ret) 3543 return ret; 3544 } 3545 3546 if (descendants < 0) 3547 return -ERANGE; 3548 3549 cgrp = cgroup_kn_lock_live(of->kn, false); 3550 if (!cgrp) 3551 return -ENOENT; 3552 3553 cgrp->max_descendants = descendants; 3554 3555 cgroup_kn_unlock(of->kn); 3556 3557 return nbytes; 3558 } 3559 3560 static int cgroup_max_depth_show(struct seq_file *seq, void *v) 3561 { 3562 struct cgroup *cgrp = seq_css(seq)->cgroup; 3563 int depth = READ_ONCE(cgrp->max_depth); 3564 3565 if (depth == INT_MAX) 3566 seq_puts(seq, "max\n"); 3567 else 3568 seq_printf(seq, "%d\n", depth); 3569 3570 return 0; 3571 } 3572 3573 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of, 3574 char *buf, size_t nbytes, loff_t off) 3575 { 3576 struct cgroup *cgrp; 3577 ssize_t ret; 3578 int depth; 3579 3580 buf = strstrip(buf); 3581 if (!strcmp(buf, "max")) { 3582 depth = INT_MAX; 3583 } else { 3584 ret = kstrtoint(buf, 0, &depth); 3585 if (ret) 3586 return ret; 3587 } 3588 3589 if (depth < 0) 3590 return -ERANGE; 3591 3592 cgrp = cgroup_kn_lock_live(of->kn, false); 3593 if (!cgrp) 3594 return -ENOENT; 3595 3596 cgrp->max_depth = depth; 3597 3598 cgroup_kn_unlock(of->kn); 3599 3600 return nbytes; 3601 } 3602 3603 static int cgroup_events_show(struct seq_file *seq, void *v) 3604 { 3605 struct cgroup *cgrp = seq_css(seq)->cgroup; 3606 3607 seq_printf(seq, "populated %d\n", cgroup_is_populated(cgrp)); 3608 seq_printf(seq, "frozen %d\n", test_bit(CGRP_FROZEN, &cgrp->flags)); 3609 3610 return 0; 3611 } 3612 3613 static int cgroup_stat_show(struct seq_file *seq, void *v) 3614 { 3615 struct cgroup *cgroup = seq_css(seq)->cgroup; 3616 3617 seq_printf(seq, "nr_descendants %d\n", 3618 cgroup->nr_descendants); 3619 seq_printf(seq, "nr_dying_descendants %d\n", 3620 cgroup->nr_dying_descendants); 3621 3622 return 0; 3623 } 3624 3625 static int __maybe_unused cgroup_extra_stat_show(struct seq_file *seq, 3626 struct cgroup *cgrp, int ssid) 3627 { 3628 struct cgroup_subsys *ss = cgroup_subsys[ssid]; 3629 struct cgroup_subsys_state *css; 3630 int ret; 3631 3632 if (!ss->css_extra_stat_show) 3633 return 0; 3634 3635 css = cgroup_tryget_css(cgrp, ss); 3636 if (!css) 3637 return 0; 3638 3639 ret = ss->css_extra_stat_show(seq, css); 3640 css_put(css); 3641 return ret; 3642 } 3643 3644 static int cpu_stat_show(struct seq_file *seq, void *v) 3645 { 3646 struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup; 3647 int ret = 0; 3648 3649 cgroup_base_stat_cputime_show(seq); 3650 #ifdef CONFIG_CGROUP_SCHED 3651 ret = cgroup_extra_stat_show(seq, cgrp, cpu_cgrp_id); 3652 #endif 3653 return ret; 3654 } 3655 3656 #ifdef CONFIG_PSI 3657 static int cgroup_io_pressure_show(struct seq_file *seq, void *v) 3658 { 3659 struct cgroup *cgrp = seq_css(seq)->cgroup; 3660 struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : cgrp->psi; 3661 3662 return psi_show(seq, psi, PSI_IO); 3663 } 3664 static int cgroup_memory_pressure_show(struct seq_file *seq, void *v) 3665 { 3666 struct cgroup *cgrp = seq_css(seq)->cgroup; 3667 struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : cgrp->psi; 3668 3669 return psi_show(seq, psi, PSI_MEM); 3670 } 3671 static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v) 3672 { 3673 struct cgroup *cgrp = seq_css(seq)->cgroup; 3674 struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : cgrp->psi; 3675 3676 return psi_show(seq, psi, PSI_CPU); 3677 } 3678 3679 static ssize_t cgroup_pressure_write(struct kernfs_open_file *of, char *buf, 3680 size_t nbytes, enum psi_res res) 3681 { 3682 struct cgroup_file_ctx *ctx = of->priv; 3683 struct psi_trigger *new; 3684 struct cgroup *cgrp; 3685 struct psi_group *psi; 3686 3687 cgrp = cgroup_kn_lock_live(of->kn, false); 3688 if (!cgrp) 3689 return -ENODEV; 3690 3691 cgroup_get(cgrp); 3692 cgroup_kn_unlock(of->kn); 3693 3694 /* Allow only one trigger per file descriptor */ 3695 if (ctx->psi.trigger) { 3696 cgroup_put(cgrp); 3697 return -EBUSY; 3698 } 3699 3700 psi = cgroup_ino(cgrp) == 1 ? &psi_system : cgrp->psi; 3701 new = psi_trigger_create(psi, buf, nbytes, res); 3702 if (IS_ERR(new)) { 3703 cgroup_put(cgrp); 3704 return PTR_ERR(new); 3705 } 3706 3707 smp_store_release(&ctx->psi.trigger, new); 3708 cgroup_put(cgrp); 3709 3710 return nbytes; 3711 } 3712 3713 static ssize_t cgroup_io_pressure_write(struct kernfs_open_file *of, 3714 char *buf, size_t nbytes, 3715 loff_t off) 3716 { 3717 return cgroup_pressure_write(of, buf, nbytes, PSI_IO); 3718 } 3719 3720 static ssize_t cgroup_memory_pressure_write(struct kernfs_open_file *of, 3721 char *buf, size_t nbytes, 3722 loff_t off) 3723 { 3724 return cgroup_pressure_write(of, buf, nbytes, PSI_MEM); 3725 } 3726 3727 static ssize_t cgroup_cpu_pressure_write(struct kernfs_open_file *of, 3728 char *buf, size_t nbytes, 3729 loff_t off) 3730 { 3731 return cgroup_pressure_write(of, buf, nbytes, PSI_CPU); 3732 } 3733 3734 static __poll_t cgroup_pressure_poll(struct kernfs_open_file *of, 3735 poll_table *pt) 3736 { 3737 struct cgroup_file_ctx *ctx = of->priv; 3738 3739 return psi_trigger_poll(&ctx->psi.trigger, of->file, pt); 3740 } 3741 3742 static void cgroup_pressure_release(struct kernfs_open_file *of) 3743 { 3744 struct cgroup_file_ctx *ctx = of->priv; 3745 3746 psi_trigger_destroy(ctx->psi.trigger); 3747 } 3748 3749 bool cgroup_psi_enabled(void) 3750 { 3751 return (cgroup_feature_disable_mask & (1 << OPT_FEATURE_PRESSURE)) == 0; 3752 } 3753 3754 #else /* CONFIG_PSI */ 3755 bool cgroup_psi_enabled(void) 3756 { 3757 return false; 3758 } 3759 3760 #endif /* CONFIG_PSI */ 3761 3762 static int cgroup_freeze_show(struct seq_file *seq, void *v) 3763 { 3764 struct cgroup *cgrp = seq_css(seq)->cgroup; 3765 3766 seq_printf(seq, "%d\n", cgrp->freezer.freeze); 3767 3768 return 0; 3769 } 3770 3771 static ssize_t cgroup_freeze_write(struct kernfs_open_file *of, 3772 char *buf, size_t nbytes, loff_t off) 3773 { 3774 struct cgroup *cgrp; 3775 ssize_t ret; 3776 int freeze; 3777 3778 ret = kstrtoint(strstrip(buf), 0, &freeze); 3779 if (ret) 3780 return ret; 3781 3782 if (freeze < 0 || freeze > 1) 3783 return -ERANGE; 3784 3785 cgrp = cgroup_kn_lock_live(of->kn, false); 3786 if (!cgrp) 3787 return -ENOENT; 3788 3789 cgroup_freeze(cgrp, freeze); 3790 3791 cgroup_kn_unlock(of->kn); 3792 3793 return nbytes; 3794 } 3795 3796 static void __cgroup_kill(struct cgroup *cgrp) 3797 { 3798 struct css_task_iter it; 3799 struct task_struct *task; 3800 3801 lockdep_assert_held(&cgroup_mutex); 3802 3803 spin_lock_irq(&css_set_lock); 3804 set_bit(CGRP_KILL, &cgrp->flags); 3805 spin_unlock_irq(&css_set_lock); 3806 3807 css_task_iter_start(&cgrp->self, CSS_TASK_ITER_PROCS | CSS_TASK_ITER_THREADED, &it); 3808 while ((task = css_task_iter_next(&it))) { 3809 /* Ignore kernel threads here. */ 3810 if (task->flags & PF_KTHREAD) 3811 continue; 3812 3813 /* Skip tasks that are already dying. */ 3814 if (__fatal_signal_pending(task)) 3815 continue; 3816 3817 send_sig(SIGKILL, task, 0); 3818 } 3819 css_task_iter_end(&it); 3820 3821 spin_lock_irq(&css_set_lock); 3822 clear_bit(CGRP_KILL, &cgrp->flags); 3823 spin_unlock_irq(&css_set_lock); 3824 } 3825 3826 static void cgroup_kill(struct cgroup *cgrp) 3827 { 3828 struct cgroup_subsys_state *css; 3829 struct cgroup *dsct; 3830 3831 lockdep_assert_held(&cgroup_mutex); 3832 3833 cgroup_for_each_live_descendant_pre(dsct, css, cgrp) 3834 __cgroup_kill(dsct); 3835 } 3836 3837 static ssize_t cgroup_kill_write(struct kernfs_open_file *of, char *buf, 3838 size_t nbytes, loff_t off) 3839 { 3840 ssize_t ret = 0; 3841 int kill; 3842 struct cgroup *cgrp; 3843 3844 ret = kstrtoint(strstrip(buf), 0, &kill); 3845 if (ret) 3846 return ret; 3847 3848 if (kill != 1) 3849 return -ERANGE; 3850 3851 cgrp = cgroup_kn_lock_live(of->kn, false); 3852 if (!cgrp) 3853 return -ENOENT; 3854 3855 /* 3856 * Killing is a process directed operation, i.e. the whole thread-group 3857 * is taken down so act like we do for cgroup.procs and only make this 3858 * writable in non-threaded cgroups. 3859 */ 3860 if (cgroup_is_threaded(cgrp)) 3861 ret = -EOPNOTSUPP; 3862 else 3863 cgroup_kill(cgrp); 3864 3865 cgroup_kn_unlock(of->kn); 3866 3867 return ret ?: nbytes; 3868 } 3869 3870 static int cgroup_file_open(struct kernfs_open_file *of) 3871 { 3872 struct cftype *cft = of_cft(of); 3873 struct cgroup_file_ctx *ctx; 3874 int ret; 3875 3876 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 3877 if (!ctx) 3878 return -ENOMEM; 3879 3880 ctx->ns = current->nsproxy->cgroup_ns; 3881 get_cgroup_ns(ctx->ns); 3882 of->priv = ctx; 3883 3884 if (!cft->open) 3885 return 0; 3886 3887 ret = cft->open(of); 3888 if (ret) { 3889 put_cgroup_ns(ctx->ns); 3890 kfree(ctx); 3891 } 3892 return ret; 3893 } 3894 3895 static void cgroup_file_release(struct kernfs_open_file *of) 3896 { 3897 struct cftype *cft = of_cft(of); 3898 struct cgroup_file_ctx *ctx = of->priv; 3899 3900 if (cft->release) 3901 cft->release(of); 3902 put_cgroup_ns(ctx->ns); 3903 kfree(ctx); 3904 } 3905 3906 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf, 3907 size_t nbytes, loff_t off) 3908 { 3909 struct cgroup_file_ctx *ctx = of->priv; 3910 struct cgroup *cgrp = of->kn->parent->priv; 3911 struct cftype *cft = of_cft(of); 3912 struct cgroup_subsys_state *css; 3913 int ret; 3914 3915 if (!nbytes) 3916 return 0; 3917 3918 /* 3919 * If namespaces are delegation boundaries, disallow writes to 3920 * files in an non-init namespace root from inside the namespace 3921 * except for the files explicitly marked delegatable - 3922 * cgroup.procs and cgroup.subtree_control. 3923 */ 3924 if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) && 3925 !(cft->flags & CFTYPE_NS_DELEGATABLE) && 3926 ctx->ns != &init_cgroup_ns && ctx->ns->root_cset->dfl_cgrp == cgrp) 3927 return -EPERM; 3928 3929 if (cft->write) 3930 return cft->write(of, buf, nbytes, off); 3931 3932 /* 3933 * kernfs guarantees that a file isn't deleted with operations in 3934 * flight, which means that the matching css is and stays alive and 3935 * doesn't need to be pinned. The RCU locking is not necessary 3936 * either. It's just for the convenience of using cgroup_css(). 3937 */ 3938 rcu_read_lock(); 3939 css = cgroup_css(cgrp, cft->ss); 3940 rcu_read_unlock(); 3941 3942 if (cft->write_u64) { 3943 unsigned long long v; 3944 ret = kstrtoull(buf, 0, &v); 3945 if (!ret) 3946 ret = cft->write_u64(css, cft, v); 3947 } else if (cft->write_s64) { 3948 long long v; 3949 ret = kstrtoll(buf, 0, &v); 3950 if (!ret) 3951 ret = cft->write_s64(css, cft, v); 3952 } else { 3953 ret = -EINVAL; 3954 } 3955 3956 return ret ?: nbytes; 3957 } 3958 3959 static __poll_t cgroup_file_poll(struct kernfs_open_file *of, poll_table *pt) 3960 { 3961 struct cftype *cft = of_cft(of); 3962 3963 if (cft->poll) 3964 return cft->poll(of, pt); 3965 3966 return kernfs_generic_poll(of, pt); 3967 } 3968 3969 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos) 3970 { 3971 return seq_cft(seq)->seq_start(seq, ppos); 3972 } 3973 3974 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos) 3975 { 3976 return seq_cft(seq)->seq_next(seq, v, ppos); 3977 } 3978 3979 static void cgroup_seqfile_stop(struct seq_file *seq, void *v) 3980 { 3981 if (seq_cft(seq)->seq_stop) 3982 seq_cft(seq)->seq_stop(seq, v); 3983 } 3984 3985 static int cgroup_seqfile_show(struct seq_file *m, void *arg) 3986 { 3987 struct cftype *cft = seq_cft(m); 3988 struct cgroup_subsys_state *css = seq_css(m); 3989 3990 if (cft->seq_show) 3991 return cft->seq_show(m, arg); 3992 3993 if (cft->read_u64) 3994 seq_printf(m, "%llu\n", cft->read_u64(css, cft)); 3995 else if (cft->read_s64) 3996 seq_printf(m, "%lld\n", cft->read_s64(css, cft)); 3997 else 3998 return -EINVAL; 3999 return 0; 4000 } 4001 4002 static struct kernfs_ops cgroup_kf_single_ops = { 4003 .atomic_write_len = PAGE_SIZE, 4004 .open = cgroup_file_open, 4005 .release = cgroup_file_release, 4006 .write = cgroup_file_write, 4007 .poll = cgroup_file_poll, 4008 .seq_show = cgroup_seqfile_show, 4009 }; 4010 4011 