1 /* 2 * Generic process-grouping system. 3 * 4 * Based originally on the cpuset system, extracted by Paul Menage 5 * Copyright (C) 2006 Google, Inc 6 * 7 * Notifications support 8 * Copyright (C) 2009 Nokia Corporation 9 * Author: Kirill A. Shutemov 10 * 11 * Copyright notices from the original cpuset code: 12 * -------------------------------------------------- 13 * Copyright (C) 2003 BULL SA. 14 * Copyright (C) 2004-2006 Silicon Graphics, Inc. 15 * 16 * Portions derived from Patrick Mochel's sysfs code. 17 * sysfs is Copyright (c) 2001-3 Patrick Mochel 18 * 19 * 2003-10-10 Written by Simon Derr. 20 * 2003-10-22 Updates by Stephen Hemminger. 21 * 2004 May-July Rework by Paul Jackson. 22 * --------------------------------------------------- 23 * 24 * This file is subject to the terms and conditions of the GNU General Public 25 * License. See the file COPYING in the main directory of the Linux 26 * distribution for more details. 27 */ 28 29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 30 31 #include "cgroup-internal.h" 32 33 #include <linux/bpf-cgroup.h> 34 #include <linux/cred.h> 35 #include <linux/errno.h> 36 #include <linux/init_task.h> 37 #include <linux/kernel.h> 38 #include <linux/magic.h> 39 #include <linux/mutex.h> 40 #include <linux/mount.h> 41 #include <linux/pagemap.h> 42 #include <linux/proc_fs.h> 43 #include <linux/rcupdate.h> 44 #include <linux/sched.h> 45 #include <linux/sched/task.h> 46 #include <linux/slab.h> 47 #include <linux/spinlock.h> 48 #include <linux/percpu-rwsem.h> 49 #include <linux/string.h> 50 #include <linux/hashtable.h> 51 #include <linux/idr.h> 52 #include <linux/kthread.h> 53 #include <linux/atomic.h> 54 #include <linux/cpuset.h> 55 #include <linux/proc_ns.h> 56 #include <linux/nsproxy.h> 57 #include <linux/file.h> 58 #include <linux/fs_parser.h> 59 #include <linux/sched/cputime.h> 60 #include <linux/sched/deadline.h> 61 #include <linux/psi.h> 62 #include <net/sock.h> 63 64 #define CREATE_TRACE_POINTS 65 #include <trace/events/cgroup.h> 66 67 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \ 68 MAX_CFTYPE_NAME + 2) 69 /* let's not notify more than 100 times per second */ 70 #define CGROUP_FILE_NOTIFY_MIN_INTV DIV_ROUND_UP(HZ, 100) 71 72 /* 73 * To avoid confusing the compiler (and generating warnings) with code 74 * that attempts to access what would be a 0-element array (i.e. sized 75 * to a potentially empty array when CGROUP_SUBSYS_COUNT == 0), this 76 * constant expression can be added. 77 */ 78 #define CGROUP_HAS_SUBSYS_CONFIG (CGROUP_SUBSYS_COUNT > 0) 79 80 /* 81 * cgroup_mutex is the master lock. Any modification to cgroup or its 82 * hierarchy must be performed while holding it. 83 * 84 * css_set_lock protects task->cgroups pointer, the list of css_set 85 * objects, and the chain of tasks off each css_set. 86 * 87 * These locks are exported if CONFIG_PROVE_RCU so that accessors in 88 * cgroup.h can use them for lockdep annotations. 89 */ 90 DEFINE_MUTEX(cgroup_mutex); 91 DEFINE_SPINLOCK(css_set_lock); 92 93 #ifdef CONFIG_PROVE_RCU 94 EXPORT_SYMBOL_GPL(cgroup_mutex); 95 EXPORT_SYMBOL_GPL(css_set_lock); 96 #endif 97 98 DEFINE_SPINLOCK(trace_cgroup_path_lock); 99 char trace_cgroup_path[TRACE_CGROUP_PATH_LEN]; 100 static bool cgroup_debug __read_mostly; 101 102 /* 103 * Protects cgroup_idr and css_idr so that IDs can be released without 104 * grabbing cgroup_mutex. 105 */ 106 static DEFINE_SPINLOCK(cgroup_idr_lock); 107 108 /* 109 * Protects cgroup_file->kn for !self csses. It synchronizes notifications 110 * against file removal/re-creation across css hiding. 111 */ 112 static DEFINE_SPINLOCK(cgroup_file_kn_lock); 113 114 DEFINE_PERCPU_RWSEM(cgroup_threadgroup_rwsem); 115 116 #define cgroup_assert_mutex_or_rcu_locked() \ 117 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \ 118 !lockdep_is_held(&cgroup_mutex), \ 119 "cgroup_mutex or RCU read lock required"); 120 121 /* 122 * cgroup destruction makes heavy use of work items and there can be a lot 123 * of concurrent destructions. Use a separate workqueue so that cgroup 124 * destruction work items don't end up filling up max_active of system_wq 125 * which may lead to deadlock. 126 */ 127 static struct workqueue_struct *cgroup_destroy_wq; 128 129 /* generate an array of cgroup subsystem pointers */ 130 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys, 131 struct cgroup_subsys *cgroup_subsys[] = { 132 #include <linux/cgroup_subsys.h> 133 }; 134 #undef SUBSYS 135 136 /* array of cgroup subsystem names */ 137 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x, 138 static const char *cgroup_subsys_name[] = { 139 #include <linux/cgroup_subsys.h> 140 }; 141 #undef SUBSYS 142 143 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */ 144 #define SUBSYS(_x) \ 145 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \ 146 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \ 147 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \ 148 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key); 149 #include <linux/cgroup_subsys.h> 150 #undef SUBSYS 151 152 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key, 153 static struct static_key_true *cgroup_subsys_enabled_key[] = { 154 #include <linux/cgroup_subsys.h> 155 }; 156 #undef SUBSYS 157 158 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key, 159 static struct static_key_true *cgroup_subsys_on_dfl_key[] = { 160 #include <linux/cgroup_subsys.h> 161 }; 162 #undef SUBSYS 163 164 static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu); 165 166 /* the default hierarchy */ 167 struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu }; 168 EXPORT_SYMBOL_GPL(cgrp_dfl_root); 169 170 /* 171 * The default hierarchy always exists but is hidden until mounted for the 172 * first time. This is for backward compatibility. 173 */ 174 static bool cgrp_dfl_visible; 175 176 /* some controllers are not supported in the default hierarchy */ 177 static u16 cgrp_dfl_inhibit_ss_mask; 178 179 /* some controllers are implicitly enabled on the default hierarchy */ 180 static u16 cgrp_dfl_implicit_ss_mask; 181 182 /* some controllers can be threaded on the default hierarchy */ 183 static u16 cgrp_dfl_threaded_ss_mask; 184 185 /* The list of hierarchy roots */ 186 LIST_HEAD(cgroup_roots); 187 static int cgroup_root_count; 188 189 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */ 190 static DEFINE_IDR(cgroup_hierarchy_idr); 191 192 /* 193 * Assign a monotonically increasing serial number to csses. It guarantees 194 * cgroups with bigger numbers are newer than those with smaller numbers. 195 * Also, as csses are always appended to the parent's ->children list, it 196 * guarantees that sibling csses are always sorted in the ascending serial 197 * number order on the list. Protected by cgroup_mutex. 198 */ 199 static u64 css_serial_nr_next = 1; 200 201 /* 202 * These bitmasks identify subsystems with specific features to avoid 203 * having to do iterative checks repeatedly. 204 */ 205 static u16 have_fork_callback __read_mostly; 206 static u16 have_exit_callback __read_mostly; 207 static u16 have_release_callback __read_mostly; 208 static u16 have_canfork_callback __read_mostly; 209 210 /* cgroup namespace for init task */ 211 struct cgroup_namespace init_cgroup_ns = { 212 .ns.count = REFCOUNT_INIT(2), 213 .user_ns = &init_user_ns, 214 .ns.ops = &cgroupns_operations, 215 .ns.inum = PROC_CGROUP_INIT_INO, 216 .root_cset = &init_css_set, 217 }; 218 219 static struct file_system_type cgroup2_fs_type; 220 static struct cftype cgroup_base_files[]; 221 static struct cftype cgroup_psi_files[]; 222 223 /* cgroup optional features */ 224 enum cgroup_opt_features { 225 #ifdef CONFIG_PSI 226 OPT_FEATURE_PRESSURE, 227 #endif 228 OPT_FEATURE_COUNT 229 }; 230 231 static const char *cgroup_opt_feature_names[OPT_FEATURE_COUNT] = { 232 #ifdef CONFIG_PSI 233 "pressure", 234 #endif 235 }; 236 237 static u16 cgroup_feature_disable_mask __read_mostly; 238 239 static int cgroup_apply_control(struct cgroup *cgrp); 240 static void cgroup_finalize_control(struct cgroup *cgrp, int ret); 241 static void css_task_iter_skip(struct css_task_iter *it, 242 struct task_struct *task); 243 static int cgroup_destroy_locked(struct cgroup *cgrp); 244 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp, 245 struct cgroup_subsys *ss); 246 static void css_release(struct percpu_ref *ref); 247 static void kill_css(struct cgroup_subsys_state *css); 248 static int cgroup_addrm_files(struct cgroup_subsys_state *css, 249 struct cgroup *cgrp, struct cftype cfts[], 250 bool is_add); 251 252 #ifdef CONFIG_DEBUG_CGROUP_REF 253 #define CGROUP_REF_FN_ATTRS noinline 254 #define CGROUP_REF_EXPORT(fn) EXPORT_SYMBOL_GPL(fn); 255 #include <linux/cgroup_refcnt.h> 256 #endif 257 258 /** 259 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID 260 * @ssid: subsys ID of interest 261 * 262 * cgroup_subsys_enabled() can only be used with literal subsys names which 263 * is fine for individual subsystems but unsuitable for cgroup core. This 264 * is slower static_key_enabled() based test indexed by @ssid. 265 */ 266 bool cgroup_ssid_enabled(int ssid) 267 { 268 if (!CGROUP_HAS_SUBSYS_CONFIG) 269 return false; 270 271 return static_key_enabled(cgroup_subsys_enabled_key[ssid]); 272 } 273 274 /** 275 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy 276 * @cgrp: the cgroup of interest 277 * 278 * The default hierarchy is the v2 interface of cgroup and this function 279 * can be used to test whether a cgroup is on the default hierarchy for 280 * cases where a subsystem should behave differently depending on the 281 * interface version. 282 * 283 * List of changed behaviors: 284 * 285 * - Mount options "noprefix", "xattr", "clone_children", "release_agent" 286 * and "name" are disallowed. 287 * 288 * - When mounting an existing superblock, mount options should match. 289 * 290 * - rename(2) is disallowed. 291 * 292 * - "tasks" is removed. Everything should be at process granularity. Use 293 * "cgroup.procs" instead. 294 * 295 * - "cgroup.procs" is not sorted. pids will be unique unless they got 296 * recycled in-between reads. 297 * 298 * - "release_agent" and "notify_on_release" are removed. Replacement 299 * notification mechanism will be implemented. 300 * 301 * - "cgroup.clone_children" is removed. 302 * 303 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup 304 * and its descendants contain no task; otherwise, 1. The file also 305 * generates kernfs notification which can be monitored through poll and 306 * [di]notify when the value of the file changes. 307 * 308 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and 309 * take masks of ancestors with non-empty cpus/mems, instead of being 310 * moved to an ancestor. 311 * 312 * - cpuset: a task can be moved into an empty cpuset, and again it takes 313 * masks of ancestors. 314 * 315 * - blkcg: blk-throttle becomes properly hierarchical. 316 */ 317 bool cgroup_on_dfl(const struct cgroup *cgrp) 318 { 319 return cgrp->root == &cgrp_dfl_root; 320 } 321 322 /* IDR wrappers which synchronize using cgroup_idr_lock */ 323 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end, 324 gfp_t gfp_mask) 325 { 326 int ret; 327 328 idr_preload(gfp_mask); 329 spin_lock_bh(&cgroup_idr_lock); 330 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM); 331 spin_unlock_bh(&cgroup_idr_lock); 332 idr_preload_end(); 333 return ret; 334 } 335 336 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id) 337 { 338 void *ret; 339 340 spin_lock_bh(&cgroup_idr_lock); 341 ret = idr_replace(idr, ptr, id); 342 spin_unlock_bh(&cgroup_idr_lock); 343 return ret; 344 } 345 346 static void cgroup_idr_remove(struct idr *idr, int id) 347 { 348 spin_lock_bh(&cgroup_idr_lock); 349 idr_remove(idr, id); 350 spin_unlock_bh(&cgroup_idr_lock); 351 } 352 353 static bool cgroup_has_tasks(struct cgroup *cgrp) 354 { 355 return cgrp->nr_populated_csets; 356 } 357 358 static bool cgroup_is_threaded(struct cgroup *cgrp) 359 { 360 return cgrp->dom_cgrp != cgrp; 361 } 362 363 /* can @cgrp host both domain and threaded children? */ 364 static bool cgroup_is_mixable(struct cgroup *cgrp) 365 { 366 /* 367 * Root isn't under domain level resource control exempting it from 368 * the no-internal-process constraint, so it can serve as a thread 369 * root and a parent of resource domains at the same time. 370 */ 371 return !cgroup_parent(cgrp); 372 } 373 374 /* can @cgrp become a thread root? Should always be true for a thread root */ 375 static bool cgroup_can_be_thread_root(struct cgroup *cgrp) 376 { 377 /* mixables don't care */ 378 if (cgroup_is_mixable(cgrp)) 379 return true; 380 381 /* domain roots can't be nested under threaded */ 382 if (cgroup_is_threaded(cgrp)) 383 return false; 384 385 /* can only have either domain or threaded children */ 386 if (cgrp->nr_populated_domain_children) 387 return false; 388 389 /* and no domain controllers can be enabled */ 390 if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask) 391 return false; 392 393 return true; 394 } 395 396 /* is @cgrp root of a threaded subtree? */ 397 static bool cgroup_is_thread_root(struct cgroup *cgrp) 398 { 399 /* thread root should be a domain */ 400 if (cgroup_is_threaded(cgrp)) 401 return false; 402 403 /* a domain w/ threaded children is a thread root */ 404 if (cgrp->nr_threaded_children) 405 return true; 406 407 /* 408 * A domain which has tasks and explicit threaded controllers 409 * enabled is a thread root. 410 */ 411 if (cgroup_has_tasks(cgrp) && 412 (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask)) 413 return true; 414 415 return false; 416 } 417 418 /* a domain which isn't connected to the root w/o brekage can't be used */ 419 static bool cgroup_is_valid_domain(struct cgroup *cgrp) 420 { 421 /* the cgroup itself can be a thread root */ 422 if (cgroup_is_threaded(cgrp)) 423 return false; 424 425 /* but the ancestors can't be unless mixable */ 426 while ((cgrp = cgroup_parent(cgrp))) { 427 if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp)) 428 return false; 429 if (cgroup_is_threaded(cgrp)) 430 return false; 431 } 432 433 return true; 434 } 435 436 /* subsystems visibly enabled on a cgroup */ 437 static u16 cgroup_control(struct cgroup *cgrp) 438 { 439 struct cgroup *parent = cgroup_parent(cgrp); 440 u16 root_ss_mask = cgrp->root->subsys_mask; 441 442 if (parent) { 443 u16 ss_mask = parent->subtree_control; 444 445 /* threaded cgroups can only have threaded controllers */ 446 if (cgroup_is_threaded(cgrp)) 447 ss_mask &= cgrp_dfl_threaded_ss_mask; 448 return ss_mask; 449 } 450 451 if (cgroup_on_dfl(cgrp)) 452 root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask | 453 cgrp_dfl_implicit_ss_mask); 454 return root_ss_mask; 455 } 456 457 /* subsystems enabled on a cgroup */ 458 static u16 cgroup_ss_mask(struct cgroup *cgrp) 459 { 460 struct cgroup *parent = cgroup_parent(cgrp); 461 462 if (parent) { 463 u16 ss_mask = parent->subtree_ss_mask; 464 465 /* threaded cgroups can only have threaded controllers */ 466 if (cgroup_is_threaded(cgrp)) 467 ss_mask &= cgrp_dfl_threaded_ss_mask; 468 return ss_mask; 469 } 470 471 return cgrp->root->subsys_mask; 472 } 473 474 /** 475 * cgroup_css - obtain a cgroup's css for the specified subsystem 476 * @cgrp: the cgroup of interest 477 * @ss: the subsystem of interest (%NULL returns @cgrp->self) 478 * 479 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This 480 * function must be called either under cgroup_mutex or rcu_read_lock() and 481 * the caller is responsible for pinning the returned css if it wants to 482 * keep accessing it outside the said locks. This function may return 483 * %NULL if @cgrp doesn't have @subsys_id enabled. 484 */ 485 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp, 486 struct cgroup_subsys *ss) 487 { 488 if (CGROUP_HAS_SUBSYS_CONFIG && ss) 489 return rcu_dereference_check(cgrp->subsys[ss->id], 490 lockdep_is_held(&cgroup_mutex)); 491 else 492 return &cgrp->self; 493 } 494 495 /** 496 * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss 497 * @cgrp: the cgroup of interest 498 * @ss: the subsystem of interest (%NULL returns @cgrp->self) 499 * 500 * Similar to cgroup_css() but returns the effective css, which is defined 501 * as the matching css of the nearest ancestor including self which has @ss 502 * enabled. If @ss is associated with the hierarchy @cgrp is on, this 503 * function is guaranteed to return non-NULL css. 504 */ 505 static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp, 506 struct cgroup_subsys *ss) 507 { 508 lockdep_assert_held(&cgroup_mutex); 509 510 if (!ss) 511 return &cgrp->self; 512 513 /* 514 * This function is used while updating css associations and thus 515 * can't test the csses directly. Test ss_mask. 516 */ 517 while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) { 518 cgrp = cgroup_parent(cgrp); 519 if (!cgrp) 520 return NULL; 521 } 522 523 return cgroup_css(cgrp, ss); 524 } 525 526 /** 527 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem 528 * @cgrp: the cgroup of interest 529 * @ss: the subsystem of interest 530 * 531 * Find and get the effective css of @cgrp for @ss. The effective css is 532 * defined as the matching css of the nearest ancestor including self which 533 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on, 534 * the root css is returned, so this function always returns a valid css. 535 * 536 * The returned css is not guaranteed to be online, and therefore it is the 537 * callers responsibility to try get a reference for it. 538 */ 539 struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp, 540 struct cgroup_subsys *ss) 541 { 542 struct cgroup_subsys_state *css; 543 544 if (!CGROUP_HAS_SUBSYS_CONFIG) 545 return NULL; 546 547 do { 548 css = cgroup_css(cgrp, ss); 549 550 if (css) 551 return css; 552 cgrp = cgroup_parent(cgrp); 553 } while (cgrp); 554 555 return init_css_set.subsys[ss->id]; 556 } 557 558 /** 559 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem 560 * @cgrp: the cgroup of interest 561 * @ss: the subsystem of interest 562 * 563 * Find and get the effective css of @cgrp for @ss. The effective css is 564 * defined as the matching css of the nearest ancestor including self which 565 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on, 566 * the root css is returned, so this function always returns a valid css. 567 * The returned css must be put using css_put(). 568 */ 569 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp, 570 struct cgroup_subsys *ss) 571 { 572 struct cgroup_subsys_state *css; 573 574 if (!CGROUP_HAS_SUBSYS_CONFIG) 575 return NULL; 576 577 rcu_read_lock(); 578 579 do { 580 css = cgroup_css(cgrp, ss); 581 582 if (css && css_tryget_online(css)) 583 goto out_unlock; 584 cgrp = cgroup_parent(cgrp); 585 } while (cgrp); 586 587 css = init_css_set.subsys[ss->id]; 588 css_get(css); 589 out_unlock: 590 rcu_read_unlock(); 591 return css; 592 } 593 EXPORT_SYMBOL_GPL(cgroup_get_e_css); 594 595 static void cgroup_get_live(struct cgroup *cgrp) 596 { 597 WARN_ON_ONCE(cgroup_is_dead(cgrp)); 598 cgroup_get(cgrp); 599 } 600 601 /** 602 * __cgroup_task_count - count the number of tasks in a cgroup. The caller 603 * is responsible for taking the css_set_lock. 604 * @cgrp: the cgroup in question 605 */ 606 int __cgroup_task_count(const struct cgroup *cgrp) 607 { 608 int count = 0; 609 struct cgrp_cset_link *link; 610 611 lockdep_assert_held(&css_set_lock); 612 613 list_for_each_entry(link, &cgrp->cset_links, cset_link) 614 count += link->cset->nr_tasks; 615 616 return count; 617 } 618 619 /** 620 * cgroup_task_count - count the number of tasks in a cgroup. 621 * @cgrp: the cgroup in question 622 */ 623 int cgroup_task_count(const struct cgroup *cgrp) 624 { 625 int count; 626 627 spin_lock_irq(&css_set_lock); 628 count = __cgroup_task_count(cgrp); 629 spin_unlock_irq(&css_set_lock); 630 631 return count; 632 } 633 634 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of) 635 { 636 struct cgroup *cgrp = of->kn->parent->priv; 637 struct cftype *cft = of_cft(of); 638 639 /* 640 * This is open and unprotected implementation of cgroup_css(). 641 * seq_css() is only called from a kernfs file operation which has 642 * an active reference on the file. Because all the subsystem 643 * files are drained before a css is disassociated with a cgroup, 644 * the matching css from the cgroup's subsys table is guaranteed to 645 * be and stay valid until the enclosing operation is complete. 646 */ 647 if (CGROUP_HAS_SUBSYS_CONFIG && cft->ss) 648 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]); 649 else 650 return &cgrp->self; 651 } 652 EXPORT_SYMBOL_GPL(of_css); 653 654 /** 655 * for_each_css - iterate all css's of a cgroup 656 * @css: the iteration cursor 657 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end 658 * @cgrp: the target cgroup to iterate css's of 659 * 660 * Should be called under cgroup_mutex. 661 */ 662 #define for_each_css(css, ssid, cgrp) \ 663 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \ 664 if (!((css) = rcu_dereference_check( \ 665 (cgrp)->subsys[(ssid)], \ 666 lockdep_is_held(&cgroup_mutex)))) { } \ 667 else 668 669 /** 670 * do_each_subsys_mask - filter for_each_subsys with a bitmask 671 * @ss: the iteration cursor 672 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end 673 * @ss_mask: the bitmask 674 * 675 * The block will only run for cases where the ssid-th bit (1 << ssid) of 676 * @ss_mask is set. 677 */ 678 #define do_each_subsys_mask(ss, ssid, ss_mask) do { \ 679 unsigned long __ss_mask = (ss_mask); \ 680 if (!CGROUP_HAS_SUBSYS_CONFIG) { \ 681 (ssid) = 0; \ 682 break; \ 683 } \ 684 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \ 685 (ss) = cgroup_subsys[ssid]; \ 686 { 687 688 #define while_each_subsys_mask() \ 689 } \ 690 } \ 691 } while (false) 692 693 /* iterate over child cgrps, lock should be held throughout iteration */ 694 #define cgroup_for_each_live_child(child, cgrp) \ 695 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \ 696 if (({ lockdep_assert_held(&cgroup_mutex); \ 697 cgroup_is_dead(child); })) \ 698 ; \ 699 else 700 701 /* walk live descendants in pre order */ 702 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \ 703 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \ 704 if (({ lockdep_assert_held(&cgroup_mutex); \ 705 (dsct) = (d_css)->cgroup; \ 706 cgroup_is_dead(dsct); })) \ 707 ; \ 708 else 709 710 /* walk live descendants in postorder */ 711 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \ 712 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \ 713 if (({ lockdep_assert_held(&cgroup_mutex); \ 714 (dsct) = (d_css)->cgroup; \ 715 cgroup_is_dead(dsct); })) \ 716 ; \ 717 else 718 719 /* 720 * The default css_set - used by init and its children prior to any 721 * hierarchies being mounted. It contains a pointer to the root state 722 * for each subsystem. Also used to anchor the list of css_sets. Not 723 * reference-counted, to improve performance when child cgroups 724 * haven't been created. 725 */ 726 struct css_set init_css_set = { 727 .refcount = REFCOUNT_INIT(1), 728 .dom_cset = &init_css_set, 729 .tasks = LIST_HEAD_INIT(init_css_set.tasks), 730 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks), 731 .dying_tasks = LIST_HEAD_INIT(init_css_set.dying_tasks), 732 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters), 733 .threaded_csets = LIST_HEAD_INIT(init_css_set.threaded_csets), 734 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links), 735 .mg_src_preload_node = LIST_HEAD_INIT(init_css_set.mg_src_preload_node), 736 .mg_dst_preload_node = LIST_HEAD_INIT(init_css_set.mg_dst_preload_node), 737 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node), 738 739 /* 740 * The following field is re-initialized when this cset gets linked 741 * in cgroup_init(). However, let's initialize the field 742 * statically too so that the default cgroup can be accessed safely 743 * early during boot. 744 */ 745 .dfl_cgrp = &cgrp_dfl_root.cgrp, 746 }; 747 748 static int css_set_count = 1; /* 1 for init_css_set */ 749 750 static bool css_set_threaded(struct css_set *cset) 751 { 752 return cset->dom_cset != cset; 753 } 754 755 /** 756 * css_set_populated - does a css_set contain any tasks? 757 * @cset: target css_set 758 * 759 * css_set_populated() should be the same as !!cset->nr_tasks at steady 760 * state. However, css_set_populated() can be called while a task is being 761 * added to or removed from the linked list before the nr_tasks is 762 * properly updated. Hence, we can't just look at ->nr_tasks here. 763 */ 764 static bool css_set_populated(struct css_set *cset) 765 { 766 lockdep_assert_held(&css_set_lock); 767 768 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks); 769 } 770 771 /** 772 * cgroup_update_populated - update the populated count of a cgroup 773 * @cgrp: the target cgroup 774 * @populated: inc or dec populated count 775 * 776 * One of the css_sets associated with @cgrp is either getting its first 777 * task or losing the last. Update @cgrp->nr_populated_* accordingly. The 778 * count is propagated towards root so that a given cgroup's 779 * nr_populated_children is zero iff none of its descendants contain any 780 * tasks. 781 * 782 * @cgrp's interface file "cgroup.populated" is zero if both 783 * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and 784 * 1 otherwise. When the sum changes from or to zero, userland is notified 785 * that the content of the interface file has changed. This can be used to 786 * detect when @cgrp and its descendants become populated or empty. 787 */ 788 static void cgroup_update_populated(struct cgroup *cgrp, bool populated) 789 { 790 struct cgroup *child = NULL; 791 int adj = populated ? 1 : -1; 792 793 lockdep_assert_held(&css_set_lock); 794 795 do { 796 bool was_populated = cgroup_is_populated(cgrp); 797 798 if (!child) { 799 cgrp->nr_populated_csets += adj; 800 } else { 801 if (cgroup_is_threaded(child)) 802 cgrp->nr_populated_threaded_children += adj; 803 else 804 cgrp->nr_populated_domain_children += adj; 805 } 806 807 if (was_populated == cgroup_is_populated(cgrp)) 808 break; 809 810 cgroup1_check_for_release(cgrp); 811 TRACE_CGROUP_PATH(notify_populated, cgrp, 812 cgroup_is_populated(cgrp)); 813 cgroup_file_notify(&cgrp->events_file); 814 815 child = cgrp; 816 cgrp = cgroup_parent(cgrp); 817 } while (cgrp); 818 } 819 820 /** 821 * css_set_update_populated - update populated state of a css_set 822 * @cset: target css_set 823 * @populated: whether @cset is populated or depopulated 824 * 825 * @cset is either getting the first task or losing the last. Update the 826 * populated counters of all associated cgroups accordingly. 