xref: /openbmc/linux/kernel/cgroup/cgroup.c (revision 6486c0f44ed8e91073c1b08e83075e3832618ae5)
1 /*
2  *  Generic process-grouping system.
3  *
4  *  Based originally on the cpuset system, extracted by Paul Menage
5  *  Copyright (C) 2006 Google, Inc
6  *
7  *  Notifications support
8  *  Copyright (C) 2009 Nokia Corporation
9  *  Author: Kirill A. Shutemov
10  *
11  *  Copyright notices from the original cpuset code:
12  *  --------------------------------------------------
13  *  Copyright (C) 2003 BULL SA.
14  *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
15  *
16  *  Portions derived from Patrick Mochel's sysfs code.
17  *  sysfs is Copyright (c) 2001-3 Patrick Mochel
18  *
19  *  2003-10-10 Written by Simon Derr.
20  *  2003-10-22 Updates by Stephen Hemminger.
21  *  2004 May-July Rework by Paul Jackson.
22  *  ---------------------------------------------------
23  *
24  *  This file is subject to the terms and conditions of the GNU General Public
25  *  License.  See the file COPYING in the main directory of the Linux
26  *  distribution for more details.
27  */
28 
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 
31 #include "cgroup-internal.h"
32 
33 #include <linux/bpf-cgroup.h>
34 #include <linux/cred.h>
35 #include <linux/errno.h>
36 #include <linux/init_task.h>
37 #include <linux/kernel.h>
38 #include <linux/magic.h>
39 #include <linux/mutex.h>
40 #include <linux/mount.h>
41 #include <linux/pagemap.h>
42 #include <linux/proc_fs.h>
43 #include <linux/rcupdate.h>
44 #include <linux/sched.h>
45 #include <linux/sched/task.h>
46 #include <linux/slab.h>
47 #include <linux/spinlock.h>
48 #include <linux/percpu-rwsem.h>
49 #include <linux/string.h>
50 #include <linux/hashtable.h>
51 #include <linux/idr.h>
52 #include <linux/kthread.h>
53 #include <linux/atomic.h>
54 #include <linux/cpuset.h>
55 #include <linux/proc_ns.h>
56 #include <linux/nsproxy.h>
57 #include <linux/file.h>
58 #include <linux/fs_parser.h>
59 #include <linux/sched/cputime.h>
60 #include <linux/sched/deadline.h>
61 #include <linux/psi.h>
62 #include <net/sock.h>
63 
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/cgroup.h>
66 
67 #define CGROUP_FILE_NAME_MAX		(MAX_CGROUP_TYPE_NAMELEN +	\
68 					 MAX_CFTYPE_NAME + 2)
69 /* let's not notify more than 100 times per second */
70 #define CGROUP_FILE_NOTIFY_MIN_INTV	DIV_ROUND_UP(HZ, 100)
71 
72 /*
73  * To avoid confusing the compiler (and generating warnings) with code
74  * that attempts to access what would be a 0-element array (i.e. sized
75  * to a potentially empty array when CGROUP_SUBSYS_COUNT == 0), this
76  * constant expression can be added.
77  */
78 #define CGROUP_HAS_SUBSYS_CONFIG	(CGROUP_SUBSYS_COUNT > 0)
79 
80 /*
81  * cgroup_mutex is the master lock.  Any modification to cgroup or its
82  * hierarchy must be performed while holding it.
83  *
84  * css_set_lock protects task->cgroups pointer, the list of css_set
85  * objects, and the chain of tasks off each css_set.
86  *
87  * These locks are exported if CONFIG_PROVE_RCU so that accessors in
88  * cgroup.h can use them for lockdep annotations.
89  */
90 DEFINE_MUTEX(cgroup_mutex);
91 DEFINE_SPINLOCK(css_set_lock);
92 
93 #ifdef CONFIG_PROVE_RCU
94 EXPORT_SYMBOL_GPL(cgroup_mutex);
95 EXPORT_SYMBOL_GPL(css_set_lock);
96 #endif
97 
98 DEFINE_SPINLOCK(trace_cgroup_path_lock);
99 char trace_cgroup_path[TRACE_CGROUP_PATH_LEN];
100 static bool cgroup_debug __read_mostly;
101 
102 /*
103  * Protects cgroup_idr and css_idr so that IDs can be released without
104  * grabbing cgroup_mutex.
105  */
106 static DEFINE_SPINLOCK(cgroup_idr_lock);
107 
108 /*
109  * Protects cgroup_file->kn for !self csses.  It synchronizes notifications
110  * against file removal/re-creation across css hiding.
111  */
112 static DEFINE_SPINLOCK(cgroup_file_kn_lock);
113 
114 DEFINE_PERCPU_RWSEM(cgroup_threadgroup_rwsem);
115 
116 #define cgroup_assert_mutex_or_rcu_locked()				\
117 	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
118 			   !lockdep_is_held(&cgroup_mutex),		\
119 			   "cgroup_mutex or RCU read lock required");
120 
121 /*
122  * cgroup destruction makes heavy use of work items and there can be a lot
123  * of concurrent destructions.  Use a separate workqueue so that cgroup
124  * destruction work items don't end up filling up max_active of system_wq
125  * which may lead to deadlock.
126  */
127 static struct workqueue_struct *cgroup_destroy_wq;
128 
129 /* generate an array of cgroup subsystem pointers */
130 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
131 struct cgroup_subsys *cgroup_subsys[] = {
132 #include <linux/cgroup_subsys.h>
133 };
134 #undef SUBSYS
135 
136 /* array of cgroup subsystem names */
137 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
138 static const char *cgroup_subsys_name[] = {
139 #include <linux/cgroup_subsys.h>
140 };
141 #undef SUBSYS
142 
143 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
144 #define SUBSYS(_x)								\
145 	DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key);			\
146 	DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key);			\
147 	EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key);			\
148 	EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
149 #include <linux/cgroup_subsys.h>
150 #undef SUBSYS
151 
152 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
153 static struct static_key_true *cgroup_subsys_enabled_key[] = {
154 #include <linux/cgroup_subsys.h>
155 };
156 #undef SUBSYS
157 
158 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
159 static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
160 #include <linux/cgroup_subsys.h>
161 };
162 #undef SUBSYS
163 
164 static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu);
165 
166 /* the default hierarchy */
167 struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu };
168 EXPORT_SYMBOL_GPL(cgrp_dfl_root);
169 
170 /*
171  * The default hierarchy always exists but is hidden until mounted for the
172  * first time.  This is for backward compatibility.
173  */
174 static bool cgrp_dfl_visible;
175 
176 /* some controllers are not supported in the default hierarchy */
177 static u16 cgrp_dfl_inhibit_ss_mask;
178 
179 /* some controllers are implicitly enabled on the default hierarchy */
180 static u16 cgrp_dfl_implicit_ss_mask;
181 
182 /* some controllers can be threaded on the default hierarchy */
183 static u16 cgrp_dfl_threaded_ss_mask;
184 
185 /* The list of hierarchy roots */
186 LIST_HEAD(cgroup_roots);
187 static int cgroup_root_count;
188 
189 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
190 static DEFINE_IDR(cgroup_hierarchy_idr);
191 
192 /*
193  * Assign a monotonically increasing serial number to csses.  It guarantees
194  * cgroups with bigger numbers are newer than those with smaller numbers.
195  * Also, as csses are always appended to the parent's ->children list, it
196  * guarantees that sibling csses are always sorted in the ascending serial
197  * number order on the list.  Protected by cgroup_mutex.
198  */
199 static u64 css_serial_nr_next = 1;
200 
201 /*
202  * These bitmasks identify subsystems with specific features to avoid
203  * having to do iterative checks repeatedly.
204  */
205 static u16 have_fork_callback __read_mostly;
206 static u16 have_exit_callback __read_mostly;
207 static u16 have_release_callback __read_mostly;
208 static u16 have_canfork_callback __read_mostly;
209 
210 /* cgroup namespace for init task */
211 struct cgroup_namespace init_cgroup_ns = {
212 	.ns.count	= REFCOUNT_INIT(2),
213 	.user_ns	= &init_user_ns,
214 	.ns.ops		= &cgroupns_operations,
215 	.ns.inum	= PROC_CGROUP_INIT_INO,
216 	.root_cset	= &init_css_set,
217 };
218 
219 static struct file_system_type cgroup2_fs_type;
220 static struct cftype cgroup_base_files[];
221 static struct cftype cgroup_psi_files[];
222 
223 /* cgroup optional features */
224 enum cgroup_opt_features {
225 #ifdef CONFIG_PSI
226 	OPT_FEATURE_PRESSURE,
227 #endif
228 	OPT_FEATURE_COUNT
229 };
230 
231 static const char *cgroup_opt_feature_names[OPT_FEATURE_COUNT] = {
232 #ifdef CONFIG_PSI
233 	"pressure",
234 #endif
235 };
236 
237 static u16 cgroup_feature_disable_mask __read_mostly;
238 
239 static int cgroup_apply_control(struct cgroup *cgrp);
240 static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
241 static void css_task_iter_skip(struct css_task_iter *it,
242 			       struct task_struct *task);
243 static int cgroup_destroy_locked(struct cgroup *cgrp);
244 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
245 					      struct cgroup_subsys *ss);
246 static void css_release(struct percpu_ref *ref);
247 static void kill_css(struct cgroup_subsys_state *css);
248 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
249 			      struct cgroup *cgrp, struct cftype cfts[],
250 			      bool is_add);
251 
252 #ifdef CONFIG_DEBUG_CGROUP_REF
253 #define CGROUP_REF_FN_ATTRS	noinline
254 #define CGROUP_REF_EXPORT(fn)	EXPORT_SYMBOL_GPL(fn);
255 #include <linux/cgroup_refcnt.h>
256 #endif
257 
258 /**
259  * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
260  * @ssid: subsys ID of interest
261  *
262  * cgroup_subsys_enabled() can only be used with literal subsys names which
263  * is fine for individual subsystems but unsuitable for cgroup core.  This
264  * is slower static_key_enabled() based test indexed by @ssid.
265  */
266 bool cgroup_ssid_enabled(int ssid)
267 {
268 	if (!CGROUP_HAS_SUBSYS_CONFIG)
269 		return false;
270 
271 	return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
272 }
273 
274 /**
275  * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
276  * @cgrp: the cgroup of interest
277  *
278  * The default hierarchy is the v2 interface of cgroup and this function
279  * can be used to test whether a cgroup is on the default hierarchy for
280  * cases where a subsystem should behave differently depending on the
281  * interface version.
282  *
283  * List of changed behaviors:
284  *
285  * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
286  *   and "name" are disallowed.
287  *
288  * - When mounting an existing superblock, mount options should match.
289  *
290  * - rename(2) is disallowed.
291  *
292  * - "tasks" is removed.  Everything should be at process granularity.  Use
293  *   "cgroup.procs" instead.
294  *
295  * - "cgroup.procs" is not sorted.  pids will be unique unless they got
296  *   recycled in-between reads.
297  *
298  * - "release_agent" and "notify_on_release" are removed.  Replacement
299  *   notification mechanism will be implemented.
300  *
301  * - "cgroup.clone_children" is removed.
302  *
303  * - "cgroup.subtree_populated" is available.  Its value is 0 if the cgroup
304  *   and its descendants contain no task; otherwise, 1.  The file also
305  *   generates kernfs notification which can be monitored through poll and
306  *   [di]notify when the value of the file changes.
307  *
308  * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
309  *   take masks of ancestors with non-empty cpus/mems, instead of being
310  *   moved to an ancestor.
311  *
312  * - cpuset: a task can be moved into an empty cpuset, and again it takes
313  *   masks of ancestors.
314  *
315  * - blkcg: blk-throttle becomes properly hierarchical.
316  */
317 bool cgroup_on_dfl(const struct cgroup *cgrp)
318 {
319 	return cgrp->root == &cgrp_dfl_root;
320 }
321 
322 /* IDR wrappers which synchronize using cgroup_idr_lock */
323 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
324 			    gfp_t gfp_mask)
325 {
326 	int ret;
327 
328 	idr_preload(gfp_mask);
329 	spin_lock_bh(&cgroup_idr_lock);
330 	ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
331 	spin_unlock_bh(&cgroup_idr_lock);
332 	idr_preload_end();
333 	return ret;
334 }
335 
336 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
337 {
338 	void *ret;
339 
340 	spin_lock_bh(&cgroup_idr_lock);
341 	ret = idr_replace(idr, ptr, id);
342 	spin_unlock_bh(&cgroup_idr_lock);
343 	return ret;
344 }
345 
346 static void cgroup_idr_remove(struct idr *idr, int id)
347 {
348 	spin_lock_bh(&cgroup_idr_lock);
349 	idr_remove(idr, id);
350 	spin_unlock_bh(&cgroup_idr_lock);
351 }
352 
353 static bool cgroup_has_tasks(struct cgroup *cgrp)
354 {
355 	return cgrp->nr_populated_csets;
356 }
357 
358 static bool cgroup_is_threaded(struct cgroup *cgrp)
359 {
360 	return cgrp->dom_cgrp != cgrp;
361 }
362 
363 /* can @cgrp host both domain and threaded children? */
364 static bool cgroup_is_mixable(struct cgroup *cgrp)
365 {
366 	/*
367 	 * Root isn't under domain level resource control exempting it from
368 	 * the no-internal-process constraint, so it can serve as a thread
369 	 * root and a parent of resource domains at the same time.
370 	 */
371 	return !cgroup_parent(cgrp);
372 }
373 
374 /* can @cgrp become a thread root? Should always be true for a thread root */
375 static bool cgroup_can_be_thread_root(struct cgroup *cgrp)
376 {
377 	/* mixables don't care */
378 	if (cgroup_is_mixable(cgrp))
379 		return true;
380 
381 	/* domain roots can't be nested under threaded */
382 	if (cgroup_is_threaded(cgrp))
383 		return false;
384 
385 	/* can only have either domain or threaded children */
386 	if (cgrp->nr_populated_domain_children)
387 		return false;
388 
389 	/* and no domain controllers can be enabled */
390 	if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
391 		return false;
392 
393 	return true;
394 }
395 
396 /* is @cgrp root of a threaded subtree? */
397 static bool cgroup_is_thread_root(struct cgroup *cgrp)
398 {
399 	/* thread root should be a domain */
400 	if (cgroup_is_threaded(cgrp))
401 		return false;
402 
403 	/* a domain w/ threaded children is a thread root */
404 	if (cgrp->nr_threaded_children)
405 		return true;
406 
407 	/*
408 	 * A domain which has tasks and explicit threaded controllers
409 	 * enabled is a thread root.
410 	 */
411 	if (cgroup_has_tasks(cgrp) &&
412 	    (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask))
413 		return true;
414 
415 	return false;
416 }
417 
418 /* a domain which isn't connected to the root w/o brekage can't be used */
419 static bool cgroup_is_valid_domain(struct cgroup *cgrp)
420 {
421 	/* the cgroup itself can be a thread root */
422 	if (cgroup_is_threaded(cgrp))
423 		return false;
424 
425 	/* but the ancestors can't be unless mixable */
426 	while ((cgrp = cgroup_parent(cgrp))) {
427 		if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp))
428 			return false;
429 		if (cgroup_is_threaded(cgrp))
430 			return false;
431 	}
432 
433 	return true;
434 }
435 
436 /* subsystems visibly enabled on a cgroup */
437 static u16 cgroup_control(struct cgroup *cgrp)
438 {
439 	struct cgroup *parent = cgroup_parent(cgrp);
440 	u16 root_ss_mask = cgrp->root->subsys_mask;
441 
442 	if (parent) {
443 		u16 ss_mask = parent->subtree_control;
444 
445 		/* threaded cgroups can only have threaded controllers */
446 		if (cgroup_is_threaded(cgrp))
447 			ss_mask &= cgrp_dfl_threaded_ss_mask;
448 		return ss_mask;
449 	}
450 
451 	if (cgroup_on_dfl(cgrp))
452 		root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
453 				  cgrp_dfl_implicit_ss_mask);
454 	return root_ss_mask;
455 }
456 
457 /* subsystems enabled on a cgroup */
458 static u16 cgroup_ss_mask(struct cgroup *cgrp)
459 {
460 	struct cgroup *parent = cgroup_parent(cgrp);
461 
462 	if (parent) {
463 		u16 ss_mask = parent->subtree_ss_mask;
464 
465 		/* threaded cgroups can only have threaded controllers */
466 		if (cgroup_is_threaded(cgrp))
467 			ss_mask &= cgrp_dfl_threaded_ss_mask;
468 		return ss_mask;
469 	}
470 
471 	return cgrp->root->subsys_mask;
472 }
473 
474 /**
475  * cgroup_css - obtain a cgroup's css for the specified subsystem
476  * @cgrp: the cgroup of interest
477  * @ss: the subsystem of interest (%NULL returns @cgrp->self)
478  *
479  * Return @cgrp's css (cgroup_subsys_state) associated with @ss.  This
480  * function must be called either under cgroup_mutex or rcu_read_lock() and
481  * the caller is responsible for pinning the returned css if it wants to
482  * keep accessing it outside the said locks.  This function may return
483  * %NULL if @cgrp doesn't have @subsys_id enabled.
484  */
485 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
486 					      struct cgroup_subsys *ss)
487 {
488 	if (CGROUP_HAS_SUBSYS_CONFIG && ss)
489 		return rcu_dereference_check(cgrp->subsys[ss->id],
490 					lockdep_is_held(&cgroup_mutex));
491 	else
492 		return &cgrp->self;
493 }
494 
495 /**
496  * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem
497  * @cgrp: the cgroup of interest
498  * @ss: the subsystem of interest
499  *
500  * Find and get @cgrp's css associated with @ss.  If the css doesn't exist
501  * or is offline, %NULL is returned.
502  */
503 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp,
504 						     struct cgroup_subsys *ss)
505 {
506 	struct cgroup_subsys_state *css;
507 
508 	rcu_read_lock();
509 	css = cgroup_css(cgrp, ss);
510 	if (css && !css_tryget_online(css))
511 		css = NULL;
512 	rcu_read_unlock();
513 
514 	return css;
515 }
516 
517 /**
518  * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss
519  * @cgrp: the cgroup of interest
520  * @ss: the subsystem of interest (%NULL returns @cgrp->self)
521  *
522  * Similar to cgroup_css() but returns the effective css, which is defined
523  * as the matching css of the nearest ancestor including self which has @ss
524  * enabled.  If @ss is associated with the hierarchy @cgrp is on, this
525  * function is guaranteed to return non-NULL css.
526  */
527 static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp,
528 							struct cgroup_subsys *ss)
529 {
530 	lockdep_assert_held(&cgroup_mutex);
531 
532 	if (!ss)
533 		return &cgrp->self;
534 
535 	/*
536 	 * This function is used while updating css associations and thus
537 	 * can't test the csses directly.  Test ss_mask.
538 	 */
539 	while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
540 		cgrp = cgroup_parent(cgrp);
541 		if (!cgrp)
542 			return NULL;
543 	}
544 
545 	return cgroup_css(cgrp, ss);
546 }
547 
548 /**
549  * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
550  * @cgrp: the cgroup of interest
551  * @ss: the subsystem of interest
552  *
553  * Find and get the effective css of @cgrp for @ss.  The effective css is
554  * defined as the matching css of the nearest ancestor including self which
555  * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
556  * the root css is returned, so this function always returns a valid css.
557  *
558  * The returned css is not guaranteed to be online, and therefore it is the
559  * callers responsibility to try get a reference for it.
560  */
561 struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
562 					 struct cgroup_subsys *ss)
563 {
564 	struct cgroup_subsys_state *css;
565 
566 	if (!CGROUP_HAS_SUBSYS_CONFIG)
567 		return NULL;
568 
569 	do {
570 		css = cgroup_css(cgrp, ss);
571 
572 		if (css)
573 			return css;
574 		cgrp = cgroup_parent(cgrp);
575 	} while (cgrp);
576 
577 	return init_css_set.subsys[ss->id];
578 }
579 
580 /**
581  * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
582  * @cgrp: the cgroup of interest
583  * @ss: the subsystem of interest
584  *
585  * Find and get the effective css of @cgrp for @ss.  The effective css is
586  * defined as the matching css of the nearest ancestor including self which
587  * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
588  * the root css is returned, so this function always returns a valid css.
589  * The returned css must be put using css_put().
590  */
591 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
592 					     struct cgroup_subsys *ss)
593 {
594 	struct cgroup_subsys_state *css;
595 
596 	if (!CGROUP_HAS_SUBSYS_CONFIG)
597 		return NULL;
598 
599 	rcu_read_lock();
600 
601 	do {
602 		css = cgroup_css(cgrp, ss);
603 
604 		if (css && css_tryget_online(css))
605 			goto out_unlock;
606 		cgrp = cgroup_parent(cgrp);
607 	} while (cgrp);
608 
609 	css = init_css_set.subsys[ss->id];
610 	css_get(css);
611 out_unlock:
612 	rcu_read_unlock();
613 	return css;
614 }
615 EXPORT_SYMBOL_GPL(cgroup_get_e_css);
616 
617 static void cgroup_get_live(struct cgroup *cgrp)
618 {
619 	WARN_ON_ONCE(cgroup_is_dead(cgrp));
620 	cgroup_get(cgrp);
621 }
622 
623 /**
624  * __cgroup_task_count - count the number of tasks in a cgroup. The caller
625  * is responsible for taking the css_set_lock.
626  * @cgrp: the cgroup in question
627  */
628 int __cgroup_task_count(const struct cgroup *cgrp)
629 {
630 	int count = 0;
631 	struct cgrp_cset_link *link;
632 
633 	lockdep_assert_held(&css_set_lock);
634 
635 	list_for_each_entry(link, &cgrp->cset_links, cset_link)
636 		count += link->cset->nr_tasks;
637 
638 	return count;
639 }
640 
641 /**
642  * cgroup_task_count - count the number of tasks in a cgroup.
643  * @cgrp: the cgroup in question
644  */
645 int cgroup_task_count(const struct cgroup *cgrp)
646 {
647 	int count;
648 
649 	spin_lock_irq(&css_set_lock);
650 	count = __cgroup_task_count(cgrp);
651 	spin_unlock_irq(&css_set_lock);
652 
653 	return count;
654 }
655 
656 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
657 {
658 	struct cgroup *cgrp = of->kn->parent->priv;
659 	struct cftype *cft = of_cft(of);
660 
661 	/*
662 	 * This is open and unprotected implementation of cgroup_css().
663 	 * seq_css() is only called from a kernfs file operation which has
664 	 * an active reference on the file.  Because all the subsystem
665 	 * files are drained before a css is disassociated with a cgroup,
666 	 * the matching css from the cgroup's subsys table is guaranteed to
667 	 * be and stay valid until the enclosing operation is complete.
668 	 */
669 	if (CGROUP_HAS_SUBSYS_CONFIG && cft->ss)
670 		return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
671 	else
672 		return &cgrp->self;
673 }
674 EXPORT_SYMBOL_GPL(of_css);
675 
676 /**
677  * for_each_css - iterate all css's of a cgroup
678  * @css: the iteration cursor
679  * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
680  * @cgrp: the target cgroup to iterate css's of
681  *
682  * Should be called under cgroup_[tree_]mutex.
683  */
684 #define for_each_css(css, ssid, cgrp)					\
685 	for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)	\
686 		if (!((css) = rcu_dereference_check(			\
687 				(cgrp)->subsys[(ssid)],			\
688 				lockdep_is_held(&cgroup_mutex)))) { }	\
689 		else
690 
691 /**
692  * do_each_subsys_mask - filter for_each_subsys with a bitmask
693  * @ss: the iteration cursor
694  * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
695  * @ss_mask: the bitmask
696  *
697  * The block will only run for cases where the ssid-th bit (1 << ssid) of
698  * @ss_mask is set.
699  */
700 #define do_each_subsys_mask(ss, ssid, ss_mask) do {			\
701 	unsigned long __ss_mask = (ss_mask);				\
702 	if (!CGROUP_HAS_SUBSYS_CONFIG) {				\
703 		(ssid) = 0;						\
704 		break;							\
705 	}								\
706 	for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) {	\
707 		(ss) = cgroup_subsys[ssid];				\
708 		{
709 
710 #define while_each_subsys_mask()					\
711 		}							\
712 	}								\
713 } while (false)
714 
715 /* iterate over child cgrps, lock should be held throughout iteration */
716 #define cgroup_for_each_live_child(child, cgrp)				\
717 	list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
718 		if (({ lockdep_assert_held(&cgroup_mutex);		\
719 		       cgroup_is_dead(child); }))			\
720 			;						\
721 		else
722 
723 /* walk live descendants in pre order */
724 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)		\
725 	css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL))	\
726 		if (({ lockdep_assert_held(&cgroup_mutex);		\
727 		       (dsct) = (d_css)->cgroup;			\
728 		       cgroup_is_dead(dsct); }))			\
729 			;						\
730 		else
731 
732 /* walk live descendants in postorder */
733 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp)		\
734 	css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL))	\
735 		if (({ lockdep_assert_held(&cgroup_mutex);		\
736 		       (dsct) = (d_css)->cgroup;			\
737 		       cgroup_is_dead(dsct); }))			\
738 			;						\
739 		else
740 
741 /*
742  * The default css_set - used by init and its children prior to any
743  * hierarchies being mounted. It contains a pointer to the root state
744  * for each subsystem. Also used to anchor the list of css_sets. Not
745  * reference-counted, to improve performance when child cgroups
746  * haven't been created.
747  */
748 struct css_set init_css_set = {
749 	.refcount		= REFCOUNT_INIT(1),
750 	.dom_cset		= &init_css_set,
751 	.tasks			= LIST_HEAD_INIT(init_css_set.tasks),
752 	.mg_tasks		= LIST_HEAD_INIT(init_css_set.mg_tasks),
753 	.dying_tasks		= LIST_HEAD_INIT(init_css_set.dying_tasks),
754 	.task_iters		= LIST_HEAD_INIT(init_css_set.task_iters),
755 	.threaded_csets		= LIST_HEAD_INIT(init_css_set.threaded_csets),
756 	.cgrp_links		= LIST_HEAD_INIT(init_css_set.cgrp_links),
757 	.mg_src_preload_node	= LIST_HEAD_INIT(init_css_set.mg_src_preload_node),
758 	.mg_dst_preload_node	= LIST_HEAD_INIT(init_css_set.mg_dst_preload_node),
759 	.mg_node		= LIST_HEAD_INIT(init_css_set.mg_node),
760 
761 	/*
762 	 * The following field is re-initialized when this cset gets linked
763 	 * in cgroup_init().  However, let's initialize the field
764 	 * statically too so that the default cgroup can be accessed safely
765 	 * early during boot.
766 	 */
767 	.dfl_cgrp		= &cgrp_dfl_root.cgrp,
768 };
769 
770 static int css_set_count	= 1;	/* 1 for init_css_set */
771 
772 static bool css_set_threaded(struct css_set *cset)
773 {
774 	return cset->dom_cset != cset;
775 }
776 
777 /**
778  * css_set_populated - does a css_set contain any tasks?
779  * @cset: target css_set
780  *
781  * css_set_populated() should be the same as !!cset->nr_tasks at steady
782  * state. However, css_set_populated() can be called while a task is being
783  * added to or removed from the linked list before the nr_tasks is
784  * properly updated. Hence, we can't just look at ->nr_tasks here.
785  */
786 static bool css_set_populated(struct css_set *cset)
787 {
788 	lockdep_assert_held(&css_set_lock);
789 
790 	return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
791 }
792 
793 /**
794  * cgroup_update_populated - update the populated count of a cgroup
795  * @cgrp: the target cgroup
796  * @populated: inc or dec populated count
797  *
798  * One of the css_sets associated with @cgrp is either getting its first
799  * task or losing the last.  Update @cgrp->nr_populated_* accordingly.  The
800  * count is propagated towards root so that a given cgroup's
801  * nr_populated_children is zero iff none of its descendants contain any
802  * tasks.
803  *
804  * @cgrp's interface file "cgroup.populated" is zero if both
805  * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and
806  * 1 otherwise.  When the sum changes from or to zero, userland is notified
807  * that the content of the interface file has changed.  This can be used to
808  * detect when @cgrp and its descendants become populated or empty.
809  */
810 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
811 {
812 	struct cgroup *child = NULL;
813 	int adj = populated ? 1 : -1;
814 
815 	lockdep_assert_held(&css_set_lock);
816 
817 	do {
818 		bool was_populated = cgroup_is_populated(cgrp);
819 
820 		if (!child) {
821 			cgrp->nr_populated_csets += adj;
822 		} else {
823 			if (cgroup_is_threaded(child))
824 				cgrp->nr_populated_threaded_children += adj;
825 			else
826 				cgrp->nr_populated_domain_children += adj;
827 		}
828 
829 		if (was_populated == cgroup_is_populated(cgrp))
830 			break;
831 
832 		cgroup1_check_for_release(cgrp);
833 		TRACE_CGROUP_PATH(notify_populated, cgrp,
834 				  cgroup_is_populated(cgrp));
835 		cgroup_file_notify(&cgrp->events_file);
836 
837 		child = cgrp;
838 		cgrp = cgroup_parent(cgrp);
839 	} while (cgrp);
840 }
841 
842 /**
843  * css_set_update_populated - update populated state of a css_set
844  * @cset: target css_set
845  * @populated: whether @cset is populated or depopulated
846  *
847  * @cset is either getting the first task or losing the last.  Update the
848  * populated counters of all associated cgroups accordingly.
849  */
850 static void css_set_update_populated(struct css_set *cset, bool populated)
851 {
852 	struct cgrp_cset_link *link;
853 
854 	lockdep_assert_held(&css_set_lock);
855 
856 	list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
857 		cgroup_update_populated(link->cgrp, populated);
858 }
859 
860 /*
861  * @task is leaving, advance task iterators which are pointing to it so
862  * that they can resume at the next position.  Advancing an iterator might
863  * remove it from the list, use safe walk.  See css_task_iter_skip() for
864  * details.
865  */
866 static void css_set_skip_task_iters(struct css_set *cset,
867 				    struct task_struct *task)
868 {
869 	struct css_task_iter *it, *pos;
870 
871 	list_for_each_entry_safe(it, pos, &cset->task_iters, iters_node)
872 		css_task_iter_skip(it, task);
873 }
874 
875 /**
876  * css_set_move_task - move a task from one css_set to another
877  * @task: task being moved
878  * @from_cset: css_set @task currently belongs to (may be NULL)
879  * @to_cset: new css_set @task is being moved to (may be NULL)
880  * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
881  *
882  * Move @task from @from_cset to @to_cset.  If @task didn't belong to any
883  * css_set, @from_cset can be NULL.  If @task is being disassociated
884  * instead of moved, @to_cset can be NULL.
885  *
886  * This function automatically handles populated counter updates and
887  * css_task_iter adjustments but the caller is responsible for managing
888  * @from_cset and @to_cset's reference counts.
