1 /* 2 * Generic process-grouping system. 3 * 4 * Based originally on the cpuset system, extracted by Paul Menage 5 * Copyright (C) 2006 Google, Inc 6 * 7 * Notifications support 8 * Copyright (C) 2009 Nokia Corporation 9 * Author: Kirill A. Shutemov 10 * 11 * Copyright notices from the original cpuset code: 12 * -------------------------------------------------- 13 * Copyright (C) 2003 BULL SA. 14 * Copyright (C) 2004-2006 Silicon Graphics, Inc. 15 * 16 * Portions derived from Patrick Mochel's sysfs code. 17 * sysfs is Copyright (c) 2001-3 Patrick Mochel 18 * 19 * 2003-10-10 Written by Simon Derr. 20 * 2003-10-22 Updates by Stephen Hemminger. 21 * 2004 May-July Rework by Paul Jackson. 22 * --------------------------------------------------- 23 * 24 * This file is subject to the terms and conditions of the GNU General Public 25 * License. See the file COPYING in the main directory of the Linux 26 * distribution for more details. 27 */ 28 29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 30 31 #include "cgroup-internal.h" 32 33 #include <linux/cred.h> 34 #include <linux/errno.h> 35 #include <linux/init_task.h> 36 #include <linux/kernel.h> 37 #include <linux/magic.h> 38 #include <linux/mutex.h> 39 #include <linux/mount.h> 40 #include <linux/pagemap.h> 41 #include <linux/proc_fs.h> 42 #include <linux/rcupdate.h> 43 #include <linux/sched.h> 44 #include <linux/sched/task.h> 45 #include <linux/slab.h> 46 #include <linux/spinlock.h> 47 #include <linux/percpu-rwsem.h> 48 #include <linux/string.h> 49 #include <linux/hashtable.h> 50 #include <linux/idr.h> 51 #include <linux/kthread.h> 52 #include <linux/atomic.h> 53 #include <linux/cpuset.h> 54 #include <linux/proc_ns.h> 55 #include <linux/nsproxy.h> 56 #include <linux/file.h> 57 #include <net/sock.h> 58 59 #define CREATE_TRACE_POINTS 60 #include <trace/events/cgroup.h> 61 62 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \ 63 MAX_CFTYPE_NAME + 2) 64 65 /* 66 * cgroup_mutex is the master lock. Any modification to cgroup or its 67 * hierarchy must be performed while holding it. 68 * 69 * css_set_lock protects task->cgroups pointer, the list of css_set 70 * objects, and the chain of tasks off each css_set. 71 * 72 * These locks are exported if CONFIG_PROVE_RCU so that accessors in 73 * cgroup.h can use them for lockdep annotations. 74 */ 75 DEFINE_MUTEX(cgroup_mutex); 76 DEFINE_SPINLOCK(css_set_lock); 77 78 #ifdef CONFIG_PROVE_RCU 79 EXPORT_SYMBOL_GPL(cgroup_mutex); 80 EXPORT_SYMBOL_GPL(css_set_lock); 81 #endif 82 83 /* 84 * Protects cgroup_idr and css_idr so that IDs can be released without 85 * grabbing cgroup_mutex. 86 */ 87 static DEFINE_SPINLOCK(cgroup_idr_lock); 88 89 /* 90 * Protects cgroup_file->kn for !self csses. It synchronizes notifications 91 * against file removal/re-creation across css hiding. 92 */ 93 static DEFINE_SPINLOCK(cgroup_file_kn_lock); 94 95 struct percpu_rw_semaphore cgroup_threadgroup_rwsem; 96 97 #define cgroup_assert_mutex_or_rcu_locked() \ 98 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \ 99 !lockdep_is_held(&cgroup_mutex), \ 100 "cgroup_mutex or RCU read lock required"); 101 102 /* 103 * cgroup destruction makes heavy use of work items and there can be a lot 104 * of concurrent destructions. Use a separate workqueue so that cgroup 105 * destruction work items don't end up filling up max_active of system_wq 106 * which may lead to deadlock. 107 */ 108 static struct workqueue_struct *cgroup_destroy_wq; 109 110 /* generate an array of cgroup subsystem pointers */ 111 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys, 112 struct cgroup_subsys *cgroup_subsys[] = { 113 #include <linux/cgroup_subsys.h> 114 }; 115 #undef SUBSYS 116 117 /* array of cgroup subsystem names */ 118 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x, 119 static const char *cgroup_subsys_name[] = { 120 #include <linux/cgroup_subsys.h> 121 }; 122 #undef SUBSYS 123 124 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */ 125 #define SUBSYS(_x) \ 126 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \ 127 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \ 128 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \ 129 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key); 130 #include <linux/cgroup_subsys.h> 131 #undef SUBSYS 132 133 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key, 134 static struct static_key_true *cgroup_subsys_enabled_key[] = { 135 #include <linux/cgroup_subsys.h> 136 }; 137 #undef SUBSYS 138 139 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key, 140 static struct static_key_true *cgroup_subsys_on_dfl_key[] = { 141 #include <linux/cgroup_subsys.h> 142 }; 143 #undef SUBSYS 144 145 /* 146 * The default hierarchy, reserved for the subsystems that are otherwise 147 * unattached - it never has more than a single cgroup, and all tasks are 148 * part of that cgroup. 149 */ 150 struct cgroup_root cgrp_dfl_root; 151 EXPORT_SYMBOL_GPL(cgrp_dfl_root); 152 153 /* 154 * The default hierarchy always exists but is hidden until mounted for the 155 * first time. This is for backward compatibility. 156 */ 157 static bool cgrp_dfl_visible; 158 159 /* some controllers are not supported in the default hierarchy */ 160 static u16 cgrp_dfl_inhibit_ss_mask; 161 162 /* some controllers are implicitly enabled on the default hierarchy */ 163 static u16 cgrp_dfl_implicit_ss_mask; 164 165 /* some controllers can be threaded on the default hierarchy */ 166 static u16 cgrp_dfl_threaded_ss_mask; 167 168 /* The list of hierarchy roots */ 169 LIST_HEAD(cgroup_roots); 170 static int cgroup_root_count; 171 172 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */ 173 static DEFINE_IDR(cgroup_hierarchy_idr); 174 175 /* 176 * Assign a monotonically increasing serial number to csses. It guarantees 177 * cgroups with bigger numbers are newer than those with smaller numbers. 178 * Also, as csses are always appended to the parent's ->children list, it 179 * guarantees that sibling csses are always sorted in the ascending serial 180 * number order on the list. Protected by cgroup_mutex. 181 */ 182 static u64 css_serial_nr_next = 1; 183 184 /* 185 * These bitmasks identify subsystems with specific features to avoid 186 * having to do iterative checks repeatedly. 187 */ 188 static u16 have_fork_callback __read_mostly; 189 static u16 have_exit_callback __read_mostly; 190 static u16 have_free_callback __read_mostly; 191 static u16 have_canfork_callback __read_mostly; 192 193 /* cgroup namespace for init task */ 194 struct cgroup_namespace init_cgroup_ns = { 195 .count = REFCOUNT_INIT(2), 196 .user_ns = &init_user_ns, 197 .ns.ops = &cgroupns_operations, 198 .ns.inum = PROC_CGROUP_INIT_INO, 199 .root_cset = &init_css_set, 200 }; 201 202 static struct file_system_type cgroup2_fs_type; 203 static struct cftype cgroup_base_files[]; 204 205 static int cgroup_apply_control(struct cgroup *cgrp); 206 static void cgroup_finalize_control(struct cgroup *cgrp, int ret); 207 static void css_task_iter_advance(struct css_task_iter *it); 208 static int cgroup_destroy_locked(struct cgroup *cgrp); 209 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp, 210 struct cgroup_subsys *ss); 211 static void css_release(struct percpu_ref *ref); 212 static void kill_css(struct cgroup_subsys_state *css); 213 static int cgroup_addrm_files(struct cgroup_subsys_state *css, 214 struct cgroup *cgrp, struct cftype cfts[], 215 bool is_add); 216 217 /** 218 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID 219 * @ssid: subsys ID of interest 220 * 221 * cgroup_subsys_enabled() can only be used with literal subsys names which 222 * is fine for individual subsystems but unsuitable for cgroup core. This 223 * is slower static_key_enabled() based test indexed by @ssid. 224 */ 225 bool cgroup_ssid_enabled(int ssid) 226 { 227 if (CGROUP_SUBSYS_COUNT == 0) 228 return false; 229 230 return static_key_enabled(cgroup_subsys_enabled_key[ssid]); 231 } 232 233 /** 234 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy 235 * @cgrp: the cgroup of interest 236 * 237 * The default hierarchy is the v2 interface of cgroup and this function 238 * can be used to test whether a cgroup is on the default hierarchy for 239 * cases where a subsystem should behave differnetly depending on the 240 * interface version. 241 * 242 * The set of behaviors which change on the default hierarchy are still 243 * being determined and the mount option is prefixed with __DEVEL__. 244 * 245 * List of changed behaviors: 246 * 247 * - Mount options "noprefix", "xattr", "clone_children", "release_agent" 248 * and "name" are disallowed. 249 * 250 * - When mounting an existing superblock, mount options should match. 251 * 252 * - Remount is disallowed. 253 * 254 * - rename(2) is disallowed. 255 * 256 * - "tasks" is removed. Everything should be at process granularity. Use 257 * "cgroup.procs" instead. 258 * 259 * - "cgroup.procs" is not sorted. pids will be unique unless they got 260 * recycled inbetween reads. 261 * 262 * - "release_agent" and "notify_on_release" are removed. Replacement 263 * notification mechanism will be implemented. 264 * 265 * - "cgroup.clone_children" is removed. 266 * 267 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup 268 * and its descendants contain no task; otherwise, 1. The file also 269 * generates kernfs notification which can be monitored through poll and 270 * [di]notify when the value of the file changes. 271 * 272 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and 273 * take masks of ancestors with non-empty cpus/mems, instead of being 274 * moved to an ancestor. 275 * 276 * - cpuset: a task can be moved into an empty cpuset, and again it takes 277 * masks of ancestors. 278 * 279 * - memcg: use_hierarchy is on by default and the cgroup file for the flag 280 * is not created. 281 * 282 * - blkcg: blk-throttle becomes properly hierarchical. 283 * 284 * - debug: disallowed on the default hierarchy. 285 */ 286 bool cgroup_on_dfl(const struct cgroup *cgrp) 287 { 288 return cgrp->root == &cgrp_dfl_root; 289 } 290 291 /* IDR wrappers which synchronize using cgroup_idr_lock */ 292 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end, 293 gfp_t gfp_mask) 294 { 295 int ret; 296 297 idr_preload(gfp_mask); 298 spin_lock_bh(&cgroup_idr_lock); 299 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM); 300 spin_unlock_bh(&cgroup_idr_lock); 301 idr_preload_end(); 302 return ret; 303 } 304 305 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id) 306 { 307 void *ret; 308 309 spin_lock_bh(&cgroup_idr_lock); 310 ret = idr_replace(idr, ptr, id); 311 spin_unlock_bh(&cgroup_idr_lock); 312 return ret; 313 } 314 315 static void cgroup_idr_remove(struct idr *idr, int id) 316 { 317 spin_lock_bh(&cgroup_idr_lock); 318 idr_remove(idr, id); 319 spin_unlock_bh(&cgroup_idr_lock); 320 } 321 322 static bool cgroup_has_tasks(struct cgroup *cgrp) 323 { 324 return cgrp->nr_populated_csets; 325 } 326 327 bool cgroup_is_threaded(struct cgroup *cgrp) 328 { 329 return cgrp->dom_cgrp != cgrp; 330 } 331 332 /* can @cgrp host both domain and threaded children? */ 333 static bool cgroup_is_mixable(struct cgroup *cgrp) 334 { 335 /* 336 * Root isn't under domain level resource control exempting it from 337 * the no-internal-process constraint, so it can serve as a thread 338 * root and a parent of resource domains at the same time. 339 */ 340 return !cgroup_parent(cgrp); 341 } 342 343 /* can @cgrp become a thread root? should always be true for a thread root */ 344 static bool cgroup_can_be_thread_root(struct cgroup *cgrp) 345 { 346 /* mixables don't care */ 347 if (cgroup_is_mixable(cgrp)) 348 return true; 349 350 /* domain roots can't be nested under threaded */ 351 if (cgroup_is_threaded(cgrp)) 352 return false; 353 354 /* can only have either domain or threaded children */ 355 if (cgrp->nr_populated_domain_children) 356 return false; 357 358 /* and no domain controllers can be enabled */ 359 if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask) 360 return false; 361 362 return true; 363 } 364 365 /* is @cgrp root of a threaded subtree? */ 366 bool cgroup_is_thread_root(struct cgroup *cgrp) 367 { 368 /* thread root should be a domain */ 369 if (cgroup_is_threaded(cgrp)) 370 return false; 371 372 /* a domain w/ threaded children is a thread root */ 373 if (cgrp->nr_threaded_children) 374 return true; 375 376 /* 377 * A domain which has tasks and explicit threaded controllers 378 * enabled is a thread root. 379 */ 380 if (cgroup_has_tasks(cgrp) && 381 (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask)) 382 return true; 383 384 return false; 385 } 386 387 /* a domain which isn't connected to the root w/o brekage can't be used */ 388 static bool cgroup_is_valid_domain(struct cgroup *cgrp) 389 { 390 /* the cgroup itself can be a thread root */ 391 if (cgroup_is_threaded(cgrp)) 392 return false; 393 394 /* but the ancestors can't be unless mixable */ 395 while ((cgrp = cgroup_parent(cgrp))) { 396 if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp)) 397 return false; 398 if (cgroup_is_threaded(cgrp)) 399 return false; 400 } 401 402 return true; 403 } 404 405 /* subsystems visibly enabled on a cgroup */ 406 static u16 cgroup_control(struct cgroup *cgrp) 407 { 408 struct cgroup *parent = cgroup_parent(cgrp); 409 u16 root_ss_mask = cgrp->root->subsys_mask; 410 411 if (parent) { 412 u16 ss_mask = parent->subtree_control; 413 414 /* threaded cgroups can only have threaded controllers */ 415 if (cgroup_is_threaded(cgrp)) 416 ss_mask &= cgrp_dfl_threaded_ss_mask; 417 return ss_mask; 418 } 419 420 if (cgroup_on_dfl(cgrp)) 421 root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask | 422 cgrp_dfl_implicit_ss_mask); 423 return root_ss_mask; 424 } 425 426 /* subsystems enabled on a cgroup */ 427 static u16 cgroup_ss_mask(struct cgroup *cgrp) 428 { 429 struct cgroup *parent = cgroup_parent(cgrp); 430 431 if (parent) { 432 u16 ss_mask = parent->subtree_ss_mask; 433 434 /* threaded cgroups can only have threaded controllers */ 435 if (cgroup_is_threaded(cgrp)) 436 ss_mask &= cgrp_dfl_threaded_ss_mask; 437 return ss_mask; 438 } 439 440 return cgrp->root->subsys_mask; 441 } 442 443 /** 444 * cgroup_css - obtain a cgroup's css for the specified subsystem 445 * @cgrp: the cgroup of interest 446 * @ss: the subsystem of interest (%NULL returns @cgrp->self) 447 * 448 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This 449 * function must be called either under cgroup_mutex or rcu_read_lock() and 450 * the caller is responsible for pinning the returned css if it wants to 451 * keep accessing it outside the said locks. This function may return 452 * %NULL if @cgrp doesn't have @subsys_id enabled. 453 */ 454 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp, 455 struct cgroup_subsys *ss) 456 { 457 if (ss) 458 return rcu_dereference_check(cgrp->subsys[ss->id], 459 lockdep_is_held(&cgroup_mutex)); 460 else 461 return &cgrp->self; 462 } 463 464 /** 465 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem 466 * @cgrp: the cgroup of interest 467 * @ss: the subsystem of interest (%NULL returns @cgrp->self) 468 * 469 * Similar to cgroup_css() but returns the effective css, which is defined 470 * as the matching css of the nearest ancestor including self which has @ss 471 * enabled. If @ss is associated with the hierarchy @cgrp is on, this 472 * function is guaranteed to return non-NULL css. 473 */ 474 static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp, 475 struct cgroup_subsys *ss) 476 { 477 lockdep_assert_held(&cgroup_mutex); 478 479 if (!ss) 480 return &cgrp->self; 481 482 /* 483 * This function is used while updating css associations and thus 484 * can't test the csses directly. Test ss_mask. 485 */ 486 while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) { 487 cgrp = cgroup_parent(cgrp); 488 if (!cgrp) 489 return NULL; 490 } 491 492 return cgroup_css(cgrp, ss); 493 } 494 495 /** 496 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem 497 * @cgrp: the cgroup of interest 498 * @ss: the subsystem of interest 499 * 500 * Find and get the effective css of @cgrp for @ss. The effective css is 501 * defined as the matching css of the nearest ancestor including self which 502 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on, 503 * the root css is returned, so this function always returns a valid css. 504 * The returned css must be put using css_put(). 505 */ 506 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp, 507 struct cgroup_subsys *ss) 508 { 509 struct cgroup_subsys_state *css; 510 511 rcu_read_lock(); 512 513 do { 514 css = cgroup_css(cgrp, ss); 515 516 if (css && css_tryget_online(css)) 517 goto out_unlock; 518 cgrp = cgroup_parent(cgrp); 519 } while (cgrp); 520 521 css = init_css_set.subsys[ss->id]; 522 css_get(css); 523 out_unlock: 524 rcu_read_unlock(); 525 return css; 526 } 527 528 static void cgroup_get_live(struct cgroup *cgrp) 529 { 530 WARN_ON_ONCE(cgroup_is_dead(cgrp)); 531 css_get(&cgrp->self); 532 } 533 534 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of) 535 { 536 struct cgroup *cgrp = of->kn->parent->priv; 537 struct cftype *cft = of_cft(of); 538 539 /* 540 * This is open and unprotected implementation of cgroup_css(). 541 * seq_css() is only called from a kernfs file operation which has 542 * an active reference on the file. Because all the subsystem 543 * files are drained before a css is disassociated with a cgroup, 544 * the matching css from the cgroup's subsys table is guaranteed to 545 * be and stay valid until the enclosing operation is complete. 546 */ 547 if (cft->ss) 548 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]); 549 else 550 return &cgrp->self; 551 } 552 EXPORT_SYMBOL_GPL(of_css); 553 554 /** 555 * for_each_css - iterate all css's of a cgroup 556 * @css: the iteration cursor 557 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end 558 * @cgrp: the target cgroup to iterate css's of 559 * 560 * Should be called under cgroup_[tree_]mutex. 561 */ 562 #define for_each_css(css, ssid, cgrp) \ 563 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \ 564 if (!((css) = rcu_dereference_check( \ 565 (cgrp)->subsys[(ssid)], \ 566 lockdep_is_held(&cgroup_mutex)))) { } \ 567 else 568 569 /** 570 * for_each_e_css - iterate all effective css's of a cgroup 571 * @css: the iteration cursor 572 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end 573 * @cgrp: the target cgroup to iterate css's of 574 * 575 * Should be called under cgroup_[tree_]mutex. 576 */ 577 #define for_each_e_css(css, ssid, cgrp) \ 578 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \ 579 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \ 580 ; \ 581 else 582 583 /** 584 * do_each_subsys_mask - filter for_each_subsys with a bitmask 585 * @ss: the iteration cursor 586 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end 587 * @ss_mask: the bitmask 588 * 589 * The block will only run for cases where the ssid-th bit (1 << ssid) of 590 * @ss_mask is set. 591 */ 592 #define do_each_subsys_mask(ss, ssid, ss_mask) do { \ 593 unsigned long __ss_mask = (ss_mask); \ 594 if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */ \ 595 (ssid) = 0; \ 596 break; \ 597 } \ 598 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \ 599 (ss) = cgroup_subsys[ssid]; \ 600 { 601 602 #define while_each_subsys_mask() \ 603 } \ 604 } \ 605 } while (false) 606 607 /* iterate over child cgrps, lock should be held throughout iteration */ 608 #define cgroup_for_each_live_child(child, cgrp) \ 609 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \ 610 if (({ lockdep_assert_held(&cgroup_mutex); \ 611 cgroup_is_dead(child); })) \ 612 ; \ 613 else 614 615 /* walk live descendants in preorder */ 616 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \ 617 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \ 618 if (({ lockdep_assert_held(&cgroup_mutex); \ 619 (dsct) = (d_css)->cgroup; \ 620 cgroup_is_dead(dsct); })) \ 621 ; \ 622 else 623 624 /* walk live descendants in postorder */ 625 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \ 626 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \ 627 if (({ lockdep_assert_held(&cgroup_mutex); \ 628 (dsct) = (d_css)->cgroup; \ 629 cgroup_is_dead(dsct); })) \ 630 ; \ 631 else 632 633 /* 634 * The default css_set - used by init and its children prior to any 635 * hierarchies being mounted. It contains a pointer to the root state 636 * for each subsystem. Also used to anchor the list of css_sets. Not 637 * reference-counted, to improve performance when child cgroups 638 * haven't been created. 639 */ 640 struct css_set init_css_set = { 641 .refcount = REFCOUNT_INIT(1), 642 .dom_cset = &init_css_set, 643 .tasks = LIST_HEAD_INIT(init_css_set.tasks), 644 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks), 645 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters), 646 .threaded_csets = LIST_HEAD_INIT(init_css_set.threaded_csets), 647 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links), 648 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node), 649 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node), 650 }; 651 652 static int css_set_count = 1; /* 1 for init_css_set */ 653 654 static bool css_set_threaded(struct css_set *cset) 655 { 656 return cset->dom_cset != cset; 657 } 658 659 /** 660 * css_set_populated - does a css_set contain any tasks? 