xref: /openbmc/linux/kernel/cgroup/cgroup.c (revision 55b37d9c)
1 /*
2  *  Generic process-grouping system.
3  *
4  *  Based originally on the cpuset system, extracted by Paul Menage
5  *  Copyright (C) 2006 Google, Inc
6  *
7  *  Notifications support
8  *  Copyright (C) 2009 Nokia Corporation
9  *  Author: Kirill A. Shutemov
10  *
11  *  Copyright notices from the original cpuset code:
12  *  --------------------------------------------------
13  *  Copyright (C) 2003 BULL SA.
14  *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
15  *
16  *  Portions derived from Patrick Mochel's sysfs code.
17  *  sysfs is Copyright (c) 2001-3 Patrick Mochel
18  *
19  *  2003-10-10 Written by Simon Derr.
20  *  2003-10-22 Updates by Stephen Hemminger.
21  *  2004 May-July Rework by Paul Jackson.
22  *  ---------------------------------------------------
23  *
24  *  This file is subject to the terms and conditions of the GNU General Public
25  *  License.  See the file COPYING in the main directory of the Linux
26  *  distribution for more details.
27  */
28 
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 
31 #include "cgroup-internal.h"
32 
33 #include <linux/bpf-cgroup.h>
34 #include <linux/cred.h>
35 #include <linux/errno.h>
36 #include <linux/init_task.h>
37 #include <linux/kernel.h>
38 #include <linux/magic.h>
39 #include <linux/mutex.h>
40 #include <linux/mount.h>
41 #include <linux/pagemap.h>
42 #include <linux/proc_fs.h>
43 #include <linux/rcupdate.h>
44 #include <linux/sched.h>
45 #include <linux/sched/task.h>
46 #include <linux/slab.h>
47 #include <linux/spinlock.h>
48 #include <linux/percpu-rwsem.h>
49 #include <linux/string.h>
50 #include <linux/hashtable.h>
51 #include <linux/idr.h>
52 #include <linux/kthread.h>
53 #include <linux/atomic.h>
54 #include <linux/cpuset.h>
55 #include <linux/proc_ns.h>
56 #include <linux/nsproxy.h>
57 #include <linux/file.h>
58 #include <linux/fs_parser.h>
59 #include <linux/sched/cputime.h>
60 #include <linux/psi.h>
61 #include <net/sock.h>
62 
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/cgroup.h>
65 
66 #define CGROUP_FILE_NAME_MAX		(MAX_CGROUP_TYPE_NAMELEN +	\
67 					 MAX_CFTYPE_NAME + 2)
68 /* let's not notify more than 100 times per second */
69 #define CGROUP_FILE_NOTIFY_MIN_INTV	DIV_ROUND_UP(HZ, 100)
70 
71 /*
72  * To avoid confusing the compiler (and generating warnings) with code
73  * that attempts to access what would be a 0-element array (i.e. sized
74  * to a potentially empty array when CGROUP_SUBSYS_COUNT == 0), this
75  * constant expression can be added.
76  */
77 #define CGROUP_HAS_SUBSYS_CONFIG	(CGROUP_SUBSYS_COUNT > 0)
78 
79 /*
80  * cgroup_mutex is the master lock.  Any modification to cgroup or its
81  * hierarchy must be performed while holding it.
82  *
83  * css_set_lock protects task->cgroups pointer, the list of css_set
84  * objects, and the chain of tasks off each css_set.
85  *
86  * These locks are exported if CONFIG_PROVE_RCU so that accessors in
87  * cgroup.h can use them for lockdep annotations.
88  */
89 DEFINE_MUTEX(cgroup_mutex);
90 DEFINE_SPINLOCK(css_set_lock);
91 
92 #ifdef CONFIG_PROVE_RCU
93 EXPORT_SYMBOL_GPL(cgroup_mutex);
94 EXPORT_SYMBOL_GPL(css_set_lock);
95 #endif
96 
97 DEFINE_SPINLOCK(trace_cgroup_path_lock);
98 char trace_cgroup_path[TRACE_CGROUP_PATH_LEN];
99 static bool cgroup_debug __read_mostly;
100 
101 /*
102  * Protects cgroup_idr and css_idr so that IDs can be released without
103  * grabbing cgroup_mutex.
104  */
105 static DEFINE_SPINLOCK(cgroup_idr_lock);
106 
107 /*
108  * Protects cgroup_file->kn for !self csses.  It synchronizes notifications
109  * against file removal/re-creation across css hiding.
110  */
111 static DEFINE_SPINLOCK(cgroup_file_kn_lock);
112 
113 DEFINE_PERCPU_RWSEM(cgroup_threadgroup_rwsem);
114 
115 #define cgroup_assert_mutex_or_rcu_locked()				\
116 	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
117 			   !lockdep_is_held(&cgroup_mutex),		\
118 			   "cgroup_mutex or RCU read lock required");
119 
120 /*
121  * cgroup destruction makes heavy use of work items and there can be a lot
122  * of concurrent destructions.  Use a separate workqueue so that cgroup
123  * destruction work items don't end up filling up max_active of system_wq
124  * which may lead to deadlock.
125  */
126 static struct workqueue_struct *cgroup_destroy_wq;
127 
128 /* generate an array of cgroup subsystem pointers */
129 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
130 struct cgroup_subsys *cgroup_subsys[] = {
131 #include <linux/cgroup_subsys.h>
132 };
133 #undef SUBSYS
134 
135 /* array of cgroup subsystem names */
136 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
137 static const char *cgroup_subsys_name[] = {
138 #include <linux/cgroup_subsys.h>
139 };
140 #undef SUBSYS
141 
142 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
143 #define SUBSYS(_x)								\
144 	DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key);			\
145 	DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key);			\
146 	EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key);			\
147 	EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
148 #include <linux/cgroup_subsys.h>
149 #undef SUBSYS
150 
151 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
152 static struct static_key_true *cgroup_subsys_enabled_key[] = {
153 #include <linux/cgroup_subsys.h>
154 };
155 #undef SUBSYS
156 
157 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
158 static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
159 #include <linux/cgroup_subsys.h>
160 };
161 #undef SUBSYS
162 
163 static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu);
164 
165 /* the default hierarchy */
166 struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu };
167 EXPORT_SYMBOL_GPL(cgrp_dfl_root);
168 
169 /*
170  * The default hierarchy always exists but is hidden until mounted for the
171  * first time.  This is for backward compatibility.
172  */
173 static bool cgrp_dfl_visible;
174 
175 /* some controllers are not supported in the default hierarchy */
176 static u16 cgrp_dfl_inhibit_ss_mask;
177 
178 /* some controllers are implicitly enabled on the default hierarchy */
179 static u16 cgrp_dfl_implicit_ss_mask;
180 
181 /* some controllers can be threaded on the default hierarchy */
182 static u16 cgrp_dfl_threaded_ss_mask;
183 
184 /* The list of hierarchy roots */
185 LIST_HEAD(cgroup_roots);
186 static int cgroup_root_count;
187 
188 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
189 static DEFINE_IDR(cgroup_hierarchy_idr);
190 
191 /*
192  * Assign a monotonically increasing serial number to csses.  It guarantees
193  * cgroups with bigger numbers are newer than those with smaller numbers.
194  * Also, as csses are always appended to the parent's ->children list, it
195  * guarantees that sibling csses are always sorted in the ascending serial
196  * number order on the list.  Protected by cgroup_mutex.
197  */
198 static u64 css_serial_nr_next = 1;
199 
200 /*
201  * These bitmasks identify subsystems with specific features to avoid
202  * having to do iterative checks repeatedly.
203  */
204 static u16 have_fork_callback __read_mostly;
205 static u16 have_exit_callback __read_mostly;
206 static u16 have_release_callback __read_mostly;
207 static u16 have_canfork_callback __read_mostly;
208 
209 /* cgroup namespace for init task */
210 struct cgroup_namespace init_cgroup_ns = {
211 	.ns.count	= REFCOUNT_INIT(2),
212 	.user_ns	= &init_user_ns,
213 	.ns.ops		= &cgroupns_operations,
214 	.ns.inum	= PROC_CGROUP_INIT_INO,
215 	.root_cset	= &init_css_set,
216 };
217 
218 static struct file_system_type cgroup2_fs_type;
219 static struct cftype cgroup_base_files[];
220 static struct cftype cgroup_psi_files[];
221 
222 /* cgroup optional features */
223 enum cgroup_opt_features {
224 #ifdef CONFIG_PSI
225 	OPT_FEATURE_PRESSURE,
226 #endif
227 	OPT_FEATURE_COUNT
228 };
229 
230 static const char *cgroup_opt_feature_names[OPT_FEATURE_COUNT] = {
231 #ifdef CONFIG_PSI
232 	"pressure",
233 #endif
234 };
235 
236 static u16 cgroup_feature_disable_mask __read_mostly;
237 
238 static int cgroup_apply_control(struct cgroup *cgrp);
239 static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
240 static void css_task_iter_skip(struct css_task_iter *it,
241 			       struct task_struct *task);
242 static int cgroup_destroy_locked(struct cgroup *cgrp);
243 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
244 					      struct cgroup_subsys *ss);
245 static void css_release(struct percpu_ref *ref);
246 static void kill_css(struct cgroup_subsys_state *css);
247 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
248 			      struct cgroup *cgrp, struct cftype cfts[],
249 			      bool is_add);
250 
251 #ifdef CONFIG_DEBUG_CGROUP_REF
252 #define CGROUP_REF_FN_ATTRS	noinline
253 #define CGROUP_REF_EXPORT(fn)	EXPORT_SYMBOL_GPL(fn);
254 #include <linux/cgroup_refcnt.h>
255 #endif
256 
257 /**
258  * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
259  * @ssid: subsys ID of interest
260  *
261  * cgroup_subsys_enabled() can only be used with literal subsys names which
262  * is fine for individual subsystems but unsuitable for cgroup core.  This
263  * is slower static_key_enabled() based test indexed by @ssid.
264  */
265 bool cgroup_ssid_enabled(int ssid)
266 {
267 	if (!CGROUP_HAS_SUBSYS_CONFIG)
268 		return false;
269 
270 	return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
271 }
272 
273 /**
274  * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
275  * @cgrp: the cgroup of interest
276  *
277  * The default hierarchy is the v2 interface of cgroup and this function
278  * can be used to test whether a cgroup is on the default hierarchy for
279  * cases where a subsystem should behave differently depending on the
280  * interface version.
281  *
282  * List of changed behaviors:
283  *
284  * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
285  *   and "name" are disallowed.
286  *
287  * - When mounting an existing superblock, mount options should match.
288  *
289  * - rename(2) is disallowed.
290  *
291  * - "tasks" is removed.  Everything should be at process granularity.  Use
292  *   "cgroup.procs" instead.
293  *
294  * - "cgroup.procs" is not sorted.  pids will be unique unless they got
295  *   recycled in-between reads.
296  *
297  * - "release_agent" and "notify_on_release" are removed.  Replacement
298  *   notification mechanism will be implemented.
299  *
300  * - "cgroup.clone_children" is removed.
301  *
302  * - "cgroup.subtree_populated" is available.  Its value is 0 if the cgroup
303  *   and its descendants contain no task; otherwise, 1.  The file also
304  *   generates kernfs notification which can be monitored through poll and
305  *   [di]notify when the value of the file changes.
306  *
307  * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
308  *   take masks of ancestors with non-empty cpus/mems, instead of being
309  *   moved to an ancestor.
310  *
311  * - cpuset: a task can be moved into an empty cpuset, and again it takes
312  *   masks of ancestors.
313  *
314  * - blkcg: blk-throttle becomes properly hierarchical.
315  *
316  * - debug: disallowed on the default hierarchy.
317  */
318 bool cgroup_on_dfl(const struct cgroup *cgrp)
319 {
320 	return cgrp->root == &cgrp_dfl_root;
321 }
322 
323 /* IDR wrappers which synchronize using cgroup_idr_lock */
324 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
325 			    gfp_t gfp_mask)
326 {
327 	int ret;
328 
329 	idr_preload(gfp_mask);
330 	spin_lock_bh(&cgroup_idr_lock);
331 	ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
332 	spin_unlock_bh(&cgroup_idr_lock);
333 	idr_preload_end();
334 	return ret;
335 }
336 
337 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
338 {
339 	void *ret;
340 
341 	spin_lock_bh(&cgroup_idr_lock);
342 	ret = idr_replace(idr, ptr, id);
343 	spin_unlock_bh(&cgroup_idr_lock);
344 	return ret;
345 }
346 
347 static void cgroup_idr_remove(struct idr *idr, int id)
348 {
349 	spin_lock_bh(&cgroup_idr_lock);
350 	idr_remove(idr, id);
351 	spin_unlock_bh(&cgroup_idr_lock);
352 }
353 
354 static bool cgroup_has_tasks(struct cgroup *cgrp)
355 {
356 	return cgrp->nr_populated_csets;
357 }
358 
359 bool cgroup_is_threaded(struct cgroup *cgrp)
360 {
361 	return cgrp->dom_cgrp != cgrp;
362 }
363 
364 /* can @cgrp host both domain and threaded children? */
365 static bool cgroup_is_mixable(struct cgroup *cgrp)
366 {
367 	/*
368 	 * Root isn't under domain level resource control exempting it from
369 	 * the no-internal-process constraint, so it can serve as a thread
370 	 * root and a parent of resource domains at the same time.
371 	 */
372 	return !cgroup_parent(cgrp);
373 }
374 
375 /* can @cgrp become a thread root? Should always be true for a thread root */
376 static bool cgroup_can_be_thread_root(struct cgroup *cgrp)
377 {
378 	/* mixables don't care */
379 	if (cgroup_is_mixable(cgrp))
380 		return true;
381 
382 	/* domain roots can't be nested under threaded */
383 	if (cgroup_is_threaded(cgrp))
384 		return false;
385 
386 	/* can only have either domain or threaded children */
387 	if (cgrp->nr_populated_domain_children)
388 		return false;
389 
390 	/* and no domain controllers can be enabled */
391 	if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
392 		return false;
393 
394 	return true;
395 }
396 
397 /* is @cgrp root of a threaded subtree? */
398 bool cgroup_is_thread_root(struct cgroup *cgrp)
399 {
400 	/* thread root should be a domain */
401 	if (cgroup_is_threaded(cgrp))
402 		return false;
403 
404 	/* a domain w/ threaded children is a thread root */
405 	if (cgrp->nr_threaded_children)
406 		return true;
407 
408 	/*
409 	 * A domain which has tasks and explicit threaded controllers
410 	 * enabled is a thread root.
411 	 */
412 	if (cgroup_has_tasks(cgrp) &&
413 	    (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask))
414 		return true;
415 
416 	return false;
417 }
418 
419 /* a domain which isn't connected to the root w/o brekage can't be used */
420 static bool cgroup_is_valid_domain(struct cgroup *cgrp)
421 {
422 	/* the cgroup itself can be a thread root */
423 	if (cgroup_is_threaded(cgrp))
424 		return false;
425 
426 	/* but the ancestors can't be unless mixable */
427 	while ((cgrp = cgroup_parent(cgrp))) {
428 		if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp))
429 			return false;
430 		if (cgroup_is_threaded(cgrp))
431 			return false;
432 	}
433 
434 	return true;
435 }
436 
437 /* subsystems visibly enabled on a cgroup */
438 static u16 cgroup_control(struct cgroup *cgrp)
439 {
440 	struct cgroup *parent = cgroup_parent(cgrp);
441 	u16 root_ss_mask = cgrp->root->subsys_mask;
442 
443 	if (parent) {
444 		u16 ss_mask = parent->subtree_control;
445 
446 		/* threaded cgroups can only have threaded controllers */
447 		if (cgroup_is_threaded(cgrp))
448 			ss_mask &= cgrp_dfl_threaded_ss_mask;
449 		return ss_mask;
450 	}
451 
452 	if (cgroup_on_dfl(cgrp))
453 		root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
454 				  cgrp_dfl_implicit_ss_mask);
455 	return root_ss_mask;
456 }
457 
458 /* subsystems enabled on a cgroup */
459 static u16 cgroup_ss_mask(struct cgroup *cgrp)
460 {
461 	struct cgroup *parent = cgroup_parent(cgrp);
462 
463 	if (parent) {
464 		u16 ss_mask = parent->subtree_ss_mask;
465 
466 		/* threaded cgroups can only have threaded controllers */
467 		if (cgroup_is_threaded(cgrp))
468 			ss_mask &= cgrp_dfl_threaded_ss_mask;
469 		return ss_mask;
470 	}
471 
472 	return cgrp->root->subsys_mask;
473 }
474 
475 /**
476  * cgroup_css - obtain a cgroup's css for the specified subsystem
477  * @cgrp: the cgroup of interest
478  * @ss: the subsystem of interest (%NULL returns @cgrp->self)
479  *
480  * Return @cgrp's css (cgroup_subsys_state) associated with @ss.  This
481  * function must be called either under cgroup_mutex or rcu_read_lock() and
482  * the caller is responsible for pinning the returned css if it wants to
483  * keep accessing it outside the said locks.  This function may return
484  * %NULL if @cgrp doesn't have @subsys_id enabled.
485  */
486 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
487 					      struct cgroup_subsys *ss)
488 {
489 	if (CGROUP_HAS_SUBSYS_CONFIG && ss)
490 		return rcu_dereference_check(cgrp->subsys[ss->id],
491 					lockdep_is_held(&cgroup_mutex));
492 	else
493 		return &cgrp->self;
494 }
495 
496 /**
497  * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem
498  * @cgrp: the cgroup of interest
499  * @ss: the subsystem of interest
500  *
501  * Find and get @cgrp's css associated with @ss.  If the css doesn't exist
502  * or is offline, %NULL is returned.
503  */
504 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp,
505 						     struct cgroup_subsys *ss)
506 {
507 	struct cgroup_subsys_state *css;
508 
509 	rcu_read_lock();
510 	css = cgroup_css(cgrp, ss);
511 	if (css && !css_tryget_online(css))
512 		css = NULL;
513 	rcu_read_unlock();
514 
515 	return css;
516 }
517 
518 /**
519  * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss
520  * @cgrp: the cgroup of interest
521  * @ss: the subsystem of interest (%NULL returns @cgrp->self)
522  *
523  * Similar to cgroup_css() but returns the effective css, which is defined
524  * as the matching css of the nearest ancestor including self which has @ss
525  * enabled.  If @ss is associated with the hierarchy @cgrp is on, this
526  * function is guaranteed to return non-NULL css.
527  */
528 static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp,
529 							struct cgroup_subsys *ss)
530 {
531 	lockdep_assert_held(&cgroup_mutex);
532 
533 	if (!ss)
534 		return &cgrp->self;
535 
536 	/*
537 	 * This function is used while updating css associations and thus
538 	 * can't test the csses directly.  Test ss_mask.
539 	 */
540 	while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
541 		cgrp = cgroup_parent(cgrp);
542 		if (!cgrp)
543 			return NULL;
544 	}
545 
546 	return cgroup_css(cgrp, ss);
547 }
548 
549 /**
550  * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
551  * @cgrp: the cgroup of interest
552  * @ss: the subsystem of interest
553  *
554  * Find and get the effective css of @cgrp for @ss.  The effective css is
555  * defined as the matching css of the nearest ancestor including self which
556  * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
557  * the root css is returned, so this function always returns a valid css.
558  *
559  * The returned css is not guaranteed to be online, and therefore it is the
560  * callers responsibility to try get a reference for it.
561  */
562 struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
563 					 struct cgroup_subsys *ss)
564 {
565 	struct cgroup_subsys_state *css;
566 
567 	if (!CGROUP_HAS_SUBSYS_CONFIG)
568 		return NULL;
569 
570 	do {
571 		css = cgroup_css(cgrp, ss);
572 
573 		if (css)
574 			return css;
575 		cgrp = cgroup_parent(cgrp);
576 	} while (cgrp);
577 
578 	return init_css_set.subsys[ss->id];
579 }
580 
581 /**
582  * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
583  * @cgrp: the cgroup of interest
584  * @ss: the subsystem of interest
585  *
586  * Find and get the effective css of @cgrp for @ss.  The effective css is
587  * defined as the matching css of the nearest ancestor including self which
588  * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
589  * the root css is returned, so this function always returns a valid css.
590  * The returned css must be put using css_put().
591  */
592 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
593 					     struct cgroup_subsys *ss)
594 {
595 	struct cgroup_subsys_state *css;
596 
597 	if (!CGROUP_HAS_SUBSYS_CONFIG)
598 		return NULL;
599 
600 	rcu_read_lock();
601 
602 	do {
603 		css = cgroup_css(cgrp, ss);
604 
605 		if (css && css_tryget_online(css))
606 			goto out_unlock;
607 		cgrp = cgroup_parent(cgrp);
608 	} while (cgrp);
609 
610 	css = init_css_set.subsys[ss->id];
611 	css_get(css);
612 out_unlock:
613 	rcu_read_unlock();
614 	return css;
615 }
616 EXPORT_SYMBOL_GPL(cgroup_get_e_css);
617 
618 static void cgroup_get_live(struct cgroup *cgrp)
619 {
620 	WARN_ON_ONCE(cgroup_is_dead(cgrp));
621 	css_get(&cgrp->self);
622 }
623 
624 /**
625  * __cgroup_task_count - count the number of tasks in a cgroup. The caller
626  * is responsible for taking the css_set_lock.
627  * @cgrp: the cgroup in question
628  */
629 int __cgroup_task_count(const struct cgroup *cgrp)
630 {
631 	int count = 0;
632 	struct cgrp_cset_link *link;
633 
634 	lockdep_assert_held(&css_set_lock);
635 
636 	list_for_each_entry(link, &cgrp->cset_links, cset_link)
637 		count += link->cset->nr_tasks;
638 
639 	return count;
640 }
641 
642 /**
643  * cgroup_task_count - count the number of tasks in a cgroup.
644  * @cgrp: the cgroup in question
645  */
646 int cgroup_task_count(const struct cgroup *cgrp)
647 {
648 	int count;
649 
650 	spin_lock_irq(&css_set_lock);
651 	count = __cgroup_task_count(cgrp);
652 	spin_unlock_irq(&css_set_lock);
653 
654 	return count;
655 }
656 
657 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
658 {
659 	struct cgroup *cgrp = of->kn->parent->priv;
660 	struct cftype *cft = of_cft(of);
661 
662 	/*
663 	 * This is open and unprotected implementation of cgroup_css().
664 	 * seq_css() is only called from a kernfs file operation which has
665 	 * an active reference on the file.  Because all the subsystem
666 	 * files are drained before a css is disassociated with a cgroup,
667 	 * the matching css from the cgroup's subsys table is guaranteed to
668 	 * be and stay valid until the enclosing operation is complete.
669 	 */
670 	if (CGROUP_HAS_SUBSYS_CONFIG && cft->ss)
671 		return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
672 	else
673 		return &cgrp->self;
674 }
675 EXPORT_SYMBOL_GPL(of_css);
676 
677 /**
678  * for_each_css - iterate all css's of a cgroup
679  * @css: the iteration cursor
680  * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
681  * @cgrp: the target cgroup to iterate css's of
682  *
683  * Should be called under cgroup_[tree_]mutex.
684  */
685 #define for_each_css(css, ssid, cgrp)					\
686 	for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)	\
687 		if (!((css) = rcu_dereference_check(			\
688 				(cgrp)->subsys[(ssid)],			\
689 				lockdep_is_held(&cgroup_mutex)))) { }	\
690 		else
691 
692 /**
693  * for_each_e_css - iterate all effective css's of a cgroup
694  * @css: the iteration cursor
695  * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
696  * @cgrp: the target cgroup to iterate css's of
697  *
698  * Should be called under cgroup_[tree_]mutex.
699  */
700 #define for_each_e_css(css, ssid, cgrp)					    \
701 	for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)	    \
702 		if (!((css) = cgroup_e_css_by_mask(cgrp,		    \
703 						   cgroup_subsys[(ssid)]))) \
704 			;						    \
705 		else
706 
707 /**
708  * do_each_subsys_mask - filter for_each_subsys with a bitmask
709  * @ss: the iteration cursor
710  * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
711  * @ss_mask: the bitmask
712  *
713  * The block will only run for cases where the ssid-th bit (1 << ssid) of
714  * @ss_mask is set.
715  */
716 #define do_each_subsys_mask(ss, ssid, ss_mask) do {			\
717 	unsigned long __ss_mask = (ss_mask);				\
718 	if (!CGROUP_HAS_SUBSYS_CONFIG) {				\
719 		(ssid) = 0;						\
720 		break;							\
721 	}								\
722 	for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) {	\
723 		(ss) = cgroup_subsys[ssid];				\
724 		{
725 
726 #define while_each_subsys_mask()					\
727 		}							\
728 	}								\
729 } while (false)
730 
731 /* iterate over child cgrps, lock should be held throughout iteration */
732 #define cgroup_for_each_live_child(child, cgrp)				\
733 	list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
734 		if (({ lockdep_assert_held(&cgroup_mutex);		\
735 		       cgroup_is_dead(child); }))			\
736 			;						\
737 		else
738 
739 /* walk live descendants in pre order */
740 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)		\
741 	css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL))	\
742 		if (({ lockdep_assert_held(&cgroup_mutex);		\
743 		       (dsct) = (d_css)->cgroup;			\
744 		       cgroup_is_dead(dsct); }))			\
745 			;						\
746 		else
747 
748 /* walk live descendants in postorder */
749 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp)		\
750 	css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL))	\
751 		if (({ lockdep_assert_held(&cgroup_mutex);		\
752 		       (dsct) = (d_css)->cgroup;			\
753 		       cgroup_is_dead(dsct); }))			\
754 			;						\
755 		else
756 
757 /*
758  * The default css_set - used by init and its children prior to any
759  * hierarchies being mounted. It contains a pointer to the root state
760  * for each subsystem. Also used to anchor the list of css_sets. Not
761  * reference-counted, to improve performance when child cgroups
762  * haven't been created.
763  */
764 struct css_set init_css_set = {
765 	.refcount		= REFCOUNT_INIT(1),
766 	.dom_cset		= &init_css_set,
767 	.tasks			= LIST_HEAD_INIT(init_css_set.tasks),
768 	.mg_tasks		= LIST_HEAD_INIT(init_css_set.mg_tasks),
769 	.dying_tasks		= LIST_HEAD_INIT(init_css_set.dying_tasks),
770 	.task_iters		= LIST_HEAD_INIT(init_css_set.task_iters),
771 	.threaded_csets		= LIST_HEAD_INIT(init_css_set.threaded_csets),
772 	.cgrp_links		= LIST_HEAD_INIT(init_css_set.cgrp_links),
773 	.mg_src_preload_node	= LIST_HEAD_INIT(init_css_set.mg_src_preload_node),
774 	.mg_dst_preload_node	= LIST_HEAD_INIT(init_css_set.mg_dst_preload_node),
775 	.mg_node		= LIST_HEAD_INIT(init_css_set.mg_node),
776 
777 	/*
778 	 * The following field is re-initialized when this cset gets linked
779 	 * in cgroup_init().  However, let's initialize the field
780 	 * statically too so that the default cgroup can be accessed safely
781 	 * early during boot.
782 	 */
783 	.dfl_cgrp		= &cgrp_dfl_root.cgrp,
784 };
785 
786 static int css_set_count	= 1;	/* 1 for init_css_set */
787 
788 static bool css_set_threaded(struct css_set *cset)
789 {
790 	return cset->dom_cset != cset;
791 }
792 
793 /**
794  * css_set_populated - does a css_set contain any tasks?
795  * @cset: target css_set
796  *
797  * css_set_populated() should be the same as !!cset->nr_tasks at steady
798  * state. However, css_set_populated() can be called while a task is being
799  * added to or removed from the linked list before the nr_tasks is
800  * properly updated. Hence, we can't just look at ->nr_tasks here.
801  */
802 static bool css_set_populated(struct css_set *cset)
803 {
804 	lockdep_assert_held(&css_set_lock);
805 
806 	return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
807 }
808 
809 /**
810  * cgroup_update_populated - update the populated count of a cgroup
811  * @cgrp: the target cgroup
812  * @populated: inc or dec populated count
813  *
814  * One of the css_sets associated with @cgrp is either getting its first
815  * task or losing the last.  Update @cgrp->nr_populated_* accordingly.  The
816  * count is propagated towards root so that a given cgroup's
817  * nr_populated_children is zero iff none of its descendants contain any
818  * tasks.
819  *
820  * @cgrp's interface file "cgroup.populated" is zero if both
821  * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and
822  * 1 otherwise.  When the sum changes from or to zero, userland is notified
823  * that the content of the interface file has changed.  This can be used to
824  * detect when @cgrp and its descendants become populated or empty.
825  */
826 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
827 {
828 	struct cgroup *child = NULL;
829 	int adj = populated ? 1 : -1;
830 
831 	lockdep_assert_held(&css_set_lock);
832 
833 	do {
834 		bool was_populated = cgroup_is_populated(cgrp);
835 
836 		if (!child) {
837 			cgrp->nr_populated_csets += adj;
838 		} else {
839 			if (cgroup_is_threaded(child))
840 				cgrp->nr_populated_threaded_children += adj;
841 			else
842 				cgrp->nr_populated_domain_children += adj;
843 		}
844 
845 		if (was_populated == cgroup_is_populated(cgrp))
846 			break;
847 
848 		cgroup1_check_for_release(cgrp);
849 		TRACE_CGROUP_PATH(notify_populated, cgrp,
850 				  cgroup_is_populated(cgrp));
851 		cgroup_file_notify(&cgrp->events_file);
852 
853 		child = cgrp;
854 		cgrp = cgroup_parent(cgrp);
855 	} while (cgrp);
856 }
857 
858 /**
859  * css_set_update_populated - update populated state of a css_set
860  * @cset: target css_set
861  * @populated: whether @cset is populated or depopulated
862  *
863  * @cset is either getting the first task or losing the last.  Update the
864  * populated counters of all associated cgroups accordingly.
865  */
866 static void css_set_update_populated(struct css_set *cset, bool populated)
867 {
868 	struct cgrp_cset_link *link;
869 
870 	lockdep_assert_held(&css_set_lock);
871 
872 	list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
873 		cgroup_update_populated(link->cgrp, populated);
874 }
875 
876 /*
877  * @task is leaving, advance task iterators which are pointing to it so
878  * that they can resume at the next position.  Advancing an iterator might
879  * remove it from the list, use safe walk.  See css_task_iter_skip() for
880  * details.
881  */
882 static void css_set_skip_task_iters(struct css_set *cset,
883 				    struct task_struct *task)
884 {
885 	struct css_task_iter *it, *pos;
886 
887 	list_for_each_entry_safe(it, pos, &cset->task_iters, iters_node)
888 		css_task_iter_skip(it, task);
889 }
890 
891 /**
892  * css_set_move_task - move a task from one css_set to another
893  * @task: task being moved
894  * @from_cset: css_set @task currently belongs to (may be NULL)
895  * @to_cset: new css_set @task is being moved to (may be NULL)
896  * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
897  *
898  * Move @task from @from_cset to @to_cset.  If @task didn't belong to any
899  * css_set, @from_cset can be NULL.  If @task is being disassociated
900  * instead of moved, @to_cset can be NULL.