827 */ 828 static void css_set_update_populated(struct css_set *cset, bool populated) 829 { 830 struct cgrp_cset_link *link; 831 832 lockdep_assert_held(&css_set_lock); 833 834 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) 835 cgroup_update_populated(link->cgrp, populated); 836 } 837 838 /* 839 * @task is leaving, advance task iterators which are pointing to it so 840 * that they can resume at the next position. Advancing an iterator might 841 * remove it from the list, use safe walk. See css_task_iter_skip() for 842 * details. 843 */ 844 static void css_set_skip_task_iters(struct css_set *cset, 845 struct task_struct *task) 846 { 847 struct css_task_iter *it, *pos; 848 849 list_for_each_entry_safe(it, pos, &cset->task_iters, iters_node) 850 css_task_iter_skip(it, task); 851 } 852 853 /** 854 * css_set_move_task - move a task from one css_set to another 855 * @task: task being moved 856 * @from_cset: css_set @task currently belongs to (may be NULL) 857 * @to_cset: new css_set @task is being moved to (may be NULL) 858 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks 859 * 860 * Move @task from @from_cset to @to_cset. If @task didn't belong to any 861 * css_set, @from_cset can be NULL. If @task is being disassociated 862 * instead of moved, @to_cset can be NULL. 863 * 864 * This function automatically handles populated counter updates and 865 * css_task_iter adjustments but the caller is responsible for managing 866 * @from_cset and @to_cset's reference counts. 867 */ 868 static void css_set_move_task(struct task_struct *task, 869 struct css_set *from_cset, struct css_set *to_cset, 870 bool use_mg_tasks) 871 { 872 lockdep_assert_held(&css_set_lock); 873 874 if (to_cset && !css_set_populated(to_cset)) 875 css_set_update_populated(to_cset, true); 876 877 if (from_cset) { 878 WARN_ON_ONCE(list_empty(&task->cg_list)); 879 880 css_set_skip_task_iters(from_cset, task); 881 list_del_init(&task->cg_list); 882 if (!css_set_populated(from_cset)) 883 css_set_update_populated(from_cset, false); 884 } else { 885 WARN_ON_ONCE(!list_empty(&task->cg_list)); 886 } 887 888 if (to_cset) { 889 /* 890 * We are synchronized through cgroup_threadgroup_rwsem 891 * against PF_EXITING setting such that we can't race 892 * against cgroup_exit()/cgroup_free() dropping the css_set. 893 */ 894 WARN_ON_ONCE(task->flags & PF_EXITING); 895 896 cgroup_move_task(task, to_cset); 897 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks : 898 &to_cset->tasks); 899 } 900 } 901 902 /* 903 * hash table for cgroup groups. This improves the performance to find 904 * an existing css_set. This hash doesn't (currently) take into 905 * account cgroups in empty hierarchies. 906 */ 907 #define CSS_SET_HASH_BITS 7 908 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS); 909 910 static unsigned long css_set_hash(struct cgroup_subsys_state **css) 911 { 912 unsigned long key = 0UL; 913 struct cgroup_subsys *ss; 914 int i; 915 916 for_each_subsys(ss, i) 917 key += (unsigned long)css[i]; 918 key = (key >> 16) ^ key; 919 920 return key; 921 } 922 923 void put_css_set_locked(struct css_set *cset) 924 { 925 struct cgrp_cset_link *link, *tmp_link; 926 struct cgroup_subsys *ss; 927 int ssid; 928 929 lockdep_assert_held(&css_set_lock); 930 931 if (!refcount_dec_and_test(&cset->refcount)) 932 return; 933 934 WARN_ON_ONCE(!list_empty(&cset->threaded_csets)); 935 936 /* This css_set is dead. Unlink it and release cgroup and css refs */ 937 for_each_subsys(ss, ssid) { 938 list_del(&cset->e_cset_node[ssid]); 939 css_put(cset->subsys[ssid]); 940 } 941 hash_del(&cset->hlist); 942 css_set_count--; 943 944 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) { 945 list_del(&link->cset_link); 946 list_del(&link->cgrp_link); 947 if (cgroup_parent(link->cgrp)) 948 cgroup_put(link->cgrp); 949 kfree(link); 950 } 951 952 if (css_set_threaded(cset)) { 953 list_del(&cset->threaded_csets_node); 954 put_css_set_locked(cset->dom_cset); 955 } 956 957 kfree_rcu(cset, rcu_head); 958 } 959 960 /** 961 * compare_css_sets - helper function for find_existing_css_set(). 962 * @cset: candidate css_set being tested 963 * @old_cset: existing css_set for a task 964 * @new_cgrp: cgroup that's being entered by the task 965 * @template: desired set of css pointers in css_set (pre-calculated) 966 * 967 * Returns true if "cset" matches "old_cset" except for the hierarchy 968 * which "new_cgrp" belongs to, for which it should match "new_cgrp". 969 */ 970 static bool compare_css_sets(struct css_set *cset, 971 struct css_set *old_cset, 972 struct cgroup *new_cgrp, 973 struct cgroup_subsys_state *template[]) 974 { 975 struct cgroup *new_dfl_cgrp; 976 struct list_head *l1, *l2; 977 978 /* 979 * On the default hierarchy, there can be csets which are 980 * associated with the same set of cgroups but different csses. 981 * Let's first ensure that csses match. 982 */ 983 if (memcmp(template, cset->subsys, sizeof(cset->subsys))) 984 return false; 985 986 987 /* @cset's domain should match the default cgroup's */ 988 if (cgroup_on_dfl(new_cgrp)) 989 new_dfl_cgrp = new_cgrp; 990 else 991 new_dfl_cgrp = old_cset->dfl_cgrp; 992 993 if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp) 994 return false; 995 996 /* 997 * Compare cgroup pointers in order to distinguish between 998 * different cgroups in hierarchies. As different cgroups may 999 * share the same effective css, this comparison is always 1000 * necessary. 1001 */ 1002 l1 = &cset->cgrp_links; 1003 l2 = &old_cset->cgrp_links; 1004 while (1) { 1005 struct cgrp_cset_link *link1, *link2; 1006 struct cgroup *cgrp1, *cgrp2; 1007 1008 l1 = l1->next; 1009 l2 = l2->next; 1010 /* See if we reached the end - both lists are equal length. */ 1011 if (l1 == &cset->cgrp_links) { 1012 BUG_ON(l2 != &old_cset->cgrp_links); 1013 break; 1014 } else { 1015 BUG_ON(l2 == &old_cset->cgrp_links); 1016 } 1017 /* Locate the cgroups associated with these links. */ 1018 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link); 1019 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link); 1020 cgrp1 = link1->cgrp; 1021 cgrp2 = link2->cgrp; 1022 /* Hierarchies should be linked in the same order. */ 1023 BUG_ON(cgrp1->root != cgrp2->root); 1024 1025 /* 1026 * If this hierarchy is the hierarchy of the cgroup 1027 * that's changing, then we need to check that this 1028 * css_set points to the new cgroup; if it's any other 1029 * hierarchy, then this css_set should point to the 1030 * same cgroup as the old css_set. 1031 */ 1032 if (cgrp1->root == new_cgrp->root) { 1033 if (cgrp1 != new_cgrp) 1034 return false; 1035 } else { 1036 if (cgrp1 != cgrp2) 1037 return false; 1038 } 1039 } 1040 return true; 1041 } 1042 1043 /** 1044 * find_existing_css_set - init css array and find the matching css_set 1045 * @old_cset: the css_set that we're using before the cgroup transition 1046 * @cgrp: the cgroup that we're moving into 1047 * @template: out param for the new set of csses, should be clear on entry 1048 */ 1049 static struct css_set *find_existing_css_set(struct css_set *old_cset, 1050 struct cgroup *cgrp, 1051 struct cgroup_subsys_state **template) 1052 { 1053 struct cgroup_root *root = cgrp->root; 1054 struct cgroup_subsys *ss; 1055 struct css_set *cset; 1056 unsigned long key; 1057 int i; 1058 1059 /* 1060 * Build the set of subsystem state objects that we want to see in the 1061 * new css_set. While subsystems can change globally, the entries here 1062 * won't change, so no need for locking. 1063 */ 1064 for_each_subsys(ss, i) { 1065 if (root->subsys_mask & (1UL << i)) { 1066 /* 1067 * @ss is in this hierarchy, so we want the 1068 * effective css from @cgrp. 1069 */ 1070 template[i] = cgroup_e_css_by_mask(cgrp, ss); 1071 } else { 1072 /* 1073 * @ss is not in this hierarchy, so we don't want 1074 * to change the css. 1075 */ 1076 template[i] = old_cset->subsys[i]; 1077 } 1078 } 1079 1080 key = css_set_hash(template); 1081 hash_for_each_possible(css_set_table, cset, hlist, key) { 1082 if (!compare_css_sets(cset, old_cset, cgrp, template)) 1083 continue; 1084 1085 /* This css_set matches what we need */ 1086 return cset; 1087 } 1088 1089 /* No existing cgroup group matched */ 1090 return NULL; 1091 } 1092 1093 static void free_cgrp_cset_links(struct list_head *links_to_free) 1094 { 1095 struct cgrp_cset_link *link, *tmp_link; 1096 1097 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) { 1098 list_del(&link->cset_link); 1099 kfree(link); 1100 } 1101 } 1102 1103 /** 1104 * allocate_cgrp_cset_links - allocate cgrp_cset_links 1105 * @count: the number of links to allocate 1106 * @tmp_links: list_head the allocated links are put on 1107 * 1108 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links 1109 * through ->cset_link. Returns 0 on success or -errno. 1110 */ 1111 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links) 1112 { 1113 struct cgrp_cset_link *link; 1114 int i; 1115 1116 INIT_LIST_HEAD(tmp_links); 1117 1118 for (i = 0; i < count; i++) { 1119 link = kzalloc(sizeof(*link), GFP_KERNEL); 1120 if (!link) { 1121 free_cgrp_cset_links(tmp_links); 1122 return -ENOMEM; 1123 } 1124 list_add(&link->cset_link, tmp_links); 1125 } 1126 return 0; 1127 } 1128 1129 /** 1130 * link_css_set - a helper function to link a css_set to a cgroup 1131 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links() 1132 * @cset: the css_set to be linked 1133 * @cgrp: the destination cgroup 1134 */ 1135 static void link_css_set(struct list_head *tmp_links, struct css_set *cset, 1136 struct cgroup *cgrp) 1137 { 1138 struct cgrp_cset_link *link; 1139 1140 BUG_ON(list_empty(tmp_links)); 1141 1142 if (cgroup_on_dfl(cgrp)) 1143 cset->dfl_cgrp = cgrp; 1144 1145 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link); 1146 link->cset = cset; 1147 link->cgrp = cgrp; 1148 1149 /* 1150 * Always add links to the tail of the lists so that the lists are 1151 * in chronological order. 1152 */ 1153 list_move_tail(&link->cset_link, &cgrp->cset_links); 1154 list_add_tail(&link->cgrp_link, &cset->cgrp_links); 1155 1156 if (cgroup_parent(cgrp)) 1157 cgroup_get_live(cgrp); 1158 } 1159 1160 /** 1161 * find_css_set - return a new css_set with one cgroup updated 1162 * @old_cset: the baseline css_set 1163 * @cgrp: the cgroup to be updated 1164 * 1165 * Return a new css_set that's equivalent to @old_cset, but with @cgrp 1166 * substituted into the appropriate hierarchy. 1167 */ 1168 static struct css_set *find_css_set(struct css_set *old_cset, 1169 struct cgroup *cgrp) 1170 { 1171 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { }; 1172 struct css_set *cset; 1173 struct list_head tmp_links; 1174 struct cgrp_cset_link *link; 1175 struct cgroup_subsys *ss; 1176 unsigned long key; 1177 int ssid; 1178 1179 lockdep_assert_held(&cgroup_mutex); 1180 1181 /* First see if we already have a cgroup group that matches 1182 * the desired set */ 1183 spin_lock_irq(&css_set_lock); 1184 cset = find_existing_css_set(old_cset, cgrp, template); 1185 if (cset) 1186 get_css_set(cset); 1187 spin_unlock_irq(&css_set_lock); 1188 1189 if (cset) 1190 return cset; 1191 1192 cset = kzalloc(sizeof(*cset), GFP_KERNEL); 1193 if (!cset) 1194 return NULL; 1195 1196 /* Allocate all the cgrp_cset_link objects that we'll need */ 1197 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) { 1198 kfree(cset); 1199 return NULL; 1200 } 1201 1202 refcount_set(&cset->refcount, 1); 1203 cset->dom_cset = cset; 1204 INIT_LIST_HEAD(&cset->tasks); 1205 INIT_LIST_HEAD(&cset->mg_tasks); 1206 INIT_LIST_HEAD(&cset->dying_tasks); 1207 INIT_LIST_HEAD(&cset->task_iters); 1208 INIT_LIST_HEAD(&cset->threaded_csets); 1209 INIT_HLIST_NODE(&cset->hlist); 1210 INIT_LIST_HEAD(&cset->cgrp_links); 1211 INIT_LIST_HEAD(&cset->mg_src_preload_node); 1212 INIT_LIST_HEAD(&cset->mg_dst_preload_node); 1213 INIT_LIST_HEAD(&cset->mg_node); 1214 1215 /* Copy the set of subsystem state objects generated in 1216 * find_existing_css_set() */ 1217 memcpy(cset->subsys, template, sizeof(cset->subsys)); 1218 1219 spin_lock_irq(&css_set_lock); 1220 /* Add reference counts and links from the new css_set. */ 1221 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) { 1222 struct cgroup *c = link->cgrp; 1223 1224 if (c->root == cgrp->root) 1225 c = cgrp; 1226 link_css_set(&tmp_links, cset, c); 1227 } 1228 1229 BUG_ON(!list_empty(&tmp_links)); 1230 1231 css_set_count++; 1232 1233 /* Add @cset to the hash table */ 1234 key = css_set_hash(cset->subsys); 1235 hash_add(css_set_table, &cset->hlist, key); 1236 1237 for_each_subsys(ss, ssid) { 1238 struct cgroup_subsys_state *css = cset->subsys[ssid]; 1239 1240 list_add_tail(&cset->e_cset_node[ssid], 1241 &css->cgroup->e_csets[ssid]); 1242 css_get(css); 1243 } 1244 1245 spin_unlock_irq(&css_set_lock); 1246 1247 /* 1248 * If @cset should be threaded, look up the matching dom_cset and 1249 * link them up. We first fully initialize @cset then look for the 1250 * dom_cset. It's simpler this way and safe as @cset is guaranteed 1251 * to stay empty until we return. 1252 */ 1253 if (cgroup_is_threaded(cset->dfl_cgrp)) { 1254 struct css_set *dcset; 1255 1256 dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp); 1257 if (!dcset) { 1258 put_css_set(cset); 1259 return NULL; 1260 } 1261 1262 spin_lock_irq(&css_set_lock); 1263 cset->dom_cset = dcset; 1264 list_add_tail(&cset->threaded_csets_node, 1265 &dcset->threaded_csets); 1266 spin_unlock_irq(&css_set_lock); 1267 } 1268 1269 return cset; 1270 } 1271 1272 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root) 1273 { 1274 struct cgroup *root_cgrp = kernfs_root_to_node(kf_root)->priv; 1275 1276 return root_cgrp->root; 1277 } 1278 1279 void cgroup_favor_dynmods(struct cgroup_root *root, bool favor) 1280 { 1281 bool favoring = root->flags & CGRP_ROOT_FAVOR_DYNMODS; 1282 1283 /* see the comment above CGRP_ROOT_FAVOR_DYNMODS definition */ 1284 if (favor && !favoring) { 1285 rcu_sync_enter(&cgroup_threadgroup_rwsem.rss); 1286 root->flags |= CGRP_ROOT_FAVOR_DYNMODS; 1287 } else if (!favor && favoring) { 1288 rcu_sync_exit(&cgroup_threadgroup_rwsem.rss); 1289 root->flags &= ~CGRP_ROOT_FAVOR_DYNMODS; 1290 } 1291 } 1292 1293 static int cgroup_init_root_id(struct cgroup_root *root) 1294 { 1295 int id; 1296 1297 lockdep_assert_held(&cgroup_mutex); 1298 1299 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL); 1300 if (id < 0) 1301 return id; 1302 1303 root->hierarchy_id = id; 1304 return 0; 1305 } 1306 1307 static void cgroup_exit_root_id(struct cgroup_root *root) 1308 { 1309 lockdep_assert_held(&cgroup_mutex); 1310 1311 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id); 1312 } 1313 1314 void cgroup_free_root(struct cgroup_root *root) 1315 { 1316 kfree_rcu(root, rcu); 1317 } 1318 1319 static void cgroup_destroy_root(struct cgroup_root *root) 1320 { 1321 struct cgroup *cgrp = &root->cgrp; 1322 struct cgrp_cset_link *link, *tmp_link; 1323 1324 trace_cgroup_destroy_root(root); 1325 1326 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp); 1327 1328 BUG_ON(atomic_read(&root->nr_cgrps)); 1329 BUG_ON(!list_empty(&cgrp->self.children)); 1330 1331 /* Rebind all subsystems back to the default hierarchy */ 1332 WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask)); 1333 1334 /* 1335 * Release all the links from cset_links to this hierarchy's 1336 * root cgroup 1337 */ 1338 spin_lock_irq(&css_set_lock); 1339 1340 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) { 1341 list_del(&link->cset_link); 1342 list_del(&link->cgrp_link); 1343 kfree(link); 1344 } 1345 1346 spin_unlock_irq(&css_set_lock); 1347 1348 if (!list_empty(&root->root_list)) { 1349 list_del_rcu(&root->root_list); 1350 cgroup_root_count--; 1351 } 1352 1353 cgroup_favor_dynmods(root, false); 1354 cgroup_exit_root_id(root); 1355 1356 cgroup_unlock(); 1357 1358 cgroup_rstat_exit(cgrp); 1359 kernfs_destroy_root(root->kf_root); 1360 cgroup_free_root(root); 1361 } 1362 1363 /* 1364 * Returned cgroup is without refcount but it's valid as long as cset pins it. 1365 */ 1366 static inline struct cgroup *__cset_cgroup_from_root(struct css_set *cset, 1367 struct cgroup_root *root) 1368 { 1369 struct cgroup *res_cgroup = NULL; 1370 1371 if (cset == &init_css_set) { 1372 res_cgroup = &root->cgrp; 1373 } else if (root == &cgrp_dfl_root) { 1374 res_cgroup = cset->dfl_cgrp; 1375 } else { 1376 struct cgrp_cset_link *link; 1377 lockdep_assert_held(&css_set_lock); 1378 1379 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) { 1380 struct cgroup *c = link->cgrp; 1381 1382 if (c->root == root) { 1383 res_cgroup = c; 1384 break; 1385 } 1386 } 1387 } 1388 1389 /* 1390 * If cgroup_mutex is not held, the cgrp_cset_link will be freed 1391 * before we remove the cgroup root from the root_list. Consequently, 1392 * when accessing a cgroup root, the cset_link may have already been 1393 * freed, resulting in a NULL res_cgroup. However, by holding the 1394 * cgroup_mutex, we ensure that res_cgroup can't be NULL. 1395 * If we don't hold cgroup_mutex in the caller, we must do the NULL 1396 * check. 1397 */ 1398 return res_cgroup; 1399 } 1400 1401 /* 1402 * look up cgroup associated with current task's cgroup namespace on the 1403 * specified hierarchy 1404 */ 1405 static struct cgroup * 1406 current_cgns_cgroup_from_root(struct cgroup_root *root) 1407 { 1408 struct cgroup *res = NULL; 1409 struct css_set *cset; 1410 1411 lockdep_assert_held(&css_set_lock); 1412 1413 rcu_read_lock(); 1414 1415 cset = current->nsproxy->cgroup_ns->root_cset; 1416 res = __cset_cgroup_from_root(cset, root); 1417 1418 rcu_read_unlock(); 1419 1420 return res; 1421 } 1422 1423 /* 1424 * Look up cgroup associated with current task's cgroup namespace on the default 1425 * hierarchy. 1426 * 1427 * Unlike current_cgns_cgroup_from_root(), this doesn't need locks: 1428 * - Internal rcu_read_lock is unnecessary because we don't dereference any rcu 1429 * pointers. 1430 * - css_set_lock is not needed because we just read cset->dfl_cgrp. 1431 * - As a bonus returned cgrp is pinned with the current because it cannot 1432 * switch cgroup_ns asynchronously. 1433 */ 1434 static struct cgroup *current_cgns_cgroup_dfl(void) 1435 { 1436 struct css_set *cset; 1437 1438 if (current->nsproxy) { 1439 cset = current->nsproxy->cgroup_ns->root_cset; 1440 return __cset_cgroup_from_root(cset, &cgrp_dfl_root); 1441 } else { 1442 /* 1443 * NOTE: This function may be called from bpf_cgroup_from_id() 1444 * on a task which has already passed exit_task_namespaces() and 1445 * nsproxy == NULL. Fall back to cgrp_dfl_root which will make all 1446 * cgroups visible for lookups. 1447 */ 1448 return &cgrp_dfl_root.cgrp; 1449 } 1450 } 1451 1452 /* look up cgroup associated with given css_set on the specified hierarchy */ 1453 static struct cgroup *cset_cgroup_from_root(struct css_set *cset, 1454 struct cgroup_root *root) 1455 { 1456 lockdep_assert_held(&css_set_lock); 1457 1458 return __cset_cgroup_from_root(cset, root); 1459 } 1460 1461 /* 1462 * Return the cgroup for "task" from the given hierarchy. Must be 1463 * called with css_set_lock held to prevent task's groups from being modified. 1464 * Must be called with either cgroup_mutex or rcu read lock to prevent the 1465 * cgroup root from being destroyed. 1466 */ 1467 struct cgroup *task_cgroup_from_root(struct task_struct *task, 1468 struct cgroup_root *root) 1469 { 1470 /* 1471 * No need to lock the task - since we hold css_set_lock the 1472 * task can't change groups. 1473 */ 1474 return cset_cgroup_from_root(task_css_set(task), root); 1475 } 1476 1477 /* 1478 * A task must hold cgroup_mutex to modify cgroups. 1479 * 1480 * Any task can increment and decrement the count field without lock. 1481 * So in general, code holding cgroup_mutex can't rely on the count 1482 * field not changing. However, if the count goes to zero, then only 1483 * cgroup_attach_task() can increment it again. Because a count of zero 1484 * means that no tasks are currently attached, therefore there is no 1485 * way a task attached to that cgroup can fork (the other way to 1486 * increment the count). So code holding cgroup_mutex can safely 1487 * assume that if the count is zero, it will stay zero. Similarly, if 1488 * a task holds cgroup_mutex on a cgroup with zero count, it 1489 * knows that the cgroup won't be removed, as cgroup_rmdir() 1490 * needs that mutex. 1491 * 1492 * A cgroup can only be deleted if both its 'count' of using tasks 1493 * is zero, and its list of 'children' cgroups is empty. Since all 1494 * tasks in the system use _some_ cgroup, and since there is always at 1495 * least one task in the system (init, pid == 1), therefore, root cgroup 1496 * always has either children cgroups and/or using tasks. So we don't 1497 * need a special hack to ensure that root cgroup cannot be deleted. 1498 * 1499 * P.S. One more locking exception. RCU is used to guard the 1500 * update of a tasks cgroup pointer by cgroup_attach_task() 1501 */ 1502 1503 static struct kernfs_syscall_ops cgroup_kf_syscall_ops; 1504 1505 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft, 1506 char *buf) 1507 { 1508 struct cgroup_subsys *ss = cft->ss; 1509 1510 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) && 1511 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) { 1512 const char *dbg = (cft->flags & CFTYPE_DEBUG) ? ".__DEBUG__." : ""; 1513 1514 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s%s.%s", 1515 dbg, cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name, 1516 cft->name); 1517 } else { 1518 strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX); 1519 } 1520 return buf; 1521 } 1522 1523 /** 1524 * cgroup_file_mode - deduce file mode of a control file 1525 * @cft: the control file in question 1526 * 1527 * S_IRUGO for read, S_IWUSR for write. 1528 */ 1529 static umode_t cgroup_file_mode(const struct cftype *cft) 1530 { 1531 umode_t mode = 0; 1532 1533 if (cft->read_u64 || cft->read_s64 || cft->seq_show) 1534 mode |= S_IRUGO; 1535 1536 if (cft->write_u64 || cft->write_s64 || cft->write) { 1537 if (cft->flags & CFTYPE_WORLD_WRITABLE) 1538 mode |= S_IWUGO; 1539 else 1540 mode |= S_IWUSR; 1541 } 1542 1543 return mode; 1544 } 1545 1546 /** 1547 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask 1548 * @subtree_control: the new subtree_control mask to consider 1549 * @this_ss_mask: available subsystems 1550 * 1551 * On the default hierarchy, a subsystem may request other subsystems to be 1552 * enabled together through its ->depends_on mask. In such cases, more 1553 * subsystems than specified in "cgroup.subtree_control" may be enabled. 1554 * 1555 * This function calculates which subsystems need to be enabled if 1556 * @subtree_control is to be applied while restricted to @this_ss_mask. 1557 */ 1558 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask) 1559 { 1560 u16 cur_ss_mask = subtree_control; 1561 struct cgroup_subsys *ss; 1562 int ssid; 1563 1564 lockdep_assert_held(&cgroup_mutex); 1565 1566 cur_ss_mask |= cgrp_dfl_implicit_ss_mask; 1567 1568 while (true) { 1569 u16 new_ss_mask = cur_ss_mask; 1570 1571 do_each_subsys_mask(ss, ssid, cur_ss_mask) { 1572 new_ss_mask |= ss->depends_on; 1573 } while_each_subsys_mask(); 1574 1575 /* 1576 * Mask out subsystems which aren't available. This can 1577 * happen only if some depended-upon subsystems were bound 1578 * to non-default hierarchies. 1579 */ 1580 new_ss_mask &= this_ss_mask; 1581 1582 if (new_ss_mask == cur_ss_mask) 1583 break; 1584 cur_ss_mask = new_ss_mask; 1585 } 1586 1587 return cur_ss_mask; 1588 } 1589 1590 /** 1591 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods 1592 * @kn: the kernfs_node being serviced 1593 * 1594 * This helper undoes cgroup_kn_lock_live() and should be invoked before 1595 * the method finishes if locking succeeded. Note that once this function 1596 * returns the cgroup returned by cgroup_kn_lock_live() may become 1597 * inaccessible any time. If the caller intends to continue to access the 1598 * cgroup, it should pin it before invoking this function. 1599 */ 1600 void cgroup_kn_unlock(struct kernfs_node *kn) 1601 { 1602 struct cgroup *cgrp; 1603 1604 if (kernfs_type(kn) == KERNFS_DIR) 1605 cgrp = kn->priv; 1606 else 1607 cgrp = kn->parent->priv; 1608 1609 cgroup_unlock(); 1610 1611 kernfs_unbreak_active_protection(kn); 1612 cgroup_put(cgrp); 1613 } 1614 1615 /** 1616 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods 1617 * @kn: the kernfs_node being serviced 1618 * @drain_offline: perform offline draining on the cgroup 1619 * 1620 * This helper is to be used by a cgroup kernfs method currently servicing 1621 * @kn. It breaks the active protection, performs cgroup locking and 1622 * verifies that the associated cgroup is alive. Returns the cgroup if 1623 * alive; otherwise, %NULL. A successful return should be undone by a 1624 * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the 1625 * cgroup is drained of offlining csses before return. 1626 * 1627 * Any cgroup kernfs method implementation which requires locking the 1628 * associated cgroup should use this helper. It avoids nesting cgroup 1629 * locking under kernfs active protection and allows all kernfs operations 1630 * including self-removal. 1631 */ 1632 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline) 1633 { 1634 struct cgroup *cgrp; 1635 1636 if (kernfs_type(kn) == KERNFS_DIR) 1637 cgrp = kn->priv; 1638 else 1639 cgrp = kn->parent->priv; 1640 1641 /* 1642 * We're gonna grab cgroup_mutex which nests outside kernfs 1643 * active_ref. cgroup liveliness check alone provides enough 1644 * protection against removal. Ensure @cgrp stays accessible and 1645 * break the active_ref protection. 1646 */ 1647 if (!cgroup_tryget(cgrp)) 1648 return NULL; 1649 kernfs_break_active_protection(kn); 1650 1651 if (drain_offline) 1652 cgroup_lock_and_drain_offline(cgrp); 1653 else 1654 cgroup_lock(); 1655 1656 if (!cgroup_is_dead(cgrp)) 1657 return cgrp; 1658 1659 cgroup_kn_unlock(kn); 1660 return NULL; 1661 } 1662 1663 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft) 1664 { 1665 char name[CGROUP_FILE_NAME_MAX]; 1666 1667 lockdep_assert_held(&cgroup_mutex); 1668 1669 if (cft->file_offset) { 1670 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss); 1671 struct cgroup_file *cfile = (void *)css + cft->file_offset; 1672 1673 spin_lock_irq(&cgroup_file_kn_lock); 1674 cfile->kn = NULL; 1675 spin_unlock_irq(&cgroup_file_kn_lock); 1676 1677 del_timer_sync(&cfile->notify_timer); 1678 } 1679 1680 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name)); 1681 } 1682 1683 /** 1684 * css_clear_dir - remove subsys files in a cgroup directory 1685 * @css: target css 1686 */ 1687 static void css_clear_dir(struct cgroup_subsys_state *css) 1688 { 1689 struct cgroup *cgrp = css->cgroup; 1690 struct cftype *cfts; 1691 1692 if (!