661 * @cset: target css_set 662 * 663 * css_set_populated() should be the same as !!cset->nr_tasks at steady 664 * state. However, css_set_populated() can be called while a task is being 665 * added to or removed from the linked list before the nr_tasks is 666 * properly updated. Hence, we can't just look at ->nr_tasks here. 667 */ 668 static bool css_set_populated(struct css_set *cset) 669 { 670 lockdep_assert_held(&css_set_lock); 671 672 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks); 673 } 674 675 /** 676 * cgroup_update_populated - update the populated count of a cgroup 677 * @cgrp: the target cgroup 678 * @populated: inc or dec populated count 679 * 680 * One of the css_sets associated with @cgrp is either getting its first 681 * task or losing the last. Update @cgrp->nr_populated_* accordingly. The 682 * count is propagated towards root so that a given cgroup's 683 * nr_populated_children is zero iff none of its descendants contain any 684 * tasks. 685 * 686 * @cgrp's interface file "cgroup.populated" is zero if both 687 * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and 688 * 1 otherwise. When the sum changes from or to zero, userland is notified 689 * that the content of the interface file has changed. This can be used to 690 * detect when @cgrp and its descendants become populated or empty. 691 */ 692 static void cgroup_update_populated(struct cgroup *cgrp, bool populated) 693 { 694 struct cgroup *child = NULL; 695 int adj = populated ? 1 : -1; 696 697 lockdep_assert_held(&css_set_lock); 698 699 do { 700 bool was_populated = cgroup_is_populated(cgrp); 701 702 if (!child) { 703 cgrp->nr_populated_csets += adj; 704 } else { 705 if (cgroup_is_threaded(child)) 706 cgrp->nr_populated_threaded_children += adj; 707 else 708 cgrp->nr_populated_domain_children += adj; 709 } 710 711 if (was_populated == cgroup_is_populated(cgrp)) 712 break; 713 714 cgroup1_check_for_release(cgrp); 715 cgroup_file_notify(&cgrp->events_file); 716 717 child = cgrp; 718 cgrp = cgroup_parent(cgrp); 719 } while (cgrp); 720 } 721 722 /** 723 * css_set_update_populated - update populated state of a css_set 724 * @cset: target css_set 725 * @populated: whether @cset is populated or depopulated 726 * 727 * @cset is either getting the first task or losing the last. Update the 728 * populated counters of all associated cgroups accordingly. 729 */ 730 static void css_set_update_populated(struct css_set *cset, bool populated) 731 { 732 struct cgrp_cset_link *link; 733 734 lockdep_assert_held(&css_set_lock); 735 736 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) 737 cgroup_update_populated(link->cgrp, populated); 738 } 739 740 /** 741 * css_set_move_task - move a task from one css_set to another 742 * @task: task being moved 743 * @from_cset: css_set @task currently belongs to (may be NULL) 744 * @to_cset: new css_set @task is being moved to (may be NULL) 745 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks 746 * 747 * Move @task from @from_cset to @to_cset. If @task didn't belong to any 748 * css_set, @from_cset can be NULL. If @task is being disassociated 749 * instead of moved, @to_cset can be NULL. 750 * 751 * This function automatically handles populated counter updates and 752 * css_task_iter adjustments but the caller is responsible for managing 753 * @from_cset and @to_cset's reference counts. 754 */ 755 static void css_set_move_task(struct task_struct *task, 756 struct css_set *from_cset, struct css_set *to_cset, 757 bool use_mg_tasks) 758 { 759 lockdep_assert_held(&css_set_lock); 760 761 if (to_cset && !css_set_populated(to_cset)) 762 css_set_update_populated(to_cset, true); 763 764 if (from_cset) { 765 struct css_task_iter *it, *pos; 766 767 WARN_ON_ONCE(list_empty(&task->cg_list)); 768 769 /* 770 * @task is leaving, advance task iterators which are 771 * pointing to it so that they can resume at the next 772 * position. Advancing an iterator might remove it from 773 * the list, use safe walk. See css_task_iter_advance*() 774 * for details. 775 */ 776 list_for_each_entry_safe(it, pos, &from_cset->task_iters, 777 iters_node) 778 if (it->task_pos == &task->cg_list) 779 css_task_iter_advance(it); 780 781 list_del_init(&task->cg_list); 782 if (!css_set_populated(from_cset)) 783 css_set_update_populated(from_cset, false); 784 } else { 785 WARN_ON_ONCE(!list_empty(&task->cg_list)); 786 } 787 788 if (to_cset) { 789 /* 790 * We are synchronized through cgroup_threadgroup_rwsem 791 * against PF_EXITING setting such that we can't race 792 * against cgroup_exit() changing the css_set to 793 * init_css_set and dropping the old one. 794 */ 795 WARN_ON_ONCE(task->flags & PF_EXITING); 796 797 rcu_assign_pointer(task->cgroups, to_cset); 798 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks : 799 &to_cset->tasks); 800 } 801 } 802 803 /* 804 * hash table for cgroup groups. This improves the performance to find 805 * an existing css_set. This hash doesn't (currently) take into 806 * account cgroups in empty hierarchies. 807 */ 808 #define CSS_SET_HASH_BITS 7 809 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS); 810 811 static unsigned long css_set_hash(struct cgroup_subsys_state *css[]) 812 { 813 unsigned long key = 0UL; 814 struct cgroup_subsys *ss; 815 int i; 816 817 for_each_subsys(ss, i) 818 key += (unsigned long)css[i]; 819 key = (key >> 16) ^ key; 820 821 return key; 822 } 823 824 void put_css_set_locked(struct css_set *cset) 825 { 826 struct cgrp_cset_link *link, *tmp_link; 827 struct cgroup_subsys *ss; 828 int ssid; 829 830 lockdep_assert_held(&css_set_lock); 831 832 if (!refcount_dec_and_test(&cset->refcount)) 833 return; 834 835 WARN_ON_ONCE(!list_empty(&cset->threaded_csets)); 836 837 /* This css_set is dead. unlink it and release cgroup and css refs */ 838 for_each_subsys(ss, ssid) { 839 list_del(&cset->e_cset_node[ssid]); 840 css_put(cset->subsys[ssid]); 841 } 842 hash_del(&cset->hlist); 843 css_set_count--; 844 845 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) { 846 list_del(&link->cset_link); 847 list_del(&link->cgrp_link); 848 if (cgroup_parent(link->cgrp)) 849 cgroup_put(link->cgrp); 850 kfree(link); 851 } 852 853 if (css_set_threaded(cset)) { 854 list_del(&cset->threaded_csets_node); 855 put_css_set_locked(cset->dom_cset); 856 } 857 858 kfree_rcu(cset, rcu_head); 859 } 860 861 /** 862 * compare_css_sets - helper function for find_existing_css_set(). 863 * @cset: candidate css_set being tested 864 * @old_cset: existing css_set for a task 865 * @new_cgrp: cgroup that's being entered by the task 866 * @template: desired set of css pointers in css_set (pre-calculated) 867 * 868 * Returns true if "cset" matches "old_cset" except for the hierarchy 869 * which "new_cgrp" belongs to, for which it should match "new_cgrp". 870 */ 871 static bool compare_css_sets(struct css_set *cset, 872 struct css_set *old_cset, 873 struct cgroup *new_cgrp, 874 struct cgroup_subsys_state *template[]) 875 { 876 struct cgroup *new_dfl_cgrp; 877 struct list_head *l1, *l2; 878 879 /* 880 * On the default hierarchy, there can be csets which are 881 * associated with the same set of cgroups but different csses. 882 * Let's first ensure that csses match. 883 */ 884 if (memcmp(template, cset->subsys, sizeof(cset->subsys))) 885 return false; 886 887 888 /* @cset's domain should match the default cgroup's */ 889 if (cgroup_on_dfl(new_cgrp)) 890 new_dfl_cgrp = new_cgrp; 891 else 892 new_dfl_cgrp = old_cset->dfl_cgrp; 893 894 if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp) 895 return false; 896 897 /* 898 * Compare cgroup pointers in order to distinguish between 899 * different cgroups in hierarchies. As different cgroups may 900 * share the same effective css, this comparison is always 901 * necessary. 902 */ 903 l1 = &cset->cgrp_links; 904 l2 = &old_cset->cgrp_links; 905 while (1) { 906 struct cgrp_cset_link *link1, *link2; 907 struct cgroup *cgrp1, *cgrp2; 908 909 l1 = l1->next; 910 l2 = l2->next; 911 /* See if we reached the end - both lists are equal length. */ 912 if (l1 == &cset->cgrp_links) { 913 BUG_ON(l2 != &old_cset->cgrp_links); 914 break; 915 } else { 916 BUG_ON(l2 == &old_cset->cgrp_links); 917 } 918 /* Locate the cgroups associated with these links. */ 919 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link); 920 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link); 921 cgrp1 = link1->cgrp; 922 cgrp2 = link2->cgrp; 923 /* Hierarchies should be linked in the same order. */ 924 BUG_ON(cgrp1->root != cgrp2->root); 925 926 /* 927 * If this hierarchy is the hierarchy of the cgroup 928 * that's changing, then we need to check that this 929 * css_set points to the new cgroup; if it's any other 930 * hierarchy, then this css_set should point to the 931 * same cgroup as the old css_set. 932 */ 933 if (cgrp1->root == new_cgrp->root) { 934 if (cgrp1 != new_cgrp) 935 return false; 936 } else { 937 if (cgrp1 != cgrp2) 938 return false; 939 } 940 } 941 return true; 942 } 943 944 /** 945 * find_existing_css_set - init css array and find the matching css_set 946 * @old_cset: the css_set that we're using before the cgroup transition 947 * @cgrp: the cgroup that we're moving into 948 * @template: out param for the new set of csses, should be clear on entry 949 */ 950 static struct css_set *find_existing_css_set(struct css_set *old_cset, 951 struct cgroup *cgrp, 952 struct cgroup_subsys_state *template[]) 953 { 954 struct cgroup_root *root = cgrp->root; 955 struct cgroup_subsys *ss; 956 struct css_set *cset; 957 unsigned long key; 958 int i; 959 960 /* 961 * Build the set of subsystem state objects that we want to see in the 962 * new css_set. while subsystems can change globally, the entries here 963 * won't change, so no need for locking. 964 */ 965 for_each_subsys(ss, i) { 966 if (root->subsys_mask & (1UL << i)) { 967 /* 968 * @ss is in this hierarchy, so we want the 969 * effective css from @cgrp. 970 */ 971 template[i] = cgroup_e_css(cgrp, ss); 972 } else { 973 /* 974 * @ss is not in this hierarchy, so we don't want 975 * to change the css. 976 */ 977 template[i] = old_cset->subsys[i]; 978 } 979 } 980 981 key = css_set_hash(template); 982 hash_for_each_possible(css_set_table, cset, hlist, key) { 983 if (!compare_css_sets(cset, old_cset, cgrp, template)) 984 continue; 985 986 /* This css_set matches what we need */ 987 return cset; 988 } 989 990 /* No existing cgroup group matched */ 991 return NULL; 992 } 993 994 static void free_cgrp_cset_links(struct list_head *links_to_free) 995 { 996 struct cgrp_cset_link *link, *tmp_link; 997 998 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) { 999 list_del(&link->cset_link); 1000 kfree(link); 1001 } 1002 } 1003 1004 /** 1005 * allocate_cgrp_cset_links - allocate cgrp_cset_links 1006 * @count: the number of links to allocate 1007 * @tmp_links: list_head the allocated links are put on 1008 * 1009 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links 1010 * through ->cset_link. Returns 0 on success or -errno. 1011 */ 1012 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links) 1013 { 1014 struct cgrp_cset_link *link; 1015 int i; 1016 1017 INIT_LIST_HEAD(tmp_links); 1018 1019 for (i = 0; i < count; i++) { 1020 link = kzalloc(sizeof(*link), GFP_KERNEL); 1021 if (!link) { 1022 free_cgrp_cset_links(tmp_links); 1023 return -ENOMEM; 1024 } 1025 list_add(&link->cset_link, tmp_links); 1026 } 1027 return 0; 1028 } 1029 1030 /** 1031 * link_css_set - a helper function to link a css_set to a cgroup 1032 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links() 1033 * @cset: the css_set to be linked 1034 * @cgrp: the destination cgroup 1035 */ 1036 static void link_css_set(struct list_head *tmp_links, struct css_set *cset, 1037 struct cgroup *cgrp) 1038 { 1039 struct cgrp_cset_link *link; 1040 1041 BUG_ON(list_empty(tmp_links)); 1042 1043 if (cgroup_on_dfl(cgrp)) 1044 cset->dfl_cgrp = cgrp; 1045 1046 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link); 1047 link->cset = cset; 1048 link->cgrp = cgrp; 1049 1050 /* 1051 * Always add links to the tail of the lists so that the lists are 1052 * in choronological order. 1053 */ 1054 list_move_tail(&link->cset_link, &cgrp->cset_links); 1055 list_add_tail(&link->cgrp_link, &cset->cgrp_links); 1056 1057 if (cgroup_parent(cgrp)) 1058 cgroup_get_live(cgrp); 1059 } 1060 1061 /** 1062 * find_css_set - return a new css_set with one cgroup updated 1063 * @old_cset: the baseline css_set 1064 * @cgrp: the cgroup to be updated 1065 * 1066 * Return a new css_set that's equivalent to @old_cset, but with @cgrp 1067 * substituted into the appropriate hierarchy. 1068 */ 1069 static struct css_set *find_css_set(struct css_set *old_cset, 1070 struct cgroup *cgrp) 1071 { 1072 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { }; 1073 struct css_set *cset; 1074 struct list_head tmp_links; 1075 struct cgrp_cset_link *link; 1076 struct cgroup_subsys *ss; 1077 unsigned long key; 1078 int ssid; 1079 1080 lockdep_assert_held(&cgroup_mutex); 1081 1082 /* First see if we already have a cgroup group that matches 1083 * the desired set */ 1084 spin_lock_irq(&css_set_lock); 1085 cset = find_existing_css_set(old_cset, cgrp, template); 1086 if (cset) 1087 get_css_set(cset); 1088 spin_unlock_irq(&css_set_lock); 1089 1090 if (cset) 1091 return cset; 1092 1093 cset = kzalloc(sizeof(*cset), GFP_KERNEL); 1094 if (!cset) 1095 return NULL; 1096 1097 /* Allocate all the cgrp_cset_link objects that we'll need */ 1098 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) { 1099 kfree(cset); 1100 return NULL; 1101 } 1102 1103 refcount_set(&cset->refcount, 1); 1104 cset->dom_cset = cset; 1105 INIT_LIST_HEAD(&cset->tasks); 1106 INIT_LIST_HEAD(&cset->mg_tasks); 1107 INIT_LIST_HEAD(&cset->task_iters); 1108 INIT_LIST_HEAD(&cset->threaded_csets); 1109 INIT_HLIST_NODE(&cset->hlist); 1110 INIT_LIST_HEAD(&cset->cgrp_links); 1111 INIT_LIST_HEAD(&cset->mg_preload_node); 1112 INIT_LIST_HEAD(&cset->mg_node); 1113 1114 /* Copy the set of subsystem state objects generated in 1115 * find_existing_css_set() */ 1116 memcpy(cset->subsys, template, sizeof(cset->subsys)); 1117 1118 spin_lock_irq(&css_set_lock); 1119 /* Add reference counts and links from the new css_set. */ 1120 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) { 1121 struct cgroup *c = link->cgrp; 1122 1123 if (c->root == cgrp->root) 1124 c = cgrp; 1125 link_css_set(&tmp_links, cset, c); 1126 } 1127 1128 BUG_ON(!list_empty(&tmp_links)); 1129 1130 css_set_count++; 1131 1132 /* Add @cset to the hash table */ 1133 key = css_set_hash(cset->subsys); 1134 hash_add(css_set_table, &cset->hlist, key); 1135 1136 for_each_subsys(ss, ssid) { 1137 struct cgroup_subsys_state *css = cset->subsys[ssid]; 1138 1139 list_add_tail(&cset->e_cset_node[ssid], 1140 &css->cgroup->e_csets[ssid]); 1141 css_get(css); 1142 } 1143 1144 spin_unlock_irq(&css_set_lock); 1145 1146 /* 1147 * If @cset should be threaded, look up the matching dom_cset and 1148 * link them up. We first fully initialize @cset then look for the 1149 * dom_cset. It's simpler this way and safe as @cset is guaranteed 1150 * to stay empty until we return. 1151 */ 1152 if (cgroup_is_threaded(cset->dfl_cgrp)) { 1153 struct css_set *dcset; 1154 1155 dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp); 1156 if (!dcset) { 1157 put_css_set(cset); 1158 return NULL; 1159 } 1160 1161 spin_lock_irq(&css_set_lock); 1162 cset->dom_cset = dcset; 1163 list_add_tail(&cset->threaded_csets_node, 1164 &dcset->threaded_csets); 1165 spin_unlock_irq(&css_set_lock); 1166 } 1167 1168 return cset; 1169 } 1170 1171 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root) 1172 { 1173 struct cgroup *root_cgrp = kf_root->kn->priv; 1174 1175 return root_cgrp->root; 1176 } 1177 1178 static int cgroup_init_root_id(struct cgroup_root *root) 1179 { 1180 int id; 1181 1182 lockdep_assert_held(&cgroup_mutex); 1183 1184 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL); 1185 if (id < 0) 1186 return id; 1187 1188 root->hierarchy_id = id; 1189 return 0; 1190 } 1191 1192 static void cgroup_exit_root_id(struct cgroup_root *root) 1193 { 1194 lockdep_assert_held(&cgroup_mutex); 1195 1196 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id); 1197 } 1198 1199 void cgroup_free_root(struct cgroup_root *root) 1200 { 1201 if (root) { 1202 idr_destroy(&root->cgroup_idr); 1203 kfree(root); 1204 } 1205 } 1206 1207 static void cgroup_destroy_root(struct cgroup_root *root) 1208 { 1209 struct cgroup *cgrp = &root->cgrp; 1210 struct cgrp_cset_link *link, *tmp_link; 1211 1212 trace_cgroup_destroy_root(root); 1213 1214 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp); 1215 1216 BUG_ON(atomic_read(&root->nr_cgrps)); 1217 BUG_ON(!list_empty(&cgrp->self.children)); 1218 1219 /* Rebind all subsystems back to the default hierarchy */ 1220 WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask)); 1221 1222 /* 1223 * Release all the links from cset_links to this hierarchy's 1224 * root cgroup 1225 */ 1226 spin_lock_irq(&css_set_lock); 1227 1228 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) { 1229 list_del(&link->cset_link); 1230 list_del(&link->cgrp_link); 1231 kfree(link); 1232 } 1233 1234 spin_unlock_irq(&css_set_lock); 1235 1236 if (!list_empty(&root->root_list)) { 1237 list_del(&root->root_list); 1238 cgroup_root_count--; 1239 } 1240 1241 cgroup_exit_root_id(root); 1242 1243 mutex_unlock(&cgroup_mutex); 1244 1245 kernfs_destroy_root(root->kf_root); 1246 cgroup_free_root(root); 1247 } 1248 1249 /* 1250 * look up cgroup associated with current task's cgroup namespace on the 1251 * specified hierarchy 1252 */ 1253 static struct cgroup * 1254 current_cgns_cgroup_from_root(struct cgroup_root *root) 1255 { 1256 struct cgroup *res = NULL; 1257 struct css_set *cset; 1258 1259 lockdep_assert_held(&css_set_lock); 1260 1261 rcu_read_lock(); 1262 1263 cset = current->nsproxy->cgroup_ns->root_cset; 1264 if (cset == &init_css_set) { 1265 res = &root->cgrp; 1266 } else { 1267 struct cgrp_cset_link *link; 1268 1269 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) { 1270 struct cgroup *c = link->cgrp; 1271 1272 if (c->root == root) { 1273 res = c; 1274 break; 1275 } 1276 } 1277 } 1278 rcu_read_unlock(); 1279 1280 BUG_ON(!res); 1281 return res; 1282 } 1283 1284 /* look up cgroup associated with given css_set on the specified hierarchy */ 1285 static struct cgroup *cset_cgroup_from_root(struct css_set *cset, 1286 struct cgroup_root *root) 1287 { 1288 struct cgroup *res = NULL; 1289 1290 lockdep_assert_held(&cgroup_mutex); 1291 lockdep_assert_held(&css_set_lock); 1292 1293 if (cset == &init_css_set) { 1294 res = &root->cgrp; 1295 } else if (root == &cgrp_dfl_root) { 1296 res = cset->dfl_cgrp; 1297 } else { 1298 struct cgrp_cset_link *link; 1299 1300 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) { 1301 struct cgroup *c = link->cgrp; 1302 1303 if (c->root == root) { 1304 res = c; 1305 break; 1306 } 1307 } 1308 } 1309 1310 BUG_ON(!res); 1311 return res; 1312 } 1313 1314 /* 1315 * Return the cgroup for "task" from the given hierarchy. Must be 1316 * called with cgroup_mutex and css_set_lock held. 1317 */ 1318 struct cgroup *task_cgroup_from_root(struct task_struct *task, 1319 struct cgroup_root *root) 1320 { 1321 /* 1322 * No need to lock the task - since we hold cgroup_mutex the 1323 * task can't change groups, so the only thing that can happen 1324 * is that it exits and its css is set back to init_css_set. 1325 */ 1326 return cset_cgroup_from_root(task_css_set(task), root); 1327 } 1328 1329 /* 1330 * A task must hold cgroup_mutex to modify cgroups. 1331 * 1332 * Any task can increment and decrement the count field without lock. 1333 * So in general, code holding cgroup_mutex can't rely on the count 1334 * field not changing. However, if the count goes to zero, then only 1335 * cgroup_attach_task() can increment it again. Because a count of zero 1336 * means that no tasks are currently attached, therefore there is no 1337 * way a task attached to that cgroup can fork (the other way to 1338 * increment the count). So code holding cgroup_mutex can safely 1339 * assume that if the count is zero, it will stay zero. Similarly, if 1340 * a task holds cgroup_mutex on a cgroup with zero count, it 1341 * knows that the cgroup won't be removed, as cgroup_rmdir() 1342 * needs that mutex. 1343 * 1344 * A cgroup can only be deleted if both its 'count' of using tasks 1345 * is zero, and its list of 'children' cgroups is empty. Since all 1346 * tasks in the system use _some_ cgroup, and since there is always at 1347 * least one task in the system (init, pid == 1), therefore, root cgroup 1348 * always has either children cgroups and/or using tasks. So we don't 1349 * need a special hack to ensure that root cgroup cannot be deleted. 1350 * 1351 * P.S. One more locking exception. RCU is used to guard the 1352 * update of a tasks cgroup pointer by cgroup_attach_task() 1353 */ 1354 1355 static struct kernfs_syscall_ops cgroup_kf_syscall_ops; 1356 1357 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft, 1358 char *buf) 1359 { 1360 struct cgroup_subsys *ss = cft->ss; 1361 1362 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) && 1363 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) 1364 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s", 1365 cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name, 1366 cft->name); 1367 else 1368 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX); 1369 return buf; 1370 } 1371 1372 /** 1373 * cgroup_file_mode - deduce file mode of a control file 1374 * @cft: the control file in question 1375 * 1376 * S_IRUGO for read, S_IWUSR for write. 1377 */ 1378 static umode_t cgroup_file_mode(const struct cftype *cft) 1379 { 1380 umode_t mode = 0; 1381 1382 if (cft->read_u64 || cft->read_s64 || cft->seq_show) 1383 mode |= S_IRUGO; 1384 1385 if (cft->write_u64 || cft->write_s64 || cft->write) { 1386 if (cft->flags & CFTYPE_WORLD_WRITABLE) 1387 mode |= S_IWUGO; 1388 else 1389 mode |= S_IWUSR; 1390 } 1391 1392 return mode; 1393 } 1394 1395 /** 1396 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask 1397 * @subtree_control: the new subtree_control mask to consider 1398 * @this_ss_mask: available subsystems 1399 * 1400 * On the default hierarchy, a subsystem may request other subsystems to be 1401 * enabled together through its ->depends_on mask. In such cases, more 1402 * subsystems than specified in "cgroup.subtree_control" may be enabled. 