901  *
902  * This function automatically handles populated counter updates and
903  * css_task_iter adjustments but the caller is responsible for managing
904  * @from_cset and @to_cset's reference counts.
905  */
906 static void css_set_move_task(struct task_struct *task,
907 			      struct css_set *from_cset, struct css_set *to_cset,
908 			      bool use_mg_tasks)
909 {
910 	lockdep_assert_held(&css_set_lock);
911 
912 	if (to_cset && !css_set_populated(to_cset))
913 		css_set_update_populated(to_cset, true);
914 
915 	if (from_cset) {
916 		WARN_ON_ONCE(list_empty(&task->cg_list));
917 
918 		css_set_skip_task_iters(from_cset, task);
919 		list_del_init(&task->cg_list);
920 		if (!css_set_populated(from_cset))
921 			css_set_update_populated(from_cset, false);
922 	} else {
923 		WARN_ON_ONCE(!list_empty(&task->cg_list));
924 	}
925 
926 	if (to_cset) {
927 		/*
928 		 * We are synchronized through cgroup_threadgroup_rwsem
929 		 * against PF_EXITING setting such that we can't race
930 		 * against cgroup_exit()/cgroup_free() dropping the css_set.
931 		 */
932 		WARN_ON_ONCE(task->flags & PF_EXITING);
933 
934 		cgroup_move_task(task, to_cset);
935 		list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
936 							     &to_cset->tasks);
937 	}
938 }
939 
940 /*
941  * hash table for cgroup groups. This improves the performance to find
942  * an existing css_set. This hash doesn't (currently) take into
943  * account cgroups in empty hierarchies.
944  */
945 #define CSS_SET_HASH_BITS	7
946 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
947 
948 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
949 {
950 	unsigned long key = 0UL;
951 	struct cgroup_subsys *ss;
952 	int i;
953 
954 	for_each_subsys(ss, i)
955 		key += (unsigned long)css[i];
956 	key = (key >> 16) ^ key;
957 
958 	return key;
959 }
960 
961 void put_css_set_locked(struct css_set *cset)
962 {
963 	struct cgrp_cset_link *link, *tmp_link;
964 	struct cgroup_subsys *ss;
965 	int ssid;
966 
967 	lockdep_assert_held(&css_set_lock);
968 
969 	if (!refcount_dec_and_test(&cset->refcount))
970 		return;
971 
972 	WARN_ON_ONCE(!list_empty(&cset->threaded_csets));
973 
974 	/* This css_set is dead. Unlink it and release cgroup and css refs */
975 	for_each_subsys(ss, ssid) {
976 		list_del(&cset->e_cset_node[ssid]);
977 		css_put(cset->subsys[ssid]);
978 	}
979 	hash_del(&cset->hlist);
980 	css_set_count--;
981 
982 	list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
983 		list_del(&link->cset_link);
984 		list_del(&link->cgrp_link);
985 		if (cgroup_parent(link->cgrp))
986 			cgroup_put(link->cgrp);
987 		kfree(link);
988 	}
989 
990 	if (css_set_threaded(cset)) {
991 		list_del(&cset->threaded_csets_node);
992 		put_css_set_locked(cset->dom_cset);
993 	}
994 
995 	kfree_rcu(cset, rcu_head);
996 }
997 
998 /**
999  * compare_css_sets - helper function for find_existing_css_set().
1000  * @cset: candidate css_set being tested
1001  * @old_cset: existing css_set for a task
1002  * @new_cgrp: cgroup that's being entered by the task
1003  * @template: desired set of css pointers in css_set (pre-calculated)
1004  *
1005  * Returns true if "cset" matches "old_cset" except for the hierarchy
1006  * which "new_cgrp" belongs to, for which it should match "new_cgrp".
1007  */
1008 static bool compare_css_sets(struct css_set *cset,
1009 			     struct css_set *old_cset,
1010 			     struct cgroup *new_cgrp,
1011 			     struct cgroup_subsys_state *template[])
1012 {
1013 	struct cgroup *new_dfl_cgrp;
1014 	struct list_head *l1, *l2;
1015 
1016 	/*
1017 	 * On the default hierarchy, there can be csets which are
1018 	 * associated with the same set of cgroups but different csses.
1019 	 * Let's first ensure that csses match.
1020 	 */
1021 	if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
1022 		return false;
1023 
1024 
1025 	/* @cset's domain should match the default cgroup's */
1026 	if (cgroup_on_dfl(new_cgrp))
1027 		new_dfl_cgrp = new_cgrp;
1028 	else
1029 		new_dfl_cgrp = old_cset->dfl_cgrp;
1030 
1031 	if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp)
1032 		return false;
1033 
1034 	/*
1035 	 * Compare cgroup pointers in order to distinguish between
1036 	 * different cgroups in hierarchies.  As different cgroups may
1037 	 * share the same effective css, this comparison is always
1038 	 * necessary.
1039 	 */
1040 	l1 = &cset->cgrp_links;
1041 	l2 = &old_cset->cgrp_links;
1042 	while (1) {
1043 		struct cgrp_cset_link *link1, *link2;
1044 		struct cgroup *cgrp1, *cgrp2;
1045 
1046 		l1 = l1->next;
1047 		l2 = l2->next;
1048 		/* See if we reached the end - both lists are equal length. */
1049 		if (l1 == &cset->cgrp_links) {
1050 			BUG_ON(l2 != &old_cset->cgrp_links);
1051 			break;
1052 		} else {
1053 			BUG_ON(l2 == &old_cset->cgrp_links);
1054 		}
1055 		/* Locate the cgroups associated with these links. */
1056 		link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
1057 		link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
1058 		cgrp1 = link1->cgrp;
1059 		cgrp2 = link2->cgrp;
1060 		/* Hierarchies should be linked in the same order. */
1061 		BUG_ON(cgrp1->root != cgrp2->root);
1062 
1063 		/*
1064 		 * If this hierarchy is the hierarchy of the cgroup
1065 		 * that's changing, then we need to check that this
1066 		 * css_set points to the new cgroup; if it's any other
1067 		 * hierarchy, then this css_set should point to the
1068 		 * same cgroup as the old css_set.
1069 		 */
1070 		if (cgrp1->root == new_cgrp->root) {
1071 			if (cgrp1 != new_cgrp)
1072 				return false;
1073 		} else {
1074 			if (cgrp1 != cgrp2)
1075 				return false;
1076 		}
1077 	}
1078 	return true;
1079 }
1080 
1081 /**
1082  * find_existing_css_set - init css array and find the matching css_set
1083  * @old_cset: the css_set that we're using before the cgroup transition
1084  * @cgrp: the cgroup that we're moving into
1085  * @template: out param for the new set of csses, should be clear on entry
1086  */
1087 static struct css_set *find_existing_css_set(struct css_set *old_cset,
1088 					struct cgroup *cgrp,
1089 					struct cgroup_subsys_state *template[])
1090 {
1091 	struct cgroup_root *root = cgrp->root;
1092 	struct cgroup_subsys *ss;
1093 	struct css_set *cset;
1094 	unsigned long key;
1095 	int i;
1096 
1097 	/*
1098 	 * Build the set of subsystem state objects that we want to see in the
1099 	 * new css_set. While subsystems can change globally, the entries here
1100 	 * won't change, so no need for locking.
1101 	 */
1102 	for_each_subsys(ss, i) {
1103 		if (root->subsys_mask & (1UL << i)) {
1104 			/*
1105 			 * @ss is in this hierarchy, so we want the
1106 			 * effective css from @cgrp.
1107 			 */
1108 			template[i] = cgroup_e_css_by_mask(cgrp, ss);
1109 		} else {
1110 			/*
1111 			 * @ss is not in this hierarchy, so we don't want
1112 			 * to change the css.
1113 			 */
1114 			template[i] = old_cset->subsys[i];
1115 		}
1116 	}
1117 
1118 	key = css_set_hash(template);
1119 	hash_for_each_possible(css_set_table, cset, hlist, key) {
1120 		if (!compare_css_sets(cset, old_cset, cgrp, template))
1121 			continue;
1122 
1123 		/* This css_set matches what we need */
1124 		return cset;
1125 	}
1126 
1127 	/* No existing cgroup group matched */
1128 	return NULL;
1129 }
1130 
1131 static void free_cgrp_cset_links(struct list_head *links_to_free)
1132 {
1133 	struct cgrp_cset_link *link, *tmp_link;
1134 
1135 	list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
1136 		list_del(&link->cset_link);
1137 		kfree(link);
1138 	}
1139 }
1140 
1141 /**
1142  * allocate_cgrp_cset_links - allocate cgrp_cset_links
1143  * @count: the number of links to allocate
1144  * @tmp_links: list_head the allocated links are put on
1145  *
1146  * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1147  * through ->cset_link.  Returns 0 on success or -errno.
1148  */
1149 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
1150 {
1151 	struct cgrp_cset_link *link;
1152 	int i;
1153 
1154 	INIT_LIST_HEAD(tmp_links);
1155 
1156 	for (i = 0; i < count; i++) {
1157 		link = kzalloc(sizeof(*link), GFP_KERNEL);
1158 		if (!link) {
1159 			free_cgrp_cset_links(tmp_links);
1160 			return -ENOMEM;
1161 		}
1162 		list_add(&link->cset_link, tmp_links);
1163 	}
1164 	return 0;
1165 }
1166 
1167 /**
1168  * link_css_set - a helper function to link a css_set to a cgroup
1169  * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
1170  * @cset: the css_set to be linked
1171  * @cgrp: the destination cgroup
1172  */
1173 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1174 			 struct cgroup *cgrp)
1175 {
1176 	struct cgrp_cset_link *link;
1177 
1178 	BUG_ON(list_empty(tmp_links));
1179 
1180 	if (cgroup_on_dfl(cgrp))
1181 		cset->dfl_cgrp = cgrp;
1182 
1183 	link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1184 	link->cset = cset;
1185 	link->cgrp = cgrp;
1186 
1187 	/*
1188 	 * Always add links to the tail of the lists so that the lists are
1189 	 * in chronological order.
1190 	 */
1191 	list_move_tail(&link->cset_link, &cgrp->cset_links);
1192 	list_add_tail(&link->cgrp_link, &cset->cgrp_links);
1193 
1194 	if (cgroup_parent(cgrp))
1195 		cgroup_get_live(cgrp);
1196 }
1197 
1198 /**
1199  * find_css_set - return a new css_set with one cgroup updated
1200  * @old_cset: the baseline css_set
1201  * @cgrp: the cgroup to be updated
1202  *
1203  * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1204  * substituted into the appropriate hierarchy.
1205  */
1206 static struct css_set *find_css_set(struct css_set *old_cset,
1207 				    struct cgroup *cgrp)
1208 {
1209 	struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
1210 	struct css_set *cset;
1211 	struct list_head tmp_links;
1212 	struct cgrp_cset_link *link;
1213 	struct cgroup_subsys *ss;
1214 	unsigned long key;
1215 	int ssid;
1216 
1217 	lockdep_assert_held(&cgroup_mutex);
1218 
1219 	/* First see if we already have a cgroup group that matches
1220 	 * the desired set */
1221 	spin_lock_irq(&css_set_lock);
1222 	cset = find_existing_css_set(old_cset, cgrp, template);
1223 	if (cset)
1224 		get_css_set(cset);
1225 	spin_unlock_irq(&css_set_lock);
1226 
1227 	if (cset)
1228 		return cset;
1229 
1230 	cset = kzalloc(sizeof(*cset), GFP_KERNEL);
1231 	if (!cset)
1232 		return NULL;
1233 
1234 	/* Allocate all the cgrp_cset_link objects that we'll need */
1235 	if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1236 		kfree(cset);
1237 		return NULL;
1238 	}
1239 
1240 	refcount_set(&cset->refcount, 1);
1241 	cset->dom_cset = cset;
1242 	INIT_LIST_HEAD(&cset->tasks);
1243 	INIT_LIST_HEAD(&cset->mg_tasks);
1244 	INIT_LIST_HEAD(&cset->dying_tasks);
1245 	INIT_LIST_HEAD(&cset->task_iters);
1246 	INIT_LIST_HEAD(&cset->threaded_csets);
1247 	INIT_HLIST_NODE(&cset->hlist);
1248 	INIT_LIST_HEAD(&cset->cgrp_links);
1249 	INIT_LIST_HEAD(&cset->mg_src_preload_node);
1250 	INIT_LIST_HEAD(&cset->mg_dst_preload_node);
1251 	INIT_LIST_HEAD(&cset->mg_node);
1252 
1253 	/* Copy the set of subsystem state objects generated in
1254 	 * find_existing_css_set() */
1255 	memcpy(cset->subsys, template, sizeof(cset->subsys));
1256 
1257 	spin_lock_irq(&css_set_lock);
1258 	/* Add reference counts and links from the new css_set. */
1259 	list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1260 		struct cgroup *c = link->cgrp;
1261 
1262 		if (c->root == cgrp->root)
1263 			c = cgrp;
1264 		link_css_set(&tmp_links, cset, c);
1265 	}
1266 
1267 	BUG_ON(!list_empty(&tmp_links));
1268 
1269 	css_set_count++;
1270 
1271 	/* Add @cset to the hash table */
1272 	key = css_set_hash(cset->subsys);
1273 	hash_add(css_set_table, &cset->hlist, key);
1274 
1275 	for_each_subsys(ss, ssid) {
1276 		struct cgroup_subsys_state *css = cset->subsys[ssid];
1277 
1278 		list_add_tail(&cset->e_cset_node[ssid],
1279 			      &css->cgroup->e_csets[ssid]);
1280 		css_get(css);
1281 	}
1282 
1283 	spin_unlock_irq(&css_set_lock);
1284 
1285 	/*
1286 	 * If @cset should be threaded, look up the matching dom_cset and
1287 	 * link them up.  We first fully initialize @cset then look for the
1288 	 * dom_cset.  It's simpler this way and safe as @cset is guaranteed
1289 	 * to stay empty until we return.
1290 	 */
1291 	if (cgroup_is_threaded(cset->dfl_cgrp)) {
1292 		struct css_set *dcset;
1293 
1294 		dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp);
1295 		if (!dcset) {
1296 			put_css_set(cset);
1297 			return NULL;
1298 		}
1299 
1300 		spin_lock_irq(&css_set_lock);
1301 		cset->dom_cset = dcset;
1302 		list_add_tail(&cset->threaded_csets_node,
1303 			      &dcset->threaded_csets);
1304 		spin_unlock_irq(&css_set_lock);
1305 	}
1306 
1307 	return cset;
1308 }
1309 
1310 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1311 {
1312 	struct cgroup *root_cgrp = kernfs_root_to_node(kf_root)->priv;
1313 
1314 	return root_cgrp->root;
1315 }
1316 
1317 void cgroup_favor_dynmods(struct cgroup_root *root, bool favor)
1318 {
1319 	bool favoring = root->flags & CGRP_ROOT_FAVOR_DYNMODS;
1320 
1321 	/* see the comment above CGRP_ROOT_FAVOR_DYNMODS definition */
1322 	if (favor && !favoring) {
1323 		rcu_sync_enter(&cgroup_threadgroup_rwsem.rss);
1324 		root->flags |= CGRP_ROOT_FAVOR_DYNMODS;
1325 	} else if (!favor && favoring) {
1326 		rcu_sync_exit(&cgroup_threadgroup_rwsem.rss);
1327 		root->flags &= ~CGRP_ROOT_FAVOR_DYNMODS;
1328 	}
1329 }
1330 
1331 static int cgroup_init_root_id(struct cgroup_root *root)
1332 {
1333 	int id;
1334 
1335 	lockdep_assert_held(&cgroup_mutex);
1336 
1337 	id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1338 	if (id < 0)
1339 		return id;
1340 
1341 	root->hierarchy_id = id;
1342 	return 0;
1343 }
1344 
1345 static void cgroup_exit_root_id(struct cgroup_root *root)
1346 {
1347 	lockdep_assert_held(&cgroup_mutex);
1348 
1349 	idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1350 }
1351 
1352 void cgroup_free_root(struct cgroup_root *root)
1353 {
1354 	kfree(root);
1355 }
1356 
1357 static void cgroup_destroy_root(struct cgroup_root *root)
1358 {
1359 	struct cgroup *cgrp = &root->cgrp;
1360 	struct cgrp_cset_link *link, *tmp_link;
1361 
1362 	trace_cgroup_destroy_root(root);
1363 
1364 	cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1365 
1366 	BUG_ON(atomic_read(&root->nr_cgrps));
1367 	BUG_ON(!list_empty(&cgrp->self.children));
1368 
1369 	/* Rebind all subsystems back to the default hierarchy */
1370 	WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
1371 
1372 	/*
1373 	 * Release all the links from cset_links to this hierarchy's
1374 	 * root cgroup
1375 	 */
1376 	spin_lock_irq(&css_set_lock);
1377 
1378 	list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1379 		list_del(&link->cset_link);
1380 		list_del(&link->cgrp_link);
1381 		kfree(link);
1382 	}
1383 
1384 	spin_unlock_irq(&css_set_lock);
1385 
1386 	if (!list_empty(&root->root_list)) {
1387 		list_del(&root->root_list);
1388 		cgroup_root_count--;
1389 	}
1390 
1391 	cgroup_favor_dynmods(root, false);
1392 	cgroup_exit_root_id(root);
1393 
1394 	cgroup_unlock();
1395 
1396 	cgroup_rstat_exit(cgrp);
1397 	kernfs_destroy_root(root->kf_root);
1398 	cgroup_free_root(root);
1399 }
1400 
1401 /*
1402  * Returned cgroup is without refcount but it's valid as long as cset pins it.
1403  */
1404 static inline struct cgroup *__cset_cgroup_from_root(struct css_set *cset,
1405 					    struct cgroup_root *root)
1406 {
1407 	struct cgroup *res_cgroup = NULL;
1408 
1409 	if (cset == &init_css_set) {
1410 		res_cgroup = &root->cgrp;
1411 	} else if (root == &cgrp_dfl_root) {
1412 		res_cgroup = cset->dfl_cgrp;
1413 	} else {
1414 		struct cgrp_cset_link *link;
1415 		lockdep_assert_held(&css_set_lock);
1416 
1417 		list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1418 			struct cgroup *c = link->cgrp;
1419 
1420 			if (c->root == root) {
1421 				res_cgroup = c;
1422 				break;
1423 			}
1424 		}
1425 	}
1426 
1427 	BUG_ON(!res_cgroup);
1428 	return res_cgroup;
1429 }
1430 
1431 /*
1432  * look up cgroup associated with current task's cgroup namespace on the
1433  * specified hierarchy
1434  */
1435 static struct cgroup *
1436 current_cgns_cgroup_from_root(struct cgroup_root *root)
1437 {
1438 	struct cgroup *res = NULL;
1439 	struct css_set *cset;
1440 
1441 	lockdep_assert_held(&css_set_lock);
1442 
1443 	rcu_read_lock();
1444 
1445 	cset = current->nsproxy->cgroup_ns->root_cset;
1446 	res = __cset_cgroup_from_root(cset, root);
1447 
1448 	rcu_read_unlock();
1449 
1450 	return res;
1451 }
1452 
1453 /*
1454  * Look up cgroup associated with current task's cgroup namespace on the default
1455  * hierarchy.
1456  *
1457  * Unlike current_cgns_cgroup_from_root(), this doesn't need locks:
1458  * - Internal rcu_read_lock is unnecessary because we don't dereference any rcu
1459  *   pointers.
1460  * - css_set_lock is not needed because we just read cset->dfl_cgrp.
1461  * - As a bonus returned cgrp is pinned with the current because it cannot
1462  *   switch cgroup_ns asynchronously.
1463  */
1464 static struct cgroup *current_cgns_cgroup_dfl(void)
1465 {
1466 	struct css_set *cset;
1467 
1468 	if (current->nsproxy) {
1469 		cset = current->nsproxy->cgroup_ns->root_cset;
1470 		return __cset_cgroup_from_root(cset, &cgrp_dfl_root);
1471 	} else {
1472 		/*
1473 		 * NOTE: This function may be called from bpf_cgroup_from_id()
1474 		 * on a task which has already passed exit_task_namespaces() and
1475 		 * nsproxy == NULL. Fall back to cgrp_dfl_root which will make all
1476 		 * cgroups visible for lookups.
1477 		 */
1478 		return &cgrp_dfl_root.cgrp;
1479 	}
1480 }
1481 
1482 /* look up cgroup associated with given css_set on the specified hierarchy */
1483 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1484 					    struct cgroup_root *root)
1485 {
1486 	lockdep_assert_held(&cgroup_mutex);
1487 	lockdep_assert_held(&css_set_lock);
1488 
1489 	return __cset_cgroup_from_root(cset, root);
1490 }
1491 
1492 /*
1493  * Return the cgroup for "task" from the given hierarchy. Must be
1494  * called with cgroup_mutex and css_set_lock held.
1495  */
1496 struct cgroup *task_cgroup_from_root(struct task_struct *task,
1497 				     struct cgroup_root *root)
1498 {
1499 	/*
1500 	 * No need to lock the task - since we hold css_set_lock the
1501 	 * task can't change groups.
1502 	 */
1503 	return cset_cgroup_from_root(task_css_set(task), root);
1504 }
1505 
1506 /*
1507  * A task must hold cgroup_mutex to modify cgroups.
1508  *
1509  * Any task can increment and decrement the count field without lock.
1510  * So in general, code holding cgroup_mutex can't rely on the count
1511  * field not changing.  However, if the count goes to zero, then only
1512  * cgroup_attach_task() can increment it again.  Because a count of zero
1513  * means that no tasks are currently attached, therefore there is no
1514  * way a task attached to that cgroup can fork (the other way to
1515  * increment the count).  So code holding cgroup_mutex can safely
1516  * assume that if the count is zero, it will stay zero. Similarly, if
1517  * a task holds cgroup_mutex on a cgroup with zero count, it
1518  * knows that the cgroup won't be removed, as cgroup_rmdir()
1519  * needs that mutex.
1520  *
1521  * A cgroup can only be deleted if both its 'count' of using tasks
1522  * is zero, and its list of 'children' cgroups is empty.  Since all
1523  * tasks in the system use _some_ cgroup, and since there is always at
1524  * least one task in the system (init, pid == 1), therefore, root cgroup
1525  * always has either children cgroups and/or using tasks.  So we don't
1526  * need a special hack to ensure that root cgroup cannot be deleted.
1527  *
1528  * P.S.  One more locking exception.  RCU is used to guard the
1529  * update of a tasks cgroup pointer by cgroup_attach_task()
1530  */
1531 
1532 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1533 
1534 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1535 			      char *buf)
1536 {
1537 	struct cgroup_subsys *ss = cft->ss;
1538 
1539 	if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1540 	    !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
1541 		const char *dbg = (cft->flags & CFTYPE_DEBUG) ? ".__DEBUG__." : "";
1542 
1543 		snprintf(buf, CGROUP_FILE_NAME_MAX, "%s%s.%s",
1544 			 dbg, cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1545 			 cft->name);
1546 	} else {
1547 		strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1548 	}
1549 	return buf;
1550 }
1551 
1552 /**
1553  * cgroup_file_mode - deduce file mode of a control file
1554  * @cft: the control file in question
1555  *
1556  * S_IRUGO for read, S_IWUSR for write.
1557  */
1558 static umode_t cgroup_file_mode(const struct cftype *cft)
1559 {
1560 	umode_t mode = 0;
1561 
1562 	if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1563 		mode |= S_IRUGO;
1564 
1565 	if (cft->write_u64 || cft->write_s64 || cft->write) {
1566 		if (cft->flags & CFTYPE_WORLD_WRITABLE)
1567 			mode |= S_IWUGO;
1568 		else
1569 			mode |= S_IWUSR;
1570 	}
1571 
1572 	return mode;
1573 }
1574 
1575 /**
1576  * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1577  * @subtree_control: the new subtree_control mask to consider
1578  * @this_ss_mask: available subsystems
1579  *
1580  * On the default hierarchy, a subsystem may request other subsystems to be
1581  * enabled together through its ->depends_on mask.  In such cases, more
1582  * subsystems than specified in "cgroup.subtree_control" may be enabled.
1583  *
1584  * This function calculates which subsystems need to be enabled if
1585  * @subtree_control is to be applied while restricted to @this_ss_mask.
1586  */
1587 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
1588 {
1589 	u16 cur_ss_mask = subtree_control;
1590 	struct cgroup_subsys *ss;
1591 	int ssid;
1592 
1593 	lockdep_assert_held(&cgroup_mutex);
1594 
1595 	cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1596 
1597 	while (true) {
1598 		u16 new_ss_mask = cur_ss_mask;
1599 
1600 		do_each_subsys_mask(ss, ssid, cur_ss_mask) {
1601 			new_ss_mask |= ss->depends_on;
1602 		} while_each_subsys_mask();
1603 
1604 		/*
1605 		 * Mask out subsystems which aren't available.  This can
1606 		 * happen only if some depended-upon subsystems were bound
1607 		 * to non-default hierarchies.
1608 		 */
1609 		new_ss_mask &= this_ss_mask;
1610 
1611 		if (new_ss_mask == cur_ss_mask)
1612 			break;
1613 		cur_ss_mask = new_ss_mask;
1614 	}
1615 
1616 	return cur_ss_mask;
1617 }
1618 
1619 /**
1620  * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1621  * @kn: the kernfs_node being serviced
1622  *
1623  * This helper undoes cgroup_kn_lock_live() and should be invoked before
1624  * the method finishes if locking succeeded.  Note that once this function
1625  * returns the cgroup returned by cgroup_kn_lock_live() may become
1626  * inaccessible any time.  If the caller intends to continue to access the
1627  * cgroup, it should pin it before invoking this function.
1628  */
1629 void cgroup_kn_unlock(struct kernfs_node *kn)
1630 {
1631 	struct cgroup *cgrp;
1632 
1633 	if (kernfs_type(kn) == KERNFS_DIR)
1634 		cgrp = kn->priv;
1635 	else
1636 		cgrp = kn->parent->priv;
1637 
1638 	cgroup_unlock();
1639 
1640 	kernfs_unbreak_active_protection(kn);
1641 	cgroup_put(cgrp);
1642 }
1643 
1644 /**
1645  * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1646  * @kn: the kernfs_node being serviced
1647  * @drain_offline: perform offline draining on the cgroup
1648  *
1649  * This helper is to be used by a cgroup kernfs method currently servicing
1650  * @kn.  It breaks the active protection, performs cgroup locking and
1651  * verifies that the associated cgroup is alive.  Returns the cgroup if
1652  * alive; otherwise, %NULL.  A successful return should be undone by a
1653  * matching cgroup_kn_unlock() invocation.  If @drain_offline is %true, the
1654  * cgroup is drained of offlining csses before return.
1655  *
1656  * Any cgroup kernfs method implementation which requires locking the
1657  * associated cgroup should use this helper.  It avoids nesting cgroup
1658  * locking under kernfs active protection and allows all kernfs operations
1659  * including self-removal.
1660  */
1661 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline)
1662 {
1663 	struct cgroup *cgrp;
1664 
1665 	if (kernfs_type(kn) == KERNFS_DIR)
1666 		cgrp = kn->priv;
1667 	else
1668 		cgrp = kn->parent->priv;
1669 
1670 	/*
1671 	 * We're gonna grab cgroup_mutex which nests outside kernfs
1672 	 * active_ref.  cgroup liveliness check alone provides enough
1673 	 * protection against removal.  Ensure @cgrp stays accessible and
1674 	 * break the active_ref protection.
1675 	 */
1676 	if (!cgroup_tryget(cgrp))
1677 		return NULL;
1678 	kernfs_break_active_protection(kn);
1679 
1680 	if (drain_offline)
1681 		cgroup_lock_and_drain_offline(cgrp);
1682 	else
1683 		cgroup_lock();
1684 
1685 	if (!cgroup_is_dead(cgrp))
1686 		return cgrp;
1687 
1688 	cgroup_kn_unlock(kn);
1689 	return NULL;
1690 }
1691 
1692 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1693 {
1694 	char name[CGROUP_FILE_NAME_MAX];
1695 
1696 	lockdep_assert_held(&cgroup_mutex);
1697 
1698 	if (cft->file_offset) {
1699 		struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1700 		struct cgroup_file *cfile = (void *)css + cft->file_offset;
1701 
1702 		spin_lock_irq(&cgroup_file_kn_lock);
1703 		cfile->kn = NULL;
1704 		spin_unlock_irq(&cgroup_file_kn_lock);
1705 
1706 		del_timer_sync(&cfile->notify_timer);
1707 	}
1708 
1709 	kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1710 }
1711 
1712 /**
1713  * css_clear_dir - remove subsys files in a cgroup directory
1714  * @css: target css
1715  */
1716 static void css_clear_dir(struct cgroup_subsys_state *css)
1717 {
1718 	struct cgroup *cgrp = css->cgroup;
1719 	struct cftype *cfts;
1720 
1721 	if (!(css->flags & CSS_VISIBLE))
1722 		return;
1723 
1724 	css->flags &= ~CSS_VISIBLE;
1725 
1726 	if (!css->ss) {
1727 		if (cgroup_on_dfl(cgrp)) {
1728 			cgroup_addrm_files(css, cgrp,
1729 					   cgroup_base_files, false);
1730 			if (cgroup_psi_enabled())
1731 				cgroup_addrm_files(css, cgrp,
1732 						   cgroup_psi_files, false);
1733 		} else {
1734 			cgroup_addrm_files(css, cgrp,
1735 					   cgroup1_base_files, false);
1736 		}
1737 	} else {
1738 		list_for_each_entry(cfts, &css->ss->cfts, node)
1739 			cgroup_addrm_files(css, cgrp, cfts, false);
1740 	}
1741 }
1742 
1743 /**
1744  * css_populate_dir - create subsys files in a cgroup directory
1745  * @css: target css
1746  *
1747  * On failure, no file is added.
1748  */
1749 static int css_populate_dir(struct cgroup_subsys_state *css)
1750 {
1751 	struct cgroup *cgrp = css->cgroup;
1752 	struct cftype *cfts, *failed_cfts;
1753 	int ret;
1754 
1755 	if ((css->flags & CSS_VISIBLE) || !cgrp->kn)
1756 		return 0;
1757 
1758 	if (!css->ss) {
1759 		if (cgroup_on_dfl(cgrp)) {
1760 			ret = cgroup_addrm_files(&cgrp->self, cgrp,
1761 						 cgroup_base_files, true);
1762 			if (ret < 0)
1763 				return ret;
1764 
1765 			if (cgroup_psi_enabled()) {
1766 				ret = cgroup_addrm_files(&cgrp->self, cgrp,
1767 							 cgroup_psi_files, true);
1768 				if (ret < 0)
1769 					return ret;
1770 			}
1771 		} else {
1772 			cgroup_addrm_files(css, cgrp,
1773 					   cgroup1_base_files, true);
1774 		}
1775 	} else {
1776 		list_for_each_entry(cfts, &css->ss->cfts, node) {
1777 			ret = cgroup_addrm_files(css, cgrp, cfts, true);
1778 			if (ret < 0) {
1779 				failed_cfts = cfts;
1780 				goto err;
1781 			}
1782 		}
1783 	}
1784 
1785 	css->flags |= CSS_VISIBLE;
1786 
1787 	return 0;
1788 err:
1789 	list_for_each_entry(cfts, &css->ss->cfts, node) {
1790 		if (cfts == failed_cfts)
1791 			break;
1792 		cgroup_addrm_files(css, cgrp, cfts, false);
1793 	}
1794 	return ret;
1795 }
1796 
1797 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
1798 {
1799 	struct cgroup *dcgrp = &dst_root->cgrp;
1800 	struct cgroup_subsys *ss;
1801 	int ssid, i, ret;
1802 	u16 dfl_disable_ss_mask = 0;
1803 
1804 	lockdep_assert_held(&cgroup_mutex);
1805 
1806 	do_each_subsys_mask(ss, ssid, ss_mask) {
1807 		/*
1808 		 * If @ss has non-root csses attached to it, can't move.
