1 /* 2 * Generic process-grouping system. 3 * 4 * Based originally on the cpuset system, extracted by Paul Menage 5 * Copyright (C) 2006 Google, Inc 6 * 7 * Notifications support 8 * Copyright (C) 2009 Nokia Corporation 9 * Author: Kirill A. Shutemov 10 * 11 * Copyright notices from the original cpuset code: 12 * -------------------------------------------------- 13 * Copyright (C) 2003 BULL SA. 14 * Copyright (C) 2004-2006 Silicon Graphics, Inc. 15 * 16 * Portions derived from Patrick Mochel's sysfs code. 17 * sysfs is Copyright (c) 2001-3 Patrick Mochel 18 * 19 * 2003-10-10 Written by Simon Derr. 20 * 2003-10-22 Updates by Stephen Hemminger. 21 * 2004 May-July Rework by Paul Jackson. 22 * --------------------------------------------------- 23 * 24 * This file is subject to the terms and conditions of the GNU General Public 25 * License. See the file COPYING in the main directory of the Linux 26 * distribution for more details. 27 */ 28 29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 30 31 #include "cgroup-internal.h" 32 33 #include <linux/bpf-cgroup.h> 34 #include <linux/cred.h> 35 #include <linux/errno.h> 36 #include <linux/init_task.h> 37 #include <linux/kernel.h> 38 #include <linux/magic.h> 39 #include <linux/mutex.h> 40 #include <linux/mount.h> 41 #include <linux/pagemap.h> 42 #include <linux/proc_fs.h> 43 #include <linux/rcupdate.h> 44 #include <linux/sched.h> 45 #include <linux/sched/task.h> 46 #include <linux/slab.h> 47 #include <linux/spinlock.h> 48 #include <linux/percpu-rwsem.h> 49 #include <linux/string.h> 50 #include <linux/hashtable.h> 51 #include <linux/idr.h> 52 #include <linux/kthread.h> 53 #include <linux/atomic.h> 54 #include <linux/cpuset.h> 55 #include <linux/proc_ns.h> 56 #include <linux/nsproxy.h> 57 #include <linux/file.h> 58 #include <linux/fs_parser.h> 59 #include <linux/sched/cputime.h> 60 #include <linux/psi.h> 61 #include <net/sock.h> 62 63 #define CREATE_TRACE_POINTS 64 #include <trace/events/cgroup.h> 65 66 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \ 67 MAX_CFTYPE_NAME + 2) 68 /* let's not notify more than 100 times per second */ 69 #define CGROUP_FILE_NOTIFY_MIN_INTV DIV_ROUND_UP(HZ, 100) 70 71 /* 72 * To avoid confusing the compiler (and generating warnings) with code 73 * that attempts to access what would be a 0-element array (i.e. sized 74 * to a potentially empty array when CGROUP_SUBSYS_COUNT == 0), this 75 * constant expression can be added. 76 */ 77 #define CGROUP_HAS_SUBSYS_CONFIG (CGROUP_SUBSYS_COUNT > 0) 78 79 /* 80 * cgroup_mutex is the master lock. Any modification to cgroup or its 81 * hierarchy must be performed while holding it. 82 * 83 * css_set_lock protects task->cgroups pointer, the list of css_set 84 * objects, and the chain of tasks off each css_set. 85 * 86 * These locks are exported if CONFIG_PROVE_RCU so that accessors in 87 * cgroup.h can use them for lockdep annotations. 88 */ 89 DEFINE_MUTEX(cgroup_mutex); 90 DEFINE_SPINLOCK(css_set_lock); 91 92 #ifdef CONFIG_PROVE_RCU 93 EXPORT_SYMBOL_GPL(cgroup_mutex); 94 EXPORT_SYMBOL_GPL(css_set_lock); 95 #endif 96 97 DEFINE_SPINLOCK(trace_cgroup_path_lock); 98 char trace_cgroup_path[TRACE_CGROUP_PATH_LEN]; 99 static bool cgroup_debug __read_mostly; 100 101 /* 102 * Protects cgroup_idr and css_idr so that IDs can be released without 103 * grabbing cgroup_mutex. 104 */ 105 static DEFINE_SPINLOCK(cgroup_idr_lock); 106 107 /* 108 * Protects cgroup_file->kn for !self csses. It synchronizes notifications 109 * against file removal/re-creation across css hiding. 110 */ 111 static DEFINE_SPINLOCK(cgroup_file_kn_lock); 112 113 DEFINE_PERCPU_RWSEM(cgroup_threadgroup_rwsem); 114 115 #define cgroup_assert_mutex_or_rcu_locked() \ 116 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \ 117 !lockdep_is_held(&cgroup_mutex), \ 118 "cgroup_mutex or RCU read lock required"); 119 120 /* 121 * cgroup destruction makes heavy use of work items and there can be a lot 122 * of concurrent destructions. Use a separate workqueue so that cgroup 123 * destruction work items don't end up filling up max_active of system_wq 124 * which may lead to deadlock. 125 */ 126 static struct workqueue_struct *cgroup_destroy_wq; 127 128 /* generate an array of cgroup subsystem pointers */ 129 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys, 130 struct cgroup_subsys *cgroup_subsys[] = { 131 #include <linux/cgroup_subsys.h> 132 }; 133 #undef SUBSYS 134 135 /* array of cgroup subsystem names */ 136 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x, 137 static const char *cgroup_subsys_name[] = { 138 #include <linux/cgroup_subsys.h> 139 }; 140 #undef SUBSYS 141 142 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */ 143 #define SUBSYS(_x) \ 144 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \ 145 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \ 146 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \ 147 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key); 148 #include <linux/cgroup_subsys.h> 149 #undef SUBSYS 150 151 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key, 152 static struct static_key_true *cgroup_subsys_enabled_key[] = { 153 #include <linux/cgroup_subsys.h> 154 }; 155 #undef SUBSYS 156 157 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key, 158 static struct static_key_true *cgroup_subsys_on_dfl_key[] = { 159 #include <linux/cgroup_subsys.h> 160 }; 161 #undef SUBSYS 162 163 static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu); 164 165 /* the default hierarchy */ 166 struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu }; 167 EXPORT_SYMBOL_GPL(cgrp_dfl_root); 168 169 /* 170 * The default hierarchy always exists but is hidden until mounted for the 171 * first time. This is for backward compatibility. 172 */ 173 static bool cgrp_dfl_visible; 174 175 /* some controllers are not supported in the default hierarchy */ 176 static u16 cgrp_dfl_inhibit_ss_mask; 177 178 /* some controllers are implicitly enabled on the default hierarchy */ 179 static u16 cgrp_dfl_implicit_ss_mask; 180 181 /* some controllers can be threaded on the default hierarchy */ 182 static u16 cgrp_dfl_threaded_ss_mask; 183 184 /* The list of hierarchy roots */ 185 LIST_HEAD(cgroup_roots); 186 static int cgroup_root_count; 187 188 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */ 189 static DEFINE_IDR(cgroup_hierarchy_idr); 190 191 /* 192 * Assign a monotonically increasing serial number to csses. It guarantees 193 * cgroups with bigger numbers are newer than those with smaller numbers. 194 * Also, as csses are always appended to the parent's ->children list, it 195 * guarantees that sibling csses are always sorted in the ascending serial 196 * number order on the list. Protected by cgroup_mutex. 197 */ 198 static u64 css_serial_nr_next = 1; 199 200 /* 201 * These bitmasks identify subsystems with specific features to avoid 202 * having to do iterative checks repeatedly. 203 */ 204 static u16 have_fork_callback __read_mostly; 205 static u16 have_exit_callback __read_mostly; 206 static u16 have_release_callback __read_mostly; 207 static u16 have_canfork_callback __read_mostly; 208 209 /* cgroup namespace for init task */ 210 struct cgroup_namespace init_cgroup_ns = { 211 .ns.count = REFCOUNT_INIT(2), 212 .user_ns = &init_user_ns, 213 .ns.ops = &cgroupns_operations, 214 .ns.inum = PROC_CGROUP_INIT_INO, 215 .root_cset = &init_css_set, 216 }; 217 218 static struct file_system_type cgroup2_fs_type; 219 static struct cftype cgroup_base_files[]; 220 221 /* cgroup optional features */ 222 enum cgroup_opt_features { 223 #ifdef CONFIG_PSI 224 OPT_FEATURE_PRESSURE, 225 #endif 226 OPT_FEATURE_COUNT 227 }; 228 229 static const char *cgroup_opt_feature_names[OPT_FEATURE_COUNT] = { 230 #ifdef CONFIG_PSI 231 "pressure", 232 #endif 233 }; 234 235 static u16 cgroup_feature_disable_mask __read_mostly; 236 237 static int cgroup_apply_control(struct cgroup *cgrp); 238 static void cgroup_finalize_control(struct cgroup *cgrp, int ret); 239 static void css_task_iter_skip(struct css_task_iter *it, 240 struct task_struct *task); 241 static int cgroup_destroy_locked(struct cgroup *cgrp); 242 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp, 243 struct cgroup_subsys *ss); 244 static void css_release(struct percpu_ref *ref); 245 static void kill_css(struct cgroup_subsys_state *css); 246 static int cgroup_addrm_files(struct cgroup_subsys_state *css, 247 struct cgroup *cgrp, struct cftype cfts[], 248 bool is_add); 249 250 /** 251 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID 252 * @ssid: subsys ID of interest 253 * 254 * cgroup_subsys_enabled() can only be used with literal subsys names which 255 * is fine for individual subsystems but unsuitable for cgroup core. This 256 * is slower static_key_enabled() based test indexed by @ssid. 257 */ 258 bool cgroup_ssid_enabled(int ssid) 259 { 260 if (!CGROUP_HAS_SUBSYS_CONFIG) 261 return false; 262 263 return static_key_enabled(cgroup_subsys_enabled_key[ssid]); 264 } 265 266 /** 267 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy 268 * @cgrp: the cgroup of interest 269 * 270 * The default hierarchy is the v2 interface of cgroup and this function 271 * can be used to test whether a cgroup is on the default hierarchy for 272 * cases where a subsystem should behave differently depending on the 273 * interface version. 274 * 275 * List of changed behaviors: 276 * 277 * - Mount options "noprefix", "xattr", "clone_children", "release_agent" 278 * and "name" are disallowed. 279 * 280 * - When mounting an existing superblock, mount options should match. 281 * 282 * - rename(2) is disallowed. 283 * 284 * - "tasks" is removed. Everything should be at process granularity. Use 285 * "cgroup.procs" instead. 286 * 287 * - "cgroup.procs" is not sorted. pids will be unique unless they got 288 * recycled in-between reads. 289 * 290 * - "release_agent" and "notify_on_release" are removed. Replacement 291 * notification mechanism will be implemented. 292 * 293 * - "cgroup.clone_children" is removed. 294 * 295 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup 296 * and its descendants contain no task; otherwise, 1. The file also 297 * generates kernfs notification which can be monitored through poll and 298 * [di]notify when the value of the file changes. 299 * 300 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and 301 * take masks of ancestors with non-empty cpus/mems, instead of being 302 * moved to an ancestor. 303 * 304 * - cpuset: a task can be moved into an empty cpuset, and again it takes 305 * masks of ancestors. 306 * 307 * - blkcg: blk-throttle becomes properly hierarchical. 308 * 309 * - debug: disallowed on the default hierarchy. 310 */ 311 bool cgroup_on_dfl(const struct cgroup *cgrp) 312 { 313 return cgrp->root == &cgrp_dfl_root; 314 } 315 316 /* IDR wrappers which synchronize using cgroup_idr_lock */ 317 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end, 318 gfp_t gfp_mask) 319 { 320 int ret; 321 322 idr_preload(gfp_mask); 323 spin_lock_bh(&cgroup_idr_lock); 324 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM); 325 spin_unlock_bh(&cgroup_idr_lock); 326 idr_preload_end(); 327 return ret; 328 } 329 330 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id) 331 { 332 void *ret; 333 334 spin_lock_bh(&cgroup_idr_lock); 335 ret = idr_replace(idr, ptr, id); 336 spin_unlock_bh(&cgroup_idr_lock); 337 return ret; 338 } 339 340 static void cgroup_idr_remove(struct idr *idr, int id) 341 { 342 spin_lock_bh(&cgroup_idr_lock); 343 idr_remove(idr, id); 344 spin_unlock_bh(&cgroup_idr_lock); 345 } 346 347 static bool cgroup_has_tasks(struct cgroup *cgrp) 348 { 349 return cgrp->nr_populated_csets; 350 } 351 352 bool cgroup_is_threaded(struct cgroup *cgrp) 353 { 354 return cgrp->dom_cgrp != cgrp; 355 } 356 357 /* can @cgrp host both domain and threaded children? */ 358 static bool cgroup_is_mixable(struct cgroup *cgrp) 359 { 360 /* 361 * Root isn't under domain level resource control exempting it from 362 * the no-internal-process constraint, so it can serve as a thread 363 * root and a parent of resource domains at the same time. 364 */ 365 return !cgroup_parent(cgrp); 366 } 367 368 /* can @cgrp become a thread root? Should always be true for a thread root */ 369 static bool cgroup_can_be_thread_root(struct cgroup *cgrp) 370 { 371 /* mixables don't care */ 372 if (cgroup_is_mixable(cgrp)) 373 return true; 374 375 /* domain roots can't be nested under threaded */ 376 if (cgroup_is_threaded(cgrp)) 377 return false; 378 379 /* can only have either domain or threaded children */ 380 if (cgrp->nr_populated_domain_children) 381 return false; 382 383 /* and no domain controllers can be enabled */ 384 if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask) 385 return false; 386 387 return true; 388 } 389 390 /* is @cgrp root of a threaded subtree? */ 391 bool cgroup_is_thread_root(struct cgroup *cgrp) 392 { 393 /* thread root should be a domain */ 394 if (cgroup_is_threaded(cgrp)) 395 return false; 396 397 /* a domain w/ threaded children is a thread root */ 398 if (cgrp->nr_threaded_children) 399 return true; 400 401 /* 402 * A domain which has tasks and explicit threaded controllers 403 * enabled is a thread root. 404 */ 405 if (cgroup_has_tasks(cgrp) && 406 (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask)) 407 return true; 408 409 return false; 410 } 411 412 /* a domain which isn't connected to the root w/o brekage can't be used */ 413 static bool cgroup_is_valid_domain(struct cgroup *cgrp) 414 { 415 /* the cgroup itself can be a thread root */ 416 if (cgroup_is_threaded(cgrp)) 417 return false; 418 419 /* but the ancestors can't be unless mixable */ 420 while ((cgrp = cgroup_parent(cgrp))) { 421 if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp)) 422 return false; 423 if (cgroup_is_threaded(cgrp)) 424 return false; 425 } 426 427 return true; 428 } 429 430 /* subsystems visibly enabled on a cgroup */ 431 static u16 cgroup_control(struct cgroup *cgrp) 432 { 433 struct cgroup *parent = cgroup_parent(cgrp); 434 u16 root_ss_mask = cgrp->root->subsys_mask; 435 436 if (parent) { 437 u16 ss_mask = parent->subtree_control; 438 439 /* threaded cgroups can only have threaded controllers */ 440 if (cgroup_is_threaded(cgrp)) 441 ss_mask &= cgrp_dfl_threaded_ss_mask; 442 return ss_mask; 443 } 444 445 if (cgroup_on_dfl(cgrp)) 446 root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask | 447 cgrp_dfl_implicit_ss_mask); 448 return root_ss_mask; 449 } 450 451 /* subsystems enabled on a cgroup */ 452 static u16 cgroup_ss_mask(struct cgroup *cgrp) 453 { 454 struct cgroup *parent = cgroup_parent(cgrp); 455 456 if (parent) { 457 u16 ss_mask = parent->subtree_ss_mask; 458 459 /* threaded cgroups can only have threaded controllers */ 460 if (cgroup_is_threaded(cgrp)) 461 ss_mask &= cgrp_dfl_threaded_ss_mask; 462 return ss_mask; 463 } 464 465 return cgrp->root->subsys_mask; 466 } 467 468 /** 469 * cgroup_css - obtain a cgroup's css for the specified subsystem 470 * @cgrp: the cgroup of interest 471 * @ss: the subsystem of interest (%NULL returns @cgrp->self) 472 * 473 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This 474 * function must be called either under cgroup_mutex or rcu_read_lock() and 475 * the caller is responsible for pinning the returned css if it wants to 476 * keep accessing it outside the said locks. This function may return 477 * %NULL if @cgrp doesn't have @subsys_id enabled. 478 */ 479 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp, 480 struct cgroup_subsys *ss) 481 { 482 if (CGROUP_HAS_SUBSYS_CONFIG && ss) 483 return rcu_dereference_check(cgrp->subsys[ss->id], 484 lockdep_is_held(&cgroup_mutex)); 485 else 486 return &cgrp->self; 487 } 488 489 /** 490 * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem 491 * @cgrp: the cgroup of interest 492 * @ss: the subsystem of interest 493 * 494 * Find and get @cgrp's css associated with @ss. If the css doesn't exist 495 * or is offline, %NULL is returned. 496 */ 497 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp, 498 struct cgroup_subsys *ss) 499 { 500 struct cgroup_subsys_state *css; 501 502 rcu_read_lock(); 503 css = cgroup_css(cgrp, ss); 504 if (css && !css_tryget_online(css)) 505 css = NULL; 506 rcu_read_unlock(); 507 508 return css; 509 } 510 511 /** 512 * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss 513 * @cgrp: the cgroup of interest 514 * @ss: the subsystem of interest (%NULL returns @cgrp->self) 515 * 516 * Similar to cgroup_css() but returns the effective css, which is defined 517 * as the matching css of the nearest ancestor including self which has @ss 518 * enabled. If @ss is associated with the hierarchy @cgrp is on, this 519 * function is guaranteed to return non-NULL css. 520 */ 521 static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp, 522 struct cgroup_subsys *ss) 523 { 524 lockdep_assert_held(&cgroup_mutex); 525 526 if (!ss) 527 return &cgrp->self; 528 529 /* 530 * This function is used while updating css associations and thus 531 * can't test the csses directly. Test ss_mask. 532 */ 533 while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) { 534 cgrp = cgroup_parent(cgrp); 535 if (!cgrp) 536 return NULL; 537 } 538 539 return cgroup_css(cgrp, ss); 540 } 541 542 /** 543 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem 544 * @cgrp: the cgroup of interest 545 * @ss: the subsystem of interest 546 * 547 * Find and get the effective css of @cgrp for @ss. The effective css is 548 * defined as the matching css of the nearest ancestor including self which 549 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on, 550 * the root css is returned, so this function always returns a valid css. 551 * 552 * The returned css is not guaranteed to be online, and therefore it is the 553 * callers responsibility to try get a reference for it. 554 */ 555 struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp, 556 struct cgroup_subsys *ss) 557 { 558 struct cgroup_subsys_state *css; 559 560 if (!CGROUP_HAS_SUBSYS_CONFIG) 561 return NULL; 562 563 do { 564 css = cgroup_css(cgrp, ss); 565 566 if (css) 567 return css; 568 cgrp = cgroup_parent(cgrp); 569 } while (cgrp); 570 571 return init_css_set.subsys[ss->id]; 572 } 573 574 /** 575 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem 576 * @cgrp: the cgroup of interest 577 * @ss: the subsystem of interest 578 * 579 * Find and get the effective css of @cgrp for @ss. The effective css is 580 * defined as the matching css of the nearest ancestor including self which 581 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on, 582 * the root css is returned, so this function always returns a valid css. 583 * The returned css must be put using css_put(). 584 */ 585 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp, 586 struct cgroup_subsys *ss) 587 { 588 struct cgroup_subsys_state *css; 589 590 if (!CGROUP_HAS_SUBSYS_CONFIG) 591 return NULL; 592 593 rcu_read_lock(); 594 595 do { 596 css = cgroup_css(cgrp, ss); 597 598 if (css && css_tryget_online(css)) 599 goto out_unlock; 600 cgrp = cgroup_parent(cgrp); 601 } while (cgrp); 602 603 css = init_css_set.subsys[ss->id]; 604 css_get(css); 605 out_unlock: 606 rcu_read_unlock(); 607 return css; 608 } 609 EXPORT_SYMBOL_GPL(cgroup_get_e_css); 610 611 static void cgroup_get_live(struct cgroup *cgrp) 612 { 613 WARN_ON_ONCE(cgroup_is_dead(cgrp)); 614 css_get(&cgrp->self); 615 } 616 617 /** 618 * __cgroup_task_count - count the number of tasks in a cgroup. The caller 619 * is responsible for taking the css_set_lock. 620 * @cgrp: the cgroup in question 621 */ 622 int __cgroup_task_count(const struct cgroup *cgrp) 623 { 624 int count = 0; 625 struct cgrp_cset_link *link; 626 627 lockdep_assert_held(&css_set_lock); 628 629 list_for_each_entry(link, &cgrp->cset_links, cset_link) 630 count += link->cset->nr_tasks; 631 632 return count; 633 } 634 635 /** 636 * cgroup_task_count - count the number of tasks in a cgroup. 637 * @cgrp: the cgroup in question 638 */ 639 int cgroup_task_count(const struct cgroup *cgrp) 640 { 641 int count; 642 643 spin_lock_irq(&css_set_lock); 644 count = __cgroup_task_count(cgrp); 645 spin_unlock_irq(&css_set_lock); 646 647 return count; 648 } 649 650 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of) 651 { 652 struct cgroup *cgrp = of->kn->parent->priv; 653 struct cftype *cft = of_cft(of); 654 655 /* 656 * This is open and unprotected implementation of cgroup_css(). 657 * seq_css() is only called from a kernfs file operation which has 658 * an active reference on the file. Because all the subsystem 659 * files are drained before a css is disassociated with a cgroup, 660 * the matching css from the cgroup's subsys table is guaranteed to 661 * be and stay valid until the enclosing operation is complete. 662 */ 663 if (CGROUP_HAS_SUBSYS_CONFIG && cft->ss) 664 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]); 665 else 666 return &cgrp->self; 667 } 668 EXPORT_SYMBOL_GPL(of_css); 669 670 /** 671 * for_each_css - iterate all css's of a cgroup 672 * @css: the iteration cursor 673 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end 674 * @cgrp: the target cgroup to iterate css's of 675 * 676 * Should be called under cgroup_[tree_]mutex. 677 */ 678 #define for_each_css(css, ssid, cgrp) \ 679 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \ 680 if (!((css) = rcu_dereference_check( \ 681 (cgrp)->subsys[(ssid)], \ 682 lockdep_is_held(&cgroup_mutex)))) { } \ 683 else 684 685 /** 686 * for_each_e_css - iterate all effective css's of a cgroup 687 * @css: the iteration cursor 688 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end 689 * @cgrp: the target cgroup to iterate css's of 690 * 691 * Should be called under cgroup_[tree_]mutex. 692 */ 693 #define for_each_e_css(css, ssid, cgrp) \ 694 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \ 695 if (!((css) = cgroup_e_css_by_mask(cgrp, \ 696 cgroup_subsys[(ssid)]))) \ 697 ; \ 698 else 699 700 /** 701 * do_each_subsys_mask - filter for_each_subsys with a bitmask 702 * @ss: the iteration cursor 703 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end 704 * @ss_mask: the bitmask 705 * 706 * The block will only run for cases where the ssid-th bit (1 << ssid) of 707 * @ss_mask is set. 708 */ 709 #define do_each_subsys_mask(ss, ssid, ss_mask) do { \ 710 unsigned long __ss_mask = (ss_mask); \ 711 if (!CGROUP_HAS_SUBSYS_CONFIG) { \ 712 (ssid) = 0; \ 713 break; \ 714 } \ 715 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \ 716 (ss) = cgroup_subsys[ssid]; \ 717 { 718 719 #define while_each_subsys_mask() \ 720 } \ 721 } \ 722 } while (false) 723 724 /* iterate over child cgrps, lock should be held throughout iteration */ 725 #define cgroup_for_each_live_child(child, cgrp) \ 726 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \ 727 if (({ lockdep_assert_held(&cgroup_mutex); \ 728 cgroup_is_dead(child); })) \ 729 ; \ 730 else 731 732 /* walk live descendants in pre order */ 733 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \ 734 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \ 735 if (({ lockdep_assert_held(&cgroup_mutex); \ 736 (dsct) = (d_css)->cgroup; \ 737 cgroup_is_dead(dsct); })) \ 738 ; \ 739 else 740 741 /* walk live descendants in postorder */ 742 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \ 743 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \ 744 if (({ lockdep_assert_held(&cgroup_mutex); \ 745 (dsct) = (d_css)->cgroup; \ 746 cgroup_is_dead(dsct); })) \ 747 ; \ 748 else 749 750 /* 751 * The default css_set - used by init and its children prior to any 752 * hierarchies being mounted. It contains a pointer to the root state 753 * for each subsystem. Also used to anchor the list of css_sets. Not 754 * reference-counted, to improve performance when child cgroups 755 * haven't been created. 756 */ 757 struct css_set init_css_set = { 758 .refcount = REFCOUNT_INIT(1), 759 .dom_cset = &init_css_set, 760 .tasks = LIST_HEAD_INIT(init_css_set.tasks), 761 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks), 762 .dying_tasks = LIST_HEAD_INIT(init_css_set.dying_tasks), 763 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters), 764 .threaded_csets = LIST_HEAD_INIT(init_css_set.threaded_csets), 765 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links), 766 .mg_src_preload_node = LIST_HEAD_INIT(init_css_set.mg_src_preload_node), 767 .mg_dst_preload_node = LIST_HEAD_INIT(init_css_set.mg_dst_preload_node), 768 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node), 769 770 /* 771 * The following field is re-initialized when this cset gets linked 772 * in cgroup_init(). However, let's initialize the field 773 * statically too so that the default cgroup can be accessed safely 774 * early during boot. 775 */ 776 .dfl_cgrp = &cgrp_dfl_root.cgrp, 777 }; 778 779 static int css_set_count = 1; /* 1 for init_css_set */ 780 781 static bool css_set_threaded(struct css_set *cset) 782 { 783 return cset->dom_cset != cset; 784 } 785 786 /** 787 * css_set_populated - does a css_set contain any tasks? 788 * @cset: target css_set 789 * 790 * css_set_populated() should be the same as !!cset->nr_tasks at steady 791 * state. However, css_set_populated() can be called while a task is being 792 * added to or removed from the linked list before the nr_tasks is 793 * properly updated. Hence, we can't just look at ->nr_tasks here. 794 */ 795 static bool css_set_populated(struct css_set *cset) 796 { 797 lockdep_assert_held(&css_set_lock); 798 799 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks); 800 } 801 802 /** 803 * cgroup_update_populated - update the populated count of a cgroup 804 * @cgrp: the target cgroup 805 * @populated: inc or dec populated count 806 * 807 * One of the css_sets associated with @cgrp is either getting its first 808 * task or losing the last. Update @cgrp->nr_populated_* accordingly. The 809 * count is propagated towards root so that a given cgroup's 810 * nr_populated_children is zero iff none of its descendants contain any 811 * tasks. 