1 /* 2 * Generic process-grouping system. 3 * 4 * Based originally on the cpuset system, extracted by Paul Menage 5 * Copyright (C) 2006 Google, Inc 6 * 7 * Notifications support 8 * Copyright (C) 2009 Nokia Corporation 9 * Author: Kirill A. Shutemov 10 * 11 * Copyright notices from the original cpuset code: 12 * -------------------------------------------------- 13 * Copyright (C) 2003 BULL SA. 14 * Copyright (C) 2004-2006 Silicon Graphics, Inc. 15 * 16 * Portions derived from Patrick Mochel's sysfs code. 17 * sysfs is Copyright (c) 2001-3 Patrick Mochel 18 * 19 * 2003-10-10 Written by Simon Derr. 20 * 2003-10-22 Updates by Stephen Hemminger. 21 * 2004 May-July Rework by Paul Jackson. 22 * --------------------------------------------------- 23 * 24 * This file is subject to the terms and conditions of the GNU General Public 25 * License. See the file COPYING in the main directory of the Linux 26 * distribution for more details. 27 */ 28 29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 30 31 #include "cgroup-internal.h" 32 33 #include <linux/cred.h> 34 #include <linux/errno.h> 35 #include <linux/init_task.h> 36 #include <linux/kernel.h> 37 #include <linux/magic.h> 38 #include <linux/mutex.h> 39 #include <linux/mount.h> 40 #include <linux/pagemap.h> 41 #include <linux/proc_fs.h> 42 #include <linux/rcupdate.h> 43 #include <linux/sched.h> 44 #include <linux/sched/task.h> 45 #include <linux/slab.h> 46 #include <linux/spinlock.h> 47 #include <linux/percpu-rwsem.h> 48 #include <linux/string.h> 49 #include <linux/hashtable.h> 50 #include <linux/idr.h> 51 #include <linux/kthread.h> 52 #include <linux/atomic.h> 53 #include <linux/cpuset.h> 54 #include <linux/proc_ns.h> 55 #include <linux/nsproxy.h> 56 #include <linux/file.h> 57 #include <linux/fs_parser.h> 58 #include <linux/sched/cputime.h> 59 #include <linux/psi.h> 60 #include <net/sock.h> 61 62 #define CREATE_TRACE_POINTS 63 #include <trace/events/cgroup.h> 64 65 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \ 66 MAX_CFTYPE_NAME + 2) 67 /* let's not notify more than 100 times per second */ 68 #define CGROUP_FILE_NOTIFY_MIN_INTV DIV_ROUND_UP(HZ, 100) 69 70 /* 71 * cgroup_mutex is the master lock. Any modification to cgroup or its 72 * hierarchy must be performed while holding it. 73 * 74 * css_set_lock protects task->cgroups pointer, the list of css_set 75 * objects, and the chain of tasks off each css_set. 76 * 77 * These locks are exported if CONFIG_PROVE_RCU so that accessors in 78 * cgroup.h can use them for lockdep annotations. 79 */ 80 DEFINE_MUTEX(cgroup_mutex); 81 DEFINE_SPINLOCK(css_set_lock); 82 83 #ifdef CONFIG_PROVE_RCU 84 EXPORT_SYMBOL_GPL(cgroup_mutex); 85 EXPORT_SYMBOL_GPL(css_set_lock); 86 #endif 87 88 DEFINE_SPINLOCK(trace_cgroup_path_lock); 89 char trace_cgroup_path[TRACE_CGROUP_PATH_LEN]; 90 bool cgroup_debug __read_mostly; 91 92 /* 93 * Protects cgroup_idr and css_idr so that IDs can be released without 94 * grabbing cgroup_mutex. 95 */ 96 static DEFINE_SPINLOCK(cgroup_idr_lock); 97 98 /* 99 * Protects cgroup_file->kn for !self csses. It synchronizes notifications 100 * against file removal/re-creation across css hiding. 101 */ 102 static DEFINE_SPINLOCK(cgroup_file_kn_lock); 103 104 DEFINE_PERCPU_RWSEM(cgroup_threadgroup_rwsem); 105 106 #define cgroup_assert_mutex_or_rcu_locked() \ 107 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \ 108 !lockdep_is_held(&cgroup_mutex), \ 109 "cgroup_mutex or RCU read lock required"); 110 111 /* 112 * cgroup destruction makes heavy use of work items and there can be a lot 113 * of concurrent destructions. Use a separate workqueue so that cgroup 114 * destruction work items don't end up filling up max_active of system_wq 115 * which may lead to deadlock. 116 */ 117 static struct workqueue_struct *cgroup_destroy_wq; 118 119 /* generate an array of cgroup subsystem pointers */ 120 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys, 121 struct cgroup_subsys *cgroup_subsys[] = { 122 #include <linux/cgroup_subsys.h> 123 }; 124 #undef SUBSYS 125 126 /* array of cgroup subsystem names */ 127 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x, 128 static const char *cgroup_subsys_name[] = { 129 #include <linux/cgroup_subsys.h> 130 }; 131 #undef SUBSYS 132 133 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */ 134 #define SUBSYS(_x) \ 135 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \ 136 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \ 137 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \ 138 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key); 139 #include <linux/cgroup_subsys.h> 140 #undef SUBSYS 141 142 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key, 143 static struct static_key_true *cgroup_subsys_enabled_key[] = { 144 #include <linux/cgroup_subsys.h> 145 }; 146 #undef SUBSYS 147 148 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key, 149 static struct static_key_true *cgroup_subsys_on_dfl_key[] = { 150 #include <linux/cgroup_subsys.h> 151 }; 152 #undef SUBSYS 153 154 static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu); 155 156 /* the default hierarchy */ 157 struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu }; 158 EXPORT_SYMBOL_GPL(cgrp_dfl_root); 159 160 /* 161 * The default hierarchy always exists but is hidden until mounted for the 162 * first time. This is for backward compatibility. 163 */ 164 static bool cgrp_dfl_visible; 165 166 /* some controllers are not supported in the default hierarchy */ 167 static u16 cgrp_dfl_inhibit_ss_mask; 168 169 /* some controllers are implicitly enabled on the default hierarchy */ 170 static u16 cgrp_dfl_implicit_ss_mask; 171 172 /* some controllers can be threaded on the default hierarchy */ 173 static u16 cgrp_dfl_threaded_ss_mask; 174 175 /* The list of hierarchy roots */ 176 LIST_HEAD(cgroup_roots); 177 static int cgroup_root_count; 178 179 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */ 180 static DEFINE_IDR(cgroup_hierarchy_idr); 181 182 /* 183 * Assign a monotonically increasing serial number to csses. It guarantees 184 * cgroups with bigger numbers are newer than those with smaller numbers. 185 * Also, as csses are always appended to the parent's ->children list, it 186 * guarantees that sibling csses are always sorted in the ascending serial 187 * number order on the list. Protected by cgroup_mutex. 188 */ 189 static u64 css_serial_nr_next = 1; 190 191 /* 192 * These bitmasks identify subsystems with specific features to avoid 193 * having to do iterative checks repeatedly. 194 */ 195 static u16 have_fork_callback __read_mostly; 196 static u16 have_exit_callback __read_mostly; 197 static u16 have_release_callback __read_mostly; 198 static u16 have_canfork_callback __read_mostly; 199 200 /* cgroup namespace for init task */ 201 struct cgroup_namespace init_cgroup_ns = { 202 .ns.count = REFCOUNT_INIT(2), 203 .user_ns = &init_user_ns, 204 .ns.ops = &cgroupns_operations, 205 .ns.inum = PROC_CGROUP_INIT_INO, 206 .root_cset = &init_css_set, 207 }; 208 209 static struct file_system_type cgroup2_fs_type; 210 static struct cftype cgroup_base_files[]; 211 212 /* cgroup optional features */ 213 enum cgroup_opt_features { 214 #ifdef CONFIG_PSI 215 OPT_FEATURE_PRESSURE, 216 #endif 217 OPT_FEATURE_COUNT 218 }; 219 220 static const char *cgroup_opt_feature_names[OPT_FEATURE_COUNT] = { 221 #ifdef CONFIG_PSI 222 "pressure", 223 #endif 224 }; 225 226 static u16 cgroup_feature_disable_mask __read_mostly; 227 228 static int cgroup_apply_control(struct cgroup *cgrp); 229 static void cgroup_finalize_control(struct cgroup *cgrp, int ret); 230 static void css_task_iter_skip(struct css_task_iter *it, 231 struct task_struct *task); 232 static int cgroup_destroy_locked(struct cgroup *cgrp); 233 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp, 234 struct cgroup_subsys *ss); 235 static void css_release(struct percpu_ref *ref); 236 static void kill_css(struct cgroup_subsys_state *css); 237 static int cgroup_addrm_files(struct cgroup_subsys_state *css, 238 struct cgroup *cgrp, struct cftype cfts[], 239 bool is_add); 240 241 /** 242 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID 243 * @ssid: subsys ID of interest 244 * 245 * cgroup_subsys_enabled() can only be used with literal subsys names which 246 * is fine for individual subsystems but unsuitable for cgroup core. This 247 * is slower static_key_enabled() based test indexed by @ssid. 248 */ 249 bool cgroup_ssid_enabled(int ssid) 250 { 251 if (CGROUP_SUBSYS_COUNT == 0) 252 return false; 253 254 return static_key_enabled(cgroup_subsys_enabled_key[ssid]); 255 } 256 257 /** 258 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy 259 * @cgrp: the cgroup of interest 260 * 261 * The default hierarchy is the v2 interface of cgroup and this function 262 * can be used to test whether a cgroup is on the default hierarchy for 263 * cases where a subsystem should behave differently depending on the 264 * interface version. 265 * 266 * List of changed behaviors: 267 * 268 * - Mount options "noprefix", "xattr", "clone_children", "release_agent" 269 * and "name" are disallowed. 270 * 271 * - When mounting an existing superblock, mount options should match. 272 * 273 * - Remount is disallowed. 274 * 275 * - rename(2) is disallowed. 276 * 277 * - "tasks" is removed. Everything should be at process granularity. Use 278 * "cgroup.procs" instead. 279 * 280 * - "cgroup.procs" is not sorted. pids will be unique unless they got 281 * recycled in-between reads. 282 * 283 * - "release_agent" and "notify_on_release" are removed. Replacement 284 * notification mechanism will be implemented. 285 * 286 * - "cgroup.clone_children" is removed. 287 * 288 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup 289 * and its descendants contain no task; otherwise, 1. The file also 290 * generates kernfs notification which can be monitored through poll and 291 * [di]notify when the value of the file changes. 292 * 293 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and 294 * take masks of ancestors with non-empty cpus/mems, instead of being 295 * moved to an ancestor. 296 * 297 * - cpuset: a task can be moved into an empty cpuset, and again it takes 298 * masks of ancestors. 299 * 300 * - blkcg: blk-throttle becomes properly hierarchical. 301 * 302 * - debug: disallowed on the default hierarchy. 303 */ 304 bool cgroup_on_dfl(const struct cgroup *cgrp) 305 { 306 return cgrp->root == &cgrp_dfl_root; 307 } 308 309 /* IDR wrappers which synchronize using cgroup_idr_lock */ 310 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end, 311 gfp_t gfp_mask) 312 { 313 int ret; 314 315 idr_preload(gfp_mask); 316 spin_lock_bh(&cgroup_idr_lock); 317 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM); 318 spin_unlock_bh(&cgroup_idr_lock); 319 idr_preload_end(); 320 return ret; 321 } 322 323 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id) 324 { 325 void *ret; 326 327 spin_lock_bh(&cgroup_idr_lock); 328 ret = idr_replace(idr, ptr, id); 329 spin_unlock_bh(&cgroup_idr_lock); 330 return ret; 331 } 332 333 static void cgroup_idr_remove(struct idr *idr, int id) 334 { 335 spin_lock_bh(&cgroup_idr_lock); 336 idr_remove(idr, id); 337 spin_unlock_bh(&cgroup_idr_lock); 338 } 339 340 static bool cgroup_has_tasks(struct cgroup *cgrp) 341 { 342 return cgrp->nr_populated_csets; 343 } 344 345 bool cgroup_is_threaded(struct cgroup *cgrp) 346 { 347 return cgrp->dom_cgrp != cgrp; 348 } 349 350 /* can @cgrp host both domain and threaded children? */ 351 static bool cgroup_is_mixable(struct cgroup *cgrp) 352 { 353 /* 354 * Root isn't under domain level resource control exempting it from 355 * the no-internal-process constraint, so it can serve as a thread 356 * root and a parent of resource domains at the same time. 357 */ 358 return !cgroup_parent(cgrp); 359 } 360 361 /* can @cgrp become a thread root? Should always be true for a thread root */ 362 static bool cgroup_can_be_thread_root(struct cgroup *cgrp) 363 { 364 /* mixables don't care */ 365 if (cgroup_is_mixable(cgrp)) 366 return true; 367 368 /* domain roots can't be nested under threaded */ 369 if (cgroup_is_threaded(cgrp)) 370 return false; 371 372 /* can only have either domain or threaded children */ 373 if (cgrp->nr_populated_domain_children) 374 return false; 375 376 /* and no domain controllers can be enabled */ 377 if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask) 378 return false; 379 380 return true; 381 } 382 383 /* is @cgrp root of a threaded subtree? */ 384 bool cgroup_is_thread_root(struct cgroup *cgrp) 385 { 386 /* thread root should be a domain */ 387 if (cgroup_is_threaded(cgrp)) 388 return false; 389 390 /* a domain w/ threaded children is a thread root */ 391 if (cgrp->nr_threaded_children) 392 return true; 393 394 /* 395 * A domain which has tasks and explicit threaded controllers 396 * enabled is a thread root. 397 */ 398 if (cgroup_has_tasks(cgrp) && 399 (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask)) 400 return true; 401 402 return false; 403 } 404 405 /* a domain which isn't connected to the root w/o brekage can't be used */ 406 static bool cgroup_is_valid_domain(struct cgroup *cgrp) 407 { 408 /* the cgroup itself can be a thread root */ 409 if (cgroup_is_threaded(cgrp)) 410 return false; 411 412 /* but the ancestors can't be unless mixable */ 413 while ((cgrp = cgroup_parent(cgrp))) { 414 if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp)) 415 return false; 416 if (cgroup_is_threaded(cgrp)) 417 return false; 418 } 419 420 return true; 421 } 422 423 /* subsystems visibly enabled on a cgroup */ 424 static u16 cgroup_control(struct cgroup *cgrp) 425 { 426 struct cgroup *parent = cgroup_parent(cgrp); 427 u16 root_ss_mask = cgrp->root->subsys_mask; 428 429 if (parent) { 430 u16 ss_mask = parent->subtree_control; 431 432 /* threaded cgroups can only have threaded controllers */ 433 if (cgroup_is_threaded(cgrp)) 434 ss_mask &= cgrp_dfl_threaded_ss_mask; 435 return ss_mask; 436 } 437 438 if (cgroup_on_dfl(cgrp)) 439 root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask | 440 cgrp_dfl_implicit_ss_mask); 441 return root_ss_mask; 442 } 443 444 /* subsystems enabled on a cgroup */ 445 static u16 cgroup_ss_mask(struct cgroup *cgrp) 446 { 447 struct cgroup *parent = cgroup_parent(cgrp); 448 449 if (parent) { 450 u16 ss_mask = parent->subtree_ss_mask; 451 452 /* threaded cgroups can only have threaded controllers */ 453 if (cgroup_is_threaded(cgrp)) 454 ss_mask &= cgrp_dfl_threaded_ss_mask; 455 return ss_mask; 456 } 457 458 return cgrp->root->subsys_mask; 459 } 460 461 /** 462 * cgroup_css - obtain a cgroup's css for the specified subsystem 463 * @cgrp: the cgroup of interest 464 * @ss: the subsystem of interest (%NULL returns @cgrp->self) 465 * 466 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This 467 * function must be called either under cgroup_mutex or rcu_read_lock() and 468 * the caller is responsible for pinning the returned css if it wants to 469 * keep accessing it outside the said locks. This function may return 470 * %NULL if @cgrp doesn't have @subsys_id enabled. 471 */ 472 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp, 473 struct cgroup_subsys *ss) 474 { 475 if (ss) 476 return rcu_dereference_check(cgrp->subsys[ss->id], 477 lockdep_is_held(&cgroup_mutex)); 478 else 479 return &cgrp->self; 480 } 481 482 /** 483 * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem 484 * @cgrp: the cgroup of interest 485 * @ss: the subsystem of interest 486 * 487 * Find and get @cgrp's css associated with @ss. If the css doesn't exist 488 * or is offline, %NULL is returned. 489 */ 490 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp, 491 struct cgroup_subsys *ss) 492 { 493 struct cgroup_subsys_state *css; 494 495 rcu_read_lock(); 496 css = cgroup_css(cgrp, ss); 497 if (css && !css_tryget_online(css)) 498 css = NULL; 499 rcu_read_unlock(); 500 501 return css; 502 } 503 504 /** 505 * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss 506 * @cgrp: the cgroup of interest 507 * @ss: the subsystem of interest (%NULL returns @cgrp->self) 508 * 509 * Similar to cgroup_css() but returns the effective css, which is defined 510 * as the matching css of the nearest ancestor including self which has @ss 511 * enabled. If @ss is associated with the hierarchy @cgrp is on, this 512 * function is guaranteed to return non-NULL css. 513 */ 514 static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp, 515 struct cgroup_subsys *ss) 516 { 517 lockdep_assert_held(&cgroup_mutex); 518 519 if (!ss) 520 return &cgrp->self; 521 522 /* 523 * This function is used while updating css associations and thus 524 * can't test the csses directly. Test ss_mask. 525 */ 526 while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) { 527 cgrp = cgroup_parent(cgrp); 528 if (!cgrp) 529 return NULL; 530 } 531 532 return cgroup_css(cgrp, ss); 533 } 534 535 /** 536 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem 537 * @cgrp: the cgroup of interest 538 * @ss: the subsystem of interest 539 * 540 * Find and get the effective css of @cgrp for @ss. The effective css is 541 * defined as the matching css of the nearest ancestor including self which 542 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on, 543 * the root css is returned, so this function always returns a valid css. 544 * 545 * The returned css is not guaranteed to be online, and therefore it is the 546 * callers responsibility to try get a reference for it. 547 */ 548 struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp, 549 struct cgroup_subsys *ss) 550 { 551 struct cgroup_subsys_state *css; 552 553 do { 554 css = cgroup_css(cgrp, ss); 555 556 if (css) 557 return css; 558 cgrp = cgroup_parent(cgrp); 559 } while (cgrp); 560 561 return init_css_set.subsys[ss->id]; 562 } 563 564 /** 565 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem 566 * @cgrp: the cgroup of interest 567 * @ss: the subsystem of interest 568 * 569 * Find and get the effective css of @cgrp for @ss. The effective css is 570 * defined as the matching css of the nearest ancestor including self which 571 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on, 572 * the root css is returned, so this function always returns a valid css. 573 * The returned css must be put using css_put(). 574 */ 575 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp, 576 struct cgroup_subsys *ss) 577 { 578 struct cgroup_subsys_state *css; 579 580 rcu_read_lock(); 581 582 do { 583 css = cgroup_css(cgrp, ss); 584 585 if (css && css_tryget_online(css)) 586 goto out_unlock; 587 cgrp = cgroup_parent(cgrp); 588 } while (cgrp); 589 590 css = init_css_set.subsys[ss->id]; 591 css_get(css); 592 out_unlock: 593 rcu_read_unlock(); 594 return css; 595 } 596 EXPORT_SYMBOL_GPL(cgroup_get_e_css); 597 598 static void cgroup_get_live(struct cgroup *cgrp) 599 { 600 WARN_ON_ONCE(cgroup_is_dead(cgrp)); 601 css_get(&cgrp->self); 602 } 603 604 /** 605 * __cgroup_task_count - count the number of tasks in a cgroup. The caller 606 * is responsible for taking the css_set_lock. 607 * @cgrp: the cgroup in question 608 */ 609 int __cgroup_task_count(const struct cgroup *cgrp) 610 { 611 int count = 0; 612 struct cgrp_cset_link *link; 613 614 lockdep_assert_held(&css_set_lock); 615 616 list_for_each_entry(link, &cgrp->cset_links, cset_link) 617 count += link->cset->nr_tasks; 618 619 return count; 620 } 621 622 /** 623 * cgroup_task_count - count the number of tasks in a cgroup. 624 * @cgrp: the cgroup in question 625 */ 626 int cgroup_task_count(const struct cgroup *cgrp) 627 { 628 int count; 629 630 spin_lock_irq(&css_set_lock); 631 count = __cgroup_task_count(cgrp); 632 spin_unlock_irq(&css_set_lock); 633 634 return count; 635 } 636 637 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of) 638 { 639 struct cgroup *cgrp = of->kn->parent->priv; 640 struct cftype *cft = of_cft(of); 641 642 /* 643 * This is open and unprotected implementation of cgroup_css(). 644 * seq_css() is only called from a kernfs file operation which has 645 * an active reference on the file. Because all the subsystem 646 * files are drained before a css is disassociated with a cgroup, 647 * the matching css from the cgroup's subsys table is guaranteed to 648 * be and stay valid until the enclosing operation is complete. 649 */ 650 if (cft->ss) 651 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]); 652 else 653 return &cgrp->self; 654 } 655 EXPORT_SYMBOL_GPL(of_css); 656 657 /** 658 * for_each_css - iterate all css's of a cgroup 659 * @css: the iteration cursor 660 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end 661 * @cgrp: the target cgroup to iterate css's of 662 * 663 * Should be called under cgroup_[tree_]mutex. 664 */ 665 #define for_each_css(css, ssid, cgrp) \ 666 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \ 667 if (!((css) = rcu_dereference_check( \ 668 (cgrp)->subsys[(ssid)], \ 669 lockdep_is_held(&cgroup_mutex)))) { } \ 670 else 671 672 /** 673 * for_each_e_css - iterate all effective css's of a cgroup 674 * @css: the iteration cursor 675 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end 676 * @cgrp: the target cgroup to iterate css's of 677 * 678 * Should be called under cgroup_[tree_]mutex. 679 */ 680 #define for_each_e_css(css, ssid, cgrp) \ 681 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \ 682 if (!((css) = cgroup_e_css_by_mask(cgrp, \ 683 cgroup_subsys[(ssid)]))) \ 684 ; \ 685 else 686 687 /** 688 * do_each_subsys_mask - filter for_each_subsys with a bitmask 689 * @ss: the iteration cursor 690 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end 691 * @ss_mask: the bitmask 692 * 693 * The block will only run for cases where the ssid-th bit (1 << ssid) of 694 * @ss_mask is set. 695 */ 696 #define do_each_subsys_mask(ss, ssid, ss_mask) do { \ 697 unsigned long __ss_mask = (ss_mask); \ 698 if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */ \ 699 (ssid) = 0; \ 700 break; \ 701 } \ 702 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \ 703 (ss) = cgroup_subsys[ssid]; \ 704 { 705 706 #define while_each_subsys_mask() \ 707 } \ 708 } \ 709 } while (false) 710 711 /* iterate over child cgrps, lock should be held throughout iteration */ 712 #define cgroup_for_each_live_child(child, cgrp) \ 713 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \ 714 if (({ lockdep_assert_held(&cgroup_mutex); \ 715 cgroup_is_dead(child); })) \ 716 ; \ 717 else 718 719 /* walk live descendants in pre order */ 720 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \ 721 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \ 722 if (({ lockdep_assert_held(&cgroup_mutex); \ 723 (dsct) = (d_css)->cgroup; \ 724 cgroup_is_dead(dsct); })) \ 725 ; \ 726 else 727 728 /* walk live descendants in postorder */ 729 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \ 730 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \ 731 if (({ lockdep_assert_held(&cgroup_mutex); \ 732 (dsct) = (d_css)->cgroup; \ 733 cgroup_is_dead(dsct); })) \ 734 ; \ 735 else 736 737 /* 738 * The default css_set - used by init and its children prior to any 739 * hierarchies being mounted. It contains a pointer to the root state 740 * for each subsystem. Also used to anchor the list of css_sets. Not 741 * reference-counted, to improve performance when child cgroups 742 * haven't been created. 743 */ 744 struct css_set init_css_set = { 745 .refcount = REFCOUNT_INIT(1), 746 .dom_cset = &init_css_set, 747 .tasks = LIST_HEAD_INIT(init_css_set.tasks), 748 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks), 749 .dying_tasks = LIST_HEAD_INIT(init_css_set.dying_tasks), 750 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters), 751 .threaded_csets = LIST_HEAD_INIT(init_css_set.threaded_csets), 752 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links), 753 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node), 754 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node), 755 756 /* 757 * The following field is re-initialized when this cset gets linked 758 * in cgroup_init(). However, let's initialize the field 759 * statically too so that the default cgroup can be accessed safely 760 * early during boot. 761 */ 762 .dfl_cgrp = &cgrp_dfl_root.cgrp, 763 }; 764 765 static int css_set_count = 1; /* 1 for init_css_set */ 766 767 static bool css_set_threaded(struct css_set *cset) 768 { 769 return cset->dom_cset != cset; 770 } 771 772 /** 773 * css_set_populated - does a css_set contain any tasks? 774 * @cset: target css_set 775 * 776 * css_set_populated() should be the same as !!cset->nr_tasks at steady 777 * state. However, css_set_populated() can be called while a task is being 778 * added to or removed from the linked list before the nr_tasks is 779 * properly updated. Hence, we can't just look at ->nr_tasks here. 780 */ 781 static bool css_set_populated(struct css_set *cset) 782 { 783 lockdep_assert_held(&css_set_lock); 784 785 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks); 786 } 787 788 /** 789 * cgroup_update_populated - update the populated count of a cgroup 790 * @cgrp: the target cgroup 791 * @populated: inc or dec populated count 792 * 793 * One of the css_sets associated with @cgrp is either getting its first 794 * task or losing the last. Update @cgrp->nr_populated_* accordingly. The 795 * count is propagated towards root so that a given cgroup's 796 * nr_populated_children is zero iff none of its descendants contain any 797 * tasks. 