1 /* 2 * Generic process-grouping system. 3 * 4 * Based originally on the cpuset system, extracted by Paul Menage 5 * Copyright (C) 2006 Google, Inc 6 * 7 * Notifications support 8 * Copyright (C) 2009 Nokia Corporation 9 * Author: Kirill A. Shutemov 10 * 11 * Copyright notices from the original cpuset code: 12 * -------------------------------------------------- 13 * Copyright (C) 2003 BULL SA. 14 * Copyright (C) 2004-2006 Silicon Graphics, Inc. 15 * 16 * Portions derived from Patrick Mochel's sysfs code. 17 * sysfs is Copyright (c) 2001-3 Patrick Mochel 18 * 19 * 2003-10-10 Written by Simon Derr. 20 * 2003-10-22 Updates by Stephen Hemminger. 21 * 2004 May-July Rework by Paul Jackson. 22 * --------------------------------------------------- 23 * 24 * This file is subject to the terms and conditions of the GNU General Public 25 * License. See the file COPYING in the main directory of the Linux 26 * distribution for more details. 27 */ 28 29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 30 31 #include "cgroup-internal.h" 32 33 #include <linux/bpf-cgroup.h> 34 #include <linux/cred.h> 35 #include <linux/errno.h> 36 #include <linux/init_task.h> 37 #include <linux/kernel.h> 38 #include <linux/magic.h> 39 #include <linux/mutex.h> 40 #include <linux/mount.h> 41 #include <linux/pagemap.h> 42 #include <linux/proc_fs.h> 43 #include <linux/rcupdate.h> 44 #include <linux/sched.h> 45 #include <linux/sched/task.h> 46 #include <linux/slab.h> 47 #include <linux/spinlock.h> 48 #include <linux/percpu-rwsem.h> 49 #include <linux/string.h> 50 #include <linux/hashtable.h> 51 #include <linux/idr.h> 52 #include <linux/kthread.h> 53 #include <linux/atomic.h> 54 #include <linux/cpuset.h> 55 #include <linux/proc_ns.h> 56 #include <linux/nsproxy.h> 57 #include <linux/file.h> 58 #include <linux/fs_parser.h> 59 #include <linux/sched/cputime.h> 60 #include <linux/psi.h> 61 #include <net/sock.h> 62 63 #define CREATE_TRACE_POINTS 64 #include <trace/events/cgroup.h> 65 66 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \ 67 MAX_CFTYPE_NAME + 2) 68 /* let's not notify more than 100 times per second */ 69 #define CGROUP_FILE_NOTIFY_MIN_INTV DIV_ROUND_UP(HZ, 100) 70 71 /* 72 * To avoid confusing the compiler (and generating warnings) with code 73 * that attempts to access what would be a 0-element array (i.e. sized 74 * to a potentially empty array when CGROUP_SUBSYS_COUNT == 0), this 75 * constant expression can be added. 76 */ 77 #define CGROUP_HAS_SUBSYS_CONFIG (CGROUP_SUBSYS_COUNT > 0) 78 79 /* 80 * cgroup_mutex is the master lock. Any modification to cgroup or its 81 * hierarchy must be performed while holding it. 82 * 83 * css_set_lock protects task->cgroups pointer, the list of css_set 84 * objects, and the chain of tasks off each css_set. 85 * 86 * These locks are exported if CONFIG_PROVE_RCU so that accessors in 87 * cgroup.h can use them for lockdep annotations. 88 */ 89 DEFINE_MUTEX(cgroup_mutex); 90 DEFINE_SPINLOCK(css_set_lock); 91 92 #ifdef CONFIG_PROVE_RCU 93 EXPORT_SYMBOL_GPL(cgroup_mutex); 94 EXPORT_SYMBOL_GPL(css_set_lock); 95 #endif 96 97 DEFINE_SPINLOCK(trace_cgroup_path_lock); 98 char trace_cgroup_path[TRACE_CGROUP_PATH_LEN]; 99 static bool cgroup_debug __read_mostly; 100 101 /* 102 * Protects cgroup_idr and css_idr so that IDs can be released without 103 * grabbing cgroup_mutex. 104 */ 105 static DEFINE_SPINLOCK(cgroup_idr_lock); 106 107 /* 108 * Protects cgroup_file->kn for !self csses. It synchronizes notifications 109 * against file removal/re-creation across css hiding. 110 */ 111 static DEFINE_SPINLOCK(cgroup_file_kn_lock); 112 113 DEFINE_PERCPU_RWSEM(cgroup_threadgroup_rwsem); 114 115 #define cgroup_assert_mutex_or_rcu_locked() \ 116 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \ 117 !lockdep_is_held(&cgroup_mutex), \ 118 "cgroup_mutex or RCU read lock required"); 119 120 /* 121 * cgroup destruction makes heavy use of work items and there can be a lot 122 * of concurrent destructions. Use a separate workqueue so that cgroup 123 * destruction work items don't end up filling up max_active of system_wq 124 * which may lead to deadlock. 125 */ 126 static struct workqueue_struct *cgroup_destroy_wq; 127 128 /* generate an array of cgroup subsystem pointers */ 129 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys, 130 struct cgroup_subsys *cgroup_subsys[] = { 131 #include <linux/cgroup_subsys.h> 132 }; 133 #undef SUBSYS 134 135 /* array of cgroup subsystem names */ 136 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x, 137 static const char *cgroup_subsys_name[] = { 138 #include <linux/cgroup_subsys.h> 139 }; 140 #undef SUBSYS 141 142 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */ 143 #define SUBSYS(_x) \ 144 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \ 145 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \ 146 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \ 147 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key); 148 #include <linux/cgroup_subsys.h> 149 #undef SUBSYS 150 151 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key, 152 static struct static_key_true *cgroup_subsys_enabled_key[] = { 153 #include <linux/cgroup_subsys.h> 154 }; 155 #undef SUBSYS 156 157 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key, 158 static struct static_key_true *cgroup_subsys_on_dfl_key[] = { 159 #include <linux/cgroup_subsys.h> 160 }; 161 #undef SUBSYS 162 163 static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu); 164 165 /* the default hierarchy */ 166 struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu }; 167 EXPORT_SYMBOL_GPL(cgrp_dfl_root); 168 169 /* 170 * The default hierarchy always exists but is hidden until mounted for the 171 * first time. This is for backward compatibility. 172 */ 173 static bool cgrp_dfl_visible; 174 175 /* some controllers are not supported in the default hierarchy */ 176 static u16 cgrp_dfl_inhibit_ss_mask; 177 178 /* some controllers are implicitly enabled on the default hierarchy */ 179 static u16 cgrp_dfl_implicit_ss_mask; 180 181 /* some controllers can be threaded on the default hierarchy */ 182 static u16 cgrp_dfl_threaded_ss_mask; 183 184 /* The list of hierarchy roots */ 185 LIST_HEAD(cgroup_roots); 186 static int cgroup_root_count; 187 188 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */ 189 static DEFINE_IDR(cgroup_hierarchy_idr); 190 191 /* 192 * Assign a monotonically increasing serial number to csses. It guarantees 193 * cgroups with bigger numbers are newer than those with smaller numbers. 194 * Also, as csses are always appended to the parent's ->children list, it 195 * guarantees that sibling csses are always sorted in the ascending serial 196 * number order on the list. Protected by cgroup_mutex. 197 */ 198 static u64 css_serial_nr_next = 1; 199 200 /* 201 * These bitmasks identify subsystems with specific features to avoid 202 * having to do iterative checks repeatedly. 203 */ 204 static u16 have_fork_callback __read_mostly; 205 static u16 have_exit_callback __read_mostly; 206 static u16 have_release_callback __read_mostly; 207 static u16 have_canfork_callback __read_mostly; 208 209 /* cgroup namespace for init task */ 210 struct cgroup_namespace init_cgroup_ns = { 211 .ns.count = REFCOUNT_INIT(2), 212 .user_ns = &init_user_ns, 213 .ns.ops = &cgroupns_operations, 214 .ns.inum = PROC_CGROUP_INIT_INO, 215 .root_cset = &init_css_set, 216 }; 217 218 static struct file_system_type cgroup2_fs_type; 219 static struct cftype cgroup_base_files[]; 220 static struct cftype cgroup_psi_files[]; 221 222 /* cgroup optional features */ 223 enum cgroup_opt_features { 224 #ifdef CONFIG_PSI 225 OPT_FEATURE_PRESSURE, 226 #endif 227 OPT_FEATURE_COUNT 228 }; 229 230 static const char *cgroup_opt_feature_names[OPT_FEATURE_COUNT] = { 231 #ifdef CONFIG_PSI 232 "pressure", 233 #endif 234 }; 235 236 static u16 cgroup_feature_disable_mask __read_mostly; 237 238 static int cgroup_apply_control(struct cgroup *cgrp); 239 static void cgroup_finalize_control(struct cgroup *cgrp, int ret); 240 static void css_task_iter_skip(struct css_task_iter *it, 241 struct task_struct *task); 242 static int cgroup_destroy_locked(struct cgroup *cgrp); 243 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp, 244 struct cgroup_subsys *ss); 245 static void css_release(struct percpu_ref *ref); 246 static void kill_css(struct cgroup_subsys_state *css); 247 static int cgroup_addrm_files(struct cgroup_subsys_state *css, 248 struct cgroup *cgrp, struct cftype cfts[], 249 bool is_add); 250 251 #ifdef CONFIG_DEBUG_CGROUP_REF 252 #define CGROUP_REF_FN_ATTRS noinline 253 #define CGROUP_REF_EXPORT(fn) EXPORT_SYMBOL_GPL(fn); 254 #include <linux/cgroup_refcnt.h> 255 #endif 256 257 /** 258 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID 259 * @ssid: subsys ID of interest 260 * 261 * cgroup_subsys_enabled() can only be used with literal subsys names which 262 * is fine for individual subsystems but unsuitable for cgroup core. This 263 * is slower static_key_enabled() based test indexed by @ssid. 264 */ 265 bool cgroup_ssid_enabled(int ssid) 266 { 267 if (!CGROUP_HAS_SUBSYS_CONFIG) 268 return false; 269 270 return static_key_enabled(cgroup_subsys_enabled_key[ssid]); 271 } 272 273 /** 274 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy 275 * @cgrp: the cgroup of interest 276 * 277 * The default hierarchy is the v2 interface of cgroup and this function 278 * can be used to test whether a cgroup is on the default hierarchy for 279 * cases where a subsystem should behave differently depending on the 280 * interface version. 281 * 282 * List of changed behaviors: 283 * 284 * - Mount options "noprefix", "xattr", "clone_children", "release_agent" 285 * and "name" are disallowed. 286 * 287 * - When mounting an existing superblock, mount options should match. 288 * 289 * - rename(2) is disallowed. 290 * 291 * - "tasks" is removed. Everything should be at process granularity. Use 292 * "cgroup.procs" instead. 293 * 294 * - "cgroup.procs" is not sorted. pids will be unique unless they got 295 * recycled in-between reads. 296 * 297 * - "release_agent" and "notify_on_release" are removed. Replacement 298 * notification mechanism will be implemented. 299 * 300 * - "cgroup.clone_children" is removed. 301 * 302 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup 303 * and its descendants contain no task; otherwise, 1. The file also 304 * generates kernfs notification which can be monitored through poll and 305 * [di]notify when the value of the file changes. 306 * 307 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and 308 * take masks of ancestors with non-empty cpus/mems, instead of being 309 * moved to an ancestor. 310 * 311 * - cpuset: a task can be moved into an empty cpuset, and again it takes 312 * masks of ancestors. 313 * 314 * - blkcg: blk-throttle becomes properly hierarchical. 315 * 316 * - debug: disallowed on the default hierarchy. 317 */ 318 bool cgroup_on_dfl(const struct cgroup *cgrp) 319 { 320 return cgrp->root == &cgrp_dfl_root; 321 } 322 323 /* IDR wrappers which synchronize using cgroup_idr_lock */ 324 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end, 325 gfp_t gfp_mask) 326 { 327 int ret; 328 329 idr_preload(gfp_mask); 330 spin_lock_bh(&cgroup_idr_lock); 331 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM); 332 spin_unlock_bh(&cgroup_idr_lock); 333 idr_preload_end(); 334 return ret; 335 } 336 337 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id) 338 { 339 void *ret; 340 341 spin_lock_bh(&cgroup_idr_lock); 342 ret = idr_replace(idr, ptr, id); 343 spin_unlock_bh(&cgroup_idr_lock); 344 return ret; 345 } 346 347 static void cgroup_idr_remove(struct idr *idr, int id) 348 { 349 spin_lock_bh(&cgroup_idr_lock); 350 idr_remove(idr, id); 351 spin_unlock_bh(&cgroup_idr_lock); 352 } 353 354 static bool cgroup_has_tasks(struct cgroup *cgrp) 355 { 356 return cgrp->nr_populated_csets; 357 } 358 359 bool cgroup_is_threaded(struct cgroup *cgrp) 360 { 361 return cgrp->dom_cgrp != cgrp; 362 } 363 364 /* can @cgrp host both domain and threaded children? */ 365 static bool cgroup_is_mixable(struct cgroup *cgrp) 366 { 367 /* 368 * Root isn't under domain level resource control exempting it from 369 * the no-internal-process constraint, so it can serve as a thread 370 * root and a parent of resource domains at the same time. 371 */ 372 return !cgroup_parent(cgrp); 373 } 374 375 /* can @cgrp become a thread root? Should always be true for a thread root */ 376 static bool cgroup_can_be_thread_root(struct cgroup *cgrp) 377 { 378 /* mixables don't care */ 379 if (cgroup_is_mixable(cgrp)) 380 return true; 381 382 /* domain roots can't be nested under threaded */ 383 if (cgroup_is_threaded(cgrp)) 384 return false; 385 386 /* can only have either domain or threaded children */ 387 if (cgrp->nr_populated_domain_children) 388 return false; 389 390 /* and no domain controllers can be enabled */ 391 if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask) 392 return false; 393 394 return true; 395 } 396 397 /* is @cgrp root of a threaded subtree? */ 398 bool cgroup_is_thread_root(struct cgroup *cgrp) 399 { 400 /* thread root should be a domain */ 401 if (cgroup_is_threaded(cgrp)) 402 return false; 403 404 /* a domain w/ threaded children is a thread root */ 405 if (cgrp->nr_threaded_children) 406 return true; 407 408 /* 409 * A domain which has tasks and explicit threaded controllers 410 * enabled is a thread root. 411 */ 412 if (cgroup_has_tasks(cgrp) && 413 (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask)) 414 return true; 415 416 return false; 417 } 418 419 /* a domain which isn't connected to the root w/o brekage can't be used */ 420 static bool cgroup_is_valid_domain(struct cgroup *cgrp) 421 { 422 /* the cgroup itself can be a thread root */ 423 if (cgroup_is_threaded(cgrp)) 424 return false; 425 426 /* but the ancestors can't be unless mixable */ 427 while ((cgrp = cgroup_parent(cgrp))) { 428 if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp)) 429 return false; 430 if (cgroup_is_threaded(cgrp)) 431 return false; 432 } 433 434 return true; 435 } 436 437 /* subsystems visibly enabled on a cgroup */ 438 static u16 cgroup_control(struct cgroup *cgrp) 439 { 440 struct cgroup *parent = cgroup_parent(cgrp); 441 u16 root_ss_mask = cgrp->root->subsys_mask; 442 443 if (parent) { 444 u16 ss_mask = parent->subtree_control; 445 446 /* threaded cgroups can only have threaded controllers */ 447 if (cgroup_is_threaded(cgrp)) 448 ss_mask &= cgrp_dfl_threaded_ss_mask; 449 return ss_mask; 450 } 451 452 if (cgroup_on_dfl(cgrp)) 453 root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask | 454 cgrp_dfl_implicit_ss_mask); 455 return root_ss_mask; 456 } 457 458 /* subsystems enabled on a cgroup */ 459 static u16 cgroup_ss_mask(struct cgroup *cgrp) 460 { 461 struct cgroup *parent = cgroup_parent(cgrp); 462 463 if (parent) { 464 u16 ss_mask = parent->subtree_ss_mask; 465 466 /* threaded cgroups can only have threaded controllers */ 467 if (cgroup_is_threaded(cgrp)) 468 ss_mask &= cgrp_dfl_threaded_ss_mask; 469 return ss_mask; 470 } 471 472 return cgrp->root->subsys_mask; 473 } 474 475 /** 476 * cgroup_css - obtain a cgroup's css for the specified subsystem 477 * @cgrp: the cgroup of interest 478 * @ss: the subsystem of interest (%NULL returns @cgrp->self) 479 * 480 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This 481 * function must be called either under cgroup_mutex or rcu_read_lock() and 482 * the caller is responsible for pinning the returned css if it wants to 483 * keep accessing it outside the said locks. This function may return 484 * %NULL if @cgrp doesn't have @subsys_id enabled. 485 */ 486 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp, 487 struct cgroup_subsys *ss) 488 { 489 if (CGROUP_HAS_SUBSYS_CONFIG && ss) 490 return rcu_dereference_check(cgrp->subsys[ss->id], 491 lockdep_is_held(&cgroup_mutex)); 492 else 493 return &cgrp->self; 494 } 495 496 /** 497 * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem 498 * @cgrp: the cgroup of interest 499 * @ss: the subsystem of interest 500 * 501 * Find and get @cgrp's css associated with @ss. If the css doesn't exist 502 * or is offline, %NULL is returned. 503 */ 504 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp, 505 struct cgroup_subsys *ss) 506 { 507 struct cgroup_subsys_state *css; 508 509 rcu_read_lock(); 510 css = cgroup_css(cgrp, ss); 511 if (css && !css_tryget_online(css)) 512 css = NULL; 513 rcu_read_unlock(); 514 515 return css; 516 } 517 518 /** 519 * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss 520 * @cgrp: the cgroup of interest 521 * @ss: the subsystem of interest (%NULL returns @cgrp->self) 522 * 523 * Similar to cgroup_css() but returns the effective css, which is defined 524 * as the matching css of the nearest ancestor including self which has @ss 525 * enabled. If @ss is associated with the hierarchy @cgrp is on, this 526 * function is guaranteed to return non-NULL css. 527 */ 528 static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp, 529 struct cgroup_subsys *ss) 530 { 531 lockdep_assert_held(&cgroup_mutex); 532 533 if (!ss) 534 return &cgrp->self; 535 536 /* 537 * This function is used while updating css associations and thus 538 * can't test the csses directly. Test ss_mask. 539 */ 540 while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) { 541 cgrp = cgroup_parent(cgrp); 542 if (!cgrp) 543 return NULL; 544 } 545 546 return cgroup_css(cgrp, ss); 547 } 548 549 /** 550 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem 551 * @cgrp: the cgroup of interest 552 * @ss: the subsystem of interest 553 * 554 * Find and get the effective css of @cgrp for @ss. The effective css is 555 * defined as the matching css of the nearest ancestor including self which 556 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on, 557 * the root css is returned, so this function always returns a valid css. 558 * 559 * The returned css is not guaranteed to be online, and therefore it is the 560 * callers responsibility to try get a reference for it. 561 */ 562 struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp, 563 struct cgroup_subsys *ss) 564 { 565 struct cgroup_subsys_state *css; 566 567 if (!CGROUP_HAS_SUBSYS_CONFIG) 568 return NULL; 569 570 do { 571 css = cgroup_css(cgrp, ss); 572 573 if (css) 574 return css; 575 cgrp = cgroup_parent(cgrp); 576 } while (cgrp); 577 578 return init_css_set.subsys[ss->id]; 579 } 580 581 /** 582 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem 583 * @cgrp: the cgroup of interest 584 * @ss: the subsystem of interest 585 * 586 * Find and get the effective css of @cgrp for @ss. The effective css is 587 * defined as the matching css of the nearest ancestor including self which 588 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on, 589 * the root css is returned, so this function always returns a valid css. 590 * The returned css must be put using css_put(). 591 */ 592 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp, 593 struct cgroup_subsys *ss) 594 { 595 struct cgroup_subsys_state *css; 596 597 if (!CGROUP_HAS_SUBSYS_CONFIG) 598 return NULL; 599 600 rcu_read_lock(); 601 602 do { 603 css = cgroup_css(cgrp, ss); 604 605 if (css && css_tryget_online(css)) 606 goto out_unlock; 607 cgrp = cgroup_parent(cgrp); 608 } while (cgrp); 609 610 css = init_css_set.subsys[ss->id]; 611 css_get(css); 612 out_unlock: 613 rcu_read_unlock(); 614 return css; 615 } 616 EXPORT_SYMBOL_GPL(cgroup_get_e_css); 617 618 static void cgroup_get_live(struct cgroup *cgrp) 619 { 620 WARN_ON_ONCE(cgroup_is_dead(cgrp)); 621 css_get(&cgrp->self); 622 } 623 624 /** 625 * __cgroup_task_count - count the number of tasks in a cgroup. The caller 626 * is responsible for taking the css_set_lock. 627 * @cgrp: the cgroup in question 628 */ 629 int __cgroup_task_count(const struct cgroup *cgrp) 630 { 631 int count = 0; 632 struct cgrp_cset_link *link; 633 634 lockdep_assert_held(&css_set_lock); 635 636 list_for_each_entry(link, &cgrp->cset_links, cset_link) 637 count += link->cset->nr_tasks; 638 639 return count; 640 } 641 642 /** 643 * cgroup_task_count - count the number of tasks in a cgroup. 644 * @cgrp: the cgroup in question 645 */ 646 int cgroup_task_count(const struct cgroup *cgrp) 647 { 648 int count; 649 650 spin_lock_irq(&css_set_lock); 651 count = __cgroup_task_count(cgrp); 652 spin_unlock_irq(&css_set_lock); 653 654 return count; 655 } 656 657 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of) 658 { 659 struct cgroup *cgrp = of->kn->parent->priv; 660 struct cftype *cft = of_cft(of); 661 662 /* 663 * This is open and unprotected implementation of cgroup_css(). 664 * seq_css() is only called from a kernfs file operation which has 665 * an active reference on the file. Because all the subsystem 666 * files are drained before a css is disassociated with a cgroup, 667 * the matching css from the cgroup's subsys table is guaranteed to 668 * be and stay valid until the enclosing operation is complete. 669 */ 670 if (CGROUP_HAS_SUBSYS_CONFIG && cft->ss) 671 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]); 672 else 673 return &cgrp->self; 674 } 675 EXPORT_SYMBOL_GPL(of_css); 676 677 /** 678 * for_each_css - iterate all css's of a cgroup 679 * @css: the iteration cursor 680 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end 681 * @cgrp: the target cgroup to iterate css's of 682 * 683 * Should be called under cgroup_[tree_]mutex. 684 */ 685 #define for_each_css(css, ssid, cgrp) \ 686 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \ 687 if (!((css) = rcu_dereference_check( \ 688 (cgrp)->subsys[(ssid)], \ 689 lockdep_is_held(&cgroup_mutex)))) { } \ 690 else 691 692 /** 693 * for_each_e_css - iterate all effective css's of a cgroup 694 * @css: the iteration cursor 695 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end 696 * @cgrp: the target cgroup to iterate css's of 697 * 698 * Should be called under cgroup_[tree_]mutex. 699 */ 700 #define for_each_e_css(css, ssid, cgrp) \ 701 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \ 702 if (!((css) = cgroup_e_css_by_mask(cgrp, \ 703 cgroup_subsys[(ssid)]))) \ 704 ; \ 705 else 706 707 /** 708 * do_each_subsys_mask - filter for_each_subsys with a bitmask 709 * @ss: the iteration cursor 710 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end 711 * @ss_mask: the bitmask 712 * 713 * The block will only run for cases where the ssid-th bit (1 << ssid) of 714 * @ss_mask is set. 715 */ 716 #define do_each_subsys_mask(ss, ssid, ss_mask) do { \ 717 unsigned long __ss_mask = (ss_mask); \ 718 if (!CGROUP_HAS_SUBSYS_CONFIG) { \ 719 (ssid) = 0; \ 720 break; \ 721 } \ 722 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \ 723 (ss) = cgroup_subsys[ssid]; \ 724 { 725 726 #define while_each_subsys_mask() \ 727 } \ 728 } \ 729 } while (false) 730 731 /* iterate over child cgrps, lock should be held throughout iteration */ 732 #define cgroup_for_each_live_child(child, cgrp) \ 733 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \ 734 if (({ lockdep_assert_held(&cgroup_mutex); \ 735 cgroup_is_dead(child); })) \ 736 ; \ 737 else 738 739 /* walk live descendants in pre order */ 740 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \ 741 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \ 742 if (({ lockdep_assert_held(&cgroup_mutex); \ 743 (dsct) = (d_css)->cgroup; \ 744 cgroup_is_dead(dsct); })) \ 745 ; \ 746 else 747 748 /* walk live descendants in postorder */ 749 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \ 750 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \ 751 if (({ lockdep_assert_held(&cgroup_mutex); \ 752 (dsct) = (d_css)->cgroup; \ 753 cgroup_is_dead(dsct); })) \ 754 ; \ 755 else 756 757 /* 758 * The default css_set - used by init and its children prior to any 759 * hierarchies being mounted. It contains a pointer to the root state 760 * for each subsystem. Also used to anchor the list of css_sets. Not 761 * reference-counted, to improve performance when child cgroups 762 * haven't been created. 763 */ 764 struct css_set init_css_set = { 765 .refcount = REFCOUNT_INIT(1), 766 .dom_cset = &init_css_set, 767 .tasks = LIST_HEAD_INIT(init_css_set.tasks), 768 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks), 769 .dying_tasks = LIST_HEAD_INIT(init_css_set.dying_tasks), 770 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters), 771 .threaded_csets = LIST_HEAD_INIT(init_css_set.threaded_csets), 772 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links), 773 .mg_src_preload_node = LIST_HEAD_INIT(init_css_set.mg_src_preload_node), 774 .mg_dst_preload_node = LIST_HEAD_INIT(init_css_set.mg_dst_preload_node), 775 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node), 776 777 /* 778 * The following field is re-initialized when this cset gets linked 779 * in cgroup_init(). However, let's initialize the field 780 * statically too so that the default cgroup can be accessed safely 781 * early during boot. 782 */ 783 .dfl_cgrp = &cgrp_dfl_root.cgrp, 784 }; 785 786 static int css_set_count = 1; /* 1 for init_css_set */ 787 788 static bool css_set_threaded(struct css_set *cset) 789 { 790 return cset->dom_cset != cset; 791 } 792 793 /** 794 * css_set_populated - does a css_set contain any tasks? 795 * @cset: target css_set 796 * 797 * css_set_populated() should be the same as !!cset->nr_tasks at steady 798 * state. However, css_set_populated() can be called while a task is being 799 * added to or removed from the linked list before the nr_tasks is 800 * properly updated. Hence, we can't just look at ->nr_tasks here. 801 */ 802 static bool css_set_populated(struct css_set *cset) 803 { 804 lockdep_assert_held(&css_set_lock); 805 806 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks); 807 } 808 809 /** 810 * cgroup_update_populated - update the populated count of a cgroup 811 * @cgrp: the target cgroup 812 * @populated: inc or dec populated count 813 * 814 * One of the css_sets associated with @cgrp is either getting its first 815 * task or losing the last. Update @cgrp->nr_populated_* accordingly. The 816 * count is propagated towards root so that a given cgroup's 817 * nr_populated_children is zero iff none of its descendants contain any 818 * tasks. 