1 /* 2 * Generic process-grouping system. 3 * 4 * Based originally on the cpuset system, extracted by Paul Menage 5 * Copyright (C) 2006 Google, Inc 6 * 7 * Notifications support 8 * Copyright (C) 2009 Nokia Corporation 9 * Author: Kirill A. Shutemov 10 * 11 * Copyright notices from the original cpuset code: 12 * -------------------------------------------------- 13 * Copyright (C) 2003 BULL SA. 14 * Copyright (C) 2004-2006 Silicon Graphics, Inc. 15 * 16 * Portions derived from Patrick Mochel's sysfs code. 17 * sysfs is Copyright (c) 2001-3 Patrick Mochel 18 * 19 * 2003-10-10 Written by Simon Derr. 20 * 2003-10-22 Updates by Stephen Hemminger. 21 * 2004 May-July Rework by Paul Jackson. 22 * --------------------------------------------------- 23 * 24 * This file is subject to the terms and conditions of the GNU General Public 25 * License. See the file COPYING in the main directory of the Linux 26 * distribution for more details. 27 */ 28 29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 30 31 #include "cgroup-internal.h" 32 33 #include <linux/cred.h> 34 #include <linux/errno.h> 35 #include <linux/init_task.h> 36 #include <linux/kernel.h> 37 #include <linux/magic.h> 38 #include <linux/mutex.h> 39 #include <linux/mount.h> 40 #include <linux/pagemap.h> 41 #include <linux/proc_fs.h> 42 #include <linux/rcupdate.h> 43 #include <linux/sched.h> 44 #include <linux/sched/task.h> 45 #include <linux/slab.h> 46 #include <linux/spinlock.h> 47 #include <linux/percpu-rwsem.h> 48 #include <linux/string.h> 49 #include <linux/hashtable.h> 50 #include <linux/idr.h> 51 #include <linux/kthread.h> 52 #include <linux/atomic.h> 53 #include <linux/cpuset.h> 54 #include <linux/proc_ns.h> 55 #include <linux/nsproxy.h> 56 #include <linux/file.h> 57 #include <net/sock.h> 58 59 #define CREATE_TRACE_POINTS 60 #include <trace/events/cgroup.h> 61 62 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \ 63 MAX_CFTYPE_NAME + 2) 64 65 /* 66 * cgroup_mutex is the master lock. Any modification to cgroup or its 67 * hierarchy must be performed while holding it. 68 * 69 * css_set_lock protects task->cgroups pointer, the list of css_set 70 * objects, and the chain of tasks off each css_set. 71 * 72 * These locks are exported if CONFIG_PROVE_RCU so that accessors in 73 * cgroup.h can use them for lockdep annotations. 74 */ 75 DEFINE_MUTEX(cgroup_mutex); 76 DEFINE_SPINLOCK(css_set_lock); 77 78 #ifdef CONFIG_PROVE_RCU 79 EXPORT_SYMBOL_GPL(cgroup_mutex); 80 EXPORT_SYMBOL_GPL(css_set_lock); 81 #endif 82 83 /* 84 * Protects cgroup_idr and css_idr so that IDs can be released without 85 * grabbing cgroup_mutex. 86 */ 87 static DEFINE_SPINLOCK(cgroup_idr_lock); 88 89 /* 90 * Protects cgroup_file->kn for !self csses. It synchronizes notifications 91 * against file removal/re-creation across css hiding. 92 */ 93 static DEFINE_SPINLOCK(cgroup_file_kn_lock); 94 95 struct percpu_rw_semaphore cgroup_threadgroup_rwsem; 96 97 #define cgroup_assert_mutex_or_rcu_locked() \ 98 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \ 99 !lockdep_is_held(&cgroup_mutex), \ 100 "cgroup_mutex or RCU read lock required"); 101 102 /* 103 * cgroup destruction makes heavy use of work items and there can be a lot 104 * of concurrent destructions. Use a separate workqueue so that cgroup 105 * destruction work items don't end up filling up max_active of system_wq 106 * which may lead to deadlock. 107 */ 108 static struct workqueue_struct *cgroup_destroy_wq; 109 110 /* generate an array of cgroup subsystem pointers */ 111 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys, 112 struct cgroup_subsys *cgroup_subsys[] = { 113 #include <linux/cgroup_subsys.h> 114 }; 115 #undef SUBSYS 116 117 /* array of cgroup subsystem names */ 118 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x, 119 static const char *cgroup_subsys_name[] = { 120 #include <linux/cgroup_subsys.h> 121 }; 122 #undef SUBSYS 123 124 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */ 125 #define SUBSYS(_x) \ 126 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \ 127 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \ 128 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \ 129 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key); 130 #include <linux/cgroup_subsys.h> 131 #undef SUBSYS 132 133 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key, 134 static struct static_key_true *cgroup_subsys_enabled_key[] = { 135 #include <linux/cgroup_subsys.h> 136 }; 137 #undef SUBSYS 138 139 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key, 140 static struct static_key_true *cgroup_subsys_on_dfl_key[] = { 141 #include <linux/cgroup_subsys.h> 142 }; 143 #undef SUBSYS 144 145 /* 146 * The default hierarchy, reserved for the subsystems that are otherwise 147 * unattached - it never has more than a single cgroup, and all tasks are 148 * part of that cgroup. 149 */ 150 struct cgroup_root cgrp_dfl_root; 151 EXPORT_SYMBOL_GPL(cgrp_dfl_root); 152 153 /* 154 * The default hierarchy always exists but is hidden until mounted for the 155 * first time. This is for backward compatibility. 156 */ 157 static bool cgrp_dfl_visible; 158 159 /* some controllers are not supported in the default hierarchy */ 160 static u16 cgrp_dfl_inhibit_ss_mask; 161 162 /* some controllers are implicitly enabled on the default hierarchy */ 163 static u16 cgrp_dfl_implicit_ss_mask; 164 165 /* The list of hierarchy roots */ 166 LIST_HEAD(cgroup_roots); 167 static int cgroup_root_count; 168 169 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */ 170 static DEFINE_IDR(cgroup_hierarchy_idr); 171 172 /* 173 * Assign a monotonically increasing serial number to csses. It guarantees 174 * cgroups with bigger numbers are newer than those with smaller numbers. 175 * Also, as csses are always appended to the parent's ->children list, it 176 * guarantees that sibling csses are always sorted in the ascending serial 177 * number order on the list. Protected by cgroup_mutex. 178 */ 179 static u64 css_serial_nr_next = 1; 180 181 /* 182 * These bitmasks identify subsystems with specific features to avoid 183 * having to do iterative checks repeatedly. 184 */ 185 static u16 have_fork_callback __read_mostly; 186 static u16 have_exit_callback __read_mostly; 187 static u16 have_free_callback __read_mostly; 188 static u16 have_canfork_callback __read_mostly; 189 190 /* cgroup namespace for init task */ 191 struct cgroup_namespace init_cgroup_ns = { 192 .count = REFCOUNT_INIT(2), 193 .user_ns = &init_user_ns, 194 .ns.ops = &cgroupns_operations, 195 .ns.inum = PROC_CGROUP_INIT_INO, 196 .root_cset = &init_css_set, 197 }; 198 199 static struct file_system_type cgroup2_fs_type; 200 static struct cftype cgroup_base_files[]; 201 202 static int cgroup_apply_control(struct cgroup *cgrp); 203 static void cgroup_finalize_control(struct cgroup *cgrp, int ret); 204 static void css_task_iter_advance(struct css_task_iter *it); 205 static int cgroup_destroy_locked(struct cgroup *cgrp); 206 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp, 207 struct cgroup_subsys *ss); 208 static void css_release(struct percpu_ref *ref); 209 static void kill_css(struct cgroup_subsys_state *css); 210 static int cgroup_addrm_files(struct cgroup_subsys_state *css, 211 struct cgroup *cgrp, struct cftype cfts[], 212 bool is_add); 213 214 /** 215 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID 216 * @ssid: subsys ID of interest 217 * 218 * cgroup_subsys_enabled() can only be used with literal subsys names which 219 * is fine for individual subsystems but unsuitable for cgroup core. This 220 * is slower static_key_enabled() based test indexed by @ssid. 221 */ 222 bool cgroup_ssid_enabled(int ssid) 223 { 224 if (CGROUP_SUBSYS_COUNT == 0) 225 return false; 226 227 return static_key_enabled(cgroup_subsys_enabled_key[ssid]); 228 } 229 230 /** 231 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy 232 * @cgrp: the cgroup of interest 233 * 234 * The default hierarchy is the v2 interface of cgroup and this function 235 * can be used to test whether a cgroup is on the default hierarchy for 236 * cases where a subsystem should behave differnetly depending on the 237 * interface version. 238 * 239 * The set of behaviors which change on the default hierarchy are still 240 * being determined and the mount option is prefixed with __DEVEL__. 241 * 242 * List of changed behaviors: 243 * 244 * - Mount options "noprefix", "xattr", "clone_children", "release_agent" 245 * and "name" are disallowed. 246 * 247 * - When mounting an existing superblock, mount options should match. 248 * 249 * - Remount is disallowed. 250 * 251 * - rename(2) is disallowed. 252 * 253 * - "tasks" is removed. Everything should be at process granularity. Use 254 * "cgroup.procs" instead. 255 * 256 * - "cgroup.procs" is not sorted. pids will be unique unless they got 257 * recycled inbetween reads. 258 * 259 * - "release_agent" and "notify_on_release" are removed. Replacement 260 * notification mechanism will be implemented. 261 * 262 * - "cgroup.clone_children" is removed. 263 * 264 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup 265 * and its descendants contain no task; otherwise, 1. The file also 266 * generates kernfs notification which can be monitored through poll and 267 * [di]notify when the value of the file changes. 268 * 269 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and 270 * take masks of ancestors with non-empty cpus/mems, instead of being 271 * moved to an ancestor. 272 * 273 * - cpuset: a task can be moved into an empty cpuset, and again it takes 274 * masks of ancestors. 275 * 276 * - memcg: use_hierarchy is on by default and the cgroup file for the flag 277 * is not created. 278 * 279 * - blkcg: blk-throttle becomes properly hierarchical. 280 * 281 * - debug: disallowed on the default hierarchy. 282 */ 283 bool cgroup_on_dfl(const struct cgroup *cgrp) 284 { 285 return cgrp->root == &cgrp_dfl_root; 286 } 287 288 /* IDR wrappers which synchronize using cgroup_idr_lock */ 289 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end, 290 gfp_t gfp_mask) 291 { 292 int ret; 293 294 idr_preload(gfp_mask); 295 spin_lock_bh(&cgroup_idr_lock); 296 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM); 297 spin_unlock_bh(&cgroup_idr_lock); 298 idr_preload_end(); 299 return ret; 300 } 301 302 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id) 303 { 304 void *ret; 305 306 spin_lock_bh(&cgroup_idr_lock); 307 ret = idr_replace(idr, ptr, id); 308 spin_unlock_bh(&cgroup_idr_lock); 309 return ret; 310 } 311 312 static void cgroup_idr_remove(struct idr *idr, int id) 313 { 314 spin_lock_bh(&cgroup_idr_lock); 315 idr_remove(idr, id); 316 spin_unlock_bh(&cgroup_idr_lock); 317 } 318 319 static struct cgroup *cgroup_parent(struct cgroup *cgrp) 320 { 321 struct cgroup_subsys_state *parent_css = cgrp->self.parent; 322 323 if (parent_css) 324 return container_of(parent_css, struct cgroup, self); 325 return NULL; 326 } 327 328 /* subsystems visibly enabled on a cgroup */ 329 static u16 cgroup_control(struct cgroup *cgrp) 330 { 331 struct cgroup *parent = cgroup_parent(cgrp); 332 u16 root_ss_mask = cgrp->root->subsys_mask; 333 334 if (parent) 335 return parent->subtree_control; 336 337 if (cgroup_on_dfl(cgrp)) 338 root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask | 339 cgrp_dfl_implicit_ss_mask); 340 return root_ss_mask; 341 } 342 343 /* subsystems enabled on a cgroup */ 344 static u16 cgroup_ss_mask(struct cgroup *cgrp) 345 { 346 struct cgroup *parent = cgroup_parent(cgrp); 347 348 if (parent) 349 return parent->subtree_ss_mask; 350 351 return cgrp->root->subsys_mask; 352 } 353 354 /** 355 * cgroup_css - obtain a cgroup's css for the specified subsystem 356 * @cgrp: the cgroup of interest 357 * @ss: the subsystem of interest (%NULL returns @cgrp->self) 358 * 359 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This 360 * function must be called either under cgroup_mutex or rcu_read_lock() and 361 * the caller is responsible for pinning the returned css if it wants to 362 * keep accessing it outside the said locks. This function may return 363 * %NULL if @cgrp doesn't have @subsys_id enabled. 364 */ 365 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp, 366 struct cgroup_subsys *ss) 367 { 368 if (ss) 369 return rcu_dereference_check(cgrp->subsys[ss->id], 370 lockdep_is_held(&cgroup_mutex)); 371 else 372 return &cgrp->self; 373 } 374 375 /** 376 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem 377 * @cgrp: the cgroup of interest 378 * @ss: the subsystem of interest (%NULL returns @cgrp->self) 379 * 380 * Similar to cgroup_css() but returns the effective css, which is defined 381 * as the matching css of the nearest ancestor including self which has @ss 382 * enabled. If @ss is associated with the hierarchy @cgrp is on, this 383 * function is guaranteed to return non-NULL css. 384 */ 385 static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp, 386 struct cgroup_subsys *ss) 387 { 388 lockdep_assert_held(&cgroup_mutex); 389 390 if (!ss) 391 return &cgrp->self; 392 393 /* 394 * This function is used while updating css associations and thus 395 * can't test the csses directly. Test ss_mask. 396 */ 397 while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) { 398 cgrp = cgroup_parent(cgrp); 399 if (!cgrp) 400 return NULL; 401 } 402 403 return cgroup_css(cgrp, ss); 404 } 405 406 /** 407 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem 408 * @cgrp: the cgroup of interest 409 * @ss: the subsystem of interest 410 * 411 * Find and get the effective css of @cgrp for @ss. The effective css is 412 * defined as the matching css of the nearest ancestor including self which 413 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on, 414 * the root css is returned, so this function always returns a valid css. 415 * The returned css must be put using css_put(). 416 */ 417 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp, 418 struct cgroup_subsys *ss) 419 { 420 struct cgroup_subsys_state *css; 421 422 rcu_read_lock(); 423 424 do { 425 css = cgroup_css(cgrp, ss); 426 427 if (css && css_tryget_online(css)) 428 goto out_unlock; 429 cgrp = cgroup_parent(cgrp); 430 } while (cgrp); 431 432 css = init_css_set.subsys[ss->id]; 433 css_get(css); 434 out_unlock: 435 rcu_read_unlock(); 436 return css; 437 } 438 439 static void __maybe_unused cgroup_get(struct cgroup *cgrp) 440 { 441 css_get(&cgrp->self); 442 } 443 444 static void cgroup_get_live(struct cgroup *cgrp) 445 { 446 WARN_ON_ONCE(cgroup_is_dead(cgrp)); 447 css_get(&cgrp->self); 448 } 449 450 static bool cgroup_tryget(struct cgroup *cgrp) 451 { 452 return css_tryget(&cgrp->self); 453 } 454 455 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of) 456 { 457 struct cgroup *cgrp = of->kn->parent->priv; 458 struct cftype *cft = of_cft(of); 459 460 /* 461 * This is open and unprotected implementation of cgroup_css(). 462 * seq_css() is only called from a kernfs file operation which has 463 * an active reference on the file. Because all the subsystem 464 * files are drained before a css is disassociated with a cgroup, 465 * the matching css from the cgroup's subsys table is guaranteed to 466 * be and stay valid until the enclosing operation is complete. 467 */ 468 if (cft->ss) 469 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]); 470 else 471 return &cgrp->self; 472 } 473 EXPORT_SYMBOL_GPL(of_css); 474 475 /** 476 * for_each_css - iterate all css's of a cgroup 477 * @css: the iteration cursor 478 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end 479 * @cgrp: the target cgroup to iterate css's of 480 * 481 * Should be called under cgroup_[tree_]mutex. 482 */ 483 #define for_each_css(css, ssid, cgrp) \ 484 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \ 485 if (!((css) = rcu_dereference_check( \ 486 (cgrp)->subsys[(ssid)], \ 487 lockdep_is_held(&cgroup_mutex)))) { } \ 488 else 489 490 /** 491 * for_each_e_css - iterate all effective css's of a cgroup 492 * @css: the iteration cursor 493 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end 494 * @cgrp: the target cgroup to iterate css's of 495 * 496 * Should be called under cgroup_[tree_]mutex. 497 */ 498 #define for_each_e_css(css, ssid, cgrp) \ 499 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \ 500 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \ 501 ; \ 502 else 503 504 /** 505 * do_each_subsys_mask - filter for_each_subsys with a bitmask 506 * @ss: the iteration cursor 507 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end 508 * @ss_mask: the bitmask 509 * 510 * The block will only run for cases where the ssid-th bit (1 << ssid) of 511 * @ss_mask is set. 512 */ 513 #define do_each_subsys_mask(ss, ssid, ss_mask) do { \ 514 unsigned long __ss_mask = (ss_mask); \ 515 if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */ \ 516 (ssid) = 0; \ 517 break; \ 518 } \ 519 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \ 520 (ss) = cgroup_subsys[ssid]; \ 521 { 522 523 #define while_each_subsys_mask() \ 524 } \ 525 } \ 526 } while (false) 527 528 /* iterate over child cgrps, lock should be held throughout iteration */ 529 #define cgroup_for_each_live_child(child, cgrp) \ 530 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \ 531 if (({ lockdep_assert_held(&cgroup_mutex); \ 532 cgroup_is_dead(child); })) \ 533 ; \ 534 else 535 536 /* walk live descendants in preorder */ 537 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \ 538 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \ 539 if (({ lockdep_assert_held(&cgroup_mutex); \ 540 (dsct) = (d_css)->cgroup; \ 541 cgroup_is_dead(dsct); })) \ 542 ; \ 543 else 544 545 /* walk live descendants in postorder */ 546 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \ 547 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \ 548 if (({ lockdep_assert_held(&cgroup_mutex); \ 549 (dsct) = (d_css)->cgroup; \ 550 cgroup_is_dead(dsct); })) \ 551 ; \ 552 else 553 554 /* 555 * The default css_set - used by init and its children prior to any 556 * hierarchies being mounted. It contains a pointer to the root state 557 * for each subsystem. Also used to anchor the list of css_sets. Not 558 * reference-counted, to improve performance when child cgroups 559 * haven't been created. 560 */ 561 struct css_set init_css_set = { 562 .refcount = REFCOUNT_INIT(1), 563 .tasks = LIST_HEAD_INIT(init_css_set.tasks), 564 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks), 565 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters), 566 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links), 567 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node), 568 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node), 569 }; 570 571 static int css_set_count = 1; /* 1 for init_css_set */ 572 573 /** 574 * css_set_populated - does a css_set contain any tasks? 575 * @cset: target css_set 576 * 577 * css_set_populated() should be the same as !!cset->nr_tasks at steady 578 * state. However, css_set_populated() can be called while a task is being 579 * added to or removed from the linked list before the nr_tasks is 580 * properly updated. Hence, we can't just look at ->nr_tasks here. 581 */ 582 static bool css_set_populated(struct css_set *cset) 583 { 584 lockdep_assert_held(&css_set_lock); 585 586 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks); 587 } 588 589 /** 590 * cgroup_update_populated - updated populated count of a cgroup 591 * @cgrp: the target cgroup 592 * @populated: inc or dec populated count 593 * 594 * One of the css_sets associated with @cgrp is either getting its first 595 * task or losing the last. Update @cgrp->populated_cnt accordingly. The 596 * count is propagated towards root so that a given cgroup's populated_cnt 597 * is zero iff the cgroup and all its descendants don't contain any tasks. 