xref: /openbmc/linux/kernel/cgroup/cgroup.c (revision 4a3fad70)
1 /*
2  *  Generic process-grouping system.
3  *
4  *  Based originally on the cpuset system, extracted by Paul Menage
5  *  Copyright (C) 2006 Google, Inc
6  *
7  *  Notifications support
8  *  Copyright (C) 2009 Nokia Corporation
9  *  Author: Kirill A. Shutemov
10  *
11  *  Copyright notices from the original cpuset code:
12  *  --------------------------------------------------
13  *  Copyright (C) 2003 BULL SA.
14  *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
15  *
16  *  Portions derived from Patrick Mochel's sysfs code.
17  *  sysfs is Copyright (c) 2001-3 Patrick Mochel
18  *
19  *  2003-10-10 Written by Simon Derr.
20  *  2003-10-22 Updates by Stephen Hemminger.
21  *  2004 May-July Rework by Paul Jackson.
22  *  ---------------------------------------------------
23  *
24  *  This file is subject to the terms and conditions of the GNU General Public
25  *  License.  See the file COPYING in the main directory of the Linux
26  *  distribution for more details.
27  */
28 
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 
31 #include "cgroup-internal.h"
32 
33 #include <linux/cred.h>
34 #include <linux/errno.h>
35 #include <linux/init_task.h>
36 #include <linux/kernel.h>
37 #include <linux/magic.h>
38 #include <linux/mutex.h>
39 #include <linux/mount.h>
40 #include <linux/pagemap.h>
41 #include <linux/proc_fs.h>
42 #include <linux/rcupdate.h>
43 #include <linux/sched.h>
44 #include <linux/sched/task.h>
45 #include <linux/slab.h>
46 #include <linux/spinlock.h>
47 #include <linux/percpu-rwsem.h>
48 #include <linux/string.h>
49 #include <linux/hashtable.h>
50 #include <linux/idr.h>
51 #include <linux/kthread.h>
52 #include <linux/atomic.h>
53 #include <linux/cpuset.h>
54 #include <linux/proc_ns.h>
55 #include <linux/nsproxy.h>
56 #include <linux/file.h>
57 #include <net/sock.h>
58 
59 #define CREATE_TRACE_POINTS
60 #include <trace/events/cgroup.h>
61 
62 #define CGROUP_FILE_NAME_MAX		(MAX_CGROUP_TYPE_NAMELEN +	\
63 					 MAX_CFTYPE_NAME + 2)
64 
65 /*
66  * cgroup_mutex is the master lock.  Any modification to cgroup or its
67  * hierarchy must be performed while holding it.
68  *
69  * css_set_lock protects task->cgroups pointer, the list of css_set
70  * objects, and the chain of tasks off each css_set.
71  *
72  * These locks are exported if CONFIG_PROVE_RCU so that accessors in
73  * cgroup.h can use them for lockdep annotations.
74  */
75 DEFINE_MUTEX(cgroup_mutex);
76 DEFINE_SPINLOCK(css_set_lock);
77 
78 #ifdef CONFIG_PROVE_RCU
79 EXPORT_SYMBOL_GPL(cgroup_mutex);
80 EXPORT_SYMBOL_GPL(css_set_lock);
81 #endif
82 
83 /*
84  * Protects cgroup_idr and css_idr so that IDs can be released without
85  * grabbing cgroup_mutex.
86  */
87 static DEFINE_SPINLOCK(cgroup_idr_lock);
88 
89 /*
90  * Protects cgroup_file->kn for !self csses.  It synchronizes notifications
91  * against file removal/re-creation across css hiding.
92  */
93 static DEFINE_SPINLOCK(cgroup_file_kn_lock);
94 
95 struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
96 
97 #define cgroup_assert_mutex_or_rcu_locked()				\
98 	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
99 			   !lockdep_is_held(&cgroup_mutex),		\
100 			   "cgroup_mutex or RCU read lock required");
101 
102 /*
103  * cgroup destruction makes heavy use of work items and there can be a lot
104  * of concurrent destructions.  Use a separate workqueue so that cgroup
105  * destruction work items don't end up filling up max_active of system_wq
106  * which may lead to deadlock.
107  */
108 static struct workqueue_struct *cgroup_destroy_wq;
109 
110 /* generate an array of cgroup subsystem pointers */
111 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
112 struct cgroup_subsys *cgroup_subsys[] = {
113 #include <linux/cgroup_subsys.h>
114 };
115 #undef SUBSYS
116 
117 /* array of cgroup subsystem names */
118 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
119 static const char *cgroup_subsys_name[] = {
120 #include <linux/cgroup_subsys.h>
121 };
122 #undef SUBSYS
123 
124 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
125 #define SUBSYS(_x)								\
126 	DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key);			\
127 	DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key);			\
128 	EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key);			\
129 	EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
130 #include <linux/cgroup_subsys.h>
131 #undef SUBSYS
132 
133 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
134 static struct static_key_true *cgroup_subsys_enabled_key[] = {
135 #include <linux/cgroup_subsys.h>
136 };
137 #undef SUBSYS
138 
139 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
140 static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
141 #include <linux/cgroup_subsys.h>
142 };
143 #undef SUBSYS
144 
145 static DEFINE_PER_CPU(struct cgroup_cpu_stat, cgrp_dfl_root_cpu_stat);
146 
147 /*
148  * The default hierarchy, reserved for the subsystems that are otherwise
149  * unattached - it never has more than a single cgroup, and all tasks are
150  * part of that cgroup.
151  */
152 struct cgroup_root cgrp_dfl_root = { .cgrp.cpu_stat = &cgrp_dfl_root_cpu_stat };
153 EXPORT_SYMBOL_GPL(cgrp_dfl_root);
154 
155 /*
156  * The default hierarchy always exists but is hidden until mounted for the
157  * first time.  This is for backward compatibility.
158  */
159 static bool cgrp_dfl_visible;
160 
161 /* some controllers are not supported in the default hierarchy */
162 static u16 cgrp_dfl_inhibit_ss_mask;
163 
164 /* some controllers are implicitly enabled on the default hierarchy */
165 static u16 cgrp_dfl_implicit_ss_mask;
166 
167 /* some controllers can be threaded on the default hierarchy */
168 static u16 cgrp_dfl_threaded_ss_mask;
169 
170 /* The list of hierarchy roots */
171 LIST_HEAD(cgroup_roots);
172 static int cgroup_root_count;
173 
174 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
175 static DEFINE_IDR(cgroup_hierarchy_idr);
176 
177 /*
178  * Assign a monotonically increasing serial number to csses.  It guarantees
179  * cgroups with bigger numbers are newer than those with smaller numbers.
180  * Also, as csses are always appended to the parent's ->children list, it
181  * guarantees that sibling csses are always sorted in the ascending serial
182  * number order on the list.  Protected by cgroup_mutex.
183  */
184 static u64 css_serial_nr_next = 1;
185 
186 /*
187  * These bitmasks identify subsystems with specific features to avoid
188  * having to do iterative checks repeatedly.
189  */
190 static u16 have_fork_callback __read_mostly;
191 static u16 have_exit_callback __read_mostly;
192 static u16 have_free_callback __read_mostly;
193 static u16 have_canfork_callback __read_mostly;
194 
195 /* cgroup namespace for init task */
196 struct cgroup_namespace init_cgroup_ns = {
197 	.count		= REFCOUNT_INIT(2),
198 	.user_ns	= &init_user_ns,
199 	.ns.ops		= &cgroupns_operations,
200 	.ns.inum	= PROC_CGROUP_INIT_INO,
201 	.root_cset	= &init_css_set,
202 };
203 
204 static struct file_system_type cgroup2_fs_type;
205 static struct cftype cgroup_base_files[];
206 
207 static int cgroup_apply_control(struct cgroup *cgrp);
208 static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
209 static void css_task_iter_advance(struct css_task_iter *it);
210 static int cgroup_destroy_locked(struct cgroup *cgrp);
211 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
212 					      struct cgroup_subsys *ss);
213 static void css_release(struct percpu_ref *ref);
214 static void kill_css(struct cgroup_subsys_state *css);
215 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
216 			      struct cgroup *cgrp, struct cftype cfts[],
217 			      bool is_add);
218 
219 /**
220  * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
221  * @ssid: subsys ID of interest
222  *
223  * cgroup_subsys_enabled() can only be used with literal subsys names which
224  * is fine for individual subsystems but unsuitable for cgroup core.  This
225  * is slower static_key_enabled() based test indexed by @ssid.
226  */
227 bool cgroup_ssid_enabled(int ssid)
228 {
229 	if (CGROUP_SUBSYS_COUNT == 0)
230 		return false;
231 
232 	return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
233 }
234 
235 /**
236  * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
237  * @cgrp: the cgroup of interest
238  *
239  * The default hierarchy is the v2 interface of cgroup and this function
240  * can be used to test whether a cgroup is on the default hierarchy for
241  * cases where a subsystem should behave differnetly depending on the
242  * interface version.
243  *
244  * The set of behaviors which change on the default hierarchy are still
245  * being determined and the mount option is prefixed with __DEVEL__.
246  *
247  * List of changed behaviors:
248  *
249  * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
250  *   and "name" are disallowed.
251  *
252  * - When mounting an existing superblock, mount options should match.
253  *
254  * - Remount is disallowed.
255  *
256  * - rename(2) is disallowed.
257  *
258  * - "tasks" is removed.  Everything should be at process granularity.  Use
259  *   "cgroup.procs" instead.
260  *
261  * - "cgroup.procs" is not sorted.  pids will be unique unless they got
262  *   recycled inbetween reads.
263  *
264  * - "release_agent" and "notify_on_release" are removed.  Replacement
265  *   notification mechanism will be implemented.
266  *
267  * - "cgroup.clone_children" is removed.
268  *
269  * - "cgroup.subtree_populated" is available.  Its value is 0 if the cgroup
270  *   and its descendants contain no task; otherwise, 1.  The file also
271  *   generates kernfs notification which can be monitored through poll and
272  *   [di]notify when the value of the file changes.
273  *
274  * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
275  *   take masks of ancestors with non-empty cpus/mems, instead of being
276  *   moved to an ancestor.
277  *
278  * - cpuset: a task can be moved into an empty cpuset, and again it takes
279  *   masks of ancestors.
280  *
281  * - memcg: use_hierarchy is on by default and the cgroup file for the flag
282  *   is not created.
283  *
284  * - blkcg: blk-throttle becomes properly hierarchical.
285  *
286  * - debug: disallowed on the default hierarchy.
287  */
288 bool cgroup_on_dfl(const struct cgroup *cgrp)
289 {
290 	return cgrp->root == &cgrp_dfl_root;
291 }
292 
293 /* IDR wrappers which synchronize using cgroup_idr_lock */
294 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
295 			    gfp_t gfp_mask)
296 {
297 	int ret;
298 
299 	idr_preload(gfp_mask);
300 	spin_lock_bh(&cgroup_idr_lock);
301 	ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
302 	spin_unlock_bh(&cgroup_idr_lock);
303 	idr_preload_end();
304 	return ret;
305 }
306 
307 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
308 {
309 	void *ret;
310 
311 	spin_lock_bh(&cgroup_idr_lock);
312 	ret = idr_replace(idr, ptr, id);
313 	spin_unlock_bh(&cgroup_idr_lock);
314 	return ret;
315 }
316 
317 static void cgroup_idr_remove(struct idr *idr, int id)
318 {
319 	spin_lock_bh(&cgroup_idr_lock);
320 	idr_remove(idr, id);
321 	spin_unlock_bh(&cgroup_idr_lock);
322 }
323 
324 static bool cgroup_has_tasks(struct cgroup *cgrp)
325 {
326 	return cgrp->nr_populated_csets;
327 }
328 
329 bool cgroup_is_threaded(struct cgroup *cgrp)
330 {
331 	return cgrp->dom_cgrp != cgrp;
332 }
333 
334 /* can @cgrp host both domain and threaded children? */
335 static bool cgroup_is_mixable(struct cgroup *cgrp)
336 {
337 	/*
338 	 * Root isn't under domain level resource control exempting it from
339 	 * the no-internal-process constraint, so it can serve as a thread
340 	 * root and a parent of resource domains at the same time.
341 	 */
342 	return !cgroup_parent(cgrp);
343 }
344 
345 /* can @cgrp become a thread root? should always be true for a thread root */
346 static bool cgroup_can_be_thread_root(struct cgroup *cgrp)
347 {
348 	/* mixables don't care */
349 	if (cgroup_is_mixable(cgrp))
350 		return true;
351 
352 	/* domain roots can't be nested under threaded */
353 	if (cgroup_is_threaded(cgrp))
354 		return false;
355 
356 	/* can only have either domain or threaded children */
357 	if (cgrp->nr_populated_domain_children)
358 		return false;
359 
360 	/* and no domain controllers can be enabled */
361 	if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
362 		return false;
363 
364 	return true;
365 }
366 
367 /* is @cgrp root of a threaded subtree? */
368 bool cgroup_is_thread_root(struct cgroup *cgrp)
369 {
370 	/* thread root should be a domain */
371 	if (cgroup_is_threaded(cgrp))
372 		return false;
373 
374 	/* a domain w/ threaded children is a thread root */
375 	if (cgrp->nr_threaded_children)
376 		return true;
377 
378 	/*
379 	 * A domain which has tasks and explicit threaded controllers
380 	 * enabled is a thread root.
381 	 */
382 	if (cgroup_has_tasks(cgrp) &&
383 	    (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask))
384 		return true;
385 
386 	return false;
387 }
388 
389 /* a domain which isn't connected to the root w/o brekage can't be used */
390 static bool cgroup_is_valid_domain(struct cgroup *cgrp)
391 {
392 	/* the cgroup itself can be a thread root */
393 	if (cgroup_is_threaded(cgrp))
394 		return false;
395 
396 	/* but the ancestors can't be unless mixable */
397 	while ((cgrp = cgroup_parent(cgrp))) {
398 		if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp))
399 			return false;
400 		if (cgroup_is_threaded(cgrp))
401 			return false;
402 	}
403 
404 	return true;
405 }
406 
407 /* subsystems visibly enabled on a cgroup */
408 static u16 cgroup_control(struct cgroup *cgrp)
409 {
410 	struct cgroup *parent = cgroup_parent(cgrp);
411 	u16 root_ss_mask = cgrp->root->subsys_mask;
412 
413 	if (parent) {
414 		u16 ss_mask = parent->subtree_control;
415 
416 		/* threaded cgroups can only have threaded controllers */
417 		if (cgroup_is_threaded(cgrp))
418 			ss_mask &= cgrp_dfl_threaded_ss_mask;
419 		return ss_mask;
420 	}
421 
422 	if (cgroup_on_dfl(cgrp))
423 		root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
424 				  cgrp_dfl_implicit_ss_mask);
425 	return root_ss_mask;
426 }
427 
428 /* subsystems enabled on a cgroup */
429 static u16 cgroup_ss_mask(struct cgroup *cgrp)
430 {
431 	struct cgroup *parent = cgroup_parent(cgrp);
432 
433 	if (parent) {
434 		u16 ss_mask = parent->subtree_ss_mask;
435 
436 		/* threaded cgroups can only have threaded controllers */
437 		if (cgroup_is_threaded(cgrp))
438 			ss_mask &= cgrp_dfl_threaded_ss_mask;
439 		return ss_mask;
440 	}
441 
442 	return cgrp->root->subsys_mask;
443 }
444 
445 /**
446  * cgroup_css - obtain a cgroup's css for the specified subsystem
447  * @cgrp: the cgroup of interest
448  * @ss: the subsystem of interest (%NULL returns @cgrp->self)
449  *
450  * Return @cgrp's css (cgroup_subsys_state) associated with @ss.  This
451  * function must be called either under cgroup_mutex or rcu_read_lock() and
452  * the caller is responsible for pinning the returned css if it wants to
453  * keep accessing it outside the said locks.  This function may return
454  * %NULL if @cgrp doesn't have @subsys_id enabled.
455  */
456 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
457 					      struct cgroup_subsys *ss)
458 {
459 	if (ss)
460 		return rcu_dereference_check(cgrp->subsys[ss->id],
461 					lockdep_is_held(&cgroup_mutex));
462 	else
463 		return &cgrp->self;
464 }
465 
466 /**
467  * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem
468  * @cgrp: the cgroup of interest
469  * @ss: the subsystem of interest
470  *
471  * Find and get @cgrp's css assocaited with @ss.  If the css doesn't exist
472  * or is offline, %NULL is returned.
473  */
474 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp,
475 						     struct cgroup_subsys *ss)
476 {
477 	struct cgroup_subsys_state *css;
478 
479 	rcu_read_lock();
480 	css = cgroup_css(cgrp, ss);
481 	if (!css || !css_tryget_online(css))
482 		css = NULL;
483 	rcu_read_unlock();
484 
485 	return css;
486 }
487 
488 /**
489  * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
490  * @cgrp: the cgroup of interest
491  * @ss: the subsystem of interest (%NULL returns @cgrp->self)
492  *
493  * Similar to cgroup_css() but returns the effective css, which is defined
494  * as the matching css of the nearest ancestor including self which has @ss
495  * enabled.  If @ss is associated with the hierarchy @cgrp is on, this
496  * function is guaranteed to return non-NULL css.
497  */
498 static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
499 						struct cgroup_subsys *ss)
500 {
501 	lockdep_assert_held(&cgroup_mutex);
502 
503 	if (!ss)
504 		return &cgrp->self;
505 
506 	/*
507 	 * This function is used while updating css associations and thus
508 	 * can't test the csses directly.  Test ss_mask.
509 	 */
510 	while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
511 		cgrp = cgroup_parent(cgrp);
512 		if (!cgrp)
513 			return NULL;
514 	}
515 
516 	return cgroup_css(cgrp, ss);
517 }
518 
519 /**
520  * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
521  * @cgrp: the cgroup of interest
522  * @ss: the subsystem of interest
523  *
524  * Find and get the effective css of @cgrp for @ss.  The effective css is
525  * defined as the matching css of the nearest ancestor including self which
526  * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
527  * the root css is returned, so this function always returns a valid css.
528  * The returned css must be put using css_put().
529  */
530 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
531 					     struct cgroup_subsys *ss)
532 {
533 	struct cgroup_subsys_state *css;
534 
535 	rcu_read_lock();
536 
537 	do {
538 		css = cgroup_css(cgrp, ss);
539 
540 		if (css && css_tryget_online(css))
541 			goto out_unlock;
542 		cgrp = cgroup_parent(cgrp);
543 	} while (cgrp);
544 
545 	css = init_css_set.subsys[ss->id];
546 	css_get(css);
547 out_unlock:
548 	rcu_read_unlock();
549 	return css;
550 }
551 
552 static void cgroup_get_live(struct cgroup *cgrp)
553 {
554 	WARN_ON_ONCE(cgroup_is_dead(cgrp));
555 	css_get(&cgrp->self);
556 }
557 
558 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
559 {
560 	struct cgroup *cgrp = of->kn->parent->priv;
561 	struct cftype *cft = of_cft(of);
562 
563 	/*
564 	 * This is open and unprotected implementation of cgroup_css().
565 	 * seq_css() is only called from a kernfs file operation which has
566 	 * an active reference on the file.  Because all the subsystem
567 	 * files are drained before a css is disassociated with a cgroup,
568 	 * the matching css from the cgroup's subsys table is guaranteed to
569 	 * be and stay valid until the enclosing operation is complete.
570 	 */
571 	if (cft->ss)
572 		return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
573 	else
574 		return &cgrp->self;
575 }
576 EXPORT_SYMBOL_GPL(of_css);
577 
578 /**
579  * for_each_css - iterate all css's of a cgroup
580  * @css: the iteration cursor
581  * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
582  * @cgrp: the target cgroup to iterate css's of
583  *
584  * Should be called under cgroup_[tree_]mutex.
585  */
586 #define for_each_css(css, ssid, cgrp)					\
587 	for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)	\
588 		if (!((css) = rcu_dereference_check(			\
589 				(cgrp)->subsys[(ssid)],			\
590 				lockdep_is_held(&cgroup_mutex)))) { }	\
591 		else
592 
593 /**
594  * for_each_e_css - iterate all effective css's of a cgroup
595  * @css: the iteration cursor
596  * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
597  * @cgrp: the target cgroup to iterate css's of
598  *
599  * Should be called under cgroup_[tree_]mutex.
600  */
601 #define for_each_e_css(css, ssid, cgrp)					\
602 	for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)	\
603 		if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
604 			;						\
605 		else
606 
607 /**
608  * do_each_subsys_mask - filter for_each_subsys with a bitmask
609  * @ss: the iteration cursor
610  * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
611  * @ss_mask: the bitmask
612  *
613  * The block will only run for cases where the ssid-th bit (1 << ssid) of
614  * @ss_mask is set.
615  */
616 #define do_each_subsys_mask(ss, ssid, ss_mask) do {			\
617 	unsigned long __ss_mask = (ss_mask);				\
618 	if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */	\
619 		(ssid) = 0;						\
620 		break;							\
621 	}								\
622 	for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) {	\
623 		(ss) = cgroup_subsys[ssid];				\
624 		{
625 
626 #define while_each_subsys_mask()					\
627 		}							\
628 	}								\
629 } while (false)
630 
631 /* iterate over child cgrps, lock should be held throughout iteration */
632 #define cgroup_for_each_live_child(child, cgrp)				\
633 	list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
634 		if (({ lockdep_assert_held(&cgroup_mutex);		\
635 		       cgroup_is_dead(child); }))			\
636 			;						\
637 		else
638 
639 /* walk live descendants in preorder */
640 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)		\
641 	css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL))	\
642 		if (({ lockdep_assert_held(&cgroup_mutex);		\
643 		       (dsct) = (d_css)->cgroup;			\
644 		       cgroup_is_dead(dsct); }))			\
645 			;						\
646 		else
647 
648 /* walk live descendants in postorder */
649 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp)		\
650 	css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL))	\
651 		if (({ lockdep_assert_held(&cgroup_mutex);		\
652 		       (dsct) = (d_css)->cgroup;			\
653 		       cgroup_is_dead(dsct); }))			\
654 			;						\
655 		else
656 
657 /*
658  * The default css_set - used by init and its children prior to any
659  * hierarchies being mounted. It contains a pointer to the root state
660  * for each subsystem. Also used to anchor the list of css_sets. Not
661  * reference-counted, to improve performance when child cgroups
662  * haven't been created.
663  */
664 struct css_set init_css_set = {
665 	.refcount		= REFCOUNT_INIT(1),
666 	.dom_cset		= &init_css_set,
667 	.tasks			= LIST_HEAD_INIT(init_css_set.tasks),
668 	.mg_tasks		= LIST_HEAD_INIT(init_css_set.mg_tasks),
669 	.task_iters		= LIST_HEAD_INIT(init_css_set.task_iters),
670 	.threaded_csets		= LIST_HEAD_INIT(init_css_set.threaded_csets),
671 	.cgrp_links		= LIST_HEAD_INIT(init_css_set.cgrp_links),
672 	.mg_preload_node	= LIST_HEAD_INIT(init_css_set.mg_preload_node),
673 	.mg_node		= LIST_HEAD_INIT(init_css_set.mg_node),
674 
675 	/*
676 	 * The following field is re-initialized when this cset gets linked
677 	 * in cgroup_init().  However, let's initialize the field
678 	 * statically too so that the default cgroup can be accessed safely
679 	 * early during boot.
680 	 */
681 	.dfl_cgrp		= &cgrp_dfl_root.cgrp,
682 };
683 
684 static int css_set_count	= 1;	/* 1 for init_css_set */
685 
686 static bool css_set_threaded(struct css_set *cset)
687 {
688 	return cset->dom_cset != cset;
689 }
690 
691 /**
692  * css_set_populated - does a css_set contain any tasks?
693  * @cset: target css_set
694  *
695  * css_set_populated() should be the same as !!cset->nr_tasks at steady
696  * state. However, css_set_populated() can be called while a task is being
697  * added to or removed from the linked list before the nr_tasks is
698  * properly updated. Hence, we can't just look at ->nr_tasks here.
699  */
700 static bool css_set_populated(struct css_set *cset)
701 {
702 	lockdep_assert_held(&css_set_lock);
703 
704 	return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
705 }
706 
707 /**
708  * cgroup_update_populated - update the populated count of a cgroup
709  * @cgrp: the target cgroup
710  * @populated: inc or dec populated count
711  *
712  * One of the css_sets associated with @cgrp is either getting its first
713  * task or losing the last.  Update @cgrp->nr_populated_* accordingly.  The
714  * count is propagated towards root so that a given cgroup's
715  * nr_populated_children is zero iff none of its descendants contain any
716  * tasks.
717  *
718  * @cgrp's interface file "cgroup.populated" is zero if both
719  * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and
720  * 1 otherwise.  When the sum changes from or to zero, userland is notified
721  * that the content of the interface file has changed.  This can be used to
722  * detect when @cgrp and its descendants become populated or empty.
723  */
724 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
725 {
726 	struct cgroup *child = NULL;
727 	int adj = populated ? 1 : -1;
728 
729 	lockdep_assert_held(&css_set_lock);
730 
731 	do {
732 		bool was_populated = cgroup_is_populated(cgrp);
733 
734 		if (!child) {
735 			cgrp->nr_populated_csets += adj;
736 		} else {
737 			if (cgroup_is_threaded(child))
738 				cgrp->nr_populated_threaded_children += adj;
739 			else
740 				cgrp->nr_populated_domain_children += adj;
741 		}
742 
743 		if (was_populated == cgroup_is_populated(cgrp))
744 			break;
745 
746 		cgroup1_check_for_release(cgrp);
747 		cgroup_file_notify(&cgrp->events_file);
748 
749 		child = cgrp;
750 		cgrp = cgroup_parent(cgrp);
751 	} while (cgrp);
752 }
753 
754 /**
755  * css_set_update_populated - update populated state of a css_set
756  * @cset: target css_set
757  * @populated: whether @cset is populated or depopulated
758  *
759  * @cset is either getting the first task or losing the last.  Update the
760  * populated counters of all associated cgroups accordingly.