819 * 820 * @cgrp's interface file "cgroup.populated" is zero if both 821 * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and 822 * 1 otherwise. When the sum changes from or to zero, userland is notified 823 * that the content of the interface file has changed. This can be used to 824 * detect when @cgrp and its descendants become populated or empty. 825 */ 826 static void cgroup_update_populated(struct cgroup *cgrp, bool populated) 827 { 828 struct cgroup *child = NULL; 829 int adj = populated ? 1 : -1; 830 831 lockdep_assert_held(&css_set_lock); 832 833 do { 834 bool was_populated = cgroup_is_populated(cgrp); 835 836 if (!child) { 837 cgrp->nr_populated_csets += adj; 838 } else { 839 if (cgroup_is_threaded(child)) 840 cgrp->nr_populated_threaded_children += adj; 841 else 842 cgrp->nr_populated_domain_children += adj; 843 } 844 845 if (was_populated == cgroup_is_populated(cgrp)) 846 break; 847 848 cgroup1_check_for_release(cgrp); 849 TRACE_CGROUP_PATH(notify_populated, cgrp, 850 cgroup_is_populated(cgrp)); 851 cgroup_file_notify(&cgrp->events_file); 852 853 child = cgrp; 854 cgrp = cgroup_parent(cgrp); 855 } while (cgrp); 856 } 857 858 /** 859 * css_set_update_populated - update populated state of a css_set 860 * @cset: target css_set 861 * @populated: whether @cset is populated or depopulated 862 * 863 * @cset is either getting the first task or losing the last. Update the 864 * populated counters of all associated cgroups accordingly. 865 */ 866 static void css_set_update_populated(struct css_set *cset, bool populated) 867 { 868 struct cgrp_cset_link *link; 869 870 lockdep_assert_held(&css_set_lock); 871 872 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) 873 cgroup_update_populated(link->cgrp, populated); 874 } 875 876 /* 877 * @task is leaving, advance task iterators which are pointing to it so 878 * that they can resume at the next position. Advancing an iterator might 879 * remove it from the list, use safe walk. See css_task_iter_skip() for 880 * details. 881 */ 882 static void css_set_skip_task_iters(struct css_set *cset, 883 struct task_struct *task) 884 { 885 struct css_task_iter *it, *pos; 886 887 list_for_each_entry_safe(it, pos, &cset->task_iters, iters_node) 888 css_task_iter_skip(it, task); 889 } 890 891 /** 892 * css_set_move_task - move a task from one css_set to another 893 * @task: task being moved 894 * @from_cset: css_set @task currently belongs to (may be NULL) 895 * @to_cset: new css_set @task is being moved to (may be NULL) 896 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks 897 * 898 * Move @task from @from_cset to @to_cset. If @task didn't belong to any 899 * css_set, @from_cset can be NULL. If @task is being disassociated 900 * instead of moved, @to_cset can be NULL. 901 * 902 * This function automatically handles populated counter updates and 903 * css_task_iter adjustments but the caller is responsible for managing 904 * @from_cset and @to_cset's reference counts. 905 */ 906 static void css_set_move_task(struct task_struct *task, 907 struct css_set *from_cset, struct css_set *to_cset, 908 bool use_mg_tasks) 909 { 910 lockdep_assert_held(&css_set_lock); 911 912 if (to_cset && !css_set_populated(to_cset)) 913 css_set_update_populated(to_cset, true); 914 915 if (from_cset) { 916 WARN_ON_ONCE(list_empty(&task->cg_list)); 917 918 css_set_skip_task_iters(from_cset, task); 919 list_del_init(&task->cg_list); 920 if (!css_set_populated(from_cset)) 921 css_set_update_populated(from_cset, false); 922 } else { 923 WARN_ON_ONCE(!list_empty(&task->cg_list)); 924 } 925 926 if (to_cset) { 927 /* 928 * We are synchronized through cgroup_threadgroup_rwsem 929 * against PF_EXITING setting such that we can't race 930 * against cgroup_exit()/cgroup_free() dropping the css_set. 931 */ 932 WARN_ON_ONCE(task->flags & PF_EXITING); 933 934 cgroup_move_task(task, to_cset); 935 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks : 936 &to_cset->tasks); 937 } 938 } 939 940 /* 941 * hash table for cgroup groups. This improves the performance to find 942 * an existing css_set. This hash doesn't (currently) take into 943 * account cgroups in empty hierarchies. 944 */ 945 #define CSS_SET_HASH_BITS 7 946 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS); 947 948 static unsigned long css_set_hash(struct cgroup_subsys_state *css[]) 949 { 950 unsigned long key = 0UL; 951 struct cgroup_subsys *ss; 952 int i; 953 954 for_each_subsys(ss, i) 955 key += (unsigned long)css[i]; 956 key = (key >> 16) ^ key; 957 958 return key; 959 } 960 961 void put_css_set_locked(struct css_set *cset) 962 { 963 struct cgrp_cset_link *link, *tmp_link; 964 struct cgroup_subsys *ss; 965 int ssid; 966 967 lockdep_assert_held(&css_set_lock); 968 969 if (!refcount_dec_and_test(&cset->refcount)) 970 return; 971 972 WARN_ON_ONCE(!list_empty(&cset->threaded_csets)); 973 974 /* This css_set is dead. Unlink it and release cgroup and css refs */ 975 for_each_subsys(ss, ssid) { 976 list_del(&cset->e_cset_node[ssid]); 977 css_put(cset->subsys[ssid]); 978 } 979 hash_del(&cset->hlist); 980 css_set_count--; 981 982 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) { 983 list_del(&link->cset_link); 984 list_del(&link->cgrp_link); 985 if (cgroup_parent(link->cgrp)) 986 cgroup_put(link->cgrp); 987 kfree(link); 988 } 989 990 if (css_set_threaded(cset)) { 991 list_del(&cset->threaded_csets_node); 992 put_css_set_locked(cset->dom_cset); 993 } 994 995 kfree_rcu(cset, rcu_head); 996 } 997 998 /** 999 * compare_css_sets - helper function for find_existing_css_set(). 1000 * @cset: candidate css_set being tested 1001 * @old_cset: existing css_set for a task 1002 * @new_cgrp: cgroup that's being entered by the task 1003 * @template: desired set of css pointers in css_set (pre-calculated) 1004 * 1005 * Returns true if "cset" matches "old_cset" except for the hierarchy 1006 * which "new_cgrp" belongs to, for which it should match "new_cgrp". 1007 */ 1008 static bool compare_css_sets(struct css_set *cset, 1009 struct css_set *old_cset, 1010 struct cgroup *new_cgrp, 1011 struct cgroup_subsys_state *template[]) 1012 { 1013 struct cgroup *new_dfl_cgrp; 1014 struct list_head *l1, *l2; 1015 1016 /* 1017 * On the default hierarchy, there can be csets which are 1018 * associated with the same set of cgroups but different csses. 1019 * Let's first ensure that csses match. 1020 */ 1021 if (memcmp(template, cset->subsys, sizeof(cset->subsys))) 1022 return false; 1023 1024 1025 /* @cset's domain should match the default cgroup's */ 1026 if (cgroup_on_dfl(new_cgrp)) 1027 new_dfl_cgrp = new_cgrp; 1028 else 1029 new_dfl_cgrp = old_cset->dfl_cgrp; 1030 1031 if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp) 1032 return false; 1033 1034 /* 1035 * Compare cgroup pointers in order to distinguish between 1036 * different cgroups in hierarchies. As different cgroups may 1037 * share the same effective css, this comparison is always 1038 * necessary. 1039 */ 1040 l1 = &cset->cgrp_links; 1041 l2 = &old_cset->cgrp_links; 1042 while (1) { 1043 struct cgrp_cset_link *link1, *link2; 1044 struct cgroup *cgrp1, *cgrp2; 1045 1046 l1 = l1->next; 1047 l2 = l2->next; 1048 /* See if we reached the end - both lists are equal length. */ 1049 if (l1 == &cset->cgrp_links) { 1050 BUG_ON(l2 != &old_cset->cgrp_links); 1051 break; 1052 } else { 1053 BUG_ON(l2 == &old_cset->cgrp_links); 1054 } 1055 /* Locate the cgroups associated with these links. */ 1056 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link); 1057 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link); 1058 cgrp1 = link1->cgrp; 1059 cgrp2 = link2->cgrp; 1060 /* Hierarchies should be linked in the same order. */ 1061 BUG_ON(cgrp1->root != cgrp2->root); 1062 1063 /* 1064 * If this hierarchy is the hierarchy of the cgroup 1065 * that's changing, then we need to check that this 1066 * css_set points to the new cgroup; if it's any other 1067 * hierarchy, then this css_set should point to the 1068 * same cgroup as the old css_set. 1069 */ 1070 if (cgrp1->root == new_cgrp->root) { 1071 if (cgrp1 != new_cgrp) 1072 return false; 1073 } else { 1074 if (cgrp1 != cgrp2) 1075 return false; 1076 } 1077 } 1078 return true; 1079 } 1080 1081 /** 1082 * find_existing_css_set - init css array and find the matching css_set 1083 * @old_cset: the css_set that we're using before the cgroup transition 1084 * @cgrp: the cgroup that we're moving into 1085 * @template: out param for the new set of csses, should be clear on entry 1086 */ 1087 static struct css_set *find_existing_css_set(struct css_set *old_cset, 1088 struct cgroup *cgrp, 1089 struct cgroup_subsys_state *template[]) 1090 { 1091 struct cgroup_root *root = cgrp->root; 1092 struct cgroup_subsys *ss; 1093 struct css_set *cset; 1094 unsigned long key; 1095 int i; 1096 1097 /* 1098 * Build the set of subsystem state objects that we want to see in the 1099 * new css_set. While subsystems can change globally, the entries here 1100 * won't change, so no need for locking. 1101 */ 1102 for_each_subsys(ss, i) { 1103 if (root->subsys_mask & (1UL << i)) { 1104 /* 1105 * @ss is in this hierarchy, so we want the 1106 * effective css from @cgrp. 1107 */ 1108 template[i] = cgroup_e_css_by_mask(cgrp, ss); 1109 } else { 1110 /* 1111 * @ss is not in this hierarchy, so we don't want 1112 * to change the css. 1113 */ 1114 template[i] = old_cset->subsys[i]; 1115 } 1116 } 1117 1118 key = css_set_hash(template); 1119 hash_for_each_possible(css_set_table, cset, hlist, key) { 1120 if (!compare_css_sets(cset, old_cset, cgrp, template)) 1121 continue; 1122 1123 /* This css_set matches what we need */ 1124 return cset; 1125 } 1126 1127 /* No existing cgroup group matched */ 1128 return NULL; 1129 } 1130 1131 static void free_cgrp_cset_links(struct list_head *links_to_free) 1132 { 1133 struct cgrp_cset_link *link, *tmp_link; 1134 1135 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) { 1136 list_del(&link->cset_link); 1137 kfree(link); 1138 } 1139 } 1140 1141 /** 1142 * allocate_cgrp_cset_links - allocate cgrp_cset_links 1143 * @count: the number of links to allocate 1144 * @tmp_links: list_head the allocated links are put on 1145 * 1146 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links 1147 * through ->cset_link. Returns 0 on success or -errno. 1148 */ 1149 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links) 1150 { 1151 struct cgrp_cset_link *link; 1152 int i; 1153 1154 INIT_LIST_HEAD(tmp_links); 1155 1156 for (i = 0; i < count; i++) { 1157 link = kzalloc(sizeof(*link), GFP_KERNEL); 1158 if (!link) { 1159 free_cgrp_cset_links(tmp_links); 1160 return -ENOMEM; 1161 } 1162 list_add(&link->cset_link, tmp_links); 1163 } 1164 return 0; 1165 } 1166 1167 /** 1168 * link_css_set - a helper function to link a css_set to a cgroup 1169 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links() 1170 * @cset: the css_set to be linked 1171 * @cgrp: the destination cgroup 1172 */ 1173 static void link_css_set(struct list_head *tmp_links, struct css_set *cset, 1174 struct cgroup *cgrp) 1175 { 1176 struct cgrp_cset_link *link; 1177 1178 BUG_ON(list_empty(tmp_links)); 1179 1180 if (cgroup_on_dfl(cgrp)) 1181 cset->dfl_cgrp = cgrp; 1182 1183 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link); 1184 link->cset = cset; 1185 link->cgrp = cgrp; 1186 1187 /* 1188 * Always add links to the tail of the lists so that the lists are 1189 * in chronological order. 1190 */ 1191 list_move_tail(&link->cset_link, &cgrp->cset_links); 1192 list_add_tail(&link->cgrp_link, &cset->cgrp_links); 1193 1194 if (cgroup_parent(cgrp)) 1195 cgroup_get_live(cgrp); 1196 } 1197 1198 /** 1199 * find_css_set - return a new css_set with one cgroup updated 1200 * @old_cset: the baseline css_set 1201 * @cgrp: the cgroup to be updated 1202 * 1203 * Return a new css_set that's equivalent to @old_cset, but with @cgrp 1204 * substituted into the appropriate hierarchy. 1205 */ 1206 static struct css_set *find_css_set(struct css_set *old_cset, 1207 struct cgroup *cgrp) 1208 { 1209 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { }; 1210 struct css_set *cset; 1211 struct list_head tmp_links; 1212 struct cgrp_cset_link *link; 1213 struct cgroup_subsys *ss; 1214 unsigned long key; 1215 int ssid; 1216 1217 lockdep_assert_held(&cgroup_mutex); 1218 1219 /* First see if we already have a cgroup group that matches 1220 * the desired set */ 1221 spin_lock_irq(&css_set_lock); 1222 cset = find_existing_css_set(old_cset, cgrp, template); 1223 if (cset) 1224 get_css_set(cset); 1225 spin_unlock_irq(&css_set_lock); 1226 1227 if (cset) 1228 return cset; 1229 1230 cset = kzalloc(sizeof(*cset), GFP_KERNEL); 1231 if (!cset) 1232 return NULL; 1233 1234 /* Allocate all the cgrp_cset_link objects that we'll need */ 1235 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) { 1236 kfree(cset); 1237 return NULL; 1238 } 1239 1240 refcount_set(&cset->refcount, 1); 1241 cset->dom_cset = cset; 1242 INIT_LIST_HEAD(&cset->tasks); 1243 INIT_LIST_HEAD(&cset->mg_tasks); 1244 INIT_LIST_HEAD(&cset->dying_tasks); 1245 INIT_LIST_HEAD(&cset->task_iters); 1246 INIT_LIST_HEAD(&cset->threaded_csets); 1247 INIT_HLIST_NODE(&cset->hlist); 1248 INIT_LIST_HEAD(&cset->cgrp_links); 1249 INIT_LIST_HEAD(&cset->mg_src_preload_node); 1250 INIT_LIST_HEAD(&cset->mg_dst_preload_node); 1251 INIT_LIST_HEAD(&cset->mg_node); 1252 1253 /* Copy the set of subsystem state objects generated in 1254 * find_existing_css_set() */ 1255 memcpy(cset->subsys, template, sizeof(cset->subsys)); 1256 1257 spin_lock_irq(&css_set_lock); 1258 /* Add reference counts and links from the new css_set. */ 1259 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) { 1260 struct cgroup *c = link->cgrp; 1261 1262 if (c->root == cgrp->root) 1263 c = cgrp; 1264 link_css_set(&tmp_links, cset, c); 1265 } 1266 1267 BUG_ON(!list_empty(&tmp_links)); 1268 1269 css_set_count++; 1270 1271 /* Add @cset to the hash table */ 1272 key = css_set_hash(cset->subsys); 1273 hash_add(css_set_table, &cset->hlist, key); 1274 1275 for_each_subsys(ss, ssid) { 1276 struct cgroup_subsys_state *css = cset->subsys[ssid]; 1277 1278 list_add_tail(&cset->e_cset_node[ssid], 1279 &css->cgroup->e_csets[ssid]); 1280 css_get(css); 1281 } 1282 1283 spin_unlock_irq(&css_set_lock); 1284 1285 /* 1286 * If @cset should be threaded, look up the matching dom_cset and 1287 * link them up. We first fully initialize @cset then look for the 1288 * dom_cset. It's simpler this way and safe as @cset is guaranteed 1289 * to stay empty until we return. 1290 */ 1291 if (cgroup_is_threaded(cset->dfl_cgrp)) { 1292 struct css_set *dcset; 1293 1294 dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp); 1295 if (!dcset) { 1296 put_css_set(cset); 1297 return NULL; 1298 } 1299 1300 spin_lock_irq(&css_set_lock); 1301 cset->dom_cset = dcset; 1302 list_add_tail(&cset->threaded_csets_node, 1303 &dcset->threaded_csets); 1304 spin_unlock_irq(&css_set_lock); 1305 } 1306 1307 return cset; 1308 } 1309 1310 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root) 1311 { 1312 struct cgroup *root_cgrp = kernfs_root_to_node(kf_root)->priv; 1313 1314 return root_cgrp->root; 1315 } 1316 1317 void cgroup_favor_dynmods(struct cgroup_root *root, bool favor) 1318 { 1319 bool favoring = root->flags & CGRP_ROOT_FAVOR_DYNMODS; 1320 1321 /* see the comment above CGRP_ROOT_FAVOR_DYNMODS definition */ 1322 if (favor && !favoring) { 1323 rcu_sync_enter(&cgroup_threadgroup_rwsem.rss); 1324 root->flags |= CGRP_ROOT_FAVOR_DYNMODS; 1325 } else if (!favor && favoring) { 1326 rcu_sync_exit(&cgroup_threadgroup_rwsem.rss); 1327 root->flags &= ~CGRP_ROOT_FAVOR_DYNMODS; 1328 } 1329 } 1330 1331 static int cgroup_init_root_id(struct cgroup_root *root) 1332 { 1333 int id; 1334 1335 lockdep_assert_held(&cgroup_mutex); 1336 1337 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL); 1338 if (id < 0) 1339 return id; 1340 1341 root->hierarchy_id = id; 1342 return 0; 1343 } 1344 1345 static void cgroup_exit_root_id(struct cgroup_root *root) 1346 { 1347 lockdep_assert_held(&cgroup_mutex); 1348 1349 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id); 1350 } 1351 1352 void cgroup_free_root(struct cgroup_root *root) 1353 { 1354 kfree(root); 1355 } 1356 1357 static void cgroup_destroy_root(struct cgroup_root *root) 1358 { 1359 struct cgroup *cgrp = &root->cgrp; 1360 struct cgrp_cset_link *link, *tmp_link; 1361 1362 trace_cgroup_destroy_root(root); 1363 1364 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp); 1365 1366 BUG_ON(atomic_read(&root->nr_cgrps)); 1367 BUG_ON(!list_empty(&cgrp->self.children)); 1368 1369 /* Rebind all subsystems back to the default hierarchy */ 1370 WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask)); 1371 1372 /* 1373 * Release all the links from cset_links to this hierarchy's 1374 * root cgroup 1375 */ 1376 spin_lock_irq(&css_set_lock); 1377 1378 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) { 1379 list_del(&link->cset_link); 1380 list_del(&link->cgrp_link); 1381 kfree(link); 1382 } 1383 1384 spin_unlock_irq(&css_set_lock); 1385 1386 if (!list_empty(&root->root_list)) { 1387 list_del(&root->root_list); 1388 cgroup_root_count--; 1389 } 1390 1391 cgroup_favor_dynmods(root, false); 1392 cgroup_exit_root_id(root); 1393 1394 cgroup_unlock(); 1395 1396 cgroup_rstat_exit(cgrp); 1397 kernfs_destroy_root(root->kf_root); 1398 cgroup_free_root(root); 1399 } 1400 1401 /* 1402 * Returned cgroup is without refcount but it's valid as long as cset pins it. 1403 */ 1404 static inline struct cgroup *__cset_cgroup_from_root(struct css_set *cset, 1405 struct cgroup_root *root) 1406 { 1407 struct cgroup *res_cgroup = NULL; 1408 1409 if (cset == &init_css_set) { 1410 res_cgroup = &root->cgrp; 1411 } else if (root == &cgrp_dfl_root) { 1412 res_cgroup = cset->dfl_cgrp; 1413 } else { 1414 struct cgrp_cset_link *link; 1415 lockdep_assert_held(&css_set_lock); 1416 1417 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) { 1418 struct cgroup *c = link->cgrp; 1419 1420 if (c->root == root) { 1421 res_cgroup = c; 1422 break; 1423 } 1424 } 1425 } 1426 1427 BUG_ON(!res_cgroup); 1428 return res_cgroup; 1429 } 1430 1431 /* 1432 * look up cgroup associated with current task's cgroup namespace on the 1433 * specified hierarchy 1434 */ 1435 static struct cgroup * 1436 current_cgns_cgroup_from_root(struct cgroup_root *root) 1437 { 1438 struct cgroup *res = NULL; 1439 struct css_set *cset; 1440 1441 lockdep_assert_held(&css_set_lock); 1442 1443 rcu_read_lock(); 1444 1445 cset = current->nsproxy->cgroup_ns->root_cset; 1446 res = __cset_cgroup_from_root(cset, root); 1447 1448 rcu_read_unlock(); 1449 1450 return res; 1451 } 1452 1453 /* 1454 * Look up cgroup associated with current task's cgroup namespace on the default 1455 * hierarchy. 1456 * 1457 * Unlike current_cgns_cgroup_from_root(), this doesn't need locks: 1458 * - Internal rcu_read_lock is unnecessary because we don't dereference any rcu 1459 * pointers. 1460 * - css_set_lock is not needed because we just read cset->dfl_cgrp. 1461 * - As a bonus returned cgrp is pinned with the current because it cannot 1462 * switch cgroup_ns asynchronously. 1463 */ 1464 static struct cgroup *current_cgns_cgroup_dfl(void) 1465 { 1466 struct css_set *cset; 1467 1468 if (current->nsproxy) { 1469 cset = current->nsproxy->cgroup_ns->root_cset; 1470 return __cset_cgroup_from_root(cset, &cgrp_dfl_root); 1471 } else { 1472 /* 1473 * NOTE: This function may be called from bpf_cgroup_from_id() 1474 * on a task which has already passed exit_task_namespaces() and 1475 * nsproxy == NULL. Fall back to cgrp_dfl_root which will make all 1476 * cgroups visible for lookups. 1477 */ 1478 return &cgrp_dfl_root.cgrp; 1479 } 1480 } 1481 1482 /* look up cgroup associated with given css_set on the specified hierarchy */ 1483 static struct cgroup *cset_cgroup_from_root(struct css_set *cset, 1484 struct cgroup_root *root) 1485 { 1486 lockdep_assert_held(&cgroup_mutex); 1487 lockdep_assert_held(&css_set_lock); 1488 1489 return __cset_cgroup_from_root(cset, root); 1490 } 1491 1492 /* 1493 * Return the cgroup for "task" from the given hierarchy. Must be 1494 * called with cgroup_mutex and css_set_lock held. 1495 */ 1496 struct cgroup *task_cgroup_from_root(struct task_struct *task, 1497 struct cgroup_root *root) 1498 { 1499 /* 1500 * No need to lock the task - since we hold css_set_lock the 1501 * task can't change groups. 1502 */ 1503 return cset_cgroup_from_root(task_css_set(task), root); 1504 } 1505 1506 /* 1507 * A task must hold cgroup_mutex to modify cgroups. 1508 * 1509 * Any task can increment and decrement the count field without lock. 1510 * So in general, code holding cgroup_mutex can't rely on the count 1511 * field not changing. However, if the count goes to zero, then only 1512 * cgroup_attach_task() can increment it again. Because a count of zero 1513 * means that no tasks are currently attached, therefore there is no 1514 * way a task attached to that cgroup can fork (the other way to 1515 * increment the count). So code holding cgroup_mutex can safely 1516 * assume that if the count is zero, it will stay zero. Similarly, if 1517 * a task holds cgroup_mutex on a cgroup with zero count, it 1518 * knows that the cgroup won't be removed, as cgroup_rmdir() 1519 * needs that mutex. 1520 * 1521 * A cgroup can only be deleted if both its 'count' of using tasks 1522 * is zero, and its list of 'children' cgroups is empty. Since all 1523 * tasks in the system use _some_ cgroup, and since there is always at 1524 * least one task in the system (init, pid == 1), therefore, root cgroup 1525 * always has either children cgroups and/or using tasks. So we don't 1526 * need a special hack to ensure that root cgroup cannot be deleted. 1527 * 1528 * P.S. One more locking exception. RCU is used to guard the 1529 * update of a tasks cgroup pointer by cgroup_attach_task() 1530 */ 1531 1532 static struct kernfs_syscall_ops cgroup_kf_syscall_ops; 1533 1534 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft, 1535 char *buf) 1536 { 1537 struct cgroup_subsys *ss = cft->ss; 1538 1539 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) && 1540 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) { 1541 const char *dbg = (cft->flags & CFTYPE_DEBUG) ? ".__DEBUG__." : ""; 1542 1543 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s%s.%s", 1544 dbg, cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name, 1545 cft->name); 1546 } else { 1547 strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX); 1548 } 1549 return buf; 1550 } 1551 1552 /** 1553 * cgroup_file_mode - deduce file mode of a control file 1554 * @cft: the control file in question 1555 * 1556 * S_IRUGO for read, S_IWUSR for write. 1557 */ 1558 static umode_t cgroup_file_mode(const struct cftype *cft) 1559 { 1560 umode_t mode = 0; 1561 1562 if (cft->read_u64 || cft->read_s64 || cft->seq_show) 1563 mode |= S_IRUGO; 1564 1565 if (cft->write_u64 || cft->write_s64 || cft->write) { 1566 if (cft->flags & CFTYPE_WORLD_WRITABLE) 1567 mode |= S_IWUGO; 1568 else 1569 mode |= S_IWUSR; 1570 } 1571 1572 return mode; 1573 } 1574 1575 /** 1576 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask 1577 * @subtree_control: the new subtree_control mask to consider 1578 * @this_ss_mask: available subsystems 1579 * 1580 * On the default hierarchy, a subsystem may request other subsystems to be 1581 * enabled together through its ->depends_on mask. In such cases, more 1582 * subsystems than specified in "cgroup.subtree_control" may be enabled. 1583 * 1584 * This function calculates which subsystems need to be enabled if 1585 * @subtree_control is to be applied while restricted to @this_ss_mask. 1586 */ 1587 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask) 1588 { 1589 u16 cur_ss_mask = subtree_control; 1590 struct cgroup_subsys *ss; 1591 int ssid; 1592 1593 lockdep_assert_held(&cgroup_mutex); 1594 1595 cur_ss_mask |= cgrp_dfl_implicit_ss_mask; 1596 1597 while (true) { 1598 u16 new_ss_mask = cur_ss_mask; 1599 1600 do_each_subsys_mask(ss, ssid, cur_ss_mask) { 1601 new_ss_mask |= ss->depends_on; 1602 } while_each_subsys_mask(); 1603 1604 /* 1605 * Mask out subsystems which aren't available. This can 1606 * happen only if some depended-upon subsystems were bound 1607 * to non-default hierarchies. 1608 */ 1609 new_ss_mask &= this_ss_mask; 1610 1611 if (new_ss_mask == cur_ss_mask) 1612 break; 1613 cur_ss_mask = new_ss_mask; 1614 } 1615 1616 return cur_ss_mask; 1617 } 1618 1619 /** 1620 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods 1621 * @kn: the kernfs_node being serviced 1622 * 1623 * This helper undoes cgroup_kn_lock_live() and should be invoked before 1624 * the method finishes if locking succeeded. Note that once this function 1625 * returns the cgroup returned by cgroup_kn_lock_live() may become 1626 * inaccessible any time. If the caller intends to continue to access the 1627 * cgroup, it should pin it before invoking this function. 1628 */ 1629 void cgroup_kn_unlock(struct kernfs_node *kn) 1630 { 1631 struct cgroup *cgrp; 1632 1633 if (kernfs_type(kn) == KERNFS_DIR) 1634 cgrp = kn->priv; 1635 else 1636 cgrp = kn->parent->priv; 1637 1638 cgroup_unlock(); 1639 1640 kernfs_unbreak_active_protection(kn); 1641 cgroup_put(cgrp); 1642 } 1643 1644 /** 1645 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods 1646 * @kn: the kernfs_node being serviced 1647 * @drain_offline: perform offline draining on the cgroup 1648 * 1649 * This helper is to be used by a cgroup kernfs method currently servicing 1650 * @kn. It breaks the active protection, performs cgroup locking and 1651 * verifies that the associated cgroup is alive. Returns the cgroup if 1652 * alive; otherwise, %NULL. A successful return should be undone by a 1653 * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the 1654 * cgroup is drained of offlining csses before return. 1655 * 1656 * Any cgroup kernfs method implementation which requires locking the 1657 * associated cgroup should use this helper. It avoids nesting cgroup 1658 * locking under kernfs active protection and allows all kernfs operations 1659 * including self-removal. 1660 */ 1661 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline) 1662 { 1663 struct cgroup *cgrp; 1664 1665 if (kernfs_type(kn) == KERNFS_DIR) 1666 cgrp = kn->priv; 1667 else 1668 cgrp = kn->parent->priv; 1669 1670 /* 1671 * We're gonna grab cgroup_mutex which nests outside kernfs 1672 * active_ref. cgroup liveliness check alone provides enough 1673 * protection against removal. Ensure @cgrp stays accessible and 1674 * break the active_ref protection. 