1 /* 2 * Generic process-grouping system. 3 * 4 * Based originally on the cpuset system, extracted by Paul Menage 5 * Copyright (C) 2006 Google, Inc 6 * 7 * Notifications support 8 * Copyright (C) 2009 Nokia Corporation 9 * Author: Kirill A. Shutemov 10 * 11 * Copyright notices from the original cpuset code: 12 * -------------------------------------------------- 13 * Copyright (C) 2003 BULL SA. 14 * Copyright (C) 2004-2006 Silicon Graphics, Inc. 15 * 16 * Portions derived from Patrick Mochel's sysfs code. 17 * sysfs is Copyright (c) 2001-3 Patrick Mochel 18 * 19 * 2003-10-10 Written by Simon Derr. 20 * 2003-10-22 Updates by Stephen Hemminger. 21 * 2004 May-July Rework by Paul Jackson. 22 * --------------------------------------------------- 23 * 24 * This file is subject to the terms and conditions of the GNU General Public 25 * License. See the file COPYING in the main directory of the Linux 26 * distribution for more details. 27 */ 28 29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 30 31 #include "cgroup-internal.h" 32 33 #include <linux/cred.h> 34 #include <linux/errno.h> 35 #include <linux/init_task.h> 36 #include <linux/kernel.h> 37 #include <linux/magic.h> 38 #include <linux/mutex.h> 39 #include <linux/mount.h> 40 #include <linux/pagemap.h> 41 #include <linux/proc_fs.h> 42 #include <linux/rcupdate.h> 43 #include <linux/sched.h> 44 #include <linux/sched/task.h> 45 #include <linux/slab.h> 46 #include <linux/spinlock.h> 47 #include <linux/percpu-rwsem.h> 48 #include <linux/string.h> 49 #include <linux/hashtable.h> 50 #include <linux/idr.h> 51 #include <linux/kthread.h> 52 #include <linux/atomic.h> 53 #include <linux/cpuset.h> 54 #include <linux/proc_ns.h> 55 #include <linux/nsproxy.h> 56 #include <linux/file.h> 57 #include <net/sock.h> 58 59 #define CREATE_TRACE_POINTS 60 #include <trace/events/cgroup.h> 61 62 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \ 63 MAX_CFTYPE_NAME + 2) 64 65 /* 66 * cgroup_mutex is the master lock. Any modification to cgroup or its 67 * hierarchy must be performed while holding it. 68 * 69 * css_set_lock protects task->cgroups pointer, the list of css_set 70 * objects, and the chain of tasks off each css_set. 71 * 72 * These locks are exported if CONFIG_PROVE_RCU so that accessors in 73 * cgroup.h can use them for lockdep annotations. 74 */ 75 DEFINE_MUTEX(cgroup_mutex); 76 DEFINE_SPINLOCK(css_set_lock); 77 78 #ifdef CONFIG_PROVE_RCU 79 EXPORT_SYMBOL_GPL(cgroup_mutex); 80 EXPORT_SYMBOL_GPL(css_set_lock); 81 #endif 82 83 /* 84 * Protects cgroup_idr and css_idr so that IDs can be released without 85 * grabbing cgroup_mutex. 86 */ 87 static DEFINE_SPINLOCK(cgroup_idr_lock); 88 89 /* 90 * Protects cgroup_file->kn for !self csses. It synchronizes notifications 91 * against file removal/re-creation across css hiding. 92 */ 93 static DEFINE_SPINLOCK(cgroup_file_kn_lock); 94 95 struct percpu_rw_semaphore cgroup_threadgroup_rwsem; 96 97 #define cgroup_assert_mutex_or_rcu_locked() \ 98 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \ 99 !lockdep_is_held(&cgroup_mutex), \ 100 "cgroup_mutex or RCU read lock required"); 101 102 /* 103 * cgroup destruction makes heavy use of work items and there can be a lot 104 * of concurrent destructions. Use a separate workqueue so that cgroup 105 * destruction work items don't end up filling up max_active of system_wq 106 * which may lead to deadlock. 107 */ 108 static struct workqueue_struct *cgroup_destroy_wq; 109 110 /* generate an array of cgroup subsystem pointers */ 111 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys, 112 struct cgroup_subsys *cgroup_subsys[] = { 113 #include <linux/cgroup_subsys.h> 114 }; 115 #undef SUBSYS 116 117 /* array of cgroup subsystem names */ 118 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x, 119 static const char *cgroup_subsys_name[] = { 120 #include <linux/cgroup_subsys.h> 121 }; 122 #undef SUBSYS 123 124 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */ 125 #define SUBSYS(_x) \ 126 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \ 127 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \ 128 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \ 129 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key); 130 #include <linux/cgroup_subsys.h> 131 #undef SUBSYS 132 133 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key, 134 static struct static_key_true *cgroup_subsys_enabled_key[] = { 135 #include <linux/cgroup_subsys.h> 136 }; 137 #undef SUBSYS 138 139 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key, 140 static struct static_key_true *cgroup_subsys_on_dfl_key[] = { 141 #include <linux/cgroup_subsys.h> 142 }; 143 #undef SUBSYS 144 145 static DEFINE_PER_CPU(struct cgroup_cpu_stat, cgrp_dfl_root_cpu_stat); 146 147 /* 148 * The default hierarchy, reserved for the subsystems that are otherwise 149 * unattached - it never has more than a single cgroup, and all tasks are 150 * part of that cgroup. 151 */ 152 struct cgroup_root cgrp_dfl_root = { .cgrp.cpu_stat = &cgrp_dfl_root_cpu_stat }; 153 EXPORT_SYMBOL_GPL(cgrp_dfl_root); 154 155 /* 156 * The default hierarchy always exists but is hidden until mounted for the 157 * first time. This is for backward compatibility. 158 */ 159 static bool cgrp_dfl_visible; 160 161 /* some controllers are not supported in the default hierarchy */ 162 static u16 cgrp_dfl_inhibit_ss_mask; 163 164 /* some controllers are implicitly enabled on the default hierarchy */ 165 static u16 cgrp_dfl_implicit_ss_mask; 166 167 /* some controllers can be threaded on the default hierarchy */ 168 static u16 cgrp_dfl_threaded_ss_mask; 169 170 /* The list of hierarchy roots */ 171 LIST_HEAD(cgroup_roots); 172 static int cgroup_root_count; 173 174 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */ 175 static DEFINE_IDR(cgroup_hierarchy_idr); 176 177 /* 178 * Assign a monotonically increasing serial number to csses. It guarantees 179 * cgroups with bigger numbers are newer than those with smaller numbers. 180 * Also, as csses are always appended to the parent's ->children list, it 181 * guarantees that sibling csses are always sorted in the ascending serial 182 * number order on the list. Protected by cgroup_mutex. 183 */ 184 static u64 css_serial_nr_next = 1; 185 186 /* 187 * These bitmasks identify subsystems with specific features to avoid 188 * having to do iterative checks repeatedly. 189 */ 190 static u16 have_fork_callback __read_mostly; 191 static u16 have_exit_callback __read_mostly; 192 static u16 have_free_callback __read_mostly; 193 static u16 have_canfork_callback __read_mostly; 194 195 /* cgroup namespace for init task */ 196 struct cgroup_namespace init_cgroup_ns = { 197 .count = REFCOUNT_INIT(2), 198 .user_ns = &init_user_ns, 199 .ns.ops = &cgroupns_operations, 200 .ns.inum = PROC_CGROUP_INIT_INO, 201 .root_cset = &init_css_set, 202 }; 203 204 static struct file_system_type cgroup2_fs_type; 205 static struct cftype cgroup_base_files[]; 206 207 static int cgroup_apply_control(struct cgroup *cgrp); 208 static void cgroup_finalize_control(struct cgroup *cgrp, int ret); 209 static void css_task_iter_advance(struct css_task_iter *it); 210 static int cgroup_destroy_locked(struct cgroup *cgrp); 211 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp, 212 struct cgroup_subsys *ss); 213 static void css_release(struct percpu_ref *ref); 214 static void kill_css(struct cgroup_subsys_state *css); 215 static int cgroup_addrm_files(struct cgroup_subsys_state *css, 216 struct cgroup *cgrp, struct cftype cfts[], 217 bool is_add); 218 219 /** 220 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID 221 * @ssid: subsys ID of interest 222 * 223 * cgroup_subsys_enabled() can only be used with literal subsys names which 224 * is fine for individual subsystems but unsuitable for cgroup core. This 225 * is slower static_key_enabled() based test indexed by @ssid. 226 */ 227 bool cgroup_ssid_enabled(int ssid) 228 { 229 if (CGROUP_SUBSYS_COUNT == 0) 230 return false; 231 232 return static_key_enabled(cgroup_subsys_enabled_key[ssid]); 233 } 234 235 /** 236 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy 237 * @cgrp: the cgroup of interest 238 * 239 * The default hierarchy is the v2 interface of cgroup and this function 240 * can be used to test whether a cgroup is on the default hierarchy for 241 * cases where a subsystem should behave differnetly depending on the 242 * interface version. 243 * 244 * The set of behaviors which change on the default hierarchy are still 245 * being determined and the mount option is prefixed with __DEVEL__. 246 * 247 * List of changed behaviors: 248 * 249 * - Mount options "noprefix", "xattr", "clone_children", "release_agent" 250 * and "name" are disallowed. 251 * 252 * - When mounting an existing superblock, mount options should match. 253 * 254 * - Remount is disallowed. 255 * 256 * - rename(2) is disallowed. 257 * 258 * - "tasks" is removed. Everything should be at process granularity. Use 259 * "cgroup.procs" instead. 260 * 261 * - "cgroup.procs" is not sorted. pids will be unique unless they got 262 * recycled inbetween reads. 263 * 264 * - "release_agent" and "notify_on_release" are removed. Replacement 265 * notification mechanism will be implemented. 266 * 267 * - "cgroup.clone_children" is removed. 268 * 269 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup 270 * and its descendants contain no task; otherwise, 1. The file also 271 * generates kernfs notification which can be monitored through poll and 272 * [di]notify when the value of the file changes. 273 * 274 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and 275 * take masks of ancestors with non-empty cpus/mems, instead of being 276 * moved to an ancestor. 277 * 278 * - cpuset: a task can be moved into an empty cpuset, and again it takes 279 * masks of ancestors. 280 * 281 * - memcg: use_hierarchy is on by default and the cgroup file for the flag 282 * is not created. 283 * 284 * - blkcg: blk-throttle becomes properly hierarchical. 285 * 286 * - debug: disallowed on the default hierarchy. 287 */ 288 bool cgroup_on_dfl(const struct cgroup *cgrp) 289 { 290 return cgrp->root == &cgrp_dfl_root; 291 } 292 293 /* IDR wrappers which synchronize using cgroup_idr_lock */ 294 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end, 295 gfp_t gfp_mask) 296 { 297 int ret; 298 299 idr_preload(gfp_mask); 300 spin_lock_bh(&cgroup_idr_lock); 301 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM); 302 spin_unlock_bh(&cgroup_idr_lock); 303 idr_preload_end(); 304 return ret; 305 } 306 307 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id) 308 { 309 void *ret; 310 311 spin_lock_bh(&cgroup_idr_lock); 312 ret = idr_replace(idr, ptr, id); 313 spin_unlock_bh(&cgroup_idr_lock); 314 return ret; 315 } 316 317 static void cgroup_idr_remove(struct idr *idr, int id) 318 { 319 spin_lock_bh(&cgroup_idr_lock); 320 idr_remove(idr, id); 321 spin_unlock_bh(&cgroup_idr_lock); 322 } 323 324 static bool cgroup_has_tasks(struct cgroup *cgrp) 325 { 326 return cgrp->nr_populated_csets; 327 } 328 329 bool cgroup_is_threaded(struct cgroup *cgrp) 330 { 331 return cgrp->dom_cgrp != cgrp; 332 } 333 334 /* can @cgrp host both domain and threaded children? */ 335 static bool cgroup_is_mixable(struct cgroup *cgrp) 336 { 337 /* 338 * Root isn't under domain level resource control exempting it from 339 * the no-internal-process constraint, so it can serve as a thread 340 * root and a parent of resource domains at the same time. 341 */ 342 return !cgroup_parent(cgrp); 343 } 344 345 /* can @cgrp become a thread root? should always be true for a thread root */ 346 static bool cgroup_can_be_thread_root(struct cgroup *cgrp) 347 { 348 /* mixables don't care */ 349 if (cgroup_is_mixable(cgrp)) 350 return true; 351 352 /* domain roots can't be nested under threaded */ 353 if (cgroup_is_threaded(cgrp)) 354 return false; 355 356 /* can only have either domain or threaded children */ 357 if (cgrp->nr_populated_domain_children) 358 return false; 359 360 /* and no domain controllers can be enabled */ 361 if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask) 362 return false; 363 364 return true; 365 } 366 367 /* is @cgrp root of a threaded subtree? */ 368 bool cgroup_is_thread_root(struct cgroup *cgrp) 369 { 370 /* thread root should be a domain */ 371 if (cgroup_is_threaded(cgrp)) 372 return false; 373 374 /* a domain w/ threaded children is a thread root */ 375 if (cgrp->nr_threaded_children) 376 return true; 377 378 /* 379 * A domain which has tasks and explicit threaded controllers 380 * enabled is a thread root. 381 */ 382 if (cgroup_has_tasks(cgrp) && 383 (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask)) 384 return true; 385 386 return false; 387 } 388 389 /* a domain which isn't connected to the root w/o brekage can't be used */ 390 static bool cgroup_is_valid_domain(struct cgroup *cgrp) 391 { 392 /* the cgroup itself can be a thread root */ 393 if (cgroup_is_threaded(cgrp)) 394 return false; 395 396 /* but the ancestors can't be unless mixable */ 397 while ((cgrp = cgroup_parent(cgrp))) { 398 if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp)) 399 return false; 400 if (cgroup_is_threaded(cgrp)) 401 return false; 402 } 403 404 return true; 405 } 406 407 /* subsystems visibly enabled on a cgroup */ 408 static u16 cgroup_control(struct cgroup *cgrp) 409 { 410 struct cgroup *parent = cgroup_parent(cgrp); 411 u16 root_ss_mask = cgrp->root->subsys_mask; 412 413 if (parent) { 414 u16 ss_mask = parent->subtree_control; 415 416 /* threaded cgroups can only have threaded controllers */ 417 if (cgroup_is_threaded(cgrp)) 418 ss_mask &= cgrp_dfl_threaded_ss_mask; 419 return ss_mask; 420 } 421 422 if (cgroup_on_dfl(cgrp)) 423 root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask | 424 cgrp_dfl_implicit_ss_mask); 425 return root_ss_mask; 426 } 427 428 /* subsystems enabled on a cgroup */ 429 static u16 cgroup_ss_mask(struct cgroup *cgrp) 430 { 431 struct cgroup *parent = cgroup_parent(cgrp); 432 433 if (parent) { 434 u16 ss_mask = parent->subtree_ss_mask; 435 436 /* threaded cgroups can only have threaded controllers */ 437 if (cgroup_is_threaded(cgrp)) 438 ss_mask &= cgrp_dfl_threaded_ss_mask; 439 return ss_mask; 440 } 441 442 return cgrp->root->subsys_mask; 443 } 444 445 /** 446 * cgroup_css - obtain a cgroup's css for the specified subsystem 447 * @cgrp: the cgroup of interest 448 * @ss: the subsystem of interest (%NULL returns @cgrp->self) 449 * 450 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This 451 * function must be called either under cgroup_mutex or rcu_read_lock() and 452 * the caller is responsible for pinning the returned css if it wants to 453 * keep accessing it outside the said locks. This function may return 454 * %NULL if @cgrp doesn't have @subsys_id enabled. 455 */ 456 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp, 457 struct cgroup_subsys *ss) 458 { 459 if (ss) 460 return rcu_dereference_check(cgrp->subsys[ss->id], 461 lockdep_is_held(&cgroup_mutex)); 462 else 463 return &cgrp->self; 464 } 465 466 /** 467 * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem 468 * @cgrp: the cgroup of interest 469 * @ss: the subsystem of interest 470 * 471 * Find and get @cgrp's css assocaited with @ss. If the css doesn't exist 472 * or is offline, %NULL is returned. 473 */ 474 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp, 475 struct cgroup_subsys *ss) 476 { 477 struct cgroup_subsys_state *css; 478 479 rcu_read_lock(); 480 css = cgroup_css(cgrp, ss); 481 if (!css || !css_tryget_online(css)) 482 css = NULL; 483 rcu_read_unlock(); 484 485 return css; 486 } 487 488 /** 489 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem 490 * @cgrp: the cgroup of interest 491 * @ss: the subsystem of interest (%NULL returns @cgrp->self) 492 * 493 * Similar to cgroup_css() but returns the effective css, which is defined 494 * as the matching css of the nearest ancestor including self which has @ss 495 * enabled. If @ss is associated with the hierarchy @cgrp is on, this 496 * function is guaranteed to return non-NULL css. 497 */ 498 static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp, 499 struct cgroup_subsys *ss) 500 { 501 lockdep_assert_held(&cgroup_mutex); 502 503 if (!ss) 504 return &cgrp->self; 505 506 /* 507 * This function is used while updating css associations and thus 508 * can't test the csses directly. Test ss_mask. 509 */ 510 while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) { 511 cgrp = cgroup_parent(cgrp); 512 if (!cgrp) 513 return NULL; 514 } 515 516 return cgroup_css(cgrp, ss); 517 } 518 519 /** 520 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem 521 * @cgrp: the cgroup of interest 522 * @ss: the subsystem of interest 523 * 524 * Find and get the effective css of @cgrp for @ss. The effective css is 525 * defined as the matching css of the nearest ancestor including self which 526 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on, 527 * the root css is returned, so this function always returns a valid css. 528 * The returned css must be put using css_put(). 529 */ 530 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp, 531 struct cgroup_subsys *ss) 532 { 533 struct cgroup_subsys_state *css; 534 535 rcu_read_lock(); 536 537 do { 538 css = cgroup_css(cgrp, ss); 539 540 if (css && css_tryget_online(css)) 541 goto out_unlock; 542 cgrp = cgroup_parent(cgrp); 543 } while (cgrp); 544 545 css = init_css_set.subsys[ss->id]; 546 css_get(css); 547 out_unlock: 548 rcu_read_unlock(); 549 return css; 550 } 551 552 static void cgroup_get_live(struct cgroup *cgrp) 553 { 554 WARN_ON_ONCE(cgroup_is_dead(cgrp)); 555 css_get(&cgrp->self); 556 } 557 558 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of) 559 { 560 struct cgroup *cgrp = of->kn->parent->priv; 561 struct cftype *cft = of_cft(of); 562 563 /* 564 * This is open and unprotected implementation of cgroup_css(). 565 * seq_css() is only called from a kernfs file operation which has 566 * an active reference on the file. Because all the subsystem 567 * files are drained before a css is disassociated with a cgroup, 568 * the matching css from the cgroup's subsys table is guaranteed to 569 * be and stay valid until the enclosing operation is complete. 570 */ 571 if (cft->ss) 572 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]); 573 else 574 return &cgrp->self; 575 } 576 EXPORT_SYMBOL_GPL(of_css); 577 578 /** 579 * for_each_css - iterate all css's of a cgroup 580 * @css: the iteration cursor 581 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end 582 * @cgrp: the target cgroup to iterate css's of 583 * 584 * Should be called under cgroup_[tree_]mutex. 585 */ 586 #define for_each_css(css, ssid, cgrp) \ 587 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \ 588 if (!((css) = rcu_dereference_check( \ 589 (cgrp)->subsys[(ssid)], \ 590 lockdep_is_held(&cgroup_mutex)))) { } \ 591 else 592 593 /** 594 * for_each_e_css - iterate all effective css's of a cgroup 595 * @css: the iteration cursor 596 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end 597 * @cgrp: the target cgroup to iterate css's of 598 * 599 * Should be called under cgroup_[tree_]mutex. 600 */ 601 #define for_each_e_css(css, ssid, cgrp) \ 602 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \ 603 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \ 604 ; \ 605 else 606 607 /** 608 * do_each_subsys_mask - filter for_each_subsys with a bitmask 609 * @ss: the iteration cursor 610 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end 611 * @ss_mask: the bitmask 612 * 613 * The block will only run for cases where the ssid-th bit (1 << ssid) of 614 * @ss_mask is set. 615 */ 616 #define do_each_subsys_mask(ss, ssid, ss_mask) do { \ 617 unsigned long __ss_mask = (ss_mask); \ 618 if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */ \ 619 (ssid) = 0; \ 620 break; \ 621 } \ 622 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \ 623 (ss) = cgroup_subsys[ssid]; \ 624 { 625 626 #define while_each_subsys_mask() \ 627 } \ 628 } \ 629 } while (false) 630 631 /* iterate over child cgrps, lock should be held throughout iteration */ 632 #define cgroup_for_each_live_child(child, cgrp) \ 633 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \ 634 if (({ lockdep_assert_held(&cgroup_mutex); \ 635 cgroup_is_dead(child); })) \ 636 ; \ 637 else 638 639 /* walk live descendants in preorder */ 640 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \ 641 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \ 642 if (({ lockdep_assert_held(&cgroup_mutex); \ 643 (dsct) = (d_css)->cgroup; \ 644 cgroup_is_dead(dsct); })) \ 645 ; \ 646 else 647 648 /* walk live descendants in postorder */ 649 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \ 650 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \ 651 if (({ lockdep_assert_held(&cgroup_mutex); \ 652 (dsct) = (d_css)->cgroup; \ 653 cgroup_is_dead(dsct); })) \ 654 ; \ 655 else 656 657 /* 658 * The default css_set - used by init and its children prior to any 659 * hierarchies being mounted. It contains a pointer to the root state 660 * for each subsystem. Also used to anchor the list of css_sets. Not 661 * reference-counted, to improve performance when child cgroups 662 * haven't been created. 663 */ 664 struct css_set init_css_set = { 665 .refcount = REFCOUNT_INIT(1), 666 .dom_cset = &init_css_set, 667 .tasks = LIST_HEAD_INIT(init_css_set.tasks), 668 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks), 669 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters), 670 .threaded_csets = LIST_HEAD_INIT(init_css_set.threaded_csets), 671 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links), 672 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node), 673 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node), 674 675 /* 676 * The following field is re-initialized when this cset gets linked 677 * in cgroup_init(). However, let's initialize the field 678 * statically too so that the default cgroup can be accessed safely 679 * early during boot. 680 */ 681 .dfl_cgrp = &cgrp_dfl_root.cgrp, 682 }; 683 684 static int css_set_count = 1; /* 1 for init_css_set */ 685 686 static bool css_set_threaded(struct css_set *cset) 687 { 688 return cset->dom_cset != cset; 689 } 690 691 /** 692 * css_set_populated - does a css_set contain any tasks? 