812 * 813 * @cgrp's interface file "cgroup.populated" is zero if both 814 * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and 815 * 1 otherwise. When the sum changes from or to zero, userland is notified 816 * that the content of the interface file has changed. This can be used to 817 * detect when @cgrp and its descendants become populated or empty. 818 */ 819 static void cgroup_update_populated(struct cgroup *cgrp, bool populated) 820 { 821 struct cgroup *child = NULL; 822 int adj = populated ? 1 : -1; 823 824 lockdep_assert_held(&css_set_lock); 825 826 do { 827 bool was_populated = cgroup_is_populated(cgrp); 828 829 if (!child) { 830 cgrp->nr_populated_csets += adj; 831 } else { 832 if (cgroup_is_threaded(child)) 833 cgrp->nr_populated_threaded_children += adj; 834 else 835 cgrp->nr_populated_domain_children += adj; 836 } 837 838 if (was_populated == cgroup_is_populated(cgrp)) 839 break; 840 841 cgroup1_check_for_release(cgrp); 842 TRACE_CGROUP_PATH(notify_populated, cgrp, 843 cgroup_is_populated(cgrp)); 844 cgroup_file_notify(&cgrp->events_file); 845 846 child = cgrp; 847 cgrp = cgroup_parent(cgrp); 848 } while (cgrp); 849 } 850 851 /** 852 * css_set_update_populated - update populated state of a css_set 853 * @cset: target css_set 854 * @populated: whether @cset is populated or depopulated 855 * 856 * @cset is either getting the first task or losing the last. Update the 857 * populated counters of all associated cgroups accordingly. 858 */ 859 static void css_set_update_populated(struct css_set *cset, bool populated) 860 { 861 struct cgrp_cset_link *link; 862 863 lockdep_assert_held(&css_set_lock); 864 865 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) 866 cgroup_update_populated(link->cgrp, populated); 867 } 868 869 /* 870 * @task is leaving, advance task iterators which are pointing to it so 871 * that they can resume at the next position. Advancing an iterator might 872 * remove it from the list, use safe walk. See css_task_iter_skip() for 873 * details. 874 */ 875 static void css_set_skip_task_iters(struct css_set *cset, 876 struct task_struct *task) 877 { 878 struct css_task_iter *it, *pos; 879 880 list_for_each_entry_safe(it, pos, &cset->task_iters, iters_node) 881 css_task_iter_skip(it, task); 882 } 883 884 /** 885 * css_set_move_task - move a task from one css_set to another 886 * @task: task being moved 887 * @from_cset: css_set @task currently belongs to (may be NULL) 888 * @to_cset: new css_set @task is being moved to (may be NULL) 889 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks 890 * 891 * Move @task from @from_cset to @to_cset. If @task didn't belong to any 892 * css_set, @from_cset can be NULL. If @task is being disassociated 893 * instead of moved, @to_cset can be NULL. 894 * 895 * This function automatically handles populated counter updates and 896 * css_task_iter adjustments but the caller is responsible for managing 897 * @from_cset and @to_cset's reference counts. 898 */ 899 static void css_set_move_task(struct task_struct *task, 900 struct css_set *from_cset, struct css_set *to_cset, 901 bool use_mg_tasks) 902 { 903 lockdep_assert_held(&css_set_lock); 904 905 if (to_cset && !css_set_populated(to_cset)) 906 css_set_update_populated(to_cset, true); 907 908 if (from_cset) { 909 WARN_ON_ONCE(list_empty(&task->cg_list)); 910 911 css_set_skip_task_iters(from_cset, task); 912 list_del_init(&task->cg_list); 913 if (!css_set_populated(from_cset)) 914 css_set_update_populated(from_cset, false); 915 } else { 916 WARN_ON_ONCE(!list_empty(&task->cg_list)); 917 } 918 919 if (to_cset) { 920 /* 921 * We are synchronized through cgroup_threadgroup_rwsem 922 * against PF_EXITING setting such that we can't race 923 * against cgroup_exit()/cgroup_free() dropping the css_set. 924 */ 925 WARN_ON_ONCE(task->flags & PF_EXITING); 926 927 cgroup_move_task(task, to_cset); 928 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks : 929 &to_cset->tasks); 930 } 931 } 932 933 /* 934 * hash table for cgroup groups. This improves the performance to find 935 * an existing css_set. This hash doesn't (currently) take into 936 * account cgroups in empty hierarchies. 937 */ 938 #define CSS_SET_HASH_BITS 7 939 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS); 940 941 static unsigned long css_set_hash(struct cgroup_subsys_state *css[]) 942 { 943 unsigned long key = 0UL; 944 struct cgroup_subsys *ss; 945 int i; 946 947 for_each_subsys(ss, i) 948 key += (unsigned long)css[i]; 949 key = (key >> 16) ^ key; 950 951 return key; 952 } 953 954 void put_css_set_locked(struct css_set *cset) 955 { 956 struct cgrp_cset_link *link, *tmp_link; 957 struct cgroup_subsys *ss; 958 int ssid; 959 960 lockdep_assert_held(&css_set_lock); 961 962 if (!refcount_dec_and_test(&cset->refcount)) 963 return; 964 965 WARN_ON_ONCE(!list_empty(&cset->threaded_csets)); 966 967 /* This css_set is dead. Unlink it and release cgroup and css refs */ 968 for_each_subsys(ss, ssid) { 969 list_del(&cset->e_cset_node[ssid]); 970 css_put(cset->subsys[ssid]); 971 } 972 hash_del(&cset->hlist); 973 css_set_count--; 974 975 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) { 976 list_del(&link->cset_link); 977 list_del(&link->cgrp_link); 978 if (cgroup_parent(link->cgrp)) 979 cgroup_put(link->cgrp); 980 kfree(link); 981 } 982 983 if (css_set_threaded(cset)) { 984 list_del(&cset->threaded_csets_node); 985 put_css_set_locked(cset->dom_cset); 986 } 987 988 kfree_rcu(cset, rcu_head); 989 } 990 991 /** 992 * compare_css_sets - helper function for find_existing_css_set(). 993 * @cset: candidate css_set being tested 994 * @old_cset: existing css_set for a task 995 * @new_cgrp: cgroup that's being entered by the task 996 * @template: desired set of css pointers in css_set (pre-calculated) 997 * 998 * Returns true if "cset" matches "old_cset" except for the hierarchy 999 * which "new_cgrp" belongs to, for which it should match "new_cgrp". 1000 */ 1001 static bool compare_css_sets(struct css_set *cset, 1002 struct css_set *old_cset, 1003 struct cgroup *new_cgrp, 1004 struct cgroup_subsys_state *template[]) 1005 { 1006 struct cgroup *new_dfl_cgrp; 1007 struct list_head *l1, *l2; 1008 1009 /* 1010 * On the default hierarchy, there can be csets which are 1011 * associated with the same set of cgroups but different csses. 1012 * Let's first ensure that csses match. 1013 */ 1014 if (memcmp(template, cset->subsys, sizeof(cset->subsys))) 1015 return false; 1016 1017 1018 /* @cset's domain should match the default cgroup's */ 1019 if (cgroup_on_dfl(new_cgrp)) 1020 new_dfl_cgrp = new_cgrp; 1021 else 1022 new_dfl_cgrp = old_cset->dfl_cgrp; 1023 1024 if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp) 1025 return false; 1026 1027 /* 1028 * Compare cgroup pointers in order to distinguish between 1029 * different cgroups in hierarchies. As different cgroups may 1030 * share the same effective css, this comparison is always 1031 * necessary. 1032 */ 1033 l1 = &cset->cgrp_links; 1034 l2 = &old_cset->cgrp_links; 1035 while (1) { 1036 struct cgrp_cset_link *link1, *link2; 1037 struct cgroup *cgrp1, *cgrp2; 1038 1039 l1 = l1->next; 1040 l2 = l2->next; 1041 /* See if we reached the end - both lists are equal length. */ 1042 if (l1 == &cset->cgrp_links) { 1043 BUG_ON(l2 != &old_cset->cgrp_links); 1044 break; 1045 } else { 1046 BUG_ON(l2 == &old_cset->cgrp_links); 1047 } 1048 /* Locate the cgroups associated with these links. */ 1049 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link); 1050 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link); 1051 cgrp1 = link1->cgrp; 1052 cgrp2 = link2->cgrp; 1053 /* Hierarchies should be linked in the same order. */ 1054 BUG_ON(cgrp1->root != cgrp2->root); 1055 1056 /* 1057 * If this hierarchy is the hierarchy of the cgroup 1058 * that's changing, then we need to check that this 1059 * css_set points to the new cgroup; if it's any other 1060 * hierarchy, then this css_set should point to the 1061 * same cgroup as the old css_set. 1062 */ 1063 if (cgrp1->root == new_cgrp->root) { 1064 if (cgrp1 != new_cgrp) 1065 return false; 1066 } else { 1067 if (cgrp1 != cgrp2) 1068 return false; 1069 } 1070 } 1071 return true; 1072 } 1073 1074 /** 1075 * find_existing_css_set - init css array and find the matching css_set 1076 * @old_cset: the css_set that we're using before the cgroup transition 1077 * @cgrp: the cgroup that we're moving into 1078 * @template: out param for the new set of csses, should be clear on entry 1079 */ 1080 static struct css_set *find_existing_css_set(struct css_set *old_cset, 1081 struct cgroup *cgrp, 1082 struct cgroup_subsys_state *template[]) 1083 { 1084 struct cgroup_root *root = cgrp->root; 1085 struct cgroup_subsys *ss; 1086 struct css_set *cset; 1087 unsigned long key; 1088 int i; 1089 1090 /* 1091 * Build the set of subsystem state objects that we want to see in the 1092 * new css_set. While subsystems can change globally, the entries here 1093 * won't change, so no need for locking. 1094 */ 1095 for_each_subsys(ss, i) { 1096 if (root->subsys_mask & (1UL << i)) { 1097 /* 1098 * @ss is in this hierarchy, so we want the 1099 * effective css from @cgrp. 1100 */ 1101 template[i] = cgroup_e_css_by_mask(cgrp, ss); 1102 } else { 1103 /* 1104 * @ss is not in this hierarchy, so we don't want 1105 * to change the css. 1106 */ 1107 template[i] = old_cset->subsys[i]; 1108 } 1109 } 1110 1111 key = css_set_hash(template); 1112 hash_for_each_possible(css_set_table, cset, hlist, key) { 1113 if (!compare_css_sets(cset, old_cset, cgrp, template)) 1114 continue; 1115 1116 /* This css_set matches what we need */ 1117 return cset; 1118 } 1119 1120 /* No existing cgroup group matched */ 1121 return NULL; 1122 } 1123 1124 static void free_cgrp_cset_links(struct list_head *links_to_free) 1125 { 1126 struct cgrp_cset_link *link, *tmp_link; 1127 1128 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) { 1129 list_del(&link->cset_link); 1130 kfree(link); 1131 } 1132 } 1133 1134 /** 1135 * allocate_cgrp_cset_links - allocate cgrp_cset_links 1136 * @count: the number of links to allocate 1137 * @tmp_links: list_head the allocated links are put on 1138 * 1139 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links 1140 * through ->cset_link. Returns 0 on success or -errno. 1141 */ 1142 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links) 1143 { 1144 struct cgrp_cset_link *link; 1145 int i; 1146 1147 INIT_LIST_HEAD(tmp_links); 1148 1149 for (i = 0; i < count; i++) { 1150 link = kzalloc(sizeof(*link), GFP_KERNEL); 1151 if (!link) { 1152 free_cgrp_cset_links(tmp_links); 1153 return -ENOMEM; 1154 } 1155 list_add(&link->cset_link, tmp_links); 1156 } 1157 return 0; 1158 } 1159 1160 /** 1161 * link_css_set - a helper function to link a css_set to a cgroup 1162 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links() 1163 * @cset: the css_set to be linked 1164 * @cgrp: the destination cgroup 1165 */ 1166 static void link_css_set(struct list_head *tmp_links, struct css_set *cset, 1167 struct cgroup *cgrp) 1168 { 1169 struct cgrp_cset_link *link; 1170 1171 BUG_ON(list_empty(tmp_links)); 1172 1173 if (cgroup_on_dfl(cgrp)) 1174 cset->dfl_cgrp = cgrp; 1175 1176 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link); 1177 link->cset = cset; 1178 link->cgrp = cgrp; 1179 1180 /* 1181 * Always add links to the tail of the lists so that the lists are 1182 * in chronological order. 1183 */ 1184 list_move_tail(&link->cset_link, &cgrp->cset_links); 1185 list_add_tail(&link->cgrp_link, &cset->cgrp_links); 1186 1187 if (cgroup_parent(cgrp)) 1188 cgroup_get_live(cgrp); 1189 } 1190 1191 /** 1192 * find_css_set - return a new css_set with one cgroup updated 1193 * @old_cset: the baseline css_set 1194 * @cgrp: the cgroup to be updated 1195 * 1196 * Return a new css_set that's equivalent to @old_cset, but with @cgrp 1197 * substituted into the appropriate hierarchy. 1198 */ 1199 static struct css_set *find_css_set(struct css_set *old_cset, 1200 struct cgroup *cgrp) 1201 { 1202 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { }; 1203 struct css_set *cset; 1204 struct list_head tmp_links; 1205 struct cgrp_cset_link *link; 1206 struct cgroup_subsys *ss; 1207 unsigned long key; 1208 int ssid; 1209 1210 lockdep_assert_held(&cgroup_mutex); 1211 1212 /* First see if we already have a cgroup group that matches 1213 * the desired set */ 1214 spin_lock_irq(&css_set_lock); 1215 cset = find_existing_css_set(old_cset, cgrp, template); 1216 if (cset) 1217 get_css_set(cset); 1218 spin_unlock_irq(&css_set_lock); 1219 1220 if (cset) 1221 return cset; 1222 1223 cset = kzalloc(sizeof(*cset), GFP_KERNEL); 1224 if (!cset) 1225 return NULL; 1226 1227 /* Allocate all the cgrp_cset_link objects that we'll need */ 1228 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) { 1229 kfree(cset); 1230 return NULL; 1231 } 1232 1233 refcount_set(&cset->refcount, 1); 1234 cset->dom_cset = cset; 1235 INIT_LIST_HEAD(&cset->tasks); 1236 INIT_LIST_HEAD(&cset->mg_tasks); 1237 INIT_LIST_HEAD(&cset->dying_tasks); 1238 INIT_LIST_HEAD(&cset->task_iters); 1239 INIT_LIST_HEAD(&cset->threaded_csets); 1240 INIT_HLIST_NODE(&cset->hlist); 1241 INIT_LIST_HEAD(&cset->cgrp_links); 1242 INIT_LIST_HEAD(&cset->mg_src_preload_node); 1243 INIT_LIST_HEAD(&cset->mg_dst_preload_node); 1244 INIT_LIST_HEAD(&cset->mg_node); 1245 1246 /* Copy the set of subsystem state objects generated in 1247 * find_existing_css_set() */ 1248 memcpy(cset->subsys, template, sizeof(cset->subsys)); 1249 1250 spin_lock_irq(&css_set_lock); 1251 /* Add reference counts and links from the new css_set. */ 1252 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) { 1253 struct cgroup *c = link->cgrp; 1254 1255 if (c->root == cgrp->root) 1256 c = cgrp; 1257 link_css_set(&tmp_links, cset, c); 1258 } 1259 1260 BUG_ON(!list_empty(&tmp_links)); 1261 1262 css_set_count++; 1263 1264 /* Add @cset to the hash table */ 1265 key = css_set_hash(cset->subsys); 1266 hash_add(css_set_table, &cset->hlist, key); 1267 1268 for_each_subsys(ss, ssid) { 1269 struct cgroup_subsys_state *css = cset->subsys[ssid]; 1270 1271 list_add_tail(&cset->e_cset_node[ssid], 1272 &css->cgroup->e_csets[ssid]); 1273 css_get(css); 1274 } 1275 1276 spin_unlock_irq(&css_set_lock); 1277 1278 /* 1279 * If @cset should be threaded, look up the matching dom_cset and 1280 * link them up. We first fully initialize @cset then look for the 1281 * dom_cset. It's simpler this way and safe as @cset is guaranteed 1282 * to stay empty until we return. 1283 */ 1284 if (cgroup_is_threaded(cset->dfl_cgrp)) { 1285 struct css_set *dcset; 1286 1287 dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp); 1288 if (!dcset) { 1289 put_css_set(cset); 1290 return NULL; 1291 } 1292 1293 spin_lock_irq(&css_set_lock); 1294 cset->dom_cset = dcset; 1295 list_add_tail(&cset->threaded_csets_node, 1296 &dcset->threaded_csets); 1297 spin_unlock_irq(&css_set_lock); 1298 } 1299 1300 return cset; 1301 } 1302 1303 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root) 1304 { 1305 struct cgroup *root_cgrp = kernfs_root_to_node(kf_root)->priv; 1306 1307 return root_cgrp->root; 1308 } 1309 1310 void cgroup_favor_dynmods(struct cgroup_root *root, bool favor) 1311 { 1312 bool favoring = root->flags & CGRP_ROOT_FAVOR_DYNMODS; 1313 1314 /* see the comment above CGRP_ROOT_FAVOR_DYNMODS definition */ 1315 if (favor && !favoring) { 1316 rcu_sync_enter(&cgroup_threadgroup_rwsem.rss); 1317 root->flags |= CGRP_ROOT_FAVOR_DYNMODS; 1318 } else if (!favor && favoring) { 1319 rcu_sync_exit(&cgroup_threadgroup_rwsem.rss); 1320 root->flags &= ~CGRP_ROOT_FAVOR_DYNMODS; 1321 } 1322 } 1323 1324 static int cgroup_init_root_id(struct cgroup_root *root) 1325 { 1326 int id; 1327 1328 lockdep_assert_held(&cgroup_mutex); 1329 1330 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL); 1331 if (id < 0) 1332 return id; 1333 1334 root->hierarchy_id = id; 1335 return 0; 1336 } 1337 1338 static void cgroup_exit_root_id(struct cgroup_root *root) 1339 { 1340 lockdep_assert_held(&cgroup_mutex); 1341 1342 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id); 1343 } 1344 1345 void cgroup_free_root(struct cgroup_root *root) 1346 { 1347 kfree(root); 1348 } 1349 1350 static void cgroup_destroy_root(struct cgroup_root *root) 1351 { 1352 struct cgroup *cgrp = &root->cgrp; 1353 struct cgrp_cset_link *link, *tmp_link; 1354 1355 trace_cgroup_destroy_root(root); 1356 1357 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp); 1358 1359 BUG_ON(atomic_read(&root->nr_cgrps)); 1360 BUG_ON(!list_empty(&cgrp->self.children)); 1361 1362 /* Rebind all subsystems back to the default hierarchy */ 1363 WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask)); 1364 1365 /* 1366 * Release all the links from cset_links to this hierarchy's 1367 * root cgroup 1368 */ 1369 spin_lock_irq(&css_set_lock); 1370 1371 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) { 1372 list_del(&link->cset_link); 1373 list_del(&link->cgrp_link); 1374 kfree(link); 1375 } 1376 1377 spin_unlock_irq(&css_set_lock); 1378 1379 if (!list_empty(&root->root_list)) { 1380 list_del(&root->root_list); 1381 cgroup_root_count--; 1382 } 1383 1384 cgroup_favor_dynmods(root, false); 1385 cgroup_exit_root_id(root); 1386 1387 mutex_unlock(&cgroup_mutex); 1388 1389 cgroup_rstat_exit(cgrp); 1390 kernfs_destroy_root(root->kf_root); 1391 cgroup_free_root(root); 1392 } 1393 1394 static inline struct cgroup *__cset_cgroup_from_root(struct css_set *cset, 1395 struct cgroup_root *root) 1396 { 1397 struct cgroup *res_cgroup = NULL; 1398 1399 if (cset == &init_css_set) { 1400 res_cgroup = &root->cgrp; 1401 } else if (root == &cgrp_dfl_root) { 1402 res_cgroup = cset->dfl_cgrp; 1403 } else { 1404 struct cgrp_cset_link *link; 1405 1406 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) { 1407 struct cgroup *c = link->cgrp; 1408 1409 if (c->root == root) { 1410 res_cgroup = c; 1411 break; 1412 } 1413 } 1414 } 1415 1416 return res_cgroup; 1417 } 1418 1419 /* 1420 * look up cgroup associated with current task's cgroup namespace on the 1421 * specified hierarchy 1422 */ 1423 static struct cgroup * 1424 current_cgns_cgroup_from_root(struct cgroup_root *root) 1425 { 1426 struct cgroup *res = NULL; 1427 struct css_set *cset; 1428 1429 lockdep_assert_held(&css_set_lock); 1430 1431 rcu_read_lock(); 1432 1433 cset = current->nsproxy->cgroup_ns->root_cset; 1434 res = __cset_cgroup_from_root(cset, root); 1435 1436 rcu_read_unlock(); 1437 1438 BUG_ON(!res); 1439 return res; 1440 } 1441 1442 /* look up cgroup associated with given css_set on the specified hierarchy */ 1443 static struct cgroup *cset_cgroup_from_root(struct css_set *cset, 1444 struct cgroup_root *root) 1445 { 1446 struct cgroup *res = NULL; 1447 1448 lockdep_assert_held(&cgroup_mutex); 1449 lockdep_assert_held(&css_set_lock); 1450 1451 res = __cset_cgroup_from_root(cset, root); 1452 1453 BUG_ON(!res); 1454 return res; 1455 } 1456 1457 /* 1458 * Return the cgroup for "task" from the given hierarchy. Must be 1459 * called with cgroup_mutex and css_set_lock held. 1460 */ 1461 struct cgroup *task_cgroup_from_root(struct task_struct *task, 1462 struct cgroup_root *root) 1463 { 1464 /* 1465 * No need to lock the task - since we hold css_set_lock the 1466 * task can't change groups. 1467 */ 1468 return cset_cgroup_from_root(task_css_set(task), root); 1469 } 1470 1471 /* 1472 * A task must hold cgroup_mutex to modify cgroups. 1473 * 1474 * Any task can increment and decrement the count field without lock. 1475 * So in general, code holding cgroup_mutex can't rely on the count 1476 * field not changing. However, if the count goes to zero, then only 1477 * cgroup_attach_task() can increment it again. Because a count of zero 1478 * means that no tasks are currently attached, therefore there is no 1479 * way a task attached to that cgroup can fork (the other way to 1480 * increment the count). So code holding cgroup_mutex can safely 1481 * assume that if the count is zero, it will stay zero. Similarly, if 1482 * a task holds cgroup_mutex on a cgroup with zero count, it 1483 * knows that the cgroup won't be removed, as cgroup_rmdir() 1484 * needs that mutex. 1485 * 1486 * A cgroup can only be deleted if both its 'count' of using tasks 1487 * is zero, and its list of 'children' cgroups is empty. Since all 1488 * tasks in the system use _some_ cgroup, and since there is always at 1489 * least one task in the system (init, pid == 1), therefore, root cgroup 1490 * always has either children cgroups and/or using tasks. So we don't 1491 * need a special hack to ensure that root cgroup cannot be deleted. 1492 * 1493 * P.S. One more locking exception. RCU is used to guard the 1494 * update of a tasks cgroup pointer by cgroup_attach_task() 1495 */ 1496 1497 static struct kernfs_syscall_ops cgroup_kf_syscall_ops; 1498 1499 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft, 1500 char *buf) 1501 { 1502 struct cgroup_subsys *ss = cft->ss; 1503 1504 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) && 1505 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) { 1506 const char *dbg = (cft->flags & CFTYPE_DEBUG) ? ".__DEBUG__." : ""; 1507 1508 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s%s.%s", 1509 dbg, cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name, 1510 cft->name); 1511 } else { 1512 strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX); 1513 } 1514 return buf; 1515 } 1516 1517 /** 1518 * cgroup_file_mode - deduce file mode of a control file 1519 * @cft: the control file in question 1520 * 1521 * S_IRUGO for read, S_IWUSR for write. 1522 */ 1523 static umode_t cgroup_file_mode(const struct cftype *cft) 1524 { 1525 umode_t mode = 0; 1526 1527 if (cft->read_u64 || cft->read_s64 || cft->seq_show) 1528 mode |= S_IRUGO; 1529 1530 if (cft->write_u64 || cft->write_s64 || cft->write) { 1531 if (cft->flags & CFTYPE_WORLD_WRITABLE) 1532 mode |= S_IWUGO; 1533 else 1534 mode |= S_IWUSR; 1535 } 1536 1537 return mode; 1538 } 1539 1540 /** 1541 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask 1542 * @subtree_control: the new subtree_control mask to consider 1543 * @this_ss_mask: available subsystems 1544 * 1545 * On the default hierarchy, a subsystem may request other subsystems to be 1546 * enabled together through its ->depends_on mask. In such cases, more 1547 * subsystems than specified in "cgroup.subtree_control" may be enabled. 1548 * 1549 * This function calculates which subsystems need to be enabled if 1550 * @subtree_control is to be applied while restricted to @this_ss_mask. 1551 */ 1552 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask) 1553 { 1554 u16 cur_ss_mask = subtree_control; 1555 struct cgroup_subsys *ss; 1556 int ssid; 1557 1558 lockdep_assert_held(&cgroup_mutex); 1559 1560 cur_ss_mask |= cgrp_dfl_implicit_ss_mask; 1561 1562 while (true) { 1563 u16 new_ss_mask = cur_ss_mask; 1564 1565 do_each_subsys_mask(ss, ssid, cur_ss_mask) { 1566 new_ss_mask |= ss->depends_on; 1567 } while_each_subsys_mask(); 1568 1569 /* 1570 * Mask out subsystems which aren't available. This can 1571 * happen only if some depended-upon subsystems were bound 1572 * to non-default hierarchies. 1573 */ 1574 new_ss_mask &= this_ss_mask; 1575 1576 if (new_ss_mask == cur_ss_mask) 1577 break; 1578 cur_ss_mask = new_ss_mask; 1579 } 1580 1581 return cur_ss_mask; 1582 } 1583 1584 /** 1585 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods 1586 * @kn: the kernfs_node being serviced 1587 * 1588 * This helper undoes cgroup_kn_lock_live() and should be invoked before 1589 * the method finishes if locking succeeded. Note that once this function 1590 * returns the cgroup returned by cgroup_kn_lock_live() may become 1591 * inaccessible any time. If the caller intends to continue to access the 1592 * cgroup, it should pin it before invoking this function. 1593 */ 1594 void cgroup_kn_unlock(struct kernfs_node *kn) 1595 { 1596 struct cgroup *cgrp; 1597 1598 if (kernfs_type(kn) == KERNFS_DIR) 1599 cgrp = kn->priv; 1600 else 1601 cgrp = kn->parent->priv; 1602 1603 mutex_unlock(&cgroup_mutex); 1604 1605 kernfs_unbreak_active_protection(kn); 1606 cgroup_put(cgrp); 1607 } 1608 1609 /** 1610 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods 1611 * @kn: the kernfs_node being serviced 1612 * @drain_offline: perform offline draining on the cgroup 1613 * 1614 * This helper is to be used by a cgroup kernfs method currently servicing 1615 * @kn. It breaks the active protection, performs cgroup locking and 1616 * verifies that the associated cgroup is alive. Returns the cgroup if 1617 * alive; otherwise, %NULL. A successful return should be undone by a 1618 * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the 1619 * cgroup is drained of offlining csses before return. 1620 * 1621 * Any cgroup kernfs method implementation which requires locking the 1622 * associated cgroup should use this helper. It avoids nesting cgroup 1623 * locking under kernfs active protection and allows all kernfs operations 1624 * including self-removal. 1625 */ 1626 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline) 1627 { 1628 struct cgroup *cgrp; 1629 1630 if (kernfs_type(kn) == KERNFS_DIR) 1631 cgrp = kn->priv; 1632 else 1633 cgrp = kn->parent->priv; 1634 1635 /* 1636 * We're gonna grab cgroup_mutex which nests outside kernfs 1637 * active_ref. cgroup liveliness check alone provides enough 1638 * protection against removal. Ensure @cgrp stays accessible and 1639 * break the active_ref protection. 