1675 */ 1676 if (!cgroup_tryget(cgrp)) 1677 return NULL; 1678 kernfs_break_active_protection(kn); 1679 1680 if (drain_offline) 1681 cgroup_lock_and_drain_offline(cgrp); 1682 else 1683 cgroup_lock(); 1684 1685 if (!cgroup_is_dead(cgrp)) 1686 return cgrp; 1687 1688 cgroup_kn_unlock(kn); 1689 return NULL; 1690 } 1691 1692 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft) 1693 { 1694 char name[CGROUP_FILE_NAME_MAX]; 1695 1696 lockdep_assert_held(&cgroup_mutex); 1697 1698 if (cft->file_offset) { 1699 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss); 1700 struct cgroup_file *cfile = (void *)css + cft->file_offset; 1701 1702 spin_lock_irq(&cgroup_file_kn_lock); 1703 cfile->kn = NULL; 1704 spin_unlock_irq(&cgroup_file_kn_lock); 1705 1706 del_timer_sync(&cfile->notify_timer); 1707 } 1708 1709 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name)); 1710 } 1711 1712 /** 1713 * css_clear_dir - remove subsys files in a cgroup directory 1714 * @css: target css 1715 */ 1716 static void css_clear_dir(struct cgroup_subsys_state *css) 1717 { 1718 struct cgroup *cgrp = css->cgroup; 1719 struct cftype *cfts; 1720 1721 if (!(css->flags & CSS_VISIBLE)) 1722 return; 1723 1724 css->flags &= ~CSS_VISIBLE; 1725 1726 if (!css->ss) { 1727 if (cgroup_on_dfl(cgrp)) { 1728 cgroup_addrm_files(css, cgrp, 1729 cgroup_base_files, false); 1730 if (cgroup_psi_enabled()) 1731 cgroup_addrm_files(css, cgrp, 1732 cgroup_psi_files, false); 1733 } else { 1734 cgroup_addrm_files(css, cgrp, 1735 cgroup1_base_files, false); 1736 } 1737 } else { 1738 list_for_each_entry(cfts, &css->ss->cfts, node) 1739 cgroup_addrm_files(css, cgrp, cfts, false); 1740 } 1741 } 1742 1743 /** 1744 * css_populate_dir - create subsys files in a cgroup directory 1745 * @css: target css 1746 * 1747 * On failure, no file is added. 1748 */ 1749 static int css_populate_dir(struct cgroup_subsys_state *css) 1750 { 1751 struct cgroup *cgrp = css->cgroup; 1752 struct cftype *cfts, *failed_cfts; 1753 int ret; 1754 1755 if ((css->flags & CSS_VISIBLE) || !cgrp->kn) 1756 return 0; 1757 1758 if (!css->ss) { 1759 if (cgroup_on_dfl(cgrp)) { 1760 ret = cgroup_addrm_files(&cgrp->self, cgrp, 1761 cgroup_base_files, true); 1762 if (ret < 0) 1763 return ret; 1764 1765 if (cgroup_psi_enabled()) { 1766 ret = cgroup_addrm_files(&cgrp->self, cgrp, 1767 cgroup_psi_files, true); 1768 if (ret < 0) 1769 return ret; 1770 } 1771 } else { 1772 cgroup_addrm_files(css, cgrp, 1773 cgroup1_base_files, true); 1774 } 1775 } else { 1776 list_for_each_entry(cfts, &css->ss->cfts, node) { 1777 ret = cgroup_addrm_files(css, cgrp, cfts, true); 1778 if (ret < 0) { 1779 failed_cfts = cfts; 1780 goto err; 1781 } 1782 } 1783 } 1784 1785 css->flags |= CSS_VISIBLE; 1786 1787 return 0; 1788 err: 1789 list_for_each_entry(cfts, &css->ss->cfts, node) { 1790 if (cfts == failed_cfts) 1791 break; 1792 cgroup_addrm_files(css, cgrp, cfts, false); 1793 } 1794 return ret; 1795 } 1796 1797 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask) 1798 { 1799 struct cgroup *dcgrp = &dst_root->cgrp; 1800 struct cgroup_subsys *ss; 1801 int ssid, i, ret; 1802 u16 dfl_disable_ss_mask = 0; 1803 1804 lockdep_assert_held(&cgroup_mutex); 1805 1806 do_each_subsys_mask(ss, ssid, ss_mask) { 1807 /* 1808 * If @ss has non-root csses attached to it, can't move. 1809 * If @ss is an implicit controller, it is exempt from this 1810 * rule and can be stolen. 1811 */ 1812 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) && 1813 !ss->implicit_on_dfl) 1814 return -EBUSY; 1815 1816 /* can't move between two non-dummy roots either */ 1817 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root) 1818 return -EBUSY; 1819 1820 /* 1821 * Collect ssid's that need to be disabled from default 1822 * hierarchy. 1823 */ 1824 if (ss->root == &cgrp_dfl_root) 1825 dfl_disable_ss_mask |= 1 << ssid; 1826 1827 } while_each_subsys_mask(); 1828 1829 if (dfl_disable_ss_mask) { 1830 struct cgroup *scgrp = &cgrp_dfl_root.cgrp; 1831 1832 /* 1833 * Controllers from default hierarchy that need to be rebound 1834 * are all disabled together in one go. 1835 */ 1836 cgrp_dfl_root.subsys_mask &= ~dfl_disable_ss_mask; 1837 WARN_ON(cgroup_apply_control(scgrp)); 1838 cgroup_finalize_control(scgrp, 0); 1839 } 1840 1841 do_each_subsys_mask(ss, ssid, ss_mask) { 1842 struct cgroup_root *src_root = ss->root; 1843 struct cgroup *scgrp = &src_root->cgrp; 1844 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss); 1845 struct css_set *cset; 1846 1847 WARN_ON(!css || cgroup_css(dcgrp, ss)); 1848 1849 if (src_root != &cgrp_dfl_root) { 1850 /* disable from the source */ 1851 src_root->subsys_mask &= ~(1 << ssid); 1852 WARN_ON(cgroup_apply_control(scgrp)); 1853 cgroup_finalize_control(scgrp, 0); 1854 } 1855 1856 /* rebind */ 1857 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL); 1858 rcu_assign_pointer(dcgrp->subsys[ssid], css); 1859 ss->root = dst_root; 1860 css->cgroup = dcgrp; 1861 1862 spin_lock_irq(&css_set_lock); 1863 hash_for_each(css_set_table, i, cset, hlist) 1864 list_move_tail(&cset->e_cset_node[ss->id], 1865 &dcgrp->e_csets[ss->id]); 1866 spin_unlock_irq(&css_set_lock); 1867 1868 if (ss->css_rstat_flush) { 1869 list_del_rcu(&css->rstat_css_node); 1870 synchronize_rcu(); 1871 list_add_rcu(&css->rstat_css_node, 1872 &dcgrp->rstat_css_list); 1873 } 1874 1875 /* default hierarchy doesn't enable controllers by default */ 1876 dst_root->subsys_mask |= 1 << ssid; 1877 if (dst_root == &cgrp_dfl_root) { 1878 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]); 1879 } else { 1880 dcgrp->subtree_control |= 1 << ssid; 1881 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]); 1882 } 1883 1884 ret = cgroup_apply_control(dcgrp); 1885 if (ret) 1886 pr_warn("partial failure to rebind %s controller (err=%d)\n", 1887 ss->name, ret); 1888 1889 if (ss->bind) 1890 ss->bind(css); 1891 } while_each_subsys_mask(); 1892 1893 kernfs_activate(dcgrp->kn); 1894 return 0; 1895 } 1896 1897 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node, 1898 struct kernfs_root *kf_root) 1899 { 1900 int len = 0; 1901 char *buf = NULL; 1902 struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root); 1903 struct cgroup *ns_cgroup; 1904 1905 buf = kmalloc(PATH_MAX, GFP_KERNEL); 1906 if (!buf) 1907 return -ENOMEM; 1908 1909 spin_lock_irq(&css_set_lock); 1910 ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot); 1911 len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX); 1912 spin_unlock_irq(&css_set_lock); 1913 1914 if (len >= PATH_MAX) 1915 len = -ERANGE; 1916 else if (len > 0) { 1917 seq_escape(sf, buf, " \t\n\\"); 1918 len = 0; 1919 } 1920 kfree(buf); 1921 return len; 1922 } 1923 1924 enum cgroup2_param { 1925 Opt_nsdelegate, 1926 Opt_favordynmods, 1927 Opt_memory_localevents, 1928 Opt_memory_recursiveprot, 1929 nr__cgroup2_params 1930 }; 1931 1932 static const struct fs_parameter_spec cgroup2_fs_parameters[] = { 1933 fsparam_flag("nsdelegate", Opt_nsdelegate), 1934 fsparam_flag("favordynmods", Opt_favordynmods), 1935 fsparam_flag("memory_localevents", Opt_memory_localevents), 1936 fsparam_flag("memory_recursiveprot", Opt_memory_recursiveprot), 1937 {} 1938 }; 1939 1940 static int cgroup2_parse_param(struct fs_context *fc, struct fs_parameter *param) 1941 { 1942 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 1943 struct fs_parse_result result; 1944 int opt; 1945 1946 opt = fs_parse(fc, cgroup2_fs_parameters, param, &result); 1947 if (opt < 0) 1948 return opt; 1949 1950 switch (opt) { 1951 case Opt_nsdelegate: 1952 ctx->flags |= CGRP_ROOT_NS_DELEGATE; 1953 return 0; 1954 case Opt_favordynmods: 1955 ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS; 1956 return 0; 1957 case Opt_memory_localevents: 1958 ctx->flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS; 1959 return 0; 1960 case Opt_memory_recursiveprot: 1961 ctx->flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT; 1962 return 0; 1963 } 1964 return -EINVAL; 1965 } 1966 1967 static void apply_cgroup_root_flags(unsigned int root_flags) 1968 { 1969 if (current->nsproxy->cgroup_ns == &init_cgroup_ns) { 1970 if (root_flags & CGRP_ROOT_NS_DELEGATE) 1971 cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE; 1972 else 1973 cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE; 1974 1975 cgroup_favor_dynmods(&cgrp_dfl_root, 1976 root_flags & CGRP_ROOT_FAVOR_DYNMODS); 1977 1978 if (root_flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS) 1979 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS; 1980 else 1981 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_LOCAL_EVENTS; 1982 1983 if (root_flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT) 1984 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT; 1985 else 1986 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_RECURSIVE_PROT; 1987 } 1988 } 1989 1990 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root) 1991 { 1992 if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) 1993 seq_puts(seq, ",nsdelegate"); 1994 if (cgrp_dfl_root.flags & CGRP_ROOT_FAVOR_DYNMODS) 1995 seq_puts(seq, ",favordynmods"); 1996 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS) 1997 seq_puts(seq, ",memory_localevents"); 1998 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT) 1999 seq_puts(seq, ",memory_recursiveprot"); 2000 return 0; 2001 } 2002 2003 static int cgroup_reconfigure(struct fs_context *fc) 2004 { 2005 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2006 2007 apply_cgroup_root_flags(ctx->flags); 2008 return 0; 2009 } 2010 2011 static void init_cgroup_housekeeping(struct cgroup *cgrp) 2012 { 2013 struct cgroup_subsys *ss; 2014 int ssid; 2015 2016 INIT_LIST_HEAD(&cgrp->self.sibling); 2017 INIT_LIST_HEAD(&cgrp->self.children); 2018 INIT_LIST_HEAD(&cgrp->cset_links); 2019 INIT_LIST_HEAD(&cgrp->pidlists); 2020 mutex_init(&cgrp->pidlist_mutex); 2021 cgrp->self.cgroup = cgrp; 2022 cgrp->self.flags |= CSS_ONLINE; 2023 cgrp->dom_cgrp = cgrp; 2024 cgrp->max_descendants = INT_MAX; 2025 cgrp->max_depth = INT_MAX; 2026 INIT_LIST_HEAD(&cgrp->rstat_css_list); 2027 prev_cputime_init(&cgrp->prev_cputime); 2028 2029 for_each_subsys(ss, ssid) 2030 INIT_LIST_HEAD(&cgrp->e_csets[ssid]); 2031 2032 init_waitqueue_head(&cgrp->offline_waitq); 2033 INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent); 2034 } 2035 2036 void init_cgroup_root(struct cgroup_fs_context *ctx) 2037 { 2038 struct cgroup_root *root = ctx->root; 2039 struct cgroup *cgrp = &root->cgrp; 2040 2041 INIT_LIST_HEAD(&root->root_list); 2042 atomic_set(&root->nr_cgrps, 1); 2043 cgrp->root = root; 2044 init_cgroup_housekeeping(cgrp); 2045 2046 /* DYNMODS must be modified through cgroup_favor_dynmods() */ 2047 root->flags = ctx->flags & ~CGRP_ROOT_FAVOR_DYNMODS; 2048 if (ctx->release_agent) 2049 strscpy(root->release_agent_path, ctx->release_agent, PATH_MAX); 2050 if (ctx->name) 2051 strscpy(root->name, ctx->name, MAX_CGROUP_ROOT_NAMELEN); 2052 if (ctx->cpuset_clone_children) 2053 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags); 2054 } 2055 2056 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask) 2057 { 2058 LIST_HEAD(tmp_links); 2059 struct cgroup *root_cgrp = &root->cgrp; 2060 struct kernfs_syscall_ops *kf_sops; 2061 struct css_set *cset; 2062 int i, ret; 2063 2064 lockdep_assert_held(&cgroup_mutex); 2065 2066 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 2067 0, GFP_KERNEL); 2068 if (ret) 2069 goto out; 2070 2071 /* 2072 * We're accessing css_set_count without locking css_set_lock here, 2073 * but that's OK - it can only be increased by someone holding 2074 * cgroup_lock, and that's us. Later rebinding may disable 2075 * controllers on the default hierarchy and thus create new csets, 2076 * which can't be more than the existing ones. Allocate 2x. 2077 */ 2078 ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links); 2079 if (ret) 2080 goto cancel_ref; 2081 2082 ret = cgroup_init_root_id(root); 2083 if (ret) 2084 goto cancel_ref; 2085 2086 kf_sops = root == &cgrp_dfl_root ? 2087 &cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops; 2088 2089 root->kf_root = kernfs_create_root(kf_sops, 2090 KERNFS_ROOT_CREATE_DEACTIVATED | 2091 KERNFS_ROOT_SUPPORT_EXPORTOP | 2092 KERNFS_ROOT_SUPPORT_USER_XATTR, 2093 root_cgrp); 2094 if (IS_ERR(root->kf_root)) { 2095 ret = PTR_ERR(root->kf_root); 2096 goto exit_root_id; 2097 } 2098 root_cgrp->kn = kernfs_root_to_node(root->kf_root); 2099 WARN_ON_ONCE(cgroup_ino(root_cgrp) != 1); 2100 root_cgrp->ancestors[0] = root_cgrp; 2101 2102 ret = css_populate_dir(&root_cgrp->self); 2103 if (ret) 2104 goto destroy_root; 2105 2106 ret = cgroup_rstat_init(root_cgrp); 2107 if (ret) 2108 goto destroy_root; 2109 2110 ret = rebind_subsystems(root, ss_mask); 2111 if (ret) 2112 goto exit_stats; 2113 2114 ret = cgroup_bpf_inherit(root_cgrp); 2115 WARN_ON_ONCE(ret); 2116 2117 trace_cgroup_setup_root(root); 2118 2119 /* 2120 * There must be no failure case after here, since rebinding takes 2121 * care of subsystems' refcounts, which are explicitly dropped in 2122 * the failure exit path. 2123 */ 2124 list_add(&root->root_list, &cgroup_roots); 2125 cgroup_root_count++; 2126 2127 /* 2128 * Link the root cgroup in this hierarchy into all the css_set 2129 * objects. 2130 */ 2131 spin_lock_irq(&css_set_lock); 2132 hash_for_each(css_set_table, i, cset, hlist) { 2133 link_css_set(&tmp_links, cset, root_cgrp); 2134 if (css_set_populated(cset)) 2135 cgroup_update_populated(root_cgrp, true); 2136 } 2137 spin_unlock_irq(&css_set_lock); 2138 2139 BUG_ON(!list_empty(&root_cgrp->self.children)); 2140 BUG_ON(atomic_read(&root->nr_cgrps) != 1); 2141 2142 ret = 0; 2143 goto out; 2144 2145 exit_stats: 2146 cgroup_rstat_exit(root_cgrp); 2147 destroy_root: 2148 kernfs_destroy_root(root->kf_root); 2149 root->kf_root = NULL; 2150 exit_root_id: 2151 cgroup_exit_root_id(root); 2152 cancel_ref: 2153 percpu_ref_exit(&root_cgrp->self.refcnt); 2154 out: 2155 free_cgrp_cset_links(&tmp_links); 2156 return ret; 2157 } 2158 2159 int cgroup_do_get_tree(struct fs_context *fc) 2160 { 2161 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2162 int ret; 2163 2164 ctx->kfc.root = ctx->root->kf_root; 2165 if (fc->fs_type == &cgroup2_fs_type) 2166 ctx->kfc.magic = CGROUP2_SUPER_MAGIC; 2167 else 2168 ctx->kfc.magic = CGROUP_SUPER_MAGIC; 2169 ret = kernfs_get_tree(fc); 2170 2171 /* 2172 * In non-init cgroup namespace, instead of root cgroup's dentry, 2173 * we return the dentry corresponding to the cgroupns->root_cgrp. 2174 */ 2175 if (!ret && ctx->ns != &init_cgroup_ns) { 2176 struct dentry *nsdentry; 2177 struct super_block *sb = fc->root->d_sb; 2178 struct cgroup *cgrp; 2179 2180 cgroup_lock(); 2181 spin_lock_irq(&css_set_lock); 2182 2183 cgrp = cset_cgroup_from_root(ctx->ns->root_cset, ctx->root); 2184 2185 spin_unlock_irq(&css_set_lock); 2186 cgroup_unlock(); 2187 2188 nsdentry = kernfs_node_dentry(cgrp->kn, sb); 2189 dput(fc->root); 2190 if (IS_ERR(nsdentry)) { 2191 deactivate_locked_super(sb); 2192 ret = PTR_ERR(nsdentry); 2193 nsdentry = NULL; 2194 } 2195 fc->root = nsdentry; 2196 } 2197 2198 if (!ctx->kfc.new_sb_created) 2199 cgroup_put(&ctx->root->cgrp); 2200 2201 return ret; 2202 } 2203 2204 /* 2205 * Destroy a cgroup filesystem context. 2206 */ 2207 static void cgroup_fs_context_free(struct fs_context *fc) 2208 { 2209 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2210 2211 kfree(ctx->name); 2212 kfree(ctx->release_agent); 2213 put_cgroup_ns(ctx->ns); 2214 kernfs_free_fs_context(fc); 2215 kfree(ctx); 2216 } 2217 2218 static int cgroup_get_tree(struct fs_context *fc) 2219 { 2220 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2221 int ret; 2222 2223 WRITE_ONCE(cgrp_dfl_visible, true); 2224 cgroup_get_live(&cgrp_dfl_root.cgrp); 2225 ctx->root = &cgrp_dfl_root; 2226 2227 ret = cgroup_do_get_tree(fc); 2228 if (!ret) 2229 apply_cgroup_root_flags(ctx->flags); 2230 return ret; 2231 } 2232 2233 static const struct fs_context_operations cgroup_fs_context_ops = { 2234 .free = cgroup_fs_context_free, 2235 .parse_param = cgroup2_parse_param, 2236 .get_tree = cgroup_get_tree, 2237 .reconfigure = cgroup_reconfigure, 2238 }; 2239 2240 static const struct fs_context_operations cgroup1_fs_context_ops = { 2241 .free = cgroup_fs_context_free, 2242 .parse_param = cgroup1_parse_param, 2243 .get_tree = cgroup1_get_tree, 2244 .reconfigure = cgroup1_reconfigure, 2245 }; 2246 2247 /* 2248 * Initialise the cgroup filesystem creation/reconfiguration context. Notably, 2249 * we select the namespace we're going to use. 2250 */ 2251 static int cgroup_init_fs_context(struct fs_context *fc) 2252 { 2253 struct cgroup_fs_context *ctx; 2254 2255 ctx = kzalloc(sizeof(struct cgroup_fs_context), GFP_KERNEL); 2256 if (!ctx) 2257 return -ENOMEM; 2258 2259 ctx->ns = current->nsproxy->cgroup_ns; 2260 get_cgroup_ns(ctx->ns); 2261 fc->fs_private = &ctx->kfc; 2262 if (fc->fs_type == &cgroup2_fs_type) 2263 fc->ops = &cgroup_fs_context_ops; 2264 else 2265 fc->ops = &cgroup1_fs_context_ops; 2266 put_user_ns(fc->user_ns); 2267 fc->user_ns = get_user_ns(ctx->ns->user_ns); 2268 fc->global = true; 2269 2270 #ifdef CONFIG_CGROUP_FAVOR_DYNMODS 2271 ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS; 2272 #endif 2273 return 0; 2274 } 2275 2276 static void cgroup_kill_sb(struct super_block *sb) 2277 { 2278 struct kernfs_root *kf_root = kernfs_root_from_sb(sb); 2279 struct cgroup_root *root = cgroup_root_from_kf(kf_root); 2280 2281 /* 2282 * If @root doesn't have any children, start killing it. 2283 * This prevents new mounts by disabling percpu_ref_tryget_live(). 2284 * 2285 * And don't kill the default root. 2286 */ 2287 if (list_empty(&root->cgrp.self.children) && root != &cgrp_dfl_root && 2288 !percpu_ref_is_dying(&root->cgrp.self.refcnt)) { 2289 cgroup_bpf_offline(&root->cgrp); 2290 percpu_ref_kill(&root->cgrp.self.refcnt); 2291 } 2292 cgroup_put(&root->cgrp); 2293 kernfs_kill_sb(sb); 2294 } 2295 2296 struct file_system_type cgroup_fs_type = { 2297 .name = "cgroup", 2298 .init_fs_context = cgroup_init_fs_context, 2299 .parameters = cgroup1_fs_parameters, 2300 .kill_sb = cgroup_kill_sb, 2301 .fs_flags = FS_USERNS_MOUNT, 2302 }; 2303 2304 static struct file_system_type cgroup2_fs_type = { 2305 .name = "cgroup2", 2306 .init_fs_context = cgroup_init_fs_context, 2307 .parameters = cgroup2_fs_parameters, 2308 .kill_sb = cgroup_kill_sb, 2309 .fs_flags = FS_USERNS_MOUNT, 2310 }; 2311 2312 #ifdef CONFIG_CPUSETS 2313 static const struct fs_context_operations cpuset_fs_context_ops = { 2314 .get_tree = cgroup1_get_tree, 2315 .free = cgroup_fs_context_free, 2316 }; 2317 2318 /* 2319 * This is ugly, but preserves the userspace API for existing cpuset 2320 * users. If someone tries to mount the "cpuset" filesystem, we 2321 * silently switch it to mount "cgroup" instead 2322 */ 2323 static int cpuset_init_fs_context(struct fs_context *fc) 2324 { 2325 char *agent = kstrdup("/sbin/cpuset_release_agent", GFP_USER); 2326 struct cgroup_fs_context *ctx; 2327 int err; 2328 2329 err = cgroup_init_fs_context(fc); 2330 if (err) { 2331 kfree(agent); 2332 return err; 2333 } 2334 2335 fc->ops = &cpuset_fs_context_ops; 2336 2337 ctx = cgroup_fc2context(fc); 2338 ctx->subsys_mask = 1 << cpuset_cgrp_id; 2339 ctx->flags |= CGRP_ROOT_NOPREFIX; 2340 ctx->release_agent = agent; 2341 2342 get_filesystem(&cgroup_fs_type); 2343 put_filesystem(fc->fs_type); 2344 fc->fs_type = &cgroup_fs_type; 2345 2346 return 0; 2347 } 2348 2349 static struct file_system_type cpuset_fs_type = { 2350 .name = "cpuset", 2351 .init_fs_context = cpuset_init_fs_context, 2352 .fs_flags = FS_USERNS_MOUNT, 2353 }; 2354 #endif 2355 2356 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen, 2357 struct cgroup_namespace *ns) 2358 { 2359 struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root); 2360 2361 return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen); 2362 } 2363 2364 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen, 2365 struct cgroup_namespace *ns) 2366 { 2367 int ret; 2368 2369 cgroup_lock(); 2370 spin_lock_irq(&css_set_lock); 2371 2372 ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns); 2373 2374 spin_unlock_irq(&css_set_lock); 2375 cgroup_unlock(); 2376 2377 return ret; 2378 } 2379 EXPORT_SYMBOL_GPL(cgroup_path_ns); 2380 2381 /** 2382 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy 2383 * @task: target task 2384 * @buf: the buffer to write the path into 2385 * @buflen: the length of the buffer 2386 * 2387 * Determine @task's cgroup on the first (the one with the lowest non-zero 2388 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This 2389 * function grabs cgroup_mutex and shouldn't be used inside locks used by 2390 * cgroup controller callbacks. 2391 * 2392 * Return value is the same as kernfs_path(). 2393 */ 2394 int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen) 2395 { 2396 struct cgroup_root *root; 2397 struct cgroup *cgrp; 2398 int hierarchy_id = 1; 2399 int ret; 2400 2401 cgroup_lock(); 2402 spin_lock_irq(&css_set_lock); 2403 2404 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id); 2405 2406 if (root) { 2407 cgrp = task_cgroup_from_root(task, root); 2408 ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns); 2409 } else { 2410 /* if no hierarchy exists, everyone is in "/" */ 2411 ret = strscpy(buf, "/", buflen); 2412 } 2413 2414 spin_unlock_irq(&css_set_lock); 2415 cgroup_unlock(); 2416 return ret; 2417 } 2418 EXPORT_SYMBOL_GPL(task_cgroup_path); 2419 2420 /** 2421 * cgroup_attach_lock - Lock for ->attach() 2422 * @lock_threadgroup: whether to down_write cgroup_threadgroup_rwsem 2423 * 2424 * cgroup migration sometimes needs to stabilize threadgroups against forks and 2425 * exits by write-locking cgroup_threadgroup_rwsem. However, some ->attach() 2426 * implementations (e.g. cpuset), also need to disable CPU hotplug. 2427 * Unfortunately, letting ->attach() operations acquire cpus_read_lock() can 2428 * lead to deadlocks. 2429 * 2430 * Bringing up a CPU may involve creating and destroying tasks which requires 2431 * read-locking threadgroup_rwsem, so threadgroup_rwsem nests inside 2432 * cpus_read_lock(). If we call an ->attach() which acquires the cpus lock while 2433 * write-locking threadgroup_rwsem, the locking order is reversed and we end up 2434 * waiting for an on-going CPU hotplug operation which in turn is waiting for 2435 * the threadgroup_rwsem to be released to create new tasks. For more details: 2436 * 2437 * http://lkml.kernel.org/r/20220711174629.uehfmqegcwn2lqzu@wubuntu 2438 * 2439 * Resolve the situation by always acquiring cpus_read_lock() before optionally 2440 * write-locking cgroup_threadgroup_rwsem. This allows ->attach() to assume that 2441 * CPU hotplug is disabled on entry. 2442 */ 2443 void cgroup_attach_lock(bool lock_threadgroup) 2444 { 2445 cpus_read_lock(); 2446 if (lock_threadgroup) 2447 percpu_down_write(&cgroup_threadgroup_rwsem); 2448 } 2449 2450 /** 2451 * cgroup_attach_unlock - Undo cgroup_attach_lock() 2452 * @lock_threadgroup: whether to up_write cgroup_threadgroup_rwsem 2453 */ 2454 void cgroup_attach_unlock(bool lock_threadgroup) 2455 { 2456 if (lock_threadgroup) 2457 percpu_up_write(&cgroup_threadgroup_rwsem); 2458 cpus_read_unlock(); 2459 } 2460 2461 /** 2462 * cgroup_migrate_add_task - add a migration target task to a migration context 2463 * @task: target task 2464 * @mgctx: target migration context 2465 * 2466 * Add @task, which is a migration target, to @mgctx->tset. This function 2467 * becomes noop if @task doesn't need to be migrated. @task's css_set 2468 * should have been added as a migration source and @task->cg_list will be 2469 * moved from the css_set's tasks list to mg_tasks one. 2470 */ 2471 static void cgroup_migrate_add_task(struct task_struct *task, 2472 struct cgroup_mgctx *mgctx) 2473 { 2474 struct css_set *cset; 2475 2476 lockdep_assert_held(&css_set_lock); 2477 2478 /* @task either already exited or can't exit until the end */ 2479 if (task->flags & PF_EXITING) 2480 return; 2481 2482 /* cgroup_threadgroup_rwsem protects racing against forks */ 2483 WARN_ON_ONCE(list_empty(&task->cg_list)); 2484 2485 cset = task_css_set(task); 2486 if (!cset->mg_src_cgrp) 2487 return; 2488 2489 mgctx->tset.nr_tasks++; 2490 2491 list_move_tail(&task->cg_list, &cset->mg_tasks); 2492 if (list_empty(&cset->mg_node)) 2493 list_add_tail(&cset->mg_node, 2494 &mgctx->tset.src_csets); 2495 if (list_empty(&cset->mg_dst_cset->mg_node)) 2496 list_add_tail(&cset->mg_dst_cset->mg_node, 2497 &mgctx->tset.dst_csets); 2498 } 2499 2500 /** 2501 * cgroup_taskset_first - reset taskset and return the first task 2502 * @tset: taskset of interest 2503 * @dst_cssp: output variable for the destination css 2504 * 2505 * @tset iteration is initialized and the first task is returned. 2506 */ 2507 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset, 2508 struct cgroup_subsys_state **dst_cssp) 2509 { 2510 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node); 2511 tset->cur_task = NULL; 2512 2513 return cgroup_taskset_next(tset, dst_cssp); 2514 } 2515 2516 /** 2517 * cgroup_taskset_next - iterate to the next task in taskset 2518 * @tset: taskset of interest 2519 * @dst_cssp: output variable for the destination css 2520 * 2521 * Return the next task in @tset. Iteration must have been initialized 2522 * with cgroup_taskset_first(). 2523 */ 2524 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset, 2525 struct cgroup_subsys_state **dst_cssp) 2526 { 2527 struct css_set *cset = tset->cur_cset; 2528 struct task_struct *task = tset->cur_task; 2529 2530 while (CGROUP_HAS_SUBSYS_CONFIG && &cset->mg_node != tset->csets) { 2531 if (!task) 2532 task = list_first_entry(&cset->mg_tasks, 2533 struct task_struct, cg_list); 2534 else 2535 task = list_next_entry(task, cg_list); 2536 2537 if (&task->cg_list != &cset->mg_tasks) { 2538 tset->cur_cset = cset; 2539 tset->cur_task = task; 2540 2541 /* 2542 * This function may be called both before and 2543 * after cgroup_taskset_migrate(). The two cases 2544 * can be distinguished by looking at whether @cset 2545 * has its ->mg_dst_cset set. 2546 */ 2547 if (cset->mg_dst_cset) 2548 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid]; 2549 else 2550 *dst_cssp = cset->subsys[tset->ssid]; 2551 2552 return task; 2553 } 2554 2555 cset = list_next_entry(cset, mg_node); 2556 task = NULL; 2557 } 2558 2559 return NULL; 2560 } 2561 2562 /** 2563 * cgroup_migrate_execute - migrate a taskset 2564 * @mgctx: migration context 2565 * 2566 * Migrate tasks in @mgctx as setup by migration preparation functions. 