xref: /openbmc/linux/kernel/cgroup/cgroup.c (revision 5fa2481c)
1 /*
2  *  Generic process-grouping system.
3  *
4  *  Based originally on the cpuset system, extracted by Paul Menage
5  *  Copyright (C) 2006 Google, Inc
6  *
7  *  Notifications support
8  *  Copyright (C) 2009 Nokia Corporation
9  *  Author: Kirill A. Shutemov
10  *
11  *  Copyright notices from the original cpuset code:
12  *  --------------------------------------------------
13  *  Copyright (C) 2003 BULL SA.
14  *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
15  *
16  *  Portions derived from Patrick Mochel's sysfs code.
17  *  sysfs is Copyright (c) 2001-3 Patrick Mochel
18  *
19  *  2003-10-10 Written by Simon Derr.
20  *  2003-10-22 Updates by Stephen Hemminger.
21  *  2004 May-July Rework by Paul Jackson.
22  *  ---------------------------------------------------
23  *
24  *  This file is subject to the terms and conditions of the GNU General Public
25  *  License.  See the file COPYING in the main directory of the Linux
26  *  distribution for more details.
27  */
28 
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 
31 #include "cgroup-internal.h"
32 
33 #include <linux/bpf-cgroup.h>
34 #include <linux/cred.h>
35 #include <linux/errno.h>
36 #include <linux/init_task.h>
37 #include <linux/kernel.h>
38 #include <linux/magic.h>
39 #include <linux/mutex.h>
40 #include <linux/mount.h>
41 #include <linux/pagemap.h>
42 #include <linux/proc_fs.h>
43 #include <linux/rcupdate.h>
44 #include <linux/sched.h>
45 #include <linux/sched/task.h>
46 #include <linux/slab.h>
47 #include <linux/spinlock.h>
48 #include <linux/percpu-rwsem.h>
49 #include <linux/string.h>
50 #include <linux/hashtable.h>
51 #include <linux/idr.h>
52 #include <linux/kthread.h>
53 #include <linux/atomic.h>
54 #include <linux/cpuset.h>
55 #include <linux/proc_ns.h>
56 #include <linux/nsproxy.h>
57 #include <linux/file.h>
58 #include <linux/fs_parser.h>
59 #include <linux/sched/cputime.h>
60 #include <linux/psi.h>
61 #include <net/sock.h>
62 
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/cgroup.h>
65 
66 #define CGROUP_FILE_NAME_MAX		(MAX_CGROUP_TYPE_NAMELEN +	\
67 					 MAX_CFTYPE_NAME + 2)
68 /* let's not notify more than 100 times per second */
69 #define CGROUP_FILE_NOTIFY_MIN_INTV	DIV_ROUND_UP(HZ, 100)
70 
71 /*
72  * To avoid confusing the compiler (and generating warnings) with code
73  * that attempts to access what would be a 0-element array (i.e. sized
74  * to a potentially empty array when CGROUP_SUBSYS_COUNT == 0), this
75  * constant expression can be added.
76  */
77 #define CGROUP_HAS_SUBSYS_CONFIG	(CGROUP_SUBSYS_COUNT > 0)
78 
79 /*
80  * cgroup_mutex is the master lock.  Any modification to cgroup or its
81  * hierarchy must be performed while holding it.
82  *
83  * css_set_lock protects task->cgroups pointer, the list of css_set
84  * objects, and the chain of tasks off each css_set.
85  *
86  * These locks are exported if CONFIG_PROVE_RCU so that accessors in
87  * cgroup.h can use them for lockdep annotations.
88  */
89 DEFINE_MUTEX(cgroup_mutex);
90 DEFINE_SPINLOCK(css_set_lock);
91 
92 #ifdef CONFIG_PROVE_RCU
93 EXPORT_SYMBOL_GPL(cgroup_mutex);
94 EXPORT_SYMBOL_GPL(css_set_lock);
95 #endif
96 
97 DEFINE_SPINLOCK(trace_cgroup_path_lock);
98 char trace_cgroup_path[TRACE_CGROUP_PATH_LEN];
99 static bool cgroup_debug __read_mostly;
100 
101 /*
102  * Protects cgroup_idr and css_idr so that IDs can be released without
103  * grabbing cgroup_mutex.
104  */
105 static DEFINE_SPINLOCK(cgroup_idr_lock);
106 
107 /*
108  * Protects cgroup_file->kn for !self csses.  It synchronizes notifications
109  * against file removal/re-creation across css hiding.
110  */
111 static DEFINE_SPINLOCK(cgroup_file_kn_lock);
112 
113 DEFINE_PERCPU_RWSEM(cgroup_threadgroup_rwsem);
114 
115 #define cgroup_assert_mutex_or_rcu_locked()				\
116 	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
117 			   !lockdep_is_held(&cgroup_mutex),		\
118 			   "cgroup_mutex or RCU read lock required");
119 
120 /*
121  * cgroup destruction makes heavy use of work items and there can be a lot
122  * of concurrent destructions.  Use a separate workqueue so that cgroup
123  * destruction work items don't end up filling up max_active of system_wq
124  * which may lead to deadlock.
125  */
126 static struct workqueue_struct *cgroup_destroy_wq;
127 
128 /* generate an array of cgroup subsystem pointers */
129 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
130 struct cgroup_subsys *cgroup_subsys[] = {
131 #include <linux/cgroup_subsys.h>
132 };
133 #undef SUBSYS
134 
135 /* array of cgroup subsystem names */
136 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
137 static const char *cgroup_subsys_name[] = {
138 #include <linux/cgroup_subsys.h>
139 };
140 #undef SUBSYS
141 
142 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
143 #define SUBSYS(_x)								\
144 	DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key);			\
145 	DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key);			\
146 	EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key);			\
147 	EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
148 #include <linux/cgroup_subsys.h>
149 #undef SUBSYS
150 
151 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
152 static struct static_key_true *cgroup_subsys_enabled_key[] = {
153 #include <linux/cgroup_subsys.h>
154 };
155 #undef SUBSYS
156 
157 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
158 static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
159 #include <linux/cgroup_subsys.h>
160 };
161 #undef SUBSYS
162 
163 static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu);
164 
165 /* the default hierarchy */
166 struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu };
167 EXPORT_SYMBOL_GPL(cgrp_dfl_root);
168 
169 /*
170  * The default hierarchy always exists but is hidden until mounted for the
171  * first time.  This is for backward compatibility.
172  */
173 static bool cgrp_dfl_visible;
174 
175 /* some controllers are not supported in the default hierarchy */
176 static u16 cgrp_dfl_inhibit_ss_mask;
177 
178 /* some controllers are implicitly enabled on the default hierarchy */
179 static u16 cgrp_dfl_implicit_ss_mask;
180 
181 /* some controllers can be threaded on the default hierarchy */
182 static u16 cgrp_dfl_threaded_ss_mask;
183 
184 /* The list of hierarchy roots */
185 LIST_HEAD(cgroup_roots);
186 static int cgroup_root_count;
187 
188 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
189 static DEFINE_IDR(cgroup_hierarchy_idr);
190 
191 /*
192  * Assign a monotonically increasing serial number to csses.  It guarantees
193  * cgroups with bigger numbers are newer than those with smaller numbers.
194  * Also, as csses are always appended to the parent's ->children list, it
195  * guarantees that sibling csses are always sorted in the ascending serial
196  * number order on the list.  Protected by cgroup_mutex.
197  */
198 static u64 css_serial_nr_next = 1;
199 
200 /*
201  * These bitmasks identify subsystems with specific features to avoid
202  * having to do iterative checks repeatedly.
203  */
204 static u16 have_fork_callback __read_mostly;
205 static u16 have_exit_callback __read_mostly;
206 static u16 have_release_callback __read_mostly;
207 static u16 have_canfork_callback __read_mostly;
208 
209 /* cgroup namespace for init task */
210 struct cgroup_namespace init_cgroup_ns = {
211 	.ns.count	= REFCOUNT_INIT(2),
212 	.user_ns	= &init_user_ns,
213 	.ns.ops		= &cgroupns_operations,
214 	.ns.inum	= PROC_CGROUP_INIT_INO,
215 	.root_cset	= &init_css_set,
216 };
217 
218 static struct file_system_type cgroup2_fs_type;
219 static struct cftype cgroup_base_files[];
220 
221 /* cgroup optional features */
222 enum cgroup_opt_features {
223 #ifdef CONFIG_PSI
224 	OPT_FEATURE_PRESSURE,
225 #endif
226 	OPT_FEATURE_COUNT
227 };
228 
229 static const char *cgroup_opt_feature_names[OPT_FEATURE_COUNT] = {
230 #ifdef CONFIG_PSI
231 	"pressure",
232 #endif
233 };
234 
235 static u16 cgroup_feature_disable_mask __read_mostly;
236 
237 static int cgroup_apply_control(struct cgroup *cgrp);
238 static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
239 static void css_task_iter_skip(struct css_task_iter *it,
240 			       struct task_struct *task);
241 static int cgroup_destroy_locked(struct cgroup *cgrp);
242 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
243 					      struct cgroup_subsys *ss);
244 static void css_release(struct percpu_ref *ref);
245 static void kill_css(struct cgroup_subsys_state *css);
246 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
247 			      struct cgroup *cgrp, struct cftype cfts[],
248 			      bool is_add);
249 
250 /**
251  * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
252  * @ssid: subsys ID of interest
253  *
254  * cgroup_subsys_enabled() can only be used with literal subsys names which
255  * is fine for individual subsystems but unsuitable for cgroup core.  This
256  * is slower static_key_enabled() based test indexed by @ssid.
257  */
258 bool cgroup_ssid_enabled(int ssid)
259 {
260 	if (!CGROUP_HAS_SUBSYS_CONFIG)
261 		return false;
262 
263 	return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
264 }
265 
266 /**
267  * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
268  * @cgrp: the cgroup of interest
269  *
270  * The default hierarchy is the v2 interface of cgroup and this function
271  * can be used to test whether a cgroup is on the default hierarchy for
272  * cases where a subsystem should behave differently depending on the
273  * interface version.
274  *
275  * List of changed behaviors:
276  *
277  * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
278  *   and "name" are disallowed.
279  *
280  * - When mounting an existing superblock, mount options should match.
281  *
282  * - Remount is disallowed.
283  *
284  * - rename(2) is disallowed.
285  *
286  * - "tasks" is removed.  Everything should be at process granularity.  Use
287  *   "cgroup.procs" instead.
288  *
289  * - "cgroup.procs" is not sorted.  pids will be unique unless they got
290  *   recycled in-between reads.
291  *
292  * - "release_agent" and "notify_on_release" are removed.  Replacement
293  *   notification mechanism will be implemented.
294  *
295  * - "cgroup.clone_children" is removed.
296  *
297  * - "cgroup.subtree_populated" is available.  Its value is 0 if the cgroup
298  *   and its descendants contain no task; otherwise, 1.  The file also
299  *   generates kernfs notification which can be monitored through poll and
300  *   [di]notify when the value of the file changes.
301  *
302  * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
303  *   take masks of ancestors with non-empty cpus/mems, instead of being
304  *   moved to an ancestor.
305  *
306  * - cpuset: a task can be moved into an empty cpuset, and again it takes
307  *   masks of ancestors.
308  *
309  * - blkcg: blk-throttle becomes properly hierarchical.
310  *
311  * - debug: disallowed on the default hierarchy.
312  */
313 bool cgroup_on_dfl(const struct cgroup *cgrp)
314 {
315 	return cgrp->root == &cgrp_dfl_root;
316 }
317 
318 /* IDR wrappers which synchronize using cgroup_idr_lock */
319 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
320 			    gfp_t gfp_mask)
321 {
322 	int ret;
323 
324 	idr_preload(gfp_mask);
325 	spin_lock_bh(&cgroup_idr_lock);
326 	ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
327 	spin_unlock_bh(&cgroup_idr_lock);
328 	idr_preload_end();
329 	return ret;
330 }
331 
332 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
333 {
334 	void *ret;
335 
336 	spin_lock_bh(&cgroup_idr_lock);
337 	ret = idr_replace(idr, ptr, id);
338 	spin_unlock_bh(&cgroup_idr_lock);
339 	return ret;
340 }
341 
342 static void cgroup_idr_remove(struct idr *idr, int id)
343 {
344 	spin_lock_bh(&cgroup_idr_lock);
345 	idr_remove(idr, id);
346 	spin_unlock_bh(&cgroup_idr_lock);
347 }
348 
349 static bool cgroup_has_tasks(struct cgroup *cgrp)
350 {
351 	return cgrp->nr_populated_csets;
352 }
353 
354 bool cgroup_is_threaded(struct cgroup *cgrp)
355 {
356 	return cgrp->dom_cgrp != cgrp;
357 }
358 
359 /* can @cgrp host both domain and threaded children? */
360 static bool cgroup_is_mixable(struct cgroup *cgrp)
361 {
362 	/*
363 	 * Root isn't under domain level resource control exempting it from
364 	 * the no-internal-process constraint, so it can serve as a thread
365 	 * root and a parent of resource domains at the same time.
366 	 */
367 	return !cgroup_parent(cgrp);
368 }
369 
370 /* can @cgrp become a thread root? Should always be true for a thread root */
371 static bool cgroup_can_be_thread_root(struct cgroup *cgrp)
372 {
373 	/* mixables don't care */
374 	if (cgroup_is_mixable(cgrp))
375 		return true;
376 
377 	/* domain roots can't be nested under threaded */
378 	if (cgroup_is_threaded(cgrp))
379 		return false;
380 
381 	/* can only have either domain or threaded children */
382 	if (cgrp->nr_populated_domain_children)
383 		return false;
384 
385 	/* and no domain controllers can be enabled */
386 	if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
387 		return false;
388 
389 	return true;
390 }
391 
392 /* is @cgrp root of a threaded subtree? */
393 bool cgroup_is_thread_root(struct cgroup *cgrp)
394 {
395 	/* thread root should be a domain */
396 	if (cgroup_is_threaded(cgrp))
397 		return false;
398 
399 	/* a domain w/ threaded children is a thread root */
400 	if (cgrp->nr_threaded_children)
401 		return true;
402 
403 	/*
404 	 * A domain which has tasks and explicit threaded controllers
405 	 * enabled is a thread root.
406 	 */
407 	if (cgroup_has_tasks(cgrp) &&
408 	    (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask))
409 		return true;
410 
411 	return false;
412 }
413 
414 /* a domain which isn't connected to the root w/o brekage can't be used */
415 static bool cgroup_is_valid_domain(struct cgroup *cgrp)
416 {
417 	/* the cgroup itself can be a thread root */
418 	if (cgroup_is_threaded(cgrp))
419 		return false;
420 
421 	/* but the ancestors can't be unless mixable */
422 	while ((cgrp = cgroup_parent(cgrp))) {
423 		if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp))
424 			return false;
425 		if (cgroup_is_threaded(cgrp))
426 			return false;
427 	}
428 
429 	return true;
430 }
431 
432 /* subsystems visibly enabled on a cgroup */
433 static u16 cgroup_control(struct cgroup *cgrp)
434 {
435 	struct cgroup *parent = cgroup_parent(cgrp);
436 	u16 root_ss_mask = cgrp->root->subsys_mask;
437 
438 	if (parent) {
439 		u16 ss_mask = parent->subtree_control;
440 
441 		/* threaded cgroups can only have threaded controllers */
442 		if (cgroup_is_threaded(cgrp))
443 			ss_mask &= cgrp_dfl_threaded_ss_mask;
444 		return ss_mask;
445 	}
446 
447 	if (cgroup_on_dfl(cgrp))
448 		root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
449 				  cgrp_dfl_implicit_ss_mask);
450 	return root_ss_mask;
451 }
452 
453 /* subsystems enabled on a cgroup */
454 static u16 cgroup_ss_mask(struct cgroup *cgrp)
455 {
456 	struct cgroup *parent = cgroup_parent(cgrp);
457 
458 	if (parent) {
459 		u16 ss_mask = parent->subtree_ss_mask;
460 
461 		/* threaded cgroups can only have threaded controllers */
462 		if (cgroup_is_threaded(cgrp))
463 			ss_mask &= cgrp_dfl_threaded_ss_mask;
464 		return ss_mask;
465 	}
466 
467 	return cgrp->root->subsys_mask;
468 }
469 
470 /**
471  * cgroup_css - obtain a cgroup's css for the specified subsystem
472  * @cgrp: the cgroup of interest
473  * @ss: the subsystem of interest (%NULL returns @cgrp->self)
474  *
475  * Return @cgrp's css (cgroup_subsys_state) associated with @ss.  This
476  * function must be called either under cgroup_mutex or rcu_read_lock() and
477  * the caller is responsible for pinning the returned css if it wants to
478  * keep accessing it outside the said locks.  This function may return
479  * %NULL if @cgrp doesn't have @subsys_id enabled.
480  */
481 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
482 					      struct cgroup_subsys *ss)
483 {
484 	if (CGROUP_HAS_SUBSYS_CONFIG && ss)
485 		return rcu_dereference_check(cgrp->subsys[ss->id],
486 					lockdep_is_held(&cgroup_mutex));
487 	else
488 		return &cgrp->self;
489 }
490 
491 /**
492  * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem
493  * @cgrp: the cgroup of interest
494  * @ss: the subsystem of interest
495  *
496  * Find and get @cgrp's css associated with @ss.  If the css doesn't exist
497  * or is offline, %NULL is returned.
498  */
499 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp,
500 						     struct cgroup_subsys *ss)
501 {
502 	struct cgroup_subsys_state *css;
503 
504 	rcu_read_lock();
505 	css = cgroup_css(cgrp, ss);
506 	if (css && !css_tryget_online(css))
507 		css = NULL;
508 	rcu_read_unlock();
509 
510 	return css;
511 }
512 
513 /**
514  * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss
515  * @cgrp: the cgroup of interest
516  * @ss: the subsystem of interest (%NULL returns @cgrp->self)
517  *
518  * Similar to cgroup_css() but returns the effective css, which is defined
519  * as the matching css of the nearest ancestor including self which has @ss
520  * enabled.  If @ss is associated with the hierarchy @cgrp is on, this
521  * function is guaranteed to return non-NULL css.
522  */
523 static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp,
524 							struct cgroup_subsys *ss)
525 {
526 	lockdep_assert_held(&cgroup_mutex);
527 
528 	if (!ss)
529 		return &cgrp->self;
530 
531 	/*
532 	 * This function is used while updating css associations and thus
533 	 * can't test the csses directly.  Test ss_mask.
534 	 */
535 	while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
536 		cgrp = cgroup_parent(cgrp);
537 		if (!cgrp)
538 			return NULL;
539 	}
540 
541 	return cgroup_css(cgrp, ss);
542 }
543 
544 /**
545  * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
546  * @cgrp: the cgroup of interest
547  * @ss: the subsystem of interest
548  *
549  * Find and get the effective css of @cgrp for @ss.  The effective css is
550  * defined as the matching css of the nearest ancestor including self which
551  * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
552  * the root css is returned, so this function always returns a valid css.
553  *
554  * The returned css is not guaranteed to be online, and therefore it is the
555  * callers responsibility to try get a reference for it.
556  */
557 struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
558 					 struct cgroup_subsys *ss)
559 {
560 	struct cgroup_subsys_state *css;
561 
562 	if (!CGROUP_HAS_SUBSYS_CONFIG)
563 		return NULL;
564 
565 	do {
566 		css = cgroup_css(cgrp, ss);
567 
568 		if (css)
569 			return css;
570 		cgrp = cgroup_parent(cgrp);
571 	} while (cgrp);
572 
573 	return init_css_set.subsys[ss->id];
574 }
575 
576 /**
577  * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
578  * @cgrp: the cgroup of interest
579  * @ss: the subsystem of interest
580  *
581  * Find and get the effective css of @cgrp for @ss.  The effective css is
582  * defined as the matching css of the nearest ancestor including self which
583  * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
584  * the root css is returned, so this function always returns a valid css.
585  * The returned css must be put using css_put().
586  */
587 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
588 					     struct cgroup_subsys *ss)
589 {
590 	struct cgroup_subsys_state *css;
591 
592 	if (!CGROUP_HAS_SUBSYS_CONFIG)
593 		return NULL;
594 
595 	rcu_read_lock();
596 
597 	do {
598 		css = cgroup_css(cgrp, ss);
599 
600 		if (css && css_tryget_online(css))
601 			goto out_unlock;
602 		cgrp = cgroup_parent(cgrp);
603 	} while (cgrp);
604 
605 	css = init_css_set.subsys[ss->id];
606 	css_get(css);
607 out_unlock:
608 	rcu_read_unlock();
609 	return css;
610 }
611 EXPORT_SYMBOL_GPL(cgroup_get_e_css);
612 
613 static void cgroup_get_live(struct cgroup *cgrp)
614 {
615 	WARN_ON_ONCE(cgroup_is_dead(cgrp));
616 	css_get(&cgrp->self);
617 }
618 
619 /**
620  * __cgroup_task_count - count the number of tasks in a cgroup. The caller
621  * is responsible for taking the css_set_lock.
622  * @cgrp: the cgroup in question
623  */
624 int __cgroup_task_count(const struct cgroup *cgrp)
625 {
626 	int count = 0;
627 	struct cgrp_cset_link *link;
628 
629 	lockdep_assert_held(&css_set_lock);
630 
631 	list_for_each_entry(link, &cgrp->cset_links, cset_link)
632 		count += link->cset->nr_tasks;
633 
634 	return count;
635 }
636 
637 /**
638  * cgroup_task_count - count the number of tasks in a cgroup.
639  * @cgrp: the cgroup in question
640  */
641 int cgroup_task_count(const struct cgroup *cgrp)
642 {
643 	int count;
644 
645 	spin_lock_irq(&css_set_lock);
646 	count = __cgroup_task_count(cgrp);
647 	spin_unlock_irq(&css_set_lock);
648 
649 	return count;
650 }
651 
652 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
653 {
654 	struct cgroup *cgrp = of->kn->parent->priv;
655 	struct cftype *cft = of_cft(of);
656 
657 	/*
658 	 * This is open and unprotected implementation of cgroup_css().
659 	 * seq_css() is only called from a kernfs file operation which has
660 	 * an active reference on the file.  Because all the subsystem
661 	 * files are drained before a css is disassociated with a cgroup,
662 	 * the matching css from the cgroup's subsys table is guaranteed to
663 	 * be and stay valid until the enclosing operation is complete.
664 	 */
665 	if (CGROUP_HAS_SUBSYS_CONFIG && cft->ss)
666 		return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
667 	else
668 		return &cgrp->self;
669 }
670 EXPORT_SYMBOL_GPL(of_css);
671 
672 /**
673  * for_each_css - iterate all css's of a cgroup
674  * @css: the iteration cursor
675  * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
676  * @cgrp: the target cgroup to iterate css's of
677  *
678  * Should be called under cgroup_[tree_]mutex.
679  */
680 #define for_each_css(css, ssid, cgrp)					\
681 	for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)	\
682 		if (!((css) = rcu_dereference_check(			\
683 				(cgrp)->subsys[(ssid)],			\
684 				lockdep_is_held(&cgroup_mutex)))) { }	\
685 		else
686 
687 /**
688  * for_each_e_css - iterate all effective css's of a cgroup
689  * @css: the iteration cursor
690  * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
691  * @cgrp: the target cgroup to iterate css's of
692  *
693  * Should be called under cgroup_[tree_]mutex.
694  */
695 #define for_each_e_css(css, ssid, cgrp)					    \
696 	for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)	    \
697 		if (!((css) = cgroup_e_css_by_mask(cgrp,		    \
698 						   cgroup_subsys[(ssid)]))) \
699 			;						    \
700 		else
701 
702 /**
703  * do_each_subsys_mask - filter for_each_subsys with a bitmask
704  * @ss: the iteration cursor
705  * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
706  * @ss_mask: the bitmask
707  *
708  * The block will only run for cases where the ssid-th bit (1 << ssid) of
709  * @ss_mask is set.
710  */
711 #define do_each_subsys_mask(ss, ssid, ss_mask) do {			\
712 	unsigned long __ss_mask = (ss_mask);				\
713 	if (!CGROUP_HAS_SUBSYS_CONFIG) {				\
714 		(ssid) = 0;						\
715 		break;							\
716 	}								\
717 	for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) {	\
718 		(ss) = cgroup_subsys[ssid];				\
719 		{
720 
721 #define while_each_subsys_mask()					\
722 		}							\
723 	}								\
724 } while (false)
725 
726 /* iterate over child cgrps, lock should be held throughout iteration */
727 #define cgroup_for_each_live_child(child, cgrp)				\
728 	list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
729 		if (({ lockdep_assert_held(&cgroup_mutex);		\
730 		       cgroup_is_dead(child); }))			\
731 			;						\
732 		else
733 
734 /* walk live descendants in pre order */
735 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)		\
736 	css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL))	\
737 		if (({ lockdep_assert_held(&cgroup_mutex);		\
738 		       (dsct) = (d_css)->cgroup;			\
739 		       cgroup_is_dead(dsct); }))			\
740 			;						\
741 		else
742 
743 /* walk live descendants in postorder */
744 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp)		\
745 	css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL))	\
746 		if (({ lockdep_assert_held(&cgroup_mutex);		\
747 		       (dsct) = (d_css)->cgroup;			\
748 		       cgroup_is_dead(dsct); }))			\
749 			;						\
750 		else
751 
752 /*
753  * The default css_set - used by init and its children prior to any
754  * hierarchies being mounted. It contains a pointer to the root state
755  * for each subsystem. Also used to anchor the list of css_sets. Not
756  * reference-counted, to improve performance when child cgroups
757  * haven't been created.
758  */
759 struct css_set init_css_set = {
760 	.refcount		= REFCOUNT_INIT(1),
761 	.dom_cset		= &init_css_set,
762 	.tasks			= LIST_HEAD_INIT(init_css_set.tasks),
763 	.mg_tasks		= LIST_HEAD_INIT(init_css_set.mg_tasks),
764 	.dying_tasks		= LIST_HEAD_INIT(init_css_set.dying_tasks),
765 	.task_iters		= LIST_HEAD_INIT(init_css_set.task_iters),
766 	.threaded_csets		= LIST_HEAD_INIT(init_css_set.threaded_csets),
767 	.cgrp_links		= LIST_HEAD_INIT(init_css_set.cgrp_links),
768 	.mg_src_preload_node	= LIST_HEAD_INIT(init_css_set.mg_src_preload_node),
769 	.mg_dst_preload_node	= LIST_HEAD_INIT(init_css_set.mg_dst_preload_node),
770 	.mg_node		= LIST_HEAD_INIT(init_css_set.mg_node),
771 
772 	/*
773 	 * The following field is re-initialized when this cset gets linked
774 	 * in cgroup_init().  However, let's initialize the field
775 	 * statically too so that the default cgroup can be accessed safely
776 	 * early during boot.
777 	 */
778 	.dfl_cgrp		= &cgrp_dfl_root.cgrp,
779 };
780 
781 static int css_set_count	= 1;	/* 1 for init_css_set */
782 
783 static bool css_set_threaded(struct css_set *cset)
784 {
785 	return cset->dom_cset != cset;
786 }
787 
788 /**
789  * css_set_populated - does a css_set contain any tasks?
790  * @cset: target css_set
791  *
792  * css_set_populated() should be the same as !!cset->nr_tasks at steady
793  * state. However, css_set_populated() can be called while a task is being
794  * added to or removed from the linked list before the nr_tasks is
795  * properly updated. Hence, we can't just look at ->nr_tasks here.
796  */
797 static bool css_set_populated(struct css_set *cset)
798 {
799 	lockdep_assert_held(&css_set_lock);
800 
801 	return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
802 }
803 
804 /**
805  * cgroup_update_populated - update the populated count of a cgroup
806  * @cgrp: the target cgroup
807  * @populated: inc or dec populated count
808  *
809  * One of the css_sets associated with @cgrp is either getting its first
810  * task or losing the last.  Update @cgrp->nr_populated_* accordingly.  The
811  * count is propagated towards root so that a given cgroup's
812  * nr_populated_children is zero iff none of its descendants contain any
813  * tasks.
814  *
815  * @cgrp's interface file "cgroup.populated" is zero if both
816  * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and
817  * 1 otherwise.  When the sum changes from or to zero, userland is notified
818  * that the content of the interface file has changed.  This can be used to
819  * detect when @cgrp and its descendants become populated or empty.
820  */
821 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
822 {
823 	struct cgroup *child = NULL;
824 	int adj = populated ? 1 : -1;
825 
826 	lockdep_assert_held(&css_set_lock);
827 
828 	do {
829 		bool was_populated = cgroup_is_populated(cgrp);
830 
831 		if (!child) {
832 			cgrp->nr_populated_csets += adj;
833 		} else {
834 			if (cgroup_is_threaded(child))
835 				cgrp->nr_populated_threaded_children += adj;
836 			else
837 				cgrp->nr_populated_domain_children += adj;
838 		}
839 
840 		if (was_populated == cgroup_is_populated(cgrp))
841 			break;
842 
843 		cgroup1_check_for_release(cgrp);
844 		TRACE_CGROUP_PATH(notify_populated, cgrp,
845 				  cgroup_is_populated(cgrp));
846 		cgroup_file_notify(&cgrp->events_file);
847 
848 		child = cgrp;
849 		cgrp = cgroup_parent(cgrp);
850 	} while (cgrp);
851 }
852 
853 /**
854  * css_set_update_populated - update populated state of a css_set
855  * @cset: target css_set
856  * @populated: whether @cset is populated or depopulated
857  *
858  * @cset is either getting the first task or losing the last.  Update the
859  * populated counters of all associated cgroups accordingly.