(css->flags & CSS_VISIBLE)) 1693 return; 1694 1695 css->flags &= ~CSS_VISIBLE; 1696 1697 if (!css->ss) { 1698 if (cgroup_on_dfl(cgrp)) { 1699 cgroup_addrm_files(css, cgrp, 1700 cgroup_base_files, false); 1701 if (cgroup_psi_enabled()) 1702 cgroup_addrm_files(css, cgrp, 1703 cgroup_psi_files, false); 1704 } else { 1705 cgroup_addrm_files(css, cgrp, 1706 cgroup1_base_files, false); 1707 } 1708 } else { 1709 list_for_each_entry(cfts, &css->ss->cfts, node) 1710 cgroup_addrm_files(css, cgrp, cfts, false); 1711 } 1712 } 1713 1714 /** 1715 * css_populate_dir - create subsys files in a cgroup directory 1716 * @css: target css 1717 * 1718 * On failure, no file is added. 1719 */ 1720 static int css_populate_dir(struct cgroup_subsys_state *css) 1721 { 1722 struct cgroup *cgrp = css->cgroup; 1723 struct cftype *cfts, *failed_cfts; 1724 int ret; 1725 1726 if (css->flags & CSS_VISIBLE) 1727 return 0; 1728 1729 if (!css->ss) { 1730 if (cgroup_on_dfl(cgrp)) { 1731 ret = cgroup_addrm_files(css, cgrp, 1732 cgroup_base_files, true); 1733 if (ret < 0) 1734 return ret; 1735 1736 if (cgroup_psi_enabled()) { 1737 ret = cgroup_addrm_files(css, cgrp, 1738 cgroup_psi_files, true); 1739 if (ret < 0) 1740 return ret; 1741 } 1742 } else { 1743 cgroup_addrm_files(css, cgrp, 1744 cgroup1_base_files, true); 1745 } 1746 } else { 1747 list_for_each_entry(cfts, &css->ss->cfts, node) { 1748 ret = cgroup_addrm_files(css, cgrp, cfts, true); 1749 if (ret < 0) { 1750 failed_cfts = cfts; 1751 goto err; 1752 } 1753 } 1754 } 1755 1756 css->flags |= CSS_VISIBLE; 1757 1758 return 0; 1759 err: 1760 list_for_each_entry(cfts, &css->ss->cfts, node) { 1761 if (cfts == failed_cfts) 1762 break; 1763 cgroup_addrm_files(css, cgrp, cfts, false); 1764 } 1765 return ret; 1766 } 1767 1768 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask) 1769 { 1770 struct cgroup *dcgrp = &dst_root->cgrp; 1771 struct cgroup_subsys *ss; 1772 int ssid, ret; 1773 u16 dfl_disable_ss_mask = 0; 1774 1775 lockdep_assert_held(&cgroup_mutex); 1776 1777 do_each_subsys_mask(ss, ssid, ss_mask) { 1778 /* 1779 * If @ss has non-root csses attached to it, can't move. 1780 * If @ss is an implicit controller, it is exempt from this 1781 * rule and can be stolen. 1782 */ 1783 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) && 1784 !ss->implicit_on_dfl) 1785 return -EBUSY; 1786 1787 /* can't move between two non-dummy roots either */ 1788 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root) 1789 return -EBUSY; 1790 1791 /* 1792 * Collect ssid's that need to be disabled from default 1793 * hierarchy. 1794 */ 1795 if (ss->root == &cgrp_dfl_root) 1796 dfl_disable_ss_mask |= 1 << ssid; 1797 1798 } while_each_subsys_mask(); 1799 1800 if (dfl_disable_ss_mask) { 1801 struct cgroup *scgrp = &cgrp_dfl_root.cgrp; 1802 1803 /* 1804 * Controllers from default hierarchy that need to be rebound 1805 * are all disabled together in one go. 1806 */ 1807 cgrp_dfl_root.subsys_mask &= ~dfl_disable_ss_mask; 1808 WARN_ON(cgroup_apply_control(scgrp)); 1809 cgroup_finalize_control(scgrp, 0); 1810 } 1811 1812 do_each_subsys_mask(ss, ssid, ss_mask) { 1813 struct cgroup_root *src_root = ss->root; 1814 struct cgroup *scgrp = &src_root->cgrp; 1815 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss); 1816 struct css_set *cset, *cset_pos; 1817 struct css_task_iter *it; 1818 1819 WARN_ON(!css || cgroup_css(dcgrp, ss)); 1820 1821 if (src_root != &cgrp_dfl_root) { 1822 /* disable from the source */ 1823 src_root->subsys_mask &= ~(1 << ssid); 1824 WARN_ON(cgroup_apply_control(scgrp)); 1825 cgroup_finalize_control(scgrp, 0); 1826 } 1827 1828 /* rebind */ 1829 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL); 1830 rcu_assign_pointer(dcgrp->subsys[ssid], css); 1831 ss->root = dst_root; 1832 1833 spin_lock_irq(&css_set_lock); 1834 css->cgroup = dcgrp; 1835 WARN_ON(!list_empty(&dcgrp->e_csets[ss->id])); 1836 list_for_each_entry_safe(cset, cset_pos, &scgrp->e_csets[ss->id], 1837 e_cset_node[ss->id]) { 1838 list_move_tail(&cset->e_cset_node[ss->id], 1839 &dcgrp->e_csets[ss->id]); 1840 /* 1841 * all css_sets of scgrp together in same order to dcgrp, 1842 * patch in-flight iterators to preserve correct iteration. 1843 * since the iterator is always advanced right away and 1844 * finished when it->cset_pos meets it->cset_head, so only 1845 * update it->cset_head is enough here. 1846 */ 1847 list_for_each_entry(it, &cset->task_iters, iters_node) 1848 if (it->cset_head == &scgrp->e_csets[ss->id]) 1849 it->cset_head = &dcgrp->e_csets[ss->id]; 1850 } 1851 spin_unlock_irq(&css_set_lock); 1852 1853 if (ss->css_rstat_flush) { 1854 list_del_rcu(&css->rstat_css_node); 1855 synchronize_rcu(); 1856 list_add_rcu(&css->rstat_css_node, 1857 &dcgrp->rstat_css_list); 1858 } 1859 1860 /* default hierarchy doesn't enable controllers by default */ 1861 dst_root->subsys_mask |= 1 << ssid; 1862 if (dst_root == &cgrp_dfl_root) { 1863 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]); 1864 } else { 1865 dcgrp->subtree_control |= 1 << ssid; 1866 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]); 1867 } 1868 1869 ret = cgroup_apply_control(dcgrp); 1870 if (ret) 1871 pr_warn("partial failure to rebind %s controller (err=%d)\n", 1872 ss->name, ret); 1873 1874 if (ss->bind) 1875 ss->bind(css); 1876 } while_each_subsys_mask(); 1877 1878 kernfs_activate(dcgrp->kn); 1879 return 0; 1880 } 1881 1882 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node, 1883 struct kernfs_root *kf_root) 1884 { 1885 int len = 0; 1886 char *buf = NULL; 1887 struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root); 1888 struct cgroup *ns_cgroup; 1889 1890 buf = kmalloc(PATH_MAX, GFP_KERNEL); 1891 if (!buf) 1892 return -ENOMEM; 1893 1894 spin_lock_irq(&css_set_lock); 1895 ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot); 1896 len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX); 1897 spin_unlock_irq(&css_set_lock); 1898 1899 if (len == -E2BIG) 1900 len = -ERANGE; 1901 else if (len > 0) { 1902 seq_escape(sf, buf, " \t\n\\"); 1903 len = 0; 1904 } 1905 kfree(buf); 1906 return len; 1907 } 1908 1909 enum cgroup2_param { 1910 Opt_nsdelegate, 1911 Opt_favordynmods, 1912 Opt_memory_localevents, 1913 Opt_memory_recursiveprot, 1914 nr__cgroup2_params 1915 }; 1916 1917 static const struct fs_parameter_spec cgroup2_fs_parameters[] = { 1918 fsparam_flag("nsdelegate", Opt_nsdelegate), 1919 fsparam_flag("favordynmods", Opt_favordynmods), 1920 fsparam_flag("memory_localevents", Opt_memory_localevents), 1921 fsparam_flag("memory_recursiveprot", Opt_memory_recursiveprot), 1922 {} 1923 }; 1924 1925 static int cgroup2_parse_param(struct fs_context *fc, struct fs_parameter *param) 1926 { 1927 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 1928 struct fs_parse_result result; 1929 int opt; 1930 1931 opt = fs_parse(fc, cgroup2_fs_parameters, param, &result); 1932 if (opt < 0) 1933 return opt; 1934 1935 switch (opt) { 1936 case Opt_nsdelegate: 1937 ctx->flags |= CGRP_ROOT_NS_DELEGATE; 1938 return 0; 1939 case Opt_favordynmods: 1940 ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS; 1941 return 0; 1942 case Opt_memory_localevents: 1943 ctx->flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS; 1944 return 0; 1945 case Opt_memory_recursiveprot: 1946 ctx->flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT; 1947 return 0; 1948 } 1949 return -EINVAL; 1950 } 1951 1952 static void apply_cgroup_root_flags(unsigned int root_flags) 1953 { 1954 if (current->nsproxy->cgroup_ns == &init_cgroup_ns) { 1955 if (root_flags & CGRP_ROOT_NS_DELEGATE) 1956 cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE; 1957 else 1958 cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE; 1959 1960 cgroup_favor_dynmods(&cgrp_dfl_root, 1961 root_flags & CGRP_ROOT_FAVOR_DYNMODS); 1962 1963 if (root_flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS) 1964 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS; 1965 else 1966 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_LOCAL_EVENTS; 1967 1968 if (root_flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT) 1969 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT; 1970 else 1971 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_RECURSIVE_PROT; 1972 } 1973 } 1974 1975 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root) 1976 { 1977 if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) 1978 seq_puts(seq, ",nsdelegate"); 1979 if (cgrp_dfl_root.flags & CGRP_ROOT_FAVOR_DYNMODS) 1980 seq_puts(seq, ",favordynmods"); 1981 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS) 1982 seq_puts(seq, ",memory_localevents"); 1983 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT) 1984 seq_puts(seq, ",memory_recursiveprot"); 1985 return 0; 1986 } 1987 1988 static int cgroup_reconfigure(struct fs_context *fc) 1989 { 1990 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 1991 1992 apply_cgroup_root_flags(ctx->flags); 1993 return 0; 1994 } 1995 1996 static void init_cgroup_housekeeping(struct cgroup *cgrp) 1997 { 1998 struct cgroup_subsys *ss; 1999 int ssid; 2000 2001 INIT_LIST_HEAD(&cgrp->self.sibling); 2002 INIT_LIST_HEAD(&cgrp->self.children); 2003 INIT_LIST_HEAD(&cgrp->cset_links); 2004 INIT_LIST_HEAD(&cgrp->pidlists); 2005 mutex_init(&cgrp->pidlist_mutex); 2006 cgrp->self.cgroup = cgrp; 2007 cgrp->self.flags |= CSS_ONLINE; 2008 cgrp->dom_cgrp = cgrp; 2009 cgrp->max_descendants = INT_MAX; 2010 cgrp->max_depth = INT_MAX; 2011 INIT_LIST_HEAD(&cgrp->rstat_css_list); 2012 prev_cputime_init(&cgrp->prev_cputime); 2013 2014 for_each_subsys(ss, ssid) 2015 INIT_LIST_HEAD(&cgrp->e_csets[ssid]); 2016 2017 init_waitqueue_head(&cgrp->offline_waitq); 2018 INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent); 2019 } 2020 2021 void init_cgroup_root(struct cgroup_fs_context *ctx) 2022 { 2023 struct cgroup_root *root = ctx->root; 2024 struct cgroup *cgrp = &root->cgrp; 2025 2026 INIT_LIST_HEAD_RCU(&root->root_list); 2027 atomic_set(&root->nr_cgrps, 1); 2028 cgrp->root = root; 2029 init_cgroup_housekeeping(cgrp); 2030 2031 /* DYNMODS must be modified through cgroup_favor_dynmods() */ 2032 root->flags = ctx->flags & ~CGRP_ROOT_FAVOR_DYNMODS; 2033 if (ctx->release_agent) 2034 strscpy(root->release_agent_path, ctx->release_agent, PATH_MAX); 2035 if (ctx->name) 2036 strscpy(root->name, ctx->name, MAX_CGROUP_ROOT_NAMELEN); 2037 if (ctx->cpuset_clone_children) 2038 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags); 2039 } 2040 2041 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask) 2042 { 2043 LIST_HEAD(tmp_links); 2044 struct cgroup *root_cgrp = &root->cgrp; 2045 struct kernfs_syscall_ops *kf_sops; 2046 struct css_set *cset; 2047 int i, ret; 2048 2049 lockdep_assert_held(&cgroup_mutex); 2050 2051 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 2052 0, GFP_KERNEL); 2053 if (ret) 2054 goto out; 2055 2056 /* 2057 * We're accessing css_set_count without locking css_set_lock here, 2058 * but that's OK - it can only be increased by someone holding 2059 * cgroup_lock, and that's us. Later rebinding may disable 2060 * controllers on the default hierarchy and thus create new csets, 2061 * which can't be more than the existing ones. Allocate 2x. 2062 */ 2063 ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links); 2064 if (ret) 2065 goto cancel_ref; 2066 2067 ret = cgroup_init_root_id(root); 2068 if (ret) 2069 goto cancel_ref; 2070 2071 kf_sops = root == &cgrp_dfl_root ? 2072 &cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops; 2073 2074 root->kf_root = kernfs_create_root(kf_sops, 2075 KERNFS_ROOT_CREATE_DEACTIVATED | 2076 KERNFS_ROOT_SUPPORT_EXPORTOP | 2077 KERNFS_ROOT_SUPPORT_USER_XATTR, 2078 root_cgrp); 2079 if (IS_ERR(root->kf_root)) { 2080 ret = PTR_ERR(root->kf_root); 2081 goto exit_root_id; 2082 } 2083 root_cgrp->kn = kernfs_root_to_node(root->kf_root); 2084 WARN_ON_ONCE(cgroup_ino(root_cgrp) != 1); 2085 root_cgrp->ancestors[0] = root_cgrp; 2086 2087 ret = css_populate_dir(&root_cgrp->self); 2088 if (ret) 2089 goto destroy_root; 2090 2091 ret = cgroup_rstat_init(root_cgrp); 2092 if (ret) 2093 goto destroy_root; 2094 2095 ret = rebind_subsystems(root, ss_mask); 2096 if (ret) 2097 goto exit_stats; 2098 2099 if (root == &cgrp_dfl_root) { 2100 ret = cgroup_bpf_inherit(root_cgrp); 2101 WARN_ON_ONCE(ret); 2102 } 2103 2104 trace_cgroup_setup_root(root); 2105 2106 /* 2107 * There must be no failure case after here, since rebinding takes 2108 * care of subsystems' refcounts, which are explicitly dropped in 2109 * the failure exit path. 2110 */ 2111 list_add_rcu(&root->root_list, &cgroup_roots); 2112 cgroup_root_count++; 2113 2114 /* 2115 * Link the root cgroup in this hierarchy into all the css_set 2116 * objects. 2117 */ 2118 spin_lock_irq(&css_set_lock); 2119 hash_for_each(css_set_table, i, cset, hlist) { 2120 link_css_set(&tmp_links, cset, root_cgrp); 2121 if (css_set_populated(cset)) 2122 cgroup_update_populated(root_cgrp, true); 2123 } 2124 spin_unlock_irq(&css_set_lock); 2125 2126 BUG_ON(!list_empty(&root_cgrp->self.children)); 2127 BUG_ON(atomic_read(&root->nr_cgrps) != 1); 2128 2129 ret = 0; 2130 goto out; 2131 2132 exit_stats: 2133 cgroup_rstat_exit(root_cgrp); 2134 destroy_root: 2135 kernfs_destroy_root(root->kf_root); 2136 root->kf_root = NULL; 2137 exit_root_id: 2138 cgroup_exit_root_id(root); 2139 cancel_ref: 2140 percpu_ref_exit(&root_cgrp->self.refcnt); 2141 out: 2142 free_cgrp_cset_links(&tmp_links); 2143 return ret; 2144 } 2145 2146 int cgroup_do_get_tree(struct fs_context *fc) 2147 { 2148 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2149 int ret; 2150 2151 ctx->kfc.root = ctx->root->kf_root; 2152 if (fc->fs_type == &cgroup2_fs_type) 2153 ctx->kfc.magic = CGROUP2_SUPER_MAGIC; 2154 else 2155 ctx->kfc.magic = CGROUP_SUPER_MAGIC; 2156 ret = kernfs_get_tree(fc); 2157 2158 /* 2159 * In non-init cgroup namespace, instead of root cgroup's dentry, 2160 * we return the dentry corresponding to the cgroupns->root_cgrp. 2161 */ 2162 if (!ret && ctx->ns != &init_cgroup_ns) { 2163 struct dentry *nsdentry; 2164 struct super_block *sb = fc->root->d_sb; 2165 struct cgroup *cgrp; 2166 2167 cgroup_lock(); 2168 spin_lock_irq(&css_set_lock); 2169 2170 cgrp = cset_cgroup_from_root(ctx->ns->root_cset, ctx->root); 2171 2172 spin_unlock_irq(&css_set_lock); 2173 cgroup_unlock(); 2174 2175 nsdentry = kernfs_node_dentry(cgrp->kn, sb); 2176 dput(fc->root); 2177 if (IS_ERR(nsdentry)) { 2178 deactivate_locked_super(sb); 2179 ret = PTR_ERR(nsdentry); 2180 nsdentry = NULL; 2181 } 2182 fc->root = nsdentry; 2183 } 2184 2185 if (!ctx->kfc.new_sb_created) 2186 cgroup_put(&ctx->root->cgrp); 2187 2188 return ret; 2189 } 2190 2191 /* 2192 * Destroy a cgroup filesystem context. 2193 */ 2194 static void cgroup_fs_context_free(struct fs_context *fc) 2195 { 2196 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2197 2198 kfree(ctx->name); 2199 kfree(ctx->release_agent); 2200 put_cgroup_ns(ctx->ns); 2201 kernfs_free_fs_context(fc); 2202 kfree(ctx); 2203 } 2204 2205 static int cgroup_get_tree(struct fs_context *fc) 2206 { 2207 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2208 int ret; 2209 2210 WRITE_ONCE(cgrp_dfl_visible, true); 2211 cgroup_get_live(&cgrp_dfl_root.cgrp); 2212 ctx->root = &cgrp_dfl_root; 2213 2214 ret = cgroup_do_get_tree(fc); 2215 if (!ret) 2216 apply_cgroup_root_flags(ctx->flags); 2217 return ret; 2218 } 2219 2220 static const struct fs_context_operations cgroup_fs_context_ops = { 2221 .free = cgroup_fs_context_free, 2222 .parse_param = cgroup2_parse_param, 2223 .get_tree = cgroup_get_tree, 2224 .reconfigure = cgroup_reconfigure, 2225 }; 2226 2227 static const struct fs_context_operations cgroup1_fs_context_ops = { 2228 .free = cgroup_fs_context_free, 2229 .parse_param = cgroup1_parse_param, 2230 .get_tree = cgroup1_get_tree, 2231 .reconfigure = cgroup1_reconfigure, 2232 }; 2233 2234 /* 2235 * Initialise the cgroup filesystem creation/reconfiguration context. Notably, 2236 * we select the namespace we're going to use. 2237 */ 2238 static int cgroup_init_fs_context(struct fs_context *fc) 2239 { 2240 struct cgroup_fs_context *ctx; 2241 2242 ctx = kzalloc(sizeof(struct cgroup_fs_context), GFP_KERNEL); 2243 if (!ctx) 2244 return -ENOMEM; 2245 2246 ctx->ns = current->nsproxy->cgroup_ns; 2247 get_cgroup_ns(ctx->ns); 2248 fc->fs_private = &ctx->kfc; 2249 if (fc->fs_type == &cgroup2_fs_type) 2250 fc->ops = &cgroup_fs_context_ops; 2251 else 2252 fc->ops = &cgroup1_fs_context_ops; 2253 put_user_ns(fc->user_ns); 2254 fc->user_ns = get_user_ns(ctx->ns->user_ns); 2255 fc->global = true; 2256 2257 #ifdef CONFIG_CGROUP_FAVOR_DYNMODS 2258 ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS; 2259 #endif 2260 return 0; 2261 } 2262 2263 static void cgroup_kill_sb(struct super_block *sb) 2264 { 2265 struct kernfs_root *kf_root = kernfs_root_from_sb(sb); 2266 struct cgroup_root *root = cgroup_root_from_kf(kf_root); 2267 2268 /* 2269 * If @root doesn't have any children, start killing it. 2270 * This prevents new mounts by disabling percpu_ref_tryget_live(). 2271 * 2272 * And don't kill the default root. 2273 */ 2274 if (list_empty(&root->cgrp.self.children) && root != &cgrp_dfl_root && 2275 !percpu_ref_is_dying(&root->cgrp.self.refcnt)) 2276 percpu_ref_kill(&root->cgrp.self.refcnt); 2277 cgroup_put(&root->cgrp); 2278 kernfs_kill_sb(sb); 2279 } 2280 2281 struct file_system_type cgroup_fs_type = { 2282 .name = "cgroup", 2283 .init_fs_context = cgroup_init_fs_context, 2284 .parameters = cgroup1_fs_parameters, 2285 .kill_sb = cgroup_kill_sb, 2286 .fs_flags = FS_USERNS_MOUNT, 2287 }; 2288 2289 static struct file_system_type cgroup2_fs_type = { 2290 .name = "cgroup2", 2291 .init_fs_context = cgroup_init_fs_context, 2292 .parameters = cgroup2_fs_parameters, 2293 .kill_sb = cgroup_kill_sb, 2294 .fs_flags = FS_USERNS_MOUNT, 2295 }; 2296 2297 #ifdef CONFIG_CPUSETS 2298 static const struct fs_context_operations cpuset_fs_context_ops = { 2299 .get_tree = cgroup1_get_tree, 2300 .free = cgroup_fs_context_free, 2301 }; 2302 2303 /* 2304 * This is ugly, but preserves the userspace API for existing cpuset 2305 * users. If someone tries to mount the "cpuset" filesystem, we 2306 * silently switch it to mount "cgroup" instead 2307 */ 2308 static int cpuset_init_fs_context(struct fs_context *fc) 2309 { 2310 char *agent = kstrdup("/sbin/cpuset_release_agent", GFP_USER); 2311 struct cgroup_fs_context *ctx; 2312 int err; 2313 2314 err = cgroup_init_fs_context(fc); 2315 if (err) { 2316 kfree(agent); 2317 return err; 2318 } 2319 2320 fc->ops = &cpuset_fs_context_ops; 2321 2322 ctx = cgroup_fc2context(fc); 2323 ctx->subsys_mask = 1 << cpuset_cgrp_id; 2324 ctx->flags |= CGRP_ROOT_NOPREFIX; 2325 ctx->release_agent = agent; 2326 2327 get_filesystem(&cgroup_fs_type); 2328 put_filesystem(fc->fs_type); 2329 fc->fs_type = &cgroup_fs_type; 2330 2331 return 0; 2332 } 2333 2334 static struct file_system_type cpuset_fs_type = { 2335 .name = "cpuset", 2336 .init_fs_context = cpuset_init_fs_context, 2337 .fs_flags = FS_USERNS_MOUNT, 2338 }; 2339 #endif 2340 2341 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen, 2342 struct cgroup_namespace *ns) 2343 { 2344 struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root); 2345 2346 return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen); 2347 } 2348 2349 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen, 2350 struct cgroup_namespace *ns) 2351 { 2352 int ret; 2353 2354 cgroup_lock(); 2355 spin_lock_irq(&css_set_lock); 2356 2357 ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns); 2358 2359 spin_unlock_irq(&css_set_lock); 2360 cgroup_unlock(); 2361 2362 return ret; 2363 } 2364 EXPORT_SYMBOL_GPL(cgroup_path_ns); 2365 2366 /** 2367 * cgroup_attach_lock - Lock for ->attach() 2368 * @lock_threadgroup: whether to down_write cgroup_threadgroup_rwsem 2369 * 2370 * cgroup migration sometimes needs to stabilize threadgroups against forks and 2371 * exits by write-locking cgroup_threadgroup_rwsem. However, some ->attach() 2372 * implementations (e.g. cpuset), also need to disable CPU hotplug. 2373 * Unfortunately, letting ->attach() operations acquire cpus_read_lock() can 2374 * lead to deadlocks. 2375 * 2376 * Bringing up a CPU may involve creating and destroying tasks which requires 2377 * read-locking threadgroup_rwsem, so threadgroup_rwsem nests inside 2378 * cpus_read_lock(). If we call an ->attach() which acquires the cpus lock while 2379 * write-locking threadgroup_rwsem, the locking order is reversed and we end up 2380 * waiting for an on-going CPU hotplug operation which in turn is waiting for 2381 * the threadgroup_rwsem to be released to create new tasks. For more details: 2382 * 2383 * http://lkml.kernel.org/r/20220711174629.uehfmqegcwn2lqzu@wubuntu 2384 * 2385 * Resolve the situation by always acquiring cpus_read_lock() before optionally 2386 * write-locking cgroup_threadgroup_rwsem. This allows ->attach() to assume that 2387 * CPU hotplug is disabled on entry. 2388 */ 2389 void cgroup_attach_lock(bool lock_threadgroup) 2390 { 2391 cpus_read_lock(); 2392 if (lock_threadgroup) 2393 percpu_down_write(&cgroup_threadgroup_rwsem); 2394 } 2395 2396 /** 2397 * cgroup_attach_unlock - Undo cgroup_attach_lock() 2398 * @lock_threadgroup: whether to up_write cgroup_threadgroup_rwsem 2399 */ 2400 void cgroup_attach_unlock(bool lock_threadgroup) 2401 { 2402 if (lock_threadgroup) 2403 percpu_up_write(&cgroup_threadgroup_rwsem); 2404 cpus_read_unlock(); 2405 } 2406 2407 /** 2408 * cgroup_migrate_add_task - add a migration target task to a migration context 2409 * @task: target task 2410 * @mgctx: target migration context 2411 * 2412 * Add @task, which is a migration target, to @mgctx->tset. This function 2413 * becomes noop if @task doesn't need to be migrated. @task's css_set 2414 * should have been added as a migration source and @task->cg_list will be 2415 * moved from the css_set's tasks list to mg_tasks one. 2416 */ 2417 static void cgroup_migrate_add_task(struct task_struct *task, 2418 struct cgroup_mgctx *mgctx) 2419 { 2420 struct css_set *cset; 2421 2422 lockdep_assert_held(&css_set_lock); 2423 2424 /* @task either already exited or can't exit until the end */ 2425 if (task->flags & PF_EXITING) 2426 return; 2427 2428 /* cgroup_threadgroup_rwsem protects racing against forks */ 2429 WARN_ON_ONCE(list_empty(&task->cg_list)); 2430 2431 cset = task_css_set(task); 2432 if (!cset->mg_src_cgrp) 2433 return; 2434 2435 mgctx->tset.nr_tasks++; 2436 2437 list_move_tail(&task->cg_list, &cset->mg_tasks); 2438 if (list_empty(&cset->mg_node)) 2439 list_add_tail(&cset->mg_node, 2440 &mgctx->tset.src_csets); 2441 if (list_empty(&cset->mg_dst_cset->mg_node)) 2442 list_add_tail(&cset->mg_dst_cset->mg_node, 2443 &mgctx->tset.dst_csets); 2444 } 2445 2446 /** 2447 * cgroup_taskset_first - reset taskset and return the first task 2448 * @tset: taskset of interest 2449 * @dst_cssp: output variable for the destination css 2450 * 2451 * @tset iteration is initialized and the first task is returned. 2452 */ 2453 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset, 2454 struct cgroup_subsys_state **dst_cssp) 2455 { 2456 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node); 2457 tset->cur_task = NULL; 2458 2459 return cgroup_taskset_next(tset, dst_cssp); 2460 } 2461 2462 /** 2463 * cgroup_taskset_next - iterate to the next task in taskset 2464 * @tset: taskset of interest 2465 * @dst_cssp: output variable for the destination css 2466 * 2467 * Return the next task in @tset. Iteration must have been initialized 2468 * with cgroup_taskset_first(). 2469 */ 2470 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset, 2471 struct cgroup_subsys_state **dst_cssp) 2472 { 2473 struct css_set *cset = tset->cur_cset; 2474 struct task_struct *task = tset->cur_task; 2475 2476 while (CGROUP_HAS_SUBSYS_CONFIG && &cset->mg_node != tset->csets) { 2477 if (!task) 2478 task = list_first_entry(&cset->mg_tasks, 2479 struct task_struct, cg_list); 2480 else 2481 task = list_next_entry(task, cg_list); 2482 2483 if (&task->cg_list != &cset->mg_tasks) { 2484 tset->cur_cset = cset; 2485 tset->cur_task = task; 2486 2487 /* 2488 * This function may be called both before and 2489 * after cgroup_migrate_execute(). The two cases 2490 * can be distinguished by looking at whether @cset 2491 * has its ->mg_dst_cset set. 2492 */ 2493 if (cset->mg_dst_cset) 2494 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid]; 2495 else 2496 *dst_cssp = cset->subsys[tset->ssid]; 2497 2498 return task; 2499 } 2500 2501 cset = list_next_entry(cset, mg_node); 2502 task = NULL; 2503 } 2504 2505 return NULL; 2506 } 2507 2508 /** 2509 * cgroup_migrate_execute - migrate a taskset 2510 * @mgctx: migration context 2511 * 2512 * Migrate tasks in @mgctx as setup by migration preparation functions. 2513 * This function fails iff one of the ->can_attach callbacks fails and 2514 * guarantees that either all or none of the tasks in @mgctx are migrated. 2515 * @mgctx is consumed regardless of success. 2516 */ 2517 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx) 2518 { 2519 struct cgroup_taskset *tset = &mgctx->tset; 2520 struct cgroup_subsys *ss; 2521 struct task_struct *task, *tmp_task; 2522 struct css_set *cset, *tmp_cset; 2523 int ssid, failed_ssid, ret; 2524 2525 /* check that we can legitimately attach to the cgroup */ 2526 if (tset->nr_tasks) { 2527 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2528 if (ss->can_attach) { 2529 tset->ssid = ssid; 2530 ret = ss->can_attach(tset); 2531 if (ret) { 2532 failed_ssid = ssid; 2533 goto out_cancel_attach; 2534 } 2535 } 2536 } while_each_subsys_mask(); 2537 } 2538 2539 /* 2540 * Now that we're guaranteed success, proceed to move all tasks to 2541 * the new cgroup. There are no failure cases after here, so this 2542 * is the commit point. 