xref: /openbmc/linux/kernel/cgroup/cgroup.c (revision 5d331b7f)
1 /*
2  *  Generic process-grouping system.
3  *
4  *  Based originally on the cpuset system, extracted by Paul Menage
5  *  Copyright (C) 2006 Google, Inc
6  *
7  *  Notifications support
8  *  Copyright (C) 2009 Nokia Corporation
9  *  Author: Kirill A. Shutemov
10  *
11  *  Copyright notices from the original cpuset code:
12  *  --------------------------------------------------
13  *  Copyright (C) 2003 BULL SA.
14  *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
15  *
16  *  Portions derived from Patrick Mochel's sysfs code.
17  *  sysfs is Copyright (c) 2001-3 Patrick Mochel
18  *
19  *  2003-10-10 Written by Simon Derr.
20  *  2003-10-22 Updates by Stephen Hemminger.
21  *  2004 May-July Rework by Paul Jackson.
22  *  ---------------------------------------------------
23  *
24  *  This file is subject to the terms and conditions of the GNU General Public
25  *  License.  See the file COPYING in the main directory of the Linux
26  *  distribution for more details.
27  */
28 
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 
31 #include "cgroup-internal.h"
32 
33 #include <linux/cred.h>
34 #include <linux/errno.h>
35 #include <linux/init_task.h>
36 #include <linux/kernel.h>
37 #include <linux/magic.h>
38 #include <linux/mutex.h>
39 #include <linux/mount.h>
40 #include <linux/pagemap.h>
41 #include <linux/proc_fs.h>
42 #include <linux/rcupdate.h>
43 #include <linux/sched.h>
44 #include <linux/sched/task.h>
45 #include <linux/slab.h>
46 #include <linux/spinlock.h>
47 #include <linux/percpu-rwsem.h>
48 #include <linux/string.h>
49 #include <linux/hashtable.h>
50 #include <linux/idr.h>
51 #include <linux/kthread.h>
52 #include <linux/atomic.h>
53 #include <linux/cpuset.h>
54 #include <linux/proc_ns.h>
55 #include <linux/nsproxy.h>
56 #include <linux/file.h>
57 #include <linux/sched/cputime.h>
58 #include <linux/psi.h>
59 #include <net/sock.h>
60 
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/cgroup.h>
63 
64 #define CGROUP_FILE_NAME_MAX		(MAX_CGROUP_TYPE_NAMELEN +	\
65 					 MAX_CFTYPE_NAME + 2)
66 /* let's not notify more than 100 times per second */
67 #define CGROUP_FILE_NOTIFY_MIN_INTV	DIV_ROUND_UP(HZ, 100)
68 
69 /*
70  * cgroup_mutex is the master lock.  Any modification to cgroup or its
71  * hierarchy must be performed while holding it.
72  *
73  * css_set_lock protects task->cgroups pointer, the list of css_set
74  * objects, and the chain of tasks off each css_set.
75  *
76  * These locks are exported if CONFIG_PROVE_RCU so that accessors in
77  * cgroup.h can use them for lockdep annotations.
78  */
79 DEFINE_MUTEX(cgroup_mutex);
80 DEFINE_SPINLOCK(css_set_lock);
81 
82 #ifdef CONFIG_PROVE_RCU
83 EXPORT_SYMBOL_GPL(cgroup_mutex);
84 EXPORT_SYMBOL_GPL(css_set_lock);
85 #endif
86 
87 DEFINE_SPINLOCK(trace_cgroup_path_lock);
88 char trace_cgroup_path[TRACE_CGROUP_PATH_LEN];
89 
90 /*
91  * Protects cgroup_idr and css_idr so that IDs can be released without
92  * grabbing cgroup_mutex.
93  */
94 static DEFINE_SPINLOCK(cgroup_idr_lock);
95 
96 /*
97  * Protects cgroup_file->kn for !self csses.  It synchronizes notifications
98  * against file removal/re-creation across css hiding.
99  */
100 static DEFINE_SPINLOCK(cgroup_file_kn_lock);
101 
102 struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
103 
104 #define cgroup_assert_mutex_or_rcu_locked()				\
105 	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
106 			   !lockdep_is_held(&cgroup_mutex),		\
107 			   "cgroup_mutex or RCU read lock required");
108 
109 /*
110  * cgroup destruction makes heavy use of work items and there can be a lot
111  * of concurrent destructions.  Use a separate workqueue so that cgroup
112  * destruction work items don't end up filling up max_active of system_wq
113  * which may lead to deadlock.
114  */
115 static struct workqueue_struct *cgroup_destroy_wq;
116 
117 /* generate an array of cgroup subsystem pointers */
118 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
119 struct cgroup_subsys *cgroup_subsys[] = {
120 #include <linux/cgroup_subsys.h>
121 };
122 #undef SUBSYS
123 
124 /* array of cgroup subsystem names */
125 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
126 static const char *cgroup_subsys_name[] = {
127 #include <linux/cgroup_subsys.h>
128 };
129 #undef SUBSYS
130 
131 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
132 #define SUBSYS(_x)								\
133 	DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key);			\
134 	DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key);			\
135 	EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key);			\
136 	EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
137 #include <linux/cgroup_subsys.h>
138 #undef SUBSYS
139 
140 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
141 static struct static_key_true *cgroup_subsys_enabled_key[] = {
142 #include <linux/cgroup_subsys.h>
143 };
144 #undef SUBSYS
145 
146 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
147 static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
148 #include <linux/cgroup_subsys.h>
149 };
150 #undef SUBSYS
151 
152 static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu);
153 
154 /*
155  * The default hierarchy, reserved for the subsystems that are otherwise
156  * unattached - it never has more than a single cgroup, and all tasks are
157  * part of that cgroup.
158  */
159 struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu };
160 EXPORT_SYMBOL_GPL(cgrp_dfl_root);
161 
162 /*
163  * The default hierarchy always exists but is hidden until mounted for the
164  * first time.  This is for backward compatibility.
165  */
166 static bool cgrp_dfl_visible;
167 
168 /* some controllers are not supported in the default hierarchy */
169 static u16 cgrp_dfl_inhibit_ss_mask;
170 
171 /* some controllers are implicitly enabled on the default hierarchy */
172 static u16 cgrp_dfl_implicit_ss_mask;
173 
174 /* some controllers can be threaded on the default hierarchy */
175 static u16 cgrp_dfl_threaded_ss_mask;
176 
177 /* The list of hierarchy roots */
178 LIST_HEAD(cgroup_roots);
179 static int cgroup_root_count;
180 
181 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
182 static DEFINE_IDR(cgroup_hierarchy_idr);
183 
184 /*
185  * Assign a monotonically increasing serial number to csses.  It guarantees
186  * cgroups with bigger numbers are newer than those with smaller numbers.
187  * Also, as csses are always appended to the parent's ->children list, it
188  * guarantees that sibling csses are always sorted in the ascending serial
189  * number order on the list.  Protected by cgroup_mutex.
190  */
191 static u64 css_serial_nr_next = 1;
192 
193 /*
194  * These bitmasks identify subsystems with specific features to avoid
195  * having to do iterative checks repeatedly.
196  */
197 static u16 have_fork_callback __read_mostly;
198 static u16 have_exit_callback __read_mostly;
199 static u16 have_free_callback __read_mostly;
200 static u16 have_canfork_callback __read_mostly;
201 
202 /* cgroup namespace for init task */
203 struct cgroup_namespace init_cgroup_ns = {
204 	.count		= REFCOUNT_INIT(2),
205 	.user_ns	= &init_user_ns,
206 	.ns.ops		= &cgroupns_operations,
207 	.ns.inum	= PROC_CGROUP_INIT_INO,
208 	.root_cset	= &init_css_set,
209 };
210 
211 static struct file_system_type cgroup2_fs_type;
212 static struct cftype cgroup_base_files[];
213 
214 static int cgroup_apply_control(struct cgroup *cgrp);
215 static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
216 static void css_task_iter_advance(struct css_task_iter *it);
217 static int cgroup_destroy_locked(struct cgroup *cgrp);
218 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
219 					      struct cgroup_subsys *ss);
220 static void css_release(struct percpu_ref *ref);
221 static void kill_css(struct cgroup_subsys_state *css);
222 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
223 			      struct cgroup *cgrp, struct cftype cfts[],
224 			      bool is_add);
225 
226 /**
227  * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
228  * @ssid: subsys ID of interest
229  *
230  * cgroup_subsys_enabled() can only be used with literal subsys names which
231  * is fine for individual subsystems but unsuitable for cgroup core.  This
232  * is slower static_key_enabled() based test indexed by @ssid.
233  */
234 bool cgroup_ssid_enabled(int ssid)
235 {
236 	if (CGROUP_SUBSYS_COUNT == 0)
237 		return false;
238 
239 	return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
240 }
241 
242 /**
243  * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
244  * @cgrp: the cgroup of interest
245  *
246  * The default hierarchy is the v2 interface of cgroup and this function
247  * can be used to test whether a cgroup is on the default hierarchy for
248  * cases where a subsystem should behave differnetly depending on the
249  * interface version.
250  *
251  * The set of behaviors which change on the default hierarchy are still
252  * being determined and the mount option is prefixed with __DEVEL__.
253  *
254  * List of changed behaviors:
255  *
256  * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
257  *   and "name" are disallowed.
258  *
259  * - When mounting an existing superblock, mount options should match.
260  *
261  * - Remount is disallowed.
262  *
263  * - rename(2) is disallowed.
264  *
265  * - "tasks" is removed.  Everything should be at process granularity.  Use
266  *   "cgroup.procs" instead.
267  *
268  * - "cgroup.procs" is not sorted.  pids will be unique unless they got
269  *   recycled inbetween reads.
270  *
271  * - "release_agent" and "notify_on_release" are removed.  Replacement
272  *   notification mechanism will be implemented.
273  *
274  * - "cgroup.clone_children" is removed.
275  *
276  * - "cgroup.subtree_populated" is available.  Its value is 0 if the cgroup
277  *   and its descendants contain no task; otherwise, 1.  The file also
278  *   generates kernfs notification which can be monitored through poll and
279  *   [di]notify when the value of the file changes.
280  *
281  * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
282  *   take masks of ancestors with non-empty cpus/mems, instead of being
283  *   moved to an ancestor.
284  *
285  * - cpuset: a task can be moved into an empty cpuset, and again it takes
286  *   masks of ancestors.
287  *
288  * - memcg: use_hierarchy is on by default and the cgroup file for the flag
289  *   is not created.
290  *
291  * - blkcg: blk-throttle becomes properly hierarchical.
292  *
293  * - debug: disallowed on the default hierarchy.
294  */
295 bool cgroup_on_dfl(const struct cgroup *cgrp)
296 {
297 	return cgrp->root == &cgrp_dfl_root;
298 }
299 
300 /* IDR wrappers which synchronize using cgroup_idr_lock */
301 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
302 			    gfp_t gfp_mask)
303 {
304 	int ret;
305 
306 	idr_preload(gfp_mask);
307 	spin_lock_bh(&cgroup_idr_lock);
308 	ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
309 	spin_unlock_bh(&cgroup_idr_lock);
310 	idr_preload_end();
311 	return ret;
312 }
313 
314 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
315 {
316 	void *ret;
317 
318 	spin_lock_bh(&cgroup_idr_lock);
319 	ret = idr_replace(idr, ptr, id);
320 	spin_unlock_bh(&cgroup_idr_lock);
321 	return ret;
322 }
323 
324 static void cgroup_idr_remove(struct idr *idr, int id)
325 {
326 	spin_lock_bh(&cgroup_idr_lock);
327 	idr_remove(idr, id);
328 	spin_unlock_bh(&cgroup_idr_lock);
329 }
330 
331 static bool cgroup_has_tasks(struct cgroup *cgrp)
332 {
333 	return cgrp->nr_populated_csets;
334 }
335 
336 bool cgroup_is_threaded(struct cgroup *cgrp)
337 {
338 	return cgrp->dom_cgrp != cgrp;
339 }
340 
341 /* can @cgrp host both domain and threaded children? */
342 static bool cgroup_is_mixable(struct cgroup *cgrp)
343 {
344 	/*
345 	 * Root isn't under domain level resource control exempting it from
346 	 * the no-internal-process constraint, so it can serve as a thread
347 	 * root and a parent of resource domains at the same time.
348 	 */
349 	return !cgroup_parent(cgrp);
350 }
351 
352 /* can @cgrp become a thread root? should always be true for a thread root */
353 static bool cgroup_can_be_thread_root(struct cgroup *cgrp)
354 {
355 	/* mixables don't care */
356 	if (cgroup_is_mixable(cgrp))
357 		return true;
358 
359 	/* domain roots can't be nested under threaded */
360 	if (cgroup_is_threaded(cgrp))
361 		return false;
362 
363 	/* can only have either domain or threaded children */
364 	if (cgrp->nr_populated_domain_children)
365 		return false;
366 
367 	/* and no domain controllers can be enabled */
368 	if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
369 		return false;
370 
371 	return true;
372 }
373 
374 /* is @cgrp root of a threaded subtree? */
375 bool cgroup_is_thread_root(struct cgroup *cgrp)
376 {
377 	/* thread root should be a domain */
378 	if (cgroup_is_threaded(cgrp))
379 		return false;
380 
381 	/* a domain w/ threaded children is a thread root */
382 	if (cgrp->nr_threaded_children)
383 		return true;
384 
385 	/*
386 	 * A domain which has tasks and explicit threaded controllers
387 	 * enabled is a thread root.
388 	 */
389 	if (cgroup_has_tasks(cgrp) &&
390 	    (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask))
391 		return true;
392 
393 	return false;
394 }
395 
396 /* a domain which isn't connected to the root w/o brekage can't be used */
397 static bool cgroup_is_valid_domain(struct cgroup *cgrp)
398 {
399 	/* the cgroup itself can be a thread root */
400 	if (cgroup_is_threaded(cgrp))
401 		return false;
402 
403 	/* but the ancestors can't be unless mixable */
404 	while ((cgrp = cgroup_parent(cgrp))) {
405 		if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp))
406 			return false;
407 		if (cgroup_is_threaded(cgrp))
408 			return false;
409 	}
410 
411 	return true;
412 }
413 
414 /* subsystems visibly enabled on a cgroup */
415 static u16 cgroup_control(struct cgroup *cgrp)
416 {
417 	struct cgroup *parent = cgroup_parent(cgrp);
418 	u16 root_ss_mask = cgrp->root->subsys_mask;
419 
420 	if (parent) {
421 		u16 ss_mask = parent->subtree_control;
422 
423 		/* threaded cgroups can only have threaded controllers */
424 		if (cgroup_is_threaded(cgrp))
425 			ss_mask &= cgrp_dfl_threaded_ss_mask;
426 		return ss_mask;
427 	}
428 
429 	if (cgroup_on_dfl(cgrp))
430 		root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
431 				  cgrp_dfl_implicit_ss_mask);
432 	return root_ss_mask;
433 }
434 
435 /* subsystems enabled on a cgroup */
436 static u16 cgroup_ss_mask(struct cgroup *cgrp)
437 {
438 	struct cgroup *parent = cgroup_parent(cgrp);
439 
440 	if (parent) {
441 		u16 ss_mask = parent->subtree_ss_mask;
442 
443 		/* threaded cgroups can only have threaded controllers */
444 		if (cgroup_is_threaded(cgrp))
445 			ss_mask &= cgrp_dfl_threaded_ss_mask;
446 		return ss_mask;
447 	}
448 
449 	return cgrp->root->subsys_mask;
450 }
451 
452 /**
453  * cgroup_css - obtain a cgroup's css for the specified subsystem
454  * @cgrp: the cgroup of interest
455  * @ss: the subsystem of interest (%NULL returns @cgrp->self)
456  *
457  * Return @cgrp's css (cgroup_subsys_state) associated with @ss.  This
458  * function must be called either under cgroup_mutex or rcu_read_lock() and
459  * the caller is responsible for pinning the returned css if it wants to
460  * keep accessing it outside the said locks.  This function may return
461  * %NULL if @cgrp doesn't have @subsys_id enabled.
462  */
463 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
464 					      struct cgroup_subsys *ss)
465 {
466 	if (ss)
467 		return rcu_dereference_check(cgrp->subsys[ss->id],
468 					lockdep_is_held(&cgroup_mutex));
469 	else
470 		return &cgrp->self;
471 }
472 
473 /**
474  * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem
475  * @cgrp: the cgroup of interest
476  * @ss: the subsystem of interest
477  *
478  * Find and get @cgrp's css assocaited with @ss.  If the css doesn't exist
479  * or is offline, %NULL is returned.
480  */
481 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp,
482 						     struct cgroup_subsys *ss)
483 {
484 	struct cgroup_subsys_state *css;
485 
486 	rcu_read_lock();
487 	css = cgroup_css(cgrp, ss);
488 	if (!css || !css_tryget_online(css))
489 		css = NULL;
490 	rcu_read_unlock();
491 
492 	return css;
493 }
494 
495 /**
496  * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
497  * @cgrp: the cgroup of interest
498  * @ss: the subsystem of interest (%NULL returns @cgrp->self)
499  *
500  * Similar to cgroup_css() but returns the effective css, which is defined
501  * as the matching css of the nearest ancestor including self which has @ss
502  * enabled.  If @ss is associated with the hierarchy @cgrp is on, this
503  * function is guaranteed to return non-NULL css.
504  */
505 static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
506 						struct cgroup_subsys *ss)
507 {
508 	lockdep_assert_held(&cgroup_mutex);
509 
510 	if (!ss)
511 		return &cgrp->self;
512 
513 	/*
514 	 * This function is used while updating css associations and thus
515 	 * can't test the csses directly.  Test ss_mask.
516 	 */
517 	while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
518 		cgrp = cgroup_parent(cgrp);
519 		if (!cgrp)
520 			return NULL;
521 	}
522 
523 	return cgroup_css(cgrp, ss);
524 }
525 
526 /**
527  * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
528  * @cgrp: the cgroup of interest
529  * @ss: the subsystem of interest
530  *
531  * Find and get the effective css of @cgrp for @ss.  The effective css is
532  * defined as the matching css of the nearest ancestor including self which
533  * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
534  * the root css is returned, so this function always returns a valid css.
535  * The returned css must be put using css_put().
536  */
537 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
538 					     struct cgroup_subsys *ss)
539 {
540 	struct cgroup_subsys_state *css;
541 
542 	rcu_read_lock();
543 
544 	do {
545 		css = cgroup_css(cgrp, ss);
546 
547 		if (css && css_tryget_online(css))
548 			goto out_unlock;
549 		cgrp = cgroup_parent(cgrp);
550 	} while (cgrp);
551 
552 	css = init_css_set.subsys[ss->id];
553 	css_get(css);
554 out_unlock:
555 	rcu_read_unlock();
556 	return css;
557 }
558 
559 static void cgroup_get_live(struct cgroup *cgrp)
560 {
561 	WARN_ON_ONCE(cgroup_is_dead(cgrp));
562 	css_get(&cgrp->self);
563 }
564 
565 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
566 {
567 	struct cgroup *cgrp = of->kn->parent->priv;
568 	struct cftype *cft = of_cft(of);
569 
570 	/*
571 	 * This is open and unprotected implementation of cgroup_css().
572 	 * seq_css() is only called from a kernfs file operation which has
573 	 * an active reference on the file.  Because all the subsystem
574 	 * files are drained before a css is disassociated with a cgroup,
575 	 * the matching css from the cgroup's subsys table is guaranteed to
576 	 * be and stay valid until the enclosing operation is complete.
577 	 */
578 	if (cft->ss)
579 		return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
580 	else
581 		return &cgrp->self;
582 }
583 EXPORT_SYMBOL_GPL(of_css);
584 
585 /**
586  * for_each_css - iterate all css's of a cgroup
587  * @css: the iteration cursor
588  * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
589  * @cgrp: the target cgroup to iterate css's of
590  *
591  * Should be called under cgroup_[tree_]mutex.
592  */
593 #define for_each_css(css, ssid, cgrp)					\
594 	for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)	\
595 		if (!((css) = rcu_dereference_check(			\
596 				(cgrp)->subsys[(ssid)],			\
597 				lockdep_is_held(&cgroup_mutex)))) { }	\
598 		else
599 
600 /**
601  * for_each_e_css - iterate all effective css's of a cgroup
602  * @css: the iteration cursor
603  * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
604  * @cgrp: the target cgroup to iterate css's of
605  *
606  * Should be called under cgroup_[tree_]mutex.
607  */
608 #define for_each_e_css(css, ssid, cgrp)					\
609 	for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)	\
610 		if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
611 			;						\
612 		else
613 
614 /**
615  * do_each_subsys_mask - filter for_each_subsys with a bitmask
616  * @ss: the iteration cursor
617  * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
618  * @ss_mask: the bitmask
619  *
620  * The block will only run for cases where the ssid-th bit (1 << ssid) of
621  * @ss_mask is set.
622  */
623 #define do_each_subsys_mask(ss, ssid, ss_mask) do {			\
624 	unsigned long __ss_mask = (ss_mask);				\
625 	if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */	\
626 		(ssid) = 0;						\
627 		break;							\
628 	}								\
629 	for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) {	\
630 		(ss) = cgroup_subsys[ssid];				\
631 		{
632 
633 #define while_each_subsys_mask()					\
634 		}							\
635 	}								\
636 } while (false)
637 
638 /* iterate over child cgrps, lock should be held throughout iteration */
639 #define cgroup_for_each_live_child(child, cgrp)				\
640 	list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
641 		if (({ lockdep_assert_held(&cgroup_mutex);		\
642 		       cgroup_is_dead(child); }))			\
643 			;						\
644 		else
645 
646 /* walk live descendants in preorder */
647 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)		\
648 	css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL))	\
649 		if (({ lockdep_assert_held(&cgroup_mutex);		\
650 		       (dsct) = (d_css)->cgroup;			\
651 		       cgroup_is_dead(dsct); }))			\
652 			;						\
653 		else
654 
655 /* walk live descendants in postorder */
656 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp)		\
657 	css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL))	\
658 		if (({ lockdep_assert_held(&cgroup_mutex);		\
659 		       (dsct) = (d_css)->cgroup;			\
660 		       cgroup_is_dead(dsct); }))			\
661 			;						\
662 		else
663 
664 /*
665  * The default css_set - used by init and its children prior to any
666  * hierarchies being mounted. It contains a pointer to the root state
667  * for each subsystem. Also used to anchor the list of css_sets. Not
668  * reference-counted, to improve performance when child cgroups
669  * haven't been created.
670  */
671 struct css_set init_css_set = {
672 	.refcount		= REFCOUNT_INIT(1),
673 	.dom_cset		= &init_css_set,
674 	.tasks			= LIST_HEAD_INIT(init_css_set.tasks),
675 	.mg_tasks		= LIST_HEAD_INIT(init_css_set.mg_tasks),
676 	.task_iters		= LIST_HEAD_INIT(init_css_set.task_iters),
677 	.threaded_csets		= LIST_HEAD_INIT(init_css_set.threaded_csets),
678 	.cgrp_links		= LIST_HEAD_INIT(init_css_set.cgrp_links),
679 	.mg_preload_node	= LIST_HEAD_INIT(init_css_set.mg_preload_node),
680 	.mg_node		= LIST_HEAD_INIT(init_css_set.mg_node),
681 
682 	/*
683 	 * The following field is re-initialized when this cset gets linked
684 	 * in cgroup_init().  However, let's initialize the field
685 	 * statically too so that the default cgroup can be accessed safely
686 	 * early during boot.
687 	 */
688 	.dfl_cgrp		= &cgrp_dfl_root.cgrp,
689 };
690 
691 static int css_set_count	= 1;	/* 1 for init_css_set */
692 
693 static bool css_set_threaded(struct css_set *cset)
694 {
695 	return cset->dom_cset != cset;
696 }
697 
698 /**
699  * css_set_populated - does a css_set contain any tasks?
700  * @cset: target css_set
701  *
702  * css_set_populated() should be the same as !!cset->nr_tasks at steady
703  * state. However, css_set_populated() can be called while a task is being
704  * added to or removed from the linked list before the nr_tasks is
705  * properly updated. Hence, we can't just look at ->nr_tasks here.
706  */
707 static bool css_set_populated(struct css_set *cset)
708 {
709 	lockdep_assert_held(&css_set_lock);
710 
711 	return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
712 }
713 
714 /**
715  * cgroup_update_populated - update the populated count of a cgroup
716  * @cgrp: the target cgroup
717  * @populated: inc or dec populated count
718  *
719  * One of the css_sets associated with @cgrp is either getting its first
720  * task or losing the last.  Update @cgrp->nr_populated_* accordingly.  The
721  * count is propagated towards root so that a given cgroup's
722  * nr_populated_children is zero iff none of its descendants contain any
723  * tasks.
724  *
725  * @cgrp's interface file "cgroup.populated" is zero if both
726  * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and
727  * 1 otherwise.  When the sum changes from or to zero, userland is notified
728  * that the content of the interface file has changed.  This can be used to
729  * detect when @cgrp and its descendants become populated or empty.
730  */
731 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
732 {
733 	struct cgroup *child = NULL;
734 	int adj = populated ? 1 : -1;
735 
736 	lockdep_assert_held(&css_set_lock);
737 
738 	do {
739 		bool was_populated = cgroup_is_populated(cgrp);
740 
741 		if (!child) {
742 			cgrp->nr_populated_csets += adj;
743 		} else {
744 			if (cgroup_is_threaded(child))
745 				cgrp->nr_populated_threaded_children += adj;
746 			else
747 				cgrp->nr_populated_domain_children += adj;
748 		}
749 
750 		if (was_populated == cgroup_is_populated(cgrp))
751 			break;
752 
753 		cgroup1_check_for_release(cgrp);
754 		cgroup_file_notify(&cgrp->events_file);
755 
756 		child = cgrp;
757 		cgrp = cgroup_parent(cgrp);
758 	} while (cgrp);
759 }
760 
761 /**
762  * css_set_update_populated - update populated state of a css_set
763  * @cset: target css_set
764  * @populated: whether @cset is populated or depopulated
765  *
766  * @cset is either getting the first task or losing the last.  Update the
767  * populated counters of all associated cgroups accordingly.