static struct kernfs_ops cgroup_kf_ops = { 4012 .atomic_write_len = PAGE_SIZE, 4013 .open = cgroup_file_open, 4014 .release = cgroup_file_release, 4015 .write = cgroup_file_write, 4016 .poll = cgroup_file_poll, 4017 .seq_start = cgroup_seqfile_start, 4018 .seq_next = cgroup_seqfile_next, 4019 .seq_stop = cgroup_seqfile_stop, 4020 .seq_show = cgroup_seqfile_show, 4021 }; 4022 4023 /* set uid and gid of cgroup dirs and files to that of the creator */ 4024 static int cgroup_kn_set_ugid(struct kernfs_node *kn) 4025 { 4026 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID, 4027 .ia_uid = current_fsuid(), 4028 .ia_gid = current_fsgid(), }; 4029 4030 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) && 4031 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID)) 4032 return 0; 4033 4034 return kernfs_setattr(kn, &iattr); 4035 } 4036 4037 static void cgroup_file_notify_timer(struct timer_list *timer) 4038 { 4039 cgroup_file_notify(container_of(timer, struct cgroup_file, 4040 notify_timer)); 4041 } 4042 4043 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp, 4044 struct cftype *cft) 4045 { 4046 char name[CGROUP_FILE_NAME_MAX]; 4047 struct kernfs_node *kn; 4048 struct lock_class_key *key = NULL; 4049 int ret; 4050 4051 #ifdef CONFIG_DEBUG_LOCK_ALLOC 4052 key = &cft->lockdep_key; 4053 #endif 4054 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name), 4055 cgroup_file_mode(cft), 4056 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 4057 0, cft->kf_ops, cft, 4058 NULL, key); 4059 if (IS_ERR(kn)) 4060 return PTR_ERR(kn); 4061 4062 ret = cgroup_kn_set_ugid(kn); 4063 if (ret) { 4064 kernfs_remove(kn); 4065 return ret; 4066 } 4067 4068 if (cft->file_offset) { 4069 struct cgroup_file *cfile = (void *)css + cft->file_offset; 4070 4071 timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0); 4072 4073 spin_lock_irq(&cgroup_file_kn_lock); 4074 cfile->kn = kn; 4075 spin_unlock_irq(&cgroup_file_kn_lock); 4076 } 4077 4078 return 0; 4079 } 4080 4081 /** 4082 * cgroup_addrm_files - add or remove files to a cgroup directory 4083 * @css: the target css 4084 * @cgrp: the target cgroup (usually css->cgroup) 4085 * @cfts: array of cftypes to be added 4086 * @is_add: whether to add or remove 4087 * 4088 * Depending on @is_add, add or remove files defined by @cfts on @cgrp. 4089 * For removals, this function never fails. 4090 */ 4091 static int cgroup_addrm_files(struct cgroup_subsys_state *css, 4092 struct cgroup *cgrp, struct cftype cfts[], 4093 bool is_add) 4094 { 4095 struct cftype *cft, *cft_end = NULL; 4096 int ret = 0; 4097 4098 lockdep_assert_held(&cgroup_mutex); 4099 4100 restart: 4101 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) { 4102 /* does cft->flags tell us to skip this file on @cgrp? */ 4103 if ((cft->flags & CFTYPE_PRESSURE) && !cgroup_psi_enabled()) 4104 continue; 4105 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp)) 4106 continue; 4107 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp)) 4108 continue; 4109 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp)) 4110 continue; 4111 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp)) 4112 continue; 4113 if ((cft->flags & CFTYPE_DEBUG) && !cgroup_debug) 4114 continue; 4115 if (is_add) { 4116 ret = cgroup_add_file(css, cgrp, cft); 4117 if (ret) { 4118 pr_warn("%s: failed to add %s, err=%d\n", 4119 __func__, cft->name, ret); 4120 cft_end = cft; 4121 is_add = false; 4122 goto restart; 4123 } 4124 } else { 4125 cgroup_rm_file(cgrp, cft); 4126 } 4127 } 4128 return ret; 4129 } 4130 4131 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add) 4132 { 4133 struct cgroup_subsys *ss = cfts[0].ss; 4134 struct cgroup *root = &ss->root->cgrp; 4135 struct cgroup_subsys_state *css; 4136 int ret = 0; 4137 4138 lockdep_assert_held(&cgroup_mutex); 4139 4140 /* add/rm files for all cgroups created before */ 4141 css_for_each_descendant_pre(css, cgroup_css(root, ss)) { 4142 struct cgroup *cgrp = css->cgroup; 4143 4144 if (!(css->flags & CSS_VISIBLE)) 4145 continue; 4146 4147 ret = cgroup_addrm_files(css, cgrp, cfts, is_add); 4148 if (ret) 4149 break; 4150 } 4151 4152 if (is_add && !ret) 4153 kernfs_activate(root->kn); 4154 return ret; 4155 } 4156 4157 static void cgroup_exit_cftypes(struct cftype *cfts) 4158 { 4159 struct cftype *cft; 4160 4161 for (cft = cfts; cft->name[0] != '\0'; cft++) { 4162 /* free copy for custom atomic_write_len, see init_cftypes() */ 4163 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) 4164 kfree(cft->kf_ops); 4165 cft->kf_ops = NULL; 4166 cft->ss = NULL; 4167 4168 /* revert flags set by cgroup core while adding @cfts */ 4169 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL); 4170 } 4171 } 4172 4173 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4174 { 4175 struct cftype *cft; 4176 4177 for (cft = cfts; cft->name[0] != '\0'; cft++) { 4178 struct kernfs_ops *kf_ops; 4179 4180 WARN_ON(cft->ss || cft->kf_ops); 4181 4182 if ((cft->flags & CFTYPE_PRESSURE) && !cgroup_psi_enabled()) 4183 continue; 4184 4185 if (cft->seq_start) 4186 kf_ops = &cgroup_kf_ops; 4187 else 4188 kf_ops = &cgroup_kf_single_ops; 4189 4190 /* 4191 * Ugh... if @cft wants a custom max_write_len, we need to 4192 * make a copy of kf_ops to set its atomic_write_len. 4193 */ 4194 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) { 4195 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL); 4196 if (!kf_ops) { 4197 cgroup_exit_cftypes(cfts); 4198 return -ENOMEM; 4199 } 4200 kf_ops->atomic_write_len = cft->max_write_len; 4201 } 4202 4203 cft->kf_ops = kf_ops; 4204 cft->ss = ss; 4205 } 4206 4207 return 0; 4208 } 4209 4210 static int cgroup_rm_cftypes_locked(struct cftype *cfts) 4211 { 4212 lockdep_assert_held(&cgroup_mutex); 4213 4214 if (!cfts || !cfts[0].ss) 4215 return -ENOENT; 4216 4217 list_del(&cfts->node); 4218 cgroup_apply_cftypes(cfts, false); 4219 cgroup_exit_cftypes(cfts); 4220 return 0; 4221 } 4222 4223 /** 4224 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem 4225 * @cfts: zero-length name terminated array of cftypes 4226 * 4227 * Unregister @cfts. Files described by @cfts are removed from all 4228 * existing cgroups and all future cgroups won't have them either. This 4229 * function can be called anytime whether @cfts' subsys is attached or not. 4230 * 4231 * Returns 0 on successful unregistration, -ENOENT if @cfts is not 4232 * registered. 4233 */ 4234 int cgroup_rm_cftypes(struct cftype *cfts) 4235 { 4236 int ret; 4237 4238 mutex_lock(&cgroup_mutex); 4239 ret = cgroup_rm_cftypes_locked(cfts); 4240 mutex_unlock(&cgroup_mutex); 4241 return ret; 4242 } 4243 4244 /** 4245 * cgroup_add_cftypes - add an array of cftypes to a subsystem 4246 * @ss: target cgroup subsystem 4247 * @cfts: zero-length name terminated array of cftypes 4248 * 4249 * Register @cfts to @ss. Files described by @cfts are created for all 4250 * existing cgroups to which @ss is attached and all future cgroups will 4251 * have them too. This function can be called anytime whether @ss is 4252 * attached or not. 4253 * 4254 * Returns 0 on successful registration, -errno on failure. Note that this 4255 * function currently returns 0 as long as @cfts registration is successful 4256 * even if some file creation attempts on existing cgroups fail. 4257 */ 4258 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4259 { 4260 int ret; 4261 4262 if (!cgroup_ssid_enabled(ss->id)) 4263 return 0; 4264 4265 if (!cfts || cfts[0].name[0] == '\0') 4266 return 0; 4267 4268 ret = cgroup_init_cftypes(ss, cfts); 4269 if (ret) 4270 return ret; 4271 4272 mutex_lock(&cgroup_mutex); 4273 4274 list_add_tail(&cfts->node, &ss->cfts); 4275 ret = cgroup_apply_cftypes(cfts, true); 4276 if (ret) 4277 cgroup_rm_cftypes_locked(cfts); 4278 4279 mutex_unlock(&cgroup_mutex); 4280 return ret; 4281 } 4282 4283 /** 4284 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy 4285 * @ss: target cgroup subsystem 4286 * @cfts: zero-length name terminated array of cftypes 4287 * 4288 * Similar to cgroup_add_cftypes() but the added files are only used for 4289 * the default hierarchy. 4290 */ 4291 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4292 { 4293 struct cftype *cft; 4294 4295 for (cft = cfts; cft && cft->name[0] != '\0'; cft++) 4296 cft->flags |= __CFTYPE_ONLY_ON_DFL; 4297 return cgroup_add_cftypes(ss, cfts); 4298 } 4299 4300 /** 4301 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies 4302 * @ss: target cgroup subsystem 4303 * @cfts: zero-length name terminated array of cftypes 4304 * 4305 * Similar to cgroup_add_cftypes() but the added files are only used for 4306 * the legacy hierarchies. 4307 */ 4308 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4309 { 4310 struct cftype *cft; 4311 4312 for (cft = cfts; cft && cft->name[0] != '\0'; cft++) 4313 cft->flags |= __CFTYPE_NOT_ON_DFL; 4314 return cgroup_add_cftypes(ss, cfts); 4315 } 4316 4317 /** 4318 * cgroup_file_notify - generate a file modified event for a cgroup_file 4319 * @cfile: target cgroup_file 4320 * 4321 * @cfile must have been obtained by setting cftype->file_offset. 4322 */ 4323 void cgroup_file_notify(struct cgroup_file *cfile) 4324 { 4325 unsigned long flags; 4326 4327 spin_lock_irqsave(&cgroup_file_kn_lock, flags); 4328 if (cfile->kn) { 4329 unsigned long last = cfile->notified_at; 4330 unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV; 4331 4332 if (time_in_range(jiffies, last, next)) { 4333 timer_reduce(&cfile->notify_timer, next); 4334 } else { 4335 kernfs_notify(cfile->kn); 4336 cfile->notified_at = jiffies; 4337 } 4338 } 4339 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags); 4340 } 4341 4342 /** 4343 * css_next_child - find the next child of a given css 4344 * @pos: the current position (%NULL to initiate traversal) 4345 * @parent: css whose children to walk 4346 * 4347 * This function returns the next child of @parent and should be called 4348 * under either cgroup_mutex or RCU read lock. The only requirement is 4349 * that @parent and @pos are accessible. The next sibling is guaranteed to 4350 * be returned regardless of their states. 4351 * 4352 * If a subsystem synchronizes ->css_online() and the start of iteration, a 4353 * css which finished ->css_online() is guaranteed to be visible in the 4354 * future iterations and will stay visible until the last reference is put. 4355 * A css which hasn't finished ->css_online() or already finished 4356 * ->css_offline() may show up during traversal. It's each subsystem's 4357 * responsibility to synchronize against on/offlining. 4358 */ 4359 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos, 4360 struct cgroup_subsys_state *parent) 4361 { 4362 struct cgroup_subsys_state *next; 4363 4364 cgroup_assert_mutex_or_rcu_locked(); 4365 4366 /* 4367 * @pos could already have been unlinked from the sibling list. 4368 * Once a cgroup is removed, its ->sibling.next is no longer 4369 * updated when its next sibling changes. CSS_RELEASED is set when 4370 * @pos is taken off list, at which time its next pointer is valid, 4371 * and, as releases are serialized, the one pointed to by the next 4372 * pointer is guaranteed to not have started release yet. This 4373 * implies that if we observe !CSS_RELEASED on @pos in this RCU 4374 * critical section, the one pointed to by its next pointer is 4375 * guaranteed to not have finished its RCU grace period even if we 4376 * have dropped rcu_read_lock() in-between iterations. 4377 * 4378 * If @pos has CSS_RELEASED set, its next pointer can't be 4379 * dereferenced; however, as each css is given a monotonically 4380 * increasing unique serial number and always appended to the 4381 * sibling list, the next one can be found by walking the parent's 4382 * children until the first css with higher serial number than 4383 * @pos's. While this path can be slower, it happens iff iteration 4384 * races against release and the race window is very small. 4385 */ 4386 if (!pos) { 4387 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling); 4388 } else if (likely(!