693 * @cset: target css_set 694 * 695 * css_set_populated() should be the same as !!cset->nr_tasks at steady 696 * state. However, css_set_populated() can be called while a task is being 697 * added to or removed from the linked list before the nr_tasks is 698 * properly updated. Hence, we can't just look at ->nr_tasks here. 699 */ 700 static bool css_set_populated(struct css_set *cset) 701 { 702 lockdep_assert_held(&css_set_lock); 703 704 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks); 705 } 706 707 /** 708 * cgroup_update_populated - update the populated count of a cgroup 709 * @cgrp: the target cgroup 710 * @populated: inc or dec populated count 711 * 712 * One of the css_sets associated with @cgrp is either getting its first 713 * task or losing the last. Update @cgrp->nr_populated_* accordingly. The 714 * count is propagated towards root so that a given cgroup's 715 * nr_populated_children is zero iff none of its descendants contain any 716 * tasks. 717 * 718 * @cgrp's interface file "cgroup.populated" is zero if both 719 * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and 720 * 1 otherwise. When the sum changes from or to zero, userland is notified 721 * that the content of the interface file has changed. This can be used to 722 * detect when @cgrp and its descendants become populated or empty. 723 */ 724 static void cgroup_update_populated(struct cgroup *cgrp, bool populated) 725 { 726 struct cgroup *child = NULL; 727 int adj = populated ? 1 : -1; 728 729 lockdep_assert_held(&css_set_lock); 730 731 do { 732 bool was_populated = cgroup_is_populated(cgrp); 733 734 if (!child) { 735 cgrp->nr_populated_csets += adj; 736 } else { 737 if (cgroup_is_threaded(child)) 738 cgrp->nr_populated_threaded_children += adj; 739 else 740 cgrp->nr_populated_domain_children += adj; 741 } 742 743 if (was_populated == cgroup_is_populated(cgrp)) 744 break; 745 746 cgroup1_check_for_release(cgrp); 747 cgroup_file_notify(&cgrp->events_file); 748 749 child = cgrp; 750 cgrp = cgroup_parent(cgrp); 751 } while (cgrp); 752 } 753 754 /** 755 * css_set_update_populated - update populated state of a css_set 756 * @cset: target css_set 757 * @populated: whether @cset is populated or depopulated 758 * 759 * @cset is either getting the first task or losing the last. Update the 760 * populated counters of all associated cgroups accordingly. 761 */ 762 static void css_set_update_populated(struct css_set *cset, bool populated) 763 { 764 struct cgrp_cset_link *link; 765 766 lockdep_assert_held(&css_set_lock); 767 768 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) 769 cgroup_update_populated(link->cgrp, populated); 770 } 771 772 /** 773 * css_set_move_task - move a task from one css_set to another 774 * @task: task being moved 775 * @from_cset: css_set @task currently belongs to (may be NULL) 776 * @to_cset: new css_set @task is being moved to (may be NULL) 777 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks 778 * 779 * Move @task from @from_cset to @to_cset. If @task didn't belong to any 780 * css_set, @from_cset can be NULL. If @task is being disassociated 781 * instead of moved, @to_cset can be NULL. 782 * 783 * This function automatically handles populated counter updates and 784 * css_task_iter adjustments but the caller is responsible for managing 785 * @from_cset and @to_cset's reference counts. 786 */ 787 static void css_set_move_task(struct task_struct *task, 788 struct css_set *from_cset, struct css_set *to_cset, 789 bool use_mg_tasks) 790 { 791 lockdep_assert_held(&css_set_lock); 792 793 if (to_cset && !css_set_populated(to_cset)) 794 css_set_update_populated(to_cset, true); 795 796 if (from_cset) { 797 struct css_task_iter *it, *pos; 798 799 WARN_ON_ONCE(list_empty(&task->cg_list)); 800 801 /* 802 * @task is leaving, advance task iterators which are 803 * pointing to it so that they can resume at the next 804 * position. Advancing an iterator might remove it from 805 * the list, use safe walk. See css_task_iter_advance*() 806 * for details. 807 */ 808 list_for_each_entry_safe(it, pos, &from_cset->task_iters, 809 iters_node) 810 if (it->task_pos == &task->cg_list) 811 css_task_iter_advance(it); 812 813 list_del_init(&task->cg_list); 814 if (!css_set_populated(from_cset)) 815 css_set_update_populated(from_cset, false); 816 } else { 817 WARN_ON_ONCE(!list_empty(&task->cg_list)); 818 } 819 820 if (to_cset) { 821 /* 822 * We are synchronized through cgroup_threadgroup_rwsem 823 * against PF_EXITING setting such that we can't race 824 * against cgroup_exit() changing the css_set to 825 * init_css_set and dropping the old one. 826 */ 827 WARN_ON_ONCE(task->flags & PF_EXITING); 828 829 rcu_assign_pointer(task->cgroups, to_cset); 830 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks : 831 &to_cset->tasks); 832 } 833 } 834 835 /* 836 * hash table for cgroup groups. This improves the performance to find 837 * an existing css_set. This hash doesn't (currently) take into 838 * account cgroups in empty hierarchies. 839 */ 840 #define CSS_SET_HASH_BITS 7 841 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS); 842 843 static unsigned long css_set_hash(struct cgroup_subsys_state *css[]) 844 { 845 unsigned long key = 0UL; 846 struct cgroup_subsys *ss; 847 int i; 848 849 for_each_subsys(ss, i) 850 key += (unsigned long)css[i]; 851 key = (key >> 16) ^ key; 852 853 return key; 854 } 855 856 void put_css_set_locked(struct css_set *cset) 857 { 858 struct cgrp_cset_link *link, *tmp_link; 859 struct cgroup_subsys *ss; 860 int ssid; 861 862 lockdep_assert_held(&css_set_lock); 863 864 if (!refcount_dec_and_test(&cset->refcount)) 865 return; 866 867 WARN_ON_ONCE(!list_empty(&cset->threaded_csets)); 868 869 /* This css_set is dead. unlink it and release cgroup and css refs */ 870 for_each_subsys(ss, ssid) { 871 list_del(&cset->e_cset_node[ssid]); 872 css_put(cset->subsys[ssid]); 873 } 874 hash_del(&cset->hlist); 875 css_set_count--; 876 877 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) { 878 list_del(&link->cset_link); 879 list_del(&link->cgrp_link); 880 if (cgroup_parent(link->cgrp)) 881 cgroup_put(link->cgrp); 882 kfree(link); 883 } 884 885 if (css_set_threaded(cset)) { 886 list_del(&cset->threaded_csets_node); 887 put_css_set_locked(cset->dom_cset); 888 } 889 890 kfree_rcu(cset, rcu_head); 891 } 892 893 /** 894 * compare_css_sets - helper function for find_existing_css_set(). 895 * @cset: candidate css_set being tested 896 * @old_cset: existing css_set for a task 897 * @new_cgrp: cgroup that's being entered by the task 898 * @template: desired set of css pointers in css_set (pre-calculated) 899 * 900 * Returns true if "cset" matches "old_cset" except for the hierarchy 901 * which "new_cgrp" belongs to, for which it should match "new_cgrp". 902 */ 903 static bool compare_css_sets(struct css_set *cset, 904 struct css_set *old_cset, 905 struct cgroup *new_cgrp, 906 struct cgroup_subsys_state *template[]) 907 { 908 struct cgroup *new_dfl_cgrp; 909 struct list_head *l1, *l2; 910 911 /* 912 * On the default hierarchy, there can be csets which are 913 * associated with the same set of cgroups but different csses. 914 * Let's first ensure that csses match. 915 */ 916 if (memcmp(template, cset->subsys, sizeof(cset->subsys))) 917 return false; 918 919 920 /* @cset's domain should match the default cgroup's */ 921 if (cgroup_on_dfl(new_cgrp)) 922 new_dfl_cgrp = new_cgrp; 923 else 924 new_dfl_cgrp = old_cset->dfl_cgrp; 925 926 if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp) 927 return false; 928 929 /* 930 * Compare cgroup pointers in order to distinguish between 931 * different cgroups in hierarchies. As different cgroups may 932 * share the same effective css, this comparison is always 933 * necessary. 934 */ 935 l1 = &cset->cgrp_links; 936 l2 = &old_cset->cgrp_links; 937 while (1) { 938 struct cgrp_cset_link *link1, *link2; 939 struct cgroup *cgrp1, *cgrp2; 940 941 l1 = l1->next; 942 l2 = l2->next; 943 /* See if we reached the end - both lists are equal length. */ 944 if (l1 == &cset->cgrp_links) { 945 BUG_ON(l2 != &old_cset->cgrp_links); 946 break; 947 } else { 948 BUG_ON(l2 == &old_cset->cgrp_links); 949 } 950 /* Locate the cgroups associated with these links. */ 951 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link); 952 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link); 953 cgrp1 = link1->cgrp; 954 cgrp2 = link2->cgrp; 955 /* Hierarchies should be linked in the same order. */ 956 BUG_ON(cgrp1->root != cgrp2->root); 957 958 /* 959 * If this hierarchy is the hierarchy of the cgroup 960 * that's changing, then we need to check that this 961 * css_set points to the new cgroup; if it's any other 962 * hierarchy, then this css_set should point to the 963 * same cgroup as the old css_set. 964 */ 965 if (cgrp1->root == new_cgrp->root) { 966 if (cgrp1 != new_cgrp) 967 return false; 968 } else { 969 if (cgrp1 != cgrp2) 970 return false; 971 } 972 } 973 return true; 974 } 975 976 /** 977 * find_existing_css_set - init css array and find the matching css_set 978 * @old_cset: the css_set that we're using before the cgroup transition 979 * @cgrp: the cgroup that we're moving into 980 * @template: out param for the new set of csses, should be clear on entry 981 */ 982 static struct css_set *find_existing_css_set(struct css_set *old_cset, 983 struct cgroup *cgrp, 984 struct cgroup_subsys_state *template[]) 985 { 986 struct cgroup_root *root = cgrp->root; 987 struct cgroup_subsys *ss; 988 struct css_set *cset; 989 unsigned long key; 990 int i; 991 992 /* 993 * Build the set of subsystem state objects that we want to see in the 994 * new css_set. while subsystems can change globally, the entries here 995 * won't change, so no need for locking. 996 */ 997 for_each_subsys(ss, i) { 998 if (root->subsys_mask & (1UL << i)) { 999 /* 1000 * @ss is in this hierarchy, so we want the 1001 * effective css from @cgrp. 1002 */ 1003 template[i] = cgroup_e_css(cgrp, ss); 1004 } else { 1005 /* 1006 * @ss is not in this hierarchy, so we don't want 1007 * to change the css. 1008 */ 1009 template[i] = old_cset->subsys[i]; 1010 } 1011 } 1012 1013 key = css_set_hash(template); 1014 hash_for_each_possible(css_set_table, cset, hlist, key) { 1015 if (!compare_css_sets(cset, old_cset, cgrp, template)) 1016 continue; 1017 1018 /* This css_set matches what we need */ 1019 return cset; 1020 } 1021 1022 /* No existing cgroup group matched */ 1023 return NULL; 1024 } 1025 1026 static void free_cgrp_cset_links(struct list_head *links_to_free) 1027 { 1028 struct cgrp_cset_link *link, *tmp_link; 1029 1030 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) { 1031 list_del(&link->cset_link); 1032 kfree(link); 1033 } 1034 } 1035 1036 /** 1037 * allocate_cgrp_cset_links - allocate cgrp_cset_links 1038 * @count: the number of links to allocate 1039 * @tmp_links: list_head the allocated links are put on 1040 * 1041 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links 1042 * through ->cset_link. Returns 0 on success or -errno. 1043 */ 1044 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links) 1045 { 1046 struct cgrp_cset_link *link; 1047 int i; 1048 1049 INIT_LIST_HEAD(tmp_links); 1050 1051 for (i = 0; i < count; i++) { 1052 link = kzalloc(sizeof(*link), GFP_KERNEL); 1053 if (!link) { 1054 free_cgrp_cset_links(tmp_links); 1055 return -ENOMEM; 1056 } 1057 list_add(&link->cset_link, tmp_links); 1058 } 1059 return 0; 1060 } 1061 1062 /** 1063 * link_css_set - a helper function to link a css_set to a cgroup 1064 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links() 1065 * @cset: the css_set to be linked 1066 * @cgrp: the destination cgroup 1067 */ 1068 static void link_css_set(struct list_head *tmp_links, struct css_set *cset, 1069 struct cgroup *cgrp) 1070 { 1071 struct cgrp_cset_link *link; 1072 1073 BUG_ON(list_empty(tmp_links)); 1074 1075 if (cgroup_on_dfl(cgrp)) 1076 cset->dfl_cgrp = cgrp; 1077 1078 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link); 1079 link->cset = cset; 1080 link->cgrp = cgrp; 1081 1082 /* 1083 * Always add links to the tail of the lists so that the lists are 1084 * in choronological order. 1085 */ 1086 list_move_tail(&link->cset_link, &cgrp->cset_links); 1087 list_add_tail(&link->cgrp_link, &cset->cgrp_links); 1088 1089 if (cgroup_parent(cgrp)) 1090 cgroup_get_live(cgrp); 1091 } 1092 1093 /** 1094 * find_css_set - return a new css_set with one cgroup updated 1095 * @old_cset: the baseline css_set 1096 * @cgrp: the cgroup to be updated 1097 * 1098 * Return a new css_set that's equivalent to @old_cset, but with @cgrp 1099 * substituted into the appropriate hierarchy. 1100 */ 1101 static struct css_set *find_css_set(struct css_set *old_cset, 1102 struct cgroup *cgrp) 1103 { 1104 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { }; 1105 struct css_set *cset; 1106 struct list_head tmp_links; 1107 struct cgrp_cset_link *link; 1108 struct cgroup_subsys *ss; 1109 unsigned long key; 1110 int ssid; 1111 1112 lockdep_assert_held(&cgroup_mutex); 1113 1114 /* First see if we already have a cgroup group that matches 1115 * the desired set */ 1116 spin_lock_irq(&css_set_lock); 1117 cset = find_existing_css_set(old_cset, cgrp, template); 1118 if (cset) 1119 get_css_set(cset); 1120 spin_unlock_irq(&css_set_lock); 1121 1122 if (cset) 1123 return cset; 1124 1125 cset = kzalloc(sizeof(*cset), GFP_KERNEL); 1126 if (!cset) 1127 return NULL; 1128 1129 /* Allocate all the cgrp_cset_link objects that we'll need */ 1130 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) { 1131 kfree(cset); 1132 return NULL; 1133 } 1134 1135 refcount_set(&cset->refcount, 1); 1136 cset->dom_cset = cset; 1137 INIT_LIST_HEAD(&cset->tasks); 1138 INIT_LIST_HEAD(&cset->mg_tasks); 1139 INIT_LIST_HEAD(&cset->task_iters); 1140 INIT_LIST_HEAD(&cset->threaded_csets); 1141 INIT_HLIST_NODE(&cset->hlist); 1142 INIT_LIST_HEAD(&cset->cgrp_links); 1143 INIT_LIST_HEAD(&cset->mg_preload_node); 1144 INIT_LIST_HEAD(&cset->mg_node); 1145 1146 /* Copy the set of subsystem state objects generated in 1147 * find_existing_css_set() */ 1148 memcpy(cset->subsys, template, sizeof(cset->subsys)); 1149 1150 spin_lock_irq(&css_set_lock); 1151 /* Add reference counts and links from the new css_set. */ 1152 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) { 1153 struct cgroup *c = link->cgrp; 1154 1155 if (c->root == cgrp->root) 1156 c = cgrp; 1157 link_css_set(&tmp_links, cset, c); 1158 } 1159 1160 BUG_ON(!list_empty(&tmp_links)); 1161 1162 css_set_count++; 1163 1164 /* Add @cset to the hash table */ 1165 key = css_set_hash(cset->subsys); 1166 hash_add(css_set_table, &cset->hlist, key); 1167 1168 for_each_subsys(ss, ssid) { 1169 struct cgroup_subsys_state *css = cset->subsys[ssid]; 1170 1171 list_add_tail(&cset->e_cset_node[ssid], 1172 &css->cgroup->e_csets[ssid]); 1173 css_get(css); 1174 } 1175 1176 spin_unlock_irq(&css_set_lock); 1177 1178 /* 1179 * If @cset should be threaded, look up the matching dom_cset and 1180 * link them up. We first fully initialize @cset then look for the 1181 * dom_cset. It's simpler this way and safe as @cset is guaranteed 1182 * to stay empty until we return. 1183 */ 1184 if (cgroup_is_threaded(cset->dfl_cgrp)) { 1185 struct css_set *dcset; 1186 1187 dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp); 1188 if (!dcset) { 1189 put_css_set(cset); 1190 return NULL; 1191 } 1192 1193 spin_lock_irq(&css_set_lock); 1194 cset->dom_cset = dcset; 1195 list_add_tail(&cset->threaded_csets_node, 1196 &dcset->threaded_csets); 1197 spin_unlock_irq(&css_set_lock); 1198 } 1199 1200 return cset; 1201 } 1202 1203 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root) 1204 { 1205 struct cgroup *root_cgrp = kf_root->kn->priv; 1206 1207 return root_cgrp->root; 1208 } 1209 1210 static int cgroup_init_root_id(struct cgroup_root *root) 1211 { 1212 int id; 1213 1214 lockdep_assert_held(&cgroup_mutex); 1215 1216 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL); 1217 if (id < 0) 1218 return id; 1219 1220 root->hierarchy_id = id; 1221 return 0; 1222 } 1223 1224 static void cgroup_exit_root_id(struct cgroup_root *root) 1225 { 1226 lockdep_assert_held(&cgroup_mutex); 1227 1228 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id); 1229 } 1230 1231 void cgroup_free_root(struct cgroup_root *root) 1232 { 1233 if (root) { 1234 idr_destroy(&root->cgroup_idr); 1235 kfree(root); 1236 } 1237 } 1238 1239 static void cgroup_destroy_root(struct cgroup_root *root) 1240 { 1241 struct cgroup *cgrp = &root->cgrp; 1242 struct cgrp_cset_link *link, *tmp_link; 1243 1244 trace_cgroup_destroy_root(root); 1245 1246 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp); 1247 1248 BUG_ON(atomic_read(&root->nr_cgrps)); 1249 BUG_ON(!list_empty(&cgrp->self.children)); 1250 1251 /* Rebind all subsystems back to the default hierarchy */ 1252 WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask)); 1253 1254 /* 1255 * Release all the links from cset_links to this hierarchy's 1256 * root cgroup 1257 */ 1258 spin_lock_irq(&css_set_lock); 1259 1260 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) { 1261 list_del(&link->cset_link); 1262 list_del(&link->cgrp_link); 1263 kfree(link); 1264 } 1265 1266 spin_unlock_irq(&css_set_lock); 1267 1268 if (!list_empty(&root->root_list)) { 1269 list_del(&root->root_list); 1270 cgroup_root_count--; 1271 } 1272 1273 cgroup_exit_root_id(root); 1274 1275 mutex_unlock(&cgroup_mutex); 1276 1277 kernfs_destroy_root(root->kf_root); 1278 cgroup_free_root(root); 1279 } 1280 1281 /* 1282 * look up cgroup associated with current task's cgroup namespace on the 1283 * specified hierarchy 1284 */ 1285 static struct cgroup * 1286 current_cgns_cgroup_from_root(struct cgroup_root *root) 1287 { 1288 struct cgroup *res = NULL; 1289 struct css_set *cset; 1290 1291 lockdep_assert_held(&css_set_lock); 1292 1293 rcu_read_lock(); 1294 1295 cset = current->nsproxy->cgroup_ns->root_cset; 1296 if (cset == &init_css_set) { 1297 res = &root->cgrp; 1298 } else { 1299 struct cgrp_cset_link *link; 1300 1301 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) { 1302 struct cgroup *c = link->cgrp; 1303 1304 if (c->root == root) { 1305 res = c; 1306 break; 1307 } 1308 } 1309 } 1310 rcu_read_unlock(); 1311 1312 BUG_ON(!res); 1313 return res; 1314 } 1315 1316 /* look up cgroup associated with given css_set on the specified hierarchy */ 1317 static struct cgroup *cset_cgroup_from_root(struct css_set *cset, 1318 struct cgroup_root *root) 1319 { 1320 struct cgroup *res = NULL; 1321 1322 lockdep_assert_held(&cgroup_mutex); 1323 lockdep_assert_held(&css_set_lock); 1324 1325 if (cset == &init_css_set) { 1326 res = &root->cgrp; 1327 } else if (root == &cgrp_dfl_root) { 1328 res = cset->dfl_cgrp; 1329 } else { 1330 struct cgrp_cset_link *link; 1331 1332 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) { 1333 struct cgroup *c = link->cgrp; 1334 1335 if (c->root == root) { 1336 res = c; 1337 break; 1338 } 1339 } 1340 } 1341 1342 BUG_ON(!res); 1343 return res; 1344 } 1345 1346 /* 1347 * Return the cgroup for "task" from the given hierarchy. Must be 1348 * called with cgroup_mutex and css_set_lock held. 1349 */ 1350 struct cgroup *task_cgroup_from_root(struct task_struct *task, 1351 struct cgroup_root *root) 1352 { 1353 /* 1354 * No need to lock the task - since we hold cgroup_mutex the 1355 * task can't change groups, so the only thing that can happen 1356 * is that it exits and its css is set back to init_css_set. 1357 */ 1358 return cset_cgroup_from_root(task_css_set(task), root); 1359 } 1360 1361 /* 1362 * A task must hold cgroup_mutex to modify cgroups. 1363 * 1364 * Any task can increment and decrement the count field without lock. 1365 * So in general, code holding cgroup_mutex can't rely on the count 1366 * field not changing. However, if the count goes to zero, then only 1367 * cgroup_attach_task() can increment it again. Because a count of zero 1368 * means that no tasks are currently attached, therefore there is no 1369 * way a task attached to that cgroup can fork (the other way to 1370 * increment the count). So code holding cgroup_mutex can safely 1371 * assume that if the count is zero, it will stay zero. Similarly, if 1372 * a task holds cgroup_mutex on a cgroup with zero count, it 1373 * knows that the cgroup won't be removed, as cgroup_rmdir() 1374 * needs that mutex. 1375 * 1376 * A cgroup can only be deleted if both its 'count' of using tasks 1377 * is zero, and its list of 'children' cgroups is empty. Since all 1378 * tasks in the system use _some_ cgroup, and since there is always at 1379 * least one task in the system (init, pid == 1), therefore, root cgroup 1380 * always has either children cgroups and/or using tasks. So we don't 1381 * need a special hack to ensure that root cgroup cannot be deleted. 1382 * 1383 * P.S. One more locking exception. RCU is used to guard the 1384 * update of a tasks cgroup pointer by cgroup_attach_task() 1385 */ 1386 1387 static struct kernfs_syscall_ops cgroup_kf_syscall_ops; 1388 1389 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft, 1390 char *buf) 1391 { 1392 struct cgroup_subsys *ss = cft->ss; 1393 1394 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) && 1395 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) 1396 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s", 1397 cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name, 1398 cft->name); 1399 else 1400 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX); 1401 return buf; 1402 } 1403 1404 /** 1405 * cgroup_file_mode - deduce file mode of a control file 1406 * @cft: the control file in question 1407 * 1408 * S_IRUGO for read, S_IWUSR for write. 1409 */ 1410 static umode_t cgroup_file_mode(const struct cftype *cft) 1411 { 1412 umode_t mode = 0; 1413 1414 if (cft->read_u64 || cft->read_s64 || cft->seq_show) 1415 mode |= S_IRUGO; 1416 1417 if (cft->write_u64 || cft->write_s64 || cft->write) { 1418 if (cft->flags & CFTYPE_WORLD_WRITABLE) 1419 mode |= S_IWUGO; 1420 else 1421 mode |= S_IWUSR; 1422 } 1423 1424 return mode; 1425 } 1426 1427 /** 1428 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask 1429 * @subtree_control: the new subtree_control mask to consider 1430 * @this_ss_mask: available subsystems 1431 * 1432 * On the default hierarchy, a subsystem may request other subsystems to be 1433 * enabled together through its ->depends_on mask. In such cases, more 1434 * subsystems than specified in "cgroup.subtree_control" may be enabled. 