598 * 599 * @cgrp's interface file "cgroup.populated" is zero if 600 * @cgrp->populated_cnt is zero and 1 otherwise. When @cgrp->populated_cnt 601 * changes from or to zero, userland is notified that the content of the 602 * interface file has changed. This can be used to detect when @cgrp and 603 * its descendants become populated or empty. 604 */ 605 static void cgroup_update_populated(struct cgroup *cgrp, bool populated) 606 { 607 lockdep_assert_held(&css_set_lock); 608 609 do { 610 bool trigger; 611 612 if (populated) 613 trigger = !cgrp->populated_cnt++; 614 else 615 trigger = !--cgrp->populated_cnt; 616 617 if (!trigger) 618 break; 619 620 cgroup1_check_for_release(cgrp); 621 cgroup_file_notify(&cgrp->events_file); 622 623 cgrp = cgroup_parent(cgrp); 624 } while (cgrp); 625 } 626 627 /** 628 * css_set_update_populated - update populated state of a css_set 629 * @cset: target css_set 630 * @populated: whether @cset is populated or depopulated 631 * 632 * @cset is either getting the first task or losing the last. Update the 633 * ->populated_cnt of all associated cgroups accordingly. 634 */ 635 static void css_set_update_populated(struct css_set *cset, bool populated) 636 { 637 struct cgrp_cset_link *link; 638 639 lockdep_assert_held(&css_set_lock); 640 641 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) 642 cgroup_update_populated(link->cgrp, populated); 643 } 644 645 /** 646 * css_set_move_task - move a task from one css_set to another 647 * @task: task being moved 648 * @from_cset: css_set @task currently belongs to (may be NULL) 649 * @to_cset: new css_set @task is being moved to (may be NULL) 650 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks 651 * 652 * Move @task from @from_cset to @to_cset. If @task didn't belong to any 653 * css_set, @from_cset can be NULL. If @task is being disassociated 654 * instead of moved, @to_cset can be NULL. 655 * 656 * This function automatically handles populated_cnt updates and 657 * css_task_iter adjustments but the caller is responsible for managing 658 * @from_cset and @to_cset's reference counts. 659 */ 660 static void css_set_move_task(struct task_struct *task, 661 struct css_set *from_cset, struct css_set *to_cset, 662 bool use_mg_tasks) 663 { 664 lockdep_assert_held(&css_set_lock); 665 666 if (to_cset && !css_set_populated(to_cset)) 667 css_set_update_populated(to_cset, true); 668 669 if (from_cset) { 670 struct css_task_iter *it, *pos; 671 672 WARN_ON_ONCE(list_empty(&task->cg_list)); 673 674 /* 675 * @task is leaving, advance task iterators which are 676 * pointing to it so that they can resume at the next 677 * position. Advancing an iterator might remove it from 678 * the list, use safe walk. See css_task_iter_advance*() 679 * for details. 680 */ 681 list_for_each_entry_safe(it, pos, &from_cset->task_iters, 682 iters_node) 683 if (it->task_pos == &task->cg_list) 684 css_task_iter_advance(it); 685 686 list_del_init(&task->cg_list); 687 if (!css_set_populated(from_cset)) 688 css_set_update_populated(from_cset, false); 689 } else { 690 WARN_ON_ONCE(!list_empty(&task->cg_list)); 691 } 692 693 if (to_cset) { 694 /* 695 * We are synchronized through cgroup_threadgroup_rwsem 696 * against PF_EXITING setting such that we can't race 697 * against cgroup_exit() changing the css_set to 698 * init_css_set and dropping the old one. 699 */ 700 WARN_ON_ONCE(task->flags & PF_EXITING); 701 702 rcu_assign_pointer(task->cgroups, to_cset); 703 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks : 704 &to_cset->tasks); 705 } 706 } 707 708 /* 709 * hash table for cgroup groups. This improves the performance to find 710 * an existing css_set. This hash doesn't (currently) take into 711 * account cgroups in empty hierarchies. 712 */ 713 #define CSS_SET_HASH_BITS 7 714 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS); 715 716 static unsigned long css_set_hash(struct cgroup_subsys_state *css[]) 717 { 718 unsigned long key = 0UL; 719 struct cgroup_subsys *ss; 720 int i; 721 722 for_each_subsys(ss, i) 723 key += (unsigned long)css[i]; 724 key = (key >> 16) ^ key; 725 726 return key; 727 } 728 729 void put_css_set_locked(struct css_set *cset) 730 { 731 struct cgrp_cset_link *link, *tmp_link; 732 struct cgroup_subsys *ss; 733 int ssid; 734 735 lockdep_assert_held(&css_set_lock); 736 737 if (!refcount_dec_and_test(&cset->refcount)) 738 return; 739 740 /* This css_set is dead. unlink it and release cgroup and css refs */ 741 for_each_subsys(ss, ssid) { 742 list_del(&cset->e_cset_node[ssid]); 743 css_put(cset->subsys[ssid]); 744 } 745 hash_del(&cset->hlist); 746 css_set_count--; 747 748 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) { 749 list_del(&link->cset_link); 750 list_del(&link->cgrp_link); 751 if (cgroup_parent(link->cgrp)) 752 cgroup_put(link->cgrp); 753 kfree(link); 754 } 755 756 kfree_rcu(cset, rcu_head); 757 } 758 759 /** 760 * compare_css_sets - helper function for find_existing_css_set(). 761 * @cset: candidate css_set being tested 762 * @old_cset: existing css_set for a task 763 * @new_cgrp: cgroup that's being entered by the task 764 * @template: desired set of css pointers in css_set (pre-calculated) 765 * 766 * Returns true if "cset" matches "old_cset" except for the hierarchy 767 * which "new_cgrp" belongs to, for which it should match "new_cgrp". 768 */ 769 static bool compare_css_sets(struct css_set *cset, 770 struct css_set *old_cset, 771 struct cgroup *new_cgrp, 772 struct cgroup_subsys_state *template[]) 773 { 774 struct list_head *l1, *l2; 775 776 /* 777 * On the default hierarchy, there can be csets which are 778 * associated with the same set of cgroups but different csses. 779 * Let's first ensure that csses match. 780 */ 781 if (memcmp(template, cset->subsys, sizeof(cset->subsys))) 782 return false; 783 784 /* 785 * Compare cgroup pointers in order to distinguish between 786 * different cgroups in hierarchies. As different cgroups may 787 * share the same effective css, this comparison is always 788 * necessary. 789 */ 790 l1 = &cset->cgrp_links; 791 l2 = &old_cset->cgrp_links; 792 while (1) { 793 struct cgrp_cset_link *link1, *link2; 794 struct cgroup *cgrp1, *cgrp2; 795 796 l1 = l1->next; 797 l2 = l2->next; 798 /* See if we reached the end - both lists are equal length. */ 799 if (l1 == &cset->cgrp_links) { 800 BUG_ON(l2 != &old_cset->cgrp_links); 801 break; 802 } else { 803 BUG_ON(l2 == &old_cset->cgrp_links); 804 } 805 /* Locate the cgroups associated with these links. */ 806 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link); 807 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link); 808 cgrp1 = link1->cgrp; 809 cgrp2 = link2->cgrp; 810 /* Hierarchies should be linked in the same order. */ 811 BUG_ON(cgrp1->root != cgrp2->root); 812 813 /* 814 * If this hierarchy is the hierarchy of the cgroup 815 * that's changing, then we need to check that this 816 * css_set points to the new cgroup; if it's any other 817 * hierarchy, then this css_set should point to the 818 * same cgroup as the old css_set. 819 */ 820 if (cgrp1->root == new_cgrp->root) { 821 if (cgrp1 != new_cgrp) 822 return false; 823 } else { 824 if (cgrp1 != cgrp2) 825 return false; 826 } 827 } 828 return true; 829 } 830 831 /** 832 * find_existing_css_set - init css array and find the matching css_set 833 * @old_cset: the css_set that we're using before the cgroup transition 834 * @cgrp: the cgroup that we're moving into 835 * @template: out param for the new set of csses, should be clear on entry 836 */ 837 static struct css_set *find_existing_css_set(struct css_set *old_cset, 838 struct cgroup *cgrp, 839 struct cgroup_subsys_state *template[]) 840 { 841 struct cgroup_root *root = cgrp->root; 842 struct cgroup_subsys *ss; 843 struct css_set *cset; 844 unsigned long key; 845 int i; 846 847 /* 848 * Build the set of subsystem state objects that we want to see in the 849 * new css_set. while subsystems can change globally, the entries here 850 * won't change, so no need for locking. 851 */ 852 for_each_subsys(ss, i) { 853 if (root->subsys_mask & (1UL << i)) { 854 /* 855 * @ss is in this hierarchy, so we want the 856 * effective css from @cgrp. 857 */ 858 template[i] = cgroup_e_css(cgrp, ss); 859 } else { 860 /* 861 * @ss is not in this hierarchy, so we don't want 862 * to change the css. 863 */ 864 template[i] = old_cset->subsys[i]; 865 } 866 } 867 868 key = css_set_hash(template); 869 hash_for_each_possible(css_set_table, cset, hlist, key) { 870 if (!compare_css_sets(cset, old_cset, cgrp, template)) 871 continue; 872 873 /* This css_set matches what we need */ 874 return cset; 875 } 876 877 /* No existing cgroup group matched */ 878 return NULL; 879 } 880 881 static void free_cgrp_cset_links(struct list_head *links_to_free) 882 { 883 struct cgrp_cset_link *link, *tmp_link; 884 885 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) { 886 list_del(&link->cset_link); 887 kfree(link); 888 } 889 } 890 891 /** 892 * allocate_cgrp_cset_links - allocate cgrp_cset_links 893 * @count: the number of links to allocate 894 * @tmp_links: list_head the allocated links are put on 895 * 896 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links 897 * through ->cset_link. Returns 0 on success or -errno. 898 */ 899 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links) 900 { 901 struct cgrp_cset_link *link; 902 int i; 903 904 INIT_LIST_HEAD(tmp_links); 905 906 for (i = 0; i < count; i++) { 907 link = kzalloc(sizeof(*link), GFP_KERNEL); 908 if (!link) { 909 free_cgrp_cset_links(tmp_links); 910 return -ENOMEM; 911 } 912 list_add(&link->cset_link, tmp_links); 913 } 914 return 0; 915 } 916 917 /** 918 * link_css_set - a helper function to link a css_set to a cgroup 919 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links() 920 * @cset: the css_set to be linked 921 * @cgrp: the destination cgroup 922 */ 923 static void link_css_set(struct list_head *tmp_links, struct css_set *cset, 924 struct cgroup *cgrp) 925 { 926 struct cgrp_cset_link *link; 927 928 BUG_ON(list_empty(tmp_links)); 929 930 if (cgroup_on_dfl(cgrp)) 931 cset->dfl_cgrp = cgrp; 932 933 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link); 934 link->cset = cset; 935 link->cgrp = cgrp; 936 937 /* 938 * Always add links to the tail of the lists so that the lists are 939 * in choronological order. 940 */ 941 list_move_tail(&link->cset_link, &cgrp->cset_links); 942 list_add_tail(&link->cgrp_link, &cset->cgrp_links); 943 944 if (cgroup_parent(cgrp)) 945 cgroup_get_live(cgrp); 946 } 947 948 /** 949 * find_css_set - return a new css_set with one cgroup updated 950 * @old_cset: the baseline css_set 951 * @cgrp: the cgroup to be updated 952 * 953 * Return a new css_set that's equivalent to @old_cset, but with @cgrp 954 * substituted into the appropriate hierarchy. 955 */ 956 static struct css_set *find_css_set(struct css_set *old_cset, 957 struct cgroup *cgrp) 958 { 959 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { }; 960 struct css_set *cset; 961 struct list_head tmp_links; 962 struct cgrp_cset_link *link; 963 struct cgroup_subsys *ss; 964 unsigned long key; 965 int ssid; 966 967 lockdep_assert_held(&cgroup_mutex); 968 969 /* First see if we already have a cgroup group that matches 970 * the desired set */ 971 spin_lock_irq(&css_set_lock); 972 cset = find_existing_css_set(old_cset, cgrp, template); 973 if (cset) 974 get_css_set(cset); 975 spin_unlock_irq(&css_set_lock); 976 977 if (cset) 978 return cset; 979 980 cset = kzalloc(sizeof(*cset), GFP_KERNEL); 981 if (!cset) 982 return NULL; 983 984 /* Allocate all the cgrp_cset_link objects that we'll need */ 985 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) { 986 kfree(cset); 987 return NULL; 988 } 989 990 refcount_set(&cset->refcount, 1); 991 INIT_LIST_HEAD(&cset->tasks); 992 INIT_LIST_HEAD(&cset->mg_tasks); 993 INIT_LIST_HEAD(&cset->task_iters); 994 INIT_HLIST_NODE(&cset->hlist); 995 INIT_LIST_HEAD(&cset->cgrp_links); 996 INIT_LIST_HEAD(&cset->mg_preload_node); 997 INIT_LIST_HEAD(&cset->mg_node); 998 999 /* Copy the set of subsystem state objects generated in 1000 * find_existing_css_set() */ 1001 memcpy(cset->subsys, template, sizeof(cset->subsys)); 1002 1003 spin_lock_irq(&css_set_lock); 1004 /* Add reference counts and links from the new css_set. */ 1005 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) { 1006 struct cgroup *c = link->cgrp; 1007 1008 if (c->root == cgrp->root) 1009 c = cgrp; 1010 link_css_set(&tmp_links, cset, c); 1011 } 1012 1013 BUG_ON(!list_empty(&tmp_links)); 1014 1015 css_set_count++; 1016 1017 /* Add @cset to the hash table */ 1018 key = css_set_hash(cset->subsys); 1019 hash_add(css_set_table, &cset->hlist, key); 1020 1021 for_each_subsys(ss, ssid) { 1022 struct cgroup_subsys_state *css = cset->subsys[ssid]; 1023 1024 list_add_tail(&cset->e_cset_node[ssid], 1025 &css->cgroup->e_csets[ssid]); 1026 css_get(css); 1027 } 1028 1029 spin_unlock_irq(&css_set_lock); 1030 1031 return cset; 1032 } 1033 1034 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root) 1035 { 1036 struct cgroup *root_cgrp = kf_root->kn->priv; 1037 1038 return root_cgrp->root; 1039 } 1040 1041 static int cgroup_init_root_id(struct cgroup_root *root) 1042 { 1043 int id; 1044 1045 lockdep_assert_held(&cgroup_mutex); 1046 1047 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL); 1048 if (id < 0) 1049 return id; 1050 1051 root->hierarchy_id = id; 1052 return 0; 1053 } 1054 1055 static void cgroup_exit_root_id(struct cgroup_root *root) 1056 { 1057 lockdep_assert_held(&cgroup_mutex); 1058 1059 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id); 1060 } 1061 1062 void cgroup_free_root(struct cgroup_root *root) 1063 { 1064 if (root) { 1065 idr_destroy(&root->cgroup_idr); 1066 kfree(root); 1067 } 1068 } 1069 1070 static void cgroup_destroy_root(struct cgroup_root *root) 1071 { 1072 struct cgroup *cgrp = &root->cgrp; 1073 struct cgrp_cset_link *link, *tmp_link; 1074 1075 trace_cgroup_destroy_root(root); 1076 1077 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp); 1078 1079 BUG_ON(atomic_read(&root->nr_cgrps)); 1080 BUG_ON(!list_empty(&cgrp->self.children)); 1081 1082 /* Rebind all subsystems back to the default hierarchy */ 1083 WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask)); 1084 1085 /* 1086 * Release all the links from cset_links to this hierarchy's 1087 * root cgroup 1088 */ 1089 spin_lock_irq(&css_set_lock); 1090 1091 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) { 1092 list_del(&link->cset_link); 1093 list_del(&link->cgrp_link); 1094 kfree(link); 1095 } 1096 1097 spin_unlock_irq(&css_set_lock); 1098 1099 if (!list_empty(&root->root_list)) { 1100 list_del(&root->root_list); 1101 cgroup_root_count--; 1102 } 1103 1104 cgroup_exit_root_id(root); 1105 1106 mutex_unlock(&cgroup_mutex); 1107 1108 kernfs_destroy_root(root->kf_root); 1109 cgroup_free_root(root); 1110 } 1111 1112 /* 1113 * look up cgroup associated with current task's cgroup namespace on the 1114 * specified hierarchy 1115 */ 1116 static struct cgroup * 1117 current_cgns_cgroup_from_root(struct cgroup_root *root) 1118 { 1119 struct cgroup *res = NULL; 1120 struct css_set *cset; 1121 1122 lockdep_assert_held(&css_set_lock); 1123 1124 rcu_read_lock(); 1125 1126 cset = current->nsproxy->cgroup_ns->root_cset; 1127 if (cset == &init_css_set) { 1128 res = &root->cgrp; 1129 } else { 1130 struct cgrp_cset_link *link; 1131 1132 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) { 1133 struct cgroup *c = link->cgrp; 1134 1135 if (c->root == root) { 1136 res = c; 1137 break; 1138 } 1139 } 1140 } 1141 rcu_read_unlock(); 1142 1143 BUG_ON(!res); 1144 return res; 1145 } 1146 1147 /* look up cgroup associated with given css_set on the specified hierarchy */ 1148 static struct cgroup *cset_cgroup_from_root(struct css_set *cset, 1149 struct cgroup_root *root) 1150 { 1151 struct cgroup *res = NULL; 1152 1153 lockdep_assert_held(&cgroup_mutex); 1154 lockdep_assert_held(&css_set_lock); 1155 1156 if (cset == &init_css_set) { 1157 res = &root->cgrp; 1158 } else { 1159 struct cgrp_cset_link *link; 1160 1161 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) { 1162 struct cgroup *c = link->cgrp; 1163 1164 if (c->root == root) { 1165 res = c; 1166 break; 1167 } 1168 } 1169 } 1170 1171 BUG_ON(!res); 1172 return res; 1173 } 1174 1175 /* 1176 * Return the cgroup for "task" from the given hierarchy. Must be 1177 * called with cgroup_mutex and css_set_lock held. 1178 */ 1179 struct cgroup *task_cgroup_from_root(struct task_struct *task, 1180 struct cgroup_root *root) 1181 { 1182 /* 1183 * No need to lock the task - since we hold cgroup_mutex the 1184 * task can't change groups, so the only thing that can happen 1185 * is that it exits and its css is set back to init_css_set. 1186 */ 1187 return cset_cgroup_from_root(task_css_set(task), root); 1188 } 1189 1190 /* 1191 * A task must hold cgroup_mutex to modify cgroups. 1192 * 1193 * Any task can increment and decrement the count field without lock. 1194 * So in general, code holding cgroup_mutex can't rely on the count 1195 * field not changing. However, if the count goes to zero, then only 1196 * cgroup_attach_task() can increment it again. Because a count of zero 1197 * means that no tasks are currently attached, therefore there is no 1198 * way a task attached to that cgroup can fork (the other way to 1199 * increment the count). So code holding cgroup_mutex can safely 1200 * assume that if the count is zero, it will stay zero. Similarly, if 1201 * a task holds cgroup_mutex on a cgroup with zero count, it 1202 * knows that the cgroup won't be removed, as cgroup_rmdir() 1203 * needs that mutex. 1204 * 1205 * A cgroup can only be deleted if both its 'count' of using tasks 1206 * is zero, and its list of 'children' cgroups is empty. Since all 1207 * tasks in the system use _some_ cgroup, and since there is always at 1208 * least one task in the system (init, pid == 1), therefore, root cgroup 1209 * always has either children cgroups and/or using tasks. So we don't 1210 * need a special hack to ensure that root cgroup cannot be deleted. 1211 * 1212 * P.S. One more locking exception. RCU is used to guard the 1213 * update of a tasks cgroup pointer by cgroup_attach_task() 1214 */ 1215 1216 static struct kernfs_syscall_ops cgroup_kf_syscall_ops; 1217 1218 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft, 1219 char *buf) 1220 { 1221 struct cgroup_subsys *ss = cft->ss; 1222 1223 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) && 1224 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) 1225 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s", 1226 cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name, 1227 cft->name); 1228 else 1229 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX); 1230 return buf; 1231 } 1232 1233 /** 1234 * cgroup_file_mode - deduce file mode of a control file 1235 * @cft: the control file in question 1236 * 1237 * S_IRUGO for read, S_IWUSR for write. 1238 */ 1239 static umode_t cgroup_file_mode(const struct cftype *cft) 1240 { 1241 umode_t mode = 0; 1242 1243 if (cft->read_u64 || cft->read_s64 || cft->seq_show) 1244 mode |= S_IRUGO; 1245 1246 if (cft->write_u64 || cft->write_s64 || cft->write) { 1247 if (cft->flags & CFTYPE_WORLD_WRITABLE) 1248 mode |= S_IWUGO; 1249 else 1250 mode |= S_IWUSR; 1251 } 1252 1253 return mode; 1254 } 1255 1256 /** 1257 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask 1258 * @subtree_control: the new subtree_control mask to consider 1259 * @this_ss_mask: available subsystems 1260 * 1261 * On the default hierarchy, a subsystem may request other subsystems to be 1262 * enabled together through its ->depends_on mask. In such cases, more 1263 * subsystems than specified in "cgroup.subtree_control" may be enabled. 