1403 * 1404 * This function calculates which subsystems need to be enabled if 1405 * @subtree_control is to be applied while restricted to @this_ss_mask. 1406 */ 1407 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask) 1408 { 1409 u16 cur_ss_mask = subtree_control; 1410 struct cgroup_subsys *ss; 1411 int ssid; 1412 1413 lockdep_assert_held(&cgroup_mutex); 1414 1415 cur_ss_mask |= cgrp_dfl_implicit_ss_mask; 1416 1417 while (true) { 1418 u16 new_ss_mask = cur_ss_mask; 1419 1420 do_each_subsys_mask(ss, ssid, cur_ss_mask) { 1421 new_ss_mask |= ss->depends_on; 1422 } while_each_subsys_mask(); 1423 1424 /* 1425 * Mask out subsystems which aren't available. This can 1426 * happen only if some depended-upon subsystems were bound 1427 * to non-default hierarchies. 1428 */ 1429 new_ss_mask &= this_ss_mask; 1430 1431 if (new_ss_mask == cur_ss_mask) 1432 break; 1433 cur_ss_mask = new_ss_mask; 1434 } 1435 1436 return cur_ss_mask; 1437 } 1438 1439 /** 1440 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods 1441 * @kn: the kernfs_node being serviced 1442 * 1443 * This helper undoes cgroup_kn_lock_live() and should be invoked before 1444 * the method finishes if locking succeeded. Note that once this function 1445 * returns the cgroup returned by cgroup_kn_lock_live() may become 1446 * inaccessible any time. If the caller intends to continue to access the 1447 * cgroup, it should pin it before invoking this function. 1448 */ 1449 void cgroup_kn_unlock(struct kernfs_node *kn) 1450 { 1451 struct cgroup *cgrp; 1452 1453 if (kernfs_type(kn) == KERNFS_DIR) 1454 cgrp = kn->priv; 1455 else 1456 cgrp = kn->parent->priv; 1457 1458 mutex_unlock(&cgroup_mutex); 1459 1460 kernfs_unbreak_active_protection(kn); 1461 cgroup_put(cgrp); 1462 } 1463 1464 /** 1465 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods 1466 * @kn: the kernfs_node being serviced 1467 * @drain_offline: perform offline draining on the cgroup 1468 * 1469 * This helper is to be used by a cgroup kernfs method currently servicing 1470 * @kn. It breaks the active protection, performs cgroup locking and 1471 * verifies that the associated cgroup is alive. Returns the cgroup if 1472 * alive; otherwise, %NULL. A successful return should be undone by a 1473 * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the 1474 * cgroup is drained of offlining csses before return. 1475 * 1476 * Any cgroup kernfs method implementation which requires locking the 1477 * associated cgroup should use this helper. It avoids nesting cgroup 1478 * locking under kernfs active protection and allows all kernfs operations 1479 * including self-removal. 1480 */ 1481 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline) 1482 { 1483 struct cgroup *cgrp; 1484 1485 if (kernfs_type(kn) == KERNFS_DIR) 1486 cgrp = kn->priv; 1487 else 1488 cgrp = kn->parent->priv; 1489 1490 /* 1491 * We're gonna grab cgroup_mutex which nests outside kernfs 1492 * active_ref. cgroup liveliness check alone provides enough 1493 * protection against removal. Ensure @cgrp stays accessible and 1494 * break the active_ref protection. 1495 */ 1496 if (!cgroup_tryget(cgrp)) 1497 return NULL; 1498 kernfs_break_active_protection(kn); 1499 1500 if (drain_offline) 1501 cgroup_lock_and_drain_offline(cgrp); 1502 else 1503 mutex_lock(&cgroup_mutex); 1504 1505 if (!cgroup_is_dead(cgrp)) 1506 return cgrp; 1507 1508 cgroup_kn_unlock(kn); 1509 return NULL; 1510 } 1511 1512 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft) 1513 { 1514 char name[CGROUP_FILE_NAME_MAX]; 1515 1516 lockdep_assert_held(&cgroup_mutex); 1517 1518 if (cft->file_offset) { 1519 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss); 1520 struct cgroup_file *cfile = (void *)css + cft->file_offset; 1521 1522 spin_lock_irq(&cgroup_file_kn_lock); 1523 cfile->kn = NULL; 1524 spin_unlock_irq(&cgroup_file_kn_lock); 1525 } 1526 1527 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name)); 1528 } 1529 1530 /** 1531 * css_clear_dir - remove subsys files in a cgroup directory 1532 * @css: taget css 1533 */ 1534 static void css_clear_dir(struct cgroup_subsys_state *css) 1535 { 1536 struct cgroup *cgrp = css->cgroup; 1537 struct cftype *cfts; 1538 1539 if (!(css->flags & CSS_VISIBLE)) 1540 return; 1541 1542 css->flags &= ~CSS_VISIBLE; 1543 1544 list_for_each_entry(cfts, &css->ss->cfts, node) 1545 cgroup_addrm_files(css, cgrp, cfts, false); 1546 } 1547 1548 /** 1549 * css_populate_dir - create subsys files in a cgroup directory 1550 * @css: target css 1551 * 1552 * On failure, no file is added. 1553 */ 1554 static int css_populate_dir(struct cgroup_subsys_state *css) 1555 { 1556 struct cgroup *cgrp = css->cgroup; 1557 struct cftype *cfts, *failed_cfts; 1558 int ret; 1559 1560 if ((css->flags & CSS_VISIBLE) || !cgrp->kn) 1561 return 0; 1562 1563 if (!css->ss) { 1564 if (cgroup_on_dfl(cgrp)) 1565 cfts = cgroup_base_files; 1566 else 1567 cfts = cgroup1_base_files; 1568 1569 return cgroup_addrm_files(&cgrp->self, cgrp, cfts, true); 1570 } 1571 1572 list_for_each_entry(cfts, &css->ss->cfts, node) { 1573 ret = cgroup_addrm_files(css, cgrp, cfts, true); 1574 if (ret < 0) { 1575 failed_cfts = cfts; 1576 goto err; 1577 } 1578 } 1579 1580 css->flags |= CSS_VISIBLE; 1581 1582 return 0; 1583 err: 1584 list_for_each_entry(cfts, &css->ss->cfts, node) { 1585 if (cfts == failed_cfts) 1586 break; 1587 cgroup_addrm_files(css, cgrp, cfts, false); 1588 } 1589 return ret; 1590 } 1591 1592 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask) 1593 { 1594 struct cgroup *dcgrp = &dst_root->cgrp; 1595 struct cgroup_subsys *ss; 1596 int ssid, i, ret; 1597 1598 lockdep_assert_held(&cgroup_mutex); 1599 1600 do_each_subsys_mask(ss, ssid, ss_mask) { 1601 /* 1602 * If @ss has non-root csses attached to it, can't move. 1603 * If @ss is an implicit controller, it is exempt from this 1604 * rule and can be stolen. 1605 */ 1606 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) && 1607 !ss->implicit_on_dfl) 1608 return -EBUSY; 1609 1610 /* can't move between two non-dummy roots either */ 1611 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root) 1612 return -EBUSY; 1613 } while_each_subsys_mask(); 1614 1615 do_each_subsys_mask(ss, ssid, ss_mask) { 1616 struct cgroup_root *src_root = ss->root; 1617 struct cgroup *scgrp = &src_root->cgrp; 1618 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss); 1619 struct css_set *cset; 1620 1621 WARN_ON(!css || cgroup_css(dcgrp, ss)); 1622 1623 /* disable from the source */ 1624 src_root->subsys_mask &= ~(1 << ssid); 1625 WARN_ON(cgroup_apply_control(scgrp)); 1626 cgroup_finalize_control(scgrp, 0); 1627 1628 /* rebind */ 1629 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL); 1630 rcu_assign_pointer(dcgrp->subsys[ssid], css); 1631 ss->root = dst_root; 1632 css->cgroup = dcgrp; 1633 1634 spin_lock_irq(&css_set_lock); 1635 hash_for_each(css_set_table, i, cset, hlist) 1636 list_move_tail(&cset->e_cset_node[ss->id], 1637 &dcgrp->e_csets[ss->id]); 1638 spin_unlock_irq(&css_set_lock); 1639 1640 /* default hierarchy doesn't enable controllers by default */ 1641 dst_root->subsys_mask |= 1 << ssid; 1642 if (dst_root == &cgrp_dfl_root) { 1643 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]); 1644 } else { 1645 dcgrp->subtree_control |= 1 << ssid; 1646 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]); 1647 } 1648 1649 ret = cgroup_apply_control(dcgrp); 1650 if (ret) 1651 pr_warn("partial failure to rebind %s controller (err=%d)\n", 1652 ss->name, ret); 1653 1654 if (ss->bind) 1655 ss->bind(css); 1656 } while_each_subsys_mask(); 1657 1658 kernfs_activate(dcgrp->kn); 1659 return 0; 1660 } 1661 1662 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node, 1663 struct kernfs_root *kf_root) 1664 { 1665 int len = 0; 1666 char *buf = NULL; 1667 struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root); 1668 struct cgroup *ns_cgroup; 1669 1670 buf = kmalloc(PATH_MAX, GFP_KERNEL); 1671 if (!buf) 1672 return -ENOMEM; 1673 1674 spin_lock_irq(&css_set_lock); 1675 ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot); 1676 len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX); 1677 spin_unlock_irq(&css_set_lock); 1678 1679 if (len >= PATH_MAX) 1680 len = -ERANGE; 1681 else if (len > 0) { 1682 seq_escape(sf, buf, " \t\n\\"); 1683 len = 0; 1684 } 1685 kfree(buf); 1686 return len; 1687 } 1688 1689 static int parse_cgroup_root_flags(char *data, unsigned int *root_flags) 1690 { 1691 char *token; 1692 1693 *root_flags = 0; 1694 1695 if (!data) 1696 return 0; 1697 1698 while ((token = strsep(&data, ",")) != NULL) { 1699 if (!strcmp(token, "nsdelegate")) { 1700 *root_flags |= CGRP_ROOT_NS_DELEGATE; 1701 continue; 1702 } 1703 1704 pr_err("cgroup2: unknown option \"%s\"\n", token); 1705 return -EINVAL; 1706 } 1707 1708 return 0; 1709 } 1710 1711 static void apply_cgroup_root_flags(unsigned int root_flags) 1712 { 1713 if (current->nsproxy->cgroup_ns == &init_cgroup_ns) { 1714 if (root_flags & CGRP_ROOT_NS_DELEGATE) 1715 cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE; 1716 else 1717 cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE; 1718 } 1719 } 1720 1721 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root) 1722 { 1723 if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) 1724 seq_puts(seq, ",nsdelegate"); 1725 return 0; 1726 } 1727 1728 static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data) 1729 { 1730 unsigned int root_flags; 1731 int ret; 1732 1733 ret = parse_cgroup_root_flags(data, &root_flags); 1734 if (ret) 1735 return ret; 1736 1737 apply_cgroup_root_flags(root_flags); 1738 return 0; 1739 } 1740 1741 /* 1742 * To reduce the fork() overhead for systems that are not actually using 1743 * their cgroups capability, we don't maintain the lists running through 1744 * each css_set to its tasks until we see the list actually used - in other 1745 * words after the first mount. 1746 */ 1747 static bool use_task_css_set_links __read_mostly; 1748 1749 static void cgroup_enable_task_cg_lists(void) 1750 { 1751 struct task_struct *p, *g; 1752 1753 spin_lock_irq(&css_set_lock); 1754 1755 if (use_task_css_set_links) 1756 goto out_unlock; 1757 1758 use_task_css_set_links = true; 1759 1760 /* 1761 * We need tasklist_lock because RCU is not safe against 1762 * while_each_thread(). Besides, a forking task that has passed 1763 * cgroup_post_fork() without seeing use_task_css_set_links = 1 1764 * is not guaranteed to have its child immediately visible in the 1765 * tasklist if we walk through it with RCU. 1766 */ 1767 read_lock(&tasklist_lock); 1768 do_each_thread(g, p) { 1769 WARN_ON_ONCE(!list_empty(&p->cg_list) || 1770 task_css_set(p) != &init_css_set); 1771 1772 /* 1773 * We should check if the process is exiting, otherwise 1774 * it will race with cgroup_exit() in that the list 1775 * entry won't be deleted though the process has exited. 1776 * Do it while holding siglock so that we don't end up 1777 * racing against cgroup_exit(). 1778 * 1779 * Interrupts were already disabled while acquiring 1780 * the css_set_lock, so we do not need to disable it 1781 * again when acquiring the sighand->siglock here. 1782 */ 1783 spin_lock(&p->sighand->siglock); 1784 if (!(p->flags & PF_EXITING)) { 1785 struct css_set *cset = task_css_set(p); 1786 1787 if (!css_set_populated(cset)) 1788 css_set_update_populated(cset, true); 1789 list_add_tail(&p->cg_list, &cset->tasks); 1790 get_css_set(cset); 1791 cset->nr_tasks++; 1792 } 1793 spin_unlock(&p->sighand->siglock); 1794 } while_each_thread(g, p); 1795 read_unlock(&tasklist_lock); 1796 out_unlock: 1797 spin_unlock_irq(&css_set_lock); 1798 } 1799 1800 static void init_cgroup_housekeeping(struct cgroup *cgrp) 1801 { 1802 struct cgroup_subsys *ss; 1803 int ssid; 1804 1805 INIT_LIST_HEAD(&cgrp->self.sibling); 1806 INIT_LIST_HEAD(&cgrp->self.children); 1807 INIT_LIST_HEAD(&cgrp->cset_links); 1808 INIT_LIST_HEAD(&cgrp->pidlists); 1809 mutex_init(&cgrp->pidlist_mutex); 1810 cgrp->self.cgroup = cgrp; 1811 cgrp->self.flags |= CSS_ONLINE; 1812 cgrp->dom_cgrp = cgrp; 1813 cgrp->max_descendants = INT_MAX; 1814 cgrp->max_depth = INT_MAX; 1815 1816 for_each_subsys(ss, ssid) 1817 INIT_LIST_HEAD(&cgrp->e_csets[ssid]); 1818 1819 init_waitqueue_head(&cgrp->offline_waitq); 1820 INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent); 1821 } 1822 1823 void init_cgroup_root(struct cgroup_root *root, struct cgroup_sb_opts *opts) 1824 { 1825 struct cgroup *cgrp = &root->cgrp; 1826 1827 INIT_LIST_HEAD(&root->root_list); 1828 atomic_set(&root->nr_cgrps, 1); 1829 cgrp->root = root; 1830 init_cgroup_housekeeping(cgrp); 1831 idr_init(&root->cgroup_idr); 1832 1833 root->flags = opts->flags; 1834 if (opts->release_agent) 1835 strcpy(root->release_agent_path, opts->release_agent); 1836 if (opts->name) 1837 strcpy(root->name, opts->name); 1838 if (opts->cpuset_clone_children) 1839 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags); 1840 } 1841 1842 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask, int ref_flags) 1843 { 1844 LIST_HEAD(tmp_links); 1845 struct cgroup *root_cgrp = &root->cgrp; 1846 struct kernfs_syscall_ops *kf_sops; 1847 struct css_set *cset; 1848 int i, ret; 1849 1850 lockdep_assert_held(&cgroup_mutex); 1851 1852 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL); 1853 if (ret < 0) 1854 goto out; 1855 root_cgrp->id = ret; 1856 root_cgrp->ancestor_ids[0] = ret; 1857 1858 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 1859 ref_flags, GFP_KERNEL); 1860 if (ret) 1861 goto out; 1862 1863 /* 1864 * We're accessing css_set_count without locking css_set_lock here, 1865 * but that's OK - it can only be increased by someone holding 1866 * cgroup_lock, and that's us. Later rebinding may disable 1867 * controllers on the default hierarchy and thus create new csets, 1868 * which can't be more than the existing ones. Allocate 2x. 1869 */ 1870 ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links); 1871 if (ret) 1872 goto cancel_ref; 1873 1874 ret = cgroup_init_root_id(root); 1875 if (ret) 1876 goto cancel_ref; 1877 1878 kf_sops = root == &cgrp_dfl_root ? 1879 &cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops; 1880 1881 root->kf_root = kernfs_create_root(kf_sops, 1882 KERNFS_ROOT_CREATE_DEACTIVATED | 1883 KERNFS_ROOT_SUPPORT_EXPORTOP, 1884 root_cgrp); 1885 if (IS_ERR(root->kf_root)) { 1886 ret = PTR_ERR(root->kf_root); 1887 goto exit_root_id; 1888 } 1889 root_cgrp->kn = root->kf_root->kn; 1890 1891 ret = css_populate_dir(&root_cgrp->self); 1892 if (ret) 1893 goto destroy_root; 1894 1895 ret = rebind_subsystems(root, ss_mask); 1896 if (ret) 1897 goto destroy_root; 1898 1899 ret = cgroup_bpf_inherit(root_cgrp); 1900 WARN_ON_ONCE(ret); 1901 1902 trace_cgroup_setup_root(root); 1903 1904 /* 1905 * There must be no failure case after here, since rebinding takes 1906 * care of subsystems' refcounts, which are explicitly dropped in 1907 * the failure exit path. 1908 */ 1909 list_add(&root->root_list, &cgroup_roots); 1910 cgroup_root_count++; 1911 1912 /* 1913 * Link the root cgroup in this hierarchy into all the css_set 1914 * objects. 1915 */ 1916 spin_lock_irq(&css_set_lock); 1917 hash_for_each(css_set_table, i, cset, hlist) { 1918 link_css_set(&tmp_links, cset, root_cgrp); 1919 if (css_set_populated(cset)) 1920 cgroup_update_populated(root_cgrp, true); 1921 } 1922 spin_unlock_irq(&css_set_lock); 1923 1924 BUG_ON(!list_empty(&root_cgrp->self.children)); 1925 BUG_ON(atomic_read(&root->nr_cgrps) != 1); 1926 1927 kernfs_activate(root_cgrp->kn); 1928 ret = 0; 1929 goto out; 1930 1931 destroy_root: 1932 kernfs_destroy_root(root->kf_root); 1933 root->kf_root = NULL; 1934 exit_root_id: 1935 cgroup_exit_root_id(root); 1936 cancel_ref: 1937 percpu_ref_exit(&root_cgrp->self.refcnt); 1938 out: 1939 free_cgrp_cset_links(&tmp_links); 1940 return ret; 1941 } 1942 1943 struct dentry *cgroup_do_mount(struct file_system_type *fs_type, int flags, 1944 struct cgroup_root *root, unsigned long magic, 1945 struct cgroup_namespace *ns) 1946 { 1947 struct dentry *dentry; 1948 bool new_sb; 1949 1950 dentry = kernfs_mount(fs_type, flags, root->kf_root, magic, &new_sb); 1951 1952 /* 1953 * In non-init cgroup namespace, instead of root cgroup's dentry, 1954 * we return the dentry corresponding to the cgroupns->root_cgrp. 1955 */ 1956 if (!IS_ERR(dentry) && ns != &init_cgroup_ns) { 1957 struct dentry *nsdentry; 1958 struct cgroup *cgrp; 1959 1960 mutex_lock(&cgroup_mutex); 1961 spin_lock_irq(&css_set_lock); 1962 1963 cgrp = cset_cgroup_from_root(ns->root_cset, root); 1964 1965 spin_unlock_irq(&css_set_lock); 1966 mutex_unlock(&cgroup_mutex); 1967 1968 nsdentry = kernfs_node_dentry(cgrp->kn, dentry->d_sb); 1969 dput(dentry); 1970 dentry = nsdentry; 1971 } 1972 1973 if (IS_ERR(dentry) || !new_sb) 1974 cgroup_put(&root->cgrp); 1975 1976 return dentry; 1977 } 1978 1979 static struct dentry *cgroup_mount(struct file_system_type *fs_type, 1980 int flags, const char *unused_dev_name, 1981 void *data) 1982 { 1983 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns; 1984 struct dentry *dentry; 1985 int ret; 1986 1987 get_cgroup_ns(ns); 1988 1989 /* Check if the caller has permission to mount. */ 1990 if (!ns_capable(ns->user_ns, CAP_SYS_ADMIN)) { 1991 put_cgroup_ns(ns); 1992 return ERR_PTR(-EPERM); 1993 } 1994 1995 /* 1996 * The first time anyone tries to mount a cgroup, enable the list 1997 * linking each css_set to its tasks and fix up all existing tasks. 1998 */ 1999 if (!use_task_css_set_links) 2000 cgroup_enable_task_cg_lists(); 2001 2002 if (fs_type == &cgroup2_fs_type) { 2003 unsigned int root_flags; 2004 2005 ret = parse_cgroup_root_flags(data, &root_flags); 2006 if (ret) { 2007 put_cgroup_ns(ns); 2008 return ERR_PTR(ret); 2009 } 2010 2011 cgrp_dfl_visible = true; 2012 cgroup_get_live(&cgrp_dfl_root.cgrp); 2013 2014 dentry = cgroup_do_mount(&cgroup2_fs_type, flags, &cgrp_dfl_root, 2015 CGROUP2_SUPER_MAGIC, ns); 2016 if (!IS_ERR(dentry)) 2017 apply_cgroup_root_flags(root_flags); 2018 } else { 2019 dentry = cgroup1_mount(&cgroup_fs_type, flags, data, 2020 CGROUP_SUPER_MAGIC, ns); 2021 } 2022 2023 put_cgroup_ns(ns); 2024 return dentry; 2025 } 2026 2027 static void cgroup_kill_sb(struct super_block *sb) 2028 { 2029 struct kernfs_root *kf_root = kernfs_root_from_sb(sb); 2030 struct cgroup_root *root = cgroup_root_from_kf(kf_root); 2031 2032 /* 2033 * If @root doesn't have any mounts or children, start killing it. 2034 * This prevents new mounts by disabling percpu_ref_tryget_live(). 2035 * cgroup_mount() may wait for @root's release. 2036 * 2037 * And don't kill the default root. 2038 */ 2039 if (!list_empty(&root->cgrp.self.children) || 2040 root == &cgrp_dfl_root) 2041 cgroup_put(&root->cgrp); 2042 else 2043 percpu_ref_kill(&root->cgrp.self.refcnt); 2044 2045 kernfs_kill_sb(sb); 2046 } 2047 2048 struct file_system_type cgroup_fs_type = { 2049 .name = "cgroup", 2050 .mount = cgroup_mount, 2051 .kill_sb = cgroup_kill_sb, 2052 .fs_flags = FS_USERNS_MOUNT, 2053 }; 2054 2055 static struct file_system_type cgroup2_fs_type = { 2056 .name = "cgroup2", 2057 .mount = cgroup_mount, 2058 .kill_sb = cgroup_kill_sb, 2059 .fs_flags = FS_USERNS_MOUNT, 2060 }; 2061 2062 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen, 2063 struct cgroup_namespace *ns) 2064 { 2065 struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root); 2066 2067 return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen); 2068 } 2069 2070 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen, 2071 struct cgroup_namespace *ns) 2072 { 2073 int ret; 2074 2075 mutex_lock(&cgroup_mutex); 2076 spin_lock_irq(&css_set_lock); 2077 2078 ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns); 2079 2080 spin_unlock_irq(&css_set_lock); 2081 mutex_unlock(&cgroup_mutex); 2082 2083 return ret; 2084 } 2085 EXPORT_SYMBOL_GPL(cgroup_path_ns); 2086 2087 /** 2088 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy 2089 * @task: target task 2090 * @buf: the buffer to write the path into 2091 * @buflen: the length of the buffer 2092 * 2093 * Determine @task's cgroup on the first (the one with the lowest non-zero 2094 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This 2095 * function grabs cgroup_mutex and shouldn't be used inside locks used by 2096 * cgroup controller callbacks. 2097 * 2098 * Return value is the same as kernfs_path(). 