1 /* 2 * Generic process-grouping system. 3 * 4 * Based originally on the cpuset system, extracted by Paul Menage 5 * Copyright (C) 2006 Google, Inc 6 * 7 * Notifications support 8 * Copyright (C) 2009 Nokia Corporation 9 * Author: Kirill A. Shutemov 10 * 11 * Copyright notices from the original cpuset code: 12 * -------------------------------------------------- 13 * Copyright (C) 2003 BULL SA. 14 * Copyright (C) 2004-2006 Silicon Graphics, Inc. 15 * 16 * Portions derived from Patrick Mochel's sysfs code. 17 * sysfs is Copyright (c) 2001-3 Patrick Mochel 18 * 19 * 2003-10-10 Written by Simon Derr. 20 * 2003-10-22 Updates by Stephen Hemminger. 21 * 2004 May-July Rework by Paul Jackson. 22 * --------------------------------------------------- 23 * 24 * This file is subject to the terms and conditions of the GNU General Public 25 * License. See the file COPYING in the main directory of the Linux 26 * distribution for more details. 27 */ 28 29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 30 31 #include "cgroup-internal.h" 32 33 #include <linux/bpf-cgroup.h> 34 #include <linux/cred.h> 35 #include <linux/errno.h> 36 #include <linux/init_task.h> 37 #include <linux/kernel.h> 38 #include <linux/magic.h> 39 #include <linux/mutex.h> 40 #include <linux/mount.h> 41 #include <linux/pagemap.h> 42 #include <linux/proc_fs.h> 43 #include <linux/rcupdate.h> 44 #include <linux/sched.h> 45 #include <linux/sched/task.h> 46 #include <linux/slab.h> 47 #include <linux/spinlock.h> 48 #include <linux/percpu-rwsem.h> 49 #include <linux/string.h> 50 #include <linux/hashtable.h> 51 #include <linux/idr.h> 52 #include <linux/kthread.h> 53 #include <linux/atomic.h> 54 #include <linux/cpuset.h> 55 #include <linux/proc_ns.h> 56 #include <linux/nsproxy.h> 57 #include <linux/file.h> 58 #include <linux/fs_parser.h> 59 #include <linux/sched/cputime.h> 60 #include <linux/psi.h> 61 #include <net/sock.h> 62 63 #define CREATE_TRACE_POINTS 64 #include <trace/events/cgroup.h> 65 66 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \ 67 MAX_CFTYPE_NAME + 2) 68 /* let's not notify more than 100 times per second */ 69 #define CGROUP_FILE_NOTIFY_MIN_INTV DIV_ROUND_UP(HZ, 100) 70 71 /* 72 * To avoid confusing the compiler (and generating warnings) with code 73 * that attempts to access what would be a 0-element array (i.e. sized 74 * to a potentially empty array when CGROUP_SUBSYS_COUNT == 0), this 75 * constant expression can be added. 76 */ 77 #define CGROUP_HAS_SUBSYS_CONFIG (CGROUP_SUBSYS_COUNT > 0) 78 79 /* 80 * cgroup_mutex is the master lock. Any modification to cgroup or its 81 * hierarchy must be performed while holding it. 82 * 83 * css_set_lock protects task->cgroups pointer, the list of css_set 84 * objects, and the chain of tasks off each css_set. 85 * 86 * These locks are exported if CONFIG_PROVE_RCU so that accessors in 87 * cgroup.h can use them for lockdep annotations. 88 */ 89 DEFINE_MUTEX(cgroup_mutex); 90 DEFINE_SPINLOCK(css_set_lock); 91 92 #ifdef CONFIG_PROVE_RCU 93 EXPORT_SYMBOL_GPL(cgroup_mutex); 94 EXPORT_SYMBOL_GPL(css_set_lock); 95 #endif 96 97 DEFINE_SPINLOCK(trace_cgroup_path_lock); 98 char trace_cgroup_path[TRACE_CGROUP_PATH_LEN]; 99 bool cgroup_debug __read_mostly; 100 101 /* 102 * Protects cgroup_idr and css_idr so that IDs can be released without 103 * grabbing cgroup_mutex. 104 */ 105 static DEFINE_SPINLOCK(cgroup_idr_lock); 106 107 /* 108 * Protects cgroup_file->kn for !self csses. It synchronizes notifications 109 * against file removal/re-creation across css hiding. 110 */ 111 static DEFINE_SPINLOCK(cgroup_file_kn_lock); 112 113 DEFINE_PERCPU_RWSEM(cgroup_threadgroup_rwsem); 114 115 #define cgroup_assert_mutex_or_rcu_locked() \ 116 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \ 117 !lockdep_is_held(&cgroup_mutex), \ 118 "cgroup_mutex or RCU read lock required"); 119 120 /* 121 * cgroup destruction makes heavy use of work items and there can be a lot 122 * of concurrent destructions. Use a separate workqueue so that cgroup 123 * destruction work items don't end up filling up max_active of system_wq 124 * which may lead to deadlock. 125 */ 126 static struct workqueue_struct *cgroup_destroy_wq; 127 128 /* generate an array of cgroup subsystem pointers */ 129 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys, 130 struct cgroup_subsys *cgroup_subsys[] = { 131 #include <linux/cgroup_subsys.h> 132 }; 133 #undef SUBSYS 134 135 /* array of cgroup subsystem names */ 136 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x, 137 static const char *cgroup_subsys_name[] = { 138 #include <linux/cgroup_subsys.h> 139 }; 140 #undef SUBSYS 141 142 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */ 143 #define SUBSYS(_x) \ 144 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \ 145 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \ 146 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \ 147 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key); 148 #include <linux/cgroup_subsys.h> 149 #undef SUBSYS 150 151 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key, 152 static struct static_key_true *cgroup_subsys_enabled_key[] = { 153 #include <linux/cgroup_subsys.h> 154 }; 155 #undef SUBSYS 156 157 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key, 158 static struct static_key_true *cgroup_subsys_on_dfl_key[] = { 159 #include <linux/cgroup_subsys.h> 160 }; 161 #undef SUBSYS 162 163 static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu); 164 165 /* the default hierarchy */ 166 struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu }; 167 EXPORT_SYMBOL_GPL(cgrp_dfl_root); 168 169 /* 170 * The default hierarchy always exists but is hidden until mounted for the 171 * first time. This is for backward compatibility. 172 */ 173 static bool cgrp_dfl_visible; 174 175 /* some controllers are not supported in the default hierarchy */ 176 static u16 cgrp_dfl_inhibit_ss_mask; 177 178 /* some controllers are implicitly enabled on the default hierarchy */ 179 static u16 cgrp_dfl_implicit_ss_mask; 180 181 /* some controllers can be threaded on the default hierarchy */ 182 static u16 cgrp_dfl_threaded_ss_mask; 183 184 /* The list of hierarchy roots */ 185 LIST_HEAD(cgroup_roots); 186 static int cgroup_root_count; 187 188 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */ 189 static DEFINE_IDR(cgroup_hierarchy_idr); 190 191 /* 192 * Assign a monotonically increasing serial number to csses. It guarantees 193 * cgroups with bigger numbers are newer than those with smaller numbers. 194 * Also, as csses are always appended to the parent's ->children list, it 195 * guarantees that sibling csses are always sorted in the ascending serial 196 * number order on the list. Protected by cgroup_mutex. 197 */ 198 static u64 css_serial_nr_next = 1; 199 200 /* 201 * These bitmasks identify subsystems with specific features to avoid 202 * having to do iterative checks repeatedly. 203 */ 204 static u16 have_fork_callback __read_mostly; 205 static u16 have_exit_callback __read_mostly; 206 static u16 have_release_callback __read_mostly; 207 static u16 have_canfork_callback __read_mostly; 208 209 /* cgroup namespace for init task */ 210 struct cgroup_namespace init_cgroup_ns = { 211 .ns.count = REFCOUNT_INIT(2), 212 .user_ns = &init_user_ns, 213 .ns.ops = &cgroupns_operations, 214 .ns.inum = PROC_CGROUP_INIT_INO, 215 .root_cset = &init_css_set, 216 }; 217 218 static struct file_system_type cgroup2_fs_type; 219 static struct cftype cgroup_base_files[]; 220 221 /* cgroup optional features */ 222 enum cgroup_opt_features { 223 #ifdef CONFIG_PSI 224 OPT_FEATURE_PRESSURE, 225 #endif 226 OPT_FEATURE_COUNT 227 }; 228 229 static const char *cgroup_opt_feature_names[OPT_FEATURE_COUNT] = { 230 #ifdef CONFIG_PSI 231 "pressure", 232 #endif 233 }; 234 235 static u16 cgroup_feature_disable_mask __read_mostly; 236 237 static int cgroup_apply_control(struct cgroup *cgrp); 238 static void cgroup_finalize_control(struct cgroup *cgrp, int ret); 239 static void css_task_iter_skip(struct css_task_iter *it, 240 struct task_struct *task); 241 static int cgroup_destroy_locked(struct cgroup *cgrp); 242 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp, 243 struct cgroup_subsys *ss); 244 static void css_release(struct percpu_ref *ref); 245 static void kill_css(struct cgroup_subsys_state *css); 246 static int cgroup_addrm_files(struct cgroup_subsys_state *css, 247 struct cgroup *cgrp, struct cftype cfts[], 248 bool is_add); 249 250 /** 251 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID 252 * @ssid: subsys ID of interest 253 * 254 * cgroup_subsys_enabled() can only be used with literal subsys names which 255 * is fine for individual subsystems but unsuitable for cgroup core. This 256 * is slower static_key_enabled() based test indexed by @ssid. 257 */ 258 bool cgroup_ssid_enabled(int ssid) 259 { 260 if (!CGROUP_HAS_SUBSYS_CONFIG) 261 return false; 262 263 return static_key_enabled(cgroup_subsys_enabled_key[ssid]); 264 } 265 266 /** 267 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy 268 * @cgrp: the cgroup of interest 269 * 270 * The default hierarchy is the v2 interface of cgroup and this function 271 * can be used to test whether a cgroup is on the default hierarchy for 272 * cases where a subsystem should behave differently depending on the 273 * interface version. 274 * 275 * List of changed behaviors: 276 * 277 * - Mount options "noprefix", "xattr", "clone_children", "release_agent" 278 * and "name" are disallowed. 279 * 280 * - When mounting an existing superblock, mount options should match. 281 * 282 * - Remount is disallowed. 283 * 284 * - rename(2) is disallowed. 285 * 286 * - "tasks" is removed. Everything should be at process granularity. Use 287 * "cgroup.procs" instead. 288 * 289 * - "cgroup.procs" is not sorted. pids will be unique unless they got 290 * recycled in-between reads. 291 * 292 * - "release_agent" and "notify_on_release" are removed. Replacement 293 * notification mechanism will be implemented. 294 * 295 * - "cgroup.clone_children" is removed. 296 * 297 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup 298 * and its descendants contain no task; otherwise, 1. The file also 299 * generates kernfs notification which can be monitored through poll and 300 * [di]notify when the value of the file changes. 301 * 302 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and 303 * take masks of ancestors with non-empty cpus/mems, instead of being 304 * moved to an ancestor. 305 * 306 * - cpuset: a task can be moved into an empty cpuset, and again it takes 307 * masks of ancestors. 308 * 309 * - blkcg: blk-throttle becomes properly hierarchical. 310 * 311 * - debug: disallowed on the default hierarchy. 312 */ 313 bool cgroup_on_dfl(const struct cgroup *cgrp) 314 { 315 return cgrp->root == &cgrp_dfl_root; 316 } 317 318 /* IDR wrappers which synchronize using cgroup_idr_lock */ 319 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end, 320 gfp_t gfp_mask) 321 { 322 int ret; 323 324 idr_preload(gfp_mask); 325 spin_lock_bh(&cgroup_idr_lock); 326 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM); 327 spin_unlock_bh(&cgroup_idr_lock); 328 idr_preload_end(); 329 return ret; 330 } 331 332 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id) 333 { 334 void *ret; 335 336 spin_lock_bh(&cgroup_idr_lock); 337 ret = idr_replace(idr, ptr, id); 338 spin_unlock_bh(&cgroup_idr_lock); 339 return ret; 340 } 341 342 static void cgroup_idr_remove(struct idr *idr, int id) 343 { 344 spin_lock_bh(&cgroup_idr_lock); 345 idr_remove(idr, id); 346 spin_unlock_bh(&cgroup_idr_lock); 347 } 348 349 static bool cgroup_has_tasks(struct cgroup *cgrp) 350 { 351 return cgrp->nr_populated_csets; 352 } 353 354 bool cgroup_is_threaded(struct cgroup *cgrp) 355 { 356 return cgrp->dom_cgrp != cgrp; 357 } 358 359 /* can @cgrp host both domain and threaded children? */ 360 static bool cgroup_is_mixable(struct cgroup *cgrp) 361 { 362 /* 363 * Root isn't under domain level resource control exempting it from 364 * the no-internal-process constraint, so it can serve as a thread 365 * root and a parent of resource domains at the same time. 366 */ 367 return !cgroup_parent(cgrp); 368 } 369 370 /* can @cgrp become a thread root? Should always be true for a thread root */ 371 static bool cgroup_can_be_thread_root(struct cgroup *cgrp) 372 { 373 /* mixables don't care */ 374 if (cgroup_is_mixable(cgrp)) 375 return true; 376 377 /* domain roots can't be nested under threaded */ 378 if (cgroup_is_threaded(cgrp)) 379 return false; 380 381 /* can only have either domain or threaded children */ 382 if (cgrp->nr_populated_domain_children) 383 return false; 384 385 /* and no domain controllers can be enabled */ 386 if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask) 387 return false; 388 389 return true; 390 } 391 392 /* is @cgrp root of a threaded subtree? */ 393 bool cgroup_is_thread_root(struct cgroup *cgrp) 394 { 395 /* thread root should be a domain */ 396 if (cgroup_is_threaded(cgrp)) 397 return false; 398 399 /* a domain w/ threaded children is a thread root */ 400 if (cgrp->nr_threaded_children) 401 return true; 402 403 /* 404 * A domain which has tasks and explicit threaded controllers 405 * enabled is a thread root. 406 */ 407 if (cgroup_has_tasks(cgrp) && 408 (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask)) 409 return true; 410 411 return false; 412 } 413 414 /* a domain which isn't connected to the root w/o brekage can't be used */ 415 static bool cgroup_is_valid_domain(struct cgroup *cgrp) 416 { 417 /* the cgroup itself can be a thread root */ 418 if (cgroup_is_threaded(cgrp)) 419 return false; 420 421 /* but the ancestors can't be unless mixable */ 422 while ((cgrp = cgroup_parent(cgrp))) { 423 if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp)) 424 return false; 425 if (cgroup_is_threaded(cgrp)) 426 return false; 427 } 428 429 return true; 430 } 431 432 /* subsystems visibly enabled on a cgroup */ 433 static u16 cgroup_control(struct cgroup *cgrp) 434 { 435 struct cgroup *parent = cgroup_parent(cgrp); 436 u16 root_ss_mask = cgrp->root->subsys_mask; 437 438 if (parent) { 439 u16 ss_mask = parent->subtree_control; 440 441 /* threaded cgroups can only have threaded controllers */ 442 if (cgroup_is_threaded(cgrp)) 443 ss_mask &= cgrp_dfl_threaded_ss_mask; 444 return ss_mask; 445 } 446 447 if (cgroup_on_dfl(cgrp)) 448 root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask | 449 cgrp_dfl_implicit_ss_mask); 450 return root_ss_mask; 451 } 452 453 /* subsystems enabled on a cgroup */ 454 static u16 cgroup_ss_mask(struct cgroup *cgrp) 455 { 456 struct cgroup *parent = cgroup_parent(cgrp); 457 458 if (parent) { 459 u16 ss_mask = parent->subtree_ss_mask; 460 461 /* threaded cgroups can only have threaded controllers */ 462 if (cgroup_is_threaded(cgrp)) 463 ss_mask &= cgrp_dfl_threaded_ss_mask; 464 return ss_mask; 465 } 466 467 return cgrp->root->subsys_mask; 468 } 469 470 /** 471 * cgroup_css - obtain a cgroup's css for the specified subsystem 472 * @cgrp: the cgroup of interest 473 * @ss: the subsystem of interest (%NULL returns @cgrp->self) 474 * 475 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This 476 * function must be called either under cgroup_mutex or rcu_read_lock() and 477 * the caller is responsible for pinning the returned css if it wants to 478 * keep accessing it outside the said locks. This function may return 479 * %NULL if @cgrp doesn't have @subsys_id enabled. 480 */ 481 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp, 482 struct cgroup_subsys *ss) 483 { 484 if (CGROUP_HAS_SUBSYS_CONFIG && ss) 485 return rcu_dereference_check(cgrp->subsys[ss->id], 486 lockdep_is_held(&cgroup_mutex)); 487 else 488 return &cgrp->self; 489 } 490 491 /** 492 * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem 493 * @cgrp: the cgroup of interest 494 * @ss: the subsystem of interest 495 * 496 * Find and get @cgrp's css associated with @ss. If the css doesn't exist 497 * or is offline, %NULL is returned. 498 */ 499 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp, 500 struct cgroup_subsys *ss) 501 { 502 struct cgroup_subsys_state *css; 503 504 rcu_read_lock(); 505 css = cgroup_css(cgrp, ss); 506 if (css && !css_tryget_online(css)) 507 css = NULL; 508 rcu_read_unlock(); 509 510 return css; 511 } 512 513 /** 514 * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss 515 * @cgrp: the cgroup of interest 516 * @ss: the subsystem of interest (%NULL returns @cgrp->self) 517 * 518 * Similar to cgroup_css() but returns the effective css, which is defined 519 * as the matching css of the nearest ancestor including self which has @ss 520 * enabled. If @ss is associated with the hierarchy @cgrp is on, this 521 * function is guaranteed to return non-NULL css. 522 */ 523 static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp, 524 struct cgroup_subsys *ss) 525 { 526 lockdep_assert_held(&cgroup_mutex); 527 528 if (!ss) 529 return &cgrp->self; 530 531 /* 532 * This function is used while updating css associations and thus 533 * can't test the csses directly. Test ss_mask. 534 */ 535 while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) { 536 cgrp = cgroup_parent(cgrp); 537 if (!cgrp) 538 return NULL; 539 } 540 541 return cgroup_css(cgrp, ss); 542 } 543 544 /** 545 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem 546 * @cgrp: the cgroup of interest 547 * @ss: the subsystem of interest 548 * 549 * Find and get the effective css of @cgrp for @ss. The effective css is 550 * defined as the matching css of the nearest ancestor including self which 551 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on, 552 * the root css is returned, so this function always returns a valid css. 553 * 554 * The returned css is not guaranteed to be online, and therefore it is the 555 * callers responsibility to try get a reference for it. 556 */ 557 struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp, 558 struct cgroup_subsys *ss) 559 { 560 struct cgroup_subsys_state *css; 561 562 if (!CGROUP_HAS_SUBSYS_CONFIG) 563 return NULL; 564 565 do { 566 css = cgroup_css(cgrp, ss); 567 568 if (css) 569 return css; 570 cgrp = cgroup_parent(cgrp); 571 } while (cgrp); 572 573 return init_css_set.subsys[ss->id]; 574 } 575 576 /** 577 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem 578 * @cgrp: the cgroup of interest 579 * @ss: the subsystem of interest 580 * 581 * Find and get the effective css of @cgrp for @ss. The effective css is 582 * defined as the matching css of the nearest ancestor including self which 583 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on, 584 * the root css is returned, so this function always returns a valid css. 585 * The returned css must be put using css_put(). 586 */ 587 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp, 588 struct cgroup_subsys *ss) 589 { 590 struct cgroup_subsys_state *css; 591 592 if (!CGROUP_HAS_SUBSYS_CONFIG) 593 return NULL; 594 595 rcu_read_lock(); 596 597 do { 598 css = cgroup_css(cgrp, ss); 599 600 if (css && css_tryget_online(css)) 601 goto out_unlock; 602 cgrp = cgroup_parent(cgrp); 603 } while (cgrp); 604 605 css = init_css_set.subsys[ss->id]; 606 css_get(css); 607 out_unlock: 608 rcu_read_unlock(); 609 return css; 610 } 611 EXPORT_SYMBOL_GPL(cgroup_get_e_css); 612 613 static void cgroup_get_live(struct cgroup *cgrp) 614 { 615 WARN_ON_ONCE(cgroup_is_dead(cgrp)); 616 css_get(&cgrp->self); 617 } 618 619 /** 620 * __cgroup_task_count - count the number of tasks in a cgroup. The caller 621 * is responsible for taking the css_set_lock. 622 * @cgrp: the cgroup in question 623 */ 624 int __cgroup_task_count(const struct cgroup *cgrp) 625 { 626 int count = 0; 627 struct cgrp_cset_link *link; 628 629 lockdep_assert_held(&css_set_lock); 630 631 list_for_each_entry(link, &cgrp->cset_links, cset_link) 632 count += link->cset->nr_tasks; 633 634 return count; 635 } 636 637 /** 638 * cgroup_task_count - count the number of tasks in a cgroup. 639 * @cgrp: the cgroup in question 640 */ 641 int cgroup_task_count(const struct cgroup *cgrp) 642 { 643 int count; 644 645 spin_lock_irq(&css_set_lock); 646 count = __cgroup_task_count(cgrp); 647 spin_unlock_irq(&css_set_lock); 648 649 return count; 650 } 651 652 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of) 653 { 654 struct cgroup *cgrp = of->kn->parent->priv; 655 struct cftype *cft = of_cft(of); 656 657 /* 658 * This is open and unprotected implementation of cgroup_css(). 659 * seq_css() is only called from a kernfs file operation which has 660 * an active reference on the file. Because all the subsystem 661 * files are drained before a css is disassociated with a cgroup, 662 * the matching css from the cgroup's subsys table is guaranteed to 663 * be and stay valid until the enclosing operation is complete. 664 */ 665 if (CGROUP_HAS_SUBSYS_CONFIG && cft->ss) 666 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]); 667 else 668 return &cgrp->self; 669 } 670 EXPORT_SYMBOL_GPL(of_css); 671 672 /** 673 * for_each_css - iterate all css's of a cgroup 674 * @css: the iteration cursor 675 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end 676 * @cgrp: the target cgroup to iterate css's of 677 * 678 * Should be called under cgroup_[tree_]mutex. 679 */ 680 #define for_each_css(css, ssid, cgrp) \ 681 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \ 682 if (!((css) = rcu_dereference_check( \ 683 (cgrp)->subsys[(ssid)], \ 684 lockdep_is_held(&cgroup_mutex)))) { } \ 685 else 686 687 /** 688 * for_each_e_css - iterate all effective css's of a cgroup 689 * @css: the iteration cursor 690 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end 691 * @cgrp: the target cgroup to iterate css's of 692 * 693 * Should be called under cgroup_[tree_]mutex. 694 */ 695 #define for_each_e_css(css, ssid, cgrp) \ 696 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \ 697 if (!((css) = cgroup_e_css_by_mask(cgrp, \ 698 cgroup_subsys[(ssid)]))) \ 699 ; \ 700 else 701 702 /** 703 * do_each_subsys_mask - filter for_each_subsys with a bitmask 704 * @ss: the iteration cursor 705 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end 706 * @ss_mask: the bitmask 707 * 708 * The block will only run for cases where the ssid-th bit (1 << ssid) of 709 * @ss_mask is set. 710 */ 711 #define do_each_subsys_mask(ss, ssid, ss_mask) do { \ 712 unsigned long __ss_mask = (ss_mask); \ 713 if (!CGROUP_HAS_SUBSYS_CONFIG) { \ 714 (ssid) = 0; \ 715 break; \ 716 } \ 717 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \ 718 (ss) = cgroup_subsys[ssid]; \ 719 { 720 721 #define while_each_subsys_mask() \ 722 } \ 723 } \ 724 } while (false) 725 726 /* iterate over child cgrps, lock should be held throughout iteration */ 727 #define cgroup_for_each_live_child(child, cgrp) \ 728 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \ 729 if (({ lockdep_assert_held(&cgroup_mutex); \ 730 cgroup_is_dead(child); })) \ 731 ; \ 732 else 733 734 /* walk live descendants in pre order */ 735 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \ 736 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \ 737 if (({ lockdep_assert_held(&cgroup_mutex); \ 738 (dsct) = (d_css)->cgroup; \ 739 cgroup_is_dead(dsct); })) \ 740 ; \ 741 else 742 743 /* walk live descendants in postorder */ 744 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \ 745 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \ 746 if (({ lockdep_assert_held(&cgroup_mutex); \ 747 (dsct) = (d_css)->cgroup; \ 748 cgroup_is_dead(dsct); })) \ 749 ; \ 750 else 751 752 /* 753 * The default css_set - used by init and its children prior to any 754 * hierarchies being mounted. It contains a pointer to the root state 755 * for each subsystem. Also used to anchor the list of css_sets. Not 756 * reference-counted, to improve performance when child cgroups 757 * haven't been created. 758 */ 759 struct css_set init_css_set = { 760 .refcount = REFCOUNT_INIT(1), 761 .dom_cset = &init_css_set, 762 .tasks = LIST_HEAD_INIT(init_css_set.tasks), 763 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks), 764 .dying_tasks = LIST_HEAD_INIT(init_css_set.dying_tasks), 765 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters), 766 .threaded_csets = LIST_HEAD_INIT(init_css_set.threaded_csets), 767 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links), 768 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node), 769 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node), 770 771 /* 772 * The following field is re-initialized when this cset gets linked 773 * in cgroup_init(). However, let's initialize the field 774 * statically too so that the default cgroup can be accessed safely 775 * early during boot. 776 */ 777 .dfl_cgrp = &cgrp_dfl_root.cgrp, 778 }; 779 780 static int css_set_count = 1; /* 1 for init_css_set */ 781 782 static bool css_set_threaded(struct css_set *cset) 783 { 784 return cset->dom_cset != cset; 785 } 786 787 /** 788 * css_set_populated - does a css_set contain any tasks? 