1 /* 2 * Generic process-grouping system. 3 * 4 * Based originally on the cpuset system, extracted by Paul Menage 5 * Copyright (C) 2006 Google, Inc 6 * 7 * Notifications support 8 * Copyright (C) 2009 Nokia Corporation 9 * Author: Kirill A. Shutemov 10 * 11 * Copyright notices from the original cpuset code: 12 * -------------------------------------------------- 13 * Copyright (C) 2003 BULL SA. 14 * Copyright (C) 2004-2006 Silicon Graphics, Inc. 15 * 16 * Portions derived from Patrick Mochel's sysfs code. 17 * sysfs is Copyright (c) 2001-3 Patrick Mochel 18 * 19 * 2003-10-10 Written by Simon Derr. 20 * 2003-10-22 Updates by Stephen Hemminger. 21 * 2004 May-July Rework by Paul Jackson. 22 * --------------------------------------------------- 23 * 24 * This file is subject to the terms and conditions of the GNU General Public 25 * License. See the file COPYING in the main directory of the Linux 26 * distribution for more details. 27 */ 28 29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 30 31 #include "cgroup-internal.h" 32 33 #include <linux/cred.h> 34 #include <linux/errno.h> 35 #include <linux/init_task.h> 36 #include <linux/kernel.h> 37 #include <linux/magic.h> 38 #include <linux/mutex.h> 39 #include <linux/mount.h> 40 #include <linux/pagemap.h> 41 #include <linux/proc_fs.h> 42 #include <linux/rcupdate.h> 43 #include <linux/sched.h> 44 #include <linux/sched/task.h> 45 #include <linux/slab.h> 46 #include <linux/spinlock.h> 47 #include <linux/percpu-rwsem.h> 48 #include <linux/string.h> 49 #include <linux/hashtable.h> 50 #include <linux/idr.h> 51 #include <linux/kthread.h> 52 #include <linux/atomic.h> 53 #include <linux/cpuset.h> 54 #include <linux/proc_ns.h> 55 #include <linux/nsproxy.h> 56 #include <linux/file.h> 57 #include <net/sock.h> 58 59 #define CREATE_TRACE_POINTS 60 #include <trace/events/cgroup.h> 61 62 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \ 63 MAX_CFTYPE_NAME + 2) 64 65 /* 66 * cgroup_mutex is the master lock. Any modification to cgroup or its 67 * hierarchy must be performed while holding it. 68 * 69 * css_set_lock protects task->cgroups pointer, the list of css_set 70 * objects, and the chain of tasks off each css_set. 71 * 72 * These locks are exported if CONFIG_PROVE_RCU so that accessors in 73 * cgroup.h can use them for lockdep annotations. 74 */ 75 DEFINE_MUTEX(cgroup_mutex); 76 DEFINE_SPINLOCK(css_set_lock); 77 78 #ifdef CONFIG_PROVE_RCU 79 EXPORT_SYMBOL_GPL(cgroup_mutex); 80 EXPORT_SYMBOL_GPL(css_set_lock); 81 #endif 82 83 /* 84 * Protects cgroup_idr and css_idr so that IDs can be released without 85 * grabbing cgroup_mutex. 86 */ 87 static DEFINE_SPINLOCK(cgroup_idr_lock); 88 89 /* 90 * Protects cgroup_file->kn for !self csses. It synchronizes notifications 91 * against file removal/re-creation across css hiding. 92 */ 93 static DEFINE_SPINLOCK(cgroup_file_kn_lock); 94 95 struct percpu_rw_semaphore cgroup_threadgroup_rwsem; 96 97 #define cgroup_assert_mutex_or_rcu_locked() \ 98 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \ 99 !lockdep_is_held(&cgroup_mutex), \ 100 "cgroup_mutex or RCU read lock required"); 101 102 /* 103 * cgroup destruction makes heavy use of work items and there can be a lot 104 * of concurrent destructions. Use a separate workqueue so that cgroup 105 * destruction work items don't end up filling up max_active of system_wq 106 * which may lead to deadlock. 107 */ 108 static struct workqueue_struct *cgroup_destroy_wq; 109 110 /* generate an array of cgroup subsystem pointers */ 111 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys, 112 struct cgroup_subsys *cgroup_subsys[] = { 113 #include <linux/cgroup_subsys.h> 114 }; 115 #undef SUBSYS 116 117 /* array of cgroup subsystem names */ 118 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x, 119 static const char *cgroup_subsys_name[] = { 120 #include <linux/cgroup_subsys.h> 121 }; 122 #undef SUBSYS 123 124 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */ 125 #define SUBSYS(_x) \ 126 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \ 127 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \ 128 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \ 129 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key); 130 #include <linux/cgroup_subsys.h> 131 #undef SUBSYS 132 133 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key, 134 static struct static_key_true *cgroup_subsys_enabled_key[] = { 135 #include <linux/cgroup_subsys.h> 136 }; 137 #undef SUBSYS 138 139 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key, 140 static struct static_key_true *cgroup_subsys_on_dfl_key[] = { 141 #include <linux/cgroup_subsys.h> 142 }; 143 #undef SUBSYS 144 145 /* 146 * The default hierarchy, reserved for the subsystems that are otherwise 147 * unattached - it never has more than a single cgroup, and all tasks are 148 * part of that cgroup. 149 */ 150 struct cgroup_root cgrp_dfl_root; 151 EXPORT_SYMBOL_GPL(cgrp_dfl_root); 152 153 /* 154 * The default hierarchy always exists but is hidden until mounted for the 155 * first time. This is for backward compatibility. 156 */ 157 static bool cgrp_dfl_visible; 158 159 /* some controllers are not supported in the default hierarchy */ 160 static u16 cgrp_dfl_inhibit_ss_mask; 161 162 /* some controllers are implicitly enabled on the default hierarchy */ 163 static u16 cgrp_dfl_implicit_ss_mask; 164 165 /* The list of hierarchy roots */ 166 LIST_HEAD(cgroup_roots); 167 static int cgroup_root_count; 168 169 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */ 170 static DEFINE_IDR(cgroup_hierarchy_idr); 171 172 /* 173 * Assign a monotonically increasing serial number to csses. It guarantees 174 * cgroups with bigger numbers are newer than those with smaller numbers. 175 * Also, as csses are always appended to the parent's ->children list, it 176 * guarantees that sibling csses are always sorted in the ascending serial 177 * number order on the list. Protected by cgroup_mutex. 178 */ 179 static u64 css_serial_nr_next = 1; 180 181 /* 182 * These bitmasks identify subsystems with specific features to avoid 183 * having to do iterative checks repeatedly. 184 */ 185 static u16 have_fork_callback __read_mostly; 186 static u16 have_exit_callback __read_mostly; 187 static u16 have_free_callback __read_mostly; 188 static u16 have_canfork_callback __read_mostly; 189 190 /* cgroup namespace for init task */ 191 struct cgroup_namespace init_cgroup_ns = { 192 .count = { .counter = 2, }, 193 .user_ns = &init_user_ns, 194 .ns.ops = &cgroupns_operations, 195 .ns.inum = PROC_CGROUP_INIT_INO, 196 .root_cset = &init_css_set, 197 }; 198 199 static struct file_system_type cgroup2_fs_type; 200 static struct cftype cgroup_base_files[]; 201 202 static int cgroup_apply_control(struct cgroup *cgrp); 203 static void cgroup_finalize_control(struct cgroup *cgrp, int ret); 204 static void css_task_iter_advance(struct css_task_iter *it); 205 static int cgroup_destroy_locked(struct cgroup *cgrp); 206 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp, 207 struct cgroup_subsys *ss); 208 static void css_release(struct percpu_ref *ref); 209 static void kill_css(struct cgroup_subsys_state *css); 210 static int cgroup_addrm_files(struct cgroup_subsys_state *css, 211 struct cgroup *cgrp, struct cftype cfts[], 212 bool is_add); 213 214 /** 215 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID 216 * @ssid: subsys ID of interest 217 * 218 * cgroup_subsys_enabled() can only be used with literal subsys names which 219 * is fine for individual subsystems but unsuitable for cgroup core. This 220 * is slower static_key_enabled() based test indexed by @ssid. 221 */ 222 bool cgroup_ssid_enabled(int ssid) 223 { 224 if (CGROUP_SUBSYS_COUNT == 0) 225 return false; 226 227 return static_key_enabled(cgroup_subsys_enabled_key[ssid]); 228 } 229 230 /** 231 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy 232 * @cgrp: the cgroup of interest 233 * 234 * The default hierarchy is the v2 interface of cgroup and this function 235 * can be used to test whether a cgroup is on the default hierarchy for 236 * cases where a subsystem should behave differnetly depending on the 237 * interface version. 238 * 239 * The set of behaviors which change on the default hierarchy are still 240 * being determined and the mount option is prefixed with __DEVEL__. 241 * 242 * List of changed behaviors: 243 * 244 * - Mount options "noprefix", "xattr", "clone_children", "release_agent" 245 * and "name" are disallowed. 246 * 247 * - When mounting an existing superblock, mount options should match. 248 * 249 * - Remount is disallowed. 250 * 251 * - rename(2) is disallowed. 252 * 253 * - "tasks" is removed. Everything should be at process granularity. Use 254 * "cgroup.procs" instead. 255 * 256 * - "cgroup.procs" is not sorted. pids will be unique unless they got 257 * recycled inbetween reads. 258 * 259 * - "release_agent" and "notify_on_release" are removed. Replacement 260 * notification mechanism will be implemented. 261 * 262 * - "cgroup.clone_children" is removed. 263 * 264 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup 265 * and its descendants contain no task; otherwise, 1. The file also 266 * generates kernfs notification which can be monitored through poll and 267 * [di]notify when the value of the file changes. 268 * 269 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and 270 * take masks of ancestors with non-empty cpus/mems, instead of being 271 * moved to an ancestor. 272 * 273 * - cpuset: a task can be moved into an empty cpuset, and again it takes 274 * masks of ancestors. 275 * 276 * - memcg: use_hierarchy is on by default and the cgroup file for the flag 277 * is not created. 278 * 279 * - blkcg: blk-throttle becomes properly hierarchical. 280 * 281 * - debug: disallowed on the default hierarchy. 282 */ 283 bool cgroup_on_dfl(const struct cgroup *cgrp) 284 { 285 return cgrp->root == &cgrp_dfl_root; 286 } 287 288 /* IDR wrappers which synchronize using cgroup_idr_lock */ 289 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end, 290 gfp_t gfp_mask) 291 { 292 int ret; 293 294 idr_preload(gfp_mask); 295 spin_lock_bh(&cgroup_idr_lock); 296 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM); 297 spin_unlock_bh(&cgroup_idr_lock); 298 idr_preload_end(); 299 return ret; 300 } 301 302 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id) 303 { 304 void *ret; 305 306 spin_lock_bh(&cgroup_idr_lock); 307 ret = idr_replace(idr, ptr, id); 308 spin_unlock_bh(&cgroup_idr_lock); 309 return ret; 310 } 311 312 static void cgroup_idr_remove(struct idr *idr, int id) 313 { 314 spin_lock_bh(&cgroup_idr_lock); 315 idr_remove(idr, id); 316 spin_unlock_bh(&cgroup_idr_lock); 317 } 318 319 static struct cgroup *cgroup_parent(struct cgroup *cgrp) 320 { 321 struct cgroup_subsys_state *parent_css = cgrp->self.parent; 322 323 if (parent_css) 324 return container_of(parent_css, struct cgroup, self); 325 return NULL; 326 } 327 328 /* subsystems visibly enabled on a cgroup */ 329 static u16 cgroup_control(struct cgroup *cgrp) 330 { 331 struct cgroup *parent = cgroup_parent(cgrp); 332 u16 root_ss_mask = cgrp->root->subsys_mask; 333 334 if (parent) 335 return parent->subtree_control; 336 337 if (cgroup_on_dfl(cgrp)) 338 root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask | 339 cgrp_dfl_implicit_ss_mask); 340 return root_ss_mask; 341 } 342 343 /* subsystems enabled on a cgroup */ 344 static u16 cgroup_ss_mask(struct cgroup *cgrp) 345 { 346 struct cgroup *parent = cgroup_parent(cgrp); 347 348 if (parent) 349 return parent->subtree_ss_mask; 350 351 return cgrp->root->subsys_mask; 352 } 353 354 /** 355 * cgroup_css - obtain a cgroup's css for the specified subsystem 356 * @cgrp: the cgroup of interest 357 * @ss: the subsystem of interest (%NULL returns @cgrp->self) 358 * 359 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This 360 * function must be called either under cgroup_mutex or rcu_read_lock() and 361 * the caller is responsible for pinning the returned css if it wants to 362 * keep accessing it outside the said locks. This function may return 363 * %NULL if @cgrp doesn't have @subsys_id enabled. 364 */ 365 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp, 366 struct cgroup_subsys *ss) 367 { 368 if (ss) 369 return rcu_dereference_check(cgrp->subsys[ss->id], 370 lockdep_is_held(&cgroup_mutex)); 371 else 372 return &cgrp->self; 373 } 374 375 /** 376 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem 377 * @cgrp: the cgroup of interest 378 * @ss: the subsystem of interest (%NULL returns @cgrp->self) 379 * 380 * Similar to cgroup_css() but returns the effective css, which is defined 381 * as the matching css of the nearest ancestor including self which has @ss 382 * enabled. If @ss is associated with the hierarchy @cgrp is on, this 383 * function is guaranteed to return non-NULL css. 384 */ 385 static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp, 386 struct cgroup_subsys *ss) 387 { 388 lockdep_assert_held(&cgroup_mutex); 389 390 if (!ss) 391 return &cgrp->self; 392 393 /* 394 * This function is used while updating css associations and thus 395 * can't test the csses directly. Test ss_mask. 396 */ 397 while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) { 398 cgrp = cgroup_parent(cgrp); 399 if (!cgrp) 400 return NULL; 401 } 402 403 return cgroup_css(cgrp, ss); 404 } 405 406 /** 407 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem 408 * @cgrp: the cgroup of interest 409 * @ss: the subsystem of interest 410 * 411 * Find and get the effective css of @cgrp for @ss. The effective css is 412 * defined as the matching css of the nearest ancestor including self which 413 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on, 414 * the root css is returned, so this function always returns a valid css. 415 * The returned css must be put using css_put(). 416 */ 417 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp, 418 struct cgroup_subsys *ss) 419 { 420 struct cgroup_subsys_state *css; 421 422 rcu_read_lock(); 423 424 do { 425 css = cgroup_css(cgrp, ss); 426 427 if (css && css_tryget_online(css)) 428 goto out_unlock; 429 cgrp = cgroup_parent(cgrp); 430 } while (cgrp); 431 432 css = init_css_set.subsys[ss->id]; 433 css_get(css); 434 out_unlock: 435 rcu_read_unlock(); 436 return css; 437 } 438 439 static void cgroup_get(struct cgroup *cgrp) 440 { 441 WARN_ON_ONCE(cgroup_is_dead(cgrp)); 442 css_get(&cgrp->self); 443 } 444 445 static bool cgroup_tryget(struct cgroup *cgrp) 446 { 447 return css_tryget(&cgrp->self); 448 } 449 450 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of) 451 { 452 struct cgroup *cgrp = of->kn->parent->priv; 453 struct cftype *cft = of_cft(of); 454 455 /* 456 * This is open and unprotected implementation of cgroup_css(). 457 * seq_css() is only called from a kernfs file operation which has 458 * an active reference on the file. Because all the subsystem 459 * files are drained before a css is disassociated with a cgroup, 460 * the matching css from the cgroup's subsys table is guaranteed to 461 * be and stay valid until the enclosing operation is complete. 462 */ 463 if (cft->ss) 464 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]); 465 else 466 return &cgrp->self; 467 } 468 EXPORT_SYMBOL_GPL(of_css); 469 470 /** 471 * for_each_css - iterate all css's of a cgroup 472 * @css: the iteration cursor 473 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end 474 * @cgrp: the target cgroup to iterate css's of 475 * 476 * Should be called under cgroup_[tree_]mutex. 477 */ 478 #define for_each_css(css, ssid, cgrp) \ 479 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \ 480 if (!((css) = rcu_dereference_check( \ 481 (cgrp)->subsys[(ssid)], \ 482 lockdep_is_held(&cgroup_mutex)))) { } \ 483 else 484 485 /** 486 * for_each_e_css - iterate all effective css's of a cgroup 487 * @css: the iteration cursor 488 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end 489 * @cgrp: the target cgroup to iterate css's of 490 * 491 * Should be called under cgroup_[tree_]mutex. 492 */ 493 #define for_each_e_css(css, ssid, cgrp) \ 494 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \ 495 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \ 496 ; \ 497 else 498 499 /** 500 * do_each_subsys_mask - filter for_each_subsys with a bitmask 501 * @ss: the iteration cursor 502 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end 503 * @ss_mask: the bitmask 504 * 505 * The block will only run for cases where the ssid-th bit (1 << ssid) of 506 * @ss_mask is set. 507 */ 508 #define do_each_subsys_mask(ss, ssid, ss_mask) do { \ 509 unsigned long __ss_mask = (ss_mask); \ 510 if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */ \ 511 (ssid) = 0; \ 512 break; \ 513 } \ 514 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \ 515 (ss) = cgroup_subsys[ssid]; \ 516 { 517 518 #define while_each_subsys_mask() \ 519 } \ 520 } \ 521 } while (false) 522 523 /* iterate over child cgrps, lock should be held throughout iteration */ 524 #define cgroup_for_each_live_child(child, cgrp) \ 525 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \ 526 if (({ lockdep_assert_held(&cgroup_mutex); \ 527 cgroup_is_dead(child); })) \ 528 ; \ 529 else 530 531 /* walk live descendants in preorder */ 532 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \ 533 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \ 534 if (({ lockdep_assert_held(&cgroup_mutex); \ 535 (dsct) = (d_css)->cgroup; \ 536 cgroup_is_dead(dsct); })) \ 537 ; \ 538 else 539 540 /* walk live descendants in postorder */ 541 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \ 542 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \ 543 if (({ lockdep_assert_held(&cgroup_mutex); \ 544 (dsct) = (d_css)->cgroup; \ 545 cgroup_is_dead(dsct); })) \ 546 ; \ 547 else 548 549 /* 550 * The default css_set - used by init and its children prior to any 551 * hierarchies being mounted. It contains a pointer to the root state 552 * for each subsystem. Also used to anchor the list of css_sets. Not 553 * reference-counted, to improve performance when child cgroups 554 * haven't been created. 555 */ 556 struct css_set init_css_set = { 557 .refcount = ATOMIC_INIT(1), 558 .tasks = LIST_HEAD_INIT(init_css_set.tasks), 559 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks), 560 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters), 561 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links), 562 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node), 563 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node), 564 }; 565 566 static int css_set_count = 1; /* 1 for init_css_set */ 567 568 /** 569 * css_set_populated - does a css_set contain any tasks? 570 * @cset: target css_set 571 */ 572 static bool css_set_populated(struct css_set *cset) 573 { 574 lockdep_assert_held(&css_set_lock); 575 576 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks); 577 } 578 579 /** 580 * cgroup_update_populated - updated populated count of a cgroup 581 * @cgrp: the target cgroup 582 * @populated: inc or dec populated count 583 * 584 * One of the css_sets associated with @cgrp is either getting its first 585 * task or losing the last. Update @cgrp->populated_cnt accordingly. The 586 * count is propagated towards root so that a given cgroup's populated_cnt 587 * is zero iff the cgroup and all its descendants don't contain any tasks. 