889  */
890 static void css_set_move_task(struct task_struct *task,
891 			      struct css_set *from_cset, struct css_set *to_cset,
892 			      bool use_mg_tasks)
893 {
894 	lockdep_assert_held(&css_set_lock);
895 
896 	if (to_cset && !css_set_populated(to_cset))
897 		css_set_update_populated(to_cset, true);
898 
899 	if (from_cset) {
900 		WARN_ON_ONCE(list_empty(&task->cg_list));
901 
902 		css_set_skip_task_iters(from_cset, task);
903 		list_del_init(&task->cg_list);
904 		if (!css_set_populated(from_cset))
905 			css_set_update_populated(from_cset, false);
906 	} else {
907 		WARN_ON_ONCE(!list_empty(&task->cg_list));
908 	}
909 
910 	if (to_cset) {
911 		/*
912 		 * We are synchronized through cgroup_threadgroup_rwsem
913 		 * against PF_EXITING setting such that we can't race
914 		 * against cgroup_exit()/cgroup_free() dropping the css_set.
915 		 */
916 		WARN_ON_ONCE(task->flags & PF_EXITING);
917 
918 		cgroup_move_task(task, to_cset);
919 		list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
920 							     &to_cset->tasks);
921 	}
922 }
923 
924 /*
925  * hash table for cgroup groups. This improves the performance to find
926  * an existing css_set. This hash doesn't (currently) take into
927  * account cgroups in empty hierarchies.
928  */
929 #define CSS_SET_HASH_BITS	7
930 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
931 
932 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
933 {
934 	unsigned long key = 0UL;
935 	struct cgroup_subsys *ss;
936 	int i;
937 
938 	for_each_subsys(ss, i)
939 		key += (unsigned long)css[i];
940 	key = (key >> 16) ^ key;
941 
942 	return key;
943 }
944 
945 void put_css_set_locked(struct css_set *cset)
946 {
947 	struct cgrp_cset_link *link, *tmp_link;
948 	struct cgroup_subsys *ss;
949 	int ssid;
950 
951 	lockdep_assert_held(&css_set_lock);
952 
953 	if (!refcount_dec_and_test(&cset->refcount))
954 		return;
955 
956 	WARN_ON_ONCE(!list_empty(&cset->threaded_csets));
957 
958 	/* This css_set is dead. Unlink it and release cgroup and css refs */
959 	for_each_subsys(ss, ssid) {
960 		list_del(&cset->e_cset_node[ssid]);
961 		css_put(cset->subsys[ssid]);
962 	}
963 	hash_del(&cset->hlist);
964 	css_set_count--;
965 
966 	list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
967 		list_del(&link->cset_link);
968 		list_del(&link->cgrp_link);
969 		if (cgroup_parent(link->cgrp))
970 			cgroup_put(link->cgrp);
971 		kfree(link);
972 	}
973 
974 	if (css_set_threaded(cset)) {
975 		list_del(&cset->threaded_csets_node);
976 		put_css_set_locked(cset->dom_cset);
977 	}
978 
979 	kfree_rcu(cset, rcu_head);
980 }
981 
982 /**
983  * compare_css_sets - helper function for find_existing_css_set().
984  * @cset: candidate css_set being tested
985  * @old_cset: existing css_set for a task
986  * @new_cgrp: cgroup that's being entered by the task
987  * @template: desired set of css pointers in css_set (pre-calculated)
988  *
989  * Returns true if "cset" matches "old_cset" except for the hierarchy
990  * which "new_cgrp" belongs to, for which it should match "new_cgrp".
991  */
992 static bool compare_css_sets(struct css_set *cset,
993 			     struct css_set *old_cset,
994 			     struct cgroup *new_cgrp,
995 			     struct cgroup_subsys_state *template[])
996 {
997 	struct cgroup *new_dfl_cgrp;
998 	struct list_head *l1, *l2;
999 
1000 	/*
1001 	 * On the default hierarchy, there can be csets which are
1002 	 * associated with the same set of cgroups but different csses.
1003 	 * Let's first ensure that csses match.
1004 	 */
1005 	if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
1006 		return false;
1007 
1008 
1009 	/* @cset's domain should match the default cgroup's */
1010 	if (cgroup_on_dfl(new_cgrp))
1011 		new_dfl_cgrp = new_cgrp;
1012 	else
1013 		new_dfl_cgrp = old_cset->dfl_cgrp;
1014 
1015 	if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp)
1016 		return false;
1017 
1018 	/*
1019 	 * Compare cgroup pointers in order to distinguish between
1020 	 * different cgroups in hierarchies.  As different cgroups may
1021 	 * share the same effective css, this comparison is always
1022 	 * necessary.
1023 	 */
1024 	l1 = &cset->cgrp_links;
1025 	l2 = &old_cset->cgrp_links;
1026 	while (1) {
1027 		struct cgrp_cset_link *link1, *link2;
1028 		struct cgroup *cgrp1, *cgrp2;
1029 
1030 		l1 = l1->next;
1031 		l2 = l2->next;
1032 		/* See if we reached the end - both lists are equal length. */
1033 		if (l1 == &cset->cgrp_links) {
1034 			BUG_ON(l2 != &old_cset->cgrp_links);
1035 			break;
1036 		} else {
1037 			BUG_ON(l2 == &old_cset->cgrp_links);
1038 		}
1039 		/* Locate the cgroups associated with these links. */
1040 		link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
1041 		link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
1042 		cgrp1 = link1->cgrp;
1043 		cgrp2 = link2->cgrp;
1044 		/* Hierarchies should be linked in the same order. */
1045 		BUG_ON(cgrp1->root != cgrp2->root);
1046 
1047 		/*
1048 		 * If this hierarchy is the hierarchy of the cgroup
1049 		 * that's changing, then we need to check that this
1050 		 * css_set points to the new cgroup; if it's any other
1051 		 * hierarchy, then this css_set should point to the
1052 		 * same cgroup as the old css_set.
1053 		 */
1054 		if (cgrp1->root == new_cgrp->root) {
1055 			if (cgrp1 != new_cgrp)
1056 				return false;
1057 		} else {
1058 			if (cgrp1 != cgrp2)
1059 				return false;
1060 		}
1061 	}
1062 	return true;
1063 }
1064 
1065 /**
1066  * find_existing_css_set - init css array and find the matching css_set
1067  * @old_cset: the css_set that we're using before the cgroup transition
1068  * @cgrp: the cgroup that we're moving into
1069  * @template: out param for the new set of csses, should be clear on entry
1070  */
1071 static struct css_set *find_existing_css_set(struct css_set *old_cset,
1072 					struct cgroup *cgrp,
1073 					struct cgroup_subsys_state *template[])
1074 {
1075 	struct cgroup_root *root = cgrp->root;
1076 	struct cgroup_subsys *ss;
1077 	struct css_set *cset;
1078 	unsigned long key;
1079 	int i;
1080 
1081 	/*
1082 	 * Build the set of subsystem state objects that we want to see in the
1083 	 * new css_set. While subsystems can change globally, the entries here
1084 	 * won't change, so no need for locking.
1085 	 */
1086 	for_each_subsys(ss, i) {
1087 		if (root->subsys_mask & (1UL << i)) {
1088 			/*
1089 			 * @ss is in this hierarchy, so we want the
1090 			 * effective css from @cgrp.
1091 			 */
1092 			template[i] = cgroup_e_css_by_mask(cgrp, ss);
1093 		} else {
1094 			/*
1095 			 * @ss is not in this hierarchy, so we don't want
1096 			 * to change the css.
1097 			 */
1098 			template[i] = old_cset->subsys[i];
1099 		}
1100 	}
1101 
1102 	key = css_set_hash(template);
1103 	hash_for_each_possible(css_set_table, cset, hlist, key) {
1104 		if (!compare_css_sets(cset, old_cset, cgrp, template))
1105 			continue;
1106 
1107 		/* This css_set matches what we need */
1108 		return cset;
1109 	}
1110 
1111 	/* No existing cgroup group matched */
1112 	return NULL;
1113 }
1114 
1115 static void free_cgrp_cset_links(struct list_head *links_to_free)
1116 {
1117 	struct cgrp_cset_link *link, *tmp_link;
1118 
1119 	list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
1120 		list_del(&link->cset_link);
1121 		kfree(link);
1122 	}
1123 }
1124 
1125 /**
1126  * allocate_cgrp_cset_links - allocate cgrp_cset_links
1127  * @count: the number of links to allocate
1128  * @tmp_links: list_head the allocated links are put on
1129  *
1130  * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1131  * through ->cset_link.  Returns 0 on success or -errno.
1132  */
1133 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
1134 {
1135 	struct cgrp_cset_link *link;
1136 	int i;
1137 
1138 	INIT_LIST_HEAD(tmp_links);
1139 
1140 	for (i = 0; i < count; i++) {
1141 		link = kzalloc(sizeof(*link), GFP_KERNEL);
1142 		if (!link) {
1143 			free_cgrp_cset_links(tmp_links);
1144 			return -ENOMEM;
1145 		}
1146 		list_add(&link->cset_link, tmp_links);
1147 	}
1148 	return 0;
1149 }
1150 
1151 /**
1152  * link_css_set - a helper function to link a css_set to a cgroup
1153  * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
1154  * @cset: the css_set to be linked
1155  * @cgrp: the destination cgroup
1156  */
1157 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1158 			 struct cgroup *cgrp)
1159 {
1160 	struct cgrp_cset_link *link;
1161 
1162 	BUG_ON(list_empty(tmp_links));
1163 
1164 	if (cgroup_on_dfl(cgrp))
1165 		cset->dfl_cgrp = cgrp;
1166 
1167 	link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1168 	link->cset = cset;
1169 	link->cgrp = cgrp;
1170 
1171 	/*
1172 	 * Always add links to the tail of the lists so that the lists are
1173 	 * in chronological order.
1174 	 */
1175 	list_move_tail(&link->cset_link, &cgrp->cset_links);
1176 	list_add_tail(&link->cgrp_link, &cset->cgrp_links);
1177 
1178 	if (cgroup_parent(cgrp))
1179 		cgroup_get_live(cgrp);
1180 }
1181 
1182 /**
1183  * find_css_set - return a new css_set with one cgroup updated
1184  * @old_cset: the baseline css_set
1185  * @cgrp: the cgroup to be updated
1186  *
1187  * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1188  * substituted into the appropriate hierarchy.
1189  */
1190 static struct css_set *find_css_set(struct css_set *old_cset,
1191 				    struct cgroup *cgrp)
1192 {
1193 	struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
1194 	struct css_set *cset;
1195 	struct list_head tmp_links;
1196 	struct cgrp_cset_link *link;
1197 	struct cgroup_subsys *ss;
1198 	unsigned long key;
1199 	int ssid;
1200 
1201 	lockdep_assert_held(&cgroup_mutex);
1202 
1203 	/* First see if we already have a cgroup group that matches
1204 	 * the desired set */
1205 	spin_lock_irq(&css_set_lock);
1206 	cset = find_existing_css_set(old_cset, cgrp, template);
1207 	if (cset)
1208 		get_css_set(cset);
1209 	spin_unlock_irq(&css_set_lock);
1210 
1211 	if (cset)
1212 		return cset;
1213 
1214 	cset = kzalloc(sizeof(*cset), GFP_KERNEL);
1215 	if (!cset)
1216 		return NULL;
1217 
1218 	/* Allocate all the cgrp_cset_link objects that we'll need */
1219 	if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1220 		kfree(cset);
1221 		return NULL;
1222 	}
1223 
1224 	refcount_set(&cset->refcount, 1);
1225 	cset->dom_cset = cset;
1226 	INIT_LIST_HEAD(&cset->tasks);
1227 	INIT_LIST_HEAD(&cset->mg_tasks);
1228 	INIT_LIST_HEAD(&cset->dying_tasks);
1229 	INIT_LIST_HEAD(&cset->task_iters);
1230 	INIT_LIST_HEAD(&cset->threaded_csets);
1231 	INIT_HLIST_NODE(&cset->hlist);
1232 	INIT_LIST_HEAD(&cset->cgrp_links);
1233 	INIT_LIST_HEAD(&cset->mg_src_preload_node);
1234 	INIT_LIST_HEAD(&cset->mg_dst_preload_node);
1235 	INIT_LIST_HEAD(&cset->mg_node);
1236 
1237 	/* Copy the set of subsystem state objects generated in
1238 	 * find_existing_css_set() */
1239 	memcpy(cset->subsys, template, sizeof(cset->subsys));
1240 
1241 	spin_lock_irq(&css_set_lock);
1242 	/* Add reference counts and links from the new css_set. */
1243 	list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1244 		struct cgroup *c = link->cgrp;
1245 
1246 		if (c->root == cgrp->root)
1247 			c = cgrp;
1248 		link_css_set(&tmp_links, cset, c);
1249 	}
1250 
1251 	BUG_ON(!list_empty(&tmp_links));
1252 
1253 	css_set_count++;
1254 
1255 	/* Add @cset to the hash table */
1256 	key = css_set_hash(cset->subsys);
1257 	hash_add(css_set_table, &cset->hlist, key);
1258 
1259 	for_each_subsys(ss, ssid) {
1260 		struct cgroup_subsys_state *css = cset->subsys[ssid];
1261 
1262 		list_add_tail(&cset->e_cset_node[ssid],
1263 			      &css->cgroup->e_csets[ssid]);
1264 		css_get(css);
1265 	}
1266 
1267 	spin_unlock_irq(&css_set_lock);
1268 
1269 	/*
1270 	 * If @cset should be threaded, look up the matching dom_cset and
1271 	 * link them up.  We first fully initialize @cset then look for the
1272 	 * dom_cset.  It's simpler this way and safe as @cset is guaranteed
1273 	 * to stay empty until we return.
1274 	 */
1275 	if (cgroup_is_threaded(cset->dfl_cgrp)) {
1276 		struct css_set *dcset;
1277 
1278 		dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp);
1279 		if (!dcset) {
1280 			put_css_set(cset);
1281 			return NULL;
1282 		}
1283 
1284 		spin_lock_irq(&css_set_lock);
1285 		cset->dom_cset = dcset;
1286 		list_add_tail(&cset->threaded_csets_node,
1287 			      &dcset->threaded_csets);
1288 		spin_unlock_irq(&css_set_lock);
1289 	}
1290 
1291 	return cset;
1292 }
1293 
1294 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1295 {
1296 	struct cgroup *root_cgrp = kernfs_root_to_node(kf_root)->priv;
1297 
1298 	return root_cgrp->root;
1299 }
1300 
1301 void cgroup_favor_dynmods(struct cgroup_root *root, bool favor)
1302 {
1303 	bool favoring = root->flags & CGRP_ROOT_FAVOR_DYNMODS;
1304 
1305 	/* see the comment above CGRP_ROOT_FAVOR_DYNMODS definition */
1306 	if (favor && !favoring) {
1307 		rcu_sync_enter(&cgroup_threadgroup_rwsem.rss);
1308 		root->flags |= CGRP_ROOT_FAVOR_DYNMODS;
1309 	} else if (!favor && favoring) {
1310 		rcu_sync_exit(&cgroup_threadgroup_rwsem.rss);
1311 		root->flags &= ~CGRP_ROOT_FAVOR_DYNMODS;
1312 	}
1313 }
1314 
1315 static int cgroup_init_root_id(struct cgroup_root *root)
1316 {
1317 	int id;
1318 
1319 	lockdep_assert_held(&cgroup_mutex);
1320 
1321 	id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1322 	if (id < 0)
1323 		return id;
1324 
1325 	root->hierarchy_id = id;
1326 	return 0;
1327 }
1328 
1329 static void cgroup_exit_root_id(struct cgroup_root *root)
1330 {
1331 	lockdep_assert_held(&cgroup_mutex);
1332 
1333 	idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1334 }
1335 
1336 void cgroup_free_root(struct cgroup_root *root)
1337 {
1338 	kfree(root);
1339 }
1340 
1341 static void cgroup_destroy_root(struct cgroup_root *root)
1342 {
1343 	struct cgroup *cgrp = &root->cgrp;
1344 	struct cgrp_cset_link *link, *tmp_link;
1345 
1346 	trace_cgroup_destroy_root(root);
1347 
1348 	cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1349 
1350 	BUG_ON(atomic_read(&root->nr_cgrps));
1351 	BUG_ON(!list_empty(&cgrp->self.children));
1352 
1353 	/* Rebind all subsystems back to the default hierarchy */
1354 	WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
1355 
1356 	/*
1357 	 * Release all the links from cset_links to this hierarchy's
1358 	 * root cgroup
1359 	 */
1360 	spin_lock_irq(&css_set_lock);
1361 
1362 	list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1363 		list_del(&link->cset_link);
1364 		list_del(&link->cgrp_link);
1365 		kfree(link);
1366 	}
1367 
1368 	spin_unlock_irq(&css_set_lock);
1369 
1370 	if (!list_empty(&root->root_list)) {
1371 		list_del(&root->root_list);
1372 		cgroup_root_count--;
1373 	}
1374 
1375 	cgroup_favor_dynmods(root, false);
1376 	cgroup_exit_root_id(root);
1377 
1378 	cgroup_unlock();
1379 
1380 	cgroup_rstat_exit(cgrp);
1381 	kernfs_destroy_root(root->kf_root);
1382 	cgroup_free_root(root);
1383 }
1384 
1385 /*
1386  * Returned cgroup is without refcount but it's valid as long as cset pins it.
1387  */
1388 static inline struct cgroup *__cset_cgroup_from_root(struct css_set *cset,
1389 					    struct cgroup_root *root)
1390 {
1391 	struct cgroup *res_cgroup = NULL;
1392 
1393 	if (cset == &init_css_set) {
1394 		res_cgroup = &root->cgrp;
1395 	} else if (root == &cgrp_dfl_root) {
1396 		res_cgroup = cset->dfl_cgrp;
1397 	} else {
1398 		struct cgrp_cset_link *link;
1399 		lockdep_assert_held(&css_set_lock);
1400 
1401 		list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1402 			struct cgroup *c = link->cgrp;
1403 
1404 			if (c->root == root) {
1405 				res_cgroup = c;
1406 				break;
1407 			}
1408 		}
1409 	}
1410 
1411 	BUG_ON(!res_cgroup);
1412 	return res_cgroup;
1413 }
1414 
1415 /*
1416  * look up cgroup associated with current task's cgroup namespace on the
1417  * specified hierarchy
1418  */
1419 static struct cgroup *
1420 current_cgns_cgroup_from_root(struct cgroup_root *root)
1421 {
1422 	struct cgroup *res = NULL;
1423 	struct css_set *cset;
1424 
1425 	lockdep_assert_held(&css_set_lock);
1426 
1427 	rcu_read_lock();
1428 
1429 	cset = current->nsproxy->cgroup_ns->root_cset;
1430 	res = __cset_cgroup_from_root(cset, root);
1431 
1432 	rcu_read_unlock();
1433 
1434 	return res;
1435 }
1436 
1437 /*
1438  * Look up cgroup associated with current task's cgroup namespace on the default
1439  * hierarchy.
1440  *
1441  * Unlike current_cgns_cgroup_from_root(), this doesn't need locks:
1442  * - Internal rcu_read_lock is unnecessary because we don't dereference any rcu
1443  *   pointers.
1444  * - css_set_lock is not needed because we just read cset->dfl_cgrp.
1445  * - As a bonus returned cgrp is pinned with the current because it cannot
1446  *   switch cgroup_ns asynchronously.
1447  */
1448 static struct cgroup *current_cgns_cgroup_dfl(void)
1449 {
1450 	struct css_set *cset;
1451 
1452 	if (current->nsproxy) {
1453 		cset = current->nsproxy->cgroup_ns->root_cset;
1454 		return __cset_cgroup_from_root(cset, &cgrp_dfl_root);
1455 	} else {
1456 		/*
1457 		 * NOTE: This function may be called from bpf_cgroup_from_id()
1458 		 * on a task which has already passed exit_task_namespaces() and
1459 		 * nsproxy == NULL. Fall back to cgrp_dfl_root which will make all
1460 		 * cgroups visible for lookups.
1461 		 */
1462 		return &cgrp_dfl_root.cgrp;
1463 	}
1464 }
1465 
1466 /* look up cgroup associated with given css_set on the specified hierarchy */
1467 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1468 					    struct cgroup_root *root)
1469 {
1470 	lockdep_assert_held(&cgroup_mutex);
1471 	lockdep_assert_held(&css_set_lock);
1472 
1473 	return __cset_cgroup_from_root(cset, root);
1474 }
1475 
1476 /*
1477  * Return the cgroup for "task" from the given hierarchy. Must be
1478  * called with cgroup_mutex and css_set_lock held.
1479  */
1480 struct cgroup *task_cgroup_from_root(struct task_struct *task,
1481 				     struct cgroup_root *root)
1482 {
1483 	/*
1484 	 * No need to lock the task - since we hold css_set_lock the
1485 	 * task can't change groups.
1486 	 */
1487 	return cset_cgroup_from_root(task_css_set(task), root);
1488 }
1489 
1490 /*
1491  * A task must hold cgroup_mutex to modify cgroups.
1492  *
1493  * Any task can increment and decrement the count field without lock.
1494  * So in general, code holding cgroup_mutex can't rely on the count
1495  * field not changing.  However, if the count goes to zero, then only
1496  * cgroup_attach_task() can increment it again.  Because a count of zero
1497  * means that no tasks are currently attached, therefore there is no
1498  * way a task attached to that cgroup can fork (the other way to
1499  * increment the count).  So code holding cgroup_mutex can safely
1500  * assume that if the count is zero, it will stay zero. Similarly, if
1501  * a task holds cgroup_mutex on a cgroup with zero count, it
1502  * knows that the cgroup won't be removed, as cgroup_rmdir()
1503  * needs that mutex.
1504  *
1505  * A cgroup can only be deleted if both its 'count' of using tasks
1506  * is zero, and its list of 'children' cgroups is empty.  Since all
1507  * tasks in the system use _some_ cgroup, and since there is always at
1508  * least one task in the system (init, pid == 1), therefore, root cgroup
1509  * always has either children cgroups and/or using tasks.  So we don't
1510  * need a special hack to ensure that root cgroup cannot be deleted.
1511  *
1512  * P.S.  One more locking exception.  RCU is used to guard the
1513  * update of a tasks cgroup pointer by cgroup_attach_task()
1514  */
1515 
1516 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1517 
1518 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1519 			      char *buf)
1520 {
1521 	struct cgroup_subsys *ss = cft->ss;
1522 
1523 	if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1524 	    !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
1525 		const char *dbg = (cft->flags & CFTYPE_DEBUG) ? ".__DEBUG__." : "";
1526 
1527 		snprintf(buf, CGROUP_FILE_NAME_MAX, "%s%s.%s",
1528 			 dbg, cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1529 			 cft->name);
1530 	} else {
1531 		strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1532 	}
1533 	return buf;
1534 }
1535 
1536 /**
1537  * cgroup_file_mode - deduce file mode of a control file
1538  * @cft: the control file in question
1539  *
1540  * S_IRUGO for read, S_IWUSR for write.
1541  */
1542 static umode_t cgroup_file_mode(const struct cftype *cft)
1543 {
1544 	umode_t mode = 0;
1545 
1546 	if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1547 		mode |= S_IRUGO;
1548 
1549 	if (cft->write_u64 || cft->write_s64 || cft->write) {
1550 		if (cft->flags & CFTYPE_WORLD_WRITABLE)
1551 			mode |= S_IWUGO;
1552 		else
1553 			mode |= S_IWUSR;
1554 	}
1555 
1556 	return mode;
1557 }
1558 
1559 /**
1560  * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1561  * @subtree_control: the new subtree_control mask to consider
1562  * @this_ss_mask: available subsystems
1563  *
1564  * On the default hierarchy, a subsystem may request other subsystems to be
1565  * enabled together through its ->depends_on mask.  In such cases, more
1566  * subsystems than specified in "cgroup.subtree_control" may be enabled.
1567  *
1568  * This function calculates which subsystems need to be enabled if
1569  * @subtree_control is to be applied while restricted to @this_ss_mask.
1570  */
1571 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
1572 {
1573 	u16 cur_ss_mask = subtree_control;
1574 	struct cgroup_subsys *ss;
1575 	int ssid;
1576 
1577 	lockdep_assert_held(&cgroup_mutex);
1578 
1579 	cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1580 
1581 	while (true) {
1582 		u16 new_ss_mask = cur_ss_mask;
1583 
1584 		do_each_subsys_mask(ss, ssid, cur_ss_mask) {
1585 			new_ss_mask |= ss->depends_on;
1586 		} while_each_subsys_mask();
1587 
1588 		/*
1589 		 * Mask out subsystems which aren't available.  This can
1590 		 * happen only if some depended-upon subsystems were bound
1591 		 * to non-default hierarchies.
1592 		 */
1593 		new_ss_mask &= this_ss_mask;
1594 
1595 		if (new_ss_mask == cur_ss_mask)
1596 			break;
1597 		cur_ss_mask = new_ss_mask;
1598 	}
1599 
1600 	return cur_ss_mask;
1601 }
1602 
1603 /**
1604  * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1605  * @kn: the kernfs_node being serviced
1606  *
1607  * This helper undoes cgroup_kn_lock_live() and should be invoked before
1608  * the method finishes if locking succeeded.  Note that once this function
1609  * returns the cgroup returned by cgroup_kn_lock_live() may become
1610  * inaccessible any time.  If the caller intends to continue to access the
1611  * cgroup, it should pin it before invoking this function.
1612  */
1613 void cgroup_kn_unlock(struct kernfs_node *kn)
1614 {
1615 	struct cgroup *cgrp;
1616 
1617 	if (kernfs_type(kn) == KERNFS_DIR)
1618 		cgrp = kn->priv;
1619 	else
1620 		cgrp = kn->parent->priv;
1621 
1622 	cgroup_unlock();
1623 
1624 	kernfs_unbreak_active_protection(kn);
1625 	cgroup_put(cgrp);
1626 }
1627 
1628 /**
1629  * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1630  * @kn: the kernfs_node being serviced
1631  * @drain_offline: perform offline draining on the cgroup
1632  *
1633  * This helper is to be used by a cgroup kernfs method currently servicing
1634  * @kn.  It breaks the active protection, performs cgroup locking and
1635  * verifies that the associated cgroup is alive.  Returns the cgroup if
1636  * alive; otherwise, %NULL.  A successful return should be undone by a
1637  * matching cgroup_kn_unlock() invocation.  If @drain_offline is %true, the
1638  * cgroup is drained of offlining csses before return.
1639  *
1640  * Any cgroup kernfs method implementation which requires locking the
1641  * associated cgroup should use this helper.  It avoids nesting cgroup
1642  * locking under kernfs active protection and allows all kernfs operations
1643  * including self-removal.
1644  */
1645 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline)
1646 {
1647 	struct cgroup *cgrp;
1648 
1649 	if (kernfs_type(kn) == KERNFS_DIR)
1650 		cgrp = kn->priv;
1651 	else
1652 		cgrp = kn->parent->priv;
1653 
1654 	/*
1655 	 * We're gonna grab cgroup_mutex which nests outside kernfs
1656 	 * active_ref.  cgroup liveliness check alone provides enough
1657 	 * protection against removal.  Ensure @cgrp stays accessible and
1658 	 * break the active_ref protection.
1659 	 */
1660 	if (!cgroup_tryget(cgrp))
1661 		return NULL;
1662 	kernfs_break_active_protection(kn);
1663 
1664 	if (drain_offline)
1665 		cgroup_lock_and_drain_offline(cgrp);
1666 	else
1667 		cgroup_lock();
1668 
1669 	if (!cgroup_is_dead(cgrp))
1670 		return cgrp;
1671 
1672 	cgroup_kn_unlock(kn);
1673 	return NULL;
1674 }
1675 
1676 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1677 {
1678 	char name[CGROUP_FILE_NAME_MAX];
1679 
1680 	lockdep_assert_held(&cgroup_mutex);
1681 
1682 	if (cft->file_offset) {
1683 		struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1684 		struct cgroup_file *cfile = (void *)css + cft->file_offset;
1685 
1686 		spin_lock_irq(&cgroup_file_kn_lock);
1687 		cfile->kn = NULL;
1688 		spin_unlock_irq(&cgroup_file_kn_lock);
1689 
1690 		del_timer_sync(&cfile->notify_timer);
1691 	}
1692 
1693 	kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1694 }
1695 
1696 /**
1697  * css_clear_dir - remove subsys files in a cgroup directory
1698  * @css: target css
1699  */
1700 static void css_clear_dir(struct cgroup_subsys_state *css)
1701 {
1702 	struct cgroup *cgrp = css->cgroup;
1703 	struct cftype *cfts;
1704 
1705 	if (!(css->flags & CSS_VISIBLE))
1706 		return;
1707 
1708 	css->flags &= ~CSS_VISIBLE;
1709 
1710 	if (!css->ss) {
1711 		if (cgroup_on_dfl(cgrp)) {
1712 			cgroup_addrm_files(css, cgrp,
1713 					   cgroup_base_files, false);
1714 			if (cgroup_psi_enabled())
1715 				cgroup_addrm_files(css, cgrp,
1716 						   cgroup_psi_files, false);
1717 		} else {
1718 			cgroup_addrm_files(css, cgrp,
1719 					   cgroup1_base_files, false);
1720 		}
1721 	} else {
1722 		list_for_each_entry(cfts, &css->ss->cfts, node)
1723 			cgroup_addrm_files(css, cgrp, cfts, false);
1724 	}
1725 }
1726 
1727 /**
1728  * css_populate_dir - create subsys files in a cgroup directory
1729  * @css: target css
1730  *
1731  * On failure, no file is added.
1732  */
1733 static int css_populate_dir(struct cgroup_subsys_state *css)
1734 {
1735 	struct cgroup *cgrp = css->cgroup;
1736 	struct cftype *cfts, *failed_cfts;
1737 	int ret;
1738 
1739 	if ((css->flags & CSS_VISIBLE) || !cgrp->kn)
1740 		return 0;
1741 
1742 	if (!css->ss) {
1743 		if (cgroup_on_dfl(cgrp)) {
1744 			ret = cgroup_addrm_files(&cgrp->self, cgrp,
1745 						 cgroup_base_files, true);
1746 			if (ret < 0)
1747 				return ret;
1748 
1749 			if (cgroup_psi_enabled()) {
1750 				ret = cgroup_addrm_files(&cgrp->self, cgrp,
1751 							 cgroup_psi_files, true);
1752 				if (ret < 0)
1753 					return ret;
1754 			}
1755 		} else {
1756 			cgroup_addrm_files(css, cgrp,
1757 					   cgroup1_base_files, true);
1758 		}
1759 	} else {
1760 		list_for_each_entry(cfts, &css->ss->cfts, node) {
1761 			ret = cgroup_addrm_files(css, cgrp, cfts, true);
1762 			if (ret < 0) {
1763 				failed_cfts = cfts;
1764 				goto err;
1765 			}
1766 		}
1767 	}
1768 
1769 	css->flags |= CSS_VISIBLE;
1770 
1771 	return 0;
1772 err:
1773 	list_for_each_entry(cfts, &css->ss->cfts, node) {
1774 		if (cfts == failed_cfts)
1775 			break;
1776 		cgroup_addrm_files(css, cgrp, cfts, false);
1777 	}
1778 	return ret;
1779 }
1780 
1781 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
1782 {
1783 	struct cgroup *dcgrp = &dst_root->cgrp;
1784 	struct cgroup_subsys *ss;
1785 	int ssid, ret;
1786 	u16 dfl_disable_ss_mask = 0;
1787 
1788 	lockdep_assert_held(&cgroup_mutex);
1789 
1790 	do_each_subsys_mask(ss, ssid, ss_mask) {
1791 		/*
1792 		 * If @ss has non-root csses attached to it, can't move.