789 * @cset: target css_set 790 * 791 * css_set_populated() should be the same as !!cset->nr_tasks at steady 792 * state. However, css_set_populated() can be called while a task is being 793 * added to or removed from the linked list before the nr_tasks is 794 * properly updated. Hence, we can't just look at ->nr_tasks here. 795 */ 796 static bool css_set_populated(struct css_set *cset) 797 { 798 lockdep_assert_held(&css_set_lock); 799 800 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks); 801 } 802 803 /** 804 * cgroup_update_populated - update the populated count of a cgroup 805 * @cgrp: the target cgroup 806 * @populated: inc or dec populated count 807 * 808 * One of the css_sets associated with @cgrp is either getting its first 809 * task or losing the last. Update @cgrp->nr_populated_* accordingly. The 810 * count is propagated towards root so that a given cgroup's 811 * nr_populated_children is zero iff none of its descendants contain any 812 * tasks. 813 * 814 * @cgrp's interface file "cgroup.populated" is zero if both 815 * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and 816 * 1 otherwise. When the sum changes from or to zero, userland is notified 817 * that the content of the interface file has changed. This can be used to 818 * detect when @cgrp and its descendants become populated or empty. 819 */ 820 static void cgroup_update_populated(struct cgroup *cgrp, bool populated) 821 { 822 struct cgroup *child = NULL; 823 int adj = populated ? 1 : -1; 824 825 lockdep_assert_held(&css_set_lock); 826 827 do { 828 bool was_populated = cgroup_is_populated(cgrp); 829 830 if (!child) { 831 cgrp->nr_populated_csets += adj; 832 } else { 833 if (cgroup_is_threaded(child)) 834 cgrp->nr_populated_threaded_children += adj; 835 else 836 cgrp->nr_populated_domain_children += adj; 837 } 838 839 if (was_populated == cgroup_is_populated(cgrp)) 840 break; 841 842 cgroup1_check_for_release(cgrp); 843 TRACE_CGROUP_PATH(notify_populated, cgrp, 844 cgroup_is_populated(cgrp)); 845 cgroup_file_notify(&cgrp->events_file); 846 847 child = cgrp; 848 cgrp = cgroup_parent(cgrp); 849 } while (cgrp); 850 } 851 852 /** 853 * css_set_update_populated - update populated state of a css_set 854 * @cset: target css_set 855 * @populated: whether @cset is populated or depopulated 856 * 857 * @cset is either getting the first task or losing the last. Update the 858 * populated counters of all associated cgroups accordingly. 859 */ 860 static void css_set_update_populated(struct css_set *cset, bool populated) 861 { 862 struct cgrp_cset_link *link; 863 864 lockdep_assert_held(&css_set_lock); 865 866 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) 867 cgroup_update_populated(link->cgrp, populated); 868 } 869 870 /* 871 * @task is leaving, advance task iterators which are pointing to it so 872 * that they can resume at the next position. Advancing an iterator might 873 * remove it from the list, use safe walk. See css_task_iter_skip() for 874 * details. 875 */ 876 static void css_set_skip_task_iters(struct css_set *cset, 877 struct task_struct *task) 878 { 879 struct css_task_iter *it, *pos; 880 881 list_for_each_entry_safe(it, pos, &cset->task_iters, iters_node) 882 css_task_iter_skip(it, task); 883 } 884 885 /** 886 * css_set_move_task - move a task from one css_set to another 887 * @task: task being moved 888 * @from_cset: css_set @task currently belongs to (may be NULL) 889 * @to_cset: new css_set @task is being moved to (may be NULL) 890 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks 891 * 892 * Move @task from @from_cset to @to_cset. If @task didn't belong to any 893 * css_set, @from_cset can be NULL. If @task is being disassociated 894 * instead of moved, @to_cset can be NULL. 895 * 896 * This function automatically handles populated counter updates and 897 * css_task_iter adjustments but the caller is responsible for managing 898 * @from_cset and @to_cset's reference counts. 899 */ 900 static void css_set_move_task(struct task_struct *task, 901 struct css_set *from_cset, struct css_set *to_cset, 902 bool use_mg_tasks) 903 { 904 lockdep_assert_held(&css_set_lock); 905 906 if (to_cset && !css_set_populated(to_cset)) 907 css_set_update_populated(to_cset, true); 908 909 if (from_cset) { 910 WARN_ON_ONCE(list_empty(&task->cg_list)); 911 912 css_set_skip_task_iters(from_cset, task); 913 list_del_init(&task->cg_list); 914 if (!css_set_populated(from_cset)) 915 css_set_update_populated(from_cset, false); 916 } else { 917 WARN_ON_ONCE(!list_empty(&task->cg_list)); 918 } 919 920 if (to_cset) { 921 /* 922 * We are synchronized through cgroup_threadgroup_rwsem 923 * against PF_EXITING setting such that we can't race 924 * against cgroup_exit()/cgroup_free() dropping the css_set. 925 */ 926 WARN_ON_ONCE(task->flags & PF_EXITING); 927 928 cgroup_move_task(task, to_cset); 929 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks : 930 &to_cset->tasks); 931 } 932 } 933 934 /* 935 * hash table for cgroup groups. This improves the performance to find 936 * an existing css_set. This hash doesn't (currently) take into 937 * account cgroups in empty hierarchies. 938 */ 939 #define CSS_SET_HASH_BITS 7 940 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS); 941 942 static unsigned long css_set_hash(struct cgroup_subsys_state *css[]) 943 { 944 unsigned long key = 0UL; 945 struct cgroup_subsys *ss; 946 int i; 947 948 for_each_subsys(ss, i) 949 key += (unsigned long)css[i]; 950 key = (key >> 16) ^ key; 951 952 return key; 953 } 954 955 void put_css_set_locked(struct css_set *cset) 956 { 957 struct cgrp_cset_link *link, *tmp_link; 958 struct cgroup_subsys *ss; 959 int ssid; 960 961 lockdep_assert_held(&css_set_lock); 962 963 if (!refcount_dec_and_test(&cset->refcount)) 964 return; 965 966 WARN_ON_ONCE(!list_empty(&cset->threaded_csets)); 967 968 /* This css_set is dead. Unlink it and release cgroup and css refs */ 969 for_each_subsys(ss, ssid) { 970 list_del(&cset->e_cset_node[ssid]); 971 css_put(cset->subsys[ssid]); 972 } 973 hash_del(&cset->hlist); 974 css_set_count--; 975 976 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) { 977 list_del(&link->cset_link); 978 list_del(&link->cgrp_link); 979 if (cgroup_parent(link->cgrp)) 980 cgroup_put(link->cgrp); 981 kfree(link); 982 } 983 984 if (css_set_threaded(cset)) { 985 list_del(&cset->threaded_csets_node); 986 put_css_set_locked(cset->dom_cset); 987 } 988 989 kfree_rcu(cset, rcu_head); 990 } 991 992 /** 993 * compare_css_sets - helper function for find_existing_css_set(). 994 * @cset: candidate css_set being tested 995 * @old_cset: existing css_set for a task 996 * @new_cgrp: cgroup that's being entered by the task 997 * @template: desired set of css pointers in css_set (pre-calculated) 998 * 999 * Returns true if "cset" matches "old_cset" except for the hierarchy 1000 * which "new_cgrp" belongs to, for which it should match "new_cgrp". 1001 */ 1002 static bool compare_css_sets(struct css_set *cset, 1003 struct css_set *old_cset, 1004 struct cgroup *new_cgrp, 1005 struct cgroup_subsys_state *template[]) 1006 { 1007 struct cgroup *new_dfl_cgrp; 1008 struct list_head *l1, *l2; 1009 1010 /* 1011 * On the default hierarchy, there can be csets which are 1012 * associated with the same set of cgroups but different csses. 1013 * Let's first ensure that csses match. 1014 */ 1015 if (memcmp(template, cset->subsys, sizeof(cset->subsys))) 1016 return false; 1017 1018 1019 /* @cset's domain should match the default cgroup's */ 1020 if (cgroup_on_dfl(new_cgrp)) 1021 new_dfl_cgrp = new_cgrp; 1022 else 1023 new_dfl_cgrp = old_cset->dfl_cgrp; 1024 1025 if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp) 1026 return false; 1027 1028 /* 1029 * Compare cgroup pointers in order to distinguish between 1030 * different cgroups in hierarchies. As different cgroups may 1031 * share the same effective css, this comparison is always 1032 * necessary. 1033 */ 1034 l1 = &cset->cgrp_links; 1035 l2 = &old_cset->cgrp_links; 1036 while (1) { 1037 struct cgrp_cset_link *link1, *link2; 1038 struct cgroup *cgrp1, *cgrp2; 1039 1040 l1 = l1->next; 1041 l2 = l2->next; 1042 /* See if we reached the end - both lists are equal length. */ 1043 if (l1 == &cset->cgrp_links) { 1044 BUG_ON(l2 != &old_cset->cgrp_links); 1045 break; 1046 } else { 1047 BUG_ON(l2 == &old_cset->cgrp_links); 1048 } 1049 /* Locate the cgroups associated with these links. */ 1050 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link); 1051 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link); 1052 cgrp1 = link1->cgrp; 1053 cgrp2 = link2->cgrp; 1054 /* Hierarchies should be linked in the same order. */ 1055 BUG_ON(cgrp1->root != cgrp2->root); 1056 1057 /* 1058 * If this hierarchy is the hierarchy of the cgroup 1059 * that's changing, then we need to check that this 1060 * css_set points to the new cgroup; if it's any other 1061 * hierarchy, then this css_set should point to the 1062 * same cgroup as the old css_set. 1063 */ 1064 if (cgrp1->root == new_cgrp->root) { 1065 if (cgrp1 != new_cgrp) 1066 return false; 1067 } else { 1068 if (cgrp1 != cgrp2) 1069 return false; 1070 } 1071 } 1072 return true; 1073 } 1074 1075 /** 1076 * find_existing_css_set - init css array and find the matching css_set 1077 * @old_cset: the css_set that we're using before the cgroup transition 1078 * @cgrp: the cgroup that we're moving into 1079 * @template: out param for the new set of csses, should be clear on entry 1080 */ 1081 static struct css_set *find_existing_css_set(struct css_set *old_cset, 1082 struct cgroup *cgrp, 1083 struct cgroup_subsys_state *template[]) 1084 { 1085 struct cgroup_root *root = cgrp->root; 1086 struct cgroup_subsys *ss; 1087 struct css_set *cset; 1088 unsigned long key; 1089 int i; 1090 1091 /* 1092 * Build the set of subsystem state objects that we want to see in the 1093 * new css_set. While subsystems can change globally, the entries here 1094 * won't change, so no need for locking. 1095 */ 1096 for_each_subsys(ss, i) { 1097 if (root->subsys_mask & (1UL << i)) { 1098 /* 1099 * @ss is in this hierarchy, so we want the 1100 * effective css from @cgrp. 1101 */ 1102 template[i] = cgroup_e_css_by_mask(cgrp, ss); 1103 } else { 1104 /* 1105 * @ss is not in this hierarchy, so we don't want 1106 * to change the css. 1107 */ 1108 template[i] = old_cset->subsys[i]; 1109 } 1110 } 1111 1112 key = css_set_hash(template); 1113 hash_for_each_possible(css_set_table, cset, hlist, key) { 1114 if (!compare_css_sets(cset, old_cset, cgrp, template)) 1115 continue; 1116 1117 /* This css_set matches what we need */ 1118 return cset; 1119 } 1120 1121 /* No existing cgroup group matched */ 1122 return NULL; 1123 } 1124 1125 static void free_cgrp_cset_links(struct list_head *links_to_free) 1126 { 1127 struct cgrp_cset_link *link, *tmp_link; 1128 1129 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) { 1130 list_del(&link->cset_link); 1131 kfree(link); 1132 } 1133 } 1134 1135 /** 1136 * allocate_cgrp_cset_links - allocate cgrp_cset_links 1137 * @count: the number of links to allocate 1138 * @tmp_links: list_head the allocated links are put on 1139 * 1140 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links 1141 * through ->cset_link. Returns 0 on success or -errno. 1142 */ 1143 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links) 1144 { 1145 struct cgrp_cset_link *link; 1146 int i; 1147 1148 INIT_LIST_HEAD(tmp_links); 1149 1150 for (i = 0; i < count; i++) { 1151 link = kzalloc(sizeof(*link), GFP_KERNEL); 1152 if (!link) { 1153 free_cgrp_cset_links(tmp_links); 1154 return -ENOMEM; 1155 } 1156 list_add(&link->cset_link, tmp_links); 1157 } 1158 return 0; 1159 } 1160 1161 /** 1162 * link_css_set - a helper function to link a css_set to a cgroup 1163 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links() 1164 * @cset: the css_set to be linked 1165 * @cgrp: the destination cgroup 1166 */ 1167 static void link_css_set(struct list_head *tmp_links, struct css_set *cset, 1168 struct cgroup *cgrp) 1169 { 1170 struct cgrp_cset_link *link; 1171 1172 BUG_ON(list_empty(tmp_links)); 1173 1174 if (cgroup_on_dfl(cgrp)) 1175 cset->dfl_cgrp = cgrp; 1176 1177 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link); 1178 link->cset = cset; 1179 link->cgrp = cgrp; 1180 1181 /* 1182 * Always add links to the tail of the lists so that the lists are 1183 * in chronological order. 1184 */ 1185 list_move_tail(&link->cset_link, &cgrp->cset_links); 1186 list_add_tail(&link->cgrp_link, &cset->cgrp_links); 1187 1188 if (cgroup_parent(cgrp)) 1189 cgroup_get_live(cgrp); 1190 } 1191 1192 /** 1193 * find_css_set - return a new css_set with one cgroup updated 1194 * @old_cset: the baseline css_set 1195 * @cgrp: the cgroup to be updated 1196 * 1197 * Return a new css_set that's equivalent to @old_cset, but with @cgrp 1198 * substituted into the appropriate hierarchy. 1199 */ 1200 static struct css_set *find_css_set(struct css_set *old_cset, 1201 struct cgroup *cgrp) 1202 { 1203 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { }; 1204 struct css_set *cset; 1205 struct list_head tmp_links; 1206 struct cgrp_cset_link *link; 1207 struct cgroup_subsys *ss; 1208 unsigned long key; 1209 int ssid; 1210 1211 lockdep_assert_held(&cgroup_mutex); 1212 1213 /* First see if we already have a cgroup group that matches 1214 * the desired set */ 1215 spin_lock_irq(&css_set_lock); 1216 cset = find_existing_css_set(old_cset, cgrp, template); 1217 if (cset) 1218 get_css_set(cset); 1219 spin_unlock_irq(&css_set_lock); 1220 1221 if (cset) 1222 return cset; 1223 1224 cset = kzalloc(sizeof(*cset), GFP_KERNEL); 1225 if (!cset) 1226 return NULL; 1227 1228 /* Allocate all the cgrp_cset_link objects that we'll need */ 1229 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) { 1230 kfree(cset); 1231 return NULL; 1232 } 1233 1234 refcount_set(&cset->refcount, 1); 1235 cset->dom_cset = cset; 1236 INIT_LIST_HEAD(&cset->tasks); 1237 INIT_LIST_HEAD(&cset->mg_tasks); 1238 INIT_LIST_HEAD(&cset->dying_tasks); 1239 INIT_LIST_HEAD(&cset->task_iters); 1240 INIT_LIST_HEAD(&cset->threaded_csets); 1241 INIT_HLIST_NODE(&cset->hlist); 1242 INIT_LIST_HEAD(&cset->cgrp_links); 1243 INIT_LIST_HEAD(&cset->mg_preload_node); 1244 INIT_LIST_HEAD(&cset->mg_node); 1245 1246 /* Copy the set of subsystem state objects generated in 1247 * find_existing_css_set() */ 1248 memcpy(cset->subsys, template, sizeof(cset->subsys)); 1249 1250 spin_lock_irq(&css_set_lock); 1251 /* Add reference counts and links from the new css_set. */ 1252 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) { 1253 struct cgroup *c = link->cgrp; 1254 1255 if (c->root == cgrp->root) 1256 c = cgrp; 1257 link_css_set(&tmp_links, cset, c); 1258 } 1259 1260 BUG_ON(!list_empty(&tmp_links)); 1261 1262 css_set_count++; 1263 1264 /* Add @cset to the hash table */ 1265 key = css_set_hash(cset->subsys); 1266 hash_add(css_set_table, &cset->hlist, key); 1267 1268 for_each_subsys(ss, ssid) { 1269 struct cgroup_subsys_state *css = cset->subsys[ssid]; 1270 1271 list_add_tail(&cset->e_cset_node[ssid], 1272 &css->cgroup->e_csets[ssid]); 1273 css_get(css); 1274 } 1275 1276 spin_unlock_irq(&css_set_lock); 1277 1278 /* 1279 * If @cset should be threaded, look up the matching dom_cset and 1280 * link them up. We first fully initialize @cset then look for the 1281 * dom_cset. It's simpler this way and safe as @cset is guaranteed 1282 * to stay empty until we return. 1283 */ 1284 if (cgroup_is_threaded(cset->dfl_cgrp)) { 1285 struct css_set *dcset; 1286 1287 dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp); 1288 if (!dcset) { 1289 put_css_set(cset); 1290 return NULL; 1291 } 1292 1293 spin_lock_irq(&css_set_lock); 1294 cset->dom_cset = dcset; 1295 list_add_tail(&cset->threaded_csets_node, 1296 &dcset->threaded_csets); 1297 spin_unlock_irq(&css_set_lock); 1298 } 1299 1300 return cset; 1301 } 1302 1303 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root) 1304 { 1305 struct cgroup *root_cgrp = kf_root->kn->priv; 1306 1307 return root_cgrp->root; 1308 } 1309 1310 static int cgroup_init_root_id(struct cgroup_root *root) 1311 { 1312 int id; 1313 1314 lockdep_assert_held(&cgroup_mutex); 1315 1316 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL); 1317 if (id < 0) 1318 return id; 1319 1320 root->hierarchy_id = id; 1321 return 0; 1322 } 1323 1324 static void cgroup_exit_root_id(struct cgroup_root *root) 1325 { 1326 lockdep_assert_held(&cgroup_mutex); 1327 1328 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id); 1329 } 1330 1331 void cgroup_free_root(struct cgroup_root *root) 1332 { 1333 kfree(root); 1334 } 1335 1336 static void cgroup_destroy_root(struct cgroup_root *root) 1337 { 1338 struct cgroup *cgrp = &root->cgrp; 1339 struct cgrp_cset_link *link, *tmp_link; 1340 1341 trace_cgroup_destroy_root(root); 1342 1343 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp); 1344 1345 BUG_ON(atomic_read(&root->nr_cgrps)); 1346 BUG_ON(!list_empty(&cgrp->self.children)); 1347 1348 /* Rebind all subsystems back to the default hierarchy */ 1349 WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask)); 1350 1351 /* 1352 * Release all the links from cset_links to this hierarchy's 1353 * root cgroup 1354 */ 1355 spin_lock_irq(&css_set_lock); 1356 1357 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) { 1358 list_del(&link->cset_link); 1359 list_del(&link->cgrp_link); 1360 kfree(link); 1361 } 1362 1363 spin_unlock_irq(&css_set_lock); 1364 1365 if (!list_empty(&root->root_list)) { 1366 list_del(&root->root_list); 1367 cgroup_root_count--; 1368 } 1369 1370 cgroup_exit_root_id(root); 1371 1372 mutex_unlock(&cgroup_mutex); 1373 1374 cgroup_rstat_exit(cgrp); 1375 kernfs_destroy_root(root->kf_root); 1376 cgroup_free_root(root); 1377 } 1378 1379 /* 1380 * look up cgroup associated with current task's cgroup namespace on the 1381 * specified hierarchy 1382 */ 1383 static struct cgroup * 1384 current_cgns_cgroup_from_root(struct cgroup_root *root) 1385 { 1386 struct cgroup *res = NULL; 1387 struct css_set *cset; 1388 1389 lockdep_assert_held(&css_set_lock); 1390 1391 rcu_read_lock(); 1392 1393 cset = current->nsproxy->cgroup_ns->root_cset; 1394 if (cset == &init_css_set) { 1395 res = &root->cgrp; 1396 } else if (root == &cgrp_dfl_root) { 1397 res = cset->dfl_cgrp; 1398 } else { 1399 struct cgrp_cset_link *link; 1400 1401 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) { 1402 struct cgroup *c = link->cgrp; 1403 1404 if (c->root == root) { 1405 res = c; 1406 break; 1407 } 1408 } 1409 } 1410 rcu_read_unlock(); 1411 1412 BUG_ON(!res); 1413 return res; 1414 } 1415 1416 /* look up cgroup associated with given css_set on the specified hierarchy */ 1417 static struct cgroup *cset_cgroup_from_root(struct css_set *cset, 1418 struct cgroup_root *root) 1419 { 1420 struct cgroup *res = NULL; 1421 1422 lockdep_assert_held(&cgroup_mutex); 1423 lockdep_assert_held(&css_set_lock); 1424 1425 if (cset == &init_css_set) { 1426 res = &root->cgrp; 1427 } else if (root == &cgrp_dfl_root) { 1428 res = cset->dfl_cgrp; 1429 } else { 1430 struct cgrp_cset_link *link; 1431 1432 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) { 1433 struct cgroup *c = link->cgrp; 1434 1435 if (c->root == root) { 1436 res = c; 1437 break; 1438 } 1439 } 1440 } 1441 1442 BUG_ON(!res); 1443 return res; 1444 } 1445 1446 /* 1447 * Return the cgroup for "task" from the given hierarchy. Must be 1448 * called with cgroup_mutex and css_set_lock held. 1449 */ 1450 struct cgroup *task_cgroup_from_root(struct task_struct *task, 1451 struct cgroup_root *root) 1452 { 1453 /* 1454 * No need to lock the task - since we hold css_set_lock the 1455 * task can't change groups. 1456 */ 1457 return cset_cgroup_from_root(task_css_set(task), root); 1458 } 1459 1460 /* 1461 * A task must hold cgroup_mutex to modify cgroups. 1462 * 1463 * Any task can increment and decrement the count field without lock. 1464 * So in general, code holding cgroup_mutex can't rely on the count 1465 * field not changing. However, if the count goes to zero, then only 1466 * cgroup_attach_task() can increment it again. Because a count of zero 1467 * means that no tasks are currently attached, therefore there is no 1468 * way a task attached to that cgroup can fork (the other way to 1469 * increment the count). So code holding cgroup_mutex can safely 1470 * assume that if the count is zero, it will stay zero. Similarly, if 1471 * a task holds cgroup_mutex on a cgroup with zero count, it 1472 * knows that the cgroup won't be removed, as cgroup_rmdir() 1473 * needs that mutex. 1474 * 1475 * A cgroup can only be deleted if both its 'count' of using tasks 1476 * is zero, and its list of 'children' cgroups is empty. Since all 1477 * tasks in the system use _some_ cgroup, and since there is always at 1478 * least one task in the system (init, pid == 1), therefore, root cgroup 1479 * always has either children cgroups and/or using tasks. So we don't 1480 * need a special hack to ensure that root cgroup cannot be deleted. 1481 * 1482 * P.S. One more locking exception. RCU is used to guard the 1483 * update of a tasks cgroup pointer by cgroup_attach_task() 1484 */ 1485 1486 static struct kernfs_syscall_ops cgroup_kf_syscall_ops; 1487 1488 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft, 1489 char *buf) 1490 { 1491 struct cgroup_subsys *ss = cft->ss; 1492 1493 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) && 1494 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) { 1495 const char *dbg = (cft->flags & CFTYPE_DEBUG) ? ".__DEBUG__." : ""; 1496 1497 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s%s.%s", 1498 dbg, cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name, 1499 cft->name); 1500 } else { 1501 strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX); 1502 } 1503 return buf; 1504 } 1505 1506 /** 1507 * cgroup_file_mode - deduce file mode of a control file 1508 * @cft: the control file in question 1509 * 1510 * S_IRUGO for read, S_IWUSR for write. 1511 */ 1512 static umode_t cgroup_file_mode(const struct cftype *cft) 1513 { 1514 umode_t mode = 0; 1515 1516 if (cft->read_u64 || cft->read_s64 || cft->seq_show) 1517 mode |= S_IRUGO; 1518 1519 if (cft->write_u64 || cft->write_s64 || cft->write) { 1520 if (cft->flags & CFTYPE_WORLD_WRITABLE) 1521 mode |= S_IWUGO; 1522 else 1523 mode |= S_IWUSR; 1524 } 1525 1526 return mode; 1527 } 1528 1529 /** 1530 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask 1531 * @subtree_control: the new subtree_control mask to consider 1532 * @this_ss_mask: available subsystems 1533 * 1534 * On the default hierarchy, a subsystem may request other subsystems to be 1535 * enabled together through its ->depends_on mask. In such cases, more 1536 * subsystems than specified in "cgroup.subtree_control" may be enabled. 1537 * 1538 * This function calculates which subsystems need to be enabled if 1539 * @subtree_control is to be applied while restricted to @this_ss_mask. 1540 */ 1541 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask) 1542 { 1543 u16 cur_ss_mask = subtree_control; 1544 struct cgroup_subsys *ss; 1545 int ssid; 1546 1547 lockdep_assert_held(&cgroup_mutex); 1548 1549 cur_ss_mask |= cgrp_dfl_implicit_ss_mask; 1550 1551 while (true) { 1552 u16 new_ss_mask = cur_ss_mask; 1553 1554 do_each_subsys_mask(ss, ssid, cur_ss_mask) { 1555 new_ss_mask |= ss->depends_on; 1556 } while_each_subsys_mask(); 1557 1558 /* 1559 * Mask out subsystems which aren't available. This can 1560 * happen only if some depended-upon subsystems were bound 1561 * to non-default hierarchies. 1562 */ 1563 new_ss_mask &= this_ss_mask; 1564 1565 if (new_ss_mask == cur_ss_mask) 1566 break; 1567 cur_ss_mask = new_ss_mask; 1568 } 1569 1570 return cur_ss_mask; 1571 } 1572 1573 /** 1574 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods 1575 * @kn: the kernfs_node being serviced 1576 * 1577 * This helper undoes cgroup_kn_lock_live() and should be invoked before 1578 * the method finishes if locking succeeded. Note that once this function 1579 * returns the cgroup returned by cgroup_kn_lock_live() may become 1580 * inaccessible any time. If the caller intends to continue to access the 1581 * cgroup, it should pin it before invoking this function. 1582 */ 1583 void cgroup_kn_unlock(struct kernfs_node *kn) 1584 { 1585 struct cgroup *cgrp; 1586 1587 if (kernfs_type(kn) == KERNFS_DIR) 1588 cgrp = kn->priv; 1589 else 1590 cgrp = kn->parent->priv; 1591 1592 mutex_unlock(&cgroup_mutex); 1593 1594 kernfs_unbreak_active_protection(kn); 1595 cgroup_put(cgrp); 1596 } 1597 1598 /** 1599 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods 1600 * @kn: the kernfs_node being serviced 1601 * @drain_offline: perform offline draining on the cgroup 1602 * 1603 * This helper is to be used by a cgroup kernfs method currently servicing 1604 * @kn. It breaks the active protection, performs cgroup locking and 1605 * verifies that the associated cgroup is alive. Returns the cgroup if 1606 * alive; otherwise, %NULL. A successful return should be undone by a 1607 * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the 1608 * cgroup is drained of offlining csses before return. 