1264 * 1265 * This function calculates which subsystems need to be enabled if 1266 * @subtree_control is to be applied while restricted to @this_ss_mask. 1267 */ 1268 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask) 1269 { 1270 u16 cur_ss_mask = subtree_control; 1271 struct cgroup_subsys *ss; 1272 int ssid; 1273 1274 lockdep_assert_held(&cgroup_mutex); 1275 1276 cur_ss_mask |= cgrp_dfl_implicit_ss_mask; 1277 1278 while (true) { 1279 u16 new_ss_mask = cur_ss_mask; 1280 1281 do_each_subsys_mask(ss, ssid, cur_ss_mask) { 1282 new_ss_mask |= ss->depends_on; 1283 } while_each_subsys_mask(); 1284 1285 /* 1286 * Mask out subsystems which aren't available. This can 1287 * happen only if some depended-upon subsystems were bound 1288 * to non-default hierarchies. 1289 */ 1290 new_ss_mask &= this_ss_mask; 1291 1292 if (new_ss_mask == cur_ss_mask) 1293 break; 1294 cur_ss_mask = new_ss_mask; 1295 } 1296 1297 return cur_ss_mask; 1298 } 1299 1300 /** 1301 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods 1302 * @kn: the kernfs_node being serviced 1303 * 1304 * This helper undoes cgroup_kn_lock_live() and should be invoked before 1305 * the method finishes if locking succeeded. Note that once this function 1306 * returns the cgroup returned by cgroup_kn_lock_live() may become 1307 * inaccessible any time. If the caller intends to continue to access the 1308 * cgroup, it should pin it before invoking this function. 1309 */ 1310 void cgroup_kn_unlock(struct kernfs_node *kn) 1311 { 1312 struct cgroup *cgrp; 1313 1314 if (kernfs_type(kn) == KERNFS_DIR) 1315 cgrp = kn->priv; 1316 else 1317 cgrp = kn->parent->priv; 1318 1319 mutex_unlock(&cgroup_mutex); 1320 1321 kernfs_unbreak_active_protection(kn); 1322 cgroup_put(cgrp); 1323 } 1324 1325 /** 1326 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods 1327 * @kn: the kernfs_node being serviced 1328 * @drain_offline: perform offline draining on the cgroup 1329 * 1330 * This helper is to be used by a cgroup kernfs method currently servicing 1331 * @kn. It breaks the active protection, performs cgroup locking and 1332 * verifies that the associated cgroup is alive. Returns the cgroup if 1333 * alive; otherwise, %NULL. A successful return should be undone by a 1334 * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the 1335 * cgroup is drained of offlining csses before return. 1336 * 1337 * Any cgroup kernfs method implementation which requires locking the 1338 * associated cgroup should use this helper. It avoids nesting cgroup 1339 * locking under kernfs active protection and allows all kernfs operations 1340 * including self-removal. 1341 */ 1342 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline) 1343 { 1344 struct cgroup *cgrp; 1345 1346 if (kernfs_type(kn) == KERNFS_DIR) 1347 cgrp = kn->priv; 1348 else 1349 cgrp = kn->parent->priv; 1350 1351 /* 1352 * We're gonna grab cgroup_mutex which nests outside kernfs 1353 * active_ref. cgroup liveliness check alone provides enough 1354 * protection against removal. Ensure @cgrp stays accessible and 1355 * break the active_ref protection. 1356 */ 1357 if (!cgroup_tryget(cgrp)) 1358 return NULL; 1359 kernfs_break_active_protection(kn); 1360 1361 if (drain_offline) 1362 cgroup_lock_and_drain_offline(cgrp); 1363 else 1364 mutex_lock(&cgroup_mutex); 1365 1366 if (!cgroup_is_dead(cgrp)) 1367 return cgrp; 1368 1369 cgroup_kn_unlock(kn); 1370 return NULL; 1371 } 1372 1373 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft) 1374 { 1375 char name[CGROUP_FILE_NAME_MAX]; 1376 1377 lockdep_assert_held(&cgroup_mutex); 1378 1379 if (cft->file_offset) { 1380 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss); 1381 struct cgroup_file *cfile = (void *)css + cft->file_offset; 1382 1383 spin_lock_irq(&cgroup_file_kn_lock); 1384 cfile->kn = NULL; 1385 spin_unlock_irq(&cgroup_file_kn_lock); 1386 } 1387 1388 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name)); 1389 } 1390 1391 /** 1392 * css_clear_dir - remove subsys files in a cgroup directory 1393 * @css: taget css 1394 */ 1395 static void css_clear_dir(struct cgroup_subsys_state *css) 1396 { 1397 struct cgroup *cgrp = css->cgroup; 1398 struct cftype *cfts; 1399 1400 if (!(css->flags & CSS_VISIBLE)) 1401 return; 1402 1403 css->flags &= ~CSS_VISIBLE; 1404 1405 list_for_each_entry(cfts, &css->ss->cfts, node) 1406 cgroup_addrm_files(css, cgrp, cfts, false); 1407 } 1408 1409 /** 1410 * css_populate_dir - create subsys files in a cgroup directory 1411 * @css: target css 1412 * 1413 * On failure, no file is added. 1414 */ 1415 static int css_populate_dir(struct cgroup_subsys_state *css) 1416 { 1417 struct cgroup *cgrp = css->cgroup; 1418 struct cftype *cfts, *failed_cfts; 1419 int ret; 1420 1421 if ((css->flags & CSS_VISIBLE) || !cgrp->kn) 1422 return 0; 1423 1424 if (!css->ss) { 1425 if (cgroup_on_dfl(cgrp)) 1426 cfts = cgroup_base_files; 1427 else 1428 cfts = cgroup1_base_files; 1429 1430 return cgroup_addrm_files(&cgrp->self, cgrp, cfts, true); 1431 } 1432 1433 list_for_each_entry(cfts, &css->ss->cfts, node) { 1434 ret = cgroup_addrm_files(css, cgrp, cfts, true); 1435 if (ret < 0) { 1436 failed_cfts = cfts; 1437 goto err; 1438 } 1439 } 1440 1441 css->flags |= CSS_VISIBLE; 1442 1443 return 0; 1444 err: 1445 list_for_each_entry(cfts, &css->ss->cfts, node) { 1446 if (cfts == failed_cfts) 1447 break; 1448 cgroup_addrm_files(css, cgrp, cfts, false); 1449 } 1450 return ret; 1451 } 1452 1453 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask) 1454 { 1455 struct cgroup *dcgrp = &dst_root->cgrp; 1456 struct cgroup_subsys *ss; 1457 int ssid, i, ret; 1458 1459 lockdep_assert_held(&cgroup_mutex); 1460 1461 do_each_subsys_mask(ss, ssid, ss_mask) { 1462 /* 1463 * If @ss has non-root csses attached to it, can't move. 1464 * If @ss is an implicit controller, it is exempt from this 1465 * rule and can be stolen. 1466 */ 1467 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) && 1468 !ss->implicit_on_dfl) 1469 return -EBUSY; 1470 1471 /* can't move between two non-dummy roots either */ 1472 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root) 1473 return -EBUSY; 1474 } while_each_subsys_mask(); 1475 1476 do_each_subsys_mask(ss, ssid, ss_mask) { 1477 struct cgroup_root *src_root = ss->root; 1478 struct cgroup *scgrp = &src_root->cgrp; 1479 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss); 1480 struct css_set *cset; 1481 1482 WARN_ON(!css || cgroup_css(dcgrp, ss)); 1483 1484 /* disable from the source */ 1485 src_root->subsys_mask &= ~(1 << ssid); 1486 WARN_ON(cgroup_apply_control(scgrp)); 1487 cgroup_finalize_control(scgrp, 0); 1488 1489 /* rebind */ 1490 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL); 1491 rcu_assign_pointer(dcgrp->subsys[ssid], css); 1492 ss->root = dst_root; 1493 css->cgroup = dcgrp; 1494 1495 spin_lock_irq(&css_set_lock); 1496 hash_for_each(css_set_table, i, cset, hlist) 1497 list_move_tail(&cset->e_cset_node[ss->id], 1498 &dcgrp->e_csets[ss->id]); 1499 spin_unlock_irq(&css_set_lock); 1500 1501 /* default hierarchy doesn't enable controllers by default */ 1502 dst_root->subsys_mask |= 1 << ssid; 1503 if (dst_root == &cgrp_dfl_root) { 1504 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]); 1505 } else { 1506 dcgrp->subtree_control |= 1 << ssid; 1507 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]); 1508 } 1509 1510 ret = cgroup_apply_control(dcgrp); 1511 if (ret) 1512 pr_warn("partial failure to rebind %s controller (err=%d)\n", 1513 ss->name, ret); 1514 1515 if (ss->bind) 1516 ss->bind(css); 1517 } while_each_subsys_mask(); 1518 1519 kernfs_activate(dcgrp->kn); 1520 return 0; 1521 } 1522 1523 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node, 1524 struct kernfs_root *kf_root) 1525 { 1526 int len = 0; 1527 char *buf = NULL; 1528 struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root); 1529 struct cgroup *ns_cgroup; 1530 1531 buf = kmalloc(PATH_MAX, GFP_KERNEL); 1532 if (!buf) 1533 return -ENOMEM; 1534 1535 spin_lock_irq(&css_set_lock); 1536 ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot); 1537 len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX); 1538 spin_unlock_irq(&css_set_lock); 1539 1540 if (len >= PATH_MAX) 1541 len = -ERANGE; 1542 else if (len > 0) { 1543 seq_escape(sf, buf, " \t\n\\"); 1544 len = 0; 1545 } 1546 kfree(buf); 1547 return len; 1548 } 1549 1550 static int parse_cgroup_root_flags(char *data, unsigned int *root_flags) 1551 { 1552 char *token; 1553 1554 *root_flags = 0; 1555 1556 if (!data) 1557 return 0; 1558 1559 while ((token = strsep(&data, ",")) != NULL) { 1560 if (!strcmp(token, "nsdelegate")) { 1561 *root_flags |= CGRP_ROOT_NS_DELEGATE; 1562 continue; 1563 } 1564 1565 pr_err("cgroup2: unknown option \"%s\"\n", token); 1566 return -EINVAL; 1567 } 1568 1569 return 0; 1570 } 1571 1572 static void apply_cgroup_root_flags(unsigned int root_flags) 1573 { 1574 if (current->nsproxy->cgroup_ns == &init_cgroup_ns) { 1575 if (root_flags & CGRP_ROOT_NS_DELEGATE) 1576 cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE; 1577 else 1578 cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE; 1579 } 1580 } 1581 1582 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root) 1583 { 1584 if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) 1585 seq_puts(seq, ",nsdelegate"); 1586 return 0; 1587 } 1588 1589 static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data) 1590 { 1591 unsigned int root_flags; 1592 int ret; 1593 1594 ret = parse_cgroup_root_flags(data, &root_flags); 1595 if (ret) 1596 return ret; 1597 1598 apply_cgroup_root_flags(root_flags); 1599 return 0; 1600 } 1601 1602 /* 1603 * To reduce the fork() overhead for systems that are not actually using 1604 * their cgroups capability, we don't maintain the lists running through 1605 * each css_set to its tasks until we see the list actually used - in other 1606 * words after the first mount. 1607 */ 1608 static bool use_task_css_set_links __read_mostly; 1609 1610 static void cgroup_enable_task_cg_lists(void) 1611 { 1612 struct task_struct *p, *g; 1613 1614 spin_lock_irq(&css_set_lock); 1615 1616 if (use_task_css_set_links) 1617 goto out_unlock; 1618 1619 use_task_css_set_links = true; 1620 1621 /* 1622 * We need tasklist_lock because RCU is not safe against 1623 * while_each_thread(). Besides, a forking task that has passed 1624 * cgroup_post_fork() without seeing use_task_css_set_links = 1 1625 * is not guaranteed to have its child immediately visible in the 1626 * tasklist if we walk through it with RCU. 1627 */ 1628 read_lock(&tasklist_lock); 1629 do_each_thread(g, p) { 1630 WARN_ON_ONCE(!list_empty(&p->cg_list) || 1631 task_css_set(p) != &init_css_set); 1632 1633 /* 1634 * We should check if the process is exiting, otherwise 1635 * it will race with cgroup_exit() in that the list 1636 * entry won't be deleted though the process has exited. 1637 * Do it while holding siglock so that we don't end up 1638 * racing against cgroup_exit(). 1639 * 1640 * Interrupts were already disabled while acquiring 1641 * the css_set_lock, so we do not need to disable it 1642 * again when acquiring the sighand->siglock here. 1643 */ 1644 spin_lock(&p->sighand->siglock); 1645 if (!(p->flags & PF_EXITING)) { 1646 struct css_set *cset = task_css_set(p); 1647 1648 if (!css_set_populated(cset)) 1649 css_set_update_populated(cset, true); 1650 list_add_tail(&p->cg_list, &cset->tasks); 1651 get_css_set(cset); 1652 cset->nr_tasks++; 1653 } 1654 spin_unlock(&p->sighand->siglock); 1655 } while_each_thread(g, p); 1656 read_unlock(&tasklist_lock); 1657 out_unlock: 1658 spin_unlock_irq(&css_set_lock); 1659 } 1660 1661 static void init_cgroup_housekeeping(struct cgroup *cgrp) 1662 { 1663 struct cgroup_subsys *ss; 1664 int ssid; 1665 1666 INIT_LIST_HEAD(&cgrp->self.sibling); 1667 INIT_LIST_HEAD(&cgrp->self.children); 1668 INIT_LIST_HEAD(&cgrp->cset_links); 1669 INIT_LIST_HEAD(&cgrp->pidlists); 1670 mutex_init(&cgrp->pidlist_mutex); 1671 cgrp->self.cgroup = cgrp; 1672 cgrp->self.flags |= CSS_ONLINE; 1673 1674 for_each_subsys(ss, ssid) 1675 INIT_LIST_HEAD(&cgrp->e_csets[ssid]); 1676 1677 init_waitqueue_head(&cgrp->offline_waitq); 1678 INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent); 1679 } 1680 1681 void init_cgroup_root(struct cgroup_root *root, struct cgroup_sb_opts *opts) 1682 { 1683 struct cgroup *cgrp = &root->cgrp; 1684 1685 INIT_LIST_HEAD(&root->root_list); 1686 atomic_set(&root->nr_cgrps, 1); 1687 cgrp->root = root; 1688 init_cgroup_housekeeping(cgrp); 1689 idr_init(&root->cgroup_idr); 1690 1691 root->flags = opts->flags; 1692 if (opts->release_agent) 1693 strcpy(root->release_agent_path, opts->release_agent); 1694 if (opts->name) 1695 strcpy(root->name, opts->name); 1696 if (opts->cpuset_clone_children) 1697 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags); 1698 } 1699 1700 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask, int ref_flags) 1701 { 1702 LIST_HEAD(tmp_links); 1703 struct cgroup *root_cgrp = &root->cgrp; 1704 struct kernfs_syscall_ops *kf_sops; 1705 struct css_set *cset; 1706 int i, ret; 1707 1708 lockdep_assert_held(&cgroup_mutex); 1709 1710 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL); 1711 if (ret < 0) 1712 goto out; 1713 root_cgrp->id = ret; 1714 root_cgrp->ancestor_ids[0] = ret; 1715 1716 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 1717 ref_flags, GFP_KERNEL); 1718 if (ret) 1719 goto out; 1720 1721 /* 1722 * We're accessing css_set_count without locking css_set_lock here, 1723 * but that's OK - it can only be increased by someone holding 1724 * cgroup_lock, and that's us. Later rebinding may disable 1725 * controllers on the default hierarchy and thus create new csets, 1726 * which can't be more than the existing ones. Allocate 2x. 1727 */ 1728 ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links); 1729 if (ret) 1730 goto cancel_ref; 1731 1732 ret = cgroup_init_root_id(root); 1733 if (ret) 1734 goto cancel_ref; 1735 1736 kf_sops = root == &cgrp_dfl_root ? 1737 &cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops; 1738 1739 root->kf_root = kernfs_create_root(kf_sops, 1740 KERNFS_ROOT_CREATE_DEACTIVATED, 1741 root_cgrp); 1742 if (IS_ERR(root->kf_root)) { 1743 ret = PTR_ERR(root->kf_root); 1744 goto exit_root_id; 1745 } 1746 root_cgrp->kn = root->kf_root->kn; 1747 1748 ret = css_populate_dir(&root_cgrp->self); 1749 if (ret) 1750 goto destroy_root; 1751 1752 ret = rebind_subsystems(root, ss_mask); 1753 if (ret) 1754 goto destroy_root; 1755 1756 trace_cgroup_setup_root(root); 1757 1758 /* 1759 * There must be no failure case after here, since rebinding takes 1760 * care of subsystems' refcounts, which are explicitly dropped in 1761 * the failure exit path. 1762 */ 1763 list_add(&root->root_list, &cgroup_roots); 1764 cgroup_root_count++; 1765 1766 /* 1767 * Link the root cgroup in this hierarchy into all the css_set 1768 * objects. 1769 */ 1770 spin_lock_irq(&css_set_lock); 1771 hash_for_each(css_set_table, i, cset, hlist) { 1772 link_css_set(&tmp_links, cset, root_cgrp); 1773 if (css_set_populated(cset)) 1774 cgroup_update_populated(root_cgrp, true); 1775 } 1776 spin_unlock_irq(&css_set_lock); 1777 1778 BUG_ON(!list_empty(&root_cgrp->self.children)); 1779 BUG_ON(atomic_read(&root->nr_cgrps) != 1); 1780 1781 kernfs_activate(root_cgrp->kn); 1782 ret = 0; 1783 goto out; 1784 1785 destroy_root: 1786 kernfs_destroy_root(root->kf_root); 1787 root->kf_root = NULL; 1788 exit_root_id: 1789 cgroup_exit_root_id(root); 1790 cancel_ref: 1791 percpu_ref_exit(&root_cgrp->self.refcnt); 1792 out: 1793 free_cgrp_cset_links(&tmp_links); 1794 return ret; 1795 } 1796 1797 struct dentry *cgroup_do_mount(struct file_system_type *fs_type, int flags, 1798 struct cgroup_root *root, unsigned long magic, 1799 struct cgroup_namespace *ns) 1800 { 1801 struct dentry *dentry; 1802 bool new_sb; 1803 1804 dentry = kernfs_mount(fs_type, flags, root->kf_root, magic, &new_sb); 1805 1806 /* 1807 * In non-init cgroup namespace, instead of root cgroup's dentry, 1808 * we return the dentry corresponding to the cgroupns->root_cgrp. 1809 */ 1810 if (!IS_ERR(dentry) && ns != &init_cgroup_ns) { 1811 struct dentry *nsdentry; 1812 struct cgroup *cgrp; 1813 1814 mutex_lock(&cgroup_mutex); 1815 spin_lock_irq(&css_set_lock); 1816 1817 cgrp = cset_cgroup_from_root(ns->root_cset, root); 1818 1819 spin_unlock_irq(&css_set_lock); 1820 mutex_unlock(&cgroup_mutex); 1821 1822 nsdentry = kernfs_node_dentry(cgrp->kn, dentry->d_sb); 1823 dput(dentry); 1824 dentry = nsdentry; 1825 } 1826 1827 if (IS_ERR(dentry) || !new_sb) 1828 cgroup_put(&root->cgrp); 1829 1830 return dentry; 1831 } 1832 1833 static struct dentry *cgroup_mount(struct file_system_type *fs_type, 1834 int flags, const char *unused_dev_name, 1835 void *data) 1836 { 1837 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns; 1838 struct dentry *dentry; 1839 int ret; 1840 1841 get_cgroup_ns(ns); 1842 1843 /* Check if the caller has permission to mount. */ 1844 if (!ns_capable(ns->user_ns, CAP_SYS_ADMIN)) { 1845 put_cgroup_ns(ns); 1846 return ERR_PTR(-EPERM); 1847 } 1848 1849 /* 1850 * The first time anyone tries to mount a cgroup, enable the list 1851 * linking each css_set to its tasks and fix up all existing tasks. 1852 */ 1853 if (!use_task_css_set_links) 1854 cgroup_enable_task_cg_lists(); 1855 1856 if (fs_type == &cgroup2_fs_type) { 1857 unsigned int root_flags; 1858 1859 ret = parse_cgroup_root_flags(data, &root_flags); 1860 if (ret) { 1861 put_cgroup_ns(ns); 1862 return ERR_PTR(ret); 1863 } 1864 1865 cgrp_dfl_visible = true; 1866 cgroup_get_live(&cgrp_dfl_root.cgrp); 1867 1868 dentry = cgroup_do_mount(&cgroup2_fs_type, flags, &cgrp_dfl_root, 1869 CGROUP2_SUPER_MAGIC, ns); 1870 if (!IS_ERR(dentry)) 1871 apply_cgroup_root_flags(root_flags); 1872 } else { 1873 dentry = cgroup1_mount(&cgroup_fs_type, flags, data, 1874 CGROUP_SUPER_MAGIC, ns); 1875 } 1876 1877 put_cgroup_ns(ns); 1878 return dentry; 1879 } 1880 1881 static void cgroup_kill_sb(struct super_block *sb) 1882 { 1883 struct kernfs_root *kf_root = kernfs_root_from_sb(sb); 1884 struct cgroup_root *root = cgroup_root_from_kf(kf_root); 1885 1886 /* 1887 * If @root doesn't have any mounts or children, start killing it. 1888 * This prevents new mounts by disabling percpu_ref_tryget_live(). 1889 * cgroup_mount() may wait for @root's release. 1890 * 1891 * And don't kill the default root. 1892 */ 1893 if (!list_empty(&root->cgrp.self.children) || 1894 root == &cgrp_dfl_root) 1895 cgroup_put(&root->cgrp); 1896 else 1897 percpu_ref_kill(&root->cgrp.self.refcnt); 1898 1899 kernfs_kill_sb(sb); 1900 } 1901 1902 struct file_system_type cgroup_fs_type = { 1903 .name = "cgroup", 1904 .mount = cgroup_mount, 1905 .kill_sb = cgroup_kill_sb, 1906 .fs_flags = FS_USERNS_MOUNT, 1907 }; 1908 1909 static struct file_system_type cgroup2_fs_type = { 1910 .name = "cgroup2", 1911 .mount = cgroup_mount, 1912 .kill_sb = cgroup_kill_sb, 1913 .fs_flags = FS_USERNS_MOUNT, 1914 }; 1915 1916 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen, 1917 struct cgroup_namespace *ns) 1918 { 1919 struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root); 1920 1921 return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen); 1922 } 1923 1924 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen, 1925 struct cgroup_namespace *ns) 1926 { 1927 int ret; 1928 1929 mutex_lock(&cgroup_mutex); 1930 spin_lock_irq(&css_set_lock); 1931 1932 ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns); 1933 1934 spin_unlock_irq(&css_set_lock); 1935 mutex_unlock(&cgroup_mutex); 1936 1937 return ret; 1938 } 1939 EXPORT_SYMBOL_GPL(cgroup_path_ns); 1940 1941 /** 1942 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy 1943 * @task: target task 1944 * @buf: the buffer to write the path into 1945 * @buflen: the length of the buffer 1946 * 1947 * Determine @task's cgroup on the first (the one with the lowest non-zero 1948 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This 1949 * function grabs cgroup_mutex and shouldn't be used inside locks used by 1950 * cgroup controller callbacks. 