761  */
762 static void css_set_update_populated(struct css_set *cset, bool populated)
763 {
764 	struct cgrp_cset_link *link;
765 
766 	lockdep_assert_held(&css_set_lock);
767 
768 	list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
769 		cgroup_update_populated(link->cgrp, populated);
770 }
771 
772 /**
773  * css_set_move_task - move a task from one css_set to another
774  * @task: task being moved
775  * @from_cset: css_set @task currently belongs to (may be NULL)
776  * @to_cset: new css_set @task is being moved to (may be NULL)
777  * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
778  *
779  * Move @task from @from_cset to @to_cset.  If @task didn't belong to any
780  * css_set, @from_cset can be NULL.  If @task is being disassociated
781  * instead of moved, @to_cset can be NULL.
782  *
783  * This function automatically handles populated counter updates and
784  * css_task_iter adjustments but the caller is responsible for managing
785  * @from_cset and @to_cset's reference counts.
786  */
787 static void css_set_move_task(struct task_struct *task,
788 			      struct css_set *from_cset, struct css_set *to_cset,
789 			      bool use_mg_tasks)
790 {
791 	lockdep_assert_held(&css_set_lock);
792 
793 	if (to_cset && !css_set_populated(to_cset))
794 		css_set_update_populated(to_cset, true);
795 
796 	if (from_cset) {
797 		struct css_task_iter *it, *pos;
798 
799 		WARN_ON_ONCE(list_empty(&task->cg_list));
800 
801 		/*
802 		 * @task is leaving, advance task iterators which are
803 		 * pointing to it so that they can resume at the next
804 		 * position.  Advancing an iterator might remove it from
805 		 * the list, use safe walk.  See css_task_iter_advance*()
806 		 * for details.
807 		 */
808 		list_for_each_entry_safe(it, pos, &from_cset->task_iters,
809 					 iters_node)
810 			if (it->task_pos == &task->cg_list)
811 				css_task_iter_advance(it);
812 
813 		list_del_init(&task->cg_list);
814 		if (!css_set_populated(from_cset))
815 			css_set_update_populated(from_cset, false);
816 	} else {
817 		WARN_ON_ONCE(!list_empty(&task->cg_list));
818 	}
819 
820 	if (to_cset) {
821 		/*
822 		 * We are synchronized through cgroup_threadgroup_rwsem
823 		 * against PF_EXITING setting such that we can't race
824 		 * against cgroup_exit() changing the css_set to
825 		 * init_css_set and dropping the old one.
826 		 */
827 		WARN_ON_ONCE(task->flags & PF_EXITING);
828 
829 		rcu_assign_pointer(task->cgroups, to_cset);
830 		list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
831 							     &to_cset->tasks);
832 	}
833 }
834 
835 /*
836  * hash table for cgroup groups. This improves the performance to find
837  * an existing css_set. This hash doesn't (currently) take into
838  * account cgroups in empty hierarchies.
839  */
840 #define CSS_SET_HASH_BITS	7
841 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
842 
843 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
844 {
845 	unsigned long key = 0UL;
846 	struct cgroup_subsys *ss;
847 	int i;
848 
849 	for_each_subsys(ss, i)
850 		key += (unsigned long)css[i];
851 	key = (key >> 16) ^ key;
852 
853 	return key;
854 }
855 
856 void put_css_set_locked(struct css_set *cset)
857 {
858 	struct cgrp_cset_link *link, *tmp_link;
859 	struct cgroup_subsys *ss;
860 	int ssid;
861 
862 	lockdep_assert_held(&css_set_lock);
863 
864 	if (!refcount_dec_and_test(&cset->refcount))
865 		return;
866 
867 	WARN_ON_ONCE(!list_empty(&cset->threaded_csets));
868 
869 	/* This css_set is dead. unlink it and release cgroup and css refs */
870 	for_each_subsys(ss, ssid) {
871 		list_del(&cset->e_cset_node[ssid]);
872 		css_put(cset->subsys[ssid]);
873 	}
874 	hash_del(&cset->hlist);
875 	css_set_count--;
876 
877 	list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
878 		list_del(&link->cset_link);
879 		list_del(&link->cgrp_link);
880 		if (cgroup_parent(link->cgrp))
881 			cgroup_put(link->cgrp);
882 		kfree(link);
883 	}
884 
885 	if (css_set_threaded(cset)) {
886 		list_del(&cset->threaded_csets_node);
887 		put_css_set_locked(cset->dom_cset);
888 	}
889 
890 	kfree_rcu(cset, rcu_head);
891 }
892 
893 /**
894  * compare_css_sets - helper function for find_existing_css_set().
895  * @cset: candidate css_set being tested
896  * @old_cset: existing css_set for a task
897  * @new_cgrp: cgroup that's being entered by the task
898  * @template: desired set of css pointers in css_set (pre-calculated)
899  *
900  * Returns true if "cset" matches "old_cset" except for the hierarchy
901  * which "new_cgrp" belongs to, for which it should match "new_cgrp".
902  */
903 static bool compare_css_sets(struct css_set *cset,
904 			     struct css_set *old_cset,
905 			     struct cgroup *new_cgrp,
906 			     struct cgroup_subsys_state *template[])
907 {
908 	struct cgroup *new_dfl_cgrp;
909 	struct list_head *l1, *l2;
910 
911 	/*
912 	 * On the default hierarchy, there can be csets which are
913 	 * associated with the same set of cgroups but different csses.
914 	 * Let's first ensure that csses match.
915 	 */
916 	if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
917 		return false;
918 
919 
920 	/* @cset's domain should match the default cgroup's */
921 	if (cgroup_on_dfl(new_cgrp))
922 		new_dfl_cgrp = new_cgrp;
923 	else
924 		new_dfl_cgrp = old_cset->dfl_cgrp;
925 
926 	if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp)
927 		return false;
928 
929 	/*
930 	 * Compare cgroup pointers in order to distinguish between
931 	 * different cgroups in hierarchies.  As different cgroups may
932 	 * share the same effective css, this comparison is always
933 	 * necessary.
934 	 */
935 	l1 = &cset->cgrp_links;
936 	l2 = &old_cset->cgrp_links;
937 	while (1) {
938 		struct cgrp_cset_link *link1, *link2;
939 		struct cgroup *cgrp1, *cgrp2;
940 
941 		l1 = l1->next;
942 		l2 = l2->next;
943 		/* See if we reached the end - both lists are equal length. */
944 		if (l1 == &cset->cgrp_links) {
945 			BUG_ON(l2 != &old_cset->cgrp_links);
946 			break;
947 		} else {
948 			BUG_ON(l2 == &old_cset->cgrp_links);
949 		}
950 		/* Locate the cgroups associated with these links. */
951 		link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
952 		link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
953 		cgrp1 = link1->cgrp;
954 		cgrp2 = link2->cgrp;
955 		/* Hierarchies should be linked in the same order. */
956 		BUG_ON(cgrp1->root != cgrp2->root);
957 
958 		/*
959 		 * If this hierarchy is the hierarchy of the cgroup
960 		 * that's changing, then we need to check that this
961 		 * css_set points to the new cgroup; if it's any other
962 		 * hierarchy, then this css_set should point to the
963 		 * same cgroup as the old css_set.
964 		 */
965 		if (cgrp1->root == new_cgrp->root) {
966 			if (cgrp1 != new_cgrp)
967 				return false;
968 		} else {
969 			if (cgrp1 != cgrp2)
970 				return false;
971 		}
972 	}
973 	return true;
974 }
975 
976 /**
977  * find_existing_css_set - init css array and find the matching css_set
978  * @old_cset: the css_set that we're using before the cgroup transition
979  * @cgrp: the cgroup that we're moving into
980  * @template: out param for the new set of csses, should be clear on entry
981  */
982 static struct css_set *find_existing_css_set(struct css_set *old_cset,
983 					struct cgroup *cgrp,
984 					struct cgroup_subsys_state *template[])
985 {
986 	struct cgroup_root *root = cgrp->root;
987 	struct cgroup_subsys *ss;
988 	struct css_set *cset;
989 	unsigned long key;
990 	int i;
991 
992 	/*
993 	 * Build the set of subsystem state objects that we want to see in the
994 	 * new css_set. while subsystems can change globally, the entries here
995 	 * won't change, so no need for locking.
996 	 */
997 	for_each_subsys(ss, i) {
998 		if (root->subsys_mask & (1UL << i)) {
999 			/*
1000 			 * @ss is in this hierarchy, so we want the
1001 			 * effective css from @cgrp.
1002 			 */
1003 			template[i] = cgroup_e_css(cgrp, ss);
1004 		} else {
1005 			/*
1006 			 * @ss is not in this hierarchy, so we don't want
1007 			 * to change the css.
1008 			 */
1009 			template[i] = old_cset->subsys[i];
1010 		}
1011 	}
1012 
1013 	key = css_set_hash(template);
1014 	hash_for_each_possible(css_set_table, cset, hlist, key) {
1015 		if (!compare_css_sets(cset, old_cset, cgrp, template))
1016 			continue;
1017 
1018 		/* This css_set matches what we need */
1019 		return cset;
1020 	}
1021 
1022 	/* No existing cgroup group matched */
1023 	return NULL;
1024 }
1025 
1026 static void free_cgrp_cset_links(struct list_head *links_to_free)
1027 {
1028 	struct cgrp_cset_link *link, *tmp_link;
1029 
1030 	list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
1031 		list_del(&link->cset_link);
1032 		kfree(link);
1033 	}
1034 }
1035 
1036 /**
1037  * allocate_cgrp_cset_links - allocate cgrp_cset_links
1038  * @count: the number of links to allocate
1039  * @tmp_links: list_head the allocated links are put on
1040  *
1041  * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1042  * through ->cset_link.  Returns 0 on success or -errno.
1043  */
1044 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
1045 {
1046 	struct cgrp_cset_link *link;
1047 	int i;
1048 
1049 	INIT_LIST_HEAD(tmp_links);
1050 
1051 	for (i = 0; i < count; i++) {
1052 		link = kzalloc(sizeof(*link), GFP_KERNEL);
1053 		if (!link) {
1054 			free_cgrp_cset_links(tmp_links);
1055 			return -ENOMEM;
1056 		}
1057 		list_add(&link->cset_link, tmp_links);
1058 	}
1059 	return 0;
1060 }
1061 
1062 /**
1063  * link_css_set - a helper function to link a css_set to a cgroup
1064  * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
1065  * @cset: the css_set to be linked
1066  * @cgrp: the destination cgroup
1067  */
1068 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1069 			 struct cgroup *cgrp)
1070 {
1071 	struct cgrp_cset_link *link;
1072 
1073 	BUG_ON(list_empty(tmp_links));
1074 
1075 	if (cgroup_on_dfl(cgrp))
1076 		cset->dfl_cgrp = cgrp;
1077 
1078 	link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1079 	link->cset = cset;
1080 	link->cgrp = cgrp;
1081 
1082 	/*
1083 	 * Always add links to the tail of the lists so that the lists are
1084 	 * in choronological order.
1085 	 */
1086 	list_move_tail(&link->cset_link, &cgrp->cset_links);
1087 	list_add_tail(&link->cgrp_link, &cset->cgrp_links);
1088 
1089 	if (cgroup_parent(cgrp))
1090 		cgroup_get_live(cgrp);
1091 }
1092 
1093 /**
1094  * find_css_set - return a new css_set with one cgroup updated
1095  * @old_cset: the baseline css_set
1096  * @cgrp: the cgroup to be updated
1097  *
1098  * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1099  * substituted into the appropriate hierarchy.
1100  */
1101 static struct css_set *find_css_set(struct css_set *old_cset,
1102 				    struct cgroup *cgrp)
1103 {
1104 	struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
1105 	struct css_set *cset;
1106 	struct list_head tmp_links;
1107 	struct cgrp_cset_link *link;
1108 	struct cgroup_subsys *ss;
1109 	unsigned long key;
1110 	int ssid;
1111 
1112 	lockdep_assert_held(&cgroup_mutex);
1113 
1114 	/* First see if we already have a cgroup group that matches
1115 	 * the desired set */
1116 	spin_lock_irq(&css_set_lock);
1117 	cset = find_existing_css_set(old_cset, cgrp, template);
1118 	if (cset)
1119 		get_css_set(cset);
1120 	spin_unlock_irq(&css_set_lock);
1121 
1122 	if (cset)
1123 		return cset;
1124 
1125 	cset = kzalloc(sizeof(*cset), GFP_KERNEL);
1126 	if (!cset)
1127 		return NULL;
1128 
1129 	/* Allocate all the cgrp_cset_link objects that we'll need */
1130 	if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1131 		kfree(cset);
1132 		return NULL;
1133 	}
1134 
1135 	refcount_set(&cset->refcount, 1);
1136 	cset->dom_cset = cset;
1137 	INIT_LIST_HEAD(&cset->tasks);
1138 	INIT_LIST_HEAD(&cset->mg_tasks);
1139 	INIT_LIST_HEAD(&cset->task_iters);
1140 	INIT_LIST_HEAD(&cset->threaded_csets);
1141 	INIT_HLIST_NODE(&cset->hlist);
1142 	INIT_LIST_HEAD(&cset->cgrp_links);
1143 	INIT_LIST_HEAD(&cset->mg_preload_node);
1144 	INIT_LIST_HEAD(&cset->mg_node);
1145 
1146 	/* Copy the set of subsystem state objects generated in
1147 	 * find_existing_css_set() */
1148 	memcpy(cset->subsys, template, sizeof(cset->subsys));
1149 
1150 	spin_lock_irq(&css_set_lock);
1151 	/* Add reference counts and links from the new css_set. */
1152 	list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1153 		struct cgroup *c = link->cgrp;
1154 
1155 		if (c->root == cgrp->root)
1156 			c = cgrp;
1157 		link_css_set(&tmp_links, cset, c);
1158 	}
1159 
1160 	BUG_ON(!list_empty(&tmp_links));
1161 
1162 	css_set_count++;
1163 
1164 	/* Add @cset to the hash table */
1165 	key = css_set_hash(cset->subsys);
1166 	hash_add(css_set_table, &cset->hlist, key);
1167 
1168 	for_each_subsys(ss, ssid) {
1169 		struct cgroup_subsys_state *css = cset->subsys[ssid];
1170 
1171 		list_add_tail(&cset->e_cset_node[ssid],
1172 			      &css->cgroup->e_csets[ssid]);
1173 		css_get(css);
1174 	}
1175 
1176 	spin_unlock_irq(&css_set_lock);
1177 
1178 	/*
1179 	 * If @cset should be threaded, look up the matching dom_cset and
1180 	 * link them up.  We first fully initialize @cset then look for the
1181 	 * dom_cset.  It's simpler this way and safe as @cset is guaranteed
1182 	 * to stay empty until we return.
1183 	 */
1184 	if (cgroup_is_threaded(cset->dfl_cgrp)) {
1185 		struct css_set *dcset;
1186 
1187 		dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp);
1188 		if (!dcset) {
1189 			put_css_set(cset);
1190 			return NULL;
1191 		}
1192 
1193 		spin_lock_irq(&css_set_lock);
1194 		cset->dom_cset = dcset;
1195 		list_add_tail(&cset->threaded_csets_node,
1196 			      &dcset->threaded_csets);
1197 		spin_unlock_irq(&css_set_lock);
1198 	}
1199 
1200 	return cset;
1201 }
1202 
1203 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1204 {
1205 	struct cgroup *root_cgrp = kf_root->kn->priv;
1206 
1207 	return root_cgrp->root;
1208 }
1209 
1210 static int cgroup_init_root_id(struct cgroup_root *root)
1211 {
1212 	int id;
1213 
1214 	lockdep_assert_held(&cgroup_mutex);
1215 
1216 	id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1217 	if (id < 0)
1218 		return id;
1219 
1220 	root->hierarchy_id = id;
1221 	return 0;
1222 }
1223 
1224 static void cgroup_exit_root_id(struct cgroup_root *root)
1225 {
1226 	lockdep_assert_held(&cgroup_mutex);
1227 
1228 	idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1229 }
1230 
1231 void cgroup_free_root(struct cgroup_root *root)
1232 {
1233 	if (root) {
1234 		idr_destroy(&root->cgroup_idr);
1235 		kfree(root);
1236 	}
1237 }
1238 
1239 static void cgroup_destroy_root(struct cgroup_root *root)
1240 {
1241 	struct cgroup *cgrp = &root->cgrp;
1242 	struct cgrp_cset_link *link, *tmp_link;
1243 
1244 	trace_cgroup_destroy_root(root);
1245 
1246 	cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1247 
1248 	BUG_ON(atomic_read(&root->nr_cgrps));
1249 	BUG_ON(!list_empty(&cgrp->self.children));
1250 
1251 	/* Rebind all subsystems back to the default hierarchy */
1252 	WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
1253 
1254 	/*
1255 	 * Release all the links from cset_links to this hierarchy's
1256 	 * root cgroup
1257 	 */
1258 	spin_lock_irq(&css_set_lock);
1259 
1260 	list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1261 		list_del(&link->cset_link);
1262 		list_del(&link->cgrp_link);
1263 		kfree(link);
1264 	}
1265 
1266 	spin_unlock_irq(&css_set_lock);
1267 
1268 	if (!list_empty(&root->root_list)) {
1269 		list_del(&root->root_list);
1270 		cgroup_root_count--;
1271 	}
1272 
1273 	cgroup_exit_root_id(root);
1274 
1275 	mutex_unlock(&cgroup_mutex);
1276 
1277 	kernfs_destroy_root(root->kf_root);
1278 	cgroup_free_root(root);
1279 }
1280 
1281 /*
1282  * look up cgroup associated with current task's cgroup namespace on the
1283  * specified hierarchy
1284  */
1285 static struct cgroup *
1286 current_cgns_cgroup_from_root(struct cgroup_root *root)
1287 {
1288 	struct cgroup *res = NULL;
1289 	struct css_set *cset;
1290 
1291 	lockdep_assert_held(&css_set_lock);
1292 
1293 	rcu_read_lock();
1294 
1295 	cset = current->nsproxy->cgroup_ns->root_cset;
1296 	if (cset == &init_css_set) {
1297 		res = &root->cgrp;
1298 	} else {
1299 		struct cgrp_cset_link *link;
1300 
1301 		list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1302 			struct cgroup *c = link->cgrp;
1303 
1304 			if (c->root == root) {
1305 				res = c;
1306 				break;
1307 			}
1308 		}
1309 	}
1310 	rcu_read_unlock();
1311 
1312 	BUG_ON(!res);
1313 	return res;
1314 }
1315 
1316 /* look up cgroup associated with given css_set on the specified hierarchy */
1317 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1318 					    struct cgroup_root *root)
1319 {
1320 	struct cgroup *res = NULL;
1321 
1322 	lockdep_assert_held(&cgroup_mutex);
1323 	lockdep_assert_held(&css_set_lock);
1324 
1325 	if (cset == &init_css_set) {
1326 		res = &root->cgrp;
1327 	} else if (root == &cgrp_dfl_root) {
1328 		res = cset->dfl_cgrp;
1329 	} else {
1330 		struct cgrp_cset_link *link;
1331 
1332 		list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1333 			struct cgroup *c = link->cgrp;
1334 
1335 			if (c->root == root) {
1336 				res = c;
1337 				break;
1338 			}
1339 		}
1340 	}
1341 
1342 	BUG_ON(!res);
1343 	return res;
1344 }
1345 
1346 /*
1347  * Return the cgroup for "task" from the given hierarchy. Must be
1348  * called with cgroup_mutex and css_set_lock held.
1349  */
1350 struct cgroup *task_cgroup_from_root(struct task_struct *task,
1351 				     struct cgroup_root *root)
1352 {
1353 	/*
1354 	 * No need to lock the task - since we hold cgroup_mutex the
1355 	 * task can't change groups, so the only thing that can happen
1356 	 * is that it exits and its css is set back to init_css_set.
1357 	 */
1358 	return cset_cgroup_from_root(task_css_set(task), root);
1359 }
1360 
1361 /*
1362  * A task must hold cgroup_mutex to modify cgroups.
1363  *
1364  * Any task can increment and decrement the count field without lock.
1365  * So in general, code holding cgroup_mutex can't rely on the count
1366  * field not changing.  However, if the count goes to zero, then only
1367  * cgroup_attach_task() can increment it again.  Because a count of zero
1368  * means that no tasks are currently attached, therefore there is no
1369  * way a task attached to that cgroup can fork (the other way to
1370  * increment the count).  So code holding cgroup_mutex can safely
1371  * assume that if the count is zero, it will stay zero. Similarly, if
1372  * a task holds cgroup_mutex on a cgroup with zero count, it
1373  * knows that the cgroup won't be removed, as cgroup_rmdir()
1374  * needs that mutex.
1375  *
1376  * A cgroup can only be deleted if both its 'count' of using tasks
1377  * is zero, and its list of 'children' cgroups is empty.  Since all
1378  * tasks in the system use _some_ cgroup, and since there is always at
1379  * least one task in the system (init, pid == 1), therefore, root cgroup
1380  * always has either children cgroups and/or using tasks.  So we don't
1381  * need a special hack to ensure that root cgroup cannot be deleted.
1382  *
1383  * P.S.  One more locking exception.  RCU is used to guard the
1384  * update of a tasks cgroup pointer by cgroup_attach_task()
1385  */
1386 
1387 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1388 
1389 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1390 			      char *buf)
1391 {
1392 	struct cgroup_subsys *ss = cft->ss;
1393 
1394 	if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1395 	    !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
1396 		snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
1397 			 cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1398 			 cft->name);
1399 	else
1400 		strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1401 	return buf;
1402 }
1403 
1404 /**
1405  * cgroup_file_mode - deduce file mode of a control file
1406  * @cft: the control file in question
1407  *
1408  * S_IRUGO for read, S_IWUSR for write.
1409  */
1410 static umode_t cgroup_file_mode(const struct cftype *cft)
1411 {
1412 	umode_t mode = 0;
1413 
1414 	if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1415 		mode |= S_IRUGO;
1416 
1417 	if (cft->write_u64 || cft->write_s64 || cft->write) {
1418 		if (cft->flags & CFTYPE_WORLD_WRITABLE)
1419 			mode |= S_IWUGO;
1420 		else
1421 			mode |= S_IWUSR;
1422 	}
1423 
1424 	return mode;
1425 }
1426 
1427 /**
1428  * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1429  * @subtree_control: the new subtree_control mask to consider
1430  * @this_ss_mask: available subsystems
1431  *
1432  * On the default hierarchy, a subsystem may request other subsystems to be
1433  * enabled together through its ->depends_on mask.  In such cases, more
1434  * subsystems than specified in "cgroup.subtree_control" may be enabled.
1435  *
1436  * This function calculates which subsystems need to be enabled if
1437  * @subtree_control is to be applied while restricted to @this_ss_mask.
1438  */
1439 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
1440 {
1441 	u16 cur_ss_mask = subtree_control;
1442 	struct cgroup_subsys *ss;
1443 	int ssid;
1444 
1445 	lockdep_assert_held(&cgroup_mutex);
1446 
1447 	cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1448 
1449 	while (true) {
1450 		u16 new_ss_mask = cur_ss_mask;
1451 
1452 		do_each_subsys_mask(ss, ssid, cur_ss_mask) {
1453 			new_ss_mask |= ss->depends_on;
1454 		} while_each_subsys_mask();
1455 
1456 		/*
1457 		 * Mask out subsystems which aren't available.  This can
1458 		 * happen only if some depended-upon subsystems were bound
1459 		 * to non-default hierarchies.
1460 		 */
1461 		new_ss_mask &= this_ss_mask;
1462 
1463 		if (new_ss_mask == cur_ss_mask)
1464 			break;
1465 		cur_ss_mask = new_ss_mask;
1466 	}
1467 
1468 	return cur_ss_mask;
1469 }
1470 
1471 /**
1472  * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1473  * @kn: the kernfs_node being serviced
1474  *
1475  * This helper undoes cgroup_kn_lock_live() and should be invoked before
1476  * the method finishes if locking succeeded.  Note that once this function
1477  * returns the cgroup returned by cgroup_kn_lock_live() may become
1478  * inaccessible any time.  If the caller intends to continue to access the
1479  * cgroup, it should pin it before invoking this function.
1480  */
1481 void cgroup_kn_unlock(struct kernfs_node *kn)
1482 {
1483 	struct cgroup *cgrp;
1484 
1485 	if (kernfs_type(kn) == KERNFS_DIR)
1486 		cgrp = kn->priv;
1487 	else
1488 		cgrp = kn->parent->priv;
1489 
1490 	mutex_unlock(&cgroup_mutex);
1491 
1492 	kernfs_unbreak_active_protection(kn);
1493 	cgroup_put(cgrp);
1494 }
1495 
1496 /**
1497  * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1498  * @kn: the kernfs_node being serviced
1499  * @drain_offline: perform offline draining on the cgroup
1500  *
1501  * This helper is to be used by a cgroup kernfs method currently servicing
1502  * @kn.  It breaks the active protection, performs cgroup locking and
1503  * verifies that the associated cgroup is alive.  Returns the cgroup if
1504  * alive; otherwise, %NULL.  A successful return should be undone by a
1505  * matching cgroup_kn_unlock() invocation.  If @drain_offline is %true, the
1506  * cgroup is drained of offlining csses before return.