2543 */ 2544 spin_lock_irq(&css_set_lock); 2545 list_for_each_entry(cset, &tset->src_csets, mg_node) { 2546 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) { 2547 struct css_set *from_cset = task_css_set(task); 2548 struct css_set *to_cset = cset->mg_dst_cset; 2549 2550 get_css_set(to_cset); 2551 to_cset->nr_tasks++; 2552 css_set_move_task(task, from_cset, to_cset, true); 2553 from_cset->nr_tasks--; 2554 /* 2555 * If the source or destination cgroup is frozen, 2556 * the task might require to change its state. 2557 */ 2558 cgroup_freezer_migrate_task(task, from_cset->dfl_cgrp, 2559 to_cset->dfl_cgrp); 2560 put_css_set_locked(from_cset); 2561 2562 } 2563 } 2564 spin_unlock_irq(&css_set_lock); 2565 2566 /* 2567 * Migration is committed, all target tasks are now on dst_csets. 2568 * Nothing is sensitive to fork() after this point. Notify 2569 * controllers that migration is complete. 2570 */ 2571 tset->csets = &tset->dst_csets; 2572 2573 if (tset->nr_tasks) { 2574 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2575 if (ss->attach) { 2576 tset->ssid = ssid; 2577 ss->attach(tset); 2578 } 2579 } while_each_subsys_mask(); 2580 } 2581 2582 ret = 0; 2583 goto out_release_tset; 2584 2585 out_cancel_attach: 2586 if (tset->nr_tasks) { 2587 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2588 if (ssid == failed_ssid) 2589 break; 2590 if (ss->cancel_attach) { 2591 tset->ssid = ssid; 2592 ss->cancel_attach(tset); 2593 } 2594 } while_each_subsys_mask(); 2595 } 2596 out_release_tset: 2597 spin_lock_irq(&css_set_lock); 2598 list_splice_init(&tset->dst_csets, &tset->src_csets); 2599 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) { 2600 list_splice_tail_init(&cset->mg_tasks, &cset->tasks); 2601 list_del_init(&cset->mg_node); 2602 } 2603 spin_unlock_irq(&css_set_lock); 2604 2605 /* 2606 * Re-initialize the cgroup_taskset structure in case it is reused 2607 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute() 2608 * iteration. 2609 */ 2610 tset->nr_tasks = 0; 2611 tset->csets = &tset->src_csets; 2612 return ret; 2613 } 2614 2615 /** 2616 * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination 2617 * @dst_cgrp: destination cgroup to test 2618 * 2619 * On the default hierarchy, except for the mixable, (possible) thread root 2620 * and threaded cgroups, subtree_control must be zero for migration 2621 * destination cgroups with tasks so that child cgroups don't compete 2622 * against tasks. 2623 */ 2624 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp) 2625 { 2626 /* v1 doesn't have any restriction */ 2627 if (!cgroup_on_dfl(dst_cgrp)) 2628 return 0; 2629 2630 /* verify @dst_cgrp can host resources */ 2631 if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp)) 2632 return -EOPNOTSUPP; 2633 2634 /* 2635 * If @dst_cgrp is already or can become a thread root or is 2636 * threaded, it doesn't matter. 2637 */ 2638 if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp)) 2639 return 0; 2640 2641 /* apply no-internal-process constraint */ 2642 if (dst_cgrp->subtree_control) 2643 return -EBUSY; 2644 2645 return 0; 2646 } 2647 2648 /** 2649 * cgroup_migrate_finish - cleanup after attach 2650 * @mgctx: migration context 2651 * 2652 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See 2653 * those functions for details. 2654 */ 2655 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx) 2656 { 2657 struct css_set *cset, *tmp_cset; 2658 2659 lockdep_assert_held(&cgroup_mutex); 2660 2661 spin_lock_irq(&css_set_lock); 2662 2663 list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_src_csets, 2664 mg_src_preload_node) { 2665 cset->mg_src_cgrp = NULL; 2666 cset->mg_dst_cgrp = NULL; 2667 cset->mg_dst_cset = NULL; 2668 list_del_init(&cset->mg_src_preload_node); 2669 put_css_set_locked(cset); 2670 } 2671 2672 list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_dst_csets, 2673 mg_dst_preload_node) { 2674 cset->mg_src_cgrp = NULL; 2675 cset->mg_dst_cgrp = NULL; 2676 cset->mg_dst_cset = NULL; 2677 list_del_init(&cset->mg_dst_preload_node); 2678 put_css_set_locked(cset); 2679 } 2680 2681 spin_unlock_irq(&css_set_lock); 2682 } 2683 2684 /** 2685 * cgroup_migrate_add_src - add a migration source css_set 2686 * @src_cset: the source css_set to add 2687 * @dst_cgrp: the destination cgroup 2688 * @mgctx: migration context 2689 * 2690 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin 2691 * @src_cset and add it to @mgctx->src_csets, which should later be cleaned 2692 * up by cgroup_migrate_finish(). 2693 * 2694 * This function may be called without holding cgroup_threadgroup_rwsem 2695 * even if the target is a process. Threads may be created and destroyed 2696 * but as long as cgroup_mutex is not dropped, no new css_set can be put 2697 * into play and the preloaded css_sets are guaranteed to cover all 2698 * migrations. 2699 */ 2700 void cgroup_migrate_add_src(struct css_set *src_cset, 2701 struct cgroup *dst_cgrp, 2702 struct cgroup_mgctx *mgctx) 2703 { 2704 struct cgroup *src_cgrp; 2705 2706 lockdep_assert_held(&cgroup_mutex); 2707 lockdep_assert_held(&css_set_lock); 2708 2709 /* 2710 * If ->dead, @src_set is associated with one or more dead cgroups 2711 * and doesn't contain any migratable tasks. Ignore it early so 2712 * that the rest of migration path doesn't get confused by it. 2713 */ 2714 if (src_cset->dead) 2715 return; 2716 2717 if (!list_empty(&src_cset->mg_src_preload_node)) 2718 return; 2719 2720 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root); 2721 2722 WARN_ON(src_cset->mg_src_cgrp); 2723 WARN_ON(src_cset->mg_dst_cgrp); 2724 WARN_ON(!list_empty(&src_cset->mg_tasks)); 2725 WARN_ON(!list_empty(&src_cset->mg_node)); 2726 2727 src_cset->mg_src_cgrp = src_cgrp; 2728 src_cset->mg_dst_cgrp = dst_cgrp; 2729 get_css_set(src_cset); 2730 list_add_tail(&src_cset->mg_src_preload_node, &mgctx->preloaded_src_csets); 2731 } 2732 2733 /** 2734 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration 2735 * @mgctx: migration context 2736 * 2737 * Tasks are about to be moved and all the source css_sets have been 2738 * preloaded to @mgctx->preloaded_src_csets. This function looks up and 2739 * pins all destination css_sets, links each to its source, and append them 2740 * to @mgctx->preloaded_dst_csets. 2741 * 2742 * This function must be called after cgroup_migrate_add_src() has been 2743 * called on each migration source css_set. After migration is performed 2744 * using cgroup_migrate(), cgroup_migrate_finish() must be called on 2745 * @mgctx. 2746 */ 2747 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx) 2748 { 2749 struct css_set *src_cset, *tmp_cset; 2750 2751 lockdep_assert_held(&cgroup_mutex); 2752 2753 /* look up the dst cset for each src cset and link it to src */ 2754 list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets, 2755 mg_src_preload_node) { 2756 struct css_set *dst_cset; 2757 struct cgroup_subsys *ss; 2758 int ssid; 2759 2760 dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp); 2761 if (!dst_cset) 2762 return -ENOMEM; 2763 2764 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset); 2765 2766 /* 2767 * If src cset equals dst, it's noop. Drop the src. 2768 * cgroup_migrate() will skip the cset too. Note that we 2769 * can't handle src == dst as some nodes are used by both. 2770 */ 2771 if (src_cset == dst_cset) { 2772 src_cset->mg_src_cgrp = NULL; 2773 src_cset->mg_dst_cgrp = NULL; 2774 list_del_init(&src_cset->mg_src_preload_node); 2775 put_css_set(src_cset); 2776 put_css_set(dst_cset); 2777 continue; 2778 } 2779 2780 src_cset->mg_dst_cset = dst_cset; 2781 2782 if (list_empty(&dst_cset->mg_dst_preload_node)) 2783 list_add_tail(&dst_cset->mg_dst_preload_node, 2784 &mgctx->preloaded_dst_csets); 2785 else 2786 put_css_set(dst_cset); 2787 2788 for_each_subsys(ss, ssid) 2789 if (src_cset->subsys[ssid] != dst_cset->subsys[ssid]) 2790 mgctx->ss_mask |= 1 << ssid; 2791 } 2792 2793 return 0; 2794 } 2795 2796 /** 2797 * cgroup_migrate - migrate a process or task to a cgroup 2798 * @leader: the leader of the process or the task to migrate 2799 * @threadgroup: whether @leader points to the whole process or a single task 2800 * @mgctx: migration context 2801 * 2802 * Migrate a process or task denoted by @leader. If migrating a process, 2803 * the caller must be holding cgroup_threadgroup_rwsem. The caller is also 2804 * responsible for invoking cgroup_migrate_add_src() and 2805 * cgroup_migrate_prepare_dst() on the targets before invoking this 2806 * function and following up with cgroup_migrate_finish(). 2807 * 2808 * As long as a controller's ->can_attach() doesn't fail, this function is 2809 * guaranteed to succeed. This means that, excluding ->can_attach() 2810 * failure, when migrating multiple targets, the success or failure can be 2811 * decided for all targets by invoking group_migrate_prepare_dst() before 2812 * actually starting migrating. 2813 */ 2814 int cgroup_migrate(struct task_struct *leader, bool threadgroup, 2815 struct cgroup_mgctx *mgctx) 2816 { 2817 struct task_struct *task; 2818 2819 /* 2820 * The following thread iteration should be inside an RCU critical 2821 * section to prevent tasks from being freed while taking the snapshot. 2822 * spin_lock_irq() implies RCU critical section here. 2823 */ 2824 spin_lock_irq(&css_set_lock); 2825 task = leader; 2826 do { 2827 cgroup_migrate_add_task(task, mgctx); 2828 if (!threadgroup) 2829 break; 2830 } while_each_thread(leader, task); 2831 spin_unlock_irq(&css_set_lock); 2832 2833 return cgroup_migrate_execute(mgctx); 2834 } 2835 2836 /** 2837 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup 2838 * @dst_cgrp: the cgroup to attach to 2839 * @leader: the task or the leader of the threadgroup to be attached 2840 * @threadgroup: attach the whole threadgroup? 2841 * 2842 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem. 2843 */ 2844 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader, 2845 bool threadgroup) 2846 { 2847 DEFINE_CGROUP_MGCTX(mgctx); 2848 struct task_struct *task; 2849 int ret = 0; 2850 2851 /* look up all src csets */ 2852 spin_lock_irq(&css_set_lock); 2853 rcu_read_lock(); 2854 task = leader; 2855 do { 2856 cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx); 2857 if (!threadgroup) 2858 break; 2859 } while_each_thread(leader, task); 2860 rcu_read_unlock(); 2861 spin_unlock_irq(&css_set_lock); 2862 2863 /* prepare dst csets and commit */ 2864 ret = cgroup_migrate_prepare_dst(&mgctx); 2865 if (!ret) 2866 ret = cgroup_migrate(leader, threadgroup, &mgctx); 2867 2868 cgroup_migrate_finish(&mgctx); 2869 2870 if (!ret) 2871 TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup); 2872 2873 return ret; 2874 } 2875 2876 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup, 2877 bool *threadgroup_locked) 2878 { 2879 struct task_struct *tsk; 2880 pid_t pid; 2881 2882 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0) 2883 return ERR_PTR(-EINVAL); 2884 2885 /* 2886 * If we migrate a single thread, we don't care about threadgroup 2887 * stability. If the thread is `current`, it won't exit(2) under our 2888 * hands or change PID through exec(2). We exclude 2889 * cgroup_update_dfl_csses and other cgroup_{proc,thread}s_write 2890 * callers by cgroup_mutex. 2891 * Therefore, we can skip the global lock. 2892 */ 2893 lockdep_assert_held(&cgroup_mutex); 2894 *threadgroup_locked = pid || threadgroup; 2895 cgroup_attach_lock(*threadgroup_locked); 2896 2897 rcu_read_lock(); 2898 if (pid) { 2899 tsk = find_task_by_vpid(pid); 2900 if (!tsk) { 2901 tsk = ERR_PTR(-ESRCH); 2902 goto out_unlock_threadgroup; 2903 } 2904 } else { 2905 tsk = current; 2906 } 2907 2908 if (threadgroup) 2909 tsk = tsk->group_leader; 2910 2911 /* 2912 * kthreads may acquire PF_NO_SETAFFINITY during initialization. 2913 * If userland migrates such a kthread to a non-root cgroup, it can 2914 * become trapped in a cpuset, or RT kthread may be born in a 2915 * cgroup with no rt_runtime allocated. Just say no. 2916 */ 2917 if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) { 2918 tsk = ERR_PTR(-EINVAL); 2919 goto out_unlock_threadgroup; 2920 } 2921 2922 get_task_struct(tsk); 2923 goto out_unlock_rcu; 2924 2925 out_unlock_threadgroup: 2926 cgroup_attach_unlock(*threadgroup_locked); 2927 *threadgroup_locked = false; 2928 out_unlock_rcu: 2929 rcu_read_unlock(); 2930 return tsk; 2931 } 2932 2933 void cgroup_procs_write_finish(struct task_struct *task, bool threadgroup_locked) 2934 { 2935 struct cgroup_subsys *ss; 2936 int ssid; 2937 2938 /* release reference from cgroup_procs_write_start() */ 2939 put_task_struct(task); 2940 2941 cgroup_attach_unlock(threadgroup_locked); 2942 2943 for_each_subsys(ss, ssid) 2944 if (ss->post_attach) 2945 ss->post_attach(); 2946 } 2947 2948 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask) 2949 { 2950 struct cgroup_subsys *ss; 2951 bool printed = false; 2952 int ssid; 2953 2954 do_each_subsys_mask(ss, ssid, ss_mask) { 2955 if (printed) 2956 seq_putc(seq, ' '); 2957 seq_puts(seq, ss->name); 2958 printed = true; 2959 } while_each_subsys_mask(); 2960 if (printed) 2961 seq_putc(seq, '\n'); 2962 } 2963 2964 /* show controllers which are enabled from the parent */ 2965 static int cgroup_controllers_show(struct seq_file *seq, void *v) 2966 { 2967 struct cgroup *cgrp = seq_css(seq)->cgroup; 2968 2969 cgroup_print_ss_mask(seq, cgroup_control(cgrp)); 2970 return 0; 2971 } 2972 2973 /* show controllers which are enabled for a given cgroup's children */ 2974 static int cgroup_subtree_control_show(struct seq_file *seq, void *v) 2975 { 2976 struct cgroup *cgrp = seq_css(seq)->cgroup; 2977 2978 cgroup_print_ss_mask(seq, cgrp->subtree_control); 2979 return 0; 2980 } 2981 2982 /** 2983 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy 2984 * @cgrp: root of the subtree to update csses for 2985 * 2986 * @cgrp's control masks have changed and its subtree's css associations 2987 * need to be updated accordingly. This function looks up all css_sets 2988 * which are attached to the subtree, creates the matching updated css_sets 2989 * and migrates the tasks to the new ones. 2990 */ 2991 static int cgroup_update_dfl_csses(struct cgroup *cgrp) 2992 { 2993 DEFINE_CGROUP_MGCTX(mgctx); 2994 struct cgroup_subsys_state *d_css; 2995 struct cgroup *dsct; 2996 struct css_set *src_cset; 2997 bool has_tasks; 2998 int ret; 2999 3000 lockdep_assert_held(&cgroup_mutex); 3001 3002 /* look up all csses currently attached to @cgrp's subtree */ 3003 spin_lock_irq(&css_set_lock); 3004 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 3005 struct cgrp_cset_link *link; 3006 3007 /* 3008 * As cgroup_update_dfl_csses() is only called by 3009 * cgroup_apply_control(). The csses associated with the 3010 * given cgrp will not be affected by changes made to 3011 * its subtree_control file. We can skip them. 3012 */ 3013 if (dsct == cgrp) 3014 continue; 3015 3016 list_for_each_entry(link, &dsct->cset_links, cset_link) 3017 cgroup_migrate_add_src(link->cset, dsct, &mgctx); 3018 } 3019 spin_unlock_irq(&css_set_lock); 3020 3021 /* 3022 * We need to write-lock threadgroup_rwsem while migrating tasks. 3023 * However, if there are no source csets for @cgrp, changing its 3024 * controllers isn't gonna produce any task migrations and the 3025 * write-locking can be skipped safely. 3026 */ 3027 has_tasks = !list_empty(&mgctx.preloaded_src_csets); 3028 cgroup_attach_lock(has_tasks); 3029 3030 /* NULL dst indicates self on default hierarchy */ 3031 ret = cgroup_migrate_prepare_dst(&mgctx); 3032 if (ret) 3033 goto out_finish; 3034 3035 spin_lock_irq(&css_set_lock); 3036 list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, 3037 mg_src_preload_node) { 3038 struct task_struct *task, *ntask; 3039 3040 /* all tasks in src_csets need to be migrated */ 3041 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list) 3042 cgroup_migrate_add_task(task, &mgctx); 3043 } 3044 spin_unlock_irq(&css_set_lock); 3045 3046 ret = cgroup_migrate_execute(&mgctx); 3047 out_finish: 3048 cgroup_migrate_finish(&mgctx); 3049 cgroup_attach_unlock(has_tasks); 3050 return ret; 3051 } 3052 3053 /** 3054 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses 3055 * @cgrp: root of the target subtree 3056 * 3057 * Because css offlining is asynchronous, userland may try to re-enable a 3058 * controller while the previous css is still around. This function grabs 3059 * cgroup_mutex and drains the previous css instances of @cgrp's subtree. 3060 */ 3061 void cgroup_lock_and_drain_offline(struct cgroup *cgrp) 3062 __acquires(&cgroup_mutex) 3063 { 3064 struct cgroup *dsct; 3065 struct cgroup_subsys_state *d_css; 3066 struct cgroup_subsys *ss; 3067 int ssid; 3068 3069 restart: 3070 cgroup_lock(); 3071 3072 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 3073 for_each_subsys(ss, ssid) { 3074 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 3075 DEFINE_WAIT(wait); 3076 3077 if (!css || !percpu_ref_is_dying(&css->refcnt)) 3078 continue; 3079 3080 cgroup_get_live(dsct); 3081 prepare_to_wait(&dsct->offline_waitq, &wait, 3082 TASK_UNINTERRUPTIBLE); 3083 3084 cgroup_unlock(); 3085 schedule(); 3086 finish_wait(&dsct->offline_waitq, &wait); 3087 3088 cgroup_put(dsct); 3089 goto restart; 3090 } 3091 } 3092 } 3093 3094 /** 3095 * cgroup_save_control - save control masks and dom_cgrp of a subtree 3096 * @cgrp: root of the target subtree 3097 * 3098 * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the 3099 * respective old_ prefixed fields for @cgrp's subtree including @cgrp 3100 * itself. 3101 */ 3102 static void cgroup_save_control(struct cgroup *cgrp) 3103 { 3104 struct cgroup *dsct; 3105 struct cgroup_subsys_state *d_css; 3106 3107 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 3108 dsct->old_subtree_control = dsct->subtree_control; 3109 dsct->old_subtree_ss_mask = dsct->subtree_ss_mask; 3110 dsct->old_dom_cgrp = dsct->dom_cgrp; 3111 } 3112 } 3113 3114 /** 3115 * cgroup_propagate_control - refresh control masks of a subtree 3116 * @cgrp: root of the target subtree 3117 * 3118 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches 3119 * ->subtree_control and propagate controller availability through the 3120 * subtree so that descendants don't have unavailable controllers enabled. 3121 */ 3122 static void cgroup_propagate_control(struct cgroup *cgrp) 3123 { 3124 struct cgroup *dsct; 3125 struct cgroup_subsys_state *d_css; 3126 3127 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 3128 dsct->subtree_control &= cgroup_control(dsct); 3129 dsct->subtree_ss_mask = 3130 cgroup_calc_subtree_ss_mask(dsct->subtree_control, 3131 cgroup_ss_mask(dsct)); 3132 } 3133 } 3134 3135 /** 3136 * cgroup_restore_control - restore control masks and dom_cgrp of a subtree 3137 * @cgrp: root of the target subtree 3138 * 3139 * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the 3140 * respective old_ prefixed fields for @cgrp's subtree including @cgrp 3141 * itself. 3142 */ 3143 static void cgroup_restore_control(struct cgroup *cgrp) 3144 { 3145 struct cgroup *dsct; 3146 struct cgroup_subsys_state *d_css; 3147 3148 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 3149 dsct->subtree_control = dsct->old_subtree_control; 3150 dsct->subtree_ss_mask = dsct->old_subtree_ss_mask; 3151 dsct->dom_cgrp = dsct->old_dom_cgrp; 3152 } 3153 } 3154 3155 static bool css_visible(struct cgroup_subsys_state *css) 3156 { 3157 struct cgroup_subsys *ss = css->ss; 3158 struct cgroup *cgrp = css->cgroup; 3159 3160 if (cgroup_control(cgrp) & (1 << ss->id)) 3161 return true; 3162 if (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) 3163 return false; 3164 return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl; 3165 } 3166 3167 /** 3168 * cgroup_apply_control_enable - enable or show csses according to control 3169 * @cgrp: root of the target subtree 3170 * 3171 * Walk @cgrp's subtree and create new csses or make the existing ones 3172 * visible. A css is created invisible if it's being implicitly enabled 3173 * through dependency. An invisible css is made visible when the userland 3174 * explicitly enables it. 3175 * 3176 * Returns 0 on success, -errno on failure. On failure, csses which have 3177 * been processed already aren't cleaned up. The caller is responsible for 3178 * cleaning up with cgroup_apply_control_disable(). 3179 */ 3180 static int cgroup_apply_control_enable(struct cgroup *cgrp) 3181 { 3182 struct cgroup *dsct; 3183 struct cgroup_subsys_state *d_css; 3184 struct cgroup_subsys *ss; 3185 int ssid, ret; 3186 3187 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 3188 for_each_subsys(ss, ssid) { 3189 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 3190 3191 if (!(cgroup_ss_mask(dsct) & (1 << ss->id))) 3192 continue; 3193 3194 if (!css) { 3195 css = css_create(dsct, ss); 3196 if (IS_ERR(css)) 3197 return PTR_ERR(css); 3198 } 3199 3200 WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt)); 3201 3202 if (css_visible(css)) { 3203 ret = css_populate_dir(css); 3204 if (ret) 3205 return ret; 3206 } 3207 } 3208 } 3209 3210 return 0; 3211 } 3212 3213 /** 3214 * cgroup_apply_control_disable - kill or hide csses according to control 3215 * @cgrp: root of the target subtree 3216 * 3217 * Walk @cgrp's subtree and kill and hide csses so that they match 3218 * cgroup_ss_mask() and cgroup_visible_mask(). 3219 * 3220 * A css is hidden when the userland requests it to be disabled while other 3221 * subsystems are still depending on it. The css must not actively control 3222 * resources and be in the vanilla state if it's made visible again later. 3223 * Controllers which may be depended upon should provide ->css_reset() for 3224 * this purpose. 3225 */ 3226 static void cgroup_apply_control_disable(struct cgroup *cgrp) 3227 { 3228 struct cgroup *dsct; 3229 struct cgroup_subsys_state *d_css; 3230 struct cgroup_subsys *ss; 3231 int ssid; 3232 3233 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 3234 for_each_subsys(ss, ssid) { 3235 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 3236 3237 if (!css) 3238 continue; 3239 3240 WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt)); 3241 3242 if (css->parent && 3243 !(cgroup_ss_mask(dsct) & (1 << ss->id))) { 3244 kill_css(css); 3245 } else if (!css_visible(css)) { 3246 css_clear_dir(css); 3247 if (ss->css_reset) 3248 ss->css_reset(css); 3249 } 3250 } 3251 } 3252 } 3253 3254 /** 3255 * cgroup_apply_control - apply control mask updates to the subtree 3256 * @cgrp: root of the target subtree 3257 * 3258 * subsystems can be enabled and disabled in a subtree using the following 3259 * steps. 3260 * 3261 * 1. Call cgroup_save_control() to stash the current state. 3262 * 2. Update ->subtree_control masks in the subtree as desired. 3263 * 3. Call cgroup_apply_control() to apply the changes. 3264 * 4. Optionally perform other related operations. 3265 * 5. Call cgroup_finalize_control() to finish up. 3266 * 3267 * This function implements step 3 and propagates the mask changes 3268 * throughout @cgrp's subtree, updates csses accordingly and perform 3269 * process migrations. 3270 */ 3271 static int cgroup_apply_control(struct cgroup *cgrp) 3272 { 3273 int ret; 3274 3275 cgroup_propagate_control(cgrp); 3276 3277 ret = cgroup_apply_control_enable(cgrp); 3278 if (ret) 3279 return ret; 3280 3281 /* 3282 * At this point, cgroup_e_css_by_mask() results reflect the new csses 3283 * making the following cgroup_update_dfl_csses() properly update 3284 * css associations of all tasks in the subtree. 3285 */ 3286 return cgroup_update_dfl_csses(cgrp); 3287 } 3288 3289 /** 3290 * cgroup_finalize_control - finalize control mask update 3291 * @cgrp: root of the target subtree 3292 * @ret: the result of the update 3293 * 3294 * Finalize control mask update. See cgroup_apply_control() for more info. 3295 */ 3296 static void cgroup_finalize_control(struct cgroup *cgrp, int ret) 3297 { 3298 if (ret) { 3299 cgroup_restore_control(cgrp); 3300 cgroup_propagate_control(cgrp); 3301 } 3302 3303 cgroup_apply_control_disable(cgrp); 3304 } 3305 3306 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable) 3307 { 3308 u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask; 3309 3310 /* if nothing is getting enabled, nothing to worry about */ 3311 if (!enable) 3312 return 0; 3313 3314 /* can @cgrp host any resources? */ 3315 if (!cgroup_is_valid_domain(cgrp->dom_cgrp)) 3316 return -EOPNOTSUPP; 3317 3318 /* mixables don't care */ 3319 if (cgroup_is_mixable(cgrp)) 3320 return 0; 3321 3322 if (domain_enable) { 3323 /* can't enable domain controllers inside a thread subtree */ 3324 if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp)) 3325 return -EOPNOTSUPP; 3326 } else { 3327 /* 3328 * Threaded controllers can handle internal competitions 3329 * and are always allowed inside a (prospective) thread 3330 * subtree. 3331 */ 3332 if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp)) 3333 return 0; 3334 } 3335 3336 /* 3337 * Controllers can't be enabled for a cgroup with tasks to avoid 3338 * child cgroups competing against tasks. 3339 */ 3340 if (cgroup_has_tasks(cgrp)) 3341 return -EBUSY; 3342 3343 return 0; 3344 } 3345 3346 /* change the enabled child controllers for a cgroup in the default hierarchy */ 3347 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of, 3348 char *buf, size_t nbytes, 3349 loff_t off) 3350 { 3351 u16 enable = 0, disable = 0; 3352 struct cgroup *cgrp, *child; 3353 struct cgroup_subsys *ss; 3354 char *tok; 3355 int ssid, ret; 3356 3357 /* 3358 * Parse input - space separated list of subsystem names prefixed 3359 * with either + or -. 3360 */ 3361 buf = strstrip(buf); 3362 while ((tok = strsep(&buf, " "))) { 3363 if (tok[0] == '\0') 3364 continue; 3365 do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) { 3366 if (!cgroup_ssid_enabled(ssid) || 3367 strcmp(tok + 1, ss->name)) 3368 continue; 3369 3370 if (*tok == '+') { 3371 enable |= 1 << ssid; 3372 disable &= ~(1 << ssid); 3373 } else if (*tok == '-') { 3374 disable |= 1 << ssid; 3375 enable &= ~(1 << ssid); 3376 } else { 3377 return -EINVAL; 3378 } 3379 break; 3380 } while_each_subsys_mask(); 3381 if (ssid == CGROUP_SUBSYS_COUNT) 3382 return -EINVAL; 3383 } 3384 3385 cgrp = cgroup_kn_lock_live(of->kn, true); 3386 if (!cgrp) 3387 return -ENODEV; 3388 3389 for_each_subsys(ss, ssid) { 3390 if (enable & (1 << ssid)) { 3391 if (cgrp->subtree_control & (1 << ssid)) { 3392 enable &= ~(1 << ssid); 3393 continue; 3394 } 3395 3396 if (!(cgroup_control(cgrp) & (1 << ssid))) { 3397 ret = -ENOENT; 3398 goto out_unlock; 3399 } 3400 } else if (disable & (1 << ssid)) { 3401 if (!