588 * 589 * @cgrp's interface file "cgroup.populated" is zero if 590 * @cgrp->populated_cnt is zero and 1 otherwise. When @cgrp->populated_cnt 591 * changes from or to zero, userland is notified that the content of the 592 * interface file has changed. This can be used to detect when @cgrp and 593 * its descendants become populated or empty. 594 */ 595 static void cgroup_update_populated(struct cgroup *cgrp, bool populated) 596 { 597 lockdep_assert_held(&css_set_lock); 598 599 do { 600 bool trigger; 601 602 if (populated) 603 trigger = !cgrp->populated_cnt++; 604 else 605 trigger = !--cgrp->populated_cnt; 606 607 if (!trigger) 608 break; 609 610 cgroup1_check_for_release(cgrp); 611 cgroup_file_notify(&cgrp->events_file); 612 613 cgrp = cgroup_parent(cgrp); 614 } while (cgrp); 615 } 616 617 /** 618 * css_set_update_populated - update populated state of a css_set 619 * @cset: target css_set 620 * @populated: whether @cset is populated or depopulated 621 * 622 * @cset is either getting the first task or losing the last. Update the 623 * ->populated_cnt of all associated cgroups accordingly. 624 */ 625 static void css_set_update_populated(struct css_set *cset, bool populated) 626 { 627 struct cgrp_cset_link *link; 628 629 lockdep_assert_held(&css_set_lock); 630 631 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) 632 cgroup_update_populated(link->cgrp, populated); 633 } 634 635 /** 636 * css_set_move_task - move a task from one css_set to another 637 * @task: task being moved 638 * @from_cset: css_set @task currently belongs to (may be NULL) 639 * @to_cset: new css_set @task is being moved to (may be NULL) 640 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks 641 * 642 * Move @task from @from_cset to @to_cset. If @task didn't belong to any 643 * css_set, @from_cset can be NULL. If @task is being disassociated 644 * instead of moved, @to_cset can be NULL. 645 * 646 * This function automatically handles populated_cnt updates and 647 * css_task_iter adjustments but the caller is responsible for managing 648 * @from_cset and @to_cset's reference counts. 649 */ 650 static void css_set_move_task(struct task_struct *task, 651 struct css_set *from_cset, struct css_set *to_cset, 652 bool use_mg_tasks) 653 { 654 lockdep_assert_held(&css_set_lock); 655 656 if (to_cset && !css_set_populated(to_cset)) 657 css_set_update_populated(to_cset, true); 658 659 if (from_cset) { 660 struct css_task_iter *it, *pos; 661 662 WARN_ON_ONCE(list_empty(&task->cg_list)); 663 664 /* 665 * @task is leaving, advance task iterators which are 666 * pointing to it so that they can resume at the next 667 * position. Advancing an iterator might remove it from 668 * the list, use safe walk. See css_task_iter_advance*() 669 * for details. 670 */ 671 list_for_each_entry_safe(it, pos, &from_cset->task_iters, 672 iters_node) 673 if (it->task_pos == &task->cg_list) 674 css_task_iter_advance(it); 675 676 list_del_init(&task->cg_list); 677 if (!css_set_populated(from_cset)) 678 css_set_update_populated(from_cset, false); 679 } else { 680 WARN_ON_ONCE(!list_empty(&task->cg_list)); 681 } 682 683 if (to_cset) { 684 /* 685 * We are synchronized through cgroup_threadgroup_rwsem 686 * against PF_EXITING setting such that we can't race 687 * against cgroup_exit() changing the css_set to 688 * init_css_set and dropping the old one. 689 */ 690 WARN_ON_ONCE(task->flags & PF_EXITING); 691 692 rcu_assign_pointer(task->cgroups, to_cset); 693 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks : 694 &to_cset->tasks); 695 } 696 } 697 698 /* 699 * hash table for cgroup groups. This improves the performance to find 700 * an existing css_set. This hash doesn't (currently) take into 701 * account cgroups in empty hierarchies. 702 */ 703 #define CSS_SET_HASH_BITS 7 704 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS); 705 706 static unsigned long css_set_hash(struct cgroup_subsys_state *css[]) 707 { 708 unsigned long key = 0UL; 709 struct cgroup_subsys *ss; 710 int i; 711 712 for_each_subsys(ss, i) 713 key += (unsigned long)css[i]; 714 key = (key >> 16) ^ key; 715 716 return key; 717 } 718 719 void put_css_set_locked(struct css_set *cset) 720 { 721 struct cgrp_cset_link *link, *tmp_link; 722 struct cgroup_subsys *ss; 723 int ssid; 724 725 lockdep_assert_held(&css_set_lock); 726 727 if (!atomic_dec_and_test(&cset->refcount)) 728 return; 729 730 /* This css_set is dead. unlink it and release cgroup and css refs */ 731 for_each_subsys(ss, ssid) { 732 list_del(&cset->e_cset_node[ssid]); 733 css_put(cset->subsys[ssid]); 734 } 735 hash_del(&cset->hlist); 736 css_set_count--; 737 738 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) { 739 list_del(&link->cset_link); 740 list_del(&link->cgrp_link); 741 if (cgroup_parent(link->cgrp)) 742 cgroup_put(link->cgrp); 743 kfree(link); 744 } 745 746 kfree_rcu(cset, rcu_head); 747 } 748 749 /** 750 * compare_css_sets - helper function for find_existing_css_set(). 751 * @cset: candidate css_set being tested 752 * @old_cset: existing css_set for a task 753 * @new_cgrp: cgroup that's being entered by the task 754 * @template: desired set of css pointers in css_set (pre-calculated) 755 * 756 * Returns true if "cset" matches "old_cset" except for the hierarchy 757 * which "new_cgrp" belongs to, for which it should match "new_cgrp". 758 */ 759 static bool compare_css_sets(struct css_set *cset, 760 struct css_set *old_cset, 761 struct cgroup *new_cgrp, 762 struct cgroup_subsys_state *template[]) 763 { 764 struct list_head *l1, *l2; 765 766 /* 767 * On the default hierarchy, there can be csets which are 768 * associated with the same set of cgroups but different csses. 769 * Let's first ensure that csses match. 770 */ 771 if (memcmp(template, cset->subsys, sizeof(cset->subsys))) 772 return false; 773 774 /* 775 * Compare cgroup pointers in order to distinguish between 776 * different cgroups in hierarchies. As different cgroups may 777 * share the same effective css, this comparison is always 778 * necessary. 779 */ 780 l1 = &cset->cgrp_links; 781 l2 = &old_cset->cgrp_links; 782 while (1) { 783 struct cgrp_cset_link *link1, *link2; 784 struct cgroup *cgrp1, *cgrp2; 785 786 l1 = l1->next; 787 l2 = l2->next; 788 /* See if we reached the end - both lists are equal length. */ 789 if (l1 == &cset->cgrp_links) { 790 BUG_ON(l2 != &old_cset->cgrp_links); 791 break; 792 } else { 793 BUG_ON(l2 == &old_cset->cgrp_links); 794 } 795 /* Locate the cgroups associated with these links. */ 796 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link); 797 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link); 798 cgrp1 = link1->cgrp; 799 cgrp2 = link2->cgrp; 800 /* Hierarchies should be linked in the same order. */ 801 BUG_ON(cgrp1->root != cgrp2->root); 802 803 /* 804 * If this hierarchy is the hierarchy of the cgroup 805 * that's changing, then we need to check that this 806 * css_set points to the new cgroup; if it's any other 807 * hierarchy, then this css_set should point to the 808 * same cgroup as the old css_set. 809 */ 810 if (cgrp1->root == new_cgrp->root) { 811 if (cgrp1 != new_cgrp) 812 return false; 813 } else { 814 if (cgrp1 != cgrp2) 815 return false; 816 } 817 } 818 return true; 819 } 820 821 /** 822 * find_existing_css_set - init css array and find the matching css_set 823 * @old_cset: the css_set that we're using before the cgroup transition 824 * @cgrp: the cgroup that we're moving into 825 * @template: out param for the new set of csses, should be clear on entry 826 */ 827 static struct css_set *find_existing_css_set(struct css_set *old_cset, 828 struct cgroup *cgrp, 829 struct cgroup_subsys_state *template[]) 830 { 831 struct cgroup_root *root = cgrp->root; 832 struct cgroup_subsys *ss; 833 struct css_set *cset; 834 unsigned long key; 835 int i; 836 837 /* 838 * Build the set of subsystem state objects that we want to see in the 839 * new css_set. while subsystems can change globally, the entries here 840 * won't change, so no need for locking. 841 */ 842 for_each_subsys(ss, i) { 843 if (root->subsys_mask & (1UL << i)) { 844 /* 845 * @ss is in this hierarchy, so we want the 846 * effective css from @cgrp. 847 */ 848 template[i] = cgroup_e_css(cgrp, ss); 849 } else { 850 /* 851 * @ss is not in this hierarchy, so we don't want 852 * to change the css. 853 */ 854 template[i] = old_cset->subsys[i]; 855 } 856 } 857 858 key = css_set_hash(template); 859 hash_for_each_possible(css_set_table, cset, hlist, key) { 860 if (!compare_css_sets(cset, old_cset, cgrp, template)) 861 continue; 862 863 /* This css_set matches what we need */ 864 return cset; 865 } 866 867 /* No existing cgroup group matched */ 868 return NULL; 869 } 870 871 static void free_cgrp_cset_links(struct list_head *links_to_free) 872 { 873 struct cgrp_cset_link *link, *tmp_link; 874 875 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) { 876 list_del(&link->cset_link); 877 kfree(link); 878 } 879 } 880 881 /** 882 * allocate_cgrp_cset_links - allocate cgrp_cset_links 883 * @count: the number of links to allocate 884 * @tmp_links: list_head the allocated links are put on 885 * 886 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links 887 * through ->cset_link. Returns 0 on success or -errno. 888 */ 889 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links) 890 { 891 struct cgrp_cset_link *link; 892 int i; 893 894 INIT_LIST_HEAD(tmp_links); 895 896 for (i = 0; i < count; i++) { 897 link = kzalloc(sizeof(*link), GFP_KERNEL); 898 if (!link) { 899 free_cgrp_cset_links(tmp_links); 900 return -ENOMEM; 901 } 902 list_add(&link->cset_link, tmp_links); 903 } 904 return 0; 905 } 906 907 /** 908 * link_css_set - a helper function to link a css_set to a cgroup 909 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links() 910 * @cset: the css_set to be linked 911 * @cgrp: the destination cgroup 912 */ 913 static void link_css_set(struct list_head *tmp_links, struct css_set *cset, 914 struct cgroup *cgrp) 915 { 916 struct cgrp_cset_link *link; 917 918 BUG_ON(list_empty(tmp_links)); 919 920 if (cgroup_on_dfl(cgrp)) 921 cset->dfl_cgrp = cgrp; 922 923 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link); 924 link->cset = cset; 925 link->cgrp = cgrp; 926 927 /* 928 * Always add links to the tail of the lists so that the lists are 929 * in choronological order. 930 */ 931 list_move_tail(&link->cset_link, &cgrp->cset_links); 932 list_add_tail(&link->cgrp_link, &cset->cgrp_links); 933 934 if (cgroup_parent(cgrp)) 935 cgroup_get(cgrp); 936 } 937 938 /** 939 * find_css_set - return a new css_set with one cgroup updated 940 * @old_cset: the baseline css_set 941 * @cgrp: the cgroup to be updated 942 * 943 * Return a new css_set that's equivalent to @old_cset, but with @cgrp 944 * substituted into the appropriate hierarchy. 945 */ 946 static struct css_set *find_css_set(struct css_set *old_cset, 947 struct cgroup *cgrp) 948 { 949 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { }; 950 struct css_set *cset; 951 struct list_head tmp_links; 952 struct cgrp_cset_link *link; 953 struct cgroup_subsys *ss; 954 unsigned long key; 955 int ssid; 956 957 lockdep_assert_held(&cgroup_mutex); 958 959 /* First see if we already have a cgroup group that matches 960 * the desired set */ 961 spin_lock_irq(&css_set_lock); 962 cset = find_existing_css_set(old_cset, cgrp, template); 963 if (cset) 964 get_css_set(cset); 965 spin_unlock_irq(&css_set_lock); 966 967 if (cset) 968 return cset; 969 970 cset = kzalloc(sizeof(*cset), GFP_KERNEL); 971 if (!cset) 972 return NULL; 973 974 /* Allocate all the cgrp_cset_link objects that we'll need */ 975 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) { 976 kfree(cset); 977 return NULL; 978 } 979 980 atomic_set(&cset->refcount, 1); 981 INIT_LIST_HEAD(&cset->tasks); 982 INIT_LIST_HEAD(&cset->mg_tasks); 983 INIT_LIST_HEAD(&cset->task_iters); 984 INIT_HLIST_NODE(&cset->hlist); 985 INIT_LIST_HEAD(&cset->cgrp_links); 986 INIT_LIST_HEAD(&cset->mg_preload_node); 987 INIT_LIST_HEAD(&cset->mg_node); 988 989 /* Copy the set of subsystem state objects generated in 990 * find_existing_css_set() */ 991 memcpy(cset->subsys, template, sizeof(cset->subsys)); 992 993 spin_lock_irq(&css_set_lock); 994 /* Add reference counts and links from the new css_set. */ 995 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) { 996 struct cgroup *c = link->cgrp; 997 998 if (c->root == cgrp->root) 999 c = cgrp; 1000 link_css_set(&tmp_links, cset, c); 1001 } 1002 1003 BUG_ON(!list_empty(&tmp_links)); 1004 1005 css_set_count++; 1006 1007 /* Add @cset to the hash table */ 1008 key = css_set_hash(cset->subsys); 1009 hash_add(css_set_table, &cset->hlist, key); 1010 1011 for_each_subsys(ss, ssid) { 1012 struct cgroup_subsys_state *css = cset->subsys[ssid]; 1013 1014 list_add_tail(&cset->e_cset_node[ssid], 1015 &css->cgroup->e_csets[ssid]); 1016 css_get(css); 1017 } 1018 1019 spin_unlock_irq(&css_set_lock); 1020 1021 return cset; 1022 } 1023 1024 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root) 1025 { 1026 struct cgroup *root_cgrp = kf_root->kn->priv; 1027 1028 return root_cgrp->root; 1029 } 1030 1031 static int cgroup_init_root_id(struct cgroup_root *root) 1032 { 1033 int id; 1034 1035 lockdep_assert_held(&cgroup_mutex); 1036 1037 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL); 1038 if (id < 0) 1039 return id; 1040 1041 root->hierarchy_id = id; 1042 return 0; 1043 } 1044 1045 static void cgroup_exit_root_id(struct cgroup_root *root) 1046 { 1047 lockdep_assert_held(&cgroup_mutex); 1048 1049 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id); 1050 } 1051 1052 void cgroup_free_root(struct cgroup_root *root) 1053 { 1054 if (root) { 1055 idr_destroy(&root->cgroup_idr); 1056 kfree(root); 1057 } 1058 } 1059 1060 static void cgroup_destroy_root(struct cgroup_root *root) 1061 { 1062 struct cgroup *cgrp = &root->cgrp; 1063 struct cgrp_cset_link *link, *tmp_link; 1064 1065 trace_cgroup_destroy_root(root); 1066 1067 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp); 1068 1069 BUG_ON(atomic_read(&root->nr_cgrps)); 1070 BUG_ON(!list_empty(&cgrp->self.children)); 1071 1072 /* Rebind all subsystems back to the default hierarchy */ 1073 WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask)); 1074 1075 /* 1076 * Release all the links from cset_links to this hierarchy's 1077 * root cgroup 1078 */ 1079 spin_lock_irq(&css_set_lock); 1080 1081 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) { 1082 list_del(&link->cset_link); 1083 list_del(&link->cgrp_link); 1084 kfree(link); 1085 } 1086 1087 spin_unlock_irq(&css_set_lock); 1088 1089 if (!list_empty(&root->root_list)) { 1090 list_del(&root->root_list); 1091 cgroup_root_count--; 1092 } 1093 1094 cgroup_exit_root_id(root); 1095 1096 mutex_unlock(&cgroup_mutex); 1097 1098 kernfs_destroy_root(root->kf_root); 1099 cgroup_free_root(root); 1100 } 1101 1102 /* 1103 * look up cgroup associated with current task's cgroup namespace on the 1104 * specified hierarchy 1105 */ 1106 static struct cgroup * 1107 current_cgns_cgroup_from_root(struct cgroup_root *root) 1108 { 1109 struct cgroup *res = NULL; 1110 struct css_set *cset; 1111 1112 lockdep_assert_held(&css_set_lock); 1113 1114 rcu_read_lock(); 1115 1116 cset = current->nsproxy->cgroup_ns->root_cset; 1117 if (cset == &init_css_set) { 1118 res = &root->cgrp; 1119 } else { 1120 struct cgrp_cset_link *link; 1121 1122 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) { 1123 struct cgroup *c = link->cgrp; 1124 1125 if (c->root == root) { 1126 res = c; 1127 break; 1128 } 1129 } 1130 } 1131 rcu_read_unlock(); 1132 1133 BUG_ON(!res); 1134 return res; 1135 } 1136 1137 /* look up cgroup associated with given css_set on the specified hierarchy */ 1138 static struct cgroup *cset_cgroup_from_root(struct css_set *cset, 1139 struct cgroup_root *root) 1140 { 1141 struct cgroup *res = NULL; 1142 1143 lockdep_assert_held(&cgroup_mutex); 1144 lockdep_assert_held(&css_set_lock); 1145 1146 if (cset == &init_css_set) { 1147 res = &root->cgrp; 1148 } else { 1149 struct cgrp_cset_link *link; 1150 1151 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) { 1152 struct cgroup *c = link->cgrp; 1153 1154 if (c->root == root) { 1155 res = c; 1156 break; 1157 } 1158 } 1159 } 1160 1161 BUG_ON(!res); 1162 return res; 1163 } 1164 1165 /* 1166 * Return the cgroup for "task" from the given hierarchy. Must be 1167 * called with cgroup_mutex and css_set_lock held. 1168 */ 1169 struct cgroup *task_cgroup_from_root(struct task_struct *task, 1170 struct cgroup_root *root) 1171 { 1172 /* 1173 * No need to lock the task - since we hold cgroup_mutex the 1174 * task can't change groups, so the only thing that can happen 1175 * is that it exits and its css is set back to init_css_set. 1176 */ 1177 return cset_cgroup_from_root(task_css_set(task), root); 1178 } 1179 1180 /* 1181 * A task must hold cgroup_mutex to modify cgroups. 1182 * 1183 * Any task can increment and decrement the count field without lock. 1184 * So in general, code holding cgroup_mutex can't rely on the count 1185 * field not changing. However, if the count goes to zero, then only 1186 * cgroup_attach_task() can increment it again. Because a count of zero 1187 * means that no tasks are currently attached, therefore there is no 1188 * way a task attached to that cgroup can fork (the other way to 1189 * increment the count). So code holding cgroup_mutex can safely 1190 * assume that if the count is zero, it will stay zero. Similarly, if 1191 * a task holds cgroup_mutex on a cgroup with zero count, it 1192 * knows that the cgroup won't be removed, as cgroup_rmdir() 1193 * needs that mutex. 1194 * 1195 * A cgroup can only be deleted if both its 'count' of using tasks 1196 * is zero, and its list of 'children' cgroups is empty. Since all 1197 * tasks in the system use _some_ cgroup, and since there is always at 1198 * least one task in the system (init, pid == 1), therefore, root cgroup 1199 * always has either children cgroups and/or using tasks. So we don't 1200 * need a special hack to ensure that root cgroup cannot be deleted. 1201 * 1202 * P.S. One more locking exception. RCU is used to guard the 1203 * update of a tasks cgroup pointer by cgroup_attach_task() 1204 */ 1205 1206 static struct kernfs_syscall_ops cgroup_kf_syscall_ops; 1207 1208 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft, 1209 char *buf) 1210 { 1211 struct cgroup_subsys *ss = cft->ss; 1212 1213 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) && 1214 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) 1215 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s", 1216 cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name, 1217 cft->name); 1218 else 1219 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX); 1220 return buf; 1221 } 1222 1223 /** 1224 * cgroup_file_mode - deduce file mode of a control file 1225 * @cft: the control file in question 1226 * 1227 * S_IRUGO for read, S_IWUSR for write. 