1793 		 * If @ss is an implicit controller, it is exempt from this
1794 		 * rule and can be stolen.
1795 		 */
1796 		if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1797 		    !ss->implicit_on_dfl)
1798 			return -EBUSY;
1799 
1800 		/* can't move between two non-dummy roots either */
1801 		if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1802 			return -EBUSY;
1803 
1804 		/*
1805 		 * Collect ssid's that need to be disabled from default
1806 		 * hierarchy.
1807 		 */
1808 		if (ss->root == &cgrp_dfl_root)
1809 			dfl_disable_ss_mask |= 1 << ssid;
1810 
1811 	} while_each_subsys_mask();
1812 
1813 	if (dfl_disable_ss_mask) {
1814 		struct cgroup *scgrp = &cgrp_dfl_root.cgrp;
1815 
1816 		/*
1817 		 * Controllers from default hierarchy that need to be rebound
1818 		 * are all disabled together in one go.
1819 		 */
1820 		cgrp_dfl_root.subsys_mask &= ~dfl_disable_ss_mask;
1821 		WARN_ON(cgroup_apply_control(scgrp));
1822 		cgroup_finalize_control(scgrp, 0);
1823 	}
1824 
1825 	do_each_subsys_mask(ss, ssid, ss_mask) {
1826 		struct cgroup_root *src_root = ss->root;
1827 		struct cgroup *scgrp = &src_root->cgrp;
1828 		struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1829 		struct css_set *cset, *cset_pos;
1830 		struct css_task_iter *it;
1831 
1832 		WARN_ON(!css || cgroup_css(dcgrp, ss));
1833 
1834 		if (src_root != &cgrp_dfl_root) {
1835 			/* disable from the source */
1836 			src_root->subsys_mask &= ~(1 << ssid);
1837 			WARN_ON(cgroup_apply_control(scgrp));
1838 			cgroup_finalize_control(scgrp, 0);
1839 		}
1840 
1841 		/* rebind */
1842 		RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1843 		rcu_assign_pointer(dcgrp->subsys[ssid], css);
1844 		ss->root = dst_root;
1845 		css->cgroup = dcgrp;
1846 
1847 		spin_lock_irq(&css_set_lock);
1848 		WARN_ON(!list_empty(&dcgrp->e_csets[ss->id]));
1849 		list_for_each_entry_safe(cset, cset_pos, &scgrp->e_csets[ss->id],
1850 					 e_cset_node[ss->id]) {
1851 			list_move_tail(&cset->e_cset_node[ss->id],
1852 				       &dcgrp->e_csets[ss->id]);
1853 			/*
1854 			 * all css_sets of scgrp together in same order to dcgrp,
1855 			 * patch in-flight iterators to preserve correct iteration.
1856 			 * since the iterator is always advanced right away and
1857 			 * finished when it->cset_pos meets it->cset_head, so only
1858 			 * update it->cset_head is enough here.
1859 			 */
1860 			list_for_each_entry(it, &cset->task_iters, iters_node)
1861 				if (it->cset_head == &scgrp->e_csets[ss->id])
1862 					it->cset_head = &dcgrp->e_csets[ss->id];
1863 		}
1864 		spin_unlock_irq(&css_set_lock);
1865 
1866 		if (ss->css_rstat_flush) {
1867 			list_del_rcu(&css->rstat_css_node);
1868 			synchronize_rcu();
1869 			list_add_rcu(&css->rstat_css_node,
1870 				     &dcgrp->rstat_css_list);
1871 		}
1872 
1873 		/* default hierarchy doesn't enable controllers by default */
1874 		dst_root->subsys_mask |= 1 << ssid;
1875 		if (dst_root == &cgrp_dfl_root) {
1876 			static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1877 		} else {
1878 			dcgrp->subtree_control |= 1 << ssid;
1879 			static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1880 		}
1881 
1882 		ret = cgroup_apply_control(dcgrp);
1883 		if (ret)
1884 			pr_warn("partial failure to rebind %s controller (err=%d)\n",
1885 				ss->name, ret);
1886 
1887 		if (ss->bind)
1888 			ss->bind(css);
1889 	} while_each_subsys_mask();
1890 
1891 	kernfs_activate(dcgrp->kn);
1892 	return 0;
1893 }
1894 
1895 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
1896 		     struct kernfs_root *kf_root)
1897 {
1898 	int len = 0;
1899 	char *buf = NULL;
1900 	struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
1901 	struct cgroup *ns_cgroup;
1902 
1903 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
1904 	if (!buf)
1905 		return -ENOMEM;
1906 
1907 	spin_lock_irq(&css_set_lock);
1908 	ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
1909 	len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
1910 	spin_unlock_irq(&css_set_lock);
1911 
1912 	if (len >= PATH_MAX)
1913 		len = -ERANGE;
1914 	else if (len > 0) {
1915 		seq_escape(sf, buf, " \t\n\\");
1916 		len = 0;
1917 	}
1918 	kfree(buf);
1919 	return len;
1920 }
1921 
1922 enum cgroup2_param {
1923 	Opt_nsdelegate,
1924 	Opt_favordynmods,
1925 	Opt_memory_localevents,
1926 	Opt_memory_recursiveprot,
1927 	nr__cgroup2_params
1928 };
1929 
1930 static const struct fs_parameter_spec cgroup2_fs_parameters[] = {
1931 	fsparam_flag("nsdelegate",		Opt_nsdelegate),
1932 	fsparam_flag("favordynmods",		Opt_favordynmods),
1933 	fsparam_flag("memory_localevents",	Opt_memory_localevents),
1934 	fsparam_flag("memory_recursiveprot",	Opt_memory_recursiveprot),
1935 	{}
1936 };
1937 
1938 static int cgroup2_parse_param(struct fs_context *fc, struct fs_parameter *param)
1939 {
1940 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1941 	struct fs_parse_result result;
1942 	int opt;
1943 
1944 	opt = fs_parse(fc, cgroup2_fs_parameters, param, &result);
1945 	if (opt < 0)
1946 		return opt;
1947 
1948 	switch (opt) {
1949 	case Opt_nsdelegate:
1950 		ctx->flags |= CGRP_ROOT_NS_DELEGATE;
1951 		return 0;
1952 	case Opt_favordynmods:
1953 		ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS;
1954 		return 0;
1955 	case Opt_memory_localevents:
1956 		ctx->flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1957 		return 0;
1958 	case Opt_memory_recursiveprot:
1959 		ctx->flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1960 		return 0;
1961 	}
1962 	return -EINVAL;
1963 }
1964 
1965 static void apply_cgroup_root_flags(unsigned int root_flags)
1966 {
1967 	if (current->nsproxy->cgroup_ns == &init_cgroup_ns) {
1968 		if (root_flags & CGRP_ROOT_NS_DELEGATE)
1969 			cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE;
1970 		else
1971 			cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE;
1972 
1973 		cgroup_favor_dynmods(&cgrp_dfl_root,
1974 				     root_flags & CGRP_ROOT_FAVOR_DYNMODS);
1975 
1976 		if (root_flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1977 			cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1978 		else
1979 			cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1980 
1981 		if (root_flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
1982 			cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1983 		else
1984 			cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1985 	}
1986 }
1987 
1988 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
1989 {
1990 	if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE)
1991 		seq_puts(seq, ",nsdelegate");
1992 	if (cgrp_dfl_root.flags & CGRP_ROOT_FAVOR_DYNMODS)
1993 		seq_puts(seq, ",favordynmods");
1994 	if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1995 		seq_puts(seq, ",memory_localevents");
1996 	if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
1997 		seq_puts(seq, ",memory_recursiveprot");
1998 	return 0;
1999 }
2000 
2001 static int cgroup_reconfigure(struct fs_context *fc)
2002 {
2003 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2004 
2005 	apply_cgroup_root_flags(ctx->flags);
2006 	return 0;
2007 }
2008 
2009 static void init_cgroup_housekeeping(struct cgroup *cgrp)
2010 {
2011 	struct cgroup_subsys *ss;
2012 	int ssid;
2013 
2014 	INIT_LIST_HEAD(&cgrp->self.sibling);
2015 	INIT_LIST_HEAD(&cgrp->self.children);
2016 	INIT_LIST_HEAD(&cgrp->cset_links);
2017 	INIT_LIST_HEAD(&cgrp->pidlists);
2018 	mutex_init(&cgrp->pidlist_mutex);
2019 	cgrp->self.cgroup = cgrp;
2020 	cgrp->self.flags |= CSS_ONLINE;
2021 	cgrp->dom_cgrp = cgrp;
2022 	cgrp->max_descendants = INT_MAX;
2023 	cgrp->max_depth = INT_MAX;
2024 	INIT_LIST_HEAD(&cgrp->rstat_css_list);
2025 	prev_cputime_init(&cgrp->prev_cputime);
2026 
2027 	for_each_subsys(ss, ssid)
2028 		INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
2029 
2030 	init_waitqueue_head(&cgrp->offline_waitq);
2031 	INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent);
2032 }
2033 
2034 void init_cgroup_root(struct cgroup_fs_context *ctx)
2035 {
2036 	struct cgroup_root *root = ctx->root;
2037 	struct cgroup *cgrp = &root->cgrp;
2038 
2039 	INIT_LIST_HEAD(&root->root_list);
2040 	atomic_set(&root->nr_cgrps, 1);
2041 	cgrp->root = root;
2042 	init_cgroup_housekeeping(cgrp);
2043 
2044 	/* DYNMODS must be modified through cgroup_favor_dynmods() */
2045 	root->flags = ctx->flags & ~CGRP_ROOT_FAVOR_DYNMODS;
2046 	if (ctx->release_agent)
2047 		strscpy(root->release_agent_path, ctx->release_agent, PATH_MAX);
2048 	if (ctx->name)
2049 		strscpy(root->name, ctx->name, MAX_CGROUP_ROOT_NAMELEN);
2050 	if (ctx->cpuset_clone_children)
2051 		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
2052 }
2053 
2054 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask)
2055 {
2056 	LIST_HEAD(tmp_links);
2057 	struct cgroup *root_cgrp = &root->cgrp;
2058 	struct kernfs_syscall_ops *kf_sops;
2059 	struct css_set *cset;
2060 	int i, ret;
2061 
2062 	lockdep_assert_held(&cgroup_mutex);
2063 
2064 	ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release,
2065 			      0, GFP_KERNEL);
2066 	if (ret)
2067 		goto out;
2068 
2069 	/*
2070 	 * We're accessing css_set_count without locking css_set_lock here,
2071 	 * but that's OK - it can only be increased by someone holding
2072 	 * cgroup_lock, and that's us.  Later rebinding may disable
2073 	 * controllers on the default hierarchy and thus create new csets,
2074 	 * which can't be more than the existing ones.  Allocate 2x.
2075 	 */
2076 	ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
2077 	if (ret)
2078 		goto cancel_ref;
2079 
2080 	ret = cgroup_init_root_id(root);
2081 	if (ret)
2082 		goto cancel_ref;
2083 
2084 	kf_sops = root == &cgrp_dfl_root ?
2085 		&cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops;
2086 
2087 	root->kf_root = kernfs_create_root(kf_sops,
2088 					   KERNFS_ROOT_CREATE_DEACTIVATED |
2089 					   KERNFS_ROOT_SUPPORT_EXPORTOP |
2090 					   KERNFS_ROOT_SUPPORT_USER_XATTR,
2091 					   root_cgrp);
2092 	if (IS_ERR(root->kf_root)) {
2093 		ret = PTR_ERR(root->kf_root);
2094 		goto exit_root_id;
2095 	}
2096 	root_cgrp->kn = kernfs_root_to_node(root->kf_root);
2097 	WARN_ON_ONCE(cgroup_ino(root_cgrp) != 1);
2098 	root_cgrp->ancestors[0] = root_cgrp;
2099 
2100 	ret = css_populate_dir(&root_cgrp->self);
2101 	if (ret)
2102 		goto destroy_root;
2103 
2104 	ret = cgroup_rstat_init(root_cgrp);
2105 	if (ret)
2106 		goto destroy_root;
2107 
2108 	ret = rebind_subsystems(root, ss_mask);
2109 	if (ret)
2110 		goto exit_stats;
2111 
2112 	ret = cgroup_bpf_inherit(root_cgrp);
2113 	WARN_ON_ONCE(ret);
2114 
2115 	trace_cgroup_setup_root(root);
2116 
2117 	/*
2118 	 * There must be no failure case after here, since rebinding takes
2119 	 * care of subsystems' refcounts, which are explicitly dropped in
2120 	 * the failure exit path.
2121 	 */
2122 	list_add(&root->root_list, &cgroup_roots);
2123 	cgroup_root_count++;
2124 
2125 	/*
2126 	 * Link the root cgroup in this hierarchy into all the css_set
2127 	 * objects.
2128 	 */
2129 	spin_lock_irq(&css_set_lock);
2130 	hash_for_each(css_set_table, i, cset, hlist) {
2131 		link_css_set(&tmp_links, cset, root_cgrp);
2132 		if (css_set_populated(cset))
2133 			cgroup_update_populated(root_cgrp, true);
2134 	}
2135 	spin_unlock_irq(&css_set_lock);
2136 
2137 	BUG_ON(!list_empty(&root_cgrp->self.children));
2138 	BUG_ON(atomic_read(&root->nr_cgrps) != 1);
2139 
2140 	ret = 0;
2141 	goto out;
2142 
2143 exit_stats:
2144 	cgroup_rstat_exit(root_cgrp);
2145 destroy_root:
2146 	kernfs_destroy_root(root->kf_root);
2147 	root->kf_root = NULL;
2148 exit_root_id:
2149 	cgroup_exit_root_id(root);
2150 cancel_ref:
2151 	percpu_ref_exit(&root_cgrp->self.refcnt);
2152 out:
2153 	free_cgrp_cset_links(&tmp_links);
2154 	return ret;
2155 }
2156 
2157 int cgroup_do_get_tree(struct fs_context *fc)
2158 {
2159 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2160 	int ret;
2161 
2162 	ctx->kfc.root = ctx->root->kf_root;
2163 	if (fc->fs_type == &cgroup2_fs_type)
2164 		ctx->kfc.magic = CGROUP2_SUPER_MAGIC;
2165 	else
2166 		ctx->kfc.magic = CGROUP_SUPER_MAGIC;
2167 	ret = kernfs_get_tree(fc);
2168 
2169 	/*
2170 	 * In non-init cgroup namespace, instead of root cgroup's dentry,
2171 	 * we return the dentry corresponding to the cgroupns->root_cgrp.
2172 	 */
2173 	if (!ret && ctx->ns != &init_cgroup_ns) {
2174 		struct dentry *nsdentry;
2175 		struct super_block *sb = fc->root->d_sb;
2176 		struct cgroup *cgrp;
2177 
2178 		cgroup_lock();
2179 		spin_lock_irq(&css_set_lock);
2180 
2181 		cgrp = cset_cgroup_from_root(ctx->ns->root_cset, ctx->root);
2182 
2183 		spin_unlock_irq(&css_set_lock);
2184 		cgroup_unlock();
2185 
2186 		nsdentry = kernfs_node_dentry(cgrp->kn, sb);
2187 		dput(fc->root);
2188 		if (IS_ERR(nsdentry)) {
2189 			deactivate_locked_super(sb);
2190 			ret = PTR_ERR(nsdentry);
2191 			nsdentry = NULL;
2192 		}
2193 		fc->root = nsdentry;
2194 	}
2195 
2196 	if (!ctx->kfc.new_sb_created)
2197 		cgroup_put(&ctx->root->cgrp);
2198 
2199 	return ret;
2200 }
2201 
2202 /*
2203  * Destroy a cgroup filesystem context.
2204  */
2205 static void cgroup_fs_context_free(struct fs_context *fc)
2206 {
2207 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2208 
2209 	kfree(ctx->name);
2210 	kfree(ctx->release_agent);
2211 	put_cgroup_ns(ctx->ns);
2212 	kernfs_free_fs_context(fc);
2213 	kfree(ctx);
2214 }
2215 
2216 static int cgroup_get_tree(struct fs_context *fc)
2217 {
2218 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2219 	int ret;
2220 
2221 	WRITE_ONCE(cgrp_dfl_visible, true);
2222 	cgroup_get_live(&cgrp_dfl_root.cgrp);
2223 	ctx->root = &cgrp_dfl_root;
2224 
2225 	ret = cgroup_do_get_tree(fc);
2226 	if (!ret)
2227 		apply_cgroup_root_flags(ctx->flags);
2228 	return ret;
2229 }
2230 
2231 static const struct fs_context_operations cgroup_fs_context_ops = {
2232 	.free		= cgroup_fs_context_free,
2233 	.parse_param	= cgroup2_parse_param,
2234 	.get_tree	= cgroup_get_tree,
2235 	.reconfigure	= cgroup_reconfigure,
2236 };
2237 
2238 static const struct fs_context_operations cgroup1_fs_context_ops = {
2239 	.free		= cgroup_fs_context_free,
2240 	.parse_param	= cgroup1_parse_param,
2241 	.get_tree	= cgroup1_get_tree,
2242 	.reconfigure	= cgroup1_reconfigure,
2243 };
2244 
2245 /*
2246  * Initialise the cgroup filesystem creation/reconfiguration context.  Notably,
2247  * we select the namespace we're going to use.
2248  */
2249 static int cgroup_init_fs_context(struct fs_context *fc)
2250 {
2251 	struct cgroup_fs_context *ctx;
2252 
2253 	ctx = kzalloc(sizeof(struct cgroup_fs_context), GFP_KERNEL);
2254 	if (!ctx)
2255 		return -ENOMEM;
2256 
2257 	ctx->ns = current->nsproxy->cgroup_ns;
2258 	get_cgroup_ns(ctx->ns);
2259 	fc->fs_private = &ctx->kfc;
2260 	if (fc->fs_type == &cgroup2_fs_type)
2261 		fc->ops = &cgroup_fs_context_ops;
2262 	else
2263 		fc->ops = &cgroup1_fs_context_ops;
2264 	put_user_ns(fc->user_ns);
2265 	fc->user_ns = get_user_ns(ctx->ns->user_ns);
2266 	fc->global = true;
2267 
2268 #ifdef CONFIG_CGROUP_FAVOR_DYNMODS
2269 	ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS;
2270 #endif
2271 	return 0;
2272 }
2273 
2274 static void cgroup_kill_sb(struct super_block *sb)
2275 {
2276 	struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2277 	struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2278 
2279 	/*
2280 	 * If @root doesn't have any children, start killing it.
2281 	 * This prevents new mounts by disabling percpu_ref_tryget_live().
2282 	 *
2283 	 * And don't kill the default root.
2284 	 */
2285 	if (list_empty(&root->cgrp.self.children) && root != &cgrp_dfl_root &&
2286 	    !percpu_ref_is_dying(&root->cgrp.self.refcnt)) {
2287 		cgroup_bpf_offline(&root->cgrp);
2288 		percpu_ref_kill(&root->cgrp.self.refcnt);
2289 	}
2290 	cgroup_put(&root->cgrp);
2291 	kernfs_kill_sb(sb);
2292 }
2293 
2294 struct file_system_type cgroup_fs_type = {
2295 	.name			= "cgroup",
2296 	.init_fs_context	= cgroup_init_fs_context,
2297 	.parameters		= cgroup1_fs_parameters,
2298 	.kill_sb		= cgroup_kill_sb,
2299 	.fs_flags		= FS_USERNS_MOUNT,
2300 };
2301 
2302 static struct file_system_type cgroup2_fs_type = {
2303 	.name			= "cgroup2",
2304 	.init_fs_context	= cgroup_init_fs_context,
2305 	.parameters		= cgroup2_fs_parameters,
2306 	.kill_sb		= cgroup_kill_sb,
2307 	.fs_flags		= FS_USERNS_MOUNT,
2308 };
2309 
2310 #ifdef CONFIG_CPUSETS
2311 static const struct fs_context_operations cpuset_fs_context_ops = {
2312 	.get_tree	= cgroup1_get_tree,
2313 	.free		= cgroup_fs_context_free,
2314 };
2315 
2316 /*
2317  * This is ugly, but preserves the userspace API for existing cpuset
2318  * users. If someone tries to mount the "cpuset" filesystem, we
2319  * silently switch it to mount "cgroup" instead
2320  */
2321 static int cpuset_init_fs_context(struct fs_context *fc)
2322 {
2323 	char *agent = kstrdup("/sbin/cpuset_release_agent", GFP_USER);
2324 	struct cgroup_fs_context *ctx;
2325 	int err;
2326 
2327 	err = cgroup_init_fs_context(fc);
2328 	if (err) {
2329 		kfree(agent);
2330 		return err;
2331 	}
2332 
2333 	fc->ops = &cpuset_fs_context_ops;
2334 
2335 	ctx = cgroup_fc2context(fc);
2336 	ctx->subsys_mask = 1 << cpuset_cgrp_id;
2337 	ctx->flags |= CGRP_ROOT_NOPREFIX;
2338 	ctx->release_agent = agent;
2339 
2340 	get_filesystem(&cgroup_fs_type);
2341 	put_filesystem(fc->fs_type);
2342 	fc->fs_type = &cgroup_fs_type;
2343 
2344 	return 0;
2345 }
2346 
2347 static struct file_system_type cpuset_fs_type = {
2348 	.name			= "cpuset",
2349 	.init_fs_context	= cpuset_init_fs_context,
2350 	.fs_flags		= FS_USERNS_MOUNT,
2351 };
2352 #endif
2353 
2354 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
2355 			  struct cgroup_namespace *ns)
2356 {
2357 	struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
2358 
2359 	return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
2360 }
2361 
2362 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
2363 		   struct cgroup_namespace *ns)
2364 {
2365 	int ret;
2366 
2367 	cgroup_lock();
2368 	spin_lock_irq(&css_set_lock);
2369 
2370 	ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
2371 
2372 	spin_unlock_irq(&css_set_lock);
2373 	cgroup_unlock();
2374 
2375 	return ret;
2376 }
2377 EXPORT_SYMBOL_GPL(cgroup_path_ns);
2378 
2379 /**
2380  * cgroup_attach_lock - Lock for ->attach()
2381  * @lock_threadgroup: whether to down_write cgroup_threadgroup_rwsem
2382  *
2383  * cgroup migration sometimes needs to stabilize threadgroups against forks and
2384  * exits by write-locking cgroup_threadgroup_rwsem. However, some ->attach()
2385  * implementations (e.g. cpuset), also need to disable CPU hotplug.
2386  * Unfortunately, letting ->attach() operations acquire cpus_read_lock() can
2387  * lead to deadlocks.
2388  *
2389  * Bringing up a CPU may involve creating and destroying tasks which requires
2390  * read-locking threadgroup_rwsem, so threadgroup_rwsem nests inside
2391  * cpus_read_lock(). If we call an ->attach() which acquires the cpus lock while
2392  * write-locking threadgroup_rwsem, the locking order is reversed and we end up
2393  * waiting for an on-going CPU hotplug operation which in turn is waiting for
2394  * the threadgroup_rwsem to be released to create new tasks. For more details:
2395  *
2396  *   http://lkml.kernel.org/r/20220711174629.uehfmqegcwn2lqzu@wubuntu
2397  *
2398  * Resolve the situation by always acquiring cpus_read_lock() before optionally
2399  * write-locking cgroup_threadgroup_rwsem. This allows ->attach() to assume that
2400  * CPU hotplug is disabled on entry.
2401  */
2402 void cgroup_attach_lock(bool lock_threadgroup)
2403 {
2404 	cpus_read_lock();
2405 	if (lock_threadgroup)
2406 		percpu_down_write(&cgroup_threadgroup_rwsem);
2407 }
2408 
2409 /**
2410  * cgroup_attach_unlock - Undo cgroup_attach_lock()
2411  * @lock_threadgroup: whether to up_write cgroup_threadgroup_rwsem
2412  */
2413 void cgroup_attach_unlock(bool lock_threadgroup)
2414 {
2415 	if (lock_threadgroup)
2416 		percpu_up_write(&cgroup_threadgroup_rwsem);
2417 	cpus_read_unlock();
2418 }
2419 
2420 /**
2421  * cgroup_migrate_add_task - add a migration target task to a migration context
2422  * @task: target task
2423  * @mgctx: target migration context
2424  *
2425  * Add @task, which is a migration target, to @mgctx->tset.  This function
2426  * becomes noop if @task doesn't need to be migrated.  @task's css_set
2427  * should have been added as a migration source and @task->cg_list will be
2428  * moved from the css_set's tasks list to mg_tasks one.
2429  */
2430 static void cgroup_migrate_add_task(struct task_struct *task,
2431 				    struct cgroup_mgctx *mgctx)
2432 {
2433 	struct css_set *cset;
2434 
2435 	lockdep_assert_held(&css_set_lock);
2436 
2437 	/* @task either already exited or can't exit until the end */
2438 	if (task->flags & PF_EXITING)
2439 		return;
2440 
2441 	/* cgroup_threadgroup_rwsem protects racing against forks */
2442 	WARN_ON_ONCE(list_empty(&task->cg_list));
2443 
2444 	cset = task_css_set(task);
2445 	if (!cset->mg_src_cgrp)
2446 		return;
2447 
2448 	mgctx->tset.nr_tasks++;
2449 
2450 	list_move_tail(&task->cg_list, &cset->mg_tasks);
2451 	if (list_empty(&cset->mg_node))
2452 		list_add_tail(&cset->mg_node,
2453 			      &mgctx->tset.src_csets);
2454 	if (list_empty(&cset->mg_dst_cset->mg_node))
2455 		list_add_tail(&cset->mg_dst_cset->mg_node,
2456 			      &mgctx->tset.dst_csets);
2457 }
2458 
2459 /**
2460  * cgroup_taskset_first - reset taskset and return the first task
2461  * @tset: taskset of interest
2462  * @dst_cssp: output variable for the destination css
2463  *
2464  * @tset iteration is initialized and the first task is returned.
2465  */
2466 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2467 					 struct cgroup_subsys_state **dst_cssp)
2468 {
2469 	tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2470 	tset->cur_task = NULL;
2471 
2472 	return cgroup_taskset_next(tset, dst_cssp);
2473 }
2474 
2475 /**
2476  * cgroup_taskset_next - iterate to the next task in taskset
2477  * @tset: taskset of interest
2478  * @dst_cssp: output variable for the destination css
2479  *
2480  * Return the next task in @tset.  Iteration must have been initialized
2481  * with cgroup_taskset_first().
2482  */
2483 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2484 					struct cgroup_subsys_state **dst_cssp)
2485 {
2486 	struct css_set *cset = tset->cur_cset;
2487 	struct task_struct *task = tset->cur_task;
2488 
2489 	while (CGROUP_HAS_SUBSYS_CONFIG && &cset->mg_node != tset->csets) {
2490 		if (!task)
2491 			task = list_first_entry(&cset->mg_tasks,
2492 						struct task_struct, cg_list);
2493 		else
2494 			task = list_next_entry(task, cg_list);
2495 
2496 		if (&task->cg_list != &cset->mg_tasks) {
2497 			tset->cur_cset = cset;
2498 			tset->cur_task = task;
2499 
2500 			/*
2501 			 * This function may be called both before and
2502 			 * after cgroup_taskset_migrate().  The two cases
2503 			 * can be distinguished by looking at whether @cset
2504 			 * has its ->mg_dst_cset set.
2505 			 */
2506 			if (cset->mg_dst_cset)
2507 				*dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2508 			else
2509 				*dst_cssp = cset->subsys[tset->ssid];
2510 
2511 			return task;
2512 		}
2513 
2514 		cset = list_next_entry(cset, mg_node);
2515 		task = NULL;
2516 	}
2517 
2518 	return NULL;
2519 }
2520 
2521 /**
2522  * cgroup_migrate_execute - migrate a taskset
2523  * @mgctx: migration context
2524  *
2525  * Migrate tasks in @mgctx as setup by migration preparation functions.
2526  * This function fails iff one of the ->can_attach callbacks fails and
2527  * guarantees that either all or none of the tasks in @mgctx are migrated.
2528  * @mgctx is consumed regardless of success.
2529  */
2530 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx)
2531 {
2532 	struct cgroup_taskset *tset = &mgctx->tset;
2533 	struct cgroup_subsys *ss;
2534 	struct task_struct *task, *tmp_task;
2535 	struct css_set *cset, *tmp_cset;
2536 	int ssid, failed_ssid, ret;
2537 
2538 	/* check that we can legitimately attach to the cgroup */
2539 	if (tset->nr_tasks) {
2540 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2541 			if (ss->can_attach) {
2542 				tset->ssid = ssid;
2543 				ret = ss->can_attach(tset);
2544 				if (ret) {
2545 					failed_ssid = ssid;
2546 					goto out_cancel_attach;
2547 				}
2548 			}
2549 		} while_each_subsys_mask();
2550 	}
2551 
2552 	/*
2553 	 * Now that we're guaranteed success, proceed to move all tasks to
2554 	 * the new cgroup.  There are no failure cases after here, so this
2555 	 * is the commit point.
2556 	 */
2557 	spin_lock_irq(&css_set_lock);
2558 	list_for_each_entry(cset, &tset->src_csets, mg_node) {
2559 		list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2560 			struct css_set *from_cset = task_css_set(task);
2561 			struct css_set *to_cset = cset->mg_dst_cset;
2562 
2563 			get_css_set(to_cset);
2564 			to_cset->nr_tasks++;
2565 			css_set_move_task(task, from_cset, to_cset, true);
2566 			from_cset->nr_tasks--;
2567 			/*
2568 			 * If the source or destination cgroup is frozen,
2569 			 * the task might require to change its state.
2570 			 */
2571 			cgroup_freezer_migrate_task(task, from_cset->dfl_cgrp,
2572 						    to_cset->dfl_cgrp);
2573 			put_css_set_locked(from_cset);
2574 
2575 		}
2576 	}
2577 	spin_unlock_irq(&css_set_lock);
2578 
2579 	/*
2580 	 * Migration is committed, all target tasks are now on dst_csets.
2581 	 * Nothing is sensitive to fork() after this point.  Notify
2582 	 * controllers that migration is complete.
2583 	 */
2584 	tset->csets = &tset->dst_csets;
2585 
2586 	if (tset->nr_tasks) {
2587 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2588 			if (ss->attach) {
2589 				tset->ssid = ssid;
2590 				ss->attach(tset);
2591 			}
2592 		} while_each_subsys_mask();
2593 	}
2594 
2595 	ret = 0;
2596 	goto out_release_tset;
2597 
2598 out_cancel_attach:
2599 	if (tset->nr_tasks) {
2600 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2601 			if (ssid == failed_ssid)
2602 				break;
2603 			if (ss->cancel_attach) {
2604 				tset->ssid = ssid;
2605 				ss->cancel_attach(tset);
2606 			}
2607 		} while_each_subsys_mask();
2608 	}
2609 out_release_tset:
2610 	spin_lock_irq(&css_set_lock);
2611 	list_splice_init(&tset->dst_csets, &tset->src_csets);
2612 	list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2613 		list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2614 		list_del_init(&cset->mg_node);
2615 	}
2616 	spin_unlock_irq(&css_set_lock);
2617 
2618 	/*
2619 	 * Re-initialize the cgroup_taskset structure in case it is reused
2620 	 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute()
2621 	 * iteration.