860  */
861 static void css_set_update_populated(struct css_set *cset, bool populated)
862 {
863 	struct cgrp_cset_link *link;
864 
865 	lockdep_assert_held(&css_set_lock);
866 
867 	list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
868 		cgroup_update_populated(link->cgrp, populated);
869 }
870 
871 /*
872  * @task is leaving, advance task iterators which are pointing to it so
873  * that they can resume at the next position.  Advancing an iterator might
874  * remove it from the list, use safe walk.  See css_task_iter_skip() for
875  * details.
876  */
877 static void css_set_skip_task_iters(struct css_set *cset,
878 				    struct task_struct *task)
879 {
880 	struct css_task_iter *it, *pos;
881 
882 	list_for_each_entry_safe(it, pos, &cset->task_iters, iters_node)
883 		css_task_iter_skip(it, task);
884 }
885 
886 /**
887  * css_set_move_task - move a task from one css_set to another
888  * @task: task being moved
889  * @from_cset: css_set @task currently belongs to (may be NULL)
890  * @to_cset: new css_set @task is being moved to (may be NULL)
891  * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
892  *
893  * Move @task from @from_cset to @to_cset.  If @task didn't belong to any
894  * css_set, @from_cset can be NULL.  If @task is being disassociated
895  * instead of moved, @to_cset can be NULL.
896  *
897  * This function automatically handles populated counter updates and
898  * css_task_iter adjustments but the caller is responsible for managing
899  * @from_cset and @to_cset's reference counts.
900  */
901 static void css_set_move_task(struct task_struct *task,
902 			      struct css_set *from_cset, struct css_set *to_cset,
903 			      bool use_mg_tasks)
904 {
905 	lockdep_assert_held(&css_set_lock);
906 
907 	if (to_cset && !css_set_populated(to_cset))
908 		css_set_update_populated(to_cset, true);
909 
910 	if (from_cset) {
911 		WARN_ON_ONCE(list_empty(&task->cg_list));
912 
913 		css_set_skip_task_iters(from_cset, task);
914 		list_del_init(&task->cg_list);
915 		if (!css_set_populated(from_cset))
916 			css_set_update_populated(from_cset, false);
917 	} else {
918 		WARN_ON_ONCE(!list_empty(&task->cg_list));
919 	}
920 
921 	if (to_cset) {
922 		/*
923 		 * We are synchronized through cgroup_threadgroup_rwsem
924 		 * against PF_EXITING setting such that we can't race
925 		 * against cgroup_exit()/cgroup_free() dropping the css_set.
926 		 */
927 		WARN_ON_ONCE(task->flags & PF_EXITING);
928 
929 		cgroup_move_task(task, to_cset);
930 		list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
931 							     &to_cset->tasks);
932 	}
933 }
934 
935 /*
936  * hash table for cgroup groups. This improves the performance to find
937  * an existing css_set. This hash doesn't (currently) take into
938  * account cgroups in empty hierarchies.
939  */
940 #define CSS_SET_HASH_BITS	7
941 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
942 
943 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
944 {
945 	unsigned long key = 0UL;
946 	struct cgroup_subsys *ss;
947 	int i;
948 
949 	for_each_subsys(ss, i)
950 		key += (unsigned long)css[i];
951 	key = (key >> 16) ^ key;
952 
953 	return key;
954 }
955 
956 void put_css_set_locked(struct css_set *cset)
957 {
958 	struct cgrp_cset_link *link, *tmp_link;
959 	struct cgroup_subsys *ss;
960 	int ssid;
961 
962 	lockdep_assert_held(&css_set_lock);
963 
964 	if (!refcount_dec_and_test(&cset->refcount))
965 		return;
966 
967 	WARN_ON_ONCE(!list_empty(&cset->threaded_csets));
968 
969 	/* This css_set is dead. Unlink it and release cgroup and css refs */
970 	for_each_subsys(ss, ssid) {
971 		list_del(&cset->e_cset_node[ssid]);
972 		css_put(cset->subsys[ssid]);
973 	}
974 	hash_del(&cset->hlist);
975 	css_set_count--;
976 
977 	list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
978 		list_del(&link->cset_link);
979 		list_del(&link->cgrp_link);
980 		if (cgroup_parent(link->cgrp))
981 			cgroup_put(link->cgrp);
982 		kfree(link);
983 	}
984 
985 	if (css_set_threaded(cset)) {
986 		list_del(&cset->threaded_csets_node);
987 		put_css_set_locked(cset->dom_cset);
988 	}
989 
990 	kfree_rcu(cset, rcu_head);
991 }
992 
993 /**
994  * compare_css_sets - helper function for find_existing_css_set().
995  * @cset: candidate css_set being tested
996  * @old_cset: existing css_set for a task
997  * @new_cgrp: cgroup that's being entered by the task
998  * @template: desired set of css pointers in css_set (pre-calculated)
999  *
1000  * Returns true if "cset" matches "old_cset" except for the hierarchy
1001  * which "new_cgrp" belongs to, for which it should match "new_cgrp".
1002  */
1003 static bool compare_css_sets(struct css_set *cset,
1004 			     struct css_set *old_cset,
1005 			     struct cgroup *new_cgrp,
1006 			     struct cgroup_subsys_state *template[])
1007 {
1008 	struct cgroup *new_dfl_cgrp;
1009 	struct list_head *l1, *l2;
1010 
1011 	/*
1012 	 * On the default hierarchy, there can be csets which are
1013 	 * associated with the same set of cgroups but different csses.
1014 	 * Let's first ensure that csses match.
1015 	 */
1016 	if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
1017 		return false;
1018 
1019 
1020 	/* @cset's domain should match the default cgroup's */
1021 	if (cgroup_on_dfl(new_cgrp))
1022 		new_dfl_cgrp = new_cgrp;
1023 	else
1024 		new_dfl_cgrp = old_cset->dfl_cgrp;
1025 
1026 	if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp)
1027 		return false;
1028 
1029 	/*
1030 	 * Compare cgroup pointers in order to distinguish between
1031 	 * different cgroups in hierarchies.  As different cgroups may
1032 	 * share the same effective css, this comparison is always
1033 	 * necessary.
1034 	 */
1035 	l1 = &cset->cgrp_links;
1036 	l2 = &old_cset->cgrp_links;
1037 	while (1) {
1038 		struct cgrp_cset_link *link1, *link2;
1039 		struct cgroup *cgrp1, *cgrp2;
1040 
1041 		l1 = l1->next;
1042 		l2 = l2->next;
1043 		/* See if we reached the end - both lists are equal length. */
1044 		if (l1 == &cset->cgrp_links) {
1045 			BUG_ON(l2 != &old_cset->cgrp_links);
1046 			break;
1047 		} else {
1048 			BUG_ON(l2 == &old_cset->cgrp_links);
1049 		}
1050 		/* Locate the cgroups associated with these links. */
1051 		link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
1052 		link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
1053 		cgrp1 = link1->cgrp;
1054 		cgrp2 = link2->cgrp;
1055 		/* Hierarchies should be linked in the same order. */
1056 		BUG_ON(cgrp1->root != cgrp2->root);
1057 
1058 		/*
1059 		 * If this hierarchy is the hierarchy of the cgroup
1060 		 * that's changing, then we need to check that this
1061 		 * css_set points to the new cgroup; if it's any other
1062 		 * hierarchy, then this css_set should point to the
1063 		 * same cgroup as the old css_set.
1064 		 */
1065 		if (cgrp1->root == new_cgrp->root) {
1066 			if (cgrp1 != new_cgrp)
1067 				return false;
1068 		} else {
1069 			if (cgrp1 != cgrp2)
1070 				return false;
1071 		}
1072 	}
1073 	return true;
1074 }
1075 
1076 /**
1077  * find_existing_css_set - init css array and find the matching css_set
1078  * @old_cset: the css_set that we're using before the cgroup transition
1079  * @cgrp: the cgroup that we're moving into
1080  * @template: out param for the new set of csses, should be clear on entry
1081  */
1082 static struct css_set *find_existing_css_set(struct css_set *old_cset,
1083 					struct cgroup *cgrp,
1084 					struct cgroup_subsys_state *template[])
1085 {
1086 	struct cgroup_root *root = cgrp->root;
1087 	struct cgroup_subsys *ss;
1088 	struct css_set *cset;
1089 	unsigned long key;
1090 	int i;
1091 
1092 	/*
1093 	 * Build the set of subsystem state objects that we want to see in the
1094 	 * new css_set. While subsystems can change globally, the entries here
1095 	 * won't change, so no need for locking.
1096 	 */
1097 	for_each_subsys(ss, i) {
1098 		if (root->subsys_mask & (1UL << i)) {
1099 			/*
1100 			 * @ss is in this hierarchy, so we want the
1101 			 * effective css from @cgrp.
1102 			 */
1103 			template[i] = cgroup_e_css_by_mask(cgrp, ss);
1104 		} else {
1105 			/*
1106 			 * @ss is not in this hierarchy, so we don't want
1107 			 * to change the css.
1108 			 */
1109 			template[i] = old_cset->subsys[i];
1110 		}
1111 	}
1112 
1113 	key = css_set_hash(template);
1114 	hash_for_each_possible(css_set_table, cset, hlist, key) {
1115 		if (!compare_css_sets(cset, old_cset, cgrp, template))
1116 			continue;
1117 
1118 		/* This css_set matches what we need */
1119 		return cset;
1120 	}
1121 
1122 	/* No existing cgroup group matched */
1123 	return NULL;
1124 }
1125 
1126 static void free_cgrp_cset_links(struct list_head *links_to_free)
1127 {
1128 	struct cgrp_cset_link *link, *tmp_link;
1129 
1130 	list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
1131 		list_del(&link->cset_link);
1132 		kfree(link);
1133 	}
1134 }
1135 
1136 /**
1137  * allocate_cgrp_cset_links - allocate cgrp_cset_links
1138  * @count: the number of links to allocate
1139  * @tmp_links: list_head the allocated links are put on
1140  *
1141  * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1142  * through ->cset_link.  Returns 0 on success or -errno.
1143  */
1144 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
1145 {
1146 	struct cgrp_cset_link *link;
1147 	int i;
1148 
1149 	INIT_LIST_HEAD(tmp_links);
1150 
1151 	for (i = 0; i < count; i++) {
1152 		link = kzalloc(sizeof(*link), GFP_KERNEL);
1153 		if (!link) {
1154 			free_cgrp_cset_links(tmp_links);
1155 			return -ENOMEM;
1156 		}
1157 		list_add(&link->cset_link, tmp_links);
1158 	}
1159 	return 0;
1160 }
1161 
1162 /**
1163  * link_css_set - a helper function to link a css_set to a cgroup
1164  * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
1165  * @cset: the css_set to be linked
1166  * @cgrp: the destination cgroup
1167  */
1168 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1169 			 struct cgroup *cgrp)
1170 {
1171 	struct cgrp_cset_link *link;
1172 
1173 	BUG_ON(list_empty(tmp_links));
1174 
1175 	if (cgroup_on_dfl(cgrp))
1176 		cset->dfl_cgrp = cgrp;
1177 
1178 	link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1179 	link->cset = cset;
1180 	link->cgrp = cgrp;
1181 
1182 	/*
1183 	 * Always add links to the tail of the lists so that the lists are
1184 	 * in chronological order.
1185 	 */
1186 	list_move_tail(&link->cset_link, &cgrp->cset_links);
1187 	list_add_tail(&link->cgrp_link, &cset->cgrp_links);
1188 
1189 	if (cgroup_parent(cgrp))
1190 		cgroup_get_live(cgrp);
1191 }
1192 
1193 /**
1194  * find_css_set - return a new css_set with one cgroup updated
1195  * @old_cset: the baseline css_set
1196  * @cgrp: the cgroup to be updated
1197  *
1198  * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1199  * substituted into the appropriate hierarchy.
1200  */
1201 static struct css_set *find_css_set(struct css_set *old_cset,
1202 				    struct cgroup *cgrp)
1203 {
1204 	struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
1205 	struct css_set *cset;
1206 	struct list_head tmp_links;
1207 	struct cgrp_cset_link *link;
1208 	struct cgroup_subsys *ss;
1209 	unsigned long key;
1210 	int ssid;
1211 
1212 	lockdep_assert_held(&cgroup_mutex);
1213 
1214 	/* First see if we already have a cgroup group that matches
1215 	 * the desired set */
1216 	spin_lock_irq(&css_set_lock);
1217 	cset = find_existing_css_set(old_cset, cgrp, template);
1218 	if (cset)
1219 		get_css_set(cset);
1220 	spin_unlock_irq(&css_set_lock);
1221 
1222 	if (cset)
1223 		return cset;
1224 
1225 	cset = kzalloc(sizeof(*cset), GFP_KERNEL);
1226 	if (!cset)
1227 		return NULL;
1228 
1229 	/* Allocate all the cgrp_cset_link objects that we'll need */
1230 	if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1231 		kfree(cset);
1232 		return NULL;
1233 	}
1234 
1235 	refcount_set(&cset->refcount, 1);
1236 	cset->dom_cset = cset;
1237 	INIT_LIST_HEAD(&cset->tasks);
1238 	INIT_LIST_HEAD(&cset->mg_tasks);
1239 	INIT_LIST_HEAD(&cset->dying_tasks);
1240 	INIT_LIST_HEAD(&cset->task_iters);
1241 	INIT_LIST_HEAD(&cset->threaded_csets);
1242 	INIT_HLIST_NODE(&cset->hlist);
1243 	INIT_LIST_HEAD(&cset->cgrp_links);
1244 	INIT_LIST_HEAD(&cset->mg_src_preload_node);
1245 	INIT_LIST_HEAD(&cset->mg_dst_preload_node);
1246 	INIT_LIST_HEAD(&cset->mg_node);
1247 
1248 	/* Copy the set of subsystem state objects generated in
1249 	 * find_existing_css_set() */
1250 	memcpy(cset->subsys, template, sizeof(cset->subsys));
1251 
1252 	spin_lock_irq(&css_set_lock);
1253 	/* Add reference counts and links from the new css_set. */
1254 	list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1255 		struct cgroup *c = link->cgrp;
1256 
1257 		if (c->root == cgrp->root)
1258 			c = cgrp;
1259 		link_css_set(&tmp_links, cset, c);
1260 	}
1261 
1262 	BUG_ON(!list_empty(&tmp_links));
1263 
1264 	css_set_count++;
1265 
1266 	/* Add @cset to the hash table */
1267 	key = css_set_hash(cset->subsys);
1268 	hash_add(css_set_table, &cset->hlist, key);
1269 
1270 	for_each_subsys(ss, ssid) {
1271 		struct cgroup_subsys_state *css = cset->subsys[ssid];
1272 
1273 		list_add_tail(&cset->e_cset_node[ssid],
1274 			      &css->cgroup->e_csets[ssid]);
1275 		css_get(css);
1276 	}
1277 
1278 	spin_unlock_irq(&css_set_lock);
1279 
1280 	/*
1281 	 * If @cset should be threaded, look up the matching dom_cset and
1282 	 * link them up.  We first fully initialize @cset then look for the
1283 	 * dom_cset.  It's simpler this way and safe as @cset is guaranteed
1284 	 * to stay empty until we return.
1285 	 */
1286 	if (cgroup_is_threaded(cset->dfl_cgrp)) {
1287 		struct css_set *dcset;
1288 
1289 		dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp);
1290 		if (!dcset) {
1291 			put_css_set(cset);
1292 			return NULL;
1293 		}
1294 
1295 		spin_lock_irq(&css_set_lock);
1296 		cset->dom_cset = dcset;
1297 		list_add_tail(&cset->threaded_csets_node,
1298 			      &dcset->threaded_csets);
1299 		spin_unlock_irq(&css_set_lock);
1300 	}
1301 
1302 	return cset;
1303 }
1304 
1305 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1306 {
1307 	struct cgroup *root_cgrp = kernfs_root_to_node(kf_root)->priv;
1308 
1309 	return root_cgrp->root;
1310 }
1311 
1312 static int cgroup_init_root_id(struct cgroup_root *root)
1313 {
1314 	int id;
1315 
1316 	lockdep_assert_held(&cgroup_mutex);
1317 
1318 	id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1319 	if (id < 0)
1320 		return id;
1321 
1322 	root->hierarchy_id = id;
1323 	return 0;
1324 }
1325 
1326 static void cgroup_exit_root_id(struct cgroup_root *root)
1327 {
1328 	lockdep_assert_held(&cgroup_mutex);
1329 
1330 	idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1331 }
1332 
1333 void cgroup_free_root(struct cgroup_root *root)
1334 {
1335 	kfree(root);
1336 }
1337 
1338 static void cgroup_destroy_root(struct cgroup_root *root)
1339 {
1340 	struct cgroup *cgrp = &root->cgrp;
1341 	struct cgrp_cset_link *link, *tmp_link;
1342 
1343 	trace_cgroup_destroy_root(root);
1344 
1345 	cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1346 
1347 	BUG_ON(atomic_read(&root->nr_cgrps));
1348 	BUG_ON(!list_empty(&cgrp->self.children));
1349 
1350 	/* Rebind all subsystems back to the default hierarchy */
1351 	WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
1352 
1353 	/*
1354 	 * Release all the links from cset_links to this hierarchy's
1355 	 * root cgroup
1356 	 */
1357 	spin_lock_irq(&css_set_lock);
1358 
1359 	list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1360 		list_del(&link->cset_link);
1361 		list_del(&link->cgrp_link);
1362 		kfree(link);
1363 	}
1364 
1365 	spin_unlock_irq(&css_set_lock);
1366 
1367 	if (!list_empty(&root->root_list)) {
1368 		list_del(&root->root_list);
1369 		cgroup_root_count--;
1370 	}
1371 
1372 	cgroup_exit_root_id(root);
1373 
1374 	mutex_unlock(&cgroup_mutex);
1375 
1376 	cgroup_rstat_exit(cgrp);
1377 	kernfs_destroy_root(root->kf_root);
1378 	cgroup_free_root(root);
1379 }
1380 
1381 /*
1382  * look up cgroup associated with current task's cgroup namespace on the
1383  * specified hierarchy
1384  */
1385 static struct cgroup *
1386 current_cgns_cgroup_from_root(struct cgroup_root *root)
1387 {
1388 	struct cgroup *res = NULL;
1389 	struct css_set *cset;
1390 
1391 	lockdep_assert_held(&css_set_lock);
1392 
1393 	rcu_read_lock();
1394 
1395 	cset = current->nsproxy->cgroup_ns->root_cset;
1396 	if (cset == &init_css_set) {
1397 		res = &root->cgrp;
1398 	} else if (root == &cgrp_dfl_root) {
1399 		res = cset->dfl_cgrp;
1400 	} else {
1401 		struct cgrp_cset_link *link;
1402 
1403 		list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1404 			struct cgroup *c = link->cgrp;
1405 
1406 			if (c->root == root) {
1407 				res = c;
1408 				break;
1409 			}
1410 		}
1411 	}
1412 	rcu_read_unlock();
1413 
1414 	BUG_ON(!res);
1415 	return res;
1416 }
1417 
1418 /* look up cgroup associated with given css_set on the specified hierarchy */
1419 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1420 					    struct cgroup_root *root)
1421 {
1422 	struct cgroup *res = NULL;
1423 
1424 	lockdep_assert_held(&cgroup_mutex);
1425 	lockdep_assert_held(&css_set_lock);
1426 
1427 	if (cset == &init_css_set) {
1428 		res = &root->cgrp;
1429 	} else if (root == &cgrp_dfl_root) {
1430 		res = cset->dfl_cgrp;
1431 	} else {
1432 		struct cgrp_cset_link *link;
1433 
1434 		list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1435 			struct cgroup *c = link->cgrp;
1436 
1437 			if (c->root == root) {
1438 				res = c;
1439 				break;
1440 			}
1441 		}
1442 	}
1443 
1444 	BUG_ON(!res);
1445 	return res;
1446 }
1447 
1448 /*
1449  * Return the cgroup for "task" from the given hierarchy. Must be
1450  * called with cgroup_mutex and css_set_lock held.
1451  */
1452 struct cgroup *task_cgroup_from_root(struct task_struct *task,
1453 				     struct cgroup_root *root)
1454 {
1455 	/*
1456 	 * No need to lock the task - since we hold css_set_lock the
1457 	 * task can't change groups.
1458 	 */
1459 	return cset_cgroup_from_root(task_css_set(task), root);
1460 }
1461 
1462 /*
1463  * A task must hold cgroup_mutex to modify cgroups.
1464  *
1465  * Any task can increment and decrement the count field without lock.
1466  * So in general, code holding cgroup_mutex can't rely on the count
1467  * field not changing.  However, if the count goes to zero, then only
1468  * cgroup_attach_task() can increment it again.  Because a count of zero
1469  * means that no tasks are currently attached, therefore there is no
1470  * way a task attached to that cgroup can fork (the other way to
1471  * increment the count).  So code holding cgroup_mutex can safely
1472  * assume that if the count is zero, it will stay zero. Similarly, if
1473  * a task holds cgroup_mutex on a cgroup with zero count, it
1474  * knows that the cgroup won't be removed, as cgroup_rmdir()
1475  * needs that mutex.
1476  *
1477  * A cgroup can only be deleted if both its 'count' of using tasks
1478  * is zero, and its list of 'children' cgroups is empty.  Since all
1479  * tasks in the system use _some_ cgroup, and since there is always at
1480  * least one task in the system (init, pid == 1), therefore, root cgroup
1481  * always has either children cgroups and/or using tasks.  So we don't
1482  * need a special hack to ensure that root cgroup cannot be deleted.
1483  *
1484  * P.S.  One more locking exception.  RCU is used to guard the
1485  * update of a tasks cgroup pointer by cgroup_attach_task()
1486  */
1487 
1488 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1489 
1490 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1491 			      char *buf)
1492 {
1493 	struct cgroup_subsys *ss = cft->ss;
1494 
1495 	if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1496 	    !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
1497 		const char *dbg = (cft->flags & CFTYPE_DEBUG) ? ".__DEBUG__." : "";
1498 
1499 		snprintf(buf, CGROUP_FILE_NAME_MAX, "%s%s.%s",
1500 			 dbg, cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1501 			 cft->name);
1502 	} else {
1503 		strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1504 	}
1505 	return buf;
1506 }
1507 
1508 /**
1509  * cgroup_file_mode - deduce file mode of a control file
1510  * @cft: the control file in question
1511  *
1512  * S_IRUGO for read, S_IWUSR for write.
1513  */
1514 static umode_t cgroup_file_mode(const struct cftype *cft)
1515 {
1516 	umode_t mode = 0;
1517 
1518 	if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1519 		mode |= S_IRUGO;
1520 
1521 	if (cft->write_u64 || cft->write_s64 || cft->write) {
1522 		if (cft->flags & CFTYPE_WORLD_WRITABLE)
1523 			mode |= S_IWUGO;
1524 		else
1525 			mode |= S_IWUSR;
1526 	}
1527 
1528 	return mode;
1529 }
1530 
1531 /**
1532  * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1533  * @subtree_control: the new subtree_control mask to consider
1534  * @this_ss_mask: available subsystems
1535  *
1536  * On the default hierarchy, a subsystem may request other subsystems to be
1537  * enabled together through its ->depends_on mask.  In such cases, more
1538  * subsystems than specified in "cgroup.subtree_control" may be enabled.
1539  *
1540  * This function calculates which subsystems need to be enabled if
1541  * @subtree_control is to be applied while restricted to @this_ss_mask.
1542  */
1543 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
1544 {
1545 	u16 cur_ss_mask = subtree_control;
1546 	struct cgroup_subsys *ss;
1547 	int ssid;
1548 
1549 	lockdep_assert_held(&cgroup_mutex);
1550 
1551 	cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1552 
1553 	while (true) {
1554 		u16 new_ss_mask = cur_ss_mask;
1555 
1556 		do_each_subsys_mask(ss, ssid, cur_ss_mask) {
1557 			new_ss_mask |= ss->depends_on;
1558 		} while_each_subsys_mask();
1559 
1560 		/*
1561 		 * Mask out subsystems which aren't available.  This can
1562 		 * happen only if some depended-upon subsystems were bound
1563 		 * to non-default hierarchies.
1564 		 */
1565 		new_ss_mask &= this_ss_mask;
1566 
1567 		if (new_ss_mask == cur_ss_mask)
1568 			break;
1569 		cur_ss_mask = new_ss_mask;
1570 	}
1571 
1572 	return cur_ss_mask;
1573 }
1574 
1575 /**
1576  * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1577  * @kn: the kernfs_node being serviced
1578  *
1579  * This helper undoes cgroup_kn_lock_live() and should be invoked before
1580  * the method finishes if locking succeeded.  Note that once this function
1581  * returns the cgroup returned by cgroup_kn_lock_live() may become
1582  * inaccessible any time.  If the caller intends to continue to access the
1583  * cgroup, it should pin it before invoking this function.
1584  */
1585 void cgroup_kn_unlock(struct kernfs_node *kn)
1586 {
1587 	struct cgroup *cgrp;
1588 
1589 	if (kernfs_type(kn) == KERNFS_DIR)
1590 		cgrp = kn->priv;
1591 	else
1592 		cgrp = kn->parent->priv;
1593 
1594 	mutex_unlock(&cgroup_mutex);
1595 
1596 	kernfs_unbreak_active_protection(kn);
1597 	cgroup_put(cgrp);
1598 }
1599 
1600 /**
1601  * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1602  * @kn: the kernfs_node being serviced
1603  * @drain_offline: perform offline draining on the cgroup
1604  *
1605  * This helper is to be used by a cgroup kernfs method currently servicing
1606  * @kn.  It breaks the active protection, performs cgroup locking and
1607  * verifies that the associated cgroup is alive.  Returns the cgroup if
1608  * alive; otherwise, %NULL.  A successful return should be undone by a
1609  * matching cgroup_kn_unlock() invocation.  If @drain_offline is %true, the
1610  * cgroup is drained of offlining csses before return.
1611  *
1612  * Any cgroup kernfs method implementation which requires locking the
1613  * associated cgroup should use this helper.  It avoids nesting cgroup
1614  * locking under kernfs active protection and allows all kernfs operations
1615  * including self-removal.
1616  */
1617 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline)
1618 {
1619 	struct cgroup *cgrp;
1620 
1621 	if (kernfs_type(kn) == KERNFS_DIR)
1622 		cgrp = kn->priv;
1623 	else
1624 		cgrp = kn->parent->priv;
1625 
1626 	/*
1627 	 * We're gonna grab cgroup_mutex which nests outside kernfs
1628 	 * active_ref.  cgroup liveliness check alone provides enough
1629 	 * protection against removal.  Ensure @cgrp stays accessible and
1630 	 * break the active_ref protection.
1631 	 */
1632 	if (!cgroup_tryget(cgrp))
1633 		return NULL;
1634 	kernfs_break_active_protection(kn);
1635 
1636 	if (drain_offline)
1637 		cgroup_lock_and_drain_offline(cgrp);
1638 	else
1639 		mutex_lock(&cgroup_mutex);
1640 
1641 	if (!cgroup_is_dead(cgrp))
1642 		return cgrp;
1643 
1644 	cgroup_kn_unlock(kn);
1645 	return NULL;
1646 }
1647 
1648 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1649 {
1650 	char name[CGROUP_FILE_NAME_MAX];
1651 
1652 	lockdep_assert_held(&cgroup_mutex);
1653 
1654 	if (cft->file_offset) {
1655 		struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1656 		struct cgroup_file *cfile = (void *)css + cft->file_offset;
1657 
1658 		spin_lock_irq(&cgroup_file_kn_lock);
1659 		cfile->kn = NULL;
1660 		spin_unlock_irq(&cgroup_file_kn_lock);
1661 
1662 		del_timer_sync(&cfile->notify_timer);
1663 	}
1664 
1665 	kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1666 }
1667 
1668 /**
1669  * css_clear_dir - remove subsys files in a cgroup directory
1670  * @css: target css
1671  */
1672 static void css_clear_dir(struct cgroup_subsys_state *css)
1673 {
1674 	struct cgroup *cgrp = css->cgroup;
1675 	struct cftype *cfts;
1676 
1677 	if (!(css->flags & CSS_VISIBLE))
1678 		return;
1679 
1680 	css->flags &= ~CSS_VISIBLE;
1681 
1682 	if (!css->ss) {
1683 		if (cgroup_on_dfl(cgrp))
1684 			cfts = cgroup_base_files;
1685 		else
1686 			cfts = cgroup1_base_files;
1687 
1688 		cgroup_addrm_files(css, cgrp, cfts, false);
1689 	} else {
1690 		list_for_each_entry(cfts, &css->ss->cfts, node)
1691 			cgroup_addrm_files(css, cgrp, cfts, false);
1692 	}
1693 }
1694 
1695 /**
1696  * css_populate_dir - create subsys files in a cgroup directory
1697  * @css: target css
1698  *
1699  * On failure, no file is added.
1700  */
1701 static int css_populate_dir(struct cgroup_subsys_state *css)
1702 {
1703 	struct cgroup *cgrp = css->cgroup;
1704 	struct cftype *cfts, *failed_cfts;
1705 	int ret;
1706 
1707 	if ((css->flags & CSS_VISIBLE) || !cgrp->kn)
1708 		return 0;
1709 
1710 	if (!css->ss) {
1711 		if (cgroup_on_dfl(cgrp))
1712 			cfts = cgroup_base_files;
1713 		else
1714 			cfts = cgroup1_base_files;
1715 
1716 		ret = cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1717 		if (ret < 0)
1718 			return ret;
1719 	} else {
1720 		list_for_each_entry(cfts, &css->ss->cfts, node) {
1721 			ret = cgroup_addrm_files(css, cgrp, cfts, true);
1722 			if (ret < 0) {
1723 				failed_cfts = cfts;
1724 				goto err;
1725 			}
1726 		}
1727 	}
1728 
1729 	css->flags |= CSS_VISIBLE;
1730 
1731 	return 0;
1732 err:
1733 	list_for_each_entry(cfts, &css->ss->cfts, node) {
1734 		if (cfts == failed_cfts)
1735 			break;
1736 		cgroup_addrm_files(css, cgrp, cfts, false);
1737 	}
1738 	return ret;
1739 }
1740 
1741 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
1742 {
1743 	struct cgroup *dcgrp = &dst_root->cgrp;
1744 	struct cgroup_subsys *ss;
1745 	int ssid, i, ret;
1746 	u16 dfl_disable_ss_mask = 0;
1747 
1748 	lockdep_assert_held(&cgroup_mutex);
1749 
1750 	do_each_subsys_mask(ss, ssid, ss_mask) {
1751 		/*
1752 		 * If @ss has non-root csses attached to it, can't move.