1507  *
1508  * Any cgroup kernfs method implementation which requires locking the
1509  * associated cgroup should use this helper.  It avoids nesting cgroup
1510  * locking under kernfs active protection and allows all kernfs operations
1511  * including self-removal.
1512  */
1513 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline)
1514 {
1515 	struct cgroup *cgrp;
1516 
1517 	if (kernfs_type(kn) == KERNFS_DIR)
1518 		cgrp = kn->priv;
1519 	else
1520 		cgrp = kn->parent->priv;
1521 
1522 	/*
1523 	 * We're gonna grab cgroup_mutex which nests outside kernfs
1524 	 * active_ref.  cgroup liveliness check alone provides enough
1525 	 * protection against removal.  Ensure @cgrp stays accessible and
1526 	 * break the active_ref protection.
1527 	 */
1528 	if (!cgroup_tryget(cgrp))
1529 		return NULL;
1530 	kernfs_break_active_protection(kn);
1531 
1532 	if (drain_offline)
1533 		cgroup_lock_and_drain_offline(cgrp);
1534 	else
1535 		mutex_lock(&cgroup_mutex);
1536 
1537 	if (!cgroup_is_dead(cgrp))
1538 		return cgrp;
1539 
1540 	cgroup_kn_unlock(kn);
1541 	return NULL;
1542 }
1543 
1544 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1545 {
1546 	char name[CGROUP_FILE_NAME_MAX];
1547 
1548 	lockdep_assert_held(&cgroup_mutex);
1549 
1550 	if (cft->file_offset) {
1551 		struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1552 		struct cgroup_file *cfile = (void *)css + cft->file_offset;
1553 
1554 		spin_lock_irq(&cgroup_file_kn_lock);
1555 		cfile->kn = NULL;
1556 		spin_unlock_irq(&cgroup_file_kn_lock);
1557 	}
1558 
1559 	kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1560 }
1561 
1562 /**
1563  * css_clear_dir - remove subsys files in a cgroup directory
1564  * @css: taget css
1565  */
1566 static void css_clear_dir(struct cgroup_subsys_state *css)
1567 {
1568 	struct cgroup *cgrp = css->cgroup;
1569 	struct cftype *cfts;
1570 
1571 	if (!(css->flags & CSS_VISIBLE))
1572 		return;
1573 
1574 	css->flags &= ~CSS_VISIBLE;
1575 
1576 	list_for_each_entry(cfts, &css->ss->cfts, node)
1577 		cgroup_addrm_files(css, cgrp, cfts, false);
1578 }
1579 
1580 /**
1581  * css_populate_dir - create subsys files in a cgroup directory
1582  * @css: target css
1583  *
1584  * On failure, no file is added.
1585  */
1586 static int css_populate_dir(struct cgroup_subsys_state *css)
1587 {
1588 	struct cgroup *cgrp = css->cgroup;
1589 	struct cftype *cfts, *failed_cfts;
1590 	int ret;
1591 
1592 	if ((css->flags & CSS_VISIBLE) || !cgrp->kn)
1593 		return 0;
1594 
1595 	if (!css->ss) {
1596 		if (cgroup_on_dfl(cgrp))
1597 			cfts = cgroup_base_files;
1598 		else
1599 			cfts = cgroup1_base_files;
1600 
1601 		return cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1602 	}
1603 
1604 	list_for_each_entry(cfts, &css->ss->cfts, node) {
1605 		ret = cgroup_addrm_files(css, cgrp, cfts, true);
1606 		if (ret < 0) {
1607 			failed_cfts = cfts;
1608 			goto err;
1609 		}
1610 	}
1611 
1612 	css->flags |= CSS_VISIBLE;
1613 
1614 	return 0;
1615 err:
1616 	list_for_each_entry(cfts, &css->ss->cfts, node) {
1617 		if (cfts == failed_cfts)
1618 			break;
1619 		cgroup_addrm_files(css, cgrp, cfts, false);
1620 	}
1621 	return ret;
1622 }
1623 
1624 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
1625 {
1626 	struct cgroup *dcgrp = &dst_root->cgrp;
1627 	struct cgroup_subsys *ss;
1628 	int ssid, i, ret;
1629 
1630 	lockdep_assert_held(&cgroup_mutex);
1631 
1632 	do_each_subsys_mask(ss, ssid, ss_mask) {
1633 		/*
1634 		 * If @ss has non-root csses attached to it, can't move.
1635 		 * If @ss is an implicit controller, it is exempt from this
1636 		 * rule and can be stolen.
1637 		 */
1638 		if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1639 		    !ss->implicit_on_dfl)
1640 			return -EBUSY;
1641 
1642 		/* can't move between two non-dummy roots either */
1643 		if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1644 			return -EBUSY;
1645 	} while_each_subsys_mask();
1646 
1647 	do_each_subsys_mask(ss, ssid, ss_mask) {
1648 		struct cgroup_root *src_root = ss->root;
1649 		struct cgroup *scgrp = &src_root->cgrp;
1650 		struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1651 		struct css_set *cset;
1652 
1653 		WARN_ON(!css || cgroup_css(dcgrp, ss));
1654 
1655 		/* disable from the source */
1656 		src_root->subsys_mask &= ~(1 << ssid);
1657 		WARN_ON(cgroup_apply_control(scgrp));
1658 		cgroup_finalize_control(scgrp, 0);
1659 
1660 		/* rebind */
1661 		RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1662 		rcu_assign_pointer(dcgrp->subsys[ssid], css);
1663 		ss->root = dst_root;
1664 		css->cgroup = dcgrp;
1665 
1666 		spin_lock_irq(&css_set_lock);
1667 		hash_for_each(css_set_table, i, cset, hlist)
1668 			list_move_tail(&cset->e_cset_node[ss->id],
1669 				       &dcgrp->e_csets[ss->id]);
1670 		spin_unlock_irq(&css_set_lock);
1671 
1672 		/* default hierarchy doesn't enable controllers by default */
1673 		dst_root->subsys_mask |= 1 << ssid;
1674 		if (dst_root == &cgrp_dfl_root) {
1675 			static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1676 		} else {
1677 			dcgrp->subtree_control |= 1 << ssid;
1678 			static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1679 		}
1680 
1681 		ret = cgroup_apply_control(dcgrp);
1682 		if (ret)
1683 			pr_warn("partial failure to rebind %s controller (err=%d)\n",
1684 				ss->name, ret);
1685 
1686 		if (ss->bind)
1687 			ss->bind(css);
1688 	} while_each_subsys_mask();
1689 
1690 	kernfs_activate(dcgrp->kn);
1691 	return 0;
1692 }
1693 
1694 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
1695 		     struct kernfs_root *kf_root)
1696 {
1697 	int len = 0;
1698 	char *buf = NULL;
1699 	struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
1700 	struct cgroup *ns_cgroup;
1701 
1702 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
1703 	if (!buf)
1704 		return -ENOMEM;
1705 
1706 	spin_lock_irq(&css_set_lock);
1707 	ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
1708 	len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
1709 	spin_unlock_irq(&css_set_lock);
1710 
1711 	if (len >= PATH_MAX)
1712 		len = -ERANGE;
1713 	else if (len > 0) {
1714 		seq_escape(sf, buf, " \t\n\\");
1715 		len = 0;
1716 	}
1717 	kfree(buf);
1718 	return len;
1719 }
1720 
1721 static int parse_cgroup_root_flags(char *data, unsigned int *root_flags)
1722 {
1723 	char *token;
1724 
1725 	*root_flags = 0;
1726 
1727 	if (!data)
1728 		return 0;
1729 
1730 	while ((token = strsep(&data, ",")) != NULL) {
1731 		if (!strcmp(token, "nsdelegate")) {
1732 			*root_flags |= CGRP_ROOT_NS_DELEGATE;
1733 			continue;
1734 		}
1735 
1736 		pr_err("cgroup2: unknown option \"%s\"\n", token);
1737 		return -EINVAL;
1738 	}
1739 
1740 	return 0;
1741 }
1742 
1743 static void apply_cgroup_root_flags(unsigned int root_flags)
1744 {
1745 	if (current->nsproxy->cgroup_ns == &init_cgroup_ns) {
1746 		if (root_flags & CGRP_ROOT_NS_DELEGATE)
1747 			cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE;
1748 		else
1749 			cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE;
1750 	}
1751 }
1752 
1753 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
1754 {
1755 	if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE)
1756 		seq_puts(seq, ",nsdelegate");
1757 	return 0;
1758 }
1759 
1760 static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
1761 {
1762 	unsigned int root_flags;
1763 	int ret;
1764 
1765 	ret = parse_cgroup_root_flags(data, &root_flags);
1766 	if (ret)
1767 		return ret;
1768 
1769 	apply_cgroup_root_flags(root_flags);
1770 	return 0;
1771 }
1772 
1773 /*
1774  * To reduce the fork() overhead for systems that are not actually using
1775  * their cgroups capability, we don't maintain the lists running through
1776  * each css_set to its tasks until we see the list actually used - in other
1777  * words after the first mount.
1778  */
1779 static bool use_task_css_set_links __read_mostly;
1780 
1781 static void cgroup_enable_task_cg_lists(void)
1782 {
1783 	struct task_struct *p, *g;
1784 
1785 	spin_lock_irq(&css_set_lock);
1786 
1787 	if (use_task_css_set_links)
1788 		goto out_unlock;
1789 
1790 	use_task_css_set_links = true;
1791 
1792 	/*
1793 	 * We need tasklist_lock because RCU is not safe against
1794 	 * while_each_thread(). Besides, a forking task that has passed
1795 	 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1796 	 * is not guaranteed to have its child immediately visible in the
1797 	 * tasklist if we walk through it with RCU.
1798 	 */
1799 	read_lock(&tasklist_lock);
1800 	do_each_thread(g, p) {
1801 		WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1802 			     task_css_set(p) != &init_css_set);
1803 
1804 		/*
1805 		 * We should check if the process is exiting, otherwise
1806 		 * it will race with cgroup_exit() in that the list
1807 		 * entry won't be deleted though the process has exited.
1808 		 * Do it while holding siglock so that we don't end up
1809 		 * racing against cgroup_exit().
1810 		 *
1811 		 * Interrupts were already disabled while acquiring
1812 		 * the css_set_lock, so we do not need to disable it
1813 		 * again when acquiring the sighand->siglock here.
1814 		 */
1815 		spin_lock(&p->sighand->siglock);
1816 		if (!(p->flags & PF_EXITING)) {
1817 			struct css_set *cset = task_css_set(p);
1818 
1819 			if (!css_set_populated(cset))
1820 				css_set_update_populated(cset, true);
1821 			list_add_tail(&p->cg_list, &cset->tasks);
1822 			get_css_set(cset);
1823 			cset->nr_tasks++;
1824 		}
1825 		spin_unlock(&p->sighand->siglock);
1826 	} while_each_thread(g, p);
1827 	read_unlock(&tasklist_lock);
1828 out_unlock:
1829 	spin_unlock_irq(&css_set_lock);
1830 }
1831 
1832 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1833 {
1834 	struct cgroup_subsys *ss;
1835 	int ssid;
1836 
1837 	INIT_LIST_HEAD(&cgrp->self.sibling);
1838 	INIT_LIST_HEAD(&cgrp->self.children);
1839 	INIT_LIST_HEAD(&cgrp->cset_links);
1840 	INIT_LIST_HEAD(&cgrp->pidlists);
1841 	mutex_init(&cgrp->pidlist_mutex);
1842 	cgrp->self.cgroup = cgrp;
1843 	cgrp->self.flags |= CSS_ONLINE;
1844 	cgrp->dom_cgrp = cgrp;
1845 	cgrp->max_descendants = INT_MAX;
1846 	cgrp->max_depth = INT_MAX;
1847 
1848 	for_each_subsys(ss, ssid)
1849 		INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
1850 
1851 	init_waitqueue_head(&cgrp->offline_waitq);
1852 	INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent);
1853 }
1854 
1855 void init_cgroup_root(struct cgroup_root *root, struct cgroup_sb_opts *opts)
1856 {
1857 	struct cgroup *cgrp = &root->cgrp;
1858 
1859 	INIT_LIST_HEAD(&root->root_list);
1860 	atomic_set(&root->nr_cgrps, 1);
1861 	cgrp->root = root;
1862 	init_cgroup_housekeeping(cgrp);
1863 	idr_init(&root->cgroup_idr);
1864 
1865 	root->flags = opts->flags;
1866 	if (opts->release_agent)
1867 		strcpy(root->release_agent_path, opts->release_agent);
1868 	if (opts->name)
1869 		strcpy(root->name, opts->name);
1870 	if (opts->cpuset_clone_children)
1871 		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
1872 }
1873 
1874 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask, int ref_flags)
1875 {
1876 	LIST_HEAD(tmp_links);
1877 	struct cgroup *root_cgrp = &root->cgrp;
1878 	struct kernfs_syscall_ops *kf_sops;
1879 	struct css_set *cset;
1880 	int i, ret;
1881 
1882 	lockdep_assert_held(&cgroup_mutex);
1883 
1884 	ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL);
1885 	if (ret < 0)
1886 		goto out;
1887 	root_cgrp->id = ret;
1888 	root_cgrp->ancestor_ids[0] = ret;
1889 
1890 	ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release,
1891 			      ref_flags, GFP_KERNEL);
1892 	if (ret)
1893 		goto out;
1894 
1895 	/*
1896 	 * We're accessing css_set_count without locking css_set_lock here,
1897 	 * but that's OK - it can only be increased by someone holding
1898 	 * cgroup_lock, and that's us.  Later rebinding may disable
1899 	 * controllers on the default hierarchy and thus create new csets,
1900 	 * which can't be more than the existing ones.  Allocate 2x.
1901 	 */
1902 	ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
1903 	if (ret)
1904 		goto cancel_ref;
1905 
1906 	ret = cgroup_init_root_id(root);
1907 	if (ret)
1908 		goto cancel_ref;
1909 
1910 	kf_sops = root == &cgrp_dfl_root ?
1911 		&cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops;
1912 
1913 	root->kf_root = kernfs_create_root(kf_sops,
1914 					   KERNFS_ROOT_CREATE_DEACTIVATED |
1915 					   KERNFS_ROOT_SUPPORT_EXPORTOP,
1916 					   root_cgrp);
1917 	if (IS_ERR(root->kf_root)) {
1918 		ret = PTR_ERR(root->kf_root);
1919 		goto exit_root_id;
1920 	}
1921 	root_cgrp->kn = root->kf_root->kn;
1922 
1923 	ret = css_populate_dir(&root_cgrp->self);
1924 	if (ret)
1925 		goto destroy_root;
1926 
1927 	ret = rebind_subsystems(root, ss_mask);
1928 	if (ret)
1929 		goto destroy_root;
1930 
1931 	ret = cgroup_bpf_inherit(root_cgrp);
1932 	WARN_ON_ONCE(ret);
1933 
1934 	trace_cgroup_setup_root(root);
1935 
1936 	/*
1937 	 * There must be no failure case after here, since rebinding takes
1938 	 * care of subsystems' refcounts, which are explicitly dropped in
1939 	 * the failure exit path.
1940 	 */
1941 	list_add(&root->root_list, &cgroup_roots);
1942 	cgroup_root_count++;
1943 
1944 	/*
1945 	 * Link the root cgroup in this hierarchy into all the css_set
1946 	 * objects.
1947 	 */
1948 	spin_lock_irq(&css_set_lock);
1949 	hash_for_each(css_set_table, i, cset, hlist) {
1950 		link_css_set(&tmp_links, cset, root_cgrp);
1951 		if (css_set_populated(cset))
1952 			cgroup_update_populated(root_cgrp, true);
1953 	}
1954 	spin_unlock_irq(&css_set_lock);
1955 
1956 	BUG_ON(!list_empty(&root_cgrp->self.children));
1957 	BUG_ON(atomic_read(&root->nr_cgrps) != 1);
1958 
1959 	kernfs_activate(root_cgrp->kn);
1960 	ret = 0;
1961 	goto out;
1962 
1963 destroy_root:
1964 	kernfs_destroy_root(root->kf_root);
1965 	root->kf_root = NULL;
1966 exit_root_id:
1967 	cgroup_exit_root_id(root);
1968 cancel_ref:
1969 	percpu_ref_exit(&root_cgrp->self.refcnt);
1970 out:
1971 	free_cgrp_cset_links(&tmp_links);
1972 	return ret;
1973 }
1974 
1975 struct dentry *cgroup_do_mount(struct file_system_type *fs_type, int flags,
1976 			       struct cgroup_root *root, unsigned long magic,
1977 			       struct cgroup_namespace *ns)
1978 {
1979 	struct dentry *dentry;
1980 	bool new_sb;
1981 
1982 	dentry = kernfs_mount(fs_type, flags, root->kf_root, magic, &new_sb);
1983 
1984 	/*
1985 	 * In non-init cgroup namespace, instead of root cgroup's dentry,
1986 	 * we return the dentry corresponding to the cgroupns->root_cgrp.
1987 	 */
1988 	if (!IS_ERR(dentry) && ns != &init_cgroup_ns) {
1989 		struct dentry *nsdentry;
1990 		struct cgroup *cgrp;
1991 
1992 		mutex_lock(&cgroup_mutex);
1993 		spin_lock_irq(&css_set_lock);
1994 
1995 		cgrp = cset_cgroup_from_root(ns->root_cset, root);
1996 
1997 		spin_unlock_irq(&css_set_lock);
1998 		mutex_unlock(&cgroup_mutex);
1999 
2000 		nsdentry = kernfs_node_dentry(cgrp->kn, dentry->d_sb);
2001 		dput(dentry);
2002 		dentry = nsdentry;
2003 	}
2004 
2005 	if (IS_ERR(dentry) || !new_sb)
2006 		cgroup_put(&root->cgrp);
2007 
2008 	return dentry;
2009 }
2010 
2011 static struct dentry *cgroup_mount(struct file_system_type *fs_type,
2012 			 int flags, const char *unused_dev_name,
2013 			 void *data)
2014 {
2015 	struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
2016 	struct dentry *dentry;
2017 	int ret;
2018 
2019 	get_cgroup_ns(ns);
2020 
2021 	/* Check if the caller has permission to mount. */
2022 	if (!ns_capable(ns->user_ns, CAP_SYS_ADMIN)) {
2023 		put_cgroup_ns(ns);
2024 		return ERR_PTR(-EPERM);
2025 	}
2026 
2027 	/*
2028 	 * The first time anyone tries to mount a cgroup, enable the list
2029 	 * linking each css_set to its tasks and fix up all existing tasks.
2030 	 */
2031 	if (!use_task_css_set_links)
2032 		cgroup_enable_task_cg_lists();
2033 
2034 	if (fs_type == &cgroup2_fs_type) {
2035 		unsigned int root_flags;
2036 
2037 		ret = parse_cgroup_root_flags(data, &root_flags);
2038 		if (ret) {
2039 			put_cgroup_ns(ns);
2040 			return ERR_PTR(ret);
2041 		}
2042 
2043 		cgrp_dfl_visible = true;
2044 		cgroup_get_live(&cgrp_dfl_root.cgrp);
2045 
2046 		dentry = cgroup_do_mount(&cgroup2_fs_type, flags, &cgrp_dfl_root,
2047 					 CGROUP2_SUPER_MAGIC, ns);
2048 		if (!IS_ERR(dentry))
2049 			apply_cgroup_root_flags(root_flags);
2050 	} else {
2051 		dentry = cgroup1_mount(&cgroup_fs_type, flags, data,
2052 				       CGROUP_SUPER_MAGIC, ns);
2053 	}
2054 
2055 	put_cgroup_ns(ns);
2056 	return dentry;
2057 }
2058 
2059 static void cgroup_kill_sb(struct super_block *sb)
2060 {
2061 	struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2062 	struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2063 
2064 	/*
2065 	 * If @root doesn't have any mounts or children, start killing it.
2066 	 * This prevents new mounts by disabling percpu_ref_tryget_live().
2067 	 * cgroup_mount() may wait for @root's release.
2068 	 *
2069 	 * And don't kill the default root.
2070 	 */
2071 	if (!list_empty(&root->cgrp.self.children) ||
2072 	    root == &cgrp_dfl_root)
2073 		cgroup_put(&root->cgrp);
2074 	else
2075 		percpu_ref_kill(&root->cgrp.self.refcnt);
2076 
2077 	kernfs_kill_sb(sb);
2078 }
2079 
2080 struct file_system_type cgroup_fs_type = {
2081 	.name = "cgroup",
2082 	.mount = cgroup_mount,
2083 	.kill_sb = cgroup_kill_sb,
2084 	.fs_flags = FS_USERNS_MOUNT,
2085 };
2086 
2087 static struct file_system_type cgroup2_fs_type = {
2088 	.name = "cgroup2",
2089 	.mount = cgroup_mount,
2090 	.kill_sb = cgroup_kill_sb,
2091 	.fs_flags = FS_USERNS_MOUNT,
2092 };
2093 
2094 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
2095 			  struct cgroup_namespace *ns)
2096 {
2097 	struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
2098 
2099 	return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
2100 }
2101 
2102 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
2103 		   struct cgroup_namespace *ns)
2104 {
2105 	int ret;
2106 
2107 	mutex_lock(&cgroup_mutex);
2108 	spin_lock_irq(&css_set_lock);
2109 
2110 	ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
2111 
2112 	spin_unlock_irq(&css_set_lock);
2113 	mutex_unlock(&cgroup_mutex);
2114 
2115 	return ret;
2116 }
2117 EXPORT_SYMBOL_GPL(cgroup_path_ns);
2118 
2119 /**
2120  * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
2121  * @task: target task
2122  * @buf: the buffer to write the path into
2123  * @buflen: the length of the buffer
2124  *
2125  * Determine @task's cgroup on the first (the one with the lowest non-zero
2126  * hierarchy_id) cgroup hierarchy and copy its path into @buf.  This
2127  * function grabs cgroup_mutex and shouldn't be used inside locks used by
2128  * cgroup controller callbacks.
2129  *
2130  * Return value is the same as kernfs_path().
2131  */
2132 int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
2133 {
2134 	struct cgroup_root *root;
2135 	struct cgroup *cgrp;
2136 	int hierarchy_id = 1;
2137 	int ret;
2138 
2139 	mutex_lock(&cgroup_mutex);
2140 	spin_lock_irq(&css_set_lock);
2141 
2142 	root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2143 
2144 	if (root) {
2145 		cgrp = task_cgroup_from_root(task, root);
2146 		ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns);
2147 	} else {
2148 		/* if no hierarchy exists, everyone is in "/" */
2149 		ret = strlcpy(buf, "/", buflen);
2150 	}
2151 
2152 	spin_unlock_irq(&css_set_lock);
2153 	mutex_unlock(&cgroup_mutex);
2154 	return ret;
2155 }
2156 EXPORT_SYMBOL_GPL(task_cgroup_path);
2157 
2158 /**
2159  * cgroup_migrate_add_task - add a migration target task to a migration context
2160  * @task: target task
2161  * @mgctx: target migration context
2162  *
2163  * Add @task, which is a migration target, to @mgctx->tset.  This function
2164  * becomes noop if @task doesn't need to be migrated.  @task's css_set
2165  * should have been added as a migration source and @task->cg_list will be
2166  * moved from the css_set's tasks list to mg_tasks one.
2167  */
2168 static void cgroup_migrate_add_task(struct task_struct *task,
2169 				    struct cgroup_mgctx *mgctx)
2170 {
2171 	struct css_set *cset;
2172 
2173 	lockdep_assert_held(&css_set_lock);
2174 
2175 	/* @task either already exited or can't exit until the end */
2176 	if (task->flags & PF_EXITING)
2177 		return;
2178 
2179 	/* leave @task alone if post_fork() hasn't linked it yet */
2180 	if (list_empty(&task->cg_list))
2181 		return;
2182 
2183 	cset = task_css_set(task);
2184 	if (!cset->mg_src_cgrp)
2185 		return;
2186 
2187 	mgctx->tset.nr_tasks++;
2188 
2189 	list_move_tail(&task->cg_list, &cset->mg_tasks);
2190 	if (list_empty(&cset->mg_node))
2191 		list_add_tail(&cset->mg_node,
2192 			      &mgctx->tset.src_csets);
2193 	if (list_empty(&cset->mg_dst_cset->mg_node))
2194 		list_add_tail(&cset->mg_dst_cset->mg_node,
2195 			      &mgctx->tset.dst_csets);
2196 }
2197 
2198 /**
2199  * cgroup_taskset_first - reset taskset and return the first task
2200  * @tset: taskset of interest
2201  * @dst_cssp: output variable for the destination css
2202  *
2203  * @tset iteration is initialized and the first task is returned.
2204  */
2205 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2206 					 struct cgroup_subsys_state **dst_cssp)
2207 {
2208 	tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2209 	tset->cur_task = NULL;
2210 
2211 	return cgroup_taskset_next(tset, dst_cssp);
2212 }
2213 
2214 /**
2215  * cgroup_taskset_next - iterate to the next task in taskset
2216  * @tset: taskset of interest
2217  * @dst_cssp: output variable for the destination css
2218  *
2219  * Return the next task in @tset.  Iteration must have been initialized
2220  * with cgroup_taskset_first().