2622 	 */
2623 	tset->nr_tasks = 0;
2624 	tset->csets    = &tset->src_csets;
2625 	return ret;
2626 }
2627 
2628 /**
2629  * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination
2630  * @dst_cgrp: destination cgroup to test
2631  *
2632  * On the default hierarchy, except for the mixable, (possible) thread root
2633  * and threaded cgroups, subtree_control must be zero for migration
2634  * destination cgroups with tasks so that child cgroups don't compete
2635  * against tasks.
2636  */
2637 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp)
2638 {
2639 	/* v1 doesn't have any restriction */
2640 	if (!cgroup_on_dfl(dst_cgrp))
2641 		return 0;
2642 
2643 	/* verify @dst_cgrp can host resources */
2644 	if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp))
2645 		return -EOPNOTSUPP;
2646 
2647 	/*
2648 	 * If @dst_cgrp is already or can become a thread root or is
2649 	 * threaded, it doesn't matter.
2650 	 */
2651 	if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp))
2652 		return 0;
2653 
2654 	/* apply no-internal-process constraint */
2655 	if (dst_cgrp->subtree_control)
2656 		return -EBUSY;
2657 
2658 	return 0;
2659 }
2660 
2661 /**
2662  * cgroup_migrate_finish - cleanup after attach
2663  * @mgctx: migration context
2664  *
2665  * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst().  See
2666  * those functions for details.
2667  */
2668 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx)
2669 {
2670 	struct css_set *cset, *tmp_cset;
2671 
2672 	lockdep_assert_held(&cgroup_mutex);
2673 
2674 	spin_lock_irq(&css_set_lock);
2675 
2676 	list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_src_csets,
2677 				 mg_src_preload_node) {
2678 		cset->mg_src_cgrp = NULL;
2679 		cset->mg_dst_cgrp = NULL;
2680 		cset->mg_dst_cset = NULL;
2681 		list_del_init(&cset->mg_src_preload_node);
2682 		put_css_set_locked(cset);
2683 	}
2684 
2685 	list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_dst_csets,
2686 				 mg_dst_preload_node) {
2687 		cset->mg_src_cgrp = NULL;
2688 		cset->mg_dst_cgrp = NULL;
2689 		cset->mg_dst_cset = NULL;
2690 		list_del_init(&cset->mg_dst_preload_node);
2691 		put_css_set_locked(cset);
2692 	}
2693 
2694 	spin_unlock_irq(&css_set_lock);
2695 }
2696 
2697 /**
2698  * cgroup_migrate_add_src - add a migration source css_set
2699  * @src_cset: the source css_set to add
2700  * @dst_cgrp: the destination cgroup
2701  * @mgctx: migration context
2702  *
2703  * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp.  Pin
2704  * @src_cset and add it to @mgctx->src_csets, which should later be cleaned
2705  * up by cgroup_migrate_finish().
2706  *
2707  * This function may be called without holding cgroup_threadgroup_rwsem
2708  * even if the target is a process.  Threads may be created and destroyed
2709  * but as long as cgroup_mutex is not dropped, no new css_set can be put
2710  * into play and the preloaded css_sets are guaranteed to cover all
2711  * migrations.
2712  */
2713 void cgroup_migrate_add_src(struct css_set *src_cset,
2714 			    struct cgroup *dst_cgrp,
2715 			    struct cgroup_mgctx *mgctx)
2716 {
2717 	struct cgroup *src_cgrp;
2718 
2719 	lockdep_assert_held(&cgroup_mutex);
2720 	lockdep_assert_held(&css_set_lock);
2721 
2722 	/*
2723 	 * If ->dead, @src_set is associated with one or more dead cgroups
2724 	 * and doesn't contain any migratable tasks.  Ignore it early so
2725 	 * that the rest of migration path doesn't get confused by it.
2726 	 */
2727 	if (src_cset->dead)
2728 		return;
2729 
2730 	if (!list_empty(&src_cset->mg_src_preload_node))
2731 		return;
2732 
2733 	src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2734 
2735 	WARN_ON(src_cset->mg_src_cgrp);
2736 	WARN_ON(src_cset->mg_dst_cgrp);
2737 	WARN_ON(!list_empty(&src_cset->mg_tasks));
2738 	WARN_ON(!list_empty(&src_cset->mg_node));
2739 
2740 	src_cset->mg_src_cgrp = src_cgrp;
2741 	src_cset->mg_dst_cgrp = dst_cgrp;
2742 	get_css_set(src_cset);
2743 	list_add_tail(&src_cset->mg_src_preload_node, &mgctx->preloaded_src_csets);
2744 }
2745 
2746 /**
2747  * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2748  * @mgctx: migration context
2749  *
2750  * Tasks are about to be moved and all the source css_sets have been
2751  * preloaded to @mgctx->preloaded_src_csets.  This function looks up and
2752  * pins all destination css_sets, links each to its source, and append them
2753  * to @mgctx->preloaded_dst_csets.
2754  *
2755  * This function must be called after cgroup_migrate_add_src() has been
2756  * called on each migration source css_set.  After migration is performed
2757  * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2758  * @mgctx.
2759  */
2760 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx)
2761 {
2762 	struct css_set *src_cset, *tmp_cset;
2763 
2764 	lockdep_assert_held(&cgroup_mutex);
2765 
2766 	/* look up the dst cset for each src cset and link it to src */
2767 	list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets,
2768 				 mg_src_preload_node) {
2769 		struct css_set *dst_cset;
2770 		struct cgroup_subsys *ss;
2771 		int ssid;
2772 
2773 		dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
2774 		if (!dst_cset)
2775 			return -ENOMEM;
2776 
2777 		WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2778 
2779 		/*
2780 		 * If src cset equals dst, it's noop.  Drop the src.
2781 		 * cgroup_migrate() will skip the cset too.  Note that we
2782 		 * can't handle src == dst as some nodes are used by both.
2783 		 */
2784 		if (src_cset == dst_cset) {
2785 			src_cset->mg_src_cgrp = NULL;
2786 			src_cset->mg_dst_cgrp = NULL;
2787 			list_del_init(&src_cset->mg_src_preload_node);
2788 			put_css_set(src_cset);
2789 			put_css_set(dst_cset);
2790 			continue;
2791 		}
2792 
2793 		src_cset->mg_dst_cset = dst_cset;
2794 
2795 		if (list_empty(&dst_cset->mg_dst_preload_node))
2796 			list_add_tail(&dst_cset->mg_dst_preload_node,
2797 				      &mgctx->preloaded_dst_csets);
2798 		else
2799 			put_css_set(dst_cset);
2800 
2801 		for_each_subsys(ss, ssid)
2802 			if (src_cset->subsys[ssid] != dst_cset->subsys[ssid])
2803 				mgctx->ss_mask |= 1 << ssid;
2804 	}
2805 
2806 	return 0;
2807 }
2808 
2809 /**
2810  * cgroup_migrate - migrate a process or task to a cgroup
2811  * @leader: the leader of the process or the task to migrate
2812  * @threadgroup: whether @leader points to the whole process or a single task
2813  * @mgctx: migration context
2814  *
2815  * Migrate a process or task denoted by @leader.  If migrating a process,
2816  * the caller must be holding cgroup_threadgroup_rwsem.  The caller is also
2817  * responsible for invoking cgroup_migrate_add_src() and
2818  * cgroup_migrate_prepare_dst() on the targets before invoking this
2819  * function and following up with cgroup_migrate_finish().
2820  *
2821  * As long as a controller's ->can_attach() doesn't fail, this function is
2822  * guaranteed to succeed.  This means that, excluding ->can_attach()
2823  * failure, when migrating multiple targets, the success or failure can be
2824  * decided for all targets by invoking group_migrate_prepare_dst() before
2825  * actually starting migrating.
2826  */
2827 int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2828 		   struct cgroup_mgctx *mgctx)
2829 {
2830 	struct task_struct *task;
2831 
2832 	/*
2833 	 * The following thread iteration should be inside an RCU critical
2834 	 * section to prevent tasks from being freed while taking the snapshot.
2835 	 * spin_lock_irq() implies RCU critical section here.
2836 	 */
2837 	spin_lock_irq(&css_set_lock);
2838 	task = leader;
2839 	do {
2840 		cgroup_migrate_add_task(task, mgctx);
2841 		if (!threadgroup)
2842 			break;
2843 	} while_each_thread(leader, task);
2844 	spin_unlock_irq(&css_set_lock);
2845 
2846 	return cgroup_migrate_execute(mgctx);
2847 }
2848 
2849 /**
2850  * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2851  * @dst_cgrp: the cgroup to attach to
2852  * @leader: the task or the leader of the threadgroup to be attached
2853  * @threadgroup: attach the whole threadgroup?
2854  *
2855  * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2856  */
2857 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader,
2858 		       bool threadgroup)
2859 {
2860 	DEFINE_CGROUP_MGCTX(mgctx);
2861 	struct task_struct *task;
2862 	int ret = 0;
2863 
2864 	/* look up all src csets */
2865 	spin_lock_irq(&css_set_lock);
2866 	rcu_read_lock();
2867 	task = leader;
2868 	do {
2869 		cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx);
2870 		if (!threadgroup)
2871 			break;
2872 	} while_each_thread(leader, task);
2873 	rcu_read_unlock();
2874 	spin_unlock_irq(&css_set_lock);
2875 
2876 	/* prepare dst csets and commit */
2877 	ret = cgroup_migrate_prepare_dst(&mgctx);
2878 	if (!ret)
2879 		ret = cgroup_migrate(leader, threadgroup, &mgctx);
2880 
2881 	cgroup_migrate_finish(&mgctx);
2882 
2883 	if (!ret)
2884 		TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup);
2885 
2886 	return ret;
2887 }
2888 
2889 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup,
2890 					     bool *threadgroup_locked)
2891 {
2892 	struct task_struct *tsk;
2893 	pid_t pid;
2894 
2895 	if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2896 		return ERR_PTR(-EINVAL);
2897 
2898 	/*
2899 	 * If we migrate a single thread, we don't care about threadgroup
2900 	 * stability. If the thread is `current`, it won't exit(2) under our
2901 	 * hands or change PID through exec(2). We exclude
2902 	 * cgroup_update_dfl_csses and other cgroup_{proc,thread}s_write
2903 	 * callers by cgroup_mutex.
2904 	 * Therefore, we can skip the global lock.
2905 	 */
2906 	lockdep_assert_held(&cgroup_mutex);
2907 	*threadgroup_locked = pid || threadgroup;
2908 	cgroup_attach_lock(*threadgroup_locked);
2909 
2910 	rcu_read_lock();
2911 	if (pid) {
2912 		tsk = find_task_by_vpid(pid);
2913 		if (!tsk) {
2914 			tsk = ERR_PTR(-ESRCH);
2915 			goto out_unlock_threadgroup;
2916 		}
2917 	} else {
2918 		tsk = current;
2919 	}
2920 
2921 	if (threadgroup)
2922 		tsk = tsk->group_leader;
2923 
2924 	/*
2925 	 * kthreads may acquire PF_NO_SETAFFINITY during initialization.
2926 	 * If userland migrates such a kthread to a non-root cgroup, it can
2927 	 * become trapped in a cpuset, or RT kthread may be born in a
2928 	 * cgroup with no rt_runtime allocated.  Just say no.
2929 	 */
2930 	if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) {
2931 		tsk = ERR_PTR(-EINVAL);
2932 		goto out_unlock_threadgroup;
2933 	}
2934 
2935 	get_task_struct(tsk);
2936 	goto out_unlock_rcu;
2937 
2938 out_unlock_threadgroup:
2939 	cgroup_attach_unlock(*threadgroup_locked);
2940 	*threadgroup_locked = false;
2941 out_unlock_rcu:
2942 	rcu_read_unlock();
2943 	return tsk;
2944 }
2945 
2946 void cgroup_procs_write_finish(struct task_struct *task, bool threadgroup_locked)
2947 {
2948 	struct cgroup_subsys *ss;
2949 	int ssid;
2950 
2951 	/* release reference from cgroup_procs_write_start() */
2952 	put_task_struct(task);
2953 
2954 	cgroup_attach_unlock(threadgroup_locked);
2955 
2956 	for_each_subsys(ss, ssid)
2957 		if (ss->post_attach)
2958 			ss->post_attach();
2959 }
2960 
2961 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
2962 {
2963 	struct cgroup_subsys *ss;
2964 	bool printed = false;
2965 	int ssid;
2966 
2967 	do_each_subsys_mask(ss, ssid, ss_mask) {
2968 		if (printed)
2969 			seq_putc(seq, ' ');
2970 		seq_puts(seq, ss->name);
2971 		printed = true;
2972 	} while_each_subsys_mask();
2973 	if (printed)
2974 		seq_putc(seq, '\n');
2975 }
2976 
2977 /* show controllers which are enabled from the parent */
2978 static int cgroup_controllers_show(struct seq_file *seq, void *v)
2979 {
2980 	struct cgroup *cgrp = seq_css(seq)->cgroup;
2981 
2982 	cgroup_print_ss_mask(seq, cgroup_control(cgrp));
2983 	return 0;
2984 }
2985 
2986 /* show controllers which are enabled for a given cgroup's children */
2987 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
2988 {
2989 	struct cgroup *cgrp = seq_css(seq)->cgroup;
2990 
2991 	cgroup_print_ss_mask(seq, cgrp->subtree_control);
2992 	return 0;
2993 }
2994 
2995 /**
2996  * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2997  * @cgrp: root of the subtree to update csses for
2998  *
2999  * @cgrp's control masks have changed and its subtree's css associations
3000  * need to be updated accordingly.  This function looks up all css_sets
3001  * which are attached to the subtree, creates the matching updated css_sets
3002  * and migrates the tasks to the new ones.
3003  */
3004 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
3005 {
3006 	DEFINE_CGROUP_MGCTX(mgctx);
3007 	struct cgroup_subsys_state *d_css;
3008 	struct cgroup *dsct;
3009 	struct css_set *src_cset;
3010 	bool has_tasks;
3011 	int ret;
3012 
3013 	lockdep_assert_held(&cgroup_mutex);
3014 
3015 	/* look up all csses currently attached to @cgrp's subtree */
3016 	spin_lock_irq(&css_set_lock);
3017 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3018 		struct cgrp_cset_link *link;
3019 
3020 		/*
3021 		 * As cgroup_update_dfl_csses() is only called by
3022 		 * cgroup_apply_control(). The csses associated with the
3023 		 * given cgrp will not be affected by changes made to
3024 		 * its subtree_control file. We can skip them.
3025 		 */
3026 		if (dsct == cgrp)
3027 			continue;
3028 
3029 		list_for_each_entry(link, &dsct->cset_links, cset_link)
3030 			cgroup_migrate_add_src(link->cset, dsct, &mgctx);
3031 	}
3032 	spin_unlock_irq(&css_set_lock);
3033 
3034 	/*
3035 	 * We need to write-lock threadgroup_rwsem while migrating tasks.
3036 	 * However, if there are no source csets for @cgrp, changing its
3037 	 * controllers isn't gonna produce any task migrations and the
3038 	 * write-locking can be skipped safely.
3039 	 */
3040 	has_tasks = !list_empty(&mgctx.preloaded_src_csets);
3041 	cgroup_attach_lock(has_tasks);
3042 
3043 	/* NULL dst indicates self on default hierarchy */
3044 	ret = cgroup_migrate_prepare_dst(&mgctx);
3045 	if (ret)
3046 		goto out_finish;
3047 
3048 	spin_lock_irq(&css_set_lock);
3049 	list_for_each_entry(src_cset, &mgctx.preloaded_src_csets,
3050 			    mg_src_preload_node) {
3051 		struct task_struct *task, *ntask;
3052 
3053 		/* all tasks in src_csets need to be migrated */
3054 		list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
3055 			cgroup_migrate_add_task(task, &mgctx);
3056 	}
3057 	spin_unlock_irq(&css_set_lock);
3058 
3059 	ret = cgroup_migrate_execute(&mgctx);
3060 out_finish:
3061 	cgroup_migrate_finish(&mgctx);
3062 	cgroup_attach_unlock(has_tasks);
3063 	return ret;
3064 }
3065 
3066 /**
3067  * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
3068  * @cgrp: root of the target subtree
3069  *
3070  * Because css offlining is asynchronous, userland may try to re-enable a
3071  * controller while the previous css is still around.  This function grabs
3072  * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
3073  */
3074 void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
3075 	__acquires(&cgroup_mutex)
3076 {
3077 	struct cgroup *dsct;
3078 	struct cgroup_subsys_state *d_css;
3079 	struct cgroup_subsys *ss;
3080 	int ssid;
3081 
3082 restart:
3083 	cgroup_lock();
3084 
3085 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3086 		for_each_subsys(ss, ssid) {
3087 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3088 			DEFINE_WAIT(wait);
3089 
3090 			if (!css || !percpu_ref_is_dying(&css->refcnt))
3091 				continue;
3092 
3093 			cgroup_get_live(dsct);
3094 			prepare_to_wait(&dsct->offline_waitq, &wait,
3095 					TASK_UNINTERRUPTIBLE);
3096 
3097 			cgroup_unlock();
3098 			schedule();
3099 			finish_wait(&dsct->offline_waitq, &wait);
3100 
3101 			cgroup_put(dsct);
3102 			goto restart;
3103 		}
3104 	}
3105 }
3106 
3107 /**
3108  * cgroup_save_control - save control masks and dom_cgrp of a subtree
3109  * @cgrp: root of the target subtree
3110  *
3111  * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the
3112  * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3113  * itself.
3114  */
3115 static void cgroup_save_control(struct cgroup *cgrp)
3116 {
3117 	struct cgroup *dsct;
3118 	struct cgroup_subsys_state *d_css;
3119 
3120 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3121 		dsct->old_subtree_control = dsct->subtree_control;
3122 		dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
3123 		dsct->old_dom_cgrp = dsct->dom_cgrp;
3124 	}
3125 }
3126 
3127 /**
3128  * cgroup_propagate_control - refresh control masks of a subtree
3129  * @cgrp: root of the target subtree
3130  *
3131  * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
3132  * ->subtree_control and propagate controller availability through the
3133  * subtree so that descendants don't have unavailable controllers enabled.
3134  */
3135 static void cgroup_propagate_control(struct cgroup *cgrp)
3136 {
3137 	struct cgroup *dsct;
3138 	struct cgroup_subsys_state *d_css;
3139 
3140 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3141 		dsct->subtree_control &= cgroup_control(dsct);
3142 		dsct->subtree_ss_mask =
3143 			cgroup_calc_subtree_ss_mask(dsct->subtree_control,
3144 						    cgroup_ss_mask(dsct));
3145 	}
3146 }
3147 
3148 /**
3149  * cgroup_restore_control - restore control masks and dom_cgrp of a subtree
3150  * @cgrp: root of the target subtree
3151  *
3152  * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the
3153  * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3154  * itself.
3155  */
3156 static void cgroup_restore_control(struct cgroup *cgrp)
3157 {
3158 	struct cgroup *dsct;
3159 	struct cgroup_subsys_state *d_css;
3160 
3161 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3162 		dsct->subtree_control = dsct->old_subtree_control;
3163 		dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
3164 		dsct->dom_cgrp = dsct->old_dom_cgrp;
3165 	}
3166 }
3167 
3168 static bool css_visible(struct cgroup_subsys_state *css)
3169 {
3170 	struct cgroup_subsys *ss = css->ss;
3171 	struct cgroup *cgrp = css->cgroup;
3172 
3173 	if (cgroup_control(cgrp) & (1 << ss->id))
3174 		return true;
3175 	if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
3176 		return false;
3177 	return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
3178 }
3179 
3180 /**
3181  * cgroup_apply_control_enable - enable or show csses according to control
3182  * @cgrp: root of the target subtree
3183  *
3184  * Walk @cgrp's subtree and create new csses or make the existing ones
3185  * visible.  A css is created invisible if it's being implicitly enabled
3186  * through dependency.  An invisible css is made visible when the userland
3187  * explicitly enables it.
3188  *
3189  * Returns 0 on success, -errno on failure.  On failure, csses which have
3190  * been processed already aren't cleaned up.  The caller is responsible for
3191  * cleaning up with cgroup_apply_control_disable().
3192  */
3193 static int cgroup_apply_control_enable(struct cgroup *cgrp)
3194 {
3195 	struct cgroup *dsct;
3196 	struct cgroup_subsys_state *d_css;
3197 	struct cgroup_subsys *ss;
3198 	int ssid, ret;
3199 
3200 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3201 		for_each_subsys(ss, ssid) {
3202 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3203 
3204 			if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
3205 				continue;
3206 
3207 			if (!css) {
3208 				css = css_create(dsct, ss);
3209 				if (IS_ERR(css))
3210 					return PTR_ERR(css);
3211 			}
3212 
3213 			WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3214 
3215 			if (css_visible(css)) {
3216 				ret = css_populate_dir(css);
3217 				if (ret)
3218 					return ret;
3219 			}
3220 		}
3221 	}
3222 
3223 	return 0;
3224 }
3225 
3226 /**
3227  * cgroup_apply_control_disable - kill or hide csses according to control
3228  * @cgrp: root of the target subtree
3229  *
3230  * Walk @cgrp's subtree and kill and hide csses so that they match
3231  * cgroup_ss_mask() and cgroup_visible_mask().
3232  *
3233  * A css is hidden when the userland requests it to be disabled while other
3234  * subsystems are still depending on it.  The css must not actively control
3235  * resources and be in the vanilla state if it's made visible again later.
3236  * Controllers which may be depended upon should provide ->css_reset() for
3237  * this purpose.
3238  */
3239 static void cgroup_apply_control_disable(struct cgroup *cgrp)
3240 {
3241 	struct cgroup *dsct;
3242 	struct cgroup_subsys_state *d_css;
3243 	struct cgroup_subsys *ss;
3244 	int ssid;
3245 
3246 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3247 		for_each_subsys(ss, ssid) {
3248 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3249 
3250 			if (!css)
3251 				continue;
3252 
3253 			WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3254 
3255 			if (css->parent &&
3256 			    !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
3257 				kill_css(css);
3258 			} else if (!css_visible(css)) {
3259 				css_clear_dir(css);
3260 				if (ss->css_reset)
3261 					ss->css_reset(css);
3262 			}
3263 		}
3264 	}
3265 }
3266 
3267 /**
3268  * cgroup_apply_control - apply control mask updates to the subtree
3269  * @cgrp: root of the target subtree
3270  *
3271  * subsystems can be enabled and disabled in a subtree using the following
3272  * steps.
3273  *
3274  * 1. Call cgroup_save_control() to stash the current state.
3275  * 2. Update ->subtree_control masks in the subtree as desired.
3276  * 3. Call cgroup_apply_control() to apply the changes.
3277  * 4. Optionally perform other related operations.
3278  * 5. Call cgroup_finalize_control() to finish up.
3279  *
3280  * This function implements step 3 and propagates the mask changes
3281  * throughout @cgrp's subtree, updates csses accordingly and perform
3282  * process migrations.
3283  */
3284 static int cgroup_apply_control(struct cgroup *cgrp)
3285 {
3286 	int ret;
3287 
3288 	cgroup_propagate_control(cgrp);
3289 
3290 	ret = cgroup_apply_control_enable(cgrp);
3291 	if (ret)
3292 		return ret;
3293 
3294 	/*
3295 	 * At this point, cgroup_e_css_by_mask() results reflect the new csses
3296 	 * making the following cgroup_update_dfl_csses() properly update
3297 	 * css associations of all tasks in the subtree.
3298 	 */
3299 	return cgroup_update_dfl_csses(cgrp);
3300 }
3301 
3302 /**
3303  * cgroup_finalize_control - finalize control mask update
3304  * @cgrp: root of the target subtree
3305  * @ret: the result of the update
3306  *
3307  * Finalize control mask update.  See cgroup_apply_control() for more info.
3308  */
3309 static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
3310 {
3311 	if (ret) {
3312 		cgroup_restore_control(cgrp);
3313 		cgroup_propagate_control(cgrp);
3314 	}
3315 
3316 	cgroup_apply_control_disable(cgrp);
3317 }
3318 
3319 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable)
3320 {
3321 	u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask;
3322 
3323 	/* if nothing is getting enabled, nothing to worry about */
3324 	if (!enable)
3325 		return 0;
3326 
3327 	/* can @cgrp host any resources? */
3328 	if (!cgroup_is_valid_domain(cgrp->dom_cgrp))
3329 		return -EOPNOTSUPP;
3330 
3331 	/* mixables don't care */
3332 	if (cgroup_is_mixable(cgrp))
3333 		return 0;
3334 
3335 	if (domain_enable) {
3336 		/* can't enable domain controllers inside a thread subtree */
3337 		if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3338 			return -EOPNOTSUPP;
3339 	} else {
3340 		/*
3341 		 * Threaded controllers can handle internal competitions
3342 		 * and are always allowed inside a (prospective) thread
3343 		 * subtree.
3344 		 */
3345 		if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3346 			return 0;
3347 	}
3348 
3349 	/*
3350 	 * Controllers can't be enabled for a cgroup with tasks to avoid
3351 	 * child cgroups competing against tasks.
3352 	 */
3353 	if (cgroup_has_tasks(cgrp))
3354 		return -EBUSY;
3355 
3356 	return 0;
3357 }
3358 
3359 /* change the enabled child controllers for a cgroup in the default hierarchy */
3360 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3361 					    char *buf, size_t nbytes,
3362 					    loff_t off)
3363 {
3364 	u16 enable = 0, disable = 0;
3365 	struct cgroup *cgrp, *child;
3366 	struct cgroup_subsys *ss;
3367 	char *tok;
3368 	int ssid, ret;
3369 
3370 	/*
3371 	 * Parse input - space separated list of subsystem names prefixed
3372 	 * with either + or -.
3373 	 */
3374 	buf = strstrip(buf);
3375 	while ((tok = strsep(&buf, " "))) {
3376 		if (tok[0] == '\0')
3377 			continue;
3378 		do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
3379 			if (!cgroup_ssid_enabled(ssid) ||
3380 			    strcmp(tok + 1, ss->name))
3381 				continue;
3382 
3383 			if (*tok == '+') {
3384 				enable |= 1 << ssid;
3385 				disable &= ~(1 << ssid);
3386 			} else if (*tok == '-') {
3387 				disable |= 1 << ssid;
3388 				enable &= ~(1 << ssid);
3389 			} else {
3390 				return -EINVAL;
3391 			}
3392 			break;
3393 		} while_each_subsys_mask();
3394 		if (ssid == CGROUP_SUBSYS_COUNT)
3395 			return -EINVAL;
3396 	}
3397 
3398 	cgrp = cgroup_kn_lock_live(of->kn, true);
3399 	if (!cgrp)
3400 		return -ENODEV;
3401 
3402 	for_each_subsys(ss, ssid) {
3403 		if (enable & (1 << ssid)) {
3404 			if (cgrp->subtree_control & (1 << ssid)) {
3405 				enable &= ~(1 << ssid);
3406 				continue;
3407 			}
3408 
3409 			if (!(cgroup_control(cgrp) & (1 << ssid))) {
3410 				ret = -ENOENT;
3411 				goto out_unlock;
3412 			}
3413 		} else if (disable & (1 << ssid)) {
3414 			if (!(cgrp->subtree_control & (1 << ssid))) {
3415 				disable &= ~(1 << ssid);
3416 				continue;
3417 			}
3418 
3419 			/* a child has it enabled? */
3420 			cgroup_for_each_live_child(child, cgrp) {
3421 				if (child->subtree_control & (1 << ssid)) {
3422 					ret = -EBUSY;
3423 					goto out_unlock;
3424 				}
3425 			}
3426 		}
3427 	}
3428 
3429 	if (!enable && !disable) {
3430 		ret = 0;
3431 		goto out_unlock;
3432 	}
3433 
3434 	ret = cgroup_vet_subtree_control_enable(cgrp, enable);
3435 	if (ret)
3436 		goto out_unlock;
3437 
3438 	/* save and update control masks and prepare csses */
3439 	cgroup_save_control(cgrp);
3440 
3441 	cgrp->subtree_control |= enable;
3442 	cgrp->subtree_control &= ~disable;
3443 
3444 	ret = cgroup_apply_control(cgrp);
3445 	cgroup_finalize_control(cgrp, ret);
3446 	if (ret)
3447 		goto out_unlock;
3448 
3449 	kernfs_activate(cgrp->kn);
3450 out_unlock:
3451 	cgroup_kn_unlock(of->kn);
3452 	return ret ?: nbytes;
3453 }
3454 
3455 /**
3456  * cgroup_enable_threaded - make @cgrp threaded
3457  * @cgrp: the target cgroup
3458  *
3459  * Called when "threaded" is written to the cgroup.type interface file and
3460  * tries to make @cgrp threaded and join the parent's resource domain.
3461  * This function is never called on the root cgroup as cgroup.type doesn't
3462  * exist on it.
3463  */
3464 static int cgroup_enable_threaded(struct cgroup *cgrp)
3465 {
3466 	struct cgroup *parent = cgroup_parent(cgrp);
3467 	struct cgroup *dom_cgrp = parent->dom_cgrp;
3468 	struct cgroup *dsct;
3469 	struct cgroup_subsys_state *d_css;
3470 	int ret;
3471 
3472 	lockdep_assert_held(&cgroup_mutex);
3473 
3474 	/* noop if already threaded */
3475 	if (cgroup_is_threaded(cgrp))
3476 		return 0;
3477 
3478 	/*
3479 	 * If @cgroup is populated or has domain controllers enabled, it
3480 	 * can't be switched.  While the below cgroup_can_be_thread_root()
3481 	 * test can catch the same conditions, that's only when @parent is
3482 	 * not mixable, so let's check it explicitly.
3483 	 */
3484 	if (cgroup_is_populated(cgrp) ||
3485 	    cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
3486 		return -EOPNOTSUPP;
3487 
3488 	/* we're joining the parent's domain, ensure its validity */
3489 	if (!cgroup_is_valid_domain(dom_cgrp) ||
3490 	    !cgroup_can_be_thread_root(dom_cgrp))
3491 		return -EOPNOTSUPP;
3492 
3493 	/*
3494 	 * The following shouldn't cause actual migrations and should
3495 	 * always succeed.