2567 * This function fails iff one of the ->can_attach callbacks fails and 2568 * guarantees that either all or none of the tasks in @mgctx are migrated. 2569 * @mgctx is consumed regardless of success. 2570 */ 2571 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx) 2572 { 2573 struct cgroup_taskset *tset = &mgctx->tset; 2574 struct cgroup_subsys *ss; 2575 struct task_struct *task, *tmp_task; 2576 struct css_set *cset, *tmp_cset; 2577 int ssid, failed_ssid, ret; 2578 2579 /* check that we can legitimately attach to the cgroup */ 2580 if (tset->nr_tasks) { 2581 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2582 if (ss->can_attach) { 2583 tset->ssid = ssid; 2584 ret = ss->can_attach(tset); 2585 if (ret) { 2586 failed_ssid = ssid; 2587 goto out_cancel_attach; 2588 } 2589 } 2590 } while_each_subsys_mask(); 2591 } 2592 2593 /* 2594 * Now that we're guaranteed success, proceed to move all tasks to 2595 * the new cgroup. There are no failure cases after here, so this 2596 * is the commit point. 2597 */ 2598 spin_lock_irq(&css_set_lock); 2599 list_for_each_entry(cset, &tset->src_csets, mg_node) { 2600 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) { 2601 struct css_set *from_cset = task_css_set(task); 2602 struct css_set *to_cset = cset->mg_dst_cset; 2603 2604 get_css_set(to_cset); 2605 to_cset->nr_tasks++; 2606 css_set_move_task(task, from_cset, to_cset, true); 2607 from_cset->nr_tasks--; 2608 /* 2609 * If the source or destination cgroup is frozen, 2610 * the task might require to change its state. 2611 */ 2612 cgroup_freezer_migrate_task(task, from_cset->dfl_cgrp, 2613 to_cset->dfl_cgrp); 2614 put_css_set_locked(from_cset); 2615 2616 } 2617 } 2618 spin_unlock_irq(&css_set_lock); 2619 2620 /* 2621 * Migration is committed, all target tasks are now on dst_csets. 2622 * Nothing is sensitive to fork() after this point. Notify 2623 * controllers that migration is complete. 2624 */ 2625 tset->csets = &tset->dst_csets; 2626 2627 if (tset->nr_tasks) { 2628 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2629 if (ss->attach) { 2630 tset->ssid = ssid; 2631 ss->attach(tset); 2632 } 2633 } while_each_subsys_mask(); 2634 } 2635 2636 ret = 0; 2637 goto out_release_tset; 2638 2639 out_cancel_attach: 2640 if (tset->nr_tasks) { 2641 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2642 if (ssid == failed_ssid) 2643 break; 2644 if (ss->cancel_attach) { 2645 tset->ssid = ssid; 2646 ss->cancel_attach(tset); 2647 } 2648 } while_each_subsys_mask(); 2649 } 2650 out_release_tset: 2651 spin_lock_irq(&css_set_lock); 2652 list_splice_init(&tset->dst_csets, &tset->src_csets); 2653 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) { 2654 list_splice_tail_init(&cset->mg_tasks, &cset->tasks); 2655 list_del_init(&cset->mg_node); 2656 } 2657 spin_unlock_irq(&css_set_lock); 2658 2659 /* 2660 * Re-initialize the cgroup_taskset structure in case it is reused 2661 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute() 2662 * iteration. 2663 */ 2664 tset->nr_tasks = 0; 2665 tset->csets = &tset->src_csets; 2666 return ret; 2667 } 2668 2669 /** 2670 * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination 2671 * @dst_cgrp: destination cgroup to test 2672 * 2673 * On the default hierarchy, except for the mixable, (possible) thread root 2674 * and threaded cgroups, subtree_control must be zero for migration 2675 * destination cgroups with tasks so that child cgroups don't compete 2676 * against tasks. 2677 */ 2678 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp) 2679 { 2680 /* v1 doesn't have any restriction */ 2681 if (!cgroup_on_dfl(dst_cgrp)) 2682 return 0; 2683 2684 /* verify @dst_cgrp can host resources */ 2685 if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp)) 2686 return -EOPNOTSUPP; 2687 2688 /* 2689 * If @dst_cgrp is already or can become a thread root or is 2690 * threaded, it doesn't matter. 2691 */ 2692 if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp)) 2693 return 0; 2694 2695 /* apply no-internal-process constraint */ 2696 if (dst_cgrp->subtree_control) 2697 return -EBUSY; 2698 2699 return 0; 2700 } 2701 2702 /** 2703 * cgroup_migrate_finish - cleanup after attach 2704 * @mgctx: migration context 2705 * 2706 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See 2707 * those functions for details. 2708 */ 2709 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx) 2710 { 2711 struct css_set *cset, *tmp_cset; 2712 2713 lockdep_assert_held(&cgroup_mutex); 2714 2715 spin_lock_irq(&css_set_lock); 2716 2717 list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_src_csets, 2718 mg_src_preload_node) { 2719 cset->mg_src_cgrp = NULL; 2720 cset->mg_dst_cgrp = NULL; 2721 cset->mg_dst_cset = NULL; 2722 list_del_init(&cset->mg_src_preload_node); 2723 put_css_set_locked(cset); 2724 } 2725 2726 list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_dst_csets, 2727 mg_dst_preload_node) { 2728 cset->mg_src_cgrp = NULL; 2729 cset->mg_dst_cgrp = NULL; 2730 cset->mg_dst_cset = NULL; 2731 list_del_init(&cset->mg_dst_preload_node); 2732 put_css_set_locked(cset); 2733 } 2734 2735 spin_unlock_irq(&css_set_lock); 2736 } 2737 2738 /** 2739 * cgroup_migrate_add_src - add a migration source css_set 2740 * @src_cset: the source css_set to add 2741 * @dst_cgrp: the destination cgroup 2742 * @mgctx: migration context 2743 * 2744 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin 2745 * @src_cset and add it to @mgctx->src_csets, which should later be cleaned 2746 * up by cgroup_migrate_finish(). 2747 * 2748 * This function may be called without holding cgroup_threadgroup_rwsem 2749 * even if the target is a process. Threads may be created and destroyed 2750 * but as long as cgroup_mutex is not dropped, no new css_set can be put 2751 * into play and the preloaded css_sets are guaranteed to cover all 2752 * migrations. 2753 */ 2754 void cgroup_migrate_add_src(struct css_set *src_cset, 2755 struct cgroup *dst_cgrp, 2756 struct cgroup_mgctx *mgctx) 2757 { 2758 struct cgroup *src_cgrp; 2759 2760 lockdep_assert_held(&cgroup_mutex); 2761 lockdep_assert_held(&css_set_lock); 2762 2763 /* 2764 * If ->dead, @src_set is associated with one or more dead cgroups 2765 * and doesn't contain any migratable tasks. Ignore it early so 2766 * that the rest of migration path doesn't get confused by it. 2767 */ 2768 if (src_cset->dead) 2769 return; 2770 2771 if (!list_empty(&src_cset->mg_src_preload_node)) 2772 return; 2773 2774 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root); 2775 2776 WARN_ON(src_cset->mg_src_cgrp); 2777 WARN_ON(src_cset->mg_dst_cgrp); 2778 WARN_ON(!list_empty(&src_cset->mg_tasks)); 2779 WARN_ON(!list_empty(&src_cset->mg_node)); 2780 2781 src_cset->mg_src_cgrp = src_cgrp; 2782 src_cset->mg_dst_cgrp = dst_cgrp; 2783 get_css_set(src_cset); 2784 list_add_tail(&src_cset->mg_src_preload_node, &mgctx->preloaded_src_csets); 2785 } 2786 2787 /** 2788 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration 2789 * @mgctx: migration context 2790 * 2791 * Tasks are about to be moved and all the source css_sets have been 2792 * preloaded to @mgctx->preloaded_src_csets. This function looks up and 2793 * pins all destination css_sets, links each to its source, and append them 2794 * to @mgctx->preloaded_dst_csets. 2795 * 2796 * This function must be called after cgroup_migrate_add_src() has been 2797 * called on each migration source css_set. After migration is performed 2798 * using cgroup_migrate(), cgroup_migrate_finish() must be called on 2799 * @mgctx. 2800 */ 2801 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx) 2802 { 2803 struct css_set *src_cset, *tmp_cset; 2804 2805 lockdep_assert_held(&cgroup_mutex); 2806 2807 /* look up the dst cset for each src cset and link it to src */ 2808 list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets, 2809 mg_src_preload_node) { 2810 struct css_set *dst_cset; 2811 struct cgroup_subsys *ss; 2812 int ssid; 2813 2814 dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp); 2815 if (!dst_cset) 2816 return -ENOMEM; 2817 2818 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset); 2819 2820 /* 2821 * If src cset equals dst, it's noop. Drop the src. 2822 * cgroup_migrate() will skip the cset too. Note that we 2823 * can't handle src == dst as some nodes are used by both. 2824 */ 2825 if (src_cset == dst_cset) { 2826 src_cset->mg_src_cgrp = NULL; 2827 src_cset->mg_dst_cgrp = NULL; 2828 list_del_init(&src_cset->mg_src_preload_node); 2829 put_css_set(src_cset); 2830 put_css_set(dst_cset); 2831 continue; 2832 } 2833 2834 src_cset->mg_dst_cset = dst_cset; 2835 2836 if (list_empty(&dst_cset->mg_dst_preload_node)) 2837 list_add_tail(&dst_cset->mg_dst_preload_node, 2838 &mgctx->preloaded_dst_csets); 2839 else 2840 put_css_set(dst_cset); 2841 2842 for_each_subsys(ss, ssid) 2843 if (src_cset->subsys[ssid] != dst_cset->subsys[ssid]) 2844 mgctx->ss_mask |= 1 << ssid; 2845 } 2846 2847 return 0; 2848 } 2849 2850 /** 2851 * cgroup_migrate - migrate a process or task to a cgroup 2852 * @leader: the leader of the process or the task to migrate 2853 * @threadgroup: whether @leader points to the whole process or a single task 2854 * @mgctx: migration context 2855 * 2856 * Migrate a process or task denoted by @leader. If migrating a process, 2857 * the caller must be holding cgroup_threadgroup_rwsem. The caller is also 2858 * responsible for invoking cgroup_migrate_add_src() and 2859 * cgroup_migrate_prepare_dst() on the targets before invoking this 2860 * function and following up with cgroup_migrate_finish(). 2861 * 2862 * As long as a controller's ->can_attach() doesn't fail, this function is 2863 * guaranteed to succeed. This means that, excluding ->can_attach() 2864 * failure, when migrating multiple targets, the success or failure can be 2865 * decided for all targets by invoking group_migrate_prepare_dst() before 2866 * actually starting migrating. 2867 */ 2868 int cgroup_migrate(struct task_struct *leader, bool threadgroup, 2869 struct cgroup_mgctx *mgctx) 2870 { 2871 struct task_struct *task; 2872 2873 /* 2874 * Prevent freeing of tasks while we take a snapshot. Tasks that are 2875 * already PF_EXITING could be freed from underneath us unless we 2876 * take an rcu_read_lock. 2877 */ 2878 spin_lock_irq(&css_set_lock); 2879 task = leader; 2880 do { 2881 cgroup_migrate_add_task(task, mgctx); 2882 if (!threadgroup) 2883 break; 2884 } while_each_thread(leader, task); 2885 spin_unlock_irq(&css_set_lock); 2886 2887 return cgroup_migrate_execute(mgctx); 2888 } 2889 2890 /** 2891 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup 2892 * @dst_cgrp: the cgroup to attach to 2893 * @leader: the task or the leader of the threadgroup to be attached 2894 * @threadgroup: attach the whole threadgroup? 2895 * 2896 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem. 2897 */ 2898 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader, 2899 bool threadgroup) 2900 { 2901 DEFINE_CGROUP_MGCTX(mgctx); 2902 struct task_struct *task; 2903 int ret = 0; 2904 2905 /* look up all src csets */ 2906 spin_lock_irq(&css_set_lock); 2907 rcu_read_lock(); 2908 task = leader; 2909 do { 2910 cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx); 2911 if (!threadgroup) 2912 break; 2913 } while_each_thread(leader, task); 2914 rcu_read_unlock(); 2915 spin_unlock_irq(&css_set_lock); 2916 2917 /* prepare dst csets and commit */ 2918 ret = cgroup_migrate_prepare_dst(&mgctx); 2919 if (!ret) 2920 ret = cgroup_migrate(leader, threadgroup, &mgctx); 2921 2922 cgroup_migrate_finish(&mgctx); 2923 2924 if (!ret) 2925 TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup); 2926 2927 return ret; 2928 } 2929 2930 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup, 2931 bool *threadgroup_locked) 2932 { 2933 struct task_struct *tsk; 2934 pid_t pid; 2935 2936 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0) 2937 return ERR_PTR(-EINVAL); 2938 2939 /* 2940 * If we migrate a single thread, we don't care about threadgroup 2941 * stability. If the thread is `current`, it won't exit(2) under our 2942 * hands or change PID through exec(2). We exclude 2943 * cgroup_update_dfl_csses and other cgroup_{proc,thread}s_write 2944 * callers by cgroup_mutex. 2945 * Therefore, we can skip the global lock. 2946 */ 2947 lockdep_assert_held(&cgroup_mutex); 2948 *threadgroup_locked = pid || threadgroup; 2949 cgroup_attach_lock(*threadgroup_locked); 2950 2951 rcu_read_lock(); 2952 if (pid) { 2953 tsk = find_task_by_vpid(pid); 2954 if (!tsk) { 2955 tsk = ERR_PTR(-ESRCH); 2956 goto out_unlock_threadgroup; 2957 } 2958 } else { 2959 tsk = current; 2960 } 2961 2962 if (threadgroup) 2963 tsk = tsk->group_leader; 2964 2965 /* 2966 * kthreads may acquire PF_NO_SETAFFINITY during initialization. 2967 * If userland migrates such a kthread to a non-root cgroup, it can 2968 * become trapped in a cpuset, or RT kthread may be born in a 2969 * cgroup with no rt_runtime allocated. Just say no. 2970 */ 2971 if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) { 2972 tsk = ERR_PTR(-EINVAL); 2973 goto out_unlock_threadgroup; 2974 } 2975 2976 get_task_struct(tsk); 2977 goto out_unlock_rcu; 2978 2979 out_unlock_threadgroup: 2980 cgroup_attach_unlock(*threadgroup_locked); 2981 *threadgroup_locked = false; 2982 out_unlock_rcu: 2983 rcu_read_unlock(); 2984 return tsk; 2985 } 2986 2987 void cgroup_procs_write_finish(struct task_struct *task, bool threadgroup_locked) 2988 { 2989 struct cgroup_subsys *ss; 2990 int ssid; 2991 2992 /* release reference from cgroup_procs_write_start() */ 2993 put_task_struct(task); 2994 2995 cgroup_attach_unlock(threadgroup_locked); 2996 2997 for_each_subsys(ss, ssid) 2998 if (ss->post_attach) 2999 ss->post_attach(); 3000 } 3001 3002 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask) 3003 { 3004 struct cgroup_subsys *ss; 3005 bool printed = false; 3006 int ssid; 3007 3008 do_each_subsys_mask(ss, ssid, ss_mask) { 3009 if (printed) 3010 seq_putc(seq, ' '); 3011 seq_puts(seq, ss->name); 3012 printed = true; 3013 } while_each_subsys_mask(); 3014 if (printed) 3015 seq_putc(seq, '\n'); 3016 } 3017 3018 /* show controllers which are enabled from the parent */ 3019 static int cgroup_controllers_show(struct seq_file *seq, void *v) 3020 { 3021 struct cgroup *cgrp = seq_css(seq)->cgroup; 3022 3023 cgroup_print_ss_mask(seq, cgroup_control(cgrp)); 3024 return 0; 3025 } 3026 3027 /* show controllers which are enabled for a given cgroup's children */ 3028 static int cgroup_subtree_control_show(struct seq_file *seq, void *v) 3029 { 3030 struct cgroup *cgrp = seq_css(seq)->cgroup; 3031 3032 cgroup_print_ss_mask(seq, cgrp->subtree_control); 3033 return 0; 3034 } 3035 3036 /** 3037 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy 3038 * @cgrp: root of the subtree to update csses for 3039 * 3040 * @cgrp's control masks have changed and its subtree's css associations 3041 * need to be updated accordingly. This function looks up all css_sets 3042 * which are attached to the subtree, creates the matching updated css_sets 3043 * and migrates the tasks to the new ones. 3044 */ 3045 static int cgroup_update_dfl_csses(struct cgroup *cgrp) 3046 { 3047 DEFINE_CGROUP_MGCTX(mgctx); 3048 struct cgroup_subsys_state *d_css; 3049 struct cgroup *dsct; 3050 struct css_set *src_cset; 3051 bool has_tasks; 3052 int ret; 3053 3054 lockdep_assert_held(&cgroup_mutex); 3055 3056 /* look up all csses currently attached to @cgrp's subtree */ 3057 spin_lock_irq(&css_set_lock); 3058 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 3059 struct cgrp_cset_link *link; 3060 3061 /* 3062 * As cgroup_update_dfl_csses() is only called by 3063 * cgroup_apply_control(). The csses associated with the 3064 * given cgrp will not be affected by changes made to 3065 * its subtree_control file. We can skip them. 3066 */ 3067 if (dsct == cgrp) 3068 continue; 3069 3070 list_for_each_entry(link, &dsct->cset_links, cset_link) 3071 cgroup_migrate_add_src(link->cset, dsct, &mgctx); 3072 } 3073 spin_unlock_irq(&css_set_lock); 3074 3075 /* 3076 * We need to write-lock threadgroup_rwsem while migrating tasks. 3077 * However, if there are no source csets for @cgrp, changing its 3078 * controllers isn't gonna produce any task migrations and the 3079 * write-locking can be skipped safely. 3080 */ 3081 has_tasks = !list_empty(&mgctx.preloaded_src_csets); 3082 cgroup_attach_lock(has_tasks); 3083 3084 /* NULL dst indicates self on default hierarchy */ 3085 ret = cgroup_migrate_prepare_dst(&mgctx); 3086 if (ret) 3087 goto out_finish; 3088 3089 spin_lock_irq(&css_set_lock); 3090 list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, 3091 mg_src_preload_node) { 3092 struct task_struct *task, *ntask; 3093 3094 /* all tasks in src_csets need to be migrated */ 3095 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list) 3096 cgroup_migrate_add_task(task, &mgctx); 3097 } 3098 spin_unlock_irq(&css_set_lock); 3099 3100 ret = cgroup_migrate_execute(&mgctx); 3101 out_finish: 3102 cgroup_migrate_finish(&mgctx); 3103 cgroup_attach_unlock(has_tasks); 3104 return ret; 3105 } 3106 3107 /** 3108 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses 3109 * @cgrp: root of the target subtree 3110 * 3111 * Because css offlining is asynchronous, userland may try to re-enable a 3112 * controller while the previous css is still around. This function grabs 3113 * cgroup_mutex and drains the previous css instances of @cgrp's subtree. 3114 */ 3115 void cgroup_lock_and_drain_offline(struct cgroup *cgrp) 3116 __acquires(&cgroup_mutex) 3117 { 3118 struct cgroup *dsct; 3119 struct cgroup_subsys_state *d_css; 3120 struct cgroup_subsys *ss; 3121 int ssid; 3122 3123 restart: 3124 cgroup_lock(); 3125 3126 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 3127 for_each_subsys(ss, ssid) { 3128 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 3129 DEFINE_WAIT(wait); 3130 3131 if (!css || !percpu_ref_is_dying(&css->refcnt)) 3132 continue; 3133 3134 cgroup_get_live(dsct); 3135 prepare_to_wait(&dsct->offline_waitq, &wait, 3136 TASK_UNINTERRUPTIBLE); 3137 3138 cgroup_unlock(); 3139 schedule(); 3140 finish_wait(&dsct->offline_waitq, &wait); 3141 3142 cgroup_put(dsct); 3143 goto restart; 3144 } 3145 } 3146 } 3147 3148 /** 3149 * cgroup_save_control - save control masks and dom_cgrp of a subtree 3150 * @cgrp: root of the target subtree 3151 * 3152 * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the 3153 * respective old_ prefixed fields for @cgrp's subtree including @cgrp 3154 * itself. 3155 */ 3156 static void cgroup_save_control(struct cgroup *cgrp) 3157 { 3158 struct cgroup *dsct; 3159 struct cgroup_subsys_state *d_css; 3160 3161 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 3162 dsct->old_subtree_control = dsct->subtree_control; 3163 dsct->old_subtree_ss_mask = dsct->subtree_ss_mask; 3164 dsct->old_dom_cgrp = dsct->dom_cgrp; 3165 } 3166 } 3167 3168 /** 3169 * cgroup_propagate_control - refresh control masks of a subtree 3170 * @cgrp: root of the target subtree 3171 * 3172 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches 3173 * ->subtree_control and propagate controller availability through the 3174 * subtree so that descendants don't have unavailable controllers enabled. 3175 */ 3176 static void cgroup_propagate_control(struct cgroup *cgrp) 3177 { 3178 struct cgroup *dsct; 3179 struct cgroup_subsys_state *d_css; 3180 3181 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 3182 dsct->subtree_control &= cgroup_control(dsct); 3183 dsct->subtree_ss_mask = 3184 cgroup_calc_subtree_ss_mask(dsct->subtree_control, 3185 cgroup_ss_mask(dsct)); 3186 } 3187 } 3188 3189 /** 3190 * cgroup_restore_control - restore control masks and dom_cgrp of a subtree 3191 * @cgrp: root of the target subtree 3192 * 3193 * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the 3194 * respective old_ prefixed fields for @cgrp's subtree including @cgrp 3195 * itself. 3196 */ 3197 static void cgroup_restore_control(struct cgroup *cgrp) 3198 { 3199 struct cgroup *dsct; 3200 struct cgroup_subsys_state *d_css; 3201 3202 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 3203 dsct->subtree_control = dsct->old_subtree_control; 3204 dsct->subtree_ss_mask = dsct->old_subtree_ss_mask; 3205 dsct->dom_cgrp = dsct->old_dom_cgrp; 3206 } 3207 } 3208 3209 static bool css_visible(struct cgroup_subsys_state *css) 3210 { 3211 struct cgroup_subsys *ss = css->ss; 3212 struct cgroup *cgrp = css->cgroup; 3213 3214 if (cgroup_control(cgrp) & (1 << ss->id)) 3215 return true; 3216 if (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) 3217 return false; 3218 return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl; 3219 } 3220 3221 /** 3222 * cgroup_apply_control_enable - enable or show csses according to control 3223 * @cgrp: root of the target subtree 3224 * 3225 * Walk @cgrp's subtree and create new csses or make the existing ones 3226 * visible. A css is created invisible if it's being implicitly enabled 3227 * through dependency. An invisible css is made visible when the userland 3228 * explicitly enables it. 3229 * 3230 * Returns 0 on success, -errno on failure. On failure, csses which have 3231 * been processed already aren't cleaned up. The caller is responsible for 3232 * cleaning up with cgroup_apply_control_disable(). 3233 */ 3234 static int cgroup_apply_control_enable(struct cgroup *cgrp) 3235 { 3236 struct cgroup *dsct; 3237 struct cgroup_subsys_state *d_css; 3238 struct cgroup_subsys *ss; 3239 int ssid, ret; 3240 3241 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 3242 for_each_subsys(ss, ssid) { 3243 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 3244 3245 if (!(cgroup_ss_mask(dsct) & (1 << ss->id))) 3246 continue; 3247 3248 if (!css) { 3249 css = css_create(dsct, ss); 3250 if (IS_ERR(css)) 3251 return PTR_ERR(css); 3252 } 3253 3254 WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt)); 3255 3256 if (css_visible(css)) { 3257 ret = css_populate_dir(css); 3258 if (ret) 3259 return ret; 3260 } 3261 } 3262 } 3263 3264 return 0; 3265 } 3266 3267 /** 3268 * cgroup_apply_control_disable - kill or hide csses according to control 3269 * @cgrp: root of the target subtree 3270 * 3271 * Walk @cgrp's subtree and kill and hide csses so that they match 3272 * cgroup_ss_mask() and cgroup_visible_mask(). 3273 * 3274 * A css is hidden when the userland requests it to be disabled while other 3275 * subsystems are still depending on it. The css must not actively control 3276 * resources and be in the vanilla state if it's made visible again later. 3277 * Controllers which may be depended upon should provide ->css_reset() for 3278 * this purpose. 3279 */ 3280 static void cgroup_apply_control_disable(struct cgroup *cgrp) 3281 { 3282 struct cgroup *dsct; 3283 struct cgroup_subsys_state *d_css; 3284 struct cgroup_subsys *ss; 3285 int ssid; 3286 3287 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 3288 for_each_subsys(ss, ssid) { 3289 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 3290 3291 if (!css) 3292 continue; 3293 3294 WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt)); 3295 3296 if (css->parent && 3297 !(cgroup_ss_mask(dsct) & (1 << ss->id))) { 3298 kill_css(css); 3299 } else if (!css_visible(css)) { 3300 css_clear_dir(css); 3301 if (ss->css_reset) 3302 ss->css_reset(css); 3303 } 3304 } 3305 } 3306 } 3307 3308 /** 3309 * cgroup_apply_control - apply control mask updates to the subtree 3310 * @cgrp: root of the target subtree 3311 * 3312 * subsystems can be enabled and disabled in a subtree using the following 3313 * steps. 3314 * 3315 * 1. Call cgroup_save_control() to stash the current state. 3316 * 2. Update ->subtree_control masks in the subtree as desired. 3317 * 3. Call cgroup_apply_control() to apply the changes. 3318 * 4. Optionally perform other related operations. 3319 * 5. Call cgroup_finalize_control() to finish up. 3320 * 3321 * This function implements step 3 and propagates the mask changes 3322 * throughout @cgrp's subtree, updates csses accordingly and perform 3323 * process migrations. 3324 */ 3325 static int cgroup_apply_control(struct cgroup *cgrp) 3326 { 3327 int ret; 3328 3329 cgroup_propagate_control(cgrp); 3330 3331 ret = cgroup_apply_control_enable(cgrp); 3332 if (ret) 3333 return ret; 3334 3335 /* 3336 * At this point, cgroup_e_css_by_mask() results reflect the new csses 3337 * making the following cgroup_update_dfl_csses() properly update 3338 * css associations of all tasks in the subtree. 3339 */ 3340 return cgroup_update_dfl_csses(cgrp); 3341 } 3342 3343 /** 3344 * cgroup_finalize_control - finalize control mask update 3345 * @cgrp: root of the target subtree 3346 * @ret: the result of the update 3347 * 3348 * Finalize control mask update. See cgroup_apply_control() for more info. 3349 */ 3350 static void cgroup_finalize_control(struct cgroup *cgrp, int ret) 3351 { 3352 if (ret) { 3353 cgroup_restore_control(cgrp); 3354 cgroup_propagate_control(cgrp); 3355 } 3356 3357 cgroup_apply_control_disable(cgrp); 3358 } 3359 3360 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable) 3361 { 3362 u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask; 3363 3364 /* if nothing is getting enabled, nothing to worry about */ 3365 if (!enable) 3366 return 0; 3367 3368 /* can @cgrp host any resources? */ 3369 if (!cgroup_is_valid_domain(cgrp->dom_cgrp)) 3370 return -EOPNOTSUPP; 3371 3372 /* mixables don't care */ 3373 if (cgroup_is_mixable(cgrp)) 3374 return 0; 3375 3376 if (domain_enable) { 3377 /* can't enable domain controllers inside a thread subtree */ 3378 if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp)) 3379 return -EOPNOTSUPP; 3380 } else { 3381 /* 3382 * Threaded controllers can handle internal competitions 3383 * and are always allowed inside a (prospective) thread 3384 * subtree. 3385 */ 3386 if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp)) 3387 return 0; 3388 } 3389 3390 /* 3391 * Controllers can't be enabled for a cgroup with tasks to avoid 3392 * child cgroups competing against tasks. 