(cgrp->subtree_control & (1 << ssid))) { 3402 disable &= ~(1 << ssid); 3403 continue; 3404 } 3405 3406 /* a child has it enabled? */ 3407 cgroup_for_each_live_child(child, cgrp) { 3408 if (child->subtree_control & (1 << ssid)) { 3409 ret = -EBUSY; 3410 goto out_unlock; 3411 } 3412 } 3413 } 3414 } 3415 3416 if (!enable && !disable) { 3417 ret = 0; 3418 goto out_unlock; 3419 } 3420 3421 ret = cgroup_vet_subtree_control_enable(cgrp, enable); 3422 if (ret) 3423 goto out_unlock; 3424 3425 /* save and update control masks and prepare csses */ 3426 cgroup_save_control(cgrp); 3427 3428 cgrp->subtree_control |= enable; 3429 cgrp->subtree_control &= ~disable; 3430 3431 ret = cgroup_apply_control(cgrp); 3432 cgroup_finalize_control(cgrp, ret); 3433 if (ret) 3434 goto out_unlock; 3435 3436 kernfs_activate(cgrp->kn); 3437 out_unlock: 3438 cgroup_kn_unlock(of->kn); 3439 return ret ?: nbytes; 3440 } 3441 3442 /** 3443 * cgroup_enable_threaded - make @cgrp threaded 3444 * @cgrp: the target cgroup 3445 * 3446 * Called when "threaded" is written to the cgroup.type interface file and 3447 * tries to make @cgrp threaded and join the parent's resource domain. 3448 * This function is never called on the root cgroup as cgroup.type doesn't 3449 * exist on it. 3450 */ 3451 static int cgroup_enable_threaded(struct cgroup *cgrp) 3452 { 3453 struct cgroup *parent = cgroup_parent(cgrp); 3454 struct cgroup *dom_cgrp = parent->dom_cgrp; 3455 struct cgroup *dsct; 3456 struct cgroup_subsys_state *d_css; 3457 int ret; 3458 3459 lockdep_assert_held(&cgroup_mutex); 3460 3461 /* noop if already threaded */ 3462 if (cgroup_is_threaded(cgrp)) 3463 return 0; 3464 3465 /* 3466 * If @cgroup is populated or has domain controllers enabled, it 3467 * can't be switched. While the below cgroup_can_be_thread_root() 3468 * test can catch the same conditions, that's only when @parent is 3469 * not mixable, so let's check it explicitly. 3470 */ 3471 if (cgroup_is_populated(cgrp) || 3472 cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask) 3473 return -EOPNOTSUPP; 3474 3475 /* we're joining the parent's domain, ensure its validity */ 3476 if (!cgroup_is_valid_domain(dom_cgrp) || 3477 !cgroup_can_be_thread_root(dom_cgrp)) 3478 return -EOPNOTSUPP; 3479 3480 /* 3481 * The following shouldn't cause actual migrations and should 3482 * always succeed. 3483 */ 3484 cgroup_save_control(cgrp); 3485 3486 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) 3487 if (dsct == cgrp || cgroup_is_threaded(dsct)) 3488 dsct->dom_cgrp = dom_cgrp; 3489 3490 ret = cgroup_apply_control(cgrp); 3491 if (!ret) 3492 parent->nr_threaded_children++; 3493 3494 cgroup_finalize_control(cgrp, ret); 3495 return ret; 3496 } 3497 3498 static int cgroup_type_show(struct seq_file *seq, void *v) 3499 { 3500 struct cgroup *cgrp = seq_css(seq)->cgroup; 3501 3502 if (cgroup_is_threaded(cgrp)) 3503 seq_puts(seq, "threaded\n"); 3504 else if (!cgroup_is_valid_domain(cgrp)) 3505 seq_puts(seq, "domain invalid\n"); 3506 else if (cgroup_is_thread_root(cgrp)) 3507 seq_puts(seq, "domain threaded\n"); 3508 else 3509 seq_puts(seq, "domain\n"); 3510 3511 return 0; 3512 } 3513 3514 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf, 3515 size_t nbytes, loff_t off) 3516 { 3517 struct cgroup *cgrp; 3518 int ret; 3519 3520 /* only switching to threaded mode is supported */ 3521 if (strcmp(strstrip(buf), "threaded")) 3522 return -EINVAL; 3523 3524 /* drain dying csses before we re-apply (threaded) subtree control */ 3525 cgrp = cgroup_kn_lock_live(of->kn, true); 3526 if (!cgrp) 3527 return -ENOENT; 3528 3529 /* threaded can only be enabled */ 3530 ret = cgroup_enable_threaded(cgrp); 3531 3532 cgroup_kn_unlock(of->kn); 3533 return ret ?: nbytes; 3534 } 3535 3536 static int cgroup_max_descendants_show(struct seq_file *seq, void *v) 3537 { 3538 struct cgroup *cgrp = seq_css(seq)->cgroup; 3539 int descendants = READ_ONCE(cgrp->max_descendants); 3540 3541 if (descendants == INT_MAX) 3542 seq_puts(seq, "max\n"); 3543 else 3544 seq_printf(seq, "%d\n", descendants); 3545 3546 return 0; 3547 } 3548 3549 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of, 3550 char *buf, size_t nbytes, loff_t off) 3551 { 3552 struct cgroup *cgrp; 3553 int descendants; 3554 ssize_t ret; 3555 3556 buf = strstrip(buf); 3557 if (!strcmp(buf, "max")) { 3558 descendants = INT_MAX; 3559 } else { 3560 ret = kstrtoint(buf, 0, &descendants); 3561 if (ret) 3562 return ret; 3563 } 3564 3565 if (descendants < 0) 3566 return -ERANGE; 3567 3568 cgrp = cgroup_kn_lock_live(of->kn, false); 3569 if (!cgrp) 3570 return -ENOENT; 3571 3572 cgrp->max_descendants = descendants; 3573 3574 cgroup_kn_unlock(of->kn); 3575 3576 return nbytes; 3577 } 3578 3579 static int cgroup_max_depth_show(struct seq_file *seq, void *v) 3580 { 3581 struct cgroup *cgrp = seq_css(seq)->cgroup; 3582 int depth = READ_ONCE(cgrp->max_depth); 3583 3584 if (depth == INT_MAX) 3585 seq_puts(seq, "max\n"); 3586 else 3587 seq_printf(seq, "%d\n", depth); 3588 3589 return 0; 3590 } 3591 3592 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of, 3593 char *buf, size_t nbytes, loff_t off) 3594 { 3595 struct cgroup *cgrp; 3596 ssize_t ret; 3597 int depth; 3598 3599 buf = strstrip(buf); 3600 if (!strcmp(buf, "max")) { 3601 depth = INT_MAX; 3602 } else { 3603 ret = kstrtoint(buf, 0, &depth); 3604 if (ret) 3605 return ret; 3606 } 3607 3608 if (depth < 0) 3609 return -ERANGE; 3610 3611 cgrp = cgroup_kn_lock_live(of->kn, false); 3612 if (!cgrp) 3613 return -ENOENT; 3614 3615 cgrp->max_depth = depth; 3616 3617 cgroup_kn_unlock(of->kn); 3618 3619 return nbytes; 3620 } 3621 3622 static int cgroup_events_show(struct seq_file *seq, void *v) 3623 { 3624 struct cgroup *cgrp = seq_css(seq)->cgroup; 3625 3626 seq_printf(seq, "populated %d\n", cgroup_is_populated(cgrp)); 3627 seq_printf(seq, "frozen %d\n", test_bit(CGRP_FROZEN, &cgrp->flags)); 3628 3629 return 0; 3630 } 3631 3632 static int cgroup_stat_show(struct seq_file *seq, void *v) 3633 { 3634 struct cgroup *cgroup = seq_css(seq)->cgroup; 3635 3636 seq_printf(seq, "nr_descendants %d\n", 3637 cgroup->nr_descendants); 3638 seq_printf(seq, "nr_dying_descendants %d\n", 3639 cgroup->nr_dying_descendants); 3640 3641 return 0; 3642 } 3643 3644 #ifdef CONFIG_CGROUP_SCHED 3645 /** 3646 * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem 3647 * @cgrp: the cgroup of interest 3648 * @ss: the subsystem of interest 3649 * 3650 * Find and get @cgrp's css associated with @ss. If the css doesn't exist 3651 * or is offline, %NULL is returned. 3652 */ 3653 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp, 3654 struct cgroup_subsys *ss) 3655 { 3656 struct cgroup_subsys_state *css; 3657 3658 rcu_read_lock(); 3659 css = cgroup_css(cgrp, ss); 3660 if (css && !css_tryget_online(css)) 3661 css = NULL; 3662 rcu_read_unlock(); 3663 3664 return css; 3665 } 3666 3667 static int cgroup_extra_stat_show(struct seq_file *seq, int ssid) 3668 { 3669 struct cgroup *cgrp = seq_css(seq)->cgroup; 3670 struct cgroup_subsys *ss = cgroup_subsys[ssid]; 3671 struct cgroup_subsys_state *css; 3672 int ret; 3673 3674 if (!ss->css_extra_stat_show) 3675 return 0; 3676 3677 css = cgroup_tryget_css(cgrp, ss); 3678 if (!css) 3679 return 0; 3680 3681 ret = ss->css_extra_stat_show(seq, css); 3682 css_put(css); 3683 return ret; 3684 } 3685 3686 static int cgroup_local_stat_show(struct seq_file *seq, 3687 struct cgroup *cgrp, int ssid) 3688 { 3689 struct cgroup_subsys *ss = cgroup_subsys[ssid]; 3690 struct cgroup_subsys_state *css; 3691 int ret; 3692 3693 if (!ss->css_local_stat_show) 3694 return 0; 3695 3696 css = cgroup_tryget_css(cgrp, ss); 3697 if (!css) 3698 return 0; 3699 3700 ret = ss->css_local_stat_show(seq, css); 3701 css_put(css); 3702 return ret; 3703 } 3704 #endif 3705 3706 static int cpu_stat_show(struct seq_file *seq, void *v) 3707 { 3708 int ret = 0; 3709 3710 cgroup_base_stat_cputime_show(seq); 3711 #ifdef CONFIG_CGROUP_SCHED 3712 ret = cgroup_extra_stat_show(seq, cpu_cgrp_id); 3713 #endif 3714 return ret; 3715 } 3716 3717 static int cpu_local_stat_show(struct seq_file *seq, void *v) 3718 { 3719 struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup; 3720 int ret = 0; 3721 3722 #ifdef CONFIG_CGROUP_SCHED 3723 ret = cgroup_local_stat_show(seq, cgrp, cpu_cgrp_id); 3724 #endif 3725 return ret; 3726 } 3727 3728 #ifdef CONFIG_PSI 3729 static int cgroup_io_pressure_show(struct seq_file *seq, void *v) 3730 { 3731 struct cgroup *cgrp = seq_css(seq)->cgroup; 3732 struct psi_group *psi = cgroup_psi(cgrp); 3733 3734 return psi_show(seq, psi, PSI_IO); 3735 } 3736 static int cgroup_memory_pressure_show(struct seq_file *seq, void *v) 3737 { 3738 struct cgroup *cgrp = seq_css(seq)->cgroup; 3739 struct psi_group *psi = cgroup_psi(cgrp); 3740 3741 return psi_show(seq, psi, PSI_MEM); 3742 } 3743 static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v) 3744 { 3745 struct cgroup *cgrp = seq_css(seq)->cgroup; 3746 struct psi_group *psi = cgroup_psi(cgrp); 3747 3748 return psi_show(seq, psi, PSI_CPU); 3749 } 3750 3751 static ssize_t pressure_write(struct kernfs_open_file *of, char *buf, 3752 size_t nbytes, enum psi_res res) 3753 { 3754 struct cgroup_file_ctx *ctx = of->priv; 3755 struct psi_trigger *new; 3756 struct cgroup *cgrp; 3757 struct psi_group *psi; 3758 3759 cgrp = cgroup_kn_lock_live(of->kn, false); 3760 if (!cgrp) 3761 return -ENODEV; 3762 3763 cgroup_get(cgrp); 3764 cgroup_kn_unlock(of->kn); 3765 3766 /* Allow only one trigger per file descriptor */ 3767 if (ctx->psi.trigger) { 3768 cgroup_put(cgrp); 3769 return -EBUSY; 3770 } 3771 3772 psi = cgroup_psi(cgrp); 3773 new = psi_trigger_create(psi, buf, res, of->file, of); 3774 if (IS_ERR(new)) { 3775 cgroup_put(cgrp); 3776 return PTR_ERR(new); 3777 } 3778 3779 smp_store_release(&ctx->psi.trigger, new); 3780 cgroup_put(cgrp); 3781 3782 return nbytes; 3783 } 3784 3785 static ssize_t cgroup_io_pressure_write(struct kernfs_open_file *of, 3786 char *buf, size_t nbytes, 3787 loff_t off) 3788 { 3789 return pressure_write(of, buf, nbytes, PSI_IO); 3790 } 3791 3792 static ssize_t cgroup_memory_pressure_write(struct kernfs_open_file *of, 3793 char *buf, size_t nbytes, 3794 loff_t off) 3795 { 3796 return pressure_write(of, buf, nbytes, PSI_MEM); 3797 } 3798 3799 static ssize_t cgroup_cpu_pressure_write(struct kernfs_open_file *of, 3800 char *buf, size_t nbytes, 3801 loff_t off) 3802 { 3803 return pressure_write(of, buf, nbytes, PSI_CPU); 3804 } 3805 3806 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 3807 static int cgroup_irq_pressure_show(struct seq_file *seq, void *v) 3808 { 3809 struct cgroup *cgrp = seq_css(seq)->cgroup; 3810 struct psi_group *psi = cgroup_psi(cgrp); 3811 3812 return psi_show(seq, psi, PSI_IRQ); 3813 } 3814 3815 static ssize_t cgroup_irq_pressure_write(struct kernfs_open_file *of, 3816 char *buf, size_t nbytes, 3817 loff_t off) 3818 { 3819 return pressure_write(of, buf, nbytes, PSI_IRQ); 3820 } 3821 #endif 3822 3823 static int cgroup_pressure_show(struct seq_file *seq, void *v) 3824 { 3825 struct cgroup *cgrp = seq_css(seq)->cgroup; 3826 struct psi_group *psi = cgroup_psi(cgrp); 3827 3828 seq_printf(seq, "%d\n", psi->enabled); 3829 3830 return 0; 3831 } 3832 3833 static ssize_t cgroup_pressure_write(struct kernfs_open_file *of, 3834 char *buf, size_t nbytes, 3835 loff_t off) 3836 { 3837 ssize_t ret; 3838 int enable; 3839 struct cgroup *cgrp; 3840 struct psi_group *psi; 3841 3842 ret = kstrtoint(strstrip(buf), 0, &enable); 3843 if (ret) 3844 return ret; 3845 3846 if (enable < 0 || enable > 1) 3847 return -ERANGE; 3848 3849 cgrp = cgroup_kn_lock_live(of->kn, false); 3850 if (!cgrp) 3851 return -ENOENT; 3852 3853 psi = cgroup_psi(cgrp); 3854 if (psi->enabled != enable) { 3855 int i; 3856 3857 /* show or hide {cpu,memory,io,irq}.pressure files */ 3858 for (i = 0; i < NR_PSI_RESOURCES; i++) 3859 cgroup_file_show(&cgrp->psi_files[i], enable); 3860 3861 psi->enabled = enable; 3862 if (enable) 3863 psi_cgroup_restart(psi); 3864 } 3865 3866 cgroup_kn_unlock(of->kn); 3867 3868 return nbytes; 3869 } 3870 3871 static __poll_t cgroup_pressure_poll(struct kernfs_open_file *of, 3872 poll_table *pt) 3873 { 3874 struct cgroup_file_ctx *ctx = of->priv; 3875 3876 return psi_trigger_poll(&ctx->psi.trigger, of->file, pt); 3877 } 3878 3879 static void cgroup_pressure_release(struct kernfs_open_file *of) 3880 { 3881 struct cgroup_file_ctx *ctx = of->priv; 3882 3883 psi_trigger_destroy(ctx->psi.trigger); 3884 } 3885 3886 bool cgroup_psi_enabled(void) 3887 { 3888 if (static_branch_likely(&psi_disabled)) 3889 return false; 3890 3891 return (cgroup_feature_disable_mask & (1 << OPT_FEATURE_PRESSURE)) == 0; 3892 } 3893 3894 #else /* CONFIG_PSI */ 3895 bool cgroup_psi_enabled(void) 3896 { 3897 return false; 3898 } 3899 3900 #endif /* CONFIG_PSI */ 3901 3902 static int cgroup_freeze_show(struct seq_file *seq, void *v) 3903 { 3904 struct cgroup *cgrp = seq_css(seq)->cgroup; 3905 3906 seq_printf(seq, "%d\n", cgrp->freezer.freeze); 3907 3908 return 0; 3909 } 3910 3911 static ssize_t cgroup_freeze_write(struct kernfs_open_file *of, 3912 char *buf, size_t nbytes, loff_t off) 3913 { 3914 struct cgroup *cgrp; 3915 ssize_t ret; 3916 int freeze; 3917 3918 ret = kstrtoint(strstrip(buf), 0, &freeze); 3919 if (ret) 3920 return ret; 3921 3922 if (freeze < 0 || freeze > 1) 3923 return -ERANGE; 3924 3925 cgrp = cgroup_kn_lock_live(of->kn, false); 3926 if (!cgrp) 3927 return -ENOENT; 3928 3929 cgroup_freeze(cgrp, freeze); 3930 3931 cgroup_kn_unlock(of->kn); 3932 3933 return nbytes; 3934 } 3935 3936 static void __cgroup_kill(struct cgroup *cgrp) 3937 { 3938 struct css_task_iter it; 3939 struct task_struct *task; 3940 3941 lockdep_assert_held(&cgroup_mutex); 3942 3943 spin_lock_irq(&css_set_lock); 3944 set_bit(CGRP_KILL, &cgrp->flags); 3945 spin_unlock_irq(&css_set_lock); 3946 3947 css_task_iter_start(&cgrp->self, CSS_TASK_ITER_PROCS | CSS_TASK_ITER_THREADED, &it); 3948 while ((task = css_task_iter_next(&it))) { 3949 /* Ignore kernel threads here. */ 3950 if (task->flags & PF_KTHREAD) 3951 continue; 3952 3953 /* Skip tasks that are already dying. */ 3954 if (__fatal_signal_pending(task)) 3955 continue; 3956 3957 send_sig(SIGKILL, task, 0); 3958 } 3959 css_task_iter_end(&it); 3960 3961 spin_lock_irq(&css_set_lock); 3962 clear_bit(CGRP_KILL, &cgrp->flags); 3963 spin_unlock_irq(&css_set_lock); 3964 } 3965 3966 static void cgroup_kill(struct cgroup *cgrp) 3967 { 3968 struct cgroup_subsys_state *css; 3969 struct cgroup *dsct; 3970 3971 lockdep_assert_held(&cgroup_mutex); 3972 3973 cgroup_for_each_live_descendant_pre(dsct, css, cgrp) 3974 __cgroup_kill(dsct); 3975 } 3976 3977 static ssize_t cgroup_kill_write(struct kernfs_open_file *of, char *buf, 3978 size_t nbytes, loff_t off) 3979 { 3980 ssize_t ret = 0; 3981 int kill; 3982 struct cgroup *cgrp; 3983 3984 ret = kstrtoint(strstrip(buf), 0, &kill); 3985 if (ret) 3986 return ret; 3987 3988 if (kill != 1) 3989 return -ERANGE; 3990 3991 cgrp = cgroup_kn_lock_live(of->kn, false); 3992 if (!cgrp) 3993 return -ENOENT; 3994 3995 /* 3996 * Killing is a process directed operation, i.e. the whole thread-group 3997 * is taken down so act like we do for cgroup.procs and only make this 3998 * writable in non-threaded cgroups. 3999 */ 4000 if (cgroup_is_threaded(cgrp)) 4001 ret = -EOPNOTSUPP; 4002 else 4003 cgroup_kill(cgrp); 4004 4005 cgroup_kn_unlock(of->kn); 4006 4007 return ret ?: nbytes; 4008 } 4009 4010 static int cgroup_file_open(struct kernfs_open_file *of) 4011 { 4012 struct cftype *cft = of_cft(of); 4013 struct cgroup_file_ctx *ctx; 4014 int ret; 4015 4016 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 4017 if (!ctx) 4018 return -ENOMEM; 4019 4020 ctx->ns = current->nsproxy->cgroup_ns; 4021 get_cgroup_ns(ctx->ns); 4022 of->priv = ctx; 4023 4024 if (!cft->open) 4025 return 0; 4026 4027 ret = cft->open(of); 4028 if (ret) { 4029 put_cgroup_ns(ctx->ns); 4030 kfree(ctx); 4031 } 4032 return ret; 4033 } 4034 4035 static void cgroup_file_release(struct kernfs_open_file *of) 4036 { 4037 struct cftype *cft = of_cft(of); 4038 struct cgroup_file_ctx *ctx = of->priv; 4039 4040 if (cft->release) 4041 cft->release(of); 4042 put_cgroup_ns(ctx->ns); 4043 kfree(ctx); 4044 } 4045 4046 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf, 4047 size_t nbytes, loff_t off) 4048 { 4049 struct cgroup_file_ctx *ctx = of->priv; 4050 struct cgroup *cgrp = of->kn->parent->priv; 4051 struct cftype *cft = of_cft(of); 4052 struct cgroup_subsys_state *css; 4053 int ret; 4054 4055 if (!nbytes) 4056 return 0; 4057 4058 /* 4059 * If namespaces are delegation boundaries, disallow writes to 4060 * files in an non-init namespace root from inside the namespace 4061 * except for the files explicitly marked delegatable - 4062 * cgroup.procs and cgroup.subtree_control. 4063 */ 4064 if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) && 4065 !(cft->flags & CFTYPE_NS_DELEGATABLE) && 4066 ctx->ns != &init_cgroup_ns && ctx->ns->root_cset->dfl_cgrp == cgrp) 4067 return -EPERM; 4068 4069 if (cft->write) 4070 return cft->write(of, buf, nbytes, off); 4071 4072 /* 4073 * kernfs guarantees that a file isn't deleted with operations in 4074 * flight, which means that the matching css is and stays alive and 4075 * doesn't need to be pinned. The RCU locking is not necessary 4076 * either. It's just for the convenience of using cgroup_css(). 4077 */ 4078 rcu_read_lock(); 4079 css = cgroup_css(cgrp, cft->ss); 4080 rcu_read_unlock(); 4081 4082 if (cft->write_u64) { 4083 unsigned long long v; 4084 ret = kstrtoull(buf, 0, &v); 4085 if (!ret) 4086 ret = cft->write_u64(css, cft, v); 4087 } else if (cft->write_s64) { 4088 long long v; 4089 ret = kstrtoll(buf, 0, &v); 4090 if (!ret) 4091 ret = cft->write_s64(css, cft, v); 4092 } else { 4093 ret = -EINVAL; 4094 } 4095 4096 return ret ?: nbytes; 4097 } 4098 4099 static __poll_t cgroup_file_poll(struct kernfs_open_file *of, poll_table *pt) 4100 { 4101 struct cftype *cft = of_cft(of); 4102 4103 if (cft->poll) 4104 return cft->poll(of, pt); 4105 4106 return kernfs_generic_poll(of, pt); 4107 } 4108 4109 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos) 4110 { 4111 return seq_cft(seq)->seq_start(seq, ppos); 4112 } 4113 4114 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos) 4115 { 4116 return seq_cft(seq)->seq_next(seq, v, ppos); 4117 } 4118 4119 static void cgroup_seqfile_stop(struct seq_file *seq, void *v) 4120 { 4121 if (seq_cft(seq)->seq_stop) 4122 seq_cft(seq)->seq_stop(seq, v); 4123 } 4124 4125 static int cgroup_seqfile_show(struct seq_file *m, void *arg) 4126 { 4127 struct cftype *cft = seq_cft(m); 4128 struct cgroup_subsys_state *css = seq_css(m); 4129 4130 if (cft->seq_show) 4131 return cft->seq_show(m, arg); 4132 4133 if (cft->read_u64) 4134 seq_printf(m, "%llu\n", cft->read_u64(css, cft)); 4135 else if (cft->read_s64) 4136 seq_printf(m, "%lld\n", cft->read_s64(css, cft)); 4137 else 4138 return -EINVAL; 4139 return 0; 4140 } 4141 4142 static struct kernfs_ops cgroup_kf_single_ops = { 4143 .atomic_write_len = PAGE_SIZE, 4144 .open = cgroup_file_open, 4145 .release = cgroup_file_release, 4146 .write = cgroup_file_write, 4147 .poll = cgroup_file_poll, 4148 .seq_show = cgroup_seqfile_show, 4149 }; 4150 4151 static struct kernfs_ops cgroup_kf_ops = { 4152 .atomic_write_len = PAGE_SIZE, 4153 .open = cgroup_file_open, 4154 .release = cgroup_file_release, 4155 .write = cgroup_file_write, 4156 .poll = cgroup_file_poll, 4157 .seq_start = cgroup_seqfile_start, 4158 .seq_next = cgroup_seqfile_next, 4159 .seq_stop = cgroup_seqfile_stop, 4160 .seq_show = cgroup_seqfile_show, 4161 }; 4162 4163 /* set uid and gid of cgroup dirs and files to that of the creator */ 4164 static int cgroup_kn_set_ugid(struct kernfs_node *kn) 4165 { 4166 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID, 4167 .ia_uid = current_fsuid(), 4168 .ia_gid = current_fsgid(), }; 4169 4170 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) && 4171 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID)) 4172 return 0; 4173 4174 return kernfs_setattr(kn, &iattr); 4175 } 4176 4177 static void cgroup_file_notify_timer(struct timer_list *timer) 4178 { 4179 cgroup_file_notify(container_of(timer, struct cgroup_file, 4180 notify_timer)); 4181 } 4182 4183 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp, 4184 struct cftype *cft) 4185 { 4186 char name[CGROUP_FILE_NAME_MAX]; 4187 struct kernfs_node *kn; 4188 struct lock_class_key *key = NULL; 4189 int ret; 4190 4191 #ifdef CONFIG_DEBUG_LOCK_ALLOC 4192 key = &cft->lockdep_key; 4193 #endif 4194 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name), 4195 cgroup_file_mode(cft), 4196 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 4197 0, cft->kf_ops, cft, 4198 NULL, key); 4199 if (IS_ERR(kn)) 4200 return PTR_ERR(kn); 4201 4202 ret = cgroup_kn_set_ugid(kn); 4203 if (ret) { 4204 kernfs_remove(kn); 4205 return ret; 4206 } 4207 4208 if (cft->file_offset) { 4209 struct cgroup_file *cfile = (void *)css + cft->file_offset; 4210 4211 timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0); 4212 4213 spin_lock_irq(&cgroup_file_kn_lock); 4214 cfile->kn = kn; 4215 spin_unlock_irq(&cgroup_file_kn_lock); 4216 } 4217 4218 return 0; 4219 } 4220 4221 /** 4222 * cgroup_addrm_files - add or remove files to a cgroup directory 4223 * @css: the target css 4224 * @cgrp: the target cgroup (usually css->cgroup) 4225 * @cfts: array of cftypes to be added 4226 * @is_add: whether to add or remove 4227 * 4228 * Depending on @is_add, add or remove files defined by @cfts on @cgrp. 4229 * For removals, this function never fails. 4230 */ 4231 static int cgroup_addrm_files(struct cgroup_subsys_state *css, 4232 struct cgroup *cgrp, struct cftype cfts[], 4233 bool is_add) 4234 { 4235 struct cftype *cft, *cft_end = NULL; 4236 int ret = 0; 4237 4238 lockdep_assert_held(&cgroup_mutex); 4239 4240 restart: 4241 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) { 4242 /* does cft->flags tell us to skip this file on @cgrp? */ 4243 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp)) 4244 continue; 4245 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp)) 4246 continue; 4247 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp)) 4248 continue; 4249 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp)) 4250 continue; 4251 if ((cft->flags & CFTYPE_DEBUG) && !cgroup_debug) 4252 continue; 4253 if (is_add) { 4254 ret = cgroup_add_file(css, cgrp, cft); 4255 if (ret) { 4256 pr_warn("%s: failed to add %s, err=%d\n", 4257 __func__, cft->name, ret); 4258 cft_end = cft; 4259 is_add = false; 4260 goto restart; 4261 } 4262 } else { 4263 cgroup_rm_file(cgrp, cft); 4264 } 4265 } 4266 return ret; 4267 } 4268 4269 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add) 4270 { 4271 struct cgroup_subsys *ss = cfts[0].ss; 4272 struct cgroup *root = &ss->root->cgrp; 4273 struct cgroup_subsys_state *css; 4274 int ret = 0; 4275 4276 lockdep_assert_held(&cgroup_mutex); 4277 4278 /* add/rm files for all cgroups created before */ 4279 css_for_each_descendant_pre(css, cgroup_css(root, ss)) { 4280 struct cgroup *cgrp = css->cgroup; 4281 4282 if (!(css->flags & CSS_VISIBLE)) 4283 continue; 4284 4285 ret = cgroup_addrm_files(css, cgrp, cfts, is_add); 4286 if (ret) 4287 break; 4288 } 4289 4290 if (is_add && !ret) 4291 kernfs_activate(root->kn); 4292 return ret; 4293 } 4294 4295 static void cgroup_exit_cftypes(struct cftype *cfts) 4296 { 4297 struct cftype *cft; 4298 4299 for (cft = cfts; cft->name[0] != '\0'; cft++) { 4300 /* free copy for custom atomic_write_len, see init_cftypes() */ 4301 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) 4302 kfree(cft->kf_ops); 4303 cft->kf_ops = NULL; 4304 cft->ss = NULL; 4305 4306 /* revert flags set by cgroup core while adding @cfts */ 4307 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL | 4308 __CFTYPE_ADDED); 4309 } 4310 } 4311 4312 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4313 { 4314 struct cftype *cft; 4315 int ret = 0; 4316 4317 for (cft = cfts; cft->name[0] != '\0'; cft++) { 4318 struct kernfs_ops *kf_ops; 4319 4320 WARN_ON(cft->ss || cft->kf_ops); 4321 4322 if (cft->flags & __CFTYPE_ADDED) { 4323 ret = -EBUSY; 4324 break; 4325 } 4326 4327 if (cft->seq_start) 4328 kf_ops = &cgroup_kf_ops; 4329 else 4330 kf_ops = &cgroup_kf_single_ops; 4331 4332 /* 4333 * Ugh... if @cft wants a custom max_write_len, we need to 4334 * make a copy of kf_ops to set its atomic_write_len. 4335 */ 4336 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) { 4337 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL); 4338 if (!kf_ops) { 4339 ret = -ENOMEM; 4340 break; 4341 } 4342 kf_ops->atomic_write_len = cft->max_write_len; 4343 } 4344 4345 cft->kf_ops = kf_ops; 4346 cft->ss = ss; 4347 cft->flags |= __CFTYPE_ADDED; 4348 } 4349 4350 if (ret) 4351 cgroup_exit_cftypes(cfts); 4352 return ret; 4353 } 4354 4355 static void cgroup_rm_cftypes_locked(struct cftype *cfts) 4356 { 4357 lockdep_assert_held(&cgroup_mutex); 4358 4359 list_del(&cfts->node); 4360 cgroup_apply_cftypes(cfts, false); 4361 cgroup_exit_cftypes(cfts); 4362 } 4363 4364 /** 4365 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem 4366 * @cfts: zero-length name terminated array of cftypes 4367 * 4368 * Unregister @cfts. Files described by @cfts are removed from all 4369 * existing cgroups and all future cgroups won't have them either. This 4370 * function can be called anytime whether @cfts' subsys is attached or not. 4371 * 4372 * Returns 0 on successful unregistration, -ENOENT if @cfts is not 4373 * registered. 4374 */ 4375 int cgroup_rm_cftypes(struct cftype *cfts) 4376 { 4377 if (!cfts || cfts[0].name[0] == '\0') 4378 return 0; 4379 4380 if (!