2221  */
2222 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2223 					struct cgroup_subsys_state **dst_cssp)
2224 {
2225 	struct css_set *cset = tset->cur_cset;
2226 	struct task_struct *task = tset->cur_task;
2227 
2228 	while (&cset->mg_node != tset->csets) {
2229 		if (!task)
2230 			task = list_first_entry(&cset->mg_tasks,
2231 						struct task_struct, cg_list);
2232 		else
2233 			task = list_next_entry(task, cg_list);
2234 
2235 		if (&task->cg_list != &cset->mg_tasks) {
2236 			tset->cur_cset = cset;
2237 			tset->cur_task = task;
2238 
2239 			/*
2240 			 * This function may be called both before and
2241 			 * after cgroup_taskset_migrate().  The two cases
2242 			 * can be distinguished by looking at whether @cset
2243 			 * has its ->mg_dst_cset set.
2244 			 */
2245 			if (cset->mg_dst_cset)
2246 				*dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2247 			else
2248 				*dst_cssp = cset->subsys[tset->ssid];
2249 
2250 			return task;
2251 		}
2252 
2253 		cset = list_next_entry(cset, mg_node);
2254 		task = NULL;
2255 	}
2256 
2257 	return NULL;
2258 }
2259 
2260 /**
2261  * cgroup_taskset_migrate - migrate a taskset
2262  * @mgctx: migration context
2263  *
2264  * Migrate tasks in @mgctx as setup by migration preparation functions.
2265  * This function fails iff one of the ->can_attach callbacks fails and
2266  * guarantees that either all or none of the tasks in @mgctx are migrated.
2267  * @mgctx is consumed regardless of success.
2268  */
2269 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx)
2270 {
2271 	struct cgroup_taskset *tset = &mgctx->tset;
2272 	struct cgroup_subsys *ss;
2273 	struct task_struct *task, *tmp_task;
2274 	struct css_set *cset, *tmp_cset;
2275 	int ssid, failed_ssid, ret;
2276 
2277 	/* check that we can legitimately attach to the cgroup */
2278 	if (tset->nr_tasks) {
2279 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2280 			if (ss->can_attach) {
2281 				tset->ssid = ssid;
2282 				ret = ss->can_attach(tset);
2283 				if (ret) {
2284 					failed_ssid = ssid;
2285 					goto out_cancel_attach;
2286 				}
2287 			}
2288 		} while_each_subsys_mask();
2289 	}
2290 
2291 	/*
2292 	 * Now that we're guaranteed success, proceed to move all tasks to
2293 	 * the new cgroup.  There are no failure cases after here, so this
2294 	 * is the commit point.
2295 	 */
2296 	spin_lock_irq(&css_set_lock);
2297 	list_for_each_entry(cset, &tset->src_csets, mg_node) {
2298 		list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2299 			struct css_set *from_cset = task_css_set(task);
2300 			struct css_set *to_cset = cset->mg_dst_cset;
2301 
2302 			get_css_set(to_cset);
2303 			to_cset->nr_tasks++;
2304 			css_set_move_task(task, from_cset, to_cset, true);
2305 			put_css_set_locked(from_cset);
2306 			from_cset->nr_tasks--;
2307 		}
2308 	}
2309 	spin_unlock_irq(&css_set_lock);
2310 
2311 	/*
2312 	 * Migration is committed, all target tasks are now on dst_csets.
2313 	 * Nothing is sensitive to fork() after this point.  Notify
2314 	 * controllers that migration is complete.
2315 	 */
2316 	tset->csets = &tset->dst_csets;
2317 
2318 	if (tset->nr_tasks) {
2319 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2320 			if (ss->attach) {
2321 				tset->ssid = ssid;
2322 				ss->attach(tset);
2323 			}
2324 		} while_each_subsys_mask();
2325 	}
2326 
2327 	ret = 0;
2328 	goto out_release_tset;
2329 
2330 out_cancel_attach:
2331 	if (tset->nr_tasks) {
2332 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2333 			if (ssid == failed_ssid)
2334 				break;
2335 			if (ss->cancel_attach) {
2336 				tset->ssid = ssid;
2337 				ss->cancel_attach(tset);
2338 			}
2339 		} while_each_subsys_mask();
2340 	}
2341 out_release_tset:
2342 	spin_lock_irq(&css_set_lock);
2343 	list_splice_init(&tset->dst_csets, &tset->src_csets);
2344 	list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2345 		list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2346 		list_del_init(&cset->mg_node);
2347 	}
2348 	spin_unlock_irq(&css_set_lock);
2349 
2350 	/*
2351 	 * Re-initialize the cgroup_taskset structure in case it is reused
2352 	 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute()
2353 	 * iteration.
2354 	 */
2355 	tset->nr_tasks = 0;
2356 	tset->csets    = &tset->src_csets;
2357 	return ret;
2358 }
2359 
2360 /**
2361  * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination
2362  * @dst_cgrp: destination cgroup to test
2363  *
2364  * On the default hierarchy, except for the mixable, (possible) thread root
2365  * and threaded cgroups, subtree_control must be zero for migration
2366  * destination cgroups with tasks so that child cgroups don't compete
2367  * against tasks.
2368  */
2369 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp)
2370 {
2371 	/* v1 doesn't have any restriction */
2372 	if (!cgroup_on_dfl(dst_cgrp))
2373 		return 0;
2374 
2375 	/* verify @dst_cgrp can host resources */
2376 	if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp))
2377 		return -EOPNOTSUPP;
2378 
2379 	/* mixables don't care */
2380 	if (cgroup_is_mixable(dst_cgrp))
2381 		return 0;
2382 
2383 	/*
2384 	 * If @dst_cgrp is already or can become a thread root or is
2385 	 * threaded, it doesn't matter.
2386 	 */
2387 	if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp))
2388 		return 0;
2389 
2390 	/* apply no-internal-process constraint */
2391 	if (dst_cgrp->subtree_control)
2392 		return -EBUSY;
2393 
2394 	return 0;
2395 }
2396 
2397 /**
2398  * cgroup_migrate_finish - cleanup after attach
2399  * @mgctx: migration context
2400  *
2401  * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst().  See
2402  * those functions for details.
2403  */
2404 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx)
2405 {
2406 	LIST_HEAD(preloaded);
2407 	struct css_set *cset, *tmp_cset;
2408 
2409 	lockdep_assert_held(&cgroup_mutex);
2410 
2411 	spin_lock_irq(&css_set_lock);
2412 
2413 	list_splice_tail_init(&mgctx->preloaded_src_csets, &preloaded);
2414 	list_splice_tail_init(&mgctx->preloaded_dst_csets, &preloaded);
2415 
2416 	list_for_each_entry_safe(cset, tmp_cset, &preloaded, mg_preload_node) {
2417 		cset->mg_src_cgrp = NULL;
2418 		cset->mg_dst_cgrp = NULL;
2419 		cset->mg_dst_cset = NULL;
2420 		list_del_init(&cset->mg_preload_node);
2421 		put_css_set_locked(cset);
2422 	}
2423 
2424 	spin_unlock_irq(&css_set_lock);
2425 }
2426 
2427 /**
2428  * cgroup_migrate_add_src - add a migration source css_set
2429  * @src_cset: the source css_set to add
2430  * @dst_cgrp: the destination cgroup
2431  * @mgctx: migration context
2432  *
2433  * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp.  Pin
2434  * @src_cset and add it to @mgctx->src_csets, which should later be cleaned
2435  * up by cgroup_migrate_finish().
2436  *
2437  * This function may be called without holding cgroup_threadgroup_rwsem
2438  * even if the target is a process.  Threads may be created and destroyed
2439  * but as long as cgroup_mutex is not dropped, no new css_set can be put
2440  * into play and the preloaded css_sets are guaranteed to cover all
2441  * migrations.
2442  */
2443 void cgroup_migrate_add_src(struct css_set *src_cset,
2444 			    struct cgroup *dst_cgrp,
2445 			    struct cgroup_mgctx *mgctx)
2446 {
2447 	struct cgroup *src_cgrp;
2448 
2449 	lockdep_assert_held(&cgroup_mutex);
2450 	lockdep_assert_held(&css_set_lock);
2451 
2452 	/*
2453 	 * If ->dead, @src_set is associated with one or more dead cgroups
2454 	 * and doesn't contain any migratable tasks.  Ignore it early so
2455 	 * that the rest of migration path doesn't get confused by it.
2456 	 */
2457 	if (src_cset->dead)
2458 		return;
2459 
2460 	src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2461 
2462 	if (!list_empty(&src_cset->mg_preload_node))
2463 		return;
2464 
2465 	WARN_ON(src_cset->mg_src_cgrp);
2466 	WARN_ON(src_cset->mg_dst_cgrp);
2467 	WARN_ON(!list_empty(&src_cset->mg_tasks));
2468 	WARN_ON(!list_empty(&src_cset->mg_node));
2469 
2470 	src_cset->mg_src_cgrp = src_cgrp;
2471 	src_cset->mg_dst_cgrp = dst_cgrp;
2472 	get_css_set(src_cset);
2473 	list_add_tail(&src_cset->mg_preload_node, &mgctx->preloaded_src_csets);
2474 }
2475 
2476 /**
2477  * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2478  * @mgctx: migration context
2479  *
2480  * Tasks are about to be moved and all the source css_sets have been
2481  * preloaded to @mgctx->preloaded_src_csets.  This function looks up and
2482  * pins all destination css_sets, links each to its source, and append them
2483  * to @mgctx->preloaded_dst_csets.
2484  *
2485  * This function must be called after cgroup_migrate_add_src() has been
2486  * called on each migration source css_set.  After migration is performed
2487  * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2488  * @mgctx.
2489  */
2490 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx)
2491 {
2492 	struct css_set *src_cset, *tmp_cset;
2493 
2494 	lockdep_assert_held(&cgroup_mutex);
2495 
2496 	/* look up the dst cset for each src cset and link it to src */
2497 	list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets,
2498 				 mg_preload_node) {
2499 		struct css_set *dst_cset;
2500 		struct cgroup_subsys *ss;
2501 		int ssid;
2502 
2503 		dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
2504 		if (!dst_cset)
2505 			goto err;
2506 
2507 		WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2508 
2509 		/*
2510 		 * If src cset equals dst, it's noop.  Drop the src.
2511 		 * cgroup_migrate() will skip the cset too.  Note that we
2512 		 * can't handle src == dst as some nodes are used by both.
2513 		 */
2514 		if (src_cset == dst_cset) {
2515 			src_cset->mg_src_cgrp = NULL;
2516 			src_cset->mg_dst_cgrp = NULL;
2517 			list_del_init(&src_cset->mg_preload_node);
2518 			put_css_set(src_cset);
2519 			put_css_set(dst_cset);
2520 			continue;
2521 		}
2522 
2523 		src_cset->mg_dst_cset = dst_cset;
2524 
2525 		if (list_empty(&dst_cset->mg_preload_node))
2526 			list_add_tail(&dst_cset->mg_preload_node,
2527 				      &mgctx->preloaded_dst_csets);
2528 		else
2529 			put_css_set(dst_cset);
2530 
2531 		for_each_subsys(ss, ssid)
2532 			if (src_cset->subsys[ssid] != dst_cset->subsys[ssid])
2533 				mgctx->ss_mask |= 1 << ssid;
2534 	}
2535 
2536 	return 0;
2537 err:
2538 	cgroup_migrate_finish(mgctx);
2539 	return -ENOMEM;
2540 }
2541 
2542 /**
2543  * cgroup_migrate - migrate a process or task to a cgroup
2544  * @leader: the leader of the process or the task to migrate
2545  * @threadgroup: whether @leader points to the whole process or a single task
2546  * @mgctx: migration context
2547  *
2548  * Migrate a process or task denoted by @leader.  If migrating a process,
2549  * the caller must be holding cgroup_threadgroup_rwsem.  The caller is also
2550  * responsible for invoking cgroup_migrate_add_src() and
2551  * cgroup_migrate_prepare_dst() on the targets before invoking this
2552  * function and following up with cgroup_migrate_finish().
2553  *
2554  * As long as a controller's ->can_attach() doesn't fail, this function is
2555  * guaranteed to succeed.  This means that, excluding ->can_attach()
2556  * failure, when migrating multiple targets, the success or failure can be
2557  * decided for all targets by invoking group_migrate_prepare_dst() before
2558  * actually starting migrating.
2559  */
2560 int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2561 		   struct cgroup_mgctx *mgctx)
2562 {
2563 	struct task_struct *task;
2564 
2565 	/*
2566 	 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2567 	 * already PF_EXITING could be freed from underneath us unless we
2568 	 * take an rcu_read_lock.
2569 	 */
2570 	spin_lock_irq(&css_set_lock);
2571 	rcu_read_lock();
2572 	task = leader;
2573 	do {
2574 		cgroup_migrate_add_task(task, mgctx);
2575 		if (!threadgroup)
2576 			break;
2577 	} while_each_thread(leader, task);
2578 	rcu_read_unlock();
2579 	spin_unlock_irq(&css_set_lock);
2580 
2581 	return cgroup_migrate_execute(mgctx);
2582 }
2583 
2584 /**
2585  * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2586  * @dst_cgrp: the cgroup to attach to
2587  * @leader: the task or the leader of the threadgroup to be attached
2588  * @threadgroup: attach the whole threadgroup?
2589  *
2590  * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2591  */
2592 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader,
2593 		       bool threadgroup)
2594 {
2595 	DEFINE_CGROUP_MGCTX(mgctx);
2596 	struct task_struct *task;
2597 	int ret;
2598 
2599 	ret = cgroup_migrate_vet_dst(dst_cgrp);
2600 	if (ret)
2601 		return ret;
2602 
2603 	/* look up all src csets */
2604 	spin_lock_irq(&css_set_lock);
2605 	rcu_read_lock();
2606 	task = leader;
2607 	do {
2608 		cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx);
2609 		if (!threadgroup)
2610 			break;
2611 	} while_each_thread(leader, task);
2612 	rcu_read_unlock();
2613 	spin_unlock_irq(&css_set_lock);
2614 
2615 	/* prepare dst csets and commit */
2616 	ret = cgroup_migrate_prepare_dst(&mgctx);
2617 	if (!ret)
2618 		ret = cgroup_migrate(leader, threadgroup, &mgctx);
2619 
2620 	cgroup_migrate_finish(&mgctx);
2621 
2622 	if (!ret)
2623 		trace_cgroup_attach_task(dst_cgrp, leader, threadgroup);
2624 
2625 	return ret;
2626 }
2627 
2628 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup)
2629 	__acquires(&cgroup_threadgroup_rwsem)
2630 {
2631 	struct task_struct *tsk;
2632 	pid_t pid;
2633 
2634 	if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2635 		return ERR_PTR(-EINVAL);
2636 
2637 	percpu_down_write(&cgroup_threadgroup_rwsem);
2638 
2639 	rcu_read_lock();
2640 	if (pid) {
2641 		tsk = find_task_by_vpid(pid);
2642 		if (!tsk) {
2643 			tsk = ERR_PTR(-ESRCH);
2644 			goto out_unlock_threadgroup;
2645 		}
2646 	} else {
2647 		tsk = current;
2648 	}
2649 
2650 	if (threadgroup)
2651 		tsk = tsk->group_leader;
2652 
2653 	/*
2654 	 * kthreads may acquire PF_NO_SETAFFINITY during initialization.
2655 	 * If userland migrates such a kthread to a non-root cgroup, it can
2656 	 * become trapped in a cpuset, or RT kthread may be born in a
2657 	 * cgroup with no rt_runtime allocated.  Just say no.
2658 	 */
2659 	if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) {
2660 		tsk = ERR_PTR(-EINVAL);
2661 		goto out_unlock_threadgroup;
2662 	}
2663 
2664 	get_task_struct(tsk);
2665 	goto out_unlock_rcu;
2666 
2667 out_unlock_threadgroup:
2668 	percpu_up_write(&cgroup_threadgroup_rwsem);
2669 out_unlock_rcu:
2670 	rcu_read_unlock();
2671 	return tsk;
2672 }
2673 
2674 void cgroup_procs_write_finish(struct task_struct *task)
2675 	__releases(&cgroup_threadgroup_rwsem)
2676 {
2677 	struct cgroup_subsys *ss;
2678 	int ssid;
2679 
2680 	/* release reference from cgroup_procs_write_start() */
2681 	put_task_struct(task);
2682 
2683 	percpu_up_write(&cgroup_threadgroup_rwsem);
2684 	for_each_subsys(ss, ssid)
2685 		if (ss->post_attach)
2686 			ss->post_attach();
2687 }
2688 
2689 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
2690 {
2691 	struct cgroup_subsys *ss;
2692 	bool printed = false;
2693 	int ssid;
2694 
2695 	do_each_subsys_mask(ss, ssid, ss_mask) {
2696 		if (printed)
2697 			seq_putc(seq, ' ');
2698 		seq_printf(seq, "%s", ss->name);
2699 		printed = true;
2700 	} while_each_subsys_mask();
2701 	if (printed)
2702 		seq_putc(seq, '\n');
2703 }
2704 
2705 /* show controllers which are enabled from the parent */
2706 static int cgroup_controllers_show(struct seq_file *seq, void *v)
2707 {
2708 	struct cgroup *cgrp = seq_css(seq)->cgroup;
2709 
2710 	cgroup_print_ss_mask(seq, cgroup_control(cgrp));
2711 	return 0;
2712 }
2713 
2714 /* show controllers which are enabled for a given cgroup's children */
2715 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
2716 {
2717 	struct cgroup *cgrp = seq_css(seq)->cgroup;
2718 
2719 	cgroup_print_ss_mask(seq, cgrp->subtree_control);
2720 	return 0;
2721 }
2722 
2723 /**
2724  * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2725  * @cgrp: root of the subtree to update csses for
2726  *
2727  * @cgrp's control masks have changed and its subtree's css associations
2728  * need to be updated accordingly.  This function looks up all css_sets
2729  * which are attached to the subtree, creates the matching updated css_sets
2730  * and migrates the tasks to the new ones.
2731  */
2732 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2733 {
2734 	DEFINE_CGROUP_MGCTX(mgctx);
2735 	struct cgroup_subsys_state *d_css;
2736 	struct cgroup *dsct;
2737 	struct css_set *src_cset;
2738 	int ret;
2739 
2740 	lockdep_assert_held(&cgroup_mutex);
2741 
2742 	percpu_down_write(&cgroup_threadgroup_rwsem);
2743 
2744 	/* look up all csses currently attached to @cgrp's subtree */
2745 	spin_lock_irq(&css_set_lock);
2746 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2747 		struct cgrp_cset_link *link;
2748 
2749 		list_for_each_entry(link, &dsct->cset_links, cset_link)
2750 			cgroup_migrate_add_src(link->cset, dsct, &mgctx);
2751 	}
2752 	spin_unlock_irq(&css_set_lock);
2753 
2754 	/* NULL dst indicates self on default hierarchy */
2755 	ret = cgroup_migrate_prepare_dst(&mgctx);
2756 	if (ret)
2757 		goto out_finish;
2758 
2759 	spin_lock_irq(&css_set_lock);
2760 	list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, mg_preload_node) {
2761 		struct task_struct *task, *ntask;
2762 
2763 		/* all tasks in src_csets need to be migrated */
2764 		list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
2765 			cgroup_migrate_add_task(task, &mgctx);
2766 	}
2767 	spin_unlock_irq(&css_set_lock);
2768 
2769 	ret = cgroup_migrate_execute(&mgctx);
2770 out_finish:
2771 	cgroup_migrate_finish(&mgctx);
2772 	percpu_up_write(&cgroup_threadgroup_rwsem);
2773 	return ret;
2774 }
2775 
2776 /**
2777  * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
2778  * @cgrp: root of the target subtree
2779  *
2780  * Because css offlining is asynchronous, userland may try to re-enable a
2781  * controller while the previous css is still around.  This function grabs
2782  * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
2783  */
2784 void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
2785 	__acquires(&cgroup_mutex)
2786 {
2787 	struct cgroup *dsct;
2788 	struct cgroup_subsys_state *d_css;
2789 	struct cgroup_subsys *ss;
2790 	int ssid;
2791 
2792 restart:
2793 	mutex_lock(&cgroup_mutex);
2794 
2795 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
2796 		for_each_subsys(ss, ssid) {
2797 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
2798 			DEFINE_WAIT(wait);
2799 
2800 			if (!css || !percpu_ref_is_dying(&css->refcnt))
2801 				continue;
2802 
2803 			cgroup_get_live(dsct);
2804 			prepare_to_wait(&dsct->offline_waitq, &wait,
2805 					TASK_UNINTERRUPTIBLE);
2806 
2807 			mutex_unlock(&cgroup_mutex);
2808 			schedule();
2809 			finish_wait(&dsct->offline_waitq, &wait);
2810 
2811 			cgroup_put(dsct);
2812 			goto restart;
2813 		}
2814 	}
2815 }
2816 
2817 /**
2818  * cgroup_save_control - save control masks of a subtree
2819  * @cgrp: root of the target subtree
2820  *
2821  * Save ->subtree_control and ->subtree_ss_mask to the respective old_
2822  * prefixed fields for @cgrp's subtree including @cgrp itself.
2823  */
2824 static void cgroup_save_control(struct cgroup *cgrp)
2825 {
2826 	struct cgroup *dsct;
2827 	struct cgroup_subsys_state *d_css;
2828 
2829 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2830 		dsct->old_subtree_control = dsct->subtree_control;
2831 		dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
2832 	}
2833 }
2834 
2835 /**
2836  * cgroup_propagate_control - refresh control masks of a subtree
2837  * @cgrp: root of the target subtree
2838  *
2839  * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
2840  * ->subtree_control and propagate controller availability through the
2841  * subtree so that descendants don't have unavailable controllers enabled.
2842  */
2843 static void cgroup_propagate_control(struct cgroup *cgrp)
2844 {
2845 	struct cgroup *dsct;
2846 	struct cgroup_subsys_state *d_css;
2847 
2848 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2849 		dsct->subtree_control &= cgroup_control(dsct);
2850 		dsct->subtree_ss_mask =
2851 			cgroup_calc_subtree_ss_mask(dsct->subtree_control,
2852 						    cgroup_ss_mask(dsct));
2853 	}
2854 }
2855 
2856 /**
2857  * cgroup_restore_control - restore control masks of a subtree
2858  * @cgrp: root of the target subtree
2859  *
2860  * Restore ->subtree_control and ->subtree_ss_mask from the respective old_
2861  * prefixed fields for @cgrp's subtree including @cgrp itself.
2862  */
2863 static void cgroup_restore_control(struct cgroup *cgrp)
2864 {
2865 	struct cgroup *dsct;
2866 	struct cgroup_subsys_state *d_css;
2867 
2868 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
2869 		dsct->subtree_control = dsct->old_subtree_control;
2870 		dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
2871 	}
2872 }
2873 
2874 static bool css_visible(struct cgroup_subsys_state *css)
2875 {
2876 	struct cgroup_subsys *ss = css->ss;
2877 	struct cgroup *cgrp = css->cgroup;
2878 
2879 	if (cgroup_control(cgrp) & (1 << ss->id))
2880 		return true;
2881 	if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
2882 		return false;
2883 	return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
2884 }
2885 
2886 /**
2887  * cgroup_apply_control_enable - enable or show csses according to control
2888  * @cgrp: root of the target subtree
2889  *
2890  * Walk @cgrp's subtree and create new csses or make the existing ones
2891  * visible.  A css is created invisible if it's being implicitly enabled
2892  * through dependency.  An invisible css is made visible when the userland
2893  * explicitly enables it.
2894  *
2895  * Returns 0 on success, -errno on failure.  On failure, csses which have
2896  * been processed already aren't cleaned up.  The caller is responsible for
2897  * cleaning up with cgroup_apply_control_disable().
2898  */
2899 static int cgroup_apply_control_enable(struct cgroup *cgrp)
2900 {
2901 	struct cgroup *dsct;
2902 	struct cgroup_subsys_state *d_css;
2903 	struct cgroup_subsys *ss;
2904 	int ssid, ret;
2905 
2906 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2907 		for_each_subsys(ss, ssid) {
2908 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
2909 
2910 			WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
2911 
2912 			if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
2913 				continue;
2914 
2915 			if (!css) {
2916 				css = css_create(dsct, ss);
2917 				if (IS_ERR(css))
2918 					return PTR_ERR(css);
2919 			}
2920 
2921 			if (css_visible(css)) {
2922 				ret = css_populate_dir(css);
2923 				if (ret)
2924 					return ret;
2925 			}
2926 		}
2927 	}
2928 
2929 	return 0;
2930 }
2931 
2932 /**
2933  * cgroup_apply_control_disable - kill or hide csses according to control
2934  * @cgrp: root of the target subtree
2935  *
2936  * Walk @cgrp's subtree and kill and hide csses so that they match
2937  * cgroup_ss_mask() and cgroup_visible_mask().
2938  *
2939  * A css is hidden when the userland requests it to be disabled while other
2940  * subsystems are still depending on it.  The css must not actively control
2941  * resources and be in the vanilla state if it's made visible again later.
2942  * Controllers which may be depended upon should provide ->css_reset() for
2943  * this purpose.
2944  */
2945 static void cgroup_apply_control_disable(struct cgroup *cgrp)
2946 {
2947 	struct cgroup *dsct;
2948 	struct cgroup_subsys_state *d_css;
2949 	struct cgroup_subsys *ss;
2950 	int ssid;
2951 
2952 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
2953 		for_each_subsys(ss, ssid) {
2954 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
2955 
2956 			WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
2957 
2958 			if (!css)
2959 				continue;
2960 
2961 			if (css->parent &&
2962 			    !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
2963 				kill_css(css);
2964 			} else if (!css_visible(css)) {
2965 				css_clear_dir(css);
2966 				if (ss->css_reset)
2967 					ss->css_reset(css);
2968 			}
2969 		}
2970 	}
2971 }
2972 
2973 /**
2974  * cgroup_apply_control - apply control mask updates to the subtree
2975  * @cgrp: root of the target subtree
2976  *
2977  * subsystems can be enabled and disabled in a subtree using the following
2978  * steps.