768  */
769 static void css_set_update_populated(struct css_set *cset, bool populated)
770 {
771 	struct cgrp_cset_link *link;
772 
773 	lockdep_assert_held(&css_set_lock);
774 
775 	list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
776 		cgroup_update_populated(link->cgrp, populated);
777 }
778 
779 /**
780  * css_set_move_task - move a task from one css_set to another
781  * @task: task being moved
782  * @from_cset: css_set @task currently belongs to (may be NULL)
783  * @to_cset: new css_set @task is being moved to (may be NULL)
784  * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
785  *
786  * Move @task from @from_cset to @to_cset.  If @task didn't belong to any
787  * css_set, @from_cset can be NULL.  If @task is being disassociated
788  * instead of moved, @to_cset can be NULL.
789  *
790  * This function automatically handles populated counter updates and
791  * css_task_iter adjustments but the caller is responsible for managing
792  * @from_cset and @to_cset's reference counts.
793  */
794 static void css_set_move_task(struct task_struct *task,
795 			      struct css_set *from_cset, struct css_set *to_cset,
796 			      bool use_mg_tasks)
797 {
798 	lockdep_assert_held(&css_set_lock);
799 
800 	if (to_cset && !css_set_populated(to_cset))
801 		css_set_update_populated(to_cset, true);
802 
803 	if (from_cset) {
804 		struct css_task_iter *it, *pos;
805 
806 		WARN_ON_ONCE(list_empty(&task->cg_list));
807 
808 		/*
809 		 * @task is leaving, advance task iterators which are
810 		 * pointing to it so that they can resume at the next
811 		 * position.  Advancing an iterator might remove it from
812 		 * the list, use safe walk.  See css_task_iter_advance*()
813 		 * for details.
814 		 */
815 		list_for_each_entry_safe(it, pos, &from_cset->task_iters,
816 					 iters_node)
817 			if (it->task_pos == &task->cg_list)
818 				css_task_iter_advance(it);
819 
820 		list_del_init(&task->cg_list);
821 		if (!css_set_populated(from_cset))
822 			css_set_update_populated(from_cset, false);
823 	} else {
824 		WARN_ON_ONCE(!list_empty(&task->cg_list));
825 	}
826 
827 	if (to_cset) {
828 		/*
829 		 * We are synchronized through cgroup_threadgroup_rwsem
830 		 * against PF_EXITING setting such that we can't race
831 		 * against cgroup_exit() changing the css_set to
832 		 * init_css_set and dropping the old one.
833 		 */
834 		WARN_ON_ONCE(task->flags & PF_EXITING);
835 
836 		cgroup_move_task(task, to_cset);
837 		list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
838 							     &to_cset->tasks);
839 	}
840 }
841 
842 /*
843  * hash table for cgroup groups. This improves the performance to find
844  * an existing css_set. This hash doesn't (currently) take into
845  * account cgroups in empty hierarchies.
846  */
847 #define CSS_SET_HASH_BITS	7
848 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
849 
850 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
851 {
852 	unsigned long key = 0UL;
853 	struct cgroup_subsys *ss;
854 	int i;
855 
856 	for_each_subsys(ss, i)
857 		key += (unsigned long)css[i];
858 	key = (key >> 16) ^ key;
859 
860 	return key;
861 }
862 
863 void put_css_set_locked(struct css_set *cset)
864 {
865 	struct cgrp_cset_link *link, *tmp_link;
866 	struct cgroup_subsys *ss;
867 	int ssid;
868 
869 	lockdep_assert_held(&css_set_lock);
870 
871 	if (!refcount_dec_and_test(&cset->refcount))
872 		return;
873 
874 	WARN_ON_ONCE(!list_empty(&cset->threaded_csets));
875 
876 	/* This css_set is dead. unlink it and release cgroup and css refs */
877 	for_each_subsys(ss, ssid) {
878 		list_del(&cset->e_cset_node[ssid]);
879 		css_put(cset->subsys[ssid]);
880 	}
881 	hash_del(&cset->hlist);
882 	css_set_count--;
883 
884 	list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
885 		list_del(&link->cset_link);
886 		list_del(&link->cgrp_link);
887 		if (cgroup_parent(link->cgrp))
888 			cgroup_put(link->cgrp);
889 		kfree(link);
890 	}
891 
892 	if (css_set_threaded(cset)) {
893 		list_del(&cset->threaded_csets_node);
894 		put_css_set_locked(cset->dom_cset);
895 	}
896 
897 	kfree_rcu(cset, rcu_head);
898 }
899 
900 /**
901  * compare_css_sets - helper function for find_existing_css_set().
902  * @cset: candidate css_set being tested
903  * @old_cset: existing css_set for a task
904  * @new_cgrp: cgroup that's being entered by the task
905  * @template: desired set of css pointers in css_set (pre-calculated)
906  *
907  * Returns true if "cset" matches "old_cset" except for the hierarchy
908  * which "new_cgrp" belongs to, for which it should match "new_cgrp".
909  */
910 static bool compare_css_sets(struct css_set *cset,
911 			     struct css_set *old_cset,
912 			     struct cgroup *new_cgrp,
913 			     struct cgroup_subsys_state *template[])
914 {
915 	struct cgroup *new_dfl_cgrp;
916 	struct list_head *l1, *l2;
917 
918 	/*
919 	 * On the default hierarchy, there can be csets which are
920 	 * associated with the same set of cgroups but different csses.
921 	 * Let's first ensure that csses match.
922 	 */
923 	if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
924 		return false;
925 
926 
927 	/* @cset's domain should match the default cgroup's */
928 	if (cgroup_on_dfl(new_cgrp))
929 		new_dfl_cgrp = new_cgrp;
930 	else
931 		new_dfl_cgrp = old_cset->dfl_cgrp;
932 
933 	if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp)
934 		return false;
935 
936 	/*
937 	 * Compare cgroup pointers in order to distinguish between
938 	 * different cgroups in hierarchies.  As different cgroups may
939 	 * share the same effective css, this comparison is always
940 	 * necessary.
941 	 */
942 	l1 = &cset->cgrp_links;
943 	l2 = &old_cset->cgrp_links;
944 	while (1) {
945 		struct cgrp_cset_link *link1, *link2;
946 		struct cgroup *cgrp1, *cgrp2;
947 
948 		l1 = l1->next;
949 		l2 = l2->next;
950 		/* See if we reached the end - both lists are equal length. */
951 		if (l1 == &cset->cgrp_links) {
952 			BUG_ON(l2 != &old_cset->cgrp_links);
953 			break;
954 		} else {
955 			BUG_ON(l2 == &old_cset->cgrp_links);
956 		}
957 		/* Locate the cgroups associated with these links. */
958 		link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
959 		link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
960 		cgrp1 = link1->cgrp;
961 		cgrp2 = link2->cgrp;
962 		/* Hierarchies should be linked in the same order. */
963 		BUG_ON(cgrp1->root != cgrp2->root);
964 
965 		/*
966 		 * If this hierarchy is the hierarchy of the cgroup
967 		 * that's changing, then we need to check that this
968 		 * css_set points to the new cgroup; if it's any other
969 		 * hierarchy, then this css_set should point to the
970 		 * same cgroup as the old css_set.
971 		 */
972 		if (cgrp1->root == new_cgrp->root) {
973 			if (cgrp1 != new_cgrp)
974 				return false;
975 		} else {
976 			if (cgrp1 != cgrp2)
977 				return false;
978 		}
979 	}
980 	return true;
981 }
982 
983 /**
984  * find_existing_css_set - init css array and find the matching css_set
985  * @old_cset: the css_set that we're using before the cgroup transition
986  * @cgrp: the cgroup that we're moving into
987  * @template: out param for the new set of csses, should be clear on entry
988  */
989 static struct css_set *find_existing_css_set(struct css_set *old_cset,
990 					struct cgroup *cgrp,
991 					struct cgroup_subsys_state *template[])
992 {
993 	struct cgroup_root *root = cgrp->root;
994 	struct cgroup_subsys *ss;
995 	struct css_set *cset;
996 	unsigned long key;
997 	int i;
998 
999 	/*
1000 	 * Build the set of subsystem state objects that we want to see in the
1001 	 * new css_set. while subsystems can change globally, the entries here
1002 	 * won't change, so no need for locking.
1003 	 */
1004 	for_each_subsys(ss, i) {
1005 		if (root->subsys_mask & (1UL << i)) {
1006 			/*
1007 			 * @ss is in this hierarchy, so we want the
1008 			 * effective css from @cgrp.
1009 			 */
1010 			template[i] = cgroup_e_css(cgrp, ss);
1011 		} else {
1012 			/*
1013 			 * @ss is not in this hierarchy, so we don't want
1014 			 * to change the css.
1015 			 */
1016 			template[i] = old_cset->subsys[i];
1017 		}
1018 	}
1019 
1020 	key = css_set_hash(template);
1021 	hash_for_each_possible(css_set_table, cset, hlist, key) {
1022 		if (!compare_css_sets(cset, old_cset, cgrp, template))
1023 			continue;
1024 
1025 		/* This css_set matches what we need */
1026 		return cset;
1027 	}
1028 
1029 	/* No existing cgroup group matched */
1030 	return NULL;
1031 }
1032 
1033 static void free_cgrp_cset_links(struct list_head *links_to_free)
1034 {
1035 	struct cgrp_cset_link *link, *tmp_link;
1036 
1037 	list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
1038 		list_del(&link->cset_link);
1039 		kfree(link);
1040 	}
1041 }
1042 
1043 /**
1044  * allocate_cgrp_cset_links - allocate cgrp_cset_links
1045  * @count: the number of links to allocate
1046  * @tmp_links: list_head the allocated links are put on
1047  *
1048  * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1049  * through ->cset_link.  Returns 0 on success or -errno.
1050  */
1051 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
1052 {
1053 	struct cgrp_cset_link *link;
1054 	int i;
1055 
1056 	INIT_LIST_HEAD(tmp_links);
1057 
1058 	for (i = 0; i < count; i++) {
1059 		link = kzalloc(sizeof(*link), GFP_KERNEL);
1060 		if (!link) {
1061 			free_cgrp_cset_links(tmp_links);
1062 			return -ENOMEM;
1063 		}
1064 		list_add(&link->cset_link, tmp_links);
1065 	}
1066 	return 0;
1067 }
1068 
1069 /**
1070  * link_css_set - a helper function to link a css_set to a cgroup
1071  * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
1072  * @cset: the css_set to be linked
1073  * @cgrp: the destination cgroup
1074  */
1075 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1076 			 struct cgroup *cgrp)
1077 {
1078 	struct cgrp_cset_link *link;
1079 
1080 	BUG_ON(list_empty(tmp_links));
1081 
1082 	if (cgroup_on_dfl(cgrp))
1083 		cset->dfl_cgrp = cgrp;
1084 
1085 	link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1086 	link->cset = cset;
1087 	link->cgrp = cgrp;
1088 
1089 	/*
1090 	 * Always add links to the tail of the lists so that the lists are
1091 	 * in choronological order.
1092 	 */
1093 	list_move_tail(&link->cset_link, &cgrp->cset_links);
1094 	list_add_tail(&link->cgrp_link, &cset->cgrp_links);
1095 
1096 	if (cgroup_parent(cgrp))
1097 		cgroup_get_live(cgrp);
1098 }
1099 
1100 /**
1101  * find_css_set - return a new css_set with one cgroup updated
1102  * @old_cset: the baseline css_set
1103  * @cgrp: the cgroup to be updated
1104  *
1105  * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1106  * substituted into the appropriate hierarchy.
1107  */
1108 static struct css_set *find_css_set(struct css_set *old_cset,
1109 				    struct cgroup *cgrp)
1110 {
1111 	struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
1112 	struct css_set *cset;
1113 	struct list_head tmp_links;
1114 	struct cgrp_cset_link *link;
1115 	struct cgroup_subsys *ss;
1116 	unsigned long key;
1117 	int ssid;
1118 
1119 	lockdep_assert_held(&cgroup_mutex);
1120 
1121 	/* First see if we already have a cgroup group that matches
1122 	 * the desired set */
1123 	spin_lock_irq(&css_set_lock);
1124 	cset = find_existing_css_set(old_cset, cgrp, template);
1125 	if (cset)
1126 		get_css_set(cset);
1127 	spin_unlock_irq(&css_set_lock);
1128 
1129 	if (cset)
1130 		return cset;
1131 
1132 	cset = kzalloc(sizeof(*cset), GFP_KERNEL);
1133 	if (!cset)
1134 		return NULL;
1135 
1136 	/* Allocate all the cgrp_cset_link objects that we'll need */
1137 	if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1138 		kfree(cset);
1139 		return NULL;
1140 	}
1141 
1142 	refcount_set(&cset->refcount, 1);
1143 	cset->dom_cset = cset;
1144 	INIT_LIST_HEAD(&cset->tasks);
1145 	INIT_LIST_HEAD(&cset->mg_tasks);
1146 	INIT_LIST_HEAD(&cset->task_iters);
1147 	INIT_LIST_HEAD(&cset->threaded_csets);
1148 	INIT_HLIST_NODE(&cset->hlist);
1149 	INIT_LIST_HEAD(&cset->cgrp_links);
1150 	INIT_LIST_HEAD(&cset->mg_preload_node);
1151 	INIT_LIST_HEAD(&cset->mg_node);
1152 
1153 	/* Copy the set of subsystem state objects generated in
1154 	 * find_existing_css_set() */
1155 	memcpy(cset->subsys, template, sizeof(cset->subsys));
1156 
1157 	spin_lock_irq(&css_set_lock);
1158 	/* Add reference counts and links from the new css_set. */
1159 	list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1160 		struct cgroup *c = link->cgrp;
1161 
1162 		if (c->root == cgrp->root)
1163 			c = cgrp;
1164 		link_css_set(&tmp_links, cset, c);
1165 	}
1166 
1167 	BUG_ON(!list_empty(&tmp_links));
1168 
1169 	css_set_count++;
1170 
1171 	/* Add @cset to the hash table */
1172 	key = css_set_hash(cset->subsys);
1173 	hash_add(css_set_table, &cset->hlist, key);
1174 
1175 	for_each_subsys(ss, ssid) {
1176 		struct cgroup_subsys_state *css = cset->subsys[ssid];
1177 
1178 		list_add_tail(&cset->e_cset_node[ssid],
1179 			      &css->cgroup->e_csets[ssid]);
1180 		css_get(css);
1181 	}
1182 
1183 	spin_unlock_irq(&css_set_lock);
1184 
1185 	/*
1186 	 * If @cset should be threaded, look up the matching dom_cset and
1187 	 * link them up.  We first fully initialize @cset then look for the
1188 	 * dom_cset.  It's simpler this way and safe as @cset is guaranteed
1189 	 * to stay empty until we return.
1190 	 */
1191 	if (cgroup_is_threaded(cset->dfl_cgrp)) {
1192 		struct css_set *dcset;
1193 
1194 		dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp);
1195 		if (!dcset) {
1196 			put_css_set(cset);
1197 			return NULL;
1198 		}
1199 
1200 		spin_lock_irq(&css_set_lock);
1201 		cset->dom_cset = dcset;
1202 		list_add_tail(&cset->threaded_csets_node,
1203 			      &dcset->threaded_csets);
1204 		spin_unlock_irq(&css_set_lock);
1205 	}
1206 
1207 	return cset;
1208 }
1209 
1210 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1211 {
1212 	struct cgroup *root_cgrp = kf_root->kn->priv;
1213 
1214 	return root_cgrp->root;
1215 }
1216 
1217 static int cgroup_init_root_id(struct cgroup_root *root)
1218 {
1219 	int id;
1220 
1221 	lockdep_assert_held(&cgroup_mutex);
1222 
1223 	id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1224 	if (id < 0)
1225 		return id;
1226 
1227 	root->hierarchy_id = id;
1228 	return 0;
1229 }
1230 
1231 static void cgroup_exit_root_id(struct cgroup_root *root)
1232 {
1233 	lockdep_assert_held(&cgroup_mutex);
1234 
1235 	idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1236 }
1237 
1238 void cgroup_free_root(struct cgroup_root *root)
1239 {
1240 	if (root) {
1241 		idr_destroy(&root->cgroup_idr);
1242 		kfree(root);
1243 	}
1244 }
1245 
1246 static void cgroup_destroy_root(struct cgroup_root *root)
1247 {
1248 	struct cgroup *cgrp = &root->cgrp;
1249 	struct cgrp_cset_link *link, *tmp_link;
1250 
1251 	trace_cgroup_destroy_root(root);
1252 
1253 	cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1254 
1255 	BUG_ON(atomic_read(&root->nr_cgrps));
1256 	BUG_ON(!list_empty(&cgrp->self.children));
1257 
1258 	/* Rebind all subsystems back to the default hierarchy */
1259 	WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
1260 
1261 	/*
1262 	 * Release all the links from cset_links to this hierarchy's
1263 	 * root cgroup
1264 	 */
1265 	spin_lock_irq(&css_set_lock);
1266 
1267 	list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1268 		list_del(&link->cset_link);
1269 		list_del(&link->cgrp_link);
1270 		kfree(link);
1271 	}
1272 
1273 	spin_unlock_irq(&css_set_lock);
1274 
1275 	if (!list_empty(&root->root_list)) {
1276 		list_del(&root->root_list);
1277 		cgroup_root_count--;
1278 	}
1279 
1280 	cgroup_exit_root_id(root);
1281 
1282 	mutex_unlock(&cgroup_mutex);
1283 
1284 	kernfs_destroy_root(root->kf_root);
1285 	cgroup_free_root(root);
1286 }
1287 
1288 /*
1289  * look up cgroup associated with current task's cgroup namespace on the
1290  * specified hierarchy
1291  */
1292 static struct cgroup *
1293 current_cgns_cgroup_from_root(struct cgroup_root *root)
1294 {
1295 	struct cgroup *res = NULL;
1296 	struct css_set *cset;
1297 
1298 	lockdep_assert_held(&css_set_lock);
1299 
1300 	rcu_read_lock();
1301 
1302 	cset = current->nsproxy->cgroup_ns->root_cset;
1303 	if (cset == &init_css_set) {
1304 		res = &root->cgrp;
1305 	} else {
1306 		struct cgrp_cset_link *link;
1307 
1308 		list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1309 			struct cgroup *c = link->cgrp;
1310 
1311 			if (c->root == root) {
1312 				res = c;
1313 				break;
1314 			}
1315 		}
1316 	}
1317 	rcu_read_unlock();
1318 
1319 	BUG_ON(!res);
1320 	return res;
1321 }
1322 
1323 /* look up cgroup associated with given css_set on the specified hierarchy */
1324 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1325 					    struct cgroup_root *root)
1326 {
1327 	struct cgroup *res = NULL;
1328 
1329 	lockdep_assert_held(&cgroup_mutex);
1330 	lockdep_assert_held(&css_set_lock);
1331 
1332 	if (cset == &init_css_set) {
1333 		res = &root->cgrp;
1334 	} else if (root == &cgrp_dfl_root) {
1335 		res = cset->dfl_cgrp;
1336 	} else {
1337 		struct cgrp_cset_link *link;
1338 
1339 		list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1340 			struct cgroup *c = link->cgrp;
1341 
1342 			if (c->root == root) {
1343 				res = c;
1344 				break;
1345 			}
1346 		}
1347 	}
1348 
1349 	BUG_ON(!res);
1350 	return res;
1351 }
1352 
1353 /*
1354  * Return the cgroup for "task" from the given hierarchy. Must be
1355  * called with cgroup_mutex and css_set_lock held.
1356  */
1357 struct cgroup *task_cgroup_from_root(struct task_struct *task,
1358 				     struct cgroup_root *root)
1359 {
1360 	/*
1361 	 * No need to lock the task - since we hold cgroup_mutex the
1362 	 * task can't change groups, so the only thing that can happen
1363 	 * is that it exits and its css is set back to init_css_set.
1364 	 */
1365 	return cset_cgroup_from_root(task_css_set(task), root);
1366 }
1367 
1368 /*
1369  * A task must hold cgroup_mutex to modify cgroups.
1370  *
1371  * Any task can increment and decrement the count field without lock.
1372  * So in general, code holding cgroup_mutex can't rely on the count
1373  * field not changing.  However, if the count goes to zero, then only
1374  * cgroup_attach_task() can increment it again.  Because a count of zero
1375  * means that no tasks are currently attached, therefore there is no
1376  * way a task attached to that cgroup can fork (the other way to
1377  * increment the count).  So code holding cgroup_mutex can safely
1378  * assume that if the count is zero, it will stay zero. Similarly, if
1379  * a task holds cgroup_mutex on a cgroup with zero count, it
1380  * knows that the cgroup won't be removed, as cgroup_rmdir()
1381  * needs that mutex.
1382  *
1383  * A cgroup can only be deleted if both its 'count' of using tasks
1384  * is zero, and its list of 'children' cgroups is empty.  Since all
1385  * tasks in the system use _some_ cgroup, and since there is always at
1386  * least one task in the system (init, pid == 1), therefore, root cgroup
1387  * always has either children cgroups and/or using tasks.  So we don't
1388  * need a special hack to ensure that root cgroup cannot be deleted.
1389  *
1390  * P.S.  One more locking exception.  RCU is used to guard the
1391  * update of a tasks cgroup pointer by cgroup_attach_task()
1392  */
1393 
1394 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1395 
1396 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1397 			      char *buf)
1398 {
1399 	struct cgroup_subsys *ss = cft->ss;
1400 
1401 	if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1402 	    !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
1403 		snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
1404 			 cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1405 			 cft->name);
1406 	else
1407 		strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1408 	return buf;
1409 }
1410 
1411 /**
1412  * cgroup_file_mode - deduce file mode of a control file
1413  * @cft: the control file in question
1414  *
1415  * S_IRUGO for read, S_IWUSR for write.
1416  */
1417 static umode_t cgroup_file_mode(const struct cftype *cft)
1418 {
1419 	umode_t mode = 0;
1420 
1421 	if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1422 		mode |= S_IRUGO;
1423 
1424 	if (cft->write_u64 || cft->write_s64 || cft->write) {
1425 		if (cft->flags & CFTYPE_WORLD_WRITABLE)
1426 			mode |= S_IWUGO;
1427 		else
1428 			mode |= S_IWUSR;
1429 	}
1430 
1431 	return mode;
1432 }
1433 
1434 /**
1435  * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1436  * @subtree_control: the new subtree_control mask to consider
1437  * @this_ss_mask: available subsystems
1438  *
1439  * On the default hierarchy, a subsystem may request other subsystems to be
1440  * enabled together through its ->depends_on mask.  In such cases, more
1441  * subsystems than specified in "cgroup.subtree_control" may be enabled.
1442  *
1443  * This function calculates which subsystems need to be enabled if
1444  * @subtree_control is to be applied while restricted to @this_ss_mask.
1445  */
1446 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
1447 {
1448 	u16 cur_ss_mask = subtree_control;
1449 	struct cgroup_subsys *ss;
1450 	int ssid;
1451 
1452 	lockdep_assert_held(&cgroup_mutex);
1453 
1454 	cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1455 
1456 	while (true) {
1457 		u16 new_ss_mask = cur_ss_mask;
1458 
1459 		do_each_subsys_mask(ss, ssid, cur_ss_mask) {
1460 			new_ss_mask |= ss->depends_on;
1461 		} while_each_subsys_mask();
1462 
1463 		/*
1464 		 * Mask out subsystems which aren't available.  This can
1465 		 * happen only if some depended-upon subsystems were bound
1466 		 * to non-default hierarchies.
1467 		 */
1468 		new_ss_mask &= this_ss_mask;
1469 
1470 		if (new_ss_mask == cur_ss_mask)
1471 			break;
1472 		cur_ss_mask = new_ss_mask;
1473 	}
1474 
1475 	return cur_ss_mask;
1476 }
1477 
1478 /**
1479  * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1480  * @kn: the kernfs_node being serviced
1481  *
1482  * This helper undoes cgroup_kn_lock_live() and should be invoked before
1483  * the method finishes if locking succeeded.  Note that once this function
1484  * returns the cgroup returned by cgroup_kn_lock_live() may become
1485  * inaccessible any time.  If the caller intends to continue to access the
1486  * cgroup, it should pin it before invoking this function.
1487  */
1488 void cgroup_kn_unlock(struct kernfs_node *kn)
1489 {
1490 	struct cgroup *cgrp;
1491 
1492 	if (kernfs_type(kn) == KERNFS_DIR)
1493 		cgrp = kn->priv;
1494 	else
1495 		cgrp = kn->parent->priv;
1496 
1497 	mutex_unlock(&cgroup_mutex);
1498 
1499 	kernfs_unbreak_active_protection(kn);
1500 	cgroup_put(cgrp);
1501 }
1502 
1503 /**
1504  * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1505  * @kn: the kernfs_node being serviced
1506  * @drain_offline: perform offline draining on the cgroup
1507  *
1508  * This helper is to be used by a cgroup kernfs method currently servicing
1509  * @kn.  It breaks the active protection, performs cgroup locking and
1510  * verifies that the associated cgroup is alive.  Returns the cgroup if
1511  * alive; otherwise, %NULL.  A successful return should be undone by a
1512  * matching cgroup_kn_unlock() invocation.  If @drain_offline is %true, the
1513  * cgroup is drained of offlining csses before return.
1514  *
1515  * Any cgroup kernfs method implementation which requires locking the
1516  * associated cgroup should use this helper.  It avoids nesting cgroup
1517  * locking under kernfs active protection and allows all kernfs operations
1518  * including self-removal.
1519  */
1520 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline)
1521 {
1522 	struct cgroup *cgrp;
1523 
1524 	if (kernfs_type(kn) == KERNFS_DIR)
1525 		cgrp = kn->priv;
1526 	else
1527 		cgrp = kn->parent->priv;
1528 
1529 	/*
1530 	 * We're gonna grab cgroup_mutex which nests outside kernfs
1531 	 * active_ref.  cgroup liveliness check alone provides enough
1532 	 * protection against removal.  Ensure @cgrp stays accessible and
1533 	 * break the active_ref protection.