1753 		 * If @ss is an implicit controller, it is exempt from this
1754 		 * rule and can be stolen.
1755 		 */
1756 		if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1757 		    !ss->implicit_on_dfl)
1758 			return -EBUSY;
1759 
1760 		/* can't move between two non-dummy roots either */
1761 		if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1762 			return -EBUSY;
1763 
1764 		/*
1765 		 * Collect ssid's that need to be disabled from default
1766 		 * hierarchy.
1767 		 */
1768 		if (ss->root == &cgrp_dfl_root)
1769 			dfl_disable_ss_mask |= 1 << ssid;
1770 
1771 	} while_each_subsys_mask();
1772 
1773 	if (dfl_disable_ss_mask) {
1774 		struct cgroup *scgrp = &cgrp_dfl_root.cgrp;
1775 
1776 		/*
1777 		 * Controllers from default hierarchy that need to be rebound
1778 		 * are all disabled together in one go.
1779 		 */
1780 		cgrp_dfl_root.subsys_mask &= ~dfl_disable_ss_mask;
1781 		WARN_ON(cgroup_apply_control(scgrp));
1782 		cgroup_finalize_control(scgrp, 0);
1783 	}
1784 
1785 	do_each_subsys_mask(ss, ssid, ss_mask) {
1786 		struct cgroup_root *src_root = ss->root;
1787 		struct cgroup *scgrp = &src_root->cgrp;
1788 		struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1789 		struct css_set *cset;
1790 
1791 		WARN_ON(!css || cgroup_css(dcgrp, ss));
1792 
1793 		if (src_root != &cgrp_dfl_root) {
1794 			/* disable from the source */
1795 			src_root->subsys_mask &= ~(1 << ssid);
1796 			WARN_ON(cgroup_apply_control(scgrp));
1797 			cgroup_finalize_control(scgrp, 0);
1798 		}
1799 
1800 		/* rebind */
1801 		RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1802 		rcu_assign_pointer(dcgrp->subsys[ssid], css);
1803 		ss->root = dst_root;
1804 		css->cgroup = dcgrp;
1805 
1806 		spin_lock_irq(&css_set_lock);
1807 		hash_for_each(css_set_table, i, cset, hlist)
1808 			list_move_tail(&cset->e_cset_node[ss->id],
1809 				       &dcgrp->e_csets[ss->id]);
1810 		spin_unlock_irq(&css_set_lock);
1811 
1812 		if (ss->css_rstat_flush) {
1813 			list_del_rcu(&css->rstat_css_node);
1814 			list_add_rcu(&css->rstat_css_node,
1815 				     &dcgrp->rstat_css_list);
1816 		}
1817 
1818 		/* default hierarchy doesn't enable controllers by default */
1819 		dst_root->subsys_mask |= 1 << ssid;
1820 		if (dst_root == &cgrp_dfl_root) {
1821 			static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1822 		} else {
1823 			dcgrp->subtree_control |= 1 << ssid;
1824 			static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1825 		}
1826 
1827 		ret = cgroup_apply_control(dcgrp);
1828 		if (ret)
1829 			pr_warn("partial failure to rebind %s controller (err=%d)\n",
1830 				ss->name, ret);
1831 
1832 		if (ss->bind)
1833 			ss->bind(css);
1834 	} while_each_subsys_mask();
1835 
1836 	kernfs_activate(dcgrp->kn);
1837 	return 0;
1838 }
1839 
1840 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
1841 		     struct kernfs_root *kf_root)
1842 {
1843 	int len = 0;
1844 	char *buf = NULL;
1845 	struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
1846 	struct cgroup *ns_cgroup;
1847 
1848 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
1849 	if (!buf)
1850 		return -ENOMEM;
1851 
1852 	spin_lock_irq(&css_set_lock);
1853 	ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
1854 	len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
1855 	spin_unlock_irq(&css_set_lock);
1856 
1857 	if (len >= PATH_MAX)
1858 		len = -ERANGE;
1859 	else if (len > 0) {
1860 		seq_escape(sf, buf, " \t\n\\");
1861 		len = 0;
1862 	}
1863 	kfree(buf);
1864 	return len;
1865 }
1866 
1867 enum cgroup2_param {
1868 	Opt_nsdelegate,
1869 	Opt_memory_localevents,
1870 	Opt_memory_recursiveprot,
1871 	nr__cgroup2_params
1872 };
1873 
1874 static const struct fs_parameter_spec cgroup2_fs_parameters[] = {
1875 	fsparam_flag("nsdelegate",		Opt_nsdelegate),
1876 	fsparam_flag("memory_localevents",	Opt_memory_localevents),
1877 	fsparam_flag("memory_recursiveprot",	Opt_memory_recursiveprot),
1878 	{}
1879 };
1880 
1881 static int cgroup2_parse_param(struct fs_context *fc, struct fs_parameter *param)
1882 {
1883 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1884 	struct fs_parse_result result;
1885 	int opt;
1886 
1887 	opt = fs_parse(fc, cgroup2_fs_parameters, param, &result);
1888 	if (opt < 0)
1889 		return opt;
1890 
1891 	switch (opt) {
1892 	case Opt_nsdelegate:
1893 		ctx->flags |= CGRP_ROOT_NS_DELEGATE;
1894 		return 0;
1895 	case Opt_memory_localevents:
1896 		ctx->flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1897 		return 0;
1898 	case Opt_memory_recursiveprot:
1899 		ctx->flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1900 		return 0;
1901 	}
1902 	return -EINVAL;
1903 }
1904 
1905 static void apply_cgroup_root_flags(unsigned int root_flags)
1906 {
1907 	if (current->nsproxy->cgroup_ns == &init_cgroup_ns) {
1908 		if (root_flags & CGRP_ROOT_NS_DELEGATE)
1909 			cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE;
1910 		else
1911 			cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE;
1912 
1913 		if (root_flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1914 			cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1915 		else
1916 			cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1917 
1918 		if (root_flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
1919 			cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1920 		else
1921 			cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1922 	}
1923 }
1924 
1925 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
1926 {
1927 	if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE)
1928 		seq_puts(seq, ",nsdelegate");
1929 	if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1930 		seq_puts(seq, ",memory_localevents");
1931 	if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
1932 		seq_puts(seq, ",memory_recursiveprot");
1933 	return 0;
1934 }
1935 
1936 static int cgroup_reconfigure(struct fs_context *fc)
1937 {
1938 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1939 
1940 	apply_cgroup_root_flags(ctx->flags);
1941 	return 0;
1942 }
1943 
1944 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1945 {
1946 	struct cgroup_subsys *ss;
1947 	int ssid;
1948 
1949 	INIT_LIST_HEAD(&cgrp->self.sibling);
1950 	INIT_LIST_HEAD(&cgrp->self.children);
1951 	INIT_LIST_HEAD(&cgrp->cset_links);
1952 	INIT_LIST_HEAD(&cgrp->pidlists);
1953 	mutex_init(&cgrp->pidlist_mutex);
1954 	cgrp->self.cgroup = cgrp;
1955 	cgrp->self.flags |= CSS_ONLINE;
1956 	cgrp->dom_cgrp = cgrp;
1957 	cgrp->max_descendants = INT_MAX;
1958 	cgrp->max_depth = INT_MAX;
1959 	INIT_LIST_HEAD(&cgrp->rstat_css_list);
1960 	prev_cputime_init(&cgrp->prev_cputime);
1961 
1962 	for_each_subsys(ss, ssid)
1963 		INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
1964 
1965 	init_waitqueue_head(&cgrp->offline_waitq);
1966 	INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent);
1967 }
1968 
1969 void init_cgroup_root(struct cgroup_fs_context *ctx)
1970 {
1971 	struct cgroup_root *root = ctx->root;
1972 	struct cgroup *cgrp = &root->cgrp;
1973 
1974 	INIT_LIST_HEAD(&root->root_list);
1975 	atomic_set(&root->nr_cgrps, 1);
1976 	cgrp->root = root;
1977 	init_cgroup_housekeeping(cgrp);
1978 
1979 	root->flags = ctx->flags;
1980 	if (ctx->release_agent)
1981 		strscpy(root->release_agent_path, ctx->release_agent, PATH_MAX);
1982 	if (ctx->name)
1983 		strscpy(root->name, ctx->name, MAX_CGROUP_ROOT_NAMELEN);
1984 	if (ctx->cpuset_clone_children)
1985 		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
1986 }
1987 
1988 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask)
1989 {
1990 	LIST_HEAD(tmp_links);
1991 	struct cgroup *root_cgrp = &root->cgrp;
1992 	struct kernfs_syscall_ops *kf_sops;
1993 	struct css_set *cset;
1994 	int i, ret;
1995 
1996 	lockdep_assert_held(&cgroup_mutex);
1997 
1998 	ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release,
1999 			      0, GFP_KERNEL);
2000 	if (ret)
2001 		goto out;
2002 
2003 	/*
2004 	 * We're accessing css_set_count without locking css_set_lock here,
2005 	 * but that's OK - it can only be increased by someone holding
2006 	 * cgroup_lock, and that's us.  Later rebinding may disable
2007 	 * controllers on the default hierarchy and thus create new csets,
2008 	 * which can't be more than the existing ones.  Allocate 2x.
2009 	 */
2010 	ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
2011 	if (ret)
2012 		goto cancel_ref;
2013 
2014 	ret = cgroup_init_root_id(root);
2015 	if (ret)
2016 		goto cancel_ref;
2017 
2018 	kf_sops = root == &cgrp_dfl_root ?
2019 		&cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops;
2020 
2021 	root->kf_root = kernfs_create_root(kf_sops,
2022 					   KERNFS_ROOT_CREATE_DEACTIVATED |
2023 					   KERNFS_ROOT_SUPPORT_EXPORTOP |
2024 					   KERNFS_ROOT_SUPPORT_USER_XATTR,
2025 					   root_cgrp);
2026 	if (IS_ERR(root->kf_root)) {
2027 		ret = PTR_ERR(root->kf_root);
2028 		goto exit_root_id;
2029 	}
2030 	root_cgrp->kn = kernfs_root_to_node(root->kf_root);
2031 	WARN_ON_ONCE(cgroup_ino(root_cgrp) != 1);
2032 	root_cgrp->ancestor_ids[0] = cgroup_id(root_cgrp);
2033 
2034 	ret = css_populate_dir(&root_cgrp->self);
2035 	if (ret)
2036 		goto destroy_root;
2037 
2038 	ret = cgroup_rstat_init(root_cgrp);
2039 	if (ret)
2040 		goto destroy_root;
2041 
2042 	ret = rebind_subsystems(root, ss_mask);
2043 	if (ret)
2044 		goto exit_stats;
2045 
2046 	ret = cgroup_bpf_inherit(root_cgrp);
2047 	WARN_ON_ONCE(ret);
2048 
2049 	trace_cgroup_setup_root(root);
2050 
2051 	/*
2052 	 * There must be no failure case after here, since rebinding takes
2053 	 * care of subsystems' refcounts, which are explicitly dropped in
2054 	 * the failure exit path.
2055 	 */
2056 	list_add(&root->root_list, &cgroup_roots);
2057 	cgroup_root_count++;
2058 
2059 	/*
2060 	 * Link the root cgroup in this hierarchy into all the css_set
2061 	 * objects.
2062 	 */
2063 	spin_lock_irq(&css_set_lock);
2064 	hash_for_each(css_set_table, i, cset, hlist) {
2065 		link_css_set(&tmp_links, cset, root_cgrp);
2066 		if (css_set_populated(cset))
2067 			cgroup_update_populated(root_cgrp, true);
2068 	}
2069 	spin_unlock_irq(&css_set_lock);
2070 
2071 	BUG_ON(!list_empty(&root_cgrp->self.children));
2072 	BUG_ON(atomic_read(&root->nr_cgrps) != 1);
2073 
2074 	ret = 0;
2075 	goto out;
2076 
2077 exit_stats:
2078 	cgroup_rstat_exit(root_cgrp);
2079 destroy_root:
2080 	kernfs_destroy_root(root->kf_root);
2081 	root->kf_root = NULL;
2082 exit_root_id:
2083 	cgroup_exit_root_id(root);
2084 cancel_ref:
2085 	percpu_ref_exit(&root_cgrp->self.refcnt);
2086 out:
2087 	free_cgrp_cset_links(&tmp_links);
2088 	return ret;
2089 }
2090 
2091 int cgroup_do_get_tree(struct fs_context *fc)
2092 {
2093 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2094 	int ret;
2095 
2096 	ctx->kfc.root = ctx->root->kf_root;
2097 	if (fc->fs_type == &cgroup2_fs_type)
2098 		ctx->kfc.magic = CGROUP2_SUPER_MAGIC;
2099 	else
2100 		ctx->kfc.magic = CGROUP_SUPER_MAGIC;
2101 	ret = kernfs_get_tree(fc);
2102 
2103 	/*
2104 	 * In non-init cgroup namespace, instead of root cgroup's dentry,
2105 	 * we return the dentry corresponding to the cgroupns->root_cgrp.
2106 	 */
2107 	if (!ret && ctx->ns != &init_cgroup_ns) {
2108 		struct dentry *nsdentry;
2109 		struct super_block *sb = fc->root->d_sb;
2110 		struct cgroup *cgrp;
2111 
2112 		mutex_lock(&cgroup_mutex);
2113 		spin_lock_irq(&css_set_lock);
2114 
2115 		cgrp = cset_cgroup_from_root(ctx->ns->root_cset, ctx->root);
2116 
2117 		spin_unlock_irq(&css_set_lock);
2118 		mutex_unlock(&cgroup_mutex);
2119 
2120 		nsdentry = kernfs_node_dentry(cgrp->kn, sb);
2121 		dput(fc->root);
2122 		if (IS_ERR(nsdentry)) {
2123 			deactivate_locked_super(sb);
2124 			ret = PTR_ERR(nsdentry);
2125 			nsdentry = NULL;
2126 		}
2127 		fc->root = nsdentry;
2128 	}
2129 
2130 	if (!ctx->kfc.new_sb_created)
2131 		cgroup_put(&ctx->root->cgrp);
2132 
2133 	return ret;
2134 }
2135 
2136 /*
2137  * Destroy a cgroup filesystem context.
2138  */
2139 static void cgroup_fs_context_free(struct fs_context *fc)
2140 {
2141 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2142 
2143 	kfree(ctx->name);
2144 	kfree(ctx->release_agent);
2145 	put_cgroup_ns(ctx->ns);
2146 	kernfs_free_fs_context(fc);
2147 	kfree(ctx);
2148 }
2149 
2150 static int cgroup_get_tree(struct fs_context *fc)
2151 {
2152 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2153 	int ret;
2154 
2155 	cgrp_dfl_visible = true;
2156 	cgroup_get_live(&cgrp_dfl_root.cgrp);
2157 	ctx->root = &cgrp_dfl_root;
2158 
2159 	ret = cgroup_do_get_tree(fc);
2160 	if (!ret)
2161 		apply_cgroup_root_flags(ctx->flags);
2162 	return ret;
2163 }
2164 
2165 static const struct fs_context_operations cgroup_fs_context_ops = {
2166 	.free		= cgroup_fs_context_free,
2167 	.parse_param	= cgroup2_parse_param,
2168 	.get_tree	= cgroup_get_tree,
2169 	.reconfigure	= cgroup_reconfigure,
2170 };
2171 
2172 static const struct fs_context_operations cgroup1_fs_context_ops = {
2173 	.free		= cgroup_fs_context_free,
2174 	.parse_param	= cgroup1_parse_param,
2175 	.get_tree	= cgroup1_get_tree,
2176 	.reconfigure	= cgroup1_reconfigure,
2177 };
2178 
2179 /*
2180  * Initialise the cgroup filesystem creation/reconfiguration context.  Notably,
2181  * we select the namespace we're going to use.
2182  */
2183 static int cgroup_init_fs_context(struct fs_context *fc)
2184 {
2185 	struct cgroup_fs_context *ctx;
2186 
2187 	ctx = kzalloc(sizeof(struct cgroup_fs_context), GFP_KERNEL);
2188 	if (!ctx)
2189 		return -ENOMEM;
2190 
2191 	ctx->ns = current->nsproxy->cgroup_ns;
2192 	get_cgroup_ns(ctx->ns);
2193 	fc->fs_private = &ctx->kfc;
2194 	if (fc->fs_type == &cgroup2_fs_type)
2195 		fc->ops = &cgroup_fs_context_ops;
2196 	else
2197 		fc->ops = &cgroup1_fs_context_ops;
2198 	put_user_ns(fc->user_ns);
2199 	fc->user_ns = get_user_ns(ctx->ns->user_ns);
2200 	fc->global = true;
2201 	return 0;
2202 }
2203 
2204 static void cgroup_kill_sb(struct super_block *sb)
2205 {
2206 	struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2207 	struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2208 
2209 	/*
2210 	 * If @root doesn't have any children, start killing it.
2211 	 * This prevents new mounts by disabling percpu_ref_tryget_live().
2212 	 *
2213 	 * And don't kill the default root.
2214 	 */
2215 	if (list_empty(&root->cgrp.self.children) && root != &cgrp_dfl_root &&
2216 	    !percpu_ref_is_dying(&root->cgrp.self.refcnt)) {
2217 		cgroup_bpf_offline(&root->cgrp);
2218 		percpu_ref_kill(&root->cgrp.self.refcnt);
2219 	}
2220 	cgroup_put(&root->cgrp);
2221 	kernfs_kill_sb(sb);
2222 }
2223 
2224 struct file_system_type cgroup_fs_type = {
2225 	.name			= "cgroup",
2226 	.init_fs_context	= cgroup_init_fs_context,
2227 	.parameters		= cgroup1_fs_parameters,
2228 	.kill_sb		= cgroup_kill_sb,
2229 	.fs_flags		= FS_USERNS_MOUNT,
2230 };
2231 
2232 static struct file_system_type cgroup2_fs_type = {
2233 	.name			= "cgroup2",
2234 	.init_fs_context	= cgroup_init_fs_context,
2235 	.parameters		= cgroup2_fs_parameters,
2236 	.kill_sb		= cgroup_kill_sb,
2237 	.fs_flags		= FS_USERNS_MOUNT,
2238 };
2239 
2240 #ifdef CONFIG_CPUSETS
2241 static const struct fs_context_operations cpuset_fs_context_ops = {
2242 	.get_tree	= cgroup1_get_tree,
2243 	.free		= cgroup_fs_context_free,
2244 };
2245 
2246 /*
2247  * This is ugly, but preserves the userspace API for existing cpuset
2248  * users. If someone tries to mount the "cpuset" filesystem, we
2249  * silently switch it to mount "cgroup" instead
2250  */
2251 static int cpuset_init_fs_context(struct fs_context *fc)
2252 {
2253 	char *agent = kstrdup("/sbin/cpuset_release_agent", GFP_USER);
2254 	struct cgroup_fs_context *ctx;
2255 	int err;
2256 
2257 	err = cgroup_init_fs_context(fc);
2258 	if (err) {
2259 		kfree(agent);
2260 		return err;
2261 	}
2262 
2263 	fc->ops = &cpuset_fs_context_ops;
2264 
2265 	ctx = cgroup_fc2context(fc);
2266 	ctx->subsys_mask = 1 << cpuset_cgrp_id;
2267 	ctx->flags |= CGRP_ROOT_NOPREFIX;
2268 	ctx->release_agent = agent;
2269 
2270 	get_filesystem(&cgroup_fs_type);
2271 	put_filesystem(fc->fs_type);
2272 	fc->fs_type = &cgroup_fs_type;
2273 
2274 	return 0;
2275 }
2276 
2277 static struct file_system_type cpuset_fs_type = {
2278 	.name			= "cpuset",
2279 	.init_fs_context	= cpuset_init_fs_context,
2280 	.fs_flags		= FS_USERNS_MOUNT,
2281 };
2282 #endif
2283 
2284 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
2285 			  struct cgroup_namespace *ns)
2286 {
2287 	struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
2288 
2289 	return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
2290 }
2291 
2292 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
2293 		   struct cgroup_namespace *ns)
2294 {
2295 	int ret;
2296 
2297 	mutex_lock(&cgroup_mutex);
2298 	spin_lock_irq(&css_set_lock);
2299 
2300 	ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
2301 
2302 	spin_unlock_irq(&css_set_lock);
2303 	mutex_unlock(&cgroup_mutex);
2304 
2305 	return ret;
2306 }
2307 EXPORT_SYMBOL_GPL(cgroup_path_ns);
2308 
2309 /**
2310  * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
2311  * @task: target task
2312  * @buf: the buffer to write the path into
2313  * @buflen: the length of the buffer
2314  *
2315  * Determine @task's cgroup on the first (the one with the lowest non-zero
2316  * hierarchy_id) cgroup hierarchy and copy its path into @buf.  This
2317  * function grabs cgroup_mutex and shouldn't be used inside locks used by
2318  * cgroup controller callbacks.
2319  *
2320  * Return value is the same as kernfs_path().
2321  */
2322 int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
2323 {
2324 	struct cgroup_root *root;
2325 	struct cgroup *cgrp;
2326 	int hierarchy_id = 1;
2327 	int ret;
2328 
2329 	mutex_lock(&cgroup_mutex);
2330 	spin_lock_irq(&css_set_lock);
2331 
2332 	root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2333 
2334 	if (root) {
2335 		cgrp = task_cgroup_from_root(task, root);
2336 		ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns);
2337 	} else {
2338 		/* if no hierarchy exists, everyone is in "/" */
2339 		ret = strlcpy(buf, "/", buflen);
2340 	}
2341 
2342 	spin_unlock_irq(&css_set_lock);
2343 	mutex_unlock(&cgroup_mutex);
2344 	return ret;
2345 }
2346 EXPORT_SYMBOL_GPL(task_cgroup_path);
2347 
2348 /**
2349  * cgroup_migrate_add_task - add a migration target task to a migration context
2350  * @task: target task
2351  * @mgctx: target migration context
2352  *
2353  * Add @task, which is a migration target, to @mgctx->tset.  This function
2354  * becomes noop if @task doesn't need to be migrated.  @task's css_set
2355  * should have been added as a migration source and @task->cg_list will be
2356  * moved from the css_set's tasks list to mg_tasks one.
2357  */
2358 static void cgroup_migrate_add_task(struct task_struct *task,
2359 				    struct cgroup_mgctx *mgctx)
2360 {
2361 	struct css_set *cset;
2362 
2363 	lockdep_assert_held(&css_set_lock);
2364 
2365 	/* @task either already exited or can't exit until the end */
2366 	if (task->flags & PF_EXITING)
2367 		return;
2368 
2369 	/* cgroup_threadgroup_rwsem protects racing against forks */
2370 	WARN_ON_ONCE(list_empty(&task->cg_list));
2371 
2372 	cset = task_css_set(task);
2373 	if (!cset->mg_src_cgrp)
2374 		return;
2375 
2376 	mgctx->tset.nr_tasks++;
2377 
2378 	list_move_tail(&task->cg_list, &cset->mg_tasks);
2379 	if (list_empty(&cset->mg_node))
2380 		list_add_tail(&cset->mg_node,
2381 			      &mgctx->tset.src_csets);
2382 	if (list_empty(&cset->mg_dst_cset->mg_node))
2383 		list_add_tail(&cset->mg_dst_cset->mg_node,
2384 			      &mgctx->tset.dst_csets);
2385 }
2386 
2387 /**
2388  * cgroup_taskset_first - reset taskset and return the first task
2389  * @tset: taskset of interest
2390  * @dst_cssp: output variable for the destination css
2391  *
2392  * @tset iteration is initialized and the first task is returned.
2393  */
2394 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2395 					 struct cgroup_subsys_state **dst_cssp)
2396 {
2397 	tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2398 	tset->cur_task = NULL;
2399 
2400 	return cgroup_taskset_next(tset, dst_cssp);
2401 }
2402 
2403 /**
2404  * cgroup_taskset_next - iterate to the next task in taskset
2405  * @tset: taskset of interest
2406  * @dst_cssp: output variable for the destination css
2407  *
2408  * Return the next task in @tset.  Iteration must have been initialized
2409  * with cgroup_taskset_first().
2410  */
2411 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2412 					struct cgroup_subsys_state **dst_cssp)
2413 {
2414 	struct css_set *cset = tset->cur_cset;
2415 	struct task_struct *task = tset->cur_task;
2416 
2417 	while (CGROUP_HAS_SUBSYS_CONFIG && &cset->mg_node != tset->csets) {
2418 		if (!task)
2419 			task = list_first_entry(&cset->mg_tasks,
2420 						struct task_struct, cg_list);
2421 		else
2422 			task = list_next_entry(task, cg_list);
2423 
2424 		if (&task->cg_list != &cset->mg_tasks) {
2425 			tset->cur_cset = cset;
2426 			tset->cur_task = task;
2427 
2428 			/*
2429 			 * This function may be called both before and
2430 			 * after cgroup_taskset_migrate().  The two cases
2431 			 * can be distinguished by looking at whether @cset
2432 			 * has its ->mg_dst_cset set.
2433 			 */
2434 			if (cset->mg_dst_cset)
2435 				*dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2436 			else
2437 				*dst_cssp = cset->subsys[tset->ssid];
2438 
2439 			return task;
2440 		}
2441 
2442 		cset = list_next_entry(cset, mg_node);
2443 		task = NULL;
2444 	}
2445 
2446 	return NULL;
2447 }
2448 
2449 /**
2450  * cgroup_migrate_execute - migrate a taskset
2451  * @mgctx: migration context
2452  *
2453  * Migrate tasks in @mgctx as setup by migration preparation functions.
2454  * This function fails iff one of the ->can_attach callbacks fails and
2455  * guarantees that either all or none of the tasks in @mgctx are migrated.
2456  * @mgctx is consumed regardless of success.
2457  */
2458 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx)
2459 {
2460 	struct cgroup_taskset *tset = &mgctx->tset;
2461 	struct cgroup_subsys *ss;
2462 	struct task_struct *task, *tmp_task;
2463 	struct css_set *cset, *tmp_cset;
2464 	int ssid, failed_ssid, ret;
2465 
2466 	/* check that we can legitimately attach to the cgroup */
2467 	if (tset->nr_tasks) {
2468 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2469 			if (ss->can_attach) {
2470 				tset->ssid = ssid;
2471 				ret = ss->can_attach(tset);
2472 				if (ret) {
2473 					failed_ssid = ssid;
2474 					goto out_cancel_attach;
2475 				}
2476 			}
2477 		} while_each_subsys_mask();
2478 	}
2479 
2480 	/*
2481 	 * Now that we're guaranteed success, proceed to move all tasks to
2482 	 * the new cgroup.  There are no failure cases after here, so this
2483 	 * is the commit point.
2484 	 */
2485 	spin_lock_irq(&css_set_lock);
2486 	list_for_each_entry(cset, &tset->src_csets, mg_node) {
2487 		list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2488 			struct css_set *from_cset = task_css_set(task);
2489 			struct css_set *to_cset = cset->mg_dst_cset;
2490 
2491 			get_css_set(to_cset);
2492 			to_cset->nr_tasks++;
2493 			css_set_move_task(task, from_cset, to_cset, true);
2494 			from_cset->nr_tasks--;
2495 			/*
2496 			 * If the source or destination cgroup is frozen,
2497 			 * the task might require to change its state.
2498 			 */
2499 			cgroup_freezer_migrate_task(task, from_cset->dfl_cgrp,
2500 						    to_cset->dfl_cgrp);
2501 			put_css_set_locked(from_cset);
2502 
2503 		}
2504 	}
2505 	spin_unlock_irq(&css_set_lock);
2506 
2507 	/*
2508 	 * Migration is committed, all target tasks are now on dst_csets.
2509 	 * Nothing is sensitive to fork() after this point.  Notify
2510 	 * controllers that migration is complete.
2511 	 */
2512 	tset->csets = &tset->dst_csets;
2513 
2514 	if (tset->nr_tasks) {
2515 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2516 			if (ss->attach) {
2517 				tset->ssid = ssid;
2518 				ss->attach(tset);
2519 			}
2520 		} while_each_subsys_mask();
2521 	}
2522 
2523 	ret = 0;
2524 	goto out_release_tset;
2525 
2526 out_cancel_attach:
2527 	if (tset->nr_tasks) {
2528 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2529 			if (ssid == failed_ssid)
2530 				break;
2531 			if (ss->cancel_attach) {
2532 				tset->ssid = ssid;
2533 				ss->cancel_attach(tset);
2534 			}
2535 		} while_each_subsys_mask();
2536 	}
2537 out_release_tset:
2538 	spin_lock_irq(&css_set_lock);
2539 	list_splice_init(&tset->dst_csets, &tset->src_csets);
2540 	list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2541 		list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2542 		list_del_init(&cset->mg_node);
2543 	}
2544 	spin_unlock_irq(&css_set_lock);
2545 
2546 	/*
2547 	 * Re-initialize the cgroup_taskset structure in case it is reused
2548 	 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute()
2549 	 * iteration.