(pos->flags & CSS_RELEASED))) { 4389 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling); 4390 } else { 4391 list_for_each_entry_rcu(next, &parent->children, sibling, 4392 lockdep_is_held(&cgroup_mutex)) 4393 if (next->serial_nr > pos->serial_nr) 4394 break; 4395 } 4396 4397 /* 4398 * @next, if not pointing to the head, can be dereferenced and is 4399 * the next sibling. 4400 */ 4401 if (&next->sibling != &parent->children) 4402 return next; 4403 return NULL; 4404 } 4405 4406 /** 4407 * css_next_descendant_pre - find the next descendant for pre-order walk 4408 * @pos: the current position (%NULL to initiate traversal) 4409 * @root: css whose descendants to walk 4410 * 4411 * To be used by css_for_each_descendant_pre(). Find the next descendant 4412 * to visit for pre-order traversal of @root's descendants. @root is 4413 * included in the iteration and the first node to be visited. 4414 * 4415 * While this function requires cgroup_mutex or RCU read locking, it 4416 * doesn't require the whole traversal to be contained in a single critical 4417 * section. This function will return the correct next descendant as long 4418 * as both @pos and @root are accessible and @pos is a descendant of @root. 4419 * 4420 * If a subsystem synchronizes ->css_online() and the start of iteration, a 4421 * css which finished ->css_online() is guaranteed to be visible in the 4422 * future iterations and will stay visible until the last reference is put. 4423 * A css which hasn't finished ->css_online() or already finished 4424 * ->css_offline() may show up during traversal. It's each subsystem's 4425 * responsibility to synchronize against on/offlining. 4426 */ 4427 struct cgroup_subsys_state * 4428 css_next_descendant_pre(struct cgroup_subsys_state *pos, 4429 struct cgroup_subsys_state *root) 4430 { 4431 struct cgroup_subsys_state *next; 4432 4433 cgroup_assert_mutex_or_rcu_locked(); 4434 4435 /* if first iteration, visit @root */ 4436 if (!pos) 4437 return root; 4438 4439 /* visit the first child if exists */ 4440 next = css_next_child(NULL, pos); 4441 if (next) 4442 return next; 4443 4444 /* no child, visit my or the closest ancestor's next sibling */ 4445 while (pos != root) { 4446 next = css_next_child(pos, pos->parent); 4447 if (next) 4448 return next; 4449 pos = pos->parent; 4450 } 4451 4452 return NULL; 4453 } 4454 EXPORT_SYMBOL_GPL(css_next_descendant_pre); 4455 4456 /** 4457 * css_rightmost_descendant - return the rightmost descendant of a css 4458 * @pos: css of interest 4459 * 4460 * Return the rightmost descendant of @pos. If there's no descendant, @pos 4461 * is returned. This can be used during pre-order traversal to skip 4462 * subtree of @pos. 4463 * 4464 * While this function requires cgroup_mutex or RCU read locking, it 4465 * doesn't require the whole traversal to be contained in a single critical 4466 * section. This function will return the correct rightmost descendant as 4467 * long as @pos is accessible. 4468 */ 4469 struct cgroup_subsys_state * 4470 css_rightmost_descendant(struct cgroup_subsys_state *pos) 4471 { 4472 struct cgroup_subsys_state *last, *tmp; 4473 4474 cgroup_assert_mutex_or_rcu_locked(); 4475 4476 do { 4477 last = pos; 4478 /* ->prev isn't RCU safe, walk ->next till the end */ 4479 pos = NULL; 4480 css_for_each_child(tmp, last) 4481 pos = tmp; 4482 } while (pos); 4483 4484 return last; 4485 } 4486 4487 static struct cgroup_subsys_state * 4488 css_leftmost_descendant(struct cgroup_subsys_state *pos) 4489 { 4490 struct cgroup_subsys_state *last; 4491 4492 do { 4493 last = pos; 4494 pos = css_next_child(NULL, pos); 4495 } while (pos); 4496 4497 return last; 4498 } 4499 4500 /** 4501 * css_next_descendant_post - find the next descendant for post-order walk 4502 * @pos: the current position (%NULL to initiate traversal) 4503 * @root: css whose descendants to walk 4504 * 4505 * To be used by css_for_each_descendant_post(). Find the next descendant 4506 * to visit for post-order traversal of @root's descendants. @root is 4507 * included in the iteration and the last node to be visited. 4508 * 4509 * While this function requires cgroup_mutex or RCU read locking, it 4510 * doesn't require the whole traversal to be contained in a single critical 4511 * section. This function will return the correct next descendant as long 4512 * as both @pos and @cgroup are accessible and @pos is a descendant of 4513 * @cgroup. 4514 * 4515 * If a subsystem synchronizes ->css_online() and the start of iteration, a 4516 * css which finished ->css_online() is guaranteed to be visible in the 4517 * future iterations and will stay visible until the last reference is put. 4518 * A css which hasn't finished ->css_online() or already finished 4519 * ->css_offline() may show up during traversal. It's each subsystem's 4520 * responsibility to synchronize against on/offlining. 4521 */ 4522 struct cgroup_subsys_state * 4523 css_next_descendant_post(struct cgroup_subsys_state *pos, 4524 struct cgroup_subsys_state *root) 4525 { 4526 struct cgroup_subsys_state *next; 4527 4528 cgroup_assert_mutex_or_rcu_locked(); 4529 4530 /* if first iteration, visit leftmost descendant which may be @root */ 4531 if (!pos) 4532 return css_leftmost_descendant(root); 4533 4534 /* if we visited @root, we're done */ 4535 if (pos == root) 4536 return NULL; 4537 4538 /* if there's an unvisited sibling, visit its leftmost descendant */ 4539 next = css_next_child(pos, pos->parent); 4540 if (next) 4541 return css_leftmost_descendant(next); 4542 4543 /* no sibling left, visit parent */ 4544 return pos->parent; 4545 } 4546 4547 /** 4548 * css_has_online_children - does a css have online children 4549 * @css: the target css 4550 * 4551 * Returns %true if @css has any online children; otherwise, %false. This 4552 * function can be called from any context but the caller is responsible 4553 * for synchronizing against on/offlining as necessary. 4554 */ 4555 bool css_has_online_children(struct cgroup_subsys_state *css) 4556 { 4557 struct cgroup_subsys_state *child; 4558 bool ret = false; 4559 4560 rcu_read_lock(); 4561 css_for_each_child(child, css) { 4562 if (child->flags & CSS_ONLINE) { 4563 ret = true; 4564 break; 4565 } 4566 } 4567 rcu_read_unlock(); 4568 return ret; 4569 } 4570 4571 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it) 4572 { 4573 struct list_head *l; 4574 struct cgrp_cset_link *link; 4575 struct css_set *cset; 4576 4577 lockdep_assert_held(&css_set_lock); 4578 4579 /* find the next threaded cset */ 4580 if (it->tcset_pos) { 4581 l = it->tcset_pos->next; 4582 4583 if (l != it->tcset_head) { 4584 it->tcset_pos = l; 4585 return container_of(l, struct css_set, 4586 threaded_csets_node); 4587 } 4588 4589 it->tcset_pos = NULL; 4590 } 4591 4592 /* find the next cset */ 4593 l = it->cset_pos; 4594 l = l->next; 4595 if (l == it->cset_head) { 4596 it->cset_pos = NULL; 4597 return NULL; 4598 } 4599 4600 if (it->ss) { 4601 cset = container_of(l, struct css_set, e_cset_node[it->ss->id]); 4602 } else { 4603 link = list_entry(l, struct cgrp_cset_link, cset_link); 4604 cset = link->cset; 4605 } 4606 4607 it->cset_pos = l; 4608 4609 /* initialize threaded css_set walking */ 4610 if (it->flags & CSS_TASK_ITER_THREADED) { 4611 if (it->cur_dcset) 4612 put_css_set_locked(it->cur_dcset); 4613 it->cur_dcset = cset; 4614 get_css_set(cset); 4615 4616 it->tcset_head = &cset->threaded_csets; 4617 it->tcset_pos = &cset->threaded_csets; 4618 } 4619 4620 return cset; 4621 } 4622 4623 /** 4624 * css_task_iter_advance_css_set - advance a task iterator to the next css_set 4625 * @it: the iterator to advance 4626 * 4627 * Advance @it to the next css_set to walk. 4628 */ 4629 static void css_task_iter_advance_css_set(struct css_task_iter *it) 4630 { 4631 struct css_set *cset; 4632 4633 lockdep_assert_held(&css_set_lock); 4634 4635 /* Advance to the next non-empty css_set and find first non-empty tasks list*/ 4636 while ((cset = css_task_iter_next_css_set(it))) { 4637 if (!list_empty(&cset->tasks)) { 4638 it->cur_tasks_head = &cset->tasks; 4639 break; 4640 } else if (!list_empty(&cset->mg_tasks)) { 4641 it->cur_tasks_head = &cset->mg_tasks; 4642 break; 4643 } else if (!list_empty(&cset->dying_tasks)) { 4644 it->cur_tasks_head = &cset->dying_tasks; 4645 break; 4646 } 4647 } 4648 if (!cset) { 4649 it->task_pos = NULL; 4650 return; 4651 } 4652 it->task_pos = it->cur_tasks_head->next; 4653 4654 /* 4655 * We don't keep css_sets locked across iteration steps and thus 4656 * need to take steps to ensure that iteration can be resumed after 4657 * the lock is re-acquired. Iteration is performed at two levels - 4658 * css_sets and tasks in them. 4659 * 4660 * Once created, a css_set never leaves its cgroup lists, so a 4661 * pinned css_set is guaranteed to stay put and we can resume 4662 * iteration afterwards. 4663 * 4664 * Tasks may leave @cset across iteration steps. This is resolved 4665 * by registering each iterator with the css_set currently being 4666 * walked and making css_set_move_task() advance iterators whose 4667 * next task is leaving. 4668 */ 4669 if (it->cur_cset) { 4670 list_del(&it->iters_node); 4671 put_css_set_locked(it->cur_cset); 4672 } 4673 get_css_set(cset); 4674 it->cur_cset = cset; 4675 list_add(&it->iters_node, &cset->task_iters); 4676 } 4677 4678 static void css_task_iter_skip(struct css_task_iter *it, 4679 struct task_struct *task) 4680 { 4681 lockdep_assert_held(&css_set_lock); 4682 4683 if (it->task_pos == &task->cg_list) { 4684 it->task_pos = it->task_pos->next; 4685 it->flags |= CSS_TASK_ITER_SKIPPED; 4686 } 4687 } 4688 4689 static void css_task_iter_advance(struct css_task_iter *it) 4690 { 4691 struct task_struct *task; 4692 4693 lockdep_assert_held(&css_set_lock); 4694 repeat: 4695 if (it->task_pos) { 4696 /* 4697 * Advance iterator to find next entry. We go through cset 4698 * tasks, mg_tasks and dying_tasks, when consumed we move onto 4699 * the next cset. 4700 */ 4701 if (it->flags & CSS_TASK_ITER_SKIPPED) 4702 it->flags &= ~CSS_TASK_ITER_SKIPPED; 4703 else 4704 it->task_pos = it->task_pos->next; 4705 4706 if (it->task_pos == &it->cur_cset->tasks) { 4707 it->cur_tasks_head = &it->cur_cset->mg_tasks; 4708 it->task_pos = it->cur_tasks_head->next; 4709 } 4710 if (it->task_pos == &it->cur_cset->mg_tasks) { 4711 it->cur_tasks_head = &it->cur_cset->dying_tasks; 4712 it->task_pos = it->cur_tasks_head->next; 4713 } 4714 if (it->task_pos == &it->cur_cset->dying_tasks) 4715 css_task_iter_advance_css_set(it); 4716 } else { 4717 /* called from start, proceed to the first cset */ 4718 css_task_iter_advance_css_set(it); 4719 } 4720 4721 if (!it->task_pos) 4722 return; 4723 4724 task = list_entry(it->task_pos, struct task_struct, cg_list); 4725 4726 if (it->flags & CSS_TASK_ITER_PROCS) { 4727 /* if PROCS, skip over tasks which aren't group leaders */ 4728 if (!thread_group_leader(task)) 4729 goto repeat; 4730 4731 /* and dying leaders w/o live member threads */ 4732 if (it->cur_tasks_head == &it->cur_cset->dying_tasks && 4733 !atomic_read(&task->signal->live)) 4734 goto repeat; 4735 } else { 4736 /* skip all dying ones */ 4737 if (it->cur_tasks_head == &it->cur_cset->dying_tasks) 4738 goto repeat; 4739 } 4740 } 4741 4742 /** 4743 * css_task_iter_start - initiate task iteration 4744 * @css: the css to walk tasks of 4745 * @flags: CSS_TASK_ITER_* flags 4746 * @it: the task iterator to use 4747 * 4748 * Initiate iteration through the tasks of @css. The caller can call 4749 * css_task_iter_next() to walk through the tasks until the function 4750 * returns NULL. On completion of iteration, css_task_iter_end() must be 4751 * called. 