1534 	 */
1535 	if (!cgroup_tryget(cgrp))
1536 		return NULL;
1537 	kernfs_break_active_protection(kn);
1538 
1539 	if (drain_offline)
1540 		cgroup_lock_and_drain_offline(cgrp);
1541 	else
1542 		mutex_lock(&cgroup_mutex);
1543 
1544 	if (!cgroup_is_dead(cgrp))
1545 		return cgrp;
1546 
1547 	cgroup_kn_unlock(kn);
1548 	return NULL;
1549 }
1550 
1551 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1552 {
1553 	char name[CGROUP_FILE_NAME_MAX];
1554 
1555 	lockdep_assert_held(&cgroup_mutex);
1556 
1557 	if (cft->file_offset) {
1558 		struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1559 		struct cgroup_file *cfile = (void *)css + cft->file_offset;
1560 
1561 		spin_lock_irq(&cgroup_file_kn_lock);
1562 		cfile->kn = NULL;
1563 		spin_unlock_irq(&cgroup_file_kn_lock);
1564 
1565 		del_timer_sync(&cfile->notify_timer);
1566 	}
1567 
1568 	kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1569 }
1570 
1571 /**
1572  * css_clear_dir - remove subsys files in a cgroup directory
1573  * @css: taget css
1574  */
1575 static void css_clear_dir(struct cgroup_subsys_state *css)
1576 {
1577 	struct cgroup *cgrp = css->cgroup;
1578 	struct cftype *cfts;
1579 
1580 	if (!(css->flags & CSS_VISIBLE))
1581 		return;
1582 
1583 	css->flags &= ~CSS_VISIBLE;
1584 
1585 	if (!css->ss) {
1586 		if (cgroup_on_dfl(cgrp))
1587 			cfts = cgroup_base_files;
1588 		else
1589 			cfts = cgroup1_base_files;
1590 
1591 		cgroup_addrm_files(css, cgrp, cfts, false);
1592 	} else {
1593 		list_for_each_entry(cfts, &css->ss->cfts, node)
1594 			cgroup_addrm_files(css, cgrp, cfts, false);
1595 	}
1596 }
1597 
1598 /**
1599  * css_populate_dir - create subsys files in a cgroup directory
1600  * @css: target css
1601  *
1602  * On failure, no file is added.
1603  */
1604 static int css_populate_dir(struct cgroup_subsys_state *css)
1605 {
1606 	struct cgroup *cgrp = css->cgroup;
1607 	struct cftype *cfts, *failed_cfts;
1608 	int ret;
1609 
1610 	if ((css->flags & CSS_VISIBLE) || !cgrp->kn)
1611 		return 0;
1612 
1613 	if (!css->ss) {
1614 		if (cgroup_on_dfl(cgrp))
1615 			cfts = cgroup_base_files;
1616 		else
1617 			cfts = cgroup1_base_files;
1618 
1619 		ret = cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1620 		if (ret < 0)
1621 			return ret;
1622 	} else {
1623 		list_for_each_entry(cfts, &css->ss->cfts, node) {
1624 			ret = cgroup_addrm_files(css, cgrp, cfts, true);
1625 			if (ret < 0) {
1626 				failed_cfts = cfts;
1627 				goto err;
1628 			}
1629 		}
1630 	}
1631 
1632 	css->flags |= CSS_VISIBLE;
1633 
1634 	return 0;
1635 err:
1636 	list_for_each_entry(cfts, &css->ss->cfts, node) {
1637 		if (cfts == failed_cfts)
1638 			break;
1639 		cgroup_addrm_files(css, cgrp, cfts, false);
1640 	}
1641 	return ret;
1642 }
1643 
1644 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
1645 {
1646 	struct cgroup *dcgrp = &dst_root->cgrp;
1647 	struct cgroup_subsys *ss;
1648 	int ssid, i, ret;
1649 
1650 	lockdep_assert_held(&cgroup_mutex);
1651 
1652 	do_each_subsys_mask(ss, ssid, ss_mask) {
1653 		/*
1654 		 * If @ss has non-root csses attached to it, can't move.
1655 		 * If @ss is an implicit controller, it is exempt from this
1656 		 * rule and can be stolen.
1657 		 */
1658 		if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1659 		    !ss->implicit_on_dfl)
1660 			return -EBUSY;
1661 
1662 		/* can't move between two non-dummy roots either */
1663 		if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1664 			return -EBUSY;
1665 	} while_each_subsys_mask();
1666 
1667 	do_each_subsys_mask(ss, ssid, ss_mask) {
1668 		struct cgroup_root *src_root = ss->root;
1669 		struct cgroup *scgrp = &src_root->cgrp;
1670 		struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1671 		struct css_set *cset;
1672 
1673 		WARN_ON(!css || cgroup_css(dcgrp, ss));
1674 
1675 		/* disable from the source */
1676 		src_root->subsys_mask &= ~(1 << ssid);
1677 		WARN_ON(cgroup_apply_control(scgrp));
1678 		cgroup_finalize_control(scgrp, 0);
1679 
1680 		/* rebind */
1681 		RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1682 		rcu_assign_pointer(dcgrp->subsys[ssid], css);
1683 		ss->root = dst_root;
1684 		css->cgroup = dcgrp;
1685 
1686 		spin_lock_irq(&css_set_lock);
1687 		hash_for_each(css_set_table, i, cset, hlist)
1688 			list_move_tail(&cset->e_cset_node[ss->id],
1689 				       &dcgrp->e_csets[ss->id]);
1690 		spin_unlock_irq(&css_set_lock);
1691 
1692 		/* default hierarchy doesn't enable controllers by default */
1693 		dst_root->subsys_mask |= 1 << ssid;
1694 		if (dst_root == &cgrp_dfl_root) {
1695 			static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1696 		} else {
1697 			dcgrp->subtree_control |= 1 << ssid;
1698 			static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1699 		}
1700 
1701 		ret = cgroup_apply_control(dcgrp);
1702 		if (ret)
1703 			pr_warn("partial failure to rebind %s controller (err=%d)\n",
1704 				ss->name, ret);
1705 
1706 		if (ss->bind)
1707 			ss->bind(css);
1708 	} while_each_subsys_mask();
1709 
1710 	kernfs_activate(dcgrp->kn);
1711 	return 0;
1712 }
1713 
1714 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
1715 		     struct kernfs_root *kf_root)
1716 {
1717 	int len = 0;
1718 	char *buf = NULL;
1719 	struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
1720 	struct cgroup *ns_cgroup;
1721 
1722 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
1723 	if (!buf)
1724 		return -ENOMEM;
1725 
1726 	spin_lock_irq(&css_set_lock);
1727 	ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
1728 	len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
1729 	spin_unlock_irq(&css_set_lock);
1730 
1731 	if (len >= PATH_MAX)
1732 		len = -ERANGE;
1733 	else if (len > 0) {
1734 		seq_escape(sf, buf, " \t\n\\");
1735 		len = 0;
1736 	}
1737 	kfree(buf);
1738 	return len;
1739 }
1740 
1741 static int parse_cgroup_root_flags(char *data, unsigned int *root_flags)
1742 {
1743 	char *token;
1744 
1745 	*root_flags = 0;
1746 
1747 	if (!data)
1748 		return 0;
1749 
1750 	while ((token = strsep(&data, ",")) != NULL) {
1751 		if (!strcmp(token, "nsdelegate")) {
1752 			*root_flags |= CGRP_ROOT_NS_DELEGATE;
1753 			continue;
1754 		}
1755 
1756 		pr_err("cgroup2: unknown option \"%s\"\n", token);
1757 		return -EINVAL;
1758 	}
1759 
1760 	return 0;
1761 }
1762 
1763 static void apply_cgroup_root_flags(unsigned int root_flags)
1764 {
1765 	if (current->nsproxy->cgroup_ns == &init_cgroup_ns) {
1766 		if (root_flags & CGRP_ROOT_NS_DELEGATE)
1767 			cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE;
1768 		else
1769 			cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE;
1770 	}
1771 }
1772 
1773 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
1774 {
1775 	if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE)
1776 		seq_puts(seq, ",nsdelegate");
1777 	return 0;
1778 }
1779 
1780 static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
1781 {
1782 	unsigned int root_flags;
1783 	int ret;
1784 
1785 	ret = parse_cgroup_root_flags(data, &root_flags);
1786 	if (ret)
1787 		return ret;
1788 
1789 	apply_cgroup_root_flags(root_flags);
1790 	return 0;
1791 }
1792 
1793 /*
1794  * To reduce the fork() overhead for systems that are not actually using
1795  * their cgroups capability, we don't maintain the lists running through
1796  * each css_set to its tasks until we see the list actually used - in other
1797  * words after the first mount.
1798  */
1799 static bool use_task_css_set_links __read_mostly;
1800 
1801 static void cgroup_enable_task_cg_lists(void)
1802 {
1803 	struct task_struct *p, *g;
1804 
1805 	/*
1806 	 * We need tasklist_lock because RCU is not safe against
1807 	 * while_each_thread(). Besides, a forking task that has passed
1808 	 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1809 	 * is not guaranteed to have its child immediately visible in the
1810 	 * tasklist if we walk through it with RCU.
1811 	 */
1812 	read_lock(&tasklist_lock);
1813 	spin_lock_irq(&css_set_lock);
1814 
1815 	if (use_task_css_set_links)
1816 		goto out_unlock;
1817 
1818 	use_task_css_set_links = true;
1819 
1820 	do_each_thread(g, p) {
1821 		WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1822 			     task_css_set(p) != &init_css_set);
1823 
1824 		/*
1825 		 * We should check if the process is exiting, otherwise
1826 		 * it will race with cgroup_exit() in that the list
1827 		 * entry won't be deleted though the process has exited.
1828 		 * Do it while holding siglock so that we don't end up
1829 		 * racing against cgroup_exit().
1830 		 *
1831 		 * Interrupts were already disabled while acquiring
1832 		 * the css_set_lock, so we do not need to disable it
1833 		 * again when acquiring the sighand->siglock here.
1834 		 */
1835 		spin_lock(&p->sighand->siglock);
1836 		if (!(p->flags & PF_EXITING)) {
1837 			struct css_set *cset = task_css_set(p);
1838 
1839 			if (!css_set_populated(cset))
1840 				css_set_update_populated(cset, true);
1841 			list_add_tail(&p->cg_list, &cset->tasks);
1842 			get_css_set(cset);
1843 			cset->nr_tasks++;
1844 		}
1845 		spin_unlock(&p->sighand->siglock);
1846 	} while_each_thread(g, p);
1847 out_unlock:
1848 	spin_unlock_irq(&css_set_lock);
1849 	read_unlock(&tasklist_lock);
1850 }
1851 
1852 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1853 {
1854 	struct cgroup_subsys *ss;
1855 	int ssid;
1856 
1857 	INIT_LIST_HEAD(&cgrp->self.sibling);
1858 	INIT_LIST_HEAD(&cgrp->self.children);
1859 	INIT_LIST_HEAD(&cgrp->cset_links);
1860 	INIT_LIST_HEAD(&cgrp->pidlists);
1861 	mutex_init(&cgrp->pidlist_mutex);
1862 	cgrp->self.cgroup = cgrp;
1863 	cgrp->self.flags |= CSS_ONLINE;
1864 	cgrp->dom_cgrp = cgrp;
1865 	cgrp->max_descendants = INT_MAX;
1866 	cgrp->max_depth = INT_MAX;
1867 	INIT_LIST_HEAD(&cgrp->rstat_css_list);
1868 	prev_cputime_init(&cgrp->prev_cputime);
1869 
1870 	for_each_subsys(ss, ssid)
1871 		INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
1872 
1873 	init_waitqueue_head(&cgrp->offline_waitq);
1874 	INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent);
1875 }
1876 
1877 void init_cgroup_root(struct cgroup_root *root, struct cgroup_sb_opts *opts)
1878 {
1879 	struct cgroup *cgrp = &root->cgrp;
1880 
1881 	INIT_LIST_HEAD(&root->root_list);
1882 	atomic_set(&root->nr_cgrps, 1);
1883 	cgrp->root = root;
1884 	init_cgroup_housekeeping(cgrp);
1885 	idr_init(&root->cgroup_idr);
1886 
1887 	root->flags = opts->flags;
1888 	if (opts->release_agent)
1889 		strscpy(root->release_agent_path, opts->release_agent, PATH_MAX);
1890 	if (opts->name)
1891 		strscpy(root->name, opts->name, MAX_CGROUP_ROOT_NAMELEN);
1892 	if (opts->cpuset_clone_children)
1893 		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
1894 }
1895 
1896 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask, int ref_flags)
1897 {
1898 	LIST_HEAD(tmp_links);
1899 	struct cgroup *root_cgrp = &root->cgrp;
1900 	struct kernfs_syscall_ops *kf_sops;
1901 	struct css_set *cset;
1902 	int i, ret;
1903 
1904 	lockdep_assert_held(&cgroup_mutex);
1905 
1906 	ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL);
1907 	if (ret < 0)
1908 		goto out;
1909 	root_cgrp->id = ret;
1910 	root_cgrp->ancestor_ids[0] = ret;
1911 
1912 	ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release,
1913 			      ref_flags, GFP_KERNEL);
1914 	if (ret)
1915 		goto out;
1916 
1917 	/*
1918 	 * We're accessing css_set_count without locking css_set_lock here,
1919 	 * but that's OK - it can only be increased by someone holding
1920 	 * cgroup_lock, and that's us.  Later rebinding may disable
1921 	 * controllers on the default hierarchy and thus create new csets,
1922 	 * which can't be more than the existing ones.  Allocate 2x.
1923 	 */
1924 	ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
1925 	if (ret)
1926 		goto cancel_ref;
1927 
1928 	ret = cgroup_init_root_id(root);
1929 	if (ret)
1930 		goto cancel_ref;
1931 
1932 	kf_sops = root == &cgrp_dfl_root ?
1933 		&cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops;
1934 
1935 	root->kf_root = kernfs_create_root(kf_sops,
1936 					   KERNFS_ROOT_CREATE_DEACTIVATED |
1937 					   KERNFS_ROOT_SUPPORT_EXPORTOP,
1938 					   root_cgrp);
1939 	if (IS_ERR(root->kf_root)) {
1940 		ret = PTR_ERR(root->kf_root);
1941 		goto exit_root_id;
1942 	}
1943 	root_cgrp->kn = root->kf_root->kn;
1944 
1945 	ret = css_populate_dir(&root_cgrp->self);
1946 	if (ret)
1947 		goto destroy_root;
1948 
1949 	ret = rebind_subsystems(root, ss_mask);
1950 	if (ret)
1951 		goto destroy_root;
1952 
1953 	ret = cgroup_bpf_inherit(root_cgrp);
1954 	WARN_ON_ONCE(ret);
1955 
1956 	trace_cgroup_setup_root(root);
1957 
1958 	/*
1959 	 * There must be no failure case after here, since rebinding takes
1960 	 * care of subsystems' refcounts, which are explicitly dropped in
1961 	 * the failure exit path.
1962 	 */
1963 	list_add(&root->root_list, &cgroup_roots);
1964 	cgroup_root_count++;
1965 
1966 	/*
1967 	 * Link the root cgroup in this hierarchy into all the css_set
1968 	 * objects.
1969 	 */
1970 	spin_lock_irq(&css_set_lock);
1971 	hash_for_each(css_set_table, i, cset, hlist) {
1972 		link_css_set(&tmp_links, cset, root_cgrp);
1973 		if (css_set_populated(cset))
1974 			cgroup_update_populated(root_cgrp, true);
1975 	}
1976 	spin_unlock_irq(&css_set_lock);
1977 
1978 	BUG_ON(!list_empty(&root_cgrp->self.children));
1979 	BUG_ON(atomic_read(&root->nr_cgrps) != 1);
1980 
1981 	kernfs_activate(root_cgrp->kn);
1982 	ret = 0;
1983 	goto out;
1984 
1985 destroy_root:
1986 	kernfs_destroy_root(root->kf_root);
1987 	root->kf_root = NULL;
1988 exit_root_id:
1989 	cgroup_exit_root_id(root);
1990 cancel_ref:
1991 	percpu_ref_exit(&root_cgrp->self.refcnt);
1992 out:
1993 	free_cgrp_cset_links(&tmp_links);
1994 	return ret;
1995 }
1996 
1997 struct dentry *cgroup_do_mount(struct file_system_type *fs_type, int flags,
1998 			       struct cgroup_root *root, unsigned long magic,
1999 			       struct cgroup_namespace *ns)
2000 {
2001 	struct dentry *dentry;
2002 	bool new_sb;
2003 
2004 	dentry = kernfs_mount(fs_type, flags, root->kf_root, magic, &new_sb);
2005 
2006 	/*
2007 	 * In non-init cgroup namespace, instead of root cgroup's dentry,
2008 	 * we return the dentry corresponding to the cgroupns->root_cgrp.
2009 	 */
2010 	if (!IS_ERR(dentry) && ns != &init_cgroup_ns) {
2011 		struct dentry *nsdentry;
2012 		struct cgroup *cgrp;
2013 
2014 		mutex_lock(&cgroup_mutex);
2015 		spin_lock_irq(&css_set_lock);
2016 
2017 		cgrp = cset_cgroup_from_root(ns->root_cset, root);
2018 
2019 		spin_unlock_irq(&css_set_lock);
2020 		mutex_unlock(&cgroup_mutex);
2021 
2022 		nsdentry = kernfs_node_dentry(cgrp->kn, dentry->d_sb);
2023 		dput(dentry);
2024 		dentry = nsdentry;
2025 	}
2026 
2027 	if (IS_ERR(dentry) || !new_sb)
2028 		cgroup_put(&root->cgrp);
2029 
2030 	return dentry;
2031 }
2032 
2033 static struct dentry *cgroup_mount(struct file_system_type *fs_type,
2034 			 int flags, const char *unused_dev_name,
2035 			 void *data)
2036 {
2037 	struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
2038 	struct dentry *dentry;
2039 	int ret;
2040 
2041 	get_cgroup_ns(ns);
2042 
2043 	/* Check if the caller has permission to mount. */
2044 	if (!ns_capable(ns->user_ns, CAP_SYS_ADMIN)) {
2045 		put_cgroup_ns(ns);
2046 		return ERR_PTR(-EPERM);
2047 	}
2048 
2049 	/*
2050 	 * The first time anyone tries to mount a cgroup, enable the list
2051 	 * linking each css_set to its tasks and fix up all existing tasks.
2052 	 */
2053 	if (!use_task_css_set_links)
2054 		cgroup_enable_task_cg_lists();
2055 
2056 	if (fs_type == &cgroup2_fs_type) {
2057 		unsigned int root_flags;
2058 
2059 		ret = parse_cgroup_root_flags(data, &root_flags);
2060 		if (ret) {
2061 			put_cgroup_ns(ns);
2062 			return ERR_PTR(ret);
2063 		}
2064 
2065 		cgrp_dfl_visible = true;
2066 		cgroup_get_live(&cgrp_dfl_root.cgrp);
2067 
2068 		dentry = cgroup_do_mount(&cgroup2_fs_type, flags, &cgrp_dfl_root,
2069 					 CGROUP2_SUPER_MAGIC, ns);
2070 		if (!IS_ERR(dentry))
2071 			apply_cgroup_root_flags(root_flags);
2072 	} else {
2073 		dentry = cgroup1_mount(&cgroup_fs_type, flags, data,
2074 				       CGROUP_SUPER_MAGIC, ns);
2075 	}
2076 
2077 	put_cgroup_ns(ns);
2078 	return dentry;
2079 }
2080 
2081 static void cgroup_kill_sb(struct super_block *sb)
2082 {
2083 	struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2084 	struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2085 
2086 	/*
2087 	 * If @root doesn't have any mounts or children, start killing it.
2088 	 * This prevents new mounts by disabling percpu_ref_tryget_live().
2089 	 * cgroup_mount() may wait for @root's release.
2090 	 *
2091 	 * And don't kill the default root.
2092 	 */
2093 	if (!list_empty(&root->cgrp.self.children) ||
2094 	    root == &cgrp_dfl_root)
2095 		cgroup_put(&root->cgrp);
2096 	else
2097 		percpu_ref_kill(&root->cgrp.self.refcnt);
2098 
2099 	kernfs_kill_sb(sb);
2100 }
2101 
2102 struct file_system_type cgroup_fs_type = {
2103 	.name = "cgroup",
2104 	.mount = cgroup_mount,
2105 	.kill_sb = cgroup_kill_sb,
2106 	.fs_flags = FS_USERNS_MOUNT,
2107 };
2108 
2109 static struct file_system_type cgroup2_fs_type = {
2110 	.name = "cgroup2",
2111 	.mount = cgroup_mount,
2112 	.kill_sb = cgroup_kill_sb,
2113 	.fs_flags = FS_USERNS_MOUNT,
2114 };
2115 
2116 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
2117 			  struct cgroup_namespace *ns)
2118 {
2119 	struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
2120 
2121 	return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
2122 }
2123 
2124 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
2125 		   struct cgroup_namespace *ns)
2126 {
2127 	int ret;
2128 
2129 	mutex_lock(&cgroup_mutex);
2130 	spin_lock_irq(&css_set_lock);
2131 
2132 	ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
2133 
2134 	spin_unlock_irq(&css_set_lock);
2135 	mutex_unlock(&cgroup_mutex);
2136 
2137 	return ret;
2138 }
2139 EXPORT_SYMBOL_GPL(cgroup_path_ns);
2140 
2141 /**
2142  * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
2143  * @task: target task
2144  * @buf: the buffer to write the path into
2145  * @buflen: the length of the buffer
2146  *
2147  * Determine @task's cgroup on the first (the one with the lowest non-zero
2148  * hierarchy_id) cgroup hierarchy and copy its path into @buf.  This
2149  * function grabs cgroup_mutex and shouldn't be used inside locks used by
2150  * cgroup controller callbacks.
2151  *
2152  * Return value is the same as kernfs_path().
2153  */
2154 int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
2155 {
2156 	struct cgroup_root *root;
2157 	struct cgroup *cgrp;
2158 	int hierarchy_id = 1;
2159 	int ret;
2160 
2161 	mutex_lock(&cgroup_mutex);
2162 	spin_lock_irq(&css_set_lock);
2163 
2164 	root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2165 
2166 	if (root) {
2167 		cgrp = task_cgroup_from_root(task, root);
2168 		ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns);
2169 	} else {
2170 		/* if no hierarchy exists, everyone is in "/" */
2171 		ret = strlcpy(buf, "/", buflen);
2172 	}
2173 
2174 	spin_unlock_irq(&css_set_lock);
2175 	mutex_unlock(&cgroup_mutex);
2176 	return ret;
2177 }
2178 EXPORT_SYMBOL_GPL(task_cgroup_path);
2179 
2180 /**
2181  * cgroup_migrate_add_task - add a migration target task to a migration context
2182  * @task: target task
2183  * @mgctx: target migration context
2184  *
2185  * Add @task, which is a migration target, to @mgctx->tset.  This function
2186  * becomes noop if @task doesn't need to be migrated.  @task's css_set
2187  * should have been added as a migration source and @task->cg_list will be
2188  * moved from the css_set's tasks list to mg_tasks one.
2189  */
2190 static void cgroup_migrate_add_task(struct task_struct *task,
2191 				    struct cgroup_mgctx *mgctx)
2192 {
2193 	struct css_set *cset;
2194 
2195 	lockdep_assert_held(&css_set_lock);
2196 
2197 	/* @task either already exited or can't exit until the end */
2198 	if (task->flags & PF_EXITING)
2199 		return;
2200 
2201 	/* leave @task alone if post_fork() hasn't linked it yet */
2202 	if (list_empty(&task->cg_list))
2203 		return;
2204 
2205 	cset = task_css_set(task);
2206 	if (!cset->mg_src_cgrp)
2207 		return;
2208 
2209 	mgctx->tset.nr_tasks++;
2210 
2211 	list_move_tail(&task->cg_list, &cset->mg_tasks);
2212 	if (list_empty(&cset->mg_node))
2213 		list_add_tail(&cset->mg_node,
2214 			      &mgctx->tset.src_csets);
2215 	if (list_empty(&cset->mg_dst_cset->mg_node))
2216 		list_add_tail(&cset->mg_dst_cset->mg_node,
2217 			      &mgctx->tset.dst_csets);
2218 }
2219 
2220 /**
2221  * cgroup_taskset_first - reset taskset and return the first task
2222  * @tset: taskset of interest
2223  * @dst_cssp: output variable for the destination css
2224  *
2225  * @tset iteration is initialized and the first task is returned.
2226  */
2227 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2228 					 struct cgroup_subsys_state **dst_cssp)
2229 {
2230 	tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2231 	tset->cur_task = NULL;
2232 
2233 	return cgroup_taskset_next(tset, dst_cssp);
2234 }
2235 
2236 /**
2237  * cgroup_taskset_next - iterate to the next task in taskset
2238  * @tset: taskset of interest
2239  * @dst_cssp: output variable for the destination css
2240  *
2241  * Return the next task in @tset.  Iteration must have been initialized
2242  * with cgroup_taskset_first().
2243  */
2244 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2245 					struct cgroup_subsys_state **dst_cssp)
2246 {
2247 	struct css_set *cset = tset->cur_cset;
2248 	struct task_struct *task = tset->cur_task;
2249 
2250 	while (&cset->mg_node != tset->csets) {
2251 		if (!task)
2252 			task = list_first_entry(&cset->mg_tasks,
2253 						struct task_struct, cg_list);
2254 		else
2255 			task = list_next_entry(task, cg_list);
2256 
2257 		if (&task->cg_list != &cset->mg_tasks) {
2258 			tset->cur_cset = cset;
2259 			tset->cur_task = task;
2260 
2261 			/*
2262 			 * This function may be called both before and
2263 			 * after cgroup_taskset_migrate().  The two cases
2264 			 * can be distinguished by looking at whether @cset
2265 			 * has its ->mg_dst_cset set.