798 * 799 * @cgrp's interface file "cgroup.populated" is zero if both 800 * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and 801 * 1 otherwise. When the sum changes from or to zero, userland is notified 802 * that the content of the interface file has changed. This can be used to 803 * detect when @cgrp and its descendants become populated or empty. 804 */ 805 static void cgroup_update_populated(struct cgroup *cgrp, bool populated) 806 { 807 struct cgroup *child = NULL; 808 int adj = populated ? 1 : -1; 809 810 lockdep_assert_held(&css_set_lock); 811 812 do { 813 bool was_populated = cgroup_is_populated(cgrp); 814 815 if (!child) { 816 cgrp->nr_populated_csets += adj; 817 } else { 818 if (cgroup_is_threaded(child)) 819 cgrp->nr_populated_threaded_children += adj; 820 else 821 cgrp->nr_populated_domain_children += adj; 822 } 823 824 if (was_populated == cgroup_is_populated(cgrp)) 825 break; 826 827 cgroup1_check_for_release(cgrp); 828 TRACE_CGROUP_PATH(notify_populated, cgrp, 829 cgroup_is_populated(cgrp)); 830 cgroup_file_notify(&cgrp->events_file); 831 832 child = cgrp; 833 cgrp = cgroup_parent(cgrp); 834 } while (cgrp); 835 } 836 837 /** 838 * css_set_update_populated - update populated state of a css_set 839 * @cset: target css_set 840 * @populated: whether @cset is populated or depopulated 841 * 842 * @cset is either getting the first task or losing the last. Update the 843 * populated counters of all associated cgroups accordingly. 844 */ 845 static void css_set_update_populated(struct css_set *cset, bool populated) 846 { 847 struct cgrp_cset_link *link; 848 849 lockdep_assert_held(&css_set_lock); 850 851 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) 852 cgroup_update_populated(link->cgrp, populated); 853 } 854 855 /* 856 * @task is leaving, advance task iterators which are pointing to it so 857 * that they can resume at the next position. Advancing an iterator might 858 * remove it from the list, use safe walk. See css_task_iter_skip() for 859 * details. 860 */ 861 static void css_set_skip_task_iters(struct css_set *cset, 862 struct task_struct *task) 863 { 864 struct css_task_iter *it, *pos; 865 866 list_for_each_entry_safe(it, pos, &cset->task_iters, iters_node) 867 css_task_iter_skip(it, task); 868 } 869 870 /** 871 * css_set_move_task - move a task from one css_set to another 872 * @task: task being moved 873 * @from_cset: css_set @task currently belongs to (may be NULL) 874 * @to_cset: new css_set @task is being moved to (may be NULL) 875 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks 876 * 877 * Move @task from @from_cset to @to_cset. If @task didn't belong to any 878 * css_set, @from_cset can be NULL. If @task is being disassociated 879 * instead of moved, @to_cset can be NULL. 880 * 881 * This function automatically handles populated counter updates and 882 * css_task_iter adjustments but the caller is responsible for managing 883 * @from_cset and @to_cset's reference counts. 884 */ 885 static void css_set_move_task(struct task_struct *task, 886 struct css_set *from_cset, struct css_set *to_cset, 887 bool use_mg_tasks) 888 { 889 lockdep_assert_held(&css_set_lock); 890 891 if (to_cset && !css_set_populated(to_cset)) 892 css_set_update_populated(to_cset, true); 893 894 if (from_cset) { 895 WARN_ON_ONCE(list_empty(&task->cg_list)); 896 897 css_set_skip_task_iters(from_cset, task); 898 list_del_init(&task->cg_list); 899 if (!css_set_populated(from_cset)) 900 css_set_update_populated(from_cset, false); 901 } else { 902 WARN_ON_ONCE(!list_empty(&task->cg_list)); 903 } 904 905 if (to_cset) { 906 /* 907 * We are synchronized through cgroup_threadgroup_rwsem 908 * against PF_EXITING setting such that we can't race 909 * against cgroup_exit()/cgroup_free() dropping the css_set. 910 */ 911 WARN_ON_ONCE(task->flags & PF_EXITING); 912 913 cgroup_move_task(task, to_cset); 914 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks : 915 &to_cset->tasks); 916 } 917 } 918 919 /* 920 * hash table for cgroup groups. This improves the performance to find 921 * an existing css_set. This hash doesn't (currently) take into 922 * account cgroups in empty hierarchies. 923 */ 924 #define CSS_SET_HASH_BITS 7 925 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS); 926 927 static unsigned long css_set_hash(struct cgroup_subsys_state *css[]) 928 { 929 unsigned long key = 0UL; 930 struct cgroup_subsys *ss; 931 int i; 932 933 for_each_subsys(ss, i) 934 key += (unsigned long)css[i]; 935 key = (key >> 16) ^ key; 936 937 return key; 938 } 939 940 void put_css_set_locked(struct css_set *cset) 941 { 942 struct cgrp_cset_link *link, *tmp_link; 943 struct cgroup_subsys *ss; 944 int ssid; 945 946 lockdep_assert_held(&css_set_lock); 947 948 if (!refcount_dec_and_test(&cset->refcount)) 949 return; 950 951 WARN_ON_ONCE(!list_empty(&cset->threaded_csets)); 952 953 /* This css_set is dead. Unlink it and release cgroup and css refs */ 954 for_each_subsys(ss, ssid) { 955 list_del(&cset->e_cset_node[ssid]); 956 css_put(cset->subsys[ssid]); 957 } 958 hash_del(&cset->hlist); 959 css_set_count--; 960 961 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) { 962 list_del(&link->cset_link); 963 list_del(&link->cgrp_link); 964 if (cgroup_parent(link->cgrp)) 965 cgroup_put(link->cgrp); 966 kfree(link); 967 } 968 969 if (css_set_threaded(cset)) { 970 list_del(&cset->threaded_csets_node); 971 put_css_set_locked(cset->dom_cset); 972 } 973 974 kfree_rcu(cset, rcu_head); 975 } 976 977 /** 978 * compare_css_sets - helper function for find_existing_css_set(). 979 * @cset: candidate css_set being tested 980 * @old_cset: existing css_set for a task 981 * @new_cgrp: cgroup that's being entered by the task 982 * @template: desired set of css pointers in css_set (pre-calculated) 983 * 984 * Returns true if "cset" matches "old_cset" except for the hierarchy 985 * which "new_cgrp" belongs to, for which it should match "new_cgrp". 986 */ 987 static bool compare_css_sets(struct css_set *cset, 988 struct css_set *old_cset, 989 struct cgroup *new_cgrp, 990 struct cgroup_subsys_state *template[]) 991 { 992 struct cgroup *new_dfl_cgrp; 993 struct list_head *l1, *l2; 994 995 /* 996 * On the default hierarchy, there can be csets which are 997 * associated with the same set of cgroups but different csses. 998 * Let's first ensure that csses match. 999 */ 1000 if (memcmp(template, cset->subsys, sizeof(cset->subsys))) 1001 return false; 1002 1003 1004 /* @cset's domain should match the default cgroup's */ 1005 if (cgroup_on_dfl(new_cgrp)) 1006 new_dfl_cgrp = new_cgrp; 1007 else 1008 new_dfl_cgrp = old_cset->dfl_cgrp; 1009 1010 if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp) 1011 return false; 1012 1013 /* 1014 * Compare cgroup pointers in order to distinguish between 1015 * different cgroups in hierarchies. As different cgroups may 1016 * share the same effective css, this comparison is always 1017 * necessary. 1018 */ 1019 l1 = &cset->cgrp_links; 1020 l2 = &old_cset->cgrp_links; 1021 while (1) { 1022 struct cgrp_cset_link *link1, *link2; 1023 struct cgroup *cgrp1, *cgrp2; 1024 1025 l1 = l1->next; 1026 l2 = l2->next; 1027 /* See if we reached the end - both lists are equal length. */ 1028 if (l1 == &cset->cgrp_links) { 1029 BUG_ON(l2 != &old_cset->cgrp_links); 1030 break; 1031 } else { 1032 BUG_ON(l2 == &old_cset->cgrp_links); 1033 } 1034 /* Locate the cgroups associated with these links. */ 1035 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link); 1036 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link); 1037 cgrp1 = link1->cgrp; 1038 cgrp2 = link2->cgrp; 1039 /* Hierarchies should be linked in the same order. */ 1040 BUG_ON(cgrp1->root != cgrp2->root); 1041 1042 /* 1043 * If this hierarchy is the hierarchy of the cgroup 1044 * that's changing, then we need to check that this 1045 * css_set points to the new cgroup; if it's any other 1046 * hierarchy, then this css_set should point to the 1047 * same cgroup as the old css_set. 1048 */ 1049 if (cgrp1->root == new_cgrp->root) { 1050 if (cgrp1 != new_cgrp) 1051 return false; 1052 } else { 1053 if (cgrp1 != cgrp2) 1054 return false; 1055 } 1056 } 1057 return true; 1058 } 1059 1060 /** 1061 * find_existing_css_set - init css array and find the matching css_set 1062 * @old_cset: the css_set that we're using before the cgroup transition 1063 * @cgrp: the cgroup that we're moving into 1064 * @template: out param for the new set of csses, should be clear on entry 1065 */ 1066 static struct css_set *find_existing_css_set(struct css_set *old_cset, 1067 struct cgroup *cgrp, 1068 struct cgroup_subsys_state *template[]) 1069 { 1070 struct cgroup_root *root = cgrp->root; 1071 struct cgroup_subsys *ss; 1072 struct css_set *cset; 1073 unsigned long key; 1074 int i; 1075 1076 /* 1077 * Build the set of subsystem state objects that we want to see in the 1078 * new css_set. While subsystems can change globally, the entries here 1079 * won't change, so no need for locking. 1080 */ 1081 for_each_subsys(ss, i) { 1082 if (root->subsys_mask & (1UL << i)) { 1083 /* 1084 * @ss is in this hierarchy, so we want the 1085 * effective css from @cgrp. 1086 */ 1087 template[i] = cgroup_e_css_by_mask(cgrp, ss); 1088 } else { 1089 /* 1090 * @ss is not in this hierarchy, so we don't want 1091 * to change the css. 1092 */ 1093 template[i] = old_cset->subsys[i]; 1094 } 1095 } 1096 1097 key = css_set_hash(template); 1098 hash_for_each_possible(css_set_table, cset, hlist, key) { 1099 if (!compare_css_sets(cset, old_cset, cgrp, template)) 1100 continue; 1101 1102 /* This css_set matches what we need */ 1103 return cset; 1104 } 1105 1106 /* No existing cgroup group matched */ 1107 return NULL; 1108 } 1109 1110 static void free_cgrp_cset_links(struct list_head *links_to_free) 1111 { 1112 struct cgrp_cset_link *link, *tmp_link; 1113 1114 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) { 1115 list_del(&link->cset_link); 1116 kfree(link); 1117 } 1118 } 1119 1120 /** 1121 * allocate_cgrp_cset_links - allocate cgrp_cset_links 1122 * @count: the number of links to allocate 1123 * @tmp_links: list_head the allocated links are put on 1124 * 1125 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links 1126 * through ->cset_link. Returns 0 on success or -errno. 1127 */ 1128 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links) 1129 { 1130 struct cgrp_cset_link *link; 1131 int i; 1132 1133 INIT_LIST_HEAD(tmp_links); 1134 1135 for (i = 0; i < count; i++) { 1136 link = kzalloc(sizeof(*link), GFP_KERNEL); 1137 if (!link) { 1138 free_cgrp_cset_links(tmp_links); 1139 return -ENOMEM; 1140 } 1141 list_add(&link->cset_link, tmp_links); 1142 } 1143 return 0; 1144 } 1145 1146 /** 1147 * link_css_set - a helper function to link a css_set to a cgroup 1148 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links() 1149 * @cset: the css_set to be linked 1150 * @cgrp: the destination cgroup 1151 */ 1152 static void link_css_set(struct list_head *tmp_links, struct css_set *cset, 1153 struct cgroup *cgrp) 1154 { 1155 struct cgrp_cset_link *link; 1156 1157 BUG_ON(list_empty(tmp_links)); 1158 1159 if (cgroup_on_dfl(cgrp)) 1160 cset->dfl_cgrp = cgrp; 1161 1162 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link); 1163 link->cset = cset; 1164 link->cgrp = cgrp; 1165 1166 /* 1167 * Always add links to the tail of the lists so that the lists are 1168 * in chronological order. 1169 */ 1170 list_move_tail(&link->cset_link, &cgrp->cset_links); 1171 list_add_tail(&link->cgrp_link, &cset->cgrp_links); 1172 1173 if (cgroup_parent(cgrp)) 1174 cgroup_get_live(cgrp); 1175 } 1176 1177 /** 1178 * find_css_set - return a new css_set with one cgroup updated 1179 * @old_cset: the baseline css_set 1180 * @cgrp: the cgroup to be updated 1181 * 1182 * Return a new css_set that's equivalent to @old_cset, but with @cgrp 1183 * substituted into the appropriate hierarchy. 1184 */ 1185 static struct css_set *find_css_set(struct css_set *old_cset, 1186 struct cgroup *cgrp) 1187 { 1188 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { }; 1189 struct css_set *cset; 1190 struct list_head tmp_links; 1191 struct cgrp_cset_link *link; 1192 struct cgroup_subsys *ss; 1193 unsigned long key; 1194 int ssid; 1195 1196 lockdep_assert_held(&cgroup_mutex); 1197 1198 /* First see if we already have a cgroup group that matches 1199 * the desired set */ 1200 spin_lock_irq(&css_set_lock); 1201 cset = find_existing_css_set(old_cset, cgrp, template); 1202 if (cset) 1203 get_css_set(cset); 1204 spin_unlock_irq(&css_set_lock); 1205 1206 if (cset) 1207 return cset; 1208 1209 cset = kzalloc(sizeof(*cset), GFP_KERNEL); 1210 if (!cset) 1211 return NULL; 1212 1213 /* Allocate all the cgrp_cset_link objects that we'll need */ 1214 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) { 1215 kfree(cset); 1216 return NULL; 1217 } 1218 1219 refcount_set(&cset->refcount, 1); 1220 cset->dom_cset = cset; 1221 INIT_LIST_HEAD(&cset->tasks); 1222 INIT_LIST_HEAD(&cset->mg_tasks); 1223 INIT_LIST_HEAD(&cset->dying_tasks); 1224 INIT_LIST_HEAD(&cset->task_iters); 1225 INIT_LIST_HEAD(&cset->threaded_csets); 1226 INIT_HLIST_NODE(&cset->hlist); 1227 INIT_LIST_HEAD(&cset->cgrp_links); 1228 INIT_LIST_HEAD(&cset->mg_preload_node); 1229 INIT_LIST_HEAD(&cset->mg_node); 1230 1231 /* Copy the set of subsystem state objects generated in 1232 * find_existing_css_set() */ 1233 memcpy(cset->subsys, template, sizeof(cset->subsys)); 1234 1235 spin_lock_irq(&css_set_lock); 1236 /* Add reference counts and links from the new css_set. */ 1237 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) { 1238 struct cgroup *c = link->cgrp; 1239 1240 if (c->root == cgrp->root) 1241 c = cgrp; 1242 link_css_set(&tmp_links, cset, c); 1243 } 1244 1245 BUG_ON(!list_empty(&tmp_links)); 1246 1247 css_set_count++; 1248 1249 /* Add @cset to the hash table */ 1250 key = css_set_hash(cset->subsys); 1251 hash_add(css_set_table, &cset->hlist, key); 1252 1253 for_each_subsys(ss, ssid) { 1254 struct cgroup_subsys_state *css = cset->subsys[ssid]; 1255 1256 list_add_tail(&cset->e_cset_node[ssid], 1257 &css->cgroup->e_csets[ssid]); 1258 css_get(css); 1259 } 1260 1261 spin_unlock_irq(&css_set_lock); 1262 1263 /* 1264 * If @cset should be threaded, look up the matching dom_cset and 1265 * link them up. We first fully initialize @cset then look for the 1266 * dom_cset. It's simpler this way and safe as @cset is guaranteed 1267 * to stay empty until we return. 1268 */ 1269 if (cgroup_is_threaded(cset->dfl_cgrp)) { 1270 struct css_set *dcset; 1271 1272 dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp); 1273 if (!dcset) { 1274 put_css_set(cset); 1275 return NULL; 1276 } 1277 1278 spin_lock_irq(&css_set_lock); 1279 cset->dom_cset = dcset; 1280 list_add_tail(&cset->threaded_csets_node, 1281 &dcset->threaded_csets); 1282 spin_unlock_irq(&css_set_lock); 1283 } 1284 1285 return cset; 1286 } 1287 1288 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root) 1289 { 1290 struct cgroup *root_cgrp = kf_root->kn->priv; 1291 1292 return root_cgrp->root; 1293 } 1294 1295 static int cgroup_init_root_id(struct cgroup_root *root) 1296 { 1297 int id; 1298 1299 lockdep_assert_held(&cgroup_mutex); 1300 1301 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL); 1302 if (id < 0) 1303 return id; 1304 1305 root->hierarchy_id = id; 1306 return 0; 1307 } 1308 1309 static void cgroup_exit_root_id(struct cgroup_root *root) 1310 { 1311 lockdep_assert_held(&cgroup_mutex); 1312 1313 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id); 1314 } 1315 1316 void cgroup_free_root(struct cgroup_root *root) 1317 { 1318 kfree(root); 1319 } 1320 1321 static void cgroup_destroy_root(struct cgroup_root *root) 1322 { 1323 struct cgroup *cgrp = &root->cgrp; 1324 struct cgrp_cset_link *link, *tmp_link; 1325 1326 trace_cgroup_destroy_root(root); 1327 1328 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp); 1329 1330 BUG_ON(atomic_read(&root->nr_cgrps)); 1331 BUG_ON(!list_empty(&cgrp->self.children)); 1332 1333 /* Rebind all subsystems back to the default hierarchy */ 1334 WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask)); 1335 1336 /* 1337 * Release all the links from cset_links to this hierarchy's 1338 * root cgroup 1339 */ 1340 spin_lock_irq(&css_set_lock); 1341 1342 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) { 1343 list_del(&link->cset_link); 1344 list_del(&link->cgrp_link); 1345 kfree(link); 1346 } 1347 1348 spin_unlock_irq(&css_set_lock); 1349 1350 if (!list_empty(&root->root_list)) { 1351 list_del(&root->root_list); 1352 cgroup_root_count--; 1353 } 1354 1355 cgroup_exit_root_id(root); 1356 1357 mutex_unlock(&cgroup_mutex); 1358 1359 cgroup_rstat_exit(cgrp); 1360 kernfs_destroy_root(root->kf_root); 1361 cgroup_free_root(root); 1362 } 1363 1364 /* 1365 * look up cgroup associated with current task's cgroup namespace on the 1366 * specified hierarchy 1367 */ 1368 static struct cgroup * 1369 current_cgns_cgroup_from_root(struct cgroup_root *root) 1370 { 1371 struct cgroup *res = NULL; 1372 struct css_set *cset; 1373 1374 lockdep_assert_held(&css_set_lock); 1375 1376 rcu_read_lock(); 1377 1378 cset = current->nsproxy->cgroup_ns->root_cset; 1379 if (cset == &init_css_set) { 1380 res = &root->cgrp; 1381 } else if (root == &cgrp_dfl_root) { 1382 res = cset->dfl_cgrp; 1383 } else { 1384 struct cgrp_cset_link *link; 1385 1386 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) { 1387 struct cgroup *c = link->cgrp; 1388 1389 if (c->root == root) { 1390 res = c; 1391 break; 1392 } 1393 } 1394 } 1395 rcu_read_unlock(); 1396 1397 BUG_ON(!res); 1398 return res; 1399 } 1400 1401 /* look up cgroup associated with given css_set on the specified hierarchy */ 1402 static struct cgroup *cset_cgroup_from_root(struct css_set *cset, 1403 struct cgroup_root *root) 1404 { 1405 struct cgroup *res = NULL; 1406 1407 lockdep_assert_held(&cgroup_mutex); 1408 lockdep_assert_held(&css_set_lock); 1409 1410 if (cset == &init_css_set) { 1411 res = &root->cgrp; 1412 } else if (root == &cgrp_dfl_root) { 1413 res = cset->dfl_cgrp; 1414 } else { 1415 struct cgrp_cset_link *link; 1416 1417 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) { 1418 struct cgroup *c = link->cgrp; 1419 1420 if (c->root == root) { 1421 res = c; 1422 break; 1423 } 1424 } 1425 } 1426 1427 BUG_ON(!res); 1428 return res; 1429 } 1430 1431 /* 1432 * Return the cgroup for "task" from the given hierarchy. Must be 1433 * called with cgroup_mutex and css_set_lock held. 1434 */ 1435 struct cgroup *task_cgroup_from_root(struct task_struct *task, 1436 struct cgroup_root *root) 1437 { 1438 /* 1439 * No need to lock the task - since we hold css_set_lock the 1440 * task can't change groups. 1441 */ 1442 return cset_cgroup_from_root(task_css_set(task), root); 1443 } 1444 1445 /* 1446 * A task must hold cgroup_mutex to modify cgroups. 1447 * 1448 * Any task can increment and decrement the count field without lock. 1449 * So in general, code holding cgroup_mutex can't rely on the count 1450 * field not changing. However, if the count goes to zero, then only 1451 * cgroup_attach_task() can increment it again. Because a count of zero 1452 * means that no tasks are currently attached, therefore there is no 1453 * way a task attached to that cgroup can fork (the other way to 1454 * increment the count). So code holding cgroup_mutex can safely 1455 * assume that if the count is zero, it will stay zero. Similarly, if 1456 * a task holds cgroup_mutex on a cgroup with zero count, it 1457 * knows that the cgroup won't be removed, as cgroup_rmdir() 1458 * needs that mutex. 1459 * 1460 * A cgroup can only be deleted if both its 'count' of using tasks 1461 * is zero, and its list of 'children' cgroups is empty. Since all 1462 * tasks in the system use _some_ cgroup, and since there is always at 1463 * least one task in the system (init, pid == 1), therefore, root cgroup 1464 * always has either children cgroups and/or using tasks. So we don't 1465 * need a special hack to ensure that root cgroup cannot be deleted. 1466 * 1467 * P.S. One more locking exception. RCU is used to guard the 1468 * update of a tasks cgroup pointer by cgroup_attach_task() 1469 */ 1470 1471 static struct kernfs_syscall_ops cgroup_kf_syscall_ops; 1472 1473 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft, 1474 char *buf) 1475 { 1476 struct cgroup_subsys *ss = cft->ss; 1477 1478 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) && 1479 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) { 1480 const char *dbg = (cft->flags & CFTYPE_DEBUG) ? ".__DEBUG__." : ""; 1481 1482 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s%s.%s", 1483 dbg, cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name, 1484 cft->name); 1485 } else { 1486 strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX); 1487 } 1488 return buf; 1489 } 1490 1491 /** 1492 * cgroup_file_mode - deduce file mode of a control file 1493 * @cft: the control file in question 1494 * 1495 * S_IRUGO for read, S_IWUSR for write. 1496 */ 1497 static umode_t cgroup_file_mode(const struct cftype *cft) 1498 { 1499 umode_t mode = 0; 1500 1501 if (cft->read_u64 || cft->read_s64 || cft->seq_show) 1502 mode |= S_IRUGO; 1503 1504 if (cft->write_u64 || cft->write_s64 || cft->write) { 1505 if (cft->flags & CFTYPE_WORLD_WRITABLE) 1506 mode |= S_IWUGO; 1507 else 1508 mode |= S_IWUSR; 1509 } 1510 1511 return mode; 1512 } 1513 1514 /** 1515 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask 1516 * @subtree_control: the new subtree_control mask to consider 1517 * @this_ss_mask: available subsystems 1518 * 1519 * On the default hierarchy, a subsystem may request other subsystems to be 1520 * enabled together through its ->depends_on mask. In such cases, more 1521 * subsystems than specified in "cgroup.subtree_control" may be enabled. 1522 * 1523 * This function calculates which subsystems need to be enabled if 1524 * @subtree_control is to be applied while restricted to @this_ss_mask. 1525 */ 1526 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask) 1527 { 1528 u16 cur_ss_mask = subtree_control; 1529 struct cgroup_subsys *ss; 1530 int ssid; 1531 1532 lockdep_assert_held(&cgroup_mutex); 1533 1534 cur_ss_mask |= cgrp_dfl_implicit_ss_mask; 1535 1536 while (true) { 1537 u16 new_ss_mask = cur_ss_mask; 1538 1539 do_each_subsys_mask(ss, ssid, cur_ss_mask) { 1540 new_ss_mask |= ss->depends_on; 1541 } while_each_subsys_mask(); 1542 1543 /* 1544 * Mask out subsystems which aren't available. This can 1545 * happen only if some depended-upon subsystems were bound 1546 * to non-default hierarchies. 1547 */ 1548 new_ss_mask &= this_ss_mask; 1549 1550 if (new_ss_mask == cur_ss_mask) 1551 break; 1552 cur_ss_mask = new_ss_mask; 1553 } 1554 1555 return cur_ss_mask; 1556 } 1557 1558 /** 1559 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods 1560 * @kn: the kernfs_node being serviced 1561 * 1562 * This helper undoes cgroup_kn_lock_live() and should be invoked before 1563 * the method finishes if locking succeeded. Note that once this function 1564 * returns the cgroup returned by cgroup_kn_lock_live() may become 1565 * inaccessible any time. If the caller intends to continue to access the 1566 * cgroup, it should pin it before invoking this function. 1567 */ 1568 void cgroup_kn_unlock(struct kernfs_node *kn) 1569 { 1570 struct cgroup *cgrp; 1571 1572 if (kernfs_type(kn) == KERNFS_DIR) 1573 cgrp = kn->priv; 1574 else 1575 cgrp = kn->parent->priv; 1576 1577 mutex_unlock(&cgroup_mutex); 1578 1579 kernfs_unbreak_active_protection(kn); 1580 cgroup_put(cgrp); 1581 } 1582 1583 /** 1584 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods 1585 * @kn: the kernfs_node being serviced 1586 * @drain_offline: perform offline draining on the cgroup 1587 * 1588 * This helper is to be used by a cgroup kernfs method currently servicing 1589 * @kn. It breaks the active protection, performs cgroup locking and 1590 * verifies that the associated cgroup is alive. Returns the cgroup if 1591 * alive; otherwise, %NULL. A successful return should be undone by a 1592 * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the 1593 * cgroup is drained of offlining csses before return. 1594 * 1595 * Any cgroup kernfs method implementation which requires locking the 1596 * associated cgroup should use this helper. It avoids nesting cgroup 1597 * locking under kernfs active protection and allows all kernfs operations 1598 * including self-removal. 