1609 * 1610 * Any cgroup kernfs method implementation which requires locking the 1611 * associated cgroup should use this helper. It avoids nesting cgroup 1612 * locking under kernfs active protection and allows all kernfs operations 1613 * including self-removal. 1614 */ 1615 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline) 1616 { 1617 struct cgroup *cgrp; 1618 1619 if (kernfs_type(kn) == KERNFS_DIR) 1620 cgrp = kn->priv; 1621 else 1622 cgrp = kn->parent->priv; 1623 1624 /* 1625 * We're gonna grab cgroup_mutex which nests outside kernfs 1626 * active_ref. cgroup liveliness check alone provides enough 1627 * protection against removal. Ensure @cgrp stays accessible and 1628 * break the active_ref protection. 1629 */ 1630 if (!cgroup_tryget(cgrp)) 1631 return NULL; 1632 kernfs_break_active_protection(kn); 1633 1634 if (drain_offline) 1635 cgroup_lock_and_drain_offline(cgrp); 1636 else 1637 mutex_lock(&cgroup_mutex); 1638 1639 if (!cgroup_is_dead(cgrp)) 1640 return cgrp; 1641 1642 cgroup_kn_unlock(kn); 1643 return NULL; 1644 } 1645 1646 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft) 1647 { 1648 char name[CGROUP_FILE_NAME_MAX]; 1649 1650 lockdep_assert_held(&cgroup_mutex); 1651 1652 if (cft->file_offset) { 1653 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss); 1654 struct cgroup_file *cfile = (void *)css + cft->file_offset; 1655 1656 spin_lock_irq(&cgroup_file_kn_lock); 1657 cfile->kn = NULL; 1658 spin_unlock_irq(&cgroup_file_kn_lock); 1659 1660 del_timer_sync(&cfile->notify_timer); 1661 } 1662 1663 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name)); 1664 } 1665 1666 /** 1667 * css_clear_dir - remove subsys files in a cgroup directory 1668 * @css: target css 1669 */ 1670 static void css_clear_dir(struct cgroup_subsys_state *css) 1671 { 1672 struct cgroup *cgrp = css->cgroup; 1673 struct cftype *cfts; 1674 1675 if (!(css->flags & CSS_VISIBLE)) 1676 return; 1677 1678 css->flags &= ~CSS_VISIBLE; 1679 1680 if (!css->ss) { 1681 if (cgroup_on_dfl(cgrp)) 1682 cfts = cgroup_base_files; 1683 else 1684 cfts = cgroup1_base_files; 1685 1686 cgroup_addrm_files(css, cgrp, cfts, false); 1687 } else { 1688 list_for_each_entry(cfts, &css->ss->cfts, node) 1689 cgroup_addrm_files(css, cgrp, cfts, false); 1690 } 1691 } 1692 1693 /** 1694 * css_populate_dir - create subsys files in a cgroup directory 1695 * @css: target css 1696 * 1697 * On failure, no file is added. 1698 */ 1699 static int css_populate_dir(struct cgroup_subsys_state *css) 1700 { 1701 struct cgroup *cgrp = css->cgroup; 1702 struct cftype *cfts, *failed_cfts; 1703 int ret; 1704 1705 if ((css->flags & CSS_VISIBLE) || !cgrp->kn) 1706 return 0; 1707 1708 if (!css->ss) { 1709 if (cgroup_on_dfl(cgrp)) 1710 cfts = cgroup_base_files; 1711 else 1712 cfts = cgroup1_base_files; 1713 1714 ret = cgroup_addrm_files(&cgrp->self, cgrp, cfts, true); 1715 if (ret < 0) 1716 return ret; 1717 } else { 1718 list_for_each_entry(cfts, &css->ss->cfts, node) { 1719 ret = cgroup_addrm_files(css, cgrp, cfts, true); 1720 if (ret < 0) { 1721 failed_cfts = cfts; 1722 goto err; 1723 } 1724 } 1725 } 1726 1727 css->flags |= CSS_VISIBLE; 1728 1729 return 0; 1730 err: 1731 list_for_each_entry(cfts, &css->ss->cfts, node) { 1732 if (cfts == failed_cfts) 1733 break; 1734 cgroup_addrm_files(css, cgrp, cfts, false); 1735 } 1736 return ret; 1737 } 1738 1739 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask) 1740 { 1741 struct cgroup *dcgrp = &dst_root->cgrp; 1742 struct cgroup_subsys *ss; 1743 int ssid, i, ret; 1744 u16 dfl_disable_ss_mask = 0; 1745 1746 lockdep_assert_held(&cgroup_mutex); 1747 1748 do_each_subsys_mask(ss, ssid, ss_mask) { 1749 /* 1750 * If @ss has non-root csses attached to it, can't move. 1751 * If @ss is an implicit controller, it is exempt from this 1752 * rule and can be stolen. 1753 */ 1754 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) && 1755 !ss->implicit_on_dfl) 1756 return -EBUSY; 1757 1758 /* can't move between two non-dummy roots either */ 1759 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root) 1760 return -EBUSY; 1761 1762 /* 1763 * Collect ssid's that need to be disabled from default 1764 * hierarchy. 1765 */ 1766 if (ss->root == &cgrp_dfl_root) 1767 dfl_disable_ss_mask |= 1 << ssid; 1768 1769 } while_each_subsys_mask(); 1770 1771 if (dfl_disable_ss_mask) { 1772 struct cgroup *scgrp = &cgrp_dfl_root.cgrp; 1773 1774 /* 1775 * Controllers from default hierarchy that need to be rebound 1776 * are all disabled together in one go. 1777 */ 1778 cgrp_dfl_root.subsys_mask &= ~dfl_disable_ss_mask; 1779 WARN_ON(cgroup_apply_control(scgrp)); 1780 cgroup_finalize_control(scgrp, 0); 1781 } 1782 1783 do_each_subsys_mask(ss, ssid, ss_mask) { 1784 struct cgroup_root *src_root = ss->root; 1785 struct cgroup *scgrp = &src_root->cgrp; 1786 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss); 1787 struct css_set *cset; 1788 1789 WARN_ON(!css || cgroup_css(dcgrp, ss)); 1790 1791 if (src_root != &cgrp_dfl_root) { 1792 /* disable from the source */ 1793 src_root->subsys_mask &= ~(1 << ssid); 1794 WARN_ON(cgroup_apply_control(scgrp)); 1795 cgroup_finalize_control(scgrp, 0); 1796 } 1797 1798 /* rebind */ 1799 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL); 1800 rcu_assign_pointer(dcgrp->subsys[ssid], css); 1801 ss->root = dst_root; 1802 css->cgroup = dcgrp; 1803 1804 spin_lock_irq(&css_set_lock); 1805 hash_for_each(css_set_table, i, cset, hlist) 1806 list_move_tail(&cset->e_cset_node[ss->id], 1807 &dcgrp->e_csets[ss->id]); 1808 spin_unlock_irq(&css_set_lock); 1809 1810 if (ss->css_rstat_flush) { 1811 list_del_rcu(&css->rstat_css_node); 1812 list_add_rcu(&css->rstat_css_node, 1813 &dcgrp->rstat_css_list); 1814 } 1815 1816 /* default hierarchy doesn't enable controllers by default */ 1817 dst_root->subsys_mask |= 1 << ssid; 1818 if (dst_root == &cgrp_dfl_root) { 1819 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]); 1820 } else { 1821 dcgrp->subtree_control |= 1 << ssid; 1822 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]); 1823 } 1824 1825 ret = cgroup_apply_control(dcgrp); 1826 if (ret) 1827 pr_warn("partial failure to rebind %s controller (err=%d)\n", 1828 ss->name, ret); 1829 1830 if (ss->bind) 1831 ss->bind(css); 1832 } while_each_subsys_mask(); 1833 1834 kernfs_activate(dcgrp->kn); 1835 return 0; 1836 } 1837 1838 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node, 1839 struct kernfs_root *kf_root) 1840 { 1841 int len = 0; 1842 char *buf = NULL; 1843 struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root); 1844 struct cgroup *ns_cgroup; 1845 1846 buf = kmalloc(PATH_MAX, GFP_KERNEL); 1847 if (!buf) 1848 return -ENOMEM; 1849 1850 spin_lock_irq(&css_set_lock); 1851 ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot); 1852 len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX); 1853 spin_unlock_irq(&css_set_lock); 1854 1855 if (len >= PATH_MAX) 1856 len = -ERANGE; 1857 else if (len > 0) { 1858 seq_escape(sf, buf, " \t\n\\"); 1859 len = 0; 1860 } 1861 kfree(buf); 1862 return len; 1863 } 1864 1865 enum cgroup2_param { 1866 Opt_nsdelegate, 1867 Opt_memory_localevents, 1868 Opt_memory_recursiveprot, 1869 nr__cgroup2_params 1870 }; 1871 1872 static const struct fs_parameter_spec cgroup2_fs_parameters[] = { 1873 fsparam_flag("nsdelegate", Opt_nsdelegate), 1874 fsparam_flag("memory_localevents", Opt_memory_localevents), 1875 fsparam_flag("memory_recursiveprot", Opt_memory_recursiveprot), 1876 {} 1877 }; 1878 1879 static int cgroup2_parse_param(struct fs_context *fc, struct fs_parameter *param) 1880 { 1881 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 1882 struct fs_parse_result result; 1883 int opt; 1884 1885 opt = fs_parse(fc, cgroup2_fs_parameters, param, &result); 1886 if (opt < 0) 1887 return opt; 1888 1889 switch (opt) { 1890 case Opt_nsdelegate: 1891 ctx->flags |= CGRP_ROOT_NS_DELEGATE; 1892 return 0; 1893 case Opt_memory_localevents: 1894 ctx->flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS; 1895 return 0; 1896 case Opt_memory_recursiveprot: 1897 ctx->flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT; 1898 return 0; 1899 } 1900 return -EINVAL; 1901 } 1902 1903 static void apply_cgroup_root_flags(unsigned int root_flags) 1904 { 1905 if (current->nsproxy->cgroup_ns == &init_cgroup_ns) { 1906 if (root_flags & CGRP_ROOT_NS_DELEGATE) 1907 cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE; 1908 else 1909 cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE; 1910 1911 if (root_flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS) 1912 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS; 1913 else 1914 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_LOCAL_EVENTS; 1915 1916 if (root_flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT) 1917 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT; 1918 else 1919 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_RECURSIVE_PROT; 1920 } 1921 } 1922 1923 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root) 1924 { 1925 if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) 1926 seq_puts(seq, ",nsdelegate"); 1927 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS) 1928 seq_puts(seq, ",memory_localevents"); 1929 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT) 1930 seq_puts(seq, ",memory_recursiveprot"); 1931 return 0; 1932 } 1933 1934 static int cgroup_reconfigure(struct fs_context *fc) 1935 { 1936 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 1937 1938 apply_cgroup_root_flags(ctx->flags); 1939 return 0; 1940 } 1941 1942 static void init_cgroup_housekeeping(struct cgroup *cgrp) 1943 { 1944 struct cgroup_subsys *ss; 1945 int ssid; 1946 1947 INIT_LIST_HEAD(&cgrp->self.sibling); 1948 INIT_LIST_HEAD(&cgrp->self.children); 1949 INIT_LIST_HEAD(&cgrp->cset_links); 1950 INIT_LIST_HEAD(&cgrp->pidlists); 1951 mutex_init(&cgrp->pidlist_mutex); 1952 cgrp->self.cgroup = cgrp; 1953 cgrp->self.flags |= CSS_ONLINE; 1954 cgrp->dom_cgrp = cgrp; 1955 cgrp->max_descendants = INT_MAX; 1956 cgrp->max_depth = INT_MAX; 1957 INIT_LIST_HEAD(&cgrp->rstat_css_list); 1958 prev_cputime_init(&cgrp->prev_cputime); 1959 1960 for_each_subsys(ss, ssid) 1961 INIT_LIST_HEAD(&cgrp->e_csets[ssid]); 1962 1963 init_waitqueue_head(&cgrp->offline_waitq); 1964 INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent); 1965 } 1966 1967 void init_cgroup_root(struct cgroup_fs_context *ctx) 1968 { 1969 struct cgroup_root *root = ctx->root; 1970 struct cgroup *cgrp = &root->cgrp; 1971 1972 INIT_LIST_HEAD(&root->root_list); 1973 atomic_set(&root->nr_cgrps, 1); 1974 cgrp->root = root; 1975 init_cgroup_housekeeping(cgrp); 1976 1977 root->flags = ctx->flags; 1978 if (ctx->release_agent) 1979 strscpy(root->release_agent_path, ctx->release_agent, PATH_MAX); 1980 if (ctx->name) 1981 strscpy(root->name, ctx->name, MAX_CGROUP_ROOT_NAMELEN); 1982 if (ctx->cpuset_clone_children) 1983 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags); 1984 } 1985 1986 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask) 1987 { 1988 LIST_HEAD(tmp_links); 1989 struct cgroup *root_cgrp = &root->cgrp; 1990 struct kernfs_syscall_ops *kf_sops; 1991 struct css_set *cset; 1992 int i, ret; 1993 1994 lockdep_assert_held(&cgroup_mutex); 1995 1996 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 1997 0, GFP_KERNEL); 1998 if (ret) 1999 goto out; 2000 2001 /* 2002 * We're accessing css_set_count without locking css_set_lock here, 2003 * but that's OK - it can only be increased by someone holding 2004 * cgroup_lock, and that's us. Later rebinding may disable 2005 * controllers on the default hierarchy and thus create new csets, 2006 * which can't be more than the existing ones. Allocate 2x. 2007 */ 2008 ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links); 2009 if (ret) 2010 goto cancel_ref; 2011 2012 ret = cgroup_init_root_id(root); 2013 if (ret) 2014 goto cancel_ref; 2015 2016 kf_sops = root == &cgrp_dfl_root ? 2017 &cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops; 2018 2019 root->kf_root = kernfs_create_root(kf_sops, 2020 KERNFS_ROOT_CREATE_DEACTIVATED | 2021 KERNFS_ROOT_SUPPORT_EXPORTOP | 2022 KERNFS_ROOT_SUPPORT_USER_XATTR, 2023 root_cgrp); 2024 if (IS_ERR(root->kf_root)) { 2025 ret = PTR_ERR(root->kf_root); 2026 goto exit_root_id; 2027 } 2028 root_cgrp->kn = root->kf_root->kn; 2029 WARN_ON_ONCE(cgroup_ino(root_cgrp) != 1); 2030 root_cgrp->ancestor_ids[0] = cgroup_id(root_cgrp); 2031 2032 ret = css_populate_dir(&root_cgrp->self); 2033 if (ret) 2034 goto destroy_root; 2035 2036 ret = cgroup_rstat_init(root_cgrp); 2037 if (ret) 2038 goto destroy_root; 2039 2040 ret = rebind_subsystems(root, ss_mask); 2041 if (ret) 2042 goto exit_stats; 2043 2044 ret = cgroup_bpf_inherit(root_cgrp); 2045 WARN_ON_ONCE(ret); 2046 2047 trace_cgroup_setup_root(root); 2048 2049 /* 2050 * There must be no failure case after here, since rebinding takes 2051 * care of subsystems' refcounts, which are explicitly dropped in 2052 * the failure exit path. 2053 */ 2054 list_add(&root->root_list, &cgroup_roots); 2055 cgroup_root_count++; 2056 2057 /* 2058 * Link the root cgroup in this hierarchy into all the css_set 2059 * objects. 2060 */ 2061 spin_lock_irq(&css_set_lock); 2062 hash_for_each(css_set_table, i, cset, hlist) { 2063 link_css_set(&tmp_links, cset, root_cgrp); 2064 if (css_set_populated(cset)) 2065 cgroup_update_populated(root_cgrp, true); 2066 } 2067 spin_unlock_irq(&css_set_lock); 2068 2069 BUG_ON(!list_empty(&root_cgrp->self.children)); 2070 BUG_ON(atomic_read(&root->nr_cgrps) != 1); 2071 2072 ret = 0; 2073 goto out; 2074 2075 exit_stats: 2076 cgroup_rstat_exit(root_cgrp); 2077 destroy_root: 2078 kernfs_destroy_root(root->kf_root); 2079 root->kf_root = NULL; 2080 exit_root_id: 2081 cgroup_exit_root_id(root); 2082 cancel_ref: 2083 percpu_ref_exit(&root_cgrp->self.refcnt); 2084 out: 2085 free_cgrp_cset_links(&tmp_links); 2086 return ret; 2087 } 2088 2089 int cgroup_do_get_tree(struct fs_context *fc) 2090 { 2091 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2092 int ret; 2093 2094 ctx->kfc.root = ctx->root->kf_root; 2095 if (fc->fs_type == &cgroup2_fs_type) 2096 ctx->kfc.magic = CGROUP2_SUPER_MAGIC; 2097 else 2098 ctx->kfc.magic = CGROUP_SUPER_MAGIC; 2099 ret = kernfs_get_tree(fc); 2100 2101 /* 2102 * In non-init cgroup namespace, instead of root cgroup's dentry, 2103 * we return the dentry corresponding to the cgroupns->root_cgrp. 2104 */ 2105 if (!ret && ctx->ns != &init_cgroup_ns) { 2106 struct dentry *nsdentry; 2107 struct super_block *sb = fc->root->d_sb; 2108 struct cgroup *cgrp; 2109 2110 mutex_lock(&cgroup_mutex); 2111 spin_lock_irq(&css_set_lock); 2112 2113 cgrp = cset_cgroup_from_root(ctx->ns->root_cset, ctx->root); 2114 2115 spin_unlock_irq(&css_set_lock); 2116 mutex_unlock(&cgroup_mutex); 2117 2118 nsdentry = kernfs_node_dentry(cgrp->kn, sb); 2119 dput(fc->root); 2120 if (IS_ERR(nsdentry)) { 2121 deactivate_locked_super(sb); 2122 ret = PTR_ERR(nsdentry); 2123 nsdentry = NULL; 2124 } 2125 fc->root = nsdentry; 2126 } 2127 2128 if (!ctx->kfc.new_sb_created) 2129 cgroup_put(&ctx->root->cgrp); 2130 2131 return ret; 2132 } 2133 2134 /* 2135 * Destroy a cgroup filesystem context. 2136 */ 2137 static void cgroup_fs_context_free(struct fs_context *fc) 2138 { 2139 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2140 2141 kfree(ctx->name); 2142 kfree(ctx->release_agent); 2143 put_cgroup_ns(ctx->ns); 2144 kernfs_free_fs_context(fc); 2145 kfree(ctx); 2146 } 2147 2148 static int cgroup_get_tree(struct fs_context *fc) 2149 { 2150 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2151 int ret; 2152 2153 cgrp_dfl_visible = true; 2154 cgroup_get_live(&cgrp_dfl_root.cgrp); 2155 ctx->root = &cgrp_dfl_root; 2156 2157 ret = cgroup_do_get_tree(fc); 2158 if (!ret) 2159 apply_cgroup_root_flags(ctx->flags); 2160 return ret; 2161 } 2162 2163 static const struct fs_context_operations cgroup_fs_context_ops = { 2164 .free = cgroup_fs_context_free, 2165 .parse_param = cgroup2_parse_param, 2166 .get_tree = cgroup_get_tree, 2167 .reconfigure = cgroup_reconfigure, 2168 }; 2169 2170 static const struct fs_context_operations cgroup1_fs_context_ops = { 2171 .free = cgroup_fs_context_free, 2172 .parse_param = cgroup1_parse_param, 2173 .get_tree = cgroup1_get_tree, 2174 .reconfigure = cgroup1_reconfigure, 2175 }; 2176 2177 /* 2178 * Initialise the cgroup filesystem creation/reconfiguration context. Notably, 2179 * we select the namespace we're going to use. 2180 */ 2181 static int cgroup_init_fs_context(struct fs_context *fc) 2182 { 2183 struct cgroup_fs_context *ctx; 2184 2185 ctx = kzalloc(sizeof(struct cgroup_fs_context), GFP_KERNEL); 2186 if (!ctx) 2187 return -ENOMEM; 2188 2189 ctx->ns = current->nsproxy->cgroup_ns; 2190 get_cgroup_ns(ctx->ns); 2191 fc->fs_private = &ctx->kfc; 2192 if (fc->fs_type == &cgroup2_fs_type) 2193 fc->ops = &cgroup_fs_context_ops; 2194 else 2195 fc->ops = &cgroup1_fs_context_ops; 2196 put_user_ns(fc->user_ns); 2197 fc->user_ns = get_user_ns(ctx->ns->user_ns); 2198 fc->global = true; 2199 return 0; 2200 } 2201 2202 static void cgroup_kill_sb(struct super_block *sb) 2203 { 2204 struct kernfs_root *kf_root = kernfs_root_from_sb(sb); 2205 struct cgroup_root *root = cgroup_root_from_kf(kf_root); 2206 2207 /* 2208 * If @root doesn't have any children, start killing it. 2209 * This prevents new mounts by disabling percpu_ref_tryget_live(). 2210 * 2211 * And don't kill the default root. 2212 */ 2213 if (list_empty(&root->cgrp.self.children) && root != &cgrp_dfl_root && 2214 !percpu_ref_is_dying(&root->cgrp.self.refcnt)) { 2215 cgroup_bpf_offline(&root->cgrp); 2216 percpu_ref_kill(&root->cgrp.self.refcnt); 2217 } 2218 cgroup_put(&root->cgrp); 2219 kernfs_kill_sb(sb); 2220 } 2221 2222 struct file_system_type cgroup_fs_type = { 2223 .name = "cgroup", 2224 .init_fs_context = cgroup_init_fs_context, 2225 .parameters = cgroup1_fs_parameters, 2226 .kill_sb = cgroup_kill_sb, 2227 .fs_flags = FS_USERNS_MOUNT, 2228 }; 2229 2230 static struct file_system_type cgroup2_fs_type = { 2231 .name = "cgroup2", 2232 .init_fs_context = cgroup_init_fs_context, 2233 .parameters = cgroup2_fs_parameters, 2234 .kill_sb = cgroup_kill_sb, 2235 .fs_flags = FS_USERNS_MOUNT, 2236 }; 2237 2238 #ifdef CONFIG_CPUSETS 2239 static const struct fs_context_operations cpuset_fs_context_ops = { 2240 .get_tree = cgroup1_get_tree, 2241 .free = cgroup_fs_context_free, 2242 }; 2243 2244 /* 2245 * This is ugly, but preserves the userspace API for existing cpuset 2246 * users. If someone tries to mount the "cpuset" filesystem, we 2247 * silently switch it to mount "cgroup" instead 2248 */ 2249 static int cpuset_init_fs_context(struct fs_context *fc) 2250 { 2251 char *agent = kstrdup("/sbin/cpuset_release_agent", GFP_USER); 2252 struct cgroup_fs_context *ctx; 2253 int err; 2254 2255 err = cgroup_init_fs_context(fc); 2256 if (err) { 2257 kfree(agent); 2258 return err; 2259 } 2260 2261 fc->ops = &cpuset_fs_context_ops; 2262 2263 ctx = cgroup_fc2context(fc); 2264 ctx->subsys_mask = 1 << cpuset_cgrp_id; 2265 ctx->flags |= CGRP_ROOT_NOPREFIX; 2266 ctx->release_agent = agent; 2267 2268 get_filesystem(&cgroup_fs_type); 2269 put_filesystem(fc->fs_type); 2270 fc->fs_type = &cgroup_fs_type; 2271 2272 return 0; 2273 } 2274 2275 static struct file_system_type cpuset_fs_type = { 2276 .name = "cpuset", 2277 .init_fs_context = cpuset_init_fs_context, 2278 .fs_flags = FS_USERNS_MOUNT, 2279 }; 2280 #endif 2281 2282 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen, 2283 struct cgroup_namespace *ns) 2284 { 2285 struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root); 2286 2287 return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen); 2288 } 2289 2290 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen, 2291 struct cgroup_namespace *ns) 2292 { 2293 int ret; 2294 2295 mutex_lock(&cgroup_mutex); 2296 spin_lock_irq(&css_set_lock); 2297 2298 ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns); 2299 2300 spin_unlock_irq(&css_set_lock); 2301 mutex_unlock(&cgroup_mutex); 2302 2303 return ret; 2304 } 2305 EXPORT_SYMBOL_GPL(cgroup_path_ns); 2306 2307 /** 2308 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy 2309 * @task: target task 2310 * @buf: the buffer to write the path into 2311 * @buflen: the length of the buffer 2312 * 2313 * Determine @task's cgroup on the first (the one with the lowest non-zero 2314 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This 2315 * function grabs cgroup_mutex and shouldn't be used inside locks used by 2316 * cgroup controller callbacks. 2317 * 2318 * Return value is the same as kernfs_path(). 2319 */ 2320 int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen) 2321 { 2322 struct cgroup_root *root; 2323 struct cgroup *cgrp; 2324 int hierarchy_id = 1; 2325 int ret; 2326 2327 mutex_lock(&cgroup_mutex); 2328 spin_lock_irq(&css_set_lock); 2329 2330 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id); 2331 2332 if (root) { 2333 cgrp = task_cgroup_from_root(task, root); 2334 ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns); 2335 } else { 2336 /* if no hierarchy exists, everyone is in "/" */ 2337 ret = strlcpy(buf, "/", buflen); 2338 } 2339 2340 spin_unlock_irq(&css_set_lock); 2341 mutex_unlock(&cgroup_mutex); 2342 return ret; 2343 } 2344 EXPORT_SYMBOL_GPL(task_cgroup_path); 2345 2346 /** 2347 * cgroup_migrate_add_task - add a migration target task to a migration context 2348 * @task: target task 2349 * @mgctx: target migration context 2350 * 2351 * Add @task, which is a migration target, to @mgctx->tset. This function 2352 * becomes noop if @task doesn't need to be migrated. @task's css_set 2353 * should have been added as a migration source and @task->cg_list will be 2354 * moved from the css_set's tasks list to mg_tasks one. 2355 */ 2356 static void cgroup_migrate_add_task(struct task_struct *task, 2357 struct cgroup_mgctx *mgctx) 2358 { 2359 struct css_set *cset; 2360 2361 lockdep_assert_held(&css_set_lock); 2362 2363 /* @task either already exited or can't exit until the end */ 2364 if (task->flags & PF_EXITING) 2365 return; 2366 2367 /* cgroup_threadgroup_rwsem protects racing against forks */ 2368 WARN_ON_ONCE(list_empty(&task->cg_list)); 2369 2370 cset = task_css_set(task); 2371 if (!cset->mg_src_cgrp) 2372 return; 2373 2374 mgctx->tset.nr_tasks++; 2375 2376 list_move_tail(&task->cg_list, &cset->mg_tasks); 2377 if (list_empty(&cset->mg_node)) 2378 list_add_tail(&cset->mg_node, 2379 &mgctx->tset.src_csets); 2380 if (list_empty(&cset->mg_dst_cset->mg_node)) 2381 list_add_tail(&cset->mg_dst_cset->mg_node, 2382 &mgctx->tset.dst_csets); 2383 } 2384 2385 /** 2386 * cgroup_taskset_first - reset taskset and return the first task 2387 * @tset: taskset of interest 2388 * @dst_cssp: output variable for the destination css 2389 * 2390 * @tset iteration is initialized and the first task is returned. 2391 */ 2392 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset, 2393 struct cgroup_subsys_state **dst_cssp) 2394 { 2395 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node); 2396 tset->cur_task = NULL; 2397 2398 return cgroup_taskset_next(tset, dst_cssp); 2399 } 2400 2401 /** 2402 * cgroup_taskset_next - iterate to the next task in taskset 2403 * @tset: taskset of interest 2404 * @dst_cssp: output variable for the destination css 2405 * 2406 * Return the next task in @tset. Iteration must have been initialized 2407 * with cgroup_taskset_first(). 2408 */ 2409 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset, 2410 struct cgroup_subsys_state **dst_cssp) 2411 { 2412 struct css_set *cset = tset->cur_cset; 2413 struct task_struct *task = tset->cur_task; 2414 2415 while (CGROUP_HAS_SUBSYS_CONFIG && &cset->mg_node != tset->csets) { 2416 if (!task) 2417 task = list_first_entry(&cset->mg_tasks, 2418 struct task_struct, cg_list); 2419 else 2420 task = list_next_entry(task, cg_list); 2421 2422 if (&task->cg_list != &cset->mg_tasks) { 2423 tset->cur_cset = cset; 2424 tset->cur_task = task; 2425 2426 /* 2427 * This function may be called both before and 2428 * after cgroup_taskset_migrate(). The two cases 2429 * can be distinguished by looking at whether @cset 2430 * has its ->mg_dst_cset set. 2431 */ 2432 if (cset->mg_dst_cset) 2433 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid]; 2434 else 2435 *dst_cssp = cset->subsys[tset->ssid]; 2436 2437 return task; 2438 } 2439 2440 cset = list_next_entry(cset, mg_node); 2441 task = NULL; 2442 } 2443 2444 return NULL; 2445 } 2446 2447 /** 2448 * cgroup_migrate_execute - migrate a taskset 2449 * @mgctx: migration context 2450 * 2451 * Migrate tasks in @mgctx as setup by migration preparation functions. 2452 * This function fails iff one of the ->can_attach callbacks fails and 2453 * guarantees that either all or none of the tasks in @mgctx are migrated. 2454 * @mgctx is consumed regardless of success. 2455 */ 2456 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx) 2457 { 2458 struct cgroup_taskset *tset = &mgctx->tset; 2459 struct cgroup_subsys *ss; 2460 struct task_struct *task, *tmp_task; 2461 struct css_set *cset, *tmp_cset; 2462 int ssid, failed_ssid, ret; 2463 2464 /* check that we can legitimately attach to the cgroup */ 2465 if (tset->nr_tasks) { 2466 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2467 if (ss->can_attach) { 2468 tset->ssid = ssid; 2469 ret = ss->can_attach(tset); 2470 if (ret) { 2471 failed_ssid = ssid; 2472 goto out_cancel_attach; 2473 } 2474 } 2475 } while_each_subsys_mask(); 2476 } 2477 2478 /* 2479 * Now that we're guaranteed success, proceed to move all tasks to 2480 * the new cgroup. There are no failure cases after here, so this 2481 * is the commit point. 