2979  *
2980  * 1. Call cgroup_save_control() to stash the current state.
2981  * 2. Update ->subtree_control masks in the subtree as desired.
2982  * 3. Call cgroup_apply_control() to apply the changes.
2983  * 4. Optionally perform other related operations.
2984  * 5. Call cgroup_finalize_control() to finish up.
2985  *
2986  * This function implements step 3 and propagates the mask changes
2987  * throughout @cgrp's subtree, updates csses accordingly and perform
2988  * process migrations.
2989  */
2990 static int cgroup_apply_control(struct cgroup *cgrp)
2991 {
2992 	int ret;
2993 
2994 	cgroup_propagate_control(cgrp);
2995 
2996 	ret = cgroup_apply_control_enable(cgrp);
2997 	if (ret)
2998 		return ret;
2999 
3000 	/*
3001 	 * At this point, cgroup_e_css() results reflect the new csses
3002 	 * making the following cgroup_update_dfl_csses() properly update
3003 	 * css associations of all tasks in the subtree.
3004 	 */
3005 	ret = cgroup_update_dfl_csses(cgrp);
3006 	if (ret)
3007 		return ret;
3008 
3009 	return 0;
3010 }
3011 
3012 /**
3013  * cgroup_finalize_control - finalize control mask update
3014  * @cgrp: root of the target subtree
3015  * @ret: the result of the update
3016  *
3017  * Finalize control mask update.  See cgroup_apply_control() for more info.
3018  */
3019 static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
3020 {
3021 	if (ret) {
3022 		cgroup_restore_control(cgrp);
3023 		cgroup_propagate_control(cgrp);
3024 	}
3025 
3026 	cgroup_apply_control_disable(cgrp);
3027 }
3028 
3029 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable)
3030 {
3031 	u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask;
3032 
3033 	/* if nothing is getting enabled, nothing to worry about */
3034 	if (!enable)
3035 		return 0;
3036 
3037 	/* can @cgrp host any resources? */
3038 	if (!cgroup_is_valid_domain(cgrp->dom_cgrp))
3039 		return -EOPNOTSUPP;
3040 
3041 	/* mixables don't care */
3042 	if (cgroup_is_mixable(cgrp))
3043 		return 0;
3044 
3045 	if (domain_enable) {
3046 		/* can't enable domain controllers inside a thread subtree */
3047 		if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3048 			return -EOPNOTSUPP;
3049 	} else {
3050 		/*
3051 		 * Threaded controllers can handle internal competitions
3052 		 * and are always allowed inside a (prospective) thread
3053 		 * subtree.
3054 		 */
3055 		if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3056 			return 0;
3057 	}
3058 
3059 	/*
3060 	 * Controllers can't be enabled for a cgroup with tasks to avoid
3061 	 * child cgroups competing against tasks.
3062 	 */
3063 	if (cgroup_has_tasks(cgrp))
3064 		return -EBUSY;
3065 
3066 	return 0;
3067 }
3068 
3069 /* change the enabled child controllers for a cgroup in the default hierarchy */
3070 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3071 					    char *buf, size_t nbytes,
3072 					    loff_t off)
3073 {
3074 	u16 enable = 0, disable = 0;
3075 	struct cgroup *cgrp, *child;
3076 	struct cgroup_subsys *ss;
3077 	char *tok;
3078 	int ssid, ret;
3079 
3080 	/*
3081 	 * Parse input - space separated list of subsystem names prefixed
3082 	 * with either + or -.
3083 	 */
3084 	buf = strstrip(buf);
3085 	while ((tok = strsep(&buf, " "))) {
3086 		if (tok[0] == '\0')
3087 			continue;
3088 		do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
3089 			if (!cgroup_ssid_enabled(ssid) ||
3090 			    strcmp(tok + 1, ss->name))
3091 				continue;
3092 
3093 			if (*tok == '+') {
3094 				enable |= 1 << ssid;
3095 				disable &= ~(1 << ssid);
3096 			} else if (*tok == '-') {
3097 				disable |= 1 << ssid;
3098 				enable &= ~(1 << ssid);
3099 			} else {
3100 				return -EINVAL;
3101 			}
3102 			break;
3103 		} while_each_subsys_mask();
3104 		if (ssid == CGROUP_SUBSYS_COUNT)
3105 			return -EINVAL;
3106 	}
3107 
3108 	cgrp = cgroup_kn_lock_live(of->kn, true);
3109 	if (!cgrp)
3110 		return -ENODEV;
3111 
3112 	for_each_subsys(ss, ssid) {
3113 		if (enable & (1 << ssid)) {
3114 			if (cgrp->subtree_control & (1 << ssid)) {
3115 				enable &= ~(1 << ssid);
3116 				continue;
3117 			}
3118 
3119 			if (!(cgroup_control(cgrp) & (1 << ssid))) {
3120 				ret = -ENOENT;
3121 				goto out_unlock;
3122 			}
3123 		} else if (disable & (1 << ssid)) {
3124 			if (!(cgrp->subtree_control & (1 << ssid))) {
3125 				disable &= ~(1 << ssid);
3126 				continue;
3127 			}
3128 
3129 			/* a child has it enabled? */
3130 			cgroup_for_each_live_child(child, cgrp) {
3131 				if (child->subtree_control & (1 << ssid)) {
3132 					ret = -EBUSY;
3133 					goto out_unlock;
3134 				}
3135 			}
3136 		}
3137 	}
3138 
3139 	if (!enable && !disable) {
3140 		ret = 0;
3141 		goto out_unlock;
3142 	}
3143 
3144 	ret = cgroup_vet_subtree_control_enable(cgrp, enable);
3145 	if (ret)
3146 		goto out_unlock;
3147 
3148 	/* save and update control masks and prepare csses */
3149 	cgroup_save_control(cgrp);
3150 
3151 	cgrp->subtree_control |= enable;
3152 	cgrp->subtree_control &= ~disable;
3153 
3154 	ret = cgroup_apply_control(cgrp);
3155 	cgroup_finalize_control(cgrp, ret);
3156 	if (ret)
3157 		goto out_unlock;
3158 
3159 	kernfs_activate(cgrp->kn);
3160 out_unlock:
3161 	cgroup_kn_unlock(of->kn);
3162 	return ret ?: nbytes;
3163 }
3164 
3165 /**
3166  * cgroup_enable_threaded - make @cgrp threaded
3167  * @cgrp: the target cgroup
3168  *
3169  * Called when "threaded" is written to the cgroup.type interface file and
3170  * tries to make @cgrp threaded and join the parent's resource domain.
3171  * This function is never called on the root cgroup as cgroup.type doesn't
3172  * exist on it.
3173  */
3174 static int cgroup_enable_threaded(struct cgroup *cgrp)
3175 {
3176 	struct cgroup *parent = cgroup_parent(cgrp);
3177 	struct cgroup *dom_cgrp = parent->dom_cgrp;
3178 	int ret;
3179 
3180 	lockdep_assert_held(&cgroup_mutex);
3181 
3182 	/* noop if already threaded */
3183 	if (cgroup_is_threaded(cgrp))
3184 		return 0;
3185 
3186 	/* we're joining the parent's domain, ensure its validity */
3187 	if (!cgroup_is_valid_domain(dom_cgrp) ||
3188 	    !cgroup_can_be_thread_root(dom_cgrp))
3189 		return -EOPNOTSUPP;
3190 
3191 	/*
3192 	 * The following shouldn't cause actual migrations and should
3193 	 * always succeed.
3194 	 */
3195 	cgroup_save_control(cgrp);
3196 
3197 	cgrp->dom_cgrp = dom_cgrp;
3198 	ret = cgroup_apply_control(cgrp);
3199 	if (!ret)
3200 		parent->nr_threaded_children++;
3201 	else
3202 		cgrp->dom_cgrp = cgrp;
3203 
3204 	cgroup_finalize_control(cgrp, ret);
3205 	return ret;
3206 }
3207 
3208 static int cgroup_type_show(struct seq_file *seq, void *v)
3209 {
3210 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3211 
3212 	if (cgroup_is_threaded(cgrp))
3213 		seq_puts(seq, "threaded\n");
3214 	else if (!cgroup_is_valid_domain(cgrp))
3215 		seq_puts(seq, "domain invalid\n");
3216 	else if (cgroup_is_thread_root(cgrp))
3217 		seq_puts(seq, "domain threaded\n");
3218 	else
3219 		seq_puts(seq, "domain\n");
3220 
3221 	return 0;
3222 }
3223 
3224 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf,
3225 				 size_t nbytes, loff_t off)
3226 {
3227 	struct cgroup *cgrp;
3228 	int ret;
3229 
3230 	/* only switching to threaded mode is supported */
3231 	if (strcmp(strstrip(buf), "threaded"))
3232 		return -EINVAL;
3233 
3234 	cgrp = cgroup_kn_lock_live(of->kn, false);
3235 	if (!cgrp)
3236 		return -ENOENT;
3237 
3238 	/* threaded can only be enabled */
3239 	ret = cgroup_enable_threaded(cgrp);
3240 
3241 	cgroup_kn_unlock(of->kn);
3242 	return ret ?: nbytes;
3243 }
3244 
3245 static int cgroup_max_descendants_show(struct seq_file *seq, void *v)
3246 {
3247 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3248 	int descendants = READ_ONCE(cgrp->max_descendants);
3249 
3250 	if (descendants == INT_MAX)
3251 		seq_puts(seq, "max\n");
3252 	else
3253 		seq_printf(seq, "%d\n", descendants);
3254 
3255 	return 0;
3256 }
3257 
3258 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of,
3259 					   char *buf, size_t nbytes, loff_t off)
3260 {
3261 	struct cgroup *cgrp;
3262 	int descendants;
3263 	ssize_t ret;
3264 
3265 	buf = strstrip(buf);
3266 	if (!strcmp(buf, "max")) {
3267 		descendants = INT_MAX;
3268 	} else {
3269 		ret = kstrtoint(buf, 0, &descendants);
3270 		if (ret)
3271 			return ret;
3272 	}
3273 
3274 	if (descendants < 0)
3275 		return -ERANGE;
3276 
3277 	cgrp = cgroup_kn_lock_live(of->kn, false);
3278 	if (!cgrp)
3279 		return -ENOENT;
3280 
3281 	cgrp->max_descendants = descendants;
3282 
3283 	cgroup_kn_unlock(of->kn);
3284 
3285 	return nbytes;
3286 }
3287 
3288 static int cgroup_max_depth_show(struct seq_file *seq, void *v)
3289 {
3290 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3291 	int depth = READ_ONCE(cgrp->max_depth);
3292 
3293 	if (depth == INT_MAX)
3294 		seq_puts(seq, "max\n");
3295 	else
3296 		seq_printf(seq, "%d\n", depth);
3297 
3298 	return 0;
3299 }
3300 
3301 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of,
3302 				      char *buf, size_t nbytes, loff_t off)
3303 {
3304 	struct cgroup *cgrp;
3305 	ssize_t ret;
3306 	int depth;
3307 
3308 	buf = strstrip(buf);
3309 	if (!strcmp(buf, "max")) {
3310 		depth = INT_MAX;
3311 	} else {
3312 		ret = kstrtoint(buf, 0, &depth);
3313 		if (ret)
3314 			return ret;
3315 	}
3316 
3317 	if (depth < 0)
3318 		return -ERANGE;
3319 
3320 	cgrp = cgroup_kn_lock_live(of->kn, false);
3321 	if (!cgrp)
3322 		return -ENOENT;
3323 
3324 	cgrp->max_depth = depth;
3325 
3326 	cgroup_kn_unlock(of->kn);
3327 
3328 	return nbytes;
3329 }
3330 
3331 static int cgroup_events_show(struct seq_file *seq, void *v)
3332 {
3333 	seq_printf(seq, "populated %d\n",
3334 		   cgroup_is_populated(seq_css(seq)->cgroup));
3335 	return 0;
3336 }
3337 
3338 static int cgroup_stat_show(struct seq_file *seq, void *v)
3339 {
3340 	struct cgroup *cgroup = seq_css(seq)->cgroup;
3341 
3342 	seq_printf(seq, "nr_descendants %d\n",
3343 		   cgroup->nr_descendants);
3344 	seq_printf(seq, "nr_dying_descendants %d\n",
3345 		   cgroup->nr_dying_descendants);
3346 
3347 	return 0;
3348 }
3349 
3350 static int __maybe_unused cgroup_extra_stat_show(struct seq_file *seq,
3351 						 struct cgroup *cgrp, int ssid)
3352 {
3353 	struct cgroup_subsys *ss = cgroup_subsys[ssid];
3354 	struct cgroup_subsys_state *css;
3355 	int ret;
3356 
3357 	if (!ss->css_extra_stat_show)
3358 		return 0;
3359 
3360 	css = cgroup_tryget_css(cgrp, ss);
3361 	if (!css)
3362 		return 0;
3363 
3364 	ret = ss->css_extra_stat_show(seq, css);
3365 	css_put(css);
3366 	return ret;
3367 }
3368 
3369 static int cpu_stat_show(struct seq_file *seq, void *v)
3370 {
3371 	struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup;
3372 	int ret = 0;
3373 
3374 	cgroup_stat_show_cputime(seq);
3375 #ifdef CONFIG_CGROUP_SCHED
3376 	ret = cgroup_extra_stat_show(seq, cgrp, cpu_cgrp_id);
3377 #endif
3378 	return ret;
3379 }
3380 
3381 static int cgroup_file_open(struct kernfs_open_file *of)
3382 {
3383 	struct cftype *cft = of->kn->priv;
3384 
3385 	if (cft->open)
3386 		return cft->open(of);
3387 	return 0;
3388 }
3389 
3390 static void cgroup_file_release(struct kernfs_open_file *of)
3391 {
3392 	struct cftype *cft = of->kn->priv;
3393 
3394 	if (cft->release)
3395 		cft->release(of);
3396 }
3397 
3398 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3399 				 size_t nbytes, loff_t off)
3400 {
3401 	struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
3402 	struct cgroup *cgrp = of->kn->parent->priv;
3403 	struct cftype *cft = of->kn->priv;
3404 	struct cgroup_subsys_state *css;
3405 	int ret;
3406 
3407 	/*
3408 	 * If namespaces are delegation boundaries, disallow writes to
3409 	 * files in an non-init namespace root from inside the namespace
3410 	 * except for the files explicitly marked delegatable -
3411 	 * cgroup.procs and cgroup.subtree_control.
3412 	 */
3413 	if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) &&
3414 	    !(cft->flags & CFTYPE_NS_DELEGATABLE) &&
3415 	    ns != &init_cgroup_ns && ns->root_cset->dfl_cgrp == cgrp)
3416 		return -EPERM;
3417 
3418 	if (cft->write)
3419 		return cft->write(of, buf, nbytes, off);
3420 
3421 	/*
3422 	 * kernfs guarantees that a file isn't deleted with operations in
3423 	 * flight, which means that the matching css is and stays alive and
3424 	 * doesn't need to be pinned.  The RCU locking is not necessary
3425 	 * either.  It's just for the convenience of using cgroup_css().
3426 	 */
3427 	rcu_read_lock();
3428 	css = cgroup_css(cgrp, cft->ss);
3429 	rcu_read_unlock();
3430 
3431 	if (cft->write_u64) {
3432 		unsigned long long v;
3433 		ret = kstrtoull(buf, 0, &v);
3434 		if (!ret)
3435 			ret = cft->write_u64(css, cft, v);
3436 	} else if (cft->write_s64) {
3437 		long long v;
3438 		ret = kstrtoll(buf, 0, &v);
3439 		if (!ret)
3440 			ret = cft->write_s64(css, cft, v);
3441 	} else {
3442 		ret = -EINVAL;
3443 	}
3444 
3445 	return ret ?: nbytes;
3446 }
3447 
3448 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
3449 {
3450 	return seq_cft(seq)->seq_start(seq, ppos);
3451 }
3452 
3453 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
3454 {
3455 	return seq_cft(seq)->seq_next(seq, v, ppos);
3456 }
3457 
3458 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
3459 {
3460 	if (seq_cft(seq)->seq_stop)
3461 		seq_cft(seq)->seq_stop(seq, v);
3462 }
3463 
3464 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
3465 {
3466 	struct cftype *cft = seq_cft(m);
3467 	struct cgroup_subsys_state *css = seq_css(m);
3468 
3469 	if (cft->seq_show)
3470 		return cft->seq_show(m, arg);
3471 
3472 	if (cft->read_u64)
3473 		seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3474 	else if (cft->read_s64)
3475 		seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3476 	else
3477 		return -EINVAL;
3478 	return 0;
3479 }
3480 
3481 static struct kernfs_ops cgroup_kf_single_ops = {
3482 	.atomic_write_len	= PAGE_SIZE,
3483 	.open			= cgroup_file_open,
3484 	.release		= cgroup_file_release,
3485 	.write			= cgroup_file_write,
3486 	.seq_show		= cgroup_seqfile_show,
3487 };
3488 
3489 static struct kernfs_ops cgroup_kf_ops = {
3490 	.atomic_write_len	= PAGE_SIZE,
3491 	.open			= cgroup_file_open,
3492 	.release		= cgroup_file_release,
3493 	.write			= cgroup_file_write,
3494 	.seq_start		= cgroup_seqfile_start,
3495 	.seq_next		= cgroup_seqfile_next,
3496 	.seq_stop		= cgroup_seqfile_stop,
3497 	.seq_show		= cgroup_seqfile_show,
3498 };
3499 
3500 /* set uid and gid of cgroup dirs and files to that of the creator */
3501 static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3502 {
3503 	struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3504 			       .ia_uid = current_fsuid(),
3505 			       .ia_gid = current_fsgid(), };
3506 
3507 	if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3508 	    gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3509 		return 0;
3510 
3511 	return kernfs_setattr(kn, &iattr);
3512 }
3513 
3514 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3515 			   struct cftype *cft)
3516 {
3517 	char name[CGROUP_FILE_NAME_MAX];
3518 	struct kernfs_node *kn;
3519 	struct lock_class_key *key = NULL;
3520 	int ret;
3521 
3522 #ifdef CONFIG_DEBUG_LOCK_ALLOC
3523 	key = &cft->lockdep_key;
3524 #endif
3525 	kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3526 				  cgroup_file_mode(cft), 0, cft->kf_ops, cft,
3527 				  NULL, key);
3528 	if (IS_ERR(kn))
3529 		return PTR_ERR(kn);
3530 
3531 	ret = cgroup_kn_set_ugid(kn);
3532 	if (ret) {
3533 		kernfs_remove(kn);
3534 		return ret;
3535 	}
3536 
3537 	if (cft->file_offset) {
3538 		struct cgroup_file *cfile = (void *)css + cft->file_offset;
3539 
3540 		spin_lock_irq(&cgroup_file_kn_lock);
3541 		cfile->kn = kn;
3542 		spin_unlock_irq(&cgroup_file_kn_lock);
3543 	}
3544 
3545 	return 0;
3546 }
3547 
3548 /**
3549  * cgroup_addrm_files - add or remove files to a cgroup directory
3550  * @css: the target css
3551  * @cgrp: the target cgroup (usually css->cgroup)
3552  * @cfts: array of cftypes to be added
3553  * @is_add: whether to add or remove
3554  *
3555  * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3556  * For removals, this function never fails.
3557  */
3558 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3559 			      struct cgroup *cgrp, struct cftype cfts[],
3560 			      bool is_add)
3561 {
3562 	struct cftype *cft, *cft_end = NULL;
3563 	int ret = 0;
3564 
3565 	lockdep_assert_held(&cgroup_mutex);
3566 
3567 restart:
3568 	for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
3569 		/* does cft->flags tell us to skip this file on @cgrp? */
3570 		if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
3571 			continue;
3572 		if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
3573 			continue;
3574 		if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
3575 			continue;
3576 		if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
3577 			continue;
3578 
3579 		if (is_add) {
3580 			ret = cgroup_add_file(css, cgrp, cft);
3581 			if (ret) {
3582 				pr_warn("%s: failed to add %s, err=%d\n",
3583 					__func__, cft->name, ret);
3584 				cft_end = cft;
3585 				is_add = false;
3586 				goto restart;
3587 			}
3588 		} else {
3589 			cgroup_rm_file(cgrp, cft);
3590 		}
3591 	}
3592 	return ret;
3593 }
3594 
3595 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
3596 {
3597 	struct cgroup_subsys *ss = cfts[0].ss;
3598 	struct cgroup *root = &ss->root->cgrp;
3599 	struct cgroup_subsys_state *css;
3600 	int ret = 0;
3601 
3602 	lockdep_assert_held(&cgroup_mutex);
3603 
3604 	/* add/rm files for all cgroups created before */
3605 	css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
3606 		struct cgroup *cgrp = css->cgroup;
3607 
3608 		if (!(css->flags & CSS_VISIBLE))
3609 			continue;
3610 
3611 		ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
3612 		if (ret)
3613 			break;
3614 	}
3615 
3616 	if (is_add && !ret)
3617 		kernfs_activate(root->kn);
3618 	return ret;
3619 }
3620 
3621 static void cgroup_exit_cftypes(struct cftype *cfts)
3622 {
3623 	struct cftype *cft;
3624 
3625 	for (cft = cfts; cft->name[0] != '\0'; cft++) {
3626 		/* free copy for custom atomic_write_len, see init_cftypes() */
3627 		if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3628 			kfree(cft->kf_ops);
3629 		cft->kf_ops = NULL;
3630 		cft->ss = NULL;
3631 
3632 		/* revert flags set by cgroup core while adding @cfts */
3633 		cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
3634 	}
3635 }
3636 
3637 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3638 {
3639 	struct cftype *cft;
3640 
3641 	for (cft = cfts; cft->name[0] != '\0'; cft++) {
3642 		struct kernfs_ops *kf_ops;
3643 
3644 		WARN_ON(cft->ss || cft->kf_ops);
3645 
3646 		if (cft->seq_start)
3647 			kf_ops = &cgroup_kf_ops;
3648 		else
3649 			kf_ops = &cgroup_kf_single_ops;
3650 
3651 		/*
3652 		 * Ugh... if @cft wants a custom max_write_len, we need to
3653 		 * make a copy of kf_ops to set its atomic_write_len.
3654 		 */
3655 		if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3656 			kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3657 			if (!kf_ops) {
3658 				cgroup_exit_cftypes(cfts);
3659 				return -ENOMEM;
3660 			}
3661 			kf_ops->atomic_write_len = cft->max_write_len;
3662 		}
3663 
3664 		cft->kf_ops = kf_ops;
3665 		cft->ss = ss;
3666 	}
3667 
3668 	return 0;
3669 }
3670 
3671 static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3672 {
3673 	lockdep_assert_held(&cgroup_mutex);
3674 
3675 	if (!cfts || !cfts[0].ss)
3676 		return -ENOENT;
3677 
3678 	list_del(&cfts->node);
3679 	cgroup_apply_cftypes(cfts, false);
3680 	cgroup_exit_cftypes(cfts);
3681 	return 0;
3682 }
3683 
3684 /**
3685  * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
3686  * @cfts: zero-length name terminated array of cftypes
3687  *
3688  * Unregister @cfts.  Files described by @cfts are removed from all
3689  * existing cgroups and all future cgroups won't have them either.  This
3690  * function can be called anytime whether @cfts' subsys is attached or not.
3691  *
3692  * Returns 0 on successful unregistration, -ENOENT if @cfts is not
3693  * registered.
3694  */
3695 int cgroup_rm_cftypes(struct cftype *cfts)
3696 {
3697 	int ret;
3698 
3699 	mutex_lock(&cgroup_mutex);
3700 	ret = cgroup_rm_cftypes_locked(cfts);
3701 	mutex_unlock(&cgroup_mutex);
3702 	return ret;
3703 }
3704 
3705 /**
3706  * cgroup_add_cftypes - add an array of cftypes to a subsystem
3707  * @ss: target cgroup subsystem
3708  * @cfts: zero-length name terminated array of cftypes
3709  *
3710  * Register @cfts to @ss.  Files described by @cfts are created for all
3711  * existing cgroups to which @ss is attached and all future cgroups will
3712  * have them too.  This function can be called anytime whether @ss is
3713  * attached or not.
3714  *
3715  * Returns 0 on successful registration, -errno on failure.  Note that this
3716  * function currently returns 0 as long as @cfts registration is successful
3717  * even if some file creation attempts on existing cgroups fail.
3718  */
3719 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3720 {
3721 	int ret;
3722 
3723 	if (!cgroup_ssid_enabled(ss->id))
3724 		return 0;
3725 
3726 	if (!cfts || cfts[0].name[0] == '\0')
3727 		return 0;
3728 
3729 	ret = cgroup_init_cftypes(ss, cfts);
3730 	if (ret)
3731 		return ret;
3732 
3733 	mutex_lock(&cgroup_mutex);
3734 
3735 	list_add_tail(&cfts->node, &ss->cfts);
3736 	ret = cgroup_apply_cftypes(cfts, true);
3737 	if (ret)
3738 		cgroup_rm_cftypes_locked(cfts);
3739 
3740 	mutex_unlock(&cgroup_mutex);
3741 	return ret;
3742 }
3743 
3744 /**
3745  * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3746  * @ss: target cgroup subsystem
3747  * @cfts: zero-length name terminated array of cftypes
3748  *
3749  * Similar to cgroup_add_cftypes() but the added files are only used for
3750  * the default hierarchy.
3751  */
3752 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3753 {
3754 	struct cftype *cft;
3755 
3756 	for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3757 		cft->flags |= __CFTYPE_ONLY_ON_DFL;
3758 	return cgroup_add_cftypes(ss, cfts);
3759 }
3760 
3761 /**
3762  * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3763  * @ss: target cgroup subsystem
3764  * @cfts: zero-length name terminated array of cftypes
3765  *
3766  * Similar to cgroup_add_cftypes() but the added files are only used for
3767  * the legacy hierarchies.