1951 * 1952 * Return value is the same as kernfs_path(). 1953 */ 1954 int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen) 1955 { 1956 struct cgroup_root *root; 1957 struct cgroup *cgrp; 1958 int hierarchy_id = 1; 1959 int ret; 1960 1961 mutex_lock(&cgroup_mutex); 1962 spin_lock_irq(&css_set_lock); 1963 1964 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id); 1965 1966 if (root) { 1967 cgrp = task_cgroup_from_root(task, root); 1968 ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns); 1969 } else { 1970 /* if no hierarchy exists, everyone is in "/" */ 1971 ret = strlcpy(buf, "/", buflen); 1972 } 1973 1974 spin_unlock_irq(&css_set_lock); 1975 mutex_unlock(&cgroup_mutex); 1976 return ret; 1977 } 1978 EXPORT_SYMBOL_GPL(task_cgroup_path); 1979 1980 /** 1981 * cgroup_migrate_add_task - add a migration target task to a migration context 1982 * @task: target task 1983 * @mgctx: target migration context 1984 * 1985 * Add @task, which is a migration target, to @mgctx->tset. This function 1986 * becomes noop if @task doesn't need to be migrated. @task's css_set 1987 * should have been added as a migration source and @task->cg_list will be 1988 * moved from the css_set's tasks list to mg_tasks one. 1989 */ 1990 static void cgroup_migrate_add_task(struct task_struct *task, 1991 struct cgroup_mgctx *mgctx) 1992 { 1993 struct css_set *cset; 1994 1995 lockdep_assert_held(&css_set_lock); 1996 1997 /* @task either already exited or can't exit until the end */ 1998 if (task->flags & PF_EXITING) 1999 return; 2000 2001 /* leave @task alone if post_fork() hasn't linked it yet */ 2002 if (list_empty(&task->cg_list)) 2003 return; 2004 2005 cset = task_css_set(task); 2006 if (!cset->mg_src_cgrp) 2007 return; 2008 2009 list_move_tail(&task->cg_list, &cset->mg_tasks); 2010 if (list_empty(&cset->mg_node)) 2011 list_add_tail(&cset->mg_node, 2012 &mgctx->tset.src_csets); 2013 if (list_empty(&cset->mg_dst_cset->mg_node)) 2014 list_add_tail(&cset->mg_dst_cset->mg_node, 2015 &mgctx->tset.dst_csets); 2016 } 2017 2018 /** 2019 * cgroup_taskset_first - reset taskset and return the first task 2020 * @tset: taskset of interest 2021 * @dst_cssp: output variable for the destination css 2022 * 2023 * @tset iteration is initialized and the first task is returned. 2024 */ 2025 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset, 2026 struct cgroup_subsys_state **dst_cssp) 2027 { 2028 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node); 2029 tset->cur_task = NULL; 2030 2031 return cgroup_taskset_next(tset, dst_cssp); 2032 } 2033 2034 /** 2035 * cgroup_taskset_next - iterate to the next task in taskset 2036 * @tset: taskset of interest 2037 * @dst_cssp: output variable for the destination css 2038 * 2039 * Return the next task in @tset. Iteration must have been initialized 2040 * with cgroup_taskset_first(). 2041 */ 2042 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset, 2043 struct cgroup_subsys_state **dst_cssp) 2044 { 2045 struct css_set *cset = tset->cur_cset; 2046 struct task_struct *task = tset->cur_task; 2047 2048 while (&cset->mg_node != tset->csets) { 2049 if (!task) 2050 task = list_first_entry(&cset->mg_tasks, 2051 struct task_struct, cg_list); 2052 else 2053 task = list_next_entry(task, cg_list); 2054 2055 if (&task->cg_list != &cset->mg_tasks) { 2056 tset->cur_cset = cset; 2057 tset->cur_task = task; 2058 2059 /* 2060 * This function may be called both before and 2061 * after cgroup_taskset_migrate(). The two cases 2062 * can be distinguished by looking at whether @cset 2063 * has its ->mg_dst_cset set. 2064 */ 2065 if (cset->mg_dst_cset) 2066 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid]; 2067 else 2068 *dst_cssp = cset->subsys[tset->ssid]; 2069 2070 return task; 2071 } 2072 2073 cset = list_next_entry(cset, mg_node); 2074 task = NULL; 2075 } 2076 2077 return NULL; 2078 } 2079 2080 /** 2081 * cgroup_taskset_migrate - migrate a taskset 2082 * @mgctx: migration context 2083 * 2084 * Migrate tasks in @mgctx as setup by migration preparation functions. 2085 * This function fails iff one of the ->can_attach callbacks fails and 2086 * guarantees that either all or none of the tasks in @mgctx are migrated. 2087 * @mgctx is consumed regardless of success. 2088 */ 2089 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx) 2090 { 2091 struct cgroup_taskset *tset = &mgctx->tset; 2092 struct cgroup_subsys *ss; 2093 struct task_struct *task, *tmp_task; 2094 struct css_set *cset, *tmp_cset; 2095 int ssid, failed_ssid, ret; 2096 2097 /* methods shouldn't be called if no task is actually migrating */ 2098 if (list_empty(&tset->src_csets)) 2099 return 0; 2100 2101 /* check that we can legitimately attach to the cgroup */ 2102 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2103 if (ss->can_attach) { 2104 tset->ssid = ssid; 2105 ret = ss->can_attach(tset); 2106 if (ret) { 2107 failed_ssid = ssid; 2108 goto out_cancel_attach; 2109 } 2110 } 2111 } while_each_subsys_mask(); 2112 2113 /* 2114 * Now that we're guaranteed success, proceed to move all tasks to 2115 * the new cgroup. There are no failure cases after here, so this 2116 * is the commit point. 2117 */ 2118 spin_lock_irq(&css_set_lock); 2119 list_for_each_entry(cset, &tset->src_csets, mg_node) { 2120 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) { 2121 struct css_set *from_cset = task_css_set(task); 2122 struct css_set *to_cset = cset->mg_dst_cset; 2123 2124 get_css_set(to_cset); 2125 to_cset->nr_tasks++; 2126 css_set_move_task(task, from_cset, to_cset, true); 2127 put_css_set_locked(from_cset); 2128 from_cset->nr_tasks--; 2129 } 2130 } 2131 spin_unlock_irq(&css_set_lock); 2132 2133 /* 2134 * Migration is committed, all target tasks are now on dst_csets. 2135 * Nothing is sensitive to fork() after this point. Notify 2136 * controllers that migration is complete. 2137 */ 2138 tset->csets = &tset->dst_csets; 2139 2140 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2141 if (ss->attach) { 2142 tset->ssid = ssid; 2143 ss->attach(tset); 2144 } 2145 } while_each_subsys_mask(); 2146 2147 ret = 0; 2148 goto out_release_tset; 2149 2150 out_cancel_attach: 2151 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2152 if (ssid == failed_ssid) 2153 break; 2154 if (ss->cancel_attach) { 2155 tset->ssid = ssid; 2156 ss->cancel_attach(tset); 2157 } 2158 } while_each_subsys_mask(); 2159 out_release_tset: 2160 spin_lock_irq(&css_set_lock); 2161 list_splice_init(&tset->dst_csets, &tset->src_csets); 2162 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) { 2163 list_splice_tail_init(&cset->mg_tasks, &cset->tasks); 2164 list_del_init(&cset->mg_node); 2165 } 2166 spin_unlock_irq(&css_set_lock); 2167 return ret; 2168 } 2169 2170 /** 2171 * cgroup_may_migrate_to - verify whether a cgroup can be migration destination 2172 * @dst_cgrp: destination cgroup to test 2173 * 2174 * On the default hierarchy, except for the root, subtree_control must be 2175 * zero for migration destination cgroups with tasks so that child cgroups 2176 * don't compete against tasks. 2177 */ 2178 bool cgroup_may_migrate_to(struct cgroup *dst_cgrp) 2179 { 2180 return !cgroup_on_dfl(dst_cgrp) || !cgroup_parent(dst_cgrp) || 2181 !dst_cgrp->subtree_control; 2182 } 2183 2184 /** 2185 * cgroup_migrate_finish - cleanup after attach 2186 * @mgctx: migration context 2187 * 2188 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See 2189 * those functions for details. 2190 */ 2191 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx) 2192 { 2193 LIST_HEAD(preloaded); 2194 struct css_set *cset, *tmp_cset; 2195 2196 lockdep_assert_held(&cgroup_mutex); 2197 2198 spin_lock_irq(&css_set_lock); 2199 2200 list_splice_tail_init(&mgctx->preloaded_src_csets, &preloaded); 2201 list_splice_tail_init(&mgctx->preloaded_dst_csets, &preloaded); 2202 2203 list_for_each_entry_safe(cset, tmp_cset, &preloaded, mg_preload_node) { 2204 cset->mg_src_cgrp = NULL; 2205 cset->mg_dst_cgrp = NULL; 2206 cset->mg_dst_cset = NULL; 2207 list_del_init(&cset->mg_preload_node); 2208 put_css_set_locked(cset); 2209 } 2210 2211 spin_unlock_irq(&css_set_lock); 2212 } 2213 2214 /** 2215 * cgroup_migrate_add_src - add a migration source css_set 2216 * @src_cset: the source css_set to add 2217 * @dst_cgrp: the destination cgroup 2218 * @mgctx: migration context 2219 * 2220 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin 2221 * @src_cset and add it to @mgctx->src_csets, which should later be cleaned 2222 * up by cgroup_migrate_finish(). 2223 * 2224 * This function may be called without holding cgroup_threadgroup_rwsem 2225 * even if the target is a process. Threads may be created and destroyed 2226 * but as long as cgroup_mutex is not dropped, no new css_set can be put 2227 * into play and the preloaded css_sets are guaranteed to cover all 2228 * migrations. 2229 */ 2230 void cgroup_migrate_add_src(struct css_set *src_cset, 2231 struct cgroup *dst_cgrp, 2232 struct cgroup_mgctx *mgctx) 2233 { 2234 struct cgroup *src_cgrp; 2235 2236 lockdep_assert_held(&cgroup_mutex); 2237 lockdep_assert_held(&css_set_lock); 2238 2239 /* 2240 * If ->dead, @src_set is associated with one or more dead cgroups 2241 * and doesn't contain any migratable tasks. Ignore it early so 2242 * that the rest of migration path doesn't get confused by it. 2243 */ 2244 if (src_cset->dead) 2245 return; 2246 2247 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root); 2248 2249 if (!list_empty(&src_cset->mg_preload_node)) 2250 return; 2251 2252 WARN_ON(src_cset->mg_src_cgrp); 2253 WARN_ON(src_cset->mg_dst_cgrp); 2254 WARN_ON(!list_empty(&src_cset->mg_tasks)); 2255 WARN_ON(!list_empty(&src_cset->mg_node)); 2256 2257 src_cset->mg_src_cgrp = src_cgrp; 2258 src_cset->mg_dst_cgrp = dst_cgrp; 2259 get_css_set(src_cset); 2260 list_add_tail(&src_cset->mg_preload_node, &mgctx->preloaded_src_csets); 2261 } 2262 2263 /** 2264 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration 2265 * @mgctx: migration context 2266 * 2267 * Tasks are about to be moved and all the source css_sets have been 2268 * preloaded to @mgctx->preloaded_src_csets. This function looks up and 2269 * pins all destination css_sets, links each to its source, and append them 2270 * to @mgctx->preloaded_dst_csets. 2271 * 2272 * This function must be called after cgroup_migrate_add_src() has been 2273 * called on each migration source css_set. After migration is performed 2274 * using cgroup_migrate(), cgroup_migrate_finish() must be called on 2275 * @mgctx. 2276 */ 2277 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx) 2278 { 2279 struct css_set *src_cset, *tmp_cset; 2280 2281 lockdep_assert_held(&cgroup_mutex); 2282 2283 /* look up the dst cset for each src cset and link it to src */ 2284 list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets, 2285 mg_preload_node) { 2286 struct css_set *dst_cset; 2287 struct cgroup_subsys *ss; 2288 int ssid; 2289 2290 dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp); 2291 if (!dst_cset) 2292 goto err; 2293 2294 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset); 2295 2296 /* 2297 * If src cset equals dst, it's noop. Drop the src. 2298 * cgroup_migrate() will skip the cset too. Note that we 2299 * can't handle src == dst as some nodes are used by both. 2300 */ 2301 if (src_cset == dst_cset) { 2302 src_cset->mg_src_cgrp = NULL; 2303 src_cset->mg_dst_cgrp = NULL; 2304 list_del_init(&src_cset->mg_preload_node); 2305 put_css_set(src_cset); 2306 put_css_set(dst_cset); 2307 continue; 2308 } 2309 2310 src_cset->mg_dst_cset = dst_cset; 2311 2312 if (list_empty(&dst_cset->mg_preload_node)) 2313 list_add_tail(&dst_cset->mg_preload_node, 2314 &mgctx->preloaded_dst_csets); 2315 else 2316 put_css_set(dst_cset); 2317 2318 for_each_subsys(ss, ssid) 2319 if (src_cset->subsys[ssid] != dst_cset->subsys[ssid]) 2320 mgctx->ss_mask |= 1 << ssid; 2321 } 2322 2323 return 0; 2324 err: 2325 cgroup_migrate_finish(mgctx); 2326 return -ENOMEM; 2327 } 2328 2329 /** 2330 * cgroup_migrate - migrate a process or task to a cgroup 2331 * @leader: the leader of the process or the task to migrate 2332 * @threadgroup: whether @leader points to the whole process or a single task 2333 * @mgctx: migration context 2334 * 2335 * Migrate a process or task denoted by @leader. If migrating a process, 2336 * the caller must be holding cgroup_threadgroup_rwsem. The caller is also 2337 * responsible for invoking cgroup_migrate_add_src() and 2338 * cgroup_migrate_prepare_dst() on the targets before invoking this 2339 * function and following up with cgroup_migrate_finish(). 2340 * 2341 * As long as a controller's ->can_attach() doesn't fail, this function is 2342 * guaranteed to succeed. This means that, excluding ->can_attach() 2343 * failure, when migrating multiple targets, the success or failure can be 2344 * decided for all targets by invoking group_migrate_prepare_dst() before 2345 * actually starting migrating. 2346 */ 2347 int cgroup_migrate(struct task_struct *leader, bool threadgroup, 2348 struct cgroup_mgctx *mgctx) 2349 { 2350 struct task_struct *task; 2351 2352 /* 2353 * Prevent freeing of tasks while we take a snapshot. Tasks that are 2354 * already PF_EXITING could be freed from underneath us unless we 2355 * take an rcu_read_lock. 2356 */ 2357 spin_lock_irq(&css_set_lock); 2358 rcu_read_lock(); 2359 task = leader; 2360 do { 2361 cgroup_migrate_add_task(task, mgctx); 2362 if (!threadgroup) 2363 break; 2364 } while_each_thread(leader, task); 2365 rcu_read_unlock(); 2366 spin_unlock_irq(&css_set_lock); 2367 2368 return cgroup_migrate_execute(mgctx); 2369 } 2370 2371 /** 2372 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup 2373 * @dst_cgrp: the cgroup to attach to 2374 * @leader: the task or the leader of the threadgroup to be attached 2375 * @threadgroup: attach the whole threadgroup? 2376 * 2377 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem. 2378 */ 2379 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader, 2380 bool threadgroup) 2381 { 2382 DEFINE_CGROUP_MGCTX(mgctx); 2383 struct task_struct *task; 2384 int ret; 2385 2386 if (!cgroup_may_migrate_to(dst_cgrp)) 2387 return -EBUSY; 2388 2389 /* look up all src csets */ 2390 spin_lock_irq(&css_set_lock); 2391 rcu_read_lock(); 2392 task = leader; 2393 do { 2394 cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx); 2395 if (!threadgroup) 2396 break; 2397 } while_each_thread(leader, task); 2398 rcu_read_unlock(); 2399 spin_unlock_irq(&css_set_lock); 2400 2401 /* prepare dst csets and commit */ 2402 ret = cgroup_migrate_prepare_dst(&mgctx); 2403 if (!ret) 2404 ret = cgroup_migrate(leader, threadgroup, &mgctx); 2405 2406 cgroup_migrate_finish(&mgctx); 2407 2408 if (!ret) 2409 trace_cgroup_attach_task(dst_cgrp, leader, threadgroup); 2410 2411 return ret; 2412 } 2413 2414 static int cgroup_procs_write_permission(struct task_struct *task, 2415 struct cgroup *dst_cgrp, 2416 struct kernfs_open_file *of) 2417 { 2418 struct super_block *sb = of->file->f_path.dentry->d_sb; 2419 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns; 2420 struct cgroup *root_cgrp = ns->root_cset->dfl_cgrp; 2421 struct cgroup *src_cgrp, *com_cgrp; 2422 struct inode *inode; 2423 int ret; 2424 2425 if (!cgroup_on_dfl(dst_cgrp)) { 2426 const struct cred *cred = current_cred(); 2427 const struct cred *tcred = get_task_cred(task); 2428 2429 /* 2430 * even if we're attaching all tasks in the thread group, 2431 * we only need to check permissions on one of them. 2432 */ 2433 if (uid_eq(cred->euid, GLOBAL_ROOT_UID) || 2434 uid_eq(cred->euid, tcred->uid) || 2435 uid_eq(cred->euid, tcred->suid)) 2436 ret = 0; 2437 else 2438 ret = -EACCES; 2439 2440 put_cred(tcred); 2441 return ret; 2442 } 2443 2444 /* find the source cgroup */ 2445 spin_lock_irq(&css_set_lock); 2446 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root); 2447 spin_unlock_irq(&css_set_lock); 2448 2449 /* and the common ancestor */ 2450 com_cgrp = src_cgrp; 2451 while (!cgroup_is_descendant(dst_cgrp, com_cgrp)) 2452 com_cgrp = cgroup_parent(com_cgrp); 2453 2454 /* %current should be authorized to migrate to the common ancestor */ 2455 inode = kernfs_get_inode(sb, com_cgrp->procs_file.kn); 2456 if (!inode) 2457 return -ENOMEM; 2458 2459 ret = inode_permission(inode, MAY_WRITE); 2460 iput(inode); 2461 if (ret) 2462 return ret; 2463 2464 /* 2465 * If namespaces are delegation boundaries, %current must be able 2466 * to see both source and destination cgroups from its namespace. 2467 */ 2468 if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) && 2469 (!cgroup_is_descendant(src_cgrp, root_cgrp) || 2470 !cgroup_is_descendant(dst_cgrp, root_cgrp))) 2471 return -ENOENT; 2472 2473 return 0; 2474 } 2475 2476 /* 2477 * Find the task_struct of the task to attach by vpid and pass it along to the 2478 * function to attach either it or all tasks in its threadgroup. Will lock 2479 * cgroup_mutex and threadgroup. 2480 */ 2481 ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf, 2482 size_t nbytes, loff_t off, bool threadgroup) 2483 { 2484 struct task_struct *tsk; 2485 struct cgroup_subsys *ss; 2486 struct cgroup *cgrp; 2487 pid_t pid; 2488 int ssid, ret; 2489 2490 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0) 2491 return -EINVAL; 2492 2493 cgrp = cgroup_kn_lock_live(of->kn, false); 2494 if (!cgrp) 2495 return -ENODEV; 2496 2497 percpu_down_write(&cgroup_threadgroup_rwsem); 2498 rcu_read_lock(); 2499 if (pid) { 2500 tsk = find_task_by_vpid(pid); 2501 if (!tsk) { 2502 ret = -ESRCH; 2503 goto out_unlock_rcu; 2504 } 2505 } else { 2506 tsk = current; 2507 } 2508 2509 if (threadgroup) 2510 tsk = tsk->group_leader; 2511 2512 /* 2513 * kthreads may acquire PF_NO_SETAFFINITY during initialization. 