1599 */ 1600 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline) 1601 { 1602 struct cgroup *cgrp; 1603 1604 if (kernfs_type(kn) == KERNFS_DIR) 1605 cgrp = kn->priv; 1606 else 1607 cgrp = kn->parent->priv; 1608 1609 /* 1610 * We're gonna grab cgroup_mutex which nests outside kernfs 1611 * active_ref. cgroup liveliness check alone provides enough 1612 * protection against removal. Ensure @cgrp stays accessible and 1613 * break the active_ref protection. 1614 */ 1615 if (!cgroup_tryget(cgrp)) 1616 return NULL; 1617 kernfs_break_active_protection(kn); 1618 1619 if (drain_offline) 1620 cgroup_lock_and_drain_offline(cgrp); 1621 else 1622 mutex_lock(&cgroup_mutex); 1623 1624 if (!cgroup_is_dead(cgrp)) 1625 return cgrp; 1626 1627 cgroup_kn_unlock(kn); 1628 return NULL; 1629 } 1630 1631 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft) 1632 { 1633 char name[CGROUP_FILE_NAME_MAX]; 1634 1635 lockdep_assert_held(&cgroup_mutex); 1636 1637 if (cft->file_offset) { 1638 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss); 1639 struct cgroup_file *cfile = (void *)css + cft->file_offset; 1640 1641 spin_lock_irq(&cgroup_file_kn_lock); 1642 cfile->kn = NULL; 1643 spin_unlock_irq(&cgroup_file_kn_lock); 1644 1645 del_timer_sync(&cfile->notify_timer); 1646 } 1647 1648 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name)); 1649 } 1650 1651 /** 1652 * css_clear_dir - remove subsys files in a cgroup directory 1653 * @css: target css 1654 */ 1655 static void css_clear_dir(struct cgroup_subsys_state *css) 1656 { 1657 struct cgroup *cgrp = css->cgroup; 1658 struct cftype *cfts; 1659 1660 if (!(css->flags & CSS_VISIBLE)) 1661 return; 1662 1663 css->flags &= ~CSS_VISIBLE; 1664 1665 if (!css->ss) { 1666 if (cgroup_on_dfl(cgrp)) 1667 cfts = cgroup_base_files; 1668 else 1669 cfts = cgroup1_base_files; 1670 1671 cgroup_addrm_files(css, cgrp, cfts, false); 1672 } else { 1673 list_for_each_entry(cfts, &css->ss->cfts, node) 1674 cgroup_addrm_files(css, cgrp, cfts, false); 1675 } 1676 } 1677 1678 /** 1679 * css_populate_dir - create subsys files in a cgroup directory 1680 * @css: target css 1681 * 1682 * On failure, no file is added. 1683 */ 1684 static int css_populate_dir(struct cgroup_subsys_state *css) 1685 { 1686 struct cgroup *cgrp = css->cgroup; 1687 struct cftype *cfts, *failed_cfts; 1688 int ret; 1689 1690 if ((css->flags & CSS_VISIBLE) || !cgrp->kn) 1691 return 0; 1692 1693 if (!css->ss) { 1694 if (cgroup_on_dfl(cgrp)) 1695 cfts = cgroup_base_files; 1696 else 1697 cfts = cgroup1_base_files; 1698 1699 ret = cgroup_addrm_files(&cgrp->self, cgrp, cfts, true); 1700 if (ret < 0) 1701 return ret; 1702 } else { 1703 list_for_each_entry(cfts, &css->ss->cfts, node) { 1704 ret = cgroup_addrm_files(css, cgrp, cfts, true); 1705 if (ret < 0) { 1706 failed_cfts = cfts; 1707 goto err; 1708 } 1709 } 1710 } 1711 1712 css->flags |= CSS_VISIBLE; 1713 1714 return 0; 1715 err: 1716 list_for_each_entry(cfts, &css->ss->cfts, node) { 1717 if (cfts == failed_cfts) 1718 break; 1719 cgroup_addrm_files(css, cgrp, cfts, false); 1720 } 1721 return ret; 1722 } 1723 1724 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask) 1725 { 1726 struct cgroup *dcgrp = &dst_root->cgrp; 1727 struct cgroup_subsys *ss; 1728 int ssid, i, ret; 1729 1730 lockdep_assert_held(&cgroup_mutex); 1731 1732 do_each_subsys_mask(ss, ssid, ss_mask) { 1733 /* 1734 * If @ss has non-root csses attached to it, can't move. 1735 * If @ss is an implicit controller, it is exempt from this 1736 * rule and can be stolen. 1737 */ 1738 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) && 1739 !ss->implicit_on_dfl) 1740 return -EBUSY; 1741 1742 /* can't move between two non-dummy roots either */ 1743 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root) 1744 return -EBUSY; 1745 } while_each_subsys_mask(); 1746 1747 do_each_subsys_mask(ss, ssid, ss_mask) { 1748 struct cgroup_root *src_root = ss->root; 1749 struct cgroup *scgrp = &src_root->cgrp; 1750 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss); 1751 struct css_set *cset; 1752 1753 WARN_ON(!css || cgroup_css(dcgrp, ss)); 1754 1755 /* disable from the source */ 1756 src_root->subsys_mask &= ~(1 << ssid); 1757 WARN_ON(cgroup_apply_control(scgrp)); 1758 cgroup_finalize_control(scgrp, 0); 1759 1760 /* rebind */ 1761 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL); 1762 rcu_assign_pointer(dcgrp->subsys[ssid], css); 1763 ss->root = dst_root; 1764 css->cgroup = dcgrp; 1765 1766 spin_lock_irq(&css_set_lock); 1767 hash_for_each(css_set_table, i, cset, hlist) 1768 list_move_tail(&cset->e_cset_node[ss->id], 1769 &dcgrp->e_csets[ss->id]); 1770 spin_unlock_irq(&css_set_lock); 1771 1772 if (ss->css_rstat_flush) { 1773 list_del_rcu(&css->rstat_css_node); 1774 list_add_rcu(&css->rstat_css_node, 1775 &dcgrp->rstat_css_list); 1776 } 1777 1778 /* default hierarchy doesn't enable controllers by default */ 1779 dst_root->subsys_mask |= 1 << ssid; 1780 if (dst_root == &cgrp_dfl_root) { 1781 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]); 1782 } else { 1783 dcgrp->subtree_control |= 1 << ssid; 1784 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]); 1785 } 1786 1787 ret = cgroup_apply_control(dcgrp); 1788 if (ret) 1789 pr_warn("partial failure to rebind %s controller (err=%d)\n", 1790 ss->name, ret); 1791 1792 if (ss->bind) 1793 ss->bind(css); 1794 } while_each_subsys_mask(); 1795 1796 kernfs_activate(dcgrp->kn); 1797 return 0; 1798 } 1799 1800 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node, 1801 struct kernfs_root *kf_root) 1802 { 1803 int len = 0; 1804 char *buf = NULL; 1805 struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root); 1806 struct cgroup *ns_cgroup; 1807 1808 buf = kmalloc(PATH_MAX, GFP_KERNEL); 1809 if (!buf) 1810 return -ENOMEM; 1811 1812 spin_lock_irq(&css_set_lock); 1813 ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot); 1814 len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX); 1815 spin_unlock_irq(&css_set_lock); 1816 1817 if (len >= PATH_MAX) 1818 len = -ERANGE; 1819 else if (len > 0) { 1820 seq_escape(sf, buf, " \t\n\\"); 1821 len = 0; 1822 } 1823 kfree(buf); 1824 return len; 1825 } 1826 1827 enum cgroup2_param { 1828 Opt_nsdelegate, 1829 Opt_memory_localevents, 1830 Opt_memory_recursiveprot, 1831 nr__cgroup2_params 1832 }; 1833 1834 static const struct fs_parameter_spec cgroup2_fs_parameters[] = { 1835 fsparam_flag("nsdelegate", Opt_nsdelegate), 1836 fsparam_flag("memory_localevents", Opt_memory_localevents), 1837 fsparam_flag("memory_recursiveprot", Opt_memory_recursiveprot), 1838 {} 1839 }; 1840 1841 static int cgroup2_parse_param(struct fs_context *fc, struct fs_parameter *param) 1842 { 1843 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 1844 struct fs_parse_result result; 1845 int opt; 1846 1847 opt = fs_parse(fc, cgroup2_fs_parameters, param, &result); 1848 if (opt < 0) 1849 return opt; 1850 1851 switch (opt) { 1852 case Opt_nsdelegate: 1853 ctx->flags |= CGRP_ROOT_NS_DELEGATE; 1854 return 0; 1855 case Opt_memory_localevents: 1856 ctx->flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS; 1857 return 0; 1858 case Opt_memory_recursiveprot: 1859 ctx->flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT; 1860 return 0; 1861 } 1862 return -EINVAL; 1863 } 1864 1865 static void apply_cgroup_root_flags(unsigned int root_flags) 1866 { 1867 if (current->nsproxy->cgroup_ns == &init_cgroup_ns) { 1868 if (root_flags & CGRP_ROOT_NS_DELEGATE) 1869 cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE; 1870 else 1871 cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE; 1872 1873 if (root_flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS) 1874 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS; 1875 else 1876 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_LOCAL_EVENTS; 1877 1878 if (root_flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT) 1879 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT; 1880 else 1881 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_RECURSIVE_PROT; 1882 } 1883 } 1884 1885 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root) 1886 { 1887 if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) 1888 seq_puts(seq, ",nsdelegate"); 1889 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS) 1890 seq_puts(seq, ",memory_localevents"); 1891 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT) 1892 seq_puts(seq, ",memory_recursiveprot"); 1893 return 0; 1894 } 1895 1896 static int cgroup_reconfigure(struct fs_context *fc) 1897 { 1898 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 1899 1900 apply_cgroup_root_flags(ctx->flags); 1901 return 0; 1902 } 1903 1904 static void init_cgroup_housekeeping(struct cgroup *cgrp) 1905 { 1906 struct cgroup_subsys *ss; 1907 int ssid; 1908 1909 INIT_LIST_HEAD(&cgrp->self.sibling); 1910 INIT_LIST_HEAD(&cgrp->self.children); 1911 INIT_LIST_HEAD(&cgrp->cset_links); 1912 INIT_LIST_HEAD(&cgrp->pidlists); 1913 mutex_init(&cgrp->pidlist_mutex); 1914 cgrp->self.cgroup = cgrp; 1915 cgrp->self.flags |= CSS_ONLINE; 1916 cgrp->dom_cgrp = cgrp; 1917 cgrp->max_descendants = INT_MAX; 1918 cgrp->max_depth = INT_MAX; 1919 INIT_LIST_HEAD(&cgrp->rstat_css_list); 1920 prev_cputime_init(&cgrp->prev_cputime); 1921 1922 for_each_subsys(ss, ssid) 1923 INIT_LIST_HEAD(&cgrp->e_csets[ssid]); 1924 1925 init_waitqueue_head(&cgrp->offline_waitq); 1926 INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent); 1927 } 1928 1929 void init_cgroup_root(struct cgroup_fs_context *ctx) 1930 { 1931 struct cgroup_root *root = ctx->root; 1932 struct cgroup *cgrp = &root->cgrp; 1933 1934 INIT_LIST_HEAD(&root->root_list); 1935 atomic_set(&root->nr_cgrps, 1); 1936 cgrp->root = root; 1937 init_cgroup_housekeeping(cgrp); 1938 1939 root->flags = ctx->flags; 1940 if (ctx->release_agent) 1941 strscpy(root->release_agent_path, ctx->release_agent, PATH_MAX); 1942 if (ctx->name) 1943 strscpy(root->name, ctx->name, MAX_CGROUP_ROOT_NAMELEN); 1944 if (ctx->cpuset_clone_children) 1945 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags); 1946 } 1947 1948 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask) 1949 { 1950 LIST_HEAD(tmp_links); 1951 struct cgroup *root_cgrp = &root->cgrp; 1952 struct kernfs_syscall_ops *kf_sops; 1953 struct css_set *cset; 1954 int i, ret; 1955 1956 lockdep_assert_held(&cgroup_mutex); 1957 1958 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 1959 0, GFP_KERNEL); 1960 if (ret) 1961 goto out; 1962 1963 /* 1964 * We're accessing css_set_count without locking css_set_lock here, 1965 * but that's OK - it can only be increased by someone holding 1966 * cgroup_lock, and that's us. Later rebinding may disable 1967 * controllers on the default hierarchy and thus create new csets, 1968 * which can't be more than the existing ones. Allocate 2x. 1969 */ 1970 ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links); 1971 if (ret) 1972 goto cancel_ref; 1973 1974 ret = cgroup_init_root_id(root); 1975 if (ret) 1976 goto cancel_ref; 1977 1978 kf_sops = root == &cgrp_dfl_root ? 1979 &cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops; 1980 1981 root->kf_root = kernfs_create_root(kf_sops, 1982 KERNFS_ROOT_CREATE_DEACTIVATED | 1983 KERNFS_ROOT_SUPPORT_EXPORTOP | 1984 KERNFS_ROOT_SUPPORT_USER_XATTR, 1985 root_cgrp); 1986 if (IS_ERR(root->kf_root)) { 1987 ret = PTR_ERR(root->kf_root); 1988 goto exit_root_id; 1989 } 1990 root_cgrp->kn = root->kf_root->kn; 1991 WARN_ON_ONCE(cgroup_ino(root_cgrp) != 1); 1992 root_cgrp->ancestor_ids[0] = cgroup_id(root_cgrp); 1993 1994 ret = css_populate_dir(&root_cgrp->self); 1995 if (ret) 1996 goto destroy_root; 1997 1998 ret = cgroup_rstat_init(root_cgrp); 1999 if (ret) 2000 goto destroy_root; 2001 2002 ret = rebind_subsystems(root, ss_mask); 2003 if (ret) 2004 goto exit_stats; 2005 2006 ret = cgroup_bpf_inherit(root_cgrp); 2007 WARN_ON_ONCE(ret); 2008 2009 trace_cgroup_setup_root(root); 2010 2011 /* 2012 * There must be no failure case after here, since rebinding takes 2013 * care of subsystems' refcounts, which are explicitly dropped in 2014 * the failure exit path. 2015 */ 2016 list_add(&root->root_list, &cgroup_roots); 2017 cgroup_root_count++; 2018 2019 /* 2020 * Link the root cgroup in this hierarchy into all the css_set 2021 * objects. 2022 */ 2023 spin_lock_irq(&css_set_lock); 2024 hash_for_each(css_set_table, i, cset, hlist) { 2025 link_css_set(&tmp_links, cset, root_cgrp); 2026 if (css_set_populated(cset)) 2027 cgroup_update_populated(root_cgrp, true); 2028 } 2029 spin_unlock_irq(&css_set_lock); 2030 2031 BUG_ON(!list_empty(&root_cgrp->self.children)); 2032 BUG_ON(atomic_read(&root->nr_cgrps) != 1); 2033 2034 ret = 0; 2035 goto out; 2036 2037 exit_stats: 2038 cgroup_rstat_exit(root_cgrp); 2039 destroy_root: 2040 kernfs_destroy_root(root->kf_root); 2041 root->kf_root = NULL; 2042 exit_root_id: 2043 cgroup_exit_root_id(root); 2044 cancel_ref: 2045 percpu_ref_exit(&root_cgrp->self.refcnt); 2046 out: 2047 free_cgrp_cset_links(&tmp_links); 2048 return ret; 2049 } 2050 2051 int cgroup_do_get_tree(struct fs_context *fc) 2052 { 2053 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2054 int ret; 2055 2056 ctx->kfc.root = ctx->root->kf_root; 2057 if (fc->fs_type == &cgroup2_fs_type) 2058 ctx->kfc.magic = CGROUP2_SUPER_MAGIC; 2059 else 2060 ctx->kfc.magic = CGROUP_SUPER_MAGIC; 2061 ret = kernfs_get_tree(fc); 2062 2063 /* 2064 * In non-init cgroup namespace, instead of root cgroup's dentry, 2065 * we return the dentry corresponding to the cgroupns->root_cgrp. 2066 */ 2067 if (!ret && ctx->ns != &init_cgroup_ns) { 2068 struct dentry *nsdentry; 2069 struct super_block *sb = fc->root->d_sb; 2070 struct cgroup *cgrp; 2071 2072 mutex_lock(&cgroup_mutex); 2073 spin_lock_irq(&css_set_lock); 2074 2075 cgrp = cset_cgroup_from_root(ctx->ns->root_cset, ctx->root); 2076 2077 spin_unlock_irq(&css_set_lock); 2078 mutex_unlock(&cgroup_mutex); 2079 2080 nsdentry = kernfs_node_dentry(cgrp->kn, sb); 2081 dput(fc->root); 2082 if (IS_ERR(nsdentry)) { 2083 deactivate_locked_super(sb); 2084 ret = PTR_ERR(nsdentry); 2085 nsdentry = NULL; 2086 } 2087 fc->root = nsdentry; 2088 } 2089 2090 if (!ctx->kfc.new_sb_created) 2091 cgroup_put(&ctx->root->cgrp); 2092 2093 return ret; 2094 } 2095 2096 /* 2097 * Destroy a cgroup filesystem context. 2098 */ 2099 static void cgroup_fs_context_free(struct fs_context *fc) 2100 { 2101 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2102 2103 kfree(ctx->name); 2104 kfree(ctx->release_agent); 2105 put_cgroup_ns(ctx->ns); 2106 kernfs_free_fs_context(fc); 2107 kfree(ctx); 2108 } 2109 2110 static int cgroup_get_tree(struct fs_context *fc) 2111 { 2112 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2113 int ret; 2114 2115 cgrp_dfl_visible = true; 2116 cgroup_get_live(&cgrp_dfl_root.cgrp); 2117 ctx->root = &cgrp_dfl_root; 2118 2119 ret = cgroup_do_get_tree(fc); 2120 if (!ret) 2121 apply_cgroup_root_flags(ctx->flags); 2122 return ret; 2123 } 2124 2125 static const struct fs_context_operations cgroup_fs_context_ops = { 2126 .free = cgroup_fs_context_free, 2127 .parse_param = cgroup2_parse_param, 2128 .get_tree = cgroup_get_tree, 2129 .reconfigure = cgroup_reconfigure, 2130 }; 2131 2132 static const struct fs_context_operations cgroup1_fs_context_ops = { 2133 .free = cgroup_fs_context_free, 2134 .parse_param = cgroup1_parse_param, 2135 .get_tree = cgroup1_get_tree, 2136 .reconfigure = cgroup1_reconfigure, 2137 }; 2138 2139 /* 2140 * Initialise the cgroup filesystem creation/reconfiguration context. Notably, 2141 * we select the namespace we're going to use. 2142 */ 2143 static int cgroup_init_fs_context(struct fs_context *fc) 2144 { 2145 struct cgroup_fs_context *ctx; 2146 2147 ctx = kzalloc(sizeof(struct cgroup_fs_context), GFP_KERNEL); 2148 if (!ctx) 2149 return -ENOMEM; 2150 2151 ctx->ns = current->nsproxy->cgroup_ns; 2152 get_cgroup_ns(ctx->ns); 2153 fc->fs_private = &ctx->kfc; 2154 if (fc->fs_type == &cgroup2_fs_type) 2155 fc->ops = &cgroup_fs_context_ops; 2156 else 2157 fc->ops = &cgroup1_fs_context_ops; 2158 put_user_ns(fc->user_ns); 2159 fc->user_ns = get_user_ns(ctx->ns->user_ns); 2160 fc->global = true; 2161 return 0; 2162 } 2163 2164 static void cgroup_kill_sb(struct super_block *sb) 2165 { 2166 struct kernfs_root *kf_root = kernfs_root_from_sb(sb); 2167 struct cgroup_root *root = cgroup_root_from_kf(kf_root); 2168 2169 /* 2170 * If @root doesn't have any children, start killing it. 2171 * This prevents new mounts by disabling percpu_ref_tryget_live(). 2172 * cgroup_mount() may wait for @root's release. 2173 * 2174 * And don't kill the default root. 2175 */ 2176 if (list_empty(&root->cgrp.self.children) && root != &cgrp_dfl_root && 2177 !percpu_ref_is_dying(&root->cgrp.self.refcnt)) 2178 percpu_ref_kill(&root->cgrp.self.refcnt); 2179 cgroup_put(&root->cgrp); 2180 kernfs_kill_sb(sb); 2181 } 2182 2183 struct file_system_type cgroup_fs_type = { 2184 .name = "cgroup", 2185 .init_fs_context = cgroup_init_fs_context, 2186 .parameters = cgroup1_fs_parameters, 2187 .kill_sb = cgroup_kill_sb, 2188 .fs_flags = FS_USERNS_MOUNT, 2189 }; 2190 2191 static struct file_system_type cgroup2_fs_type = { 2192 .name = "cgroup2", 2193 .init_fs_context = cgroup_init_fs_context, 2194 .parameters = cgroup2_fs_parameters, 2195 .kill_sb = cgroup_kill_sb, 2196 .fs_flags = FS_USERNS_MOUNT, 2197 }; 2198 2199 #ifdef CONFIG_CPUSETS 2200 static const struct fs_context_operations cpuset_fs_context_ops = { 2201 .get_tree = cgroup1_get_tree, 2202 .free = cgroup_fs_context_free, 2203 }; 2204 2205 /* 2206 * This is ugly, but preserves the userspace API for existing cpuset 2207 * users. If someone tries to mount the "cpuset" filesystem, we 2208 * silently switch it to mount "cgroup" instead 2209 */ 2210 static int cpuset_init_fs_context(struct fs_context *fc) 2211 { 2212 char *agent = kstrdup("/sbin/cpuset_release_agent", GFP_USER); 2213 struct cgroup_fs_context *ctx; 2214 int err; 2215 2216 err = cgroup_init_fs_context(fc); 2217 if (err) { 2218 kfree(agent); 2219 return err; 2220 } 2221 2222 fc->ops = &cpuset_fs_context_ops; 2223 2224 ctx = cgroup_fc2context(fc); 2225 ctx->subsys_mask = 1 << cpuset_cgrp_id; 2226 ctx->flags |= CGRP_ROOT_NOPREFIX; 2227 ctx->release_agent = agent; 2228 2229 get_filesystem(&cgroup_fs_type); 2230 put_filesystem(fc->fs_type); 2231 fc->fs_type = &cgroup_fs_type; 2232 2233 return 0; 2234 } 2235 2236 static struct file_system_type cpuset_fs_type = { 2237 .name = "cpuset", 2238 .init_fs_context = cpuset_init_fs_context, 2239 .fs_flags = FS_USERNS_MOUNT, 2240 }; 2241 #endif 2242 2243 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen, 2244 struct cgroup_namespace *ns) 2245 { 2246 struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root); 2247 2248 return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen); 2249 } 2250 2251 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen, 2252 struct cgroup_namespace *ns) 2253 { 2254 int ret; 2255 2256 mutex_lock(&cgroup_mutex); 2257 spin_lock_irq(&css_set_lock); 2258 2259 ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns); 2260 2261 spin_unlock_irq(&css_set_lock); 2262 mutex_unlock(&cgroup_mutex); 2263 2264 return ret; 2265 } 2266 EXPORT_SYMBOL_GPL(cgroup_path_ns); 2267 2268 /** 2269 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy 2270 * @task: target task 2271 * @buf: the buffer to write the path into 2272 * @buflen: the length of the buffer 2273 * 2274 * Determine @task's cgroup on the first (the one with the lowest non-zero 2275 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This 2276 * function grabs cgroup_mutex and shouldn't be used inside locks used by 2277 * cgroup controller callbacks. 2278 * 2279 * Return value is the same as kernfs_path(). 2280 */ 2281 int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen) 2282 { 2283 struct cgroup_root *root; 2284 struct cgroup *cgrp; 2285 int hierarchy_id = 1; 2286 int ret; 2287 2288 mutex_lock(&cgroup_mutex); 2289 spin_lock_irq(&css_set_lock); 2290 2291 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id); 2292 2293 if (root) { 2294 cgrp = task_cgroup_from_root(task, root); 2295 ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns); 2296 } else { 2297 /* if no hierarchy exists, everyone is in "/" */ 2298 ret = strlcpy(buf, "/", buflen); 2299 } 2300 2301 spin_unlock_irq(&css_set_lock); 2302 mutex_unlock(&cgroup_mutex); 2303 return ret; 2304 } 2305 EXPORT_SYMBOL_GPL(task_cgroup_path); 2306 2307 /** 2308 * cgroup_migrate_add_task - add a migration target task to a migration context 2309 * @task: target task 2310 * @mgctx: target migration context 2311 * 2312 * Add @task, which is a migration target, to @mgctx->tset. This function 2313 * becomes noop if @task doesn't need to be migrated. @task's css_set 2314 * should have been added as a migration source and @task->cg_list will be 2315 * moved from the css_set's tasks list to mg_tasks one. 2316 */ 2317 static void cgroup_migrate_add_task(struct task_struct *task, 2318 struct cgroup_mgctx *mgctx) 2319 { 2320 struct css_set *cset; 2321 2322 lockdep_assert_held(&css_set_lock); 2323 2324 /* @task either already exited or can't exit until the end */ 2325 if (task->flags & PF_EXITING) 2326 return; 2327 2328 /* cgroup_threadgroup_rwsem protects racing against forks */ 2329 WARN_ON_ONCE(list_empty(&task->cg_list)); 2330 2331 cset = task_css_set(task); 2332 if (!cset->mg_src_cgrp) 2333 return; 2334 2335 mgctx->tset.nr_tasks++; 2336 2337 list_move_tail(&task->cg_list, &cset->mg_tasks); 2338 if (list_empty(&cset->mg_node)) 2339 list_add_tail(&cset->mg_node, 2340 &mgctx->tset.src_csets); 2341 if (list_empty(&cset->mg_dst_cset->mg_node)) 2342 list_add_tail(&cset->mg_dst_cset->mg_node, 2343 &mgctx->tset.dst_csets); 2344 } 2345 2346 /** 2347 * cgroup_taskset_first - reset taskset and return the first task 2348 * @tset: taskset of interest 2349 * @dst_cssp: output variable for the destination css 2350 * 2351 * @tset iteration is initialized and the first task is returned. 2352 */ 2353 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset, 2354 struct cgroup_subsys_state **dst_cssp) 2355 { 2356 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node); 2357 tset->cur_task = NULL; 2358 2359 return cgroup_taskset_next(tset, dst_cssp); 2360 } 2361 2362 /** 2363 * cgroup_taskset_next - iterate to the next task in taskset 2364 * @tset: taskset of interest 2365 * @dst_cssp: output variable for the destination css 2366 * 2367 * Return the next task in @tset. Iteration must have been initialized 2368 * with cgroup_taskset_first(). 2369 */ 2370 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset, 2371 struct cgroup_subsys_state **dst_cssp) 2372 { 2373 struct css_set *cset = tset->cur_cset; 2374 struct task_struct *task = tset->cur_task; 2375 2376 while (&cset->mg_node != tset->csets) { 2377 if (!task) 2378 task = list_first_entry(&cset->mg_tasks, 2379 struct task_struct, cg_list); 2380 else 2381 task = list_next_entry(task, cg_list); 2382 2383 if (&task->cg_list != &cset->mg_tasks) { 2384 tset->cur_cset = cset; 2385 tset->cur_task = task; 2386 2387 /* 2388 * This function may be called both before and 2389 * after cgroup_taskset_migrate(). The two cases 2390 * can be distinguished by looking at whether @cset 2391 * has its ->mg_dst_cset set. 2392 */ 2393 if (cset->mg_dst_cset) 2394 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid]; 2395 else 2396 *dst_cssp = cset->subsys[tset->ssid]; 2397 2398 return task; 2399 } 2400 2401 cset = list_next_entry(cset, mg_node); 2402 task = NULL; 2403 } 2404 2405 return NULL; 2406 } 2407 2408 /** 2409 * cgroup_migrate_execute - migrate a taskset 2410 * @mgctx: migration context 2411 * 2412 * Migrate tasks in @mgctx as setup by migration preparation functions. 2413 * This function fails iff one of the ->can_attach callbacks fails and 2414 * guarantees that either all or none of the tasks in @mgctx are migrated. 2415 * @mgctx is consumed regardless of success. 2416 */ 2417 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx) 2418 { 2419 struct cgroup_taskset *tset = &mgctx->tset; 2420 struct cgroup_subsys *ss; 2421 struct task_struct *task, *tmp_task; 2422 struct css_set *cset, *tmp_cset; 2423 int ssid, failed_ssid, ret; 2424 2425 /* check that we can legitimately attach to the cgroup */ 2426 if (tset->nr_tasks) { 2427 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2428 if (ss->can_attach) { 2429 tset->ssid = ssid; 2430 ret = ss->can_attach(tset); 2431 if (ret) { 2432 failed_ssid = ssid; 2433 goto out_cancel_attach; 2434 } 2435 } 2436 } while_each_subsys_mask(); 2437 } 2438 2439 /* 2440 * Now that we're guaranteed success, proceed to move all tasks to 2441 * the new cgroup. There are no failure cases after here, so this 2442 * is the commit point. 2443 */ 2444 spin_lock_irq(&css_set_lock); 2445 list_for_each_entry(cset, &tset->src_csets, mg_node) { 2446 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) { 2447 struct css_set *from_cset = task_css_set(task); 2448 struct css_set *to_cset = cset->mg_dst_cset; 2449 2450 get_css_set(to_cset); 2451 to_cset->nr_tasks++; 2452 css_set_move_task(task, from_cset, to_cset, true); 2453 from_cset->nr_tasks--; 2454 /* 2455 * If the source or destination cgroup is frozen, 2456 * the task might require to change its state. 