3768  */
3769 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3770 {
3771 	struct cftype *cft;
3772 
3773 	for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3774 		cft->flags |= __CFTYPE_NOT_ON_DFL;
3775 	return cgroup_add_cftypes(ss, cfts);
3776 }
3777 
3778 /**
3779  * cgroup_file_notify - generate a file modified event for a cgroup_file
3780  * @cfile: target cgroup_file
3781  *
3782  * @cfile must have been obtained by setting cftype->file_offset.
3783  */
3784 void cgroup_file_notify(struct cgroup_file *cfile)
3785 {
3786 	unsigned long flags;
3787 
3788 	spin_lock_irqsave(&cgroup_file_kn_lock, flags);
3789 	if (cfile->kn)
3790 		kernfs_notify(cfile->kn);
3791 	spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
3792 }
3793 
3794 /**
3795  * css_next_child - find the next child of a given css
3796  * @pos: the current position (%NULL to initiate traversal)
3797  * @parent: css whose children to walk
3798  *
3799  * This function returns the next child of @parent and should be called
3800  * under either cgroup_mutex or RCU read lock.  The only requirement is
3801  * that @parent and @pos are accessible.  The next sibling is guaranteed to
3802  * be returned regardless of their states.
3803  *
3804  * If a subsystem synchronizes ->css_online() and the start of iteration, a
3805  * css which finished ->css_online() is guaranteed to be visible in the
3806  * future iterations and will stay visible until the last reference is put.
3807  * A css which hasn't finished ->css_online() or already finished
3808  * ->css_offline() may show up during traversal.  It's each subsystem's
3809  * responsibility to synchronize against on/offlining.
3810  */
3811 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
3812 					   struct cgroup_subsys_state *parent)
3813 {
3814 	struct cgroup_subsys_state *next;
3815 
3816 	cgroup_assert_mutex_or_rcu_locked();
3817 
3818 	/*
3819 	 * @pos could already have been unlinked from the sibling list.
3820 	 * Once a cgroup is removed, its ->sibling.next is no longer
3821 	 * updated when its next sibling changes.  CSS_RELEASED is set when
3822 	 * @pos is taken off list, at which time its next pointer is valid,
3823 	 * and, as releases are serialized, the one pointed to by the next
3824 	 * pointer is guaranteed to not have started release yet.  This
3825 	 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3826 	 * critical section, the one pointed to by its next pointer is
3827 	 * guaranteed to not have finished its RCU grace period even if we
3828 	 * have dropped rcu_read_lock() inbetween iterations.
3829 	 *
3830 	 * If @pos has CSS_RELEASED set, its next pointer can't be
3831 	 * dereferenced; however, as each css is given a monotonically
3832 	 * increasing unique serial number and always appended to the
3833 	 * sibling list, the next one can be found by walking the parent's
3834 	 * children until the first css with higher serial number than
3835 	 * @pos's.  While this path can be slower, it happens iff iteration
3836 	 * races against release and the race window is very small.
3837 	 */
3838 	if (!pos) {
3839 		next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
3840 	} else if (likely(!(pos->flags & CSS_RELEASED))) {
3841 		next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
3842 	} else {
3843 		list_for_each_entry_rcu(next, &parent->children, sibling)
3844 			if (next->serial_nr > pos->serial_nr)
3845 				break;
3846 	}
3847 
3848 	/*
3849 	 * @next, if not pointing to the head, can be dereferenced and is
3850 	 * the next sibling.
3851 	 */
3852 	if (&next->sibling != &parent->children)
3853 		return next;
3854 	return NULL;
3855 }
3856 
3857 /**
3858  * css_next_descendant_pre - find the next descendant for pre-order walk
3859  * @pos: the current position (%NULL to initiate traversal)
3860  * @root: css whose descendants to walk
3861  *
3862  * To be used by css_for_each_descendant_pre().  Find the next descendant
3863  * to visit for pre-order traversal of @root's descendants.  @root is
3864  * included in the iteration and the first node to be visited.
3865  *
3866  * While this function requires cgroup_mutex or RCU read locking, it
3867  * doesn't require the whole traversal to be contained in a single critical
3868  * section.  This function will return the correct next descendant as long
3869  * as both @pos and @root are accessible and @pos is a descendant of @root.
3870  *
3871  * If a subsystem synchronizes ->css_online() and the start of iteration, a
3872  * css which finished ->css_online() is guaranteed to be visible in the
3873  * future iterations and will stay visible until the last reference is put.
3874  * A css which hasn't finished ->css_online() or already finished
3875  * ->css_offline() may show up during traversal.  It's each subsystem's
3876  * responsibility to synchronize against on/offlining.
3877  */
3878 struct cgroup_subsys_state *
3879 css_next_descendant_pre(struct cgroup_subsys_state *pos,
3880 			struct cgroup_subsys_state *root)
3881 {
3882 	struct cgroup_subsys_state *next;
3883 
3884 	cgroup_assert_mutex_or_rcu_locked();
3885 
3886 	/* if first iteration, visit @root */
3887 	if (!pos)
3888 		return root;
3889 
3890 	/* visit the first child if exists */
3891 	next = css_next_child(NULL, pos);
3892 	if (next)
3893 		return next;
3894 
3895 	/* no child, visit my or the closest ancestor's next sibling */
3896 	while (pos != root) {
3897 		next = css_next_child(pos, pos->parent);
3898 		if (next)
3899 			return next;
3900 		pos = pos->parent;
3901 	}
3902 
3903 	return NULL;
3904 }
3905 
3906 /**
3907  * css_rightmost_descendant - return the rightmost descendant of a css
3908  * @pos: css of interest
3909  *
3910  * Return the rightmost descendant of @pos.  If there's no descendant, @pos
3911  * is returned.  This can be used during pre-order traversal to skip
3912  * subtree of @pos.
3913  *
3914  * While this function requires cgroup_mutex or RCU read locking, it
3915  * doesn't require the whole traversal to be contained in a single critical
3916  * section.  This function will return the correct rightmost descendant as
3917  * long as @pos is accessible.
3918  */
3919 struct cgroup_subsys_state *
3920 css_rightmost_descendant(struct cgroup_subsys_state *pos)
3921 {
3922 	struct cgroup_subsys_state *last, *tmp;
3923 
3924 	cgroup_assert_mutex_or_rcu_locked();
3925 
3926 	do {
3927 		last = pos;
3928 		/* ->prev isn't RCU safe, walk ->next till the end */
3929 		pos = NULL;
3930 		css_for_each_child(tmp, last)
3931 			pos = tmp;
3932 	} while (pos);
3933 
3934 	return last;
3935 }
3936 
3937 static struct cgroup_subsys_state *
3938 css_leftmost_descendant(struct cgroup_subsys_state *pos)
3939 {
3940 	struct cgroup_subsys_state *last;
3941 
3942 	do {
3943 		last = pos;
3944 		pos = css_next_child(NULL, pos);
3945 	} while (pos);
3946 
3947 	return last;
3948 }
3949 
3950 /**
3951  * css_next_descendant_post - find the next descendant for post-order walk
3952  * @pos: the current position (%NULL to initiate traversal)
3953  * @root: css whose descendants to walk
3954  *
3955  * To be used by css_for_each_descendant_post().  Find the next descendant
3956  * to visit for post-order traversal of @root's descendants.  @root is
3957  * included in the iteration and the last node to be visited.
3958  *
3959  * While this function requires cgroup_mutex or RCU read locking, it
3960  * doesn't require the whole traversal to be contained in a single critical
3961  * section.  This function will return the correct next descendant as long
3962  * as both @pos and @cgroup are accessible and @pos is a descendant of
3963  * @cgroup.
3964  *
3965  * If a subsystem synchronizes ->css_online() and the start of iteration, a
3966  * css which finished ->css_online() is guaranteed to be visible in the
3967  * future iterations and will stay visible until the last reference is put.
3968  * A css which hasn't finished ->css_online() or already finished
3969  * ->css_offline() may show up during traversal.  It's each subsystem's
3970  * responsibility to synchronize against on/offlining.
3971  */
3972 struct cgroup_subsys_state *
3973 css_next_descendant_post(struct cgroup_subsys_state *pos,
3974 			 struct cgroup_subsys_state *root)
3975 {
3976 	struct cgroup_subsys_state *next;
3977 
3978 	cgroup_assert_mutex_or_rcu_locked();
3979 
3980 	/* if first iteration, visit leftmost descendant which may be @root */
3981 	if (!pos)
3982 		return css_leftmost_descendant(root);
3983 
3984 	/* if we visited @root, we're done */
3985 	if (pos == root)
3986 		return NULL;
3987 
3988 	/* if there's an unvisited sibling, visit its leftmost descendant */
3989 	next = css_next_child(pos, pos->parent);
3990 	if (next)
3991 		return css_leftmost_descendant(next);
3992 
3993 	/* no sibling left, visit parent */
3994 	return pos->parent;
3995 }
3996 
3997 /**
3998  * css_has_online_children - does a css have online children
3999  * @css: the target css
4000  *
4001  * Returns %true if @css has any online children; otherwise, %false.  This
4002  * function can be called from any context but the caller is responsible
4003  * for synchronizing against on/offlining as necessary.
4004  */
4005 bool css_has_online_children(struct cgroup_subsys_state *css)
4006 {
4007 	struct cgroup_subsys_state *child;
4008 	bool ret = false;
4009 
4010 	rcu_read_lock();
4011 	css_for_each_child(child, css) {
4012 		if (child->flags & CSS_ONLINE) {
4013 			ret = true;
4014 			break;
4015 		}
4016 	}
4017 	rcu_read_unlock();
4018 	return ret;
4019 }
4020 
4021 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it)
4022 {
4023 	struct list_head *l;
4024 	struct cgrp_cset_link *link;
4025 	struct css_set *cset;
4026 
4027 	lockdep_assert_held(&css_set_lock);
4028 
4029 	/* find the next threaded cset */
4030 	if (it->tcset_pos) {
4031 		l = it->tcset_pos->next;
4032 
4033 		if (l != it->tcset_head) {
4034 			it->tcset_pos = l;
4035 			return container_of(l, struct css_set,
4036 					    threaded_csets_node);
4037 		}
4038 
4039 		it->tcset_pos = NULL;
4040 	}
4041 
4042 	/* find the next cset */
4043 	l = it->cset_pos;
4044 	l = l->next;
4045 	if (l == it->cset_head) {
4046 		it->cset_pos = NULL;
4047 		return NULL;
4048 	}
4049 
4050 	if (it->ss) {
4051 		cset = container_of(l, struct css_set, e_cset_node[it->ss->id]);
4052 	} else {
4053 		link = list_entry(l, struct cgrp_cset_link, cset_link);
4054 		cset = link->cset;
4055 	}
4056 
4057 	it->cset_pos = l;
4058 
4059 	/* initialize threaded css_set walking */
4060 	if (it->flags & CSS_TASK_ITER_THREADED) {
4061 		if (it->cur_dcset)
4062 			put_css_set_locked(it->cur_dcset);
4063 		it->cur_dcset = cset;
4064 		get_css_set(cset);
4065 
4066 		it->tcset_head = &cset->threaded_csets;
4067 		it->tcset_pos = &cset->threaded_csets;
4068 	}
4069 
4070 	return cset;
4071 }
4072 
4073 /**
4074  * css_task_iter_advance_css_set - advance a task itererator to the next css_set
4075  * @it: the iterator to advance
4076  *
4077  * Advance @it to the next css_set to walk.
4078  */
4079 static void css_task_iter_advance_css_set(struct css_task_iter *it)
4080 {
4081 	struct css_set *cset;
4082 
4083 	lockdep_assert_held(&css_set_lock);
4084 
4085 	/* Advance to the next non-empty css_set */
4086 	do {
4087 		cset = css_task_iter_next_css_set(it);
4088 		if (!cset) {
4089 			it->task_pos = NULL;
4090 			return;
4091 		}
4092 	} while (!css_set_populated(cset));
4093 
4094 	if (!list_empty(&cset->tasks))
4095 		it->task_pos = cset->tasks.next;
4096 	else
4097 		it->task_pos = cset->mg_tasks.next;
4098 
4099 	it->tasks_head = &cset->tasks;
4100 	it->mg_tasks_head = &cset->mg_tasks;
4101 
4102 	/*
4103 	 * We don't keep css_sets locked across iteration steps and thus
4104 	 * need to take steps to ensure that iteration can be resumed after
4105 	 * the lock is re-acquired.  Iteration is performed at two levels -
4106 	 * css_sets and tasks in them.
4107 	 *
4108 	 * Once created, a css_set never leaves its cgroup lists, so a
4109 	 * pinned css_set is guaranteed to stay put and we can resume
4110 	 * iteration afterwards.
4111 	 *
4112 	 * Tasks may leave @cset across iteration steps.  This is resolved
4113 	 * by registering each iterator with the css_set currently being
4114 	 * walked and making css_set_move_task() advance iterators whose
4115 	 * next task is leaving.
4116 	 */
4117 	if (it->cur_cset) {
4118 		list_del(&it->iters_node);
4119 		put_css_set_locked(it->cur_cset);
4120 	}
4121 	get_css_set(cset);
4122 	it->cur_cset = cset;
4123 	list_add(&it->iters_node, &cset->task_iters);
4124 }
4125 
4126 static void css_task_iter_advance(struct css_task_iter *it)
4127 {
4128 	struct list_head *l = it->task_pos;
4129 
4130 	lockdep_assert_held(&css_set_lock);
4131 	WARN_ON_ONCE(!l);
4132 
4133 repeat:
4134 	/*
4135 	 * Advance iterator to find next entry.  cset->tasks is consumed
4136 	 * first and then ->mg_tasks.  After ->mg_tasks, we move onto the
4137 	 * next cset.
4138 	 */
4139 	l = l->next;
4140 
4141 	if (l == it->tasks_head)
4142 		l = it->mg_tasks_head->next;
4143 
4144 	if (l == it->mg_tasks_head)
4145 		css_task_iter_advance_css_set(it);
4146 	else
4147 		it->task_pos = l;
4148 
4149 	/* if PROCS, skip over tasks which aren't group leaders */
4150 	if ((it->flags & CSS_TASK_ITER_PROCS) && it->task_pos &&
4151 	    !thread_group_leader(list_entry(it->task_pos, struct task_struct,
4152 					    cg_list)))
4153 		goto repeat;
4154 }
4155 
4156 /**
4157  * css_task_iter_start - initiate task iteration
4158  * @css: the css to walk tasks of
4159  * @flags: CSS_TASK_ITER_* flags
4160  * @it: the task iterator to use
4161  *
4162  * Initiate iteration through the tasks of @css.  The caller can call
4163  * css_task_iter_next() to walk through the tasks until the function
4164  * returns NULL.  On completion of iteration, css_task_iter_end() must be
4165  * called.
4166  */
4167 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags,
4168 			 struct css_task_iter *it)
4169 {
4170 	/* no one should try to iterate before mounting cgroups */
4171 	WARN_ON_ONCE(!use_task_css_set_links);
4172 
4173 	memset(it, 0, sizeof(*it));
4174 
4175 	spin_lock_irq(&css_set_lock);
4176 
4177 	it->ss = css->ss;
4178 	it->flags = flags;
4179 
4180 	if (it->ss)
4181 		it->cset_pos = &css->cgroup->e_csets[css->ss->id];
4182 	else
4183 		it->cset_pos = &css->cgroup->cset_links;
4184 
4185 	it->cset_head = it->cset_pos;
4186 
4187 	css_task_iter_advance_css_set(it);
4188 
4189 	spin_unlock_irq(&css_set_lock);
4190 }
4191 
4192 /**
4193  * css_task_iter_next - return the next task for the iterator
4194  * @it: the task iterator being iterated
4195  *
4196  * The "next" function for task iteration.  @it should have been
4197  * initialized via css_task_iter_start().  Returns NULL when the iteration
4198  * reaches the end.
4199  */
4200 struct task_struct *css_task_iter_next(struct css_task_iter *it)
4201 {
4202 	if (it->cur_task) {
4203 		put_task_struct(it->cur_task);
4204 		it->cur_task = NULL;
4205 	}
4206 
4207 	spin_lock_irq(&css_set_lock);
4208 
4209 	if (it->task_pos) {
4210 		it->cur_task = list_entry(it->task_pos, struct task_struct,
4211 					  cg_list);
4212 		get_task_struct(it->cur_task);
4213 		css_task_iter_advance(it);
4214 	}
4215 
4216 	spin_unlock_irq(&css_set_lock);
4217 
4218 	return it->cur_task;
4219 }
4220 
4221 /**
4222  * css_task_iter_end - finish task iteration
4223  * @it: the task iterator to finish
4224  *
4225  * Finish task iteration started by css_task_iter_start().
4226  */
4227 void css_task_iter_end(struct css_task_iter *it)
4228 {
4229 	if (it->cur_cset) {
4230 		spin_lock_irq(&css_set_lock);
4231 		list_del(&it->iters_node);
4232 		put_css_set_locked(it->cur_cset);
4233 		spin_unlock_irq(&css_set_lock);
4234 	}
4235 
4236 	if (it->cur_dcset)
4237 		put_css_set(it->cur_dcset);
4238 
4239 	if (it->cur_task)
4240 		put_task_struct(it->cur_task);
4241 }
4242 
4243 static void cgroup_procs_release(struct kernfs_open_file *of)
4244 {
4245 	if (of->priv) {
4246 		css_task_iter_end(of->priv);
4247 		kfree(of->priv);
4248 	}
4249 }
4250 
4251 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos)
4252 {
4253 	struct kernfs_open_file *of = s->private;
4254 	struct css_task_iter *it = of->priv;
4255 
4256 	return css_task_iter_next(it);
4257 }
4258 
4259 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos,
4260 				  unsigned int iter_flags)
4261 {
4262 	struct kernfs_open_file *of = s->private;
4263 	struct cgroup *cgrp = seq_css(s)->cgroup;
4264 	struct css_task_iter *it = of->priv;
4265 
4266 	/*
4267 	 * When a seq_file is seeked, it's always traversed sequentially
4268 	 * from position 0, so we can simply keep iterating on !0 *pos.
4269 	 */
4270 	if (!it) {
4271 		if (WARN_ON_ONCE((*pos)++))
4272 			return ERR_PTR(-EINVAL);
4273 
4274 		it = kzalloc(sizeof(*it), GFP_KERNEL);
4275 		if (!it)
4276 			return ERR_PTR(-ENOMEM);
4277 		of->priv = it;
4278 		css_task_iter_start(&cgrp->self, iter_flags, it);
4279 	} else if (!(*pos)++) {
4280 		css_task_iter_end(it);
4281 		css_task_iter_start(&cgrp->self, iter_flags, it);
4282 	}
4283 
4284 	return cgroup_procs_next(s, NULL, NULL);
4285 }
4286 
4287 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos)
4288 {
4289 	struct cgroup *cgrp = seq_css(s)->cgroup;
4290 
4291 	/*
4292 	 * All processes of a threaded subtree belong to the domain cgroup
4293 	 * of the subtree.  Only threads can be distributed across the
4294 	 * subtree.  Reject reads on cgroup.procs in the subtree proper.
4295 	 * They're always empty anyway.
4296 	 */
4297 	if (cgroup_is_threaded(cgrp))
4298 		return ERR_PTR(-EOPNOTSUPP);
4299 
4300 	return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS |
4301 					    CSS_TASK_ITER_THREADED);
4302 }
4303 
4304 static int cgroup_procs_show(struct seq_file *s, void *v)
4305 {
4306 	seq_printf(s, "%d\n", task_pid_vnr(v));
4307 	return 0;
4308 }
4309 
4310 static int cgroup_procs_write_permission(struct cgroup *src_cgrp,
4311 					 struct cgroup *dst_cgrp,
4312 					 struct super_block *sb)
4313 {
4314 	struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
4315 	struct cgroup *com_cgrp = src_cgrp;
4316 	struct inode *inode;
4317 	int ret;
4318 
4319 	lockdep_assert_held(&cgroup_mutex);
4320 
4321 	/* find the common ancestor */
4322 	while (!cgroup_is_descendant(dst_cgrp, com_cgrp))
4323 		com_cgrp = cgroup_parent(com_cgrp);
4324 
4325 	/* %current should be authorized to migrate to the common ancestor */
4326 	inode = kernfs_get_inode(sb, com_cgrp->procs_file.kn);
4327 	if (!inode)
4328 		return -ENOMEM;
4329 
4330 	ret = inode_permission(inode, MAY_WRITE);
4331 	iput(inode);
4332 	if (ret)
4333 		return ret;
4334 
4335 	/*
4336 	 * If namespaces are delegation boundaries, %current must be able
4337 	 * to see both source and destination cgroups from its namespace.
4338 	 */
4339 	if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) &&
4340 	    (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) ||
4341 	     !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp)))
4342 		return -ENOENT;
4343 
4344 	return 0;
4345 }
4346 
4347 static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
4348 				  char *buf, size_t nbytes, loff_t off)
4349 {
4350 	struct cgroup *src_cgrp, *dst_cgrp;
4351 	struct task_struct *task;
4352 	ssize_t ret;
4353 
4354 	dst_cgrp = cgroup_kn_lock_live(of->kn, false);
4355 	if (!dst_cgrp)
4356 		return -ENODEV;
4357 
4358 	task = cgroup_procs_write_start(buf, true);
4359 	ret = PTR_ERR_OR_ZERO(task);
4360 	if (ret)
4361 		goto out_unlock;
4362 
4363 	/* find the source cgroup */
4364 	spin_lock_irq(&css_set_lock);
4365 	src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
4366 	spin_unlock_irq(&css_set_lock);
4367 
4368 	ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp,
4369 					    of->file->f_path.dentry->d_sb);
4370 	if (ret)
4371 		goto out_finish;
4372 
4373 	ret = cgroup_attach_task(dst_cgrp, task, true);
4374 
4375 out_finish:
4376 	cgroup_procs_write_finish(task);
4377 out_unlock:
4378 	cgroup_kn_unlock(of->kn);
4379 
4380 	return ret ?: nbytes;
4381 }
4382 
4383 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos)
4384 {
4385 	return __cgroup_procs_start(s, pos, 0);
4386 }
4387 
4388 static ssize_t cgroup_threads_write(struct kernfs_open_file *of,
4389 				    char *buf, size_t nbytes, loff_t off)
4390 {
4391 	struct cgroup *src_cgrp, *dst_cgrp;
4392 	struct task_struct *task;
4393 	ssize_t ret;
4394 
4395 	buf = strstrip(buf);
4396 
4397 	dst_cgrp = cgroup_kn_lock_live(of->kn, false);
4398 	if (!dst_cgrp)
4399 		return -ENODEV;
4400 
4401 	task = cgroup_procs_write_start(buf, false);
4402 	ret = PTR_ERR_OR_ZERO(task);
4403 	if (ret)
4404 		goto out_unlock;
4405 
4406 	/* find the source cgroup */
4407 	spin_lock_irq(&css_set_lock);
4408 	src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
4409 	spin_unlock_irq(&css_set_lock);
4410 
4411 	/* thread migrations follow the cgroup.procs delegation rule */
4412 	ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp,
4413 					    of->file->f_path.dentry->d_sb);
4414 	if (ret)
4415 		goto out_finish;
4416 
4417 	/* and must be contained in the same domain */
4418 	ret = -EOPNOTSUPP;
4419 	if (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp)
4420 		goto out_finish;
4421 
4422 	ret = cgroup_attach_task(dst_cgrp, task, false);
4423 
4424 out_finish:
4425 	cgroup_procs_write_finish(task);
4426 out_unlock:
4427 	cgroup_kn_unlock(of->kn);
4428 
4429 	return ret ?: nbytes;
4430 }
4431 
4432 /* cgroup core interface files for the default hierarchy */
4433 static struct cftype cgroup_base_files[] = {
4434 	{
4435 		.name = "cgroup.type",
4436 		.flags = CFTYPE_NOT_ON_ROOT,
4437 		.seq_show = cgroup_type_show,
4438 		.write = cgroup_type_write,
4439 	},
4440 	{
4441 		.name = "cgroup.procs",
4442 		.flags = CFTYPE_NS_DELEGATABLE,
4443 		.file_offset = offsetof(struct cgroup, procs_file),
4444 		.release = cgroup_procs_release,
4445 		.seq_start = cgroup_procs_start,
4446 		.seq_next = cgroup_procs_next,
4447 		.seq_show = cgroup_procs_show,
4448 		.write = cgroup_procs_write,
4449 	},
4450 	{
4451 		.name = "cgroup.threads",
4452 		.release = cgroup_procs_release,
4453 		.seq_start = cgroup_threads_start,
4454 		.seq_next = cgroup_procs_next,
4455 		.seq_show = cgroup_procs_show,
4456 		.write = cgroup_threads_write,
4457 	},
4458 	{
4459 		.name = "cgroup.controllers",
4460 		.seq_show = cgroup_controllers_show,
4461 	},
4462 	{
4463 		.name = "cgroup.subtree_control",
4464 		.flags = CFTYPE_NS_DELEGATABLE,
4465 		.seq_show = cgroup_subtree_control_show,
4466 		.write = cgroup_subtree_control_write,
4467 	},
4468 	{
4469 		.name = "cgroup.events",
4470 		.flags = CFTYPE_NOT_ON_ROOT,
4471 		.file_offset = offsetof(struct cgroup, events_file),
4472 		.seq_show = cgroup_events_show,
4473 	},
4474 	{
4475 		.name = "cgroup.max.descendants",
4476 		.seq_show = cgroup_max_descendants_show,
4477 		.write = cgroup_max_descendants_write,
4478 	},
4479 	{
4480 		.name = "cgroup.max.depth",
4481 		.seq_show = cgroup_max_depth_show,
4482 		.write = cgroup_max_depth_write,
4483 	},
4484 	{
4485 		.name = "cgroup.stat",
4486 		.seq_show = cgroup_stat_show,
4487 	},
4488 	{
4489 		.name = "cpu.stat",
4490 		.flags = CFTYPE_NOT_ON_ROOT,
4491 		.seq_show = cpu_stat_show,
4492 	},
4493 	{ }	/* terminate */
4494 };
4495 
4496 /*
4497  * css destruction is four-stage process.