(cfts[0].flags & __CFTYPE_ADDED)) 4381 return -ENOENT; 4382 4383 cgroup_lock(); 4384 cgroup_rm_cftypes_locked(cfts); 4385 cgroup_unlock(); 4386 return 0; 4387 } 4388 4389 /** 4390 * cgroup_add_cftypes - add an array of cftypes to a subsystem 4391 * @ss: target cgroup subsystem 4392 * @cfts: zero-length name terminated array of cftypes 4393 * 4394 * Register @cfts to @ss. Files described by @cfts are created for all 4395 * existing cgroups to which @ss is attached and all future cgroups will 4396 * have them too. This function can be called anytime whether @ss is 4397 * attached or not. 4398 * 4399 * Returns 0 on successful registration, -errno on failure. Note that this 4400 * function currently returns 0 as long as @cfts registration is successful 4401 * even if some file creation attempts on existing cgroups fail. 4402 */ 4403 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4404 { 4405 int ret; 4406 4407 if (!cgroup_ssid_enabled(ss->id)) 4408 return 0; 4409 4410 if (!cfts || cfts[0].name[0] == '\0') 4411 return 0; 4412 4413 ret = cgroup_init_cftypes(ss, cfts); 4414 if (ret) 4415 return ret; 4416 4417 cgroup_lock(); 4418 4419 list_add_tail(&cfts->node, &ss->cfts); 4420 ret = cgroup_apply_cftypes(cfts, true); 4421 if (ret) 4422 cgroup_rm_cftypes_locked(cfts); 4423 4424 cgroup_unlock(); 4425 return ret; 4426 } 4427 4428 /** 4429 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy 4430 * @ss: target cgroup subsystem 4431 * @cfts: zero-length name terminated array of cftypes 4432 * 4433 * Similar to cgroup_add_cftypes() but the added files are only used for 4434 * the default hierarchy. 4435 */ 4436 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4437 { 4438 struct cftype *cft; 4439 4440 for (cft = cfts; cft && cft->name[0] != '\0'; cft++) 4441 cft->flags |= __CFTYPE_ONLY_ON_DFL; 4442 return cgroup_add_cftypes(ss, cfts); 4443 } 4444 4445 /** 4446 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies 4447 * @ss: target cgroup subsystem 4448 * @cfts: zero-length name terminated array of cftypes 4449 * 4450 * Similar to cgroup_add_cftypes() but the added files are only used for 4451 * the legacy hierarchies. 4452 */ 4453 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4454 { 4455 struct cftype *cft; 4456 4457 for (cft = cfts; cft && cft->name[0] != '\0'; cft++) 4458 cft->flags |= __CFTYPE_NOT_ON_DFL; 4459 return cgroup_add_cftypes(ss, cfts); 4460 } 4461 4462 /** 4463 * cgroup_file_notify - generate a file modified event for a cgroup_file 4464 * @cfile: target cgroup_file 4465 * 4466 * @cfile must have been obtained by setting cftype->file_offset. 4467 */ 4468 void cgroup_file_notify(struct cgroup_file *cfile) 4469 { 4470 unsigned long flags; 4471 4472 spin_lock_irqsave(&cgroup_file_kn_lock, flags); 4473 if (cfile->kn) { 4474 unsigned long last = cfile->notified_at; 4475 unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV; 4476 4477 if (time_in_range(jiffies, last, next)) { 4478 timer_reduce(&cfile->notify_timer, next); 4479 } else { 4480 kernfs_notify(cfile->kn); 4481 cfile->notified_at = jiffies; 4482 } 4483 } 4484 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags); 4485 } 4486 4487 /** 4488 * cgroup_file_show - show or hide a hidden cgroup file 4489 * @cfile: target cgroup_file obtained by setting cftype->file_offset 4490 * @show: whether to show or hide 4491 */ 4492 void cgroup_file_show(struct cgroup_file *cfile, bool show) 4493 { 4494 struct kernfs_node *kn; 4495 4496 spin_lock_irq(&cgroup_file_kn_lock); 4497 kn = cfile->kn; 4498 kernfs_get(kn); 4499 spin_unlock_irq(&cgroup_file_kn_lock); 4500 4501 if (kn) 4502 kernfs_show(kn, show); 4503 4504 kernfs_put(kn); 4505 } 4506 4507 /** 4508 * css_next_child - find the next child of a given css 4509 * @pos: the current position (%NULL to initiate traversal) 4510 * @parent: css whose children to walk 4511 * 4512 * This function returns the next child of @parent and should be called 4513 * under either cgroup_mutex or RCU read lock. The only requirement is 4514 * that @parent and @pos are accessible. The next sibling is guaranteed to 4515 * be returned regardless of their states. 4516 * 4517 * If a subsystem synchronizes ->css_online() and the start of iteration, a 4518 * css which finished ->css_online() is guaranteed to be visible in the 4519 * future iterations and will stay visible until the last reference is put. 4520 * A css which hasn't finished ->css_online() or already finished 4521 * ->css_offline() may show up during traversal. It's each subsystem's 4522 * responsibility to synchronize against on/offlining. 4523 */ 4524 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos, 4525 struct cgroup_subsys_state *parent) 4526 { 4527 struct cgroup_subsys_state *next; 4528 4529 cgroup_assert_mutex_or_rcu_locked(); 4530 4531 /* 4532 * @pos could already have been unlinked from the sibling list. 4533 * Once a cgroup is removed, its ->sibling.next is no longer 4534 * updated when its next sibling changes. CSS_RELEASED is set when 4535 * @pos is taken off list, at which time its next pointer is valid, 4536 * and, as releases are serialized, the one pointed to by the next 4537 * pointer is guaranteed to not have started release yet. This 4538 * implies that if we observe !CSS_RELEASED on @pos in this RCU 4539 * critical section, the one pointed to by its next pointer is 4540 * guaranteed to not have finished its RCU grace period even if we 4541 * have dropped rcu_read_lock() in-between iterations. 4542 * 4543 * If @pos has CSS_RELEASED set, its next pointer can't be 4544 * dereferenced; however, as each css is given a monotonically 4545 * increasing unique serial number and always appended to the 4546 * sibling list, the next one can be found by walking the parent's 4547 * children until the first css with higher serial number than 4548 * @pos's. While this path can be slower, it happens iff iteration 4549 * races against release and the race window is very small. 4550 */ 4551 if (!pos) { 4552 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling); 4553 } else if (likely(!(pos->flags & CSS_RELEASED))) { 4554 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling); 4555 } else { 4556 list_for_each_entry_rcu(next, &parent->children, sibling, 4557 lockdep_is_held(&cgroup_mutex)) 4558 if (next->serial_nr > pos->serial_nr) 4559 break; 4560 } 4561 4562 /* 4563 * @next, if not pointing to the head, can be dereferenced and is 4564 * the next sibling. 4565 */ 4566 if (&next->sibling != &parent->children) 4567 return next; 4568 return NULL; 4569 } 4570 4571 /** 4572 * css_next_descendant_pre - find the next descendant for pre-order walk 4573 * @pos: the current position (%NULL to initiate traversal) 4574 * @root: css whose descendants to walk 4575 * 4576 * To be used by css_for_each_descendant_pre(). Find the next descendant 4577 * to visit for pre-order traversal of @root's descendants. @root is 4578 * included in the iteration and the first node to be visited. 4579 * 4580 * While this function requires cgroup_mutex or RCU read locking, it 4581 * doesn't require the whole traversal to be contained in a single critical 4582 * section. This function will return the correct next descendant as long 4583 * as both @pos and @root are accessible and @pos is a descendant of @root. 4584 * 4585 * If a subsystem synchronizes ->css_online() and the start of iteration, a 4586 * css which finished ->css_online() is guaranteed to be visible in the 4587 * future iterations and will stay visible until the last reference is put. 4588 * A css which hasn't finished ->css_online() or already finished 4589 * ->css_offline() may show up during traversal. It's each subsystem's 4590 * responsibility to synchronize against on/offlining. 4591 */ 4592 struct cgroup_subsys_state * 4593 css_next_descendant_pre(struct cgroup_subsys_state *pos, 4594 struct cgroup_subsys_state *root) 4595 { 4596 struct cgroup_subsys_state *next; 4597 4598 cgroup_assert_mutex_or_rcu_locked(); 4599 4600 /* if first iteration, visit @root */ 4601 if (!pos) 4602 return root; 4603 4604 /* visit the first child if exists */ 4605 next = css_next_child(NULL, pos); 4606 if (next) 4607 return next; 4608 4609 /* no child, visit my or the closest ancestor's next sibling */ 4610 while (pos != root) { 4611 next = css_next_child(pos, pos->parent); 4612 if (next) 4613 return next; 4614 pos = pos->parent; 4615 } 4616 4617 return NULL; 4618 } 4619 EXPORT_SYMBOL_GPL(css_next_descendant_pre); 4620 4621 /** 4622 * css_rightmost_descendant - return the rightmost descendant of a css 4623 * @pos: css of interest 4624 * 4625 * Return the rightmost descendant of @pos. If there's no descendant, @pos 4626 * is returned. This can be used during pre-order traversal to skip 4627 * subtree of @pos. 4628 * 4629 * While this function requires cgroup_mutex or RCU read locking, it 4630 * doesn't require the whole traversal to be contained in a single critical 4631 * section. This function will return the correct rightmost descendant as 4632 * long as @pos is accessible. 4633 */ 4634 struct cgroup_subsys_state * 4635 css_rightmost_descendant(struct cgroup_subsys_state *pos) 4636 { 4637 struct cgroup_subsys_state *last, *tmp; 4638 4639 cgroup_assert_mutex_or_rcu_locked(); 4640 4641 do { 4642 last = pos; 4643 /* ->prev isn't RCU safe, walk ->next till the end */ 4644 pos = NULL; 4645 css_for_each_child(tmp, last) 4646 pos = tmp; 4647 } while (pos); 4648 4649 return last; 4650 } 4651 4652 static struct cgroup_subsys_state * 4653 css_leftmost_descendant(struct cgroup_subsys_state *pos) 4654 { 4655 struct cgroup_subsys_state *last; 4656 4657 do { 4658 last = pos; 4659 pos = css_next_child(NULL, pos); 4660 } while (pos); 4661 4662 return last; 4663 } 4664 4665 /** 4666 * css_next_descendant_post - find the next descendant for post-order walk 4667 * @pos: the current position (%NULL to initiate traversal) 4668 * @root: css whose descendants to walk 4669 * 4670 * To be used by css_for_each_descendant_post(). Find the next descendant 4671 * to visit for post-order traversal of @root's descendants. @root is 4672 * included in the iteration and the last node to be visited. 4673 * 4674 * While this function requires cgroup_mutex or RCU read locking, it 4675 * doesn't require the whole traversal to be contained in a single critical 4676 * section. This function will return the correct next descendant as long 4677 * as both @pos and @cgroup are accessible and @pos is a descendant of 4678 * @cgroup. 4679 * 4680 * If a subsystem synchronizes ->css_online() and the start of iteration, a 4681 * css which finished ->css_online() is guaranteed to be visible in the 4682 * future iterations and will stay visible until the last reference is put. 4683 * A css which hasn't finished ->css_online() or already finished 4684 * ->css_offline() may show up during traversal. It's each subsystem's 4685 * responsibility to synchronize against on/offlining. 4686 */ 4687 struct cgroup_subsys_state * 4688 css_next_descendant_post(struct cgroup_subsys_state *pos, 4689 struct cgroup_subsys_state *root) 4690 { 4691 struct cgroup_subsys_state *next; 4692 4693 cgroup_assert_mutex_or_rcu_locked(); 4694 4695 /* if first iteration, visit leftmost descendant which may be @root */ 4696 if (!pos) 4697 return css_leftmost_descendant(root); 4698 4699 /* if we visited @root, we're done */ 4700 if (pos == root) 4701 return NULL; 4702 4703 /* if there's an unvisited sibling, visit its leftmost descendant */ 4704 next = css_next_child(pos, pos->parent); 4705 if (next) 4706 return css_leftmost_descendant(next); 4707 4708 /* no sibling left, visit parent */ 4709 return pos->parent; 4710 } 4711 4712 /** 4713 * css_has_online_children - does a css have online children 4714 * @css: the target css 4715 * 4716 * Returns %true if @css has any online children; otherwise, %false. This 4717 * function can be called from any context but the caller is responsible 4718 * for synchronizing against on/offlining as necessary. 4719 */ 4720 bool css_has_online_children(struct cgroup_subsys_state *css) 4721 { 4722 struct cgroup_subsys_state *child; 4723 bool ret = false; 4724 4725 rcu_read_lock(); 4726 css_for_each_child(child, css) { 4727 if (child->flags & CSS_ONLINE) { 4728 ret = true; 4729 break; 4730 } 4731 } 4732 rcu_read_unlock(); 4733 return ret; 4734 } 4735 4736 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it) 4737 { 4738 struct list_head *l; 4739 struct cgrp_cset_link *link; 4740 struct css_set *cset; 4741 4742 lockdep_assert_held(&css_set_lock); 4743 4744 /* find the next threaded cset */ 4745 if (it->tcset_pos) { 4746 l = it->tcset_pos->next; 4747 4748 if (l != it->tcset_head) { 4749 it->tcset_pos = l; 4750 return container_of(l, struct css_set, 4751 threaded_csets_node); 4752 } 4753 4754 it->tcset_pos = NULL; 4755 } 4756 4757 /* find the next cset */ 4758 l = it->cset_pos; 4759 l = l->next; 4760 if (l == it->cset_head) { 4761 it->cset_pos = NULL; 4762 return NULL; 4763 } 4764 4765 if (it->ss) { 4766 cset = container_of(l, struct css_set, e_cset_node[it->ss->id]); 4767 } else { 4768 link = list_entry(l, struct cgrp_cset_link, cset_link); 4769 cset = link->cset; 4770 } 4771 4772 it->cset_pos = l; 4773 4774 /* initialize threaded css_set walking */ 4775 if (it->flags & CSS_TASK_ITER_THREADED) { 4776 if (it->cur_dcset) 4777 put_css_set_locked(it->cur_dcset); 4778 it->cur_dcset = cset; 4779 get_css_set(cset); 4780 4781 it->tcset_head = &cset->threaded_csets; 4782 it->tcset_pos = &cset->threaded_csets; 4783 } 4784 4785 return cset; 4786 } 4787 4788 /** 4789 * css_task_iter_advance_css_set - advance a task iterator to the next css_set 4790 * @it: the iterator to advance 4791 * 4792 * Advance @it to the next css_set to walk. 4793 */ 4794 static void css_task_iter_advance_css_set(struct css_task_iter *it) 4795 { 4796 struct css_set *cset; 4797 4798 lockdep_assert_held(&css_set_lock); 4799 4800 /* Advance to the next non-empty css_set and find first non-empty tasks list*/ 4801 while ((cset = css_task_iter_next_css_set(it))) { 4802 if (!list_empty(&cset->tasks)) { 4803 it->cur_tasks_head = &cset->tasks; 4804 break; 4805 } else if (!list_empty(&cset->mg_tasks)) { 4806 it->cur_tasks_head = &cset->mg_tasks; 4807 break; 4808 } else if (!list_empty(&cset->dying_tasks)) { 4809 it->cur_tasks_head = &cset->dying_tasks; 4810 break; 4811 } 4812 } 4813 if (!cset) { 4814 it->task_pos = NULL; 4815 return; 4816 } 4817 it->task_pos = it->cur_tasks_head->next; 4818 4819 /* 4820 * We don't keep css_sets locked across iteration steps and thus 4821 * need to take steps to ensure that iteration can be resumed after 4822 * the lock is re-acquired. Iteration is performed at two levels - 4823 * css_sets and tasks in them. 4824 * 4825 * Once created, a css_set never leaves its cgroup lists, so a 4826 * pinned css_set is guaranteed to stay put and we can resume 4827 * iteration afterwards. 4828 * 4829 * Tasks may leave @cset across iteration steps. This is resolved 4830 * by registering each iterator with the css_set currently being 4831 * walked and making css_set_move_task() advance iterators whose 4832 * next task is leaving. 4833 */ 4834 if (it->cur_cset) { 4835 list_del(&it->iters_node); 4836 put_css_set_locked(it->cur_cset); 4837 } 4838 get_css_set(cset); 4839 it->cur_cset = cset; 4840 list_add(&it->iters_node, &cset->task_iters); 4841 } 4842 4843 static void css_task_iter_skip(struct css_task_iter *it, 4844 struct task_struct *task) 4845 { 4846 lockdep_assert_held(&css_set_lock); 4847 4848 if (it->task_pos == &task->cg_list) { 4849 it->task_pos = it->task_pos->next; 4850 it->flags |= CSS_TASK_ITER_SKIPPED; 4851 } 4852 } 4853 4854 static void css_task_iter_advance(struct css_task_iter *it) 4855 { 4856 struct task_struct *task; 4857 4858 lockdep_assert_held(&css_set_lock); 4859 repeat: 4860 if (it->task_pos) { 4861 /* 4862 * Advance iterator to find next entry. We go through cset 4863 * tasks, mg_tasks and dying_tasks, when consumed we move onto 4864 * the next cset. 4865 */ 4866 if (it->flags & CSS_TASK_ITER_SKIPPED) 4867 it->flags &= ~CSS_TASK_ITER_SKIPPED; 4868 else 4869 it->task_pos = it->task_pos->next; 4870 4871 if (it->task_pos == &it->cur_cset->tasks) { 4872 it->cur_tasks_head = &it->cur_cset->mg_tasks; 4873 it->task_pos = it->cur_tasks_head->next; 4874 } 4875 if (it->task_pos == &it->cur_cset->mg_tasks) { 4876 it->cur_tasks_head = &it->cur_cset->dying_tasks; 4877 it->task_pos = it->cur_tasks_head->next; 4878 } 4879 if (it->task_pos == &it->cur_cset->dying_tasks) 4880 css_task_iter_advance_css_set(it); 4881 } else { 4882 /* called from start, proceed to the first cset */ 4883 css_task_iter_advance_css_set(it); 4884 } 4885 4886 if (!it->task_pos) 4887 return; 4888 4889 task = list_entry(it->task_pos, struct task_struct, cg_list); 4890 4891 if (it->flags & CSS_TASK_ITER_PROCS) { 4892 /* if PROCS, skip over tasks which aren't group leaders */ 4893 if (!thread_group_leader(task)) 4894 goto repeat; 4895 4896 /* and dying leaders w/o live member threads */ 4897 if (it->cur_tasks_head == &it->cur_cset->dying_tasks && 4898 !atomic_read(&task->signal->live)) 4899 goto repeat; 4900 } else { 4901 /* skip all dying ones */ 4902 if (it->cur_tasks_head == &it->cur_cset->dying_tasks) 4903 goto repeat; 4904 } 4905 } 4906 4907 /** 4908 * css_task_iter_start - initiate task iteration 4909 * @css: the css to walk tasks of 4910 * @flags: CSS_TASK_ITER_* flags 4911 * @it: the task iterator to use 4912 * 4913 * Initiate iteration through the tasks of @css. The caller can call 4914 * css_task_iter_next() to walk through the tasks until the function 4915 * returns NULL. On completion of iteration, css_task_iter_end() must be 4916 * called. 4917 */ 4918 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags, 4919 struct css_task_iter *it) 4920 { 4921 memset(it, 0, sizeof(*it)); 4922 4923 spin_lock_irq(&css_set_lock); 4924 4925 it->ss = css->ss; 4926 it->flags = flags; 4927 4928 if (CGROUP_HAS_SUBSYS_CONFIG && it->ss) 4929 it->cset_pos = &css->cgroup->e_csets[css->ss->id]; 4930 else 4931 it->cset_pos = &css->cgroup->cset_links; 4932 4933 it->cset_head = it->cset_pos; 4934 4935 css_task_iter_advance(it); 4936 4937 spin_unlock_irq(&css_set_lock); 4938 } 4939 4940 /** 4941 * css_task_iter_next - return the next task for the iterator 4942 * @it: the task iterator being iterated 4943 * 4944 * The "next" function for task iteration. @it should have been 4945 * initialized via css_task_iter_start(). Returns NULL when the iteration 4946 * reaches the end. 4947 */ 4948 struct task_struct *css_task_iter_next(struct css_task_iter *it) 4949 { 4950 if (it->cur_task) { 4951 put_task_struct(it->cur_task); 4952 it->cur_task = NULL; 4953 } 4954 4955 spin_lock_irq(&css_set_lock); 4956 4957 /* @it may be half-advanced by skips, finish advancing */ 4958 if (it->flags & CSS_TASK_ITER_SKIPPED) 4959 css_task_iter_advance(it); 4960 4961 if (it->task_pos) { 4962 it->cur_task = list_entry(it->task_pos, struct task_struct, 4963 cg_list); 4964 get_task_struct(it->cur_task); 4965 css_task_iter_advance(it); 4966 } 4967 4968 spin_unlock_irq(&css_set_lock); 4969 4970 return it->cur_task; 4971 } 4972 4973 /** 4974 * css_task_iter_end - finish task iteration 4975 * @it: the task iterator to finish 4976 * 4977 * Finish task iteration started by css_task_iter_start(). 4978 */ 4979 void css_task_iter_end(struct css_task_iter *it) 4980 { 4981 if (it->cur_cset) { 4982 spin_lock_irq(&css_set_lock); 4983 list_del(&it->iters_node); 4984 put_css_set_locked(it->cur_cset); 4985 spin_unlock_irq(&css_set_lock); 4986 } 4987 4988 if (it->cur_dcset) 4989 put_css_set(it->cur_dcset); 4990 4991 if (it->cur_task) 4992 put_task_struct(it->cur_task); 4993 } 4994 4995 static void cgroup_procs_release(struct kernfs_open_file *of) 4996 { 4997 struct cgroup_file_ctx *ctx = of->priv; 4998 4999 if (ctx->procs.started) 5000 css_task_iter_end(&ctx->procs.iter); 5001 } 5002 5003 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos) 5004 { 5005 struct kernfs_open_file *of = s->private; 5006 struct cgroup_file_ctx *ctx = of->priv; 5007 5008 if (pos) 5009 (*pos)++; 5010 5011 return css_task_iter_next(&ctx->procs.iter); 5012 } 5013 5014 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos, 5015 unsigned int iter_flags) 5016 { 5017 struct kernfs_open_file *of = s->private; 5018 struct cgroup *cgrp = seq_css(s)->cgroup; 5019 struct cgroup_file_ctx *ctx = of->priv; 5020 struct css_task_iter *it = &ctx->procs.iter; 5021 5022 /* 5023 * When a seq_file is seeked, it's always traversed sequentially 5024 * from position 0, so we can simply keep iterating on !0 *pos. 5025 */ 5026 if (!ctx->procs.started) { 5027 if (WARN_ON_ONCE((*pos))) 5028 return ERR_PTR(-EINVAL); 5029 css_task_iter_start(&cgrp->self, iter_flags, it); 5030 ctx->procs.started = true; 5031 } else if (!(*pos)) { 5032 css_task_iter_end(it); 5033 css_task_iter_start(&cgrp->self, iter_flags, it); 5034 } else 5035 return it->cur_task; 5036 5037 return cgroup_procs_next(s, NULL, NULL); 5038 } 5039 5040 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos) 5041 { 5042 struct cgroup *cgrp = seq_css(s)->cgroup; 5043 5044 /* 5045 * All processes of a threaded subtree belong to the domain cgroup 5046 * of the subtree. Only threads can be distributed across the 5047 * subtree. Reject reads on cgroup.procs in the subtree proper. 5048 * They're always empty anyway. 5049 */ 5050 if (cgroup_is_threaded(cgrp)) 5051 return ERR_PTR(-EOPNOTSUPP); 5052 5053 return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS | 5054 CSS_TASK_ITER_THREADED); 5055 } 5056 5057 static int cgroup_procs_show(struct seq_file *s, void *v) 5058 { 5059 seq_printf(s, "%d\n", task_pid_vnr(v)); 5060 return 0; 5061 } 5062 5063 static int cgroup_may_write(const struct cgroup *cgrp, struct super_block *sb) 5064 { 5065 int ret; 5066 struct inode *inode; 5067 5068 lockdep_assert_held(&cgroup_mutex); 5069 5070 inode = kernfs_get_inode(sb, cgrp->procs_file.kn); 5071 if (!inode) 5072 return -ENOMEM; 5073 5074 ret = inode_permission(&nop_mnt_idmap, inode, MAY_WRITE); 5075 iput(inode); 5076 return ret; 5077 } 5078 5079 static int cgroup_procs_write_permission(struct cgroup *src_cgrp, 5080 struct cgroup *dst_cgrp, 5081 struct super_block *sb, 5082 struct cgroup_namespace *ns) 5083 { 5084 struct cgroup *com_cgrp = src_cgrp; 5085 int ret; 5086 5087 lockdep_assert_held(&cgroup_mutex); 5088 5089 /* find the common ancestor */ 5090 while (!cgroup_is_descendant(dst_cgrp, com_cgrp)) 5091 com_cgrp = cgroup_parent(com_cgrp); 5092 5093 /* %current should be authorized to migrate to the common ancestor */ 5094 ret = cgroup_may_write(com_cgrp, sb); 5095 if (ret) 5096 return ret; 5097 5098 /* 5099 * If namespaces are delegation boundaries, %current must be able 5100 * to see both source and destination cgroups from its namespace. 5101 */ 5102 if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) && 5103 (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) || 5104 !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp))) 5105 return -ENOENT; 5106 5107 return 0; 5108 } 5109 5110 static int cgroup_attach_permissions(struct cgroup *src_cgrp, 5111 struct cgroup *dst_cgrp, 5112 struct super_block *sb, bool threadgroup, 5113 struct cgroup_namespace *ns) 5114 { 5115 int ret = 0; 5116 5117 ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, sb, ns); 5118 if (ret) 5119 return ret; 5120 5121 ret = cgroup_migrate_vet_dst(dst_cgrp); 5122 if (ret) 5123 return ret; 5124 5125 if (!threadgroup && (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp)) 5126 ret = -EOPNOTSUPP; 5127 5128 return ret; 5129 } 5130 5131 static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf, 5132 bool threadgroup) 5133 { 5134 struct cgroup_file_ctx *ctx = of->priv; 5135 struct cgroup *src_cgrp, *dst_cgrp; 5136 struct task_struct *task; 5137 const struct cred *saved_cred; 5138 ssize_t ret; 5139 bool threadgroup_locked; 5140 5141 dst_cgrp = cgroup_kn_lock_live(of->kn, false); 5142 if (!dst_cgrp) 5143 return -ENODEV; 5144 5145 task = cgroup_procs_write_start(buf, threadgroup, &threadgroup_locked); 5146 ret = PTR_ERR_OR_ZERO(task); 5147 if (ret) 5148 goto out_unlock; 5149 5150 /* find the source cgroup */ 5151 spin_lock_irq(&css_set_lock); 5152 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root); 5153 spin_unlock_irq(&css_set_lock); 5154 5155 /* 5156 * Process and thread migrations follow same delegation rule. Check 5157 * permissions using the credentials from file open to protect against 5158 * inherited fd attacks. 5159 */ 5160 saved_cred = override_creds(of->file->f_cred); 5161 ret = cgroup_attach_permissions(src_cgrp, dst_cgrp, 5162 of->file->f_path.dentry->d_sb, 5163 threadgroup, ctx->ns); 5164 revert_creds(saved_cred); 5165 if (ret) 5166 goto out_finish; 5167 5168 ret = cgroup_attach_task(dst_cgrp, task, threadgroup); 5169 5170 out_finish: 5171 cgroup_procs_write_finish(task, threadgroup_locked); 5172 out_unlock: 5173 cgroup_kn_unlock(of->kn); 5174 5175 return ret; 5176 } 5177 5178 static ssize_t cgroup_procs_write(struct kernfs_open_file *of, 5179 char *buf, size_t nbytes, loff_t off) 5180 { 5181 return __cgroup_procs_write(of, buf, true) ?: nbytes; 5182 } 5183 5184 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos) 5185 { 5186 return __cgroup_procs_start(s, pos, 0); 5187 } 5188 5189 static ssize_t cgroup_threads_write(struct kernfs_open_file *of, 5190 char *buf, size_t nbytes, loff_t off) 5191 { 5192 return __cgroup_procs_write(of, buf, false) ?: nbytes; 5193 } 5194 5195 /* cgroup core interface files for the default hierarchy */ 5196 static struct cftype cgroup_base_files[] = { 5197 { 5198 .name = "cgroup.type", 5199 .flags = CFTYPE_NOT_ON_ROOT, 5200 .seq_show = cgroup_type_show, 5201 .write = cgroup_type_write, 5202 }, 5203 { 5204 .name = "cgroup.procs", 5205 .flags = CFTYPE_NS_DELEGATABLE, 5206 .file_offset = offsetof(struct cgroup, procs_file), 5207 .release = cgroup_procs_release, 5208 .seq_start = cgroup_procs_start, 5209 .seq_next = cgroup_procs_next, 5210 .seq_show = cgroup_procs_show, 5211 .write = cgroup_procs_write, 5212 }, 5213 { 5214 .name = "cgroup.threads", 5215 .flags = CFTYPE_NS_DELEGATABLE, 5216 .release = cgroup_procs_release, 5217 .seq_start = cgroup_threads_start, 5218 .seq_next = cgroup_procs_next, 5219 .seq_show = cgroup_procs_show, 5220 .write = cgroup_threads_write, 5221 }, 5222 { 5223 .name = "cgroup.controllers", 5224 .seq_show = cgroup_controllers_show, 5225 }, 5226 { 5227 .name = "cgroup.subtree_control", 5228 .flags = CFTYPE_NS_DELEGATABLE, 5229 .seq_show = cgroup_subtree_control_show, 5230 .write = cgroup_subtree_control_write, 5231 }, 5232 { 5233 .name = "cgroup.events", 5234 .flags = CFTYPE_NOT_ON_ROOT, 5235 .file_offset = offsetof(struct cgroup, events_file), 5236 .seq_show = cgroup_events_show, 5237 }, 5238 { 5239 .name = "cgroup.max.descendants", 5240 .seq_show = cgroup_max_descendants_show, 5241 .write = cgroup_max_descendants_write, 5242 }, 5243 { 5244 .name = "cgroup.max.depth", 5245 .seq_show = cgroup_max_depth_show, 5246 .write = cgroup_max_depth_write, 5247 }, 5248 { 5249 .name = "cgroup.stat", 5250 .seq_show = cgroup_stat_show, 5251 }, 5252 { 5253 .name = "cgroup.freeze", 5254 .flags = CFTYPE_NOT_ON_ROOT, 5255 .seq_show = cgroup_freeze_show, 5256 .write = cgroup_freeze_write, 5257 }, 5258 { 5259 .name = "cgroup.kill", 5260 .flags = CFTYPE_NOT_ON_ROOT, 5261 .write = cgroup_kill_write, 5262 }, 5263 { 5264 .name = "cpu.stat", 5265 .seq_show = cpu_stat_show, 5266 }, 5267 { 5268 .name = "cpu.stat.local", 5269 .seq_show = cpu_local_stat_show, 5270 }, 5271 { } /* terminate */ 5272 }; 5273 5274 static struct cftype cgroup_psi_files[] = { 5275 #ifdef CONFIG_PSI 5276 { 5277 .name = "io.pressure", 5278 .file_offset = offsetof(struct cgroup, psi_files[PSI_IO]), 5279 .seq_show = cgroup_io_pressure_show, 5280 .write = cgroup_io_pressure_write, 5281 .poll = cgroup_pressure_poll, 5282 .release = cgroup_pressure_release, 5283 }, 5284 { 5285 .name = "memory.pressure", 5286 .file_offset = offsetof(struct cgroup, psi_files[PSI_MEM]), 5287 .seq_show = cgroup_memory_pressure_show, 5288 .write = cgroup_memory_pressure_write, 5289 .poll = cgroup_pressure_poll, 5290 .release = cgroup_pressure_release, 5291 }, 5292 { 5293 .name = "cpu.pressure", 5294 .file_offset = offsetof(struct cgroup, psi_files[PSI_CPU]), 5295 .seq_show = cgroup_cpu_pressure_show, 5296 .write = cgroup_cpu_pressure_write, 5297 .poll = cgroup_pressure_poll, 5298 .release = cgroup_pressure_release, 5299 }, 5300 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 5301 { 5302 .name = "irq.pressure", 5303 .file_offset = offsetof(struct cgroup, psi_files[PSI_IRQ]), 5304 .seq_show = cgroup_irq_pressure_show, 5305 .write = cgroup_irq_pressure_write, 5306 .poll = cgroup_pressure_poll, 5307 .release = cgroup_pressure_release, 5308 }, 5309 #endif 5310 { 5311 .name = "cgroup.pressure", 5312 .seq_show = cgroup_pressure_show, 5313 .write = cgroup_pressure_write, 5314 }, 5315 #endif /* CONFIG_PSI */ 5316 { } /* terminate */ 5317 }; 5318 5319 /* 5320 * css destruction is four-stage process. 