2482 */ 2483 spin_lock_irq(&css_set_lock); 2484 list_for_each_entry(cset, &tset->src_csets, mg_node) { 2485 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) { 2486 struct css_set *from_cset = task_css_set(task); 2487 struct css_set *to_cset = cset->mg_dst_cset; 2488 2489 get_css_set(to_cset); 2490 to_cset->nr_tasks++; 2491 css_set_move_task(task, from_cset, to_cset, true); 2492 from_cset->nr_tasks--; 2493 /* 2494 * If the source or destination cgroup is frozen, 2495 * the task might require to change its state. 2496 */ 2497 cgroup_freezer_migrate_task(task, from_cset->dfl_cgrp, 2498 to_cset->dfl_cgrp); 2499 put_css_set_locked(from_cset); 2500 2501 } 2502 } 2503 spin_unlock_irq(&css_set_lock); 2504 2505 /* 2506 * Migration is committed, all target tasks are now on dst_csets. 2507 * Nothing is sensitive to fork() after this point. Notify 2508 * controllers that migration is complete. 2509 */ 2510 tset->csets = &tset->dst_csets; 2511 2512 if (tset->nr_tasks) { 2513 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2514 if (ss->attach) { 2515 tset->ssid = ssid; 2516 ss->attach(tset); 2517 } 2518 } while_each_subsys_mask(); 2519 } 2520 2521 ret = 0; 2522 goto out_release_tset; 2523 2524 out_cancel_attach: 2525 if (tset->nr_tasks) { 2526 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2527 if (ssid == failed_ssid) 2528 break; 2529 if (ss->cancel_attach) { 2530 tset->ssid = ssid; 2531 ss->cancel_attach(tset); 2532 } 2533 } while_each_subsys_mask(); 2534 } 2535 out_release_tset: 2536 spin_lock_irq(&css_set_lock); 2537 list_splice_init(&tset->dst_csets, &tset->src_csets); 2538 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) { 2539 list_splice_tail_init(&cset->mg_tasks, &cset->tasks); 2540 list_del_init(&cset->mg_node); 2541 } 2542 spin_unlock_irq(&css_set_lock); 2543 2544 /* 2545 * Re-initialize the cgroup_taskset structure in case it is reused 2546 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute() 2547 * iteration. 2548 */ 2549 tset->nr_tasks = 0; 2550 tset->csets = &tset->src_csets; 2551 return ret; 2552 } 2553 2554 /** 2555 * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination 2556 * @dst_cgrp: destination cgroup to test 2557 * 2558 * On the default hierarchy, except for the mixable, (possible) thread root 2559 * and threaded cgroups, subtree_control must be zero for migration 2560 * destination cgroups with tasks so that child cgroups don't compete 2561 * against tasks. 2562 */ 2563 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp) 2564 { 2565 /* v1 doesn't have any restriction */ 2566 if (!cgroup_on_dfl(dst_cgrp)) 2567 return 0; 2568 2569 /* verify @dst_cgrp can host resources */ 2570 if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp)) 2571 return -EOPNOTSUPP; 2572 2573 /* mixables don't care */ 2574 if (cgroup_is_mixable(dst_cgrp)) 2575 return 0; 2576 2577 /* 2578 * If @dst_cgrp is already or can become a thread root or is 2579 * threaded, it doesn't matter. 2580 */ 2581 if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp)) 2582 return 0; 2583 2584 /* apply no-internal-process constraint */ 2585 if (dst_cgrp->subtree_control) 2586 return -EBUSY; 2587 2588 return 0; 2589 } 2590 2591 /** 2592 * cgroup_migrate_finish - cleanup after attach 2593 * @mgctx: migration context 2594 * 2595 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See 2596 * those functions for details. 2597 */ 2598 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx) 2599 { 2600 LIST_HEAD(preloaded); 2601 struct css_set *cset, *tmp_cset; 2602 2603 lockdep_assert_held(&cgroup_mutex); 2604 2605 spin_lock_irq(&css_set_lock); 2606 2607 list_splice_tail_init(&mgctx->preloaded_src_csets, &preloaded); 2608 list_splice_tail_init(&mgctx->preloaded_dst_csets, &preloaded); 2609 2610 list_for_each_entry_safe(cset, tmp_cset, &preloaded, mg_preload_node) { 2611 cset->mg_src_cgrp = NULL; 2612 cset->mg_dst_cgrp = NULL; 2613 cset->mg_dst_cset = NULL; 2614 list_del_init(&cset->mg_preload_node); 2615 put_css_set_locked(cset); 2616 } 2617 2618 spin_unlock_irq(&css_set_lock); 2619 } 2620 2621 /** 2622 * cgroup_migrate_add_src - add a migration source css_set 2623 * @src_cset: the source css_set to add 2624 * @dst_cgrp: the destination cgroup 2625 * @mgctx: migration context 2626 * 2627 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin 2628 * @src_cset and add it to @mgctx->src_csets, which should later be cleaned 2629 * up by cgroup_migrate_finish(). 2630 * 2631 * This function may be called without holding cgroup_threadgroup_rwsem 2632 * even if the target is a process. Threads may be created and destroyed 2633 * but as long as cgroup_mutex is not dropped, no new css_set can be put 2634 * into play and the preloaded css_sets are guaranteed to cover all 2635 * migrations. 2636 */ 2637 void cgroup_migrate_add_src(struct css_set *src_cset, 2638 struct cgroup *dst_cgrp, 2639 struct cgroup_mgctx *mgctx) 2640 { 2641 struct cgroup *src_cgrp; 2642 2643 lockdep_assert_held(&cgroup_mutex); 2644 lockdep_assert_held(&css_set_lock); 2645 2646 /* 2647 * If ->dead, @src_set is associated with one or more dead cgroups 2648 * and doesn't contain any migratable tasks. Ignore it early so 2649 * that the rest of migration path doesn't get confused by it. 2650 */ 2651 if (src_cset->dead) 2652 return; 2653 2654 if (!list_empty(&src_cset->mg_preload_node)) 2655 return; 2656 2657 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root); 2658 2659 WARN_ON(src_cset->mg_src_cgrp); 2660 WARN_ON(src_cset->mg_dst_cgrp); 2661 WARN_ON(!list_empty(&src_cset->mg_tasks)); 2662 WARN_ON(!list_empty(&src_cset->mg_node)); 2663 2664 src_cset->mg_src_cgrp = src_cgrp; 2665 src_cset->mg_dst_cgrp = dst_cgrp; 2666 get_css_set(src_cset); 2667 list_add_tail(&src_cset->mg_preload_node, &mgctx->preloaded_src_csets); 2668 } 2669 2670 /** 2671 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration 2672 * @mgctx: migration context 2673 * 2674 * Tasks are about to be moved and all the source css_sets have been 2675 * preloaded to @mgctx->preloaded_src_csets. This function looks up and 2676 * pins all destination css_sets, links each to its source, and append them 2677 * to @mgctx->preloaded_dst_csets. 2678 * 2679 * This function must be called after cgroup_migrate_add_src() has been 2680 * called on each migration source css_set. After migration is performed 2681 * using cgroup_migrate(), cgroup_migrate_finish() must be called on 2682 * @mgctx. 2683 */ 2684 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx) 2685 { 2686 struct css_set *src_cset, *tmp_cset; 2687 2688 lockdep_assert_held(&cgroup_mutex); 2689 2690 /* look up the dst cset for each src cset and link it to src */ 2691 list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets, 2692 mg_preload_node) { 2693 struct css_set *dst_cset; 2694 struct cgroup_subsys *ss; 2695 int ssid; 2696 2697 dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp); 2698 if (!dst_cset) 2699 return -ENOMEM; 2700 2701 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset); 2702 2703 /* 2704 * If src cset equals dst, it's noop. Drop the src. 2705 * cgroup_migrate() will skip the cset too. Note that we 2706 * can't handle src == dst as some nodes are used by both. 2707 */ 2708 if (src_cset == dst_cset) { 2709 src_cset->mg_src_cgrp = NULL; 2710 src_cset->mg_dst_cgrp = NULL; 2711 list_del_init(&src_cset->mg_preload_node); 2712 put_css_set(src_cset); 2713 put_css_set(dst_cset); 2714 continue; 2715 } 2716 2717 src_cset->mg_dst_cset = dst_cset; 2718 2719 if (list_empty(&dst_cset->mg_preload_node)) 2720 list_add_tail(&dst_cset->mg_preload_node, 2721 &mgctx->preloaded_dst_csets); 2722 else 2723 put_css_set(dst_cset); 2724 2725 for_each_subsys(ss, ssid) 2726 if (src_cset->subsys[ssid] != dst_cset->subsys[ssid]) 2727 mgctx->ss_mask |= 1 << ssid; 2728 } 2729 2730 return 0; 2731 } 2732 2733 /** 2734 * cgroup_migrate - migrate a process or task to a cgroup 2735 * @leader: the leader of the process or the task to migrate 2736 * @threadgroup: whether @leader points to the whole process or a single task 2737 * @mgctx: migration context 2738 * 2739 * Migrate a process or task denoted by @leader. If migrating a process, 2740 * the caller must be holding cgroup_threadgroup_rwsem. The caller is also 2741 * responsible for invoking cgroup_migrate_add_src() and 2742 * cgroup_migrate_prepare_dst() on the targets before invoking this 2743 * function and following up with cgroup_migrate_finish(). 2744 * 2745 * As long as a controller's ->can_attach() doesn't fail, this function is 2746 * guaranteed to succeed. This means that, excluding ->can_attach() 2747 * failure, when migrating multiple targets, the success or failure can be 2748 * decided for all targets by invoking group_migrate_prepare_dst() before 2749 * actually starting migrating. 2750 */ 2751 int cgroup_migrate(struct task_struct *leader, bool threadgroup, 2752 struct cgroup_mgctx *mgctx) 2753 { 2754 struct task_struct *task; 2755 2756 /* 2757 * Prevent freeing of tasks while we take a snapshot. Tasks that are 2758 * already PF_EXITING could be freed from underneath us unless we 2759 * take an rcu_read_lock. 2760 */ 2761 spin_lock_irq(&css_set_lock); 2762 rcu_read_lock(); 2763 task = leader; 2764 do { 2765 cgroup_migrate_add_task(task, mgctx); 2766 if (!threadgroup) 2767 break; 2768 } while_each_thread(leader, task); 2769 rcu_read_unlock(); 2770 spin_unlock_irq(&css_set_lock); 2771 2772 return cgroup_migrate_execute(mgctx); 2773 } 2774 2775 /** 2776 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup 2777 * @dst_cgrp: the cgroup to attach to 2778 * @leader: the task or the leader of the threadgroup to be attached 2779 * @threadgroup: attach the whole threadgroup? 2780 * 2781 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem. 2782 */ 2783 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader, 2784 bool threadgroup) 2785 { 2786 DEFINE_CGROUP_MGCTX(mgctx); 2787 struct task_struct *task; 2788 int ret = 0; 2789 2790 /* look up all src csets */ 2791 spin_lock_irq(&css_set_lock); 2792 rcu_read_lock(); 2793 task = leader; 2794 do { 2795 cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx); 2796 if (!threadgroup) 2797 break; 2798 } while_each_thread(leader, task); 2799 rcu_read_unlock(); 2800 spin_unlock_irq(&css_set_lock); 2801 2802 /* prepare dst csets and commit */ 2803 ret = cgroup_migrate_prepare_dst(&mgctx); 2804 if (!ret) 2805 ret = cgroup_migrate(leader, threadgroup, &mgctx); 2806 2807 cgroup_migrate_finish(&mgctx); 2808 2809 if (!ret) 2810 TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup); 2811 2812 return ret; 2813 } 2814 2815 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup, 2816 bool *locked) 2817 __acquires(&cgroup_threadgroup_rwsem) 2818 { 2819 struct task_struct *tsk; 2820 pid_t pid; 2821 2822 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0) 2823 return ERR_PTR(-EINVAL); 2824 2825 /* 2826 * If we migrate a single thread, we don't care about threadgroup 2827 * stability. If the thread is `current`, it won't exit(2) under our 2828 * hands or change PID through exec(2). We exclude 2829 * cgroup_update_dfl_csses and other cgroup_{proc,thread}s_write 2830 * callers by cgroup_mutex. 2831 * Therefore, we can skip the global lock. 2832 */ 2833 lockdep_assert_held(&cgroup_mutex); 2834 if (pid || threadgroup) { 2835 percpu_down_write(&cgroup_threadgroup_rwsem); 2836 *locked = true; 2837 } else { 2838 *locked = false; 2839 } 2840 2841 rcu_read_lock(); 2842 if (pid) { 2843 tsk = find_task_by_vpid(pid); 2844 if (!tsk) { 2845 tsk = ERR_PTR(-ESRCH); 2846 goto out_unlock_threadgroup; 2847 } 2848 } else { 2849 tsk = current; 2850 } 2851 2852 if (threadgroup) 2853 tsk = tsk->group_leader; 2854 2855 /* 2856 * kthreads may acquire PF_NO_SETAFFINITY during initialization. 2857 * If userland migrates such a kthread to a non-root cgroup, it can 2858 * become trapped in a cpuset, or RT kthread may be born in a 2859 * cgroup with no rt_runtime allocated. Just say no. 2860 */ 2861 if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) { 2862 tsk = ERR_PTR(-EINVAL); 2863 goto out_unlock_threadgroup; 2864 } 2865 2866 get_task_struct(tsk); 2867 goto out_unlock_rcu; 2868 2869 out_unlock_threadgroup: 2870 if (*locked) { 2871 percpu_up_write(&cgroup_threadgroup_rwsem); 2872 *locked = false; 2873 } 2874 out_unlock_rcu: 2875 rcu_read_unlock(); 2876 return tsk; 2877 } 2878 2879 void cgroup_procs_write_finish(struct task_struct *task, bool locked) 2880 __releases(&cgroup_threadgroup_rwsem) 2881 { 2882 struct cgroup_subsys *ss; 2883 int ssid; 2884 2885 /* release reference from cgroup_procs_write_start() */ 2886 put_task_struct(task); 2887 2888 if (locked) 2889 percpu_up_write(&cgroup_threadgroup_rwsem); 2890 for_each_subsys(ss, ssid) 2891 if (ss->post_attach) 2892 ss->post_attach(); 2893 } 2894 2895 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask) 2896 { 2897 struct cgroup_subsys *ss; 2898 bool printed = false; 2899 int ssid; 2900 2901 do_each_subsys_mask(ss, ssid, ss_mask) { 2902 if (printed) 2903 seq_putc(seq, ' '); 2904 seq_puts(seq, ss->name); 2905 printed = true; 2906 } while_each_subsys_mask(); 2907 if (printed) 2908 seq_putc(seq, '\n'); 2909 } 2910 2911 /* show controllers which are enabled from the parent */ 2912 static int cgroup_controllers_show(struct seq_file *seq, void *v) 2913 { 2914 struct cgroup *cgrp = seq_css(seq)->cgroup; 2915 2916 cgroup_print_ss_mask(seq, cgroup_control(cgrp)); 2917 return 0; 2918 } 2919 2920 /* show controllers which are enabled for a given cgroup's children */ 2921 static int cgroup_subtree_control_show(struct seq_file *seq, void *v) 2922 { 2923 struct cgroup *cgrp = seq_css(seq)->cgroup; 2924 2925 cgroup_print_ss_mask(seq, cgrp->subtree_control); 2926 return 0; 2927 } 2928 2929 /** 2930 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy 2931 * @cgrp: root of the subtree to update csses for 2932 * 2933 * @cgrp's control masks have changed and its subtree's css associations 2934 * need to be updated accordingly. This function looks up all css_sets 2935 * which are attached to the subtree, creates the matching updated css_sets 2936 * and migrates the tasks to the new ones. 2937 */ 2938 static int cgroup_update_dfl_csses(struct cgroup *cgrp) 2939 { 2940 DEFINE_CGROUP_MGCTX(mgctx); 2941 struct cgroup_subsys_state *d_css; 2942 struct cgroup *dsct; 2943 struct css_set *src_cset; 2944 int ret; 2945 2946 lockdep_assert_held(&cgroup_mutex); 2947 2948 percpu_down_write(&cgroup_threadgroup_rwsem); 2949 2950 /* look up all csses currently attached to @cgrp's subtree */ 2951 spin_lock_irq(&css_set_lock); 2952 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 2953 struct cgrp_cset_link *link; 2954 2955 list_for_each_entry(link, &dsct->cset_links, cset_link) 2956 cgroup_migrate_add_src(link->cset, dsct, &mgctx); 2957 } 2958 spin_unlock_irq(&css_set_lock); 2959 2960 /* NULL dst indicates self on default hierarchy */ 2961 ret = cgroup_migrate_prepare_dst(&mgctx); 2962 if (ret) 2963 goto out_finish; 2964 2965 spin_lock_irq(&css_set_lock); 2966 list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, mg_preload_node) { 2967 struct task_struct *task, *ntask; 2968 2969 /* all tasks in src_csets need to be migrated */ 2970 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list) 2971 cgroup_migrate_add_task(task, &mgctx); 2972 } 2973 spin_unlock_irq(&css_set_lock); 2974 2975 ret = cgroup_migrate_execute(&mgctx); 2976 out_finish: 2977 cgroup_migrate_finish(&mgctx); 2978 percpu_up_write(&cgroup_threadgroup_rwsem); 2979 return ret; 2980 } 2981 2982 /** 2983 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses 2984 * @cgrp: root of the target subtree 2985 * 2986 * Because css offlining is asynchronous, userland may try to re-enable a 2987 * controller while the previous css is still around. This function grabs 2988 * cgroup_mutex and drains the previous css instances of @cgrp's subtree. 2989 */ 2990 void cgroup_lock_and_drain_offline(struct cgroup *cgrp) 2991 __acquires(&cgroup_mutex) 2992 { 2993 struct cgroup *dsct; 2994 struct cgroup_subsys_state *d_css; 2995 struct cgroup_subsys *ss; 2996 int ssid; 2997 2998 restart: 2999 mutex_lock(&cgroup_mutex); 3000 3001 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 3002 for_each_subsys(ss, ssid) { 3003 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 3004 DEFINE_WAIT(wait); 3005 3006 if (!css || !percpu_ref_is_dying(&css->refcnt)) 3007 continue; 3008 3009 cgroup_get_live(dsct); 3010 prepare_to_wait(&dsct->offline_waitq, &wait, 3011 TASK_UNINTERRUPTIBLE); 3012 3013 mutex_unlock(&cgroup_mutex); 3014 schedule(); 3015 finish_wait(&dsct->offline_waitq, &wait); 3016 3017 cgroup_put(dsct); 3018 goto restart; 3019 } 3020 } 3021 } 3022 3023 /** 3024 * cgroup_save_control - save control masks and dom_cgrp of a subtree 3025 * @cgrp: root of the target subtree 3026 * 3027 * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the 3028 * respective old_ prefixed fields for @cgrp's subtree including @cgrp 3029 * itself. 3030 */ 3031 static void cgroup_save_control(struct cgroup *cgrp) 3032 { 3033 struct cgroup *dsct; 3034 struct cgroup_subsys_state *d_css; 3035 3036 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 3037 dsct->old_subtree_control = dsct->subtree_control; 3038 dsct->old_subtree_ss_mask = dsct->subtree_ss_mask; 3039 dsct->old_dom_cgrp = dsct->dom_cgrp; 3040 } 3041 } 3042 3043 /** 3044 * cgroup_propagate_control - refresh control masks of a subtree 3045 * @cgrp: root of the target subtree 3046 * 3047 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches 3048 * ->subtree_control and propagate controller availability through the 3049 * subtree so that descendants don't have unavailable controllers enabled. 3050 */ 3051 static void cgroup_propagate_control(struct cgroup *cgrp) 3052 { 3053 struct cgroup *dsct; 3054 struct cgroup_subsys_state *d_css; 3055 3056 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 3057 dsct->subtree_control &= cgroup_control(dsct); 3058 dsct->subtree_ss_mask = 3059 cgroup_calc_subtree_ss_mask(dsct->subtree_control, 3060 cgroup_ss_mask(dsct)); 3061 } 3062 } 3063 3064 /** 3065 * cgroup_restore_control - restore control masks and dom_cgrp of a subtree 3066 * @cgrp: root of the target subtree 3067 * 3068 * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the 3069 * respective old_ prefixed fields for @cgrp's subtree including @cgrp 3070 * itself. 3071 */ 3072 static void cgroup_restore_control(struct cgroup *cgrp) 3073 { 3074 struct cgroup *dsct; 3075 struct cgroup_subsys_state *d_css; 3076 3077 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 3078 dsct->subtree_control = dsct->old_subtree_control; 3079 dsct->subtree_ss_mask = dsct->old_subtree_ss_mask; 3080 dsct->dom_cgrp = dsct->old_dom_cgrp; 3081 } 3082 } 3083 3084 static bool css_visible(struct cgroup_subsys_state *css) 3085 { 3086 struct cgroup_subsys *ss = css->ss; 3087 struct cgroup *cgrp = css->cgroup; 3088 3089 if (cgroup_control(cgrp) & (1 << ss->id)) 3090 return true; 3091 if (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) 3092 return false; 3093 return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl; 3094 } 3095 3096 /** 3097 * cgroup_apply_control_enable - enable or show csses according to control 3098 * @cgrp: root of the target subtree 3099 * 3100 * Walk @cgrp's subtree and create new csses or make the existing ones 3101 * visible. A css is created invisible if it's being implicitly enabled 3102 * through dependency. An invisible css is made visible when the userland 3103 * explicitly enables it. 3104 * 3105 * Returns 0 on success, -errno on failure. On failure, csses which have 3106 * been processed already aren't cleaned up. The caller is responsible for 3107 * cleaning up with cgroup_apply_control_disable(). 3108 */ 3109 static int cgroup_apply_control_enable(struct cgroup *cgrp) 3110 { 3111 struct cgroup *dsct; 3112 struct cgroup_subsys_state *d_css; 3113 struct cgroup_subsys *ss; 3114 int ssid, ret; 3115 3116 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 3117 for_each_subsys(ss, ssid) { 3118 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 3119 3120 if (!(cgroup_ss_mask(dsct) & (1 << ss->id))) 3121 continue; 3122 3123 if (!css) { 3124 css = css_create(dsct, ss); 3125 if (IS_ERR(css)) 3126 return PTR_ERR(css); 3127 } 3128 3129 WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt)); 3130 3131 if (css_visible(css)) { 3132 ret = css_populate_dir(css); 3133 if (ret) 3134 return ret; 3135 } 3136 } 3137 } 3138 3139 return 0; 3140 } 3141 3142 /** 3143 * cgroup_apply_control_disable - kill or hide csses according to control 3144 * @cgrp: root of the target subtree 3145 * 3146 * Walk @cgrp's subtree and kill and hide csses so that they match 3147 * cgroup_ss_mask() and cgroup_visible_mask(). 3148 * 3149 * A css is hidden when the userland requests it to be disabled while other 3150 * subsystems are still depending on it. The css must not actively control 3151 * resources and be in the vanilla state if it's made visible again later. 3152 * Controllers which may be depended upon should provide ->css_reset() for 3153 * this purpose. 3154 */ 3155 static void cgroup_apply_control_disable(struct cgroup *cgrp) 3156 { 3157 struct cgroup *dsct; 3158 struct cgroup_subsys_state *d_css; 3159 struct cgroup_subsys *ss; 3160 int ssid; 3161 3162 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 3163 for_each_subsys(ss, ssid) { 3164 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 3165 3166 if (!css) 3167 continue; 3168 3169 WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt)); 3170 3171 if (css->parent && 3172 !(cgroup_ss_mask(dsct) & (1 << ss->id))) { 3173 kill_css(css); 3174 } else if (!css_visible(css)) { 3175 css_clear_dir(css); 3176 if (ss->css_reset) 3177 ss->css_reset(css); 3178 } 3179 } 3180 } 3181 } 3182 3183 /** 3184 * cgroup_apply_control - apply control mask updates to the subtree 3185 * @cgrp: root of the target subtree 3186 * 3187 * subsystems can be enabled and disabled in a subtree using the following 3188 * steps. 3189 * 3190 * 1. Call cgroup_save_control() to stash the current state. 3191 * 2. Update ->subtree_control masks in the subtree as desired. 3192 * 3. Call cgroup_apply_control() to apply the changes. 3193 * 4. Optionally perform other related operations. 3194 * 5. Call cgroup_finalize_control() to finish up. 3195 * 3196 * This function implements step 3 and propagates the mask changes 3197 * throughout @cgrp's subtree, updates csses accordingly and perform 3198 * process migrations. 3199 */ 3200 static int cgroup_apply_control(struct cgroup *cgrp) 3201 { 3202 int ret; 3203 3204 cgroup_propagate_control(cgrp); 3205 3206 ret = cgroup_apply_control_enable(cgrp); 3207 if (ret) 3208 return ret; 3209 3210 /* 3211 * At this point, cgroup_e_css_by_mask() results reflect the new csses 3212 * making the following cgroup_update_dfl_csses() properly update 3213 * css associations of all tasks in the subtree. 3214 */ 3215 ret = cgroup_update_dfl_csses(cgrp); 3216 if (ret) 3217 return ret; 3218 3219 return 0; 3220 } 3221 3222 /** 3223 * cgroup_finalize_control - finalize control mask update 3224 * @cgrp: root of the target subtree 3225 * @ret: the result of the update 3226 * 3227 * Finalize control mask update. See cgroup_apply_control() for more info. 3228 */ 3229 static void cgroup_finalize_control(struct cgroup *cgrp, int ret) 3230 { 3231 if (ret) { 3232 cgroup_restore_control(cgrp); 3233 cgroup_propagate_control(cgrp); 3234 } 3235 3236 cgroup_apply_control_disable(cgrp); 3237 } 3238 3239 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable) 3240 { 3241 u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask; 3242 3243 /* if nothing is getting enabled, nothing to worry about */ 3244 if (!enable) 3245 return 0; 3246 3247 /* can @cgrp host any resources? */ 3248 if (!cgroup_is_valid_domain(cgrp->dom_cgrp)) 3249 return -EOPNOTSUPP; 3250 3251 /* mixables don't care */ 3252 if (cgroup_is_mixable(cgrp)) 3253 return 0; 3254 3255 if (domain_enable) { 3256 /* can't enable domain controllers inside a thread subtree */ 3257 if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp)) 3258 return -EOPNOTSUPP; 3259 } else { 3260 /* 3261 * Threaded controllers can handle internal competitions 3262 * and are always allowed inside a (prospective) thread 3263 * subtree. 3264 */ 3265 if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp)) 3266 return 0; 3267 } 3268 3269 /* 3270 * Controllers can't be enabled for a cgroup with tasks to avoid 3271 * child cgroups competing against tasks. 