xref: /openbmc/linux/kernel/cgroup/cgroup.c (revision 2d68bb26)
1 /*
2  *  Generic process-grouping system.
3  *
4  *  Based originally on the cpuset system, extracted by Paul Menage
5  *  Copyright (C) 2006 Google, Inc
6  *
7  *  Notifications support
8  *  Copyright (C) 2009 Nokia Corporation
9  *  Author: Kirill A. Shutemov
10  *
11  *  Copyright notices from the original cpuset code:
12  *  --------------------------------------------------
13  *  Copyright (C) 2003 BULL SA.
14  *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
15  *
16  *  Portions derived from Patrick Mochel's sysfs code.
17  *  sysfs is Copyright (c) 2001-3 Patrick Mochel
18  *
19  *  2003-10-10 Written by Simon Derr.
20  *  2003-10-22 Updates by Stephen Hemminger.
21  *  2004 May-July Rework by Paul Jackson.
22  *  ---------------------------------------------------
23  *
24  *  This file is subject to the terms and conditions of the GNU General Public
25  *  License.  See the file COPYING in the main directory of the Linux
26  *  distribution for more details.
27  */
28 
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 
31 #include "cgroup-internal.h"
32 
33 #include <linux/cred.h>
34 #include <linux/errno.h>
35 #include <linux/init_task.h>
36 #include <linux/kernel.h>
37 #include <linux/magic.h>
38 #include <linux/mutex.h>
39 #include <linux/mount.h>
40 #include <linux/pagemap.h>
41 #include <linux/proc_fs.h>
42 #include <linux/rcupdate.h>
43 #include <linux/sched.h>
44 #include <linux/sched/task.h>
45 #include <linux/slab.h>
46 #include <linux/spinlock.h>
47 #include <linux/percpu-rwsem.h>
48 #include <linux/string.h>
49 #include <linux/hashtable.h>
50 #include <linux/idr.h>
51 #include <linux/kthread.h>
52 #include <linux/atomic.h>
53 #include <linux/cpuset.h>
54 #include <linux/proc_ns.h>
55 #include <linux/nsproxy.h>
56 #include <linux/file.h>
57 #include <linux/fs_parser.h>
58 #include <linux/sched/cputime.h>
59 #include <linux/psi.h>
60 #include <net/sock.h>
61 
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/cgroup.h>
64 
65 #define CGROUP_FILE_NAME_MAX		(MAX_CGROUP_TYPE_NAMELEN +	\
66 					 MAX_CFTYPE_NAME + 2)
67 /* let's not notify more than 100 times per second */
68 #define CGROUP_FILE_NOTIFY_MIN_INTV	DIV_ROUND_UP(HZ, 100)
69 
70 /*
71  * cgroup_mutex is the master lock.  Any modification to cgroup or its
72  * hierarchy must be performed while holding it.
73  *
74  * css_set_lock protects task->cgroups pointer, the list of css_set
75  * objects, and the chain of tasks off each css_set.
76  *
77  * These locks are exported if CONFIG_PROVE_RCU so that accessors in
78  * cgroup.h can use them for lockdep annotations.
79  */
80 DEFINE_MUTEX(cgroup_mutex);
81 DEFINE_SPINLOCK(css_set_lock);
82 
83 #ifdef CONFIG_PROVE_RCU
84 EXPORT_SYMBOL_GPL(cgroup_mutex);
85 EXPORT_SYMBOL_GPL(css_set_lock);
86 #endif
87 
88 DEFINE_SPINLOCK(trace_cgroup_path_lock);
89 char trace_cgroup_path[TRACE_CGROUP_PATH_LEN];
90 bool cgroup_debug __read_mostly;
91 
92 /*
93  * Protects cgroup_idr and css_idr so that IDs can be released without
94  * grabbing cgroup_mutex.
95  */
96 static DEFINE_SPINLOCK(cgroup_idr_lock);
97 
98 /*
99  * Protects cgroup_file->kn for !self csses.  It synchronizes notifications
100  * against file removal/re-creation across css hiding.
101  */
102 static DEFINE_SPINLOCK(cgroup_file_kn_lock);
103 
104 DEFINE_PERCPU_RWSEM(cgroup_threadgroup_rwsem);
105 
106 #define cgroup_assert_mutex_or_rcu_locked()				\
107 	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
108 			   !lockdep_is_held(&cgroup_mutex),		\
109 			   "cgroup_mutex or RCU read lock required");
110 
111 /*
112  * cgroup destruction makes heavy use of work items and there can be a lot
113  * of concurrent destructions.  Use a separate workqueue so that cgroup
114  * destruction work items don't end up filling up max_active of system_wq
115  * which may lead to deadlock.
116  */
117 static struct workqueue_struct *cgroup_destroy_wq;
118 
119 /* generate an array of cgroup subsystem pointers */
120 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
121 struct cgroup_subsys *cgroup_subsys[] = {
122 #include <linux/cgroup_subsys.h>
123 };
124 #undef SUBSYS
125 
126 /* array of cgroup subsystem names */
127 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
128 static const char *cgroup_subsys_name[] = {
129 #include <linux/cgroup_subsys.h>
130 };
131 #undef SUBSYS
132 
133 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
134 #define SUBSYS(_x)								\
135 	DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key);			\
136 	DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key);			\
137 	EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key);			\
138 	EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
139 #include <linux/cgroup_subsys.h>
140 #undef SUBSYS
141 
142 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
143 static struct static_key_true *cgroup_subsys_enabled_key[] = {
144 #include <linux/cgroup_subsys.h>
145 };
146 #undef SUBSYS
147 
148 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
149 static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
150 #include <linux/cgroup_subsys.h>
151 };
152 #undef SUBSYS
153 
154 static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu);
155 
156 /*
157  * The default hierarchy, reserved for the subsystems that are otherwise
158  * unattached - it never has more than a single cgroup, and all tasks are
159  * part of that cgroup.
160  */
161 struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu };
162 EXPORT_SYMBOL_GPL(cgrp_dfl_root);
163 
164 /*
165  * The default hierarchy always exists but is hidden until mounted for the
166  * first time.  This is for backward compatibility.
167  */
168 static bool cgrp_dfl_visible;
169 
170 /* some controllers are not supported in the default hierarchy */
171 static u16 cgrp_dfl_inhibit_ss_mask;
172 
173 /* some controllers are implicitly enabled on the default hierarchy */
174 static u16 cgrp_dfl_implicit_ss_mask;
175 
176 /* some controllers can be threaded on the default hierarchy */
177 static u16 cgrp_dfl_threaded_ss_mask;
178 
179 /* The list of hierarchy roots */
180 LIST_HEAD(cgroup_roots);
181 static int cgroup_root_count;
182 
183 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
184 static DEFINE_IDR(cgroup_hierarchy_idr);
185 
186 /*
187  * Assign a monotonically increasing serial number to csses.  It guarantees
188  * cgroups with bigger numbers are newer than those with smaller numbers.
189  * Also, as csses are always appended to the parent's ->children list, it
190  * guarantees that sibling csses are always sorted in the ascending serial
191  * number order on the list.  Protected by cgroup_mutex.
192  */
193 static u64 css_serial_nr_next = 1;
194 
195 /*
196  * These bitmasks identify subsystems with specific features to avoid
197  * having to do iterative checks repeatedly.
198  */
199 static u16 have_fork_callback __read_mostly;
200 static u16 have_exit_callback __read_mostly;
201 static u16 have_release_callback __read_mostly;
202 static u16 have_canfork_callback __read_mostly;
203 
204 /* cgroup namespace for init task */
205 struct cgroup_namespace init_cgroup_ns = {
206 	.count		= REFCOUNT_INIT(2),
207 	.user_ns	= &init_user_ns,
208 	.ns.ops		= &cgroupns_operations,
209 	.ns.inum	= PROC_CGROUP_INIT_INO,
210 	.root_cset	= &init_css_set,
211 };
212 
213 static struct file_system_type cgroup2_fs_type;
214 static struct cftype cgroup_base_files[];
215 
216 static int cgroup_apply_control(struct cgroup *cgrp);
217 static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
218 static void css_task_iter_skip(struct css_task_iter *it,
219 			       struct task_struct *task);
220 static int cgroup_destroy_locked(struct cgroup *cgrp);
221 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
222 					      struct cgroup_subsys *ss);
223 static void css_release(struct percpu_ref *ref);
224 static void kill_css(struct cgroup_subsys_state *css);
225 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
226 			      struct cgroup *cgrp, struct cftype cfts[],
227 			      bool is_add);
228 
229 /**
230  * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
231  * @ssid: subsys ID of interest
232  *
233  * cgroup_subsys_enabled() can only be used with literal subsys names which
234  * is fine for individual subsystems but unsuitable for cgroup core.  This
235  * is slower static_key_enabled() based test indexed by @ssid.
236  */
237 bool cgroup_ssid_enabled(int ssid)
238 {
239 	if (CGROUP_SUBSYS_COUNT == 0)
240 		return false;
241 
242 	return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
243 }
244 
245 /**
246  * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
247  * @cgrp: the cgroup of interest
248  *
249  * The default hierarchy is the v2 interface of cgroup and this function
250  * can be used to test whether a cgroup is on the default hierarchy for
251  * cases where a subsystem should behave differnetly depending on the
252  * interface version.
253  *
254  * The set of behaviors which change on the default hierarchy are still
255  * being determined and the mount option is prefixed with __DEVEL__.
256  *
257  * List of changed behaviors:
258  *
259  * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
260  *   and "name" are disallowed.
261  *
262  * - When mounting an existing superblock, mount options should match.
263  *
264  * - Remount is disallowed.
265  *
266  * - rename(2) is disallowed.
267  *
268  * - "tasks" is removed.  Everything should be at process granularity.  Use
269  *   "cgroup.procs" instead.
270  *
271  * - "cgroup.procs" is not sorted.  pids will be unique unless they got
272  *   recycled inbetween reads.
273  *
274  * - "release_agent" and "notify_on_release" are removed.  Replacement
275  *   notification mechanism will be implemented.
276  *
277  * - "cgroup.clone_children" is removed.
278  *
279  * - "cgroup.subtree_populated" is available.  Its value is 0 if the cgroup
280  *   and its descendants contain no task; otherwise, 1.  The file also
281  *   generates kernfs notification which can be monitored through poll and
282  *   [di]notify when the value of the file changes.
283  *
284  * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
285  *   take masks of ancestors with non-empty cpus/mems, instead of being
286  *   moved to an ancestor.
287  *
288  * - cpuset: a task can be moved into an empty cpuset, and again it takes
289  *   masks of ancestors.
290  *
291  * - memcg: use_hierarchy is on by default and the cgroup file for the flag
292  *   is not created.
293  *
294  * - blkcg: blk-throttle becomes properly hierarchical.
295  *
296  * - debug: disallowed on the default hierarchy.
297  */
298 bool cgroup_on_dfl(const struct cgroup *cgrp)
299 {
300 	return cgrp->root == &cgrp_dfl_root;
301 }
302 
303 /* IDR wrappers which synchronize using cgroup_idr_lock */
304 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
305 			    gfp_t gfp_mask)
306 {
307 	int ret;
308 
309 	idr_preload(gfp_mask);
310 	spin_lock_bh(&cgroup_idr_lock);
311 	ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
312 	spin_unlock_bh(&cgroup_idr_lock);
313 	idr_preload_end();
314 	return ret;
315 }
316 
317 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
318 {
319 	void *ret;
320 
321 	spin_lock_bh(&cgroup_idr_lock);
322 	ret = idr_replace(idr, ptr, id);
323 	spin_unlock_bh(&cgroup_idr_lock);
324 	return ret;
325 }
326 
327 static void cgroup_idr_remove(struct idr *idr, int id)
328 {
329 	spin_lock_bh(&cgroup_idr_lock);
330 	idr_remove(idr, id);
331 	spin_unlock_bh(&cgroup_idr_lock);
332 }
333 
334 static bool cgroup_has_tasks(struct cgroup *cgrp)
335 {
336 	return cgrp->nr_populated_csets;
337 }
338 
339 bool cgroup_is_threaded(struct cgroup *cgrp)
340 {
341 	return cgrp->dom_cgrp != cgrp;
342 }
343 
344 /* can @cgrp host both domain and threaded children? */
345 static bool cgroup_is_mixable(struct cgroup *cgrp)
346 {
347 	/*
348 	 * Root isn't under domain level resource control exempting it from
349 	 * the no-internal-process constraint, so it can serve as a thread
350 	 * root and a parent of resource domains at the same time.
351 	 */
352 	return !cgroup_parent(cgrp);
353 }
354 
355 /* can @cgrp become a thread root? should always be true for a thread root */
356 static bool cgroup_can_be_thread_root(struct cgroup *cgrp)
357 {
358 	/* mixables don't care */
359 	if (cgroup_is_mixable(cgrp))
360 		return true;
361 
362 	/* domain roots can't be nested under threaded */
363 	if (cgroup_is_threaded(cgrp))
364 		return false;
365 
366 	/* can only have either domain or threaded children */
367 	if (cgrp->nr_populated_domain_children)
368 		return false;
369 
370 	/* and no domain controllers can be enabled */
371 	if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
372 		return false;
373 
374 	return true;
375 }
376 
377 /* is @cgrp root of a threaded subtree? */
378 bool cgroup_is_thread_root(struct cgroup *cgrp)
379 {
380 	/* thread root should be a domain */
381 	if (cgroup_is_threaded(cgrp))
382 		return false;
383 
384 	/* a domain w/ threaded children is a thread root */
385 	if (cgrp->nr_threaded_children)
386 		return true;
387 
388 	/*
389 	 * A domain which has tasks and explicit threaded controllers
390 	 * enabled is a thread root.
391 	 */
392 	if (cgroup_has_tasks(cgrp) &&
393 	    (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask))
394 		return true;
395 
396 	return false;
397 }
398 
399 /* a domain which isn't connected to the root w/o brekage can't be used */
400 static bool cgroup_is_valid_domain(struct cgroup *cgrp)
401 {
402 	/* the cgroup itself can be a thread root */
403 	if (cgroup_is_threaded(cgrp))
404 		return false;
405 
406 	/* but the ancestors can't be unless mixable */
407 	while ((cgrp = cgroup_parent(cgrp))) {
408 		if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp))
409 			return false;
410 		if (cgroup_is_threaded(cgrp))
411 			return false;
412 	}
413 
414 	return true;
415 }
416 
417 /* subsystems visibly enabled on a cgroup */
418 static u16 cgroup_control(struct cgroup *cgrp)
419 {
420 	struct cgroup *parent = cgroup_parent(cgrp);
421 	u16 root_ss_mask = cgrp->root->subsys_mask;
422 
423 	if (parent) {
424 		u16 ss_mask = parent->subtree_control;
425 
426 		/* threaded cgroups can only have threaded controllers */
427 		if (cgroup_is_threaded(cgrp))
428 			ss_mask &= cgrp_dfl_threaded_ss_mask;
429 		return ss_mask;
430 	}
431 
432 	if (cgroup_on_dfl(cgrp))
433 		root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
434 				  cgrp_dfl_implicit_ss_mask);
435 	return root_ss_mask;
436 }
437 
438 /* subsystems enabled on a cgroup */
439 static u16 cgroup_ss_mask(struct cgroup *cgrp)
440 {
441 	struct cgroup *parent = cgroup_parent(cgrp);
442 
443 	if (parent) {
444 		u16 ss_mask = parent->subtree_ss_mask;
445 
446 		/* threaded cgroups can only have threaded controllers */
447 		if (cgroup_is_threaded(cgrp))
448 			ss_mask &= cgrp_dfl_threaded_ss_mask;
449 		return ss_mask;
450 	}
451 
452 	return cgrp->root->subsys_mask;
453 }
454 
455 /**
456  * cgroup_css - obtain a cgroup's css for the specified subsystem
457  * @cgrp: the cgroup of interest
458  * @ss: the subsystem of interest (%NULL returns @cgrp->self)
459  *
460  * Return @cgrp's css (cgroup_subsys_state) associated with @ss.  This
461  * function must be called either under cgroup_mutex or rcu_read_lock() and
462  * the caller is responsible for pinning the returned css if it wants to
463  * keep accessing it outside the said locks.  This function may return
464  * %NULL if @cgrp doesn't have @subsys_id enabled.
465  */
466 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
467 					      struct cgroup_subsys *ss)
468 {
469 	if (ss)
470 		return rcu_dereference_check(cgrp->subsys[ss->id],
471 					lockdep_is_held(&cgroup_mutex));
472 	else
473 		return &cgrp->self;
474 }
475 
476 /**
477  * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem
478  * @cgrp: the cgroup of interest
479  * @ss: the subsystem of interest
480  *
481  * Find and get @cgrp's css assocaited with @ss.  If the css doesn't exist
482  * or is offline, %NULL is returned.
483  */
484 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp,
485 						     struct cgroup_subsys *ss)
486 {
487 	struct cgroup_subsys_state *css;
488 
489 	rcu_read_lock();
490 	css = cgroup_css(cgrp, ss);
491 	if (css && !css_tryget_online(css))
492 		css = NULL;
493 	rcu_read_unlock();
494 
495 	return css;
496 }
497 
498 /**
499  * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss
500  * @cgrp: the cgroup of interest
501  * @ss: the subsystem of interest (%NULL returns @cgrp->self)
502  *
503  * Similar to cgroup_css() but returns the effective css, which is defined
504  * as the matching css of the nearest ancestor including self which has @ss
505  * enabled.  If @ss is associated with the hierarchy @cgrp is on, this
506  * function is guaranteed to return non-NULL css.
507  */
508 static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp,
509 							struct cgroup_subsys *ss)
510 {
511 	lockdep_assert_held(&cgroup_mutex);
512 
513 	if (!ss)
514 		return &cgrp->self;
515 
516 	/*
517 	 * This function is used while updating css associations and thus
518 	 * can't test the csses directly.  Test ss_mask.
519 	 */
520 	while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
521 		cgrp = cgroup_parent(cgrp);
522 		if (!cgrp)
523 			return NULL;
524 	}
525 
526 	return cgroup_css(cgrp, ss);
527 }
528 
529 /**
530  * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
531  * @cgrp: the cgroup of interest
532  * @ss: the subsystem of interest
533  *
534  * Find and get the effective css of @cgrp for @ss.  The effective css is
535  * defined as the matching css of the nearest ancestor including self which
536  * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
537  * the root css is returned, so this function always returns a valid css.
538  *
539  * The returned css is not guaranteed to be online, and therefore it is the
540  * callers responsiblity to tryget a reference for it.
541  */
542 struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
543 					 struct cgroup_subsys *ss)
544 {
545 	struct cgroup_subsys_state *css;
546 
547 	do {
548 		css = cgroup_css(cgrp, ss);
549 
550 		if (css)
551 			return css;
552 		cgrp = cgroup_parent(cgrp);
553 	} while (cgrp);
554 
555 	return init_css_set.subsys[ss->id];
556 }
557 
558 /**
559  * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
560  * @cgrp: the cgroup of interest
561  * @ss: the subsystem of interest
562  *
563  * Find and get the effective css of @cgrp for @ss.  The effective css is
564  * defined as the matching css of the nearest ancestor including self which
565  * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
566  * the root css is returned, so this function always returns a valid css.
567  * The returned css must be put using css_put().
568  */
569 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
570 					     struct cgroup_subsys *ss)
571 {
572 	struct cgroup_subsys_state *css;
573 
574 	rcu_read_lock();
575 
576 	do {
577 		css = cgroup_css(cgrp, ss);
578 
579 		if (css && css_tryget_online(css))
580 			goto out_unlock;
581 		cgrp = cgroup_parent(cgrp);
582 	} while (cgrp);
583 
584 	css = init_css_set.subsys[ss->id];
585 	css_get(css);
586 out_unlock:
587 	rcu_read_unlock();
588 	return css;
589 }
590 
591 static void cgroup_get_live(struct cgroup *cgrp)
592 {
593 	WARN_ON_ONCE(cgroup_is_dead(cgrp));
594 	css_get(&cgrp->self);
595 }
596 
597 /**
598  * __cgroup_task_count - count the number of tasks in a cgroup. The caller
599  * is responsible for taking the css_set_lock.
600  * @cgrp: the cgroup in question
601  */
602 int __cgroup_task_count(const struct cgroup *cgrp)
603 {
604 	int count = 0;
605 	struct cgrp_cset_link *link;
606 
607 	lockdep_assert_held(&css_set_lock);
608 
609 	list_for_each_entry(link, &cgrp->cset_links, cset_link)
610 		count += link->cset->nr_tasks;
611 
612 	return count;
613 }
614 
615 /**
616  * cgroup_task_count - count the number of tasks in a cgroup.
617  * @cgrp: the cgroup in question
618  */
619 int cgroup_task_count(const struct cgroup *cgrp)
620 {
621 	int count;
622 
623 	spin_lock_irq(&css_set_lock);
624 	count = __cgroup_task_count(cgrp);
625 	spin_unlock_irq(&css_set_lock);
626 
627 	return count;
628 }
629 
630 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
631 {
632 	struct cgroup *cgrp = of->kn->parent->priv;
633 	struct cftype *cft = of_cft(of);
634 
635 	/*
636 	 * This is open and unprotected implementation of cgroup_css().
637 	 * seq_css() is only called from a kernfs file operation which has
638 	 * an active reference on the file.  Because all the subsystem
639 	 * files are drained before a css is disassociated with a cgroup,
640 	 * the matching css from the cgroup's subsys table is guaranteed to
641 	 * be and stay valid until the enclosing operation is complete.
642 	 */
643 	if (cft->ss)
644 		return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
645 	else
646 		return &cgrp->self;
647 }
648 EXPORT_SYMBOL_GPL(of_css);
649 
650 /**
651  * for_each_css - iterate all css's of a cgroup
652  * @css: the iteration cursor
653  * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
654  * @cgrp: the target cgroup to iterate css's of
655  *
656  * Should be called under cgroup_[tree_]mutex.
657  */
658 #define for_each_css(css, ssid, cgrp)					\
659 	for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)	\
660 		if (!((css) = rcu_dereference_check(			\
661 				(cgrp)->subsys[(ssid)],			\
662 				lockdep_is_held(&cgroup_mutex)))) { }	\
663 		else
664 
665 /**
666  * for_each_e_css - iterate all effective css's of a cgroup
667  * @css: the iteration cursor
668  * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
669  * @cgrp: the target cgroup to iterate css's of
670  *
671  * Should be called under cgroup_[tree_]mutex.
672  */
673 #define for_each_e_css(css, ssid, cgrp)					    \
674 	for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)	    \
675 		if (!((css) = cgroup_e_css_by_mask(cgrp,		    \
676 						   cgroup_subsys[(ssid)]))) \
677 			;						    \
678 		else
679 
680 /**
681  * do_each_subsys_mask - filter for_each_subsys with a bitmask
682  * @ss: the iteration cursor
683  * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
684  * @ss_mask: the bitmask
685  *
686  * The block will only run for cases where the ssid-th bit (1 << ssid) of
687  * @ss_mask is set.
688  */
689 #define do_each_subsys_mask(ss, ssid, ss_mask) do {			\
690 	unsigned long __ss_mask = (ss_mask);				\
691 	if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */	\
692 		(ssid) = 0;						\
693 		break;							\
694 	}								\
695 	for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) {	\
696 		(ss) = cgroup_subsys[ssid];				\
697 		{
698 
699 #define while_each_subsys_mask()					\
700 		}							\
701 	}								\
702 } while (false)
703 
704 /* iterate over child cgrps, lock should be held throughout iteration */
705 #define cgroup_for_each_live_child(child, cgrp)				\
706 	list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
707 		if (({ lockdep_assert_held(&cgroup_mutex);		\
708 		       cgroup_is_dead(child); }))			\
709 			;						\
710 		else
711 
712 /* walk live descendants in preorder */
713 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)		\
714 	css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL))	\
715 		if (({ lockdep_assert_held(&cgroup_mutex);		\
716 		       (dsct) = (d_css)->cgroup;			\
717 		       cgroup_is_dead(dsct); }))			\
718 			;						\
719 		else
720 
721 /* walk live descendants in postorder */
722 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp)		\
723 	css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL))	\
724 		if (({ lockdep_assert_held(&cgroup_mutex);		\
725 		       (dsct) = (d_css)->cgroup;			\
726 		       cgroup_is_dead(dsct); }))			\
727 			;						\
728 		else
729 
730 /*
731  * The default css_set - used by init and its children prior to any
732  * hierarchies being mounted. It contains a pointer to the root state
733  * for each subsystem. Also used to anchor the list of css_sets. Not
734  * reference-counted, to improve performance when child cgroups
735  * haven't been created.
736  */
737 struct css_set init_css_set = {
738 	.refcount		= REFCOUNT_INIT(1),
739 	.dom_cset		= &init_css_set,
740 	.tasks			= LIST_HEAD_INIT(init_css_set.tasks),
741 	.mg_tasks		= LIST_HEAD_INIT(init_css_set.mg_tasks),
742 	.dying_tasks		= LIST_HEAD_INIT(init_css_set.dying_tasks),
743 	.task_iters		= LIST_HEAD_INIT(init_css_set.task_iters),
744 	.threaded_csets		= LIST_HEAD_INIT(init_css_set.threaded_csets),
745 	.cgrp_links		= LIST_HEAD_INIT(init_css_set.cgrp_links),
746 	.mg_preload_node	= LIST_HEAD_INIT(init_css_set.mg_preload_node),
747 	.mg_node		= LIST_HEAD_INIT(init_css_set.mg_node),
748 
749 	/*
750 	 * The following field is re-initialized when this cset gets linked
751 	 * in cgroup_init().  However, let's initialize the field
752 	 * statically too so that the default cgroup can be accessed safely
753 	 * early during boot.
754 	 */
755 	.dfl_cgrp		= &cgrp_dfl_root.cgrp,
756 };
757 
758 static int css_set_count	= 1;	/* 1 for init_css_set */
759 
760 static bool css_set_threaded(struct css_set *cset)
761 {
762 	return cset->dom_cset != cset;
763 }
764 
765 /**
766  * css_set_populated - does a css_set contain any tasks?
767  * @cset: target css_set
768  *
769  * css_set_populated() should be the same as !!cset->nr_tasks at steady
770  * state. However, css_set_populated() can be called while a task is being
771  * added to or removed from the linked list before the nr_tasks is
772  * properly updated. Hence, we can't just look at ->nr_tasks here.
773  */
774 static bool css_set_populated(struct css_set *cset)
775 {
776 	lockdep_assert_held(&css_set_lock);
777 
778 	return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
779 }
780 
781 /**
782  * cgroup_update_populated - update the populated count of a cgroup
783  * @cgrp: the target cgroup
784  * @populated: inc or dec populated count
785  *
786  * One of the css_sets associated with @cgrp is either getting its first
787  * task or losing the last.  Update @cgrp->nr_populated_* accordingly.  The
788  * count is propagated towards root so that a given cgroup's
789  * nr_populated_children is zero iff none of its descendants contain any
790  * tasks.
791  *
792  * @cgrp's interface file "cgroup.populated" is zero if both
793  * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and
794  * 1 otherwise.  When the sum changes from or to zero, userland is notified
795  * that the content of the interface file has changed.  This can be used to
796  * detect when @cgrp and its descendants become populated or empty.