2514 * If userland migrates such a kthread to a non-root cgroup, it can 2515 * become trapped in a cpuset, or RT kthread may be born in a 2516 * cgroup with no rt_runtime allocated. Just say no. 2517 */ 2518 if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) { 2519 ret = -EINVAL; 2520 goto out_unlock_rcu; 2521 } 2522 2523 get_task_struct(tsk); 2524 rcu_read_unlock(); 2525 2526 ret = cgroup_procs_write_permission(tsk, cgrp, of); 2527 if (!ret) 2528 ret = cgroup_attach_task(cgrp, tsk, threadgroup); 2529 2530 put_task_struct(tsk); 2531 goto out_unlock_threadgroup; 2532 2533 out_unlock_rcu: 2534 rcu_read_unlock(); 2535 out_unlock_threadgroup: 2536 percpu_up_write(&cgroup_threadgroup_rwsem); 2537 for_each_subsys(ss, ssid) 2538 if (ss->post_attach) 2539 ss->post_attach(); 2540 cgroup_kn_unlock(of->kn); 2541 return ret ?: nbytes; 2542 } 2543 2544 ssize_t cgroup_procs_write(struct kernfs_open_file *of, char *buf, size_t nbytes, 2545 loff_t off) 2546 { 2547 return __cgroup_procs_write(of, buf, nbytes, off, true); 2548 } 2549 2550 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask) 2551 { 2552 struct cgroup_subsys *ss; 2553 bool printed = false; 2554 int ssid; 2555 2556 do_each_subsys_mask(ss, ssid, ss_mask) { 2557 if (printed) 2558 seq_putc(seq, ' '); 2559 seq_printf(seq, "%s", ss->name); 2560 printed = true; 2561 } while_each_subsys_mask(); 2562 if (printed) 2563 seq_putc(seq, '\n'); 2564 } 2565 2566 /* show controllers which are enabled from the parent */ 2567 static int cgroup_controllers_show(struct seq_file *seq, void *v) 2568 { 2569 struct cgroup *cgrp = seq_css(seq)->cgroup; 2570 2571 cgroup_print_ss_mask(seq, cgroup_control(cgrp)); 2572 return 0; 2573 } 2574 2575 /* show controllers which are enabled for a given cgroup's children */ 2576 static int cgroup_subtree_control_show(struct seq_file *seq, void *v) 2577 { 2578 struct cgroup *cgrp = seq_css(seq)->cgroup; 2579 2580 cgroup_print_ss_mask(seq, cgrp->subtree_control); 2581 return 0; 2582 } 2583 2584 /** 2585 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy 2586 * @cgrp: root of the subtree to update csses for 2587 * 2588 * @cgrp's control masks have changed and its subtree's css associations 2589 * need to be updated accordingly. This function looks up all css_sets 2590 * which are attached to the subtree, creates the matching updated css_sets 2591 * and migrates the tasks to the new ones. 2592 */ 2593 static int cgroup_update_dfl_csses(struct cgroup *cgrp) 2594 { 2595 DEFINE_CGROUP_MGCTX(mgctx); 2596 struct cgroup_subsys_state *d_css; 2597 struct cgroup *dsct; 2598 struct css_set *src_cset; 2599 int ret; 2600 2601 lockdep_assert_held(&cgroup_mutex); 2602 2603 percpu_down_write(&cgroup_threadgroup_rwsem); 2604 2605 /* look up all csses currently attached to @cgrp's subtree */ 2606 spin_lock_irq(&css_set_lock); 2607 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 2608 struct cgrp_cset_link *link; 2609 2610 list_for_each_entry(link, &dsct->cset_links, cset_link) 2611 cgroup_migrate_add_src(link->cset, dsct, &mgctx); 2612 } 2613 spin_unlock_irq(&css_set_lock); 2614 2615 /* NULL dst indicates self on default hierarchy */ 2616 ret = cgroup_migrate_prepare_dst(&mgctx); 2617 if (ret) 2618 goto out_finish; 2619 2620 spin_lock_irq(&css_set_lock); 2621 list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, mg_preload_node) { 2622 struct task_struct *task, *ntask; 2623 2624 /* all tasks in src_csets need to be migrated */ 2625 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list) 2626 cgroup_migrate_add_task(task, &mgctx); 2627 } 2628 spin_unlock_irq(&css_set_lock); 2629 2630 ret = cgroup_migrate_execute(&mgctx); 2631 out_finish: 2632 cgroup_migrate_finish(&mgctx); 2633 percpu_up_write(&cgroup_threadgroup_rwsem); 2634 return ret; 2635 } 2636 2637 /** 2638 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses 2639 * @cgrp: root of the target subtree 2640 * 2641 * Because css offlining is asynchronous, userland may try to re-enable a 2642 * controller while the previous css is still around. This function grabs 2643 * cgroup_mutex and drains the previous css instances of @cgrp's subtree. 2644 */ 2645 void cgroup_lock_and_drain_offline(struct cgroup *cgrp) 2646 __acquires(&cgroup_mutex) 2647 { 2648 struct cgroup *dsct; 2649 struct cgroup_subsys_state *d_css; 2650 struct cgroup_subsys *ss; 2651 int ssid; 2652 2653 restart: 2654 mutex_lock(&cgroup_mutex); 2655 2656 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 2657 for_each_subsys(ss, ssid) { 2658 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 2659 DEFINE_WAIT(wait); 2660 2661 if (!css || !percpu_ref_is_dying(&css->refcnt)) 2662 continue; 2663 2664 cgroup_get_live(dsct); 2665 prepare_to_wait(&dsct->offline_waitq, &wait, 2666 TASK_UNINTERRUPTIBLE); 2667 2668 mutex_unlock(&cgroup_mutex); 2669 schedule(); 2670 finish_wait(&dsct->offline_waitq, &wait); 2671 2672 cgroup_put(dsct); 2673 goto restart; 2674 } 2675 } 2676 } 2677 2678 /** 2679 * cgroup_save_control - save control masks of a subtree 2680 * @cgrp: root of the target subtree 2681 * 2682 * Save ->subtree_control and ->subtree_ss_mask to the respective old_ 2683 * prefixed fields for @cgrp's subtree including @cgrp itself. 2684 */ 2685 static void cgroup_save_control(struct cgroup *cgrp) 2686 { 2687 struct cgroup *dsct; 2688 struct cgroup_subsys_state *d_css; 2689 2690 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 2691 dsct->old_subtree_control = dsct->subtree_control; 2692 dsct->old_subtree_ss_mask = dsct->subtree_ss_mask; 2693 } 2694 } 2695 2696 /** 2697 * cgroup_propagate_control - refresh control masks of a subtree 2698 * @cgrp: root of the target subtree 2699 * 2700 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches 2701 * ->subtree_control and propagate controller availability through the 2702 * subtree so that descendants don't have unavailable controllers enabled. 2703 */ 2704 static void cgroup_propagate_control(struct cgroup *cgrp) 2705 { 2706 struct cgroup *dsct; 2707 struct cgroup_subsys_state *d_css; 2708 2709 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 2710 dsct->subtree_control &= cgroup_control(dsct); 2711 dsct->subtree_ss_mask = 2712 cgroup_calc_subtree_ss_mask(dsct->subtree_control, 2713 cgroup_ss_mask(dsct)); 2714 } 2715 } 2716 2717 /** 2718 * cgroup_restore_control - restore control masks of a subtree 2719 * @cgrp: root of the target subtree 2720 * 2721 * Restore ->subtree_control and ->subtree_ss_mask from the respective old_ 2722 * prefixed fields for @cgrp's subtree including @cgrp itself. 2723 */ 2724 static void cgroup_restore_control(struct cgroup *cgrp) 2725 { 2726 struct cgroup *dsct; 2727 struct cgroup_subsys_state *d_css; 2728 2729 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 2730 dsct->subtree_control = dsct->old_subtree_control; 2731 dsct->subtree_ss_mask = dsct->old_subtree_ss_mask; 2732 } 2733 } 2734 2735 static bool css_visible(struct cgroup_subsys_state *css) 2736 { 2737 struct cgroup_subsys *ss = css->ss; 2738 struct cgroup *cgrp = css->cgroup; 2739 2740 if (cgroup_control(cgrp) & (1 << ss->id)) 2741 return true; 2742 if (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) 2743 return false; 2744 return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl; 2745 } 2746 2747 /** 2748 * cgroup_apply_control_enable - enable or show csses according to control 2749 * @cgrp: root of the target subtree 2750 * 2751 * Walk @cgrp's subtree and create new csses or make the existing ones 2752 * visible. A css is created invisible if it's being implicitly enabled 2753 * through dependency. An invisible css is made visible when the userland 2754 * explicitly enables it. 2755 * 2756 * Returns 0 on success, -errno on failure. On failure, csses which have 2757 * been processed already aren't cleaned up. The caller is responsible for 2758 * cleaning up with cgroup_apply_control_disable(). 2759 */ 2760 static int cgroup_apply_control_enable(struct cgroup *cgrp) 2761 { 2762 struct cgroup *dsct; 2763 struct cgroup_subsys_state *d_css; 2764 struct cgroup_subsys *ss; 2765 int ssid, ret; 2766 2767 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 2768 for_each_subsys(ss, ssid) { 2769 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 2770 2771 WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt)); 2772 2773 if (!(cgroup_ss_mask(dsct) & (1 << ss->id))) 2774 continue; 2775 2776 if (!css) { 2777 css = css_create(dsct, ss); 2778 if (IS_ERR(css)) 2779 return PTR_ERR(css); 2780 } 2781 2782 if (css_visible(css)) { 2783 ret = css_populate_dir(css); 2784 if (ret) 2785 return ret; 2786 } 2787 } 2788 } 2789 2790 return 0; 2791 } 2792 2793 /** 2794 * cgroup_apply_control_disable - kill or hide csses according to control 2795 * @cgrp: root of the target subtree 2796 * 2797 * Walk @cgrp's subtree and kill and hide csses so that they match 2798 * cgroup_ss_mask() and cgroup_visible_mask(). 2799 * 2800 * A css is hidden when the userland requests it to be disabled while other 2801 * subsystems are still depending on it. The css must not actively control 2802 * resources and be in the vanilla state if it's made visible again later. 2803 * Controllers which may be depended upon should provide ->css_reset() for 2804 * this purpose. 2805 */ 2806 static void cgroup_apply_control_disable(struct cgroup *cgrp) 2807 { 2808 struct cgroup *dsct; 2809 struct cgroup_subsys_state *d_css; 2810 struct cgroup_subsys *ss; 2811 int ssid; 2812 2813 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 2814 for_each_subsys(ss, ssid) { 2815 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 2816 2817 WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt)); 2818 2819 if (!css) 2820 continue; 2821 2822 if (css->parent && 2823 !(cgroup_ss_mask(dsct) & (1 << ss->id))) { 2824 kill_css(css); 2825 } else if (!css_visible(css)) { 2826 css_clear_dir(css); 2827 if (ss->css_reset) 2828 ss->css_reset(css); 2829 } 2830 } 2831 } 2832 } 2833 2834 /** 2835 * cgroup_apply_control - apply control mask updates to the subtree 2836 * @cgrp: root of the target subtree 2837 * 2838 * subsystems can be enabled and disabled in a subtree using the following 2839 * steps. 2840 * 2841 * 1. Call cgroup_save_control() to stash the current state. 2842 * 2. Update ->subtree_control masks in the subtree as desired. 2843 * 3. Call cgroup_apply_control() to apply the changes. 2844 * 4. Optionally perform other related operations. 2845 * 5. Call cgroup_finalize_control() to finish up. 2846 * 2847 * This function implements step 3 and propagates the mask changes 2848 * throughout @cgrp's subtree, updates csses accordingly and perform 2849 * process migrations. 2850 */ 2851 static int cgroup_apply_control(struct cgroup *cgrp) 2852 { 2853 int ret; 2854 2855 cgroup_propagate_control(cgrp); 2856 2857 ret = cgroup_apply_control_enable(cgrp); 2858 if (ret) 2859 return ret; 2860 2861 /* 2862 * At this point, cgroup_e_css() results reflect the new csses 2863 * making the following cgroup_update_dfl_csses() properly update 2864 * css associations of all tasks in the subtree. 2865 */ 2866 ret = cgroup_update_dfl_csses(cgrp); 2867 if (ret) 2868 return ret; 2869 2870 return 0; 2871 } 2872 2873 /** 2874 * cgroup_finalize_control - finalize control mask update 2875 * @cgrp: root of the target subtree 2876 * @ret: the result of the update 2877 * 2878 * Finalize control mask update. See cgroup_apply_control() for more info. 2879 */ 2880 static void cgroup_finalize_control(struct cgroup *cgrp, int ret) 2881 { 2882 if (ret) { 2883 cgroup_restore_control(cgrp); 2884 cgroup_propagate_control(cgrp); 2885 } 2886 2887 cgroup_apply_control_disable(cgrp); 2888 } 2889 2890 /* change the enabled child controllers for a cgroup in the default hierarchy */ 2891 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of, 2892 char *buf, size_t nbytes, 2893 loff_t off) 2894 { 2895 u16 enable = 0, disable = 0; 2896 struct cgroup *cgrp, *child; 2897 struct cgroup_subsys *ss; 2898 char *tok; 2899 int ssid, ret; 2900 2901 /* 2902 * Parse input - space separated list of subsystem names prefixed 2903 * with either + or -. 2904 */ 2905 buf = strstrip(buf); 2906 while ((tok = strsep(&buf, " "))) { 2907 if (tok[0] == '\0') 2908 continue; 2909 do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) { 2910 if (!cgroup_ssid_enabled(ssid) || 2911 strcmp(tok + 1, ss->name)) 2912 continue; 2913 2914 if (*tok == '+') { 2915 enable |= 1 << ssid; 2916 disable &= ~(1 << ssid); 2917 } else if (*tok == '-') { 2918 disable |= 1 << ssid; 2919 enable &= ~(1 << ssid); 2920 } else { 2921 return -EINVAL; 2922 } 2923 break; 2924 } while_each_subsys_mask(); 2925 if (ssid == CGROUP_SUBSYS_COUNT) 2926 return -EINVAL; 2927 } 2928 2929 cgrp = cgroup_kn_lock_live(of->kn, true); 2930 if (!cgrp) 2931 return -ENODEV; 2932 2933 for_each_subsys(ss, ssid) { 2934 if (enable & (1 << ssid)) { 2935 if (cgrp->subtree_control & (1 << ssid)) { 2936 enable &= ~(1 << ssid); 2937 continue; 2938 } 2939 2940 if (!(cgroup_control(cgrp) & (1 << ssid))) { 2941 ret = -ENOENT; 2942 goto out_unlock; 2943 } 2944 } else if (disable & (1 << ssid)) { 2945 if (!(cgrp->subtree_control & (1 << ssid))) { 2946 disable &= ~(1 << ssid); 2947 continue; 2948 } 2949 2950 /* a child has it enabled? */ 2951 cgroup_for_each_live_child(child, cgrp) { 2952 if (child->subtree_control & (1 << ssid)) { 2953 ret = -EBUSY; 2954 goto out_unlock; 2955 } 2956 } 2957 } 2958 } 2959 2960 if (!enable && !disable) { 2961 ret = 0; 2962 goto out_unlock; 2963 } 2964 2965 /* 2966 * Except for the root, subtree_control must be zero for a cgroup 2967 * with tasks so that child cgroups don't compete against tasks. 2968 */ 2969 if (enable && cgroup_parent(cgrp)) { 2970 struct cgrp_cset_link *link; 2971 2972 /* 2973 * Because namespaces pin csets too, @cgrp->cset_links 2974 * might not be empty even when @cgrp is empty. Walk and 2975 * verify each cset. 2976 */ 2977 spin_lock_irq(&css_set_lock); 2978 2979 ret = 0; 2980 list_for_each_entry(link, &cgrp->cset_links, cset_link) { 2981 if (css_set_populated(link->cset)) { 2982 ret = -EBUSY; 2983 break; 2984 } 2985 } 2986 2987 spin_unlock_irq(&css_set_lock); 2988 2989 if (ret) 2990 goto out_unlock; 2991 } 2992 2993 /* save and update control masks and prepare csses */ 2994 cgroup_save_control(cgrp); 2995 2996 cgrp->subtree_control |= enable; 2997 cgrp->subtree_control &= ~disable; 2998 2999 ret = cgroup_apply_control(cgrp); 3000 3001 cgroup_finalize_control(cgrp, ret); 3002 3003 kernfs_activate(cgrp->kn); 3004 ret = 0; 3005 out_unlock: 3006 cgroup_kn_unlock(of->kn); 3007 return ret ?: nbytes; 3008 } 3009 3010 static int cgroup_events_show(struct seq_file *seq, void *v) 3011 { 3012 seq_printf(seq, "populated %d\n", 3013 cgroup_is_populated(seq_css(seq)->cgroup)); 3014 return 0; 3015 } 3016 3017 static int cgroup_file_open(struct kernfs_open_file *of) 3018 { 3019 struct cftype *cft = of->kn->priv; 3020 3021 if (cft->open) 3022 return cft->open(of); 3023 return 0; 3024 } 3025 3026 static void cgroup_file_release(struct kernfs_open_file *of) 3027 { 3028 struct cftype *cft = of->kn->priv; 3029 3030 if (cft->release) 3031 cft->release(of); 3032 } 3033 3034 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf, 3035 size_t nbytes, loff_t off) 3036 { 3037 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns; 3038 struct cgroup *cgrp = of->kn->parent->priv; 3039 struct cftype *cft = of->kn->priv; 3040 struct cgroup_subsys_state *css; 3041 int ret; 3042 3043 /* 3044 * If namespaces are delegation boundaries, disallow writes to 3045 * files in an non-init namespace root from inside the namespace 3046 * except for the files explicitly marked delegatable - 3047 * cgroup.procs and cgroup.subtree_control. 3048 */ 3049 if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) && 3050 !(cft->flags & CFTYPE_NS_DELEGATABLE) && 3051 ns != &init_cgroup_ns && ns->root_cset->dfl_cgrp == cgrp) 3052 return -EPERM; 3053 3054 if (cft->write) 3055 return cft->write(of, buf, nbytes, off); 3056 3057 /* 3058 * kernfs guarantees that a file isn't deleted with operations in 3059 * flight, which means that the matching css is and stays alive and 3060 * doesn't need to be pinned. The RCU locking is not necessary 3061 * either. It's just for the convenience of using cgroup_css(). 3062 */ 3063 rcu_read_lock(); 3064 css = cgroup_css(cgrp, cft->ss); 3065 rcu_read_unlock(); 3066 3067 if (cft->write_u64) { 3068 unsigned long long v; 3069 ret = kstrtoull(buf, 0, &v); 3070 if (!ret) 3071 ret = cft->write_u64(css, cft, v); 3072 } else if (cft->write_s64) { 3073 long long v; 3074 ret = kstrtoll(buf, 0, &v); 3075 if (!ret) 3076 ret = cft->write_s64(css, cft, v); 3077 } else { 3078 ret = -EINVAL; 3079 } 3080 3081 return ret ?: nbytes; 3082 } 3083 3084 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos) 3085 { 3086 return seq_cft(seq)->seq_start(seq, ppos); 3087 } 3088 3089 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos) 3090 { 3091 return seq_cft(seq)->seq_next(seq, v, ppos); 3092 } 3093 3094 static void cgroup_seqfile_stop(struct seq_file *seq, void *v) 3095 { 3096 if (seq_cft(seq)->seq_stop) 3097 seq_cft(seq)->seq_stop(seq, v); 3098 } 3099 3100 static int cgroup_seqfile_show(struct seq_file *m, void *arg) 3101 { 3102 struct cftype *cft = seq_cft(m); 3103 struct cgroup_subsys_state *css = seq_css(m); 3104 3105 if (cft->seq_show) 3106 return cft->seq_show(m, arg); 3107 3108 if (cft->read_u64) 3109 seq_printf(m, "%llu\n", cft->read_u64(css, cft)); 3110 else if (cft->read_s64) 3111 seq_printf(m, "%lld\n", cft->read_s64(css, cft)); 3112 else 3113 return -EINVAL; 3114 return 0; 3115 } 3116 3117 static struct kernfs_ops cgroup_kf_single_ops = { 3118 .atomic_write_len = PAGE_SIZE, 3119 .open = cgroup_file_open, 3120 .release = cgroup_file_release, 3121 .write = cgroup_file_write, 3122 .seq_show = cgroup_seqfile_show, 3123 }; 3124 3125 static struct kernfs_ops cgroup_kf_ops = { 3126 .atomic_write_len = PAGE_SIZE, 3127 .open = cgroup_file_open, 3128 .release = cgroup_file_release, 3129 .write = cgroup_file_write, 3130 .seq_start = cgroup_seqfile_start, 3131 .seq_next = cgroup_seqfile_next, 3132 .seq_stop = cgroup_seqfile_stop, 3133 .seq_show = cgroup_seqfile_show, 3134 }; 3135 3136 /* set uid and gid of cgroup dirs and files to that of the creator */ 3137 static int cgroup_kn_set_ugid(struct kernfs_node *kn) 3138 { 3139 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID, 3140 .ia_uid = current_fsuid(), 3141 .ia_gid = current_fsgid(), }; 3142 3143 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) && 3144 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID)) 3145 return 0; 3146 3147 return kernfs_setattr(kn, &iattr); 3148 } 3149 3150 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp, 3151 struct cftype *cft) 3152 { 3153 char name[CGROUP_FILE_NAME_MAX]; 3154 struct kernfs_node *kn; 3155 struct lock_class_key *key = NULL; 3156 int ret; 3157 3158 #ifdef CONFIG_DEBUG_LOCK_ALLOC 3159 key = &cft->lockdep_key; 3160 #endif 3161 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name), 3162 cgroup_file_mode(cft), 0, cft->kf_ops, cft, 3163 NULL, key); 3164 if (IS_ERR(kn)) 3165 return PTR_ERR(kn); 3166 3167 ret = cgroup_kn_set_ugid(kn); 3168 if (ret) { 3169 kernfs_remove(kn); 3170 return ret; 3171 } 3172 3173 if (cft->file_offset) { 3174 struct cgroup_file *cfile = (void *)css + cft->file_offset; 3175 3176 spin_lock_irq(&cgroup_file_kn_lock); 3177 cfile->kn = kn; 3178 spin_unlock_irq(&cgroup_file_kn_lock); 3179 } 3180 3181 return 0; 3182 } 3183 3184 /** 3185 * cgroup_addrm_files - add or remove files to a cgroup directory 3186 * @css: the target css 3187 * @cgrp: the target cgroup (usually css->cgroup) 3188 * @cfts: array of cftypes to be added 3189 * @is_add: whether to add or remove 3190 * 3191 * Depending on @is_add, add or remove files defined by @cfts on @cgrp. 3192 * For removals, this function never fails. 3193 */ 3194 static int cgroup_addrm_files(struct cgroup_subsys_state *css, 3195 struct cgroup *cgrp, struct cftype cfts[], 3196 bool is_add) 3197 { 3198 struct cftype *cft, *cft_end = NULL; 3199 int ret = 0; 3200 3201 lockdep_assert_held(&cgroup_mutex); 3202 3203 restart: 3204 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) { 3205 /* does cft->flags tell us to skip this file on @cgrp? */ 3206 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp)) 3207 continue; 3208 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp)) 3209 continue; 3210 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp)) 3211 continue; 3212 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp)) 3213 continue; 3214 3215 if (is_add) { 3216 ret = cgroup_add_file(css, cgrp, cft); 3217 if (ret) { 3218 pr_warn("%s: failed to add %s, err=%d\n", 3219 __func__, cft->name, ret); 3220 cft_end = cft; 3221 is_add = false; 3222 goto restart; 3223 } 3224 } else { 3225 cgroup_rm_file(cgrp, cft); 3226 } 3227 } 3228 return ret; 3229 } 3230 3231 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add) 3232 { 3233 LIST_HEAD(pending); 3234 struct cgroup_subsys *ss = cfts[0].ss; 3235 struct cgroup *root = &ss->root->cgrp; 3236 struct cgroup_subsys_state *css; 3237 int ret = 0; 3238 3239 lockdep_assert_held(&cgroup_mutex); 3240 3241 /* add/rm files for all cgroups created before */ 3242 css_for_each_descendant_pre(css, cgroup_css(root, ss)) { 3243 struct cgroup *cgrp = css->cgroup; 3244 3245 if (!