3272 */ 3273 if (cgroup_has_tasks(cgrp)) 3274 return -EBUSY; 3275 3276 return 0; 3277 } 3278 3279 /* change the enabled child controllers for a cgroup in the default hierarchy */ 3280 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of, 3281 char *buf, size_t nbytes, 3282 loff_t off) 3283 { 3284 u16 enable = 0, disable = 0; 3285 struct cgroup *cgrp, *child; 3286 struct cgroup_subsys *ss; 3287 char *tok; 3288 int ssid, ret; 3289 3290 /* 3291 * Parse input - space separated list of subsystem names prefixed 3292 * with either + or -. 3293 */ 3294 buf = strstrip(buf); 3295 while ((tok = strsep(&buf, " "))) { 3296 if (tok[0] == '\0') 3297 continue; 3298 do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) { 3299 if (!cgroup_ssid_enabled(ssid) || 3300 strcmp(tok + 1, ss->name)) 3301 continue; 3302 3303 if (*tok == '+') { 3304 enable |= 1 << ssid; 3305 disable &= ~(1 << ssid); 3306 } else if (*tok == '-') { 3307 disable |= 1 << ssid; 3308 enable &= ~(1 << ssid); 3309 } else { 3310 return -EINVAL; 3311 } 3312 break; 3313 } while_each_subsys_mask(); 3314 if (ssid == CGROUP_SUBSYS_COUNT) 3315 return -EINVAL; 3316 } 3317 3318 cgrp = cgroup_kn_lock_live(of->kn, true); 3319 if (!cgrp) 3320 return -ENODEV; 3321 3322 for_each_subsys(ss, ssid) { 3323 if (enable & (1 << ssid)) { 3324 if (cgrp->subtree_control & (1 << ssid)) { 3325 enable &= ~(1 << ssid); 3326 continue; 3327 } 3328 3329 if (!(cgroup_control(cgrp) & (1 << ssid))) { 3330 ret = -ENOENT; 3331 goto out_unlock; 3332 } 3333 } else if (disable & (1 << ssid)) { 3334 if (!(cgrp->subtree_control & (1 << ssid))) { 3335 disable &= ~(1 << ssid); 3336 continue; 3337 } 3338 3339 /* a child has it enabled? */ 3340 cgroup_for_each_live_child(child, cgrp) { 3341 if (child->subtree_control & (1 << ssid)) { 3342 ret = -EBUSY; 3343 goto out_unlock; 3344 } 3345 } 3346 } 3347 } 3348 3349 if (!enable && !disable) { 3350 ret = 0; 3351 goto out_unlock; 3352 } 3353 3354 ret = cgroup_vet_subtree_control_enable(cgrp, enable); 3355 if (ret) 3356 goto out_unlock; 3357 3358 /* save and update control masks and prepare csses */ 3359 cgroup_save_control(cgrp); 3360 3361 cgrp->subtree_control |= enable; 3362 cgrp->subtree_control &= ~disable; 3363 3364 ret = cgroup_apply_control(cgrp); 3365 cgroup_finalize_control(cgrp, ret); 3366 if (ret) 3367 goto out_unlock; 3368 3369 kernfs_activate(cgrp->kn); 3370 out_unlock: 3371 cgroup_kn_unlock(of->kn); 3372 return ret ?: nbytes; 3373 } 3374 3375 /** 3376 * cgroup_enable_threaded - make @cgrp threaded 3377 * @cgrp: the target cgroup 3378 * 3379 * Called when "threaded" is written to the cgroup.type interface file and 3380 * tries to make @cgrp threaded and join the parent's resource domain. 3381 * This function is never called on the root cgroup as cgroup.type doesn't 3382 * exist on it. 3383 */ 3384 static int cgroup_enable_threaded(struct cgroup *cgrp) 3385 { 3386 struct cgroup *parent = cgroup_parent(cgrp); 3387 struct cgroup *dom_cgrp = parent->dom_cgrp; 3388 struct cgroup *dsct; 3389 struct cgroup_subsys_state *d_css; 3390 int ret; 3391 3392 lockdep_assert_held(&cgroup_mutex); 3393 3394 /* noop if already threaded */ 3395 if (cgroup_is_threaded(cgrp)) 3396 return 0; 3397 3398 /* 3399 * If @cgroup is populated or has domain controllers enabled, it 3400 * can't be switched. While the below cgroup_can_be_thread_root() 3401 * test can catch the same conditions, that's only when @parent is 3402 * not mixable, so let's check it explicitly. 3403 */ 3404 if (cgroup_is_populated(cgrp) || 3405 cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask) 3406 return -EOPNOTSUPP; 3407 3408 /* we're joining the parent's domain, ensure its validity */ 3409 if (!cgroup_is_valid_domain(dom_cgrp) || 3410 !cgroup_can_be_thread_root(dom_cgrp)) 3411 return -EOPNOTSUPP; 3412 3413 /* 3414 * The following shouldn't cause actual migrations and should 3415 * always succeed. 3416 */ 3417 cgroup_save_control(cgrp); 3418 3419 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) 3420 if (dsct == cgrp || cgroup_is_threaded(dsct)) 3421 dsct->dom_cgrp = dom_cgrp; 3422 3423 ret = cgroup_apply_control(cgrp); 3424 if (!ret) 3425 parent->nr_threaded_children++; 3426 3427 cgroup_finalize_control(cgrp, ret); 3428 return ret; 3429 } 3430 3431 static int cgroup_type_show(struct seq_file *seq, void *v) 3432 { 3433 struct cgroup *cgrp = seq_css(seq)->cgroup; 3434 3435 if (cgroup_is_threaded(cgrp)) 3436 seq_puts(seq, "threaded\n"); 3437 else if (!cgroup_is_valid_domain(cgrp)) 3438 seq_puts(seq, "domain invalid\n"); 3439 else if (cgroup_is_thread_root(cgrp)) 3440 seq_puts(seq, "domain threaded\n"); 3441 else 3442 seq_puts(seq, "domain\n"); 3443 3444 return 0; 3445 } 3446 3447 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf, 3448 size_t nbytes, loff_t off) 3449 { 3450 struct cgroup *cgrp; 3451 int ret; 3452 3453 /* only switching to threaded mode is supported */ 3454 if (strcmp(strstrip(buf), "threaded")) 3455 return -EINVAL; 3456 3457 /* drain dying csses before we re-apply (threaded) subtree control */ 3458 cgrp = cgroup_kn_lock_live(of->kn, true); 3459 if (!cgrp) 3460 return -ENOENT; 3461 3462 /* threaded can only be enabled */ 3463 ret = cgroup_enable_threaded(cgrp); 3464 3465 cgroup_kn_unlock(of->kn); 3466 return ret ?: nbytes; 3467 } 3468 3469 static int cgroup_max_descendants_show(struct seq_file *seq, void *v) 3470 { 3471 struct cgroup *cgrp = seq_css(seq)->cgroup; 3472 int descendants = READ_ONCE(cgrp->max_descendants); 3473 3474 if (descendants == INT_MAX) 3475 seq_puts(seq, "max\n"); 3476 else 3477 seq_printf(seq, "%d\n", descendants); 3478 3479 return 0; 3480 } 3481 3482 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of, 3483 char *buf, size_t nbytes, loff_t off) 3484 { 3485 struct cgroup *cgrp; 3486 int descendants; 3487 ssize_t ret; 3488 3489 buf = strstrip(buf); 3490 if (!strcmp(buf, "max")) { 3491 descendants = INT_MAX; 3492 } else { 3493 ret = kstrtoint(buf, 0, &descendants); 3494 if (ret) 3495 return ret; 3496 } 3497 3498 if (descendants < 0) 3499 return -ERANGE; 3500 3501 cgrp = cgroup_kn_lock_live(of->kn, false); 3502 if (!cgrp) 3503 return -ENOENT; 3504 3505 cgrp->max_descendants = descendants; 3506 3507 cgroup_kn_unlock(of->kn); 3508 3509 return nbytes; 3510 } 3511 3512 static int cgroup_max_depth_show(struct seq_file *seq, void *v) 3513 { 3514 struct cgroup *cgrp = seq_css(seq)->cgroup; 3515 int depth = READ_ONCE(cgrp->max_depth); 3516 3517 if (depth == INT_MAX) 3518 seq_puts(seq, "max\n"); 3519 else 3520 seq_printf(seq, "%d\n", depth); 3521 3522 return 0; 3523 } 3524 3525 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of, 3526 char *buf, size_t nbytes, loff_t off) 3527 { 3528 struct cgroup *cgrp; 3529 ssize_t ret; 3530 int depth; 3531 3532 buf = strstrip(buf); 3533 if (!strcmp(buf, "max")) { 3534 depth = INT_MAX; 3535 } else { 3536 ret = kstrtoint(buf, 0, &depth); 3537 if (ret) 3538 return ret; 3539 } 3540 3541 if (depth < 0) 3542 return -ERANGE; 3543 3544 cgrp = cgroup_kn_lock_live(of->kn, false); 3545 if (!cgrp) 3546 return -ENOENT; 3547 3548 cgrp->max_depth = depth; 3549 3550 cgroup_kn_unlock(of->kn); 3551 3552 return nbytes; 3553 } 3554 3555 static int cgroup_events_show(struct seq_file *seq, void *v) 3556 { 3557 struct cgroup *cgrp = seq_css(seq)->cgroup; 3558 3559 seq_printf(seq, "populated %d\n", cgroup_is_populated(cgrp)); 3560 seq_printf(seq, "frozen %d\n", test_bit(CGRP_FROZEN, &cgrp->flags)); 3561 3562 return 0; 3563 } 3564 3565 static int cgroup_stat_show(struct seq_file *seq, void *v) 3566 { 3567 struct cgroup *cgroup = seq_css(seq)->cgroup; 3568 3569 seq_printf(seq, "nr_descendants %d\n", 3570 cgroup->nr_descendants); 3571 seq_printf(seq, "nr_dying_descendants %d\n", 3572 cgroup->nr_dying_descendants); 3573 3574 return 0; 3575 } 3576 3577 static int __maybe_unused cgroup_extra_stat_show(struct seq_file *seq, 3578 struct cgroup *cgrp, int ssid) 3579 { 3580 struct cgroup_subsys *ss = cgroup_subsys[ssid]; 3581 struct cgroup_subsys_state *css; 3582 int ret; 3583 3584 if (!ss->css_extra_stat_show) 3585 return 0; 3586 3587 css = cgroup_tryget_css(cgrp, ss); 3588 if (!css) 3589 return 0; 3590 3591 ret = ss->css_extra_stat_show(seq, css); 3592 css_put(css); 3593 return ret; 3594 } 3595 3596 static int cpu_stat_show(struct seq_file *seq, void *v) 3597 { 3598 struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup; 3599 int ret = 0; 3600 3601 cgroup_base_stat_cputime_show(seq); 3602 #ifdef CONFIG_CGROUP_SCHED 3603 ret = cgroup_extra_stat_show(seq, cgrp, cpu_cgrp_id); 3604 #endif 3605 return ret; 3606 } 3607 3608 #ifdef CONFIG_PSI 3609 static int cgroup_io_pressure_show(struct seq_file *seq, void *v) 3610 { 3611 struct cgroup *cgrp = seq_css(seq)->cgroup; 3612 struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi; 3613 3614 return psi_show(seq, psi, PSI_IO); 3615 } 3616 static int cgroup_memory_pressure_show(struct seq_file *seq, void *v) 3617 { 3618 struct cgroup *cgrp = seq_css(seq)->cgroup; 3619 struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi; 3620 3621 return psi_show(seq, psi, PSI_MEM); 3622 } 3623 static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v) 3624 { 3625 struct cgroup *cgrp = seq_css(seq)->cgroup; 3626 struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi; 3627 3628 return psi_show(seq, psi, PSI_CPU); 3629 } 3630 3631 static ssize_t cgroup_pressure_write(struct kernfs_open_file *of, char *buf, 3632 size_t nbytes, enum psi_res res) 3633 { 3634 struct cgroup_file_ctx *ctx = of->priv; 3635 struct psi_trigger *new; 3636 struct cgroup *cgrp; 3637 struct psi_group *psi; 3638 3639 cgrp = cgroup_kn_lock_live(of->kn, false); 3640 if (!cgrp) 3641 return -ENODEV; 3642 3643 cgroup_get(cgrp); 3644 cgroup_kn_unlock(of->kn); 3645 3646 psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi; 3647 new = psi_trigger_create(psi, buf, nbytes, res); 3648 if (IS_ERR(new)) { 3649 cgroup_put(cgrp); 3650 return PTR_ERR(new); 3651 } 3652 3653 psi_trigger_replace(&ctx->psi.trigger, new); 3654 3655 cgroup_put(cgrp); 3656 3657 return nbytes; 3658 } 3659 3660 static ssize_t cgroup_io_pressure_write(struct kernfs_open_file *of, 3661 char *buf, size_t nbytes, 3662 loff_t off) 3663 { 3664 return cgroup_pressure_write(of, buf, nbytes, PSI_IO); 3665 } 3666 3667 static ssize_t cgroup_memory_pressure_write(struct kernfs_open_file *of, 3668 char *buf, size_t nbytes, 3669 loff_t off) 3670 { 3671 return cgroup_pressure_write(of, buf, nbytes, PSI_MEM); 3672 } 3673 3674 static ssize_t cgroup_cpu_pressure_write(struct kernfs_open_file *of, 3675 char *buf, size_t nbytes, 3676 loff_t off) 3677 { 3678 return cgroup_pressure_write(of, buf, nbytes, PSI_CPU); 3679 } 3680 3681 static __poll_t cgroup_pressure_poll(struct kernfs_open_file *of, 3682 poll_table *pt) 3683 { 3684 struct cgroup_file_ctx *ctx = of->priv; 3685 3686 return psi_trigger_poll(&ctx->psi.trigger, of->file, pt); 3687 } 3688 3689 static void cgroup_pressure_release(struct kernfs_open_file *of) 3690 { 3691 struct cgroup_file_ctx *ctx = of->priv; 3692 3693 psi_trigger_replace(&ctx->psi.trigger, NULL); 3694 } 3695 3696 bool cgroup_psi_enabled(void) 3697 { 3698 return (cgroup_feature_disable_mask & (1 << OPT_FEATURE_PRESSURE)) == 0; 3699 } 3700 3701 #else /* CONFIG_PSI */ 3702 bool cgroup_psi_enabled(void) 3703 { 3704 return false; 3705 } 3706 3707 #endif /* CONFIG_PSI */ 3708 3709 static int cgroup_freeze_show(struct seq_file *seq, void *v) 3710 { 3711 struct cgroup *cgrp = seq_css(seq)->cgroup; 3712 3713 seq_printf(seq, "%d\n", cgrp->freezer.freeze); 3714 3715 return 0; 3716 } 3717 3718 static ssize_t cgroup_freeze_write(struct kernfs_open_file *of, 3719 char *buf, size_t nbytes, loff_t off) 3720 { 3721 struct cgroup *cgrp; 3722 ssize_t ret; 3723 int freeze; 3724 3725 ret = kstrtoint(strstrip(buf), 0, &freeze); 3726 if (ret) 3727 return ret; 3728 3729 if (freeze < 0 || freeze > 1) 3730 return -ERANGE; 3731 3732 cgrp = cgroup_kn_lock_live(of->kn, false); 3733 if (!cgrp) 3734 return -ENOENT; 3735 3736 cgroup_freeze(cgrp, freeze); 3737 3738 cgroup_kn_unlock(of->kn); 3739 3740 return nbytes; 3741 } 3742 3743 static void __cgroup_kill(struct cgroup *cgrp) 3744 { 3745 struct css_task_iter it; 3746 struct task_struct *task; 3747 3748 lockdep_assert_held(&cgroup_mutex); 3749 3750 spin_lock_irq(&css_set_lock); 3751 set_bit(CGRP_KILL, &cgrp->flags); 3752 spin_unlock_irq(&css_set_lock); 3753 3754 css_task_iter_start(&cgrp->self, CSS_TASK_ITER_PROCS | CSS_TASK_ITER_THREADED, &it); 3755 while ((task = css_task_iter_next(&it))) { 3756 /* Ignore kernel threads here. */ 3757 if (task->flags & PF_KTHREAD) 3758 continue; 3759 3760 /* Skip tasks that are already dying. */ 3761 if (__fatal_signal_pending(task)) 3762 continue; 3763 3764 send_sig(SIGKILL, task, 0); 3765 } 3766 css_task_iter_end(&it); 3767 3768 spin_lock_irq(&css_set_lock); 3769 clear_bit(CGRP_KILL, &cgrp->flags); 3770 spin_unlock_irq(&css_set_lock); 3771 } 3772 3773 static void cgroup_kill(struct cgroup *cgrp) 3774 { 3775 struct cgroup_subsys_state *css; 3776 struct cgroup *dsct; 3777 3778 lockdep_assert_held(&cgroup_mutex); 3779 3780 cgroup_for_each_live_descendant_pre(dsct, css, cgrp) 3781 __cgroup_kill(dsct); 3782 } 3783 3784 static ssize_t cgroup_kill_write(struct kernfs_open_file *of, char *buf, 3785 size_t nbytes, loff_t off) 3786 { 3787 ssize_t ret = 0; 3788 int kill; 3789 struct cgroup *cgrp; 3790 3791 ret = kstrtoint(strstrip(buf), 0, &kill); 3792 if (ret) 3793 return ret; 3794 3795 if (kill != 1) 3796 return -ERANGE; 3797 3798 cgrp = cgroup_kn_lock_live(of->kn, false); 3799 if (!cgrp) 3800 return -ENOENT; 3801 3802 /* 3803 * Killing is a process directed operation, i.e. the whole thread-group 3804 * is taken down so act like we do for cgroup.procs and only make this 3805 * writable in non-threaded cgroups. 3806 */ 3807 if (cgroup_is_threaded(cgrp)) 3808 ret = -EOPNOTSUPP; 3809 else 3810 cgroup_kill(cgrp); 3811 3812 cgroup_kn_unlock(of->kn); 3813 3814 return ret ?: nbytes; 3815 } 3816 3817 static int cgroup_file_open(struct kernfs_open_file *of) 3818 { 3819 struct cftype *cft = of_cft(of); 3820 struct cgroup_file_ctx *ctx; 3821 int ret; 3822 3823 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 3824 if (!ctx) 3825 return -ENOMEM; 3826 3827 ctx->ns = current->nsproxy->cgroup_ns; 3828 get_cgroup_ns(ctx->ns); 3829 of->priv = ctx; 3830 3831 if (!cft->open) 3832 return 0; 3833 3834 ret = cft->open(of); 3835 if (ret) { 3836 put_cgroup_ns(ctx->ns); 3837 kfree(ctx); 3838 } 3839 return ret; 3840 } 3841 3842 static void cgroup_file_release(struct kernfs_open_file *of) 3843 { 3844 struct cftype *cft = of_cft(of); 3845 struct cgroup_file_ctx *ctx = of->priv; 3846 3847 if (cft->release) 3848 cft->release(of); 3849 put_cgroup_ns(ctx->ns); 3850 kfree(ctx); 3851 } 3852 3853 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf, 3854 size_t nbytes, loff_t off) 3855 { 3856 struct cgroup_file_ctx *ctx = of->priv; 3857 struct cgroup *cgrp = of->kn->parent->priv; 3858 struct cftype *cft = of_cft(of); 3859 struct cgroup_subsys_state *css; 3860 int ret; 3861 3862 if (!nbytes) 3863 return 0; 3864 3865 /* 3866 * If namespaces are delegation boundaries, disallow writes to 3867 * files in an non-init namespace root from inside the namespace 3868 * except for the files explicitly marked delegatable - 3869 * cgroup.procs and cgroup.subtree_control. 3870 */ 3871 if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) && 3872 !(cft->flags & CFTYPE_NS_DELEGATABLE) && 3873 ctx->ns != &init_cgroup_ns && ctx->ns->root_cset->dfl_cgrp == cgrp) 3874 return -EPERM; 3875 3876 if (cft->write) 3877 return cft->write(of, buf, nbytes, off); 3878 3879 /* 3880 * kernfs guarantees that a file isn't deleted with operations in 3881 * flight, which means that the matching css is and stays alive and 3882 * doesn't need to be pinned. The RCU locking is not necessary 3883 * either. It's just for the convenience of using cgroup_css(). 3884 */ 3885 rcu_read_lock(); 3886 css = cgroup_css(cgrp, cft->ss); 3887 rcu_read_unlock(); 3888 3889 if (cft->write_u64) { 3890 unsigned long long v; 3891 ret = kstrtoull(buf, 0, &v); 3892 if (!ret) 3893 ret = cft->write_u64(css, cft, v); 3894 } else if (cft->write_s64) { 3895 long long v; 3896 ret = kstrtoll(buf, 0, &v); 3897 if (!ret) 3898 ret = cft->write_s64(css, cft, v); 3899 } else { 3900 ret = -EINVAL; 3901 } 3902 3903 return ret ?: nbytes; 3904 } 3905 3906 static __poll_t cgroup_file_poll(struct kernfs_open_file *of, poll_table *pt) 3907 { 3908 struct cftype *cft = of_cft(of); 3909 3910 if (cft->poll) 3911 return cft->poll(of, pt); 3912 3913 return kernfs_generic_poll(of, pt); 3914 } 3915 3916 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos) 3917 { 3918 return seq_cft(seq)->seq_start(seq, ppos); 3919 } 3920 3921 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos) 3922 { 3923 return seq_cft(seq)->seq_next(seq, v, ppos); 3924 } 3925 3926 static void cgroup_seqfile_stop(struct seq_file *seq, void *v) 3927 { 3928 if (seq_cft(seq)->seq_stop) 3929 seq_cft(seq)->seq_stop(seq, v); 3930 } 3931 3932 static int cgroup_seqfile_show(struct seq_file *m, void *arg) 3933 { 3934 struct cftype *cft = seq_cft(m); 3935 struct cgroup_subsys_state *css = seq_css(m); 3936 3937 if (cft->seq_show) 3938 return cft->seq_show(m, arg); 3939 3940 if (cft->read_u64) 3941 seq_printf(m, "%llu\n", cft->read_u64(css, cft)); 3942 else if (cft->read_s64) 3943 seq_printf(m, "%lld\n", cft->read_s64(css, cft)); 3944 else 3945 return -EINVAL; 3946 return 0; 3947 } 3948 3949 static struct kernfs_ops cgroup_kf_single_ops = { 3950 .atomic_write_len = PAGE_SIZE, 3951 .open = cgroup_file_open, 3952 .release = cgroup_file_release, 3953 .write = cgroup_file_write, 3954 .poll = cgroup_file_poll, 3955 .seq_show = cgroup_seqfile_show, 3956 }; 3957 3958 static struct kernfs_ops cgroup_kf_ops = { 3959 .atomic_write_len = PAGE_SIZE, 3960 .open = cgroup_file_open, 3961 .release = cgroup_file_release, 3962 .write = cgroup_file_write, 3963 .poll = cgroup_file_poll, 3964 .seq_start = cgroup_seqfile_start, 3965 .seq_next = cgroup_seqfile_next, 3966 .seq_stop = cgroup_seqfile_stop, 3967 .seq_show = cgroup_seqfile_show, 3968 }; 3969 3970 /* set uid and gid of cgroup dirs and files to that of the creator */ 3971 static int cgroup_kn_set_ugid(struct kernfs_node *kn) 3972 { 3973 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID, 3974 .ia_uid = current_fsuid(), 3975 .ia_gid = current_fsgid(), }; 3976 3977 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) && 3978 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID)) 3979 return 0; 3980 3981 return kernfs_setattr(kn, &iattr); 3982 } 3983 3984 static void cgroup_file_notify_timer(struct timer_list *timer) 3985 { 3986 cgroup_file_notify(container_of(timer, struct cgroup_file, 3987 notify_timer)); 3988 } 3989 3990 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp, 3991 struct cftype *cft) 3992 { 3993 char name[CGROUP_FILE_NAME_MAX]; 3994 struct kernfs_node *kn; 3995 struct lock_class_key *key = NULL; 3996 int ret; 3997 3998 #ifdef CONFIG_DEBUG_LOCK_ALLOC 3999 key = &cft->lockdep_key; 4000 #endif 4001 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name), 4002 cgroup_file_mode(cft), 4003 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 4004 0, cft->kf_ops, cft, 4005 NULL, key); 4006 if (IS_ERR(kn)) 4007 return PTR_ERR(kn); 4008 4009 ret = cgroup_kn_set_ugid(kn); 4010 if (ret) { 4011 kernfs_remove(kn); 4012 return ret; 4013 } 4014 4015 if (cft->file_offset) { 4016 struct cgroup_file *cfile = (void *)css + cft->file_offset; 4017 4018 timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0); 4019 4020 spin_lock_irq(&cgroup_file_kn_lock); 4021 cfile->kn = kn; 4022 spin_unlock_irq(&cgroup_file_kn_lock); 4023 } 4024 4025 return 0; 4026 } 4027 4028 /** 4029 * cgroup_addrm_files - add or remove files to a cgroup directory 4030 * @css: the target css 4031 * @cgrp: the target cgroup (usually css->cgroup) 4032 * @cfts: array of cftypes to be added 4033 * @is_add: whether to add or remove 4034 * 4035 * Depending on @is_add, add or remove files defined by @cfts on @cgrp. 4036 * For removals, this function never fails. 4037 */ 4038 static int cgroup_addrm_files(struct cgroup_subsys_state *css, 4039 struct cgroup *cgrp, struct cftype cfts[], 4040 bool is_add) 4041 { 4042 struct cftype *cft, *cft_end = NULL; 4043 int ret = 0; 4044 4045 lockdep_assert_held(&cgroup_mutex); 4046 4047 restart: 4048 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) { 4049 /* does cft->flags tell us to skip this file on @cgrp? */ 4050 if ((cft->flags & CFTYPE_PRESSURE) && !cgroup_psi_enabled()) 4051 continue; 4052 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp)) 4053 continue; 4054 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp)) 4055 continue; 4056 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp)) 4057 continue; 4058 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp)) 4059 continue; 4060 if ((cft->flags & CFTYPE_DEBUG) && !cgroup_debug) 4061 continue; 4062 if (is_add) { 4063 ret = cgroup_add_file(css, cgrp, cft); 4064 if (ret) { 4065 pr_warn("%s: failed to add %s, err=%d\n", 4066 __func__, cft->name, ret); 4067 cft_end = cft; 4068 is_add = false; 4069 goto restart; 4070 } 4071 } else { 4072 cgroup_rm_file(cgrp, cft); 4073 } 4074 } 4075 return ret; 4076 } 4077 4078 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add) 4079 { 4080 struct cgroup_subsys *ss = cfts[0].ss; 4081 struct cgroup *root = &ss->root->cgrp; 4082 struct cgroup_subsys_state *css; 4083 int ret = 0; 4084 4085 lockdep_assert_held(&cgroup_mutex); 4086 4087 /* add/rm files for all cgroups created before */ 4088 css_for_each_descendant_pre(css, cgroup_css(root, ss)) { 4089 struct cgroup *cgrp = css->cgroup; 4090 4091 if (!(css->flags & CSS_VISIBLE)) 4092 continue; 4093 4094 ret = cgroup_addrm_files(css, cgrp, cfts, is_add); 4095 if (ret) 4096 break; 4097 } 4098 4099 if (is_add && !ret) 4100 kernfs_activate(root->kn); 4101 return ret; 4102 } 4103 4104 static void cgroup_exit_cftypes(struct cftype *cfts) 4105 { 4106 struct cftype *cft; 4107 4108 for (cft = cfts; cft->name[0] != '\0'; cft++) { 4109 /* free copy for custom atomic_write_len, see init_cftypes() */ 4110 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) 4111 kfree(cft->kf_ops); 4112 cft->kf_ops = NULL; 4113 cft->ss = NULL; 4114 4115 /* revert flags set by cgroup core while adding @cfts */ 4116 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL); 4117 } 4118 } 4119 4120 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4121 { 4122 struct cftype *cft; 4123 4124 for (cft = cfts; cft->name[0] != '\0'; cft++) { 4125 struct kernfs_ops *kf_ops; 4126 4127 WARN_ON(cft->ss || cft->kf_ops); 4128 4129 if ((cft->flags & CFTYPE_PRESSURE) && !cgroup_psi_enabled()) 4130 continue; 4131 4132 if (cft->seq_start) 4133 kf_ops = &cgroup_kf_ops; 4134 else 4135 kf_ops = &cgroup_kf_single_ops; 4136 4137 /* 4138 * Ugh... if @cft wants a custom max_write_len, we need to 4139 * make a copy of kf_ops to set its atomic_write_len. 4140 */ 4141 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) { 4142 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL); 4143 if (!kf_ops) { 4144 cgroup_exit_cftypes(cfts); 4145 return -ENOMEM; 4146 } 4147 kf_ops->atomic_write_len = cft->max_write_len; 4148 } 4149 4150 cft->kf_ops = kf_ops; 4151 cft->ss = ss; 4152 } 4153 4154 return 0; 4155 } 4156 4157 static int cgroup_rm_cftypes_locked(struct cftype *cfts) 4158 { 4159 lockdep_assert_held(&cgroup_mutex); 4160 4161 if (!cfts || !cfts[0].ss) 4162 return -ENOENT; 4163 4164 list_del(&cfts->node); 4165 cgroup_apply_cftypes(cfts, false); 4166 cgroup_exit_cftypes(cfts); 4167 return 0; 4168 } 4169 4170 /** 4171 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem 4172 * @cfts: zero-length name terminated array of cftypes 4173 * 4174 * Unregister @cfts. Files described by @cfts are removed from all 4175 * existing cgroups and all future cgroups won't have them either. This 4176 * function can be called anytime whether @cfts' subsys is attached or not. 4177 * 4178 * Returns 0 on successful unregistration, -ENOENT if @cfts is not 4179 * registered. 4180 */ 4181 int cgroup_rm_cftypes(struct cftype *cfts) 4182 { 4183 int ret; 4184 4185 mutex_lock(&cgroup_mutex); 4186 ret = cgroup_rm_cftypes_locked(cfts); 4187 mutex_unlock(&cgroup_mutex); 4188 return ret; 4189 } 4190 4191 /** 4192 * cgroup_add_cftypes - add an array of cftypes to a subsystem 4193 * @ss: target cgroup subsystem 4194 * @cfts: zero-length name terminated array of cftypes 4195 * 4196 * Register @cfts to @ss. Files described by @cfts are created for all 4197 * existing cgroups to which @ss is attached and all future cgroups will 4198 * have them too. This function can be called anytime whether @ss is 4199 * attached or not. 4200 * 4201 * Returns 0 on successful registration, -errno on failure. Note that this 4202 * function currently returns 0 as long as @cfts registration is successful 4203 * even if some file creation attempts on existing cgroups fail. 4204 */ 4205 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4206 { 4207 int ret; 4208 4209 if (!cgroup_ssid_enabled(ss->id)) 4210 return 0; 4211 4212 if (!cfts || cfts[0].name[0] == '\0') 4213 return 0; 4214 4215 ret = cgroup_init_cftypes(ss, cfts); 4216 if (ret) 4217 return ret; 4218 4219 mutex_lock(&cgroup_mutex); 4220 4221 list_add_tail(&cfts->node, &ss->cfts); 4222 ret = cgroup_apply_cftypes(cfts, true); 4223 if (ret) 4224 cgroup_rm_cftypes_locked(cfts); 4225 4226 mutex_unlock(&cgroup_mutex); 4227 return ret; 4228 } 4229 4230 /** 4231 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy 4232 * @ss: target cgroup subsystem 4233 * @cfts: zero-length name terminated array of cftypes 4234 * 4235 * Similar to cgroup_add_cftypes() but the added files are only used for 4236 * the default hierarchy. 