4752 */ 4753 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags, 4754 struct css_task_iter *it) 4755 { 4756 memset(it, 0, sizeof(*it)); 4757 4758 spin_lock_irq(&css_set_lock); 4759 4760 it->ss = css->ss; 4761 it->flags = flags; 4762 4763 if (CGROUP_HAS_SUBSYS_CONFIG && it->ss) 4764 it->cset_pos = &css->cgroup->e_csets[css->ss->id]; 4765 else 4766 it->cset_pos = &css->cgroup->cset_links; 4767 4768 it->cset_head = it->cset_pos; 4769 4770 css_task_iter_advance(it); 4771 4772 spin_unlock_irq(&css_set_lock); 4773 } 4774 4775 /** 4776 * css_task_iter_next - return the next task for the iterator 4777 * @it: the task iterator being iterated 4778 * 4779 * The "next" function for task iteration. @it should have been 4780 * initialized via css_task_iter_start(). Returns NULL when the iteration 4781 * reaches the end. 4782 */ 4783 struct task_struct *css_task_iter_next(struct css_task_iter *it) 4784 { 4785 if (it->cur_task) { 4786 put_task_struct(it->cur_task); 4787 it->cur_task = NULL; 4788 } 4789 4790 spin_lock_irq(&css_set_lock); 4791 4792 /* @it may be half-advanced by skips, finish advancing */ 4793 if (it->flags & CSS_TASK_ITER_SKIPPED) 4794 css_task_iter_advance(it); 4795 4796 if (it->task_pos) { 4797 it->cur_task = list_entry(it->task_pos, struct task_struct, 4798 cg_list); 4799 get_task_struct(it->cur_task); 4800 css_task_iter_advance(it); 4801 } 4802 4803 spin_unlock_irq(&css_set_lock); 4804 4805 return it->cur_task; 4806 } 4807 4808 /** 4809 * css_task_iter_end - finish task iteration 4810 * @it: the task iterator to finish 4811 * 4812 * Finish task iteration started by css_task_iter_start(). 4813 */ 4814 void css_task_iter_end(struct css_task_iter *it) 4815 { 4816 if (it->cur_cset) { 4817 spin_lock_irq(&css_set_lock); 4818 list_del(&it->iters_node); 4819 put_css_set_locked(it->cur_cset); 4820 spin_unlock_irq(&css_set_lock); 4821 } 4822 4823 if (it->cur_dcset) 4824 put_css_set(it->cur_dcset); 4825 4826 if (it->cur_task) 4827 put_task_struct(it->cur_task); 4828 } 4829 4830 static void cgroup_procs_release(struct kernfs_open_file *of) 4831 { 4832 struct cgroup_file_ctx *ctx = of->priv; 4833 4834 if (ctx->procs.started) 4835 css_task_iter_end(&ctx->procs.iter); 4836 } 4837 4838 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos) 4839 { 4840 struct kernfs_open_file *of = s->private; 4841 struct cgroup_file_ctx *ctx = of->priv; 4842 4843 if (pos) 4844 (*pos)++; 4845 4846 return css_task_iter_next(&ctx->procs.iter); 4847 } 4848 4849 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos, 4850 unsigned int iter_flags) 4851 { 4852 struct kernfs_open_file *of = s->private; 4853 struct cgroup *cgrp = seq_css(s)->cgroup; 4854 struct cgroup_file_ctx *ctx = of->priv; 4855 struct css_task_iter *it = &ctx->procs.iter; 4856 4857 /* 4858 * When a seq_file is seeked, it's always traversed sequentially 4859 * from position 0, so we can simply keep iterating on !0 *pos. 4860 */ 4861 if (!ctx->procs.started) { 4862 if (WARN_ON_ONCE((*pos))) 4863 return ERR_PTR(-EINVAL); 4864 css_task_iter_start(&cgrp->self, iter_flags, it); 4865 ctx->procs.started = true; 4866 } else if (!(*pos)) { 4867 css_task_iter_end(it); 4868 css_task_iter_start(&cgrp->self, iter_flags, it); 4869 } else 4870 return it->cur_task; 4871 4872 return cgroup_procs_next(s, NULL, NULL); 4873 } 4874 4875 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos) 4876 { 4877 struct cgroup *cgrp = seq_css(s)->cgroup; 4878 4879 /* 4880 * All processes of a threaded subtree belong to the domain cgroup 4881 * of the subtree. Only threads can be distributed across the 4882 * subtree. Reject reads on cgroup.procs in the subtree proper. 4883 * They're always empty anyway. 4884 */ 4885 if (cgroup_is_threaded(cgrp)) 4886 return ERR_PTR(-EOPNOTSUPP); 4887 4888 return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS | 4889 CSS_TASK_ITER_THREADED); 4890 } 4891 4892 static int cgroup_procs_show(struct seq_file *s, void *v) 4893 { 4894 seq_printf(s, "%d\n", task_pid_vnr(v)); 4895 return 0; 4896 } 4897 4898 static int cgroup_may_write(const struct cgroup *cgrp, struct super_block *sb) 4899 { 4900 int ret; 4901 struct inode *inode; 4902 4903 lockdep_assert_held(&cgroup_mutex); 4904 4905 inode = kernfs_get_inode(sb, cgrp->procs_file.kn); 4906 if (!inode) 4907 return -ENOMEM; 4908 4909 ret = inode_permission(&init_user_ns, inode, MAY_WRITE); 4910 iput(inode); 4911 return ret; 4912 } 4913 4914 static int cgroup_procs_write_permission(struct cgroup *src_cgrp, 4915 struct cgroup *dst_cgrp, 4916 struct super_block *sb, 4917 struct cgroup_namespace *ns) 4918 { 4919 struct cgroup *com_cgrp = src_cgrp; 4920 int ret; 4921 4922 lockdep_assert_held(&cgroup_mutex); 4923 4924 /* find the common ancestor */ 4925 while (!cgroup_is_descendant(dst_cgrp, com_cgrp)) 4926 com_cgrp = cgroup_parent(com_cgrp); 4927 4928 /* %current should be authorized to migrate to the common ancestor */ 4929 ret = cgroup_may_write(com_cgrp, sb); 4930 if (ret) 4931 return ret; 4932 4933 /* 4934 * If namespaces are delegation boundaries, %current must be able 4935 * to see both source and destination cgroups from its namespace. 4936 */ 4937 if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) && 4938 (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) || 4939 !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp))) 4940 return -ENOENT; 4941 4942 return 0; 4943 } 4944 4945 static int cgroup_attach_permissions(struct cgroup *src_cgrp, 4946 struct cgroup *dst_cgrp, 4947 struct super_block *sb, bool threadgroup, 4948 struct cgroup_namespace *ns) 4949 { 4950 int ret = 0; 4951 4952 ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, sb, ns); 4953 if (ret) 4954 return ret; 4955 4956 ret = cgroup_migrate_vet_dst(dst_cgrp); 4957 if (ret) 4958 return ret; 4959 4960 if (!threadgroup && (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp)) 4961 ret = -EOPNOTSUPP; 4962 4963 return ret; 4964 } 4965 4966 static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf, 4967 bool threadgroup) 4968 { 4969 struct cgroup_file_ctx *ctx = of->priv; 4970 struct cgroup *src_cgrp, *dst_cgrp; 4971 struct task_struct *task; 4972 const struct cred *saved_cred; 4973 ssize_t ret; 4974 bool locked; 4975 4976 dst_cgrp = cgroup_kn_lock_live(of->kn, false); 4977 if (!dst_cgrp) 4978 return -ENODEV; 4979 4980 task = cgroup_procs_write_start(buf, threadgroup, &locked); 4981 ret = PTR_ERR_OR_ZERO(task); 4982 if (ret) 4983 goto out_unlock; 4984 4985 /* find the source cgroup */ 4986 spin_lock_irq(&css_set_lock); 4987 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root); 4988 spin_unlock_irq(&css_set_lock); 4989 4990 /* 4991 * Process and thread migrations follow same delegation rule. Check 4992 * permissions using the credentials from file open to protect against 4993 * inherited fd attacks. 4994 */ 4995 saved_cred = override_creds(of->file->f_cred); 4996 ret = cgroup_attach_permissions(src_cgrp, dst_cgrp, 4997 of->file->f_path.dentry->d_sb, 4998 threadgroup, ctx->ns); 4999 revert_creds(saved_cred); 5000 if (ret) 5001 goto out_finish; 5002 5003 ret = cgroup_attach_task(dst_cgrp, task, threadgroup); 5004 5005 out_finish: 5006 cgroup_procs_write_finish(task, locked); 5007 out_unlock: 5008 cgroup_kn_unlock(of->kn); 5009 5010 return ret; 5011 } 5012 5013 static ssize_t cgroup_procs_write(struct kernfs_open_file *of, 5014 char *buf, size_t nbytes, loff_t off) 5015 { 5016 return __cgroup_procs_write(of, buf, true) ?: nbytes; 5017 } 5018 5019 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos) 5020 { 5021 return __cgroup_procs_start(s, pos, 0); 5022 } 5023 5024 static ssize_t cgroup_threads_write(struct kernfs_open_file *of, 5025 char *buf, size_t nbytes, loff_t off) 5026 { 5027 return __cgroup_procs_write(of, buf, false) ?: nbytes; 5028 } 5029 5030 /* cgroup core interface files for the default hierarchy */ 5031 static struct cftype cgroup_base_files[] = { 5032 { 5033 .name = "cgroup.type", 5034 .flags = CFTYPE_NOT_ON_ROOT, 5035 .seq_show = cgroup_type_show, 5036 .write = cgroup_type_write, 5037 }, 5038 { 5039 .name = "cgroup.procs", 5040 .flags = CFTYPE_NS_DELEGATABLE, 5041 .file_offset = offsetof(struct cgroup, procs_file), 5042 .release = cgroup_procs_release, 5043 .seq_start = cgroup_procs_start, 5044 .seq_next = cgroup_procs_next, 5045 .seq_show = cgroup_procs_show, 5046 .write = cgroup_procs_write, 5047 }, 5048 { 5049 .name = "cgroup.threads", 5050 .flags = CFTYPE_NS_DELEGATABLE, 5051 .release = cgroup_procs_release, 5052 .seq_start = cgroup_threads_start, 5053 .seq_next = cgroup_procs_next, 5054 .seq_show = cgroup_procs_show, 5055 .write = cgroup_threads_write, 5056 }, 5057 { 5058 .name = "cgroup.controllers", 5059 .seq_show = cgroup_controllers_show, 5060 }, 5061 { 5062 .name = "cgroup.subtree_control", 5063 .flags = CFTYPE_NS_DELEGATABLE, 5064 .seq_show = cgroup_subtree_control_show, 5065 .write = cgroup_subtree_control_write, 5066 }, 5067 { 5068 .name = "cgroup.events", 5069 .flags = CFTYPE_NOT_ON_ROOT, 5070 .file_offset = offsetof(struct cgroup, events_file), 5071 .seq_show = cgroup_events_show, 5072 }, 5073 { 5074 .name = "cgroup.max.descendants", 5075 .seq_show = cgroup_max_descendants_show, 5076 .write = cgroup_max_descendants_write, 5077 }, 5078 { 5079 .name = "cgroup.max.depth", 5080 .seq_show = cgroup_max_depth_show, 5081 .write = cgroup_max_depth_write, 5082 }, 5083 { 5084 .name = "cgroup.stat", 5085 .seq_show = cgroup_stat_show, 5086 }, 5087 { 5088 .name = "cgroup.freeze", 5089 .flags = CFTYPE_NOT_ON_ROOT, 5090 .seq_show = cgroup_freeze_show, 5091 .write = cgroup_freeze_write, 5092 }, 5093 { 5094 .name = "cgroup.kill", 5095 .flags = CFTYPE_NOT_ON_ROOT, 5096 .write = cgroup_kill_write, 5097 }, 5098 { 5099 .name = "cpu.stat", 5100 .seq_show = cpu_stat_show, 5101 }, 5102 #ifdef CONFIG_PSI 5103 { 5104 .name = "io.pressure", 5105 .flags = CFTYPE_PRESSURE, 5106 .seq_show = cgroup_io_pressure_show, 5107 .write = cgroup_io_pressure_write, 5108 .poll = cgroup_pressure_poll, 5109 .release = cgroup_pressure_release, 5110 }, 5111 { 5112 .name = "memory.pressure", 5113 .flags = CFTYPE_PRESSURE, 5114 .seq_show = cgroup_memory_pressure_show, 5115 .write = cgroup_memory_pressure_write, 5116 .poll = cgroup_pressure_poll, 5117 .release = cgroup_pressure_release, 5118 }, 5119 { 5120 .name = "cpu.pressure", 5121 .flags = CFTYPE_PRESSURE, 5122 .seq_show = cgroup_cpu_pressure_show, 5123 .write = cgroup_cpu_pressure_write, 5124 .poll = cgroup_pressure_poll, 5125 .release = cgroup_pressure_release, 5126 }, 5127 #endif /* CONFIG_PSI */ 5128 { } /* terminate */ 5129 }; 5130 5131 /* 5132 * css destruction is four-stage process. 5133 * 5134 * 1. Destruction starts. Killing of the percpu_ref is initiated. 5135 * Implemented in kill_css(). 5136 * 5137 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs 5138 * and thus css_tryget_online() is guaranteed to fail, the css can be 5139 * offlined by invoking offline_css(). After offlining, the base ref is 5140 * put. Implemented in css_killed_work_fn(). 5141 * 5142 * 3. When the percpu_ref reaches zero, the only possible remaining 5143 * accessors are inside RCU read sections. css_release() schedules the 5144 * RCU callback. 5145 * 5146 * 4. After the grace period, the css can be freed. Implemented in 5147 * css_free_work_fn(). 5148 * 5149 * It is actually hairier because both step 2 and 4 require process context 5150 * and thus involve punting to css->destroy_work adding two additional 5151 * steps to the already complex sequence. 5152 */ 5153 static void css_free_rwork_fn(struct work_struct *work) 5154 { 5155 struct cgroup_subsys_state *css = container_of(to_rcu_work(work), 5156 struct cgroup_subsys_state, destroy_rwork); 5157 struct cgroup_subsys *ss = css->ss; 5158 struct cgroup *cgrp = css->cgroup; 5159 5160 percpu_ref_exit(&css->refcnt); 5161 5162 if (ss) { 5163 /* css free path */ 5164 struct cgroup_subsys_state *parent = css->parent; 5165 int id = css->id; 5166 5167 ss->css_free(css); 5168 cgroup_idr_remove(&ss->css_idr, id); 5169 cgroup_put(cgrp); 5170 5171 if (parent) 5172 css_put(parent); 5173 } else { 5174 /* cgroup free path */ 5175 atomic_dec(&cgrp->root->nr_cgrps); 5176 cgroup1_pidlist_destroy_all(cgrp); 5177 cancel_work_sync(&cgrp->release_agent_work); 5178 5179 if (cgroup_parent(cgrp)) { 5180 /* 5181 * We get a ref to the parent, and put the ref when 5182 * this cgroup is being freed, so it's guaranteed 5183 * that the parent won't be destroyed before its 5184 * children. 