2266 			 */
2267 			if (cset->mg_dst_cset)
2268 				*dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2269 			else
2270 				*dst_cssp = cset->subsys[tset->ssid];
2271 
2272 			return task;
2273 		}
2274 
2275 		cset = list_next_entry(cset, mg_node);
2276 		task = NULL;
2277 	}
2278 
2279 	return NULL;
2280 }
2281 
2282 /**
2283  * cgroup_taskset_migrate - migrate a taskset
2284  * @mgctx: migration context
2285  *
2286  * Migrate tasks in @mgctx as setup by migration preparation functions.
2287  * This function fails iff one of the ->can_attach callbacks fails and
2288  * guarantees that either all or none of the tasks in @mgctx are migrated.
2289  * @mgctx is consumed regardless of success.
2290  */
2291 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx)
2292 {
2293 	struct cgroup_taskset *tset = &mgctx->tset;
2294 	struct cgroup_subsys *ss;
2295 	struct task_struct *task, *tmp_task;
2296 	struct css_set *cset, *tmp_cset;
2297 	int ssid, failed_ssid, ret;
2298 
2299 	/* check that we can legitimately attach to the cgroup */
2300 	if (tset->nr_tasks) {
2301 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2302 			if (ss->can_attach) {
2303 				tset->ssid = ssid;
2304 				ret = ss->can_attach(tset);
2305 				if (ret) {
2306 					failed_ssid = ssid;
2307 					goto out_cancel_attach;
2308 				}
2309 			}
2310 		} while_each_subsys_mask();
2311 	}
2312 
2313 	/*
2314 	 * Now that we're guaranteed success, proceed to move all tasks to
2315 	 * the new cgroup.  There are no failure cases after here, so this
2316 	 * is the commit point.
2317 	 */
2318 	spin_lock_irq(&css_set_lock);
2319 	list_for_each_entry(cset, &tset->src_csets, mg_node) {
2320 		list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2321 			struct css_set *from_cset = task_css_set(task);
2322 			struct css_set *to_cset = cset->mg_dst_cset;
2323 
2324 			get_css_set(to_cset);
2325 			to_cset->nr_tasks++;
2326 			css_set_move_task(task, from_cset, to_cset, true);
2327 			put_css_set_locked(from_cset);
2328 			from_cset->nr_tasks--;
2329 		}
2330 	}
2331 	spin_unlock_irq(&css_set_lock);
2332 
2333 	/*
2334 	 * Migration is committed, all target tasks are now on dst_csets.
2335 	 * Nothing is sensitive to fork() after this point.  Notify
2336 	 * controllers that migration is complete.
2337 	 */
2338 	tset->csets = &tset->dst_csets;
2339 
2340 	if (tset->nr_tasks) {
2341 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2342 			if (ss->attach) {
2343 				tset->ssid = ssid;
2344 				ss->attach(tset);
2345 			}
2346 		} while_each_subsys_mask();
2347 	}
2348 
2349 	ret = 0;
2350 	goto out_release_tset;
2351 
2352 out_cancel_attach:
2353 	if (tset->nr_tasks) {
2354 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2355 			if (ssid == failed_ssid)
2356 				break;
2357 			if (ss->cancel_attach) {
2358 				tset->ssid = ssid;
2359 				ss->cancel_attach(tset);
2360 			}
2361 		} while_each_subsys_mask();
2362 	}
2363 out_release_tset:
2364 	spin_lock_irq(&css_set_lock);
2365 	list_splice_init(&tset->dst_csets, &tset->src_csets);
2366 	list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2367 		list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2368 		list_del_init(&cset->mg_node);
2369 	}
2370 	spin_unlock_irq(&css_set_lock);
2371 
2372 	/*
2373 	 * Re-initialize the cgroup_taskset structure in case it is reused
2374 	 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute()
2375 	 * iteration.
2376 	 */
2377 	tset->nr_tasks = 0;
2378 	tset->csets    = &tset->src_csets;
2379 	return ret;
2380 }
2381 
2382 /**
2383  * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination
2384  * @dst_cgrp: destination cgroup to test
2385  *
2386  * On the default hierarchy, except for the mixable, (possible) thread root
2387  * and threaded cgroups, subtree_control must be zero for migration
2388  * destination cgroups with tasks so that child cgroups don't compete
2389  * against tasks.
2390  */
2391 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp)
2392 {
2393 	/* v1 doesn't have any restriction */
2394 	if (!cgroup_on_dfl(dst_cgrp))
2395 		return 0;
2396 
2397 	/* verify @dst_cgrp can host resources */
2398 	if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp))
2399 		return -EOPNOTSUPP;
2400 
2401 	/* mixables don't care */
2402 	if (cgroup_is_mixable(dst_cgrp))
2403 		return 0;
2404 
2405 	/*
2406 	 * If @dst_cgrp is already or can become a thread root or is
2407 	 * threaded, it doesn't matter.
2408 	 */
2409 	if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp))
2410 		return 0;
2411 
2412 	/* apply no-internal-process constraint */
2413 	if (dst_cgrp->subtree_control)
2414 		return -EBUSY;
2415 
2416 	return 0;
2417 }
2418 
2419 /**
2420  * cgroup_migrate_finish - cleanup after attach
2421  * @mgctx: migration context
2422  *
2423  * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst().  See
2424  * those functions for details.
2425  */
2426 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx)
2427 {
2428 	LIST_HEAD(preloaded);
2429 	struct css_set *cset, *tmp_cset;
2430 
2431 	lockdep_assert_held(&cgroup_mutex);
2432 
2433 	spin_lock_irq(&css_set_lock);
2434 
2435 	list_splice_tail_init(&mgctx->preloaded_src_csets, &preloaded);
2436 	list_splice_tail_init(&mgctx->preloaded_dst_csets, &preloaded);
2437 
2438 	list_for_each_entry_safe(cset, tmp_cset, &preloaded, mg_preload_node) {
2439 		cset->mg_src_cgrp = NULL;
2440 		cset->mg_dst_cgrp = NULL;
2441 		cset->mg_dst_cset = NULL;
2442 		list_del_init(&cset->mg_preload_node);
2443 		put_css_set_locked(cset);
2444 	}
2445 
2446 	spin_unlock_irq(&css_set_lock);
2447 }
2448 
2449 /**
2450  * cgroup_migrate_add_src - add a migration source css_set
2451  * @src_cset: the source css_set to add
2452  * @dst_cgrp: the destination cgroup
2453  * @mgctx: migration context
2454  *
2455  * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp.  Pin
2456  * @src_cset and add it to @mgctx->src_csets, which should later be cleaned
2457  * up by cgroup_migrate_finish().
2458  *
2459  * This function may be called without holding cgroup_threadgroup_rwsem
2460  * even if the target is a process.  Threads may be created and destroyed
2461  * but as long as cgroup_mutex is not dropped, no new css_set can be put
2462  * into play and the preloaded css_sets are guaranteed to cover all
2463  * migrations.
2464  */
2465 void cgroup_migrate_add_src(struct css_set *src_cset,
2466 			    struct cgroup *dst_cgrp,
2467 			    struct cgroup_mgctx *mgctx)
2468 {
2469 	struct cgroup *src_cgrp;
2470 
2471 	lockdep_assert_held(&cgroup_mutex);
2472 	lockdep_assert_held(&css_set_lock);
2473 
2474 	/*
2475 	 * If ->dead, @src_set is associated with one or more dead cgroups
2476 	 * and doesn't contain any migratable tasks.  Ignore it early so
2477 	 * that the rest of migration path doesn't get confused by it.
2478 	 */
2479 	if (src_cset->dead)
2480 		return;
2481 
2482 	src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2483 
2484 	if (!list_empty(&src_cset->mg_preload_node))
2485 		return;
2486 
2487 	WARN_ON(src_cset->mg_src_cgrp);
2488 	WARN_ON(src_cset->mg_dst_cgrp);
2489 	WARN_ON(!list_empty(&src_cset->mg_tasks));
2490 	WARN_ON(!list_empty(&src_cset->mg_node));
2491 
2492 	src_cset->mg_src_cgrp = src_cgrp;
2493 	src_cset->mg_dst_cgrp = dst_cgrp;
2494 	get_css_set(src_cset);
2495 	list_add_tail(&src_cset->mg_preload_node, &mgctx->preloaded_src_csets);
2496 }
2497 
2498 /**
2499  * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2500  * @mgctx: migration context
2501  *
2502  * Tasks are about to be moved and all the source css_sets have been
2503  * preloaded to @mgctx->preloaded_src_csets.  This function looks up and
2504  * pins all destination css_sets, links each to its source, and append them
2505  * to @mgctx->preloaded_dst_csets.
2506  *
2507  * This function must be called after cgroup_migrate_add_src() has been
2508  * called on each migration source css_set.  After migration is performed
2509  * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2510  * @mgctx.
2511  */
2512 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx)
2513 {
2514 	struct css_set *src_cset, *tmp_cset;
2515 
2516 	lockdep_assert_held(&cgroup_mutex);
2517 
2518 	/* look up the dst cset for each src cset and link it to src */
2519 	list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets,
2520 				 mg_preload_node) {
2521 		struct css_set *dst_cset;
2522 		struct cgroup_subsys *ss;
2523 		int ssid;
2524 
2525 		dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
2526 		if (!dst_cset)
2527 			goto err;
2528 
2529 		WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2530 
2531 		/*
2532 		 * If src cset equals dst, it's noop.  Drop the src.
2533 		 * cgroup_migrate() will skip the cset too.  Note that we
2534 		 * can't handle src == dst as some nodes are used by both.
2535 		 */
2536 		if (src_cset == dst_cset) {
2537 			src_cset->mg_src_cgrp = NULL;
2538 			src_cset->mg_dst_cgrp = NULL;
2539 			list_del_init(&src_cset->mg_preload_node);
2540 			put_css_set(src_cset);
2541 			put_css_set(dst_cset);
2542 			continue;
2543 		}
2544 
2545 		src_cset->mg_dst_cset = dst_cset;
2546 
2547 		if (list_empty(&dst_cset->mg_preload_node))
2548 			list_add_tail(&dst_cset->mg_preload_node,
2549 				      &mgctx->preloaded_dst_csets);
2550 		else
2551 			put_css_set(dst_cset);
2552 
2553 		for_each_subsys(ss, ssid)
2554 			if (src_cset->subsys[ssid] != dst_cset->subsys[ssid])
2555 				mgctx->ss_mask |= 1 << ssid;
2556 	}
2557 
2558 	return 0;
2559 err:
2560 	cgroup_migrate_finish(mgctx);
2561 	return -ENOMEM;
2562 }
2563 
2564 /**
2565  * cgroup_migrate - migrate a process or task to a cgroup
2566  * @leader: the leader of the process or the task to migrate
2567  * @threadgroup: whether @leader points to the whole process or a single task
2568  * @mgctx: migration context
2569  *
2570  * Migrate a process or task denoted by @leader.  If migrating a process,
2571  * the caller must be holding cgroup_threadgroup_rwsem.  The caller is also
2572  * responsible for invoking cgroup_migrate_add_src() and
2573  * cgroup_migrate_prepare_dst() on the targets before invoking this
2574  * function and following up with cgroup_migrate_finish().
2575  *
2576  * As long as a controller's ->can_attach() doesn't fail, this function is
2577  * guaranteed to succeed.  This means that, excluding ->can_attach()
2578  * failure, when migrating multiple targets, the success or failure can be
2579  * decided for all targets by invoking group_migrate_prepare_dst() before
2580  * actually starting migrating.
2581  */
2582 int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2583 		   struct cgroup_mgctx *mgctx)
2584 {
2585 	struct task_struct *task;
2586 
2587 	/*
2588 	 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2589 	 * already PF_EXITING could be freed from underneath us unless we
2590 	 * take an rcu_read_lock.
2591 	 */
2592 	spin_lock_irq(&css_set_lock);
2593 	rcu_read_lock();
2594 	task = leader;
2595 	do {
2596 		cgroup_migrate_add_task(task, mgctx);
2597 		if (!threadgroup)
2598 			break;
2599 	} while_each_thread(leader, task);
2600 	rcu_read_unlock();
2601 	spin_unlock_irq(&css_set_lock);
2602 
2603 	return cgroup_migrate_execute(mgctx);
2604 }
2605 
2606 /**
2607  * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2608  * @dst_cgrp: the cgroup to attach to
2609  * @leader: the task or the leader of the threadgroup to be attached
2610  * @threadgroup: attach the whole threadgroup?
2611  *
2612  * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2613  */
2614 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader,
2615 		       bool threadgroup)
2616 {
2617 	DEFINE_CGROUP_MGCTX(mgctx);
2618 	struct task_struct *task;
2619 	int ret;
2620 
2621 	ret = cgroup_migrate_vet_dst(dst_cgrp);
2622 	if (ret)
2623 		return ret;
2624 
2625 	/* look up all src csets */
2626 	spin_lock_irq(&css_set_lock);
2627 	rcu_read_lock();
2628 	task = leader;
2629 	do {
2630 		cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx);
2631 		if (!threadgroup)
2632 			break;
2633 	} while_each_thread(leader, task);
2634 	rcu_read_unlock();
2635 	spin_unlock_irq(&css_set_lock);
2636 
2637 	/* prepare dst csets and commit */
2638 	ret = cgroup_migrate_prepare_dst(&mgctx);
2639 	if (!ret)
2640 		ret = cgroup_migrate(leader, threadgroup, &mgctx);
2641 
2642 	cgroup_migrate_finish(&mgctx);
2643 
2644 	if (!ret)
2645 		TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup);
2646 
2647 	return ret;
2648 }
2649 
2650 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup)
2651 	__acquires(&cgroup_threadgroup_rwsem)
2652 {
2653 	struct task_struct *tsk;
2654 	pid_t pid;
2655 
2656 	if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2657 		return ERR_PTR(-EINVAL);
2658 
2659 	percpu_down_write(&cgroup_threadgroup_rwsem);
2660 
2661 	rcu_read_lock();
2662 	if (pid) {
2663 		tsk = find_task_by_vpid(pid);
2664 		if (!tsk) {
2665 			tsk = ERR_PTR(-ESRCH);
2666 			goto out_unlock_threadgroup;
2667 		}
2668 	} else {
2669 		tsk = current;
2670 	}
2671 
2672 	if (threadgroup)
2673 		tsk = tsk->group_leader;
2674 
2675 	/*
2676 	 * kthreads may acquire PF_NO_SETAFFINITY during initialization.
2677 	 * If userland migrates such a kthread to a non-root cgroup, it can
2678 	 * become trapped in a cpuset, or RT kthread may be born in a
2679 	 * cgroup with no rt_runtime allocated.  Just say no.
2680 	 */
2681 	if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) {
2682 		tsk = ERR_PTR(-EINVAL);
2683 		goto out_unlock_threadgroup;
2684 	}
2685 
2686 	get_task_struct(tsk);
2687 	goto out_unlock_rcu;
2688 
2689 out_unlock_threadgroup:
2690 	percpu_up_write(&cgroup_threadgroup_rwsem);
2691 out_unlock_rcu:
2692 	rcu_read_unlock();
2693 	return tsk;
2694 }
2695 
2696 void cgroup_procs_write_finish(struct task_struct *task)
2697 	__releases(&cgroup_threadgroup_rwsem)
2698 {
2699 	struct cgroup_subsys *ss;
2700 	int ssid;
2701 
2702 	/* release reference from cgroup_procs_write_start() */
2703 	put_task_struct(task);
2704 
2705 	percpu_up_write(&cgroup_threadgroup_rwsem);
2706 	for_each_subsys(ss, ssid)
2707 		if (ss->post_attach)
2708 			ss->post_attach();
2709 }
2710 
2711 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
2712 {
2713 	struct cgroup_subsys *ss;
2714 	bool printed = false;
2715 	int ssid;
2716 
2717 	do_each_subsys_mask(ss, ssid, ss_mask) {
2718 		if (printed)
2719 			seq_putc(seq, ' ');
2720 		seq_printf(seq, "%s", ss->name);
2721 		printed = true;
2722 	} while_each_subsys_mask();
2723 	if (printed)
2724 		seq_putc(seq, '\n');
2725 }
2726 
2727 /* show controllers which are enabled from the parent */
2728 static int cgroup_controllers_show(struct seq_file *seq, void *v)
2729 {
2730 	struct cgroup *cgrp = seq_css(seq)->cgroup;
2731 
2732 	cgroup_print_ss_mask(seq, cgroup_control(cgrp));
2733 	return 0;
2734 }
2735 
2736 /* show controllers which are enabled for a given cgroup's children */
2737 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
2738 {
2739 	struct cgroup *cgrp = seq_css(seq)->cgroup;
2740 
2741 	cgroup_print_ss_mask(seq, cgrp->subtree_control);
2742 	return 0;
2743 }
2744 
2745 /**
2746  * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2747  * @cgrp: root of the subtree to update csses for
2748  *
2749  * @cgrp's control masks have changed and its subtree's css associations
2750  * need to be updated accordingly.  This function looks up all css_sets
2751  * which are attached to the subtree, creates the matching updated css_sets
2752  * and migrates the tasks to the new ones.
2753  */
2754 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2755 {
2756 	DEFINE_CGROUP_MGCTX(mgctx);
2757 	struct cgroup_subsys_state *d_css;
2758 	struct cgroup *dsct;
2759 	struct css_set *src_cset;
2760 	int ret;
2761 
2762 	lockdep_assert_held(&cgroup_mutex);
2763 
2764 	percpu_down_write(&cgroup_threadgroup_rwsem);
2765 
2766 	/* look up all csses currently attached to @cgrp's subtree */
2767 	spin_lock_irq(&css_set_lock);
2768 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2769 		struct cgrp_cset_link *link;
2770 
2771 		list_for_each_entry(link, &dsct->cset_links, cset_link)
2772 			cgroup_migrate_add_src(link->cset, dsct, &mgctx);
2773 	}
2774 	spin_unlock_irq(&css_set_lock);
2775 
2776 	/* NULL dst indicates self on default hierarchy */
2777 	ret = cgroup_migrate_prepare_dst(&mgctx);
2778 	if (ret)
2779 		goto out_finish;
2780 
2781 	spin_lock_irq(&css_set_lock);
2782 	list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, mg_preload_node) {
2783 		struct task_struct *task, *ntask;
2784 
2785 		/* all tasks in src_csets need to be migrated */
2786 		list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
2787 			cgroup_migrate_add_task(task, &mgctx);
2788 	}
2789 	spin_unlock_irq(&css_set_lock);
2790 
2791 	ret = cgroup_migrate_execute(&mgctx);
2792 out_finish:
2793 	cgroup_migrate_finish(&mgctx);
2794 	percpu_up_write(&cgroup_threadgroup_rwsem);
2795 	return ret;
2796 }
2797 
2798 /**
2799  * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
2800  * @cgrp: root of the target subtree
2801  *
2802  * Because css offlining is asynchronous, userland may try to re-enable a
2803  * controller while the previous css is still around.  This function grabs
2804  * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
2805  */
2806 void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
2807 	__acquires(&cgroup_mutex)
2808 {
2809 	struct cgroup *dsct;
2810 	struct cgroup_subsys_state *d_css;
2811 	struct cgroup_subsys *ss;
2812 	int ssid;
2813 
2814 restart:
2815 	mutex_lock(&cgroup_mutex);
2816 
2817 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
2818 		for_each_subsys(ss, ssid) {
2819 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
2820 			DEFINE_WAIT(wait);
2821 
2822 			if (!css || !percpu_ref_is_dying(&css->refcnt))
2823 				continue;
2824 
2825 			cgroup_get_live(dsct);
2826 			prepare_to_wait(&dsct->offline_waitq, &wait,
2827 					TASK_UNINTERRUPTIBLE);
2828 
2829 			mutex_unlock(&cgroup_mutex);
2830 			schedule();
2831 			finish_wait(&dsct->offline_waitq, &wait);
2832 
2833 			cgroup_put(dsct);
2834 			goto restart;
2835 		}
2836 	}
2837 }
2838 
2839 /**
2840  * cgroup_save_control - save control masks and dom_cgrp of a subtree
2841  * @cgrp: root of the target subtree
2842  *
2843  * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the
2844  * respective old_ prefixed fields for @cgrp's subtree including @cgrp
2845  * itself.
2846  */
2847 static void cgroup_save_control(struct cgroup *cgrp)
2848 {
2849 	struct cgroup *dsct;
2850 	struct cgroup_subsys_state *d_css;
2851 
2852 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2853 		dsct->old_subtree_control = dsct->subtree_control;
2854 		dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
2855 		dsct->old_dom_cgrp = dsct->dom_cgrp;
2856 	}
2857 }
2858 
2859 /**
2860  * cgroup_propagate_control - refresh control masks of a subtree
2861  * @cgrp: root of the target subtree
2862  *
2863  * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
2864  * ->subtree_control and propagate controller availability through the
2865  * subtree so that descendants don't have unavailable controllers enabled.
2866  */
2867 static void cgroup_propagate_control(struct cgroup *cgrp)
2868 {
2869 	struct cgroup *dsct;
2870 	struct cgroup_subsys_state *d_css;
2871 
2872 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2873 		dsct->subtree_control &= cgroup_control(dsct);
2874 		dsct->subtree_ss_mask =
2875 			cgroup_calc_subtree_ss_mask(dsct->subtree_control,
2876 						    cgroup_ss_mask(dsct));
2877 	}
2878 }
2879 
2880 /**
2881  * cgroup_restore_control - restore control masks and dom_cgrp of a subtree
2882  * @cgrp: root of the target subtree
2883  *
2884  * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the
2885  * respective old_ prefixed fields for @cgrp's subtree including @cgrp
2886  * itself.
2887  */
2888 static void cgroup_restore_control(struct cgroup *cgrp)
2889 {
2890 	struct cgroup *dsct;
2891 	struct cgroup_subsys_state *d_css;
2892 
2893 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
2894 		dsct->subtree_control = dsct->old_subtree_control;
2895 		dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
2896 		dsct->dom_cgrp = dsct->old_dom_cgrp;
2897 	}
2898 }
2899 
2900 static bool css_visible(struct cgroup_subsys_state *css)
2901 {
2902 	struct cgroup_subsys *ss = css->ss;
2903 	struct cgroup *cgrp = css->cgroup;
2904 
2905 	if (cgroup_control(cgrp) & (1 << ss->id))
2906 		return true;
2907 	if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
2908 		return false;
2909 	return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
2910 }
2911 
2912 /**
2913  * cgroup_apply_control_enable - enable or show csses according to control
2914  * @cgrp: root of the target subtree
2915  *
2916  * Walk @cgrp's subtree and create new csses or make the existing ones
2917  * visible.  A css is created invisible if it's being implicitly enabled
2918  * through dependency.  An invisible css is made visible when the userland
2919  * explicitly enables it.
2920  *
2921  * Returns 0 on success, -errno on failure.  On failure, csses which have
2922  * been processed already aren't cleaned up.  The caller is responsible for
2923  * cleaning up with cgroup_apply_control_disable().
2924  */
2925 static int cgroup_apply_control_enable(struct cgroup *cgrp)
2926 {
2927 	struct cgroup *dsct;
2928 	struct cgroup_subsys_state *d_css;
2929 	struct cgroup_subsys *ss;
2930 	int ssid, ret;
2931 
2932 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2933 		for_each_subsys(ss, ssid) {
2934 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
2935 
2936 			WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
2937 
2938 			if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
2939 				continue;
2940 
2941 			if (!css) {
2942 				css = css_create(dsct, ss);
2943 				if (IS_ERR(css))
2944 					return PTR_ERR(css);
2945 			}
2946 
2947 			if (css_visible(css)) {
2948 				ret = css_populate_dir(css);
2949 				if (ret)
2950 					return ret;
2951 			}
2952 		}
2953 	}
2954 
2955 	return 0;
2956 }
2957 
2958 /**
2959  * cgroup_apply_control_disable - kill or hide csses according to control
2960  * @cgrp: root of the target subtree
2961  *
2962  * Walk @cgrp's subtree and kill and hide csses so that they match
2963  * cgroup_ss_mask() and cgroup_visible_mask().
2964  *
2965  * A css is hidden when the userland requests it to be disabled while other
2966  * subsystems are still depending on it.  The css must not actively control
2967  * resources and be in the vanilla state if it's made visible again later.
2968  * Controllers which may be depended upon should provide ->css_reset() for
2969  * this purpose.
2970  */
2971 static void cgroup_apply_control_disable(struct cgroup *cgrp)
2972 {
2973 	struct cgroup *dsct;
2974 	struct cgroup_subsys_state *d_css;
2975 	struct cgroup_subsys *ss;
2976 	int ssid;
2977 
2978 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
2979 		for_each_subsys(ss, ssid) {
2980 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
2981 
2982 			WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
2983 
2984 			if (!css)
2985 				continue;
2986 
2987 			if (css->parent &&
2988 			    !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
2989 				kill_css(css);
2990 			} else if (!css_visible(css)) {
2991 				css_clear_dir(css);
2992 				if (ss->css_reset)
2993 					ss->css_reset(css);
2994 			}
2995 		}
2996 	}
2997 }
2998 
2999 /**
3000  * cgroup_apply_control - apply control mask updates to the subtree
3001  * @cgrp: root of the target subtree
3002  *
3003  * subsystems can be enabled and disabled in a subtree using the following
3004  * steps.
3005  *
3006  * 1. Call cgroup_save_control() to stash the current state.
3007  * 2. Update ->subtree_control masks in the subtree as desired.
3008  * 3. Call cgroup_apply_control() to apply the changes.
3009  * 4. Optionally perform other related operations.
3010  * 5. Call cgroup_finalize_control() to finish up.
3011  *
3012  * This function implements step 3 and propagates the mask changes
3013  * throughout @cgrp's subtree, updates csses accordingly and perform
3014  * process migrations.
3015  */
3016 static int cgroup_apply_control(struct cgroup *cgrp)
3017 {
3018 	int ret;
3019 
3020 	cgroup_propagate_control(cgrp);
3021 
3022 	ret = cgroup_apply_control_enable(cgrp);
3023 	if (ret)
3024 		return ret;
3025 
3026 	/*
3027 	 * At this point, cgroup_e_css() results reflect the new csses
3028 	 * making the following cgroup_update_dfl_csses() properly update
3029 	 * css associations of all tasks in the subtree.