797  */
798 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
799 {
800 	struct cgroup *child = NULL;
801 	int adj = populated ? 1 : -1;
802 
803 	lockdep_assert_held(&css_set_lock);
804 
805 	do {
806 		bool was_populated = cgroup_is_populated(cgrp);
807 
808 		if (!child) {
809 			cgrp->nr_populated_csets += adj;
810 		} else {
811 			if (cgroup_is_threaded(child))
812 				cgrp->nr_populated_threaded_children += adj;
813 			else
814 				cgrp->nr_populated_domain_children += adj;
815 		}
816 
817 		if (was_populated == cgroup_is_populated(cgrp))
818 			break;
819 
820 		cgroup1_check_for_release(cgrp);
821 		TRACE_CGROUP_PATH(notify_populated, cgrp,
822 				  cgroup_is_populated(cgrp));
823 		cgroup_file_notify(&cgrp->events_file);
824 
825 		child = cgrp;
826 		cgrp = cgroup_parent(cgrp);
827 	} while (cgrp);
828 }
829 
830 /**
831  * css_set_update_populated - update populated state of a css_set
832  * @cset: target css_set
833  * @populated: whether @cset is populated or depopulated
834  *
835  * @cset is either getting the first task or losing the last.  Update the
836  * populated counters of all associated cgroups accordingly.
837  */
838 static void css_set_update_populated(struct css_set *cset, bool populated)
839 {
840 	struct cgrp_cset_link *link;
841 
842 	lockdep_assert_held(&css_set_lock);
843 
844 	list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
845 		cgroup_update_populated(link->cgrp, populated);
846 }
847 
848 /*
849  * @task is leaving, advance task iterators which are pointing to it so
850  * that they can resume at the next position.  Advancing an iterator might
851  * remove it from the list, use safe walk.  See css_task_iter_skip() for
852  * details.
853  */
854 static void css_set_skip_task_iters(struct css_set *cset,
855 				    struct task_struct *task)
856 {
857 	struct css_task_iter *it, *pos;
858 
859 	list_for_each_entry_safe(it, pos, &cset->task_iters, iters_node)
860 		css_task_iter_skip(it, task);
861 }
862 
863 /**
864  * css_set_move_task - move a task from one css_set to another
865  * @task: task being moved
866  * @from_cset: css_set @task currently belongs to (may be NULL)
867  * @to_cset: new css_set @task is being moved to (may be NULL)
868  * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
869  *
870  * Move @task from @from_cset to @to_cset.  If @task didn't belong to any
871  * css_set, @from_cset can be NULL.  If @task is being disassociated
872  * instead of moved, @to_cset can be NULL.
873  *
874  * This function automatically handles populated counter updates and
875  * css_task_iter adjustments but the caller is responsible for managing
876  * @from_cset and @to_cset's reference counts.
877  */
878 static void css_set_move_task(struct task_struct *task,
879 			      struct css_set *from_cset, struct css_set *to_cset,
880 			      bool use_mg_tasks)
881 {
882 	lockdep_assert_held(&css_set_lock);
883 
884 	if (to_cset && !css_set_populated(to_cset))
885 		css_set_update_populated(to_cset, true);
886 
887 	if (from_cset) {
888 		WARN_ON_ONCE(list_empty(&task->cg_list));
889 
890 		css_set_skip_task_iters(from_cset, task);
891 		list_del_init(&task->cg_list);
892 		if (!css_set_populated(from_cset))
893 			css_set_update_populated(from_cset, false);
894 	} else {
895 		WARN_ON_ONCE(!list_empty(&task->cg_list));
896 	}
897 
898 	if (to_cset) {
899 		/*
900 		 * We are synchronized through cgroup_threadgroup_rwsem
901 		 * against PF_EXITING setting such that we can't race
902 		 * against cgroup_exit()/cgroup_free() dropping the css_set.
903 		 */
904 		WARN_ON_ONCE(task->flags & PF_EXITING);
905 
906 		cgroup_move_task(task, to_cset);
907 		list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
908 							     &to_cset->tasks);
909 	}
910 }
911 
912 /*
913  * hash table for cgroup groups. This improves the performance to find
914  * an existing css_set. This hash doesn't (currently) take into
915  * account cgroups in empty hierarchies.
916  */
917 #define CSS_SET_HASH_BITS	7
918 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
919 
920 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
921 {
922 	unsigned long key = 0UL;
923 	struct cgroup_subsys *ss;
924 	int i;
925 
926 	for_each_subsys(ss, i)
927 		key += (unsigned long)css[i];
928 	key = (key >> 16) ^ key;
929 
930 	return key;
931 }
932 
933 void put_css_set_locked(struct css_set *cset)
934 {
935 	struct cgrp_cset_link *link, *tmp_link;
936 	struct cgroup_subsys *ss;
937 	int ssid;
938 
939 	lockdep_assert_held(&css_set_lock);
940 
941 	if (!refcount_dec_and_test(&cset->refcount))
942 		return;
943 
944 	WARN_ON_ONCE(!list_empty(&cset->threaded_csets));
945 
946 	/* This css_set is dead. unlink it and release cgroup and css refs */
947 	for_each_subsys(ss, ssid) {
948 		list_del(&cset->e_cset_node[ssid]);
949 		css_put(cset->subsys[ssid]);
950 	}
951 	hash_del(&cset->hlist);
952 	css_set_count--;
953 
954 	list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
955 		list_del(&link->cset_link);
956 		list_del(&link->cgrp_link);
957 		if (cgroup_parent(link->cgrp))
958 			cgroup_put(link->cgrp);
959 		kfree(link);
960 	}
961 
962 	if (css_set_threaded(cset)) {
963 		list_del(&cset->threaded_csets_node);
964 		put_css_set_locked(cset->dom_cset);
965 	}
966 
967 	kfree_rcu(cset, rcu_head);
968 }
969 
970 /**
971  * compare_css_sets - helper function for find_existing_css_set().
972  * @cset: candidate css_set being tested
973  * @old_cset: existing css_set for a task
974  * @new_cgrp: cgroup that's being entered by the task
975  * @template: desired set of css pointers in css_set (pre-calculated)
976  *
977  * Returns true if "cset" matches "old_cset" except for the hierarchy
978  * which "new_cgrp" belongs to, for which it should match "new_cgrp".
979  */
980 static bool compare_css_sets(struct css_set *cset,
981 			     struct css_set *old_cset,
982 			     struct cgroup *new_cgrp,
983 			     struct cgroup_subsys_state *template[])
984 {
985 	struct cgroup *new_dfl_cgrp;
986 	struct list_head *l1, *l2;
987 
988 	/*
989 	 * On the default hierarchy, there can be csets which are
990 	 * associated with the same set of cgroups but different csses.
991 	 * Let's first ensure that csses match.
992 	 */
993 	if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
994 		return false;
995 
996 
997 	/* @cset's domain should match the default cgroup's */
998 	if (cgroup_on_dfl(new_cgrp))
999 		new_dfl_cgrp = new_cgrp;
1000 	else
1001 		new_dfl_cgrp = old_cset->dfl_cgrp;
1002 
1003 	if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp)
1004 		return false;
1005 
1006 	/*
1007 	 * Compare cgroup pointers in order to distinguish between
1008 	 * different cgroups in hierarchies.  As different cgroups may
1009 	 * share the same effective css, this comparison is always
1010 	 * necessary.
1011 	 */
1012 	l1 = &cset->cgrp_links;
1013 	l2 = &old_cset->cgrp_links;
1014 	while (1) {
1015 		struct cgrp_cset_link *link1, *link2;
1016 		struct cgroup *cgrp1, *cgrp2;
1017 
1018 		l1 = l1->next;
1019 		l2 = l2->next;
1020 		/* See if we reached the end - both lists are equal length. */
1021 		if (l1 == &cset->cgrp_links) {
1022 			BUG_ON(l2 != &old_cset->cgrp_links);
1023 			break;
1024 		} else {
1025 			BUG_ON(l2 == &old_cset->cgrp_links);
1026 		}
1027 		/* Locate the cgroups associated with these links. */
1028 		link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
1029 		link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
1030 		cgrp1 = link1->cgrp;
1031 		cgrp2 = link2->cgrp;
1032 		/* Hierarchies should be linked in the same order. */
1033 		BUG_ON(cgrp1->root != cgrp2->root);
1034 
1035 		/*
1036 		 * If this hierarchy is the hierarchy of the cgroup
1037 		 * that's changing, then we need to check that this
1038 		 * css_set points to the new cgroup; if it's any other
1039 		 * hierarchy, then this css_set should point to the
1040 		 * same cgroup as the old css_set.
1041 		 */
1042 		if (cgrp1->root == new_cgrp->root) {
1043 			if (cgrp1 != new_cgrp)
1044 				return false;
1045 		} else {
1046 			if (cgrp1 != cgrp2)
1047 				return false;
1048 		}
1049 	}
1050 	return true;
1051 }
1052 
1053 /**
1054  * find_existing_css_set - init css array and find the matching css_set
1055  * @old_cset: the css_set that we're using before the cgroup transition
1056  * @cgrp: the cgroup that we're moving into
1057  * @template: out param for the new set of csses, should be clear on entry
1058  */
1059 static struct css_set *find_existing_css_set(struct css_set *old_cset,
1060 					struct cgroup *cgrp,
1061 					struct cgroup_subsys_state *template[])
1062 {
1063 	struct cgroup_root *root = cgrp->root;
1064 	struct cgroup_subsys *ss;
1065 	struct css_set *cset;
1066 	unsigned long key;
1067 	int i;
1068 
1069 	/*
1070 	 * Build the set of subsystem state objects that we want to see in the
1071 	 * new css_set. while subsystems can change globally, the entries here
1072 	 * won't change, so no need for locking.
1073 	 */
1074 	for_each_subsys(ss, i) {
1075 		if (root->subsys_mask & (1UL << i)) {
1076 			/*
1077 			 * @ss is in this hierarchy, so we want the
1078 			 * effective css from @cgrp.
1079 			 */
1080 			template[i] = cgroup_e_css_by_mask(cgrp, ss);
1081 		} else {
1082 			/*
1083 			 * @ss is not in this hierarchy, so we don't want
1084 			 * to change the css.
1085 			 */
1086 			template[i] = old_cset->subsys[i];
1087 		}
1088 	}
1089 
1090 	key = css_set_hash(template);
1091 	hash_for_each_possible(css_set_table, cset, hlist, key) {
1092 		if (!compare_css_sets(cset, old_cset, cgrp, template))
1093 			continue;
1094 
1095 		/* This css_set matches what we need */
1096 		return cset;
1097 	}
1098 
1099 	/* No existing cgroup group matched */
1100 	return NULL;
1101 }
1102 
1103 static void free_cgrp_cset_links(struct list_head *links_to_free)
1104 {
1105 	struct cgrp_cset_link *link, *tmp_link;
1106 
1107 	list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
1108 		list_del(&link->cset_link);
1109 		kfree(link);
1110 	}
1111 }
1112 
1113 /**
1114  * allocate_cgrp_cset_links - allocate cgrp_cset_links
1115  * @count: the number of links to allocate
1116  * @tmp_links: list_head the allocated links are put on
1117  *
1118  * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1119  * through ->cset_link.  Returns 0 on success or -errno.
1120  */
1121 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
1122 {
1123 	struct cgrp_cset_link *link;
1124 	int i;
1125 
1126 	INIT_LIST_HEAD(tmp_links);
1127 
1128 	for (i = 0; i < count; i++) {
1129 		link = kzalloc(sizeof(*link), GFP_KERNEL);
1130 		if (!link) {
1131 			free_cgrp_cset_links(tmp_links);
1132 			return -ENOMEM;
1133 		}
1134 		list_add(&link->cset_link, tmp_links);
1135 	}
1136 	return 0;
1137 }
1138 
1139 /**
1140  * link_css_set - a helper function to link a css_set to a cgroup
1141  * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
1142  * @cset: the css_set to be linked
1143  * @cgrp: the destination cgroup
1144  */
1145 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1146 			 struct cgroup *cgrp)
1147 {
1148 	struct cgrp_cset_link *link;
1149 
1150 	BUG_ON(list_empty(tmp_links));
1151 
1152 	if (cgroup_on_dfl(cgrp))
1153 		cset->dfl_cgrp = cgrp;
1154 
1155 	link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1156 	link->cset = cset;
1157 	link->cgrp = cgrp;
1158 
1159 	/*
1160 	 * Always add links to the tail of the lists so that the lists are
1161 	 * in choronological order.
1162 	 */
1163 	list_move_tail(&link->cset_link, &cgrp->cset_links);
1164 	list_add_tail(&link->cgrp_link, &cset->cgrp_links);
1165 
1166 	if (cgroup_parent(cgrp))
1167 		cgroup_get_live(cgrp);
1168 }
1169 
1170 /**
1171  * find_css_set - return a new css_set with one cgroup updated
1172  * @old_cset: the baseline css_set
1173  * @cgrp: the cgroup to be updated
1174  *
1175  * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1176  * substituted into the appropriate hierarchy.
1177  */
1178 static struct css_set *find_css_set(struct css_set *old_cset,
1179 				    struct cgroup *cgrp)
1180 {
1181 	struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
1182 	struct css_set *cset;
1183 	struct list_head tmp_links;
1184 	struct cgrp_cset_link *link;
1185 	struct cgroup_subsys *ss;
1186 	unsigned long key;
1187 	int ssid;
1188 
1189 	lockdep_assert_held(&cgroup_mutex);
1190 
1191 	/* First see if we already have a cgroup group that matches
1192 	 * the desired set */
1193 	spin_lock_irq(&css_set_lock);
1194 	cset = find_existing_css_set(old_cset, cgrp, template);
1195 	if (cset)
1196 		get_css_set(cset);
1197 	spin_unlock_irq(&css_set_lock);
1198 
1199 	if (cset)
1200 		return cset;
1201 
1202 	cset = kzalloc(sizeof(*cset), GFP_KERNEL);
1203 	if (!cset)
1204 		return NULL;
1205 
1206 	/* Allocate all the cgrp_cset_link objects that we'll need */
1207 	if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1208 		kfree(cset);
1209 		return NULL;
1210 	}
1211 
1212 	refcount_set(&cset->refcount, 1);
1213 	cset->dom_cset = cset;
1214 	INIT_LIST_HEAD(&cset->tasks);
1215 	INIT_LIST_HEAD(&cset->mg_tasks);
1216 	INIT_LIST_HEAD(&cset->dying_tasks);
1217 	INIT_LIST_HEAD(&cset->task_iters);
1218 	INIT_LIST_HEAD(&cset->threaded_csets);
1219 	INIT_HLIST_NODE(&cset->hlist);
1220 	INIT_LIST_HEAD(&cset->cgrp_links);
1221 	INIT_LIST_HEAD(&cset->mg_preload_node);
1222 	INIT_LIST_HEAD(&cset->mg_node);
1223 
1224 	/* Copy the set of subsystem state objects generated in
1225 	 * find_existing_css_set() */
1226 	memcpy(cset->subsys, template, sizeof(cset->subsys));
1227 
1228 	spin_lock_irq(&css_set_lock);
1229 	/* Add reference counts and links from the new css_set. */
1230 	list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1231 		struct cgroup *c = link->cgrp;
1232 
1233 		if (c->root == cgrp->root)
1234 			c = cgrp;
1235 		link_css_set(&tmp_links, cset, c);
1236 	}
1237 
1238 	BUG_ON(!list_empty(&tmp_links));
1239 
1240 	css_set_count++;
1241 
1242 	/* Add @cset to the hash table */
1243 	key = css_set_hash(cset->subsys);
1244 	hash_add(css_set_table, &cset->hlist, key);
1245 
1246 	for_each_subsys(ss, ssid) {
1247 		struct cgroup_subsys_state *css = cset->subsys[ssid];
1248 
1249 		list_add_tail(&cset->e_cset_node[ssid],
1250 			      &css->cgroup->e_csets[ssid]);
1251 		css_get(css);
1252 	}
1253 
1254 	spin_unlock_irq(&css_set_lock);
1255 
1256 	/*
1257 	 * If @cset should be threaded, look up the matching dom_cset and
1258 	 * link them up.  We first fully initialize @cset then look for the
1259 	 * dom_cset.  It's simpler this way and safe as @cset is guaranteed
1260 	 * to stay empty until we return.
1261 	 */
1262 	if (cgroup_is_threaded(cset->dfl_cgrp)) {
1263 		struct css_set *dcset;
1264 
1265 		dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp);
1266 		if (!dcset) {
1267 			put_css_set(cset);
1268 			return NULL;
1269 		}
1270 
1271 		spin_lock_irq(&css_set_lock);
1272 		cset->dom_cset = dcset;
1273 		list_add_tail(&cset->threaded_csets_node,
1274 			      &dcset->threaded_csets);
1275 		spin_unlock_irq(&css_set_lock);
1276 	}
1277 
1278 	return cset;
1279 }
1280 
1281 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1282 {
1283 	struct cgroup *root_cgrp = kf_root->kn->priv;
1284 
1285 	return root_cgrp->root;
1286 }
1287 
1288 static int cgroup_init_root_id(struct cgroup_root *root)
1289 {
1290 	int id;
1291 
1292 	lockdep_assert_held(&cgroup_mutex);
1293 
1294 	id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1295 	if (id < 0)
1296 		return id;
1297 
1298 	root->hierarchy_id = id;
1299 	return 0;
1300 }
1301 
1302 static void cgroup_exit_root_id(struct cgroup_root *root)
1303 {
1304 	lockdep_assert_held(&cgroup_mutex);
1305 
1306 	idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1307 }
1308 
1309 void cgroup_free_root(struct cgroup_root *root)
1310 {
1311 	kfree(root);
1312 }
1313 
1314 static void cgroup_destroy_root(struct cgroup_root *root)
1315 {
1316 	struct cgroup *cgrp = &root->cgrp;
1317 	struct cgrp_cset_link *link, *tmp_link;
1318 
1319 	trace_cgroup_destroy_root(root);
1320 
1321 	cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1322 
1323 	BUG_ON(atomic_read(&root->nr_cgrps));
1324 	BUG_ON(!list_empty(&cgrp->self.children));
1325 
1326 	/* Rebind all subsystems back to the default hierarchy */
1327 	WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
1328 
1329 	/*
1330 	 * Release all the links from cset_links to this hierarchy's
1331 	 * root cgroup
1332 	 */
1333 	spin_lock_irq(&css_set_lock);
1334 
1335 	list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1336 		list_del(&link->cset_link);
1337 		list_del(&link->cgrp_link);
1338 		kfree(link);
1339 	}
1340 
1341 	spin_unlock_irq(&css_set_lock);
1342 
1343 	if (!list_empty(&root->root_list)) {
1344 		list_del(&root->root_list);
1345 		cgroup_root_count--;
1346 	}
1347 
1348 	cgroup_exit_root_id(root);
1349 
1350 	mutex_unlock(&cgroup_mutex);
1351 
1352 	kernfs_destroy_root(root->kf_root);
1353 	cgroup_free_root(root);
1354 }
1355 
1356 /*
1357  * look up cgroup associated with current task's cgroup namespace on the
1358  * specified hierarchy
1359  */
1360 static struct cgroup *
1361 current_cgns_cgroup_from_root(struct cgroup_root *root)
1362 {
1363 	struct cgroup *res = NULL;
1364 	struct css_set *cset;
1365 
1366 	lockdep_assert_held(&css_set_lock);
1367 
1368 	rcu_read_lock();
1369 
1370 	cset = current->nsproxy->cgroup_ns->root_cset;
1371 	if (cset == &init_css_set) {
1372 		res = &root->cgrp;
1373 	} else if (root == &cgrp_dfl_root) {
1374 		res = cset->dfl_cgrp;
1375 	} else {
1376 		struct cgrp_cset_link *link;
1377 
1378 		list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1379 			struct cgroup *c = link->cgrp;
1380 
1381 			if (c->root == root) {
1382 				res = c;
1383 				break;
1384 			}
1385 		}
1386 	}
1387 	rcu_read_unlock();
1388 
1389 	BUG_ON(!res);
1390 	return res;
1391 }
1392 
1393 /* look up cgroup associated with given css_set on the specified hierarchy */
1394 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1395 					    struct cgroup_root *root)
1396 {
1397 	struct cgroup *res = NULL;
1398 
1399 	lockdep_assert_held(&cgroup_mutex);
1400 	lockdep_assert_held(&css_set_lock);
1401 
1402 	if (cset == &init_css_set) {
1403 		res = &root->cgrp;
1404 	} else if (root == &cgrp_dfl_root) {
1405 		res = cset->dfl_cgrp;
1406 	} else {
1407 		struct cgrp_cset_link *link;
1408 
1409 		list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1410 			struct cgroup *c = link->cgrp;
1411 
1412 			if (c->root == root) {
1413 				res = c;
1414 				break;
1415 			}
1416 		}
1417 	}
1418 
1419 	BUG_ON(!res);
1420 	return res;
1421 }
1422 
1423 /*
1424  * Return the cgroup for "task" from the given hierarchy. Must be
1425  * called with cgroup_mutex and css_set_lock held.
1426  */
1427 struct cgroup *task_cgroup_from_root(struct task_struct *task,
1428 				     struct cgroup_root *root)
1429 {
1430 	/*
1431 	 * No need to lock the task - since we hold css_set_lock the
1432 	 * task can't change groups.
1433 	 */
1434 	return cset_cgroup_from_root(task_css_set(task), root);
1435 }
1436 
1437 /*
1438  * A task must hold cgroup_mutex to modify cgroups.
1439  *
1440  * Any task can increment and decrement the count field without lock.
1441  * So in general, code holding cgroup_mutex can't rely on the count
1442  * field not changing.  However, if the count goes to zero, then only
1443  * cgroup_attach_task() can increment it again.  Because a count of zero
1444  * means that no tasks are currently attached, therefore there is no
1445  * way a task attached to that cgroup can fork (the other way to
1446  * increment the count).  So code holding cgroup_mutex can safely
1447  * assume that if the count is zero, it will stay zero. Similarly, if
1448  * a task holds cgroup_mutex on a cgroup with zero count, it
1449  * knows that the cgroup won't be removed, as cgroup_rmdir()
1450  * needs that mutex.
1451  *
1452  * A cgroup can only be deleted if both its 'count' of using tasks
1453  * is zero, and its list of 'children' cgroups is empty.  Since all
1454  * tasks in the system use _some_ cgroup, and since there is always at
1455  * least one task in the system (init, pid == 1), therefore, root cgroup
1456  * always has either children cgroups and/or using tasks.  So we don't
1457  * need a special hack to ensure that root cgroup cannot be deleted.
1458  *
1459  * P.S.  One more locking exception.  RCU is used to guard the
1460  * update of a tasks cgroup pointer by cgroup_attach_task()
1461  */
1462 
1463 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1464 
1465 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1466 			      char *buf)
1467 {
1468 	struct cgroup_subsys *ss = cft->ss;
1469 
1470 	if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1471 	    !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
1472 		const char *dbg = (cft->flags & CFTYPE_DEBUG) ? ".__DEBUG__." : "";
1473 
1474 		snprintf(buf, CGROUP_FILE_NAME_MAX, "%s%s.%s",
1475 			 dbg, cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1476 			 cft->name);
1477 	} else {
1478 		strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1479 	}
1480 	return buf;
1481 }
1482 
1483 /**
1484  * cgroup_file_mode - deduce file mode of a control file
1485  * @cft: the control file in question
1486  *
1487  * S_IRUGO for read, S_IWUSR for write.
1488  */
1489 static umode_t cgroup_file_mode(const struct cftype *cft)
1490 {
1491 	umode_t mode = 0;
1492 
1493 	if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1494 		mode |= S_IRUGO;
1495 
1496 	if (cft->write_u64 || cft->write_s64 || cft->write) {
1497 		if (cft->flags & CFTYPE_WORLD_WRITABLE)
1498 			mode |= S_IWUGO;
1499 		else
1500 			mode |= S_IWUSR;
1501 	}
1502 
1503 	return mode;
1504 }
1505 
1506 /**
1507  * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1508  * @subtree_control: the new subtree_control mask to consider
1509  * @this_ss_mask: available subsystems
1510  *
1511  * On the default hierarchy, a subsystem may request other subsystems to be
1512  * enabled together through its ->depends_on mask.  In such cases, more
1513  * subsystems than specified in "cgroup.subtree_control" may be enabled.
1514  *
1515  * This function calculates which subsystems need to be enabled if
1516  * @subtree_control is to be applied while restricted to @this_ss_mask.
1517  */
1518 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
1519 {
1520 	u16 cur_ss_mask = subtree_control;
1521 	struct cgroup_subsys *ss;
1522 	int ssid;
1523 
1524 	lockdep_assert_held(&cgroup_mutex);
1525 
1526 	cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1527 
1528 	while (true) {
1529 		u16 new_ss_mask = cur_ss_mask;
1530 
1531 		do_each_subsys_mask(ss, ssid, cur_ss_mask) {
1532 			new_ss_mask |= ss->depends_on;
1533 		} while_each_subsys_mask();
1534 
1535 		/*
1536 		 * Mask out subsystems which aren't available.  This can
1537 		 * happen only if some depended-upon subsystems were bound
1538 		 * to non-default hierarchies.
1539 		 */
1540 		new_ss_mask &= this_ss_mask;
1541 
1542 		if (new_ss_mask == cur_ss_mask)
1543 			break;
1544 		cur_ss_mask = new_ss_mask;
1545 	}
1546 
1547 	return cur_ss_mask;
1548 }
1549 
1550 /**
1551  * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1552  * @kn: the kernfs_node being serviced
1553  *
1554  * This helper undoes cgroup_kn_lock_live() and should be invoked before
1555  * the method finishes if locking succeeded.  Note that once this function
1556  * returns the cgroup returned by cgroup_kn_lock_live() may become
1557  * inaccessible any time.  If the caller intends to continue to access the
1558  * cgroup, it should pin it before invoking this function.
1559  */
1560 void cgroup_kn_unlock(struct kernfs_node *kn)
1561 {
1562 	struct cgroup *cgrp;
1563 
1564 	if (kernfs_type(kn) == KERNFS_DIR)
1565 		cgrp = kn->priv;
1566 	else
1567 		cgrp = kn->parent->priv;
1568 
1569 	mutex_unlock(&cgroup_mutex);
1570 
1571 	kernfs_unbreak_active_protection(kn);
1572 	cgroup_put(cgrp);
1573 }
1574 
1575 /**
1576  * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1577  * @kn: the kernfs_node being serviced
1578  * @drain_offline: perform offline draining on the cgroup
1579  *
1580  * This helper is to be used by a cgroup kernfs method currently servicing
1581  * @kn.  It breaks the active protection, performs cgroup locking and
1582  * verifies that the associated cgroup is alive.  Returns the cgroup if
1583  * alive; otherwise, %NULL.  A successful return should be undone by a
1584  * matching cgroup_kn_unlock() invocation.  If @drain_offline is %true, the
1585  * cgroup is drained of offlining csses before return.
1586  *
1587  * Any cgroup kernfs method implementation which requires locking the
1588  * associated cgroup should use this helper.  It avoids nesting cgroup
1589  * locking under kernfs active protection and allows all kernfs operations
1590  * including self-removal.
1591  */
1592 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline)
1593 {
1594 	struct cgroup *cgrp;
1595 
1596 	if (kernfs_type(kn) == KERNFS_DIR)
1597 		cgrp = kn->priv;
1598 	else
1599 		cgrp = kn->parent->priv;
1600 
1601 	/*
1602 	 * We're gonna grab cgroup_mutex which nests outside kernfs
1603 	 * active_ref.  cgroup liveliness check alone provides enough
1604 	 * protection against removal.  Ensure @cgrp stays accessible and
1605 	 * break the active_ref protection.