5185 */ 5186 cgroup_put(cgroup_parent(cgrp)); 5187 kernfs_put(cgrp->kn); 5188 psi_cgroup_free(cgrp); 5189 cgroup_rstat_exit(cgrp); 5190 kfree(cgrp); 5191 } else { 5192 /* 5193 * This is root cgroup's refcnt reaching zero, 5194 * which indicates that the root should be 5195 * released. 5196 */ 5197 cgroup_destroy_root(cgrp->root); 5198 } 5199 } 5200 } 5201 5202 static void css_release_work_fn(struct work_struct *work) 5203 { 5204 struct cgroup_subsys_state *css = 5205 container_of(work, struct cgroup_subsys_state, destroy_work); 5206 struct cgroup_subsys *ss = css->ss; 5207 struct cgroup *cgrp = css->cgroup; 5208 5209 mutex_lock(&cgroup_mutex); 5210 5211 css->flags |= CSS_RELEASED; 5212 list_del_rcu(&css->sibling); 5213 5214 if (ss) { 5215 /* css release path */ 5216 if (!list_empty(&css->rstat_css_node)) { 5217 cgroup_rstat_flush(cgrp); 5218 list_del_rcu(&css->rstat_css_node); 5219 } 5220 5221 cgroup_idr_replace(&ss->css_idr, NULL, css->id); 5222 if (ss->css_released) 5223 ss->css_released(css); 5224 } else { 5225 struct cgroup *tcgrp; 5226 5227 /* cgroup release path */ 5228 TRACE_CGROUP_PATH(release, cgrp); 5229 5230 cgroup_rstat_flush(cgrp); 5231 5232 spin_lock_irq(&css_set_lock); 5233 for (tcgrp = cgroup_parent(cgrp); tcgrp; 5234 tcgrp = cgroup_parent(tcgrp)) 5235 tcgrp->nr_dying_descendants--; 5236 spin_unlock_irq(&css_set_lock); 5237 5238 /* 5239 * There are two control paths which try to determine 5240 * cgroup from dentry without going through kernfs - 5241 * cgroupstats_build() and css_tryget_online_from_dir(). 5242 * Those are supported by RCU protecting clearing of 5243 * cgrp->kn->priv backpointer. 5244 */ 5245 if (cgrp->kn) 5246 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, 5247 NULL); 5248 } 5249 5250 mutex_unlock(&cgroup_mutex); 5251 5252 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn); 5253 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork); 5254 } 5255 5256 static void css_release(struct percpu_ref *ref) 5257 { 5258 struct cgroup_subsys_state *css = 5259 container_of(ref, struct cgroup_subsys_state, refcnt); 5260 5261 INIT_WORK(&css->destroy_work, css_release_work_fn); 5262 queue_work(cgroup_destroy_wq, &css->destroy_work); 5263 } 5264 5265 static void init_and_link_css(struct cgroup_subsys_state *css, 5266 struct cgroup_subsys *ss, struct cgroup *cgrp) 5267 { 5268 lockdep_assert_held(&cgroup_mutex); 5269 5270 cgroup_get_live(cgrp); 5271 5272 memset(css, 0, sizeof(*css)); 5273 css->cgroup = cgrp; 5274 css->ss = ss; 5275 css->id = -1; 5276 INIT_LIST_HEAD(&css->sibling); 5277 INIT_LIST_HEAD(&css->children); 5278 INIT_LIST_HEAD(&css->rstat_css_node); 5279 css->serial_nr = css_serial_nr_next++; 5280 atomic_set(&css->online_cnt, 0); 5281 5282 if (cgroup_parent(cgrp)) { 5283 css->parent = cgroup_css(cgroup_parent(cgrp), ss); 5284 css_get(css->parent); 5285 } 5286 5287 if (ss->css_rstat_flush) 5288 list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list); 5289 5290 BUG_ON(cgroup_css(cgrp, ss)); 5291 } 5292 5293 /* invoke ->css_online() on a new CSS and mark it online if successful */ 5294 static int online_css(struct cgroup_subsys_state *css) 5295 { 5296 struct cgroup_subsys *ss = css->ss; 5297 int ret = 0; 5298 5299 lockdep_assert_held(&cgroup_mutex); 5300 5301 if (ss->css_online) 5302 ret = ss->css_online(css); 5303 if (!ret) { 5304 css->flags |= CSS_ONLINE; 5305 rcu_assign_pointer(css->cgroup->subsys[ss->id], css); 5306 5307 atomic_inc(&css->online_cnt); 5308 if (css->parent) 5309 atomic_inc(&css->parent->online_cnt); 5310 } 5311 return ret; 5312 } 5313 5314 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */ 5315 static void offline_css(struct cgroup_subsys_state *css) 5316 { 5317 struct cgroup_subsys *ss = css->ss; 5318 5319 lockdep_assert_held(&cgroup_mutex); 5320 5321 if (!(css->flags & CSS_ONLINE)) 5322 return; 5323 5324 if (ss->css_offline) 5325 ss->css_offline(css); 5326 5327 css->flags &= ~CSS_ONLINE; 5328 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL); 5329 5330 wake_up_all(&css->cgroup->offline_waitq); 5331 } 5332 5333 /** 5334 * css_create - create a cgroup_subsys_state 5335 * @cgrp: the cgroup new css will be associated with 5336 * @ss: the subsys of new css 5337 * 5338 * Create a new css associated with @cgrp - @ss pair. On success, the new 5339 * css is online and installed in @cgrp. This function doesn't create the 5340 * interface files. Returns 0 on success, -errno on failure. 5341 */ 5342 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp, 5343 struct cgroup_subsys *ss) 5344 { 5345 struct cgroup *parent = cgroup_parent(cgrp); 5346 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss); 5347 struct cgroup_subsys_state *css; 5348 int err; 5349 5350 lockdep_assert_held(&cgroup_mutex); 5351 5352 css = ss->css_alloc(parent_css); 5353 if (!css) 5354 css = ERR_PTR(-ENOMEM); 5355 if (IS_ERR(css)) 5356 return css; 5357 5358 init_and_link_css(css, ss, cgrp); 5359 5360 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL); 5361 if (err) 5362 goto err_free_css; 5363 5364 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL); 5365 if (err < 0) 5366 goto err_free_css; 5367 css->id = err; 5368 5369 /* @css is ready to be brought online now, make it visible */ 5370 list_add_tail_rcu(&css->sibling, &parent_css->children); 5371 cgroup_idr_replace(&ss->css_idr, css, css->id); 5372 5373 err = online_css(css); 5374 if (err) 5375 goto err_list_del; 5376 5377 return css; 5378 5379 err_list_del: 5380 list_del_rcu(&css->sibling); 5381 err_free_css: 5382 list_del_rcu(&css->rstat_css_node); 5383 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn); 5384 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork); 5385 return ERR_PTR(err); 5386 } 5387 5388 /* 5389 * The returned cgroup is fully initialized including its control mask, but 5390 * it isn't associated with its kernfs_node and doesn't have the control 5391 * mask applied. 5392 */ 5393 static struct cgroup *cgroup_create(struct cgroup *parent, const char *name, 5394 umode_t mode) 5395 { 5396 struct cgroup_root *root = parent->root; 5397 struct cgroup *cgrp, *tcgrp; 5398 struct kernfs_node *kn; 5399 int level = parent->level + 1; 5400 int ret; 5401 5402 /* allocate the cgroup and its ID, 0 is reserved for the root */ 5403 cgrp = kzalloc(struct_size(cgrp, ancestor_ids, (level + 1)), 5404 GFP_KERNEL); 5405 if (!cgrp) 5406 return ERR_PTR(-ENOMEM); 5407 5408 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL); 5409 if (ret) 5410 goto out_free_cgrp; 5411 5412 ret = cgroup_rstat_init(cgrp); 5413 if (ret) 5414 goto out_cancel_ref; 5415 5416 /* create the directory */ 5417 kn = kernfs_create_dir(parent->kn, name, mode, cgrp); 5418 if (IS_ERR(kn)) { 5419 ret = PTR_ERR(kn); 5420 goto out_stat_exit; 5421 } 5422 cgrp->kn = kn; 5423 5424 init_cgroup_housekeeping(cgrp); 5425 5426 cgrp->self.parent = &parent->self; 5427 cgrp->root = root; 5428 cgrp->level = level; 5429 5430 ret = psi_cgroup_alloc(cgrp); 5431 if (ret) 5432 goto out_kernfs_remove; 5433 5434 ret = cgroup_bpf_inherit(cgrp); 5435 if (ret) 5436 goto out_psi_free; 5437 5438 /* 5439 * New cgroup inherits effective freeze counter, and 5440 * if the parent has to be frozen, the child has too. 5441 */ 5442 cgrp->freezer.e_freeze = parent->freezer.e_freeze; 5443 if (cgrp->freezer.e_freeze) { 5444 /* 5445 * Set the CGRP_FREEZE flag, so when a process will be 5446 * attached to the child cgroup, it will become frozen. 5447 * At this point the new cgroup is unpopulated, so we can 5448 * consider it frozen immediately. 5449 */ 5450 set_bit(CGRP_FREEZE, &cgrp->flags); 5451 set_bit(CGRP_FROZEN, &cgrp->flags); 5452 } 5453 5454 spin_lock_irq(&css_set_lock); 5455 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) { 5456 cgrp->ancestor_ids[tcgrp->level] = cgroup_id(tcgrp); 5457 5458 if (tcgrp != cgrp) { 5459 tcgrp->nr_descendants++; 5460 5461 /* 5462 * If the new cgroup is frozen, all ancestor cgroups 5463 * get a new frozen descendant, but their state can't 5464 * change because of this. 5465 */ 5466 if (cgrp->freezer.e_freeze) 5467 tcgrp->freezer.nr_frozen_descendants++; 5468 } 5469 } 5470 spin_unlock_irq(&css_set_lock); 5471 5472 if (notify_on_release(parent)) 5473 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags); 5474 5475 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags)) 5476 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags); 5477 5478 cgrp->self.serial_nr = css_serial_nr_next++; 5479 5480 /* allocation complete, commit to creation */ 5481 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children); 5482 atomic_inc(&root->nr_cgrps); 5483 cgroup_get_live(parent); 5484 5485 /* 5486 * On the default hierarchy, a child doesn't automatically inherit 5487 * subtree_control from the parent. Each is configured manually. 5488 */ 5489 if (!cgroup_on_dfl(cgrp)) 5490 cgrp->subtree_control = cgroup_control(cgrp); 5491 5492 cgroup_propagate_control(cgrp); 5493 5494 return cgrp; 5495 5496 out_psi_free: 5497 psi_cgroup_free(cgrp); 5498 out_kernfs_remove: 5499 kernfs_remove(cgrp->kn); 5500 out_stat_exit: 5501 cgroup_rstat_exit(cgrp); 5502 out_cancel_ref: 5503 percpu_ref_exit(&cgrp->self.refcnt); 5504 out_free_cgrp: 5505 kfree(cgrp); 5506 return ERR_PTR(ret); 5507 } 5508 5509 static bool cgroup_check_hierarchy_limits(struct cgroup *parent) 5510 { 5511 struct cgroup *cgroup; 5512 int ret = false; 5513 int level = 1; 5514 5515 lockdep_assert_held(&cgroup_mutex); 5516 5517 for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) { 5518 if (cgroup->nr_descendants >= cgroup->max_descendants) 5519 goto fail; 5520 5521 if (level > cgroup->max_depth) 5522 goto fail; 5523 5524 level++; 5525 } 5526 5527 ret = true; 5528 fail: 5529 return ret; 5530 } 5531 5532 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode) 5533 { 5534 struct cgroup *parent, *cgrp; 5535 int ret; 5536 5537 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */ 5538 if (strchr(name, '\n')) 5539 return -EINVAL; 5540 5541 parent = cgroup_kn_lock_live(parent_kn, false); 5542 if (!parent) 5543 return -ENODEV; 5544 5545 if (!cgroup_check_hierarchy_limits(parent)) { 5546 ret = -EAGAIN; 5547 goto out_unlock; 5548 } 5549 5550 cgrp = cgroup_create(parent, name, mode); 5551 if (IS_ERR(cgrp)) { 5552 ret = PTR_ERR(cgrp); 5553 goto out_unlock; 5554 } 5555 5556 /* 5557 * This extra ref will be put in cgroup_free_fn() and guarantees 5558 * that @cgrp->kn is always accessible. 5559 */ 5560 kernfs_get(cgrp->kn); 5561 5562 ret = cgroup_kn_set_ugid(cgrp->kn); 5563 if (ret) 5564 goto out_destroy; 5565 5566 ret = css_populate_dir(&cgrp->self); 5567 if (ret) 5568 goto out_destroy; 5569 5570 ret = cgroup_apply_control_enable(cgrp); 5571 if (ret) 5572 goto out_destroy; 5573 5574 TRACE_CGROUP_PATH(mkdir, cgrp); 5575 5576 /* let's create and online css's */ 5577 kernfs_activate(cgrp->kn); 5578 5579 ret = 0; 5580 goto out_unlock; 5581 5582 out_destroy: 5583 cgroup_destroy_locked(cgrp); 5584 out_unlock: 5585 cgroup_kn_unlock(parent_kn); 5586 return ret; 5587 } 5588 5589 /* 5590 * This is called when the refcnt of a css is confirmed to be killed. 5591 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to 5592 * initiate destruction and put the css ref from kill_css(). 