1640 */ 1641 if (!cgroup_tryget(cgrp)) 1642 return NULL; 1643 kernfs_break_active_protection(kn); 1644 1645 if (drain_offline) 1646 cgroup_lock_and_drain_offline(cgrp); 1647 else 1648 mutex_lock(&cgroup_mutex); 1649 1650 if (!cgroup_is_dead(cgrp)) 1651 return cgrp; 1652 1653 cgroup_kn_unlock(kn); 1654 return NULL; 1655 } 1656 1657 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft) 1658 { 1659 char name[CGROUP_FILE_NAME_MAX]; 1660 1661 lockdep_assert_held(&cgroup_mutex); 1662 1663 if (cft->file_offset) { 1664 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss); 1665 struct cgroup_file *cfile = (void *)css + cft->file_offset; 1666 1667 spin_lock_irq(&cgroup_file_kn_lock); 1668 cfile->kn = NULL; 1669 spin_unlock_irq(&cgroup_file_kn_lock); 1670 1671 del_timer_sync(&cfile->notify_timer); 1672 } 1673 1674 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name)); 1675 } 1676 1677 /** 1678 * css_clear_dir - remove subsys files in a cgroup directory 1679 * @css: target css 1680 */ 1681 static void css_clear_dir(struct cgroup_subsys_state *css) 1682 { 1683 struct cgroup *cgrp = css->cgroup; 1684 struct cftype *cfts; 1685 1686 if (!(css->flags & CSS_VISIBLE)) 1687 return; 1688 1689 css->flags &= ~CSS_VISIBLE; 1690 1691 if (!css->ss) { 1692 if (cgroup_on_dfl(cgrp)) 1693 cfts = cgroup_base_files; 1694 else 1695 cfts = cgroup1_base_files; 1696 1697 cgroup_addrm_files(css, cgrp, cfts, false); 1698 } else { 1699 list_for_each_entry(cfts, &css->ss->cfts, node) 1700 cgroup_addrm_files(css, cgrp, cfts, false); 1701 } 1702 } 1703 1704 /** 1705 * css_populate_dir - create subsys files in a cgroup directory 1706 * @css: target css 1707 * 1708 * On failure, no file is added. 1709 */ 1710 static int css_populate_dir(struct cgroup_subsys_state *css) 1711 { 1712 struct cgroup *cgrp = css->cgroup; 1713 struct cftype *cfts, *failed_cfts; 1714 int ret; 1715 1716 if ((css->flags & CSS_VISIBLE) || !cgrp->kn) 1717 return 0; 1718 1719 if (!css->ss) { 1720 if (cgroup_on_dfl(cgrp)) 1721 cfts = cgroup_base_files; 1722 else 1723 cfts = cgroup1_base_files; 1724 1725 ret = cgroup_addrm_files(&cgrp->self, cgrp, cfts, true); 1726 if (ret < 0) 1727 return ret; 1728 } else { 1729 list_for_each_entry(cfts, &css->ss->cfts, node) { 1730 ret = cgroup_addrm_files(css, cgrp, cfts, true); 1731 if (ret < 0) { 1732 failed_cfts = cfts; 1733 goto err; 1734 } 1735 } 1736 } 1737 1738 css->flags |= CSS_VISIBLE; 1739 1740 return 0; 1741 err: 1742 list_for_each_entry(cfts, &css->ss->cfts, node) { 1743 if (cfts == failed_cfts) 1744 break; 1745 cgroup_addrm_files(css, cgrp, cfts, false); 1746 } 1747 return ret; 1748 } 1749 1750 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask) 1751 { 1752 struct cgroup *dcgrp = &dst_root->cgrp; 1753 struct cgroup_subsys *ss; 1754 int ssid, i, ret; 1755 u16 dfl_disable_ss_mask = 0; 1756 1757 lockdep_assert_held(&cgroup_mutex); 1758 1759 do_each_subsys_mask(ss, ssid, ss_mask) { 1760 /* 1761 * If @ss has non-root csses attached to it, can't move. 1762 * If @ss is an implicit controller, it is exempt from this 1763 * rule and can be stolen. 1764 */ 1765 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) && 1766 !ss->implicit_on_dfl) 1767 return -EBUSY; 1768 1769 /* can't move between two non-dummy roots either */ 1770 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root) 1771 return -EBUSY; 1772 1773 /* 1774 * Collect ssid's that need to be disabled from default 1775 * hierarchy. 1776 */ 1777 if (ss->root == &cgrp_dfl_root) 1778 dfl_disable_ss_mask |= 1 << ssid; 1779 1780 } while_each_subsys_mask(); 1781 1782 if (dfl_disable_ss_mask) { 1783 struct cgroup *scgrp = &cgrp_dfl_root.cgrp; 1784 1785 /* 1786 * Controllers from default hierarchy that need to be rebound 1787 * are all disabled together in one go. 1788 */ 1789 cgrp_dfl_root.subsys_mask &= ~dfl_disable_ss_mask; 1790 WARN_ON(cgroup_apply_control(scgrp)); 1791 cgroup_finalize_control(scgrp, 0); 1792 } 1793 1794 do_each_subsys_mask(ss, ssid, ss_mask) { 1795 struct cgroup_root *src_root = ss->root; 1796 struct cgroup *scgrp = &src_root->cgrp; 1797 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss); 1798 struct css_set *cset; 1799 1800 WARN_ON(!css || cgroup_css(dcgrp, ss)); 1801 1802 if (src_root != &cgrp_dfl_root) { 1803 /* disable from the source */ 1804 src_root->subsys_mask &= ~(1 << ssid); 1805 WARN_ON(cgroup_apply_control(scgrp)); 1806 cgroup_finalize_control(scgrp, 0); 1807 } 1808 1809 /* rebind */ 1810 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL); 1811 rcu_assign_pointer(dcgrp->subsys[ssid], css); 1812 ss->root = dst_root; 1813 css->cgroup = dcgrp; 1814 1815 spin_lock_irq(&css_set_lock); 1816 hash_for_each(css_set_table, i, cset, hlist) 1817 list_move_tail(&cset->e_cset_node[ss->id], 1818 &dcgrp->e_csets[ss->id]); 1819 spin_unlock_irq(&css_set_lock); 1820 1821 if (ss->css_rstat_flush) { 1822 list_del_rcu(&css->rstat_css_node); 1823 synchronize_rcu(); 1824 list_add_rcu(&css->rstat_css_node, 1825 &dcgrp->rstat_css_list); 1826 } 1827 1828 /* default hierarchy doesn't enable controllers by default */ 1829 dst_root->subsys_mask |= 1 << ssid; 1830 if (dst_root == &cgrp_dfl_root) { 1831 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]); 1832 } else { 1833 dcgrp->subtree_control |= 1 << ssid; 1834 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]); 1835 } 1836 1837 ret = cgroup_apply_control(dcgrp); 1838 if (ret) 1839 pr_warn("partial failure to rebind %s controller (err=%d)\n", 1840 ss->name, ret); 1841 1842 if (ss->bind) 1843 ss->bind(css); 1844 } while_each_subsys_mask(); 1845 1846 kernfs_activate(dcgrp->kn); 1847 return 0; 1848 } 1849 1850 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node, 1851 struct kernfs_root *kf_root) 1852 { 1853 int len = 0; 1854 char *buf = NULL; 1855 struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root); 1856 struct cgroup *ns_cgroup; 1857 1858 buf = kmalloc(PATH_MAX, GFP_KERNEL); 1859 if (!buf) 1860 return -ENOMEM; 1861 1862 spin_lock_irq(&css_set_lock); 1863 ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot); 1864 len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX); 1865 spin_unlock_irq(&css_set_lock); 1866 1867 if (len >= PATH_MAX) 1868 len = -ERANGE; 1869 else if (len > 0) { 1870 seq_escape(sf, buf, " \t\n\\"); 1871 len = 0; 1872 } 1873 kfree(buf); 1874 return len; 1875 } 1876 1877 enum cgroup2_param { 1878 Opt_nsdelegate, 1879 Opt_favordynmods, 1880 Opt_memory_localevents, 1881 Opt_memory_recursiveprot, 1882 nr__cgroup2_params 1883 }; 1884 1885 static const struct fs_parameter_spec cgroup2_fs_parameters[] = { 1886 fsparam_flag("nsdelegate", Opt_nsdelegate), 1887 fsparam_flag("favordynmods", Opt_favordynmods), 1888 fsparam_flag("memory_localevents", Opt_memory_localevents), 1889 fsparam_flag("memory_recursiveprot", Opt_memory_recursiveprot), 1890 {} 1891 }; 1892 1893 static int cgroup2_parse_param(struct fs_context *fc, struct fs_parameter *param) 1894 { 1895 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 1896 struct fs_parse_result result; 1897 int opt; 1898 1899 opt = fs_parse(fc, cgroup2_fs_parameters, param, &result); 1900 if (opt < 0) 1901 return opt; 1902 1903 switch (opt) { 1904 case Opt_nsdelegate: 1905 ctx->flags |= CGRP_ROOT_NS_DELEGATE; 1906 return 0; 1907 case Opt_favordynmods: 1908 ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS; 1909 return 0; 1910 case Opt_memory_localevents: 1911 ctx->flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS; 1912 return 0; 1913 case Opt_memory_recursiveprot: 1914 ctx->flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT; 1915 return 0; 1916 } 1917 return -EINVAL; 1918 } 1919 1920 static void apply_cgroup_root_flags(unsigned int root_flags) 1921 { 1922 if (current->nsproxy->cgroup_ns == &init_cgroup_ns) { 1923 if (root_flags & CGRP_ROOT_NS_DELEGATE) 1924 cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE; 1925 else 1926 cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE; 1927 1928 cgroup_favor_dynmods(&cgrp_dfl_root, 1929 root_flags & CGRP_ROOT_FAVOR_DYNMODS); 1930 1931 if (root_flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS) 1932 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS; 1933 else 1934 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_LOCAL_EVENTS; 1935 1936 if (root_flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT) 1937 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT; 1938 else 1939 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_RECURSIVE_PROT; 1940 } 1941 } 1942 1943 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root) 1944 { 1945 if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) 1946 seq_puts(seq, ",nsdelegate"); 1947 if (cgrp_dfl_root.flags & CGRP_ROOT_FAVOR_DYNMODS) 1948 seq_puts(seq, ",favordynmods"); 1949 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS) 1950 seq_puts(seq, ",memory_localevents"); 1951 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT) 1952 seq_puts(seq, ",memory_recursiveprot"); 1953 return 0; 1954 } 1955 1956 static int cgroup_reconfigure(struct fs_context *fc) 1957 { 1958 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 1959 1960 apply_cgroup_root_flags(ctx->flags); 1961 return 0; 1962 } 1963 1964 static void init_cgroup_housekeeping(struct cgroup *cgrp) 1965 { 1966 struct cgroup_subsys *ss; 1967 int ssid; 1968 1969 INIT_LIST_HEAD(&cgrp->self.sibling); 1970 INIT_LIST_HEAD(&cgrp->self.children); 1971 INIT_LIST_HEAD(&cgrp->cset_links); 1972 INIT_LIST_HEAD(&cgrp->pidlists); 1973 mutex_init(&cgrp->pidlist_mutex); 1974 cgrp->self.cgroup = cgrp; 1975 cgrp->self.flags |= CSS_ONLINE; 1976 cgrp->dom_cgrp = cgrp; 1977 cgrp->max_descendants = INT_MAX; 1978 cgrp->max_depth = INT_MAX; 1979 INIT_LIST_HEAD(&cgrp->rstat_css_list); 1980 prev_cputime_init(&cgrp->prev_cputime); 1981 1982 for_each_subsys(ss, ssid) 1983 INIT_LIST_HEAD(&cgrp->e_csets[ssid]); 1984 1985 init_waitqueue_head(&cgrp->offline_waitq); 1986 INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent); 1987 } 1988 1989 void init_cgroup_root(struct cgroup_fs_context *ctx) 1990 { 1991 struct cgroup_root *root = ctx->root; 1992 struct cgroup *cgrp = &root->cgrp; 1993 1994 INIT_LIST_HEAD(&root->root_list); 1995 atomic_set(&root->nr_cgrps, 1); 1996 cgrp->root = root; 1997 init_cgroup_housekeeping(cgrp); 1998 1999 /* DYNMODS must be modified through cgroup_favor_dynmods() */ 2000 root->flags = ctx->flags & ~CGRP_ROOT_FAVOR_DYNMODS; 2001 if (ctx->release_agent) 2002 strscpy(root->release_agent_path, ctx->release_agent, PATH_MAX); 2003 if (ctx->name) 2004 strscpy(root->name, ctx->name, MAX_CGROUP_ROOT_NAMELEN); 2005 if (ctx->cpuset_clone_children) 2006 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags); 2007 } 2008 2009 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask) 2010 { 2011 LIST_HEAD(tmp_links); 2012 struct cgroup *root_cgrp = &root->cgrp; 2013 struct kernfs_syscall_ops *kf_sops; 2014 struct css_set *cset; 2015 int i, ret; 2016 2017 lockdep_assert_held(&cgroup_mutex); 2018 2019 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 2020 0, GFP_KERNEL); 2021 if (ret) 2022 goto out; 2023 2024 /* 2025 * We're accessing css_set_count without locking css_set_lock here, 2026 * but that's OK - it can only be increased by someone holding 2027 * cgroup_lock, and that's us. Later rebinding may disable 2028 * controllers on the default hierarchy and thus create new csets, 2029 * which can't be more than the existing ones. Allocate 2x. 2030 */ 2031 ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links); 2032 if (ret) 2033 goto cancel_ref; 2034 2035 ret = cgroup_init_root_id(root); 2036 if (ret) 2037 goto cancel_ref; 2038 2039 kf_sops = root == &cgrp_dfl_root ? 2040 &cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops; 2041 2042 root->kf_root = kernfs_create_root(kf_sops, 2043 KERNFS_ROOT_CREATE_DEACTIVATED | 2044 KERNFS_ROOT_SUPPORT_EXPORTOP | 2045 KERNFS_ROOT_SUPPORT_USER_XATTR, 2046 root_cgrp); 2047 if (IS_ERR(root->kf_root)) { 2048 ret = PTR_ERR(root->kf_root); 2049 goto exit_root_id; 2050 } 2051 root_cgrp->kn = kernfs_root_to_node(root->kf_root); 2052 WARN_ON_ONCE(cgroup_ino(root_cgrp) != 1); 2053 root_cgrp->ancestor_ids[0] = cgroup_id(root_cgrp); 2054 2055 ret = css_populate_dir(&root_cgrp->self); 2056 if (ret) 2057 goto destroy_root; 2058 2059 ret = cgroup_rstat_init(root_cgrp); 2060 if (ret) 2061 goto destroy_root; 2062 2063 ret = rebind_subsystems(root, ss_mask); 2064 if (ret) 2065 goto exit_stats; 2066 2067 ret = cgroup_bpf_inherit(root_cgrp); 2068 WARN_ON_ONCE(ret); 2069 2070 trace_cgroup_setup_root(root); 2071 2072 /* 2073 * There must be no failure case after here, since rebinding takes 2074 * care of subsystems' refcounts, which are explicitly dropped in 2075 * the failure exit path. 2076 */ 2077 list_add(&root->root_list, &cgroup_roots); 2078 cgroup_root_count++; 2079 2080 /* 2081 * Link the root cgroup in this hierarchy into all the css_set 2082 * objects. 2083 */ 2084 spin_lock_irq(&css_set_lock); 2085 hash_for_each(css_set_table, i, cset, hlist) { 2086 link_css_set(&tmp_links, cset, root_cgrp); 2087 if (css_set_populated(cset)) 2088 cgroup_update_populated(root_cgrp, true); 2089 } 2090 spin_unlock_irq(&css_set_lock); 2091 2092 BUG_ON(!list_empty(&root_cgrp->self.children)); 2093 BUG_ON(atomic_read(&root->nr_cgrps) != 1); 2094 2095 ret = 0; 2096 goto out; 2097 2098 exit_stats: 2099 cgroup_rstat_exit(root_cgrp); 2100 destroy_root: 2101 kernfs_destroy_root(root->kf_root); 2102 root->kf_root = NULL; 2103 exit_root_id: 2104 cgroup_exit_root_id(root); 2105 cancel_ref: 2106 percpu_ref_exit(&root_cgrp->self.refcnt); 2107 out: 2108 free_cgrp_cset_links(&tmp_links); 2109 return ret; 2110 } 2111 2112 int cgroup_do_get_tree(struct fs_context *fc) 2113 { 2114 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2115 int ret; 2116 2117 ctx->kfc.root = ctx->root->kf_root; 2118 if (fc->fs_type == &cgroup2_fs_type) 2119 ctx->kfc.magic = CGROUP2_SUPER_MAGIC; 2120 else 2121 ctx->kfc.magic = CGROUP_SUPER_MAGIC; 2122 ret = kernfs_get_tree(fc); 2123 2124 /* 2125 * In non-init cgroup namespace, instead of root cgroup's dentry, 2126 * we return the dentry corresponding to the cgroupns->root_cgrp. 2127 */ 2128 if (!ret && ctx->ns != &init_cgroup_ns) { 2129 struct dentry *nsdentry; 2130 struct super_block *sb = fc->root->d_sb; 2131 struct cgroup *cgrp; 2132 2133 mutex_lock(&cgroup_mutex); 2134 spin_lock_irq(&css_set_lock); 2135 2136 cgrp = cset_cgroup_from_root(ctx->ns->root_cset, ctx->root); 2137 2138 spin_unlock_irq(&css_set_lock); 2139 mutex_unlock(&cgroup_mutex); 2140 2141 nsdentry = kernfs_node_dentry(cgrp->kn, sb); 2142 dput(fc->root); 2143 if (IS_ERR(nsdentry)) { 2144 deactivate_locked_super(sb); 2145 ret = PTR_ERR(nsdentry); 2146 nsdentry = NULL; 2147 } 2148 fc->root = nsdentry; 2149 } 2150 2151 if (!ctx->kfc.new_sb_created) 2152 cgroup_put(&ctx->root->cgrp); 2153 2154 return ret; 2155 } 2156 2157 /* 2158 * Destroy a cgroup filesystem context. 2159 */ 2160 static void cgroup_fs_context_free(struct fs_context *fc) 2161 { 2162 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2163 2164 kfree(ctx->name); 2165 kfree(ctx->release_agent); 2166 put_cgroup_ns(ctx->ns); 2167 kernfs_free_fs_context(fc); 2168 kfree(ctx); 2169 } 2170 2171 static int cgroup_get_tree(struct fs_context *fc) 2172 { 2173 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2174 int ret; 2175 2176 cgrp_dfl_visible = true; 2177 cgroup_get_live(&cgrp_dfl_root.cgrp); 2178 ctx->root = &cgrp_dfl_root; 2179 2180 ret = cgroup_do_get_tree(fc); 2181 if (!ret) 2182 apply_cgroup_root_flags(ctx->flags); 2183 return ret; 2184 } 2185 2186 static const struct fs_context_operations cgroup_fs_context_ops = { 2187 .free = cgroup_fs_context_free, 2188 .parse_param = cgroup2_parse_param, 2189 .get_tree = cgroup_get_tree, 2190 .reconfigure = cgroup_reconfigure, 2191 }; 2192 2193 static const struct fs_context_operations cgroup1_fs_context_ops = { 2194 .free = cgroup_fs_context_free, 2195 .parse_param = cgroup1_parse_param, 2196 .get_tree = cgroup1_get_tree, 2197 .reconfigure = cgroup1_reconfigure, 2198 }; 2199 2200 /* 2201 * Initialise the cgroup filesystem creation/reconfiguration context. Notably, 2202 * we select the namespace we're going to use. 2203 */ 2204 static int cgroup_init_fs_context(struct fs_context *fc) 2205 { 2206 struct cgroup_fs_context *ctx; 2207 2208 ctx = kzalloc(sizeof(struct cgroup_fs_context), GFP_KERNEL); 2209 if (!ctx) 2210 return -ENOMEM; 2211 2212 ctx->ns = current->nsproxy->cgroup_ns; 2213 get_cgroup_ns(ctx->ns); 2214 fc->fs_private = &ctx->kfc; 2215 if (fc->fs_type == &cgroup2_fs_type) 2216 fc->ops = &cgroup_fs_context_ops; 2217 else 2218 fc->ops = &cgroup1_fs_context_ops; 2219 put_user_ns(fc->user_ns); 2220 fc->user_ns = get_user_ns(ctx->ns->user_ns); 2221 fc->global = true; 2222 2223 #ifdef CONFIG_CGROUP_FAVOR_DYNMODS 2224 ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS; 2225 #endif 2226 return 0; 2227 } 2228 2229 static void cgroup_kill_sb(struct super_block *sb) 2230 { 2231 struct kernfs_root *kf_root = kernfs_root_from_sb(sb); 2232 struct cgroup_root *root = cgroup_root_from_kf(kf_root); 2233 2234 /* 2235 * If @root doesn't have any children, start killing it. 2236 * This prevents new mounts by disabling percpu_ref_tryget_live(). 2237 * 2238 * And don't kill the default root. 2239 */ 2240 if (list_empty(&root->cgrp.self.children) && root != &cgrp_dfl_root && 2241 !percpu_ref_is_dying(&root->cgrp.self.refcnt)) { 2242 cgroup_bpf_offline(&root->cgrp); 2243 percpu_ref_kill(&root->cgrp.self.refcnt); 2244 } 2245 cgroup_put(&root->cgrp); 2246 kernfs_kill_sb(sb); 2247 } 2248 2249 struct file_system_type cgroup_fs_type = { 2250 .name = "cgroup", 2251 .init_fs_context = cgroup_init_fs_context, 2252 .parameters = cgroup1_fs_parameters, 2253 .kill_sb = cgroup_kill_sb, 2254 .fs_flags = FS_USERNS_MOUNT, 2255 }; 2256 2257 static struct file_system_type cgroup2_fs_type = { 2258 .name = "cgroup2", 2259 .init_fs_context = cgroup_init_fs_context, 2260 .parameters = cgroup2_fs_parameters, 2261 .kill_sb = cgroup_kill_sb, 2262 .fs_flags = FS_USERNS_MOUNT, 2263 }; 2264 2265 #ifdef CONFIG_CPUSETS 2266 static const struct fs_context_operations cpuset_fs_context_ops = { 2267 .get_tree = cgroup1_get_tree, 2268 .free = cgroup_fs_context_free, 2269 }; 2270 2271 /* 2272 * This is ugly, but preserves the userspace API for existing cpuset 2273 * users. If someone tries to mount the "cpuset" filesystem, we 2274 * silently switch it to mount "cgroup" instead 2275 */ 2276 static int cpuset_init_fs_context(struct fs_context *fc) 2277 { 2278 char *agent = kstrdup("/sbin/cpuset_release_agent", GFP_USER); 2279 struct cgroup_fs_context *ctx; 2280 int err; 2281 2282 err = cgroup_init_fs_context(fc); 2283 if (err) { 2284 kfree(agent); 2285 return err; 2286 } 2287 2288 fc->ops = &cpuset_fs_context_ops; 2289 2290 ctx = cgroup_fc2context(fc); 2291 ctx->subsys_mask = 1 << cpuset_cgrp_id; 2292 ctx->flags |= CGRP_ROOT_NOPREFIX; 2293 ctx->release_agent = agent; 2294 2295 get_filesystem(&cgroup_fs_type); 2296 put_filesystem(fc->fs_type); 2297 fc->fs_type = &cgroup_fs_type; 2298 2299 return 0; 2300 } 2301 2302 static struct file_system_type cpuset_fs_type = { 2303 .name = "cpuset", 2304 .init_fs_context = cpuset_init_fs_context, 2305 .fs_flags = FS_USERNS_MOUNT, 2306 }; 2307 #endif 2308 2309 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen, 2310 struct cgroup_namespace *ns) 2311 { 2312 struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root); 2313 2314 return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen); 2315 } 2316 2317 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen, 2318 struct cgroup_namespace *ns) 2319 { 2320 int ret; 2321 2322 mutex_lock(&cgroup_mutex); 2323 spin_lock_irq(&css_set_lock); 2324 2325 ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns); 2326 2327 spin_unlock_irq(&css_set_lock); 2328 mutex_unlock(&cgroup_mutex); 2329 2330 return ret; 2331 } 2332 EXPORT_SYMBOL_GPL(cgroup_path_ns); 2333 2334 /** 2335 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy 2336 * @task: target task 2337 * @buf: the buffer to write the path into 2338 * @buflen: the length of the buffer 2339 * 2340 * Determine @task's cgroup on the first (the one with the lowest non-zero 2341 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This 2342 * function grabs cgroup_mutex and shouldn't be used inside locks used by 2343 * cgroup controller callbacks. 2344 * 2345 * Return value is the same as kernfs_path(). 2346 */ 2347 int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen) 2348 { 2349 struct cgroup_root *root; 2350 struct cgroup *cgrp; 2351 int hierarchy_id = 1; 2352 int ret; 2353 2354 mutex_lock(&cgroup_mutex); 2355 spin_lock_irq(&css_set_lock); 2356 2357 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id); 2358 2359 if (root) { 2360 cgrp = task_cgroup_from_root(task, root); 2361 ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns); 2362 } else { 2363 /* if no hierarchy exists, everyone is in "/" */ 2364 ret = strlcpy(buf, "/", buflen); 2365 } 2366 2367 spin_unlock_irq(&css_set_lock); 2368 mutex_unlock(&cgroup_mutex); 2369 return ret; 2370 } 2371 EXPORT_SYMBOL_GPL(task_cgroup_path); 2372 2373 /** 2374 * cgroup_attach_lock - Lock for ->attach() 2375 * @lock_threadgroup: whether to down_write cgroup_threadgroup_rwsem 2376 * 2377 * cgroup migration sometimes needs to stabilize threadgroups against forks and 2378 * exits by write-locking cgroup_threadgroup_rwsem. However, some ->attach() 2379 * implementations (e.g. cpuset), also need to disable CPU hotplug. 2380 * Unfortunately, letting ->attach() operations acquire cpus_read_lock() can 2381 * lead to deadlocks. 2382 * 2383 * Bringing up a CPU may involve creating and destroying tasks which requires 2384 * read-locking threadgroup_rwsem, so threadgroup_rwsem nests inside 2385 * cpus_read_lock(). If we call an ->attach() which acquires the cpus lock while 2386 * write-locking threadgroup_rwsem, the locking order is reversed and we end up 2387 * waiting for an on-going CPU hotplug operation which in turn is waiting for 2388 * the threadgroup_rwsem to be released to create new tasks. For more details: 2389 * 2390 * http://lkml.kernel.org/r/20220711174629.uehfmqegcwn2lqzu@wubuntu 2391 * 2392 * Resolve the situation by always acquiring cpus_read_lock() before optionally 2393 * write-locking cgroup_threadgroup_rwsem. This allows ->attach() to assume that 2394 * CPU hotplug is disabled on entry. 2395 */ 2396 static void cgroup_attach_lock(bool lock_threadgroup) 2397 { 2398 cpus_read_lock(); 2399 if (lock_threadgroup) 2400 percpu_down_write(&cgroup_threadgroup_rwsem); 2401 } 2402 2403 /** 2404 * cgroup_attach_unlock - Undo cgroup_attach_lock() 2405 * @lock_threadgroup: whether to up_write cgroup_threadgroup_rwsem 2406 */ 2407 static void cgroup_attach_unlock(bool lock_threadgroup) 2408 { 2409 if (lock_threadgroup) 2410 percpu_up_write(&cgroup_threadgroup_rwsem); 2411 cpus_read_unlock(); 2412 } 2413 2414 /** 2415 * cgroup_migrate_add_task - add a migration target task to a migration context 2416 * @task: target task 2417 * @mgctx: target migration context 2418 * 2419 * Add @task, which is a migration target, to @mgctx->tset. This function 2420 * becomes noop if @task doesn't need to be migrated. @task's css_set 2421 * should have been added as a migration source and @task->cg_list will be 2422 * moved from the css_set's tasks list to mg_tasks one. 2423 */ 2424 static void cgroup_migrate_add_task(struct task_struct *task, 2425 struct cgroup_mgctx *mgctx) 2426 { 2427 struct css_set *cset; 2428 2429 lockdep_assert_held(&css_set_lock); 2430 2431 /* @task either already exited or can't exit until the end */ 2432 if (task->flags & PF_EXITING) 2433 return; 2434 2435 /* cgroup_threadgroup_rwsem protects racing against forks */ 2436 WARN_ON_ONCE(list_empty(&task->cg_list)); 2437 2438 cset = task_css_set(task); 2439 if (!cset->mg_src_cgrp) 2440 return; 2441 2442 mgctx->tset.nr_tasks++; 2443 2444 list_move_tail(&task->cg_list, &cset->mg_tasks); 2445 if (list_empty(&cset->mg_node)) 2446 list_add_tail(&cset->mg_node, 2447 &mgctx->tset.src_csets); 2448 if (list_empty(&cset->mg_dst_cset->mg_node)) 2449 list_add_tail(&cset->mg_dst_cset->mg_node, 2450 &mgctx->tset.dst_csets); 2451 } 2452 2453 /** 2454 * cgroup_taskset_first - reset taskset and return the first task 2455 * @tset: taskset of interest 2456 * @dst_cssp: output variable for the destination css 2457 * 2458 * @tset iteration is initialized and the first task is returned. 2459 */ 2460 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset, 2461 struct cgroup_subsys_state **dst_cssp) 2462 { 2463 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node); 2464 tset->cur_task = NULL; 2465 2466 return cgroup_taskset_next(tset, dst_cssp); 2467 } 2468 2469 /** 2470 * cgroup_taskset_next - iterate to the next task in taskset 2471 * @tset: taskset of interest 2472 * @dst_cssp: output variable for the destination css 2473 * 2474 * Return the next task in @tset. Iteration must have been initialized 2475 * with cgroup_taskset_first(). 