1809 		 * If @ss is an implicit controller, it is exempt from this
1810 		 * rule and can be stolen.
1811 		 */
1812 		if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1813 		    !ss->implicit_on_dfl)
1814 			return -EBUSY;
1815 
1816 		/* can't move between two non-dummy roots either */
1817 		if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1818 			return -EBUSY;
1819 
1820 		/*
1821 		 * Collect ssid's that need to be disabled from default
1822 		 * hierarchy.
1823 		 */
1824 		if (ss->root == &cgrp_dfl_root)
1825 			dfl_disable_ss_mask |= 1 << ssid;
1826 
1827 	} while_each_subsys_mask();
1828 
1829 	if (dfl_disable_ss_mask) {
1830 		struct cgroup *scgrp = &cgrp_dfl_root.cgrp;
1831 
1832 		/*
1833 		 * Controllers from default hierarchy that need to be rebound
1834 		 * are all disabled together in one go.
1835 		 */
1836 		cgrp_dfl_root.subsys_mask &= ~dfl_disable_ss_mask;
1837 		WARN_ON(cgroup_apply_control(scgrp));
1838 		cgroup_finalize_control(scgrp, 0);
1839 	}
1840 
1841 	do_each_subsys_mask(ss, ssid, ss_mask) {
1842 		struct cgroup_root *src_root = ss->root;
1843 		struct cgroup *scgrp = &src_root->cgrp;
1844 		struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1845 		struct css_set *cset;
1846 
1847 		WARN_ON(!css || cgroup_css(dcgrp, ss));
1848 
1849 		if (src_root != &cgrp_dfl_root) {
1850 			/* disable from the source */
1851 			src_root->subsys_mask &= ~(1 << ssid);
1852 			WARN_ON(cgroup_apply_control(scgrp));
1853 			cgroup_finalize_control(scgrp, 0);
1854 		}
1855 
1856 		/* rebind */
1857 		RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1858 		rcu_assign_pointer(dcgrp->subsys[ssid], css);
1859 		ss->root = dst_root;
1860 		css->cgroup = dcgrp;
1861 
1862 		spin_lock_irq(&css_set_lock);
1863 		hash_for_each(css_set_table, i, cset, hlist)
1864 			list_move_tail(&cset->e_cset_node[ss->id],
1865 				       &dcgrp->e_csets[ss->id]);
1866 		spin_unlock_irq(&css_set_lock);
1867 
1868 		if (ss->css_rstat_flush) {
1869 			list_del_rcu(&css->rstat_css_node);
1870 			synchronize_rcu();
1871 			list_add_rcu(&css->rstat_css_node,
1872 				     &dcgrp->rstat_css_list);
1873 		}
1874 
1875 		/* default hierarchy doesn't enable controllers by default */
1876 		dst_root->subsys_mask |= 1 << ssid;
1877 		if (dst_root == &cgrp_dfl_root) {
1878 			static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1879 		} else {
1880 			dcgrp->subtree_control |= 1 << ssid;
1881 			static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1882 		}
1883 
1884 		ret = cgroup_apply_control(dcgrp);
1885 		if (ret)
1886 			pr_warn("partial failure to rebind %s controller (err=%d)\n",
1887 				ss->name, ret);
1888 
1889 		if (ss->bind)
1890 			ss->bind(css);
1891 	} while_each_subsys_mask();
1892 
1893 	kernfs_activate(dcgrp->kn);
1894 	return 0;
1895 }
1896 
1897 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
1898 		     struct kernfs_root *kf_root)
1899 {
1900 	int len = 0;
1901 	char *buf = NULL;
1902 	struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
1903 	struct cgroup *ns_cgroup;
1904 
1905 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
1906 	if (!buf)
1907 		return -ENOMEM;
1908 
1909 	spin_lock_irq(&css_set_lock);
1910 	ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
1911 	len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
1912 	spin_unlock_irq(&css_set_lock);
1913 
1914 	if (len >= PATH_MAX)
1915 		len = -ERANGE;
1916 	else if (len > 0) {
1917 		seq_escape(sf, buf, " \t\n\\");
1918 		len = 0;
1919 	}
1920 	kfree(buf);
1921 	return len;
1922 }
1923 
1924 enum cgroup2_param {
1925 	Opt_nsdelegate,
1926 	Opt_favordynmods,
1927 	Opt_memory_localevents,
1928 	Opt_memory_recursiveprot,
1929 	nr__cgroup2_params
1930 };
1931 
1932 static const struct fs_parameter_spec cgroup2_fs_parameters[] = {
1933 	fsparam_flag("nsdelegate",		Opt_nsdelegate),
1934 	fsparam_flag("favordynmods",		Opt_favordynmods),
1935 	fsparam_flag("memory_localevents",	Opt_memory_localevents),
1936 	fsparam_flag("memory_recursiveprot",	Opt_memory_recursiveprot),
1937 	{}
1938 };
1939 
1940 static int cgroup2_parse_param(struct fs_context *fc, struct fs_parameter *param)
1941 {
1942 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1943 	struct fs_parse_result result;
1944 	int opt;
1945 
1946 	opt = fs_parse(fc, cgroup2_fs_parameters, param, &result);
1947 	if (opt < 0)
1948 		return opt;
1949 
1950 	switch (opt) {
1951 	case Opt_nsdelegate:
1952 		ctx->flags |= CGRP_ROOT_NS_DELEGATE;
1953 		return 0;
1954 	case Opt_favordynmods:
1955 		ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS;
1956 		return 0;
1957 	case Opt_memory_localevents:
1958 		ctx->flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1959 		return 0;
1960 	case Opt_memory_recursiveprot:
1961 		ctx->flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1962 		return 0;
1963 	}
1964 	return -EINVAL;
1965 }
1966 
1967 static void apply_cgroup_root_flags(unsigned int root_flags)
1968 {
1969 	if (current->nsproxy->cgroup_ns == &init_cgroup_ns) {
1970 		if (root_flags & CGRP_ROOT_NS_DELEGATE)
1971 			cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE;
1972 		else
1973 			cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE;
1974 
1975 		cgroup_favor_dynmods(&cgrp_dfl_root,
1976 				     root_flags & CGRP_ROOT_FAVOR_DYNMODS);
1977 
1978 		if (root_flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1979 			cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1980 		else
1981 			cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1982 
1983 		if (root_flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
1984 			cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1985 		else
1986 			cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1987 	}
1988 }
1989 
1990 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
1991 {
1992 	if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE)
1993 		seq_puts(seq, ",nsdelegate");
1994 	if (cgrp_dfl_root.flags & CGRP_ROOT_FAVOR_DYNMODS)
1995 		seq_puts(seq, ",favordynmods");
1996 	if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1997 		seq_puts(seq, ",memory_localevents");
1998 	if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
1999 		seq_puts(seq, ",memory_recursiveprot");
2000 	return 0;
2001 }
2002 
2003 static int cgroup_reconfigure(struct fs_context *fc)
2004 {
2005 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2006 
2007 	apply_cgroup_root_flags(ctx->flags);
2008 	return 0;
2009 }
2010 
2011 static void init_cgroup_housekeeping(struct cgroup *cgrp)
2012 {
2013 	struct cgroup_subsys *ss;
2014 	int ssid;
2015 
2016 	INIT_LIST_HEAD(&cgrp->self.sibling);
2017 	INIT_LIST_HEAD(&cgrp->self.children);
2018 	INIT_LIST_HEAD(&cgrp->cset_links);
2019 	INIT_LIST_HEAD(&cgrp->pidlists);
2020 	mutex_init(&cgrp->pidlist_mutex);
2021 	cgrp->self.cgroup = cgrp;
2022 	cgrp->self.flags |= CSS_ONLINE;
2023 	cgrp->dom_cgrp = cgrp;
2024 	cgrp->max_descendants = INT_MAX;
2025 	cgrp->max_depth = INT_MAX;
2026 	INIT_LIST_HEAD(&cgrp->rstat_css_list);
2027 	prev_cputime_init(&cgrp->prev_cputime);
2028 
2029 	for_each_subsys(ss, ssid)
2030 		INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
2031 
2032 	init_waitqueue_head(&cgrp->offline_waitq);
2033 	INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent);
2034 }
2035 
2036 void init_cgroup_root(struct cgroup_fs_context *ctx)
2037 {
2038 	struct cgroup_root *root = ctx->root;
2039 	struct cgroup *cgrp = &root->cgrp;
2040 
2041 	INIT_LIST_HEAD(&root->root_list);
2042 	atomic_set(&root->nr_cgrps, 1);
2043 	cgrp->root = root;
2044 	init_cgroup_housekeeping(cgrp);
2045 
2046 	/* DYNMODS must be modified through cgroup_favor_dynmods() */
2047 	root->flags = ctx->flags & ~CGRP_ROOT_FAVOR_DYNMODS;
2048 	if (ctx->release_agent)
2049 		strscpy(root->release_agent_path, ctx->release_agent, PATH_MAX);
2050 	if (ctx->name)
2051 		strscpy(root->name, ctx->name, MAX_CGROUP_ROOT_NAMELEN);
2052 	if (ctx->cpuset_clone_children)
2053 		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
2054 }
2055 
2056 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask)
2057 {
2058 	LIST_HEAD(tmp_links);
2059 	struct cgroup *root_cgrp = &root->cgrp;
2060 	struct kernfs_syscall_ops *kf_sops;
2061 	struct css_set *cset;
2062 	int i, ret;
2063 
2064 	lockdep_assert_held(&cgroup_mutex);
2065 
2066 	ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release,
2067 			      0, GFP_KERNEL);
2068 	if (ret)
2069 		goto out;
2070 
2071 	/*
2072 	 * We're accessing css_set_count without locking css_set_lock here,
2073 	 * but that's OK - it can only be increased by someone holding
2074 	 * cgroup_lock, and that's us.  Later rebinding may disable
2075 	 * controllers on the default hierarchy and thus create new csets,
2076 	 * which can't be more than the existing ones.  Allocate 2x.
2077 	 */
2078 	ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
2079 	if (ret)
2080 		goto cancel_ref;
2081 
2082 	ret = cgroup_init_root_id(root);
2083 	if (ret)
2084 		goto cancel_ref;
2085 
2086 	kf_sops = root == &cgrp_dfl_root ?
2087 		&cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops;
2088 
2089 	root->kf_root = kernfs_create_root(kf_sops,
2090 					   KERNFS_ROOT_CREATE_DEACTIVATED |
2091 					   KERNFS_ROOT_SUPPORT_EXPORTOP |
2092 					   KERNFS_ROOT_SUPPORT_USER_XATTR,
2093 					   root_cgrp);
2094 	if (IS_ERR(root->kf_root)) {
2095 		ret = PTR_ERR(root->kf_root);
2096 		goto exit_root_id;
2097 	}
2098 	root_cgrp->kn = kernfs_root_to_node(root->kf_root);
2099 	WARN_ON_ONCE(cgroup_ino(root_cgrp) != 1);
2100 	root_cgrp->ancestors[0] = root_cgrp;
2101 
2102 	ret = css_populate_dir(&root_cgrp->self);
2103 	if (ret)
2104 		goto destroy_root;
2105 
2106 	ret = cgroup_rstat_init(root_cgrp);
2107 	if (ret)
2108 		goto destroy_root;
2109 
2110 	ret = rebind_subsystems(root, ss_mask);
2111 	if (ret)
2112 		goto exit_stats;
2113 
2114 	ret = cgroup_bpf_inherit(root_cgrp);
2115 	WARN_ON_ONCE(ret);
2116 
2117 	trace_cgroup_setup_root(root);
2118 
2119 	/*
2120 	 * There must be no failure case after here, since rebinding takes
2121 	 * care of subsystems' refcounts, which are explicitly dropped in
2122 	 * the failure exit path.
2123 	 */
2124 	list_add(&root->root_list, &cgroup_roots);
2125 	cgroup_root_count++;
2126 
2127 	/*
2128 	 * Link the root cgroup in this hierarchy into all the css_set
2129 	 * objects.
2130 	 */
2131 	spin_lock_irq(&css_set_lock);
2132 	hash_for_each(css_set_table, i, cset, hlist) {
2133 		link_css_set(&tmp_links, cset, root_cgrp);
2134 		if (css_set_populated(cset))
2135 			cgroup_update_populated(root_cgrp, true);
2136 	}
2137 	spin_unlock_irq(&css_set_lock);
2138 
2139 	BUG_ON(!list_empty(&root_cgrp->self.children));
2140 	BUG_ON(atomic_read(&root->nr_cgrps) != 1);
2141 
2142 	ret = 0;
2143 	goto out;
2144 
2145 exit_stats:
2146 	cgroup_rstat_exit(root_cgrp);
2147 destroy_root:
2148 	kernfs_destroy_root(root->kf_root);
2149 	root->kf_root = NULL;
2150 exit_root_id:
2151 	cgroup_exit_root_id(root);
2152 cancel_ref:
2153 	percpu_ref_exit(&root_cgrp->self.refcnt);
2154 out:
2155 	free_cgrp_cset_links(&tmp_links);
2156 	return ret;
2157 }
2158 
2159 int cgroup_do_get_tree(struct fs_context *fc)
2160 {
2161 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2162 	int ret;
2163 
2164 	ctx->kfc.root = ctx->root->kf_root;
2165 	if (fc->fs_type == &cgroup2_fs_type)
2166 		ctx->kfc.magic = CGROUP2_SUPER_MAGIC;
2167 	else
2168 		ctx->kfc.magic = CGROUP_SUPER_MAGIC;
2169 	ret = kernfs_get_tree(fc);
2170 
2171 	/*
2172 	 * In non-init cgroup namespace, instead of root cgroup's dentry,
2173 	 * we return the dentry corresponding to the cgroupns->root_cgrp.
2174 	 */
2175 	if (!ret && ctx->ns != &init_cgroup_ns) {
2176 		struct dentry *nsdentry;
2177 		struct super_block *sb = fc->root->d_sb;
2178 		struct cgroup *cgrp;
2179 
2180 		cgroup_lock();
2181 		spin_lock_irq(&css_set_lock);
2182 
2183 		cgrp = cset_cgroup_from_root(ctx->ns->root_cset, ctx->root);
2184 
2185 		spin_unlock_irq(&css_set_lock);
2186 		cgroup_unlock();
2187 
2188 		nsdentry = kernfs_node_dentry(cgrp->kn, sb);
2189 		dput(fc->root);
2190 		if (IS_ERR(nsdentry)) {
2191 			deactivate_locked_super(sb);
2192 			ret = PTR_ERR(nsdentry);
2193 			nsdentry = NULL;
2194 		}
2195 		fc->root = nsdentry;
2196 	}
2197 
2198 	if (!ctx->kfc.new_sb_created)
2199 		cgroup_put(&ctx->root->cgrp);
2200 
2201 	return ret;
2202 }
2203 
2204 /*
2205  * Destroy a cgroup filesystem context.
2206  */
2207 static void cgroup_fs_context_free(struct fs_context *fc)
2208 {
2209 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2210 
2211 	kfree(ctx->name);
2212 	kfree(ctx->release_agent);
2213 	put_cgroup_ns(ctx->ns);
2214 	kernfs_free_fs_context(fc);
2215 	kfree(ctx);
2216 }
2217 
2218 static int cgroup_get_tree(struct fs_context *fc)
2219 {
2220 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2221 	int ret;
2222 
2223 	WRITE_ONCE(cgrp_dfl_visible, true);
2224 	cgroup_get_live(&cgrp_dfl_root.cgrp);
2225 	ctx->root = &cgrp_dfl_root;
2226 
2227 	ret = cgroup_do_get_tree(fc);
2228 	if (!ret)
2229 		apply_cgroup_root_flags(ctx->flags);
2230 	return ret;
2231 }
2232 
2233 static const struct fs_context_operations cgroup_fs_context_ops = {
2234 	.free		= cgroup_fs_context_free,
2235 	.parse_param	= cgroup2_parse_param,
2236 	.get_tree	= cgroup_get_tree,
2237 	.reconfigure	= cgroup_reconfigure,
2238 };
2239 
2240 static const struct fs_context_operations cgroup1_fs_context_ops = {
2241 	.free		= cgroup_fs_context_free,
2242 	.parse_param	= cgroup1_parse_param,
2243 	.get_tree	= cgroup1_get_tree,
2244 	.reconfigure	= cgroup1_reconfigure,
2245 };
2246 
2247 /*
2248  * Initialise the cgroup filesystem creation/reconfiguration context.  Notably,
2249  * we select the namespace we're going to use.
2250  */
2251 static int cgroup_init_fs_context(struct fs_context *fc)
2252 {
2253 	struct cgroup_fs_context *ctx;
2254 
2255 	ctx = kzalloc(sizeof(struct cgroup_fs_context), GFP_KERNEL);
2256 	if (!ctx)
2257 		return -ENOMEM;
2258 
2259 	ctx->ns = current->nsproxy->cgroup_ns;
2260 	get_cgroup_ns(ctx->ns);
2261 	fc->fs_private = &ctx->kfc;
2262 	if (fc->fs_type == &cgroup2_fs_type)
2263 		fc->ops = &cgroup_fs_context_ops;
2264 	else
2265 		fc->ops = &cgroup1_fs_context_ops;
2266 	put_user_ns(fc->user_ns);
2267 	fc->user_ns = get_user_ns(ctx->ns->user_ns);
2268 	fc->global = true;
2269 
2270 #ifdef CONFIG_CGROUP_FAVOR_DYNMODS
2271 	ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS;
2272 #endif
2273 	return 0;
2274 }
2275 
2276 static void cgroup_kill_sb(struct super_block *sb)
2277 {
2278 	struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2279 	struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2280 
2281 	/*
2282 	 * If @root doesn't have any children, start killing it.
2283 	 * This prevents new mounts by disabling percpu_ref_tryget_live().
2284 	 *
2285 	 * And don't kill the default root.
2286 	 */
2287 	if (list_empty(&root->cgrp.self.children) && root != &cgrp_dfl_root &&
2288 	    !percpu_ref_is_dying(&root->cgrp.self.refcnt)) {
2289 		cgroup_bpf_offline(&root->cgrp);
2290 		percpu_ref_kill(&root->cgrp.self.refcnt);
2291 	}
2292 	cgroup_put(&root->cgrp);
2293 	kernfs_kill_sb(sb);
2294 }
2295 
2296 struct file_system_type cgroup_fs_type = {
2297 	.name			= "cgroup",
2298 	.init_fs_context	= cgroup_init_fs_context,
2299 	.parameters		= cgroup1_fs_parameters,
2300 	.kill_sb		= cgroup_kill_sb,
2301 	.fs_flags		= FS_USERNS_MOUNT,
2302 };
2303 
2304 static struct file_system_type cgroup2_fs_type = {
2305 	.name			= "cgroup2",
2306 	.init_fs_context	= cgroup_init_fs_context,
2307 	.parameters		= cgroup2_fs_parameters,
2308 	.kill_sb		= cgroup_kill_sb,
2309 	.fs_flags		= FS_USERNS_MOUNT,
2310 };
2311 
2312 #ifdef CONFIG_CPUSETS
2313 static const struct fs_context_operations cpuset_fs_context_ops = {
2314 	.get_tree	= cgroup1_get_tree,
2315 	.free		= cgroup_fs_context_free,
2316 };
2317 
2318 /*
2319  * This is ugly, but preserves the userspace API for existing cpuset
2320  * users. If someone tries to mount the "cpuset" filesystem, we
2321  * silently switch it to mount "cgroup" instead
2322  */
2323 static int cpuset_init_fs_context(struct fs_context *fc)
2324 {
2325 	char *agent = kstrdup("/sbin/cpuset_release_agent", GFP_USER);
2326 	struct cgroup_fs_context *ctx;
2327 	int err;
2328 
2329 	err = cgroup_init_fs_context(fc);
2330 	if (err) {
2331 		kfree(agent);
2332 		return err;
2333 	}
2334 
2335 	fc->ops = &cpuset_fs_context_ops;
2336 
2337 	ctx = cgroup_fc2context(fc);
2338 	ctx->subsys_mask = 1 << cpuset_cgrp_id;
2339 	ctx->flags |= CGRP_ROOT_NOPREFIX;
2340 	ctx->release_agent = agent;
2341 
2342 	get_filesystem(&cgroup_fs_type);
2343 	put_filesystem(fc->fs_type);
2344 	fc->fs_type = &cgroup_fs_type;
2345 
2346 	return 0;
2347 }
2348 
2349 static struct file_system_type cpuset_fs_type = {
2350 	.name			= "cpuset",
2351 	.init_fs_context	= cpuset_init_fs_context,
2352 	.fs_flags		= FS_USERNS_MOUNT,
2353 };
2354 #endif
2355 
2356 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
2357 			  struct cgroup_namespace *ns)
2358 {
2359 	struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
2360 
2361 	return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
2362 }
2363 
2364 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
2365 		   struct cgroup_namespace *ns)
2366 {
2367 	int ret;
2368 
2369 	cgroup_lock();
2370 	spin_lock_irq(&css_set_lock);
2371 
2372 	ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
2373 
2374 	spin_unlock_irq(&css_set_lock);
2375 	cgroup_unlock();
2376 
2377 	return ret;
2378 }
2379 EXPORT_SYMBOL_GPL(cgroup_path_ns);
2380 
2381 /**
2382  * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
2383  * @task: target task
2384  * @buf: the buffer to write the path into
2385  * @buflen: the length of the buffer
2386  *
2387  * Determine @task's cgroup on the first (the one with the lowest non-zero
2388  * hierarchy_id) cgroup hierarchy and copy its path into @buf.  This
2389  * function grabs cgroup_mutex and shouldn't be used inside locks used by
2390  * cgroup controller callbacks.
2391  *
2392  * Return value is the same as kernfs_path().
2393  */
2394 int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
2395 {
2396 	struct cgroup_root *root;
2397 	struct cgroup *cgrp;
2398 	int hierarchy_id = 1;
2399 	int ret;
2400 
2401 	cgroup_lock();
2402 	spin_lock_irq(&css_set_lock);
2403 
2404 	root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2405 
2406 	if (root) {
2407 		cgrp = task_cgroup_from_root(task, root);
2408 		ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns);
2409 	} else {
2410 		/* if no hierarchy exists, everyone is in "/" */
2411 		ret = strscpy(buf, "/", buflen);
2412 	}
2413 
2414 	spin_unlock_irq(&css_set_lock);
2415 	cgroup_unlock();
2416 	return ret;
2417 }
2418 EXPORT_SYMBOL_GPL(task_cgroup_path);
2419 
2420 /**
2421  * cgroup_attach_lock - Lock for ->attach()
2422  * @lock_threadgroup: whether to down_write cgroup_threadgroup_rwsem
2423  *
2424  * cgroup migration sometimes needs to stabilize threadgroups against forks and
2425  * exits by write-locking cgroup_threadgroup_rwsem. However, some ->attach()
2426  * implementations (e.g. cpuset), also need to disable CPU hotplug.
2427  * Unfortunately, letting ->attach() operations acquire cpus_read_lock() can
2428  * lead to deadlocks.
2429  *
2430  * Bringing up a CPU may involve creating and destroying tasks which requires
2431  * read-locking threadgroup_rwsem, so threadgroup_rwsem nests inside
2432  * cpus_read_lock(). If we call an ->attach() which acquires the cpus lock while
2433  * write-locking threadgroup_rwsem, the locking order is reversed and we end up
2434  * waiting for an on-going CPU hotplug operation which in turn is waiting for
2435  * the threadgroup_rwsem to be released to create new tasks. For more details:
2436  *
2437  *   http://lkml.kernel.org/r/20220711174629.uehfmqegcwn2lqzu@wubuntu
2438  *
2439  * Resolve the situation by always acquiring cpus_read_lock() before optionally
2440  * write-locking cgroup_threadgroup_rwsem. This allows ->attach() to assume that
2441  * CPU hotplug is disabled on entry.
2442  */
2443 void cgroup_attach_lock(bool lock_threadgroup)
2444 {
2445 	cpus_read_lock();
2446 	if (lock_threadgroup)
2447 		percpu_down_write(&cgroup_threadgroup_rwsem);
2448 }
2449 
2450 /**
2451  * cgroup_attach_unlock - Undo cgroup_attach_lock()
2452  * @lock_threadgroup: whether to up_write cgroup_threadgroup_rwsem
2453  */
2454 void cgroup_attach_unlock(bool lock_threadgroup)
2455 {
2456 	if (lock_threadgroup)
2457 		percpu_up_write(&cgroup_threadgroup_rwsem);
2458 	cpus_read_unlock();
2459 }
2460 
2461 /**
2462  * cgroup_migrate_add_task - add a migration target task to a migration context
2463  * @task: target task
2464  * @mgctx: target migration context
2465  *
2466  * Add @task, which is a migration target, to @mgctx->tset.  This function
2467  * becomes noop if @task doesn't need to be migrated.  @task's css_set
2468  * should have been added as a migration source and @task->cg_list will be
2469  * moved from the css_set's tasks list to mg_tasks one.
2470  */
2471 static void cgroup_migrate_add_task(struct task_struct *task,
2472 				    struct cgroup_mgctx *mgctx)
2473 {
2474 	struct css_set *cset;
2475 
2476 	lockdep_assert_held(&css_set_lock);
2477 
2478 	/* @task either already exited or can't exit until the end */
2479 	if (task->flags & PF_EXITING)
2480 		return;
2481 
2482 	/* cgroup_threadgroup_rwsem protects racing against forks */
2483 	WARN_ON_ONCE(list_empty(&task->cg_list));
2484 
2485 	cset = task_css_set(task);
2486 	if (!cset->mg_src_cgrp)
2487 		return;
2488 
2489 	mgctx->tset.nr_tasks++;
2490 
2491 	list_move_tail(&task->cg_list, &cset->mg_tasks);
2492 	if (list_empty(&cset->mg_node))
2493 		list_add_tail(&cset->mg_node,
2494 			      &mgctx->tset.src_csets);
2495 	if (list_empty(&cset->mg_dst_cset->mg_node))
2496 		list_add_tail(&cset->mg_dst_cset->mg_node,
2497 			      &mgctx->tset.dst_csets);
2498 }
2499 
2500 /**
2501  * cgroup_taskset_first - reset taskset and return the first task
2502  * @tset: taskset of interest
2503  * @dst_cssp: output variable for the destination css
2504  *
2505  * @tset iteration is initialized and the first task is returned.
2506  */
2507 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2508 					 struct cgroup_subsys_state **dst_cssp)
2509 {
2510 	tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2511 	tset->cur_task = NULL;
2512 
2513 	return cgroup_taskset_next(tset, dst_cssp);
2514 }
2515 
2516 /**
2517  * cgroup_taskset_next - iterate to the next task in taskset
2518  * @tset: taskset of interest
2519  * @dst_cssp: output variable for the destination css
2520  *
2521  * Return the next task in @tset.  Iteration must have been initialized
2522  * with cgroup_taskset_first().
2523  */
2524 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2525 					struct cgroup_subsys_state **dst_cssp)
2526 {
2527 	struct css_set *cset = tset->cur_cset;
2528 	struct task_struct *task = tset->cur_task;
2529 
2530 	while (CGROUP_HAS_SUBSYS_CONFIG && &cset->mg_node != tset->csets) {
2531 		if (!task)
2532 			task = list_first_entry(&cset->mg_tasks,
2533 						struct task_struct, cg_list);
2534 		else
2535 			task = list_next_entry(task, cg_list);
2536 
2537 		if (&task->cg_list != &cset->mg_tasks) {
2538 			tset->cur_cset = cset;
2539 			tset->cur_task = task;
2540 
2541 			/*
2542 			 * This function may be called both before and
2543 			 * after cgroup_taskset_migrate().  The two cases
2544 			 * can be distinguished by looking at whether @cset
2545 			 * has its ->mg_dst_cset set.
2546 			 */
2547 			if (cset->mg_dst_cset)
2548 				*dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2549 			else
2550 				*dst_cssp = cset->subsys[tset->ssid];
2551 
2552 			return task;
2553 		}
2554 
2555 		cset = list_next_entry(cset, mg_node);
2556 		task = NULL;
2557 	}
2558 
2559 	return NULL;
2560 }
2561 
2562 /**
2563  * cgroup_migrate_execute - migrate a taskset
2564  * @mgctx: migration context
2565  *
2566  * Migrate tasks in @mgctx as setup by migration preparation functions.
2567  * This function fails iff one of the ->can_attach callbacks fails and
2568  * guarantees that either all or none of the tasks in @mgctx are migrated.
2569  * @mgctx is consumed regardless of success.
2570  */
2571 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx)
2572 {
2573 	struct cgroup_taskset *tset = &mgctx->tset;
2574 	struct cgroup_subsys *ss;
2575 	struct task_struct *task, *tmp_task;
2576 	struct css_set *cset, *tmp_cset;
2577 	int ssid, failed_ssid, ret;
2578 
2579 	/* check that we can legitimately attach to the cgroup */
2580 	if (tset->nr_tasks) {
2581 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2582 			if (ss->can_attach) {
2583 				tset->ssid = ssid;
2584 				ret = ss->can_attach(tset);
2585 				if (ret) {
2586 					failed_ssid = ssid;
2587 					goto out_cancel_attach;
2588 				}
2589 			}
2590 		} while_each_subsys_mask();
2591 	}
2592 
2593 	/*
2594 	 * Now that we're guaranteed success, proceed to move all tasks to
2595 	 * the new cgroup.  There are no failure cases after here, so this
2596 	 * is the commit point.
2597 	 */
2598 	spin_lock_irq(&css_set_lock);
2599 	list_for_each_entry(cset, &tset->src_csets, mg_node) {
2600 		list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2601 			struct css_set *from_cset = task_css_set(task);
2602 			struct css_set *to_cset = cset->mg_dst_cset;
2603 
2604 			get_css_set(to_cset);
2605 			to_cset->nr_tasks++;
2606 			css_set_move_task(task, from_cset, to_cset, true);
2607 			from_cset->nr_tasks--;
2608 			/*
2609 			 * If the source or destination cgroup is frozen,
2610 			 * the task might require to change its state.
2611 			 */
2612 			cgroup_freezer_migrate_task(task, from_cset->dfl_cgrp,
2613 						    to_cset->dfl_cgrp);
2614 			put_css_set_locked(from_cset);
2615 
2616 		}
2617 	}
2618 	spin_unlock_irq(&css_set_lock);
2619 
2620 	/*
2621 	 * Migration is committed, all target tasks are now on dst_csets.
2622 	 * Nothing is sensitive to fork() after this point.  Notify
2623 	 * controllers that migration is complete.