3393 */ 3394 if (cgroup_has_tasks(cgrp)) 3395 return -EBUSY; 3396 3397 return 0; 3398 } 3399 3400 /* change the enabled child controllers for a cgroup in the default hierarchy */ 3401 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of, 3402 char *buf, size_t nbytes, 3403 loff_t off) 3404 { 3405 u16 enable = 0, disable = 0; 3406 struct cgroup *cgrp, *child; 3407 struct cgroup_subsys *ss; 3408 char *tok; 3409 int ssid, ret; 3410 3411 /* 3412 * Parse input - space separated list of subsystem names prefixed 3413 * with either + or -. 3414 */ 3415 buf = strstrip(buf); 3416 while ((tok = strsep(&buf, " "))) { 3417 if (tok[0] == '\0') 3418 continue; 3419 do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) { 3420 if (!cgroup_ssid_enabled(ssid) || 3421 strcmp(tok + 1, ss->name)) 3422 continue; 3423 3424 if (*tok == '+') { 3425 enable |= 1 << ssid; 3426 disable &= ~(1 << ssid); 3427 } else if (*tok == '-') { 3428 disable |= 1 << ssid; 3429 enable &= ~(1 << ssid); 3430 } else { 3431 return -EINVAL; 3432 } 3433 break; 3434 } while_each_subsys_mask(); 3435 if (ssid == CGROUP_SUBSYS_COUNT) 3436 return -EINVAL; 3437 } 3438 3439 cgrp = cgroup_kn_lock_live(of->kn, true); 3440 if (!cgrp) 3441 return -ENODEV; 3442 3443 for_each_subsys(ss, ssid) { 3444 if (enable & (1 << ssid)) { 3445 if (cgrp->subtree_control & (1 << ssid)) { 3446 enable &= ~(1 << ssid); 3447 continue; 3448 } 3449 3450 if (!(cgroup_control(cgrp) & (1 << ssid))) { 3451 ret = -ENOENT; 3452 goto out_unlock; 3453 } 3454 } else if (disable & (1 << ssid)) { 3455 if (!(cgrp->subtree_control & (1 << ssid))) { 3456 disable &= ~(1 << ssid); 3457 continue; 3458 } 3459 3460 /* a child has it enabled? */ 3461 cgroup_for_each_live_child(child, cgrp) { 3462 if (child->subtree_control & (1 << ssid)) { 3463 ret = -EBUSY; 3464 goto out_unlock; 3465 } 3466 } 3467 } 3468 } 3469 3470 if (!enable && !disable) { 3471 ret = 0; 3472 goto out_unlock; 3473 } 3474 3475 ret = cgroup_vet_subtree_control_enable(cgrp, enable); 3476 if (ret) 3477 goto out_unlock; 3478 3479 /* save and update control masks and prepare csses */ 3480 cgroup_save_control(cgrp); 3481 3482 cgrp->subtree_control |= enable; 3483 cgrp->subtree_control &= ~disable; 3484 3485 ret = cgroup_apply_control(cgrp); 3486 cgroup_finalize_control(cgrp, ret); 3487 if (ret) 3488 goto out_unlock; 3489 3490 kernfs_activate(cgrp->kn); 3491 out_unlock: 3492 cgroup_kn_unlock(of->kn); 3493 return ret ?: nbytes; 3494 } 3495 3496 /** 3497 * cgroup_enable_threaded - make @cgrp threaded 3498 * @cgrp: the target cgroup 3499 * 3500 * Called when "threaded" is written to the cgroup.type interface file and 3501 * tries to make @cgrp threaded and join the parent's resource domain. 3502 * This function is never called on the root cgroup as cgroup.type doesn't 3503 * exist on it. 3504 */ 3505 static int cgroup_enable_threaded(struct cgroup *cgrp) 3506 { 3507 struct cgroup *parent = cgroup_parent(cgrp); 3508 struct cgroup *dom_cgrp = parent->dom_cgrp; 3509 struct cgroup *dsct; 3510 struct cgroup_subsys_state *d_css; 3511 int ret; 3512 3513 lockdep_assert_held(&cgroup_mutex); 3514 3515 /* noop if already threaded */ 3516 if (cgroup_is_threaded(cgrp)) 3517 return 0; 3518 3519 /* 3520 * If @cgroup is populated or has domain controllers enabled, it 3521 * can't be switched. While the below cgroup_can_be_thread_root() 3522 * test can catch the same conditions, that's only when @parent is 3523 * not mixable, so let's check it explicitly. 3524 */ 3525 if (cgroup_is_populated(cgrp) || 3526 cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask) 3527 return -EOPNOTSUPP; 3528 3529 /* we're joining the parent's domain, ensure its validity */ 3530 if (!cgroup_is_valid_domain(dom_cgrp) || 3531 !cgroup_can_be_thread_root(dom_cgrp)) 3532 return -EOPNOTSUPP; 3533 3534 /* 3535 * The following shouldn't cause actual migrations and should 3536 * always succeed. 3537 */ 3538 cgroup_save_control(cgrp); 3539 3540 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) 3541 if (dsct == cgrp || cgroup_is_threaded(dsct)) 3542 dsct->dom_cgrp = dom_cgrp; 3543 3544 ret = cgroup_apply_control(cgrp); 3545 if (!ret) 3546 parent->nr_threaded_children++; 3547 3548 cgroup_finalize_control(cgrp, ret); 3549 return ret; 3550 } 3551 3552 static int cgroup_type_show(struct seq_file *seq, void *v) 3553 { 3554 struct cgroup *cgrp = seq_css(seq)->cgroup; 3555 3556 if (cgroup_is_threaded(cgrp)) 3557 seq_puts(seq, "threaded\n"); 3558 else if (!cgroup_is_valid_domain(cgrp)) 3559 seq_puts(seq, "domain invalid\n"); 3560 else if (cgroup_is_thread_root(cgrp)) 3561 seq_puts(seq, "domain threaded\n"); 3562 else 3563 seq_puts(seq, "domain\n"); 3564 3565 return 0; 3566 } 3567 3568 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf, 3569 size_t nbytes, loff_t off) 3570 { 3571 struct cgroup *cgrp; 3572 int ret; 3573 3574 /* only switching to threaded mode is supported */ 3575 if (strcmp(strstrip(buf), "threaded")) 3576 return -EINVAL; 3577 3578 /* drain dying csses before we re-apply (threaded) subtree control */ 3579 cgrp = cgroup_kn_lock_live(of->kn, true); 3580 if (!cgrp) 3581 return -ENOENT; 3582 3583 /* threaded can only be enabled */ 3584 ret = cgroup_enable_threaded(cgrp); 3585 3586 cgroup_kn_unlock(of->kn); 3587 return ret ?: nbytes; 3588 } 3589 3590 static int cgroup_max_descendants_show(struct seq_file *seq, void *v) 3591 { 3592 struct cgroup *cgrp = seq_css(seq)->cgroup; 3593 int descendants = READ_ONCE(cgrp->max_descendants); 3594 3595 if (descendants == INT_MAX) 3596 seq_puts(seq, "max\n"); 3597 else 3598 seq_printf(seq, "%d\n", descendants); 3599 3600 return 0; 3601 } 3602 3603 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of, 3604 char *buf, size_t nbytes, loff_t off) 3605 { 3606 struct cgroup *cgrp; 3607 int descendants; 3608 ssize_t ret; 3609 3610 buf = strstrip(buf); 3611 if (!strcmp(buf, "max")) { 3612 descendants = INT_MAX; 3613 } else { 3614 ret = kstrtoint(buf, 0, &descendants); 3615 if (ret) 3616 return ret; 3617 } 3618 3619 if (descendants < 0) 3620 return -ERANGE; 3621 3622 cgrp = cgroup_kn_lock_live(of->kn, false); 3623 if (!cgrp) 3624 return -ENOENT; 3625 3626 cgrp->max_descendants = descendants; 3627 3628 cgroup_kn_unlock(of->kn); 3629 3630 return nbytes; 3631 } 3632 3633 static int cgroup_max_depth_show(struct seq_file *seq, void *v) 3634 { 3635 struct cgroup *cgrp = seq_css(seq)->cgroup; 3636 int depth = READ_ONCE(cgrp->max_depth); 3637 3638 if (depth == INT_MAX) 3639 seq_puts(seq, "max\n"); 3640 else 3641 seq_printf(seq, "%d\n", depth); 3642 3643 return 0; 3644 } 3645 3646 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of, 3647 char *buf, size_t nbytes, loff_t off) 3648 { 3649 struct cgroup *cgrp; 3650 ssize_t ret; 3651 int depth; 3652 3653 buf = strstrip(buf); 3654 if (!strcmp(buf, "max")) { 3655 depth = INT_MAX; 3656 } else { 3657 ret = kstrtoint(buf, 0, &depth); 3658 if (ret) 3659 return ret; 3660 } 3661 3662 if (depth < 0) 3663 return -ERANGE; 3664 3665 cgrp = cgroup_kn_lock_live(of->kn, false); 3666 if (!cgrp) 3667 return -ENOENT; 3668 3669 cgrp->max_depth = depth; 3670 3671 cgroup_kn_unlock(of->kn); 3672 3673 return nbytes; 3674 } 3675 3676 static int cgroup_events_show(struct seq_file *seq, void *v) 3677 { 3678 struct cgroup *cgrp = seq_css(seq)->cgroup; 3679 3680 seq_printf(seq, "populated %d\n", cgroup_is_populated(cgrp)); 3681 seq_printf(seq, "frozen %d\n", test_bit(CGRP_FROZEN, &cgrp->flags)); 3682 3683 return 0; 3684 } 3685 3686 static int cgroup_stat_show(struct seq_file *seq, void *v) 3687 { 3688 struct cgroup *cgroup = seq_css(seq)->cgroup; 3689 3690 seq_printf(seq, "nr_descendants %d\n", 3691 cgroup->nr_descendants); 3692 seq_printf(seq, "nr_dying_descendants %d\n", 3693 cgroup->nr_dying_descendants); 3694 3695 return 0; 3696 } 3697 3698 static int __maybe_unused cgroup_extra_stat_show(struct seq_file *seq, 3699 struct cgroup *cgrp, int ssid) 3700 { 3701 struct cgroup_subsys *ss = cgroup_subsys[ssid]; 3702 struct cgroup_subsys_state *css; 3703 int ret; 3704 3705 if (!ss->css_extra_stat_show) 3706 return 0; 3707 3708 css = cgroup_tryget_css(cgrp, ss); 3709 if (!css) 3710 return 0; 3711 3712 ret = ss->css_extra_stat_show(seq, css); 3713 css_put(css); 3714 return ret; 3715 } 3716 3717 static int cpu_stat_show(struct seq_file *seq, void *v) 3718 { 3719 struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup; 3720 int ret = 0; 3721 3722 cgroup_base_stat_cputime_show(seq); 3723 #ifdef CONFIG_CGROUP_SCHED 3724 ret = cgroup_extra_stat_show(seq, cgrp, cpu_cgrp_id); 3725 #endif 3726 return ret; 3727 } 3728 3729 #ifdef CONFIG_PSI 3730 static int cgroup_io_pressure_show(struct seq_file *seq, void *v) 3731 { 3732 struct cgroup *cgrp = seq_css(seq)->cgroup; 3733 struct psi_group *psi = cgroup_psi(cgrp); 3734 3735 return psi_show(seq, psi, PSI_IO); 3736 } 3737 static int cgroup_memory_pressure_show(struct seq_file *seq, void *v) 3738 { 3739 struct cgroup *cgrp = seq_css(seq)->cgroup; 3740 struct psi_group *psi = cgroup_psi(cgrp); 3741 3742 return psi_show(seq, psi, PSI_MEM); 3743 } 3744 static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v) 3745 { 3746 struct cgroup *cgrp = seq_css(seq)->cgroup; 3747 struct psi_group *psi = cgroup_psi(cgrp); 3748 3749 return psi_show(seq, psi, PSI_CPU); 3750 } 3751 3752 static ssize_t pressure_write(struct kernfs_open_file *of, char *buf, 3753 size_t nbytes, enum psi_res res) 3754 { 3755 struct cgroup_file_ctx *ctx = of->priv; 3756 struct psi_trigger *new; 3757 struct cgroup *cgrp; 3758 struct psi_group *psi; 3759 3760 cgrp = cgroup_kn_lock_live(of->kn, false); 3761 if (!cgrp) 3762 return -ENODEV; 3763 3764 cgroup_get(cgrp); 3765 cgroup_kn_unlock(of->kn); 3766 3767 /* Allow only one trigger per file descriptor */ 3768 if (ctx->psi.trigger) { 3769 cgroup_put(cgrp); 3770 return -EBUSY; 3771 } 3772 3773 psi = cgroup_psi(cgrp); 3774 new = psi_trigger_create(psi, buf, res, of->file); 3775 if (IS_ERR(new)) { 3776 cgroup_put(cgrp); 3777 return PTR_ERR(new); 3778 } 3779 3780 smp_store_release(&ctx->psi.trigger, new); 3781 cgroup_put(cgrp); 3782 3783 return nbytes; 3784 } 3785 3786 static ssize_t cgroup_io_pressure_write(struct kernfs_open_file *of, 3787 char *buf, size_t nbytes, 3788 loff_t off) 3789 { 3790 return pressure_write(of, buf, nbytes, PSI_IO); 3791 } 3792 3793 static ssize_t cgroup_memory_pressure_write(struct kernfs_open_file *of, 3794 char *buf, size_t nbytes, 3795 loff_t off) 3796 { 3797 return pressure_write(of, buf, nbytes, PSI_MEM); 3798 } 3799 3800 static ssize_t cgroup_cpu_pressure_write(struct kernfs_open_file *of, 3801 char *buf, size_t nbytes, 3802 loff_t off) 3803 { 3804 return pressure_write(of, buf, nbytes, PSI_CPU); 3805 } 3806 3807 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 3808 static int cgroup_irq_pressure_show(struct seq_file *seq, void *v) 3809 { 3810 struct cgroup *cgrp = seq_css(seq)->cgroup; 3811 struct psi_group *psi = cgroup_psi(cgrp); 3812 3813 return psi_show(seq, psi, PSI_IRQ); 3814 } 3815 3816 static ssize_t cgroup_irq_pressure_write(struct kernfs_open_file *of, 3817 char *buf, size_t nbytes, 3818 loff_t off) 3819 { 3820 return pressure_write(of, buf, nbytes, PSI_IRQ); 3821 } 3822 #endif 3823 3824 static int cgroup_pressure_show(struct seq_file *seq, void *v) 3825 { 3826 struct cgroup *cgrp = seq_css(seq)->cgroup; 3827 struct psi_group *psi = cgroup_psi(cgrp); 3828 3829 seq_printf(seq, "%d\n", psi->enabled); 3830 3831 return 0; 3832 } 3833 3834 static ssize_t cgroup_pressure_write(struct kernfs_open_file *of, 3835 char *buf, size_t nbytes, 3836 loff_t off) 3837 { 3838 ssize_t ret; 3839 int enable; 3840 struct cgroup *cgrp; 3841 struct psi_group *psi; 3842 3843 ret = kstrtoint(strstrip(buf), 0, &enable); 3844 if (ret) 3845 return ret; 3846 3847 if (enable < 0 || enable > 1) 3848 return -ERANGE; 3849 3850 cgrp = cgroup_kn_lock_live(of->kn, false); 3851 if (!cgrp) 3852 return -ENOENT; 3853 3854 psi = cgroup_psi(cgrp); 3855 if (psi->enabled != enable) { 3856 int i; 3857 3858 /* show or hide {cpu,memory,io,irq}.pressure files */ 3859 for (i = 0; i < NR_PSI_RESOURCES; i++) 3860 cgroup_file_show(&cgrp->psi_files[i], enable); 3861 3862 psi->enabled = enable; 3863 if (enable) 3864 psi_cgroup_restart(psi); 3865 } 3866 3867 cgroup_kn_unlock(of->kn); 3868 3869 return nbytes; 3870 } 3871 3872 static __poll_t cgroup_pressure_poll(struct kernfs_open_file *of, 3873 poll_table *pt) 3874 { 3875 struct cgroup_file_ctx *ctx = of->priv; 3876 3877 return psi_trigger_poll(&ctx->psi.trigger, of->file, pt); 3878 } 3879 3880 static void cgroup_pressure_release(struct kernfs_open_file *of) 3881 { 3882 struct cgroup_file_ctx *ctx = of->priv; 3883 3884 psi_trigger_destroy(ctx->psi.trigger); 3885 } 3886 3887 bool cgroup_psi_enabled(void) 3888 { 3889 if (static_branch_likely(&psi_disabled)) 3890 return false; 3891 3892 return (cgroup_feature_disable_mask & (1 << OPT_FEATURE_PRESSURE)) == 0; 3893 } 3894 3895 #else /* CONFIG_PSI */ 3896 bool cgroup_psi_enabled(void) 3897 { 3898 return false; 3899 } 3900 3901 #endif /* CONFIG_PSI */ 3902 3903 static int cgroup_freeze_show(struct seq_file *seq, void *v) 3904 { 3905 struct cgroup *cgrp = seq_css(seq)->cgroup; 3906 3907 seq_printf(seq, "%d\n", cgrp->freezer.freeze); 3908 3909 return 0; 3910 } 3911 3912 static ssize_t cgroup_freeze_write(struct kernfs_open_file *of, 3913 char *buf, size_t nbytes, loff_t off) 3914 { 3915 struct cgroup *cgrp; 3916 ssize_t ret; 3917 int freeze; 3918 3919 ret = kstrtoint(strstrip(buf), 0, &freeze); 3920 if (ret) 3921 return ret; 3922 3923 if (freeze < 0 || freeze > 1) 3924 return -ERANGE; 3925 3926 cgrp = cgroup_kn_lock_live(of->kn, false); 3927 if (!cgrp) 3928 return -ENOENT; 3929 3930 cgroup_freeze(cgrp, freeze); 3931 3932 cgroup_kn_unlock(of->kn); 3933 3934 return nbytes; 3935 } 3936 3937 static void __cgroup_kill(struct cgroup *cgrp) 3938 { 3939 struct css_task_iter it; 3940 struct task_struct *task; 3941 3942 lockdep_assert_held(&cgroup_mutex); 3943 3944 spin_lock_irq(&css_set_lock); 3945 set_bit(CGRP_KILL, &cgrp->flags); 3946 spin_unlock_irq(&css_set_lock); 3947 3948 css_task_iter_start(&cgrp->self, CSS_TASK_ITER_PROCS | CSS_TASK_ITER_THREADED, &it); 3949 while ((task = css_task_iter_next(&it))) { 3950 /* Ignore kernel threads here. */ 3951 if (task->flags & PF_KTHREAD) 3952 continue; 3953 3954 /* Skip tasks that are already dying. */ 3955 if (__fatal_signal_pending(task)) 3956 continue; 3957 3958 send_sig(SIGKILL, task, 0); 3959 } 3960 css_task_iter_end(&it); 3961 3962 spin_lock_irq(&css_set_lock); 3963 clear_bit(CGRP_KILL, &cgrp->flags); 3964 spin_unlock_irq(&css_set_lock); 3965 } 3966 3967 static void cgroup_kill(struct cgroup *cgrp) 3968 { 3969 struct cgroup_subsys_state *css; 3970 struct cgroup *dsct; 3971 3972 lockdep_assert_held(&cgroup_mutex); 3973 3974 cgroup_for_each_live_descendant_pre(dsct, css, cgrp) 3975 __cgroup_kill(dsct); 3976 } 3977 3978 static ssize_t cgroup_kill_write(struct kernfs_open_file *of, char *buf, 3979 size_t nbytes, loff_t off) 3980 { 3981 ssize_t ret = 0; 3982 int kill; 3983 struct cgroup *cgrp; 3984 3985 ret = kstrtoint(strstrip(buf), 0, &kill); 3986 if (ret) 3987 return ret; 3988 3989 if (kill != 1) 3990 return -ERANGE; 3991 3992 cgrp = cgroup_kn_lock_live(of->kn, false); 3993 if (!cgrp) 3994 return -ENOENT; 3995 3996 /* 3997 * Killing is a process directed operation, i.e. the whole thread-group 3998 * is taken down so act like we do for cgroup.procs and only make this 3999 * writable in non-threaded cgroups. 4000 */ 4001 if (cgroup_is_threaded(cgrp)) 4002 ret = -EOPNOTSUPP; 4003 else 4004 cgroup_kill(cgrp); 4005 4006 cgroup_kn_unlock(of->kn); 4007 4008 return ret ?: nbytes; 4009 } 4010 4011 static int cgroup_file_open(struct kernfs_open_file *of) 4012 { 4013 struct cftype *cft = of_cft(of); 4014 struct cgroup_file_ctx *ctx; 4015 int ret; 4016 4017 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 4018 if (!ctx) 4019 return -ENOMEM; 4020 4021 ctx->ns = current->nsproxy->cgroup_ns; 4022 get_cgroup_ns(ctx->ns); 4023 of->priv = ctx; 4024 4025 if (!cft->open) 4026 return 0; 4027 4028 ret = cft->open(of); 4029 if (ret) { 4030 put_cgroup_ns(ctx->ns); 4031 kfree(ctx); 4032 } 4033 return ret; 4034 } 4035 4036 static void cgroup_file_release(struct kernfs_open_file *of) 4037 { 4038 struct cftype *cft = of_cft(of); 4039 struct cgroup_file_ctx *ctx = of->priv; 4040 4041 if (cft->release) 4042 cft->release(of); 4043 put_cgroup_ns(ctx->ns); 4044 kfree(ctx); 4045 } 4046 4047 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf, 4048 size_t nbytes, loff_t off) 4049 { 4050 struct cgroup_file_ctx *ctx = of->priv; 4051 struct cgroup *cgrp = of->kn->parent->priv; 4052 struct cftype *cft = of_cft(of); 4053 struct cgroup_subsys_state *css; 4054 int ret; 4055 4056 if (!nbytes) 4057 return 0; 4058 4059 /* 4060 * If namespaces are delegation boundaries, disallow writes to 4061 * files in an non-init namespace root from inside the namespace 4062 * except for the files explicitly marked delegatable - 4063 * cgroup.procs and cgroup.subtree_control. 4064 */ 4065 if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) && 4066 !(cft->flags & CFTYPE_NS_DELEGATABLE) && 4067 ctx->ns != &init_cgroup_ns && ctx->ns->root_cset->dfl_cgrp == cgrp) 4068 return -EPERM; 4069 4070 if (cft->write) 4071 return cft->write(of, buf, nbytes, off); 4072 4073 /* 4074 * kernfs guarantees that a file isn't deleted with operations in 4075 * flight, which means that the matching css is and stays alive and 4076 * doesn't need to be pinned. The RCU locking is not necessary 4077 * either. It's just for the convenience of using cgroup_css(). 4078 */ 4079 rcu_read_lock(); 4080 css = cgroup_css(cgrp, cft->ss); 4081 rcu_read_unlock(); 4082 4083 if (cft->write_u64) { 4084 unsigned long long v; 4085 ret = kstrtoull(buf, 0, &v); 4086 if (!ret) 4087 ret = cft->write_u64(css, cft, v); 4088 } else if (cft->write_s64) { 4089 long long v; 4090 ret = kstrtoll(buf, 0, &v); 4091 if (!ret) 4092 ret = cft->write_s64(css, cft, v); 4093 } else { 4094 ret = -EINVAL; 4095 } 4096 4097 return ret ?: nbytes; 4098 } 4099 4100 static __poll_t cgroup_file_poll(struct kernfs_open_file *of, poll_table *pt) 4101 { 4102 struct cftype *cft = of_cft(of); 4103 4104 if (cft->poll) 4105 return cft->poll(of, pt); 4106 4107 return kernfs_generic_poll(of, pt); 4108 } 4109 4110 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos) 4111 { 4112 return seq_cft(seq)->seq_start(seq, ppos); 4113 } 4114 4115 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos) 4116 { 4117 return seq_cft(seq)->seq_next(seq, v, ppos); 4118 } 4119 4120 static void cgroup_seqfile_stop(struct seq_file *seq, void *v) 4121 { 4122 if (seq_cft(seq)->seq_stop) 4123 seq_cft(seq)->seq_stop(seq, v); 4124 } 4125 4126 static int cgroup_seqfile_show(struct seq_file *m, void *arg) 4127 { 4128 struct cftype *cft = seq_cft(m); 4129 struct cgroup_subsys_state *css = seq_css(m); 4130 4131 if (cft->seq_show) 4132 return cft->seq_show(m, arg); 4133 4134 if (cft->read_u64) 4135 seq_printf(m, "%llu\n", cft->read_u64(css, cft)); 4136 else if (cft->read_s64) 4137 seq_printf(m, "%lld\n", cft->read_s64(css, cft)); 4138 else 4139 return -EINVAL; 4140 return 0; 4141 } 4142 4143 static struct kernfs_ops cgroup_kf_single_ops = { 4144 .atomic_write_len = PAGE_SIZE, 4145 .open = cgroup_file_open, 4146 .release = cgroup_file_release, 4147 .write = cgroup_file_write, 4148 .poll = cgroup_file_poll, 4149 .seq_show = cgroup_seqfile_show, 4150 }; 4151 4152 static struct kernfs_ops cgroup_kf_ops = { 4153 .atomic_write_len = PAGE_SIZE, 4154 .open = cgroup_file_open, 4155 .release = cgroup_file_release, 4156 .write = cgroup_file_write, 4157 .poll = cgroup_file_poll, 4158 .seq_start = cgroup_seqfile_start, 4159 .seq_next = cgroup_seqfile_next, 4160 .seq_stop = cgroup_seqfile_stop, 4161 .seq_show = cgroup_seqfile_show, 4162 }; 4163 4164 /* set uid and gid of cgroup dirs and files to that of the creator */ 4165 static int cgroup_kn_set_ugid(struct kernfs_node *kn) 4166 { 4167 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID, 4168 .ia_uid = current_fsuid(), 4169 .ia_gid = current_fsgid(), }; 4170 4171 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) && 4172 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID)) 4173 return 0; 4174 4175 return kernfs_setattr(kn, &iattr); 4176 } 4177 4178 static void cgroup_file_notify_timer(struct timer_list *timer) 4179 { 4180 cgroup_file_notify(container_of(timer, struct cgroup_file, 4181 notify_timer)); 4182 } 4183 4184 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp, 4185 struct cftype *cft) 4186 { 4187 char name[CGROUP_FILE_NAME_MAX]; 4188 struct kernfs_node *kn; 4189 struct lock_class_key *key = NULL; 4190 int ret; 4191 4192 #ifdef CONFIG_DEBUG_LOCK_ALLOC 4193 key = &cft->lockdep_key; 4194 #endif 4195 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name), 4196 cgroup_file_mode(cft), 4197 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 4198 0, cft->kf_ops, cft, 4199 NULL, key); 4200 if (IS_ERR(kn)) 4201 return PTR_ERR(kn); 4202 4203 ret = cgroup_kn_set_ugid(kn); 4204 if (ret) { 4205 kernfs_remove(kn); 4206 return ret; 4207 } 4208 4209 if (cft->file_offset) { 4210 struct cgroup_file *cfile = (void *)css + cft->file_offset; 4211 4212 timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0); 4213 4214 spin_lock_irq(&cgroup_file_kn_lock); 4215 cfile->kn = kn; 4216 spin_unlock_irq(&cgroup_file_kn_lock); 4217 } 4218 4219 return 0; 4220 } 4221 4222 /** 4223 * cgroup_addrm_files - add or remove files to a cgroup directory 4224 * @css: the target css 4225 * @cgrp: the target cgroup (usually css->cgroup) 4226 * @cfts: array of cftypes to be added 4227 * @is_add: whether to add or remove 4228 * 4229 * Depending on @is_add, add or remove files defined by @cfts on @cgrp. 4230 * For removals, this function never fails. 4231 */ 4232 static int cgroup_addrm_files(struct cgroup_subsys_state *css, 4233 struct cgroup *cgrp, struct cftype cfts[], 4234 bool is_add) 4235 { 4236 struct cftype *cft, *cft_end = NULL; 4237 int ret = 0; 4238 4239 lockdep_assert_held(&cgroup_mutex); 4240 4241 restart: 4242 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) { 4243 /* does cft->flags tell us to skip this file on @cgrp? */ 4244 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp)) 4245 continue; 4246 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp)) 4247 continue; 4248 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp)) 4249 continue; 4250 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp)) 4251 continue; 4252 if ((cft->flags & CFTYPE_DEBUG) && !cgroup_debug) 4253 continue; 4254 if (is_add) { 4255 ret = cgroup_add_file(css, cgrp, cft); 4256 if (ret) { 4257 pr_warn("%s: failed to add %s, err=%d\n", 4258 __func__, cft->name, ret); 4259 cft_end = cft; 4260 is_add = false; 4261 goto restart; 4262 } 4263 } else { 4264 cgroup_rm_file(cgrp, cft); 4265 } 4266 } 4267 return ret; 4268 } 4269 4270 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add) 4271 { 4272 struct cgroup_subsys *ss = cfts[0].ss; 4273 struct cgroup *root = &ss->root->cgrp; 4274 struct cgroup_subsys_state *css; 4275 int ret = 0; 4276 4277 lockdep_assert_held(&cgroup_mutex); 4278 4279 /* add/rm files for all cgroups created before */ 4280 css_for_each_descendant_pre(css, cgroup_css(root, ss)) { 4281 struct cgroup *cgrp = css->cgroup; 4282 4283 if (!(css->flags & CSS_VISIBLE)) 4284 continue; 4285 4286 ret = cgroup_addrm_files(css, cgrp, cfts, is_add); 4287 if (ret) 4288 break; 4289 } 4290 4291 if (is_add && !ret) 4292 kernfs_activate(root->kn); 4293 return ret; 4294 } 4295 4296 static void cgroup_exit_cftypes(struct cftype *cfts) 4297 { 4298 struct cftype *cft; 4299 4300 for (cft = cfts; cft->name[0] != '\0'; cft++) { 4301 /* free copy for custom atomic_write_len, see init_cftypes() */ 4302 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) 4303 kfree(cft->kf_ops); 4304 cft->kf_ops = NULL; 4305 cft->ss = NULL; 4306 4307 /* revert flags set by cgroup core while adding @cfts */ 4308 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL | 4309 __CFTYPE_ADDED); 4310 } 4311 } 4312 4313 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4314 { 4315 struct cftype *cft; 4316 int ret = 0; 4317 4318 for (cft = cfts; cft->name[0] != '\0'; cft++) { 4319 struct kernfs_ops *kf_ops; 4320 4321 WARN_ON(cft->ss || cft->kf_ops); 4322 4323 if (cft->flags & __CFTYPE_ADDED) { 4324 ret = -EBUSY; 4325 break; 4326 } 4327 4328 if (cft->seq_start) 4329 kf_ops = &cgroup_kf_ops; 4330 else 4331 kf_ops = &cgroup_kf_single_ops; 4332 4333 /* 4334 * Ugh... if @cft wants a custom max_write_len, we need to 4335 * make a copy of kf_ops to set its atomic_write_len. 4336 */ 4337 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) { 4338 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL); 4339 if (!kf_ops) { 4340 ret = -ENOMEM; 4341 break; 4342 } 4343 kf_ops->atomic_write_len = cft->max_write_len; 4344 } 4345 4346 cft->kf_ops = kf_ops; 4347 cft->ss = ss; 4348 cft->flags |= __CFTYPE_ADDED; 4349 } 4350 4351 if (ret) 4352 cgroup_exit_cftypes(cfts); 4353 return ret; 4354 } 4355 4356 static int cgroup_rm_cftypes_locked(struct cftype *cfts) 4357 { 4358 lockdep_assert_held(&cgroup_mutex); 4359 4360 list_del(&cfts->node); 4361 cgroup_apply_cftypes(cfts, false); 4362 cgroup_exit_cftypes(cfts); 4363 return 0; 4364 } 4365 4366 /** 4367 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem 4368 * @cfts: zero-length name terminated array of cftypes 4369 * 4370 * Unregister @cfts. Files described by @cfts are removed from all 4371 * existing cgroups and all future cgroups won't have them either. This 4372 * function can be called anytime whether @cfts' subsys is attached or not. 4373 * 4374 * Returns 0 on successful unregistration, -ENOENT if @cfts is not 4375 * registered. 4376 */ 4377 int cgroup_rm_cftypes(struct cftype *cfts) 4378 { 4379 int ret; 4380 4381 if (!cfts || cfts[0].name[0] == '\0') 4382 return 0; 4383 4384 if (!