1435 * 1436 * This function calculates which subsystems need to be enabled if 1437 * @subtree_control is to be applied while restricted to @this_ss_mask. 1438 */ 1439 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask) 1440 { 1441 u16 cur_ss_mask = subtree_control; 1442 struct cgroup_subsys *ss; 1443 int ssid; 1444 1445 lockdep_assert_held(&cgroup_mutex); 1446 1447 cur_ss_mask |= cgrp_dfl_implicit_ss_mask; 1448 1449 while (true) { 1450 u16 new_ss_mask = cur_ss_mask; 1451 1452 do_each_subsys_mask(ss, ssid, cur_ss_mask) { 1453 new_ss_mask |= ss->depends_on; 1454 } while_each_subsys_mask(); 1455 1456 /* 1457 * Mask out subsystems which aren't available. This can 1458 * happen only if some depended-upon subsystems were bound 1459 * to non-default hierarchies. 1460 */ 1461 new_ss_mask &= this_ss_mask; 1462 1463 if (new_ss_mask == cur_ss_mask) 1464 break; 1465 cur_ss_mask = new_ss_mask; 1466 } 1467 1468 return cur_ss_mask; 1469 } 1470 1471 /** 1472 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods 1473 * @kn: the kernfs_node being serviced 1474 * 1475 * This helper undoes cgroup_kn_lock_live() and should be invoked before 1476 * the method finishes if locking succeeded. Note that once this function 1477 * returns the cgroup returned by cgroup_kn_lock_live() may become 1478 * inaccessible any time. If the caller intends to continue to access the 1479 * cgroup, it should pin it before invoking this function. 1480 */ 1481 void cgroup_kn_unlock(struct kernfs_node *kn) 1482 { 1483 struct cgroup *cgrp; 1484 1485 if (kernfs_type(kn) == KERNFS_DIR) 1486 cgrp = kn->priv; 1487 else 1488 cgrp = kn->parent->priv; 1489 1490 mutex_unlock(&cgroup_mutex); 1491 1492 kernfs_unbreak_active_protection(kn); 1493 cgroup_put(cgrp); 1494 } 1495 1496 /** 1497 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods 1498 * @kn: the kernfs_node being serviced 1499 * @drain_offline: perform offline draining on the cgroup 1500 * 1501 * This helper is to be used by a cgroup kernfs method currently servicing 1502 * @kn. It breaks the active protection, performs cgroup locking and 1503 * verifies that the associated cgroup is alive. Returns the cgroup if 1504 * alive; otherwise, %NULL. A successful return should be undone by a 1505 * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the 1506 * cgroup is drained of offlining csses before return. 1507 * 1508 * Any cgroup kernfs method implementation which requires locking the 1509 * associated cgroup should use this helper. It avoids nesting cgroup 1510 * locking under kernfs active protection and allows all kernfs operations 1511 * including self-removal. 1512 */ 1513 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline) 1514 { 1515 struct cgroup *cgrp; 1516 1517 if (kernfs_type(kn) == KERNFS_DIR) 1518 cgrp = kn->priv; 1519 else 1520 cgrp = kn->parent->priv; 1521 1522 /* 1523 * We're gonna grab cgroup_mutex which nests outside kernfs 1524 * active_ref. cgroup liveliness check alone provides enough 1525 * protection against removal. Ensure @cgrp stays accessible and 1526 * break the active_ref protection. 1527 */ 1528 if (!cgroup_tryget(cgrp)) 1529 return NULL; 1530 kernfs_break_active_protection(kn); 1531 1532 if (drain_offline) 1533 cgroup_lock_and_drain_offline(cgrp); 1534 else 1535 mutex_lock(&cgroup_mutex); 1536 1537 if (!cgroup_is_dead(cgrp)) 1538 return cgrp; 1539 1540 cgroup_kn_unlock(kn); 1541 return NULL; 1542 } 1543 1544 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft) 1545 { 1546 char name[CGROUP_FILE_NAME_MAX]; 1547 1548 lockdep_assert_held(&cgroup_mutex); 1549 1550 if (cft->file_offset) { 1551 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss); 1552 struct cgroup_file *cfile = (void *)css + cft->file_offset; 1553 1554 spin_lock_irq(&cgroup_file_kn_lock); 1555 cfile->kn = NULL; 1556 spin_unlock_irq(&cgroup_file_kn_lock); 1557 } 1558 1559 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name)); 1560 } 1561 1562 /** 1563 * css_clear_dir - remove subsys files in a cgroup directory 1564 * @css: taget css 1565 */ 1566 static void css_clear_dir(struct cgroup_subsys_state *css) 1567 { 1568 struct cgroup *cgrp = css->cgroup; 1569 struct cftype *cfts; 1570 1571 if (!(css->flags & CSS_VISIBLE)) 1572 return; 1573 1574 css->flags &= ~CSS_VISIBLE; 1575 1576 list_for_each_entry(cfts, &css->ss->cfts, node) 1577 cgroup_addrm_files(css, cgrp, cfts, false); 1578 } 1579 1580 /** 1581 * css_populate_dir - create subsys files in a cgroup directory 1582 * @css: target css 1583 * 1584 * On failure, no file is added. 1585 */ 1586 static int css_populate_dir(struct cgroup_subsys_state *css) 1587 { 1588 struct cgroup *cgrp = css->cgroup; 1589 struct cftype *cfts, *failed_cfts; 1590 int ret; 1591 1592 if ((css->flags & CSS_VISIBLE) || !cgrp->kn) 1593 return 0; 1594 1595 if (!css->ss) { 1596 if (cgroup_on_dfl(cgrp)) 1597 cfts = cgroup_base_files; 1598 else 1599 cfts = cgroup1_base_files; 1600 1601 return cgroup_addrm_files(&cgrp->self, cgrp, cfts, true); 1602 } 1603 1604 list_for_each_entry(cfts, &css->ss->cfts, node) { 1605 ret = cgroup_addrm_files(css, cgrp, cfts, true); 1606 if (ret < 0) { 1607 failed_cfts = cfts; 1608 goto err; 1609 } 1610 } 1611 1612 css->flags |= CSS_VISIBLE; 1613 1614 return 0; 1615 err: 1616 list_for_each_entry(cfts, &css->ss->cfts, node) { 1617 if (cfts == failed_cfts) 1618 break; 1619 cgroup_addrm_files(css, cgrp, cfts, false); 1620 } 1621 return ret; 1622 } 1623 1624 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask) 1625 { 1626 struct cgroup *dcgrp = &dst_root->cgrp; 1627 struct cgroup_subsys *ss; 1628 int ssid, i, ret; 1629 1630 lockdep_assert_held(&cgroup_mutex); 1631 1632 do_each_subsys_mask(ss, ssid, ss_mask) { 1633 /* 1634 * If @ss has non-root csses attached to it, can't move. 1635 * If @ss is an implicit controller, it is exempt from this 1636 * rule and can be stolen. 1637 */ 1638 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) && 1639 !ss->implicit_on_dfl) 1640 return -EBUSY; 1641 1642 /* can't move between two non-dummy roots either */ 1643 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root) 1644 return -EBUSY; 1645 } while_each_subsys_mask(); 1646 1647 do_each_subsys_mask(ss, ssid, ss_mask) { 1648 struct cgroup_root *src_root = ss->root; 1649 struct cgroup *scgrp = &src_root->cgrp; 1650 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss); 1651 struct css_set *cset; 1652 1653 WARN_ON(!css || cgroup_css(dcgrp, ss)); 1654 1655 /* disable from the source */ 1656 src_root->subsys_mask &= ~(1 << ssid); 1657 WARN_ON(cgroup_apply_control(scgrp)); 1658 cgroup_finalize_control(scgrp, 0); 1659 1660 /* rebind */ 1661 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL); 1662 rcu_assign_pointer(dcgrp->subsys[ssid], css); 1663 ss->root = dst_root; 1664 css->cgroup = dcgrp; 1665 1666 spin_lock_irq(&css_set_lock); 1667 hash_for_each(css_set_table, i, cset, hlist) 1668 list_move_tail(&cset->e_cset_node[ss->id], 1669 &dcgrp->e_csets[ss->id]); 1670 spin_unlock_irq(&css_set_lock); 1671 1672 /* default hierarchy doesn't enable controllers by default */ 1673 dst_root->subsys_mask |= 1 << ssid; 1674 if (dst_root == &cgrp_dfl_root) { 1675 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]); 1676 } else { 1677 dcgrp->subtree_control |= 1 << ssid; 1678 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]); 1679 } 1680 1681 ret = cgroup_apply_control(dcgrp); 1682 if (ret) 1683 pr_warn("partial failure to rebind %s controller (err=%d)\n", 1684 ss->name, ret); 1685 1686 if (ss->bind) 1687 ss->bind(css); 1688 } while_each_subsys_mask(); 1689 1690 kernfs_activate(dcgrp->kn); 1691 return 0; 1692 } 1693 1694 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node, 1695 struct kernfs_root *kf_root) 1696 { 1697 int len = 0; 1698 char *buf = NULL; 1699 struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root); 1700 struct cgroup *ns_cgroup; 1701 1702 buf = kmalloc(PATH_MAX, GFP_KERNEL); 1703 if (!buf) 1704 return -ENOMEM; 1705 1706 spin_lock_irq(&css_set_lock); 1707 ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot); 1708 len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX); 1709 spin_unlock_irq(&css_set_lock); 1710 1711 if (len >= PATH_MAX) 1712 len = -ERANGE; 1713 else if (len > 0) { 1714 seq_escape(sf, buf, " \t\n\\"); 1715 len = 0; 1716 } 1717 kfree(buf); 1718 return len; 1719 } 1720 1721 static int parse_cgroup_root_flags(char *data, unsigned int *root_flags) 1722 { 1723 char *token; 1724 1725 *root_flags = 0; 1726 1727 if (!data) 1728 return 0; 1729 1730 while ((token = strsep(&data, ",")) != NULL) { 1731 if (!strcmp(token, "nsdelegate")) { 1732 *root_flags |= CGRP_ROOT_NS_DELEGATE; 1733 continue; 1734 } 1735 1736 pr_err("cgroup2: unknown option \"%s\"\n", token); 1737 return -EINVAL; 1738 } 1739 1740 return 0; 1741 } 1742 1743 static void apply_cgroup_root_flags(unsigned int root_flags) 1744 { 1745 if (current->nsproxy->cgroup_ns == &init_cgroup_ns) { 1746 if (root_flags & CGRP_ROOT_NS_DELEGATE) 1747 cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE; 1748 else 1749 cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE; 1750 } 1751 } 1752 1753 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root) 1754 { 1755 if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) 1756 seq_puts(seq, ",nsdelegate"); 1757 return 0; 1758 } 1759 1760 static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data) 1761 { 1762 unsigned int root_flags; 1763 int ret; 1764 1765 ret = parse_cgroup_root_flags(data, &root_flags); 1766 if (ret) 1767 return ret; 1768 1769 apply_cgroup_root_flags(root_flags); 1770 return 0; 1771 } 1772 1773 /* 1774 * To reduce the fork() overhead for systems that are not actually using 1775 * their cgroups capability, we don't maintain the lists running through 1776 * each css_set to its tasks until we see the list actually used - in other 1777 * words after the first mount. 1778 */ 1779 static bool use_task_css_set_links __read_mostly; 1780 1781 static void cgroup_enable_task_cg_lists(void) 1782 { 1783 struct task_struct *p, *g; 1784 1785 spin_lock_irq(&css_set_lock); 1786 1787 if (use_task_css_set_links) 1788 goto out_unlock; 1789 1790 use_task_css_set_links = true; 1791 1792 /* 1793 * We need tasklist_lock because RCU is not safe against 1794 * while_each_thread(). Besides, a forking task that has passed 1795 * cgroup_post_fork() without seeing use_task_css_set_links = 1 1796 * is not guaranteed to have its child immediately visible in the 1797 * tasklist if we walk through it with RCU. 1798 */ 1799 read_lock(&tasklist_lock); 1800 do_each_thread(g, p) { 1801 WARN_ON_ONCE(!list_empty(&p->cg_list) || 1802 task_css_set(p) != &init_css_set); 1803 1804 /* 1805 * We should check if the process is exiting, otherwise 1806 * it will race with cgroup_exit() in that the list 1807 * entry won't be deleted though the process has exited. 1808 * Do it while holding siglock so that we don't end up 1809 * racing against cgroup_exit(). 1810 * 1811 * Interrupts were already disabled while acquiring 1812 * the css_set_lock, so we do not need to disable it 1813 * again when acquiring the sighand->siglock here. 1814 */ 1815 spin_lock(&p->sighand->siglock); 1816 if (!(p->flags & PF_EXITING)) { 1817 struct css_set *cset = task_css_set(p); 1818 1819 if (!css_set_populated(cset)) 1820 css_set_update_populated(cset, true); 1821 list_add_tail(&p->cg_list, &cset->tasks); 1822 get_css_set(cset); 1823 cset->nr_tasks++; 1824 } 1825 spin_unlock(&p->sighand->siglock); 1826 } while_each_thread(g, p); 1827 read_unlock(&tasklist_lock); 1828 out_unlock: 1829 spin_unlock_irq(&css_set_lock); 1830 } 1831 1832 static void init_cgroup_housekeeping(struct cgroup *cgrp) 1833 { 1834 struct cgroup_subsys *ss; 1835 int ssid; 1836 1837 INIT_LIST_HEAD(&cgrp->self.sibling); 1838 INIT_LIST_HEAD(&cgrp->self.children); 1839 INIT_LIST_HEAD(&cgrp->cset_links); 1840 INIT_LIST_HEAD(&cgrp->pidlists); 1841 mutex_init(&cgrp->pidlist_mutex); 1842 cgrp->self.cgroup = cgrp; 1843 cgrp->self.flags |= CSS_ONLINE; 1844 cgrp->dom_cgrp = cgrp; 1845 cgrp->max_descendants = INT_MAX; 1846 cgrp->max_depth = INT_MAX; 1847 1848 for_each_subsys(ss, ssid) 1849 INIT_LIST_HEAD(&cgrp->e_csets[ssid]); 1850 1851 init_waitqueue_head(&cgrp->offline_waitq); 1852 INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent); 1853 } 1854 1855 void init_cgroup_root(struct cgroup_root *root, struct cgroup_sb_opts *opts) 1856 { 1857 struct cgroup *cgrp = &root->cgrp; 1858 1859 INIT_LIST_HEAD(&root->root_list); 1860 atomic_set(&root->nr_cgrps, 1); 1861 cgrp->root = root; 1862 init_cgroup_housekeeping(cgrp); 1863 idr_init(&root->cgroup_idr); 1864 1865 root->flags = opts->flags; 1866 if (opts->release_agent) 1867 strcpy(root->release_agent_path, opts->release_agent); 1868 if (opts->name) 1869 strcpy(root->name, opts->name); 1870 if (opts->cpuset_clone_children) 1871 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags); 1872 } 1873 1874 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask, int ref_flags) 1875 { 1876 LIST_HEAD(tmp_links); 1877 struct cgroup *root_cgrp = &root->cgrp; 1878 struct kernfs_syscall_ops *kf_sops; 1879 struct css_set *cset; 1880 int i, ret; 1881 1882 lockdep_assert_held(&cgroup_mutex); 1883 1884 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL); 1885 if (ret < 0) 1886 goto out; 1887 root_cgrp->id = ret; 1888 root_cgrp->ancestor_ids[0] = ret; 1889 1890 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 1891 ref_flags, GFP_KERNEL); 1892 if (ret) 1893 goto out; 1894 1895 /* 1896 * We're accessing css_set_count without locking css_set_lock here, 1897 * but that's OK - it can only be increased by someone holding 1898 * cgroup_lock, and that's us. Later rebinding may disable 1899 * controllers on the default hierarchy and thus create new csets, 1900 * which can't be more than the existing ones. Allocate 2x. 1901 */ 1902 ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links); 1903 if (ret) 1904 goto cancel_ref; 1905 1906 ret = cgroup_init_root_id(root); 1907 if (ret) 1908 goto cancel_ref; 1909 1910 kf_sops = root == &cgrp_dfl_root ? 1911 &cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops; 1912 1913 root->kf_root = kernfs_create_root(kf_sops, 1914 KERNFS_ROOT_CREATE_DEACTIVATED | 1915 KERNFS_ROOT_SUPPORT_EXPORTOP, 1916 root_cgrp); 1917 if (IS_ERR(root->kf_root)) { 1918 ret = PTR_ERR(root->kf_root); 1919 goto exit_root_id; 1920 } 1921 root_cgrp->kn = root->kf_root->kn; 1922 1923 ret = css_populate_dir(&root_cgrp->self); 1924 if (ret) 1925 goto destroy_root; 1926 1927 ret = rebind_subsystems(root, ss_mask); 1928 if (ret) 1929 goto destroy_root; 1930 1931 ret = cgroup_bpf_inherit(root_cgrp); 1932 WARN_ON_ONCE(ret); 1933 1934 trace_cgroup_setup_root(root); 1935 1936 /* 1937 * There must be no failure case after here, since rebinding takes 1938 * care of subsystems' refcounts, which are explicitly dropped in 1939 * the failure exit path. 1940 */ 1941 list_add(&root->root_list, &cgroup_roots); 1942 cgroup_root_count++; 1943 1944 /* 1945 * Link the root cgroup in this hierarchy into all the css_set 1946 * objects. 1947 */ 1948 spin_lock_irq(&css_set_lock); 1949 hash_for_each(css_set_table, i, cset, hlist) { 1950 link_css_set(&tmp_links, cset, root_cgrp); 1951 if (css_set_populated(cset)) 1952 cgroup_update_populated(root_cgrp, true); 1953 } 1954 spin_unlock_irq(&css_set_lock); 1955 1956 BUG_ON(!list_empty(&root_cgrp->self.children)); 1957 BUG_ON(atomic_read(&root->nr_cgrps) != 1); 1958 1959 kernfs_activate(root_cgrp->kn); 1960 ret = 0; 1961 goto out; 1962 1963 destroy_root: 1964 kernfs_destroy_root(root->kf_root); 1965 root->kf_root = NULL; 1966 exit_root_id: 1967 cgroup_exit_root_id(root); 1968 cancel_ref: 1969 percpu_ref_exit(&root_cgrp->self.refcnt); 1970 out: 1971 free_cgrp_cset_links(&tmp_links); 1972 return ret; 1973 } 1974 1975 struct dentry *cgroup_do_mount(struct file_system_type *fs_type, int flags, 1976 struct cgroup_root *root, unsigned long magic, 1977 struct cgroup_namespace *ns) 1978 { 1979 struct dentry *dentry; 1980 bool new_sb; 1981 1982 dentry = kernfs_mount(fs_type, flags, root->kf_root, magic, &new_sb); 1983 1984 /* 1985 * In non-init cgroup namespace, instead of root cgroup's dentry, 1986 * we return the dentry corresponding to the cgroupns->root_cgrp. 1987 */ 1988 if (!IS_ERR(dentry) && ns != &init_cgroup_ns) { 1989 struct dentry *nsdentry; 1990 struct cgroup *cgrp; 1991 1992 mutex_lock(&cgroup_mutex); 1993 spin_lock_irq(&css_set_lock); 1994 1995 cgrp = cset_cgroup_from_root(ns->root_cset, root); 1996 1997 spin_unlock_irq(&css_set_lock); 1998 mutex_unlock(&cgroup_mutex); 1999 2000 nsdentry = kernfs_node_dentry(cgrp->kn, dentry->d_sb); 2001 dput(dentry); 2002 dentry = nsdentry; 2003 } 2004 2005 if (IS_ERR(dentry) || !new_sb) 2006 cgroup_put(&root->cgrp); 2007 2008 return dentry; 2009 } 2010 2011 static struct dentry *cgroup_mount(struct file_system_type *fs_type, 2012 int flags, const char *unused_dev_name, 2013 void *data) 2014 { 2015 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns; 2016 struct dentry *dentry; 2017 int ret; 2018 2019 get_cgroup_ns(ns); 2020 2021 /* Check if the caller has permission to mount. */ 2022 if (!ns_capable(ns->user_ns, CAP_SYS_ADMIN)) { 2023 put_cgroup_ns(ns); 2024 return ERR_PTR(-EPERM); 2025 } 2026 2027 /* 2028 * The first time anyone tries to mount a cgroup, enable the list 2029 * linking each css_set to its tasks and fix up all existing tasks. 2030 */ 2031 if (!use_task_css_set_links) 2032 cgroup_enable_task_cg_lists(); 2033 2034 if (fs_type == &cgroup2_fs_type) { 2035 unsigned int root_flags; 2036 2037 ret = parse_cgroup_root_flags(data, &root_flags); 2038 if (ret) { 2039 put_cgroup_ns(ns); 2040 return ERR_PTR(ret); 2041 } 2042 2043 cgrp_dfl_visible = true; 2044 cgroup_get_live(&cgrp_dfl_root.cgrp); 2045 2046 dentry = cgroup_do_mount(&cgroup2_fs_type, flags, &cgrp_dfl_root, 2047 CGROUP2_SUPER_MAGIC, ns); 2048 if (!IS_ERR(dentry)) 2049 apply_cgroup_root_flags(root_flags); 2050 } else { 2051 dentry = cgroup1_mount(&cgroup_fs_type, flags, data, 2052 CGROUP_SUPER_MAGIC, ns); 2053 } 2054 2055 put_cgroup_ns(ns); 2056 return dentry; 2057 } 2058 2059 static void cgroup_kill_sb(struct super_block *sb) 2060 { 2061 struct kernfs_root *kf_root = kernfs_root_from_sb(sb); 2062 struct cgroup_root *root = cgroup_root_from_kf(kf_root); 2063 2064 /* 2065 * If @root doesn't have any mounts or children, start killing it. 2066 * This prevents new mounts by disabling percpu_ref_tryget_live(). 2067 * cgroup_mount() may wait for @root's release. 2068 * 2069 * And don't kill the default root. 2070 */ 2071 if (!list_empty(&root->cgrp.self.children) || 2072 root == &cgrp_dfl_root) 2073 cgroup_put(&root->cgrp); 2074 else 2075 percpu_ref_kill(&root->cgrp.self.refcnt); 2076 2077 kernfs_kill_sb(sb); 2078 } 2079 2080 struct file_system_type cgroup_fs_type = { 2081 .name = "cgroup", 2082 .mount = cgroup_mount, 2083 .kill_sb = cgroup_kill_sb, 2084 .fs_flags = FS_USERNS_MOUNT, 2085 }; 2086 2087 static struct file_system_type cgroup2_fs_type = { 2088 .name = "cgroup2", 2089 .mount = cgroup_mount, 2090 .kill_sb = cgroup_kill_sb, 2091 .fs_flags = FS_USERNS_MOUNT, 2092 }; 2093 2094 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen, 2095 struct cgroup_namespace *ns) 2096 { 2097 struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root); 2098 2099 return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen); 2100 } 2101 2102 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen, 2103 struct cgroup_namespace *ns) 2104 { 2105 int ret; 2106 2107 mutex_lock(&cgroup_mutex); 2108 spin_lock_irq(&css_set_lock); 2109 2110 ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns); 2111 2112 spin_unlock_irq(&css_set_lock); 2113 mutex_unlock(&cgroup_mutex); 2114 2115 return ret; 2116 } 2117 EXPORT_SYMBOL_GPL(cgroup_path_ns); 2118 2119 /** 2120 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy 2121 * @task: target task 2122 * @buf: the buffer to write the path into 2123 * @buflen: the length of the buffer 2124 * 2125 * Determine @task's cgroup on the first (the one with the lowest non-zero 2126 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This 2127 * function grabs cgroup_mutex and shouldn't be used inside locks used by 2128 * cgroup controller callbacks. 2129 * 2130 * Return value is the same as kernfs_path(). 2131 */ 2132 int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen) 2133 { 2134 struct cgroup_root *root; 2135 struct cgroup *cgrp; 2136 int hierarchy_id = 1; 2137 int ret; 2138 2139 mutex_lock(&cgroup_mutex); 2140 spin_lock_irq(&css_set_lock); 2141 2142 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id); 2143 2144 if (root) { 2145 cgrp = task_cgroup_from_root(task, root); 2146 ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns); 2147 } else { 2148 /* if no hierarchy exists, everyone is in "/" */ 2149 ret = strlcpy(buf, "/", buflen); 2150 } 2151 2152 spin_unlock_irq(&css_set_lock); 2153 mutex_unlock(&cgroup_mutex); 2154 return ret; 2155 } 2156 EXPORT_SYMBOL_GPL(task_cgroup_path); 2157 2158 /** 2159 * cgroup_migrate_add_task - add a migration target task to a migration context 2160 * @task: target task 2161 * @mgctx: target migration context 2162 * 2163 * Add @task, which is a migration target, to @mgctx->tset. This function 2164 * becomes noop if @task doesn't need to be migrated. @task's css_set 2165 * should have been added as a migration source and @task->cg_list will be 2166 * moved from the css_set's tasks list to mg_tasks one. 2167 */ 2168 static void cgroup_migrate_add_task(struct task_struct *task, 2169 struct cgroup_mgctx *mgctx) 2170 { 2171 struct css_set *cset; 2172 2173 lockdep_assert_held(&css_set_lock); 2174 2175 /* @task either already exited or can't exit until the end */ 2176 if (task->flags & PF_EXITING) 2177 return; 2178 2179 /* leave @task alone if post_fork() hasn't linked it yet */ 2180 if (list_empty(&task->cg_list)) 2181 return; 2182 2183 cset = task_css_set(task); 2184 if (!cset->mg_src_cgrp) 2185 return; 2186 2187 mgctx->tset.nr_tasks++; 2188 2189 list_move_tail(&task->cg_list, &cset->mg_tasks); 2190 if (list_empty(&cset->mg_node)) 2191 list_add_tail(&cset->mg_node, 2192 &mgctx->tset.src_csets); 2193 if (list_empty(&cset->mg_dst_cset->mg_node)) 2194 list_add_tail(&cset->mg_dst_cset->mg_node, 2195 &mgctx->tset.dst_csets); 2196 } 2197 2198 /** 2199 * cgroup_taskset_first - reset taskset and return the first task 2200 * @tset: taskset of interest 2201 * @dst_cssp: output variable for the destination css 2202 * 2203 * @tset iteration is initialized and the first task is returned. 