2476 */ 2477 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset, 2478 struct cgroup_subsys_state **dst_cssp) 2479 { 2480 struct css_set *cset = tset->cur_cset; 2481 struct task_struct *task = tset->cur_task; 2482 2483 while (CGROUP_HAS_SUBSYS_CONFIG && &cset->mg_node != tset->csets) { 2484 if (!task) 2485 task = list_first_entry(&cset->mg_tasks, 2486 struct task_struct, cg_list); 2487 else 2488 task = list_next_entry(task, cg_list); 2489 2490 if (&task->cg_list != &cset->mg_tasks) { 2491 tset->cur_cset = cset; 2492 tset->cur_task = task; 2493 2494 /* 2495 * This function may be called both before and 2496 * after cgroup_taskset_migrate(). The two cases 2497 * can be distinguished by looking at whether @cset 2498 * has its ->mg_dst_cset set. 2499 */ 2500 if (cset->mg_dst_cset) 2501 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid]; 2502 else 2503 *dst_cssp = cset->subsys[tset->ssid]; 2504 2505 return task; 2506 } 2507 2508 cset = list_next_entry(cset, mg_node); 2509 task = NULL; 2510 } 2511 2512 return NULL; 2513 } 2514 2515 /** 2516 * cgroup_migrate_execute - migrate a taskset 2517 * @mgctx: migration context 2518 * 2519 * Migrate tasks in @mgctx as setup by migration preparation functions. 2520 * This function fails iff one of the ->can_attach callbacks fails and 2521 * guarantees that either all or none of the tasks in @mgctx are migrated. 2522 * @mgctx is consumed regardless of success. 2523 */ 2524 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx) 2525 { 2526 struct cgroup_taskset *tset = &mgctx->tset; 2527 struct cgroup_subsys *ss; 2528 struct task_struct *task, *tmp_task; 2529 struct css_set *cset, *tmp_cset; 2530 int ssid, failed_ssid, ret; 2531 2532 /* check that we can legitimately attach to the cgroup */ 2533 if (tset->nr_tasks) { 2534 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2535 if (ss->can_attach) { 2536 tset->ssid = ssid; 2537 ret = ss->can_attach(tset); 2538 if (ret) { 2539 failed_ssid = ssid; 2540 goto out_cancel_attach; 2541 } 2542 } 2543 } while_each_subsys_mask(); 2544 } 2545 2546 /* 2547 * Now that we're guaranteed success, proceed to move all tasks to 2548 * the new cgroup. There are no failure cases after here, so this 2549 * is the commit point. 2550 */ 2551 spin_lock_irq(&css_set_lock); 2552 list_for_each_entry(cset, &tset->src_csets, mg_node) { 2553 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) { 2554 struct css_set *from_cset = task_css_set(task); 2555 struct css_set *to_cset = cset->mg_dst_cset; 2556 2557 get_css_set(to_cset); 2558 to_cset->nr_tasks++; 2559 css_set_move_task(task, from_cset, to_cset, true); 2560 from_cset->nr_tasks--; 2561 /* 2562 * If the source or destination cgroup is frozen, 2563 * the task might require to change its state. 2564 */ 2565 cgroup_freezer_migrate_task(task, from_cset->dfl_cgrp, 2566 to_cset->dfl_cgrp); 2567 put_css_set_locked(from_cset); 2568 2569 } 2570 } 2571 spin_unlock_irq(&css_set_lock); 2572 2573 /* 2574 * Migration is committed, all target tasks are now on dst_csets. 2575 * Nothing is sensitive to fork() after this point. Notify 2576 * controllers that migration is complete. 2577 */ 2578 tset->csets = &tset->dst_csets; 2579 2580 if (tset->nr_tasks) { 2581 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2582 if (ss->attach) { 2583 tset->ssid = ssid; 2584 ss->attach(tset); 2585 } 2586 } while_each_subsys_mask(); 2587 } 2588 2589 ret = 0; 2590 goto out_release_tset; 2591 2592 out_cancel_attach: 2593 if (tset->nr_tasks) { 2594 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2595 if (ssid == failed_ssid) 2596 break; 2597 if (ss->cancel_attach) { 2598 tset->ssid = ssid; 2599 ss->cancel_attach(tset); 2600 } 2601 } while_each_subsys_mask(); 2602 } 2603 out_release_tset: 2604 spin_lock_irq(&css_set_lock); 2605 list_splice_init(&tset->dst_csets, &tset->src_csets); 2606 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) { 2607 list_splice_tail_init(&cset->mg_tasks, &cset->tasks); 2608 list_del_init(&cset->mg_node); 2609 } 2610 spin_unlock_irq(&css_set_lock); 2611 2612 /* 2613 * Re-initialize the cgroup_taskset structure in case it is reused 2614 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute() 2615 * iteration. 2616 */ 2617 tset->nr_tasks = 0; 2618 tset->csets = &tset->src_csets; 2619 return ret; 2620 } 2621 2622 /** 2623 * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination 2624 * @dst_cgrp: destination cgroup to test 2625 * 2626 * On the default hierarchy, except for the mixable, (possible) thread root 2627 * and threaded cgroups, subtree_control must be zero for migration 2628 * destination cgroups with tasks so that child cgroups don't compete 2629 * against tasks. 2630 */ 2631 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp) 2632 { 2633 /* v1 doesn't have any restriction */ 2634 if (!cgroup_on_dfl(dst_cgrp)) 2635 return 0; 2636 2637 /* verify @dst_cgrp can host resources */ 2638 if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp)) 2639 return -EOPNOTSUPP; 2640 2641 /* 2642 * If @dst_cgrp is already or can become a thread root or is 2643 * threaded, it doesn't matter. 2644 */ 2645 if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp)) 2646 return 0; 2647 2648 /* apply no-internal-process constraint */ 2649 if (dst_cgrp->subtree_control) 2650 return -EBUSY; 2651 2652 return 0; 2653 } 2654 2655 /** 2656 * cgroup_migrate_finish - cleanup after attach 2657 * @mgctx: migration context 2658 * 2659 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See 2660 * those functions for details. 2661 */ 2662 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx) 2663 { 2664 struct css_set *cset, *tmp_cset; 2665 2666 lockdep_assert_held(&cgroup_mutex); 2667 2668 spin_lock_irq(&css_set_lock); 2669 2670 list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_src_csets, 2671 mg_src_preload_node) { 2672 cset->mg_src_cgrp = NULL; 2673 cset->mg_dst_cgrp = NULL; 2674 cset->mg_dst_cset = NULL; 2675 list_del_init(&cset->mg_src_preload_node); 2676 put_css_set_locked(cset); 2677 } 2678 2679 list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_dst_csets, 2680 mg_dst_preload_node) { 2681 cset->mg_src_cgrp = NULL; 2682 cset->mg_dst_cgrp = NULL; 2683 cset->mg_dst_cset = NULL; 2684 list_del_init(&cset->mg_dst_preload_node); 2685 put_css_set_locked(cset); 2686 } 2687 2688 spin_unlock_irq(&css_set_lock); 2689 } 2690 2691 /** 2692 * cgroup_migrate_add_src - add a migration source css_set 2693 * @src_cset: the source css_set to add 2694 * @dst_cgrp: the destination cgroup 2695 * @mgctx: migration context 2696 * 2697 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin 2698 * @src_cset and add it to @mgctx->src_csets, which should later be cleaned 2699 * up by cgroup_migrate_finish(). 2700 * 2701 * This function may be called without holding cgroup_threadgroup_rwsem 2702 * even if the target is a process. Threads may be created and destroyed 2703 * but as long as cgroup_mutex is not dropped, no new css_set can be put 2704 * into play and the preloaded css_sets are guaranteed to cover all 2705 * migrations. 2706 */ 2707 void cgroup_migrate_add_src(struct css_set *src_cset, 2708 struct cgroup *dst_cgrp, 2709 struct cgroup_mgctx *mgctx) 2710 { 2711 struct cgroup *src_cgrp; 2712 2713 lockdep_assert_held(&cgroup_mutex); 2714 lockdep_assert_held(&css_set_lock); 2715 2716 /* 2717 * If ->dead, @src_set is associated with one or more dead cgroups 2718 * and doesn't contain any migratable tasks. Ignore it early so 2719 * that the rest of migration path doesn't get confused by it. 2720 */ 2721 if (src_cset->dead) 2722 return; 2723 2724 if (!list_empty(&src_cset->mg_src_preload_node)) 2725 return; 2726 2727 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root); 2728 2729 WARN_ON(src_cset->mg_src_cgrp); 2730 WARN_ON(src_cset->mg_dst_cgrp); 2731 WARN_ON(!list_empty(&src_cset->mg_tasks)); 2732 WARN_ON(!list_empty(&src_cset->mg_node)); 2733 2734 src_cset->mg_src_cgrp = src_cgrp; 2735 src_cset->mg_dst_cgrp = dst_cgrp; 2736 get_css_set(src_cset); 2737 list_add_tail(&src_cset->mg_src_preload_node, &mgctx->preloaded_src_csets); 2738 } 2739 2740 /** 2741 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration 2742 * @mgctx: migration context 2743 * 2744 * Tasks are about to be moved and all the source css_sets have been 2745 * preloaded to @mgctx->preloaded_src_csets. This function looks up and 2746 * pins all destination css_sets, links each to its source, and append them 2747 * to @mgctx->preloaded_dst_csets. 2748 * 2749 * This function must be called after cgroup_migrate_add_src() has been 2750 * called on each migration source css_set. After migration is performed 2751 * using cgroup_migrate(), cgroup_migrate_finish() must be called on 2752 * @mgctx. 2753 */ 2754 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx) 2755 { 2756 struct css_set *src_cset, *tmp_cset; 2757 2758 lockdep_assert_held(&cgroup_mutex); 2759 2760 /* look up the dst cset for each src cset and link it to src */ 2761 list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets, 2762 mg_src_preload_node) { 2763 struct css_set *dst_cset; 2764 struct cgroup_subsys *ss; 2765 int ssid; 2766 2767 dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp); 2768 if (!dst_cset) 2769 return -ENOMEM; 2770 2771 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset); 2772 2773 /* 2774 * If src cset equals dst, it's noop. Drop the src. 2775 * cgroup_migrate() will skip the cset too. Note that we 2776 * can't handle src == dst as some nodes are used by both. 2777 */ 2778 if (src_cset == dst_cset) { 2779 src_cset->mg_src_cgrp = NULL; 2780 src_cset->mg_dst_cgrp = NULL; 2781 list_del_init(&src_cset->mg_src_preload_node); 2782 put_css_set(src_cset); 2783 put_css_set(dst_cset); 2784 continue; 2785 } 2786 2787 src_cset->mg_dst_cset = dst_cset; 2788 2789 if (list_empty(&dst_cset->mg_dst_preload_node)) 2790 list_add_tail(&dst_cset->mg_dst_preload_node, 2791 &mgctx->preloaded_dst_csets); 2792 else 2793 put_css_set(dst_cset); 2794 2795 for_each_subsys(ss, ssid) 2796 if (src_cset->subsys[ssid] != dst_cset->subsys[ssid]) 2797 mgctx->ss_mask |= 1 << ssid; 2798 } 2799 2800 return 0; 2801 } 2802 2803 /** 2804 * cgroup_migrate - migrate a process or task to a cgroup 2805 * @leader: the leader of the process or the task to migrate 2806 * @threadgroup: whether @leader points to the whole process or a single task 2807 * @mgctx: migration context 2808 * 2809 * Migrate a process or task denoted by @leader. If migrating a process, 2810 * the caller must be holding cgroup_threadgroup_rwsem. The caller is also 2811 * responsible for invoking cgroup_migrate_add_src() and 2812 * cgroup_migrate_prepare_dst() on the targets before invoking this 2813 * function and following up with cgroup_migrate_finish(). 2814 * 2815 * As long as a controller's ->can_attach() doesn't fail, this function is 2816 * guaranteed to succeed. This means that, excluding ->can_attach() 2817 * failure, when migrating multiple targets, the success or failure can be 2818 * decided for all targets by invoking group_migrate_prepare_dst() before 2819 * actually starting migrating. 2820 */ 2821 int cgroup_migrate(struct task_struct *leader, bool threadgroup, 2822 struct cgroup_mgctx *mgctx) 2823 { 2824 struct task_struct *task; 2825 2826 /* 2827 * Prevent freeing of tasks while we take a snapshot. Tasks that are 2828 * already PF_EXITING could be freed from underneath us unless we 2829 * take an rcu_read_lock. 2830 */ 2831 spin_lock_irq(&css_set_lock); 2832 rcu_read_lock(); 2833 task = leader; 2834 do { 2835 cgroup_migrate_add_task(task, mgctx); 2836 if (!threadgroup) 2837 break; 2838 } while_each_thread(leader, task); 2839 rcu_read_unlock(); 2840 spin_unlock_irq(&css_set_lock); 2841 2842 return cgroup_migrate_execute(mgctx); 2843 } 2844 2845 /** 2846 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup 2847 * @dst_cgrp: the cgroup to attach to 2848 * @leader: the task or the leader of the threadgroup to be attached 2849 * @threadgroup: attach the whole threadgroup? 2850 * 2851 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem. 2852 */ 2853 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader, 2854 bool threadgroup) 2855 { 2856 DEFINE_CGROUP_MGCTX(mgctx); 2857 struct task_struct *task; 2858 int ret = 0; 2859 2860 /* look up all src csets */ 2861 spin_lock_irq(&css_set_lock); 2862 rcu_read_lock(); 2863 task = leader; 2864 do { 2865 cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx); 2866 if (!threadgroup) 2867 break; 2868 } while_each_thread(leader, task); 2869 rcu_read_unlock(); 2870 spin_unlock_irq(&css_set_lock); 2871 2872 /* prepare dst csets and commit */ 2873 ret = cgroup_migrate_prepare_dst(&mgctx); 2874 if (!ret) 2875 ret = cgroup_migrate(leader, threadgroup, &mgctx); 2876 2877 cgroup_migrate_finish(&mgctx); 2878 2879 if (!ret) 2880 TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup); 2881 2882 return ret; 2883 } 2884 2885 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup, 2886 bool *threadgroup_locked) 2887 { 2888 struct task_struct *tsk; 2889 pid_t pid; 2890 2891 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0) 2892 return ERR_PTR(-EINVAL); 2893 2894 /* 2895 * If we migrate a single thread, we don't care about threadgroup 2896 * stability. If the thread is `current`, it won't exit(2) under our 2897 * hands or change PID through exec(2). We exclude 2898 * cgroup_update_dfl_csses and other cgroup_{proc,thread}s_write 2899 * callers by cgroup_mutex. 2900 * Therefore, we can skip the global lock. 2901 */ 2902 lockdep_assert_held(&cgroup_mutex); 2903 *threadgroup_locked = pid || threadgroup; 2904 cgroup_attach_lock(*threadgroup_locked); 2905 2906 rcu_read_lock(); 2907 if (pid) { 2908 tsk = find_task_by_vpid(pid); 2909 if (!tsk) { 2910 tsk = ERR_PTR(-ESRCH); 2911 goto out_unlock_threadgroup; 2912 } 2913 } else { 2914 tsk = current; 2915 } 2916 2917 if (threadgroup) 2918 tsk = tsk->group_leader; 2919 2920 /* 2921 * kthreads may acquire PF_NO_SETAFFINITY during initialization. 2922 * If userland migrates such a kthread to a non-root cgroup, it can 2923 * become trapped in a cpuset, or RT kthread may be born in a 2924 * cgroup with no rt_runtime allocated. Just say no. 2925 */ 2926 if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) { 2927 tsk = ERR_PTR(-EINVAL); 2928 goto out_unlock_threadgroup; 2929 } 2930 2931 get_task_struct(tsk); 2932 goto out_unlock_rcu; 2933 2934 out_unlock_threadgroup: 2935 cgroup_attach_unlock(*threadgroup_locked); 2936 *threadgroup_locked = false; 2937 out_unlock_rcu: 2938 rcu_read_unlock(); 2939 return tsk; 2940 } 2941 2942 void cgroup_procs_write_finish(struct task_struct *task, bool threadgroup_locked) 2943 { 2944 struct cgroup_subsys *ss; 2945 int ssid; 2946 2947 /* release reference from cgroup_procs_write_start() */ 2948 put_task_struct(task); 2949 2950 cgroup_attach_unlock(threadgroup_locked); 2951 2952 for_each_subsys(ss, ssid) 2953 if (ss->post_attach) 2954 ss->post_attach(); 2955 } 2956 2957 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask) 2958 { 2959 struct cgroup_subsys *ss; 2960 bool printed = false; 2961 int ssid; 2962 2963 do_each_subsys_mask(ss, ssid, ss_mask) { 2964 if (printed) 2965 seq_putc(seq, ' '); 2966 seq_puts(seq, ss->name); 2967 printed = true; 2968 } while_each_subsys_mask(); 2969 if (printed) 2970 seq_putc(seq, '\n'); 2971 } 2972 2973 /* show controllers which are enabled from the parent */ 2974 static int cgroup_controllers_show(struct seq_file *seq, void *v) 2975 { 2976 struct cgroup *cgrp = seq_css(seq)->cgroup; 2977 2978 cgroup_print_ss_mask(seq, cgroup_control(cgrp)); 2979 return 0; 2980 } 2981 2982 /* show controllers which are enabled for a given cgroup's children */ 2983 static int cgroup_subtree_control_show(struct seq_file *seq, void *v) 2984 { 2985 struct cgroup *cgrp = seq_css(seq)->cgroup; 2986 2987 cgroup_print_ss_mask(seq, cgrp->subtree_control); 2988 return 0; 2989 } 2990 2991 /** 2992 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy 2993 * @cgrp: root of the subtree to update csses for 2994 * 2995 * @cgrp's control masks have changed and its subtree's css associations 2996 * need to be updated accordingly. This function looks up all css_sets 2997 * which are attached to the subtree, creates the matching updated css_sets 2998 * and migrates the tasks to the new ones. 2999 */ 3000 static int cgroup_update_dfl_csses(struct cgroup *cgrp) 3001 { 3002 DEFINE_CGROUP_MGCTX(mgctx); 3003 struct cgroup_subsys_state *d_css; 3004 struct cgroup *dsct; 3005 struct css_set *src_cset; 3006 bool has_tasks; 3007 int ret; 3008 3009 lockdep_assert_held(&cgroup_mutex); 3010 3011 /* look up all csses currently attached to @cgrp's subtree */ 3012 spin_lock_irq(&css_set_lock); 3013 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 3014 struct cgrp_cset_link *link; 3015 3016 /* 3017 * As cgroup_update_dfl_csses() is only called by 3018 * cgroup_apply_control(). The csses associated with the 3019 * given cgrp will not be affected by changes made to 3020 * its subtree_control file. We can skip them. 3021 */ 3022 if (dsct == cgrp) 3023 continue; 3024 3025 list_for_each_entry(link, &dsct->cset_links, cset_link) 3026 cgroup_migrate_add_src(link->cset, dsct, &mgctx); 3027 } 3028 spin_unlock_irq(&css_set_lock); 3029 3030 /* 3031 * We need to write-lock threadgroup_rwsem while migrating tasks. 3032 * However, if there are no source csets for @cgrp, changing its 3033 * controllers isn't gonna produce any task migrations and the 3034 * write-locking can be skipped safely. 3035 */ 3036 has_tasks = !list_empty(&mgctx.preloaded_src_csets); 3037 cgroup_attach_lock(has_tasks); 3038 3039 /* NULL dst indicates self on default hierarchy */ 3040 ret = cgroup_migrate_prepare_dst(&mgctx); 3041 if (ret) 3042 goto out_finish; 3043 3044 spin_lock_irq(&css_set_lock); 3045 list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, 3046 mg_src_preload_node) { 3047 struct task_struct *task, *ntask; 3048 3049 /* all tasks in src_csets need to be migrated */ 3050 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list) 3051 cgroup_migrate_add_task(task, &mgctx); 3052 } 3053 spin_unlock_irq(&css_set_lock); 3054 3055 ret = cgroup_migrate_execute(&mgctx); 3056 out_finish: 3057 cgroup_migrate_finish(&mgctx); 3058 cgroup_attach_unlock(has_tasks); 3059 return ret; 3060 } 3061 3062 /** 3063 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses 3064 * @cgrp: root of the target subtree 3065 * 3066 * Because css offlining is asynchronous, userland may try to re-enable a 3067 * controller while the previous css is still around. This function grabs 3068 * cgroup_mutex and drains the previous css instances of @cgrp's subtree. 3069 */ 3070 void cgroup_lock_and_drain_offline(struct cgroup *cgrp) 3071 __acquires(&cgroup_mutex) 3072 { 3073 struct cgroup *dsct; 3074 struct cgroup_subsys_state *d_css; 3075 struct cgroup_subsys *ss; 3076 int ssid; 3077 3078 restart: 3079 mutex_lock(&cgroup_mutex); 3080 3081 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 3082 for_each_subsys(ss, ssid) { 3083 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 3084 DEFINE_WAIT(wait); 3085 3086 if (!css || !percpu_ref_is_dying(&css->refcnt)) 3087 continue; 3088 3089 cgroup_get_live(dsct); 3090 prepare_to_wait(&dsct->offline_waitq, &wait, 3091 TASK_UNINTERRUPTIBLE); 3092 3093 mutex_unlock(&cgroup_mutex); 3094 schedule(); 3095 finish_wait(&dsct->offline_waitq, &wait); 3096 3097 cgroup_put(dsct); 3098 goto restart; 3099 } 3100 } 3101 } 3102 3103 /** 3104 * cgroup_save_control - save control masks and dom_cgrp of a subtree 3105 * @cgrp: root of the target subtree 3106 * 3107 * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the 3108 * respective old_ prefixed fields for @cgrp's subtree including @cgrp 3109 * itself. 3110 */ 3111 static void cgroup_save_control(struct cgroup *cgrp) 3112 { 3113 struct cgroup *dsct; 3114 struct cgroup_subsys_state *d_css; 3115 3116 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 3117 dsct->old_subtree_control = dsct->subtree_control; 3118 dsct->old_subtree_ss_mask = dsct->subtree_ss_mask; 3119 dsct->old_dom_cgrp = dsct->dom_cgrp; 3120 } 3121 } 3122 3123 /** 3124 * cgroup_propagate_control - refresh control masks of a subtree 3125 * @cgrp: root of the target subtree 3126 * 3127 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches 3128 * ->subtree_control and propagate controller availability through the 3129 * subtree so that descendants don't have unavailable controllers enabled. 3130 */ 3131 static void cgroup_propagate_control(struct cgroup *cgrp) 3132 { 3133 struct cgroup *dsct; 3134 struct cgroup_subsys_state *d_css; 3135 3136 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 3137 dsct->subtree_control &= cgroup_control(dsct); 3138 dsct->subtree_ss_mask = 3139 cgroup_calc_subtree_ss_mask(dsct->subtree_control, 3140 cgroup_ss_mask(dsct)); 3141 } 3142 } 3143 3144 /** 3145 * cgroup_restore_control - restore control masks and dom_cgrp of a subtree 3146 * @cgrp: root of the target subtree 3147 * 3148 * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the 3149 * respective old_ prefixed fields for @cgrp's subtree including @cgrp 3150 * itself. 3151 */ 3152 static void cgroup_restore_control(struct cgroup *cgrp) 3153 { 3154 struct cgroup *dsct; 3155 struct cgroup_subsys_state *d_css; 3156 3157 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 3158 dsct->subtree_control = dsct->old_subtree_control; 3159 dsct->subtree_ss_mask = dsct->old_subtree_ss_mask; 3160 dsct->dom_cgrp = dsct->old_dom_cgrp; 3161 } 3162 } 3163 3164 static bool css_visible(struct cgroup_subsys_state *css) 3165 { 3166 struct cgroup_subsys *ss = css->ss; 3167 struct cgroup *cgrp = css->cgroup; 3168 3169 if (cgroup_control(cgrp) & (1 << ss->id)) 3170 return true; 3171 if (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) 3172 return false; 3173 return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl; 3174 } 3175 3176 /** 3177 * cgroup_apply_control_enable - enable or show csses according to control 3178 * @cgrp: root of the target subtree 3179 * 3180 * Walk @cgrp's subtree and create new csses or make the existing ones 3181 * visible. A css is created invisible if it's being implicitly enabled 3182 * through dependency. An invisible css is made visible when the userland 3183 * explicitly enables it. 3184 * 3185 * Returns 0 on success, -errno on failure. On failure, csses which have 3186 * been processed already aren't cleaned up. The caller is responsible for 3187 * cleaning up with cgroup_apply_control_disable(). 3188 */ 3189 static int cgroup_apply_control_enable(struct cgroup *cgrp) 3190 { 3191 struct cgroup *dsct; 3192 struct cgroup_subsys_state *d_css; 3193 struct cgroup_subsys *ss; 3194 int ssid, ret; 3195 3196 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 3197 for_each_subsys(ss, ssid) { 3198 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 3199 3200 if (!(cgroup_ss_mask(dsct) & (1 << ss->id))) 3201 continue; 3202 3203 if (!css) { 3204 css = css_create(dsct, ss); 3205 if (IS_ERR(css)) 3206 return PTR_ERR(css); 3207 } 3208 3209 WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt)); 3210 3211 if (css_visible(css)) { 3212 ret = css_populate_dir(css); 3213 if (ret) 3214 return ret; 3215 } 3216 } 3217 } 3218 3219 return 0; 3220 } 3221 3222 /** 3223 * cgroup_apply_control_disable - kill or hide csses according to control 3224 * @cgrp: root of the target subtree 3225 * 3226 * Walk @cgrp's subtree and kill and hide csses so that they match 3227 * cgroup_ss_mask() and cgroup_visible_mask(). 3228 * 3229 * A css is hidden when the userland requests it to be disabled while other 3230 * subsystems are still depending on it. The css must not actively control 3231 * resources and be in the vanilla state if it's made visible again later. 3232 * Controllers which may be depended upon should provide ->css_reset() for 3233 * this purpose. 3234 */ 3235 static void cgroup_apply_control_disable(struct cgroup *cgrp) 3236 { 3237 struct cgroup *dsct; 3238 struct cgroup_subsys_state *d_css; 3239 struct cgroup_subsys *ss; 3240 int ssid; 3241 3242 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 3243 for_each_subsys(ss, ssid) { 3244 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 3245 3246 if (!css) 3247 continue; 3248 3249 WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt)); 3250 3251 if (css->parent && 3252 !(cgroup_ss_mask(dsct) & (1 << ss->id))) { 3253 kill_css(css); 3254 } else if (!css_visible(css)) { 3255 css_clear_dir(css); 3256 if (ss->css_reset) 3257 ss->css_reset(css); 3258 } 3259 } 3260 } 3261 } 3262 3263 /** 3264 * cgroup_apply_control - apply control mask updates to the subtree 3265 * @cgrp: root of the target subtree 3266 * 3267 * subsystems can be enabled and disabled in a subtree using the following 3268 * steps. 3269 * 3270 * 1. Call cgroup_save_control() to stash the current state. 3271 * 2. Update ->subtree_control masks in the subtree as desired. 3272 * 3. Call cgroup_apply_control() to apply the changes. 3273 * 4. Optionally perform other related operations. 3274 * 5. Call cgroup_finalize_control() to finish up. 3275 * 3276 * This function implements step 3 and propagates the mask changes 3277 * throughout @cgrp's subtree, updates csses accordingly and perform 3278 * process migrations. 3279 */ 3280 static int cgroup_apply_control(struct cgroup *cgrp) 3281 { 3282 int ret; 3283 3284 cgroup_propagate_control(cgrp); 3285 3286 ret = cgroup_apply_control_enable(cgrp); 3287 if (ret) 3288 return ret; 3289 3290 /* 3291 * At this point, cgroup_e_css_by_mask() results reflect the new csses 3292 * making the following cgroup_update_dfl_csses() properly update 3293 * css associations of all tasks in the subtree. 