1228 */ 1229 static umode_t cgroup_file_mode(const struct cftype *cft) 1230 { 1231 umode_t mode = 0; 1232 1233 if (cft->read_u64 || cft->read_s64 || cft->seq_show) 1234 mode |= S_IRUGO; 1235 1236 if (cft->write_u64 || cft->write_s64 || cft->write) { 1237 if (cft->flags & CFTYPE_WORLD_WRITABLE) 1238 mode |= S_IWUGO; 1239 else 1240 mode |= S_IWUSR; 1241 } 1242 1243 return mode; 1244 } 1245 1246 /** 1247 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask 1248 * @subtree_control: the new subtree_control mask to consider 1249 * @this_ss_mask: available subsystems 1250 * 1251 * On the default hierarchy, a subsystem may request other subsystems to be 1252 * enabled together through its ->depends_on mask. In such cases, more 1253 * subsystems than specified in "cgroup.subtree_control" may be enabled. 1254 * 1255 * This function calculates which subsystems need to be enabled if 1256 * @subtree_control is to be applied while restricted to @this_ss_mask. 1257 */ 1258 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask) 1259 { 1260 u16 cur_ss_mask = subtree_control; 1261 struct cgroup_subsys *ss; 1262 int ssid; 1263 1264 lockdep_assert_held(&cgroup_mutex); 1265 1266 cur_ss_mask |= cgrp_dfl_implicit_ss_mask; 1267 1268 while (true) { 1269 u16 new_ss_mask = cur_ss_mask; 1270 1271 do_each_subsys_mask(ss, ssid, cur_ss_mask) { 1272 new_ss_mask |= ss->depends_on; 1273 } while_each_subsys_mask(); 1274 1275 /* 1276 * Mask out subsystems which aren't available. This can 1277 * happen only if some depended-upon subsystems were bound 1278 * to non-default hierarchies. 1279 */ 1280 new_ss_mask &= this_ss_mask; 1281 1282 if (new_ss_mask == cur_ss_mask) 1283 break; 1284 cur_ss_mask = new_ss_mask; 1285 } 1286 1287 return cur_ss_mask; 1288 } 1289 1290 /** 1291 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods 1292 * @kn: the kernfs_node being serviced 1293 * 1294 * This helper undoes cgroup_kn_lock_live() and should be invoked before 1295 * the method finishes if locking succeeded. Note that once this function 1296 * returns the cgroup returned by cgroup_kn_lock_live() may become 1297 * inaccessible any time. If the caller intends to continue to access the 1298 * cgroup, it should pin it before invoking this function. 1299 */ 1300 void cgroup_kn_unlock(struct kernfs_node *kn) 1301 { 1302 struct cgroup *cgrp; 1303 1304 if (kernfs_type(kn) == KERNFS_DIR) 1305 cgrp = kn->priv; 1306 else 1307 cgrp = kn->parent->priv; 1308 1309 mutex_unlock(&cgroup_mutex); 1310 1311 kernfs_unbreak_active_protection(kn); 1312 cgroup_put(cgrp); 1313 } 1314 1315 /** 1316 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods 1317 * @kn: the kernfs_node being serviced 1318 * @drain_offline: perform offline draining on the cgroup 1319 * 1320 * This helper is to be used by a cgroup kernfs method currently servicing 1321 * @kn. It breaks the active protection, performs cgroup locking and 1322 * verifies that the associated cgroup is alive. Returns the cgroup if 1323 * alive; otherwise, %NULL. A successful return should be undone by a 1324 * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the 1325 * cgroup is drained of offlining csses before return. 1326 * 1327 * Any cgroup kernfs method implementation which requires locking the 1328 * associated cgroup should use this helper. It avoids nesting cgroup 1329 * locking under kernfs active protection and allows all kernfs operations 1330 * including self-removal. 1331 */ 1332 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline) 1333 { 1334 struct cgroup *cgrp; 1335 1336 if (kernfs_type(kn) == KERNFS_DIR) 1337 cgrp = kn->priv; 1338 else 1339 cgrp = kn->parent->priv; 1340 1341 /* 1342 * We're gonna grab cgroup_mutex which nests outside kernfs 1343 * active_ref. cgroup liveliness check alone provides enough 1344 * protection against removal. Ensure @cgrp stays accessible and 1345 * break the active_ref protection. 1346 */ 1347 if (!cgroup_tryget(cgrp)) 1348 return NULL; 1349 kernfs_break_active_protection(kn); 1350 1351 if (drain_offline) 1352 cgroup_lock_and_drain_offline(cgrp); 1353 else 1354 mutex_lock(&cgroup_mutex); 1355 1356 if (!cgroup_is_dead(cgrp)) 1357 return cgrp; 1358 1359 cgroup_kn_unlock(kn); 1360 return NULL; 1361 } 1362 1363 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft) 1364 { 1365 char name[CGROUP_FILE_NAME_MAX]; 1366 1367 lockdep_assert_held(&cgroup_mutex); 1368 1369 if (cft->file_offset) { 1370 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss); 1371 struct cgroup_file *cfile = (void *)css + cft->file_offset; 1372 1373 spin_lock_irq(&cgroup_file_kn_lock); 1374 cfile->kn = NULL; 1375 spin_unlock_irq(&cgroup_file_kn_lock); 1376 } 1377 1378 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name)); 1379 } 1380 1381 /** 1382 * css_clear_dir - remove subsys files in a cgroup directory 1383 * @css: taget css 1384 */ 1385 static void css_clear_dir(struct cgroup_subsys_state *css) 1386 { 1387 struct cgroup *cgrp = css->cgroup; 1388 struct cftype *cfts; 1389 1390 if (!(css->flags & CSS_VISIBLE)) 1391 return; 1392 1393 css->flags &= ~CSS_VISIBLE; 1394 1395 list_for_each_entry(cfts, &css->ss->cfts, node) 1396 cgroup_addrm_files(css, cgrp, cfts, false); 1397 } 1398 1399 /** 1400 * css_populate_dir - create subsys files in a cgroup directory 1401 * @css: target css 1402 * 1403 * On failure, no file is added. 1404 */ 1405 static int css_populate_dir(struct cgroup_subsys_state *css) 1406 { 1407 struct cgroup *cgrp = css->cgroup; 1408 struct cftype *cfts, *failed_cfts; 1409 int ret; 1410 1411 if ((css->flags & CSS_VISIBLE) || !cgrp->kn) 1412 return 0; 1413 1414 if (!css->ss) { 1415 if (cgroup_on_dfl(cgrp)) 1416 cfts = cgroup_base_files; 1417 else 1418 cfts = cgroup1_base_files; 1419 1420 return cgroup_addrm_files(&cgrp->self, cgrp, cfts, true); 1421 } 1422 1423 list_for_each_entry(cfts, &css->ss->cfts, node) { 1424 ret = cgroup_addrm_files(css, cgrp, cfts, true); 1425 if (ret < 0) { 1426 failed_cfts = cfts; 1427 goto err; 1428 } 1429 } 1430 1431 css->flags |= CSS_VISIBLE; 1432 1433 return 0; 1434 err: 1435 list_for_each_entry(cfts, &css->ss->cfts, node) { 1436 if (cfts == failed_cfts) 1437 break; 1438 cgroup_addrm_files(css, cgrp, cfts, false); 1439 } 1440 return ret; 1441 } 1442 1443 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask) 1444 { 1445 struct cgroup *dcgrp = &dst_root->cgrp; 1446 struct cgroup_subsys *ss; 1447 int ssid, i, ret; 1448 1449 lockdep_assert_held(&cgroup_mutex); 1450 1451 do_each_subsys_mask(ss, ssid, ss_mask) { 1452 /* 1453 * If @ss has non-root csses attached to it, can't move. 1454 * If @ss is an implicit controller, it is exempt from this 1455 * rule and can be stolen. 1456 */ 1457 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) && 1458 !ss->implicit_on_dfl) 1459 return -EBUSY; 1460 1461 /* can't move between two non-dummy roots either */ 1462 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root) 1463 return -EBUSY; 1464 } while_each_subsys_mask(); 1465 1466 do_each_subsys_mask(ss, ssid, ss_mask) { 1467 struct cgroup_root *src_root = ss->root; 1468 struct cgroup *scgrp = &src_root->cgrp; 1469 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss); 1470 struct css_set *cset; 1471 1472 WARN_ON(!css || cgroup_css(dcgrp, ss)); 1473 1474 /* disable from the source */ 1475 src_root->subsys_mask &= ~(1 << ssid); 1476 WARN_ON(cgroup_apply_control(scgrp)); 1477 cgroup_finalize_control(scgrp, 0); 1478 1479 /* rebind */ 1480 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL); 1481 rcu_assign_pointer(dcgrp->subsys[ssid], css); 1482 ss->root = dst_root; 1483 css->cgroup = dcgrp; 1484 1485 spin_lock_irq(&css_set_lock); 1486 hash_for_each(css_set_table, i, cset, hlist) 1487 list_move_tail(&cset->e_cset_node[ss->id], 1488 &dcgrp->e_csets[ss->id]); 1489 spin_unlock_irq(&css_set_lock); 1490 1491 /* default hierarchy doesn't enable controllers by default */ 1492 dst_root->subsys_mask |= 1 << ssid; 1493 if (dst_root == &cgrp_dfl_root) { 1494 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]); 1495 } else { 1496 dcgrp->subtree_control |= 1 << ssid; 1497 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]); 1498 } 1499 1500 ret = cgroup_apply_control(dcgrp); 1501 if (ret) 1502 pr_warn("partial failure to rebind %s controller (err=%d)\n", 1503 ss->name, ret); 1504 1505 if (ss->bind) 1506 ss->bind(css); 1507 } while_each_subsys_mask(); 1508 1509 kernfs_activate(dcgrp->kn); 1510 return 0; 1511 } 1512 1513 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node, 1514 struct kernfs_root *kf_root) 1515 { 1516 int len = 0; 1517 char *buf = NULL; 1518 struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root); 1519 struct cgroup *ns_cgroup; 1520 1521 buf = kmalloc(PATH_MAX, GFP_KERNEL); 1522 if (!buf) 1523 return -ENOMEM; 1524 1525 spin_lock_irq(&css_set_lock); 1526 ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot); 1527 len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX); 1528 spin_unlock_irq(&css_set_lock); 1529 1530 if (len >= PATH_MAX) 1531 len = -ERANGE; 1532 else if (len > 0) { 1533 seq_escape(sf, buf, " \t\n\\"); 1534 len = 0; 1535 } 1536 kfree(buf); 1537 return len; 1538 } 1539 1540 static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data) 1541 { 1542 pr_err("remount is not allowed\n"); 1543 return -EINVAL; 1544 } 1545 1546 /* 1547 * To reduce the fork() overhead for systems that are not actually using 1548 * their cgroups capability, we don't maintain the lists running through 1549 * each css_set to its tasks until we see the list actually used - in other 1550 * words after the first mount. 1551 */ 1552 static bool use_task_css_set_links __read_mostly; 1553 1554 static void cgroup_enable_task_cg_lists(void) 1555 { 1556 struct task_struct *p, *g; 1557 1558 spin_lock_irq(&css_set_lock); 1559 1560 if (use_task_css_set_links) 1561 goto out_unlock; 1562 1563 use_task_css_set_links = true; 1564 1565 /* 1566 * We need tasklist_lock because RCU is not safe against 1567 * while_each_thread(). Besides, a forking task that has passed 1568 * cgroup_post_fork() without seeing use_task_css_set_links = 1 1569 * is not guaranteed to have its child immediately visible in the 1570 * tasklist if we walk through it with RCU. 1571 */ 1572 read_lock(&tasklist_lock); 1573 do_each_thread(g, p) { 1574 WARN_ON_ONCE(!list_empty(&p->cg_list) || 1575 task_css_set(p) != &init_css_set); 1576 1577 /* 1578 * We should check if the process is exiting, otherwise 1579 * it will race with cgroup_exit() in that the list 1580 * entry won't be deleted though the process has exited. 1581 * Do it while holding siglock so that we don't end up 1582 * racing against cgroup_exit(). 1583 * 1584 * Interrupts were already disabled while acquiring 1585 * the css_set_lock, so we do not need to disable it 1586 * again when acquiring the sighand->siglock here. 1587 */ 1588 spin_lock(&p->sighand->siglock); 1589 if (!(p->flags & PF_EXITING)) { 1590 struct css_set *cset = task_css_set(p); 1591 1592 if (!css_set_populated(cset)) 1593 css_set_update_populated(cset, true); 1594 list_add_tail(&p->cg_list, &cset->tasks); 1595 get_css_set(cset); 1596 } 1597 spin_unlock(&p->sighand->siglock); 1598 } while_each_thread(g, p); 1599 read_unlock(&tasklist_lock); 1600 out_unlock: 1601 spin_unlock_irq(&css_set_lock); 1602 } 1603 1604 static void init_cgroup_housekeeping(struct cgroup *cgrp) 1605 { 1606 struct cgroup_subsys *ss; 1607 int ssid; 1608 1609 INIT_LIST_HEAD(&cgrp->self.sibling); 1610 INIT_LIST_HEAD(&cgrp->self.children); 1611 INIT_LIST_HEAD(&cgrp->cset_links); 1612 INIT_LIST_HEAD(&cgrp->pidlists); 1613 mutex_init(&cgrp->pidlist_mutex); 1614 cgrp->self.cgroup = cgrp; 1615 cgrp->self.flags |= CSS_ONLINE; 1616 1617 for_each_subsys(ss, ssid) 1618 INIT_LIST_HEAD(&cgrp->e_csets[ssid]); 1619 1620 init_waitqueue_head(&cgrp->offline_waitq); 1621 INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent); 1622 } 1623 1624 void init_cgroup_root(struct cgroup_root *root, struct cgroup_sb_opts *opts) 1625 { 1626 struct cgroup *cgrp = &root->cgrp; 1627 1628 INIT_LIST_HEAD(&root->root_list); 1629 atomic_set(&root->nr_cgrps, 1); 1630 cgrp->root = root; 1631 init_cgroup_housekeeping(cgrp); 1632 idr_init(&root->cgroup_idr); 1633 1634 root->flags = opts->flags; 1635 if (opts->release_agent) 1636 strcpy(root->release_agent_path, opts->release_agent); 1637 if (opts->name) 1638 strcpy(root->name, opts->name); 1639 if (opts->cpuset_clone_children) 1640 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags); 1641 } 1642 1643 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask) 1644 { 1645 LIST_HEAD(tmp_links); 1646 struct cgroup *root_cgrp = &root->cgrp; 1647 struct kernfs_syscall_ops *kf_sops; 1648 struct css_set *cset; 1649 int i, ret; 1650 1651 lockdep_assert_held(&cgroup_mutex); 1652 1653 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL); 1654 if (ret < 0) 1655 goto out; 1656 root_cgrp->id = ret; 1657 root_cgrp->ancestor_ids[0] = ret; 1658 1659 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 0, 1660 GFP_KERNEL); 1661 if (ret) 1662 goto out; 1663 1664 /* 1665 * We're accessing css_set_count without locking css_set_lock here, 1666 * but that's OK - it can only be increased by someone holding 1667 * cgroup_lock, and that's us. Later rebinding may disable 1668 * controllers on the default hierarchy and thus create new csets, 1669 * which can't be more than the existing ones. Allocate 2x. 1670 */ 1671 ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links); 1672 if (ret) 1673 goto cancel_ref; 1674 1675 ret = cgroup_init_root_id(root); 1676 if (ret) 1677 goto cancel_ref; 1678 1679 kf_sops = root == &cgrp_dfl_root ? 1680 &cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops; 1681 1682 root->kf_root = kernfs_create_root(kf_sops, 1683 KERNFS_ROOT_CREATE_DEACTIVATED, 1684 root_cgrp); 1685 if (IS_ERR(root->kf_root)) { 1686 ret = PTR_ERR(root->kf_root); 1687 goto exit_root_id; 1688 } 1689 root_cgrp->kn = root->kf_root->kn; 1690 1691 ret = css_populate_dir(&root_cgrp->self); 1692 if (ret) 1693 goto destroy_root; 1694 1695 ret = rebind_subsystems(root, ss_mask); 1696 if (ret) 1697 goto destroy_root; 1698 1699 trace_cgroup_setup_root(root); 1700 1701 /* 1702 * There must be no failure case after here, since rebinding takes 1703 * care of subsystems' refcounts, which are explicitly dropped in 1704 * the failure exit path. 1705 */ 1706 list_add(&root->root_list, &cgroup_roots); 1707 cgroup_root_count++; 1708 1709 /* 1710 * Link the root cgroup in this hierarchy into all the css_set 1711 * objects. 1712 */ 1713 spin_lock_irq(&css_set_lock); 1714 hash_for_each(css_set_table, i, cset, hlist) { 1715 link_css_set(&tmp_links, cset, root_cgrp); 1716 if (css_set_populated(cset)) 1717 cgroup_update_populated(root_cgrp, true); 1718 } 1719 spin_unlock_irq(&css_set_lock); 1720 1721 BUG_ON(!list_empty(&root_cgrp->self.children)); 1722 BUG_ON(atomic_read(&root->nr_cgrps) != 1); 1723 1724 kernfs_activate(root_cgrp->kn); 1725 ret = 0; 1726 goto out; 1727 1728 destroy_root: 1729 kernfs_destroy_root(root->kf_root); 1730 root->kf_root = NULL; 1731 exit_root_id: 1732 cgroup_exit_root_id(root); 1733 cancel_ref: 1734 percpu_ref_exit(&root_cgrp->self.refcnt); 1735 out: 1736 free_cgrp_cset_links(&tmp_links); 1737 return ret; 1738 } 1739 1740 struct dentry *cgroup_do_mount(struct file_system_type *fs_type, int flags, 1741 struct cgroup_root *root, unsigned long magic, 1742 struct cgroup_namespace *ns) 1743 { 1744 struct dentry *dentry; 1745 bool new_sb; 1746 1747 dentry = kernfs_mount(fs_type, flags, root->kf_root, magic, &new_sb); 1748 1749 /* 1750 * In non-init cgroup namespace, instead of root cgroup's dentry, 1751 * we return the dentry corresponding to the cgroupns->root_cgrp. 1752 */ 1753 if (!IS_ERR(dentry) && ns != &init_cgroup_ns) { 1754 struct dentry *nsdentry; 1755 struct cgroup *cgrp; 1756 1757 mutex_lock(&cgroup_mutex); 1758 spin_lock_irq(&css_set_lock); 1759 1760 cgrp = cset_cgroup_from_root(ns->root_cset, root); 1761 1762 spin_unlock_irq(&css_set_lock); 1763 mutex_unlock(&cgroup_mutex); 1764 1765 nsdentry = kernfs_node_dentry(cgrp->kn, dentry->d_sb); 1766 dput(dentry); 1767 dentry = nsdentry; 1768 } 1769 1770 if (IS_ERR(dentry) || !new_sb) 1771 cgroup_put(&root->cgrp); 1772 1773 return dentry; 1774 } 1775 1776 static struct dentry *cgroup_mount(struct file_system_type *fs_type, 1777 int flags, const char *unused_dev_name, 1778 void *data) 1779 { 1780 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns; 1781 struct dentry *dentry; 1782 1783 get_cgroup_ns(ns); 1784 1785 /* Check if the caller has permission to mount. */ 1786 if (!ns_capable(ns->user_ns, CAP_SYS_ADMIN)) { 1787 put_cgroup_ns(ns); 1788 return ERR_PTR(-EPERM); 1789 } 1790 1791 /* 1792 * The first time anyone tries to mount a cgroup, enable the list 1793 * linking each css_set to its tasks and fix up all existing tasks. 1794 */ 1795 if (!use_task_css_set_links) 1796 cgroup_enable_task_cg_lists(); 1797 1798 if (fs_type == &cgroup2_fs_type) { 1799 if (data) { 1800 pr_err("cgroup2: unknown option \"%s\"\n", (char *)data); 1801 put_cgroup_ns(ns); 1802 return ERR_PTR(-EINVAL); 1803 } 1804 cgrp_dfl_visible = true; 1805 cgroup_get(&cgrp_dfl_root.cgrp); 1806 1807 dentry = cgroup_do_mount(&cgroup2_fs_type, flags, &cgrp_dfl_root, 1808 CGROUP2_SUPER_MAGIC, ns); 1809 } else { 1810 dentry = cgroup1_mount(&cgroup_fs_type, flags, data, 1811 CGROUP_SUPER_MAGIC, ns); 1812 } 1813 1814 put_cgroup_ns(ns); 1815 return dentry; 1816 } 1817 1818 static void cgroup_kill_sb(struct super_block *sb) 1819 { 1820 struct kernfs_root *kf_root = kernfs_root_from_sb(sb); 1821 struct cgroup_root *root = cgroup_root_from_kf(kf_root); 1822 1823 /* 1824 * If @root doesn't have any mounts or children, start killing it. 1825 * This prevents new mounts by disabling percpu_ref_tryget_live(). 1826 * cgroup_mount() may wait for @root's release. 1827 * 1828 * And don't kill the default root. 1829 */ 1830 if (!list_empty(&root->cgrp.self.children) || 1831 root == &cgrp_dfl_root) 1832 cgroup_put(&root->cgrp); 1833 else 1834 percpu_ref_kill(&root->cgrp.self.refcnt); 1835 1836 kernfs_kill_sb(sb); 1837 } 1838 1839 struct file_system_type cgroup_fs_type = { 1840 .name = "cgroup", 1841 .mount = cgroup_mount, 1842 .kill_sb = cgroup_kill_sb, 1843 .fs_flags = FS_USERNS_MOUNT, 1844 }; 1845 1846 static struct file_system_type cgroup2_fs_type = { 1847 .name = "cgroup2", 1848 .mount = cgroup_mount, 1849 .kill_sb = cgroup_kill_sb, 1850 .fs_flags = FS_USERNS_MOUNT, 1851 }; 1852 1853 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen, 1854 struct cgroup_namespace *ns) 1855 { 1856 struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root); 1857 1858 return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen); 1859 } 1860 1861 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen, 1862 struct cgroup_namespace *ns) 1863 { 1864 int ret; 1865 1866 mutex_lock(&cgroup_mutex); 1867 spin_lock_irq(&css_set_lock); 1868 1869 ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns); 1870 1871 spin_unlock_irq(&css_set_lock); 1872 mutex_unlock(&cgroup_mutex); 1873 1874 return ret; 1875 } 1876 EXPORT_SYMBOL_GPL(cgroup_path_ns); 1877 1878 /** 1879 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy 1880 * @task: target task 1881 * @buf: the buffer to write the path into 1882 * @buflen: the length of the buffer 1883 * 1884 * Determine @task's cgroup on the first (the one with the lowest non-zero 1885 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This 1886 * function grabs cgroup_mutex and shouldn't be used inside locks used by 1887 * cgroup controller callbacks. 