4237 */ 4238 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4239 { 4240 struct cftype *cft; 4241 4242 for (cft = cfts; cft && cft->name[0] != '\0'; cft++) 4243 cft->flags |= __CFTYPE_ONLY_ON_DFL; 4244 return cgroup_add_cftypes(ss, cfts); 4245 } 4246 4247 /** 4248 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies 4249 * @ss: target cgroup subsystem 4250 * @cfts: zero-length name terminated array of cftypes 4251 * 4252 * Similar to cgroup_add_cftypes() but the added files are only used for 4253 * the legacy hierarchies. 4254 */ 4255 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4256 { 4257 struct cftype *cft; 4258 4259 for (cft = cfts; cft && cft->name[0] != '\0'; cft++) 4260 cft->flags |= __CFTYPE_NOT_ON_DFL; 4261 return cgroup_add_cftypes(ss, cfts); 4262 } 4263 4264 /** 4265 * cgroup_file_notify - generate a file modified event for a cgroup_file 4266 * @cfile: target cgroup_file 4267 * 4268 * @cfile must have been obtained by setting cftype->file_offset. 4269 */ 4270 void cgroup_file_notify(struct cgroup_file *cfile) 4271 { 4272 unsigned long flags; 4273 4274 spin_lock_irqsave(&cgroup_file_kn_lock, flags); 4275 if (cfile->kn) { 4276 unsigned long last = cfile->notified_at; 4277 unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV; 4278 4279 if (time_in_range(jiffies, last, next)) { 4280 timer_reduce(&cfile->notify_timer, next); 4281 } else { 4282 kernfs_notify(cfile->kn); 4283 cfile->notified_at = jiffies; 4284 } 4285 } 4286 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags); 4287 } 4288 4289 /** 4290 * css_next_child - find the next child of a given css 4291 * @pos: the current position (%NULL to initiate traversal) 4292 * @parent: css whose children to walk 4293 * 4294 * This function returns the next child of @parent and should be called 4295 * under either cgroup_mutex or RCU read lock. The only requirement is 4296 * that @parent and @pos are accessible. The next sibling is guaranteed to 4297 * be returned regardless of their states. 4298 * 4299 * If a subsystem synchronizes ->css_online() and the start of iteration, a 4300 * css which finished ->css_online() is guaranteed to be visible in the 4301 * future iterations and will stay visible until the last reference is put. 4302 * A css which hasn't finished ->css_online() or already finished 4303 * ->css_offline() may show up during traversal. It's each subsystem's 4304 * responsibility to synchronize against on/offlining. 4305 */ 4306 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos, 4307 struct cgroup_subsys_state *parent) 4308 { 4309 struct cgroup_subsys_state *next; 4310 4311 cgroup_assert_mutex_or_rcu_locked(); 4312 4313 /* 4314 * @pos could already have been unlinked from the sibling list. 4315 * Once a cgroup is removed, its ->sibling.next is no longer 4316 * updated when its next sibling changes. CSS_RELEASED is set when 4317 * @pos is taken off list, at which time its next pointer is valid, 4318 * and, as releases are serialized, the one pointed to by the next 4319 * pointer is guaranteed to not have started release yet. This 4320 * implies that if we observe !CSS_RELEASED on @pos in this RCU 4321 * critical section, the one pointed to by its next pointer is 4322 * guaranteed to not have finished its RCU grace period even if we 4323 * have dropped rcu_read_lock() in-between iterations. 4324 * 4325 * If @pos has CSS_RELEASED set, its next pointer can't be 4326 * dereferenced; however, as each css is given a monotonically 4327 * increasing unique serial number and always appended to the 4328 * sibling list, the next one can be found by walking the parent's 4329 * children until the first css with higher serial number than 4330 * @pos's. While this path can be slower, it happens iff iteration 4331 * races against release and the race window is very small. 4332 */ 4333 if (!pos) { 4334 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling); 4335 } else if (likely(!(pos->flags & CSS_RELEASED))) { 4336 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling); 4337 } else { 4338 list_for_each_entry_rcu(next, &parent->children, sibling, 4339 lockdep_is_held(&cgroup_mutex)) 4340 if (next->serial_nr > pos->serial_nr) 4341 break; 4342 } 4343 4344 /* 4345 * @next, if not pointing to the head, can be dereferenced and is 4346 * the next sibling. 4347 */ 4348 if (&next->sibling != &parent->children) 4349 return next; 4350 return NULL; 4351 } 4352 4353 /** 4354 * css_next_descendant_pre - find the next descendant for pre-order walk 4355 * @pos: the current position (%NULL to initiate traversal) 4356 * @root: css whose descendants to walk 4357 * 4358 * To be used by css_for_each_descendant_pre(). Find the next descendant 4359 * to visit for pre-order traversal of @root's descendants. @root is 4360 * included in the iteration and the first node to be visited. 4361 * 4362 * While this function requires cgroup_mutex or RCU read locking, it 4363 * doesn't require the whole traversal to be contained in a single critical 4364 * section. This function will return the correct next descendant as long 4365 * as both @pos and @root are accessible and @pos is a descendant of @root. 4366 * 4367 * If a subsystem synchronizes ->css_online() and the start of iteration, a 4368 * css which finished ->css_online() is guaranteed to be visible in the 4369 * future iterations and will stay visible until the last reference is put. 4370 * A css which hasn't finished ->css_online() or already finished 4371 * ->css_offline() may show up during traversal. It's each subsystem's 4372 * responsibility to synchronize against on/offlining. 4373 */ 4374 struct cgroup_subsys_state * 4375 css_next_descendant_pre(struct cgroup_subsys_state *pos, 4376 struct cgroup_subsys_state *root) 4377 { 4378 struct cgroup_subsys_state *next; 4379 4380 cgroup_assert_mutex_or_rcu_locked(); 4381 4382 /* if first iteration, visit @root */ 4383 if (!pos) 4384 return root; 4385 4386 /* visit the first child if exists */ 4387 next = css_next_child(NULL, pos); 4388 if (next) 4389 return next; 4390 4391 /* no child, visit my or the closest ancestor's next sibling */ 4392 while (pos != root) { 4393 next = css_next_child(pos, pos->parent); 4394 if (next) 4395 return next; 4396 pos = pos->parent; 4397 } 4398 4399 return NULL; 4400 } 4401 EXPORT_SYMBOL_GPL(css_next_descendant_pre); 4402 4403 /** 4404 * css_rightmost_descendant - return the rightmost descendant of a css 4405 * @pos: css of interest 4406 * 4407 * Return the rightmost descendant of @pos. If there's no descendant, @pos 4408 * is returned. This can be used during pre-order traversal to skip 4409 * subtree of @pos. 4410 * 4411 * While this function requires cgroup_mutex or RCU read locking, it 4412 * doesn't require the whole traversal to be contained in a single critical 4413 * section. This function will return the correct rightmost descendant as 4414 * long as @pos is accessible. 4415 */ 4416 struct cgroup_subsys_state * 4417 css_rightmost_descendant(struct cgroup_subsys_state *pos) 4418 { 4419 struct cgroup_subsys_state *last, *tmp; 4420 4421 cgroup_assert_mutex_or_rcu_locked(); 4422 4423 do { 4424 last = pos; 4425 /* ->prev isn't RCU safe, walk ->next till the end */ 4426 pos = NULL; 4427 css_for_each_child(tmp, last) 4428 pos = tmp; 4429 } while (pos); 4430 4431 return last; 4432 } 4433 4434 static struct cgroup_subsys_state * 4435 css_leftmost_descendant(struct cgroup_subsys_state *pos) 4436 { 4437 struct cgroup_subsys_state *last; 4438 4439 do { 4440 last = pos; 4441 pos = css_next_child(NULL, pos); 4442 } while (pos); 4443 4444 return last; 4445 } 4446 4447 /** 4448 * css_next_descendant_post - find the next descendant for post-order walk 4449 * @pos: the current position (%NULL to initiate traversal) 4450 * @root: css whose descendants to walk 4451 * 4452 * To be used by css_for_each_descendant_post(). Find the next descendant 4453 * to visit for post-order traversal of @root's descendants. @root is 4454 * included in the iteration and the last node to be visited. 4455 * 4456 * While this function requires cgroup_mutex or RCU read locking, it 4457 * doesn't require the whole traversal to be contained in a single critical 4458 * section. This function will return the correct next descendant as long 4459 * as both @pos and @cgroup are accessible and @pos is a descendant of 4460 * @cgroup. 4461 * 4462 * If a subsystem synchronizes ->css_online() and the start of iteration, a 4463 * css which finished ->css_online() is guaranteed to be visible in the 4464 * future iterations and will stay visible until the last reference is put. 4465 * A css which hasn't finished ->css_online() or already finished 4466 * ->css_offline() may show up during traversal. It's each subsystem's 4467 * responsibility to synchronize against on/offlining. 4468 */ 4469 struct cgroup_subsys_state * 4470 css_next_descendant_post(struct cgroup_subsys_state *pos, 4471 struct cgroup_subsys_state *root) 4472 { 4473 struct cgroup_subsys_state *next; 4474 4475 cgroup_assert_mutex_or_rcu_locked(); 4476 4477 /* if first iteration, visit leftmost descendant which may be @root */ 4478 if (!pos) 4479 return css_leftmost_descendant(root); 4480 4481 /* if we visited @root, we're done */ 4482 if (pos == root) 4483 return NULL; 4484 4485 /* if there's an unvisited sibling, visit its leftmost descendant */ 4486 next = css_next_child(pos, pos->parent); 4487 if (next) 4488 return css_leftmost_descendant(next); 4489 4490 /* no sibling left, visit parent */ 4491 return pos->parent; 4492 } 4493 4494 /** 4495 * css_has_online_children - does a css have online children 4496 * @css: the target css 4497 * 4498 * Returns %true if @css has any online children; otherwise, %false. This 4499 * function can be called from any context but the caller is responsible 4500 * for synchronizing against on/offlining as necessary. 4501 */ 4502 bool css_has_online_children(struct cgroup_subsys_state *css) 4503 { 4504 struct cgroup_subsys_state *child; 4505 bool ret = false; 4506 4507 rcu_read_lock(); 4508 css_for_each_child(child, css) { 4509 if (child->flags & CSS_ONLINE) { 4510 ret = true; 4511 break; 4512 } 4513 } 4514 rcu_read_unlock(); 4515 return ret; 4516 } 4517 4518 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it) 4519 { 4520 struct list_head *l; 4521 struct cgrp_cset_link *link; 4522 struct css_set *cset; 4523 4524 lockdep_assert_held(&css_set_lock); 4525 4526 /* find the next threaded cset */ 4527 if (it->tcset_pos) { 4528 l = it->tcset_pos->next; 4529 4530 if (l != it->tcset_head) { 4531 it->tcset_pos = l; 4532 return container_of(l, struct css_set, 4533 threaded_csets_node); 4534 } 4535 4536 it->tcset_pos = NULL; 4537 } 4538 4539 /* find the next cset */ 4540 l = it->cset_pos; 4541 l = l->next; 4542 if (l == it->cset_head) { 4543 it->cset_pos = NULL; 4544 return NULL; 4545 } 4546 4547 if (it->ss) { 4548 cset = container_of(l, struct css_set, e_cset_node[it->ss->id]); 4549 } else { 4550 link = list_entry(l, struct cgrp_cset_link, cset_link); 4551 cset = link->cset; 4552 } 4553 4554 it->cset_pos = l; 4555 4556 /* initialize threaded css_set walking */ 4557 if (it->flags & CSS_TASK_ITER_THREADED) { 4558 if (it->cur_dcset) 4559 put_css_set_locked(it->cur_dcset); 4560 it->cur_dcset = cset; 4561 get_css_set(cset); 4562 4563 it->tcset_head = &cset->threaded_csets; 4564 it->tcset_pos = &cset->threaded_csets; 4565 } 4566 4567 return cset; 4568 } 4569 4570 /** 4571 * css_task_iter_advance_css_set - advance a task iterator to the next css_set 4572 * @it: the iterator to advance 4573 * 4574 * Advance @it to the next css_set to walk. 4575 */ 4576 static void css_task_iter_advance_css_set(struct css_task_iter *it) 4577 { 4578 struct css_set *cset; 4579 4580 lockdep_assert_held(&css_set_lock); 4581 4582 /* Advance to the next non-empty css_set and find first non-empty tasks list*/ 4583 while ((cset = css_task_iter_next_css_set(it))) { 4584 if (!list_empty(&cset->tasks)) { 4585 it->cur_tasks_head = &cset->tasks; 4586 break; 4587 } else if (!list_empty(&cset->mg_tasks)) { 4588 it->cur_tasks_head = &cset->mg_tasks; 4589 break; 4590 } else if (!list_empty(&cset->dying_tasks)) { 4591 it->cur_tasks_head = &cset->dying_tasks; 4592 break; 4593 } 4594 } 4595 if (!cset) { 4596 it->task_pos = NULL; 4597 return; 4598 } 4599 it->task_pos = it->cur_tasks_head->next; 4600 4601 /* 4602 * We don't keep css_sets locked across iteration steps and thus 4603 * need to take steps to ensure that iteration can be resumed after 4604 * the lock is re-acquired. Iteration is performed at two levels - 4605 * css_sets and tasks in them. 4606 * 4607 * Once created, a css_set never leaves its cgroup lists, so a 4608 * pinned css_set is guaranteed to stay put and we can resume 4609 * iteration afterwards. 4610 * 4611 * Tasks may leave @cset across iteration steps. This is resolved 4612 * by registering each iterator with the css_set currently being 4613 * walked and making css_set_move_task() advance iterators whose 4614 * next task is leaving. 4615 */ 4616 if (it->cur_cset) { 4617 list_del(&it->iters_node); 4618 put_css_set_locked(it->cur_cset); 4619 } 4620 get_css_set(cset); 4621 it->cur_cset = cset; 4622 list_add(&it->iters_node, &cset->task_iters); 4623 } 4624 4625 static void css_task_iter_skip(struct css_task_iter *it, 4626 struct task_struct *task) 4627 { 4628 lockdep_assert_held(&css_set_lock); 4629 4630 if (it->task_pos == &task->cg_list) { 4631 it->task_pos = it->task_pos->next; 4632 it->flags |= CSS_TASK_ITER_SKIPPED; 4633 } 4634 } 4635 4636 static void css_task_iter_advance(struct css_task_iter *it) 4637 { 4638 struct task_struct *task; 4639 4640 lockdep_assert_held(&css_set_lock); 4641 repeat: 4642 if (it->task_pos) { 4643 /* 4644 * Advance iterator to find next entry. We go through cset 4645 * tasks, mg_tasks and dying_tasks, when consumed we move onto 4646 * the next cset. 4647 */ 4648 if (it->flags & CSS_TASK_ITER_SKIPPED) 4649 it->flags &= ~CSS_TASK_ITER_SKIPPED; 4650 else 4651 it->task_pos = it->task_pos->next; 4652 4653 if (it->task_pos == &it->cur_cset->tasks) { 4654 it->cur_tasks_head = &it->cur_cset->mg_tasks; 4655 it->task_pos = it->cur_tasks_head->next; 4656 } 4657 if (it->task_pos == &it->cur_cset->mg_tasks) { 4658 it->cur_tasks_head = &it->cur_cset->dying_tasks; 4659 it->task_pos = it->cur_tasks_head->next; 4660 } 4661 if (it->task_pos == &it->cur_cset->dying_tasks) 4662 css_task_iter_advance_css_set(it); 4663 } else { 4664 /* called from start, proceed to the first cset */ 4665 css_task_iter_advance_css_set(it); 4666 } 4667 4668 if (!it->task_pos) 4669 return; 4670 4671 task = list_entry(it->task_pos, struct task_struct, cg_list); 4672 4673 if (it->flags & CSS_TASK_ITER_PROCS) { 4674 /* if PROCS, skip over tasks which aren't group leaders */ 4675 if (!thread_group_leader(task)) 4676 goto repeat; 4677 4678 /* and dying leaders w/o live member threads */ 4679 if (it->cur_tasks_head == &it->cur_cset->dying_tasks && 4680 !atomic_read(&task->signal->live)) 4681 goto repeat; 4682 } else { 4683 /* skip all dying ones */ 4684 if (it->cur_tasks_head == &it->cur_cset->dying_tasks) 4685 goto repeat; 4686 } 4687 } 4688 4689 /** 4690 * css_task_iter_start - initiate task iteration 4691 * @css: the css to walk tasks of 4692 * @flags: CSS_TASK_ITER_* flags 4693 * @it: the task iterator to use 4694 * 4695 * Initiate iteration through the tasks of @css. The caller can call 4696 * css_task_iter_next() to walk through the tasks until the function 4697 * returns NULL. On completion of iteration, css_task_iter_end() must be 4698 * called. 4699 */ 4700 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags, 4701 struct css_task_iter *it) 4702 { 4703 memset(it, 0, sizeof(*it)); 4704 4705 spin_lock_irq(&css_set_lock); 4706 4707 it->ss = css->ss; 4708 it->flags = flags; 4709 4710 if (CGROUP_HAS_SUBSYS_CONFIG && it->ss) 4711 it->cset_pos = &css->cgroup->e_csets[css->ss->id]; 4712 else 4713 it->cset_pos = &css->cgroup->cset_links; 4714 4715 it->cset_head = it->cset_pos; 4716 4717 css_task_iter_advance(it); 4718 4719 spin_unlock_irq(&css_set_lock); 4720 } 4721 4722 /** 4723 * css_task_iter_next - return the next task for the iterator 4724 * @it: the task iterator being iterated 4725 * 4726 * The "next" function for task iteration. @it should have been 4727 * initialized via css_task_iter_start(). Returns NULL when the iteration 4728 * reaches the end. 4729 */ 4730 struct task_struct *css_task_iter_next(struct css_task_iter *it) 4731 { 4732 if (it->cur_task) { 4733 put_task_struct(it->cur_task); 4734 it->cur_task = NULL; 4735 } 4736 4737 spin_lock_irq(&css_set_lock); 4738 4739 /* @it may be half-advanced by skips, finish advancing */ 4740 if (it->flags & CSS_TASK_ITER_SKIPPED) 4741 css_task_iter_advance(it); 4742 4743 if (it->task_pos) { 4744 it->cur_task = list_entry(it->task_pos, struct task_struct, 4745 cg_list); 4746 get_task_struct(it->cur_task); 4747 css_task_iter_advance(it); 4748 } 4749 4750 spin_unlock_irq(&css_set_lock); 4751 4752 return it->cur_task; 4753 } 4754 4755 /** 4756 * css_task_iter_end - finish task iteration 4757 * @it: the task iterator to finish 4758 * 4759 * Finish task iteration started by css_task_iter_start(). 4760 */ 4761 void css_task_iter_end(struct css_task_iter *it) 4762 { 4763 if (it->cur_cset) { 4764 spin_lock_irq(&css_set_lock); 4765 list_del(&it->iters_node); 4766 put_css_set_locked(it->cur_cset); 4767 spin_unlock_irq(&css_set_lock); 4768 } 4769 4770 if (it->cur_dcset) 4771 put_css_set(it->cur_dcset); 4772 4773 if (it->cur_task) 4774 put_task_struct(it->cur_task); 4775 } 4776 4777 static void cgroup_procs_release(struct kernfs_open_file *of) 4778 { 4779 struct cgroup_file_ctx *ctx = of->priv; 4780 4781 if (ctx->procs.started) 4782 css_task_iter_end(&ctx->procs.iter); 4783 } 4784 4785 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos) 4786 { 4787 struct kernfs_open_file *of = s->private; 4788 struct cgroup_file_ctx *ctx = of->priv; 4789 4790 if (pos) 4791 (*pos)++; 4792 4793 return css_task_iter_next(&ctx->procs.iter); 4794 } 4795 4796 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos, 4797 unsigned int iter_flags) 4798 { 4799 struct kernfs_open_file *of = s->private; 4800 struct cgroup *cgrp = seq_css(s)->cgroup; 4801 struct cgroup_file_ctx *ctx = of->priv; 4802 struct css_task_iter *it = &ctx->procs.iter; 4803 4804 /* 4805 * When a seq_file is seeked, it's always traversed sequentially 4806 * from position 0, so we can simply keep iterating on !0 *pos. 4807 */ 4808 if (!ctx->procs.started) { 4809 if (WARN_ON_ONCE((*pos))) 4810 return ERR_PTR(-EINVAL); 4811 css_task_iter_start(&cgrp->self, iter_flags, it); 4812 ctx->procs.started = true; 4813 } else if (!(*pos)) { 4814 css_task_iter_end(it); 4815 css_task_iter_start(&cgrp->self, iter_flags, it); 4816 } else 4817 return it->cur_task; 4818 4819 return cgroup_procs_next(s, NULL, NULL); 4820 } 4821 4822 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos) 4823 { 4824 struct cgroup *cgrp = seq_css(s)->cgroup; 4825 4826 /* 4827 * All processes of a threaded subtree belong to the domain cgroup 4828 * of the subtree. Only threads can be distributed across the 4829 * subtree. Reject reads on cgroup.procs in the subtree proper. 4830 * They're always empty anyway. 4831 */ 4832 if (cgroup_is_threaded(cgrp)) 4833 return ERR_PTR(-EOPNOTSUPP); 4834 4835 return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS | 4836 CSS_TASK_ITER_THREADED); 4837 } 4838 4839 static int cgroup_procs_show(struct seq_file *s, void *v) 4840 { 4841 seq_printf(s, "%d\n", task_pid_vnr(v)); 4842 return 0; 4843 } 4844 4845 static int cgroup_may_write(const struct cgroup *cgrp, struct super_block *sb) 4846 { 4847 int ret; 4848 struct inode *inode; 4849 4850 lockdep_assert_held(&cgroup_mutex); 4851 4852 inode = kernfs_get_inode(sb, cgrp->procs_file.kn); 4853 if (!inode) 4854 return -ENOMEM; 4855 4856 ret = inode_permission(&init_user_ns, inode, MAY_WRITE); 4857 iput(inode); 4858 return ret; 4859 } 4860 4861 static int cgroup_procs_write_permission(struct cgroup *src_cgrp, 4862 struct cgroup *dst_cgrp, 4863 struct super_block *sb, 4864 struct cgroup_namespace *ns) 4865 { 4866 struct cgroup *com_cgrp = src_cgrp; 4867 int ret; 4868 4869 lockdep_assert_held(&cgroup_mutex); 4870 4871 /* find the common ancestor */ 4872 while (!cgroup_is_descendant(dst_cgrp, com_cgrp)) 4873 com_cgrp = cgroup_parent(com_cgrp); 4874 4875 /* %current should be authorized to migrate to the common ancestor */ 4876 ret = cgroup_may_write(com_cgrp, sb); 4877 if (ret) 4878 return ret; 4879 4880 /* 4881 * If namespaces are delegation boundaries, %current must be able 4882 * to see both source and destination cgroups from its namespace. 4883 */ 4884 if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) && 4885 (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) || 4886 !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp))) 4887 return -ENOENT; 4888 4889 return 0; 4890 } 4891 4892 static int cgroup_attach_permissions(struct cgroup *src_cgrp, 4893 struct cgroup *dst_cgrp, 4894 struct super_block *sb, bool threadgroup, 4895 struct cgroup_namespace *ns) 4896 { 4897 int ret = 0; 4898 4899 ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, sb, ns); 4900 if (ret) 4901 return ret; 4902 4903 ret = cgroup_migrate_vet_dst(dst_cgrp); 4904 if (ret) 4905 return ret; 4906 4907 if (!threadgroup && (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp)) 4908 ret = -EOPNOTSUPP; 4909 4910 return ret; 4911 } 4912 4913 static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf, 4914 bool threadgroup) 4915 { 4916 struct cgroup_file_ctx *ctx = of->priv; 4917 struct cgroup *src_cgrp, *dst_cgrp; 4918 struct task_struct *task; 4919 const struct cred *saved_cred; 4920 ssize_t ret; 4921 bool locked; 4922 4923 dst_cgrp = cgroup_kn_lock_live(of->kn, false); 4924 if (!dst_cgrp) 4925 return -ENODEV; 4926 4927 task = cgroup_procs_write_start(buf, threadgroup, &locked); 4928 ret = PTR_ERR_OR_ZERO(task); 4929 if (ret) 4930 goto out_unlock; 4931 4932 /* find the source cgroup */ 4933 spin_lock_irq(&css_set_lock); 4934 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root); 4935 spin_unlock_irq(&css_set_lock); 4936 4937 /* 4938 * Process and thread migrations follow same delegation rule. Check 4939 * permissions using the credentials from file open to protect against 4940 * inherited fd attacks. 4941 */ 4942 saved_cred = override_creds(of->file->f_cred); 4943 ret = cgroup_attach_permissions(src_cgrp, dst_cgrp, 4944 of->file->f_path.dentry->d_sb, 4945 threadgroup, ctx->ns); 4946 revert_creds(saved_cred); 4947 if (ret) 4948 goto out_finish; 4949 4950 ret = cgroup_attach_task(dst_cgrp, task, threadgroup); 4951 4952 out_finish: 4953 cgroup_procs_write_finish(task, locked); 4954 out_unlock: 4955 cgroup_kn_unlock(of->kn); 4956 4957 return ret; 4958 } 4959 4960 static ssize_t cgroup_procs_write(struct kernfs_open_file *of, 4961 char *buf, size_t nbytes, loff_t off) 4962 { 4963 return __cgroup_procs_write(of, buf, true) ?: nbytes; 4964 } 4965 4966 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos) 4967 { 4968 return __cgroup_procs_start(s, pos, 0); 4969 } 4970 4971 static ssize_t cgroup_threads_write(struct kernfs_open_file *of, 4972 char *buf, size_t nbytes, loff_t off) 4973 { 4974 return __cgroup_procs_write(of, buf, false) ?: nbytes; 4975 } 4976 4977 /* cgroup core interface files for the default hierarchy */ 4978 static struct cftype cgroup_base_files[] = { 4979 { 4980 .name = "cgroup.type", 4981 .flags = CFTYPE_NOT_ON_ROOT, 4982 .seq_show = cgroup_type_show, 4983 .write = cgroup_type_write, 4984 }, 4985 { 4986 .name = "cgroup.procs", 4987 .flags = CFTYPE_NS_DELEGATABLE, 4988 .file_offset = offsetof(struct cgroup, procs_file), 4989 .release = cgroup_procs_release, 4990 .seq_start = cgroup_procs_start, 4991 .seq_next = cgroup_procs_next, 4992 .seq_show = cgroup_procs_show, 4993 .write = cgroup_procs_write, 4994 }, 4995 { 4996 .name = "cgroup.threads", 4997 .flags = CFTYPE_NS_DELEGATABLE, 4998 .release = cgroup_procs_release, 4999 .seq_start = cgroup_threads_start, 5000 .seq_next = cgroup_procs_next, 5001 .seq_show = cgroup_procs_show, 5002 .write = cgroup_threads_write, 5003 }, 5004 { 5005 .name = "cgroup.controllers", 5006 .seq_show = cgroup_controllers_show, 5007 }, 5008 { 5009 .name = "cgroup.subtree_control", 5010 .flags = CFTYPE_NS_DELEGATABLE, 5011 .seq_show = cgroup_subtree_control_show, 5012 .write = cgroup_subtree_control_write, 5013 }, 5014 { 5015 .name = "cgroup.events", 5016 .flags = CFTYPE_NOT_ON_ROOT, 5017 .file_offset = offsetof(struct cgroup, events_file), 5018 .seq_show = cgroup_events_show, 5019 }, 5020 { 5021 .name = "cgroup.max.descendants", 5022 .seq_show = cgroup_max_descendants_show, 5023 .write = cgroup_max_descendants_write, 5024 }, 5025 { 5026 .name = "cgroup.max.depth", 5027 .seq_show = cgroup_max_depth_show, 5028 .write = cgroup_max_depth_write, 5029 }, 5030 { 5031 .name = "cgroup.stat", 5032 .seq_show = cgroup_stat_show, 5033 }, 5034 { 5035 .name = "cgroup.freeze", 5036 .flags = CFTYPE_NOT_ON_ROOT, 5037 .seq_show = cgroup_freeze_show, 5038 .write = cgroup_freeze_write, 5039 }, 5040 { 5041 .name = "cgroup.kill", 5042 .flags = CFTYPE_NOT_ON_ROOT, 5043 .write = cgroup_kill_write, 5044 }, 5045 { 5046 .name = "cpu.stat", 5047 .seq_show = cpu_stat_show, 5048 }, 5049 #ifdef CONFIG_PSI 5050 { 5051 .name = "io.pressure", 5052 .flags = CFTYPE_PRESSURE, 5053 .seq_show = cgroup_io_pressure_show, 5054 .write = cgroup_io_pressure_write, 5055 .poll = cgroup_pressure_poll, 5056 .release = cgroup_pressure_release, 5057 }, 5058 { 5059 .name = "memory.pressure", 5060 .flags = CFTYPE_PRESSURE, 5061 .seq_show = cgroup_memory_pressure_show, 5062 .write = cgroup_memory_pressure_write, 5063 .poll = cgroup_pressure_poll, 5064 .release = cgroup_pressure_release, 5065 }, 5066 { 5067 .name = "cpu.pressure", 5068 .flags = CFTYPE_PRESSURE, 5069 .seq_show = cgroup_cpu_pressure_show, 5070 .write = cgroup_cpu_pressure_write, 5071 .poll = cgroup_pressure_poll, 5072 .release = cgroup_pressure_release, 5073 }, 5074 #endif /* CONFIG_PSI */ 5075 { } /* terminate */ 5076 }; 5077 5078 /* 5079 * css destruction is four-stage process. 