5593 */ 5594 static void css_killed_work_fn(struct work_struct *work) 5595 { 5596 struct cgroup_subsys_state *css = 5597 container_of(work, struct cgroup_subsys_state, destroy_work); 5598 5599 mutex_lock(&cgroup_mutex); 5600 5601 do { 5602 offline_css(css); 5603 css_put(css); 5604 /* @css can't go away while we're holding cgroup_mutex */ 5605 css = css->parent; 5606 } while (css && atomic_dec_and_test(&css->online_cnt)); 5607 5608 mutex_unlock(&cgroup_mutex); 5609 } 5610 5611 /* css kill confirmation processing requires process context, bounce */ 5612 static void css_killed_ref_fn(struct percpu_ref *ref) 5613 { 5614 struct cgroup_subsys_state *css = 5615 container_of(ref, struct cgroup_subsys_state, refcnt); 5616 5617 if (atomic_dec_and_test(&css->online_cnt)) { 5618 INIT_WORK(&css->destroy_work, css_killed_work_fn); 5619 queue_work(cgroup_destroy_wq, &css->destroy_work); 5620 } 5621 } 5622 5623 /** 5624 * kill_css - destroy a css 5625 * @css: css to destroy 5626 * 5627 * This function initiates destruction of @css by removing cgroup interface 5628 * files and putting its base reference. ->css_offline() will be invoked 5629 * asynchronously once css_tryget_online() is guaranteed to fail and when 5630 * the reference count reaches zero, @css will be released. 5631 */ 5632 static void kill_css(struct cgroup_subsys_state *css) 5633 { 5634 lockdep_assert_held(&cgroup_mutex); 5635 5636 if (css->flags & CSS_DYING) 5637 return; 5638 5639 css->flags |= CSS_DYING; 5640 5641 /* 5642 * This must happen before css is disassociated with its cgroup. 5643 * See seq_css() for details. 5644 */ 5645 css_clear_dir(css); 5646 5647 /* 5648 * Killing would put the base ref, but we need to keep it alive 5649 * until after ->css_offline(). 5650 */ 5651 css_get(css); 5652 5653 /* 5654 * cgroup core guarantees that, by the time ->css_offline() is 5655 * invoked, no new css reference will be given out via 5656 * css_tryget_online(). We can't simply call percpu_ref_kill() and 5657 * proceed to offlining css's because percpu_ref_kill() doesn't 5658 * guarantee that the ref is seen as killed on all CPUs on return. 5659 * 5660 * Use percpu_ref_kill_and_confirm() to get notifications as each 5661 * css is confirmed to be seen as killed on all CPUs. 5662 */ 5663 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn); 5664 } 5665 5666 /** 5667 * cgroup_destroy_locked - the first stage of cgroup destruction 5668 * @cgrp: cgroup to be destroyed 5669 * 5670 * css's make use of percpu refcnts whose killing latency shouldn't be 5671 * exposed to userland and are RCU protected. Also, cgroup core needs to 5672 * guarantee that css_tryget_online() won't succeed by the time 5673 * ->css_offline() is invoked. To satisfy all the requirements, 5674 * destruction is implemented in the following two steps. 5675 * 5676 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all 5677 * userland visible parts and start killing the percpu refcnts of 5678 * css's. Set up so that the next stage will be kicked off once all 5679 * the percpu refcnts are confirmed to be killed. 5680 * 5681 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the 5682 * rest of destruction. Once all cgroup references are gone, the 5683 * cgroup is RCU-freed. 5684 * 5685 * This function implements s1. After this step, @cgrp is gone as far as 5686 * the userland is concerned and a new cgroup with the same name may be 5687 * created. As cgroup doesn't care about the names internally, this 5688 * doesn't cause any problem. 5689 */ 5690 static int cgroup_destroy_locked(struct cgroup *cgrp) 5691 __releases(&cgroup_mutex) __acquires(&cgroup_mutex) 5692 { 5693 struct cgroup *tcgrp, *parent = cgroup_parent(cgrp); 5694 struct cgroup_subsys_state *css; 5695 struct cgrp_cset_link *link; 5696 int ssid; 5697 5698 lockdep_assert_held(&cgroup_mutex); 5699 5700 /* 5701 * Only migration can raise populated from zero and we're already 5702 * holding cgroup_mutex. 5703 */ 5704 if (cgroup_is_populated(cgrp)) 5705 return -EBUSY; 5706 5707 /* 5708 * Make sure there's no live children. We can't test emptiness of 5709 * ->self.children as dead children linger on it while being 5710 * drained; otherwise, "rmdir parent/child parent" may fail. 5711 */ 5712 if (css_has_online_children(&cgrp->self)) 5713 return -EBUSY; 5714 5715 /* 5716 * Mark @cgrp and the associated csets dead. The former prevents 5717 * further task migration and child creation by disabling 5718 * cgroup_lock_live_group(). The latter makes the csets ignored by 5719 * the migration path. 5720 */ 5721 cgrp->self.flags &= ~CSS_ONLINE; 5722 5723 spin_lock_irq(&css_set_lock); 5724 list_for_each_entry(link, &cgrp->cset_links, cset_link) 5725 link->cset->dead = true; 5726 spin_unlock_irq(&css_set_lock); 5727 5728 /* initiate massacre of all css's */ 5729 for_each_css(css, ssid, cgrp) 5730 kill_css(css); 5731 5732 /* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */ 5733 css_clear_dir(&cgrp->self); 5734 kernfs_remove(cgrp->kn); 5735 5736 if (cgroup_is_threaded(cgrp)) 5737 parent->nr_threaded_children--; 5738 5739 spin_lock_irq(&css_set_lock); 5740 for (tcgrp = cgroup_parent(cgrp); tcgrp; tcgrp = cgroup_parent(tcgrp)) { 5741 tcgrp->nr_descendants--; 5742 tcgrp->nr_dying_descendants++; 5743 /* 5744 * If the dying cgroup is frozen, decrease frozen descendants 5745 * counters of ancestor cgroups. 5746 */ 5747 if (test_bit(CGRP_FROZEN, &cgrp->flags)) 5748 tcgrp->freezer.nr_frozen_descendants--; 5749 } 5750 spin_unlock_irq(&css_set_lock); 5751 5752 cgroup1_check_for_release(parent); 5753 5754 cgroup_bpf_offline(cgrp); 5755 5756 /* put the base reference */ 5757 percpu_ref_kill(&cgrp->self.refcnt); 5758 5759 return 0; 5760 }; 5761 5762 int cgroup_rmdir(struct kernfs_node *kn) 5763 { 5764 struct cgroup *cgrp; 5765 int ret = 0; 5766 5767 cgrp = cgroup_kn_lock_live(kn, false); 5768 if (!cgrp) 5769 return 0; 5770 5771 ret = cgroup_destroy_locked(cgrp); 5772 if (!ret) 5773 TRACE_CGROUP_PATH(rmdir, cgrp); 5774 5775 cgroup_kn_unlock(kn); 5776 return ret; 5777 } 5778 5779 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = { 5780 .show_options = cgroup_show_options, 5781 .mkdir = cgroup_mkdir, 5782 .rmdir = cgroup_rmdir, 5783 .show_path = cgroup_show_path, 5784 }; 5785 5786 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early) 5787 { 5788 struct cgroup_subsys_state *css; 5789 5790 pr_debug("Initializing cgroup subsys %s\n", ss->name); 5791 5792 mutex_lock(&cgroup_mutex); 5793 5794 idr_init(&ss->css_idr); 5795 INIT_LIST_HEAD(&ss->cfts); 5796 5797 /* Create the root cgroup state for this subsystem */ 5798 ss->root = &cgrp_dfl_root; 5799 css = ss->css_alloc(NULL); 5800 /* We don't handle early failures gracefully */ 5801 BUG_ON(IS_ERR(css)); 5802 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp); 5803 5804 /* 5805 * Root csses are never destroyed and we can't initialize 5806 * percpu_ref during early init. Disable refcnting. 5807 */ 5808 css->flags |= CSS_NO_REF; 5809 5810 if (early) { 5811 /* allocation can't be done safely during early init */ 5812 css->id = 1; 5813 } else { 5814 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL); 5815 BUG_ON(css->id < 0); 5816 } 5817 5818 /* Update the init_css_set to contain a subsys 5819 * pointer to this state - since the subsystem is 5820 * newly registered, all tasks and hence the 5821 * init_css_set is in the subsystem's root cgroup. */ 5822 init_css_set.subsys[ss->id] = css; 5823 5824 have_fork_callback |= (bool)ss->fork << ss->id; 5825 have_exit_callback |= (bool)ss->exit << ss->id; 5826 have_release_callback |= (bool)ss->release << ss->id; 5827 have_canfork_callback |= (bool)ss->can_fork << ss->id; 5828 5829 /* At system boot, before all subsystems have been 5830 * registered, no tasks have been forked, so we don't 5831 * need to invoke fork callbacks here. */ 5832 BUG_ON(!list_empty(&init_task.tasks)); 5833 5834 BUG_ON(online_css(css)); 5835 5836 mutex_unlock(&cgroup_mutex); 5837 } 5838 5839 /** 5840 * cgroup_init_early - cgroup initialization at system boot 5841 * 5842 * Initialize cgroups at system boot, and initialize any 5843 * subsystems that request early init. 5844 */ 5845 int __init cgroup_init_early(void) 5846 { 5847 static struct cgroup_fs_context __initdata ctx; 5848 struct cgroup_subsys *ss; 5849 int i; 5850 5851 ctx.root = &cgrp_dfl_root; 5852 init_cgroup_root(&ctx); 5853 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF; 5854 5855 RCU_INIT_POINTER(init_task.cgroups, &init_css_set); 5856 5857 for_each_subsys(ss, i) { 5858 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id, 5859 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n", 5860 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free, 5861 ss->id, ss->name); 5862 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN, 5863 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]); 5864 5865 ss->id = i; 5866 ss->name = cgroup_subsys_name[i]; 5867 if (!ss->legacy_name) 5868 ss->legacy_name = cgroup_subsys_name[i]; 5869 5870 if (ss->early_init) 5871 cgroup_init_subsys(ss, true); 5872 } 5873 return 0; 5874 } 5875 5876 /** 5877 * cgroup_init - cgroup initialization 5878 * 5879 * Register cgroup filesystem and /proc file, and initialize 5880 * any subsystems that didn't request early init. 5881 */ 5882 int __init cgroup_init(void) 5883 { 5884 struct cgroup_subsys *ss; 5885 int ssid; 5886 5887 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16); 5888 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files)); 5889 BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files)); 5890 5891 cgroup_rstat_boot(); 5892 5893 get_user_ns(init_cgroup_ns.user_ns); 5894 5895 mutex_lock(&cgroup_mutex); 5896 5897 /* 5898 * Add init_css_set to the hash table so that dfl_root can link to 5899 * it during init. 5900 */ 5901 hash_add(css_set_table, &init_css_set.hlist, 5902 css_set_hash(init_css_set.subsys)); 5903 5904 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0)); 5905 5906 mutex_unlock(&cgroup_mutex); 5907 5908 for_each_subsys(ss, ssid) { 5909 if (ss->early_init) { 5910 struct cgroup_subsys_state *css = 5911 init_css_set.subsys[ss->id]; 5912 5913 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, 5914 GFP_KERNEL); 5915 BUG_ON(css->id < 0); 5916 } else { 5917 cgroup_init_subsys(ss, false); 5918 } 5919 5920 list_add_tail(&init_css_set.e_cset_node[ssid], 5921 &cgrp_dfl_root.cgrp.e_csets[ssid]); 5922 5923 /* 5924 * Setting dfl_root subsys_mask needs to consider the 5925 * disabled flag and cftype registration needs kmalloc, 5926 * both of which aren't available during early_init. 5927 */ 5928 if (!cgroup_ssid_enabled(ssid)) 5929 continue; 5930 5931 if (cgroup1_ssid_disabled(ssid)) 5932 printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n", 5933 ss->name); 5934 5935 cgrp_dfl_root.subsys_mask |= 1 << ss->id; 5936 5937 /* implicit controllers must be threaded too */ 5938 WARN_ON(ss->implicit_on_dfl && !ss->threaded); 5939 5940 if (ss->implicit_on_dfl) 5941 cgrp_dfl_implicit_ss_mask |= 1 << ss->id; 5942 else if (!ss->dfl_cftypes) 5943 cgrp_dfl_inhibit_ss_mask |= 1 << ss->id; 5944 5945 if (ss->threaded) 5946 cgrp_dfl_threaded_ss_mask |= 1 << ss->id; 5947 5948 if (ss->dfl_cftypes == ss->legacy_cftypes) { 5949 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes)); 5950 } else { 5951 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes)); 5952 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes)); 5953 } 5954 5955 if (ss->bind) 5956 ss->bind(init_css_set.subsys[ssid]); 5957 5958 mutex_lock(&cgroup_mutex); 5959 css_populate_dir(init_css_set.subsys[ssid]); 5960 mutex_unlock(&cgroup_mutex); 5961 } 5962 5963 /* init_css_set.subsys[] has been updated, re-hash */ 5964 hash_del(&init_css_set.hlist); 5965 hash_add(css_set_table, &init_css_set.hlist, 5966 css_set_hash(init_css_set.subsys)); 5967 5968 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup")); 5969 WARN_ON(register_filesystem(&cgroup_fs_type)); 5970 WARN_ON(register_filesystem(&cgroup2_fs_type)); 5971 WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show)); 5972 #ifdef CONFIG_CPUSETS 5973 WARN_ON(register_filesystem(&cpuset_fs_type)); 5974 #endif 5975 5976 return 0; 5977 } 5978 5979 static int __init cgroup_wq_init(void) 5980 { 5981 /* 5982 * There isn't much point in executing destruction path in 5983 * parallel. Good chunk is serialized with cgroup_mutex anyway. 5984 * Use 1 for @max_active. 5985 * 5986 * We would prefer to do this in cgroup_init() above, but that 5987 * is called before init_workqueues(): so leave this until after. 