(cfts[0].flags & __CFTYPE_ADDED)) 4385 return -ENOENT; 4386 4387 cgroup_lock(); 4388 ret = cgroup_rm_cftypes_locked(cfts); 4389 cgroup_unlock(); 4390 return ret; 4391 } 4392 4393 /** 4394 * cgroup_add_cftypes - add an array of cftypes to a subsystem 4395 * @ss: target cgroup subsystem 4396 * @cfts: zero-length name terminated array of cftypes 4397 * 4398 * Register @cfts to @ss. Files described by @cfts are created for all 4399 * existing cgroups to which @ss is attached and all future cgroups will 4400 * have them too. This function can be called anytime whether @ss is 4401 * attached or not. 4402 * 4403 * Returns 0 on successful registration, -errno on failure. Note that this 4404 * function currently returns 0 as long as @cfts registration is successful 4405 * even if some file creation attempts on existing cgroups fail. 4406 */ 4407 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4408 { 4409 int ret; 4410 4411 if (!cgroup_ssid_enabled(ss->id)) 4412 return 0; 4413 4414 if (!cfts || cfts[0].name[0] == '\0') 4415 return 0; 4416 4417 ret = cgroup_init_cftypes(ss, cfts); 4418 if (ret) 4419 return ret; 4420 4421 cgroup_lock(); 4422 4423 list_add_tail(&cfts->node, &ss->cfts); 4424 ret = cgroup_apply_cftypes(cfts, true); 4425 if (ret) 4426 cgroup_rm_cftypes_locked(cfts); 4427 4428 cgroup_unlock(); 4429 return ret; 4430 } 4431 4432 /** 4433 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy 4434 * @ss: target cgroup subsystem 4435 * @cfts: zero-length name terminated array of cftypes 4436 * 4437 * Similar to cgroup_add_cftypes() but the added files are only used for 4438 * the default hierarchy. 4439 */ 4440 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4441 { 4442 struct cftype *cft; 4443 4444 for (cft = cfts; cft && cft->name[0] != '\0'; cft++) 4445 cft->flags |= __CFTYPE_ONLY_ON_DFL; 4446 return cgroup_add_cftypes(ss, cfts); 4447 } 4448 4449 /** 4450 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies 4451 * @ss: target cgroup subsystem 4452 * @cfts: zero-length name terminated array of cftypes 4453 * 4454 * Similar to cgroup_add_cftypes() but the added files are only used for 4455 * the legacy hierarchies. 4456 */ 4457 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4458 { 4459 struct cftype *cft; 4460 4461 for (cft = cfts; cft && cft->name[0] != '\0'; cft++) 4462 cft->flags |= __CFTYPE_NOT_ON_DFL; 4463 return cgroup_add_cftypes(ss, cfts); 4464 } 4465 4466 /** 4467 * cgroup_file_notify - generate a file modified event for a cgroup_file 4468 * @cfile: target cgroup_file 4469 * 4470 * @cfile must have been obtained by setting cftype->file_offset. 4471 */ 4472 void cgroup_file_notify(struct cgroup_file *cfile) 4473 { 4474 unsigned long flags; 4475 4476 spin_lock_irqsave(&cgroup_file_kn_lock, flags); 4477 if (cfile->kn) { 4478 unsigned long last = cfile->notified_at; 4479 unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV; 4480 4481 if (time_in_range(jiffies, last, next)) { 4482 timer_reduce(&cfile->notify_timer, next); 4483 } else { 4484 kernfs_notify(cfile->kn); 4485 cfile->notified_at = jiffies; 4486 } 4487 } 4488 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags); 4489 } 4490 4491 /** 4492 * cgroup_file_show - show or hide a hidden cgroup file 4493 * @cfile: target cgroup_file obtained by setting cftype->file_offset 4494 * @show: whether to show or hide 4495 */ 4496 void cgroup_file_show(struct cgroup_file *cfile, bool show) 4497 { 4498 struct kernfs_node *kn; 4499 4500 spin_lock_irq(&cgroup_file_kn_lock); 4501 kn = cfile->kn; 4502 kernfs_get(kn); 4503 spin_unlock_irq(&cgroup_file_kn_lock); 4504 4505 if (kn) 4506 kernfs_show(kn, show); 4507 4508 kernfs_put(kn); 4509 } 4510 4511 /** 4512 * css_next_child - find the next child of a given css 4513 * @pos: the current position (%NULL to initiate traversal) 4514 * @parent: css whose children to walk 4515 * 4516 * This function returns the next child of @parent and should be called 4517 * under either cgroup_mutex or RCU read lock. The only requirement is 4518 * that @parent and @pos are accessible. The next sibling is guaranteed to 4519 * be returned regardless of their states. 4520 * 4521 * If a subsystem synchronizes ->css_online() and the start of iteration, a 4522 * css which finished ->css_online() is guaranteed to be visible in the 4523 * future iterations and will stay visible until the last reference is put. 4524 * A css which hasn't finished ->css_online() or already finished 4525 * ->css_offline() may show up during traversal. It's each subsystem's 4526 * responsibility to synchronize against on/offlining. 4527 */ 4528 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos, 4529 struct cgroup_subsys_state *parent) 4530 { 4531 struct cgroup_subsys_state *next; 4532 4533 cgroup_assert_mutex_or_rcu_locked(); 4534 4535 /* 4536 * @pos could already have been unlinked from the sibling list. 4537 * Once a cgroup is removed, its ->sibling.next is no longer 4538 * updated when its next sibling changes. CSS_RELEASED is set when 4539 * @pos is taken off list, at which time its next pointer is valid, 4540 * and, as releases are serialized, the one pointed to by the next 4541 * pointer is guaranteed to not have started release yet. This 4542 * implies that if we observe !CSS_RELEASED on @pos in this RCU 4543 * critical section, the one pointed to by its next pointer is 4544 * guaranteed to not have finished its RCU grace period even if we 4545 * have dropped rcu_read_lock() in-between iterations. 4546 * 4547 * If @pos has CSS_RELEASED set, its next pointer can't be 4548 * dereferenced; however, as each css is given a monotonically 4549 * increasing unique serial number and always appended to the 4550 * sibling list, the next one can be found by walking the parent's 4551 * children until the first css with higher serial number than 4552 * @pos's. While this path can be slower, it happens iff iteration 4553 * races against release and the race window is very small. 4554 */ 4555 if (!pos) { 4556 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling); 4557 } else if (likely(!(pos->flags & CSS_RELEASED))) { 4558 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling); 4559 } else { 4560 list_for_each_entry_rcu(next, &parent->children, sibling, 4561 lockdep_is_held(&cgroup_mutex)) 4562 if (next->serial_nr > pos->serial_nr) 4563 break; 4564 } 4565 4566 /* 4567 * @next, if not pointing to the head, can be dereferenced and is 4568 * the next sibling. 4569 */ 4570 if (&next->sibling != &parent->children) 4571 return next; 4572 return NULL; 4573 } 4574 4575 /** 4576 * css_next_descendant_pre - find the next descendant for pre-order walk 4577 * @pos: the current position (%NULL to initiate traversal) 4578 * @root: css whose descendants to walk 4579 * 4580 * To be used by css_for_each_descendant_pre(). Find the next descendant 4581 * to visit for pre-order traversal of @root's descendants. @root is 4582 * included in the iteration and the first node to be visited. 4583 * 4584 * While this function requires cgroup_mutex or RCU read locking, it 4585 * doesn't require the whole traversal to be contained in a single critical 4586 * section. This function will return the correct next descendant as long 4587 * as both @pos and @root are accessible and @pos is a descendant of @root. 4588 * 4589 * If a subsystem synchronizes ->css_online() and the start of iteration, a 4590 * css which finished ->css_online() is guaranteed to be visible in the 4591 * future iterations and will stay visible until the last reference is put. 4592 * A css which hasn't finished ->css_online() or already finished 4593 * ->css_offline() may show up during traversal. It's each subsystem's 4594 * responsibility to synchronize against on/offlining. 4595 */ 4596 struct cgroup_subsys_state * 4597 css_next_descendant_pre(struct cgroup_subsys_state *pos, 4598 struct cgroup_subsys_state *root) 4599 { 4600 struct cgroup_subsys_state *next; 4601 4602 cgroup_assert_mutex_or_rcu_locked(); 4603 4604 /* if first iteration, visit @root */ 4605 if (!pos) 4606 return root; 4607 4608 /* visit the first child if exists */ 4609 next = css_next_child(NULL, pos); 4610 if (next) 4611 return next; 4612 4613 /* no child, visit my or the closest ancestor's next sibling */ 4614 while (pos != root) { 4615 next = css_next_child(pos, pos->parent); 4616 if (next) 4617 return next; 4618 pos = pos->parent; 4619 } 4620 4621 return NULL; 4622 } 4623 EXPORT_SYMBOL_GPL(css_next_descendant_pre); 4624 4625 /** 4626 * css_rightmost_descendant - return the rightmost descendant of a css 4627 * @pos: css of interest 4628 * 4629 * Return the rightmost descendant of @pos. If there's no descendant, @pos 4630 * is returned. This can be used during pre-order traversal to skip 4631 * subtree of @pos. 4632 * 4633 * While this function requires cgroup_mutex or RCU read locking, it 4634 * doesn't require the whole traversal to be contained in a single critical 4635 * section. This function will return the correct rightmost descendant as 4636 * long as @pos is accessible. 4637 */ 4638 struct cgroup_subsys_state * 4639 css_rightmost_descendant(struct cgroup_subsys_state *pos) 4640 { 4641 struct cgroup_subsys_state *last, *tmp; 4642 4643 cgroup_assert_mutex_or_rcu_locked(); 4644 4645 do { 4646 last = pos; 4647 /* ->prev isn't RCU safe, walk ->next till the end */ 4648 pos = NULL; 4649 css_for_each_child(tmp, last) 4650 pos = tmp; 4651 } while (pos); 4652 4653 return last; 4654 } 4655 4656 static struct cgroup_subsys_state * 4657 css_leftmost_descendant(struct cgroup_subsys_state *pos) 4658 { 4659 struct cgroup_subsys_state *last; 4660 4661 do { 4662 last = pos; 4663 pos = css_next_child(NULL, pos); 4664 } while (pos); 4665 4666 return last; 4667 } 4668 4669 /** 4670 * css_next_descendant_post - find the next descendant for post-order walk 4671 * @pos: the current position (%NULL to initiate traversal) 4672 * @root: css whose descendants to walk 4673 * 4674 * To be used by css_for_each_descendant_post(). Find the next descendant 4675 * to visit for post-order traversal of @root's descendants. @root is 4676 * included in the iteration and the last node to be visited. 4677 * 4678 * While this function requires cgroup_mutex or RCU read locking, it 4679 * doesn't require the whole traversal to be contained in a single critical 4680 * section. This function will return the correct next descendant as long 4681 * as both @pos and @cgroup are accessible and @pos is a descendant of 4682 * @cgroup. 4683 * 4684 * If a subsystem synchronizes ->css_online() and the start of iteration, a 4685 * css which finished ->css_online() is guaranteed to be visible in the 4686 * future iterations and will stay visible until the last reference is put. 4687 * A css which hasn't finished ->css_online() or already finished 4688 * ->css_offline() may show up during traversal. It's each subsystem's 4689 * responsibility to synchronize against on/offlining. 4690 */ 4691 struct cgroup_subsys_state * 4692 css_next_descendant_post(struct cgroup_subsys_state *pos, 4693 struct cgroup_subsys_state *root) 4694 { 4695 struct cgroup_subsys_state *next; 4696 4697 cgroup_assert_mutex_or_rcu_locked(); 4698 4699 /* if first iteration, visit leftmost descendant which may be @root */ 4700 if (!pos) 4701 return css_leftmost_descendant(root); 4702 4703 /* if we visited @root, we're done */ 4704 if (pos == root) 4705 return NULL; 4706 4707 /* if there's an unvisited sibling, visit its leftmost descendant */ 4708 next = css_next_child(pos, pos->parent); 4709 if (next) 4710 return css_leftmost_descendant(next); 4711 4712 /* no sibling left, visit parent */ 4713 return pos->parent; 4714 } 4715 4716 /** 4717 * css_has_online_children - does a css have online children 4718 * @css: the target css 4719 * 4720 * Returns %true if @css has any online children; otherwise, %false. This 4721 * function can be called from any context but the caller is responsible 4722 * for synchronizing against on/offlining as necessary. 4723 */ 4724 bool css_has_online_children(struct cgroup_subsys_state *css) 4725 { 4726 struct cgroup_subsys_state *child; 4727 bool ret = false; 4728 4729 rcu_read_lock(); 4730 css_for_each_child(child, css) { 4731 if (child->flags & CSS_ONLINE) { 4732 ret = true; 4733 break; 4734 } 4735 } 4736 rcu_read_unlock(); 4737 return ret; 4738 } 4739 4740 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it) 4741 { 4742 struct list_head *l; 4743 struct cgrp_cset_link *link; 4744 struct css_set *cset; 4745 4746 lockdep_assert_held(&css_set_lock); 4747 4748 /* find the next threaded cset */ 4749 if (it->tcset_pos) { 4750 l = it->tcset_pos->next; 4751 4752 if (l != it->tcset_head) { 4753 it->tcset_pos = l; 4754 return container_of(l, struct css_set, 4755 threaded_csets_node); 4756 } 4757 4758 it->tcset_pos = NULL; 4759 } 4760 4761 /* find the next cset */ 4762 l = it->cset_pos; 4763 l = l->next; 4764 if (l == it->cset_head) { 4765 it->cset_pos = NULL; 4766 return NULL; 4767 } 4768 4769 if (it->ss) { 4770 cset = container_of(l, struct css_set, e_cset_node[it->ss->id]); 4771 } else { 4772 link = list_entry(l, struct cgrp_cset_link, cset_link); 4773 cset = link->cset; 4774 } 4775 4776 it->cset_pos = l; 4777 4778 /* initialize threaded css_set walking */ 4779 if (it->flags & CSS_TASK_ITER_THREADED) { 4780 if (it->cur_dcset) 4781 put_css_set_locked(it->cur_dcset); 4782 it->cur_dcset = cset; 4783 get_css_set(cset); 4784 4785 it->tcset_head = &cset->threaded_csets; 4786 it->tcset_pos = &cset->threaded_csets; 4787 } 4788 4789 return cset; 4790 } 4791 4792 /** 4793 * css_task_iter_advance_css_set - advance a task iterator to the next css_set 4794 * @it: the iterator to advance 4795 * 4796 * Advance @it to the next css_set to walk. 4797 */ 4798 static void css_task_iter_advance_css_set(struct css_task_iter *it) 4799 { 4800 struct css_set *cset; 4801 4802 lockdep_assert_held(&css_set_lock); 4803 4804 /* Advance to the next non-empty css_set and find first non-empty tasks list*/ 4805 while ((cset = css_task_iter_next_css_set(it))) { 4806 if (!list_empty(&cset->tasks)) { 4807 it->cur_tasks_head = &cset->tasks; 4808 break; 4809 } else if (!list_empty(&cset->mg_tasks)) { 4810 it->cur_tasks_head = &cset->mg_tasks; 4811 break; 4812 } else if (!list_empty(&cset->dying_tasks)) { 4813 it->cur_tasks_head = &cset->dying_tasks; 4814 break; 4815 } 4816 } 4817 if (!cset) { 4818 it->task_pos = NULL; 4819 return; 4820 } 4821 it->task_pos = it->cur_tasks_head->next; 4822 4823 /* 4824 * We don't keep css_sets locked across iteration steps and thus 4825 * need to take steps to ensure that iteration can be resumed after 4826 * the lock is re-acquired. Iteration is performed at two levels - 4827 * css_sets and tasks in them. 4828 * 4829 * Once created, a css_set never leaves its cgroup lists, so a 4830 * pinned css_set is guaranteed to stay put and we can resume 4831 * iteration afterwards. 4832 * 4833 * Tasks may leave @cset across iteration steps. This is resolved 4834 * by registering each iterator with the css_set currently being 4835 * walked and making css_set_move_task() advance iterators whose 4836 * next task is leaving. 4837 */ 4838 if (it->cur_cset) { 4839 list_del(&it->iters_node); 4840 put_css_set_locked(it->cur_cset); 4841 } 4842 get_css_set(cset); 4843 it->cur_cset = cset; 4844 list_add(&it->iters_node, &cset->task_iters); 4845 } 4846 4847 static void css_task_iter_skip(struct css_task_iter *it, 4848 struct task_struct *task) 4849 { 4850 lockdep_assert_held(&css_set_lock); 4851 4852 if (it->task_pos == &task->cg_list) { 4853 it->task_pos = it->task_pos->next; 4854 it->flags |= CSS_TASK_ITER_SKIPPED; 4855 } 4856 } 4857 4858 static void css_task_iter_advance(struct css_task_iter *it) 4859 { 4860 struct task_struct *task; 4861 4862 lockdep_assert_held(&css_set_lock); 4863 repeat: 4864 if (it->task_pos) { 4865 /* 4866 * Advance iterator to find next entry. We go through cset 4867 * tasks, mg_tasks and dying_tasks, when consumed we move onto 4868 * the next cset. 4869 */ 4870 if (it->flags & CSS_TASK_ITER_SKIPPED) 4871 it->flags &= ~CSS_TASK_ITER_SKIPPED; 4872 else 4873 it->task_pos = it->task_pos->next; 4874 4875 if (it->task_pos == &it->cur_cset->tasks) { 4876 it->cur_tasks_head = &it->cur_cset->mg_tasks; 4877 it->task_pos = it->cur_tasks_head->next; 4878 } 4879 if (it->task_pos == &it->cur_cset->mg_tasks) { 4880 it->cur_tasks_head = &it->cur_cset->dying_tasks; 4881 it->task_pos = it->cur_tasks_head->next; 4882 } 4883 if (it->task_pos == &it->cur_cset->dying_tasks) 4884 css_task_iter_advance_css_set(it); 4885 } else { 4886 /* called from start, proceed to the first cset */ 4887 css_task_iter_advance_css_set(it); 4888 } 4889 4890 if (!it->task_pos) 4891 return; 4892 4893 task = list_entry(it->task_pos, struct task_struct, cg_list); 4894 4895 if (it->flags & CSS_TASK_ITER_PROCS) { 4896 /* if PROCS, skip over tasks which aren't group leaders */ 4897 if (!thread_group_leader(task)) 4898 goto repeat; 4899 4900 /* and dying leaders w/o live member threads */ 4901 if (it->cur_tasks_head == &it->cur_cset->dying_tasks && 4902 !atomic_read(&task->signal->live)) 4903 goto repeat; 4904 } else { 4905 /* skip all dying ones */ 4906 if (it->cur_tasks_head == &it->cur_cset->dying_tasks) 4907 goto repeat; 4908 } 4909 } 4910 4911 /** 4912 * css_task_iter_start - initiate task iteration 4913 * @css: the css to walk tasks of 4914 * @flags: CSS_TASK_ITER_* flags 4915 * @it: the task iterator to use 4916 * 4917 * Initiate iteration through the tasks of @css. The caller can call 4918 * css_task_iter_next() to walk through the tasks until the function 4919 * returns NULL. On completion of iteration, css_task_iter_end() must be 4920 * called. 4921 */ 4922 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags, 4923 struct css_task_iter *it) 4924 { 4925 memset(it, 0, sizeof(*it)); 4926 4927 spin_lock_irq(&css_set_lock); 4928 4929 it->ss = css->ss; 4930 it->flags = flags; 4931 4932 if (CGROUP_HAS_SUBSYS_CONFIG && it->ss) 4933 it->cset_pos = &css->cgroup->e_csets[css->ss->id]; 4934 else 4935 it->cset_pos = &css->cgroup->cset_links; 4936 4937 it->cset_head = it->cset_pos; 4938 4939 css_task_iter_advance(it); 4940 4941 spin_unlock_irq(&css_set_lock); 4942 } 4943 4944 /** 4945 * css_task_iter_next - return the next task for the iterator 4946 * @it: the task iterator being iterated 4947 * 4948 * The "next" function for task iteration. @it should have been 4949 * initialized via css_task_iter_start(). Returns NULL when the iteration 4950 * reaches the end. 4951 */ 4952 struct task_struct *css_task_iter_next(struct css_task_iter *it) 4953 { 4954 if (it->cur_task) { 4955 put_task_struct(it->cur_task); 4956 it->cur_task = NULL; 4957 } 4958 4959 spin_lock_irq(&css_set_lock); 4960 4961 /* @it may be half-advanced by skips, finish advancing */ 4962 if (it->flags & CSS_TASK_ITER_SKIPPED) 4963 css_task_iter_advance(it); 4964 4965 if (it->task_pos) { 4966 it->cur_task = list_entry(it->task_pos, struct task_struct, 4967 cg_list); 4968 get_task_struct(it->cur_task); 4969 css_task_iter_advance(it); 4970 } 4971 4972 spin_unlock_irq(&css_set_lock); 4973 4974 return it->cur_task; 4975 } 4976 4977 /** 4978 * css_task_iter_end - finish task iteration 4979 * @it: the task iterator to finish 4980 * 4981 * Finish task iteration started by css_task_iter_start(). 4982 */ 4983 void css_task_iter_end(struct css_task_iter *it) 4984 { 4985 if (it->cur_cset) { 4986 spin_lock_irq(&css_set_lock); 4987 list_del(&it->iters_node); 4988 put_css_set_locked(it->cur_cset); 4989 spin_unlock_irq(&css_set_lock); 4990 } 4991 4992 if (it->cur_dcset) 4993 put_css_set(it->cur_dcset); 4994 4995 if (it->cur_task) 4996 put_task_struct(it->cur_task); 4997 } 4998 4999 static void cgroup_procs_release(struct kernfs_open_file *of) 5000 { 5001 struct cgroup_file_ctx *ctx = of->priv; 5002 5003 if (ctx->procs.started) 5004 css_task_iter_end(&ctx->procs.iter); 5005 } 5006 5007 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos) 5008 { 5009 struct kernfs_open_file *of = s->private; 5010 struct cgroup_file_ctx *ctx = of->priv; 5011 5012 if (pos) 5013 (*pos)++; 5014 5015 return css_task_iter_next(&ctx->procs.iter); 5016 } 5017 5018 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos, 5019 unsigned int iter_flags) 5020 { 5021 struct kernfs_open_file *of = s->private; 5022 struct cgroup *cgrp = seq_css(s)->cgroup; 5023 struct cgroup_file_ctx *ctx = of->priv; 5024 struct css_task_iter *it = &ctx->procs.iter; 5025 5026 /* 5027 * When a seq_file is seeked, it's always traversed sequentially 5028 * from position 0, so we can simply keep iterating on !0 *pos. 5029 */ 5030 if (!ctx->procs.started) { 5031 if (WARN_ON_ONCE((*pos))) 5032 return ERR_PTR(-EINVAL); 5033 css_task_iter_start(&cgrp->self, iter_flags, it); 5034 ctx->procs.started = true; 5035 } else if (!(*pos)) { 5036 css_task_iter_end(it); 5037 css_task_iter_start(&cgrp->self, iter_flags, it); 5038 } else 5039 return it->cur_task; 5040 5041 return cgroup_procs_next(s, NULL, NULL); 5042 } 5043 5044 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos) 5045 { 5046 struct cgroup *cgrp = seq_css(s)->cgroup; 5047 5048 /* 5049 * All processes of a threaded subtree belong to the domain cgroup 5050 * of the subtree. Only threads can be distributed across the 5051 * subtree. Reject reads on cgroup.procs in the subtree proper. 5052 * They're always empty anyway. 5053 */ 5054 if (cgroup_is_threaded(cgrp)) 5055 return ERR_PTR(-EOPNOTSUPP); 5056 5057 return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS | 5058 CSS_TASK_ITER_THREADED); 5059 } 5060 5061 static int cgroup_procs_show(struct seq_file *s, void *v) 5062 { 5063 seq_printf(s, "%d\n", task_pid_vnr(v)); 5064 return 0; 5065 } 5066 5067 static int cgroup_may_write(const struct cgroup *cgrp, struct super_block *sb) 5068 { 5069 int ret; 5070 struct inode *inode; 5071 5072 lockdep_assert_held(&cgroup_mutex); 5073 5074 inode = kernfs_get_inode(sb, cgrp->procs_file.kn); 5075 if (!inode) 5076 return -ENOMEM; 5077 5078 ret = inode_permission(&nop_mnt_idmap, inode, MAY_WRITE); 5079 iput(inode); 5080 return ret; 5081 } 5082 5083 static int cgroup_procs_write_permission(struct cgroup *src_cgrp, 5084 struct cgroup *dst_cgrp, 5085 struct super_block *sb, 5086 struct cgroup_namespace *ns) 5087 { 5088 struct cgroup *com_cgrp = src_cgrp; 5089 int ret; 5090 5091 lockdep_assert_held(&cgroup_mutex); 5092 5093 /* find the common ancestor */ 5094 while (!cgroup_is_descendant(dst_cgrp, com_cgrp)) 5095 com_cgrp = cgroup_parent(com_cgrp); 5096 5097 /* %current should be authorized to migrate to the common ancestor */ 5098 ret = cgroup_may_write(com_cgrp, sb); 5099 if (ret) 5100 return ret; 5101 5102 /* 5103 * If namespaces are delegation boundaries, %current must be able 5104 * to see both source and destination cgroups from its namespace. 5105 */ 5106 if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) && 5107 (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) || 5108 !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp))) 5109 return -ENOENT; 5110 5111 return 0; 5112 } 5113 5114 static int cgroup_attach_permissions(struct cgroup *src_cgrp, 5115 struct cgroup *dst_cgrp, 5116 struct super_block *sb, bool threadgroup, 5117 struct cgroup_namespace *ns) 5118 { 5119 int ret = 0; 5120 5121 ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, sb, ns); 5122 if (ret) 5123 return ret; 5124 5125 ret = cgroup_migrate_vet_dst(dst_cgrp); 5126 if (ret) 5127 return ret; 5128 5129 if (!threadgroup && (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp)) 5130 ret = -EOPNOTSUPP; 5131 5132 return ret; 5133 } 5134 5135 static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf, 5136 bool threadgroup) 5137 { 5138 struct cgroup_file_ctx *ctx = of->priv; 5139 struct cgroup *src_cgrp, *dst_cgrp; 5140 struct task_struct *task; 5141 const struct cred *saved_cred; 5142 ssize_t ret; 5143 bool threadgroup_locked; 5144 5145 dst_cgrp = cgroup_kn_lock_live(of->kn, false); 5146 if (!dst_cgrp) 5147 return -ENODEV; 5148 5149 task = cgroup_procs_write_start(buf, threadgroup, &threadgroup_locked); 5150 ret = PTR_ERR_OR_ZERO(task); 5151 if (ret) 5152 goto out_unlock; 5153 5154 /* find the source cgroup */ 5155 spin_lock_irq(&css_set_lock); 5156 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root); 5157 spin_unlock_irq(&css_set_lock); 5158 5159 /* 5160 * Process and thread migrations follow same delegation rule. Check 5161 * permissions using the credentials from file open to protect against 5162 * inherited fd attacks. 5163 */ 5164 saved_cred = override_creds(of->file->f_cred); 5165 ret = cgroup_attach_permissions(src_cgrp, dst_cgrp, 5166 of->file->f_path.dentry->d_sb, 5167 threadgroup, ctx->ns); 5168 revert_creds(saved_cred); 5169 if (ret) 5170 goto out_finish; 5171 5172 ret = cgroup_attach_task(dst_cgrp, task, threadgroup); 5173 5174 out_finish: 5175 cgroup_procs_write_finish(task, threadgroup_locked); 5176 out_unlock: 5177 cgroup_kn_unlock(of->kn); 5178 5179 return ret; 5180 } 5181 5182 static ssize_t cgroup_procs_write(struct kernfs_open_file *of, 5183 char *buf, size_t nbytes, loff_t off) 5184 { 5185 return __cgroup_procs_write(of, buf, true) ?: nbytes; 5186 } 5187 5188 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos) 5189 { 5190 return __cgroup_procs_start(s, pos, 0); 5191 } 5192 5193 static ssize_t cgroup_threads_write(struct kernfs_open_file *of, 5194 char *buf, size_t nbytes, loff_t off) 5195 { 5196 return __cgroup_procs_write(of, buf, false) ?: nbytes; 5197 } 5198 5199 /* cgroup core interface files for the default hierarchy */ 5200 static struct cftype cgroup_base_files[] = { 5201 { 5202 .name = "cgroup.type", 5203 .flags = CFTYPE_NOT_ON_ROOT, 5204 .seq_show = cgroup_type_show, 5205 .write = cgroup_type_write, 5206 }, 5207 { 5208 .name = "cgroup.procs", 5209 .flags = CFTYPE_NS_DELEGATABLE, 5210 .file_offset = offsetof(struct cgroup, procs_file), 5211 .release = cgroup_procs_release, 5212 .seq_start = cgroup_procs_start, 5213 .seq_next = cgroup_procs_next, 5214 .seq_show = cgroup_procs_show, 5215 .write = cgroup_procs_write, 5216 }, 5217 { 5218 .name = "cgroup.threads", 5219 .flags = CFTYPE_NS_DELEGATABLE, 5220 .release = cgroup_procs_release, 5221 .seq_start = cgroup_threads_start, 5222 .seq_next = cgroup_procs_next, 5223 .seq_show = cgroup_procs_show, 5224 .write = cgroup_threads_write, 5225 }, 5226 { 5227 .name = "cgroup.controllers", 5228 .seq_show = cgroup_controllers_show, 5229 }, 5230 { 5231 .name = "cgroup.subtree_control", 5232 .flags = CFTYPE_NS_DELEGATABLE, 5233 .seq_show = cgroup_subtree_control_show, 5234 .write = cgroup_subtree_control_write, 5235 }, 5236 { 5237 .name = "cgroup.events", 5238 .flags = CFTYPE_NOT_ON_ROOT, 5239 .file_offset = offsetof(struct cgroup, events_file), 5240 .seq_show = cgroup_events_show, 5241 }, 5242 { 5243 .name = "cgroup.max.descendants", 5244 .seq_show = cgroup_max_descendants_show, 5245 .write = cgroup_max_descendants_write, 5246 }, 5247 { 5248 .name = "cgroup.max.depth", 5249 .seq_show = cgroup_max_depth_show, 5250 .write = cgroup_max_depth_write, 5251 }, 5252 { 5253 .name = "cgroup.stat", 5254 .seq_show = cgroup_stat_show, 5255 }, 5256 { 5257 .name = "cgroup.freeze", 5258 .flags = CFTYPE_NOT_ON_ROOT, 5259 .seq_show = cgroup_freeze_show, 5260 .write = cgroup_freeze_write, 5261 }, 5262 { 5263 .name = "cgroup.kill", 5264 .flags = CFTYPE_NOT_ON_ROOT, 5265 .write = cgroup_kill_write, 5266 }, 5267 { 5268 .name = "cpu.stat", 5269 .seq_show = cpu_stat_show, 5270 }, 5271 { } /* terminate */ 5272 }; 5273 5274 static struct cftype cgroup_psi_files[] = { 5275 #ifdef CONFIG_PSI 5276 { 5277 .name = "io.pressure", 5278 .file_offset = offsetof(struct cgroup, psi_files[PSI_IO]), 5279 .seq_show = cgroup_io_pressure_show, 5280 .write = cgroup_io_pressure_write, 5281 .poll = cgroup_pressure_poll, 5282 .release = cgroup_pressure_release, 5283 }, 5284 { 5285 .name = "memory.pressure", 5286 .file_offset = offsetof(struct cgroup, psi_files[PSI_MEM]), 5287 .seq_show = cgroup_memory_pressure_show, 5288 .write = cgroup_memory_pressure_write, 5289 .poll = cgroup_pressure_poll, 5290 .release = cgroup_pressure_release, 5291 }, 5292 { 5293 .name = "cpu.pressure", 5294 .file_offset = offsetof(struct cgroup, psi_files[PSI_CPU]), 5295 .seq_show = cgroup_cpu_pressure_show, 5296 .write = cgroup_cpu_pressure_write, 5297 .poll = cgroup_pressure_poll, 5298 .release = cgroup_pressure_release, 5299 }, 5300 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 5301 { 5302 .name = "irq.pressure", 5303 .file_offset = offsetof(struct cgroup, psi_files[PSI_IRQ]), 5304 .seq_show = cgroup_irq_pressure_show, 5305 .write = cgroup_irq_pressure_write, 5306 .poll = cgroup_pressure_poll, 5307 .release = cgroup_pressure_release, 5308 }, 5309 #endif 5310 { 5311 .name = "cgroup.pressure", 5312 .seq_show = cgroup_pressure_show, 5313 .write = cgroup_pressure_write, 5314 }, 5315 #endif /* CONFIG_PSI */ 5316 { } /* terminate */ 5317 }; 5318 5319 /* 5320 * css destruction is four-stage process. 