1606 	 */
1607 	if (!cgroup_tryget(cgrp))
1608 		return NULL;
1609 	kernfs_break_active_protection(kn);
1610 
1611 	if (drain_offline)
1612 		cgroup_lock_and_drain_offline(cgrp);
1613 	else
1614 		mutex_lock(&cgroup_mutex);
1615 
1616 	if (!cgroup_is_dead(cgrp))
1617 		return cgrp;
1618 
1619 	cgroup_kn_unlock(kn);
1620 	return NULL;
1621 }
1622 
1623 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1624 {
1625 	char name[CGROUP_FILE_NAME_MAX];
1626 
1627 	lockdep_assert_held(&cgroup_mutex);
1628 
1629 	if (cft->file_offset) {
1630 		struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1631 		struct cgroup_file *cfile = (void *)css + cft->file_offset;
1632 
1633 		spin_lock_irq(&cgroup_file_kn_lock);
1634 		cfile->kn = NULL;
1635 		spin_unlock_irq(&cgroup_file_kn_lock);
1636 
1637 		del_timer_sync(&cfile->notify_timer);
1638 	}
1639 
1640 	kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1641 }
1642 
1643 /**
1644  * css_clear_dir - remove subsys files in a cgroup directory
1645  * @css: taget css
1646  */
1647 static void css_clear_dir(struct cgroup_subsys_state *css)
1648 {
1649 	struct cgroup *cgrp = css->cgroup;
1650 	struct cftype *cfts;
1651 
1652 	if (!(css->flags & CSS_VISIBLE))
1653 		return;
1654 
1655 	css->flags &= ~CSS_VISIBLE;
1656 
1657 	if (!css->ss) {
1658 		if (cgroup_on_dfl(cgrp))
1659 			cfts = cgroup_base_files;
1660 		else
1661 			cfts = cgroup1_base_files;
1662 
1663 		cgroup_addrm_files(css, cgrp, cfts, false);
1664 	} else {
1665 		list_for_each_entry(cfts, &css->ss->cfts, node)
1666 			cgroup_addrm_files(css, cgrp, cfts, false);
1667 	}
1668 }
1669 
1670 /**
1671  * css_populate_dir - create subsys files in a cgroup directory
1672  * @css: target css
1673  *
1674  * On failure, no file is added.
1675  */
1676 static int css_populate_dir(struct cgroup_subsys_state *css)
1677 {
1678 	struct cgroup *cgrp = css->cgroup;
1679 	struct cftype *cfts, *failed_cfts;
1680 	int ret;
1681 
1682 	if ((css->flags & CSS_VISIBLE) || !cgrp->kn)
1683 		return 0;
1684 
1685 	if (!css->ss) {
1686 		if (cgroup_on_dfl(cgrp))
1687 			cfts = cgroup_base_files;
1688 		else
1689 			cfts = cgroup1_base_files;
1690 
1691 		ret = cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1692 		if (ret < 0)
1693 			return ret;
1694 	} else {
1695 		list_for_each_entry(cfts, &css->ss->cfts, node) {
1696 			ret = cgroup_addrm_files(css, cgrp, cfts, true);
1697 			if (ret < 0) {
1698 				failed_cfts = cfts;
1699 				goto err;
1700 			}
1701 		}
1702 	}
1703 
1704 	css->flags |= CSS_VISIBLE;
1705 
1706 	return 0;
1707 err:
1708 	list_for_each_entry(cfts, &css->ss->cfts, node) {
1709 		if (cfts == failed_cfts)
1710 			break;
1711 		cgroup_addrm_files(css, cgrp, cfts, false);
1712 	}
1713 	return ret;
1714 }
1715 
1716 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
1717 {
1718 	struct cgroup *dcgrp = &dst_root->cgrp;
1719 	struct cgroup_subsys *ss;
1720 	int ssid, i, ret;
1721 
1722 	lockdep_assert_held(&cgroup_mutex);
1723 
1724 	do_each_subsys_mask(ss, ssid, ss_mask) {
1725 		/*
1726 		 * If @ss has non-root csses attached to it, can't move.
1727 		 * If @ss is an implicit controller, it is exempt from this
1728 		 * rule and can be stolen.
1729 		 */
1730 		if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1731 		    !ss->implicit_on_dfl)
1732 			return -EBUSY;
1733 
1734 		/* can't move between two non-dummy roots either */
1735 		if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1736 			return -EBUSY;
1737 	} while_each_subsys_mask();
1738 
1739 	do_each_subsys_mask(ss, ssid, ss_mask) {
1740 		struct cgroup_root *src_root = ss->root;
1741 		struct cgroup *scgrp = &src_root->cgrp;
1742 		struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1743 		struct css_set *cset;
1744 
1745 		WARN_ON(!css || cgroup_css(dcgrp, ss));
1746 
1747 		/* disable from the source */
1748 		src_root->subsys_mask &= ~(1 << ssid);
1749 		WARN_ON(cgroup_apply_control(scgrp));
1750 		cgroup_finalize_control(scgrp, 0);
1751 
1752 		/* rebind */
1753 		RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1754 		rcu_assign_pointer(dcgrp->subsys[ssid], css);
1755 		ss->root = dst_root;
1756 		css->cgroup = dcgrp;
1757 
1758 		spin_lock_irq(&css_set_lock);
1759 		hash_for_each(css_set_table, i, cset, hlist)
1760 			list_move_tail(&cset->e_cset_node[ss->id],
1761 				       &dcgrp->e_csets[ss->id]);
1762 		spin_unlock_irq(&css_set_lock);
1763 
1764 		/* default hierarchy doesn't enable controllers by default */
1765 		dst_root->subsys_mask |= 1 << ssid;
1766 		if (dst_root == &cgrp_dfl_root) {
1767 			static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1768 		} else {
1769 			dcgrp->subtree_control |= 1 << ssid;
1770 			static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1771 		}
1772 
1773 		ret = cgroup_apply_control(dcgrp);
1774 		if (ret)
1775 			pr_warn("partial failure to rebind %s controller (err=%d)\n",
1776 				ss->name, ret);
1777 
1778 		if (ss->bind)
1779 			ss->bind(css);
1780 	} while_each_subsys_mask();
1781 
1782 	kernfs_activate(dcgrp->kn);
1783 	return 0;
1784 }
1785 
1786 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
1787 		     struct kernfs_root *kf_root)
1788 {
1789 	int len = 0;
1790 	char *buf = NULL;
1791 	struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
1792 	struct cgroup *ns_cgroup;
1793 
1794 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
1795 	if (!buf)
1796 		return -ENOMEM;
1797 
1798 	spin_lock_irq(&css_set_lock);
1799 	ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
1800 	len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
1801 	spin_unlock_irq(&css_set_lock);
1802 
1803 	if (len >= PATH_MAX)
1804 		len = -ERANGE;
1805 	else if (len > 0) {
1806 		seq_escape(sf, buf, " \t\n\\");
1807 		len = 0;
1808 	}
1809 	kfree(buf);
1810 	return len;
1811 }
1812 
1813 enum cgroup2_param {
1814 	Opt_nsdelegate,
1815 	Opt_memory_localevents,
1816 	nr__cgroup2_params
1817 };
1818 
1819 static const struct fs_parameter_spec cgroup2_param_specs[] = {
1820 	fsparam_flag("nsdelegate",		Opt_nsdelegate),
1821 	fsparam_flag("memory_localevents",	Opt_memory_localevents),
1822 	{}
1823 };
1824 
1825 static const struct fs_parameter_description cgroup2_fs_parameters = {
1826 	.name		= "cgroup2",
1827 	.specs		= cgroup2_param_specs,
1828 };
1829 
1830 static int cgroup2_parse_param(struct fs_context *fc, struct fs_parameter *param)
1831 {
1832 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1833 	struct fs_parse_result result;
1834 	int opt;
1835 
1836 	opt = fs_parse(fc, &cgroup2_fs_parameters, param, &result);
1837 	if (opt < 0)
1838 		return opt;
1839 
1840 	switch (opt) {
1841 	case Opt_nsdelegate:
1842 		ctx->flags |= CGRP_ROOT_NS_DELEGATE;
1843 		return 0;
1844 	case Opt_memory_localevents:
1845 		ctx->flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1846 		return 0;
1847 	}
1848 	return -EINVAL;
1849 }
1850 
1851 static void apply_cgroup_root_flags(unsigned int root_flags)
1852 {
1853 	if (current->nsproxy->cgroup_ns == &init_cgroup_ns) {
1854 		if (root_flags & CGRP_ROOT_NS_DELEGATE)
1855 			cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE;
1856 		else
1857 			cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE;
1858 
1859 		if (root_flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1860 			cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1861 		else
1862 			cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1863 	}
1864 }
1865 
1866 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
1867 {
1868 	if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE)
1869 		seq_puts(seq, ",nsdelegate");
1870 	if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1871 		seq_puts(seq, ",memory_localevents");
1872 	return 0;
1873 }
1874 
1875 static int cgroup_reconfigure(struct fs_context *fc)
1876 {
1877 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1878 
1879 	apply_cgroup_root_flags(ctx->flags);
1880 	return 0;
1881 }
1882 
1883 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1884 {
1885 	struct cgroup_subsys *ss;
1886 	int ssid;
1887 
1888 	INIT_LIST_HEAD(&cgrp->self.sibling);
1889 	INIT_LIST_HEAD(&cgrp->self.children);
1890 	INIT_LIST_HEAD(&cgrp->cset_links);
1891 	INIT_LIST_HEAD(&cgrp->pidlists);
1892 	mutex_init(&cgrp->pidlist_mutex);
1893 	cgrp->self.cgroup = cgrp;
1894 	cgrp->self.flags |= CSS_ONLINE;
1895 	cgrp->dom_cgrp = cgrp;
1896 	cgrp->max_descendants = INT_MAX;
1897 	cgrp->max_depth = INT_MAX;
1898 	INIT_LIST_HEAD(&cgrp->rstat_css_list);
1899 	prev_cputime_init(&cgrp->prev_cputime);
1900 
1901 	for_each_subsys(ss, ssid)
1902 		INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
1903 
1904 	init_waitqueue_head(&cgrp->offline_waitq);
1905 	INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent);
1906 }
1907 
1908 void init_cgroup_root(struct cgroup_fs_context *ctx)
1909 {
1910 	struct cgroup_root *root = ctx->root;
1911 	struct cgroup *cgrp = &root->cgrp;
1912 
1913 	INIT_LIST_HEAD(&root->root_list);
1914 	atomic_set(&root->nr_cgrps, 1);
1915 	cgrp->root = root;
1916 	init_cgroup_housekeeping(cgrp);
1917 
1918 	root->flags = ctx->flags;
1919 	if (ctx->release_agent)
1920 		strscpy(root->release_agent_path, ctx->release_agent, PATH_MAX);
1921 	if (ctx->name)
1922 		strscpy(root->name, ctx->name, MAX_CGROUP_ROOT_NAMELEN);
1923 	if (ctx->cpuset_clone_children)
1924 		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
1925 }
1926 
1927 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask)
1928 {
1929 	LIST_HEAD(tmp_links);
1930 	struct cgroup *root_cgrp = &root->cgrp;
1931 	struct kernfs_syscall_ops *kf_sops;
1932 	struct css_set *cset;
1933 	int i, ret;
1934 
1935 	lockdep_assert_held(&cgroup_mutex);
1936 
1937 	ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release,
1938 			      0, GFP_KERNEL);
1939 	if (ret)
1940 		goto out;
1941 
1942 	/*
1943 	 * We're accessing css_set_count without locking css_set_lock here,
1944 	 * but that's OK - it can only be increased by someone holding
1945 	 * cgroup_lock, and that's us.  Later rebinding may disable
1946 	 * controllers on the default hierarchy and thus create new csets,
1947 	 * which can't be more than the existing ones.  Allocate 2x.
1948 	 */
1949 	ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
1950 	if (ret)
1951 		goto cancel_ref;
1952 
1953 	ret = cgroup_init_root_id(root);
1954 	if (ret)
1955 		goto cancel_ref;
1956 
1957 	kf_sops = root == &cgrp_dfl_root ?
1958 		&cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops;
1959 
1960 	root->kf_root = kernfs_create_root(kf_sops,
1961 					   KERNFS_ROOT_CREATE_DEACTIVATED |
1962 					   KERNFS_ROOT_SUPPORT_EXPORTOP,
1963 					   root_cgrp);
1964 	if (IS_ERR(root->kf_root)) {
1965 		ret = PTR_ERR(root->kf_root);
1966 		goto exit_root_id;
1967 	}
1968 	root_cgrp->kn = root->kf_root->kn;
1969 	WARN_ON_ONCE(cgroup_ino(root_cgrp) != 1);
1970 	root_cgrp->ancestor_ids[0] = cgroup_id(root_cgrp);
1971 
1972 	ret = css_populate_dir(&root_cgrp->self);
1973 	if (ret)
1974 		goto destroy_root;
1975 
1976 	ret = rebind_subsystems(root, ss_mask);
1977 	if (ret)
1978 		goto destroy_root;
1979 
1980 	ret = cgroup_bpf_inherit(root_cgrp);
1981 	WARN_ON_ONCE(ret);
1982 
1983 	trace_cgroup_setup_root(root);
1984 
1985 	/*
1986 	 * There must be no failure case after here, since rebinding takes
1987 	 * care of subsystems' refcounts, which are explicitly dropped in
1988 	 * the failure exit path.
1989 	 */
1990 	list_add(&root->root_list, &cgroup_roots);
1991 	cgroup_root_count++;
1992 
1993 	/*
1994 	 * Link the root cgroup in this hierarchy into all the css_set
1995 	 * objects.
1996 	 */
1997 	spin_lock_irq(&css_set_lock);
1998 	hash_for_each(css_set_table, i, cset, hlist) {
1999 		link_css_set(&tmp_links, cset, root_cgrp);
2000 		if (css_set_populated(cset))
2001 			cgroup_update_populated(root_cgrp, true);
2002 	}
2003 	spin_unlock_irq(&css_set_lock);
2004 
2005 	BUG_ON(!list_empty(&root_cgrp->self.children));
2006 	BUG_ON(atomic_read(&root->nr_cgrps) != 1);
2007 
2008 	kernfs_activate(root_cgrp->kn);
2009 	ret = 0;
2010 	goto out;
2011 
2012 destroy_root:
2013 	kernfs_destroy_root(root->kf_root);
2014 	root->kf_root = NULL;
2015 exit_root_id:
2016 	cgroup_exit_root_id(root);
2017 cancel_ref:
2018 	percpu_ref_exit(&root_cgrp->self.refcnt);
2019 out:
2020 	free_cgrp_cset_links(&tmp_links);
2021 	return ret;
2022 }
2023 
2024 int cgroup_do_get_tree(struct fs_context *fc)
2025 {
2026 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2027 	int ret;
2028 
2029 	ctx->kfc.root = ctx->root->kf_root;
2030 	if (fc->fs_type == &cgroup2_fs_type)
2031 		ctx->kfc.magic = CGROUP2_SUPER_MAGIC;
2032 	else
2033 		ctx->kfc.magic = CGROUP_SUPER_MAGIC;
2034 	ret = kernfs_get_tree(fc);
2035 
2036 	/*
2037 	 * In non-init cgroup namespace, instead of root cgroup's dentry,
2038 	 * we return the dentry corresponding to the cgroupns->root_cgrp.
2039 	 */
2040 	if (!ret && ctx->ns != &init_cgroup_ns) {
2041 		struct dentry *nsdentry;
2042 		struct super_block *sb = fc->root->d_sb;
2043 		struct cgroup *cgrp;
2044 
2045 		mutex_lock(&cgroup_mutex);
2046 		spin_lock_irq(&css_set_lock);
2047 
2048 		cgrp = cset_cgroup_from_root(ctx->ns->root_cset, ctx->root);
2049 
2050 		spin_unlock_irq(&css_set_lock);
2051 		mutex_unlock(&cgroup_mutex);
2052 
2053 		nsdentry = kernfs_node_dentry(cgrp->kn, sb);
2054 		dput(fc->root);
2055 		if (IS_ERR(nsdentry)) {
2056 			deactivate_locked_super(sb);
2057 			ret = PTR_ERR(nsdentry);
2058 			nsdentry = NULL;
2059 		}
2060 		fc->root = nsdentry;
2061 	}
2062 
2063 	if (!ctx->kfc.new_sb_created)
2064 		cgroup_put(&ctx->root->cgrp);
2065 
2066 	return ret;
2067 }
2068 
2069 /*
2070  * Destroy a cgroup filesystem context.
2071  */
2072 static void cgroup_fs_context_free(struct fs_context *fc)
2073 {
2074 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2075 
2076 	kfree(ctx->name);
2077 	kfree(ctx->release_agent);
2078 	put_cgroup_ns(ctx->ns);
2079 	kernfs_free_fs_context(fc);
2080 	kfree(ctx);
2081 }
2082 
2083 static int cgroup_get_tree(struct fs_context *fc)
2084 {
2085 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2086 	int ret;
2087 
2088 	cgrp_dfl_visible = true;
2089 	cgroup_get_live(&cgrp_dfl_root.cgrp);
2090 	ctx->root = &cgrp_dfl_root;
2091 
2092 	ret = cgroup_do_get_tree(fc);
2093 	if (!ret)
2094 		apply_cgroup_root_flags(ctx->flags);
2095 	return ret;
2096 }
2097 
2098 static const struct fs_context_operations cgroup_fs_context_ops = {
2099 	.free		= cgroup_fs_context_free,
2100 	.parse_param	= cgroup2_parse_param,
2101 	.get_tree	= cgroup_get_tree,
2102 	.reconfigure	= cgroup_reconfigure,
2103 };
2104 
2105 static const struct fs_context_operations cgroup1_fs_context_ops = {
2106 	.free		= cgroup_fs_context_free,
2107 	.parse_param	= cgroup1_parse_param,
2108 	.get_tree	= cgroup1_get_tree,
2109 	.reconfigure	= cgroup1_reconfigure,
2110 };
2111 
2112 /*
2113  * Initialise the cgroup filesystem creation/reconfiguration context.  Notably,
2114  * we select the namespace we're going to use.
2115  */
2116 static int cgroup_init_fs_context(struct fs_context *fc)
2117 {
2118 	struct cgroup_fs_context *ctx;
2119 
2120 	ctx = kzalloc(sizeof(struct cgroup_fs_context), GFP_KERNEL);
2121 	if (!ctx)
2122 		return -ENOMEM;
2123 
2124 	ctx->ns = current->nsproxy->cgroup_ns;
2125 	get_cgroup_ns(ctx->ns);
2126 	fc->fs_private = &ctx->kfc;
2127 	if (fc->fs_type == &cgroup2_fs_type)
2128 		fc->ops = &cgroup_fs_context_ops;
2129 	else
2130 		fc->ops = &cgroup1_fs_context_ops;
2131 	put_user_ns(fc->user_ns);
2132 	fc->user_ns = get_user_ns(ctx->ns->user_ns);
2133 	fc->global = true;
2134 	return 0;
2135 }
2136 
2137 static void cgroup_kill_sb(struct super_block *sb)
2138 {
2139 	struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2140 	struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2141 
2142 	/*
2143 	 * If @root doesn't have any children, start killing it.
2144 	 * This prevents new mounts by disabling percpu_ref_tryget_live().
2145 	 * cgroup_mount() may wait for @root's release.
2146 	 *
2147 	 * And don't kill the default root.
2148 	 */
2149 	if (list_empty(&root->cgrp.self.children) && root != &cgrp_dfl_root &&
2150 	    !percpu_ref_is_dying(&root->cgrp.self.refcnt))
2151 		percpu_ref_kill(&root->cgrp.self.refcnt);
2152 	cgroup_put(&root->cgrp);
2153 	kernfs_kill_sb(sb);
2154 }
2155 
2156 struct file_system_type cgroup_fs_type = {
2157 	.name			= "cgroup",
2158 	.init_fs_context	= cgroup_init_fs_context,
2159 	.parameters		= &cgroup1_fs_parameters,
2160 	.kill_sb		= cgroup_kill_sb,
2161 	.fs_flags		= FS_USERNS_MOUNT,
2162 };
2163 
2164 static struct file_system_type cgroup2_fs_type = {
2165 	.name			= "cgroup2",
2166 	.init_fs_context	= cgroup_init_fs_context,
2167 	.parameters		= &cgroup2_fs_parameters,
2168 	.kill_sb		= cgroup_kill_sb,
2169 	.fs_flags		= FS_USERNS_MOUNT,
2170 };
2171 
2172 #ifdef CONFIG_CPUSETS
2173 static const struct fs_context_operations cpuset_fs_context_ops = {
2174 	.get_tree	= cgroup1_get_tree,
2175 	.free		= cgroup_fs_context_free,
2176 };
2177 
2178 /*
2179  * This is ugly, but preserves the userspace API for existing cpuset
2180  * users. If someone tries to mount the "cpuset" filesystem, we
2181  * silently switch it to mount "cgroup" instead
2182  */
2183 static int cpuset_init_fs_context(struct fs_context *fc)
2184 {
2185 	char *agent = kstrdup("/sbin/cpuset_release_agent", GFP_USER);
2186 	struct cgroup_fs_context *ctx;
2187 	int err;
2188 
2189 	err = cgroup_init_fs_context(fc);
2190 	if (err) {
2191 		kfree(agent);
2192 		return err;
2193 	}
2194 
2195 	fc->ops = &cpuset_fs_context_ops;
2196 
2197 	ctx = cgroup_fc2context(fc);
2198 	ctx->subsys_mask = 1 << cpuset_cgrp_id;
2199 	ctx->flags |= CGRP_ROOT_NOPREFIX;
2200 	ctx->release_agent = agent;
2201 
2202 	get_filesystem(&cgroup_fs_type);
2203 	put_filesystem(fc->fs_type);
2204 	fc->fs_type = &cgroup_fs_type;
2205 
2206 	return 0;
2207 }
2208 
2209 static struct file_system_type cpuset_fs_type = {
2210 	.name			= "cpuset",
2211 	.init_fs_context	= cpuset_init_fs_context,
2212 	.fs_flags		= FS_USERNS_MOUNT,
2213 };
2214 #endif
2215 
2216 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
2217 			  struct cgroup_namespace *ns)
2218 {
2219 	struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
2220 
2221 	return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
2222 }
2223 
2224 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
2225 		   struct cgroup_namespace *ns)
2226 {
2227 	int ret;
2228 
2229 	mutex_lock(&cgroup_mutex);
2230 	spin_lock_irq(&css_set_lock);
2231 
2232 	ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
2233 
2234 	spin_unlock_irq(&css_set_lock);
2235 	mutex_unlock(&cgroup_mutex);
2236 
2237 	return ret;
2238 }
2239 EXPORT_SYMBOL_GPL(cgroup_path_ns);
2240 
2241 /**
2242  * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
2243  * @task: target task
2244  * @buf: the buffer to write the path into
2245  * @buflen: the length of the buffer
2246  *
2247  * Determine @task's cgroup on the first (the one with the lowest non-zero
2248  * hierarchy_id) cgroup hierarchy and copy its path into @buf.  This
2249  * function grabs cgroup_mutex and shouldn't be used inside locks used by
2250  * cgroup controller callbacks.
2251  *
2252  * Return value is the same as kernfs_path().
2253  */
2254 int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
2255 {
2256 	struct cgroup_root *root;
2257 	struct cgroup *cgrp;
2258 	int hierarchy_id = 1;
2259 	int ret;
2260 
2261 	mutex_lock(&cgroup_mutex);
2262 	spin_lock_irq(&css_set_lock);
2263 
2264 	root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2265 
2266 	if (root) {
2267 		cgrp = task_cgroup_from_root(task, root);
2268 		ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns);
2269 	} else {
2270 		/* if no hierarchy exists, everyone is in "/" */
2271 		ret = strlcpy(buf, "/", buflen);
2272 	}
2273 
2274 	spin_unlock_irq(&css_set_lock);
2275 	mutex_unlock(&cgroup_mutex);
2276 	return ret;
2277 }
2278 EXPORT_SYMBOL_GPL(task_cgroup_path);
2279 
2280 /**
2281  * cgroup_migrate_add_task - add a migration target task to a migration context
2282  * @task: target task
2283  * @mgctx: target migration context
2284  *
2285  * Add @task, which is a migration target, to @mgctx->tset.  This function
2286  * becomes noop if @task doesn't need to be migrated.  @task's css_set
2287  * should have been added as a migration source and @task->cg_list will be
2288  * moved from the css_set's tasks list to mg_tasks one.
2289  */
2290 static void cgroup_migrate_add_task(struct task_struct *task,
2291 				    struct cgroup_mgctx *mgctx)
2292 {
2293 	struct css_set *cset;
2294 
2295 	lockdep_assert_held(&css_set_lock);
2296 
2297 	/* @task either already exited or can't exit until the end */
2298 	if (task->flags & PF_EXITING)
2299 		return;
2300 
2301 	/* cgroup_threadgroup_rwsem protects racing against forks */
2302 	WARN_ON_ONCE(list_empty(&task->cg_list));
2303 
2304 	cset = task_css_set(task);
2305 	if (!cset->mg_src_cgrp)
2306 		return;
2307 
2308 	mgctx->tset.nr_tasks++;
2309 
2310 	list_move_tail(&task->cg_list, &cset->mg_tasks);
2311 	if (list_empty(&cset->mg_node))
2312 		list_add_tail(&cset->mg_node,
2313 			      &mgctx->tset.src_csets);
2314 	if (list_empty(&cset->mg_dst_cset->mg_node))
2315 		list_add_tail(&cset->mg_dst_cset->mg_node,
2316 			      &mgctx->tset.dst_csets);
2317 }
2318 
2319 /**
2320  * cgroup_taskset_first - reset taskset and return the first task
2321  * @tset: taskset of interest
2322  * @dst_cssp: output variable for the destination css
2323  *
2324  * @tset iteration is initialized and the first task is returned.
2325  */
2326 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2327 					 struct cgroup_subsys_state **dst_cssp)
2328 {
2329 	tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2330 	tset->cur_task = NULL;
2331 
2332 	return cgroup_taskset_next(tset, dst_cssp);
2333 }
2334 
2335 /**
2336  * cgroup_taskset_next - iterate to the next task in taskset
2337  * @tset: taskset of interest
2338  * @dst_cssp: output variable for the destination css
2339  *
2340  * Return the next task in @tset.  Iteration must have been initialized
2341  * with cgroup_taskset_first().
2342  */
2343 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2344 					struct cgroup_subsys_state **dst_cssp)
2345 {
2346 	struct css_set *cset = tset->cur_cset;
2347 	struct task_struct *task = tset->cur_task;
2348 
2349 	while (&cset->mg_node != tset->csets) {
2350 		if (!task)
2351 			task = list_first_entry(&cset->mg_tasks,
2352 						struct task_struct, cg_list);
2353 		else
2354 			task = list_next_entry(task, cg_list);
2355 
2356 		if (&task->cg_list != &cset->mg_tasks) {
2357 			tset->cur_cset = cset;
2358 			tset->cur_task = task;
2359 
2360 			/*
2361 			 * This function may be called both before and
2362 			 * after cgroup_taskset_migrate().  The two cases
2363 			 * can be distinguished by looking at whether @cset
2364 			 * has its ->mg_dst_cset set.
2365 			 */
2366 			if (cset->mg_dst_cset)
2367 				*dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2368 			else
2369 				*dst_cssp = cset->subsys[tset->ssid];
2370 
2371 			return task;
2372 		}
2373 
2374 		cset = list_next_entry(cset, mg_node);
2375 		task = NULL;
2376 	}
2377 
2378 	return NULL;
2379 }
2380 
2381 /**
2382  * cgroup_taskset_migrate - migrate a taskset
2383  * @mgctx: migration context
2384  *
2385  * Migrate tasks in @mgctx as setup by migration preparation functions.
2386  * This function fails iff one of the ->can_attach callbacks fails and
2387  * guarantees that either all or none of the tasks in @mgctx are migrated.
2388  * @mgctx is consumed regardless of success.