3030 	 */
3031 	ret = cgroup_update_dfl_csses(cgrp);
3032 	if (ret)
3033 		return ret;
3034 
3035 	return 0;
3036 }
3037 
3038 /**
3039  * cgroup_finalize_control - finalize control mask update
3040  * @cgrp: root of the target subtree
3041  * @ret: the result of the update
3042  *
3043  * Finalize control mask update.  See cgroup_apply_control() for more info.
3044  */
3045 static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
3046 {
3047 	if (ret) {
3048 		cgroup_restore_control(cgrp);
3049 		cgroup_propagate_control(cgrp);
3050 	}
3051 
3052 	cgroup_apply_control_disable(cgrp);
3053 }
3054 
3055 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable)
3056 {
3057 	u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask;
3058 
3059 	/* if nothing is getting enabled, nothing to worry about */
3060 	if (!enable)
3061 		return 0;
3062 
3063 	/* can @cgrp host any resources? */
3064 	if (!cgroup_is_valid_domain(cgrp->dom_cgrp))
3065 		return -EOPNOTSUPP;
3066 
3067 	/* mixables don't care */
3068 	if (cgroup_is_mixable(cgrp))
3069 		return 0;
3070 
3071 	if (domain_enable) {
3072 		/* can't enable domain controllers inside a thread subtree */
3073 		if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3074 			return -EOPNOTSUPP;
3075 	} else {
3076 		/*
3077 		 * Threaded controllers can handle internal competitions
3078 		 * and are always allowed inside a (prospective) thread
3079 		 * subtree.
3080 		 */
3081 		if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3082 			return 0;
3083 	}
3084 
3085 	/*
3086 	 * Controllers can't be enabled for a cgroup with tasks to avoid
3087 	 * child cgroups competing against tasks.
3088 	 */
3089 	if (cgroup_has_tasks(cgrp))
3090 		return -EBUSY;
3091 
3092 	return 0;
3093 }
3094 
3095 /* change the enabled child controllers for a cgroup in the default hierarchy */
3096 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3097 					    char *buf, size_t nbytes,
3098 					    loff_t off)
3099 {
3100 	u16 enable = 0, disable = 0;
3101 	struct cgroup *cgrp, *child;
3102 	struct cgroup_subsys *ss;
3103 	char *tok;
3104 	int ssid, ret;
3105 
3106 	/*
3107 	 * Parse input - space separated list of subsystem names prefixed
3108 	 * with either + or -.
3109 	 */
3110 	buf = strstrip(buf);
3111 	while ((tok = strsep(&buf, " "))) {
3112 		if (tok[0] == '\0')
3113 			continue;
3114 		do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
3115 			if (!cgroup_ssid_enabled(ssid) ||
3116 			    strcmp(tok + 1, ss->name))
3117 				continue;
3118 
3119 			if (*tok == '+') {
3120 				enable |= 1 << ssid;
3121 				disable &= ~(1 << ssid);
3122 			} else if (*tok == '-') {
3123 				disable |= 1 << ssid;
3124 				enable &= ~(1 << ssid);
3125 			} else {
3126 				return -EINVAL;
3127 			}
3128 			break;
3129 		} while_each_subsys_mask();
3130 		if (ssid == CGROUP_SUBSYS_COUNT)
3131 			return -EINVAL;
3132 	}
3133 
3134 	cgrp = cgroup_kn_lock_live(of->kn, true);
3135 	if (!cgrp)
3136 		return -ENODEV;
3137 
3138 	for_each_subsys(ss, ssid) {
3139 		if (enable & (1 << ssid)) {
3140 			if (cgrp->subtree_control & (1 << ssid)) {
3141 				enable &= ~(1 << ssid);
3142 				continue;
3143 			}
3144 
3145 			if (!(cgroup_control(cgrp) & (1 << ssid))) {
3146 				ret = -ENOENT;
3147 				goto out_unlock;
3148 			}
3149 		} else if (disable & (1 << ssid)) {
3150 			if (!(cgrp->subtree_control & (1 << ssid))) {
3151 				disable &= ~(1 << ssid);
3152 				continue;
3153 			}
3154 
3155 			/* a child has it enabled? */
3156 			cgroup_for_each_live_child(child, cgrp) {
3157 				if (child->subtree_control & (1 << ssid)) {
3158 					ret = -EBUSY;
3159 					goto out_unlock;
3160 				}
3161 			}
3162 		}
3163 	}
3164 
3165 	if (!enable && !disable) {
3166 		ret = 0;
3167 		goto out_unlock;
3168 	}
3169 
3170 	ret = cgroup_vet_subtree_control_enable(cgrp, enable);
3171 	if (ret)
3172 		goto out_unlock;
3173 
3174 	/* save and update control masks and prepare csses */
3175 	cgroup_save_control(cgrp);
3176 
3177 	cgrp->subtree_control |= enable;
3178 	cgrp->subtree_control &= ~disable;
3179 
3180 	ret = cgroup_apply_control(cgrp);
3181 	cgroup_finalize_control(cgrp, ret);
3182 	if (ret)
3183 		goto out_unlock;
3184 
3185 	kernfs_activate(cgrp->kn);
3186 out_unlock:
3187 	cgroup_kn_unlock(of->kn);
3188 	return ret ?: nbytes;
3189 }
3190 
3191 /**
3192  * cgroup_enable_threaded - make @cgrp threaded
3193  * @cgrp: the target cgroup
3194  *
3195  * Called when "threaded" is written to the cgroup.type interface file and
3196  * tries to make @cgrp threaded and join the parent's resource domain.
3197  * This function is never called on the root cgroup as cgroup.type doesn't
3198  * exist on it.
3199  */
3200 static int cgroup_enable_threaded(struct cgroup *cgrp)
3201 {
3202 	struct cgroup *parent = cgroup_parent(cgrp);
3203 	struct cgroup *dom_cgrp = parent->dom_cgrp;
3204 	struct cgroup *dsct;
3205 	struct cgroup_subsys_state *d_css;
3206 	int ret;
3207 
3208 	lockdep_assert_held(&cgroup_mutex);
3209 
3210 	/* noop if already threaded */
3211 	if (cgroup_is_threaded(cgrp))
3212 		return 0;
3213 
3214 	/*
3215 	 * If @cgroup is populated or has domain controllers enabled, it
3216 	 * can't be switched.  While the below cgroup_can_be_thread_root()
3217 	 * test can catch the same conditions, that's only when @parent is
3218 	 * not mixable, so let's check it explicitly.
3219 	 */
3220 	if (cgroup_is_populated(cgrp) ||
3221 	    cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
3222 		return -EOPNOTSUPP;
3223 
3224 	/* we're joining the parent's domain, ensure its validity */
3225 	if (!cgroup_is_valid_domain(dom_cgrp) ||
3226 	    !cgroup_can_be_thread_root(dom_cgrp))
3227 		return -EOPNOTSUPP;
3228 
3229 	/*
3230 	 * The following shouldn't cause actual migrations and should
3231 	 * always succeed.
3232 	 */
3233 	cgroup_save_control(cgrp);
3234 
3235 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)
3236 		if (dsct == cgrp || cgroup_is_threaded(dsct))
3237 			dsct->dom_cgrp = dom_cgrp;
3238 
3239 	ret = cgroup_apply_control(cgrp);
3240 	if (!ret)
3241 		parent->nr_threaded_children++;
3242 
3243 	cgroup_finalize_control(cgrp, ret);
3244 	return ret;
3245 }
3246 
3247 static int cgroup_type_show(struct seq_file *seq, void *v)
3248 {
3249 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3250 
3251 	if (cgroup_is_threaded(cgrp))
3252 		seq_puts(seq, "threaded\n");
3253 	else if (!cgroup_is_valid_domain(cgrp))
3254 		seq_puts(seq, "domain invalid\n");
3255 	else if (cgroup_is_thread_root(cgrp))
3256 		seq_puts(seq, "domain threaded\n");
3257 	else
3258 		seq_puts(seq, "domain\n");
3259 
3260 	return 0;
3261 }
3262 
3263 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf,
3264 				 size_t nbytes, loff_t off)
3265 {
3266 	struct cgroup *cgrp;
3267 	int ret;
3268 
3269 	/* only switching to threaded mode is supported */
3270 	if (strcmp(strstrip(buf), "threaded"))
3271 		return -EINVAL;
3272 
3273 	cgrp = cgroup_kn_lock_live(of->kn, false);
3274 	if (!cgrp)
3275 		return -ENOENT;
3276 
3277 	/* threaded can only be enabled */
3278 	ret = cgroup_enable_threaded(cgrp);
3279 
3280 	cgroup_kn_unlock(of->kn);
3281 	return ret ?: nbytes;
3282 }
3283 
3284 static int cgroup_max_descendants_show(struct seq_file *seq, void *v)
3285 {
3286 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3287 	int descendants = READ_ONCE(cgrp->max_descendants);
3288 
3289 	if (descendants == INT_MAX)
3290 		seq_puts(seq, "max\n");
3291 	else
3292 		seq_printf(seq, "%d\n", descendants);
3293 
3294 	return 0;
3295 }
3296 
3297 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of,
3298 					   char *buf, size_t nbytes, loff_t off)
3299 {
3300 	struct cgroup *cgrp;
3301 	int descendants;
3302 	ssize_t ret;
3303 
3304 	buf = strstrip(buf);
3305 	if (!strcmp(buf, "max")) {
3306 		descendants = INT_MAX;
3307 	} else {
3308 		ret = kstrtoint(buf, 0, &descendants);
3309 		if (ret)
3310 			return ret;
3311 	}
3312 
3313 	if (descendants < 0)
3314 		return -ERANGE;
3315 
3316 	cgrp = cgroup_kn_lock_live(of->kn, false);
3317 	if (!cgrp)
3318 		return -ENOENT;
3319 
3320 	cgrp->max_descendants = descendants;
3321 
3322 	cgroup_kn_unlock(of->kn);
3323 
3324 	return nbytes;
3325 }
3326 
3327 static int cgroup_max_depth_show(struct seq_file *seq, void *v)
3328 {
3329 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3330 	int depth = READ_ONCE(cgrp->max_depth);
3331 
3332 	if (depth == INT_MAX)
3333 		seq_puts(seq, "max\n");
3334 	else
3335 		seq_printf(seq, "%d\n", depth);
3336 
3337 	return 0;
3338 }
3339 
3340 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of,
3341 				      char *buf, size_t nbytes, loff_t off)
3342 {
3343 	struct cgroup *cgrp;
3344 	ssize_t ret;
3345 	int depth;
3346 
3347 	buf = strstrip(buf);
3348 	if (!strcmp(buf, "max")) {
3349 		depth = INT_MAX;
3350 	} else {
3351 		ret = kstrtoint(buf, 0, &depth);
3352 		if (ret)
3353 			return ret;
3354 	}
3355 
3356 	if (depth < 0)
3357 		return -ERANGE;
3358 
3359 	cgrp = cgroup_kn_lock_live(of->kn, false);
3360 	if (!cgrp)
3361 		return -ENOENT;
3362 
3363 	cgrp->max_depth = depth;
3364 
3365 	cgroup_kn_unlock(of->kn);
3366 
3367 	return nbytes;
3368 }
3369 
3370 static int cgroup_events_show(struct seq_file *seq, void *v)
3371 {
3372 	seq_printf(seq, "populated %d\n",
3373 		   cgroup_is_populated(seq_css(seq)->cgroup));
3374 	return 0;
3375 }
3376 
3377 static int cgroup_stat_show(struct seq_file *seq, void *v)
3378 {
3379 	struct cgroup *cgroup = seq_css(seq)->cgroup;
3380 
3381 	seq_printf(seq, "nr_descendants %d\n",
3382 		   cgroup->nr_descendants);
3383 	seq_printf(seq, "nr_dying_descendants %d\n",
3384 		   cgroup->nr_dying_descendants);
3385 
3386 	return 0;
3387 }
3388 
3389 static int __maybe_unused cgroup_extra_stat_show(struct seq_file *seq,
3390 						 struct cgroup *cgrp, int ssid)
3391 {
3392 	struct cgroup_subsys *ss = cgroup_subsys[ssid];
3393 	struct cgroup_subsys_state *css;
3394 	int ret;
3395 
3396 	if (!ss->css_extra_stat_show)
3397 		return 0;
3398 
3399 	css = cgroup_tryget_css(cgrp, ss);
3400 	if (!css)
3401 		return 0;
3402 
3403 	ret = ss->css_extra_stat_show(seq, css);
3404 	css_put(css);
3405 	return ret;
3406 }
3407 
3408 static int cpu_stat_show(struct seq_file *seq, void *v)
3409 {
3410 	struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup;
3411 	int ret = 0;
3412 
3413 	cgroup_base_stat_cputime_show(seq);
3414 #ifdef CONFIG_CGROUP_SCHED
3415 	ret = cgroup_extra_stat_show(seq, cgrp, cpu_cgrp_id);
3416 #endif
3417 	return ret;
3418 }
3419 
3420 #ifdef CONFIG_PSI
3421 static int cgroup_io_pressure_show(struct seq_file *seq, void *v)
3422 {
3423 	return psi_show(seq, &seq_css(seq)->cgroup->psi, PSI_IO);
3424 }
3425 static int cgroup_memory_pressure_show(struct seq_file *seq, void *v)
3426 {
3427 	return psi_show(seq, &seq_css(seq)->cgroup->psi, PSI_MEM);
3428 }
3429 static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v)
3430 {
3431 	return psi_show(seq, &seq_css(seq)->cgroup->psi, PSI_CPU);
3432 }
3433 #endif
3434 
3435 static int cgroup_file_open(struct kernfs_open_file *of)
3436 {
3437 	struct cftype *cft = of->kn->priv;
3438 
3439 	if (cft->open)
3440 		return cft->open(of);
3441 	return 0;
3442 }
3443 
3444 static void cgroup_file_release(struct kernfs_open_file *of)
3445 {
3446 	struct cftype *cft = of->kn->priv;
3447 
3448 	if (cft->release)
3449 		cft->release(of);
3450 }
3451 
3452 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3453 				 size_t nbytes, loff_t off)
3454 {
3455 	struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
3456 	struct cgroup *cgrp = of->kn->parent->priv;
3457 	struct cftype *cft = of->kn->priv;
3458 	struct cgroup_subsys_state *css;
3459 	int ret;
3460 
3461 	/*
3462 	 * If namespaces are delegation boundaries, disallow writes to
3463 	 * files in an non-init namespace root from inside the namespace
3464 	 * except for the files explicitly marked delegatable -
3465 	 * cgroup.procs and cgroup.subtree_control.
3466 	 */
3467 	if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) &&
3468 	    !(cft->flags & CFTYPE_NS_DELEGATABLE) &&
3469 	    ns != &init_cgroup_ns && ns->root_cset->dfl_cgrp == cgrp)
3470 		return -EPERM;
3471 
3472 	if (cft->write)
3473 		return cft->write(of, buf, nbytes, off);
3474 
3475 	/*
3476 	 * kernfs guarantees that a file isn't deleted with operations in
3477 	 * flight, which means that the matching css is and stays alive and
3478 	 * doesn't need to be pinned.  The RCU locking is not necessary
3479 	 * either.  It's just for the convenience of using cgroup_css().
3480 	 */
3481 	rcu_read_lock();
3482 	css = cgroup_css(cgrp, cft->ss);
3483 	rcu_read_unlock();
3484 
3485 	if (cft->write_u64) {
3486 		unsigned long long v;
3487 		ret = kstrtoull(buf, 0, &v);
3488 		if (!ret)
3489 			ret = cft->write_u64(css, cft, v);
3490 	} else if (cft->write_s64) {
3491 		long long v;
3492 		ret = kstrtoll(buf, 0, &v);
3493 		if (!ret)
3494 			ret = cft->write_s64(css, cft, v);
3495 	} else {
3496 		ret = -EINVAL;
3497 	}
3498 
3499 	return ret ?: nbytes;
3500 }
3501 
3502 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
3503 {
3504 	return seq_cft(seq)->seq_start(seq, ppos);
3505 }
3506 
3507 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
3508 {
3509 	return seq_cft(seq)->seq_next(seq, v, ppos);
3510 }
3511 
3512 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
3513 {
3514 	if (seq_cft(seq)->seq_stop)
3515 		seq_cft(seq)->seq_stop(seq, v);
3516 }
3517 
3518 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
3519 {
3520 	struct cftype *cft = seq_cft(m);
3521 	struct cgroup_subsys_state *css = seq_css(m);
3522 
3523 	if (cft->seq_show)
3524 		return cft->seq_show(m, arg);
3525 
3526 	if (cft->read_u64)
3527 		seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3528 	else if (cft->read_s64)
3529 		seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3530 	else
3531 		return -EINVAL;
3532 	return 0;
3533 }
3534 
3535 static struct kernfs_ops cgroup_kf_single_ops = {
3536 	.atomic_write_len	= PAGE_SIZE,
3537 	.open			= cgroup_file_open,
3538 	.release		= cgroup_file_release,
3539 	.write			= cgroup_file_write,
3540 	.seq_show		= cgroup_seqfile_show,
3541 };
3542 
3543 static struct kernfs_ops cgroup_kf_ops = {
3544 	.atomic_write_len	= PAGE_SIZE,
3545 	.open			= cgroup_file_open,
3546 	.release		= cgroup_file_release,
3547 	.write			= cgroup_file_write,
3548 	.seq_start		= cgroup_seqfile_start,
3549 	.seq_next		= cgroup_seqfile_next,
3550 	.seq_stop		= cgroup_seqfile_stop,
3551 	.seq_show		= cgroup_seqfile_show,
3552 };
3553 
3554 /* set uid and gid of cgroup dirs and files to that of the creator */
3555 static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3556 {
3557 	struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3558 			       .ia_uid = current_fsuid(),
3559 			       .ia_gid = current_fsgid(), };
3560 
3561 	if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3562 	    gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3563 		return 0;
3564 
3565 	return kernfs_setattr(kn, &iattr);
3566 }
3567 
3568 static void cgroup_file_notify_timer(struct timer_list *timer)
3569 {
3570 	cgroup_file_notify(container_of(timer, struct cgroup_file,
3571 					notify_timer));
3572 }
3573 
3574 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3575 			   struct cftype *cft)
3576 {
3577 	char name[CGROUP_FILE_NAME_MAX];
3578 	struct kernfs_node *kn;
3579 	struct lock_class_key *key = NULL;
3580 	int ret;
3581 
3582 #ifdef CONFIG_DEBUG_LOCK_ALLOC
3583 	key = &cft->lockdep_key;
3584 #endif
3585 	kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3586 				  cgroup_file_mode(cft),
3587 				  GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
3588 				  0, cft->kf_ops, cft,
3589 				  NULL, key);
3590 	if (IS_ERR(kn))
3591 		return PTR_ERR(kn);
3592 
3593 	ret = cgroup_kn_set_ugid(kn);
3594 	if (ret) {
3595 		kernfs_remove(kn);
3596 		return ret;
3597 	}
3598 
3599 	if (cft->file_offset) {
3600 		struct cgroup_file *cfile = (void *)css + cft->file_offset;
3601 
3602 		timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0);
3603 
3604 		spin_lock_irq(&cgroup_file_kn_lock);
3605 		cfile->kn = kn;
3606 		spin_unlock_irq(&cgroup_file_kn_lock);
3607 	}
3608 
3609 	return 0;
3610 }
3611 
3612 /**
3613  * cgroup_addrm_files - add or remove files to a cgroup directory
3614  * @css: the target css
3615  * @cgrp: the target cgroup (usually css->cgroup)
3616  * @cfts: array of cftypes to be added
3617  * @is_add: whether to add or remove
3618  *
3619  * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3620  * For removals, this function never fails.
3621  */
3622 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3623 			      struct cgroup *cgrp, struct cftype cfts[],
3624 			      bool is_add)
3625 {
3626 	struct cftype *cft, *cft_end = NULL;
3627 	int ret = 0;
3628 
3629 	lockdep_assert_held(&cgroup_mutex);
3630 
3631 restart:
3632 	for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
3633 		/* does cft->flags tell us to skip this file on @cgrp? */
3634 		if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
3635 			continue;
3636 		if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
3637 			continue;
3638 		if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
3639 			continue;
3640 		if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
3641 			continue;
3642 
3643 		if (is_add) {
3644 			ret = cgroup_add_file(css, cgrp, cft);
3645 			if (ret) {
3646 				pr_warn("%s: failed to add %s, err=%d\n",
3647 					__func__, cft->name, ret);
3648 				cft_end = cft;
3649 				is_add = false;
3650 				goto restart;
3651 			}
3652 		} else {
3653 			cgroup_rm_file(cgrp, cft);
3654 		}
3655 	}
3656 	return ret;
3657 }
3658 
3659 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
3660 {
3661 	struct cgroup_subsys *ss = cfts[0].ss;
3662 	struct cgroup *root = &ss->root->cgrp;
3663 	struct cgroup_subsys_state *css;
3664 	int ret = 0;
3665 
3666 	lockdep_assert_held(&cgroup_mutex);
3667 
3668 	/* add/rm files for all cgroups created before */
3669 	css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
3670 		struct cgroup *cgrp = css->cgroup;
3671 
3672 		if (!(css->flags & CSS_VISIBLE))
3673 			continue;
3674 
3675 		ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
3676 		if (ret)
3677 			break;
3678 	}
3679 
3680 	if (is_add && !ret)
3681 		kernfs_activate(root->kn);
3682 	return ret;
3683 }
3684 
3685 static void cgroup_exit_cftypes(struct cftype *cfts)
3686 {
3687 	struct cftype *cft;
3688 
3689 	for (cft = cfts; cft->name[0] != '\0'; cft++) {
3690 		/* free copy for custom atomic_write_len, see init_cftypes() */
3691 		if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3692 			kfree(cft->kf_ops);
3693 		cft->kf_ops = NULL;
3694 		cft->ss = NULL;
3695 
3696 		/* revert flags set by cgroup core while adding @cfts */
3697 		cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
3698 	}
3699 }
3700 
3701 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3702 {
3703 	struct cftype *cft;
3704 
3705 	for (cft = cfts; cft->name[0] != '\0'; cft++) {
3706 		struct kernfs_ops *kf_ops;
3707 
3708 		WARN_ON(cft->ss || cft->kf_ops);
3709 
3710 		if (cft->seq_start)
3711 			kf_ops = &cgroup_kf_ops;
3712 		else
3713 			kf_ops = &cgroup_kf_single_ops;
3714 
3715 		/*
3716 		 * Ugh... if @cft wants a custom max_write_len, we need to
3717 		 * make a copy of kf_ops to set its atomic_write_len.
3718 		 */
3719 		if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3720 			kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3721 			if (!kf_ops) {
3722 				cgroup_exit_cftypes(cfts);
3723 				return -ENOMEM;
3724 			}
3725 			kf_ops->atomic_write_len = cft->max_write_len;
3726 		}
3727 
3728 		cft->kf_ops = kf_ops;
3729 		cft->ss = ss;
3730 	}
3731 
3732 	return 0;
3733 }
3734 
3735 static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3736 {
3737 	lockdep_assert_held(&cgroup_mutex);
3738 
3739 	if (!cfts || !cfts[0].ss)
3740 		return -ENOENT;
3741 
3742 	list_del(&cfts->node);
3743 	cgroup_apply_cftypes(cfts, false);
3744 	cgroup_exit_cftypes(cfts);
3745 	return 0;
3746 }
3747 
3748 /**
3749  * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
3750  * @cfts: zero-length name terminated array of cftypes
3751  *
3752  * Unregister @cfts.  Files described by @cfts are removed from all
3753  * existing cgroups and all future cgroups won't have them either.  This
3754  * function can be called anytime whether @cfts' subsys is attached or not.
3755  *
3756  * Returns 0 on successful unregistration, -ENOENT if @cfts is not
3757  * registered.
3758  */
3759 int cgroup_rm_cftypes(struct cftype *cfts)
3760 {
3761 	int ret;
3762 
3763 	mutex_lock(&cgroup_mutex);
3764 	ret = cgroup_rm_cftypes_locked(cfts);
3765 	mutex_unlock(&cgroup_mutex);
3766 	return ret;
3767 }
3768 
3769 /**
3770  * cgroup_add_cftypes - add an array of cftypes to a subsystem
3771  * @ss: target cgroup subsystem
3772  * @cfts: zero-length name terminated array of cftypes
3773  *
3774  * Register @cfts to @ss.  Files described by @cfts are created for all
3775  * existing cgroups to which @ss is attached and all future cgroups will
3776  * have them too.  This function can be called anytime whether @ss is
3777  * attached or not.
3778  *
3779  * Returns 0 on successful registration, -errno on failure.  Note that this
3780  * function currently returns 0 as long as @cfts registration is successful
3781  * even if some file creation attempts on existing cgroups fail.
3782  */
3783 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3784 {
3785 	int ret;
3786 
3787 	if (!cgroup_ssid_enabled(ss->id))
3788 		return 0;
3789 
3790 	if (!cfts || cfts[0].name[0] == '\0')
3791 		return 0;
3792 
3793 	ret = cgroup_init_cftypes(ss, cfts);
3794 	if (ret)
3795 		return ret;
3796 
3797 	mutex_lock(&cgroup_mutex);
3798 
3799 	list_add_tail(&cfts->node, &ss->cfts);
3800 	ret = cgroup_apply_cftypes(cfts, true);
3801 	if (ret)
3802 		cgroup_rm_cftypes_locked(cfts);
3803 
3804 	mutex_unlock(&cgroup_mutex);
3805 	return ret;
3806 }
3807 
3808 /**
3809  * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3810  * @ss: target cgroup subsystem
3811  * @cfts: zero-length name terminated array of cftypes
3812  *
3813  * Similar to cgroup_add_cftypes() but the added files are only used for
3814  * the default hierarchy.