5321 * 5322 * 1. Destruction starts. Killing of the percpu_ref is initiated. 5323 * Implemented in kill_css(). 5324 * 5325 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs 5326 * and thus css_tryget_online() is guaranteed to fail, the css can be 5327 * offlined by invoking offline_css(). After offlining, the base ref is 5328 * put. Implemented in css_killed_work_fn(). 5329 * 5330 * 3. When the percpu_ref reaches zero, the only possible remaining 5331 * accessors are inside RCU read sections. css_release() schedules the 5332 * RCU callback. 5333 * 5334 * 4. After the grace period, the css can be freed. Implemented in 5335 * css_free_work_fn(). 5336 * 5337 * It is actually hairier because both step 2 and 4 require process context 5338 * and thus involve punting to css->destroy_work adding two additional 5339 * steps to the already complex sequence. 5340 */ 5341 static void css_free_rwork_fn(struct work_struct *work) 5342 { 5343 struct cgroup_subsys_state *css = container_of(to_rcu_work(work), 5344 struct cgroup_subsys_state, destroy_rwork); 5345 struct cgroup_subsys *ss = css->ss; 5346 struct cgroup *cgrp = css->cgroup; 5347 5348 percpu_ref_exit(&css->refcnt); 5349 5350 if (ss) { 5351 /* css free path */ 5352 struct cgroup_subsys_state *parent = css->parent; 5353 int id = css->id; 5354 5355 ss->css_free(css); 5356 cgroup_idr_remove(&ss->css_idr, id); 5357 cgroup_put(cgrp); 5358 5359 if (parent) 5360 css_put(parent); 5361 } else { 5362 /* cgroup free path */ 5363 atomic_dec(&cgrp->root->nr_cgrps); 5364 cgroup1_pidlist_destroy_all(cgrp); 5365 cancel_work_sync(&cgrp->release_agent_work); 5366 bpf_cgrp_storage_free(cgrp); 5367 5368 if (cgroup_parent(cgrp)) { 5369 /* 5370 * We get a ref to the parent, and put the ref when 5371 * this cgroup is being freed, so it's guaranteed 5372 * that the parent won't be destroyed before its 5373 * children. 5374 */ 5375 cgroup_put(cgroup_parent(cgrp)); 5376 kernfs_put(cgrp->kn); 5377 psi_cgroup_free(cgrp); 5378 cgroup_rstat_exit(cgrp); 5379 kfree(cgrp); 5380 } else { 5381 /* 5382 * This is root cgroup's refcnt reaching zero, 5383 * which indicates that the root should be 5384 * released. 5385 */ 5386 cgroup_destroy_root(cgrp->root); 5387 } 5388 } 5389 } 5390 5391 static void css_release_work_fn(struct work_struct *work) 5392 { 5393 struct cgroup_subsys_state *css = 5394 container_of(work, struct cgroup_subsys_state, destroy_work); 5395 struct cgroup_subsys *ss = css->ss; 5396 struct cgroup *cgrp = css->cgroup; 5397 5398 cgroup_lock(); 5399 5400 css->flags |= CSS_RELEASED; 5401 list_del_rcu(&css->sibling); 5402 5403 if (ss) { 5404 /* css release path */ 5405 if (!list_empty(&css->rstat_css_node)) { 5406 cgroup_rstat_flush(cgrp); 5407 list_del_rcu(&css->rstat_css_node); 5408 } 5409 5410 cgroup_idr_replace(&ss->css_idr, NULL, css->id); 5411 if (ss->css_released) 5412 ss->css_released(css); 5413 } else { 5414 struct cgroup *tcgrp; 5415 5416 /* cgroup release path */ 5417 TRACE_CGROUP_PATH(release, cgrp); 5418 5419 cgroup_rstat_flush(cgrp); 5420 5421 spin_lock_irq(&css_set_lock); 5422 for (tcgrp = cgroup_parent(cgrp); tcgrp; 5423 tcgrp = cgroup_parent(tcgrp)) 5424 tcgrp->nr_dying_descendants--; 5425 spin_unlock_irq(&css_set_lock); 5426 5427 /* 5428 * There are two control paths which try to determine 5429 * cgroup from dentry without going through kernfs - 5430 * cgroupstats_build() and css_tryget_online_from_dir(). 5431 * Those are supported by RCU protecting clearing of 5432 * cgrp->kn->priv backpointer. 5433 */ 5434 if (cgrp->kn) 5435 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, 5436 NULL); 5437 } 5438 5439 cgroup_unlock(); 5440 5441 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn); 5442 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork); 5443 } 5444 5445 static void css_release(struct percpu_ref *ref) 5446 { 5447 struct cgroup_subsys_state *css = 5448 container_of(ref, struct cgroup_subsys_state, refcnt); 5449 5450 INIT_WORK(&css->destroy_work, css_release_work_fn); 5451 queue_work(cgroup_destroy_wq, &css->destroy_work); 5452 } 5453 5454 static void init_and_link_css(struct cgroup_subsys_state *css, 5455 struct cgroup_subsys *ss, struct cgroup *cgrp) 5456 { 5457 lockdep_assert_held(&cgroup_mutex); 5458 5459 cgroup_get_live(cgrp); 5460 5461 memset(css, 0, sizeof(*css)); 5462 css->cgroup = cgrp; 5463 css->ss = ss; 5464 css->id = -1; 5465 INIT_LIST_HEAD(&css->sibling); 5466 INIT_LIST_HEAD(&css->children); 5467 INIT_LIST_HEAD(&css->rstat_css_node); 5468 css->serial_nr = css_serial_nr_next++; 5469 atomic_set(&css->online_cnt, 0); 5470 5471 if (cgroup_parent(cgrp)) { 5472 css->parent = cgroup_css(cgroup_parent(cgrp), ss); 5473 css_get(css->parent); 5474 } 5475 5476 if (ss->css_rstat_flush) 5477 list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list); 5478 5479 BUG_ON(cgroup_css(cgrp, ss)); 5480 } 5481 5482 /* invoke ->css_online() on a new CSS and mark it online if successful */ 5483 static int online_css(struct cgroup_subsys_state *css) 5484 { 5485 struct cgroup_subsys *ss = css->ss; 5486 int ret = 0; 5487 5488 lockdep_assert_held(&cgroup_mutex); 5489 5490 if (ss->css_online) 5491 ret = ss->css_online(css); 5492 if (!ret) { 5493 css->flags |= CSS_ONLINE; 5494 rcu_assign_pointer(css->cgroup->subsys[ss->id], css); 5495 5496 atomic_inc(&css->online_cnt); 5497 if (css->parent) 5498 atomic_inc(&css->parent->online_cnt); 5499 } 5500 return ret; 5501 } 5502 5503 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */ 5504 static void offline_css(struct cgroup_subsys_state *css) 5505 { 5506 struct cgroup_subsys *ss = css->ss; 5507 5508 lockdep_assert_held(&cgroup_mutex); 5509 5510 if (!(css->flags & CSS_ONLINE)) 5511 return; 5512 5513 if (ss->css_offline) 5514 ss->css_offline(css); 5515 5516 css->flags &= ~CSS_ONLINE; 5517 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL); 5518 5519 wake_up_all(&css->cgroup->offline_waitq); 5520 } 5521 5522 /** 5523 * css_create - create a cgroup_subsys_state 5524 * @cgrp: the cgroup new css will be associated with 5525 * @ss: the subsys of new css 5526 * 5527 * Create a new css associated with @cgrp - @ss pair. On success, the new 5528 * css is online and installed in @cgrp. This function doesn't create the 5529 * interface files. Returns 0 on success, -errno on failure. 5530 */ 5531 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp, 5532 struct cgroup_subsys *ss) 5533 { 5534 struct cgroup *parent = cgroup_parent(cgrp); 5535 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss); 5536 struct cgroup_subsys_state *css; 5537 int err; 5538 5539 lockdep_assert_held(&cgroup_mutex); 5540 5541 css = ss->css_alloc(parent_css); 5542 if (!css) 5543 css = ERR_PTR(-ENOMEM); 5544 if (IS_ERR(css)) 5545 return css; 5546 5547 init_and_link_css(css, ss, cgrp); 5548 5549 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL); 5550 if (err) 5551 goto err_free_css; 5552 5553 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL); 5554 if (err < 0) 5555 goto err_free_css; 5556 css->id = err; 5557 5558 /* @css is ready to be brought online now, make it visible */ 5559 list_add_tail_rcu(&css->sibling, &parent_css->children); 5560 cgroup_idr_replace(&ss->css_idr, css, css->id); 5561 5562 err = online_css(css); 5563 if (err) 5564 goto err_list_del; 5565 5566 return css; 5567 5568 err_list_del: 5569 list_del_rcu(&css->sibling); 5570 err_free_css: 5571 list_del_rcu(&css->rstat_css_node); 5572 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn); 5573 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork); 5574 return ERR_PTR(err); 5575 } 5576 5577 /* 5578 * The returned cgroup is fully initialized including its control mask, but 5579 * it isn't associated with its kernfs_node and doesn't have the control 5580 * mask applied. 5581 */ 5582 static struct cgroup *cgroup_create(struct cgroup *parent, const char *name, 5583 umode_t mode) 5584 { 5585 struct cgroup_root *root = parent->root; 5586 struct cgroup *cgrp, *tcgrp; 5587 struct kernfs_node *kn; 5588 int level = parent->level + 1; 5589 int ret; 5590 5591 /* allocate the cgroup and its ID, 0 is reserved for the root */ 5592 cgrp = kzalloc(struct_size(cgrp, ancestors, (level + 1)), GFP_KERNEL); 5593 if (!cgrp) 5594 return ERR_PTR(-ENOMEM); 5595 5596 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL); 5597 if (ret) 5598 goto out_free_cgrp; 5599 5600 ret = cgroup_rstat_init(cgrp); 5601 if (ret) 5602 goto out_cancel_ref; 5603 5604 /* create the directory */ 5605 kn = kernfs_create_dir(parent->kn, name, mode, cgrp); 5606 if (IS_ERR(kn)) { 5607 ret = PTR_ERR(kn); 5608 goto out_stat_exit; 5609 } 5610 cgrp->kn = kn; 5611 5612 init_cgroup_housekeeping(cgrp); 5613 5614 cgrp->self.parent = &parent->self; 5615 cgrp->root = root; 5616 cgrp->level = level; 5617 5618 ret = psi_cgroup_alloc(cgrp); 5619 if (ret) 5620 goto out_kernfs_remove; 5621 5622 ret = cgroup_bpf_inherit(cgrp); 5623 if (ret) 5624 goto out_psi_free; 5625 5626 /* 5627 * New cgroup inherits effective freeze counter, and 5628 * if the parent has to be frozen, the child has too. 5629 */ 5630 cgrp->freezer.e_freeze = parent->freezer.e_freeze; 5631 if (cgrp->freezer.e_freeze) { 5632 /* 5633 * Set the CGRP_FREEZE flag, so when a process will be 5634 * attached to the child cgroup, it will become frozen. 5635 * At this point the new cgroup is unpopulated, so we can 5636 * consider it frozen immediately. 5637 */ 5638 set_bit(CGRP_FREEZE, &cgrp->flags); 5639 set_bit(CGRP_FROZEN, &cgrp->flags); 5640 } 5641 5642 spin_lock_irq(&css_set_lock); 5643 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) { 5644 cgrp->ancestors[tcgrp->level] = tcgrp; 5645 5646 if (tcgrp != cgrp) { 5647 tcgrp->nr_descendants++; 5648 5649 /* 5650 * If the new cgroup is frozen, all ancestor cgroups 5651 * get a new frozen descendant, but their state can't 5652 * change because of this. 5653 */ 5654 if (cgrp->freezer.e_freeze) 5655 tcgrp->freezer.nr_frozen_descendants++; 5656 } 5657 } 5658 spin_unlock_irq(&css_set_lock); 5659 5660 if (notify_on_release(parent)) 5661 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags); 5662 5663 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags)) 5664 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags); 5665 5666 cgrp->self.serial_nr = css_serial_nr_next++; 5667 5668 /* allocation complete, commit to creation */ 5669 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children); 5670 atomic_inc(&root->nr_cgrps); 5671 cgroup_get_live(parent); 5672 5673 /* 5674 * On the default hierarchy, a child doesn't automatically inherit 5675 * subtree_control from the parent. Each is configured manually. 5676 */ 5677 if (!cgroup_on_dfl(cgrp)) 5678 cgrp->subtree_control = cgroup_control(cgrp); 5679 5680 cgroup_propagate_control(cgrp); 5681 5682 return cgrp; 5683 5684 out_psi_free: 5685 psi_cgroup_free(cgrp); 5686 out_kernfs_remove: 5687 kernfs_remove(cgrp->kn); 5688 out_stat_exit: 5689 cgroup_rstat_exit(cgrp); 5690 out_cancel_ref: 5691 percpu_ref_exit(&cgrp->self.refcnt); 5692 out_free_cgrp: 5693 kfree(cgrp); 5694 return ERR_PTR(ret); 5695 } 5696 5697 static bool cgroup_check_hierarchy_limits(struct cgroup *parent) 5698 { 5699 struct cgroup *cgroup; 5700 int ret = false; 5701 int level = 1; 5702 5703 lockdep_assert_held(&cgroup_mutex); 5704 5705 for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) { 5706 if (cgroup->nr_descendants >= cgroup->max_descendants) 5707 goto fail; 5708 5709 if (level > cgroup->max_depth) 5710 goto fail; 5711 5712 level++; 5713 } 5714 5715 ret = true; 5716 fail: 5717 return ret; 5718 } 5719 5720 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode) 5721 { 5722 struct cgroup *parent, *cgrp; 5723 int ret; 5724 5725 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */ 5726 if (strchr(name, '\n')) 5727 return -EINVAL; 5728 5729 parent = cgroup_kn_lock_live(parent_kn, false); 5730 if (!parent) 5731 return -ENODEV; 5732 5733 if (!cgroup_check_hierarchy_limits(parent)) { 5734 ret = -EAGAIN; 5735 goto out_unlock; 5736 } 5737 5738 cgrp = cgroup_create(parent, name, mode); 5739 if (IS_ERR(cgrp)) { 5740 ret = PTR_ERR(cgrp); 5741 goto out_unlock; 5742 } 5743 5744 /* 5745 * This extra ref will be put in cgroup_free_fn() and guarantees 5746 * that @cgrp->kn is always accessible. 5747 */ 5748 kernfs_get(cgrp->kn); 5749 5750 ret = cgroup_kn_set_ugid(cgrp->kn); 5751 if (ret) 5752 goto out_destroy; 5753 5754 ret = css_populate_dir(&cgrp->self); 5755 if (ret) 5756 goto out_destroy; 5757 5758 ret = cgroup_apply_control_enable(cgrp); 5759 if (ret) 5760 goto out_destroy; 5761 5762 TRACE_CGROUP_PATH(mkdir, cgrp); 5763 5764 /* let's create and online css's */ 5765 kernfs_activate(cgrp->kn); 5766 5767 ret = 0; 5768 goto out_unlock; 5769 5770 out_destroy: 5771 cgroup_destroy_locked(cgrp); 5772 out_unlock: 5773 cgroup_kn_unlock(parent_kn); 5774 return ret; 5775 } 5776 5777 /* 5778 * This is called when the refcnt of a css is confirmed to be killed. 5779 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to 5780 * initiate destruction and put the css ref from kill_css(). 5781 */ 5782 static void css_killed_work_fn(struct work_struct *work) 5783 { 5784 struct cgroup_subsys_state *css = 5785 container_of(work, struct cgroup_subsys_state, destroy_work); 5786 5787 cgroup_lock(); 5788 5789 do { 5790 offline_css(css); 5791 css_put(css); 5792 /* @css can't go away while we're holding cgroup_mutex */ 5793 css = css->parent; 5794 } while (css && atomic_dec_and_test(&css->online_cnt)); 5795 5796 cgroup_unlock(); 5797 } 5798 5799 /* css kill confirmation processing requires process context, bounce */ 5800 static void css_killed_ref_fn(struct percpu_ref *ref) 5801 { 5802 struct cgroup_subsys_state *css = 5803 container_of(ref, struct cgroup_subsys_state, refcnt); 5804 5805 if (atomic_dec_and_test(&css->online_cnt)) { 5806 INIT_WORK(&css->destroy_work, css_killed_work_fn); 5807 queue_work(cgroup_destroy_wq, &css->destroy_work); 5808 } 5809 } 5810 5811 /** 5812 * kill_css - destroy a css 5813 * @css: css to destroy 5814 * 5815 * This function initiates destruction of @css by removing cgroup interface 5816 * files and putting its base reference. ->css_offline() will be invoked 5817 * asynchronously once css_tryget_online() is guaranteed to fail and when 5818 * the reference count reaches zero, @css will be released. 5819 */ 5820 static void kill_css(struct cgroup_subsys_state *css) 5821 { 5822 lockdep_assert_held(&cgroup_mutex); 5823 5824 if (css->flags & CSS_DYING) 5825 return; 5826 5827 css->flags |= CSS_DYING; 5828 5829 /* 5830 * This must happen before css is disassociated with its cgroup. 5831 * See seq_css() for details. 5832 */ 5833 css_clear_dir(css); 5834 5835 /* 5836 * Killing would put the base ref, but we need to keep it alive 5837 * until after ->css_offline(). 5838 */ 5839 css_get(css); 5840 5841 /* 5842 * cgroup core guarantees that, by the time ->css_offline() is 5843 * invoked, no new css reference will be given out via 5844 * css_tryget_online(). We can't simply call percpu_ref_kill() and 5845 * proceed to offlining css's because percpu_ref_kill() doesn't 5846 * guarantee that the ref is seen as killed on all CPUs on return. 5847 * 5848 * Use percpu_ref_kill_and_confirm() to get notifications as each 5849 * css is confirmed to be seen as killed on all CPUs. 5850 */ 5851 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn); 5852 } 5853 5854 /** 5855 * cgroup_destroy_locked - the first stage of cgroup destruction 5856 * @cgrp: cgroup to be destroyed 5857 * 5858 * css's make use of percpu refcnts whose killing latency shouldn't be 5859 * exposed to userland and are RCU protected. Also, cgroup core needs to 5860 * guarantee that css_tryget_online() won't succeed by the time 5861 * ->css_offline() is invoked. To satisfy all the requirements, 5862 * destruction is implemented in the following two steps. 5863 * 5864 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all 5865 * userland visible parts and start killing the percpu refcnts of 5866 * css's. Set up so that the next stage will be kicked off once all 5867 * the percpu refcnts are confirmed to be killed. 5868 * 5869 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the 5870 * rest of destruction. Once all cgroup references are gone, the 5871 * cgroup is RCU-freed. 5872 * 5873 * This function implements s1. After this step, @cgrp is gone as far as 5874 * the userland is concerned and a new cgroup with the same name may be 5875 * created. As cgroup doesn't care about the names internally, this 5876 * doesn't cause any problem. 5877 */ 5878 static int cgroup_destroy_locked(struct cgroup *cgrp) 5879 __releases(&cgroup_mutex) __acquires(&cgroup_mutex) 5880 { 5881 struct cgroup *tcgrp, *parent = cgroup_parent(cgrp); 5882 struct cgroup_subsys_state *css; 5883 struct cgrp_cset_link *link; 5884 int ssid; 5885 5886 lockdep_assert_held(&cgroup_mutex); 5887 5888 /* 5889 * Only migration can raise populated from zero and we're already 5890 * holding cgroup_mutex. 5891 */ 5892 if (cgroup_is_populated(cgrp)) 5893 return -EBUSY; 5894 5895 /* 5896 * Make sure there's no live children. We can't test emptiness of 5897 * ->self.children as dead children linger on it while being 5898 * drained; otherwise, "rmdir parent/child parent" may fail. 5899 */ 5900 if (css_has_online_children(&cgrp->self)) 5901 return -EBUSY; 5902 5903 /* 5904 * Mark @cgrp and the associated csets dead. The former prevents 5905 * further task migration and child creation by disabling 5906 * cgroup_lock_live_group(). The latter makes the csets ignored by 5907 * the migration path. 5908 */ 5909 cgrp->self.flags &= ~CSS_ONLINE; 5910 5911 spin_lock_irq(&css_set_lock); 5912 list_for_each_entry(link, &cgrp->cset_links, cset_link) 5913 link->cset->dead = true; 5914 spin_unlock_irq(&css_set_lock); 5915 5916 /* initiate massacre of all css's */ 5917 for_each_css(css, ssid, cgrp) 5918 kill_css(css); 5919 5920 /* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */ 5921 css_clear_dir(&cgrp->self); 5922 kernfs_remove(cgrp->kn); 5923 5924 if (cgroup_is_threaded(cgrp)) 5925 parent->nr_threaded_children--; 5926 5927 spin_lock_irq(&css_set_lock); 5928 for (tcgrp = cgroup_parent(cgrp); tcgrp; tcgrp = cgroup_parent(tcgrp)) { 5929 tcgrp->nr_descendants--; 5930 tcgrp->nr_dying_descendants++; 5931 /* 5932 * If the dying cgroup is frozen, decrease frozen descendants 5933 * counters of ancestor cgroups. 5934 */ 5935 if (test_bit(CGRP_FROZEN, &cgrp->flags)) 5936 tcgrp->freezer.nr_frozen_descendants--; 5937 } 5938 spin_unlock_irq(&css_set_lock); 5939 5940 cgroup1_check_for_release(parent); 5941 5942 cgroup_bpf_offline(cgrp); 5943 5944 /* put the base reference */ 5945 percpu_ref_kill(&cgrp->self.refcnt); 5946 5947 return 0; 5948 }; 5949 5950 int cgroup_rmdir(struct kernfs_node *kn) 5951 { 5952 struct cgroup *cgrp; 5953 int ret = 0; 5954 5955 cgrp = cgroup_kn_lock_live(kn, false); 5956 if (!cgrp) 5957 return 0; 5958 5959 ret = cgroup_destroy_locked(cgrp); 5960 if (!ret) 5961 TRACE_CGROUP_PATH(rmdir, cgrp); 5962 5963 cgroup_kn_unlock(kn); 5964 return ret; 5965 } 5966 5967 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = { 5968 .show_options = cgroup_show_options, 5969 .mkdir = cgroup_mkdir, 5970 .rmdir = cgroup_rmdir, 5971 .show_path = cgroup_show_path, 5972 }; 5973 5974 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early) 5975 { 5976 struct cgroup_subsys_state *css; 5977 5978 pr_debug("Initializing cgroup subsys %s\n", ss->name); 5979 5980 cgroup_lock(); 5981 5982 idr_init(&ss->css_idr); 5983 INIT_LIST_HEAD(&ss->cfts); 5984 5985 /* Create the root cgroup state for this subsystem */ 5986 ss->root = &cgrp_dfl_root; 5987 css = ss->css_alloc(NULL); 5988 /* We don't handle early failures gracefully */ 5989 BUG_ON(IS_ERR(css)); 5990 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp); 5991 5992 /* 5993 * Root csses are never destroyed and we can't initialize 5994 * percpu_ref during early init. Disable refcnting. 5995 */ 5996 css->flags |= CSS_NO_REF; 5997 5998 if (early) { 5999 /* allocation can't be done safely during early init */ 6000 css->id = 1; 6001 } else { 6002 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL); 6003 BUG_ON(css->id < 0); 6004 } 6005 6006 /* Update the init_css_set to contain a subsys 6007 * pointer to this state - since the subsystem is 6008 * newly registered, all tasks and hence the 6009 * init_css_set is in the subsystem's root cgroup. */ 6010 init_css_set.subsys[ss->id] = css; 6011 6012 have_fork_callback |= (bool)ss->fork << ss->id; 6013 have_exit_callback |= (bool)ss->exit << ss->id; 6014 have_release_callback |= (bool)ss->release << ss->id; 6015 have_canfork_callback |= (bool)ss->can_fork << ss->id; 6016 6017 /* At system boot, before all subsystems have been 6018 * registered, no tasks have been forked, so we don't 6019 * need to invoke fork callbacks here. */ 6020 BUG_ON(!list_empty(&init_task.tasks)); 6021 6022 BUG_ON(online_css(css)); 6023 6024 cgroup_unlock(); 6025 } 6026 6027 /** 6028 * cgroup_init_early - cgroup initialization at system boot 6029 * 6030 * Initialize cgroups at system boot, and initialize any 6031 * subsystems that request early init. 6032 */ 6033 int __init cgroup_init_early(void) 6034 { 6035 static struct cgroup_fs_context __initdata ctx; 6036 struct cgroup_subsys *ss; 6037 int i; 6038 6039 ctx.root = &cgrp_dfl_root; 6040 init_cgroup_root(&ctx); 6041 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF; 6042 6043 RCU_INIT_POINTER(init_task.cgroups, &init_css_set); 6044 6045 for_each_subsys(ss, i) { 6046 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id, 6047 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n", 6048 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free, 6049 ss->id, ss->name); 6050 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN, 6051 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]); 6052 6053 ss->id = i; 6054 ss->name = cgroup_subsys_name[i]; 6055 if (!ss->legacy_name) 6056 ss->legacy_name = cgroup_subsys_name[i]; 6057 6058 if (ss->early_init) 6059 cgroup_init_subsys(ss, true); 6060 } 6061 return 0; 6062 } 6063 6064 /** 6065 * cgroup_init - cgroup initialization 6066 * 6067 * Register cgroup filesystem and /proc file, and initialize 6068 * any subsystems that didn't request early init. 6069 */ 6070 int __init cgroup_init(void) 6071 { 6072 struct cgroup_subsys *ss; 6073 int ssid; 6074 6075 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16); 6076 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files)); 6077 BUG_ON(cgroup_init_cftypes(NULL, cgroup_psi_files)); 6078 BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files)); 6079 6080 cgroup_rstat_boot(); 6081 6082 get_user_ns(init_cgroup_ns.user_ns); 6083 6084 cgroup_lock(); 6085 6086 /* 6087 * Add init_css_set to the hash table so that dfl_root can link to 6088 * it during init. 6089 */ 6090 hash_add(css_set_table, &init_css_set.hlist, 6091 css_set_hash(init_css_set.subsys)); 6092 6093 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0)); 6094 6095 cgroup_unlock(); 6096 6097 for_each_subsys(ss, ssid) { 6098 if (ss->early_init) { 6099 struct cgroup_subsys_state *css = 6100 init_css_set.subsys[ss->id]; 6101 6102 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, 6103 GFP_KERNEL); 6104 BUG_ON(css->id < 0); 6105 } else { 6106 cgroup_init_subsys(ss, false); 6107 } 6108 6109 list_add_tail(&init_css_set.e_cset_node[ssid], 6110 &cgrp_dfl_root.cgrp.e_csets[ssid]); 6111 6112 /* 6113 * Setting dfl_root subsys_mask needs to consider the 6114 * disabled flag and cftype registration needs kmalloc, 6115 * both of which aren't available during early_init. 6116 */ 6117 if (!cgroup_ssid_enabled(ssid)) 6118 continue; 6119 6120 if (cgroup1_ssid_disabled(ssid)) 6121 printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n", 6122 ss->name); 6123 6124 cgrp_dfl_root.subsys_mask |= 1 << ss->id; 6125 6126 /* implicit controllers must be threaded too */ 6127 WARN_ON(ss->implicit_on_dfl && !ss->threaded); 6128 6129 if (ss->implicit_on_dfl) 6130 cgrp_dfl_implicit_ss_mask |= 1 << ss->id; 6131 else if (!ss->dfl_cftypes) 6132 cgrp_dfl_inhibit_ss_mask |= 1 << ss->id; 6133 6134 if (ss->threaded) 6135 cgrp_dfl_threaded_ss_mask |= 1 << ss->id; 6136 6137 if (ss->dfl_cftypes == ss->legacy_cftypes) { 6138 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes)); 6139 } else { 6140 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes)); 6141 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes)); 6142 } 6143 6144 if (ss->bind) 6145 ss->bind(init_css_set.subsys[ssid]); 6146 6147 cgroup_lock(); 6148 css_populate_dir(init_css_set.subsys[ssid]); 6149 cgroup_unlock(); 6150 } 6151 6152 /* init_css_set.subsys[] has been updated, re-hash */ 6153 hash_del(&init_css_set.hlist); 6154 hash_add(css_set_table, &init_css_set.hlist, 6155 css_set_hash(init_css_set.subsys)); 6156 6157 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup")); 6158 WARN_ON(register_filesystem(&cgroup_fs_type)); 6159 WARN_ON(register_filesystem(&cgroup2_fs_type)); 6160 WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show)); 6161 #ifdef CONFIG_CPUSETS 6162 WARN_ON(register_filesystem(&cpuset_fs_type)); 6163 #endif 6164 6165 return 0; 6166 } 6167 6168 static int __init cgroup_wq_init(void) 6169 { 6170 /* 6171 * There isn't much point in executing destruction path in 6172 * parallel. Good chunk is serialized with cgroup_mutex anyway. 