2389  */
2390 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx)
2391 {
2392 	struct cgroup_taskset *tset = &mgctx->tset;
2393 	struct cgroup_subsys *ss;
2394 	struct task_struct *task, *tmp_task;
2395 	struct css_set *cset, *tmp_cset;
2396 	int ssid, failed_ssid, ret;
2397 
2398 	/* check that we can legitimately attach to the cgroup */
2399 	if (tset->nr_tasks) {
2400 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2401 			if (ss->can_attach) {
2402 				tset->ssid = ssid;
2403 				ret = ss->can_attach(tset);
2404 				if (ret) {
2405 					failed_ssid = ssid;
2406 					goto out_cancel_attach;
2407 				}
2408 			}
2409 		} while_each_subsys_mask();
2410 	}
2411 
2412 	/*
2413 	 * Now that we're guaranteed success, proceed to move all tasks to
2414 	 * the new cgroup.  There are no failure cases after here, so this
2415 	 * is the commit point.
2416 	 */
2417 	spin_lock_irq(&css_set_lock);
2418 	list_for_each_entry(cset, &tset->src_csets, mg_node) {
2419 		list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2420 			struct css_set *from_cset = task_css_set(task);
2421 			struct css_set *to_cset = cset->mg_dst_cset;
2422 
2423 			get_css_set(to_cset);
2424 			to_cset->nr_tasks++;
2425 			css_set_move_task(task, from_cset, to_cset, true);
2426 			from_cset->nr_tasks--;
2427 			/*
2428 			 * If the source or destination cgroup is frozen,
2429 			 * the task might require to change its state.
2430 			 */
2431 			cgroup_freezer_migrate_task(task, from_cset->dfl_cgrp,
2432 						    to_cset->dfl_cgrp);
2433 			put_css_set_locked(from_cset);
2434 
2435 		}
2436 	}
2437 	spin_unlock_irq(&css_set_lock);
2438 
2439 	/*
2440 	 * Migration is committed, all target tasks are now on dst_csets.
2441 	 * Nothing is sensitive to fork() after this point.  Notify
2442 	 * controllers that migration is complete.
2443 	 */
2444 	tset->csets = &tset->dst_csets;
2445 
2446 	if (tset->nr_tasks) {
2447 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2448 			if (ss->attach) {
2449 				tset->ssid = ssid;
2450 				ss->attach(tset);
2451 			}
2452 		} while_each_subsys_mask();
2453 	}
2454 
2455 	ret = 0;
2456 	goto out_release_tset;
2457 
2458 out_cancel_attach:
2459 	if (tset->nr_tasks) {
2460 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2461 			if (ssid == failed_ssid)
2462 				break;
2463 			if (ss->cancel_attach) {
2464 				tset->ssid = ssid;
2465 				ss->cancel_attach(tset);
2466 			}
2467 		} while_each_subsys_mask();
2468 	}
2469 out_release_tset:
2470 	spin_lock_irq(&css_set_lock);
2471 	list_splice_init(&tset->dst_csets, &tset->src_csets);
2472 	list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2473 		list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2474 		list_del_init(&cset->mg_node);
2475 	}
2476 	spin_unlock_irq(&css_set_lock);
2477 
2478 	/*
2479 	 * Re-initialize the cgroup_taskset structure in case it is reused
2480 	 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute()
2481 	 * iteration.
2482 	 */
2483 	tset->nr_tasks = 0;
2484 	tset->csets    = &tset->src_csets;
2485 	return ret;
2486 }
2487 
2488 /**
2489  * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination
2490  * @dst_cgrp: destination cgroup to test
2491  *
2492  * On the default hierarchy, except for the mixable, (possible) thread root
2493  * and threaded cgroups, subtree_control must be zero for migration
2494  * destination cgroups with tasks so that child cgroups don't compete
2495  * against tasks.
2496  */
2497 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp)
2498 {
2499 	/* v1 doesn't have any restriction */
2500 	if (!cgroup_on_dfl(dst_cgrp))
2501 		return 0;
2502 
2503 	/* verify @dst_cgrp can host resources */
2504 	if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp))
2505 		return -EOPNOTSUPP;
2506 
2507 	/* mixables don't care */
2508 	if (cgroup_is_mixable(dst_cgrp))
2509 		return 0;
2510 
2511 	/*
2512 	 * If @dst_cgrp is already or can become a thread root or is
2513 	 * threaded, it doesn't matter.
2514 	 */
2515 	if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp))
2516 		return 0;
2517 
2518 	/* apply no-internal-process constraint */
2519 	if (dst_cgrp->subtree_control)
2520 		return -EBUSY;
2521 
2522 	return 0;
2523 }
2524 
2525 /**
2526  * cgroup_migrate_finish - cleanup after attach
2527  * @mgctx: migration context
2528  *
2529  * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst().  See
2530  * those functions for details.
2531  */
2532 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx)
2533 {
2534 	LIST_HEAD(preloaded);
2535 	struct css_set *cset, *tmp_cset;
2536 
2537 	lockdep_assert_held(&cgroup_mutex);
2538 
2539 	spin_lock_irq(&css_set_lock);
2540 
2541 	list_splice_tail_init(&mgctx->preloaded_src_csets, &preloaded);
2542 	list_splice_tail_init(&mgctx->preloaded_dst_csets, &preloaded);
2543 
2544 	list_for_each_entry_safe(cset, tmp_cset, &preloaded, mg_preload_node) {
2545 		cset->mg_src_cgrp = NULL;
2546 		cset->mg_dst_cgrp = NULL;
2547 		cset->mg_dst_cset = NULL;
2548 		list_del_init(&cset->mg_preload_node);
2549 		put_css_set_locked(cset);
2550 	}
2551 
2552 	spin_unlock_irq(&css_set_lock);
2553 }
2554 
2555 /**
2556  * cgroup_migrate_add_src - add a migration source css_set
2557  * @src_cset: the source css_set to add
2558  * @dst_cgrp: the destination cgroup
2559  * @mgctx: migration context
2560  *
2561  * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp.  Pin
2562  * @src_cset and add it to @mgctx->src_csets, which should later be cleaned
2563  * up by cgroup_migrate_finish().
2564  *
2565  * This function may be called without holding cgroup_threadgroup_rwsem
2566  * even if the target is a process.  Threads may be created and destroyed
2567  * but as long as cgroup_mutex is not dropped, no new css_set can be put
2568  * into play and the preloaded css_sets are guaranteed to cover all
2569  * migrations.
2570  */
2571 void cgroup_migrate_add_src(struct css_set *src_cset,
2572 			    struct cgroup *dst_cgrp,
2573 			    struct cgroup_mgctx *mgctx)
2574 {
2575 	struct cgroup *src_cgrp;
2576 
2577 	lockdep_assert_held(&cgroup_mutex);
2578 	lockdep_assert_held(&css_set_lock);
2579 
2580 	/*
2581 	 * If ->dead, @src_set is associated with one or more dead cgroups
2582 	 * and doesn't contain any migratable tasks.  Ignore it early so
2583 	 * that the rest of migration path doesn't get confused by it.
2584 	 */
2585 	if (src_cset->dead)
2586 		return;
2587 
2588 	src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2589 
2590 	if (!list_empty(&src_cset->mg_preload_node))
2591 		return;
2592 
2593 	WARN_ON(src_cset->mg_src_cgrp);
2594 	WARN_ON(src_cset->mg_dst_cgrp);
2595 	WARN_ON(!list_empty(&src_cset->mg_tasks));
2596 	WARN_ON(!list_empty(&src_cset->mg_node));
2597 
2598 	src_cset->mg_src_cgrp = src_cgrp;
2599 	src_cset->mg_dst_cgrp = dst_cgrp;
2600 	get_css_set(src_cset);
2601 	list_add_tail(&src_cset->mg_preload_node, &mgctx->preloaded_src_csets);
2602 }
2603 
2604 /**
2605  * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2606  * @mgctx: migration context
2607  *
2608  * Tasks are about to be moved and all the source css_sets have been
2609  * preloaded to @mgctx->preloaded_src_csets.  This function looks up and
2610  * pins all destination css_sets, links each to its source, and append them
2611  * to @mgctx->preloaded_dst_csets.
2612  *
2613  * This function must be called after cgroup_migrate_add_src() has been
2614  * called on each migration source css_set.  After migration is performed
2615  * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2616  * @mgctx.
2617  */
2618 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx)
2619 {
2620 	struct css_set *src_cset, *tmp_cset;
2621 
2622 	lockdep_assert_held(&cgroup_mutex);
2623 
2624 	/* look up the dst cset for each src cset and link it to src */
2625 	list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets,
2626 				 mg_preload_node) {
2627 		struct css_set *dst_cset;
2628 		struct cgroup_subsys *ss;
2629 		int ssid;
2630 
2631 		dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
2632 		if (!dst_cset)
2633 			return -ENOMEM;
2634 
2635 		WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2636 
2637 		/*
2638 		 * If src cset equals dst, it's noop.  Drop the src.
2639 		 * cgroup_migrate() will skip the cset too.  Note that we
2640 		 * can't handle src == dst as some nodes are used by both.
2641 		 */
2642 		if (src_cset == dst_cset) {
2643 			src_cset->mg_src_cgrp = NULL;
2644 			src_cset->mg_dst_cgrp = NULL;
2645 			list_del_init(&src_cset->mg_preload_node);
2646 			put_css_set(src_cset);
2647 			put_css_set(dst_cset);
2648 			continue;
2649 		}
2650 
2651 		src_cset->mg_dst_cset = dst_cset;
2652 
2653 		if (list_empty(&dst_cset->mg_preload_node))
2654 			list_add_tail(&dst_cset->mg_preload_node,
2655 				      &mgctx->preloaded_dst_csets);
2656 		else
2657 			put_css_set(dst_cset);
2658 
2659 		for_each_subsys(ss, ssid)
2660 			if (src_cset->subsys[ssid] != dst_cset->subsys[ssid])
2661 				mgctx->ss_mask |= 1 << ssid;
2662 	}
2663 
2664 	return 0;
2665 }
2666 
2667 /**
2668  * cgroup_migrate - migrate a process or task to a cgroup
2669  * @leader: the leader of the process or the task to migrate
2670  * @threadgroup: whether @leader points to the whole process or a single task
2671  * @mgctx: migration context
2672  *
2673  * Migrate a process or task denoted by @leader.  If migrating a process,
2674  * the caller must be holding cgroup_threadgroup_rwsem.  The caller is also
2675  * responsible for invoking cgroup_migrate_add_src() and
2676  * cgroup_migrate_prepare_dst() on the targets before invoking this
2677  * function and following up with cgroup_migrate_finish().
2678  *
2679  * As long as a controller's ->can_attach() doesn't fail, this function is
2680  * guaranteed to succeed.  This means that, excluding ->can_attach()
2681  * failure, when migrating multiple targets, the success or failure can be
2682  * decided for all targets by invoking group_migrate_prepare_dst() before
2683  * actually starting migrating.
2684  */
2685 int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2686 		   struct cgroup_mgctx *mgctx)
2687 {
2688 	struct task_struct *task;
2689 
2690 	/*
2691 	 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2692 	 * already PF_EXITING could be freed from underneath us unless we
2693 	 * take an rcu_read_lock.
2694 	 */
2695 	spin_lock_irq(&css_set_lock);
2696 	rcu_read_lock();
2697 	task = leader;
2698 	do {
2699 		cgroup_migrate_add_task(task, mgctx);
2700 		if (!threadgroup)
2701 			break;
2702 	} while_each_thread(leader, task);
2703 	rcu_read_unlock();
2704 	spin_unlock_irq(&css_set_lock);
2705 
2706 	return cgroup_migrate_execute(mgctx);
2707 }
2708 
2709 /**
2710  * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2711  * @dst_cgrp: the cgroup to attach to
2712  * @leader: the task or the leader of the threadgroup to be attached
2713  * @threadgroup: attach the whole threadgroup?
2714  *
2715  * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2716  */
2717 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader,
2718 		       bool threadgroup)
2719 {
2720 	DEFINE_CGROUP_MGCTX(mgctx);
2721 	struct task_struct *task;
2722 	int ret;
2723 
2724 	ret = cgroup_migrate_vet_dst(dst_cgrp);
2725 	if (ret)
2726 		return ret;
2727 
2728 	/* look up all src csets */
2729 	spin_lock_irq(&css_set_lock);
2730 	rcu_read_lock();
2731 	task = leader;
2732 	do {
2733 		cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx);
2734 		if (!threadgroup)
2735 			break;
2736 	} while_each_thread(leader, task);
2737 	rcu_read_unlock();
2738 	spin_unlock_irq(&css_set_lock);
2739 
2740 	/* prepare dst csets and commit */
2741 	ret = cgroup_migrate_prepare_dst(&mgctx);
2742 	if (!ret)
2743 		ret = cgroup_migrate(leader, threadgroup, &mgctx);
2744 
2745 	cgroup_migrate_finish(&mgctx);
2746 
2747 	if (!ret)
2748 		TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup);
2749 
2750 	return ret;
2751 }
2752 
2753 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup,
2754 					     bool *locked)
2755 	__acquires(&cgroup_threadgroup_rwsem)
2756 {
2757 	struct task_struct *tsk;
2758 	pid_t pid;
2759 
2760 	if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2761 		return ERR_PTR(-EINVAL);
2762 
2763 	/*
2764 	 * If we migrate a single thread, we don't care about threadgroup
2765 	 * stability. If the thread is `current`, it won't exit(2) under our
2766 	 * hands or change PID through exec(2). We exclude
2767 	 * cgroup_update_dfl_csses and other cgroup_{proc,thread}s_write
2768 	 * callers by cgroup_mutex.
2769 	 * Therefore, we can skip the global lock.
2770 	 */
2771 	lockdep_assert_held(&cgroup_mutex);
2772 	if (pid || threadgroup) {
2773 		percpu_down_write(&cgroup_threadgroup_rwsem);
2774 		*locked = true;
2775 	} else {
2776 		*locked = false;
2777 	}
2778 
2779 	rcu_read_lock();
2780 	if (pid) {
2781 		tsk = find_task_by_vpid(pid);
2782 		if (!tsk) {
2783 			tsk = ERR_PTR(-ESRCH);
2784 			goto out_unlock_threadgroup;
2785 		}
2786 	} else {
2787 		tsk = current;
2788 	}
2789 
2790 	if (threadgroup)
2791 		tsk = tsk->group_leader;
2792 
2793 	/*
2794 	 * kthreads may acquire PF_NO_SETAFFINITY during initialization.
2795 	 * If userland migrates such a kthread to a non-root cgroup, it can
2796 	 * become trapped in a cpuset, or RT kthread may be born in a
2797 	 * cgroup with no rt_runtime allocated.  Just say no.
2798 	 */
2799 	if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) {
2800 		tsk = ERR_PTR(-EINVAL);
2801 		goto out_unlock_threadgroup;
2802 	}
2803 
2804 	get_task_struct(tsk);
2805 	goto out_unlock_rcu;
2806 
2807 out_unlock_threadgroup:
2808 	if (*locked) {
2809 		percpu_up_write(&cgroup_threadgroup_rwsem);
2810 		*locked = false;
2811 	}
2812 out_unlock_rcu:
2813 	rcu_read_unlock();
2814 	return tsk;
2815 }
2816 
2817 void cgroup_procs_write_finish(struct task_struct *task, bool locked)
2818 	__releases(&cgroup_threadgroup_rwsem)
2819 {
2820 	struct cgroup_subsys *ss;
2821 	int ssid;
2822 
2823 	/* release reference from cgroup_procs_write_start() */
2824 	put_task_struct(task);
2825 
2826 	if (locked)
2827 		percpu_up_write(&cgroup_threadgroup_rwsem);
2828 	for_each_subsys(ss, ssid)
2829 		if (ss->post_attach)
2830 			ss->post_attach();
2831 }
2832 
2833 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
2834 {
2835 	struct cgroup_subsys *ss;
2836 	bool printed = false;
2837 	int ssid;
2838 
2839 	do_each_subsys_mask(ss, ssid, ss_mask) {
2840 		if (printed)
2841 			seq_putc(seq, ' ');
2842 		seq_puts(seq, ss->name);
2843 		printed = true;
2844 	} while_each_subsys_mask();
2845 	if (printed)
2846 		seq_putc(seq, '\n');
2847 }
2848 
2849 /* show controllers which are enabled from the parent */
2850 static int cgroup_controllers_show(struct seq_file *seq, void *v)
2851 {
2852 	struct cgroup *cgrp = seq_css(seq)->cgroup;
2853 
2854 	cgroup_print_ss_mask(seq, cgroup_control(cgrp));
2855 	return 0;
2856 }
2857 
2858 /* show controllers which are enabled for a given cgroup's children */
2859 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
2860 {
2861 	struct cgroup *cgrp = seq_css(seq)->cgroup;
2862 
2863 	cgroup_print_ss_mask(seq, cgrp->subtree_control);
2864 	return 0;
2865 }
2866 
2867 /**
2868  * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2869  * @cgrp: root of the subtree to update csses for
2870  *
2871  * @cgrp's control masks have changed and its subtree's css associations
2872  * need to be updated accordingly.  This function looks up all css_sets
2873  * which are attached to the subtree, creates the matching updated css_sets
2874  * and migrates the tasks to the new ones.
2875  */
2876 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2877 {
2878 	DEFINE_CGROUP_MGCTX(mgctx);
2879 	struct cgroup_subsys_state *d_css;
2880 	struct cgroup *dsct;
2881 	struct css_set *src_cset;
2882 	int ret;
2883 
2884 	lockdep_assert_held(&cgroup_mutex);
2885 
2886 	percpu_down_write(&cgroup_threadgroup_rwsem);
2887 
2888 	/* look up all csses currently attached to @cgrp's subtree */
2889 	spin_lock_irq(&css_set_lock);
2890 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2891 		struct cgrp_cset_link *link;
2892 
2893 		list_for_each_entry(link, &dsct->cset_links, cset_link)
2894 			cgroup_migrate_add_src(link->cset, dsct, &mgctx);
2895 	}
2896 	spin_unlock_irq(&css_set_lock);
2897 
2898 	/* NULL dst indicates self on default hierarchy */
2899 	ret = cgroup_migrate_prepare_dst(&mgctx);
2900 	if (ret)
2901 		goto out_finish;
2902 
2903 	spin_lock_irq(&css_set_lock);
2904 	list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, mg_preload_node) {
2905 		struct task_struct *task, *ntask;
2906 
2907 		/* all tasks in src_csets need to be migrated */
2908 		list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
2909 			cgroup_migrate_add_task(task, &mgctx);
2910 	}
2911 	spin_unlock_irq(&css_set_lock);
2912 
2913 	ret = cgroup_migrate_execute(&mgctx);
2914 out_finish:
2915 	cgroup_migrate_finish(&mgctx);
2916 	percpu_up_write(&cgroup_threadgroup_rwsem);
2917 	return ret;
2918 }
2919 
2920 /**
2921  * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
2922  * @cgrp: root of the target subtree
2923  *
2924  * Because css offlining is asynchronous, userland may try to re-enable a
2925  * controller while the previous css is still around.  This function grabs
2926  * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
2927  */
2928 void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
2929 	__acquires(&cgroup_mutex)
2930 {
2931 	struct cgroup *dsct;
2932 	struct cgroup_subsys_state *d_css;
2933 	struct cgroup_subsys *ss;
2934 	int ssid;
2935 
2936 restart:
2937 	mutex_lock(&cgroup_mutex);
2938 
2939 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
2940 		for_each_subsys(ss, ssid) {
2941 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
2942 			DEFINE_WAIT(wait);
2943 
2944 			if (!css || !percpu_ref_is_dying(&css->refcnt))
2945 				continue;
2946 
2947 			cgroup_get_live(dsct);
2948 			prepare_to_wait(&dsct->offline_waitq, &wait,
2949 					TASK_UNINTERRUPTIBLE);
2950 
2951 			mutex_unlock(&cgroup_mutex);
2952 			schedule();
2953 			finish_wait(&dsct->offline_waitq, &wait);
2954 
2955 			cgroup_put(dsct);
2956 			goto restart;
2957 		}
2958 	}
2959 }
2960 
2961 /**
2962  * cgroup_save_control - save control masks and dom_cgrp of a subtree
2963  * @cgrp: root of the target subtree
2964  *
2965  * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the
2966  * respective old_ prefixed fields for @cgrp's subtree including @cgrp
2967  * itself.
2968  */
2969 static void cgroup_save_control(struct cgroup *cgrp)
2970 {
2971 	struct cgroup *dsct;
2972 	struct cgroup_subsys_state *d_css;
2973 
2974 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2975 		dsct->old_subtree_control = dsct->subtree_control;
2976 		dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
2977 		dsct->old_dom_cgrp = dsct->dom_cgrp;
2978 	}
2979 }
2980 
2981 /**
2982  * cgroup_propagate_control - refresh control masks of a subtree
2983  * @cgrp: root of the target subtree
2984  *
2985  * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
2986  * ->subtree_control and propagate controller availability through the
2987  * subtree so that descendants don't have unavailable controllers enabled.
2988  */
2989 static void cgroup_propagate_control(struct cgroup *cgrp)
2990 {
2991 	struct cgroup *dsct;
2992 	struct cgroup_subsys_state *d_css;
2993 
2994 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2995 		dsct->subtree_control &= cgroup_control(dsct);
2996 		dsct->subtree_ss_mask =
2997 			cgroup_calc_subtree_ss_mask(dsct->subtree_control,
2998 						    cgroup_ss_mask(dsct));
2999 	}
3000 }
3001 
3002 /**
3003  * cgroup_restore_control - restore control masks and dom_cgrp of a subtree
3004  * @cgrp: root of the target subtree
3005  *
3006  * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the
3007  * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3008  * itself.
3009  */
3010 static void cgroup_restore_control(struct cgroup *cgrp)
3011 {
3012 	struct cgroup *dsct;
3013 	struct cgroup_subsys_state *d_css;
3014 
3015 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3016 		dsct->subtree_control = dsct->old_subtree_control;
3017 		dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
3018 		dsct->dom_cgrp = dsct->old_dom_cgrp;
3019 	}
3020 }
3021 
3022 static bool css_visible(struct cgroup_subsys_state *css)
3023 {
3024 	struct cgroup_subsys *ss = css->ss;
3025 	struct cgroup *cgrp = css->cgroup;
3026 
3027 	if (cgroup_control(cgrp) & (1 << ss->id))
3028 		return true;
3029 	if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
3030 		return false;
3031 	return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
3032 }
3033 
3034 /**
3035  * cgroup_apply_control_enable - enable or show csses according to control
3036  * @cgrp: root of the target subtree
3037  *
3038  * Walk @cgrp's subtree and create new csses or make the existing ones
3039  * visible.  A css is created invisible if it's being implicitly enabled
3040  * through dependency.  An invisible css is made visible when the userland
3041  * explicitly enables it.
3042  *
3043  * Returns 0 on success, -errno on failure.  On failure, csses which have
3044  * been processed already aren't cleaned up.  The caller is responsible for
3045  * cleaning up with cgroup_apply_control_disable().
3046  */
3047 static int cgroup_apply_control_enable(struct cgroup *cgrp)
3048 {
3049 	struct cgroup *dsct;
3050 	struct cgroup_subsys_state *d_css;
3051 	struct cgroup_subsys *ss;
3052 	int ssid, ret;
3053 
3054 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3055 		for_each_subsys(ss, ssid) {
3056 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3057 
3058 			WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
3059 
3060 			if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
3061 				continue;
3062 
3063 			if (!css) {
3064 				css = css_create(dsct, ss);
3065 				if (IS_ERR(css))
3066 					return PTR_ERR(css);
3067 			}
3068 
3069 			if (css_visible(css)) {
3070 				ret = css_populate_dir(css);
3071 				if (ret)
3072 					return ret;
3073 			}
3074 		}
3075 	}
3076 
3077 	return 0;
3078 }
3079 
3080 /**
3081  * cgroup_apply_control_disable - kill or hide csses according to control
3082  * @cgrp: root of the target subtree
3083  *
3084  * Walk @cgrp's subtree and kill and hide csses so that they match
3085  * cgroup_ss_mask() and cgroup_visible_mask().
3086  *
3087  * A css is hidden when the userland requests it to be disabled while other
3088  * subsystems are still depending on it.  The css must not actively control
3089  * resources and be in the vanilla state if it's made visible again later.
3090  * Controllers which may be depended upon should provide ->css_reset() for
3091  * this purpose.
3092  */
3093 static void cgroup_apply_control_disable(struct cgroup *cgrp)
3094 {
3095 	struct cgroup *dsct;
3096 	struct cgroup_subsys_state *d_css;
3097 	struct cgroup_subsys *ss;
3098 	int ssid;
3099 
3100 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3101 		for_each_subsys(ss, ssid) {
3102 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3103 
3104 			WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
3105 
3106 			if (!css)
3107 				continue;
3108 
3109 			if (css->parent &&
3110 			    !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
3111 				kill_css(css);
3112 			} else if (!css_visible(css)) {
3113 				css_clear_dir(css);
3114 				if (ss->css_reset)
3115 					ss->css_reset(css);
3116 			}
3117 		}
3118 	}
3119 }
3120 
3121 /**
3122  * cgroup_apply_control - apply control mask updates to the subtree
3123  * @cgrp: root of the target subtree
3124  *
3125  * subsystems can be enabled and disabled in a subtree using the following
3126  * steps.
3127  *
3128  * 1. Call cgroup_save_control() to stash the current state.
3129  * 2. Update ->subtree_control masks in the subtree as desired.
3130  * 3. Call cgroup_apply_control() to apply the changes.
3131  * 4. Optionally perform other related operations.
3132  * 5. Call cgroup_finalize_control() to finish up.
3133  *
3134  * This function implements step 3 and propagates the mask changes
3135  * throughout @cgrp's subtree, updates csses accordingly and perform
3136  * process migrations.
3137  */
3138 static int cgroup_apply_control(struct cgroup *cgrp)
3139 {
3140 	int ret;
3141 
3142 	cgroup_propagate_control(cgrp);
3143 
3144 	ret = cgroup_apply_control_enable(cgrp);
3145 	if (ret)
3146 		return ret;
3147 
3148 	/*
3149 	 * At this point, cgroup_e_css_by_mask() results reflect the new csses
3150 	 * making the following cgroup_update_dfl_csses() properly update
3151 	 * css associations of all tasks in the subtree.
3152 	 */
3153 	ret = cgroup_update_dfl_csses(cgrp);
3154 	if (ret)
3155 		return ret;
3156 
3157 	return 0;
3158 }
3159 
3160 /**
3161  * cgroup_finalize_control - finalize control mask update
3162  * @cgrp: root of the target subtree
3163  * @ret: the result of the update
3164  *
3165  * Finalize control mask update.  See cgroup_apply_control() for more info.
3166  */
3167 static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
3168 {
3169 	if (ret) {
3170 		cgroup_restore_control(cgrp);
3171 		cgroup_propagate_control(cgrp);
3172 	}
3173 
3174 	cgroup_apply_control_disable(cgrp);
3175 }
3176 
3177 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable)
3178 {
3179 	u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask;
3180 
3181 	/* if nothing is getting enabled, nothing to worry about */
3182 	if (!enable)
3183 		return 0;
3184 
3185 	/* can @cgrp host any resources? */
3186 	if (!cgroup_is_valid_domain(cgrp->dom_cgrp))
3187 		return -EOPNOTSUPP;
3188 
3189 	/* mixables don't care */
3190 	if (cgroup_is_mixable(cgrp))
3191 		return 0;
3192 
3193 	if (domain_enable) {
3194 		/* can't enable domain controllers inside a thread subtree */
3195 		if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3196 			return -EOPNOTSUPP;
3197 	} else {
3198 		/*
3199 		 * Threaded controllers can handle internal competitions
3200 		 * and are always allowed inside a (prospective) thread
3201 		 * subtree.
3202 		 */
3203 		if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3204 			return 0;
3205 	}
3206 
3207 	/*
3208 	 * Controllers can't be enabled for a cgroup with tasks to avoid
3209 	 * child cgroups competing against tasks.