2457 */ 2458 cgroup_freezer_migrate_task(task, from_cset->dfl_cgrp, 2459 to_cset->dfl_cgrp); 2460 put_css_set_locked(from_cset); 2461 2462 } 2463 } 2464 spin_unlock_irq(&css_set_lock); 2465 2466 /* 2467 * Migration is committed, all target tasks are now on dst_csets. 2468 * Nothing is sensitive to fork() after this point. Notify 2469 * controllers that migration is complete. 2470 */ 2471 tset->csets = &tset->dst_csets; 2472 2473 if (tset->nr_tasks) { 2474 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2475 if (ss->attach) { 2476 tset->ssid = ssid; 2477 ss->attach(tset); 2478 } 2479 } while_each_subsys_mask(); 2480 } 2481 2482 ret = 0; 2483 goto out_release_tset; 2484 2485 out_cancel_attach: 2486 if (tset->nr_tasks) { 2487 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2488 if (ssid == failed_ssid) 2489 break; 2490 if (ss->cancel_attach) { 2491 tset->ssid = ssid; 2492 ss->cancel_attach(tset); 2493 } 2494 } while_each_subsys_mask(); 2495 } 2496 out_release_tset: 2497 spin_lock_irq(&css_set_lock); 2498 list_splice_init(&tset->dst_csets, &tset->src_csets); 2499 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) { 2500 list_splice_tail_init(&cset->mg_tasks, &cset->tasks); 2501 list_del_init(&cset->mg_node); 2502 } 2503 spin_unlock_irq(&css_set_lock); 2504 2505 /* 2506 * Re-initialize the cgroup_taskset structure in case it is reused 2507 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute() 2508 * iteration. 2509 */ 2510 tset->nr_tasks = 0; 2511 tset->csets = &tset->src_csets; 2512 return ret; 2513 } 2514 2515 /** 2516 * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination 2517 * @dst_cgrp: destination cgroup to test 2518 * 2519 * On the default hierarchy, except for the mixable, (possible) thread root 2520 * and threaded cgroups, subtree_control must be zero for migration 2521 * destination cgroups with tasks so that child cgroups don't compete 2522 * against tasks. 2523 */ 2524 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp) 2525 { 2526 /* v1 doesn't have any restriction */ 2527 if (!cgroup_on_dfl(dst_cgrp)) 2528 return 0; 2529 2530 /* verify @dst_cgrp can host resources */ 2531 if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp)) 2532 return -EOPNOTSUPP; 2533 2534 /* mixables don't care */ 2535 if (cgroup_is_mixable(dst_cgrp)) 2536 return 0; 2537 2538 /* 2539 * If @dst_cgrp is already or can become a thread root or is 2540 * threaded, it doesn't matter. 2541 */ 2542 if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp)) 2543 return 0; 2544 2545 /* apply no-internal-process constraint */ 2546 if (dst_cgrp->subtree_control) 2547 return -EBUSY; 2548 2549 return 0; 2550 } 2551 2552 /** 2553 * cgroup_migrate_finish - cleanup after attach 2554 * @mgctx: migration context 2555 * 2556 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See 2557 * those functions for details. 2558 */ 2559 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx) 2560 { 2561 LIST_HEAD(preloaded); 2562 struct css_set *cset, *tmp_cset; 2563 2564 lockdep_assert_held(&cgroup_mutex); 2565 2566 spin_lock_irq(&css_set_lock); 2567 2568 list_splice_tail_init(&mgctx->preloaded_src_csets, &preloaded); 2569 list_splice_tail_init(&mgctx->preloaded_dst_csets, &preloaded); 2570 2571 list_for_each_entry_safe(cset, tmp_cset, &preloaded, mg_preload_node) { 2572 cset->mg_src_cgrp = NULL; 2573 cset->mg_dst_cgrp = NULL; 2574 cset->mg_dst_cset = NULL; 2575 list_del_init(&cset->mg_preload_node); 2576 put_css_set_locked(cset); 2577 } 2578 2579 spin_unlock_irq(&css_set_lock); 2580 } 2581 2582 /** 2583 * cgroup_migrate_add_src - add a migration source css_set 2584 * @src_cset: the source css_set to add 2585 * @dst_cgrp: the destination cgroup 2586 * @mgctx: migration context 2587 * 2588 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin 2589 * @src_cset and add it to @mgctx->src_csets, which should later be cleaned 2590 * up by cgroup_migrate_finish(). 2591 * 2592 * This function may be called without holding cgroup_threadgroup_rwsem 2593 * even if the target is a process. Threads may be created and destroyed 2594 * but as long as cgroup_mutex is not dropped, no new css_set can be put 2595 * into play and the preloaded css_sets are guaranteed to cover all 2596 * migrations. 2597 */ 2598 void cgroup_migrate_add_src(struct css_set *src_cset, 2599 struct cgroup *dst_cgrp, 2600 struct cgroup_mgctx *mgctx) 2601 { 2602 struct cgroup *src_cgrp; 2603 2604 lockdep_assert_held(&cgroup_mutex); 2605 lockdep_assert_held(&css_set_lock); 2606 2607 /* 2608 * If ->dead, @src_set is associated with one or more dead cgroups 2609 * and doesn't contain any migratable tasks. Ignore it early so 2610 * that the rest of migration path doesn't get confused by it. 2611 */ 2612 if (src_cset->dead) 2613 return; 2614 2615 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root); 2616 2617 if (!list_empty(&src_cset->mg_preload_node)) 2618 return; 2619 2620 WARN_ON(src_cset->mg_src_cgrp); 2621 WARN_ON(src_cset->mg_dst_cgrp); 2622 WARN_ON(!list_empty(&src_cset->mg_tasks)); 2623 WARN_ON(!list_empty(&src_cset->mg_node)); 2624 2625 src_cset->mg_src_cgrp = src_cgrp; 2626 src_cset->mg_dst_cgrp = dst_cgrp; 2627 get_css_set(src_cset); 2628 list_add_tail(&src_cset->mg_preload_node, &mgctx->preloaded_src_csets); 2629 } 2630 2631 /** 2632 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration 2633 * @mgctx: migration context 2634 * 2635 * Tasks are about to be moved and all the source css_sets have been 2636 * preloaded to @mgctx->preloaded_src_csets. This function looks up and 2637 * pins all destination css_sets, links each to its source, and append them 2638 * to @mgctx->preloaded_dst_csets. 2639 * 2640 * This function must be called after cgroup_migrate_add_src() has been 2641 * called on each migration source css_set. After migration is performed 2642 * using cgroup_migrate(), cgroup_migrate_finish() must be called on 2643 * @mgctx. 2644 */ 2645 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx) 2646 { 2647 struct css_set *src_cset, *tmp_cset; 2648 2649 lockdep_assert_held(&cgroup_mutex); 2650 2651 /* look up the dst cset for each src cset and link it to src */ 2652 list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets, 2653 mg_preload_node) { 2654 struct css_set *dst_cset; 2655 struct cgroup_subsys *ss; 2656 int ssid; 2657 2658 dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp); 2659 if (!dst_cset) 2660 return -ENOMEM; 2661 2662 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset); 2663 2664 /* 2665 * If src cset equals dst, it's noop. Drop the src. 2666 * cgroup_migrate() will skip the cset too. Note that we 2667 * can't handle src == dst as some nodes are used by both. 2668 */ 2669 if (src_cset == dst_cset) { 2670 src_cset->mg_src_cgrp = NULL; 2671 src_cset->mg_dst_cgrp = NULL; 2672 list_del_init(&src_cset->mg_preload_node); 2673 put_css_set(src_cset); 2674 put_css_set(dst_cset); 2675 continue; 2676 } 2677 2678 src_cset->mg_dst_cset = dst_cset; 2679 2680 if (list_empty(&dst_cset->mg_preload_node)) 2681 list_add_tail(&dst_cset->mg_preload_node, 2682 &mgctx->preloaded_dst_csets); 2683 else 2684 put_css_set(dst_cset); 2685 2686 for_each_subsys(ss, ssid) 2687 if (src_cset->subsys[ssid] != dst_cset->subsys[ssid]) 2688 mgctx->ss_mask |= 1 << ssid; 2689 } 2690 2691 return 0; 2692 } 2693 2694 /** 2695 * cgroup_migrate - migrate a process or task to a cgroup 2696 * @leader: the leader of the process or the task to migrate 2697 * @threadgroup: whether @leader points to the whole process or a single task 2698 * @mgctx: migration context 2699 * 2700 * Migrate a process or task denoted by @leader. If migrating a process, 2701 * the caller must be holding cgroup_threadgroup_rwsem. The caller is also 2702 * responsible for invoking cgroup_migrate_add_src() and 2703 * cgroup_migrate_prepare_dst() on the targets before invoking this 2704 * function and following up with cgroup_migrate_finish(). 2705 * 2706 * As long as a controller's ->can_attach() doesn't fail, this function is 2707 * guaranteed to succeed. This means that, excluding ->can_attach() 2708 * failure, when migrating multiple targets, the success or failure can be 2709 * decided for all targets by invoking group_migrate_prepare_dst() before 2710 * actually starting migrating. 2711 */ 2712 int cgroup_migrate(struct task_struct *leader, bool threadgroup, 2713 struct cgroup_mgctx *mgctx) 2714 { 2715 struct task_struct *task; 2716 2717 /* 2718 * Prevent freeing of tasks while we take a snapshot. Tasks that are 2719 * already PF_EXITING could be freed from underneath us unless we 2720 * take an rcu_read_lock. 2721 */ 2722 spin_lock_irq(&css_set_lock); 2723 rcu_read_lock(); 2724 task = leader; 2725 do { 2726 cgroup_migrate_add_task(task, mgctx); 2727 if (!threadgroup) 2728 break; 2729 } while_each_thread(leader, task); 2730 rcu_read_unlock(); 2731 spin_unlock_irq(&css_set_lock); 2732 2733 return cgroup_migrate_execute(mgctx); 2734 } 2735 2736 /** 2737 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup 2738 * @dst_cgrp: the cgroup to attach to 2739 * @leader: the task or the leader of the threadgroup to be attached 2740 * @threadgroup: attach the whole threadgroup? 2741 * 2742 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem. 2743 */ 2744 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader, 2745 bool threadgroup) 2746 { 2747 DEFINE_CGROUP_MGCTX(mgctx); 2748 struct task_struct *task; 2749 int ret = 0; 2750 2751 /* look up all src csets */ 2752 spin_lock_irq(&css_set_lock); 2753 rcu_read_lock(); 2754 task = leader; 2755 do { 2756 cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx); 2757 if (!threadgroup) 2758 break; 2759 } while_each_thread(leader, task); 2760 rcu_read_unlock(); 2761 spin_unlock_irq(&css_set_lock); 2762 2763 /* prepare dst csets and commit */ 2764 ret = cgroup_migrate_prepare_dst(&mgctx); 2765 if (!ret) 2766 ret = cgroup_migrate(leader, threadgroup, &mgctx); 2767 2768 cgroup_migrate_finish(&mgctx); 2769 2770 if (!ret) 2771 TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup); 2772 2773 return ret; 2774 } 2775 2776 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup, 2777 bool *locked) 2778 __acquires(&cgroup_threadgroup_rwsem) 2779 { 2780 struct task_struct *tsk; 2781 pid_t pid; 2782 2783 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0) 2784 return ERR_PTR(-EINVAL); 2785 2786 /* 2787 * If we migrate a single thread, we don't care about threadgroup 2788 * stability. If the thread is `current`, it won't exit(2) under our 2789 * hands or change PID through exec(2). We exclude 2790 * cgroup_update_dfl_csses and other cgroup_{proc,thread}s_write 2791 * callers by cgroup_mutex. 2792 * Therefore, we can skip the global lock. 2793 */ 2794 lockdep_assert_held(&cgroup_mutex); 2795 if (pid || threadgroup) { 2796 percpu_down_write(&cgroup_threadgroup_rwsem); 2797 *locked = true; 2798 } else { 2799 *locked = false; 2800 } 2801 2802 rcu_read_lock(); 2803 if (pid) { 2804 tsk = find_task_by_vpid(pid); 2805 if (!tsk) { 2806 tsk = ERR_PTR(-ESRCH); 2807 goto out_unlock_threadgroup; 2808 } 2809 } else { 2810 tsk = current; 2811 } 2812 2813 if (threadgroup) 2814 tsk = tsk->group_leader; 2815 2816 /* 2817 * kthreads may acquire PF_NO_SETAFFINITY during initialization. 2818 * If userland migrates such a kthread to a non-root cgroup, it can 2819 * become trapped in a cpuset, or RT kthread may be born in a 2820 * cgroup with no rt_runtime allocated. Just say no. 2821 */ 2822 if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) { 2823 tsk = ERR_PTR(-EINVAL); 2824 goto out_unlock_threadgroup; 2825 } 2826 2827 get_task_struct(tsk); 2828 goto out_unlock_rcu; 2829 2830 out_unlock_threadgroup: 2831 if (*locked) { 2832 percpu_up_write(&cgroup_threadgroup_rwsem); 2833 *locked = false; 2834 } 2835 out_unlock_rcu: 2836 rcu_read_unlock(); 2837 return tsk; 2838 } 2839 2840 void cgroup_procs_write_finish(struct task_struct *task, bool locked) 2841 __releases(&cgroup_threadgroup_rwsem) 2842 { 2843 struct cgroup_subsys *ss; 2844 int ssid; 2845 2846 /* release reference from cgroup_procs_write_start() */ 2847 put_task_struct(task); 2848 2849 if (locked) 2850 percpu_up_write(&cgroup_threadgroup_rwsem); 2851 for_each_subsys(ss, ssid) 2852 if (ss->post_attach) 2853 ss->post_attach(); 2854 } 2855 2856 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask) 2857 { 2858 struct cgroup_subsys *ss; 2859 bool printed = false; 2860 int ssid; 2861 2862 do_each_subsys_mask(ss, ssid, ss_mask) { 2863 if (printed) 2864 seq_putc(seq, ' '); 2865 seq_puts(seq, ss->name); 2866 printed = true; 2867 } while_each_subsys_mask(); 2868 if (printed) 2869 seq_putc(seq, '\n'); 2870 } 2871 2872 /* show controllers which are enabled from the parent */ 2873 static int cgroup_controllers_show(struct seq_file *seq, void *v) 2874 { 2875 struct cgroup *cgrp = seq_css(seq)->cgroup; 2876 2877 cgroup_print_ss_mask(seq, cgroup_control(cgrp)); 2878 return 0; 2879 } 2880 2881 /* show controllers which are enabled for a given cgroup's children */ 2882 static int cgroup_subtree_control_show(struct seq_file *seq, void *v) 2883 { 2884 struct cgroup *cgrp = seq_css(seq)->cgroup; 2885 2886 cgroup_print_ss_mask(seq, cgrp->subtree_control); 2887 return 0; 2888 } 2889 2890 /** 2891 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy 2892 * @cgrp: root of the subtree to update csses for 2893 * 2894 * @cgrp's control masks have changed and its subtree's css associations 2895 * need to be updated accordingly. This function looks up all css_sets 2896 * which are attached to the subtree, creates the matching updated css_sets 2897 * and migrates the tasks to the new ones. 2898 */ 2899 static int cgroup_update_dfl_csses(struct cgroup *cgrp) 2900 { 2901 DEFINE_CGROUP_MGCTX(mgctx); 2902 struct cgroup_subsys_state *d_css; 2903 struct cgroup *dsct; 2904 struct css_set *src_cset; 2905 int ret; 2906 2907 lockdep_assert_held(&cgroup_mutex); 2908 2909 percpu_down_write(&cgroup_threadgroup_rwsem); 2910 2911 /* look up all csses currently attached to @cgrp's subtree */ 2912 spin_lock_irq(&css_set_lock); 2913 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 2914 struct cgrp_cset_link *link; 2915 2916 list_for_each_entry(link, &dsct->cset_links, cset_link) 2917 cgroup_migrate_add_src(link->cset, dsct, &mgctx); 2918 } 2919 spin_unlock_irq(&css_set_lock); 2920 2921 /* NULL dst indicates self on default hierarchy */ 2922 ret = cgroup_migrate_prepare_dst(&mgctx); 2923 if (ret) 2924 goto out_finish; 2925 2926 spin_lock_irq(&css_set_lock); 2927 list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, mg_preload_node) { 2928 struct task_struct *task, *ntask; 2929 2930 /* all tasks in src_csets need to be migrated */ 2931 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list) 2932 cgroup_migrate_add_task(task, &mgctx); 2933 } 2934 spin_unlock_irq(&css_set_lock); 2935 2936 ret = cgroup_migrate_execute(&mgctx); 2937 out_finish: 2938 cgroup_migrate_finish(&mgctx); 2939 percpu_up_write(&cgroup_threadgroup_rwsem); 2940 return ret; 2941 } 2942 2943 /** 2944 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses 2945 * @cgrp: root of the target subtree 2946 * 2947 * Because css offlining is asynchronous, userland may try to re-enable a 2948 * controller while the previous css is still around. This function grabs 2949 * cgroup_mutex and drains the previous css instances of @cgrp's subtree. 2950 */ 2951 void cgroup_lock_and_drain_offline(struct cgroup *cgrp) 2952 __acquires(&cgroup_mutex) 2953 { 2954 struct cgroup *dsct; 2955 struct cgroup_subsys_state *d_css; 2956 struct cgroup_subsys *ss; 2957 int ssid; 2958 2959 restart: 2960 mutex_lock(&cgroup_mutex); 2961 2962 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 2963 for_each_subsys(ss, ssid) { 2964 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 2965 DEFINE_WAIT(wait); 2966 2967 if (!css || !percpu_ref_is_dying(&css->refcnt)) 2968 continue; 2969 2970 cgroup_get_live(dsct); 2971 prepare_to_wait(&dsct->offline_waitq, &wait, 2972 TASK_UNINTERRUPTIBLE); 2973 2974 mutex_unlock(&cgroup_mutex); 2975 schedule(); 2976 finish_wait(&dsct->offline_waitq, &wait); 2977 2978 cgroup_put(dsct); 2979 goto restart; 2980 } 2981 } 2982 } 2983 2984 /** 2985 * cgroup_save_control - save control masks and dom_cgrp of a subtree 2986 * @cgrp: root of the target subtree 2987 * 2988 * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the 2989 * respective old_ prefixed fields for @cgrp's subtree including @cgrp 2990 * itself. 2991 */ 2992 static void cgroup_save_control(struct cgroup *cgrp) 2993 { 2994 struct cgroup *dsct; 2995 struct cgroup_subsys_state *d_css; 2996 2997 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 2998 dsct->old_subtree_control = dsct->subtree_control; 2999 dsct->old_subtree_ss_mask = dsct->subtree_ss_mask; 3000 dsct->old_dom_cgrp = dsct->dom_cgrp; 3001 } 3002 } 3003 3004 /** 3005 * cgroup_propagate_control - refresh control masks of a subtree 3006 * @cgrp: root of the target subtree 3007 * 3008 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches 3009 * ->subtree_control and propagate controller availability through the 3010 * subtree so that descendants don't have unavailable controllers enabled. 3011 */ 3012 static void cgroup_propagate_control(struct cgroup *cgrp) 3013 { 3014 struct cgroup *dsct; 3015 struct cgroup_subsys_state *d_css; 3016 3017 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 3018 dsct->subtree_control &= cgroup_control(dsct); 3019 dsct->subtree_ss_mask = 3020 cgroup_calc_subtree_ss_mask(dsct->subtree_control, 3021 cgroup_ss_mask(dsct)); 3022 } 3023 } 3024 3025 /** 3026 * cgroup_restore_control - restore control masks and dom_cgrp of a subtree 3027 * @cgrp: root of the target subtree 3028 * 3029 * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the 3030 * respective old_ prefixed fields for @cgrp's subtree including @cgrp 3031 * itself. 3032 */ 3033 static void cgroup_restore_control(struct cgroup *cgrp) 3034 { 3035 struct cgroup *dsct; 3036 struct cgroup_subsys_state *d_css; 3037 3038 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 3039 dsct->subtree_control = dsct->old_subtree_control; 3040 dsct->subtree_ss_mask = dsct->old_subtree_ss_mask; 3041 dsct->dom_cgrp = dsct->old_dom_cgrp; 3042 } 3043 } 3044 3045 static bool css_visible(struct cgroup_subsys_state *css) 3046 { 3047 struct cgroup_subsys *ss = css->ss; 3048 struct cgroup *cgrp = css->cgroup; 3049 3050 if (cgroup_control(cgrp) & (1 << ss->id)) 3051 return true; 3052 if (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) 3053 return false; 3054 return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl; 3055 } 3056 3057 /** 3058 * cgroup_apply_control_enable - enable or show csses according to control 3059 * @cgrp: root of the target subtree 3060 * 3061 * Walk @cgrp's subtree and create new csses or make the existing ones 3062 * visible. A css is created invisible if it's being implicitly enabled 3063 * through dependency. An invisible css is made visible when the userland 3064 * explicitly enables it. 3065 * 3066 * Returns 0 on success, -errno on failure. On failure, csses which have 3067 * been processed already aren't cleaned up. The caller is responsible for 3068 * cleaning up with cgroup_apply_control_disable(). 3069 */ 3070 static int cgroup_apply_control_enable(struct cgroup *cgrp) 3071 { 3072 struct cgroup *dsct; 3073 struct cgroup_subsys_state *d_css; 3074 struct cgroup_subsys *ss; 3075 int ssid, ret; 3076 3077 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 3078 for_each_subsys(ss, ssid) { 3079 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 3080 3081 if (!(cgroup_ss_mask(dsct) & (1 << ss->id))) 3082 continue; 3083 3084 if (!css) { 3085 css = css_create(dsct, ss); 3086 if (IS_ERR(css)) 3087 return PTR_ERR(css); 3088 } 3089 3090 WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt)); 3091 3092 if (css_visible(css)) { 3093 ret = css_populate_dir(css); 3094 if (ret) 3095 return ret; 3096 } 3097 } 3098 } 3099 3100 return 0; 3101 } 3102 3103 /** 3104 * cgroup_apply_control_disable - kill or hide csses according to control 3105 * @cgrp: root of the target subtree 3106 * 3107 * Walk @cgrp's subtree and kill and hide csses so that they match 3108 * cgroup_ss_mask() and cgroup_visible_mask(). 3109 * 3110 * A css is hidden when the userland requests it to be disabled while other 3111 * subsystems are still depending on it. The css must not actively control 3112 * resources and be in the vanilla state if it's made visible again later. 3113 * Controllers which may be depended upon should provide ->css_reset() for 3114 * this purpose. 3115 */ 3116 static void cgroup_apply_control_disable(struct cgroup *cgrp) 3117 { 3118 struct cgroup *dsct; 3119 struct cgroup_subsys_state *d_css; 3120 struct cgroup_subsys *ss; 3121 int ssid; 3122 3123 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 3124 for_each_subsys(ss, ssid) { 3125 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 3126 3127 if (!css) 3128 continue; 3129 3130 WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt)); 3131 3132 if (css->parent && 3133 !(cgroup_ss_mask(dsct) & (1 << ss->id))) { 3134 kill_css(css); 3135 } else if (!css_visible(css)) { 3136 css_clear_dir(css); 3137 if (ss->css_reset) 3138 ss->css_reset(css); 3139 } 3140 } 3141 } 3142 } 3143 3144 /** 3145 * cgroup_apply_control - apply control mask updates to the subtree 3146 * @cgrp: root of the target subtree 3147 * 3148 * subsystems can be enabled and disabled in a subtree using the following 3149 * steps. 3150 * 3151 * 1. Call cgroup_save_control() to stash the current state. 3152 * 2. Update ->subtree_control masks in the subtree as desired. 3153 * 3. Call cgroup_apply_control() to apply the changes. 3154 * 4. Optionally perform other related operations. 3155 * 5. Call cgroup_finalize_control() to finish up. 3156 * 3157 * This function implements step 3 and propagates the mask changes 3158 * throughout @cgrp's subtree, updates csses accordingly and perform 3159 * process migrations. 3160 */ 3161 static int cgroup_apply_control(struct cgroup *cgrp) 3162 { 3163 int ret; 3164 3165 cgroup_propagate_control(cgrp); 3166 3167 ret = cgroup_apply_control_enable(cgrp); 3168 if (ret) 3169 return ret; 3170 3171 /* 3172 * At this point, cgroup_e_css_by_mask() results reflect the new csses 3173 * making the following cgroup_update_dfl_csses() properly update 3174 * css associations of all tasks in the subtree. 3175 */ 3176 ret = cgroup_update_dfl_csses(cgrp); 3177 if (ret) 3178 return ret; 3179 3180 return 0; 3181 } 3182 3183 /** 3184 * cgroup_finalize_control - finalize control mask update 3185 * @cgrp: root of the target subtree 3186 * @ret: the result of the update 3187 * 3188 * Finalize control mask update. See cgroup_apply_control() for more info. 3189 */ 3190 static void cgroup_finalize_control(struct cgroup *cgrp, int ret) 3191 { 3192 if (ret) { 3193 cgroup_restore_control(cgrp); 3194 cgroup_propagate_control(cgrp); 3195 } 3196 3197 cgroup_apply_control_disable(cgrp); 3198 } 3199 3200 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable) 3201 { 3202 u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask; 3203 3204 /* if nothing is getting enabled, nothing to worry about */ 3205 if (!enable) 3206 return 0; 3207 3208 /* can @cgrp host any resources? */ 3209 if (!cgroup_is_valid_domain(cgrp->dom_cgrp)) 3210 return -EOPNOTSUPP; 3211 3212 /* mixables don't care */ 3213 if (cgroup_is_mixable(cgrp)) 3214 return 0; 3215 3216 if (domain_enable) { 3217 /* can't enable domain controllers inside a thread subtree */ 3218 if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp)) 3219 return -EOPNOTSUPP; 3220 } else { 3221 /* 3222 * Threaded controllers can handle internal competitions 3223 * and are always allowed inside a (prospective) thread 3224 * subtree. 3225 */ 3226 if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp)) 3227 return 0; 3228 } 3229 3230 /* 3231 * Controllers can't be enabled for a cgroup with tasks to avoid 3232 * child cgroups competing against tasks. 3233 */ 3234 if (cgroup_has_tasks(cgrp)) 3235 return -EBUSY; 3236 3237 return 0; 3238 } 3239 3240 /* change the enabled child controllers for a cgroup in the default hierarchy */ 3241 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of, 3242 char *buf, size_t nbytes, 3243 loff_t off) 3244 { 3245 u16 enable = 0, disable = 0; 3246 struct cgroup *cgrp, *child; 3247 struct cgroup_subsys *ss; 3248 char *tok; 3249 int ssid, ret; 3250 3251 /* 3252 * Parse input - space separated list of subsystem names prefixed 3253 * with either + or -. 3254 */ 3255 buf = strstrip(buf); 3256 while ((tok = strsep(&buf, " "))) { 3257 if (tok[0] == '\0') 3258 continue; 3259 do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) { 3260 if (!cgroup_ssid_enabled(ssid) || 3261 strcmp(tok + 1, ss->name)) 3262 continue; 3263 3264 if (*tok == '+') { 3265 enable |= 1 << ssid; 3266 disable &= ~(1 << ssid); 3267 } else if (*tok == '-') { 3268 disable |= 1 << ssid; 3269 enable &= ~(1 << ssid); 3270 } else { 3271 return -EINVAL; 3272 } 3273 break; 3274 } while_each_subsys_mask(); 3275 if (ssid == CGROUP_SUBSYS_COUNT) 3276 return -EINVAL; 3277 } 3278 3279 cgrp = cgroup_kn_lock_live(of->kn, true); 3280 if (!cgrp) 3281 return -ENODEV; 3282 3283 for_each_subsys(ss, ssid) { 3284 if (enable & (1 << ssid)) { 3285 if (cgrp->subtree_control & (1 << ssid)) { 3286 enable &= ~(1 << ssid); 3287 continue; 3288 } 3289 3290 if (!