2624 	 */
2625 	tset->csets = &tset->dst_csets;
2626 
2627 	if (tset->nr_tasks) {
2628 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2629 			if (ss->attach) {
2630 				tset->ssid = ssid;
2631 				ss->attach(tset);
2632 			}
2633 		} while_each_subsys_mask();
2634 	}
2635 
2636 	ret = 0;
2637 	goto out_release_tset;
2638 
2639 out_cancel_attach:
2640 	if (tset->nr_tasks) {
2641 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2642 			if (ssid == failed_ssid)
2643 				break;
2644 			if (ss->cancel_attach) {
2645 				tset->ssid = ssid;
2646 				ss->cancel_attach(tset);
2647 			}
2648 		} while_each_subsys_mask();
2649 	}
2650 out_release_tset:
2651 	spin_lock_irq(&css_set_lock);
2652 	list_splice_init(&tset->dst_csets, &tset->src_csets);
2653 	list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2654 		list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2655 		list_del_init(&cset->mg_node);
2656 	}
2657 	spin_unlock_irq(&css_set_lock);
2658 
2659 	/*
2660 	 * Re-initialize the cgroup_taskset structure in case it is reused
2661 	 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute()
2662 	 * iteration.
2663 	 */
2664 	tset->nr_tasks = 0;
2665 	tset->csets    = &tset->src_csets;
2666 	return ret;
2667 }
2668 
2669 /**
2670  * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination
2671  * @dst_cgrp: destination cgroup to test
2672  *
2673  * On the default hierarchy, except for the mixable, (possible) thread root
2674  * and threaded cgroups, subtree_control must be zero for migration
2675  * destination cgroups with tasks so that child cgroups don't compete
2676  * against tasks.
2677  */
2678 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp)
2679 {
2680 	/* v1 doesn't have any restriction */
2681 	if (!cgroup_on_dfl(dst_cgrp))
2682 		return 0;
2683 
2684 	/* verify @dst_cgrp can host resources */
2685 	if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp))
2686 		return -EOPNOTSUPP;
2687 
2688 	/*
2689 	 * If @dst_cgrp is already or can become a thread root or is
2690 	 * threaded, it doesn't matter.
2691 	 */
2692 	if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp))
2693 		return 0;
2694 
2695 	/* apply no-internal-process constraint */
2696 	if (dst_cgrp->subtree_control)
2697 		return -EBUSY;
2698 
2699 	return 0;
2700 }
2701 
2702 /**
2703  * cgroup_migrate_finish - cleanup after attach
2704  * @mgctx: migration context
2705  *
2706  * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst().  See
2707  * those functions for details.
2708  */
2709 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx)
2710 {
2711 	struct css_set *cset, *tmp_cset;
2712 
2713 	lockdep_assert_held(&cgroup_mutex);
2714 
2715 	spin_lock_irq(&css_set_lock);
2716 
2717 	list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_src_csets,
2718 				 mg_src_preload_node) {
2719 		cset->mg_src_cgrp = NULL;
2720 		cset->mg_dst_cgrp = NULL;
2721 		cset->mg_dst_cset = NULL;
2722 		list_del_init(&cset->mg_src_preload_node);
2723 		put_css_set_locked(cset);
2724 	}
2725 
2726 	list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_dst_csets,
2727 				 mg_dst_preload_node) {
2728 		cset->mg_src_cgrp = NULL;
2729 		cset->mg_dst_cgrp = NULL;
2730 		cset->mg_dst_cset = NULL;
2731 		list_del_init(&cset->mg_dst_preload_node);
2732 		put_css_set_locked(cset);
2733 	}
2734 
2735 	spin_unlock_irq(&css_set_lock);
2736 }
2737 
2738 /**
2739  * cgroup_migrate_add_src - add a migration source css_set
2740  * @src_cset: the source css_set to add
2741  * @dst_cgrp: the destination cgroup
2742  * @mgctx: migration context
2743  *
2744  * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp.  Pin
2745  * @src_cset and add it to @mgctx->src_csets, which should later be cleaned
2746  * up by cgroup_migrate_finish().
2747  *
2748  * This function may be called without holding cgroup_threadgroup_rwsem
2749  * even if the target is a process.  Threads may be created and destroyed
2750  * but as long as cgroup_mutex is not dropped, no new css_set can be put
2751  * into play and the preloaded css_sets are guaranteed to cover all
2752  * migrations.
2753  */
2754 void cgroup_migrate_add_src(struct css_set *src_cset,
2755 			    struct cgroup *dst_cgrp,
2756 			    struct cgroup_mgctx *mgctx)
2757 {
2758 	struct cgroup *src_cgrp;
2759 
2760 	lockdep_assert_held(&cgroup_mutex);
2761 	lockdep_assert_held(&css_set_lock);
2762 
2763 	/*
2764 	 * If ->dead, @src_set is associated with one or more dead cgroups
2765 	 * and doesn't contain any migratable tasks.  Ignore it early so
2766 	 * that the rest of migration path doesn't get confused by it.
2767 	 */
2768 	if (src_cset->dead)
2769 		return;
2770 
2771 	if (!list_empty(&src_cset->mg_src_preload_node))
2772 		return;
2773 
2774 	src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2775 
2776 	WARN_ON(src_cset->mg_src_cgrp);
2777 	WARN_ON(src_cset->mg_dst_cgrp);
2778 	WARN_ON(!list_empty(&src_cset->mg_tasks));
2779 	WARN_ON(!list_empty(&src_cset->mg_node));
2780 
2781 	src_cset->mg_src_cgrp = src_cgrp;
2782 	src_cset->mg_dst_cgrp = dst_cgrp;
2783 	get_css_set(src_cset);
2784 	list_add_tail(&src_cset->mg_src_preload_node, &mgctx->preloaded_src_csets);
2785 }
2786 
2787 /**
2788  * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2789  * @mgctx: migration context
2790  *
2791  * Tasks are about to be moved and all the source css_sets have been
2792  * preloaded to @mgctx->preloaded_src_csets.  This function looks up and
2793  * pins all destination css_sets, links each to its source, and append them
2794  * to @mgctx->preloaded_dst_csets.
2795  *
2796  * This function must be called after cgroup_migrate_add_src() has been
2797  * called on each migration source css_set.  After migration is performed
2798  * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2799  * @mgctx.
2800  */
2801 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx)
2802 {
2803 	struct css_set *src_cset, *tmp_cset;
2804 
2805 	lockdep_assert_held(&cgroup_mutex);
2806 
2807 	/* look up the dst cset for each src cset and link it to src */
2808 	list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets,
2809 				 mg_src_preload_node) {
2810 		struct css_set *dst_cset;
2811 		struct cgroup_subsys *ss;
2812 		int ssid;
2813 
2814 		dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
2815 		if (!dst_cset)
2816 			return -ENOMEM;
2817 
2818 		WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2819 
2820 		/*
2821 		 * If src cset equals dst, it's noop.  Drop the src.
2822 		 * cgroup_migrate() will skip the cset too.  Note that we
2823 		 * can't handle src == dst as some nodes are used by both.
2824 		 */
2825 		if (src_cset == dst_cset) {
2826 			src_cset->mg_src_cgrp = NULL;
2827 			src_cset->mg_dst_cgrp = NULL;
2828 			list_del_init(&src_cset->mg_src_preload_node);
2829 			put_css_set(src_cset);
2830 			put_css_set(dst_cset);
2831 			continue;
2832 		}
2833 
2834 		src_cset->mg_dst_cset = dst_cset;
2835 
2836 		if (list_empty(&dst_cset->mg_dst_preload_node))
2837 			list_add_tail(&dst_cset->mg_dst_preload_node,
2838 				      &mgctx->preloaded_dst_csets);
2839 		else
2840 			put_css_set(dst_cset);
2841 
2842 		for_each_subsys(ss, ssid)
2843 			if (src_cset->subsys[ssid] != dst_cset->subsys[ssid])
2844 				mgctx->ss_mask |= 1 << ssid;
2845 	}
2846 
2847 	return 0;
2848 }
2849 
2850 /**
2851  * cgroup_migrate - migrate a process or task to a cgroup
2852  * @leader: the leader of the process or the task to migrate
2853  * @threadgroup: whether @leader points to the whole process or a single task
2854  * @mgctx: migration context
2855  *
2856  * Migrate a process or task denoted by @leader.  If migrating a process,
2857  * the caller must be holding cgroup_threadgroup_rwsem.  The caller is also
2858  * responsible for invoking cgroup_migrate_add_src() and
2859  * cgroup_migrate_prepare_dst() on the targets before invoking this
2860  * function and following up with cgroup_migrate_finish().
2861  *
2862  * As long as a controller's ->can_attach() doesn't fail, this function is
2863  * guaranteed to succeed.  This means that, excluding ->can_attach()
2864  * failure, when migrating multiple targets, the success or failure can be
2865  * decided for all targets by invoking group_migrate_prepare_dst() before
2866  * actually starting migrating.
2867  */
2868 int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2869 		   struct cgroup_mgctx *mgctx)
2870 {
2871 	struct task_struct *task;
2872 
2873 	/*
2874 	 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2875 	 * already PF_EXITING could be freed from underneath us unless we
2876 	 * take an rcu_read_lock.
2877 	 */
2878 	spin_lock_irq(&css_set_lock);
2879 	task = leader;
2880 	do {
2881 		cgroup_migrate_add_task(task, mgctx);
2882 		if (!threadgroup)
2883 			break;
2884 	} while_each_thread(leader, task);
2885 	spin_unlock_irq(&css_set_lock);
2886 
2887 	return cgroup_migrate_execute(mgctx);
2888 }
2889 
2890 /**
2891  * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2892  * @dst_cgrp: the cgroup to attach to
2893  * @leader: the task or the leader of the threadgroup to be attached
2894  * @threadgroup: attach the whole threadgroup?
2895  *
2896  * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2897  */
2898 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader,
2899 		       bool threadgroup)
2900 {
2901 	DEFINE_CGROUP_MGCTX(mgctx);
2902 	struct task_struct *task;
2903 	int ret = 0;
2904 
2905 	/* look up all src csets */
2906 	spin_lock_irq(&css_set_lock);
2907 	rcu_read_lock();
2908 	task = leader;
2909 	do {
2910 		cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx);
2911 		if (!threadgroup)
2912 			break;
2913 	} while_each_thread(leader, task);
2914 	rcu_read_unlock();
2915 	spin_unlock_irq(&css_set_lock);
2916 
2917 	/* prepare dst csets and commit */
2918 	ret = cgroup_migrate_prepare_dst(&mgctx);
2919 	if (!ret)
2920 		ret = cgroup_migrate(leader, threadgroup, &mgctx);
2921 
2922 	cgroup_migrate_finish(&mgctx);
2923 
2924 	if (!ret)
2925 		TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup);
2926 
2927 	return ret;
2928 }
2929 
2930 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup,
2931 					     bool *threadgroup_locked)
2932 {
2933 	struct task_struct *tsk;
2934 	pid_t pid;
2935 
2936 	if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2937 		return ERR_PTR(-EINVAL);
2938 
2939 	/*
2940 	 * If we migrate a single thread, we don't care about threadgroup
2941 	 * stability. If the thread is `current`, it won't exit(2) under our
2942 	 * hands or change PID through exec(2). We exclude
2943 	 * cgroup_update_dfl_csses and other cgroup_{proc,thread}s_write
2944 	 * callers by cgroup_mutex.
2945 	 * Therefore, we can skip the global lock.
2946 	 */
2947 	lockdep_assert_held(&cgroup_mutex);
2948 	*threadgroup_locked = pid || threadgroup;
2949 	cgroup_attach_lock(*threadgroup_locked);
2950 
2951 	rcu_read_lock();
2952 	if (pid) {
2953 		tsk = find_task_by_vpid(pid);
2954 		if (!tsk) {
2955 			tsk = ERR_PTR(-ESRCH);
2956 			goto out_unlock_threadgroup;
2957 		}
2958 	} else {
2959 		tsk = current;
2960 	}
2961 
2962 	if (threadgroup)
2963 		tsk = tsk->group_leader;
2964 
2965 	/*
2966 	 * kthreads may acquire PF_NO_SETAFFINITY during initialization.
2967 	 * If userland migrates such a kthread to a non-root cgroup, it can
2968 	 * become trapped in a cpuset, or RT kthread may be born in a
2969 	 * cgroup with no rt_runtime allocated.  Just say no.
2970 	 */
2971 	if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) {
2972 		tsk = ERR_PTR(-EINVAL);
2973 		goto out_unlock_threadgroup;
2974 	}
2975 
2976 	get_task_struct(tsk);
2977 	goto out_unlock_rcu;
2978 
2979 out_unlock_threadgroup:
2980 	cgroup_attach_unlock(*threadgroup_locked);
2981 	*threadgroup_locked = false;
2982 out_unlock_rcu:
2983 	rcu_read_unlock();
2984 	return tsk;
2985 }
2986 
2987 void cgroup_procs_write_finish(struct task_struct *task, bool threadgroup_locked)
2988 {
2989 	struct cgroup_subsys *ss;
2990 	int ssid;
2991 
2992 	/* release reference from cgroup_procs_write_start() */
2993 	put_task_struct(task);
2994 
2995 	cgroup_attach_unlock(threadgroup_locked);
2996 
2997 	for_each_subsys(ss, ssid)
2998 		if (ss->post_attach)
2999 			ss->post_attach();
3000 }
3001 
3002 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
3003 {
3004 	struct cgroup_subsys *ss;
3005 	bool printed = false;
3006 	int ssid;
3007 
3008 	do_each_subsys_mask(ss, ssid, ss_mask) {
3009 		if (printed)
3010 			seq_putc(seq, ' ');
3011 		seq_puts(seq, ss->name);
3012 		printed = true;
3013 	} while_each_subsys_mask();
3014 	if (printed)
3015 		seq_putc(seq, '\n');
3016 }
3017 
3018 /* show controllers which are enabled from the parent */
3019 static int cgroup_controllers_show(struct seq_file *seq, void *v)
3020 {
3021 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3022 
3023 	cgroup_print_ss_mask(seq, cgroup_control(cgrp));
3024 	return 0;
3025 }
3026 
3027 /* show controllers which are enabled for a given cgroup's children */
3028 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
3029 {
3030 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3031 
3032 	cgroup_print_ss_mask(seq, cgrp->subtree_control);
3033 	return 0;
3034 }
3035 
3036 /**
3037  * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
3038  * @cgrp: root of the subtree to update csses for
3039  *
3040  * @cgrp's control masks have changed and its subtree's css associations
3041  * need to be updated accordingly.  This function looks up all css_sets
3042  * which are attached to the subtree, creates the matching updated css_sets
3043  * and migrates the tasks to the new ones.
3044  */
3045 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
3046 {
3047 	DEFINE_CGROUP_MGCTX(mgctx);
3048 	struct cgroup_subsys_state *d_css;
3049 	struct cgroup *dsct;
3050 	struct css_set *src_cset;
3051 	bool has_tasks;
3052 	int ret;
3053 
3054 	lockdep_assert_held(&cgroup_mutex);
3055 
3056 	/* look up all csses currently attached to @cgrp's subtree */
3057 	spin_lock_irq(&css_set_lock);
3058 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3059 		struct cgrp_cset_link *link;
3060 
3061 		/*
3062 		 * As cgroup_update_dfl_csses() is only called by
3063 		 * cgroup_apply_control(). The csses associated with the
3064 		 * given cgrp will not be affected by changes made to
3065 		 * its subtree_control file. We can skip them.
3066 		 */
3067 		if (dsct == cgrp)
3068 			continue;
3069 
3070 		list_for_each_entry(link, &dsct->cset_links, cset_link)
3071 			cgroup_migrate_add_src(link->cset, dsct, &mgctx);
3072 	}
3073 	spin_unlock_irq(&css_set_lock);
3074 
3075 	/*
3076 	 * We need to write-lock threadgroup_rwsem while migrating tasks.
3077 	 * However, if there are no source csets for @cgrp, changing its
3078 	 * controllers isn't gonna produce any task migrations and the
3079 	 * write-locking can be skipped safely.
3080 	 */
3081 	has_tasks = !list_empty(&mgctx.preloaded_src_csets);
3082 	cgroup_attach_lock(has_tasks);
3083 
3084 	/* NULL dst indicates self on default hierarchy */
3085 	ret = cgroup_migrate_prepare_dst(&mgctx);
3086 	if (ret)
3087 		goto out_finish;
3088 
3089 	spin_lock_irq(&css_set_lock);
3090 	list_for_each_entry(src_cset, &mgctx.preloaded_src_csets,
3091 			    mg_src_preload_node) {
3092 		struct task_struct *task, *ntask;
3093 
3094 		/* all tasks in src_csets need to be migrated */
3095 		list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
3096 			cgroup_migrate_add_task(task, &mgctx);
3097 	}
3098 	spin_unlock_irq(&css_set_lock);
3099 
3100 	ret = cgroup_migrate_execute(&mgctx);
3101 out_finish:
3102 	cgroup_migrate_finish(&mgctx);
3103 	cgroup_attach_unlock(has_tasks);
3104 	return ret;
3105 }
3106 
3107 /**
3108  * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
3109  * @cgrp: root of the target subtree
3110  *
3111  * Because css offlining is asynchronous, userland may try to re-enable a
3112  * controller while the previous css is still around.  This function grabs
3113  * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
3114  */
3115 void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
3116 	__acquires(&cgroup_mutex)
3117 {
3118 	struct cgroup *dsct;
3119 	struct cgroup_subsys_state *d_css;
3120 	struct cgroup_subsys *ss;
3121 	int ssid;
3122 
3123 restart:
3124 	cgroup_lock();
3125 
3126 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3127 		for_each_subsys(ss, ssid) {
3128 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3129 			DEFINE_WAIT(wait);
3130 
3131 			if (!css || !percpu_ref_is_dying(&css->refcnt))
3132 				continue;
3133 
3134 			cgroup_get_live(dsct);
3135 			prepare_to_wait(&dsct->offline_waitq, &wait,
3136 					TASK_UNINTERRUPTIBLE);
3137 
3138 			cgroup_unlock();
3139 			schedule();
3140 			finish_wait(&dsct->offline_waitq, &wait);
3141 
3142 			cgroup_put(dsct);
3143 			goto restart;
3144 		}
3145 	}
3146 }
3147 
3148 /**
3149  * cgroup_save_control - save control masks and dom_cgrp of a subtree
3150  * @cgrp: root of the target subtree
3151  *
3152  * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the
3153  * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3154  * itself.
3155  */
3156 static void cgroup_save_control(struct cgroup *cgrp)
3157 {
3158 	struct cgroup *dsct;
3159 	struct cgroup_subsys_state *d_css;
3160 
3161 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3162 		dsct->old_subtree_control = dsct->subtree_control;
3163 		dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
3164 		dsct->old_dom_cgrp = dsct->dom_cgrp;
3165 	}
3166 }
3167 
3168 /**
3169  * cgroup_propagate_control - refresh control masks of a subtree
3170  * @cgrp: root of the target subtree
3171  *
3172  * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
3173  * ->subtree_control and propagate controller availability through the
3174  * subtree so that descendants don't have unavailable controllers enabled.
3175  */
3176 static void cgroup_propagate_control(struct cgroup *cgrp)
3177 {
3178 	struct cgroup *dsct;
3179 	struct cgroup_subsys_state *d_css;
3180 
3181 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3182 		dsct->subtree_control &= cgroup_control(dsct);
3183 		dsct->subtree_ss_mask =
3184 			cgroup_calc_subtree_ss_mask(dsct->subtree_control,
3185 						    cgroup_ss_mask(dsct));
3186 	}
3187 }
3188 
3189 /**
3190  * cgroup_restore_control - restore control masks and dom_cgrp of a subtree
3191  * @cgrp: root of the target subtree
3192  *
3193  * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the
3194  * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3195  * itself.
3196  */
3197 static void cgroup_restore_control(struct cgroup *cgrp)
3198 {
3199 	struct cgroup *dsct;
3200 	struct cgroup_subsys_state *d_css;
3201 
3202 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3203 		dsct->subtree_control = dsct->old_subtree_control;
3204 		dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
3205 		dsct->dom_cgrp = dsct->old_dom_cgrp;
3206 	}
3207 }
3208 
3209 static bool css_visible(struct cgroup_subsys_state *css)
3210 {
3211 	struct cgroup_subsys *ss = css->ss;
3212 	struct cgroup *cgrp = css->cgroup;
3213 
3214 	if (cgroup_control(cgrp) & (1 << ss->id))
3215 		return true;
3216 	if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
3217 		return false;
3218 	return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
3219 }
3220 
3221 /**
3222  * cgroup_apply_control_enable - enable or show csses according to control
3223  * @cgrp: root of the target subtree
3224  *
3225  * Walk @cgrp's subtree and create new csses or make the existing ones
3226  * visible.  A css is created invisible if it's being implicitly enabled
3227  * through dependency.  An invisible css is made visible when the userland
3228  * explicitly enables it.
3229  *
3230  * Returns 0 on success, -errno on failure.  On failure, csses which have
3231  * been processed already aren't cleaned up.  The caller is responsible for
3232  * cleaning up with cgroup_apply_control_disable().
3233  */
3234 static int cgroup_apply_control_enable(struct cgroup *cgrp)
3235 {
3236 	struct cgroup *dsct;
3237 	struct cgroup_subsys_state *d_css;
3238 	struct cgroup_subsys *ss;
3239 	int ssid, ret;
3240 
3241 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3242 		for_each_subsys(ss, ssid) {
3243 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3244 
3245 			if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
3246 				continue;
3247 
3248 			if (!css) {
3249 				css = css_create(dsct, ss);
3250 				if (IS_ERR(css))
3251 					return PTR_ERR(css);
3252 			}
3253 
3254 			WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3255 
3256 			if (css_visible(css)) {
3257 				ret = css_populate_dir(css);
3258 				if (ret)
3259 					return ret;
3260 			}
3261 		}
3262 	}
3263 
3264 	return 0;
3265 }
3266 
3267 /**
3268  * cgroup_apply_control_disable - kill or hide csses according to control
3269  * @cgrp: root of the target subtree
3270  *
3271  * Walk @cgrp's subtree and kill and hide csses so that they match
3272  * cgroup_ss_mask() and cgroup_visible_mask().
3273  *
3274  * A css is hidden when the userland requests it to be disabled while other
3275  * subsystems are still depending on it.  The css must not actively control
3276  * resources and be in the vanilla state if it's made visible again later.
3277  * Controllers which may be depended upon should provide ->css_reset() for
3278  * this purpose.
3279  */
3280 static void cgroup_apply_control_disable(struct cgroup *cgrp)
3281 {
3282 	struct cgroup *dsct;
3283 	struct cgroup_subsys_state *d_css;
3284 	struct cgroup_subsys *ss;
3285 	int ssid;
3286 
3287 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3288 		for_each_subsys(ss, ssid) {
3289 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3290 
3291 			if (!css)
3292 				continue;
3293 
3294 			WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3295 
3296 			if (css->parent &&
3297 			    !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
3298 				kill_css(css);
3299 			} else if (!css_visible(css)) {
3300 				css_clear_dir(css);
3301 				if (ss->css_reset)
3302 					ss->css_reset(css);
3303 			}
3304 		}
3305 	}
3306 }
3307 
3308 /**
3309  * cgroup_apply_control - apply control mask updates to the subtree
3310  * @cgrp: root of the target subtree
3311  *
3312  * subsystems can be enabled and disabled in a subtree using the following
3313  * steps.
3314  *
3315  * 1. Call cgroup_save_control() to stash the current state.
3316  * 2. Update ->subtree_control masks in the subtree as desired.
3317  * 3. Call cgroup_apply_control() to apply the changes.
3318  * 4. Optionally perform other related operations.
3319  * 5. Call cgroup_finalize_control() to finish up.
3320  *
3321  * This function implements step 3 and propagates the mask changes
3322  * throughout @cgrp's subtree, updates csses accordingly and perform
3323  * process migrations.
3324  */
3325 static int cgroup_apply_control(struct cgroup *cgrp)
3326 {
3327 	int ret;
3328 
3329 	cgroup_propagate_control(cgrp);
3330 
3331 	ret = cgroup_apply_control_enable(cgrp);
3332 	if (ret)
3333 		return ret;
3334 
3335 	/*
3336 	 * At this point, cgroup_e_css_by_mask() results reflect the new csses
3337 	 * making the following cgroup_update_dfl_csses() properly update
3338 	 * css associations of all tasks in the subtree.
3339 	 */
3340 	return cgroup_update_dfl_csses(cgrp);
3341 }
3342 
3343 /**
3344  * cgroup_finalize_control - finalize control mask update
3345  * @cgrp: root of the target subtree
3346  * @ret: the result of the update
3347  *
3348  * Finalize control mask update.  See cgroup_apply_control() for more info.
3349  */
3350 static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
3351 {
3352 	if (ret) {
3353 		cgroup_restore_control(cgrp);
3354 		cgroup_propagate_control(cgrp);
3355 	}
3356 
3357 	cgroup_apply_control_disable(cgrp);
3358 }
3359 
3360 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable)
3361 {
3362 	u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask;
3363 
3364 	/* if nothing is getting enabled, nothing to worry about */
3365 	if (!enable)
3366 		return 0;
3367 
3368 	/* can @cgrp host any resources? */
3369 	if (!cgroup_is_valid_domain(cgrp->dom_cgrp))
3370 		return -EOPNOTSUPP;
3371 
3372 	/* mixables don't care */
3373 	if (cgroup_is_mixable(cgrp))
3374 		return 0;
3375 
3376 	if (domain_enable) {
3377 		/* can't enable domain controllers inside a thread subtree */
3378 		if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3379 			return -EOPNOTSUPP;
3380 	} else {
3381 		/*
3382 		 * Threaded controllers can handle internal competitions
3383 		 * and are always allowed inside a (prospective) thread
3384 		 * subtree.
3385 		 */
3386 		if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3387 			return 0;
3388 	}
3389 
3390 	/*
3391 	 * Controllers can't be enabled for a cgroup with tasks to avoid
3392 	 * child cgroups competing against tasks.
3393 	 */
3394 	if (cgroup_has_tasks(cgrp))
3395 		return -EBUSY;
3396 
3397 	return 0;
3398 }
3399 
3400 /* change the enabled child controllers for a cgroup in the default hierarchy */
3401 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3402 					    char *buf, size_t nbytes,
3403 					    loff_t off)
3404 {
3405 	u16 enable = 0, disable = 0;
3406 	struct cgroup *cgrp, *child;
3407 	struct cgroup_subsys *ss;
3408 	char *tok;
3409 	int ssid, ret;
3410 
3411 	/*
3412 	 * Parse input - space separated list of subsystem names prefixed
3413 	 * with either + or -.
3414 	 */
3415 	buf = strstrip(buf);
3416 	while ((tok = strsep(&buf, " "))) {
3417 		if (tok[0] == '\0')
3418 			continue;
3419 		do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
3420 			if (!cgroup_ssid_enabled(ssid) ||
3421 			    strcmp(tok + 1, ss->name))
3422 				continue;
3423 
3424 			if (*tok == '+') {
3425 				enable |= 1 << ssid;
3426 				disable &= ~(1 << ssid);
3427 			} else if (*tok == '-') {
3428 				disable |= 1 << ssid;
3429 				enable &= ~(1 << ssid);
3430 			} else {
3431 				return -EINVAL;
3432 			}
3433 			break;
3434 		} while_each_subsys_mask();
3435 		if (ssid == CGROUP_SUBSYS_COUNT)
3436 			return -EINVAL;
3437 	}
3438 
3439 	cgrp = cgroup_kn_lock_live(of->kn, true);
3440 	if (!cgrp)
3441 		return -ENODEV;
3442 
3443 	for_each_subsys(ss, ssid) {
3444 		if (enable & (1 << ssid)) {
3445 			if (cgrp->subtree_control & (1 << ssid)) {
3446 				enable &= ~(1 << ssid);
3447 				continue;
3448 			}
3449 
3450 			if (!(cgroup_control(cgrp) & (1 << ssid))) {
3451 				ret = -ENOENT;
3452 				goto out_unlock;
3453 			}
3454 		} else if (disable & (1 << ssid)) {
3455 			if (!(cgrp->subtree_control & (1 << ssid))) {
3456 				disable &= ~(1 << ssid);
3457 				continue;
3458 			}
3459 
3460 			/* a child has it enabled? */
3461 			cgroup_for_each_live_child(child, cgrp) {
3462 				if (child->subtree_control & (1 << ssid)) {
3463 					ret = -EBUSY;
3464 					goto out_unlock;
3465 				}
3466 			}
3467 		}
3468 	}
3469 
3470 	if (!enable && !disable) {
3471 		ret = 0;
3472 		goto out_unlock;
3473 	}
3474 
3475 	ret = cgroup_vet_subtree_control_enable(cgrp, enable);
3476 	if (ret)
3477 		goto out_unlock;
3478 
3479 	/* save and update control masks and prepare csses */
3480 	cgroup_save_control(cgrp);
3481 
3482 	cgrp->subtree_control |= enable;
3483 	cgrp->subtree_control &= ~disable;
3484 
3485 	ret = cgroup_apply_control(cgrp);
3486 	cgroup_finalize_control(cgrp, ret);
3487 	if (ret)
3488 		goto out_unlock;
3489 
3490 	kernfs_activate(cgrp->kn);
3491 out_unlock:
3492 	cgroup_kn_unlock(of->kn);
3493 	return ret ?: nbytes;
3494 }
3495 
3496 /**
3497  * cgroup_enable_threaded - make @cgrp threaded
3498  * @cgrp: the target cgroup
3499  *
3500  * Called when "threaded" is written to the cgroup.type interface file and
3501  * tries to make @cgrp threaded and join the parent's resource domain.
3502  * This function is never called on the root cgroup as cgroup.type doesn't
3503  * exist on it.
3504  */
3505 static int cgroup_enable_threaded(struct cgroup *cgrp)
3506 {
3507 	struct cgroup *parent = cgroup_parent(cgrp);
3508 	struct cgroup *dom_cgrp = parent->dom_cgrp;
3509 	struct cgroup *dsct;
3510 	struct cgroup_subsys_state *d_css;
3511 	int ret;
3512 
3513 	lockdep_assert_held(&cgroup_mutex);
3514 
3515 	/* noop if already threaded */
3516 	if (cgroup_is_threaded(cgrp))
3517 		return 0;
3518 
3519 	/*
3520 	 * If @cgroup is populated or has domain controllers enabled, it
3521 	 * can't be switched.  While the below cgroup_can_be_thread_root()
3522 	 * test can catch the same conditions, that's only when @parent is
3523 	 * not mixable, so let's check it explicitly.
3524 	 */
3525 	if (cgroup_is_populated(cgrp) ||
3526 	    cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
3527 		return -EOPNOTSUPP;
3528 
3529 	/* we're joining the parent's domain, ensure its validity */
3530 	if (!cgroup_is_valid_domain(dom_cgrp) ||
3531 	    !cgroup_can_be_thread_root(dom_cgrp))
3532 		return -EOPNOTSUPP;
3533 
3534 	/*
3535 	 * The following shouldn't cause actual migrations and should
3536 	 * always succeed.