3210 	 */
3211 	if (cgroup_has_tasks(cgrp))
3212 		return -EBUSY;
3213 
3214 	return 0;
3215 }
3216 
3217 /* change the enabled child controllers for a cgroup in the default hierarchy */
3218 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3219 					    char *buf, size_t nbytes,
3220 					    loff_t off)
3221 {
3222 	u16 enable = 0, disable = 0;
3223 	struct cgroup *cgrp, *child;
3224 	struct cgroup_subsys *ss;
3225 	char *tok;
3226 	int ssid, ret;
3227 
3228 	/*
3229 	 * Parse input - space separated list of subsystem names prefixed
3230 	 * with either + or -.
3231 	 */
3232 	buf = strstrip(buf);
3233 	while ((tok = strsep(&buf, " "))) {
3234 		if (tok[0] == '\0')
3235 			continue;
3236 		do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
3237 			if (!cgroup_ssid_enabled(ssid) ||
3238 			    strcmp(tok + 1, ss->name))
3239 				continue;
3240 
3241 			if (*tok == '+') {
3242 				enable |= 1 << ssid;
3243 				disable &= ~(1 << ssid);
3244 			} else if (*tok == '-') {
3245 				disable |= 1 << ssid;
3246 				enable &= ~(1 << ssid);
3247 			} else {
3248 				return -EINVAL;
3249 			}
3250 			break;
3251 		} while_each_subsys_mask();
3252 		if (ssid == CGROUP_SUBSYS_COUNT)
3253 			return -EINVAL;
3254 	}
3255 
3256 	cgrp = cgroup_kn_lock_live(of->kn, true);
3257 	if (!cgrp)
3258 		return -ENODEV;
3259 
3260 	for_each_subsys(ss, ssid) {
3261 		if (enable & (1 << ssid)) {
3262 			if (cgrp->subtree_control & (1 << ssid)) {
3263 				enable &= ~(1 << ssid);
3264 				continue;
3265 			}
3266 
3267 			if (!(cgroup_control(cgrp) & (1 << ssid))) {
3268 				ret = -ENOENT;
3269 				goto out_unlock;
3270 			}
3271 		} else if (disable & (1 << ssid)) {
3272 			if (!(cgrp->subtree_control & (1 << ssid))) {
3273 				disable &= ~(1 << ssid);
3274 				continue;
3275 			}
3276 
3277 			/* a child has it enabled? */
3278 			cgroup_for_each_live_child(child, cgrp) {
3279 				if (child->subtree_control & (1 << ssid)) {
3280 					ret = -EBUSY;
3281 					goto out_unlock;
3282 				}
3283 			}
3284 		}
3285 	}
3286 
3287 	if (!enable && !disable) {
3288 		ret = 0;
3289 		goto out_unlock;
3290 	}
3291 
3292 	ret = cgroup_vet_subtree_control_enable(cgrp, enable);
3293 	if (ret)
3294 		goto out_unlock;
3295 
3296 	/* save and update control masks and prepare csses */
3297 	cgroup_save_control(cgrp);
3298 
3299 	cgrp->subtree_control |= enable;
3300 	cgrp->subtree_control &= ~disable;
3301 
3302 	ret = cgroup_apply_control(cgrp);
3303 	cgroup_finalize_control(cgrp, ret);
3304 	if (ret)
3305 		goto out_unlock;
3306 
3307 	kernfs_activate(cgrp->kn);
3308 out_unlock:
3309 	cgroup_kn_unlock(of->kn);
3310 	return ret ?: nbytes;
3311 }
3312 
3313 /**
3314  * cgroup_enable_threaded - make @cgrp threaded
3315  * @cgrp: the target cgroup
3316  *
3317  * Called when "threaded" is written to the cgroup.type interface file and
3318  * tries to make @cgrp threaded and join the parent's resource domain.
3319  * This function is never called on the root cgroup as cgroup.type doesn't
3320  * exist on it.
3321  */
3322 static int cgroup_enable_threaded(struct cgroup *cgrp)
3323 {
3324 	struct cgroup *parent = cgroup_parent(cgrp);
3325 	struct cgroup *dom_cgrp = parent->dom_cgrp;
3326 	struct cgroup *dsct;
3327 	struct cgroup_subsys_state *d_css;
3328 	int ret;
3329 
3330 	lockdep_assert_held(&cgroup_mutex);
3331 
3332 	/* noop if already threaded */
3333 	if (cgroup_is_threaded(cgrp))
3334 		return 0;
3335 
3336 	/*
3337 	 * If @cgroup is populated or has domain controllers enabled, it
3338 	 * can't be switched.  While the below cgroup_can_be_thread_root()
3339 	 * test can catch the same conditions, that's only when @parent is
3340 	 * not mixable, so let's check it explicitly.
3341 	 */
3342 	if (cgroup_is_populated(cgrp) ||
3343 	    cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
3344 		return -EOPNOTSUPP;
3345 
3346 	/* we're joining the parent's domain, ensure its validity */
3347 	if (!cgroup_is_valid_domain(dom_cgrp) ||
3348 	    !cgroup_can_be_thread_root(dom_cgrp))
3349 		return -EOPNOTSUPP;
3350 
3351 	/*
3352 	 * The following shouldn't cause actual migrations and should
3353 	 * always succeed.
3354 	 */
3355 	cgroup_save_control(cgrp);
3356 
3357 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)
3358 		if (dsct == cgrp || cgroup_is_threaded(dsct))
3359 			dsct->dom_cgrp = dom_cgrp;
3360 
3361 	ret = cgroup_apply_control(cgrp);
3362 	if (!ret)
3363 		parent->nr_threaded_children++;
3364 
3365 	cgroup_finalize_control(cgrp, ret);
3366 	return ret;
3367 }
3368 
3369 static int cgroup_type_show(struct seq_file *seq, void *v)
3370 {
3371 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3372 
3373 	if (cgroup_is_threaded(cgrp))
3374 		seq_puts(seq, "threaded\n");
3375 	else if (!cgroup_is_valid_domain(cgrp))
3376 		seq_puts(seq, "domain invalid\n");
3377 	else if (cgroup_is_thread_root(cgrp))
3378 		seq_puts(seq, "domain threaded\n");
3379 	else
3380 		seq_puts(seq, "domain\n");
3381 
3382 	return 0;
3383 }
3384 
3385 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf,
3386 				 size_t nbytes, loff_t off)
3387 {
3388 	struct cgroup *cgrp;
3389 	int ret;
3390 
3391 	/* only switching to threaded mode is supported */
3392 	if (strcmp(strstrip(buf), "threaded"))
3393 		return -EINVAL;
3394 
3395 	cgrp = cgroup_kn_lock_live(of->kn, false);
3396 	if (!cgrp)
3397 		return -ENOENT;
3398 
3399 	/* threaded can only be enabled */
3400 	ret = cgroup_enable_threaded(cgrp);
3401 
3402 	cgroup_kn_unlock(of->kn);
3403 	return ret ?: nbytes;
3404 }
3405 
3406 static int cgroup_max_descendants_show(struct seq_file *seq, void *v)
3407 {
3408 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3409 	int descendants = READ_ONCE(cgrp->max_descendants);
3410 
3411 	if (descendants == INT_MAX)
3412 		seq_puts(seq, "max\n");
3413 	else
3414 		seq_printf(seq, "%d\n", descendants);
3415 
3416 	return 0;
3417 }
3418 
3419 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of,
3420 					   char *buf, size_t nbytes, loff_t off)
3421 {
3422 	struct cgroup *cgrp;
3423 	int descendants;
3424 	ssize_t ret;
3425 
3426 	buf = strstrip(buf);
3427 	if (!strcmp(buf, "max")) {
3428 		descendants = INT_MAX;
3429 	} else {
3430 		ret = kstrtoint(buf, 0, &descendants);
3431 		if (ret)
3432 			return ret;
3433 	}
3434 
3435 	if (descendants < 0)
3436 		return -ERANGE;
3437 
3438 	cgrp = cgroup_kn_lock_live(of->kn, false);
3439 	if (!cgrp)
3440 		return -ENOENT;
3441 
3442 	cgrp->max_descendants = descendants;
3443 
3444 	cgroup_kn_unlock(of->kn);
3445 
3446 	return nbytes;
3447 }
3448 
3449 static int cgroup_max_depth_show(struct seq_file *seq, void *v)
3450 {
3451 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3452 	int depth = READ_ONCE(cgrp->max_depth);
3453 
3454 	if (depth == INT_MAX)
3455 		seq_puts(seq, "max\n");
3456 	else
3457 		seq_printf(seq, "%d\n", depth);
3458 
3459 	return 0;
3460 }
3461 
3462 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of,
3463 				      char *buf, size_t nbytes, loff_t off)
3464 {
3465 	struct cgroup *cgrp;
3466 	ssize_t ret;
3467 	int depth;
3468 
3469 	buf = strstrip(buf);
3470 	if (!strcmp(buf, "max")) {
3471 		depth = INT_MAX;
3472 	} else {
3473 		ret = kstrtoint(buf, 0, &depth);
3474 		if (ret)
3475 			return ret;
3476 	}
3477 
3478 	if (depth < 0)
3479 		return -ERANGE;
3480 
3481 	cgrp = cgroup_kn_lock_live(of->kn, false);
3482 	if (!cgrp)
3483 		return -ENOENT;
3484 
3485 	cgrp->max_depth = depth;
3486 
3487 	cgroup_kn_unlock(of->kn);
3488 
3489 	return nbytes;
3490 }
3491 
3492 static int cgroup_events_show(struct seq_file *seq, void *v)
3493 {
3494 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3495 
3496 	seq_printf(seq, "populated %d\n", cgroup_is_populated(cgrp));
3497 	seq_printf(seq, "frozen %d\n", test_bit(CGRP_FROZEN, &cgrp->flags));
3498 
3499 	return 0;
3500 }
3501 
3502 static int cgroup_stat_show(struct seq_file *seq, void *v)
3503 {
3504 	struct cgroup *cgroup = seq_css(seq)->cgroup;
3505 
3506 	seq_printf(seq, "nr_descendants %d\n",
3507 		   cgroup->nr_descendants);
3508 	seq_printf(seq, "nr_dying_descendants %d\n",
3509 		   cgroup->nr_dying_descendants);
3510 
3511 	return 0;
3512 }
3513 
3514 static int __maybe_unused cgroup_extra_stat_show(struct seq_file *seq,
3515 						 struct cgroup *cgrp, int ssid)
3516 {
3517 	struct cgroup_subsys *ss = cgroup_subsys[ssid];
3518 	struct cgroup_subsys_state *css;
3519 	int ret;
3520 
3521 	if (!ss->css_extra_stat_show)
3522 		return 0;
3523 
3524 	css = cgroup_tryget_css(cgrp, ss);
3525 	if (!css)
3526 		return 0;
3527 
3528 	ret = ss->css_extra_stat_show(seq, css);
3529 	css_put(css);
3530 	return ret;
3531 }
3532 
3533 static int cpu_stat_show(struct seq_file *seq, void *v)
3534 {
3535 	struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup;
3536 	int ret = 0;
3537 
3538 	cgroup_base_stat_cputime_show(seq);
3539 #ifdef CONFIG_CGROUP_SCHED
3540 	ret = cgroup_extra_stat_show(seq, cgrp, cpu_cgrp_id);
3541 #endif
3542 	return ret;
3543 }
3544 
3545 #ifdef CONFIG_PSI
3546 static int cgroup_io_pressure_show(struct seq_file *seq, void *v)
3547 {
3548 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3549 	struct psi_group *psi = cgroup_id(cgrp) == 1 ? &psi_system : &cgrp->psi;
3550 
3551 	return psi_show(seq, psi, PSI_IO);
3552 }
3553 static int cgroup_memory_pressure_show(struct seq_file *seq, void *v)
3554 {
3555 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3556 	struct psi_group *psi = cgroup_id(cgrp) == 1 ? &psi_system : &cgrp->psi;
3557 
3558 	return psi_show(seq, psi, PSI_MEM);
3559 }
3560 static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v)
3561 {
3562 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3563 	struct psi_group *psi = cgroup_id(cgrp) == 1 ? &psi_system : &cgrp->psi;
3564 
3565 	return psi_show(seq, psi, PSI_CPU);
3566 }
3567 
3568 static ssize_t cgroup_pressure_write(struct kernfs_open_file *of, char *buf,
3569 					  size_t nbytes, enum psi_res res)
3570 {
3571 	struct psi_trigger *new;
3572 	struct cgroup *cgrp;
3573 
3574 	cgrp = cgroup_kn_lock_live(of->kn, false);
3575 	if (!cgrp)
3576 		return -ENODEV;
3577 
3578 	cgroup_get(cgrp);
3579 	cgroup_kn_unlock(of->kn);
3580 
3581 	new = psi_trigger_create(&cgrp->psi, buf, nbytes, res);
3582 	if (IS_ERR(new)) {
3583 		cgroup_put(cgrp);
3584 		return PTR_ERR(new);
3585 	}
3586 
3587 	psi_trigger_replace(&of->priv, new);
3588 
3589 	cgroup_put(cgrp);
3590 
3591 	return nbytes;
3592 }
3593 
3594 static ssize_t cgroup_io_pressure_write(struct kernfs_open_file *of,
3595 					  char *buf, size_t nbytes,
3596 					  loff_t off)
3597 {
3598 	return cgroup_pressure_write(of, buf, nbytes, PSI_IO);
3599 }
3600 
3601 static ssize_t cgroup_memory_pressure_write(struct kernfs_open_file *of,
3602 					  char *buf, size_t nbytes,
3603 					  loff_t off)
3604 {
3605 	return cgroup_pressure_write(of, buf, nbytes, PSI_MEM);
3606 }
3607 
3608 static ssize_t cgroup_cpu_pressure_write(struct kernfs_open_file *of,
3609 					  char *buf, size_t nbytes,
3610 					  loff_t off)
3611 {
3612 	return cgroup_pressure_write(of, buf, nbytes, PSI_CPU);
3613 }
3614 
3615 static __poll_t cgroup_pressure_poll(struct kernfs_open_file *of,
3616 					  poll_table *pt)
3617 {
3618 	return psi_trigger_poll(&of->priv, of->file, pt);
3619 }
3620 
3621 static void cgroup_pressure_release(struct kernfs_open_file *of)
3622 {
3623 	psi_trigger_replace(&of->priv, NULL);
3624 }
3625 #endif /* CONFIG_PSI */
3626 
3627 static int cgroup_freeze_show(struct seq_file *seq, void *v)
3628 {
3629 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3630 
3631 	seq_printf(seq, "%d\n", cgrp->freezer.freeze);
3632 
3633 	return 0;
3634 }
3635 
3636 static ssize_t cgroup_freeze_write(struct kernfs_open_file *of,
3637 				   char *buf, size_t nbytes, loff_t off)
3638 {
3639 	struct cgroup *cgrp;
3640 	ssize_t ret;
3641 	int freeze;
3642 
3643 	ret = kstrtoint(strstrip(buf), 0, &freeze);
3644 	if (ret)
3645 		return ret;
3646 
3647 	if (freeze < 0 || freeze > 1)
3648 		return -ERANGE;
3649 
3650 	cgrp = cgroup_kn_lock_live(of->kn, false);
3651 	if (!cgrp)
3652 		return -ENOENT;
3653 
3654 	cgroup_freeze(cgrp, freeze);
3655 
3656 	cgroup_kn_unlock(of->kn);
3657 
3658 	return nbytes;
3659 }
3660 
3661 static int cgroup_file_open(struct kernfs_open_file *of)
3662 {
3663 	struct cftype *cft = of->kn->priv;
3664 
3665 	if (cft->open)
3666 		return cft->open(of);
3667 	return 0;
3668 }
3669 
3670 static void cgroup_file_release(struct kernfs_open_file *of)
3671 {
3672 	struct cftype *cft = of->kn->priv;
3673 
3674 	if (cft->release)
3675 		cft->release(of);
3676 }
3677 
3678 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3679 				 size_t nbytes, loff_t off)
3680 {
3681 	struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
3682 	struct cgroup *cgrp = of->kn->parent->priv;
3683 	struct cftype *cft = of->kn->priv;
3684 	struct cgroup_subsys_state *css;
3685 	int ret;
3686 
3687 	/*
3688 	 * If namespaces are delegation boundaries, disallow writes to
3689 	 * files in an non-init namespace root from inside the namespace
3690 	 * except for the files explicitly marked delegatable -
3691 	 * cgroup.procs and cgroup.subtree_control.
3692 	 */
3693 	if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) &&
3694 	    !(cft->flags & CFTYPE_NS_DELEGATABLE) &&
3695 	    ns != &init_cgroup_ns && ns->root_cset->dfl_cgrp == cgrp)
3696 		return -EPERM;
3697 
3698 	if (cft->write)
3699 		return cft->write(of, buf, nbytes, off);
3700 
3701 	/*
3702 	 * kernfs guarantees that a file isn't deleted with operations in
3703 	 * flight, which means that the matching css is and stays alive and
3704 	 * doesn't need to be pinned.  The RCU locking is not necessary
3705 	 * either.  It's just for the convenience of using cgroup_css().
3706 	 */
3707 	rcu_read_lock();
3708 	css = cgroup_css(cgrp, cft->ss);
3709 	rcu_read_unlock();
3710 
3711 	if (cft->write_u64) {
3712 		unsigned long long v;
3713 		ret = kstrtoull(buf, 0, &v);
3714 		if (!ret)
3715 			ret = cft->write_u64(css, cft, v);
3716 	} else if (cft->write_s64) {
3717 		long long v;
3718 		ret = kstrtoll(buf, 0, &v);
3719 		if (!ret)
3720 			ret = cft->write_s64(css, cft, v);
3721 	} else {
3722 		ret = -EINVAL;
3723 	}
3724 
3725 	return ret ?: nbytes;
3726 }
3727 
3728 static __poll_t cgroup_file_poll(struct kernfs_open_file *of, poll_table *pt)
3729 {
3730 	struct cftype *cft = of->kn->priv;
3731 
3732 	if (cft->poll)
3733 		return cft->poll(of, pt);
3734 
3735 	return kernfs_generic_poll(of, pt);
3736 }
3737 
3738 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
3739 {
3740 	return seq_cft(seq)->seq_start(seq, ppos);
3741 }
3742 
3743 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
3744 {
3745 	return seq_cft(seq)->seq_next(seq, v, ppos);
3746 }
3747 
3748 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
3749 {
3750 	if (seq_cft(seq)->seq_stop)
3751 		seq_cft(seq)->seq_stop(seq, v);
3752 }
3753 
3754 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
3755 {
3756 	struct cftype *cft = seq_cft(m);
3757 	struct cgroup_subsys_state *css = seq_css(m);
3758 
3759 	if (cft->seq_show)
3760 		return cft->seq_show(m, arg);
3761 
3762 	if (cft->read_u64)
3763 		seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3764 	else if (cft->read_s64)
3765 		seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3766 	else
3767 		return -EINVAL;
3768 	return 0;
3769 }
3770 
3771 static struct kernfs_ops cgroup_kf_single_ops = {
3772 	.atomic_write_len	= PAGE_SIZE,
3773 	.open			= cgroup_file_open,
3774 	.release		= cgroup_file_release,
3775 	.write			= cgroup_file_write,
3776 	.poll			= cgroup_file_poll,
3777 	.seq_show		= cgroup_seqfile_show,
3778 };
3779 
3780 static struct kernfs_ops cgroup_kf_ops = {
3781 	.atomic_write_len	= PAGE_SIZE,
3782 	.open			= cgroup_file_open,
3783 	.release		= cgroup_file_release,
3784 	.write			= cgroup_file_write,
3785 	.poll			= cgroup_file_poll,
3786 	.seq_start		= cgroup_seqfile_start,
3787 	.seq_next		= cgroup_seqfile_next,
3788 	.seq_stop		= cgroup_seqfile_stop,
3789 	.seq_show		= cgroup_seqfile_show,
3790 };
3791 
3792 /* set uid and gid of cgroup dirs and files to that of the creator */
3793 static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3794 {
3795 	struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3796 			       .ia_uid = current_fsuid(),
3797 			       .ia_gid = current_fsgid(), };
3798 
3799 	if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3800 	    gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3801 		return 0;
3802 
3803 	return kernfs_setattr(kn, &iattr);
3804 }
3805 
3806 static void cgroup_file_notify_timer(struct timer_list *timer)
3807 {
3808 	cgroup_file_notify(container_of(timer, struct cgroup_file,
3809 					notify_timer));
3810 }
3811 
3812 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3813 			   struct cftype *cft)
3814 {
3815 	char name[CGROUP_FILE_NAME_MAX];
3816 	struct kernfs_node *kn;
3817 	struct lock_class_key *key = NULL;
3818 	int ret;
3819 
3820 #ifdef CONFIG_DEBUG_LOCK_ALLOC
3821 	key = &cft->lockdep_key;
3822 #endif
3823 	kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3824 				  cgroup_file_mode(cft),
3825 				  GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
3826 				  0, cft->kf_ops, cft,
3827 				  NULL, key);
3828 	if (IS_ERR(kn))
3829 		return PTR_ERR(kn);
3830 
3831 	ret = cgroup_kn_set_ugid(kn);
3832 	if (ret) {
3833 		kernfs_remove(kn);
3834 		return ret;
3835 	}
3836 
3837 	if (cft->file_offset) {
3838 		struct cgroup_file *cfile = (void *)css + cft->file_offset;
3839 
3840 		timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0);
3841 
3842 		spin_lock_irq(&cgroup_file_kn_lock);
3843 		cfile->kn = kn;
3844 		spin_unlock_irq(&cgroup_file_kn_lock);
3845 	}
3846 
3847 	return 0;
3848 }
3849 
3850 /**
3851  * cgroup_addrm_files - add or remove files to a cgroup directory
3852  * @css: the target css
3853  * @cgrp: the target cgroup (usually css->cgroup)
3854  * @cfts: array of cftypes to be added
3855  * @is_add: whether to add or remove
3856  *
3857  * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3858  * For removals, this function never fails.
3859  */
3860 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3861 			      struct cgroup *cgrp, struct cftype cfts[],
3862 			      bool is_add)
3863 {
3864 	struct cftype *cft, *cft_end = NULL;
3865 	int ret = 0;
3866 
3867 	lockdep_assert_held(&cgroup_mutex);
3868 
3869 restart:
3870 	for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
3871 		/* does cft->flags tell us to skip this file on @cgrp? */
3872 		if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
3873 			continue;
3874 		if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
3875 			continue;
3876 		if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
3877 			continue;
3878 		if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
3879 			continue;
3880 		if ((cft->flags & CFTYPE_DEBUG) && !cgroup_debug)
3881 			continue;
3882 		if (is_add) {
3883 			ret = cgroup_add_file(css, cgrp, cft);
3884 			if (ret) {
3885 				pr_warn("%s: failed to add %s, err=%d\n",
3886 					__func__, cft->name, ret);
3887 				cft_end = cft;
3888 				is_add = false;
3889 				goto restart;
3890 			}
3891 		} else {
3892 			cgroup_rm_file(cgrp, cft);
3893 		}
3894 	}
3895 	return ret;
3896 }
3897 
3898 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
3899 {
3900 	struct cgroup_subsys *ss = cfts[0].ss;
3901 	struct cgroup *root = &ss->root->cgrp;
3902 	struct cgroup_subsys_state *css;
3903 	int ret = 0;
3904 
3905 	lockdep_assert_held(&cgroup_mutex);
3906 
3907 	/* add/rm files for all cgroups created before */
3908 	css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
3909 		struct cgroup *cgrp = css->cgroup;
3910 
3911 		if (!(css->flags & CSS_VISIBLE))
3912 			continue;
3913 
3914 		ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
3915 		if (ret)
3916 			break;
3917 	}
3918 
3919 	if (is_add && !ret)
3920 		kernfs_activate(root->kn);
3921 	return ret;
3922 }
3923 
3924 static void cgroup_exit_cftypes(struct cftype *cfts)
3925 {
3926 	struct cftype *cft;
3927 
3928 	for (cft = cfts; cft->name[0] != '\0'; cft++) {
3929 		/* free copy for custom atomic_write_len, see init_cftypes() */
3930 		if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3931 			kfree(cft->kf_ops);
3932 		cft->kf_ops = NULL;
3933 		cft->ss = NULL;
3934 
3935 		/* revert flags set by cgroup core while adding @cfts */
3936 		cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
3937 	}
3938 }
3939 
3940 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3941 {
3942 	struct cftype *cft;
3943 
3944 	for (cft = cfts; cft->name[0] != '\0'; cft++) {
3945 		struct kernfs_ops *kf_ops;
3946 
3947 		WARN_ON(cft->ss || cft->kf_ops);
3948 
3949 		if (cft->seq_start)
3950 			kf_ops = &cgroup_kf_ops;
3951 		else
3952 			kf_ops = &cgroup_kf_single_ops;
3953 
3954 		/*
3955 		 * Ugh... if @cft wants a custom max_write_len, we need to
3956 		 * make a copy of kf_ops to set its atomic_write_len.
3957 		 */
3958 		if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3959 			kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3960 			if (!kf_ops) {
3961 				cgroup_exit_cftypes(cfts);
3962 				return -ENOMEM;
3963 			}
3964 			kf_ops->atomic_write_len = cft->max_write_len;
3965 		}
3966 
3967 		cft->kf_ops = kf_ops;
3968 		cft->ss = ss;
3969 	}
3970 
3971 	return 0;
3972 }
3973 
3974 static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3975 {
3976 	lockdep_assert_held(&cgroup_mutex);
3977 
3978 	if (!cfts || !cfts[0].ss)
3979 		return -ENOENT;
3980 
3981 	list_del(&cfts->node);
3982 	cgroup_apply_cftypes(cfts, false);
3983 	cgroup_exit_cftypes(cfts);
3984 	return 0;
3985 }
3986 
3987 /**
3988  * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
3989  * @cfts: zero-length name terminated array of cftypes
3990  *
3991  * Unregister @cfts.  Files described by @cfts are removed from all
3992  * existing cgroups and all future cgroups won't have them either.  This
3993  * function can be called anytime whether @cfts' subsys is attached or not.
3994  *
3995  * Returns 0 on successful unregistration, -ENOENT if @cfts is not
3996  * registered.
3997  */
3998 int cgroup_rm_cftypes(struct cftype *cfts)
3999 {
4000 	int ret;
4001 
4002 	mutex_lock(&cgroup_mutex);
4003 	ret = cgroup_rm_cftypes_locked(cfts);
4004 	mutex_unlock(&cgroup_mutex);
4005 	return ret;
4006 }
4007 
4008 /**
4009  * cgroup_add_cftypes - add an array of cftypes to a subsystem
4010  * @ss: target cgroup subsystem
4011  * @cfts: zero-length name terminated array of cftypes
4012  *
4013  * Register @cfts to @ss.  Files described by @cfts are created for all
4014  * existing cgroups to which @ss is attached and all future cgroups will
4015  * have them too.  This function can be called anytime whether @ss is
4016  * attached or not.
4017  *
4018  * Returns 0 on successful registration, -errno on failure.  Note that this
4019  * function currently returns 0 as long as @cfts registration is successful
4020  * even if some file creation attempts on existing cgroups fail.
4021  */
4022 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4023 {
4024 	int ret;
4025 
4026 	if (!cgroup_ssid_enabled(ss->id))
4027 		return 0;
4028 
4029 	if (!cfts || cfts[0].name[0] == '\0')
4030 		return 0;
4031 
4032 	ret = cgroup_init_cftypes(ss, cfts);
4033 	if (ret)
4034 		return ret;
4035 
4036 	mutex_lock(&cgroup_mutex);
4037 
4038 	list_add_tail(&cfts->node, &ss->cfts);
4039 	ret = cgroup_apply_cftypes(cfts, true);
4040 	if (ret)
4041 		cgroup_rm_cftypes_locked(cfts);
4042 
4043 	mutex_unlock(&cgroup_mutex);
4044 	return ret;
4045 }
4046 
4047 /**
4048  * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
4049  * @ss: target cgroup subsystem
4050  * @cfts: zero-length name terminated array of cftypes
4051  *
4052  * Similar to cgroup_add_cftypes() but the added files are only used for
4053  * the default hierarchy.