6173 * Use 1 for @max_active. 6174 * 6175 * We would prefer to do this in cgroup_init() above, but that 6176 * is called before init_workqueues(): so leave this until after. 6177 */ 6178 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1); 6179 BUG_ON(!cgroup_destroy_wq); 6180 return 0; 6181 } 6182 core_initcall(cgroup_wq_init); 6183 6184 void cgroup_path_from_kernfs_id(u64 id, char *buf, size_t buflen) 6185 { 6186 struct kernfs_node *kn; 6187 6188 kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id); 6189 if (!kn) 6190 return; 6191 kernfs_path(kn, buf, buflen); 6192 kernfs_put(kn); 6193 } 6194 6195 /* 6196 * cgroup_get_from_id : get the cgroup associated with cgroup id 6197 * @id: cgroup id 6198 * On success return the cgrp or ERR_PTR on failure 6199 * Only cgroups within current task's cgroup NS are valid. 6200 */ 6201 struct cgroup *cgroup_get_from_id(u64 id) 6202 { 6203 struct kernfs_node *kn; 6204 struct cgroup *cgrp, *root_cgrp; 6205 6206 kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id); 6207 if (!kn) 6208 return ERR_PTR(-ENOENT); 6209 6210 if (kernfs_type(kn) != KERNFS_DIR) { 6211 kernfs_put(kn); 6212 return ERR_PTR(-ENOENT); 6213 } 6214 6215 rcu_read_lock(); 6216 6217 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); 6218 if (cgrp && !cgroup_tryget(cgrp)) 6219 cgrp = NULL; 6220 6221 rcu_read_unlock(); 6222 kernfs_put(kn); 6223 6224 if (!cgrp) 6225 return ERR_PTR(-ENOENT); 6226 6227 root_cgrp = current_cgns_cgroup_dfl(); 6228 if (!cgroup_is_descendant(cgrp, root_cgrp)) { 6229 cgroup_put(cgrp); 6230 return ERR_PTR(-ENOENT); 6231 } 6232 6233 return cgrp; 6234 } 6235 EXPORT_SYMBOL_GPL(cgroup_get_from_id); 6236 6237 /* 6238 * proc_cgroup_show() 6239 * - Print task's cgroup paths into seq_file, one line for each hierarchy 6240 * - Used for /proc/<pid>/cgroup. 6241 */ 6242 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns, 6243 struct pid *pid, struct task_struct *tsk) 6244 { 6245 char *buf; 6246 int retval; 6247 struct cgroup_root *root; 6248 6249 retval = -ENOMEM; 6250 buf = kmalloc(PATH_MAX, GFP_KERNEL); 6251 if (!buf) 6252 goto out; 6253 6254 cgroup_lock(); 6255 spin_lock_irq(&css_set_lock); 6256 6257 for_each_root(root) { 6258 struct cgroup_subsys *ss; 6259 struct cgroup *cgrp; 6260 int ssid, count = 0; 6261 6262 if (root == &cgrp_dfl_root && !READ_ONCE(cgrp_dfl_visible)) 6263 continue; 6264 6265 seq_printf(m, "%d:", root->hierarchy_id); 6266 if (root != &cgrp_dfl_root) 6267 for_each_subsys(ss, ssid) 6268 if (root->subsys_mask & (1 << ssid)) 6269 seq_printf(m, "%s%s", count++ ? "," : "", 6270 ss->legacy_name); 6271 if (strlen(root->name)) 6272 seq_printf(m, "%sname=%s", count ? "," : "", 6273 root->name); 6274 seq_putc(m, ':'); 6275 6276 cgrp = task_cgroup_from_root(tsk, root); 6277 6278 /* 6279 * On traditional hierarchies, all zombie tasks show up as 6280 * belonging to the root cgroup. On the default hierarchy, 6281 * while a zombie doesn't show up in "cgroup.procs" and 6282 * thus can't be migrated, its /proc/PID/cgroup keeps 6283 * reporting the cgroup it belonged to before exiting. If 6284 * the cgroup is removed before the zombie is reaped, 6285 * " (deleted)" is appended to the cgroup path. 6286 */ 6287 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) { 6288 retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX, 6289 current->nsproxy->cgroup_ns); 6290 if (retval >= PATH_MAX) 6291 retval = -ENAMETOOLONG; 6292 if (retval < 0) 6293 goto out_unlock; 6294 6295 seq_puts(m, buf); 6296 } else { 6297 seq_puts(m, "/"); 6298 } 6299 6300 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp)) 6301 seq_puts(m, " (deleted)\n"); 6302 else 6303 seq_putc(m, '\n'); 6304 } 6305 6306 retval = 0; 6307 out_unlock: 6308 spin_unlock_irq(&css_set_lock); 6309 cgroup_unlock(); 6310 kfree(buf); 6311 out: 6312 return retval; 6313 } 6314 6315 /** 6316 * cgroup_fork - initialize cgroup related fields during copy_process() 6317 * @child: pointer to task_struct of forking parent process. 6318 * 6319 * A task is associated with the init_css_set until cgroup_post_fork() 6320 * attaches it to the target css_set. 6321 */ 6322 void cgroup_fork(struct task_struct *child) 6323 { 6324 RCU_INIT_POINTER(child->cgroups, &init_css_set); 6325 INIT_LIST_HEAD(&child->cg_list); 6326 } 6327 6328 /** 6329 * cgroup_v1v2_get_from_file - get a cgroup pointer from a file pointer 6330 * @f: file corresponding to cgroup_dir 6331 * 6332 * Find the cgroup from a file pointer associated with a cgroup directory. 6333 * Returns a pointer to the cgroup on success. ERR_PTR is returned if the 6334 * cgroup cannot be found. 6335 */ 6336 static struct cgroup *cgroup_v1v2_get_from_file(struct file *f) 6337 { 6338 struct cgroup_subsys_state *css; 6339 6340 css = css_tryget_online_from_dir(f->f_path.dentry, NULL); 6341 if (IS_ERR(css)) 6342 return ERR_CAST(css); 6343 6344 return css->cgroup; 6345 } 6346 6347 /** 6348 * cgroup_get_from_file - same as cgroup_v1v2_get_from_file, but only supports 6349 * cgroup2. 6350 * @f: file corresponding to cgroup2_dir 6351 */ 6352 static struct cgroup *cgroup_get_from_file(struct file *f) 6353 { 6354 struct cgroup *cgrp = cgroup_v1v2_get_from_file(f); 6355 6356 if (IS_ERR(cgrp)) 6357 return ERR_CAST(cgrp); 6358 6359 if (!cgroup_on_dfl(cgrp)) { 6360 cgroup_put(cgrp); 6361 return ERR_PTR(-EBADF); 6362 } 6363 6364 return cgrp; 6365 } 6366 6367 /** 6368 * cgroup_css_set_fork - find or create a css_set for a child process 6369 * @kargs: the arguments passed to create the child process 6370 * 6371 * This functions finds or creates a new css_set which the child 6372 * process will be attached to in cgroup_post_fork(). By default, 6373 * the child process will be given the same css_set as its parent. 6374 * 6375 * If CLONE_INTO_CGROUP is specified this function will try to find an 6376 * existing css_set which includes the requested cgroup and if not create 6377 * a new css_set that the child will be attached to later. If this function 6378 * succeeds it will hold cgroup_threadgroup_rwsem on return. If 6379 * CLONE_INTO_CGROUP is requested this function will grab cgroup mutex 6380 * before grabbing cgroup_threadgroup_rwsem and will hold a reference 6381 * to the target cgroup. 6382 */ 6383 static int cgroup_css_set_fork(struct kernel_clone_args *kargs) 6384 __acquires(&cgroup_mutex) __acquires(&cgroup_threadgroup_rwsem) 6385 { 6386 int ret; 6387 struct cgroup *dst_cgrp = NULL; 6388 struct css_set *cset; 6389 struct super_block *sb; 6390 struct file *f; 6391 6392 if (kargs->flags & CLONE_INTO_CGROUP) 6393 cgroup_lock(); 6394 6395 cgroup_threadgroup_change_begin(current); 6396 6397 spin_lock_irq(&css_set_lock); 6398 cset = task_css_set(current); 6399 get_css_set(cset); 6400 spin_unlock_irq(&css_set_lock); 6401 6402 if (!(kargs->flags & CLONE_INTO_CGROUP)) { 6403 kargs->cset = cset; 6404 return 0; 6405 } 6406 6407 f = fget_raw(kargs->cgroup); 6408 if (!f) { 6409 ret = -EBADF; 6410 goto err; 6411 } 6412 sb = f->f_path.dentry->d_sb; 6413 6414 dst_cgrp = cgroup_get_from_file(f); 6415 if (IS_ERR(dst_cgrp)) { 6416 ret = PTR_ERR(dst_cgrp); 6417 dst_cgrp = NULL; 6418 goto err; 6419 } 6420 6421 if (cgroup_is_dead(dst_cgrp)) { 6422 ret = -ENODEV; 6423 goto err; 6424 } 6425 6426 /* 6427 * Verify that we the target cgroup is writable for us. This is 6428 * usually done by the vfs layer but since we're not going through 6429 * the vfs layer here we need to do it "manually". 6430 */ 6431 ret = cgroup_may_write(dst_cgrp, sb); 6432 if (ret) 6433 goto err; 6434 6435 /* 6436 * Spawning a task directly into a cgroup works by passing a file 6437 * descriptor to the target cgroup directory. This can even be an O_PATH 6438 * file descriptor. But it can never be a cgroup.procs file descriptor. 6439 * This was done on purpose so spawning into a cgroup could be 6440 * conceptualized as an atomic 6441 * 6442 * fd = openat(dfd_cgroup, "cgroup.procs", ...); 6443 * write(fd, <child-pid>, ...); 6444 * 6445 * sequence, i.e. it's a shorthand for the caller opening and writing 6446 * cgroup.procs of the cgroup indicated by @dfd_cgroup. This allows us 6447 * to always use the caller's credentials. 6448 */ 6449 ret = cgroup_attach_permissions(cset->dfl_cgrp, dst_cgrp, sb, 6450 !(kargs->flags & CLONE_THREAD), 6451 current->nsproxy->cgroup_ns); 6452 if (ret) 6453 goto err; 6454 6455 kargs->cset = find_css_set(cset, dst_cgrp); 6456 if (!kargs->cset) { 6457 ret = -ENOMEM; 6458 goto err; 6459 } 6460 6461 put_css_set(cset); 6462 fput(f); 6463 kargs->cgrp = dst_cgrp; 6464 return ret; 6465 6466 err: 6467 cgroup_threadgroup_change_end(current); 6468 cgroup_unlock(); 6469 if (f) 6470 fput(f); 6471 if (dst_cgrp) 6472 cgroup_put(dst_cgrp); 6473 put_css_set(cset); 6474 if (kargs->cset) 6475 put_css_set(kargs->cset); 6476 return ret; 6477 } 6478 6479 /** 6480 * cgroup_css_set_put_fork - drop references we took during fork 6481 * @kargs: the arguments passed to create the child process 6482 * 6483 * Drop references to the prepared css_set and target cgroup if 6484 * CLONE_INTO_CGROUP was requested. 6485 */ 6486 static void cgroup_css_set_put_fork(struct kernel_clone_args *kargs) 6487 __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex) 6488 { 6489 struct cgroup *cgrp = kargs->cgrp; 6490 struct css_set *cset = kargs->cset; 6491 6492 cgroup_threadgroup_change_end(current); 6493 6494 if (cset) { 6495 put_css_set(cset); 6496 kargs->cset = NULL; 6497 } 6498 6499 if (kargs->flags & CLONE_INTO_CGROUP) { 6500 cgroup_unlock(); 6501 if (cgrp) { 6502 cgroup_put(cgrp); 6503 kargs->cgrp = NULL; 6504 } 6505 } 6506 } 6507 6508 /** 6509 * cgroup_can_fork - called on a new task before the process is exposed 6510 * @child: the child process 6511 * @kargs: the arguments passed to create the child process 6512 * 6513 * This prepares a new css_set for the child process which the child will 6514 * be attached to in cgroup_post_fork(). 6515 * This calls the subsystem can_fork() callbacks. If the cgroup_can_fork() 6516 * callback returns an error, the fork aborts with that error code. This 6517 * allows for a cgroup subsystem to conditionally allow or deny new forks. 6518 */ 6519 int cgroup_can_fork(struct task_struct *child, struct kernel_clone_args *kargs) 6520 { 6521 struct cgroup_subsys *ss; 6522 int i, j, ret; 6523 6524 ret = cgroup_css_set_fork(kargs); 6525 if (ret) 6526 return ret; 6527 6528 do_each_subsys_mask(ss, i, have_canfork_callback) { 6529 ret = ss->can_fork(child, kargs->cset); 6530 if (ret) 6531 goto out_revert; 6532 } while_each_subsys_mask(); 6533 6534 return 0; 6535 6536 out_revert: 6537 for_each_subsys(ss, j) { 6538 if (j >= i) 6539 break; 6540 if (ss->cancel_fork) 6541 ss->cancel_fork(child, kargs->cset); 6542 } 6543 6544 cgroup_css_set_put_fork(kargs); 6545 6546 return ret; 6547 } 6548 6549 /** 6550 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork() 6551 * @child: the child process 6552 * @kargs: the arguments passed to create the child process 6553 * 6554 * This calls the cancel_fork() callbacks if a fork failed *after* 6555 * cgroup_can_fork() succeeded and cleans up references we took to 6556 * prepare a new css_set for the child process in cgroup_can_fork(). 6557 */ 6558 void cgroup_cancel_fork(struct task_struct *child, 6559 struct kernel_clone_args *kargs) 6560 { 6561 struct cgroup_subsys *ss; 6562 int i; 6563 6564 for_each_subsys(ss, i) 6565 if (ss->cancel_fork) 6566 ss->cancel_fork(child, kargs->cset); 6567 6568 cgroup_css_set_put_fork(kargs); 6569 } 6570 6571 /** 6572 * cgroup_post_fork - finalize cgroup setup for the child process 6573 * @child: the child process 6574 * @kargs: the arguments passed to create the child process 6575 * 6576 * Attach the child process to its css_set calling the subsystem fork() 6577 * callbacks. 6578 */ 6579 void cgroup_post_fork(struct task_struct *child, 6580 struct kernel_clone_args *kargs) 6581 __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex) 6582 { 6583 unsigned long cgrp_flags = 0; 6584 bool kill = false; 6585 struct cgroup_subsys *ss; 6586 struct css_set *cset; 6587 int i; 6588 6589 cset = kargs->cset; 6590 kargs->cset = NULL; 6591 6592 spin_lock_irq(&css_set_lock); 6593 6594 /* init tasks are special, only link regular threads */ 6595 if (likely(child->pid)) { 6596 if (kargs->cgrp) 6597 cgrp_flags = kargs->cgrp->flags; 6598 else 6599 cgrp_flags = cset->dfl_cgrp->flags; 6600 6601 WARN_ON_ONCE(!list_empty(&child->cg_list)); 6602 cset->nr_tasks++; 6603 css_set_move_task(child, NULL, cset, false); 6604 } else { 6605 put_css_set(cset); 6606 cset = NULL; 6607 } 6608 6609 if (!(child->flags & PF_KTHREAD)) { 6610 if (unlikely(test_bit(CGRP_FREEZE, &cgrp_flags))) { 6611 /* 6612 * If the cgroup has to be frozen, the new task has 6613 * too. Let's set the JOBCTL_TRAP_FREEZE jobctl bit to 6614 * get the task into the frozen state. 6615 */ 6616 spin_lock(&child->sighand->siglock); 6617 WARN_ON_ONCE(child->frozen); 6618 child->jobctl |= JOBCTL_TRAP_FREEZE; 6619 spin_unlock(&child->sighand->siglock); 6620 6621 /* 6622 * Calling cgroup_update_frozen() isn't required here, 6623 * because it will be called anyway a bit later from 6624 * do_freezer_trap(). So we avoid cgroup's transient 6625 * switch from the frozen state and back. 6626 */ 6627 } 6628 6629 /* 6630 * If the cgroup is to be killed notice it now and take the 6631 * child down right after we finished preparing it for 6632 * userspace. 6633 */ 6634 kill = test_bit(CGRP_KILL, &cgrp_flags); 6635 } 6636 6637 spin_unlock_irq(&css_set_lock); 6638 6639 /* 6640 * Call ss->fork(). This must happen after @child is linked on 6641 * css_set; otherwise, @child might change state between ->fork() 6642 * and addition to css_set. 6643 */ 6644 do_each_subsys_mask(ss, i, have_fork_callback) { 6645 ss->fork(child); 6646 } while_each_subsys_mask(); 6647 6648 /* Make the new cset the root_cset of the new cgroup namespace. */ 6649 if (kargs->flags & CLONE_NEWCGROUP) { 6650 struct css_set *rcset = child->nsproxy->cgroup_ns->root_cset; 6651 6652 get_css_set(cset); 6653 child->nsproxy->cgroup_ns->root_cset = cset; 6654 put_css_set(rcset); 6655 } 6656 6657 /* Cgroup has to be killed so take down child immediately. */ 6658 if (unlikely(kill)) 6659 do_send_sig_info(SIGKILL, SEND_SIG_NOINFO, child, PIDTYPE_TGID); 6660 6661 cgroup_css_set_put_fork(kargs); 6662 } 6663 6664 /** 6665 * cgroup_exit - detach cgroup from exiting task 6666 * @tsk: pointer to task_struct of exiting process 6667 * 6668 * Description: Detach cgroup from @tsk. 6669 * 6670 */ 6671 void cgroup_exit(struct task_struct *tsk) 6672 { 6673 struct cgroup_subsys *ss; 6674 struct css_set *cset; 6675 int i; 6676 6677 spin_lock_irq(&css_set_lock); 6678 6679 WARN_ON_ONCE(list_empty(&tsk->cg_list)); 6680 cset = task_css_set(tsk); 6681 css_set_move_task(tsk, cset, NULL, false); 6682 list_add_tail(&tsk->cg_list, &cset->dying_tasks); 6683 cset->nr_tasks--; 6684 6685 WARN_ON_ONCE(cgroup_task_frozen(tsk)); 6686 if (unlikely(!(tsk->flags & PF_KTHREAD) && 6687 test_bit(CGRP_FREEZE, &task_dfl_cgroup(tsk)->flags))) 6688 cgroup_update_frozen(task_dfl_cgroup(tsk)); 6689 6690 spin_unlock_irq(&css_set_lock); 6691 6692 /* see cgroup_post_fork() for details */ 6693 do_each_subsys_mask(ss, i, have_exit_callback) { 6694 ss->exit(tsk); 6695 } while_each_subsys_mask(); 6696 } 6697 6698 void cgroup_release(struct task_struct *task) 6699 { 6700 struct cgroup_subsys *ss; 6701 int ssid; 6702 6703 do_each_subsys_mask(ss, ssid, have_release_callback) { 6704 ss->release(task); 6705 } while_each_subsys_mask(); 6706 6707 spin_lock_irq(&css_set_lock); 6708 css_set_skip_task_iters(task_css_set(task), task); 6709 list_del_init(&task->cg_list); 6710 spin_unlock_irq(&css_set_lock); 6711 } 6712 6713 void cgroup_free(struct task_struct *task) 6714 { 6715 struct css_set *cset = task_css_set(task); 6716 put_css_set(cset); 6717 } 6718 6719 static int __init cgroup_disable(char *str) 6720 { 6721 struct cgroup_subsys *ss; 6722 char *token; 6723 int i; 6724 6725 while ((token = strsep(&str, ",")) != NULL) { 6726 if (!*token) 6727 continue; 6728 6729 for_each_subsys(ss, i) { 6730 if (strcmp(token, ss->name) && 6731 strcmp(token, ss->legacy_name)) 6732 continue; 6733 6734 static_branch_disable(cgroup_subsys_enabled_key[i]); 6735 pr_info("Disabling %s control group subsystem\n", 6736 ss->name); 6737 } 6738 6739 for (i = 0; i < OPT_FEATURE_COUNT; i++) { 6740 if (strcmp(token, cgroup_opt_feature_names[i])) 6741 continue; 6742 cgroup_feature_disable_mask |= 1 << i; 6743 pr_info("Disabling %s control group feature\n", 6744 cgroup_opt_feature_names[i]); 6745 break; 6746 } 6747 } 6748 return 1; 6749 } 6750 __setup("cgroup_disable=", cgroup_disable); 6751 6752 void __init __weak enable_debug_cgroup(void) { } 6753 6754 static int __init enable_cgroup_debug(char *str) 6755 { 6756 cgroup_debug = true; 6757 enable_debug_cgroup(); 6758 return 1; 6759 } 6760 __setup("cgroup_debug", enable_cgroup_debug); 6761 6762 /** 6763 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry 6764 * @dentry: directory dentry of interest 6765 * @ss: subsystem of interest 6766 * 6767 * If @dentry is a directory for a cgroup which has @ss enabled on it, try 6768 * to get the corresponding css and return it. If such css doesn't exist 6769 * or can't be pinned, an ERR_PTR value is returned. 6770 */ 6771 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry, 6772 struct cgroup_subsys *ss) 6773 { 6774 struct kernfs_node *kn = kernfs_node_from_dentry(dentry); 6775 struct file_system_type *s_type = dentry->d_sb->s_type; 6776 struct cgroup_subsys_state *css = NULL; 6777 struct cgroup *cgrp; 6778 6779 /* is @dentry a cgroup dir? */ 6780 if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) || 6781 !kn || kernfs_type(kn) != KERNFS_DIR) 6782 return ERR_PTR(-EBADF); 6783 6784 rcu_read_lock(); 6785 6786 /* 6787 * This path doesn't originate from kernfs and @kn could already 6788 * have been or be removed at any point. @kn->priv is RCU 6789 * protected for this access. See css_release_work_fn() for details. 6790 */ 6791 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); 6792 if (cgrp) 6793 css = cgroup_css(cgrp, ss); 6794 6795 if (!css || !css_tryget_online(css)) 6796 css = ERR_PTR(-ENOENT); 6797 6798 rcu_read_unlock(); 6799 return css; 6800 } 6801 6802 /** 6803 * css_from_id - lookup css by id 6804 * @id: the cgroup id 6805 * @ss: cgroup subsys to be looked into 6806 * 6807 * Returns the css if there's valid one with @id, otherwise returns NULL. 6808 * Should be called under rcu_read_lock(). 6809 */ 6810 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss) 6811 { 6812 WARN_ON_ONCE(!rcu_read_lock_held()); 6813 return idr_find(&ss->css_idr, id); 6814 } 6815 6816 /** 6817 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path 6818 * @path: path on the default hierarchy 6819 * 6820 * Find the cgroup at @path on the default hierarchy, increment its 6821 * reference count and return it. Returns pointer to the found cgroup on 6822 * success, ERR_PTR(-ENOENT) if @path doesn't exist or if the cgroup has already 6823 * been released and ERR_PTR(-ENOTDIR) if @path points to a non-directory. 6824 */ 6825 struct cgroup *cgroup_get_from_path(const char *path) 6826 { 6827 struct kernfs_node *kn; 6828 struct cgroup *cgrp = ERR_PTR(-ENOENT); 6829 struct cgroup *root_cgrp; 6830 6831 root_cgrp = current_cgns_cgroup_dfl(); 6832 kn = kernfs_walk_and_get(root_cgrp->kn, path); 6833 if (!kn) 6834 goto out; 6835 6836 if (kernfs_type(kn) != KERNFS_DIR) { 6837 cgrp = ERR_PTR(-ENOTDIR); 6838 goto out_kernfs; 6839 } 6840 6841 rcu_read_lock(); 6842 6843 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); 6844 if (!cgrp || !cgroup_tryget(cgrp)) 6845 cgrp = ERR_PTR(-ENOENT); 6846 6847 rcu_read_unlock(); 6848 6849 out_kernfs: 6850 kernfs_put(kn); 6851 out: 6852 return cgrp; 6853 } 6854 EXPORT_SYMBOL_GPL(cgroup_get_from_path); 6855 6856 /** 6857 * cgroup_v1v2_get_from_fd - get a cgroup pointer from a fd 6858 * @fd: fd obtained by open(cgroup_dir) 6859 * 6860 * Find the cgroup from a fd which should be obtained 6861 * by opening a cgroup directory. Returns a pointer to the 6862 * cgroup on success. ERR_PTR is returned if the cgroup 6863 * cannot be found. 6864 */ 6865 struct cgroup *cgroup_v1v2_get_from_fd(int fd) 6866 { 6867 struct cgroup *cgrp; 6868 struct fd f = fdget_raw(fd); 6869 if (!f.file) 6870 return ERR_PTR(-EBADF); 6871 6872 cgrp = cgroup_v1v2_get_from_file(f.file); 6873 fdput(f); 6874 return cgrp; 6875 } 6876 6877 /** 6878 * cgroup_get_from_fd - same as cgroup_v1v2_get_from_fd, but only supports 6879 * cgroup2. 6880 * @fd: fd obtained by open(cgroup2_dir) 6881 */ 6882 struct cgroup *cgroup_get_from_fd(int fd) 6883 { 6884 struct cgroup *cgrp = cgroup_v1v2_get_from_fd(fd); 6885 6886 if (IS_ERR(cgrp)) 6887 return ERR_CAST(cgrp); 6888 6889 if (!cgroup_on_dfl(cgrp)) { 6890 cgroup_put(cgrp); 6891 return ERR_PTR(-EBADF); 6892 } 6893 return cgrp; 6894 } 6895 EXPORT_SYMBOL_GPL(cgroup_get_from_fd); 6896 6897 static u64 power_of_ten(int power) 6898 { 6899 u64 v = 1; 6900 while (power--) 6901 v *= 10; 6902 return v; 6903 } 6904 6905 /** 6906 * cgroup_parse_float - parse a floating number 6907 * @input: input string 6908 * @dec_shift: number of decimal digits to shift 6909 * @v: output 6910 * 6911 * Parse a decimal floating point number in @input and store the result in 6912 * @v with decimal point right shifted @dec_shift times. For example, if 6913 * @input is "12.3456" and @dec_shift is 3, *@v will be set to 12345. 6914 * Returns 0 on success, -errno otherwise. 6915 * 6916 * There's nothing cgroup specific about this function except that it's 6917 * currently the only user. 6918 */ 6919 int cgroup_parse_float(const char *input, unsigned dec_shift, s64 *v) 6920 { 6921 s64 whole, frac = 0; 6922 int fstart = 0, fend = 0, flen; 6923 6924 if (!sscanf(input, "%lld.%n%lld%n", &whole, &fstart, &frac, &fend)) 6925 return -EINVAL; 6926 if (frac < 0) 6927 return -EINVAL; 6928 6929 flen = fend > fstart ? fend - fstart : 0; 6930 if (flen < dec_shift) 6931 frac *= power_of_ten(dec_shift - flen); 6932 else 6933 frac = DIV_ROUND_CLOSEST_ULL(frac, power_of_ten(flen - dec_shift)); 6934 6935 *v = whole * power_of_ten(dec_shift) + frac; 6936 return 0; 6937 } 6938 6939 /* 6940 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data 6941 * definition in cgroup-defs.h. 6942 */ 6943 #ifdef CONFIG_SOCK_CGROUP_DATA 6944 6945 void cgroup_sk_alloc(struct sock_cgroup_data *skcd) 6946 { 6947 struct cgroup *cgroup; 6948 6949 rcu_read_lock(); 6950 /* Don't associate the sock with unrelated interrupted task's cgroup. */ 6951 if (in_interrupt()) { 6952 cgroup = &cgrp_dfl_root.cgrp; 6953 cgroup_get(cgroup); 6954 goto out; 6955 } 6956 6957 while (true) { 6958 struct css_set *cset; 6959 6960 cset = task_css_set(current); 6961 if (likely(cgroup_tryget(cset->dfl_cgrp))) { 6962 cgroup = cset->dfl_cgrp; 6963 break; 6964 } 6965 cpu_relax(); 6966 } 6967 out: 6968 skcd->cgroup = cgroup; 6969 cgroup_bpf_get(cgroup); 6970 rcu_read_unlock(); 6971 } 6972 6973 void cgroup_sk_clone(struct sock_cgroup_data *skcd) 6974 { 6975 struct cgroup *cgrp = sock_cgroup_ptr(skcd); 6976 6977 /* 6978 * We might be cloning a socket which is left in an empty 6979 * cgroup and the cgroup might have already been rmdir'd. 6980 * Don't use cgroup_get_live(). 6981 */ 6982 cgroup_get(cgrp); 6983 cgroup_bpf_get(cgrp); 6984 } 6985 6986 void cgroup_sk_free(struct sock_cgroup_data *skcd) 6987 { 6988 struct cgroup *cgrp = sock_cgroup_ptr(skcd); 6989 6990 cgroup_bpf_put(cgrp); 6991 cgroup_put(cgrp); 6992 } 6993 6994 #endif /* CONFIG_SOCK_CGROUP_DATA */ 6995 6996 #ifdef CONFIG_SYSFS 6997 static ssize_t show_delegatable_files(struct cftype *files, char *buf, 6998 ssize_t size, const char *prefix) 6999 { 7000 struct cftype *cft; 7001 ssize_t ret = 0; 7002 7003 for (cft = files; cft && cft->name[0] != '\0'; cft++) { 7004 if (!(cft->flags & CFTYPE_NS_DELEGATABLE)) 7005 continue; 7006 7007 if (prefix) 7008 ret += snprintf(buf + ret, size - ret, "%s.", prefix); 7009 7010 ret += snprintf(buf + ret, size - ret, "%s\n", cft->name); 7011 7012 if (WARN_ON(ret >= size)) 7013 break; 7014 } 7015 7016 return ret; 7017 } 7018 7019 static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr, 7020 char *buf) 7021 { 7022 struct cgroup_subsys *ss; 7023 int ssid; 7024 ssize_t ret = 0; 7025 7026 ret = show_delegatable_files(cgroup_base_files, buf + ret, 7027 PAGE_SIZE - ret, NULL); 7028 if (cgroup_psi_enabled()) 7029 ret += show_delegatable_files(cgroup_psi_files, buf + ret, 7030 PAGE_SIZE - ret, NULL); 7031 7032 for_each_subsys(ss, ssid) 7033 ret += show_delegatable_files(ss->dfl_cftypes, buf + ret, 7034 PAGE_SIZE - ret, 7035 cgroup_subsys_name[ssid]); 7036 7037 return ret; 7038 } 7039 static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate); 7040 7041 static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr, 7042 char *buf) 7043 { 7044 return snprintf(buf, PAGE_SIZE, 7045 "nsdelegate\n" 7046 "favordynmods\n" 7047 "memory_localevents\n" 7048 "memory_recursiveprot\n"); 7049 } 7050 static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features); 7051 7052 static struct attribute *cgroup_sysfs_attrs[] = { 7053 &cgroup_delegate_attr.attr, 7054 &cgroup_features_attr.attr, 7055 NULL, 7056 }; 7057 7058 static const struct attribute_group cgroup_sysfs_attr_group = { 7059 .attrs = cgroup_sysfs_attrs, 7060 .name = "cgroup", 7061 }; 7062 7063 static int __init cgroup_sysfs_init(void) 7064 { 7065 return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group); 7066 } 7067 subsys_initcall(cgroup_sysfs_init); 7068 7069 #endif /* CONFIG_SYSFS */ 7070