3815  */
3816 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3817 {
3818 	struct cftype *cft;
3819 
3820 	for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3821 		cft->flags |= __CFTYPE_ONLY_ON_DFL;
3822 	return cgroup_add_cftypes(ss, cfts);
3823 }
3824 
3825 /**
3826  * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3827  * @ss: target cgroup subsystem
3828  * @cfts: zero-length name terminated array of cftypes
3829  *
3830  * Similar to cgroup_add_cftypes() but the added files are only used for
3831  * the legacy hierarchies.
3832  */
3833 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3834 {
3835 	struct cftype *cft;
3836 
3837 	for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3838 		cft->flags |= __CFTYPE_NOT_ON_DFL;
3839 	return cgroup_add_cftypes(ss, cfts);
3840 }
3841 
3842 /**
3843  * cgroup_file_notify - generate a file modified event for a cgroup_file
3844  * @cfile: target cgroup_file
3845  *
3846  * @cfile must have been obtained by setting cftype->file_offset.
3847  */
3848 void cgroup_file_notify(struct cgroup_file *cfile)
3849 {
3850 	unsigned long flags;
3851 
3852 	spin_lock_irqsave(&cgroup_file_kn_lock, flags);
3853 	if (cfile->kn) {
3854 		unsigned long last = cfile->notified_at;
3855 		unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV;
3856 
3857 		if (time_in_range(jiffies, last, next)) {
3858 			timer_reduce(&cfile->notify_timer, next);
3859 		} else {
3860 			kernfs_notify(cfile->kn);
3861 			cfile->notified_at = jiffies;
3862 		}
3863 	}
3864 	spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
3865 }
3866 
3867 /**
3868  * css_next_child - find the next child of a given css
3869  * @pos: the current position (%NULL to initiate traversal)
3870  * @parent: css whose children to walk
3871  *
3872  * This function returns the next child of @parent and should be called
3873  * under either cgroup_mutex or RCU read lock.  The only requirement is
3874  * that @parent and @pos are accessible.  The next sibling is guaranteed to
3875  * be returned regardless of their states.
3876  *
3877  * If a subsystem synchronizes ->css_online() and the start of iteration, a
3878  * css which finished ->css_online() is guaranteed to be visible in the
3879  * future iterations and will stay visible until the last reference is put.
3880  * A css which hasn't finished ->css_online() or already finished
3881  * ->css_offline() may show up during traversal.  It's each subsystem's
3882  * responsibility to synchronize against on/offlining.
3883  */
3884 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
3885 					   struct cgroup_subsys_state *parent)
3886 {
3887 	struct cgroup_subsys_state *next;
3888 
3889 	cgroup_assert_mutex_or_rcu_locked();
3890 
3891 	/*
3892 	 * @pos could already have been unlinked from the sibling list.
3893 	 * Once a cgroup is removed, its ->sibling.next is no longer
3894 	 * updated when its next sibling changes.  CSS_RELEASED is set when
3895 	 * @pos is taken off list, at which time its next pointer is valid,
3896 	 * and, as releases are serialized, the one pointed to by the next
3897 	 * pointer is guaranteed to not have started release yet.  This
3898 	 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3899 	 * critical section, the one pointed to by its next pointer is
3900 	 * guaranteed to not have finished its RCU grace period even if we
3901 	 * have dropped rcu_read_lock() inbetween iterations.
3902 	 *
3903 	 * If @pos has CSS_RELEASED set, its next pointer can't be
3904 	 * dereferenced; however, as each css is given a monotonically
3905 	 * increasing unique serial number and always appended to the
3906 	 * sibling list, the next one can be found by walking the parent's
3907 	 * children until the first css with higher serial number than
3908 	 * @pos's.  While this path can be slower, it happens iff iteration
3909 	 * races against release and the race window is very small.
3910 	 */
3911 	if (!pos) {
3912 		next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
3913 	} else if (likely(!(pos->flags & CSS_RELEASED))) {
3914 		next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
3915 	} else {
3916 		list_for_each_entry_rcu(next, &parent->children, sibling)
3917 			if (next->serial_nr > pos->serial_nr)
3918 				break;
3919 	}
3920 
3921 	/*
3922 	 * @next, if not pointing to the head, can be dereferenced and is
3923 	 * the next sibling.
3924 	 */
3925 	if (&next->sibling != &parent->children)
3926 		return next;
3927 	return NULL;
3928 }
3929 
3930 /**
3931  * css_next_descendant_pre - find the next descendant for pre-order walk
3932  * @pos: the current position (%NULL to initiate traversal)
3933  * @root: css whose descendants to walk
3934  *
3935  * To be used by css_for_each_descendant_pre().  Find the next descendant
3936  * to visit for pre-order traversal of @root's descendants.  @root is
3937  * included in the iteration and the first node to be visited.
3938  *
3939  * While this function requires cgroup_mutex or RCU read locking, it
3940  * doesn't require the whole traversal to be contained in a single critical
3941  * section.  This function will return the correct next descendant as long
3942  * as both @pos and @root are accessible and @pos is a descendant of @root.
3943  *
3944  * If a subsystem synchronizes ->css_online() and the start of iteration, a
3945  * css which finished ->css_online() is guaranteed to be visible in the
3946  * future iterations and will stay visible until the last reference is put.
3947  * A css which hasn't finished ->css_online() or already finished
3948  * ->css_offline() may show up during traversal.  It's each subsystem's
3949  * responsibility to synchronize against on/offlining.
3950  */
3951 struct cgroup_subsys_state *
3952 css_next_descendant_pre(struct cgroup_subsys_state *pos,
3953 			struct cgroup_subsys_state *root)
3954 {
3955 	struct cgroup_subsys_state *next;
3956 
3957 	cgroup_assert_mutex_or_rcu_locked();
3958 
3959 	/* if first iteration, visit @root */
3960 	if (!pos)
3961 		return root;
3962 
3963 	/* visit the first child if exists */
3964 	next = css_next_child(NULL, pos);
3965 	if (next)
3966 		return next;
3967 
3968 	/* no child, visit my or the closest ancestor's next sibling */
3969 	while (pos != root) {
3970 		next = css_next_child(pos, pos->parent);
3971 		if (next)
3972 			return next;
3973 		pos = pos->parent;
3974 	}
3975 
3976 	return NULL;
3977 }
3978 
3979 /**
3980  * css_rightmost_descendant - return the rightmost descendant of a css
3981  * @pos: css of interest
3982  *
3983  * Return the rightmost descendant of @pos.  If there's no descendant, @pos
3984  * is returned.  This can be used during pre-order traversal to skip
3985  * subtree of @pos.
3986  *
3987  * While this function requires cgroup_mutex or RCU read locking, it
3988  * doesn't require the whole traversal to be contained in a single critical
3989  * section.  This function will return the correct rightmost descendant as
3990  * long as @pos is accessible.
3991  */
3992 struct cgroup_subsys_state *
3993 css_rightmost_descendant(struct cgroup_subsys_state *pos)
3994 {
3995 	struct cgroup_subsys_state *last, *tmp;
3996 
3997 	cgroup_assert_mutex_or_rcu_locked();
3998 
3999 	do {
4000 		last = pos;
4001 		/* ->prev isn't RCU safe, walk ->next till the end */
4002 		pos = NULL;
4003 		css_for_each_child(tmp, last)
4004 			pos = tmp;
4005 	} while (pos);
4006 
4007 	return last;
4008 }
4009 
4010 static struct cgroup_subsys_state *
4011 css_leftmost_descendant(struct cgroup_subsys_state *pos)
4012 {
4013 	struct cgroup_subsys_state *last;
4014 
4015 	do {
4016 		last = pos;
4017 		pos = css_next_child(NULL, pos);
4018 	} while (pos);
4019 
4020 	return last;
4021 }
4022 
4023 /**
4024  * css_next_descendant_post - find the next descendant for post-order walk
4025  * @pos: the current position (%NULL to initiate traversal)
4026  * @root: css whose descendants to walk
4027  *
4028  * To be used by css_for_each_descendant_post().  Find the next descendant
4029  * to visit for post-order traversal of @root's descendants.  @root is
4030  * included in the iteration and the last node to be visited.
4031  *
4032  * While this function requires cgroup_mutex or RCU read locking, it
4033  * doesn't require the whole traversal to be contained in a single critical
4034  * section.  This function will return the correct next descendant as long
4035  * as both @pos and @cgroup are accessible and @pos is a descendant of
4036  * @cgroup.
4037  *
4038  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4039  * css which finished ->css_online() is guaranteed to be visible in the
4040  * future iterations and will stay visible until the last reference is put.
4041  * A css which hasn't finished ->css_online() or already finished
4042  * ->css_offline() may show up during traversal.  It's each subsystem's
4043  * responsibility to synchronize against on/offlining.
4044  */
4045 struct cgroup_subsys_state *
4046 css_next_descendant_post(struct cgroup_subsys_state *pos,
4047 			 struct cgroup_subsys_state *root)
4048 {
4049 	struct cgroup_subsys_state *next;
4050 
4051 	cgroup_assert_mutex_or_rcu_locked();
4052 
4053 	/* if first iteration, visit leftmost descendant which may be @root */
4054 	if (!pos)
4055 		return css_leftmost_descendant(root);
4056 
4057 	/* if we visited @root, we're done */
4058 	if (pos == root)
4059 		return NULL;
4060 
4061 	/* if there's an unvisited sibling, visit its leftmost descendant */
4062 	next = css_next_child(pos, pos->parent);
4063 	if (next)
4064 		return css_leftmost_descendant(next);
4065 
4066 	/* no sibling left, visit parent */
4067 	return pos->parent;
4068 }
4069 
4070 /**
4071  * css_has_online_children - does a css have online children
4072  * @css: the target css
4073  *
4074  * Returns %true if @css has any online children; otherwise, %false.  This
4075  * function can be called from any context but the caller is responsible
4076  * for synchronizing against on/offlining as necessary.
4077  */
4078 bool css_has_online_children(struct cgroup_subsys_state *css)
4079 {
4080 	struct cgroup_subsys_state *child;
4081 	bool ret = false;
4082 
4083 	rcu_read_lock();
4084 	css_for_each_child(child, css) {
4085 		if (child->flags & CSS_ONLINE) {
4086 			ret = true;
4087 			break;
4088 		}
4089 	}
4090 	rcu_read_unlock();
4091 	return ret;
4092 }
4093 
4094 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it)
4095 {
4096 	struct list_head *l;
4097 	struct cgrp_cset_link *link;
4098 	struct css_set *cset;
4099 
4100 	lockdep_assert_held(&css_set_lock);
4101 
4102 	/* find the next threaded cset */
4103 	if (it->tcset_pos) {
4104 		l = it->tcset_pos->next;
4105 
4106 		if (l != it->tcset_head) {
4107 			it->tcset_pos = l;
4108 			return container_of(l, struct css_set,
4109 					    threaded_csets_node);
4110 		}
4111 
4112 		it->tcset_pos = NULL;
4113 	}
4114 
4115 	/* find the next cset */
4116 	l = it->cset_pos;
4117 	l = l->next;
4118 	if (l == it->cset_head) {
4119 		it->cset_pos = NULL;
4120 		return NULL;
4121 	}
4122 
4123 	if (it->ss) {
4124 		cset = container_of(l, struct css_set, e_cset_node[it->ss->id]);
4125 	} else {
4126 		link = list_entry(l, struct cgrp_cset_link, cset_link);
4127 		cset = link->cset;
4128 	}
4129 
4130 	it->cset_pos = l;
4131 
4132 	/* initialize threaded css_set walking */
4133 	if (it->flags & CSS_TASK_ITER_THREADED) {
4134 		if (it->cur_dcset)
4135 			put_css_set_locked(it->cur_dcset);
4136 		it->cur_dcset = cset;
4137 		get_css_set(cset);
4138 
4139 		it->tcset_head = &cset->threaded_csets;
4140 		it->tcset_pos = &cset->threaded_csets;
4141 	}
4142 
4143 	return cset;
4144 }
4145 
4146 /**
4147  * css_task_iter_advance_css_set - advance a task itererator to the next css_set
4148  * @it: the iterator to advance
4149  *
4150  * Advance @it to the next css_set to walk.
4151  */
4152 static void css_task_iter_advance_css_set(struct css_task_iter *it)
4153 {
4154 	struct css_set *cset;
4155 
4156 	lockdep_assert_held(&css_set_lock);
4157 
4158 	/* Advance to the next non-empty css_set */
4159 	do {
4160 		cset = css_task_iter_next_css_set(it);
4161 		if (!cset) {
4162 			it->task_pos = NULL;
4163 			return;
4164 		}
4165 	} while (!css_set_populated(cset));
4166 
4167 	if (!list_empty(&cset->tasks))
4168 		it->task_pos = cset->tasks.next;
4169 	else
4170 		it->task_pos = cset->mg_tasks.next;
4171 
4172 	it->tasks_head = &cset->tasks;
4173 	it->mg_tasks_head = &cset->mg_tasks;
4174 
4175 	/*
4176 	 * We don't keep css_sets locked across iteration steps and thus
4177 	 * need to take steps to ensure that iteration can be resumed after
4178 	 * the lock is re-acquired.  Iteration is performed at two levels -
4179 	 * css_sets and tasks in them.
4180 	 *
4181 	 * Once created, a css_set never leaves its cgroup lists, so a
4182 	 * pinned css_set is guaranteed to stay put and we can resume
4183 	 * iteration afterwards.
4184 	 *
4185 	 * Tasks may leave @cset across iteration steps.  This is resolved
4186 	 * by registering each iterator with the css_set currently being
4187 	 * walked and making css_set_move_task() advance iterators whose
4188 	 * next task is leaving.
4189 	 */
4190 	if (it->cur_cset) {
4191 		list_del(&it->iters_node);
4192 		put_css_set_locked(it->cur_cset);
4193 	}
4194 	get_css_set(cset);
4195 	it->cur_cset = cset;
4196 	list_add(&it->iters_node, &cset->task_iters);
4197 }
4198 
4199 static void css_task_iter_advance(struct css_task_iter *it)
4200 {
4201 	struct list_head *next;
4202 
4203 	lockdep_assert_held(&css_set_lock);
4204 repeat:
4205 	/*
4206 	 * Advance iterator to find next entry.  cset->tasks is consumed
4207 	 * first and then ->mg_tasks.  After ->mg_tasks, we move onto the
4208 	 * next cset.
4209 	 */
4210 	next = it->task_pos->next;
4211 
4212 	if (next == it->tasks_head)
4213 		next = it->mg_tasks_head->next;
4214 
4215 	if (next == it->mg_tasks_head)
4216 		css_task_iter_advance_css_set(it);
4217 	else
4218 		it->task_pos = next;
4219 
4220 	/* if PROCS, skip over tasks which aren't group leaders */
4221 	if ((it->flags & CSS_TASK_ITER_PROCS) && it->task_pos &&
4222 	    !thread_group_leader(list_entry(it->task_pos, struct task_struct,
4223 					    cg_list)))
4224 		goto repeat;
4225 }
4226 
4227 /**
4228  * css_task_iter_start - initiate task iteration
4229  * @css: the css to walk tasks of
4230  * @flags: CSS_TASK_ITER_* flags
4231  * @it: the task iterator to use
4232  *
4233  * Initiate iteration through the tasks of @css.  The caller can call
4234  * css_task_iter_next() to walk through the tasks until the function
4235  * returns NULL.  On completion of iteration, css_task_iter_end() must be
4236  * called.
4237  */
4238 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags,
4239 			 struct css_task_iter *it)
4240 {
4241 	/* no one should try to iterate before mounting cgroups */
4242 	WARN_ON_ONCE(!use_task_css_set_links);
4243 
4244 	memset(it, 0, sizeof(*it));
4245 
4246 	spin_lock_irq(&css_set_lock);
4247 
4248 	it->ss = css->ss;
4249 	it->flags = flags;
4250 
4251 	if (it->ss)
4252 		it->cset_pos = &css->cgroup->e_csets[css->ss->id];
4253 	else
4254 		it->cset_pos = &css->cgroup->cset_links;
4255 
4256 	it->cset_head = it->cset_pos;
4257 
4258 	css_task_iter_advance_css_set(it);
4259 
4260 	spin_unlock_irq(&css_set_lock);
4261 }
4262 
4263 /**
4264  * css_task_iter_next - return the next task for the iterator
4265  * @it: the task iterator being iterated
4266  *
4267  * The "next" function for task iteration.  @it should have been
4268  * initialized via css_task_iter_start().  Returns NULL when the iteration
4269  * reaches the end.
4270  */
4271 struct task_struct *css_task_iter_next(struct css_task_iter *it)
4272 {
4273 	if (it->cur_task) {
4274 		put_task_struct(it->cur_task);
4275 		it->cur_task = NULL;
4276 	}
4277 
4278 	spin_lock_irq(&css_set_lock);
4279 
4280 	if (it->task_pos) {
4281 		it->cur_task = list_entry(it->task_pos, struct task_struct,
4282 					  cg_list);
4283 		get_task_struct(it->cur_task);
4284 		css_task_iter_advance(it);
4285 	}
4286 
4287 	spin_unlock_irq(&css_set_lock);
4288 
4289 	return it->cur_task;
4290 }
4291 
4292 /**
4293  * css_task_iter_end - finish task iteration
4294  * @it: the task iterator to finish
4295  *
4296  * Finish task iteration started by css_task_iter_start().
4297  */
4298 void css_task_iter_end(struct css_task_iter *it)
4299 {
4300 	if (it->cur_cset) {
4301 		spin_lock_irq(&css_set_lock);
4302 		list_del(&it->iters_node);
4303 		put_css_set_locked(it->cur_cset);
4304 		spin_unlock_irq(&css_set_lock);
4305 	}
4306 
4307 	if (it->cur_dcset)
4308 		put_css_set(it->cur_dcset);
4309 
4310 	if (it->cur_task)
4311 		put_task_struct(it->cur_task);
4312 }
4313 
4314 static void cgroup_procs_release(struct kernfs_open_file *of)
4315 {
4316 	if (of->priv) {
4317 		css_task_iter_end(of->priv);
4318 		kfree(of->priv);
4319 	}
4320 }
4321 
4322 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos)
4323 {
4324 	struct kernfs_open_file *of = s->private;
4325 	struct css_task_iter *it = of->priv;
4326 
4327 	return css_task_iter_next(it);
4328 }
4329 
4330 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos,
4331 				  unsigned int iter_flags)
4332 {
4333 	struct kernfs_open_file *of = s->private;
4334 	struct cgroup *cgrp = seq_css(s)->cgroup;
4335 	struct css_task_iter *it = of->priv;
4336 
4337 	/*
4338 	 * When a seq_file is seeked, it's always traversed sequentially
4339 	 * from position 0, so we can simply keep iterating on !0 *pos.
4340 	 */
4341 	if (!it) {
4342 		if (WARN_ON_ONCE((*pos)++))
4343 			return ERR_PTR(-EINVAL);
4344 
4345 		it = kzalloc(sizeof(*it), GFP_KERNEL);
4346 		if (!it)
4347 			return ERR_PTR(-ENOMEM);
4348 		of->priv = it;
4349 		css_task_iter_start(&cgrp->self, iter_flags, it);
4350 	} else if (!(*pos)++) {
4351 		css_task_iter_end(it);
4352 		css_task_iter_start(&cgrp->self, iter_flags, it);
4353 	}
4354 
4355 	return cgroup_procs_next(s, NULL, NULL);
4356 }
4357 
4358 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos)
4359 {
4360 	struct cgroup *cgrp = seq_css(s)->cgroup;
4361 
4362 	/*
4363 	 * All processes of a threaded subtree belong to the domain cgroup
4364 	 * of the subtree.  Only threads can be distributed across the
4365 	 * subtree.  Reject reads on cgroup.procs in the subtree proper.
4366 	 * They're always empty anyway.
4367 	 */
4368 	if (cgroup_is_threaded(cgrp))
4369 		return ERR_PTR(-EOPNOTSUPP);
4370 
4371 	return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS |
4372 					    CSS_TASK_ITER_THREADED);
4373 }
4374 
4375 static int cgroup_procs_show(struct seq_file *s, void *v)
4376 {
4377 	seq_printf(s, "%d\n", task_pid_vnr(v));
4378 	return 0;
4379 }
4380 
4381 static int cgroup_procs_write_permission(struct cgroup *src_cgrp,
4382 					 struct cgroup *dst_cgrp,
4383 					 struct super_block *sb)
4384 {
4385 	struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
4386 	struct cgroup *com_cgrp = src_cgrp;
4387 	struct inode *inode;
4388 	int ret;
4389 
4390 	lockdep_assert_held(&cgroup_mutex);
4391 
4392 	/* find the common ancestor */
4393 	while (!cgroup_is_descendant(dst_cgrp, com_cgrp))
4394 		com_cgrp = cgroup_parent(com_cgrp);
4395 
4396 	/* %current should be authorized to migrate to the common ancestor */
4397 	inode = kernfs_get_inode(sb, com_cgrp->procs_file.kn);
4398 	if (!inode)
4399 		return -ENOMEM;
4400 
4401 	ret = inode_permission(inode, MAY_WRITE);
4402 	iput(inode);
4403 	if (ret)
4404 		return ret;
4405 
4406 	/*
4407 	 * If namespaces are delegation boundaries, %current must be able
4408 	 * to see both source and destination cgroups from its namespace.
4409 	 */
4410 	if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) &&
4411 	    (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) ||
4412 	     !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp)))
4413 		return -ENOENT;
4414 
4415 	return 0;
4416 }
4417 
4418 static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
4419 				  char *buf, size_t nbytes, loff_t off)
4420 {
4421 	struct cgroup *src_cgrp, *dst_cgrp;
4422 	struct task_struct *task;
4423 	ssize_t ret;
4424 
4425 	dst_cgrp = cgroup_kn_lock_live(of->kn, false);
4426 	if (!dst_cgrp)
4427 		return -ENODEV;
4428 
4429 	task = cgroup_procs_write_start(buf, true);
4430 	ret = PTR_ERR_OR_ZERO(task);
4431 	if (ret)
4432 		goto out_unlock;
4433 
4434 	/* find the source cgroup */
4435 	spin_lock_irq(&css_set_lock);
4436 	src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
4437 	spin_unlock_irq(&css_set_lock);
4438 
4439 	ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp,
4440 					    of->file->f_path.dentry->d_sb);
4441 	if (ret)
4442 		goto out_finish;
4443 
4444 	ret = cgroup_attach_task(dst_cgrp, task, true);
4445 
4446 out_finish:
4447 	cgroup_procs_write_finish(task);
4448 out_unlock:
4449 	cgroup_kn_unlock(of->kn);
4450 
4451 	return ret ?: nbytes;
4452 }
4453 
4454 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos)
4455 {
4456 	return __cgroup_procs_start(s, pos, 0);
4457 }
4458 
4459 static ssize_t cgroup_threads_write(struct kernfs_open_file *of,
4460 				    char *buf, size_t nbytes, loff_t off)
4461 {
4462 	struct cgroup *src_cgrp, *dst_cgrp;
4463 	struct task_struct *task;
4464 	ssize_t ret;
4465 
4466 	buf = strstrip(buf);
4467 
4468 	dst_cgrp = cgroup_kn_lock_live(of->kn, false);
4469 	if (!dst_cgrp)
4470 		return -ENODEV;
4471 
4472 	task = cgroup_procs_write_start(buf, false);
4473 	ret = PTR_ERR_OR_ZERO(task);
4474 	if (ret)
4475 		goto out_unlock;
4476 
4477 	/* find the source cgroup */
4478 	spin_lock_irq(&css_set_lock);
4479 	src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
4480 	spin_unlock_irq(&css_set_lock);
4481 
4482 	/* thread migrations follow the cgroup.procs delegation rule */
4483 	ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp,
4484 					    of->file->f_path.dentry->d_sb);
4485 	if (ret)
4486 		goto out_finish;
4487 
4488 	/* and must be contained in the same domain */
4489 	ret = -EOPNOTSUPP;
4490 	if (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp)
4491 		goto out_finish;
4492 
4493 	ret = cgroup_attach_task(dst_cgrp, task, false);
4494 
4495 out_finish:
4496 	cgroup_procs_write_finish(task);
4497 out_unlock:
4498 	cgroup_kn_unlock(of->kn);
4499 
4500 	return ret ?: nbytes;
4501 }
4502 
4503 /* cgroup core interface files for the default hierarchy */
4504 static struct cftype cgroup_base_files[] = {
4505 	{
4506 		.name = "cgroup.type",
4507 		.flags = CFTYPE_NOT_ON_ROOT,
4508 		.seq_show = cgroup_type_show,
4509 		.write = cgroup_type_write,
4510 	},
4511 	{
4512 		.name = "cgroup.procs",
4513 		.flags = CFTYPE_NS_DELEGATABLE,
4514 		.file_offset = offsetof(struct cgroup, procs_file),
4515 		.release = cgroup_procs_release,
4516 		.seq_start = cgroup_procs_start,
4517 		.seq_next = cgroup_procs_next,
4518 		.seq_show = cgroup_procs_show,
4519 		.write = cgroup_procs_write,
4520 	},
4521 	{
4522 		.name = "cgroup.threads",
4523 		.flags = CFTYPE_NS_DELEGATABLE,
4524 		.release = cgroup_procs_release,
4525 		.seq_start = cgroup_threads_start,
4526 		.seq_next = cgroup_procs_next,
4527 		.seq_show = cgroup_procs_show,
4528 		.write = cgroup_threads_write,
4529 	},
4530 	{
4531 		.name = "cgroup.controllers",
4532 		.seq_show = cgroup_controllers_show,
4533 	},
4534 	{
4535 		.name = "cgroup.subtree_control",
4536 		.flags = CFTYPE_NS_DELEGATABLE,
4537 		.seq_show = cgroup_subtree_control_show,
4538 		.write = cgroup_subtree_control_write,
4539 	},
4540 	{
4541 		.name = "cgroup.events",
4542 		.flags = CFTYPE_NOT_ON_ROOT,
4543 		.file_offset = offsetof(struct cgroup, events_file),
4544 		.seq_show = cgroup_events_show,
4545 	},
4546 	{
4547 		.name = "cgroup.max.descendants",
4548 		.seq_show = cgroup_max_descendants_show,
4549 		.write = cgroup_max_descendants_write,
4550 	},
4551 	{
4552 		.name = "cgroup.max.depth",
4553 		.seq_show = cgroup_max_depth_show,
4554 		.write = cgroup_max_depth_write,
4555 	},
4556 	{
4557 		.name = "cgroup.stat",
4558 		.seq_show = cgroup_stat_show,
4559 	},
4560 	{
4561 		.name = "cpu.stat",
4562 		.flags = CFTYPE_NOT_ON_ROOT,
4563 		.seq_show = cpu_stat_show,
4564 	},
4565 #ifdef CONFIG_PSI
4566 	{
4567 		.name = "io.pressure",
4568 		.flags = CFTYPE_NOT_ON_ROOT,
4569 		.seq_show = cgroup_io_pressure_show,
4570 	},
4571 	{
4572 		.name = "memory.pressure",
4573 		.flags = CFTYPE_NOT_ON_ROOT,
4574 		.seq_show = cgroup_memory_pressure_show,
4575 	},
4576 	{
4577 		.name = "cpu.pressure",
4578 		.flags = CFTYPE_NOT_ON_ROOT,
4579 		.seq_show = cgroup_cpu_pressure_show,
4580 	},
4581 #endif
4582 	{ }	/* terminate */
4583 };
4584 
4585 /*
4586  * css destruction is four-stage process.