(css->flags & CSS_VISIBLE)) 3246 continue; 3247 3248 ret = cgroup_addrm_files(css, cgrp, cfts, is_add); 3249 if (ret) 3250 break; 3251 } 3252 3253 if (is_add && !ret) 3254 kernfs_activate(root->kn); 3255 return ret; 3256 } 3257 3258 static void cgroup_exit_cftypes(struct cftype *cfts) 3259 { 3260 struct cftype *cft; 3261 3262 for (cft = cfts; cft->name[0] != '\0'; cft++) { 3263 /* free copy for custom atomic_write_len, see init_cftypes() */ 3264 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) 3265 kfree(cft->kf_ops); 3266 cft->kf_ops = NULL; 3267 cft->ss = NULL; 3268 3269 /* revert flags set by cgroup core while adding @cfts */ 3270 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL); 3271 } 3272 } 3273 3274 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 3275 { 3276 struct cftype *cft; 3277 3278 for (cft = cfts; cft->name[0] != '\0'; cft++) { 3279 struct kernfs_ops *kf_ops; 3280 3281 WARN_ON(cft->ss || cft->kf_ops); 3282 3283 if (cft->seq_start) 3284 kf_ops = &cgroup_kf_ops; 3285 else 3286 kf_ops = &cgroup_kf_single_ops; 3287 3288 /* 3289 * Ugh... if @cft wants a custom max_write_len, we need to 3290 * make a copy of kf_ops to set its atomic_write_len. 3291 */ 3292 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) { 3293 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL); 3294 if (!kf_ops) { 3295 cgroup_exit_cftypes(cfts); 3296 return -ENOMEM; 3297 } 3298 kf_ops->atomic_write_len = cft->max_write_len; 3299 } 3300 3301 cft->kf_ops = kf_ops; 3302 cft->ss = ss; 3303 } 3304 3305 return 0; 3306 } 3307 3308 static int cgroup_rm_cftypes_locked(struct cftype *cfts) 3309 { 3310 lockdep_assert_held(&cgroup_mutex); 3311 3312 if (!cfts || !cfts[0].ss) 3313 return -ENOENT; 3314 3315 list_del(&cfts->node); 3316 cgroup_apply_cftypes(cfts, false); 3317 cgroup_exit_cftypes(cfts); 3318 return 0; 3319 } 3320 3321 /** 3322 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem 3323 * @cfts: zero-length name terminated array of cftypes 3324 * 3325 * Unregister @cfts. Files described by @cfts are removed from all 3326 * existing cgroups and all future cgroups won't have them either. This 3327 * function can be called anytime whether @cfts' subsys is attached or not. 3328 * 3329 * Returns 0 on successful unregistration, -ENOENT if @cfts is not 3330 * registered. 3331 */ 3332 int cgroup_rm_cftypes(struct cftype *cfts) 3333 { 3334 int ret; 3335 3336 mutex_lock(&cgroup_mutex); 3337 ret = cgroup_rm_cftypes_locked(cfts); 3338 mutex_unlock(&cgroup_mutex); 3339 return ret; 3340 } 3341 3342 /** 3343 * cgroup_add_cftypes - add an array of cftypes to a subsystem 3344 * @ss: target cgroup subsystem 3345 * @cfts: zero-length name terminated array of cftypes 3346 * 3347 * Register @cfts to @ss. Files described by @cfts are created for all 3348 * existing cgroups to which @ss is attached and all future cgroups will 3349 * have them too. This function can be called anytime whether @ss is 3350 * attached or not. 3351 * 3352 * Returns 0 on successful registration, -errno on failure. Note that this 3353 * function currently returns 0 as long as @cfts registration is successful 3354 * even if some file creation attempts on existing cgroups fail. 3355 */ 3356 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 3357 { 3358 int ret; 3359 3360 if (!cgroup_ssid_enabled(ss->id)) 3361 return 0; 3362 3363 if (!cfts || cfts[0].name[0] == '\0') 3364 return 0; 3365 3366 ret = cgroup_init_cftypes(ss, cfts); 3367 if (ret) 3368 return ret; 3369 3370 mutex_lock(&cgroup_mutex); 3371 3372 list_add_tail(&cfts->node, &ss->cfts); 3373 ret = cgroup_apply_cftypes(cfts, true); 3374 if (ret) 3375 cgroup_rm_cftypes_locked(cfts); 3376 3377 mutex_unlock(&cgroup_mutex); 3378 return ret; 3379 } 3380 3381 /** 3382 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy 3383 * @ss: target cgroup subsystem 3384 * @cfts: zero-length name terminated array of cftypes 3385 * 3386 * Similar to cgroup_add_cftypes() but the added files are only used for 3387 * the default hierarchy. 3388 */ 3389 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 3390 { 3391 struct cftype *cft; 3392 3393 for (cft = cfts; cft && cft->name[0] != '\0'; cft++) 3394 cft->flags |= __CFTYPE_ONLY_ON_DFL; 3395 return cgroup_add_cftypes(ss, cfts); 3396 } 3397 3398 /** 3399 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies 3400 * @ss: target cgroup subsystem 3401 * @cfts: zero-length name terminated array of cftypes 3402 * 3403 * Similar to cgroup_add_cftypes() but the added files are only used for 3404 * the legacy hierarchies. 3405 */ 3406 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 3407 { 3408 struct cftype *cft; 3409 3410 for (cft = cfts; cft && cft->name[0] != '\0'; cft++) 3411 cft->flags |= __CFTYPE_NOT_ON_DFL; 3412 return cgroup_add_cftypes(ss, cfts); 3413 } 3414 3415 /** 3416 * cgroup_file_notify - generate a file modified event for a cgroup_file 3417 * @cfile: target cgroup_file 3418 * 3419 * @cfile must have been obtained by setting cftype->file_offset. 3420 */ 3421 void cgroup_file_notify(struct cgroup_file *cfile) 3422 { 3423 unsigned long flags; 3424 3425 spin_lock_irqsave(&cgroup_file_kn_lock, flags); 3426 if (cfile->kn) 3427 kernfs_notify(cfile->kn); 3428 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags); 3429 } 3430 3431 /** 3432 * css_next_child - find the next child of a given css 3433 * @pos: the current position (%NULL to initiate traversal) 3434 * @parent: css whose children to walk 3435 * 3436 * This function returns the next child of @parent and should be called 3437 * under either cgroup_mutex or RCU read lock. The only requirement is 3438 * that @parent and @pos are accessible. The next sibling is guaranteed to 3439 * be returned regardless of their states. 3440 * 3441 * If a subsystem synchronizes ->css_online() and the start of iteration, a 3442 * css which finished ->css_online() is guaranteed to be visible in the 3443 * future iterations and will stay visible until the last reference is put. 3444 * A css which hasn't finished ->css_online() or already finished 3445 * ->css_offline() may show up during traversal. It's each subsystem's 3446 * responsibility to synchronize against on/offlining. 3447 */ 3448 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos, 3449 struct cgroup_subsys_state *parent) 3450 { 3451 struct cgroup_subsys_state *next; 3452 3453 cgroup_assert_mutex_or_rcu_locked(); 3454 3455 /* 3456 * @pos could already have been unlinked from the sibling list. 3457 * Once a cgroup is removed, its ->sibling.next is no longer 3458 * updated when its next sibling changes. CSS_RELEASED is set when 3459 * @pos is taken off list, at which time its next pointer is valid, 3460 * and, as releases are serialized, the one pointed to by the next 3461 * pointer is guaranteed to not have started release yet. This 3462 * implies that if we observe !CSS_RELEASED on @pos in this RCU 3463 * critical section, the one pointed to by its next pointer is 3464 * guaranteed to not have finished its RCU grace period even if we 3465 * have dropped rcu_read_lock() inbetween iterations. 3466 * 3467 * If @pos has CSS_RELEASED set, its next pointer can't be 3468 * dereferenced; however, as each css is given a monotonically 3469 * increasing unique serial number and always appended to the 3470 * sibling list, the next one can be found by walking the parent's 3471 * children until the first css with higher serial number than 3472 * @pos's. While this path can be slower, it happens iff iteration 3473 * races against release and the race window is very small. 3474 */ 3475 if (!pos) { 3476 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling); 3477 } else if (likely(!(pos->flags & CSS_RELEASED))) { 3478 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling); 3479 } else { 3480 list_for_each_entry_rcu(next, &parent->children, sibling) 3481 if (next->serial_nr > pos->serial_nr) 3482 break; 3483 } 3484 3485 /* 3486 * @next, if not pointing to the head, can be dereferenced and is 3487 * the next sibling. 3488 */ 3489 if (&next->sibling != &parent->children) 3490 return next; 3491 return NULL; 3492 } 3493 3494 /** 3495 * css_next_descendant_pre - find the next descendant for pre-order walk 3496 * @pos: the current position (%NULL to initiate traversal) 3497 * @root: css whose descendants to walk 3498 * 3499 * To be used by css_for_each_descendant_pre(). Find the next descendant 3500 * to visit for pre-order traversal of @root's descendants. @root is 3501 * included in the iteration and the first node to be visited. 3502 * 3503 * While this function requires cgroup_mutex or RCU read locking, it 3504 * doesn't require the whole traversal to be contained in a single critical 3505 * section. This function will return the correct next descendant as long 3506 * as both @pos and @root are accessible and @pos is a descendant of @root. 3507 * 3508 * If a subsystem synchronizes ->css_online() and the start of iteration, a 3509 * css which finished ->css_online() is guaranteed to be visible in the 3510 * future iterations and will stay visible until the last reference is put. 3511 * A css which hasn't finished ->css_online() or already finished 3512 * ->css_offline() may show up during traversal. It's each subsystem's 3513 * responsibility to synchronize against on/offlining. 3514 */ 3515 struct cgroup_subsys_state * 3516 css_next_descendant_pre(struct cgroup_subsys_state *pos, 3517 struct cgroup_subsys_state *root) 3518 { 3519 struct cgroup_subsys_state *next; 3520 3521 cgroup_assert_mutex_or_rcu_locked(); 3522 3523 /* if first iteration, visit @root */ 3524 if (!pos) 3525 return root; 3526 3527 /* visit the first child if exists */ 3528 next = css_next_child(NULL, pos); 3529 if (next) 3530 return next; 3531 3532 /* no child, visit my or the closest ancestor's next sibling */ 3533 while (pos != root) { 3534 next = css_next_child(pos, pos->parent); 3535 if (next) 3536 return next; 3537 pos = pos->parent; 3538 } 3539 3540 return NULL; 3541 } 3542 3543 /** 3544 * css_rightmost_descendant - return the rightmost descendant of a css 3545 * @pos: css of interest 3546 * 3547 * Return the rightmost descendant of @pos. If there's no descendant, @pos 3548 * is returned. This can be used during pre-order traversal to skip 3549 * subtree of @pos. 3550 * 3551 * While this function requires cgroup_mutex or RCU read locking, it 3552 * doesn't require the whole traversal to be contained in a single critical 3553 * section. This function will return the correct rightmost descendant as 3554 * long as @pos is accessible. 3555 */ 3556 struct cgroup_subsys_state * 3557 css_rightmost_descendant(struct cgroup_subsys_state *pos) 3558 { 3559 struct cgroup_subsys_state *last, *tmp; 3560 3561 cgroup_assert_mutex_or_rcu_locked(); 3562 3563 do { 3564 last = pos; 3565 /* ->prev isn't RCU safe, walk ->next till the end */ 3566 pos = NULL; 3567 css_for_each_child(tmp, last) 3568 pos = tmp; 3569 } while (pos); 3570 3571 return last; 3572 } 3573 3574 static struct cgroup_subsys_state * 3575 css_leftmost_descendant(struct cgroup_subsys_state *pos) 3576 { 3577 struct cgroup_subsys_state *last; 3578 3579 do { 3580 last = pos; 3581 pos = css_next_child(NULL, pos); 3582 } while (pos); 3583 3584 return last; 3585 } 3586 3587 /** 3588 * css_next_descendant_post - find the next descendant for post-order walk 3589 * @pos: the current position (%NULL to initiate traversal) 3590 * @root: css whose descendants to walk 3591 * 3592 * To be used by css_for_each_descendant_post(). Find the next descendant 3593 * to visit for post-order traversal of @root's descendants. @root is 3594 * included in the iteration and the last node to be visited. 3595 * 3596 * While this function requires cgroup_mutex or RCU read locking, it 3597 * doesn't require the whole traversal to be contained in a single critical 3598 * section. This function will return the correct next descendant as long 3599 * as both @pos and @cgroup are accessible and @pos is a descendant of 3600 * @cgroup. 3601 * 3602 * If a subsystem synchronizes ->css_online() and the start of iteration, a 3603 * css which finished ->css_online() is guaranteed to be visible in the 3604 * future iterations and will stay visible until the last reference is put. 3605 * A css which hasn't finished ->css_online() or already finished 3606 * ->css_offline() may show up during traversal. It's each subsystem's 3607 * responsibility to synchronize against on/offlining. 3608 */ 3609 struct cgroup_subsys_state * 3610 css_next_descendant_post(struct cgroup_subsys_state *pos, 3611 struct cgroup_subsys_state *root) 3612 { 3613 struct cgroup_subsys_state *next; 3614 3615 cgroup_assert_mutex_or_rcu_locked(); 3616 3617 /* if first iteration, visit leftmost descendant which may be @root */ 3618 if (!pos) 3619 return css_leftmost_descendant(root); 3620 3621 /* if we visited @root, we're done */ 3622 if (pos == root) 3623 return NULL; 3624 3625 /* if there's an unvisited sibling, visit its leftmost descendant */ 3626 next = css_next_child(pos, pos->parent); 3627 if (next) 3628 return css_leftmost_descendant(next); 3629 3630 /* no sibling left, visit parent */ 3631 return pos->parent; 3632 } 3633 3634 /** 3635 * css_has_online_children - does a css have online children 3636 * @css: the target css 3637 * 3638 * Returns %true if @css has any online children; otherwise, %false. This 3639 * function can be called from any context but the caller is responsible 3640 * for synchronizing against on/offlining as necessary. 3641 */ 3642 bool css_has_online_children(struct cgroup_subsys_state *css) 3643 { 3644 struct cgroup_subsys_state *child; 3645 bool ret = false; 3646 3647 rcu_read_lock(); 3648 css_for_each_child(child, css) { 3649 if (child->flags & CSS_ONLINE) { 3650 ret = true; 3651 break; 3652 } 3653 } 3654 rcu_read_unlock(); 3655 return ret; 3656 } 3657 3658 /** 3659 * css_task_iter_advance_css_set - advance a task itererator to the next css_set 3660 * @it: the iterator to advance 3661 * 3662 * Advance @it to the next css_set to walk. 3663 */ 3664 static void css_task_iter_advance_css_set(struct css_task_iter *it) 3665 { 3666 struct list_head *l = it->cset_pos; 3667 struct cgrp_cset_link *link; 3668 struct css_set *cset; 3669 3670 lockdep_assert_held(&css_set_lock); 3671 3672 /* Advance to the next non-empty css_set */ 3673 do { 3674 l = l->next; 3675 if (l == it->cset_head) { 3676 it->cset_pos = NULL; 3677 it->task_pos = NULL; 3678 return; 3679 } 3680 3681 if (it->ss) { 3682 cset = container_of(l, struct css_set, 3683 e_cset_node[it->ss->id]); 3684 } else { 3685 link = list_entry(l, struct cgrp_cset_link, cset_link); 3686 cset = link->cset; 3687 } 3688 } while (!css_set_populated(cset)); 3689 3690 it->cset_pos = l; 3691 3692 if (!list_empty(&cset->tasks)) 3693 it->task_pos = cset->tasks.next; 3694 else 3695 it->task_pos = cset->mg_tasks.next; 3696 3697 it->tasks_head = &cset->tasks; 3698 it->mg_tasks_head = &cset->mg_tasks; 3699 3700 /* 3701 * We don't keep css_sets locked across iteration steps and thus 3702 * need to take steps to ensure that iteration can be resumed after 3703 * the lock is re-acquired. Iteration is performed at two levels - 3704 * css_sets and tasks in them. 3705 * 3706 * Once created, a css_set never leaves its cgroup lists, so a 3707 * pinned css_set is guaranteed to stay put and we can resume 3708 * iteration afterwards. 3709 * 3710 * Tasks may leave @cset across iteration steps. This is resolved 3711 * by registering each iterator with the css_set currently being 3712 * walked and making css_set_move_task() advance iterators whose 3713 * next task is leaving. 3714 */ 3715 if (it->cur_cset) { 3716 list_del(&it->iters_node); 3717 put_css_set_locked(it->cur_cset); 3718 } 3719 get_css_set(cset); 3720 it->cur_cset = cset; 3721 list_add(&it->iters_node, &cset->task_iters); 3722 } 3723 3724 static void css_task_iter_advance(struct css_task_iter *it) 3725 { 3726 struct list_head *l = it->task_pos; 3727 3728 lockdep_assert_held(&css_set_lock); 3729 WARN_ON_ONCE(!l); 3730 3731 /* 3732 * Advance iterator to find next entry. cset->tasks is consumed 3733 * first and then ->mg_tasks. After ->mg_tasks, we move onto the 3734 * next cset. 3735 */ 3736 l = l->next; 3737 3738 if (l == it->tasks_head) 3739 l = it->mg_tasks_head->next; 3740 3741 if (l == it->mg_tasks_head) 3742 css_task_iter_advance_css_set(it); 3743 else 3744 it->task_pos = l; 3745 } 3746 3747 /** 3748 * css_task_iter_start - initiate task iteration 3749 * @css: the css to walk tasks of 3750 * @it: the task iterator to use 3751 * 3752 * Initiate iteration through the tasks of @css. The caller can call 3753 * css_task_iter_next() to walk through the tasks until the function 3754 * returns NULL. On completion of iteration, css_task_iter_end() must be 3755 * called. 3756 */ 3757 void css_task_iter_start(struct cgroup_subsys_state *css, 3758 struct css_task_iter *it) 3759 { 3760 /* no one should try to iterate before mounting cgroups */ 3761 WARN_ON_ONCE(!use_task_css_set_links); 3762 3763 memset(it, 0, sizeof(*it)); 3764 3765 spin_lock_irq(&css_set_lock); 3766 3767 it->ss = css->ss; 3768 3769 if (it->ss) 3770 it->cset_pos = &css->cgroup->e_csets[css->ss->id]; 3771 else 3772 it->cset_pos = &css->cgroup->cset_links; 3773 3774 it->cset_head = it->cset_pos; 3775 3776 css_task_iter_advance_css_set(it); 3777 3778 spin_unlock_irq(&css_set_lock); 3779 } 3780 3781 /** 3782 * css_task_iter_next - return the next task for the iterator 3783 * @it: the task iterator being iterated 3784 * 3785 * The "next" function for task iteration. @it should have been 3786 * initialized via css_task_iter_start(). Returns NULL when the iteration 3787 * reaches the end. 3788 */ 3789 struct task_struct *css_task_iter_next(struct css_task_iter *it) 3790 { 3791 if (it->cur_task) { 3792 put_task_struct(it->cur_task); 3793 it->cur_task = NULL; 3794 } 3795 3796 spin_lock_irq(&css_set_lock); 3797 3798 if (it->task_pos) { 3799 it->cur_task = list_entry(it->task_pos, struct task_struct, 3800 cg_list); 3801 get_task_struct(it->cur_task); 3802 css_task_iter_advance(it); 3803 } 3804 3805 spin_unlock_irq(&css_set_lock); 3806 3807 return it->cur_task; 3808 } 3809 3810 /** 3811 * css_task_iter_end - finish task iteration 3812 * @it: the task iterator to finish 3813 * 3814 * Finish task iteration started by css_task_iter_start(). 3815 */ 3816 void css_task_iter_end(struct css_task_iter *it) 3817 { 3818 if (it->cur_cset) { 3819 spin_lock_irq(&css_set_lock); 3820 list_del(&it->iters_node); 3821 put_css_set_locked(it->cur_cset); 3822 spin_unlock_irq(&css_set_lock); 3823 } 3824 3825 if (it->cur_task) 3826 put_task_struct(it->cur_task); 3827 } 3828 3829 static void cgroup_procs_release(struct kernfs_open_file *of) 3830 { 3831 if (of->priv) { 3832 css_task_iter_end(of->priv); 3833 kfree(of->priv); 3834 } 3835 } 3836 3837 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos) 3838 { 3839 struct kernfs_open_file *of = s->private; 3840 struct css_task_iter *it = of->priv; 3841 struct task_struct *task; 3842 3843 do { 3844 task = css_task_iter_next(it); 3845 } while (task && !thread_group_leader(task)); 3846 3847 return task; 3848 } 3849 3850 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos) 3851 { 3852 struct kernfs_open_file *of = s->private; 3853 struct cgroup *cgrp = seq_css(s)->cgroup; 3854 struct css_task_iter *it = of->priv; 3855 3856 /* 3857 * When a seq_file is seeked, it's always traversed sequentially 3858 * from position 0, so we can simply keep iterating on !0 *pos. 3859 */ 3860 if (!it) { 3861 if (WARN_ON_ONCE((*pos)++)) 3862 return ERR_PTR(-EINVAL); 3863 3864 it = kzalloc(sizeof(*it), GFP_KERNEL); 3865 if (!it) 3866 return ERR_PTR(-ENOMEM); 3867 of->priv = it; 3868 css_task_iter_start(&cgrp->self, it); 3869 } else if (!