(cgroup_control(cgrp) & (1 << ssid))) { 3291 ret = -ENOENT; 3292 goto out_unlock; 3293 } 3294 } else if (disable & (1 << ssid)) { 3295 if (!(cgrp->subtree_control & (1 << ssid))) { 3296 disable &= ~(1 << ssid); 3297 continue; 3298 } 3299 3300 /* a child has it enabled? */ 3301 cgroup_for_each_live_child(child, cgrp) { 3302 if (child->subtree_control & (1 << ssid)) { 3303 ret = -EBUSY; 3304 goto out_unlock; 3305 } 3306 } 3307 } 3308 } 3309 3310 if (!enable && !disable) { 3311 ret = 0; 3312 goto out_unlock; 3313 } 3314 3315 ret = cgroup_vet_subtree_control_enable(cgrp, enable); 3316 if (ret) 3317 goto out_unlock; 3318 3319 /* save and update control masks and prepare csses */ 3320 cgroup_save_control(cgrp); 3321 3322 cgrp->subtree_control |= enable; 3323 cgrp->subtree_control &= ~disable; 3324 3325 ret = cgroup_apply_control(cgrp); 3326 cgroup_finalize_control(cgrp, ret); 3327 if (ret) 3328 goto out_unlock; 3329 3330 kernfs_activate(cgrp->kn); 3331 out_unlock: 3332 cgroup_kn_unlock(of->kn); 3333 return ret ?: nbytes; 3334 } 3335 3336 /** 3337 * cgroup_enable_threaded - make @cgrp threaded 3338 * @cgrp: the target cgroup 3339 * 3340 * Called when "threaded" is written to the cgroup.type interface file and 3341 * tries to make @cgrp threaded and join the parent's resource domain. 3342 * This function is never called on the root cgroup as cgroup.type doesn't 3343 * exist on it. 3344 */ 3345 static int cgroup_enable_threaded(struct cgroup *cgrp) 3346 { 3347 struct cgroup *parent = cgroup_parent(cgrp); 3348 struct cgroup *dom_cgrp = parent->dom_cgrp; 3349 struct cgroup *dsct; 3350 struct cgroup_subsys_state *d_css; 3351 int ret; 3352 3353 lockdep_assert_held(&cgroup_mutex); 3354 3355 /* noop if already threaded */ 3356 if (cgroup_is_threaded(cgrp)) 3357 return 0; 3358 3359 /* 3360 * If @cgroup is populated or has domain controllers enabled, it 3361 * can't be switched. While the below cgroup_can_be_thread_root() 3362 * test can catch the same conditions, that's only when @parent is 3363 * not mixable, so let's check it explicitly. 3364 */ 3365 if (cgroup_is_populated(cgrp) || 3366 cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask) 3367 return -EOPNOTSUPP; 3368 3369 /* we're joining the parent's domain, ensure its validity */ 3370 if (!cgroup_is_valid_domain(dom_cgrp) || 3371 !cgroup_can_be_thread_root(dom_cgrp)) 3372 return -EOPNOTSUPP; 3373 3374 /* 3375 * The following shouldn't cause actual migrations and should 3376 * always succeed. 3377 */ 3378 cgroup_save_control(cgrp); 3379 3380 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) 3381 if (dsct == cgrp || cgroup_is_threaded(dsct)) 3382 dsct->dom_cgrp = dom_cgrp; 3383 3384 ret = cgroup_apply_control(cgrp); 3385 if (!ret) 3386 parent->nr_threaded_children++; 3387 3388 cgroup_finalize_control(cgrp, ret); 3389 return ret; 3390 } 3391 3392 static int cgroup_type_show(struct seq_file *seq, void *v) 3393 { 3394 struct cgroup *cgrp = seq_css(seq)->cgroup; 3395 3396 if (cgroup_is_threaded(cgrp)) 3397 seq_puts(seq, "threaded\n"); 3398 else if (!cgroup_is_valid_domain(cgrp)) 3399 seq_puts(seq, "domain invalid\n"); 3400 else if (cgroup_is_thread_root(cgrp)) 3401 seq_puts(seq, "domain threaded\n"); 3402 else 3403 seq_puts(seq, "domain\n"); 3404 3405 return 0; 3406 } 3407 3408 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf, 3409 size_t nbytes, loff_t off) 3410 { 3411 struct cgroup *cgrp; 3412 int ret; 3413 3414 /* only switching to threaded mode is supported */ 3415 if (strcmp(strstrip(buf), "threaded")) 3416 return -EINVAL; 3417 3418 /* drain dying csses before we re-apply (threaded) subtree control */ 3419 cgrp = cgroup_kn_lock_live(of->kn, true); 3420 if (!cgrp) 3421 return -ENOENT; 3422 3423 /* threaded can only be enabled */ 3424 ret = cgroup_enable_threaded(cgrp); 3425 3426 cgroup_kn_unlock(of->kn); 3427 return ret ?: nbytes; 3428 } 3429 3430 static int cgroup_max_descendants_show(struct seq_file *seq, void *v) 3431 { 3432 struct cgroup *cgrp = seq_css(seq)->cgroup; 3433 int descendants = READ_ONCE(cgrp->max_descendants); 3434 3435 if (descendants == INT_MAX) 3436 seq_puts(seq, "max\n"); 3437 else 3438 seq_printf(seq, "%d\n", descendants); 3439 3440 return 0; 3441 } 3442 3443 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of, 3444 char *buf, size_t nbytes, loff_t off) 3445 { 3446 struct cgroup *cgrp; 3447 int descendants; 3448 ssize_t ret; 3449 3450 buf = strstrip(buf); 3451 if (!strcmp(buf, "max")) { 3452 descendants = INT_MAX; 3453 } else { 3454 ret = kstrtoint(buf, 0, &descendants); 3455 if (ret) 3456 return ret; 3457 } 3458 3459 if (descendants < 0) 3460 return -ERANGE; 3461 3462 cgrp = cgroup_kn_lock_live(of->kn, false); 3463 if (!cgrp) 3464 return -ENOENT; 3465 3466 cgrp->max_descendants = descendants; 3467 3468 cgroup_kn_unlock(of->kn); 3469 3470 return nbytes; 3471 } 3472 3473 static int cgroup_max_depth_show(struct seq_file *seq, void *v) 3474 { 3475 struct cgroup *cgrp = seq_css(seq)->cgroup; 3476 int depth = READ_ONCE(cgrp->max_depth); 3477 3478 if (depth == INT_MAX) 3479 seq_puts(seq, "max\n"); 3480 else 3481 seq_printf(seq, "%d\n", depth); 3482 3483 return 0; 3484 } 3485 3486 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of, 3487 char *buf, size_t nbytes, loff_t off) 3488 { 3489 struct cgroup *cgrp; 3490 ssize_t ret; 3491 int depth; 3492 3493 buf = strstrip(buf); 3494 if (!strcmp(buf, "max")) { 3495 depth = INT_MAX; 3496 } else { 3497 ret = kstrtoint(buf, 0, &depth); 3498 if (ret) 3499 return ret; 3500 } 3501 3502 if (depth < 0) 3503 return -ERANGE; 3504 3505 cgrp = cgroup_kn_lock_live(of->kn, false); 3506 if (!cgrp) 3507 return -ENOENT; 3508 3509 cgrp->max_depth = depth; 3510 3511 cgroup_kn_unlock(of->kn); 3512 3513 return nbytes; 3514 } 3515 3516 static int cgroup_events_show(struct seq_file *seq, void *v) 3517 { 3518 struct cgroup *cgrp = seq_css(seq)->cgroup; 3519 3520 seq_printf(seq, "populated %d\n", cgroup_is_populated(cgrp)); 3521 seq_printf(seq, "frozen %d\n", test_bit(CGRP_FROZEN, &cgrp->flags)); 3522 3523 return 0; 3524 } 3525 3526 static int cgroup_stat_show(struct seq_file *seq, void *v) 3527 { 3528 struct cgroup *cgroup = seq_css(seq)->cgroup; 3529 3530 seq_printf(seq, "nr_descendants %d\n", 3531 cgroup->nr_descendants); 3532 seq_printf(seq, "nr_dying_descendants %d\n", 3533 cgroup->nr_dying_descendants); 3534 3535 return 0; 3536 } 3537 3538 static int __maybe_unused cgroup_extra_stat_show(struct seq_file *seq, 3539 struct cgroup *cgrp, int ssid) 3540 { 3541 struct cgroup_subsys *ss = cgroup_subsys[ssid]; 3542 struct cgroup_subsys_state *css; 3543 int ret; 3544 3545 if (!ss->css_extra_stat_show) 3546 return 0; 3547 3548 css = cgroup_tryget_css(cgrp, ss); 3549 if (!css) 3550 return 0; 3551 3552 ret = ss->css_extra_stat_show(seq, css); 3553 css_put(css); 3554 return ret; 3555 } 3556 3557 static int cpu_stat_show(struct seq_file *seq, void *v) 3558 { 3559 struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup; 3560 int ret = 0; 3561 3562 cgroup_base_stat_cputime_show(seq); 3563 #ifdef CONFIG_CGROUP_SCHED 3564 ret = cgroup_extra_stat_show(seq, cgrp, cpu_cgrp_id); 3565 #endif 3566 return ret; 3567 } 3568 3569 #ifdef CONFIG_PSI 3570 static int cgroup_io_pressure_show(struct seq_file *seq, void *v) 3571 { 3572 struct cgroup *cgrp = seq_css(seq)->cgroup; 3573 struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi; 3574 3575 return psi_show(seq, psi, PSI_IO); 3576 } 3577 static int cgroup_memory_pressure_show(struct seq_file *seq, void *v) 3578 { 3579 struct cgroup *cgrp = seq_css(seq)->cgroup; 3580 struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi; 3581 3582 return psi_show(seq, psi, PSI_MEM); 3583 } 3584 static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v) 3585 { 3586 struct cgroup *cgrp = seq_css(seq)->cgroup; 3587 struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi; 3588 3589 return psi_show(seq, psi, PSI_CPU); 3590 } 3591 3592 static ssize_t cgroup_pressure_write(struct kernfs_open_file *of, char *buf, 3593 size_t nbytes, enum psi_res res) 3594 { 3595 struct psi_trigger *new; 3596 struct cgroup *cgrp; 3597 struct psi_group *psi; 3598 3599 cgrp = cgroup_kn_lock_live(of->kn, false); 3600 if (!cgrp) 3601 return -ENODEV; 3602 3603 cgroup_get(cgrp); 3604 cgroup_kn_unlock(of->kn); 3605 3606 psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi; 3607 new = psi_trigger_create(psi, buf, nbytes, res); 3608 if (IS_ERR(new)) { 3609 cgroup_put(cgrp); 3610 return PTR_ERR(new); 3611 } 3612 3613 psi_trigger_replace(&of->priv, new); 3614 3615 cgroup_put(cgrp); 3616 3617 return nbytes; 3618 } 3619 3620 static ssize_t cgroup_io_pressure_write(struct kernfs_open_file *of, 3621 char *buf, size_t nbytes, 3622 loff_t off) 3623 { 3624 return cgroup_pressure_write(of, buf, nbytes, PSI_IO); 3625 } 3626 3627 static ssize_t cgroup_memory_pressure_write(struct kernfs_open_file *of, 3628 char *buf, size_t nbytes, 3629 loff_t off) 3630 { 3631 return cgroup_pressure_write(of, buf, nbytes, PSI_MEM); 3632 } 3633 3634 static ssize_t cgroup_cpu_pressure_write(struct kernfs_open_file *of, 3635 char *buf, size_t nbytes, 3636 loff_t off) 3637 { 3638 return cgroup_pressure_write(of, buf, nbytes, PSI_CPU); 3639 } 3640 3641 static __poll_t cgroup_pressure_poll(struct kernfs_open_file *of, 3642 poll_table *pt) 3643 { 3644 return psi_trigger_poll(&of->priv, of->file, pt); 3645 } 3646 3647 static void cgroup_pressure_release(struct kernfs_open_file *of) 3648 { 3649 psi_trigger_replace(&of->priv, NULL); 3650 } 3651 3652 bool cgroup_psi_enabled(void) 3653 { 3654 return (cgroup_feature_disable_mask & (1 << OPT_FEATURE_PRESSURE)) == 0; 3655 } 3656 3657 #else /* CONFIG_PSI */ 3658 bool cgroup_psi_enabled(void) 3659 { 3660 return false; 3661 } 3662 3663 #endif /* CONFIG_PSI */ 3664 3665 static int cgroup_freeze_show(struct seq_file *seq, void *v) 3666 { 3667 struct cgroup *cgrp = seq_css(seq)->cgroup; 3668 3669 seq_printf(seq, "%d\n", cgrp->freezer.freeze); 3670 3671 return 0; 3672 } 3673 3674 static ssize_t cgroup_freeze_write(struct kernfs_open_file *of, 3675 char *buf, size_t nbytes, loff_t off) 3676 { 3677 struct cgroup *cgrp; 3678 ssize_t ret; 3679 int freeze; 3680 3681 ret = kstrtoint(strstrip(buf), 0, &freeze); 3682 if (ret) 3683 return ret; 3684 3685 if (freeze < 0 || freeze > 1) 3686 return -ERANGE; 3687 3688 cgrp = cgroup_kn_lock_live(of->kn, false); 3689 if (!cgrp) 3690 return -ENOENT; 3691 3692 cgroup_freeze(cgrp, freeze); 3693 3694 cgroup_kn_unlock(of->kn); 3695 3696 return nbytes; 3697 } 3698 3699 static void __cgroup_kill(struct cgroup *cgrp) 3700 { 3701 struct css_task_iter it; 3702 struct task_struct *task; 3703 3704 lockdep_assert_held(&cgroup_mutex); 3705 3706 spin_lock_irq(&css_set_lock); 3707 set_bit(CGRP_KILL, &cgrp->flags); 3708 spin_unlock_irq(&css_set_lock); 3709 3710 css_task_iter_start(&cgrp->self, CSS_TASK_ITER_PROCS | CSS_TASK_ITER_THREADED, &it); 3711 while ((task = css_task_iter_next(&it))) { 3712 /* Ignore kernel threads here. */ 3713 if (task->flags & PF_KTHREAD) 3714 continue; 3715 3716 /* Skip tasks that are already dying. */ 3717 if (__fatal_signal_pending(task)) 3718 continue; 3719 3720 send_sig(SIGKILL, task, 0); 3721 } 3722 css_task_iter_end(&it); 3723 3724 spin_lock_irq(&css_set_lock); 3725 clear_bit(CGRP_KILL, &cgrp->flags); 3726 spin_unlock_irq(&css_set_lock); 3727 } 3728 3729 static void cgroup_kill(struct cgroup *cgrp) 3730 { 3731 struct cgroup_subsys_state *css; 3732 struct cgroup *dsct; 3733 3734 lockdep_assert_held(&cgroup_mutex); 3735 3736 cgroup_for_each_live_descendant_pre(dsct, css, cgrp) 3737 __cgroup_kill(dsct); 3738 } 3739 3740 static ssize_t cgroup_kill_write(struct kernfs_open_file *of, char *buf, 3741 size_t nbytes, loff_t off) 3742 { 3743 ssize_t ret = 0; 3744 int kill; 3745 struct cgroup *cgrp; 3746 3747 ret = kstrtoint(strstrip(buf), 0, &kill); 3748 if (ret) 3749 return ret; 3750 3751 if (kill != 1) 3752 return -ERANGE; 3753 3754 cgrp = cgroup_kn_lock_live(of->kn, false); 3755 if (!cgrp) 3756 return -ENOENT; 3757 3758 /* 3759 * Killing is a process directed operation, i.e. the whole thread-group 3760 * is taken down so act like we do for cgroup.procs and only make this 3761 * writable in non-threaded cgroups. 3762 */ 3763 if (cgroup_is_threaded(cgrp)) 3764 ret = -EOPNOTSUPP; 3765 else 3766 cgroup_kill(cgrp); 3767 3768 cgroup_kn_unlock(of->kn); 3769 3770 return ret ?: nbytes; 3771 } 3772 3773 static int cgroup_file_open(struct kernfs_open_file *of) 3774 { 3775 struct cftype *cft = of_cft(of); 3776 3777 if (cft->open) 3778 return cft->open(of); 3779 return 0; 3780 } 3781 3782 static void cgroup_file_release(struct kernfs_open_file *of) 3783 { 3784 struct cftype *cft = of_cft(of); 3785 3786 if (cft->release) 3787 cft->release(of); 3788 } 3789 3790 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf, 3791 size_t nbytes, loff_t off) 3792 { 3793 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns; 3794 struct cgroup *cgrp = of->kn->parent->priv; 3795 struct cftype *cft = of_cft(of); 3796 struct cgroup_subsys_state *css; 3797 int ret; 3798 3799 if (!nbytes) 3800 return 0; 3801 3802 /* 3803 * If namespaces are delegation boundaries, disallow writes to 3804 * files in an non-init namespace root from inside the namespace 3805 * except for the files explicitly marked delegatable - 3806 * cgroup.procs and cgroup.subtree_control. 3807 */ 3808 if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) && 3809 !(cft->flags & CFTYPE_NS_DELEGATABLE) && 3810 ns != &init_cgroup_ns && ns->root_cset->dfl_cgrp == cgrp) 3811 return -EPERM; 3812 3813 if (cft->write) 3814 return cft->write(of, buf, nbytes, off); 3815 3816 /* 3817 * kernfs guarantees that a file isn't deleted with operations in 3818 * flight, which means that the matching css is and stays alive and 3819 * doesn't need to be pinned. The RCU locking is not necessary 3820 * either. It's just for the convenience of using cgroup_css(). 3821 */ 3822 rcu_read_lock(); 3823 css = cgroup_css(cgrp, cft->ss); 3824 rcu_read_unlock(); 3825 3826 if (cft->write_u64) { 3827 unsigned long long v; 3828 ret = kstrtoull(buf, 0, &v); 3829 if (!ret) 3830 ret = cft->write_u64(css, cft, v); 3831 } else if (cft->write_s64) { 3832 long long v; 3833 ret = kstrtoll(buf, 0, &v); 3834 if (!ret) 3835 ret = cft->write_s64(css, cft, v); 3836 } else { 3837 ret = -EINVAL; 3838 } 3839 3840 return ret ?: nbytes; 3841 } 3842 3843 static __poll_t cgroup_file_poll(struct kernfs_open_file *of, poll_table *pt) 3844 { 3845 struct cftype *cft = of_cft(of); 3846 3847 if (cft->poll) 3848 return cft->poll(of, pt); 3849 3850 return kernfs_generic_poll(of, pt); 3851 } 3852 3853 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos) 3854 { 3855 return seq_cft(seq)->seq_start(seq, ppos); 3856 } 3857 3858 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos) 3859 { 3860 return seq_cft(seq)->seq_next(seq, v, ppos); 3861 } 3862 3863 static void cgroup_seqfile_stop(struct seq_file *seq, void *v) 3864 { 3865 if (seq_cft(seq)->seq_stop) 3866 seq_cft(seq)->seq_stop(seq, v); 3867 } 3868 3869 static int cgroup_seqfile_show(struct seq_file *m, void *arg) 3870 { 3871 struct cftype *cft = seq_cft(m); 3872 struct cgroup_subsys_state *css = seq_css(m); 3873 3874 if (cft->seq_show) 3875 return cft->seq_show(m, arg); 3876 3877 if (cft->read_u64) 3878 seq_printf(m, "%llu\n", cft->read_u64(css, cft)); 3879 else if (cft->read_s64) 3880 seq_printf(m, "%lld\n", cft->read_s64(css, cft)); 3881 else 3882 return -EINVAL; 3883 return 0; 3884 } 3885 3886 static struct kernfs_ops cgroup_kf_single_ops = { 3887 .atomic_write_len = PAGE_SIZE, 3888 .open = cgroup_file_open, 3889 .release = cgroup_file_release, 3890 .write = cgroup_file_write, 3891 .poll = cgroup_file_poll, 3892 .seq_show = cgroup_seqfile_show, 3893 }; 3894 3895 static struct kernfs_ops cgroup_kf_ops = { 3896 .atomic_write_len = PAGE_SIZE, 3897 .open = cgroup_file_open, 3898 .release = cgroup_file_release, 3899 .write = cgroup_file_write, 3900 .poll = cgroup_file_poll, 3901 .seq_start = cgroup_seqfile_start, 3902 .seq_next = cgroup_seqfile_next, 3903 .seq_stop = cgroup_seqfile_stop, 3904 .seq_show = cgroup_seqfile_show, 3905 }; 3906 3907 /* set uid and gid of cgroup dirs and files to that of the creator */ 3908 static int cgroup_kn_set_ugid(struct kernfs_node *kn) 3909 { 3910 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID, 3911 .ia_uid = current_fsuid(), 3912 .ia_gid = current_fsgid(), }; 3913 3914 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) && 3915 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID)) 3916 return 0; 3917 3918 return kernfs_setattr(kn, &iattr); 3919 } 3920 3921 static void cgroup_file_notify_timer(struct timer_list *timer) 3922 { 3923 cgroup_file_notify(container_of(timer, struct cgroup_file, 3924 notify_timer)); 3925 } 3926 3927 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp, 3928 struct cftype *cft) 3929 { 3930 char name[CGROUP_FILE_NAME_MAX]; 3931 struct kernfs_node *kn; 3932 struct lock_class_key *key = NULL; 3933 int ret; 3934 3935 #ifdef CONFIG_DEBUG_LOCK_ALLOC 3936 key = &cft->lockdep_key; 3937 #endif 3938 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name), 3939 cgroup_file_mode(cft), 3940 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 3941 0, cft->kf_ops, cft, 3942 NULL, key); 3943 if (IS_ERR(kn)) 3944 return PTR_ERR(kn); 3945 3946 ret = cgroup_kn_set_ugid(kn); 3947 if (ret) { 3948 kernfs_remove(kn); 3949 return ret; 3950 } 3951 3952 if (cft->file_offset) { 3953 struct cgroup_file *cfile = (void *)css + cft->file_offset; 3954 3955 timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0); 3956 3957 spin_lock_irq(&cgroup_file_kn_lock); 3958 cfile->kn = kn; 3959 spin_unlock_irq(&cgroup_file_kn_lock); 3960 } 3961 3962 return 0; 3963 } 3964 3965 /** 3966 * cgroup_addrm_files - add or remove files to a cgroup directory 3967 * @css: the target css 3968 * @cgrp: the target cgroup (usually css->cgroup) 3969 * @cfts: array of cftypes to be added 3970 * @is_add: whether to add or remove 3971 * 3972 * Depending on @is_add, add or remove files defined by @cfts on @cgrp. 3973 * For removals, this function never fails. 3974 */ 3975 static int cgroup_addrm_files(struct cgroup_subsys_state *css, 3976 struct cgroup *cgrp, struct cftype cfts[], 3977 bool is_add) 3978 { 3979 struct cftype *cft, *cft_end = NULL; 3980 int ret = 0; 3981 3982 lockdep_assert_held(&cgroup_mutex); 3983 3984 restart: 3985 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) { 3986 /* does cft->flags tell us to skip this file on @cgrp? */ 3987 if ((cft->flags & CFTYPE_PRESSURE) && !cgroup_psi_enabled()) 3988 continue; 3989 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp)) 3990 continue; 3991 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp)) 3992 continue; 3993 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp)) 3994 continue; 3995 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp)) 3996 continue; 3997 if ((cft->flags & CFTYPE_DEBUG) && !cgroup_debug) 3998 continue; 3999 if (is_add) { 4000 ret = cgroup_add_file(css, cgrp, cft); 4001 if (ret) { 4002 pr_warn("%s: failed to add %s, err=%d\n", 4003 __func__, cft->name, ret); 4004 cft_end = cft; 4005 is_add = false; 4006 goto restart; 4007 } 4008 } else { 4009 cgroup_rm_file(cgrp, cft); 4010 } 4011 } 4012 return ret; 4013 } 4014 4015 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add) 4016 { 4017 struct cgroup_subsys *ss = cfts[0].ss; 4018 struct cgroup *root = &ss->root->cgrp; 4019 struct cgroup_subsys_state *css; 4020 int ret = 0; 4021 4022 lockdep_assert_held(&cgroup_mutex); 4023 4024 /* add/rm files for all cgroups created before */ 4025 css_for_each_descendant_pre(css, cgroup_css(root, ss)) { 4026 struct cgroup *cgrp = css->cgroup; 4027 4028 if (!(css->flags & CSS_VISIBLE)) 4029 continue; 4030 4031 ret = cgroup_addrm_files(css, cgrp, cfts, is_add); 4032 if (ret) 4033 break; 4034 } 4035 4036 if (is_add && !ret) 4037 kernfs_activate(root->kn); 4038 return ret; 4039 } 4040 4041 static void cgroup_exit_cftypes(struct cftype *cfts) 4042 { 4043 struct cftype *cft; 4044 4045 for (cft = cfts; cft->name[0] != '\0'; cft++) { 4046 /* free copy for custom atomic_write_len, see init_cftypes() */ 4047 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) 4048 kfree(cft->kf_ops); 4049 cft->kf_ops = NULL; 4050 cft->ss = NULL; 4051 4052 /* revert flags set by cgroup core while adding @cfts */ 4053 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL); 4054 } 4055 } 4056 4057 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4058 { 4059 struct cftype *cft; 4060 4061 for (cft = cfts; cft->name[0] != '\0'; cft++) { 4062 struct kernfs_ops *kf_ops; 4063 4064 WARN_ON(cft->ss || cft->kf_ops); 4065 4066 if ((cft->flags & CFTYPE_PRESSURE) && !cgroup_psi_enabled()) 4067 continue; 4068 4069 if (cft->seq_start) 4070 kf_ops = &cgroup_kf_ops; 4071 else 4072 kf_ops = &cgroup_kf_single_ops; 4073 4074 /* 4075 * Ugh... if @cft wants a custom max_write_len, we need to 4076 * make a copy of kf_ops to set its atomic_write_len. 4077 */ 4078 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) { 4079 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL); 4080 if (!kf_ops) { 4081 cgroup_exit_cftypes(cfts); 4082 return -ENOMEM; 4083 } 4084 kf_ops->atomic_write_len = cft->max_write_len; 4085 } 4086 4087 cft->kf_ops = kf_ops; 4088 cft->ss = ss; 4089 } 4090 4091 return 0; 4092 } 4093 4094 static int cgroup_rm_cftypes_locked(struct cftype *cfts) 4095 { 4096 lockdep_assert_held(&cgroup_mutex); 4097 4098 if (!cfts || !cfts[0].ss) 4099 return -ENOENT; 4100 4101 list_del(&cfts->node); 4102 cgroup_apply_cftypes(cfts, false); 4103 cgroup_exit_cftypes(cfts); 4104 return 0; 4105 } 4106 4107 /** 4108 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem 4109 * @cfts: zero-length name terminated array of cftypes 4110 * 4111 * Unregister @cfts. Files described by @cfts are removed from all 4112 * existing cgroups and all future cgroups won't have them either. This 4113 * function can be called anytime whether @cfts' subsys is attached or not. 4114 * 4115 * Returns 0 on successful unregistration, -ENOENT if @cfts is not 4116 * registered. 4117 */ 4118 int cgroup_rm_cftypes(struct cftype *cfts) 4119 { 4120 int ret; 4121 4122 mutex_lock(&cgroup_mutex); 4123 ret = cgroup_rm_cftypes_locked(cfts); 4124 mutex_unlock(&cgroup_mutex); 4125 return ret; 4126 } 4127 4128 /** 4129 * cgroup_add_cftypes - add an array of cftypes to a subsystem 4130 * @ss: target cgroup subsystem 4131 * @cfts: zero-length name terminated array of cftypes 4132 * 4133 * Register @cfts to @ss. Files described by @cfts are created for all 4134 * existing cgroups to which @ss is attached and all future cgroups will 4135 * have them too. This function can be called anytime whether @ss is 4136 * attached or not. 4137 * 4138 * Returns 0 on successful registration, -errno on failure. Note that this 4139 * function currently returns 0 as long as @cfts registration is successful 4140 * even if some file creation attempts on existing cgroups fail. 4141 */ 4142 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4143 { 4144 int ret; 4145 4146 if (!cgroup_ssid_enabled(ss->id)) 4147 return 0; 4148 4149 if (!cfts || cfts[0].name[0] == '\0') 4150 return 0; 4151 4152 ret = cgroup_init_cftypes(ss, cfts); 4153 if (ret) 4154 return ret; 4155 4156 mutex_lock(&cgroup_mutex); 4157 4158 list_add_tail(&cfts->node, &ss->cfts); 4159 ret = cgroup_apply_cftypes(cfts, true); 4160 if (ret) 4161 cgroup_rm_cftypes_locked(cfts); 4162 4163 mutex_unlock(&cgroup_mutex); 4164 return ret; 4165 } 4166 4167 /** 4168 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy 4169 * @ss: target cgroup subsystem 4170 * @cfts: zero-length name terminated array of cftypes 4171 * 4172 * Similar to cgroup_add_cftypes() but the added files are only used for 4173 * the default hierarchy. 4174 */ 4175 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4176 { 4177 struct cftype *cft; 4178 4179 for (cft = cfts; cft && cft->name[0] != '\0'; cft++) 4180 cft->flags |= __CFTYPE_ONLY_ON_DFL; 4181 return cgroup_add_cftypes(ss, cfts); 4182 } 4183 4184 /** 4185 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies 4186 * @ss: target cgroup subsystem 4187 * @cfts: zero-length name terminated array of cftypes 4188 * 4189 * Similar to cgroup_add_cftypes() but the added files are only used for 4190 * the legacy hierarchies. 4191 */ 4192 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4193 { 4194 struct cftype *cft; 4195 4196 for (cft = cfts; cft && cft->name[0] != '\0'; cft++) 4197 cft->flags |= __CFTYPE_NOT_ON_DFL; 4198 return cgroup_add_cftypes(ss, cfts); 4199 } 4200 4201 /** 4202 * cgroup_file_notify - generate a file modified event for a cgroup_file 4203 * @cfile: target cgroup_file 4204 * 4205 * @cfile must have been obtained by setting cftype->file_offset. 