3294 */ 3295 ret = cgroup_update_dfl_csses(cgrp); 3296 if (ret) 3297 return ret; 3298 3299 return 0; 3300 } 3301 3302 /** 3303 * cgroup_finalize_control - finalize control mask update 3304 * @cgrp: root of the target subtree 3305 * @ret: the result of the update 3306 * 3307 * Finalize control mask update. See cgroup_apply_control() for more info. 3308 */ 3309 static void cgroup_finalize_control(struct cgroup *cgrp, int ret) 3310 { 3311 if (ret) { 3312 cgroup_restore_control(cgrp); 3313 cgroup_propagate_control(cgrp); 3314 } 3315 3316 cgroup_apply_control_disable(cgrp); 3317 } 3318 3319 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable) 3320 { 3321 u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask; 3322 3323 /* if nothing is getting enabled, nothing to worry about */ 3324 if (!enable) 3325 return 0; 3326 3327 /* can @cgrp host any resources? */ 3328 if (!cgroup_is_valid_domain(cgrp->dom_cgrp)) 3329 return -EOPNOTSUPP; 3330 3331 /* mixables don't care */ 3332 if (cgroup_is_mixable(cgrp)) 3333 return 0; 3334 3335 if (domain_enable) { 3336 /* can't enable domain controllers inside a thread subtree */ 3337 if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp)) 3338 return -EOPNOTSUPP; 3339 } else { 3340 /* 3341 * Threaded controllers can handle internal competitions 3342 * and are always allowed inside a (prospective) thread 3343 * subtree. 3344 */ 3345 if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp)) 3346 return 0; 3347 } 3348 3349 /* 3350 * Controllers can't be enabled for a cgroup with tasks to avoid 3351 * child cgroups competing against tasks. 3352 */ 3353 if (cgroup_has_tasks(cgrp)) 3354 return -EBUSY; 3355 3356 return 0; 3357 } 3358 3359 /* change the enabled child controllers for a cgroup in the default hierarchy */ 3360 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of, 3361 char *buf, size_t nbytes, 3362 loff_t off) 3363 { 3364 u16 enable = 0, disable = 0; 3365 struct cgroup *cgrp, *child; 3366 struct cgroup_subsys *ss; 3367 char *tok; 3368 int ssid, ret; 3369 3370 /* 3371 * Parse input - space separated list of subsystem names prefixed 3372 * with either + or -. 3373 */ 3374 buf = strstrip(buf); 3375 while ((tok = strsep(&buf, " "))) { 3376 if (tok[0] == '\0') 3377 continue; 3378 do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) { 3379 if (!cgroup_ssid_enabled(ssid) || 3380 strcmp(tok + 1, ss->name)) 3381 continue; 3382 3383 if (*tok == '+') { 3384 enable |= 1 << ssid; 3385 disable &= ~(1 << ssid); 3386 } else if (*tok == '-') { 3387 disable |= 1 << ssid; 3388 enable &= ~(1 << ssid); 3389 } else { 3390 return -EINVAL; 3391 } 3392 break; 3393 } while_each_subsys_mask(); 3394 if (ssid == CGROUP_SUBSYS_COUNT) 3395 return -EINVAL; 3396 } 3397 3398 cgrp = cgroup_kn_lock_live(of->kn, true); 3399 if (!cgrp) 3400 return -ENODEV; 3401 3402 for_each_subsys(ss, ssid) { 3403 if (enable & (1 << ssid)) { 3404 if (cgrp->subtree_control & (1 << ssid)) { 3405 enable &= ~(1 << ssid); 3406 continue; 3407 } 3408 3409 if (!(cgroup_control(cgrp) & (1 << ssid))) { 3410 ret = -ENOENT; 3411 goto out_unlock; 3412 } 3413 } else if (disable & (1 << ssid)) { 3414 if (!(cgrp->subtree_control & (1 << ssid))) { 3415 disable &= ~(1 << ssid); 3416 continue; 3417 } 3418 3419 /* a child has it enabled? */ 3420 cgroup_for_each_live_child(child, cgrp) { 3421 if (child->subtree_control & (1 << ssid)) { 3422 ret = -EBUSY; 3423 goto out_unlock; 3424 } 3425 } 3426 } 3427 } 3428 3429 if (!enable && !disable) { 3430 ret = 0; 3431 goto out_unlock; 3432 } 3433 3434 ret = cgroup_vet_subtree_control_enable(cgrp, enable); 3435 if (ret) 3436 goto out_unlock; 3437 3438 /* save and update control masks and prepare csses */ 3439 cgroup_save_control(cgrp); 3440 3441 cgrp->subtree_control |= enable; 3442 cgrp->subtree_control &= ~disable; 3443 3444 ret = cgroup_apply_control(cgrp); 3445 cgroup_finalize_control(cgrp, ret); 3446 if (ret) 3447 goto out_unlock; 3448 3449 kernfs_activate(cgrp->kn); 3450 out_unlock: 3451 cgroup_kn_unlock(of->kn); 3452 return ret ?: nbytes; 3453 } 3454 3455 /** 3456 * cgroup_enable_threaded - make @cgrp threaded 3457 * @cgrp: the target cgroup 3458 * 3459 * Called when "threaded" is written to the cgroup.type interface file and 3460 * tries to make @cgrp threaded and join the parent's resource domain. 3461 * This function is never called on the root cgroup as cgroup.type doesn't 3462 * exist on it. 3463 */ 3464 static int cgroup_enable_threaded(struct cgroup *cgrp) 3465 { 3466 struct cgroup *parent = cgroup_parent(cgrp); 3467 struct cgroup *dom_cgrp = parent->dom_cgrp; 3468 struct cgroup *dsct; 3469 struct cgroup_subsys_state *d_css; 3470 int ret; 3471 3472 lockdep_assert_held(&cgroup_mutex); 3473 3474 /* noop if already threaded */ 3475 if (cgroup_is_threaded(cgrp)) 3476 return 0; 3477 3478 /* 3479 * If @cgroup is populated or has domain controllers enabled, it 3480 * can't be switched. While the below cgroup_can_be_thread_root() 3481 * test can catch the same conditions, that's only when @parent is 3482 * not mixable, so let's check it explicitly. 3483 */ 3484 if (cgroup_is_populated(cgrp) || 3485 cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask) 3486 return -EOPNOTSUPP; 3487 3488 /* we're joining the parent's domain, ensure its validity */ 3489 if (!cgroup_is_valid_domain(dom_cgrp) || 3490 !cgroup_can_be_thread_root(dom_cgrp)) 3491 return -EOPNOTSUPP; 3492 3493 /* 3494 * The following shouldn't cause actual migrations and should 3495 * always succeed. 3496 */ 3497 cgroup_save_control(cgrp); 3498 3499 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) 3500 if (dsct == cgrp || cgroup_is_threaded(dsct)) 3501 dsct->dom_cgrp = dom_cgrp; 3502 3503 ret = cgroup_apply_control(cgrp); 3504 if (!ret) 3505 parent->nr_threaded_children++; 3506 3507 cgroup_finalize_control(cgrp, ret); 3508 return ret; 3509 } 3510 3511 static int cgroup_type_show(struct seq_file *seq, void *v) 3512 { 3513 struct cgroup *cgrp = seq_css(seq)->cgroup; 3514 3515 if (cgroup_is_threaded(cgrp)) 3516 seq_puts(seq, "threaded\n"); 3517 else if (!cgroup_is_valid_domain(cgrp)) 3518 seq_puts(seq, "domain invalid\n"); 3519 else if (cgroup_is_thread_root(cgrp)) 3520 seq_puts(seq, "domain threaded\n"); 3521 else 3522 seq_puts(seq, "domain\n"); 3523 3524 return 0; 3525 } 3526 3527 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf, 3528 size_t nbytes, loff_t off) 3529 { 3530 struct cgroup *cgrp; 3531 int ret; 3532 3533 /* only switching to threaded mode is supported */ 3534 if (strcmp(strstrip(buf), "threaded")) 3535 return -EINVAL; 3536 3537 /* drain dying csses before we re-apply (threaded) subtree control */ 3538 cgrp = cgroup_kn_lock_live(of->kn, true); 3539 if (!cgrp) 3540 return -ENOENT; 3541 3542 /* threaded can only be enabled */ 3543 ret = cgroup_enable_threaded(cgrp); 3544 3545 cgroup_kn_unlock(of->kn); 3546 return ret ?: nbytes; 3547 } 3548 3549 static int cgroup_max_descendants_show(struct seq_file *seq, void *v) 3550 { 3551 struct cgroup *cgrp = seq_css(seq)->cgroup; 3552 int descendants = READ_ONCE(cgrp->max_descendants); 3553 3554 if (descendants == INT_MAX) 3555 seq_puts(seq, "max\n"); 3556 else 3557 seq_printf(seq, "%d\n", descendants); 3558 3559 return 0; 3560 } 3561 3562 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of, 3563 char *buf, size_t nbytes, loff_t off) 3564 { 3565 struct cgroup *cgrp; 3566 int descendants; 3567 ssize_t ret; 3568 3569 buf = strstrip(buf); 3570 if (!strcmp(buf, "max")) { 3571 descendants = INT_MAX; 3572 } else { 3573 ret = kstrtoint(buf, 0, &descendants); 3574 if (ret) 3575 return ret; 3576 } 3577 3578 if (descendants < 0) 3579 return -ERANGE; 3580 3581 cgrp = cgroup_kn_lock_live(of->kn, false); 3582 if (!cgrp) 3583 return -ENOENT; 3584 3585 cgrp->max_descendants = descendants; 3586 3587 cgroup_kn_unlock(of->kn); 3588 3589 return nbytes; 3590 } 3591 3592 static int cgroup_max_depth_show(struct seq_file *seq, void *v) 3593 { 3594 struct cgroup *cgrp = seq_css(seq)->cgroup; 3595 int depth = READ_ONCE(cgrp->max_depth); 3596 3597 if (depth == INT_MAX) 3598 seq_puts(seq, "max\n"); 3599 else 3600 seq_printf(seq, "%d\n", depth); 3601 3602 return 0; 3603 } 3604 3605 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of, 3606 char *buf, size_t nbytes, loff_t off) 3607 { 3608 struct cgroup *cgrp; 3609 ssize_t ret; 3610 int depth; 3611 3612 buf = strstrip(buf); 3613 if (!strcmp(buf, "max")) { 3614 depth = INT_MAX; 3615 } else { 3616 ret = kstrtoint(buf, 0, &depth); 3617 if (ret) 3618 return ret; 3619 } 3620 3621 if (depth < 0) 3622 return -ERANGE; 3623 3624 cgrp = cgroup_kn_lock_live(of->kn, false); 3625 if (!cgrp) 3626 return -ENOENT; 3627 3628 cgrp->max_depth = depth; 3629 3630 cgroup_kn_unlock(of->kn); 3631 3632 return nbytes; 3633 } 3634 3635 static int cgroup_events_show(struct seq_file *seq, void *v) 3636 { 3637 struct cgroup *cgrp = seq_css(seq)->cgroup; 3638 3639 seq_printf(seq, "populated %d\n", cgroup_is_populated(cgrp)); 3640 seq_printf(seq, "frozen %d\n", test_bit(CGRP_FROZEN, &cgrp->flags)); 3641 3642 return 0; 3643 } 3644 3645 static int cgroup_stat_show(struct seq_file *seq, void *v) 3646 { 3647 struct cgroup *cgroup = seq_css(seq)->cgroup; 3648 3649 seq_printf(seq, "nr_descendants %d\n", 3650 cgroup->nr_descendants); 3651 seq_printf(seq, "nr_dying_descendants %d\n", 3652 cgroup->nr_dying_descendants); 3653 3654 return 0; 3655 } 3656 3657 static int __maybe_unused cgroup_extra_stat_show(struct seq_file *seq, 3658 struct cgroup *cgrp, int ssid) 3659 { 3660 struct cgroup_subsys *ss = cgroup_subsys[ssid]; 3661 struct cgroup_subsys_state *css; 3662 int ret; 3663 3664 if (!ss->css_extra_stat_show) 3665 return 0; 3666 3667 css = cgroup_tryget_css(cgrp, ss); 3668 if (!css) 3669 return 0; 3670 3671 ret = ss->css_extra_stat_show(seq, css); 3672 css_put(css); 3673 return ret; 3674 } 3675 3676 static int cpu_stat_show(struct seq_file *seq, void *v) 3677 { 3678 struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup; 3679 int ret = 0; 3680 3681 cgroup_base_stat_cputime_show(seq); 3682 #ifdef CONFIG_CGROUP_SCHED 3683 ret = cgroup_extra_stat_show(seq, cgrp, cpu_cgrp_id); 3684 #endif 3685 return ret; 3686 } 3687 3688 #ifdef CONFIG_PSI 3689 static int cgroup_io_pressure_show(struct seq_file *seq, void *v) 3690 { 3691 struct cgroup *cgrp = seq_css(seq)->cgroup; 3692 struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : cgrp->psi; 3693 3694 return psi_show(seq, psi, PSI_IO); 3695 } 3696 static int cgroup_memory_pressure_show(struct seq_file *seq, void *v) 3697 { 3698 struct cgroup *cgrp = seq_css(seq)->cgroup; 3699 struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : cgrp->psi; 3700 3701 return psi_show(seq, psi, PSI_MEM); 3702 } 3703 static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v) 3704 { 3705 struct cgroup *cgrp = seq_css(seq)->cgroup; 3706 struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : cgrp->psi; 3707 3708 return psi_show(seq, psi, PSI_CPU); 3709 } 3710 3711 static ssize_t cgroup_pressure_write(struct kernfs_open_file *of, char *buf, 3712 size_t nbytes, enum psi_res res) 3713 { 3714 struct cgroup_file_ctx *ctx = of->priv; 3715 struct psi_trigger *new; 3716 struct cgroup *cgrp; 3717 struct psi_group *psi; 3718 3719 cgrp = cgroup_kn_lock_live(of->kn, false); 3720 if (!cgrp) 3721 return -ENODEV; 3722 3723 cgroup_get(cgrp); 3724 cgroup_kn_unlock(of->kn); 3725 3726 /* Allow only one trigger per file descriptor */ 3727 if (ctx->psi.trigger) { 3728 cgroup_put(cgrp); 3729 return -EBUSY; 3730 } 3731 3732 psi = cgroup_ino(cgrp) == 1 ? &psi_system : cgrp->psi; 3733 new = psi_trigger_create(psi, buf, res); 3734 if (IS_ERR(new)) { 3735 cgroup_put(cgrp); 3736 return PTR_ERR(new); 3737 } 3738 3739 smp_store_release(&ctx->psi.trigger, new); 3740 cgroup_put(cgrp); 3741 3742 return nbytes; 3743 } 3744 3745 static ssize_t cgroup_io_pressure_write(struct kernfs_open_file *of, 3746 char *buf, size_t nbytes, 3747 loff_t off) 3748 { 3749 return cgroup_pressure_write(of, buf, nbytes, PSI_IO); 3750 } 3751 3752 static ssize_t cgroup_memory_pressure_write(struct kernfs_open_file *of, 3753 char *buf, size_t nbytes, 3754 loff_t off) 3755 { 3756 return cgroup_pressure_write(of, buf, nbytes, PSI_MEM); 3757 } 3758 3759 static ssize_t cgroup_cpu_pressure_write(struct kernfs_open_file *of, 3760 char *buf, size_t nbytes, 3761 loff_t off) 3762 { 3763 return cgroup_pressure_write(of, buf, nbytes, PSI_CPU); 3764 } 3765 3766 static __poll_t cgroup_pressure_poll(struct kernfs_open_file *of, 3767 poll_table *pt) 3768 { 3769 struct cgroup_file_ctx *ctx = of->priv; 3770 3771 return psi_trigger_poll(&ctx->psi.trigger, of->file, pt); 3772 } 3773 3774 static void cgroup_pressure_release(struct kernfs_open_file *of) 3775 { 3776 struct cgroup_file_ctx *ctx = of->priv; 3777 3778 psi_trigger_destroy(ctx->psi.trigger); 3779 } 3780 3781 bool cgroup_psi_enabled(void) 3782 { 3783 return (cgroup_feature_disable_mask & (1 << OPT_FEATURE_PRESSURE)) == 0; 3784 } 3785 3786 #else /* CONFIG_PSI */ 3787 bool cgroup_psi_enabled(void) 3788 { 3789 return false; 3790 } 3791 3792 #endif /* CONFIG_PSI */ 3793 3794 static int cgroup_freeze_show(struct seq_file *seq, void *v) 3795 { 3796 struct cgroup *cgrp = seq_css(seq)->cgroup; 3797 3798 seq_printf(seq, "%d\n", cgrp->freezer.freeze); 3799 3800 return 0; 3801 } 3802 3803 static ssize_t cgroup_freeze_write(struct kernfs_open_file *of, 3804 char *buf, size_t nbytes, loff_t off) 3805 { 3806 struct cgroup *cgrp; 3807 ssize_t ret; 3808 int freeze; 3809 3810 ret = kstrtoint(strstrip(buf), 0, &freeze); 3811 if (ret) 3812 return ret; 3813 3814 if (freeze < 0 || freeze > 1) 3815 return -ERANGE; 3816 3817 cgrp = cgroup_kn_lock_live(of->kn, false); 3818 if (!cgrp) 3819 return -ENOENT; 3820 3821 cgroup_freeze(cgrp, freeze); 3822 3823 cgroup_kn_unlock(of->kn); 3824 3825 return nbytes; 3826 } 3827 3828 static void __cgroup_kill(struct cgroup *cgrp) 3829 { 3830 struct css_task_iter it; 3831 struct task_struct *task; 3832 3833 lockdep_assert_held(&cgroup_mutex); 3834 3835 spin_lock_irq(&css_set_lock); 3836 set_bit(CGRP_KILL, &cgrp->flags); 3837 spin_unlock_irq(&css_set_lock); 3838 3839 css_task_iter_start(&cgrp->self, CSS_TASK_ITER_PROCS | CSS_TASK_ITER_THREADED, &it); 3840 while ((task = css_task_iter_next(&it))) { 3841 /* Ignore kernel threads here. */ 3842 if (task->flags & PF_KTHREAD) 3843 continue; 3844 3845 /* Skip tasks that are already dying. */ 3846 if (__fatal_signal_pending(task)) 3847 continue; 3848 3849 send_sig(SIGKILL, task, 0); 3850 } 3851 css_task_iter_end(&it); 3852 3853 spin_lock_irq(&css_set_lock); 3854 clear_bit(CGRP_KILL, &cgrp->flags); 3855 spin_unlock_irq(&css_set_lock); 3856 } 3857 3858 static void cgroup_kill(struct cgroup *cgrp) 3859 { 3860 struct cgroup_subsys_state *css; 3861 struct cgroup *dsct; 3862 3863 lockdep_assert_held(&cgroup_mutex); 3864 3865 cgroup_for_each_live_descendant_pre(dsct, css, cgrp) 3866 __cgroup_kill(dsct); 3867 } 3868 3869 static ssize_t cgroup_kill_write(struct kernfs_open_file *of, char *buf, 3870 size_t nbytes, loff_t off) 3871 { 3872 ssize_t ret = 0; 3873 int kill; 3874 struct cgroup *cgrp; 3875 3876 ret = kstrtoint(strstrip(buf), 0, &kill); 3877 if (ret) 3878 return ret; 3879 3880 if (kill != 1) 3881 return -ERANGE; 3882 3883 cgrp = cgroup_kn_lock_live(of->kn, false); 3884 if (!cgrp) 3885 return -ENOENT; 3886 3887 /* 3888 * Killing is a process directed operation, i.e. the whole thread-group 3889 * is taken down so act like we do for cgroup.procs and only make this 3890 * writable in non-threaded cgroups. 3891 */ 3892 if (cgroup_is_threaded(cgrp)) 3893 ret = -EOPNOTSUPP; 3894 else 3895 cgroup_kill(cgrp); 3896 3897 cgroup_kn_unlock(of->kn); 3898 3899 return ret ?: nbytes; 3900 } 3901 3902 static int cgroup_file_open(struct kernfs_open_file *of) 3903 { 3904 struct cftype *cft = of_cft(of); 3905 struct cgroup_file_ctx *ctx; 3906 int ret; 3907 3908 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 3909 if (!ctx) 3910 return -ENOMEM; 3911 3912 ctx->ns = current->nsproxy->cgroup_ns; 3913 get_cgroup_ns(ctx->ns); 3914 of->priv = ctx; 3915 3916 if (!cft->open) 3917 return 0; 3918 3919 ret = cft->open(of); 3920 if (ret) { 3921 put_cgroup_ns(ctx->ns); 3922 kfree(ctx); 3923 } 3924 return ret; 3925 } 3926 3927 static void cgroup_file_release(struct kernfs_open_file *of) 3928 { 3929 struct cftype *cft = of_cft(of); 3930 struct cgroup_file_ctx *ctx = of->priv; 3931 3932 if (cft->release) 3933 cft->release(of); 3934 put_cgroup_ns(ctx->ns); 3935 kfree(ctx); 3936 } 3937 3938 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf, 3939 size_t nbytes, loff_t off) 3940 { 3941 struct cgroup_file_ctx *ctx = of->priv; 3942 struct cgroup *cgrp = of->kn->parent->priv; 3943 struct cftype *cft = of_cft(of); 3944 struct cgroup_subsys_state *css; 3945 int ret; 3946 3947 if (!nbytes) 3948 return 0; 3949 3950 /* 3951 * If namespaces are delegation boundaries, disallow writes to 3952 * files in an non-init namespace root from inside the namespace 3953 * except for the files explicitly marked delegatable - 3954 * cgroup.procs and cgroup.subtree_control. 3955 */ 3956 if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) && 3957 !(cft->flags & CFTYPE_NS_DELEGATABLE) && 3958 ctx->ns != &init_cgroup_ns && ctx->ns->root_cset->dfl_cgrp == cgrp) 3959 return -EPERM; 3960 3961 if (cft->write) 3962 return cft->write(of, buf, nbytes, off); 3963 3964 /* 3965 * kernfs guarantees that a file isn't deleted with operations in 3966 * flight, which means that the matching css is and stays alive and 3967 * doesn't need to be pinned. The RCU locking is not necessary 3968 * either. It's just for the convenience of using cgroup_css(). 3969 */ 3970 rcu_read_lock(); 3971 css = cgroup_css(cgrp, cft->ss); 3972 rcu_read_unlock(); 3973 3974 if (cft->write_u64) { 3975 unsigned long long v; 3976 ret = kstrtoull(buf, 0, &v); 3977 if (!ret) 3978 ret = cft->write_u64(css, cft, v); 3979 } else if (cft->write_s64) { 3980 long long v; 3981 ret = kstrtoll(buf, 0, &v); 3982 if (!ret) 3983 ret = cft->write_s64(css, cft, v); 3984 } else { 3985 ret = -EINVAL; 3986 } 3987 3988 return ret ?: nbytes; 3989 } 3990 3991 static __poll_t cgroup_file_poll(struct kernfs_open_file *of, poll_table *pt) 3992 { 3993 struct cftype *cft = of_cft(of); 3994 3995 if (cft->poll) 3996 return cft->poll(of, pt); 3997 3998 return kernfs_generic_poll(of, pt); 3999 } 4000 4001 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos) 4002 { 4003 return seq_cft(seq)->seq_start(seq, ppos); 4004 } 4005 4006 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos) 4007 { 4008 return seq_cft(seq)->seq_next(seq, v, ppos); 4009 } 4010 4011 static void cgroup_seqfile_stop(struct seq_file *seq, void *v) 4012 { 4013 if (seq_cft(seq)->seq_stop) 4014 seq_cft(seq)->seq_stop(seq, v); 4015 } 4016 4017 static int cgroup_seqfile_show(struct seq_file *m, void *arg) 4018 { 4019 struct cftype *cft = seq_cft(m); 4020 struct cgroup_subsys_state *css = seq_css(m); 4021 4022 if (cft->seq_show) 4023 return cft->seq_show(m, arg); 4024 4025 if (cft->read_u64) 4026 seq_printf(m, "%llu\n", cft->read_u64(css, cft)); 4027 else if (cft->read_s64) 4028 seq_printf(m, "%lld\n", cft->read_s64(css, cft)); 4029 else 4030 return -EINVAL; 4031 return 0; 4032 } 4033 4034 static struct kernfs_ops cgroup_kf_single_ops = { 4035 .atomic_write_len = PAGE_SIZE, 4036 .open = cgroup_file_open, 4037 .release = cgroup_file_release, 4038 .write = cgroup_file_write, 4039 .poll = cgroup_file_poll, 4040 .seq_show = cgroup_seqfile_show, 4041 }; 4042 4043 static struct kernfs_ops cgroup_kf_ops = { 4044 .atomic_write_len = PAGE_SIZE, 4045 .open = cgroup_file_open, 4046 .release = cgroup_file_release, 4047 .write = cgroup_file_write, 4048 .poll = cgroup_file_poll, 4049 .seq_start = cgroup_seqfile_start, 4050 .seq_next = cgroup_seqfile_next, 4051 .seq_stop = cgroup_seqfile_stop, 4052 .seq_show = cgroup_seqfile_show, 4053 }; 4054 4055 /* set uid and gid of cgroup dirs and files to that of the creator */ 4056 static int cgroup_kn_set_ugid(struct kernfs_node *kn) 4057 { 4058 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID, 4059 .ia_uid = current_fsuid(), 4060 .ia_gid = current_fsgid(), }; 4061 4062 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) && 4063 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID)) 4064 return 0; 4065 4066 return kernfs_setattr(kn, &iattr); 4067 } 4068 4069 static void cgroup_file_notify_timer(struct timer_list *timer) 4070 { 4071 cgroup_file_notify(container_of(timer, struct cgroup_file, 4072 notify_timer)); 4073 } 4074 4075 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp, 4076 struct cftype *cft) 4077 { 4078 char name[CGROUP_FILE_NAME_MAX]; 4079 struct kernfs_node *kn; 4080 struct lock_class_key *key = NULL; 4081 int ret; 4082 4083 #ifdef CONFIG_DEBUG_LOCK_ALLOC 4084 key = &cft->lockdep_key; 4085 #endif 4086 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name), 4087 cgroup_file_mode(cft), 4088 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 4089 0, cft->kf_ops, cft, 4090 NULL, key); 4091 if (IS_ERR(kn)) 4092 return PTR_ERR(kn); 4093 4094 ret = cgroup_kn_set_ugid(kn); 4095 if (ret) { 4096 kernfs_remove(kn); 4097 return ret; 4098 } 4099 4100 if (cft->file_offset) { 4101 struct cgroup_file *cfile = (void *)css + cft->file_offset; 4102 4103 timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0); 4104 4105 spin_lock_irq(&cgroup_file_kn_lock); 4106 cfile->kn = kn; 4107 spin_unlock_irq(&cgroup_file_kn_lock); 4108 } 4109 4110 return 0; 4111 } 4112 4113 /** 4114 * cgroup_addrm_files - add or remove files to a cgroup directory 4115 * @css: the target css 4116 * @cgrp: the target cgroup (usually css->cgroup) 4117 * @cfts: array of cftypes to be added 4118 * @is_add: whether to add or remove 4119 * 4120 * Depending on @is_add, add or remove files defined by @cfts on @cgrp. 4121 * For removals, this function never fails. 4122 */ 4123 static int cgroup_addrm_files(struct cgroup_subsys_state *css, 4124 struct cgroup *cgrp, struct cftype cfts[], 4125 bool is_add) 4126 { 4127 struct cftype *cft, *cft_end = NULL; 4128 int ret = 0; 4129 4130 lockdep_assert_held(&cgroup_mutex); 4131 4132 restart: 4133 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) { 4134 /* does cft->flags tell us to skip this file on @cgrp? */ 4135 if ((cft->flags & CFTYPE_PRESSURE) && !cgroup_psi_enabled()) 4136 continue; 4137 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp)) 4138 continue; 4139 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp)) 4140 continue; 4141 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp)) 4142 continue; 4143 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp)) 4144 continue; 4145 if ((cft->flags & CFTYPE_DEBUG) && !cgroup_debug) 4146 continue; 4147 if (is_add) { 4148 ret = cgroup_add_file(css, cgrp, cft); 4149 if (ret) { 4150 pr_warn("%s: failed to add %s, err=%d\n", 4151 __func__, cft->name, ret); 4152 cft_end = cft; 4153 is_add = false; 4154 goto restart; 4155 } 4156 } else { 4157 cgroup_rm_file(cgrp, cft); 4158 } 4159 } 4160 return ret; 4161 } 4162 4163 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add) 4164 { 4165 struct cgroup_subsys *ss = cfts[0].ss; 4166 struct cgroup *root = &ss->root->cgrp; 4167 struct cgroup_subsys_state *css; 4168 int ret = 0; 4169 4170 lockdep_assert_held(&cgroup_mutex); 4171 4172 /* add/rm files for all cgroups created before */ 4173 css_for_each_descendant_pre(css, cgroup_css(root, ss)) { 4174 struct cgroup *cgrp = css->cgroup; 4175 4176 if (!(css->flags & CSS_VISIBLE)) 4177 continue; 4178 4179 ret = cgroup_addrm_files(css, cgrp, cfts, is_add); 4180 if (ret) 4181 break; 4182 } 4183 4184 if (is_add && !ret) 4185 kernfs_activate(root->kn); 4186 return ret; 4187 } 4188 4189 static void cgroup_exit_cftypes(struct cftype *cfts) 4190 { 4191 struct cftype *cft; 4192 4193 for (cft = cfts; cft->name[0] != '\0'; cft++) { 4194 /* free copy for custom atomic_write_len, see init_cftypes() */ 4195 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) 4196 kfree(cft->kf_ops); 4197 cft->kf_ops = NULL; 4198 cft->ss = NULL; 4199 4200 /* revert flags set by cgroup core while adding @cfts */ 4201 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL); 4202 } 4203 } 4204 4205 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4206 { 4207 struct cftype *cft; 4208 4209 for (cft = cfts; cft->name[0] != '\0'; cft++) { 4210 struct kernfs_ops *kf_ops; 4211 4212 WARN_ON(cft->ss || cft->kf_ops); 4213 4214 if ((cft->flags & CFTYPE_PRESSURE) && !cgroup_psi_enabled()) 4215 continue; 4216 4217 if (cft->seq_start) 4218 kf_ops = &cgroup_kf_ops; 4219 else 4220 kf_ops = &cgroup_kf_single_ops; 4221 4222 /* 4223 * Ugh... if @cft wants a custom max_write_len, we need to 4224 * make a copy of kf_ops to set its atomic_write_len. 4225 */ 4226 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) { 4227 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL); 4228 if (!kf_ops) { 4229 cgroup_exit_cftypes(cfts); 4230 return -ENOMEM; 4231 } 4232 kf_ops->atomic_write_len = cft->max_write_len; 4233 } 4234 4235 cft->kf_ops = kf_ops; 4236 cft->ss = ss; 4237 } 4238 4239 return 0; 4240 } 4241 4242 static int cgroup_rm_cftypes_locked(struct cftype *cfts) 4243 { 4244 lockdep_assert_held(&cgroup_mutex); 4245 4246 if (!cfts || !cfts[0].ss) 4247 return -ENOENT; 4248 4249 list_del(&cfts->node); 4250 cgroup_apply_cftypes(cfts, false); 4251 cgroup_exit_cftypes(cfts); 4252 return 0; 4253 } 4254 4255 /** 4256 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem 4257 * @cfts: zero-length name terminated array of cftypes 4258 * 4259 * Unregister @cfts. Files described by @cfts are removed from all 4260 * existing cgroups and all future cgroups won't have them either. This 4261 * function can be called anytime whether @cfts' subsys is attached or not. 4262 * 4263 * Returns 0 on successful unregistration, -ENOENT if @cfts is not 4264 * registered. 