3537 	 */
3538 	cgroup_save_control(cgrp);
3539 
3540 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)
3541 		if (dsct == cgrp || cgroup_is_threaded(dsct))
3542 			dsct->dom_cgrp = dom_cgrp;
3543 
3544 	ret = cgroup_apply_control(cgrp);
3545 	if (!ret)
3546 		parent->nr_threaded_children++;
3547 
3548 	cgroup_finalize_control(cgrp, ret);
3549 	return ret;
3550 }
3551 
3552 static int cgroup_type_show(struct seq_file *seq, void *v)
3553 {
3554 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3555 
3556 	if (cgroup_is_threaded(cgrp))
3557 		seq_puts(seq, "threaded\n");
3558 	else if (!cgroup_is_valid_domain(cgrp))
3559 		seq_puts(seq, "domain invalid\n");
3560 	else if (cgroup_is_thread_root(cgrp))
3561 		seq_puts(seq, "domain threaded\n");
3562 	else
3563 		seq_puts(seq, "domain\n");
3564 
3565 	return 0;
3566 }
3567 
3568 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf,
3569 				 size_t nbytes, loff_t off)
3570 {
3571 	struct cgroup *cgrp;
3572 	int ret;
3573 
3574 	/* only switching to threaded mode is supported */
3575 	if (strcmp(strstrip(buf), "threaded"))
3576 		return -EINVAL;
3577 
3578 	/* drain dying csses before we re-apply (threaded) subtree control */
3579 	cgrp = cgroup_kn_lock_live(of->kn, true);
3580 	if (!cgrp)
3581 		return -ENOENT;
3582 
3583 	/* threaded can only be enabled */
3584 	ret = cgroup_enable_threaded(cgrp);
3585 
3586 	cgroup_kn_unlock(of->kn);
3587 	return ret ?: nbytes;
3588 }
3589 
3590 static int cgroup_max_descendants_show(struct seq_file *seq, void *v)
3591 {
3592 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3593 	int descendants = READ_ONCE(cgrp->max_descendants);
3594 
3595 	if (descendants == INT_MAX)
3596 		seq_puts(seq, "max\n");
3597 	else
3598 		seq_printf(seq, "%d\n", descendants);
3599 
3600 	return 0;
3601 }
3602 
3603 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of,
3604 					   char *buf, size_t nbytes, loff_t off)
3605 {
3606 	struct cgroup *cgrp;
3607 	int descendants;
3608 	ssize_t ret;
3609 
3610 	buf = strstrip(buf);
3611 	if (!strcmp(buf, "max")) {
3612 		descendants = INT_MAX;
3613 	} else {
3614 		ret = kstrtoint(buf, 0, &descendants);
3615 		if (ret)
3616 			return ret;
3617 	}
3618 
3619 	if (descendants < 0)
3620 		return -ERANGE;
3621 
3622 	cgrp = cgroup_kn_lock_live(of->kn, false);
3623 	if (!cgrp)
3624 		return -ENOENT;
3625 
3626 	cgrp->max_descendants = descendants;
3627 
3628 	cgroup_kn_unlock(of->kn);
3629 
3630 	return nbytes;
3631 }
3632 
3633 static int cgroup_max_depth_show(struct seq_file *seq, void *v)
3634 {
3635 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3636 	int depth = READ_ONCE(cgrp->max_depth);
3637 
3638 	if (depth == INT_MAX)
3639 		seq_puts(seq, "max\n");
3640 	else
3641 		seq_printf(seq, "%d\n", depth);
3642 
3643 	return 0;
3644 }
3645 
3646 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of,
3647 				      char *buf, size_t nbytes, loff_t off)
3648 {
3649 	struct cgroup *cgrp;
3650 	ssize_t ret;
3651 	int depth;
3652 
3653 	buf = strstrip(buf);
3654 	if (!strcmp(buf, "max")) {
3655 		depth = INT_MAX;
3656 	} else {
3657 		ret = kstrtoint(buf, 0, &depth);
3658 		if (ret)
3659 			return ret;
3660 	}
3661 
3662 	if (depth < 0)
3663 		return -ERANGE;
3664 
3665 	cgrp = cgroup_kn_lock_live(of->kn, false);
3666 	if (!cgrp)
3667 		return -ENOENT;
3668 
3669 	cgrp->max_depth = depth;
3670 
3671 	cgroup_kn_unlock(of->kn);
3672 
3673 	return nbytes;
3674 }
3675 
3676 static int cgroup_events_show(struct seq_file *seq, void *v)
3677 {
3678 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3679 
3680 	seq_printf(seq, "populated %d\n", cgroup_is_populated(cgrp));
3681 	seq_printf(seq, "frozen %d\n", test_bit(CGRP_FROZEN, &cgrp->flags));
3682 
3683 	return 0;
3684 }
3685 
3686 static int cgroup_stat_show(struct seq_file *seq, void *v)
3687 {
3688 	struct cgroup *cgroup = seq_css(seq)->cgroup;
3689 
3690 	seq_printf(seq, "nr_descendants %d\n",
3691 		   cgroup->nr_descendants);
3692 	seq_printf(seq, "nr_dying_descendants %d\n",
3693 		   cgroup->nr_dying_descendants);
3694 
3695 	return 0;
3696 }
3697 
3698 static int __maybe_unused cgroup_extra_stat_show(struct seq_file *seq,
3699 						 struct cgroup *cgrp, int ssid)
3700 {
3701 	struct cgroup_subsys *ss = cgroup_subsys[ssid];
3702 	struct cgroup_subsys_state *css;
3703 	int ret;
3704 
3705 	if (!ss->css_extra_stat_show)
3706 		return 0;
3707 
3708 	css = cgroup_tryget_css(cgrp, ss);
3709 	if (!css)
3710 		return 0;
3711 
3712 	ret = ss->css_extra_stat_show(seq, css);
3713 	css_put(css);
3714 	return ret;
3715 }
3716 
3717 static int cpu_stat_show(struct seq_file *seq, void *v)
3718 {
3719 	struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup;
3720 	int ret = 0;
3721 
3722 	cgroup_base_stat_cputime_show(seq);
3723 #ifdef CONFIG_CGROUP_SCHED
3724 	ret = cgroup_extra_stat_show(seq, cgrp, cpu_cgrp_id);
3725 #endif
3726 	return ret;
3727 }
3728 
3729 #ifdef CONFIG_PSI
3730 static int cgroup_io_pressure_show(struct seq_file *seq, void *v)
3731 {
3732 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3733 	struct psi_group *psi = cgroup_psi(cgrp);
3734 
3735 	return psi_show(seq, psi, PSI_IO);
3736 }
3737 static int cgroup_memory_pressure_show(struct seq_file *seq, void *v)
3738 {
3739 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3740 	struct psi_group *psi = cgroup_psi(cgrp);
3741 
3742 	return psi_show(seq, psi, PSI_MEM);
3743 }
3744 static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v)
3745 {
3746 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3747 	struct psi_group *psi = cgroup_psi(cgrp);
3748 
3749 	return psi_show(seq, psi, PSI_CPU);
3750 }
3751 
3752 static ssize_t pressure_write(struct kernfs_open_file *of, char *buf,
3753 			      size_t nbytes, enum psi_res res)
3754 {
3755 	struct cgroup_file_ctx *ctx = of->priv;
3756 	struct psi_trigger *new;
3757 	struct cgroup *cgrp;
3758 	struct psi_group *psi;
3759 
3760 	cgrp = cgroup_kn_lock_live(of->kn, false);
3761 	if (!cgrp)
3762 		return -ENODEV;
3763 
3764 	cgroup_get(cgrp);
3765 	cgroup_kn_unlock(of->kn);
3766 
3767 	/* Allow only one trigger per file descriptor */
3768 	if (ctx->psi.trigger) {
3769 		cgroup_put(cgrp);
3770 		return -EBUSY;
3771 	}
3772 
3773 	psi = cgroup_psi(cgrp);
3774 	new = psi_trigger_create(psi, buf, res, of->file);
3775 	if (IS_ERR(new)) {
3776 		cgroup_put(cgrp);
3777 		return PTR_ERR(new);
3778 	}
3779 
3780 	smp_store_release(&ctx->psi.trigger, new);
3781 	cgroup_put(cgrp);
3782 
3783 	return nbytes;
3784 }
3785 
3786 static ssize_t cgroup_io_pressure_write(struct kernfs_open_file *of,
3787 					  char *buf, size_t nbytes,
3788 					  loff_t off)
3789 {
3790 	return pressure_write(of, buf, nbytes, PSI_IO);
3791 }
3792 
3793 static ssize_t cgroup_memory_pressure_write(struct kernfs_open_file *of,
3794 					  char *buf, size_t nbytes,
3795 					  loff_t off)
3796 {
3797 	return pressure_write(of, buf, nbytes, PSI_MEM);
3798 }
3799 
3800 static ssize_t cgroup_cpu_pressure_write(struct kernfs_open_file *of,
3801 					  char *buf, size_t nbytes,
3802 					  loff_t off)
3803 {
3804 	return pressure_write(of, buf, nbytes, PSI_CPU);
3805 }
3806 
3807 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
3808 static int cgroup_irq_pressure_show(struct seq_file *seq, void *v)
3809 {
3810 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3811 	struct psi_group *psi = cgroup_psi(cgrp);
3812 
3813 	return psi_show(seq, psi, PSI_IRQ);
3814 }
3815 
3816 static ssize_t cgroup_irq_pressure_write(struct kernfs_open_file *of,
3817 					 char *buf, size_t nbytes,
3818 					 loff_t off)
3819 {
3820 	return pressure_write(of, buf, nbytes, PSI_IRQ);
3821 }
3822 #endif
3823 
3824 static int cgroup_pressure_show(struct seq_file *seq, void *v)
3825 {
3826 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3827 	struct psi_group *psi = cgroup_psi(cgrp);
3828 
3829 	seq_printf(seq, "%d\n", psi->enabled);
3830 
3831 	return 0;
3832 }
3833 
3834 static ssize_t cgroup_pressure_write(struct kernfs_open_file *of,
3835 				     char *buf, size_t nbytes,
3836 				     loff_t off)
3837 {
3838 	ssize_t ret;
3839 	int enable;
3840 	struct cgroup *cgrp;
3841 	struct psi_group *psi;
3842 
3843 	ret = kstrtoint(strstrip(buf), 0, &enable);
3844 	if (ret)
3845 		return ret;
3846 
3847 	if (enable < 0 || enable > 1)
3848 		return -ERANGE;
3849 
3850 	cgrp = cgroup_kn_lock_live(of->kn, false);
3851 	if (!cgrp)
3852 		return -ENOENT;
3853 
3854 	psi = cgroup_psi(cgrp);
3855 	if (psi->enabled != enable) {
3856 		int i;
3857 
3858 		/* show or hide {cpu,memory,io,irq}.pressure files */
3859 		for (i = 0; i < NR_PSI_RESOURCES; i++)
3860 			cgroup_file_show(&cgrp->psi_files[i], enable);
3861 
3862 		psi->enabled = enable;
3863 		if (enable)
3864 			psi_cgroup_restart(psi);
3865 	}
3866 
3867 	cgroup_kn_unlock(of->kn);
3868 
3869 	return nbytes;
3870 }
3871 
3872 static __poll_t cgroup_pressure_poll(struct kernfs_open_file *of,
3873 					  poll_table *pt)
3874 {
3875 	struct cgroup_file_ctx *ctx = of->priv;
3876 
3877 	return psi_trigger_poll(&ctx->psi.trigger, of->file, pt);
3878 }
3879 
3880 static void cgroup_pressure_release(struct kernfs_open_file *of)
3881 {
3882 	struct cgroup_file_ctx *ctx = of->priv;
3883 
3884 	psi_trigger_destroy(ctx->psi.trigger);
3885 }
3886 
3887 bool cgroup_psi_enabled(void)
3888 {
3889 	if (static_branch_likely(&psi_disabled))
3890 		return false;
3891 
3892 	return (cgroup_feature_disable_mask & (1 << OPT_FEATURE_PRESSURE)) == 0;
3893 }
3894 
3895 #else /* CONFIG_PSI */
3896 bool cgroup_psi_enabled(void)
3897 {
3898 	return false;
3899 }
3900 
3901 #endif /* CONFIG_PSI */
3902 
3903 static int cgroup_freeze_show(struct seq_file *seq, void *v)
3904 {
3905 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3906 
3907 	seq_printf(seq, "%d\n", cgrp->freezer.freeze);
3908 
3909 	return 0;
3910 }
3911 
3912 static ssize_t cgroup_freeze_write(struct kernfs_open_file *of,
3913 				   char *buf, size_t nbytes, loff_t off)
3914 {
3915 	struct cgroup *cgrp;
3916 	ssize_t ret;
3917 	int freeze;
3918 
3919 	ret = kstrtoint(strstrip(buf), 0, &freeze);
3920 	if (ret)
3921 		return ret;
3922 
3923 	if (freeze < 0 || freeze > 1)
3924 		return -ERANGE;
3925 
3926 	cgrp = cgroup_kn_lock_live(of->kn, false);
3927 	if (!cgrp)
3928 		return -ENOENT;
3929 
3930 	cgroup_freeze(cgrp, freeze);
3931 
3932 	cgroup_kn_unlock(of->kn);
3933 
3934 	return nbytes;
3935 }
3936 
3937 static void __cgroup_kill(struct cgroup *cgrp)
3938 {
3939 	struct css_task_iter it;
3940 	struct task_struct *task;
3941 
3942 	lockdep_assert_held(&cgroup_mutex);
3943 
3944 	spin_lock_irq(&css_set_lock);
3945 	set_bit(CGRP_KILL, &cgrp->flags);
3946 	spin_unlock_irq(&css_set_lock);
3947 
3948 	css_task_iter_start(&cgrp->self, CSS_TASK_ITER_PROCS | CSS_TASK_ITER_THREADED, &it);
3949 	while ((task = css_task_iter_next(&it))) {
3950 		/* Ignore kernel threads here. */
3951 		if (task->flags & PF_KTHREAD)
3952 			continue;
3953 
3954 		/* Skip tasks that are already dying. */
3955 		if (__fatal_signal_pending(task))
3956 			continue;
3957 
3958 		send_sig(SIGKILL, task, 0);
3959 	}
3960 	css_task_iter_end(&it);
3961 
3962 	spin_lock_irq(&css_set_lock);
3963 	clear_bit(CGRP_KILL, &cgrp->flags);
3964 	spin_unlock_irq(&css_set_lock);
3965 }
3966 
3967 static void cgroup_kill(struct cgroup *cgrp)
3968 {
3969 	struct cgroup_subsys_state *css;
3970 	struct cgroup *dsct;
3971 
3972 	lockdep_assert_held(&cgroup_mutex);
3973 
3974 	cgroup_for_each_live_descendant_pre(dsct, css, cgrp)
3975 		__cgroup_kill(dsct);
3976 }
3977 
3978 static ssize_t cgroup_kill_write(struct kernfs_open_file *of, char *buf,
3979 				 size_t nbytes, loff_t off)
3980 {
3981 	ssize_t ret = 0;
3982 	int kill;
3983 	struct cgroup *cgrp;
3984 
3985 	ret = kstrtoint(strstrip(buf), 0, &kill);
3986 	if (ret)
3987 		return ret;
3988 
3989 	if (kill != 1)
3990 		return -ERANGE;
3991 
3992 	cgrp = cgroup_kn_lock_live(of->kn, false);
3993 	if (!cgrp)
3994 		return -ENOENT;
3995 
3996 	/*
3997 	 * Killing is a process directed operation, i.e. the whole thread-group
3998 	 * is taken down so act like we do for cgroup.procs and only make this
3999 	 * writable in non-threaded cgroups.
4000 	 */
4001 	if (cgroup_is_threaded(cgrp))
4002 		ret = -EOPNOTSUPP;
4003 	else
4004 		cgroup_kill(cgrp);
4005 
4006 	cgroup_kn_unlock(of->kn);
4007 
4008 	return ret ?: nbytes;
4009 }
4010 
4011 static int cgroup_file_open(struct kernfs_open_file *of)
4012 {
4013 	struct cftype *cft = of_cft(of);
4014 	struct cgroup_file_ctx *ctx;
4015 	int ret;
4016 
4017 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
4018 	if (!ctx)
4019 		return -ENOMEM;
4020 
4021 	ctx->ns = current->nsproxy->cgroup_ns;
4022 	get_cgroup_ns(ctx->ns);
4023 	of->priv = ctx;
4024 
4025 	if (!cft->open)
4026 		return 0;
4027 
4028 	ret = cft->open(of);
4029 	if (ret) {
4030 		put_cgroup_ns(ctx->ns);
4031 		kfree(ctx);
4032 	}
4033 	return ret;
4034 }
4035 
4036 static void cgroup_file_release(struct kernfs_open_file *of)
4037 {
4038 	struct cftype *cft = of_cft(of);
4039 	struct cgroup_file_ctx *ctx = of->priv;
4040 
4041 	if (cft->release)
4042 		cft->release(of);
4043 	put_cgroup_ns(ctx->ns);
4044 	kfree(ctx);
4045 }
4046 
4047 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
4048 				 size_t nbytes, loff_t off)
4049 {
4050 	struct cgroup_file_ctx *ctx = of->priv;
4051 	struct cgroup *cgrp = of->kn->parent->priv;
4052 	struct cftype *cft = of_cft(of);
4053 	struct cgroup_subsys_state *css;
4054 	int ret;
4055 
4056 	if (!nbytes)
4057 		return 0;
4058 
4059 	/*
4060 	 * If namespaces are delegation boundaries, disallow writes to
4061 	 * files in an non-init namespace root from inside the namespace
4062 	 * except for the files explicitly marked delegatable -
4063 	 * cgroup.procs and cgroup.subtree_control.
4064 	 */
4065 	if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) &&
4066 	    !(cft->flags & CFTYPE_NS_DELEGATABLE) &&
4067 	    ctx->ns != &init_cgroup_ns && ctx->ns->root_cset->dfl_cgrp == cgrp)
4068 		return -EPERM;
4069 
4070 	if (cft->write)
4071 		return cft->write(of, buf, nbytes, off);
4072 
4073 	/*
4074 	 * kernfs guarantees that a file isn't deleted with operations in
4075 	 * flight, which means that the matching css is and stays alive and
4076 	 * doesn't need to be pinned.  The RCU locking is not necessary
4077 	 * either.  It's just for the convenience of using cgroup_css().
4078 	 */
4079 	rcu_read_lock();
4080 	css = cgroup_css(cgrp, cft->ss);
4081 	rcu_read_unlock();
4082 
4083 	if (cft->write_u64) {
4084 		unsigned long long v;
4085 		ret = kstrtoull(buf, 0, &v);
4086 		if (!ret)
4087 			ret = cft->write_u64(css, cft, v);
4088 	} else if (cft->write_s64) {
4089 		long long v;
4090 		ret = kstrtoll(buf, 0, &v);
4091 		if (!ret)
4092 			ret = cft->write_s64(css, cft, v);
4093 	} else {
4094 		ret = -EINVAL;
4095 	}
4096 
4097 	return ret ?: nbytes;
4098 }
4099 
4100 static __poll_t cgroup_file_poll(struct kernfs_open_file *of, poll_table *pt)
4101 {
4102 	struct cftype *cft = of_cft(of);
4103 
4104 	if (cft->poll)
4105 		return cft->poll(of, pt);
4106 
4107 	return kernfs_generic_poll(of, pt);
4108 }
4109 
4110 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
4111 {
4112 	return seq_cft(seq)->seq_start(seq, ppos);
4113 }
4114 
4115 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
4116 {
4117 	return seq_cft(seq)->seq_next(seq, v, ppos);
4118 }
4119 
4120 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
4121 {
4122 	if (seq_cft(seq)->seq_stop)
4123 		seq_cft(seq)->seq_stop(seq, v);
4124 }
4125 
4126 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
4127 {
4128 	struct cftype *cft = seq_cft(m);
4129 	struct cgroup_subsys_state *css = seq_css(m);
4130 
4131 	if (cft->seq_show)
4132 		return cft->seq_show(m, arg);
4133 
4134 	if (cft->read_u64)
4135 		seq_printf(m, "%llu\n", cft->read_u64(css, cft));
4136 	else if (cft->read_s64)
4137 		seq_printf(m, "%lld\n", cft->read_s64(css, cft));
4138 	else
4139 		return -EINVAL;
4140 	return 0;
4141 }
4142 
4143 static struct kernfs_ops cgroup_kf_single_ops = {
4144 	.atomic_write_len	= PAGE_SIZE,
4145 	.open			= cgroup_file_open,
4146 	.release		= cgroup_file_release,
4147 	.write			= cgroup_file_write,
4148 	.poll			= cgroup_file_poll,
4149 	.seq_show		= cgroup_seqfile_show,
4150 };
4151 
4152 static struct kernfs_ops cgroup_kf_ops = {
4153 	.atomic_write_len	= PAGE_SIZE,
4154 	.open			= cgroup_file_open,
4155 	.release		= cgroup_file_release,
4156 	.write			= cgroup_file_write,
4157 	.poll			= cgroup_file_poll,
4158 	.seq_start		= cgroup_seqfile_start,
4159 	.seq_next		= cgroup_seqfile_next,
4160 	.seq_stop		= cgroup_seqfile_stop,
4161 	.seq_show		= cgroup_seqfile_show,
4162 };
4163 
4164 /* set uid and gid of cgroup dirs and files to that of the creator */
4165 static int cgroup_kn_set_ugid(struct kernfs_node *kn)
4166 {
4167 	struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
4168 			       .ia_uid = current_fsuid(),
4169 			       .ia_gid = current_fsgid(), };
4170 
4171 	if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
4172 	    gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
4173 		return 0;
4174 
4175 	return kernfs_setattr(kn, &iattr);
4176 }
4177 
4178 static void cgroup_file_notify_timer(struct timer_list *timer)
4179 {
4180 	cgroup_file_notify(container_of(timer, struct cgroup_file,
4181 					notify_timer));
4182 }
4183 
4184 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
4185 			   struct cftype *cft)
4186 {
4187 	char name[CGROUP_FILE_NAME_MAX];
4188 	struct kernfs_node *kn;
4189 	struct lock_class_key *key = NULL;
4190 	int ret;
4191 
4192 #ifdef CONFIG_DEBUG_LOCK_ALLOC
4193 	key = &cft->lockdep_key;
4194 #endif
4195 	kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
4196 				  cgroup_file_mode(cft),
4197 				  GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
4198 				  0, cft->kf_ops, cft,
4199 				  NULL, key);
4200 	if (IS_ERR(kn))
4201 		return PTR_ERR(kn);
4202 
4203 	ret = cgroup_kn_set_ugid(kn);
4204 	if (ret) {
4205 		kernfs_remove(kn);
4206 		return ret;
4207 	}
4208 
4209 	if (cft->file_offset) {
4210 		struct cgroup_file *cfile = (void *)css + cft->file_offset;
4211 
4212 		timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0);
4213 
4214 		spin_lock_irq(&cgroup_file_kn_lock);
4215 		cfile->kn = kn;
4216 		spin_unlock_irq(&cgroup_file_kn_lock);
4217 	}
4218 
4219 	return 0;
4220 }
4221 
4222 /**
4223  * cgroup_addrm_files - add or remove files to a cgroup directory
4224  * @css: the target css
4225  * @cgrp: the target cgroup (usually css->cgroup)
4226  * @cfts: array of cftypes to be added
4227  * @is_add: whether to add or remove
4228  *
4229  * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
4230  * For removals, this function never fails.
4231  */
4232 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
4233 			      struct cgroup *cgrp, struct cftype cfts[],
4234 			      bool is_add)
4235 {
4236 	struct cftype *cft, *cft_end = NULL;
4237 	int ret = 0;
4238 
4239 	lockdep_assert_held(&cgroup_mutex);
4240 
4241 restart:
4242 	for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
4243 		/* does cft->flags tell us to skip this file on @cgrp? */
4244 		if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
4245 			continue;
4246 		if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
4247 			continue;
4248 		if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
4249 			continue;
4250 		if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
4251 			continue;
4252 		if ((cft->flags & CFTYPE_DEBUG) && !cgroup_debug)
4253 			continue;
4254 		if (is_add) {
4255 			ret = cgroup_add_file(css, cgrp, cft);
4256 			if (ret) {
4257 				pr_warn("%s: failed to add %s, err=%d\n",
4258 					__func__, cft->name, ret);
4259 				cft_end = cft;
4260 				is_add = false;
4261 				goto restart;
4262 			}
4263 		} else {
4264 			cgroup_rm_file(cgrp, cft);
4265 		}
4266 	}
4267 	return ret;
4268 }
4269 
4270 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
4271 {
4272 	struct cgroup_subsys *ss = cfts[0].ss;
4273 	struct cgroup *root = &ss->root->cgrp;
4274 	struct cgroup_subsys_state *css;
4275 	int ret = 0;
4276 
4277 	lockdep_assert_held(&cgroup_mutex);
4278 
4279 	/* add/rm files for all cgroups created before */
4280 	css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
4281 		struct cgroup *cgrp = css->cgroup;
4282 
4283 		if (!(css->flags & CSS_VISIBLE))
4284 			continue;
4285 
4286 		ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
4287 		if (ret)
4288 			break;
4289 	}
4290 
4291 	if (is_add && !ret)
4292 		kernfs_activate(root->kn);
4293 	return ret;
4294 }
4295 
4296 static void cgroup_exit_cftypes(struct cftype *cfts)
4297 {
4298 	struct cftype *cft;
4299 
4300 	for (cft = cfts; cft->name[0] != '\0'; cft++) {
4301 		/* free copy for custom atomic_write_len, see init_cftypes() */
4302 		if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
4303 			kfree(cft->kf_ops);
4304 		cft->kf_ops = NULL;
4305 		cft->ss = NULL;
4306 
4307 		/* revert flags set by cgroup core while adding @cfts */
4308 		cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL |
4309 				__CFTYPE_ADDED);
4310 	}
4311 }
4312 
4313 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4314 {
4315 	struct cftype *cft;
4316 	int ret = 0;
4317 
4318 	for (cft = cfts; cft->name[0] != '\0'; cft++) {
4319 		struct kernfs_ops *kf_ops;
4320 
4321 		WARN_ON(cft->ss || cft->kf_ops);
4322 
4323 		if (cft->flags & __CFTYPE_ADDED) {
4324 			ret = -EBUSY;
4325 			break;
4326 		}
4327 
4328 		if (cft->seq_start)
4329 			kf_ops = &cgroup_kf_ops;
4330 		else
4331 			kf_ops = &cgroup_kf_single_ops;
4332 
4333 		/*
4334 		 * Ugh... if @cft wants a custom max_write_len, we need to
4335 		 * make a copy of kf_ops to set its atomic_write_len.
4336 		 */
4337 		if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
4338 			kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
4339 			if (!kf_ops) {
4340 				ret = -ENOMEM;
4341 				break;
4342 			}
4343 			kf_ops->atomic_write_len = cft->max_write_len;
4344 		}
4345 
4346 		cft->kf_ops = kf_ops;
4347 		cft->ss = ss;
4348 		cft->flags |= __CFTYPE_ADDED;
4349 	}
4350 
4351 	if (ret)
4352 		cgroup_exit_cftypes(cfts);
4353 	return ret;
4354 }
4355 
4356 static int cgroup_rm_cftypes_locked(struct cftype *cfts)
4357 {
4358 	lockdep_assert_held(&cgroup_mutex);
4359 
4360 	list_del(&cfts->node);
4361 	cgroup_apply_cftypes(cfts, false);
4362 	cgroup_exit_cftypes(cfts);
4363 	return 0;
4364 }
4365 
4366 /**
4367  * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
4368  * @cfts: zero-length name terminated array of cftypes
4369  *
4370  * Unregister @cfts.  Files described by @cfts are removed from all
4371  * existing cgroups and all future cgroups won't have them either.  This
4372  * function can be called anytime whether @cfts' subsys is attached or not.
4373  *
4374  * Returns 0 on successful unregistration, -ENOENT if @cfts is not
4375  * registered.
4376  */
4377 int cgroup_rm_cftypes(struct cftype *cfts)
4378 {
4379 	int ret;
4380 
4381 	if (!cfts || cfts[0].name[0] == '\0')
4382 		return 0;
4383 
4384 	if (!(cfts[0].flags & __CFTYPE_ADDED))
4385 		return -ENOENT;
4386 
4387 	cgroup_lock();
4388 	ret = cgroup_rm_cftypes_locked(cfts);
4389 	cgroup_unlock();
4390 	return ret;
4391 }
4392 
4393 /**
4394  * cgroup_add_cftypes - add an array of cftypes to a subsystem
4395  * @ss: target cgroup subsystem
4396  * @cfts: zero-length name terminated array of cftypes
4397  *
4398  * Register @cfts to @ss.  Files described by @cfts are created for all
4399  * existing cgroups to which @ss is attached and all future cgroups will
4400  * have them too.  This function can be called anytime whether @ss is
4401  * attached or not.
4402  *
4403  * Returns 0 on successful registration, -errno on failure.  Note that this
4404  * function currently returns 0 as long as @cfts registration is successful
4405  * even if some file creation attempts on existing cgroups fail.
4406  */
4407 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4408 {
4409 	int ret;
4410 
4411 	if (!cgroup_ssid_enabled(ss->id))
4412 		return 0;
4413 
4414 	if (!cfts || cfts[0].name[0] == '\0')
4415 		return 0;
4416 
4417 	ret = cgroup_init_cftypes(ss, cfts);
4418 	if (ret)
4419 		return ret;
4420 
4421 	cgroup_lock();
4422 
4423 	list_add_tail(&cfts->node, &ss->cfts);
4424 	ret = cgroup_apply_cftypes(cfts, true);
4425 	if (ret)
4426 		cgroup_rm_cftypes_locked(cfts);
4427 
4428 	cgroup_unlock();
4429 	return ret;
4430 }
4431 
4432 /**
4433  * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
4434  * @ss: target cgroup subsystem
4435  * @cfts: zero-length name terminated array of cftypes
4436  *
4437  * Similar to cgroup_add_cftypes() but the added files are only used for
4438  * the default hierarchy.
4439  */
4440 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4441 {
4442 	struct cftype *cft;
4443 
4444 	for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4445 		cft->flags |= __CFTYPE_ONLY_ON_DFL;
4446 	return cgroup_add_cftypes(ss, cfts);
4447 }
4448 
4449 /**
4450  * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
4451  * @ss: target cgroup subsystem
4452  * @cfts: zero-length name terminated array of cftypes
4453  *
4454  * Similar to cgroup_add_cftypes() but the added files are only used for
4455  * the legacy hierarchies.
4456  */
4457 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4458 {
4459 	struct cftype *cft;
4460 
4461 	for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4462 		cft->flags |= __CFTYPE_NOT_ON_DFL;
4463 	return cgroup_add_cftypes(ss, cfts);
4464 }
4465 
4466 /**
4467  * cgroup_file_notify - generate a file modified event for a cgroup_file
4468  * @cfile: target cgroup_file
4469  *
4470  * @cfile must have been obtained by setting cftype->file_offset.