2099 */ 2100 int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen) 2101 { 2102 struct cgroup_root *root; 2103 struct cgroup *cgrp; 2104 int hierarchy_id = 1; 2105 int ret; 2106 2107 mutex_lock(&cgroup_mutex); 2108 spin_lock_irq(&css_set_lock); 2109 2110 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id); 2111 2112 if (root) { 2113 cgrp = task_cgroup_from_root(task, root); 2114 ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns); 2115 } else { 2116 /* if no hierarchy exists, everyone is in "/" */ 2117 ret = strlcpy(buf, "/", buflen); 2118 } 2119 2120 spin_unlock_irq(&css_set_lock); 2121 mutex_unlock(&cgroup_mutex); 2122 return ret; 2123 } 2124 EXPORT_SYMBOL_GPL(task_cgroup_path); 2125 2126 /** 2127 * cgroup_migrate_add_task - add a migration target task to a migration context 2128 * @task: target task 2129 * @mgctx: target migration context 2130 * 2131 * Add @task, which is a migration target, to @mgctx->tset. This function 2132 * becomes noop if @task doesn't need to be migrated. @task's css_set 2133 * should have been added as a migration source and @task->cg_list will be 2134 * moved from the css_set's tasks list to mg_tasks one. 2135 */ 2136 static void cgroup_migrate_add_task(struct task_struct *task, 2137 struct cgroup_mgctx *mgctx) 2138 { 2139 struct css_set *cset; 2140 2141 lockdep_assert_held(&css_set_lock); 2142 2143 /* @task either already exited or can't exit until the end */ 2144 if (task->flags & PF_EXITING) 2145 return; 2146 2147 /* leave @task alone if post_fork() hasn't linked it yet */ 2148 if (list_empty(&task->cg_list)) 2149 return; 2150 2151 cset = task_css_set(task); 2152 if (!cset->mg_src_cgrp) 2153 return; 2154 2155 mgctx->tset.nr_tasks++; 2156 2157 list_move_tail(&task->cg_list, &cset->mg_tasks); 2158 if (list_empty(&cset->mg_node)) 2159 list_add_tail(&cset->mg_node, 2160 &mgctx->tset.src_csets); 2161 if (list_empty(&cset->mg_dst_cset->mg_node)) 2162 list_add_tail(&cset->mg_dst_cset->mg_node, 2163 &mgctx->tset.dst_csets); 2164 } 2165 2166 /** 2167 * cgroup_taskset_first - reset taskset and return the first task 2168 * @tset: taskset of interest 2169 * @dst_cssp: output variable for the destination css 2170 * 2171 * @tset iteration is initialized and the first task is returned. 2172 */ 2173 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset, 2174 struct cgroup_subsys_state **dst_cssp) 2175 { 2176 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node); 2177 tset->cur_task = NULL; 2178 2179 return cgroup_taskset_next(tset, dst_cssp); 2180 } 2181 2182 /** 2183 * cgroup_taskset_next - iterate to the next task in taskset 2184 * @tset: taskset of interest 2185 * @dst_cssp: output variable for the destination css 2186 * 2187 * Return the next task in @tset. Iteration must have been initialized 2188 * with cgroup_taskset_first(). 2189 */ 2190 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset, 2191 struct cgroup_subsys_state **dst_cssp) 2192 { 2193 struct css_set *cset = tset->cur_cset; 2194 struct task_struct *task = tset->cur_task; 2195 2196 while (&cset->mg_node != tset->csets) { 2197 if (!task) 2198 task = list_first_entry(&cset->mg_tasks, 2199 struct task_struct, cg_list); 2200 else 2201 task = list_next_entry(task, cg_list); 2202 2203 if (&task->cg_list != &cset->mg_tasks) { 2204 tset->cur_cset = cset; 2205 tset->cur_task = task; 2206 2207 /* 2208 * This function may be called both before and 2209 * after cgroup_taskset_migrate(). The two cases 2210 * can be distinguished by looking at whether @cset 2211 * has its ->mg_dst_cset set. 2212 */ 2213 if (cset->mg_dst_cset) 2214 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid]; 2215 else 2216 *dst_cssp = cset->subsys[tset->ssid]; 2217 2218 return task; 2219 } 2220 2221 cset = list_next_entry(cset, mg_node); 2222 task = NULL; 2223 } 2224 2225 return NULL; 2226 } 2227 2228 /** 2229 * cgroup_taskset_migrate - migrate a taskset 2230 * @mgctx: migration context 2231 * 2232 * Migrate tasks in @mgctx as setup by migration preparation functions. 2233 * This function fails iff one of the ->can_attach callbacks fails and 2234 * guarantees that either all or none of the tasks in @mgctx are migrated. 2235 * @mgctx is consumed regardless of success. 2236 */ 2237 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx) 2238 { 2239 struct cgroup_taskset *tset = &mgctx->tset; 2240 struct cgroup_subsys *ss; 2241 struct task_struct *task, *tmp_task; 2242 struct css_set *cset, *tmp_cset; 2243 int ssid, failed_ssid, ret; 2244 2245 /* check that we can legitimately attach to the cgroup */ 2246 if (tset->nr_tasks) { 2247 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2248 if (ss->can_attach) { 2249 tset->ssid = ssid; 2250 ret = ss->can_attach(tset); 2251 if (ret) { 2252 failed_ssid = ssid; 2253 goto out_cancel_attach; 2254 } 2255 } 2256 } while_each_subsys_mask(); 2257 } 2258 2259 /* 2260 * Now that we're guaranteed success, proceed to move all tasks to 2261 * the new cgroup. There are no failure cases after here, so this 2262 * is the commit point. 2263 */ 2264 spin_lock_irq(&css_set_lock); 2265 list_for_each_entry(cset, &tset->src_csets, mg_node) { 2266 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) { 2267 struct css_set *from_cset = task_css_set(task); 2268 struct css_set *to_cset = cset->mg_dst_cset; 2269 2270 get_css_set(to_cset); 2271 to_cset->nr_tasks++; 2272 css_set_move_task(task, from_cset, to_cset, true); 2273 put_css_set_locked(from_cset); 2274 from_cset->nr_tasks--; 2275 } 2276 } 2277 spin_unlock_irq(&css_set_lock); 2278 2279 /* 2280 * Migration is committed, all target tasks are now on dst_csets. 2281 * Nothing is sensitive to fork() after this point. Notify 2282 * controllers that migration is complete. 2283 */ 2284 tset->csets = &tset->dst_csets; 2285 2286 if (tset->nr_tasks) { 2287 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2288 if (ss->attach) { 2289 tset->ssid = ssid; 2290 ss->attach(tset); 2291 } 2292 } while_each_subsys_mask(); 2293 } 2294 2295 ret = 0; 2296 goto out_release_tset; 2297 2298 out_cancel_attach: 2299 if (tset->nr_tasks) { 2300 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2301 if (ssid == failed_ssid) 2302 break; 2303 if (ss->cancel_attach) { 2304 tset->ssid = ssid; 2305 ss->cancel_attach(tset); 2306 } 2307 } while_each_subsys_mask(); 2308 } 2309 out_release_tset: 2310 spin_lock_irq(&css_set_lock); 2311 list_splice_init(&tset->dst_csets, &tset->src_csets); 2312 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) { 2313 list_splice_tail_init(&cset->mg_tasks, &cset->tasks); 2314 list_del_init(&cset->mg_node); 2315 } 2316 spin_unlock_irq(&css_set_lock); 2317 2318 /* 2319 * Re-initialize the cgroup_taskset structure in case it is reused 2320 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute() 2321 * iteration. 2322 */ 2323 tset->nr_tasks = 0; 2324 tset->csets = &tset->src_csets; 2325 return ret; 2326 } 2327 2328 /** 2329 * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination 2330 * @dst_cgrp: destination cgroup to test 2331 * 2332 * On the default hierarchy, except for the mixable, (possible) thread root 2333 * and threaded cgroups, subtree_control must be zero for migration 2334 * destination cgroups with tasks so that child cgroups don't compete 2335 * against tasks. 2336 */ 2337 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp) 2338 { 2339 /* v1 doesn't have any restriction */ 2340 if (!cgroup_on_dfl(dst_cgrp)) 2341 return 0; 2342 2343 /* verify @dst_cgrp can host resources */ 2344 if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp)) 2345 return -EOPNOTSUPP; 2346 2347 /* mixables don't care */ 2348 if (cgroup_is_mixable(dst_cgrp)) 2349 return 0; 2350 2351 /* 2352 * If @dst_cgrp is already or can become a thread root or is 2353 * threaded, it doesn't matter. 2354 */ 2355 if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp)) 2356 return 0; 2357 2358 /* apply no-internal-process constraint */ 2359 if (dst_cgrp->subtree_control) 2360 return -EBUSY; 2361 2362 return 0; 2363 } 2364 2365 /** 2366 * cgroup_migrate_finish - cleanup after attach 2367 * @mgctx: migration context 2368 * 2369 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See 2370 * those functions for details. 2371 */ 2372 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx) 2373 { 2374 LIST_HEAD(preloaded); 2375 struct css_set *cset, *tmp_cset; 2376 2377 lockdep_assert_held(&cgroup_mutex); 2378 2379 spin_lock_irq(&css_set_lock); 2380 2381 list_splice_tail_init(&mgctx->preloaded_src_csets, &preloaded); 2382 list_splice_tail_init(&mgctx->preloaded_dst_csets, &preloaded); 2383 2384 list_for_each_entry_safe(cset, tmp_cset, &preloaded, mg_preload_node) { 2385 cset->mg_src_cgrp = NULL; 2386 cset->mg_dst_cgrp = NULL; 2387 cset->mg_dst_cset = NULL; 2388 list_del_init(&cset->mg_preload_node); 2389 put_css_set_locked(cset); 2390 } 2391 2392 spin_unlock_irq(&css_set_lock); 2393 } 2394 2395 /** 2396 * cgroup_migrate_add_src - add a migration source css_set 2397 * @src_cset: the source css_set to add 2398 * @dst_cgrp: the destination cgroup 2399 * @mgctx: migration context 2400 * 2401 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin 2402 * @src_cset and add it to @mgctx->src_csets, which should later be cleaned 2403 * up by cgroup_migrate_finish(). 2404 * 2405 * This function may be called without holding cgroup_threadgroup_rwsem 2406 * even if the target is a process. Threads may be created and destroyed 2407 * but as long as cgroup_mutex is not dropped, no new css_set can be put 2408 * into play and the preloaded css_sets are guaranteed to cover all 2409 * migrations. 2410 */ 2411 void cgroup_migrate_add_src(struct css_set *src_cset, 2412 struct cgroup *dst_cgrp, 2413 struct cgroup_mgctx *mgctx) 2414 { 2415 struct cgroup *src_cgrp; 2416 2417 lockdep_assert_held(&cgroup_mutex); 2418 lockdep_assert_held(&css_set_lock); 2419 2420 /* 2421 * If ->dead, @src_set is associated with one or more dead cgroups 2422 * and doesn't contain any migratable tasks. Ignore it early so 2423 * that the rest of migration path doesn't get confused by it. 2424 */ 2425 if (src_cset->dead) 2426 return; 2427 2428 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root); 2429 2430 if (!list_empty(&src_cset->mg_preload_node)) 2431 return; 2432 2433 WARN_ON(src_cset->mg_src_cgrp); 2434 WARN_ON(src_cset->mg_dst_cgrp); 2435 WARN_ON(!list_empty(&src_cset->mg_tasks)); 2436 WARN_ON(!list_empty(&src_cset->mg_node)); 2437 2438 src_cset->mg_src_cgrp = src_cgrp; 2439 src_cset->mg_dst_cgrp = dst_cgrp; 2440 get_css_set(src_cset); 2441 list_add_tail(&src_cset->mg_preload_node, &mgctx->preloaded_src_csets); 2442 } 2443 2444 /** 2445 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration 2446 * @mgctx: migration context 2447 * 2448 * Tasks are about to be moved and all the source css_sets have been 2449 * preloaded to @mgctx->preloaded_src_csets. This function looks up and 2450 * pins all destination css_sets, links each to its source, and append them 2451 * to @mgctx->preloaded_dst_csets. 2452 * 2453 * This function must be called after cgroup_migrate_add_src() has been 2454 * called on each migration source css_set. After migration is performed 2455 * using cgroup_migrate(), cgroup_migrate_finish() must be called on 2456 * @mgctx. 2457 */ 2458 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx) 2459 { 2460 struct css_set *src_cset, *tmp_cset; 2461 2462 lockdep_assert_held(&cgroup_mutex); 2463 2464 /* look up the dst cset for each src cset and link it to src */ 2465 list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets, 2466 mg_preload_node) { 2467 struct css_set *dst_cset; 2468 struct cgroup_subsys *ss; 2469 int ssid; 2470 2471 dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp); 2472 if (!dst_cset) 2473 goto err; 2474 2475 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset); 2476 2477 /* 2478 * If src cset equals dst, it's noop. Drop the src. 2479 * cgroup_migrate() will skip the cset too. Note that we 2480 * can't handle src == dst as some nodes are used by both. 2481 */ 2482 if (src_cset == dst_cset) { 2483 src_cset->mg_src_cgrp = NULL; 2484 src_cset->mg_dst_cgrp = NULL; 2485 list_del_init(&src_cset->mg_preload_node); 2486 put_css_set(src_cset); 2487 put_css_set(dst_cset); 2488 continue; 2489 } 2490 2491 src_cset->mg_dst_cset = dst_cset; 2492 2493 if (list_empty(&dst_cset->mg_preload_node)) 2494 list_add_tail(&dst_cset->mg_preload_node, 2495 &mgctx->preloaded_dst_csets); 2496 else 2497 put_css_set(dst_cset); 2498 2499 for_each_subsys(ss, ssid) 2500 if (src_cset->subsys[ssid] != dst_cset->subsys[ssid]) 2501 mgctx->ss_mask |= 1 << ssid; 2502 } 2503 2504 return 0; 2505 err: 2506 cgroup_migrate_finish(mgctx); 2507 return -ENOMEM; 2508 } 2509 2510 /** 2511 * cgroup_migrate - migrate a process or task to a cgroup 2512 * @leader: the leader of the process or the task to migrate 2513 * @threadgroup: whether @leader points to the whole process or a single task 2514 * @mgctx: migration context 2515 * 2516 * Migrate a process or task denoted by @leader. If migrating a process, 2517 * the caller must be holding cgroup_threadgroup_rwsem. The caller is also 2518 * responsible for invoking cgroup_migrate_add_src() and 2519 * cgroup_migrate_prepare_dst() on the targets before invoking this 2520 * function and following up with cgroup_migrate_finish(). 2521 * 2522 * As long as a controller's ->can_attach() doesn't fail, this function is 2523 * guaranteed to succeed. This means that, excluding ->can_attach() 2524 * failure, when migrating multiple targets, the success or failure can be 2525 * decided for all targets by invoking group_migrate_prepare_dst() before 2526 * actually starting migrating. 2527 */ 2528 int cgroup_migrate(struct task_struct *leader, bool threadgroup, 2529 struct cgroup_mgctx *mgctx) 2530 { 2531 struct task_struct *task; 2532 2533 /* 2534 * Prevent freeing of tasks while we take a snapshot. Tasks that are 2535 * already PF_EXITING could be freed from underneath us unless we 2536 * take an rcu_read_lock. 2537 */ 2538 spin_lock_irq(&css_set_lock); 2539 rcu_read_lock(); 2540 task = leader; 2541 do { 2542 cgroup_migrate_add_task(task, mgctx); 2543 if (!threadgroup) 2544 break; 2545 } while_each_thread(leader, task); 2546 rcu_read_unlock(); 2547 spin_unlock_irq(&css_set_lock); 2548 2549 return cgroup_migrate_execute(mgctx); 2550 } 2551 2552 /** 2553 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup 2554 * @dst_cgrp: the cgroup to attach to 2555 * @leader: the task or the leader of the threadgroup to be attached 2556 * @threadgroup: attach the whole threadgroup? 2557 * 2558 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem. 2559 */ 2560 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader, 2561 bool threadgroup) 2562 { 2563 DEFINE_CGROUP_MGCTX(mgctx); 2564 struct task_struct *task; 2565 int ret; 2566 2567 ret = cgroup_migrate_vet_dst(dst_cgrp); 2568 if (ret) 2569 return ret; 2570 2571 /* look up all src csets */ 2572 spin_lock_irq(&css_set_lock); 2573 rcu_read_lock(); 2574 task = leader; 2575 do { 2576 cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx); 2577 if (!threadgroup) 2578 break; 2579 } while_each_thread(leader, task); 2580 rcu_read_unlock(); 2581 spin_unlock_irq(&css_set_lock); 2582 2583 /* prepare dst csets and commit */ 2584 ret = cgroup_migrate_prepare_dst(&mgctx); 2585 if (!ret) 2586 ret = cgroup_migrate(leader, threadgroup, &mgctx); 2587 2588 cgroup_migrate_finish(&mgctx); 2589 2590 if (!ret) 2591 trace_cgroup_attach_task(dst_cgrp, leader, threadgroup); 2592 2593 return ret; 2594 } 2595 2596 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup) 2597 __acquires(&cgroup_threadgroup_rwsem) 2598 { 2599 struct task_struct *tsk; 2600 pid_t pid; 2601 2602 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0) 2603 return ERR_PTR(-EINVAL); 2604 2605 percpu_down_write(&cgroup_threadgroup_rwsem); 2606 2607 rcu_read_lock(); 2608 if (pid) { 2609 tsk = find_task_by_vpid(pid); 2610 if (!tsk) { 2611 tsk = ERR_PTR(-ESRCH); 2612 goto out_unlock_threadgroup; 2613 } 2614 } else { 2615 tsk = current; 2616 } 2617 2618 if (threadgroup) 2619 tsk = tsk->group_leader; 2620 2621 /* 2622 * kthreads may acquire PF_NO_SETAFFINITY during initialization. 2623 * If userland migrates such a kthread to a non-root cgroup, it can 2624 * become trapped in a cpuset, or RT kthread may be born in a 2625 * cgroup with no rt_runtime allocated. Just say no. 2626 */ 2627 if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) { 2628 tsk = ERR_PTR(-EINVAL); 2629 goto out_unlock_threadgroup; 2630 } 2631 2632 get_task_struct(tsk); 2633 goto out_unlock_rcu; 2634 2635 out_unlock_threadgroup: 2636 percpu_up_write(&cgroup_threadgroup_rwsem); 2637 out_unlock_rcu: 2638 rcu_read_unlock(); 2639 return tsk; 2640 } 2641 2642 void cgroup_procs_write_finish(struct task_struct *task) 2643 __releases(&cgroup_threadgroup_rwsem) 2644 { 2645 struct cgroup_subsys *ss; 2646 int ssid; 2647 2648 /* release reference from cgroup_procs_write_start() */ 2649 put_task_struct(task); 2650 2651 percpu_up_write(&cgroup_threadgroup_rwsem); 2652 for_each_subsys(ss, ssid) 2653 if (ss->post_attach) 2654 ss->post_attach(); 2655 } 2656 2657 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask) 2658 { 2659 struct cgroup_subsys *ss; 2660 bool printed = false; 2661 int ssid; 2662 2663 do_each_subsys_mask(ss, ssid, ss_mask) { 2664 if (printed) 2665 seq_putc(seq, ' '); 2666 seq_printf(seq, "%s", ss->name); 2667 printed = true; 2668 } while_each_subsys_mask(); 2669 if (printed) 2670 seq_putc(seq, '\n'); 2671 } 2672 2673 /* show controllers which are enabled from the parent */ 2674 static int cgroup_controllers_show(struct seq_file *seq, void *v) 2675 { 2676 struct cgroup *cgrp = seq_css(seq)->cgroup; 2677 2678 cgroup_print_ss_mask(seq, cgroup_control(cgrp)); 2679 return 0; 2680 } 2681 2682 /* show controllers which are enabled for a given cgroup's children */ 2683 static int cgroup_subtree_control_show(struct seq_file *seq, void *v) 2684 { 2685 struct cgroup *cgrp = seq_css(seq)->cgroup; 2686 2687 cgroup_print_ss_mask(seq, cgrp->subtree_control); 2688 return 0; 2689 } 2690 2691 /** 2692 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy 2693 * @cgrp: root of the subtree to update csses for 2694 * 2695 * @cgrp's control masks have changed and its subtree's css associations 2696 * need to be updated accordingly. This function looks up all css_sets 2697 * which are attached to the subtree, creates the matching updated css_sets 2698 * and migrates the tasks to the new ones. 2699 */ 2700 static int cgroup_update_dfl_csses(struct cgroup *cgrp) 2701 { 2702 DEFINE_CGROUP_MGCTX(mgctx); 2703 struct cgroup_subsys_state *d_css; 2704 struct cgroup *dsct; 2705 struct css_set *src_cset; 2706 int ret; 2707 2708 lockdep_assert_held(&cgroup_mutex); 2709 2710 percpu_down_write(&cgroup_threadgroup_rwsem); 2711 2712 /* look up all csses currently attached to @cgrp's subtree */ 2713 spin_lock_irq(&css_set_lock); 2714 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 2715 struct cgrp_cset_link *link; 2716 2717 list_for_each_entry(link, &dsct->cset_links, cset_link) 2718 cgroup_migrate_add_src(link->cset, dsct, &mgctx); 2719 } 2720 spin_unlock_irq(&css_set_lock); 2721 2722 /* NULL dst indicates self on default hierarchy */ 2723 ret = cgroup_migrate_prepare_dst(&mgctx); 2724 if (ret) 2725 goto out_finish; 2726 2727 spin_lock_irq(&css_set_lock); 2728 list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, mg_preload_node) { 2729 struct task_struct *task, *ntask; 2730 2731 /* all tasks in src_csets need to be migrated */ 2732 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list) 2733 cgroup_migrate_add_task(task, &mgctx); 2734 } 2735 spin_unlock_irq(&css_set_lock); 2736 2737 ret = cgroup_migrate_execute(&mgctx); 2738 out_finish: 2739 cgroup_migrate_finish(&mgctx); 2740 percpu_up_write(&cgroup_threadgroup_rwsem); 2741 return ret; 2742 } 2743 2744 /** 2745 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses 2746 * @cgrp: root of the target subtree 2747 * 2748 * Because css offlining is asynchronous, userland may try to re-enable a 2749 * controller while the previous css is still around. This function grabs 2750 * cgroup_mutex and drains the previous css instances of @cgrp's subtree. 2751 */ 2752 void cgroup_lock_and_drain_offline(struct cgroup *cgrp) 2753 __acquires(&cgroup_mutex) 2754 { 2755 struct cgroup *dsct; 2756 struct cgroup_subsys_state *d_css; 2757 struct cgroup_subsys *ss; 2758 int ssid; 2759 2760 restart: 2761 mutex_lock(&cgroup_mutex); 2762 2763 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 2764 for_each_subsys(ss, ssid) { 2765 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 2766 DEFINE_WAIT(wait); 2767 2768 if (!css || !percpu_ref_is_dying(&css->refcnt)) 2769 continue; 2770 2771 cgroup_get_live(dsct); 2772 prepare_to_wait(&dsct->offline_waitq, &wait, 2773 TASK_UNINTERRUPTIBLE); 2774 2775 mutex_unlock(&cgroup_mutex); 2776 schedule(); 2777 finish_wait(&dsct->offline_waitq, &wait); 2778 2779 cgroup_put(dsct); 2780 goto restart; 2781 } 2782 } 2783 } 2784 2785 /** 2786 * cgroup_save_control - save control masks of a subtree 2787 * @cgrp: root of the target subtree 2788 * 2789 * Save ->subtree_control and ->subtree_ss_mask to the respective old_ 2790 * prefixed fields for @cgrp's subtree including @cgrp itself. 2791 */ 2792 static void cgroup_save_control(struct cgroup *cgrp) 2793 { 2794 struct cgroup *dsct; 2795 struct cgroup_subsys_state *d_css; 2796 2797 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 2798 dsct->old_subtree_control = dsct->subtree_control; 2799 dsct->old_subtree_ss_mask = dsct->subtree_ss_mask; 2800 } 2801 } 2802 2803 /** 2804 * cgroup_propagate_control - refresh control masks of a subtree 2805 * @cgrp: root of the target subtree 2806 * 2807 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches 2808 * ->subtree_control and propagate controller availability through the 2809 * subtree so that descendants don't have unavailable controllers enabled. 2810 */ 2811 static void cgroup_propagate_control(struct cgroup *cgrp) 2812 { 2813 struct cgroup *dsct; 2814 struct cgroup_subsys_state *d_css; 2815 2816 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 2817 dsct->subtree_control &= cgroup_control(dsct); 2818 dsct->subtree_ss_mask = 2819 cgroup_calc_subtree_ss_mask(dsct->subtree_control, 2820 cgroup_ss_mask(dsct)); 2821 } 2822 } 2823 2824 /** 2825 * cgroup_restore_control - restore control masks of a subtree 2826 * @cgrp: root of the target subtree 2827 * 2828 * Restore ->subtree_control and ->subtree_ss_mask from the respective old_ 2829 * prefixed fields for @cgrp's subtree including @cgrp itself. 