1888 * 1889 * Return value is the same as kernfs_path(). 1890 */ 1891 int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen) 1892 { 1893 struct cgroup_root *root; 1894 struct cgroup *cgrp; 1895 int hierarchy_id = 1; 1896 int ret; 1897 1898 mutex_lock(&cgroup_mutex); 1899 spin_lock_irq(&css_set_lock); 1900 1901 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id); 1902 1903 if (root) { 1904 cgrp = task_cgroup_from_root(task, root); 1905 ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns); 1906 } else { 1907 /* if no hierarchy exists, everyone is in "/" */ 1908 ret = strlcpy(buf, "/", buflen); 1909 } 1910 1911 spin_unlock_irq(&css_set_lock); 1912 mutex_unlock(&cgroup_mutex); 1913 return ret; 1914 } 1915 EXPORT_SYMBOL_GPL(task_cgroup_path); 1916 1917 /** 1918 * cgroup_migrate_add_task - add a migration target task to a migration context 1919 * @task: target task 1920 * @mgctx: target migration context 1921 * 1922 * Add @task, which is a migration target, to @mgctx->tset. This function 1923 * becomes noop if @task doesn't need to be migrated. @task's css_set 1924 * should have been added as a migration source and @task->cg_list will be 1925 * moved from the css_set's tasks list to mg_tasks one. 1926 */ 1927 static void cgroup_migrate_add_task(struct task_struct *task, 1928 struct cgroup_mgctx *mgctx) 1929 { 1930 struct css_set *cset; 1931 1932 lockdep_assert_held(&css_set_lock); 1933 1934 /* @task either already exited or can't exit until the end */ 1935 if (task->flags & PF_EXITING) 1936 return; 1937 1938 /* leave @task alone if post_fork() hasn't linked it yet */ 1939 if (list_empty(&task->cg_list)) 1940 return; 1941 1942 cset = task_css_set(task); 1943 if (!cset->mg_src_cgrp) 1944 return; 1945 1946 list_move_tail(&task->cg_list, &cset->mg_tasks); 1947 if (list_empty(&cset->mg_node)) 1948 list_add_tail(&cset->mg_node, 1949 &mgctx->tset.src_csets); 1950 if (list_empty(&cset->mg_dst_cset->mg_node)) 1951 list_add_tail(&cset->mg_dst_cset->mg_node, 1952 &mgctx->tset.dst_csets); 1953 } 1954 1955 /** 1956 * cgroup_taskset_first - reset taskset and return the first task 1957 * @tset: taskset of interest 1958 * @dst_cssp: output variable for the destination css 1959 * 1960 * @tset iteration is initialized and the first task is returned. 1961 */ 1962 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset, 1963 struct cgroup_subsys_state **dst_cssp) 1964 { 1965 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node); 1966 tset->cur_task = NULL; 1967 1968 return cgroup_taskset_next(tset, dst_cssp); 1969 } 1970 1971 /** 1972 * cgroup_taskset_next - iterate to the next task in taskset 1973 * @tset: taskset of interest 1974 * @dst_cssp: output variable for the destination css 1975 * 1976 * Return the next task in @tset. Iteration must have been initialized 1977 * with cgroup_taskset_first(). 1978 */ 1979 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset, 1980 struct cgroup_subsys_state **dst_cssp) 1981 { 1982 struct css_set *cset = tset->cur_cset; 1983 struct task_struct *task = tset->cur_task; 1984 1985 while (&cset->mg_node != tset->csets) { 1986 if (!task) 1987 task = list_first_entry(&cset->mg_tasks, 1988 struct task_struct, cg_list); 1989 else 1990 task = list_next_entry(task, cg_list); 1991 1992 if (&task->cg_list != &cset->mg_tasks) { 1993 tset->cur_cset = cset; 1994 tset->cur_task = task; 1995 1996 /* 1997 * This function may be called both before and 1998 * after cgroup_taskset_migrate(). The two cases 1999 * can be distinguished by looking at whether @cset 2000 * has its ->mg_dst_cset set. 2001 */ 2002 if (cset->mg_dst_cset) 2003 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid]; 2004 else 2005 *dst_cssp = cset->subsys[tset->ssid]; 2006 2007 return task; 2008 } 2009 2010 cset = list_next_entry(cset, mg_node); 2011 task = NULL; 2012 } 2013 2014 return NULL; 2015 } 2016 2017 /** 2018 * cgroup_taskset_migrate - migrate a taskset 2019 * @mgctx: migration context 2020 * 2021 * Migrate tasks in @mgctx as setup by migration preparation functions. 2022 * This function fails iff one of the ->can_attach callbacks fails and 2023 * guarantees that either all or none of the tasks in @mgctx are migrated. 2024 * @mgctx is consumed regardless of success. 2025 */ 2026 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx) 2027 { 2028 struct cgroup_taskset *tset = &mgctx->tset; 2029 struct cgroup_subsys *ss; 2030 struct task_struct *task, *tmp_task; 2031 struct css_set *cset, *tmp_cset; 2032 int ssid, failed_ssid, ret; 2033 2034 /* methods shouldn't be called if no task is actually migrating */ 2035 if (list_empty(&tset->src_csets)) 2036 return 0; 2037 2038 /* check that we can legitimately attach to the cgroup */ 2039 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2040 if (ss->can_attach) { 2041 tset->ssid = ssid; 2042 ret = ss->can_attach(tset); 2043 if (ret) { 2044 failed_ssid = ssid; 2045 goto out_cancel_attach; 2046 } 2047 } 2048 } while_each_subsys_mask(); 2049 2050 /* 2051 * Now that we're guaranteed success, proceed to move all tasks to 2052 * the new cgroup. There are no failure cases after here, so this 2053 * is the commit point. 2054 */ 2055 spin_lock_irq(&css_set_lock); 2056 list_for_each_entry(cset, &tset->src_csets, mg_node) { 2057 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) { 2058 struct css_set *from_cset = task_css_set(task); 2059 struct css_set *to_cset = cset->mg_dst_cset; 2060 2061 get_css_set(to_cset); 2062 css_set_move_task(task, from_cset, to_cset, true); 2063 put_css_set_locked(from_cset); 2064 } 2065 } 2066 spin_unlock_irq(&css_set_lock); 2067 2068 /* 2069 * Migration is committed, all target tasks are now on dst_csets. 2070 * Nothing is sensitive to fork() after this point. Notify 2071 * controllers that migration is complete. 2072 */ 2073 tset->csets = &tset->dst_csets; 2074 2075 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2076 if (ss->attach) { 2077 tset->ssid = ssid; 2078 ss->attach(tset); 2079 } 2080 } while_each_subsys_mask(); 2081 2082 ret = 0; 2083 goto out_release_tset; 2084 2085 out_cancel_attach: 2086 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2087 if (ssid == failed_ssid) 2088 break; 2089 if (ss->cancel_attach) { 2090 tset->ssid = ssid; 2091 ss->cancel_attach(tset); 2092 } 2093 } while_each_subsys_mask(); 2094 out_release_tset: 2095 spin_lock_irq(&css_set_lock); 2096 list_splice_init(&tset->dst_csets, &tset->src_csets); 2097 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) { 2098 list_splice_tail_init(&cset->mg_tasks, &cset->tasks); 2099 list_del_init(&cset->mg_node); 2100 } 2101 spin_unlock_irq(&css_set_lock); 2102 return ret; 2103 } 2104 2105 /** 2106 * cgroup_may_migrate_to - verify whether a cgroup can be migration destination 2107 * @dst_cgrp: destination cgroup to test 2108 * 2109 * On the default hierarchy, except for the root, subtree_control must be 2110 * zero for migration destination cgroups with tasks so that child cgroups 2111 * don't compete against tasks. 2112 */ 2113 bool cgroup_may_migrate_to(struct cgroup *dst_cgrp) 2114 { 2115 return !cgroup_on_dfl(dst_cgrp) || !cgroup_parent(dst_cgrp) || 2116 !dst_cgrp->subtree_control; 2117 } 2118 2119 /** 2120 * cgroup_migrate_finish - cleanup after attach 2121 * @mgctx: migration context 2122 * 2123 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See 2124 * those functions for details. 2125 */ 2126 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx) 2127 { 2128 LIST_HEAD(preloaded); 2129 struct css_set *cset, *tmp_cset; 2130 2131 lockdep_assert_held(&cgroup_mutex); 2132 2133 spin_lock_irq(&css_set_lock); 2134 2135 list_splice_tail_init(&mgctx->preloaded_src_csets, &preloaded); 2136 list_splice_tail_init(&mgctx->preloaded_dst_csets, &preloaded); 2137 2138 list_for_each_entry_safe(cset, tmp_cset, &preloaded, mg_preload_node) { 2139 cset->mg_src_cgrp = NULL; 2140 cset->mg_dst_cgrp = NULL; 2141 cset->mg_dst_cset = NULL; 2142 list_del_init(&cset->mg_preload_node); 2143 put_css_set_locked(cset); 2144 } 2145 2146 spin_unlock_irq(&css_set_lock); 2147 } 2148 2149 /** 2150 * cgroup_migrate_add_src - add a migration source css_set 2151 * @src_cset: the source css_set to add 2152 * @dst_cgrp: the destination cgroup 2153 * @mgctx: migration context 2154 * 2155 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin 2156 * @src_cset and add it to @mgctx->src_csets, which should later be cleaned 2157 * up by cgroup_migrate_finish(). 2158 * 2159 * This function may be called without holding cgroup_threadgroup_rwsem 2160 * even if the target is a process. Threads may be created and destroyed 2161 * but as long as cgroup_mutex is not dropped, no new css_set can be put 2162 * into play and the preloaded css_sets are guaranteed to cover all 2163 * migrations. 2164 */ 2165 void cgroup_migrate_add_src(struct css_set *src_cset, 2166 struct cgroup *dst_cgrp, 2167 struct cgroup_mgctx *mgctx) 2168 { 2169 struct cgroup *src_cgrp; 2170 2171 lockdep_assert_held(&cgroup_mutex); 2172 lockdep_assert_held(&css_set_lock); 2173 2174 /* 2175 * If ->dead, @src_set is associated with one or more dead cgroups 2176 * and doesn't contain any migratable tasks. Ignore it early so 2177 * that the rest of migration path doesn't get confused by it. 2178 */ 2179 if (src_cset->dead) 2180 return; 2181 2182 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root); 2183 2184 if (!list_empty(&src_cset->mg_preload_node)) 2185 return; 2186 2187 WARN_ON(src_cset->mg_src_cgrp); 2188 WARN_ON(src_cset->mg_dst_cgrp); 2189 WARN_ON(!list_empty(&src_cset->mg_tasks)); 2190 WARN_ON(!list_empty(&src_cset->mg_node)); 2191 2192 src_cset->mg_src_cgrp = src_cgrp; 2193 src_cset->mg_dst_cgrp = dst_cgrp; 2194 get_css_set(src_cset); 2195 list_add_tail(&src_cset->mg_preload_node, &mgctx->preloaded_src_csets); 2196 } 2197 2198 /** 2199 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration 2200 * @mgctx: migration context 2201 * 2202 * Tasks are about to be moved and all the source css_sets have been 2203 * preloaded to @mgctx->preloaded_src_csets. This function looks up and 2204 * pins all destination css_sets, links each to its source, and append them 2205 * to @mgctx->preloaded_dst_csets. 2206 * 2207 * This function must be called after cgroup_migrate_add_src() has been 2208 * called on each migration source css_set. After migration is performed 2209 * using cgroup_migrate(), cgroup_migrate_finish() must be called on 2210 * @mgctx. 2211 */ 2212 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx) 2213 { 2214 struct css_set *src_cset, *tmp_cset; 2215 2216 lockdep_assert_held(&cgroup_mutex); 2217 2218 /* look up the dst cset for each src cset and link it to src */ 2219 list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets, 2220 mg_preload_node) { 2221 struct css_set *dst_cset; 2222 struct cgroup_subsys *ss; 2223 int ssid; 2224 2225 dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp); 2226 if (!dst_cset) 2227 goto err; 2228 2229 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset); 2230 2231 /* 2232 * If src cset equals dst, it's noop. Drop the src. 2233 * cgroup_migrate() will skip the cset too. Note that we 2234 * can't handle src == dst as some nodes are used by both. 2235 */ 2236 if (src_cset == dst_cset) { 2237 src_cset->mg_src_cgrp = NULL; 2238 src_cset->mg_dst_cgrp = NULL; 2239 list_del_init(&src_cset->mg_preload_node); 2240 put_css_set(src_cset); 2241 put_css_set(dst_cset); 2242 continue; 2243 } 2244 2245 src_cset->mg_dst_cset = dst_cset; 2246 2247 if (list_empty(&dst_cset->mg_preload_node)) 2248 list_add_tail(&dst_cset->mg_preload_node, 2249 &mgctx->preloaded_dst_csets); 2250 else 2251 put_css_set(dst_cset); 2252 2253 for_each_subsys(ss, ssid) 2254 if (src_cset->subsys[ssid] != dst_cset->subsys[ssid]) 2255 mgctx->ss_mask |= 1 << ssid; 2256 } 2257 2258 return 0; 2259 err: 2260 cgroup_migrate_finish(mgctx); 2261 return -ENOMEM; 2262 } 2263 2264 /** 2265 * cgroup_migrate - migrate a process or task to a cgroup 2266 * @leader: the leader of the process or the task to migrate 2267 * @threadgroup: whether @leader points to the whole process or a single task 2268 * @mgctx: migration context 2269 * 2270 * Migrate a process or task denoted by @leader. If migrating a process, 2271 * the caller must be holding cgroup_threadgroup_rwsem. The caller is also 2272 * responsible for invoking cgroup_migrate_add_src() and 2273 * cgroup_migrate_prepare_dst() on the targets before invoking this 2274 * function and following up with cgroup_migrate_finish(). 2275 * 2276 * As long as a controller's ->can_attach() doesn't fail, this function is 2277 * guaranteed to succeed. This means that, excluding ->can_attach() 2278 * failure, when migrating multiple targets, the success or failure can be 2279 * decided for all targets by invoking group_migrate_prepare_dst() before 2280 * actually starting migrating. 2281 */ 2282 int cgroup_migrate(struct task_struct *leader, bool threadgroup, 2283 struct cgroup_mgctx *mgctx) 2284 { 2285 struct task_struct *task; 2286 2287 /* 2288 * Prevent freeing of tasks while we take a snapshot. Tasks that are 2289 * already PF_EXITING could be freed from underneath us unless we 2290 * take an rcu_read_lock. 2291 */ 2292 spin_lock_irq(&css_set_lock); 2293 rcu_read_lock(); 2294 task = leader; 2295 do { 2296 cgroup_migrate_add_task(task, mgctx); 2297 if (!threadgroup) 2298 break; 2299 } while_each_thread(leader, task); 2300 rcu_read_unlock(); 2301 spin_unlock_irq(&css_set_lock); 2302 2303 return cgroup_migrate_execute(mgctx); 2304 } 2305 2306 /** 2307 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup 2308 * @dst_cgrp: the cgroup to attach to 2309 * @leader: the task or the leader of the threadgroup to be attached 2310 * @threadgroup: attach the whole threadgroup? 2311 * 2312 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem. 2313 */ 2314 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader, 2315 bool threadgroup) 2316 { 2317 DEFINE_CGROUP_MGCTX(mgctx); 2318 struct task_struct *task; 2319 int ret; 2320 2321 if (!cgroup_may_migrate_to(dst_cgrp)) 2322 return -EBUSY; 2323 2324 /* look up all src csets */ 2325 spin_lock_irq(&css_set_lock); 2326 rcu_read_lock(); 2327 task = leader; 2328 do { 2329 cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx); 2330 if (!threadgroup) 2331 break; 2332 } while_each_thread(leader, task); 2333 rcu_read_unlock(); 2334 spin_unlock_irq(&css_set_lock); 2335 2336 /* prepare dst csets and commit */ 2337 ret = cgroup_migrate_prepare_dst(&mgctx); 2338 if (!ret) 2339 ret = cgroup_migrate(leader, threadgroup, &mgctx); 2340 2341 cgroup_migrate_finish(&mgctx); 2342 2343 if (!ret) 2344 trace_cgroup_attach_task(dst_cgrp, leader, threadgroup); 2345 2346 return ret; 2347 } 2348 2349 static int cgroup_procs_write_permission(struct task_struct *task, 2350 struct cgroup *dst_cgrp, 2351 struct kernfs_open_file *of) 2352 { 2353 int ret = 0; 2354 2355 if (cgroup_on_dfl(dst_cgrp)) { 2356 struct super_block *sb = of->file->f_path.dentry->d_sb; 2357 struct cgroup *cgrp; 2358 struct inode *inode; 2359 2360 spin_lock_irq(&css_set_lock); 2361 cgrp = task_cgroup_from_root(task, &cgrp_dfl_root); 2362 spin_unlock_irq(&css_set_lock); 2363 2364 while (!cgroup_is_descendant(dst_cgrp, cgrp)) 2365 cgrp = cgroup_parent(cgrp); 2366 2367 ret = -ENOMEM; 2368 inode = kernfs_get_inode(sb, cgrp->procs_file.kn); 2369 if (inode) { 2370 ret = inode_permission(inode, MAY_WRITE); 2371 iput(inode); 2372 } 2373 } else { 2374 const struct cred *cred = current_cred(); 2375 const struct cred *tcred = get_task_cred(task); 2376 2377 /* 2378 * even if we're attaching all tasks in the thread group, 2379 * we only need to check permissions on one of them. 2380 */ 2381 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) && 2382 !uid_eq(cred->euid, tcred->uid) && 2383 !uid_eq(cred->euid, tcred->suid)) 2384 ret = -EACCES; 2385 put_cred(tcred); 2386 } 2387 2388 return ret; 2389 } 2390 2391 /* 2392 * Find the task_struct of the task to attach by vpid and pass it along to the 2393 * function to attach either it or all tasks in its threadgroup. Will lock 2394 * cgroup_mutex and threadgroup. 2395 */ 2396 ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf, 2397 size_t nbytes, loff_t off, bool threadgroup) 2398 { 2399 struct task_struct *tsk; 2400 struct cgroup_subsys *ss; 2401 struct cgroup *cgrp; 2402 pid_t pid; 2403 int ssid, ret; 2404 2405 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0) 2406 return -EINVAL; 2407 2408 cgrp = cgroup_kn_lock_live(of->kn, false); 2409 if (!cgrp) 2410 return -ENODEV; 2411 2412 percpu_down_write(&cgroup_threadgroup_rwsem); 2413 rcu_read_lock(); 2414 if (pid) { 2415 tsk = find_task_by_vpid(pid); 2416 if (!tsk) { 2417 ret = -ESRCH; 2418 goto out_unlock_rcu; 2419 } 2420 } else { 2421 tsk = current; 2422 } 2423 2424 if (threadgroup) 2425 tsk = tsk->group_leader; 2426 2427 /* 2428 * Workqueue threads may acquire PF_NO_SETAFFINITY and become 2429 * trapped in a cpuset, or RT worker may be born in a cgroup 2430 * with no rt_runtime allocated. Just say no. 2431 */ 2432 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) { 2433 ret = -EINVAL; 2434 goto out_unlock_rcu; 2435 } 2436 2437 get_task_struct(tsk); 2438 rcu_read_unlock(); 2439 2440 ret = cgroup_procs_write_permission(tsk, cgrp, of); 2441 if (!ret) 2442 ret = cgroup_attach_task(cgrp, tsk, threadgroup); 2443 2444 put_task_struct(tsk); 2445 goto out_unlock_threadgroup; 2446 2447 out_unlock_rcu: 2448 rcu_read_unlock(); 2449 out_unlock_threadgroup: 2450 percpu_up_write(&cgroup_threadgroup_rwsem); 2451 for_each_subsys(ss, ssid) 2452 if (ss->post_attach) 2453 ss->post_attach(); 2454 cgroup_kn_unlock(of->kn); 2455 return ret ?: nbytes; 2456 } 2457 2458 ssize_t cgroup_procs_write(struct kernfs_open_file *of, char *buf, size_t nbytes, 2459 loff_t off) 2460 { 2461 return __cgroup_procs_write(of, buf, nbytes, off, true); 2462 } 2463 2464 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask) 2465 { 2466 struct cgroup_subsys *ss; 2467 bool printed = false; 2468 int ssid; 2469 2470 do_each_subsys_mask(ss, ssid, ss_mask) { 2471 if (printed) 2472 seq_putc(seq, ' '); 2473 seq_printf(seq, "%s", ss->name); 2474 printed = true; 2475 } while_each_subsys_mask(); 2476 if (printed) 2477 seq_putc(seq, '\n'); 2478 } 2479 2480 /* show controllers which are enabled from the parent */ 2481 static int cgroup_controllers_show(struct seq_file *seq, void *v) 2482 { 2483 struct cgroup *cgrp = seq_css(seq)->cgroup; 2484 2485 cgroup_print_ss_mask(seq, cgroup_control(cgrp)); 2486 return 0; 2487 } 2488 2489 /* show controllers which are enabled for a given cgroup's children */ 2490 static int cgroup_subtree_control_show(struct seq_file *seq, void *v) 2491 { 2492 struct cgroup *cgrp = seq_css(seq)->cgroup; 2493 2494 cgroup_print_ss_mask(seq, cgrp->subtree_control); 2495 return 0; 2496 } 2497 2498 /** 2499 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy 2500 * @cgrp: root of the subtree to update csses for 2501 * 2502 * @cgrp's control masks have changed and its subtree's css associations 2503 * need to be updated accordingly. This function looks up all css_sets 2504 * which are attached to the subtree, creates the matching updated css_sets 2505 * and migrates the tasks to the new ones. 2506 */ 2507 static int cgroup_update_dfl_csses(struct cgroup *cgrp) 2508 { 2509 DEFINE_CGROUP_MGCTX(mgctx); 2510 struct cgroup_subsys_state *d_css; 2511 struct cgroup *dsct; 2512 struct css_set *src_cset; 2513 int ret; 2514 2515 lockdep_assert_held(&cgroup_mutex); 2516 2517 percpu_down_write(&cgroup_threadgroup_rwsem); 2518 2519 /* look up all csses currently attached to @cgrp's subtree */ 2520 spin_lock_irq(&css_set_lock); 2521 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 2522 struct cgrp_cset_link *link; 2523 2524 list_for_each_entry(link, &dsct->cset_links, cset_link) 2525 cgroup_migrate_add_src(link->cset, dsct, &mgctx); 2526 } 2527 spin_unlock_irq(&css_set_lock); 2528 2529 /* NULL dst indicates self on default hierarchy */ 2530 ret = cgroup_migrate_prepare_dst(&mgctx); 2531 if (ret) 2532 goto out_finish; 2533 2534 spin_lock_irq(&css_set_lock); 2535 list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, mg_preload_node) { 2536 struct task_struct *task, *ntask; 2537 2538 /* all tasks in src_csets need to be migrated */ 2539 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list) 2540 cgroup_migrate_add_task(task, &mgctx); 2541 } 2542 spin_unlock_irq(&css_set_lock); 2543 2544 ret = cgroup_migrate_execute(&mgctx); 2545 out_finish: 2546 cgroup_migrate_finish(&mgctx); 2547 percpu_up_write(&cgroup_threadgroup_rwsem); 2548 return ret; 2549 } 2550 2551 /** 2552 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses 2553 * @cgrp: root of the target subtree 2554 * 2555 * Because css offlining is asynchronous, userland may try to re-enable a 2556 * controller while the previous css is still around. This function grabs 2557 * cgroup_mutex and drains the previous css instances of @cgrp's subtree. 