2550 	 */
2551 	tset->nr_tasks = 0;
2552 	tset->csets    = &tset->src_csets;
2553 	return ret;
2554 }
2555 
2556 /**
2557  * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination
2558  * @dst_cgrp: destination cgroup to test
2559  *
2560  * On the default hierarchy, except for the mixable, (possible) thread root
2561  * and threaded cgroups, subtree_control must be zero for migration
2562  * destination cgroups with tasks so that child cgroups don't compete
2563  * against tasks.
2564  */
2565 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp)
2566 {
2567 	/* v1 doesn't have any restriction */
2568 	if (!cgroup_on_dfl(dst_cgrp))
2569 		return 0;
2570 
2571 	/* verify @dst_cgrp can host resources */
2572 	if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp))
2573 		return -EOPNOTSUPP;
2574 
2575 	/* mixables don't care */
2576 	if (cgroup_is_mixable(dst_cgrp))
2577 		return 0;
2578 
2579 	/*
2580 	 * If @dst_cgrp is already or can become a thread root or is
2581 	 * threaded, it doesn't matter.
2582 	 */
2583 	if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp))
2584 		return 0;
2585 
2586 	/* apply no-internal-process constraint */
2587 	if (dst_cgrp->subtree_control)
2588 		return -EBUSY;
2589 
2590 	return 0;
2591 }
2592 
2593 /**
2594  * cgroup_migrate_finish - cleanup after attach
2595  * @mgctx: migration context
2596  *
2597  * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst().  See
2598  * those functions for details.
2599  */
2600 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx)
2601 {
2602 	struct css_set *cset, *tmp_cset;
2603 
2604 	lockdep_assert_held(&cgroup_mutex);
2605 
2606 	spin_lock_irq(&css_set_lock);
2607 
2608 	list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_src_csets,
2609 				 mg_src_preload_node) {
2610 		cset->mg_src_cgrp = NULL;
2611 		cset->mg_dst_cgrp = NULL;
2612 		cset->mg_dst_cset = NULL;
2613 		list_del_init(&cset->mg_src_preload_node);
2614 		put_css_set_locked(cset);
2615 	}
2616 
2617 	list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_dst_csets,
2618 				 mg_dst_preload_node) {
2619 		cset->mg_src_cgrp = NULL;
2620 		cset->mg_dst_cgrp = NULL;
2621 		cset->mg_dst_cset = NULL;
2622 		list_del_init(&cset->mg_dst_preload_node);
2623 		put_css_set_locked(cset);
2624 	}
2625 
2626 	spin_unlock_irq(&css_set_lock);
2627 }
2628 
2629 /**
2630  * cgroup_migrate_add_src - add a migration source css_set
2631  * @src_cset: the source css_set to add
2632  * @dst_cgrp: the destination cgroup
2633  * @mgctx: migration context
2634  *
2635  * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp.  Pin
2636  * @src_cset and add it to @mgctx->src_csets, which should later be cleaned
2637  * up by cgroup_migrate_finish().
2638  *
2639  * This function may be called without holding cgroup_threadgroup_rwsem
2640  * even if the target is a process.  Threads may be created and destroyed
2641  * but as long as cgroup_mutex is not dropped, no new css_set can be put
2642  * into play and the preloaded css_sets are guaranteed to cover all
2643  * migrations.
2644  */
2645 void cgroup_migrate_add_src(struct css_set *src_cset,
2646 			    struct cgroup *dst_cgrp,
2647 			    struct cgroup_mgctx *mgctx)
2648 {
2649 	struct cgroup *src_cgrp;
2650 
2651 	lockdep_assert_held(&cgroup_mutex);
2652 	lockdep_assert_held(&css_set_lock);
2653 
2654 	/*
2655 	 * If ->dead, @src_set is associated with one or more dead cgroups
2656 	 * and doesn't contain any migratable tasks.  Ignore it early so
2657 	 * that the rest of migration path doesn't get confused by it.
2658 	 */
2659 	if (src_cset->dead)
2660 		return;
2661 
2662 	if (!list_empty(&src_cset->mg_src_preload_node))
2663 		return;
2664 
2665 	src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2666 
2667 	WARN_ON(src_cset->mg_src_cgrp);
2668 	WARN_ON(src_cset->mg_dst_cgrp);
2669 	WARN_ON(!list_empty(&src_cset->mg_tasks));
2670 	WARN_ON(!list_empty(&src_cset->mg_node));
2671 
2672 	src_cset->mg_src_cgrp = src_cgrp;
2673 	src_cset->mg_dst_cgrp = dst_cgrp;
2674 	get_css_set(src_cset);
2675 	list_add_tail(&src_cset->mg_src_preload_node, &mgctx->preloaded_src_csets);
2676 }
2677 
2678 /**
2679  * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2680  * @mgctx: migration context
2681  *
2682  * Tasks are about to be moved and all the source css_sets have been
2683  * preloaded to @mgctx->preloaded_src_csets.  This function looks up and
2684  * pins all destination css_sets, links each to its source, and append them
2685  * to @mgctx->preloaded_dst_csets.
2686  *
2687  * This function must be called after cgroup_migrate_add_src() has been
2688  * called on each migration source css_set.  After migration is performed
2689  * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2690  * @mgctx.
2691  */
2692 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx)
2693 {
2694 	struct css_set *src_cset, *tmp_cset;
2695 
2696 	lockdep_assert_held(&cgroup_mutex);
2697 
2698 	/* look up the dst cset for each src cset and link it to src */
2699 	list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets,
2700 				 mg_src_preload_node) {
2701 		struct css_set *dst_cset;
2702 		struct cgroup_subsys *ss;
2703 		int ssid;
2704 
2705 		dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
2706 		if (!dst_cset)
2707 			return -ENOMEM;
2708 
2709 		WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2710 
2711 		/*
2712 		 * If src cset equals dst, it's noop.  Drop the src.
2713 		 * cgroup_migrate() will skip the cset too.  Note that we
2714 		 * can't handle src == dst as some nodes are used by both.
2715 		 */
2716 		if (src_cset == dst_cset) {
2717 			src_cset->mg_src_cgrp = NULL;
2718 			src_cset->mg_dst_cgrp = NULL;
2719 			list_del_init(&src_cset->mg_src_preload_node);
2720 			put_css_set(src_cset);
2721 			put_css_set(dst_cset);
2722 			continue;
2723 		}
2724 
2725 		src_cset->mg_dst_cset = dst_cset;
2726 
2727 		if (list_empty(&dst_cset->mg_dst_preload_node))
2728 			list_add_tail(&dst_cset->mg_dst_preload_node,
2729 				      &mgctx->preloaded_dst_csets);
2730 		else
2731 			put_css_set(dst_cset);
2732 
2733 		for_each_subsys(ss, ssid)
2734 			if (src_cset->subsys[ssid] != dst_cset->subsys[ssid])
2735 				mgctx->ss_mask |= 1 << ssid;
2736 	}
2737 
2738 	return 0;
2739 }
2740 
2741 /**
2742  * cgroup_migrate - migrate a process or task to a cgroup
2743  * @leader: the leader of the process or the task to migrate
2744  * @threadgroup: whether @leader points to the whole process or a single task
2745  * @mgctx: migration context
2746  *
2747  * Migrate a process or task denoted by @leader.  If migrating a process,
2748  * the caller must be holding cgroup_threadgroup_rwsem.  The caller is also
2749  * responsible for invoking cgroup_migrate_add_src() and
2750  * cgroup_migrate_prepare_dst() on the targets before invoking this
2751  * function and following up with cgroup_migrate_finish().
2752  *
2753  * As long as a controller's ->can_attach() doesn't fail, this function is
2754  * guaranteed to succeed.  This means that, excluding ->can_attach()
2755  * failure, when migrating multiple targets, the success or failure can be
2756  * decided for all targets by invoking group_migrate_prepare_dst() before
2757  * actually starting migrating.
2758  */
2759 int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2760 		   struct cgroup_mgctx *mgctx)
2761 {
2762 	struct task_struct *task;
2763 
2764 	/*
2765 	 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2766 	 * already PF_EXITING could be freed from underneath us unless we
2767 	 * take an rcu_read_lock.
2768 	 */
2769 	spin_lock_irq(&css_set_lock);
2770 	rcu_read_lock();
2771 	task = leader;
2772 	do {
2773 		cgroup_migrate_add_task(task, mgctx);
2774 		if (!threadgroup)
2775 			break;
2776 	} while_each_thread(leader, task);
2777 	rcu_read_unlock();
2778 	spin_unlock_irq(&css_set_lock);
2779 
2780 	return cgroup_migrate_execute(mgctx);
2781 }
2782 
2783 /**
2784  * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2785  * @dst_cgrp: the cgroup to attach to
2786  * @leader: the task or the leader of the threadgroup to be attached
2787  * @threadgroup: attach the whole threadgroup?
2788  *
2789  * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2790  */
2791 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader,
2792 		       bool threadgroup)
2793 {
2794 	DEFINE_CGROUP_MGCTX(mgctx);
2795 	struct task_struct *task;
2796 	int ret = 0;
2797 
2798 	/* look up all src csets */
2799 	spin_lock_irq(&css_set_lock);
2800 	rcu_read_lock();
2801 	task = leader;
2802 	do {
2803 		cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx);
2804 		if (!threadgroup)
2805 			break;
2806 	} while_each_thread(leader, task);
2807 	rcu_read_unlock();
2808 	spin_unlock_irq(&css_set_lock);
2809 
2810 	/* prepare dst csets and commit */
2811 	ret = cgroup_migrate_prepare_dst(&mgctx);
2812 	if (!ret)
2813 		ret = cgroup_migrate(leader, threadgroup, &mgctx);
2814 
2815 	cgroup_migrate_finish(&mgctx);
2816 
2817 	if (!ret)
2818 		TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup);
2819 
2820 	return ret;
2821 }
2822 
2823 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup,
2824 					     bool *locked)
2825 	__acquires(&cgroup_threadgroup_rwsem)
2826 {
2827 	struct task_struct *tsk;
2828 	pid_t pid;
2829 
2830 	if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2831 		return ERR_PTR(-EINVAL);
2832 
2833 	/*
2834 	 * If we migrate a single thread, we don't care about threadgroup
2835 	 * stability. If the thread is `current`, it won't exit(2) under our
2836 	 * hands or change PID through exec(2). We exclude
2837 	 * cgroup_update_dfl_csses and other cgroup_{proc,thread}s_write
2838 	 * callers by cgroup_mutex.
2839 	 * Therefore, we can skip the global lock.
2840 	 */
2841 	lockdep_assert_held(&cgroup_mutex);
2842 	if (pid || threadgroup) {
2843 		percpu_down_write(&cgroup_threadgroup_rwsem);
2844 		*locked = true;
2845 	} else {
2846 		*locked = false;
2847 	}
2848 
2849 	rcu_read_lock();
2850 	if (pid) {
2851 		tsk = find_task_by_vpid(pid);
2852 		if (!tsk) {
2853 			tsk = ERR_PTR(-ESRCH);
2854 			goto out_unlock_threadgroup;
2855 		}
2856 	} else {
2857 		tsk = current;
2858 	}
2859 
2860 	if (threadgroup)
2861 		tsk = tsk->group_leader;
2862 
2863 	/*
2864 	 * kthreads may acquire PF_NO_SETAFFINITY during initialization.
2865 	 * If userland migrates such a kthread to a non-root cgroup, it can
2866 	 * become trapped in a cpuset, or RT kthread may be born in a
2867 	 * cgroup with no rt_runtime allocated.  Just say no.
2868 	 */
2869 	if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) {
2870 		tsk = ERR_PTR(-EINVAL);
2871 		goto out_unlock_threadgroup;
2872 	}
2873 
2874 	get_task_struct(tsk);
2875 	goto out_unlock_rcu;
2876 
2877 out_unlock_threadgroup:
2878 	if (*locked) {
2879 		percpu_up_write(&cgroup_threadgroup_rwsem);
2880 		*locked = false;
2881 	}
2882 out_unlock_rcu:
2883 	rcu_read_unlock();
2884 	return tsk;
2885 }
2886 
2887 void cgroup_procs_write_finish(struct task_struct *task, bool locked)
2888 	__releases(&cgroup_threadgroup_rwsem)
2889 {
2890 	struct cgroup_subsys *ss;
2891 	int ssid;
2892 
2893 	/* release reference from cgroup_procs_write_start() */
2894 	put_task_struct(task);
2895 
2896 	if (locked)
2897 		percpu_up_write(&cgroup_threadgroup_rwsem);
2898 	for_each_subsys(ss, ssid)
2899 		if (ss->post_attach)
2900 			ss->post_attach();
2901 }
2902 
2903 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
2904 {
2905 	struct cgroup_subsys *ss;
2906 	bool printed = false;
2907 	int ssid;
2908 
2909 	do_each_subsys_mask(ss, ssid, ss_mask) {
2910 		if (printed)
2911 			seq_putc(seq, ' ');
2912 		seq_puts(seq, ss->name);
2913 		printed = true;
2914 	} while_each_subsys_mask();
2915 	if (printed)
2916 		seq_putc(seq, '\n');
2917 }
2918 
2919 /* show controllers which are enabled from the parent */
2920 static int cgroup_controllers_show(struct seq_file *seq, void *v)
2921 {
2922 	struct cgroup *cgrp = seq_css(seq)->cgroup;
2923 
2924 	cgroup_print_ss_mask(seq, cgroup_control(cgrp));
2925 	return 0;
2926 }
2927 
2928 /* show controllers which are enabled for a given cgroup's children */
2929 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
2930 {
2931 	struct cgroup *cgrp = seq_css(seq)->cgroup;
2932 
2933 	cgroup_print_ss_mask(seq, cgrp->subtree_control);
2934 	return 0;
2935 }
2936 
2937 /**
2938  * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2939  * @cgrp: root of the subtree to update csses for
2940  *
2941  * @cgrp's control masks have changed and its subtree's css associations
2942  * need to be updated accordingly.  This function looks up all css_sets
2943  * which are attached to the subtree, creates the matching updated css_sets
2944  * and migrates the tasks to the new ones.
2945  */
2946 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2947 {
2948 	DEFINE_CGROUP_MGCTX(mgctx);
2949 	struct cgroup_subsys_state *d_css;
2950 	struct cgroup *dsct;
2951 	struct css_set *src_cset;
2952 	int ret;
2953 
2954 	lockdep_assert_held(&cgroup_mutex);
2955 
2956 	percpu_down_write(&cgroup_threadgroup_rwsem);
2957 
2958 	/* look up all csses currently attached to @cgrp's subtree */
2959 	spin_lock_irq(&css_set_lock);
2960 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2961 		struct cgrp_cset_link *link;
2962 
2963 		list_for_each_entry(link, &dsct->cset_links, cset_link)
2964 			cgroup_migrate_add_src(link->cset, dsct, &mgctx);
2965 	}
2966 	spin_unlock_irq(&css_set_lock);
2967 
2968 	/* NULL dst indicates self on default hierarchy */
2969 	ret = cgroup_migrate_prepare_dst(&mgctx);
2970 	if (ret)
2971 		goto out_finish;
2972 
2973 	spin_lock_irq(&css_set_lock);
2974 	list_for_each_entry(src_cset, &mgctx.preloaded_src_csets,
2975 			    mg_src_preload_node) {
2976 		struct task_struct *task, *ntask;
2977 
2978 		/* all tasks in src_csets need to be migrated */
2979 		list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
2980 			cgroup_migrate_add_task(task, &mgctx);
2981 	}
2982 	spin_unlock_irq(&css_set_lock);
2983 
2984 	ret = cgroup_migrate_execute(&mgctx);
2985 out_finish:
2986 	cgroup_migrate_finish(&mgctx);
2987 	percpu_up_write(&cgroup_threadgroup_rwsem);
2988 	return ret;
2989 }
2990 
2991 /**
2992  * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
2993  * @cgrp: root of the target subtree
2994  *
2995  * Because css offlining is asynchronous, userland may try to re-enable a
2996  * controller while the previous css is still around.  This function grabs
2997  * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
2998  */
2999 void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
3000 	__acquires(&cgroup_mutex)
3001 {
3002 	struct cgroup *dsct;
3003 	struct cgroup_subsys_state *d_css;
3004 	struct cgroup_subsys *ss;
3005 	int ssid;
3006 
3007 restart:
3008 	mutex_lock(&cgroup_mutex);
3009 
3010 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3011 		for_each_subsys(ss, ssid) {
3012 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3013 			DEFINE_WAIT(wait);
3014 
3015 			if (!css || !percpu_ref_is_dying(&css->refcnt))
3016 				continue;
3017 
3018 			cgroup_get_live(dsct);
3019 			prepare_to_wait(&dsct->offline_waitq, &wait,
3020 					TASK_UNINTERRUPTIBLE);
3021 
3022 			mutex_unlock(&cgroup_mutex);
3023 			schedule();
3024 			finish_wait(&dsct->offline_waitq, &wait);
3025 
3026 			cgroup_put(dsct);
3027 			goto restart;
3028 		}
3029 	}
3030 }
3031 
3032 /**
3033  * cgroup_save_control - save control masks and dom_cgrp of a subtree
3034  * @cgrp: root of the target subtree
3035  *
3036  * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the
3037  * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3038  * itself.
3039  */
3040 static void cgroup_save_control(struct cgroup *cgrp)
3041 {
3042 	struct cgroup *dsct;
3043 	struct cgroup_subsys_state *d_css;
3044 
3045 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3046 		dsct->old_subtree_control = dsct->subtree_control;
3047 		dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
3048 		dsct->old_dom_cgrp = dsct->dom_cgrp;
3049 	}
3050 }
3051 
3052 /**
3053  * cgroup_propagate_control - refresh control masks of a subtree
3054  * @cgrp: root of the target subtree
3055  *
3056  * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
3057  * ->subtree_control and propagate controller availability through the
3058  * subtree so that descendants don't have unavailable controllers enabled.
3059  */
3060 static void cgroup_propagate_control(struct cgroup *cgrp)
3061 {
3062 	struct cgroup *dsct;
3063 	struct cgroup_subsys_state *d_css;
3064 
3065 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3066 		dsct->subtree_control &= cgroup_control(dsct);
3067 		dsct->subtree_ss_mask =
3068 			cgroup_calc_subtree_ss_mask(dsct->subtree_control,
3069 						    cgroup_ss_mask(dsct));
3070 	}
3071 }
3072 
3073 /**
3074  * cgroup_restore_control - restore control masks and dom_cgrp of a subtree
3075  * @cgrp: root of the target subtree
3076  *
3077  * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the
3078  * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3079  * itself.
3080  */
3081 static void cgroup_restore_control(struct cgroup *cgrp)
3082 {
3083 	struct cgroup *dsct;
3084 	struct cgroup_subsys_state *d_css;
3085 
3086 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3087 		dsct->subtree_control = dsct->old_subtree_control;
3088 		dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
3089 		dsct->dom_cgrp = dsct->old_dom_cgrp;
3090 	}
3091 }
3092 
3093 static bool css_visible(struct cgroup_subsys_state *css)
3094 {
3095 	struct cgroup_subsys *ss = css->ss;
3096 	struct cgroup *cgrp = css->cgroup;
3097 
3098 	if (cgroup_control(cgrp) & (1 << ss->id))
3099 		return true;
3100 	if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
3101 		return false;
3102 	return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
3103 }
3104 
3105 /**
3106  * cgroup_apply_control_enable - enable or show csses according to control
3107  * @cgrp: root of the target subtree
3108  *
3109  * Walk @cgrp's subtree and create new csses or make the existing ones
3110  * visible.  A css is created invisible if it's being implicitly enabled
3111  * through dependency.  An invisible css is made visible when the userland
3112  * explicitly enables it.
3113  *
3114  * Returns 0 on success, -errno on failure.  On failure, csses which have
3115  * been processed already aren't cleaned up.  The caller is responsible for
3116  * cleaning up with cgroup_apply_control_disable().
3117  */
3118 static int cgroup_apply_control_enable(struct cgroup *cgrp)
3119 {
3120 	struct cgroup *dsct;
3121 	struct cgroup_subsys_state *d_css;
3122 	struct cgroup_subsys *ss;
3123 	int ssid, ret;
3124 
3125 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3126 		for_each_subsys(ss, ssid) {
3127 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3128 
3129 			if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
3130 				continue;
3131 
3132 			if (!css) {
3133 				css = css_create(dsct, ss);
3134 				if (IS_ERR(css))
3135 					return PTR_ERR(css);
3136 			}
3137 
3138 			WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3139 
3140 			if (css_visible(css)) {
3141 				ret = css_populate_dir(css);
3142 				if (ret)
3143 					return ret;
3144 			}
3145 		}
3146 	}
3147 
3148 	return 0;
3149 }
3150 
3151 /**
3152  * cgroup_apply_control_disable - kill or hide csses according to control
3153  * @cgrp: root of the target subtree
3154  *
3155  * Walk @cgrp's subtree and kill and hide csses so that they match
3156  * cgroup_ss_mask() and cgroup_visible_mask().
3157  *
3158  * A css is hidden when the userland requests it to be disabled while other
3159  * subsystems are still depending on it.  The css must not actively control
3160  * resources and be in the vanilla state if it's made visible again later.
3161  * Controllers which may be depended upon should provide ->css_reset() for
3162  * this purpose.
3163  */
3164 static void cgroup_apply_control_disable(struct cgroup *cgrp)
3165 {
3166 	struct cgroup *dsct;
3167 	struct cgroup_subsys_state *d_css;
3168 	struct cgroup_subsys *ss;
3169 	int ssid;
3170 
3171 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3172 		for_each_subsys(ss, ssid) {
3173 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3174 
3175 			if (!css)
3176 				continue;
3177 
3178 			WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3179 
3180 			if (css->parent &&
3181 			    !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
3182 				kill_css(css);
3183 			} else if (!css_visible(css)) {
3184 				css_clear_dir(css);
3185 				if (ss->css_reset)
3186 					ss->css_reset(css);
3187 			}
3188 		}
3189 	}
3190 }
3191 
3192 /**
3193  * cgroup_apply_control - apply control mask updates to the subtree
3194  * @cgrp: root of the target subtree
3195  *
3196  * subsystems can be enabled and disabled in a subtree using the following
3197  * steps.
3198  *
3199  * 1. Call cgroup_save_control() to stash the current state.
3200  * 2. Update ->subtree_control masks in the subtree as desired.
3201  * 3. Call cgroup_apply_control() to apply the changes.
3202  * 4. Optionally perform other related operations.
3203  * 5. Call cgroup_finalize_control() to finish up.
3204  *
3205  * This function implements step 3 and propagates the mask changes
3206  * throughout @cgrp's subtree, updates csses accordingly and perform
3207  * process migrations.
3208  */
3209 static int cgroup_apply_control(struct cgroup *cgrp)
3210 {
3211 	int ret;
3212 
3213 	cgroup_propagate_control(cgrp);
3214 
3215 	ret = cgroup_apply_control_enable(cgrp);
3216 	if (ret)
3217 		return ret;
3218 
3219 	/*
3220 	 * At this point, cgroup_e_css_by_mask() results reflect the new csses
3221 	 * making the following cgroup_update_dfl_csses() properly update
3222 	 * css associations of all tasks in the subtree.
3223 	 */
3224 	ret = cgroup_update_dfl_csses(cgrp);
3225 	if (ret)
3226 		return ret;
3227 
3228 	return 0;
3229 }
3230 
3231 /**
3232  * cgroup_finalize_control - finalize control mask update
3233  * @cgrp: root of the target subtree
3234  * @ret: the result of the update
3235  *
3236  * Finalize control mask update.  See cgroup_apply_control() for more info.
3237  */
3238 static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
3239 {
3240 	if (ret) {
3241 		cgroup_restore_control(cgrp);
3242 		cgroup_propagate_control(cgrp);
3243 	}
3244 
3245 	cgroup_apply_control_disable(cgrp);
3246 }
3247 
3248 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable)
3249 {
3250 	u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask;
3251 
3252 	/* if nothing is getting enabled, nothing to worry about */
3253 	if (!enable)
3254 		return 0;
3255 
3256 	/* can @cgrp host any resources? */
3257 	if (!cgroup_is_valid_domain(cgrp->dom_cgrp))
3258 		return -EOPNOTSUPP;
3259 
3260 	/* mixables don't care */
3261 	if (cgroup_is_mixable(cgrp))
3262 		return 0;
3263 
3264 	if (domain_enable) {
3265 		/* can't enable domain controllers inside a thread subtree */
3266 		if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3267 			return -EOPNOTSUPP;
3268 	} else {
3269 		/*
3270 		 * Threaded controllers can handle internal competitions
3271 		 * and are always allowed inside a (prospective) thread
3272 		 * subtree.
3273 		 */
3274 		if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3275 			return 0;
3276 	}
3277 
3278 	/*
3279 	 * Controllers can't be enabled for a cgroup with tasks to avoid
3280 	 * child cgroups competing against tasks.
3281 	 */
3282 	if (cgroup_has_tasks(cgrp))
3283 		return -EBUSY;
3284 
3285 	return 0;
3286 }
3287 
3288 /* change the enabled child controllers for a cgroup in the default hierarchy */
3289 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3290 					    char *buf, size_t nbytes,
3291 					    loff_t off)
3292 {
3293 	u16 enable = 0, disable = 0;
3294 	struct cgroup *cgrp, *child;
3295 	struct cgroup_subsys *ss;
3296 	char *tok;
3297 	int ssid, ret;
3298 
3299 	/*
3300 	 * Parse input - space separated list of subsystem names prefixed
3301 	 * with either + or -.
3302 	 */
3303 	buf = strstrip(buf);
3304 	while ((tok = strsep(&buf, " "))) {
3305 		if (tok[0] == '\0')
3306 			continue;
3307 		do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
3308 			if (!cgroup_ssid_enabled(ssid) ||
3309 			    strcmp(tok + 1, ss->name))
3310 				continue;
3311 
3312 			if (*tok == '+') {
3313 				enable |= 1 << ssid;
3314 				disable &= ~(1 << ssid);
3315 			} else if (*tok == '-') {
3316 				disable |= 1 << ssid;
3317 				enable &= ~(1 << ssid);
3318 			} else {
3319 				return -EINVAL;
3320 			}
3321 			break;
3322 		} while_each_subsys_mask();
3323 		if (ssid == CGROUP_SUBSYS_COUNT)
3324 			return -EINVAL;
3325 	}
3326 
3327 	cgrp = cgroup_kn_lock_live(of->kn, true);
3328 	if (!cgrp)
3329 		return -ENODEV;
3330 
3331 	for_each_subsys(ss, ssid) {
3332 		if (enable & (1 << ssid)) {
3333 			if (cgrp->subtree_control & (1 << ssid)) {
3334 				enable &= ~(1 << ssid);
3335 				continue;
3336 			}
3337 
3338 			if (!(cgroup_control(cgrp) & (1 << ssid))) {
3339 				ret = -ENOENT;
3340 				goto out_unlock;
3341 			}
3342 		} else if (disable & (1 << ssid)) {
3343 			if (!(cgrp->subtree_control & (1 << ssid))) {
3344 				disable &= ~(1 << ssid);
3345 				continue;
3346 			}
3347 
3348 			/* a child has it enabled? */
3349 			cgroup_for_each_live_child(child, cgrp) {
3350 				if (child->subtree_control & (1 << ssid)) {
3351 					ret = -EBUSY;
3352 					goto out_unlock;
3353 				}
3354 			}
3355 		}
3356 	}
3357 
3358 	if (!enable && !disable) {
3359 		ret = 0;
3360 		goto out_unlock;
3361 	}
3362 
3363 	ret = cgroup_vet_subtree_control_enable(cgrp, enable);
3364 	if (ret)
3365 		goto out_unlock;
3366 
3367 	/* save and update control masks and prepare csses */
3368 	cgroup_save_control(cgrp);
3369 
3370 	cgrp->subtree_control |= enable;
3371 	cgrp->subtree_control &= ~disable;
3372 
3373 	ret = cgroup_apply_control(cgrp);
3374 	cgroup_finalize_control(cgrp, ret);
3375 	if (ret)
3376 		goto out_unlock;
3377 
3378 	kernfs_activate(cgrp->kn);
3379 out_unlock:
3380 	cgroup_kn_unlock(of->kn);
3381 	return ret ?: nbytes;
3382 }
3383 
3384 /**
3385  * cgroup_enable_threaded - make @cgrp threaded
3386  * @cgrp: the target cgroup
3387  *
3388  * Called when "threaded" is written to the cgroup.type interface file and
3389  * tries to make @cgrp threaded and join the parent's resource domain.
3390  * This function is never called on the root cgroup as cgroup.type doesn't
3391  * exist on it.
3392  */
3393 static int cgroup_enable_threaded(struct cgroup *cgrp)
3394 {
3395 	struct cgroup *parent = cgroup_parent(cgrp);
3396 	struct cgroup *dom_cgrp = parent->dom_cgrp;
3397 	struct cgroup *dsct;
3398 	struct cgroup_subsys_state *d_css;
3399 	int ret;
3400 
3401 	lockdep_assert_held(&cgroup_mutex);
3402 
3403 	/* noop if already threaded */
3404 	if (cgroup_is_threaded(cgrp))
3405 		return 0;
3406 
3407 	/*
3408 	 * If @cgroup is populated or has domain controllers enabled, it
3409 	 * can't be switched.  While the below cgroup_can_be_thread_root()
3410 	 * test can catch the same conditions, that's only when @parent is
3411 	 * not mixable, so let's check it explicitly.
3412 	 */
3413 	if (cgroup_is_populated(cgrp) ||
3414 	    cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
3415 		return -EOPNOTSUPP;
3416 
3417 	/* we're joining the parent's domain, ensure its validity */
3418 	if (!cgroup_is_valid_domain(dom_cgrp) ||
3419 	    !cgroup_can_be_thread_root(dom_cgrp))
3420 		return -EOPNOTSUPP;
3421 
3422 	/*
3423 	 * The following shouldn't cause actual migrations and should
3424 	 * always succeed.