2830 */ 2831 static void cgroup_restore_control(struct cgroup *cgrp) 2832 { 2833 struct cgroup *dsct; 2834 struct cgroup_subsys_state *d_css; 2835 2836 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 2837 dsct->subtree_control = dsct->old_subtree_control; 2838 dsct->subtree_ss_mask = dsct->old_subtree_ss_mask; 2839 } 2840 } 2841 2842 static bool css_visible(struct cgroup_subsys_state *css) 2843 { 2844 struct cgroup_subsys *ss = css->ss; 2845 struct cgroup *cgrp = css->cgroup; 2846 2847 if (cgroup_control(cgrp) & (1 << ss->id)) 2848 return true; 2849 if (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) 2850 return false; 2851 return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl; 2852 } 2853 2854 /** 2855 * cgroup_apply_control_enable - enable or show csses according to control 2856 * @cgrp: root of the target subtree 2857 * 2858 * Walk @cgrp's subtree and create new csses or make the existing ones 2859 * visible. A css is created invisible if it's being implicitly enabled 2860 * through dependency. An invisible css is made visible when the userland 2861 * explicitly enables it. 2862 * 2863 * Returns 0 on success, -errno on failure. On failure, csses which have 2864 * been processed already aren't cleaned up. The caller is responsible for 2865 * cleaning up with cgroup_apply_control_disable(). 2866 */ 2867 static int cgroup_apply_control_enable(struct cgroup *cgrp) 2868 { 2869 struct cgroup *dsct; 2870 struct cgroup_subsys_state *d_css; 2871 struct cgroup_subsys *ss; 2872 int ssid, ret; 2873 2874 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 2875 for_each_subsys(ss, ssid) { 2876 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 2877 2878 WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt)); 2879 2880 if (!(cgroup_ss_mask(dsct) & (1 << ss->id))) 2881 continue; 2882 2883 if (!css) { 2884 css = css_create(dsct, ss); 2885 if (IS_ERR(css)) 2886 return PTR_ERR(css); 2887 } 2888 2889 if (css_visible(css)) { 2890 ret = css_populate_dir(css); 2891 if (ret) 2892 return ret; 2893 } 2894 } 2895 } 2896 2897 return 0; 2898 } 2899 2900 /** 2901 * cgroup_apply_control_disable - kill or hide csses according to control 2902 * @cgrp: root of the target subtree 2903 * 2904 * Walk @cgrp's subtree and kill and hide csses so that they match 2905 * cgroup_ss_mask() and cgroup_visible_mask(). 2906 * 2907 * A css is hidden when the userland requests it to be disabled while other 2908 * subsystems are still depending on it. The css must not actively control 2909 * resources and be in the vanilla state if it's made visible again later. 2910 * Controllers which may be depended upon should provide ->css_reset() for 2911 * this purpose. 2912 */ 2913 static void cgroup_apply_control_disable(struct cgroup *cgrp) 2914 { 2915 struct cgroup *dsct; 2916 struct cgroup_subsys_state *d_css; 2917 struct cgroup_subsys *ss; 2918 int ssid; 2919 2920 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 2921 for_each_subsys(ss, ssid) { 2922 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 2923 2924 WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt)); 2925 2926 if (!css) 2927 continue; 2928 2929 if (css->parent && 2930 !(cgroup_ss_mask(dsct) & (1 << ss->id))) { 2931 kill_css(css); 2932 } else if (!css_visible(css)) { 2933 css_clear_dir(css); 2934 if (ss->css_reset) 2935 ss->css_reset(css); 2936 } 2937 } 2938 } 2939 } 2940 2941 /** 2942 * cgroup_apply_control - apply control mask updates to the subtree 2943 * @cgrp: root of the target subtree 2944 * 2945 * subsystems can be enabled and disabled in a subtree using the following 2946 * steps. 2947 * 2948 * 1. Call cgroup_save_control() to stash the current state. 2949 * 2. Update ->subtree_control masks in the subtree as desired. 2950 * 3. Call cgroup_apply_control() to apply the changes. 2951 * 4. Optionally perform other related operations. 2952 * 5. Call cgroup_finalize_control() to finish up. 2953 * 2954 * This function implements step 3 and propagates the mask changes 2955 * throughout @cgrp's subtree, updates csses accordingly and perform 2956 * process migrations. 2957 */ 2958 static int cgroup_apply_control(struct cgroup *cgrp) 2959 { 2960 int ret; 2961 2962 cgroup_propagate_control(cgrp); 2963 2964 ret = cgroup_apply_control_enable(cgrp); 2965 if (ret) 2966 return ret; 2967 2968 /* 2969 * At this point, cgroup_e_css() results reflect the new csses 2970 * making the following cgroup_update_dfl_csses() properly update 2971 * css associations of all tasks in the subtree. 2972 */ 2973 ret = cgroup_update_dfl_csses(cgrp); 2974 if (ret) 2975 return ret; 2976 2977 return 0; 2978 } 2979 2980 /** 2981 * cgroup_finalize_control - finalize control mask update 2982 * @cgrp: root of the target subtree 2983 * @ret: the result of the update 2984 * 2985 * Finalize control mask update. See cgroup_apply_control() for more info. 2986 */ 2987 static void cgroup_finalize_control(struct cgroup *cgrp, int ret) 2988 { 2989 if (ret) { 2990 cgroup_restore_control(cgrp); 2991 cgroup_propagate_control(cgrp); 2992 } 2993 2994 cgroup_apply_control_disable(cgrp); 2995 } 2996 2997 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable) 2998 { 2999 u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask; 3000 3001 /* if nothing is getting enabled, nothing to worry about */ 3002 if (!enable) 3003 return 0; 3004 3005 /* can @cgrp host any resources? */ 3006 if (!cgroup_is_valid_domain(cgrp->dom_cgrp)) 3007 return -EOPNOTSUPP; 3008 3009 /* mixables don't care */ 3010 if (cgroup_is_mixable(cgrp)) 3011 return 0; 3012 3013 if (domain_enable) { 3014 /* can't enable domain controllers inside a thread subtree */ 3015 if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp)) 3016 return -EOPNOTSUPP; 3017 } else { 3018 /* 3019 * Threaded controllers can handle internal competitions 3020 * and are always allowed inside a (prospective) thread 3021 * subtree. 3022 */ 3023 if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp)) 3024 return 0; 3025 } 3026 3027 /* 3028 * Controllers can't be enabled for a cgroup with tasks to avoid 3029 * child cgroups competing against tasks. 3030 */ 3031 if (cgroup_has_tasks(cgrp)) 3032 return -EBUSY; 3033 3034 return 0; 3035 } 3036 3037 /* change the enabled child controllers for a cgroup in the default hierarchy */ 3038 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of, 3039 char *buf, size_t nbytes, 3040 loff_t off) 3041 { 3042 u16 enable = 0, disable = 0; 3043 struct cgroup *cgrp, *child; 3044 struct cgroup_subsys *ss; 3045 char *tok; 3046 int ssid, ret; 3047 3048 /* 3049 * Parse input - space separated list of subsystem names prefixed 3050 * with either + or -. 3051 */ 3052 buf = strstrip(buf); 3053 while ((tok = strsep(&buf, " "))) { 3054 if (tok[0] == '\0') 3055 continue; 3056 do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) { 3057 if (!cgroup_ssid_enabled(ssid) || 3058 strcmp(tok + 1, ss->name)) 3059 continue; 3060 3061 if (*tok == '+') { 3062 enable |= 1 << ssid; 3063 disable &= ~(1 << ssid); 3064 } else if (*tok == '-') { 3065 disable |= 1 << ssid; 3066 enable &= ~(1 << ssid); 3067 } else { 3068 return -EINVAL; 3069 } 3070 break; 3071 } while_each_subsys_mask(); 3072 if (ssid == CGROUP_SUBSYS_COUNT) 3073 return -EINVAL; 3074 } 3075 3076 cgrp = cgroup_kn_lock_live(of->kn, true); 3077 if (!cgrp) 3078 return -ENODEV; 3079 3080 for_each_subsys(ss, ssid) { 3081 if (enable & (1 << ssid)) { 3082 if (cgrp->subtree_control & (1 << ssid)) { 3083 enable &= ~(1 << ssid); 3084 continue; 3085 } 3086 3087 if (!(cgroup_control(cgrp) & (1 << ssid))) { 3088 ret = -ENOENT; 3089 goto out_unlock; 3090 } 3091 } else if (disable & (1 << ssid)) { 3092 if (!(cgrp->subtree_control & (1 << ssid))) { 3093 disable &= ~(1 << ssid); 3094 continue; 3095 } 3096 3097 /* a child has it enabled? */ 3098 cgroup_for_each_live_child(child, cgrp) { 3099 if (child->subtree_control & (1 << ssid)) { 3100 ret = -EBUSY; 3101 goto out_unlock; 3102 } 3103 } 3104 } 3105 } 3106 3107 if (!enable && !disable) { 3108 ret = 0; 3109 goto out_unlock; 3110 } 3111 3112 ret = cgroup_vet_subtree_control_enable(cgrp, enable); 3113 if (ret) 3114 goto out_unlock; 3115 3116 /* save and update control masks and prepare csses */ 3117 cgroup_save_control(cgrp); 3118 3119 cgrp->subtree_control |= enable; 3120 cgrp->subtree_control &= ~disable; 3121 3122 ret = cgroup_apply_control(cgrp); 3123 cgroup_finalize_control(cgrp, ret); 3124 if (ret) 3125 goto out_unlock; 3126 3127 kernfs_activate(cgrp->kn); 3128 out_unlock: 3129 cgroup_kn_unlock(of->kn); 3130 return ret ?: nbytes; 3131 } 3132 3133 /** 3134 * cgroup_enable_threaded - make @cgrp threaded 3135 * @cgrp: the target cgroup 3136 * 3137 * Called when "threaded" is written to the cgroup.type interface file and 3138 * tries to make @cgrp threaded and join the parent's resource domain. 3139 * This function is never called on the root cgroup as cgroup.type doesn't 3140 * exist on it. 3141 */ 3142 static int cgroup_enable_threaded(struct cgroup *cgrp) 3143 { 3144 struct cgroup *parent = cgroup_parent(cgrp); 3145 struct cgroup *dom_cgrp = parent->dom_cgrp; 3146 int ret; 3147 3148 lockdep_assert_held(&cgroup_mutex); 3149 3150 /* noop if already threaded */ 3151 if (cgroup_is_threaded(cgrp)) 3152 return 0; 3153 3154 /* we're joining the parent's domain, ensure its validity */ 3155 if (!cgroup_is_valid_domain(dom_cgrp) || 3156 !cgroup_can_be_thread_root(dom_cgrp)) 3157 return -EOPNOTSUPP; 3158 3159 /* 3160 * The following shouldn't cause actual migrations and should 3161 * always succeed. 3162 */ 3163 cgroup_save_control(cgrp); 3164 3165 cgrp->dom_cgrp = dom_cgrp; 3166 ret = cgroup_apply_control(cgrp); 3167 if (!ret) 3168 parent->nr_threaded_children++; 3169 else 3170 cgrp->dom_cgrp = cgrp; 3171 3172 cgroup_finalize_control(cgrp, ret); 3173 return ret; 3174 } 3175 3176 static int cgroup_type_show(struct seq_file *seq, void *v) 3177 { 3178 struct cgroup *cgrp = seq_css(seq)->cgroup; 3179 3180 if (cgroup_is_threaded(cgrp)) 3181 seq_puts(seq, "threaded\n"); 3182 else if (!cgroup_is_valid_domain(cgrp)) 3183 seq_puts(seq, "domain invalid\n"); 3184 else if (cgroup_is_thread_root(cgrp)) 3185 seq_puts(seq, "domain threaded\n"); 3186 else 3187 seq_puts(seq, "domain\n"); 3188 3189 return 0; 3190 } 3191 3192 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf, 3193 size_t nbytes, loff_t off) 3194 { 3195 struct cgroup *cgrp; 3196 int ret; 3197 3198 /* only switching to threaded mode is supported */ 3199 if (strcmp(strstrip(buf), "threaded")) 3200 return -EINVAL; 3201 3202 cgrp = cgroup_kn_lock_live(of->kn, false); 3203 if (!cgrp) 3204 return -ENOENT; 3205 3206 /* threaded can only be enabled */ 3207 ret = cgroup_enable_threaded(cgrp); 3208 3209 cgroup_kn_unlock(of->kn); 3210 return ret ?: nbytes; 3211 } 3212 3213 static int cgroup_max_descendants_show(struct seq_file *seq, void *v) 3214 { 3215 struct cgroup *cgrp = seq_css(seq)->cgroup; 3216 int descendants = READ_ONCE(cgrp->max_descendants); 3217 3218 if (descendants == INT_MAX) 3219 seq_puts(seq, "max\n"); 3220 else 3221 seq_printf(seq, "%d\n", descendants); 3222 3223 return 0; 3224 } 3225 3226 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of, 3227 char *buf, size_t nbytes, loff_t off) 3228 { 3229 struct cgroup *cgrp; 3230 int descendants; 3231 ssize_t ret; 3232 3233 buf = strstrip(buf); 3234 if (!strcmp(buf, "max")) { 3235 descendants = INT_MAX; 3236 } else { 3237 ret = kstrtoint(buf, 0, &descendants); 3238 if (ret) 3239 return ret; 3240 } 3241 3242 if (descendants < 0) 3243 return -ERANGE; 3244 3245 cgrp = cgroup_kn_lock_live(of->kn, false); 3246 if (!cgrp) 3247 return -ENOENT; 3248 3249 cgrp->max_descendants = descendants; 3250 3251 cgroup_kn_unlock(of->kn); 3252 3253 return nbytes; 3254 } 3255 3256 static int cgroup_max_depth_show(struct seq_file *seq, void *v) 3257 { 3258 struct cgroup *cgrp = seq_css(seq)->cgroup; 3259 int depth = READ_ONCE(cgrp->max_depth); 3260 3261 if (depth == INT_MAX) 3262 seq_puts(seq, "max\n"); 3263 else 3264 seq_printf(seq, "%d\n", depth); 3265 3266 return 0; 3267 } 3268 3269 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of, 3270 char *buf, size_t nbytes, loff_t off) 3271 { 3272 struct cgroup *cgrp; 3273 ssize_t ret; 3274 int depth; 3275 3276 buf = strstrip(buf); 3277 if (!strcmp(buf, "max")) { 3278 depth = INT_MAX; 3279 } else { 3280 ret = kstrtoint(buf, 0, &depth); 3281 if (ret) 3282 return ret; 3283 } 3284 3285 if (depth < 0) 3286 return -ERANGE; 3287 3288 cgrp = cgroup_kn_lock_live(of->kn, false); 3289 if (!cgrp) 3290 return -ENOENT; 3291 3292 cgrp->max_depth = depth; 3293 3294 cgroup_kn_unlock(of->kn); 3295 3296 return nbytes; 3297 } 3298 3299 static int cgroup_events_show(struct seq_file *seq, void *v) 3300 { 3301 seq_printf(seq, "populated %d\n", 3302 cgroup_is_populated(seq_css(seq)->cgroup)); 3303 return 0; 3304 } 3305 3306 static int cgroup_stat_show(struct seq_file *seq, void *v) 3307 { 3308 struct cgroup *cgroup = seq_css(seq)->cgroup; 3309 3310 seq_printf(seq, "nr_descendants %d\n", 3311 cgroup->nr_descendants); 3312 seq_printf(seq, "nr_dying_descendants %d\n", 3313 cgroup->nr_dying_descendants); 3314 3315 return 0; 3316 } 3317 3318 static int cgroup_file_open(struct kernfs_open_file *of) 3319 { 3320 struct cftype *cft = of->kn->priv; 3321 3322 if (cft->open) 3323 return cft->open(of); 3324 return 0; 3325 } 3326 3327 static void cgroup_file_release(struct kernfs_open_file *of) 3328 { 3329 struct cftype *cft = of->kn->priv; 3330 3331 if (cft->release) 3332 cft->release(of); 3333 } 3334 3335 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf, 3336 size_t nbytes, loff_t off) 3337 { 3338 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns; 3339 struct cgroup *cgrp = of->kn->parent->priv; 3340 struct cftype *cft = of->kn->priv; 3341 struct cgroup_subsys_state *css; 3342 int ret; 3343 3344 /* 3345 * If namespaces are delegation boundaries, disallow writes to 3346 * files in an non-init namespace root from inside the namespace 3347 * except for the files explicitly marked delegatable - 3348 * cgroup.procs and cgroup.subtree_control. 3349 */ 3350 if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) && 3351 !(cft->flags & CFTYPE_NS_DELEGATABLE) && 3352 ns != &init_cgroup_ns && ns->root_cset->dfl_cgrp == cgrp) 3353 return -EPERM; 3354 3355 if (cft->write) 3356 return cft->write(of, buf, nbytes, off); 3357 3358 /* 3359 * kernfs guarantees that a file isn't deleted with operations in 3360 * flight, which means that the matching css is and stays alive and 3361 * doesn't need to be pinned. The RCU locking is not necessary 3362 * either. It's just for the convenience of using cgroup_css(). 3363 */ 3364 rcu_read_lock(); 3365 css = cgroup_css(cgrp, cft->ss); 3366 rcu_read_unlock(); 3367 3368 if (cft->write_u64) { 3369 unsigned long long v; 3370 ret = kstrtoull(buf, 0, &v); 3371 if (!ret) 3372 ret = cft->write_u64(css, cft, v); 3373 } else if (cft->write_s64) { 3374 long long v; 3375 ret = kstrtoll(buf, 0, &v); 3376 if (!ret) 3377 ret = cft->write_s64(css, cft, v); 3378 } else { 3379 ret = -EINVAL; 3380 } 3381 3382 return ret ?: nbytes; 3383 } 3384 3385 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos) 3386 { 3387 return seq_cft(seq)->seq_start(seq, ppos); 3388 } 3389 3390 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos) 3391 { 3392 return seq_cft(seq)->seq_next(seq, v, ppos); 3393 } 3394 3395 static void cgroup_seqfile_stop(struct seq_file *seq, void *v) 3396 { 3397 if (seq_cft(seq)->seq_stop) 3398 seq_cft(seq)->seq_stop(seq, v); 3399 } 3400 3401 static int cgroup_seqfile_show(struct seq_file *m, void *arg) 3402 { 3403 struct cftype *cft = seq_cft(m); 3404 struct cgroup_subsys_state *css = seq_css(m); 3405 3406 if (cft->seq_show) 3407 return cft->seq_show(m, arg); 3408 3409 if (cft->read_u64) 3410 seq_printf(m, "%llu\n", cft->read_u64(css, cft)); 3411 else if (cft->read_s64) 3412 seq_printf(m, "%lld\n", cft->read_s64(css, cft)); 3413 else 3414 return -EINVAL; 3415 return 0; 3416 } 3417 3418 static struct kernfs_ops cgroup_kf_single_ops = { 3419 .atomic_write_len = PAGE_SIZE, 3420 .open = cgroup_file_open, 3421 .release = cgroup_file_release, 3422 .write = cgroup_file_write, 3423 .seq_show = cgroup_seqfile_show, 3424 }; 3425 3426 static struct kernfs_ops cgroup_kf_ops = { 3427 .atomic_write_len = PAGE_SIZE, 3428 .open = cgroup_file_open, 3429 .release = cgroup_file_release, 3430 .write = cgroup_file_write, 3431 .seq_start = cgroup_seqfile_start, 3432 .seq_next = cgroup_seqfile_next, 3433 .seq_stop = cgroup_seqfile_stop, 3434 .seq_show = cgroup_seqfile_show, 3435 }; 3436 3437 /* set uid and gid of cgroup dirs and files to that of the creator */ 3438 static int cgroup_kn_set_ugid(struct kernfs_node *kn) 3439 { 3440 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID, 3441 .ia_uid = current_fsuid(), 3442 .ia_gid = current_fsgid(), }; 3443 3444 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) && 3445 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID)) 3446 return 0; 3447 3448 return kernfs_setattr(kn, &iattr); 3449 } 3450 3451 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp, 3452 struct cftype *cft) 3453 { 3454 char name[CGROUP_FILE_NAME_MAX]; 3455 struct kernfs_node *kn; 3456 struct lock_class_key *key = NULL; 3457 int ret; 3458 3459 #ifdef CONFIG_DEBUG_LOCK_ALLOC 3460 key = &cft->lockdep_key; 3461 #endif 3462 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name), 3463 cgroup_file_mode(cft), 0, cft->kf_ops, cft, 3464 NULL, key); 3465 if (IS_ERR(kn)) 3466 return PTR_ERR(kn); 3467 3468 ret = cgroup_kn_set_ugid(kn); 3469 if (ret) { 3470 kernfs_remove(kn); 3471 return ret; 3472 } 3473 3474 if (cft->file_offset) { 3475 struct cgroup_file *cfile = (void *)css + cft->file_offset; 3476 3477 spin_lock_irq(&cgroup_file_kn_lock); 3478 cfile->kn = kn; 3479 spin_unlock_irq(&cgroup_file_kn_lock); 3480 } 3481 3482 return 0; 3483 } 3484 3485 /** 3486 * cgroup_addrm_files - add or remove files to a cgroup directory 3487 * @css: the target css 3488 * @cgrp: the target cgroup (usually css->cgroup) 3489 * @cfts: array of cftypes to be added 3490 * @is_add: whether to add or remove 3491 * 3492 * Depending on @is_add, add or remove files defined by @cfts on @cgrp. 3493 * For removals, this function never fails. 3494 */ 3495 static int cgroup_addrm_files(struct cgroup_subsys_state *css, 3496 struct cgroup *cgrp, struct cftype cfts[], 3497 bool is_add) 3498 { 3499 struct cftype *cft, *cft_end = NULL; 3500 int ret = 0; 3501 3502 lockdep_assert_held(&cgroup_mutex); 3503 3504 restart: 3505 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) { 3506 /* does cft->flags tell us to skip this file on @cgrp? */ 3507 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp)) 3508 continue; 3509 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp)) 3510 continue; 3511 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp)) 3512 continue; 3513 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp)) 3514 continue; 3515 3516 if (is_add) { 3517 ret = cgroup_add_file(css, cgrp, cft); 3518 if (ret) { 3519 pr_warn("%s: failed to add %s, err=%d\n", 3520 __func__, cft->name, ret); 3521 cft_end = cft; 3522 is_add = false; 3523 goto restart; 3524 } 3525 } else { 3526 cgroup_rm_file(cgrp, cft); 3527 } 3528 } 3529 return ret; 3530 } 3531 3532 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add) 3533 { 3534 struct cgroup_subsys *ss = cfts[0].ss; 3535 struct cgroup *root = &ss->root->cgrp; 3536 struct cgroup_subsys_state *css; 3537 int ret = 0; 3538 3539 lockdep_assert_held(&cgroup_mutex); 3540 3541 /* add/rm files for all cgroups created before */ 3542 css_for_each_descendant_pre(css, cgroup_css(root, ss)) { 3543 struct cgroup *cgrp = css->cgroup; 3544 3545 if (!(css->flags & CSS_VISIBLE)) 3546 continue; 3547 3548 ret = cgroup_addrm_files(css, cgrp, cfts, is_add); 3549 if (ret) 3550 break; 3551 } 3552 3553 if (is_add && !ret) 3554 kernfs_activate(root->kn); 3555 return ret; 3556 } 3557 3558 static void cgroup_exit_cftypes(struct cftype *cfts) 3559 { 3560 struct cftype *cft; 3561 3562 for (cft = cfts; cft->name[0] != '\0'; cft++) { 3563 /* free copy for custom atomic_write_len, see init_cftypes() */ 3564 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) 3565 kfree(cft->kf_ops); 3566 cft->kf_ops = NULL; 3567 cft->ss = NULL; 3568 3569 /* revert flags set by cgroup core while adding @cfts */ 3570 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL); 3571 } 3572 } 3573 3574 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 3575 { 3576 struct cftype *cft; 3577 3578 for (cft = cfts; cft->name[0] != '\0'; cft++) { 3579 struct kernfs_ops *kf_ops; 3580 3581 WARN_ON(cft->ss || cft->kf_ops); 3582 3583 if (cft->seq_start) 3584 kf_ops = &cgroup_kf_ops; 3585 else 3586 kf_ops = &cgroup_kf_single_ops; 3587 3588 /* 3589 * Ugh... if @cft wants a custom max_write_len, we need to 3590 * make a copy of kf_ops to set its atomic_write_len. 3591 */ 3592 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) { 3593 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL); 3594 if (!kf_ops) { 3595 cgroup_exit_cftypes(cfts); 3596 return -ENOMEM; 3597 } 3598 kf_ops->atomic_write_len = cft->max_write_len; 3599 } 3600 3601 cft->kf_ops = kf_ops; 3602 cft->ss = ss; 3603 } 3604 3605 return 0; 3606 } 3607 3608 static int cgroup_rm_cftypes_locked(struct cftype *cfts) 3609 { 3610 lockdep_assert_held(&cgroup_mutex); 3611 3612 if (!cfts || !cfts[0].ss) 3613 return -ENOENT; 3614 3615 list_del(&cfts->node); 3616 cgroup_apply_cftypes(cfts, false); 3617 cgroup_exit_cftypes(cfts); 3618 return 0; 3619 } 3620 3621 /** 3622 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem 3623 * @cfts: zero-length name terminated array of cftypes 3624 * 3625 * Unregister @cfts. Files described by @cfts are removed from all 3626 * existing cgroups and all future cgroups won't have them either. This 3627 * function can be called anytime whether @cfts' subsys is attached or not. 3628 * 3629 * Returns 0 on successful unregistration, -ENOENT if @cfts is not 3630 * registered. 