2558 */ 2559 void cgroup_lock_and_drain_offline(struct cgroup *cgrp) 2560 __acquires(&cgroup_mutex) 2561 { 2562 struct cgroup *dsct; 2563 struct cgroup_subsys_state *d_css; 2564 struct cgroup_subsys *ss; 2565 int ssid; 2566 2567 restart: 2568 mutex_lock(&cgroup_mutex); 2569 2570 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 2571 for_each_subsys(ss, ssid) { 2572 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 2573 DEFINE_WAIT(wait); 2574 2575 if (!css || !percpu_ref_is_dying(&css->refcnt)) 2576 continue; 2577 2578 cgroup_get(dsct); 2579 prepare_to_wait(&dsct->offline_waitq, &wait, 2580 TASK_UNINTERRUPTIBLE); 2581 2582 mutex_unlock(&cgroup_mutex); 2583 schedule(); 2584 finish_wait(&dsct->offline_waitq, &wait); 2585 2586 cgroup_put(dsct); 2587 goto restart; 2588 } 2589 } 2590 } 2591 2592 /** 2593 * cgroup_save_control - save control masks of a subtree 2594 * @cgrp: root of the target subtree 2595 * 2596 * Save ->subtree_control and ->subtree_ss_mask to the respective old_ 2597 * prefixed fields for @cgrp's subtree including @cgrp itself. 2598 */ 2599 static void cgroup_save_control(struct cgroup *cgrp) 2600 { 2601 struct cgroup *dsct; 2602 struct cgroup_subsys_state *d_css; 2603 2604 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 2605 dsct->old_subtree_control = dsct->subtree_control; 2606 dsct->old_subtree_ss_mask = dsct->subtree_ss_mask; 2607 } 2608 } 2609 2610 /** 2611 * cgroup_propagate_control - refresh control masks of a subtree 2612 * @cgrp: root of the target subtree 2613 * 2614 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches 2615 * ->subtree_control and propagate controller availability through the 2616 * subtree so that descendants don't have unavailable controllers enabled. 2617 */ 2618 static void cgroup_propagate_control(struct cgroup *cgrp) 2619 { 2620 struct cgroup *dsct; 2621 struct cgroup_subsys_state *d_css; 2622 2623 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 2624 dsct->subtree_control &= cgroup_control(dsct); 2625 dsct->subtree_ss_mask = 2626 cgroup_calc_subtree_ss_mask(dsct->subtree_control, 2627 cgroup_ss_mask(dsct)); 2628 } 2629 } 2630 2631 /** 2632 * cgroup_restore_control - restore control masks of a subtree 2633 * @cgrp: root of the target subtree 2634 * 2635 * Restore ->subtree_control and ->subtree_ss_mask from the respective old_ 2636 * prefixed fields for @cgrp's subtree including @cgrp itself. 2637 */ 2638 static void cgroup_restore_control(struct cgroup *cgrp) 2639 { 2640 struct cgroup *dsct; 2641 struct cgroup_subsys_state *d_css; 2642 2643 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 2644 dsct->subtree_control = dsct->old_subtree_control; 2645 dsct->subtree_ss_mask = dsct->old_subtree_ss_mask; 2646 } 2647 } 2648 2649 static bool css_visible(struct cgroup_subsys_state *css) 2650 { 2651 struct cgroup_subsys *ss = css->ss; 2652 struct cgroup *cgrp = css->cgroup; 2653 2654 if (cgroup_control(cgrp) & (1 << ss->id)) 2655 return true; 2656 if (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) 2657 return false; 2658 return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl; 2659 } 2660 2661 /** 2662 * cgroup_apply_control_enable - enable or show csses according to control 2663 * @cgrp: root of the target subtree 2664 * 2665 * Walk @cgrp's subtree and create new csses or make the existing ones 2666 * visible. A css is created invisible if it's being implicitly enabled 2667 * through dependency. An invisible css is made visible when the userland 2668 * explicitly enables it. 2669 * 2670 * Returns 0 on success, -errno on failure. On failure, csses which have 2671 * been processed already aren't cleaned up. The caller is responsible for 2672 * cleaning up with cgroup_apply_control_disable(). 2673 */ 2674 static int cgroup_apply_control_enable(struct cgroup *cgrp) 2675 { 2676 struct cgroup *dsct; 2677 struct cgroup_subsys_state *d_css; 2678 struct cgroup_subsys *ss; 2679 int ssid, ret; 2680 2681 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 2682 for_each_subsys(ss, ssid) { 2683 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 2684 2685 WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt)); 2686 2687 if (!(cgroup_ss_mask(dsct) & (1 << ss->id))) 2688 continue; 2689 2690 if (!css) { 2691 css = css_create(dsct, ss); 2692 if (IS_ERR(css)) 2693 return PTR_ERR(css); 2694 } 2695 2696 if (css_visible(css)) { 2697 ret = css_populate_dir(css); 2698 if (ret) 2699 return ret; 2700 } 2701 } 2702 } 2703 2704 return 0; 2705 } 2706 2707 /** 2708 * cgroup_apply_control_disable - kill or hide csses according to control 2709 * @cgrp: root of the target subtree 2710 * 2711 * Walk @cgrp's subtree and kill and hide csses so that they match 2712 * cgroup_ss_mask() and cgroup_visible_mask(). 2713 * 2714 * A css is hidden when the userland requests it to be disabled while other 2715 * subsystems are still depending on it. The css must not actively control 2716 * resources and be in the vanilla state if it's made visible again later. 2717 * Controllers which may be depended upon should provide ->css_reset() for 2718 * this purpose. 2719 */ 2720 static void cgroup_apply_control_disable(struct cgroup *cgrp) 2721 { 2722 struct cgroup *dsct; 2723 struct cgroup_subsys_state *d_css; 2724 struct cgroup_subsys *ss; 2725 int ssid; 2726 2727 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 2728 for_each_subsys(ss, ssid) { 2729 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 2730 2731 WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt)); 2732 2733 if (!css) 2734 continue; 2735 2736 if (css->parent && 2737 !(cgroup_ss_mask(dsct) & (1 << ss->id))) { 2738 kill_css(css); 2739 } else if (!css_visible(css)) { 2740 css_clear_dir(css); 2741 if (ss->css_reset) 2742 ss->css_reset(css); 2743 } 2744 } 2745 } 2746 } 2747 2748 /** 2749 * cgroup_apply_control - apply control mask updates to the subtree 2750 * @cgrp: root of the target subtree 2751 * 2752 * subsystems can be enabled and disabled in a subtree using the following 2753 * steps. 2754 * 2755 * 1. Call cgroup_save_control() to stash the current state. 2756 * 2. Update ->subtree_control masks in the subtree as desired. 2757 * 3. Call cgroup_apply_control() to apply the changes. 2758 * 4. Optionally perform other related operations. 2759 * 5. Call cgroup_finalize_control() to finish up. 2760 * 2761 * This function implements step 3 and propagates the mask changes 2762 * throughout @cgrp's subtree, updates csses accordingly and perform 2763 * process migrations. 2764 */ 2765 static int cgroup_apply_control(struct cgroup *cgrp) 2766 { 2767 int ret; 2768 2769 cgroup_propagate_control(cgrp); 2770 2771 ret = cgroup_apply_control_enable(cgrp); 2772 if (ret) 2773 return ret; 2774 2775 /* 2776 * At this point, cgroup_e_css() results reflect the new csses 2777 * making the following cgroup_update_dfl_csses() properly update 2778 * css associations of all tasks in the subtree. 2779 */ 2780 ret = cgroup_update_dfl_csses(cgrp); 2781 if (ret) 2782 return ret; 2783 2784 return 0; 2785 } 2786 2787 /** 2788 * cgroup_finalize_control - finalize control mask update 2789 * @cgrp: root of the target subtree 2790 * @ret: the result of the update 2791 * 2792 * Finalize control mask update. See cgroup_apply_control() for more info. 2793 */ 2794 static void cgroup_finalize_control(struct cgroup *cgrp, int ret) 2795 { 2796 if (ret) { 2797 cgroup_restore_control(cgrp); 2798 cgroup_propagate_control(cgrp); 2799 } 2800 2801 cgroup_apply_control_disable(cgrp); 2802 } 2803 2804 /* change the enabled child controllers for a cgroup in the default hierarchy */ 2805 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of, 2806 char *buf, size_t nbytes, 2807 loff_t off) 2808 { 2809 u16 enable = 0, disable = 0; 2810 struct cgroup *cgrp, *child; 2811 struct cgroup_subsys *ss; 2812 char *tok; 2813 int ssid, ret; 2814 2815 /* 2816 * Parse input - space separated list of subsystem names prefixed 2817 * with either + or -. 2818 */ 2819 buf = strstrip(buf); 2820 while ((tok = strsep(&buf, " "))) { 2821 if (tok[0] == '\0') 2822 continue; 2823 do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) { 2824 if (!cgroup_ssid_enabled(ssid) || 2825 strcmp(tok + 1, ss->name)) 2826 continue; 2827 2828 if (*tok == '+') { 2829 enable |= 1 << ssid; 2830 disable &= ~(1 << ssid); 2831 } else if (*tok == '-') { 2832 disable |= 1 << ssid; 2833 enable &= ~(1 << ssid); 2834 } else { 2835 return -EINVAL; 2836 } 2837 break; 2838 } while_each_subsys_mask(); 2839 if (ssid == CGROUP_SUBSYS_COUNT) 2840 return -EINVAL; 2841 } 2842 2843 cgrp = cgroup_kn_lock_live(of->kn, true); 2844 if (!cgrp) 2845 return -ENODEV; 2846 2847 for_each_subsys(ss, ssid) { 2848 if (enable & (1 << ssid)) { 2849 if (cgrp->subtree_control & (1 << ssid)) { 2850 enable &= ~(1 << ssid); 2851 continue; 2852 } 2853 2854 if (!(cgroup_control(cgrp) & (1 << ssid))) { 2855 ret = -ENOENT; 2856 goto out_unlock; 2857 } 2858 } else if (disable & (1 << ssid)) { 2859 if (!(cgrp->subtree_control & (1 << ssid))) { 2860 disable &= ~(1 << ssid); 2861 continue; 2862 } 2863 2864 /* a child has it enabled? */ 2865 cgroup_for_each_live_child(child, cgrp) { 2866 if (child->subtree_control & (1 << ssid)) { 2867 ret = -EBUSY; 2868 goto out_unlock; 2869 } 2870 } 2871 } 2872 } 2873 2874 if (!enable && !disable) { 2875 ret = 0; 2876 goto out_unlock; 2877 } 2878 2879 /* 2880 * Except for the root, subtree_control must be zero for a cgroup 2881 * with tasks so that child cgroups don't compete against tasks. 2882 */ 2883 if (enable && cgroup_parent(cgrp)) { 2884 struct cgrp_cset_link *link; 2885 2886 /* 2887 * Because namespaces pin csets too, @cgrp->cset_links 2888 * might not be empty even when @cgrp is empty. Walk and 2889 * verify each cset. 2890 */ 2891 spin_lock_irq(&css_set_lock); 2892 2893 ret = 0; 2894 list_for_each_entry(link, &cgrp->cset_links, cset_link) { 2895 if (css_set_populated(link->cset)) { 2896 ret = -EBUSY; 2897 break; 2898 } 2899 } 2900 2901 spin_unlock_irq(&css_set_lock); 2902 2903 if (ret) 2904 goto out_unlock; 2905 } 2906 2907 /* save and update control masks and prepare csses */ 2908 cgroup_save_control(cgrp); 2909 2910 cgrp->subtree_control |= enable; 2911 cgrp->subtree_control &= ~disable; 2912 2913 ret = cgroup_apply_control(cgrp); 2914 2915 cgroup_finalize_control(cgrp, ret); 2916 2917 kernfs_activate(cgrp->kn); 2918 ret = 0; 2919 out_unlock: 2920 cgroup_kn_unlock(of->kn); 2921 return ret ?: nbytes; 2922 } 2923 2924 static int cgroup_events_show(struct seq_file *seq, void *v) 2925 { 2926 seq_printf(seq, "populated %d\n", 2927 cgroup_is_populated(seq_css(seq)->cgroup)); 2928 return 0; 2929 } 2930 2931 static int cgroup_file_open(struct kernfs_open_file *of) 2932 { 2933 struct cftype *cft = of->kn->priv; 2934 2935 if (cft->open) 2936 return cft->open(of); 2937 return 0; 2938 } 2939 2940 static void cgroup_file_release(struct kernfs_open_file *of) 2941 { 2942 struct cftype *cft = of->kn->priv; 2943 2944 if (cft->release) 2945 cft->release(of); 2946 } 2947 2948 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf, 2949 size_t nbytes, loff_t off) 2950 { 2951 struct cgroup *cgrp = of->kn->parent->priv; 2952 struct cftype *cft = of->kn->priv; 2953 struct cgroup_subsys_state *css; 2954 int ret; 2955 2956 if (cft->write) 2957 return cft->write(of, buf, nbytes, off); 2958 2959 /* 2960 * kernfs guarantees that a file isn't deleted with operations in 2961 * flight, which means that the matching css is and stays alive and 2962 * doesn't need to be pinned. The RCU locking is not necessary 2963 * either. It's just for the convenience of using cgroup_css(). 2964 */ 2965 rcu_read_lock(); 2966 css = cgroup_css(cgrp, cft->ss); 2967 rcu_read_unlock(); 2968 2969 if (cft->write_u64) { 2970 unsigned long long v; 2971 ret = kstrtoull(buf, 0, &v); 2972 if (!ret) 2973 ret = cft->write_u64(css, cft, v); 2974 } else if (cft->write_s64) { 2975 long long v; 2976 ret = kstrtoll(buf, 0, &v); 2977 if (!ret) 2978 ret = cft->write_s64(css, cft, v); 2979 } else { 2980 ret = -EINVAL; 2981 } 2982 2983 return ret ?: nbytes; 2984 } 2985 2986 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos) 2987 { 2988 return seq_cft(seq)->seq_start(seq, ppos); 2989 } 2990 2991 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos) 2992 { 2993 return seq_cft(seq)->seq_next(seq, v, ppos); 2994 } 2995 2996 static void cgroup_seqfile_stop(struct seq_file *seq, void *v) 2997 { 2998 if (seq_cft(seq)->seq_stop) 2999 seq_cft(seq)->seq_stop(seq, v); 3000 } 3001 3002 static int cgroup_seqfile_show(struct seq_file *m, void *arg) 3003 { 3004 struct cftype *cft = seq_cft(m); 3005 struct cgroup_subsys_state *css = seq_css(m); 3006 3007 if (cft->seq_show) 3008 return cft->seq_show(m, arg); 3009 3010 if (cft->read_u64) 3011 seq_printf(m, "%llu\n", cft->read_u64(css, cft)); 3012 else if (cft->read_s64) 3013 seq_printf(m, "%lld\n", cft->read_s64(css, cft)); 3014 else 3015 return -EINVAL; 3016 return 0; 3017 } 3018 3019 static struct kernfs_ops cgroup_kf_single_ops = { 3020 .atomic_write_len = PAGE_SIZE, 3021 .open = cgroup_file_open, 3022 .release = cgroup_file_release, 3023 .write = cgroup_file_write, 3024 .seq_show = cgroup_seqfile_show, 3025 }; 3026 3027 static struct kernfs_ops cgroup_kf_ops = { 3028 .atomic_write_len = PAGE_SIZE, 3029 .open = cgroup_file_open, 3030 .release = cgroup_file_release, 3031 .write = cgroup_file_write, 3032 .seq_start = cgroup_seqfile_start, 3033 .seq_next = cgroup_seqfile_next, 3034 .seq_stop = cgroup_seqfile_stop, 3035 .seq_show = cgroup_seqfile_show, 3036 }; 3037 3038 /* set uid and gid of cgroup dirs and files to that of the creator */ 3039 static int cgroup_kn_set_ugid(struct kernfs_node *kn) 3040 { 3041 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID, 3042 .ia_uid = current_fsuid(), 3043 .ia_gid = current_fsgid(), }; 3044 3045 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) && 3046 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID)) 3047 return 0; 3048 3049 return kernfs_setattr(kn, &iattr); 3050 } 3051 3052 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp, 3053 struct cftype *cft) 3054 { 3055 char name[CGROUP_FILE_NAME_MAX]; 3056 struct kernfs_node *kn; 3057 struct lock_class_key *key = NULL; 3058 int ret; 3059 3060 #ifdef CONFIG_DEBUG_LOCK_ALLOC 3061 key = &cft->lockdep_key; 3062 #endif 3063 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name), 3064 cgroup_file_mode(cft), 0, cft->kf_ops, cft, 3065 NULL, key); 3066 if (IS_ERR(kn)) 3067 return PTR_ERR(kn); 3068 3069 ret = cgroup_kn_set_ugid(kn); 3070 if (ret) { 3071 kernfs_remove(kn); 3072 return ret; 3073 } 3074 3075 if (cft->file_offset) { 3076 struct cgroup_file *cfile = (void *)css + cft->file_offset; 3077 3078 spin_lock_irq(&cgroup_file_kn_lock); 3079 cfile->kn = kn; 3080 spin_unlock_irq(&cgroup_file_kn_lock); 3081 } 3082 3083 return 0; 3084 } 3085 3086 /** 3087 * cgroup_addrm_files - add or remove files to a cgroup directory 3088 * @css: the target css 3089 * @cgrp: the target cgroup (usually css->cgroup) 3090 * @cfts: array of cftypes to be added 3091 * @is_add: whether to add or remove 3092 * 3093 * Depending on @is_add, add or remove files defined by @cfts on @cgrp. 3094 * For removals, this function never fails. 3095 */ 3096 static int cgroup_addrm_files(struct cgroup_subsys_state *css, 3097 struct cgroup *cgrp, struct cftype cfts[], 3098 bool is_add) 3099 { 3100 struct cftype *cft, *cft_end = NULL; 3101 int ret = 0; 3102 3103 lockdep_assert_held(&cgroup_mutex); 3104 3105 restart: 3106 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) { 3107 /* does cft->flags tell us to skip this file on @cgrp? */ 3108 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp)) 3109 continue; 3110 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp)) 3111 continue; 3112 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp)) 3113 continue; 3114 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp)) 3115 continue; 3116 3117 if (is_add) { 3118 ret = cgroup_add_file(css, cgrp, cft); 3119 if (ret) { 3120 pr_warn("%s: failed to add %s, err=%d\n", 3121 __func__, cft->name, ret); 3122 cft_end = cft; 3123 is_add = false; 3124 goto restart; 3125 } 3126 } else { 3127 cgroup_rm_file(cgrp, cft); 3128 } 3129 } 3130 return ret; 3131 } 3132 3133 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add) 3134 { 3135 LIST_HEAD(pending); 3136 struct cgroup_subsys *ss = cfts[0].ss; 3137 struct cgroup *root = &ss->root->cgrp; 3138 struct cgroup_subsys_state *css; 3139 int ret = 0; 3140 3141 lockdep_assert_held(&cgroup_mutex); 3142 3143 /* add/rm files for all cgroups created before */ 3144 css_for_each_descendant_pre(css, cgroup_css(root, ss)) { 3145 struct cgroup *cgrp = css->cgroup; 3146 3147 if (!