4054  */
4055 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4056 {
4057 	struct cftype *cft;
4058 
4059 	for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4060 		cft->flags |= __CFTYPE_ONLY_ON_DFL;
4061 	return cgroup_add_cftypes(ss, cfts);
4062 }
4063 
4064 /**
4065  * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
4066  * @ss: target cgroup subsystem
4067  * @cfts: zero-length name terminated array of cftypes
4068  *
4069  * Similar to cgroup_add_cftypes() but the added files are only used for
4070  * the legacy hierarchies.
4071  */
4072 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4073 {
4074 	struct cftype *cft;
4075 
4076 	for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4077 		cft->flags |= __CFTYPE_NOT_ON_DFL;
4078 	return cgroup_add_cftypes(ss, cfts);
4079 }
4080 
4081 /**
4082  * cgroup_file_notify - generate a file modified event for a cgroup_file
4083  * @cfile: target cgroup_file
4084  *
4085  * @cfile must have been obtained by setting cftype->file_offset.
4086  */
4087 void cgroup_file_notify(struct cgroup_file *cfile)
4088 {
4089 	unsigned long flags;
4090 
4091 	spin_lock_irqsave(&cgroup_file_kn_lock, flags);
4092 	if (cfile->kn) {
4093 		unsigned long last = cfile->notified_at;
4094 		unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV;
4095 
4096 		if (time_in_range(jiffies, last, next)) {
4097 			timer_reduce(&cfile->notify_timer, next);
4098 		} else {
4099 			kernfs_notify(cfile->kn);
4100 			cfile->notified_at = jiffies;
4101 		}
4102 	}
4103 	spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
4104 }
4105 
4106 /**
4107  * css_next_child - find the next child of a given css
4108  * @pos: the current position (%NULL to initiate traversal)
4109  * @parent: css whose children to walk
4110  *
4111  * This function returns the next child of @parent and should be called
4112  * under either cgroup_mutex or RCU read lock.  The only requirement is
4113  * that @parent and @pos are accessible.  The next sibling is guaranteed to
4114  * be returned regardless of their states.
4115  *
4116  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4117  * css which finished ->css_online() is guaranteed to be visible in the
4118  * future iterations and will stay visible until the last reference is put.
4119  * A css which hasn't finished ->css_online() or already finished
4120  * ->css_offline() may show up during traversal.  It's each subsystem's
4121  * responsibility to synchronize against on/offlining.
4122  */
4123 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
4124 					   struct cgroup_subsys_state *parent)
4125 {
4126 	struct cgroup_subsys_state *next;
4127 
4128 	cgroup_assert_mutex_or_rcu_locked();
4129 
4130 	/*
4131 	 * @pos could already have been unlinked from the sibling list.
4132 	 * Once a cgroup is removed, its ->sibling.next is no longer
4133 	 * updated when its next sibling changes.  CSS_RELEASED is set when
4134 	 * @pos is taken off list, at which time its next pointer is valid,
4135 	 * and, as releases are serialized, the one pointed to by the next
4136 	 * pointer is guaranteed to not have started release yet.  This
4137 	 * implies that if we observe !CSS_RELEASED on @pos in this RCU
4138 	 * critical section, the one pointed to by its next pointer is
4139 	 * guaranteed to not have finished its RCU grace period even if we
4140 	 * have dropped rcu_read_lock() inbetween iterations.
4141 	 *
4142 	 * If @pos has CSS_RELEASED set, its next pointer can't be
4143 	 * dereferenced; however, as each css is given a monotonically
4144 	 * increasing unique serial number and always appended to the
4145 	 * sibling list, the next one can be found by walking the parent's
4146 	 * children until the first css with higher serial number than
4147 	 * @pos's.  While this path can be slower, it happens iff iteration
4148 	 * races against release and the race window is very small.
4149 	 */
4150 	if (!pos) {
4151 		next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
4152 	} else if (likely(!(pos->flags & CSS_RELEASED))) {
4153 		next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
4154 	} else {
4155 		list_for_each_entry_rcu(next, &parent->children, sibling)
4156 			if (next->serial_nr > pos->serial_nr)
4157 				break;
4158 	}
4159 
4160 	/*
4161 	 * @next, if not pointing to the head, can be dereferenced and is
4162 	 * the next sibling.
4163 	 */
4164 	if (&next->sibling != &parent->children)
4165 		return next;
4166 	return NULL;
4167 }
4168 
4169 /**
4170  * css_next_descendant_pre - find the next descendant for pre-order walk
4171  * @pos: the current position (%NULL to initiate traversal)
4172  * @root: css whose descendants to walk
4173  *
4174  * To be used by css_for_each_descendant_pre().  Find the next descendant
4175  * to visit for pre-order traversal of @root's descendants.  @root is
4176  * included in the iteration and the first node to be visited.
4177  *
4178  * While this function requires cgroup_mutex or RCU read locking, it
4179  * doesn't require the whole traversal to be contained in a single critical
4180  * section.  This function will return the correct next descendant as long
4181  * as both @pos and @root are accessible and @pos is a descendant of @root.
4182  *
4183  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4184  * css which finished ->css_online() is guaranteed to be visible in the
4185  * future iterations and will stay visible until the last reference is put.
4186  * A css which hasn't finished ->css_online() or already finished
4187  * ->css_offline() may show up during traversal.  It's each subsystem's
4188  * responsibility to synchronize against on/offlining.
4189  */
4190 struct cgroup_subsys_state *
4191 css_next_descendant_pre(struct cgroup_subsys_state *pos,
4192 			struct cgroup_subsys_state *root)
4193 {
4194 	struct cgroup_subsys_state *next;
4195 
4196 	cgroup_assert_mutex_or_rcu_locked();
4197 
4198 	/* if first iteration, visit @root */
4199 	if (!pos)
4200 		return root;
4201 
4202 	/* visit the first child if exists */
4203 	next = css_next_child(NULL, pos);
4204 	if (next)
4205 		return next;
4206 
4207 	/* no child, visit my or the closest ancestor's next sibling */
4208 	while (pos != root) {
4209 		next = css_next_child(pos, pos->parent);
4210 		if (next)
4211 			return next;
4212 		pos = pos->parent;
4213 	}
4214 
4215 	return NULL;
4216 }
4217 EXPORT_SYMBOL_GPL(css_next_descendant_pre);
4218 
4219 /**
4220  * css_rightmost_descendant - return the rightmost descendant of a css
4221  * @pos: css of interest
4222  *
4223  * Return the rightmost descendant of @pos.  If there's no descendant, @pos
4224  * is returned.  This can be used during pre-order traversal to skip
4225  * subtree of @pos.
4226  *
4227  * While this function requires cgroup_mutex or RCU read locking, it
4228  * doesn't require the whole traversal to be contained in a single critical
4229  * section.  This function will return the correct rightmost descendant as
4230  * long as @pos is accessible.
4231  */
4232 struct cgroup_subsys_state *
4233 css_rightmost_descendant(struct cgroup_subsys_state *pos)
4234 {
4235 	struct cgroup_subsys_state *last, *tmp;
4236 
4237 	cgroup_assert_mutex_or_rcu_locked();
4238 
4239 	do {
4240 		last = pos;
4241 		/* ->prev isn't RCU safe, walk ->next till the end */
4242 		pos = NULL;
4243 		css_for_each_child(tmp, last)
4244 			pos = tmp;
4245 	} while (pos);
4246 
4247 	return last;
4248 }
4249 
4250 static struct cgroup_subsys_state *
4251 css_leftmost_descendant(struct cgroup_subsys_state *pos)
4252 {
4253 	struct cgroup_subsys_state *last;
4254 
4255 	do {
4256 		last = pos;
4257 		pos = css_next_child(NULL, pos);
4258 	} while (pos);
4259 
4260 	return last;
4261 }
4262 
4263 /**
4264  * css_next_descendant_post - find the next descendant for post-order walk
4265  * @pos: the current position (%NULL to initiate traversal)
4266  * @root: css whose descendants to walk
4267  *
4268  * To be used by css_for_each_descendant_post().  Find the next descendant
4269  * to visit for post-order traversal of @root's descendants.  @root is
4270  * included in the iteration and the last node to be visited.
4271  *
4272  * While this function requires cgroup_mutex or RCU read locking, it
4273  * doesn't require the whole traversal to be contained in a single critical
4274  * section.  This function will return the correct next descendant as long
4275  * as both @pos and @cgroup are accessible and @pos is a descendant of
4276  * @cgroup.
4277  *
4278  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4279  * css which finished ->css_online() is guaranteed to be visible in the
4280  * future iterations and will stay visible until the last reference is put.
4281  * A css which hasn't finished ->css_online() or already finished
4282  * ->css_offline() may show up during traversal.  It's each subsystem's
4283  * responsibility to synchronize against on/offlining.
4284  */
4285 struct cgroup_subsys_state *
4286 css_next_descendant_post(struct cgroup_subsys_state *pos,
4287 			 struct cgroup_subsys_state *root)
4288 {
4289 	struct cgroup_subsys_state *next;
4290 
4291 	cgroup_assert_mutex_or_rcu_locked();
4292 
4293 	/* if first iteration, visit leftmost descendant which may be @root */
4294 	if (!pos)
4295 		return css_leftmost_descendant(root);
4296 
4297 	/* if we visited @root, we're done */
4298 	if (pos == root)
4299 		return NULL;
4300 
4301 	/* if there's an unvisited sibling, visit its leftmost descendant */
4302 	next = css_next_child(pos, pos->parent);
4303 	if (next)
4304 		return css_leftmost_descendant(next);
4305 
4306 	/* no sibling left, visit parent */
4307 	return pos->parent;
4308 }
4309 
4310 /**
4311  * css_has_online_children - does a css have online children
4312  * @css: the target css
4313  *
4314  * Returns %true if @css has any online children; otherwise, %false.  This
4315  * function can be called from any context but the caller is responsible
4316  * for synchronizing against on/offlining as necessary.
4317  */
4318 bool css_has_online_children(struct cgroup_subsys_state *css)
4319 {
4320 	struct cgroup_subsys_state *child;
4321 	bool ret = false;
4322 
4323 	rcu_read_lock();
4324 	css_for_each_child(child, css) {
4325 		if (child->flags & CSS_ONLINE) {
4326 			ret = true;
4327 			break;
4328 		}
4329 	}
4330 	rcu_read_unlock();
4331 	return ret;
4332 }
4333 
4334 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it)
4335 {
4336 	struct list_head *l;
4337 	struct cgrp_cset_link *link;
4338 	struct css_set *cset;
4339 
4340 	lockdep_assert_held(&css_set_lock);
4341 
4342 	/* find the next threaded cset */
4343 	if (it->tcset_pos) {
4344 		l = it->tcset_pos->next;
4345 
4346 		if (l != it->tcset_head) {
4347 			it->tcset_pos = l;
4348 			return container_of(l, struct css_set,
4349 					    threaded_csets_node);
4350 		}
4351 
4352 		it->tcset_pos = NULL;
4353 	}
4354 
4355 	/* find the next cset */
4356 	l = it->cset_pos;
4357 	l = l->next;
4358 	if (l == it->cset_head) {
4359 		it->cset_pos = NULL;
4360 		return NULL;
4361 	}
4362 
4363 	if (it->ss) {
4364 		cset = container_of(l, struct css_set, e_cset_node[it->ss->id]);
4365 	} else {
4366 		link = list_entry(l, struct cgrp_cset_link, cset_link);
4367 		cset = link->cset;
4368 	}
4369 
4370 	it->cset_pos = l;
4371 
4372 	/* initialize threaded css_set walking */
4373 	if (it->flags & CSS_TASK_ITER_THREADED) {
4374 		if (it->cur_dcset)
4375 			put_css_set_locked(it->cur_dcset);
4376 		it->cur_dcset = cset;
4377 		get_css_set(cset);
4378 
4379 		it->tcset_head = &cset->threaded_csets;
4380 		it->tcset_pos = &cset->threaded_csets;
4381 	}
4382 
4383 	return cset;
4384 }
4385 
4386 /**
4387  * css_task_iter_advance_css_set - advance a task itererator to the next css_set
4388  * @it: the iterator to advance
4389  *
4390  * Advance @it to the next css_set to walk.
4391  */
4392 static void css_task_iter_advance_css_set(struct css_task_iter *it)
4393 {
4394 	struct css_set *cset;
4395 
4396 	lockdep_assert_held(&css_set_lock);
4397 
4398 	/* Advance to the next non-empty css_set */
4399 	do {
4400 		cset = css_task_iter_next_css_set(it);
4401 		if (!cset) {
4402 			it->task_pos = NULL;
4403 			return;
4404 		}
4405 	} while (!css_set_populated(cset) && list_empty(&cset->dying_tasks));
4406 
4407 	if (!list_empty(&cset->tasks))
4408 		it->task_pos = cset->tasks.next;
4409 	else if (!list_empty(&cset->mg_tasks))
4410 		it->task_pos = cset->mg_tasks.next;
4411 	else
4412 		it->task_pos = cset->dying_tasks.next;
4413 
4414 	it->tasks_head = &cset->tasks;
4415 	it->mg_tasks_head = &cset->mg_tasks;
4416 	it->dying_tasks_head = &cset->dying_tasks;
4417 
4418 	/*
4419 	 * We don't keep css_sets locked across iteration steps and thus
4420 	 * need to take steps to ensure that iteration can be resumed after
4421 	 * the lock is re-acquired.  Iteration is performed at two levels -
4422 	 * css_sets and tasks in them.
4423 	 *
4424 	 * Once created, a css_set never leaves its cgroup lists, so a
4425 	 * pinned css_set is guaranteed to stay put and we can resume
4426 	 * iteration afterwards.
4427 	 *
4428 	 * Tasks may leave @cset across iteration steps.  This is resolved
4429 	 * by registering each iterator with the css_set currently being
4430 	 * walked and making css_set_move_task() advance iterators whose
4431 	 * next task is leaving.
4432 	 */
4433 	if (it->cur_cset) {
4434 		list_del(&it->iters_node);
4435 		put_css_set_locked(it->cur_cset);
4436 	}
4437 	get_css_set(cset);
4438 	it->cur_cset = cset;
4439 	list_add(&it->iters_node, &cset->task_iters);
4440 }
4441 
4442 static void css_task_iter_skip(struct css_task_iter *it,
4443 			       struct task_struct *task)
4444 {
4445 	lockdep_assert_held(&css_set_lock);
4446 
4447 	if (it->task_pos == &task->cg_list) {
4448 		it->task_pos = it->task_pos->next;
4449 		it->flags |= CSS_TASK_ITER_SKIPPED;
4450 	}
4451 }
4452 
4453 static void css_task_iter_advance(struct css_task_iter *it)
4454 {
4455 	struct task_struct *task;
4456 
4457 	lockdep_assert_held(&css_set_lock);
4458 repeat:
4459 	if (it->task_pos) {
4460 		/*
4461 		 * Advance iterator to find next entry.  cset->tasks is
4462 		 * consumed first and then ->mg_tasks.  After ->mg_tasks,
4463 		 * we move onto the next cset.
4464 		 */
4465 		if (it->flags & CSS_TASK_ITER_SKIPPED)
4466 			it->flags &= ~CSS_TASK_ITER_SKIPPED;
4467 		else
4468 			it->task_pos = it->task_pos->next;
4469 
4470 		if (it->task_pos == it->tasks_head)
4471 			it->task_pos = it->mg_tasks_head->next;
4472 		if (it->task_pos == it->mg_tasks_head)
4473 			it->task_pos = it->dying_tasks_head->next;
4474 		if (it->task_pos == it->dying_tasks_head)
4475 			css_task_iter_advance_css_set(it);
4476 	} else {
4477 		/* called from start, proceed to the first cset */
4478 		css_task_iter_advance_css_set(it);
4479 	}
4480 
4481 	if (!it->task_pos)
4482 		return;
4483 
4484 	task = list_entry(it->task_pos, struct task_struct, cg_list);
4485 
4486 	if (it->flags & CSS_TASK_ITER_PROCS) {
4487 		/* if PROCS, skip over tasks which aren't group leaders */
4488 		if (!thread_group_leader(task))
4489 			goto repeat;
4490 
4491 		/* and dying leaders w/o live member threads */
4492 		if (!atomic_read(&task->signal->live))
4493 			goto repeat;
4494 	} else {
4495 		/* skip all dying ones */
4496 		if (task->flags & PF_EXITING)
4497 			goto repeat;
4498 	}
4499 }
4500 
4501 /**
4502  * css_task_iter_start - initiate task iteration
4503  * @css: the css to walk tasks of
4504  * @flags: CSS_TASK_ITER_* flags
4505  * @it: the task iterator to use
4506  *
4507  * Initiate iteration through the tasks of @css.  The caller can call
4508  * css_task_iter_next() to walk through the tasks until the function
4509  * returns NULL.  On completion of iteration, css_task_iter_end() must be
4510  * called.
4511  */
4512 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags,
4513 			 struct css_task_iter *it)
4514 {
4515 	memset(it, 0, sizeof(*it));
4516 
4517 	spin_lock_irq(&css_set_lock);
4518 
4519 	it->ss = css->ss;
4520 	it->flags = flags;
4521 
4522 	if (it->ss)
4523 		it->cset_pos = &css->cgroup->e_csets[css->ss->id];
4524 	else
4525 		it->cset_pos = &css->cgroup->cset_links;
4526 
4527 	it->cset_head = it->cset_pos;
4528 
4529 	css_task_iter_advance(it);
4530 
4531 	spin_unlock_irq(&css_set_lock);
4532 }
4533 
4534 /**
4535  * css_task_iter_next - return the next task for the iterator
4536  * @it: the task iterator being iterated
4537  *
4538  * The "next" function for task iteration.  @it should have been
4539  * initialized via css_task_iter_start().  Returns NULL when the iteration
4540  * reaches the end.
4541  */
4542 struct task_struct *css_task_iter_next(struct css_task_iter *it)
4543 {
4544 	if (it->cur_task) {
4545 		put_task_struct(it->cur_task);
4546 		it->cur_task = NULL;
4547 	}
4548 
4549 	spin_lock_irq(&css_set_lock);
4550 
4551 	/* @it may be half-advanced by skips, finish advancing */
4552 	if (it->flags & CSS_TASK_ITER_SKIPPED)
4553 		css_task_iter_advance(it);
4554 
4555 	if (it->task_pos) {
4556 		it->cur_task = list_entry(it->task_pos, struct task_struct,
4557 					  cg_list);
4558 		get_task_struct(it->cur_task);
4559 		css_task_iter_advance(it);
4560 	}
4561 
4562 	spin_unlock_irq(&css_set_lock);
4563 
4564 	return it->cur_task;
4565 }
4566 
4567 /**
4568  * css_task_iter_end - finish task iteration
4569  * @it: the task iterator to finish
4570  *
4571  * Finish task iteration started by css_task_iter_start().
4572  */
4573 void css_task_iter_end(struct css_task_iter *it)
4574 {
4575 	if (it->cur_cset) {
4576 		spin_lock_irq(&css_set_lock);
4577 		list_del(&it->iters_node);
4578 		put_css_set_locked(it->cur_cset);
4579 		spin_unlock_irq(&css_set_lock);
4580 	}
4581 
4582 	if (it->cur_dcset)
4583 		put_css_set(it->cur_dcset);
4584 
4585 	if (it->cur_task)
4586 		put_task_struct(it->cur_task);
4587 }
4588 
4589 static void cgroup_procs_release(struct kernfs_open_file *of)
4590 {
4591 	if (of->priv) {
4592 		css_task_iter_end(of->priv);
4593 		kfree(of->priv);
4594 	}
4595 }
4596 
4597 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos)
4598 {
4599 	struct kernfs_open_file *of = s->private;
4600 	struct css_task_iter *it = of->priv;
4601 
4602 	return css_task_iter_next(it);
4603 }
4604 
4605 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos,
4606 				  unsigned int iter_flags)
4607 {
4608 	struct kernfs_open_file *of = s->private;
4609 	struct cgroup *cgrp = seq_css(s)->cgroup;
4610 	struct css_task_iter *it = of->priv;
4611 
4612 	/*
4613 	 * When a seq_file is seeked, it's always traversed sequentially
4614 	 * from position 0, so we can simply keep iterating on !0 *pos.
4615 	 */
4616 	if (!it) {
4617 		if (WARN_ON_ONCE((*pos)++))
4618 			return ERR_PTR(-EINVAL);
4619 
4620 		it = kzalloc(sizeof(*it), GFP_KERNEL);
4621 		if (!it)
4622 			return ERR_PTR(-ENOMEM);
4623 		of->priv = it;
4624 		css_task_iter_start(&cgrp->self, iter_flags, it);
4625 	} else if (!(*pos)++) {
4626 		css_task_iter_end(it);
4627 		css_task_iter_start(&cgrp->self, iter_flags, it);
4628 	}
4629 
4630 	return cgroup_procs_next(s, NULL, NULL);
4631 }
4632 
4633 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos)
4634 {
4635 	struct cgroup *cgrp = seq_css(s)->cgroup;
4636 
4637 	/*
4638 	 * All processes of a threaded subtree belong to the domain cgroup
4639 	 * of the subtree.  Only threads can be distributed across the
4640 	 * subtree.  Reject reads on cgroup.procs in the subtree proper.
4641 	 * They're always empty anyway.
4642 	 */
4643 	if (cgroup_is_threaded(cgrp))
4644 		return ERR_PTR(-EOPNOTSUPP);
4645 
4646 	return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS |
4647 					    CSS_TASK_ITER_THREADED);
4648 }
4649 
4650 static int cgroup_procs_show(struct seq_file *s, void *v)
4651 {
4652 	seq_printf(s, "%d\n", task_pid_vnr(v));
4653 	return 0;
4654 }
4655 
4656 static int cgroup_procs_write_permission(struct cgroup *src_cgrp,
4657 					 struct cgroup *dst_cgrp,
4658 					 struct super_block *sb)
4659 {
4660 	struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
4661 	struct cgroup *com_cgrp = src_cgrp;
4662 	struct inode *inode;
4663 	int ret;
4664 
4665 	lockdep_assert_held(&cgroup_mutex);
4666 
4667 	/* find the common ancestor */
4668 	while (!cgroup_is_descendant(dst_cgrp, com_cgrp))
4669 		com_cgrp = cgroup_parent(com_cgrp);
4670 
4671 	/* %current should be authorized to migrate to the common ancestor */
4672 	inode = kernfs_get_inode(sb, com_cgrp->procs_file.kn);
4673 	if (!inode)
4674 		return -ENOMEM;
4675 
4676 	ret = inode_permission(inode, MAY_WRITE);
4677 	iput(inode);
4678 	if (ret)
4679 		return ret;
4680 
4681 	/*
4682 	 * If namespaces are delegation boundaries, %current must be able
4683 	 * to see both source and destination cgroups from its namespace.
4684 	 */
4685 	if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) &&
4686 	    (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) ||
4687 	     !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp)))
4688 		return -ENOENT;
4689 
4690 	return 0;
4691 }
4692 
4693 static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
4694 				  char *buf, size_t nbytes, loff_t off)
4695 {
4696 	struct cgroup *src_cgrp, *dst_cgrp;
4697 	struct task_struct *task;
4698 	ssize_t ret;
4699 	bool locked;
4700 
4701 	dst_cgrp = cgroup_kn_lock_live(of->kn, false);
4702 	if (!dst_cgrp)
4703 		return -ENODEV;
4704 
4705 	task = cgroup_procs_write_start(buf, true, &locked);
4706 	ret = PTR_ERR_OR_ZERO(task);
4707 	if (ret)
4708 		goto out_unlock;
4709 
4710 	/* find the source cgroup */
4711 	spin_lock_irq(&css_set_lock);
4712 	src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
4713 	spin_unlock_irq(&css_set_lock);
4714 
4715 	ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp,
4716 					    of->file->f_path.dentry->d_sb);
4717 	if (ret)
4718 		goto out_finish;
4719 
4720 	ret = cgroup_attach_task(dst_cgrp, task, true);
4721 
4722 out_finish:
4723 	cgroup_procs_write_finish(task, locked);
4724 out_unlock:
4725 	cgroup_kn_unlock(of->kn);
4726 
4727 	return ret ?: nbytes;
4728 }
4729 
4730 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos)
4731 {
4732 	return __cgroup_procs_start(s, pos, 0);
4733 }
4734 
4735 static ssize_t cgroup_threads_write(struct kernfs_open_file *of,
4736 				    char *buf, size_t nbytes, loff_t off)
4737 {
4738 	struct cgroup *src_cgrp, *dst_cgrp;
4739 	struct task_struct *task;
4740 	ssize_t ret;
4741 	bool locked;
4742 
4743 	buf = strstrip(buf);
4744 
4745 	dst_cgrp = cgroup_kn_lock_live(of->kn, false);
4746 	if (!dst_cgrp)
4747 		return -ENODEV;
4748 
4749 	task = cgroup_procs_write_start(buf, false, &locked);
4750 	ret = PTR_ERR_OR_ZERO(task);
4751 	if (ret)
4752 		goto out_unlock;
4753 
4754 	/* find the source cgroup */
4755 	spin_lock_irq(&css_set_lock);
4756 	src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
4757 	spin_unlock_irq(&css_set_lock);
4758 
4759 	/* thread migrations follow the cgroup.procs delegation rule */
4760 	ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp,
4761 					    of->file->f_path.dentry->d_sb);
4762 	if (ret)
4763 		goto out_finish;
4764 
4765 	/* and must be contained in the same domain */
4766 	ret = -EOPNOTSUPP;
4767 	if (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp)
4768 		goto out_finish;
4769 
4770 	ret = cgroup_attach_task(dst_cgrp, task, false);
4771 
4772 out_finish:
4773 	cgroup_procs_write_finish(task, locked);
4774 out_unlock:
4775 	cgroup_kn_unlock(of->kn);
4776 
4777 	return ret ?: nbytes;
4778 }
4779 
4780 /* cgroup core interface files for the default hierarchy */
4781 static struct cftype cgroup_base_files[] = {
4782 	{
4783 		.name = "cgroup.type",
4784 		.flags = CFTYPE_NOT_ON_ROOT,
4785 		.seq_show = cgroup_type_show,
4786 		.write = cgroup_type_write,
4787 	},
4788 	{
4789 		.name = "cgroup.procs",
4790 		.flags = CFTYPE_NS_DELEGATABLE,
4791 		.file_offset = offsetof(struct cgroup, procs_file),
4792 		.release = cgroup_procs_release,
4793 		.seq_start = cgroup_procs_start,
4794 		.seq_next = cgroup_procs_next,
4795 		.seq_show = cgroup_procs_show,
4796 		.write = cgroup_procs_write,
4797 	},
4798 	{
4799 		.name = "cgroup.threads",
4800 		.flags = CFTYPE_NS_DELEGATABLE,
4801 		.release = cgroup_procs_release,
4802 		.seq_start = cgroup_threads_start,
4803 		.seq_next = cgroup_procs_next,
4804 		.seq_show = cgroup_procs_show,
4805 		.write = cgroup_threads_write,
4806 	},
4807 	{
4808 		.name = "cgroup.controllers",
4809 		.seq_show = cgroup_controllers_show,
4810 	},
4811 	{
4812 		.name = "cgroup.subtree_control",
4813 		.flags = CFTYPE_NS_DELEGATABLE,
4814 		.seq_show = cgroup_subtree_control_show,
4815 		.write = cgroup_subtree_control_write,
4816 	},
4817 	{
4818 		.name = "cgroup.events",
4819 		.flags = CFTYPE_NOT_ON_ROOT,
4820 		.file_offset = offsetof(struct cgroup, events_file),
4821 		.seq_show = cgroup_events_show,
4822 	},
4823 	{
4824 		.name = "cgroup.max.descendants",
4825 		.seq_show = cgroup_max_descendants_show,
4826 		.write = cgroup_max_descendants_write,
4827 	},
4828 	{
4829 		.name = "cgroup.max.depth",
4830 		.seq_show = cgroup_max_depth_show,
4831 		.write = cgroup_max_depth_write,
4832 	},
4833 	{
4834 		.name = "cgroup.stat",
4835 		.seq_show = cgroup_stat_show,
4836 	},
4837 	{
4838 		.name = "cgroup.freeze",
4839 		.flags = CFTYPE_NOT_ON_ROOT,
4840 		.seq_show = cgroup_freeze_show,
4841 		.write = cgroup_freeze_write,
4842 	},
4843 	{
4844 		.name = "cpu.stat",
4845 		.flags = CFTYPE_NOT_ON_ROOT,
4846 		.seq_show = cpu_stat_show,
4847 	},
4848 #ifdef CONFIG_PSI
4849 	{
4850 		.name = "io.pressure",
4851 		.seq_show = cgroup_io_pressure_show,
4852 		.write = cgroup_io_pressure_write,
4853 		.poll = cgroup_pressure_poll,
4854 		.release = cgroup_pressure_release,
4855 	},
4856 	{
4857 		.name = "memory.pressure",
4858 		.seq_show = cgroup_memory_pressure_show,
4859 		.write = cgroup_memory_pressure_write,
4860 		.poll = cgroup_pressure_poll,
4861 		.release = cgroup_pressure_release,
4862 	},
4863 	{
4864 		.name = "cpu.pressure",
4865 		.seq_show = cgroup_cpu_pressure_show,
4866 		.write = cgroup_cpu_pressure_write,
4867 		.poll = cgroup_pressure_poll,
4868 		.release = cgroup_pressure_release,
4869 	},
4870 #endif /* CONFIG_PSI */
4871 	{ }	/* terminate */
4872 };
4873 
4874 /*
4875  * css destruction is four-stage process.