3425 	 */
3426 	cgroup_save_control(cgrp);
3427 
3428 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)
3429 		if (dsct == cgrp || cgroup_is_threaded(dsct))
3430 			dsct->dom_cgrp = dom_cgrp;
3431 
3432 	ret = cgroup_apply_control(cgrp);
3433 	if (!ret)
3434 		parent->nr_threaded_children++;
3435 
3436 	cgroup_finalize_control(cgrp, ret);
3437 	return ret;
3438 }
3439 
3440 static int cgroup_type_show(struct seq_file *seq, void *v)
3441 {
3442 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3443 
3444 	if (cgroup_is_threaded(cgrp))
3445 		seq_puts(seq, "threaded\n");
3446 	else if (!cgroup_is_valid_domain(cgrp))
3447 		seq_puts(seq, "domain invalid\n");
3448 	else if (cgroup_is_thread_root(cgrp))
3449 		seq_puts(seq, "domain threaded\n");
3450 	else
3451 		seq_puts(seq, "domain\n");
3452 
3453 	return 0;
3454 }
3455 
3456 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf,
3457 				 size_t nbytes, loff_t off)
3458 {
3459 	struct cgroup *cgrp;
3460 	int ret;
3461 
3462 	/* only switching to threaded mode is supported */
3463 	if (strcmp(strstrip(buf), "threaded"))
3464 		return -EINVAL;
3465 
3466 	/* drain dying csses before we re-apply (threaded) subtree control */
3467 	cgrp = cgroup_kn_lock_live(of->kn, true);
3468 	if (!cgrp)
3469 		return -ENOENT;
3470 
3471 	/* threaded can only be enabled */
3472 	ret = cgroup_enable_threaded(cgrp);
3473 
3474 	cgroup_kn_unlock(of->kn);
3475 	return ret ?: nbytes;
3476 }
3477 
3478 static int cgroup_max_descendants_show(struct seq_file *seq, void *v)
3479 {
3480 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3481 	int descendants = READ_ONCE(cgrp->max_descendants);
3482 
3483 	if (descendants == INT_MAX)
3484 		seq_puts(seq, "max\n");
3485 	else
3486 		seq_printf(seq, "%d\n", descendants);
3487 
3488 	return 0;
3489 }
3490 
3491 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of,
3492 					   char *buf, size_t nbytes, loff_t off)
3493 {
3494 	struct cgroup *cgrp;
3495 	int descendants;
3496 	ssize_t ret;
3497 
3498 	buf = strstrip(buf);
3499 	if (!strcmp(buf, "max")) {
3500 		descendants = INT_MAX;
3501 	} else {
3502 		ret = kstrtoint(buf, 0, &descendants);
3503 		if (ret)
3504 			return ret;
3505 	}
3506 
3507 	if (descendants < 0)
3508 		return -ERANGE;
3509 
3510 	cgrp = cgroup_kn_lock_live(of->kn, false);
3511 	if (!cgrp)
3512 		return -ENOENT;
3513 
3514 	cgrp->max_descendants = descendants;
3515 
3516 	cgroup_kn_unlock(of->kn);
3517 
3518 	return nbytes;
3519 }
3520 
3521 static int cgroup_max_depth_show(struct seq_file *seq, void *v)
3522 {
3523 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3524 	int depth = READ_ONCE(cgrp->max_depth);
3525 
3526 	if (depth == INT_MAX)
3527 		seq_puts(seq, "max\n");
3528 	else
3529 		seq_printf(seq, "%d\n", depth);
3530 
3531 	return 0;
3532 }
3533 
3534 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of,
3535 				      char *buf, size_t nbytes, loff_t off)
3536 {
3537 	struct cgroup *cgrp;
3538 	ssize_t ret;
3539 	int depth;
3540 
3541 	buf = strstrip(buf);
3542 	if (!strcmp(buf, "max")) {
3543 		depth = INT_MAX;
3544 	} else {
3545 		ret = kstrtoint(buf, 0, &depth);
3546 		if (ret)
3547 			return ret;
3548 	}
3549 
3550 	if (depth < 0)
3551 		return -ERANGE;
3552 
3553 	cgrp = cgroup_kn_lock_live(of->kn, false);
3554 	if (!cgrp)
3555 		return -ENOENT;
3556 
3557 	cgrp->max_depth = depth;
3558 
3559 	cgroup_kn_unlock(of->kn);
3560 
3561 	return nbytes;
3562 }
3563 
3564 static int cgroup_events_show(struct seq_file *seq, void *v)
3565 {
3566 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3567 
3568 	seq_printf(seq, "populated %d\n", cgroup_is_populated(cgrp));
3569 	seq_printf(seq, "frozen %d\n", test_bit(CGRP_FROZEN, &cgrp->flags));
3570 
3571 	return 0;
3572 }
3573 
3574 static int cgroup_stat_show(struct seq_file *seq, void *v)
3575 {
3576 	struct cgroup *cgroup = seq_css(seq)->cgroup;
3577 
3578 	seq_printf(seq, "nr_descendants %d\n",
3579 		   cgroup->nr_descendants);
3580 	seq_printf(seq, "nr_dying_descendants %d\n",
3581 		   cgroup->nr_dying_descendants);
3582 
3583 	return 0;
3584 }
3585 
3586 static int __maybe_unused cgroup_extra_stat_show(struct seq_file *seq,
3587 						 struct cgroup *cgrp, int ssid)
3588 {
3589 	struct cgroup_subsys *ss = cgroup_subsys[ssid];
3590 	struct cgroup_subsys_state *css;
3591 	int ret;
3592 
3593 	if (!ss->css_extra_stat_show)
3594 		return 0;
3595 
3596 	css = cgroup_tryget_css(cgrp, ss);
3597 	if (!css)
3598 		return 0;
3599 
3600 	ret = ss->css_extra_stat_show(seq, css);
3601 	css_put(css);
3602 	return ret;
3603 }
3604 
3605 static int cpu_stat_show(struct seq_file *seq, void *v)
3606 {
3607 	struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup;
3608 	int ret = 0;
3609 
3610 	cgroup_base_stat_cputime_show(seq);
3611 #ifdef CONFIG_CGROUP_SCHED
3612 	ret = cgroup_extra_stat_show(seq, cgrp, cpu_cgrp_id);
3613 #endif
3614 	return ret;
3615 }
3616 
3617 #ifdef CONFIG_PSI
3618 static int cgroup_io_pressure_show(struct seq_file *seq, void *v)
3619 {
3620 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3621 	struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi;
3622 
3623 	return psi_show(seq, psi, PSI_IO);
3624 }
3625 static int cgroup_memory_pressure_show(struct seq_file *seq, void *v)
3626 {
3627 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3628 	struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi;
3629 
3630 	return psi_show(seq, psi, PSI_MEM);
3631 }
3632 static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v)
3633 {
3634 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3635 	struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi;
3636 
3637 	return psi_show(seq, psi, PSI_CPU);
3638 }
3639 
3640 static ssize_t cgroup_pressure_write(struct kernfs_open_file *of, char *buf,
3641 					  size_t nbytes, enum psi_res res)
3642 {
3643 	struct cgroup_file_ctx *ctx = of->priv;
3644 	struct psi_trigger *new;
3645 	struct cgroup *cgrp;
3646 	struct psi_group *psi;
3647 
3648 	cgrp = cgroup_kn_lock_live(of->kn, false);
3649 	if (!cgrp)
3650 		return -ENODEV;
3651 
3652 	cgroup_get(cgrp);
3653 	cgroup_kn_unlock(of->kn);
3654 
3655 	/* Allow only one trigger per file descriptor */
3656 	if (ctx->psi.trigger) {
3657 		cgroup_put(cgrp);
3658 		return -EBUSY;
3659 	}
3660 
3661 	psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi;
3662 	new = psi_trigger_create(psi, buf, nbytes, res);
3663 	if (IS_ERR(new)) {
3664 		cgroup_put(cgrp);
3665 		return PTR_ERR(new);
3666 	}
3667 
3668 	smp_store_release(&ctx->psi.trigger, new);
3669 	cgroup_put(cgrp);
3670 
3671 	return nbytes;
3672 }
3673 
3674 static ssize_t cgroup_io_pressure_write(struct kernfs_open_file *of,
3675 					  char *buf, size_t nbytes,
3676 					  loff_t off)
3677 {
3678 	return cgroup_pressure_write(of, buf, nbytes, PSI_IO);
3679 }
3680 
3681 static ssize_t cgroup_memory_pressure_write(struct kernfs_open_file *of,
3682 					  char *buf, size_t nbytes,
3683 					  loff_t off)
3684 {
3685 	return cgroup_pressure_write(of, buf, nbytes, PSI_MEM);
3686 }
3687 
3688 static ssize_t cgroup_cpu_pressure_write(struct kernfs_open_file *of,
3689 					  char *buf, size_t nbytes,
3690 					  loff_t off)
3691 {
3692 	return cgroup_pressure_write(of, buf, nbytes, PSI_CPU);
3693 }
3694 
3695 static __poll_t cgroup_pressure_poll(struct kernfs_open_file *of,
3696 					  poll_table *pt)
3697 {
3698 	struct cgroup_file_ctx *ctx = of->priv;
3699 
3700 	return psi_trigger_poll(&ctx->psi.trigger, of->file, pt);
3701 }
3702 
3703 static void cgroup_pressure_release(struct kernfs_open_file *of)
3704 {
3705 	struct cgroup_file_ctx *ctx = of->priv;
3706 
3707 	psi_trigger_destroy(ctx->psi.trigger);
3708 }
3709 
3710 bool cgroup_psi_enabled(void)
3711 {
3712 	return (cgroup_feature_disable_mask & (1 << OPT_FEATURE_PRESSURE)) == 0;
3713 }
3714 
3715 #else /* CONFIG_PSI */
3716 bool cgroup_psi_enabled(void)
3717 {
3718 	return false;
3719 }
3720 
3721 #endif /* CONFIG_PSI */
3722 
3723 static int cgroup_freeze_show(struct seq_file *seq, void *v)
3724 {
3725 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3726 
3727 	seq_printf(seq, "%d\n", cgrp->freezer.freeze);
3728 
3729 	return 0;
3730 }
3731 
3732 static ssize_t cgroup_freeze_write(struct kernfs_open_file *of,
3733 				   char *buf, size_t nbytes, loff_t off)
3734 {
3735 	struct cgroup *cgrp;
3736 	ssize_t ret;
3737 	int freeze;
3738 
3739 	ret = kstrtoint(strstrip(buf), 0, &freeze);
3740 	if (ret)
3741 		return ret;
3742 
3743 	if (freeze < 0 || freeze > 1)
3744 		return -ERANGE;
3745 
3746 	cgrp = cgroup_kn_lock_live(of->kn, false);
3747 	if (!cgrp)
3748 		return -ENOENT;
3749 
3750 	cgroup_freeze(cgrp, freeze);
3751 
3752 	cgroup_kn_unlock(of->kn);
3753 
3754 	return nbytes;
3755 }
3756 
3757 static void __cgroup_kill(struct cgroup *cgrp)
3758 {
3759 	struct css_task_iter it;
3760 	struct task_struct *task;
3761 
3762 	lockdep_assert_held(&cgroup_mutex);
3763 
3764 	spin_lock_irq(&css_set_lock);
3765 	set_bit(CGRP_KILL, &cgrp->flags);
3766 	spin_unlock_irq(&css_set_lock);
3767 
3768 	css_task_iter_start(&cgrp->self, CSS_TASK_ITER_PROCS | CSS_TASK_ITER_THREADED, &it);
3769 	while ((task = css_task_iter_next(&it))) {
3770 		/* Ignore kernel threads here. */
3771 		if (task->flags & PF_KTHREAD)
3772 			continue;
3773 
3774 		/* Skip tasks that are already dying. */
3775 		if (__fatal_signal_pending(task))
3776 			continue;
3777 
3778 		send_sig(SIGKILL, task, 0);
3779 	}
3780 	css_task_iter_end(&it);
3781 
3782 	spin_lock_irq(&css_set_lock);
3783 	clear_bit(CGRP_KILL, &cgrp->flags);
3784 	spin_unlock_irq(&css_set_lock);
3785 }
3786 
3787 static void cgroup_kill(struct cgroup *cgrp)
3788 {
3789 	struct cgroup_subsys_state *css;
3790 	struct cgroup *dsct;
3791 
3792 	lockdep_assert_held(&cgroup_mutex);
3793 
3794 	cgroup_for_each_live_descendant_pre(dsct, css, cgrp)
3795 		__cgroup_kill(dsct);
3796 }
3797 
3798 static ssize_t cgroup_kill_write(struct kernfs_open_file *of, char *buf,
3799 				 size_t nbytes, loff_t off)
3800 {
3801 	ssize_t ret = 0;
3802 	int kill;
3803 	struct cgroup *cgrp;
3804 
3805 	ret = kstrtoint(strstrip(buf), 0, &kill);
3806 	if (ret)
3807 		return ret;
3808 
3809 	if (kill != 1)
3810 		return -ERANGE;
3811 
3812 	cgrp = cgroup_kn_lock_live(of->kn, false);
3813 	if (!cgrp)
3814 		return -ENOENT;
3815 
3816 	/*
3817 	 * Killing is a process directed operation, i.e. the whole thread-group
3818 	 * is taken down so act like we do for cgroup.procs and only make this
3819 	 * writable in non-threaded cgroups.
3820 	 */
3821 	if (cgroup_is_threaded(cgrp))
3822 		ret = -EOPNOTSUPP;
3823 	else
3824 		cgroup_kill(cgrp);
3825 
3826 	cgroup_kn_unlock(of->kn);
3827 
3828 	return ret ?: nbytes;
3829 }
3830 
3831 static int cgroup_file_open(struct kernfs_open_file *of)
3832 {
3833 	struct cftype *cft = of_cft(of);
3834 	struct cgroup_file_ctx *ctx;
3835 	int ret;
3836 
3837 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
3838 	if (!ctx)
3839 		return -ENOMEM;
3840 
3841 	ctx->ns = current->nsproxy->cgroup_ns;
3842 	get_cgroup_ns(ctx->ns);
3843 	of->priv = ctx;
3844 
3845 	if (!cft->open)
3846 		return 0;
3847 
3848 	ret = cft->open(of);
3849 	if (ret) {
3850 		put_cgroup_ns(ctx->ns);
3851 		kfree(ctx);
3852 	}
3853 	return ret;
3854 }
3855 
3856 static void cgroup_file_release(struct kernfs_open_file *of)
3857 {
3858 	struct cftype *cft = of_cft(of);
3859 	struct cgroup_file_ctx *ctx = of->priv;
3860 
3861 	if (cft->release)
3862 		cft->release(of);
3863 	put_cgroup_ns(ctx->ns);
3864 	kfree(ctx);
3865 }
3866 
3867 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3868 				 size_t nbytes, loff_t off)
3869 {
3870 	struct cgroup_file_ctx *ctx = of->priv;
3871 	struct cgroup *cgrp = of->kn->parent->priv;
3872 	struct cftype *cft = of_cft(of);
3873 	struct cgroup_subsys_state *css;
3874 	int ret;
3875 
3876 	if (!nbytes)
3877 		return 0;
3878 
3879 	/*
3880 	 * If namespaces are delegation boundaries, disallow writes to
3881 	 * files in an non-init namespace root from inside the namespace
3882 	 * except for the files explicitly marked delegatable -
3883 	 * cgroup.procs and cgroup.subtree_control.
3884 	 */
3885 	if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) &&
3886 	    !(cft->flags & CFTYPE_NS_DELEGATABLE) &&
3887 	    ctx->ns != &init_cgroup_ns && ctx->ns->root_cset->dfl_cgrp == cgrp)
3888 		return -EPERM;
3889 
3890 	if (cft->write)
3891 		return cft->write(of, buf, nbytes, off);
3892 
3893 	/*
3894 	 * kernfs guarantees that a file isn't deleted with operations in
3895 	 * flight, which means that the matching css is and stays alive and
3896 	 * doesn't need to be pinned.  The RCU locking is not necessary
3897 	 * either.  It's just for the convenience of using cgroup_css().
3898 	 */
3899 	rcu_read_lock();
3900 	css = cgroup_css(cgrp, cft->ss);
3901 	rcu_read_unlock();
3902 
3903 	if (cft->write_u64) {
3904 		unsigned long long v;
3905 		ret = kstrtoull(buf, 0, &v);
3906 		if (!ret)
3907 			ret = cft->write_u64(css, cft, v);
3908 	} else if (cft->write_s64) {
3909 		long long v;
3910 		ret = kstrtoll(buf, 0, &v);
3911 		if (!ret)
3912 			ret = cft->write_s64(css, cft, v);
3913 	} else {
3914 		ret = -EINVAL;
3915 	}
3916 
3917 	return ret ?: nbytes;
3918 }
3919 
3920 static __poll_t cgroup_file_poll(struct kernfs_open_file *of, poll_table *pt)
3921 {
3922 	struct cftype *cft = of_cft(of);
3923 
3924 	if (cft->poll)
3925 		return cft->poll(of, pt);
3926 
3927 	return kernfs_generic_poll(of, pt);
3928 }
3929 
3930 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
3931 {
3932 	return seq_cft(seq)->seq_start(seq, ppos);
3933 }
3934 
3935 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
3936 {
3937 	return seq_cft(seq)->seq_next(seq, v, ppos);
3938 }
3939 
3940 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
3941 {
3942 	if (seq_cft(seq)->seq_stop)
3943 		seq_cft(seq)->seq_stop(seq, v);
3944 }
3945 
3946 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
3947 {
3948 	struct cftype *cft = seq_cft(m);
3949 	struct cgroup_subsys_state *css = seq_css(m);
3950 
3951 	if (cft->seq_show)
3952 		return cft->seq_show(m, arg);
3953 
3954 	if (cft->read_u64)
3955 		seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3956 	else if (cft->read_s64)
3957 		seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3958 	else
3959 		return -EINVAL;
3960 	return 0;
3961 }
3962 
3963 static struct kernfs_ops cgroup_kf_single_ops = {
3964 	.atomic_write_len	= PAGE_SIZE,
3965 	.open			= cgroup_file_open,
3966 	.release		= cgroup_file_release,
3967 	.write			= cgroup_file_write,
3968 	.poll			= cgroup_file_poll,
3969 	.seq_show		= cgroup_seqfile_show,
3970 };
3971 
3972 static struct kernfs_ops cgroup_kf_ops = {
3973 	.atomic_write_len	= PAGE_SIZE,
3974 	.open			= cgroup_file_open,
3975 	.release		= cgroup_file_release,
3976 	.write			= cgroup_file_write,
3977 	.poll			= cgroup_file_poll,
3978 	.seq_start		= cgroup_seqfile_start,
3979 	.seq_next		= cgroup_seqfile_next,
3980 	.seq_stop		= cgroup_seqfile_stop,
3981 	.seq_show		= cgroup_seqfile_show,
3982 };
3983 
3984 /* set uid and gid of cgroup dirs and files to that of the creator */
3985 static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3986 {
3987 	struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3988 			       .ia_uid = current_fsuid(),
3989 			       .ia_gid = current_fsgid(), };
3990 
3991 	if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3992 	    gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3993 		return 0;
3994 
3995 	return kernfs_setattr(kn, &iattr);
3996 }
3997 
3998 static void cgroup_file_notify_timer(struct timer_list *timer)
3999 {
4000 	cgroup_file_notify(container_of(timer, struct cgroup_file,
4001 					notify_timer));
4002 }
4003 
4004 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
4005 			   struct cftype *cft)
4006 {
4007 	char name[CGROUP_FILE_NAME_MAX];
4008 	struct kernfs_node *kn;
4009 	struct lock_class_key *key = NULL;
4010 	int ret;
4011 
4012 #ifdef CONFIG_DEBUG_LOCK_ALLOC
4013 	key = &cft->lockdep_key;
4014 #endif
4015 	kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
4016 				  cgroup_file_mode(cft),
4017 				  GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
4018 				  0, cft->kf_ops, cft,
4019 				  NULL, key);
4020 	if (IS_ERR(kn))
4021 		return PTR_ERR(kn);
4022 
4023 	ret = cgroup_kn_set_ugid(kn);
4024 	if (ret) {
4025 		kernfs_remove(kn);
4026 		return ret;
4027 	}
4028 
4029 	if (cft->file_offset) {
4030 		struct cgroup_file *cfile = (void *)css + cft->file_offset;
4031 
4032 		timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0);
4033 
4034 		spin_lock_irq(&cgroup_file_kn_lock);
4035 		cfile->kn = kn;
4036 		spin_unlock_irq(&cgroup_file_kn_lock);
4037 	}
4038 
4039 	return 0;
4040 }
4041 
4042 /**
4043  * cgroup_addrm_files - add or remove files to a cgroup directory
4044  * @css: the target css
4045  * @cgrp: the target cgroup (usually css->cgroup)
4046  * @cfts: array of cftypes to be added
4047  * @is_add: whether to add or remove
4048  *
4049  * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
4050  * For removals, this function never fails.
4051  */
4052 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
4053 			      struct cgroup *cgrp, struct cftype cfts[],
4054 			      bool is_add)
4055 {
4056 	struct cftype *cft, *cft_end = NULL;
4057 	int ret = 0;
4058 
4059 	lockdep_assert_held(&cgroup_mutex);
4060 
4061 restart:
4062 	for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
4063 		/* does cft->flags tell us to skip this file on @cgrp? */
4064 		if ((cft->flags & CFTYPE_PRESSURE) && !cgroup_psi_enabled())
4065 			continue;
4066 		if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
4067 			continue;
4068 		if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
4069 			continue;
4070 		if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
4071 			continue;
4072 		if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
4073 			continue;
4074 		if ((cft->flags & CFTYPE_DEBUG) && !cgroup_debug)
4075 			continue;
4076 		if (is_add) {
4077 			ret = cgroup_add_file(css, cgrp, cft);
4078 			if (ret) {
4079 				pr_warn("%s: failed to add %s, err=%d\n",
4080 					__func__, cft->name, ret);
4081 				cft_end = cft;
4082 				is_add = false;
4083 				goto restart;
4084 			}
4085 		} else {
4086 			cgroup_rm_file(cgrp, cft);
4087 		}
4088 	}
4089 	return ret;
4090 }
4091 
4092 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
4093 {
4094 	struct cgroup_subsys *ss = cfts[0].ss;
4095 	struct cgroup *root = &ss->root->cgrp;
4096 	struct cgroup_subsys_state *css;
4097 	int ret = 0;
4098 
4099 	lockdep_assert_held(&cgroup_mutex);
4100 
4101 	/* add/rm files for all cgroups created before */
4102 	css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
4103 		struct cgroup *cgrp = css->cgroup;
4104 
4105 		if (!(css->flags & CSS_VISIBLE))
4106 			continue;
4107 
4108 		ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
4109 		if (ret)
4110 			break;
4111 	}
4112 
4113 	if (is_add && !ret)
4114 		kernfs_activate(root->kn);
4115 	return ret;
4116 }
4117 
4118 static void cgroup_exit_cftypes(struct cftype *cfts)
4119 {
4120 	struct cftype *cft;
4121 
4122 	for (cft = cfts; cft->name[0] != '\0'; cft++) {
4123 		/* free copy for custom atomic_write_len, see init_cftypes() */
4124 		if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
4125 			kfree(cft->kf_ops);
4126 		cft->kf_ops = NULL;
4127 		cft->ss = NULL;
4128 
4129 		/* revert flags set by cgroup core while adding @cfts */
4130 		cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
4131 	}
4132 }
4133 
4134 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4135 {
4136 	struct cftype *cft;
4137 
4138 	for (cft = cfts; cft->name[0] != '\0'; cft++) {
4139 		struct kernfs_ops *kf_ops;
4140 
4141 		WARN_ON(cft->ss || cft->kf_ops);
4142 
4143 		if ((cft->flags & CFTYPE_PRESSURE) && !cgroup_psi_enabled())
4144 			continue;
4145 
4146 		if (cft->seq_start)
4147 			kf_ops = &cgroup_kf_ops;
4148 		else
4149 			kf_ops = &cgroup_kf_single_ops;
4150 
4151 		/*
4152 		 * Ugh... if @cft wants a custom max_write_len, we need to
4153 		 * make a copy of kf_ops to set its atomic_write_len.
4154 		 */
4155 		if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
4156 			kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
4157 			if (!kf_ops) {
4158 				cgroup_exit_cftypes(cfts);
4159 				return -ENOMEM;
4160 			}
4161 			kf_ops->atomic_write_len = cft->max_write_len;
4162 		}
4163 
4164 		cft->kf_ops = kf_ops;
4165 		cft->ss = ss;
4166 	}
4167 
4168 	return 0;
4169 }
4170 
4171 static int cgroup_rm_cftypes_locked(struct cftype *cfts)
4172 {
4173 	lockdep_assert_held(&cgroup_mutex);
4174 
4175 	if (!cfts || !cfts[0].ss)
4176 		return -ENOENT;
4177 
4178 	list_del(&cfts->node);
4179 	cgroup_apply_cftypes(cfts, false);
4180 	cgroup_exit_cftypes(cfts);
4181 	return 0;
4182 }
4183 
4184 /**
4185  * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
4186  * @cfts: zero-length name terminated array of cftypes
4187  *
4188  * Unregister @cfts.  Files described by @cfts are removed from all
4189  * existing cgroups and all future cgroups won't have them either.  This
4190  * function can be called anytime whether @cfts' subsys is attached or not.
4191  *
4192  * Returns 0 on successful unregistration, -ENOENT if @cfts is not
4193  * registered.
4194  */
4195 int cgroup_rm_cftypes(struct cftype *cfts)
4196 {
4197 	int ret;
4198 
4199 	mutex_lock(&cgroup_mutex);
4200 	ret = cgroup_rm_cftypes_locked(cfts);
4201 	mutex_unlock(&cgroup_mutex);
4202 	return ret;
4203 }
4204 
4205 /**
4206  * cgroup_add_cftypes - add an array of cftypes to a subsystem
4207  * @ss: target cgroup subsystem
4208  * @cfts: zero-length name terminated array of cftypes
4209  *
4210  * Register @cfts to @ss.  Files described by @cfts are created for all
4211  * existing cgroups to which @ss is attached and all future cgroups will
4212  * have them too.  This function can be called anytime whether @ss is
4213  * attached or not.
4214  *
4215  * Returns 0 on successful registration, -errno on failure.  Note that this
4216  * function currently returns 0 as long as @cfts registration is successful
4217  * even if some file creation attempts on existing cgroups fail.
4218  */
4219 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4220 {
4221 	int ret;
4222 
4223 	if (!cgroup_ssid_enabled(ss->id))
4224 		return 0;
4225 
4226 	if (!cfts || cfts[0].name[0] == '\0')
4227 		return 0;
4228 
4229 	ret = cgroup_init_cftypes(ss, cfts);
4230 	if (ret)
4231 		return ret;
4232 
4233 	mutex_lock(&cgroup_mutex);
4234 
4235 	list_add_tail(&cfts->node, &ss->cfts);
4236 	ret = cgroup_apply_cftypes(cfts, true);
4237 	if (ret)
4238 		cgroup_rm_cftypes_locked(cfts);
4239 
4240 	mutex_unlock(&cgroup_mutex);
4241 	return ret;
4242 }
4243 
4244 /**
4245  * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
4246  * @ss: target cgroup subsystem
4247  * @cfts: zero-length name terminated array of cftypes
4248  *
4249  * Similar to cgroup_add_cftypes() but the added files are only used for
4250  * the default hierarchy.
4251  */
4252 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4253 {
4254 	struct cftype *cft;
4255 
4256 	for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4257 		cft->flags |= __CFTYPE_ONLY_ON_DFL;
4258 	return cgroup_add_cftypes(ss, cfts);
4259 }
4260 
4261 /**
4262  * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
4263  * @ss: target cgroup subsystem
4264  * @cfts: zero-length name terminated array of cftypes
4265  *
4266  * Similar to cgroup_add_cftypes() but the added files are only used for
4267  * the legacy hierarchies.
4268  */
4269 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4270 {
4271 	struct cftype *cft;
4272 
4273 	for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4274 		cft->flags |= __CFTYPE_NOT_ON_DFL;
4275 	return cgroup_add_cftypes(ss, cfts);
4276 }
4277 
4278 /**
4279  * cgroup_file_notify - generate a file modified event for a cgroup_file
4280  * @cfile: target cgroup_file
4281  *
4282  * @cfile must have been obtained by setting cftype->file_offset.
4283  */
4284 void cgroup_file_notify(struct cgroup_file *cfile)
4285 {
4286 	unsigned long flags;
4287 
4288 	spin_lock_irqsave(&cgroup_file_kn_lock, flags);
4289 	if (cfile->kn) {
4290 		unsigned long last = cfile->notified_at;
4291 		unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV;
4292 
4293 		if (time_in_range(jiffies, last, next)) {
4294 			timer_reduce(&cfile->notify_timer, next);
4295 		} else {
4296 			kernfs_notify(cfile->kn);
4297 			cfile->notified_at = jiffies;
4298 		}
4299 	}
4300 	spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
4301 }
4302 
4303 /**
4304  * css_next_child - find the next child of a given css
4305  * @pos: the current position (%NULL to initiate traversal)
4306  * @parent: css whose children to walk
4307  *
4308  * This function returns the next child of @parent and should be called
4309  * under either cgroup_mutex or RCU read lock.  The only requirement is
4310  * that @parent and @pos are accessible.  The next sibling is guaranteed to
4311  * be returned regardless of their states.
4312  *
4313  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4314  * css which finished ->css_online() is guaranteed to be visible in the
4315  * future iterations and will stay visible until the last reference is put.