5321 * 5322 * 1. Destruction starts. Killing of the percpu_ref is initiated. 5323 * Implemented in kill_css(). 5324 * 5325 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs 5326 * and thus css_tryget_online() is guaranteed to fail, the css can be 5327 * offlined by invoking offline_css(). After offlining, the base ref is 5328 * put. Implemented in css_killed_work_fn(). 5329 * 5330 * 3. When the percpu_ref reaches zero, the only possible remaining 5331 * accessors are inside RCU read sections. css_release() schedules the 5332 * RCU callback. 5333 * 5334 * 4. After the grace period, the css can be freed. Implemented in 5335 * css_free_rwork_fn(). 5336 * 5337 * It is actually hairier because both step 2 and 4 require process context 5338 * and thus involve punting to css->destroy_work adding two additional 5339 * steps to the already complex sequence. 5340 */ 5341 static void css_free_rwork_fn(struct work_struct *work) 5342 { 5343 struct cgroup_subsys_state *css = container_of(to_rcu_work(work), 5344 struct cgroup_subsys_state, destroy_rwork); 5345 struct cgroup_subsys *ss = css->ss; 5346 struct cgroup *cgrp = css->cgroup; 5347 5348 percpu_ref_exit(&css->refcnt); 5349 5350 if (ss) { 5351 /* css free path */ 5352 struct cgroup_subsys_state *parent = css->parent; 5353 int id = css->id; 5354 5355 ss->css_free(css); 5356 cgroup_idr_remove(&ss->css_idr, id); 5357 cgroup_put(cgrp); 5358 5359 if (parent) 5360 css_put(parent); 5361 } else { 5362 /* cgroup free path */ 5363 atomic_dec(&cgrp->root->nr_cgrps); 5364 cgroup1_pidlist_destroy_all(cgrp); 5365 cancel_work_sync(&cgrp->release_agent_work); 5366 bpf_cgrp_storage_free(cgrp); 5367 5368 if (cgroup_parent(cgrp)) { 5369 /* 5370 * We get a ref to the parent, and put the ref when 5371 * this cgroup is being freed, so it's guaranteed 5372 * that the parent won't be destroyed before its 5373 * children. 5374 */ 5375 cgroup_put(cgroup_parent(cgrp)); 5376 kernfs_put(cgrp->kn); 5377 psi_cgroup_free(cgrp); 5378 cgroup_rstat_exit(cgrp); 5379 kfree(cgrp); 5380 } else { 5381 /* 5382 * This is root cgroup's refcnt reaching zero, 5383 * which indicates that the root should be 5384 * released. 5385 */ 5386 cgroup_destroy_root(cgrp->root); 5387 } 5388 } 5389 } 5390 5391 static void css_release_work_fn(struct work_struct *work) 5392 { 5393 struct cgroup_subsys_state *css = 5394 container_of(work, struct cgroup_subsys_state, destroy_work); 5395 struct cgroup_subsys *ss = css->ss; 5396 struct cgroup *cgrp = css->cgroup; 5397 5398 cgroup_lock(); 5399 5400 css->flags |= CSS_RELEASED; 5401 list_del_rcu(&css->sibling); 5402 5403 if (ss) { 5404 /* css release path */ 5405 if (!list_empty(&css->rstat_css_node)) { 5406 cgroup_rstat_flush(cgrp); 5407 list_del_rcu(&css->rstat_css_node); 5408 } 5409 5410 cgroup_idr_replace(&ss->css_idr, NULL, css->id); 5411 if (ss->css_released) 5412 ss->css_released(css); 5413 } else { 5414 struct cgroup *tcgrp; 5415 5416 /* cgroup release path */ 5417 TRACE_CGROUP_PATH(release, cgrp); 5418 5419 cgroup_rstat_flush(cgrp); 5420 5421 spin_lock_irq(&css_set_lock); 5422 for (tcgrp = cgroup_parent(cgrp); tcgrp; 5423 tcgrp = cgroup_parent(tcgrp)) 5424 tcgrp->nr_dying_descendants--; 5425 spin_unlock_irq(&css_set_lock); 5426 5427 /* 5428 * There are two control paths which try to determine 5429 * cgroup from dentry without going through kernfs - 5430 * cgroupstats_build() and css_tryget_online_from_dir(). 5431 * Those are supported by RCU protecting clearing of 5432 * cgrp->kn->priv backpointer. 5433 */ 5434 if (cgrp->kn) 5435 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, 5436 NULL); 5437 } 5438 5439 cgroup_unlock(); 5440 5441 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn); 5442 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork); 5443 } 5444 5445 static void css_release(struct percpu_ref *ref) 5446 { 5447 struct cgroup_subsys_state *css = 5448 container_of(ref, struct cgroup_subsys_state, refcnt); 5449 5450 INIT_WORK(&css->destroy_work, css_release_work_fn); 5451 queue_work(cgroup_destroy_wq, &css->destroy_work); 5452 } 5453 5454 static void init_and_link_css(struct cgroup_subsys_state *css, 5455 struct cgroup_subsys *ss, struct cgroup *cgrp) 5456 { 5457 lockdep_assert_held(&cgroup_mutex); 5458 5459 cgroup_get_live(cgrp); 5460 5461 memset(css, 0, sizeof(*css)); 5462 css->cgroup = cgrp; 5463 css->ss = ss; 5464 css->id = -1; 5465 INIT_LIST_HEAD(&css->sibling); 5466 INIT_LIST_HEAD(&css->children); 5467 INIT_LIST_HEAD(&css->rstat_css_node); 5468 css->serial_nr = css_serial_nr_next++; 5469 atomic_set(&css->online_cnt, 0); 5470 5471 if (cgroup_parent(cgrp)) { 5472 css->parent = cgroup_css(cgroup_parent(cgrp), ss); 5473 css_get(css->parent); 5474 } 5475 5476 if (ss->css_rstat_flush) 5477 list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list); 5478 5479 BUG_ON(cgroup_css(cgrp, ss)); 5480 } 5481 5482 /* invoke ->css_online() on a new CSS and mark it online if successful */ 5483 static int online_css(struct cgroup_subsys_state *css) 5484 { 5485 struct cgroup_subsys *ss = css->ss; 5486 int ret = 0; 5487 5488 lockdep_assert_held(&cgroup_mutex); 5489 5490 if (ss->css_online) 5491 ret = ss->css_online(css); 5492 if (!ret) { 5493 css->flags |= CSS_ONLINE; 5494 rcu_assign_pointer(css->cgroup->subsys[ss->id], css); 5495 5496 atomic_inc(&css->online_cnt); 5497 if (css->parent) 5498 atomic_inc(&css->parent->online_cnt); 5499 } 5500 return ret; 5501 } 5502 5503 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */ 5504 static void offline_css(struct cgroup_subsys_state *css) 5505 { 5506 struct cgroup_subsys *ss = css->ss; 5507 5508 lockdep_assert_held(&cgroup_mutex); 5509 5510 if (!(css->flags & CSS_ONLINE)) 5511 return; 5512 5513 if (ss->css_offline) 5514 ss->css_offline(css); 5515 5516 css->flags &= ~CSS_ONLINE; 5517 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL); 5518 5519 wake_up_all(&css->cgroup->offline_waitq); 5520 } 5521 5522 /** 5523 * css_create - create a cgroup_subsys_state 5524 * @cgrp: the cgroup new css will be associated with 5525 * @ss: the subsys of new css 5526 * 5527 * Create a new css associated with @cgrp - @ss pair. On success, the new 5528 * css is online and installed in @cgrp. This function doesn't create the 5529 * interface files. Returns 0 on success, -errno on failure. 5530 */ 5531 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp, 5532 struct cgroup_subsys *ss) 5533 { 5534 struct cgroup *parent = cgroup_parent(cgrp); 5535 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss); 5536 struct cgroup_subsys_state *css; 5537 int err; 5538 5539 lockdep_assert_held(&cgroup_mutex); 5540 5541 css = ss->css_alloc(parent_css); 5542 if (!css) 5543 css = ERR_PTR(-ENOMEM); 5544 if (IS_ERR(css)) 5545 return css; 5546 5547 init_and_link_css(css, ss, cgrp); 5548 5549 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL); 5550 if (err) 5551 goto err_free_css; 5552 5553 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL); 5554 if (err < 0) 5555 goto err_free_css; 5556 css->id = err; 5557 5558 /* @css is ready to be brought online now, make it visible */ 5559 list_add_tail_rcu(&css->sibling, &parent_css->children); 5560 cgroup_idr_replace(&ss->css_idr, css, css->id); 5561 5562 err = online_css(css); 5563 if (err) 5564 goto err_list_del; 5565 5566 return css; 5567 5568 err_list_del: 5569 list_del_rcu(&css->sibling); 5570 err_free_css: 5571 list_del_rcu(&css->rstat_css_node); 5572 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn); 5573 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork); 5574 return ERR_PTR(err); 5575 } 5576 5577 /* 5578 * The returned cgroup is fully initialized including its control mask, but 5579 * it doesn't have the control mask applied. 5580 */ 5581 static struct cgroup *cgroup_create(struct cgroup *parent, const char *name, 5582 umode_t mode) 5583 { 5584 struct cgroup_root *root = parent->root; 5585 struct cgroup *cgrp, *tcgrp; 5586 struct kernfs_node *kn; 5587 int level = parent->level + 1; 5588 int ret; 5589 5590 /* allocate the cgroup and its ID, 0 is reserved for the root */ 5591 cgrp = kzalloc(struct_size(cgrp, ancestors, (level + 1)), GFP_KERNEL); 5592 if (!cgrp) 5593 return ERR_PTR(-ENOMEM); 5594 5595 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL); 5596 if (ret) 5597 goto out_free_cgrp; 5598 5599 ret = cgroup_rstat_init(cgrp); 5600 if (ret) 5601 goto out_cancel_ref; 5602 5603 /* create the directory */ 5604 kn = kernfs_create_dir(parent->kn, name, mode, cgrp); 5605 if (IS_ERR(kn)) { 5606 ret = PTR_ERR(kn); 5607 goto out_stat_exit; 5608 } 5609 cgrp->kn = kn; 5610 5611 init_cgroup_housekeeping(cgrp); 5612 5613 cgrp->self.parent = &parent->self; 5614 cgrp->root = root; 5615 cgrp->level = level; 5616 5617 ret = psi_cgroup_alloc(cgrp); 5618 if (ret) 5619 goto out_kernfs_remove; 5620 5621 if (cgrp->root == &cgrp_dfl_root) { 5622 ret = cgroup_bpf_inherit(cgrp); 5623 if (ret) 5624 goto out_psi_free; 5625 } 5626 5627 /* 5628 * New cgroup inherits effective freeze counter, and 5629 * if the parent has to be frozen, the child has too. 5630 */ 5631 cgrp->freezer.e_freeze = parent->freezer.e_freeze; 5632 if (cgrp->freezer.e_freeze) { 5633 /* 5634 * Set the CGRP_FREEZE flag, so when a process will be 5635 * attached to the child cgroup, it will become frozen. 5636 * At this point the new cgroup is unpopulated, so we can 5637 * consider it frozen immediately. 5638 */ 5639 set_bit(CGRP_FREEZE, &cgrp->flags); 5640 set_bit(CGRP_FROZEN, &cgrp->flags); 5641 } 5642 5643 spin_lock_irq(&css_set_lock); 5644 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) { 5645 cgrp->ancestors[tcgrp->level] = tcgrp; 5646 5647 if (tcgrp != cgrp) { 5648 tcgrp->nr_descendants++; 5649 5650 /* 5651 * If the new cgroup is frozen, all ancestor cgroups 5652 * get a new frozen descendant, but their state can't 5653 * change because of this. 5654 */ 5655 if (cgrp->freezer.e_freeze) 5656 tcgrp->freezer.nr_frozen_descendants++; 5657 } 5658 } 5659 spin_unlock_irq(&css_set_lock); 5660 5661 if (notify_on_release(parent)) 5662 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags); 5663 5664 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags)) 5665 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags); 5666 5667 cgrp->self.serial_nr = css_serial_nr_next++; 5668 5669 /* allocation complete, commit to creation */ 5670 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children); 5671 atomic_inc(&root->nr_cgrps); 5672 cgroup_get_live(parent); 5673 5674 /* 5675 * On the default hierarchy, a child doesn't automatically inherit 5676 * subtree_control from the parent. Each is configured manually. 5677 */ 5678 if (!cgroup_on_dfl(cgrp)) 5679 cgrp->subtree_control = cgroup_control(cgrp); 5680 5681 cgroup_propagate_control(cgrp); 5682 5683 return cgrp; 5684 5685 out_psi_free: 5686 psi_cgroup_free(cgrp); 5687 out_kernfs_remove: 5688 kernfs_remove(cgrp->kn); 5689 out_stat_exit: 5690 cgroup_rstat_exit(cgrp); 5691 out_cancel_ref: 5692 percpu_ref_exit(&cgrp->self.refcnt); 5693 out_free_cgrp: 5694 kfree(cgrp); 5695 return ERR_PTR(ret); 5696 } 5697 5698 static bool cgroup_check_hierarchy_limits(struct cgroup *parent) 5699 { 5700 struct cgroup *cgroup; 5701 int ret = false; 5702 int level = 0; 5703 5704 lockdep_assert_held(&cgroup_mutex); 5705 5706 for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) { 5707 if (cgroup->nr_descendants >= cgroup->max_descendants) 5708 goto fail; 5709 5710 if (level >= cgroup->max_depth) 5711 goto fail; 5712 5713 level++; 5714 } 5715 5716 ret = true; 5717 fail: 5718 return ret; 5719 } 5720 5721 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode) 5722 { 5723 struct cgroup *parent, *cgrp; 5724 int ret; 5725 5726 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */ 5727 if (strchr(name, '\n')) 5728 return -EINVAL; 5729 5730 parent = cgroup_kn_lock_live(parent_kn, false); 5731 if (!parent) 5732 return -ENODEV; 5733 5734 if (!cgroup_check_hierarchy_limits(parent)) { 5735 ret = -EAGAIN; 5736 goto out_unlock; 5737 } 5738 5739 cgrp = cgroup_create(parent, name, mode); 5740 if (IS_ERR(cgrp)) { 5741 ret = PTR_ERR(cgrp); 5742 goto out_unlock; 5743 } 5744 5745 /* 5746 * This extra ref will be put in cgroup_free_fn() and guarantees 5747 * that @cgrp->kn is always accessible. 5748 */ 5749 kernfs_get(cgrp->kn); 5750 5751 ret = cgroup_kn_set_ugid(cgrp->kn); 5752 if (ret) 5753 goto out_destroy; 5754 5755 ret = css_populate_dir(&cgrp->self); 5756 if (ret) 5757 goto out_destroy; 5758 5759 ret = cgroup_apply_control_enable(cgrp); 5760 if (ret) 5761 goto out_destroy; 5762 5763 TRACE_CGROUP_PATH(mkdir, cgrp); 5764 5765 /* let's create and online css's */ 5766 kernfs_activate(cgrp->kn); 5767 5768 ret = 0; 5769 goto out_unlock; 5770 5771 out_destroy: 5772 cgroup_destroy_locked(cgrp); 5773 out_unlock: 5774 cgroup_kn_unlock(parent_kn); 5775 return ret; 5776 } 5777 5778 /* 5779 * This is called when the refcnt of a css is confirmed to be killed. 5780 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to 5781 * initiate destruction and put the css ref from kill_css(). 5782 */ 5783 static void css_killed_work_fn(struct work_struct *work) 5784 { 5785 struct cgroup_subsys_state *css = 5786 container_of(work, struct cgroup_subsys_state, destroy_work); 5787 5788 cgroup_lock(); 5789 5790 do { 5791 offline_css(css); 5792 css_put(css); 5793 /* @css can't go away while we're holding cgroup_mutex */ 5794 css = css->parent; 5795 } while (css && atomic_dec_and_test(&css->online_cnt)); 5796 5797 cgroup_unlock(); 5798 } 5799 5800 /* css kill confirmation processing requires process context, bounce */ 5801 static void css_killed_ref_fn(struct percpu_ref *ref) 5802 { 5803 struct cgroup_subsys_state *css = 5804 container_of(ref, struct cgroup_subsys_state, refcnt); 5805 5806 if (atomic_dec_and_test(&css->online_cnt)) { 5807 INIT_WORK(&css->destroy_work, css_killed_work_fn); 5808 queue_work(cgroup_destroy_wq, &css->destroy_work); 5809 } 5810 } 5811 5812 /** 5813 * kill_css - destroy a css 5814 * @css: css to destroy 5815 * 5816 * This function initiates destruction of @css by removing cgroup interface 5817 * files and putting its base reference. ->css_offline() will be invoked 5818 * asynchronously once css_tryget_online() is guaranteed to fail and when 5819 * the reference count reaches zero, @css will be released. 5820 */ 5821 static void kill_css(struct cgroup_subsys_state *css) 5822 { 5823 lockdep_assert_held(&cgroup_mutex); 5824 5825 if (css->flags & CSS_DYING) 5826 return; 5827 5828 css->flags |= CSS_DYING; 5829 5830 /* 5831 * This must happen before css is disassociated with its cgroup. 5832 * See seq_css() for details. 5833 */ 5834 css_clear_dir(css); 5835 5836 /* 5837 * Killing would put the base ref, but we need to keep it alive 5838 * until after ->css_offline(). 5839 */ 5840 css_get(css); 5841 5842 /* 5843 * cgroup core guarantees that, by the time ->css_offline() is 5844 * invoked, no new css reference will be given out via 5845 * css_tryget_online(). We can't simply call percpu_ref_kill() and 5846 * proceed to offlining css's because percpu_ref_kill() doesn't 5847 * guarantee that the ref is seen as killed on all CPUs on return. 5848 * 5849 * Use percpu_ref_kill_and_confirm() to get notifications as each 5850 * css is confirmed to be seen as killed on all CPUs. 5851 */ 5852 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn); 5853 } 5854 5855 /** 5856 * cgroup_destroy_locked - the first stage of cgroup destruction 5857 * @cgrp: cgroup to be destroyed 5858 * 5859 * css's make use of percpu refcnts whose killing latency shouldn't be 5860 * exposed to userland and are RCU protected. Also, cgroup core needs to 5861 * guarantee that css_tryget_online() won't succeed by the time 5862 * ->css_offline() is invoked. To satisfy all the requirements, 5863 * destruction is implemented in the following two steps. 5864 * 5865 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all 5866 * userland visible parts and start killing the percpu refcnts of 5867 * css's. Set up so that the next stage will be kicked off once all 5868 * the percpu refcnts are confirmed to be killed. 5869 * 5870 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the 5871 * rest of destruction. Once all cgroup references are gone, the 5872 * cgroup is RCU-freed. 5873 * 5874 * This function implements s1. After this step, @cgrp is gone as far as 5875 * the userland is concerned and a new cgroup with the same name may be 5876 * created. As cgroup doesn't care about the names internally, this 5877 * doesn't cause any problem. 5878 */ 5879 static int cgroup_destroy_locked(struct cgroup *cgrp) 5880 __releases(&cgroup_mutex) __acquires(&cgroup_mutex) 5881 { 5882 struct cgroup *tcgrp, *parent = cgroup_parent(cgrp); 5883 struct cgroup_subsys_state *css; 5884 struct cgrp_cset_link *link; 5885 int ssid; 5886 5887 lockdep_assert_held(&cgroup_mutex); 5888 5889 /* 5890 * Only migration can raise populated from zero and we're already 5891 * holding cgroup_mutex. 5892 */ 5893 if (cgroup_is_populated(cgrp)) 5894 return -EBUSY; 5895 5896 /* 5897 * Make sure there's no live children. We can't test emptiness of 5898 * ->self.children as dead children linger on it while being 5899 * drained; otherwise, "rmdir parent/child parent" may fail. 5900 */ 5901 if (css_has_online_children(&cgrp->self)) 5902 return -EBUSY; 5903 5904 /* 5905 * Mark @cgrp and the associated csets dead. The former prevents 5906 * further task migration and child creation by disabling 5907 * cgroup_kn_lock_live(). The latter makes the csets ignored by 5908 * the migration path. 5909 */ 5910 cgrp->self.flags &= ~CSS_ONLINE; 5911 5912 spin_lock_irq(&css_set_lock); 5913 list_for_each_entry(link, &cgrp->cset_links, cset_link) 5914 link->cset->dead = true; 5915 spin_unlock_irq(&css_set_lock); 5916 5917 /* initiate massacre of all css's */ 5918 for_each_css(css, ssid, cgrp) 5919 kill_css(css); 5920 5921 /* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */ 5922 css_clear_dir(&cgrp->self); 5923 kernfs_remove(cgrp->kn); 5924 5925 if (cgroup_is_threaded(cgrp)) 5926 parent->nr_threaded_children--; 5927 5928 spin_lock_irq(&css_set_lock); 5929 for (tcgrp = parent; tcgrp; tcgrp = cgroup_parent(tcgrp)) { 5930 tcgrp->nr_descendants--; 5931 tcgrp->nr_dying_descendants++; 5932 /* 5933 * If the dying cgroup is frozen, decrease frozen descendants 5934 * counters of ancestor cgroups. 5935 */ 5936 if (test_bit(CGRP_FROZEN, &cgrp->flags)) 5937 tcgrp->freezer.nr_frozen_descendants--; 5938 } 5939 spin_unlock_irq(&css_set_lock); 5940 5941 cgroup1_check_for_release(parent); 5942 5943 if (cgrp->root == &cgrp_dfl_root) 5944 cgroup_bpf_offline(cgrp); 5945 5946 /* put the base reference */ 5947 percpu_ref_kill(&cgrp->self.refcnt); 5948 5949 return 0; 5950 }; 5951 5952 int cgroup_rmdir(struct kernfs_node *kn) 5953 { 5954 struct cgroup *cgrp; 5955 int ret = 0; 5956 5957 cgrp = cgroup_kn_lock_live(kn, false); 5958 if (!cgrp) 5959 return 0; 5960 5961 ret = cgroup_destroy_locked(cgrp); 5962 if (!ret) 5963 TRACE_CGROUP_PATH(rmdir, cgrp); 5964 5965 cgroup_kn_unlock(kn); 5966 return ret; 5967 } 5968 5969 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = { 5970 .show_options = cgroup_show_options, 5971 .mkdir = cgroup_mkdir, 5972 .rmdir = cgroup_rmdir, 5973 .show_path = cgroup_show_path, 5974 }; 5975 5976 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early) 5977 { 5978 struct cgroup_subsys_state *css; 5979 5980 pr_debug("Initializing cgroup subsys %s\n", ss->name); 5981 5982 cgroup_lock(); 5983 5984 idr_init(&ss->css_idr); 5985 INIT_LIST_HEAD(&ss->cfts); 5986 5987 /* Create the root cgroup state for this subsystem */ 5988 ss->root = &cgrp_dfl_root; 5989 css = ss->css_alloc(NULL); 5990 /* We don't handle early failures gracefully */ 5991 BUG_ON(IS_ERR(css)); 5992 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp); 5993 5994 /* 5995 * Root csses are never destroyed and we can't initialize 5996 * percpu_ref during early init. Disable refcnting. 5997 */ 5998 css->flags |= CSS_NO_REF; 5999 6000 if (early) { 6001 /* allocation can't be done safely during early init */ 6002 css->id = 1; 6003 } else { 6004 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL); 6005 BUG_ON(css->id < 0); 6006 } 6007 6008 /* Update the init_css_set to contain a subsys 6009 * pointer to this state - since the subsystem is 6010 * newly registered, all tasks and hence the 6011 * init_css_set is in the subsystem's root cgroup. */ 6012 init_css_set.subsys[ss->id] = css; 6013 6014 have_fork_callback |= (bool)ss->fork << ss->id; 6015 have_exit_callback |= (bool)ss->exit << ss->id; 6016 have_release_callback |= (bool)ss->release << ss->id; 6017 have_canfork_callback |= (bool)ss->can_fork << ss->id; 6018 6019 /* At system boot, before all subsystems have been 6020 * registered, no tasks have been forked, so we don't 6021 * need to invoke fork callbacks here. */ 6022 BUG_ON(!list_empty(&init_task.tasks)); 6023 6024 BUG_ON(online_css(css)); 6025 6026 cgroup_unlock(); 6027 } 6028 6029 /** 6030 * cgroup_init_early - cgroup initialization at system boot 6031 * 6032 * Initialize cgroups at system boot, and initialize any 6033 * subsystems that request early init. 6034 */ 6035 int __init cgroup_init_early(void) 6036 { 6037 static struct cgroup_fs_context __initdata ctx; 6038 struct cgroup_subsys *ss; 6039 int i; 6040 6041 ctx.root = &cgrp_dfl_root; 6042 init_cgroup_root(&ctx); 6043 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF; 6044 6045 RCU_INIT_POINTER(init_task.cgroups, &init_css_set); 6046 6047 for_each_subsys(ss, i) { 6048 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id, 6049 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n", 6050 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free, 6051 ss->id, ss->name); 6052 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN, 6053 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]); 6054 6055 ss->id = i; 6056 ss->name = cgroup_subsys_name[i]; 6057 if (!ss->legacy_name) 6058 ss->legacy_name = cgroup_subsys_name[i]; 6059 6060 if (ss->early_init) 6061 cgroup_init_subsys(ss, true); 6062 } 6063 return 0; 6064 } 6065 6066 /** 6067 * cgroup_init - cgroup initialization 6068 * 6069 * Register cgroup filesystem and /proc file, and initialize 6070 * any subsystems that didn't request early init. 6071 */ 6072 int __init cgroup_init(void) 6073 { 6074 struct cgroup_subsys *ss; 6075 int ssid; 6076 6077 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16); 6078 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files)); 6079 BUG_ON(cgroup_init_cftypes(NULL, cgroup_psi_files)); 6080 BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files)); 6081 6082 cgroup_rstat_boot(); 6083 6084 get_user_ns(init_cgroup_ns.user_ns); 6085 6086 cgroup_lock(); 6087 6088 /* 6089 * Add init_css_set to the hash table so that dfl_root can link to 6090 * it during init. 6091 */ 6092 hash_add(css_set_table, &init_css_set.hlist, 6093 css_set_hash(init_css_set.subsys)); 6094 6095 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0)); 6096 6097 cgroup_unlock(); 6098 6099 for_each_subsys(ss, ssid) { 6100 if (ss->early_init) { 6101 struct cgroup_subsys_state *css = 6102 init_css_set.subsys[ss->id]; 6103 6104 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, 6105 GFP_KERNEL); 6106 BUG_ON(css->id < 0); 6107 } else { 6108 cgroup_init_subsys(ss, false); 6109 } 6110 6111 list_add_tail(&init_css_set.e_cset_node[ssid], 6112 &cgrp_dfl_root.cgrp.e_csets[ssid]); 6113 6114 /* 6115 * Setting dfl_root subsys_mask needs to consider the 6116 * disabled flag and cftype registration needs kmalloc, 6117 * both of which aren't available during early_init. 6118 */ 6119 if (!cgroup_ssid_enabled(ssid)) 6120 continue; 6121 6122 if (cgroup1_ssid_disabled(ssid)) 6123 pr_info("Disabling %s control group subsystem in v1 mounts\n", 6124 ss->name); 6125 6126 cgrp_dfl_root.subsys_mask |= 1 << ss->id; 6127 6128 /* implicit controllers must be threaded too */ 6129 WARN_ON(ss->implicit_on_dfl && !ss->threaded); 6130 6131 if (ss->implicit_on_dfl) 6132 cgrp_dfl_implicit_ss_mask |= 1 << ss->id; 6133 else if (!ss->dfl_cftypes) 6134 cgrp_dfl_inhibit_ss_mask |= 1 << ss->id; 6135 6136 if (ss->threaded) 6137 cgrp_dfl_threaded_ss_mask |= 1 << ss->id; 6138 6139 if (ss->dfl_cftypes == ss->legacy_cftypes) { 6140 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes)); 6141 } else { 6142 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes)); 6143 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes)); 6144 } 6145 6146 if (ss->bind) 6147 ss->bind(init_css_set.subsys[ssid]); 6148 6149 cgroup_lock(); 6150 css_populate_dir(init_css_set.subsys[ssid]); 6151 cgroup_unlock(); 6152 } 6153 6154 /* init_css_set.subsys[] has been updated, re-hash */ 6155 hash_del(&init_css_set.hlist); 6156 hash_add(css_set_table, &init_css_set.hlist, 6157 css_set_hash(init_css_set.subsys)); 6158 6159 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup")); 6160 WARN_ON(register_filesystem(&cgroup_fs_type)); 6161 WARN_ON(register_filesystem(&cgroup2_fs_type)); 6162 WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show)); 6163 #ifdef CONFIG_CPUSETS 6164 WARN_ON(register_filesystem(&cpuset_fs_type)); 6165 #endif 6166 6167 return 0; 6168 } 6169 6170 static int __init cgroup_wq_init(void) 6171 { 6172 /* 6173 * There isn't much point in executing destruction path in 6174 * parallel. Good chunk is serialized with cgroup_mutex anyway. 