4265 */ 4266 int cgroup_rm_cftypes(struct cftype *cfts) 4267 { 4268 int ret; 4269 4270 mutex_lock(&cgroup_mutex); 4271 ret = cgroup_rm_cftypes_locked(cfts); 4272 mutex_unlock(&cgroup_mutex); 4273 return ret; 4274 } 4275 4276 /** 4277 * cgroup_add_cftypes - add an array of cftypes to a subsystem 4278 * @ss: target cgroup subsystem 4279 * @cfts: zero-length name terminated array of cftypes 4280 * 4281 * Register @cfts to @ss. Files described by @cfts are created for all 4282 * existing cgroups to which @ss is attached and all future cgroups will 4283 * have them too. This function can be called anytime whether @ss is 4284 * attached or not. 4285 * 4286 * Returns 0 on successful registration, -errno on failure. Note that this 4287 * function currently returns 0 as long as @cfts registration is successful 4288 * even if some file creation attempts on existing cgroups fail. 4289 */ 4290 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4291 { 4292 int ret; 4293 4294 if (!cgroup_ssid_enabled(ss->id)) 4295 return 0; 4296 4297 if (!cfts || cfts[0].name[0] == '\0') 4298 return 0; 4299 4300 ret = cgroup_init_cftypes(ss, cfts); 4301 if (ret) 4302 return ret; 4303 4304 mutex_lock(&cgroup_mutex); 4305 4306 list_add_tail(&cfts->node, &ss->cfts); 4307 ret = cgroup_apply_cftypes(cfts, true); 4308 if (ret) 4309 cgroup_rm_cftypes_locked(cfts); 4310 4311 mutex_unlock(&cgroup_mutex); 4312 return ret; 4313 } 4314 4315 /** 4316 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy 4317 * @ss: target cgroup subsystem 4318 * @cfts: zero-length name terminated array of cftypes 4319 * 4320 * Similar to cgroup_add_cftypes() but the added files are only used for 4321 * the default hierarchy. 4322 */ 4323 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4324 { 4325 struct cftype *cft; 4326 4327 for (cft = cfts; cft && cft->name[0] != '\0'; cft++) 4328 cft->flags |= __CFTYPE_ONLY_ON_DFL; 4329 return cgroup_add_cftypes(ss, cfts); 4330 } 4331 4332 /** 4333 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies 4334 * @ss: target cgroup subsystem 4335 * @cfts: zero-length name terminated array of cftypes 4336 * 4337 * Similar to cgroup_add_cftypes() but the added files are only used for 4338 * the legacy hierarchies. 4339 */ 4340 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4341 { 4342 struct cftype *cft; 4343 4344 for (cft = cfts; cft && cft->name[0] != '\0'; cft++) 4345 cft->flags |= __CFTYPE_NOT_ON_DFL; 4346 return cgroup_add_cftypes(ss, cfts); 4347 } 4348 4349 /** 4350 * cgroup_file_notify - generate a file modified event for a cgroup_file 4351 * @cfile: target cgroup_file 4352 * 4353 * @cfile must have been obtained by setting cftype->file_offset. 4354 */ 4355 void cgroup_file_notify(struct cgroup_file *cfile) 4356 { 4357 unsigned long flags; 4358 4359 spin_lock_irqsave(&cgroup_file_kn_lock, flags); 4360 if (cfile->kn) { 4361 unsigned long last = cfile->notified_at; 4362 unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV; 4363 4364 if (time_in_range(jiffies, last, next)) { 4365 timer_reduce(&cfile->notify_timer, next); 4366 } else { 4367 kernfs_notify(cfile->kn); 4368 cfile->notified_at = jiffies; 4369 } 4370 } 4371 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags); 4372 } 4373 4374 /** 4375 * css_next_child - find the next child of a given css 4376 * @pos: the current position (%NULL to initiate traversal) 4377 * @parent: css whose children to walk 4378 * 4379 * This function returns the next child of @parent and should be called 4380 * under either cgroup_mutex or RCU read lock. The only requirement is 4381 * that @parent and @pos are accessible. The next sibling is guaranteed to 4382 * be returned regardless of their states. 4383 * 4384 * If a subsystem synchronizes ->css_online() and the start of iteration, a 4385 * css which finished ->css_online() is guaranteed to be visible in the 4386 * future iterations and will stay visible until the last reference is put. 4387 * A css which hasn't finished ->css_online() or already finished 4388 * ->css_offline() may show up during traversal. It's each subsystem's 4389 * responsibility to synchronize against on/offlining. 4390 */ 4391 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos, 4392 struct cgroup_subsys_state *parent) 4393 { 4394 struct cgroup_subsys_state *next; 4395 4396 cgroup_assert_mutex_or_rcu_locked(); 4397 4398 /* 4399 * @pos could already have been unlinked from the sibling list. 4400 * Once a cgroup is removed, its ->sibling.next is no longer 4401 * updated when its next sibling changes. CSS_RELEASED is set when 4402 * @pos is taken off list, at which time its next pointer is valid, 4403 * and, as releases are serialized, the one pointed to by the next 4404 * pointer is guaranteed to not have started release yet. This 4405 * implies that if we observe !CSS_RELEASED on @pos in this RCU 4406 * critical section, the one pointed to by its next pointer is 4407 * guaranteed to not have finished its RCU grace period even if we 4408 * have dropped rcu_read_lock() in-between iterations. 4409 * 4410 * If @pos has CSS_RELEASED set, its next pointer can't be 4411 * dereferenced; however, as each css is given a monotonically 4412 * increasing unique serial number and always appended to the 4413 * sibling list, the next one can be found by walking the parent's 4414 * children until the first css with higher serial number than 4415 * @pos's. While this path can be slower, it happens iff iteration 4416 * races against release and the race window is very small. 4417 */ 4418 if (!pos) { 4419 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling); 4420 } else if (likely(!(pos->flags & CSS_RELEASED))) { 4421 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling); 4422 } else { 4423 list_for_each_entry_rcu(next, &parent->children, sibling, 4424 lockdep_is_held(&cgroup_mutex)) 4425 if (next->serial_nr > pos->serial_nr) 4426 break; 4427 } 4428 4429 /* 4430 * @next, if not pointing to the head, can be dereferenced and is 4431 * the next sibling. 4432 */ 4433 if (&next->sibling != &parent->children) 4434 return next; 4435 return NULL; 4436 } 4437 4438 /** 4439 * css_next_descendant_pre - find the next descendant for pre-order walk 4440 * @pos: the current position (%NULL to initiate traversal) 4441 * @root: css whose descendants to walk 4442 * 4443 * To be used by css_for_each_descendant_pre(). Find the next descendant 4444 * to visit for pre-order traversal of @root's descendants. @root is 4445 * included in the iteration and the first node to be visited. 4446 * 4447 * While this function requires cgroup_mutex or RCU read locking, it 4448 * doesn't require the whole traversal to be contained in a single critical 4449 * section. This function will return the correct next descendant as long 4450 * as both @pos and @root are accessible and @pos is a descendant of @root. 4451 * 4452 * If a subsystem synchronizes ->css_online() and the start of iteration, a 4453 * css which finished ->css_online() is guaranteed to be visible in the 4454 * future iterations and will stay visible until the last reference is put. 4455 * A css which hasn't finished ->css_online() or already finished 4456 * ->css_offline() may show up during traversal. It's each subsystem's 4457 * responsibility to synchronize against on/offlining. 4458 */ 4459 struct cgroup_subsys_state * 4460 css_next_descendant_pre(struct cgroup_subsys_state *pos, 4461 struct cgroup_subsys_state *root) 4462 { 4463 struct cgroup_subsys_state *next; 4464 4465 cgroup_assert_mutex_or_rcu_locked(); 4466 4467 /* if first iteration, visit @root */ 4468 if (!pos) 4469 return root; 4470 4471 /* visit the first child if exists */ 4472 next = css_next_child(NULL, pos); 4473 if (next) 4474 return next; 4475 4476 /* no child, visit my or the closest ancestor's next sibling */ 4477 while (pos != root) { 4478 next = css_next_child(pos, pos->parent); 4479 if (next) 4480 return next; 4481 pos = pos->parent; 4482 } 4483 4484 return NULL; 4485 } 4486 EXPORT_SYMBOL_GPL(css_next_descendant_pre); 4487 4488 /** 4489 * css_rightmost_descendant - return the rightmost descendant of a css 4490 * @pos: css of interest 4491 * 4492 * Return the rightmost descendant of @pos. If there's no descendant, @pos 4493 * is returned. This can be used during pre-order traversal to skip 4494 * subtree of @pos. 4495 * 4496 * While this function requires cgroup_mutex or RCU read locking, it 4497 * doesn't require the whole traversal to be contained in a single critical 4498 * section. This function will return the correct rightmost descendant as 4499 * long as @pos is accessible. 4500 */ 4501 struct cgroup_subsys_state * 4502 css_rightmost_descendant(struct cgroup_subsys_state *pos) 4503 { 4504 struct cgroup_subsys_state *last, *tmp; 4505 4506 cgroup_assert_mutex_or_rcu_locked(); 4507 4508 do { 4509 last = pos; 4510 /* ->prev isn't RCU safe, walk ->next till the end */ 4511 pos = NULL; 4512 css_for_each_child(tmp, last) 4513 pos = tmp; 4514 } while (pos); 4515 4516 return last; 4517 } 4518 4519 static struct cgroup_subsys_state * 4520 css_leftmost_descendant(struct cgroup_subsys_state *pos) 4521 { 4522 struct cgroup_subsys_state *last; 4523 4524 do { 4525 last = pos; 4526 pos = css_next_child(NULL, pos); 4527 } while (pos); 4528 4529 return last; 4530 } 4531 4532 /** 4533 * css_next_descendant_post - find the next descendant for post-order walk 4534 * @pos: the current position (%NULL to initiate traversal) 4535 * @root: css whose descendants to walk 4536 * 4537 * To be used by css_for_each_descendant_post(). Find the next descendant 4538 * to visit for post-order traversal of @root's descendants. @root is 4539 * included in the iteration and the last node to be visited. 4540 * 4541 * While this function requires cgroup_mutex or RCU read locking, it 4542 * doesn't require the whole traversal to be contained in a single critical 4543 * section. This function will return the correct next descendant as long 4544 * as both @pos and @cgroup are accessible and @pos is a descendant of 4545 * @cgroup. 4546 * 4547 * If a subsystem synchronizes ->css_online() and the start of iteration, a 4548 * css which finished ->css_online() is guaranteed to be visible in the 4549 * future iterations and will stay visible until the last reference is put. 4550 * A css which hasn't finished ->css_online() or already finished 4551 * ->css_offline() may show up during traversal. It's each subsystem's 4552 * responsibility to synchronize against on/offlining. 4553 */ 4554 struct cgroup_subsys_state * 4555 css_next_descendant_post(struct cgroup_subsys_state *pos, 4556 struct cgroup_subsys_state *root) 4557 { 4558 struct cgroup_subsys_state *next; 4559 4560 cgroup_assert_mutex_or_rcu_locked(); 4561 4562 /* if first iteration, visit leftmost descendant which may be @root */ 4563 if (!pos) 4564 return css_leftmost_descendant(root); 4565 4566 /* if we visited @root, we're done */ 4567 if (pos == root) 4568 return NULL; 4569 4570 /* if there's an unvisited sibling, visit its leftmost descendant */ 4571 next = css_next_child(pos, pos->parent); 4572 if (next) 4573 return css_leftmost_descendant(next); 4574 4575 /* no sibling left, visit parent */ 4576 return pos->parent; 4577 } 4578 4579 /** 4580 * css_has_online_children - does a css have online children 4581 * @css: the target css 4582 * 4583 * Returns %true if @css has any online children; otherwise, %false. This 4584 * function can be called from any context but the caller is responsible 4585 * for synchronizing against on/offlining as necessary. 4586 */ 4587 bool css_has_online_children(struct cgroup_subsys_state *css) 4588 { 4589 struct cgroup_subsys_state *child; 4590 bool ret = false; 4591 4592 rcu_read_lock(); 4593 css_for_each_child(child, css) { 4594 if (child->flags & CSS_ONLINE) { 4595 ret = true; 4596 break; 4597 } 4598 } 4599 rcu_read_unlock(); 4600 return ret; 4601 } 4602 4603 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it) 4604 { 4605 struct list_head *l; 4606 struct cgrp_cset_link *link; 4607 struct css_set *cset; 4608 4609 lockdep_assert_held(&css_set_lock); 4610 4611 /* find the next threaded cset */ 4612 if (it->tcset_pos) { 4613 l = it->tcset_pos->next; 4614 4615 if (l != it->tcset_head) { 4616 it->tcset_pos = l; 4617 return container_of(l, struct css_set, 4618 threaded_csets_node); 4619 } 4620 4621 it->tcset_pos = NULL; 4622 } 4623 4624 /* find the next cset */ 4625 l = it->cset_pos; 4626 l = l->next; 4627 if (l == it->cset_head) { 4628 it->cset_pos = NULL; 4629 return NULL; 4630 } 4631 4632 if (it->ss) { 4633 cset = container_of(l, struct css_set, e_cset_node[it->ss->id]); 4634 } else { 4635 link = list_entry(l, struct cgrp_cset_link, cset_link); 4636 cset = link->cset; 4637 } 4638 4639 it->cset_pos = l; 4640 4641 /* initialize threaded css_set walking */ 4642 if (it->flags & CSS_TASK_ITER_THREADED) { 4643 if (it->cur_dcset) 4644 put_css_set_locked(it->cur_dcset); 4645 it->cur_dcset = cset; 4646 get_css_set(cset); 4647 4648 it->tcset_head = &cset->threaded_csets; 4649 it->tcset_pos = &cset->threaded_csets; 4650 } 4651 4652 return cset; 4653 } 4654 4655 /** 4656 * css_task_iter_advance_css_set - advance a task iterator to the next css_set 4657 * @it: the iterator to advance 4658 * 4659 * Advance @it to the next css_set to walk. 4660 */ 4661 static void css_task_iter_advance_css_set(struct css_task_iter *it) 4662 { 4663 struct css_set *cset; 4664 4665 lockdep_assert_held(&css_set_lock); 4666 4667 /* Advance to the next non-empty css_set and find first non-empty tasks list*/ 4668 while ((cset = css_task_iter_next_css_set(it))) { 4669 if (!list_empty(&cset->tasks)) { 4670 it->cur_tasks_head = &cset->tasks; 4671 break; 4672 } else if (!list_empty(&cset->mg_tasks)) { 4673 it->cur_tasks_head = &cset->mg_tasks; 4674 break; 4675 } else if (!list_empty(&cset->dying_tasks)) { 4676 it->cur_tasks_head = &cset->dying_tasks; 4677 break; 4678 } 4679 } 4680 if (!cset) { 4681 it->task_pos = NULL; 4682 return; 4683 } 4684 it->task_pos = it->cur_tasks_head->next; 4685 4686 /* 4687 * We don't keep css_sets locked across iteration steps and thus 4688 * need to take steps to ensure that iteration can be resumed after 4689 * the lock is re-acquired. Iteration is performed at two levels - 4690 * css_sets and tasks in them. 4691 * 4692 * Once created, a css_set never leaves its cgroup lists, so a 4693 * pinned css_set is guaranteed to stay put and we can resume 4694 * iteration afterwards. 4695 * 4696 * Tasks may leave @cset across iteration steps. This is resolved 4697 * by registering each iterator with the css_set currently being 4698 * walked and making css_set_move_task() advance iterators whose 4699 * next task is leaving. 4700 */ 4701 if (it->cur_cset) { 4702 list_del(&it->iters_node); 4703 put_css_set_locked(it->cur_cset); 4704 } 4705 get_css_set(cset); 4706 it->cur_cset = cset; 4707 list_add(&it->iters_node, &cset->task_iters); 4708 } 4709 4710 static void css_task_iter_skip(struct css_task_iter *it, 4711 struct task_struct *task) 4712 { 4713 lockdep_assert_held(&css_set_lock); 4714 4715 if (it->task_pos == &task->cg_list) { 4716 it->task_pos = it->task_pos->next; 4717 it->flags |= CSS_TASK_ITER_SKIPPED; 4718 } 4719 } 4720 4721 static void css_task_iter_advance(struct css_task_iter *it) 4722 { 4723 struct task_struct *task; 4724 4725 lockdep_assert_held(&css_set_lock); 4726 repeat: 4727 if (it->task_pos) { 4728 /* 4729 * Advance iterator to find next entry. We go through cset 4730 * tasks, mg_tasks and dying_tasks, when consumed we move onto 4731 * the next cset. 4732 */ 4733 if (it->flags & CSS_TASK_ITER_SKIPPED) 4734 it->flags &= ~CSS_TASK_ITER_SKIPPED; 4735 else 4736 it->task_pos = it->task_pos->next; 4737 4738 if (it->task_pos == &it->cur_cset->tasks) { 4739 it->cur_tasks_head = &it->cur_cset->mg_tasks; 4740 it->task_pos = it->cur_tasks_head->next; 4741 } 4742 if (it->task_pos == &it->cur_cset->mg_tasks) { 4743 it->cur_tasks_head = &it->cur_cset->dying_tasks; 4744 it->task_pos = it->cur_tasks_head->next; 4745 } 4746 if (it->task_pos == &it->cur_cset->dying_tasks) 4747 css_task_iter_advance_css_set(it); 4748 } else { 4749 /* called from start, proceed to the first cset */ 4750 css_task_iter_advance_css_set(it); 4751 } 4752 4753 if (!it->task_pos) 4754 return; 4755 4756 task = list_entry(it->task_pos, struct task_struct, cg_list); 4757 4758 if (it->flags & CSS_TASK_ITER_PROCS) { 4759 /* if PROCS, skip over tasks which aren't group leaders */ 4760 if (!thread_group_leader(task)) 4761 goto repeat; 4762 4763 /* and dying leaders w/o live member threads */ 4764 if (it->cur_tasks_head == &it->cur_cset->dying_tasks && 4765 !atomic_read(&task->signal->live)) 4766 goto repeat; 4767 } else { 4768 /* skip all dying ones */ 4769 if (it->cur_tasks_head == &it->cur_cset->dying_tasks) 4770 goto repeat; 4771 } 4772 } 4773 4774 /** 4775 * css_task_iter_start - initiate task iteration 4776 * @css: the css to walk tasks of 4777 * @flags: CSS_TASK_ITER_* flags 4778 * @it: the task iterator to use 4779 * 4780 * Initiate iteration through the tasks of @css. The caller can call 4781 * css_task_iter_next() to walk through the tasks until the function 4782 * returns NULL. On completion of iteration, css_task_iter_end() must be 4783 * called. 4784 */ 4785 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags, 4786 struct css_task_iter *it) 4787 { 4788 memset(it, 0, sizeof(*it)); 4789 4790 spin_lock_irq(&css_set_lock); 4791 4792 it->ss = css->ss; 4793 it->flags = flags; 4794 4795 if (CGROUP_HAS_SUBSYS_CONFIG && it->ss) 4796 it->cset_pos = &css->cgroup->e_csets[css->ss->id]; 4797 else 4798 it->cset_pos = &css->cgroup->cset_links; 4799 4800 it->cset_head = it->cset_pos; 4801 4802 css_task_iter_advance(it); 4803 4804 spin_unlock_irq(&css_set_lock); 4805 } 4806 4807 /** 4808 * css_task_iter_next - return the next task for the iterator 4809 * @it: the task iterator being iterated 4810 * 4811 * The "next" function for task iteration. @it should have been 4812 * initialized via css_task_iter_start(). Returns NULL when the iteration 4813 * reaches the end. 4814 */ 4815 struct task_struct *css_task_iter_next(struct css_task_iter *it) 4816 { 4817 if (it->cur_task) { 4818 put_task_struct(it->cur_task); 4819 it->cur_task = NULL; 4820 } 4821 4822 spin_lock_irq(&css_set_lock); 4823 4824 /* @it may be half-advanced by skips, finish advancing */ 4825 if (it->flags & CSS_TASK_ITER_SKIPPED) 4826 css_task_iter_advance(it); 4827 4828 if (it->task_pos) { 4829 it->cur_task = list_entry(it->task_pos, struct task_struct, 4830 cg_list); 4831 get_task_struct(it->cur_task); 4832 css_task_iter_advance(it); 4833 } 4834 4835 spin_unlock_irq(&css_set_lock); 4836 4837 return it->cur_task; 4838 } 4839 4840 /** 4841 * css_task_iter_end - finish task iteration 4842 * @it: the task iterator to finish 4843 * 4844 * Finish task iteration started by css_task_iter_start(). 4845 */ 4846 void css_task_iter_end(struct css_task_iter *it) 4847 { 4848 if (it->cur_cset) { 4849 spin_lock_irq(&css_set_lock); 4850 list_del(&it->iters_node); 4851 put_css_set_locked(it->cur_cset); 4852 spin_unlock_irq(&css_set_lock); 4853 } 4854 4855 if (it->cur_dcset) 4856 put_css_set(it->cur_dcset); 4857 4858 if (it->cur_task) 4859 put_task_struct(it->cur_task); 4860 } 4861 4862 static void cgroup_procs_release(struct kernfs_open_file *of) 4863 { 4864 struct cgroup_file_ctx *ctx = of->priv; 4865 4866 if (ctx->procs.started) 4867 css_task_iter_end(&ctx->procs.iter); 4868 } 4869 4870 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos) 4871 { 4872 struct kernfs_open_file *of = s->private; 4873 struct cgroup_file_ctx *ctx = of->priv; 4874 4875 if (pos) 4876 (*pos)++; 4877 4878 return css_task_iter_next(&ctx->procs.iter); 4879 } 4880 4881 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos, 4882 unsigned int iter_flags) 4883 { 4884 struct kernfs_open_file *of = s->private; 4885 struct cgroup *cgrp = seq_css(s)->cgroup; 4886 struct cgroup_file_ctx *ctx = of->priv; 4887 struct css_task_iter *it = &ctx->procs.iter; 4888 4889 /* 4890 * When a seq_file is seeked, it's always traversed sequentially 4891 * from position 0, so we can simply keep iterating on !0 *pos. 4892 */ 4893 if (!ctx->procs.started) { 4894 if (WARN_ON_ONCE((*pos))) 4895 return ERR_PTR(-EINVAL); 4896 css_task_iter_start(&cgrp->self, iter_flags, it); 4897 ctx->procs.started = true; 4898 } else if (!(*pos)) { 4899 css_task_iter_end(it); 4900 css_task_iter_start(&cgrp->self, iter_flags, it); 4901 } else 4902 return it->cur_task; 4903 4904 return cgroup_procs_next(s, NULL, NULL); 4905 } 4906 4907 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos) 4908 { 4909 struct cgroup *cgrp = seq_css(s)->cgroup; 4910 4911 /* 4912 * All processes of a threaded subtree belong to the domain cgroup 4913 * of the subtree. Only threads can be distributed across the 4914 * subtree. Reject reads on cgroup.procs in the subtree proper. 4915 * They're always empty anyway. 4916 */ 4917 if (cgroup_is_threaded(cgrp)) 4918 return ERR_PTR(-EOPNOTSUPP); 4919 4920 return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS | 4921 CSS_TASK_ITER_THREADED); 4922 } 4923 4924 static int cgroup_procs_show(struct seq_file *s, void *v) 4925 { 4926 seq_printf(s, "%d\n", task_pid_vnr(v)); 4927 return 0; 4928 } 4929 4930 static int cgroup_may_write(const struct cgroup *cgrp, struct super_block *sb) 4931 { 4932 int ret; 4933 struct inode *inode; 4934 4935 lockdep_assert_held(&cgroup_mutex); 4936 4937 inode = kernfs_get_inode(sb, cgrp->procs_file.kn); 4938 if (!inode) 4939 return -ENOMEM; 4940 4941 ret = inode_permission(&init_user_ns, inode, MAY_WRITE); 4942 iput(inode); 4943 return ret; 4944 } 4945 4946 static int cgroup_procs_write_permission(struct cgroup *src_cgrp, 4947 struct cgroup *dst_cgrp, 4948 struct super_block *sb, 4949 struct cgroup_namespace *ns) 4950 { 4951 struct cgroup *com_cgrp = src_cgrp; 4952 int ret; 4953 4954 lockdep_assert_held(&cgroup_mutex); 4955 4956 /* find the common ancestor */ 4957 while (!cgroup_is_descendant(dst_cgrp, com_cgrp)) 4958 com_cgrp = cgroup_parent(com_cgrp); 4959 4960 /* %current should be authorized to migrate to the common ancestor */ 4961 ret = cgroup_may_write(com_cgrp, sb); 4962 if (ret) 4963 return ret; 4964 4965 /* 4966 * If namespaces are delegation boundaries, %current must be able 4967 * to see both source and destination cgroups from its namespace. 4968 */ 4969 if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) && 4970 (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) || 4971 !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp))) 4972 return -ENOENT; 4973 4974 return 0; 4975 } 4976 4977 static int cgroup_attach_permissions(struct cgroup *src_cgrp, 4978 struct cgroup *dst_cgrp, 4979 struct super_block *sb, bool threadgroup, 4980 struct cgroup_namespace *ns) 4981 { 4982 int ret = 0; 4983 4984 ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, sb, ns); 4985 if (ret) 4986 return ret; 4987 4988 ret = cgroup_migrate_vet_dst(dst_cgrp); 4989 if (ret) 4990 return ret; 4991 4992 if (!threadgroup && (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp)) 4993 ret = -EOPNOTSUPP; 4994 4995 return ret; 4996 } 4997 4998 static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf, 4999 bool threadgroup) 5000 { 5001 struct cgroup_file_ctx *ctx = of->priv; 5002 struct cgroup *src_cgrp, *dst_cgrp; 5003 struct task_struct *task; 5004 const struct cred *saved_cred; 5005 ssize_t ret; 5006 bool threadgroup_locked; 5007 5008 dst_cgrp = cgroup_kn_lock_live(of->kn, false); 5009 if (!dst_cgrp) 5010 return -ENODEV; 5011 5012 task = cgroup_procs_write_start(buf, threadgroup, &threadgroup_locked); 5013 ret = PTR_ERR_OR_ZERO(task); 5014 if (ret) 5015 goto out_unlock; 5016 5017 /* find the source cgroup */ 5018 spin_lock_irq(&css_set_lock); 5019 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root); 5020 spin_unlock_irq(&css_set_lock); 5021 5022 /* 5023 * Process and thread migrations follow same delegation rule. Check 5024 * permissions using the credentials from file open to protect against 5025 * inherited fd attacks. 