3496 	 */
3497 	cgroup_save_control(cgrp);
3498 
3499 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)
3500 		if (dsct == cgrp || cgroup_is_threaded(dsct))
3501 			dsct->dom_cgrp = dom_cgrp;
3502 
3503 	ret = cgroup_apply_control(cgrp);
3504 	if (!ret)
3505 		parent->nr_threaded_children++;
3506 
3507 	cgroup_finalize_control(cgrp, ret);
3508 	return ret;
3509 }
3510 
3511 static int cgroup_type_show(struct seq_file *seq, void *v)
3512 {
3513 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3514 
3515 	if (cgroup_is_threaded(cgrp))
3516 		seq_puts(seq, "threaded\n");
3517 	else if (!cgroup_is_valid_domain(cgrp))
3518 		seq_puts(seq, "domain invalid\n");
3519 	else if (cgroup_is_thread_root(cgrp))
3520 		seq_puts(seq, "domain threaded\n");
3521 	else
3522 		seq_puts(seq, "domain\n");
3523 
3524 	return 0;
3525 }
3526 
3527 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf,
3528 				 size_t nbytes, loff_t off)
3529 {
3530 	struct cgroup *cgrp;
3531 	int ret;
3532 
3533 	/* only switching to threaded mode is supported */
3534 	if (strcmp(strstrip(buf), "threaded"))
3535 		return -EINVAL;
3536 
3537 	/* drain dying csses before we re-apply (threaded) subtree control */
3538 	cgrp = cgroup_kn_lock_live(of->kn, true);
3539 	if (!cgrp)
3540 		return -ENOENT;
3541 
3542 	/* threaded can only be enabled */
3543 	ret = cgroup_enable_threaded(cgrp);
3544 
3545 	cgroup_kn_unlock(of->kn);
3546 	return ret ?: nbytes;
3547 }
3548 
3549 static int cgroup_max_descendants_show(struct seq_file *seq, void *v)
3550 {
3551 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3552 	int descendants = READ_ONCE(cgrp->max_descendants);
3553 
3554 	if (descendants == INT_MAX)
3555 		seq_puts(seq, "max\n");
3556 	else
3557 		seq_printf(seq, "%d\n", descendants);
3558 
3559 	return 0;
3560 }
3561 
3562 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of,
3563 					   char *buf, size_t nbytes, loff_t off)
3564 {
3565 	struct cgroup *cgrp;
3566 	int descendants;
3567 	ssize_t ret;
3568 
3569 	buf = strstrip(buf);
3570 	if (!strcmp(buf, "max")) {
3571 		descendants = INT_MAX;
3572 	} else {
3573 		ret = kstrtoint(buf, 0, &descendants);
3574 		if (ret)
3575 			return ret;
3576 	}
3577 
3578 	if (descendants < 0)
3579 		return -ERANGE;
3580 
3581 	cgrp = cgroup_kn_lock_live(of->kn, false);
3582 	if (!cgrp)
3583 		return -ENOENT;
3584 
3585 	cgrp->max_descendants = descendants;
3586 
3587 	cgroup_kn_unlock(of->kn);
3588 
3589 	return nbytes;
3590 }
3591 
3592 static int cgroup_max_depth_show(struct seq_file *seq, void *v)
3593 {
3594 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3595 	int depth = READ_ONCE(cgrp->max_depth);
3596 
3597 	if (depth == INT_MAX)
3598 		seq_puts(seq, "max\n");
3599 	else
3600 		seq_printf(seq, "%d\n", depth);
3601 
3602 	return 0;
3603 }
3604 
3605 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of,
3606 				      char *buf, size_t nbytes, loff_t off)
3607 {
3608 	struct cgroup *cgrp;
3609 	ssize_t ret;
3610 	int depth;
3611 
3612 	buf = strstrip(buf);
3613 	if (!strcmp(buf, "max")) {
3614 		depth = INT_MAX;
3615 	} else {
3616 		ret = kstrtoint(buf, 0, &depth);
3617 		if (ret)
3618 			return ret;
3619 	}
3620 
3621 	if (depth < 0)
3622 		return -ERANGE;
3623 
3624 	cgrp = cgroup_kn_lock_live(of->kn, false);
3625 	if (!cgrp)
3626 		return -ENOENT;
3627 
3628 	cgrp->max_depth = depth;
3629 
3630 	cgroup_kn_unlock(of->kn);
3631 
3632 	return nbytes;
3633 }
3634 
3635 static int cgroup_events_show(struct seq_file *seq, void *v)
3636 {
3637 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3638 
3639 	seq_printf(seq, "populated %d\n", cgroup_is_populated(cgrp));
3640 	seq_printf(seq, "frozen %d\n", test_bit(CGRP_FROZEN, &cgrp->flags));
3641 
3642 	return 0;
3643 }
3644 
3645 static int cgroup_stat_show(struct seq_file *seq, void *v)
3646 {
3647 	struct cgroup *cgroup = seq_css(seq)->cgroup;
3648 
3649 	seq_printf(seq, "nr_descendants %d\n",
3650 		   cgroup->nr_descendants);
3651 	seq_printf(seq, "nr_dying_descendants %d\n",
3652 		   cgroup->nr_dying_descendants);
3653 
3654 	return 0;
3655 }
3656 
3657 static int __maybe_unused cgroup_extra_stat_show(struct seq_file *seq,
3658 						 struct cgroup *cgrp, int ssid)
3659 {
3660 	struct cgroup_subsys *ss = cgroup_subsys[ssid];
3661 	struct cgroup_subsys_state *css;
3662 	int ret;
3663 
3664 	if (!ss->css_extra_stat_show)
3665 		return 0;
3666 
3667 	css = cgroup_tryget_css(cgrp, ss);
3668 	if (!css)
3669 		return 0;
3670 
3671 	ret = ss->css_extra_stat_show(seq, css);
3672 	css_put(css);
3673 	return ret;
3674 }
3675 
3676 static int cpu_stat_show(struct seq_file *seq, void *v)
3677 {
3678 	struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup;
3679 	int ret = 0;
3680 
3681 	cgroup_base_stat_cputime_show(seq);
3682 #ifdef CONFIG_CGROUP_SCHED
3683 	ret = cgroup_extra_stat_show(seq, cgrp, cpu_cgrp_id);
3684 #endif
3685 	return ret;
3686 }
3687 
3688 #ifdef CONFIG_PSI
3689 static int cgroup_io_pressure_show(struct seq_file *seq, void *v)
3690 {
3691 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3692 	struct psi_group *psi = cgroup_psi(cgrp);
3693 
3694 	return psi_show(seq, psi, PSI_IO);
3695 }
3696 static int cgroup_memory_pressure_show(struct seq_file *seq, void *v)
3697 {
3698 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3699 	struct psi_group *psi = cgroup_psi(cgrp);
3700 
3701 	return psi_show(seq, psi, PSI_MEM);
3702 }
3703 static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v)
3704 {
3705 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3706 	struct psi_group *psi = cgroup_psi(cgrp);
3707 
3708 	return psi_show(seq, psi, PSI_CPU);
3709 }
3710 
3711 static ssize_t pressure_write(struct kernfs_open_file *of, char *buf,
3712 			      size_t nbytes, enum psi_res res)
3713 {
3714 	struct cgroup_file_ctx *ctx = of->priv;
3715 	struct psi_trigger *new;
3716 	struct cgroup *cgrp;
3717 	struct psi_group *psi;
3718 
3719 	cgrp = cgroup_kn_lock_live(of->kn, false);
3720 	if (!cgrp)
3721 		return -ENODEV;
3722 
3723 	cgroup_get(cgrp);
3724 	cgroup_kn_unlock(of->kn);
3725 
3726 	/* Allow only one trigger per file descriptor */
3727 	if (ctx->psi.trigger) {
3728 		cgroup_put(cgrp);
3729 		return -EBUSY;
3730 	}
3731 
3732 	psi = cgroup_psi(cgrp);
3733 	new = psi_trigger_create(psi, buf, res, of->file, of);
3734 	if (IS_ERR(new)) {
3735 		cgroup_put(cgrp);
3736 		return PTR_ERR(new);
3737 	}
3738 
3739 	smp_store_release(&ctx->psi.trigger, new);
3740 	cgroup_put(cgrp);
3741 
3742 	return nbytes;
3743 }
3744 
3745 static ssize_t cgroup_io_pressure_write(struct kernfs_open_file *of,
3746 					  char *buf, size_t nbytes,
3747 					  loff_t off)
3748 {
3749 	return pressure_write(of, buf, nbytes, PSI_IO);
3750 }
3751 
3752 static ssize_t cgroup_memory_pressure_write(struct kernfs_open_file *of,
3753 					  char *buf, size_t nbytes,
3754 					  loff_t off)
3755 {
3756 	return pressure_write(of, buf, nbytes, PSI_MEM);
3757 }
3758 
3759 static ssize_t cgroup_cpu_pressure_write(struct kernfs_open_file *of,
3760 					  char *buf, size_t nbytes,
3761 					  loff_t off)
3762 {
3763 	return pressure_write(of, buf, nbytes, PSI_CPU);
3764 }
3765 
3766 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
3767 static int cgroup_irq_pressure_show(struct seq_file *seq, void *v)
3768 {
3769 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3770 	struct psi_group *psi = cgroup_psi(cgrp);
3771 
3772 	return psi_show(seq, psi, PSI_IRQ);
3773 }
3774 
3775 static ssize_t cgroup_irq_pressure_write(struct kernfs_open_file *of,
3776 					 char *buf, size_t nbytes,
3777 					 loff_t off)
3778 {
3779 	return pressure_write(of, buf, nbytes, PSI_IRQ);
3780 }
3781 #endif
3782 
3783 static int cgroup_pressure_show(struct seq_file *seq, void *v)
3784 {
3785 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3786 	struct psi_group *psi = cgroup_psi(cgrp);
3787 
3788 	seq_printf(seq, "%d\n", psi->enabled);
3789 
3790 	return 0;
3791 }
3792 
3793 static ssize_t cgroup_pressure_write(struct kernfs_open_file *of,
3794 				     char *buf, size_t nbytes,
3795 				     loff_t off)
3796 {
3797 	ssize_t ret;
3798 	int enable;
3799 	struct cgroup *cgrp;
3800 	struct psi_group *psi;
3801 
3802 	ret = kstrtoint(strstrip(buf), 0, &enable);
3803 	if (ret)
3804 		return ret;
3805 
3806 	if (enable < 0 || enable > 1)
3807 		return -ERANGE;
3808 
3809 	cgrp = cgroup_kn_lock_live(of->kn, false);
3810 	if (!cgrp)
3811 		return -ENOENT;
3812 
3813 	psi = cgroup_psi(cgrp);
3814 	if (psi->enabled != enable) {
3815 		int i;
3816 
3817 		/* show or hide {cpu,memory,io,irq}.pressure files */
3818 		for (i = 0; i < NR_PSI_RESOURCES; i++)
3819 			cgroup_file_show(&cgrp->psi_files[i], enable);
3820 
3821 		psi->enabled = enable;
3822 		if (enable)
3823 			psi_cgroup_restart(psi);
3824 	}
3825 
3826 	cgroup_kn_unlock(of->kn);
3827 
3828 	return nbytes;
3829 }
3830 
3831 static __poll_t cgroup_pressure_poll(struct kernfs_open_file *of,
3832 					  poll_table *pt)
3833 {
3834 	struct cgroup_file_ctx *ctx = of->priv;
3835 
3836 	return psi_trigger_poll(&ctx->psi.trigger, of->file, pt);
3837 }
3838 
3839 static int cgroup_pressure_open(struct kernfs_open_file *of)
3840 {
3841 	if (of->file->f_mode & FMODE_WRITE && !capable(CAP_SYS_RESOURCE))
3842 		return -EPERM;
3843 
3844 	return 0;
3845 }
3846 
3847 static void cgroup_pressure_release(struct kernfs_open_file *of)
3848 {
3849 	struct cgroup_file_ctx *ctx = of->priv;
3850 
3851 	psi_trigger_destroy(ctx->psi.trigger);
3852 }
3853 
3854 bool cgroup_psi_enabled(void)
3855 {
3856 	if (static_branch_likely(&psi_disabled))
3857 		return false;
3858 
3859 	return (cgroup_feature_disable_mask & (1 << OPT_FEATURE_PRESSURE)) == 0;
3860 }
3861 
3862 #else /* CONFIG_PSI */
3863 bool cgroup_psi_enabled(void)
3864 {
3865 	return false;
3866 }
3867 
3868 #endif /* CONFIG_PSI */
3869 
3870 static int cgroup_freeze_show(struct seq_file *seq, void *v)
3871 {
3872 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3873 
3874 	seq_printf(seq, "%d\n", cgrp->freezer.freeze);
3875 
3876 	return 0;
3877 }
3878 
3879 static ssize_t cgroup_freeze_write(struct kernfs_open_file *of,
3880 				   char *buf, size_t nbytes, loff_t off)
3881 {
3882 	struct cgroup *cgrp;
3883 	ssize_t ret;
3884 	int freeze;
3885 
3886 	ret = kstrtoint(strstrip(buf), 0, &freeze);
3887 	if (ret)
3888 		return ret;
3889 
3890 	if (freeze < 0 || freeze > 1)
3891 		return -ERANGE;
3892 
3893 	cgrp = cgroup_kn_lock_live(of->kn, false);
3894 	if (!cgrp)
3895 		return -ENOENT;
3896 
3897 	cgroup_freeze(cgrp, freeze);
3898 
3899 	cgroup_kn_unlock(of->kn);
3900 
3901 	return nbytes;
3902 }
3903 
3904 static void __cgroup_kill(struct cgroup *cgrp)
3905 {
3906 	struct css_task_iter it;
3907 	struct task_struct *task;
3908 
3909 	lockdep_assert_held(&cgroup_mutex);
3910 
3911 	spin_lock_irq(&css_set_lock);
3912 	set_bit(CGRP_KILL, &cgrp->flags);
3913 	spin_unlock_irq(&css_set_lock);
3914 
3915 	css_task_iter_start(&cgrp->self, CSS_TASK_ITER_PROCS | CSS_TASK_ITER_THREADED, &it);
3916 	while ((task = css_task_iter_next(&it))) {
3917 		/* Ignore kernel threads here. */
3918 		if (task->flags & PF_KTHREAD)
3919 			continue;
3920 
3921 		/* Skip tasks that are already dying. */
3922 		if (__fatal_signal_pending(task))
3923 			continue;
3924 
3925 		send_sig(SIGKILL, task, 0);
3926 	}
3927 	css_task_iter_end(&it);
3928 
3929 	spin_lock_irq(&css_set_lock);
3930 	clear_bit(CGRP_KILL, &cgrp->flags);
3931 	spin_unlock_irq(&css_set_lock);
3932 }
3933 
3934 static void cgroup_kill(struct cgroup *cgrp)
3935 {
3936 	struct cgroup_subsys_state *css;
3937 	struct cgroup *dsct;
3938 
3939 	lockdep_assert_held(&cgroup_mutex);
3940 
3941 	cgroup_for_each_live_descendant_pre(dsct, css, cgrp)
3942 		__cgroup_kill(dsct);
3943 }
3944 
3945 static ssize_t cgroup_kill_write(struct kernfs_open_file *of, char *buf,
3946 				 size_t nbytes, loff_t off)
3947 {
3948 	ssize_t ret = 0;
3949 	int kill;
3950 	struct cgroup *cgrp;
3951 
3952 	ret = kstrtoint(strstrip(buf), 0, &kill);
3953 	if (ret)
3954 		return ret;
3955 
3956 	if (kill != 1)
3957 		return -ERANGE;
3958 
3959 	cgrp = cgroup_kn_lock_live(of->kn, false);
3960 	if (!cgrp)
3961 		return -ENOENT;
3962 
3963 	/*
3964 	 * Killing is a process directed operation, i.e. the whole thread-group
3965 	 * is taken down so act like we do for cgroup.procs and only make this
3966 	 * writable in non-threaded cgroups.
3967 	 */
3968 	if (cgroup_is_threaded(cgrp))
3969 		ret = -EOPNOTSUPP;
3970 	else
3971 		cgroup_kill(cgrp);
3972 
3973 	cgroup_kn_unlock(of->kn);
3974 
3975 	return ret ?: nbytes;
3976 }
3977 
3978 static int cgroup_file_open(struct kernfs_open_file *of)
3979 {
3980 	struct cftype *cft = of_cft(of);
3981 	struct cgroup_file_ctx *ctx;
3982 	int ret;
3983 
3984 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
3985 	if (!ctx)
3986 		return -ENOMEM;
3987 
3988 	ctx->ns = current->nsproxy->cgroup_ns;
3989 	get_cgroup_ns(ctx->ns);
3990 	of->priv = ctx;
3991 
3992 	if (!cft->open)
3993 		return 0;
3994 
3995 	ret = cft->open(of);
3996 	if (ret) {
3997 		put_cgroup_ns(ctx->ns);
3998 		kfree(ctx);
3999 	}
4000 	return ret;
4001 }
4002 
4003 static void cgroup_file_release(struct kernfs_open_file *of)
4004 {
4005 	struct cftype *cft = of_cft(of);
4006 	struct cgroup_file_ctx *ctx = of->priv;
4007 
4008 	if (cft->release)
4009 		cft->release(of);
4010 	put_cgroup_ns(ctx->ns);
4011 	kfree(ctx);
4012 }
4013 
4014 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
4015 				 size_t nbytes, loff_t off)
4016 {
4017 	struct cgroup_file_ctx *ctx = of->priv;
4018 	struct cgroup *cgrp = of->kn->parent->priv;
4019 	struct cftype *cft = of_cft(of);
4020 	struct cgroup_subsys_state *css;
4021 	int ret;
4022 
4023 	if (!nbytes)
4024 		return 0;
4025 
4026 	/*
4027 	 * If namespaces are delegation boundaries, disallow writes to
4028 	 * files in an non-init namespace root from inside the namespace
4029 	 * except for the files explicitly marked delegatable -
4030 	 * cgroup.procs and cgroup.subtree_control.
4031 	 */
4032 	if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) &&
4033 	    !(cft->flags & CFTYPE_NS_DELEGATABLE) &&
4034 	    ctx->ns != &init_cgroup_ns && ctx->ns->root_cset->dfl_cgrp == cgrp)
4035 		return -EPERM;
4036 
4037 	if (cft->write)
4038 		return cft->write(of, buf, nbytes, off);
4039 
4040 	/*
4041 	 * kernfs guarantees that a file isn't deleted with operations in
4042 	 * flight, which means that the matching css is and stays alive and
4043 	 * doesn't need to be pinned.  The RCU locking is not necessary
4044 	 * either.  It's just for the convenience of using cgroup_css().
4045 	 */
4046 	rcu_read_lock();
4047 	css = cgroup_css(cgrp, cft->ss);
4048 	rcu_read_unlock();
4049 
4050 	if (cft->write_u64) {
4051 		unsigned long long v;
4052 		ret = kstrtoull(buf, 0, &v);
4053 		if (!ret)
4054 			ret = cft->write_u64(css, cft, v);
4055 	} else if (cft->write_s64) {
4056 		long long v;
4057 		ret = kstrtoll(buf, 0, &v);
4058 		if (!ret)
4059 			ret = cft->write_s64(css, cft, v);
4060 	} else {
4061 		ret = -EINVAL;
4062 	}
4063 
4064 	return ret ?: nbytes;
4065 }
4066 
4067 static __poll_t cgroup_file_poll(struct kernfs_open_file *of, poll_table *pt)
4068 {
4069 	struct cftype *cft = of_cft(of);
4070 
4071 	if (cft->poll)
4072 		return cft->poll(of, pt);
4073 
4074 	return kernfs_generic_poll(of, pt);
4075 }
4076 
4077 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
4078 {
4079 	return seq_cft(seq)->seq_start(seq, ppos);
4080 }
4081 
4082 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
4083 {
4084 	return seq_cft(seq)->seq_next(seq, v, ppos);
4085 }
4086 
4087 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
4088 {
4089 	if (seq_cft(seq)->seq_stop)
4090 		seq_cft(seq)->seq_stop(seq, v);
4091 }
4092 
4093 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
4094 {
4095 	struct cftype *cft = seq_cft(m);
4096 	struct cgroup_subsys_state *css = seq_css(m);
4097 
4098 	if (cft->seq_show)
4099 		return cft->seq_show(m, arg);
4100 
4101 	if (cft->read_u64)
4102 		seq_printf(m, "%llu\n", cft->read_u64(css, cft));
4103 	else if (cft->read_s64)
4104 		seq_printf(m, "%lld\n", cft->read_s64(css, cft));
4105 	else
4106 		return -EINVAL;
4107 	return 0;
4108 }
4109 
4110 static struct kernfs_ops cgroup_kf_single_ops = {
4111 	.atomic_write_len	= PAGE_SIZE,
4112 	.open			= cgroup_file_open,
4113 	.release		= cgroup_file_release,
4114 	.write			= cgroup_file_write,
4115 	.poll			= cgroup_file_poll,
4116 	.seq_show		= cgroup_seqfile_show,
4117 };
4118 
4119 static struct kernfs_ops cgroup_kf_ops = {
4120 	.atomic_write_len	= PAGE_SIZE,
4121 	.open			= cgroup_file_open,
4122 	.release		= cgroup_file_release,
4123 	.write			= cgroup_file_write,
4124 	.poll			= cgroup_file_poll,
4125 	.seq_start		= cgroup_seqfile_start,
4126 	.seq_next		= cgroup_seqfile_next,
4127 	.seq_stop		= cgroup_seqfile_stop,
4128 	.seq_show		= cgroup_seqfile_show,
4129 };
4130 
4131 /* set uid and gid of cgroup dirs and files to that of the creator */
4132 static int cgroup_kn_set_ugid(struct kernfs_node *kn)
4133 {
4134 	struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
4135 			       .ia_uid = current_fsuid(),
4136 			       .ia_gid = current_fsgid(), };
4137 
4138 	if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
4139 	    gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
4140 		return 0;
4141 
4142 	return kernfs_setattr(kn, &iattr);
4143 }
4144 
4145 static void cgroup_file_notify_timer(struct timer_list *timer)
4146 {
4147 	cgroup_file_notify(container_of(timer, struct cgroup_file,
4148 					notify_timer));
4149 }
4150 
4151 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
4152 			   struct cftype *cft)
4153 {
4154 	char name[CGROUP_FILE_NAME_MAX];
4155 	struct kernfs_node *kn;
4156 	struct lock_class_key *key = NULL;
4157 	int ret;
4158 
4159 #ifdef CONFIG_DEBUG_LOCK_ALLOC
4160 	key = &cft->lockdep_key;
4161 #endif
4162 	kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
4163 				  cgroup_file_mode(cft),
4164 				  GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
4165 				  0, cft->kf_ops, cft,
4166 				  NULL, key);
4167 	if (IS_ERR(kn))
4168 		return PTR_ERR(kn);
4169 
4170 	ret = cgroup_kn_set_ugid(kn);
4171 	if (ret) {
4172 		kernfs_remove(kn);
4173 		return ret;
4174 	}
4175 
4176 	if (cft->file_offset) {
4177 		struct cgroup_file *cfile = (void *)css + cft->file_offset;
4178 
4179 		timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0);
4180 
4181 		spin_lock_irq(&cgroup_file_kn_lock);
4182 		cfile->kn = kn;
4183 		spin_unlock_irq(&cgroup_file_kn_lock);
4184 	}
4185 
4186 	return 0;
4187 }
4188 
4189 /**
4190  * cgroup_addrm_files - add or remove files to a cgroup directory
4191  * @css: the target css
4192  * @cgrp: the target cgroup (usually css->cgroup)
4193  * @cfts: array of cftypes to be added
4194  * @is_add: whether to add or remove
4195  *
4196  * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
4197  * For removals, this function never fails.
4198  */
4199 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
4200 			      struct cgroup *cgrp, struct cftype cfts[],
4201 			      bool is_add)
4202 {
4203 	struct cftype *cft, *cft_end = NULL;
4204 	int ret = 0;
4205 
4206 	lockdep_assert_held(&cgroup_mutex);
4207 
4208 restart:
4209 	for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
4210 		/* does cft->flags tell us to skip this file on @cgrp? */
4211 		if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
4212 			continue;
4213 		if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
4214 			continue;
4215 		if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
4216 			continue;
4217 		if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
4218 			continue;
4219 		if ((cft->flags & CFTYPE_DEBUG) && !cgroup_debug)
4220 			continue;
4221 		if (is_add) {
4222 			ret = cgroup_add_file(css, cgrp, cft);
4223 			if (ret) {
4224 				pr_warn("%s: failed to add %s, err=%d\n",
4225 					__func__, cft->name, ret);
4226 				cft_end = cft;
4227 				is_add = false;
4228 				goto restart;
4229 			}
4230 		} else {
4231 			cgroup_rm_file(cgrp, cft);
4232 		}
4233 	}
4234 	return ret;
4235 }
4236 
4237 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
4238 {
4239 	struct cgroup_subsys *ss = cfts[0].ss;
4240 	struct cgroup *root = &ss->root->cgrp;
4241 	struct cgroup_subsys_state *css;
4242 	int ret = 0;
4243 
4244 	lockdep_assert_held(&cgroup_mutex);
4245 
4246 	/* add/rm files for all cgroups created before */
4247 	css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
4248 		struct cgroup *cgrp = css->cgroup;
4249 
4250 		if (!(css->flags & CSS_VISIBLE))
4251 			continue;
4252 
4253 		ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
4254 		if (ret)
4255 			break;
4256 	}
4257 
4258 	if (is_add && !ret)
4259 		kernfs_activate(root->kn);
4260 	return ret;
4261 }
4262 
4263 static void cgroup_exit_cftypes(struct cftype *cfts)
4264 {
4265 	struct cftype *cft;
4266 
4267 	for (cft = cfts; cft->name[0] != '\0'; cft++) {
4268 		/* free copy for custom atomic_write_len, see init_cftypes() */
4269 		if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
4270 			kfree(cft->kf_ops);
4271 		cft->kf_ops = NULL;
4272 		cft->ss = NULL;
4273 
4274 		/* revert flags set by cgroup core while adding @cfts */
4275 		cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL |
4276 				__CFTYPE_ADDED);
4277 	}
4278 }
4279 
4280 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4281 {
4282 	struct cftype *cft;
4283 	int ret = 0;
4284 
4285 	for (cft = cfts; cft->name[0] != '\0'; cft++) {
4286 		struct kernfs_ops *kf_ops;
4287 
4288 		WARN_ON(cft->ss || cft->kf_ops);
4289 
4290 		if (cft->flags & __CFTYPE_ADDED) {
4291 			ret = -EBUSY;
4292 			break;
4293 		}
4294 
4295 		if (cft->seq_start)
4296 			kf_ops = &cgroup_kf_ops;
4297 		else
4298 			kf_ops = &cgroup_kf_single_ops;
4299 
4300 		/*
4301 		 * Ugh... if @cft wants a custom max_write_len, we need to
4302 		 * make a copy of kf_ops to set its atomic_write_len.
4303 		 */
4304 		if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
4305 			kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
4306 			if (!kf_ops) {
4307 				ret = -ENOMEM;
4308 				break;
4309 			}
4310 			kf_ops->atomic_write_len = cft->max_write_len;
4311 		}
4312 
4313 		cft->kf_ops = kf_ops;
4314 		cft->ss = ss;
4315 		cft->flags |= __CFTYPE_ADDED;
4316 	}
4317 
4318 	if (ret)
4319 		cgroup_exit_cftypes(cfts);
4320 	return ret;
4321 }
4322 
4323 static int cgroup_rm_cftypes_locked(struct cftype *cfts)
4324 {
4325 	lockdep_assert_held(&cgroup_mutex);
4326 
4327 	list_del(&cfts->node);
4328 	cgroup_apply_cftypes(cfts, false);
4329 	cgroup_exit_cftypes(cfts);
4330 	return 0;
4331 }
4332 
4333 /**
4334  * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
4335  * @cfts: zero-length name terminated array of cftypes
4336  *
4337  * Unregister @cfts.  Files described by @cfts are removed from all
4338  * existing cgroups and all future cgroups won't have them either.  This
4339  * function can be called anytime whether @cfts' subsys is attached or not.
4340  *
4341  * Returns 0 on successful unregistration, -ENOENT if @cfts is not
4342  * registered.
4343  */
4344 int cgroup_rm_cftypes(struct cftype *cfts)
4345 {
4346 	int ret;
4347 
4348 	if (!cfts || cfts[0].name[0] == '\0')
4349 		return 0;
4350 
4351 	if (!(cfts[0].flags & __CFTYPE_ADDED))
4352 		return -ENOENT;
4353 
4354 	cgroup_lock();
4355 	ret = cgroup_rm_cftypes_locked(cfts);
4356 	cgroup_unlock();
4357 	return ret;
4358 }
4359 
4360 /**
4361  * cgroup_add_cftypes - add an array of cftypes to a subsystem
4362  * @ss: target cgroup subsystem
4363  * @cfts: zero-length name terminated array of cftypes
4364  *
4365  * Register @cfts to @ss.  Files described by @cfts are created for all
4366  * existing cgroups to which @ss is attached and all future cgroups will
4367  * have them too.  This function can be called anytime whether @ss is
4368  * attached or not.
4369  *
4370  * Returns 0 on successful registration, -errno on failure.  Note that this
4371  * function currently returns 0 as long as @cfts registration is successful
4372  * even if some file creation attempts on existing cgroups fail.
4373  */
4374 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4375 {
4376 	int ret;
4377 
4378 	if (!cgroup_ssid_enabled(ss->id))
4379 		return 0;
4380 
4381 	if (!cfts || cfts[0].name[0] == '\0')
4382 		return 0;
4383 
4384 	ret = cgroup_init_cftypes(ss, cfts);
4385 	if (ret)
4386 		return ret;
4387 
4388 	cgroup_lock();
4389 
4390 	list_add_tail(&cfts->node, &ss->cfts);
4391 	ret = cgroup_apply_cftypes(cfts, true);
4392 	if (ret)
4393 		cgroup_rm_cftypes_locked(cfts);
4394 
4395 	cgroup_unlock();
4396 	return ret;
4397 }
4398 
4399 /**
4400  * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
4401  * @ss: target cgroup subsystem
4402  * @cfts: zero-length name terminated array of cftypes
4403  *
4404  * Similar to cgroup_add_cftypes() but the added files are only used for
4405  * the default hierarchy.
4406  */
4407 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4408 {
4409 	struct cftype *cft;
4410 
4411 	for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4412 		cft->flags |= __CFTYPE_ONLY_ON_DFL;
4413 	return cgroup_add_cftypes(ss, cfts);
4414 }
4415 
4416 /**
4417  * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
4418  * @ss: target cgroup subsystem
4419  * @cfts: zero-length name terminated array of cftypes
4420  *
4421  * Similar to cgroup_add_cftypes() but the added files are only used for
4422  * the legacy hierarchies.
4423  */
4424 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4425 {
4426 	struct cftype *cft;
4427 
4428 	for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4429 		cft->flags |= __CFTYPE_NOT_ON_DFL;
4430 	return cgroup_add_cftypes(ss, cfts);
4431 }
4432 
4433 /**
4434  * cgroup_file_notify - generate a file modified event for a cgroup_file
4435  * @cfile: target cgroup_file
4436  *
4437  * @cfile must have been obtained by setting cftype->file_offset.