2204 */ 2205 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset, 2206 struct cgroup_subsys_state **dst_cssp) 2207 { 2208 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node); 2209 tset->cur_task = NULL; 2210 2211 return cgroup_taskset_next(tset, dst_cssp); 2212 } 2213 2214 /** 2215 * cgroup_taskset_next - iterate to the next task in taskset 2216 * @tset: taskset of interest 2217 * @dst_cssp: output variable for the destination css 2218 * 2219 * Return the next task in @tset. Iteration must have been initialized 2220 * with cgroup_taskset_first(). 2221 */ 2222 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset, 2223 struct cgroup_subsys_state **dst_cssp) 2224 { 2225 struct css_set *cset = tset->cur_cset; 2226 struct task_struct *task = tset->cur_task; 2227 2228 while (&cset->mg_node != tset->csets) { 2229 if (!task) 2230 task = list_first_entry(&cset->mg_tasks, 2231 struct task_struct, cg_list); 2232 else 2233 task = list_next_entry(task, cg_list); 2234 2235 if (&task->cg_list != &cset->mg_tasks) { 2236 tset->cur_cset = cset; 2237 tset->cur_task = task; 2238 2239 /* 2240 * This function may be called both before and 2241 * after cgroup_taskset_migrate(). The two cases 2242 * can be distinguished by looking at whether @cset 2243 * has its ->mg_dst_cset set. 2244 */ 2245 if (cset->mg_dst_cset) 2246 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid]; 2247 else 2248 *dst_cssp = cset->subsys[tset->ssid]; 2249 2250 return task; 2251 } 2252 2253 cset = list_next_entry(cset, mg_node); 2254 task = NULL; 2255 } 2256 2257 return NULL; 2258 } 2259 2260 /** 2261 * cgroup_taskset_migrate - migrate a taskset 2262 * @mgctx: migration context 2263 * 2264 * Migrate tasks in @mgctx as setup by migration preparation functions. 2265 * This function fails iff one of the ->can_attach callbacks fails and 2266 * guarantees that either all or none of the tasks in @mgctx are migrated. 2267 * @mgctx is consumed regardless of success. 2268 */ 2269 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx) 2270 { 2271 struct cgroup_taskset *tset = &mgctx->tset; 2272 struct cgroup_subsys *ss; 2273 struct task_struct *task, *tmp_task; 2274 struct css_set *cset, *tmp_cset; 2275 int ssid, failed_ssid, ret; 2276 2277 /* check that we can legitimately attach to the cgroup */ 2278 if (tset->nr_tasks) { 2279 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2280 if (ss->can_attach) { 2281 tset->ssid = ssid; 2282 ret = ss->can_attach(tset); 2283 if (ret) { 2284 failed_ssid = ssid; 2285 goto out_cancel_attach; 2286 } 2287 } 2288 } while_each_subsys_mask(); 2289 } 2290 2291 /* 2292 * Now that we're guaranteed success, proceed to move all tasks to 2293 * the new cgroup. There are no failure cases after here, so this 2294 * is the commit point. 2295 */ 2296 spin_lock_irq(&css_set_lock); 2297 list_for_each_entry(cset, &tset->src_csets, mg_node) { 2298 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) { 2299 struct css_set *from_cset = task_css_set(task); 2300 struct css_set *to_cset = cset->mg_dst_cset; 2301 2302 get_css_set(to_cset); 2303 to_cset->nr_tasks++; 2304 css_set_move_task(task, from_cset, to_cset, true); 2305 put_css_set_locked(from_cset); 2306 from_cset->nr_tasks--; 2307 } 2308 } 2309 spin_unlock_irq(&css_set_lock); 2310 2311 /* 2312 * Migration is committed, all target tasks are now on dst_csets. 2313 * Nothing is sensitive to fork() after this point. Notify 2314 * controllers that migration is complete. 2315 */ 2316 tset->csets = &tset->dst_csets; 2317 2318 if (tset->nr_tasks) { 2319 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2320 if (ss->attach) { 2321 tset->ssid = ssid; 2322 ss->attach(tset); 2323 } 2324 } while_each_subsys_mask(); 2325 } 2326 2327 ret = 0; 2328 goto out_release_tset; 2329 2330 out_cancel_attach: 2331 if (tset->nr_tasks) { 2332 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2333 if (ssid == failed_ssid) 2334 break; 2335 if (ss->cancel_attach) { 2336 tset->ssid = ssid; 2337 ss->cancel_attach(tset); 2338 } 2339 } while_each_subsys_mask(); 2340 } 2341 out_release_tset: 2342 spin_lock_irq(&css_set_lock); 2343 list_splice_init(&tset->dst_csets, &tset->src_csets); 2344 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) { 2345 list_splice_tail_init(&cset->mg_tasks, &cset->tasks); 2346 list_del_init(&cset->mg_node); 2347 } 2348 spin_unlock_irq(&css_set_lock); 2349 2350 /* 2351 * Re-initialize the cgroup_taskset structure in case it is reused 2352 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute() 2353 * iteration. 2354 */ 2355 tset->nr_tasks = 0; 2356 tset->csets = &tset->src_csets; 2357 return ret; 2358 } 2359 2360 /** 2361 * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination 2362 * @dst_cgrp: destination cgroup to test 2363 * 2364 * On the default hierarchy, except for the mixable, (possible) thread root 2365 * and threaded cgroups, subtree_control must be zero for migration 2366 * destination cgroups with tasks so that child cgroups don't compete 2367 * against tasks. 2368 */ 2369 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp) 2370 { 2371 /* v1 doesn't have any restriction */ 2372 if (!cgroup_on_dfl(dst_cgrp)) 2373 return 0; 2374 2375 /* verify @dst_cgrp can host resources */ 2376 if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp)) 2377 return -EOPNOTSUPP; 2378 2379 /* mixables don't care */ 2380 if (cgroup_is_mixable(dst_cgrp)) 2381 return 0; 2382 2383 /* 2384 * If @dst_cgrp is already or can become a thread root or is 2385 * threaded, it doesn't matter. 2386 */ 2387 if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp)) 2388 return 0; 2389 2390 /* apply no-internal-process constraint */ 2391 if (dst_cgrp->subtree_control) 2392 return -EBUSY; 2393 2394 return 0; 2395 } 2396 2397 /** 2398 * cgroup_migrate_finish - cleanup after attach 2399 * @mgctx: migration context 2400 * 2401 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See 2402 * those functions for details. 2403 */ 2404 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx) 2405 { 2406 LIST_HEAD(preloaded); 2407 struct css_set *cset, *tmp_cset; 2408 2409 lockdep_assert_held(&cgroup_mutex); 2410 2411 spin_lock_irq(&css_set_lock); 2412 2413 list_splice_tail_init(&mgctx->preloaded_src_csets, &preloaded); 2414 list_splice_tail_init(&mgctx->preloaded_dst_csets, &preloaded); 2415 2416 list_for_each_entry_safe(cset, tmp_cset, &preloaded, mg_preload_node) { 2417 cset->mg_src_cgrp = NULL; 2418 cset->mg_dst_cgrp = NULL; 2419 cset->mg_dst_cset = NULL; 2420 list_del_init(&cset->mg_preload_node); 2421 put_css_set_locked(cset); 2422 } 2423 2424 spin_unlock_irq(&css_set_lock); 2425 } 2426 2427 /** 2428 * cgroup_migrate_add_src - add a migration source css_set 2429 * @src_cset: the source css_set to add 2430 * @dst_cgrp: the destination cgroup 2431 * @mgctx: migration context 2432 * 2433 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin 2434 * @src_cset and add it to @mgctx->src_csets, which should later be cleaned 2435 * up by cgroup_migrate_finish(). 2436 * 2437 * This function may be called without holding cgroup_threadgroup_rwsem 2438 * even if the target is a process. Threads may be created and destroyed 2439 * but as long as cgroup_mutex is not dropped, no new css_set can be put 2440 * into play and the preloaded css_sets are guaranteed to cover all 2441 * migrations. 2442 */ 2443 void cgroup_migrate_add_src(struct css_set *src_cset, 2444 struct cgroup *dst_cgrp, 2445 struct cgroup_mgctx *mgctx) 2446 { 2447 struct cgroup *src_cgrp; 2448 2449 lockdep_assert_held(&cgroup_mutex); 2450 lockdep_assert_held(&css_set_lock); 2451 2452 /* 2453 * If ->dead, @src_set is associated with one or more dead cgroups 2454 * and doesn't contain any migratable tasks. Ignore it early so 2455 * that the rest of migration path doesn't get confused by it. 2456 */ 2457 if (src_cset->dead) 2458 return; 2459 2460 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root); 2461 2462 if (!list_empty(&src_cset->mg_preload_node)) 2463 return; 2464 2465 WARN_ON(src_cset->mg_src_cgrp); 2466 WARN_ON(src_cset->mg_dst_cgrp); 2467 WARN_ON(!list_empty(&src_cset->mg_tasks)); 2468 WARN_ON(!list_empty(&src_cset->mg_node)); 2469 2470 src_cset->mg_src_cgrp = src_cgrp; 2471 src_cset->mg_dst_cgrp = dst_cgrp; 2472 get_css_set(src_cset); 2473 list_add_tail(&src_cset->mg_preload_node, &mgctx->preloaded_src_csets); 2474 } 2475 2476 /** 2477 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration 2478 * @mgctx: migration context 2479 * 2480 * Tasks are about to be moved and all the source css_sets have been 2481 * preloaded to @mgctx->preloaded_src_csets. This function looks up and 2482 * pins all destination css_sets, links each to its source, and append them 2483 * to @mgctx->preloaded_dst_csets. 2484 * 2485 * This function must be called after cgroup_migrate_add_src() has been 2486 * called on each migration source css_set. After migration is performed 2487 * using cgroup_migrate(), cgroup_migrate_finish() must be called on 2488 * @mgctx. 2489 */ 2490 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx) 2491 { 2492 struct css_set *src_cset, *tmp_cset; 2493 2494 lockdep_assert_held(&cgroup_mutex); 2495 2496 /* look up the dst cset for each src cset and link it to src */ 2497 list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets, 2498 mg_preload_node) { 2499 struct css_set *dst_cset; 2500 struct cgroup_subsys *ss; 2501 int ssid; 2502 2503 dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp); 2504 if (!dst_cset) 2505 goto err; 2506 2507 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset); 2508 2509 /* 2510 * If src cset equals dst, it's noop. Drop the src. 2511 * cgroup_migrate() will skip the cset too. Note that we 2512 * can't handle src == dst as some nodes are used by both. 2513 */ 2514 if (src_cset == dst_cset) { 2515 src_cset->mg_src_cgrp = NULL; 2516 src_cset->mg_dst_cgrp = NULL; 2517 list_del_init(&src_cset->mg_preload_node); 2518 put_css_set(src_cset); 2519 put_css_set(dst_cset); 2520 continue; 2521 } 2522 2523 src_cset->mg_dst_cset = dst_cset; 2524 2525 if (list_empty(&dst_cset->mg_preload_node)) 2526 list_add_tail(&dst_cset->mg_preload_node, 2527 &mgctx->preloaded_dst_csets); 2528 else 2529 put_css_set(dst_cset); 2530 2531 for_each_subsys(ss, ssid) 2532 if (src_cset->subsys[ssid] != dst_cset->subsys[ssid]) 2533 mgctx->ss_mask |= 1 << ssid; 2534 } 2535 2536 return 0; 2537 err: 2538 cgroup_migrate_finish(mgctx); 2539 return -ENOMEM; 2540 } 2541 2542 /** 2543 * cgroup_migrate - migrate a process or task to a cgroup 2544 * @leader: the leader of the process or the task to migrate 2545 * @threadgroup: whether @leader points to the whole process or a single task 2546 * @mgctx: migration context 2547 * 2548 * Migrate a process or task denoted by @leader. If migrating a process, 2549 * the caller must be holding cgroup_threadgroup_rwsem. The caller is also 2550 * responsible for invoking cgroup_migrate_add_src() and 2551 * cgroup_migrate_prepare_dst() on the targets before invoking this 2552 * function and following up with cgroup_migrate_finish(). 2553 * 2554 * As long as a controller's ->can_attach() doesn't fail, this function is 2555 * guaranteed to succeed. This means that, excluding ->can_attach() 2556 * failure, when migrating multiple targets, the success or failure can be 2557 * decided for all targets by invoking group_migrate_prepare_dst() before 2558 * actually starting migrating. 2559 */ 2560 int cgroup_migrate(struct task_struct *leader, bool threadgroup, 2561 struct cgroup_mgctx *mgctx) 2562 { 2563 struct task_struct *task; 2564 2565 /* 2566 * Prevent freeing of tasks while we take a snapshot. Tasks that are 2567 * already PF_EXITING could be freed from underneath us unless we 2568 * take an rcu_read_lock. 2569 */ 2570 spin_lock_irq(&css_set_lock); 2571 rcu_read_lock(); 2572 task = leader; 2573 do { 2574 cgroup_migrate_add_task(task, mgctx); 2575 if (!threadgroup) 2576 break; 2577 } while_each_thread(leader, task); 2578 rcu_read_unlock(); 2579 spin_unlock_irq(&css_set_lock); 2580 2581 return cgroup_migrate_execute(mgctx); 2582 } 2583 2584 /** 2585 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup 2586 * @dst_cgrp: the cgroup to attach to 2587 * @leader: the task or the leader of the threadgroup to be attached 2588 * @threadgroup: attach the whole threadgroup? 2589 * 2590 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem. 2591 */ 2592 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader, 2593 bool threadgroup) 2594 { 2595 DEFINE_CGROUP_MGCTX(mgctx); 2596 struct task_struct *task; 2597 int ret; 2598 2599 ret = cgroup_migrate_vet_dst(dst_cgrp); 2600 if (ret) 2601 return ret; 2602 2603 /* look up all src csets */ 2604 spin_lock_irq(&css_set_lock); 2605 rcu_read_lock(); 2606 task = leader; 2607 do { 2608 cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx); 2609 if (!threadgroup) 2610 break; 2611 } while_each_thread(leader, task); 2612 rcu_read_unlock(); 2613 spin_unlock_irq(&css_set_lock); 2614 2615 /* prepare dst csets and commit */ 2616 ret = cgroup_migrate_prepare_dst(&mgctx); 2617 if (!ret) 2618 ret = cgroup_migrate(leader, threadgroup, &mgctx); 2619 2620 cgroup_migrate_finish(&mgctx); 2621 2622 if (!ret) 2623 trace_cgroup_attach_task(dst_cgrp, leader, threadgroup); 2624 2625 return ret; 2626 } 2627 2628 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup) 2629 __acquires(&cgroup_threadgroup_rwsem) 2630 { 2631 struct task_struct *tsk; 2632 pid_t pid; 2633 2634 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0) 2635 return ERR_PTR(-EINVAL); 2636 2637 percpu_down_write(&cgroup_threadgroup_rwsem); 2638 2639 rcu_read_lock(); 2640 if (pid) { 2641 tsk = find_task_by_vpid(pid); 2642 if (!tsk) { 2643 tsk = ERR_PTR(-ESRCH); 2644 goto out_unlock_threadgroup; 2645 } 2646 } else { 2647 tsk = current; 2648 } 2649 2650 if (threadgroup) 2651 tsk = tsk->group_leader; 2652 2653 /* 2654 * kthreads may acquire PF_NO_SETAFFINITY during initialization. 2655 * If userland migrates such a kthread to a non-root cgroup, it can 2656 * become trapped in a cpuset, or RT kthread may be born in a 2657 * cgroup with no rt_runtime allocated. Just say no. 2658 */ 2659 if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) { 2660 tsk = ERR_PTR(-EINVAL); 2661 goto out_unlock_threadgroup; 2662 } 2663 2664 get_task_struct(tsk); 2665 goto out_unlock_rcu; 2666 2667 out_unlock_threadgroup: 2668 percpu_up_write(&cgroup_threadgroup_rwsem); 2669 out_unlock_rcu: 2670 rcu_read_unlock(); 2671 return tsk; 2672 } 2673 2674 void cgroup_procs_write_finish(struct task_struct *task) 2675 __releases(&cgroup_threadgroup_rwsem) 2676 { 2677 struct cgroup_subsys *ss; 2678 int ssid; 2679 2680 /* release reference from cgroup_procs_write_start() */ 2681 put_task_struct(task); 2682 2683 percpu_up_write(&cgroup_threadgroup_rwsem); 2684 for_each_subsys(ss, ssid) 2685 if (ss->post_attach) 2686 ss->post_attach(); 2687 } 2688 2689 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask) 2690 { 2691 struct cgroup_subsys *ss; 2692 bool printed = false; 2693 int ssid; 2694 2695 do_each_subsys_mask(ss, ssid, ss_mask) { 2696 if (printed) 2697 seq_putc(seq, ' '); 2698 seq_printf(seq, "%s", ss->name); 2699 printed = true; 2700 } while_each_subsys_mask(); 2701 if (printed) 2702 seq_putc(seq, '\n'); 2703 } 2704 2705 /* show controllers which are enabled from the parent */ 2706 static int cgroup_controllers_show(struct seq_file *seq, void *v) 2707 { 2708 struct cgroup *cgrp = seq_css(seq)->cgroup; 2709 2710 cgroup_print_ss_mask(seq, cgroup_control(cgrp)); 2711 return 0; 2712 } 2713 2714 /* show controllers which are enabled for a given cgroup's children */ 2715 static int cgroup_subtree_control_show(struct seq_file *seq, void *v) 2716 { 2717 struct cgroup *cgrp = seq_css(seq)->cgroup; 2718 2719 cgroup_print_ss_mask(seq, cgrp->subtree_control); 2720 return 0; 2721 } 2722 2723 /** 2724 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy 2725 * @cgrp: root of the subtree to update csses for 2726 * 2727 * @cgrp's control masks have changed and its subtree's css associations 2728 * need to be updated accordingly. This function looks up all css_sets 2729 * which are attached to the subtree, creates the matching updated css_sets 2730 * and migrates the tasks to the new ones. 2731 */ 2732 static int cgroup_update_dfl_csses(struct cgroup *cgrp) 2733 { 2734 DEFINE_CGROUP_MGCTX(mgctx); 2735 struct cgroup_subsys_state *d_css; 2736 struct cgroup *dsct; 2737 struct css_set *src_cset; 2738 int ret; 2739 2740 lockdep_assert_held(&cgroup_mutex); 2741 2742 percpu_down_write(&cgroup_threadgroup_rwsem); 2743 2744 /* look up all csses currently attached to @cgrp's subtree */ 2745 spin_lock_irq(&css_set_lock); 2746 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 2747 struct cgrp_cset_link *link; 2748 2749 list_for_each_entry(link, &dsct->cset_links, cset_link) 2750 cgroup_migrate_add_src(link->cset, dsct, &mgctx); 2751 } 2752 spin_unlock_irq(&css_set_lock); 2753 2754 /* NULL dst indicates self on default hierarchy */ 2755 ret = cgroup_migrate_prepare_dst(&mgctx); 2756 if (ret) 2757 goto out_finish; 2758 2759 spin_lock_irq(&css_set_lock); 2760 list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, mg_preload_node) { 2761 struct task_struct *task, *ntask; 2762 2763 /* all tasks in src_csets need to be migrated */ 2764 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list) 2765 cgroup_migrate_add_task(task, &mgctx); 2766 } 2767 spin_unlock_irq(&css_set_lock); 2768 2769 ret = cgroup_migrate_execute(&mgctx); 2770 out_finish: 2771 cgroup_migrate_finish(&mgctx); 2772 percpu_up_write(&cgroup_threadgroup_rwsem); 2773 return ret; 2774 } 2775 2776 /** 2777 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses 2778 * @cgrp: root of the target subtree 2779 * 2780 * Because css offlining is asynchronous, userland may try to re-enable a 2781 * controller while the previous css is still around. This function grabs 2782 * cgroup_mutex and drains the previous css instances of @cgrp's subtree. 2783 */ 2784 void cgroup_lock_and_drain_offline(struct cgroup *cgrp) 2785 __acquires(&cgroup_mutex) 2786 { 2787 struct cgroup *dsct; 2788 struct cgroup_subsys_state *d_css; 2789 struct cgroup_subsys *ss; 2790 int ssid; 2791 2792 restart: 2793 mutex_lock(&cgroup_mutex); 2794 2795 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 2796 for_each_subsys(ss, ssid) { 2797 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 2798 DEFINE_WAIT(wait); 2799 2800 if (!css || !percpu_ref_is_dying(&css->refcnt)) 2801 continue; 2802 2803 cgroup_get_live(dsct); 2804 prepare_to_wait(&dsct->offline_waitq, &wait, 2805 TASK_UNINTERRUPTIBLE); 2806 2807 mutex_unlock(&cgroup_mutex); 2808 schedule(); 2809 finish_wait(&dsct->offline_waitq, &wait); 2810 2811 cgroup_put(dsct); 2812 goto restart; 2813 } 2814 } 2815 } 2816 2817 /** 2818 * cgroup_save_control - save control masks of a subtree 2819 * @cgrp: root of the target subtree 2820 * 2821 * Save ->subtree_control and ->subtree_ss_mask to the respective old_ 2822 * prefixed fields for @cgrp's subtree including @cgrp itself. 2823 */ 2824 static void cgroup_save_control(struct cgroup *cgrp) 2825 { 2826 struct cgroup *dsct; 2827 struct cgroup_subsys_state *d_css; 2828 2829 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 2830 dsct->old_subtree_control = dsct->subtree_control; 2831 dsct->old_subtree_ss_mask = dsct->subtree_ss_mask; 2832 } 2833 } 2834 2835 /** 2836 * cgroup_propagate_control - refresh control masks of a subtree 2837 * @cgrp: root of the target subtree 2838 * 2839 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches 2840 * ->subtree_control and propagate controller availability through the 2841 * subtree so that descendants don't have unavailable controllers enabled. 2842 */ 2843 static void cgroup_propagate_control(struct cgroup *cgrp) 2844 { 2845 struct cgroup *dsct; 2846 struct cgroup_subsys_state *d_css; 2847 2848 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 2849 dsct->subtree_control &= cgroup_control(dsct); 2850 dsct->subtree_ss_mask = 2851 cgroup_calc_subtree_ss_mask(dsct->subtree_control, 2852 cgroup_ss_mask(dsct)); 2853 } 2854 } 2855 2856 /** 2857 * cgroup_restore_control - restore control masks of a subtree 2858 * @cgrp: root of the target subtree 2859 * 2860 * Restore ->subtree_control and ->subtree_ss_mask from the respective old_ 2861 * prefixed fields for @cgrp's subtree including @cgrp itself. 2862 */ 2863 static void cgroup_restore_control(struct cgroup *cgrp) 2864 { 2865 struct cgroup *dsct; 2866 struct cgroup_subsys_state *d_css; 2867 2868 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 2869 dsct->subtree_control = dsct->old_subtree_control; 2870 dsct->subtree_ss_mask = dsct->old_subtree_ss_mask; 2871 } 2872 } 2873 2874 static bool css_visible(struct cgroup_subsys_state *css) 2875 { 2876 struct cgroup_subsys *ss = css->ss; 2877 struct cgroup *cgrp = css->cgroup; 2878 2879 if (cgroup_control(cgrp) & (1 << ss->id)) 2880 return true; 2881 if (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) 2882 return false; 2883 return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl; 2884 } 2885 2886 /** 2887 * cgroup_apply_control_enable - enable or show csses according to control 2888 * @cgrp: root of the target subtree 2889 * 2890 * Walk @cgrp's subtree and create new csses or make the existing ones 2891 * visible. A css is created invisible if it's being implicitly enabled 2892 * through dependency. An invisible css is made visible when the userland 2893 * explicitly enables it. 2894 * 2895 * Returns 0 on success, -errno on failure. On failure, csses which have 2896 * been processed already aren't cleaned up. The caller is responsible for 2897 * cleaning up with cgroup_apply_control_disable(). 