5080 * 5081 * 1. Destruction starts. Killing of the percpu_ref is initiated. 5082 * Implemented in kill_css(). 5083 * 5084 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs 5085 * and thus css_tryget_online() is guaranteed to fail, the css can be 5086 * offlined by invoking offline_css(). After offlining, the base ref is 5087 * put. Implemented in css_killed_work_fn(). 5088 * 5089 * 3. When the percpu_ref reaches zero, the only possible remaining 5090 * accessors are inside RCU read sections. css_release() schedules the 5091 * RCU callback. 5092 * 5093 * 4. After the grace period, the css can be freed. Implemented in 5094 * css_free_work_fn(). 5095 * 5096 * It is actually hairier because both step 2 and 4 require process context 5097 * and thus involve punting to css->destroy_work adding two additional 5098 * steps to the already complex sequence. 5099 */ 5100 static void css_free_rwork_fn(struct work_struct *work) 5101 { 5102 struct cgroup_subsys_state *css = container_of(to_rcu_work(work), 5103 struct cgroup_subsys_state, destroy_rwork); 5104 struct cgroup_subsys *ss = css->ss; 5105 struct cgroup *cgrp = css->cgroup; 5106 5107 percpu_ref_exit(&css->refcnt); 5108 5109 if (ss) { 5110 /* css free path */ 5111 struct cgroup_subsys_state *parent = css->parent; 5112 int id = css->id; 5113 5114 ss->css_free(css); 5115 cgroup_idr_remove(&ss->css_idr, id); 5116 cgroup_put(cgrp); 5117 5118 if (parent) 5119 css_put(parent); 5120 } else { 5121 /* cgroup free path */ 5122 atomic_dec(&cgrp->root->nr_cgrps); 5123 cgroup1_pidlist_destroy_all(cgrp); 5124 cancel_work_sync(&cgrp->release_agent_work); 5125 5126 if (cgroup_parent(cgrp)) { 5127 /* 5128 * We get a ref to the parent, and put the ref when 5129 * this cgroup is being freed, so it's guaranteed 5130 * that the parent won't be destroyed before its 5131 * children. 5132 */ 5133 cgroup_put(cgroup_parent(cgrp)); 5134 kernfs_put(cgrp->kn); 5135 psi_cgroup_free(cgrp); 5136 cgroup_rstat_exit(cgrp); 5137 kfree(cgrp); 5138 } else { 5139 /* 5140 * This is root cgroup's refcnt reaching zero, 5141 * which indicates that the root should be 5142 * released. 5143 */ 5144 cgroup_destroy_root(cgrp->root); 5145 } 5146 } 5147 } 5148 5149 static void css_release_work_fn(struct work_struct *work) 5150 { 5151 struct cgroup_subsys_state *css = 5152 container_of(work, struct cgroup_subsys_state, destroy_work); 5153 struct cgroup_subsys *ss = css->ss; 5154 struct cgroup *cgrp = css->cgroup; 5155 5156 mutex_lock(&cgroup_mutex); 5157 5158 css->flags |= CSS_RELEASED; 5159 list_del_rcu(&css->sibling); 5160 5161 if (ss) { 5162 /* css release path */ 5163 if (!list_empty(&css->rstat_css_node)) { 5164 cgroup_rstat_flush(cgrp); 5165 list_del_rcu(&css->rstat_css_node); 5166 } 5167 5168 cgroup_idr_replace(&ss->css_idr, NULL, css->id); 5169 if (ss->css_released) 5170 ss->css_released(css); 5171 } else { 5172 struct cgroup *tcgrp; 5173 5174 /* cgroup release path */ 5175 TRACE_CGROUP_PATH(release, cgrp); 5176 5177 cgroup_rstat_flush(cgrp); 5178 5179 spin_lock_irq(&css_set_lock); 5180 for (tcgrp = cgroup_parent(cgrp); tcgrp; 5181 tcgrp = cgroup_parent(tcgrp)) 5182 tcgrp->nr_dying_descendants--; 5183 spin_unlock_irq(&css_set_lock); 5184 5185 /* 5186 * There are two control paths which try to determine 5187 * cgroup from dentry without going through kernfs - 5188 * cgroupstats_build() and css_tryget_online_from_dir(). 5189 * Those are supported by RCU protecting clearing of 5190 * cgrp->kn->priv backpointer. 5191 */ 5192 if (cgrp->kn) 5193 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, 5194 NULL); 5195 } 5196 5197 mutex_unlock(&cgroup_mutex); 5198 5199 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn); 5200 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork); 5201 } 5202 5203 static void css_release(struct percpu_ref *ref) 5204 { 5205 struct cgroup_subsys_state *css = 5206 container_of(ref, struct cgroup_subsys_state, refcnt); 5207 5208 INIT_WORK(&css->destroy_work, css_release_work_fn); 5209 queue_work(cgroup_destroy_wq, &css->destroy_work); 5210 } 5211 5212 static void init_and_link_css(struct cgroup_subsys_state *css, 5213 struct cgroup_subsys *ss, struct cgroup *cgrp) 5214 { 5215 lockdep_assert_held(&cgroup_mutex); 5216 5217 cgroup_get_live(cgrp); 5218 5219 memset(css, 0, sizeof(*css)); 5220 css->cgroup = cgrp; 5221 css->ss = ss; 5222 css->id = -1; 5223 INIT_LIST_HEAD(&css->sibling); 5224 INIT_LIST_HEAD(&css->children); 5225 INIT_LIST_HEAD(&css->rstat_css_node); 5226 css->serial_nr = css_serial_nr_next++; 5227 atomic_set(&css->online_cnt, 0); 5228 5229 if (cgroup_parent(cgrp)) { 5230 css->parent = cgroup_css(cgroup_parent(cgrp), ss); 5231 css_get(css->parent); 5232 } 5233 5234 if (ss->css_rstat_flush) 5235 list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list); 5236 5237 BUG_ON(cgroup_css(cgrp, ss)); 5238 } 5239 5240 /* invoke ->css_online() on a new CSS and mark it online if successful */ 5241 static int online_css(struct cgroup_subsys_state *css) 5242 { 5243 struct cgroup_subsys *ss = css->ss; 5244 int ret = 0; 5245 5246 lockdep_assert_held(&cgroup_mutex); 5247 5248 if (ss->css_online) 5249 ret = ss->css_online(css); 5250 if (!ret) { 5251 css->flags |= CSS_ONLINE; 5252 rcu_assign_pointer(css->cgroup->subsys[ss->id], css); 5253 5254 atomic_inc(&css->online_cnt); 5255 if (css->parent) 5256 atomic_inc(&css->parent->online_cnt); 5257 } 5258 return ret; 5259 } 5260 5261 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */ 5262 static void offline_css(struct cgroup_subsys_state *css) 5263 { 5264 struct cgroup_subsys *ss = css->ss; 5265 5266 lockdep_assert_held(&cgroup_mutex); 5267 5268 if (!(css->flags & CSS_ONLINE)) 5269 return; 5270 5271 if (ss->css_offline) 5272 ss->css_offline(css); 5273 5274 css->flags &= ~CSS_ONLINE; 5275 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL); 5276 5277 wake_up_all(&css->cgroup->offline_waitq); 5278 } 5279 5280 /** 5281 * css_create - create a cgroup_subsys_state 5282 * @cgrp: the cgroup new css will be associated with 5283 * @ss: the subsys of new css 5284 * 5285 * Create a new css associated with @cgrp - @ss pair. On success, the new 5286 * css is online and installed in @cgrp. This function doesn't create the 5287 * interface files. Returns 0 on success, -errno on failure. 5288 */ 5289 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp, 5290 struct cgroup_subsys *ss) 5291 { 5292 struct cgroup *parent = cgroup_parent(cgrp); 5293 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss); 5294 struct cgroup_subsys_state *css; 5295 int err; 5296 5297 lockdep_assert_held(&cgroup_mutex); 5298 5299 css = ss->css_alloc(parent_css); 5300 if (!css) 5301 css = ERR_PTR(-ENOMEM); 5302 if (IS_ERR(css)) 5303 return css; 5304 5305 init_and_link_css(css, ss, cgrp); 5306 5307 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL); 5308 if (err) 5309 goto err_free_css; 5310 5311 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL); 5312 if (err < 0) 5313 goto err_free_css; 5314 css->id = err; 5315 5316 /* @css is ready to be brought online now, make it visible */ 5317 list_add_tail_rcu(&css->sibling, &parent_css->children); 5318 cgroup_idr_replace(&ss->css_idr, css, css->id); 5319 5320 err = online_css(css); 5321 if (err) 5322 goto err_list_del; 5323 5324 return css; 5325 5326 err_list_del: 5327 list_del_rcu(&css->sibling); 5328 err_free_css: 5329 list_del_rcu(&css->rstat_css_node); 5330 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn); 5331 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork); 5332 return ERR_PTR(err); 5333 } 5334 5335 /* 5336 * The returned cgroup is fully initialized including its control mask, but 5337 * it isn't associated with its kernfs_node and doesn't have the control 5338 * mask applied. 5339 */ 5340 static struct cgroup *cgroup_create(struct cgroup *parent, const char *name, 5341 umode_t mode) 5342 { 5343 struct cgroup_root *root = parent->root; 5344 struct cgroup *cgrp, *tcgrp; 5345 struct kernfs_node *kn; 5346 int level = parent->level + 1; 5347 int ret; 5348 5349 /* allocate the cgroup and its ID, 0 is reserved for the root */ 5350 cgrp = kzalloc(struct_size(cgrp, ancestor_ids, (level + 1)), 5351 GFP_KERNEL); 5352 if (!cgrp) 5353 return ERR_PTR(-ENOMEM); 5354 5355 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL); 5356 if (ret) 5357 goto out_free_cgrp; 5358 5359 ret = cgroup_rstat_init(cgrp); 5360 if (ret) 5361 goto out_cancel_ref; 5362 5363 /* create the directory */ 5364 kn = kernfs_create_dir(parent->kn, name, mode, cgrp); 5365 if (IS_ERR(kn)) { 5366 ret = PTR_ERR(kn); 5367 goto out_stat_exit; 5368 } 5369 cgrp->kn = kn; 5370 5371 init_cgroup_housekeeping(cgrp); 5372 5373 cgrp->self.parent = &parent->self; 5374 cgrp->root = root; 5375 cgrp->level = level; 5376 5377 ret = psi_cgroup_alloc(cgrp); 5378 if (ret) 5379 goto out_kernfs_remove; 5380 5381 ret = cgroup_bpf_inherit(cgrp); 5382 if (ret) 5383 goto out_psi_free; 5384 5385 /* 5386 * New cgroup inherits effective freeze counter, and 5387 * if the parent has to be frozen, the child has too. 5388 */ 5389 cgrp->freezer.e_freeze = parent->freezer.e_freeze; 5390 if (cgrp->freezer.e_freeze) { 5391 /* 5392 * Set the CGRP_FREEZE flag, so when a process will be 5393 * attached to the child cgroup, it will become frozen. 5394 * At this point the new cgroup is unpopulated, so we can 5395 * consider it frozen immediately. 5396 */ 5397 set_bit(CGRP_FREEZE, &cgrp->flags); 5398 set_bit(CGRP_FROZEN, &cgrp->flags); 5399 } 5400 5401 spin_lock_irq(&css_set_lock); 5402 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) { 5403 cgrp->ancestor_ids[tcgrp->level] = cgroup_id(tcgrp); 5404 5405 if (tcgrp != cgrp) { 5406 tcgrp->nr_descendants++; 5407 5408 /* 5409 * If the new cgroup is frozen, all ancestor cgroups 5410 * get a new frozen descendant, but their state can't 5411 * change because of this. 5412 */ 5413 if (cgrp->freezer.e_freeze) 5414 tcgrp->freezer.nr_frozen_descendants++; 5415 } 5416 } 5417 spin_unlock_irq(&css_set_lock); 5418 5419 if (notify_on_release(parent)) 5420 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags); 5421 5422 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags)) 5423 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags); 5424 5425 cgrp->self.serial_nr = css_serial_nr_next++; 5426 5427 /* allocation complete, commit to creation */ 5428 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children); 5429 atomic_inc(&root->nr_cgrps); 5430 cgroup_get_live(parent); 5431 5432 /* 5433 * On the default hierarchy, a child doesn't automatically inherit 5434 * subtree_control from the parent. Each is configured manually. 5435 */ 5436 if (!cgroup_on_dfl(cgrp)) 5437 cgrp->subtree_control = cgroup_control(cgrp); 5438 5439 cgroup_propagate_control(cgrp); 5440 5441 return cgrp; 5442 5443 out_psi_free: 5444 psi_cgroup_free(cgrp); 5445 out_kernfs_remove: 5446 kernfs_remove(cgrp->kn); 5447 out_stat_exit: 5448 cgroup_rstat_exit(cgrp); 5449 out_cancel_ref: 5450 percpu_ref_exit(&cgrp->self.refcnt); 5451 out_free_cgrp: 5452 kfree(cgrp); 5453 return ERR_PTR(ret); 5454 } 5455 5456 static bool cgroup_check_hierarchy_limits(struct cgroup *parent) 5457 { 5458 struct cgroup *cgroup; 5459 int ret = false; 5460 int level = 1; 5461 5462 lockdep_assert_held(&cgroup_mutex); 5463 5464 for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) { 5465 if (cgroup->nr_descendants >= cgroup->max_descendants) 5466 goto fail; 5467 5468 if (level > cgroup->max_depth) 5469 goto fail; 5470 5471 level++; 5472 } 5473 5474 ret = true; 5475 fail: 5476 return ret; 5477 } 5478 5479 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode) 5480 { 5481 struct cgroup *parent, *cgrp; 5482 int ret; 5483 5484 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */ 5485 if (strchr(name, '\n')) 5486 return -EINVAL; 5487 5488 parent = cgroup_kn_lock_live(parent_kn, false); 5489 if (!parent) 5490 return -ENODEV; 5491 5492 if (!cgroup_check_hierarchy_limits(parent)) { 5493 ret = -EAGAIN; 5494 goto out_unlock; 5495 } 5496 5497 cgrp = cgroup_create(parent, name, mode); 5498 if (IS_ERR(cgrp)) { 5499 ret = PTR_ERR(cgrp); 5500 goto out_unlock; 5501 } 5502 5503 /* 5504 * This extra ref will be put in cgroup_free_fn() and guarantees 5505 * that @cgrp->kn is always accessible. 5506 */ 5507 kernfs_get(cgrp->kn); 5508 5509 ret = cgroup_kn_set_ugid(cgrp->kn); 5510 if (ret) 5511 goto out_destroy; 5512 5513 ret = css_populate_dir(&cgrp->self); 5514 if (ret) 5515 goto out_destroy; 5516 5517 ret = cgroup_apply_control_enable(cgrp); 5518 if (ret) 5519 goto out_destroy; 5520 5521 TRACE_CGROUP_PATH(mkdir, cgrp); 5522 5523 /* let's create and online css's */ 5524 kernfs_activate(cgrp->kn); 5525 5526 ret = 0; 5527 goto out_unlock; 5528 5529 out_destroy: 5530 cgroup_destroy_locked(cgrp); 5531 out_unlock: 5532 cgroup_kn_unlock(parent_kn); 5533 return ret; 5534 } 5535 5536 /* 5537 * This is called when the refcnt of a css is confirmed to be killed. 5538 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to 5539 * initiate destruction and put the css ref from kill_css(). 5540 */ 5541 static void css_killed_work_fn(struct work_struct *work) 5542 { 5543 struct cgroup_subsys_state *css = 5544 container_of(work, struct cgroup_subsys_state, destroy_work); 5545 5546 mutex_lock(&cgroup_mutex); 5547 5548 do { 5549 offline_css(css); 5550 css_put(css); 5551 /* @css can't go away while we're holding cgroup_mutex */ 5552 css = css->parent; 5553 } while (css && atomic_dec_and_test(&css->online_cnt)); 5554 5555 mutex_unlock(&cgroup_mutex); 5556 } 5557 5558 /* css kill confirmation processing requires process context, bounce */ 5559 static void css_killed_ref_fn(struct percpu_ref *ref) 5560 { 5561 struct cgroup_subsys_state *css = 5562 container_of(ref, struct cgroup_subsys_state, refcnt); 5563 5564 if (atomic_dec_and_test(&css->online_cnt)) { 5565 INIT_WORK(&css->destroy_work, css_killed_work_fn); 5566 queue_work(cgroup_destroy_wq, &css->destroy_work); 5567 } 5568 } 5569 5570 /** 5571 * kill_css - destroy a css 5572 * @css: css to destroy 5573 * 5574 * This function initiates destruction of @css by removing cgroup interface 5575 * files and putting its base reference. ->css_offline() will be invoked 5576 * asynchronously once css_tryget_online() is guaranteed to fail and when 5577 * the reference count reaches zero, @css will be released. 5578 */ 5579 static void kill_css(struct cgroup_subsys_state *css) 5580 { 5581 lockdep_assert_held(&cgroup_mutex); 5582 5583 if (css->flags & CSS_DYING) 5584 return; 5585 5586 css->flags |= CSS_DYING; 5587 5588 /* 5589 * This must happen before css is disassociated with its cgroup. 5590 * See seq_css() for details. 5591 */ 5592 css_clear_dir(css); 5593 5594 /* 5595 * Killing would put the base ref, but we need to keep it alive 5596 * until after ->css_offline(). 5597 */ 5598 css_get(css); 5599 5600 /* 5601 * cgroup core guarantees that, by the time ->css_offline() is 5602 * invoked, no new css reference will be given out via 5603 * css_tryget_online(). We can't simply call percpu_ref_kill() and 5604 * proceed to offlining css's because percpu_ref_kill() doesn't 5605 * guarantee that the ref is seen as killed on all CPUs on return. 5606 * 5607 * Use percpu_ref_kill_and_confirm() to get notifications as each 5608 * css is confirmed to be seen as killed on all CPUs. 5609 */ 5610 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn); 5611 } 5612 5613 /** 5614 * cgroup_destroy_locked - the first stage of cgroup destruction 5615 * @cgrp: cgroup to be destroyed 5616 * 5617 * css's make use of percpu refcnts whose killing latency shouldn't be 5618 * exposed to userland and are RCU protected. Also, cgroup core needs to 5619 * guarantee that css_tryget_online() won't succeed by the time 5620 * ->css_offline() is invoked. To satisfy all the requirements, 5621 * destruction is implemented in the following two steps. 5622 * 5623 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all 5624 * userland visible parts and start killing the percpu refcnts of 5625 * css's. Set up so that the next stage will be kicked off once all 5626 * the percpu refcnts are confirmed to be killed. 5627 * 5628 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the 5629 * rest of destruction. Once all cgroup references are gone, the 5630 * cgroup is RCU-freed. 5631 * 5632 * This function implements s1. After this step, @cgrp is gone as far as 5633 * the userland is concerned and a new cgroup with the same name may be 5634 * created. As cgroup doesn't care about the names internally, this 5635 * doesn't cause any problem. 5636 */ 5637 static int cgroup_destroy_locked(struct cgroup *cgrp) 5638 __releases(&cgroup_mutex) __acquires(&cgroup_mutex) 5639 { 5640 struct cgroup *tcgrp, *parent = cgroup_parent(cgrp); 5641 struct cgroup_subsys_state *css; 5642 struct cgrp_cset_link *link; 5643 int ssid; 5644 5645 lockdep_assert_held(&cgroup_mutex); 5646 5647 /* 5648 * Only migration can raise populated from zero and we're already 5649 * holding cgroup_mutex. 5650 */ 5651 if (cgroup_is_populated(cgrp)) 5652 return -EBUSY; 5653 5654 /* 5655 * Make sure there's no live children. We can't test emptiness of 5656 * ->self.children as dead children linger on it while being 5657 * drained; otherwise, "rmdir parent/child parent" may fail. 5658 */ 5659 if (css_has_online_children(&cgrp->self)) 5660 return -EBUSY; 5661 5662 /* 5663 * Mark @cgrp and the associated csets dead. The former prevents 5664 * further task migration and child creation by disabling 5665 * cgroup_lock_live_group(). The latter makes the csets ignored by 5666 * the migration path. 5667 */ 5668 cgrp->self.flags &= ~CSS_ONLINE; 5669 5670 spin_lock_irq(&css_set_lock); 5671 list_for_each_entry(link, &cgrp->cset_links, cset_link) 5672 link->cset->dead = true; 5673 spin_unlock_irq(&css_set_lock); 5674 5675 /* initiate massacre of all css's */ 5676 for_each_css(css, ssid, cgrp) 5677 kill_css(css); 5678 5679 /* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */ 5680 css_clear_dir(&cgrp->self); 5681 kernfs_remove(cgrp->kn); 5682 5683 if (parent && cgroup_is_threaded(cgrp)) 5684 parent->nr_threaded_children--; 5685 5686 spin_lock_irq(&css_set_lock); 5687 for (tcgrp = cgroup_parent(cgrp); tcgrp; tcgrp = cgroup_parent(tcgrp)) { 5688 tcgrp->nr_descendants--; 5689 tcgrp->nr_dying_descendants++; 5690 /* 5691 * If the dying cgroup is frozen, decrease frozen descendants 5692 * counters of ancestor cgroups. 5693 */ 5694 if (test_bit(CGRP_FROZEN, &cgrp->flags)) 5695 tcgrp->freezer.nr_frozen_descendants--; 5696 } 5697 spin_unlock_irq(&css_set_lock); 5698 5699 cgroup1_check_for_release(parent); 5700 5701 cgroup_bpf_offline(cgrp); 5702 5703 /* put the base reference */ 5704 percpu_ref_kill(&cgrp->self.refcnt); 5705 5706 return 0; 5707 }; 5708 5709 int cgroup_rmdir(struct kernfs_node *kn) 5710 { 5711 struct cgroup *cgrp; 5712 int ret = 0; 5713 5714 cgrp = cgroup_kn_lock_live(kn, false); 5715 if (!cgrp) 5716 return 0; 5717 5718 ret = cgroup_destroy_locked(cgrp); 5719 if (!ret) 5720 TRACE_CGROUP_PATH(rmdir, cgrp); 5721 5722 cgroup_kn_unlock(kn); 5723 return ret; 5724 } 5725 5726 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = { 5727 .show_options = cgroup_show_options, 5728 .mkdir = cgroup_mkdir, 5729 .rmdir = cgroup_rmdir, 5730 .show_path = cgroup_show_path, 5731 }; 5732 5733 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early) 5734 { 5735 struct cgroup_subsys_state *css; 5736 5737 pr_debug("Initializing cgroup subsys %s\n", ss->name); 5738 5739 mutex_lock(&cgroup_mutex); 5740 5741 idr_init(&ss->css_idr); 5742 INIT_LIST_HEAD(&ss->cfts); 5743 5744 /* Create the root cgroup state for this subsystem */ 5745 ss->root = &cgrp_dfl_root; 5746 css = ss->css_alloc(NULL); 5747 /* We don't handle early failures gracefully */ 5748 BUG_ON(IS_ERR(css)); 5749 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp); 5750 5751 /* 5752 * Root csses are never destroyed and we can't initialize 5753 * percpu_ref during early init. Disable refcnting. 5754 */ 5755 css->flags |= CSS_NO_REF; 5756 5757 if (early) { 5758 /* allocation can't be done safely during early init */ 5759 css->id = 1; 5760 } else { 5761 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL); 5762 BUG_ON(css->id < 0); 5763 } 5764 5765 /* Update the init_css_set to contain a subsys 5766 * pointer to this state - since the subsystem is 5767 * newly registered, all tasks and hence the 5768 * init_css_set is in the subsystem's root cgroup. */ 5769 init_css_set.subsys[ss->id] = css; 5770 5771 have_fork_callback |= (bool)ss->fork << ss->id; 5772 have_exit_callback |= (bool)ss->exit << ss->id; 5773 have_release_callback |= (bool)ss->release << ss->id; 5774 have_canfork_callback |= (bool)ss->can_fork << ss->id; 5775 5776 /* At system boot, before all subsystems have been 5777 * registered, no tasks have been forked, so we don't 5778 * need to invoke fork callbacks here. */ 5779 BUG_ON(!list_empty(&init_task.tasks)); 5780 5781 BUG_ON(online_css(css)); 5782 5783 mutex_unlock(&cgroup_mutex); 5784 } 5785 5786 /** 5787 * cgroup_init_early - cgroup initialization at system boot 5788 * 5789 * Initialize cgroups at system boot, and initialize any 5790 * subsystems that request early init. 5791 */ 5792 int __init cgroup_init_early(void) 5793 { 5794 static struct cgroup_fs_context __initdata ctx; 5795 struct cgroup_subsys *ss; 5796 int i; 5797 5798 ctx.root = &cgrp_dfl_root; 5799 init_cgroup_root(&ctx); 5800 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF; 5801 5802 RCU_INIT_POINTER(init_task.cgroups, &init_css_set); 5803 5804 for_each_subsys(ss, i) { 5805 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id, 5806 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n", 5807 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free, 5808 ss->id, ss->name); 5809 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN, 5810 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]); 5811 5812 ss->id = i; 5813 ss->name = cgroup_subsys_name[i]; 5814 if (!ss->legacy_name) 5815 ss->legacy_name = cgroup_subsys_name[i]; 5816 5817 if (ss->early_init) 5818 cgroup_init_subsys(ss, true); 5819 } 5820 return 0; 5821 } 5822 5823 /** 5824 * cgroup_init - cgroup initialization 5825 * 5826 * Register cgroup filesystem and /proc file, and initialize 5827 * any subsystems that didn't request early init. 5828 */ 5829 int __init cgroup_init(void) 5830 { 5831 struct cgroup_subsys *ss; 5832 int ssid; 5833 5834 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16); 5835 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files)); 5836 BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files)); 5837 5838 cgroup_rstat_boot(); 5839 5840 /* 5841 * The latency of the synchronize_rcu() is too high for cgroups, 5842 * avoid it at the cost of forcing all readers into the slow path. 5843 */ 5844 rcu_sync_enter_start(&cgroup_threadgroup_rwsem.rss); 5845 5846 get_user_ns(init_cgroup_ns.user_ns); 5847 5848 mutex_lock(&cgroup_mutex); 5849 5850 /* 5851 * Add init_css_set to the hash table so that dfl_root can link to 5852 * it during init. 5853 */ 5854 hash_add(css_set_table, &init_css_set.hlist, 5855 css_set_hash(init_css_set.subsys)); 5856 5857 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0)); 5858 5859 mutex_unlock(&cgroup_mutex); 5860 5861 for_each_subsys(ss, ssid) { 5862 if (ss->early_init) { 5863 struct cgroup_subsys_state *css = 5864 init_css_set.subsys[ss->id]; 5865 5866 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, 5867 GFP_KERNEL); 5868 BUG_ON(css->id < 0); 5869 } else { 5870 cgroup_init_subsys(ss, false); 5871 } 5872 5873 list_add_tail(&init_css_set.e_cset_node[ssid], 5874 &cgrp_dfl_root.cgrp.e_csets[ssid]); 5875 5876 /* 5877 * Setting dfl_root subsys_mask needs to consider the 5878 * disabled flag and cftype registration needs kmalloc, 5879 * both of which aren't available during early_init. 5880 */ 5881 if (!cgroup_ssid_enabled(ssid)) 5882 continue; 5883 5884 if (cgroup1_ssid_disabled(ssid)) 5885 printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n", 5886 ss->name); 5887 5888 cgrp_dfl_root.subsys_mask |= 1 << ss->id; 5889 5890 /* implicit controllers must be threaded too */ 5891 WARN_ON(ss->implicit_on_dfl && !ss->threaded); 5892 5893 if (ss->implicit_on_dfl) 5894 cgrp_dfl_implicit_ss_mask |= 1 << ss->id; 5895 else if (!ss->dfl_cftypes) 5896 cgrp_dfl_inhibit_ss_mask |= 1 << ss->id; 5897 5898 if (ss->threaded) 5899 cgrp_dfl_threaded_ss_mask |= 1 << ss->id; 5900 5901 if (ss->dfl_cftypes == ss->legacy_cftypes) { 5902 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes)); 5903 } else { 5904 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes)); 5905 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes)); 5906 } 5907 5908 if (ss->bind) 5909 ss->bind(init_css_set.subsys[ssid]); 5910 5911 mutex_lock(&cgroup_mutex); 5912 css_populate_dir(init_css_set.subsys[ssid]); 5913 mutex_unlock(&cgroup_mutex); 5914 } 5915 5916 /* init_css_set.subsys[] has been updated, re-hash */ 5917 hash_del(&init_css_set.hlist); 5918 hash_add(css_set_table, &init_css_set.hlist, 5919 css_set_hash(init_css_set.subsys)); 5920 5921 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup")); 5922 WARN_ON(register_filesystem(&cgroup_fs_type)); 5923 WARN_ON(register_filesystem(&cgroup2_fs_type)); 5924 WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show)); 5925 #ifdef CONFIG_CPUSETS 5926 WARN_ON(register_filesystem(&cpuset_fs_type)); 5927 #endif 5928 5929 return 0; 5930 } 5931 5932 static int __init cgroup_wq_init(void) 5933 { 5934 /* 5935 * There isn't much point in executing destruction path in 5936 * parallel. Good chunk is serialized with cgroup_mutex anyway. 