4587  *
4588  * 1. Destruction starts.  Killing of the percpu_ref is initiated.
4589  *    Implemented in kill_css().
4590  *
4591  * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
4592  *    and thus css_tryget_online() is guaranteed to fail, the css can be
4593  *    offlined by invoking offline_css().  After offlining, the base ref is
4594  *    put.  Implemented in css_killed_work_fn().
4595  *
4596  * 3. When the percpu_ref reaches zero, the only possible remaining
4597  *    accessors are inside RCU read sections.  css_release() schedules the
4598  *    RCU callback.
4599  *
4600  * 4. After the grace period, the css can be freed.  Implemented in
4601  *    css_free_work_fn().
4602  *
4603  * It is actually hairier because both step 2 and 4 require process context
4604  * and thus involve punting to css->destroy_work adding two additional
4605  * steps to the already complex sequence.
4606  */
4607 static void css_free_rwork_fn(struct work_struct *work)
4608 {
4609 	struct cgroup_subsys_state *css = container_of(to_rcu_work(work),
4610 				struct cgroup_subsys_state, destroy_rwork);
4611 	struct cgroup_subsys *ss = css->ss;
4612 	struct cgroup *cgrp = css->cgroup;
4613 
4614 	percpu_ref_exit(&css->refcnt);
4615 
4616 	if (ss) {
4617 		/* css free path */
4618 		struct cgroup_subsys_state *parent = css->parent;
4619 		int id = css->id;
4620 
4621 		ss->css_free(css);
4622 		cgroup_idr_remove(&ss->css_idr, id);
4623 		cgroup_put(cgrp);
4624 
4625 		if (parent)
4626 			css_put(parent);
4627 	} else {
4628 		/* cgroup free path */
4629 		atomic_dec(&cgrp->root->nr_cgrps);
4630 		cgroup1_pidlist_destroy_all(cgrp);
4631 		cancel_work_sync(&cgrp->release_agent_work);
4632 
4633 		if (cgroup_parent(cgrp)) {
4634 			/*
4635 			 * We get a ref to the parent, and put the ref when
4636 			 * this cgroup is being freed, so it's guaranteed
4637 			 * that the parent won't be destroyed before its
4638 			 * children.
4639 			 */
4640 			cgroup_put(cgroup_parent(cgrp));
4641 			kernfs_put(cgrp->kn);
4642 			psi_cgroup_free(cgrp);
4643 			if (cgroup_on_dfl(cgrp))
4644 				cgroup_rstat_exit(cgrp);
4645 			kfree(cgrp);
4646 		} else {
4647 			/*
4648 			 * This is root cgroup's refcnt reaching zero,
4649 			 * which indicates that the root should be
4650 			 * released.
4651 			 */
4652 			cgroup_destroy_root(cgrp->root);
4653 		}
4654 	}
4655 }
4656 
4657 static void css_release_work_fn(struct work_struct *work)
4658 {
4659 	struct cgroup_subsys_state *css =
4660 		container_of(work, struct cgroup_subsys_state, destroy_work);
4661 	struct cgroup_subsys *ss = css->ss;
4662 	struct cgroup *cgrp = css->cgroup;
4663 
4664 	mutex_lock(&cgroup_mutex);
4665 
4666 	css->flags |= CSS_RELEASED;
4667 	list_del_rcu(&css->sibling);
4668 
4669 	if (ss) {
4670 		/* css release path */
4671 		if (!list_empty(&css->rstat_css_node)) {
4672 			cgroup_rstat_flush(cgrp);
4673 			list_del_rcu(&css->rstat_css_node);
4674 		}
4675 
4676 		cgroup_idr_replace(&ss->css_idr, NULL, css->id);
4677 		if (ss->css_released)
4678 			ss->css_released(css);
4679 	} else {
4680 		struct cgroup *tcgrp;
4681 
4682 		/* cgroup release path */
4683 		TRACE_CGROUP_PATH(release, cgrp);
4684 
4685 		if (cgroup_on_dfl(cgrp))
4686 			cgroup_rstat_flush(cgrp);
4687 
4688 		for (tcgrp = cgroup_parent(cgrp); tcgrp;
4689 		     tcgrp = cgroup_parent(tcgrp))
4690 			tcgrp->nr_dying_descendants--;
4691 
4692 		cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4693 		cgrp->id = -1;
4694 
4695 		/*
4696 		 * There are two control paths which try to determine
4697 		 * cgroup from dentry without going through kernfs -
4698 		 * cgroupstats_build() and css_tryget_online_from_dir().
4699 		 * Those are supported by RCU protecting clearing of
4700 		 * cgrp->kn->priv backpointer.
4701 		 */
4702 		if (cgrp->kn)
4703 			RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
4704 					 NULL);
4705 
4706 		cgroup_bpf_put(cgrp);
4707 	}
4708 
4709 	mutex_unlock(&cgroup_mutex);
4710 
4711 	INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
4712 	queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
4713 }
4714 
4715 static void css_release(struct percpu_ref *ref)
4716 {
4717 	struct cgroup_subsys_state *css =
4718 		container_of(ref, struct cgroup_subsys_state, refcnt);
4719 
4720 	INIT_WORK(&css->destroy_work, css_release_work_fn);
4721 	queue_work(cgroup_destroy_wq, &css->destroy_work);
4722 }
4723 
4724 static void init_and_link_css(struct cgroup_subsys_state *css,
4725 			      struct cgroup_subsys *ss, struct cgroup *cgrp)
4726 {
4727 	lockdep_assert_held(&cgroup_mutex);
4728 
4729 	cgroup_get_live(cgrp);
4730 
4731 	memset(css, 0, sizeof(*css));
4732 	css->cgroup = cgrp;
4733 	css->ss = ss;
4734 	css->id = -1;
4735 	INIT_LIST_HEAD(&css->sibling);
4736 	INIT_LIST_HEAD(&css->children);
4737 	INIT_LIST_HEAD(&css->rstat_css_node);
4738 	css->serial_nr = css_serial_nr_next++;
4739 	atomic_set(&css->online_cnt, 0);
4740 
4741 	if (cgroup_parent(cgrp)) {
4742 		css->parent = cgroup_css(cgroup_parent(cgrp), ss);
4743 		css_get(css->parent);
4744 	}
4745 
4746 	if (cgroup_on_dfl(cgrp) && ss->css_rstat_flush)
4747 		list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list);
4748 
4749 	BUG_ON(cgroup_css(cgrp, ss));
4750 }
4751 
4752 /* invoke ->css_online() on a new CSS and mark it online if successful */
4753 static int online_css(struct cgroup_subsys_state *css)
4754 {
4755 	struct cgroup_subsys *ss = css->ss;
4756 	int ret = 0;
4757 
4758 	lockdep_assert_held(&cgroup_mutex);
4759 
4760 	if (ss->css_online)
4761 		ret = ss->css_online(css);
4762 	if (!ret) {
4763 		css->flags |= CSS_ONLINE;
4764 		rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
4765 
4766 		atomic_inc(&css->online_cnt);
4767 		if (css->parent)
4768 			atomic_inc(&css->parent->online_cnt);
4769 	}
4770 	return ret;
4771 }
4772 
4773 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
4774 static void offline_css(struct cgroup_subsys_state *css)
4775 {
4776 	struct cgroup_subsys *ss = css->ss;
4777 
4778 	lockdep_assert_held(&cgroup_mutex);
4779 
4780 	if (!(css->flags & CSS_ONLINE))
4781 		return;
4782 
4783 	if (ss->css_offline)
4784 		ss->css_offline(css);
4785 
4786 	css->flags &= ~CSS_ONLINE;
4787 	RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
4788 
4789 	wake_up_all(&css->cgroup->offline_waitq);
4790 }
4791 
4792 /**
4793  * css_create - create a cgroup_subsys_state
4794  * @cgrp: the cgroup new css will be associated with
4795  * @ss: the subsys of new css
4796  *
4797  * Create a new css associated with @cgrp - @ss pair.  On success, the new
4798  * css is online and installed in @cgrp.  This function doesn't create the
4799  * interface files.  Returns 0 on success, -errno on failure.
4800  */
4801 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
4802 					      struct cgroup_subsys *ss)
4803 {
4804 	struct cgroup *parent = cgroup_parent(cgrp);
4805 	struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
4806 	struct cgroup_subsys_state *css;
4807 	int err;
4808 
4809 	lockdep_assert_held(&cgroup_mutex);
4810 
4811 	css = ss->css_alloc(parent_css);
4812 	if (!css)
4813 		css = ERR_PTR(-ENOMEM);
4814 	if (IS_ERR(css))
4815 		return css;
4816 
4817 	init_and_link_css(css, ss, cgrp);
4818 
4819 	err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
4820 	if (err)
4821 		goto err_free_css;
4822 
4823 	err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
4824 	if (err < 0)
4825 		goto err_free_css;
4826 	css->id = err;
4827 
4828 	/* @css is ready to be brought online now, make it visible */
4829 	list_add_tail_rcu(&css->sibling, &parent_css->children);
4830 	cgroup_idr_replace(&ss->css_idr, css, css->id);
4831 
4832 	err = online_css(css);
4833 	if (err)
4834 		goto err_list_del;
4835 
4836 	if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
4837 	    cgroup_parent(parent)) {
4838 		pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4839 			current->comm, current->pid, ss->name);
4840 		if (!strcmp(ss->name, "memory"))
4841 			pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
4842 		ss->warned_broken_hierarchy = true;
4843 	}
4844 
4845 	return css;
4846 
4847 err_list_del:
4848 	list_del_rcu(&css->sibling);
4849 err_free_css:
4850 	list_del_rcu(&css->rstat_css_node);
4851 	INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
4852 	queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
4853 	return ERR_PTR(err);
4854 }
4855 
4856 /*
4857  * The returned cgroup is fully initialized including its control mask, but
4858  * it isn't associated with its kernfs_node and doesn't have the control
4859  * mask applied.
4860  */
4861 static struct cgroup *cgroup_create(struct cgroup *parent)
4862 {
4863 	struct cgroup_root *root = parent->root;
4864 	struct cgroup *cgrp, *tcgrp;
4865 	int level = parent->level + 1;
4866 	int ret;
4867 
4868 	/* allocate the cgroup and its ID, 0 is reserved for the root */
4869 	cgrp = kzalloc(struct_size(cgrp, ancestor_ids, (level + 1)),
4870 		       GFP_KERNEL);
4871 	if (!cgrp)
4872 		return ERR_PTR(-ENOMEM);
4873 
4874 	ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
4875 	if (ret)
4876 		goto out_free_cgrp;
4877 
4878 	if (cgroup_on_dfl(parent)) {
4879 		ret = cgroup_rstat_init(cgrp);
4880 		if (ret)
4881 			goto out_cancel_ref;
4882 	}
4883 
4884 	/*
4885 	 * Temporarily set the pointer to NULL, so idr_find() won't return
4886 	 * a half-baked cgroup.
4887 	 */
4888 	cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL);
4889 	if (cgrp->id < 0) {
4890 		ret = -ENOMEM;
4891 		goto out_stat_exit;
4892 	}
4893 
4894 	init_cgroup_housekeeping(cgrp);
4895 
4896 	cgrp->self.parent = &parent->self;
4897 	cgrp->root = root;
4898 	cgrp->level = level;
4899 
4900 	ret = psi_cgroup_alloc(cgrp);
4901 	if (ret)
4902 		goto out_idr_free;
4903 
4904 	ret = cgroup_bpf_inherit(cgrp);
4905 	if (ret)
4906 		goto out_psi_free;
4907 
4908 	for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) {
4909 		cgrp->ancestor_ids[tcgrp->level] = tcgrp->id;
4910 
4911 		if (tcgrp != cgrp)
4912 			tcgrp->nr_descendants++;
4913 	}
4914 
4915 	if (notify_on_release(parent))
4916 		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4917 
4918 	if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4919 		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
4920 
4921 	cgrp->self.serial_nr = css_serial_nr_next++;
4922 
4923 	/* allocation complete, commit to creation */
4924 	list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
4925 	atomic_inc(&root->nr_cgrps);
4926 	cgroup_get_live(parent);
4927 
4928 	/*
4929 	 * @cgrp is now fully operational.  If something fails after this
4930 	 * point, it'll be released via the normal destruction path.
4931 	 */
4932 	cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4933 
4934 	/*
4935 	 * On the default hierarchy, a child doesn't automatically inherit
4936 	 * subtree_control from the parent.  Each is configured manually.
4937 	 */
4938 	if (!cgroup_on_dfl(cgrp))
4939 		cgrp->subtree_control = cgroup_control(cgrp);
4940 
4941 	cgroup_propagate_control(cgrp);
4942 
4943 	return cgrp;
4944 
4945 out_psi_free:
4946 	psi_cgroup_free(cgrp);
4947 out_idr_free:
4948 	cgroup_idr_remove(&root->cgroup_idr, cgrp->id);
4949 out_stat_exit:
4950 	if (cgroup_on_dfl(parent))
4951 		cgroup_rstat_exit(cgrp);
4952 out_cancel_ref:
4953 	percpu_ref_exit(&cgrp->self.refcnt);
4954 out_free_cgrp:
4955 	kfree(cgrp);
4956 	return ERR_PTR(ret);
4957 }
4958 
4959 static bool cgroup_check_hierarchy_limits(struct cgroup *parent)
4960 {
4961 	struct cgroup *cgroup;
4962 	int ret = false;
4963 	int level = 1;
4964 
4965 	lockdep_assert_held(&cgroup_mutex);
4966 
4967 	for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) {
4968 		if (cgroup->nr_descendants >= cgroup->max_descendants)
4969 			goto fail;
4970 
4971 		if (level > cgroup->max_depth)
4972 			goto fail;
4973 
4974 		level++;
4975 	}
4976 
4977 	ret = true;
4978 fail:
4979 	return ret;
4980 }
4981 
4982 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode)
4983 {
4984 	struct cgroup *parent, *cgrp;
4985 	struct kernfs_node *kn;
4986 	int ret;
4987 
4988 	/* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
4989 	if (strchr(name, '\n'))
4990 		return -EINVAL;
4991 
4992 	parent = cgroup_kn_lock_live(parent_kn, false);
4993 	if (!parent)
4994 		return -ENODEV;
4995 
4996 	if (!cgroup_check_hierarchy_limits(parent)) {
4997 		ret = -EAGAIN;
4998 		goto out_unlock;
4999 	}
5000 
5001 	cgrp = cgroup_create(parent);
5002 	if (IS_ERR(cgrp)) {
5003 		ret = PTR_ERR(cgrp);
5004 		goto out_unlock;
5005 	}
5006 
5007 	/* create the directory */
5008 	kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
5009 	if (IS_ERR(kn)) {
5010 		ret = PTR_ERR(kn);
5011 		goto out_destroy;
5012 	}
5013 	cgrp->kn = kn;
5014 
5015 	/*
5016 	 * This extra ref will be put in cgroup_free_fn() and guarantees
5017 	 * that @cgrp->kn is always accessible.
5018 	 */
5019 	kernfs_get(kn);
5020 
5021 	ret = cgroup_kn_set_ugid(kn);
5022 	if (ret)
5023 		goto out_destroy;
5024 
5025 	ret = css_populate_dir(&cgrp->self);
5026 	if (ret)
5027 		goto out_destroy;
5028 
5029 	ret = cgroup_apply_control_enable(cgrp);
5030 	if (ret)
5031 		goto out_destroy;
5032 
5033 	TRACE_CGROUP_PATH(mkdir, cgrp);
5034 
5035 	/* let's create and online css's */
5036 	kernfs_activate(kn);
5037 
5038 	ret = 0;
5039 	goto out_unlock;
5040 
5041 out_destroy:
5042 	cgroup_destroy_locked(cgrp);
5043 out_unlock:
5044 	cgroup_kn_unlock(parent_kn);
5045 	return ret;
5046 }
5047 
5048 /*
5049  * This is called when the refcnt of a css is confirmed to be killed.
5050  * css_tryget_online() is now guaranteed to fail.  Tell the subsystem to
5051  * initate destruction and put the css ref from kill_css().
5052  */
5053 static void css_killed_work_fn(struct work_struct *work)
5054 {
5055 	struct cgroup_subsys_state *css =
5056 		container_of(work, struct cgroup_subsys_state, destroy_work);
5057 
5058 	mutex_lock(&cgroup_mutex);
5059 
5060 	do {
5061 		offline_css(css);
5062 		css_put(css);
5063 		/* @css can't go away while we're holding cgroup_mutex */
5064 		css = css->parent;
5065 	} while (css && atomic_dec_and_test(&css->online_cnt));
5066 
5067 	mutex_unlock(&cgroup_mutex);
5068 }
5069 
5070 /* css kill confirmation processing requires process context, bounce */
5071 static void css_killed_ref_fn(struct percpu_ref *ref)
5072 {
5073 	struct cgroup_subsys_state *css =
5074 		container_of(ref, struct cgroup_subsys_state, refcnt);
5075 
5076 	if (atomic_dec_and_test(&css->online_cnt)) {
5077 		INIT_WORK(&css->destroy_work, css_killed_work_fn);
5078 		queue_work(cgroup_destroy_wq, &css->destroy_work);
5079 	}
5080 }
5081 
5082 /**
5083  * kill_css - destroy a css
5084  * @css: css to destroy
5085  *
5086  * This function initiates destruction of @css by removing cgroup interface
5087  * files and putting its base reference.  ->css_offline() will be invoked
5088  * asynchronously once css_tryget_online() is guaranteed to fail and when
5089  * the reference count reaches zero, @css will be released.
5090  */
5091 static void kill_css(struct cgroup_subsys_state *css)
5092 {
5093 	lockdep_assert_held(&cgroup_mutex);
5094 
5095 	if (css->flags & CSS_DYING)
5096 		return;
5097 
5098 	css->flags |= CSS_DYING;
5099 
5100 	/*
5101 	 * This must happen before css is disassociated with its cgroup.
5102 	 * See seq_css() for details.
5103 	 */
5104 	css_clear_dir(css);
5105 
5106 	/*
5107 	 * Killing would put the base ref, but we need to keep it alive
5108 	 * until after ->css_offline().
5109 	 */
5110 	css_get(css);
5111 
5112 	/*
5113 	 * cgroup core guarantees that, by the time ->css_offline() is
5114 	 * invoked, no new css reference will be given out via
5115 	 * css_tryget_online().  We can't simply call percpu_ref_kill() and
5116 	 * proceed to offlining css's because percpu_ref_kill() doesn't
5117 	 * guarantee that the ref is seen as killed on all CPUs on return.
5118 	 *
5119 	 * Use percpu_ref_kill_and_confirm() to get notifications as each
5120 	 * css is confirmed to be seen as killed on all CPUs.
5121 	 */
5122 	percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
5123 }
5124 
5125 /**
5126  * cgroup_destroy_locked - the first stage of cgroup destruction
5127  * @cgrp: cgroup to be destroyed
5128  *
5129  * css's make use of percpu refcnts whose killing latency shouldn't be
5130  * exposed to userland and are RCU protected.  Also, cgroup core needs to
5131  * guarantee that css_tryget_online() won't succeed by the time
5132  * ->css_offline() is invoked.  To satisfy all the requirements,
5133  * destruction is implemented in the following two steps.
5134  *
5135  * s1. Verify @cgrp can be destroyed and mark it dying.  Remove all
5136  *     userland visible parts and start killing the percpu refcnts of
5137  *     css's.  Set up so that the next stage will be kicked off once all
5138  *     the percpu refcnts are confirmed to be killed.
5139  *
5140  * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5141  *     rest of destruction.  Once all cgroup references are gone, the
5142  *     cgroup is RCU-freed.
5143  *
5144  * This function implements s1.  After this step, @cgrp is gone as far as
5145  * the userland is concerned and a new cgroup with the same name may be
5146  * created.  As cgroup doesn't care about the names internally, this
5147  * doesn't cause any problem.
5148  */
5149 static int cgroup_destroy_locked(struct cgroup *cgrp)
5150 	__releases(&cgroup_mutex) __acquires(&cgroup_mutex)
5151 {
5152 	struct cgroup *tcgrp, *parent = cgroup_parent(cgrp);
5153 	struct cgroup_subsys_state *css;
5154 	struct cgrp_cset_link *link;
5155 	int ssid;
5156 
5157 	lockdep_assert_held(&cgroup_mutex);
5158 
5159 	/*
5160 	 * Only migration can raise populated from zero and we're already
5161 	 * holding cgroup_mutex.
5162 	 */
5163 	if (cgroup_is_populated(cgrp))
5164 		return -EBUSY;
5165 
5166 	/*
5167 	 * Make sure there's no live children.  We can't test emptiness of
5168 	 * ->self.children as dead children linger on it while being
5169 	 * drained; otherwise, "rmdir parent/child parent" may fail.
5170 	 */
5171 	if (css_has_online_children(&cgrp->self))
5172 		return -EBUSY;
5173 
5174 	/*
5175 	 * Mark @cgrp and the associated csets dead.  The former prevents
5176 	 * further task migration and child creation by disabling
5177 	 * cgroup_lock_live_group().  The latter makes the csets ignored by
5178 	 * the migration path.
5179 	 */
5180 	cgrp->self.flags &= ~CSS_ONLINE;
5181 
5182 	spin_lock_irq(&css_set_lock);
5183 	list_for_each_entry(link, &cgrp->cset_links, cset_link)
5184 		link->cset->dead = true;
5185 	spin_unlock_irq(&css_set_lock);
5186 
5187 	/* initiate massacre of all css's */
5188 	for_each_css(css, ssid, cgrp)
5189 		kill_css(css);
5190 
5191 	/* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */
5192 	css_clear_dir(&cgrp->self);
5193 	kernfs_remove(cgrp->kn);
5194 
5195 	if (parent && cgroup_is_threaded(cgrp))
5196 		parent->nr_threaded_children--;
5197 
5198 	for (tcgrp = cgroup_parent(cgrp); tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5199 		tcgrp->nr_descendants--;
5200 		tcgrp->nr_dying_descendants++;
5201 	}
5202 
5203 	cgroup1_check_for_release(parent);
5204 
5205 	/* put the base reference */
5206 	percpu_ref_kill(&cgrp->self.refcnt);
5207 
5208 	return 0;
5209 };
5210 
5211 int cgroup_rmdir(struct kernfs_node *kn)
5212 {
5213 	struct cgroup *cgrp;
5214 	int ret = 0;
5215 
5216 	cgrp = cgroup_kn_lock_live(kn, false);
5217 	if (!cgrp)
5218 		return 0;
5219 
5220 	ret = cgroup_destroy_locked(cgrp);
5221 	if (!ret)
5222 		TRACE_CGROUP_PATH(rmdir, cgrp);
5223 
5224 	cgroup_kn_unlock(kn);
5225 	return ret;
5226 }
5227 
5228 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5229 	.show_options		= cgroup_show_options,
5230 	.remount_fs		= cgroup_remount,
5231 	.mkdir			= cgroup_mkdir,
5232 	.rmdir			= cgroup_rmdir,
5233 	.show_path		= cgroup_show_path,
5234 };
5235 
5236 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
5237 {
5238 	struct cgroup_subsys_state *css;
5239 
5240 	pr_debug("Initializing cgroup subsys %s\n", ss->name);
5241 
5242 	mutex_lock(&cgroup_mutex);
5243 
5244 	idr_init(&ss->css_idr);
5245 	INIT_LIST_HEAD(&ss->cfts);
5246 
5247 	/* Create the root cgroup state for this subsystem */
5248 	ss->root = &cgrp_dfl_root;
5249 	css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
5250 	/* We don't handle early failures gracefully */
5251 	BUG_ON(IS_ERR(css));
5252 	init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
5253 
5254 	/*
5255 	 * Root csses are never destroyed and we can't initialize
5256 	 * percpu_ref during early init.  Disable refcnting.
5257 	 */
5258 	css->flags |= CSS_NO_REF;
5259 
5260 	if (early) {
5261 		/* allocation can't be done safely during early init */
5262 		css->id = 1;
5263 	} else {
5264 		css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5265 		BUG_ON(css->id < 0);
5266 	}
5267 
5268 	/* Update the init_css_set to contain a subsys
5269 	 * pointer to this state - since the subsystem is
5270 	 * newly registered, all tasks and hence the
5271 	 * init_css_set is in the subsystem's root cgroup. */
5272 	init_css_set.subsys[ss->id] = css;
5273 
5274 	have_fork_callback |= (bool)ss->fork << ss->id;
5275 	have_exit_callback |= (bool)ss->exit << ss->id;
5276 	have_free_callback |= (bool)ss->free << ss->id;
5277 	have_canfork_callback |= (bool)ss->can_fork << ss->id;
5278 
5279 	/* At system boot, before all subsystems have been
5280 	 * registered, no tasks have been forked, so we don't
5281 	 * need to invoke fork callbacks here. */
5282 	BUG_ON(!list_empty(&init_task.tasks));
5283 
5284 	BUG_ON(online_css(css));
5285 
5286 	mutex_unlock(&cgroup_mutex);
5287 }
5288 
5289 /**
5290  * cgroup_init_early - cgroup initialization at system boot
5291  *
5292  * Initialize cgroups at system boot, and initialize any
5293  * subsystems that request early init.