2898 */ 2899 static int cgroup_apply_control_enable(struct cgroup *cgrp) 2900 { 2901 struct cgroup *dsct; 2902 struct cgroup_subsys_state *d_css; 2903 struct cgroup_subsys *ss; 2904 int ssid, ret; 2905 2906 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 2907 for_each_subsys(ss, ssid) { 2908 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 2909 2910 WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt)); 2911 2912 if (!(cgroup_ss_mask(dsct) & (1 << ss->id))) 2913 continue; 2914 2915 if (!css) { 2916 css = css_create(dsct, ss); 2917 if (IS_ERR(css)) 2918 return PTR_ERR(css); 2919 } 2920 2921 if (css_visible(css)) { 2922 ret = css_populate_dir(css); 2923 if (ret) 2924 return ret; 2925 } 2926 } 2927 } 2928 2929 return 0; 2930 } 2931 2932 /** 2933 * cgroup_apply_control_disable - kill or hide csses according to control 2934 * @cgrp: root of the target subtree 2935 * 2936 * Walk @cgrp's subtree and kill and hide csses so that they match 2937 * cgroup_ss_mask() and cgroup_visible_mask(). 2938 * 2939 * A css is hidden when the userland requests it to be disabled while other 2940 * subsystems are still depending on it. The css must not actively control 2941 * resources and be in the vanilla state if it's made visible again later. 2942 * Controllers which may be depended upon should provide ->css_reset() for 2943 * this purpose. 2944 */ 2945 static void cgroup_apply_control_disable(struct cgroup *cgrp) 2946 { 2947 struct cgroup *dsct; 2948 struct cgroup_subsys_state *d_css; 2949 struct cgroup_subsys *ss; 2950 int ssid; 2951 2952 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 2953 for_each_subsys(ss, ssid) { 2954 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 2955 2956 WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt)); 2957 2958 if (!css) 2959 continue; 2960 2961 if (css->parent && 2962 !(cgroup_ss_mask(dsct) & (1 << ss->id))) { 2963 kill_css(css); 2964 } else if (!css_visible(css)) { 2965 css_clear_dir(css); 2966 if (ss->css_reset) 2967 ss->css_reset(css); 2968 } 2969 } 2970 } 2971 } 2972 2973 /** 2974 * cgroup_apply_control - apply control mask updates to the subtree 2975 * @cgrp: root of the target subtree 2976 * 2977 * subsystems can be enabled and disabled in a subtree using the following 2978 * steps. 2979 * 2980 * 1. Call cgroup_save_control() to stash the current state. 2981 * 2. Update ->subtree_control masks in the subtree as desired. 2982 * 3. Call cgroup_apply_control() to apply the changes. 2983 * 4. Optionally perform other related operations. 2984 * 5. Call cgroup_finalize_control() to finish up. 2985 * 2986 * This function implements step 3 and propagates the mask changes 2987 * throughout @cgrp's subtree, updates csses accordingly and perform 2988 * process migrations. 2989 */ 2990 static int cgroup_apply_control(struct cgroup *cgrp) 2991 { 2992 int ret; 2993 2994 cgroup_propagate_control(cgrp); 2995 2996 ret = cgroup_apply_control_enable(cgrp); 2997 if (ret) 2998 return ret; 2999 3000 /* 3001 * At this point, cgroup_e_css() results reflect the new csses 3002 * making the following cgroup_update_dfl_csses() properly update 3003 * css associations of all tasks in the subtree. 3004 */ 3005 ret = cgroup_update_dfl_csses(cgrp); 3006 if (ret) 3007 return ret; 3008 3009 return 0; 3010 } 3011 3012 /** 3013 * cgroup_finalize_control - finalize control mask update 3014 * @cgrp: root of the target subtree 3015 * @ret: the result of the update 3016 * 3017 * Finalize control mask update. See cgroup_apply_control() for more info. 3018 */ 3019 static void cgroup_finalize_control(struct cgroup *cgrp, int ret) 3020 { 3021 if (ret) { 3022 cgroup_restore_control(cgrp); 3023 cgroup_propagate_control(cgrp); 3024 } 3025 3026 cgroup_apply_control_disable(cgrp); 3027 } 3028 3029 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable) 3030 { 3031 u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask; 3032 3033 /* if nothing is getting enabled, nothing to worry about */ 3034 if (!enable) 3035 return 0; 3036 3037 /* can @cgrp host any resources? */ 3038 if (!cgroup_is_valid_domain(cgrp->dom_cgrp)) 3039 return -EOPNOTSUPP; 3040 3041 /* mixables don't care */ 3042 if (cgroup_is_mixable(cgrp)) 3043 return 0; 3044 3045 if (domain_enable) { 3046 /* can't enable domain controllers inside a thread subtree */ 3047 if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp)) 3048 return -EOPNOTSUPP; 3049 } else { 3050 /* 3051 * Threaded controllers can handle internal competitions 3052 * and are always allowed inside a (prospective) thread 3053 * subtree. 3054 */ 3055 if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp)) 3056 return 0; 3057 } 3058 3059 /* 3060 * Controllers can't be enabled for a cgroup with tasks to avoid 3061 * child cgroups competing against tasks. 3062 */ 3063 if (cgroup_has_tasks(cgrp)) 3064 return -EBUSY; 3065 3066 return 0; 3067 } 3068 3069 /* change the enabled child controllers for a cgroup in the default hierarchy */ 3070 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of, 3071 char *buf, size_t nbytes, 3072 loff_t off) 3073 { 3074 u16 enable = 0, disable = 0; 3075 struct cgroup *cgrp, *child; 3076 struct cgroup_subsys *ss; 3077 char *tok; 3078 int ssid, ret; 3079 3080 /* 3081 * Parse input - space separated list of subsystem names prefixed 3082 * with either + or -. 3083 */ 3084 buf = strstrip(buf); 3085 while ((tok = strsep(&buf, " "))) { 3086 if (tok[0] == '\0') 3087 continue; 3088 do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) { 3089 if (!cgroup_ssid_enabled(ssid) || 3090 strcmp(tok + 1, ss->name)) 3091 continue; 3092 3093 if (*tok == '+') { 3094 enable |= 1 << ssid; 3095 disable &= ~(1 << ssid); 3096 } else if (*tok == '-') { 3097 disable |= 1 << ssid; 3098 enable &= ~(1 << ssid); 3099 } else { 3100 return -EINVAL; 3101 } 3102 break; 3103 } while_each_subsys_mask(); 3104 if (ssid == CGROUP_SUBSYS_COUNT) 3105 return -EINVAL; 3106 } 3107 3108 cgrp = cgroup_kn_lock_live(of->kn, true); 3109 if (!cgrp) 3110 return -ENODEV; 3111 3112 for_each_subsys(ss, ssid) { 3113 if (enable & (1 << ssid)) { 3114 if (cgrp->subtree_control & (1 << ssid)) { 3115 enable &= ~(1 << ssid); 3116 continue; 3117 } 3118 3119 if (!(cgroup_control(cgrp) & (1 << ssid))) { 3120 ret = -ENOENT; 3121 goto out_unlock; 3122 } 3123 } else if (disable & (1 << ssid)) { 3124 if (!(cgrp->subtree_control & (1 << ssid))) { 3125 disable &= ~(1 << ssid); 3126 continue; 3127 } 3128 3129 /* a child has it enabled? */ 3130 cgroup_for_each_live_child(child, cgrp) { 3131 if (child->subtree_control & (1 << ssid)) { 3132 ret = -EBUSY; 3133 goto out_unlock; 3134 } 3135 } 3136 } 3137 } 3138 3139 if (!enable && !disable) { 3140 ret = 0; 3141 goto out_unlock; 3142 } 3143 3144 ret = cgroup_vet_subtree_control_enable(cgrp, enable); 3145 if (ret) 3146 goto out_unlock; 3147 3148 /* save and update control masks and prepare csses */ 3149 cgroup_save_control(cgrp); 3150 3151 cgrp->subtree_control |= enable; 3152 cgrp->subtree_control &= ~disable; 3153 3154 ret = cgroup_apply_control(cgrp); 3155 cgroup_finalize_control(cgrp, ret); 3156 if (ret) 3157 goto out_unlock; 3158 3159 kernfs_activate(cgrp->kn); 3160 out_unlock: 3161 cgroup_kn_unlock(of->kn); 3162 return ret ?: nbytes; 3163 } 3164 3165 /** 3166 * cgroup_enable_threaded - make @cgrp threaded 3167 * @cgrp: the target cgroup 3168 * 3169 * Called when "threaded" is written to the cgroup.type interface file and 3170 * tries to make @cgrp threaded and join the parent's resource domain. 3171 * This function is never called on the root cgroup as cgroup.type doesn't 3172 * exist on it. 3173 */ 3174 static int cgroup_enable_threaded(struct cgroup *cgrp) 3175 { 3176 struct cgroup *parent = cgroup_parent(cgrp); 3177 struct cgroup *dom_cgrp = parent->dom_cgrp; 3178 int ret; 3179 3180 lockdep_assert_held(&cgroup_mutex); 3181 3182 /* noop if already threaded */ 3183 if (cgroup_is_threaded(cgrp)) 3184 return 0; 3185 3186 /* we're joining the parent's domain, ensure its validity */ 3187 if (!cgroup_is_valid_domain(dom_cgrp) || 3188 !cgroup_can_be_thread_root(dom_cgrp)) 3189 return -EOPNOTSUPP; 3190 3191 /* 3192 * The following shouldn't cause actual migrations and should 3193 * always succeed. 3194 */ 3195 cgroup_save_control(cgrp); 3196 3197 cgrp->dom_cgrp = dom_cgrp; 3198 ret = cgroup_apply_control(cgrp); 3199 if (!ret) 3200 parent->nr_threaded_children++; 3201 else 3202 cgrp->dom_cgrp = cgrp; 3203 3204 cgroup_finalize_control(cgrp, ret); 3205 return ret; 3206 } 3207 3208 static int cgroup_type_show(struct seq_file *seq, void *v) 3209 { 3210 struct cgroup *cgrp = seq_css(seq)->cgroup; 3211 3212 if (cgroup_is_threaded(cgrp)) 3213 seq_puts(seq, "threaded\n"); 3214 else if (!cgroup_is_valid_domain(cgrp)) 3215 seq_puts(seq, "domain invalid\n"); 3216 else if (cgroup_is_thread_root(cgrp)) 3217 seq_puts(seq, "domain threaded\n"); 3218 else 3219 seq_puts(seq, "domain\n"); 3220 3221 return 0; 3222 } 3223 3224 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf, 3225 size_t nbytes, loff_t off) 3226 { 3227 struct cgroup *cgrp; 3228 int ret; 3229 3230 /* only switching to threaded mode is supported */ 3231 if (strcmp(strstrip(buf), "threaded")) 3232 return -EINVAL; 3233 3234 cgrp = cgroup_kn_lock_live(of->kn, false); 3235 if (!cgrp) 3236 return -ENOENT; 3237 3238 /* threaded can only be enabled */ 3239 ret = cgroup_enable_threaded(cgrp); 3240 3241 cgroup_kn_unlock(of->kn); 3242 return ret ?: nbytes; 3243 } 3244 3245 static int cgroup_max_descendants_show(struct seq_file *seq, void *v) 3246 { 3247 struct cgroup *cgrp = seq_css(seq)->cgroup; 3248 int descendants = READ_ONCE(cgrp->max_descendants); 3249 3250 if (descendants == INT_MAX) 3251 seq_puts(seq, "max\n"); 3252 else 3253 seq_printf(seq, "%d\n", descendants); 3254 3255 return 0; 3256 } 3257 3258 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of, 3259 char *buf, size_t nbytes, loff_t off) 3260 { 3261 struct cgroup *cgrp; 3262 int descendants; 3263 ssize_t ret; 3264 3265 buf = strstrip(buf); 3266 if (!strcmp(buf, "max")) { 3267 descendants = INT_MAX; 3268 } else { 3269 ret = kstrtoint(buf, 0, &descendants); 3270 if (ret) 3271 return ret; 3272 } 3273 3274 if (descendants < 0) 3275 return -ERANGE; 3276 3277 cgrp = cgroup_kn_lock_live(of->kn, false); 3278 if (!cgrp) 3279 return -ENOENT; 3280 3281 cgrp->max_descendants = descendants; 3282 3283 cgroup_kn_unlock(of->kn); 3284 3285 return nbytes; 3286 } 3287 3288 static int cgroup_max_depth_show(struct seq_file *seq, void *v) 3289 { 3290 struct cgroup *cgrp = seq_css(seq)->cgroup; 3291 int depth = READ_ONCE(cgrp->max_depth); 3292 3293 if (depth == INT_MAX) 3294 seq_puts(seq, "max\n"); 3295 else 3296 seq_printf(seq, "%d\n", depth); 3297 3298 return 0; 3299 } 3300 3301 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of, 3302 char *buf, size_t nbytes, loff_t off) 3303 { 3304 struct cgroup *cgrp; 3305 ssize_t ret; 3306 int depth; 3307 3308 buf = strstrip(buf); 3309 if (!strcmp(buf, "max")) { 3310 depth = INT_MAX; 3311 } else { 3312 ret = kstrtoint(buf, 0, &depth); 3313 if (ret) 3314 return ret; 3315 } 3316 3317 if (depth < 0) 3318 return -ERANGE; 3319 3320 cgrp = cgroup_kn_lock_live(of->kn, false); 3321 if (!cgrp) 3322 return -ENOENT; 3323 3324 cgrp->max_depth = depth; 3325 3326 cgroup_kn_unlock(of->kn); 3327 3328 return nbytes; 3329 } 3330 3331 static int cgroup_events_show(struct seq_file *seq, void *v) 3332 { 3333 seq_printf(seq, "populated %d\n", 3334 cgroup_is_populated(seq_css(seq)->cgroup)); 3335 return 0; 3336 } 3337 3338 static int cgroup_stat_show(struct seq_file *seq, void *v) 3339 { 3340 struct cgroup *cgroup = seq_css(seq)->cgroup; 3341 3342 seq_printf(seq, "nr_descendants %d\n", 3343 cgroup->nr_descendants); 3344 seq_printf(seq, "nr_dying_descendants %d\n", 3345 cgroup->nr_dying_descendants); 3346 3347 return 0; 3348 } 3349 3350 static int __maybe_unused cgroup_extra_stat_show(struct seq_file *seq, 3351 struct cgroup *cgrp, int ssid) 3352 { 3353 struct cgroup_subsys *ss = cgroup_subsys[ssid]; 3354 struct cgroup_subsys_state *css; 3355 int ret; 3356 3357 if (!ss->css_extra_stat_show) 3358 return 0; 3359 3360 css = cgroup_tryget_css(cgrp, ss); 3361 if (!css) 3362 return 0; 3363 3364 ret = ss->css_extra_stat_show(seq, css); 3365 css_put(css); 3366 return ret; 3367 } 3368 3369 static int cpu_stat_show(struct seq_file *seq, void *v) 3370 { 3371 struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup; 3372 int ret = 0; 3373 3374 cgroup_stat_show_cputime(seq); 3375 #ifdef CONFIG_CGROUP_SCHED 3376 ret = cgroup_extra_stat_show(seq, cgrp, cpu_cgrp_id); 3377 #endif 3378 return ret; 3379 } 3380 3381 static int cgroup_file_open(struct kernfs_open_file *of) 3382 { 3383 struct cftype *cft = of->kn->priv; 3384 3385 if (cft->open) 3386 return cft->open(of); 3387 return 0; 3388 } 3389 3390 static void cgroup_file_release(struct kernfs_open_file *of) 3391 { 3392 struct cftype *cft = of->kn->priv; 3393 3394 if (cft->release) 3395 cft->release(of); 3396 } 3397 3398 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf, 3399 size_t nbytes, loff_t off) 3400 { 3401 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns; 3402 struct cgroup *cgrp = of->kn->parent->priv; 3403 struct cftype *cft = of->kn->priv; 3404 struct cgroup_subsys_state *css; 3405 int ret; 3406 3407 /* 3408 * If namespaces are delegation boundaries, disallow writes to 3409 * files in an non-init namespace root from inside the namespace 3410 * except for the files explicitly marked delegatable - 3411 * cgroup.procs and cgroup.subtree_control. 3412 */ 3413 if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) && 3414 !(cft->flags & CFTYPE_NS_DELEGATABLE) && 3415 ns != &init_cgroup_ns && ns->root_cset->dfl_cgrp == cgrp) 3416 return -EPERM; 3417 3418 if (cft->write) 3419 return cft->write(of, buf, nbytes, off); 3420 3421 /* 3422 * kernfs guarantees that a file isn't deleted with operations in 3423 * flight, which means that the matching css is and stays alive and 3424 * doesn't need to be pinned. The RCU locking is not necessary 3425 * either. It's just for the convenience of using cgroup_css(). 3426 */ 3427 rcu_read_lock(); 3428 css = cgroup_css(cgrp, cft->ss); 3429 rcu_read_unlock(); 3430 3431 if (cft->write_u64) { 3432 unsigned long long v; 3433 ret = kstrtoull(buf, 0, &v); 3434 if (!ret) 3435 ret = cft->write_u64(css, cft, v); 3436 } else if (cft->write_s64) { 3437 long long v; 3438 ret = kstrtoll(buf, 0, &v); 3439 if (!ret) 3440 ret = cft->write_s64(css, cft, v); 3441 } else { 3442 ret = -EINVAL; 3443 } 3444 3445 return ret ?: nbytes; 3446 } 3447 3448 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos) 3449 { 3450 return seq_cft(seq)->seq_start(seq, ppos); 3451 } 3452 3453 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos) 3454 { 3455 return seq_cft(seq)->seq_next(seq, v, ppos); 3456 } 3457 3458 static void cgroup_seqfile_stop(struct seq_file *seq, void *v) 3459 { 3460 if (seq_cft(seq)->seq_stop) 3461 seq_cft(seq)->seq_stop(seq, v); 3462 } 3463 3464 static int cgroup_seqfile_show(struct seq_file *m, void *arg) 3465 { 3466 struct cftype *cft = seq_cft(m); 3467 struct cgroup_subsys_state *css = seq_css(m); 3468 3469 if (cft->seq_show) 3470 return cft->seq_show(m, arg); 3471 3472 if (cft->read_u64) 3473 seq_printf(m, "%llu\n", cft->read_u64(css, cft)); 3474 else if (cft->read_s64) 3475 seq_printf(m, "%lld\n", cft->read_s64(css, cft)); 3476 else 3477 return -EINVAL; 3478 return 0; 3479 } 3480 3481 static struct kernfs_ops cgroup_kf_single_ops = { 3482 .atomic_write_len = PAGE_SIZE, 3483 .open = cgroup_file_open, 3484 .release = cgroup_file_release, 3485 .write = cgroup_file_write, 3486 .seq_show = cgroup_seqfile_show, 3487 }; 3488 3489 static struct kernfs_ops cgroup_kf_ops = { 3490 .atomic_write_len = PAGE_SIZE, 3491 .open = cgroup_file_open, 3492 .release = cgroup_file_release, 3493 .write = cgroup_file_write, 3494 .seq_start = cgroup_seqfile_start, 3495 .seq_next = cgroup_seqfile_next, 3496 .seq_stop = cgroup_seqfile_stop, 3497 .seq_show = cgroup_seqfile_show, 3498 }; 3499 3500 /* set uid and gid of cgroup dirs and files to that of the creator */ 3501 static int cgroup_kn_set_ugid(struct kernfs_node *kn) 3502 { 3503 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID, 3504 .ia_uid = current_fsuid(), 3505 .ia_gid = current_fsgid(), }; 3506 3507 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) && 3508 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID)) 3509 return 0; 3510 3511 return kernfs_setattr(kn, &iattr); 3512 } 3513 3514 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp, 3515 struct cftype *cft) 3516 { 3517 char name[CGROUP_FILE_NAME_MAX]; 3518 struct kernfs_node *kn; 3519 struct lock_class_key *key = NULL; 3520 int ret; 3521 3522 #ifdef CONFIG_DEBUG_LOCK_ALLOC 3523 key = &cft->lockdep_key; 3524 #endif 3525 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name), 3526 cgroup_file_mode(cft), 0, cft->kf_ops, cft, 3527 NULL, key); 3528 if (IS_ERR(kn)) 3529 return PTR_ERR(kn); 3530 3531 ret = cgroup_kn_set_ugid(kn); 3532 if (ret) { 3533 kernfs_remove(kn); 3534 return ret; 3535 } 3536 3537 if (cft->file_offset) { 3538 struct cgroup_file *cfile = (void *)css + cft->file_offset; 3539 3540 spin_lock_irq(&cgroup_file_kn_lock); 3541 cfile->kn = kn; 3542 spin_unlock_irq(&cgroup_file_kn_lock); 3543 } 3544 3545 return 0; 3546 } 3547 3548 /** 3549 * cgroup_addrm_files - add or remove files to a cgroup directory 3550 * @css: the target css 3551 * @cgrp: the target cgroup (usually css->cgroup) 3552 * @cfts: array of cftypes to be added 3553 * @is_add: whether to add or remove 3554 * 3555 * Depending on @is_add, add or remove files defined by @cfts on @cgrp. 3556 * For removals, this function never fails. 3557 */ 3558 static int cgroup_addrm_files(struct cgroup_subsys_state *css, 3559 struct cgroup *cgrp, struct cftype cfts[], 3560 bool is_add) 3561 { 3562 struct cftype *cft, *cft_end = NULL; 3563 int ret = 0; 3564 3565 lockdep_assert_held(&cgroup_mutex); 3566 3567 restart: 3568 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) { 3569 /* does cft->flags tell us to skip this file on @cgrp? */ 3570 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp)) 3571 continue; 3572 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp)) 3573 continue; 3574 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp)) 3575 continue; 3576 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp)) 3577 continue; 3578 3579 if (is_add) { 3580 ret = cgroup_add_file(css, cgrp, cft); 3581 if (ret) { 3582 pr_warn("%s: failed to add %s, err=%d\n", 3583 __func__, cft->name, ret); 3584 cft_end = cft; 3585 is_add = false; 3586 goto restart; 3587 } 3588 } else { 3589 cgroup_rm_file(cgrp, cft); 3590 } 3591 } 3592 return ret; 3593 } 3594 3595 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add) 3596 { 3597 struct cgroup_subsys *ss = cfts[0].ss; 3598 struct cgroup *root = &ss->root->cgrp; 3599 struct cgroup_subsys_state *css; 3600 int ret = 0; 3601 3602 lockdep_assert_held(&cgroup_mutex); 3603 3604 /* add/rm files for all cgroups created before */ 3605 css_for_each_descendant_pre(css, cgroup_css(root, ss)) { 3606 struct cgroup *cgrp = css->cgroup; 3607 3608 if (!(css->flags & CSS_VISIBLE)) 3609 continue; 3610 3611 ret = cgroup_addrm_files(css, cgrp, cfts, is_add); 3612 if (ret) 3613 break; 3614 } 3615 3616 if (is_add && !ret) 3617 kernfs_activate(root->kn); 3618 return ret; 3619 } 3620 3621 static void cgroup_exit_cftypes(struct cftype *cfts) 3622 { 3623 struct cftype *cft; 3624 3625 for (cft = cfts; cft->name[0] != '\0'; cft++) { 3626 /* free copy for custom atomic_write_len, see init_cftypes() */ 3627 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) 3628 kfree(cft->kf_ops); 3629 cft->kf_ops = NULL; 3630 cft->ss = NULL; 3631 3632 /* revert flags set by cgroup core while adding @cfts */ 3633 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL); 3634 } 3635 } 3636 3637 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 3638 { 3639 struct cftype *cft; 3640 3641 for (cft = cfts; cft->name[0] != '\0'; cft++) { 3642 struct kernfs_ops *kf_ops; 3643 3644 WARN_ON(cft->ss || cft->kf_ops); 3645 3646 if (cft->seq_start) 3647 kf_ops = &cgroup_kf_ops; 3648 else 3649 kf_ops = &cgroup_kf_single_ops; 3650 3651 /* 3652 * Ugh... if @cft wants a custom max_write_len, we need to 3653 * make a copy of kf_ops to set its atomic_write_len. 3654 */ 3655 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) { 3656 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL); 3657 if (!kf_ops) { 3658 cgroup_exit_cftypes(cfts); 3659 return -ENOMEM; 3660 } 3661 kf_ops->atomic_write_len = cft->max_write_len; 3662 } 3663 3664 cft->kf_ops = kf_ops; 3665 cft->ss = ss; 3666 } 3667 3668 return 0; 3669 } 3670 3671 static int cgroup_rm_cftypes_locked(struct cftype *cfts) 3672 { 3673 lockdep_assert_held(&cgroup_mutex); 3674 3675 if (!cfts || !cfts[0].ss) 3676 return -ENOENT; 3677 3678 list_del(&cfts->node); 3679 cgroup_apply_cftypes(cfts, false); 3680 cgroup_exit_cftypes(cfts); 3681 return 0; 3682 } 3683 3684 /** 3685 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem 3686 * @cfts: zero-length name terminated array of cftypes 3687 * 3688 * Unregister @cfts. Files described by @cfts are removed from all 3689 * existing cgroups and all future cgroups won't have them either. This 3690 * function can be called anytime whether @cfts' subsys is attached or not. 3691 * 3692 * Returns 0 on successful unregistration, -ENOENT if @cfts is not 3693 * registered. 