4316  * A css which hasn't finished ->css_online() or already finished
4317  * ->css_offline() may show up during traversal.  It's each subsystem's
4318  * responsibility to synchronize against on/offlining.
4319  */
4320 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
4321 					   struct cgroup_subsys_state *parent)
4322 {
4323 	struct cgroup_subsys_state *next;
4324 
4325 	cgroup_assert_mutex_or_rcu_locked();
4326 
4327 	/*
4328 	 * @pos could already have been unlinked from the sibling list.
4329 	 * Once a cgroup is removed, its ->sibling.next is no longer
4330 	 * updated when its next sibling changes.  CSS_RELEASED is set when
4331 	 * @pos is taken off list, at which time its next pointer is valid,
4332 	 * and, as releases are serialized, the one pointed to by the next
4333 	 * pointer is guaranteed to not have started release yet.  This
4334 	 * implies that if we observe !CSS_RELEASED on @pos in this RCU
4335 	 * critical section, the one pointed to by its next pointer is
4336 	 * guaranteed to not have finished its RCU grace period even if we
4337 	 * have dropped rcu_read_lock() in-between iterations.
4338 	 *
4339 	 * If @pos has CSS_RELEASED set, its next pointer can't be
4340 	 * dereferenced; however, as each css is given a monotonically
4341 	 * increasing unique serial number and always appended to the
4342 	 * sibling list, the next one can be found by walking the parent's
4343 	 * children until the first css with higher serial number than
4344 	 * @pos's.  While this path can be slower, it happens iff iteration
4345 	 * races against release and the race window is very small.
4346 	 */
4347 	if (!pos) {
4348 		next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
4349 	} else if (likely(!(pos->flags & CSS_RELEASED))) {
4350 		next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
4351 	} else {
4352 		list_for_each_entry_rcu(next, &parent->children, sibling,
4353 					lockdep_is_held(&cgroup_mutex))
4354 			if (next->serial_nr > pos->serial_nr)
4355 				break;
4356 	}
4357 
4358 	/*
4359 	 * @next, if not pointing to the head, can be dereferenced and is
4360 	 * the next sibling.
4361 	 */
4362 	if (&next->sibling != &parent->children)
4363 		return next;
4364 	return NULL;
4365 }
4366 
4367 /**
4368  * css_next_descendant_pre - find the next descendant for pre-order walk
4369  * @pos: the current position (%NULL to initiate traversal)
4370  * @root: css whose descendants to walk
4371  *
4372  * To be used by css_for_each_descendant_pre().  Find the next descendant
4373  * to visit for pre-order traversal of @root's descendants.  @root is
4374  * included in the iteration and the first node to be visited.
4375  *
4376  * While this function requires cgroup_mutex or RCU read locking, it
4377  * doesn't require the whole traversal to be contained in a single critical
4378  * section.  This function will return the correct next descendant as long
4379  * as both @pos and @root are accessible and @pos is a descendant of @root.
4380  *
4381  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4382  * css which finished ->css_online() is guaranteed to be visible in the
4383  * future iterations and will stay visible until the last reference is put.
4384  * A css which hasn't finished ->css_online() or already finished
4385  * ->css_offline() may show up during traversal.  It's each subsystem's
4386  * responsibility to synchronize against on/offlining.
4387  */
4388 struct cgroup_subsys_state *
4389 css_next_descendant_pre(struct cgroup_subsys_state *pos,
4390 			struct cgroup_subsys_state *root)
4391 {
4392 	struct cgroup_subsys_state *next;
4393 
4394 	cgroup_assert_mutex_or_rcu_locked();
4395 
4396 	/* if first iteration, visit @root */
4397 	if (!pos)
4398 		return root;
4399 
4400 	/* visit the first child if exists */
4401 	next = css_next_child(NULL, pos);
4402 	if (next)
4403 		return next;
4404 
4405 	/* no child, visit my or the closest ancestor's next sibling */
4406 	while (pos != root) {
4407 		next = css_next_child(pos, pos->parent);
4408 		if (next)
4409 			return next;
4410 		pos = pos->parent;
4411 	}
4412 
4413 	return NULL;
4414 }
4415 EXPORT_SYMBOL_GPL(css_next_descendant_pre);
4416 
4417 /**
4418  * css_rightmost_descendant - return the rightmost descendant of a css
4419  * @pos: css of interest
4420  *
4421  * Return the rightmost descendant of @pos.  If there's no descendant, @pos
4422  * is returned.  This can be used during pre-order traversal to skip
4423  * subtree of @pos.
4424  *
4425  * While this function requires cgroup_mutex or RCU read locking, it
4426  * doesn't require the whole traversal to be contained in a single critical
4427  * section.  This function will return the correct rightmost descendant as
4428  * long as @pos is accessible.
4429  */
4430 struct cgroup_subsys_state *
4431 css_rightmost_descendant(struct cgroup_subsys_state *pos)
4432 {
4433 	struct cgroup_subsys_state *last, *tmp;
4434 
4435 	cgroup_assert_mutex_or_rcu_locked();
4436 
4437 	do {
4438 		last = pos;
4439 		/* ->prev isn't RCU safe, walk ->next till the end */
4440 		pos = NULL;
4441 		css_for_each_child(tmp, last)
4442 			pos = tmp;
4443 	} while (pos);
4444 
4445 	return last;
4446 }
4447 
4448 static struct cgroup_subsys_state *
4449 css_leftmost_descendant(struct cgroup_subsys_state *pos)
4450 {
4451 	struct cgroup_subsys_state *last;
4452 
4453 	do {
4454 		last = pos;
4455 		pos = css_next_child(NULL, pos);
4456 	} while (pos);
4457 
4458 	return last;
4459 }
4460 
4461 /**
4462  * css_next_descendant_post - find the next descendant for post-order walk
4463  * @pos: the current position (%NULL to initiate traversal)
4464  * @root: css whose descendants to walk
4465  *
4466  * To be used by css_for_each_descendant_post().  Find the next descendant
4467  * to visit for post-order traversal of @root's descendants.  @root is
4468  * included in the iteration and the last node to be visited.
4469  *
4470  * While this function requires cgroup_mutex or RCU read locking, it
4471  * doesn't require the whole traversal to be contained in a single critical
4472  * section.  This function will return the correct next descendant as long
4473  * as both @pos and @cgroup are accessible and @pos is a descendant of
4474  * @cgroup.
4475  *
4476  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4477  * css which finished ->css_online() is guaranteed to be visible in the
4478  * future iterations and will stay visible until the last reference is put.
4479  * A css which hasn't finished ->css_online() or already finished
4480  * ->css_offline() may show up during traversal.  It's each subsystem's
4481  * responsibility to synchronize against on/offlining.
4482  */
4483 struct cgroup_subsys_state *
4484 css_next_descendant_post(struct cgroup_subsys_state *pos,
4485 			 struct cgroup_subsys_state *root)
4486 {
4487 	struct cgroup_subsys_state *next;
4488 
4489 	cgroup_assert_mutex_or_rcu_locked();
4490 
4491 	/* if first iteration, visit leftmost descendant which may be @root */
4492 	if (!pos)
4493 		return css_leftmost_descendant(root);
4494 
4495 	/* if we visited @root, we're done */
4496 	if (pos == root)
4497 		return NULL;
4498 
4499 	/* if there's an unvisited sibling, visit its leftmost descendant */
4500 	next = css_next_child(pos, pos->parent);
4501 	if (next)
4502 		return css_leftmost_descendant(next);
4503 
4504 	/* no sibling left, visit parent */
4505 	return pos->parent;
4506 }
4507 
4508 /**
4509  * css_has_online_children - does a css have online children
4510  * @css: the target css
4511  *
4512  * Returns %true if @css has any online children; otherwise, %false.  This
4513  * function can be called from any context but the caller is responsible
4514  * for synchronizing against on/offlining as necessary.
4515  */
4516 bool css_has_online_children(struct cgroup_subsys_state *css)
4517 {
4518 	struct cgroup_subsys_state *child;
4519 	bool ret = false;
4520 
4521 	rcu_read_lock();
4522 	css_for_each_child(child, css) {
4523 		if (child->flags & CSS_ONLINE) {
4524 			ret = true;
4525 			break;
4526 		}
4527 	}
4528 	rcu_read_unlock();
4529 	return ret;
4530 }
4531 
4532 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it)
4533 {
4534 	struct list_head *l;
4535 	struct cgrp_cset_link *link;
4536 	struct css_set *cset;
4537 
4538 	lockdep_assert_held(&css_set_lock);
4539 
4540 	/* find the next threaded cset */
4541 	if (it->tcset_pos) {
4542 		l = it->tcset_pos->next;
4543 
4544 		if (l != it->tcset_head) {
4545 			it->tcset_pos = l;
4546 			return container_of(l, struct css_set,
4547 					    threaded_csets_node);
4548 		}
4549 
4550 		it->tcset_pos = NULL;
4551 	}
4552 
4553 	/* find the next cset */
4554 	l = it->cset_pos;
4555 	l = l->next;
4556 	if (l == it->cset_head) {
4557 		it->cset_pos = NULL;
4558 		return NULL;
4559 	}
4560 
4561 	if (it->ss) {
4562 		cset = container_of(l, struct css_set, e_cset_node[it->ss->id]);
4563 	} else {
4564 		link = list_entry(l, struct cgrp_cset_link, cset_link);
4565 		cset = link->cset;
4566 	}
4567 
4568 	it->cset_pos = l;
4569 
4570 	/* initialize threaded css_set walking */
4571 	if (it->flags & CSS_TASK_ITER_THREADED) {
4572 		if (it->cur_dcset)
4573 			put_css_set_locked(it->cur_dcset);
4574 		it->cur_dcset = cset;
4575 		get_css_set(cset);
4576 
4577 		it->tcset_head = &cset->threaded_csets;
4578 		it->tcset_pos = &cset->threaded_csets;
4579 	}
4580 
4581 	return cset;
4582 }
4583 
4584 /**
4585  * css_task_iter_advance_css_set - advance a task iterator to the next css_set
4586  * @it: the iterator to advance
4587  *
4588  * Advance @it to the next css_set to walk.
4589  */
4590 static void css_task_iter_advance_css_set(struct css_task_iter *it)
4591 {
4592 	struct css_set *cset;
4593 
4594 	lockdep_assert_held(&css_set_lock);
4595 
4596 	/* Advance to the next non-empty css_set and find first non-empty tasks list*/
4597 	while ((cset = css_task_iter_next_css_set(it))) {
4598 		if (!list_empty(&cset->tasks)) {
4599 			it->cur_tasks_head = &cset->tasks;
4600 			break;
4601 		} else if (!list_empty(&cset->mg_tasks)) {
4602 			it->cur_tasks_head = &cset->mg_tasks;
4603 			break;
4604 		} else if (!list_empty(&cset->dying_tasks)) {
4605 			it->cur_tasks_head = &cset->dying_tasks;
4606 			break;
4607 		}
4608 	}
4609 	if (!cset) {
4610 		it->task_pos = NULL;
4611 		return;
4612 	}
4613 	it->task_pos = it->cur_tasks_head->next;
4614 
4615 	/*
4616 	 * We don't keep css_sets locked across iteration steps and thus
4617 	 * need to take steps to ensure that iteration can be resumed after
4618 	 * the lock is re-acquired.  Iteration is performed at two levels -
4619 	 * css_sets and tasks in them.
4620 	 *
4621 	 * Once created, a css_set never leaves its cgroup lists, so a
4622 	 * pinned css_set is guaranteed to stay put and we can resume
4623 	 * iteration afterwards.
4624 	 *
4625 	 * Tasks may leave @cset across iteration steps.  This is resolved
4626 	 * by registering each iterator with the css_set currently being
4627 	 * walked and making css_set_move_task() advance iterators whose
4628 	 * next task is leaving.
4629 	 */
4630 	if (it->cur_cset) {
4631 		list_del(&it->iters_node);
4632 		put_css_set_locked(it->cur_cset);
4633 	}
4634 	get_css_set(cset);
4635 	it->cur_cset = cset;
4636 	list_add(&it->iters_node, &cset->task_iters);
4637 }
4638 
4639 static void css_task_iter_skip(struct css_task_iter *it,
4640 			       struct task_struct *task)
4641 {
4642 	lockdep_assert_held(&css_set_lock);
4643 
4644 	if (it->task_pos == &task->cg_list) {
4645 		it->task_pos = it->task_pos->next;
4646 		it->flags |= CSS_TASK_ITER_SKIPPED;
4647 	}
4648 }
4649 
4650 static void css_task_iter_advance(struct css_task_iter *it)
4651 {
4652 	struct task_struct *task;
4653 
4654 	lockdep_assert_held(&css_set_lock);
4655 repeat:
4656 	if (it->task_pos) {
4657 		/*
4658 		 * Advance iterator to find next entry. We go through cset
4659 		 * tasks, mg_tasks and dying_tasks, when consumed we move onto
4660 		 * the next cset.
4661 		 */
4662 		if (it->flags & CSS_TASK_ITER_SKIPPED)
4663 			it->flags &= ~CSS_TASK_ITER_SKIPPED;
4664 		else
4665 			it->task_pos = it->task_pos->next;
4666 
4667 		if (it->task_pos == &it->cur_cset->tasks) {
4668 			it->cur_tasks_head = &it->cur_cset->mg_tasks;
4669 			it->task_pos = it->cur_tasks_head->next;
4670 		}
4671 		if (it->task_pos == &it->cur_cset->mg_tasks) {
4672 			it->cur_tasks_head = &it->cur_cset->dying_tasks;
4673 			it->task_pos = it->cur_tasks_head->next;
4674 		}
4675 		if (it->task_pos == &it->cur_cset->dying_tasks)
4676 			css_task_iter_advance_css_set(it);
4677 	} else {
4678 		/* called from start, proceed to the first cset */
4679 		css_task_iter_advance_css_set(it);
4680 	}
4681 
4682 	if (!it->task_pos)
4683 		return;
4684 
4685 	task = list_entry(it->task_pos, struct task_struct, cg_list);
4686 
4687 	if (it->flags & CSS_TASK_ITER_PROCS) {
4688 		/* if PROCS, skip over tasks which aren't group leaders */
4689 		if (!thread_group_leader(task))
4690 			goto repeat;
4691 
4692 		/* and dying leaders w/o live member threads */
4693 		if (it->cur_tasks_head == &it->cur_cset->dying_tasks &&
4694 		    !atomic_read(&task->signal->live))
4695 			goto repeat;
4696 	} else {
4697 		/* skip all dying ones */
4698 		if (it->cur_tasks_head == &it->cur_cset->dying_tasks)
4699 			goto repeat;
4700 	}
4701 }
4702 
4703 /**
4704  * css_task_iter_start - initiate task iteration
4705  * @css: the css to walk tasks of
4706  * @flags: CSS_TASK_ITER_* flags
4707  * @it: the task iterator to use
4708  *
4709  * Initiate iteration through the tasks of @css.  The caller can call
4710  * css_task_iter_next() to walk through the tasks until the function
4711  * returns NULL.  On completion of iteration, css_task_iter_end() must be
4712  * called.
4713  */
4714 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags,
4715 			 struct css_task_iter *it)
4716 {
4717 	memset(it, 0, sizeof(*it));
4718 
4719 	spin_lock_irq(&css_set_lock);
4720 
4721 	it->ss = css->ss;
4722 	it->flags = flags;
4723 
4724 	if (CGROUP_HAS_SUBSYS_CONFIG && it->ss)
4725 		it->cset_pos = &css->cgroup->e_csets[css->ss->id];
4726 	else
4727 		it->cset_pos = &css->cgroup->cset_links;
4728 
4729 	it->cset_head = it->cset_pos;
4730 
4731 	css_task_iter_advance(it);
4732 
4733 	spin_unlock_irq(&css_set_lock);
4734 }
4735 
4736 /**
4737  * css_task_iter_next - return the next task for the iterator
4738  * @it: the task iterator being iterated
4739  *
4740  * The "next" function for task iteration.  @it should have been
4741  * initialized via css_task_iter_start().  Returns NULL when the iteration
4742  * reaches the end.
4743  */
4744 struct task_struct *css_task_iter_next(struct css_task_iter *it)
4745 {
4746 	if (it->cur_task) {
4747 		put_task_struct(it->cur_task);
4748 		it->cur_task = NULL;
4749 	}
4750 
4751 	spin_lock_irq(&css_set_lock);
4752 
4753 	/* @it may be half-advanced by skips, finish advancing */
4754 	if (it->flags & CSS_TASK_ITER_SKIPPED)
4755 		css_task_iter_advance(it);
4756 
4757 	if (it->task_pos) {
4758 		it->cur_task = list_entry(it->task_pos, struct task_struct,
4759 					  cg_list);
4760 		get_task_struct(it->cur_task);
4761 		css_task_iter_advance(it);
4762 	}
4763 
4764 	spin_unlock_irq(&css_set_lock);
4765 
4766 	return it->cur_task;
4767 }
4768 
4769 /**
4770  * css_task_iter_end - finish task iteration
4771  * @it: the task iterator to finish
4772  *
4773  * Finish task iteration started by css_task_iter_start().
4774  */
4775 void css_task_iter_end(struct css_task_iter *it)
4776 {
4777 	if (it->cur_cset) {
4778 		spin_lock_irq(&css_set_lock);
4779 		list_del(&it->iters_node);
4780 		put_css_set_locked(it->cur_cset);
4781 		spin_unlock_irq(&css_set_lock);
4782 	}
4783 
4784 	if (it->cur_dcset)
4785 		put_css_set(it->cur_dcset);
4786 
4787 	if (it->cur_task)
4788 		put_task_struct(it->cur_task);
4789 }
4790 
4791 static void cgroup_procs_release(struct kernfs_open_file *of)
4792 {
4793 	struct cgroup_file_ctx *ctx = of->priv;
4794 
4795 	if (ctx->procs.started)
4796 		css_task_iter_end(&ctx->procs.iter);
4797 }
4798 
4799 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos)
4800 {
4801 	struct kernfs_open_file *of = s->private;
4802 	struct cgroup_file_ctx *ctx = of->priv;
4803 
4804 	if (pos)
4805 		(*pos)++;
4806 
4807 	return css_task_iter_next(&ctx->procs.iter);
4808 }
4809 
4810 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos,
4811 				  unsigned int iter_flags)
4812 {
4813 	struct kernfs_open_file *of = s->private;
4814 	struct cgroup *cgrp = seq_css(s)->cgroup;
4815 	struct cgroup_file_ctx *ctx = of->priv;
4816 	struct css_task_iter *it = &ctx->procs.iter;
4817 
4818 	/*
4819 	 * When a seq_file is seeked, it's always traversed sequentially
4820 	 * from position 0, so we can simply keep iterating on !0 *pos.
4821 	 */
4822 	if (!ctx->procs.started) {
4823 		if (WARN_ON_ONCE((*pos)))
4824 			return ERR_PTR(-EINVAL);
4825 		css_task_iter_start(&cgrp->self, iter_flags, it);
4826 		ctx->procs.started = true;
4827 	} else if (!(*pos)) {
4828 		css_task_iter_end(it);
4829 		css_task_iter_start(&cgrp->self, iter_flags, it);
4830 	} else
4831 		return it->cur_task;
4832 
4833 	return cgroup_procs_next(s, NULL, NULL);
4834 }
4835 
4836 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos)
4837 {
4838 	struct cgroup *cgrp = seq_css(s)->cgroup;
4839 
4840 	/*
4841 	 * All processes of a threaded subtree belong to the domain cgroup
4842 	 * of the subtree.  Only threads can be distributed across the
4843 	 * subtree.  Reject reads on cgroup.procs in the subtree proper.
4844 	 * They're always empty anyway.
4845 	 */
4846 	if (cgroup_is_threaded(cgrp))
4847 		return ERR_PTR(-EOPNOTSUPP);
4848 
4849 	return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS |
4850 					    CSS_TASK_ITER_THREADED);
4851 }
4852 
4853 static int cgroup_procs_show(struct seq_file *s, void *v)
4854 {
4855 	seq_printf(s, "%d\n", task_pid_vnr(v));
4856 	return 0;
4857 }
4858 
4859 static int cgroup_may_write(const struct cgroup *cgrp, struct super_block *sb)
4860 {
4861 	int ret;
4862 	struct inode *inode;
4863 
4864 	lockdep_assert_held(&cgroup_mutex);
4865 
4866 	inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
4867 	if (!inode)
4868 		return -ENOMEM;
4869 
4870 	ret = inode_permission(&init_user_ns, inode, MAY_WRITE);
4871 	iput(inode);
4872 	return ret;
4873 }
4874 
4875 static int cgroup_procs_write_permission(struct cgroup *src_cgrp,
4876 					 struct cgroup *dst_cgrp,
4877 					 struct super_block *sb,
4878 					 struct cgroup_namespace *ns)
4879 {
4880 	struct cgroup *com_cgrp = src_cgrp;
4881 	int ret;
4882 
4883 	lockdep_assert_held(&cgroup_mutex);
4884 
4885 	/* find the common ancestor */
4886 	while (!cgroup_is_descendant(dst_cgrp, com_cgrp))
4887 		com_cgrp = cgroup_parent(com_cgrp);
4888 
4889 	/* %current should be authorized to migrate to the common ancestor */
4890 	ret = cgroup_may_write(com_cgrp, sb);
4891 	if (ret)
4892 		return ret;
4893 
4894 	/*
4895 	 * If namespaces are delegation boundaries, %current must be able
4896 	 * to see both source and destination cgroups from its namespace.
4897 	 */
4898 	if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) &&
4899 	    (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) ||
4900 	     !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp)))
4901 		return -ENOENT;
4902 
4903 	return 0;
4904 }
4905 
4906 static int cgroup_attach_permissions(struct cgroup *src_cgrp,
4907 				     struct cgroup *dst_cgrp,
4908 				     struct super_block *sb, bool threadgroup,
4909 				     struct cgroup_namespace *ns)
4910 {
4911 	int ret = 0;
4912 
4913 	ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, sb, ns);
4914 	if (ret)
4915 		return ret;
4916 
4917 	ret = cgroup_migrate_vet_dst(dst_cgrp);
4918 	if (ret)
4919 		return ret;
4920 
4921 	if (!threadgroup && (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp))
4922 		ret = -EOPNOTSUPP;
4923 
4924 	return ret;
4925 }
4926 
4927 static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
4928 				    bool threadgroup)
4929 {
4930 	struct cgroup_file_ctx *ctx = of->priv;
4931 	struct cgroup *src_cgrp, *dst_cgrp;
4932 	struct task_struct *task;
4933 	const struct cred *saved_cred;
4934 	ssize_t ret;
4935 	bool locked;
4936 
4937 	dst_cgrp = cgroup_kn_lock_live(of->kn, false);
4938 	if (!dst_cgrp)
4939 		return -ENODEV;
4940 
4941 	task = cgroup_procs_write_start(buf, threadgroup, &locked);
4942 	ret = PTR_ERR_OR_ZERO(task);
4943 	if (ret)
4944 		goto out_unlock;
4945 
4946 	/* find the source cgroup */
4947 	spin_lock_irq(&css_set_lock);
4948 	src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
4949 	spin_unlock_irq(&css_set_lock);
4950 
4951 	/*
4952 	 * Process and thread migrations follow same delegation rule. Check
4953 	 * permissions using the credentials from file open to protect against
4954 	 * inherited fd attacks.
4955 	 */
4956 	saved_cred = override_creds(of->file->f_cred);
4957 	ret = cgroup_attach_permissions(src_cgrp, dst_cgrp,
4958 					of->file->f_path.dentry->d_sb,
4959 					threadgroup, ctx->ns);
4960 	revert_creds(saved_cred);
4961 	if (ret)
4962 		goto out_finish;
4963 
4964 	ret = cgroup_attach_task(dst_cgrp, task, threadgroup);
4965 
4966 out_finish:
4967 	cgroup_procs_write_finish(task, locked);
4968 out_unlock:
4969 	cgroup_kn_unlock(of->kn);
4970 
4971 	return ret;
4972 }
4973 
4974 static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
4975 				  char *buf, size_t nbytes, loff_t off)
4976 {
4977 	return __cgroup_procs_write(of, buf, true) ?: nbytes;
4978 }
4979 
4980 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos)
4981 {
4982 	return __cgroup_procs_start(s, pos, 0);
4983 }
4984 
4985 static ssize_t cgroup_threads_write(struct kernfs_open_file *of,
4986 				    char *buf, size_t nbytes, loff_t off)
4987 {
4988 	return __cgroup_procs_write(of, buf, false) ?: nbytes;
4989 }
4990 
4991 /* cgroup core interface files for the default hierarchy */
4992 static struct cftype cgroup_base_files[] = {
4993 	{
4994 		.name = "cgroup.type",
4995 		.flags = CFTYPE_NOT_ON_ROOT,
4996 		.seq_show = cgroup_type_show,
4997 		.write = cgroup_type_write,
4998 	},
4999 	{
5000 		.name = "cgroup.procs",
5001 		.flags = CFTYPE_NS_DELEGATABLE,
5002 		.file_offset = offsetof(struct cgroup, procs_file),
5003 		.release = cgroup_procs_release,
5004 		.seq_start = cgroup_procs_start,
5005 		.seq_next = cgroup_procs_next,
5006 		.seq_show = cgroup_procs_show,
5007 		.write = cgroup_procs_write,
5008 	},
5009 	{
5010 		.name = "cgroup.threads",
5011 		.flags = CFTYPE_NS_DELEGATABLE,
5012 		.release = cgroup_procs_release,
5013 		.seq_start = cgroup_threads_start,
5014 		.seq_next = cgroup_procs_next,
5015 		.seq_show = cgroup_procs_show,
5016 		.write = cgroup_threads_write,
5017 	},
5018 	{
5019 		.name = "cgroup.controllers",
5020 		.seq_show = cgroup_controllers_show,
5021 	},
5022 	{
5023 		.name = "cgroup.subtree_control",
5024 		.flags = CFTYPE_NS_DELEGATABLE,
5025 		.seq_show = cgroup_subtree_control_show,
5026 		.write = cgroup_subtree_control_write,
5027 	},
5028 	{
5029 		.name = "cgroup.events",
5030 		.flags = CFTYPE_NOT_ON_ROOT,
5031 		.file_offset = offsetof(struct cgroup, events_file),
5032 		.seq_show = cgroup_events_show,
5033 	},
5034 	{
5035 		.name = "cgroup.max.descendants",
5036 		.seq_show = cgroup_max_descendants_show,
5037 		.write = cgroup_max_descendants_write,
5038 	},
5039 	{
5040 		.name = "cgroup.max.depth",
5041 		.seq_show = cgroup_max_depth_show,
5042 		.write = cgroup_max_depth_write,
5043 	},
5044 	{
5045 		.name = "cgroup.stat",
5046 		.seq_show = cgroup_stat_show,
5047 	},
5048 	{
5049 		.name = "cgroup.freeze",
5050 		.flags = CFTYPE_NOT_ON_ROOT,
5051 		.seq_show = cgroup_freeze_show,
5052 		.write = cgroup_freeze_write,
5053 	},
5054 	{
5055 		.name = "cgroup.kill",
5056 		.flags = CFTYPE_NOT_ON_ROOT,
5057 		.write = cgroup_kill_write,
5058 	},
5059 	{
5060 		.name = "cpu.stat",
5061 		.seq_show = cpu_stat_show,
5062 	},
5063 #ifdef CONFIG_PSI
5064 	{
5065 		.name = "io.pressure",
5066 		.flags = CFTYPE_PRESSURE,
5067 		.seq_show = cgroup_io_pressure_show,
5068 		.write = cgroup_io_pressure_write,
5069 		.poll = cgroup_pressure_poll,
5070 		.release = cgroup_pressure_release,
5071 	},
5072 	{
5073 		.name = "memory.pressure",
5074 		.flags = CFTYPE_PRESSURE,
5075 		.seq_show = cgroup_memory_pressure_show,
5076 		.write = cgroup_memory_pressure_write,
5077 		.poll = cgroup_pressure_poll,
5078 		.release = cgroup_pressure_release,
5079 	},
5080 	{
5081 		.name = "cpu.pressure",
5082 		.flags = CFTYPE_PRESSURE,
5083 		.seq_show = cgroup_cpu_pressure_show,
5084 		.write = cgroup_cpu_pressure_write,
5085 		.poll = cgroup_pressure_poll,
5086 		.release = cgroup_pressure_release,
5087 	},
5088 #endif /* CONFIG_PSI */
5089 	{ }	/* terminate */
5090 };
5091 
5092 /*
5093  * css destruction is four-stage process.
5094  *
5095  * 1. Destruction starts.  Killing of the percpu_ref is initiated.
5096  *    Implemented in kill_css().
5097  *
5098  * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
5099  *    and thus css_tryget_online() is guaranteed to fail, the css can be
5100  *    offlined by invoking offline_css().  After offlining, the base ref is
5101  *    put.  Implemented in css_killed_work_fn().
5102  *
5103  * 3. When the percpu_ref reaches zero, the only possible remaining
5104  *    accessors are inside RCU read sections.  css_release() schedules the
5105  *    RCU callback.
5106  *
5107  * 4. After the grace period, the css can be freed.  Implemented in
5108  *    css_free_work_fn().
5109  *
5110  * It is actually hairier because both step 2 and 4 require process context
5111  * and thus involve punting to css->destroy_work adding two additional
5112  * steps to the already complex sequence.