6175 * Use 1 for @max_active. 6176 * 6177 * We would prefer to do this in cgroup_init() above, but that 6178 * is called before init_workqueues(): so leave this until after. 6179 */ 6180 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1); 6181 BUG_ON(!cgroup_destroy_wq); 6182 return 0; 6183 } 6184 core_initcall(cgroup_wq_init); 6185 6186 void cgroup_path_from_kernfs_id(u64 id, char *buf, size_t buflen) 6187 { 6188 struct kernfs_node *kn; 6189 6190 kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id); 6191 if (!kn) 6192 return; 6193 kernfs_path(kn, buf, buflen); 6194 kernfs_put(kn); 6195 } 6196 6197 /* 6198 * cgroup_get_from_id : get the cgroup associated with cgroup id 6199 * @id: cgroup id 6200 * On success return the cgrp or ERR_PTR on failure 6201 * Only cgroups within current task's cgroup NS are valid. 6202 */ 6203 struct cgroup *cgroup_get_from_id(u64 id) 6204 { 6205 struct kernfs_node *kn; 6206 struct cgroup *cgrp, *root_cgrp; 6207 6208 kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id); 6209 if (!kn) 6210 return ERR_PTR(-ENOENT); 6211 6212 if (kernfs_type(kn) != KERNFS_DIR) { 6213 kernfs_put(kn); 6214 return ERR_PTR(-ENOENT); 6215 } 6216 6217 rcu_read_lock(); 6218 6219 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); 6220 if (cgrp && !cgroup_tryget(cgrp)) 6221 cgrp = NULL; 6222 6223 rcu_read_unlock(); 6224 kernfs_put(kn); 6225 6226 if (!cgrp) 6227 return ERR_PTR(-ENOENT); 6228 6229 root_cgrp = current_cgns_cgroup_dfl(); 6230 if (!cgroup_is_descendant(cgrp, root_cgrp)) { 6231 cgroup_put(cgrp); 6232 return ERR_PTR(-ENOENT); 6233 } 6234 6235 return cgrp; 6236 } 6237 EXPORT_SYMBOL_GPL(cgroup_get_from_id); 6238 6239 /* 6240 * proc_cgroup_show() 6241 * - Print task's cgroup paths into seq_file, one line for each hierarchy 6242 * - Used for /proc/<pid>/cgroup. 6243 */ 6244 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns, 6245 struct pid *pid, struct task_struct *tsk) 6246 { 6247 char *buf; 6248 int retval; 6249 struct cgroup_root *root; 6250 6251 retval = -ENOMEM; 6252 buf = kmalloc(PATH_MAX, GFP_KERNEL); 6253 if (!buf) 6254 goto out; 6255 6256 cgroup_lock(); 6257 spin_lock_irq(&css_set_lock); 6258 6259 for_each_root(root) { 6260 struct cgroup_subsys *ss; 6261 struct cgroup *cgrp; 6262 int ssid, count = 0; 6263 6264 if (root == &cgrp_dfl_root && !READ_ONCE(cgrp_dfl_visible)) 6265 continue; 6266 6267 seq_printf(m, "%d:", root->hierarchy_id); 6268 if (root != &cgrp_dfl_root) 6269 for_each_subsys(ss, ssid) 6270 if (root->subsys_mask & (1 << ssid)) 6271 seq_printf(m, "%s%s", count++ ? "," : "", 6272 ss->legacy_name); 6273 if (strlen(root->name)) 6274 seq_printf(m, "%sname=%s", count ? "," : "", 6275 root->name); 6276 seq_putc(m, ':'); 6277 6278 cgrp = task_cgroup_from_root(tsk, root); 6279 6280 /* 6281 * On traditional hierarchies, all zombie tasks show up as 6282 * belonging to the root cgroup. On the default hierarchy, 6283 * while a zombie doesn't show up in "cgroup.procs" and 6284 * thus can't be migrated, its /proc/PID/cgroup keeps 6285 * reporting the cgroup it belonged to before exiting. If 6286 * the cgroup is removed before the zombie is reaped, 6287 * " (deleted)" is appended to the cgroup path. 6288 */ 6289 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) { 6290 retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX, 6291 current->nsproxy->cgroup_ns); 6292 if (retval == -E2BIG) 6293 retval = -ENAMETOOLONG; 6294 if (retval < 0) 6295 goto out_unlock; 6296 6297 seq_puts(m, buf); 6298 } else { 6299 seq_puts(m, "/"); 6300 } 6301 6302 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp)) 6303 seq_puts(m, " (deleted)\n"); 6304 else 6305 seq_putc(m, '\n'); 6306 } 6307 6308 retval = 0; 6309 out_unlock: 6310 spin_unlock_irq(&css_set_lock); 6311 cgroup_unlock(); 6312 kfree(buf); 6313 out: 6314 return retval; 6315 } 6316 6317 /** 6318 * cgroup_fork - initialize cgroup related fields during copy_process() 6319 * @child: pointer to task_struct of forking parent process. 6320 * 6321 * A task is associated with the init_css_set until cgroup_post_fork() 6322 * attaches it to the target css_set. 6323 */ 6324 void cgroup_fork(struct task_struct *child) 6325 { 6326 RCU_INIT_POINTER(child->cgroups, &init_css_set); 6327 INIT_LIST_HEAD(&child->cg_list); 6328 } 6329 6330 /** 6331 * cgroup_v1v2_get_from_file - get a cgroup pointer from a file pointer 6332 * @f: file corresponding to cgroup_dir 6333 * 6334 * Find the cgroup from a file pointer associated with a cgroup directory. 6335 * Returns a pointer to the cgroup on success. ERR_PTR is returned if the 6336 * cgroup cannot be found. 6337 */ 6338 static struct cgroup *cgroup_v1v2_get_from_file(struct file *f) 6339 { 6340 struct cgroup_subsys_state *css; 6341 6342 css = css_tryget_online_from_dir(f->f_path.dentry, NULL); 6343 if (IS_ERR(css)) 6344 return ERR_CAST(css); 6345 6346 return css->cgroup; 6347 } 6348 6349 /** 6350 * cgroup_get_from_file - same as cgroup_v1v2_get_from_file, but only supports 6351 * cgroup2. 6352 * @f: file corresponding to cgroup2_dir 6353 */ 6354 static struct cgroup *cgroup_get_from_file(struct file *f) 6355 { 6356 struct cgroup *cgrp = cgroup_v1v2_get_from_file(f); 6357 6358 if (IS_ERR(cgrp)) 6359 return ERR_CAST(cgrp); 6360 6361 if (!cgroup_on_dfl(cgrp)) { 6362 cgroup_put(cgrp); 6363 return ERR_PTR(-EBADF); 6364 } 6365 6366 return cgrp; 6367 } 6368 6369 /** 6370 * cgroup_css_set_fork - find or create a css_set for a child process 6371 * @kargs: the arguments passed to create the child process 6372 * 6373 * This functions finds or creates a new css_set which the child 6374 * process will be attached to in cgroup_post_fork(). By default, 6375 * the child process will be given the same css_set as its parent. 6376 * 6377 * If CLONE_INTO_CGROUP is specified this function will try to find an 6378 * existing css_set which includes the requested cgroup and if not create 6379 * a new css_set that the child will be attached to later. If this function 6380 * succeeds it will hold cgroup_threadgroup_rwsem on return. If 6381 * CLONE_INTO_CGROUP is requested this function will grab cgroup mutex 6382 * before grabbing cgroup_threadgroup_rwsem and will hold a reference 6383 * to the target cgroup. 6384 */ 6385 static int cgroup_css_set_fork(struct kernel_clone_args *kargs) 6386 __acquires(&cgroup_mutex) __acquires(&cgroup_threadgroup_rwsem) 6387 { 6388 int ret; 6389 struct cgroup *dst_cgrp = NULL; 6390 struct css_set *cset; 6391 struct super_block *sb; 6392 struct file *f; 6393 6394 if (kargs->flags & CLONE_INTO_CGROUP) 6395 cgroup_lock(); 6396 6397 cgroup_threadgroup_change_begin(current); 6398 6399 spin_lock_irq(&css_set_lock); 6400 cset = task_css_set(current); 6401 get_css_set(cset); 6402 spin_unlock_irq(&css_set_lock); 6403 6404 if (!(kargs->flags & CLONE_INTO_CGROUP)) { 6405 kargs->cset = cset; 6406 return 0; 6407 } 6408 6409 f = fget_raw(kargs->cgroup); 6410 if (!f) { 6411 ret = -EBADF; 6412 goto err; 6413 } 6414 sb = f->f_path.dentry->d_sb; 6415 6416 dst_cgrp = cgroup_get_from_file(f); 6417 if (IS_ERR(dst_cgrp)) { 6418 ret = PTR_ERR(dst_cgrp); 6419 dst_cgrp = NULL; 6420 goto err; 6421 } 6422 6423 if (cgroup_is_dead(dst_cgrp)) { 6424 ret = -ENODEV; 6425 goto err; 6426 } 6427 6428 /* 6429 * Verify that we the target cgroup is writable for us. This is 6430 * usually done by the vfs layer but since we're not going through 6431 * the vfs layer here we need to do it "manually". 6432 */ 6433 ret = cgroup_may_write(dst_cgrp, sb); 6434 if (ret) 6435 goto err; 6436 6437 /* 6438 * Spawning a task directly into a cgroup works by passing a file 6439 * descriptor to the target cgroup directory. This can even be an O_PATH 6440 * file descriptor. But it can never be a cgroup.procs file descriptor. 6441 * This was done on purpose so spawning into a cgroup could be 6442 * conceptualized as an atomic 6443 * 6444 * fd = openat(dfd_cgroup, "cgroup.procs", ...); 6445 * write(fd, <child-pid>, ...); 6446 * 6447 * sequence, i.e. it's a shorthand for the caller opening and writing 6448 * cgroup.procs of the cgroup indicated by @dfd_cgroup. This allows us 6449 * to always use the caller's credentials. 6450 */ 6451 ret = cgroup_attach_permissions(cset->dfl_cgrp, dst_cgrp, sb, 6452 !(kargs->flags & CLONE_THREAD), 6453 current->nsproxy->cgroup_ns); 6454 if (ret) 6455 goto err; 6456 6457 kargs->cset = find_css_set(cset, dst_cgrp); 6458 if (!kargs->cset) { 6459 ret = -ENOMEM; 6460 goto err; 6461 } 6462 6463 put_css_set(cset); 6464 fput(f); 6465 kargs->cgrp = dst_cgrp; 6466 return ret; 6467 6468 err: 6469 cgroup_threadgroup_change_end(current); 6470 cgroup_unlock(); 6471 if (f) 6472 fput(f); 6473 if (dst_cgrp) 6474 cgroup_put(dst_cgrp); 6475 put_css_set(cset); 6476 if (kargs->cset) 6477 put_css_set(kargs->cset); 6478 return ret; 6479 } 6480 6481 /** 6482 * cgroup_css_set_put_fork - drop references we took during fork 6483 * @kargs: the arguments passed to create the child process 6484 * 6485 * Drop references to the prepared css_set and target cgroup if 6486 * CLONE_INTO_CGROUP was requested. 6487 */ 6488 static void cgroup_css_set_put_fork(struct kernel_clone_args *kargs) 6489 __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex) 6490 { 6491 struct cgroup *cgrp = kargs->cgrp; 6492 struct css_set *cset = kargs->cset; 6493 6494 cgroup_threadgroup_change_end(current); 6495 6496 if (cset) { 6497 put_css_set(cset); 6498 kargs->cset = NULL; 6499 } 6500 6501 if (kargs->flags & CLONE_INTO_CGROUP) { 6502 cgroup_unlock(); 6503 if (cgrp) { 6504 cgroup_put(cgrp); 6505 kargs->cgrp = NULL; 6506 } 6507 } 6508 } 6509 6510 /** 6511 * cgroup_can_fork - called on a new task before the process is exposed 6512 * @child: the child process 6513 * @kargs: the arguments passed to create the child process 6514 * 6515 * This prepares a new css_set for the child process which the child will 6516 * be attached to in cgroup_post_fork(). 6517 * This calls the subsystem can_fork() callbacks. If the cgroup_can_fork() 6518 * callback returns an error, the fork aborts with that error code. This 6519 * allows for a cgroup subsystem to conditionally allow or deny new forks. 6520 */ 6521 int cgroup_can_fork(struct task_struct *child, struct kernel_clone_args *kargs) 6522 { 6523 struct cgroup_subsys *ss; 6524 int i, j, ret; 6525 6526 ret = cgroup_css_set_fork(kargs); 6527 if (ret) 6528 return ret; 6529 6530 do_each_subsys_mask(ss, i, have_canfork_callback) { 6531 ret = ss->can_fork(child, kargs->cset); 6532 if (ret) 6533 goto out_revert; 6534 } while_each_subsys_mask(); 6535 6536 return 0; 6537 6538 out_revert: 6539 for_each_subsys(ss, j) { 6540 if (j >= i) 6541 break; 6542 if (ss->cancel_fork) 6543 ss->cancel_fork(child, kargs->cset); 6544 } 6545 6546 cgroup_css_set_put_fork(kargs); 6547 6548 return ret; 6549 } 6550 6551 /** 6552 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork() 6553 * @child: the child process 6554 * @kargs: the arguments passed to create the child process 6555 * 6556 * This calls the cancel_fork() callbacks if a fork failed *after* 6557 * cgroup_can_fork() succeeded and cleans up references we took to 6558 * prepare a new css_set for the child process in cgroup_can_fork(). 6559 */ 6560 void cgroup_cancel_fork(struct task_struct *child, 6561 struct kernel_clone_args *kargs) 6562 { 6563 struct cgroup_subsys *ss; 6564 int i; 6565 6566 for_each_subsys(ss, i) 6567 if (ss->cancel_fork) 6568 ss->cancel_fork(child, kargs->cset); 6569 6570 cgroup_css_set_put_fork(kargs); 6571 } 6572 6573 /** 6574 * cgroup_post_fork - finalize cgroup setup for the child process 6575 * @child: the child process 6576 * @kargs: the arguments passed to create the child process 6577 * 6578 * Attach the child process to its css_set calling the subsystem fork() 6579 * callbacks. 6580 */ 6581 void cgroup_post_fork(struct task_struct *child, 6582 struct kernel_clone_args *kargs) 6583 __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex) 6584 { 6585 unsigned long cgrp_flags = 0; 6586 bool kill = false; 6587 struct cgroup_subsys *ss; 6588 struct css_set *cset; 6589 int i; 6590 6591 cset = kargs->cset; 6592 kargs->cset = NULL; 6593 6594 spin_lock_irq(&css_set_lock); 6595 6596 /* init tasks are special, only link regular threads */ 6597 if (likely(child->pid)) { 6598 if (kargs->cgrp) 6599 cgrp_flags = kargs->cgrp->flags; 6600 else 6601 cgrp_flags = cset->dfl_cgrp->flags; 6602 6603 WARN_ON_ONCE(!list_empty(&child->cg_list)); 6604 cset->nr_tasks++; 6605 css_set_move_task(child, NULL, cset, false); 6606 } else { 6607 put_css_set(cset); 6608 cset = NULL; 6609 } 6610 6611 if (!(child->flags & PF_KTHREAD)) { 6612 if (unlikely(test_bit(CGRP_FREEZE, &cgrp_flags))) { 6613 /* 6614 * If the cgroup has to be frozen, the new task has 6615 * too. Let's set the JOBCTL_TRAP_FREEZE jobctl bit to 6616 * get the task into the frozen state. 6617 */ 6618 spin_lock(&child->sighand->siglock); 6619 WARN_ON_ONCE(child->frozen); 6620 child->jobctl |= JOBCTL_TRAP_FREEZE; 6621 spin_unlock(&child->sighand->siglock); 6622 6623 /* 6624 * Calling cgroup_update_frozen() isn't required here, 6625 * because it will be called anyway a bit later from 6626 * do_freezer_trap(). So we avoid cgroup's transient 6627 * switch from the frozen state and back. 6628 */ 6629 } 6630 6631 /* 6632 * If the cgroup is to be killed notice it now and take the 6633 * child down right after we finished preparing it for 6634 * userspace. 6635 */ 6636 kill = test_bit(CGRP_KILL, &cgrp_flags); 6637 } 6638 6639 spin_unlock_irq(&css_set_lock); 6640 6641 /* 6642 * Call ss->fork(). This must happen after @child is linked on 6643 * css_set; otherwise, @child might change state between ->fork() 6644 * and addition to css_set. 6645 */ 6646 do_each_subsys_mask(ss, i, have_fork_callback) { 6647 ss->fork(child); 6648 } while_each_subsys_mask(); 6649 6650 /* Make the new cset the root_cset of the new cgroup namespace. */ 6651 if (kargs->flags & CLONE_NEWCGROUP) { 6652 struct css_set *rcset = child->nsproxy->cgroup_ns->root_cset; 6653 6654 get_css_set(cset); 6655 child->nsproxy->cgroup_ns->root_cset = cset; 6656 put_css_set(rcset); 6657 } 6658 6659 /* Cgroup has to be killed so take down child immediately. */ 6660 if (unlikely(kill)) 6661 do_send_sig_info(SIGKILL, SEND_SIG_NOINFO, child, PIDTYPE_TGID); 6662 6663 cgroup_css_set_put_fork(kargs); 6664 } 6665 6666 /** 6667 * cgroup_exit - detach cgroup from exiting task 6668 * @tsk: pointer to task_struct of exiting process 6669 * 6670 * Description: Detach cgroup from @tsk. 6671 * 6672 */ 6673 void cgroup_exit(struct task_struct *tsk) 6674 { 6675 struct cgroup_subsys *ss; 6676 struct css_set *cset; 6677 int i; 6678 6679 spin_lock_irq(&css_set_lock); 6680 6681 WARN_ON_ONCE(list_empty(&tsk->cg_list)); 6682 cset = task_css_set(tsk); 6683 css_set_move_task(tsk, cset, NULL, false); 6684 list_add_tail(&tsk->cg_list, &cset->dying_tasks); 6685 cset->nr_tasks--; 6686 6687 if (dl_task(tsk)) 6688 dec_dl_tasks_cs(tsk); 6689 6690 WARN_ON_ONCE(cgroup_task_frozen(tsk)); 6691 if (unlikely(!(tsk->flags & PF_KTHREAD) && 6692 test_bit(CGRP_FREEZE, &task_dfl_cgroup(tsk)->flags))) 6693 cgroup_update_frozen(task_dfl_cgroup(tsk)); 6694 6695 spin_unlock_irq(&css_set_lock); 6696 6697 /* see cgroup_post_fork() for details */ 6698 do_each_subsys_mask(ss, i, have_exit_callback) { 6699 ss->exit(tsk); 6700 } while_each_subsys_mask(); 6701 } 6702 6703 void cgroup_release(struct task_struct *task) 6704 { 6705 struct cgroup_subsys *ss; 6706 int ssid; 6707 6708 do_each_subsys_mask(ss, ssid, have_release_callback) { 6709 ss->release(task); 6710 } while_each_subsys_mask(); 6711 6712 spin_lock_irq(&css_set_lock); 6713 css_set_skip_task_iters(task_css_set(task), task); 6714 list_del_init(&task->cg_list); 6715 spin_unlock_irq(&css_set_lock); 6716 } 6717 6718 void cgroup_free(struct task_struct *task) 6719 { 6720 struct css_set *cset = task_css_set(task); 6721 put_css_set(cset); 6722 } 6723 6724 static int __init cgroup_disable(char *str) 6725 { 6726 struct cgroup_subsys *ss; 6727 char *token; 6728 int i; 6729 6730 while ((token = strsep(&str, ",")) != NULL) { 6731 if (!*token) 6732 continue; 6733 6734 for_each_subsys(ss, i) { 6735 if (strcmp(token, ss->name) && 6736 strcmp(token, ss->legacy_name)) 6737 continue; 6738 6739 static_branch_disable(cgroup_subsys_enabled_key[i]); 6740 pr_info("Disabling %s control group subsystem\n", 6741 ss->name); 6742 } 6743 6744 for (i = 0; i < OPT_FEATURE_COUNT; i++) { 6745 if (strcmp(token, cgroup_opt_feature_names[i])) 6746 continue; 6747 cgroup_feature_disable_mask |= 1 << i; 6748 pr_info("Disabling %s control group feature\n", 6749 cgroup_opt_feature_names[i]); 6750 break; 6751 } 6752 } 6753 return 1; 6754 } 6755 __setup("cgroup_disable=", cgroup_disable); 6756 6757 void __init __weak enable_debug_cgroup(void) { } 6758 6759 static int __init enable_cgroup_debug(char *str) 6760 { 6761 cgroup_debug = true; 6762 enable_debug_cgroup(); 6763 return 1; 6764 } 6765 __setup("cgroup_debug", enable_cgroup_debug); 6766 6767 /** 6768 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry 6769 * @dentry: directory dentry of interest 6770 * @ss: subsystem of interest 6771 * 6772 * If @dentry is a directory for a cgroup which has @ss enabled on it, try 6773 * to get the corresponding css and return it. If such css doesn't exist 6774 * or can't be pinned, an ERR_PTR value is returned. 6775 */ 6776 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry, 6777 struct cgroup_subsys *ss) 6778 { 6779 struct kernfs_node *kn = kernfs_node_from_dentry(dentry); 6780 struct file_system_type *s_type = dentry->d_sb->s_type; 6781 struct cgroup_subsys_state *css = NULL; 6782 struct cgroup *cgrp; 6783 6784 /* is @dentry a cgroup dir? */ 6785 if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) || 6786 !kn || kernfs_type(kn) != KERNFS_DIR) 6787 return ERR_PTR(-EBADF); 6788 6789 rcu_read_lock(); 6790 6791 /* 6792 * This path doesn't originate from kernfs and @kn could already 6793 * have been or be removed at any point. @kn->priv is RCU 6794 * protected for this access. See css_release_work_fn() for details. 6795 */ 6796 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); 6797 if (cgrp) 6798 css = cgroup_css(cgrp, ss); 6799 6800 if (!css || !css_tryget_online(css)) 6801 css = ERR_PTR(-ENOENT); 6802 6803 rcu_read_unlock(); 6804 return css; 6805 } 6806 6807 /** 6808 * css_from_id - lookup css by id 6809 * @id: the cgroup id 6810 * @ss: cgroup subsys to be looked into 6811 * 6812 * Returns the css if there's valid one with @id, otherwise returns NULL. 6813 * Should be called under rcu_read_lock(). 6814 */ 6815 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss) 6816 { 6817 WARN_ON_ONCE(!rcu_read_lock_held()); 6818 return idr_find(&ss->css_idr, id); 6819 } 6820 6821 /** 6822 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path 6823 * @path: path on the default hierarchy 6824 * 6825 * Find the cgroup at @path on the default hierarchy, increment its 6826 * reference count and return it. Returns pointer to the found cgroup on 6827 * success, ERR_PTR(-ENOENT) if @path doesn't exist or if the cgroup has already 6828 * been released and ERR_PTR(-ENOTDIR) if @path points to a non-directory. 6829 */ 6830 struct cgroup *cgroup_get_from_path(const char *path) 6831 { 6832 struct kernfs_node *kn; 6833 struct cgroup *cgrp = ERR_PTR(-ENOENT); 6834 struct cgroup *root_cgrp; 6835 6836 root_cgrp = current_cgns_cgroup_dfl(); 6837 kn = kernfs_walk_and_get(root_cgrp->kn, path); 6838 if (!kn) 6839 goto out; 6840 6841 if (kernfs_type(kn) != KERNFS_DIR) { 6842 cgrp = ERR_PTR(-ENOTDIR); 6843 goto out_kernfs; 6844 } 6845 6846 rcu_read_lock(); 6847 6848 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); 6849 if (!cgrp || !cgroup_tryget(cgrp)) 6850 cgrp = ERR_PTR(-ENOENT); 6851 6852 rcu_read_unlock(); 6853 6854 out_kernfs: 6855 kernfs_put(kn); 6856 out: 6857 return cgrp; 6858 } 6859 EXPORT_SYMBOL_GPL(cgroup_get_from_path); 6860 6861 /** 6862 * cgroup_v1v2_get_from_fd - get a cgroup pointer from a fd 6863 * @fd: fd obtained by open(cgroup_dir) 6864 * 6865 * Find the cgroup from a fd which should be obtained 6866 * by opening a cgroup directory. Returns a pointer to the 6867 * cgroup on success. ERR_PTR is returned if the cgroup 6868 * cannot be found. 6869 */ 6870 struct cgroup *cgroup_v1v2_get_from_fd(int fd) 6871 { 6872 struct cgroup *cgrp; 6873 struct fd f = fdget_raw(fd); 6874 if (!f.file) 6875 return ERR_PTR(-EBADF); 6876 6877 cgrp = cgroup_v1v2_get_from_file(f.file); 6878 fdput(f); 6879 return cgrp; 6880 } 6881 6882 /** 6883 * cgroup_get_from_fd - same as cgroup_v1v2_get_from_fd, but only supports 6884 * cgroup2. 6885 * @fd: fd obtained by open(cgroup2_dir) 6886 */ 6887 struct cgroup *cgroup_get_from_fd(int fd) 6888 { 6889 struct cgroup *cgrp = cgroup_v1v2_get_from_fd(fd); 6890 6891 if (IS_ERR(cgrp)) 6892 return ERR_CAST(cgrp); 6893 6894 if (!cgroup_on_dfl(cgrp)) { 6895 cgroup_put(cgrp); 6896 return ERR_PTR(-EBADF); 6897 } 6898 return cgrp; 6899 } 6900 EXPORT_SYMBOL_GPL(cgroup_get_from_fd); 6901 6902 static u64 power_of_ten(int power) 6903 { 6904 u64 v = 1; 6905 while (power--) 6906 v *= 10; 6907 return v; 6908 } 6909 6910 /** 6911 * cgroup_parse_float - parse a floating number 6912 * @input: input string 6913 * @dec_shift: number of decimal digits to shift 6914 * @v: output 6915 * 6916 * Parse a decimal floating point number in @input and store the result in 6917 * @v with decimal point right shifted @dec_shift times. For example, if 6918 * @input is "12.3456" and @dec_shift is 3, *@v will be set to 12345. 6919 * Returns 0 on success, -errno otherwise. 6920 * 6921 * There's nothing cgroup specific about this function except that it's 6922 * currently the only user. 6923 */ 6924 int cgroup_parse_float(const char *input, unsigned dec_shift, s64 *v) 6925 { 6926 s64 whole, frac = 0; 6927 int fstart = 0, fend = 0, flen; 6928 6929 if (!sscanf(input, "%lld.%n%lld%n", &whole, &fstart, &frac, &fend)) 6930 return -EINVAL; 6931 if (frac < 0) 6932 return -EINVAL; 6933 6934 flen = fend > fstart ? fend - fstart : 0; 6935 if (flen < dec_shift) 6936 frac *= power_of_ten(dec_shift - flen); 6937 else 6938 frac = DIV_ROUND_CLOSEST_ULL(frac, power_of_ten(flen - dec_shift)); 6939 6940 *v = whole * power_of_ten(dec_shift) + frac; 6941 return 0; 6942 } 6943 6944 /* 6945 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data 6946 * definition in cgroup-defs.h. 6947 */ 6948 #ifdef CONFIG_SOCK_CGROUP_DATA 6949 6950 void cgroup_sk_alloc(struct sock_cgroup_data *skcd) 6951 { 6952 struct cgroup *cgroup; 6953 6954 rcu_read_lock(); 6955 /* Don't associate the sock with unrelated interrupted task's cgroup. */ 6956 if (in_interrupt()) { 6957 cgroup = &cgrp_dfl_root.cgrp; 6958 cgroup_get(cgroup); 6959 goto out; 6960 } 6961 6962 while (true) { 6963 struct css_set *cset; 6964 6965 cset = task_css_set(current); 6966 if (likely(cgroup_tryget(cset->dfl_cgrp))) { 6967 cgroup = cset->dfl_cgrp; 6968 break; 6969 } 6970 cpu_relax(); 6971 } 6972 out: 6973 skcd->cgroup = cgroup; 6974 cgroup_bpf_get(cgroup); 6975 rcu_read_unlock(); 6976 } 6977 6978 void cgroup_sk_clone(struct sock_cgroup_data *skcd) 6979 { 6980 struct cgroup *cgrp = sock_cgroup_ptr(skcd); 6981 6982 /* 6983 * We might be cloning a socket which is left in an empty 6984 * cgroup and the cgroup might have already been rmdir'd. 6985 * Don't use cgroup_get_live(). 6986 */ 6987 cgroup_get(cgrp); 6988 cgroup_bpf_get(cgrp); 6989 } 6990 6991 void cgroup_sk_free(struct sock_cgroup_data *skcd) 6992 { 6993 struct cgroup *cgrp = sock_cgroup_ptr(skcd); 6994 6995 cgroup_bpf_put(cgrp); 6996 cgroup_put(cgrp); 6997 } 6998 6999 #endif /* CONFIG_SOCK_CGROUP_DATA */ 7000 7001 #ifdef CONFIG_SYSFS 7002 static ssize_t show_delegatable_files(struct cftype *files, char *buf, 7003 ssize_t size, const char *prefix) 7004 { 7005 struct cftype *cft; 7006 ssize_t ret = 0; 7007 7008 for (cft = files; cft && cft->name[0] != '\0'; cft++) { 7009 if (!(cft->flags & CFTYPE_NS_DELEGATABLE)) 7010 continue; 7011 7012 if (prefix) 7013 ret += snprintf(buf + ret, size - ret, "%s.", prefix); 7014 7015 ret += snprintf(buf + ret, size - ret, "%s\n", cft->name); 7016 7017 if (WARN_ON(ret >= size)) 7018 break; 7019 } 7020 7021 return ret; 7022 } 7023 7024 static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr, 7025 char *buf) 7026 { 7027 struct cgroup_subsys *ss; 7028 int ssid; 7029 ssize_t ret = 0; 7030 7031 ret = show_delegatable_files(cgroup_base_files, buf + ret, 7032 PAGE_SIZE - ret, NULL); 7033 if (cgroup_psi_enabled()) 7034 ret += show_delegatable_files(cgroup_psi_files, buf + ret, 7035 PAGE_SIZE - ret, NULL); 7036 7037 for_each_subsys(ss, ssid) 7038 ret += show_delegatable_files(ss->dfl_cftypes, buf + ret, 7039 PAGE_SIZE - ret, 7040 cgroup_subsys_name[ssid]); 7041 7042 return ret; 7043 } 7044 static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate); 7045 7046 static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr, 7047 char *buf) 7048 { 7049 return snprintf(buf, PAGE_SIZE, 7050 "nsdelegate\n" 7051 "favordynmods\n" 7052 "memory_localevents\n" 7053 "memory_recursiveprot\n"); 7054 } 7055 static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features); 7056 7057 static struct attribute *cgroup_sysfs_attrs[] = { 7058 &cgroup_delegate_attr.attr, 7059 &cgroup_features_attr.attr, 7060 NULL, 7061 }; 7062 7063 static const struct attribute_group cgroup_sysfs_attr_group = { 7064 .attrs = cgroup_sysfs_attrs, 7065 .name = "cgroup", 7066 }; 7067 7068 static int __init cgroup_sysfs_init(void) 7069 { 7070 return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group); 7071 } 7072 subsys_initcall(cgroup_sysfs_init); 7073 7074 #endif /* CONFIG_SYSFS */ 7075