5988 */ 5989 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1); 5990 BUG_ON(!cgroup_destroy_wq); 5991 return 0; 5992 } 5993 core_initcall(cgroup_wq_init); 5994 5995 void cgroup_path_from_kernfs_id(u64 id, char *buf, size_t buflen) 5996 { 5997 struct kernfs_node *kn; 5998 5999 kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id); 6000 if (!kn) 6001 return; 6002 kernfs_path(kn, buf, buflen); 6003 kernfs_put(kn); 6004 } 6005 6006 /* 6007 * cgroup_get_from_id : get the cgroup associated with cgroup id 6008 * @id: cgroup id 6009 * On success return the cgrp, on failure return NULL 6010 */ 6011 struct cgroup *cgroup_get_from_id(u64 id) 6012 { 6013 struct kernfs_node *kn; 6014 struct cgroup *cgrp = NULL; 6015 6016 kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id); 6017 if (!kn) 6018 goto out; 6019 6020 rcu_read_lock(); 6021 6022 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); 6023 if (cgrp && !cgroup_tryget(cgrp)) 6024 cgrp = NULL; 6025 6026 rcu_read_unlock(); 6027 6028 kernfs_put(kn); 6029 out: 6030 return cgrp; 6031 } 6032 EXPORT_SYMBOL_GPL(cgroup_get_from_id); 6033 6034 /* 6035 * proc_cgroup_show() 6036 * - Print task's cgroup paths into seq_file, one line for each hierarchy 6037 * - Used for /proc/<pid>/cgroup. 6038 */ 6039 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns, 6040 struct pid *pid, struct task_struct *tsk) 6041 { 6042 char *buf; 6043 int retval; 6044 struct cgroup_root *root; 6045 6046 retval = -ENOMEM; 6047 buf = kmalloc(PATH_MAX, GFP_KERNEL); 6048 if (!buf) 6049 goto out; 6050 6051 mutex_lock(&cgroup_mutex); 6052 spin_lock_irq(&css_set_lock); 6053 6054 for_each_root(root) { 6055 struct cgroup_subsys *ss; 6056 struct cgroup *cgrp; 6057 int ssid, count = 0; 6058 6059 if (root == &cgrp_dfl_root && !cgrp_dfl_visible) 6060 continue; 6061 6062 seq_printf(m, "%d:", root->hierarchy_id); 6063 if (root != &cgrp_dfl_root) 6064 for_each_subsys(ss, ssid) 6065 if (root->subsys_mask & (1 << ssid)) 6066 seq_printf(m, "%s%s", count++ ? "," : "", 6067 ss->legacy_name); 6068 if (strlen(root->name)) 6069 seq_printf(m, "%sname=%s", count ? "," : "", 6070 root->name); 6071 seq_putc(m, ':'); 6072 6073 cgrp = task_cgroup_from_root(tsk, root); 6074 6075 /* 6076 * On traditional hierarchies, all zombie tasks show up as 6077 * belonging to the root cgroup. On the default hierarchy, 6078 * while a zombie doesn't show up in "cgroup.procs" and 6079 * thus can't be migrated, its /proc/PID/cgroup keeps 6080 * reporting the cgroup it belonged to before exiting. If 6081 * the cgroup is removed before the zombie is reaped, 6082 * " (deleted)" is appended to the cgroup path. 6083 */ 6084 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) { 6085 retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX, 6086 current->nsproxy->cgroup_ns); 6087 if (retval >= PATH_MAX) 6088 retval = -ENAMETOOLONG; 6089 if (retval < 0) 6090 goto out_unlock; 6091 6092 seq_puts(m, buf); 6093 } else { 6094 seq_puts(m, "/"); 6095 } 6096 6097 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp)) 6098 seq_puts(m, " (deleted)\n"); 6099 else 6100 seq_putc(m, '\n'); 6101 } 6102 6103 retval = 0; 6104 out_unlock: 6105 spin_unlock_irq(&css_set_lock); 6106 mutex_unlock(&cgroup_mutex); 6107 kfree(buf); 6108 out: 6109 return retval; 6110 } 6111 6112 /** 6113 * cgroup_fork - initialize cgroup related fields during copy_process() 6114 * @child: pointer to task_struct of forking parent process. 6115 * 6116 * A task is associated with the init_css_set until cgroup_post_fork() 6117 * attaches it to the target css_set. 6118 */ 6119 void cgroup_fork(struct task_struct *child) 6120 { 6121 RCU_INIT_POINTER(child->cgroups, &init_css_set); 6122 INIT_LIST_HEAD(&child->cg_list); 6123 } 6124 6125 static struct cgroup *cgroup_get_from_file(struct file *f) 6126 { 6127 struct cgroup_subsys_state *css; 6128 struct cgroup *cgrp; 6129 6130 css = css_tryget_online_from_dir(f->f_path.dentry, NULL); 6131 if (IS_ERR(css)) 6132 return ERR_CAST(css); 6133 6134 cgrp = css->cgroup; 6135 if (!cgroup_on_dfl(cgrp)) { 6136 cgroup_put(cgrp); 6137 return ERR_PTR(-EBADF); 6138 } 6139 6140 return cgrp; 6141 } 6142 6143 /** 6144 * cgroup_css_set_fork - find or create a css_set for a child process 6145 * @kargs: the arguments passed to create the child process 6146 * 6147 * This functions finds or creates a new css_set which the child 6148 * process will be attached to in cgroup_post_fork(). By default, 6149 * the child process will be given the same css_set as its parent. 6150 * 6151 * If CLONE_INTO_CGROUP is specified this function will try to find an 6152 * existing css_set which includes the requested cgroup and if not create 6153 * a new css_set that the child will be attached to later. If this function 6154 * succeeds it will hold cgroup_threadgroup_rwsem on return. If 6155 * CLONE_INTO_CGROUP is requested this function will grab cgroup mutex 6156 * before grabbing cgroup_threadgroup_rwsem and will hold a reference 6157 * to the target cgroup. 6158 */ 6159 static int cgroup_css_set_fork(struct kernel_clone_args *kargs) 6160 __acquires(&cgroup_mutex) __acquires(&cgroup_threadgroup_rwsem) 6161 { 6162 int ret; 6163 struct cgroup *dst_cgrp = NULL; 6164 struct css_set *cset; 6165 struct super_block *sb; 6166 struct file *f; 6167 6168 if (kargs->flags & CLONE_INTO_CGROUP) 6169 mutex_lock(&cgroup_mutex); 6170 6171 cgroup_threadgroup_change_begin(current); 6172 6173 spin_lock_irq(&css_set_lock); 6174 cset = task_css_set(current); 6175 get_css_set(cset); 6176 spin_unlock_irq(&css_set_lock); 6177 6178 if (!(kargs->flags & CLONE_INTO_CGROUP)) { 6179 kargs->cset = cset; 6180 return 0; 6181 } 6182 6183 f = fget_raw(kargs->cgroup); 6184 if (!f) { 6185 ret = -EBADF; 6186 goto err; 6187 } 6188 sb = f->f_path.dentry->d_sb; 6189 6190 dst_cgrp = cgroup_get_from_file(f); 6191 if (IS_ERR(dst_cgrp)) { 6192 ret = PTR_ERR(dst_cgrp); 6193 dst_cgrp = NULL; 6194 goto err; 6195 } 6196 6197 if (cgroup_is_dead(dst_cgrp)) { 6198 ret = -ENODEV; 6199 goto err; 6200 } 6201 6202 /* 6203 * Verify that we the target cgroup is writable for us. This is 6204 * usually done by the vfs layer but since we're not going through 6205 * the vfs layer here we need to do it "manually". 6206 */ 6207 ret = cgroup_may_write(dst_cgrp, sb); 6208 if (ret) 6209 goto err; 6210 6211 /* 6212 * Spawning a task directly into a cgroup works by passing a file 6213 * descriptor to the target cgroup directory. This can even be an O_PATH 6214 * file descriptor. But it can never be a cgroup.procs file descriptor. 6215 * This was done on purpose so spawning into a cgroup could be 6216 * conceptualized as an atomic 6217 * 6218 * fd = openat(dfd_cgroup, "cgroup.procs", ...); 6219 * write(fd, <child-pid>, ...); 6220 * 6221 * sequence, i.e. it's a shorthand for the caller opening and writing 6222 * cgroup.procs of the cgroup indicated by @dfd_cgroup. This allows us 6223 * to always use the caller's credentials. 6224 */ 6225 ret = cgroup_attach_permissions(cset->dfl_cgrp, dst_cgrp, sb, 6226 !(kargs->flags & CLONE_THREAD), 6227 current->nsproxy->cgroup_ns); 6228 if (ret) 6229 goto err; 6230 6231 kargs->cset = find_css_set(cset, dst_cgrp); 6232 if (!kargs->cset) { 6233 ret = -ENOMEM; 6234 goto err; 6235 } 6236 6237 put_css_set(cset); 6238 fput(f); 6239 kargs->cgrp = dst_cgrp; 6240 return ret; 6241 6242 err: 6243 cgroup_threadgroup_change_end(current); 6244 mutex_unlock(&cgroup_mutex); 6245 if (f) 6246 fput(f); 6247 if (dst_cgrp) 6248 cgroup_put(dst_cgrp); 6249 put_css_set(cset); 6250 if (kargs->cset) 6251 put_css_set(kargs->cset); 6252 return ret; 6253 } 6254 6255 /** 6256 * cgroup_css_set_put_fork - drop references we took during fork 6257 * @kargs: the arguments passed to create the child process 6258 * 6259 * Drop references to the prepared css_set and target cgroup if 6260 * CLONE_INTO_CGROUP was requested. 6261 */ 6262 static void cgroup_css_set_put_fork(struct kernel_clone_args *kargs) 6263 __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex) 6264 { 6265 cgroup_threadgroup_change_end(current); 6266 6267 if (kargs->flags & CLONE_INTO_CGROUP) { 6268 struct cgroup *cgrp = kargs->cgrp; 6269 struct css_set *cset = kargs->cset; 6270 6271 mutex_unlock(&cgroup_mutex); 6272 6273 if (cset) { 6274 put_css_set(cset); 6275 kargs->cset = NULL; 6276 } 6277 6278 if (cgrp) { 6279 cgroup_put(cgrp); 6280 kargs->cgrp = NULL; 6281 } 6282 } 6283 } 6284 6285 /** 6286 * cgroup_can_fork - called on a new task before the process is exposed 6287 * @child: the child process 6288 * @kargs: the arguments passed to create the child process 6289 * 6290 * This prepares a new css_set for the child process which the child will 6291 * be attached to in cgroup_post_fork(). 6292 * This calls the subsystem can_fork() callbacks. If the cgroup_can_fork() 6293 * callback returns an error, the fork aborts with that error code. This 6294 * allows for a cgroup subsystem to conditionally allow or deny new forks. 6295 */ 6296 int cgroup_can_fork(struct task_struct *child, struct kernel_clone_args *kargs) 6297 { 6298 struct cgroup_subsys *ss; 6299 int i, j, ret; 6300 6301 ret = cgroup_css_set_fork(kargs); 6302 if (ret) 6303 return ret; 6304 6305 do_each_subsys_mask(ss, i, have_canfork_callback) { 6306 ret = ss->can_fork(child, kargs->cset); 6307 if (ret) 6308 goto out_revert; 6309 } while_each_subsys_mask(); 6310 6311 return 0; 6312 6313 out_revert: 6314 for_each_subsys(ss, j) { 6315 if (j >= i) 6316 break; 6317 if (ss->cancel_fork) 6318 ss->cancel_fork(child, kargs->cset); 6319 } 6320 6321 cgroup_css_set_put_fork(kargs); 6322 6323 return ret; 6324 } 6325 6326 /** 6327 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork() 6328 * @child: the child process 6329 * @kargs: the arguments passed to create the child process 6330 * 6331 * This calls the cancel_fork() callbacks if a fork failed *after* 6332 * cgroup_can_fork() succeeded and cleans up references we took to 6333 * prepare a new css_set for the child process in cgroup_can_fork(). 6334 */ 6335 void cgroup_cancel_fork(struct task_struct *child, 6336 struct kernel_clone_args *kargs) 6337 { 6338 struct cgroup_subsys *ss; 6339 int i; 6340 6341 for_each_subsys(ss, i) 6342 if (ss->cancel_fork) 6343 ss->cancel_fork(child, kargs->cset); 6344 6345 cgroup_css_set_put_fork(kargs); 6346 } 6347 6348 /** 6349 * cgroup_post_fork - finalize cgroup setup for the child process 6350 * @child: the child process 6351 * @kargs: the arguments passed to create the child process 6352 * 6353 * Attach the child process to its css_set calling the subsystem fork() 6354 * callbacks. 6355 */ 6356 void cgroup_post_fork(struct task_struct *child, 6357 struct kernel_clone_args *kargs) 6358 __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex) 6359 { 6360 unsigned long cgrp_flags = 0; 6361 bool kill = false; 6362 struct cgroup_subsys *ss; 6363 struct css_set *cset; 6364 int i; 6365 6366 cset = kargs->cset; 6367 kargs->cset = NULL; 6368 6369 spin_lock_irq(&css_set_lock); 6370 6371 /* init tasks are special, only link regular threads */ 6372 if (likely(child->pid)) { 6373 if (kargs->cgrp) 6374 cgrp_flags = kargs->cgrp->flags; 6375 else 6376 cgrp_flags = cset->dfl_cgrp->flags; 6377 6378 WARN_ON_ONCE(!list_empty(&child->cg_list)); 6379 cset->nr_tasks++; 6380 css_set_move_task(child, NULL, cset, false); 6381 } else { 6382 put_css_set(cset); 6383 cset = NULL; 6384 } 6385 6386 if (!(child->flags & PF_KTHREAD)) { 6387 if (unlikely(test_bit(CGRP_FREEZE, &cgrp_flags))) { 6388 /* 6389 * If the cgroup has to be frozen, the new task has 6390 * too. Let's set the JOBCTL_TRAP_FREEZE jobctl bit to 6391 * get the task into the frozen state. 