5113  */
5114 static void css_free_rwork_fn(struct work_struct *work)
5115 {
5116 	struct cgroup_subsys_state *css = container_of(to_rcu_work(work),
5117 				struct cgroup_subsys_state, destroy_rwork);
5118 	struct cgroup_subsys *ss = css->ss;
5119 	struct cgroup *cgrp = css->cgroup;
5120 
5121 	percpu_ref_exit(&css->refcnt);
5122 
5123 	if (ss) {
5124 		/* css free path */
5125 		struct cgroup_subsys_state *parent = css->parent;
5126 		int id = css->id;
5127 
5128 		ss->css_free(css);
5129 		cgroup_idr_remove(&ss->css_idr, id);
5130 		cgroup_put(cgrp);
5131 
5132 		if (parent)
5133 			css_put(parent);
5134 	} else {
5135 		/* cgroup free path */
5136 		atomic_dec(&cgrp->root->nr_cgrps);
5137 		cgroup1_pidlist_destroy_all(cgrp);
5138 		cancel_work_sync(&cgrp->release_agent_work);
5139 
5140 		if (cgroup_parent(cgrp)) {
5141 			/*
5142 			 * We get a ref to the parent, and put the ref when
5143 			 * this cgroup is being freed, so it's guaranteed
5144 			 * that the parent won't be destroyed before its
5145 			 * children.
5146 			 */
5147 			cgroup_put(cgroup_parent(cgrp));
5148 			kernfs_put(cgrp->kn);
5149 			psi_cgroup_free(cgrp);
5150 			cgroup_rstat_exit(cgrp);
5151 			kfree(cgrp);
5152 		} else {
5153 			/*
5154 			 * This is root cgroup's refcnt reaching zero,
5155 			 * which indicates that the root should be
5156 			 * released.
5157 			 */
5158 			cgroup_destroy_root(cgrp->root);
5159 		}
5160 	}
5161 }
5162 
5163 static void css_release_work_fn(struct work_struct *work)
5164 {
5165 	struct cgroup_subsys_state *css =
5166 		container_of(work, struct cgroup_subsys_state, destroy_work);
5167 	struct cgroup_subsys *ss = css->ss;
5168 	struct cgroup *cgrp = css->cgroup;
5169 
5170 	mutex_lock(&cgroup_mutex);
5171 
5172 	css->flags |= CSS_RELEASED;
5173 	list_del_rcu(&css->sibling);
5174 
5175 	if (ss) {
5176 		/* css release path */
5177 		if (!list_empty(&css->rstat_css_node)) {
5178 			cgroup_rstat_flush(cgrp);
5179 			list_del_rcu(&css->rstat_css_node);
5180 		}
5181 
5182 		cgroup_idr_replace(&ss->css_idr, NULL, css->id);
5183 		if (ss->css_released)
5184 			ss->css_released(css);
5185 	} else {
5186 		struct cgroup *tcgrp;
5187 
5188 		/* cgroup release path */
5189 		TRACE_CGROUP_PATH(release, cgrp);
5190 
5191 		cgroup_rstat_flush(cgrp);
5192 
5193 		spin_lock_irq(&css_set_lock);
5194 		for (tcgrp = cgroup_parent(cgrp); tcgrp;
5195 		     tcgrp = cgroup_parent(tcgrp))
5196 			tcgrp->nr_dying_descendants--;
5197 		spin_unlock_irq(&css_set_lock);
5198 
5199 		/*
5200 		 * There are two control paths which try to determine
5201 		 * cgroup from dentry without going through kernfs -
5202 		 * cgroupstats_build() and css_tryget_online_from_dir().
5203 		 * Those are supported by RCU protecting clearing of
5204 		 * cgrp->kn->priv backpointer.
5205 		 */
5206 		if (cgrp->kn)
5207 			RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
5208 					 NULL);
5209 	}
5210 
5211 	mutex_unlock(&cgroup_mutex);
5212 
5213 	INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5214 	queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5215 }
5216 
5217 static void css_release(struct percpu_ref *ref)
5218 {
5219 	struct cgroup_subsys_state *css =
5220 		container_of(ref, struct cgroup_subsys_state, refcnt);
5221 
5222 	INIT_WORK(&css->destroy_work, css_release_work_fn);
5223 	queue_work(cgroup_destroy_wq, &css->destroy_work);
5224 }
5225 
5226 static void init_and_link_css(struct cgroup_subsys_state *css,
5227 			      struct cgroup_subsys *ss, struct cgroup *cgrp)
5228 {
5229 	lockdep_assert_held(&cgroup_mutex);
5230 
5231 	cgroup_get_live(cgrp);
5232 
5233 	memset(css, 0, sizeof(*css));
5234 	css->cgroup = cgrp;
5235 	css->ss = ss;
5236 	css->id = -1;
5237 	INIT_LIST_HEAD(&css->sibling);
5238 	INIT_LIST_HEAD(&css->children);
5239 	INIT_LIST_HEAD(&css->rstat_css_node);
5240 	css->serial_nr = css_serial_nr_next++;
5241 	atomic_set(&css->online_cnt, 0);
5242 
5243 	if (cgroup_parent(cgrp)) {
5244 		css->parent = cgroup_css(cgroup_parent(cgrp), ss);
5245 		css_get(css->parent);
5246 	}
5247 
5248 	if (ss->css_rstat_flush)
5249 		list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list);
5250 
5251 	BUG_ON(cgroup_css(cgrp, ss));
5252 }
5253 
5254 /* invoke ->css_online() on a new CSS and mark it online if successful */
5255 static int online_css(struct cgroup_subsys_state *css)
5256 {
5257 	struct cgroup_subsys *ss = css->ss;
5258 	int ret = 0;
5259 
5260 	lockdep_assert_held(&cgroup_mutex);
5261 
5262 	if (ss->css_online)
5263 		ret = ss->css_online(css);
5264 	if (!ret) {
5265 		css->flags |= CSS_ONLINE;
5266 		rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
5267 
5268 		atomic_inc(&css->online_cnt);
5269 		if (css->parent)
5270 			atomic_inc(&css->parent->online_cnt);
5271 	}
5272 	return ret;
5273 }
5274 
5275 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
5276 static void offline_css(struct cgroup_subsys_state *css)
5277 {
5278 	struct cgroup_subsys *ss = css->ss;
5279 
5280 	lockdep_assert_held(&cgroup_mutex);
5281 
5282 	if (!(css->flags & CSS_ONLINE))
5283 		return;
5284 
5285 	if (ss->css_offline)
5286 		ss->css_offline(css);
5287 
5288 	css->flags &= ~CSS_ONLINE;
5289 	RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
5290 
5291 	wake_up_all(&css->cgroup->offline_waitq);
5292 }
5293 
5294 /**
5295  * css_create - create a cgroup_subsys_state
5296  * @cgrp: the cgroup new css will be associated with
5297  * @ss: the subsys of new css
5298  *
5299  * Create a new css associated with @cgrp - @ss pair.  On success, the new
5300  * css is online and installed in @cgrp.  This function doesn't create the
5301  * interface files.  Returns 0 on success, -errno on failure.
5302  */
5303 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
5304 					      struct cgroup_subsys *ss)
5305 {
5306 	struct cgroup *parent = cgroup_parent(cgrp);
5307 	struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
5308 	struct cgroup_subsys_state *css;
5309 	int err;
5310 
5311 	lockdep_assert_held(&cgroup_mutex);
5312 
5313 	css = ss->css_alloc(parent_css);
5314 	if (!css)
5315 		css = ERR_PTR(-ENOMEM);
5316 	if (IS_ERR(css))
5317 		return css;
5318 
5319 	init_and_link_css(css, ss, cgrp);
5320 
5321 	err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
5322 	if (err)
5323 		goto err_free_css;
5324 
5325 	err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
5326 	if (err < 0)
5327 		goto err_free_css;
5328 	css->id = err;
5329 
5330 	/* @css is ready to be brought online now, make it visible */
5331 	list_add_tail_rcu(&css->sibling, &parent_css->children);
5332 	cgroup_idr_replace(&ss->css_idr, css, css->id);
5333 
5334 	err = online_css(css);
5335 	if (err)
5336 		goto err_list_del;
5337 
5338 	return css;
5339 
5340 err_list_del:
5341 	list_del_rcu(&css->sibling);
5342 err_free_css:
5343 	list_del_rcu(&css->rstat_css_node);
5344 	INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5345 	queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5346 	return ERR_PTR(err);
5347 }
5348 
5349 /*
5350  * The returned cgroup is fully initialized including its control mask, but
5351  * it isn't associated with its kernfs_node and doesn't have the control
5352  * mask applied.
5353  */
5354 static struct cgroup *cgroup_create(struct cgroup *parent, const char *name,
5355 				    umode_t mode)
5356 {
5357 	struct cgroup_root *root = parent->root;
5358 	struct cgroup *cgrp, *tcgrp;
5359 	struct kernfs_node *kn;
5360 	int level = parent->level + 1;
5361 	int ret;
5362 
5363 	/* allocate the cgroup and its ID, 0 is reserved for the root */
5364 	cgrp = kzalloc(struct_size(cgrp, ancestor_ids, (level + 1)),
5365 		       GFP_KERNEL);
5366 	if (!cgrp)
5367 		return ERR_PTR(-ENOMEM);
5368 
5369 	ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
5370 	if (ret)
5371 		goto out_free_cgrp;
5372 
5373 	ret = cgroup_rstat_init(cgrp);
5374 	if (ret)
5375 		goto out_cancel_ref;
5376 
5377 	/* create the directory */
5378 	kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
5379 	if (IS_ERR(kn)) {
5380 		ret = PTR_ERR(kn);
5381 		goto out_stat_exit;
5382 	}
5383 	cgrp->kn = kn;
5384 
5385 	init_cgroup_housekeeping(cgrp);
5386 
5387 	cgrp->self.parent = &parent->self;
5388 	cgrp->root = root;
5389 	cgrp->level = level;
5390 
5391 	ret = psi_cgroup_alloc(cgrp);
5392 	if (ret)
5393 		goto out_kernfs_remove;
5394 
5395 	ret = cgroup_bpf_inherit(cgrp);
5396 	if (ret)
5397 		goto out_psi_free;
5398 
5399 	/*
5400 	 * New cgroup inherits effective freeze counter, and
5401 	 * if the parent has to be frozen, the child has too.
5402 	 */
5403 	cgrp->freezer.e_freeze = parent->freezer.e_freeze;
5404 	if (cgrp->freezer.e_freeze) {
5405 		/*
5406 		 * Set the CGRP_FREEZE flag, so when a process will be
5407 		 * attached to the child cgroup, it will become frozen.
5408 		 * At this point the new cgroup is unpopulated, so we can
5409 		 * consider it frozen immediately.
5410 		 */
5411 		set_bit(CGRP_FREEZE, &cgrp->flags);
5412 		set_bit(CGRP_FROZEN, &cgrp->flags);
5413 	}
5414 
5415 	spin_lock_irq(&css_set_lock);
5416 	for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5417 		cgrp->ancestor_ids[tcgrp->level] = cgroup_id(tcgrp);
5418 
5419 		if (tcgrp != cgrp) {
5420 			tcgrp->nr_descendants++;
5421 
5422 			/*
5423 			 * If the new cgroup is frozen, all ancestor cgroups
5424 			 * get a new frozen descendant, but their state can't
5425 			 * change because of this.
5426 			 */
5427 			if (cgrp->freezer.e_freeze)
5428 				tcgrp->freezer.nr_frozen_descendants++;
5429 		}
5430 	}
5431 	spin_unlock_irq(&css_set_lock);
5432 
5433 	if (notify_on_release(parent))
5434 		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
5435 
5436 	if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
5437 		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
5438 
5439 	cgrp->self.serial_nr = css_serial_nr_next++;
5440 
5441 	/* allocation complete, commit to creation */
5442 	list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
5443 	atomic_inc(&root->nr_cgrps);
5444 	cgroup_get_live(parent);
5445 
5446 	/*
5447 	 * On the default hierarchy, a child doesn't automatically inherit
5448 	 * subtree_control from the parent.  Each is configured manually.
5449 	 */
5450 	if (!cgroup_on_dfl(cgrp))
5451 		cgrp->subtree_control = cgroup_control(cgrp);
5452 
5453 	cgroup_propagate_control(cgrp);
5454 
5455 	return cgrp;
5456 
5457 out_psi_free:
5458 	psi_cgroup_free(cgrp);
5459 out_kernfs_remove:
5460 	kernfs_remove(cgrp->kn);
5461 out_stat_exit:
5462 	cgroup_rstat_exit(cgrp);
5463 out_cancel_ref:
5464 	percpu_ref_exit(&cgrp->self.refcnt);
5465 out_free_cgrp:
5466 	kfree(cgrp);
5467 	return ERR_PTR(ret);
5468 }
5469 
5470 static bool cgroup_check_hierarchy_limits(struct cgroup *parent)
5471 {
5472 	struct cgroup *cgroup;
5473 	int ret = false;
5474 	int level = 1;
5475 
5476 	lockdep_assert_held(&cgroup_mutex);
5477 
5478 	for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) {
5479 		if (cgroup->nr_descendants >= cgroup->max_descendants)
5480 			goto fail;
5481 
5482 		if (level > cgroup->max_depth)
5483 			goto fail;
5484 
5485 		level++;
5486 	}
5487 
5488 	ret = true;
5489 fail:
5490 	return ret;
5491 }
5492 
5493 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode)
5494 {
5495 	struct cgroup *parent, *cgrp;
5496 	int ret;
5497 
5498 	/* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
5499 	if (strchr(name, '\n'))
5500 		return -EINVAL;
5501 
5502 	parent = cgroup_kn_lock_live(parent_kn, false);
5503 	if (!parent)
5504 		return -ENODEV;
5505 
5506 	if (!cgroup_check_hierarchy_limits(parent)) {
5507 		ret = -EAGAIN;
5508 		goto out_unlock;
5509 	}
5510 
5511 	cgrp = cgroup_create(parent, name, mode);
5512 	if (IS_ERR(cgrp)) {
5513 		ret = PTR_ERR(cgrp);
5514 		goto out_unlock;
5515 	}
5516 
5517 	/*
5518 	 * This extra ref will be put in cgroup_free_fn() and guarantees
5519 	 * that @cgrp->kn is always accessible.
5520 	 */
5521 	kernfs_get(cgrp->kn);
5522 
5523 	ret = cgroup_kn_set_ugid(cgrp->kn);
5524 	if (ret)
5525 		goto out_destroy;
5526 
5527 	ret = css_populate_dir(&cgrp->self);
5528 	if (ret)
5529 		goto out_destroy;
5530 
5531 	ret = cgroup_apply_control_enable(cgrp);
5532 	if (ret)
5533 		goto out_destroy;
5534 
5535 	TRACE_CGROUP_PATH(mkdir, cgrp);
5536 
5537 	/* let's create and online css's */
5538 	kernfs_activate(cgrp->kn);
5539 
5540 	ret = 0;
5541 	goto out_unlock;
5542 
5543 out_destroy:
5544 	cgroup_destroy_locked(cgrp);
5545 out_unlock:
5546 	cgroup_kn_unlock(parent_kn);
5547 	return ret;
5548 }
5549 
5550 /*
5551  * This is called when the refcnt of a css is confirmed to be killed.
5552  * css_tryget_online() is now guaranteed to fail.  Tell the subsystem to
5553  * initiate destruction and put the css ref from kill_css().
5554  */
5555 static void css_killed_work_fn(struct work_struct *work)
5556 {
5557 	struct cgroup_subsys_state *css =
5558 		container_of(work, struct cgroup_subsys_state, destroy_work);
5559 
5560 	mutex_lock(&cgroup_mutex);
5561 
5562 	do {
5563 		offline_css(css);
5564 		css_put(css);
5565 		/* @css can't go away while we're holding cgroup_mutex */
5566 		css = css->parent;
5567 	} while (css && atomic_dec_and_test(&css->online_cnt));
5568 
5569 	mutex_unlock(&cgroup_mutex);
5570 }
5571 
5572 /* css kill confirmation processing requires process context, bounce */
5573 static void css_killed_ref_fn(struct percpu_ref *ref)
5574 {
5575 	struct cgroup_subsys_state *css =
5576 		container_of(ref, struct cgroup_subsys_state, refcnt);
5577 
5578 	if (atomic_dec_and_test(&css->online_cnt)) {
5579 		INIT_WORK(&css->destroy_work, css_killed_work_fn);
5580 		queue_work(cgroup_destroy_wq, &css->destroy_work);
5581 	}
5582 }
5583 
5584 /**
5585  * kill_css - destroy a css
5586  * @css: css to destroy
5587  *
5588  * This function initiates destruction of @css by removing cgroup interface
5589  * files and putting its base reference.  ->css_offline() will be invoked
5590  * asynchronously once css_tryget_online() is guaranteed to fail and when
5591  * the reference count reaches zero, @css will be released.
5592  */
5593 static void kill_css(struct cgroup_subsys_state *css)
5594 {
5595 	lockdep_assert_held(&cgroup_mutex);
5596 
5597 	if (css->flags & CSS_DYING)
5598 		return;
5599 
5600 	css->flags |= CSS_DYING;
5601 
5602 	/*
5603 	 * This must happen before css is disassociated with its cgroup.
5604 	 * See seq_css() for details.
5605 	 */
5606 	css_clear_dir(css);
5607 
5608 	/*
5609 	 * Killing would put the base ref, but we need to keep it alive
5610 	 * until after ->css_offline().
5611 	 */
5612 	css_get(css);
5613 
5614 	/*
5615 	 * cgroup core guarantees that, by the time ->css_offline() is
5616 	 * invoked, no new css reference will be given out via
5617 	 * css_tryget_online().  We can't simply call percpu_ref_kill() and
5618 	 * proceed to offlining css's because percpu_ref_kill() doesn't
5619 	 * guarantee that the ref is seen as killed on all CPUs on return.
5620 	 *
5621 	 * Use percpu_ref_kill_and_confirm() to get notifications as each
5622 	 * css is confirmed to be seen as killed on all CPUs.
5623 	 */
5624 	percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
5625 }
5626 
5627 /**
5628  * cgroup_destroy_locked - the first stage of cgroup destruction
5629  * @cgrp: cgroup to be destroyed
5630  *
5631  * css's make use of percpu refcnts whose killing latency shouldn't be
5632  * exposed to userland and are RCU protected.  Also, cgroup core needs to
5633  * guarantee that css_tryget_online() won't succeed by the time
5634  * ->css_offline() is invoked.  To satisfy all the requirements,
5635  * destruction is implemented in the following two steps.
5636  *
5637  * s1. Verify @cgrp can be destroyed and mark it dying.  Remove all
5638  *     userland visible parts and start killing the percpu refcnts of
5639  *     css's.  Set up so that the next stage will be kicked off once all
5640  *     the percpu refcnts are confirmed to be killed.
5641  *
5642  * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5643  *     rest of destruction.  Once all cgroup references are gone, the
5644  *     cgroup is RCU-freed.
5645  *
5646  * This function implements s1.  After this step, @cgrp is gone as far as
5647  * the userland is concerned and a new cgroup with the same name may be
5648  * created.  As cgroup doesn't care about the names internally, this
5649  * doesn't cause any problem.
5650  */
5651 static int cgroup_destroy_locked(struct cgroup *cgrp)
5652 	__releases(&cgroup_mutex) __acquires(&cgroup_mutex)
5653 {
5654 	struct cgroup *tcgrp, *parent = cgroup_parent(cgrp);
5655 	struct cgroup_subsys_state *css;
5656 	struct cgrp_cset_link *link;
5657 	int ssid;
5658 
5659 	lockdep_assert_held(&cgroup_mutex);
5660 
5661 	/*
5662 	 * Only migration can raise populated from zero and we're already
5663 	 * holding cgroup_mutex.
5664 	 */
5665 	if (cgroup_is_populated(cgrp))
5666 		return -EBUSY;
5667 
5668 	/*
5669 	 * Make sure there's no live children.  We can't test emptiness of
5670 	 * ->self.children as dead children linger on it while being
5671 	 * drained; otherwise, "rmdir parent/child parent" may fail.
5672 	 */
5673 	if (css_has_online_children(&cgrp->self))
5674 		return -EBUSY;
5675 
5676 	/*
5677 	 * Mark @cgrp and the associated csets dead.  The former prevents
5678 	 * further task migration and child creation by disabling
5679 	 * cgroup_lock_live_group().  The latter makes the csets ignored by
5680 	 * the migration path.
5681 	 */
5682 	cgrp->self.flags &= ~CSS_ONLINE;
5683 
5684 	spin_lock_irq(&css_set_lock);
5685 	list_for_each_entry(link, &cgrp->cset_links, cset_link)
5686 		link->cset->dead = true;
5687 	spin_unlock_irq(&css_set_lock);
5688 
5689 	/* initiate massacre of all css's */
5690 	for_each_css(css, ssid, cgrp)
5691 		kill_css(css);
5692 
5693 	/* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */
5694 	css_clear_dir(&cgrp->self);
5695 	kernfs_remove(cgrp->kn);
5696 
5697 	if (cgroup_is_threaded(cgrp))
5698 		parent->nr_threaded_children--;
5699 
5700 	spin_lock_irq(&css_set_lock);
5701 	for (tcgrp = cgroup_parent(cgrp); tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5702 		tcgrp->nr_descendants--;
5703 		tcgrp->nr_dying_descendants++;
5704 		/*
5705 		 * If the dying cgroup is frozen, decrease frozen descendants
5706 		 * counters of ancestor cgroups.
5707 		 */
5708 		if (test_bit(CGRP_FROZEN, &cgrp->flags))
5709 			tcgrp->freezer.nr_frozen_descendants--;
5710 	}
5711 	spin_unlock_irq(&css_set_lock);
5712 
5713 	cgroup1_check_for_release(parent);
5714 
5715 	cgroup_bpf_offline(cgrp);
5716 
5717 	/* put the base reference */
5718 	percpu_ref_kill(&cgrp->self.refcnt);
5719 
5720 	return 0;
5721 };
5722 
5723 int cgroup_rmdir(struct kernfs_node *kn)
5724 {
5725 	struct cgroup *cgrp;
5726 	int ret = 0;
5727 
5728 	cgrp = cgroup_kn_lock_live(kn, false);
5729 	if (!cgrp)
5730 		return 0;
5731 
5732 	ret = cgroup_destroy_locked(cgrp);
5733 	if (!ret)
5734 		TRACE_CGROUP_PATH(rmdir, cgrp);
5735 
5736 	cgroup_kn_unlock(kn);
5737 	return ret;
5738 }
5739 
5740 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5741 	.show_options		= cgroup_show_options,
5742 	.mkdir			= cgroup_mkdir,
5743 	.rmdir			= cgroup_rmdir,
5744 	.show_path		= cgroup_show_path,
5745 };
5746 
5747 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
5748 {
5749 	struct cgroup_subsys_state *css;
5750 
5751 	pr_debug("Initializing cgroup subsys %s\n", ss->name);
5752 
5753 	mutex_lock(&cgroup_mutex);
5754 
5755 	idr_init(&ss->css_idr);
5756 	INIT_LIST_HEAD(&ss->cfts);
5757 
5758 	/* Create the root cgroup state for this subsystem */
5759 	ss->root = &cgrp_dfl_root;
5760 	css = ss->css_alloc(NULL);
5761 	/* We don't handle early failures gracefully */
5762 	BUG_ON(IS_ERR(css));
5763 	init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
5764 
5765 	/*
5766 	 * Root csses are never destroyed and we can't initialize
5767 	 * percpu_ref during early init.  Disable refcnting.
5768 	 */
5769 	css->flags |= CSS_NO_REF;
5770 
5771 	if (early) {
5772 		/* allocation can't be done safely during early init */
5773 		css->id = 1;
5774 	} else {
5775 		css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5776 		BUG_ON(css->id < 0);
5777 	}
5778 
5779 	/* Update the init_css_set to contain a subsys
5780 	 * pointer to this state - since the subsystem is
5781 	 * newly registered, all tasks and hence the
5782 	 * init_css_set is in the subsystem's root cgroup. */
5783 	init_css_set.subsys[ss->id] = css;
5784 
5785 	have_fork_callback |= (bool)ss->fork << ss->id;
5786 	have_exit_callback |= (bool)ss->exit << ss->id;
5787 	have_release_callback |= (bool)ss->release << ss->id;
5788 	have_canfork_callback |= (bool)ss->can_fork << ss->id;
5789 
5790 	/* At system boot, before all subsystems have been
5791 	 * registered, no tasks have been forked, so we don't
5792 	 * need to invoke fork callbacks here. */
5793 	BUG_ON(!list_empty(&init_task.tasks));
5794 
5795 	BUG_ON(online_css(css));
5796 
5797 	mutex_unlock(&cgroup_mutex);
5798 }
5799 
5800 /**
5801  * cgroup_init_early - cgroup initialization at system boot
5802  *
5803  * Initialize cgroups at system boot, and initialize any
5804  * subsystems that request early init.
5805  */
5806 int __init cgroup_init_early(void)
5807 {
5808 	static struct cgroup_fs_context __initdata ctx;
5809 	struct cgroup_subsys *ss;
5810 	int i;
5811 
5812 	ctx.root = &cgrp_dfl_root;
5813 	init_cgroup_root(&ctx);
5814 	cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5815 
5816 	RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
5817 
5818 	for_each_subsys(ss, i) {
5819 		WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
5820 		     "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
5821 		     i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
5822 		     ss->id, ss->name);
5823 		WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5824 		     "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5825 
5826 		ss->id = i;
5827 		ss->name = cgroup_subsys_name[i];
5828 		if (!ss->legacy_name)
5829 			ss->legacy_name = cgroup_subsys_name[i];
5830 
5831 		if (ss->early_init)
5832 			cgroup_init_subsys(ss, true);
5833 	}
5834 	return 0;
5835 }
5836 
5837 /**
5838  * cgroup_init - cgroup initialization
5839  *
5840  * Register cgroup filesystem and /proc file, and initialize
5841  * any subsystems that didn't request early init.
5842  */
5843 int __init cgroup_init(void)
5844 {
5845 	struct cgroup_subsys *ss;
5846 	int ssid;
5847 
5848 	BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
5849 	BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
5850 	BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files));
5851 
5852 	cgroup_rstat_boot();
5853 
5854 	/*
5855 	 * The latency of the synchronize_rcu() is too high for cgroups,
5856 	 * avoid it at the cost of forcing all readers into the slow path.
5857 	 */
5858 	rcu_sync_enter_start(&cgroup_threadgroup_rwsem.rss);
5859 
5860 	get_user_ns(init_cgroup_ns.user_ns);
5861 
5862 	mutex_lock(&cgroup_mutex);
5863 
5864 	/*
5865 	 * Add init_css_set to the hash table so that dfl_root can link to
5866 	 * it during init.
5867 	 */
5868 	hash_add(css_set_table, &init_css_set.hlist,
5869 		 css_set_hash(init_css_set.subsys));
5870 
5871 	BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
5872 
5873 	mutex_unlock(&cgroup_mutex);
5874 
5875 	for_each_subsys(ss, ssid) {
5876 		if (ss->early_init) {
5877 			struct cgroup_subsys_state *css =
5878 				init_css_set.subsys[ss->id];
5879 
5880 			css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5881 						   GFP_KERNEL);
5882 			BUG_ON(css->id < 0);
5883 		} else {
5884 			cgroup_init_subsys(ss, false);
5885 		}
5886 
5887 		list_add_tail(&init_css_set.e_cset_node[ssid],
5888 			      &cgrp_dfl_root.cgrp.e_csets[ssid]);
5889 
5890 		/*
5891 		 * Setting dfl_root subsys_mask needs to consider the
5892 		 * disabled flag and cftype registration needs kmalloc,
5893 		 * both of which aren't available during early_init.
5894 		 */
5895 		if (!cgroup_ssid_enabled(ssid))
5896 			continue;
5897 
5898 		if (cgroup1_ssid_disabled(ssid))
5899 			printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n",
5900 			       ss->name);
5901 
5902 		cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5903 
5904 		/* implicit controllers must be threaded too */
5905 		WARN_ON(ss->implicit_on_dfl && !ss->threaded);
5906 
5907 		if (ss->implicit_on_dfl)
5908 			cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
5909 		else if (!ss->dfl_cftypes)
5910 			cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
5911 
5912 		if (ss->threaded)
5913 			cgrp_dfl_threaded_ss_mask |= 1 << ss->id;
5914 
5915 		if (ss->dfl_cftypes == ss->legacy_cftypes) {
5916 			WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5917 		} else {
5918 			WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5919 			WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
5920 		}
5921 
5922 		if (ss->bind)
5923 			ss->bind(init_css_set.subsys[ssid]);
5924 
5925 		mutex_lock(&cgroup_mutex);
5926 		css_populate_dir(init_css_set.subsys[ssid]);
5927 		mutex_unlock(&cgroup_mutex);
5928 	}
5929 
5930 	/* init_css_set.subsys[] has been updated, re-hash */
5931 	hash_del(&init_css_set.hlist);
5932 	hash_add(css_set_table, &init_css_set.hlist,
5933 		 css_set_hash(init_css_set.subsys));
5934 
5935 	WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
5936 	WARN_ON(register_filesystem(&cgroup_fs_type));
5937 	WARN_ON(register_filesystem(&cgroup2_fs_type));
5938 	WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show));
5939 #ifdef CONFIG_CPUSETS
5940 	WARN_ON(register_filesystem(&cpuset_fs_type));
5941 #endif
5942 
5943 	return 0;
5944 }
5945 
5946 static int __init cgroup_wq_init(void)
5947 {
5948 	/*
5949 	 * There isn't much point in executing destruction path in
5950 	 * parallel.  Good chunk is serialized with cgroup_mutex anyway.
5951 	 * Use 1 for @max_active.
5952 	 *
5953 	 * We would prefer to do this in cgroup_init() above, but that
5954 	 * is called before init_workqueues(): so leave this until after.