3694 */ 3695 int cgroup_rm_cftypes(struct cftype *cfts) 3696 { 3697 int ret; 3698 3699 mutex_lock(&cgroup_mutex); 3700 ret = cgroup_rm_cftypes_locked(cfts); 3701 mutex_unlock(&cgroup_mutex); 3702 return ret; 3703 } 3704 3705 /** 3706 * cgroup_add_cftypes - add an array of cftypes to a subsystem 3707 * @ss: target cgroup subsystem 3708 * @cfts: zero-length name terminated array of cftypes 3709 * 3710 * Register @cfts to @ss. Files described by @cfts are created for all 3711 * existing cgroups to which @ss is attached and all future cgroups will 3712 * have them too. This function can be called anytime whether @ss is 3713 * attached or not. 3714 * 3715 * Returns 0 on successful registration, -errno on failure. Note that this 3716 * function currently returns 0 as long as @cfts registration is successful 3717 * even if some file creation attempts on existing cgroups fail. 3718 */ 3719 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 3720 { 3721 int ret; 3722 3723 if (!cgroup_ssid_enabled(ss->id)) 3724 return 0; 3725 3726 if (!cfts || cfts[0].name[0] == '\0') 3727 return 0; 3728 3729 ret = cgroup_init_cftypes(ss, cfts); 3730 if (ret) 3731 return ret; 3732 3733 mutex_lock(&cgroup_mutex); 3734 3735 list_add_tail(&cfts->node, &ss->cfts); 3736 ret = cgroup_apply_cftypes(cfts, true); 3737 if (ret) 3738 cgroup_rm_cftypes_locked(cfts); 3739 3740 mutex_unlock(&cgroup_mutex); 3741 return ret; 3742 } 3743 3744 /** 3745 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy 3746 * @ss: target cgroup subsystem 3747 * @cfts: zero-length name terminated array of cftypes 3748 * 3749 * Similar to cgroup_add_cftypes() but the added files are only used for 3750 * the default hierarchy. 3751 */ 3752 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 3753 { 3754 struct cftype *cft; 3755 3756 for (cft = cfts; cft && cft->name[0] != '\0'; cft++) 3757 cft->flags |= __CFTYPE_ONLY_ON_DFL; 3758 return cgroup_add_cftypes(ss, cfts); 3759 } 3760 3761 /** 3762 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies 3763 * @ss: target cgroup subsystem 3764 * @cfts: zero-length name terminated array of cftypes 3765 * 3766 * Similar to cgroup_add_cftypes() but the added files are only used for 3767 * the legacy hierarchies. 3768 */ 3769 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 3770 { 3771 struct cftype *cft; 3772 3773 for (cft = cfts; cft && cft->name[0] != '\0'; cft++) 3774 cft->flags |= __CFTYPE_NOT_ON_DFL; 3775 return cgroup_add_cftypes(ss, cfts); 3776 } 3777 3778 /** 3779 * cgroup_file_notify - generate a file modified event for a cgroup_file 3780 * @cfile: target cgroup_file 3781 * 3782 * @cfile must have been obtained by setting cftype->file_offset. 3783 */ 3784 void cgroup_file_notify(struct cgroup_file *cfile) 3785 { 3786 unsigned long flags; 3787 3788 spin_lock_irqsave(&cgroup_file_kn_lock, flags); 3789 if (cfile->kn) 3790 kernfs_notify(cfile->kn); 3791 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags); 3792 } 3793 3794 /** 3795 * css_next_child - find the next child of a given css 3796 * @pos: the current position (%NULL to initiate traversal) 3797 * @parent: css whose children to walk 3798 * 3799 * This function returns the next child of @parent and should be called 3800 * under either cgroup_mutex or RCU read lock. The only requirement is 3801 * that @parent and @pos are accessible. The next sibling is guaranteed to 3802 * be returned regardless of their states. 3803 * 3804 * If a subsystem synchronizes ->css_online() and the start of iteration, a 3805 * css which finished ->css_online() is guaranteed to be visible in the 3806 * future iterations and will stay visible until the last reference is put. 3807 * A css which hasn't finished ->css_online() or already finished 3808 * ->css_offline() may show up during traversal. It's each subsystem's 3809 * responsibility to synchronize against on/offlining. 3810 */ 3811 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos, 3812 struct cgroup_subsys_state *parent) 3813 { 3814 struct cgroup_subsys_state *next; 3815 3816 cgroup_assert_mutex_or_rcu_locked(); 3817 3818 /* 3819 * @pos could already have been unlinked from the sibling list. 3820 * Once a cgroup is removed, its ->sibling.next is no longer 3821 * updated when its next sibling changes. CSS_RELEASED is set when 3822 * @pos is taken off list, at which time its next pointer is valid, 3823 * and, as releases are serialized, the one pointed to by the next 3824 * pointer is guaranteed to not have started release yet. This 3825 * implies that if we observe !CSS_RELEASED on @pos in this RCU 3826 * critical section, the one pointed to by its next pointer is 3827 * guaranteed to not have finished its RCU grace period even if we 3828 * have dropped rcu_read_lock() inbetween iterations. 3829 * 3830 * If @pos has CSS_RELEASED set, its next pointer can't be 3831 * dereferenced; however, as each css is given a monotonically 3832 * increasing unique serial number and always appended to the 3833 * sibling list, the next one can be found by walking the parent's 3834 * children until the first css with higher serial number than 3835 * @pos's. While this path can be slower, it happens iff iteration 3836 * races against release and the race window is very small. 3837 */ 3838 if (!pos) { 3839 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling); 3840 } else if (likely(!(pos->flags & CSS_RELEASED))) { 3841 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling); 3842 } else { 3843 list_for_each_entry_rcu(next, &parent->children, sibling) 3844 if (next->serial_nr > pos->serial_nr) 3845 break; 3846 } 3847 3848 /* 3849 * @next, if not pointing to the head, can be dereferenced and is 3850 * the next sibling. 3851 */ 3852 if (&next->sibling != &parent->children) 3853 return next; 3854 return NULL; 3855 } 3856 3857 /** 3858 * css_next_descendant_pre - find the next descendant for pre-order walk 3859 * @pos: the current position (%NULL to initiate traversal) 3860 * @root: css whose descendants to walk 3861 * 3862 * To be used by css_for_each_descendant_pre(). Find the next descendant 3863 * to visit for pre-order traversal of @root's descendants. @root is 3864 * included in the iteration and the first node to be visited. 3865 * 3866 * While this function requires cgroup_mutex or RCU read locking, it 3867 * doesn't require the whole traversal to be contained in a single critical 3868 * section. This function will return the correct next descendant as long 3869 * as both @pos and @root are accessible and @pos is a descendant of @root. 3870 * 3871 * If a subsystem synchronizes ->css_online() and the start of iteration, a 3872 * css which finished ->css_online() is guaranteed to be visible in the 3873 * future iterations and will stay visible until the last reference is put. 3874 * A css which hasn't finished ->css_online() or already finished 3875 * ->css_offline() may show up during traversal. It's each subsystem's 3876 * responsibility to synchronize against on/offlining. 3877 */ 3878 struct cgroup_subsys_state * 3879 css_next_descendant_pre(struct cgroup_subsys_state *pos, 3880 struct cgroup_subsys_state *root) 3881 { 3882 struct cgroup_subsys_state *next; 3883 3884 cgroup_assert_mutex_or_rcu_locked(); 3885 3886 /* if first iteration, visit @root */ 3887 if (!pos) 3888 return root; 3889 3890 /* visit the first child if exists */ 3891 next = css_next_child(NULL, pos); 3892 if (next) 3893 return next; 3894 3895 /* no child, visit my or the closest ancestor's next sibling */ 3896 while (pos != root) { 3897 next = css_next_child(pos, pos->parent); 3898 if (next) 3899 return next; 3900 pos = pos->parent; 3901 } 3902 3903 return NULL; 3904 } 3905 3906 /** 3907 * css_rightmost_descendant - return the rightmost descendant of a css 3908 * @pos: css of interest 3909 * 3910 * Return the rightmost descendant of @pos. If there's no descendant, @pos 3911 * is returned. This can be used during pre-order traversal to skip 3912 * subtree of @pos. 3913 * 3914 * While this function requires cgroup_mutex or RCU read locking, it 3915 * doesn't require the whole traversal to be contained in a single critical 3916 * section. This function will return the correct rightmost descendant as 3917 * long as @pos is accessible. 3918 */ 3919 struct cgroup_subsys_state * 3920 css_rightmost_descendant(struct cgroup_subsys_state *pos) 3921 { 3922 struct cgroup_subsys_state *last, *tmp; 3923 3924 cgroup_assert_mutex_or_rcu_locked(); 3925 3926 do { 3927 last = pos; 3928 /* ->prev isn't RCU safe, walk ->next till the end */ 3929 pos = NULL; 3930 css_for_each_child(tmp, last) 3931 pos = tmp; 3932 } while (pos); 3933 3934 return last; 3935 } 3936 3937 static struct cgroup_subsys_state * 3938 css_leftmost_descendant(struct cgroup_subsys_state *pos) 3939 { 3940 struct cgroup_subsys_state *last; 3941 3942 do { 3943 last = pos; 3944 pos = css_next_child(NULL, pos); 3945 } while (pos); 3946 3947 return last; 3948 } 3949 3950 /** 3951 * css_next_descendant_post - find the next descendant for post-order walk 3952 * @pos: the current position (%NULL to initiate traversal) 3953 * @root: css whose descendants to walk 3954 * 3955 * To be used by css_for_each_descendant_post(). Find the next descendant 3956 * to visit for post-order traversal of @root's descendants. @root is 3957 * included in the iteration and the last node to be visited. 3958 * 3959 * While this function requires cgroup_mutex or RCU read locking, it 3960 * doesn't require the whole traversal to be contained in a single critical 3961 * section. This function will return the correct next descendant as long 3962 * as both @pos and @cgroup are accessible and @pos is a descendant of 3963 * @cgroup. 3964 * 3965 * If a subsystem synchronizes ->css_online() and the start of iteration, a 3966 * css which finished ->css_online() is guaranteed to be visible in the 3967 * future iterations and will stay visible until the last reference is put. 3968 * A css which hasn't finished ->css_online() or already finished 3969 * ->css_offline() may show up during traversal. It's each subsystem's 3970 * responsibility to synchronize against on/offlining. 3971 */ 3972 struct cgroup_subsys_state * 3973 css_next_descendant_post(struct cgroup_subsys_state *pos, 3974 struct cgroup_subsys_state *root) 3975 { 3976 struct cgroup_subsys_state *next; 3977 3978 cgroup_assert_mutex_or_rcu_locked(); 3979 3980 /* if first iteration, visit leftmost descendant which may be @root */ 3981 if (!pos) 3982 return css_leftmost_descendant(root); 3983 3984 /* if we visited @root, we're done */ 3985 if (pos == root) 3986 return NULL; 3987 3988 /* if there's an unvisited sibling, visit its leftmost descendant */ 3989 next = css_next_child(pos, pos->parent); 3990 if (next) 3991 return css_leftmost_descendant(next); 3992 3993 /* no sibling left, visit parent */ 3994 return pos->parent; 3995 } 3996 3997 /** 3998 * css_has_online_children - does a css have online children 3999 * @css: the target css 4000 * 4001 * Returns %true if @css has any online children; otherwise, %false. This 4002 * function can be called from any context but the caller is responsible 4003 * for synchronizing against on/offlining as necessary. 4004 */ 4005 bool css_has_online_children(struct cgroup_subsys_state *css) 4006 { 4007 struct cgroup_subsys_state *child; 4008 bool ret = false; 4009 4010 rcu_read_lock(); 4011 css_for_each_child(child, css) { 4012 if (child->flags & CSS_ONLINE) { 4013 ret = true; 4014 break; 4015 } 4016 } 4017 rcu_read_unlock(); 4018 return ret; 4019 } 4020 4021 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it) 4022 { 4023 struct list_head *l; 4024 struct cgrp_cset_link *link; 4025 struct css_set *cset; 4026 4027 lockdep_assert_held(&css_set_lock); 4028 4029 /* find the next threaded cset */ 4030 if (it->tcset_pos) { 4031 l = it->tcset_pos->next; 4032 4033 if (l != it->tcset_head) { 4034 it->tcset_pos = l; 4035 return container_of(l, struct css_set, 4036 threaded_csets_node); 4037 } 4038 4039 it->tcset_pos = NULL; 4040 } 4041 4042 /* find the next cset */ 4043 l = it->cset_pos; 4044 l = l->next; 4045 if (l == it->cset_head) { 4046 it->cset_pos = NULL; 4047 return NULL; 4048 } 4049 4050 if (it->ss) { 4051 cset = container_of(l, struct css_set, e_cset_node[it->ss->id]); 4052 } else { 4053 link = list_entry(l, struct cgrp_cset_link, cset_link); 4054 cset = link->cset; 4055 } 4056 4057 it->cset_pos = l; 4058 4059 /* initialize threaded css_set walking */ 4060 if (it->flags & CSS_TASK_ITER_THREADED) { 4061 if (it->cur_dcset) 4062 put_css_set_locked(it->cur_dcset); 4063 it->cur_dcset = cset; 4064 get_css_set(cset); 4065 4066 it->tcset_head = &cset->threaded_csets; 4067 it->tcset_pos = &cset->threaded_csets; 4068 } 4069 4070 return cset; 4071 } 4072 4073 /** 4074 * css_task_iter_advance_css_set - advance a task itererator to the next css_set 4075 * @it: the iterator to advance 4076 * 4077 * Advance @it to the next css_set to walk. 4078 */ 4079 static void css_task_iter_advance_css_set(struct css_task_iter *it) 4080 { 4081 struct css_set *cset; 4082 4083 lockdep_assert_held(&css_set_lock); 4084 4085 /* Advance to the next non-empty css_set */ 4086 do { 4087 cset = css_task_iter_next_css_set(it); 4088 if (!cset) { 4089 it->task_pos = NULL; 4090 return; 4091 } 4092 } while (!css_set_populated(cset)); 4093 4094 if (!list_empty(&cset->tasks)) 4095 it->task_pos = cset->tasks.next; 4096 else 4097 it->task_pos = cset->mg_tasks.next; 4098 4099 it->tasks_head = &cset->tasks; 4100 it->mg_tasks_head = &cset->mg_tasks; 4101 4102 /* 4103 * We don't keep css_sets locked across iteration steps and thus 4104 * need to take steps to ensure that iteration can be resumed after 4105 * the lock is re-acquired. Iteration is performed at two levels - 4106 * css_sets and tasks in them. 4107 * 4108 * Once created, a css_set never leaves its cgroup lists, so a 4109 * pinned css_set is guaranteed to stay put and we can resume 4110 * iteration afterwards. 4111 * 4112 * Tasks may leave @cset across iteration steps. This is resolved 4113 * by registering each iterator with the css_set currently being 4114 * walked and making css_set_move_task() advance iterators whose 4115 * next task is leaving. 4116 */ 4117 if (it->cur_cset) { 4118 list_del(&it->iters_node); 4119 put_css_set_locked(it->cur_cset); 4120 } 4121 get_css_set(cset); 4122 it->cur_cset = cset; 4123 list_add(&it->iters_node, &cset->task_iters); 4124 } 4125 4126 static void css_task_iter_advance(struct css_task_iter *it) 4127 { 4128 struct list_head *l = it->task_pos; 4129 4130 lockdep_assert_held(&css_set_lock); 4131 WARN_ON_ONCE(!l); 4132 4133 repeat: 4134 /* 4135 * Advance iterator to find next entry. cset->tasks is consumed 4136 * first and then ->mg_tasks. After ->mg_tasks, we move onto the 4137 * next cset. 4138 */ 4139 l = l->next; 4140 4141 if (l == it->tasks_head) 4142 l = it->mg_tasks_head->next; 4143 4144 if (l == it->mg_tasks_head) 4145 css_task_iter_advance_css_set(it); 4146 else 4147 it->task_pos = l; 4148 4149 /* if PROCS, skip over tasks which aren't group leaders */ 4150 if ((it->flags & CSS_TASK_ITER_PROCS) && it->task_pos && 4151 !thread_group_leader(list_entry(it->task_pos, struct task_struct, 4152 cg_list))) 4153 goto repeat; 4154 } 4155 4156 /** 4157 * css_task_iter_start - initiate task iteration 4158 * @css: the css to walk tasks of 4159 * @flags: CSS_TASK_ITER_* flags 4160 * @it: the task iterator to use 4161 * 4162 * Initiate iteration through the tasks of @css. The caller can call 4163 * css_task_iter_next() to walk through the tasks until the function 4164 * returns NULL. On completion of iteration, css_task_iter_end() must be 4165 * called. 4166 */ 4167 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags, 4168 struct css_task_iter *it) 4169 { 4170 /* no one should try to iterate before mounting cgroups */ 4171 WARN_ON_ONCE(!use_task_css_set_links); 4172 4173 memset(it, 0, sizeof(*it)); 4174 4175 spin_lock_irq(&css_set_lock); 4176 4177 it->ss = css->ss; 4178 it->flags = flags; 4179 4180 if (it->ss) 4181 it->cset_pos = &css->cgroup->e_csets[css->ss->id]; 4182 else 4183 it->cset_pos = &css->cgroup->cset_links; 4184 4185 it->cset_head = it->cset_pos; 4186 4187 css_task_iter_advance_css_set(it); 4188 4189 spin_unlock_irq(&css_set_lock); 4190 } 4191 4192 /** 4193 * css_task_iter_next - return the next task for the iterator 4194 * @it: the task iterator being iterated 4195 * 4196 * The "next" function for task iteration. @it should have been 4197 * initialized via css_task_iter_start(). Returns NULL when the iteration 4198 * reaches the end. 4199 */ 4200 struct task_struct *css_task_iter_next(struct css_task_iter *it) 4201 { 4202 if (it->cur_task) { 4203 put_task_struct(it->cur_task); 4204 it->cur_task = NULL; 4205 } 4206 4207 spin_lock_irq(&css_set_lock); 4208 4209 if (it->task_pos) { 4210 it->cur_task = list_entry(it->task_pos, struct task_struct, 4211 cg_list); 4212 get_task_struct(it->cur_task); 4213 css_task_iter_advance(it); 4214 } 4215 4216 spin_unlock_irq(&css_set_lock); 4217 4218 return it->cur_task; 4219 } 4220 4221 /** 4222 * css_task_iter_end - finish task iteration 4223 * @it: the task iterator to finish 4224 * 4225 * Finish task iteration started by css_task_iter_start(). 4226 */ 4227 void css_task_iter_end(struct css_task_iter *it) 4228 { 4229 if (it->cur_cset) { 4230 spin_lock_irq(&css_set_lock); 4231 list_del(&it->iters_node); 4232 put_css_set_locked(it->cur_cset); 4233 spin_unlock_irq(&css_set_lock); 4234 } 4235 4236 if (it->cur_dcset) 4237 put_css_set(it->cur_dcset); 4238 4239 if (it->cur_task) 4240 put_task_struct(it->cur_task); 4241 } 4242 4243 static void cgroup_procs_release(struct kernfs_open_file *of) 4244 { 4245 if (of->priv) { 4246 css_task_iter_end(of->priv); 4247 kfree(of->priv); 4248 } 4249 } 4250 4251 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos) 4252 { 4253 struct kernfs_open_file *of = s->private; 4254 struct css_task_iter *it = of->priv; 4255 4256 return css_task_iter_next(it); 4257 } 4258 4259 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos, 4260 unsigned int iter_flags) 4261 { 4262 struct kernfs_open_file *of = s->private; 4263 struct cgroup *cgrp = seq_css(s)->cgroup; 4264 struct css_task_iter *it = of->priv; 4265 4266 /* 4267 * When a seq_file is seeked, it's always traversed sequentially 4268 * from position 0, so we can simply keep iterating on !0 *pos. 4269 */ 4270 if (!it) { 4271 if (WARN_ON_ONCE((*pos)++)) 4272 return ERR_PTR(-EINVAL); 4273 4274 it = kzalloc(sizeof(*it), GFP_KERNEL); 4275 if (!it) 4276 return ERR_PTR(-ENOMEM); 4277 of->priv = it; 4278 css_task_iter_start(&cgrp->self, iter_flags, it); 4279 } else if (!(*pos)++) { 4280 css_task_iter_end(it); 4281 css_task_iter_start(&cgrp->self, iter_flags, it); 4282 } 4283 4284 return cgroup_procs_next(s, NULL, NULL); 4285 } 4286 4287 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos) 4288 { 4289 struct cgroup *cgrp = seq_css(s)->cgroup; 4290 4291 /* 4292 * All processes of a threaded subtree belong to the domain cgroup 4293 * of the subtree. Only threads can be distributed across the 4294 * subtree. Reject reads on cgroup.procs in the subtree proper. 4295 * They're always empty anyway. 4296 */ 4297 if (cgroup_is_threaded(cgrp)) 4298 return ERR_PTR(-EOPNOTSUPP); 4299 4300 return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS | 4301 CSS_TASK_ITER_THREADED); 4302 } 4303 4304 static int cgroup_procs_show(struct seq_file *s, void *v) 4305 { 4306 seq_printf(s, "%d\n", task_pid_vnr(v)); 4307 return 0; 4308 } 4309 4310 static int cgroup_procs_write_permission(struct cgroup *src_cgrp, 4311 struct cgroup *dst_cgrp, 4312 struct super_block *sb) 4313 { 4314 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns; 4315 struct cgroup *com_cgrp = src_cgrp; 4316 struct inode *inode; 4317 int ret; 4318 4319 lockdep_assert_held(&cgroup_mutex); 4320 4321 /* find the common ancestor */ 4322 while (!cgroup_is_descendant(dst_cgrp, com_cgrp)) 4323 com_cgrp = cgroup_parent(com_cgrp); 4324 4325 /* %current should be authorized to migrate to the common ancestor */ 4326 inode = kernfs_get_inode(sb, com_cgrp->procs_file.kn); 4327 if (!inode) 4328 return -ENOMEM; 4329 4330 ret = inode_permission(inode, MAY_WRITE); 4331 iput(inode); 4332 if (ret) 4333 return ret; 4334 4335 /* 4336 * If namespaces are delegation boundaries, %current must be able 4337 * to see both source and destination cgroups from its namespace. 4338 */ 4339 if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) && 4340 (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) || 4341 !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp))) 4342 return -ENOENT; 4343 4344 return 0; 4345 } 4346 4347 static ssize_t cgroup_procs_write(struct kernfs_open_file *of, 4348 char *buf, size_t nbytes, loff_t off) 4349 { 4350 struct cgroup *src_cgrp, *dst_cgrp; 4351 struct task_struct *task; 4352 ssize_t ret; 4353 4354 dst_cgrp = cgroup_kn_lock_live(of->kn, false); 4355 if (!dst_cgrp) 4356 return -ENODEV; 4357 4358 task = cgroup_procs_write_start(buf, true); 4359 ret = PTR_ERR_OR_ZERO(task); 4360 if (ret) 4361 goto out_unlock; 4362 4363 /* find the source cgroup */ 4364 spin_lock_irq(&css_set_lock); 4365 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root); 4366 spin_unlock_irq(&css_set_lock); 4367 4368 ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, 4369 of->file->f_path.dentry->d_sb); 4370 if (ret) 4371 goto out_finish; 4372 4373 ret = cgroup_attach_task(dst_cgrp, task, true); 4374 4375 out_finish: 4376 cgroup_procs_write_finish(task); 4377 out_unlock: 4378 cgroup_kn_unlock(of->kn); 4379 4380 return ret ?: nbytes; 4381 } 4382 4383 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos) 4384 { 4385 return __cgroup_procs_start(s, pos, 0); 4386 } 4387 4388 static ssize_t cgroup_threads_write(struct kernfs_open_file *of, 4389 char *buf, size_t nbytes, loff_t off) 4390 { 4391 struct cgroup *src_cgrp, *dst_cgrp; 4392 struct task_struct *task; 4393 ssize_t ret; 4394 4395 buf = strstrip(buf); 4396 4397 dst_cgrp = cgroup_kn_lock_live(of->kn, false); 4398 if (!dst_cgrp) 4399 return -ENODEV; 4400 4401 task = cgroup_procs_write_start(buf, false); 4402 ret = PTR_ERR_OR_ZERO(task); 4403 if (ret) 4404 goto out_unlock; 4405 4406 /* find the source cgroup */ 4407 spin_lock_irq(&css_set_lock); 4408 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root); 4409 spin_unlock_irq(&css_set_lock); 4410 4411 /* thread migrations follow the cgroup.procs delegation rule */ 4412 ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, 4413 of->file->f_path.dentry->d_sb); 4414 if (ret) 4415 goto out_finish; 4416 4417 /* and must be contained in the same domain */ 4418 ret = -EOPNOTSUPP; 4419 if (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp) 4420 goto out_finish; 4421 4422 ret = cgroup_attach_task(dst_cgrp, task, false); 4423 4424 out_finish: 4425 cgroup_procs_write_finish(task); 4426 out_unlock: 4427 cgroup_kn_unlock(of->kn); 4428 4429 return ret ?: nbytes; 4430 } 4431 4432 /* cgroup core interface files for the default hierarchy */ 4433 static struct cftype cgroup_base_files[] = { 4434 { 4435 .name = "cgroup.type", 4436 .flags = CFTYPE_NOT_ON_ROOT, 4437 .seq_show = cgroup_type_show, 4438 .write = cgroup_type_write, 4439 }, 4440 { 4441 .name = "cgroup.procs", 4442 .flags = CFTYPE_NS_DELEGATABLE, 4443 .file_offset = offsetof(struct cgroup, procs_file), 4444 .release = cgroup_procs_release, 4445 .seq_start = cgroup_procs_start, 4446 .seq_next = cgroup_procs_next, 4447 .seq_show = cgroup_procs_show, 4448 .write = cgroup_procs_write, 4449 }, 4450 { 4451 .name = "cgroup.threads", 4452 .release = cgroup_procs_release, 4453 .seq_start = cgroup_threads_start, 4454 .seq_next = cgroup_procs_next, 4455 .seq_show = cgroup_procs_show, 4456 .write = cgroup_threads_write, 4457 }, 4458 { 4459 .name = "cgroup.controllers", 4460 .seq_show = cgroup_controllers_show, 4461 }, 4462 { 4463 .name = "cgroup.subtree_control", 4464 .flags = CFTYPE_NS_DELEGATABLE, 4465 .seq_show = cgroup_subtree_control_show, 4466 .write = cgroup_subtree_control_write, 4467 }, 4468 { 4469 .name = "cgroup.events", 4470 .flags = CFTYPE_NOT_ON_ROOT, 4471 .file_offset = offsetof(struct cgroup, events_file), 4472 .seq_show = cgroup_events_show, 4473 }, 4474 { 4475 .name = "cgroup.max.descendants", 4476 .seq_show = cgroup_max_descendants_show, 4477 .write = cgroup_max_descendants_write, 4478 }, 4479 { 4480 .name = "cgroup.max.depth", 4481 .seq_show = cgroup_max_depth_show, 4482 .write = cgroup_max_depth_write, 4483 }, 4484 { 4485 .name = "cgroup.stat", 4486 .seq_show = cgroup_stat_show, 4487 }, 4488 { 4489 .name = "cpu.stat", 4490 .flags = CFTYPE_NOT_ON_ROOT, 4491 .seq_show = cpu_stat_show, 4492 }, 4493 { } /* terminate */ 4494 }; 4495 4496 /* 4497 * css destruction is four-stage process. 