4438  */
4439 void cgroup_file_notify(struct cgroup_file *cfile)
4440 {
4441 	unsigned long flags;
4442 
4443 	spin_lock_irqsave(&cgroup_file_kn_lock, flags);
4444 	if (cfile->kn) {
4445 		unsigned long last = cfile->notified_at;
4446 		unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV;
4447 
4448 		if (time_in_range(jiffies, last, next)) {
4449 			timer_reduce(&cfile->notify_timer, next);
4450 		} else {
4451 			kernfs_notify(cfile->kn);
4452 			cfile->notified_at = jiffies;
4453 		}
4454 	}
4455 	spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
4456 }
4457 
4458 /**
4459  * cgroup_file_show - show or hide a hidden cgroup file
4460  * @cfile: target cgroup_file obtained by setting cftype->file_offset
4461  * @show: whether to show or hide
4462  */
4463 void cgroup_file_show(struct cgroup_file *cfile, bool show)
4464 {
4465 	struct kernfs_node *kn;
4466 
4467 	spin_lock_irq(&cgroup_file_kn_lock);
4468 	kn = cfile->kn;
4469 	kernfs_get(kn);
4470 	spin_unlock_irq(&cgroup_file_kn_lock);
4471 
4472 	if (kn)
4473 		kernfs_show(kn, show);
4474 
4475 	kernfs_put(kn);
4476 }
4477 
4478 /**
4479  * css_next_child - find the next child of a given css
4480  * @pos: the current position (%NULL to initiate traversal)
4481  * @parent: css whose children to walk
4482  *
4483  * This function returns the next child of @parent and should be called
4484  * under either cgroup_mutex or RCU read lock.  The only requirement is
4485  * that @parent and @pos are accessible.  The next sibling is guaranteed to
4486  * be returned regardless of their states.
4487  *
4488  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4489  * css which finished ->css_online() is guaranteed to be visible in the
4490  * future iterations and will stay visible until the last reference is put.
4491  * A css which hasn't finished ->css_online() or already finished
4492  * ->css_offline() may show up during traversal.  It's each subsystem's
4493  * responsibility to synchronize against on/offlining.
4494  */
4495 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
4496 					   struct cgroup_subsys_state *parent)
4497 {
4498 	struct cgroup_subsys_state *next;
4499 
4500 	cgroup_assert_mutex_or_rcu_locked();
4501 
4502 	/*
4503 	 * @pos could already have been unlinked from the sibling list.
4504 	 * Once a cgroup is removed, its ->sibling.next is no longer
4505 	 * updated when its next sibling changes.  CSS_RELEASED is set when
4506 	 * @pos is taken off list, at which time its next pointer is valid,
4507 	 * and, as releases are serialized, the one pointed to by the next
4508 	 * pointer is guaranteed to not have started release yet.  This
4509 	 * implies that if we observe !CSS_RELEASED on @pos in this RCU
4510 	 * critical section, the one pointed to by its next pointer is
4511 	 * guaranteed to not have finished its RCU grace period even if we
4512 	 * have dropped rcu_read_lock() in-between iterations.
4513 	 *
4514 	 * If @pos has CSS_RELEASED set, its next pointer can't be
4515 	 * dereferenced; however, as each css is given a monotonically
4516 	 * increasing unique serial number and always appended to the
4517 	 * sibling list, the next one can be found by walking the parent's
4518 	 * children until the first css with higher serial number than
4519 	 * @pos's.  While this path can be slower, it happens iff iteration
4520 	 * races against release and the race window is very small.
4521 	 */
4522 	if (!pos) {
4523 		next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
4524 	} else if (likely(!(pos->flags & CSS_RELEASED))) {
4525 		next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
4526 	} else {
4527 		list_for_each_entry_rcu(next, &parent->children, sibling,
4528 					lockdep_is_held(&cgroup_mutex))
4529 			if (next->serial_nr > pos->serial_nr)
4530 				break;
4531 	}
4532 
4533 	/*
4534 	 * @next, if not pointing to the head, can be dereferenced and is
4535 	 * the next sibling.
4536 	 */
4537 	if (&next->sibling != &parent->children)
4538 		return next;
4539 	return NULL;
4540 }
4541 
4542 /**
4543  * css_next_descendant_pre - find the next descendant for pre-order walk
4544  * @pos: the current position (%NULL to initiate traversal)
4545  * @root: css whose descendants to walk
4546  *
4547  * To be used by css_for_each_descendant_pre().  Find the next descendant
4548  * to visit for pre-order traversal of @root's descendants.  @root is
4549  * included in the iteration and the first node to be visited.
4550  *
4551  * While this function requires cgroup_mutex or RCU read locking, it
4552  * doesn't require the whole traversal to be contained in a single critical
4553  * section.  This function will return the correct next descendant as long
4554  * as both @pos and @root are accessible and @pos is a descendant of @root.
4555  *
4556  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4557  * css which finished ->css_online() is guaranteed to be visible in the
4558  * future iterations and will stay visible until the last reference is put.
4559  * A css which hasn't finished ->css_online() or already finished
4560  * ->css_offline() may show up during traversal.  It's each subsystem's
4561  * responsibility to synchronize against on/offlining.
4562  */
4563 struct cgroup_subsys_state *
4564 css_next_descendant_pre(struct cgroup_subsys_state *pos,
4565 			struct cgroup_subsys_state *root)
4566 {
4567 	struct cgroup_subsys_state *next;
4568 
4569 	cgroup_assert_mutex_or_rcu_locked();
4570 
4571 	/* if first iteration, visit @root */
4572 	if (!pos)
4573 		return root;
4574 
4575 	/* visit the first child if exists */
4576 	next = css_next_child(NULL, pos);
4577 	if (next)
4578 		return next;
4579 
4580 	/* no child, visit my or the closest ancestor's next sibling */
4581 	while (pos != root) {
4582 		next = css_next_child(pos, pos->parent);
4583 		if (next)
4584 			return next;
4585 		pos = pos->parent;
4586 	}
4587 
4588 	return NULL;
4589 }
4590 EXPORT_SYMBOL_GPL(css_next_descendant_pre);
4591 
4592 /**
4593  * css_rightmost_descendant - return the rightmost descendant of a css
4594  * @pos: css of interest
4595  *
4596  * Return the rightmost descendant of @pos.  If there's no descendant, @pos
4597  * is returned.  This can be used during pre-order traversal to skip
4598  * subtree of @pos.
4599  *
4600  * While this function requires cgroup_mutex or RCU read locking, it
4601  * doesn't require the whole traversal to be contained in a single critical
4602  * section.  This function will return the correct rightmost descendant as
4603  * long as @pos is accessible.
4604  */
4605 struct cgroup_subsys_state *
4606 css_rightmost_descendant(struct cgroup_subsys_state *pos)
4607 {
4608 	struct cgroup_subsys_state *last, *tmp;
4609 
4610 	cgroup_assert_mutex_or_rcu_locked();
4611 
4612 	do {
4613 		last = pos;
4614 		/* ->prev isn't RCU safe, walk ->next till the end */
4615 		pos = NULL;
4616 		css_for_each_child(tmp, last)
4617 			pos = tmp;
4618 	} while (pos);
4619 
4620 	return last;
4621 }
4622 
4623 static struct cgroup_subsys_state *
4624 css_leftmost_descendant(struct cgroup_subsys_state *pos)
4625 {
4626 	struct cgroup_subsys_state *last;
4627 
4628 	do {
4629 		last = pos;
4630 		pos = css_next_child(NULL, pos);
4631 	} while (pos);
4632 
4633 	return last;
4634 }
4635 
4636 /**
4637  * css_next_descendant_post - find the next descendant for post-order walk
4638  * @pos: the current position (%NULL to initiate traversal)
4639  * @root: css whose descendants to walk
4640  *
4641  * To be used by css_for_each_descendant_post().  Find the next descendant
4642  * to visit for post-order traversal of @root's descendants.  @root is
4643  * included in the iteration and the last node to be visited.
4644  *
4645  * While this function requires cgroup_mutex or RCU read locking, it
4646  * doesn't require the whole traversal to be contained in a single critical
4647  * section.  This function will return the correct next descendant as long
4648  * as both @pos and @cgroup are accessible and @pos is a descendant of
4649  * @cgroup.
4650  *
4651  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4652  * css which finished ->css_online() is guaranteed to be visible in the
4653  * future iterations and will stay visible until the last reference is put.
4654  * A css which hasn't finished ->css_online() or already finished
4655  * ->css_offline() may show up during traversal.  It's each subsystem's
4656  * responsibility to synchronize against on/offlining.
4657  */
4658 struct cgroup_subsys_state *
4659 css_next_descendant_post(struct cgroup_subsys_state *pos,
4660 			 struct cgroup_subsys_state *root)
4661 {
4662 	struct cgroup_subsys_state *next;
4663 
4664 	cgroup_assert_mutex_or_rcu_locked();
4665 
4666 	/* if first iteration, visit leftmost descendant which may be @root */
4667 	if (!pos)
4668 		return css_leftmost_descendant(root);
4669 
4670 	/* if we visited @root, we're done */
4671 	if (pos == root)
4672 		return NULL;
4673 
4674 	/* if there's an unvisited sibling, visit its leftmost descendant */
4675 	next = css_next_child(pos, pos->parent);
4676 	if (next)
4677 		return css_leftmost_descendant(next);
4678 
4679 	/* no sibling left, visit parent */
4680 	return pos->parent;
4681 }
4682 
4683 /**
4684  * css_has_online_children - does a css have online children
4685  * @css: the target css
4686  *
4687  * Returns %true if @css has any online children; otherwise, %false.  This
4688  * function can be called from any context but the caller is responsible
4689  * for synchronizing against on/offlining as necessary.
4690  */
4691 bool css_has_online_children(struct cgroup_subsys_state *css)
4692 {
4693 	struct cgroup_subsys_state *child;
4694 	bool ret = false;
4695 
4696 	rcu_read_lock();
4697 	css_for_each_child(child, css) {
4698 		if (child->flags & CSS_ONLINE) {
4699 			ret = true;
4700 			break;
4701 		}
4702 	}
4703 	rcu_read_unlock();
4704 	return ret;
4705 }
4706 
4707 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it)
4708 {
4709 	struct list_head *l;
4710 	struct cgrp_cset_link *link;
4711 	struct css_set *cset;
4712 
4713 	lockdep_assert_held(&css_set_lock);
4714 
4715 	/* find the next threaded cset */
4716 	if (it->tcset_pos) {
4717 		l = it->tcset_pos->next;
4718 
4719 		if (l != it->tcset_head) {
4720 			it->tcset_pos = l;
4721 			return container_of(l, struct css_set,
4722 					    threaded_csets_node);
4723 		}
4724 
4725 		it->tcset_pos = NULL;
4726 	}
4727 
4728 	/* find the next cset */
4729 	l = it->cset_pos;
4730 	l = l->next;
4731 	if (l == it->cset_head) {
4732 		it->cset_pos = NULL;
4733 		return NULL;
4734 	}
4735 
4736 	if (it->ss) {
4737 		cset = container_of(l, struct css_set, e_cset_node[it->ss->id]);
4738 	} else {
4739 		link = list_entry(l, struct cgrp_cset_link, cset_link);
4740 		cset = link->cset;
4741 	}
4742 
4743 	it->cset_pos = l;
4744 
4745 	/* initialize threaded css_set walking */
4746 	if (it->flags & CSS_TASK_ITER_THREADED) {
4747 		if (it->cur_dcset)
4748 			put_css_set_locked(it->cur_dcset);
4749 		it->cur_dcset = cset;
4750 		get_css_set(cset);
4751 
4752 		it->tcset_head = &cset->threaded_csets;
4753 		it->tcset_pos = &cset->threaded_csets;
4754 	}
4755 
4756 	return cset;
4757 }
4758 
4759 /**
4760  * css_task_iter_advance_css_set - advance a task iterator to the next css_set
4761  * @it: the iterator to advance
4762  *
4763  * Advance @it to the next css_set to walk.
4764  */
4765 static void css_task_iter_advance_css_set(struct css_task_iter *it)
4766 {
4767 	struct css_set *cset;
4768 
4769 	lockdep_assert_held(&css_set_lock);
4770 
4771 	/* Advance to the next non-empty css_set and find first non-empty tasks list*/
4772 	while ((cset = css_task_iter_next_css_set(it))) {
4773 		if (!list_empty(&cset->tasks)) {
4774 			it->cur_tasks_head = &cset->tasks;
4775 			break;
4776 		} else if (!list_empty(&cset->mg_tasks)) {
4777 			it->cur_tasks_head = &cset->mg_tasks;
4778 			break;
4779 		} else if (!list_empty(&cset->dying_tasks)) {
4780 			it->cur_tasks_head = &cset->dying_tasks;
4781 			break;
4782 		}
4783 	}
4784 	if (!cset) {
4785 		it->task_pos = NULL;
4786 		return;
4787 	}
4788 	it->task_pos = it->cur_tasks_head->next;
4789 
4790 	/*
4791 	 * We don't keep css_sets locked across iteration steps and thus
4792 	 * need to take steps to ensure that iteration can be resumed after
4793 	 * the lock is re-acquired.  Iteration is performed at two levels -
4794 	 * css_sets and tasks in them.
4795 	 *
4796 	 * Once created, a css_set never leaves its cgroup lists, so a
4797 	 * pinned css_set is guaranteed to stay put and we can resume
4798 	 * iteration afterwards.
4799 	 *
4800 	 * Tasks may leave @cset across iteration steps.  This is resolved
4801 	 * by registering each iterator with the css_set currently being
4802 	 * walked and making css_set_move_task() advance iterators whose
4803 	 * next task is leaving.
4804 	 */
4805 	if (it->cur_cset) {
4806 		list_del(&it->iters_node);
4807 		put_css_set_locked(it->cur_cset);
4808 	}
4809 	get_css_set(cset);
4810 	it->cur_cset = cset;
4811 	list_add(&it->iters_node, &cset->task_iters);
4812 }
4813 
4814 static void css_task_iter_skip(struct css_task_iter *it,
4815 			       struct task_struct *task)
4816 {
4817 	lockdep_assert_held(&css_set_lock);
4818 
4819 	if (it->task_pos == &task->cg_list) {
4820 		it->task_pos = it->task_pos->next;
4821 		it->flags |= CSS_TASK_ITER_SKIPPED;
4822 	}
4823 }
4824 
4825 static void css_task_iter_advance(struct css_task_iter *it)
4826 {
4827 	struct task_struct *task;
4828 
4829 	lockdep_assert_held(&css_set_lock);
4830 repeat:
4831 	if (it->task_pos) {
4832 		/*
4833 		 * Advance iterator to find next entry. We go through cset
4834 		 * tasks, mg_tasks and dying_tasks, when consumed we move onto
4835 		 * the next cset.
4836 		 */
4837 		if (it->flags & CSS_TASK_ITER_SKIPPED)
4838 			it->flags &= ~CSS_TASK_ITER_SKIPPED;
4839 		else
4840 			it->task_pos = it->task_pos->next;
4841 
4842 		if (it->task_pos == &it->cur_cset->tasks) {
4843 			it->cur_tasks_head = &it->cur_cset->mg_tasks;
4844 			it->task_pos = it->cur_tasks_head->next;
4845 		}
4846 		if (it->task_pos == &it->cur_cset->mg_tasks) {
4847 			it->cur_tasks_head = &it->cur_cset->dying_tasks;
4848 			it->task_pos = it->cur_tasks_head->next;
4849 		}
4850 		if (it->task_pos == &it->cur_cset->dying_tasks)
4851 			css_task_iter_advance_css_set(it);
4852 	} else {
4853 		/* called from start, proceed to the first cset */
4854 		css_task_iter_advance_css_set(it);
4855 	}
4856 
4857 	if (!it->task_pos)
4858 		return;
4859 
4860 	task = list_entry(it->task_pos, struct task_struct, cg_list);
4861 
4862 	if (it->flags & CSS_TASK_ITER_PROCS) {
4863 		/* if PROCS, skip over tasks which aren't group leaders */
4864 		if (!thread_group_leader(task))
4865 			goto repeat;
4866 
4867 		/* and dying leaders w/o live member threads */
4868 		if (it->cur_tasks_head == &it->cur_cset->dying_tasks &&
4869 		    !atomic_read(&task->signal->live))
4870 			goto repeat;
4871 	} else {
4872 		/* skip all dying ones */
4873 		if (it->cur_tasks_head == &it->cur_cset->dying_tasks)
4874 			goto repeat;
4875 	}
4876 }
4877 
4878 /**
4879  * css_task_iter_start - initiate task iteration
4880  * @css: the css to walk tasks of
4881  * @flags: CSS_TASK_ITER_* flags
4882  * @it: the task iterator to use
4883  *
4884  * Initiate iteration through the tasks of @css.  The caller can call
4885  * css_task_iter_next() to walk through the tasks until the function
4886  * returns NULL.  On completion of iteration, css_task_iter_end() must be
4887  * called.
4888  */
4889 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags,
4890 			 struct css_task_iter *it)
4891 {
4892 	memset(it, 0, sizeof(*it));
4893 
4894 	spin_lock_irq(&css_set_lock);
4895 
4896 	it->ss = css->ss;
4897 	it->flags = flags;
4898 
4899 	if (CGROUP_HAS_SUBSYS_CONFIG && it->ss)
4900 		it->cset_pos = &css->cgroup->e_csets[css->ss->id];
4901 	else
4902 		it->cset_pos = &css->cgroup->cset_links;
4903 
4904 	it->cset_head = it->cset_pos;
4905 
4906 	css_task_iter_advance(it);
4907 
4908 	spin_unlock_irq(&css_set_lock);
4909 }
4910 
4911 /**
4912  * css_task_iter_next - return the next task for the iterator
4913  * @it: the task iterator being iterated
4914  *
4915  * The "next" function for task iteration.  @it should have been
4916  * initialized via css_task_iter_start().  Returns NULL when the iteration
4917  * reaches the end.
4918  */
4919 struct task_struct *css_task_iter_next(struct css_task_iter *it)
4920 {
4921 	if (it->cur_task) {
4922 		put_task_struct(it->cur_task);
4923 		it->cur_task = NULL;
4924 	}
4925 
4926 	spin_lock_irq(&css_set_lock);
4927 
4928 	/* @it may be half-advanced by skips, finish advancing */
4929 	if (it->flags & CSS_TASK_ITER_SKIPPED)
4930 		css_task_iter_advance(it);
4931 
4932 	if (it->task_pos) {
4933 		it->cur_task = list_entry(it->task_pos, struct task_struct,
4934 					  cg_list);
4935 		get_task_struct(it->cur_task);
4936 		css_task_iter_advance(it);
4937 	}
4938 
4939 	spin_unlock_irq(&css_set_lock);
4940 
4941 	return it->cur_task;
4942 }
4943 
4944 /**
4945  * css_task_iter_end - finish task iteration
4946  * @it: the task iterator to finish
4947  *
4948  * Finish task iteration started by css_task_iter_start().
4949  */
4950 void css_task_iter_end(struct css_task_iter *it)
4951 {
4952 	if (it->cur_cset) {
4953 		spin_lock_irq(&css_set_lock);
4954 		list_del(&it->iters_node);
4955 		put_css_set_locked(it->cur_cset);
4956 		spin_unlock_irq(&css_set_lock);
4957 	}
4958 
4959 	if (it->cur_dcset)
4960 		put_css_set(it->cur_dcset);
4961 
4962 	if (it->cur_task)
4963 		put_task_struct(it->cur_task);
4964 }
4965 
4966 static void cgroup_procs_release(struct kernfs_open_file *of)
4967 {
4968 	struct cgroup_file_ctx *ctx = of->priv;
4969 
4970 	if (ctx->procs.started)
4971 		css_task_iter_end(&ctx->procs.iter);
4972 }
4973 
4974 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos)
4975 {
4976 	struct kernfs_open_file *of = s->private;
4977 	struct cgroup_file_ctx *ctx = of->priv;
4978 
4979 	if (pos)
4980 		(*pos)++;
4981 
4982 	return css_task_iter_next(&ctx->procs.iter);
4983 }
4984 
4985 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos,
4986 				  unsigned int iter_flags)
4987 {
4988 	struct kernfs_open_file *of = s->private;
4989 	struct cgroup *cgrp = seq_css(s)->cgroup;
4990 	struct cgroup_file_ctx *ctx = of->priv;
4991 	struct css_task_iter *it = &ctx->procs.iter;
4992 
4993 	/*
4994 	 * When a seq_file is seeked, it's always traversed sequentially
4995 	 * from position 0, so we can simply keep iterating on !0 *pos.
4996 	 */
4997 	if (!ctx->procs.started) {
4998 		if (WARN_ON_ONCE((*pos)))
4999 			return ERR_PTR(-EINVAL);
5000 		css_task_iter_start(&cgrp->self, iter_flags, it);
5001 		ctx->procs.started = true;
5002 	} else if (!(*pos)) {
5003 		css_task_iter_end(it);
5004 		css_task_iter_start(&cgrp->self, iter_flags, it);
5005 	} else
5006 		return it->cur_task;
5007 
5008 	return cgroup_procs_next(s, NULL, NULL);
5009 }
5010 
5011 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos)
5012 {
5013 	struct cgroup *cgrp = seq_css(s)->cgroup;
5014 
5015 	/*
5016 	 * All processes of a threaded subtree belong to the domain cgroup
5017 	 * of the subtree.  Only threads can be distributed across the
5018 	 * subtree.  Reject reads on cgroup.procs in the subtree proper.
5019 	 * They're always empty anyway.
5020 	 */
5021 	if (cgroup_is_threaded(cgrp))
5022 		return ERR_PTR(-EOPNOTSUPP);
5023 
5024 	return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS |
5025 					    CSS_TASK_ITER_THREADED);
5026 }
5027 
5028 static int cgroup_procs_show(struct seq_file *s, void *v)
5029 {
5030 	seq_printf(s, "%d\n", task_pid_vnr(v));
5031 	return 0;
5032 }
5033 
5034 static int cgroup_may_write(const struct cgroup *cgrp, struct super_block *sb)
5035 {
5036 	int ret;
5037 	struct inode *inode;
5038 
5039 	lockdep_assert_held(&cgroup_mutex);
5040 
5041 	inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
5042 	if (!inode)
5043 		return -ENOMEM;
5044 
5045 	ret = inode_permission(&nop_mnt_idmap, inode, MAY_WRITE);
5046 	iput(inode);
5047 	return ret;
5048 }
5049 
5050 static int cgroup_procs_write_permission(struct cgroup *src_cgrp,
5051 					 struct cgroup *dst_cgrp,
5052 					 struct super_block *sb,
5053 					 struct cgroup_namespace *ns)
5054 {
5055 	struct cgroup *com_cgrp = src_cgrp;
5056 	int ret;
5057 
5058 	lockdep_assert_held(&cgroup_mutex);
5059 
5060 	/* find the common ancestor */
5061 	while (!cgroup_is_descendant(dst_cgrp, com_cgrp))
5062 		com_cgrp = cgroup_parent(com_cgrp);
5063 
5064 	/* %current should be authorized to migrate to the common ancestor */
5065 	ret = cgroup_may_write(com_cgrp, sb);
5066 	if (ret)
5067 		return ret;
5068 
5069 	/*
5070 	 * If namespaces are delegation boundaries, %current must be able
5071 	 * to see both source and destination cgroups from its namespace.
5072 	 */
5073 	if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) &&
5074 	    (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) ||
5075 	     !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp)))
5076 		return -ENOENT;
5077 
5078 	return 0;
5079 }
5080 
5081 static int cgroup_attach_permissions(struct cgroup *src_cgrp,
5082 				     struct cgroup *dst_cgrp,
5083 				     struct super_block *sb, bool threadgroup,
5084 				     struct cgroup_namespace *ns)
5085 {
5086 	int ret = 0;
5087 
5088 	ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, sb, ns);
5089 	if (ret)
5090 		return ret;
5091 
5092 	ret = cgroup_migrate_vet_dst(dst_cgrp);
5093 	if (ret)
5094 		return ret;
5095 
5096 	if (!threadgroup && (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp))
5097 		ret = -EOPNOTSUPP;
5098 
5099 	return ret;
5100 }
5101 
5102 static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
5103 				    bool threadgroup)
5104 {
5105 	struct cgroup_file_ctx *ctx = of->priv;
5106 	struct cgroup *src_cgrp, *dst_cgrp;
5107 	struct task_struct *task;
5108 	const struct cred *saved_cred;
5109 	ssize_t ret;
5110 	bool threadgroup_locked;
5111 
5112 	dst_cgrp = cgroup_kn_lock_live(of->kn, false);
5113 	if (!dst_cgrp)
5114 		return -ENODEV;
5115 
5116 	task = cgroup_procs_write_start(buf, threadgroup, &threadgroup_locked);
5117 	ret = PTR_ERR_OR_ZERO(task);
5118 	if (ret)
5119 		goto out_unlock;
5120 
5121 	/* find the source cgroup */
5122 	spin_lock_irq(&css_set_lock);
5123 	src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
5124 	spin_unlock_irq(&css_set_lock);
5125 
5126 	/*
5127 	 * Process and thread migrations follow same delegation rule. Check
5128 	 * permissions using the credentials from file open to protect against
5129 	 * inherited fd attacks.
5130 	 */
5131 	saved_cred = override_creds(of->file->f_cred);
5132 	ret = cgroup_attach_permissions(src_cgrp, dst_cgrp,
5133 					of->file->f_path.dentry->d_sb,
5134 					threadgroup, ctx->ns);
5135 	revert_creds(saved_cred);
5136 	if (ret)
5137 		goto out_finish;
5138 
5139 	ret = cgroup_attach_task(dst_cgrp, task, threadgroup);
5140 
5141 out_finish:
5142 	cgroup_procs_write_finish(task, threadgroup_locked);
5143 out_unlock:
5144 	cgroup_kn_unlock(of->kn);
5145 
5146 	return ret;
5147 }
5148 
5149 static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
5150 				  char *buf, size_t nbytes, loff_t off)
5151 {
5152 	return __cgroup_procs_write(of, buf, true) ?: nbytes;
5153 }
5154 
5155 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos)
5156 {
5157 	return __cgroup_procs_start(s, pos, 0);
5158 }
5159 
5160 static ssize_t cgroup_threads_write(struct kernfs_open_file *of,
5161 				    char *buf, size_t nbytes, loff_t off)
5162 {
5163 	return __cgroup_procs_write(of, buf, false) ?: nbytes;
5164 }
5165 
5166 /* cgroup core interface files for the default hierarchy */
5167 static struct cftype cgroup_base_files[] = {
5168 	{
5169 		.name = "cgroup.type",
5170 		.flags = CFTYPE_NOT_ON_ROOT,
5171 		.seq_show = cgroup_type_show,
5172 		.write = cgroup_type_write,
5173 	},
5174 	{
5175 		.name = "cgroup.procs",
5176 		.flags = CFTYPE_NS_DELEGATABLE,
5177 		.file_offset = offsetof(struct cgroup, procs_file),
5178 		.release = cgroup_procs_release,
5179 		.seq_start = cgroup_procs_start,
5180 		.seq_next = cgroup_procs_next,
5181 		.seq_show = cgroup_procs_show,
5182 		.write = cgroup_procs_write,
5183 	},
5184 	{
5185 		.name = "cgroup.threads",
5186 		.flags = CFTYPE_NS_DELEGATABLE,
5187 		.release = cgroup_procs_release,
5188 		.seq_start = cgroup_threads_start,
5189 		.seq_next = cgroup_procs_next,
5190 		.seq_show = cgroup_procs_show,
5191 		.write = cgroup_threads_write,
5192 	},
5193 	{
5194 		.name = "cgroup.controllers",
5195 		.seq_show = cgroup_controllers_show,
5196 	},
5197 	{
5198 		.name = "cgroup.subtree_control",
5199 		.flags = CFTYPE_NS_DELEGATABLE,
5200 		.seq_show = cgroup_subtree_control_show,
5201 		.write = cgroup_subtree_control_write,
5202 	},
5203 	{
5204 		.name = "cgroup.events",
5205 		.flags = CFTYPE_NOT_ON_ROOT,
5206 		.file_offset = offsetof(struct cgroup, events_file),
5207 		.seq_show = cgroup_events_show,
5208 	},
5209 	{
5210 		.name = "cgroup.max.descendants",
5211 		.seq_show = cgroup_max_descendants_show,
5212 		.write = cgroup_max_descendants_write,
5213 	},
5214 	{
5215 		.name = "cgroup.max.depth",
5216 		.seq_show = cgroup_max_depth_show,
5217 		.write = cgroup_max_depth_write,
5218 	},
5219 	{
5220 		.name = "cgroup.stat",
5221 		.seq_show = cgroup_stat_show,
5222 	},
5223 	{
5224 		.name = "cgroup.freeze",
5225 		.flags = CFTYPE_NOT_ON_ROOT,
5226 		.seq_show = cgroup_freeze_show,
5227 		.write = cgroup_freeze_write,
5228 	},
5229 	{
5230 		.name = "cgroup.kill",
5231 		.flags = CFTYPE_NOT_ON_ROOT,
5232 		.write = cgroup_kill_write,
5233 	},
5234 	{
5235 		.name = "cpu.stat",
5236 		.seq_show = cpu_stat_show,
5237 	},
5238 	{ }	/* terminate */
5239 };
5240 
5241 static struct cftype cgroup_psi_files[] = {
5242 #ifdef CONFIG_PSI
5243 	{
5244 		.name = "io.pressure",
5245 		.file_offset = offsetof(struct cgroup, psi_files[PSI_IO]),
5246 		.open = cgroup_pressure_open,
5247 		.seq_show = cgroup_io_pressure_show,
5248 		.write = cgroup_io_pressure_write,
5249 		.poll = cgroup_pressure_poll,
5250 		.release = cgroup_pressure_release,
5251 	},
5252 	{
5253 		.name = "memory.pressure",
5254 		.file_offset = offsetof(struct cgroup, psi_files[PSI_MEM]),
5255 		.open = cgroup_pressure_open,
5256 		.seq_show = cgroup_memory_pressure_show,
5257 		.write = cgroup_memory_pressure_write,
5258 		.poll = cgroup_pressure_poll,
5259 		.release = cgroup_pressure_release,
5260 	},
5261 	{
5262 		.name = "cpu.pressure",
5263 		.file_offset = offsetof(struct cgroup, psi_files[PSI_CPU]),
5264 		.open = cgroup_pressure_open,
5265 		.seq_show = cgroup_cpu_pressure_show,
5266 		.write = cgroup_cpu_pressure_write,
5267 		.poll = cgroup_pressure_poll,
5268 		.release = cgroup_pressure_release,
5269 	},
5270 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
5271 	{
5272 		.name = "irq.pressure",
5273 		.file_offset = offsetof(struct cgroup, psi_files[PSI_IRQ]),
5274 		.open = cgroup_pressure_open,
5275 		.seq_show = cgroup_irq_pressure_show,
5276 		.write = cgroup_irq_pressure_write,
5277 		.poll = cgroup_pressure_poll,
5278 		.release = cgroup_pressure_release,
5279 	},
5280 #endif
5281 	{
5282 		.name = "cgroup.pressure",
5283 		.seq_show = cgroup_pressure_show,
5284 		.write = cgroup_pressure_write,
5285 	},
5286 #endif /* CONFIG_PSI */
5287 	{ }	/* terminate */
5288 };
5289 
5290 /*
5291  * css destruction is four-stage process.
5292  *
5293  * 1. Destruction starts.  Killing of the percpu_ref is initiated.
5294  *    Implemented in kill_css().
5295  *
5296  * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
5297  *    and thus css_tryget_online() is guaranteed to fail, the css can be
5298  *    offlined by invoking offline_css().  After offlining, the base ref is
5299  *    put.  Implemented in css_killed_work_fn().
5300  *
5301  * 3. When the percpu_ref reaches zero, the only possible remaining
5302  *    accessors are inside RCU read sections.  css_release() schedules the
5303  *    RCU callback.