(css->flags & CSS_VISIBLE)) 3148 continue; 3149 3150 ret = cgroup_addrm_files(css, cgrp, cfts, is_add); 3151 if (ret) 3152 break; 3153 } 3154 3155 if (is_add && !ret) 3156 kernfs_activate(root->kn); 3157 return ret; 3158 } 3159 3160 static void cgroup_exit_cftypes(struct cftype *cfts) 3161 { 3162 struct cftype *cft; 3163 3164 for (cft = cfts; cft->name[0] != '\0'; cft++) { 3165 /* free copy for custom atomic_write_len, see init_cftypes() */ 3166 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) 3167 kfree(cft->kf_ops); 3168 cft->kf_ops = NULL; 3169 cft->ss = NULL; 3170 3171 /* revert flags set by cgroup core while adding @cfts */ 3172 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL); 3173 } 3174 } 3175 3176 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 3177 { 3178 struct cftype *cft; 3179 3180 for (cft = cfts; cft->name[0] != '\0'; cft++) { 3181 struct kernfs_ops *kf_ops; 3182 3183 WARN_ON(cft->ss || cft->kf_ops); 3184 3185 if (cft->seq_start) 3186 kf_ops = &cgroup_kf_ops; 3187 else 3188 kf_ops = &cgroup_kf_single_ops; 3189 3190 /* 3191 * Ugh... if @cft wants a custom max_write_len, we need to 3192 * make a copy of kf_ops to set its atomic_write_len. 3193 */ 3194 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) { 3195 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL); 3196 if (!kf_ops) { 3197 cgroup_exit_cftypes(cfts); 3198 return -ENOMEM; 3199 } 3200 kf_ops->atomic_write_len = cft->max_write_len; 3201 } 3202 3203 cft->kf_ops = kf_ops; 3204 cft->ss = ss; 3205 } 3206 3207 return 0; 3208 } 3209 3210 static int cgroup_rm_cftypes_locked(struct cftype *cfts) 3211 { 3212 lockdep_assert_held(&cgroup_mutex); 3213 3214 if (!cfts || !cfts[0].ss) 3215 return -ENOENT; 3216 3217 list_del(&cfts->node); 3218 cgroup_apply_cftypes(cfts, false); 3219 cgroup_exit_cftypes(cfts); 3220 return 0; 3221 } 3222 3223 /** 3224 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem 3225 * @cfts: zero-length name terminated array of cftypes 3226 * 3227 * Unregister @cfts. Files described by @cfts are removed from all 3228 * existing cgroups and all future cgroups won't have them either. This 3229 * function can be called anytime whether @cfts' subsys is attached or not. 3230 * 3231 * Returns 0 on successful unregistration, -ENOENT if @cfts is not 3232 * registered. 3233 */ 3234 int cgroup_rm_cftypes(struct cftype *cfts) 3235 { 3236 int ret; 3237 3238 mutex_lock(&cgroup_mutex); 3239 ret = cgroup_rm_cftypes_locked(cfts); 3240 mutex_unlock(&cgroup_mutex); 3241 return ret; 3242 } 3243 3244 /** 3245 * cgroup_add_cftypes - add an array of cftypes to a subsystem 3246 * @ss: target cgroup subsystem 3247 * @cfts: zero-length name terminated array of cftypes 3248 * 3249 * Register @cfts to @ss. Files described by @cfts are created for all 3250 * existing cgroups to which @ss is attached and all future cgroups will 3251 * have them too. This function can be called anytime whether @ss is 3252 * attached or not. 3253 * 3254 * Returns 0 on successful registration, -errno on failure. Note that this 3255 * function currently returns 0 as long as @cfts registration is successful 3256 * even if some file creation attempts on existing cgroups fail. 3257 */ 3258 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 3259 { 3260 int ret; 3261 3262 if (!cgroup_ssid_enabled(ss->id)) 3263 return 0; 3264 3265 if (!cfts || cfts[0].name[0] == '\0') 3266 return 0; 3267 3268 ret = cgroup_init_cftypes(ss, cfts); 3269 if (ret) 3270 return ret; 3271 3272 mutex_lock(&cgroup_mutex); 3273 3274 list_add_tail(&cfts->node, &ss->cfts); 3275 ret = cgroup_apply_cftypes(cfts, true); 3276 if (ret) 3277 cgroup_rm_cftypes_locked(cfts); 3278 3279 mutex_unlock(&cgroup_mutex); 3280 return ret; 3281 } 3282 3283 /** 3284 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy 3285 * @ss: target cgroup subsystem 3286 * @cfts: zero-length name terminated array of cftypes 3287 * 3288 * Similar to cgroup_add_cftypes() but the added files are only used for 3289 * the default hierarchy. 3290 */ 3291 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 3292 { 3293 struct cftype *cft; 3294 3295 for (cft = cfts; cft && cft->name[0] != '\0'; cft++) 3296 cft->flags |= __CFTYPE_ONLY_ON_DFL; 3297 return cgroup_add_cftypes(ss, cfts); 3298 } 3299 3300 /** 3301 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies 3302 * @ss: target cgroup subsystem 3303 * @cfts: zero-length name terminated array of cftypes 3304 * 3305 * Similar to cgroup_add_cftypes() but the added files are only used for 3306 * the legacy hierarchies. 3307 */ 3308 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 3309 { 3310 struct cftype *cft; 3311 3312 for (cft = cfts; cft && cft->name[0] != '\0'; cft++) 3313 cft->flags |= __CFTYPE_NOT_ON_DFL; 3314 return cgroup_add_cftypes(ss, cfts); 3315 } 3316 3317 /** 3318 * cgroup_file_notify - generate a file modified event for a cgroup_file 3319 * @cfile: target cgroup_file 3320 * 3321 * @cfile must have been obtained by setting cftype->file_offset. 3322 */ 3323 void cgroup_file_notify(struct cgroup_file *cfile) 3324 { 3325 unsigned long flags; 3326 3327 spin_lock_irqsave(&cgroup_file_kn_lock, flags); 3328 if (cfile->kn) 3329 kernfs_notify(cfile->kn); 3330 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags); 3331 } 3332 3333 /** 3334 * css_next_child - find the next child of a given css 3335 * @pos: the current position (%NULL to initiate traversal) 3336 * @parent: css whose children to walk 3337 * 3338 * This function returns the next child of @parent and should be called 3339 * under either cgroup_mutex or RCU read lock. The only requirement is 3340 * that @parent and @pos are accessible. The next sibling is guaranteed to 3341 * be returned regardless of their states. 3342 * 3343 * If a subsystem synchronizes ->css_online() and the start of iteration, a 3344 * css which finished ->css_online() is guaranteed to be visible in the 3345 * future iterations and will stay visible until the last reference is put. 3346 * A css which hasn't finished ->css_online() or already finished 3347 * ->css_offline() may show up during traversal. It's each subsystem's 3348 * responsibility to synchronize against on/offlining. 3349 */ 3350 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos, 3351 struct cgroup_subsys_state *parent) 3352 { 3353 struct cgroup_subsys_state *next; 3354 3355 cgroup_assert_mutex_or_rcu_locked(); 3356 3357 /* 3358 * @pos could already have been unlinked from the sibling list. 3359 * Once a cgroup is removed, its ->sibling.next is no longer 3360 * updated when its next sibling changes. CSS_RELEASED is set when 3361 * @pos is taken off list, at which time its next pointer is valid, 3362 * and, as releases are serialized, the one pointed to by the next 3363 * pointer is guaranteed to not have started release yet. This 3364 * implies that if we observe !CSS_RELEASED on @pos in this RCU 3365 * critical section, the one pointed to by its next pointer is 3366 * guaranteed to not have finished its RCU grace period even if we 3367 * have dropped rcu_read_lock() inbetween iterations. 3368 * 3369 * If @pos has CSS_RELEASED set, its next pointer can't be 3370 * dereferenced; however, as each css is given a monotonically 3371 * increasing unique serial number and always appended to the 3372 * sibling list, the next one can be found by walking the parent's 3373 * children until the first css with higher serial number than 3374 * @pos's. While this path can be slower, it happens iff iteration 3375 * races against release and the race window is very small. 3376 */ 3377 if (!pos) { 3378 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling); 3379 } else if (likely(!(pos->flags & CSS_RELEASED))) { 3380 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling); 3381 } else { 3382 list_for_each_entry_rcu(next, &parent->children, sibling) 3383 if (next->serial_nr > pos->serial_nr) 3384 break; 3385 } 3386 3387 /* 3388 * @next, if not pointing to the head, can be dereferenced and is 3389 * the next sibling. 3390 */ 3391 if (&next->sibling != &parent->children) 3392 return next; 3393 return NULL; 3394 } 3395 3396 /** 3397 * css_next_descendant_pre - find the next descendant for pre-order walk 3398 * @pos: the current position (%NULL to initiate traversal) 3399 * @root: css whose descendants to walk 3400 * 3401 * To be used by css_for_each_descendant_pre(). Find the next descendant 3402 * to visit for pre-order traversal of @root's descendants. @root is 3403 * included in the iteration and the first node to be visited. 3404 * 3405 * While this function requires cgroup_mutex or RCU read locking, it 3406 * doesn't require the whole traversal to be contained in a single critical 3407 * section. This function will return the correct next descendant as long 3408 * as both @pos and @root are accessible and @pos is a descendant of @root. 3409 * 3410 * If a subsystem synchronizes ->css_online() and the start of iteration, a 3411 * css which finished ->css_online() is guaranteed to be visible in the 3412 * future iterations and will stay visible until the last reference is put. 3413 * A css which hasn't finished ->css_online() or already finished 3414 * ->css_offline() may show up during traversal. It's each subsystem's 3415 * responsibility to synchronize against on/offlining. 3416 */ 3417 struct cgroup_subsys_state * 3418 css_next_descendant_pre(struct cgroup_subsys_state *pos, 3419 struct cgroup_subsys_state *root) 3420 { 3421 struct cgroup_subsys_state *next; 3422 3423 cgroup_assert_mutex_or_rcu_locked(); 3424 3425 /* if first iteration, visit @root */ 3426 if (!pos) 3427 return root; 3428 3429 /* visit the first child if exists */ 3430 next = css_next_child(NULL, pos); 3431 if (next) 3432 return next; 3433 3434 /* no child, visit my or the closest ancestor's next sibling */ 3435 while (pos != root) { 3436 next = css_next_child(pos, pos->parent); 3437 if (next) 3438 return next; 3439 pos = pos->parent; 3440 } 3441 3442 return NULL; 3443 } 3444 3445 /** 3446 * css_rightmost_descendant - return the rightmost descendant of a css 3447 * @pos: css of interest 3448 * 3449 * Return the rightmost descendant of @pos. If there's no descendant, @pos 3450 * is returned. This can be used during pre-order traversal to skip 3451 * subtree of @pos. 3452 * 3453 * While this function requires cgroup_mutex or RCU read locking, it 3454 * doesn't require the whole traversal to be contained in a single critical 3455 * section. This function will return the correct rightmost descendant as 3456 * long as @pos is accessible. 3457 */ 3458 struct cgroup_subsys_state * 3459 css_rightmost_descendant(struct cgroup_subsys_state *pos) 3460 { 3461 struct cgroup_subsys_state *last, *tmp; 3462 3463 cgroup_assert_mutex_or_rcu_locked(); 3464 3465 do { 3466 last = pos; 3467 /* ->prev isn't RCU safe, walk ->next till the end */ 3468 pos = NULL; 3469 css_for_each_child(tmp, last) 3470 pos = tmp; 3471 } while (pos); 3472 3473 return last; 3474 } 3475 3476 static struct cgroup_subsys_state * 3477 css_leftmost_descendant(struct cgroup_subsys_state *pos) 3478 { 3479 struct cgroup_subsys_state *last; 3480 3481 do { 3482 last = pos; 3483 pos = css_next_child(NULL, pos); 3484 } while (pos); 3485 3486 return last; 3487 } 3488 3489 /** 3490 * css_next_descendant_post - find the next descendant for post-order walk 3491 * @pos: the current position (%NULL to initiate traversal) 3492 * @root: css whose descendants to walk 3493 * 3494 * To be used by css_for_each_descendant_post(). Find the next descendant 3495 * to visit for post-order traversal of @root's descendants. @root is 3496 * included in the iteration and the last node to be visited. 3497 * 3498 * While this function requires cgroup_mutex or RCU read locking, it 3499 * doesn't require the whole traversal to be contained in a single critical 3500 * section. This function will return the correct next descendant as long 3501 * as both @pos and @cgroup are accessible and @pos is a descendant of 3502 * @cgroup. 3503 * 3504 * If a subsystem synchronizes ->css_online() and the start of iteration, a 3505 * css which finished ->css_online() is guaranteed to be visible in the 3506 * future iterations and will stay visible until the last reference is put. 3507 * A css which hasn't finished ->css_online() or already finished 3508 * ->css_offline() may show up during traversal. It's each subsystem's 3509 * responsibility to synchronize against on/offlining. 3510 */ 3511 struct cgroup_subsys_state * 3512 css_next_descendant_post(struct cgroup_subsys_state *pos, 3513 struct cgroup_subsys_state *root) 3514 { 3515 struct cgroup_subsys_state *next; 3516 3517 cgroup_assert_mutex_or_rcu_locked(); 3518 3519 /* if first iteration, visit leftmost descendant which may be @root */ 3520 if (!pos) 3521 return css_leftmost_descendant(root); 3522 3523 /* if we visited @root, we're done */ 3524 if (pos == root) 3525 return NULL; 3526 3527 /* if there's an unvisited sibling, visit its leftmost descendant */ 3528 next = css_next_child(pos, pos->parent); 3529 if (next) 3530 return css_leftmost_descendant(next); 3531 3532 /* no sibling left, visit parent */ 3533 return pos->parent; 3534 } 3535 3536 /** 3537 * css_has_online_children - does a css have online children 3538 * @css: the target css 3539 * 3540 * Returns %true if @css has any online children; otherwise, %false. This 3541 * function can be called from any context but the caller is responsible 3542 * for synchronizing against on/offlining as necessary. 3543 */ 3544 bool css_has_online_children(struct cgroup_subsys_state *css) 3545 { 3546 struct cgroup_subsys_state *child; 3547 bool ret = false; 3548 3549 rcu_read_lock(); 3550 css_for_each_child(child, css) { 3551 if (child->flags & CSS_ONLINE) { 3552 ret = true; 3553 break; 3554 } 3555 } 3556 rcu_read_unlock(); 3557 return ret; 3558 } 3559 3560 /** 3561 * css_task_iter_advance_css_set - advance a task itererator to the next css_set 3562 * @it: the iterator to advance 3563 * 3564 * Advance @it to the next css_set to walk. 3565 */ 3566 static void css_task_iter_advance_css_set(struct css_task_iter *it) 3567 { 3568 struct list_head *l = it->cset_pos; 3569 struct cgrp_cset_link *link; 3570 struct css_set *cset; 3571 3572 lockdep_assert_held(&css_set_lock); 3573 3574 /* Advance to the next non-empty css_set */ 3575 do { 3576 l = l->next; 3577 if (l == it->cset_head) { 3578 it->cset_pos = NULL; 3579 it->task_pos = NULL; 3580 return; 3581 } 3582 3583 if (it->ss) { 3584 cset = container_of(l, struct css_set, 3585 e_cset_node[it->ss->id]); 3586 } else { 3587 link = list_entry(l, struct cgrp_cset_link, cset_link); 3588 cset = link->cset; 3589 } 3590 } while (!css_set_populated(cset)); 3591 3592 it->cset_pos = l; 3593 3594 if (!list_empty(&cset->tasks)) 3595 it->task_pos = cset->tasks.next; 3596 else 3597 it->task_pos = cset->mg_tasks.next; 3598 3599 it->tasks_head = &cset->tasks; 3600 it->mg_tasks_head = &cset->mg_tasks; 3601 3602 /* 3603 * We don't keep css_sets locked across iteration steps and thus 3604 * need to take steps to ensure that iteration can be resumed after 3605 * the lock is re-acquired. Iteration is performed at two levels - 3606 * css_sets and tasks in them. 3607 * 3608 * Once created, a css_set never leaves its cgroup lists, so a 3609 * pinned css_set is guaranteed to stay put and we can resume 3610 * iteration afterwards. 3611 * 3612 * Tasks may leave @cset across iteration steps. This is resolved 3613 * by registering each iterator with the css_set currently being 3614 * walked and making css_set_move_task() advance iterators whose 3615 * next task is leaving. 3616 */ 3617 if (it->cur_cset) { 3618 list_del(&it->iters_node); 3619 put_css_set_locked(it->cur_cset); 3620 } 3621 get_css_set(cset); 3622 it->cur_cset = cset; 3623 list_add(&it->iters_node, &cset->task_iters); 3624 } 3625 3626 static void css_task_iter_advance(struct css_task_iter *it) 3627 { 3628 struct list_head *l = it->task_pos; 3629 3630 lockdep_assert_held(&css_set_lock); 3631 WARN_ON_ONCE(!l); 3632 3633 /* 3634 * Advance iterator to find next entry. cset->tasks is consumed 3635 * first and then ->mg_tasks. After ->mg_tasks, we move onto the 3636 * next cset. 3637 */ 3638 l = l->next; 3639 3640 if (l == it->tasks_head) 3641 l = it->mg_tasks_head->next; 3642 3643 if (l == it->mg_tasks_head) 3644 css_task_iter_advance_css_set(it); 3645 else 3646 it->task_pos = l; 3647 } 3648 3649 /** 3650 * css_task_iter_start - initiate task iteration 3651 * @css: the css to walk tasks of 3652 * @it: the task iterator to use 3653 * 3654 * Initiate iteration through the tasks of @css. The caller can call 3655 * css_task_iter_next() to walk through the tasks until the function 3656 * returns NULL. On completion of iteration, css_task_iter_end() must be 3657 * called. 3658 */ 3659 void css_task_iter_start(struct cgroup_subsys_state *css, 3660 struct css_task_iter *it) 3661 { 3662 /* no one should try to iterate before mounting cgroups */ 3663 WARN_ON_ONCE(!use_task_css_set_links); 3664 3665 memset(it, 0, sizeof(*it)); 3666 3667 spin_lock_irq(&css_set_lock); 3668 3669 it->ss = css->ss; 3670 3671 if (it->ss) 3672 it->cset_pos = &css->cgroup->e_csets[css->ss->id]; 3673 else 3674 it->cset_pos = &css->cgroup->cset_links; 3675 3676 it->cset_head = it->cset_pos; 3677 3678 css_task_iter_advance_css_set(it); 3679 3680 spin_unlock_irq(&css_set_lock); 3681 } 3682 3683 /** 3684 * css_task_iter_next - return the next task for the iterator 3685 * @it: the task iterator being iterated 3686 * 3687 * The "next" function for task iteration. @it should have been 3688 * initialized via css_task_iter_start(). Returns NULL when the iteration 3689 * reaches the end. 3690 */ 3691 struct task_struct *css_task_iter_next(struct css_task_iter *it) 3692 { 3693 if (it->cur_task) { 3694 put_task_struct(it->cur_task); 3695 it->cur_task = NULL; 3696 } 3697 3698 spin_lock_irq(&css_set_lock); 3699 3700 if (it->task_pos) { 3701 it->cur_task = list_entry(it->task_pos, struct task_struct, 3702 cg_list); 3703 get_task_struct(it->cur_task); 3704 css_task_iter_advance(it); 3705 } 3706 3707 spin_unlock_irq(&css_set_lock); 3708 3709 return it->cur_task; 3710 } 3711 3712 /** 3713 * css_task_iter_end - finish task iteration 3714 * @it: the task iterator to finish 3715 * 3716 * Finish task iteration started by css_task_iter_start(). 3717 */ 3718 void css_task_iter_end(struct css_task_iter *it) 3719 { 3720 if (it->cur_cset) { 3721 spin_lock_irq(&css_set_lock); 3722 list_del(&it->iters_node); 3723 put_css_set_locked(it->cur_cset); 3724 spin_unlock_irq(&css_set_lock); 3725 } 3726 3727 if (it->cur_task) 3728 put_task_struct(it->cur_task); 3729 } 3730 3731 static void cgroup_procs_release(struct kernfs_open_file *of) 3732 { 3733 if (of->priv) { 3734 css_task_iter_end(of->priv); 3735 kfree(of->priv); 3736 } 3737 } 3738 3739 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos) 3740 { 3741 struct kernfs_open_file *of = s->private; 3742 struct css_task_iter *it = of->priv; 3743 struct task_struct *task; 3744 3745 do { 3746 task = css_task_iter_next(it); 3747 } while (task && !thread_group_leader(task)); 3748 3749 return task; 3750 } 3751 3752 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos) 3753 { 3754 struct kernfs_open_file *of = s->private; 3755 struct cgroup *cgrp = seq_css(s)->cgroup; 3756 struct css_task_iter *it = of->priv; 3757 3758 /* 3759 * When a seq_file is seeked, it's always traversed sequentially 3760 * from position 0, so we can simply keep iterating on !0 *pos. 3761 */ 3762 if (!it) { 3763 if (WARN_ON_ONCE((*pos)++)) 3764 return ERR_PTR(-EINVAL); 3765 3766 it = kzalloc(sizeof(*it), GFP_KERNEL); 3767 if (!it) 3768 return ERR_PTR(-ENOMEM); 3769 of->priv = it; 3770 css_task_iter_start(&cgrp->self, it); 3771 } else if (!