4498  *
4499  * 1. Destruction starts.  Killing of the percpu_ref is initiated.
4500  *    Implemented in kill_css().
4501  *
4502  * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
4503  *    and thus css_tryget_online() is guaranteed to fail, the css can be
4504  *    offlined by invoking offline_css().  After offlining, the base ref is
4505  *    put.  Implemented in css_killed_work_fn().
4506  *
4507  * 3. When the percpu_ref reaches zero, the only possible remaining
4508  *    accessors are inside RCU read sections.  css_release() schedules the
4509  *    RCU callback.
4510  *
4511  * 4. After the grace period, the css can be freed.  Implemented in
4512  *    css_free_work_fn().
4513  *
4514  * It is actually hairier because both step 2 and 4 require process context
4515  * and thus involve punting to css->destroy_work adding two additional
4516  * steps to the already complex sequence.
4517  */
4518 static void css_free_work_fn(struct work_struct *work)
4519 {
4520 	struct cgroup_subsys_state *css =
4521 		container_of(work, struct cgroup_subsys_state, destroy_work);
4522 	struct cgroup_subsys *ss = css->ss;
4523 	struct cgroup *cgrp = css->cgroup;
4524 
4525 	percpu_ref_exit(&css->refcnt);
4526 
4527 	if (ss) {
4528 		/* css free path */
4529 		struct cgroup_subsys_state *parent = css->parent;
4530 		int id = css->id;
4531 
4532 		ss->css_free(css);
4533 		cgroup_idr_remove(&ss->css_idr, id);
4534 		cgroup_put(cgrp);
4535 
4536 		if (parent)
4537 			css_put(parent);
4538 	} else {
4539 		/* cgroup free path */
4540 		atomic_dec(&cgrp->root->nr_cgrps);
4541 		cgroup1_pidlist_destroy_all(cgrp);
4542 		cancel_work_sync(&cgrp->release_agent_work);
4543 
4544 		if (cgroup_parent(cgrp)) {
4545 			/*
4546 			 * We get a ref to the parent, and put the ref when
4547 			 * this cgroup is being freed, so it's guaranteed
4548 			 * that the parent won't be destroyed before its
4549 			 * children.
4550 			 */
4551 			cgroup_put(cgroup_parent(cgrp));
4552 			kernfs_put(cgrp->kn);
4553 			if (cgroup_on_dfl(cgrp))
4554 				cgroup_stat_exit(cgrp);
4555 			kfree(cgrp);
4556 		} else {
4557 			/*
4558 			 * This is root cgroup's refcnt reaching zero,
4559 			 * which indicates that the root should be
4560 			 * released.
4561 			 */
4562 			cgroup_destroy_root(cgrp->root);
4563 		}
4564 	}
4565 }
4566 
4567 static void css_free_rcu_fn(struct rcu_head *rcu_head)
4568 {
4569 	struct cgroup_subsys_state *css =
4570 		container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
4571 
4572 	INIT_WORK(&css->destroy_work, css_free_work_fn);
4573 	queue_work(cgroup_destroy_wq, &css->destroy_work);
4574 }
4575 
4576 static void css_release_work_fn(struct work_struct *work)
4577 {
4578 	struct cgroup_subsys_state *css =
4579 		container_of(work, struct cgroup_subsys_state, destroy_work);
4580 	struct cgroup_subsys *ss = css->ss;
4581 	struct cgroup *cgrp = css->cgroup;
4582 
4583 	mutex_lock(&cgroup_mutex);
4584 
4585 	css->flags |= CSS_RELEASED;
4586 	list_del_rcu(&css->sibling);
4587 
4588 	if (ss) {
4589 		/* css release path */
4590 		cgroup_idr_replace(&ss->css_idr, NULL, css->id);
4591 		if (ss->css_released)
4592 			ss->css_released(css);
4593 	} else {
4594 		struct cgroup *tcgrp;
4595 
4596 		/* cgroup release path */
4597 		trace_cgroup_release(cgrp);
4598 
4599 		if (cgroup_on_dfl(cgrp))
4600 			cgroup_stat_flush(cgrp);
4601 
4602 		for (tcgrp = cgroup_parent(cgrp); tcgrp;
4603 		     tcgrp = cgroup_parent(tcgrp))
4604 			tcgrp->nr_dying_descendants--;
4605 
4606 		cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4607 		cgrp->id = -1;
4608 
4609 		/*
4610 		 * There are two control paths which try to determine
4611 		 * cgroup from dentry without going through kernfs -
4612 		 * cgroupstats_build() and css_tryget_online_from_dir().
4613 		 * Those are supported by RCU protecting clearing of
4614 		 * cgrp->kn->priv backpointer.
4615 		 */
4616 		if (cgrp->kn)
4617 			RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
4618 					 NULL);
4619 
4620 		cgroup_bpf_put(cgrp);
4621 	}
4622 
4623 	mutex_unlock(&cgroup_mutex);
4624 
4625 	call_rcu(&css->rcu_head, css_free_rcu_fn);
4626 }
4627 
4628 static void css_release(struct percpu_ref *ref)
4629 {
4630 	struct cgroup_subsys_state *css =
4631 		container_of(ref, struct cgroup_subsys_state, refcnt);
4632 
4633 	INIT_WORK(&css->destroy_work, css_release_work_fn);
4634 	queue_work(cgroup_destroy_wq, &css->destroy_work);
4635 }
4636 
4637 static void init_and_link_css(struct cgroup_subsys_state *css,
4638 			      struct cgroup_subsys *ss, struct cgroup *cgrp)
4639 {
4640 	lockdep_assert_held(&cgroup_mutex);
4641 
4642 	cgroup_get_live(cgrp);
4643 
4644 	memset(css, 0, sizeof(*css));
4645 	css->cgroup = cgrp;
4646 	css->ss = ss;
4647 	css->id = -1;
4648 	INIT_LIST_HEAD(&css->sibling);
4649 	INIT_LIST_HEAD(&css->children);
4650 	css->serial_nr = css_serial_nr_next++;
4651 	atomic_set(&css->online_cnt, 0);
4652 
4653 	if (cgroup_parent(cgrp)) {
4654 		css->parent = cgroup_css(cgroup_parent(cgrp), ss);
4655 		css_get(css->parent);
4656 	}
4657 
4658 	BUG_ON(cgroup_css(cgrp, ss));
4659 }
4660 
4661 /* invoke ->css_online() on a new CSS and mark it online if successful */
4662 static int online_css(struct cgroup_subsys_state *css)
4663 {
4664 	struct cgroup_subsys *ss = css->ss;
4665 	int ret = 0;
4666 
4667 	lockdep_assert_held(&cgroup_mutex);
4668 
4669 	if (ss->css_online)
4670 		ret = ss->css_online(css);
4671 	if (!ret) {
4672 		css->flags |= CSS_ONLINE;
4673 		rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
4674 
4675 		atomic_inc(&css->online_cnt);
4676 		if (css->parent)
4677 			atomic_inc(&css->parent->online_cnt);
4678 	}
4679 	return ret;
4680 }
4681 
4682 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
4683 static void offline_css(struct cgroup_subsys_state *css)
4684 {
4685 	struct cgroup_subsys *ss = css->ss;
4686 
4687 	lockdep_assert_held(&cgroup_mutex);
4688 
4689 	if (!(css->flags & CSS_ONLINE))
4690 		return;
4691 
4692 	if (ss->css_offline)
4693 		ss->css_offline(css);
4694 
4695 	css->flags &= ~CSS_ONLINE;
4696 	RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
4697 
4698 	wake_up_all(&css->cgroup->offline_waitq);
4699 }
4700 
4701 /**
4702  * css_create - create a cgroup_subsys_state
4703  * @cgrp: the cgroup new css will be associated with
4704  * @ss: the subsys of new css
4705  *
4706  * Create a new css associated with @cgrp - @ss pair.  On success, the new
4707  * css is online and installed in @cgrp.  This function doesn't create the
4708  * interface files.  Returns 0 on success, -errno on failure.
4709  */
4710 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
4711 					      struct cgroup_subsys *ss)
4712 {
4713 	struct cgroup *parent = cgroup_parent(cgrp);
4714 	struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
4715 	struct cgroup_subsys_state *css;
4716 	int err;
4717 
4718 	lockdep_assert_held(&cgroup_mutex);
4719 
4720 	css = ss->css_alloc(parent_css);
4721 	if (!css)
4722 		css = ERR_PTR(-ENOMEM);
4723 	if (IS_ERR(css))
4724 		return css;
4725 
4726 	init_and_link_css(css, ss, cgrp);
4727 
4728 	err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
4729 	if (err)
4730 		goto err_free_css;
4731 
4732 	err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
4733 	if (err < 0)
4734 		goto err_free_css;
4735 	css->id = err;
4736 
4737 	/* @css is ready to be brought online now, make it visible */
4738 	list_add_tail_rcu(&css->sibling, &parent_css->children);
4739 	cgroup_idr_replace(&ss->css_idr, css, css->id);
4740 
4741 	err = online_css(css);
4742 	if (err)
4743 		goto err_list_del;
4744 
4745 	if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
4746 	    cgroup_parent(parent)) {
4747 		pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4748 			current->comm, current->pid, ss->name);
4749 		if (!strcmp(ss->name, "memory"))
4750 			pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
4751 		ss->warned_broken_hierarchy = true;
4752 	}
4753 
4754 	return css;
4755 
4756 err_list_del:
4757 	list_del_rcu(&css->sibling);
4758 err_free_css:
4759 	call_rcu(&css->rcu_head, css_free_rcu_fn);
4760 	return ERR_PTR(err);
4761 }
4762 
4763 /*
4764  * The returned cgroup is fully initialized including its control mask, but
4765  * it isn't associated with its kernfs_node and doesn't have the control
4766  * mask applied.
4767  */
4768 static struct cgroup *cgroup_create(struct cgroup *parent)
4769 {
4770 	struct cgroup_root *root = parent->root;
4771 	struct cgroup *cgrp, *tcgrp;
4772 	int level = parent->level + 1;
4773 	int ret;
4774 
4775 	/* allocate the cgroup and its ID, 0 is reserved for the root */
4776 	cgrp = kzalloc(sizeof(*cgrp) +
4777 		       sizeof(cgrp->ancestor_ids[0]) * (level + 1), GFP_KERNEL);
4778 	if (!cgrp)
4779 		return ERR_PTR(-ENOMEM);
4780 
4781 	ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
4782 	if (ret)
4783 		goto out_free_cgrp;
4784 
4785 	if (cgroup_on_dfl(parent)) {
4786 		ret = cgroup_stat_init(cgrp);
4787 		if (ret)
4788 			goto out_cancel_ref;
4789 	}
4790 
4791 	/*
4792 	 * Temporarily set the pointer to NULL, so idr_find() won't return
4793 	 * a half-baked cgroup.
4794 	 */
4795 	cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL);
4796 	if (cgrp->id < 0) {
4797 		ret = -ENOMEM;
4798 		goto out_stat_exit;
4799 	}
4800 
4801 	init_cgroup_housekeeping(cgrp);
4802 
4803 	cgrp->self.parent = &parent->self;
4804 	cgrp->root = root;
4805 	cgrp->level = level;
4806 	ret = cgroup_bpf_inherit(cgrp);
4807 	if (ret)
4808 		goto out_idr_free;
4809 
4810 	for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) {
4811 		cgrp->ancestor_ids[tcgrp->level] = tcgrp->id;
4812 
4813 		if (tcgrp != cgrp)
4814 			tcgrp->nr_descendants++;
4815 	}
4816 
4817 	if (notify_on_release(parent))
4818 		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4819 
4820 	if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4821 		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
4822 
4823 	cgrp->self.serial_nr = css_serial_nr_next++;
4824 
4825 	/* allocation complete, commit to creation */
4826 	list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
4827 	atomic_inc(&root->nr_cgrps);
4828 	cgroup_get_live(parent);
4829 
4830 	/*
4831 	 * @cgrp is now fully operational.  If something fails after this
4832 	 * point, it'll be released via the normal destruction path.
4833 	 */
4834 	cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4835 
4836 	/*
4837 	 * On the default hierarchy, a child doesn't automatically inherit
4838 	 * subtree_control from the parent.  Each is configured manually.
4839 	 */
4840 	if (!cgroup_on_dfl(cgrp))
4841 		cgrp->subtree_control = cgroup_control(cgrp);
4842 
4843 	cgroup_propagate_control(cgrp);
4844 
4845 	return cgrp;
4846 
4847 out_idr_free:
4848 	cgroup_idr_remove(&root->cgroup_idr, cgrp->id);
4849 out_stat_exit:
4850 	if (cgroup_on_dfl(parent))
4851 		cgroup_stat_exit(cgrp);
4852 out_cancel_ref:
4853 	percpu_ref_exit(&cgrp->self.refcnt);
4854 out_free_cgrp:
4855 	kfree(cgrp);
4856 	return ERR_PTR(ret);
4857 }
4858 
4859 static bool cgroup_check_hierarchy_limits(struct cgroup *parent)
4860 {
4861 	struct cgroup *cgroup;
4862 	int ret = false;
4863 	int level = 1;
4864 
4865 	lockdep_assert_held(&cgroup_mutex);
4866 
4867 	for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) {
4868 		if (cgroup->nr_descendants >= cgroup->max_descendants)
4869 			goto fail;
4870 
4871 		if (level > cgroup->max_depth)
4872 			goto fail;
4873 
4874 		level++;
4875 	}
4876 
4877 	ret = true;
4878 fail:
4879 	return ret;
4880 }
4881 
4882 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode)
4883 {
4884 	struct cgroup *parent, *cgrp;
4885 	struct kernfs_node *kn;
4886 	int ret;
4887 
4888 	/* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
4889 	if (strchr(name, '\n'))
4890 		return -EINVAL;
4891 
4892 	parent = cgroup_kn_lock_live(parent_kn, false);
4893 	if (!parent)
4894 		return -ENODEV;
4895 
4896 	if (!cgroup_check_hierarchy_limits(parent)) {
4897 		ret = -EAGAIN;
4898 		goto out_unlock;
4899 	}
4900 
4901 	cgrp = cgroup_create(parent);
4902 	if (IS_ERR(cgrp)) {
4903 		ret = PTR_ERR(cgrp);
4904 		goto out_unlock;
4905 	}
4906 
4907 	/* create the directory */
4908 	kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
4909 	if (IS_ERR(kn)) {
4910 		ret = PTR_ERR(kn);
4911 		goto out_destroy;
4912 	}
4913 	cgrp->kn = kn;
4914 
4915 	/*
4916 	 * This extra ref will be put in cgroup_free_fn() and guarantees
4917 	 * that @cgrp->kn is always accessible.
4918 	 */
4919 	kernfs_get(kn);
4920 
4921 	ret = cgroup_kn_set_ugid(kn);
4922 	if (ret)
4923 		goto out_destroy;
4924 
4925 	ret = css_populate_dir(&cgrp->self);
4926 	if (ret)
4927 		goto out_destroy;
4928 
4929 	ret = cgroup_apply_control_enable(cgrp);
4930 	if (ret)
4931 		goto out_destroy;
4932 
4933 	trace_cgroup_mkdir(cgrp);
4934 
4935 	/* let's create and online css's */
4936 	kernfs_activate(kn);
4937 
4938 	ret = 0;
4939 	goto out_unlock;
4940 
4941 out_destroy:
4942 	cgroup_destroy_locked(cgrp);
4943 out_unlock:
4944 	cgroup_kn_unlock(parent_kn);
4945 	return ret;
4946 }
4947 
4948 /*
4949  * This is called when the refcnt of a css is confirmed to be killed.
4950  * css_tryget_online() is now guaranteed to fail.  Tell the subsystem to
4951  * initate destruction and put the css ref from kill_css().
4952  */
4953 static void css_killed_work_fn(struct work_struct *work)
4954 {
4955 	struct cgroup_subsys_state *css =
4956 		container_of(work, struct cgroup_subsys_state, destroy_work);
4957 
4958 	mutex_lock(&cgroup_mutex);
4959 
4960 	do {
4961 		offline_css(css);
4962 		css_put(css);
4963 		/* @css can't go away while we're holding cgroup_mutex */
4964 		css = css->parent;
4965 	} while (css && atomic_dec_and_test(&css->online_cnt));
4966 
4967 	mutex_unlock(&cgroup_mutex);
4968 }
4969 
4970 /* css kill confirmation processing requires process context, bounce */
4971 static void css_killed_ref_fn(struct percpu_ref *ref)
4972 {
4973 	struct cgroup_subsys_state *css =
4974 		container_of(ref, struct cgroup_subsys_state, refcnt);
4975 
4976 	if (atomic_dec_and_test(&css->online_cnt)) {
4977 		INIT_WORK(&css->destroy_work, css_killed_work_fn);
4978 		queue_work(cgroup_destroy_wq, &css->destroy_work);
4979 	}
4980 }
4981 
4982 /**
4983  * kill_css - destroy a css
4984  * @css: css to destroy
4985  *
4986  * This function initiates destruction of @css by removing cgroup interface
4987  * files and putting its base reference.  ->css_offline() will be invoked
4988  * asynchronously once css_tryget_online() is guaranteed to fail and when
4989  * the reference count reaches zero, @css will be released.
4990  */
4991 static void kill_css(struct cgroup_subsys_state *css)
4992 {
4993 	lockdep_assert_held(&cgroup_mutex);
4994 
4995 	if (css->flags & CSS_DYING)
4996 		return;
4997 
4998 	css->flags |= CSS_DYING;
4999 
5000 	/*
5001 	 * This must happen before css is disassociated with its cgroup.
5002 	 * See seq_css() for details.
5003 	 */
5004 	css_clear_dir(css);
5005 
5006 	/*
5007 	 * Killing would put the base ref, but we need to keep it alive
5008 	 * until after ->css_offline().
5009 	 */
5010 	css_get(css);
5011 
5012 	/*
5013 	 * cgroup core guarantees that, by the time ->css_offline() is
5014 	 * invoked, no new css reference will be given out via
5015 	 * css_tryget_online().  We can't simply call percpu_ref_kill() and
5016 	 * proceed to offlining css's because percpu_ref_kill() doesn't
5017 	 * guarantee that the ref is seen as killed on all CPUs on return.
5018 	 *
5019 	 * Use percpu_ref_kill_and_confirm() to get notifications as each
5020 	 * css is confirmed to be seen as killed on all CPUs.
5021 	 */
5022 	percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
5023 }
5024 
5025 /**
5026  * cgroup_destroy_locked - the first stage of cgroup destruction
5027  * @cgrp: cgroup to be destroyed
5028  *
5029  * css's make use of percpu refcnts whose killing latency shouldn't be
5030  * exposed to userland and are RCU protected.  Also, cgroup core needs to
5031  * guarantee that css_tryget_online() won't succeed by the time
5032  * ->css_offline() is invoked.  To satisfy all the requirements,
5033  * destruction is implemented in the following two steps.
5034  *
5035  * s1. Verify @cgrp can be destroyed and mark it dying.  Remove all
5036  *     userland visible parts and start killing the percpu refcnts of
5037  *     css's.  Set up so that the next stage will be kicked off once all
5038  *     the percpu refcnts are confirmed to be killed.
5039  *
5040  * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5041  *     rest of destruction.  Once all cgroup references are gone, the
5042  *     cgroup is RCU-freed.
5043  *
5044  * This function implements s1.  After this step, @cgrp is gone as far as
5045  * the userland is concerned and a new cgroup with the same name may be
5046  * created.  As cgroup doesn't care about the names internally, this
5047  * doesn't cause any problem.
5048  */
5049 static int cgroup_destroy_locked(struct cgroup *cgrp)
5050 	__releases(&cgroup_mutex) __acquires(&cgroup_mutex)
5051 {
5052 	struct cgroup *tcgrp, *parent = cgroup_parent(cgrp);
5053 	struct cgroup_subsys_state *css;
5054 	struct cgrp_cset_link *link;
5055 	int ssid;
5056 
5057 	lockdep_assert_held(&cgroup_mutex);
5058 
5059 	/*
5060 	 * Only migration can raise populated from zero and we're already
5061 	 * holding cgroup_mutex.
5062 	 */
5063 	if (cgroup_is_populated(cgrp))
5064 		return -EBUSY;
5065 
5066 	/*
5067 	 * Make sure there's no live children.  We can't test emptiness of
5068 	 * ->self.children as dead children linger on it while being
5069 	 * drained; otherwise, "rmdir parent/child parent" may fail.
5070 	 */
5071 	if (css_has_online_children(&cgrp->self))
5072 		return -EBUSY;
5073 
5074 	/*
5075 	 * Mark @cgrp and the associated csets dead.  The former prevents
5076 	 * further task migration and child creation by disabling
5077 	 * cgroup_lock_live_group().  The latter makes the csets ignored by
5078 	 * the migration path.
5079 	 */
5080 	cgrp->self.flags &= ~CSS_ONLINE;
5081 
5082 	spin_lock_irq(&css_set_lock);
5083 	list_for_each_entry(link, &cgrp->cset_links, cset_link)
5084 		link->cset->dead = true;
5085 	spin_unlock_irq(&css_set_lock);
5086 
5087 	/* initiate massacre of all css's */
5088 	for_each_css(css, ssid, cgrp)
5089 		kill_css(css);
5090 
5091 	/*
5092 	 * Remove @cgrp directory along with the base files.  @cgrp has an
5093 	 * extra ref on its kn.
5094 	 */
5095 	kernfs_remove(cgrp->kn);
5096 
5097 	if (parent && cgroup_is_threaded(cgrp))
5098 		parent->nr_threaded_children--;
5099 
5100 	for (tcgrp = cgroup_parent(cgrp); tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5101 		tcgrp->nr_descendants--;
5102 		tcgrp->nr_dying_descendants++;
5103 	}
5104 
5105 	cgroup1_check_for_release(parent);
5106 
5107 	/* put the base reference */
5108 	percpu_ref_kill(&cgrp->self.refcnt);
5109 
5110 	return 0;
5111 };
5112 
5113 int cgroup_rmdir(struct kernfs_node *kn)
5114 {
5115 	struct cgroup *cgrp;
5116 	int ret = 0;
5117 
5118 	cgrp = cgroup_kn_lock_live(kn, false);
5119 	if (!cgrp)
5120 		return 0;
5121 
5122 	ret = cgroup_destroy_locked(cgrp);
5123 
5124 	if (!ret)
5125 		trace_cgroup_rmdir(cgrp);
5126 
5127 	cgroup_kn_unlock(kn);
5128 	return ret;
5129 }
5130 
5131 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5132 	.show_options		= cgroup_show_options,
5133 	.remount_fs		= cgroup_remount,
5134 	.mkdir			= cgroup_mkdir,
5135 	.rmdir			= cgroup_rmdir,
5136 	.show_path		= cgroup_show_path,
5137 };
5138 
5139 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
5140 {
5141 	struct cgroup_subsys_state *css;
5142 
5143 	pr_debug("Initializing cgroup subsys %s\n", ss->name);
5144 
5145 	mutex_lock(&cgroup_mutex);
5146 
5147 	idr_init(&ss->css_idr);
5148 	INIT_LIST_HEAD(&ss->cfts);
5149 
5150 	/* Create the root cgroup state for this subsystem */
5151 	ss->root = &cgrp_dfl_root;
5152 	css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
5153 	/* We don't handle early failures gracefully */
5154 	BUG_ON(IS_ERR(css));
5155 	init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
5156 
5157 	/*
5158 	 * Root csses are never destroyed and we can't initialize
5159 	 * percpu_ref during early init.  Disable refcnting.
5160 	 */
5161 	css->flags |= CSS_NO_REF;
5162 
5163 	if (early) {
5164 		/* allocation can't be done safely during early init */
5165 		css->id = 1;
5166 	} else {
5167 		css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5168 		BUG_ON(css->id < 0);
5169 	}
5170 
5171 	/* Update the init_css_set to contain a subsys
5172 	 * pointer to this state - since the subsystem is
5173 	 * newly registered, all tasks and hence the
5174 	 * init_css_set is in the subsystem's root cgroup. */
5175 	init_css_set.subsys[ss->id] = css;
5176 
5177 	have_fork_callback |= (bool)ss->fork << ss->id;
5178 	have_exit_callback |= (bool)ss->exit << ss->id;
5179 	have_free_callback |= (bool)ss->free << ss->id;
5180 	have_canfork_callback |= (bool)ss->can_fork << ss->id;
5181 
5182 	/* At system boot, before all subsystems have been
5183 	 * registered, no tasks have been forked, so we don't
5184 	 * need to invoke fork callbacks here. */
5185 	BUG_ON(!list_empty(&init_task.tasks));
5186 
5187 	BUG_ON(online_css(css));
5188 
5189 	mutex_unlock(&cgroup_mutex);
5190 }
5191 
5192 /**
5193  * cgroup_init_early - cgroup initialization at system boot
5194  *
5195  * Initialize cgroups at system boot, and initialize any
5196  * subsystems that request early init.