5026 */ 5027 saved_cred = override_creds(of->file->f_cred); 5028 ret = cgroup_attach_permissions(src_cgrp, dst_cgrp, 5029 of->file->f_path.dentry->d_sb, 5030 threadgroup, ctx->ns); 5031 revert_creds(saved_cred); 5032 if (ret) 5033 goto out_finish; 5034 5035 ret = cgroup_attach_task(dst_cgrp, task, threadgroup); 5036 5037 out_finish: 5038 cgroup_procs_write_finish(task, threadgroup_locked); 5039 out_unlock: 5040 cgroup_kn_unlock(of->kn); 5041 5042 return ret; 5043 } 5044 5045 static ssize_t cgroup_procs_write(struct kernfs_open_file *of, 5046 char *buf, size_t nbytes, loff_t off) 5047 { 5048 return __cgroup_procs_write(of, buf, true) ?: nbytes; 5049 } 5050 5051 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos) 5052 { 5053 return __cgroup_procs_start(s, pos, 0); 5054 } 5055 5056 static ssize_t cgroup_threads_write(struct kernfs_open_file *of, 5057 char *buf, size_t nbytes, loff_t off) 5058 { 5059 return __cgroup_procs_write(of, buf, false) ?: nbytes; 5060 } 5061 5062 /* cgroup core interface files for the default hierarchy */ 5063 static struct cftype cgroup_base_files[] = { 5064 { 5065 .name = "cgroup.type", 5066 .flags = CFTYPE_NOT_ON_ROOT, 5067 .seq_show = cgroup_type_show, 5068 .write = cgroup_type_write, 5069 }, 5070 { 5071 .name = "cgroup.procs", 5072 .flags = CFTYPE_NS_DELEGATABLE, 5073 .file_offset = offsetof(struct cgroup, procs_file), 5074 .release = cgroup_procs_release, 5075 .seq_start = cgroup_procs_start, 5076 .seq_next = cgroup_procs_next, 5077 .seq_show = cgroup_procs_show, 5078 .write = cgroup_procs_write, 5079 }, 5080 { 5081 .name = "cgroup.threads", 5082 .flags = CFTYPE_NS_DELEGATABLE, 5083 .release = cgroup_procs_release, 5084 .seq_start = cgroup_threads_start, 5085 .seq_next = cgroup_procs_next, 5086 .seq_show = cgroup_procs_show, 5087 .write = cgroup_threads_write, 5088 }, 5089 { 5090 .name = "cgroup.controllers", 5091 .seq_show = cgroup_controllers_show, 5092 }, 5093 { 5094 .name = "cgroup.subtree_control", 5095 .flags = CFTYPE_NS_DELEGATABLE, 5096 .seq_show = cgroup_subtree_control_show, 5097 .write = cgroup_subtree_control_write, 5098 }, 5099 { 5100 .name = "cgroup.events", 5101 .flags = CFTYPE_NOT_ON_ROOT, 5102 .file_offset = offsetof(struct cgroup, events_file), 5103 .seq_show = cgroup_events_show, 5104 }, 5105 { 5106 .name = "cgroup.max.descendants", 5107 .seq_show = cgroup_max_descendants_show, 5108 .write = cgroup_max_descendants_write, 5109 }, 5110 { 5111 .name = "cgroup.max.depth", 5112 .seq_show = cgroup_max_depth_show, 5113 .write = cgroup_max_depth_write, 5114 }, 5115 { 5116 .name = "cgroup.stat", 5117 .seq_show = cgroup_stat_show, 5118 }, 5119 { 5120 .name = "cgroup.freeze", 5121 .flags = CFTYPE_NOT_ON_ROOT, 5122 .seq_show = cgroup_freeze_show, 5123 .write = cgroup_freeze_write, 5124 }, 5125 { 5126 .name = "cgroup.kill", 5127 .flags = CFTYPE_NOT_ON_ROOT, 5128 .write = cgroup_kill_write, 5129 }, 5130 { 5131 .name = "cpu.stat", 5132 .seq_show = cpu_stat_show, 5133 }, 5134 #ifdef CONFIG_PSI 5135 { 5136 .name = "io.pressure", 5137 .flags = CFTYPE_PRESSURE, 5138 .seq_show = cgroup_io_pressure_show, 5139 .write = cgroup_io_pressure_write, 5140 .poll = cgroup_pressure_poll, 5141 .release = cgroup_pressure_release, 5142 }, 5143 { 5144 .name = "memory.pressure", 5145 .flags = CFTYPE_PRESSURE, 5146 .seq_show = cgroup_memory_pressure_show, 5147 .write = cgroup_memory_pressure_write, 5148 .poll = cgroup_pressure_poll, 5149 .release = cgroup_pressure_release, 5150 }, 5151 { 5152 .name = "cpu.pressure", 5153 .flags = CFTYPE_PRESSURE, 5154 .seq_show = cgroup_cpu_pressure_show, 5155 .write = cgroup_cpu_pressure_write, 5156 .poll = cgroup_pressure_poll, 5157 .release = cgroup_pressure_release, 5158 }, 5159 #endif /* CONFIG_PSI */ 5160 { } /* terminate */ 5161 }; 5162 5163 /* 5164 * css destruction is four-stage process. 5165 * 5166 * 1. Destruction starts. Killing of the percpu_ref is initiated. 5167 * Implemented in kill_css(). 5168 * 5169 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs 5170 * and thus css_tryget_online() is guaranteed to fail, the css can be 5171 * offlined by invoking offline_css(). After offlining, the base ref is 5172 * put. Implemented in css_killed_work_fn(). 5173 * 5174 * 3. When the percpu_ref reaches zero, the only possible remaining 5175 * accessors are inside RCU read sections. css_release() schedules the 5176 * RCU callback. 5177 * 5178 * 4. After the grace period, the css can be freed. Implemented in 5179 * css_free_work_fn(). 5180 * 5181 * It is actually hairier because both step 2 and 4 require process context 5182 * and thus involve punting to css->destroy_work adding two additional 5183 * steps to the already complex sequence. 5184 */ 5185 static void css_free_rwork_fn(struct work_struct *work) 5186 { 5187 struct cgroup_subsys_state *css = container_of(to_rcu_work(work), 5188 struct cgroup_subsys_state, destroy_rwork); 5189 struct cgroup_subsys *ss = css->ss; 5190 struct cgroup *cgrp = css->cgroup; 5191 5192 percpu_ref_exit(&css->refcnt); 5193 5194 if (ss) { 5195 /* css free path */ 5196 struct cgroup_subsys_state *parent = css->parent; 5197 int id = css->id; 5198 5199 ss->css_free(css); 5200 cgroup_idr_remove(&ss->css_idr, id); 5201 cgroup_put(cgrp); 5202 5203 if (parent) 5204 css_put(parent); 5205 } else { 5206 /* cgroup free path */ 5207 atomic_dec(&cgrp->root->nr_cgrps); 5208 cgroup1_pidlist_destroy_all(cgrp); 5209 cancel_work_sync(&cgrp->release_agent_work); 5210 5211 if (cgroup_parent(cgrp)) { 5212 /* 5213 * We get a ref to the parent, and put the ref when 5214 * this cgroup is being freed, so it's guaranteed 5215 * that the parent won't be destroyed before its 5216 * children. 5217 */ 5218 cgroup_put(cgroup_parent(cgrp)); 5219 kernfs_put(cgrp->kn); 5220 psi_cgroup_free(cgrp); 5221 cgroup_rstat_exit(cgrp); 5222 kfree(cgrp); 5223 } else { 5224 /* 5225 * This is root cgroup's refcnt reaching zero, 5226 * which indicates that the root should be 5227 * released. 5228 */ 5229 cgroup_destroy_root(cgrp->root); 5230 } 5231 } 5232 } 5233 5234 static void css_release_work_fn(struct work_struct *work) 5235 { 5236 struct cgroup_subsys_state *css = 5237 container_of(work, struct cgroup_subsys_state, destroy_work); 5238 struct cgroup_subsys *ss = css->ss; 5239 struct cgroup *cgrp = css->cgroup; 5240 5241 mutex_lock(&cgroup_mutex); 5242 5243 css->flags |= CSS_RELEASED; 5244 list_del_rcu(&css->sibling); 5245 5246 if (ss) { 5247 /* css release path */ 5248 if (!list_empty(&css->rstat_css_node)) { 5249 cgroup_rstat_flush(cgrp); 5250 list_del_rcu(&css->rstat_css_node); 5251 } 5252 5253 cgroup_idr_replace(&ss->css_idr, NULL, css->id); 5254 if (ss->css_released) 5255 ss->css_released(css); 5256 } else { 5257 struct cgroup *tcgrp; 5258 5259 /* cgroup release path */ 5260 TRACE_CGROUP_PATH(release, cgrp); 5261 5262 cgroup_rstat_flush(cgrp); 5263 5264 spin_lock_irq(&css_set_lock); 5265 for (tcgrp = cgroup_parent(cgrp); tcgrp; 5266 tcgrp = cgroup_parent(tcgrp)) 5267 tcgrp->nr_dying_descendants--; 5268 spin_unlock_irq(&css_set_lock); 5269 5270 /* 5271 * There are two control paths which try to determine 5272 * cgroup from dentry without going through kernfs - 5273 * cgroupstats_build() and css_tryget_online_from_dir(). 5274 * Those are supported by RCU protecting clearing of 5275 * cgrp->kn->priv backpointer. 5276 */ 5277 if (cgrp->kn) 5278 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, 5279 NULL); 5280 } 5281 5282 mutex_unlock(&cgroup_mutex); 5283 5284 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn); 5285 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork); 5286 } 5287 5288 static void css_release(struct percpu_ref *ref) 5289 { 5290 struct cgroup_subsys_state *css = 5291 container_of(ref, struct cgroup_subsys_state, refcnt); 5292 5293 INIT_WORK(&css->destroy_work, css_release_work_fn); 5294 queue_work(cgroup_destroy_wq, &css->destroy_work); 5295 } 5296 5297 static void init_and_link_css(struct cgroup_subsys_state *css, 5298 struct cgroup_subsys *ss, struct cgroup *cgrp) 5299 { 5300 lockdep_assert_held(&cgroup_mutex); 5301 5302 cgroup_get_live(cgrp); 5303 5304 memset(css, 0, sizeof(*css)); 5305 css->cgroup = cgrp; 5306 css->ss = ss; 5307 css->id = -1; 5308 INIT_LIST_HEAD(&css->sibling); 5309 INIT_LIST_HEAD(&css->children); 5310 INIT_LIST_HEAD(&css->rstat_css_node); 5311 css->serial_nr = css_serial_nr_next++; 5312 atomic_set(&css->online_cnt, 0); 5313 5314 if (cgroup_parent(cgrp)) { 5315 css->parent = cgroup_css(cgroup_parent(cgrp), ss); 5316 css_get(css->parent); 5317 } 5318 5319 if (ss->css_rstat_flush) 5320 list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list); 5321 5322 BUG_ON(cgroup_css(cgrp, ss)); 5323 } 5324 5325 /* invoke ->css_online() on a new CSS and mark it online if successful */ 5326 static int online_css(struct cgroup_subsys_state *css) 5327 { 5328 struct cgroup_subsys *ss = css->ss; 5329 int ret = 0; 5330 5331 lockdep_assert_held(&cgroup_mutex); 5332 5333 if (ss->css_online) 5334 ret = ss->css_online(css); 5335 if (!ret) { 5336 css->flags |= CSS_ONLINE; 5337 rcu_assign_pointer(css->cgroup->subsys[ss->id], css); 5338 5339 atomic_inc(&css->online_cnt); 5340 if (css->parent) 5341 atomic_inc(&css->parent->online_cnt); 5342 } 5343 return ret; 5344 } 5345 5346 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */ 5347 static void offline_css(struct cgroup_subsys_state *css) 5348 { 5349 struct cgroup_subsys *ss = css->ss; 5350 5351 lockdep_assert_held(&cgroup_mutex); 5352 5353 if (!(css->flags & CSS_ONLINE)) 5354 return; 5355 5356 if (ss->css_offline) 5357 ss->css_offline(css); 5358 5359 css->flags &= ~CSS_ONLINE; 5360 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL); 5361 5362 wake_up_all(&css->cgroup->offline_waitq); 5363 } 5364 5365 /** 5366 * css_create - create a cgroup_subsys_state 5367 * @cgrp: the cgroup new css will be associated with 5368 * @ss: the subsys of new css 5369 * 5370 * Create a new css associated with @cgrp - @ss pair. On success, the new 5371 * css is online and installed in @cgrp. This function doesn't create the 5372 * interface files. Returns 0 on success, -errno on failure. 5373 */ 5374 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp, 5375 struct cgroup_subsys *ss) 5376 { 5377 struct cgroup *parent = cgroup_parent(cgrp); 5378 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss); 5379 struct cgroup_subsys_state *css; 5380 int err; 5381 5382 lockdep_assert_held(&cgroup_mutex); 5383 5384 css = ss->css_alloc(parent_css); 5385 if (!css) 5386 css = ERR_PTR(-ENOMEM); 5387 if (IS_ERR(css)) 5388 return css; 5389 5390 init_and_link_css(css, ss, cgrp); 5391 5392 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL); 5393 if (err) 5394 goto err_free_css; 5395 5396 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL); 5397 if (err < 0) 5398 goto err_free_css; 5399 css->id = err; 5400 5401 /* @css is ready to be brought online now, make it visible */ 5402 list_add_tail_rcu(&css->sibling, &parent_css->children); 5403 cgroup_idr_replace(&ss->css_idr, css, css->id); 5404 5405 err = online_css(css); 5406 if (err) 5407 goto err_list_del; 5408 5409 return css; 5410 5411 err_list_del: 5412 list_del_rcu(&css->sibling); 5413 err_free_css: 5414 list_del_rcu(&css->rstat_css_node); 5415 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn); 5416 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork); 5417 return ERR_PTR(err); 5418 } 5419 5420 /* 5421 * The returned cgroup is fully initialized including its control mask, but 5422 * it isn't associated with its kernfs_node and doesn't have the control 5423 * mask applied. 5424 */ 5425 static struct cgroup *cgroup_create(struct cgroup *parent, const char *name, 5426 umode_t mode) 5427 { 5428 struct cgroup_root *root = parent->root; 5429 struct cgroup *cgrp, *tcgrp; 5430 struct kernfs_node *kn; 5431 int level = parent->level + 1; 5432 int ret; 5433 5434 /* allocate the cgroup and its ID, 0 is reserved for the root */ 5435 cgrp = kzalloc(struct_size(cgrp, ancestor_ids, (level + 1)), 5436 GFP_KERNEL); 5437 if (!cgrp) 5438 return ERR_PTR(-ENOMEM); 5439 5440 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL); 5441 if (ret) 5442 goto out_free_cgrp; 5443 5444 ret = cgroup_rstat_init(cgrp); 5445 if (ret) 5446 goto out_cancel_ref; 5447 5448 /* create the directory */ 5449 kn = kernfs_create_dir(parent->kn, name, mode, cgrp); 5450 if (IS_ERR(kn)) { 5451 ret = PTR_ERR(kn); 5452 goto out_stat_exit; 5453 } 5454 cgrp->kn = kn; 5455 5456 init_cgroup_housekeeping(cgrp); 5457 5458 cgrp->self.parent = &parent->self; 5459 cgrp->root = root; 5460 cgrp->level = level; 5461 5462 ret = psi_cgroup_alloc(cgrp); 5463 if (ret) 5464 goto out_kernfs_remove; 5465 5466 ret = cgroup_bpf_inherit(cgrp); 5467 if (ret) 5468 goto out_psi_free; 5469 5470 /* 5471 * New cgroup inherits effective freeze counter, and 5472 * if the parent has to be frozen, the child has too. 5473 */ 5474 cgrp->freezer.e_freeze = parent->freezer.e_freeze; 5475 if (cgrp->freezer.e_freeze) { 5476 /* 5477 * Set the CGRP_FREEZE flag, so when a process will be 5478 * attached to the child cgroup, it will become frozen. 5479 * At this point the new cgroup is unpopulated, so we can 5480 * consider it frozen immediately. 5481 */ 5482 set_bit(CGRP_FREEZE, &cgrp->flags); 5483 set_bit(CGRP_FROZEN, &cgrp->flags); 5484 } 5485 5486 spin_lock_irq(&css_set_lock); 5487 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) { 5488 cgrp->ancestor_ids[tcgrp->level] = cgroup_id(tcgrp); 5489 5490 if (tcgrp != cgrp) { 5491 tcgrp->nr_descendants++; 5492 5493 /* 5494 * If the new cgroup is frozen, all ancestor cgroups 5495 * get a new frozen descendant, but their state can't 5496 * change because of this. 5497 */ 5498 if (cgrp->freezer.e_freeze) 5499 tcgrp->freezer.nr_frozen_descendants++; 5500 } 5501 } 5502 spin_unlock_irq(&css_set_lock); 5503 5504 if (notify_on_release(parent)) 5505 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags); 5506 5507 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags)) 5508 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags); 5509 5510 cgrp->self.serial_nr = css_serial_nr_next++; 5511 5512 /* allocation complete, commit to creation */ 5513 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children); 5514 atomic_inc(&root->nr_cgrps); 5515 cgroup_get_live(parent); 5516 5517 /* 5518 * On the default hierarchy, a child doesn't automatically inherit 5519 * subtree_control from the parent. Each is configured manually. 5520 */ 5521 if (!cgroup_on_dfl(cgrp)) 5522 cgrp->subtree_control = cgroup_control(cgrp); 5523 5524 cgroup_propagate_control(cgrp); 5525 5526 return cgrp; 5527 5528 out_psi_free: 5529 psi_cgroup_free(cgrp); 5530 out_kernfs_remove: 5531 kernfs_remove(cgrp->kn); 5532 out_stat_exit: 5533 cgroup_rstat_exit(cgrp); 5534 out_cancel_ref: 5535 percpu_ref_exit(&cgrp->self.refcnt); 5536 out_free_cgrp: 5537 kfree(cgrp); 5538 return ERR_PTR(ret); 5539 } 5540 5541 static bool cgroup_check_hierarchy_limits(struct cgroup *parent) 5542 { 5543 struct cgroup *cgroup; 5544 int ret = false; 5545 int level = 1; 5546 5547 lockdep_assert_held(&cgroup_mutex); 5548 5549 for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) { 5550 if (cgroup->nr_descendants >= cgroup->max_descendants) 5551 goto fail; 5552 5553 if (level > cgroup->max_depth) 5554 goto fail; 5555 5556 level++; 5557 } 5558 5559 ret = true; 5560 fail: 5561 return ret; 5562 } 5563 5564 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode) 5565 { 5566 struct cgroup *parent, *cgrp; 5567 int ret; 5568 5569 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */ 5570 if (strchr(name, '\n')) 5571 return -EINVAL; 5572 5573 parent = cgroup_kn_lock_live(parent_kn, false); 5574 if (!parent) 5575 return -ENODEV; 5576 5577 if (!cgroup_check_hierarchy_limits(parent)) { 5578 ret = -EAGAIN; 5579 goto out_unlock; 5580 } 5581 5582 cgrp = cgroup_create(parent, name, mode); 5583 if (IS_ERR(cgrp)) { 5584 ret = PTR_ERR(cgrp); 5585 goto out_unlock; 5586 } 5587 5588 /* 5589 * This extra ref will be put in cgroup_free_fn() and guarantees 5590 * that @cgrp->kn is always accessible. 5591 */ 5592 kernfs_get(cgrp->kn); 5593 5594 ret = cgroup_kn_set_ugid(cgrp->kn); 5595 if (ret) 5596 goto out_destroy; 5597 5598 ret = css_populate_dir(&cgrp->self); 5599 if (ret) 5600 goto out_destroy; 5601 5602 ret = cgroup_apply_control_enable(cgrp); 5603 if (ret) 5604 goto out_destroy; 5605 5606 TRACE_CGROUP_PATH(mkdir, cgrp); 5607 5608 /* let's create and online css's */ 5609 kernfs_activate(cgrp->kn); 5610 5611 ret = 0; 5612 goto out_unlock; 5613 5614 out_destroy: 5615 cgroup_destroy_locked(cgrp); 5616 out_unlock: 5617 cgroup_kn_unlock(parent_kn); 5618 return ret; 5619 } 5620 5621 /* 5622 * This is called when the refcnt of a css is confirmed to be killed. 5623 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to 5624 * initiate destruction and put the css ref from kill_css(). 5625 */ 5626 static void css_killed_work_fn(struct work_struct *work) 5627 { 5628 struct cgroup_subsys_state *css = 5629 container_of(work, struct cgroup_subsys_state, destroy_work); 5630 5631 mutex_lock(&cgroup_mutex); 5632 5633 do { 5634 offline_css(css); 5635 css_put(css); 5636 /* @css can't go away while we're holding cgroup_mutex */ 5637 css = css->parent; 5638 } while (css && atomic_dec_and_test(&css->online_cnt)); 5639 5640 mutex_unlock(&cgroup_mutex); 5641 } 5642 5643 /* css kill confirmation processing requires process context, bounce */ 5644 static void css_killed_ref_fn(struct percpu_ref *ref) 5645 { 5646 struct cgroup_subsys_state *css = 5647 container_of(ref, struct cgroup_subsys_state, refcnt); 5648 5649 if (atomic_dec_and_test(&css->online_cnt)) { 5650 INIT_WORK(&css->destroy_work, css_killed_work_fn); 5651 queue_work(cgroup_destroy_wq, &css->destroy_work); 5652 } 5653 } 5654 5655 /** 5656 * kill_css - destroy a css 5657 * @css: css to destroy 5658 * 5659 * This function initiates destruction of @css by removing cgroup interface 5660 * files and putting its base reference. ->css_offline() will be invoked 5661 * asynchronously once css_tryget_online() is guaranteed to fail and when 5662 * the reference count reaches zero, @css will be released. 5663 */ 5664 static void kill_css(struct cgroup_subsys_state *css) 5665 { 5666 lockdep_assert_held(&cgroup_mutex); 5667 5668 if (css->flags & CSS_DYING) 5669 return; 5670 5671 css->flags |= CSS_DYING; 5672 5673 /* 5674 * This must happen before css is disassociated with its cgroup. 5675 * See seq_css() for details. 5676 */ 5677 css_clear_dir(css); 5678 5679 /* 5680 * Killing would put the base ref, but we need to keep it alive 5681 * until after ->css_offline(). 5682 */ 5683 css_get(css); 5684 5685 /* 5686 * cgroup core guarantees that, by the time ->css_offline() is 5687 * invoked, no new css reference will be given out via 5688 * css_tryget_online(). We can't simply call percpu_ref_kill() and 5689 * proceed to offlining css's because percpu_ref_kill() doesn't 5690 * guarantee that the ref is seen as killed on all CPUs on return. 5691 * 5692 * Use percpu_ref_kill_and_confirm() to get notifications as each 5693 * css is confirmed to be seen as killed on all CPUs. 5694 */ 5695 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn); 5696 } 5697 5698 /** 5699 * cgroup_destroy_locked - the first stage of cgroup destruction 5700 * @cgrp: cgroup to be destroyed 5701 * 5702 * css's make use of percpu refcnts whose killing latency shouldn't be 5703 * exposed to userland and are RCU protected. Also, cgroup core needs to 5704 * guarantee that css_tryget_online() won't succeed by the time 5705 * ->css_offline() is invoked. To satisfy all the requirements, 5706 * destruction is implemented in the following two steps. 5707 * 5708 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all 5709 * userland visible parts and start killing the percpu refcnts of 5710 * css's. Set up so that the next stage will be kicked off once all 5711 * the percpu refcnts are confirmed to be killed. 5712 * 5713 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the 5714 * rest of destruction. Once all cgroup references are gone, the 5715 * cgroup is RCU-freed. 5716 * 5717 * This function implements s1. After this step, @cgrp is gone as far as 5718 * the userland is concerned and a new cgroup with the same name may be 5719 * created. As cgroup doesn't care about the names internally, this 5720 * doesn't cause any problem. 5721 */ 5722 static int cgroup_destroy_locked(struct cgroup *cgrp) 5723 __releases(&cgroup_mutex) __acquires(&cgroup_mutex) 5724 { 5725 struct cgroup *tcgrp, *parent = cgroup_parent(cgrp); 5726 struct cgroup_subsys_state *css; 5727 struct cgrp_cset_link *link; 5728 int ssid; 5729 5730 lockdep_assert_held(&cgroup_mutex); 5731 5732 /* 5733 * Only migration can raise populated from zero and we're already 5734 * holding cgroup_mutex. 5735 */ 5736 if (cgroup_is_populated(cgrp)) 5737 return -EBUSY; 5738 5739 /* 5740 * Make sure there's no live children. We can't test emptiness of 5741 * ->self.children as dead children linger on it while being 5742 * drained; otherwise, "rmdir parent/child parent" may fail. 5743 */ 5744 if (css_has_online_children(&cgrp->self)) 5745 return -EBUSY; 5746 5747 /* 5748 * Mark @cgrp and the associated csets dead. The former prevents 5749 * further task migration and child creation by disabling 5750 * cgroup_lock_live_group(). The latter makes the csets ignored by 5751 * the migration path. 5752 */ 5753 cgrp->self.flags &= ~CSS_ONLINE; 5754 5755 spin_lock_irq(&css_set_lock); 5756 list_for_each_entry(link, &cgrp->cset_links, cset_link) 5757 link->cset->dead = true; 5758 spin_unlock_irq(&css_set_lock); 5759 5760 /* initiate massacre of all css's */ 5761 for_each_css(css, ssid, cgrp) 5762 kill_css(css); 5763 5764 /* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */ 5765 css_clear_dir(&cgrp->self); 5766 kernfs_remove(cgrp->kn); 5767 5768 if (cgroup_is_threaded(cgrp)) 5769 parent->nr_threaded_children--; 5770 5771 spin_lock_irq(&css_set_lock); 5772 for (tcgrp = cgroup_parent(cgrp); tcgrp; tcgrp = cgroup_parent(tcgrp)) { 5773 tcgrp->nr_descendants--; 5774 tcgrp->nr_dying_descendants++; 5775 /* 5776 * If the dying cgroup is frozen, decrease frozen descendants 5777 * counters of ancestor cgroups. 5778 */ 5779 if (test_bit(CGRP_FROZEN, &cgrp->flags)) 5780 tcgrp->freezer.nr_frozen_descendants--; 5781 } 5782 spin_unlock_irq(&css_set_lock); 5783 5784 cgroup1_check_for_release(parent); 5785 5786 cgroup_bpf_offline(cgrp); 5787 5788 /* put the base reference */ 5789 percpu_ref_kill(&cgrp->self.refcnt); 5790 5791 return 0; 5792 }; 5793 5794 int cgroup_rmdir(struct kernfs_node *kn) 5795 { 5796 struct cgroup *cgrp; 5797 int ret = 0; 5798 5799 cgrp = cgroup_kn_lock_live(kn, false); 5800 if (!cgrp) 5801 return 0; 5802 5803 ret = cgroup_destroy_locked(cgrp); 5804 if (!ret) 5805 TRACE_CGROUP_PATH(rmdir, cgrp); 5806 5807 cgroup_kn_unlock(kn); 5808 return ret; 5809 } 5810 5811 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = { 5812 .show_options = cgroup_show_options, 5813 .mkdir = cgroup_mkdir, 5814 .rmdir = cgroup_rmdir, 5815 .show_path = cgroup_show_path, 5816 }; 5817 5818 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early) 5819 { 5820 struct cgroup_subsys_state *css; 5821 5822 pr_debug("Initializing cgroup subsys %s\n", ss->name); 5823 5824 mutex_lock(&cgroup_mutex); 5825 5826 idr_init(&ss->css_idr); 5827 INIT_LIST_HEAD(&ss->cfts); 5828 5829 /* Create the root cgroup state for this subsystem */ 5830 ss->root = &cgrp_dfl_root; 5831 css = ss->css_alloc(NULL); 5832 /* We don't handle early failures gracefully */ 5833 BUG_ON(IS_ERR(css)); 5834 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp); 5835 5836 /* 5837 * Root csses are never destroyed and we can't initialize 5838 * percpu_ref during early init. Disable refcnting. 5839 */ 5840 css->flags |= CSS_NO_REF; 5841 5842 if (early) { 5843 /* allocation can't be done safely during early init */ 5844 css->id = 1; 5845 } else { 5846 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL); 5847 BUG_ON(css->id < 0); 5848 } 5849 5850 /* Update the init_css_set to contain a subsys 5851 * pointer to this state - since the subsystem is 5852 * newly registered, all tasks and hence the 5853 * init_css_set is in the subsystem's root cgroup. */ 5854 init_css_set.subsys[ss->id] = css; 5855 5856 have_fork_callback |= (bool)ss->fork << ss->id; 5857 have_exit_callback |= (bool)ss->exit << ss->id; 5858 have_release_callback |= (bool)ss->release << ss->id; 5859 have_canfork_callback |= (bool)ss->can_fork << ss->id; 5860 5861 /* At system boot, before all subsystems have been 5862 * registered, no tasks have been forked, so we don't 5863 * need to invoke fork callbacks here. */ 5864 BUG_ON(!list_empty(&init_task.tasks)); 5865 5866 BUG_ON(online_css(css)); 5867 5868 mutex_unlock(&cgroup_mutex); 5869 } 5870 5871 /** 5872 * cgroup_init_early - cgroup initialization at system boot 5873 * 5874 * Initialize cgroups at system boot, and initialize any 5875 * subsystems that request early init. 5876 */ 5877 int __init cgroup_init_early(void) 5878 { 5879 static struct cgroup_fs_context __initdata ctx; 5880 struct cgroup_subsys *ss; 5881 int i; 5882 5883 ctx.root = &cgrp_dfl_root; 5884 init_cgroup_root(&ctx); 5885 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF; 5886 5887 RCU_INIT_POINTER(init_task.cgroups, &init_css_set); 5888 5889 for_each_subsys(ss, i) { 5890 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id, 5891 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n", 5892 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free, 5893 ss->id, ss->name); 5894 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN, 5895 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]); 5896 5897 ss->id = i; 5898 ss->name = cgroup_subsys_name[i]; 5899 if (!ss->legacy_name) 5900 ss->legacy_name = cgroup_subsys_name[i]; 5901 5902 if (ss->early_init) 5903 cgroup_init_subsys(ss, true); 5904 } 5905 return 0; 5906 } 5907 5908 /** 5909 * cgroup_init - cgroup initialization 5910 * 5911 * Register cgroup filesystem and /proc file, and initialize 5912 * any subsystems that didn't request early init. 5913 */ 5914 int __init cgroup_init(void) 5915 { 5916 struct cgroup_subsys *ss; 5917 int ssid; 5918 5919 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16); 5920 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files)); 5921 BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files)); 5922 5923 cgroup_rstat_boot(); 5924 5925 get_user_ns(init_cgroup_ns.user_ns); 5926 5927 mutex_lock(&cgroup_mutex); 5928 5929 /* 5930 * Add init_css_set to the hash table so that dfl_root can link to 5931 * it during init. 5932 */ 5933 hash_add(css_set_table, &init_css_set.hlist, 5934 css_set_hash(init_css_set.subsys)); 5935 5936 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0)); 5937 5938 mutex_unlock(&cgroup_mutex); 5939 5940 for_each_subsys(ss, ssid) { 5941 if (ss->early_init) { 5942 struct cgroup_subsys_state *css = 5943 init_css_set.subsys[ss->id]; 5944 5945 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, 5946 GFP_KERNEL); 5947 BUG_ON(css->id < 0); 5948 } else { 5949 cgroup_init_subsys(ss, false); 5950 } 5951 5952 list_add_tail(&init_css_set.e_cset_node[ssid], 5953 &cgrp_dfl_root.cgrp.e_csets[ssid]); 5954 5955 /* 5956 * Setting dfl_root subsys_mask needs to consider the 5957 * disabled flag and cftype registration needs kmalloc, 5958 * both of which aren't available during early_init. 5959 */ 5960 if (!cgroup_ssid_enabled(ssid)) 5961 continue; 5962 5963 if (cgroup1_ssid_disabled(ssid)) 5964 printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n", 5965 ss->name); 5966 5967 cgrp_dfl_root.subsys_mask |= 1 << ss->id; 5968 5969 /* implicit controllers must be threaded too */ 5970 WARN_ON(ss->implicit_on_dfl && !ss->threaded); 5971 5972 if (ss->implicit_on_dfl) 5973 cgrp_dfl_implicit_ss_mask |= 1 << ss->id; 5974 else if (!ss->dfl_cftypes) 5975 cgrp_dfl_inhibit_ss_mask |= 1 << ss->id; 5976 5977 if (ss->threaded) 5978 cgrp_dfl_threaded_ss_mask |= 1 << ss->id; 5979 5980 if (ss->dfl_cftypes == ss->legacy_cftypes) { 5981 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes)); 5982 } else { 5983 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes)); 5984 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes)); 5985 } 5986 5987 if (ss->bind) 5988 ss->bind(init_css_set.subsys[ssid]); 5989 5990 mutex_lock(&cgroup_mutex); 5991 css_populate_dir(init_css_set.subsys[ssid]); 5992 mutex_unlock(&cgroup_mutex); 5993 } 5994 5995 /* init_css_set.subsys[] has been updated, re-hash */ 5996 hash_del(&init_css_set.hlist); 5997 hash_add(css_set_table, &init_css_set.hlist, 5998 css_set_hash(init_css_set.subsys)); 5999 6000 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup")); 6001 WARN_ON(register_filesystem(&cgroup_fs_type)); 6002 WARN_ON(register_filesystem(&cgroup2_fs_type)); 6003 WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show)); 6004 #ifdef CONFIG_CPUSETS 6005 WARN_ON(register_filesystem(&cpuset_fs_type)); 6006 #endif 6007 6008 return 0; 6009 } 6010 6011 static int __init cgroup_wq_init(void) 6012 { 6013 /* 6014 * There isn't much point in executing destruction path in 6015 * parallel. Good chunk is serialized with cgroup_mutex anyway. 