4498 * 4499 * 1. Destruction starts. Killing of the percpu_ref is initiated. 4500 * Implemented in kill_css(). 4501 * 4502 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs 4503 * and thus css_tryget_online() is guaranteed to fail, the css can be 4504 * offlined by invoking offline_css(). After offlining, the base ref is 4505 * put. Implemented in css_killed_work_fn(). 4506 * 4507 * 3. When the percpu_ref reaches zero, the only possible remaining 4508 * accessors are inside RCU read sections. css_release() schedules the 4509 * RCU callback. 4510 * 4511 * 4. After the grace period, the css can be freed. Implemented in 4512 * css_free_work_fn(). 4513 * 4514 * It is actually hairier because both step 2 and 4 require process context 4515 * and thus involve punting to css->destroy_work adding two additional 4516 * steps to the already complex sequence. 4517 */ 4518 static void css_free_work_fn(struct work_struct *work) 4519 { 4520 struct cgroup_subsys_state *css = 4521 container_of(work, struct cgroup_subsys_state, destroy_work); 4522 struct cgroup_subsys *ss = css->ss; 4523 struct cgroup *cgrp = css->cgroup; 4524 4525 percpu_ref_exit(&css->refcnt); 4526 4527 if (ss) { 4528 /* css free path */ 4529 struct cgroup_subsys_state *parent = css->parent; 4530 int id = css->id; 4531 4532 ss->css_free(css); 4533 cgroup_idr_remove(&ss->css_idr, id); 4534 cgroup_put(cgrp); 4535 4536 if (parent) 4537 css_put(parent); 4538 } else { 4539 /* cgroup free path */ 4540 atomic_dec(&cgrp->root->nr_cgrps); 4541 cgroup1_pidlist_destroy_all(cgrp); 4542 cancel_work_sync(&cgrp->release_agent_work); 4543 4544 if (cgroup_parent(cgrp)) { 4545 /* 4546 * We get a ref to the parent, and put the ref when 4547 * this cgroup is being freed, so it's guaranteed 4548 * that the parent won't be destroyed before its 4549 * children. 4550 */ 4551 cgroup_put(cgroup_parent(cgrp)); 4552 kernfs_put(cgrp->kn); 4553 if (cgroup_on_dfl(cgrp)) 4554 cgroup_stat_exit(cgrp); 4555 kfree(cgrp); 4556 } else { 4557 /* 4558 * This is root cgroup's refcnt reaching zero, 4559 * which indicates that the root should be 4560 * released. 4561 */ 4562 cgroup_destroy_root(cgrp->root); 4563 } 4564 } 4565 } 4566 4567 static void css_free_rcu_fn(struct rcu_head *rcu_head) 4568 { 4569 struct cgroup_subsys_state *css = 4570 container_of(rcu_head, struct cgroup_subsys_state, rcu_head); 4571 4572 INIT_WORK(&css->destroy_work, css_free_work_fn); 4573 queue_work(cgroup_destroy_wq, &css->destroy_work); 4574 } 4575 4576 static void css_release_work_fn(struct work_struct *work) 4577 { 4578 struct cgroup_subsys_state *css = 4579 container_of(work, struct cgroup_subsys_state, destroy_work); 4580 struct cgroup_subsys *ss = css->ss; 4581 struct cgroup *cgrp = css->cgroup; 4582 4583 mutex_lock(&cgroup_mutex); 4584 4585 css->flags |= CSS_RELEASED; 4586 list_del_rcu(&css->sibling); 4587 4588 if (ss) { 4589 /* css release path */ 4590 cgroup_idr_replace(&ss->css_idr, NULL, css->id); 4591 if (ss->css_released) 4592 ss->css_released(css); 4593 } else { 4594 struct cgroup *tcgrp; 4595 4596 /* cgroup release path */ 4597 trace_cgroup_release(cgrp); 4598 4599 if (cgroup_on_dfl(cgrp)) 4600 cgroup_stat_flush(cgrp); 4601 4602 for (tcgrp = cgroup_parent(cgrp); tcgrp; 4603 tcgrp = cgroup_parent(tcgrp)) 4604 tcgrp->nr_dying_descendants--; 4605 4606 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id); 4607 cgrp->id = -1; 4608 4609 /* 4610 * There are two control paths which try to determine 4611 * cgroup from dentry without going through kernfs - 4612 * cgroupstats_build() and css_tryget_online_from_dir(). 4613 * Those are supported by RCU protecting clearing of 4614 * cgrp->kn->priv backpointer. 4615 */ 4616 if (cgrp->kn) 4617 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, 4618 NULL); 4619 4620 cgroup_bpf_put(cgrp); 4621 } 4622 4623 mutex_unlock(&cgroup_mutex); 4624 4625 call_rcu(&css->rcu_head, css_free_rcu_fn); 4626 } 4627 4628 static void css_release(struct percpu_ref *ref) 4629 { 4630 struct cgroup_subsys_state *css = 4631 container_of(ref, struct cgroup_subsys_state, refcnt); 4632 4633 INIT_WORK(&css->destroy_work, css_release_work_fn); 4634 queue_work(cgroup_destroy_wq, &css->destroy_work); 4635 } 4636 4637 static void init_and_link_css(struct cgroup_subsys_state *css, 4638 struct cgroup_subsys *ss, struct cgroup *cgrp) 4639 { 4640 lockdep_assert_held(&cgroup_mutex); 4641 4642 cgroup_get_live(cgrp); 4643 4644 memset(css, 0, sizeof(*css)); 4645 css->cgroup = cgrp; 4646 css->ss = ss; 4647 css->id = -1; 4648 INIT_LIST_HEAD(&css->sibling); 4649 INIT_LIST_HEAD(&css->children); 4650 css->serial_nr = css_serial_nr_next++; 4651 atomic_set(&css->online_cnt, 0); 4652 4653 if (cgroup_parent(cgrp)) { 4654 css->parent = cgroup_css(cgroup_parent(cgrp), ss); 4655 css_get(css->parent); 4656 } 4657 4658 BUG_ON(cgroup_css(cgrp, ss)); 4659 } 4660 4661 /* invoke ->css_online() on a new CSS and mark it online if successful */ 4662 static int online_css(struct cgroup_subsys_state *css) 4663 { 4664 struct cgroup_subsys *ss = css->ss; 4665 int ret = 0; 4666 4667 lockdep_assert_held(&cgroup_mutex); 4668 4669 if (ss->css_online) 4670 ret = ss->css_online(css); 4671 if (!ret) { 4672 css->flags |= CSS_ONLINE; 4673 rcu_assign_pointer(css->cgroup->subsys[ss->id], css); 4674 4675 atomic_inc(&css->online_cnt); 4676 if (css->parent) 4677 atomic_inc(&css->parent->online_cnt); 4678 } 4679 return ret; 4680 } 4681 4682 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */ 4683 static void offline_css(struct cgroup_subsys_state *css) 4684 { 4685 struct cgroup_subsys *ss = css->ss; 4686 4687 lockdep_assert_held(&cgroup_mutex); 4688 4689 if (!(css->flags & CSS_ONLINE)) 4690 return; 4691 4692 if (ss->css_offline) 4693 ss->css_offline(css); 4694 4695 css->flags &= ~CSS_ONLINE; 4696 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL); 4697 4698 wake_up_all(&css->cgroup->offline_waitq); 4699 } 4700 4701 /** 4702 * css_create - create a cgroup_subsys_state 4703 * @cgrp: the cgroup new css will be associated with 4704 * @ss: the subsys of new css 4705 * 4706 * Create a new css associated with @cgrp - @ss pair. On success, the new 4707 * css is online and installed in @cgrp. This function doesn't create the 4708 * interface files. Returns 0 on success, -errno on failure. 4709 */ 4710 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp, 4711 struct cgroup_subsys *ss) 4712 { 4713 struct cgroup *parent = cgroup_parent(cgrp); 4714 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss); 4715 struct cgroup_subsys_state *css; 4716 int err; 4717 4718 lockdep_assert_held(&cgroup_mutex); 4719 4720 css = ss->css_alloc(parent_css); 4721 if (!css) 4722 css = ERR_PTR(-ENOMEM); 4723 if (IS_ERR(css)) 4724 return css; 4725 4726 init_and_link_css(css, ss, cgrp); 4727 4728 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL); 4729 if (err) 4730 goto err_free_css; 4731 4732 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL); 4733 if (err < 0) 4734 goto err_free_css; 4735 css->id = err; 4736 4737 /* @css is ready to be brought online now, make it visible */ 4738 list_add_tail_rcu(&css->sibling, &parent_css->children); 4739 cgroup_idr_replace(&ss->css_idr, css, css->id); 4740 4741 err = online_css(css); 4742 if (err) 4743 goto err_list_del; 4744 4745 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy && 4746 cgroup_parent(parent)) { 4747 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n", 4748 current->comm, current->pid, ss->name); 4749 if (!strcmp(ss->name, "memory")) 4750 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n"); 4751 ss->warned_broken_hierarchy = true; 4752 } 4753 4754 return css; 4755 4756 err_list_del: 4757 list_del_rcu(&css->sibling); 4758 err_free_css: 4759 call_rcu(&css->rcu_head, css_free_rcu_fn); 4760 return ERR_PTR(err); 4761 } 4762 4763 /* 4764 * The returned cgroup is fully initialized including its control mask, but 4765 * it isn't associated with its kernfs_node and doesn't have the control 4766 * mask applied. 4767 */ 4768 static struct cgroup *cgroup_create(struct cgroup *parent) 4769 { 4770 struct cgroup_root *root = parent->root; 4771 struct cgroup *cgrp, *tcgrp; 4772 int level = parent->level + 1; 4773 int ret; 4774 4775 /* allocate the cgroup and its ID, 0 is reserved for the root */ 4776 cgrp = kzalloc(sizeof(*cgrp) + 4777 sizeof(cgrp->ancestor_ids[0]) * (level + 1), GFP_KERNEL); 4778 if (!cgrp) 4779 return ERR_PTR(-ENOMEM); 4780 4781 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL); 4782 if (ret) 4783 goto out_free_cgrp; 4784 4785 if (cgroup_on_dfl(parent)) { 4786 ret = cgroup_stat_init(cgrp); 4787 if (ret) 4788 goto out_cancel_ref; 4789 } 4790 4791 /* 4792 * Temporarily set the pointer to NULL, so idr_find() won't return 4793 * a half-baked cgroup. 4794 */ 4795 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL); 4796 if (cgrp->id < 0) { 4797 ret = -ENOMEM; 4798 goto out_stat_exit; 4799 } 4800 4801 init_cgroup_housekeeping(cgrp); 4802 4803 cgrp->self.parent = &parent->self; 4804 cgrp->root = root; 4805 cgrp->level = level; 4806 ret = cgroup_bpf_inherit(cgrp); 4807 if (ret) 4808 goto out_idr_free; 4809 4810 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) { 4811 cgrp->ancestor_ids[tcgrp->level] = tcgrp->id; 4812 4813 if (tcgrp != cgrp) 4814 tcgrp->nr_descendants++; 4815 } 4816 4817 if (notify_on_release(parent)) 4818 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags); 4819 4820 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags)) 4821 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags); 4822 4823 cgrp->self.serial_nr = css_serial_nr_next++; 4824 4825 /* allocation complete, commit to creation */ 4826 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children); 4827 atomic_inc(&root->nr_cgrps); 4828 cgroup_get_live(parent); 4829 4830 /* 4831 * @cgrp is now fully operational. If something fails after this 4832 * point, it'll be released via the normal destruction path. 4833 */ 4834 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id); 4835 4836 /* 4837 * On the default hierarchy, a child doesn't automatically inherit 4838 * subtree_control from the parent. Each is configured manually. 4839 */ 4840 if (!cgroup_on_dfl(cgrp)) 4841 cgrp->subtree_control = cgroup_control(cgrp); 4842 4843 cgroup_propagate_control(cgrp); 4844 4845 return cgrp; 4846 4847 out_idr_free: 4848 cgroup_idr_remove(&root->cgroup_idr, cgrp->id); 4849 out_stat_exit: 4850 if (cgroup_on_dfl(parent)) 4851 cgroup_stat_exit(cgrp); 4852 out_cancel_ref: 4853 percpu_ref_exit(&cgrp->self.refcnt); 4854 out_free_cgrp: 4855 kfree(cgrp); 4856 return ERR_PTR(ret); 4857 } 4858 4859 static bool cgroup_check_hierarchy_limits(struct cgroup *parent) 4860 { 4861 struct cgroup *cgroup; 4862 int ret = false; 4863 int level = 1; 4864 4865 lockdep_assert_held(&cgroup_mutex); 4866 4867 for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) { 4868 if (cgroup->nr_descendants >= cgroup->max_descendants) 4869 goto fail; 4870 4871 if (level > cgroup->max_depth) 4872 goto fail; 4873 4874 level++; 4875 } 4876 4877 ret = true; 4878 fail: 4879 return ret; 4880 } 4881 4882 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode) 4883 { 4884 struct cgroup *parent, *cgrp; 4885 struct kernfs_node *kn; 4886 int ret; 4887 4888 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */ 4889 if (strchr(name, '\n')) 4890 return -EINVAL; 4891 4892 parent = cgroup_kn_lock_live(parent_kn, false); 4893 if (!parent) 4894 return -ENODEV; 4895 4896 if (!cgroup_check_hierarchy_limits(parent)) { 4897 ret = -EAGAIN; 4898 goto out_unlock; 4899 } 4900 4901 cgrp = cgroup_create(parent); 4902 if (IS_ERR(cgrp)) { 4903 ret = PTR_ERR(cgrp); 4904 goto out_unlock; 4905 } 4906 4907 /* create the directory */ 4908 kn = kernfs_create_dir(parent->kn, name, mode, cgrp); 4909 if (IS_ERR(kn)) { 4910 ret = PTR_ERR(kn); 4911 goto out_destroy; 4912 } 4913 cgrp->kn = kn; 4914 4915 /* 4916 * This extra ref will be put in cgroup_free_fn() and guarantees 4917 * that @cgrp->kn is always accessible. 4918 */ 4919 kernfs_get(kn); 4920 4921 ret = cgroup_kn_set_ugid(kn); 4922 if (ret) 4923 goto out_destroy; 4924 4925 ret = css_populate_dir(&cgrp->self); 4926 if (ret) 4927 goto out_destroy; 4928 4929 ret = cgroup_apply_control_enable(cgrp); 4930 if (ret) 4931 goto out_destroy; 4932 4933 trace_cgroup_mkdir(cgrp); 4934 4935 /* let's create and online css's */ 4936 kernfs_activate(kn); 4937 4938 ret = 0; 4939 goto out_unlock; 4940 4941 out_destroy: 4942 cgroup_destroy_locked(cgrp); 4943 out_unlock: 4944 cgroup_kn_unlock(parent_kn); 4945 return ret; 4946 } 4947 4948 /* 4949 * This is called when the refcnt of a css is confirmed to be killed. 4950 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to 4951 * initate destruction and put the css ref from kill_css(). 4952 */ 4953 static void css_killed_work_fn(struct work_struct *work) 4954 { 4955 struct cgroup_subsys_state *css = 4956 container_of(work, struct cgroup_subsys_state, destroy_work); 4957 4958 mutex_lock(&cgroup_mutex); 4959 4960 do { 4961 offline_css(css); 4962 css_put(css); 4963 /* @css can't go away while we're holding cgroup_mutex */ 4964 css = css->parent; 4965 } while (css && atomic_dec_and_test(&css->online_cnt)); 4966 4967 mutex_unlock(&cgroup_mutex); 4968 } 4969 4970 /* css kill confirmation processing requires process context, bounce */ 4971 static void css_killed_ref_fn(struct percpu_ref *ref) 4972 { 4973 struct cgroup_subsys_state *css = 4974 container_of(ref, struct cgroup_subsys_state, refcnt); 4975 4976 if (atomic_dec_and_test(&css->online_cnt)) { 4977 INIT_WORK(&css->destroy_work, css_killed_work_fn); 4978 queue_work(cgroup_destroy_wq, &css->destroy_work); 4979 } 4980 } 4981 4982 /** 4983 * kill_css - destroy a css 4984 * @css: css to destroy 4985 * 4986 * This function initiates destruction of @css by removing cgroup interface 4987 * files and putting its base reference. ->css_offline() will be invoked 4988 * asynchronously once css_tryget_online() is guaranteed to fail and when 4989 * the reference count reaches zero, @css will be released. 4990 */ 4991 static void kill_css(struct cgroup_subsys_state *css) 4992 { 4993 lockdep_assert_held(&cgroup_mutex); 4994 4995 if (css->flags & CSS_DYING) 4996 return; 4997 4998 css->flags |= CSS_DYING; 4999 5000 /* 5001 * This must happen before css is disassociated with its cgroup. 5002 * See seq_css() for details. 5003 */ 5004 css_clear_dir(css); 5005 5006 /* 5007 * Killing would put the base ref, but we need to keep it alive 5008 * until after ->css_offline(). 5009 */ 5010 css_get(css); 5011 5012 /* 5013 * cgroup core guarantees that, by the time ->css_offline() is 5014 * invoked, no new css reference will be given out via 5015 * css_tryget_online(). We can't simply call percpu_ref_kill() and 5016 * proceed to offlining css's because percpu_ref_kill() doesn't 5017 * guarantee that the ref is seen as killed on all CPUs on return. 5018 * 5019 * Use percpu_ref_kill_and_confirm() to get notifications as each 5020 * css is confirmed to be seen as killed on all CPUs. 5021 */ 5022 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn); 5023 } 5024 5025 /** 5026 * cgroup_destroy_locked - the first stage of cgroup destruction 5027 * @cgrp: cgroup to be destroyed 5028 * 5029 * css's make use of percpu refcnts whose killing latency shouldn't be 5030 * exposed to userland and are RCU protected. Also, cgroup core needs to 5031 * guarantee that css_tryget_online() won't succeed by the time 5032 * ->css_offline() is invoked. To satisfy all the requirements, 5033 * destruction is implemented in the following two steps. 5034 * 5035 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all 5036 * userland visible parts and start killing the percpu refcnts of 5037 * css's. Set up so that the next stage will be kicked off once all 5038 * the percpu refcnts are confirmed to be killed. 5039 * 5040 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the 5041 * rest of destruction. Once all cgroup references are gone, the 5042 * cgroup is RCU-freed. 5043 * 5044 * This function implements s1. After this step, @cgrp is gone as far as 5045 * the userland is concerned and a new cgroup with the same name may be 5046 * created. As cgroup doesn't care about the names internally, this 5047 * doesn't cause any problem. 5048 */ 5049 static int cgroup_destroy_locked(struct cgroup *cgrp) 5050 __releases(&cgroup_mutex) __acquires(&cgroup_mutex) 5051 { 5052 struct cgroup *tcgrp, *parent = cgroup_parent(cgrp); 5053 struct cgroup_subsys_state *css; 5054 struct cgrp_cset_link *link; 5055 int ssid; 5056 5057 lockdep_assert_held(&cgroup_mutex); 5058 5059 /* 5060 * Only migration can raise populated from zero and we're already 5061 * holding cgroup_mutex. 5062 */ 5063 if (cgroup_is_populated(cgrp)) 5064 return -EBUSY; 5065 5066 /* 5067 * Make sure there's no live children. We can't test emptiness of 5068 * ->self.children as dead children linger on it while being 5069 * drained; otherwise, "rmdir parent/child parent" may fail. 5070 */ 5071 if (css_has_online_children(&cgrp->self)) 5072 return -EBUSY; 5073 5074 /* 5075 * Mark @cgrp and the associated csets dead. The former prevents 5076 * further task migration and child creation by disabling 5077 * cgroup_lock_live_group(). The latter makes the csets ignored by 5078 * the migration path. 5079 */ 5080 cgrp->self.flags &= ~CSS_ONLINE; 5081 5082 spin_lock_irq(&css_set_lock); 5083 list_for_each_entry(link, &cgrp->cset_links, cset_link) 5084 link->cset->dead = true; 5085 spin_unlock_irq(&css_set_lock); 5086 5087 /* initiate massacre of all css's */ 5088 for_each_css(css, ssid, cgrp) 5089 kill_css(css); 5090 5091 /* 5092 * Remove @cgrp directory along with the base files. @cgrp has an 5093 * extra ref on its kn. 5094 */ 5095 kernfs_remove(cgrp->kn); 5096 5097 if (parent && cgroup_is_threaded(cgrp)) 5098 parent->nr_threaded_children--; 5099 5100 for (tcgrp = cgroup_parent(cgrp); tcgrp; tcgrp = cgroup_parent(tcgrp)) { 5101 tcgrp->nr_descendants--; 5102 tcgrp->nr_dying_descendants++; 5103 } 5104 5105 cgroup1_check_for_release(parent); 5106 5107 /* put the base reference */ 5108 percpu_ref_kill(&cgrp->self.refcnt); 5109 5110 return 0; 5111 }; 5112 5113 int cgroup_rmdir(struct kernfs_node *kn) 5114 { 5115 struct cgroup *cgrp; 5116 int ret = 0; 5117 5118 cgrp = cgroup_kn_lock_live(kn, false); 5119 if (!cgrp) 5120 return 0; 5121 5122 ret = cgroup_destroy_locked(cgrp); 5123 5124 if (!ret) 5125 trace_cgroup_rmdir(cgrp); 5126 5127 cgroup_kn_unlock(kn); 5128 return ret; 5129 } 5130 5131 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = { 5132 .show_options = cgroup_show_options, 5133 .remount_fs = cgroup_remount, 5134 .mkdir = cgroup_mkdir, 5135 .rmdir = cgroup_rmdir, 5136 .show_path = cgroup_show_path, 5137 }; 5138 5139 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early) 5140 { 5141 struct cgroup_subsys_state *css; 5142 5143 pr_debug("Initializing cgroup subsys %s\n", ss->name); 5144 5145 mutex_lock(&cgroup_mutex); 5146 5147 idr_init(&ss->css_idr); 5148 INIT_LIST_HEAD(&ss->cfts); 5149 5150 /* Create the root cgroup state for this subsystem */ 5151 ss->root = &cgrp_dfl_root; 5152 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss)); 5153 /* We don't handle early failures gracefully */ 5154 BUG_ON(IS_ERR(css)); 5155 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp); 5156 5157 /* 5158 * Root csses are never destroyed and we can't initialize 5159 * percpu_ref during early init. Disable refcnting. 