3631 */ 3632 int cgroup_rm_cftypes(struct cftype *cfts) 3633 { 3634 int ret; 3635 3636 mutex_lock(&cgroup_mutex); 3637 ret = cgroup_rm_cftypes_locked(cfts); 3638 mutex_unlock(&cgroup_mutex); 3639 return ret; 3640 } 3641 3642 /** 3643 * cgroup_add_cftypes - add an array of cftypes to a subsystem 3644 * @ss: target cgroup subsystem 3645 * @cfts: zero-length name terminated array of cftypes 3646 * 3647 * Register @cfts to @ss. Files described by @cfts are created for all 3648 * existing cgroups to which @ss is attached and all future cgroups will 3649 * have them too. This function can be called anytime whether @ss is 3650 * attached or not. 3651 * 3652 * Returns 0 on successful registration, -errno on failure. Note that this 3653 * function currently returns 0 as long as @cfts registration is successful 3654 * even if some file creation attempts on existing cgroups fail. 3655 */ 3656 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 3657 { 3658 int ret; 3659 3660 if (!cgroup_ssid_enabled(ss->id)) 3661 return 0; 3662 3663 if (!cfts || cfts[0].name[0] == '\0') 3664 return 0; 3665 3666 ret = cgroup_init_cftypes(ss, cfts); 3667 if (ret) 3668 return ret; 3669 3670 mutex_lock(&cgroup_mutex); 3671 3672 list_add_tail(&cfts->node, &ss->cfts); 3673 ret = cgroup_apply_cftypes(cfts, true); 3674 if (ret) 3675 cgroup_rm_cftypes_locked(cfts); 3676 3677 mutex_unlock(&cgroup_mutex); 3678 return ret; 3679 } 3680 3681 /** 3682 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy 3683 * @ss: target cgroup subsystem 3684 * @cfts: zero-length name terminated array of cftypes 3685 * 3686 * Similar to cgroup_add_cftypes() but the added files are only used for 3687 * the default hierarchy. 3688 */ 3689 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 3690 { 3691 struct cftype *cft; 3692 3693 for (cft = cfts; cft && cft->name[0] != '\0'; cft++) 3694 cft->flags |= __CFTYPE_ONLY_ON_DFL; 3695 return cgroup_add_cftypes(ss, cfts); 3696 } 3697 3698 /** 3699 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies 3700 * @ss: target cgroup subsystem 3701 * @cfts: zero-length name terminated array of cftypes 3702 * 3703 * Similar to cgroup_add_cftypes() but the added files are only used for 3704 * the legacy hierarchies. 3705 */ 3706 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 3707 { 3708 struct cftype *cft; 3709 3710 for (cft = cfts; cft && cft->name[0] != '\0'; cft++) 3711 cft->flags |= __CFTYPE_NOT_ON_DFL; 3712 return cgroup_add_cftypes(ss, cfts); 3713 } 3714 3715 /** 3716 * cgroup_file_notify - generate a file modified event for a cgroup_file 3717 * @cfile: target cgroup_file 3718 * 3719 * @cfile must have been obtained by setting cftype->file_offset. 3720 */ 3721 void cgroup_file_notify(struct cgroup_file *cfile) 3722 { 3723 unsigned long flags; 3724 3725 spin_lock_irqsave(&cgroup_file_kn_lock, flags); 3726 if (cfile->kn) 3727 kernfs_notify(cfile->kn); 3728 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags); 3729 } 3730 3731 /** 3732 * css_next_child - find the next child of a given css 3733 * @pos: the current position (%NULL to initiate traversal) 3734 * @parent: css whose children to walk 3735 * 3736 * This function returns the next child of @parent and should be called 3737 * under either cgroup_mutex or RCU read lock. The only requirement is 3738 * that @parent and @pos are accessible. The next sibling is guaranteed to 3739 * be returned regardless of their states. 3740 * 3741 * If a subsystem synchronizes ->css_online() and the start of iteration, a 3742 * css which finished ->css_online() is guaranteed to be visible in the 3743 * future iterations and will stay visible until the last reference is put. 3744 * A css which hasn't finished ->css_online() or already finished 3745 * ->css_offline() may show up during traversal. It's each subsystem's 3746 * responsibility to synchronize against on/offlining. 3747 */ 3748 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos, 3749 struct cgroup_subsys_state *parent) 3750 { 3751 struct cgroup_subsys_state *next; 3752 3753 cgroup_assert_mutex_or_rcu_locked(); 3754 3755 /* 3756 * @pos could already have been unlinked from the sibling list. 3757 * Once a cgroup is removed, its ->sibling.next is no longer 3758 * updated when its next sibling changes. CSS_RELEASED is set when 3759 * @pos is taken off list, at which time its next pointer is valid, 3760 * and, as releases are serialized, the one pointed to by the next 3761 * pointer is guaranteed to not have started release yet. This 3762 * implies that if we observe !CSS_RELEASED on @pos in this RCU 3763 * critical section, the one pointed to by its next pointer is 3764 * guaranteed to not have finished its RCU grace period even if we 3765 * have dropped rcu_read_lock() inbetween iterations. 3766 * 3767 * If @pos has CSS_RELEASED set, its next pointer can't be 3768 * dereferenced; however, as each css is given a monotonically 3769 * increasing unique serial number and always appended to the 3770 * sibling list, the next one can be found by walking the parent's 3771 * children until the first css with higher serial number than 3772 * @pos's. While this path can be slower, it happens iff iteration 3773 * races against release and the race window is very small. 3774 */ 3775 if (!pos) { 3776 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling); 3777 } else if (likely(!(pos->flags & CSS_RELEASED))) { 3778 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling); 3779 } else { 3780 list_for_each_entry_rcu(next, &parent->children, sibling) 3781 if (next->serial_nr > pos->serial_nr) 3782 break; 3783 } 3784 3785 /* 3786 * @next, if not pointing to the head, can be dereferenced and is 3787 * the next sibling. 3788 */ 3789 if (&next->sibling != &parent->children) 3790 return next; 3791 return NULL; 3792 } 3793 3794 /** 3795 * css_next_descendant_pre - find the next descendant for pre-order walk 3796 * @pos: the current position (%NULL to initiate traversal) 3797 * @root: css whose descendants to walk 3798 * 3799 * To be used by css_for_each_descendant_pre(). Find the next descendant 3800 * to visit for pre-order traversal of @root's descendants. @root is 3801 * included in the iteration and the first node to be visited. 3802 * 3803 * While this function requires cgroup_mutex or RCU read locking, it 3804 * doesn't require the whole traversal to be contained in a single critical 3805 * section. This function will return the correct next descendant as long 3806 * as both @pos and @root are accessible and @pos is a descendant of @root. 3807 * 3808 * If a subsystem synchronizes ->css_online() and the start of iteration, a 3809 * css which finished ->css_online() is guaranteed to be visible in the 3810 * future iterations and will stay visible until the last reference is put. 3811 * A css which hasn't finished ->css_online() or already finished 3812 * ->css_offline() may show up during traversal. It's each subsystem's 3813 * responsibility to synchronize against on/offlining. 3814 */ 3815 struct cgroup_subsys_state * 3816 css_next_descendant_pre(struct cgroup_subsys_state *pos, 3817 struct cgroup_subsys_state *root) 3818 { 3819 struct cgroup_subsys_state *next; 3820 3821 cgroup_assert_mutex_or_rcu_locked(); 3822 3823 /* if first iteration, visit @root */ 3824 if (!pos) 3825 return root; 3826 3827 /* visit the first child if exists */ 3828 next = css_next_child(NULL, pos); 3829 if (next) 3830 return next; 3831 3832 /* no child, visit my or the closest ancestor's next sibling */ 3833 while (pos != root) { 3834 next = css_next_child(pos, pos->parent); 3835 if (next) 3836 return next; 3837 pos = pos->parent; 3838 } 3839 3840 return NULL; 3841 } 3842 3843 /** 3844 * css_rightmost_descendant - return the rightmost descendant of a css 3845 * @pos: css of interest 3846 * 3847 * Return the rightmost descendant of @pos. If there's no descendant, @pos 3848 * is returned. This can be used during pre-order traversal to skip 3849 * subtree of @pos. 3850 * 3851 * While this function requires cgroup_mutex or RCU read locking, it 3852 * doesn't require the whole traversal to be contained in a single critical 3853 * section. This function will return the correct rightmost descendant as 3854 * long as @pos is accessible. 3855 */ 3856 struct cgroup_subsys_state * 3857 css_rightmost_descendant(struct cgroup_subsys_state *pos) 3858 { 3859 struct cgroup_subsys_state *last, *tmp; 3860 3861 cgroup_assert_mutex_or_rcu_locked(); 3862 3863 do { 3864 last = pos; 3865 /* ->prev isn't RCU safe, walk ->next till the end */ 3866 pos = NULL; 3867 css_for_each_child(tmp, last) 3868 pos = tmp; 3869 } while (pos); 3870 3871 return last; 3872 } 3873 3874 static struct cgroup_subsys_state * 3875 css_leftmost_descendant(struct cgroup_subsys_state *pos) 3876 { 3877 struct cgroup_subsys_state *last; 3878 3879 do { 3880 last = pos; 3881 pos = css_next_child(NULL, pos); 3882 } while (pos); 3883 3884 return last; 3885 } 3886 3887 /** 3888 * css_next_descendant_post - find the next descendant for post-order walk 3889 * @pos: the current position (%NULL to initiate traversal) 3890 * @root: css whose descendants to walk 3891 * 3892 * To be used by css_for_each_descendant_post(). Find the next descendant 3893 * to visit for post-order traversal of @root's descendants. @root is 3894 * included in the iteration and the last node to be visited. 3895 * 3896 * While this function requires cgroup_mutex or RCU read locking, it 3897 * doesn't require the whole traversal to be contained in a single critical 3898 * section. This function will return the correct next descendant as long 3899 * as both @pos and @cgroup are accessible and @pos is a descendant of 3900 * @cgroup. 3901 * 3902 * If a subsystem synchronizes ->css_online() and the start of iteration, a 3903 * css which finished ->css_online() is guaranteed to be visible in the 3904 * future iterations and will stay visible until the last reference is put. 3905 * A css which hasn't finished ->css_online() or already finished 3906 * ->css_offline() may show up during traversal. It's each subsystem's 3907 * responsibility to synchronize against on/offlining. 3908 */ 3909 struct cgroup_subsys_state * 3910 css_next_descendant_post(struct cgroup_subsys_state *pos, 3911 struct cgroup_subsys_state *root) 3912 { 3913 struct cgroup_subsys_state *next; 3914 3915 cgroup_assert_mutex_or_rcu_locked(); 3916 3917 /* if first iteration, visit leftmost descendant which may be @root */ 3918 if (!pos) 3919 return css_leftmost_descendant(root); 3920 3921 /* if we visited @root, we're done */ 3922 if (pos == root) 3923 return NULL; 3924 3925 /* if there's an unvisited sibling, visit its leftmost descendant */ 3926 next = css_next_child(pos, pos->parent); 3927 if (next) 3928 return css_leftmost_descendant(next); 3929 3930 /* no sibling left, visit parent */ 3931 return pos->parent; 3932 } 3933 3934 /** 3935 * css_has_online_children - does a css have online children 3936 * @css: the target css 3937 * 3938 * Returns %true if @css has any online children; otherwise, %false. This 3939 * function can be called from any context but the caller is responsible 3940 * for synchronizing against on/offlining as necessary. 3941 */ 3942 bool css_has_online_children(struct cgroup_subsys_state *css) 3943 { 3944 struct cgroup_subsys_state *child; 3945 bool ret = false; 3946 3947 rcu_read_lock(); 3948 css_for_each_child(child, css) { 3949 if (child->flags & CSS_ONLINE) { 3950 ret = true; 3951 break; 3952 } 3953 } 3954 rcu_read_unlock(); 3955 return ret; 3956 } 3957 3958 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it) 3959 { 3960 struct list_head *l; 3961 struct cgrp_cset_link *link; 3962 struct css_set *cset; 3963 3964 lockdep_assert_held(&css_set_lock); 3965 3966 /* find the next threaded cset */ 3967 if (it->tcset_pos) { 3968 l = it->tcset_pos->next; 3969 3970 if (l != it->tcset_head) { 3971 it->tcset_pos = l; 3972 return container_of(l, struct css_set, 3973 threaded_csets_node); 3974 } 3975 3976 it->tcset_pos = NULL; 3977 } 3978 3979 /* find the next cset */ 3980 l = it->cset_pos; 3981 l = l->next; 3982 if (l == it->cset_head) { 3983 it->cset_pos = NULL; 3984 return NULL; 3985 } 3986 3987 if (it->ss) { 3988 cset = container_of(l, struct css_set, e_cset_node[it->ss->id]); 3989 } else { 3990 link = list_entry(l, struct cgrp_cset_link, cset_link); 3991 cset = link->cset; 3992 } 3993 3994 it->cset_pos = l; 3995 3996 /* initialize threaded css_set walking */ 3997 if (it->flags & CSS_TASK_ITER_THREADED) { 3998 if (it->cur_dcset) 3999 put_css_set_locked(it->cur_dcset); 4000 it->cur_dcset = cset; 4001 get_css_set(cset); 4002 4003 it->tcset_head = &cset->threaded_csets; 4004 it->tcset_pos = &cset->threaded_csets; 4005 } 4006 4007 return cset; 4008 } 4009 4010 /** 4011 * css_task_iter_advance_css_set - advance a task itererator to the next css_set 4012 * @it: the iterator to advance 4013 * 4014 * Advance @it to the next css_set to walk. 4015 */ 4016 static void css_task_iter_advance_css_set(struct css_task_iter *it) 4017 { 4018 struct css_set *cset; 4019 4020 lockdep_assert_held(&css_set_lock); 4021 4022 /* Advance to the next non-empty css_set */ 4023 do { 4024 cset = css_task_iter_next_css_set(it); 4025 if (!cset) { 4026 it->task_pos = NULL; 4027 return; 4028 } 4029 } while (!css_set_populated(cset)); 4030 4031 if (!list_empty(&cset->tasks)) 4032 it->task_pos = cset->tasks.next; 4033 else 4034 it->task_pos = cset->mg_tasks.next; 4035 4036 it->tasks_head = &cset->tasks; 4037 it->mg_tasks_head = &cset->mg_tasks; 4038 4039 /* 4040 * We don't keep css_sets locked across iteration steps and thus 4041 * need to take steps to ensure that iteration can be resumed after 4042 * the lock is re-acquired. Iteration is performed at two levels - 4043 * css_sets and tasks in them. 4044 * 4045 * Once created, a css_set never leaves its cgroup lists, so a 4046 * pinned css_set is guaranteed to stay put and we can resume 4047 * iteration afterwards. 4048 * 4049 * Tasks may leave @cset across iteration steps. This is resolved 4050 * by registering each iterator with the css_set currently being 4051 * walked and making css_set_move_task() advance iterators whose 4052 * next task is leaving. 4053 */ 4054 if (it->cur_cset) { 4055 list_del(&it->iters_node); 4056 put_css_set_locked(it->cur_cset); 4057 } 4058 get_css_set(cset); 4059 it->cur_cset = cset; 4060 list_add(&it->iters_node, &cset->task_iters); 4061 } 4062 4063 static void css_task_iter_advance(struct css_task_iter *it) 4064 { 4065 struct list_head *l = it->task_pos; 4066 4067 lockdep_assert_held(&css_set_lock); 4068 WARN_ON_ONCE(!l); 4069 4070 repeat: 4071 /* 4072 * Advance iterator to find next entry. cset->tasks is consumed 4073 * first and then ->mg_tasks. After ->mg_tasks, we move onto the 4074 * next cset. 4075 */ 4076 l = l->next; 4077 4078 if (l == it->tasks_head) 4079 l = it->mg_tasks_head->next; 4080 4081 if (l == it->mg_tasks_head) 4082 css_task_iter_advance_css_set(it); 4083 else 4084 it->task_pos = l; 4085 4086 /* if PROCS, skip over tasks which aren't group leaders */ 4087 if ((it->flags & CSS_TASK_ITER_PROCS) && it->task_pos && 4088 !thread_group_leader(list_entry(it->task_pos, struct task_struct, 4089 cg_list))) 4090 goto repeat; 4091 } 4092 4093 /** 4094 * css_task_iter_start - initiate task iteration 4095 * @css: the css to walk tasks of 4096 * @flags: CSS_TASK_ITER_* flags 4097 * @it: the task iterator to use 4098 * 4099 * Initiate iteration through the tasks of @css. The caller can call 4100 * css_task_iter_next() to walk through the tasks until the function 4101 * returns NULL. On completion of iteration, css_task_iter_end() must be 4102 * called. 4103 */ 4104 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags, 4105 struct css_task_iter *it) 4106 { 4107 /* no one should try to iterate before mounting cgroups */ 4108 WARN_ON_ONCE(!use_task_css_set_links); 4109 4110 memset(it, 0, sizeof(*it)); 4111 4112 spin_lock_irq(&css_set_lock); 4113 4114 it->ss = css->ss; 4115 it->flags = flags; 4116 4117 if (it->ss) 4118 it->cset_pos = &css->cgroup->e_csets[css->ss->id]; 4119 else 4120 it->cset_pos = &css->cgroup->cset_links; 4121 4122 it->cset_head = it->cset_pos; 4123 4124 css_task_iter_advance_css_set(it); 4125 4126 spin_unlock_irq(&css_set_lock); 4127 } 4128 4129 /** 4130 * css_task_iter_next - return the next task for the iterator 4131 * @it: the task iterator being iterated 4132 * 4133 * The "next" function for task iteration. @it should have been 4134 * initialized via css_task_iter_start(). Returns NULL when the iteration 4135 * reaches the end. 4136 */ 4137 struct task_struct *css_task_iter_next(struct css_task_iter *it) 4138 { 4139 if (it->cur_task) { 4140 put_task_struct(it->cur_task); 4141 it->cur_task = NULL; 4142 } 4143 4144 spin_lock_irq(&css_set_lock); 4145 4146 if (it->task_pos) { 4147 it->cur_task = list_entry(it->task_pos, struct task_struct, 4148 cg_list); 4149 get_task_struct(it->cur_task); 4150 css_task_iter_advance(it); 4151 } 4152 4153 spin_unlock_irq(&css_set_lock); 4154 4155 return it->cur_task; 4156 } 4157 4158 /** 4159 * css_task_iter_end - finish task iteration 4160 * @it: the task iterator to finish 4161 * 4162 * Finish task iteration started by css_task_iter_start(). 4163 */ 4164 void css_task_iter_end(struct css_task_iter *it) 4165 { 4166 if (it->cur_cset) { 4167 spin_lock_irq(&css_set_lock); 4168 list_del(&it->iters_node); 4169 put_css_set_locked(it->cur_cset); 4170 spin_unlock_irq(&css_set_lock); 4171 } 4172 4173 if (it->cur_dcset) 4174 put_css_set(it->cur_dcset); 4175 4176 if (it->cur_task) 4177 put_task_struct(it->cur_task); 4178 } 4179 4180 static void cgroup_procs_release(struct kernfs_open_file *of) 4181 { 4182 if (of->priv) { 4183 css_task_iter_end(of->priv); 4184 kfree(of->priv); 4185 } 4186 } 4187 4188 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos) 4189 { 4190 struct kernfs_open_file *of = s->private; 4191 struct css_task_iter *it = of->priv; 4192 4193 return css_task_iter_next(it); 4194 } 4195 4196 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos, 4197 unsigned int iter_flags) 4198 { 4199 struct kernfs_open_file *of = s->private; 4200 struct cgroup *cgrp = seq_css(s)->cgroup; 4201 struct css_task_iter *it = of->priv; 4202 4203 /* 4204 * When a seq_file is seeked, it's always traversed sequentially 4205 * from position 0, so we can simply keep iterating on !0 *pos. 4206 */ 4207 if (!it) { 4208 if (WARN_ON_ONCE((*pos)++)) 4209 return ERR_PTR(-EINVAL); 4210 4211 it = kzalloc(sizeof(*it), GFP_KERNEL); 4212 if (!it) 4213 return ERR_PTR(-ENOMEM); 4214 of->priv = it; 4215 css_task_iter_start(&cgrp->self, iter_flags, it); 4216 } else if (!(*pos)++) { 4217 css_task_iter_end(it); 4218 css_task_iter_start(&cgrp->self, iter_flags, it); 4219 } 4220 4221 return cgroup_procs_next(s, NULL, NULL); 4222 } 4223 4224 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos) 4225 { 4226 struct cgroup *cgrp = seq_css(s)->cgroup; 4227 4228 /* 4229 * All processes of a threaded subtree belong to the domain cgroup 4230 * of the subtree. Only threads can be distributed across the 4231 * subtree. Reject reads on cgroup.procs in the subtree proper. 4232 * They're always empty anyway. 4233 */ 4234 if (cgroup_is_threaded(cgrp)) 4235 return ERR_PTR(-EOPNOTSUPP); 4236 4237 return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS | 4238 CSS_TASK_ITER_THREADED); 4239 } 4240 4241 static int cgroup_procs_show(struct seq_file *s, void *v) 4242 { 4243 seq_printf(s, "%d\n", task_pid_vnr(v)); 4244 return 0; 4245 } 4246 4247 static int cgroup_procs_write_permission(struct cgroup *src_cgrp, 4248 struct cgroup *dst_cgrp, 4249 struct super_block *sb) 4250 { 4251 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns; 4252 struct cgroup *com_cgrp = src_cgrp; 4253 struct inode *inode; 4254 int ret; 4255 4256 lockdep_assert_held(&cgroup_mutex); 4257 4258 /* find the common ancestor */ 4259 while (!cgroup_is_descendant(dst_cgrp, com_cgrp)) 4260 com_cgrp = cgroup_parent(com_cgrp); 4261 4262 /* %current should be authorized to migrate to the common ancestor */ 4263 inode = kernfs_get_inode(sb, com_cgrp->procs_file.kn); 4264 if (!inode) 4265 return -ENOMEM; 4266 4267 ret = inode_permission(inode, MAY_WRITE); 4268 iput(inode); 4269 if (ret) 4270 return ret; 4271 4272 /* 4273 * If namespaces are delegation boundaries, %current must be able 4274 * to see both source and destination cgroups from its namespace. 4275 */ 4276 if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) && 4277 (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) || 4278 !