5304  *
5305  * 4. After the grace period, the css can be freed.  Implemented in
5306  *    css_free_work_fn().
5307  *
5308  * It is actually hairier because both step 2 and 4 require process context
5309  * and thus involve punting to css->destroy_work adding two additional
5310  * steps to the already complex sequence.
5311  */
5312 static void css_free_rwork_fn(struct work_struct *work)
5313 {
5314 	struct cgroup_subsys_state *css = container_of(to_rcu_work(work),
5315 				struct cgroup_subsys_state, destroy_rwork);
5316 	struct cgroup_subsys *ss = css->ss;
5317 	struct cgroup *cgrp = css->cgroup;
5318 
5319 	percpu_ref_exit(&css->refcnt);
5320 
5321 	if (ss) {
5322 		/* css free path */
5323 		struct cgroup_subsys_state *parent = css->parent;
5324 		int id = css->id;
5325 
5326 		ss->css_free(css);
5327 		cgroup_idr_remove(&ss->css_idr, id);
5328 		cgroup_put(cgrp);
5329 
5330 		if (parent)
5331 			css_put(parent);
5332 	} else {
5333 		/* cgroup free path */
5334 		atomic_dec(&cgrp->root->nr_cgrps);
5335 		cgroup1_pidlist_destroy_all(cgrp);
5336 		cancel_work_sync(&cgrp->release_agent_work);
5337 		bpf_cgrp_storage_free(cgrp);
5338 
5339 		if (cgroup_parent(cgrp)) {
5340 			/*
5341 			 * We get a ref to the parent, and put the ref when
5342 			 * this cgroup is being freed, so it's guaranteed
5343 			 * that the parent won't be destroyed before its
5344 			 * children.
5345 			 */
5346 			cgroup_put(cgroup_parent(cgrp));
5347 			kernfs_put(cgrp->kn);
5348 			psi_cgroup_free(cgrp);
5349 			cgroup_rstat_exit(cgrp);
5350 			kfree(cgrp);
5351 		} else {
5352 			/*
5353 			 * This is root cgroup's refcnt reaching zero,
5354 			 * which indicates that the root should be
5355 			 * released.
5356 			 */
5357 			cgroup_destroy_root(cgrp->root);
5358 		}
5359 	}
5360 }
5361 
5362 static void css_release_work_fn(struct work_struct *work)
5363 {
5364 	struct cgroup_subsys_state *css =
5365 		container_of(work, struct cgroup_subsys_state, destroy_work);
5366 	struct cgroup_subsys *ss = css->ss;
5367 	struct cgroup *cgrp = css->cgroup;
5368 
5369 	cgroup_lock();
5370 
5371 	css->flags |= CSS_RELEASED;
5372 	list_del_rcu(&css->sibling);
5373 
5374 	if (ss) {
5375 		/* css release path */
5376 		if (!list_empty(&css->rstat_css_node)) {
5377 			cgroup_rstat_flush(cgrp);
5378 			list_del_rcu(&css->rstat_css_node);
5379 		}
5380 
5381 		cgroup_idr_replace(&ss->css_idr, NULL, css->id);
5382 		if (ss->css_released)
5383 			ss->css_released(css);
5384 	} else {
5385 		struct cgroup *tcgrp;
5386 
5387 		/* cgroup release path */
5388 		TRACE_CGROUP_PATH(release, cgrp);
5389 
5390 		cgroup_rstat_flush(cgrp);
5391 
5392 		spin_lock_irq(&css_set_lock);
5393 		for (tcgrp = cgroup_parent(cgrp); tcgrp;
5394 		     tcgrp = cgroup_parent(tcgrp))
5395 			tcgrp->nr_dying_descendants--;
5396 		spin_unlock_irq(&css_set_lock);
5397 
5398 		/*
5399 		 * There are two control paths which try to determine
5400 		 * cgroup from dentry without going through kernfs -
5401 		 * cgroupstats_build() and css_tryget_online_from_dir().
5402 		 * Those are supported by RCU protecting clearing of
5403 		 * cgrp->kn->priv backpointer.
5404 		 */
5405 		if (cgrp->kn)
5406 			RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
5407 					 NULL);
5408 	}
5409 
5410 	cgroup_unlock();
5411 
5412 	INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5413 	queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5414 }
5415 
5416 static void css_release(struct percpu_ref *ref)
5417 {
5418 	struct cgroup_subsys_state *css =
5419 		container_of(ref, struct cgroup_subsys_state, refcnt);
5420 
5421 	INIT_WORK(&css->destroy_work, css_release_work_fn);
5422 	queue_work(cgroup_destroy_wq, &css->destroy_work);
5423 }
5424 
5425 static void init_and_link_css(struct cgroup_subsys_state *css,
5426 			      struct cgroup_subsys *ss, struct cgroup *cgrp)
5427 {
5428 	lockdep_assert_held(&cgroup_mutex);
5429 
5430 	cgroup_get_live(cgrp);
5431 
5432 	memset(css, 0, sizeof(*css));
5433 	css->cgroup = cgrp;
5434 	css->ss = ss;
5435 	css->id = -1;
5436 	INIT_LIST_HEAD(&css->sibling);
5437 	INIT_LIST_HEAD(&css->children);
5438 	INIT_LIST_HEAD(&css->rstat_css_node);
5439 	css->serial_nr = css_serial_nr_next++;
5440 	atomic_set(&css->online_cnt, 0);
5441 
5442 	if (cgroup_parent(cgrp)) {
5443 		css->parent = cgroup_css(cgroup_parent(cgrp), ss);
5444 		css_get(css->parent);
5445 	}
5446 
5447 	if (ss->css_rstat_flush)
5448 		list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list);
5449 
5450 	BUG_ON(cgroup_css(cgrp, ss));
5451 }
5452 
5453 /* invoke ->css_online() on a new CSS and mark it online if successful */
5454 static int online_css(struct cgroup_subsys_state *css)
5455 {
5456 	struct cgroup_subsys *ss = css->ss;
5457 	int ret = 0;
5458 
5459 	lockdep_assert_held(&cgroup_mutex);
5460 
5461 	if (ss->css_online)
5462 		ret = ss->css_online(css);
5463 	if (!ret) {
5464 		css->flags |= CSS_ONLINE;
5465 		rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
5466 
5467 		atomic_inc(&css->online_cnt);
5468 		if (css->parent)
5469 			atomic_inc(&css->parent->online_cnt);
5470 	}
5471 	return ret;
5472 }
5473 
5474 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
5475 static void offline_css(struct cgroup_subsys_state *css)
5476 {
5477 	struct cgroup_subsys *ss = css->ss;
5478 
5479 	lockdep_assert_held(&cgroup_mutex);
5480 
5481 	if (!(css->flags & CSS_ONLINE))
5482 		return;
5483 
5484 	if (ss->css_offline)
5485 		ss->css_offline(css);
5486 
5487 	css->flags &= ~CSS_ONLINE;
5488 	RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
5489 
5490 	wake_up_all(&css->cgroup->offline_waitq);
5491 }
5492 
5493 /**
5494  * css_create - create a cgroup_subsys_state
5495  * @cgrp: the cgroup new css will be associated with
5496  * @ss: the subsys of new css
5497  *
5498  * Create a new css associated with @cgrp - @ss pair.  On success, the new
5499  * css is online and installed in @cgrp.  This function doesn't create the
5500  * interface files.  Returns 0 on success, -errno on failure.
5501  */
5502 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
5503 					      struct cgroup_subsys *ss)
5504 {
5505 	struct cgroup *parent = cgroup_parent(cgrp);
5506 	struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
5507 	struct cgroup_subsys_state *css;
5508 	int err;
5509 
5510 	lockdep_assert_held(&cgroup_mutex);
5511 
5512 	css = ss->css_alloc(parent_css);
5513 	if (!css)
5514 		css = ERR_PTR(-ENOMEM);
5515 	if (IS_ERR(css))
5516 		return css;
5517 
5518 	init_and_link_css(css, ss, cgrp);
5519 
5520 	err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
5521 	if (err)
5522 		goto err_free_css;
5523 
5524 	err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
5525 	if (err < 0)
5526 		goto err_free_css;
5527 	css->id = err;
5528 
5529 	/* @css is ready to be brought online now, make it visible */
5530 	list_add_tail_rcu(&css->sibling, &parent_css->children);
5531 	cgroup_idr_replace(&ss->css_idr, css, css->id);
5532 
5533 	err = online_css(css);
5534 	if (err)
5535 		goto err_list_del;
5536 
5537 	return css;
5538 
5539 err_list_del:
5540 	list_del_rcu(&css->sibling);
5541 err_free_css:
5542 	list_del_rcu(&css->rstat_css_node);
5543 	INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5544 	queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5545 	return ERR_PTR(err);
5546 }
5547 
5548 /*
5549  * The returned cgroup is fully initialized including its control mask, but
5550  * it isn't associated with its kernfs_node and doesn't have the control
5551  * mask applied.
5552  */
5553 static struct cgroup *cgroup_create(struct cgroup *parent, const char *name,
5554 				    umode_t mode)
5555 {
5556 	struct cgroup_root *root = parent->root;
5557 	struct cgroup *cgrp, *tcgrp;
5558 	struct kernfs_node *kn;
5559 	int level = parent->level + 1;
5560 	int ret;
5561 
5562 	/* allocate the cgroup and its ID, 0 is reserved for the root */
5563 	cgrp = kzalloc(struct_size(cgrp, ancestors, (level + 1)), GFP_KERNEL);
5564 	if (!cgrp)
5565 		return ERR_PTR(-ENOMEM);
5566 
5567 	ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
5568 	if (ret)
5569 		goto out_free_cgrp;
5570 
5571 	ret = cgroup_rstat_init(cgrp);
5572 	if (ret)
5573 		goto out_cancel_ref;
5574 
5575 	/* create the directory */
5576 	kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
5577 	if (IS_ERR(kn)) {
5578 		ret = PTR_ERR(kn);
5579 		goto out_stat_exit;
5580 	}
5581 	cgrp->kn = kn;
5582 
5583 	init_cgroup_housekeeping(cgrp);
5584 
5585 	cgrp->self.parent = &parent->self;
5586 	cgrp->root = root;
5587 	cgrp->level = level;
5588 
5589 	ret = psi_cgroup_alloc(cgrp);
5590 	if (ret)
5591 		goto out_kernfs_remove;
5592 
5593 	ret = cgroup_bpf_inherit(cgrp);
5594 	if (ret)
5595 		goto out_psi_free;
5596 
5597 	/*
5598 	 * New cgroup inherits effective freeze counter, and
5599 	 * if the parent has to be frozen, the child has too.
5600 	 */
5601 	cgrp->freezer.e_freeze = parent->freezer.e_freeze;
5602 	if (cgrp->freezer.e_freeze) {
5603 		/*
5604 		 * Set the CGRP_FREEZE flag, so when a process will be
5605 		 * attached to the child cgroup, it will become frozen.
5606 		 * At this point the new cgroup is unpopulated, so we can
5607 		 * consider it frozen immediately.
5608 		 */
5609 		set_bit(CGRP_FREEZE, &cgrp->flags);
5610 		set_bit(CGRP_FROZEN, &cgrp->flags);
5611 	}
5612 
5613 	spin_lock_irq(&css_set_lock);
5614 	for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5615 		cgrp->ancestors[tcgrp->level] = tcgrp;
5616 
5617 		if (tcgrp != cgrp) {
5618 			tcgrp->nr_descendants++;
5619 
5620 			/*
5621 			 * If the new cgroup is frozen, all ancestor cgroups
5622 			 * get a new frozen descendant, but their state can't
5623 			 * change because of this.
5624 			 */
5625 			if (cgrp->freezer.e_freeze)
5626 				tcgrp->freezer.nr_frozen_descendants++;
5627 		}
5628 	}
5629 	spin_unlock_irq(&css_set_lock);
5630 
5631 	if (notify_on_release(parent))
5632 		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
5633 
5634 	if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
5635 		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
5636 
5637 	cgrp->self.serial_nr = css_serial_nr_next++;
5638 
5639 	/* allocation complete, commit to creation */
5640 	list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
5641 	atomic_inc(&root->nr_cgrps);
5642 	cgroup_get_live(parent);
5643 
5644 	/*
5645 	 * On the default hierarchy, a child doesn't automatically inherit
5646 	 * subtree_control from the parent.  Each is configured manually.
5647 	 */
5648 	if (!cgroup_on_dfl(cgrp))
5649 		cgrp->subtree_control = cgroup_control(cgrp);
5650 
5651 	cgroup_propagate_control(cgrp);
5652 
5653 	return cgrp;
5654 
5655 out_psi_free:
5656 	psi_cgroup_free(cgrp);
5657 out_kernfs_remove:
5658 	kernfs_remove(cgrp->kn);
5659 out_stat_exit:
5660 	cgroup_rstat_exit(cgrp);
5661 out_cancel_ref:
5662 	percpu_ref_exit(&cgrp->self.refcnt);
5663 out_free_cgrp:
5664 	kfree(cgrp);
5665 	return ERR_PTR(ret);
5666 }
5667 
5668 static bool cgroup_check_hierarchy_limits(struct cgroup *parent)
5669 {
5670 	struct cgroup *cgroup;
5671 	int ret = false;
5672 	int level = 1;
5673 
5674 	lockdep_assert_held(&cgroup_mutex);
5675 
5676 	for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) {
5677 		if (cgroup->nr_descendants >= cgroup->max_descendants)
5678 			goto fail;
5679 
5680 		if (level > cgroup->max_depth)
5681 			goto fail;
5682 
5683 		level++;
5684 	}
5685 
5686 	ret = true;
5687 fail:
5688 	return ret;
5689 }
5690 
5691 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode)
5692 {
5693 	struct cgroup *parent, *cgrp;
5694 	int ret;
5695 
5696 	/* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
5697 	if (strchr(name, '\n'))
5698 		return -EINVAL;
5699 
5700 	parent = cgroup_kn_lock_live(parent_kn, false);
5701 	if (!parent)
5702 		return -ENODEV;
5703 
5704 	if (!cgroup_check_hierarchy_limits(parent)) {
5705 		ret = -EAGAIN;
5706 		goto out_unlock;
5707 	}
5708 
5709 	cgrp = cgroup_create(parent, name, mode);
5710 	if (IS_ERR(cgrp)) {
5711 		ret = PTR_ERR(cgrp);
5712 		goto out_unlock;
5713 	}
5714 
5715 	/*
5716 	 * This extra ref will be put in cgroup_free_fn() and guarantees
5717 	 * that @cgrp->kn is always accessible.
5718 	 */
5719 	kernfs_get(cgrp->kn);
5720 
5721 	ret = cgroup_kn_set_ugid(cgrp->kn);
5722 	if (ret)
5723 		goto out_destroy;
5724 
5725 	ret = css_populate_dir(&cgrp->self);
5726 	if (ret)
5727 		goto out_destroy;
5728 
5729 	ret = cgroup_apply_control_enable(cgrp);
5730 	if (ret)
5731 		goto out_destroy;
5732 
5733 	TRACE_CGROUP_PATH(mkdir, cgrp);
5734 
5735 	/* let's create and online css's */
5736 	kernfs_activate(cgrp->kn);
5737 
5738 	ret = 0;
5739 	goto out_unlock;
5740 
5741 out_destroy:
5742 	cgroup_destroy_locked(cgrp);
5743 out_unlock:
5744 	cgroup_kn_unlock(parent_kn);
5745 	return ret;
5746 }
5747 
5748 /*
5749  * This is called when the refcnt of a css is confirmed to be killed.
5750  * css_tryget_online() is now guaranteed to fail.  Tell the subsystem to
5751  * initiate destruction and put the css ref from kill_css().
5752  */
5753 static void css_killed_work_fn(struct work_struct *work)
5754 {
5755 	struct cgroup_subsys_state *css =
5756 		container_of(work, struct cgroup_subsys_state, destroy_work);
5757 
5758 	cgroup_lock();
5759 
5760 	do {
5761 		offline_css(css);
5762 		css_put(css);
5763 		/* @css can't go away while we're holding cgroup_mutex */
5764 		css = css->parent;
5765 	} while (css && atomic_dec_and_test(&css->online_cnt));
5766 
5767 	cgroup_unlock();
5768 }
5769 
5770 /* css kill confirmation processing requires process context, bounce */
5771 static void css_killed_ref_fn(struct percpu_ref *ref)
5772 {
5773 	struct cgroup_subsys_state *css =
5774 		container_of(ref, struct cgroup_subsys_state, refcnt);
5775 
5776 	if (atomic_dec_and_test(&css->online_cnt)) {
5777 		INIT_WORK(&css->destroy_work, css_killed_work_fn);
5778 		queue_work(cgroup_destroy_wq, &css->destroy_work);
5779 	}
5780 }
5781 
5782 /**
5783  * kill_css - destroy a css
5784  * @css: css to destroy
5785  *
5786  * This function initiates destruction of @css by removing cgroup interface
5787  * files and putting its base reference.  ->css_offline() will be invoked
5788  * asynchronously once css_tryget_online() is guaranteed to fail and when
5789  * the reference count reaches zero, @css will be released.
5790  */
5791 static void kill_css(struct cgroup_subsys_state *css)
5792 {
5793 	lockdep_assert_held(&cgroup_mutex);
5794 
5795 	if (css->flags & CSS_DYING)
5796 		return;
5797 
5798 	css->flags |= CSS_DYING;
5799 
5800 	/*
5801 	 * This must happen before css is disassociated with its cgroup.
5802 	 * See seq_css() for details.
5803 	 */
5804 	css_clear_dir(css);
5805 
5806 	/*
5807 	 * Killing would put the base ref, but we need to keep it alive
5808 	 * until after ->css_offline().
5809 	 */
5810 	css_get(css);
5811 
5812 	/*
5813 	 * cgroup core guarantees that, by the time ->css_offline() is
5814 	 * invoked, no new css reference will be given out via
5815 	 * css_tryget_online().  We can't simply call percpu_ref_kill() and
5816 	 * proceed to offlining css's because percpu_ref_kill() doesn't
5817 	 * guarantee that the ref is seen as killed on all CPUs on return.
5818 	 *
5819 	 * Use percpu_ref_kill_and_confirm() to get notifications as each
5820 	 * css is confirmed to be seen as killed on all CPUs.
5821 	 */
5822 	percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
5823 }
5824 
5825 /**
5826  * cgroup_destroy_locked - the first stage of cgroup destruction
5827  * @cgrp: cgroup to be destroyed
5828  *
5829  * css's make use of percpu refcnts whose killing latency shouldn't be
5830  * exposed to userland and are RCU protected.  Also, cgroup core needs to
5831  * guarantee that css_tryget_online() won't succeed by the time
5832  * ->css_offline() is invoked.  To satisfy all the requirements,
5833  * destruction is implemented in the following two steps.
5834  *
5835  * s1. Verify @cgrp can be destroyed and mark it dying.  Remove all
5836  *     userland visible parts and start killing the percpu refcnts of
5837  *     css's.  Set up so that the next stage will be kicked off once all
5838  *     the percpu refcnts are confirmed to be killed.
5839  *
5840  * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5841  *     rest of destruction.  Once all cgroup references are gone, the
5842  *     cgroup is RCU-freed.
5843  *
5844  * This function implements s1.  After this step, @cgrp is gone as far as
5845  * the userland is concerned and a new cgroup with the same name may be
5846  * created.  As cgroup doesn't care about the names internally, this
5847  * doesn't cause any problem.
5848  */
5849 static int cgroup_destroy_locked(struct cgroup *cgrp)
5850 	__releases(&cgroup_mutex) __acquires(&cgroup_mutex)
5851 {
5852 	struct cgroup *tcgrp, *parent = cgroup_parent(cgrp);
5853 	struct cgroup_subsys_state *css;
5854 	struct cgrp_cset_link *link;
5855 	int ssid;
5856 
5857 	lockdep_assert_held(&cgroup_mutex);
5858 
5859 	/*
5860 	 * Only migration can raise populated from zero and we're already
5861 	 * holding cgroup_mutex.
5862 	 */
5863 	if (cgroup_is_populated(cgrp))
5864 		return -EBUSY;
5865 
5866 	/*
5867 	 * Make sure there's no live children.  We can't test emptiness of
5868 	 * ->self.children as dead children linger on it while being
5869 	 * drained; otherwise, "rmdir parent/child parent" may fail.
5870 	 */
5871 	if (css_has_online_children(&cgrp->self))
5872 		return -EBUSY;
5873 
5874 	/*
5875 	 * Mark @cgrp and the associated csets dead.  The former prevents
5876 	 * further task migration and child creation by disabling
5877 	 * cgroup_lock_live_group().  The latter makes the csets ignored by
5878 	 * the migration path.
5879 	 */
5880 	cgrp->self.flags &= ~CSS_ONLINE;
5881 
5882 	spin_lock_irq(&css_set_lock);
5883 	list_for_each_entry(link, &cgrp->cset_links, cset_link)
5884 		link->cset->dead = true;
5885 	spin_unlock_irq(&css_set_lock);
5886 
5887 	/* initiate massacre of all css's */
5888 	for_each_css(css, ssid, cgrp)
5889 		kill_css(css);
5890 
5891 	/* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */
5892 	css_clear_dir(&cgrp->self);
5893 	kernfs_remove(cgrp->kn);
5894 
5895 	if (cgroup_is_threaded(cgrp))
5896 		parent->nr_threaded_children--;
5897 
5898 	spin_lock_irq(&css_set_lock);
5899 	for (tcgrp = cgroup_parent(cgrp); tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5900 		tcgrp->nr_descendants--;
5901 		tcgrp->nr_dying_descendants++;
5902 		/*
5903 		 * If the dying cgroup is frozen, decrease frozen descendants
5904 		 * counters of ancestor cgroups.
5905 		 */
5906 		if (test_bit(CGRP_FROZEN, &cgrp->flags))
5907 			tcgrp->freezer.nr_frozen_descendants--;
5908 	}
5909 	spin_unlock_irq(&css_set_lock);
5910 
5911 	cgroup1_check_for_release(parent);
5912 
5913 	cgroup_bpf_offline(cgrp);
5914 
5915 	/* put the base reference */
5916 	percpu_ref_kill(&cgrp->self.refcnt);
5917 
5918 	return 0;
5919 };
5920 
5921 int cgroup_rmdir(struct kernfs_node *kn)
5922 {
5923 	struct cgroup *cgrp;
5924 	int ret = 0;
5925 
5926 	cgrp = cgroup_kn_lock_live(kn, false);
5927 	if (!cgrp)
5928 		return 0;
5929 
5930 	ret = cgroup_destroy_locked(cgrp);
5931 	if (!ret)
5932 		TRACE_CGROUP_PATH(rmdir, cgrp);
5933 
5934 	cgroup_kn_unlock(kn);
5935 	return ret;
5936 }
5937 
5938 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5939 	.show_options		= cgroup_show_options,
5940 	.mkdir			= cgroup_mkdir,
5941 	.rmdir			= cgroup_rmdir,
5942 	.show_path		= cgroup_show_path,
5943 };
5944 
5945 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
5946 {
5947 	struct cgroup_subsys_state *css;
5948 
5949 	pr_debug("Initializing cgroup subsys %s\n", ss->name);
5950 
5951 	cgroup_lock();
5952 
5953 	idr_init(&ss->css_idr);
5954 	INIT_LIST_HEAD(&ss->cfts);
5955 
5956 	/* Create the root cgroup state for this subsystem */
5957 	ss->root = &cgrp_dfl_root;
5958 	css = ss->css_alloc(NULL);
5959 	/* We don't handle early failures gracefully */
5960 	BUG_ON(IS_ERR(css));
5961 	init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
5962 
5963 	/*
5964 	 * Root csses are never destroyed and we can't initialize
5965 	 * percpu_ref during early init.  Disable refcnting.
5966 	 */
5967 	css->flags |= CSS_NO_REF;
5968 
5969 	if (early) {
5970 		/* allocation can't be done safely during early init */
5971 		css->id = 1;
5972 	} else {
5973 		css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5974 		BUG_ON(css->id < 0);
5975 	}
5976 
5977 	/* Update the init_css_set to contain a subsys
5978 	 * pointer to this state - since the subsystem is
5979 	 * newly registered, all tasks and hence the
5980 	 * init_css_set is in the subsystem's root cgroup. */
5981 	init_css_set.subsys[ss->id] = css;
5982 
5983 	have_fork_callback |= (bool)ss->fork << ss->id;
5984 	have_exit_callback |= (bool)ss->exit << ss->id;
5985 	have_release_callback |= (bool)ss->release << ss->id;
5986 	have_canfork_callback |= (bool)ss->can_fork << ss->id;
5987 
5988 	/* At system boot, before all subsystems have been
5989 	 * registered, no tasks have been forked, so we don't
5990 	 * need to invoke fork callbacks here. */
5991 	BUG_ON(!list_empty(&init_task.tasks));
5992 
5993 	BUG_ON(online_css(css));
5994 
5995 	cgroup_unlock();
5996 }
5997 
5998 /**
5999  * cgroup_init_early - cgroup initialization at system boot
6000  *
6001  * Initialize cgroups at system boot, and initialize any
6002  * subsystems that request early init.
6003  */
6004 int __init cgroup_init_early(void)
6005 {
6006 	static struct cgroup_fs_context __initdata ctx;
6007 	struct cgroup_subsys *ss;
6008 	int i;
6009 
6010 	ctx.root = &cgrp_dfl_root;
6011 	init_cgroup_root(&ctx);
6012 	cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
6013 
6014 	RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
6015 
6016 	for_each_subsys(ss, i) {
6017 		WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
6018 		     "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
6019 		     i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
6020 		     ss->id, ss->name);
6021 		WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
6022 		     "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
6023 
6024 		ss->id = i;
6025 		ss->name = cgroup_subsys_name[i];
6026 		if (!ss->legacy_name)
6027 			ss->legacy_name = cgroup_subsys_name[i];
6028 
6029 		if (ss->early_init)
6030 			cgroup_init_subsys(ss, true);
6031 	}
6032 	return 0;
6033 }
6034 
6035 /**
6036  * cgroup_init - cgroup initialization
6037  *
6038  * Register cgroup filesystem and /proc file, and initialize
6039  * any subsystems that didn't request early init.
6040  */
6041 int __init cgroup_init(void)
6042 {
6043 	struct cgroup_subsys *ss;
6044 	int ssid;
6045 
6046 	BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
6047 	BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
6048 	BUG_ON(cgroup_init_cftypes(NULL, cgroup_psi_files));
6049 	BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files));
6050 
6051 	cgroup_rstat_boot();
6052 
6053 	get_user_ns(init_cgroup_ns.user_ns);
6054 
6055 	cgroup_lock();
6056 
6057 	/*
6058 	 * Add init_css_set to the hash table so that dfl_root can link to
6059 	 * it during init.
6060 	 */
6061 	hash_add(css_set_table, &init_css_set.hlist,
6062 		 css_set_hash(init_css_set.subsys));
6063 
6064 	BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
6065 
6066 	cgroup_unlock();
6067 
6068 	for_each_subsys(ss, ssid) {
6069 		if (ss->early_init) {
6070 			struct cgroup_subsys_state *css =
6071 				init_css_set.subsys[ss->id];
6072 
6073 			css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
6074 						   GFP_KERNEL);
6075 			BUG_ON(css->id < 0);
6076 		} else {
6077 			cgroup_init_subsys(ss, false);
6078 		}
6079 
6080 		list_add_tail(&init_css_set.e_cset_node[ssid],
6081 			      &cgrp_dfl_root.cgrp.e_csets[ssid]);
6082 
6083 		/*
6084 		 * Setting dfl_root subsys_mask needs to consider the
6085 		 * disabled flag and cftype registration needs kmalloc,
6086 		 * both of which aren't available during early_init.
6087 		 */
6088 		if (!cgroup_ssid_enabled(ssid))
6089 			continue;
6090 
6091 		if (cgroup1_ssid_disabled(ssid))
6092 			printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n",
6093 			       ss->name);
6094 
6095 		cgrp_dfl_root.subsys_mask |= 1 << ss->id;
6096 
6097 		/* implicit controllers must be threaded too */
6098 		WARN_ON(ss->implicit_on_dfl && !ss->threaded);
6099 
6100 		if (ss->implicit_on_dfl)
6101 			cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
6102 		else if (!ss->dfl_cftypes)
6103 			cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
6104 
6105 		if (ss->threaded)
6106 			cgrp_dfl_threaded_ss_mask |= 1 << ss->id;
6107 
6108 		if (ss->dfl_cftypes == ss->legacy_cftypes) {
6109 			WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
6110 		} else {
6111 			WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
6112 			WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
6113 		}
6114 
6115 		if (ss->bind)
6116 			ss->bind(init_css_set.subsys[ssid]);
6117 
6118 		cgroup_lock();
6119 		css_populate_dir(init_css_set.subsys[ssid]);
6120 		cgroup_unlock();
6121 	}
6122 
6123 	/* init_css_set.subsys[] has been updated, re-hash */
6124 	hash_del(&init_css_set.hlist);
6125 	hash_add(css_set_table, &init_css_set.hlist,
6126 		 css_set_hash(init_css_set.subsys));
6127 
6128 	WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
6129 	WARN_ON(register_filesystem(&cgroup_fs_type));
6130 	WARN_ON(register_filesystem(&cgroup2_fs_type));
6131 	WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show));
6132 #ifdef CONFIG_CPUSETS
6133 	WARN_ON(register_filesystem(&cpuset_fs_type));
6134 #endif
6135 
6136 	return 0;
6137 }
6138 
6139 static int __init cgroup_wq_init(void)
6140 {
6141 	/*
6142 	 * There isn't much point in executing destruction path in
6143 	 * parallel.  Good chunk is serialized with cgroup_mutex anyway.
6144 	 * Use 1 for @max_active.
6145 	 *
6146 	 * We would prefer to do this in cgroup_init() above, but that
6147 	 * is called before init_workqueues(): so leave this until after.
6148 	 */
6149 	cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
6150 	BUG_ON(!cgroup_destroy_wq);
6151 	return 0;
6152 }
6153 core_initcall(cgroup_wq_init);
6154 
6155 void cgroup_path_from_kernfs_id(u64 id, char *buf, size_t buflen)
6156 {
6157 	struct kernfs_node *kn;
6158 
6159 	kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id);
6160 	if (!kn)
6161 		return;
6162 	kernfs_path(kn, buf, buflen);
6163 	kernfs_put(kn);
6164 }
6165 
6166 /*
6167  * cgroup_get_from_id : get the cgroup associated with cgroup id
6168  * @id: cgroup id
6169  * On success return the cgrp or ERR_PTR on failure
6170  * Only cgroups within current task's cgroup NS are valid.