4471  */
4472 void cgroup_file_notify(struct cgroup_file *cfile)
4473 {
4474 	unsigned long flags;
4475 
4476 	spin_lock_irqsave(&cgroup_file_kn_lock, flags);
4477 	if (cfile->kn) {
4478 		unsigned long last = cfile->notified_at;
4479 		unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV;
4480 
4481 		if (time_in_range(jiffies, last, next)) {
4482 			timer_reduce(&cfile->notify_timer, next);
4483 		} else {
4484 			kernfs_notify(cfile->kn);
4485 			cfile->notified_at = jiffies;
4486 		}
4487 	}
4488 	spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
4489 }
4490 
4491 /**
4492  * cgroup_file_show - show or hide a hidden cgroup file
4493  * @cfile: target cgroup_file obtained by setting cftype->file_offset
4494  * @show: whether to show or hide
4495  */
4496 void cgroup_file_show(struct cgroup_file *cfile, bool show)
4497 {
4498 	struct kernfs_node *kn;
4499 
4500 	spin_lock_irq(&cgroup_file_kn_lock);
4501 	kn = cfile->kn;
4502 	kernfs_get(kn);
4503 	spin_unlock_irq(&cgroup_file_kn_lock);
4504 
4505 	if (kn)
4506 		kernfs_show(kn, show);
4507 
4508 	kernfs_put(kn);
4509 }
4510 
4511 /**
4512  * css_next_child - find the next child of a given css
4513  * @pos: the current position (%NULL to initiate traversal)
4514  * @parent: css whose children to walk
4515  *
4516  * This function returns the next child of @parent and should be called
4517  * under either cgroup_mutex or RCU read lock.  The only requirement is
4518  * that @parent and @pos are accessible.  The next sibling is guaranteed to
4519  * be returned regardless of their states.
4520  *
4521  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4522  * css which finished ->css_online() is guaranteed to be visible in the
4523  * future iterations and will stay visible until the last reference is put.
4524  * A css which hasn't finished ->css_online() or already finished
4525  * ->css_offline() may show up during traversal.  It's each subsystem's
4526  * responsibility to synchronize against on/offlining.
4527  */
4528 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
4529 					   struct cgroup_subsys_state *parent)
4530 {
4531 	struct cgroup_subsys_state *next;
4532 
4533 	cgroup_assert_mutex_or_rcu_locked();
4534 
4535 	/*
4536 	 * @pos could already have been unlinked from the sibling list.
4537 	 * Once a cgroup is removed, its ->sibling.next is no longer
4538 	 * updated when its next sibling changes.  CSS_RELEASED is set when
4539 	 * @pos is taken off list, at which time its next pointer is valid,
4540 	 * and, as releases are serialized, the one pointed to by the next
4541 	 * pointer is guaranteed to not have started release yet.  This
4542 	 * implies that if we observe !CSS_RELEASED on @pos in this RCU
4543 	 * critical section, the one pointed to by its next pointer is
4544 	 * guaranteed to not have finished its RCU grace period even if we
4545 	 * have dropped rcu_read_lock() in-between iterations.
4546 	 *
4547 	 * If @pos has CSS_RELEASED set, its next pointer can't be
4548 	 * dereferenced; however, as each css is given a monotonically
4549 	 * increasing unique serial number and always appended to the
4550 	 * sibling list, the next one can be found by walking the parent's
4551 	 * children until the first css with higher serial number than
4552 	 * @pos's.  While this path can be slower, it happens iff iteration
4553 	 * races against release and the race window is very small.
4554 	 */
4555 	if (!pos) {
4556 		next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
4557 	} else if (likely(!(pos->flags & CSS_RELEASED))) {
4558 		next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
4559 	} else {
4560 		list_for_each_entry_rcu(next, &parent->children, sibling,
4561 					lockdep_is_held(&cgroup_mutex))
4562 			if (next->serial_nr > pos->serial_nr)
4563 				break;
4564 	}
4565 
4566 	/*
4567 	 * @next, if not pointing to the head, can be dereferenced and is
4568 	 * the next sibling.
4569 	 */
4570 	if (&next->sibling != &parent->children)
4571 		return next;
4572 	return NULL;
4573 }
4574 
4575 /**
4576  * css_next_descendant_pre - find the next descendant for pre-order walk
4577  * @pos: the current position (%NULL to initiate traversal)
4578  * @root: css whose descendants to walk
4579  *
4580  * To be used by css_for_each_descendant_pre().  Find the next descendant
4581  * to visit for pre-order traversal of @root's descendants.  @root is
4582  * included in the iteration and the first node to be visited.
4583  *
4584  * While this function requires cgroup_mutex or RCU read locking, it
4585  * doesn't require the whole traversal to be contained in a single critical
4586  * section.  This function will return the correct next descendant as long
4587  * as both @pos and @root are accessible and @pos is a descendant of @root.
4588  *
4589  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4590  * css which finished ->css_online() is guaranteed to be visible in the
4591  * future iterations and will stay visible until the last reference is put.
4592  * A css which hasn't finished ->css_online() or already finished
4593  * ->css_offline() may show up during traversal.  It's each subsystem's
4594  * responsibility to synchronize against on/offlining.
4595  */
4596 struct cgroup_subsys_state *
4597 css_next_descendant_pre(struct cgroup_subsys_state *pos,
4598 			struct cgroup_subsys_state *root)
4599 {
4600 	struct cgroup_subsys_state *next;
4601 
4602 	cgroup_assert_mutex_or_rcu_locked();
4603 
4604 	/* if first iteration, visit @root */
4605 	if (!pos)
4606 		return root;
4607 
4608 	/* visit the first child if exists */
4609 	next = css_next_child(NULL, pos);
4610 	if (next)
4611 		return next;
4612 
4613 	/* no child, visit my or the closest ancestor's next sibling */
4614 	while (pos != root) {
4615 		next = css_next_child(pos, pos->parent);
4616 		if (next)
4617 			return next;
4618 		pos = pos->parent;
4619 	}
4620 
4621 	return NULL;
4622 }
4623 EXPORT_SYMBOL_GPL(css_next_descendant_pre);
4624 
4625 /**
4626  * css_rightmost_descendant - return the rightmost descendant of a css
4627  * @pos: css of interest
4628  *
4629  * Return the rightmost descendant of @pos.  If there's no descendant, @pos
4630  * is returned.  This can be used during pre-order traversal to skip
4631  * subtree of @pos.
4632  *
4633  * While this function requires cgroup_mutex or RCU read locking, it
4634  * doesn't require the whole traversal to be contained in a single critical
4635  * section.  This function will return the correct rightmost descendant as
4636  * long as @pos is accessible.
4637  */
4638 struct cgroup_subsys_state *
4639 css_rightmost_descendant(struct cgroup_subsys_state *pos)
4640 {
4641 	struct cgroup_subsys_state *last, *tmp;
4642 
4643 	cgroup_assert_mutex_or_rcu_locked();
4644 
4645 	do {
4646 		last = pos;
4647 		/* ->prev isn't RCU safe, walk ->next till the end */
4648 		pos = NULL;
4649 		css_for_each_child(tmp, last)
4650 			pos = tmp;
4651 	} while (pos);
4652 
4653 	return last;
4654 }
4655 
4656 static struct cgroup_subsys_state *
4657 css_leftmost_descendant(struct cgroup_subsys_state *pos)
4658 {
4659 	struct cgroup_subsys_state *last;
4660 
4661 	do {
4662 		last = pos;
4663 		pos = css_next_child(NULL, pos);
4664 	} while (pos);
4665 
4666 	return last;
4667 }
4668 
4669 /**
4670  * css_next_descendant_post - find the next descendant for post-order walk
4671  * @pos: the current position (%NULL to initiate traversal)
4672  * @root: css whose descendants to walk
4673  *
4674  * To be used by css_for_each_descendant_post().  Find the next descendant
4675  * to visit for post-order traversal of @root's descendants.  @root is
4676  * included in the iteration and the last node to be visited.
4677  *
4678  * While this function requires cgroup_mutex or RCU read locking, it
4679  * doesn't require the whole traversal to be contained in a single critical
4680  * section.  This function will return the correct next descendant as long
4681  * as both @pos and @cgroup are accessible and @pos is a descendant of
4682  * @cgroup.
4683  *
4684  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4685  * css which finished ->css_online() is guaranteed to be visible in the
4686  * future iterations and will stay visible until the last reference is put.
4687  * A css which hasn't finished ->css_online() or already finished
4688  * ->css_offline() may show up during traversal.  It's each subsystem's
4689  * responsibility to synchronize against on/offlining.
4690  */
4691 struct cgroup_subsys_state *
4692 css_next_descendant_post(struct cgroup_subsys_state *pos,
4693 			 struct cgroup_subsys_state *root)
4694 {
4695 	struct cgroup_subsys_state *next;
4696 
4697 	cgroup_assert_mutex_or_rcu_locked();
4698 
4699 	/* if first iteration, visit leftmost descendant which may be @root */
4700 	if (!pos)
4701 		return css_leftmost_descendant(root);
4702 
4703 	/* if we visited @root, we're done */
4704 	if (pos == root)
4705 		return NULL;
4706 
4707 	/* if there's an unvisited sibling, visit its leftmost descendant */
4708 	next = css_next_child(pos, pos->parent);
4709 	if (next)
4710 		return css_leftmost_descendant(next);
4711 
4712 	/* no sibling left, visit parent */
4713 	return pos->parent;
4714 }
4715 
4716 /**
4717  * css_has_online_children - does a css have online children
4718  * @css: the target css
4719  *
4720  * Returns %true if @css has any online children; otherwise, %false.  This
4721  * function can be called from any context but the caller is responsible
4722  * for synchronizing against on/offlining as necessary.
4723  */
4724 bool css_has_online_children(struct cgroup_subsys_state *css)
4725 {
4726 	struct cgroup_subsys_state *child;
4727 	bool ret = false;
4728 
4729 	rcu_read_lock();
4730 	css_for_each_child(child, css) {
4731 		if (child->flags & CSS_ONLINE) {
4732 			ret = true;
4733 			break;
4734 		}
4735 	}
4736 	rcu_read_unlock();
4737 	return ret;
4738 }
4739 
4740 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it)
4741 {
4742 	struct list_head *l;
4743 	struct cgrp_cset_link *link;
4744 	struct css_set *cset;
4745 
4746 	lockdep_assert_held(&css_set_lock);
4747 
4748 	/* find the next threaded cset */
4749 	if (it->tcset_pos) {
4750 		l = it->tcset_pos->next;
4751 
4752 		if (l != it->tcset_head) {
4753 			it->tcset_pos = l;
4754 			return container_of(l, struct css_set,
4755 					    threaded_csets_node);
4756 		}
4757 
4758 		it->tcset_pos = NULL;
4759 	}
4760 
4761 	/* find the next cset */
4762 	l = it->cset_pos;
4763 	l = l->next;
4764 	if (l == it->cset_head) {
4765 		it->cset_pos = NULL;
4766 		return NULL;
4767 	}
4768 
4769 	if (it->ss) {
4770 		cset = container_of(l, struct css_set, e_cset_node[it->ss->id]);
4771 	} else {
4772 		link = list_entry(l, struct cgrp_cset_link, cset_link);
4773 		cset = link->cset;
4774 	}
4775 
4776 	it->cset_pos = l;
4777 
4778 	/* initialize threaded css_set walking */
4779 	if (it->flags & CSS_TASK_ITER_THREADED) {
4780 		if (it->cur_dcset)
4781 			put_css_set_locked(it->cur_dcset);
4782 		it->cur_dcset = cset;
4783 		get_css_set(cset);
4784 
4785 		it->tcset_head = &cset->threaded_csets;
4786 		it->tcset_pos = &cset->threaded_csets;
4787 	}
4788 
4789 	return cset;
4790 }
4791 
4792 /**
4793  * css_task_iter_advance_css_set - advance a task iterator to the next css_set
4794  * @it: the iterator to advance
4795  *
4796  * Advance @it to the next css_set to walk.
4797  */
4798 static void css_task_iter_advance_css_set(struct css_task_iter *it)
4799 {
4800 	struct css_set *cset;
4801 
4802 	lockdep_assert_held(&css_set_lock);
4803 
4804 	/* Advance to the next non-empty css_set and find first non-empty tasks list*/
4805 	while ((cset = css_task_iter_next_css_set(it))) {
4806 		if (!list_empty(&cset->tasks)) {
4807 			it->cur_tasks_head = &cset->tasks;
4808 			break;
4809 		} else if (!list_empty(&cset->mg_tasks)) {
4810 			it->cur_tasks_head = &cset->mg_tasks;
4811 			break;
4812 		} else if (!list_empty(&cset->dying_tasks)) {
4813 			it->cur_tasks_head = &cset->dying_tasks;
4814 			break;
4815 		}
4816 	}
4817 	if (!cset) {
4818 		it->task_pos = NULL;
4819 		return;
4820 	}
4821 	it->task_pos = it->cur_tasks_head->next;
4822 
4823 	/*
4824 	 * We don't keep css_sets locked across iteration steps and thus
4825 	 * need to take steps to ensure that iteration can be resumed after
4826 	 * the lock is re-acquired.  Iteration is performed at two levels -
4827 	 * css_sets and tasks in them.
4828 	 *
4829 	 * Once created, a css_set never leaves its cgroup lists, so a
4830 	 * pinned css_set is guaranteed to stay put and we can resume
4831 	 * iteration afterwards.
4832 	 *
4833 	 * Tasks may leave @cset across iteration steps.  This is resolved
4834 	 * by registering each iterator with the css_set currently being
4835 	 * walked and making css_set_move_task() advance iterators whose
4836 	 * next task is leaving.
4837 	 */
4838 	if (it->cur_cset) {
4839 		list_del(&it->iters_node);
4840 		put_css_set_locked(it->cur_cset);
4841 	}
4842 	get_css_set(cset);
4843 	it->cur_cset = cset;
4844 	list_add(&it->iters_node, &cset->task_iters);
4845 }
4846 
4847 static void css_task_iter_skip(struct css_task_iter *it,
4848 			       struct task_struct *task)
4849 {
4850 	lockdep_assert_held(&css_set_lock);
4851 
4852 	if (it->task_pos == &task->cg_list) {
4853 		it->task_pos = it->task_pos->next;
4854 		it->flags |= CSS_TASK_ITER_SKIPPED;
4855 	}
4856 }
4857 
4858 static void css_task_iter_advance(struct css_task_iter *it)
4859 {
4860 	struct task_struct *task;
4861 
4862 	lockdep_assert_held(&css_set_lock);
4863 repeat:
4864 	if (it->task_pos) {
4865 		/*
4866 		 * Advance iterator to find next entry. We go through cset
4867 		 * tasks, mg_tasks and dying_tasks, when consumed we move onto
4868 		 * the next cset.
4869 		 */
4870 		if (it->flags & CSS_TASK_ITER_SKIPPED)
4871 			it->flags &= ~CSS_TASK_ITER_SKIPPED;
4872 		else
4873 			it->task_pos = it->task_pos->next;
4874 
4875 		if (it->task_pos == &it->cur_cset->tasks) {
4876 			it->cur_tasks_head = &it->cur_cset->mg_tasks;
4877 			it->task_pos = it->cur_tasks_head->next;
4878 		}
4879 		if (it->task_pos == &it->cur_cset->mg_tasks) {
4880 			it->cur_tasks_head = &it->cur_cset->dying_tasks;
4881 			it->task_pos = it->cur_tasks_head->next;
4882 		}
4883 		if (it->task_pos == &it->cur_cset->dying_tasks)
4884 			css_task_iter_advance_css_set(it);
4885 	} else {
4886 		/* called from start, proceed to the first cset */
4887 		css_task_iter_advance_css_set(it);
4888 	}
4889 
4890 	if (!it->task_pos)
4891 		return;
4892 
4893 	task = list_entry(it->task_pos, struct task_struct, cg_list);
4894 
4895 	if (it->flags & CSS_TASK_ITER_PROCS) {
4896 		/* if PROCS, skip over tasks which aren't group leaders */
4897 		if (!thread_group_leader(task))
4898 			goto repeat;
4899 
4900 		/* and dying leaders w/o live member threads */
4901 		if (it->cur_tasks_head == &it->cur_cset->dying_tasks &&
4902 		    !atomic_read(&task->signal->live))
4903 			goto repeat;
4904 	} else {
4905 		/* skip all dying ones */
4906 		if (it->cur_tasks_head == &it->cur_cset->dying_tasks)
4907 			goto repeat;
4908 	}
4909 }
4910 
4911 /**
4912  * css_task_iter_start - initiate task iteration
4913  * @css: the css to walk tasks of
4914  * @flags: CSS_TASK_ITER_* flags
4915  * @it: the task iterator to use
4916  *
4917  * Initiate iteration through the tasks of @css.  The caller can call
4918  * css_task_iter_next() to walk through the tasks until the function
4919  * returns NULL.  On completion of iteration, css_task_iter_end() must be
4920  * called.
4921  */
4922 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags,
4923 			 struct css_task_iter *it)
4924 {
4925 	memset(it, 0, sizeof(*it));
4926 
4927 	spin_lock_irq(&css_set_lock);
4928 
4929 	it->ss = css->ss;
4930 	it->flags = flags;
4931 
4932 	if (CGROUP_HAS_SUBSYS_CONFIG && it->ss)
4933 		it->cset_pos = &css->cgroup->e_csets[css->ss->id];
4934 	else
4935 		it->cset_pos = &css->cgroup->cset_links;
4936 
4937 	it->cset_head = it->cset_pos;
4938 
4939 	css_task_iter_advance(it);
4940 
4941 	spin_unlock_irq(&css_set_lock);
4942 }
4943 
4944 /**
4945  * css_task_iter_next - return the next task for the iterator
4946  * @it: the task iterator being iterated
4947  *
4948  * The "next" function for task iteration.  @it should have been
4949  * initialized via css_task_iter_start().  Returns NULL when the iteration
4950  * reaches the end.
4951  */
4952 struct task_struct *css_task_iter_next(struct css_task_iter *it)
4953 {
4954 	if (it->cur_task) {
4955 		put_task_struct(it->cur_task);
4956 		it->cur_task = NULL;
4957 	}
4958 
4959 	spin_lock_irq(&css_set_lock);
4960 
4961 	/* @it may be half-advanced by skips, finish advancing */
4962 	if (it->flags & CSS_TASK_ITER_SKIPPED)
4963 		css_task_iter_advance(it);
4964 
4965 	if (it->task_pos) {
4966 		it->cur_task = list_entry(it->task_pos, struct task_struct,
4967 					  cg_list);
4968 		get_task_struct(it->cur_task);
4969 		css_task_iter_advance(it);
4970 	}
4971 
4972 	spin_unlock_irq(&css_set_lock);
4973 
4974 	return it->cur_task;
4975 }
4976 
4977 /**
4978  * css_task_iter_end - finish task iteration
4979  * @it: the task iterator to finish
4980  *
4981  * Finish task iteration started by css_task_iter_start().
4982  */
4983 void css_task_iter_end(struct css_task_iter *it)
4984 {
4985 	if (it->cur_cset) {
4986 		spin_lock_irq(&css_set_lock);
4987 		list_del(&it->iters_node);
4988 		put_css_set_locked(it->cur_cset);
4989 		spin_unlock_irq(&css_set_lock);
4990 	}
4991 
4992 	if (it->cur_dcset)
4993 		put_css_set(it->cur_dcset);
4994 
4995 	if (it->cur_task)
4996 		put_task_struct(it->cur_task);
4997 }
4998 
4999 static void cgroup_procs_release(struct kernfs_open_file *of)
5000 {
5001 	struct cgroup_file_ctx *ctx = of->priv;
5002 
5003 	if (ctx->procs.started)
5004 		css_task_iter_end(&ctx->procs.iter);
5005 }
5006 
5007 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos)
5008 {
5009 	struct kernfs_open_file *of = s->private;
5010 	struct cgroup_file_ctx *ctx = of->priv;
5011 
5012 	if (pos)
5013 		(*pos)++;
5014 
5015 	return css_task_iter_next(&ctx->procs.iter);
5016 }
5017 
5018 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos,
5019 				  unsigned int iter_flags)
5020 {
5021 	struct kernfs_open_file *of = s->private;
5022 	struct cgroup *cgrp = seq_css(s)->cgroup;
5023 	struct cgroup_file_ctx *ctx = of->priv;
5024 	struct css_task_iter *it = &ctx->procs.iter;
5025 
5026 	/*
5027 	 * When a seq_file is seeked, it's always traversed sequentially
5028 	 * from position 0, so we can simply keep iterating on !0 *pos.
5029 	 */
5030 	if (!ctx->procs.started) {
5031 		if (WARN_ON_ONCE((*pos)))
5032 			return ERR_PTR(-EINVAL);
5033 		css_task_iter_start(&cgrp->self, iter_flags, it);
5034 		ctx->procs.started = true;
5035 	} else if (!(*pos)) {
5036 		css_task_iter_end(it);
5037 		css_task_iter_start(&cgrp->self, iter_flags, it);
5038 	} else
5039 		return it->cur_task;
5040 
5041 	return cgroup_procs_next(s, NULL, NULL);
5042 }
5043 
5044 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos)
5045 {
5046 	struct cgroup *cgrp = seq_css(s)->cgroup;
5047 
5048 	/*
5049 	 * All processes of a threaded subtree belong to the domain cgroup
5050 	 * of the subtree.  Only threads can be distributed across the
5051 	 * subtree.  Reject reads on cgroup.procs in the subtree proper.
5052 	 * They're always empty anyway.
5053 	 */
5054 	if (cgroup_is_threaded(cgrp))
5055 		return ERR_PTR(-EOPNOTSUPP);
5056 
5057 	return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS |
5058 					    CSS_TASK_ITER_THREADED);
5059 }
5060 
5061 static int cgroup_procs_show(struct seq_file *s, void *v)
5062 {
5063 	seq_printf(s, "%d\n", task_pid_vnr(v));
5064 	return 0;
5065 }
5066 
5067 static int cgroup_may_write(const struct cgroup *cgrp, struct super_block *sb)
5068 {
5069 	int ret;
5070 	struct inode *inode;
5071 
5072 	lockdep_assert_held(&cgroup_mutex);
5073 
5074 	inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
5075 	if (!inode)
5076 		return -ENOMEM;
5077 
5078 	ret = inode_permission(&nop_mnt_idmap, inode, MAY_WRITE);
5079 	iput(inode);
5080 	return ret;
5081 }
5082 
5083 static int cgroup_procs_write_permission(struct cgroup *src_cgrp,
5084 					 struct cgroup *dst_cgrp,
5085 					 struct super_block *sb,
5086 					 struct cgroup_namespace *ns)
5087 {
5088 	struct cgroup *com_cgrp = src_cgrp;
5089 	int ret;
5090 
5091 	lockdep_assert_held(&cgroup_mutex);
5092 
5093 	/* find the common ancestor */
5094 	while (!cgroup_is_descendant(dst_cgrp, com_cgrp))
5095 		com_cgrp = cgroup_parent(com_cgrp);
5096 
5097 	/* %current should be authorized to migrate to the common ancestor */
5098 	ret = cgroup_may_write(com_cgrp, sb);
5099 	if (ret)
5100 		return ret;
5101 
5102 	/*
5103 	 * If namespaces are delegation boundaries, %current must be able
5104 	 * to see both source and destination cgroups from its namespace.
5105 	 */
5106 	if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) &&
5107 	    (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) ||
5108 	     !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp)))
5109 		return -ENOENT;
5110 
5111 	return 0;
5112 }
5113 
5114 static int cgroup_attach_permissions(struct cgroup *src_cgrp,
5115 				     struct cgroup *dst_cgrp,
5116 				     struct super_block *sb, bool threadgroup,
5117 				     struct cgroup_namespace *ns)
5118 {
5119 	int ret = 0;
5120 
5121 	ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, sb, ns);
5122 	if (ret)
5123 		return ret;
5124 
5125 	ret = cgroup_migrate_vet_dst(dst_cgrp);
5126 	if (ret)
5127 		return ret;
5128 
5129 	if (!threadgroup && (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp))
5130 		ret = -EOPNOTSUPP;
5131 
5132 	return ret;
5133 }
5134 
5135 static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
5136 				    bool threadgroup)
5137 {
5138 	struct cgroup_file_ctx *ctx = of->priv;
5139 	struct cgroup *src_cgrp, *dst_cgrp;
5140 	struct task_struct *task;
5141 	const struct cred *saved_cred;
5142 	ssize_t ret;
5143 	bool threadgroup_locked;
5144 
5145 	dst_cgrp = cgroup_kn_lock_live(of->kn, false);
5146 	if (!dst_cgrp)
5147 		return -ENODEV;
5148 
5149 	task = cgroup_procs_write_start(buf, threadgroup, &threadgroup_locked);
5150 	ret = PTR_ERR_OR_ZERO(task);
5151 	if (ret)
5152 		goto out_unlock;
5153 
5154 	/* find the source cgroup */
5155 	spin_lock_irq(&css_set_lock);
5156 	src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
5157 	spin_unlock_irq(&css_set_lock);
5158 
5159 	/*
5160 	 * Process and thread migrations follow same delegation rule. Check
5161 	 * permissions using the credentials from file open to protect against
5162 	 * inherited fd attacks.
5163 	 */
5164 	saved_cred = override_creds(of->file->f_cred);
5165 	ret = cgroup_attach_permissions(src_cgrp, dst_cgrp,
5166 					of->file->f_path.dentry->d_sb,
5167 					threadgroup, ctx->ns);
5168 	revert_creds(saved_cred);
5169 	if (ret)
5170 		goto out_finish;
5171 
5172 	ret = cgroup_attach_task(dst_cgrp, task, threadgroup);
5173 
5174 out_finish:
5175 	cgroup_procs_write_finish(task, threadgroup_locked);
5176 out_unlock:
5177 	cgroup_kn_unlock(of->kn);
5178 
5179 	return ret;
5180 }
5181 
5182 static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
5183 				  char *buf, size_t nbytes, loff_t off)
5184 {
5185 	return __cgroup_procs_write(of, buf, true) ?: nbytes;
5186 }
5187 
5188 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos)
5189 {
5190 	return __cgroup_procs_start(s, pos, 0);
5191 }
5192 
5193 static ssize_t cgroup_threads_write(struct kernfs_open_file *of,
5194 				    char *buf, size_t nbytes, loff_t off)
5195 {
5196 	return __cgroup_procs_write(of, buf, false) ?: nbytes;
5197 }
5198 
5199 /* cgroup core interface files for the default hierarchy */
5200 static struct cftype cgroup_base_files[] = {
5201 	{
5202 		.name = "cgroup.type",
5203 		.flags = CFTYPE_NOT_ON_ROOT,
5204 		.seq_show = cgroup_type_show,
5205 		.write = cgroup_type_write,
5206 	},
5207 	{
5208 		.name = "cgroup.procs",
5209 		.flags = CFTYPE_NS_DELEGATABLE,
5210 		.file_offset = offsetof(struct cgroup, procs_file),
5211 		.release = cgroup_procs_release,
5212 		.seq_start = cgroup_procs_start,
5213 		.seq_next = cgroup_procs_next,
5214 		.seq_show = cgroup_procs_show,
5215 		.write = cgroup_procs_write,
5216 	},
5217 	{
5218 		.name = "cgroup.threads",
5219 		.flags = CFTYPE_NS_DELEGATABLE,
5220 		.release = cgroup_procs_release,
5221 		.seq_start = cgroup_threads_start,
5222 		.seq_next = cgroup_procs_next,
5223 		.seq_show = cgroup_procs_show,
5224 		.write = cgroup_threads_write,
5225 	},
5226 	{
5227 		.name = "cgroup.controllers",
5228 		.seq_show = cgroup_controllers_show,
5229 	},
5230 	{
5231 		.name = "cgroup.subtree_control",
5232 		.flags = CFTYPE_NS_DELEGATABLE,
5233 		.seq_show = cgroup_subtree_control_show,
5234 		.write = cgroup_subtree_control_write,
5235 	},
5236 	{
5237 		.name = "cgroup.events",
5238 		.flags = CFTYPE_NOT_ON_ROOT,
5239 		.file_offset = offsetof(struct cgroup, events_file),
5240 		.seq_show = cgroup_events_show,
5241 	},
5242 	{
5243 		.name = "cgroup.max.descendants",
5244 		.seq_show = cgroup_max_descendants_show,
5245 		.write = cgroup_max_descendants_write,
5246 	},
5247 	{
5248 		.name = "cgroup.max.depth",
5249 		.seq_show = cgroup_max_depth_show,
5250 		.write = cgroup_max_depth_write,
5251 	},
5252 	{
5253 		.name = "cgroup.stat",
5254 		.seq_show = cgroup_stat_show,
5255 	},
5256 	{
5257 		.name = "cgroup.freeze",
5258 		.flags = CFTYPE_NOT_ON_ROOT,
5259 		.seq_show = cgroup_freeze_show,
5260 		.write = cgroup_freeze_write,
5261 	},
5262 	{
5263 		.name = "cgroup.kill",
5264 		.flags = CFTYPE_NOT_ON_ROOT,
5265 		.write = cgroup_kill_write,
5266 	},
5267 	{
5268 		.name = "cpu.stat",
5269 		.seq_show = cpu_stat_show,
5270 	},
5271 	{ }	/* terminate */
5272 };
5273 
5274 static struct cftype cgroup_psi_files[] = {
5275 #ifdef CONFIG_PSI
5276 	{
5277 		.name = "io.pressure",
5278 		.file_offset = offsetof(struct cgroup, psi_files[PSI_IO]),
5279 		.seq_show = cgroup_io_pressure_show,
5280 		.write = cgroup_io_pressure_write,
5281 		.poll = cgroup_pressure_poll,
5282 		.release = cgroup_pressure_release,
5283 	},
5284 	{
5285 		.name = "memory.pressure",
5286 		.file_offset = offsetof(struct cgroup, psi_files[PSI_MEM]),
5287 		.seq_show = cgroup_memory_pressure_show,
5288 		.write = cgroup_memory_pressure_write,
5289 		.poll = cgroup_pressure_poll,
5290 		.release = cgroup_pressure_release,
5291 	},
5292 	{
5293 		.name = "cpu.pressure",
5294 		.file_offset = offsetof(struct cgroup, psi_files[PSI_CPU]),
5295 		.seq_show = cgroup_cpu_pressure_show,
5296 		.write = cgroup_cpu_pressure_write,
5297 		.poll = cgroup_pressure_poll,
5298 		.release = cgroup_pressure_release,
5299 	},
5300 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
5301 	{
5302 		.name = "irq.pressure",
5303 		.file_offset = offsetof(struct cgroup, psi_files[PSI_IRQ]),
5304 		.seq_show = cgroup_irq_pressure_show,
5305 		.write = cgroup_irq_pressure_write,
5306 		.poll = cgroup_pressure_poll,
5307 		.release = cgroup_pressure_release,
5308 	},
5309 #endif
5310 	{
5311 		.name = "cgroup.pressure",
5312 		.seq_show = cgroup_pressure_show,
5313 		.write = cgroup_pressure_write,
5314 	},
5315 #endif /* CONFIG_PSI */
5316 	{ }	/* terminate */
5317 };
5318 
5319 /*
5320  * css destruction is four-stage process.
5321  *
5322  * 1. Destruction starts.  Killing of the percpu_ref is initiated.
5323  *    Implemented in kill_css().
5324  *
5325  * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
5326  *    and thus css_tryget_online() is guaranteed to fail, the css can be
5327  *    offlined by invoking offline_css().  After offlining, the base ref is
5328  *    put.  Implemented in css_killed_work_fn().