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp))) 4279 return -ENOENT; 4280 4281 return 0; 4282 } 4283 4284 static ssize_t cgroup_procs_write(struct kernfs_open_file *of, 4285 char *buf, size_t nbytes, loff_t off) 4286 { 4287 struct cgroup *src_cgrp, *dst_cgrp; 4288 struct task_struct *task; 4289 ssize_t ret; 4290 4291 dst_cgrp = cgroup_kn_lock_live(of->kn, false); 4292 if (!dst_cgrp) 4293 return -ENODEV; 4294 4295 task = cgroup_procs_write_start(buf, true); 4296 ret = PTR_ERR_OR_ZERO(task); 4297 if (ret) 4298 goto out_unlock; 4299 4300 /* find the source cgroup */ 4301 spin_lock_irq(&css_set_lock); 4302 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root); 4303 spin_unlock_irq(&css_set_lock); 4304 4305 ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, 4306 of->file->f_path.dentry->d_sb); 4307 if (ret) 4308 goto out_finish; 4309 4310 ret = cgroup_attach_task(dst_cgrp, task, true); 4311 4312 out_finish: 4313 cgroup_procs_write_finish(task); 4314 out_unlock: 4315 cgroup_kn_unlock(of->kn); 4316 4317 return ret ?: nbytes; 4318 } 4319 4320 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos) 4321 { 4322 return __cgroup_procs_start(s, pos, 0); 4323 } 4324 4325 static ssize_t cgroup_threads_write(struct kernfs_open_file *of, 4326 char *buf, size_t nbytes, loff_t off) 4327 { 4328 struct cgroup *src_cgrp, *dst_cgrp; 4329 struct task_struct *task; 4330 ssize_t ret; 4331 4332 buf = strstrip(buf); 4333 4334 dst_cgrp = cgroup_kn_lock_live(of->kn, false); 4335 if (!dst_cgrp) 4336 return -ENODEV; 4337 4338 task = cgroup_procs_write_start(buf, false); 4339 ret = PTR_ERR_OR_ZERO(task); 4340 if (ret) 4341 goto out_unlock; 4342 4343 /* find the source cgroup */ 4344 spin_lock_irq(&css_set_lock); 4345 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root); 4346 spin_unlock_irq(&css_set_lock); 4347 4348 /* thread migrations follow the cgroup.procs delegation rule */ 4349 ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, 4350 of->file->f_path.dentry->d_sb); 4351 if (ret) 4352 goto out_finish; 4353 4354 /* and must be contained in the same domain */ 4355 ret = -EOPNOTSUPP; 4356 if (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp) 4357 goto out_finish; 4358 4359 ret = cgroup_attach_task(dst_cgrp, task, false); 4360 4361 out_finish: 4362 cgroup_procs_write_finish(task); 4363 out_unlock: 4364 cgroup_kn_unlock(of->kn); 4365 4366 return ret ?: nbytes; 4367 } 4368 4369 /* cgroup core interface files for the default hierarchy */ 4370 static struct cftype cgroup_base_files[] = { 4371 { 4372 .name = "cgroup.type", 4373 .flags = CFTYPE_NOT_ON_ROOT, 4374 .seq_show = cgroup_type_show, 4375 .write = cgroup_type_write, 4376 }, 4377 { 4378 .name = "cgroup.procs", 4379 .flags = CFTYPE_NS_DELEGATABLE, 4380 .file_offset = offsetof(struct cgroup, procs_file), 4381 .release = cgroup_procs_release, 4382 .seq_start = cgroup_procs_start, 4383 .seq_next = cgroup_procs_next, 4384 .seq_show = cgroup_procs_show, 4385 .write = cgroup_procs_write, 4386 }, 4387 { 4388 .name = "cgroup.threads", 4389 .release = cgroup_procs_release, 4390 .seq_start = cgroup_threads_start, 4391 .seq_next = cgroup_procs_next, 4392 .seq_show = cgroup_procs_show, 4393 .write = cgroup_threads_write, 4394 }, 4395 { 4396 .name = "cgroup.controllers", 4397 .seq_show = cgroup_controllers_show, 4398 }, 4399 { 4400 .name = "cgroup.subtree_control", 4401 .flags = CFTYPE_NS_DELEGATABLE, 4402 .seq_show = cgroup_subtree_control_show, 4403 .write = cgroup_subtree_control_write, 4404 }, 4405 { 4406 .name = "cgroup.events", 4407 .flags = CFTYPE_NOT_ON_ROOT, 4408 .file_offset = offsetof(struct cgroup, events_file), 4409 .seq_show = cgroup_events_show, 4410 }, 4411 { 4412 .name = "cgroup.max.descendants", 4413 .seq_show = cgroup_max_descendants_show, 4414 .write = cgroup_max_descendants_write, 4415 }, 4416 { 4417 .name = "cgroup.max.depth", 4418 .seq_show = cgroup_max_depth_show, 4419 .write = cgroup_max_depth_write, 4420 }, 4421 { 4422 .name = "cgroup.stat", 4423 .seq_show = cgroup_stat_show, 4424 }, 4425 { } /* terminate */ 4426 }; 4427 4428 /* 4429 * css destruction is four-stage process. 4430 * 4431 * 1. Destruction starts. Killing of the percpu_ref is initiated. 4432 * Implemented in kill_css(). 4433 * 4434 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs 4435 * and thus css_tryget_online() is guaranteed to fail, the css can be 4436 * offlined by invoking offline_css(). After offlining, the base ref is 4437 * put. Implemented in css_killed_work_fn(). 4438 * 4439 * 3. When the percpu_ref reaches zero, the only possible remaining 4440 * accessors are inside RCU read sections. css_release() schedules the 4441 * RCU callback. 4442 * 4443 * 4. After the grace period, the css can be freed. Implemented in 4444 * css_free_work_fn(). 4445 * 4446 * It is actually hairier because both step 2 and 4 require process context 4447 * and thus involve punting to css->destroy_work adding two additional 4448 * steps to the already complex sequence. 4449 */ 4450 static void css_free_work_fn(struct work_struct *work) 4451 { 4452 struct cgroup_subsys_state *css = 4453 container_of(work, struct cgroup_subsys_state, destroy_work); 4454 struct cgroup_subsys *ss = css->ss; 4455 struct cgroup *cgrp = css->cgroup; 4456 4457 percpu_ref_exit(&css->refcnt); 4458 4459 if (ss) { 4460 /* css free path */ 4461 struct cgroup_subsys_state *parent = css->parent; 4462 int id = css->id; 4463 4464 ss->css_free(css); 4465 cgroup_idr_remove(&ss->css_idr, id); 4466 cgroup_put(cgrp); 4467 4468 if (parent) 4469 css_put(parent); 4470 } else { 4471 /* cgroup free path */ 4472 atomic_dec(&cgrp->root->nr_cgrps); 4473 cgroup1_pidlist_destroy_all(cgrp); 4474 cancel_work_sync(&cgrp->release_agent_work); 4475 4476 if (cgroup_parent(cgrp)) { 4477 /* 4478 * We get a ref to the parent, and put the ref when 4479 * this cgroup is being freed, so it's guaranteed 4480 * that the parent won't be destroyed before its 4481 * children. 4482 */ 4483 cgroup_put(cgroup_parent(cgrp)); 4484 kernfs_put(cgrp->kn); 4485 kfree(cgrp); 4486 } else { 4487 /* 4488 * This is root cgroup's refcnt reaching zero, 4489 * which indicates that the root should be 4490 * released. 4491 */ 4492 cgroup_destroy_root(cgrp->root); 4493 } 4494 } 4495 } 4496 4497 static void css_free_rcu_fn(struct rcu_head *rcu_head) 4498 { 4499 struct cgroup_subsys_state *css = 4500 container_of(rcu_head, struct cgroup_subsys_state, rcu_head); 4501 4502 INIT_WORK(&css->destroy_work, css_free_work_fn); 4503 queue_work(cgroup_destroy_wq, &css->destroy_work); 4504 } 4505 4506 static void css_release_work_fn(struct work_struct *work) 4507 { 4508 struct cgroup_subsys_state *css = 4509 container_of(work, struct cgroup_subsys_state, destroy_work); 4510 struct cgroup_subsys *ss = css->ss; 4511 struct cgroup *cgrp = css->cgroup; 4512 4513 mutex_lock(&cgroup_mutex); 4514 4515 css->flags |= CSS_RELEASED; 4516 list_del_rcu(&css->sibling); 4517 4518 if (ss) { 4519 /* css release path */ 4520 cgroup_idr_replace(&ss->css_idr, NULL, css->id); 4521 if (ss->css_released) 4522 ss->css_released(css); 4523 } else { 4524 struct cgroup *tcgrp; 4525 4526 /* cgroup release path */ 4527 trace_cgroup_release(cgrp); 4528 4529 for (tcgrp = cgroup_parent(cgrp); tcgrp; 4530 tcgrp = cgroup_parent(tcgrp)) 4531 tcgrp->nr_dying_descendants--; 4532 4533 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id); 4534 cgrp->id = -1; 4535 4536 /* 4537 * There are two control paths which try to determine 4538 * cgroup from dentry without going through kernfs - 4539 * cgroupstats_build() and css_tryget_online_from_dir(). 4540 * Those are supported by RCU protecting clearing of 4541 * cgrp->kn->priv backpointer. 4542 */ 4543 if (cgrp->kn) 4544 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, 4545 NULL); 4546 4547 cgroup_bpf_put(cgrp); 4548 } 4549 4550 mutex_unlock(&cgroup_mutex); 4551 4552 call_rcu(&css->rcu_head, css_free_rcu_fn); 4553 } 4554 4555 static void css_release(struct percpu_ref *ref) 4556 { 4557 struct cgroup_subsys_state *css = 4558 container_of(ref, struct cgroup_subsys_state, refcnt); 4559 4560 INIT_WORK(&css->destroy_work, css_release_work_fn); 4561 queue_work(cgroup_destroy_wq, &css->destroy_work); 4562 } 4563 4564 static void init_and_link_css(struct cgroup_subsys_state *css, 4565 struct cgroup_subsys *ss, struct cgroup *cgrp) 4566 { 4567 lockdep_assert_held(&cgroup_mutex); 4568 4569 cgroup_get_live(cgrp); 4570 4571 memset(css, 0, sizeof(*css)); 4572 css->cgroup = cgrp; 4573 css->ss = ss; 4574 css->id = -1; 4575 INIT_LIST_HEAD(&css->sibling); 4576 INIT_LIST_HEAD(&css->children); 4577 css->serial_nr = css_serial_nr_next++; 4578 atomic_set(&css->online_cnt, 0); 4579 4580 if (cgroup_parent(cgrp)) { 4581 css->parent = cgroup_css(cgroup_parent(cgrp), ss); 4582 css_get(css->parent); 4583 } 4584 4585 BUG_ON(cgroup_css(cgrp, ss)); 4586 } 4587 4588 /* invoke ->css_online() on a new CSS and mark it online if successful */ 4589 static int online_css(struct cgroup_subsys_state *css) 4590 { 4591 struct cgroup_subsys *ss = css->ss; 4592 int ret = 0; 4593 4594 lockdep_assert_held(&cgroup_mutex); 4595 4596 if (ss->css_online) 4597 ret = ss->css_online(css); 4598 if (!ret) { 4599 css->flags |= CSS_ONLINE; 4600 rcu_assign_pointer(css->cgroup->subsys[ss->id], css); 4601 4602 atomic_inc(&css->online_cnt); 4603 if (css->parent) 4604 atomic_inc(&css->parent->online_cnt); 4605 } 4606 return ret; 4607 } 4608 4609 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */ 4610 static void offline_css(struct cgroup_subsys_state *css) 4611 { 4612 struct cgroup_subsys *ss = css->ss; 4613 4614 lockdep_assert_held(&cgroup_mutex); 4615 4616 if (!(css->flags & CSS_ONLINE)) 4617 return; 4618 4619 if (ss->css_offline) 4620 ss->css_offline(css); 4621 4622 css->flags &= ~CSS_ONLINE; 4623 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL); 4624 4625 wake_up_all(&css->cgroup->offline_waitq); 4626 } 4627 4628 /** 4629 * css_create - create a cgroup_subsys_state 4630 * @cgrp: the cgroup new css will be associated with 4631 * @ss: the subsys of new css 4632 * 4633 * Create a new css associated with @cgrp - @ss pair. On success, the new 4634 * css is online and installed in @cgrp. This function doesn't create the 4635 * interface files. Returns 0 on success, -errno on failure. 4636 */ 4637 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp, 4638 struct cgroup_subsys *ss) 4639 { 4640 struct cgroup *parent = cgroup_parent(cgrp); 4641 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss); 4642 struct cgroup_subsys_state *css; 4643 int err; 4644 4645 lockdep_assert_held(&cgroup_mutex); 4646 4647 css = ss->css_alloc(parent_css); 4648 if (!css) 4649 css = ERR_PTR(-ENOMEM); 4650 if (IS_ERR(css)) 4651 return css; 4652 4653 init_and_link_css(css, ss, cgrp); 4654 4655 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL); 4656 if (err) 4657 goto err_free_css; 4658 4659 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL); 4660 if (err < 0) 4661 goto err_free_css; 4662 css->id = err; 4663 4664 /* @css is ready to be brought online now, make it visible */ 4665 list_add_tail_rcu(&css->sibling, &parent_css->children); 4666 cgroup_idr_replace(&ss->css_idr, css, css->id); 4667 4668 err = online_css(css); 4669 if (err) 4670 goto err_list_del; 4671 4672 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy && 4673 cgroup_parent(parent)) { 4674 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n", 4675 current->comm, current->pid, ss->name); 4676 if (!strcmp(ss->name, "memory")) 4677 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n"); 4678 ss->warned_broken_hierarchy = true; 4679 } 4680 4681 return css; 4682 4683 err_list_del: 4684 list_del_rcu(&css->sibling); 4685 err_free_css: 4686 call_rcu(&css->rcu_head, css_free_rcu_fn); 4687 return ERR_PTR(err); 4688 } 4689 4690 /* 4691 * The returned cgroup is fully initialized including its control mask, but 4692 * it isn't associated with its kernfs_node and doesn't have the control 4693 * mask applied. 4694 */ 4695 static struct cgroup *cgroup_create(struct cgroup *parent) 4696 { 4697 struct cgroup_root *root = parent->root; 4698 struct cgroup *cgrp, *tcgrp; 4699 int level = parent->level + 1; 4700 int ret; 4701 4702 /* allocate the cgroup and its ID, 0 is reserved for the root */ 4703 cgrp = kzalloc(sizeof(*cgrp) + 4704 sizeof(cgrp->ancestor_ids[0]) * (level + 1), GFP_KERNEL); 4705 if (!cgrp) 4706 return ERR_PTR(-ENOMEM); 4707 4708 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL); 4709 if (ret) 4710 goto out_free_cgrp; 4711 4712 /* 4713 * Temporarily set the pointer to NULL, so idr_find() won't return 4714 * a half-baked cgroup. 4715 */ 4716 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL); 4717 if (cgrp->id < 0) { 4718 ret = -ENOMEM; 4719 goto out_cancel_ref; 4720 } 4721 4722 init_cgroup_housekeeping(cgrp); 4723 4724 cgrp->self.parent = &parent->self; 4725 cgrp->root = root; 4726 cgrp->level = level; 4727 ret = cgroup_bpf_inherit(cgrp); 4728 if (ret) 4729 goto out_idr_free; 4730 4731 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) { 4732 cgrp->ancestor_ids[tcgrp->level] = tcgrp->id; 4733 4734 if (tcgrp != cgrp) 4735 tcgrp->nr_descendants++; 4736 } 4737 4738 if (notify_on_release(parent)) 4739 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags); 4740 4741 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags)) 4742 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags); 4743 4744 cgrp->self.serial_nr = css_serial_nr_next++; 4745 4746 /* allocation complete, commit to creation */ 4747 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children); 4748 atomic_inc(&root->nr_cgrps); 4749 cgroup_get_live(parent); 4750 4751 /* 4752 * @cgrp is now fully operational. If something fails after this 4753 * point, it'll be released via the normal destruction path. 4754 */ 4755 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id); 4756 4757 /* 4758 * On the default hierarchy, a child doesn't automatically inherit 4759 * subtree_control from the parent. Each is configured manually. 4760 */ 4761 if (!cgroup_on_dfl(cgrp)) 4762 cgrp->subtree_control = cgroup_control(cgrp); 4763 4764 cgroup_propagate_control(cgrp); 4765 4766 return cgrp; 4767 4768 out_idr_free: 4769 cgroup_idr_remove(&root->cgroup_idr, cgrp->id); 4770 out_cancel_ref: 4771 percpu_ref_exit(&cgrp->self.refcnt); 4772 out_free_cgrp: 4773 kfree(cgrp); 4774 return ERR_PTR(ret); 4775 } 4776 4777 static bool cgroup_check_hierarchy_limits(struct cgroup *parent) 4778 { 4779 struct cgroup *cgroup; 4780 int ret = false; 4781 int level = 1; 4782 4783 lockdep_assert_held(&cgroup_mutex); 4784 4785 for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) { 4786 if (cgroup->nr_descendants >= cgroup->max_descendants) 4787 goto fail; 4788 4789 if (level > cgroup->max_depth) 4790 goto fail; 4791 4792 level++; 4793 } 4794 4795 ret = true; 4796 fail: 4797 return ret; 4798 } 4799 4800 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode) 4801 { 4802 struct cgroup *parent, *cgrp; 4803 struct kernfs_node *kn; 4804 int ret; 4805 4806 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */ 4807 if (strchr(name, '\n')) 4808 return -EINVAL; 4809 4810 parent = cgroup_kn_lock_live(parent_kn, false); 4811 if (!parent) 4812 return -ENODEV; 4813 4814 if (!cgroup_check_hierarchy_limits(parent)) { 4815 ret = -EAGAIN; 4816 goto out_unlock; 4817 } 4818 4819 cgrp = cgroup_create(parent); 4820 if (IS_ERR(cgrp)) { 4821 ret = PTR_ERR(cgrp); 4822 goto out_unlock; 4823 } 4824 4825 /* create the directory */ 4826 kn = kernfs_create_dir(parent->kn, name, mode, cgrp); 4827 if (IS_ERR(kn)) { 4828 ret = PTR_ERR(kn); 4829 goto out_destroy; 4830 } 4831 cgrp->kn = kn; 4832 4833 /* 4834 * This extra ref will be put in cgroup_free_fn() and guarantees 4835 * that @cgrp->kn is always accessible. 4836 */ 4837 kernfs_get(kn); 4838 4839 ret = cgroup_kn_set_ugid(kn); 4840 if (ret) 4841 goto out_destroy; 4842 4843 ret = css_populate_dir(&cgrp->self); 4844 if (ret) 4845 goto out_destroy; 4846 4847 ret = cgroup_apply_control_enable(cgrp); 4848 if (ret) 4849 goto out_destroy; 4850 4851 trace_cgroup_mkdir(cgrp); 4852 4853 /* let's create and online css's */ 4854 kernfs_activate(kn); 4855 4856 ret = 0; 4857 goto out_unlock; 4858 4859 out_destroy: 4860 cgroup_destroy_locked(cgrp); 4861 out_unlock: 4862 cgroup_kn_unlock(parent_kn); 4863 return ret; 4864 } 4865 4866 /* 4867 * This is called when the refcnt of a css is confirmed to be killed. 4868 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to 4869 * initate destruction and put the css ref from kill_css(). 4870 */ 4871 static void css_killed_work_fn(struct work_struct *work) 4872 { 4873 struct cgroup_subsys_state *css = 4874 container_of(work, struct cgroup_subsys_state, destroy_work); 4875 4876 mutex_lock(&cgroup_mutex); 4877 4878 do { 4879 offline_css(css); 4880 css_put(css); 4881 /* @css can't go away while we're holding cgroup_mutex */ 4882 css = css->parent; 4883 } while (css && atomic_dec_and_test(&css->online_cnt)); 4884 4885 mutex_unlock(&cgroup_mutex); 4886 } 4887 4888 /* css kill confirmation processing requires process context, bounce */ 4889 static void css_killed_ref_fn(struct percpu_ref *ref) 4890 { 4891 struct cgroup_subsys_state *css = 4892 container_of(ref, struct cgroup_subsys_state, refcnt); 4893 4894 if (atomic_dec_and_test(&css->online_cnt)) { 4895 INIT_WORK(&css->destroy_work, css_killed_work_fn); 4896 queue_work(cgroup_destroy_wq, &css->destroy_work); 4897 } 4898 } 4899 4900 /** 4901 * kill_css - destroy a css 4902 * @css: css to destroy 4903 * 4904 * This function initiates destruction of @css by removing cgroup interface 4905 * files and putting its base reference. ->css_offline() will be invoked 4906 * asynchronously once css_tryget_online() is guaranteed to fail and when 4907 * the reference count reaches zero, @css will be released. 4908 */ 4909 static void kill_css(struct cgroup_subsys_state *css) 4910 { 4911 lockdep_assert_held(&cgroup_mutex); 4912 4913 if (css->flags & CSS_DYING) 4914 return; 4915 4916 css->flags |= CSS_DYING; 4917 4918 /* 4919 * This must happen before css is disassociated with its cgroup. 4920 * See seq_css() for details. 4921 */ 4922 css_clear_dir(css); 4923 4924 /* 4925 * Killing would put the base ref, but we need to keep it alive 4926 * until after ->css_offline(). 4927 */ 4928 css_get(css); 4929 4930 /* 4931 * cgroup core guarantees that, by the time ->css_offline() is 4932 * invoked, no new css reference will be given out via 4933 * css_tryget_online(). We can't simply call percpu_ref_kill() and 4934 * proceed to offlining css's because percpu_ref_kill() doesn't 4935 * guarantee that the ref is seen as killed on all CPUs on return. 4936 * 4937 * Use percpu_ref_kill_and_confirm() to get notifications as each 4938 * css is confirmed to be seen as killed on all CPUs. 4939 */ 4940 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn); 4941 } 4942 4943 /** 4944 * cgroup_destroy_locked - the first stage of cgroup destruction 4945 * @cgrp: cgroup to be destroyed 4946 * 4947 * css's make use of percpu refcnts whose killing latency shouldn't be 4948 * exposed to userland and are RCU protected. Also, cgroup core needs to 4949 * guarantee that css_tryget_online() won't succeed by the time 4950 * ->css_offline() is invoked. To satisfy all the requirements, 4951 * destruction is implemented in the following two steps. 4952 * 4953 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all 4954 * userland visible parts and start killing the percpu refcnts of 4955 * css's. Set up so that the next stage will be kicked off once all 4956 * the percpu refcnts are confirmed to be killed. 4957 * 4958 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the 4959 * rest of destruction. Once all cgroup references are gone, the 4960 * cgroup is RCU-freed. 4961 * 4962 * This function implements s1. After this step, @cgrp is gone as far as 4963 * the userland is concerned and a new cgroup with the same name may be 4964 * created. As cgroup doesn't care about the names internally, this 4965 * doesn't cause any problem. 4966 */ 4967 static int cgroup_destroy_locked(struct cgroup *cgrp) 4968 __releases(&cgroup_mutex) __acquires(&cgroup_mutex) 4969 { 4970 struct cgroup *tcgrp, *parent = cgroup_parent(cgrp); 4971 struct cgroup_subsys_state *css; 4972 struct cgrp_cset_link *link; 4973 int ssid; 4974 4975 lockdep_assert_held(&cgroup_mutex); 4976 4977 /* 4978 * Only migration can raise populated from zero and we're already 4979 * holding cgroup_mutex. 4980 */ 4981 if (cgroup_is_populated(cgrp)) 4982 return -EBUSY; 4983 4984 /* 4985 * Make sure there's no live children. We can't test emptiness of 4986 * ->self.children as dead children linger on it while being 4987 * drained; otherwise, "rmdir parent/child parent" may fail. 4988 */ 4989 if (css_has_online_children(&cgrp->self)) 4990 return -EBUSY; 4991 4992 /* 4993 * Mark @cgrp and the associated csets dead. The former prevents 4994 * further task migration and child creation by disabling 4995 * cgroup_lock_live_group(). The latter makes the csets ignored by 4996 * the migration path. 4997 */ 4998 cgrp->self.flags &= ~CSS_ONLINE; 4999 5000 spin_lock_irq(&css_set_lock); 5001 list_for_each_entry(link, &cgrp->cset_links, cset_link) 5002 link->cset->dead = true; 5003 spin_unlock_irq(&css_set_lock); 5004 5005 /* initiate massacre of all css's */ 5006 for_each_css(css, ssid, cgrp) 5007 kill_css(css); 5008 5009 /* 5010 * Remove @cgrp directory along with the base files. @cgrp has an 5011 * extra ref on its kn. 5012 */ 5013 kernfs_remove(cgrp->kn); 5014 5015 if (parent && cgroup_is_threaded(cgrp)) 5016 parent->nr_threaded_children--; 5017 5018 for (tcgrp = cgroup_parent(cgrp); tcgrp; tcgrp = cgroup_parent(tcgrp)) { 5019 tcgrp->nr_descendants--; 5020 tcgrp->nr_dying_descendants++; 5021 } 5022 5023 cgroup1_check_for_release(parent); 5024 5025 /* put the base reference */ 5026 percpu_ref_kill(&cgrp->self.refcnt); 5027 5028 return 0; 5029 }; 5030 5031 int cgroup_rmdir(struct kernfs_node *kn) 5032 { 5033 struct cgroup *cgrp; 5034 int ret = 0; 5035 5036 cgrp = cgroup_kn_lock_live(kn, false); 5037 if (!cgrp) 5038 return 0; 5039 5040 ret = cgroup_destroy_locked(cgrp); 5041 5042 if (!ret) 5043 trace_cgroup_rmdir(cgrp); 5044 5045 cgroup_kn_unlock(kn); 5046 return ret; 5047 } 5048 5049 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = { 5050 .show_options = cgroup_show_options, 5051 .remount_fs = cgroup_remount, 5052 .mkdir = cgroup_mkdir, 5053 .rmdir = cgroup_rmdir, 5054 .show_path = cgroup_show_path, 5055 }; 5056 5057 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early) 5058 { 5059 struct cgroup_subsys_state *css; 5060 5061 pr_debug("Initializing cgroup subsys %s\n", ss->name); 5062 5063 mutex_lock(&cgroup_mutex); 5064 5065 idr_init(&ss->css_idr); 5066 INIT_LIST_HEAD(&ss->cfts); 5067 5068 /* Create the root cgroup state for this subsystem */ 5069 ss->root = &cgrp_dfl_root; 5070 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss)); 5071 /* We don't handle early failures gracefully */ 5072 BUG_ON(IS_ERR(css)); 5073 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp); 5074 5075 /* 5076 * Root csses are never destroyed and we can't initialize 5077 * percpu_ref during early init. Disable refcnting. 