6016 * Use 1 for @max_active. 6017 * 6018 * We would prefer to do this in cgroup_init() above, but that 6019 * is called before init_workqueues(): so leave this until after. 6020 */ 6021 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1); 6022 BUG_ON(!cgroup_destroy_wq); 6023 return 0; 6024 } 6025 core_initcall(cgroup_wq_init); 6026 6027 void cgroup_path_from_kernfs_id(u64 id, char *buf, size_t buflen) 6028 { 6029 struct kernfs_node *kn; 6030 6031 kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id); 6032 if (!kn) 6033 return; 6034 kernfs_path(kn, buf, buflen); 6035 kernfs_put(kn); 6036 } 6037 6038 /* 6039 * cgroup_get_from_id : get the cgroup associated with cgroup id 6040 * @id: cgroup id 6041 * On success return the cgrp, on failure return NULL 6042 */ 6043 struct cgroup *cgroup_get_from_id(u64 id) 6044 { 6045 struct kernfs_node *kn; 6046 struct cgroup *cgrp = NULL; 6047 6048 kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id); 6049 if (!kn) 6050 goto out; 6051 6052 rcu_read_lock(); 6053 6054 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); 6055 if (cgrp && !cgroup_tryget(cgrp)) 6056 cgrp = NULL; 6057 6058 rcu_read_unlock(); 6059 6060 kernfs_put(kn); 6061 out: 6062 return cgrp; 6063 } 6064 EXPORT_SYMBOL_GPL(cgroup_get_from_id); 6065 6066 /* 6067 * proc_cgroup_show() 6068 * - Print task's cgroup paths into seq_file, one line for each hierarchy 6069 * - Used for /proc/<pid>/cgroup. 6070 */ 6071 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns, 6072 struct pid *pid, struct task_struct *tsk) 6073 { 6074 char *buf; 6075 int retval; 6076 struct cgroup_root *root; 6077 6078 retval = -ENOMEM; 6079 buf = kmalloc(PATH_MAX, GFP_KERNEL); 6080 if (!buf) 6081 goto out; 6082 6083 mutex_lock(&cgroup_mutex); 6084 spin_lock_irq(&css_set_lock); 6085 6086 for_each_root(root) { 6087 struct cgroup_subsys *ss; 6088 struct cgroup *cgrp; 6089 int ssid, count = 0; 6090 6091 if (root == &cgrp_dfl_root && !cgrp_dfl_visible) 6092 continue; 6093 6094 seq_printf(m, "%d:", root->hierarchy_id); 6095 if (root != &cgrp_dfl_root) 6096 for_each_subsys(ss, ssid) 6097 if (root->subsys_mask & (1 << ssid)) 6098 seq_printf(m, "%s%s", count++ ? "," : "", 6099 ss->legacy_name); 6100 if (strlen(root->name)) 6101 seq_printf(m, "%sname=%s", count ? "," : "", 6102 root->name); 6103 seq_putc(m, ':'); 6104 6105 cgrp = task_cgroup_from_root(tsk, root); 6106 6107 /* 6108 * On traditional hierarchies, all zombie tasks show up as 6109 * belonging to the root cgroup. On the default hierarchy, 6110 * while a zombie doesn't show up in "cgroup.procs" and 6111 * thus can't be migrated, its /proc/PID/cgroup keeps 6112 * reporting the cgroup it belonged to before exiting. If 6113 * the cgroup is removed before the zombie is reaped, 6114 * " (deleted)" is appended to the cgroup path. 6115 */ 6116 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) { 6117 retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX, 6118 current->nsproxy->cgroup_ns); 6119 if (retval >= PATH_MAX) 6120 retval = -ENAMETOOLONG; 6121 if (retval < 0) 6122 goto out_unlock; 6123 6124 seq_puts(m, buf); 6125 } else { 6126 seq_puts(m, "/"); 6127 } 6128 6129 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp)) 6130 seq_puts(m, " (deleted)\n"); 6131 else 6132 seq_putc(m, '\n'); 6133 } 6134 6135 retval = 0; 6136 out_unlock: 6137 spin_unlock_irq(&css_set_lock); 6138 mutex_unlock(&cgroup_mutex); 6139 kfree(buf); 6140 out: 6141 return retval; 6142 } 6143 6144 /** 6145 * cgroup_fork - initialize cgroup related fields during copy_process() 6146 * @child: pointer to task_struct of forking parent process. 6147 * 6148 * A task is associated with the init_css_set until cgroup_post_fork() 6149 * attaches it to the target css_set. 6150 */ 6151 void cgroup_fork(struct task_struct *child) 6152 { 6153 RCU_INIT_POINTER(child->cgroups, &init_css_set); 6154 INIT_LIST_HEAD(&child->cg_list); 6155 } 6156 6157 static struct cgroup *cgroup_get_from_file(struct file *f) 6158 { 6159 struct cgroup_subsys_state *css; 6160 struct cgroup *cgrp; 6161 6162 css = css_tryget_online_from_dir(f->f_path.dentry, NULL); 6163 if (IS_ERR(css)) 6164 return ERR_CAST(css); 6165 6166 cgrp = css->cgroup; 6167 if (!cgroup_on_dfl(cgrp)) { 6168 cgroup_put(cgrp); 6169 return ERR_PTR(-EBADF); 6170 } 6171 6172 return cgrp; 6173 } 6174 6175 /** 6176 * cgroup_css_set_fork - find or create a css_set for a child process 6177 * @kargs: the arguments passed to create the child process 6178 * 6179 * This functions finds or creates a new css_set which the child 6180 * process will be attached to in cgroup_post_fork(). By default, 6181 * the child process will be given the same css_set as its parent. 6182 * 6183 * If CLONE_INTO_CGROUP is specified this function will try to find an 6184 * existing css_set which includes the requested cgroup and if not create 6185 * a new css_set that the child will be attached to later. If this function 6186 * succeeds it will hold cgroup_threadgroup_rwsem on return. If 6187 * CLONE_INTO_CGROUP is requested this function will grab cgroup mutex 6188 * before grabbing cgroup_threadgroup_rwsem and will hold a reference 6189 * to the target cgroup. 6190 */ 6191 static int cgroup_css_set_fork(struct kernel_clone_args *kargs) 6192 __acquires(&cgroup_mutex) __acquires(&cgroup_threadgroup_rwsem) 6193 { 6194 int ret; 6195 struct cgroup *dst_cgrp = NULL; 6196 struct css_set *cset; 6197 struct super_block *sb; 6198 struct file *f; 6199 6200 if (kargs->flags & CLONE_INTO_CGROUP) 6201 mutex_lock(&cgroup_mutex); 6202 6203 cgroup_threadgroup_change_begin(current); 6204 6205 spin_lock_irq(&css_set_lock); 6206 cset = task_css_set(current); 6207 get_css_set(cset); 6208 spin_unlock_irq(&css_set_lock); 6209 6210 if (!(kargs->flags & CLONE_INTO_CGROUP)) { 6211 kargs->cset = cset; 6212 return 0; 6213 } 6214 6215 f = fget_raw(kargs->cgroup); 6216 if (!f) { 6217 ret = -EBADF; 6218 goto err; 6219 } 6220 sb = f->f_path.dentry->d_sb; 6221 6222 dst_cgrp = cgroup_get_from_file(f); 6223 if (IS_ERR(dst_cgrp)) { 6224 ret = PTR_ERR(dst_cgrp); 6225 dst_cgrp = NULL; 6226 goto err; 6227 } 6228 6229 if (cgroup_is_dead(dst_cgrp)) { 6230 ret = -ENODEV; 6231 goto err; 6232 } 6233 6234 /* 6235 * Verify that we the target cgroup is writable for us. This is 6236 * usually done by the vfs layer but since we're not going through 6237 * the vfs layer here we need to do it "manually". 6238 */ 6239 ret = cgroup_may_write(dst_cgrp, sb); 6240 if (ret) 6241 goto err; 6242 6243 /* 6244 * Spawning a task directly into a cgroup works by passing a file 6245 * descriptor to the target cgroup directory. This can even be an O_PATH 6246 * file descriptor. But it can never be a cgroup.procs file descriptor. 6247 * This was done on purpose so spawning into a cgroup could be 6248 * conceptualized as an atomic 6249 * 6250 * fd = openat(dfd_cgroup, "cgroup.procs", ...); 6251 * write(fd, <child-pid>, ...); 6252 * 6253 * sequence, i.e. it's a shorthand for the caller opening and writing 6254 * cgroup.procs of the cgroup indicated by @dfd_cgroup. This allows us 6255 * to always use the caller's credentials. 6256 */ 6257 ret = cgroup_attach_permissions(cset->dfl_cgrp, dst_cgrp, sb, 6258 !(kargs->flags & CLONE_THREAD), 6259 current->nsproxy->cgroup_ns); 6260 if (ret) 6261 goto err; 6262 6263 kargs->cset = find_css_set(cset, dst_cgrp); 6264 if (!kargs->cset) { 6265 ret = -ENOMEM; 6266 goto err; 6267 } 6268 6269 put_css_set(cset); 6270 fput(f); 6271 kargs->cgrp = dst_cgrp; 6272 return ret; 6273 6274 err: 6275 cgroup_threadgroup_change_end(current); 6276 mutex_unlock(&cgroup_mutex); 6277 if (f) 6278 fput(f); 6279 if (dst_cgrp) 6280 cgroup_put(dst_cgrp); 6281 put_css_set(cset); 6282 if (kargs->cset) 6283 put_css_set(kargs->cset); 6284 return ret; 6285 } 6286 6287 /** 6288 * cgroup_css_set_put_fork - drop references we took during fork 6289 * @kargs: the arguments passed to create the child process 6290 * 6291 * Drop references to the prepared css_set and target cgroup if 6292 * CLONE_INTO_CGROUP was requested. 6293 */ 6294 static void cgroup_css_set_put_fork(struct kernel_clone_args *kargs) 6295 __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex) 6296 { 6297 cgroup_threadgroup_change_end(current); 6298 6299 if (kargs->flags & CLONE_INTO_CGROUP) { 6300 struct cgroup *cgrp = kargs->cgrp; 6301 struct css_set *cset = kargs->cset; 6302 6303 mutex_unlock(&cgroup_mutex); 6304 6305 if (cset) { 6306 put_css_set(cset); 6307 kargs->cset = NULL; 6308 } 6309 6310 if (cgrp) { 6311 cgroup_put(cgrp); 6312 kargs->cgrp = NULL; 6313 } 6314 } 6315 } 6316 6317 /** 6318 * cgroup_can_fork - called on a new task before the process is exposed 6319 * @child: the child process 6320 * @kargs: the arguments passed to create the child process 6321 * 6322 * This prepares a new css_set for the child process which the child will 6323 * be attached to in cgroup_post_fork(). 6324 * This calls the subsystem can_fork() callbacks. If the cgroup_can_fork() 6325 * callback returns an error, the fork aborts with that error code. This 6326 * allows for a cgroup subsystem to conditionally allow or deny new forks. 6327 */ 6328 int cgroup_can_fork(struct task_struct *child, struct kernel_clone_args *kargs) 6329 { 6330 struct cgroup_subsys *ss; 6331 int i, j, ret; 6332 6333 ret = cgroup_css_set_fork(kargs); 6334 if (ret) 6335 return ret; 6336 6337 do_each_subsys_mask(ss, i, have_canfork_callback) { 6338 ret = ss->can_fork(child, kargs->cset); 6339 if (ret) 6340 goto out_revert; 6341 } while_each_subsys_mask(); 6342 6343 return 0; 6344 6345 out_revert: 6346 for_each_subsys(ss, j) { 6347 if (j >= i) 6348 break; 6349 if (ss->cancel_fork) 6350 ss->cancel_fork(child, kargs->cset); 6351 } 6352 6353 cgroup_css_set_put_fork(kargs); 6354 6355 return ret; 6356 } 6357 6358 /** 6359 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork() 6360 * @child: the child process 6361 * @kargs: the arguments passed to create the child process 6362 * 6363 * This calls the cancel_fork() callbacks if a fork failed *after* 6364 * cgroup_can_fork() succeeded and cleans up references we took to 6365 * prepare a new css_set for the child process in cgroup_can_fork(). 6366 */ 6367 void cgroup_cancel_fork(struct task_struct *child, 6368 struct kernel_clone_args *kargs) 6369 { 6370 struct cgroup_subsys *ss; 6371 int i; 6372 6373 for_each_subsys(ss, i) 6374 if (ss->cancel_fork) 6375 ss->cancel_fork(child, kargs->cset); 6376 6377 cgroup_css_set_put_fork(kargs); 6378 } 6379 6380 /** 6381 * cgroup_post_fork - finalize cgroup setup for the child process 6382 * @child: the child process 6383 * @kargs: the arguments passed to create the child process 6384 * 6385 * Attach the child process to its css_set calling the subsystem fork() 6386 * callbacks. 6387 */ 6388 void cgroup_post_fork(struct task_struct *child, 6389 struct kernel_clone_args *kargs) 6390 __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex) 6391 { 6392 unsigned long cgrp_flags = 0; 6393 bool kill = false; 6394 struct cgroup_subsys *ss; 6395 struct css_set *cset; 6396 int i; 6397 6398 cset = kargs->cset; 6399 kargs->cset = NULL; 6400 6401 spin_lock_irq(&css_set_lock); 6402 6403 /* init tasks are special, only link regular threads */ 6404 if (likely(child->pid)) { 6405 if (kargs->cgrp) 6406 cgrp_flags = kargs->cgrp->flags; 6407 else 6408 cgrp_flags = cset->dfl_cgrp->flags; 6409 6410 WARN_ON_ONCE(!list_empty(&child->cg_list)); 6411 cset->nr_tasks++; 6412 css_set_move_task(child, NULL, cset, false); 6413 } else { 6414 put_css_set(cset); 6415 cset = NULL; 6416 } 6417 6418 if (!(child->flags & PF_KTHREAD)) { 6419 if (unlikely(test_bit(CGRP_FREEZE, &cgrp_flags))) { 6420 /* 6421 * If the cgroup has to be frozen, the new task has 6422 * too. Let's set the JOBCTL_TRAP_FREEZE jobctl bit to 6423 * get the task into the frozen state. 6424 */ 6425 spin_lock(&child->sighand->siglock); 6426 WARN_ON_ONCE(child->frozen); 6427 child->jobctl |= JOBCTL_TRAP_FREEZE; 6428 spin_unlock(&child->sighand->siglock); 6429 6430 /* 6431 * Calling cgroup_update_frozen() isn't required here, 6432 * because it will be called anyway a bit later from 6433 * do_freezer_trap(). So we avoid cgroup's transient 6434 * switch from the frozen state and back. 6435 */ 6436 } 6437 6438 /* 6439 * If the cgroup is to be killed notice it now and take the 6440 * child down right after we finished preparing it for 6441 * userspace. 6442 */ 6443 kill = test_bit(CGRP_KILL, &cgrp_flags); 6444 } 6445 6446 spin_unlock_irq(&css_set_lock); 6447 6448 /* 6449 * Call ss->fork(). This must happen after @child is linked on 6450 * css_set; otherwise, @child might change state between ->fork() 6451 * and addition to css_set. 6452 */ 6453 do_each_subsys_mask(ss, i, have_fork_callback) { 6454 ss->fork(child); 6455 } while_each_subsys_mask(); 6456 6457 /* Make the new cset the root_cset of the new cgroup namespace. */ 6458 if (kargs->flags & CLONE_NEWCGROUP) { 6459 struct css_set *rcset = child->nsproxy->cgroup_ns->root_cset; 6460 6461 get_css_set(cset); 6462 child->nsproxy->cgroup_ns->root_cset = cset; 6463 put_css_set(rcset); 6464 } 6465 6466 /* Cgroup has to be killed so take down child immediately. */ 6467 if (unlikely(kill)) 6468 do_send_sig_info(SIGKILL, SEND_SIG_NOINFO, child, PIDTYPE_TGID); 6469 6470 cgroup_css_set_put_fork(kargs); 6471 } 6472 6473 /** 6474 * cgroup_exit - detach cgroup from exiting task 6475 * @tsk: pointer to task_struct of exiting process 6476 * 6477 * Description: Detach cgroup from @tsk. 6478 * 6479 */ 6480 void cgroup_exit(struct task_struct *tsk) 6481 { 6482 struct cgroup_subsys *ss; 6483 struct css_set *cset; 6484 int i; 6485 6486 spin_lock_irq(&css_set_lock); 6487 6488 WARN_ON_ONCE(list_empty(&tsk->cg_list)); 6489 cset = task_css_set(tsk); 6490 css_set_move_task(tsk, cset, NULL, false); 6491 list_add_tail(&tsk->cg_list, &cset->dying_tasks); 6492 cset->nr_tasks--; 6493 6494 WARN_ON_ONCE(cgroup_task_frozen(tsk)); 6495 if (unlikely(!(tsk->flags & PF_KTHREAD) && 6496 test_bit(CGRP_FREEZE, &task_dfl_cgroup(tsk)->flags))) 6497 cgroup_update_frozen(task_dfl_cgroup(tsk)); 6498 6499 spin_unlock_irq(&css_set_lock); 6500 6501 /* see cgroup_post_fork() for details */ 6502 do_each_subsys_mask(ss, i, have_exit_callback) { 6503 ss->exit(tsk); 6504 } while_each_subsys_mask(); 6505 } 6506 6507 void cgroup_release(struct task_struct *task) 6508 { 6509 struct cgroup_subsys *ss; 6510 int ssid; 6511 6512 do_each_subsys_mask(ss, ssid, have_release_callback) { 6513 ss->release(task); 6514 } while_each_subsys_mask(); 6515 6516 spin_lock_irq(&css_set_lock); 6517 css_set_skip_task_iters(task_css_set(task), task); 6518 list_del_init(&task->cg_list); 6519 spin_unlock_irq(&css_set_lock); 6520 } 6521 6522 void cgroup_free(struct task_struct *task) 6523 { 6524 struct css_set *cset = task_css_set(task); 6525 put_css_set(cset); 6526 } 6527 6528 static int __init cgroup_disable(char *str) 6529 { 6530 struct cgroup_subsys *ss; 6531 char *token; 6532 int i; 6533 6534 while ((token = strsep(&str, ",")) != NULL) { 6535 if (!*token) 6536 continue; 6537 6538 for_each_subsys(ss, i) { 6539 if (strcmp(token, ss->name) && 6540 strcmp(token, ss->legacy_name)) 6541 continue; 6542 6543 static_branch_disable(cgroup_subsys_enabled_key[i]); 6544 pr_info("Disabling %s control group subsystem\n", 6545 ss->name); 6546 } 6547 6548 for (i = 0; i < OPT_FEATURE_COUNT; i++) { 6549 if (strcmp(token, cgroup_opt_feature_names[i])) 6550 continue; 6551 cgroup_feature_disable_mask |= 1 << i; 6552 pr_info("Disabling %s control group feature\n", 6553 cgroup_opt_feature_names[i]); 6554 break; 6555 } 6556 } 6557 return 1; 6558 } 6559 __setup("cgroup_disable=", cgroup_disable); 6560 6561 void __init __weak enable_debug_cgroup(void) { } 6562 6563 static int __init enable_cgroup_debug(char *str) 6564 { 6565 cgroup_debug = true; 6566 enable_debug_cgroup(); 6567 return 1; 6568 } 6569 __setup("cgroup_debug", enable_cgroup_debug); 6570 6571 /** 6572 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry 6573 * @dentry: directory dentry of interest 6574 * @ss: subsystem of interest 6575 * 6576 * If @dentry is a directory for a cgroup which has @ss enabled on it, try 6577 * to get the corresponding css and return it. If such css doesn't exist 6578 * or can't be pinned, an ERR_PTR value is returned. 6579 */ 6580 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry, 6581 struct cgroup_subsys *ss) 6582 { 6583 struct kernfs_node *kn = kernfs_node_from_dentry(dentry); 6584 struct file_system_type *s_type = dentry->d_sb->s_type; 6585 struct cgroup_subsys_state *css = NULL; 6586 struct cgroup *cgrp; 6587 6588 /* is @dentry a cgroup dir? */ 6589 if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) || 6590 !kn || kernfs_type(kn) != KERNFS_DIR) 6591 return ERR_PTR(-EBADF); 6592 6593 rcu_read_lock(); 6594 6595 /* 6596 * This path doesn't originate from kernfs and @kn could already 6597 * have been or be removed at any point. @kn->priv is RCU 6598 * protected for this access. See css_release_work_fn() for details. 6599 */ 6600 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); 6601 if (cgrp) 6602 css = cgroup_css(cgrp, ss); 6603 6604 if (!css || !css_tryget_online(css)) 6605 css = ERR_PTR(-ENOENT); 6606 6607 rcu_read_unlock(); 6608 return css; 6609 } 6610 6611 /** 6612 * css_from_id - lookup css by id 6613 * @id: the cgroup id 6614 * @ss: cgroup subsys to be looked into 6615 * 6616 * Returns the css if there's valid one with @id, otherwise returns NULL. 6617 * Should be called under rcu_read_lock(). 6618 */ 6619 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss) 6620 { 6621 WARN_ON_ONCE(!rcu_read_lock_held()); 6622 return idr_find(&ss->css_idr, id); 6623 } 6624 6625 /** 6626 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path 6627 * @path: path on the default hierarchy 6628 * 6629 * Find the cgroup at @path on the default hierarchy, increment its 6630 * reference count and return it. Returns pointer to the found cgroup on 6631 * success, ERR_PTR(-ENOENT) if @path doesn't exist or if the cgroup has already 6632 * been released and ERR_PTR(-ENOTDIR) if @path points to a non-directory. 6633 */ 6634 struct cgroup *cgroup_get_from_path(const char *path) 6635 { 6636 struct kernfs_node *kn; 6637 struct cgroup *cgrp = ERR_PTR(-ENOENT); 6638 6639 kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path); 6640 if (!kn) 6641 goto out; 6642 6643 if (kernfs_type(kn) != KERNFS_DIR) { 6644 cgrp = ERR_PTR(-ENOTDIR); 6645 goto out_kernfs; 6646 } 6647 6648 rcu_read_lock(); 6649 6650 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); 6651 if (!cgrp || !cgroup_tryget(cgrp)) 6652 cgrp = ERR_PTR(-ENOENT); 6653 6654 rcu_read_unlock(); 6655 6656 out_kernfs: 6657 kernfs_put(kn); 6658 out: 6659 return cgrp; 6660 } 6661 EXPORT_SYMBOL_GPL(cgroup_get_from_path); 6662 6663 /** 6664 * cgroup_get_from_fd - get a cgroup pointer from a fd 6665 * @fd: fd obtained by open(cgroup2_dir) 6666 * 6667 * Find the cgroup from a fd which should be obtained 6668 * by opening a cgroup directory. Returns a pointer to the 6669 * cgroup on success. ERR_PTR is returned if the cgroup 6670 * cannot be found. 6671 */ 6672 struct cgroup *cgroup_get_from_fd(int fd) 6673 { 6674 struct cgroup *cgrp; 6675 struct file *f; 6676 6677 f = fget_raw(fd); 6678 if (!f) 6679 return ERR_PTR(-EBADF); 6680 6681 cgrp = cgroup_get_from_file(f); 6682 fput(f); 6683 return cgrp; 6684 } 6685 EXPORT_SYMBOL_GPL(cgroup_get_from_fd); 6686 6687 static u64 power_of_ten(int power) 6688 { 6689 u64 v = 1; 6690 while (power--) 6691 v *= 10; 6692 return v; 6693 } 6694 6695 /** 6696 * cgroup_parse_float - parse a floating number 6697 * @input: input string 6698 * @dec_shift: number of decimal digits to shift 6699 * @v: output 6700 * 6701 * Parse a decimal floating point number in @input and store the result in 6702 * @v with decimal point right shifted @dec_shift times. For example, if 6703 * @input is "12.3456" and @dec_shift is 3, *@v will be set to 12345. 6704 * Returns 0 on success, -errno otherwise. 6705 * 6706 * There's nothing cgroup specific about this function except that it's 6707 * currently the only user. 6708 */ 6709 int cgroup_parse_float(const char *input, unsigned dec_shift, s64 *v) 6710 { 6711 s64 whole, frac = 0; 6712 int fstart = 0, fend = 0, flen; 6713 6714 if (!sscanf(input, "%lld.%n%lld%n", &whole, &fstart, &frac, &fend)) 6715 return -EINVAL; 6716 if (frac < 0) 6717 return -EINVAL; 6718 6719 flen = fend > fstart ? fend - fstart : 0; 6720 if (flen < dec_shift) 6721 frac *= power_of_ten(dec_shift - flen); 6722 else 6723 frac = DIV_ROUND_CLOSEST_ULL(frac, power_of_ten(flen - dec_shift)); 6724 6725 *v = whole * power_of_ten(dec_shift) + frac; 6726 return 0; 6727 } 6728 6729 /* 6730 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data 6731 * definition in cgroup-defs.h. 6732 */ 6733 #ifdef CONFIG_SOCK_CGROUP_DATA 6734 6735 void cgroup_sk_alloc(struct sock_cgroup_data *skcd) 6736 { 6737 struct cgroup *cgroup; 6738 6739 rcu_read_lock(); 6740 /* Don't associate the sock with unrelated interrupted task's cgroup. */ 6741 if (in_interrupt()) { 6742 cgroup = &cgrp_dfl_root.cgrp; 6743 cgroup_get(cgroup); 6744 goto out; 6745 } 6746 6747 while (true) { 6748 struct css_set *cset; 6749 6750 cset = task_css_set(current); 6751 if (likely(cgroup_tryget(cset->dfl_cgrp))) { 6752 cgroup = cset->dfl_cgrp; 6753 break; 6754 } 6755 cpu_relax(); 6756 } 6757 out: 6758 skcd->cgroup = cgroup; 6759 cgroup_bpf_get(cgroup); 6760 rcu_read_unlock(); 6761 } 6762 6763 void cgroup_sk_clone(struct sock_cgroup_data *skcd) 6764 { 6765 struct cgroup *cgrp = sock_cgroup_ptr(skcd); 6766 6767 /* 6768 * We might be cloning a socket which is left in an empty 6769 * cgroup and the cgroup might have already been rmdir'd. 6770 * Don't use cgroup_get_live(). 6771 */ 6772 cgroup_get(cgrp); 6773 cgroup_bpf_get(cgrp); 6774 } 6775 6776 void cgroup_sk_free(struct sock_cgroup_data *skcd) 6777 { 6778 struct cgroup *cgrp = sock_cgroup_ptr(skcd); 6779 6780 cgroup_bpf_put(cgrp); 6781 cgroup_put(cgrp); 6782 } 6783 6784 #endif /* CONFIG_SOCK_CGROUP_DATA */ 6785 6786 #ifdef CONFIG_SYSFS 6787 static ssize_t show_delegatable_files(struct cftype *files, char *buf, 6788 ssize_t size, const char *prefix) 6789 { 6790 struct cftype *cft; 6791 ssize_t ret = 0; 6792 6793 for (cft = files; cft && cft->name[0] != '\0'; cft++) { 6794 if (!(cft->flags & CFTYPE_NS_DELEGATABLE)) 6795 continue; 6796 6797 if ((cft->flags & CFTYPE_PRESSURE) && !cgroup_psi_enabled()) 6798 continue; 6799 6800 if (prefix) 6801 ret += snprintf(buf + ret, size - ret, "%s.", prefix); 6802 6803 ret += snprintf(buf + ret, size - ret, "%s\n", cft->name); 6804 6805 if (WARN_ON(ret >= size)) 6806 break; 6807 } 6808 6809 return ret; 6810 } 6811 6812 static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr, 6813 char *buf) 6814 { 6815 struct cgroup_subsys *ss; 6816 int ssid; 6817 ssize_t ret = 0; 6818 6819 ret = show_delegatable_files(cgroup_base_files, buf, PAGE_SIZE - ret, 6820 NULL); 6821 6822 for_each_subsys(ss, ssid) 6823 ret += show_delegatable_files(ss->dfl_cftypes, buf + ret, 6824 PAGE_SIZE - ret, 6825 cgroup_subsys_name[ssid]); 6826 6827 return ret; 6828 } 6829 static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate); 6830 6831 static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr, 6832 char *buf) 6833 { 6834 return snprintf(buf, PAGE_SIZE, 6835 "nsdelegate\n" 6836 "favordynmods\n" 6837 "memory_localevents\n" 6838 "memory_recursiveprot\n"); 6839 } 6840 static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features); 6841 6842 static struct attribute *cgroup_sysfs_attrs[] = { 6843 &cgroup_delegate_attr.attr, 6844 &cgroup_features_attr.attr, 6845 NULL, 6846 }; 6847 6848 static const struct attribute_group cgroup_sysfs_attr_group = { 6849 .attrs = cgroup_sysfs_attrs, 6850 .name = "cgroup", 6851 }; 6852 6853 static int __init cgroup_sysfs_init(void) 6854 { 6855 return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group); 6856 } 6857 subsys_initcall(cgroup_sysfs_init); 6858 6859 #endif /* CONFIG_SYSFS */ 6860