4876  *
4877  * 1. Destruction starts.  Killing of the percpu_ref is initiated.
4878  *    Implemented in kill_css().
4879  *
4880  * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
4881  *    and thus css_tryget_online() is guaranteed to fail, the css can be
4882  *    offlined by invoking offline_css().  After offlining, the base ref is
4883  *    put.  Implemented in css_killed_work_fn().
4884  *
4885  * 3. When the percpu_ref reaches zero, the only possible remaining
4886  *    accessors are inside RCU read sections.  css_release() schedules the
4887  *    RCU callback.
4888  *
4889  * 4. After the grace period, the css can be freed.  Implemented in
4890  *    css_free_work_fn().
4891  *
4892  * It is actually hairier because both step 2 and 4 require process context
4893  * and thus involve punting to css->destroy_work adding two additional
4894  * steps to the already complex sequence.
4895  */
4896 static void css_free_rwork_fn(struct work_struct *work)
4897 {
4898 	struct cgroup_subsys_state *css = container_of(to_rcu_work(work),
4899 				struct cgroup_subsys_state, destroy_rwork);
4900 	struct cgroup_subsys *ss = css->ss;
4901 	struct cgroup *cgrp = css->cgroup;
4902 
4903 	percpu_ref_exit(&css->refcnt);
4904 
4905 	if (ss) {
4906 		/* css free path */
4907 		struct cgroup_subsys_state *parent = css->parent;
4908 		int id = css->id;
4909 
4910 		ss->css_free(css);
4911 		cgroup_idr_remove(&ss->css_idr, id);
4912 		cgroup_put(cgrp);
4913 
4914 		if (parent)
4915 			css_put(parent);
4916 	} else {
4917 		/* cgroup free path */
4918 		atomic_dec(&cgrp->root->nr_cgrps);
4919 		cgroup1_pidlist_destroy_all(cgrp);
4920 		cancel_work_sync(&cgrp->release_agent_work);
4921 
4922 		if (cgroup_parent(cgrp)) {
4923 			/*
4924 			 * We get a ref to the parent, and put the ref when
4925 			 * this cgroup is being freed, so it's guaranteed
4926 			 * that the parent won't be destroyed before its
4927 			 * children.
4928 			 */
4929 			cgroup_put(cgroup_parent(cgrp));
4930 			kernfs_put(cgrp->kn);
4931 			psi_cgroup_free(cgrp);
4932 			if (cgroup_on_dfl(cgrp))
4933 				cgroup_rstat_exit(cgrp);
4934 			kfree(cgrp);
4935 		} else {
4936 			/*
4937 			 * This is root cgroup's refcnt reaching zero,
4938 			 * which indicates that the root should be
4939 			 * released.
4940 			 */
4941 			cgroup_destroy_root(cgrp->root);
4942 		}
4943 	}
4944 }
4945 
4946 static void css_release_work_fn(struct work_struct *work)
4947 {
4948 	struct cgroup_subsys_state *css =
4949 		container_of(work, struct cgroup_subsys_state, destroy_work);
4950 	struct cgroup_subsys *ss = css->ss;
4951 	struct cgroup *cgrp = css->cgroup;
4952 
4953 	mutex_lock(&cgroup_mutex);
4954 
4955 	css->flags |= CSS_RELEASED;
4956 	list_del_rcu(&css->sibling);
4957 
4958 	if (ss) {
4959 		/* css release path */
4960 		if (!list_empty(&css->rstat_css_node)) {
4961 			cgroup_rstat_flush(cgrp);
4962 			list_del_rcu(&css->rstat_css_node);
4963 		}
4964 
4965 		cgroup_idr_replace(&ss->css_idr, NULL, css->id);
4966 		if (ss->css_released)
4967 			ss->css_released(css);
4968 	} else {
4969 		struct cgroup *tcgrp;
4970 
4971 		/* cgroup release path */
4972 		TRACE_CGROUP_PATH(release, cgrp);
4973 
4974 		if (cgroup_on_dfl(cgrp))
4975 			cgroup_rstat_flush(cgrp);
4976 
4977 		spin_lock_irq(&css_set_lock);
4978 		for (tcgrp = cgroup_parent(cgrp); tcgrp;
4979 		     tcgrp = cgroup_parent(tcgrp))
4980 			tcgrp->nr_dying_descendants--;
4981 		spin_unlock_irq(&css_set_lock);
4982 
4983 		/*
4984 		 * There are two control paths which try to determine
4985 		 * cgroup from dentry without going through kernfs -
4986 		 * cgroupstats_build() and css_tryget_online_from_dir().
4987 		 * Those are supported by RCU protecting clearing of
4988 		 * cgrp->kn->priv backpointer.
4989 		 */
4990 		if (cgrp->kn)
4991 			RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
4992 					 NULL);
4993 	}
4994 
4995 	mutex_unlock(&cgroup_mutex);
4996 
4997 	INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
4998 	queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
4999 }
5000 
5001 static void css_release(struct percpu_ref *ref)
5002 {
5003 	struct cgroup_subsys_state *css =
5004 		container_of(ref, struct cgroup_subsys_state, refcnt);
5005 
5006 	INIT_WORK(&css->destroy_work, css_release_work_fn);
5007 	queue_work(cgroup_destroy_wq, &css->destroy_work);
5008 }
5009 
5010 static void init_and_link_css(struct cgroup_subsys_state *css,
5011 			      struct cgroup_subsys *ss, struct cgroup *cgrp)
5012 {
5013 	lockdep_assert_held(&cgroup_mutex);
5014 
5015 	cgroup_get_live(cgrp);
5016 
5017 	memset(css, 0, sizeof(*css));
5018 	css->cgroup = cgrp;
5019 	css->ss = ss;
5020 	css->id = -1;
5021 	INIT_LIST_HEAD(&css->sibling);
5022 	INIT_LIST_HEAD(&css->children);
5023 	INIT_LIST_HEAD(&css->rstat_css_node);
5024 	css->serial_nr = css_serial_nr_next++;
5025 	atomic_set(&css->online_cnt, 0);
5026 
5027 	if (cgroup_parent(cgrp)) {
5028 		css->parent = cgroup_css(cgroup_parent(cgrp), ss);
5029 		css_get(css->parent);
5030 	}
5031 
5032 	if (cgroup_on_dfl(cgrp) && ss->css_rstat_flush)
5033 		list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list);
5034 
5035 	BUG_ON(cgroup_css(cgrp, ss));
5036 }
5037 
5038 /* invoke ->css_online() on a new CSS and mark it online if successful */
5039 static int online_css(struct cgroup_subsys_state *css)
5040 {
5041 	struct cgroup_subsys *ss = css->ss;
5042 	int ret = 0;
5043 
5044 	lockdep_assert_held(&cgroup_mutex);
5045 
5046 	if (ss->css_online)
5047 		ret = ss->css_online(css);
5048 	if (!ret) {
5049 		css->flags |= CSS_ONLINE;
5050 		rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
5051 
5052 		atomic_inc(&css->online_cnt);
5053 		if (css->parent)
5054 			atomic_inc(&css->parent->online_cnt);
5055 	}
5056 	return ret;
5057 }
5058 
5059 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
5060 static void offline_css(struct cgroup_subsys_state *css)
5061 {
5062 	struct cgroup_subsys *ss = css->ss;
5063 
5064 	lockdep_assert_held(&cgroup_mutex);
5065 
5066 	if (!(css->flags & CSS_ONLINE))
5067 		return;
5068 
5069 	if (ss->css_offline)
5070 		ss->css_offline(css);
5071 
5072 	css->flags &= ~CSS_ONLINE;
5073 	RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
5074 
5075 	wake_up_all(&css->cgroup->offline_waitq);
5076 }
5077 
5078 /**
5079  * css_create - create a cgroup_subsys_state
5080  * @cgrp: the cgroup new css will be associated with
5081  * @ss: the subsys of new css
5082  *
5083  * Create a new css associated with @cgrp - @ss pair.  On success, the new
5084  * css is online and installed in @cgrp.  This function doesn't create the
5085  * interface files.  Returns 0 on success, -errno on failure.
5086  */
5087 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
5088 					      struct cgroup_subsys *ss)
5089 {
5090 	struct cgroup *parent = cgroup_parent(cgrp);
5091 	struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
5092 	struct cgroup_subsys_state *css;
5093 	int err;
5094 
5095 	lockdep_assert_held(&cgroup_mutex);
5096 
5097 	css = ss->css_alloc(parent_css);
5098 	if (!css)
5099 		css = ERR_PTR(-ENOMEM);
5100 	if (IS_ERR(css))
5101 		return css;
5102 
5103 	init_and_link_css(css, ss, cgrp);
5104 
5105 	err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
5106 	if (err)
5107 		goto err_free_css;
5108 
5109 	err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
5110 	if (err < 0)
5111 		goto err_free_css;
5112 	css->id = err;
5113 
5114 	/* @css is ready to be brought online now, make it visible */
5115 	list_add_tail_rcu(&css->sibling, &parent_css->children);
5116 	cgroup_idr_replace(&ss->css_idr, css, css->id);
5117 
5118 	err = online_css(css);
5119 	if (err)
5120 		goto err_list_del;
5121 
5122 	if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
5123 	    cgroup_parent(parent)) {
5124 		pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
5125 			current->comm, current->pid, ss->name);
5126 		if (!strcmp(ss->name, "memory"))
5127 			pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
5128 		ss->warned_broken_hierarchy = true;
5129 	}
5130 
5131 	return css;
5132 
5133 err_list_del:
5134 	list_del_rcu(&css->sibling);
5135 err_free_css:
5136 	list_del_rcu(&css->rstat_css_node);
5137 	INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5138 	queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5139 	return ERR_PTR(err);
5140 }
5141 
5142 /*
5143  * The returned cgroup is fully initialized including its control mask, but
5144  * it isn't associated with its kernfs_node and doesn't have the control
5145  * mask applied.
5146  */
5147 static struct cgroup *cgroup_create(struct cgroup *parent, const char *name,
5148 				    umode_t mode)
5149 {
5150 	struct cgroup_root *root = parent->root;
5151 	struct cgroup *cgrp, *tcgrp;
5152 	struct kernfs_node *kn;
5153 	int level = parent->level + 1;
5154 	int ret;
5155 
5156 	/* allocate the cgroup and its ID, 0 is reserved for the root */
5157 	cgrp = kzalloc(struct_size(cgrp, ancestor_ids, (level + 1)),
5158 		       GFP_KERNEL);
5159 	if (!cgrp)
5160 		return ERR_PTR(-ENOMEM);
5161 
5162 	ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
5163 	if (ret)
5164 		goto out_free_cgrp;
5165 
5166 	if (cgroup_on_dfl(parent)) {
5167 		ret = cgroup_rstat_init(cgrp);
5168 		if (ret)
5169 			goto out_cancel_ref;
5170 	}
5171 
5172 	/* create the directory */
5173 	kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
5174 	if (IS_ERR(kn)) {
5175 		ret = PTR_ERR(kn);
5176 		goto out_stat_exit;
5177 	}
5178 	cgrp->kn = kn;
5179 
5180 	init_cgroup_housekeeping(cgrp);
5181 
5182 	cgrp->self.parent = &parent->self;
5183 	cgrp->root = root;
5184 	cgrp->level = level;
5185 
5186 	ret = psi_cgroup_alloc(cgrp);
5187 	if (ret)
5188 		goto out_kernfs_remove;
5189 
5190 	ret = cgroup_bpf_inherit(cgrp);
5191 	if (ret)
5192 		goto out_psi_free;
5193 
5194 	/*
5195 	 * New cgroup inherits effective freeze counter, and
5196 	 * if the parent has to be frozen, the child has too.
5197 	 */
5198 	cgrp->freezer.e_freeze = parent->freezer.e_freeze;
5199 	if (cgrp->freezer.e_freeze) {
5200 		/*
5201 		 * Set the CGRP_FREEZE flag, so when a process will be
5202 		 * attached to the child cgroup, it will become frozen.
5203 		 * At this point the new cgroup is unpopulated, so we can
5204 		 * consider it frozen immediately.
5205 		 */
5206 		set_bit(CGRP_FREEZE, &cgrp->flags);
5207 		set_bit(CGRP_FROZEN, &cgrp->flags);
5208 	}
5209 
5210 	spin_lock_irq(&css_set_lock);
5211 	for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5212 		cgrp->ancestor_ids[tcgrp->level] = cgroup_id(tcgrp);
5213 
5214 		if (tcgrp != cgrp) {
5215 			tcgrp->nr_descendants++;
5216 
5217 			/*
5218 			 * If the new cgroup is frozen, all ancestor cgroups
5219 			 * get a new frozen descendant, but their state can't
5220 			 * change because of this.
5221 			 */
5222 			if (cgrp->freezer.e_freeze)
5223 				tcgrp->freezer.nr_frozen_descendants++;
5224 		}
5225 	}
5226 	spin_unlock_irq(&css_set_lock);
5227 
5228 	if (notify_on_release(parent))
5229 		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
5230 
5231 	if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
5232 		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
5233 
5234 	cgrp->self.serial_nr = css_serial_nr_next++;
5235 
5236 	/* allocation complete, commit to creation */
5237 	list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
5238 	atomic_inc(&root->nr_cgrps);
5239 	cgroup_get_live(parent);
5240 
5241 	/*
5242 	 * On the default hierarchy, a child doesn't automatically inherit
5243 	 * subtree_control from the parent.  Each is configured manually.
5244 	 */
5245 	if (!cgroup_on_dfl(cgrp))
5246 		cgrp->subtree_control = cgroup_control(cgrp);
5247 
5248 	cgroup_propagate_control(cgrp);
5249 
5250 	return cgrp;
5251 
5252 out_psi_free:
5253 	psi_cgroup_free(cgrp);
5254 out_kernfs_remove:
5255 	kernfs_remove(cgrp->kn);
5256 out_stat_exit:
5257 	if (cgroup_on_dfl(parent))
5258 		cgroup_rstat_exit(cgrp);
5259 out_cancel_ref:
5260 	percpu_ref_exit(&cgrp->self.refcnt);
5261 out_free_cgrp:
5262 	kfree(cgrp);
5263 	return ERR_PTR(ret);
5264 }
5265 
5266 static bool cgroup_check_hierarchy_limits(struct cgroup *parent)
5267 {
5268 	struct cgroup *cgroup;
5269 	int ret = false;
5270 	int level = 1;
5271 
5272 	lockdep_assert_held(&cgroup_mutex);
5273 
5274 	for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) {
5275 		if (cgroup->nr_descendants >= cgroup->max_descendants)
5276 			goto fail;
5277 
5278 		if (level > cgroup->max_depth)
5279 			goto fail;
5280 
5281 		level++;
5282 	}
5283 
5284 	ret = true;
5285 fail:
5286 	return ret;
5287 }
5288 
5289 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode)
5290 {
5291 	struct cgroup *parent, *cgrp;
5292 	int ret;
5293 
5294 	/* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
5295 	if (strchr(name, '\n'))
5296 		return -EINVAL;
5297 
5298 	parent = cgroup_kn_lock_live(parent_kn, false);
5299 	if (!parent)
5300 		return -ENODEV;
5301 
5302 	if (!cgroup_check_hierarchy_limits(parent)) {
5303 		ret = -EAGAIN;
5304 		goto out_unlock;
5305 	}
5306 
5307 	cgrp = cgroup_create(parent, name, mode);
5308 	if (IS_ERR(cgrp)) {
5309 		ret = PTR_ERR(cgrp);
5310 		goto out_unlock;
5311 	}
5312 
5313 	/*
5314 	 * This extra ref will be put in cgroup_free_fn() and guarantees
5315 	 * that @cgrp->kn is always accessible.
5316 	 */
5317 	kernfs_get(cgrp->kn);
5318 
5319 	ret = cgroup_kn_set_ugid(cgrp->kn);
5320 	if (ret)
5321 		goto out_destroy;
5322 
5323 	ret = css_populate_dir(&cgrp->self);
5324 	if (ret)
5325 		goto out_destroy;
5326 
5327 	ret = cgroup_apply_control_enable(cgrp);
5328 	if (ret)
5329 		goto out_destroy;
5330 
5331 	TRACE_CGROUP_PATH(mkdir, cgrp);
5332 
5333 	/* let's create and online css's */
5334 	kernfs_activate(cgrp->kn);
5335 
5336 	ret = 0;
5337 	goto out_unlock;
5338 
5339 out_destroy:
5340 	cgroup_destroy_locked(cgrp);
5341 out_unlock:
5342 	cgroup_kn_unlock(parent_kn);
5343 	return ret;
5344 }
5345 
5346 /*
5347  * This is called when the refcnt of a css is confirmed to be killed.
5348  * css_tryget_online() is now guaranteed to fail.  Tell the subsystem to
5349  * initate destruction and put the css ref from kill_css().
5350  */
5351 static void css_killed_work_fn(struct work_struct *work)
5352 {
5353 	struct cgroup_subsys_state *css =
5354 		container_of(work, struct cgroup_subsys_state, destroy_work);
5355 
5356 	mutex_lock(&cgroup_mutex);
5357 
5358 	do {
5359 		offline_css(css);
5360 		css_put(css);
5361 		/* @css can't go away while we're holding cgroup_mutex */
5362 		css = css->parent;
5363 	} while (css && atomic_dec_and_test(&css->online_cnt));
5364 
5365 	mutex_unlock(&cgroup_mutex);
5366 }
5367 
5368 /* css kill confirmation processing requires process context, bounce */
5369 static void css_killed_ref_fn(struct percpu_ref *ref)
5370 {
5371 	struct cgroup_subsys_state *css =
5372 		container_of(ref, struct cgroup_subsys_state, refcnt);
5373 
5374 	if (atomic_dec_and_test(&css->online_cnt)) {
5375 		INIT_WORK(&css->destroy_work, css_killed_work_fn);
5376 		queue_work(cgroup_destroy_wq, &css->destroy_work);
5377 	}
5378 }
5379 
5380 /**
5381  * kill_css - destroy a css
5382  * @css: css to destroy
5383  *
5384  * This function initiates destruction of @css by removing cgroup interface
5385  * files and putting its base reference.  ->css_offline() will be invoked
5386  * asynchronously once css_tryget_online() is guaranteed to fail and when
5387  * the reference count reaches zero, @css will be released.
5388  */
5389 static void kill_css(struct cgroup_subsys_state *css)
5390 {
5391 	lockdep_assert_held(&cgroup_mutex);
5392 
5393 	if (css->flags & CSS_DYING)
5394 		return;
5395 
5396 	css->flags |= CSS_DYING;
5397 
5398 	/*
5399 	 * This must happen before css is disassociated with its cgroup.
5400 	 * See seq_css() for details.
5401 	 */
5402 	css_clear_dir(css);
5403 
5404 	/*
5405 	 * Killing would put the base ref, but we need to keep it alive
5406 	 * until after ->css_offline().
5407 	 */
5408 	css_get(css);
5409 
5410 	/*
5411 	 * cgroup core guarantees that, by the time ->css_offline() is
5412 	 * invoked, no new css reference will be given out via
5413 	 * css_tryget_online().  We can't simply call percpu_ref_kill() and
5414 	 * proceed to offlining css's because percpu_ref_kill() doesn't
5415 	 * guarantee that the ref is seen as killed on all CPUs on return.
5416 	 *
5417 	 * Use percpu_ref_kill_and_confirm() to get notifications as each
5418 	 * css is confirmed to be seen as killed on all CPUs.
5419 	 */
5420 	percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
5421 }
5422 
5423 /**
5424  * cgroup_destroy_locked - the first stage of cgroup destruction
5425  * @cgrp: cgroup to be destroyed
5426  *
5427  * css's make use of percpu refcnts whose killing latency shouldn't be
5428  * exposed to userland and are RCU protected.  Also, cgroup core needs to
5429  * guarantee that css_tryget_online() won't succeed by the time
5430  * ->css_offline() is invoked.  To satisfy all the requirements,
5431  * destruction is implemented in the following two steps.
5432  *
5433  * s1. Verify @cgrp can be destroyed and mark it dying.  Remove all
5434  *     userland visible parts and start killing the percpu refcnts of
5435  *     css's.  Set up so that the next stage will be kicked off once all
5436  *     the percpu refcnts are confirmed to be killed.
5437  *
5438  * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5439  *     rest of destruction.  Once all cgroup references are gone, the
5440  *     cgroup is RCU-freed.
5441  *
5442  * This function implements s1.  After this step, @cgrp is gone as far as
5443  * the userland is concerned and a new cgroup with the same name may be
5444  * created.  As cgroup doesn't care about the names internally, this
5445  * doesn't cause any problem.
5446  */
5447 static int cgroup_destroy_locked(struct cgroup *cgrp)
5448 	__releases(&cgroup_mutex) __acquires(&cgroup_mutex)
5449 {
5450 	struct cgroup *tcgrp, *parent = cgroup_parent(cgrp);
5451 	struct cgroup_subsys_state *css;
5452 	struct cgrp_cset_link *link;
5453 	int ssid;
5454 
5455 	lockdep_assert_held(&cgroup_mutex);
5456 
5457 	/*
5458 	 * Only migration can raise populated from zero and we're already
5459 	 * holding cgroup_mutex.
5460 	 */
5461 	if (cgroup_is_populated(cgrp))
5462 		return -EBUSY;
5463 
5464 	/*
5465 	 * Make sure there's no live children.  We can't test emptiness of
5466 	 * ->self.children as dead children linger on it while being
5467 	 * drained; otherwise, "rmdir parent/child parent" may fail.
5468 	 */
5469 	if (css_has_online_children(&cgrp->self))
5470 		return -EBUSY;
5471 
5472 	/*
5473 	 * Mark @cgrp and the associated csets dead.  The former prevents
5474 	 * further task migration and child creation by disabling
5475 	 * cgroup_lock_live_group().  The latter makes the csets ignored by
5476 	 * the migration path.
5477 	 */
5478 	cgrp->self.flags &= ~CSS_ONLINE;
5479 
5480 	spin_lock_irq(&css_set_lock);
5481 	list_for_each_entry(link, &cgrp->cset_links, cset_link)
5482 		link->cset->dead = true;
5483 	spin_unlock_irq(&css_set_lock);
5484 
5485 	/* initiate massacre of all css's */
5486 	for_each_css(css, ssid, cgrp)
5487 		kill_css(css);
5488 
5489 	/* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */
5490 	css_clear_dir(&cgrp->self);
5491 	kernfs_remove(cgrp->kn);
5492 
5493 	if (parent && cgroup_is_threaded(cgrp))
5494 		parent->nr_threaded_children--;
5495 
5496 	spin_lock_irq(&css_set_lock);
5497 	for (tcgrp = cgroup_parent(cgrp); tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5498 		tcgrp->nr_descendants--;
5499 		tcgrp->nr_dying_descendants++;
5500 		/*
5501 		 * If the dying cgroup is frozen, decrease frozen descendants
5502 		 * counters of ancestor cgroups.
5503 		 */
5504 		if (test_bit(CGRP_FROZEN, &cgrp->flags))
5505 			tcgrp->freezer.nr_frozen_descendants--;
5506 	}
5507 	spin_unlock_irq(&css_set_lock);
5508 
5509 	cgroup1_check_for_release(parent);
5510 
5511 	cgroup_bpf_offline(cgrp);
5512 
5513 	/* put the base reference */
5514 	percpu_ref_kill(&cgrp->self.refcnt);
5515 
5516 	return 0;
5517 };
5518 
5519 int cgroup_rmdir(struct kernfs_node *kn)
5520 {
5521 	struct cgroup *cgrp;
5522 	int ret = 0;
5523 
5524 	cgrp = cgroup_kn_lock_live(kn, false);
5525 	if (!cgrp)
5526 		return 0;
5527 
5528 	ret = cgroup_destroy_locked(cgrp);
5529 	if (!ret)
5530 		TRACE_CGROUP_PATH(rmdir, cgrp);
5531 
5532 	cgroup_kn_unlock(kn);
5533 	return ret;
5534 }
5535 
5536 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5537 	.show_options		= cgroup_show_options,
5538 	.mkdir			= cgroup_mkdir,
5539 	.rmdir			= cgroup_rmdir,
5540 	.show_path		= cgroup_show_path,
5541 };
5542 
5543 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
5544 {
5545 	struct cgroup_subsys_state *css;
5546 
5547 	pr_debug("Initializing cgroup subsys %s\n", ss->name);
5548 
5549 	mutex_lock(&cgroup_mutex);
5550 
5551 	idr_init(&ss->css_idr);
5552 	INIT_LIST_HEAD(&ss->cfts);
5553 
5554 	/* Create the root cgroup state for this subsystem */
5555 	ss->root = &cgrp_dfl_root;
5556 	css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
5557 	/* We don't handle early failures gracefully */
5558 	BUG_ON(IS_ERR(css));
5559 	init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
5560 
5561 	/*
5562 	 * Root csses are never destroyed and we can't initialize
5563 	 * percpu_ref during early init.  Disable refcnting.
5564 	 */
5565 	css->flags |= CSS_NO_REF;
5566 
5567 	if (early) {
5568 		/* allocation can't be done safely during early init */
5569 		css->id = 1;
5570 	} else {
5571 		css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5572 		BUG_ON(css->id < 0);
5573 	}
5574 
5575 	/* Update the init_css_set to contain a subsys
5576 	 * pointer to this state - since the subsystem is
5577 	 * newly registered, all tasks and hence the
5578 	 * init_css_set is in the subsystem's root cgroup. */
5579 	init_css_set.subsys[ss->id] = css;
5580 
5581 	have_fork_callback |= (bool)ss->fork << ss->id;
5582 	have_exit_callback |= (bool)ss->exit << ss->id;
5583 	have_release_callback |= (bool)ss->release << ss->id;
5584 	have_canfork_callback |= (bool)ss->can_fork << ss->id;
5585 
5586 	/* At system boot, before all subsystems have been
5587 	 * registered, no tasks have been forked, so we don't
5588 	 * need to invoke fork callbacks here. */
5589 	BUG_ON(!list_empty(&init_task.tasks));
5590 
5591 	BUG_ON(online_css(css));
5592 
5593 	mutex_unlock(&cgroup_mutex);
5594 }
5595 
5596 /**
5597  * cgroup_init_early - cgroup initialization at system boot
5598  *
5599  * Initialize cgroups at system boot, and initialize any
5600  * subsystems that request early init.