6171  */
6172 struct cgroup *cgroup_get_from_id(u64 id)
6173 {
6174 	struct kernfs_node *kn;
6175 	struct cgroup *cgrp, *root_cgrp;
6176 
6177 	kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id);
6178 	if (!kn)
6179 		return ERR_PTR(-ENOENT);
6180 
6181 	if (kernfs_type(kn) != KERNFS_DIR) {
6182 		kernfs_put(kn);
6183 		return ERR_PTR(-ENOENT);
6184 	}
6185 
6186 	rcu_read_lock();
6187 
6188 	cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6189 	if (cgrp && !cgroup_tryget(cgrp))
6190 		cgrp = NULL;
6191 
6192 	rcu_read_unlock();
6193 	kernfs_put(kn);
6194 
6195 	if (!cgrp)
6196 		return ERR_PTR(-ENOENT);
6197 
6198 	root_cgrp = current_cgns_cgroup_dfl();
6199 	if (!cgroup_is_descendant(cgrp, root_cgrp)) {
6200 		cgroup_put(cgrp);
6201 		return ERR_PTR(-ENOENT);
6202 	}
6203 
6204 	return cgrp;
6205 }
6206 EXPORT_SYMBOL_GPL(cgroup_get_from_id);
6207 
6208 /*
6209  * proc_cgroup_show()
6210  *  - Print task's cgroup paths into seq_file, one line for each hierarchy
6211  *  - Used for /proc/<pid>/cgroup.
6212  */
6213 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
6214 		     struct pid *pid, struct task_struct *tsk)
6215 {
6216 	char *buf;
6217 	int retval;
6218 	struct cgroup_root *root;
6219 
6220 	retval = -ENOMEM;
6221 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
6222 	if (!buf)
6223 		goto out;
6224 
6225 	cgroup_lock();
6226 	spin_lock_irq(&css_set_lock);
6227 
6228 	for_each_root(root) {
6229 		struct cgroup_subsys *ss;
6230 		struct cgroup *cgrp;
6231 		int ssid, count = 0;
6232 
6233 		if (root == &cgrp_dfl_root && !READ_ONCE(cgrp_dfl_visible))
6234 			continue;
6235 
6236 		seq_printf(m, "%d:", root->hierarchy_id);
6237 		if (root != &cgrp_dfl_root)
6238 			for_each_subsys(ss, ssid)
6239 				if (root->subsys_mask & (1 << ssid))
6240 					seq_printf(m, "%s%s", count++ ? "," : "",
6241 						   ss->legacy_name);
6242 		if (strlen(root->name))
6243 			seq_printf(m, "%sname=%s", count ? "," : "",
6244 				   root->name);
6245 		seq_putc(m, ':');
6246 
6247 		cgrp = task_cgroup_from_root(tsk, root);
6248 
6249 		/*
6250 		 * On traditional hierarchies, all zombie tasks show up as
6251 		 * belonging to the root cgroup.  On the default hierarchy,
6252 		 * while a zombie doesn't show up in "cgroup.procs" and
6253 		 * thus can't be migrated, its /proc/PID/cgroup keeps
6254 		 * reporting the cgroup it belonged to before exiting.  If
6255 		 * the cgroup is removed before the zombie is reaped,
6256 		 * " (deleted)" is appended to the cgroup path.
6257 		 */
6258 		if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
6259 			retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
6260 						current->nsproxy->cgroup_ns);
6261 			if (retval >= PATH_MAX)
6262 				retval = -ENAMETOOLONG;
6263 			if (retval < 0)
6264 				goto out_unlock;
6265 
6266 			seq_puts(m, buf);
6267 		} else {
6268 			seq_puts(m, "/");
6269 		}
6270 
6271 		if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
6272 			seq_puts(m, " (deleted)\n");
6273 		else
6274 			seq_putc(m, '\n');
6275 	}
6276 
6277 	retval = 0;
6278 out_unlock:
6279 	spin_unlock_irq(&css_set_lock);
6280 	cgroup_unlock();
6281 	kfree(buf);
6282 out:
6283 	return retval;
6284 }
6285 
6286 /**
6287  * cgroup_fork - initialize cgroup related fields during copy_process()
6288  * @child: pointer to task_struct of forking parent process.
6289  *
6290  * A task is associated with the init_css_set until cgroup_post_fork()
6291  * attaches it to the target css_set.
6292  */
6293 void cgroup_fork(struct task_struct *child)
6294 {
6295 	RCU_INIT_POINTER(child->cgroups, &init_css_set);
6296 	INIT_LIST_HEAD(&child->cg_list);
6297 }
6298 
6299 /**
6300  * cgroup_v1v2_get_from_file - get a cgroup pointer from a file pointer
6301  * @f: file corresponding to cgroup_dir
6302  *
6303  * Find the cgroup from a file pointer associated with a cgroup directory.
6304  * Returns a pointer to the cgroup on success. ERR_PTR is returned if the
6305  * cgroup cannot be found.
6306  */
6307 static struct cgroup *cgroup_v1v2_get_from_file(struct file *f)
6308 {
6309 	struct cgroup_subsys_state *css;
6310 
6311 	css = css_tryget_online_from_dir(f->f_path.dentry, NULL);
6312 	if (IS_ERR(css))
6313 		return ERR_CAST(css);
6314 
6315 	return css->cgroup;
6316 }
6317 
6318 /**
6319  * cgroup_get_from_file - same as cgroup_v1v2_get_from_file, but only supports
6320  * cgroup2.
6321  * @f: file corresponding to cgroup2_dir
6322  */
6323 static struct cgroup *cgroup_get_from_file(struct file *f)
6324 {
6325 	struct cgroup *cgrp = cgroup_v1v2_get_from_file(f);
6326 
6327 	if (IS_ERR(cgrp))
6328 		return ERR_CAST(cgrp);
6329 
6330 	if (!cgroup_on_dfl(cgrp)) {
6331 		cgroup_put(cgrp);
6332 		return ERR_PTR(-EBADF);
6333 	}
6334 
6335 	return cgrp;
6336 }
6337 
6338 /**
6339  * cgroup_css_set_fork - find or create a css_set for a child process
6340  * @kargs: the arguments passed to create the child process
6341  *
6342  * This functions finds or creates a new css_set which the child
6343  * process will be attached to in cgroup_post_fork(). By default,
6344  * the child process will be given the same css_set as its parent.
6345  *
6346  * If CLONE_INTO_CGROUP is specified this function will try to find an
6347  * existing css_set which includes the requested cgroup and if not create
6348  * a new css_set that the child will be attached to later. If this function
6349  * succeeds it will hold cgroup_threadgroup_rwsem on return. If
6350  * CLONE_INTO_CGROUP is requested this function will grab cgroup mutex
6351  * before grabbing cgroup_threadgroup_rwsem and will hold a reference
6352  * to the target cgroup.
6353  */
6354 static int cgroup_css_set_fork(struct kernel_clone_args *kargs)
6355 	__acquires(&cgroup_mutex) __acquires(&cgroup_threadgroup_rwsem)
6356 {
6357 	int ret;
6358 	struct cgroup *dst_cgrp = NULL;
6359 	struct css_set *cset;
6360 	struct super_block *sb;
6361 	struct file *f;
6362 
6363 	if (kargs->flags & CLONE_INTO_CGROUP)
6364 		cgroup_lock();
6365 
6366 	cgroup_threadgroup_change_begin(current);
6367 
6368 	spin_lock_irq(&css_set_lock);
6369 	cset = task_css_set(current);
6370 	get_css_set(cset);
6371 	spin_unlock_irq(&css_set_lock);
6372 
6373 	if (!(kargs->flags & CLONE_INTO_CGROUP)) {
6374 		kargs->cset = cset;
6375 		return 0;
6376 	}
6377 
6378 	f = fget_raw(kargs->cgroup);
6379 	if (!f) {
6380 		ret = -EBADF;
6381 		goto err;
6382 	}
6383 	sb = f->f_path.dentry->d_sb;
6384 
6385 	dst_cgrp = cgroup_get_from_file(f);
6386 	if (IS_ERR(dst_cgrp)) {
6387 		ret = PTR_ERR(dst_cgrp);
6388 		dst_cgrp = NULL;
6389 		goto err;
6390 	}
6391 
6392 	if (cgroup_is_dead(dst_cgrp)) {
6393 		ret = -ENODEV;
6394 		goto err;
6395 	}
6396 
6397 	/*
6398 	 * Verify that we the target cgroup is writable for us. This is
6399 	 * usually done by the vfs layer but since we're not going through
6400 	 * the vfs layer here we need to do it "manually".
6401 	 */
6402 	ret = cgroup_may_write(dst_cgrp, sb);
6403 	if (ret)
6404 		goto err;
6405 
6406 	/*
6407 	 * Spawning a task directly into a cgroup works by passing a file
6408 	 * descriptor to the target cgroup directory. This can even be an O_PATH
6409 	 * file descriptor. But it can never be a cgroup.procs file descriptor.
6410 	 * This was done on purpose so spawning into a cgroup could be
6411 	 * conceptualized as an atomic
6412 	 *
6413 	 *   fd = openat(dfd_cgroup, "cgroup.procs", ...);
6414 	 *   write(fd, <child-pid>, ...);
6415 	 *
6416 	 * sequence, i.e. it's a shorthand for the caller opening and writing
6417 	 * cgroup.procs of the cgroup indicated by @dfd_cgroup. This allows us
6418 	 * to always use the caller's credentials.
6419 	 */
6420 	ret = cgroup_attach_permissions(cset->dfl_cgrp, dst_cgrp, sb,
6421 					!(kargs->flags & CLONE_THREAD),
6422 					current->nsproxy->cgroup_ns);
6423 	if (ret)
6424 		goto err;
6425 
6426 	kargs->cset = find_css_set(cset, dst_cgrp);
6427 	if (!kargs->cset) {
6428 		ret = -ENOMEM;
6429 		goto err;
6430 	}
6431 
6432 	put_css_set(cset);
6433 	fput(f);
6434 	kargs->cgrp = dst_cgrp;
6435 	return ret;
6436 
6437 err:
6438 	cgroup_threadgroup_change_end(current);
6439 	cgroup_unlock();
6440 	if (f)
6441 		fput(f);
6442 	if (dst_cgrp)
6443 		cgroup_put(dst_cgrp);
6444 	put_css_set(cset);
6445 	if (kargs->cset)
6446 		put_css_set(kargs->cset);
6447 	return ret;
6448 }
6449 
6450 /**
6451  * cgroup_css_set_put_fork - drop references we took during fork
6452  * @kargs: the arguments passed to create the child process
6453  *
6454  * Drop references to the prepared css_set and target cgroup if
6455  * CLONE_INTO_CGROUP was requested.
6456  */
6457 static void cgroup_css_set_put_fork(struct kernel_clone_args *kargs)
6458 	__releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
6459 {
6460 	struct cgroup *cgrp = kargs->cgrp;
6461 	struct css_set *cset = kargs->cset;
6462 
6463 	cgroup_threadgroup_change_end(current);
6464 
6465 	if (cset) {
6466 		put_css_set(cset);
6467 		kargs->cset = NULL;
6468 	}
6469 
6470 	if (kargs->flags & CLONE_INTO_CGROUP) {
6471 		cgroup_unlock();
6472 		if (cgrp) {
6473 			cgroup_put(cgrp);
6474 			kargs->cgrp = NULL;
6475 		}
6476 	}
6477 }
6478 
6479 /**
6480  * cgroup_can_fork - called on a new task before the process is exposed
6481  * @child: the child process
6482  * @kargs: the arguments passed to create the child process
6483  *
6484  * This prepares a new css_set for the child process which the child will
6485  * be attached to in cgroup_post_fork().
6486  * This calls the subsystem can_fork() callbacks. If the cgroup_can_fork()
6487  * callback returns an error, the fork aborts with that error code. This
6488  * allows for a cgroup subsystem to conditionally allow or deny new forks.
6489  */
6490 int cgroup_can_fork(struct task_struct *child, struct kernel_clone_args *kargs)
6491 {
6492 	struct cgroup_subsys *ss;
6493 	int i, j, ret;
6494 
6495 	ret = cgroup_css_set_fork(kargs);
6496 	if (ret)
6497 		return ret;
6498 
6499 	do_each_subsys_mask(ss, i, have_canfork_callback) {
6500 		ret = ss->can_fork(child, kargs->cset);
6501 		if (ret)
6502 			goto out_revert;
6503 	} while_each_subsys_mask();
6504 
6505 	return 0;
6506 
6507 out_revert:
6508 	for_each_subsys(ss, j) {
6509 		if (j >= i)
6510 			break;
6511 		if (ss->cancel_fork)
6512 			ss->cancel_fork(child, kargs->cset);
6513 	}
6514 
6515 	cgroup_css_set_put_fork(kargs);
6516 
6517 	return ret;
6518 }
6519 
6520 /**
6521  * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
6522  * @child: the child process
6523  * @kargs: the arguments passed to create the child process
6524  *
6525  * This calls the cancel_fork() callbacks if a fork failed *after*
6526  * cgroup_can_fork() succeeded and cleans up references we took to
6527  * prepare a new css_set for the child process in cgroup_can_fork().
6528  */
6529 void cgroup_cancel_fork(struct task_struct *child,
6530 			struct kernel_clone_args *kargs)
6531 {
6532 	struct cgroup_subsys *ss;
6533 	int i;
6534 
6535 	for_each_subsys(ss, i)
6536 		if (ss->cancel_fork)
6537 			ss->cancel_fork(child, kargs->cset);
6538 
6539 	cgroup_css_set_put_fork(kargs);
6540 }
6541 
6542 /**
6543  * cgroup_post_fork - finalize cgroup setup for the child process
6544  * @child: the child process
6545  * @kargs: the arguments passed to create the child process
6546  *
6547  * Attach the child process to its css_set calling the subsystem fork()
6548  * callbacks.
6549  */
6550 void cgroup_post_fork(struct task_struct *child,
6551 		      struct kernel_clone_args *kargs)
6552 	__releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
6553 {
6554 	unsigned long cgrp_flags = 0;
6555 	bool kill = false;
6556 	struct cgroup_subsys *ss;
6557 	struct css_set *cset;
6558 	int i;
6559 
6560 	cset = kargs->cset;
6561 	kargs->cset = NULL;
6562 
6563 	spin_lock_irq(&css_set_lock);
6564 
6565 	/* init tasks are special, only link regular threads */
6566 	if (likely(child->pid)) {
6567 		if (kargs->cgrp)
6568 			cgrp_flags = kargs->cgrp->flags;
6569 		else
6570 			cgrp_flags = cset->dfl_cgrp->flags;
6571 
6572 		WARN_ON_ONCE(!list_empty(&child->cg_list));
6573 		cset->nr_tasks++;
6574 		css_set_move_task(child, NULL, cset, false);
6575 	} else {
6576 		put_css_set(cset);
6577 		cset = NULL;
6578 	}
6579 
6580 	if (!(child->flags & PF_KTHREAD)) {
6581 		if (unlikely(test_bit(CGRP_FREEZE, &cgrp_flags))) {
6582 			/*
6583 			 * If the cgroup has to be frozen, the new task has
6584 			 * too. Let's set the JOBCTL_TRAP_FREEZE jobctl bit to
6585 			 * get the task into the frozen state.
6586 			 */
6587 			spin_lock(&child->sighand->siglock);
6588 			WARN_ON_ONCE(child->frozen);
6589 			child->jobctl |= JOBCTL_TRAP_FREEZE;
6590 			spin_unlock(&child->sighand->siglock);
6591 
6592 			/*
6593 			 * Calling cgroup_update_frozen() isn't required here,
6594 			 * because it will be called anyway a bit later from
6595 			 * do_freezer_trap(). So we avoid cgroup's transient
6596 			 * switch from the frozen state and back.
6597 			 */
6598 		}
6599 
6600 		/*
6601 		 * If the cgroup is to be killed notice it now and take the
6602 		 * child down right after we finished preparing it for
6603 		 * userspace.
6604 		 */
6605 		kill = test_bit(CGRP_KILL, &cgrp_flags);
6606 	}
6607 
6608 	spin_unlock_irq(&css_set_lock);
6609 
6610 	/*
6611 	 * Call ss->fork().  This must happen after @child is linked on
6612 	 * css_set; otherwise, @child might change state between ->fork()
6613 	 * and addition to css_set.
6614 	 */
6615 	do_each_subsys_mask(ss, i, have_fork_callback) {
6616 		ss->fork(child);
6617 	} while_each_subsys_mask();
6618 
6619 	/* Make the new cset the root_cset of the new cgroup namespace. */
6620 	if (kargs->flags & CLONE_NEWCGROUP) {
6621 		struct css_set *rcset = child->nsproxy->cgroup_ns->root_cset;
6622 
6623 		get_css_set(cset);
6624 		child->nsproxy->cgroup_ns->root_cset = cset;
6625 		put_css_set(rcset);
6626 	}
6627 
6628 	/* Cgroup has to be killed so take down child immediately. */
6629 	if (unlikely(kill))
6630 		do_send_sig_info(SIGKILL, SEND_SIG_NOINFO, child, PIDTYPE_TGID);
6631 
6632 	cgroup_css_set_put_fork(kargs);
6633 }
6634 
6635 /**
6636  * cgroup_exit - detach cgroup from exiting task
6637  * @tsk: pointer to task_struct of exiting process
6638  *
6639  * Description: Detach cgroup from @tsk.
6640  *
6641  */
6642 void cgroup_exit(struct task_struct *tsk)
6643 {
6644 	struct cgroup_subsys *ss;
6645 	struct css_set *cset;
6646 	int i;
6647 
6648 	spin_lock_irq(&css_set_lock);
6649 
6650 	WARN_ON_ONCE(list_empty(&tsk->cg_list));
6651 	cset = task_css_set(tsk);
6652 	css_set_move_task(tsk, cset, NULL, false);
6653 	list_add_tail(&tsk->cg_list, &cset->dying_tasks);
6654 	cset->nr_tasks--;
6655 
6656 	if (dl_task(tsk))
6657 		dec_dl_tasks_cs(tsk);
6658 
6659 	WARN_ON_ONCE(cgroup_task_frozen(tsk));
6660 	if (unlikely(!(tsk->flags & PF_KTHREAD) &&
6661 		     test_bit(CGRP_FREEZE, &task_dfl_cgroup(tsk)->flags)))
6662 		cgroup_update_frozen(task_dfl_cgroup(tsk));
6663 
6664 	spin_unlock_irq(&css_set_lock);
6665 
6666 	/* see cgroup_post_fork() for details */
6667 	do_each_subsys_mask(ss, i, have_exit_callback) {
6668 		ss->exit(tsk);
6669 	} while_each_subsys_mask();
6670 }
6671 
6672 void cgroup_release(struct task_struct *task)
6673 {
6674 	struct cgroup_subsys *ss;
6675 	int ssid;
6676 
6677 	do_each_subsys_mask(ss, ssid, have_release_callback) {
6678 		ss->release(task);
6679 	} while_each_subsys_mask();
6680 
6681 	spin_lock_irq(&css_set_lock);
6682 	css_set_skip_task_iters(task_css_set(task), task);
6683 	list_del_init(&task->cg_list);
6684 	spin_unlock_irq(&css_set_lock);
6685 }
6686 
6687 void cgroup_free(struct task_struct *task)
6688 {
6689 	struct css_set *cset = task_css_set(task);
6690 	put_css_set(cset);
6691 }
6692 
6693 static int __init cgroup_disable(char *str)
6694 {
6695 	struct cgroup_subsys *ss;
6696 	char *token;
6697 	int i;
6698 
6699 	while ((token = strsep(&str, ",")) != NULL) {
6700 		if (!*token)
6701 			continue;
6702 
6703 		for_each_subsys(ss, i) {
6704 			if (strcmp(token, ss->name) &&
6705 			    strcmp(token, ss->legacy_name))
6706 				continue;
6707 
6708 			static_branch_disable(cgroup_subsys_enabled_key[i]);
6709 			pr_info("Disabling %s control group subsystem\n",
6710 				ss->name);
6711 		}
6712 
6713 		for (i = 0; i < OPT_FEATURE_COUNT; i++) {
6714 			if (strcmp(token, cgroup_opt_feature_names[i]))
6715 				continue;
6716 			cgroup_feature_disable_mask |= 1 << i;
6717 			pr_info("Disabling %s control group feature\n",
6718 				cgroup_opt_feature_names[i]);
6719 			break;
6720 		}
6721 	}
6722 	return 1;
6723 }
6724 __setup("cgroup_disable=", cgroup_disable);
6725 
6726 void __init __weak enable_debug_cgroup(void) { }
6727 
6728 static int __init enable_cgroup_debug(char *str)
6729 {
6730 	cgroup_debug = true;
6731 	enable_debug_cgroup();
6732 	return 1;
6733 }
6734 __setup("cgroup_debug", enable_cgroup_debug);
6735 
6736 /**
6737  * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
6738  * @dentry: directory dentry of interest
6739  * @ss: subsystem of interest
6740  *
6741  * If @dentry is a directory for a cgroup which has @ss enabled on it, try
6742  * to get the corresponding css and return it.  If such css doesn't exist
6743  * or can't be pinned, an ERR_PTR value is returned.
6744  */
6745 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
6746 						       struct cgroup_subsys *ss)
6747 {
6748 	struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
6749 	struct file_system_type *s_type = dentry->d_sb->s_type;
6750 	struct cgroup_subsys_state *css = NULL;
6751 	struct cgroup *cgrp;
6752 
6753 	/* is @dentry a cgroup dir? */
6754 	if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
6755 	    !kn || kernfs_type(kn) != KERNFS_DIR)
6756 		return ERR_PTR(-EBADF);
6757 
6758 	rcu_read_lock();
6759 
6760 	/*
6761 	 * This path doesn't originate from kernfs and @kn could already
6762 	 * have been or be removed at any point.  @kn->priv is RCU
6763 	 * protected for this access.  See css_release_work_fn() for details.
6764 	 */
6765 	cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6766 	if (cgrp)
6767 		css = cgroup_css(cgrp, ss);
6768 
6769 	if (!css || !css_tryget_online(css))
6770 		css = ERR_PTR(-ENOENT);
6771 
6772 	rcu_read_unlock();
6773 	return css;
6774 }
6775 
6776 /**
6777  * css_from_id - lookup css by id
6778  * @id: the cgroup id
6779  * @ss: cgroup subsys to be looked into
6780  *
6781  * Returns the css if there's valid one with @id, otherwise returns NULL.
6782  * Should be called under rcu_read_lock().
6783  */
6784 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
6785 {
6786 	WARN_ON_ONCE(!rcu_read_lock_held());
6787 	return idr_find(&ss->css_idr, id);
6788 }
6789 
6790 /**
6791  * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
6792  * @path: path on the default hierarchy
6793  *
6794  * Find the cgroup at @path on the default hierarchy, increment its
6795  * reference count and return it.  Returns pointer to the found cgroup on
6796  * success, ERR_PTR(-ENOENT) if @path doesn't exist or if the cgroup has already
6797  * been released and ERR_PTR(-ENOTDIR) if @path points to a non-directory.
6798  */
6799 struct cgroup *cgroup_get_from_path(const char *path)
6800 {
6801 	struct kernfs_node *kn;
6802 	struct cgroup *cgrp = ERR_PTR(-ENOENT);
6803 	struct cgroup *root_cgrp;
6804 
6805 	root_cgrp = current_cgns_cgroup_dfl();
6806 	kn = kernfs_walk_and_get(root_cgrp->kn, path);
6807 	if (!kn)
6808 		goto out;
6809 
6810 	if (kernfs_type(kn) != KERNFS_DIR) {
6811 		cgrp = ERR_PTR(-ENOTDIR);
6812 		goto out_kernfs;
6813 	}
6814 
6815 	rcu_read_lock();
6816 
6817 	cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6818 	if (!cgrp || !cgroup_tryget(cgrp))
6819 		cgrp = ERR_PTR(-ENOENT);
6820 
6821 	rcu_read_unlock();
6822 
6823 out_kernfs:
6824 	kernfs_put(kn);
6825 out:
6826 	return cgrp;
6827 }
6828 EXPORT_SYMBOL_GPL(cgroup_get_from_path);
6829 
6830 /**
6831  * cgroup_v1v2_get_from_fd - get a cgroup pointer from a fd
6832  * @fd: fd obtained by open(cgroup_dir)
6833  *
6834  * Find the cgroup from a fd which should be obtained
6835  * by opening a cgroup directory.  Returns a pointer to the
6836  * cgroup on success. ERR_PTR is returned if the cgroup
6837  * cannot be found.
6838  */
6839 struct cgroup *cgroup_v1v2_get_from_fd(int fd)
6840 {
6841 	struct cgroup *cgrp;
6842 	struct fd f = fdget_raw(fd);
6843 	if (!f.file)
6844 		return ERR_PTR(-EBADF);
6845 
6846 	cgrp = cgroup_v1v2_get_from_file(f.file);
6847 	fdput(f);
6848 	return cgrp;
6849 }
6850 
6851 /**
6852  * cgroup_get_from_fd - same as cgroup_v1v2_get_from_fd, but only supports
6853  * cgroup2.
6854  * @fd: fd obtained by open(cgroup2_dir)
6855  */
6856 struct cgroup *cgroup_get_from_fd(int fd)
6857 {
6858 	struct cgroup *cgrp = cgroup_v1v2_get_from_fd(fd);
6859 
6860 	if (IS_ERR(cgrp))
6861 		return ERR_CAST(cgrp);
6862 
6863 	if (!cgroup_on_dfl(cgrp)) {
6864 		cgroup_put(cgrp);
6865 		return ERR_PTR(-EBADF);
6866 	}
6867 	return cgrp;
6868 }
6869 EXPORT_SYMBOL_GPL(cgroup_get_from_fd);
6870 
6871 static u64 power_of_ten(int power)
6872 {
6873 	u64 v = 1;
6874 	while (power--)
6875 		v *= 10;
6876 	return v;
6877 }
6878 
6879 /**
6880  * cgroup_parse_float - parse a floating number
6881  * @input: input string
6882  * @dec_shift: number of decimal digits to shift
6883  * @v: output
6884  *
6885  * Parse a decimal floating point number in @input and store the result in
6886  * @v with decimal point right shifted @dec_shift times.  For example, if
6887  * @input is "12.3456" and @dec_shift is 3, *@v will be set to 12345.
6888  * Returns 0 on success, -errno otherwise.
6889  *
6890  * There's nothing cgroup specific about this function except that it's
6891  * currently the only user.
6892  */
6893 int cgroup_parse_float(const char *input, unsigned dec_shift, s64 *v)
6894 {
6895 	s64 whole, frac = 0;
6896 	int fstart = 0, fend = 0, flen;
6897 
6898 	if (!sscanf(input, "%lld.%n%lld%n", &whole, &fstart, &frac, &fend))
6899 		return -EINVAL;
6900 	if (frac < 0)
6901 		return -EINVAL;
6902 
6903 	flen = fend > fstart ? fend - fstart : 0;
6904 	if (flen < dec_shift)
6905 		frac *= power_of_ten(dec_shift - flen);
6906 	else
6907 		frac = DIV_ROUND_CLOSEST_ULL(frac, power_of_ten(flen - dec_shift));
6908 
6909 	*v = whole * power_of_ten(dec_shift) + frac;
6910 	return 0;
6911 }
6912 
6913 /*
6914  * sock->sk_cgrp_data handling.  For more info, see sock_cgroup_data
6915  * definition in cgroup-defs.h.
6916  */
6917 #ifdef CONFIG_SOCK_CGROUP_DATA
6918 
6919 void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
6920 {
6921 	struct cgroup *cgroup;
6922 
6923 	rcu_read_lock();
6924 	/* Don't associate the sock with unrelated interrupted task's cgroup. */
6925 	if (in_interrupt()) {
6926 		cgroup = &cgrp_dfl_root.cgrp;
6927 		cgroup_get(cgroup);
6928 		goto out;
6929 	}
6930 
6931 	while (true) {
6932 		struct css_set *cset;
6933 
6934 		cset = task_css_set(current);
6935 		if (likely(cgroup_tryget(cset->dfl_cgrp))) {
6936 			cgroup = cset->dfl_cgrp;
6937 			break;
6938 		}
6939 		cpu_relax();
6940 	}
6941 out:
6942 	skcd->cgroup = cgroup;
6943 	cgroup_bpf_get(cgroup);
6944 	rcu_read_unlock();
6945 }
6946 
6947 void cgroup_sk_clone(struct sock_cgroup_data *skcd)
6948 {
6949 	struct cgroup *cgrp = sock_cgroup_ptr(skcd);
6950 
6951 	/*
6952 	 * We might be cloning a socket which is left in an empty
6953 	 * cgroup and the cgroup might have already been rmdir'd.
6954 	 * Don't use cgroup_get_live().
6955 	 */
6956 	cgroup_get(cgrp);
6957 	cgroup_bpf_get(cgrp);
6958 }
6959 
6960 void cgroup_sk_free(struct sock_cgroup_data *skcd)
6961 {
6962 	struct cgroup *cgrp = sock_cgroup_ptr(skcd);
6963 
6964 	cgroup_bpf_put(cgrp);
6965 	cgroup_put(cgrp);
6966 }
6967 
6968 #endif	/* CONFIG_SOCK_CGROUP_DATA */
6969 
6970 #ifdef CONFIG_SYSFS
6971 static ssize_t show_delegatable_files(struct cftype *files, char *buf,
6972 				      ssize_t size, const char *prefix)
6973 {
6974 	struct cftype *cft;
6975 	ssize_t ret = 0;
6976 
6977 	for (cft = files; cft && cft->name[0] != '\0'; cft++) {
6978 		if (!(cft->flags & CFTYPE_NS_DELEGATABLE))
6979 			continue;
6980 
6981 		if (prefix)
6982 			ret += snprintf(buf + ret, size - ret, "%s.", prefix);
6983 
6984 		ret += snprintf(buf + ret, size - ret, "%s\n", cft->name);
6985 
6986 		if (WARN_ON(ret >= size))
6987 			break;
6988 	}
6989 
6990 	return ret;
6991 }
6992 
6993 static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr,
6994 			      char *buf)
6995 {
6996 	struct cgroup_subsys *ss;
6997 	int ssid;
6998 	ssize_t ret = 0;
6999 
7000 	ret = show_delegatable_files(cgroup_base_files, buf + ret,
7001 				     PAGE_SIZE - ret, NULL);
7002 	if (cgroup_psi_enabled())
7003 		ret += show_delegatable_files(cgroup_psi_files, buf + ret,
7004 					      PAGE_SIZE - ret, NULL);
7005 
7006 	for_each_subsys(ss, ssid)
7007 		ret += show_delegatable_files(ss->dfl_cftypes, buf + ret,
7008 					      PAGE_SIZE - ret,
7009 					      cgroup_subsys_name[ssid]);
7010 
7011 	return ret;
7012 }
7013 static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate);
7014 
7015 static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr,
7016 			     char *buf)
7017 {
7018 	return snprintf(buf, PAGE_SIZE,
7019 			"nsdelegate\n"
7020 			"favordynmods\n"
7021 			"memory_localevents\n"
7022 			"memory_recursiveprot\n");
7023 }
7024 static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features);
7025 
7026 static struct attribute *cgroup_sysfs_attrs[] = {
7027 	&cgroup_delegate_attr.attr,
7028 	&cgroup_features_attr.attr,
7029 	NULL,
7030 };
7031 
7032 static const struct attribute_group cgroup_sysfs_attr_group = {
7033 	.attrs = cgroup_sysfs_attrs,
7034 	.name = "cgroup",
7035 };
7036 
7037 static int __init cgroup_sysfs_init(void)
7038 {
7039 	return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group);
7040 }
7041 subsys_initcall(cgroup_sysfs_init);
7042 
7043 #endif /* CONFIG_SYSFS */
7044