5937 * Use 1 for @max_active. 5938 * 5939 * We would prefer to do this in cgroup_init() above, but that 5940 * is called before init_workqueues(): so leave this until after. 5941 */ 5942 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1); 5943 BUG_ON(!cgroup_destroy_wq); 5944 return 0; 5945 } 5946 core_initcall(cgroup_wq_init); 5947 5948 void cgroup_path_from_kernfs_id(u64 id, char *buf, size_t buflen) 5949 { 5950 struct kernfs_node *kn; 5951 5952 kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id); 5953 if (!kn) 5954 return; 5955 kernfs_path(kn, buf, buflen); 5956 kernfs_put(kn); 5957 } 5958 5959 /* 5960 * cgroup_get_from_id : get the cgroup associated with cgroup id 5961 * @id: cgroup id 5962 * On success return the cgrp, on failure return NULL 5963 */ 5964 struct cgroup *cgroup_get_from_id(u64 id) 5965 { 5966 struct kernfs_node *kn; 5967 struct cgroup *cgrp = NULL; 5968 5969 kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id); 5970 if (!kn) 5971 goto out; 5972 5973 rcu_read_lock(); 5974 5975 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); 5976 if (cgrp && !cgroup_tryget(cgrp)) 5977 cgrp = NULL; 5978 5979 rcu_read_unlock(); 5980 5981 kernfs_put(kn); 5982 out: 5983 return cgrp; 5984 } 5985 EXPORT_SYMBOL_GPL(cgroup_get_from_id); 5986 5987 /* 5988 * proc_cgroup_show() 5989 * - Print task's cgroup paths into seq_file, one line for each hierarchy 5990 * - Used for /proc/<pid>/cgroup. 5991 */ 5992 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns, 5993 struct pid *pid, struct task_struct *tsk) 5994 { 5995 char *buf; 5996 int retval; 5997 struct cgroup_root *root; 5998 5999 retval = -ENOMEM; 6000 buf = kmalloc(PATH_MAX, GFP_KERNEL); 6001 if (!buf) 6002 goto out; 6003 6004 mutex_lock(&cgroup_mutex); 6005 spin_lock_irq(&css_set_lock); 6006 6007 for_each_root(root) { 6008 struct cgroup_subsys *ss; 6009 struct cgroup *cgrp; 6010 int ssid, count = 0; 6011 6012 if (root == &cgrp_dfl_root && !cgrp_dfl_visible) 6013 continue; 6014 6015 seq_printf(m, "%d:", root->hierarchy_id); 6016 if (root != &cgrp_dfl_root) 6017 for_each_subsys(ss, ssid) 6018 if (root->subsys_mask & (1 << ssid)) 6019 seq_printf(m, "%s%s", count++ ? "," : "", 6020 ss->legacy_name); 6021 if (strlen(root->name)) 6022 seq_printf(m, "%sname=%s", count ? "," : "", 6023 root->name); 6024 seq_putc(m, ':'); 6025 6026 cgrp = task_cgroup_from_root(tsk, root); 6027 6028 /* 6029 * On traditional hierarchies, all zombie tasks show up as 6030 * belonging to the root cgroup. On the default hierarchy, 6031 * while a zombie doesn't show up in "cgroup.procs" and 6032 * thus can't be migrated, its /proc/PID/cgroup keeps 6033 * reporting the cgroup it belonged to before exiting. If 6034 * the cgroup is removed before the zombie is reaped, 6035 * " (deleted)" is appended to the cgroup path. 6036 */ 6037 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) { 6038 retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX, 6039 current->nsproxy->cgroup_ns); 6040 if (retval >= PATH_MAX) 6041 retval = -ENAMETOOLONG; 6042 if (retval < 0) 6043 goto out_unlock; 6044 6045 seq_puts(m, buf); 6046 } else { 6047 seq_puts(m, "/"); 6048 } 6049 6050 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp)) 6051 seq_puts(m, " (deleted)\n"); 6052 else 6053 seq_putc(m, '\n'); 6054 } 6055 6056 retval = 0; 6057 out_unlock: 6058 spin_unlock_irq(&css_set_lock); 6059 mutex_unlock(&cgroup_mutex); 6060 kfree(buf); 6061 out: 6062 return retval; 6063 } 6064 6065 /** 6066 * cgroup_fork - initialize cgroup related fields during copy_process() 6067 * @child: pointer to task_struct of forking parent process. 6068 * 6069 * A task is associated with the init_css_set until cgroup_post_fork() 6070 * attaches it to the target css_set. 6071 */ 6072 void cgroup_fork(struct task_struct *child) 6073 { 6074 RCU_INIT_POINTER(child->cgroups, &init_css_set); 6075 INIT_LIST_HEAD(&child->cg_list); 6076 } 6077 6078 static struct cgroup *cgroup_get_from_file(struct file *f) 6079 { 6080 struct cgroup_subsys_state *css; 6081 struct cgroup *cgrp; 6082 6083 css = css_tryget_online_from_dir(f->f_path.dentry, NULL); 6084 if (IS_ERR(css)) 6085 return ERR_CAST(css); 6086 6087 cgrp = css->cgroup; 6088 if (!cgroup_on_dfl(cgrp)) { 6089 cgroup_put(cgrp); 6090 return ERR_PTR(-EBADF); 6091 } 6092 6093 return cgrp; 6094 } 6095 6096 /** 6097 * cgroup_css_set_fork - find or create a css_set for a child process 6098 * @kargs: the arguments passed to create the child process 6099 * 6100 * This functions finds or creates a new css_set which the child 6101 * process will be attached to in cgroup_post_fork(). By default, 6102 * the child process will be given the same css_set as its parent. 6103 * 6104 * If CLONE_INTO_CGROUP is specified this function will try to find an 6105 * existing css_set which includes the requested cgroup and if not create 6106 * a new css_set that the child will be attached to later. If this function 6107 * succeeds it will hold cgroup_threadgroup_rwsem on return. If 6108 * CLONE_INTO_CGROUP is requested this function will grab cgroup mutex 6109 * before grabbing cgroup_threadgroup_rwsem and will hold a reference 6110 * to the target cgroup. 6111 */ 6112 static int cgroup_css_set_fork(struct kernel_clone_args *kargs) 6113 __acquires(&cgroup_mutex) __acquires(&cgroup_threadgroup_rwsem) 6114 { 6115 int ret; 6116 struct cgroup *dst_cgrp = NULL; 6117 struct css_set *cset; 6118 struct super_block *sb; 6119 struct file *f; 6120 6121 if (kargs->flags & CLONE_INTO_CGROUP) 6122 mutex_lock(&cgroup_mutex); 6123 6124 cgroup_threadgroup_change_begin(current); 6125 6126 spin_lock_irq(&css_set_lock); 6127 cset = task_css_set(current); 6128 get_css_set(cset); 6129 spin_unlock_irq(&css_set_lock); 6130 6131 if (!(kargs->flags & CLONE_INTO_CGROUP)) { 6132 kargs->cset = cset; 6133 return 0; 6134 } 6135 6136 f = fget_raw(kargs->cgroup); 6137 if (!f) { 6138 ret = -EBADF; 6139 goto err; 6140 } 6141 sb = f->f_path.dentry->d_sb; 6142 6143 dst_cgrp = cgroup_get_from_file(f); 6144 if (IS_ERR(dst_cgrp)) { 6145 ret = PTR_ERR(dst_cgrp); 6146 dst_cgrp = NULL; 6147 goto err; 6148 } 6149 6150 if (cgroup_is_dead(dst_cgrp)) { 6151 ret = -ENODEV; 6152 goto err; 6153 } 6154 6155 /* 6156 * Verify that we the target cgroup is writable for us. This is 6157 * usually done by the vfs layer but since we're not going through 6158 * the vfs layer here we need to do it "manually". 6159 */ 6160 ret = cgroup_may_write(dst_cgrp, sb); 6161 if (ret) 6162 goto err; 6163 6164 ret = cgroup_attach_permissions(cset->dfl_cgrp, dst_cgrp, sb, 6165 !(kargs->flags & CLONE_THREAD), 6166 current->nsproxy->cgroup_ns); 6167 if (ret) 6168 goto err; 6169 6170 kargs->cset = find_css_set(cset, dst_cgrp); 6171 if (!kargs->cset) { 6172 ret = -ENOMEM; 6173 goto err; 6174 } 6175 6176 put_css_set(cset); 6177 fput(f); 6178 kargs->cgrp = dst_cgrp; 6179 return ret; 6180 6181 err: 6182 cgroup_threadgroup_change_end(current); 6183 mutex_unlock(&cgroup_mutex); 6184 if (f) 6185 fput(f); 6186 if (dst_cgrp) 6187 cgroup_put(dst_cgrp); 6188 put_css_set(cset); 6189 if (kargs->cset) 6190 put_css_set(kargs->cset); 6191 return ret; 6192 } 6193 6194 /** 6195 * cgroup_css_set_put_fork - drop references we took during fork 6196 * @kargs: the arguments passed to create the child process 6197 * 6198 * Drop references to the prepared css_set and target cgroup if 6199 * CLONE_INTO_CGROUP was requested. 6200 */ 6201 static void cgroup_css_set_put_fork(struct kernel_clone_args *kargs) 6202 __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex) 6203 { 6204 cgroup_threadgroup_change_end(current); 6205 6206 if (kargs->flags & CLONE_INTO_CGROUP) { 6207 struct cgroup *cgrp = kargs->cgrp; 6208 struct css_set *cset = kargs->cset; 6209 6210 mutex_unlock(&cgroup_mutex); 6211 6212 if (cset) { 6213 put_css_set(cset); 6214 kargs->cset = NULL; 6215 } 6216 6217 if (cgrp) { 6218 cgroup_put(cgrp); 6219 kargs->cgrp = NULL; 6220 } 6221 } 6222 } 6223 6224 /** 6225 * cgroup_can_fork - called on a new task before the process is exposed 6226 * @child: the child process 6227 * 6228 * This prepares a new css_set for the child process which the child will 6229 * be attached to in cgroup_post_fork(). 6230 * This calls the subsystem can_fork() callbacks. If the cgroup_can_fork() 6231 * callback returns an error, the fork aborts with that error code. This 6232 * allows for a cgroup subsystem to conditionally allow or deny new forks. 6233 */ 6234 int cgroup_can_fork(struct task_struct *child, struct kernel_clone_args *kargs) 6235 { 6236 struct cgroup_subsys *ss; 6237 int i, j, ret; 6238 6239 ret = cgroup_css_set_fork(kargs); 6240 if (ret) 6241 return ret; 6242 6243 do_each_subsys_mask(ss, i, have_canfork_callback) { 6244 ret = ss->can_fork(child, kargs->cset); 6245 if (ret) 6246 goto out_revert; 6247 } while_each_subsys_mask(); 6248 6249 return 0; 6250 6251 out_revert: 6252 for_each_subsys(ss, j) { 6253 if (j >= i) 6254 break; 6255 if (ss->cancel_fork) 6256 ss->cancel_fork(child, kargs->cset); 6257 } 6258 6259 cgroup_css_set_put_fork(kargs); 6260 6261 return ret; 6262 } 6263 6264 /** 6265 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork() 6266 * @child: the child process 6267 * @kargs: the arguments passed to create the child process 6268 * 6269 * This calls the cancel_fork() callbacks if a fork failed *after* 6270 * cgroup_can_fork() succeeded and cleans up references we took to 6271 * prepare a new css_set for the child process in cgroup_can_fork(). 6272 */ 6273 void cgroup_cancel_fork(struct task_struct *child, 6274 struct kernel_clone_args *kargs) 6275 { 6276 struct cgroup_subsys *ss; 6277 int i; 6278 6279 for_each_subsys(ss, i) 6280 if (ss->cancel_fork) 6281 ss->cancel_fork(child, kargs->cset); 6282 6283 cgroup_css_set_put_fork(kargs); 6284 } 6285 6286 /** 6287 * cgroup_post_fork - finalize cgroup setup for the child process 6288 * @child: the child process 6289 * 6290 * Attach the child process to its css_set calling the subsystem fork() 6291 * callbacks. 6292 */ 6293 void cgroup_post_fork(struct task_struct *child, 6294 struct kernel_clone_args *kargs) 6295 __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex) 6296 { 6297 unsigned long cgrp_flags = 0; 6298 bool kill = false; 6299 struct cgroup_subsys *ss; 6300 struct css_set *cset; 6301 int i; 6302 6303 cset = kargs->cset; 6304 kargs->cset = NULL; 6305 6306 spin_lock_irq(&css_set_lock); 6307 6308 /* init tasks are special, only link regular threads */ 6309 if (likely(child->pid)) { 6310 if (kargs->cgrp) 6311 cgrp_flags = kargs->cgrp->flags; 6312 else 6313 cgrp_flags = cset->dfl_cgrp->flags; 6314 6315 WARN_ON_ONCE(!list_empty(&child->cg_list)); 6316 cset->nr_tasks++; 6317 css_set_move_task(child, NULL, cset, false); 6318 } else { 6319 put_css_set(cset); 6320 cset = NULL; 6321 } 6322 6323 if (!(child->flags & PF_KTHREAD)) { 6324 if (unlikely(test_bit(CGRP_FREEZE, &cgrp_flags))) { 6325 /* 6326 * If the cgroup has to be frozen, the new task has 6327 * too. Let's set the JOBCTL_TRAP_FREEZE jobctl bit to 6328 * get the task into the frozen state. 6329 */ 6330 spin_lock(&child->sighand->siglock); 6331 WARN_ON_ONCE(child->frozen); 6332 child->jobctl |= JOBCTL_TRAP_FREEZE; 6333 spin_unlock(&child->sighand->siglock); 6334 6335 /* 6336 * Calling cgroup_update_frozen() isn't required here, 6337 * because it will be called anyway a bit later from 6338 * do_freezer_trap(). So we avoid cgroup's transient 6339 * switch from the frozen state and back. 6340 */ 6341 } 6342 6343 /* 6344 * If the cgroup is to be killed notice it now and take the 6345 * child down right after we finished preparing it for 6346 * userspace. 6347 */ 6348 kill = test_bit(CGRP_KILL, &cgrp_flags); 6349 } 6350 6351 spin_unlock_irq(&css_set_lock); 6352 6353 /* 6354 * Call ss->fork(). This must happen after @child is linked on 6355 * css_set; otherwise, @child might change state between ->fork() 6356 * and addition to css_set. 6357 */ 6358 do_each_subsys_mask(ss, i, have_fork_callback) { 6359 ss->fork(child); 6360 } while_each_subsys_mask(); 6361 6362 /* Make the new cset the root_cset of the new cgroup namespace. */ 6363 if (kargs->flags & CLONE_NEWCGROUP) { 6364 struct css_set *rcset = child->nsproxy->cgroup_ns->root_cset; 6365 6366 get_css_set(cset); 6367 child->nsproxy->cgroup_ns->root_cset = cset; 6368 put_css_set(rcset); 6369 } 6370 6371 /* Cgroup has to be killed so take down child immediately. */ 6372 if (unlikely(kill)) 6373 do_send_sig_info(SIGKILL, SEND_SIG_NOINFO, child, PIDTYPE_TGID); 6374 6375 cgroup_css_set_put_fork(kargs); 6376 } 6377 6378 /** 6379 * cgroup_exit - detach cgroup from exiting task 6380 * @tsk: pointer to task_struct of exiting process 6381 * 6382 * Description: Detach cgroup from @tsk. 6383 * 6384 */ 6385 void cgroup_exit(struct task_struct *tsk) 6386 { 6387 struct cgroup_subsys *ss; 6388 struct css_set *cset; 6389 int i; 6390 6391 spin_lock_irq(&css_set_lock); 6392 6393 WARN_ON_ONCE(list_empty(&tsk->cg_list)); 6394 cset = task_css_set(tsk); 6395 css_set_move_task(tsk, cset, NULL, false); 6396 list_add_tail(&tsk->cg_list, &cset->dying_tasks); 6397 cset->nr_tasks--; 6398 6399 WARN_ON_ONCE(cgroup_task_frozen(tsk)); 6400 if (unlikely(!(tsk->flags & PF_KTHREAD) && 6401 test_bit(CGRP_FREEZE, &task_dfl_cgroup(tsk)->flags))) 6402 cgroup_update_frozen(task_dfl_cgroup(tsk)); 6403 6404 spin_unlock_irq(&css_set_lock); 6405 6406 /* see cgroup_post_fork() for details */ 6407 do_each_subsys_mask(ss, i, have_exit_callback) { 6408 ss->exit(tsk); 6409 } while_each_subsys_mask(); 6410 } 6411 6412 void cgroup_release(struct task_struct *task) 6413 { 6414 struct cgroup_subsys *ss; 6415 int ssid; 6416 6417 do_each_subsys_mask(ss, ssid, have_release_callback) { 6418 ss->release(task); 6419 } while_each_subsys_mask(); 6420 6421 spin_lock_irq(&css_set_lock); 6422 css_set_skip_task_iters(task_css_set(task), task); 6423 list_del_init(&task->cg_list); 6424 spin_unlock_irq(&css_set_lock); 6425 } 6426 6427 void cgroup_free(struct task_struct *task) 6428 { 6429 struct css_set *cset = task_css_set(task); 6430 put_css_set(cset); 6431 } 6432 6433 static int __init cgroup_disable(char *str) 6434 { 6435 struct cgroup_subsys *ss; 6436 char *token; 6437 int i; 6438 6439 while ((token = strsep(&str, ",")) != NULL) { 6440 if (!*token) 6441 continue; 6442 6443 for_each_subsys(ss, i) { 6444 if (strcmp(token, ss->name) && 6445 strcmp(token, ss->legacy_name)) 6446 continue; 6447 6448 static_branch_disable(cgroup_subsys_enabled_key[i]); 6449 pr_info("Disabling %s control group subsystem\n", 6450 ss->name); 6451 } 6452 6453 for (i = 0; i < OPT_FEATURE_COUNT; i++) { 6454 if (strcmp(token, cgroup_opt_feature_names[i])) 6455 continue; 6456 cgroup_feature_disable_mask |= 1 << i; 6457 pr_info("Disabling %s control group feature\n", 6458 cgroup_opt_feature_names[i]); 6459 break; 6460 } 6461 } 6462 return 1; 6463 } 6464 __setup("cgroup_disable=", cgroup_disable); 6465 6466 void __init __weak enable_debug_cgroup(void) { } 6467 6468 static int __init enable_cgroup_debug(char *str) 6469 { 6470 cgroup_debug = true; 6471 enable_debug_cgroup(); 6472 return 1; 6473 } 6474 __setup("cgroup_debug", enable_cgroup_debug); 6475 6476 /** 6477 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry 6478 * @dentry: directory dentry of interest 6479 * @ss: subsystem of interest 6480 * 6481 * If @dentry is a directory for a cgroup which has @ss enabled on it, try 6482 * to get the corresponding css and return it. If such css doesn't exist 6483 * or can't be pinned, an ERR_PTR value is returned. 6484 */ 6485 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry, 6486 struct cgroup_subsys *ss) 6487 { 6488 struct kernfs_node *kn = kernfs_node_from_dentry(dentry); 6489 struct file_system_type *s_type = dentry->d_sb->s_type; 6490 struct cgroup_subsys_state *css = NULL; 6491 struct cgroup *cgrp; 6492 6493 /* is @dentry a cgroup dir? */ 6494 if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) || 6495 !kn || kernfs_type(kn) != KERNFS_DIR) 6496 return ERR_PTR(-EBADF); 6497 6498 rcu_read_lock(); 6499 6500 /* 6501 * This path doesn't originate from kernfs and @kn could already 6502 * have been or be removed at any point. @kn->priv is RCU 6503 * protected for this access. See css_release_work_fn() for details. 6504 */ 6505 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); 6506 if (cgrp) 6507 css = cgroup_css(cgrp, ss); 6508 6509 if (!css || !css_tryget_online(css)) 6510 css = ERR_PTR(-ENOENT); 6511 6512 rcu_read_unlock(); 6513 return css; 6514 } 6515 6516 /** 6517 * css_from_id - lookup css by id 6518 * @id: the cgroup id 6519 * @ss: cgroup subsys to be looked into 6520 * 6521 * Returns the css if there's valid one with @id, otherwise returns NULL. 6522 * Should be called under rcu_read_lock(). 6523 */ 6524 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss) 6525 { 6526 WARN_ON_ONCE(!rcu_read_lock_held()); 6527 return idr_find(&ss->css_idr, id); 6528 } 6529 6530 /** 6531 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path 6532 * @path: path on the default hierarchy 6533 * 6534 * Find the cgroup at @path on the default hierarchy, increment its 6535 * reference count and return it. Returns pointer to the found cgroup on 6536 * success, ERR_PTR(-ENOENT) if @path doesn't exist or if the cgroup has already 6537 * been released and ERR_PTR(-ENOTDIR) if @path points to a non-directory. 6538 */ 6539 struct cgroup *cgroup_get_from_path(const char *path) 6540 { 6541 struct kernfs_node *kn; 6542 struct cgroup *cgrp = ERR_PTR(-ENOENT); 6543 6544 kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path); 6545 if (!kn) 6546 goto out; 6547 6548 if (kernfs_type(kn) != KERNFS_DIR) { 6549 cgrp = ERR_PTR(-ENOTDIR); 6550 goto out_kernfs; 6551 } 6552 6553 rcu_read_lock(); 6554 6555 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); 6556 if (!cgrp || !cgroup_tryget(cgrp)) 6557 cgrp = ERR_PTR(-ENOENT); 6558 6559 rcu_read_unlock(); 6560 6561 out_kernfs: 6562 kernfs_put(kn); 6563 out: 6564 return cgrp; 6565 } 6566 EXPORT_SYMBOL_GPL(cgroup_get_from_path); 6567 6568 /** 6569 * cgroup_get_from_fd - get a cgroup pointer from a fd 6570 * @fd: fd obtained by open(cgroup2_dir) 6571 * 6572 * Find the cgroup from a fd which should be obtained 6573 * by opening a cgroup directory. Returns a pointer to the 6574 * cgroup on success. ERR_PTR is returned if the cgroup 6575 * cannot be found. 6576 */ 6577 struct cgroup *cgroup_get_from_fd(int fd) 6578 { 6579 struct cgroup *cgrp; 6580 struct file *f; 6581 6582 f = fget_raw(fd); 6583 if (!f) 6584 return ERR_PTR(-EBADF); 6585 6586 cgrp = cgroup_get_from_file(f); 6587 fput(f); 6588 return cgrp; 6589 } 6590 EXPORT_SYMBOL_GPL(cgroup_get_from_fd); 6591 6592 static u64 power_of_ten(int power) 6593 { 6594 u64 v = 1; 6595 while (power--) 6596 v *= 10; 6597 return v; 6598 } 6599 6600 /** 6601 * cgroup_parse_float - parse a floating number 6602 * @input: input string 6603 * @dec_shift: number of decimal digits to shift 6604 * @v: output 6605 * 6606 * Parse a decimal floating point number in @input and store the result in 6607 * @v with decimal point right shifted @dec_shift times. For example, if 6608 * @input is "12.3456" and @dec_shift is 3, *@v will be set to 12345. 6609 * Returns 0 on success, -errno otherwise. 6610 * 6611 * There's nothing cgroup specific about this function except that it's 6612 * currently the only user. 6613 */ 6614 int cgroup_parse_float(const char *input, unsigned dec_shift, s64 *v) 6615 { 6616 s64 whole, frac = 0; 6617 int fstart = 0, fend = 0, flen; 6618 6619 if (!sscanf(input, "%lld.%n%lld%n", &whole, &fstart, &frac, &fend)) 6620 return -EINVAL; 6621 if (frac < 0) 6622 return -EINVAL; 6623 6624 flen = fend > fstart ? fend - fstart : 0; 6625 if (flen < dec_shift) 6626 frac *= power_of_ten(dec_shift - flen); 6627 else 6628 frac = DIV_ROUND_CLOSEST_ULL(frac, power_of_ten(flen - dec_shift)); 6629 6630 *v = whole * power_of_ten(dec_shift) + frac; 6631 return 0; 6632 } 6633 6634 /* 6635 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data 6636 * definition in cgroup-defs.h. 6637 */ 6638 #ifdef CONFIG_SOCK_CGROUP_DATA 6639 6640 void cgroup_sk_alloc(struct sock_cgroup_data *skcd) 6641 { 6642 struct cgroup *cgroup; 6643 6644 rcu_read_lock(); 6645 /* Don't associate the sock with unrelated interrupted task's cgroup. */ 6646 if (in_interrupt()) { 6647 cgroup = &cgrp_dfl_root.cgrp; 6648 cgroup_get(cgroup); 6649 goto out; 6650 } 6651 6652 while (true) { 6653 struct css_set *cset; 6654 6655 cset = task_css_set(current); 6656 if (likely(cgroup_tryget(cset->dfl_cgrp))) { 6657 cgroup = cset->dfl_cgrp; 6658 break; 6659 } 6660 cpu_relax(); 6661 } 6662 out: 6663 skcd->cgroup = cgroup; 6664 cgroup_bpf_get(cgroup); 6665 rcu_read_unlock(); 6666 } 6667 6668 void cgroup_sk_clone(struct sock_cgroup_data *skcd) 6669 { 6670 struct cgroup *cgrp = sock_cgroup_ptr(skcd); 6671 6672 /* 6673 * We might be cloning a socket which is left in an empty 6674 * cgroup and the cgroup might have already been rmdir'd. 6675 * Don't use cgroup_get_live(). 6676 */ 6677 cgroup_get(cgrp); 6678 cgroup_bpf_get(cgrp); 6679 } 6680 6681 void cgroup_sk_free(struct sock_cgroup_data *skcd) 6682 { 6683 struct cgroup *cgrp = sock_cgroup_ptr(skcd); 6684 6685 cgroup_bpf_put(cgrp); 6686 cgroup_put(cgrp); 6687 } 6688 6689 #endif /* CONFIG_SOCK_CGROUP_DATA */ 6690 6691 #ifdef CONFIG_SYSFS 6692 static ssize_t show_delegatable_files(struct cftype *files, char *buf, 6693 ssize_t size, const char *prefix) 6694 { 6695 struct cftype *cft; 6696 ssize_t ret = 0; 6697 6698 for (cft = files; cft && cft->name[0] != '\0'; cft++) { 6699 if (!(cft->flags & CFTYPE_NS_DELEGATABLE)) 6700 continue; 6701 6702 if ((cft->flags & CFTYPE_PRESSURE) && !cgroup_psi_enabled()) 6703 continue; 6704 6705 if (prefix) 6706 ret += snprintf(buf + ret, size - ret, "%s.", prefix); 6707 6708 ret += snprintf(buf + ret, size - ret, "%s\n", cft->name); 6709 6710 if (WARN_ON(ret >= size)) 6711 break; 6712 } 6713 6714 return ret; 6715 } 6716 6717 static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr, 6718 char *buf) 6719 { 6720 struct cgroup_subsys *ss; 6721 int ssid; 6722 ssize_t ret = 0; 6723 6724 ret = show_delegatable_files(cgroup_base_files, buf, PAGE_SIZE - ret, 6725 NULL); 6726 6727 for_each_subsys(ss, ssid) 6728 ret += show_delegatable_files(ss->dfl_cftypes, buf + ret, 6729 PAGE_SIZE - ret, 6730 cgroup_subsys_name[ssid]); 6731 6732 return ret; 6733 } 6734 static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate); 6735 6736 static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr, 6737 char *buf) 6738 { 6739 return snprintf(buf, PAGE_SIZE, 6740 "nsdelegate\n" 6741 "memory_localevents\n" 6742 "memory_recursiveprot\n"); 6743 } 6744 static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features); 6745 6746 static struct attribute *cgroup_sysfs_attrs[] = { 6747 &cgroup_delegate_attr.attr, 6748 &cgroup_features_attr.attr, 6749 NULL, 6750 }; 6751 6752 static const struct attribute_group cgroup_sysfs_attr_group = { 6753 .attrs = cgroup_sysfs_attrs, 6754 .name = "cgroup", 6755 }; 6756 6757 static int __init cgroup_sysfs_init(void) 6758 { 6759 return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group); 6760 } 6761 subsys_initcall(cgroup_sysfs_init); 6762 6763 #endif /* CONFIG_SYSFS */ 6764