5601  */
5602 int __init cgroup_init_early(void)
5603 {
5604 	static struct cgroup_fs_context __initdata ctx;
5605 	struct cgroup_subsys *ss;
5606 	int i;
5607 
5608 	ctx.root = &cgrp_dfl_root;
5609 	init_cgroup_root(&ctx);
5610 	cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5611 
5612 	RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
5613 
5614 	for_each_subsys(ss, i) {
5615 		WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
5616 		     "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
5617 		     i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
5618 		     ss->id, ss->name);
5619 		WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5620 		     "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5621 
5622 		ss->id = i;
5623 		ss->name = cgroup_subsys_name[i];
5624 		if (!ss->legacy_name)
5625 			ss->legacy_name = cgroup_subsys_name[i];
5626 
5627 		if (ss->early_init)
5628 			cgroup_init_subsys(ss, true);
5629 	}
5630 	return 0;
5631 }
5632 
5633 static u16 cgroup_disable_mask __initdata;
5634 
5635 /**
5636  * cgroup_init - cgroup initialization
5637  *
5638  * Register cgroup filesystem and /proc file, and initialize
5639  * any subsystems that didn't request early init.
5640  */
5641 int __init cgroup_init(void)
5642 {
5643 	struct cgroup_subsys *ss;
5644 	int ssid;
5645 
5646 	BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
5647 	BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
5648 	BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files));
5649 
5650 	cgroup_rstat_boot();
5651 
5652 	/*
5653 	 * The latency of the synchronize_rcu() is too high for cgroups,
5654 	 * avoid it at the cost of forcing all readers into the slow path.
5655 	 */
5656 	rcu_sync_enter_start(&cgroup_threadgroup_rwsem.rss);
5657 
5658 	get_user_ns(init_cgroup_ns.user_ns);
5659 
5660 	mutex_lock(&cgroup_mutex);
5661 
5662 	/*
5663 	 * Add init_css_set to the hash table so that dfl_root can link to
5664 	 * it during init.
5665 	 */
5666 	hash_add(css_set_table, &init_css_set.hlist,
5667 		 css_set_hash(init_css_set.subsys));
5668 
5669 	BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
5670 
5671 	mutex_unlock(&cgroup_mutex);
5672 
5673 	for_each_subsys(ss, ssid) {
5674 		if (ss->early_init) {
5675 			struct cgroup_subsys_state *css =
5676 				init_css_set.subsys[ss->id];
5677 
5678 			css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5679 						   GFP_KERNEL);
5680 			BUG_ON(css->id < 0);
5681 		} else {
5682 			cgroup_init_subsys(ss, false);
5683 		}
5684 
5685 		list_add_tail(&init_css_set.e_cset_node[ssid],
5686 			      &cgrp_dfl_root.cgrp.e_csets[ssid]);
5687 
5688 		/*
5689 		 * Setting dfl_root subsys_mask needs to consider the
5690 		 * disabled flag and cftype registration needs kmalloc,
5691 		 * both of which aren't available during early_init.
5692 		 */
5693 		if (cgroup_disable_mask & (1 << ssid)) {
5694 			static_branch_disable(cgroup_subsys_enabled_key[ssid]);
5695 			printk(KERN_INFO "Disabling %s control group subsystem\n",
5696 			       ss->name);
5697 			continue;
5698 		}
5699 
5700 		if (cgroup1_ssid_disabled(ssid))
5701 			printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n",
5702 			       ss->name);
5703 
5704 		cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5705 
5706 		/* implicit controllers must be threaded too */
5707 		WARN_ON(ss->implicit_on_dfl && !ss->threaded);
5708 
5709 		if (ss->implicit_on_dfl)
5710 			cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
5711 		else if (!ss->dfl_cftypes)
5712 			cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
5713 
5714 		if (ss->threaded)
5715 			cgrp_dfl_threaded_ss_mask |= 1 << ss->id;
5716 
5717 		if (ss->dfl_cftypes == ss->legacy_cftypes) {
5718 			WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5719 		} else {
5720 			WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5721 			WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
5722 		}
5723 
5724 		if (ss->bind)
5725 			ss->bind(init_css_set.subsys[ssid]);
5726 
5727 		mutex_lock(&cgroup_mutex);
5728 		css_populate_dir(init_css_set.subsys[ssid]);
5729 		mutex_unlock(&cgroup_mutex);
5730 	}
5731 
5732 	/* init_css_set.subsys[] has been updated, re-hash */
5733 	hash_del(&init_css_set.hlist);
5734 	hash_add(css_set_table, &init_css_set.hlist,
5735 		 css_set_hash(init_css_set.subsys));
5736 
5737 	WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
5738 	WARN_ON(register_filesystem(&cgroup_fs_type));
5739 	WARN_ON(register_filesystem(&cgroup2_fs_type));
5740 	WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show));
5741 #ifdef CONFIG_CPUSETS
5742 	WARN_ON(register_filesystem(&cpuset_fs_type));
5743 #endif
5744 
5745 	return 0;
5746 }
5747 
5748 static int __init cgroup_wq_init(void)
5749 {
5750 	/*
5751 	 * There isn't much point in executing destruction path in
5752 	 * parallel.  Good chunk is serialized with cgroup_mutex anyway.
5753 	 * Use 1 for @max_active.
5754 	 *
5755 	 * We would prefer to do this in cgroup_init() above, but that
5756 	 * is called before init_workqueues(): so leave this until after.
5757 	 */
5758 	cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
5759 	BUG_ON(!cgroup_destroy_wq);
5760 	return 0;
5761 }
5762 core_initcall(cgroup_wq_init);
5763 
5764 void cgroup_path_from_kernfs_id(u64 id, char *buf, size_t buflen)
5765 {
5766 	struct kernfs_node *kn;
5767 
5768 	kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id);
5769 	if (!kn)
5770 		return;
5771 	kernfs_path(kn, buf, buflen);
5772 	kernfs_put(kn);
5773 }
5774 
5775 /*
5776  * proc_cgroup_show()
5777  *  - Print task's cgroup paths into seq_file, one line for each hierarchy
5778  *  - Used for /proc/<pid>/cgroup.
5779  */
5780 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5781 		     struct pid *pid, struct task_struct *tsk)
5782 {
5783 	char *buf;
5784 	int retval;
5785 	struct cgroup_root *root;
5786 
5787 	retval = -ENOMEM;
5788 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
5789 	if (!buf)
5790 		goto out;
5791 
5792 	mutex_lock(&cgroup_mutex);
5793 	spin_lock_irq(&css_set_lock);
5794 
5795 	for_each_root(root) {
5796 		struct cgroup_subsys *ss;
5797 		struct cgroup *cgrp;
5798 		int ssid, count = 0;
5799 
5800 		if (root == &cgrp_dfl_root && !cgrp_dfl_visible)
5801 			continue;
5802 
5803 		seq_printf(m, "%d:", root->hierarchy_id);
5804 		if (root != &cgrp_dfl_root)
5805 			for_each_subsys(ss, ssid)
5806 				if (root->subsys_mask & (1 << ssid))
5807 					seq_printf(m, "%s%s", count++ ? "," : "",
5808 						   ss->legacy_name);
5809 		if (strlen(root->name))
5810 			seq_printf(m, "%sname=%s", count ? "," : "",
5811 				   root->name);
5812 		seq_putc(m, ':');
5813 
5814 		cgrp = task_cgroup_from_root(tsk, root);
5815 
5816 		/*
5817 		 * On traditional hierarchies, all zombie tasks show up as
5818 		 * belonging to the root cgroup.  On the default hierarchy,
5819 		 * while a zombie doesn't show up in "cgroup.procs" and
5820 		 * thus can't be migrated, its /proc/PID/cgroup keeps
5821 		 * reporting the cgroup it belonged to before exiting.  If
5822 		 * the cgroup is removed before the zombie is reaped,
5823 		 * " (deleted)" is appended to the cgroup path.
5824 		 */
5825 		if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
5826 			retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
5827 						current->nsproxy->cgroup_ns);
5828 			if (retval >= PATH_MAX)
5829 				retval = -ENAMETOOLONG;
5830 			if (retval < 0)
5831 				goto out_unlock;
5832 
5833 			seq_puts(m, buf);
5834 		} else {
5835 			seq_puts(m, "/");
5836 		}
5837 
5838 		if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
5839 			seq_puts(m, " (deleted)\n");
5840 		else
5841 			seq_putc(m, '\n');
5842 	}
5843 
5844 	retval = 0;
5845 out_unlock:
5846 	spin_unlock_irq(&css_set_lock);
5847 	mutex_unlock(&cgroup_mutex);
5848 	kfree(buf);
5849 out:
5850 	return retval;
5851 }
5852 
5853 /**
5854  * cgroup_fork - initialize cgroup related fields during copy_process()
5855  * @child: pointer to task_struct of forking parent process.
5856  *
5857  * A task is associated with the init_css_set until cgroup_post_fork()
5858  * attaches it to the parent's css_set.  Empty cg_list indicates that
5859  * @child isn't holding reference to its css_set.
5860  */
5861 void cgroup_fork(struct task_struct *child)
5862 {
5863 	RCU_INIT_POINTER(child->cgroups, &init_css_set);
5864 	INIT_LIST_HEAD(&child->cg_list);
5865 }
5866 
5867 /**
5868  * cgroup_can_fork - called on a new task before the process is exposed
5869  * @child: the task in question.
5870  *
5871  * This calls the subsystem can_fork() callbacks. If the can_fork() callback
5872  * returns an error, the fork aborts with that error code. This allows for
5873  * a cgroup subsystem to conditionally allow or deny new forks.
5874  */
5875 int cgroup_can_fork(struct task_struct *child)
5876 {
5877 	struct cgroup_subsys *ss;
5878 	int i, j, ret;
5879 
5880 	do_each_subsys_mask(ss, i, have_canfork_callback) {
5881 		ret = ss->can_fork(child);
5882 		if (ret)
5883 			goto out_revert;
5884 	} while_each_subsys_mask();
5885 
5886 	return 0;
5887 
5888 out_revert:
5889 	for_each_subsys(ss, j) {
5890 		if (j >= i)
5891 			break;
5892 		if (ss->cancel_fork)
5893 			ss->cancel_fork(child);
5894 	}
5895 
5896 	return ret;
5897 }
5898 
5899 /**
5900  * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
5901  * @child: the task in question
5902  *
5903  * This calls the cancel_fork() callbacks if a fork failed *after*
5904  * cgroup_can_fork() succeded.
5905  */
5906 void cgroup_cancel_fork(struct task_struct *child)
5907 {
5908 	struct cgroup_subsys *ss;
5909 	int i;
5910 
5911 	for_each_subsys(ss, i)
5912 		if (ss->cancel_fork)
5913 			ss->cancel_fork(child);
5914 }
5915 
5916 /**
5917  * cgroup_post_fork - called on a new task after adding it to the task list
5918  * @child: the task in question
5919  *
5920  * Adds the task to the list running through its css_set if necessary and
5921  * call the subsystem fork() callbacks.  Has to be after the task is
5922  * visible on the task list in case we race with the first call to
5923  * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5924  * list.
5925  */
5926 void cgroup_post_fork(struct task_struct *child)
5927 {
5928 	struct cgroup_subsys *ss;
5929 	struct css_set *cset;
5930 	int i;
5931 
5932 	spin_lock_irq(&css_set_lock);
5933 
5934 	WARN_ON_ONCE(!list_empty(&child->cg_list));
5935 	cset = task_css_set(current); /* current is @child's parent */
5936 	get_css_set(cset);
5937 	cset->nr_tasks++;
5938 	css_set_move_task(child, NULL, cset, false);
5939 
5940 	/*
5941 	 * If the cgroup has to be frozen, the new task has too.  Let's set
5942 	 * the JOBCTL_TRAP_FREEZE jobctl bit to get the task into the
5943 	 * frozen state.
5944 	 */
5945 	if (unlikely(cgroup_task_freeze(child))) {
5946 		spin_lock(&child->sighand->siglock);
5947 		WARN_ON_ONCE(child->frozen);
5948 		child->jobctl |= JOBCTL_TRAP_FREEZE;
5949 		spin_unlock(&child->sighand->siglock);
5950 
5951 		/*
5952 		 * Calling cgroup_update_frozen() isn't required here,
5953 		 * because it will be called anyway a bit later from
5954 		 * do_freezer_trap(). So we avoid cgroup's transient switch
5955 		 * from the frozen state and back.
5956 		 */
5957 	}
5958 
5959 	spin_unlock_irq(&css_set_lock);
5960 
5961 	/*
5962 	 * Call ss->fork().  This must happen after @child is linked on
5963 	 * css_set; otherwise, @child might change state between ->fork()
5964 	 * and addition to css_set.
5965 	 */
5966 	do_each_subsys_mask(ss, i, have_fork_callback) {
5967 		ss->fork(child);
5968 	} while_each_subsys_mask();
5969 }
5970 
5971 /**
5972  * cgroup_exit - detach cgroup from exiting task
5973  * @tsk: pointer to task_struct of exiting process
5974  *
5975  * Description: Detach cgroup from @tsk.
5976  *
5977  */
5978 void cgroup_exit(struct task_struct *tsk)
5979 {
5980 	struct cgroup_subsys *ss;
5981 	struct css_set *cset;
5982 	int i;
5983 
5984 	spin_lock_irq(&css_set_lock);
5985 
5986 	WARN_ON_ONCE(list_empty(&tsk->cg_list));
5987 	cset = task_css_set(tsk);
5988 	css_set_move_task(tsk, cset, NULL, false);
5989 	list_add_tail(&tsk->cg_list, &cset->dying_tasks);
5990 	cset->nr_tasks--;
5991 
5992 	WARN_ON_ONCE(cgroup_task_frozen(tsk));
5993 	if (unlikely(cgroup_task_freeze(tsk)))
5994 		cgroup_update_frozen(task_dfl_cgroup(tsk));
5995 
5996 	spin_unlock_irq(&css_set_lock);
5997 
5998 	/* see cgroup_post_fork() for details */
5999 	do_each_subsys_mask(ss, i, have_exit_callback) {
6000 		ss->exit(tsk);
6001 	} while_each_subsys_mask();
6002 }
6003 
6004 void cgroup_release(struct task_struct *task)
6005 {
6006 	struct cgroup_subsys *ss;
6007 	int ssid;
6008 
6009 	do_each_subsys_mask(ss, ssid, have_release_callback) {
6010 		ss->release(task);
6011 	} while_each_subsys_mask();
6012 
6013 	spin_lock_irq(&css_set_lock);
6014 	css_set_skip_task_iters(task_css_set(task), task);
6015 	list_del_init(&task->cg_list);
6016 	spin_unlock_irq(&css_set_lock);
6017 }
6018 
6019 void cgroup_free(struct task_struct *task)
6020 {
6021 	struct css_set *cset = task_css_set(task);
6022 	put_css_set(cset);
6023 }
6024 
6025 static int __init cgroup_disable(char *str)
6026 {
6027 	struct cgroup_subsys *ss;
6028 	char *token;
6029 	int i;
6030 
6031 	while ((token = strsep(&str, ",")) != NULL) {
6032 		if (!*token)
6033 			continue;
6034 
6035 		for_each_subsys(ss, i) {
6036 			if (strcmp(token, ss->name) &&
6037 			    strcmp(token, ss->legacy_name))
6038 				continue;
6039 			cgroup_disable_mask |= 1 << i;
6040 		}
6041 	}
6042 	return 1;
6043 }
6044 __setup("cgroup_disable=", cgroup_disable);
6045 
6046 void __init __weak enable_debug_cgroup(void) { }
6047 
6048 static int __init enable_cgroup_debug(char *str)
6049 {
6050 	cgroup_debug = true;
6051 	enable_debug_cgroup();
6052 	return 1;
6053 }
6054 __setup("cgroup_debug", enable_cgroup_debug);
6055 
6056 /**
6057  * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
6058  * @dentry: directory dentry of interest
6059  * @ss: subsystem of interest
6060  *
6061  * If @dentry is a directory for a cgroup which has @ss enabled on it, try
6062  * to get the corresponding css and return it.  If such css doesn't exist
6063  * or can't be pinned, an ERR_PTR value is returned.
6064  */
6065 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
6066 						       struct cgroup_subsys *ss)
6067 {
6068 	struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
6069 	struct file_system_type *s_type = dentry->d_sb->s_type;
6070 	struct cgroup_subsys_state *css = NULL;
6071 	struct cgroup *cgrp;
6072 
6073 	/* is @dentry a cgroup dir? */
6074 	if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
6075 	    !kn || kernfs_type(kn) != KERNFS_DIR)
6076 		return ERR_PTR(-EBADF);
6077 
6078 	rcu_read_lock();
6079 
6080 	/*
6081 	 * This path doesn't originate from kernfs and @kn could already
6082 	 * have been or be removed at any point.  @kn->priv is RCU
6083 	 * protected for this access.  See css_release_work_fn() for details.
6084 	 */
6085 	cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6086 	if (cgrp)
6087 		css = cgroup_css(cgrp, ss);
6088 
6089 	if (!css || !css_tryget_online(css))
6090 		css = ERR_PTR(-ENOENT);
6091 
6092 	rcu_read_unlock();
6093 	return css;
6094 }
6095 
6096 /**
6097  * css_from_id - lookup css by id
6098  * @id: the cgroup id
6099  * @ss: cgroup subsys to be looked into
6100  *
6101  * Returns the css if there's valid one with @id, otherwise returns NULL.
6102  * Should be called under rcu_read_lock().
6103  */
6104 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
6105 {
6106 	WARN_ON_ONCE(!rcu_read_lock_held());
6107 	return idr_find(&ss->css_idr, id);
6108 }
6109 
6110 /**
6111  * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
6112  * @path: path on the default hierarchy
6113  *
6114  * Find the cgroup at @path on the default hierarchy, increment its
6115  * reference count and return it.  Returns pointer to the found cgroup on
6116  * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR)
6117  * if @path points to a non-directory.
6118  */
6119 struct cgroup *cgroup_get_from_path(const char *path)
6120 {
6121 	struct kernfs_node *kn;
6122 	struct cgroup *cgrp;
6123 
6124 	mutex_lock(&cgroup_mutex);
6125 
6126 	kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path);
6127 	if (kn) {
6128 		if (kernfs_type(kn) == KERNFS_DIR) {
6129 			cgrp = kn->priv;
6130 			cgroup_get_live(cgrp);
6131 		} else {
6132 			cgrp = ERR_PTR(-ENOTDIR);
6133 		}
6134 		kernfs_put(kn);
6135 	} else {
6136 		cgrp = ERR_PTR(-ENOENT);
6137 	}
6138 
6139 	mutex_unlock(&cgroup_mutex);
6140 	return cgrp;
6141 }
6142 EXPORT_SYMBOL_GPL(cgroup_get_from_path);
6143 
6144 /**
6145  * cgroup_get_from_fd - get a cgroup pointer from a fd
6146  * @fd: fd obtained by open(cgroup2_dir)
6147  *
6148  * Find the cgroup from a fd which should be obtained
6149  * by opening a cgroup directory.  Returns a pointer to the
6150  * cgroup on success. ERR_PTR is returned if the cgroup
6151  * cannot be found.
6152  */
6153 struct cgroup *cgroup_get_from_fd(int fd)
6154 {
6155 	struct cgroup_subsys_state *css;
6156 	struct cgroup *cgrp;
6157 	struct file *f;
6158 
6159 	f = fget_raw(fd);
6160 	if (!f)
6161 		return ERR_PTR(-EBADF);
6162 
6163 	css = css_tryget_online_from_dir(f->f_path.dentry, NULL);
6164 	fput(f);
6165 	if (IS_ERR(css))
6166 		return ERR_CAST(css);
6167 
6168 	cgrp = css->cgroup;
6169 	if (!cgroup_on_dfl(cgrp)) {
6170 		cgroup_put(cgrp);
6171 		return ERR_PTR(-EBADF);
6172 	}
6173 
6174 	return cgrp;
6175 }
6176 EXPORT_SYMBOL_GPL(cgroup_get_from_fd);
6177 
6178 static u64 power_of_ten(int power)
6179 {
6180 	u64 v = 1;
6181 	while (power--)
6182 		v *= 10;
6183 	return v;
6184 }
6185 
6186 /**
6187  * cgroup_parse_float - parse a floating number
6188  * @input: input string
6189  * @dec_shift: number of decimal digits to shift
6190  * @v: output
6191  *
6192  * Parse a decimal floating point number in @input and store the result in
6193  * @v with decimal point right shifted @dec_shift times.  For example, if
6194  * @input is "12.3456" and @dec_shift is 3, *@v will be set to 12345.
6195  * Returns 0 on success, -errno otherwise.
6196  *
6197  * There's nothing cgroup specific about this function except that it's
6198  * currently the only user.
6199  */
6200 int cgroup_parse_float(const char *input, unsigned dec_shift, s64 *v)
6201 {
6202 	s64 whole, frac = 0;
6203 	int fstart = 0, fend = 0, flen;
6204 
6205 	if (!sscanf(input, "%lld.%n%lld%n", &whole, &fstart, &frac, &fend))
6206 		return -EINVAL;
6207 	if (frac < 0)
6208 		return -EINVAL;
6209 
6210 	flen = fend > fstart ? fend - fstart : 0;
6211 	if (flen < dec_shift)
6212 		frac *= power_of_ten(dec_shift - flen);
6213 	else
6214 		frac = DIV_ROUND_CLOSEST_ULL(frac, power_of_ten(flen - dec_shift));
6215 
6216 	*v = whole * power_of_ten(dec_shift) + frac;
6217 	return 0;
6218 }
6219 
6220 /*
6221  * sock->sk_cgrp_data handling.  For more info, see sock_cgroup_data
6222  * definition in cgroup-defs.h.
6223  */
6224 #ifdef CONFIG_SOCK_CGROUP_DATA
6225 
6226 #if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID)
6227 
6228 DEFINE_SPINLOCK(cgroup_sk_update_lock);
6229 static bool cgroup_sk_alloc_disabled __read_mostly;
6230 
6231 void cgroup_sk_alloc_disable(void)
6232 {
6233 	if (cgroup_sk_alloc_disabled)
6234 		return;
6235 	pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n");
6236 	cgroup_sk_alloc_disabled = true;
6237 }
6238 
6239 #else
6240 
6241 #define cgroup_sk_alloc_disabled	false
6242 
6243 #endif
6244 
6245 void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
6246 {
6247 	if (cgroup_sk_alloc_disabled)
6248 		return;
6249 
6250 	/* Socket clone path */
6251 	if (skcd->val) {
6252 		/*
6253 		 * We might be cloning a socket which is left in an empty
6254 		 * cgroup and the cgroup might have already been rmdir'd.
6255 		 * Don't use cgroup_get_live().
6256 		 */
6257 		cgroup_get(sock_cgroup_ptr(skcd));
6258 		cgroup_bpf_get(sock_cgroup_ptr(skcd));
6259 		return;
6260 	}
6261 
6262 	rcu_read_lock();
6263 
6264 	while (true) {
6265 		struct css_set *cset;
6266 
6267 		cset = task_css_set(current);
6268 		if (likely(cgroup_tryget(cset->dfl_cgrp))) {
6269 			skcd->val = (unsigned long)cset->dfl_cgrp;
6270 			cgroup_bpf_get(cset->dfl_cgrp);
6271 			break;
6272 		}
6273 		cpu_relax();
6274 	}
6275 
6276 	rcu_read_unlock();
6277 }
6278 
6279 void cgroup_sk_free(struct sock_cgroup_data *skcd)
6280 {
6281 	struct cgroup *cgrp = sock_cgroup_ptr(skcd);
6282 
6283 	cgroup_bpf_put(cgrp);
6284 	cgroup_put(cgrp);
6285 }
6286 
6287 #endif	/* CONFIG_SOCK_CGROUP_DATA */
6288 
6289 #ifdef CONFIG_CGROUP_BPF
6290 int cgroup_bpf_attach(struct cgroup *cgrp, struct bpf_prog *prog,
6291 		      enum bpf_attach_type type, u32 flags)
6292 {
6293 	int ret;
6294 
6295 	mutex_lock(&cgroup_mutex);
6296 	ret = __cgroup_bpf_attach(cgrp, prog, type, flags);
6297 	mutex_unlock(&cgroup_mutex);
6298 	return ret;
6299 }
6300 int cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog,
6301 		      enum bpf_attach_type type, u32 flags)
6302 {
6303 	int ret;
6304 
6305 	mutex_lock(&cgroup_mutex);
6306 	ret = __cgroup_bpf_detach(cgrp, prog, type);
6307 	mutex_unlock(&cgroup_mutex);
6308 	return ret;
6309 }
6310 int cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr,
6311 		     union bpf_attr __user *uattr)
6312 {
6313 	int ret;
6314 
6315 	mutex_lock(&cgroup_mutex);
6316 	ret = __cgroup_bpf_query(cgrp, attr, uattr);
6317 	mutex_unlock(&cgroup_mutex);
6318 	return ret;
6319 }
6320 #endif /* CONFIG_CGROUP_BPF */
6321 
6322 #ifdef CONFIG_SYSFS
6323 static ssize_t show_delegatable_files(struct cftype *files, char *buf,
6324 				      ssize_t size, const char *prefix)
6325 {
6326 	struct cftype *cft;
6327 	ssize_t ret = 0;
6328 
6329 	for (cft = files; cft && cft->name[0] != '\0'; cft++) {
6330 		if (!(cft->flags & CFTYPE_NS_DELEGATABLE))
6331 			continue;
6332 
6333 		if (prefix)
6334 			ret += snprintf(buf + ret, size - ret, "%s.", prefix);
6335 
6336 		ret += snprintf(buf + ret, size - ret, "%s\n", cft->name);
6337 
6338 		if (WARN_ON(ret >= size))
6339 			break;
6340 	}
6341 
6342 	return ret;
6343 }
6344 
6345 static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr,
6346 			      char *buf)
6347 {
6348 	struct cgroup_subsys *ss;
6349 	int ssid;
6350 	ssize_t ret = 0;
6351 
6352 	ret = show_delegatable_files(cgroup_base_files, buf, PAGE_SIZE - ret,
6353 				     NULL);
6354 
6355 	for_each_subsys(ss, ssid)
6356 		ret += show_delegatable_files(ss->dfl_cftypes, buf + ret,
6357 					      PAGE_SIZE - ret,
6358 					      cgroup_subsys_name[ssid]);
6359 
6360 	return ret;
6361 }
6362 static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate);
6363 
6364 static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr,
6365 			     char *buf)
6366 {
6367 	return snprintf(buf, PAGE_SIZE, "nsdelegate\nmemory_localevents\n");
6368 }
6369 static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features);
6370 
6371 static struct attribute *cgroup_sysfs_attrs[] = {
6372 	&cgroup_delegate_attr.attr,
6373 	&cgroup_features_attr.attr,
6374 	NULL,
6375 };
6376 
6377 static const struct attribute_group cgroup_sysfs_attr_group = {
6378 	.attrs = cgroup_sysfs_attrs,
6379 	.name = "cgroup",
6380 };
6381 
6382 static int __init cgroup_sysfs_init(void)
6383 {
6384 	return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group);
6385 }
6386 subsys_initcall(cgroup_sysfs_init);
6387 
6388 #endif /* CONFIG_SYSFS */
6389