4206 */ 4207 void cgroup_file_notify(struct cgroup_file *cfile) 4208 { 4209 unsigned long flags; 4210 4211 spin_lock_irqsave(&cgroup_file_kn_lock, flags); 4212 if (cfile->kn) { 4213 unsigned long last = cfile->notified_at; 4214 unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV; 4215 4216 if (time_in_range(jiffies, last, next)) { 4217 timer_reduce(&cfile->notify_timer, next); 4218 } else { 4219 kernfs_notify(cfile->kn); 4220 cfile->notified_at = jiffies; 4221 } 4222 } 4223 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags); 4224 } 4225 4226 /** 4227 * css_next_child - find the next child of a given css 4228 * @pos: the current position (%NULL to initiate traversal) 4229 * @parent: css whose children to walk 4230 * 4231 * This function returns the next child of @parent and should be called 4232 * under either cgroup_mutex or RCU read lock. The only requirement is 4233 * that @parent and @pos are accessible. The next sibling is guaranteed to 4234 * be returned regardless of their states. 4235 * 4236 * If a subsystem synchronizes ->css_online() and the start of iteration, a 4237 * css which finished ->css_online() is guaranteed to be visible in the 4238 * future iterations and will stay visible until the last reference is put. 4239 * A css which hasn't finished ->css_online() or already finished 4240 * ->css_offline() may show up during traversal. It's each subsystem's 4241 * responsibility to synchronize against on/offlining. 4242 */ 4243 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos, 4244 struct cgroup_subsys_state *parent) 4245 { 4246 struct cgroup_subsys_state *next; 4247 4248 cgroup_assert_mutex_or_rcu_locked(); 4249 4250 /* 4251 * @pos could already have been unlinked from the sibling list. 4252 * Once a cgroup is removed, its ->sibling.next is no longer 4253 * updated when its next sibling changes. CSS_RELEASED is set when 4254 * @pos is taken off list, at which time its next pointer is valid, 4255 * and, as releases are serialized, the one pointed to by the next 4256 * pointer is guaranteed to not have started release yet. This 4257 * implies that if we observe !CSS_RELEASED on @pos in this RCU 4258 * critical section, the one pointed to by its next pointer is 4259 * guaranteed to not have finished its RCU grace period even if we 4260 * have dropped rcu_read_lock() in-between iterations. 4261 * 4262 * If @pos has CSS_RELEASED set, its next pointer can't be 4263 * dereferenced; however, as each css is given a monotonically 4264 * increasing unique serial number and always appended to the 4265 * sibling list, the next one can be found by walking the parent's 4266 * children until the first css with higher serial number than 4267 * @pos's. While this path can be slower, it happens iff iteration 4268 * races against release and the race window is very small. 4269 */ 4270 if (!pos) { 4271 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling); 4272 } else if (likely(!(pos->flags & CSS_RELEASED))) { 4273 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling); 4274 } else { 4275 list_for_each_entry_rcu(next, &parent->children, sibling, 4276 lockdep_is_held(&cgroup_mutex)) 4277 if (next->serial_nr > pos->serial_nr) 4278 break; 4279 } 4280 4281 /* 4282 * @next, if not pointing to the head, can be dereferenced and is 4283 * the next sibling. 4284 */ 4285 if (&next->sibling != &parent->children) 4286 return next; 4287 return NULL; 4288 } 4289 4290 /** 4291 * css_next_descendant_pre - find the next descendant for pre-order walk 4292 * @pos: the current position (%NULL to initiate traversal) 4293 * @root: css whose descendants to walk 4294 * 4295 * To be used by css_for_each_descendant_pre(). Find the next descendant 4296 * to visit for pre-order traversal of @root's descendants. @root is 4297 * included in the iteration and the first node to be visited. 4298 * 4299 * While this function requires cgroup_mutex or RCU read locking, it 4300 * doesn't require the whole traversal to be contained in a single critical 4301 * section. This function will return the correct next descendant as long 4302 * as both @pos and @root are accessible and @pos is a descendant of @root. 4303 * 4304 * If a subsystem synchronizes ->css_online() and the start of iteration, a 4305 * css which finished ->css_online() is guaranteed to be visible in the 4306 * future iterations and will stay visible until the last reference is put. 4307 * A css which hasn't finished ->css_online() or already finished 4308 * ->css_offline() may show up during traversal. It's each subsystem's 4309 * responsibility to synchronize against on/offlining. 4310 */ 4311 struct cgroup_subsys_state * 4312 css_next_descendant_pre(struct cgroup_subsys_state *pos, 4313 struct cgroup_subsys_state *root) 4314 { 4315 struct cgroup_subsys_state *next; 4316 4317 cgroup_assert_mutex_or_rcu_locked(); 4318 4319 /* if first iteration, visit @root */ 4320 if (!pos) 4321 return root; 4322 4323 /* visit the first child if exists */ 4324 next = css_next_child(NULL, pos); 4325 if (next) 4326 return next; 4327 4328 /* no child, visit my or the closest ancestor's next sibling */ 4329 while (pos != root) { 4330 next = css_next_child(pos, pos->parent); 4331 if (next) 4332 return next; 4333 pos = pos->parent; 4334 } 4335 4336 return NULL; 4337 } 4338 EXPORT_SYMBOL_GPL(css_next_descendant_pre); 4339 4340 /** 4341 * css_rightmost_descendant - return the rightmost descendant of a css 4342 * @pos: css of interest 4343 * 4344 * Return the rightmost descendant of @pos. If there's no descendant, @pos 4345 * is returned. This can be used during pre-order traversal to skip 4346 * subtree of @pos. 4347 * 4348 * While this function requires cgroup_mutex or RCU read locking, it 4349 * doesn't require the whole traversal to be contained in a single critical 4350 * section. This function will return the correct rightmost descendant as 4351 * long as @pos is accessible. 4352 */ 4353 struct cgroup_subsys_state * 4354 css_rightmost_descendant(struct cgroup_subsys_state *pos) 4355 { 4356 struct cgroup_subsys_state *last, *tmp; 4357 4358 cgroup_assert_mutex_or_rcu_locked(); 4359 4360 do { 4361 last = pos; 4362 /* ->prev isn't RCU safe, walk ->next till the end */ 4363 pos = NULL; 4364 css_for_each_child(tmp, last) 4365 pos = tmp; 4366 } while (pos); 4367 4368 return last; 4369 } 4370 4371 static struct cgroup_subsys_state * 4372 css_leftmost_descendant(struct cgroup_subsys_state *pos) 4373 { 4374 struct cgroup_subsys_state *last; 4375 4376 do { 4377 last = pos; 4378 pos = css_next_child(NULL, pos); 4379 } while (pos); 4380 4381 return last; 4382 } 4383 4384 /** 4385 * css_next_descendant_post - find the next descendant for post-order walk 4386 * @pos: the current position (%NULL to initiate traversal) 4387 * @root: css whose descendants to walk 4388 * 4389 * To be used by css_for_each_descendant_post(). Find the next descendant 4390 * to visit for post-order traversal of @root's descendants. @root is 4391 * included in the iteration and the last node to be visited. 4392 * 4393 * While this function requires cgroup_mutex or RCU read locking, it 4394 * doesn't require the whole traversal to be contained in a single critical 4395 * section. This function will return the correct next descendant as long 4396 * as both @pos and @cgroup are accessible and @pos is a descendant of 4397 * @cgroup. 4398 * 4399 * If a subsystem synchronizes ->css_online() and the start of iteration, a 4400 * css which finished ->css_online() is guaranteed to be visible in the 4401 * future iterations and will stay visible until the last reference is put. 4402 * A css which hasn't finished ->css_online() or already finished 4403 * ->css_offline() may show up during traversal. It's each subsystem's 4404 * responsibility to synchronize against on/offlining. 4405 */ 4406 struct cgroup_subsys_state * 4407 css_next_descendant_post(struct cgroup_subsys_state *pos, 4408 struct cgroup_subsys_state *root) 4409 { 4410 struct cgroup_subsys_state *next; 4411 4412 cgroup_assert_mutex_or_rcu_locked(); 4413 4414 /* if first iteration, visit leftmost descendant which may be @root */ 4415 if (!pos) 4416 return css_leftmost_descendant(root); 4417 4418 /* if we visited @root, we're done */ 4419 if (pos == root) 4420 return NULL; 4421 4422 /* if there's an unvisited sibling, visit its leftmost descendant */ 4423 next = css_next_child(pos, pos->parent); 4424 if (next) 4425 return css_leftmost_descendant(next); 4426 4427 /* no sibling left, visit parent */ 4428 return pos->parent; 4429 } 4430 4431 /** 4432 * css_has_online_children - does a css have online children 4433 * @css: the target css 4434 * 4435 * Returns %true if @css has any online children; otherwise, %false. This 4436 * function can be called from any context but the caller is responsible 4437 * for synchronizing against on/offlining as necessary. 4438 */ 4439 bool css_has_online_children(struct cgroup_subsys_state *css) 4440 { 4441 struct cgroup_subsys_state *child; 4442 bool ret = false; 4443 4444 rcu_read_lock(); 4445 css_for_each_child(child, css) { 4446 if (child->flags & CSS_ONLINE) { 4447 ret = true; 4448 break; 4449 } 4450 } 4451 rcu_read_unlock(); 4452 return ret; 4453 } 4454 4455 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it) 4456 { 4457 struct list_head *l; 4458 struct cgrp_cset_link *link; 4459 struct css_set *cset; 4460 4461 lockdep_assert_held(&css_set_lock); 4462 4463 /* find the next threaded cset */ 4464 if (it->tcset_pos) { 4465 l = it->tcset_pos->next; 4466 4467 if (l != it->tcset_head) { 4468 it->tcset_pos = l; 4469 return container_of(l, struct css_set, 4470 threaded_csets_node); 4471 } 4472 4473 it->tcset_pos = NULL; 4474 } 4475 4476 /* find the next cset */ 4477 l = it->cset_pos; 4478 l = l->next; 4479 if (l == it->cset_head) { 4480 it->cset_pos = NULL; 4481 return NULL; 4482 } 4483 4484 if (it->ss) { 4485 cset = container_of(l, struct css_set, e_cset_node[it->ss->id]); 4486 } else { 4487 link = list_entry(l, struct cgrp_cset_link, cset_link); 4488 cset = link->cset; 4489 } 4490 4491 it->cset_pos = l; 4492 4493 /* initialize threaded css_set walking */ 4494 if (it->flags & CSS_TASK_ITER_THREADED) { 4495 if (it->cur_dcset) 4496 put_css_set_locked(it->cur_dcset); 4497 it->cur_dcset = cset; 4498 get_css_set(cset); 4499 4500 it->tcset_head = &cset->threaded_csets; 4501 it->tcset_pos = &cset->threaded_csets; 4502 } 4503 4504 return cset; 4505 } 4506 4507 /** 4508 * css_task_iter_advance_css_set - advance a task iterator to the next css_set 4509 * @it: the iterator to advance 4510 * 4511 * Advance @it to the next css_set to walk. 4512 */ 4513 static void css_task_iter_advance_css_set(struct css_task_iter *it) 4514 { 4515 struct css_set *cset; 4516 4517 lockdep_assert_held(&css_set_lock); 4518 4519 /* Advance to the next non-empty css_set and find first non-empty tasks list*/ 4520 while ((cset = css_task_iter_next_css_set(it))) { 4521 if (!list_empty(&cset->tasks)) { 4522 it->cur_tasks_head = &cset->tasks; 4523 break; 4524 } else if (!list_empty(&cset->mg_tasks)) { 4525 it->cur_tasks_head = &cset->mg_tasks; 4526 break; 4527 } else if (!list_empty(&cset->dying_tasks)) { 4528 it->cur_tasks_head = &cset->dying_tasks; 4529 break; 4530 } 4531 } 4532 if (!cset) { 4533 it->task_pos = NULL; 4534 return; 4535 } 4536 it->task_pos = it->cur_tasks_head->next; 4537 4538 /* 4539 * We don't keep css_sets locked across iteration steps and thus 4540 * need to take steps to ensure that iteration can be resumed after 4541 * the lock is re-acquired. Iteration is performed at two levels - 4542 * css_sets and tasks in them. 4543 * 4544 * Once created, a css_set never leaves its cgroup lists, so a 4545 * pinned css_set is guaranteed to stay put and we can resume 4546 * iteration afterwards. 4547 * 4548 * Tasks may leave @cset across iteration steps. This is resolved 4549 * by registering each iterator with the css_set currently being 4550 * walked and making css_set_move_task() advance iterators whose 4551 * next task is leaving. 4552 */ 4553 if (it->cur_cset) { 4554 list_del(&it->iters_node); 4555 put_css_set_locked(it->cur_cset); 4556 } 4557 get_css_set(cset); 4558 it->cur_cset = cset; 4559 list_add(&it->iters_node, &cset->task_iters); 4560 } 4561 4562 static void css_task_iter_skip(struct css_task_iter *it, 4563 struct task_struct *task) 4564 { 4565 lockdep_assert_held(&css_set_lock); 4566 4567 if (it->task_pos == &task->cg_list) { 4568 it->task_pos = it->task_pos->next; 4569 it->flags |= CSS_TASK_ITER_SKIPPED; 4570 } 4571 } 4572 4573 static void css_task_iter_advance(struct css_task_iter *it) 4574 { 4575 struct task_struct *task; 4576 4577 lockdep_assert_held(&css_set_lock); 4578 repeat: 4579 if (it->task_pos) { 4580 /* 4581 * Advance iterator to find next entry. We go through cset 4582 * tasks, mg_tasks and dying_tasks, when consumed we move onto 4583 * the next cset. 4584 */ 4585 if (it->flags & CSS_TASK_ITER_SKIPPED) 4586 it->flags &= ~CSS_TASK_ITER_SKIPPED; 4587 else 4588 it->task_pos = it->task_pos->next; 4589 4590 if (it->task_pos == &it->cur_cset->tasks) { 4591 it->cur_tasks_head = &it->cur_cset->mg_tasks; 4592 it->task_pos = it->cur_tasks_head->next; 4593 } 4594 if (it->task_pos == &it->cur_cset->mg_tasks) { 4595 it->cur_tasks_head = &it->cur_cset->dying_tasks; 4596 it->task_pos = it->cur_tasks_head->next; 4597 } 4598 if (it->task_pos == &it->cur_cset->dying_tasks) 4599 css_task_iter_advance_css_set(it); 4600 } else { 4601 /* called from start, proceed to the first cset */ 4602 css_task_iter_advance_css_set(it); 4603 } 4604 4605 if (!it->task_pos) 4606 return; 4607 4608 task = list_entry(it->task_pos, struct task_struct, cg_list); 4609 4610 if (it->flags & CSS_TASK_ITER_PROCS) { 4611 /* if PROCS, skip over tasks which aren't group leaders */ 4612 if (!thread_group_leader(task)) 4613 goto repeat; 4614 4615 /* and dying leaders w/o live member threads */ 4616 if (it->cur_tasks_head == &it->cur_cset->dying_tasks && 4617 !atomic_read(&task->signal->live)) 4618 goto repeat; 4619 } else { 4620 /* skip all dying ones */ 4621 if (it->cur_tasks_head == &it->cur_cset->dying_tasks) 4622 goto repeat; 4623 } 4624 } 4625 4626 /** 4627 * css_task_iter_start - initiate task iteration 4628 * @css: the css to walk tasks of 4629 * @flags: CSS_TASK_ITER_* flags 4630 * @it: the task iterator to use 4631 * 4632 * Initiate iteration through the tasks of @css. The caller can call 4633 * css_task_iter_next() to walk through the tasks until the function 4634 * returns NULL. On completion of iteration, css_task_iter_end() must be 4635 * called. 4636 */ 4637 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags, 4638 struct css_task_iter *it) 4639 { 4640 memset(it, 0, sizeof(*it)); 4641 4642 spin_lock_irq(&css_set_lock); 4643 4644 it->ss = css->ss; 4645 it->flags = flags; 4646 4647 if (it->ss) 4648 it->cset_pos = &css->cgroup->e_csets[css->ss->id]; 4649 else 4650 it->cset_pos = &css->cgroup->cset_links; 4651 4652 it->cset_head = it->cset_pos; 4653 4654 css_task_iter_advance(it); 4655 4656 spin_unlock_irq(&css_set_lock); 4657 } 4658 4659 /** 4660 * css_task_iter_next - return the next task for the iterator 4661 * @it: the task iterator being iterated 4662 * 4663 * The "next" function for task iteration. @it should have been 4664 * initialized via css_task_iter_start(). Returns NULL when the iteration 4665 * reaches the end. 4666 */ 4667 struct task_struct *css_task_iter_next(struct css_task_iter *it) 4668 { 4669 if (it->cur_task) { 4670 put_task_struct(it->cur_task); 4671 it->cur_task = NULL; 4672 } 4673 4674 spin_lock_irq(&css_set_lock); 4675 4676 /* @it may be half-advanced by skips, finish advancing */ 4677 if (it->flags & CSS_TASK_ITER_SKIPPED) 4678 css_task_iter_advance(it); 4679 4680 if (it->task_pos) { 4681 it->cur_task = list_entry(it->task_pos, struct task_struct, 4682 cg_list); 4683 get_task_struct(it->cur_task); 4684 css_task_iter_advance(it); 4685 } 4686 4687 spin_unlock_irq(&css_set_lock); 4688 4689 return it->cur_task; 4690 } 4691 4692 /** 4693 * css_task_iter_end - finish task iteration 4694 * @it: the task iterator to finish 4695 * 4696 * Finish task iteration started by css_task_iter_start(). 4697 */ 4698 void css_task_iter_end(struct css_task_iter *it) 4699 { 4700 if (it->cur_cset) { 4701 spin_lock_irq(&css_set_lock); 4702 list_del(&it->iters_node); 4703 put_css_set_locked(it->cur_cset); 4704 spin_unlock_irq(&css_set_lock); 4705 } 4706 4707 if (it->cur_dcset) 4708 put_css_set(it->cur_dcset); 4709 4710 if (it->cur_task) 4711 put_task_struct(it->cur_task); 4712 } 4713 4714 static void cgroup_procs_release(struct kernfs_open_file *of) 4715 { 4716 if (of->priv) { 4717 css_task_iter_end(of->priv); 4718 kfree(of->priv); 4719 } 4720 } 4721 4722 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos) 4723 { 4724 struct kernfs_open_file *of = s->private; 4725 struct css_task_iter *it = of->priv; 4726 4727 if (pos) 4728 (*pos)++; 4729 4730 return css_task_iter_next(it); 4731 } 4732 4733 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos, 4734 unsigned int iter_flags) 4735 { 4736 struct kernfs_open_file *of = s->private; 4737 struct cgroup *cgrp = seq_css(s)->cgroup; 4738 struct css_task_iter *it = of->priv; 4739 4740 /* 4741 * When a seq_file is seeked, it's always traversed sequentially 4742 * from position 0, so we can simply keep iterating on !0 *pos. 4743 */ 4744 if (!it) { 4745 if (WARN_ON_ONCE((*pos))) 4746 return ERR_PTR(-EINVAL); 4747 4748 it = kzalloc(sizeof(*it), GFP_KERNEL); 4749 if (!it) 4750 return ERR_PTR(-ENOMEM); 4751 of->priv = it; 4752 css_task_iter_start(&cgrp->self, iter_flags, it); 4753 } else if (!(*pos)) { 4754 css_task_iter_end(it); 4755 css_task_iter_start(&cgrp->self, iter_flags, it); 4756 } else 4757 return it->cur_task; 4758 4759 return cgroup_procs_next(s, NULL, NULL); 4760 } 4761 4762 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos) 4763 { 4764 struct cgroup *cgrp = seq_css(s)->cgroup; 4765 4766 /* 4767 * All processes of a threaded subtree belong to the domain cgroup 4768 * of the subtree. Only threads can be distributed across the 4769 * subtree. Reject reads on cgroup.procs in the subtree proper. 4770 * They're always empty anyway. 4771 */ 4772 if (cgroup_is_threaded(cgrp)) 4773 return ERR_PTR(-EOPNOTSUPP); 4774 4775 return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS | 4776 CSS_TASK_ITER_THREADED); 4777 } 4778 4779 static int cgroup_procs_show(struct seq_file *s, void *v) 4780 { 4781 seq_printf(s, "%d\n", task_pid_vnr(v)); 4782 return 0; 4783 } 4784 4785 static int cgroup_may_write(const struct cgroup *cgrp, struct super_block *sb) 4786 { 4787 int ret; 4788 struct inode *inode; 4789 4790 lockdep_assert_held(&cgroup_mutex); 4791 4792 inode = kernfs_get_inode(sb, cgrp->procs_file.kn); 4793 if (!inode) 4794 return -ENOMEM; 4795 4796 ret = inode_permission(&init_user_ns, inode, MAY_WRITE); 4797 iput(inode); 4798 return ret; 4799 } 4800 4801 static int cgroup_procs_write_permission(struct cgroup *src_cgrp, 4802 struct cgroup *dst_cgrp, 4803 struct super_block *sb) 4804 { 4805 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns; 4806 struct cgroup *com_cgrp = src_cgrp; 4807 int ret; 4808 4809 lockdep_assert_held(&cgroup_mutex); 4810 4811 /* find the common ancestor */ 4812 while (!cgroup_is_descendant(dst_cgrp, com_cgrp)) 4813 com_cgrp = cgroup_parent(com_cgrp); 4814 4815 /* %current should be authorized to migrate to the common ancestor */ 4816 ret = cgroup_may_write(com_cgrp, sb); 4817 if (ret) 4818 return ret; 4819 4820 /* 4821 * If namespaces are delegation boundaries, %current must be able 4822 * to see both source and destination cgroups from its namespace. 4823 */ 4824 if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) && 4825 (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) || 4826 !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp))) 4827 return -ENOENT; 4828 4829 return 0; 4830 } 4831 4832 static int cgroup_attach_permissions(struct cgroup *src_cgrp, 4833 struct cgroup *dst_cgrp, 4834 struct super_block *sb, bool threadgroup) 4835 { 4836 int ret = 0; 4837 4838 ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, sb); 4839 if (ret) 4840 return ret; 4841 4842 ret = cgroup_migrate_vet_dst(dst_cgrp); 4843 if (ret) 4844 return ret; 4845 4846 if (!threadgroup && (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp)) 4847 ret = -EOPNOTSUPP; 4848 4849 return ret; 4850 } 4851 4852 static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf, 4853 bool threadgroup) 4854 { 4855 struct cgroup *src_cgrp, *dst_cgrp; 4856 struct task_struct *task; 4857 ssize_t ret; 4858 bool locked; 4859 4860 dst_cgrp = cgroup_kn_lock_live(of->kn, false); 4861 if (!dst_cgrp) 4862 return -ENODEV; 4863 4864 task = cgroup_procs_write_start(buf, threadgroup, &locked); 4865 ret = PTR_ERR_OR_ZERO(task); 4866 if (ret) 4867 goto out_unlock; 4868 4869 /* find the source cgroup */ 4870 spin_lock_irq(&css_set_lock); 4871 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root); 4872 spin_unlock_irq(&css_set_lock); 4873 4874 /* process and thread migrations follow same delegation rule */ 4875 ret = cgroup_attach_permissions(src_cgrp, dst_cgrp, 4876 of->file->f_path.dentry->d_sb, threadgroup); 4877 if (ret) 4878 goto out_finish; 4879 4880 ret = cgroup_attach_task(dst_cgrp, task, threadgroup); 4881 4882 out_finish: 4883 cgroup_procs_write_finish(task, locked); 4884 out_unlock: 4885 cgroup_kn_unlock(of->kn); 4886 4887 return ret; 4888 } 4889 4890 static ssize_t cgroup_procs_write(struct kernfs_open_file *of, 4891 char *buf, size_t nbytes, loff_t off) 4892 { 4893 return __cgroup_procs_write(of, buf, true) ?: nbytes; 4894 } 4895 4896 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos) 4897 { 4898 return __cgroup_procs_start(s, pos, 0); 4899 } 4900 4901 static ssize_t cgroup_threads_write(struct kernfs_open_file *of, 4902 char *buf, size_t nbytes, loff_t off) 4903 { 4904 return __cgroup_procs_write(of, buf, false) ?: nbytes; 4905 } 4906 4907 /* cgroup core interface files for the default hierarchy */ 4908 static struct cftype cgroup_base_files[] = { 4909 { 4910 .name = "cgroup.type", 4911 .flags = CFTYPE_NOT_ON_ROOT, 4912 .seq_show = cgroup_type_show, 4913 .write = cgroup_type_write, 4914 }, 4915 { 4916 .name = "cgroup.procs", 4917 .flags = CFTYPE_NS_DELEGATABLE, 4918 .file_offset = offsetof(struct cgroup, procs_file), 4919 .release = cgroup_procs_release, 4920 .seq_start = cgroup_procs_start, 4921 .seq_next = cgroup_procs_next, 4922 .seq_show = cgroup_procs_show, 4923 .write = cgroup_procs_write, 4924 }, 4925 { 4926 .name = "cgroup.threads", 4927 .flags = CFTYPE_NS_DELEGATABLE, 4928 .release = cgroup_procs_release, 4929 .seq_start = cgroup_threads_start, 4930 .seq_next = cgroup_procs_next, 4931 .seq_show = cgroup_procs_show, 4932 .write = cgroup_threads_write, 4933 }, 4934 { 4935 .name = "cgroup.controllers", 4936 .seq_show = cgroup_controllers_show, 4937 }, 4938 { 4939 .name = "cgroup.subtree_control", 4940 .flags = CFTYPE_NS_DELEGATABLE, 4941 .seq_show = cgroup_subtree_control_show, 4942 .write = cgroup_subtree_control_write, 4943 }, 4944 { 4945 .name = "cgroup.events", 4946 .flags = CFTYPE_NOT_ON_ROOT, 4947 .file_offset = offsetof(struct cgroup, events_file), 4948 .seq_show = cgroup_events_show, 4949 }, 4950 { 4951 .name = "cgroup.max.descendants", 4952 .seq_show = cgroup_max_descendants_show, 4953 .write = cgroup_max_descendants_write, 4954 }, 4955 { 4956 .name = "cgroup.max.depth", 4957 .seq_show = cgroup_max_depth_show, 4958 .write = cgroup_max_depth_write, 4959 }, 4960 { 4961 .name = "cgroup.stat", 4962 .seq_show = cgroup_stat_show, 4963 }, 4964 { 4965 .name = "cgroup.freeze", 4966 .flags = CFTYPE_NOT_ON_ROOT, 4967 .seq_show = cgroup_freeze_show, 4968 .write = cgroup_freeze_write, 4969 }, 4970 { 4971 .name = "cgroup.kill", 4972 .flags = CFTYPE_NOT_ON_ROOT, 4973 .write = cgroup_kill_write, 4974 }, 4975 { 4976 .name = "cpu.stat", 4977 .seq_show = cpu_stat_show, 4978 }, 4979 #ifdef CONFIG_PSI 4980 { 4981 .name = "io.pressure", 4982 .flags = CFTYPE_PRESSURE, 4983 .seq_show = cgroup_io_pressure_show, 4984 .write = cgroup_io_pressure_write, 4985 .poll = cgroup_pressure_poll, 4986 .release = cgroup_pressure_release, 4987 }, 4988 { 4989 .name = "memory.pressure", 4990 .flags = CFTYPE_PRESSURE, 4991 .seq_show = cgroup_memory_pressure_show, 4992 .write = cgroup_memory_pressure_write, 4993 .poll = cgroup_pressure_poll, 4994 .release = cgroup_pressure_release, 4995 }, 4996 { 4997 .name = "cpu.pressure", 4998 .flags = CFTYPE_PRESSURE, 4999 .seq_show = cgroup_cpu_pressure_show, 5000 .write = cgroup_cpu_pressure_write, 5001 .poll = cgroup_pressure_poll, 5002 .release = cgroup_pressure_release, 5003 }, 5004 #endif /* CONFIG_PSI */ 5005 { } /* terminate */ 5006 }; 5007 5008 /* 5009 * css destruction is four-stage process. 5010 * 5011 * 1. Destruction starts. Killing of the percpu_ref is initiated. 5012 * Implemented in kill_css(). 