5955 	 */
5956 	cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
5957 	BUG_ON(!cgroup_destroy_wq);
5958 	return 0;
5959 }
5960 core_initcall(cgroup_wq_init);
5961 
5962 void cgroup_path_from_kernfs_id(u64 id, char *buf, size_t buflen)
5963 {
5964 	struct kernfs_node *kn;
5965 
5966 	kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id);
5967 	if (!kn)
5968 		return;
5969 	kernfs_path(kn, buf, buflen);
5970 	kernfs_put(kn);
5971 }
5972 
5973 /*
5974  * cgroup_get_from_id : get the cgroup associated with cgroup id
5975  * @id: cgroup id
5976  * On success return the cgrp, on failure return NULL
5977  */
5978 struct cgroup *cgroup_get_from_id(u64 id)
5979 {
5980 	struct kernfs_node *kn;
5981 	struct cgroup *cgrp = NULL;
5982 
5983 	kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id);
5984 	if (!kn)
5985 		goto out;
5986 
5987 	rcu_read_lock();
5988 
5989 	cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
5990 	if (cgrp && !cgroup_tryget(cgrp))
5991 		cgrp = NULL;
5992 
5993 	rcu_read_unlock();
5994 
5995 	kernfs_put(kn);
5996 out:
5997 	return cgrp;
5998 }
5999 EXPORT_SYMBOL_GPL(cgroup_get_from_id);
6000 
6001 /*
6002  * proc_cgroup_show()
6003  *  - Print task's cgroup paths into seq_file, one line for each hierarchy
6004  *  - Used for /proc/<pid>/cgroup.
6005  */
6006 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
6007 		     struct pid *pid, struct task_struct *tsk)
6008 {
6009 	char *buf;
6010 	int retval;
6011 	struct cgroup_root *root;
6012 
6013 	retval = -ENOMEM;
6014 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
6015 	if (!buf)
6016 		goto out;
6017 
6018 	mutex_lock(&cgroup_mutex);
6019 	spin_lock_irq(&css_set_lock);
6020 
6021 	for_each_root(root) {
6022 		struct cgroup_subsys *ss;
6023 		struct cgroup *cgrp;
6024 		int ssid, count = 0;
6025 
6026 		if (root == &cgrp_dfl_root && !cgrp_dfl_visible)
6027 			continue;
6028 
6029 		seq_printf(m, "%d:", root->hierarchy_id);
6030 		if (root != &cgrp_dfl_root)
6031 			for_each_subsys(ss, ssid)
6032 				if (root->subsys_mask & (1 << ssid))
6033 					seq_printf(m, "%s%s", count++ ? "," : "",
6034 						   ss->legacy_name);
6035 		if (strlen(root->name))
6036 			seq_printf(m, "%sname=%s", count ? "," : "",
6037 				   root->name);
6038 		seq_putc(m, ':');
6039 
6040 		cgrp = task_cgroup_from_root(tsk, root);
6041 
6042 		/*
6043 		 * On traditional hierarchies, all zombie tasks show up as
6044 		 * belonging to the root cgroup.  On the default hierarchy,
6045 		 * while a zombie doesn't show up in "cgroup.procs" and
6046 		 * thus can't be migrated, its /proc/PID/cgroup keeps
6047 		 * reporting the cgroup it belonged to before exiting.  If
6048 		 * the cgroup is removed before the zombie is reaped,
6049 		 * " (deleted)" is appended to the cgroup path.
6050 		 */
6051 		if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
6052 			retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
6053 						current->nsproxy->cgroup_ns);
6054 			if (retval >= PATH_MAX)
6055 				retval = -ENAMETOOLONG;
6056 			if (retval < 0)
6057 				goto out_unlock;
6058 
6059 			seq_puts(m, buf);
6060 		} else {
6061 			seq_puts(m, "/");
6062 		}
6063 
6064 		if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
6065 			seq_puts(m, " (deleted)\n");
6066 		else
6067 			seq_putc(m, '\n');
6068 	}
6069 
6070 	retval = 0;
6071 out_unlock:
6072 	spin_unlock_irq(&css_set_lock);
6073 	mutex_unlock(&cgroup_mutex);
6074 	kfree(buf);
6075 out:
6076 	return retval;
6077 }
6078 
6079 /**
6080  * cgroup_fork - initialize cgroup related fields during copy_process()
6081  * @child: pointer to task_struct of forking parent process.
6082  *
6083  * A task is associated with the init_css_set until cgroup_post_fork()
6084  * attaches it to the target css_set.
6085  */
6086 void cgroup_fork(struct task_struct *child)
6087 {
6088 	RCU_INIT_POINTER(child->cgroups, &init_css_set);
6089 	INIT_LIST_HEAD(&child->cg_list);
6090 }
6091 
6092 static struct cgroup *cgroup_get_from_file(struct file *f)
6093 {
6094 	struct cgroup_subsys_state *css;
6095 	struct cgroup *cgrp;
6096 
6097 	css = css_tryget_online_from_dir(f->f_path.dentry, NULL);
6098 	if (IS_ERR(css))
6099 		return ERR_CAST(css);
6100 
6101 	cgrp = css->cgroup;
6102 	if (!cgroup_on_dfl(cgrp)) {
6103 		cgroup_put(cgrp);
6104 		return ERR_PTR(-EBADF);
6105 	}
6106 
6107 	return cgrp;
6108 }
6109 
6110 /**
6111  * cgroup_css_set_fork - find or create a css_set for a child process
6112  * @kargs: the arguments passed to create the child process
6113  *
6114  * This functions finds or creates a new css_set which the child
6115  * process will be attached to in cgroup_post_fork(). By default,
6116  * the child process will be given the same css_set as its parent.
6117  *
6118  * If CLONE_INTO_CGROUP is specified this function will try to find an
6119  * existing css_set which includes the requested cgroup and if not create
6120  * a new css_set that the child will be attached to later. If this function
6121  * succeeds it will hold cgroup_threadgroup_rwsem on return. If
6122  * CLONE_INTO_CGROUP is requested this function will grab cgroup mutex
6123  * before grabbing cgroup_threadgroup_rwsem and will hold a reference
6124  * to the target cgroup.
6125  */
6126 static int cgroup_css_set_fork(struct kernel_clone_args *kargs)
6127 	__acquires(&cgroup_mutex) __acquires(&cgroup_threadgroup_rwsem)
6128 {
6129 	int ret;
6130 	struct cgroup *dst_cgrp = NULL;
6131 	struct css_set *cset;
6132 	struct super_block *sb;
6133 	struct file *f;
6134 
6135 	if (kargs->flags & CLONE_INTO_CGROUP)
6136 		mutex_lock(&cgroup_mutex);
6137 
6138 	cgroup_threadgroup_change_begin(current);
6139 
6140 	spin_lock_irq(&css_set_lock);
6141 	cset = task_css_set(current);
6142 	get_css_set(cset);
6143 	spin_unlock_irq(&css_set_lock);
6144 
6145 	if (!(kargs->flags & CLONE_INTO_CGROUP)) {
6146 		kargs->cset = cset;
6147 		return 0;
6148 	}
6149 
6150 	f = fget_raw(kargs->cgroup);
6151 	if (!f) {
6152 		ret = -EBADF;
6153 		goto err;
6154 	}
6155 	sb = f->f_path.dentry->d_sb;
6156 
6157 	dst_cgrp = cgroup_get_from_file(f);
6158 	if (IS_ERR(dst_cgrp)) {
6159 		ret = PTR_ERR(dst_cgrp);
6160 		dst_cgrp = NULL;
6161 		goto err;
6162 	}
6163 
6164 	if (cgroup_is_dead(dst_cgrp)) {
6165 		ret = -ENODEV;
6166 		goto err;
6167 	}
6168 
6169 	/*
6170 	 * Verify that we the target cgroup is writable for us. This is
6171 	 * usually done by the vfs layer but since we're not going through
6172 	 * the vfs layer here we need to do it "manually".
6173 	 */
6174 	ret = cgroup_may_write(dst_cgrp, sb);
6175 	if (ret)
6176 		goto err;
6177 
6178 	/*
6179 	 * Spawning a task directly into a cgroup works by passing a file
6180 	 * descriptor to the target cgroup directory. This can even be an O_PATH
6181 	 * file descriptor. But it can never be a cgroup.procs file descriptor.
6182 	 * This was done on purpose so spawning into a cgroup could be
6183 	 * conceptualized as an atomic
6184 	 *
6185 	 *   fd = openat(dfd_cgroup, "cgroup.procs", ...);
6186 	 *   write(fd, <child-pid>, ...);
6187 	 *
6188 	 * sequence, i.e. it's a shorthand for the caller opening and writing
6189 	 * cgroup.procs of the cgroup indicated by @dfd_cgroup. This allows us
6190 	 * to always use the caller's credentials.
6191 	 */
6192 	ret = cgroup_attach_permissions(cset->dfl_cgrp, dst_cgrp, sb,
6193 					!(kargs->flags & CLONE_THREAD),
6194 					current->nsproxy->cgroup_ns);
6195 	if (ret)
6196 		goto err;
6197 
6198 	kargs->cset = find_css_set(cset, dst_cgrp);
6199 	if (!kargs->cset) {
6200 		ret = -ENOMEM;
6201 		goto err;
6202 	}
6203 
6204 	put_css_set(cset);
6205 	fput(f);
6206 	kargs->cgrp = dst_cgrp;
6207 	return ret;
6208 
6209 err:
6210 	cgroup_threadgroup_change_end(current);
6211 	mutex_unlock(&cgroup_mutex);
6212 	if (f)
6213 		fput(f);
6214 	if (dst_cgrp)
6215 		cgroup_put(dst_cgrp);
6216 	put_css_set(cset);
6217 	if (kargs->cset)
6218 		put_css_set(kargs->cset);
6219 	return ret;
6220 }
6221 
6222 /**
6223  * cgroup_css_set_put_fork - drop references we took during fork
6224  * @kargs: the arguments passed to create the child process
6225  *
6226  * Drop references to the prepared css_set and target cgroup if
6227  * CLONE_INTO_CGROUP was requested.
6228  */
6229 static void cgroup_css_set_put_fork(struct kernel_clone_args *kargs)
6230 	__releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
6231 {
6232 	cgroup_threadgroup_change_end(current);
6233 
6234 	if (kargs->flags & CLONE_INTO_CGROUP) {
6235 		struct cgroup *cgrp = kargs->cgrp;
6236 		struct css_set *cset = kargs->cset;
6237 
6238 		mutex_unlock(&cgroup_mutex);
6239 
6240 		if (cset) {
6241 			put_css_set(cset);
6242 			kargs->cset = NULL;
6243 		}
6244 
6245 		if (cgrp) {
6246 			cgroup_put(cgrp);
6247 			kargs->cgrp = NULL;
6248 		}
6249 	}
6250 }
6251 
6252 /**
6253  * cgroup_can_fork - called on a new task before the process is exposed
6254  * @child: the child process
6255  * @kargs: the arguments passed to create the child process
6256  *
6257  * This prepares a new css_set for the child process which the child will
6258  * be attached to in cgroup_post_fork().
6259  * This calls the subsystem can_fork() callbacks. If the cgroup_can_fork()
6260  * callback returns an error, the fork aborts with that error code. This
6261  * allows for a cgroup subsystem to conditionally allow or deny new forks.
6262  */
6263 int cgroup_can_fork(struct task_struct *child, struct kernel_clone_args *kargs)
6264 {
6265 	struct cgroup_subsys *ss;
6266 	int i, j, ret;
6267 
6268 	ret = cgroup_css_set_fork(kargs);
6269 	if (ret)
6270 		return ret;
6271 
6272 	do_each_subsys_mask(ss, i, have_canfork_callback) {
6273 		ret = ss->can_fork(child, kargs->cset);
6274 		if (ret)
6275 			goto out_revert;
6276 	} while_each_subsys_mask();
6277 
6278 	return 0;
6279 
6280 out_revert:
6281 	for_each_subsys(ss, j) {
6282 		if (j >= i)
6283 			break;
6284 		if (ss->cancel_fork)
6285 			ss->cancel_fork(child, kargs->cset);
6286 	}
6287 
6288 	cgroup_css_set_put_fork(kargs);
6289 
6290 	return ret;
6291 }
6292 
6293 /**
6294  * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
6295  * @child: the child process
6296  * @kargs: the arguments passed to create the child process
6297  *
6298  * This calls the cancel_fork() callbacks if a fork failed *after*
6299  * cgroup_can_fork() succeeded and cleans up references we took to
6300  * prepare a new css_set for the child process in cgroup_can_fork().
6301  */
6302 void cgroup_cancel_fork(struct task_struct *child,
6303 			struct kernel_clone_args *kargs)
6304 {
6305 	struct cgroup_subsys *ss;
6306 	int i;
6307 
6308 	for_each_subsys(ss, i)
6309 		if (ss->cancel_fork)
6310 			ss->cancel_fork(child, kargs->cset);
6311 
6312 	cgroup_css_set_put_fork(kargs);
6313 }
6314 
6315 /**
6316  * cgroup_post_fork - finalize cgroup setup for the child process
6317  * @child: the child process
6318  * @kargs: the arguments passed to create the child process
6319  *
6320  * Attach the child process to its css_set calling the subsystem fork()
6321  * callbacks.
6322  */
6323 void cgroup_post_fork(struct task_struct *child,
6324 		      struct kernel_clone_args *kargs)
6325 	__releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
6326 {
6327 	unsigned long cgrp_flags = 0;
6328 	bool kill = false;
6329 	struct cgroup_subsys *ss;
6330 	struct css_set *cset;
6331 	int i;
6332 
6333 	cset = kargs->cset;
6334 	kargs->cset = NULL;
6335 
6336 	spin_lock_irq(&css_set_lock);
6337 
6338 	/* init tasks are special, only link regular threads */
6339 	if (likely(child->pid)) {
6340 		if (kargs->cgrp)
6341 			cgrp_flags = kargs->cgrp->flags;
6342 		else
6343 			cgrp_flags = cset->dfl_cgrp->flags;
6344 
6345 		WARN_ON_ONCE(!list_empty(&child->cg_list));
6346 		cset->nr_tasks++;
6347 		css_set_move_task(child, NULL, cset, false);
6348 	} else {
6349 		put_css_set(cset);
6350 		cset = NULL;
6351 	}
6352 
6353 	if (!(child->flags & PF_KTHREAD)) {
6354 		if (unlikely(test_bit(CGRP_FREEZE, &cgrp_flags))) {
6355 			/*
6356 			 * If the cgroup has to be frozen, the new task has
6357 			 * too. Let's set the JOBCTL_TRAP_FREEZE jobctl bit to
6358 			 * get the task into the frozen state.
6359 			 */
6360 			spin_lock(&child->sighand->siglock);
6361 			WARN_ON_ONCE(child->frozen);
6362 			child->jobctl |= JOBCTL_TRAP_FREEZE;
6363 			spin_unlock(&child->sighand->siglock);
6364 
6365 			/*
6366 			 * Calling cgroup_update_frozen() isn't required here,
6367 			 * because it will be called anyway a bit later from
6368 			 * do_freezer_trap(). So we avoid cgroup's transient
6369 			 * switch from the frozen state and back.
6370 			 */
6371 		}
6372 
6373 		/*
6374 		 * If the cgroup is to be killed notice it now and take the
6375 		 * child down right after we finished preparing it for
6376 		 * userspace.
6377 		 */
6378 		kill = test_bit(CGRP_KILL, &cgrp_flags);
6379 	}
6380 
6381 	spin_unlock_irq(&css_set_lock);
6382 
6383 	/*
6384 	 * Call ss->fork().  This must happen after @child is linked on
6385 	 * css_set; otherwise, @child might change state between ->fork()
6386 	 * and addition to css_set.
6387 	 */
6388 	do_each_subsys_mask(ss, i, have_fork_callback) {
6389 		ss->fork(child);
6390 	} while_each_subsys_mask();
6391 
6392 	/* Make the new cset the root_cset of the new cgroup namespace. */
6393 	if (kargs->flags & CLONE_NEWCGROUP) {
6394 		struct css_set *rcset = child->nsproxy->cgroup_ns->root_cset;
6395 
6396 		get_css_set(cset);
6397 		child->nsproxy->cgroup_ns->root_cset = cset;
6398 		put_css_set(rcset);
6399 	}
6400 
6401 	/* Cgroup has to be killed so take down child immediately. */
6402 	if (unlikely(kill))
6403 		do_send_sig_info(SIGKILL, SEND_SIG_NOINFO, child, PIDTYPE_TGID);
6404 
6405 	cgroup_css_set_put_fork(kargs);
6406 }
6407 
6408 /**
6409  * cgroup_exit - detach cgroup from exiting task
6410  * @tsk: pointer to task_struct of exiting process
6411  *
6412  * Description: Detach cgroup from @tsk.
6413  *
6414  */
6415 void cgroup_exit(struct task_struct *tsk)
6416 {
6417 	struct cgroup_subsys *ss;
6418 	struct css_set *cset;
6419 	int i;
6420 
6421 	spin_lock_irq(&css_set_lock);
6422 
6423 	WARN_ON_ONCE(list_empty(&tsk->cg_list));
6424 	cset = task_css_set(tsk);
6425 	css_set_move_task(tsk, cset, NULL, false);
6426 	list_add_tail(&tsk->cg_list, &cset->dying_tasks);
6427 	cset->nr_tasks--;
6428 
6429 	WARN_ON_ONCE(cgroup_task_frozen(tsk));
6430 	if (unlikely(!(tsk->flags & PF_KTHREAD) &&
6431 		     test_bit(CGRP_FREEZE, &task_dfl_cgroup(tsk)->flags)))
6432 		cgroup_update_frozen(task_dfl_cgroup(tsk));
6433 
6434 	spin_unlock_irq(&css_set_lock);
6435 
6436 	/* see cgroup_post_fork() for details */
6437 	do_each_subsys_mask(ss, i, have_exit_callback) {
6438 		ss->exit(tsk);
6439 	} while_each_subsys_mask();
6440 }
6441 
6442 void cgroup_release(struct task_struct *task)
6443 {
6444 	struct cgroup_subsys *ss;
6445 	int ssid;
6446 
6447 	do_each_subsys_mask(ss, ssid, have_release_callback) {
6448 		ss->release(task);
6449 	} while_each_subsys_mask();
6450 
6451 	spin_lock_irq(&css_set_lock);
6452 	css_set_skip_task_iters(task_css_set(task), task);
6453 	list_del_init(&task->cg_list);
6454 	spin_unlock_irq(&css_set_lock);
6455 }
6456 
6457 void cgroup_free(struct task_struct *task)
6458 {
6459 	struct css_set *cset = task_css_set(task);
6460 	put_css_set(cset);
6461 }
6462 
6463 static int __init cgroup_disable(char *str)
6464 {
6465 	struct cgroup_subsys *ss;
6466 	char *token;
6467 	int i;
6468 
6469 	while ((token = strsep(&str, ",")) != NULL) {
6470 		if (!*token)
6471 			continue;
6472 
6473 		for_each_subsys(ss, i) {
6474 			if (strcmp(token, ss->name) &&
6475 			    strcmp(token, ss->legacy_name))
6476 				continue;
6477 
6478 			static_branch_disable(cgroup_subsys_enabled_key[i]);
6479 			pr_info("Disabling %s control group subsystem\n",
6480 				ss->name);
6481 		}
6482 
6483 		for (i = 0; i < OPT_FEATURE_COUNT; i++) {
6484 			if (strcmp(token, cgroup_opt_feature_names[i]))
6485 				continue;
6486 			cgroup_feature_disable_mask |= 1 << i;
6487 			pr_info("Disabling %s control group feature\n",
6488 				cgroup_opt_feature_names[i]);
6489 			break;
6490 		}
6491 	}
6492 	return 1;
6493 }
6494 __setup("cgroup_disable=", cgroup_disable);
6495 
6496 void __init __weak enable_debug_cgroup(void) { }
6497 
6498 static int __init enable_cgroup_debug(char *str)
6499 {
6500 	cgroup_debug = true;
6501 	enable_debug_cgroup();
6502 	return 1;
6503 }
6504 __setup("cgroup_debug", enable_cgroup_debug);
6505 
6506 /**
6507  * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
6508  * @dentry: directory dentry of interest
6509  * @ss: subsystem of interest
6510  *
6511  * If @dentry is a directory for a cgroup which has @ss enabled on it, try
6512  * to get the corresponding css and return it.  If such css doesn't exist
6513  * or can't be pinned, an ERR_PTR value is returned.
6514  */
6515 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
6516 						       struct cgroup_subsys *ss)
6517 {
6518 	struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
6519 	struct file_system_type *s_type = dentry->d_sb->s_type;
6520 	struct cgroup_subsys_state *css = NULL;
6521 	struct cgroup *cgrp;
6522 
6523 	/* is @dentry a cgroup dir? */
6524 	if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
6525 	    !kn || kernfs_type(kn) != KERNFS_DIR)
6526 		return ERR_PTR(-EBADF);
6527 
6528 	rcu_read_lock();
6529 
6530 	/*
6531 	 * This path doesn't originate from kernfs and @kn could already
6532 	 * have been or be removed at any point.  @kn->priv is RCU
6533 	 * protected for this access.  See css_release_work_fn() for details.
6534 	 */
6535 	cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6536 	if (cgrp)
6537 		css = cgroup_css(cgrp, ss);
6538 
6539 	if (!css || !css_tryget_online(css))
6540 		css = ERR_PTR(-ENOENT);
6541 
6542 	rcu_read_unlock();
6543 	return css;
6544 }
6545 
6546 /**
6547  * css_from_id - lookup css by id
6548  * @id: the cgroup id
6549  * @ss: cgroup subsys to be looked into
6550  *
6551  * Returns the css if there's valid one with @id, otherwise returns NULL.
6552  * Should be called under rcu_read_lock().
6553  */
6554 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
6555 {
6556 	WARN_ON_ONCE(!rcu_read_lock_held());
6557 	return idr_find(&ss->css_idr, id);
6558 }
6559 
6560 /**
6561  * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
6562  * @path: path on the default hierarchy
6563  *
6564  * Find the cgroup at @path on the default hierarchy, increment its
6565  * reference count and return it.  Returns pointer to the found cgroup on
6566  * success, ERR_PTR(-ENOENT) if @path doesn't exist or if the cgroup has already
6567  * been released and ERR_PTR(-ENOTDIR) if @path points to a non-directory.
6568  */
6569 struct cgroup *cgroup_get_from_path(const char *path)
6570 {
6571 	struct kernfs_node *kn;
6572 	struct cgroup *cgrp = ERR_PTR(-ENOENT);
6573 
6574 	kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path);
6575 	if (!kn)
6576 		goto out;
6577 
6578 	if (kernfs_type(kn) != KERNFS_DIR) {
6579 		cgrp = ERR_PTR(-ENOTDIR);
6580 		goto out_kernfs;
6581 	}
6582 
6583 	rcu_read_lock();
6584 
6585 	cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6586 	if (!cgrp || !cgroup_tryget(cgrp))
6587 		cgrp = ERR_PTR(-ENOENT);
6588 
6589 	rcu_read_unlock();
6590 
6591 out_kernfs:
6592 	kernfs_put(kn);
6593 out:
6594 	return cgrp;
6595 }
6596 EXPORT_SYMBOL_GPL(cgroup_get_from_path);
6597 
6598 /**
6599  * cgroup_get_from_fd - get a cgroup pointer from a fd
6600  * @fd: fd obtained by open(cgroup2_dir)
6601  *
6602  * Find the cgroup from a fd which should be obtained
6603  * by opening a cgroup directory.  Returns a pointer to the
6604  * cgroup on success. ERR_PTR is returned if the cgroup
6605  * cannot be found.
6606  */
6607 struct cgroup *cgroup_get_from_fd(int fd)
6608 {
6609 	struct cgroup *cgrp;
6610 	struct file *f;
6611 
6612 	f = fget_raw(fd);
6613 	if (!f)
6614 		return ERR_PTR(-EBADF);
6615 
6616 	cgrp = cgroup_get_from_file(f);
6617 	fput(f);
6618 	return cgrp;
6619 }
6620 EXPORT_SYMBOL_GPL(cgroup_get_from_fd);
6621 
6622 static u64 power_of_ten(int power)
6623 {
6624 	u64 v = 1;
6625 	while (power--)
6626 		v *= 10;
6627 	return v;
6628 }
6629 
6630 /**
6631  * cgroup_parse_float - parse a floating number
6632  * @input: input string
6633  * @dec_shift: number of decimal digits to shift
6634  * @v: output
6635  *
6636  * Parse a decimal floating point number in @input and store the result in
6637  * @v with decimal point right shifted @dec_shift times.  For example, if
6638  * @input is "12.3456" and @dec_shift is 3, *@v will be set to 12345.
6639  * Returns 0 on success, -errno otherwise.
6640  *
6641  * There's nothing cgroup specific about this function except that it's
6642  * currently the only user.
6643  */
6644 int cgroup_parse_float(const char *input, unsigned dec_shift, s64 *v)
6645 {
6646 	s64 whole, frac = 0;
6647 	int fstart = 0, fend = 0, flen;
6648 
6649 	if (!sscanf(input, "%lld.%n%lld%n", &whole, &fstart, &frac, &fend))
6650 		return -EINVAL;
6651 	if (frac < 0)
6652 		return -EINVAL;
6653 
6654 	flen = fend > fstart ? fend - fstart : 0;
6655 	if (flen < dec_shift)
6656 		frac *= power_of_ten(dec_shift - flen);
6657 	else
6658 		frac = DIV_ROUND_CLOSEST_ULL(frac, power_of_ten(flen - dec_shift));
6659 
6660 	*v = whole * power_of_ten(dec_shift) + frac;
6661 	return 0;
6662 }
6663 
6664 /*
6665  * sock->sk_cgrp_data handling.  For more info, see sock_cgroup_data
6666  * definition in cgroup-defs.h.
6667  */
6668 #ifdef CONFIG_SOCK_CGROUP_DATA
6669 
6670 void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
6671 {
6672 	struct cgroup *cgroup;
6673 
6674 	rcu_read_lock();
6675 	/* Don't associate the sock with unrelated interrupted task's cgroup. */
6676 	if (in_interrupt()) {
6677 		cgroup = &cgrp_dfl_root.cgrp;
6678 		cgroup_get(cgroup);
6679 		goto out;
6680 	}
6681 
6682 	while (true) {
6683 		struct css_set *cset;
6684 
6685 		cset = task_css_set(current);
6686 		if (likely(cgroup_tryget(cset->dfl_cgrp))) {
6687 			cgroup = cset->dfl_cgrp;
6688 			break;
6689 		}
6690 		cpu_relax();
6691 	}
6692 out:
6693 	skcd->cgroup = cgroup;
6694 	cgroup_bpf_get(cgroup);
6695 	rcu_read_unlock();
6696 }
6697 
6698 void cgroup_sk_clone(struct sock_cgroup_data *skcd)
6699 {
6700 	struct cgroup *cgrp = sock_cgroup_ptr(skcd);
6701 
6702 	/*
6703 	 * We might be cloning a socket which is left in an empty
6704 	 * cgroup and the cgroup might have already been rmdir'd.
6705 	 * Don't use cgroup_get_live().
6706 	 */
6707 	cgroup_get(cgrp);
6708 	cgroup_bpf_get(cgrp);
6709 }
6710 
6711 void cgroup_sk_free(struct sock_cgroup_data *skcd)
6712 {
6713 	struct cgroup *cgrp = sock_cgroup_ptr(skcd);
6714 
6715 	cgroup_bpf_put(cgrp);
6716 	cgroup_put(cgrp);
6717 }
6718 
6719 #endif	/* CONFIG_SOCK_CGROUP_DATA */
6720 
6721 #ifdef CONFIG_SYSFS
6722 static ssize_t show_delegatable_files(struct cftype *files, char *buf,
6723 				      ssize_t size, const char *prefix)
6724 {
6725 	struct cftype *cft;
6726 	ssize_t ret = 0;
6727 
6728 	for (cft = files; cft && cft->name[0] != '\0'; cft++) {
6729 		if (!(cft->flags & CFTYPE_NS_DELEGATABLE))
6730 			continue;
6731 
6732 		if ((cft->flags & CFTYPE_PRESSURE) && !cgroup_psi_enabled())
6733 			continue;
6734 
6735 		if (prefix)
6736 			ret += snprintf(buf + ret, size - ret, "%s.", prefix);
6737 
6738 		ret += snprintf(buf + ret, size - ret, "%s\n", cft->name);
6739 
6740 		if (WARN_ON(ret >= size))
6741 			break;
6742 	}
6743 
6744 	return ret;
6745 }
6746 
6747 static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr,
6748 			      char *buf)
6749 {
6750 	struct cgroup_subsys *ss;
6751 	int ssid;
6752 	ssize_t ret = 0;
6753 
6754 	ret = show_delegatable_files(cgroup_base_files, buf, PAGE_SIZE - ret,
6755 				     NULL);
6756 
6757 	for_each_subsys(ss, ssid)
6758 		ret += show_delegatable_files(ss->dfl_cftypes, buf + ret,
6759 					      PAGE_SIZE - ret,
6760 					      cgroup_subsys_name[ssid]);
6761 
6762 	return ret;
6763 }
6764 static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate);
6765 
6766 static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr,
6767 			     char *buf)
6768 {
6769 	return snprintf(buf, PAGE_SIZE,
6770 			"nsdelegate\n"
6771 			"memory_localevents\n"
6772 			"memory_recursiveprot\n");
6773 }
6774 static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features);
6775 
6776 static struct attribute *cgroup_sysfs_attrs[] = {
6777 	&cgroup_delegate_attr.attr,
6778 	&cgroup_features_attr.attr,
6779 	NULL,
6780 };
6781 
6782 static const struct attribute_group cgroup_sysfs_attr_group = {
6783 	.attrs = cgroup_sysfs_attrs,
6784 	.name = "cgroup",
6785 };
6786 
6787 static int __init cgroup_sysfs_init(void)
6788 {
6789 	return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group);
6790 }
6791 subsys_initcall(cgroup_sysfs_init);
6792 
6793 #endif /* CONFIG_SYSFS */
6794