5078 */ 5079 css->flags |= CSS_NO_REF; 5080 5081 if (early) { 5082 /* allocation can't be done safely during early init */ 5083 css->id = 1; 5084 } else { 5085 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL); 5086 BUG_ON(css->id < 0); 5087 } 5088 5089 /* Update the init_css_set to contain a subsys 5090 * pointer to this state - since the subsystem is 5091 * newly registered, all tasks and hence the 5092 * init_css_set is in the subsystem's root cgroup. */ 5093 init_css_set.subsys[ss->id] = css; 5094 5095 have_fork_callback |= (bool)ss->fork << ss->id; 5096 have_exit_callback |= (bool)ss->exit << ss->id; 5097 have_free_callback |= (bool)ss->free << ss->id; 5098 have_canfork_callback |= (bool)ss->can_fork << ss->id; 5099 5100 /* At system boot, before all subsystems have been 5101 * registered, no tasks have been forked, so we don't 5102 * need to invoke fork callbacks here. */ 5103 BUG_ON(!list_empty(&init_task.tasks)); 5104 5105 BUG_ON(online_css(css)); 5106 5107 mutex_unlock(&cgroup_mutex); 5108 } 5109 5110 /** 5111 * cgroup_init_early - cgroup initialization at system boot 5112 * 5113 * Initialize cgroups at system boot, and initialize any 5114 * subsystems that request early init. 5115 */ 5116 int __init cgroup_init_early(void) 5117 { 5118 static struct cgroup_sb_opts __initdata opts; 5119 struct cgroup_subsys *ss; 5120 int i; 5121 5122 init_cgroup_root(&cgrp_dfl_root, &opts); 5123 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF; 5124 5125 RCU_INIT_POINTER(init_task.cgroups, &init_css_set); 5126 5127 for_each_subsys(ss, i) { 5128 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id, 5129 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n", 5130 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free, 5131 ss->id, ss->name); 5132 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN, 5133 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]); 5134 5135 ss->id = i; 5136 ss->name = cgroup_subsys_name[i]; 5137 if (!ss->legacy_name) 5138 ss->legacy_name = cgroup_subsys_name[i]; 5139 5140 if (ss->early_init) 5141 cgroup_init_subsys(ss, true); 5142 } 5143 return 0; 5144 } 5145 5146 static u16 cgroup_disable_mask __initdata; 5147 5148 /** 5149 * cgroup_init - cgroup initialization 5150 * 5151 * Register cgroup filesystem and /proc file, and initialize 5152 * any subsystems that didn't request early init. 5153 */ 5154 int __init cgroup_init(void) 5155 { 5156 struct cgroup_subsys *ss; 5157 int ssid; 5158 5159 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16); 5160 BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem)); 5161 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files)); 5162 BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files)); 5163 5164 /* 5165 * The latency of the synchronize_sched() is too high for cgroups, 5166 * avoid it at the cost of forcing all readers into the slow path. 5167 */ 5168 rcu_sync_enter_start(&cgroup_threadgroup_rwsem.rss); 5169 5170 get_user_ns(init_cgroup_ns.user_ns); 5171 5172 mutex_lock(&cgroup_mutex); 5173 5174 /* 5175 * Add init_css_set to the hash table so that dfl_root can link to 5176 * it during init. 5177 */ 5178 hash_add(css_set_table, &init_css_set.hlist, 5179 css_set_hash(init_css_set.subsys)); 5180 5181 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0, 0)); 5182 5183 mutex_unlock(&cgroup_mutex); 5184 5185 for_each_subsys(ss, ssid) { 5186 if (ss->early_init) { 5187 struct cgroup_subsys_state *css = 5188 init_css_set.subsys[ss->id]; 5189 5190 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, 5191 GFP_KERNEL); 5192 BUG_ON(css->id < 0); 5193 } else { 5194 cgroup_init_subsys(ss, false); 5195 } 5196 5197 list_add_tail(&init_css_set.e_cset_node[ssid], 5198 &cgrp_dfl_root.cgrp.e_csets[ssid]); 5199 5200 /* 5201 * Setting dfl_root subsys_mask needs to consider the 5202 * disabled flag and cftype registration needs kmalloc, 5203 * both of which aren't available during early_init. 5204 */ 5205 if (cgroup_disable_mask & (1 << ssid)) { 5206 static_branch_disable(cgroup_subsys_enabled_key[ssid]); 5207 printk(KERN_INFO "Disabling %s control group subsystem\n", 5208 ss->name); 5209 continue; 5210 } 5211 5212 if (cgroup1_ssid_disabled(ssid)) 5213 printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n", 5214 ss->name); 5215 5216 cgrp_dfl_root.subsys_mask |= 1 << ss->id; 5217 5218 /* implicit controllers must be threaded too */ 5219 WARN_ON(ss->implicit_on_dfl && !ss->threaded); 5220 5221 if (ss->implicit_on_dfl) 5222 cgrp_dfl_implicit_ss_mask |= 1 << ss->id; 5223 else if (!ss->dfl_cftypes) 5224 cgrp_dfl_inhibit_ss_mask |= 1 << ss->id; 5225 5226 if (ss->threaded) 5227 cgrp_dfl_threaded_ss_mask |= 1 << ss->id; 5228 5229 if (ss->dfl_cftypes == ss->legacy_cftypes) { 5230 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes)); 5231 } else { 5232 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes)); 5233 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes)); 5234 } 5235 5236 if (ss->bind) 5237 ss->bind(init_css_set.subsys[ssid]); 5238 5239 mutex_lock(&cgroup_mutex); 5240 css_populate_dir(init_css_set.subsys[ssid]); 5241 mutex_unlock(&cgroup_mutex); 5242 } 5243 5244 /* init_css_set.subsys[] has been updated, re-hash */ 5245 hash_del(&init_css_set.hlist); 5246 hash_add(css_set_table, &init_css_set.hlist, 5247 css_set_hash(init_css_set.subsys)); 5248 5249 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup")); 5250 WARN_ON(register_filesystem(&cgroup_fs_type)); 5251 WARN_ON(register_filesystem(&cgroup2_fs_type)); 5252 WARN_ON(!proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations)); 5253 5254 return 0; 5255 } 5256 5257 static int __init cgroup_wq_init(void) 5258 { 5259 /* 5260 * There isn't much point in executing destruction path in 5261 * parallel. Good chunk is serialized with cgroup_mutex anyway. 5262 * Use 1 for @max_active. 5263 * 5264 * We would prefer to do this in cgroup_init() above, but that 5265 * is called before init_workqueues(): so leave this until after. 5266 */ 5267 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1); 5268 BUG_ON(!cgroup_destroy_wq); 5269 return 0; 5270 } 5271 core_initcall(cgroup_wq_init); 5272 5273 void cgroup_path_from_kernfs_id(const union kernfs_node_id *id, 5274 char *buf, size_t buflen) 5275 { 5276 struct kernfs_node *kn; 5277 5278 kn = kernfs_get_node_by_id(cgrp_dfl_root.kf_root, id); 5279 if (!kn) 5280 return; 5281 kernfs_path(kn, buf, buflen); 5282 kernfs_put(kn); 5283 } 5284 5285 /* 5286 * proc_cgroup_show() 5287 * - Print task's cgroup paths into seq_file, one line for each hierarchy 5288 * - Used for /proc/<pid>/cgroup. 5289 */ 5290 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns, 5291 struct pid *pid, struct task_struct *tsk) 5292 { 5293 char *buf; 5294 int retval; 5295 struct cgroup_root *root; 5296 5297 retval = -ENOMEM; 5298 buf = kmalloc(PATH_MAX, GFP_KERNEL); 5299 if (!buf) 5300 goto out; 5301 5302 mutex_lock(&cgroup_mutex); 5303 spin_lock_irq(&css_set_lock); 5304 5305 for_each_root(root) { 5306 struct cgroup_subsys *ss; 5307 struct cgroup *cgrp; 5308 int ssid, count = 0; 5309 5310 if (root == &cgrp_dfl_root && !cgrp_dfl_visible) 5311 continue; 5312 5313 seq_printf(m, "%d:", root->hierarchy_id); 5314 if (root != &cgrp_dfl_root) 5315 for_each_subsys(ss, ssid) 5316 if (root->subsys_mask & (1 << ssid)) 5317 seq_printf(m, "%s%s", count++ ? "," : "", 5318 ss->legacy_name); 5319 if (strlen(root->name)) 5320 seq_printf(m, "%sname=%s", count ? "," : "", 5321 root->name); 5322 seq_putc(m, ':'); 5323 5324 cgrp = task_cgroup_from_root(tsk, root); 5325 5326 /* 5327 * On traditional hierarchies, all zombie tasks show up as 5328 * belonging to the root cgroup. On the default hierarchy, 5329 * while a zombie doesn't show up in "cgroup.procs" and 5330 * thus can't be migrated, its /proc/PID/cgroup keeps 5331 * reporting the cgroup it belonged to before exiting. If 5332 * the cgroup is removed before the zombie is reaped, 5333 * " (deleted)" is appended to the cgroup path. 5334 */ 5335 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) { 5336 retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX, 5337 current->nsproxy->cgroup_ns); 5338 if (retval >= PATH_MAX) 5339 retval = -ENAMETOOLONG; 5340 if (retval < 0) 5341 goto out_unlock; 5342 5343 seq_puts(m, buf); 5344 } else { 5345 seq_puts(m, "/"); 5346 } 5347 5348 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp)) 5349 seq_puts(m, " (deleted)\n"); 5350 else 5351 seq_putc(m, '\n'); 5352 } 5353 5354 retval = 0; 5355 out_unlock: 5356 spin_unlock_irq(&css_set_lock); 5357 mutex_unlock(&cgroup_mutex); 5358 kfree(buf); 5359 out: 5360 return retval; 5361 } 5362 5363 /** 5364 * cgroup_fork - initialize cgroup related fields during copy_process() 5365 * @child: pointer to task_struct of forking parent process. 5366 * 5367 * A task is associated with the init_css_set until cgroup_post_fork() 5368 * attaches it to the parent's css_set. Empty cg_list indicates that 5369 * @child isn't holding reference to its css_set. 5370 */ 5371 void cgroup_fork(struct task_struct *child) 5372 { 5373 RCU_INIT_POINTER(child->cgroups, &init_css_set); 5374 INIT_LIST_HEAD(&child->cg_list); 5375 } 5376 5377 /** 5378 * cgroup_can_fork - called on a new task before the process is exposed 5379 * @child: the task in question. 5380 * 5381 * This calls the subsystem can_fork() callbacks. If the can_fork() callback 5382 * returns an error, the fork aborts with that error code. This allows for 5383 * a cgroup subsystem to conditionally allow or deny new forks. 5384 */ 5385 int cgroup_can_fork(struct task_struct *child) 5386 { 5387 struct cgroup_subsys *ss; 5388 int i, j, ret; 5389 5390 do_each_subsys_mask(ss, i, have_canfork_callback) { 5391 ret = ss->can_fork(child); 5392 if (ret) 5393 goto out_revert; 5394 } while_each_subsys_mask(); 5395 5396 return 0; 5397 5398 out_revert: 5399 for_each_subsys(ss, j) { 5400 if (j >= i) 5401 break; 5402 if (ss->cancel_fork) 5403 ss->cancel_fork(child); 5404 } 5405 5406 return ret; 5407 } 5408 5409 /** 5410 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork() 5411 * @child: the task in question 5412 * 5413 * This calls the cancel_fork() callbacks if a fork failed *after* 5414 * cgroup_can_fork() succeded. 5415 */ 5416 void cgroup_cancel_fork(struct task_struct *child) 5417 { 5418 struct cgroup_subsys *ss; 5419 int i; 5420 5421 for_each_subsys(ss, i) 5422 if (ss->cancel_fork) 5423 ss->cancel_fork(child); 5424 } 5425 5426 /** 5427 * cgroup_post_fork - called on a new task after adding it to the task list 5428 * @child: the task in question 5429 * 5430 * Adds the task to the list running through its css_set if necessary and 5431 * call the subsystem fork() callbacks. Has to be after the task is 5432 * visible on the task list in case we race with the first call to 5433 * cgroup_task_iter_start() - to guarantee that the new task ends up on its 5434 * list. 5435 */ 5436 void cgroup_post_fork(struct task_struct *child) 5437 { 5438 struct cgroup_subsys *ss; 5439 int i; 5440 5441 /* 5442 * This may race against cgroup_enable_task_cg_lists(). As that 5443 * function sets use_task_css_set_links before grabbing 5444 * tasklist_lock and we just went through tasklist_lock to add 5445 * @child, it's guaranteed that either we see the set 5446 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees 5447 * @child during its iteration. 5448 * 5449 * If we won the race, @child is associated with %current's 5450 * css_set. Grabbing css_set_lock guarantees both that the 5451 * association is stable, and, on completion of the parent's 5452 * migration, @child is visible in the source of migration or 5453 * already in the destination cgroup. This guarantee is necessary 5454 * when implementing operations which need to migrate all tasks of 5455 * a cgroup to another. 5456 * 5457 * Note that if we lose to cgroup_enable_task_cg_lists(), @child 5458 * will remain in init_css_set. This is safe because all tasks are 5459 * in the init_css_set before cg_links is enabled and there's no 5460 * operation which transfers all tasks out of init_css_set. 5461 */ 5462 if (use_task_css_set_links) { 5463 struct css_set *cset; 5464 5465 spin_lock_irq(&css_set_lock); 5466 cset = task_css_set(current); 5467 if (list_empty(&child->cg_list)) { 5468 get_css_set(cset); 5469 cset->nr_tasks++; 5470 css_set_move_task(child, NULL, cset, false); 5471 } 5472 spin_unlock_irq(&css_set_lock); 5473 } 5474 5475 /* 5476 * Call ss->fork(). This must happen after @child is linked on 5477 * css_set; otherwise, @child might change state between ->fork() 5478 * and addition to css_set. 5479 */ 5480 do_each_subsys_mask(ss, i, have_fork_callback) { 5481 ss->fork(child); 5482 } while_each_subsys_mask(); 5483 } 5484 5485 /** 5486 * cgroup_exit - detach cgroup from exiting task 5487 * @tsk: pointer to task_struct of exiting process 5488 * 5489 * Description: Detach cgroup from @tsk and release it. 5490 * 5491 * Note that cgroups marked notify_on_release force every task in 5492 * them to take the global cgroup_mutex mutex when exiting. 5493 * This could impact scaling on very large systems. Be reluctant to 5494 * use notify_on_release cgroups where very high task exit scaling 5495 * is required on large systems. 5496 * 5497 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We 5498 * call cgroup_exit() while the task is still competent to handle 5499 * notify_on_release(), then leave the task attached to the root cgroup in 5500 * each hierarchy for the remainder of its exit. No need to bother with 5501 * init_css_set refcnting. init_css_set never goes away and we can't race 5502 * with migration path - PF_EXITING is visible to migration path. 5503 */ 5504 void cgroup_exit(struct task_struct *tsk) 5505 { 5506 struct cgroup_subsys *ss; 5507 struct css_set *cset; 5508 int i; 5509 5510 /* 5511 * Unlink from @tsk from its css_set. As migration path can't race 5512 * with us, we can check css_set and cg_list without synchronization. 5513 */ 5514 cset = task_css_set(tsk); 5515 5516 if (!list_empty(&tsk->cg_list)) { 5517 spin_lock_irq(&css_set_lock); 5518 css_set_move_task(tsk, cset, NULL, false); 5519 cset->nr_tasks--; 5520 spin_unlock_irq(&css_set_lock); 5521 } else { 5522 get_css_set(cset); 5523 } 5524 5525 /* see cgroup_post_fork() for details */ 5526 do_each_subsys_mask(ss, i, have_exit_callback) { 5527 ss->exit(tsk); 5528 } while_each_subsys_mask(); 5529 } 5530 5531 void cgroup_free(struct task_struct *task) 5532 { 5533 struct css_set *cset = task_css_set(task); 5534 struct cgroup_subsys *ss; 5535 int ssid; 5536 5537 do_each_subsys_mask(ss, ssid, have_free_callback) { 5538 ss->free(task); 5539 } while_each_subsys_mask(); 5540 5541 put_css_set(cset); 5542 } 5543 5544 static int __init cgroup_disable(char *str) 5545 { 5546 struct cgroup_subsys *ss; 5547 char *token; 5548 int i; 5549 5550 while ((token = strsep(&str, ",")) != NULL) { 5551 if (!*token) 5552 continue; 5553 5554 for_each_subsys(ss, i) { 5555 if (strcmp(token, ss->name) && 5556 strcmp(token, ss->legacy_name)) 5557 continue; 5558 cgroup_disable_mask |= 1 << i; 5559 } 5560 } 5561 return 1; 5562 } 5563 __setup("cgroup_disable=", cgroup_disable); 5564 5565 /** 5566 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry 5567 * @dentry: directory dentry of interest 5568 * @ss: subsystem of interest 5569 * 5570 * If @dentry is a directory for a cgroup which has @ss enabled on it, try 5571 * to get the corresponding css and return it. If such css doesn't exist 5572 * or can't be pinned, an ERR_PTR value is returned. 5573 */ 5574 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry, 5575 struct cgroup_subsys *ss) 5576 { 5577 struct kernfs_node *kn = kernfs_node_from_dentry(dentry); 5578 struct file_system_type *s_type = dentry->d_sb->s_type; 5579 struct cgroup_subsys_state *css = NULL; 5580 struct cgroup *cgrp; 5581 5582 /* is @dentry a cgroup dir? */ 5583 if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) || 5584 !kn || kernfs_type(kn) != KERNFS_DIR) 5585 return ERR_PTR(-EBADF); 5586 5587 rcu_read_lock(); 5588 5589 /* 5590 * This path doesn't originate from kernfs and @kn could already 5591 * have been or be removed at any point. @kn->priv is RCU 5592 * protected for this access. See css_release_work_fn() for details. 5593 */ 5594 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); 5595 if (cgrp) 5596 css = cgroup_css(cgrp, ss); 5597 5598 if (!css || !css_tryget_online(css)) 5599 css = ERR_PTR(-ENOENT); 5600 5601 rcu_read_unlock(); 5602 return css; 5603 } 5604 5605 /** 5606 * css_from_id - lookup css by id 5607 * @id: the cgroup id 5608 * @ss: cgroup subsys to be looked into 5609 * 5610 * Returns the css if there's valid one with @id, otherwise returns NULL. 5611 * Should be called under rcu_read_lock(). 5612 */ 5613 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss) 5614 { 5615 WARN_ON_ONCE(!rcu_read_lock_held()); 5616 return idr_find(&ss->css_idr, id); 5617 } 5618 5619 /** 5620 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path 5621 * @path: path on the default hierarchy 5622 * 5623 * Find the cgroup at @path on the default hierarchy, increment its 5624 * reference count and return it. Returns pointer to the found cgroup on 5625 * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR) 5626 * if @path points to a non-directory. 5627 */ 5628 struct cgroup *cgroup_get_from_path(const char *path) 5629 { 5630 struct kernfs_node *kn; 5631 struct cgroup *cgrp; 5632 5633 mutex_lock(&cgroup_mutex); 5634 5635 kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path); 5636 if (kn) { 5637 if (kernfs_type(kn) == KERNFS_DIR) { 5638 cgrp = kn->priv; 5639 cgroup_get_live(cgrp); 5640 } else { 5641 cgrp = ERR_PTR(-ENOTDIR); 5642 } 5643 kernfs_put(kn); 5644 } else { 5645 cgrp = ERR_PTR(-ENOENT); 5646 } 5647 5648 mutex_unlock(&cgroup_mutex); 5649 return cgrp; 5650 } 5651 EXPORT_SYMBOL_GPL(cgroup_get_from_path); 5652 5653 /** 5654 * cgroup_get_from_fd - get a cgroup pointer from a fd 5655 * @fd: fd obtained by open(cgroup2_dir) 5656 * 5657 * Find the cgroup from a fd which should be obtained 5658 * by opening a cgroup directory. Returns a pointer to the 5659 * cgroup on success. ERR_PTR is returned if the cgroup 5660 * cannot be found. 5661 */ 5662 struct cgroup *cgroup_get_from_fd(int fd) 5663 { 5664 struct cgroup_subsys_state *css; 5665 struct cgroup *cgrp; 5666 struct file *f; 5667 5668 f = fget_raw(fd); 5669 if (!f) 5670 return ERR_PTR(-EBADF); 5671 5672 css = css_tryget_online_from_dir(f->f_path.dentry, NULL); 5673 fput(f); 5674 if (IS_ERR(css)) 5675 return ERR_CAST(css); 5676 5677 cgrp = css->cgroup; 5678 if (!cgroup_on_dfl(cgrp)) { 5679 cgroup_put(cgrp); 5680 return ERR_PTR(-EBADF); 5681 } 5682 5683 return cgrp; 5684 } 5685 EXPORT_SYMBOL_GPL(cgroup_get_from_fd); 5686 5687 /* 5688 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data 5689 * definition in cgroup-defs.h. 5690 */ 5691 #ifdef CONFIG_SOCK_CGROUP_DATA 5692 5693 #if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID) 5694 5695 DEFINE_SPINLOCK(cgroup_sk_update_lock); 5696 static bool cgroup_sk_alloc_disabled __read_mostly; 5697 5698 void cgroup_sk_alloc_disable(void) 5699 { 5700 if (cgroup_sk_alloc_disabled) 5701 return; 5702 pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n"); 5703 cgroup_sk_alloc_disabled = true; 5704 } 5705 5706 #else 5707 5708 #define cgroup_sk_alloc_disabled false 5709 5710 #endif 5711 5712 void cgroup_sk_alloc(struct sock_cgroup_data *skcd) 5713 { 5714 if (cgroup_sk_alloc_disabled) 5715 return; 5716 5717 /* Socket clone path */ 5718 if (skcd->val) { 5719 /* 5720 * We might be cloning a socket which is left in an empty 5721 * cgroup and the cgroup might have already been rmdir'd. 5722 * Don't use cgroup_get_live(). 5723 */ 5724 cgroup_get(sock_cgroup_ptr(skcd)); 5725 return; 5726 } 5727 5728 rcu_read_lock(); 5729 5730 while (true) { 5731 struct css_set *cset; 5732 5733 cset = task_css_set(current); 5734 if (likely(cgroup_tryget(cset->dfl_cgrp))) { 5735 skcd->val = (unsigned long)cset->dfl_cgrp; 5736 break; 5737 } 5738 cpu_relax(); 5739 } 5740 5741 rcu_read_unlock(); 5742 } 5743 5744 void cgroup_sk_free(struct sock_cgroup_data *skcd) 5745 { 5746 cgroup_put(sock_cgroup_ptr(skcd)); 5747 } 5748 5749 #endif /* CONFIG_SOCK_CGROUP_DATA */ 5750 5751 #ifdef CONFIG_CGROUP_BPF 5752 int cgroup_bpf_attach(struct cgroup *cgrp, struct bpf_prog *prog, 5753 enum bpf_attach_type type, u32 flags) 5754 { 5755 int ret; 5756 5757 mutex_lock(&cgroup_mutex); 5758 ret = __cgroup_bpf_attach(cgrp, prog, type, flags); 5759 mutex_unlock(&cgroup_mutex); 5760 return ret; 5761 } 5762 int cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog, 5763 enum bpf_attach_type type, u32 flags) 5764 { 5765 int ret; 5766 5767 mutex_lock(&cgroup_mutex); 5768 ret = __cgroup_bpf_detach(cgrp, prog, type, flags); 5769 mutex_unlock(&cgroup_mutex); 5770 return ret; 5771 } 5772 int cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr, 5773 union bpf_attr __user *uattr) 5774 { 5775 int ret; 5776 5777 mutex_lock(&cgroup_mutex); 5778 ret = __cgroup_bpf_query(cgrp, attr, uattr); 5779 mutex_unlock(&cgroup_mutex); 5780 return ret; 5781 } 5782 #endif /* CONFIG_CGROUP_BPF */ 5783