5013 * 5014 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs 5015 * and thus css_tryget_online() is guaranteed to fail, the css can be 5016 * offlined by invoking offline_css(). After offlining, the base ref is 5017 * put. Implemented in css_killed_work_fn(). 5018 * 5019 * 3. When the percpu_ref reaches zero, the only possible remaining 5020 * accessors are inside RCU read sections. css_release() schedules the 5021 * RCU callback. 5022 * 5023 * 4. After the grace period, the css can be freed. Implemented in 5024 * css_free_work_fn(). 5025 * 5026 * It is actually hairier because both step 2 and 4 require process context 5027 * and thus involve punting to css->destroy_work adding two additional 5028 * steps to the already complex sequence. 5029 */ 5030 static void css_free_rwork_fn(struct work_struct *work) 5031 { 5032 struct cgroup_subsys_state *css = container_of(to_rcu_work(work), 5033 struct cgroup_subsys_state, destroy_rwork); 5034 struct cgroup_subsys *ss = css->ss; 5035 struct cgroup *cgrp = css->cgroup; 5036 5037 percpu_ref_exit(&css->refcnt); 5038 5039 if (ss) { 5040 /* css free path */ 5041 struct cgroup_subsys_state *parent = css->parent; 5042 int id = css->id; 5043 5044 ss->css_free(css); 5045 cgroup_idr_remove(&ss->css_idr, id); 5046 cgroup_put(cgrp); 5047 5048 if (parent) 5049 css_put(parent); 5050 } else { 5051 /* cgroup free path */ 5052 atomic_dec(&cgrp->root->nr_cgrps); 5053 cgroup1_pidlist_destroy_all(cgrp); 5054 cancel_work_sync(&cgrp->release_agent_work); 5055 5056 if (cgroup_parent(cgrp)) { 5057 /* 5058 * We get a ref to the parent, and put the ref when 5059 * this cgroup is being freed, so it's guaranteed 5060 * that the parent won't be destroyed before its 5061 * children. 5062 */ 5063 cgroup_put(cgroup_parent(cgrp)); 5064 kernfs_put(cgrp->kn); 5065 psi_cgroup_free(cgrp); 5066 cgroup_rstat_exit(cgrp); 5067 kfree(cgrp); 5068 } else { 5069 /* 5070 * This is root cgroup's refcnt reaching zero, 5071 * which indicates that the root should be 5072 * released. 5073 */ 5074 cgroup_destroy_root(cgrp->root); 5075 } 5076 } 5077 } 5078 5079 static void css_release_work_fn(struct work_struct *work) 5080 { 5081 struct cgroup_subsys_state *css = 5082 container_of(work, struct cgroup_subsys_state, destroy_work); 5083 struct cgroup_subsys *ss = css->ss; 5084 struct cgroup *cgrp = css->cgroup; 5085 5086 mutex_lock(&cgroup_mutex); 5087 5088 css->flags |= CSS_RELEASED; 5089 list_del_rcu(&css->sibling); 5090 5091 if (ss) { 5092 /* css release path */ 5093 if (!list_empty(&css->rstat_css_node)) { 5094 cgroup_rstat_flush(cgrp); 5095 list_del_rcu(&css->rstat_css_node); 5096 } 5097 5098 cgroup_idr_replace(&ss->css_idr, NULL, css->id); 5099 if (ss->css_released) 5100 ss->css_released(css); 5101 } else { 5102 struct cgroup *tcgrp; 5103 5104 /* cgroup release path */ 5105 TRACE_CGROUP_PATH(release, cgrp); 5106 5107 cgroup_rstat_flush(cgrp); 5108 5109 spin_lock_irq(&css_set_lock); 5110 for (tcgrp = cgroup_parent(cgrp); tcgrp; 5111 tcgrp = cgroup_parent(tcgrp)) 5112 tcgrp->nr_dying_descendants--; 5113 spin_unlock_irq(&css_set_lock); 5114 5115 /* 5116 * There are two control paths which try to determine 5117 * cgroup from dentry without going through kernfs - 5118 * cgroupstats_build() and css_tryget_online_from_dir(). 5119 * Those are supported by RCU protecting clearing of 5120 * cgrp->kn->priv backpointer. 5121 */ 5122 if (cgrp->kn) 5123 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, 5124 NULL); 5125 } 5126 5127 mutex_unlock(&cgroup_mutex); 5128 5129 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn); 5130 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork); 5131 } 5132 5133 static void css_release(struct percpu_ref *ref) 5134 { 5135 struct cgroup_subsys_state *css = 5136 container_of(ref, struct cgroup_subsys_state, refcnt); 5137 5138 INIT_WORK(&css->destroy_work, css_release_work_fn); 5139 queue_work(cgroup_destroy_wq, &css->destroy_work); 5140 } 5141 5142 static void init_and_link_css(struct cgroup_subsys_state *css, 5143 struct cgroup_subsys *ss, struct cgroup *cgrp) 5144 { 5145 lockdep_assert_held(&cgroup_mutex); 5146 5147 cgroup_get_live(cgrp); 5148 5149 memset(css, 0, sizeof(*css)); 5150 css->cgroup = cgrp; 5151 css->ss = ss; 5152 css->id = -1; 5153 INIT_LIST_HEAD(&css->sibling); 5154 INIT_LIST_HEAD(&css->children); 5155 INIT_LIST_HEAD(&css->rstat_css_node); 5156 css->serial_nr = css_serial_nr_next++; 5157 atomic_set(&css->online_cnt, 0); 5158 5159 if (cgroup_parent(cgrp)) { 5160 css->parent = cgroup_css(cgroup_parent(cgrp), ss); 5161 css_get(css->parent); 5162 } 5163 5164 if (ss->css_rstat_flush) 5165 list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list); 5166 5167 BUG_ON(cgroup_css(cgrp, ss)); 5168 } 5169 5170 /* invoke ->css_online() on a new CSS and mark it online if successful */ 5171 static int online_css(struct cgroup_subsys_state *css) 5172 { 5173 struct cgroup_subsys *ss = css->ss; 5174 int ret = 0; 5175 5176 lockdep_assert_held(&cgroup_mutex); 5177 5178 if (ss->css_online) 5179 ret = ss->css_online(css); 5180 if (!ret) { 5181 css->flags |= CSS_ONLINE; 5182 rcu_assign_pointer(css->cgroup->subsys[ss->id], css); 5183 5184 atomic_inc(&css->online_cnt); 5185 if (css->parent) 5186 atomic_inc(&css->parent->online_cnt); 5187 } 5188 return ret; 5189 } 5190 5191 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */ 5192 static void offline_css(struct cgroup_subsys_state *css) 5193 { 5194 struct cgroup_subsys *ss = css->ss; 5195 5196 lockdep_assert_held(&cgroup_mutex); 5197 5198 if (!(css->flags & CSS_ONLINE)) 5199 return; 5200 5201 if (ss->css_offline) 5202 ss->css_offline(css); 5203 5204 css->flags &= ~CSS_ONLINE; 5205 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL); 5206 5207 wake_up_all(&css->cgroup->offline_waitq); 5208 } 5209 5210 /** 5211 * css_create - create a cgroup_subsys_state 5212 * @cgrp: the cgroup new css will be associated with 5213 * @ss: the subsys of new css 5214 * 5215 * Create a new css associated with @cgrp - @ss pair. On success, the new 5216 * css is online and installed in @cgrp. This function doesn't create the 5217 * interface files. Returns 0 on success, -errno on failure. 5218 */ 5219 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp, 5220 struct cgroup_subsys *ss) 5221 { 5222 struct cgroup *parent = cgroup_parent(cgrp); 5223 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss); 5224 struct cgroup_subsys_state *css; 5225 int err; 5226 5227 lockdep_assert_held(&cgroup_mutex); 5228 5229 css = ss->css_alloc(parent_css); 5230 if (!css) 5231 css = ERR_PTR(-ENOMEM); 5232 if (IS_ERR(css)) 5233 return css; 5234 5235 init_and_link_css(css, ss, cgrp); 5236 5237 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL); 5238 if (err) 5239 goto err_free_css; 5240 5241 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL); 5242 if (err < 0) 5243 goto err_free_css; 5244 css->id = err; 5245 5246 /* @css is ready to be brought online now, make it visible */ 5247 list_add_tail_rcu(&css->sibling, &parent_css->children); 5248 cgroup_idr_replace(&ss->css_idr, css, css->id); 5249 5250 err = online_css(css); 5251 if (err) 5252 goto err_list_del; 5253 5254 return css; 5255 5256 err_list_del: 5257 list_del_rcu(&css->sibling); 5258 err_free_css: 5259 list_del_rcu(&css->rstat_css_node); 5260 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn); 5261 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork); 5262 return ERR_PTR(err); 5263 } 5264 5265 /* 5266 * The returned cgroup is fully initialized including its control mask, but 5267 * it isn't associated with its kernfs_node and doesn't have the control 5268 * mask applied. 5269 */ 5270 static struct cgroup *cgroup_create(struct cgroup *parent, const char *name, 5271 umode_t mode) 5272 { 5273 struct cgroup_root *root = parent->root; 5274 struct cgroup *cgrp, *tcgrp; 5275 struct kernfs_node *kn; 5276 int level = parent->level + 1; 5277 int ret; 5278 5279 /* allocate the cgroup and its ID, 0 is reserved for the root */ 5280 cgrp = kzalloc(struct_size(cgrp, ancestor_ids, (level + 1)), 5281 GFP_KERNEL); 5282 if (!cgrp) 5283 return ERR_PTR(-ENOMEM); 5284 5285 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL); 5286 if (ret) 5287 goto out_free_cgrp; 5288 5289 ret = cgroup_rstat_init(cgrp); 5290 if (ret) 5291 goto out_cancel_ref; 5292 5293 /* create the directory */ 5294 kn = kernfs_create_dir(parent->kn, name, mode, cgrp); 5295 if (IS_ERR(kn)) { 5296 ret = PTR_ERR(kn); 5297 goto out_stat_exit; 5298 } 5299 cgrp->kn = kn; 5300 5301 init_cgroup_housekeeping(cgrp); 5302 5303 cgrp->self.parent = &parent->self; 5304 cgrp->root = root; 5305 cgrp->level = level; 5306 5307 ret = psi_cgroup_alloc(cgrp); 5308 if (ret) 5309 goto out_kernfs_remove; 5310 5311 ret = cgroup_bpf_inherit(cgrp); 5312 if (ret) 5313 goto out_psi_free; 5314 5315 /* 5316 * New cgroup inherits effective freeze counter, and 5317 * if the parent has to be frozen, the child has too. 5318 */ 5319 cgrp->freezer.e_freeze = parent->freezer.e_freeze; 5320 if (cgrp->freezer.e_freeze) { 5321 /* 5322 * Set the CGRP_FREEZE flag, so when a process will be 5323 * attached to the child cgroup, it will become frozen. 5324 * At this point the new cgroup is unpopulated, so we can 5325 * consider it frozen immediately. 5326 */ 5327 set_bit(CGRP_FREEZE, &cgrp->flags); 5328 set_bit(CGRP_FROZEN, &cgrp->flags); 5329 } 5330 5331 spin_lock_irq(&css_set_lock); 5332 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) { 5333 cgrp->ancestor_ids[tcgrp->level] = cgroup_id(tcgrp); 5334 5335 if (tcgrp != cgrp) { 5336 tcgrp->nr_descendants++; 5337 5338 /* 5339 * If the new cgroup is frozen, all ancestor cgroups 5340 * get a new frozen descendant, but their state can't 5341 * change because of this. 5342 */ 5343 if (cgrp->freezer.e_freeze) 5344 tcgrp->freezer.nr_frozen_descendants++; 5345 } 5346 } 5347 spin_unlock_irq(&css_set_lock); 5348 5349 if (notify_on_release(parent)) 5350 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags); 5351 5352 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags)) 5353 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags); 5354 5355 cgrp->self.serial_nr = css_serial_nr_next++; 5356 5357 /* allocation complete, commit to creation */ 5358 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children); 5359 atomic_inc(&root->nr_cgrps); 5360 cgroup_get_live(parent); 5361 5362 /* 5363 * On the default hierarchy, a child doesn't automatically inherit 5364 * subtree_control from the parent. Each is configured manually. 5365 */ 5366 if (!cgroup_on_dfl(cgrp)) 5367 cgrp->subtree_control = cgroup_control(cgrp); 5368 5369 cgroup_propagate_control(cgrp); 5370 5371 return cgrp; 5372 5373 out_psi_free: 5374 psi_cgroup_free(cgrp); 5375 out_kernfs_remove: 5376 kernfs_remove(cgrp->kn); 5377 out_stat_exit: 5378 cgroup_rstat_exit(cgrp); 5379 out_cancel_ref: 5380 percpu_ref_exit(&cgrp->self.refcnt); 5381 out_free_cgrp: 5382 kfree(cgrp); 5383 return ERR_PTR(ret); 5384 } 5385 5386 static bool cgroup_check_hierarchy_limits(struct cgroup *parent) 5387 { 5388 struct cgroup *cgroup; 5389 int ret = false; 5390 int level = 1; 5391 5392 lockdep_assert_held(&cgroup_mutex); 5393 5394 for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) { 5395 if (cgroup->nr_descendants >= cgroup->max_descendants) 5396 goto fail; 5397 5398 if (level > cgroup->max_depth) 5399 goto fail; 5400 5401 level++; 5402 } 5403 5404 ret = true; 5405 fail: 5406 return ret; 5407 } 5408 5409 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode) 5410 { 5411 struct cgroup *parent, *cgrp; 5412 int ret; 5413 5414 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */ 5415 if (strchr(name, '\n')) 5416 return -EINVAL; 5417 5418 parent = cgroup_kn_lock_live(parent_kn, false); 5419 if (!parent) 5420 return -ENODEV; 5421 5422 if (!cgroup_check_hierarchy_limits(parent)) { 5423 ret = -EAGAIN; 5424 goto out_unlock; 5425 } 5426 5427 cgrp = cgroup_create(parent, name, mode); 5428 if (IS_ERR(cgrp)) { 5429 ret = PTR_ERR(cgrp); 5430 goto out_unlock; 5431 } 5432 5433 /* 5434 * This extra ref will be put in cgroup_free_fn() and guarantees 5435 * that @cgrp->kn is always accessible. 5436 */ 5437 kernfs_get(cgrp->kn); 5438 5439 ret = cgroup_kn_set_ugid(cgrp->kn); 5440 if (ret) 5441 goto out_destroy; 5442 5443 ret = css_populate_dir(&cgrp->self); 5444 if (ret) 5445 goto out_destroy; 5446 5447 ret = cgroup_apply_control_enable(cgrp); 5448 if (ret) 5449 goto out_destroy; 5450 5451 TRACE_CGROUP_PATH(mkdir, cgrp); 5452 5453 /* let's create and online css's */ 5454 kernfs_activate(cgrp->kn); 5455 5456 ret = 0; 5457 goto out_unlock; 5458 5459 out_destroy: 5460 cgroup_destroy_locked(cgrp); 5461 out_unlock: 5462 cgroup_kn_unlock(parent_kn); 5463 return ret; 5464 } 5465 5466 /* 5467 * This is called when the refcnt of a css is confirmed to be killed. 5468 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to 5469 * initiate destruction and put the css ref from kill_css(). 5470 */ 5471 static void css_killed_work_fn(struct work_struct *work) 5472 { 5473 struct cgroup_subsys_state *css = 5474 container_of(work, struct cgroup_subsys_state, destroy_work); 5475 5476 mutex_lock(&cgroup_mutex); 5477 5478 do { 5479 offline_css(css); 5480 css_put(css); 5481 /* @css can't go away while we're holding cgroup_mutex */ 5482 css = css->parent; 5483 } while (css && atomic_dec_and_test(&css->online_cnt)); 5484 5485 mutex_unlock(&cgroup_mutex); 5486 } 5487 5488 /* css kill confirmation processing requires process context, bounce */ 5489 static void css_killed_ref_fn(struct percpu_ref *ref) 5490 { 5491 struct cgroup_subsys_state *css = 5492 container_of(ref, struct cgroup_subsys_state, refcnt); 5493 5494 if (atomic_dec_and_test(&css->online_cnt)) { 5495 INIT_WORK(&css->destroy_work, css_killed_work_fn); 5496 queue_work(cgroup_destroy_wq, &css->destroy_work); 5497 } 5498 } 5499 5500 /** 5501 * kill_css - destroy a css 5502 * @css: css to destroy 5503 * 5504 * This function initiates destruction of @css by removing cgroup interface 5505 * files and putting its base reference. ->css_offline() will be invoked 5506 * asynchronously once css_tryget_online() is guaranteed to fail and when 5507 * the reference count reaches zero, @css will be released. 5508 */ 5509 static void kill_css(struct cgroup_subsys_state *css) 5510 { 5511 lockdep_assert_held(&cgroup_mutex); 5512 5513 if (css->flags & CSS_DYING) 5514 return; 5515 5516 css->flags |= CSS_DYING; 5517 5518 /* 5519 * This must happen before css is disassociated with its cgroup. 5520 * See seq_css() for details. 5521 */ 5522 css_clear_dir(css); 5523 5524 /* 5525 * Killing would put the base ref, but we need to keep it alive 5526 * until after ->css_offline(). 5527 */ 5528 css_get(css); 5529 5530 /* 5531 * cgroup core guarantees that, by the time ->css_offline() is 5532 * invoked, no new css reference will be given out via 5533 * css_tryget_online(). We can't simply call percpu_ref_kill() and 5534 * proceed to offlining css's because percpu_ref_kill() doesn't 5535 * guarantee that the ref is seen as killed on all CPUs on return. 5536 * 5537 * Use percpu_ref_kill_and_confirm() to get notifications as each 5538 * css is confirmed to be seen as killed on all CPUs. 5539 */ 5540 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn); 5541 } 5542 5543 /** 5544 * cgroup_destroy_locked - the first stage of cgroup destruction 5545 * @cgrp: cgroup to be destroyed 5546 * 5547 * css's make use of percpu refcnts whose killing latency shouldn't be 5548 * exposed to userland and are RCU protected. Also, cgroup core needs to 5549 * guarantee that css_tryget_online() won't succeed by the time 5550 * ->css_offline() is invoked. To satisfy all the requirements, 5551 * destruction is implemented in the following two steps. 5552 * 5553 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all 5554 * userland visible parts and start killing the percpu refcnts of 5555 * css's. Set up so that the next stage will be kicked off once all 5556 * the percpu refcnts are confirmed to be killed. 5557 * 5558 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the 5559 * rest of destruction. Once all cgroup references are gone, the 5560 * cgroup is RCU-freed. 5561 * 5562 * This function implements s1. After this step, @cgrp is gone as far as 5563 * the userland is concerned and a new cgroup with the same name may be 5564 * created. As cgroup doesn't care about the names internally, this 5565 * doesn't cause any problem. 5566 */ 5567 static int cgroup_destroy_locked(struct cgroup *cgrp) 5568 __releases(&cgroup_mutex) __acquires(&cgroup_mutex) 5569 { 5570 struct cgroup *tcgrp, *parent = cgroup_parent(cgrp); 5571 struct cgroup_subsys_state *css; 5572 struct cgrp_cset_link *link; 5573 int ssid; 5574 5575 lockdep_assert_held(&cgroup_mutex); 5576 5577 /* 5578 * Only migration can raise populated from zero and we're already 5579 * holding cgroup_mutex. 5580 */ 5581 if (cgroup_is_populated(cgrp)) 5582 return -EBUSY; 5583 5584 /* 5585 * Make sure there's no live children. We can't test emptiness of 5586 * ->self.children as dead children linger on it while being 5587 * drained; otherwise, "rmdir parent/child parent" may fail. 5588 */ 5589 if (css_has_online_children(&cgrp->self)) 5590 return -EBUSY; 5591 5592 /* 5593 * Mark @cgrp and the associated csets dead. The former prevents 5594 * further task migration and child creation by disabling 5595 * cgroup_lock_live_group(). The latter makes the csets ignored by 5596 * the migration path. 5597 */ 5598 cgrp->self.flags &= ~CSS_ONLINE; 5599 5600 spin_lock_irq(&css_set_lock); 5601 list_for_each_entry(link, &cgrp->cset_links, cset_link) 5602 link->cset->dead = true; 5603 spin_unlock_irq(&css_set_lock); 5604 5605 /* initiate massacre of all css's */ 5606 for_each_css(css, ssid, cgrp) 5607 kill_css(css); 5608 5609 /* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */ 5610 css_clear_dir(&cgrp->self); 5611 kernfs_remove(cgrp->kn); 5612 5613 if (parent && cgroup_is_threaded(cgrp)) 5614 parent->nr_threaded_children--; 5615 5616 spin_lock_irq(&css_set_lock); 5617 for (tcgrp = cgroup_parent(cgrp); tcgrp; tcgrp = cgroup_parent(tcgrp)) { 5618 tcgrp->nr_descendants--; 5619 tcgrp->nr_dying_descendants++; 5620 /* 5621 * If the dying cgroup is frozen, decrease frozen descendants 5622 * counters of ancestor cgroups. 5623 */ 5624 if (test_bit(CGRP_FROZEN, &cgrp->flags)) 5625 tcgrp->freezer.nr_frozen_descendants--; 5626 } 5627 spin_unlock_irq(&css_set_lock); 5628 5629 cgroup1_check_for_release(parent); 5630 5631 cgroup_bpf_offline(cgrp); 5632 5633 /* put the base reference */ 5634 percpu_ref_kill(&cgrp->self.refcnt); 5635 5636 return 0; 5637 }; 5638 5639 int cgroup_rmdir(struct kernfs_node *kn) 5640 { 5641 struct cgroup *cgrp; 5642 int ret = 0; 5643 5644 cgrp = cgroup_kn_lock_live(kn, false); 5645 if (!cgrp) 5646 return 0; 5647 5648 ret = cgroup_destroy_locked(cgrp); 5649 if (!ret) 5650 TRACE_CGROUP_PATH(rmdir, cgrp); 5651 5652 cgroup_kn_unlock(kn); 5653 return ret; 5654 } 5655 5656 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = { 5657 .show_options = cgroup_show_options, 5658 .mkdir = cgroup_mkdir, 5659 .rmdir = cgroup_rmdir, 5660 .show_path = cgroup_show_path, 5661 }; 5662 5663 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early) 5664 { 5665 struct cgroup_subsys_state *css; 5666 5667 pr_debug("Initializing cgroup subsys %s\n", ss->name); 5668 5669 mutex_lock(&cgroup_mutex); 5670 5671 idr_init(&ss->css_idr); 5672 INIT_LIST_HEAD(&ss->cfts); 5673 5674 /* Create the root cgroup state for this subsystem */ 5675 ss->root = &cgrp_dfl_root; 5676 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss)); 5677 /* We don't handle early failures gracefully */ 5678 BUG_ON(IS_ERR(css)); 5679 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp); 5680 5681 /* 5682 * Root csses are never destroyed and we can't initialize 5683 * percpu_ref during early init. Disable refcnting. 5684 */ 5685 css->flags |= CSS_NO_REF; 5686 5687 if (early) { 5688 /* allocation can't be done safely during early init */ 5689 css->id = 1; 5690 } else { 5691 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL); 5692 BUG_ON(css->id < 0); 5693 } 5694 5695 /* Update the init_css_set to contain a subsys 5696 * pointer to this state - since the subsystem is 5697 * newly registered, all tasks and hence the 5698 * init_css_set is in the subsystem's root cgroup. */ 5699 init_css_set.subsys[ss->id] = css; 5700 5701 have_fork_callback |= (bool)ss->fork << ss->id; 5702 have_exit_callback |= (bool)ss->exit << ss->id; 5703 have_release_callback |= (bool)ss->release << ss->id; 5704 have_canfork_callback |= (bool)ss->can_fork << ss->id; 5705 5706 /* At system boot, before all subsystems have been 5707 * registered, no tasks have been forked, so we don't 5708 * need to invoke fork callbacks here. */ 5709 BUG_ON(!list_empty(&init_task.tasks)); 5710 5711 BUG_ON(online_css(css)); 5712 5713 mutex_unlock(&cgroup_mutex); 5714 } 5715 5716 /** 5717 * cgroup_init_early - cgroup initialization at system boot 5718 * 5719 * Initialize cgroups at system boot, and initialize any 5720 * subsystems that request early init. 5721 */ 5722 int __init cgroup_init_early(void) 5723 { 5724 static struct cgroup_fs_context __initdata ctx; 5725 struct cgroup_subsys *ss; 5726 int i; 5727 5728 ctx.root = &cgrp_dfl_root; 5729 init_cgroup_root(&ctx); 5730 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF; 5731 5732 RCU_INIT_POINTER(init_task.cgroups, &init_css_set); 5733 5734 for_each_subsys(ss, i) { 5735 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id, 5736 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n", 5737 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free, 5738 ss->id, ss->name); 5739 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN, 5740 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]); 5741 5742 ss->id = i; 5743 ss->name = cgroup_subsys_name[i]; 5744 if (!ss->legacy_name) 5745 ss->legacy_name = cgroup_subsys_name[i]; 5746 5747 if (ss->early_init) 5748 cgroup_init_subsys(ss, true); 5749 } 5750 return 0; 5751 } 5752 5753 /** 5754 * cgroup_init - cgroup initialization 5755 * 5756 * Register cgroup filesystem and /proc file, and initialize 5757 * any subsystems that didn't request early init. 5758 */ 5759 int __init cgroup_init(void) 5760 { 5761 struct cgroup_subsys *ss; 5762 int ssid; 5763 5764 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16); 5765 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files)); 5766 BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files)); 5767 5768 cgroup_rstat_boot(); 5769 5770 /* 5771 * The latency of the synchronize_rcu() is too high for cgroups, 5772 * avoid it at the cost of forcing all readers into the slow path. 5773 */ 5774 rcu_sync_enter_start(&cgroup_threadgroup_rwsem.rss); 5775 5776 get_user_ns(init_cgroup_ns.user_ns); 5777 5778 mutex_lock(&cgroup_mutex); 5779 5780 /* 5781 * Add init_css_set to the hash table so that dfl_root can link to 5782 * it during init. 5783 */ 5784 hash_add(css_set_table, &init_css_set.hlist, 5785 css_set_hash(init_css_set.subsys)); 5786 5787 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0)); 5788 5789 mutex_unlock(&cgroup_mutex); 5790 5791 for_each_subsys(ss, ssid) { 5792 if (ss->early_init) { 5793 struct cgroup_subsys_state *css = 5794 init_css_set.subsys[ss->id]; 5795 5796 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, 5797 GFP_KERNEL); 5798 BUG_ON(css->id < 0); 5799 } else { 5800 cgroup_init_subsys(ss, false); 5801 } 5802 5803 list_add_tail(&init_css_set.e_cset_node[ssid], 5804 &cgrp_dfl_root.cgrp.e_csets[ssid]); 5805 5806 /* 5807 * Setting dfl_root subsys_mask needs to consider the 5808 * disabled flag and cftype registration needs kmalloc, 5809 * both of which aren't available during early_init. 5810 */ 5811 if (!cgroup_ssid_enabled(ssid)) 5812 continue; 5813 5814 if (cgroup1_ssid_disabled(ssid)) 5815 printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n", 5816 ss->name); 5817 5818 cgrp_dfl_root.subsys_mask |= 1 << ss->id; 5819 5820 /* implicit controllers must be threaded too */ 5821 WARN_ON(ss->implicit_on_dfl && !ss->threaded); 5822 5823 if (ss->implicit_on_dfl) 5824 cgrp_dfl_implicit_ss_mask |= 1 << ss->id; 5825 else if (!ss->dfl_cftypes) 5826 cgrp_dfl_inhibit_ss_mask |= 1 << ss->id; 5827 5828 if (ss->threaded) 5829 cgrp_dfl_threaded_ss_mask |= 1 << ss->id; 5830 5831 if (ss->dfl_cftypes == ss->legacy_cftypes) { 5832 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes)); 5833 } else { 5834 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes)); 5835 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes)); 5836 } 5837 5838 if (ss->bind) 5839 ss->bind(init_css_set.subsys[ssid]); 5840 5841 mutex_lock(&cgroup_mutex); 5842 css_populate_dir(init_css_set.subsys[ssid]); 5843 mutex_unlock(&cgroup_mutex); 5844 } 5845 5846 /* init_css_set.subsys[] has been updated, re-hash */ 5847 hash_del(&init_css_set.hlist); 5848 hash_add(css_set_table, &init_css_set.hlist, 5849 css_set_hash(init_css_set.subsys)); 5850 5851 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup")); 5852 WARN_ON(register_filesystem(&cgroup_fs_type)); 5853 WARN_ON(register_filesystem(&cgroup2_fs_type)); 5854 WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show)); 5855 #ifdef CONFIG_CPUSETS 5856 WARN_ON(register_filesystem(&cpuset_fs_type)); 5857 #endif 5858 5859 return 0; 5860 } 5861 5862 static int __init cgroup_wq_init(void) 5863 { 5864 /* 5865 * There isn't much point in executing destruction path in 5866 * parallel. Good chunk is serialized with cgroup_mutex anyway. 