5294  */
5295 int __init cgroup_init_early(void)
5296 {
5297 	static struct cgroup_sb_opts __initdata opts;
5298 	struct cgroup_subsys *ss;
5299 	int i;
5300 
5301 	init_cgroup_root(&cgrp_dfl_root, &opts);
5302 	cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5303 
5304 	RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
5305 
5306 	for_each_subsys(ss, i) {
5307 		WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
5308 		     "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
5309 		     i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
5310 		     ss->id, ss->name);
5311 		WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5312 		     "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5313 
5314 		ss->id = i;
5315 		ss->name = cgroup_subsys_name[i];
5316 		if (!ss->legacy_name)
5317 			ss->legacy_name = cgroup_subsys_name[i];
5318 
5319 		if (ss->early_init)
5320 			cgroup_init_subsys(ss, true);
5321 	}
5322 	return 0;
5323 }
5324 
5325 static u16 cgroup_disable_mask __initdata;
5326 
5327 /**
5328  * cgroup_init - cgroup initialization
5329  *
5330  * Register cgroup filesystem and /proc file, and initialize
5331  * any subsystems that didn't request early init.
5332  */
5333 int __init cgroup_init(void)
5334 {
5335 	struct cgroup_subsys *ss;
5336 	int ssid;
5337 
5338 	BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
5339 	BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem));
5340 	BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
5341 	BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files));
5342 
5343 	cgroup_rstat_boot();
5344 
5345 	/*
5346 	 * The latency of the synchronize_sched() is too high for cgroups,
5347 	 * avoid it at the cost of forcing all readers into the slow path.
5348 	 */
5349 	rcu_sync_enter_start(&cgroup_threadgroup_rwsem.rss);
5350 
5351 	get_user_ns(init_cgroup_ns.user_ns);
5352 
5353 	mutex_lock(&cgroup_mutex);
5354 
5355 	/*
5356 	 * Add init_css_set to the hash table so that dfl_root can link to
5357 	 * it during init.
5358 	 */
5359 	hash_add(css_set_table, &init_css_set.hlist,
5360 		 css_set_hash(init_css_set.subsys));
5361 
5362 	BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0, 0));
5363 
5364 	mutex_unlock(&cgroup_mutex);
5365 
5366 	for_each_subsys(ss, ssid) {
5367 		if (ss->early_init) {
5368 			struct cgroup_subsys_state *css =
5369 				init_css_set.subsys[ss->id];
5370 
5371 			css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5372 						   GFP_KERNEL);
5373 			BUG_ON(css->id < 0);
5374 		} else {
5375 			cgroup_init_subsys(ss, false);
5376 		}
5377 
5378 		list_add_tail(&init_css_set.e_cset_node[ssid],
5379 			      &cgrp_dfl_root.cgrp.e_csets[ssid]);
5380 
5381 		/*
5382 		 * Setting dfl_root subsys_mask needs to consider the
5383 		 * disabled flag and cftype registration needs kmalloc,
5384 		 * both of which aren't available during early_init.
5385 		 */
5386 		if (cgroup_disable_mask & (1 << ssid)) {
5387 			static_branch_disable(cgroup_subsys_enabled_key[ssid]);
5388 			printk(KERN_INFO "Disabling %s control group subsystem\n",
5389 			       ss->name);
5390 			continue;
5391 		}
5392 
5393 		if (cgroup1_ssid_disabled(ssid))
5394 			printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n",
5395 			       ss->name);
5396 
5397 		cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5398 
5399 		/* implicit controllers must be threaded too */
5400 		WARN_ON(ss->implicit_on_dfl && !ss->threaded);
5401 
5402 		if (ss->implicit_on_dfl)
5403 			cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
5404 		else if (!ss->dfl_cftypes)
5405 			cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
5406 
5407 		if (ss->threaded)
5408 			cgrp_dfl_threaded_ss_mask |= 1 << ss->id;
5409 
5410 		if (ss->dfl_cftypes == ss->legacy_cftypes) {
5411 			WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5412 		} else {
5413 			WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5414 			WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
5415 		}
5416 
5417 		if (ss->bind)
5418 			ss->bind(init_css_set.subsys[ssid]);
5419 
5420 		mutex_lock(&cgroup_mutex);
5421 		css_populate_dir(init_css_set.subsys[ssid]);
5422 		mutex_unlock(&cgroup_mutex);
5423 	}
5424 
5425 	/* init_css_set.subsys[] has been updated, re-hash */
5426 	hash_del(&init_css_set.hlist);
5427 	hash_add(css_set_table, &init_css_set.hlist,
5428 		 css_set_hash(init_css_set.subsys));
5429 
5430 	WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
5431 	WARN_ON(register_filesystem(&cgroup_fs_type));
5432 	WARN_ON(register_filesystem(&cgroup2_fs_type));
5433 	WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show));
5434 
5435 	return 0;
5436 }
5437 
5438 static int __init cgroup_wq_init(void)
5439 {
5440 	/*
5441 	 * There isn't much point in executing destruction path in
5442 	 * parallel.  Good chunk is serialized with cgroup_mutex anyway.
5443 	 * Use 1 for @max_active.
5444 	 *
5445 	 * We would prefer to do this in cgroup_init() above, but that
5446 	 * is called before init_workqueues(): so leave this until after.
5447 	 */
5448 	cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
5449 	BUG_ON(!cgroup_destroy_wq);
5450 	return 0;
5451 }
5452 core_initcall(cgroup_wq_init);
5453 
5454 void cgroup_path_from_kernfs_id(const union kernfs_node_id *id,
5455 					char *buf, size_t buflen)
5456 {
5457 	struct kernfs_node *kn;
5458 
5459 	kn = kernfs_get_node_by_id(cgrp_dfl_root.kf_root, id);
5460 	if (!kn)
5461 		return;
5462 	kernfs_path(kn, buf, buflen);
5463 	kernfs_put(kn);
5464 }
5465 
5466 /*
5467  * proc_cgroup_show()
5468  *  - Print task's cgroup paths into seq_file, one line for each hierarchy
5469  *  - Used for /proc/<pid>/cgroup.
5470  */
5471 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5472 		     struct pid *pid, struct task_struct *tsk)
5473 {
5474 	char *buf;
5475 	int retval;
5476 	struct cgroup_root *root;
5477 
5478 	retval = -ENOMEM;
5479 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
5480 	if (!buf)
5481 		goto out;
5482 
5483 	mutex_lock(&cgroup_mutex);
5484 	spin_lock_irq(&css_set_lock);
5485 
5486 	for_each_root(root) {
5487 		struct cgroup_subsys *ss;
5488 		struct cgroup *cgrp;
5489 		int ssid, count = 0;
5490 
5491 		if (root == &cgrp_dfl_root && !cgrp_dfl_visible)
5492 			continue;
5493 
5494 		seq_printf(m, "%d:", root->hierarchy_id);
5495 		if (root != &cgrp_dfl_root)
5496 			for_each_subsys(ss, ssid)
5497 				if (root->subsys_mask & (1 << ssid))
5498 					seq_printf(m, "%s%s", count++ ? "," : "",
5499 						   ss->legacy_name);
5500 		if (strlen(root->name))
5501 			seq_printf(m, "%sname=%s", count ? "," : "",
5502 				   root->name);
5503 		seq_putc(m, ':');
5504 
5505 		cgrp = task_cgroup_from_root(tsk, root);
5506 
5507 		/*
5508 		 * On traditional hierarchies, all zombie tasks show up as
5509 		 * belonging to the root cgroup.  On the default hierarchy,
5510 		 * while a zombie doesn't show up in "cgroup.procs" and
5511 		 * thus can't be migrated, its /proc/PID/cgroup keeps
5512 		 * reporting the cgroup it belonged to before exiting.  If
5513 		 * the cgroup is removed before the zombie is reaped,
5514 		 * " (deleted)" is appended to the cgroup path.
5515 		 */
5516 		if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
5517 			retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
5518 						current->nsproxy->cgroup_ns);
5519 			if (retval >= PATH_MAX)
5520 				retval = -ENAMETOOLONG;
5521 			if (retval < 0)
5522 				goto out_unlock;
5523 
5524 			seq_puts(m, buf);
5525 		} else {
5526 			seq_puts(m, "/");
5527 		}
5528 
5529 		if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
5530 			seq_puts(m, " (deleted)\n");
5531 		else
5532 			seq_putc(m, '\n');
5533 	}
5534 
5535 	retval = 0;
5536 out_unlock:
5537 	spin_unlock_irq(&css_set_lock);
5538 	mutex_unlock(&cgroup_mutex);
5539 	kfree(buf);
5540 out:
5541 	return retval;
5542 }
5543 
5544 /**
5545  * cgroup_fork - initialize cgroup related fields during copy_process()
5546  * @child: pointer to task_struct of forking parent process.
5547  *
5548  * A task is associated with the init_css_set until cgroup_post_fork()
5549  * attaches it to the parent's css_set.  Empty cg_list indicates that
5550  * @child isn't holding reference to its css_set.
5551  */
5552 void cgroup_fork(struct task_struct *child)
5553 {
5554 	RCU_INIT_POINTER(child->cgroups, &init_css_set);
5555 	INIT_LIST_HEAD(&child->cg_list);
5556 }
5557 
5558 /**
5559  * cgroup_can_fork - called on a new task before the process is exposed
5560  * @child: the task in question.
5561  *
5562  * This calls the subsystem can_fork() callbacks. If the can_fork() callback
5563  * returns an error, the fork aborts with that error code. This allows for
5564  * a cgroup subsystem to conditionally allow or deny new forks.
5565  */
5566 int cgroup_can_fork(struct task_struct *child)
5567 {
5568 	struct cgroup_subsys *ss;
5569 	int i, j, ret;
5570 
5571 	do_each_subsys_mask(ss, i, have_canfork_callback) {
5572 		ret = ss->can_fork(child);
5573 		if (ret)
5574 			goto out_revert;
5575 	} while_each_subsys_mask();
5576 
5577 	return 0;
5578 
5579 out_revert:
5580 	for_each_subsys(ss, j) {
5581 		if (j >= i)
5582 			break;
5583 		if (ss->cancel_fork)
5584 			ss->cancel_fork(child);
5585 	}
5586 
5587 	return ret;
5588 }
5589 
5590 /**
5591  * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
5592  * @child: the task in question
5593  *
5594  * This calls the cancel_fork() callbacks if a fork failed *after*
5595  * cgroup_can_fork() succeded.
5596  */
5597 void cgroup_cancel_fork(struct task_struct *child)
5598 {
5599 	struct cgroup_subsys *ss;
5600 	int i;
5601 
5602 	for_each_subsys(ss, i)
5603 		if (ss->cancel_fork)
5604 			ss->cancel_fork(child);
5605 }
5606 
5607 /**
5608  * cgroup_post_fork - called on a new task after adding it to the task list
5609  * @child: the task in question
5610  *
5611  * Adds the task to the list running through its css_set if necessary and
5612  * call the subsystem fork() callbacks.  Has to be after the task is
5613  * visible on the task list in case we race with the first call to
5614  * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5615  * list.
5616  */
5617 void cgroup_post_fork(struct task_struct *child)
5618 {
5619 	struct cgroup_subsys *ss;
5620 	int i;
5621 
5622 	/*
5623 	 * This may race against cgroup_enable_task_cg_lists().  As that
5624 	 * function sets use_task_css_set_links before grabbing
5625 	 * tasklist_lock and we just went through tasklist_lock to add
5626 	 * @child, it's guaranteed that either we see the set
5627 	 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5628 	 * @child during its iteration.
5629 	 *
5630 	 * If we won the race, @child is associated with %current's
5631 	 * css_set.  Grabbing css_set_lock guarantees both that the
5632 	 * association is stable, and, on completion of the parent's
5633 	 * migration, @child is visible in the source of migration or
5634 	 * already in the destination cgroup.  This guarantee is necessary
5635 	 * when implementing operations which need to migrate all tasks of
5636 	 * a cgroup to another.
5637 	 *
5638 	 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
5639 	 * will remain in init_css_set.  This is safe because all tasks are
5640 	 * in the init_css_set before cg_links is enabled and there's no
5641 	 * operation which transfers all tasks out of init_css_set.
5642 	 */
5643 	if (use_task_css_set_links) {
5644 		struct css_set *cset;
5645 
5646 		spin_lock_irq(&css_set_lock);
5647 		cset = task_css_set(current);
5648 		if (list_empty(&child->cg_list)) {
5649 			get_css_set(cset);
5650 			cset->nr_tasks++;
5651 			css_set_move_task(child, NULL, cset, false);
5652 		}
5653 		spin_unlock_irq(&css_set_lock);
5654 	}
5655 
5656 	/*
5657 	 * Call ss->fork().  This must happen after @child is linked on
5658 	 * css_set; otherwise, @child might change state between ->fork()
5659 	 * and addition to css_set.
5660 	 */
5661 	do_each_subsys_mask(ss, i, have_fork_callback) {
5662 		ss->fork(child);
5663 	} while_each_subsys_mask();
5664 }
5665 
5666 /**
5667  * cgroup_exit - detach cgroup from exiting task
5668  * @tsk: pointer to task_struct of exiting process
5669  *
5670  * Description: Detach cgroup from @tsk and release it.
5671  *
5672  * Note that cgroups marked notify_on_release force every task in
5673  * them to take the global cgroup_mutex mutex when exiting.
5674  * This could impact scaling on very large systems.  Be reluctant to
5675  * use notify_on_release cgroups where very high task exit scaling
5676  * is required on large systems.
5677  *
5678  * We set the exiting tasks cgroup to the root cgroup (top_cgroup).  We
5679  * call cgroup_exit() while the task is still competent to handle
5680  * notify_on_release(), then leave the task attached to the root cgroup in
5681  * each hierarchy for the remainder of its exit.  No need to bother with
5682  * init_css_set refcnting.  init_css_set never goes away and we can't race
5683  * with migration path - PF_EXITING is visible to migration path.
5684  */
5685 void cgroup_exit(struct task_struct *tsk)
5686 {
5687 	struct cgroup_subsys *ss;
5688 	struct css_set *cset;
5689 	int i;
5690 
5691 	/*
5692 	 * Unlink from @tsk from its css_set.  As migration path can't race
5693 	 * with us, we can check css_set and cg_list without synchronization.
5694 	 */
5695 	cset = task_css_set(tsk);
5696 
5697 	if (!list_empty(&tsk->cg_list)) {
5698 		spin_lock_irq(&css_set_lock);
5699 		css_set_move_task(tsk, cset, NULL, false);
5700 		cset->nr_tasks--;
5701 		spin_unlock_irq(&css_set_lock);
5702 	} else {
5703 		get_css_set(cset);
5704 	}
5705 
5706 	/* see cgroup_post_fork() for details */
5707 	do_each_subsys_mask(ss, i, have_exit_callback) {
5708 		ss->exit(tsk);
5709 	} while_each_subsys_mask();
5710 }
5711 
5712 void cgroup_free(struct task_struct *task)
5713 {
5714 	struct css_set *cset = task_css_set(task);
5715 	struct cgroup_subsys *ss;
5716 	int ssid;
5717 
5718 	do_each_subsys_mask(ss, ssid, have_free_callback) {
5719 		ss->free(task);
5720 	} while_each_subsys_mask();
5721 
5722 	put_css_set(cset);
5723 }
5724 
5725 static int __init cgroup_disable(char *str)
5726 {
5727 	struct cgroup_subsys *ss;
5728 	char *token;
5729 	int i;
5730 
5731 	while ((token = strsep(&str, ",")) != NULL) {
5732 		if (!*token)
5733 			continue;
5734 
5735 		for_each_subsys(ss, i) {
5736 			if (strcmp(token, ss->name) &&
5737 			    strcmp(token, ss->legacy_name))
5738 				continue;
5739 			cgroup_disable_mask |= 1 << i;
5740 		}
5741 	}
5742 	return 1;
5743 }
5744 __setup("cgroup_disable=", cgroup_disable);
5745 
5746 /**
5747  * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
5748  * @dentry: directory dentry of interest
5749  * @ss: subsystem of interest
5750  *
5751  * If @dentry is a directory for a cgroup which has @ss enabled on it, try
5752  * to get the corresponding css and return it.  If such css doesn't exist
5753  * or can't be pinned, an ERR_PTR value is returned.
5754  */
5755 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
5756 						       struct cgroup_subsys *ss)
5757 {
5758 	struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
5759 	struct file_system_type *s_type = dentry->d_sb->s_type;
5760 	struct cgroup_subsys_state *css = NULL;
5761 	struct cgroup *cgrp;
5762 
5763 	/* is @dentry a cgroup dir? */
5764 	if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
5765 	    !kn || kernfs_type(kn) != KERNFS_DIR)
5766 		return ERR_PTR(-EBADF);
5767 
5768 	rcu_read_lock();
5769 
5770 	/*
5771 	 * This path doesn't originate from kernfs and @kn could already
5772 	 * have been or be removed at any point.  @kn->priv is RCU
5773 	 * protected for this access.  See css_release_work_fn() for details.
5774 	 */
5775 	cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
5776 	if (cgrp)
5777 		css = cgroup_css(cgrp, ss);
5778 
5779 	if (!css || !css_tryget_online(css))
5780 		css = ERR_PTR(-ENOENT);
5781 
5782 	rcu_read_unlock();
5783 	return css;
5784 }
5785 
5786 /**
5787  * css_from_id - lookup css by id
5788  * @id: the cgroup id
5789  * @ss: cgroup subsys to be looked into
5790  *
5791  * Returns the css if there's valid one with @id, otherwise returns NULL.
5792  * Should be called under rcu_read_lock().
5793  */
5794 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
5795 {
5796 	WARN_ON_ONCE(!rcu_read_lock_held());
5797 	return idr_find(&ss->css_idr, id);
5798 }
5799 
5800 /**
5801  * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
5802  * @path: path on the default hierarchy
5803  *
5804  * Find the cgroup at @path on the default hierarchy, increment its
5805  * reference count and return it.  Returns pointer to the found cgroup on
5806  * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR)
5807  * if @path points to a non-directory.
5808  */
5809 struct cgroup *cgroup_get_from_path(const char *path)
5810 {
5811 	struct kernfs_node *kn;
5812 	struct cgroup *cgrp;
5813 
5814 	mutex_lock(&cgroup_mutex);
5815 
5816 	kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path);
5817 	if (kn) {
5818 		if (kernfs_type(kn) == KERNFS_DIR) {
5819 			cgrp = kn->priv;
5820 			cgroup_get_live(cgrp);
5821 		} else {
5822 			cgrp = ERR_PTR(-ENOTDIR);
5823 		}
5824 		kernfs_put(kn);
5825 	} else {
5826 		cgrp = ERR_PTR(-ENOENT);
5827 	}
5828 
5829 	mutex_unlock(&cgroup_mutex);
5830 	return cgrp;
5831 }
5832 EXPORT_SYMBOL_GPL(cgroup_get_from_path);
5833 
5834 /**
5835  * cgroup_get_from_fd - get a cgroup pointer from a fd
5836  * @fd: fd obtained by open(cgroup2_dir)
5837  *
5838  * Find the cgroup from a fd which should be obtained
5839  * by opening a cgroup directory.  Returns a pointer to the
5840  * cgroup on success. ERR_PTR is returned if the cgroup
5841  * cannot be found.
5842  */
5843 struct cgroup *cgroup_get_from_fd(int fd)
5844 {
5845 	struct cgroup_subsys_state *css;
5846 	struct cgroup *cgrp;
5847 	struct file *f;
5848 
5849 	f = fget_raw(fd);
5850 	if (!f)
5851 		return ERR_PTR(-EBADF);
5852 
5853 	css = css_tryget_online_from_dir(f->f_path.dentry, NULL);
5854 	fput(f);
5855 	if (IS_ERR(css))
5856 		return ERR_CAST(css);
5857 
5858 	cgrp = css->cgroup;
5859 	if (!cgroup_on_dfl(cgrp)) {
5860 		cgroup_put(cgrp);
5861 		return ERR_PTR(-EBADF);
5862 	}
5863 
5864 	return cgrp;
5865 }
5866 EXPORT_SYMBOL_GPL(cgroup_get_from_fd);
5867 
5868 /*
5869  * sock->sk_cgrp_data handling.  For more info, see sock_cgroup_data
5870  * definition in cgroup-defs.h.
5871  */
5872 #ifdef CONFIG_SOCK_CGROUP_DATA
5873 
5874 #if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID)
5875 
5876 DEFINE_SPINLOCK(cgroup_sk_update_lock);
5877 static bool cgroup_sk_alloc_disabled __read_mostly;
5878 
5879 void cgroup_sk_alloc_disable(void)
5880 {
5881 	if (cgroup_sk_alloc_disabled)
5882 		return;
5883 	pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n");
5884 	cgroup_sk_alloc_disabled = true;
5885 }
5886 
5887 #else
5888 
5889 #define cgroup_sk_alloc_disabled	false
5890 
5891 #endif
5892 
5893 void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
5894 {
5895 	if (cgroup_sk_alloc_disabled)
5896 		return;
5897 
5898 	/* Socket clone path */
5899 	if (skcd->val) {
5900 		/*
5901 		 * We might be cloning a socket which is left in an empty
5902 		 * cgroup and the cgroup might have already been rmdir'd.
5903 		 * Don't use cgroup_get_live().
5904 		 */
5905 		cgroup_get(sock_cgroup_ptr(skcd));
5906 		return;
5907 	}
5908 
5909 	rcu_read_lock();
5910 
5911 	while (true) {
5912 		struct css_set *cset;
5913 
5914 		cset = task_css_set(current);
5915 		if (likely(cgroup_tryget(cset->dfl_cgrp))) {
5916 			skcd->val = (unsigned long)cset->dfl_cgrp;
5917 			break;
5918 		}
5919 		cpu_relax();
5920 	}
5921 
5922 	rcu_read_unlock();
5923 }
5924 
5925 void cgroup_sk_free(struct sock_cgroup_data *skcd)
5926 {
5927 	cgroup_put(sock_cgroup_ptr(skcd));
5928 }
5929 
5930 #endif	/* CONFIG_SOCK_CGROUP_DATA */
5931 
5932 #ifdef CONFIG_CGROUP_BPF
5933 int cgroup_bpf_attach(struct cgroup *cgrp, struct bpf_prog *prog,
5934 		      enum bpf_attach_type type, u32 flags)
5935 {
5936 	int ret;
5937 
5938 	mutex_lock(&cgroup_mutex);
5939 	ret = __cgroup_bpf_attach(cgrp, prog, type, flags);
5940 	mutex_unlock(&cgroup_mutex);
5941 	return ret;
5942 }
5943 int cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog,
5944 		      enum bpf_attach_type type, u32 flags)
5945 {
5946 	int ret;
5947 
5948 	mutex_lock(&cgroup_mutex);
5949 	ret = __cgroup_bpf_detach(cgrp, prog, type, flags);
5950 	mutex_unlock(&cgroup_mutex);
5951 	return ret;
5952 }
5953 int cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr,
5954 		     union bpf_attr __user *uattr)
5955 {
5956 	int ret;
5957 
5958 	mutex_lock(&cgroup_mutex);
5959 	ret = __cgroup_bpf_query(cgrp, attr, uattr);
5960 	mutex_unlock(&cgroup_mutex);
5961 	return ret;
5962 }
5963 #endif /* CONFIG_CGROUP_BPF */
5964 
5965 #ifdef CONFIG_SYSFS
5966 static ssize_t show_delegatable_files(struct cftype *files, char *buf,
5967 				      ssize_t size, const char *prefix)
5968 {
5969 	struct cftype *cft;
5970 	ssize_t ret = 0;
5971 
5972 	for (cft = files; cft && cft->name[0] != '\0'; cft++) {
5973 		if (!(cft->flags & CFTYPE_NS_DELEGATABLE))
5974 			continue;
5975 
5976 		if (prefix)
5977 			ret += snprintf(buf + ret, size - ret, "%s.", prefix);
5978 
5979 		ret += snprintf(buf + ret, size - ret, "%s\n", cft->name);
5980 
5981 		if (unlikely(ret >= size)) {
5982 			WARN_ON(1);
5983 			break;
5984 		}
5985 	}
5986 
5987 	return ret;
5988 }
5989 
5990 static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr,
5991 			      char *buf)
5992 {
5993 	struct cgroup_subsys *ss;
5994 	int ssid;
5995 	ssize_t ret = 0;
5996 
5997 	ret = show_delegatable_files(cgroup_base_files, buf, PAGE_SIZE - ret,
5998 				     NULL);
5999 
6000 	for_each_subsys(ss, ssid)
6001 		ret += show_delegatable_files(ss->dfl_cftypes, buf + ret,
6002 					      PAGE_SIZE - ret,
6003 					      cgroup_subsys_name[ssid]);
6004 
6005 	return ret;
6006 }
6007 static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate);
6008 
6009 static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr,
6010 			     char *buf)
6011 {
6012 	return snprintf(buf, PAGE_SIZE, "nsdelegate\n");
6013 }
6014 static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features);
6015 
6016 static struct attribute *cgroup_sysfs_attrs[] = {
6017 	&cgroup_delegate_attr.attr,
6018 	&cgroup_features_attr.attr,
6019 	NULL,
6020 };
6021 
6022 static const struct attribute_group cgroup_sysfs_attr_group = {
6023 	.attrs = cgroup_sysfs_attrs,
6024 	.name = "cgroup",
6025 };
6026 
6027 static int __init cgroup_sysfs_init(void)
6028 {
6029 	return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group);
6030 }
6031 subsys_initcall(cgroup_sysfs_init);
6032 #endif /* CONFIG_SYSFS */
6033