(*pos)++) { 3772 css_task_iter_end(it); 3773 css_task_iter_start(&cgrp->self, it); 3774 } 3775 3776 return cgroup_procs_next(s, NULL, NULL); 3777 } 3778 3779 static int cgroup_procs_show(struct seq_file *s, void *v) 3780 { 3781 seq_printf(s, "%d\n", task_tgid_vnr(v)); 3782 return 0; 3783 } 3784 3785 /* cgroup core interface files for the default hierarchy */ 3786 static struct cftype cgroup_base_files[] = { 3787 { 3788 .name = "cgroup.procs", 3789 .file_offset = offsetof(struct cgroup, procs_file), 3790 .release = cgroup_procs_release, 3791 .seq_start = cgroup_procs_start, 3792 .seq_next = cgroup_procs_next, 3793 .seq_show = cgroup_procs_show, 3794 .write = cgroup_procs_write, 3795 }, 3796 { 3797 .name = "cgroup.controllers", 3798 .seq_show = cgroup_controllers_show, 3799 }, 3800 { 3801 .name = "cgroup.subtree_control", 3802 .seq_show = cgroup_subtree_control_show, 3803 .write = cgroup_subtree_control_write, 3804 }, 3805 { 3806 .name = "cgroup.events", 3807 .flags = CFTYPE_NOT_ON_ROOT, 3808 .file_offset = offsetof(struct cgroup, events_file), 3809 .seq_show = cgroup_events_show, 3810 }, 3811 { } /* terminate */ 3812 }; 3813 3814 /* 3815 * css destruction is four-stage process. 3816 * 3817 * 1. Destruction starts. Killing of the percpu_ref is initiated. 3818 * Implemented in kill_css(). 3819 * 3820 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs 3821 * and thus css_tryget_online() is guaranteed to fail, the css can be 3822 * offlined by invoking offline_css(). After offlining, the base ref is 3823 * put. Implemented in css_killed_work_fn(). 3824 * 3825 * 3. When the percpu_ref reaches zero, the only possible remaining 3826 * accessors are inside RCU read sections. css_release() schedules the 3827 * RCU callback. 3828 * 3829 * 4. After the grace period, the css can be freed. Implemented in 3830 * css_free_work_fn(). 3831 * 3832 * It is actually hairier because both step 2 and 4 require process context 3833 * and thus involve punting to css->destroy_work adding two additional 3834 * steps to the already complex sequence. 3835 */ 3836 static void css_free_work_fn(struct work_struct *work) 3837 { 3838 struct cgroup_subsys_state *css = 3839 container_of(work, struct cgroup_subsys_state, destroy_work); 3840 struct cgroup_subsys *ss = css->ss; 3841 struct cgroup *cgrp = css->cgroup; 3842 3843 percpu_ref_exit(&css->refcnt); 3844 3845 if (ss) { 3846 /* css free path */ 3847 struct cgroup_subsys_state *parent = css->parent; 3848 int id = css->id; 3849 3850 ss->css_free(css); 3851 cgroup_idr_remove(&ss->css_idr, id); 3852 cgroup_put(cgrp); 3853 3854 if (parent) 3855 css_put(parent); 3856 } else { 3857 /* cgroup free path */ 3858 atomic_dec(&cgrp->root->nr_cgrps); 3859 cgroup1_pidlist_destroy_all(cgrp); 3860 cancel_work_sync(&cgrp->release_agent_work); 3861 3862 if (cgroup_parent(cgrp)) { 3863 /* 3864 * We get a ref to the parent, and put the ref when 3865 * this cgroup is being freed, so it's guaranteed 3866 * that the parent won't be destroyed before its 3867 * children. 3868 */ 3869 cgroup_put(cgroup_parent(cgrp)); 3870 kernfs_put(cgrp->kn); 3871 kfree(cgrp); 3872 } else { 3873 /* 3874 * This is root cgroup's refcnt reaching zero, 3875 * which indicates that the root should be 3876 * released. 3877 */ 3878 cgroup_destroy_root(cgrp->root); 3879 } 3880 } 3881 } 3882 3883 static void css_free_rcu_fn(struct rcu_head *rcu_head) 3884 { 3885 struct cgroup_subsys_state *css = 3886 container_of(rcu_head, struct cgroup_subsys_state, rcu_head); 3887 3888 INIT_WORK(&css->destroy_work, css_free_work_fn); 3889 queue_work(cgroup_destroy_wq, &css->destroy_work); 3890 } 3891 3892 static void css_release_work_fn(struct work_struct *work) 3893 { 3894 struct cgroup_subsys_state *css = 3895 container_of(work, struct cgroup_subsys_state, destroy_work); 3896 struct cgroup_subsys *ss = css->ss; 3897 struct cgroup *cgrp = css->cgroup; 3898 3899 mutex_lock(&cgroup_mutex); 3900 3901 css->flags |= CSS_RELEASED; 3902 list_del_rcu(&css->sibling); 3903 3904 if (ss) { 3905 /* css release path */ 3906 cgroup_idr_replace(&ss->css_idr, NULL, css->id); 3907 if (ss->css_released) 3908 ss->css_released(css); 3909 } else { 3910 /* cgroup release path */ 3911 trace_cgroup_release(cgrp); 3912 3913 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id); 3914 cgrp->id = -1; 3915 3916 /* 3917 * There are two control paths which try to determine 3918 * cgroup from dentry without going through kernfs - 3919 * cgroupstats_build() and css_tryget_online_from_dir(). 3920 * Those are supported by RCU protecting clearing of 3921 * cgrp->kn->priv backpointer. 3922 */ 3923 if (cgrp->kn) 3924 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, 3925 NULL); 3926 3927 cgroup_bpf_put(cgrp); 3928 } 3929 3930 mutex_unlock(&cgroup_mutex); 3931 3932 call_rcu(&css->rcu_head, css_free_rcu_fn); 3933 } 3934 3935 static void css_release(struct percpu_ref *ref) 3936 { 3937 struct cgroup_subsys_state *css = 3938 container_of(ref, struct cgroup_subsys_state, refcnt); 3939 3940 INIT_WORK(&css->destroy_work, css_release_work_fn); 3941 queue_work(cgroup_destroy_wq, &css->destroy_work); 3942 } 3943 3944 static void init_and_link_css(struct cgroup_subsys_state *css, 3945 struct cgroup_subsys *ss, struct cgroup *cgrp) 3946 { 3947 lockdep_assert_held(&cgroup_mutex); 3948 3949 cgroup_get(cgrp); 3950 3951 memset(css, 0, sizeof(*css)); 3952 css->cgroup = cgrp; 3953 css->ss = ss; 3954 css->id = -1; 3955 INIT_LIST_HEAD(&css->sibling); 3956 INIT_LIST_HEAD(&css->children); 3957 css->serial_nr = css_serial_nr_next++; 3958 atomic_set(&css->online_cnt, 0); 3959 3960 if (cgroup_parent(cgrp)) { 3961 css->parent = cgroup_css(cgroup_parent(cgrp), ss); 3962 css_get(css->parent); 3963 } 3964 3965 BUG_ON(cgroup_css(cgrp, ss)); 3966 } 3967 3968 /* invoke ->css_online() on a new CSS and mark it online if successful */ 3969 static int online_css(struct cgroup_subsys_state *css) 3970 { 3971 struct cgroup_subsys *ss = css->ss; 3972 int ret = 0; 3973 3974 lockdep_assert_held(&cgroup_mutex); 3975 3976 if (ss->css_online) 3977 ret = ss->css_online(css); 3978 if (!ret) { 3979 css->flags |= CSS_ONLINE; 3980 rcu_assign_pointer(css->cgroup->subsys[ss->id], css); 3981 3982 atomic_inc(&css->online_cnt); 3983 if (css->parent) 3984 atomic_inc(&css->parent->online_cnt); 3985 } 3986 return ret; 3987 } 3988 3989 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */ 3990 static void offline_css(struct cgroup_subsys_state *css) 3991 { 3992 struct cgroup_subsys *ss = css->ss; 3993 3994 lockdep_assert_held(&cgroup_mutex); 3995 3996 if (!(css->flags & CSS_ONLINE)) 3997 return; 3998 3999 if (ss->css_reset) 4000 ss->css_reset(css); 4001 4002 if (ss->css_offline) 4003 ss->css_offline(css); 4004 4005 css->flags &= ~CSS_ONLINE; 4006 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL); 4007 4008 wake_up_all(&css->cgroup->offline_waitq); 4009 } 4010 4011 /** 4012 * css_create - create a cgroup_subsys_state 4013 * @cgrp: the cgroup new css will be associated with 4014 * @ss: the subsys of new css 4015 * 4016 * Create a new css associated with @cgrp - @ss pair. On success, the new 4017 * css is online and installed in @cgrp. This function doesn't create the 4018 * interface files. Returns 0 on success, -errno on failure. 4019 */ 4020 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp, 4021 struct cgroup_subsys *ss) 4022 { 4023 struct cgroup *parent = cgroup_parent(cgrp); 4024 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss); 4025 struct cgroup_subsys_state *css; 4026 int err; 4027 4028 lockdep_assert_held(&cgroup_mutex); 4029 4030 css = ss->css_alloc(parent_css); 4031 if (!css) 4032 css = ERR_PTR(-ENOMEM); 4033 if (IS_ERR(css)) 4034 return css; 4035 4036 init_and_link_css(css, ss, cgrp); 4037 4038 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL); 4039 if (err) 4040 goto err_free_css; 4041 4042 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL); 4043 if (err < 0) 4044 goto err_free_css; 4045 css->id = err; 4046 4047 /* @css is ready to be brought online now, make it visible */ 4048 list_add_tail_rcu(&css->sibling, &parent_css->children); 4049 cgroup_idr_replace(&ss->css_idr, css, css->id); 4050 4051 err = online_css(css); 4052 if (err) 4053 goto err_list_del; 4054 4055 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy && 4056 cgroup_parent(parent)) { 4057 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n", 4058 current->comm, current->pid, ss->name); 4059 if (!strcmp(ss->name, "memory")) 4060 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n"); 4061 ss->warned_broken_hierarchy = true; 4062 } 4063 4064 return css; 4065 4066 err_list_del: 4067 list_del_rcu(&css->sibling); 4068 err_free_css: 4069 call_rcu(&css->rcu_head, css_free_rcu_fn); 4070 return ERR_PTR(err); 4071 } 4072 4073 /* 4074 * The returned cgroup is fully initialized including its control mask, but 4075 * it isn't associated with its kernfs_node and doesn't have the control 4076 * mask applied. 4077 */ 4078 static struct cgroup *cgroup_create(struct cgroup *parent) 4079 { 4080 struct cgroup_root *root = parent->root; 4081 struct cgroup *cgrp, *tcgrp; 4082 int level = parent->level + 1; 4083 int ret; 4084 4085 /* allocate the cgroup and its ID, 0 is reserved for the root */ 4086 cgrp = kzalloc(sizeof(*cgrp) + 4087 sizeof(cgrp->ancestor_ids[0]) * (level + 1), GFP_KERNEL); 4088 if (!cgrp) 4089 return ERR_PTR(-ENOMEM); 4090 4091 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL); 4092 if (ret) 4093 goto out_free_cgrp; 4094 4095 /* 4096 * Temporarily set the pointer to NULL, so idr_find() won't return 4097 * a half-baked cgroup. 4098 */ 4099 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL); 4100 if (cgrp->id < 0) { 4101 ret = -ENOMEM; 4102 goto out_cancel_ref; 4103 } 4104 4105 init_cgroup_housekeeping(cgrp); 4106 4107 cgrp->self.parent = &parent->self; 4108 cgrp->root = root; 4109 cgrp->level = level; 4110 4111 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) 4112 cgrp->ancestor_ids[tcgrp->level] = tcgrp->id; 4113 4114 if (notify_on_release(parent)) 4115 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags); 4116 4117 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags)) 4118 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags); 4119 4120 cgrp->self.serial_nr = css_serial_nr_next++; 4121 4122 /* allocation complete, commit to creation */ 4123 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children); 4124 atomic_inc(&root->nr_cgrps); 4125 cgroup_get(parent); 4126 4127 /* 4128 * @cgrp is now fully operational. If something fails after this 4129 * point, it'll be released via the normal destruction path. 4130 */ 4131 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id); 4132 4133 /* 4134 * On the default hierarchy, a child doesn't automatically inherit 4135 * subtree_control from the parent. Each is configured manually. 4136 */ 4137 if (!cgroup_on_dfl(cgrp)) 4138 cgrp->subtree_control = cgroup_control(cgrp); 4139 4140 if (parent) 4141 cgroup_bpf_inherit(cgrp, parent); 4142 4143 cgroup_propagate_control(cgrp); 4144 4145 return cgrp; 4146 4147 out_cancel_ref: 4148 percpu_ref_exit(&cgrp->self.refcnt); 4149 out_free_cgrp: 4150 kfree(cgrp); 4151 return ERR_PTR(ret); 4152 } 4153 4154 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode) 4155 { 4156 struct cgroup *parent, *cgrp; 4157 struct kernfs_node *kn; 4158 int ret; 4159 4160 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */ 4161 if (strchr(name, '\n')) 4162 return -EINVAL; 4163 4164 parent = cgroup_kn_lock_live(parent_kn, false); 4165 if (!parent) 4166 return -ENODEV; 4167 4168 cgrp = cgroup_create(parent); 4169 if (IS_ERR(cgrp)) { 4170 ret = PTR_ERR(cgrp); 4171 goto out_unlock; 4172 } 4173 4174 /* create the directory */ 4175 kn = kernfs_create_dir(parent->kn, name, mode, cgrp); 4176 if (IS_ERR(kn)) { 4177 ret = PTR_ERR(kn); 4178 goto out_destroy; 4179 } 4180 cgrp->kn = kn; 4181 4182 /* 4183 * This extra ref will be put in cgroup_free_fn() and guarantees 4184 * that @cgrp->kn is always accessible. 4185 */ 4186 kernfs_get(kn); 4187 4188 ret = cgroup_kn_set_ugid(kn); 4189 if (ret) 4190 goto out_destroy; 4191 4192 ret = css_populate_dir(&cgrp->self); 4193 if (ret) 4194 goto out_destroy; 4195 4196 ret = cgroup_apply_control_enable(cgrp); 4197 if (ret) 4198 goto out_destroy; 4199 4200 trace_cgroup_mkdir(cgrp); 4201 4202 /* let's create and online css's */ 4203 kernfs_activate(kn); 4204 4205 ret = 0; 4206 goto out_unlock; 4207 4208 out_destroy: 4209 cgroup_destroy_locked(cgrp); 4210 out_unlock: 4211 cgroup_kn_unlock(parent_kn); 4212 return ret; 4213 } 4214 4215 /* 4216 * This is called when the refcnt of a css is confirmed to be killed. 4217 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to 4218 * initate destruction and put the css ref from kill_css(). 4219 */ 4220 static void css_killed_work_fn(struct work_struct *work) 4221 { 4222 struct cgroup_subsys_state *css = 4223 container_of(work, struct cgroup_subsys_state, destroy_work); 4224 4225 mutex_lock(&cgroup_mutex); 4226 4227 do { 4228 offline_css(css); 4229 css_put(css); 4230 /* @css can't go away while we're holding cgroup_mutex */ 4231 css = css->parent; 4232 } while (css && atomic_dec_and_test(&css->online_cnt)); 4233 4234 mutex_unlock(&cgroup_mutex); 4235 } 4236 4237 /* css kill confirmation processing requires process context, bounce */ 4238 static void css_killed_ref_fn(struct percpu_ref *ref) 4239 { 4240 struct cgroup_subsys_state *css = 4241 container_of(ref, struct cgroup_subsys_state, refcnt); 4242 4243 if (atomic_dec_and_test(&css->online_cnt)) { 4244 INIT_WORK(&css->destroy_work, css_killed_work_fn); 4245 queue_work(cgroup_destroy_wq, &css->destroy_work); 4246 } 4247 } 4248 4249 /** 4250 * kill_css - destroy a css 4251 * @css: css to destroy 4252 * 4253 * This function initiates destruction of @css by removing cgroup interface 4254 * files and putting its base reference. ->css_offline() will be invoked 4255 * asynchronously once css_tryget_online() is guaranteed to fail and when 4256 * the reference count reaches zero, @css will be released. 4257 */ 4258 static void kill_css(struct cgroup_subsys_state *css) 4259 { 4260 lockdep_assert_held(&cgroup_mutex); 4261 4262 /* 4263 * This must happen before css is disassociated with its cgroup. 4264 * See seq_css() for details. 4265 */ 4266 css_clear_dir(css); 4267 4268 /* 4269 * Killing would put the base ref, but we need to keep it alive 4270 * until after ->css_offline(). 4271 */ 4272 css_get(css); 4273 4274 /* 4275 * cgroup core guarantees that, by the time ->css_offline() is 4276 * invoked, no new css reference will be given out via 4277 * css_tryget_online(). We can't simply call percpu_ref_kill() and 4278 * proceed to offlining css's because percpu_ref_kill() doesn't 4279 * guarantee that the ref is seen as killed on all CPUs on return. 4280 * 4281 * Use percpu_ref_kill_and_confirm() to get notifications as each 4282 * css is confirmed to be seen as killed on all CPUs. 4283 */ 4284 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn); 4285 } 4286 4287 /** 4288 * cgroup_destroy_locked - the first stage of cgroup destruction 4289 * @cgrp: cgroup to be destroyed 4290 * 4291 * css's make use of percpu refcnts whose killing latency shouldn't be 4292 * exposed to userland and are RCU protected. Also, cgroup core needs to 4293 * guarantee that css_tryget_online() won't succeed by the time 4294 * ->css_offline() is invoked. To satisfy all the requirements, 4295 * destruction is implemented in the following two steps. 4296 * 4297 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all 4298 * userland visible parts and start killing the percpu refcnts of 4299 * css's. Set up so that the next stage will be kicked off once all 4300 * the percpu refcnts are confirmed to be killed. 4301 * 4302 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the 4303 * rest of destruction. Once all cgroup references are gone, the 4304 * cgroup is RCU-freed. 4305 * 4306 * This function implements s1. After this step, @cgrp is gone as far as 4307 * the userland is concerned and a new cgroup with the same name may be 4308 * created. As cgroup doesn't care about the names internally, this 4309 * doesn't cause any problem. 4310 */ 4311 static int cgroup_destroy_locked(struct cgroup *cgrp) 4312 __releases(&cgroup_mutex) __acquires(&cgroup_mutex) 4313 { 4314 struct cgroup_subsys_state *css; 4315 struct cgrp_cset_link *link; 4316 int ssid; 4317 4318 lockdep_assert_held(&cgroup_mutex); 4319 4320 /* 4321 * Only migration can raise populated from zero and we're already 4322 * holding cgroup_mutex. 4323 */ 4324 if (cgroup_is_populated(cgrp)) 4325 return -EBUSY; 4326 4327 /* 4328 * Make sure there's no live children. We can't test emptiness of 4329 * ->self.children as dead children linger on it while being 4330 * drained; otherwise, "rmdir parent/child parent" may fail. 4331 */ 4332 if (css_has_online_children(&cgrp->self)) 4333 return -EBUSY; 4334 4335 /* 4336 * Mark @cgrp and the associated csets dead. The former prevents 4337 * further task migration and child creation by disabling 4338 * cgroup_lock_live_group(). The latter makes the csets ignored by 4339 * the migration path. 4340 */ 4341 cgrp->self.flags &= ~CSS_ONLINE; 4342 4343 spin_lock_irq(&css_set_lock); 4344 list_for_each_entry(link, &cgrp->cset_links, cset_link) 4345 link->cset->dead = true; 4346 spin_unlock_irq(&css_set_lock); 4347 4348 /* initiate massacre of all css's */ 4349 for_each_css(css, ssid, cgrp) 4350 kill_css(css); 4351 4352 /* 4353 * Remove @cgrp directory along with the base files. @cgrp has an 4354 * extra ref on its kn. 4355 */ 4356 kernfs_remove(cgrp->kn); 4357 4358 cgroup1_check_for_release(cgroup_parent(cgrp)); 4359 4360 /* put the base reference */ 4361 percpu_ref_kill(&cgrp->self.refcnt); 4362 4363 return 0; 4364 }; 4365 4366 int cgroup_rmdir(struct kernfs_node *kn) 4367 { 4368 struct cgroup *cgrp; 4369 int ret = 0; 4370 4371 cgrp = cgroup_kn_lock_live(kn, false); 4372 if (!cgrp) 4373 return 0; 4374 4375 ret = cgroup_destroy_locked(cgrp); 4376 4377 if (!ret) 4378 trace_cgroup_rmdir(cgrp); 4379 4380 cgroup_kn_unlock(kn); 4381 return ret; 4382 } 4383 4384 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = { 4385 .remount_fs = cgroup_remount, 4386 .mkdir = cgroup_mkdir, 4387 .rmdir = cgroup_rmdir, 4388 .show_path = cgroup_show_path, 4389 }; 4390 4391 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early) 4392 { 4393 struct cgroup_subsys_state *css; 4394 4395 pr_debug("Initializing cgroup subsys %s\n", ss->name); 4396 4397 mutex_lock(&cgroup_mutex); 4398 4399 idr_init(&ss->css_idr); 4400 INIT_LIST_HEAD(&ss->cfts); 4401 4402 /* Create the root cgroup state for this subsystem */ 4403 ss->root = &cgrp_dfl_root; 4404 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss)); 4405 /* We don't handle early failures gracefully */ 4406 BUG_ON(IS_ERR(css)); 4407 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp); 4408 4409 /* 4410 * Root csses are never destroyed and we can't initialize 4411 * percpu_ref during early init. Disable refcnting. 