5329  *
5330  * 3. When the percpu_ref reaches zero, the only possible remaining
5331  *    accessors are inside RCU read sections.  css_release() schedules the
5332  *    RCU callback.
5333  *
5334  * 4. After the grace period, the css can be freed.  Implemented in
5335  *    css_free_work_fn().
5336  *
5337  * It is actually hairier because both step 2 and 4 require process context
5338  * and thus involve punting to css->destroy_work adding two additional
5339  * steps to the already complex sequence.
5340  */
5341 static void css_free_rwork_fn(struct work_struct *work)
5342 {
5343 	struct cgroup_subsys_state *css = container_of(to_rcu_work(work),
5344 				struct cgroup_subsys_state, destroy_rwork);
5345 	struct cgroup_subsys *ss = css->ss;
5346 	struct cgroup *cgrp = css->cgroup;
5347 
5348 	percpu_ref_exit(&css->refcnt);
5349 
5350 	if (ss) {
5351 		/* css free path */
5352 		struct cgroup_subsys_state *parent = css->parent;
5353 		int id = css->id;
5354 
5355 		ss->css_free(css);
5356 		cgroup_idr_remove(&ss->css_idr, id);
5357 		cgroup_put(cgrp);
5358 
5359 		if (parent)
5360 			css_put(parent);
5361 	} else {
5362 		/* cgroup free path */
5363 		atomic_dec(&cgrp->root->nr_cgrps);
5364 		cgroup1_pidlist_destroy_all(cgrp);
5365 		cancel_work_sync(&cgrp->release_agent_work);
5366 		bpf_cgrp_storage_free(cgrp);
5367 
5368 		if (cgroup_parent(cgrp)) {
5369 			/*
5370 			 * We get a ref to the parent, and put the ref when
5371 			 * this cgroup is being freed, so it's guaranteed
5372 			 * that the parent won't be destroyed before its
5373 			 * children.
5374 			 */
5375 			cgroup_put(cgroup_parent(cgrp));
5376 			kernfs_put(cgrp->kn);
5377 			psi_cgroup_free(cgrp);
5378 			cgroup_rstat_exit(cgrp);
5379 			kfree(cgrp);
5380 		} else {
5381 			/*
5382 			 * This is root cgroup's refcnt reaching zero,
5383 			 * which indicates that the root should be
5384 			 * released.
5385 			 */
5386 			cgroup_destroy_root(cgrp->root);
5387 		}
5388 	}
5389 }
5390 
5391 static void css_release_work_fn(struct work_struct *work)
5392 {
5393 	struct cgroup_subsys_state *css =
5394 		container_of(work, struct cgroup_subsys_state, destroy_work);
5395 	struct cgroup_subsys *ss = css->ss;
5396 	struct cgroup *cgrp = css->cgroup;
5397 
5398 	cgroup_lock();
5399 
5400 	css->flags |= CSS_RELEASED;
5401 	list_del_rcu(&css->sibling);
5402 
5403 	if (ss) {
5404 		/* css release path */
5405 		if (!list_empty(&css->rstat_css_node)) {
5406 			cgroup_rstat_flush(cgrp);
5407 			list_del_rcu(&css->rstat_css_node);
5408 		}
5409 
5410 		cgroup_idr_replace(&ss->css_idr, NULL, css->id);
5411 		if (ss->css_released)
5412 			ss->css_released(css);
5413 	} else {
5414 		struct cgroup *tcgrp;
5415 
5416 		/* cgroup release path */
5417 		TRACE_CGROUP_PATH(release, cgrp);
5418 
5419 		cgroup_rstat_flush(cgrp);
5420 
5421 		spin_lock_irq(&css_set_lock);
5422 		for (tcgrp = cgroup_parent(cgrp); tcgrp;
5423 		     tcgrp = cgroup_parent(tcgrp))
5424 			tcgrp->nr_dying_descendants--;
5425 		spin_unlock_irq(&css_set_lock);
5426 
5427 		/*
5428 		 * There are two control paths which try to determine
5429 		 * cgroup from dentry without going through kernfs -
5430 		 * cgroupstats_build() and css_tryget_online_from_dir().
5431 		 * Those are supported by RCU protecting clearing of
5432 		 * cgrp->kn->priv backpointer.
5433 		 */
5434 		if (cgrp->kn)
5435 			RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
5436 					 NULL);
5437 	}
5438 
5439 	cgroup_unlock();
5440 
5441 	INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5442 	queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5443 }
5444 
5445 static void css_release(struct percpu_ref *ref)
5446 {
5447 	struct cgroup_subsys_state *css =
5448 		container_of(ref, struct cgroup_subsys_state, refcnt);
5449 
5450 	INIT_WORK(&css->destroy_work, css_release_work_fn);
5451 	queue_work(cgroup_destroy_wq, &css->destroy_work);
5452 }
5453 
5454 static void init_and_link_css(struct cgroup_subsys_state *css,
5455 			      struct cgroup_subsys *ss, struct cgroup *cgrp)
5456 {
5457 	lockdep_assert_held(&cgroup_mutex);
5458 
5459 	cgroup_get_live(cgrp);
5460 
5461 	memset(css, 0, sizeof(*css));
5462 	css->cgroup = cgrp;
5463 	css->ss = ss;
5464 	css->id = -1;
5465 	INIT_LIST_HEAD(&css->sibling);
5466 	INIT_LIST_HEAD(&css->children);
5467 	INIT_LIST_HEAD(&css->rstat_css_node);
5468 	css->serial_nr = css_serial_nr_next++;
5469 	atomic_set(&css->online_cnt, 0);
5470 
5471 	if (cgroup_parent(cgrp)) {
5472 		css->parent = cgroup_css(cgroup_parent(cgrp), ss);
5473 		css_get(css->parent);
5474 	}
5475 
5476 	if (ss->css_rstat_flush)
5477 		list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list);
5478 
5479 	BUG_ON(cgroup_css(cgrp, ss));
5480 }
5481 
5482 /* invoke ->css_online() on a new CSS and mark it online if successful */
5483 static int online_css(struct cgroup_subsys_state *css)
5484 {
5485 	struct cgroup_subsys *ss = css->ss;
5486 	int ret = 0;
5487 
5488 	lockdep_assert_held(&cgroup_mutex);
5489 
5490 	if (ss->css_online)
5491 		ret = ss->css_online(css);
5492 	if (!ret) {
5493 		css->flags |= CSS_ONLINE;
5494 		rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
5495 
5496 		atomic_inc(&css->online_cnt);
5497 		if (css->parent)
5498 			atomic_inc(&css->parent->online_cnt);
5499 	}
5500 	return ret;
5501 }
5502 
5503 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
5504 static void offline_css(struct cgroup_subsys_state *css)
5505 {
5506 	struct cgroup_subsys *ss = css->ss;
5507 
5508 	lockdep_assert_held(&cgroup_mutex);
5509 
5510 	if (!(css->flags & CSS_ONLINE))
5511 		return;
5512 
5513 	if (ss->css_offline)
5514 		ss->css_offline(css);
5515 
5516 	css->flags &= ~CSS_ONLINE;
5517 	RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
5518 
5519 	wake_up_all(&css->cgroup->offline_waitq);
5520 }
5521 
5522 /**
5523  * css_create - create a cgroup_subsys_state
5524  * @cgrp: the cgroup new css will be associated with
5525  * @ss: the subsys of new css
5526  *
5527  * Create a new css associated with @cgrp - @ss pair.  On success, the new
5528  * css is online and installed in @cgrp.  This function doesn't create the
5529  * interface files.  Returns 0 on success, -errno on failure.
5530  */
5531 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
5532 					      struct cgroup_subsys *ss)
5533 {
5534 	struct cgroup *parent = cgroup_parent(cgrp);
5535 	struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
5536 	struct cgroup_subsys_state *css;
5537 	int err;
5538 
5539 	lockdep_assert_held(&cgroup_mutex);
5540 
5541 	css = ss->css_alloc(parent_css);
5542 	if (!css)
5543 		css = ERR_PTR(-ENOMEM);
5544 	if (IS_ERR(css))
5545 		return css;
5546 
5547 	init_and_link_css(css, ss, cgrp);
5548 
5549 	err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
5550 	if (err)
5551 		goto err_free_css;
5552 
5553 	err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
5554 	if (err < 0)
5555 		goto err_free_css;
5556 	css->id = err;
5557 
5558 	/* @css is ready to be brought online now, make it visible */
5559 	list_add_tail_rcu(&css->sibling, &parent_css->children);
5560 	cgroup_idr_replace(&ss->css_idr, css, css->id);
5561 
5562 	err = online_css(css);
5563 	if (err)
5564 		goto err_list_del;
5565 
5566 	return css;
5567 
5568 err_list_del:
5569 	list_del_rcu(&css->sibling);
5570 err_free_css:
5571 	list_del_rcu(&css->rstat_css_node);
5572 	INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5573 	queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5574 	return ERR_PTR(err);
5575 }
5576 
5577 /*
5578  * The returned cgroup is fully initialized including its control mask, but
5579  * it isn't associated with its kernfs_node and doesn't have the control
5580  * mask applied.
5581  */
5582 static struct cgroup *cgroup_create(struct cgroup *parent, const char *name,
5583 				    umode_t mode)
5584 {
5585 	struct cgroup_root *root = parent->root;
5586 	struct cgroup *cgrp, *tcgrp;
5587 	struct kernfs_node *kn;
5588 	int level = parent->level + 1;
5589 	int ret;
5590 
5591 	/* allocate the cgroup and its ID, 0 is reserved for the root */
5592 	cgrp = kzalloc(struct_size(cgrp, ancestors, (level + 1)), GFP_KERNEL);
5593 	if (!cgrp)
5594 		return ERR_PTR(-ENOMEM);
5595 
5596 	ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
5597 	if (ret)
5598 		goto out_free_cgrp;
5599 
5600 	ret = cgroup_rstat_init(cgrp);
5601 	if (ret)
5602 		goto out_cancel_ref;
5603 
5604 	/* create the directory */
5605 	kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
5606 	if (IS_ERR(kn)) {
5607 		ret = PTR_ERR(kn);
5608 		goto out_stat_exit;
5609 	}
5610 	cgrp->kn = kn;
5611 
5612 	init_cgroup_housekeeping(cgrp);
5613 
5614 	cgrp->self.parent = &parent->self;
5615 	cgrp->root = root;
5616 	cgrp->level = level;
5617 
5618 	ret = psi_cgroup_alloc(cgrp);
5619 	if (ret)
5620 		goto out_kernfs_remove;
5621 
5622 	ret = cgroup_bpf_inherit(cgrp);
5623 	if (ret)
5624 		goto out_psi_free;
5625 
5626 	/*
5627 	 * New cgroup inherits effective freeze counter, and
5628 	 * if the parent has to be frozen, the child has too.
5629 	 */
5630 	cgrp->freezer.e_freeze = parent->freezer.e_freeze;
5631 	if (cgrp->freezer.e_freeze) {
5632 		/*
5633 		 * Set the CGRP_FREEZE flag, so when a process will be
5634 		 * attached to the child cgroup, it will become frozen.
5635 		 * At this point the new cgroup is unpopulated, so we can
5636 		 * consider it frozen immediately.
5637 		 */
5638 		set_bit(CGRP_FREEZE, &cgrp->flags);
5639 		set_bit(CGRP_FROZEN, &cgrp->flags);
5640 	}
5641 
5642 	spin_lock_irq(&css_set_lock);
5643 	for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5644 		cgrp->ancestors[tcgrp->level] = tcgrp;
5645 
5646 		if (tcgrp != cgrp) {
5647 			tcgrp->nr_descendants++;
5648 
5649 			/*
5650 			 * If the new cgroup is frozen, all ancestor cgroups
5651 			 * get a new frozen descendant, but their state can't
5652 			 * change because of this.
5653 			 */
5654 			if (cgrp->freezer.e_freeze)
5655 				tcgrp->freezer.nr_frozen_descendants++;
5656 		}
5657 	}
5658 	spin_unlock_irq(&css_set_lock);
5659 
5660 	if (notify_on_release(parent))
5661 		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
5662 
5663 	if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
5664 		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
5665 
5666 	cgrp->self.serial_nr = css_serial_nr_next++;
5667 
5668 	/* allocation complete, commit to creation */
5669 	list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
5670 	atomic_inc(&root->nr_cgrps);
5671 	cgroup_get_live(parent);
5672 
5673 	/*
5674 	 * On the default hierarchy, a child doesn't automatically inherit
5675 	 * subtree_control from the parent.  Each is configured manually.
5676 	 */
5677 	if (!cgroup_on_dfl(cgrp))
5678 		cgrp->subtree_control = cgroup_control(cgrp);
5679 
5680 	cgroup_propagate_control(cgrp);
5681 
5682 	return cgrp;
5683 
5684 out_psi_free:
5685 	psi_cgroup_free(cgrp);
5686 out_kernfs_remove:
5687 	kernfs_remove(cgrp->kn);
5688 out_stat_exit:
5689 	cgroup_rstat_exit(cgrp);
5690 out_cancel_ref:
5691 	percpu_ref_exit(&cgrp->self.refcnt);
5692 out_free_cgrp:
5693 	kfree(cgrp);
5694 	return ERR_PTR(ret);
5695 }
5696 
5697 static bool cgroup_check_hierarchy_limits(struct cgroup *parent)
5698 {
5699 	struct cgroup *cgroup;
5700 	int ret = false;
5701 	int level = 1;
5702 
5703 	lockdep_assert_held(&cgroup_mutex);
5704 
5705 	for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) {
5706 		if (cgroup->nr_descendants >= cgroup->max_descendants)
5707 			goto fail;
5708 
5709 		if (level > cgroup->max_depth)
5710 			goto fail;
5711 
5712 		level++;
5713 	}
5714 
5715 	ret = true;
5716 fail:
5717 	return ret;
5718 }
5719 
5720 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode)
5721 {
5722 	struct cgroup *parent, *cgrp;
5723 	int ret;
5724 
5725 	/* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
5726 	if (strchr(name, '\n'))
5727 		return -EINVAL;
5728 
5729 	parent = cgroup_kn_lock_live(parent_kn, false);
5730 	if (!parent)
5731 		return -ENODEV;
5732 
5733 	if (!cgroup_check_hierarchy_limits(parent)) {
5734 		ret = -EAGAIN;
5735 		goto out_unlock;
5736 	}
5737 
5738 	cgrp = cgroup_create(parent, name, mode);
5739 	if (IS_ERR(cgrp)) {
5740 		ret = PTR_ERR(cgrp);
5741 		goto out_unlock;
5742 	}
5743 
5744 	/*
5745 	 * This extra ref will be put in cgroup_free_fn() and guarantees
5746 	 * that @cgrp->kn is always accessible.
5747 	 */
5748 	kernfs_get(cgrp->kn);
5749 
5750 	ret = cgroup_kn_set_ugid(cgrp->kn);
5751 	if (ret)
5752 		goto out_destroy;
5753 
5754 	ret = css_populate_dir(&cgrp->self);
5755 	if (ret)
5756 		goto out_destroy;
5757 
5758 	ret = cgroup_apply_control_enable(cgrp);
5759 	if (ret)
5760 		goto out_destroy;
5761 
5762 	TRACE_CGROUP_PATH(mkdir, cgrp);
5763 
5764 	/* let's create and online css's */
5765 	kernfs_activate(cgrp->kn);
5766 
5767 	ret = 0;
5768 	goto out_unlock;
5769 
5770 out_destroy:
5771 	cgroup_destroy_locked(cgrp);
5772 out_unlock:
5773 	cgroup_kn_unlock(parent_kn);
5774 	return ret;
5775 }
5776 
5777 /*
5778  * This is called when the refcnt of a css is confirmed to be killed.
5779  * css_tryget_online() is now guaranteed to fail.  Tell the subsystem to
5780  * initiate destruction and put the css ref from kill_css().
5781  */
5782 static void css_killed_work_fn(struct work_struct *work)
5783 {
5784 	struct cgroup_subsys_state *css =
5785 		container_of(work, struct cgroup_subsys_state, destroy_work);
5786 
5787 	cgroup_lock();
5788 
5789 	do {
5790 		offline_css(css);
5791 		css_put(css);
5792 		/* @css can't go away while we're holding cgroup_mutex */
5793 		css = css->parent;
5794 	} while (css && atomic_dec_and_test(&css->online_cnt));
5795 
5796 	cgroup_unlock();
5797 }
5798 
5799 /* css kill confirmation processing requires process context, bounce */
5800 static void css_killed_ref_fn(struct percpu_ref *ref)
5801 {
5802 	struct cgroup_subsys_state *css =
5803 		container_of(ref, struct cgroup_subsys_state, refcnt);
5804 
5805 	if (atomic_dec_and_test(&css->online_cnt)) {
5806 		INIT_WORK(&css->destroy_work, css_killed_work_fn);
5807 		queue_work(cgroup_destroy_wq, &css->destroy_work);
5808 	}
5809 }
5810 
5811 /**
5812  * kill_css - destroy a css
5813  * @css: css to destroy
5814  *
5815  * This function initiates destruction of @css by removing cgroup interface
5816  * files and putting its base reference.  ->css_offline() will be invoked
5817  * asynchronously once css_tryget_online() is guaranteed to fail and when
5818  * the reference count reaches zero, @css will be released.
5819  */
5820 static void kill_css(struct cgroup_subsys_state *css)
5821 {
5822 	lockdep_assert_held(&cgroup_mutex);
5823 
5824 	if (css->flags & CSS_DYING)
5825 		return;
5826 
5827 	css->flags |= CSS_DYING;
5828 
5829 	/*
5830 	 * This must happen before css is disassociated with its cgroup.
5831 	 * See seq_css() for details.
5832 	 */
5833 	css_clear_dir(css);
5834 
5835 	/*
5836 	 * Killing would put the base ref, but we need to keep it alive
5837 	 * until after ->css_offline().
5838 	 */
5839 	css_get(css);
5840 
5841 	/*
5842 	 * cgroup core guarantees that, by the time ->css_offline() is
5843 	 * invoked, no new css reference will be given out via
5844 	 * css_tryget_online().  We can't simply call percpu_ref_kill() and
5845 	 * proceed to offlining css's because percpu_ref_kill() doesn't
5846 	 * guarantee that the ref is seen as killed on all CPUs on return.
5847 	 *
5848 	 * Use percpu_ref_kill_and_confirm() to get notifications as each
5849 	 * css is confirmed to be seen as killed on all CPUs.
5850 	 */
5851 	percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
5852 }
5853 
5854 /**
5855  * cgroup_destroy_locked - the first stage of cgroup destruction
5856  * @cgrp: cgroup to be destroyed
5857  *
5858  * css's make use of percpu refcnts whose killing latency shouldn't be
5859  * exposed to userland and are RCU protected.  Also, cgroup core needs to
5860  * guarantee that css_tryget_online() won't succeed by the time
5861  * ->css_offline() is invoked.  To satisfy all the requirements,
5862  * destruction is implemented in the following two steps.
5863  *
5864  * s1. Verify @cgrp can be destroyed and mark it dying.  Remove all
5865  *     userland visible parts and start killing the percpu refcnts of
5866  *     css's.  Set up so that the next stage will be kicked off once all
5867  *     the percpu refcnts are confirmed to be killed.
5868  *
5869  * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5870  *     rest of destruction.  Once all cgroup references are gone, the
5871  *     cgroup is RCU-freed.
5872  *
5873  * This function implements s1.  After this step, @cgrp is gone as far as
5874  * the userland is concerned and a new cgroup with the same name may be
5875  * created.  As cgroup doesn't care about the names internally, this
5876  * doesn't cause any problem.
5877  */
5878 static int cgroup_destroy_locked(struct cgroup *cgrp)
5879 	__releases(&cgroup_mutex) __acquires(&cgroup_mutex)
5880 {
5881 	struct cgroup *tcgrp, *parent = cgroup_parent(cgrp);
5882 	struct cgroup_subsys_state *css;
5883 	struct cgrp_cset_link *link;
5884 	int ssid;
5885 
5886 	lockdep_assert_held(&cgroup_mutex);
5887 
5888 	/*
5889 	 * Only migration can raise populated from zero and we're already
5890 	 * holding cgroup_mutex.
5891 	 */
5892 	if (cgroup_is_populated(cgrp))
5893 		return -EBUSY;
5894 
5895 	/*
5896 	 * Make sure there's no live children.  We can't test emptiness of
5897 	 * ->self.children as dead children linger on it while being
5898 	 * drained; otherwise, "rmdir parent/child parent" may fail.
5899 	 */
5900 	if (css_has_online_children(&cgrp->self))
5901 		return -EBUSY;
5902 
5903 	/*
5904 	 * Mark @cgrp and the associated csets dead.  The former prevents
5905 	 * further task migration and child creation by disabling
5906 	 * cgroup_lock_live_group().  The latter makes the csets ignored by
5907 	 * the migration path.
5908 	 */
5909 	cgrp->self.flags &= ~CSS_ONLINE;
5910 
5911 	spin_lock_irq(&css_set_lock);
5912 	list_for_each_entry(link, &cgrp->cset_links, cset_link)
5913 		link->cset->dead = true;
5914 	spin_unlock_irq(&css_set_lock);
5915 
5916 	/* initiate massacre of all css's */
5917 	for_each_css(css, ssid, cgrp)
5918 		kill_css(css);
5919 
5920 	/* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */
5921 	css_clear_dir(&cgrp->self);
5922 	kernfs_remove(cgrp->kn);
5923 
5924 	if (cgroup_is_threaded(cgrp))
5925 		parent->nr_threaded_children--;
5926 
5927 	spin_lock_irq(&css_set_lock);
5928 	for (tcgrp = cgroup_parent(cgrp); tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5929 		tcgrp->nr_descendants--;
5930 		tcgrp->nr_dying_descendants++;
5931 		/*
5932 		 * If the dying cgroup is frozen, decrease frozen descendants
5933 		 * counters of ancestor cgroups.
5934 		 */
5935 		if (test_bit(CGRP_FROZEN, &cgrp->flags))
5936 			tcgrp->freezer.nr_frozen_descendants--;
5937 	}
5938 	spin_unlock_irq(&css_set_lock);
5939 
5940 	cgroup1_check_for_release(parent);
5941 
5942 	cgroup_bpf_offline(cgrp);
5943 
5944 	/* put the base reference */
5945 	percpu_ref_kill(&cgrp->self.refcnt);
5946 
5947 	return 0;
5948 };
5949 
5950 int cgroup_rmdir(struct kernfs_node *kn)
5951 {
5952 	struct cgroup *cgrp;
5953 	int ret = 0;
5954 
5955 	cgrp = cgroup_kn_lock_live(kn, false);
5956 	if (!cgrp)
5957 		return 0;
5958 
5959 	ret = cgroup_destroy_locked(cgrp);
5960 	if (!ret)
5961 		TRACE_CGROUP_PATH(rmdir, cgrp);
5962 
5963 	cgroup_kn_unlock(kn);
5964 	return ret;
5965 }
5966 
5967 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5968 	.show_options		= cgroup_show_options,
5969 	.mkdir			= cgroup_mkdir,
5970 	.rmdir			= cgroup_rmdir,
5971 	.show_path		= cgroup_show_path,
5972 };
5973 
5974 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
5975 {
5976 	struct cgroup_subsys_state *css;
5977 
5978 	pr_debug("Initializing cgroup subsys %s\n", ss->name);
5979 
5980 	cgroup_lock();
5981 
5982 	idr_init(&ss->css_idr);
5983 	INIT_LIST_HEAD(&ss->cfts);
5984 
5985 	/* Create the root cgroup state for this subsystem */
5986 	ss->root = &cgrp_dfl_root;
5987 	css = ss->css_alloc(NULL);
5988 	/* We don't handle early failures gracefully */
5989 	BUG_ON(IS_ERR(css));
5990 	init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
5991 
5992 	/*
5993 	 * Root csses are never destroyed and we can't initialize
5994 	 * percpu_ref during early init.  Disable refcnting.
5995 	 */
5996 	css->flags |= CSS_NO_REF;
5997 
5998 	if (early) {
5999 		/* allocation can't be done safely during early init */
6000 		css->id = 1;
6001 	} else {
6002 		css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
6003 		BUG_ON(css->id < 0);
6004 	}
6005 
6006 	/* Update the init_css_set to contain a subsys
6007 	 * pointer to this state - since the subsystem is
6008 	 * newly registered, all tasks and hence the
6009 	 * init_css_set is in the subsystem's root cgroup. */
6010 	init_css_set.subsys[ss->id] = css;
6011 
6012 	have_fork_callback |= (bool)ss->fork << ss->id;
6013 	have_exit_callback |= (bool)ss->exit << ss->id;
6014 	have_release_callback |= (bool)ss->release << ss->id;
6015 	have_canfork_callback |= (bool)ss->can_fork << ss->id;
6016 
6017 	/* At system boot, before all subsystems have been
6018 	 * registered, no tasks have been forked, so we don't
6019 	 * need to invoke fork callbacks here. */
6020 	BUG_ON(!list_empty(&init_task.tasks));
6021 
6022 	BUG_ON(online_css(css));
6023 
6024 	cgroup_unlock();
6025 }
6026 
6027 /**
6028  * cgroup_init_early - cgroup initialization at system boot
6029  *
6030  * Initialize cgroups at system boot, and initialize any
6031  * subsystems that request early init.
6032  */
6033 int __init cgroup_init_early(void)
6034 {
6035 	static struct cgroup_fs_context __initdata ctx;
6036 	struct cgroup_subsys *ss;
6037 	int i;
6038 
6039 	ctx.root = &cgrp_dfl_root;
6040 	init_cgroup_root(&ctx);
6041 	cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
6042 
6043 	RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
6044 
6045 	for_each_subsys(ss, i) {
6046 		WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
6047 		     "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
6048 		     i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
6049 		     ss->id, ss->name);
6050 		WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
6051 		     "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
6052 
6053 		ss->id = i;
6054 		ss->name = cgroup_subsys_name[i];
6055 		if (!ss->legacy_name)
6056 			ss->legacy_name = cgroup_subsys_name[i];
6057 
6058 		if (ss->early_init)
6059 			cgroup_init_subsys(ss, true);
6060 	}
6061 	return 0;
6062 }
6063 
6064 /**
6065  * cgroup_init - cgroup initialization
6066  *
6067  * Register cgroup filesystem and /proc file, and initialize
6068  * any subsystems that didn't request early init.
6069  */
6070 int __init cgroup_init(void)
6071 {
6072 	struct cgroup_subsys *ss;
6073 	int ssid;
6074 
6075 	BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
6076 	BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
6077 	BUG_ON(cgroup_init_cftypes(NULL, cgroup_psi_files));
6078 	BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files));
6079 
6080 	cgroup_rstat_boot();
6081 
6082 	get_user_ns(init_cgroup_ns.user_ns);
6083 
6084 	cgroup_lock();
6085 
6086 	/*
6087 	 * Add init_css_set to the hash table so that dfl_root can link to
6088 	 * it during init.
6089 	 */
6090 	hash_add(css_set_table, &init_css_set.hlist,
6091 		 css_set_hash(init_css_set.subsys));
6092 
6093 	BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
6094 
6095 	cgroup_unlock();
6096 
6097 	for_each_subsys(ss, ssid) {
6098 		if (ss->early_init) {
6099 			struct cgroup_subsys_state *css =
6100 				init_css_set.subsys[ss->id];
6101 
6102 			css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
6103 						   GFP_KERNEL);
6104 			BUG_ON(css->id < 0);
6105 		} else {
6106 			cgroup_init_subsys(ss, false);
6107 		}
6108 
6109 		list_add_tail(&init_css_set.e_cset_node[ssid],
6110 			      &cgrp_dfl_root.cgrp.e_csets[ssid]);
6111 
6112 		/*
6113 		 * Setting dfl_root subsys_mask needs to consider the
6114 		 * disabled flag and cftype registration needs kmalloc,
6115 		 * both of which aren't available during early_init.
6116 		 */
6117 		if (!cgroup_ssid_enabled(ssid))
6118 			continue;
6119 
6120 		if (cgroup1_ssid_disabled(ssid))
6121 			printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n",
6122 			       ss->name);
6123 
6124 		cgrp_dfl_root.subsys_mask |= 1 << ss->id;
6125 
6126 		/* implicit controllers must be threaded too */
6127 		WARN_ON(ss->implicit_on_dfl && !ss->threaded);
6128 
6129 		if (ss->implicit_on_dfl)
6130 			cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
6131 		else if (!ss->dfl_cftypes)
6132 			cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
6133 
6134 		if (ss->threaded)
6135 			cgrp_dfl_threaded_ss_mask |= 1 << ss->id;
6136 
6137 		if (ss->dfl_cftypes == ss->legacy_cftypes) {
6138 			WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
6139 		} else {
6140 			WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
6141 			WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
6142 		}
6143 
6144 		if (ss->bind)
6145 			ss->bind(init_css_set.subsys[ssid]);
6146 
6147 		cgroup_lock();
6148 		css_populate_dir(init_css_set.subsys[ssid]);
6149 		cgroup_unlock();
6150 	}
6151 
6152 	/* init_css_set.subsys[] has been updated, re-hash */
6153 	hash_del(&init_css_set.hlist);
6154 	hash_add(css_set_table, &init_css_set.hlist,
6155 		 css_set_hash(init_css_set.subsys));
6156 
6157 	WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
6158 	WARN_ON(register_filesystem(&cgroup_fs_type));
6159 	WARN_ON(register_filesystem(&cgroup2_fs_type));
6160 	WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show));
6161 #ifdef CONFIG_CPUSETS
6162 	WARN_ON(register_filesystem(&cpuset_fs_type));
6163 #endif
6164 
6165 	return 0;
6166 }
6167 
6168 static int __init cgroup_wq_init(void)
6169 {
6170 	/*
6171 	 * There isn't much point in executing destruction path in
6172 	 * parallel.  Good chunk is serialized with cgroup_mutex anyway.
6173 	 * Use 1 for @max_active.
6174 	 *
6175 	 * We would prefer to do this in cgroup_init() above, but that
6176 	 * is called before init_workqueues(): so leave this until after.
6177 	 */
6178 	cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
6179 	BUG_ON(!cgroup_destroy_wq);
6180 	return 0;
6181 }
6182 core_initcall(cgroup_wq_init);
6183 
6184 void cgroup_path_from_kernfs_id(u64 id, char *buf, size_t buflen)
6185 {
6186 	struct kernfs_node *kn;
6187 
6188 	kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id);
6189 	if (!kn)
6190 		return;
6191 	kernfs_path(kn, buf, buflen);
6192 	kernfs_put(kn);
6193 }
6194 
6195 /*
6196  * cgroup_get_from_id : get the cgroup associated with cgroup id
6197  * @id: cgroup id
6198  * On success return the cgrp or ERR_PTR on failure
6199  * Only cgroups within current task's cgroup NS are valid.