5197  */
5198 int __init cgroup_init_early(void)
5199 {
5200 	static struct cgroup_sb_opts __initdata opts;
5201 	struct cgroup_subsys *ss;
5202 	int i;
5203 
5204 	init_cgroup_root(&cgrp_dfl_root, &opts);
5205 	cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5206 
5207 	RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
5208 
5209 	for_each_subsys(ss, i) {
5210 		WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
5211 		     "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
5212 		     i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
5213 		     ss->id, ss->name);
5214 		WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5215 		     "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5216 
5217 		ss->id = i;
5218 		ss->name = cgroup_subsys_name[i];
5219 		if (!ss->legacy_name)
5220 			ss->legacy_name = cgroup_subsys_name[i];
5221 
5222 		if (ss->early_init)
5223 			cgroup_init_subsys(ss, true);
5224 	}
5225 	return 0;
5226 }
5227 
5228 static u16 cgroup_disable_mask __initdata;
5229 
5230 /**
5231  * cgroup_init - cgroup initialization
5232  *
5233  * Register cgroup filesystem and /proc file, and initialize
5234  * any subsystems that didn't request early init.
5235  */
5236 int __init cgroup_init(void)
5237 {
5238 	struct cgroup_subsys *ss;
5239 	int ssid;
5240 
5241 	BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
5242 	BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem));
5243 	BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
5244 	BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files));
5245 
5246 	cgroup_stat_boot();
5247 
5248 	/*
5249 	 * The latency of the synchronize_sched() is too high for cgroups,
5250 	 * avoid it at the cost of forcing all readers into the slow path.
5251 	 */
5252 	rcu_sync_enter_start(&cgroup_threadgroup_rwsem.rss);
5253 
5254 	get_user_ns(init_cgroup_ns.user_ns);
5255 
5256 	mutex_lock(&cgroup_mutex);
5257 
5258 	/*
5259 	 * Add init_css_set to the hash table so that dfl_root can link to
5260 	 * it during init.
5261 	 */
5262 	hash_add(css_set_table, &init_css_set.hlist,
5263 		 css_set_hash(init_css_set.subsys));
5264 
5265 	BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0, 0));
5266 
5267 	mutex_unlock(&cgroup_mutex);
5268 
5269 	for_each_subsys(ss, ssid) {
5270 		if (ss->early_init) {
5271 			struct cgroup_subsys_state *css =
5272 				init_css_set.subsys[ss->id];
5273 
5274 			css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5275 						   GFP_KERNEL);
5276 			BUG_ON(css->id < 0);
5277 		} else {
5278 			cgroup_init_subsys(ss, false);
5279 		}
5280 
5281 		list_add_tail(&init_css_set.e_cset_node[ssid],
5282 			      &cgrp_dfl_root.cgrp.e_csets[ssid]);
5283 
5284 		/*
5285 		 * Setting dfl_root subsys_mask needs to consider the
5286 		 * disabled flag and cftype registration needs kmalloc,
5287 		 * both of which aren't available during early_init.
5288 		 */
5289 		if (cgroup_disable_mask & (1 << ssid)) {
5290 			static_branch_disable(cgroup_subsys_enabled_key[ssid]);
5291 			printk(KERN_INFO "Disabling %s control group subsystem\n",
5292 			       ss->name);
5293 			continue;
5294 		}
5295 
5296 		if (cgroup1_ssid_disabled(ssid))
5297 			printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n",
5298 			       ss->name);
5299 
5300 		cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5301 
5302 		/* implicit controllers must be threaded too */
5303 		WARN_ON(ss->implicit_on_dfl && !ss->threaded);
5304 
5305 		if (ss->implicit_on_dfl)
5306 			cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
5307 		else if (!ss->dfl_cftypes)
5308 			cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
5309 
5310 		if (ss->threaded)
5311 			cgrp_dfl_threaded_ss_mask |= 1 << ss->id;
5312 
5313 		if (ss->dfl_cftypes == ss->legacy_cftypes) {
5314 			WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5315 		} else {
5316 			WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5317 			WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
5318 		}
5319 
5320 		if (ss->bind)
5321 			ss->bind(init_css_set.subsys[ssid]);
5322 
5323 		mutex_lock(&cgroup_mutex);
5324 		css_populate_dir(init_css_set.subsys[ssid]);
5325 		mutex_unlock(&cgroup_mutex);
5326 	}
5327 
5328 	/* init_css_set.subsys[] has been updated, re-hash */
5329 	hash_del(&init_css_set.hlist);
5330 	hash_add(css_set_table, &init_css_set.hlist,
5331 		 css_set_hash(init_css_set.subsys));
5332 
5333 	WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
5334 	WARN_ON(register_filesystem(&cgroup_fs_type));
5335 	WARN_ON(register_filesystem(&cgroup2_fs_type));
5336 	WARN_ON(!proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations));
5337 
5338 	return 0;
5339 }
5340 
5341 static int __init cgroup_wq_init(void)
5342 {
5343 	/*
5344 	 * There isn't much point in executing destruction path in
5345 	 * parallel.  Good chunk is serialized with cgroup_mutex anyway.
5346 	 * Use 1 for @max_active.
5347 	 *
5348 	 * We would prefer to do this in cgroup_init() above, but that
5349 	 * is called before init_workqueues(): so leave this until after.
5350 	 */
5351 	cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
5352 	BUG_ON(!cgroup_destroy_wq);
5353 	return 0;
5354 }
5355 core_initcall(cgroup_wq_init);
5356 
5357 void cgroup_path_from_kernfs_id(const union kernfs_node_id *id,
5358 					char *buf, size_t buflen)
5359 {
5360 	struct kernfs_node *kn;
5361 
5362 	kn = kernfs_get_node_by_id(cgrp_dfl_root.kf_root, id);
5363 	if (!kn)
5364 		return;
5365 	kernfs_path(kn, buf, buflen);
5366 	kernfs_put(kn);
5367 }
5368 
5369 /*
5370  * proc_cgroup_show()
5371  *  - Print task's cgroup paths into seq_file, one line for each hierarchy
5372  *  - Used for /proc/<pid>/cgroup.
5373  */
5374 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5375 		     struct pid *pid, struct task_struct *tsk)
5376 {
5377 	char *buf;
5378 	int retval;
5379 	struct cgroup_root *root;
5380 
5381 	retval = -ENOMEM;
5382 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
5383 	if (!buf)
5384 		goto out;
5385 
5386 	mutex_lock(&cgroup_mutex);
5387 	spin_lock_irq(&css_set_lock);
5388 
5389 	for_each_root(root) {
5390 		struct cgroup_subsys *ss;
5391 		struct cgroup *cgrp;
5392 		int ssid, count = 0;
5393 
5394 		if (root == &cgrp_dfl_root && !cgrp_dfl_visible)
5395 			continue;
5396 
5397 		seq_printf(m, "%d:", root->hierarchy_id);
5398 		if (root != &cgrp_dfl_root)
5399 			for_each_subsys(ss, ssid)
5400 				if (root->subsys_mask & (1 << ssid))
5401 					seq_printf(m, "%s%s", count++ ? "," : "",
5402 						   ss->legacy_name);
5403 		if (strlen(root->name))
5404 			seq_printf(m, "%sname=%s", count ? "," : "",
5405 				   root->name);
5406 		seq_putc(m, ':');
5407 
5408 		cgrp = task_cgroup_from_root(tsk, root);
5409 
5410 		/*
5411 		 * On traditional hierarchies, all zombie tasks show up as
5412 		 * belonging to the root cgroup.  On the default hierarchy,
5413 		 * while a zombie doesn't show up in "cgroup.procs" and
5414 		 * thus can't be migrated, its /proc/PID/cgroup keeps
5415 		 * reporting the cgroup it belonged to before exiting.  If
5416 		 * the cgroup is removed before the zombie is reaped,
5417 		 * " (deleted)" is appended to the cgroup path.
5418 		 */
5419 		if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
5420 			retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
5421 						current->nsproxy->cgroup_ns);
5422 			if (retval >= PATH_MAX)
5423 				retval = -ENAMETOOLONG;
5424 			if (retval < 0)
5425 				goto out_unlock;
5426 
5427 			seq_puts(m, buf);
5428 		} else {
5429 			seq_puts(m, "/");
5430 		}
5431 
5432 		if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
5433 			seq_puts(m, " (deleted)\n");
5434 		else
5435 			seq_putc(m, '\n');
5436 	}
5437 
5438 	retval = 0;
5439 out_unlock:
5440 	spin_unlock_irq(&css_set_lock);
5441 	mutex_unlock(&cgroup_mutex);
5442 	kfree(buf);
5443 out:
5444 	return retval;
5445 }
5446 
5447 /**
5448  * cgroup_fork - initialize cgroup related fields during copy_process()
5449  * @child: pointer to task_struct of forking parent process.
5450  *
5451  * A task is associated with the init_css_set until cgroup_post_fork()
5452  * attaches it to the parent's css_set.  Empty cg_list indicates that
5453  * @child isn't holding reference to its css_set.
5454  */
5455 void cgroup_fork(struct task_struct *child)
5456 {
5457 	RCU_INIT_POINTER(child->cgroups, &init_css_set);
5458 	INIT_LIST_HEAD(&child->cg_list);
5459 }
5460 
5461 /**
5462  * cgroup_can_fork - called on a new task before the process is exposed
5463  * @child: the task in question.
5464  *
5465  * This calls the subsystem can_fork() callbacks. If the can_fork() callback
5466  * returns an error, the fork aborts with that error code. This allows for
5467  * a cgroup subsystem to conditionally allow or deny new forks.
5468  */
5469 int cgroup_can_fork(struct task_struct *child)
5470 {
5471 	struct cgroup_subsys *ss;
5472 	int i, j, ret;
5473 
5474 	do_each_subsys_mask(ss, i, have_canfork_callback) {
5475 		ret = ss->can_fork(child);
5476 		if (ret)
5477 			goto out_revert;
5478 	} while_each_subsys_mask();
5479 
5480 	return 0;
5481 
5482 out_revert:
5483 	for_each_subsys(ss, j) {
5484 		if (j >= i)
5485 			break;
5486 		if (ss->cancel_fork)
5487 			ss->cancel_fork(child);
5488 	}
5489 
5490 	return ret;
5491 }
5492 
5493 /**
5494  * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
5495  * @child: the task in question
5496  *
5497  * This calls the cancel_fork() callbacks if a fork failed *after*
5498  * cgroup_can_fork() succeded.
5499  */
5500 void cgroup_cancel_fork(struct task_struct *child)
5501 {
5502 	struct cgroup_subsys *ss;
5503 	int i;
5504 
5505 	for_each_subsys(ss, i)
5506 		if (ss->cancel_fork)
5507 			ss->cancel_fork(child);
5508 }
5509 
5510 /**
5511  * cgroup_post_fork - called on a new task after adding it to the task list
5512  * @child: the task in question
5513  *
5514  * Adds the task to the list running through its css_set if necessary and
5515  * call the subsystem fork() callbacks.  Has to be after the task is
5516  * visible on the task list in case we race with the first call to
5517  * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5518  * list.
5519  */
5520 void cgroup_post_fork(struct task_struct *child)
5521 {
5522 	struct cgroup_subsys *ss;
5523 	int i;
5524 
5525 	/*
5526 	 * This may race against cgroup_enable_task_cg_lists().  As that
5527 	 * function sets use_task_css_set_links before grabbing
5528 	 * tasklist_lock and we just went through tasklist_lock to add
5529 	 * @child, it's guaranteed that either we see the set
5530 	 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5531 	 * @child during its iteration.
5532 	 *
5533 	 * If we won the race, @child is associated with %current's
5534 	 * css_set.  Grabbing css_set_lock guarantees both that the
5535 	 * association is stable, and, on completion of the parent's
5536 	 * migration, @child is visible in the source of migration or
5537 	 * already in the destination cgroup.  This guarantee is necessary
5538 	 * when implementing operations which need to migrate all tasks of
5539 	 * a cgroup to another.
5540 	 *
5541 	 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
5542 	 * will remain in init_css_set.  This is safe because all tasks are
5543 	 * in the init_css_set before cg_links is enabled and there's no
5544 	 * operation which transfers all tasks out of init_css_set.
5545 	 */
5546 	if (use_task_css_set_links) {
5547 		struct css_set *cset;
5548 
5549 		spin_lock_irq(&css_set_lock);
5550 		cset = task_css_set(current);
5551 		if (list_empty(&child->cg_list)) {
5552 			get_css_set(cset);
5553 			cset->nr_tasks++;
5554 			css_set_move_task(child, NULL, cset, false);
5555 		}
5556 		spin_unlock_irq(&css_set_lock);
5557 	}
5558 
5559 	/*
5560 	 * Call ss->fork().  This must happen after @child is linked on
5561 	 * css_set; otherwise, @child might change state between ->fork()
5562 	 * and addition to css_set.
5563 	 */
5564 	do_each_subsys_mask(ss, i, have_fork_callback) {
5565 		ss->fork(child);
5566 	} while_each_subsys_mask();
5567 }
5568 
5569 /**
5570  * cgroup_exit - detach cgroup from exiting task
5571  * @tsk: pointer to task_struct of exiting process
5572  *
5573  * Description: Detach cgroup from @tsk and release it.
5574  *
5575  * Note that cgroups marked notify_on_release force every task in
5576  * them to take the global cgroup_mutex mutex when exiting.
5577  * This could impact scaling on very large systems.  Be reluctant to
5578  * use notify_on_release cgroups where very high task exit scaling
5579  * is required on large systems.
5580  *
5581  * We set the exiting tasks cgroup to the root cgroup (top_cgroup).  We
5582  * call cgroup_exit() while the task is still competent to handle
5583  * notify_on_release(), then leave the task attached to the root cgroup in
5584  * each hierarchy for the remainder of its exit.  No need to bother with
5585  * init_css_set refcnting.  init_css_set never goes away and we can't race
5586  * with migration path - PF_EXITING is visible to migration path.
5587  */
5588 void cgroup_exit(struct task_struct *tsk)
5589 {
5590 	struct cgroup_subsys *ss;
5591 	struct css_set *cset;
5592 	int i;
5593 
5594 	/*
5595 	 * Unlink from @tsk from its css_set.  As migration path can't race
5596 	 * with us, we can check css_set and cg_list without synchronization.
5597 	 */
5598 	cset = task_css_set(tsk);
5599 
5600 	if (!list_empty(&tsk->cg_list)) {
5601 		spin_lock_irq(&css_set_lock);
5602 		css_set_move_task(tsk, cset, NULL, false);
5603 		cset->nr_tasks--;
5604 		spin_unlock_irq(&css_set_lock);
5605 	} else {
5606 		get_css_set(cset);
5607 	}
5608 
5609 	/* see cgroup_post_fork() for details */
5610 	do_each_subsys_mask(ss, i, have_exit_callback) {
5611 		ss->exit(tsk);
5612 	} while_each_subsys_mask();
5613 }
5614 
5615 void cgroup_free(struct task_struct *task)
5616 {
5617 	struct css_set *cset = task_css_set(task);
5618 	struct cgroup_subsys *ss;
5619 	int ssid;
5620 
5621 	do_each_subsys_mask(ss, ssid, have_free_callback) {
5622 		ss->free(task);
5623 	} while_each_subsys_mask();
5624 
5625 	put_css_set(cset);
5626 }
5627 
5628 static int __init cgroup_disable(char *str)
5629 {
5630 	struct cgroup_subsys *ss;
5631 	char *token;
5632 	int i;
5633 
5634 	while ((token = strsep(&str, ",")) != NULL) {
5635 		if (!*token)
5636 			continue;
5637 
5638 		for_each_subsys(ss, i) {
5639 			if (strcmp(token, ss->name) &&
5640 			    strcmp(token, ss->legacy_name))
5641 				continue;
5642 			cgroup_disable_mask |= 1 << i;
5643 		}
5644 	}
5645 	return 1;
5646 }
5647 __setup("cgroup_disable=", cgroup_disable);
5648 
5649 /**
5650  * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
5651  * @dentry: directory dentry of interest
5652  * @ss: subsystem of interest
5653  *
5654  * If @dentry is a directory for a cgroup which has @ss enabled on it, try
5655  * to get the corresponding css and return it.  If such css doesn't exist
5656  * or can't be pinned, an ERR_PTR value is returned.
5657  */
5658 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
5659 						       struct cgroup_subsys *ss)
5660 {
5661 	struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
5662 	struct file_system_type *s_type = dentry->d_sb->s_type;
5663 	struct cgroup_subsys_state *css = NULL;
5664 	struct cgroup *cgrp;
5665 
5666 	/* is @dentry a cgroup dir? */
5667 	if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
5668 	    !kn || kernfs_type(kn) != KERNFS_DIR)
5669 		return ERR_PTR(-EBADF);
5670 
5671 	rcu_read_lock();
5672 
5673 	/*
5674 	 * This path doesn't originate from kernfs and @kn could already
5675 	 * have been or be removed at any point.  @kn->priv is RCU
5676 	 * protected for this access.  See css_release_work_fn() for details.
5677 	 */
5678 	cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
5679 	if (cgrp)
5680 		css = cgroup_css(cgrp, ss);
5681 
5682 	if (!css || !css_tryget_online(css))
5683 		css = ERR_PTR(-ENOENT);
5684 
5685 	rcu_read_unlock();
5686 	return css;
5687 }
5688 
5689 /**
5690  * css_from_id - lookup css by id
5691  * @id: the cgroup id
5692  * @ss: cgroup subsys to be looked into
5693  *
5694  * Returns the css if there's valid one with @id, otherwise returns NULL.
5695  * Should be called under rcu_read_lock().
5696  */
5697 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
5698 {
5699 	WARN_ON_ONCE(!rcu_read_lock_held());
5700 	return idr_find(&ss->css_idr, id);
5701 }
5702 
5703 /**
5704  * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
5705  * @path: path on the default hierarchy
5706  *
5707  * Find the cgroup at @path on the default hierarchy, increment its
5708  * reference count and return it.  Returns pointer to the found cgroup on
5709  * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR)
5710  * if @path points to a non-directory.
5711  */
5712 struct cgroup *cgroup_get_from_path(const char *path)
5713 {
5714 	struct kernfs_node *kn;
5715 	struct cgroup *cgrp;
5716 
5717 	mutex_lock(&cgroup_mutex);
5718 
5719 	kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path);
5720 	if (kn) {
5721 		if (kernfs_type(kn) == KERNFS_DIR) {
5722 			cgrp = kn->priv;
5723 			cgroup_get_live(cgrp);
5724 		} else {
5725 			cgrp = ERR_PTR(-ENOTDIR);
5726 		}
5727 		kernfs_put(kn);
5728 	} else {
5729 		cgrp = ERR_PTR(-ENOENT);
5730 	}
5731 
5732 	mutex_unlock(&cgroup_mutex);
5733 	return cgrp;
5734 }
5735 EXPORT_SYMBOL_GPL(cgroup_get_from_path);
5736 
5737 /**
5738  * cgroup_get_from_fd - get a cgroup pointer from a fd
5739  * @fd: fd obtained by open(cgroup2_dir)
5740  *
5741  * Find the cgroup from a fd which should be obtained
5742  * by opening a cgroup directory.  Returns a pointer to the
5743  * cgroup on success. ERR_PTR is returned if the cgroup
5744  * cannot be found.
5745  */
5746 struct cgroup *cgroup_get_from_fd(int fd)
5747 {
5748 	struct cgroup_subsys_state *css;
5749 	struct cgroup *cgrp;
5750 	struct file *f;
5751 
5752 	f = fget_raw(fd);
5753 	if (!f)
5754 		return ERR_PTR(-EBADF);
5755 
5756 	css = css_tryget_online_from_dir(f->f_path.dentry, NULL);
5757 	fput(f);
5758 	if (IS_ERR(css))
5759 		return ERR_CAST(css);
5760 
5761 	cgrp = css->cgroup;
5762 	if (!cgroup_on_dfl(cgrp)) {
5763 		cgroup_put(cgrp);
5764 		return ERR_PTR(-EBADF);
5765 	}
5766 
5767 	return cgrp;
5768 }
5769 EXPORT_SYMBOL_GPL(cgroup_get_from_fd);
5770 
5771 /*
5772  * sock->sk_cgrp_data handling.  For more info, see sock_cgroup_data
5773  * definition in cgroup-defs.h.
5774  */
5775 #ifdef CONFIG_SOCK_CGROUP_DATA
5776 
5777 #if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID)
5778 
5779 DEFINE_SPINLOCK(cgroup_sk_update_lock);
5780 static bool cgroup_sk_alloc_disabled __read_mostly;
5781 
5782 void cgroup_sk_alloc_disable(void)
5783 {
5784 	if (cgroup_sk_alloc_disabled)
5785 		return;
5786 	pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n");
5787 	cgroup_sk_alloc_disabled = true;
5788 }
5789 
5790 #else
5791 
5792 #define cgroup_sk_alloc_disabled	false
5793 
5794 #endif
5795 
5796 void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
5797 {
5798 	if (cgroup_sk_alloc_disabled)
5799 		return;
5800 
5801 	/* Socket clone path */
5802 	if (skcd->val) {
5803 		/*
5804 		 * We might be cloning a socket which is left in an empty
5805 		 * cgroup and the cgroup might have already been rmdir'd.
5806 		 * Don't use cgroup_get_live().
5807 		 */
5808 		cgroup_get(sock_cgroup_ptr(skcd));
5809 		return;
5810 	}
5811 
5812 	rcu_read_lock();
5813 
5814 	while (true) {
5815 		struct css_set *cset;
5816 
5817 		cset = task_css_set(current);
5818 		if (likely(cgroup_tryget(cset->dfl_cgrp))) {
5819 			skcd->val = (unsigned long)cset->dfl_cgrp;
5820 			break;
5821 		}
5822 		cpu_relax();
5823 	}
5824 
5825 	rcu_read_unlock();
5826 }
5827 
5828 void cgroup_sk_free(struct sock_cgroup_data *skcd)
5829 {
5830 	cgroup_put(sock_cgroup_ptr(skcd));
5831 }
5832 
5833 #endif	/* CONFIG_SOCK_CGROUP_DATA */
5834 
5835 #ifdef CONFIG_CGROUP_BPF
5836 int cgroup_bpf_attach(struct cgroup *cgrp, struct bpf_prog *prog,
5837 		      enum bpf_attach_type type, u32 flags)
5838 {
5839 	int ret;
5840 
5841 	mutex_lock(&cgroup_mutex);
5842 	ret = __cgroup_bpf_attach(cgrp, prog, type, flags);
5843 	mutex_unlock(&cgroup_mutex);
5844 	return ret;
5845 }
5846 int cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog,
5847 		      enum bpf_attach_type type, u32 flags)
5848 {
5849 	int ret;
5850 
5851 	mutex_lock(&cgroup_mutex);
5852 	ret = __cgroup_bpf_detach(cgrp, prog, type, flags);
5853 	mutex_unlock(&cgroup_mutex);
5854 	return ret;
5855 }
5856 int cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr,
5857 		     union bpf_attr __user *uattr)
5858 {
5859 	int ret;
5860 
5861 	mutex_lock(&cgroup_mutex);
5862 	ret = __cgroup_bpf_query(cgrp, attr, uattr);
5863 	mutex_unlock(&cgroup_mutex);
5864 	return ret;
5865 }
5866 #endif /* CONFIG_CGROUP_BPF */
5867 
5868 #ifdef CONFIG_SYSFS
5869 static ssize_t show_delegatable_files(struct cftype *files, char *buf,
5870 				      ssize_t size, const char *prefix)
5871 {
5872 	struct cftype *cft;
5873 	ssize_t ret = 0;
5874 
5875 	for (cft = files; cft && cft->name[0] != '\0'; cft++) {
5876 		if (!(cft->flags & CFTYPE_NS_DELEGATABLE))
5877 			continue;
5878 
5879 		if (prefix)
5880 			ret += snprintf(buf + ret, size - ret, "%s.", prefix);
5881 
5882 		ret += snprintf(buf + ret, size - ret, "%s\n", cft->name);
5883 
5884 		if (unlikely(ret >= size)) {
5885 			WARN_ON(1);
5886 			break;
5887 		}
5888 	}
5889 
5890 	return ret;
5891 }
5892 
5893 static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr,
5894 			      char *buf)
5895 {
5896 	struct cgroup_subsys *ss;
5897 	int ssid;
5898 	ssize_t ret = 0;
5899 
5900 	ret = show_delegatable_files(cgroup_base_files, buf, PAGE_SIZE - ret,
5901 				     NULL);
5902 
5903 	for_each_subsys(ss, ssid)
5904 		ret += show_delegatable_files(ss->dfl_cftypes, buf + ret,
5905 					      PAGE_SIZE - ret,
5906 					      cgroup_subsys_name[ssid]);
5907 
5908 	return ret;
5909 }
5910 static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate);
5911 
5912 static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr,
5913 			     char *buf)
5914 {
5915 	return snprintf(buf, PAGE_SIZE, "nsdelegate\n");
5916 }
5917 static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features);
5918 
5919 static struct attribute *cgroup_sysfs_attrs[] = {
5920 	&cgroup_delegate_attr.attr,
5921 	&cgroup_features_attr.attr,
5922 	NULL,
5923 };
5924 
5925 static const struct attribute_group cgroup_sysfs_attr_group = {
5926 	.attrs = cgroup_sysfs_attrs,
5927 	.name = "cgroup",
5928 };
5929 
5930 static int __init cgroup_sysfs_init(void)
5931 {
5932 	return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group);
5933 }
5934 subsys_initcall(cgroup_sysfs_init);
5935 #endif /* CONFIG_SYSFS */
5936