4412 */ 4413 css->flags |= CSS_NO_REF; 4414 4415 if (early) { 4416 /* allocation can't be done safely during early init */ 4417 css->id = 1; 4418 } else { 4419 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL); 4420 BUG_ON(css->id < 0); 4421 } 4422 4423 /* Update the init_css_set to contain a subsys 4424 * pointer to this state - since the subsystem is 4425 * newly registered, all tasks and hence the 4426 * init_css_set is in the subsystem's root cgroup. */ 4427 init_css_set.subsys[ss->id] = css; 4428 4429 have_fork_callback |= (bool)ss->fork << ss->id; 4430 have_exit_callback |= (bool)ss->exit << ss->id; 4431 have_free_callback |= (bool)ss->free << ss->id; 4432 have_canfork_callback |= (bool)ss->can_fork << ss->id; 4433 4434 /* At system boot, before all subsystems have been 4435 * registered, no tasks have been forked, so we don't 4436 * need to invoke fork callbacks here. */ 4437 BUG_ON(!list_empty(&init_task.tasks)); 4438 4439 BUG_ON(online_css(css)); 4440 4441 mutex_unlock(&cgroup_mutex); 4442 } 4443 4444 /** 4445 * cgroup_init_early - cgroup initialization at system boot 4446 * 4447 * Initialize cgroups at system boot, and initialize any 4448 * subsystems that request early init. 4449 */ 4450 int __init cgroup_init_early(void) 4451 { 4452 static struct cgroup_sb_opts __initdata opts; 4453 struct cgroup_subsys *ss; 4454 int i; 4455 4456 init_cgroup_root(&cgrp_dfl_root, &opts); 4457 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF; 4458 4459 RCU_INIT_POINTER(init_task.cgroups, &init_css_set); 4460 4461 for_each_subsys(ss, i) { 4462 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id, 4463 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n", 4464 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free, 4465 ss->id, ss->name); 4466 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN, 4467 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]); 4468 4469 ss->id = i; 4470 ss->name = cgroup_subsys_name[i]; 4471 if (!ss->legacy_name) 4472 ss->legacy_name = cgroup_subsys_name[i]; 4473 4474 if (ss->early_init) 4475 cgroup_init_subsys(ss, true); 4476 } 4477 return 0; 4478 } 4479 4480 static u16 cgroup_disable_mask __initdata; 4481 4482 /** 4483 * cgroup_init - cgroup initialization 4484 * 4485 * Register cgroup filesystem and /proc file, and initialize 4486 * any subsystems that didn't request early init. 4487 */ 4488 int __init cgroup_init(void) 4489 { 4490 struct cgroup_subsys *ss; 4491 int ssid; 4492 4493 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16); 4494 BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem)); 4495 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files)); 4496 BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files)); 4497 4498 /* 4499 * The latency of the synchronize_sched() is too high for cgroups, 4500 * avoid it at the cost of forcing all readers into the slow path. 4501 */ 4502 rcu_sync_enter_start(&cgroup_threadgroup_rwsem.rss); 4503 4504 get_user_ns(init_cgroup_ns.user_ns); 4505 4506 mutex_lock(&cgroup_mutex); 4507 4508 /* 4509 * Add init_css_set to the hash table so that dfl_root can link to 4510 * it during init. 4511 */ 4512 hash_add(css_set_table, &init_css_set.hlist, 4513 css_set_hash(init_css_set.subsys)); 4514 4515 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0)); 4516 4517 mutex_unlock(&cgroup_mutex); 4518 4519 for_each_subsys(ss, ssid) { 4520 if (ss->early_init) { 4521 struct cgroup_subsys_state *css = 4522 init_css_set.subsys[ss->id]; 4523 4524 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, 4525 GFP_KERNEL); 4526 BUG_ON(css->id < 0); 4527 } else { 4528 cgroup_init_subsys(ss, false); 4529 } 4530 4531 list_add_tail(&init_css_set.e_cset_node[ssid], 4532 &cgrp_dfl_root.cgrp.e_csets[ssid]); 4533 4534 /* 4535 * Setting dfl_root subsys_mask needs to consider the 4536 * disabled flag and cftype registration needs kmalloc, 4537 * both of which aren't available during early_init. 4538 */ 4539 if (cgroup_disable_mask & (1 << ssid)) { 4540 static_branch_disable(cgroup_subsys_enabled_key[ssid]); 4541 printk(KERN_INFO "Disabling %s control group subsystem\n", 4542 ss->name); 4543 continue; 4544 } 4545 4546 if (cgroup1_ssid_disabled(ssid)) 4547 printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n", 4548 ss->name); 4549 4550 cgrp_dfl_root.subsys_mask |= 1 << ss->id; 4551 4552 if (ss->implicit_on_dfl) 4553 cgrp_dfl_implicit_ss_mask |= 1 << ss->id; 4554 else if (!ss->dfl_cftypes) 4555 cgrp_dfl_inhibit_ss_mask |= 1 << ss->id; 4556 4557 if (ss->dfl_cftypes == ss->legacy_cftypes) { 4558 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes)); 4559 } else { 4560 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes)); 4561 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes)); 4562 } 4563 4564 if (ss->bind) 4565 ss->bind(init_css_set.subsys[ssid]); 4566 } 4567 4568 /* init_css_set.subsys[] has been updated, re-hash */ 4569 hash_del(&init_css_set.hlist); 4570 hash_add(css_set_table, &init_css_set.hlist, 4571 css_set_hash(init_css_set.subsys)); 4572 4573 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup")); 4574 WARN_ON(register_filesystem(&cgroup_fs_type)); 4575 WARN_ON(register_filesystem(&cgroup2_fs_type)); 4576 WARN_ON(!proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations)); 4577 4578 return 0; 4579 } 4580 4581 static int __init cgroup_wq_init(void) 4582 { 4583 /* 4584 * There isn't much point in executing destruction path in 4585 * parallel. Good chunk is serialized with cgroup_mutex anyway. 4586 * Use 1 for @max_active. 4587 * 4588 * We would prefer to do this in cgroup_init() above, but that 4589 * is called before init_workqueues(): so leave this until after. 4590 */ 4591 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1); 4592 BUG_ON(!cgroup_destroy_wq); 4593 return 0; 4594 } 4595 core_initcall(cgroup_wq_init); 4596 4597 /* 4598 * proc_cgroup_show() 4599 * - Print task's cgroup paths into seq_file, one line for each hierarchy 4600 * - Used for /proc/<pid>/cgroup. 4601 */ 4602 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns, 4603 struct pid *pid, struct task_struct *tsk) 4604 { 4605 char *buf; 4606 int retval; 4607 struct cgroup_root *root; 4608 4609 retval = -ENOMEM; 4610 buf = kmalloc(PATH_MAX, GFP_KERNEL); 4611 if (!buf) 4612 goto out; 4613 4614 mutex_lock(&cgroup_mutex); 4615 spin_lock_irq(&css_set_lock); 4616 4617 for_each_root(root) { 4618 struct cgroup_subsys *ss; 4619 struct cgroup *cgrp; 4620 int ssid, count = 0; 4621 4622 if (root == &cgrp_dfl_root && !cgrp_dfl_visible) 4623 continue; 4624 4625 seq_printf(m, "%d:", root->hierarchy_id); 4626 if (root != &cgrp_dfl_root) 4627 for_each_subsys(ss, ssid) 4628 if (root->subsys_mask & (1 << ssid)) 4629 seq_printf(m, "%s%s", count++ ? "," : "", 4630 ss->legacy_name); 4631 if (strlen(root->name)) 4632 seq_printf(m, "%sname=%s", count ? "," : "", 4633 root->name); 4634 seq_putc(m, ':'); 4635 4636 cgrp = task_cgroup_from_root(tsk, root); 4637 4638 /* 4639 * On traditional hierarchies, all zombie tasks show up as 4640 * belonging to the root cgroup. On the default hierarchy, 4641 * while a zombie doesn't show up in "cgroup.procs" and 4642 * thus can't be migrated, its /proc/PID/cgroup keeps 4643 * reporting the cgroup it belonged to before exiting. If 4644 * the cgroup is removed before the zombie is reaped, 4645 * " (deleted)" is appended to the cgroup path. 4646 */ 4647 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) { 4648 retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX, 4649 current->nsproxy->cgroup_ns); 4650 if (retval >= PATH_MAX) 4651 retval = -ENAMETOOLONG; 4652 if (retval < 0) 4653 goto out_unlock; 4654 4655 seq_puts(m, buf); 4656 } else { 4657 seq_puts(m, "/"); 4658 } 4659 4660 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp)) 4661 seq_puts(m, " (deleted)\n"); 4662 else 4663 seq_putc(m, '\n'); 4664 } 4665 4666 retval = 0; 4667 out_unlock: 4668 spin_unlock_irq(&css_set_lock); 4669 mutex_unlock(&cgroup_mutex); 4670 kfree(buf); 4671 out: 4672 return retval; 4673 } 4674 4675 /** 4676 * cgroup_fork - initialize cgroup related fields during copy_process() 4677 * @child: pointer to task_struct of forking parent process. 4678 * 4679 * A task is associated with the init_css_set until cgroup_post_fork() 4680 * attaches it to the parent's css_set. Empty cg_list indicates that 4681 * @child isn't holding reference to its css_set. 4682 */ 4683 void cgroup_fork(struct task_struct *child) 4684 { 4685 RCU_INIT_POINTER(child->cgroups, &init_css_set); 4686 INIT_LIST_HEAD(&child->cg_list); 4687 } 4688 4689 /** 4690 * cgroup_can_fork - called on a new task before the process is exposed 4691 * @child: the task in question. 4692 * 4693 * This calls the subsystem can_fork() callbacks. If the can_fork() callback 4694 * returns an error, the fork aborts with that error code. This allows for 4695 * a cgroup subsystem to conditionally allow or deny new forks. 4696 */ 4697 int cgroup_can_fork(struct task_struct *child) 4698 { 4699 struct cgroup_subsys *ss; 4700 int i, j, ret; 4701 4702 do_each_subsys_mask(ss, i, have_canfork_callback) { 4703 ret = ss->can_fork(child); 4704 if (ret) 4705 goto out_revert; 4706 } while_each_subsys_mask(); 4707 4708 return 0; 4709 4710 out_revert: 4711 for_each_subsys(ss, j) { 4712 if (j >= i) 4713 break; 4714 if (ss->cancel_fork) 4715 ss->cancel_fork(child); 4716 } 4717 4718 return ret; 4719 } 4720 4721 /** 4722 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork() 4723 * @child: the task in question 4724 * 4725 * This calls the cancel_fork() callbacks if a fork failed *after* 4726 * cgroup_can_fork() succeded. 4727 */ 4728 void cgroup_cancel_fork(struct task_struct *child) 4729 { 4730 struct cgroup_subsys *ss; 4731 int i; 4732 4733 for_each_subsys(ss, i) 4734 if (ss->cancel_fork) 4735 ss->cancel_fork(child); 4736 } 4737 4738 /** 4739 * cgroup_post_fork - called on a new task after adding it to the task list 4740 * @child: the task in question 4741 * 4742 * Adds the task to the list running through its css_set if necessary and 4743 * call the subsystem fork() callbacks. Has to be after the task is 4744 * visible on the task list in case we race with the first call to 4745 * cgroup_task_iter_start() - to guarantee that the new task ends up on its 4746 * list. 4747 */ 4748 void cgroup_post_fork(struct task_struct *child) 4749 { 4750 struct cgroup_subsys *ss; 4751 int i; 4752 4753 /* 4754 * This may race against cgroup_enable_task_cg_lists(). As that 4755 * function sets use_task_css_set_links before grabbing 4756 * tasklist_lock and we just went through tasklist_lock to add 4757 * @child, it's guaranteed that either we see the set 4758 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees 4759 * @child during its iteration. 4760 * 4761 * If we won the race, @child is associated with %current's 4762 * css_set. Grabbing css_set_lock guarantees both that the 4763 * association is stable, and, on completion of the parent's 4764 * migration, @child is visible in the source of migration or 4765 * already in the destination cgroup. This guarantee is necessary 4766 * when implementing operations which need to migrate all tasks of 4767 * a cgroup to another. 4768 * 4769 * Note that if we lose to cgroup_enable_task_cg_lists(), @child 4770 * will remain in init_css_set. This is safe because all tasks are 4771 * in the init_css_set before cg_links is enabled and there's no 4772 * operation which transfers all tasks out of init_css_set. 4773 */ 4774 if (use_task_css_set_links) { 4775 struct css_set *cset; 4776 4777 spin_lock_irq(&css_set_lock); 4778 cset = task_css_set(current); 4779 if (list_empty(&child->cg_list)) { 4780 get_css_set(cset); 4781 css_set_move_task(child, NULL, cset, false); 4782 } 4783 spin_unlock_irq(&css_set_lock); 4784 } 4785 4786 /* 4787 * Call ss->fork(). This must happen after @child is linked on 4788 * css_set; otherwise, @child might change state between ->fork() 4789 * and addition to css_set. 4790 */ 4791 do_each_subsys_mask(ss, i, have_fork_callback) { 4792 ss->fork(child); 4793 } while_each_subsys_mask(); 4794 } 4795 4796 /** 4797 * cgroup_exit - detach cgroup from exiting task 4798 * @tsk: pointer to task_struct of exiting process 4799 * 4800 * Description: Detach cgroup from @tsk and release it. 4801 * 4802 * Note that cgroups marked notify_on_release force every task in 4803 * them to take the global cgroup_mutex mutex when exiting. 4804 * This could impact scaling on very large systems. Be reluctant to 4805 * use notify_on_release cgroups where very high task exit scaling 4806 * is required on large systems. 4807 * 4808 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We 4809 * call cgroup_exit() while the task is still competent to handle 4810 * notify_on_release(), then leave the task attached to the root cgroup in 4811 * each hierarchy for the remainder of its exit. No need to bother with 4812 * init_css_set refcnting. init_css_set never goes away and we can't race 4813 * with migration path - PF_EXITING is visible to migration path. 4814 */ 4815 void cgroup_exit(struct task_struct *tsk) 4816 { 4817 struct cgroup_subsys *ss; 4818 struct css_set *cset; 4819 int i; 4820 4821 /* 4822 * Unlink from @tsk from its css_set. As migration path can't race 4823 * with us, we can check css_set and cg_list without synchronization. 4824 */ 4825 cset = task_css_set(tsk); 4826 4827 if (!list_empty(&tsk->cg_list)) { 4828 spin_lock_irq(&css_set_lock); 4829 css_set_move_task(tsk, cset, NULL, false); 4830 spin_unlock_irq(&css_set_lock); 4831 } else { 4832 get_css_set(cset); 4833 } 4834 4835 /* see cgroup_post_fork() for details */ 4836 do_each_subsys_mask(ss, i, have_exit_callback) { 4837 ss->exit(tsk); 4838 } while_each_subsys_mask(); 4839 } 4840 4841 void cgroup_free(struct task_struct *task) 4842 { 4843 struct css_set *cset = task_css_set(task); 4844 struct cgroup_subsys *ss; 4845 int ssid; 4846 4847 do_each_subsys_mask(ss, ssid, have_free_callback) { 4848 ss->free(task); 4849 } while_each_subsys_mask(); 4850 4851 put_css_set(cset); 4852 } 4853 4854 static int __init cgroup_disable(char *str) 4855 { 4856 struct cgroup_subsys *ss; 4857 char *token; 4858 int i; 4859 4860 while ((token = strsep(&str, ",")) != NULL) { 4861 if (!*token) 4862 continue; 4863 4864 for_each_subsys(ss, i) { 4865 if (strcmp(token, ss->name) && 4866 strcmp(token, ss->legacy_name)) 4867 continue; 4868 cgroup_disable_mask |= 1 << i; 4869 } 4870 } 4871 return 1; 4872 } 4873 __setup("cgroup_disable=", cgroup_disable); 4874 4875 /** 4876 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry 4877 * @dentry: directory dentry of interest 4878 * @ss: subsystem of interest 4879 * 4880 * If @dentry is a directory for a cgroup which has @ss enabled on it, try 4881 * to get the corresponding css and return it. If such css doesn't exist 4882 * or can't be pinned, an ERR_PTR value is returned. 4883 */ 4884 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry, 4885 struct cgroup_subsys *ss) 4886 { 4887 struct kernfs_node *kn = kernfs_node_from_dentry(dentry); 4888 struct file_system_type *s_type = dentry->d_sb->s_type; 4889 struct cgroup_subsys_state *css = NULL; 4890 struct cgroup *cgrp; 4891 4892 /* is @dentry a cgroup dir? */ 4893 if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) || 4894 !kn || kernfs_type(kn) != KERNFS_DIR) 4895 return ERR_PTR(-EBADF); 4896 4897 rcu_read_lock(); 4898 4899 /* 4900 * This path doesn't originate from kernfs and @kn could already 4901 * have been or be removed at any point. @kn->priv is RCU 4902 * protected for this access. See css_release_work_fn() for details. 4903 */ 4904 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); 4905 if (cgrp) 4906 css = cgroup_css(cgrp, ss); 4907 4908 if (!css || !css_tryget_online(css)) 4909 css = ERR_PTR(-ENOENT); 4910 4911 rcu_read_unlock(); 4912 return css; 4913 } 4914 4915 /** 4916 * css_from_id - lookup css by id 4917 * @id: the cgroup id 4918 * @ss: cgroup subsys to be looked into 4919 * 4920 * Returns the css if there's valid one with @id, otherwise returns NULL. 4921 * Should be called under rcu_read_lock(). 4922 */ 4923 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss) 4924 { 4925 WARN_ON_ONCE(!rcu_read_lock_held()); 4926 return idr_find(&ss->css_idr, id); 4927 } 4928 4929 /** 4930 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path 4931 * @path: path on the default hierarchy 4932 * 4933 * Find the cgroup at @path on the default hierarchy, increment its 4934 * reference count and return it. Returns pointer to the found cgroup on 4935 * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR) 4936 * if @path points to a non-directory. 4937 */ 4938 struct cgroup *cgroup_get_from_path(const char *path) 4939 { 4940 struct kernfs_node *kn; 4941 struct cgroup *cgrp; 4942 4943 mutex_lock(&cgroup_mutex); 4944 4945 kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path); 4946 if (kn) { 4947 if (kernfs_type(kn) == KERNFS_DIR) { 4948 cgrp = kn->priv; 4949 cgroup_get(cgrp); 4950 } else { 4951 cgrp = ERR_PTR(-ENOTDIR); 4952 } 4953 kernfs_put(kn); 4954 } else { 4955 cgrp = ERR_PTR(-ENOENT); 4956 } 4957 4958 mutex_unlock(&cgroup_mutex); 4959 return cgrp; 4960 } 4961 EXPORT_SYMBOL_GPL(cgroup_get_from_path); 4962 4963 /** 4964 * cgroup_get_from_fd - get a cgroup pointer from a fd 4965 * @fd: fd obtained by open(cgroup2_dir) 4966 * 4967 * Find the cgroup from a fd which should be obtained 4968 * by opening a cgroup directory. Returns a pointer to the 4969 * cgroup on success. ERR_PTR is returned if the cgroup 4970 * cannot be found. 4971 */ 4972 struct cgroup *cgroup_get_from_fd(int fd) 4973 { 4974 struct cgroup_subsys_state *css; 4975 struct cgroup *cgrp; 4976 struct file *f; 4977 4978 f = fget_raw(fd); 4979 if (!f) 4980 return ERR_PTR(-EBADF); 4981 4982 css = css_tryget_online_from_dir(f->f_path.dentry, NULL); 4983 fput(f); 4984 if (IS_ERR(css)) 4985 return ERR_CAST(css); 4986 4987 cgrp = css->cgroup; 4988 if (!cgroup_on_dfl(cgrp)) { 4989 cgroup_put(cgrp); 4990 return ERR_PTR(-EBADF); 4991 } 4992 4993 return cgrp; 4994 } 4995 EXPORT_SYMBOL_GPL(cgroup_get_from_fd); 4996 4997 /* 4998 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data 4999 * definition in cgroup-defs.h. 5000 */ 5001 #ifdef CONFIG_SOCK_CGROUP_DATA 5002 5003 #if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID) 5004 5005 DEFINE_SPINLOCK(cgroup_sk_update_lock); 5006 static bool cgroup_sk_alloc_disabled __read_mostly; 5007 5008 void cgroup_sk_alloc_disable(void) 5009 { 5010 if (cgroup_sk_alloc_disabled) 5011 return; 5012 pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n"); 5013 cgroup_sk_alloc_disabled = true; 5014 } 5015 5016 #else 5017 5018 #define cgroup_sk_alloc_disabled false 5019 5020 #endif 5021 5022 void cgroup_sk_alloc(struct sock_cgroup_data *skcd) 5023 { 5024 if (cgroup_sk_alloc_disabled) 5025 return; 5026 5027 /* Socket clone path */ 5028 if (skcd->val) { 5029 cgroup_get(sock_cgroup_ptr(skcd)); 5030 return; 5031 } 5032 5033 rcu_read_lock(); 5034 5035 while (true) { 5036 struct css_set *cset; 5037 5038 cset = task_css_set(current); 5039 if (likely(cgroup_tryget(cset->dfl_cgrp))) { 5040 skcd->val = (unsigned long)cset->dfl_cgrp; 5041 break; 5042 } 5043 cpu_relax(); 5044 } 5045 5046 rcu_read_unlock(); 5047 } 5048 5049 void cgroup_sk_free(struct sock_cgroup_data *skcd) 5050 { 5051 cgroup_put(sock_cgroup_ptr(skcd)); 5052 } 5053 5054 #endif /* CONFIG_SOCK_CGROUP_DATA */ 5055 5056 #ifdef CONFIG_CGROUP_BPF 5057 int cgroup_bpf_update(struct cgroup *cgrp, struct bpf_prog *prog, 5058 enum bpf_attach_type type, bool overridable) 5059 { 5060 struct cgroup *parent = cgroup_parent(cgrp); 5061 int ret; 5062 5063 mutex_lock(&cgroup_mutex); 5064 ret = __cgroup_bpf_update(cgrp, parent, prog, type, overridable); 5065 mutex_unlock(&cgroup_mutex); 5066 return ret; 5067 } 5068 #endif /* CONFIG_CGROUP_BPF */ 5069