5160 */ 5161 css->flags |= CSS_NO_REF; 5162 5163 if (early) { 5164 /* allocation can't be done safely during early init */ 5165 css->id = 1; 5166 } else { 5167 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL); 5168 BUG_ON(css->id < 0); 5169 } 5170 5171 /* Update the init_css_set to contain a subsys 5172 * pointer to this state - since the subsystem is 5173 * newly registered, all tasks and hence the 5174 * init_css_set is in the subsystem's root cgroup. */ 5175 init_css_set.subsys[ss->id] = css; 5176 5177 have_fork_callback |= (bool)ss->fork << ss->id; 5178 have_exit_callback |= (bool)ss->exit << ss->id; 5179 have_free_callback |= (bool)ss->free << ss->id; 5180 have_canfork_callback |= (bool)ss->can_fork << ss->id; 5181 5182 /* At system boot, before all subsystems have been 5183 * registered, no tasks have been forked, so we don't 5184 * need to invoke fork callbacks here. */ 5185 BUG_ON(!list_empty(&init_task.tasks)); 5186 5187 BUG_ON(online_css(css)); 5188 5189 mutex_unlock(&cgroup_mutex); 5190 } 5191 5192 /** 5193 * cgroup_init_early - cgroup initialization at system boot 5194 * 5195 * Initialize cgroups at system boot, and initialize any 5196 * subsystems that request early init. 5197 */ 5198 int __init cgroup_init_early(void) 5199 { 5200 static struct cgroup_sb_opts __initdata opts; 5201 struct cgroup_subsys *ss; 5202 int i; 5203 5204 init_cgroup_root(&cgrp_dfl_root, &opts); 5205 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF; 5206 5207 RCU_INIT_POINTER(init_task.cgroups, &init_css_set); 5208 5209 for_each_subsys(ss, i) { 5210 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id, 5211 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n", 5212 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free, 5213 ss->id, ss->name); 5214 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN, 5215 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]); 5216 5217 ss->id = i; 5218 ss->name = cgroup_subsys_name[i]; 5219 if (!ss->legacy_name) 5220 ss->legacy_name = cgroup_subsys_name[i]; 5221 5222 if (ss->early_init) 5223 cgroup_init_subsys(ss, true); 5224 } 5225 return 0; 5226 } 5227 5228 static u16 cgroup_disable_mask __initdata; 5229 5230 /** 5231 * cgroup_init - cgroup initialization 5232 * 5233 * Register cgroup filesystem and /proc file, and initialize 5234 * any subsystems that didn't request early init. 5235 */ 5236 int __init cgroup_init(void) 5237 { 5238 struct cgroup_subsys *ss; 5239 int ssid; 5240 5241 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16); 5242 BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem)); 5243 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files)); 5244 BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files)); 5245 5246 cgroup_stat_boot(); 5247 5248 /* 5249 * The latency of the synchronize_sched() is too high for cgroups, 5250 * avoid it at the cost of forcing all readers into the slow path. 5251 */ 5252 rcu_sync_enter_start(&cgroup_threadgroup_rwsem.rss); 5253 5254 get_user_ns(init_cgroup_ns.user_ns); 5255 5256 mutex_lock(&cgroup_mutex); 5257 5258 /* 5259 * Add init_css_set to the hash table so that dfl_root can link to 5260 * it during init. 5261 */ 5262 hash_add(css_set_table, &init_css_set.hlist, 5263 css_set_hash(init_css_set.subsys)); 5264 5265 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0, 0)); 5266 5267 mutex_unlock(&cgroup_mutex); 5268 5269 for_each_subsys(ss, ssid) { 5270 if (ss->early_init) { 5271 struct cgroup_subsys_state *css = 5272 init_css_set.subsys[ss->id]; 5273 5274 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, 5275 GFP_KERNEL); 5276 BUG_ON(css->id < 0); 5277 } else { 5278 cgroup_init_subsys(ss, false); 5279 } 5280 5281 list_add_tail(&init_css_set.e_cset_node[ssid], 5282 &cgrp_dfl_root.cgrp.e_csets[ssid]); 5283 5284 /* 5285 * Setting dfl_root subsys_mask needs to consider the 5286 * disabled flag and cftype registration needs kmalloc, 5287 * both of which aren't available during early_init. 5288 */ 5289 if (cgroup_disable_mask & (1 << ssid)) { 5290 static_branch_disable(cgroup_subsys_enabled_key[ssid]); 5291 printk(KERN_INFO "Disabling %s control group subsystem\n", 5292 ss->name); 5293 continue; 5294 } 5295 5296 if (cgroup1_ssid_disabled(ssid)) 5297 printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n", 5298 ss->name); 5299 5300 cgrp_dfl_root.subsys_mask |= 1 << ss->id; 5301 5302 /* implicit controllers must be threaded too */ 5303 WARN_ON(ss->implicit_on_dfl && !ss->threaded); 5304 5305 if (ss->implicit_on_dfl) 5306 cgrp_dfl_implicit_ss_mask |= 1 << ss->id; 5307 else if (!ss->dfl_cftypes) 5308 cgrp_dfl_inhibit_ss_mask |= 1 << ss->id; 5309 5310 if (ss->threaded) 5311 cgrp_dfl_threaded_ss_mask |= 1 << ss->id; 5312 5313 if (ss->dfl_cftypes == ss->legacy_cftypes) { 5314 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes)); 5315 } else { 5316 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes)); 5317 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes)); 5318 } 5319 5320 if (ss->bind) 5321 ss->bind(init_css_set.subsys[ssid]); 5322 5323 mutex_lock(&cgroup_mutex); 5324 css_populate_dir(init_css_set.subsys[ssid]); 5325 mutex_unlock(&cgroup_mutex); 5326 } 5327 5328 /* init_css_set.subsys[] has been updated, re-hash */ 5329 hash_del(&init_css_set.hlist); 5330 hash_add(css_set_table, &init_css_set.hlist, 5331 css_set_hash(init_css_set.subsys)); 5332 5333 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup")); 5334 WARN_ON(register_filesystem(&cgroup_fs_type)); 5335 WARN_ON(register_filesystem(&cgroup2_fs_type)); 5336 WARN_ON(!proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations)); 5337 5338 return 0; 5339 } 5340 5341 static int __init cgroup_wq_init(void) 5342 { 5343 /* 5344 * There isn't much point in executing destruction path in 5345 * parallel. Good chunk is serialized with cgroup_mutex anyway. 5346 * Use 1 for @max_active. 5347 * 5348 * We would prefer to do this in cgroup_init() above, but that 5349 * is called before init_workqueues(): so leave this until after. 5350 */ 5351 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1); 5352 BUG_ON(!cgroup_destroy_wq); 5353 return 0; 5354 } 5355 core_initcall(cgroup_wq_init); 5356 5357 void cgroup_path_from_kernfs_id(const union kernfs_node_id *id, 5358 char *buf, size_t buflen) 5359 { 5360 struct kernfs_node *kn; 5361 5362 kn = kernfs_get_node_by_id(cgrp_dfl_root.kf_root, id); 5363 if (!kn) 5364 return; 5365 kernfs_path(kn, buf, buflen); 5366 kernfs_put(kn); 5367 } 5368 5369 /* 5370 * proc_cgroup_show() 5371 * - Print task's cgroup paths into seq_file, one line for each hierarchy 5372 * - Used for /proc/<pid>/cgroup. 5373 */ 5374 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns, 5375 struct pid *pid, struct task_struct *tsk) 5376 { 5377 char *buf; 5378 int retval; 5379 struct cgroup_root *root; 5380 5381 retval = -ENOMEM; 5382 buf = kmalloc(PATH_MAX, GFP_KERNEL); 5383 if (!buf) 5384 goto out; 5385 5386 mutex_lock(&cgroup_mutex); 5387 spin_lock_irq(&css_set_lock); 5388 5389 for_each_root(root) { 5390 struct cgroup_subsys *ss; 5391 struct cgroup *cgrp; 5392 int ssid, count = 0; 5393 5394 if (root == &cgrp_dfl_root && !cgrp_dfl_visible) 5395 continue; 5396 5397 seq_printf(m, "%d:", root->hierarchy_id); 5398 if (root != &cgrp_dfl_root) 5399 for_each_subsys(ss, ssid) 5400 if (root->subsys_mask & (1 << ssid)) 5401 seq_printf(m, "%s%s", count++ ? "," : "", 5402 ss->legacy_name); 5403 if (strlen(root->name)) 5404 seq_printf(m, "%sname=%s", count ? "," : "", 5405 root->name); 5406 seq_putc(m, ':'); 5407 5408 cgrp = task_cgroup_from_root(tsk, root); 5409 5410 /* 5411 * On traditional hierarchies, all zombie tasks show up as 5412 * belonging to the root cgroup. On the default hierarchy, 5413 * while a zombie doesn't show up in "cgroup.procs" and 5414 * thus can't be migrated, its /proc/PID/cgroup keeps 5415 * reporting the cgroup it belonged to before exiting. If 5416 * the cgroup is removed before the zombie is reaped, 5417 * " (deleted)" is appended to the cgroup path. 5418 */ 5419 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) { 5420 retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX, 5421 current->nsproxy->cgroup_ns); 5422 if (retval >= PATH_MAX) 5423 retval = -ENAMETOOLONG; 5424 if (retval < 0) 5425 goto out_unlock; 5426 5427 seq_puts(m, buf); 5428 } else { 5429 seq_puts(m, "/"); 5430 } 5431 5432 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp)) 5433 seq_puts(m, " (deleted)\n"); 5434 else 5435 seq_putc(m, '\n'); 5436 } 5437 5438 retval = 0; 5439 out_unlock: 5440 spin_unlock_irq(&css_set_lock); 5441 mutex_unlock(&cgroup_mutex); 5442 kfree(buf); 5443 out: 5444 return retval; 5445 } 5446 5447 /** 5448 * cgroup_fork - initialize cgroup related fields during copy_process() 5449 * @child: pointer to task_struct of forking parent process. 5450 * 5451 * A task is associated with the init_css_set until cgroup_post_fork() 5452 * attaches it to the parent's css_set. Empty cg_list indicates that 5453 * @child isn't holding reference to its css_set. 5454 */ 5455 void cgroup_fork(struct task_struct *child) 5456 { 5457 RCU_INIT_POINTER(child->cgroups, &init_css_set); 5458 INIT_LIST_HEAD(&child->cg_list); 5459 } 5460 5461 /** 5462 * cgroup_can_fork - called on a new task before the process is exposed 5463 * @child: the task in question. 5464 * 5465 * This calls the subsystem can_fork() callbacks. If the can_fork() callback 5466 * returns an error, the fork aborts with that error code. This allows for 5467 * a cgroup subsystem to conditionally allow or deny new forks. 5468 */ 5469 int cgroup_can_fork(struct task_struct *child) 5470 { 5471 struct cgroup_subsys *ss; 5472 int i, j, ret; 5473 5474 do_each_subsys_mask(ss, i, have_canfork_callback) { 5475 ret = ss->can_fork(child); 5476 if (ret) 5477 goto out_revert; 5478 } while_each_subsys_mask(); 5479 5480 return 0; 5481 5482 out_revert: 5483 for_each_subsys(ss, j) { 5484 if (j >= i) 5485 break; 5486 if (ss->cancel_fork) 5487 ss->cancel_fork(child); 5488 } 5489 5490 return ret; 5491 } 5492 5493 /** 5494 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork() 5495 * @child: the task in question 5496 * 5497 * This calls the cancel_fork() callbacks if a fork failed *after* 5498 * cgroup_can_fork() succeded. 5499 */ 5500 void cgroup_cancel_fork(struct task_struct *child) 5501 { 5502 struct cgroup_subsys *ss; 5503 int i; 5504 5505 for_each_subsys(ss, i) 5506 if (ss->cancel_fork) 5507 ss->cancel_fork(child); 5508 } 5509 5510 /** 5511 * cgroup_post_fork - called on a new task after adding it to the task list 5512 * @child: the task in question 5513 * 5514 * Adds the task to the list running through its css_set if necessary and 5515 * call the subsystem fork() callbacks. Has to be after the task is 5516 * visible on the task list in case we race with the first call to 5517 * cgroup_task_iter_start() - to guarantee that the new task ends up on its 5518 * list. 5519 */ 5520 void cgroup_post_fork(struct task_struct *child) 5521 { 5522 struct cgroup_subsys *ss; 5523 int i; 5524 5525 /* 5526 * This may race against cgroup_enable_task_cg_lists(). As that 5527 * function sets use_task_css_set_links before grabbing 5528 * tasklist_lock and we just went through tasklist_lock to add 5529 * @child, it's guaranteed that either we see the set 5530 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees 5531 * @child during its iteration. 5532 * 5533 * If we won the race, @child is associated with %current's 5534 * css_set. Grabbing css_set_lock guarantees both that the 5535 * association is stable, and, on completion of the parent's 5536 * migration, @child is visible in the source of migration or 5537 * already in the destination cgroup. This guarantee is necessary 5538 * when implementing operations which need to migrate all tasks of 5539 * a cgroup to another. 5540 * 5541 * Note that if we lose to cgroup_enable_task_cg_lists(), @child 5542 * will remain in init_css_set. This is safe because all tasks are 5543 * in the init_css_set before cg_links is enabled and there's no 5544 * operation which transfers all tasks out of init_css_set. 5545 */ 5546 if (use_task_css_set_links) { 5547 struct css_set *cset; 5548 5549 spin_lock_irq(&css_set_lock); 5550 cset = task_css_set(current); 5551 if (list_empty(&child->cg_list)) { 5552 get_css_set(cset); 5553 cset->nr_tasks++; 5554 css_set_move_task(child, NULL, cset, false); 5555 } 5556 spin_unlock_irq(&css_set_lock); 5557 } 5558 5559 /* 5560 * Call ss->fork(). This must happen after @child is linked on 5561 * css_set; otherwise, @child might change state between ->fork() 5562 * and addition to css_set. 5563 */ 5564 do_each_subsys_mask(ss, i, have_fork_callback) { 5565 ss->fork(child); 5566 } while_each_subsys_mask(); 5567 } 5568 5569 /** 5570 * cgroup_exit - detach cgroup from exiting task 5571 * @tsk: pointer to task_struct of exiting process 5572 * 5573 * Description: Detach cgroup from @tsk and release it. 5574 * 5575 * Note that cgroups marked notify_on_release force every task in 5576 * them to take the global cgroup_mutex mutex when exiting. 5577 * This could impact scaling on very large systems. Be reluctant to 5578 * use notify_on_release cgroups where very high task exit scaling 5579 * is required on large systems. 5580 * 5581 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We 5582 * call cgroup_exit() while the task is still competent to handle 5583 * notify_on_release(), then leave the task attached to the root cgroup in 5584 * each hierarchy for the remainder of its exit. No need to bother with 5585 * init_css_set refcnting. init_css_set never goes away and we can't race 5586 * with migration path - PF_EXITING is visible to migration path. 5587 */ 5588 void cgroup_exit(struct task_struct *tsk) 5589 { 5590 struct cgroup_subsys *ss; 5591 struct css_set *cset; 5592 int i; 5593 5594 /* 5595 * Unlink from @tsk from its css_set. As migration path can't race 5596 * with us, we can check css_set and cg_list without synchronization. 5597 */ 5598 cset = task_css_set(tsk); 5599 5600 if (!list_empty(&tsk->cg_list)) { 5601 spin_lock_irq(&css_set_lock); 5602 css_set_move_task(tsk, cset, NULL, false); 5603 cset->nr_tasks--; 5604 spin_unlock_irq(&css_set_lock); 5605 } else { 5606 get_css_set(cset); 5607 } 5608 5609 /* see cgroup_post_fork() for details */ 5610 do_each_subsys_mask(ss, i, have_exit_callback) { 5611 ss->exit(tsk); 5612 } while_each_subsys_mask(); 5613 } 5614 5615 void cgroup_free(struct task_struct *task) 5616 { 5617 struct css_set *cset = task_css_set(task); 5618 struct cgroup_subsys *ss; 5619 int ssid; 5620 5621 do_each_subsys_mask(ss, ssid, have_free_callback) { 5622 ss->free(task); 5623 } while_each_subsys_mask(); 5624 5625 put_css_set(cset); 5626 } 5627 5628 static int __init cgroup_disable(char *str) 5629 { 5630 struct cgroup_subsys *ss; 5631 char *token; 5632 int i; 5633 5634 while ((token = strsep(&str, ",")) != NULL) { 5635 if (!*token) 5636 continue; 5637 5638 for_each_subsys(ss, i) { 5639 if (strcmp(token, ss->name) && 5640 strcmp(token, ss->legacy_name)) 5641 continue; 5642 cgroup_disable_mask |= 1 << i; 5643 } 5644 } 5645 return 1; 5646 } 5647 __setup("cgroup_disable=", cgroup_disable); 5648 5649 /** 5650 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry 5651 * @dentry: directory dentry of interest 5652 * @ss: subsystem of interest 5653 * 5654 * If @dentry is a directory for a cgroup which has @ss enabled on it, try 5655 * to get the corresponding css and return it. If such css doesn't exist 5656 * or can't be pinned, an ERR_PTR value is returned. 5657 */ 5658 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry, 5659 struct cgroup_subsys *ss) 5660 { 5661 struct kernfs_node *kn = kernfs_node_from_dentry(dentry); 5662 struct file_system_type *s_type = dentry->d_sb->s_type; 5663 struct cgroup_subsys_state *css = NULL; 5664 struct cgroup *cgrp; 5665 5666 /* is @dentry a cgroup dir? */ 5667 if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) || 5668 !kn || kernfs_type(kn) != KERNFS_DIR) 5669 return ERR_PTR(-EBADF); 5670 5671 rcu_read_lock(); 5672 5673 /* 5674 * This path doesn't originate from kernfs and @kn could already 5675 * have been or be removed at any point. @kn->priv is RCU 5676 * protected for this access. See css_release_work_fn() for details. 5677 */ 5678 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); 5679 if (cgrp) 5680 css = cgroup_css(cgrp, ss); 5681 5682 if (!css || !css_tryget_online(css)) 5683 css = ERR_PTR(-ENOENT); 5684 5685 rcu_read_unlock(); 5686 return css; 5687 } 5688 5689 /** 5690 * css_from_id - lookup css by id 5691 * @id: the cgroup id 5692 * @ss: cgroup subsys to be looked into 5693 * 5694 * Returns the css if there's valid one with @id, otherwise returns NULL. 5695 * Should be called under rcu_read_lock(). 5696 */ 5697 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss) 5698 { 5699 WARN_ON_ONCE(!rcu_read_lock_held()); 5700 return idr_find(&ss->css_idr, id); 5701 } 5702 5703 /** 5704 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path 5705 * @path: path on the default hierarchy 5706 * 5707 * Find the cgroup at @path on the default hierarchy, increment its 5708 * reference count and return it. Returns pointer to the found cgroup on 5709 * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR) 5710 * if @path points to a non-directory. 5711 */ 5712 struct cgroup *cgroup_get_from_path(const char *path) 5713 { 5714 struct kernfs_node *kn; 5715 struct cgroup *cgrp; 5716 5717 mutex_lock(&cgroup_mutex); 5718 5719 kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path); 5720 if (kn) { 5721 if (kernfs_type(kn) == KERNFS_DIR) { 5722 cgrp = kn->priv; 5723 cgroup_get_live(cgrp); 5724 } else { 5725 cgrp = ERR_PTR(-ENOTDIR); 5726 } 5727 kernfs_put(kn); 5728 } else { 5729 cgrp = ERR_PTR(-ENOENT); 5730 } 5731 5732 mutex_unlock(&cgroup_mutex); 5733 return cgrp; 5734 } 5735 EXPORT_SYMBOL_GPL(cgroup_get_from_path); 5736 5737 /** 5738 * cgroup_get_from_fd - get a cgroup pointer from a fd 5739 * @fd: fd obtained by open(cgroup2_dir) 5740 * 5741 * Find the cgroup from a fd which should be obtained 5742 * by opening a cgroup directory. Returns a pointer to the 5743 * cgroup on success. ERR_PTR is returned if the cgroup 5744 * cannot be found. 5745 */ 5746 struct cgroup *cgroup_get_from_fd(int fd) 5747 { 5748 struct cgroup_subsys_state *css; 5749 struct cgroup *cgrp; 5750 struct file *f; 5751 5752 f = fget_raw(fd); 5753 if (!f) 5754 return ERR_PTR(-EBADF); 5755 5756 css = css_tryget_online_from_dir(f->f_path.dentry, NULL); 5757 fput(f); 5758 if (IS_ERR(css)) 5759 return ERR_CAST(css); 5760 5761 cgrp = css->cgroup; 5762 if (!cgroup_on_dfl(cgrp)) { 5763 cgroup_put(cgrp); 5764 return ERR_PTR(-EBADF); 5765 } 5766 5767 return cgrp; 5768 } 5769 EXPORT_SYMBOL_GPL(cgroup_get_from_fd); 5770 5771 /* 5772 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data 5773 * definition in cgroup-defs.h. 5774 */ 5775 #ifdef CONFIG_SOCK_CGROUP_DATA 5776 5777 #if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID) 5778 5779 DEFINE_SPINLOCK(cgroup_sk_update_lock); 5780 static bool cgroup_sk_alloc_disabled __read_mostly; 5781 5782 void cgroup_sk_alloc_disable(void) 5783 { 5784 if (cgroup_sk_alloc_disabled) 5785 return; 5786 pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n"); 5787 cgroup_sk_alloc_disabled = true; 5788 } 5789 5790 #else 5791 5792 #define cgroup_sk_alloc_disabled false 5793 5794 #endif 5795 5796 void cgroup_sk_alloc(struct sock_cgroup_data *skcd) 5797 { 5798 if (cgroup_sk_alloc_disabled) 5799 return; 5800 5801 /* Socket clone path */ 5802 if (skcd->val) { 5803 /* 5804 * We might be cloning a socket which is left in an empty 5805 * cgroup and the cgroup might have already been rmdir'd. 5806 * Don't use cgroup_get_live(). 5807 */ 5808 cgroup_get(sock_cgroup_ptr(skcd)); 5809 return; 5810 } 5811 5812 rcu_read_lock(); 5813 5814 while (true) { 5815 struct css_set *cset; 5816 5817 cset = task_css_set(current); 5818 if (likely(cgroup_tryget(cset->dfl_cgrp))) { 5819 skcd->val = (unsigned long)cset->dfl_cgrp; 5820 break; 5821 } 5822 cpu_relax(); 5823 } 5824 5825 rcu_read_unlock(); 5826 } 5827 5828 void cgroup_sk_free(struct sock_cgroup_data *skcd) 5829 { 5830 cgroup_put(sock_cgroup_ptr(skcd)); 5831 } 5832 5833 #endif /* CONFIG_SOCK_CGROUP_DATA */ 5834 5835 #ifdef CONFIG_CGROUP_BPF 5836 int cgroup_bpf_attach(struct cgroup *cgrp, struct bpf_prog *prog, 5837 enum bpf_attach_type type, u32 flags) 5838 { 5839 int ret; 5840 5841 mutex_lock(&cgroup_mutex); 5842 ret = __cgroup_bpf_attach(cgrp, prog, type, flags); 5843 mutex_unlock(&cgroup_mutex); 5844 return ret; 5845 } 5846 int cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog, 5847 enum bpf_attach_type type, u32 flags) 5848 { 5849 int ret; 5850 5851 mutex_lock(&cgroup_mutex); 5852 ret = __cgroup_bpf_detach(cgrp, prog, type, flags); 5853 mutex_unlock(&cgroup_mutex); 5854 return ret; 5855 } 5856 int cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr, 5857 union bpf_attr __user *uattr) 5858 { 5859 int ret; 5860 5861 mutex_lock(&cgroup_mutex); 5862 ret = __cgroup_bpf_query(cgrp, attr, uattr); 5863 mutex_unlock(&cgroup_mutex); 5864 return ret; 5865 } 5866 #endif /* CONFIG_CGROUP_BPF */ 5867 5868 #ifdef CONFIG_SYSFS 5869 static ssize_t show_delegatable_files(struct cftype *files, char *buf, 5870 ssize_t size, const char *prefix) 5871 { 5872 struct cftype *cft; 5873 ssize_t ret = 0; 5874 5875 for (cft = files; cft && cft->name[0] != '\0'; cft++) { 5876 if (!(cft->flags & CFTYPE_NS_DELEGATABLE)) 5877 continue; 5878 5879 if (prefix) 5880 ret += snprintf(buf + ret, size - ret, "%s.", prefix); 5881 5882 ret += snprintf(buf + ret, size - ret, "%s\n", cft->name); 5883 5884 if (unlikely(ret >= size)) { 5885 WARN_ON(1); 5886 break; 5887 } 5888 } 5889 5890 return ret; 5891 } 5892 5893 static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr, 5894 char *buf) 5895 { 5896 struct cgroup_subsys *ss; 5897 int ssid; 5898 ssize_t ret = 0; 5899 5900 ret = show_delegatable_files(cgroup_base_files, buf, PAGE_SIZE - ret, 5901 NULL); 5902 5903 for_each_subsys(ss, ssid) 5904 ret += show_delegatable_files(ss->dfl_cftypes, buf + ret, 5905 PAGE_SIZE - ret, 5906 cgroup_subsys_name[ssid]); 5907 5908 return ret; 5909 } 5910 static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate); 5911 5912 static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr, 5913 char *buf) 5914 { 5915 return snprintf(buf, PAGE_SIZE, "nsdelegate\n"); 5916 } 5917 static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features); 5918 5919 static struct attribute *cgroup_sysfs_attrs[] = { 5920 &cgroup_delegate_attr.attr, 5921 &cgroup_features_attr.attr, 5922 NULL, 5923 }; 5924 5925 static const struct attribute_group cgroup_sysfs_attr_group = { 5926 .attrs = cgroup_sysfs_attrs, 5927 .name = "cgroup", 5928 }; 5929 5930 static int __init cgroup_sysfs_init(void) 5931 { 5932 return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group); 5933 } 5934 subsys_initcall(cgroup_sysfs_init); 5935 #endif /* CONFIG_SYSFS */ 5936