6392 */ 6393 spin_lock(&child->sighand->siglock); 6394 WARN_ON_ONCE(child->frozen); 6395 child->jobctl |= JOBCTL_TRAP_FREEZE; 6396 spin_unlock(&child->sighand->siglock); 6397 6398 /* 6399 * Calling cgroup_update_frozen() isn't required here, 6400 * because it will be called anyway a bit later from 6401 * do_freezer_trap(). So we avoid cgroup's transient 6402 * switch from the frozen state and back. 6403 */ 6404 } 6405 6406 /* 6407 * If the cgroup is to be killed notice it now and take the 6408 * child down right after we finished preparing it for 6409 * userspace. 6410 */ 6411 kill = test_bit(CGRP_KILL, &cgrp_flags); 6412 } 6413 6414 spin_unlock_irq(&css_set_lock); 6415 6416 /* 6417 * Call ss->fork(). This must happen after @child is linked on 6418 * css_set; otherwise, @child might change state between ->fork() 6419 * and addition to css_set. 6420 */ 6421 do_each_subsys_mask(ss, i, have_fork_callback) { 6422 ss->fork(child); 6423 } while_each_subsys_mask(); 6424 6425 /* Make the new cset the root_cset of the new cgroup namespace. */ 6426 if (kargs->flags & CLONE_NEWCGROUP) { 6427 struct css_set *rcset = child->nsproxy->cgroup_ns->root_cset; 6428 6429 get_css_set(cset); 6430 child->nsproxy->cgroup_ns->root_cset = cset; 6431 put_css_set(rcset); 6432 } 6433 6434 /* Cgroup has to be killed so take down child immediately. */ 6435 if (unlikely(kill)) 6436 do_send_sig_info(SIGKILL, SEND_SIG_NOINFO, child, PIDTYPE_TGID); 6437 6438 cgroup_css_set_put_fork(kargs); 6439 } 6440 6441 /** 6442 * cgroup_exit - detach cgroup from exiting task 6443 * @tsk: pointer to task_struct of exiting process 6444 * 6445 * Description: Detach cgroup from @tsk. 6446 * 6447 */ 6448 void cgroup_exit(struct task_struct *tsk) 6449 { 6450 struct cgroup_subsys *ss; 6451 struct css_set *cset; 6452 int i; 6453 6454 spin_lock_irq(&css_set_lock); 6455 6456 WARN_ON_ONCE(list_empty(&tsk->cg_list)); 6457 cset = task_css_set(tsk); 6458 css_set_move_task(tsk, cset, NULL, false); 6459 list_add_tail(&tsk->cg_list, &cset->dying_tasks); 6460 cset->nr_tasks--; 6461 6462 WARN_ON_ONCE(cgroup_task_frozen(tsk)); 6463 if (unlikely(!(tsk->flags & PF_KTHREAD) && 6464 test_bit(CGRP_FREEZE, &task_dfl_cgroup(tsk)->flags))) 6465 cgroup_update_frozen(task_dfl_cgroup(tsk)); 6466 6467 spin_unlock_irq(&css_set_lock); 6468 6469 /* see cgroup_post_fork() for details */ 6470 do_each_subsys_mask(ss, i, have_exit_callback) { 6471 ss->exit(tsk); 6472 } while_each_subsys_mask(); 6473 } 6474 6475 void cgroup_release(struct task_struct *task) 6476 { 6477 struct cgroup_subsys *ss; 6478 int ssid; 6479 6480 do_each_subsys_mask(ss, ssid, have_release_callback) { 6481 ss->release(task); 6482 } while_each_subsys_mask(); 6483 6484 spin_lock_irq(&css_set_lock); 6485 css_set_skip_task_iters(task_css_set(task), task); 6486 list_del_init(&task->cg_list); 6487 spin_unlock_irq(&css_set_lock); 6488 } 6489 6490 void cgroup_free(struct task_struct *task) 6491 { 6492 struct css_set *cset = task_css_set(task); 6493 put_css_set(cset); 6494 } 6495 6496 static int __init cgroup_disable(char *str) 6497 { 6498 struct cgroup_subsys *ss; 6499 char *token; 6500 int i; 6501 6502 while ((token = strsep(&str, ",")) != NULL) { 6503 if (!*token) 6504 continue; 6505 6506 for_each_subsys(ss, i) { 6507 if (strcmp(token, ss->name) && 6508 strcmp(token, ss->legacy_name)) 6509 continue; 6510 6511 static_branch_disable(cgroup_subsys_enabled_key[i]); 6512 pr_info("Disabling %s control group subsystem\n", 6513 ss->name); 6514 } 6515 6516 for (i = 0; i < OPT_FEATURE_COUNT; i++) { 6517 if (strcmp(token, cgroup_opt_feature_names[i])) 6518 continue; 6519 cgroup_feature_disable_mask |= 1 << i; 6520 pr_info("Disabling %s control group feature\n", 6521 cgroup_opt_feature_names[i]); 6522 break; 6523 } 6524 } 6525 return 1; 6526 } 6527 __setup("cgroup_disable=", cgroup_disable); 6528 6529 void __init __weak enable_debug_cgroup(void) { } 6530 6531 static int __init enable_cgroup_debug(char *str) 6532 { 6533 cgroup_debug = true; 6534 enable_debug_cgroup(); 6535 return 1; 6536 } 6537 __setup("cgroup_debug", enable_cgroup_debug); 6538 6539 /** 6540 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry 6541 * @dentry: directory dentry of interest 6542 * @ss: subsystem of interest 6543 * 6544 * If @dentry is a directory for a cgroup which has @ss enabled on it, try 6545 * to get the corresponding css and return it. If such css doesn't exist 6546 * or can't be pinned, an ERR_PTR value is returned. 6547 */ 6548 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry, 6549 struct cgroup_subsys *ss) 6550 { 6551 struct kernfs_node *kn = kernfs_node_from_dentry(dentry); 6552 struct file_system_type *s_type = dentry->d_sb->s_type; 6553 struct cgroup_subsys_state *css = NULL; 6554 struct cgroup *cgrp; 6555 6556 /* is @dentry a cgroup dir? */ 6557 if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) || 6558 !kn || kernfs_type(kn) != KERNFS_DIR) 6559 return ERR_PTR(-EBADF); 6560 6561 rcu_read_lock(); 6562 6563 /* 6564 * This path doesn't originate from kernfs and @kn could already 6565 * have been or be removed at any point. @kn->priv is RCU 6566 * protected for this access. See css_release_work_fn() for details. 6567 */ 6568 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); 6569 if (cgrp) 6570 css = cgroup_css(cgrp, ss); 6571 6572 if (!css || !css_tryget_online(css)) 6573 css = ERR_PTR(-ENOENT); 6574 6575 rcu_read_unlock(); 6576 return css; 6577 } 6578 6579 /** 6580 * css_from_id - lookup css by id 6581 * @id: the cgroup id 6582 * @ss: cgroup subsys to be looked into 6583 * 6584 * Returns the css if there's valid one with @id, otherwise returns NULL. 6585 * Should be called under rcu_read_lock(). 6586 */ 6587 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss) 6588 { 6589 WARN_ON_ONCE(!rcu_read_lock_held()); 6590 return idr_find(&ss->css_idr, id); 6591 } 6592 6593 /** 6594 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path 6595 * @path: path on the default hierarchy 6596 * 6597 * Find the cgroup at @path on the default hierarchy, increment its 6598 * reference count and return it. Returns pointer to the found cgroup on 6599 * success, ERR_PTR(-ENOENT) if @path doesn't exist or if the cgroup has already 6600 * been released and ERR_PTR(-ENOTDIR) if @path points to a non-directory. 6601 */ 6602 struct cgroup *cgroup_get_from_path(const char *path) 6603 { 6604 struct kernfs_node *kn; 6605 struct cgroup *cgrp = ERR_PTR(-ENOENT); 6606 6607 kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path); 6608 if (!kn) 6609 goto out; 6610 6611 if (kernfs_type(kn) != KERNFS_DIR) { 6612 cgrp = ERR_PTR(-ENOTDIR); 6613 goto out_kernfs; 6614 } 6615 6616 rcu_read_lock(); 6617 6618 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); 6619 if (!cgrp || !cgroup_tryget(cgrp)) 6620 cgrp = ERR_PTR(-ENOENT); 6621 6622 rcu_read_unlock(); 6623 6624 out_kernfs: 6625 kernfs_put(kn); 6626 out: 6627 return cgrp; 6628 } 6629 EXPORT_SYMBOL_GPL(cgroup_get_from_path); 6630 6631 /** 6632 * cgroup_get_from_fd - get a cgroup pointer from a fd 6633 * @fd: fd obtained by open(cgroup2_dir) 6634 * 6635 * Find the cgroup from a fd which should be obtained 6636 * by opening a cgroup directory. Returns a pointer to the 6637 * cgroup on success. ERR_PTR is returned if the cgroup 6638 * cannot be found. 6639 */ 6640 struct cgroup *cgroup_get_from_fd(int fd) 6641 { 6642 struct cgroup *cgrp; 6643 struct file *f; 6644 6645 f = fget_raw(fd); 6646 if (!f) 6647 return ERR_PTR(-EBADF); 6648 6649 cgrp = cgroup_get_from_file(f); 6650 fput(f); 6651 return cgrp; 6652 } 6653 EXPORT_SYMBOL_GPL(cgroup_get_from_fd); 6654 6655 static u64 power_of_ten(int power) 6656 { 6657 u64 v = 1; 6658 while (power--) 6659 v *= 10; 6660 return v; 6661 } 6662 6663 /** 6664 * cgroup_parse_float - parse a floating number 6665 * @input: input string 6666 * @dec_shift: number of decimal digits to shift 6667 * @v: output 6668 * 6669 * Parse a decimal floating point number in @input and store the result in 6670 * @v with decimal point right shifted @dec_shift times. For example, if 6671 * @input is "12.3456" and @dec_shift is 3, *@v will be set to 12345. 6672 * Returns 0 on success, -errno otherwise. 6673 * 6674 * There's nothing cgroup specific about this function except that it's 6675 * currently the only user. 6676 */ 6677 int cgroup_parse_float(const char *input, unsigned dec_shift, s64 *v) 6678 { 6679 s64 whole, frac = 0; 6680 int fstart = 0, fend = 0, flen; 6681 6682 if (!sscanf(input, "%lld.%n%lld%n", &whole, &fstart, &frac, &fend)) 6683 return -EINVAL; 6684 if (frac < 0) 6685 return -EINVAL; 6686 6687 flen = fend > fstart ? fend - fstart : 0; 6688 if (flen < dec_shift) 6689 frac *= power_of_ten(dec_shift - flen); 6690 else 6691 frac = DIV_ROUND_CLOSEST_ULL(frac, power_of_ten(flen - dec_shift)); 6692 6693 *v = whole * power_of_ten(dec_shift) + frac; 6694 return 0; 6695 } 6696 6697 /* 6698 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data 6699 * definition in cgroup-defs.h. 6700 */ 6701 #ifdef CONFIG_SOCK_CGROUP_DATA 6702 6703 void cgroup_sk_alloc(struct sock_cgroup_data *skcd) 6704 { 6705 struct cgroup *cgroup; 6706 6707 rcu_read_lock(); 6708 /* Don't associate the sock with unrelated interrupted task's cgroup. */ 6709 if (in_interrupt()) { 6710 cgroup = &cgrp_dfl_root.cgrp; 6711 cgroup_get(cgroup); 6712 goto out; 6713 } 6714 6715 while (true) { 6716 struct css_set *cset; 6717 6718 cset = task_css_set(current); 6719 if (likely(cgroup_tryget(cset->dfl_cgrp))) { 6720 cgroup = cset->dfl_cgrp; 6721 break; 6722 } 6723 cpu_relax(); 6724 } 6725 out: 6726 skcd->cgroup = cgroup; 6727 cgroup_bpf_get(cgroup); 6728 rcu_read_unlock(); 6729 } 6730 6731 void cgroup_sk_clone(struct sock_cgroup_data *skcd) 6732 { 6733 struct cgroup *cgrp = sock_cgroup_ptr(skcd); 6734 6735 /* 6736 * We might be cloning a socket which is left in an empty 6737 * cgroup and the cgroup might have already been rmdir'd. 6738 * Don't use cgroup_get_live(). 6739 */ 6740 cgroup_get(cgrp); 6741 cgroup_bpf_get(cgrp); 6742 } 6743 6744 void cgroup_sk_free(struct sock_cgroup_data *skcd) 6745 { 6746 struct cgroup *cgrp = sock_cgroup_ptr(skcd); 6747 6748 cgroup_bpf_put(cgrp); 6749 cgroup_put(cgrp); 6750 } 6751 6752 #endif /* CONFIG_SOCK_CGROUP_DATA */ 6753 6754 #ifdef CONFIG_SYSFS 6755 static ssize_t show_delegatable_files(struct cftype *files, char *buf, 6756 ssize_t size, const char *prefix) 6757 { 6758 struct cftype *cft; 6759 ssize_t ret = 0; 6760 6761 for (cft = files; cft && cft->name[0] != '\0'; cft++) { 6762 if (!(cft->flags & CFTYPE_NS_DELEGATABLE)) 6763 continue; 6764 6765 if ((cft->flags & CFTYPE_PRESSURE) && !cgroup_psi_enabled()) 6766 continue; 6767 6768 if (prefix) 6769 ret += snprintf(buf + ret, size - ret, "%s.", prefix); 6770 6771 ret += snprintf(buf + ret, size - ret, "%s\n", cft->name); 6772 6773 if (WARN_ON(ret >= size)) 6774 break; 6775 } 6776 6777 return ret; 6778 } 6779 6780 static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr, 6781 char *buf) 6782 { 6783 struct cgroup_subsys *ss; 6784 int ssid; 6785 ssize_t ret = 0; 6786 6787 ret = show_delegatable_files(cgroup_base_files, buf, PAGE_SIZE - ret, 6788 NULL); 6789 6790 for_each_subsys(ss, ssid) 6791 ret += show_delegatable_files(ss->dfl_cftypes, buf + ret, 6792 PAGE_SIZE - ret, 6793 cgroup_subsys_name[ssid]); 6794 6795 return ret; 6796 } 6797 static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate); 6798 6799 static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr, 6800 char *buf) 6801 { 6802 return snprintf(buf, PAGE_SIZE, 6803 "nsdelegate\n" 6804 "favordynmods\n" 6805 "memory_localevents\n" 6806 "memory_recursiveprot\n"); 6807 } 6808 static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features); 6809 6810 static struct attribute *cgroup_sysfs_attrs[] = { 6811 &cgroup_delegate_attr.attr, 6812 &cgroup_features_attr.attr, 6813 NULL, 6814 }; 6815 6816 static const struct attribute_group cgroup_sysfs_attr_group = { 6817 .attrs = cgroup_sysfs_attrs, 6818 .name = "cgroup", 6819 }; 6820 6821 static int __init cgroup_sysfs_init(void) 6822 { 6823 return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group); 6824 } 6825 subsys_initcall(cgroup_sysfs_init); 6826 6827 #endif /* CONFIG_SYSFS */ 6828