(*pos)++) { 3870 css_task_iter_end(it); 3871 css_task_iter_start(&cgrp->self, it); 3872 } 3873 3874 return cgroup_procs_next(s, NULL, NULL); 3875 } 3876 3877 static int cgroup_procs_show(struct seq_file *s, void *v) 3878 { 3879 seq_printf(s, "%d\n", task_tgid_vnr(v)); 3880 return 0; 3881 } 3882 3883 /* cgroup core interface files for the default hierarchy */ 3884 static struct cftype cgroup_base_files[] = { 3885 { 3886 .name = "cgroup.procs", 3887 .flags = CFTYPE_NS_DELEGATABLE, 3888 .file_offset = offsetof(struct cgroup, procs_file), 3889 .release = cgroup_procs_release, 3890 .seq_start = cgroup_procs_start, 3891 .seq_next = cgroup_procs_next, 3892 .seq_show = cgroup_procs_show, 3893 .write = cgroup_procs_write, 3894 }, 3895 { 3896 .name = "cgroup.controllers", 3897 .seq_show = cgroup_controllers_show, 3898 }, 3899 { 3900 .name = "cgroup.subtree_control", 3901 .flags = CFTYPE_NS_DELEGATABLE, 3902 .seq_show = cgroup_subtree_control_show, 3903 .write = cgroup_subtree_control_write, 3904 }, 3905 { 3906 .name = "cgroup.events", 3907 .flags = CFTYPE_NOT_ON_ROOT, 3908 .file_offset = offsetof(struct cgroup, events_file), 3909 .seq_show = cgroup_events_show, 3910 }, 3911 { } /* terminate */ 3912 }; 3913 3914 /* 3915 * css destruction is four-stage process. 3916 * 3917 * 1. Destruction starts. Killing of the percpu_ref is initiated. 3918 * Implemented in kill_css(). 3919 * 3920 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs 3921 * and thus css_tryget_online() is guaranteed to fail, the css can be 3922 * offlined by invoking offline_css(). After offlining, the base ref is 3923 * put. Implemented in css_killed_work_fn(). 3924 * 3925 * 3. When the percpu_ref reaches zero, the only possible remaining 3926 * accessors are inside RCU read sections. css_release() schedules the 3927 * RCU callback. 3928 * 3929 * 4. After the grace period, the css can be freed. Implemented in 3930 * css_free_work_fn(). 3931 * 3932 * It is actually hairier because both step 2 and 4 require process context 3933 * and thus involve punting to css->destroy_work adding two additional 3934 * steps to the already complex sequence. 3935 */ 3936 static void css_free_work_fn(struct work_struct *work) 3937 { 3938 struct cgroup_subsys_state *css = 3939 container_of(work, struct cgroup_subsys_state, destroy_work); 3940 struct cgroup_subsys *ss = css->ss; 3941 struct cgroup *cgrp = css->cgroup; 3942 3943 percpu_ref_exit(&css->refcnt); 3944 3945 if (ss) { 3946 /* css free path */ 3947 struct cgroup_subsys_state *parent = css->parent; 3948 int id = css->id; 3949 3950 ss->css_free(css); 3951 cgroup_idr_remove(&ss->css_idr, id); 3952 cgroup_put(cgrp); 3953 3954 if (parent) 3955 css_put(parent); 3956 } else { 3957 /* cgroup free path */ 3958 atomic_dec(&cgrp->root->nr_cgrps); 3959 cgroup1_pidlist_destroy_all(cgrp); 3960 cancel_work_sync(&cgrp->release_agent_work); 3961 3962 if (cgroup_parent(cgrp)) { 3963 /* 3964 * We get a ref to the parent, and put the ref when 3965 * this cgroup is being freed, so it's guaranteed 3966 * that the parent won't be destroyed before its 3967 * children. 3968 */ 3969 cgroup_put(cgroup_parent(cgrp)); 3970 kernfs_put(cgrp->kn); 3971 kfree(cgrp); 3972 } else { 3973 /* 3974 * This is root cgroup's refcnt reaching zero, 3975 * which indicates that the root should be 3976 * released. 3977 */ 3978 cgroup_destroy_root(cgrp->root); 3979 } 3980 } 3981 } 3982 3983 static void css_free_rcu_fn(struct rcu_head *rcu_head) 3984 { 3985 struct cgroup_subsys_state *css = 3986 container_of(rcu_head, struct cgroup_subsys_state, rcu_head); 3987 3988 INIT_WORK(&css->destroy_work, css_free_work_fn); 3989 queue_work(cgroup_destroy_wq, &css->destroy_work); 3990 } 3991 3992 static void css_release_work_fn(struct work_struct *work) 3993 { 3994 struct cgroup_subsys_state *css = 3995 container_of(work, struct cgroup_subsys_state, destroy_work); 3996 struct cgroup_subsys *ss = css->ss; 3997 struct cgroup *cgrp = css->cgroup; 3998 3999 mutex_lock(&cgroup_mutex); 4000 4001 css->flags |= CSS_RELEASED; 4002 list_del_rcu(&css->sibling); 4003 4004 if (ss) { 4005 /* css release path */ 4006 cgroup_idr_replace(&ss->css_idr, NULL, css->id); 4007 if (ss->css_released) 4008 ss->css_released(css); 4009 } else { 4010 /* cgroup release path */ 4011 trace_cgroup_release(cgrp); 4012 4013 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id); 4014 cgrp->id = -1; 4015 4016 /* 4017 * There are two control paths which try to determine 4018 * cgroup from dentry without going through kernfs - 4019 * cgroupstats_build() and css_tryget_online_from_dir(). 4020 * Those are supported by RCU protecting clearing of 4021 * cgrp->kn->priv backpointer. 4022 */ 4023 if (cgrp->kn) 4024 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, 4025 NULL); 4026 4027 cgroup_bpf_put(cgrp); 4028 } 4029 4030 mutex_unlock(&cgroup_mutex); 4031 4032 call_rcu(&css->rcu_head, css_free_rcu_fn); 4033 } 4034 4035 static void css_release(struct percpu_ref *ref) 4036 { 4037 struct cgroup_subsys_state *css = 4038 container_of(ref, struct cgroup_subsys_state, refcnt); 4039 4040 INIT_WORK(&css->destroy_work, css_release_work_fn); 4041 queue_work(cgroup_destroy_wq, &css->destroy_work); 4042 } 4043 4044 static void init_and_link_css(struct cgroup_subsys_state *css, 4045 struct cgroup_subsys *ss, struct cgroup *cgrp) 4046 { 4047 lockdep_assert_held(&cgroup_mutex); 4048 4049 cgroup_get_live(cgrp); 4050 4051 memset(css, 0, sizeof(*css)); 4052 css->cgroup = cgrp; 4053 css->ss = ss; 4054 css->id = -1; 4055 INIT_LIST_HEAD(&css->sibling); 4056 INIT_LIST_HEAD(&css->children); 4057 css->serial_nr = css_serial_nr_next++; 4058 atomic_set(&css->online_cnt, 0); 4059 4060 if (cgroup_parent(cgrp)) { 4061 css->parent = cgroup_css(cgroup_parent(cgrp), ss); 4062 css_get(css->parent); 4063 } 4064 4065 BUG_ON(cgroup_css(cgrp, ss)); 4066 } 4067 4068 /* invoke ->css_online() on a new CSS and mark it online if successful */ 4069 static int online_css(struct cgroup_subsys_state *css) 4070 { 4071 struct cgroup_subsys *ss = css->ss; 4072 int ret = 0; 4073 4074 lockdep_assert_held(&cgroup_mutex); 4075 4076 if (ss->css_online) 4077 ret = ss->css_online(css); 4078 if (!ret) { 4079 css->flags |= CSS_ONLINE; 4080 rcu_assign_pointer(css->cgroup->subsys[ss->id], css); 4081 4082 atomic_inc(&css->online_cnt); 4083 if (css->parent) 4084 atomic_inc(&css->parent->online_cnt); 4085 } 4086 return ret; 4087 } 4088 4089 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */ 4090 static void offline_css(struct cgroup_subsys_state *css) 4091 { 4092 struct cgroup_subsys *ss = css->ss; 4093 4094 lockdep_assert_held(&cgroup_mutex); 4095 4096 if (!(css->flags & CSS_ONLINE)) 4097 return; 4098 4099 if (ss->css_reset) 4100 ss->css_reset(css); 4101 4102 if (ss->css_offline) 4103 ss->css_offline(css); 4104 4105 css->flags &= ~CSS_ONLINE; 4106 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL); 4107 4108 wake_up_all(&css->cgroup->offline_waitq); 4109 } 4110 4111 /** 4112 * css_create - create a cgroup_subsys_state 4113 * @cgrp: the cgroup new css will be associated with 4114 * @ss: the subsys of new css 4115 * 4116 * Create a new css associated with @cgrp - @ss pair. On success, the new 4117 * css is online and installed in @cgrp. This function doesn't create the 4118 * interface files. Returns 0 on success, -errno on failure. 4119 */ 4120 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp, 4121 struct cgroup_subsys *ss) 4122 { 4123 struct cgroup *parent = cgroup_parent(cgrp); 4124 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss); 4125 struct cgroup_subsys_state *css; 4126 int err; 4127 4128 lockdep_assert_held(&cgroup_mutex); 4129 4130 css = ss->css_alloc(parent_css); 4131 if (!css) 4132 css = ERR_PTR(-ENOMEM); 4133 if (IS_ERR(css)) 4134 return css; 4135 4136 init_and_link_css(css, ss, cgrp); 4137 4138 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL); 4139 if (err) 4140 goto err_free_css; 4141 4142 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL); 4143 if (err < 0) 4144 goto err_free_css; 4145 css->id = err; 4146 4147 /* @css is ready to be brought online now, make it visible */ 4148 list_add_tail_rcu(&css->sibling, &parent_css->children); 4149 cgroup_idr_replace(&ss->css_idr, css, css->id); 4150 4151 err = online_css(css); 4152 if (err) 4153 goto err_list_del; 4154 4155 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy && 4156 cgroup_parent(parent)) { 4157 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n", 4158 current->comm, current->pid, ss->name); 4159 if (!strcmp(ss->name, "memory")) 4160 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n"); 4161 ss->warned_broken_hierarchy = true; 4162 } 4163 4164 return css; 4165 4166 err_list_del: 4167 list_del_rcu(&css->sibling); 4168 err_free_css: 4169 call_rcu(&css->rcu_head, css_free_rcu_fn); 4170 return ERR_PTR(err); 4171 } 4172 4173 /* 4174 * The returned cgroup is fully initialized including its control mask, but 4175 * it isn't associated with its kernfs_node and doesn't have the control 4176 * mask applied. 4177 */ 4178 static struct cgroup *cgroup_create(struct cgroup *parent) 4179 { 4180 struct cgroup_root *root = parent->root; 4181 struct cgroup *cgrp, *tcgrp; 4182 int level = parent->level + 1; 4183 int ret; 4184 4185 /* allocate the cgroup and its ID, 0 is reserved for the root */ 4186 cgrp = kzalloc(sizeof(*cgrp) + 4187 sizeof(cgrp->ancestor_ids[0]) * (level + 1), GFP_KERNEL); 4188 if (!cgrp) 4189 return ERR_PTR(-ENOMEM); 4190 4191 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL); 4192 if (ret) 4193 goto out_free_cgrp; 4194 4195 /* 4196 * Temporarily set the pointer to NULL, so idr_find() won't return 4197 * a half-baked cgroup. 4198 */ 4199 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL); 4200 if (cgrp->id < 0) { 4201 ret = -ENOMEM; 4202 goto out_cancel_ref; 4203 } 4204 4205 init_cgroup_housekeeping(cgrp); 4206 4207 cgrp->self.parent = &parent->self; 4208 cgrp->root = root; 4209 cgrp->level = level; 4210 4211 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) 4212 cgrp->ancestor_ids[tcgrp->level] = tcgrp->id; 4213 4214 if (notify_on_release(parent)) 4215 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags); 4216 4217 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags)) 4218 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags); 4219 4220 cgrp->self.serial_nr = css_serial_nr_next++; 4221 4222 /* allocation complete, commit to creation */ 4223 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children); 4224 atomic_inc(&root->nr_cgrps); 4225 cgroup_get_live(parent); 4226 4227 /* 4228 * @cgrp is now fully operational. If something fails after this 4229 * point, it'll be released via the normal destruction path. 4230 */ 4231 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id); 4232 4233 /* 4234 * On the default hierarchy, a child doesn't automatically inherit 4235 * subtree_control from the parent. Each is configured manually. 4236 */ 4237 if (!cgroup_on_dfl(cgrp)) 4238 cgrp->subtree_control = cgroup_control(cgrp); 4239 4240 if (parent) 4241 cgroup_bpf_inherit(cgrp, parent); 4242 4243 cgroup_propagate_control(cgrp); 4244 4245 return cgrp; 4246 4247 out_cancel_ref: 4248 percpu_ref_exit(&cgrp->self.refcnt); 4249 out_free_cgrp: 4250 kfree(cgrp); 4251 return ERR_PTR(ret); 4252 } 4253 4254 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode) 4255 { 4256 struct cgroup *parent, *cgrp; 4257 struct kernfs_node *kn; 4258 int ret; 4259 4260 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */ 4261 if (strchr(name, '\n')) 4262 return -EINVAL; 4263 4264 parent = cgroup_kn_lock_live(parent_kn, false); 4265 if (!parent) 4266 return -ENODEV; 4267 4268 cgrp = cgroup_create(parent); 4269 if (IS_ERR(cgrp)) { 4270 ret = PTR_ERR(cgrp); 4271 goto out_unlock; 4272 } 4273 4274 /* create the directory */ 4275 kn = kernfs_create_dir(parent->kn, name, mode, cgrp); 4276 if (IS_ERR(kn)) { 4277 ret = PTR_ERR(kn); 4278 goto out_destroy; 4279 } 4280 cgrp->kn = kn; 4281 4282 /* 4283 * This extra ref will be put in cgroup_free_fn() and guarantees 4284 * that @cgrp->kn is always accessible. 4285 */ 4286 kernfs_get(kn); 4287 4288 ret = cgroup_kn_set_ugid(kn); 4289 if (ret) 4290 goto out_destroy; 4291 4292 ret = css_populate_dir(&cgrp->self); 4293 if (ret) 4294 goto out_destroy; 4295 4296 ret = cgroup_apply_control_enable(cgrp); 4297 if (ret) 4298 goto out_destroy; 4299 4300 trace_cgroup_mkdir(cgrp); 4301 4302 /* let's create and online css's */ 4303 kernfs_activate(kn); 4304 4305 ret = 0; 4306 goto out_unlock; 4307 4308 out_destroy: 4309 cgroup_destroy_locked(cgrp); 4310 out_unlock: 4311 cgroup_kn_unlock(parent_kn); 4312 return ret; 4313 } 4314 4315 /* 4316 * This is called when the refcnt of a css is confirmed to be killed. 4317 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to 4318 * initate destruction and put the css ref from kill_css(). 4319 */ 4320 static void css_killed_work_fn(struct work_struct *work) 4321 { 4322 struct cgroup_subsys_state *css = 4323 container_of(work, struct cgroup_subsys_state, destroy_work); 4324 4325 mutex_lock(&cgroup_mutex); 4326 4327 do { 4328 offline_css(css); 4329 css_put(css); 4330 /* @css can't go away while we're holding cgroup_mutex */ 4331 css = css->parent; 4332 } while (css && atomic_dec_and_test(&css->online_cnt)); 4333 4334 mutex_unlock(&cgroup_mutex); 4335 } 4336 4337 /* css kill confirmation processing requires process context, bounce */ 4338 static void css_killed_ref_fn(struct percpu_ref *ref) 4339 { 4340 struct cgroup_subsys_state *css = 4341 container_of(ref, struct cgroup_subsys_state, refcnt); 4342 4343 if (atomic_dec_and_test(&css->online_cnt)) { 4344 INIT_WORK(&css->destroy_work, css_killed_work_fn); 4345 queue_work(cgroup_destroy_wq, &css->destroy_work); 4346 } 4347 } 4348 4349 /** 4350 * kill_css - destroy a css 4351 * @css: css to destroy 4352 * 4353 * This function initiates destruction of @css by removing cgroup interface 4354 * files and putting its base reference. ->css_offline() will be invoked 4355 * asynchronously once css_tryget_online() is guaranteed to fail and when 4356 * the reference count reaches zero, @css will be released. 4357 */ 4358 static void kill_css(struct cgroup_subsys_state *css) 4359 { 4360 lockdep_assert_held(&cgroup_mutex); 4361 4362 if (css->flags & CSS_DYING) 4363 return; 4364 4365 css->flags |= CSS_DYING; 4366 4367 /* 4368 * This must happen before css is disassociated with its cgroup. 4369 * See seq_css() for details. 4370 */ 4371 css_clear_dir(css); 4372 4373 /* 4374 * Killing would put the base ref, but we need to keep it alive 4375 * until after ->css_offline(). 4376 */ 4377 css_get(css); 4378 4379 /* 4380 * cgroup core guarantees that, by the time ->css_offline() is 4381 * invoked, no new css reference will be given out via 4382 * css_tryget_online(). We can't simply call percpu_ref_kill() and 4383 * proceed to offlining css's because percpu_ref_kill() doesn't 4384 * guarantee that the ref is seen as killed on all CPUs on return. 4385 * 4386 * Use percpu_ref_kill_and_confirm() to get notifications as each 4387 * css is confirmed to be seen as killed on all CPUs. 4388 */ 4389 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn); 4390 } 4391 4392 /** 4393 * cgroup_destroy_locked - the first stage of cgroup destruction 4394 * @cgrp: cgroup to be destroyed 4395 * 4396 * css's make use of percpu refcnts whose killing latency shouldn't be 4397 * exposed to userland and are RCU protected. Also, cgroup core needs to 4398 * guarantee that css_tryget_online() won't succeed by the time 4399 * ->css_offline() is invoked. To satisfy all the requirements, 4400 * destruction is implemented in the following two steps. 4401 * 4402 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all 4403 * userland visible parts and start killing the percpu refcnts of 4404 * css's. Set up so that the next stage will be kicked off once all 4405 * the percpu refcnts are confirmed to be killed. 4406 * 4407 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the 4408 * rest of destruction. Once all cgroup references are gone, the 4409 * cgroup is RCU-freed. 4410 * 4411 * This function implements s1. After this step, @cgrp is gone as far as 4412 * the userland is concerned and a new cgroup with the same name may be 4413 * created. As cgroup doesn't care about the names internally, this 4414 * doesn't cause any problem. 4415 */ 4416 static int cgroup_destroy_locked(struct cgroup *cgrp) 4417 __releases(&cgroup_mutex) __acquires(&cgroup_mutex) 4418 { 4419 struct cgroup_subsys_state *css; 4420 struct cgrp_cset_link *link; 4421 int ssid; 4422 4423 lockdep_assert_held(&cgroup_mutex); 4424 4425 /* 4426 * Only migration can raise populated from zero and we're already 4427 * holding cgroup_mutex. 4428 */ 4429 if (cgroup_is_populated(cgrp)) 4430 return -EBUSY; 4431 4432 /* 4433 * Make sure there's no live children. We can't test emptiness of 4434 * ->self.children as dead children linger on it while being 4435 * drained; otherwise, "rmdir parent/child parent" may fail. 4436 */ 4437 if (css_has_online_children(&cgrp->self)) 4438 return -EBUSY; 4439 4440 /* 4441 * Mark @cgrp and the associated csets dead. The former prevents 4442 * further task migration and child creation by disabling 4443 * cgroup_lock_live_group(). The latter makes the csets ignored by 4444 * the migration path. 4445 */ 4446 cgrp->self.flags &= ~CSS_ONLINE; 4447 4448 spin_lock_irq(&css_set_lock); 4449 list_for_each_entry(link, &cgrp->cset_links, cset_link) 4450 link->cset->dead = true; 4451 spin_unlock_irq(&css_set_lock); 4452 4453 /* initiate massacre of all css's */ 4454 for_each_css(css, ssid, cgrp) 4455 kill_css(css); 4456 4457 /* 4458 * Remove @cgrp directory along with the base files. @cgrp has an 4459 * extra ref on its kn. 4460 */ 4461 kernfs_remove(cgrp->kn); 4462 4463 cgroup1_check_for_release(cgroup_parent(cgrp)); 4464 4465 /* put the base reference */ 4466 percpu_ref_kill(&cgrp->self.refcnt); 4467 4468 return 0; 4469 }; 4470 4471 int cgroup_rmdir(struct kernfs_node *kn) 4472 { 4473 struct cgroup *cgrp; 4474 int ret = 0; 4475 4476 cgrp = cgroup_kn_lock_live(kn, false); 4477 if (!cgrp) 4478 return 0; 4479 4480 ret = cgroup_destroy_locked(cgrp); 4481 4482 if (!ret) 4483 trace_cgroup_rmdir(cgrp); 4484 4485 cgroup_kn_unlock(kn); 4486 return ret; 4487 } 4488 4489 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = { 4490 .show_options = cgroup_show_options, 4491 .remount_fs = cgroup_remount, 4492 .mkdir = cgroup_mkdir, 4493 .rmdir = cgroup_rmdir, 4494 .show_path = cgroup_show_path, 4495 }; 4496 4497 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early) 4498 { 4499 struct cgroup_subsys_state *css; 4500 4501 pr_debug("Initializing cgroup subsys %s\n", ss->name); 4502 4503 mutex_lock(&cgroup_mutex); 4504 4505 idr_init(&ss->css_idr); 4506 INIT_LIST_HEAD(&ss->cfts); 4507 4508 /* Create the root cgroup state for this subsystem */ 4509 ss->root = &cgrp_dfl_root; 4510 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss)); 4511 /* We don't handle early failures gracefully */ 4512 BUG_ON(IS_ERR(css)); 4513 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp); 4514 4515 /* 4516 * Root csses are never destroyed and we can't initialize 4517 * percpu_ref during early init. Disable refcnting. 