5867 * Use 1 for @max_active. 5868 * 5869 * We would prefer to do this in cgroup_init() above, but that 5870 * is called before init_workqueues(): so leave this until after. 5871 */ 5872 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1); 5873 BUG_ON(!cgroup_destroy_wq); 5874 return 0; 5875 } 5876 core_initcall(cgroup_wq_init); 5877 5878 void cgroup_path_from_kernfs_id(u64 id, char *buf, size_t buflen) 5879 { 5880 struct kernfs_node *kn; 5881 5882 kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id); 5883 if (!kn) 5884 return; 5885 kernfs_path(kn, buf, buflen); 5886 kernfs_put(kn); 5887 } 5888 5889 /* 5890 * cgroup_get_from_id : get the cgroup associated with cgroup id 5891 * @id: cgroup id 5892 * On success return the cgrp, on failure return NULL 5893 */ 5894 struct cgroup *cgroup_get_from_id(u64 id) 5895 { 5896 struct kernfs_node *kn; 5897 struct cgroup *cgrp = NULL; 5898 5899 mutex_lock(&cgroup_mutex); 5900 kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id); 5901 if (!kn) 5902 goto out_unlock; 5903 5904 cgrp = kn->priv; 5905 if (cgroup_is_dead(cgrp) || !cgroup_tryget(cgrp)) 5906 cgrp = NULL; 5907 kernfs_put(kn); 5908 out_unlock: 5909 mutex_unlock(&cgroup_mutex); 5910 return cgrp; 5911 } 5912 EXPORT_SYMBOL_GPL(cgroup_get_from_id); 5913 5914 /* 5915 * proc_cgroup_show() 5916 * - Print task's cgroup paths into seq_file, one line for each hierarchy 5917 * - Used for /proc/<pid>/cgroup. 5918 */ 5919 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns, 5920 struct pid *pid, struct task_struct *tsk) 5921 { 5922 char *buf; 5923 int retval; 5924 struct cgroup_root *root; 5925 5926 retval = -ENOMEM; 5927 buf = kmalloc(PATH_MAX, GFP_KERNEL); 5928 if (!buf) 5929 goto out; 5930 5931 mutex_lock(&cgroup_mutex); 5932 spin_lock_irq(&css_set_lock); 5933 5934 for_each_root(root) { 5935 struct cgroup_subsys *ss; 5936 struct cgroup *cgrp; 5937 int ssid, count = 0; 5938 5939 if (root == &cgrp_dfl_root && !cgrp_dfl_visible) 5940 continue; 5941 5942 seq_printf(m, "%d:", root->hierarchy_id); 5943 if (root != &cgrp_dfl_root) 5944 for_each_subsys(ss, ssid) 5945 if (root->subsys_mask & (1 << ssid)) 5946 seq_printf(m, "%s%s", count++ ? "," : "", 5947 ss->legacy_name); 5948 if (strlen(root->name)) 5949 seq_printf(m, "%sname=%s", count ? "," : "", 5950 root->name); 5951 seq_putc(m, ':'); 5952 5953 cgrp = task_cgroup_from_root(tsk, root); 5954 5955 /* 5956 * On traditional hierarchies, all zombie tasks show up as 5957 * belonging to the root cgroup. On the default hierarchy, 5958 * while a zombie doesn't show up in "cgroup.procs" and 5959 * thus can't be migrated, its /proc/PID/cgroup keeps 5960 * reporting the cgroup it belonged to before exiting. If 5961 * the cgroup is removed before the zombie is reaped, 5962 * " (deleted)" is appended to the cgroup path. 5963 */ 5964 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) { 5965 retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX, 5966 current->nsproxy->cgroup_ns); 5967 if (retval >= PATH_MAX) 5968 retval = -ENAMETOOLONG; 5969 if (retval < 0) 5970 goto out_unlock; 5971 5972 seq_puts(m, buf); 5973 } else { 5974 seq_puts(m, "/"); 5975 } 5976 5977 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp)) 5978 seq_puts(m, " (deleted)\n"); 5979 else 5980 seq_putc(m, '\n'); 5981 } 5982 5983 retval = 0; 5984 out_unlock: 5985 spin_unlock_irq(&css_set_lock); 5986 mutex_unlock(&cgroup_mutex); 5987 kfree(buf); 5988 out: 5989 return retval; 5990 } 5991 5992 /** 5993 * cgroup_fork - initialize cgroup related fields during copy_process() 5994 * @child: pointer to task_struct of forking parent process. 5995 * 5996 * A task is associated with the init_css_set until cgroup_post_fork() 5997 * attaches it to the target css_set. 5998 */ 5999 void cgroup_fork(struct task_struct *child) 6000 { 6001 RCU_INIT_POINTER(child->cgroups, &init_css_set); 6002 INIT_LIST_HEAD(&child->cg_list); 6003 } 6004 6005 static struct cgroup *cgroup_get_from_file(struct file *f) 6006 { 6007 struct cgroup_subsys_state *css; 6008 struct cgroup *cgrp; 6009 6010 css = css_tryget_online_from_dir(f->f_path.dentry, NULL); 6011 if (IS_ERR(css)) 6012 return ERR_CAST(css); 6013 6014 cgrp = css->cgroup; 6015 if (!cgroup_on_dfl(cgrp)) { 6016 cgroup_put(cgrp); 6017 return ERR_PTR(-EBADF); 6018 } 6019 6020 return cgrp; 6021 } 6022 6023 /** 6024 * cgroup_css_set_fork - find or create a css_set for a child process 6025 * @kargs: the arguments passed to create the child process 6026 * 6027 * This functions finds or creates a new css_set which the child 6028 * process will be attached to in cgroup_post_fork(). By default, 6029 * the child process will be given the same css_set as its parent. 6030 * 6031 * If CLONE_INTO_CGROUP is specified this function will try to find an 6032 * existing css_set which includes the requested cgroup and if not create 6033 * a new css_set that the child will be attached to later. If this function 6034 * succeeds it will hold cgroup_threadgroup_rwsem on return. If 6035 * CLONE_INTO_CGROUP is requested this function will grab cgroup mutex 6036 * before grabbing cgroup_threadgroup_rwsem and will hold a reference 6037 * to the target cgroup. 6038 */ 6039 static int cgroup_css_set_fork(struct kernel_clone_args *kargs) 6040 __acquires(&cgroup_mutex) __acquires(&cgroup_threadgroup_rwsem) 6041 { 6042 int ret; 6043 struct cgroup *dst_cgrp = NULL; 6044 struct css_set *cset; 6045 struct super_block *sb; 6046 struct file *f; 6047 6048 if (kargs->flags & CLONE_INTO_CGROUP) 6049 mutex_lock(&cgroup_mutex); 6050 6051 cgroup_threadgroup_change_begin(current); 6052 6053 spin_lock_irq(&css_set_lock); 6054 cset = task_css_set(current); 6055 get_css_set(cset); 6056 spin_unlock_irq(&css_set_lock); 6057 6058 if (!(kargs->flags & CLONE_INTO_CGROUP)) { 6059 kargs->cset = cset; 6060 return 0; 6061 } 6062 6063 f = fget_raw(kargs->cgroup); 6064 if (!f) { 6065 ret = -EBADF; 6066 goto err; 6067 } 6068 sb = f->f_path.dentry->d_sb; 6069 6070 dst_cgrp = cgroup_get_from_file(f); 6071 if (IS_ERR(dst_cgrp)) { 6072 ret = PTR_ERR(dst_cgrp); 6073 dst_cgrp = NULL; 6074 goto err; 6075 } 6076 6077 if (cgroup_is_dead(dst_cgrp)) { 6078 ret = -ENODEV; 6079 goto err; 6080 } 6081 6082 /* 6083 * Verify that we the target cgroup is writable for us. This is 6084 * usually done by the vfs layer but since we're not going through 6085 * the vfs layer here we need to do it "manually". 6086 */ 6087 ret = cgroup_may_write(dst_cgrp, sb); 6088 if (ret) 6089 goto err; 6090 6091 ret = cgroup_attach_permissions(cset->dfl_cgrp, dst_cgrp, sb, 6092 !(kargs->flags & CLONE_THREAD)); 6093 if (ret) 6094 goto err; 6095 6096 kargs->cset = find_css_set(cset, dst_cgrp); 6097 if (!kargs->cset) { 6098 ret = -ENOMEM; 6099 goto err; 6100 } 6101 6102 put_css_set(cset); 6103 fput(f); 6104 kargs->cgrp = dst_cgrp; 6105 return ret; 6106 6107 err: 6108 cgroup_threadgroup_change_end(current); 6109 mutex_unlock(&cgroup_mutex); 6110 if (f) 6111 fput(f); 6112 if (dst_cgrp) 6113 cgroup_put(dst_cgrp); 6114 put_css_set(cset); 6115 if (kargs->cset) 6116 put_css_set(kargs->cset); 6117 return ret; 6118 } 6119 6120 /** 6121 * cgroup_css_set_put_fork - drop references we took during fork 6122 * @kargs: the arguments passed to create the child process 6123 * 6124 * Drop references to the prepared css_set and target cgroup if 6125 * CLONE_INTO_CGROUP was requested. 6126 */ 6127 static void cgroup_css_set_put_fork(struct kernel_clone_args *kargs) 6128 __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex) 6129 { 6130 cgroup_threadgroup_change_end(current); 6131 6132 if (kargs->flags & CLONE_INTO_CGROUP) { 6133 struct cgroup *cgrp = kargs->cgrp; 6134 struct css_set *cset = kargs->cset; 6135 6136 mutex_unlock(&cgroup_mutex); 6137 6138 if (cset) { 6139 put_css_set(cset); 6140 kargs->cset = NULL; 6141 } 6142 6143 if (cgrp) { 6144 cgroup_put(cgrp); 6145 kargs->cgrp = NULL; 6146 } 6147 } 6148 } 6149 6150 /** 6151 * cgroup_can_fork - called on a new task before the process is exposed 6152 * @child: the child process 6153 * 6154 * This prepares a new css_set for the child process which the child will 6155 * be attached to in cgroup_post_fork(). 6156 * This calls the subsystem can_fork() callbacks. If the cgroup_can_fork() 6157 * callback returns an error, the fork aborts with that error code. This 6158 * allows for a cgroup subsystem to conditionally allow or deny new forks. 6159 */ 6160 int cgroup_can_fork(struct task_struct *child, struct kernel_clone_args *kargs) 6161 { 6162 struct cgroup_subsys *ss; 6163 int i, j, ret; 6164 6165 ret = cgroup_css_set_fork(kargs); 6166 if (ret) 6167 return ret; 6168 6169 do_each_subsys_mask(ss, i, have_canfork_callback) { 6170 ret = ss->can_fork(child, kargs->cset); 6171 if (ret) 6172 goto out_revert; 6173 } while_each_subsys_mask(); 6174 6175 return 0; 6176 6177 out_revert: 6178 for_each_subsys(ss, j) { 6179 if (j >= i) 6180 break; 6181 if (ss->cancel_fork) 6182 ss->cancel_fork(child, kargs->cset); 6183 } 6184 6185 cgroup_css_set_put_fork(kargs); 6186 6187 return ret; 6188 } 6189 6190 /** 6191 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork() 6192 * @child: the child process 6193 * @kargs: the arguments passed to create the child process 6194 * 6195 * This calls the cancel_fork() callbacks if a fork failed *after* 6196 * cgroup_can_fork() succeeded and cleans up references we took to 6197 * prepare a new css_set for the child process in cgroup_can_fork(). 6198 */ 6199 void cgroup_cancel_fork(struct task_struct *child, 6200 struct kernel_clone_args *kargs) 6201 { 6202 struct cgroup_subsys *ss; 6203 int i; 6204 6205 for_each_subsys(ss, i) 6206 if (ss->cancel_fork) 6207 ss->cancel_fork(child, kargs->cset); 6208 6209 cgroup_css_set_put_fork(kargs); 6210 } 6211 6212 /** 6213 * cgroup_post_fork - finalize cgroup setup for the child process 6214 * @child: the child process 6215 * 6216 * Attach the child process to its css_set calling the subsystem fork() 6217 * callbacks. 6218 */ 6219 void cgroup_post_fork(struct task_struct *child, 6220 struct kernel_clone_args *kargs) 6221 __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex) 6222 { 6223 unsigned long cgrp_flags = 0; 6224 bool kill = false; 6225 struct cgroup_subsys *ss; 6226 struct css_set *cset; 6227 int i; 6228 6229 cset = kargs->cset; 6230 kargs->cset = NULL; 6231 6232 spin_lock_irq(&css_set_lock); 6233 6234 /* init tasks are special, only link regular threads */ 6235 if (likely(child->pid)) { 6236 if (kargs->cgrp) 6237 cgrp_flags = kargs->cgrp->flags; 6238 else 6239 cgrp_flags = cset->dfl_cgrp->flags; 6240 6241 WARN_ON_ONCE(!list_empty(&child->cg_list)); 6242 cset->nr_tasks++; 6243 css_set_move_task(child, NULL, cset, false); 6244 } else { 6245 put_css_set(cset); 6246 cset = NULL; 6247 } 6248 6249 if (!(child->flags & PF_KTHREAD)) { 6250 if (unlikely(test_bit(CGRP_FREEZE, &cgrp_flags))) { 6251 /* 6252 * If the cgroup has to be frozen, the new task has 6253 * too. Let's set the JOBCTL_TRAP_FREEZE jobctl bit to 6254 * get the task into the frozen state. 6255 */ 6256 spin_lock(&child->sighand->siglock); 6257 WARN_ON_ONCE(child->frozen); 6258 child->jobctl |= JOBCTL_TRAP_FREEZE; 6259 spin_unlock(&child->sighand->siglock); 6260 6261 /* 6262 * Calling cgroup_update_frozen() isn't required here, 6263 * because it will be called anyway a bit later from 6264 * do_freezer_trap(). So we avoid cgroup's transient 6265 * switch from the frozen state and back. 6266 */ 6267 } 6268 6269 /* 6270 * If the cgroup is to be killed notice it now and take the 6271 * child down right after we finished preparing it for 6272 * userspace. 6273 */ 6274 kill = test_bit(CGRP_KILL, &cgrp_flags); 6275 } 6276 6277 spin_unlock_irq(&css_set_lock); 6278 6279 /* 6280 * Call ss->fork(). This must happen after @child is linked on 6281 * css_set; otherwise, @child might change state between ->fork() 6282 * and addition to css_set. 6283 */ 6284 do_each_subsys_mask(ss, i, have_fork_callback) { 6285 ss->fork(child); 6286 } while_each_subsys_mask(); 6287 6288 /* Make the new cset the root_cset of the new cgroup namespace. */ 6289 if (kargs->flags & CLONE_NEWCGROUP) { 6290 struct css_set *rcset = child->nsproxy->cgroup_ns->root_cset; 6291 6292 get_css_set(cset); 6293 child->nsproxy->cgroup_ns->root_cset = cset; 6294 put_css_set(rcset); 6295 } 6296 6297 /* Cgroup has to be killed so take down child immediately. */ 6298 if (unlikely(kill)) 6299 do_send_sig_info(SIGKILL, SEND_SIG_NOINFO, child, PIDTYPE_TGID); 6300 6301 cgroup_css_set_put_fork(kargs); 6302 } 6303 6304 /** 6305 * cgroup_exit - detach cgroup from exiting task 6306 * @tsk: pointer to task_struct of exiting process 6307 * 6308 * Description: Detach cgroup from @tsk. 6309 * 6310 */ 6311 void cgroup_exit(struct task_struct *tsk) 6312 { 6313 struct cgroup_subsys *ss; 6314 struct css_set *cset; 6315 int i; 6316 6317 spin_lock_irq(&css_set_lock); 6318 6319 WARN_ON_ONCE(list_empty(&tsk->cg_list)); 6320 cset = task_css_set(tsk); 6321 css_set_move_task(tsk, cset, NULL, false); 6322 list_add_tail(&tsk->cg_list, &cset->dying_tasks); 6323 cset->nr_tasks--; 6324 6325 WARN_ON_ONCE(cgroup_task_frozen(tsk)); 6326 if (unlikely(!(tsk->flags & PF_KTHREAD) && 6327 test_bit(CGRP_FREEZE, &task_dfl_cgroup(tsk)->flags))) 6328 cgroup_update_frozen(task_dfl_cgroup(tsk)); 6329 6330 spin_unlock_irq(&css_set_lock); 6331 6332 /* see cgroup_post_fork() for details */ 6333 do_each_subsys_mask(ss, i, have_exit_callback) { 6334 ss->exit(tsk); 6335 } while_each_subsys_mask(); 6336 } 6337 6338 void cgroup_release(struct task_struct *task) 6339 { 6340 struct cgroup_subsys *ss; 6341 int ssid; 6342 6343 do_each_subsys_mask(ss, ssid, have_release_callback) { 6344 ss->release(task); 6345 } while_each_subsys_mask(); 6346 6347 spin_lock_irq(&css_set_lock); 6348 css_set_skip_task_iters(task_css_set(task), task); 6349 list_del_init(&task->cg_list); 6350 spin_unlock_irq(&css_set_lock); 6351 } 6352 6353 void cgroup_free(struct task_struct *task) 6354 { 6355 struct css_set *cset = task_css_set(task); 6356 put_css_set(cset); 6357 } 6358 6359 static int __init cgroup_disable(char *str) 6360 { 6361 struct cgroup_subsys *ss; 6362 char *token; 6363 int i; 6364 6365 while ((token = strsep(&str, ",")) != NULL) { 6366 if (!*token) 6367 continue; 6368 6369 for_each_subsys(ss, i) { 6370 if (strcmp(token, ss->name) && 6371 strcmp(token, ss->legacy_name)) 6372 continue; 6373 6374 static_branch_disable(cgroup_subsys_enabled_key[i]); 6375 pr_info("Disabling %s control group subsystem\n", 6376 ss->name); 6377 } 6378 6379 for (i = 0; i < OPT_FEATURE_COUNT; i++) { 6380 if (strcmp(token, cgroup_opt_feature_names[i])) 6381 continue; 6382 cgroup_feature_disable_mask |= 1 << i; 6383 pr_info("Disabling %s control group feature\n", 6384 cgroup_opt_feature_names[i]); 6385 break; 6386 } 6387 } 6388 return 1; 6389 } 6390 __setup("cgroup_disable=", cgroup_disable); 6391 6392 void __init __weak enable_debug_cgroup(void) { } 6393 6394 static int __init enable_cgroup_debug(char *str) 6395 { 6396 cgroup_debug = true; 6397 enable_debug_cgroup(); 6398 return 1; 6399 } 6400 __setup("cgroup_debug", enable_cgroup_debug); 6401 6402 /** 6403 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry 6404 * @dentry: directory dentry of interest 6405 * @ss: subsystem of interest 6406 * 6407 * If @dentry is a directory for a cgroup which has @ss enabled on it, try 6408 * to get the corresponding css and return it. If such css doesn't exist 6409 * or can't be pinned, an ERR_PTR value is returned. 6410 */ 6411 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry, 6412 struct cgroup_subsys *ss) 6413 { 6414 struct kernfs_node *kn = kernfs_node_from_dentry(dentry); 6415 struct file_system_type *s_type = dentry->d_sb->s_type; 6416 struct cgroup_subsys_state *css = NULL; 6417 struct cgroup *cgrp; 6418 6419 /* is @dentry a cgroup dir? */ 6420 if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) || 6421 !kn || kernfs_type(kn) != KERNFS_DIR) 6422 return ERR_PTR(-EBADF); 6423 6424 rcu_read_lock(); 6425 6426 /* 6427 * This path doesn't originate from kernfs and @kn could already 6428 * have been or be removed at any point. @kn->priv is RCU 6429 * protected for this access. See css_release_work_fn() for details. 6430 */ 6431 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); 6432 if (cgrp) 6433 css = cgroup_css(cgrp, ss); 6434 6435 if (!css || !css_tryget_online(css)) 6436 css = ERR_PTR(-ENOENT); 6437 6438 rcu_read_unlock(); 6439 return css; 6440 } 6441 6442 /** 6443 * css_from_id - lookup css by id 6444 * @id: the cgroup id 6445 * @ss: cgroup subsys to be looked into 6446 * 6447 * Returns the css if there's valid one with @id, otherwise returns NULL. 6448 * Should be called under rcu_read_lock(). 6449 */ 6450 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss) 6451 { 6452 WARN_ON_ONCE(!rcu_read_lock_held()); 6453 return idr_find(&ss->css_idr, id); 6454 } 6455 6456 /** 6457 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path 6458 * @path: path on the default hierarchy 6459 * 6460 * Find the cgroup at @path on the default hierarchy, increment its 6461 * reference count and return it. Returns pointer to the found cgroup on 6462 * success, ERR_PTR(-ENOENT) if @path doesn't exist and ERR_PTR(-ENOTDIR) 6463 * if @path points to a non-directory. 6464 */ 6465 struct cgroup *cgroup_get_from_path(const char *path) 6466 { 6467 struct kernfs_node *kn; 6468 struct cgroup *cgrp; 6469 6470 mutex_lock(&cgroup_mutex); 6471 6472 kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path); 6473 if (kn) { 6474 if (kernfs_type(kn) == KERNFS_DIR) { 6475 cgrp = kn->priv; 6476 cgroup_get_live(cgrp); 6477 } else { 6478 cgrp = ERR_PTR(-ENOTDIR); 6479 } 6480 kernfs_put(kn); 6481 } else { 6482 cgrp = ERR_PTR(-ENOENT); 6483 } 6484 6485 mutex_unlock(&cgroup_mutex); 6486 return cgrp; 6487 } 6488 EXPORT_SYMBOL_GPL(cgroup_get_from_path); 6489 6490 /** 6491 * cgroup_get_from_fd - get a cgroup pointer from a fd 6492 * @fd: fd obtained by open(cgroup2_dir) 6493 * 6494 * Find the cgroup from a fd which should be obtained 6495 * by opening a cgroup directory. Returns a pointer to the 6496 * cgroup on success. ERR_PTR is returned if the cgroup 6497 * cannot be found. 6498 */ 6499 struct cgroup *cgroup_get_from_fd(int fd) 6500 { 6501 struct cgroup *cgrp; 6502 struct file *f; 6503 6504 f = fget_raw(fd); 6505 if (!f) 6506 return ERR_PTR(-EBADF); 6507 6508 cgrp = cgroup_get_from_file(f); 6509 fput(f); 6510 return cgrp; 6511 } 6512 EXPORT_SYMBOL_GPL(cgroup_get_from_fd); 6513 6514 static u64 power_of_ten(int power) 6515 { 6516 u64 v = 1; 6517 while (power--) 6518 v *= 10; 6519 return v; 6520 } 6521 6522 /** 6523 * cgroup_parse_float - parse a floating number 6524 * @input: input string 6525 * @dec_shift: number of decimal digits to shift 6526 * @v: output 6527 * 6528 * Parse a decimal floating point number in @input and store the result in 6529 * @v with decimal point right shifted @dec_shift times. For example, if 6530 * @input is "12.3456" and @dec_shift is 3, *@v will be set to 12345. 6531 * Returns 0 on success, -errno otherwise. 6532 * 6533 * There's nothing cgroup specific about this function except that it's 6534 * currently the only user. 6535 */ 6536 int cgroup_parse_float(const char *input, unsigned dec_shift, s64 *v) 6537 { 6538 s64 whole, frac = 0; 6539 int fstart = 0, fend = 0, flen; 6540 6541 if (!sscanf(input, "%lld.%n%lld%n", &whole, &fstart, &frac, &fend)) 6542 return -EINVAL; 6543 if (frac < 0) 6544 return -EINVAL; 6545 6546 flen = fend > fstart ? fend - fstart : 0; 6547 if (flen < dec_shift) 6548 frac *= power_of_ten(dec_shift - flen); 6549 else 6550 frac = DIV_ROUND_CLOSEST_ULL(frac, power_of_ten(flen - dec_shift)); 6551 6552 *v = whole * power_of_ten(dec_shift) + frac; 6553 return 0; 6554 } 6555 6556 /* 6557 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data 6558 * definition in cgroup-defs.h. 6559 */ 6560 #ifdef CONFIG_SOCK_CGROUP_DATA 6561 6562 #if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID) 6563 6564 DEFINE_SPINLOCK(cgroup_sk_update_lock); 6565 static bool cgroup_sk_alloc_disabled __read_mostly; 6566 6567 void cgroup_sk_alloc_disable(void) 6568 { 6569 if (cgroup_sk_alloc_disabled) 6570 return; 6571 pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n"); 6572 cgroup_sk_alloc_disabled = true; 6573 } 6574 6575 #else 6576 6577 #define cgroup_sk_alloc_disabled false 6578 6579 #endif 6580 6581 void cgroup_sk_alloc(struct sock_cgroup_data *skcd) 6582 { 6583 if (cgroup_sk_alloc_disabled) { 6584 skcd->no_refcnt = 1; 6585 return; 6586 } 6587 6588 /* Don't associate the sock with unrelated interrupted task's cgroup. */ 6589 if (in_interrupt()) 6590 return; 6591 6592 rcu_read_lock(); 6593 6594 while (true) { 6595 struct css_set *cset; 6596 6597 cset = task_css_set(current); 6598 if (likely(cgroup_tryget(cset->dfl_cgrp))) { 6599 skcd->val = (unsigned long)cset->dfl_cgrp; 6600 cgroup_bpf_get(cset->dfl_cgrp); 6601 break; 6602 } 6603 cpu_relax(); 6604 } 6605 6606 rcu_read_unlock(); 6607 } 6608 6609 void cgroup_sk_clone(struct sock_cgroup_data *skcd) 6610 { 6611 if (skcd->val) { 6612 if (skcd->no_refcnt) 6613 return; 6614 /* 6615 * We might be cloning a socket which is left in an empty 6616 * cgroup and the cgroup might have already been rmdir'd. 6617 * Don't use cgroup_get_live(). 6618 */ 6619 cgroup_get(sock_cgroup_ptr(skcd)); 6620 cgroup_bpf_get(sock_cgroup_ptr(skcd)); 6621 } 6622 } 6623 6624 void cgroup_sk_free(struct sock_cgroup_data *skcd) 6625 { 6626 struct cgroup *cgrp = sock_cgroup_ptr(skcd); 6627 6628 if (skcd->no_refcnt) 6629 return; 6630 cgroup_bpf_put(cgrp); 6631 cgroup_put(cgrp); 6632 } 6633 6634 #endif /* CONFIG_SOCK_CGROUP_DATA */ 6635 6636 #ifdef CONFIG_CGROUP_BPF 6637 int cgroup_bpf_attach(struct cgroup *cgrp, 6638 struct bpf_prog *prog, struct bpf_prog *replace_prog, 6639 struct bpf_cgroup_link *link, 6640 enum bpf_attach_type type, 6641 u32 flags) 6642 { 6643 int ret; 6644 6645 mutex_lock(&cgroup_mutex); 6646 ret = __cgroup_bpf_attach(cgrp, prog, replace_prog, link, type, flags); 6647 mutex_unlock(&cgroup_mutex); 6648 return ret; 6649 } 6650 6651 int cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog, 6652 enum bpf_attach_type type) 6653 { 6654 int ret; 6655 6656 mutex_lock(&cgroup_mutex); 6657 ret = __cgroup_bpf_detach(cgrp, prog, NULL, type); 6658 mutex_unlock(&cgroup_mutex); 6659 return ret; 6660 } 6661 6662 int cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr, 6663 union bpf_attr __user *uattr) 6664 { 6665 int ret; 6666 6667 mutex_lock(&cgroup_mutex); 6668 ret = __cgroup_bpf_query(cgrp, attr, uattr); 6669 mutex_unlock(&cgroup_mutex); 6670 return ret; 6671 } 6672 #endif /* CONFIG_CGROUP_BPF */ 6673 6674 #ifdef CONFIG_SYSFS 6675 static ssize_t show_delegatable_files(struct cftype *files, char *buf, 6676 ssize_t size, const char *prefix) 6677 { 6678 struct cftype *cft; 6679 ssize_t ret = 0; 6680 6681 for (cft = files; cft && cft->name[0] != '\0'; cft++) { 6682 if (!(cft->flags & CFTYPE_NS_DELEGATABLE)) 6683 continue; 6684 6685 if ((cft->flags & CFTYPE_PRESSURE) && !cgroup_psi_enabled()) 6686 continue; 6687 6688 if (prefix) 6689 ret += snprintf(buf + ret, size - ret, "%s.", prefix); 6690 6691 ret += snprintf(buf + ret, size - ret, "%s\n", cft->name); 6692 6693 if (WARN_ON(ret >= size)) 6694 break; 6695 } 6696 6697 return ret; 6698 } 6699 6700 static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr, 6701 char *buf) 6702 { 6703 struct cgroup_subsys *ss; 6704 int ssid; 6705 ssize_t ret = 0; 6706 6707 ret = show_delegatable_files(cgroup_base_files, buf, PAGE_SIZE - ret, 6708 NULL); 6709 6710 for_each_subsys(ss, ssid) 6711 ret += show_delegatable_files(ss->dfl_cftypes, buf + ret, 6712 PAGE_SIZE - ret, 6713 cgroup_subsys_name[ssid]); 6714 6715 return ret; 6716 } 6717 static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate); 6718 6719 static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr, 6720 char *buf) 6721 { 6722 return snprintf(buf, PAGE_SIZE, 6723 "nsdelegate\n" 6724 "memory_localevents\n" 6725 "memory_recursiveprot\n"); 6726 } 6727 static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features); 6728 6729 static struct attribute *cgroup_sysfs_attrs[] = { 6730 &cgroup_delegate_attr.attr, 6731 &cgroup_features_attr.attr, 6732 NULL, 6733 }; 6734 6735 static const struct attribute_group cgroup_sysfs_attr_group = { 6736 .attrs = cgroup_sysfs_attrs, 6737 .name = "cgroup", 6738 }; 6739 6740 static int __init cgroup_sysfs_init(void) 6741 { 6742 return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group); 6743 } 6744 subsys_initcall(cgroup_sysfs_init); 6745 6746 #endif /* CONFIG_SYSFS */ 6747