6200  */
6201 struct cgroup *cgroup_get_from_id(u64 id)
6202 {
6203 	struct kernfs_node *kn;
6204 	struct cgroup *cgrp, *root_cgrp;
6205 
6206 	kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id);
6207 	if (!kn)
6208 		return ERR_PTR(-ENOENT);
6209 
6210 	if (kernfs_type(kn) != KERNFS_DIR) {
6211 		kernfs_put(kn);
6212 		return ERR_PTR(-ENOENT);
6213 	}
6214 
6215 	rcu_read_lock();
6216 
6217 	cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6218 	if (cgrp && !cgroup_tryget(cgrp))
6219 		cgrp = NULL;
6220 
6221 	rcu_read_unlock();
6222 	kernfs_put(kn);
6223 
6224 	if (!cgrp)
6225 		return ERR_PTR(-ENOENT);
6226 
6227 	root_cgrp = current_cgns_cgroup_dfl();
6228 	if (!cgroup_is_descendant(cgrp, root_cgrp)) {
6229 		cgroup_put(cgrp);
6230 		return ERR_PTR(-ENOENT);
6231 	}
6232 
6233 	return cgrp;
6234 }
6235 EXPORT_SYMBOL_GPL(cgroup_get_from_id);
6236 
6237 /*
6238  * proc_cgroup_show()
6239  *  - Print task's cgroup paths into seq_file, one line for each hierarchy
6240  *  - Used for /proc/<pid>/cgroup.
6241  */
6242 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
6243 		     struct pid *pid, struct task_struct *tsk)
6244 {
6245 	char *buf;
6246 	int retval;
6247 	struct cgroup_root *root;
6248 
6249 	retval = -ENOMEM;
6250 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
6251 	if (!buf)
6252 		goto out;
6253 
6254 	cgroup_lock();
6255 	spin_lock_irq(&css_set_lock);
6256 
6257 	for_each_root(root) {
6258 		struct cgroup_subsys *ss;
6259 		struct cgroup *cgrp;
6260 		int ssid, count = 0;
6261 
6262 		if (root == &cgrp_dfl_root && !READ_ONCE(cgrp_dfl_visible))
6263 			continue;
6264 
6265 		seq_printf(m, "%d:", root->hierarchy_id);
6266 		if (root != &cgrp_dfl_root)
6267 			for_each_subsys(ss, ssid)
6268 				if (root->subsys_mask & (1 << ssid))
6269 					seq_printf(m, "%s%s", count++ ? "," : "",
6270 						   ss->legacy_name);
6271 		if (strlen(root->name))
6272 			seq_printf(m, "%sname=%s", count ? "," : "",
6273 				   root->name);
6274 		seq_putc(m, ':');
6275 
6276 		cgrp = task_cgroup_from_root(tsk, root);
6277 
6278 		/*
6279 		 * On traditional hierarchies, all zombie tasks show up as
6280 		 * belonging to the root cgroup.  On the default hierarchy,
6281 		 * while a zombie doesn't show up in "cgroup.procs" and
6282 		 * thus can't be migrated, its /proc/PID/cgroup keeps
6283 		 * reporting the cgroup it belonged to before exiting.  If
6284 		 * the cgroup is removed before the zombie is reaped,
6285 		 * " (deleted)" is appended to the cgroup path.
6286 		 */
6287 		if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
6288 			retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
6289 						current->nsproxy->cgroup_ns);
6290 			if (retval >= PATH_MAX)
6291 				retval = -ENAMETOOLONG;
6292 			if (retval < 0)
6293 				goto out_unlock;
6294 
6295 			seq_puts(m, buf);
6296 		} else {
6297 			seq_puts(m, "/");
6298 		}
6299 
6300 		if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
6301 			seq_puts(m, " (deleted)\n");
6302 		else
6303 			seq_putc(m, '\n');
6304 	}
6305 
6306 	retval = 0;
6307 out_unlock:
6308 	spin_unlock_irq(&css_set_lock);
6309 	cgroup_unlock();
6310 	kfree(buf);
6311 out:
6312 	return retval;
6313 }
6314 
6315 /**
6316  * cgroup_fork - initialize cgroup related fields during copy_process()
6317  * @child: pointer to task_struct of forking parent process.
6318  *
6319  * A task is associated with the init_css_set until cgroup_post_fork()
6320  * attaches it to the target css_set.
6321  */
6322 void cgroup_fork(struct task_struct *child)
6323 {
6324 	RCU_INIT_POINTER(child->cgroups, &init_css_set);
6325 	INIT_LIST_HEAD(&child->cg_list);
6326 }
6327 
6328 /**
6329  * cgroup_v1v2_get_from_file - get a cgroup pointer from a file pointer
6330  * @f: file corresponding to cgroup_dir
6331  *
6332  * Find the cgroup from a file pointer associated with a cgroup directory.
6333  * Returns a pointer to the cgroup on success. ERR_PTR is returned if the
6334  * cgroup cannot be found.
6335  */
6336 static struct cgroup *cgroup_v1v2_get_from_file(struct file *f)
6337 {
6338 	struct cgroup_subsys_state *css;
6339 
6340 	css = css_tryget_online_from_dir(f->f_path.dentry, NULL);
6341 	if (IS_ERR(css))
6342 		return ERR_CAST(css);
6343 
6344 	return css->cgroup;
6345 }
6346 
6347 /**
6348  * cgroup_get_from_file - same as cgroup_v1v2_get_from_file, but only supports
6349  * cgroup2.
6350  * @f: file corresponding to cgroup2_dir
6351  */
6352 static struct cgroup *cgroup_get_from_file(struct file *f)
6353 {
6354 	struct cgroup *cgrp = cgroup_v1v2_get_from_file(f);
6355 
6356 	if (IS_ERR(cgrp))
6357 		return ERR_CAST(cgrp);
6358 
6359 	if (!cgroup_on_dfl(cgrp)) {
6360 		cgroup_put(cgrp);
6361 		return ERR_PTR(-EBADF);
6362 	}
6363 
6364 	return cgrp;
6365 }
6366 
6367 /**
6368  * cgroup_css_set_fork - find or create a css_set for a child process
6369  * @kargs: the arguments passed to create the child process
6370  *
6371  * This functions finds or creates a new css_set which the child
6372  * process will be attached to in cgroup_post_fork(). By default,
6373  * the child process will be given the same css_set as its parent.
6374  *
6375  * If CLONE_INTO_CGROUP is specified this function will try to find an
6376  * existing css_set which includes the requested cgroup and if not create
6377  * a new css_set that the child will be attached to later. If this function
6378  * succeeds it will hold cgroup_threadgroup_rwsem on return. If
6379  * CLONE_INTO_CGROUP is requested this function will grab cgroup mutex
6380  * before grabbing cgroup_threadgroup_rwsem and will hold a reference
6381  * to the target cgroup.
6382  */
6383 static int cgroup_css_set_fork(struct kernel_clone_args *kargs)
6384 	__acquires(&cgroup_mutex) __acquires(&cgroup_threadgroup_rwsem)
6385 {
6386 	int ret;
6387 	struct cgroup *dst_cgrp = NULL;
6388 	struct css_set *cset;
6389 	struct super_block *sb;
6390 	struct file *f;
6391 
6392 	if (kargs->flags & CLONE_INTO_CGROUP)
6393 		cgroup_lock();
6394 
6395 	cgroup_threadgroup_change_begin(current);
6396 
6397 	spin_lock_irq(&css_set_lock);
6398 	cset = task_css_set(current);
6399 	get_css_set(cset);
6400 	spin_unlock_irq(&css_set_lock);
6401 
6402 	if (!(kargs->flags & CLONE_INTO_CGROUP)) {
6403 		kargs->cset = cset;
6404 		return 0;
6405 	}
6406 
6407 	f = fget_raw(kargs->cgroup);
6408 	if (!f) {
6409 		ret = -EBADF;
6410 		goto err;
6411 	}
6412 	sb = f->f_path.dentry->d_sb;
6413 
6414 	dst_cgrp = cgroup_get_from_file(f);
6415 	if (IS_ERR(dst_cgrp)) {
6416 		ret = PTR_ERR(dst_cgrp);
6417 		dst_cgrp = NULL;
6418 		goto err;
6419 	}
6420 
6421 	if (cgroup_is_dead(dst_cgrp)) {
6422 		ret = -ENODEV;
6423 		goto err;
6424 	}
6425 
6426 	/*
6427 	 * Verify that we the target cgroup is writable for us. This is
6428 	 * usually done by the vfs layer but since we're not going through
6429 	 * the vfs layer here we need to do it "manually".
6430 	 */
6431 	ret = cgroup_may_write(dst_cgrp, sb);
6432 	if (ret)
6433 		goto err;
6434 
6435 	/*
6436 	 * Spawning a task directly into a cgroup works by passing a file
6437 	 * descriptor to the target cgroup directory. This can even be an O_PATH
6438 	 * file descriptor. But it can never be a cgroup.procs file descriptor.
6439 	 * This was done on purpose so spawning into a cgroup could be
6440 	 * conceptualized as an atomic
6441 	 *
6442 	 *   fd = openat(dfd_cgroup, "cgroup.procs", ...);
6443 	 *   write(fd, <child-pid>, ...);
6444 	 *
6445 	 * sequence, i.e. it's a shorthand for the caller opening and writing
6446 	 * cgroup.procs of the cgroup indicated by @dfd_cgroup. This allows us
6447 	 * to always use the caller's credentials.
6448 	 */
6449 	ret = cgroup_attach_permissions(cset->dfl_cgrp, dst_cgrp, sb,
6450 					!(kargs->flags & CLONE_THREAD),
6451 					current->nsproxy->cgroup_ns);
6452 	if (ret)
6453 		goto err;
6454 
6455 	kargs->cset = find_css_set(cset, dst_cgrp);
6456 	if (!kargs->cset) {
6457 		ret = -ENOMEM;
6458 		goto err;
6459 	}
6460 
6461 	put_css_set(cset);
6462 	fput(f);
6463 	kargs->cgrp = dst_cgrp;
6464 	return ret;
6465 
6466 err:
6467 	cgroup_threadgroup_change_end(current);
6468 	cgroup_unlock();
6469 	if (f)
6470 		fput(f);
6471 	if (dst_cgrp)
6472 		cgroup_put(dst_cgrp);
6473 	put_css_set(cset);
6474 	if (kargs->cset)
6475 		put_css_set(kargs->cset);
6476 	return ret;
6477 }
6478 
6479 /**
6480  * cgroup_css_set_put_fork - drop references we took during fork
6481  * @kargs: the arguments passed to create the child process
6482  *
6483  * Drop references to the prepared css_set and target cgroup if
6484  * CLONE_INTO_CGROUP was requested.
6485  */
6486 static void cgroup_css_set_put_fork(struct kernel_clone_args *kargs)
6487 	__releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
6488 {
6489 	cgroup_threadgroup_change_end(current);
6490 
6491 	if (kargs->flags & CLONE_INTO_CGROUP) {
6492 		struct cgroup *cgrp = kargs->cgrp;
6493 		struct css_set *cset = kargs->cset;
6494 
6495 		cgroup_unlock();
6496 
6497 		if (cset) {
6498 			put_css_set(cset);
6499 			kargs->cset = NULL;
6500 		}
6501 
6502 		if (cgrp) {
6503 			cgroup_put(cgrp);
6504 			kargs->cgrp = NULL;
6505 		}
6506 	}
6507 }
6508 
6509 /**
6510  * cgroup_can_fork - called on a new task before the process is exposed
6511  * @child: the child process
6512  * @kargs: the arguments passed to create the child process
6513  *
6514  * This prepares a new css_set for the child process which the child will
6515  * be attached to in cgroup_post_fork().
6516  * This calls the subsystem can_fork() callbacks. If the cgroup_can_fork()
6517  * callback returns an error, the fork aborts with that error code. This
6518  * allows for a cgroup subsystem to conditionally allow or deny new forks.
6519  */
6520 int cgroup_can_fork(struct task_struct *child, struct kernel_clone_args *kargs)
6521 {
6522 	struct cgroup_subsys *ss;
6523 	int i, j, ret;
6524 
6525 	ret = cgroup_css_set_fork(kargs);
6526 	if (ret)
6527 		return ret;
6528 
6529 	do_each_subsys_mask(ss, i, have_canfork_callback) {
6530 		ret = ss->can_fork(child, kargs->cset);
6531 		if (ret)
6532 			goto out_revert;
6533 	} while_each_subsys_mask();
6534 
6535 	return 0;
6536 
6537 out_revert:
6538 	for_each_subsys(ss, j) {
6539 		if (j >= i)
6540 			break;
6541 		if (ss->cancel_fork)
6542 			ss->cancel_fork(child, kargs->cset);
6543 	}
6544 
6545 	cgroup_css_set_put_fork(kargs);
6546 
6547 	return ret;
6548 }
6549 
6550 /**
6551  * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
6552  * @child: the child process
6553  * @kargs: the arguments passed to create the child process
6554  *
6555  * This calls the cancel_fork() callbacks if a fork failed *after*
6556  * cgroup_can_fork() succeeded and cleans up references we took to
6557  * prepare a new css_set for the child process in cgroup_can_fork().
6558  */
6559 void cgroup_cancel_fork(struct task_struct *child,
6560 			struct kernel_clone_args *kargs)
6561 {
6562 	struct cgroup_subsys *ss;
6563 	int i;
6564 
6565 	for_each_subsys(ss, i)
6566 		if (ss->cancel_fork)
6567 			ss->cancel_fork(child, kargs->cset);
6568 
6569 	cgroup_css_set_put_fork(kargs);
6570 }
6571 
6572 /**
6573  * cgroup_post_fork - finalize cgroup setup for the child process
6574  * @child: the child process
6575  * @kargs: the arguments passed to create the child process
6576  *
6577  * Attach the child process to its css_set calling the subsystem fork()
6578  * callbacks.
6579  */
6580 void cgroup_post_fork(struct task_struct *child,
6581 		      struct kernel_clone_args *kargs)
6582 	__releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
6583 {
6584 	unsigned long cgrp_flags = 0;
6585 	bool kill = false;
6586 	struct cgroup_subsys *ss;
6587 	struct css_set *cset;
6588 	int i;
6589 
6590 	cset = kargs->cset;
6591 	kargs->cset = NULL;
6592 
6593 	spin_lock_irq(&css_set_lock);
6594 
6595 	/* init tasks are special, only link regular threads */
6596 	if (likely(child->pid)) {
6597 		if (kargs->cgrp)
6598 			cgrp_flags = kargs->cgrp->flags;
6599 		else
6600 			cgrp_flags = cset->dfl_cgrp->flags;
6601 
6602 		WARN_ON_ONCE(!list_empty(&child->cg_list));
6603 		cset->nr_tasks++;
6604 		css_set_move_task(child, NULL, cset, false);
6605 	} else {
6606 		put_css_set(cset);
6607 		cset = NULL;
6608 	}
6609 
6610 	if (!(child->flags & PF_KTHREAD)) {
6611 		if (unlikely(test_bit(CGRP_FREEZE, &cgrp_flags))) {
6612 			/*
6613 			 * If the cgroup has to be frozen, the new task has
6614 			 * too. Let's set the JOBCTL_TRAP_FREEZE jobctl bit to
6615 			 * get the task into the frozen state.
6616 			 */
6617 			spin_lock(&child->sighand->siglock);
6618 			WARN_ON_ONCE(child->frozen);
6619 			child->jobctl |= JOBCTL_TRAP_FREEZE;
6620 			spin_unlock(&child->sighand->siglock);
6621 
6622 			/*
6623 			 * Calling cgroup_update_frozen() isn't required here,
6624 			 * because it will be called anyway a bit later from
6625 			 * do_freezer_trap(). So we avoid cgroup's transient
6626 			 * switch from the frozen state and back.
6627 			 */
6628 		}
6629 
6630 		/*
6631 		 * If the cgroup is to be killed notice it now and take the
6632 		 * child down right after we finished preparing it for
6633 		 * userspace.
6634 		 */
6635 		kill = test_bit(CGRP_KILL, &cgrp_flags);
6636 	}
6637 
6638 	spin_unlock_irq(&css_set_lock);
6639 
6640 	/*
6641 	 * Call ss->fork().  This must happen after @child is linked on
6642 	 * css_set; otherwise, @child might change state between ->fork()
6643 	 * and addition to css_set.
6644 	 */
6645 	do_each_subsys_mask(ss, i, have_fork_callback) {
6646 		ss->fork(child);
6647 	} while_each_subsys_mask();
6648 
6649 	/* Make the new cset the root_cset of the new cgroup namespace. */
6650 	if (kargs->flags & CLONE_NEWCGROUP) {
6651 		struct css_set *rcset = child->nsproxy->cgroup_ns->root_cset;
6652 
6653 		get_css_set(cset);
6654 		child->nsproxy->cgroup_ns->root_cset = cset;
6655 		put_css_set(rcset);
6656 	}
6657 
6658 	/* Cgroup has to be killed so take down child immediately. */
6659 	if (unlikely(kill))
6660 		do_send_sig_info(SIGKILL, SEND_SIG_NOINFO, child, PIDTYPE_TGID);
6661 
6662 	cgroup_css_set_put_fork(kargs);
6663 }
6664 
6665 /**
6666  * cgroup_exit - detach cgroup from exiting task
6667  * @tsk: pointer to task_struct of exiting process
6668  *
6669  * Description: Detach cgroup from @tsk.
6670  *
6671  */
6672 void cgroup_exit(struct task_struct *tsk)
6673 {
6674 	struct cgroup_subsys *ss;
6675 	struct css_set *cset;
6676 	int i;
6677 
6678 	spin_lock_irq(&css_set_lock);
6679 
6680 	WARN_ON_ONCE(list_empty(&tsk->cg_list));
6681 	cset = task_css_set(tsk);
6682 	css_set_move_task(tsk, cset, NULL, false);
6683 	list_add_tail(&tsk->cg_list, &cset->dying_tasks);
6684 	cset->nr_tasks--;
6685 
6686 	WARN_ON_ONCE(cgroup_task_frozen(tsk));
6687 	if (unlikely(!(tsk->flags & PF_KTHREAD) &&
6688 		     test_bit(CGRP_FREEZE, &task_dfl_cgroup(tsk)->flags)))
6689 		cgroup_update_frozen(task_dfl_cgroup(tsk));
6690 
6691 	spin_unlock_irq(&css_set_lock);
6692 
6693 	/* see cgroup_post_fork() for details */
6694 	do_each_subsys_mask(ss, i, have_exit_callback) {
6695 		ss->exit(tsk);
6696 	} while_each_subsys_mask();
6697 }
6698 
6699 void cgroup_release(struct task_struct *task)
6700 {
6701 	struct cgroup_subsys *ss;
6702 	int ssid;
6703 
6704 	do_each_subsys_mask(ss, ssid, have_release_callback) {
6705 		ss->release(task);
6706 	} while_each_subsys_mask();
6707 
6708 	spin_lock_irq(&css_set_lock);
6709 	css_set_skip_task_iters(task_css_set(task), task);
6710 	list_del_init(&task->cg_list);
6711 	spin_unlock_irq(&css_set_lock);
6712 }
6713 
6714 void cgroup_free(struct task_struct *task)
6715 {
6716 	struct css_set *cset = task_css_set(task);
6717 	put_css_set(cset);
6718 }
6719 
6720 static int __init cgroup_disable(char *str)
6721 {
6722 	struct cgroup_subsys *ss;
6723 	char *token;
6724 	int i;
6725 
6726 	while ((token = strsep(&str, ",")) != NULL) {
6727 		if (!*token)
6728 			continue;
6729 
6730 		for_each_subsys(ss, i) {
6731 			if (strcmp(token, ss->name) &&
6732 			    strcmp(token, ss->legacy_name))
6733 				continue;
6734 
6735 			static_branch_disable(cgroup_subsys_enabled_key[i]);
6736 			pr_info("Disabling %s control group subsystem\n",
6737 				ss->name);
6738 		}
6739 
6740 		for (i = 0; i < OPT_FEATURE_COUNT; i++) {
6741 			if (strcmp(token, cgroup_opt_feature_names[i]))
6742 				continue;
6743 			cgroup_feature_disable_mask |= 1 << i;
6744 			pr_info("Disabling %s control group feature\n",
6745 				cgroup_opt_feature_names[i]);
6746 			break;
6747 		}
6748 	}
6749 	return 1;
6750 }
6751 __setup("cgroup_disable=", cgroup_disable);
6752 
6753 void __init __weak enable_debug_cgroup(void) { }
6754 
6755 static int __init enable_cgroup_debug(char *str)
6756 {
6757 	cgroup_debug = true;
6758 	enable_debug_cgroup();
6759 	return 1;
6760 }
6761 __setup("cgroup_debug", enable_cgroup_debug);
6762 
6763 /**
6764  * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
6765  * @dentry: directory dentry of interest
6766  * @ss: subsystem of interest
6767  *
6768  * If @dentry is a directory for a cgroup which has @ss enabled on it, try
6769  * to get the corresponding css and return it.  If such css doesn't exist
6770  * or can't be pinned, an ERR_PTR value is returned.
6771  */
6772 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
6773 						       struct cgroup_subsys *ss)
6774 {
6775 	struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
6776 	struct file_system_type *s_type = dentry->d_sb->s_type;
6777 	struct cgroup_subsys_state *css = NULL;
6778 	struct cgroup *cgrp;
6779 
6780 	/* is @dentry a cgroup dir? */
6781 	if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
6782 	    !kn || kernfs_type(kn) != KERNFS_DIR)
6783 		return ERR_PTR(-EBADF);
6784 
6785 	rcu_read_lock();
6786 
6787 	/*
6788 	 * This path doesn't originate from kernfs and @kn could already
6789 	 * have been or be removed at any point.  @kn->priv is RCU
6790 	 * protected for this access.  See css_release_work_fn() for details.
6791 	 */
6792 	cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6793 	if (cgrp)
6794 		css = cgroup_css(cgrp, ss);
6795 
6796 	if (!css || !css_tryget_online(css))
6797 		css = ERR_PTR(-ENOENT);
6798 
6799 	rcu_read_unlock();
6800 	return css;
6801 }
6802 
6803 /**
6804  * css_from_id - lookup css by id
6805  * @id: the cgroup id
6806  * @ss: cgroup subsys to be looked into
6807  *
6808  * Returns the css if there's valid one with @id, otherwise returns NULL.
6809  * Should be called under rcu_read_lock().
6810  */
6811 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
6812 {
6813 	WARN_ON_ONCE(!rcu_read_lock_held());
6814 	return idr_find(&ss->css_idr, id);
6815 }
6816 
6817 /**
6818  * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
6819  * @path: path on the default hierarchy
6820  *
6821  * Find the cgroup at @path on the default hierarchy, increment its
6822  * reference count and return it.  Returns pointer to the found cgroup on
6823  * success, ERR_PTR(-ENOENT) if @path doesn't exist or if the cgroup has already
6824  * been released and ERR_PTR(-ENOTDIR) if @path points to a non-directory.
6825  */
6826 struct cgroup *cgroup_get_from_path(const char *path)
6827 {
6828 	struct kernfs_node *kn;
6829 	struct cgroup *cgrp = ERR_PTR(-ENOENT);
6830 	struct cgroup *root_cgrp;
6831 
6832 	root_cgrp = current_cgns_cgroup_dfl();
6833 	kn = kernfs_walk_and_get(root_cgrp->kn, path);
6834 	if (!kn)
6835 		goto out;
6836 
6837 	if (kernfs_type(kn) != KERNFS_DIR) {
6838 		cgrp = ERR_PTR(-ENOTDIR);
6839 		goto out_kernfs;
6840 	}
6841 
6842 	rcu_read_lock();
6843 
6844 	cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6845 	if (!cgrp || !cgroup_tryget(cgrp))
6846 		cgrp = ERR_PTR(-ENOENT);
6847 
6848 	rcu_read_unlock();
6849 
6850 out_kernfs:
6851 	kernfs_put(kn);
6852 out:
6853 	return cgrp;
6854 }
6855 EXPORT_SYMBOL_GPL(cgroup_get_from_path);
6856 
6857 /**
6858  * cgroup_v1v2_get_from_fd - get a cgroup pointer from a fd
6859  * @fd: fd obtained by open(cgroup_dir)
6860  *
6861  * Find the cgroup from a fd which should be obtained
6862  * by opening a cgroup directory.  Returns a pointer to the
6863  * cgroup on success. ERR_PTR is returned if the cgroup
6864  * cannot be found.
6865  */
6866 struct cgroup *cgroup_v1v2_get_from_fd(int fd)
6867 {
6868 	struct cgroup *cgrp;
6869 	struct fd f = fdget_raw(fd);
6870 	if (!f.file)
6871 		return ERR_PTR(-EBADF);
6872 
6873 	cgrp = cgroup_v1v2_get_from_file(f.file);
6874 	fdput(f);
6875 	return cgrp;
6876 }
6877 
6878 /**
6879  * cgroup_get_from_fd - same as cgroup_v1v2_get_from_fd, but only supports
6880  * cgroup2.
6881  * @fd: fd obtained by open(cgroup2_dir)
6882  */
6883 struct cgroup *cgroup_get_from_fd(int fd)
6884 {
6885 	struct cgroup *cgrp = cgroup_v1v2_get_from_fd(fd);
6886 
6887 	if (IS_ERR(cgrp))
6888 		return ERR_CAST(cgrp);
6889 
6890 	if (!cgroup_on_dfl(cgrp)) {
6891 		cgroup_put(cgrp);
6892 		return ERR_PTR(-EBADF);
6893 	}
6894 	return cgrp;
6895 }
6896 EXPORT_SYMBOL_GPL(cgroup_get_from_fd);
6897 
6898 static u64 power_of_ten(int power)
6899 {
6900 	u64 v = 1;
6901 	while (power--)
6902 		v *= 10;
6903 	return v;
6904 }
6905 
6906 /**
6907  * cgroup_parse_float - parse a floating number
6908  * @input: input string
6909  * @dec_shift: number of decimal digits to shift
6910  * @v: output
6911  *
6912  * Parse a decimal floating point number in @input and store the result in
6913  * @v with decimal point right shifted @dec_shift times.  For example, if
6914  * @input is "12.3456" and @dec_shift is 3, *@v will be set to 12345.
6915  * Returns 0 on success, -errno otherwise.
6916  *
6917  * There's nothing cgroup specific about this function except that it's
6918  * currently the only user.
6919  */
6920 int cgroup_parse_float(const char *input, unsigned dec_shift, s64 *v)
6921 {
6922 	s64 whole, frac = 0;
6923 	int fstart = 0, fend = 0, flen;
6924 
6925 	if (!sscanf(input, "%lld.%n%lld%n", &whole, &fstart, &frac, &fend))
6926 		return -EINVAL;
6927 	if (frac < 0)
6928 		return -EINVAL;
6929 
6930 	flen = fend > fstart ? fend - fstart : 0;
6931 	if (flen < dec_shift)
6932 		frac *= power_of_ten(dec_shift - flen);
6933 	else
6934 		frac = DIV_ROUND_CLOSEST_ULL(frac, power_of_ten(flen - dec_shift));
6935 
6936 	*v = whole * power_of_ten(dec_shift) + frac;
6937 	return 0;
6938 }
6939 
6940 /*
6941  * sock->sk_cgrp_data handling.  For more info, see sock_cgroup_data
6942  * definition in cgroup-defs.h.
6943  */
6944 #ifdef CONFIG_SOCK_CGROUP_DATA
6945 
6946 void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
6947 {
6948 	struct cgroup *cgroup;
6949 
6950 	rcu_read_lock();
6951 	/* Don't associate the sock with unrelated interrupted task's cgroup. */
6952 	if (in_interrupt()) {
6953 		cgroup = &cgrp_dfl_root.cgrp;
6954 		cgroup_get(cgroup);
6955 		goto out;
6956 	}
6957 
6958 	while (true) {
6959 		struct css_set *cset;
6960 
6961 		cset = task_css_set(current);
6962 		if (likely(cgroup_tryget(cset->dfl_cgrp))) {
6963 			cgroup = cset->dfl_cgrp;
6964 			break;
6965 		}
6966 		cpu_relax();
6967 	}
6968 out:
6969 	skcd->cgroup = cgroup;
6970 	cgroup_bpf_get(cgroup);
6971 	rcu_read_unlock();
6972 }
6973 
6974 void cgroup_sk_clone(struct sock_cgroup_data *skcd)
6975 {
6976 	struct cgroup *cgrp = sock_cgroup_ptr(skcd);
6977 
6978 	/*
6979 	 * We might be cloning a socket which is left in an empty
6980 	 * cgroup and the cgroup might have already been rmdir'd.
6981 	 * Don't use cgroup_get_live().
6982 	 */
6983 	cgroup_get(cgrp);
6984 	cgroup_bpf_get(cgrp);
6985 }
6986 
6987 void cgroup_sk_free(struct sock_cgroup_data *skcd)
6988 {
6989 	struct cgroup *cgrp = sock_cgroup_ptr(skcd);
6990 
6991 	cgroup_bpf_put(cgrp);
6992 	cgroup_put(cgrp);
6993 }
6994 
6995 #endif	/* CONFIG_SOCK_CGROUP_DATA */
6996 
6997 #ifdef CONFIG_SYSFS
6998 static ssize_t show_delegatable_files(struct cftype *files, char *buf,
6999 				      ssize_t size, const char *prefix)
7000 {
7001 	struct cftype *cft;
7002 	ssize_t ret = 0;
7003 
7004 	for (cft = files; cft && cft->name[0] != '\0'; cft++) {
7005 		if (!(cft->flags & CFTYPE_NS_DELEGATABLE))
7006 			continue;
7007 
7008 		if (prefix)
7009 			ret += snprintf(buf + ret, size - ret, "%s.", prefix);
7010 
7011 		ret += snprintf(buf + ret, size - ret, "%s\n", cft->name);
7012 
7013 		if (WARN_ON(ret >= size))
7014 			break;
7015 	}
7016 
7017 	return ret;
7018 }
7019 
7020 static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr,
7021 			      char *buf)
7022 {
7023 	struct cgroup_subsys *ss;
7024 	int ssid;
7025 	ssize_t ret = 0;
7026 
7027 	ret = show_delegatable_files(cgroup_base_files, buf + ret,
7028 				     PAGE_SIZE - ret, NULL);
7029 	if (cgroup_psi_enabled())
7030 		ret += show_delegatable_files(cgroup_psi_files, buf + ret,
7031 					      PAGE_SIZE - ret, NULL);
7032 
7033 	for_each_subsys(ss, ssid)
7034 		ret += show_delegatable_files(ss->dfl_cftypes, buf + ret,
7035 					      PAGE_SIZE - ret,
7036 					      cgroup_subsys_name[ssid]);
7037 
7038 	return ret;
7039 }
7040 static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate);
7041 
7042 static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr,
7043 			     char *buf)
7044 {
7045 	return snprintf(buf, PAGE_SIZE,
7046 			"nsdelegate\n"
7047 			"favordynmods\n"
7048 			"memory_localevents\n"
7049 			"memory_recursiveprot\n");
7050 }
7051 static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features);
7052 
7053 static struct attribute *cgroup_sysfs_attrs[] = {
7054 	&cgroup_delegate_attr.attr,
7055 	&cgroup_features_attr.attr,
7056 	NULL,
7057 };
7058 
7059 static const struct attribute_group cgroup_sysfs_attr_group = {
7060 	.attrs = cgroup_sysfs_attrs,
7061 	.name = "cgroup",
7062 };
7063 
7064 static int __init cgroup_sysfs_init(void)
7065 {
7066 	return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group);
7067 }
7068 subsys_initcall(cgroup_sysfs_init);
7069 
7070 #endif /* CONFIG_SYSFS */
7071