4518 */ 4519 css->flags |= CSS_NO_REF; 4520 4521 if (early) { 4522 /* allocation can't be done safely during early init */ 4523 css->id = 1; 4524 } else { 4525 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL); 4526 BUG_ON(css->id < 0); 4527 } 4528 4529 /* Update the init_css_set to contain a subsys 4530 * pointer to this state - since the subsystem is 4531 * newly registered, all tasks and hence the 4532 * init_css_set is in the subsystem's root cgroup. */ 4533 init_css_set.subsys[ss->id] = css; 4534 4535 have_fork_callback |= (bool)ss->fork << ss->id; 4536 have_exit_callback |= (bool)ss->exit << ss->id; 4537 have_free_callback |= (bool)ss->free << ss->id; 4538 have_canfork_callback |= (bool)ss->can_fork << ss->id; 4539 4540 /* At system boot, before all subsystems have been 4541 * registered, no tasks have been forked, so we don't 4542 * need to invoke fork callbacks here. */ 4543 BUG_ON(!list_empty(&init_task.tasks)); 4544 4545 BUG_ON(online_css(css)); 4546 4547 mutex_unlock(&cgroup_mutex); 4548 } 4549 4550 /** 4551 * cgroup_init_early - cgroup initialization at system boot 4552 * 4553 * Initialize cgroups at system boot, and initialize any 4554 * subsystems that request early init. 4555 */ 4556 int __init cgroup_init_early(void) 4557 { 4558 static struct cgroup_sb_opts __initdata opts; 4559 struct cgroup_subsys *ss; 4560 int i; 4561 4562 init_cgroup_root(&cgrp_dfl_root, &opts); 4563 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF; 4564 4565 RCU_INIT_POINTER(init_task.cgroups, &init_css_set); 4566 4567 for_each_subsys(ss, i) { 4568 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id, 4569 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n", 4570 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free, 4571 ss->id, ss->name); 4572 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN, 4573 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]); 4574 4575 ss->id = i; 4576 ss->name = cgroup_subsys_name[i]; 4577 if (!ss->legacy_name) 4578 ss->legacy_name = cgroup_subsys_name[i]; 4579 4580 if (ss->early_init) 4581 cgroup_init_subsys(ss, true); 4582 } 4583 return 0; 4584 } 4585 4586 static u16 cgroup_disable_mask __initdata; 4587 4588 /** 4589 * cgroup_init - cgroup initialization 4590 * 4591 * Register cgroup filesystem and /proc file, and initialize 4592 * any subsystems that didn't request early init. 4593 */ 4594 int __init cgroup_init(void) 4595 { 4596 struct cgroup_subsys *ss; 4597 int ssid; 4598 4599 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16); 4600 BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem)); 4601 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files)); 4602 BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files)); 4603 4604 /* 4605 * The latency of the synchronize_sched() is too high for cgroups, 4606 * avoid it at the cost of forcing all readers into the slow path. 4607 */ 4608 rcu_sync_enter_start(&cgroup_threadgroup_rwsem.rss); 4609 4610 get_user_ns(init_cgroup_ns.user_ns); 4611 4612 mutex_lock(&cgroup_mutex); 4613 4614 /* 4615 * Add init_css_set to the hash table so that dfl_root can link to 4616 * it during init. 4617 */ 4618 hash_add(css_set_table, &init_css_set.hlist, 4619 css_set_hash(init_css_set.subsys)); 4620 4621 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0, 0)); 4622 4623 mutex_unlock(&cgroup_mutex); 4624 4625 for_each_subsys(ss, ssid) { 4626 if (ss->early_init) { 4627 struct cgroup_subsys_state *css = 4628 init_css_set.subsys[ss->id]; 4629 4630 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, 4631 GFP_KERNEL); 4632 BUG_ON(css->id < 0); 4633 } else { 4634 cgroup_init_subsys(ss, false); 4635 } 4636 4637 list_add_tail(&init_css_set.e_cset_node[ssid], 4638 &cgrp_dfl_root.cgrp.e_csets[ssid]); 4639 4640 /* 4641 * Setting dfl_root subsys_mask needs to consider the 4642 * disabled flag and cftype registration needs kmalloc, 4643 * both of which aren't available during early_init. 4644 */ 4645 if (cgroup_disable_mask & (1 << ssid)) { 4646 static_branch_disable(cgroup_subsys_enabled_key[ssid]); 4647 printk(KERN_INFO "Disabling %s control group subsystem\n", 4648 ss->name); 4649 continue; 4650 } 4651 4652 if (cgroup1_ssid_disabled(ssid)) 4653 printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n", 4654 ss->name); 4655 4656 cgrp_dfl_root.subsys_mask |= 1 << ss->id; 4657 4658 if (ss->implicit_on_dfl) 4659 cgrp_dfl_implicit_ss_mask |= 1 << ss->id; 4660 else if (!ss->dfl_cftypes) 4661 cgrp_dfl_inhibit_ss_mask |= 1 << ss->id; 4662 4663 if (ss->dfl_cftypes == ss->legacy_cftypes) { 4664 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes)); 4665 } else { 4666 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes)); 4667 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes)); 4668 } 4669 4670 if (ss->bind) 4671 ss->bind(init_css_set.subsys[ssid]); 4672 } 4673 4674 /* init_css_set.subsys[] has been updated, re-hash */ 4675 hash_del(&init_css_set.hlist); 4676 hash_add(css_set_table, &init_css_set.hlist, 4677 css_set_hash(init_css_set.subsys)); 4678 4679 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup")); 4680 WARN_ON(register_filesystem(&cgroup_fs_type)); 4681 WARN_ON(register_filesystem(&cgroup2_fs_type)); 4682 WARN_ON(!proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations)); 4683 4684 return 0; 4685 } 4686 4687 static int __init cgroup_wq_init(void) 4688 { 4689 /* 4690 * There isn't much point in executing destruction path in 4691 * parallel. Good chunk is serialized with cgroup_mutex anyway. 4692 * Use 1 for @max_active. 4693 * 4694 * We would prefer to do this in cgroup_init() above, but that 4695 * is called before init_workqueues(): so leave this until after. 4696 */ 4697 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1); 4698 BUG_ON(!cgroup_destroy_wq); 4699 return 0; 4700 } 4701 core_initcall(cgroup_wq_init); 4702 4703 /* 4704 * proc_cgroup_show() 4705 * - Print task's cgroup paths into seq_file, one line for each hierarchy 4706 * - Used for /proc/<pid>/cgroup. 4707 */ 4708 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns, 4709 struct pid *pid, struct task_struct *tsk) 4710 { 4711 char *buf; 4712 int retval; 4713 struct cgroup_root *root; 4714 4715 retval = -ENOMEM; 4716 buf = kmalloc(PATH_MAX, GFP_KERNEL); 4717 if (!buf) 4718 goto out; 4719 4720 mutex_lock(&cgroup_mutex); 4721 spin_lock_irq(&css_set_lock); 4722 4723 for_each_root(root) { 4724 struct cgroup_subsys *ss; 4725 struct cgroup *cgrp; 4726 int ssid, count = 0; 4727 4728 if (root == &cgrp_dfl_root && !cgrp_dfl_visible) 4729 continue; 4730 4731 seq_printf(m, "%d:", root->hierarchy_id); 4732 if (root != &cgrp_dfl_root) 4733 for_each_subsys(ss, ssid) 4734 if (root->subsys_mask & (1 << ssid)) 4735 seq_printf(m, "%s%s", count++ ? "," : "", 4736 ss->legacy_name); 4737 if (strlen(root->name)) 4738 seq_printf(m, "%sname=%s", count ? "," : "", 4739 root->name); 4740 seq_putc(m, ':'); 4741 4742 cgrp = task_cgroup_from_root(tsk, root); 4743 4744 /* 4745 * On traditional hierarchies, all zombie tasks show up as 4746 * belonging to the root cgroup. On the default hierarchy, 4747 * while a zombie doesn't show up in "cgroup.procs" and 4748 * thus can't be migrated, its /proc/PID/cgroup keeps 4749 * reporting the cgroup it belonged to before exiting. If 4750 * the cgroup is removed before the zombie is reaped, 4751 * " (deleted)" is appended to the cgroup path. 4752 */ 4753 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) { 4754 retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX, 4755 current->nsproxy->cgroup_ns); 4756 if (retval >= PATH_MAX) 4757 retval = -ENAMETOOLONG; 4758 if (retval < 0) 4759 goto out_unlock; 4760 4761 seq_puts(m, buf); 4762 } else { 4763 seq_puts(m, "/"); 4764 } 4765 4766 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp)) 4767 seq_puts(m, " (deleted)\n"); 4768 else 4769 seq_putc(m, '\n'); 4770 } 4771 4772 retval = 0; 4773 out_unlock: 4774 spin_unlock_irq(&css_set_lock); 4775 mutex_unlock(&cgroup_mutex); 4776 kfree(buf); 4777 out: 4778 return retval; 4779 } 4780 4781 /** 4782 * cgroup_fork - initialize cgroup related fields during copy_process() 4783 * @child: pointer to task_struct of forking parent process. 4784 * 4785 * A task is associated with the init_css_set until cgroup_post_fork() 4786 * attaches it to the parent's css_set. Empty cg_list indicates that 4787 * @child isn't holding reference to its css_set. 4788 */ 4789 void cgroup_fork(struct task_struct *child) 4790 { 4791 RCU_INIT_POINTER(child->cgroups, &init_css_set); 4792 INIT_LIST_HEAD(&child->cg_list); 4793 } 4794 4795 /** 4796 * cgroup_can_fork - called on a new task before the process is exposed 4797 * @child: the task in question. 4798 * 4799 * This calls the subsystem can_fork() callbacks. If the can_fork() callback 4800 * returns an error, the fork aborts with that error code. This allows for 4801 * a cgroup subsystem to conditionally allow or deny new forks. 4802 */ 4803 int cgroup_can_fork(struct task_struct *child) 4804 { 4805 struct cgroup_subsys *ss; 4806 int i, j, ret; 4807 4808 do_each_subsys_mask(ss, i, have_canfork_callback) { 4809 ret = ss->can_fork(child); 4810 if (ret) 4811 goto out_revert; 4812 } while_each_subsys_mask(); 4813 4814 return 0; 4815 4816 out_revert: 4817 for_each_subsys(ss, j) { 4818 if (j >= i) 4819 break; 4820 if (ss->cancel_fork) 4821 ss->cancel_fork(child); 4822 } 4823 4824 return ret; 4825 } 4826 4827 /** 4828 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork() 4829 * @child: the task in question 4830 * 4831 * This calls the cancel_fork() callbacks if a fork failed *after* 4832 * cgroup_can_fork() succeded. 4833 */ 4834 void cgroup_cancel_fork(struct task_struct *child) 4835 { 4836 struct cgroup_subsys *ss; 4837 int i; 4838 4839 for_each_subsys(ss, i) 4840 if (ss->cancel_fork) 4841 ss->cancel_fork(child); 4842 } 4843 4844 /** 4845 * cgroup_post_fork - called on a new task after adding it to the task list 4846 * @child: the task in question 4847 * 4848 * Adds the task to the list running through its css_set if necessary and 4849 * call the subsystem fork() callbacks. Has to be after the task is 4850 * visible on the task list in case we race with the first call to 4851 * cgroup_task_iter_start() - to guarantee that the new task ends up on its 4852 * list. 4853 */ 4854 void cgroup_post_fork(struct task_struct *child) 4855 { 4856 struct cgroup_subsys *ss; 4857 int i; 4858 4859 /* 4860 * This may race against cgroup_enable_task_cg_lists(). As that 4861 * function sets use_task_css_set_links before grabbing 4862 * tasklist_lock and we just went through tasklist_lock to add 4863 * @child, it's guaranteed that either we see the set 4864 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees 4865 * @child during its iteration. 4866 * 4867 * If we won the race, @child is associated with %current's 4868 * css_set. Grabbing css_set_lock guarantees both that the 4869 * association is stable, and, on completion of the parent's 4870 * migration, @child is visible in the source of migration or 4871 * already in the destination cgroup. This guarantee is necessary 4872 * when implementing operations which need to migrate all tasks of 4873 * a cgroup to another. 4874 * 4875 * Note that if we lose to cgroup_enable_task_cg_lists(), @child 4876 * will remain in init_css_set. This is safe because all tasks are 4877 * in the init_css_set before cg_links is enabled and there's no 4878 * operation which transfers all tasks out of init_css_set. 4879 */ 4880 if (use_task_css_set_links) { 4881 struct css_set *cset; 4882 4883 spin_lock_irq(&css_set_lock); 4884 cset = task_css_set(current); 4885 if (list_empty(&child->cg_list)) { 4886 get_css_set(cset); 4887 cset->nr_tasks++; 4888 css_set_move_task(child, NULL, cset, false); 4889 } 4890 spin_unlock_irq(&css_set_lock); 4891 } 4892 4893 /* 4894 * Call ss->fork(). This must happen after @child is linked on 4895 * css_set; otherwise, @child might change state between ->fork() 4896 * and addition to css_set. 4897 */ 4898 do_each_subsys_mask(ss, i, have_fork_callback) { 4899 ss->fork(child); 4900 } while_each_subsys_mask(); 4901 } 4902 4903 /** 4904 * cgroup_exit - detach cgroup from exiting task 4905 * @tsk: pointer to task_struct of exiting process 4906 * 4907 * Description: Detach cgroup from @tsk and release it. 4908 * 4909 * Note that cgroups marked notify_on_release force every task in 4910 * them to take the global cgroup_mutex mutex when exiting. 4911 * This could impact scaling on very large systems. Be reluctant to 4912 * use notify_on_release cgroups where very high task exit scaling 4913 * is required on large systems. 4914 * 4915 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We 4916 * call cgroup_exit() while the task is still competent to handle 4917 * notify_on_release(), then leave the task attached to the root cgroup in 4918 * each hierarchy for the remainder of its exit. No need to bother with 4919 * init_css_set refcnting. init_css_set never goes away and we can't race 4920 * with migration path - PF_EXITING is visible to migration path. 4921 */ 4922 void cgroup_exit(struct task_struct *tsk) 4923 { 4924 struct cgroup_subsys *ss; 4925 struct css_set *cset; 4926 int i; 4927 4928 /* 4929 * Unlink from @tsk from its css_set. As migration path can't race 4930 * with us, we can check css_set and cg_list without synchronization. 4931 */ 4932 cset = task_css_set(tsk); 4933 4934 if (!list_empty(&tsk->cg_list)) { 4935 spin_lock_irq(&css_set_lock); 4936 css_set_move_task(tsk, cset, NULL, false); 4937 cset->nr_tasks--; 4938 spin_unlock_irq(&css_set_lock); 4939 } else { 4940 get_css_set(cset); 4941 } 4942 4943 /* see cgroup_post_fork() for details */ 4944 do_each_subsys_mask(ss, i, have_exit_callback) { 4945 ss->exit(tsk); 4946 } while_each_subsys_mask(); 4947 } 4948 4949 void cgroup_free(struct task_struct *task) 4950 { 4951 struct css_set *cset = task_css_set(task); 4952 struct cgroup_subsys *ss; 4953 int ssid; 4954 4955 do_each_subsys_mask(ss, ssid, have_free_callback) { 4956 ss->free(task); 4957 } while_each_subsys_mask(); 4958 4959 put_css_set(cset); 4960 } 4961 4962 static int __init cgroup_disable(char *str) 4963 { 4964 struct cgroup_subsys *ss; 4965 char *token; 4966 int i; 4967 4968 while ((token = strsep(&str, ",")) != NULL) { 4969 if (!*token) 4970 continue; 4971 4972 for_each_subsys(ss, i) { 4973 if (strcmp(token, ss->name) && 4974 strcmp(token, ss->legacy_name)) 4975 continue; 4976 cgroup_disable_mask |= 1 << i; 4977 } 4978 } 4979 return 1; 4980 } 4981 __setup("cgroup_disable=", cgroup_disable); 4982 4983 /** 4984 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry 4985 * @dentry: directory dentry of interest 4986 * @ss: subsystem of interest 4987 * 4988 * If @dentry is a directory for a cgroup which has @ss enabled on it, try 4989 * to get the corresponding css and return it. If such css doesn't exist 4990 * or can't be pinned, an ERR_PTR value is returned. 4991 */ 4992 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry, 4993 struct cgroup_subsys *ss) 4994 { 4995 struct kernfs_node *kn = kernfs_node_from_dentry(dentry); 4996 struct file_system_type *s_type = dentry->d_sb->s_type; 4997 struct cgroup_subsys_state *css = NULL; 4998 struct cgroup *cgrp; 4999 5000 /* is @dentry a cgroup dir? */ 5001 if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) || 5002 !kn || kernfs_type(kn) != KERNFS_DIR) 5003 return ERR_PTR(-EBADF); 5004 5005 rcu_read_lock(); 5006 5007 /* 5008 * This path doesn't originate from kernfs and @kn could already 5009 * have been or be removed at any point. @kn->priv is RCU 5010 * protected for this access. See css_release_work_fn() for details. 5011 */ 5012 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); 5013 if (cgrp) 5014 css = cgroup_css(cgrp, ss); 5015 5016 if (!css || !css_tryget_online(css)) 5017 css = ERR_PTR(-ENOENT); 5018 5019 rcu_read_unlock(); 5020 return css; 5021 } 5022 5023 /** 5024 * css_from_id - lookup css by id 5025 * @id: the cgroup id 5026 * @ss: cgroup subsys to be looked into 5027 * 5028 * Returns the css if there's valid one with @id, otherwise returns NULL. 5029 * Should be called under rcu_read_lock(). 5030 */ 5031 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss) 5032 { 5033 WARN_ON_ONCE(!rcu_read_lock_held()); 5034 return idr_find(&ss->css_idr, id); 5035 } 5036 5037 /** 5038 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path 5039 * @path: path on the default hierarchy 5040 * 5041 * Find the cgroup at @path on the default hierarchy, increment its 5042 * reference count and return it. Returns pointer to the found cgroup on 5043 * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR) 5044 * if @path points to a non-directory. 5045 */ 5046 struct cgroup *cgroup_get_from_path(const char *path) 5047 { 5048 struct kernfs_node *kn; 5049 struct cgroup *cgrp; 5050 5051 mutex_lock(&cgroup_mutex); 5052 5053 kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path); 5054 if (kn) { 5055 if (kernfs_type(kn) == KERNFS_DIR) { 5056 cgrp = kn->priv; 5057 cgroup_get_live(cgrp); 5058 } else { 5059 cgrp = ERR_PTR(-ENOTDIR); 5060 } 5061 kernfs_put(kn); 5062 } else { 5063 cgrp = ERR_PTR(-ENOENT); 5064 } 5065 5066 mutex_unlock(&cgroup_mutex); 5067 return cgrp; 5068 } 5069 EXPORT_SYMBOL_GPL(cgroup_get_from_path); 5070 5071 /** 5072 * cgroup_get_from_fd - get a cgroup pointer from a fd 5073 * @fd: fd obtained by open(cgroup2_dir) 5074 * 5075 * Find the cgroup from a fd which should be obtained 5076 * by opening a cgroup directory. Returns a pointer to the 5077 * cgroup on success. ERR_PTR is returned if the cgroup 5078 * cannot be found. 5079 */ 5080 struct cgroup *cgroup_get_from_fd(int fd) 5081 { 5082 struct cgroup_subsys_state *css; 5083 struct cgroup *cgrp; 5084 struct file *f; 5085 5086 f = fget_raw(fd); 5087 if (!f) 5088 return ERR_PTR(-EBADF); 5089 5090 css = css_tryget_online_from_dir(f->f_path.dentry, NULL); 5091 fput(f); 5092 if (IS_ERR(css)) 5093 return ERR_CAST(css); 5094 5095 cgrp = css->cgroup; 5096 if (!cgroup_on_dfl(cgrp)) { 5097 cgroup_put(cgrp); 5098 return ERR_PTR(-EBADF); 5099 } 5100 5101 return cgrp; 5102 } 5103 EXPORT_SYMBOL_GPL(cgroup_get_from_fd); 5104 5105 /* 5106 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data 5107 * definition in cgroup-defs.h. 5108 */ 5109 #ifdef CONFIG_SOCK_CGROUP_DATA 5110 5111 #if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID) 5112 5113 DEFINE_SPINLOCK(cgroup_sk_update_lock); 5114 static bool cgroup_sk_alloc_disabled __read_mostly; 5115 5116 void cgroup_sk_alloc_disable(void) 5117 { 5118 if (cgroup_sk_alloc_disabled) 5119 return; 5120 pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n"); 5121 cgroup_sk_alloc_disabled = true; 5122 } 5123 5124 #else 5125 5126 #define cgroup_sk_alloc_disabled false 5127 5128 #endif 5129 5130 void cgroup_sk_alloc(struct sock_cgroup_data *skcd) 5131 { 5132 if (cgroup_sk_alloc_disabled) 5133 return; 5134 5135 /* Socket clone path */ 5136 if (skcd->val) { 5137 /* 5138 * We might be cloning a socket which is left in an empty 5139 * cgroup and the cgroup might have already been rmdir'd. 5140 * Don't use cgroup_get_live(). 5141 */ 5142 cgroup_get(sock_cgroup_ptr(skcd)); 5143 return; 5144 } 5145 5146 rcu_read_lock(); 5147 5148 while (true) { 5149 struct css_set *cset; 5150 5151 cset = task_css_set(current); 5152 if (likely(cgroup_tryget(cset->dfl_cgrp))) { 5153 skcd->val = (unsigned long)cset->dfl_cgrp; 5154 break; 5155 } 5156 cpu_relax(); 5157 } 5158 5159 rcu_read_unlock(); 5160 } 5161 5162 void cgroup_sk_free(struct sock_cgroup_data *skcd) 5163 { 5164 cgroup_put(sock_cgroup_ptr(skcd)); 5165 } 5166 5167 #endif /* CONFIG_SOCK_CGROUP_DATA */ 5168 5169 #ifdef CONFIG_CGROUP_BPF 5170 int cgroup_bpf_update(struct cgroup *cgrp, struct bpf_prog *prog, 5171 enum bpf_attach_type type, bool overridable) 5172 { 5173 struct cgroup *parent = cgroup_parent(cgrp); 5174 int ret; 5175 5176 mutex_lock(&cgroup_mutex); 5177 ret = __cgroup_bpf_update(cgrp, parent, prog, type, overridable); 5178 mutex_unlock(&cgroup_mutex); 5179 return ret; 5180 } 5181 #endif /* CONFIG_CGROUP_BPF */ 5182